python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility class for performing TensorRT image inference.""" import numpy as np import tensorrt as trt from nvidia_tao_deploy.inferencer.trt_inferencer import TRTInferencer from nvidia_tao_deploy.inferencer.utils import allocate_buffers, do_inference class LPRNetInferencer(TRTInferencer): """Manages TensorRT objects for model inference.""" def __init__(self, engine_path, input_shape=None, batch_size=None, data_format="channel_first"): """Initializes TensorRT objects needed for model inference. Args: engine_path (str): path where TensorRT engine should be stored input_shape (tuple): (batch, channel, height, width) for dynamic shape engine batch_size (int): batch size for dynamic shape engine data_format (str): either channel_first or channel_last """ # Load TRT engine super().__init__(engine_path) self.max_batch_size = self.engine.max_batch_size self.execute_v2 = False # Execution context is needed for inference self.context = None # Allocate memory for multiple usage [e.g. multiple batch inference] self._input_shape = [] for binding in range(self.engine.num_bindings): if self.engine.binding_is_input(binding): self._input_shape = self.engine.get_binding_shape(binding)[-3:] assert len(self._input_shape) == 3, "Engine doesn't have valid input dimensions" if data_format == "channel_first": self.height = self._input_shape[1] self.width = self._input_shape[2] else: self.height = self._input_shape[0] self.width = self._input_shape[1] # set binding_shape for dynamic input if (input_shape is not None) or (batch_size is not None): self.context = self.engine.create_execution_context() if input_shape is not None: self.context.set_binding_shape(0, input_shape) self.max_batch_size = input_shape[0] else: self.context.set_binding_shape(0, [batch_size] + list(self._input_shape)) self.max_batch_size = batch_size self.execute_v2 = True # This allocates memory for network inputs/outputs on both CPU and GPU self.inputs, self.outputs, self.bindings, self.stream = allocate_buffers(self.engine, self.context) if self.context is None: self.context = self.engine.create_execution_context() input_volume = trt.volume(self._input_shape) self.numpy_array = np.zeros((self.max_batch_size, input_volume)) def infer(self, imgs): """Infers model on batch of same sized images resized to fit the model. Args: image_paths (str): paths to images, that will be packed into batch and fed into model """ # Verify if the supplied batch size is not too big max_batch_size = self.max_batch_size actual_batch_size = len(imgs) if actual_batch_size > max_batch_size: raise ValueError(f"image_paths list bigger ({actual_batch_size}) than \ engine max batch size ({max_batch_size})") self.numpy_array[:actual_batch_size] = imgs.reshape(actual_batch_size, -1) # ...copy them into appropriate place into memory... # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[0].host, self.numpy_array.ravel()) # ...fetch model outputs... results = do_inference( self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, batch_size=max_batch_size, execute_v2=self.execute_v2) # ...and return results up to the actual batch size. return [i.reshape(max_batch_size, -1)[:actual_batch_size] for i in results] def __del__(self): """Clear things up on object deletion.""" # Clear session and buffer if self.trt_runtime: del self.trt_runtime if self.context: del self.context if self.engine: del self.engine if self.stream: del self.stream # Loop through inputs and free inputs. for inp in self.inputs: inp.device.free() # Loop through outputs and free them. for out in self.outputs: out.device.free()
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """LPRNet TensorRT engine builder.""" import logging import os import sys import onnx import tensorrt as trt from nvidia_tao_deploy.engine.builder import EngineBuilder logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class LPRNetEngineBuilder(EngineBuilder): """Parses an ONNX graph and builds a TensorRT engine from it.""" def __init__( self, data_format="channels_first", **kwargs ): """Init. Args: data_format (str): data_format. """ super().__init__(**kwargs) self._data_format = data_format def set_input_output_node_names(self): """Set input output node names.""" self._output_node_names = ["tf_op_layer_ArgMax", "tf_op_layer_Max"] self._input_node_names = ["image_input"] def get_onnx_input_dims(self, model_path): """Get input dimension of ONNX model.""" onnx_model = onnx.load(model_path) onnx_inputs = onnx_model.graph.input logger.info('List inputs:') for i, inputs in enumerate(onnx_inputs): logger.info('Input %s -> %s.', i, inputs.name) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][1:]) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][0]) return [i.dim_value for i in inputs.type.tensor_type.shape.dim][:] def create_network(self, model_path, file_format="onnx"): """Parse the UFF/ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the UFF/ONNX graph to load. file_format: The file format of the decrypted etlt file (default: onnx). """ if file_format == "onnx": logger.info("Parsing ONNX model") self._input_dims = self.get_onnx_input_dims(model_path) self.batch_size = self._input_dims[0] self._input_dims = self._input_dims[1:] network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) network_flags = network_flags | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) model_path = os.path.realpath(model_path) with open(model_path, "rb") as f: if not self.parser.parse(f.read()): logger.error("Failed to load ONNX file: %s", model_path) for error in range(self.parser.num_errors): logger.error(self.parser.get_error(error)) sys.exit(1) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] logger.info("Network Description") for input in inputs: # noqa pylint: disable=W0622 logger.info("Input '%s' with shape %s and dtype %s", input.name, input.shape, input.dtype) for output in outputs: logger.info("Output '%s' with shape %s and dtype %s", output.name, output.shape, output.dtype) if self.batch_size <= 0: # dynamic batch size logger.info("dynamic batch size handling") opt_profile = self.builder.create_optimization_profile() model_input = self.network.get_input(0) input_shape = model_input.shape input_name = model_input.name real_shape_min = (self.min_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_opt = (self.opt_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_max = (self.max_batch_size, input_shape[1], input_shape[2], input_shape[3]) opt_profile.set_shape(input=input_name, min=real_shape_min, opt=real_shape_opt, max=real_shape_max) self.config.add_optimization_profile(opt_profile) else: logger.info("Parsing UFF model") raise NotImplementedError("UFF for LPRNet is not supported") def create_engine(self, engine_path, precision, calib_input=None, calib_cache=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None): """Build the TensorRT engine and serialize it to disk. Args: engine_path: The path where to serialize the engine to. precision: The datatype to use for the engine, either 'fp32', 'fp16' or 'int8'. calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. """ engine_path = os.path.realpath(engine_path) engine_dir = os.path.dirname(engine_path) os.makedirs(engine_dir, exist_ok=True) logger.debug("Building %s Engine in %s", precision, engine_path) if self.batch_size is None: self.batch_size = calib_batch_size self.builder.max_batch_size = self.batch_size if precision == "fp16": if not self.builder.platform_has_fast_fp16: logger.warning("FP16 is not supported natively on this platform/device") else: self.config.set_flag(trt.BuilderFlag.FP16) elif precision == "int8": raise NotImplementedError("INT8 is not supported for LPRNet!") self._logger_info_IBuilderConfig() with self.builder.build_engine(self.network, self.config) as engine, \ open(engine_path, "wb") as f: logger.debug("Serializing engine to file: %s", engine_path) f.write(engine.serialize()) def set_data_preprocessing_parameters(self, input_dims, image_mean=None): """Set data pre-processing parameters for the int8 calibration.""" num_channels = input_dims[0] if num_channels == 3: means = [0, 0, 0] elif num_channels == 1: means = [0] else: raise NotImplementedError(f"Invalid number of dimensions {num_channels}.") self.preprocessing_arguments = {"scale": 1.0 / 255.0, "means": means, "flip_channel": True}
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy LPRNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper function to decode ctc trained model's output.""" def decode_ctc_conf(pred, classes, blank_id): """Decode ctc trained model's output. Return decoded license plate and confidence. """ pred_id = pred[0] pred_conf = pred[1] decoded_lp = [] decoded_conf = [] for idx_in_batch, seq in enumerate(pred_id): seq_conf = pred_conf[idx_in_batch] prev = seq[0] tmp_seq = [prev] tmp_conf = [seq_conf[0]] for idx in range(1, len(seq)): if seq[idx] != prev: tmp_seq.append(seq[idx]) tmp_conf.append(seq_conf[idx]) prev = seq[idx] lp = "" output_conf = [] for index, i in enumerate(tmp_seq): if i != blank_id: lp += classes[i] output_conf.append(tmp_conf[index]) decoded_lp.append(lp) decoded_conf.append(output_conf) return decoded_lp, decoded_conf
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """LPRNet loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import cv2 from abc import ABC import numpy as np from nvidia_tao_deploy.cv.common.constants import VALID_IMAGE_EXTENSIONS class LPRNetLoader(ABC): """LPRNet Dataloader.""" def __init__(self, shape, image_dirs, label_dirs, classes, is_inference=False, batch_size=10, max_label_length=8, dtype=None): """Init. Args: image_dirs (list): list of image directories. label_dirs (list): list of label directories. classes (list): list of classes batch_size (int): size of the batch. is_inference (bool): If True, no labels will be returned image_mean (list): image mean used for preprocessing. max_label_length (int): The maximum length of license plates in the dataset dtype (str): data type to cast to """ assert len(image_dirs) == len(label_dirs), "Mismatch!" self.image_paths = [] self.label_paths = [] self.is_inference = is_inference for image_dir, label_dir in zip(image_dirs, label_dirs): self._add_source(image_dir, label_dir) self.image_paths = np.array(self.image_paths) self.data_inds = np.arange(len(self.image_paths)) self.class_dict = {classes[index]: index for index in range(len(classes))} self.classes = classes self.max_label_length = max_label_length self.num_channels, self.height, self.width = shape self.batch_size = batch_size self.n_samples = len(self.data_inds) self.dtype = dtype self.n_batches = int(len(self.image_paths) // self.batch_size) assert self.n_batches > 0, "empty image dir or batch size too large!" def _add_source(self, image_folder, label_folder): """Add image/label paths.""" img_files = os.listdir(image_folder) if not self.is_inference: label_files = set(os.listdir(label_folder)) else: label_files = [] for img_file in img_files: file_name, _ = os.path.splitext(img_file) if img_file.lower().endswith(VALID_IMAGE_EXTENSIONS) and file_name + ".txt" in label_files: self.image_paths.append(os.path.join(image_folder, img_file)) self.label_paths.append(os.path.join(label_folder, file_name + ".txt")) elif img_file.lower().endswith(VALID_IMAGE_EXTENSIONS) and self.is_inference: self.image_paths.append(os.path.join(image_folder, img_file)) def __len__(self): """Get length of Sequence.""" return self.n_batches def _load_gt_image(self, image_path): """Load GT image from file.""" read_flag = cv2.IMREAD_COLOR if self.num_channels == 1: read_flag = cv2.IMREAD_GRAYSCALE img = cv2.imread(image_path, read_flag) return img def __iter__(self): """Iterate.""" self.n = 0 return self def __next__(self): """Load a full batch.""" images = [] labels = [] if self.n < self.n_batches: for idx in range(self.n * self.batch_size, (self.n + 1) * self.batch_size): image, label = self._get_single_processed_item(idx) images.append(image) labels.append(label) self.n += 1 return self._batch_post_processing(images, labels) raise StopIteration def _batch_post_processing(self, images, labels): """Post processing for a batch.""" images = np.array(images) # try to make labels a numpy array is_make_array = True x_shape = None for x in labels: if not isinstance(x, np.ndarray): is_make_array = False break if x_shape is None: x_shape = x.shape elif x_shape != x.shape: is_make_array = False break if is_make_array: labels = np.array(labels) return images, labels def _get_single_processed_item(self, idx): """Load and process single image and its label.""" image, label = self._get_single_item_raw(idx) image = self.preprocessing(image) return image, label def _get_single_item_raw(self, idx): """Load single image and its label. Returns: image (np.array): image object in original resolution label (int): one-hot encoded class label """ image = self._load_gt_image(self.image_paths[self.data_inds[idx]]) if self.is_inference: label = np.zeros((1, 7)) # Random array to label else: with open(self.label_paths[self.data_inds[idx]], "r", encoding="utf-8") as f: label = f.readline().strip() return image, label def preprocessing(self, image): """The image preprocessor loads an image from disk and prepares it as needed for batching. This includes padding, resizing, normalization, data type casting, and transposing. Args: image (np.array): The opencv image on disk to load. Returns: image (np.array): A numpy array holding the image sample, ready to be concatenated into the rest of the batch """ image = cv2.resize(image, (self.width, self.height)) / 255.0 image = np.array(image, dtype=self.dtype) if self.num_channels == 1: image = image[..., np.newaxis] # transpose image from HWC (0, 1, 2) to CHW (2, 0, 1) image = image.transpose(2, 0, 1) return image
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/dataloader.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/lprnet/proto/lpr_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/lprnet/proto/lpr_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n2nvidia_tao_deploy/cv/lprnet/proto/lpr_config.proto\"\xa0\x01\n\x0cLPRNetConfig\x12\x17\n\x0fsequence_length\x18\x01 \x01(\r\x12\x14\n\x0chidden_units\x18\x02 \x01(\r\x12\x18\n\x10max_label_length\x18\x03 \x01(\r\x12\x0c\n\x04\x61rch\x18\x04 \x01(\t\x12\x0f\n\x07nlayers\x18\x05 \x01(\r\x12\x15\n\rfreeze_blocks\x18\x06 \x03(\r\x12\x11\n\tfreeze_bn\x18\x07 \x01(\x08\x62\x06proto3') ) _LPRNETCONFIG = _descriptor.Descriptor( name='LPRNetConfig', full_name='LPRNetConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='sequence_length', full_name='LPRNetConfig.sequence_length', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='hidden_units', full_name='LPRNetConfig.hidden_units', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_label_length', full_name='LPRNetConfig.max_label_length', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='arch', full_name='LPRNetConfig.arch', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nlayers', full_name='LPRNetConfig.nlayers', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_blocks', full_name='LPRNetConfig.freeze_blocks', index=5, number=6, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_bn', full_name='LPRNetConfig.freeze_bn', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=55, serialized_end=215, ) DESCRIPTOR.message_types_by_name['LPRNetConfig'] = _LPRNETCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) LPRNetConfig = _reflection.GeneratedProtocolMessageType('LPRNetConfig', (_message.Message,), dict( DESCRIPTOR = _LPRNETCONFIG, __module__ = 'nvidia_tao_deploy.cv.lprnet.proto.lpr_config_pb2' # @@protoc_insertion_point(class_scope:LPRNetConfig) )) _sym_db.RegisterMessage(LPRNetConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/proto/lpr_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy LPRNet Proto."""
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/proto/__init__.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/lprnet/proto/lp_sequence_dataset_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/lprnet/proto/lp_sequence_dataset_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nBnvidia_tao_deploy/cv/lprnet/proto/lp_sequence_dataset_config.proto\"H\n\nDataSource\x12\x1c\n\x14label_directory_path\x18\x01 \x01(\t\x12\x1c\n\x14image_directory_path\x18\x02 \x01(\t\"\x80\x01\n\x0fLPDatasetConfig\x12!\n\x0c\x64\x61ta_sources\x18\x01 \x03(\x0b\x32\x0b.DataSource\x12\x1c\n\x14\x63haracters_list_file\x18\x02 \x01(\t\x12,\n\x17validation_data_sources\x18\x03 \x03(\x0b\x32\x0b.DataSourceb\x06proto3') ) _DATASOURCE = _descriptor.Descriptor( name='DataSource', full_name='DataSource', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='label_directory_path', full_name='DataSource.label_directory_path', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_directory_path', full_name='DataSource.image_directory_path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=70, serialized_end=142, ) _LPDATASETCONFIG = _descriptor.Descriptor( name='LPDatasetConfig', full_name='LPDatasetConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data_sources', full_name='LPDatasetConfig.data_sources', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='characters_list_file', full_name='LPDatasetConfig.characters_list_file', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='validation_data_sources', full_name='LPDatasetConfig.validation_data_sources', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=145, serialized_end=273, ) _LPDATASETCONFIG.fields_by_name['data_sources'].message_type = _DATASOURCE _LPDATASETCONFIG.fields_by_name['validation_data_sources'].message_type = _DATASOURCE DESCRIPTOR.message_types_by_name['DataSource'] = _DATASOURCE DESCRIPTOR.message_types_by_name['LPDatasetConfig'] = _LPDATASETCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) DataSource = _reflection.GeneratedProtocolMessageType('DataSource', (_message.Message,), dict( DESCRIPTOR = _DATASOURCE, __module__ = 'nvidia_tao_deploy.cv.lprnet.proto.lp_sequence_dataset_config_pb2' # @@protoc_insertion_point(class_scope:DataSource) )) _sym_db.RegisterMessage(DataSource) LPDatasetConfig = _reflection.GeneratedProtocolMessageType('LPDatasetConfig', (_message.Message,), dict( DESCRIPTOR = _LPDATASETCONFIG, __module__ = 'nvidia_tao_deploy.cv.lprnet.proto.lp_sequence_dataset_config_pb2' # @@protoc_insertion_point(class_scope:LPDatasetConfig) )) _sym_db.RegisterMessage(LPDatasetConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/proto/lp_sequence_dataset_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/lprnet/proto/augmentation_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/lprnet/proto/augmentation_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n;nvidia_tao_deploy/cv/lprnet/proto/augmentation_config.proto\"\xf2\x01\n\x12\x41ugmentationConfig\x12\x14\n\x0coutput_width\x18\x01 \x01(\x05\x12\x15\n\routput_height\x18\x02 \x01(\x05\x12\x16\n\x0eoutput_channel\x18\x03 \x01(\x05\x12\x19\n\x11max_rotate_degree\x18\x04 \x01(\x05\x12\x13\n\x0brotate_prob\x18\x06 \x01(\x02\x12\x1c\n\x14gaussian_kernel_size\x18\x07 \x03(\x05\x12\x11\n\tblur_prob\x18\x08 \x01(\x02\x12\x1a\n\x12reverse_color_prob\x18\t \x01(\x02\x12\x1a\n\x12keep_original_prob\x18\x05 \x01(\x02\x62\x06proto3') ) _AUGMENTATIONCONFIG = _descriptor.Descriptor( name='AugmentationConfig', full_name='AugmentationConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='output_width', full_name='AugmentationConfig.output_width', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_height', full_name='AugmentationConfig.output_height', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_channel', full_name='AugmentationConfig.output_channel', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_rotate_degree', full_name='AugmentationConfig.max_rotate_degree', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rotate_prob', full_name='AugmentationConfig.rotate_prob', index=4, number=6, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='gaussian_kernel_size', full_name='AugmentationConfig.gaussian_kernel_size', index=5, number=7, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='blur_prob', full_name='AugmentationConfig.blur_prob', index=6, number=8, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reverse_color_prob', full_name='AugmentationConfig.reverse_color_prob', index=7, number=9, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='keep_original_prob', full_name='AugmentationConfig.keep_original_prob', index=8, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=64, serialized_end=306, ) DESCRIPTOR.message_types_by_name['AugmentationConfig'] = _AUGMENTATIONCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) AugmentationConfig = _reflection.GeneratedProtocolMessageType('AugmentationConfig', (_message.Message,), dict( DESCRIPTOR = _AUGMENTATIONCONFIG, __module__ = 'nvidia_tao_deploy.cv.lprnet.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig) )) _sym_db.RegisterMessage(AugmentationConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/proto/augmentation_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/lprnet/proto/experiment.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.common.proto import training_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_training__config__pb2 from nvidia_tao_deploy.cv.lprnet.proto import lp_sequence_dataset_config_pb2 as nvidia__tao__deploy_dot_cv_dot_lprnet_dot_proto_dot_lp__sequence__dataset__config__pb2 from nvidia_tao_deploy.cv.lprnet.proto import augmentation_config_pb2 as nvidia__tao__deploy_dot_cv_dot_lprnet_dot_proto_dot_augmentation__config__pb2 from nvidia_tao_deploy.cv.lprnet.proto import eval_config_pb2 as nvidia__tao__deploy_dot_cv_dot_lprnet_dot_proto_dot_eval__config__pb2 from nvidia_tao_deploy.cv.lprnet.proto import lpr_config_pb2 as nvidia__tao__deploy_dot_cv_dot_lprnet_dot_proto_dot_lpr__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/lprnet/proto/experiment.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n2nvidia_tao_deploy/cv/lprnet/proto/experiment.proto\x1a\x37nvidia_tao_deploy/cv/common/proto/training_config.proto\x1a\x42nvidia_tao_deploy/cv/lprnet/proto/lp_sequence_dataset_config.proto\x1a;nvidia_tao_deploy/cv/lprnet/proto/augmentation_config.proto\x1a\x33nvidia_tao_deploy/cv/lprnet/proto/eval_config.proto\x1a\x32nvidia_tao_deploy/cv/lprnet/proto/lpr_config.proto\"\xec\x01\n\nExperiment\x12\x13\n\x0brandom_seed\x18\x01 \x01(\r\x12(\n\x0e\x64\x61taset_config\x18\x02 \x01(\x0b\x32\x10.LPDatasetConfig\x12\x30\n\x13\x61ugmentation_config\x18\x03 \x01(\x0b\x32\x13.AugmentationConfig\x12(\n\x0ftraining_config\x18\x04 \x01(\x0b\x32\x0f.TrainingConfig\x12 \n\x0b\x65val_config\x18\x05 \x01(\x0b\x32\x0b.EvalConfig\x12!\n\nlpr_config\x18\x06 \x01(\x0b\x32\r.LPRNetConfigb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_training__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_lprnet_dot_proto_dot_lp__sequence__dataset__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_lprnet_dot_proto_dot_augmentation__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_lprnet_dot_proto_dot_eval__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_lprnet_dot_proto_dot_lpr__config__pb2.DESCRIPTOR,]) _EXPERIMENT = _descriptor.Descriptor( name='Experiment', full_name='Experiment', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='random_seed', full_name='Experiment.random_seed', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dataset_config', full_name='Experiment.dataset_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='augmentation_config', full_name='Experiment.augmentation_config', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='training_config', full_name='Experiment.training_config', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_config', full_name='Experiment.eval_config', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lpr_config', full_name='Experiment.lpr_config', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=346, serialized_end=582, ) _EXPERIMENT.fields_by_name['dataset_config'].message_type = nvidia__tao__deploy_dot_cv_dot_lprnet_dot_proto_dot_lp__sequence__dataset__config__pb2._LPDATASETCONFIG _EXPERIMENT.fields_by_name['augmentation_config'].message_type = nvidia__tao__deploy_dot_cv_dot_lprnet_dot_proto_dot_augmentation__config__pb2._AUGMENTATIONCONFIG _EXPERIMENT.fields_by_name['training_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_training__config__pb2._TRAININGCONFIG _EXPERIMENT.fields_by_name['eval_config'].message_type = nvidia__tao__deploy_dot_cv_dot_lprnet_dot_proto_dot_eval__config__pb2._EVALCONFIG _EXPERIMENT.fields_by_name['lpr_config'].message_type = nvidia__tao__deploy_dot_cv_dot_lprnet_dot_proto_dot_lpr__config__pb2._LPRNETCONFIG DESCRIPTOR.message_types_by_name['Experiment'] = _EXPERIMENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) Experiment = _reflection.GeneratedProtocolMessageType('Experiment', (_message.Message,), dict( DESCRIPTOR = _EXPERIMENT, __module__ = 'nvidia_tao_deploy.cv.lprnet.proto.experiment_pb2' # @@protoc_insertion_point(class_scope:Experiment) )) _sym_db.RegisterMessage(Experiment) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/proto/experiment_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Config Base Utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging from google.protobuf.text_format import Merge as merge_text_proto from nvidia_tao_deploy.cv.lprnet.proto.experiment_pb2 import Experiment logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) def load_proto(config): """Load the experiment proto.""" proto = Experiment() def _load_from_file(filename, pb2): if not os.path.exists(filename): raise IOError(f"Specfile not found at: {filename}") with open(filename, "r", encoding="utf-8") as f: merge_text_proto(f.read(), pb2) _load_from_file(config, proto) return proto
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/proto/utils.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/lprnet/proto/eval_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/lprnet/proto/eval_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n3nvidia_tao_deploy/cv/lprnet/proto/eval_config.proto\"K\n\nEvalConfig\x12)\n!validation_period_during_training\x18\x01 \x01(\r\x12\x12\n\nbatch_size\x18\x02 \x01(\rb\x06proto3') ) _EVALCONFIG = _descriptor.Descriptor( name='EvalConfig', full_name='EvalConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='validation_period_during_training', full_name='EvalConfig.validation_period_during_training', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size', full_name='EvalConfig.batch_size', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=55, serialized_end=130, ) DESCRIPTOR.message_types_by_name['EvalConfig'] = _EVALCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) EvalConfig = _reflection.GeneratedProtocolMessageType('EvalConfig', (_message.Message,), dict( DESCRIPTOR = _EVALCONFIG, __module__ = 'nvidia_tao_deploy.cv.lprnet.proto.eval_config_pb2' # @@protoc_insertion_point(class_scope:EvalConfig) )) _sym_db.RegisterMessage(EvalConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/proto/eval_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """LPRNet convert etlt/onnx model to TRT engine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import tempfile from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.lprnet.engine_builder import LPRNetEngineBuilder from nvidia_tao_deploy.utils.decoding import decode_model logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) DEFAULT_MAX_BATCH_SIZE = 1 DEFAULT_MIN_BATCH_SIZE = 1 DEFAULT_OPT_BATCH_SIZE = 1 @monitor_status(name='lprnet', mode='gen_trt_engine') def main(args): """LPRNet convert.""" # decrypt etlt tmp_onnx_file, file_format = decode_model(args.model_path, args.key) if args.engine_file is not None or args.data_type == 'int8': if args.engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = args.engine_file builder = LPRNetEngineBuilder(verbose=args.verbose, workspace=args.max_workspace_size, min_batch_size=args.min_batch_size, opt_batch_size=args.opt_batch_size, max_batch_size=args.max_batch_size) builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, args.data_type) logging.info("Export finished successfully.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='gen_trt_engine', description='Generate TRT engine of LPRNet model.') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to a LPRNet .etlt or .onnx model file.' ) parser.add_argument( '-k', '--key', type=str, required=False, help='Key to save or load a .etlt model.') parser.add_argument( "--data_type", type=str, default="fp32", help="Data type for the TensorRT export.", choices=["fp32", "fp16"]) parser.add_argument( "--engine_file", type=str, default=None, help="Path to the exported TRT engine.") parser.add_argument( "--max_batch_size", type=int, default=DEFAULT_MAX_BATCH_SIZE, help="Max batch size for TensorRT engine builder.") parser.add_argument( "--min_batch_size", type=int, default=DEFAULT_MIN_BATCH_SIZE, help="Min batch size for TensorRT engine builder.") parser.add_argument( "--opt_batch_size", type=int, default=DEFAULT_OPT_BATCH_SIZE, help="Opt batch size for TensorRT engine builder.") parser.add_argument( "--max_workspace_size", type=int, default=2, help="Max memory workspace size to allow in Gb for TensorRT engine builder (default: 2).") parser.add_argument( "-v", "--verbose", action="store_true", default=False, help="Verbosity of the logger.") parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy LPRNet scripts module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import numpy as np from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.lprnet.inferencer import LPRNetInferencer from nvidia_tao_deploy.cv.lprnet.dataloader import LPRNetLoader from nvidia_tao_deploy.cv.lprnet.utils import decode_ctc_conf from nvidia_tao_deploy.cv.lprnet.proto.utils import load_proto logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='lprnet', mode='inference') def main(args): """LPRNet TRT inference.""" # Load from proto-based spec file es = load_proto(args.experiment_spec) data_format = "channels_first" batch_size = args.batch_size if args.batch_size else es.eval_config.batch_size max_label_length = es.lpr_config.max_label_length if es.lpr_config.max_label_length else 8 # Load image directories from validataion_data_sources image_dirs = [] for data_source in es.dataset_config.validation_data_sources: image_dirs.append(data_source.image_directory_path) # Override the spec file if argument is passed if args.image_dir: image_dirs = [args.image_dir] trt_infer = LPRNetInferencer(args.model_path, data_format=data_format, batch_size=batch_size) characters_list_file = es.dataset_config.characters_list_file if not os.path.exists(characters_list_file): raise FileNotFoundError(f"{characters_list_file} does not exist!") with open(characters_list_file, "r", encoding="utf-8") as f: temp_list = f.readlines() classes = [i.strip() for i in temp_list] blank_id = len(classes) dl = LPRNetLoader( trt_infer._input_shape, image_dirs, [None], classes=classes, is_inference=True, batch_size=batch_size, max_label_length=max_label_length, dtype=trt_infer.inputs[0].host.dtype) for i, (imgs, _) in enumerate(dl): y_pred = trt_infer.infer(imgs) # decode prediction decoded_lp, _ = decode_ctc_conf(y_pred, classes=classes, blank_id=blank_id) image_paths = dl.image_paths[np.arange(args.batch_size) + args.batch_size * i] for image_path, lp in zip(image_paths, decoded_lp): print(f"{image_path}: {lp} ") logging.info("Finished inference.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='eval', description='Evaluate with a LPRNet TRT model.') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the LPRNet TensorRT engine.' ) parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images' ) parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.' ) parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import json from tqdm.auto import tqdm from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.lprnet.inferencer import LPRNetInferencer from nvidia_tao_deploy.cv.lprnet.dataloader import LPRNetLoader from nvidia_tao_deploy.cv.lprnet.utils import decode_ctc_conf from nvidia_tao_deploy.cv.lprnet.proto.utils import load_proto logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='lprnet', mode='evaluation') def main(args): """LPRNet TRT evaluation.""" # Load from proto-based spec file es = load_proto(args.experiment_spec) data_format = "channels_first" batch_size = args.batch_size if args.batch_size else es.eval_config.batch_size max_label_length = es.lpr_config.max_label_length if es.lpr_config.max_label_length else 8 # Load image and label directories from validataion_data_sources image_dirs, label_dirs = [], [] for data_source in es.dataset_config.validation_data_sources: image_dirs.append(data_source.image_directory_path) label_dirs.append(data_source.label_directory_path) trt_infer = LPRNetInferencer(args.model_path, data_format=data_format, batch_size=batch_size) characters_list_file = es.dataset_config.characters_list_file if not os.path.exists(characters_list_file): raise FileNotFoundError(f"{characters_list_file} does not exist!") with open(characters_list_file, "r", encoding="utf-8") as f: temp_list = f.readlines() classes = [i.strip() for i in temp_list] blank_id = len(classes) dl = LPRNetLoader( trt_infer._input_shape, image_dirs, label_dirs, classes=classes, batch_size=batch_size, max_label_length=max_label_length, dtype=trt_infer.inputs[0].host.dtype) correct = 0 for imgs, labels in tqdm(dl, total=len(dl), desc="Producing predictions"): y_pred = trt_infer.infer(imgs) # decode prediction decoded_lp, _ = decode_ctc_conf(y_pred, classes=classes, blank_id=blank_id) for idx, lp in enumerate(decoded_lp): if lp == labels[idx]: correct += 1 acc = float(correct) / float(dl.n_samples) logger.info("Accuracy: %d / %d %f", correct, dl.n_samples, acc) # Store evaluation results into JSON eval_results = {"Accuracy": acc} if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(eval_results, f) logging.info("Finished evaluation.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='infer', description='Inference with a LPRNet TRT model.') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the LPRNet TensorRT engine.' ) parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.' ) parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import sys from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto import launch_job import nvidia_tao_deploy.cv.lprnet.scripts def main(): """Function to launch the job.""" launch_job(nvidia_tao_deploy.cv.lprnet.scripts, "lprnet", sys.argv[1:]) if __name__ == "__main__": main()
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/entrypoint/lprnet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for lprnet."""
tao_deploy-main
nvidia_tao_deploy/cv/lprnet/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility class for performing TensorRT image inference.""" import numpy as np import tensorrt as trt from nvidia_tao_deploy.inferencer.trt_inferencer import TRTInferencer from nvidia_tao_deploy.inferencer.utils import allocate_buffers, do_inference def trt_output_process_fn(y_encoded, height, width): """function to process TRT model output.""" det_out, keep_k = y_encoded result = [] for idx, k in enumerate(keep_k.reshape(-1)): det = det_out[idx].reshape(-1, 7)[:k] xmin = det[:, 3] * width ymin = det[:, 4] * height xmax = det[:, 5] * width ymax = det[:, 6] * height cls_id = det[:, 1] conf = det[:, 2] result.append(np.stack((cls_id, conf, xmin, ymin, xmax, ymax), axis=-1)) return result class SSDInferencer(TRTInferencer): """Manages TensorRT objects for model inference.""" def __init__(self, engine_path, input_shape=None, batch_size=None, data_format="channel_first"): """Initializes TensorRT objects needed for model inference. Args: engine_path (str): path where TensorRT engine should be stored input_shape (tuple): (batch, channel, height, width) for dynamic shape engine batch_size (int): batch size for dynamic shape engine data_format (str): either channel_first or channel_last """ # Load TRT engine super().__init__(engine_path) self.max_batch_size = self.engine.max_batch_size self.execute_v2 = False # Execution context is needed for inference self.context = None # Allocate memory for multiple usage [e.g. multiple batch inference] self._input_shape = [] for binding in range(self.engine.num_bindings): if self.engine.binding_is_input(binding): binding_shape = self.engine.get_binding_shape(binding) self._input_shape = binding_shape[-3:] if len(binding_shape) == 4: self.etlt_type = "onnx" else: self.etlt_type = "uff" assert len(self._input_shape) == 3, "Engine doesn't have valid input dimensions" if data_format == "channel_first": self.height = self._input_shape[1] self.width = self._input_shape[2] else: self.height = self._input_shape[0] self.width = self._input_shape[1] # do not override if the original model was uff if (input_shape is not None or batch_size is not None) and (self.etlt_type != "uff"): self.context = self.engine.create_execution_context() if input_shape is not None: self.context.set_binding_shape(0, input_shape) self.max_batch_size = input_shape[0] else: self.context.set_binding_shape(0, [batch_size] + list(self._input_shape)) self.max_batch_size = batch_size self.execute_v2 = True # This allocates memory for network inputs/outputs on both CPU and GPU self.inputs, self.outputs, self.bindings, self.stream = allocate_buffers(self.engine, self.context) if self.context is None: self.context = self.engine.create_execution_context() input_volume = trt.volume(self._input_shape) self.numpy_array = np.zeros((self.max_batch_size, input_volume)) def infer(self, imgs): """Infers model on batch of same sized images resized to fit the model. Args: image_paths (str): paths to images, that will be packed into batch and fed into model """ # Verify if the supplied batch size is not too big max_batch_size = self.max_batch_size actual_batch_size = len(imgs) if actual_batch_size > max_batch_size: raise ValueError(f"image_paths list bigger ({actual_batch_size}) than \ engine max batch size ({max_batch_size})") self.numpy_array[:actual_batch_size] = imgs.reshape(actual_batch_size, -1) # ...copy them into appropriate place into memory... # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[0].host, self.numpy_array.ravel()) # ...fetch model outputs... results = do_inference( self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, batch_size=max_batch_size, execute_v2=self.execute_v2) # ...and return results up to the actual batch size. y_pred = [i.reshape(max_batch_size, -1)[:actual_batch_size] for i in results] # Process TRT outputs to proper format return trt_output_process_fn(y_pred, self.height, self.width) def __del__(self): """Clear things up on object deletion.""" # Clear session and buffer if self.trt_runtime: del self.trt_runtime if self.context: del self.context if self.engine: del self.engine if self.stream: del self.stream # Loop through inputs and free inputs. for inp in self.inputs: inp.device.free() # Loop through outputs and free them. for out in self.outputs: out.device.free()
tao_deploy-main
nvidia_tao_deploy/cv/ssd/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SSD TensorRT engine builder.""" import logging import os import random from six.moves import xrange import sys import traceback from tqdm import tqdm try: from uff.model.uff_pb2 import MetaGraph except ImportError: print("Loading uff directly from the package source code") # @scha: To disable tensorflow import issue import importlib import types import pkgutil package = pkgutil.get_loader("uff") # Returns __init__.py path src_code = package.get_filename().replace('__init__.py', 'model/uff_pb2.py') loader = importlib.machinery.SourceFileLoader('helper', src_code) helper = types.ModuleType(loader.name) loader.exec_module(helper) MetaGraph = helper.MetaGraph import numpy as np import onnx import tensorrt as trt from nvidia_tao_deploy.engine.builder import EngineBuilder from nvidia_tao_deploy.engine.tensorfile import TensorFile from nvidia_tao_deploy.engine.tensorfile_calibrator import TensorfileCalibrator from nvidia_tao_deploy.engine.utils import generate_random_tensorfile, prepare_chunk logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class SSDEngineBuilder(EngineBuilder): """Parses an UFF graph and builds a TensorRT engine from it.""" def __init__( self, data_format="channels_first", **kwargs ): """Init. Args: data_format (str): data_format. """ super().__init__(**kwargs) self._data_format = data_format def set_input_output_node_names(self): """Set input output node names.""" self._output_node_names = ["NMS"] self._input_node_names = ["Input"] def get_input_dims(self, model_path): """Get input dimension of UFF model.""" metagraph = MetaGraph() with open(model_path, "rb") as f: metagraph.ParseFromString(f.read()) for node in metagraph.graphs[0].nodes: # if node.operation == "MarkOutput": # print(f"Output: {node.inputs[0]}") if node.operation == "Input": return np.array(node.fields['shape'].i_list.val)[1:] raise ValueError("Input dimension is not found in the UFF metagraph.") def get_onnx_input_dims(self, model_path): """Get input dimension of ONNX model.""" onnx_model = onnx.load(model_path) onnx_inputs = onnx_model.graph.input logger.info('List inputs:') for i, inputs in enumerate(onnx_inputs): logger.info('Input %s -> %s.', i, inputs.name) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][1:]) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][0]) return [i.dim_value for i in inputs.type.tensor_type.shape.dim][:] def create_network(self, model_path, file_format="uff"): """Parse the ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the UFF/ONNX graph to load. file_format: The file format of the decrypted etlt file (default: uff). """ if file_format == "uff": self.network = self.builder.create_network() self.parser = trt.UffParser() self.set_input_output_node_names() in_tensor_name = self._input_node_names[0] self._input_dims = self.get_input_dims(model_path) input_dict = {in_tensor_name: self._input_dims} for key, value in input_dict.items(): if self._data_format == "channels_first": self.parser.register_input(key, value, trt.UffInputOrder(0)) else: self.parser.register_input(key, value, trt.UffInputOrder(1)) for name in self._output_node_names: self.parser.register_output(name) self.builder.max_batch_size = self.max_batch_size try: assert self.parser.parse(model_path, self.network, trt.DataType.FLOAT) except AssertionError as e: logger.error("Failed to parse UFF File") _, _, tb = sys.exc_info() traceback.print_tb(tb) # Fixed format tb_info = traceback.extract_tb(tb) _, line, _, text = tb_info[-1] raise AssertionError( f"UFF parsing failed on line {line} in statement {text}" ) from e else: logger.info("Parsing ONNX model") self._input_dims = self.get_onnx_input_dims(model_path) self.batch_size = self._input_dims[0] self._input_dims = self._input_dims[1:] network_flags = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) model_path = os.path.realpath(model_path) with open(model_path, "rb") as f: if not self.parser.parse(f.read()): logger.error("Failed to load ONNX file: %s", model_path) for error in range(self.parser.num_errors): logger.error(self.parser.get_error(error)) sys.exit(1) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] logger.info("Network Description") for input in inputs: # noqa pylint: disable=W0622 logger.info("Input '%s' with shape %s and dtype %s", input.name, input.shape, input.dtype) for output in outputs: logger.info("Output '%s' with shape %s and dtype %s", output.name, output.shape, output.dtype) if self.batch_size <= 0: # dynamic batch size logger.info("dynamic batch size handling") opt_profile = self.builder.create_optimization_profile() model_input = self.network.get_input(0) input_shape = model_input.shape input_name = model_input.name real_shape_min = (self.min_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_opt = (self.opt_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_max = (self.max_batch_size, input_shape[1], input_shape[2], input_shape[3]) opt_profile.set_shape(input=input_name, min=real_shape_min, opt=real_shape_opt, max=real_shape_max) self.config.add_optimization_profile(opt_profile) def set_calibrator(self, inputs=None, calib_cache=None, calib_input=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None, image_mean=None): """Simple function to set an Tensorfile based int8 calibrator. Args: calib_data_file: Path to the TensorFile. If the tensorfile doesn't exist at this path, then one is created with either n_batches of random tensors, images from the file in calib_input of dimensions (batch_size,) + (input_dims). calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. image_mean: Image mean per channel. Returns: No explicit returns. """ logger.info("Calibrating using TensorfileCalibrator") n_batches = calib_num_images // calib_batch_size if not os.path.exists(calib_data_file): self.generate_tensor_file(calib_data_file, calib_input, self._input_dims, n_batches=n_batches, batch_size=calib_batch_size, image_mean=image_mean) self.config.int8_calibrator = TensorfileCalibrator(calib_data_file, calib_cache, n_batches, calib_batch_size) def generate_tensor_file(self, data_file_name, calibration_images_dir, input_dims, n_batches=10, batch_size=1, image_mean=None): """Generate calibration Tensorfile for int8 calibrator. This function generates a calibration tensorfile from a directory of images, or dumps n_batches of random numpy arrays of shape (batch_size,) + (input_dims). Args: data_file_name (str): Path to the output tensorfile to be saved. calibration_images_dir (str): Path to the images to generate a tensorfile from. input_dims (list): Input shape in CHW order. n_batches (int): Number of batches to be saved. batch_size (int): Number of images per batch. image_mean (list): Image mean per channel. Returns: No explicit returns. """ if not os.path.exists(calibration_images_dir): logger.info("Generating a tensorfile with random tensor images. This may work well as " "a profiling tool, however, it may result in inaccurate results at " "inference. Please generate a tensorfile using the tlt-int8-tensorfile, " "or provide a custom directory of images for best performance.") generate_random_tensorfile(data_file_name, input_dims, n_batches=n_batches, batch_size=batch_size) else: # Preparing the list of images to be saved. num_images = n_batches * batch_size valid_image_ext = ['jpg', 'jpeg', 'png'] image_list = [os.path.join(calibration_images_dir, image) for image in os.listdir(calibration_images_dir) if image.split('.')[-1] in valid_image_ext] if len(image_list) < num_images: raise ValueError('Not enough number of images provided:' f' {len(image_list)} < {num_images}') image_idx = random.sample(xrange(len(image_list)), num_images) self.set_data_preprocessing_parameters(input_dims, image_mean) # Writing out processed dump. with TensorFile(data_file_name, 'w') as f: for chunk in tqdm(image_idx[x:x + batch_size] for x in xrange(0, len(image_idx), batch_size)): dump_data = prepare_chunk(chunk, image_list, image_width=input_dims[2], image_height=input_dims[1], channels=input_dims[0], batch_size=batch_size, **self.preprocessing_arguments) f.write(dump_data) f.closed def set_data_preprocessing_parameters(self, input_dims, image_mean=None): """Set data pre-processing parameters for the int8 calibration.""" num_channels = input_dims[0] if num_channels == 3: if not image_mean: means = [103.939, 116.779, 123.68] else: assert len(image_mean) == 3, "Image mean should have 3 values for RGB inputs." means = image_mean elif num_channels == 1: if not image_mean: means = [117.3786] else: assert len(image_mean) == 1, "Image mean should have 1 value for grayscale inputs." means = image_mean else: raise NotImplementedError( f"Invalid number of dimensions {num_channels}.") self.preprocessing_arguments = {"scale": 1.0, "means": means, "flip_channel": True}
tao_deploy-main
nvidia_tao_deploy/cv/ssd/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy SSD.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/ssd/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SSD loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from PIL import Image from nvidia_tao_deploy.dataloader.kitti import KITTILoader class SSDKITTILoader(KITTILoader): """SSD Dataloader.""" def __init__(self, keep_aspect_ratio=False, **kwargs): """Init. Args: keep_aspect_ratio (bool): keep aspect ratio of the image. """ super().__init__(**kwargs) self.keep_aspect_ratio = keep_aspect_ratio def preprocessing(self, image, label): """The image preprocessor loads an image from disk and prepares it as needed for batching. This includes padding, resizing, normalization, data type casting, and transposing. Args: image (PIL.image): The Pillow image on disk to load. label (np.array): labels Returns: image (np.array): A numpy array holding the image sample, ready to be concatenated into the rest of the batch label (np.array): labels """ def resize_pad(image, pad_color=(0, 0, 0)): """Resize and Pad. A subroutine to implement padding and resizing. This will resize the image to fit fully within the input size, and pads the remaining bottom-right portions with the value provided. Args: image (PIL.Image): The PIL image object pad_color (list): The RGB values to use for the padded area. Default: Black/Zeros. Returns: pad (PIL.Image): The PIL image object already padded and cropped, scale (list): the resize scale used. """ width, height = image.size width_scale = width / self.width height_scale = height / self.height if not self.keep_aspect_ratio: image = image.resize( (self.width, self.height), resample=Image.BILINEAR) return image, [height_scale, width_scale] scale = 1.0 / max(width_scale, height_scale) image = image.resize( (round(width * scale), round(height * scale)), resample=Image.BILINEAR) if self.num_channels == 1: pad = Image.new("L", (self.width, self.height)) pad.paste(0, [0, 0, self.width, self.height]) else: pad = Image.new("RGB", (self.width, self.height)) pad.paste(pad_color, [0, 0, self.width, self.height]) pad.paste(image) return pad, [scale, scale] image, scale = resize_pad(image, (124, 116, 104)) image = np.asarray(image, dtype=self.dtype) # Handle Grayscale if self.num_channels == 1: image = np.expand_dims(image, axis=2) label[:, 2] /= scale[1] label[:, 3] /= scale[0] label[:, 4] /= scale[1] label[:, 5] /= scale[0] # Round label = np.round(label, decimals=0) # Filter out invalid labels label = self._filter_invalid_labels(label) return image, label
tao_deploy-main
nvidia_tao_deploy/cv/ssd/dataloader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy SSD Proto.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/ssd/proto/__init__.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/ssd/proto/augmentation_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/ssd/proto/augmentation_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n8nvidia_tao_deploy/cv/ssd/proto/augmentation_config.proto\"\xcd\x03\n\x12\x41ugmentationConfig\x12\x14\n\x0coutput_width\x18\x01 \x01(\x05\x12\x15\n\routput_height\x18\x02 \x01(\x05\x12\x16\n\x0eoutput_channel\x18\x03 \x01(\x05\x12\x1d\n\x15random_crop_min_scale\x18\x04 \x01(\x02\x12\x1d\n\x15random_crop_max_scale\x18\x05 \x01(\x02\x12\x1a\n\x12random_crop_min_ar\x18\x06 \x01(\x02\x12\x1a\n\x12random_crop_max_ar\x18\x07 \x01(\x02\x12\x1a\n\x12zoom_out_min_scale\x18\x08 \x01(\x02\x12\x1a\n\x12zoom_out_max_scale\x18\t \x01(\x02\x12\x12\n\nbrightness\x18\n \x01(\x05\x12\x10\n\x08\x63ontrast\x18\x0b \x01(\x02\x12\x12\n\nsaturation\x18\x0c \x01(\x02\x12\x0b\n\x03hue\x18\r \x01(\x05\x12\x13\n\x0brandom_flip\x18\x0e \x01(\x02\x12\x36\n\nimage_mean\x18\x0f \x03(\x0b\x32\".AugmentationConfig.ImageMeanEntry\x1a\x30\n\x0eImageMeanEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x02:\x02\x38\x01\x62\x06proto3') ) _AUGMENTATIONCONFIG_IMAGEMEANENTRY = _descriptor.Descriptor( name='ImageMeanEntry', full_name='AugmentationConfig.ImageMeanEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='AugmentationConfig.ImageMeanEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='AugmentationConfig.ImageMeanEntry.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=474, serialized_end=522, ) _AUGMENTATIONCONFIG = _descriptor.Descriptor( name='AugmentationConfig', full_name='AugmentationConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='output_width', full_name='AugmentationConfig.output_width', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_height', full_name='AugmentationConfig.output_height', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_channel', full_name='AugmentationConfig.output_channel', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_crop_min_scale', full_name='AugmentationConfig.random_crop_min_scale', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_crop_max_scale', full_name='AugmentationConfig.random_crop_max_scale', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_crop_min_ar', full_name='AugmentationConfig.random_crop_min_ar', index=5, number=6, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_crop_max_ar', full_name='AugmentationConfig.random_crop_max_ar', index=6, number=7, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='zoom_out_min_scale', full_name='AugmentationConfig.zoom_out_min_scale', index=7, number=8, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='zoom_out_max_scale', full_name='AugmentationConfig.zoom_out_max_scale', index=8, number=9, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='brightness', full_name='AugmentationConfig.brightness', index=9, number=10, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='contrast', full_name='AugmentationConfig.contrast', index=10, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='saturation', full_name='AugmentationConfig.saturation', index=11, number=12, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='hue', full_name='AugmentationConfig.hue', index=12, number=13, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_flip', full_name='AugmentationConfig.random_flip', index=13, number=14, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_mean', full_name='AugmentationConfig.image_mean', index=14, number=15, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_AUGMENTATIONCONFIG_IMAGEMEANENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=61, serialized_end=522, ) _AUGMENTATIONCONFIG_IMAGEMEANENTRY.containing_type = _AUGMENTATIONCONFIG _AUGMENTATIONCONFIG.fields_by_name['image_mean'].message_type = _AUGMENTATIONCONFIG_IMAGEMEANENTRY DESCRIPTOR.message_types_by_name['AugmentationConfig'] = _AUGMENTATIONCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) AugmentationConfig = _reflection.GeneratedProtocolMessageType('AugmentationConfig', (_message.Message,), dict( ImageMeanEntry = _reflection.GeneratedProtocolMessageType('ImageMeanEntry', (_message.Message,), dict( DESCRIPTOR = _AUGMENTATIONCONFIG_IMAGEMEANENTRY, __module__ = 'nvidia_tao_deploy.cv.ssd.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig.ImageMeanEntry) )) , DESCRIPTOR = _AUGMENTATIONCONFIG, __module__ = 'nvidia_tao_deploy.cv.ssd.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig) )) _sym_db.RegisterMessage(AugmentationConfig) _sym_db.RegisterMessage(AugmentationConfig.ImageMeanEntry) _AUGMENTATIONCONFIG_IMAGEMEANENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/ssd/proto/augmentation_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/ssd/proto/experiment.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.ssd.proto import augmentation_config_pb2 as nvidia__tao__deploy_dot_cv_dot_ssd_dot_proto_dot_augmentation__config__pb2 from nvidia_tao_deploy.cv.common.proto import detection_sequence_dataset_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_detection__sequence__dataset__config__pb2 from nvidia_tao_deploy.cv.common.proto import training_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_training__config__pb2 from nvidia_tao_deploy.cv.common.proto import nms_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_nms__config__pb2 from nvidia_tao_deploy.cv.ssd.proto import eval_config_pb2 as nvidia__tao__deploy_dot_cv_dot_ssd_dot_proto_dot_eval__config__pb2 from nvidia_tao_deploy.cv.ssd.proto import ssd_config_pb2 as nvidia__tao__deploy_dot_cv_dot_ssd_dot_proto_dot_ssd__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/ssd/proto/experiment.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n/nvidia_tao_deploy/cv/ssd/proto/experiment.proto\x1a\x38nvidia_tao_deploy/cv/ssd/proto/augmentation_config.proto\x1aInvidia_tao_deploy/cv/common/proto/detection_sequence_dataset_config.proto\x1a\x37nvidia_tao_deploy/cv/common/proto/training_config.proto\x1a\x32nvidia_tao_deploy/cv/common/proto/nms_config.proto\x1a\x30nvidia_tao_deploy/cv/ssd/proto/eval_config.proto\x1a/nvidia_tao_deploy/cv/ssd/proto/ssd_config.proto\"\xb7\x02\n\nExperiment\x12\x13\n\x0brandom_seed\x18\x01 \x01(\r\x12&\n\x0e\x64\x61taset_config\x18\x02 \x01(\x0b\x32\x0e.DatasetConfig\x12\x30\n\x13\x61ugmentation_config\x18\x03 \x01(\x0b\x32\x13.AugmentationConfig\x12(\n\x0ftraining_config\x18\x04 \x01(\x0b\x32\x0f.TrainingConfig\x12 \n\x0b\x65val_config\x18\x05 \x01(\x0b\x32\x0b.EvalConfig\x12\x1e\n\nnms_config\x18\x06 \x01(\x0b\x32\n.NMSConfig\x12 \n\nssd_config\x18\x07 \x01(\x0b\x32\n.SSDConfigH\x00\x12!\n\x0b\x64ssd_config\x18\x08 \x01(\x0b\x32\n.SSDConfigH\x00\x42\t\n\x07networkb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_ssd_dot_proto_dot_augmentation__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_detection__sequence__dataset__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_training__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_nms__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_ssd_dot_proto_dot_eval__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_ssd_dot_proto_dot_ssd__config__pb2.DESCRIPTOR,]) _EXPERIMENT = _descriptor.Descriptor( name='Experiment', full_name='Experiment', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='random_seed', full_name='Experiment.random_seed', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dataset_config', full_name='Experiment.dataset_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='augmentation_config', full_name='Experiment.augmentation_config', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='training_config', full_name='Experiment.training_config', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_config', full_name='Experiment.eval_config', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nms_config', full_name='Experiment.nms_config', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='ssd_config', full_name='Experiment.ssd_config', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dssd_config', full_name='Experiment.dssd_config', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='network', full_name='Experiment.network', index=0, containing_type=None, fields=[]), ], serialized_start=393, serialized_end=704, ) _EXPERIMENT.fields_by_name['dataset_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_detection__sequence__dataset__config__pb2._DATASETCONFIG _EXPERIMENT.fields_by_name['augmentation_config'].message_type = nvidia__tao__deploy_dot_cv_dot_ssd_dot_proto_dot_augmentation__config__pb2._AUGMENTATIONCONFIG _EXPERIMENT.fields_by_name['training_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_training__config__pb2._TRAININGCONFIG _EXPERIMENT.fields_by_name['eval_config'].message_type = nvidia__tao__deploy_dot_cv_dot_ssd_dot_proto_dot_eval__config__pb2._EVALCONFIG _EXPERIMENT.fields_by_name['nms_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_nms__config__pb2._NMSCONFIG _EXPERIMENT.fields_by_name['ssd_config'].message_type = nvidia__tao__deploy_dot_cv_dot_ssd_dot_proto_dot_ssd__config__pb2._SSDCONFIG _EXPERIMENT.fields_by_name['dssd_config'].message_type = nvidia__tao__deploy_dot_cv_dot_ssd_dot_proto_dot_ssd__config__pb2._SSDCONFIG _EXPERIMENT.oneofs_by_name['network'].fields.append( _EXPERIMENT.fields_by_name['ssd_config']) _EXPERIMENT.fields_by_name['ssd_config'].containing_oneof = _EXPERIMENT.oneofs_by_name['network'] _EXPERIMENT.oneofs_by_name['network'].fields.append( _EXPERIMENT.fields_by_name['dssd_config']) _EXPERIMENT.fields_by_name['dssd_config'].containing_oneof = _EXPERIMENT.oneofs_by_name['network'] DESCRIPTOR.message_types_by_name['Experiment'] = _EXPERIMENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) Experiment = _reflection.GeneratedProtocolMessageType('Experiment', (_message.Message,), dict( DESCRIPTOR = _EXPERIMENT, __module__ = 'nvidia_tao_deploy.cv.ssd.proto.experiment_pb2' # @@protoc_insertion_point(class_scope:Experiment) )) _sym_db.RegisterMessage(Experiment) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/ssd/proto/experiment_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Config Base Utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from google.protobuf.text_format import Merge as merge_text_proto from nvidia_tao_deploy.cv.ssd.proto.experiment_pb2 import Experiment def load_proto(config): """Load the experiment proto.""" proto = Experiment() def _load_from_file(filename, pb2): if not os.path.exists(filename): raise IOError(f"Specfile not found at: {filename}") with open(filename, "r", encoding="utf-8") as f: merge_text_proto(f.read(), pb2) _load_from_file(config, proto) return proto
tao_deploy-main
nvidia_tao_deploy/cv/ssd/proto/utils.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/ssd/proto/ssd_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/ssd/proto/ssd_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n/nvidia_tao_deploy/cv/ssd/proto/ssd_config.proto\"\xa6\x03\n\tSSDConfig\x12\x15\n\raspect_ratios\x18\x01 \x01(\t\x12\x1c\n\x14\x61spect_ratios_global\x18\x02 \x01(\t\x12\x0e\n\x06scales\x18\x03 \x01(\t\x12\x11\n\tmin_scale\x18\x04 \x01(\x02\x12\x11\n\tmax_scale\x18\x05 \x01(\x02\x12\x19\n\x11two_boxes_for_ar1\x18\x06 \x01(\x08\x12\r\n\x05steps\x18\x07 \x01(\t\x12\x12\n\nclip_boxes\x18\x08 \x01(\x08\x12\x11\n\tvariances\x18\t \x01(\t\x12\x0f\n\x07offsets\x18\n \x01(\t\x12\x12\n\nmean_color\x18\x0b \x01(\t\x12\x0c\n\x04\x61rch\x18\x0c \x01(\t\x12\x0f\n\x07nlayers\x18\r \x01(\r\x12\x19\n\x11pred_num_channels\x18\x0e \x01(\r\x12\r\n\x05\x61lpha\x18\x0f \x01(\x02\x12\x15\n\rneg_pos_ratio\x18\x10 \x01(\x02\x12\x16\n\x0epos_iou_thresh\x18\x11 \x01(\x02\x12\x16\n\x0eneg_iou_thresh\x18\x14 \x01(\x02\x12\x15\n\rfreeze_blocks\x18\x12 \x03(\r\x12\x11\n\tfreeze_bn\x18\x13 \x01(\x08\x62\x06proto3') ) _SSDCONFIG = _descriptor.Descriptor( name='SSDConfig', full_name='SSDConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='aspect_ratios', full_name='SSDConfig.aspect_ratios', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='aspect_ratios_global', full_name='SSDConfig.aspect_ratios_global', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scales', full_name='SSDConfig.scales', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_scale', full_name='SSDConfig.min_scale', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_scale', full_name='SSDConfig.max_scale', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='two_boxes_for_ar1', full_name='SSDConfig.two_boxes_for_ar1', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='steps', full_name='SSDConfig.steps', index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='clip_boxes', full_name='SSDConfig.clip_boxes', index=7, number=8, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='variances', full_name='SSDConfig.variances', index=8, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='offsets', full_name='SSDConfig.offsets', index=9, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mean_color', full_name='SSDConfig.mean_color', index=10, number=11, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='arch', full_name='SSDConfig.arch', index=11, number=12, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nlayers', full_name='SSDConfig.nlayers', index=12, number=13, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pred_num_channels', full_name='SSDConfig.pred_num_channels', index=13, number=14, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='alpha', full_name='SSDConfig.alpha', index=14, number=15, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='neg_pos_ratio', full_name='SSDConfig.neg_pos_ratio', index=15, number=16, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pos_iou_thresh', full_name='SSDConfig.pos_iou_thresh', index=16, number=17, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='neg_iou_thresh', full_name='SSDConfig.neg_iou_thresh', index=17, number=20, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_blocks', full_name='SSDConfig.freeze_blocks', index=18, number=18, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_bn', full_name='SSDConfig.freeze_bn', index=19, number=19, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=52, serialized_end=474, ) DESCRIPTOR.message_types_by_name['SSDConfig'] = _SSDCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) SSDConfig = _reflection.GeneratedProtocolMessageType('SSDConfig', (_message.Message,), dict( DESCRIPTOR = _SSDCONFIG, __module__ = 'nvidia_tao_deploy.cv.ssd.proto.ssd_config_pb2' # @@protoc_insertion_point(class_scope:SSDConfig) )) _sym_db.RegisterMessage(SSDConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/ssd/proto/ssd_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/ssd/proto/eval_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/ssd/proto/eval_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n0nvidia_tao_deploy/cv/ssd/proto/eval_config.proto\"\xe2\x01\n\nEvalConfig\x12)\n!validation_period_during_training\x18\x01 \x01(\r\x12\x33\n\x16\x61verage_precision_mode\x18\x02 \x01(\x0e\x32\x13.EvalConfig.AP_MODE\x12\x12\n\nbatch_size\x18\x03 \x01(\r\x12\x1e\n\x16matching_iou_threshold\x18\x04 \x01(\x02\x12\x1a\n\x12visualize_pr_curve\x18\x05 \x01(\x08\"$\n\x07\x41P_MODE\x12\n\n\x06SAMPLE\x10\x00\x12\r\n\tINTEGRATE\x10\x01\x62\x06proto3') ) _EVALCONFIG_AP_MODE = _descriptor.EnumDescriptor( name='AP_MODE', full_name='EvalConfig.AP_MODE', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='SAMPLE', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTEGRATE', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=243, serialized_end=279, ) _sym_db.RegisterEnumDescriptor(_EVALCONFIG_AP_MODE) _EVALCONFIG = _descriptor.Descriptor( name='EvalConfig', full_name='EvalConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='validation_period_during_training', full_name='EvalConfig.validation_period_during_training', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='average_precision_mode', full_name='EvalConfig.average_precision_mode', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size', full_name='EvalConfig.batch_size', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='matching_iou_threshold', full_name='EvalConfig.matching_iou_threshold', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='visualize_pr_curve', full_name='EvalConfig.visualize_pr_curve', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _EVALCONFIG_AP_MODE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=53, serialized_end=279, ) _EVALCONFIG.fields_by_name['average_precision_mode'].enum_type = _EVALCONFIG_AP_MODE _EVALCONFIG_AP_MODE.containing_type = _EVALCONFIG DESCRIPTOR.message_types_by_name['EvalConfig'] = _EVALCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) EvalConfig = _reflection.GeneratedProtocolMessageType('EvalConfig', (_message.Message,), dict( DESCRIPTOR = _EVALCONFIG, __module__ = 'nvidia_tao_deploy.cv.ssd.proto.eval_config_pb2' # @@protoc_insertion_point(class_scope:EvalConfig) )) _sym_db.RegisterMessage(EvalConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/ssd/proto/eval_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SSD convert etlt/onnx model to TRT engine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import tempfile from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.ssd.proto.utils import load_proto from nvidia_tao_deploy.cv.ssd.engine_builder import SSDEngineBuilder from nvidia_tao_deploy.utils.decoding import decode_model logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='ssd', mode='gen_trt_engine') def main(args): """SSD TRT convert.""" # decrypt etlt tmp_onnx_file, file_format = decode_model(args.model_path, args.key) # Load from proto-based spec file es = load_proto(args.experiment_spec) if args.engine_file is not None or args.data_type == 'int8': if args.engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = args.engine_file builder = SSDEngineBuilder(verbose=args.verbose, is_qat=es.training_config.enable_qat, workspace=args.max_workspace_size, min_batch_size=args.min_batch_size, opt_batch_size=args.opt_batch_size, max_batch_size=args.max_batch_size, strict_type_constraints=args.strict_type_constraints, force_ptq=args.force_ptq) builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, args.data_type, calib_data_file=args.cal_data_file, calib_input=args.cal_image_dir, calib_cache=args.cal_cache_file, calib_num_images=args.batch_size * args.batches, calib_batch_size=args.batch_size, calib_json_file=args.cal_json_file) logging.info("Export finished successfully.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='gen_trt_engine', description='Generate TRT engine of SSD model.') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to a SSD .etlt or .onnx model file.' ) parser.add_argument( '-k', '--key', type=str, required=False, help='Key to save or load a .etlt model.' ) parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( "--data_type", type=str, default="fp32", help="Data type for the TensorRT export.", choices=["fp32", "fp16", "int8"]) parser.add_argument( "--cal_image_dir", default="", type=str, help="Directory of images to run int8 calibration.") parser.add_argument( "--cal_data_file", default="", type=str, help="Tensorfile to run calibration for int8 optimization.") parser.add_argument( '--cal_cache_file', default=None, type=str, help='Calibration cache file to write to.') parser.add_argument( '--cal_json_file', default=None, type=str, help='Dictionary containing tensor scale for QAT models.') parser.add_argument( "--engine_file", type=str, default=None, help="Path to the exported TRT engine.") parser.add_argument( "--max_batch_size", type=int, default=1, help="Max batch size for TensorRT engine builder.") parser.add_argument( "--opt_batch_size", type=int, default=1, help="Optimal batch size for TensorRT engine builder.") parser.add_argument( "--min_batch_size", type=int, default=1, help="Min batch size for TensorRT engine builder.") parser.add_argument( "--batch_size", type=int, default=1, help="Number of images per batch for calibration.") parser.add_argument( "--batches", type=int, default=10, help="Number of batches to calibrate over.") parser.add_argument( "--max_workspace_size", type=int, default=2, help="Max memory workspace size to allow in Gb for TensorRT engine builder (default: 2).") parser.add_argument( "-s", "--strict_type_constraints", action="store_true", default=False, help="A Boolean flag indicating whether to apply the \ TensorRT strict type constraints when building the TensorRT engine.") parser.add_argument( "--force_ptq", action="store_true", default=False, help="Flag to force post training quantization for QAT models.") parser.add_argument( "-v", "--verbose", action="store_true", default=False, help="Verbosity of the logger.") parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/ssd/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy SSD scripts module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/ssd/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT Inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import numpy as np from PIL import Image from tqdm.auto import tqdm import logging from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.ssd.dataloader import SSDKITTILoader from nvidia_tao_deploy.cv.ssd.inferencer import SSDInferencer from nvidia_tao_deploy.cv.ssd.proto.utils import load_proto logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='ssd', mode='inference') def main(args): """SSD TRT inference.""" # Load from proto-based spec file es = load_proto(args.experiment_spec) batch_size = args.batch_size if args.batch_size else es.eval_config.batch_size trt_infer = SSDInferencer(engine_path=args.model_path, batch_size=batch_size) c, h, w = trt_infer._input_shape conf_thres = es.nms_config.confidence_threshold if es.nms_config.confidence_threshold else 0.01 img_mean = es.augmentation_config.image_mean if c == 3: if img_mean: img_mean = [img_mean['b'], img_mean['g'], img_mean['r']] else: img_mean = [103.939, 116.779, 123.68] else: if img_mean: img_mean = [img_mean['l']] else: img_mean = [117.3786] # Override path if provided through command line args if args.image_dir: image_dirs = [args.image_dir] else: image_dirs = [d.image_directory_path for d in es.dataset_config.validation_data_sources] # Load mapping_dict from the spec file mapping_dict = dict(es.dataset_config.target_class_mapping) dl = SSDKITTILoader( shape=(c, h, w), image_dirs=image_dirs, label_dirs=[None], mapping_dict=mapping_dict, exclude_difficult=True, batch_size=batch_size, is_inference=True, image_mean=img_mean, keep_aspect_ratio=False, dtype=trt_infer.inputs[0].host.dtype) inv_classes = {v: k for k, v in dl.classes.items()} if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir os.makedirs(results_dir, exist_ok=True) output_annotate_root = os.path.join(results_dir, "images_annotated") output_label_root = os.path.join(results_dir, "labels") os.makedirs(output_annotate_root, exist_ok=True) os.makedirs(output_label_root, exist_ok=True) for i, (imgs, _) in tqdm(enumerate(dl), total=len(dl), desc="Producing predictions"): y_pred = trt_infer.infer(imgs) image_paths = dl.image_paths[np.arange(batch_size) + batch_size * i] for i in range(len(y_pred)): # Load image img = Image.open(image_paths[i]) orig_width, orig_height = img.size width_scale = orig_width / trt_infer.width height_scale = orig_height / trt_infer.height # Filter and scale back to original image resolution y_pred_valid = y_pred[i][y_pred[i][:, 1] > conf_thres] y_pred_valid[..., 2] = np.clip(y_pred_valid[..., 2].round(), 0.0, w) * width_scale y_pred_valid[..., 3] = np.clip(y_pred_valid[..., 3].round(), 0.0, h) * height_scale y_pred_valid[..., 4] = np.clip(y_pred_valid[..., 4].round(), 0.0, w) * width_scale y_pred_valid[..., 5] = np.clip(y_pred_valid[..., 5].round(), 0.0, h) * height_scale # Store images bbox_img, label_strings = trt_infer.draw_bbox(img, y_pred_valid, inv_classes, args.threshold) img_filename = os.path.basename(image_paths[i]) bbox_img.save(os.path.join(output_annotate_root, img_filename)) # Store labels filename, _ = os.path.splitext(img_filename) label_file_name = os.path.join(output_label_root, filename + ".txt") with open(label_file_name, "w", encoding="utf-8") as f: for l_s in label_strings: f.write(l_s) logging.info("Finished inference.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='infer', description='Inference with a SSD TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the SSD TensorRT engine.' ) parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.') parser.add_argument( '-t', '--threshold', type=float, default=0.3, help='Confidence threshold for inference.') parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/ssd/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import json import numpy as np from tqdm.auto import tqdm import logging from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.ssd.dataloader import SSDKITTILoader from nvidia_tao_deploy.cv.ssd.inferencer import SSDInferencer from nvidia_tao_deploy.cv.ssd.proto.utils import load_proto from nvidia_tao_deploy.metrics.kitti_metric import KITTIMetric logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='ssd', mode='evaluation') def main(args): """SSD TRT evaluation.""" # Load from proto-based spec file es = load_proto(args.experiment_spec) matching_iou_threshold = es.eval_config.matching_iou_threshold if es.eval_config.matching_iou_threshold else 0.5 conf_thres = es.nms_config.confidence_threshold if es.nms_config.confidence_threshold else 0.01 batch_size = args.batch_size if args.batch_size else es.eval_config.batch_size trt_infer = SSDInferencer(args.model_path, batch_size=batch_size) c, h, w = trt_infer._input_shape ap_mode = es.eval_config.average_precision_mode ap_mode_dict = {0: "sample", 1: "integrate"} img_mean = es.augmentation_config.image_mean if c == 3: if img_mean: img_mean = [img_mean['b'], img_mean['g'], img_mean['r']] else: img_mean = [103.939, 116.779, 123.68] else: if img_mean: img_mean = [img_mean['l']] else: img_mean = [117.3786] # Override path if provided through command line args if args.image_dir: image_dirs = [args.image_dir] else: image_dirs = [d.image_directory_path for d in es.dataset_config.validation_data_sources] if args.label_dir: label_dirs = [args.label_dir] else: label_dirs = [d.label_directory_path for d in es.dataset_config.validation_data_sources] # Load mapping_dict from the spec file mapping_dict = dict(es.dataset_config.target_class_mapping) dl = SSDKITTILoader( shape=(c, h, w), image_dirs=image_dirs, label_dirs=label_dirs, mapping_dict=mapping_dict, exclude_difficult=True, batch_size=batch_size, image_mean=img_mean, keep_aspect_ratio=False, dtype=trt_infer.inputs[0].host.dtype) eval_metric = KITTIMetric(n_classes=len(dl.classes) + 1, matching_iou_threshold=matching_iou_threshold, conf_thres=conf_thres, average_precision_mode=ap_mode_dict[ap_mode]) gt_labels = [] pred_labels = [] for i, (imgs, labels) in tqdm(enumerate(dl), total=len(dl), desc="Producing predictions"): gt_labels.extend(labels) y_pred = trt_infer.infer(imgs) for i in range(len(y_pred)): y_pred_valid = y_pred[i][y_pred[i][:, 1] > eval_metric.conf_thres] y_pred_valid[..., 2] = np.clip(y_pred_valid[..., 2].round(), 0.0, w) y_pred_valid[..., 3] = np.clip(y_pred_valid[..., 3].round(), 0.0, h) y_pred_valid[..., 4] = np.clip(y_pred_valid[..., 4].round(), 0.0, w) y_pred_valid[..., 5] = np.clip(y_pred_valid[..., 5].round(), 0.0, h) pred_labels.append(y_pred_valid) m_ap, ap = eval_metric(gt_labels, pred_labels, verbose=True) m_ap = np.mean(ap[1:]) logging.info("*******************************") class_mapping = {v: k for k, v in dl.classes.items()} eval_results = {} for i in range(len(dl.classes)): eval_results['AP_' + class_mapping[i + 1]] = np.float64(ap[i + 1]) logging.info("{:<14}{:<6}{}".format(class_mapping[i + 1], 'AP', round(ap[i + 1], 5))) # noqa pylint: disable=C0209 eval_results['mAP'] = round(m_ap, 3) logging.info("{:<14}{:<6}{}".format('', 'mAP', round(m_ap, 3))) # noqa pylint: disable=C0209 logging.info("*******************************") # Store evaluation results into JSON if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(eval_results, f) logging.info("Finished evaluation.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='eval', description='Evaluate with a SSD TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the SSD TensorRT engine.' ) parser.add_argument( '-l', '--label_dir', type=str, required=False, help='Label directory.') parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.') parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/ssd/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import sys from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto import launch_job import nvidia_tao_deploy.cv.ssd.scripts def main(): """Function to launch the job.""" launch_job(nvidia_tao_deploy.cv.ssd.scripts, "ssd", sys.argv[1:]) if __name__ == "__main__": main()
tao_deploy-main
nvidia_tao_deploy/cv/ssd/entrypoint/ssd.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for ssd."""
tao_deploy-main
nvidia_tao_deploy/cv/ssd/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy PyTorch Classification.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/classification_pyt/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Classification Hydra.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/classification_pyt/hydra_config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classification Default config file""" from typing import Optional, List, Dict, Any from dataclasses import dataclass, field from omegaconf import MISSING @dataclass class ImgNormConfig: """Configuration parameters for Img Normalization.""" mean: List[float] = field(default_factory=lambda: [123.675, 116.28, 103.53]) std: List[float] = field(default_factory=lambda: [58.395, 57.12, 57.375]) to_rgb: bool = True @dataclass class TrainData: """Train Data Dataclass""" type: str = "ImageNet" data_prefix: Optional[str] = None pipeline: List[Any] = field(default_factory=lambda: [{"type": "RandomResizedCrop", "size": 224}, {"type": "RandomFlip", "flip_prob": 0.5, "direction": "horizontal"}]) classes: Optional[str] = None @dataclass class ValData: """Validation Data Dataclass""" type: str = "ImageNet" data_prefix: Optional[str] = None ann_file: Optional[str] = None pipeline: List[Any] = field(default_factory=lambda: [{"type": "Resize", "size": (256, -1)}, {"type": "CenterCrop", "crop_size": 224}]) classes: Optional[str] = None @dataclass class TestData: """Test Data Dataclass""" type: str = "ImageNet" data_prefix: Optional[str] = None ann_file: Optional[str] = None pipeline: List[Any] = field(default_factory=lambda: [{"type": "Resize", "size": (256, -1)}, {"type": "CenterCrop", "crop_size": 224}]) classes: Optional[str] = None @dataclass class DataConfig: """Data Config""" samples_per_gpu: int = 1 workers_per_gpu: int = 2 train: TrainData = TrainData() val: ValData = ValData() test: TestData = TestData() @dataclass class DatasetConfig: """Dataset config.""" img_norm_cfg: ImgNormConfig = ImgNormConfig() data: DataConfig = DataConfig() sampler: Optional[Dict[Any, Any]] = None # Allowed sampler : RepeatAugSampler @dataclass class DistParams: """Distribution Parameters""" backend: str = "nccl" @dataclass class RunnerConfig: """Configuration parameters for Runner.""" type: str = "TAOEpochBasedRunner" # Currently We support only Epochbased Runner - Non configurable max_epochs: int = 20 # Set this if Epoch based runner @dataclass class CheckpointConfig: """Configuration parameters for Checkpointing.""" interval: int = 1 # Epochs or Iterations accordingly by_epoch: bool = True # By default it trains by iters # Default Runtime Config @dataclass class LogConfig: """Configuration parameters for Logging.""" interval: int = 1000 log_dir: str = "logs" # Make sure this directory is created # Optim and Schedule Config @dataclass class ValidationConfig: """Validation Config.""" interval: int = 100 @dataclass class ParamwiseConfig: """Configuration parameters for Parameters.""" pos_block: Dict[str, float] = field(default_factory=lambda: {"decay_mult": 0.0}) norm: Dict[str, float] = field(default_factory=lambda: {"decay_mult": 0.0}) head: Dict[str, float] = field(default_factory=lambda: {"lr_mult": 10.0}) @dataclass class EvaluationConfig: """Evaluation Config.""" interval: int = 1 metric: str = "accuracy" @dataclass class TrainConfig: """Train Config.""" checkpoint_config: CheckpointConfig = CheckpointConfig() optimizer: Dict[Any, Any] = field(default_factory=lambda: {"type": 'AdamW', "lr": 10e-4, "weight_decay": 0.05}) paramwise_cfg: Optional[Dict[Any, Any]] = None # Not a must - needs to be provided in yaml optimizer_config: Dict[Any, Any] = field(default_factory=lambda: {'grad_clip': None}) # Gradient Accumulation and grad clip lr_config: Dict[Any, Any] = field(default_factory=lambda: {"policy": 'CosineAnnealing', "min_lr": 10e-4, "warmup": "linear", "warmup_iters": 5, "warmup_ratio": 0.01, "warmup_by_epoch": True}) runner: RunnerConfig = RunnerConfig() logging: LogConfig = LogConfig() # By default we add logging evaluation: EvaluationConfig = EvaluationConfig() # Does not change find_unused_parameters: bool = False # Does not change resume_training_checkpoint_path: Optional[str] = None validate: bool = False # This param can be omitted if init_cfg is used in model_cfg. Both does same thing. load_from: Optional[str] = None # If they want to load the weights till head custom_hooks: List[Any] = field(default_factory=lambda: []) # Experiment Common Configs @dataclass class ExpConfig: """Overall Exp Config for Cls.""" manual_seed: int = 47 # If needed, the next line can be commented MASTER_ADDR: str = "127.0.0.1" MASTER_PORT: int = 631 @dataclass class TrainExpConfig: """Train experiment config.""" exp_config: ExpConfig = ExpConfig() validate: bool = False train_config: TrainConfig = TrainConfig() # Could change across networks num_gpus: int = 1 # non configurable here results_dir: Optional[str] = None @dataclass class InferenceExpConfig: """Inference experiment config.""" num_gpus: int = 1 # non configurable here batch_size: int = 1 checkpoint: Optional[str] = None trt_engine: Optional[str] = None exp_config: ExpConfig = ExpConfig() results_dir: Optional[str] = None @dataclass class EvalExpConfig: """Inference experiment config.""" num_gpus: int = 1 # non configurable here batch_size: int = 1 checkpoint: Optional[str] = None trt_engine: Optional[str] = None exp_config: ExpConfig = ExpConfig() topk: int = 1 # Configurable results_dir: Optional[str] = None @dataclass class TrtConfig: """Trt config.""" data_type: str = "FP32" workspace_size: int = 1024 min_batch_size: int = 1 opt_batch_size: int = 1 max_batch_size: int = 1 @dataclass class ExportExpConfig: """Export experiment config.""" verify: bool = False opset_version: int = 12 checkpoint: Optional[str] = None input_channel: int = 3 input_width: int = 224 input_height: int = 224 onnx_file: Optional[str] = None results_dir: Optional[str] = None @dataclass class HeadConfig: """Head Config""" type: str = 'LinearClsHead' num_classes: int = 1000 in_channels: int = 448 # Mapped to differenct channels based according to the backbone used in the fan_model.py custom_args: Optional[Dict[Any, Any]] = None loss: Dict[Any, Any] = field(default_factory=lambda: {"type": 'CrossEntropyLoss', "loss_weight": 1.0, "use_soft": False}) topk: List[int] = field(default_factory=lambda: [1, ]) @dataclass class InitCfg: """Init Config""" type: str = "Pretrained" checkpoint: Optional[str] = None prefix: Optional[str] = None # E.g., backbone @dataclass class BackboneConfig: """Configuration parameters for Backbone.""" type: str = "fan_tiny_8_p4_hybrid" custom_args: Optional[Dict[Any, Any]] = None @dataclass class TrainAugCfg: """Arguments for Train Config""" augments: Optional[List[Dict[Any, Any]]] = None @dataclass class ModelConfig: """Cls model config.""" type: str = "ImageClassifier" backbone: BackboneConfig = BackboneConfig() neck: Optional[Dict[Any, Any]] = None head: HeadConfig = HeadConfig() init_cfg: InitCfg = InitCfg() # No change train_cfg: TrainAugCfg = TrainAugCfg() @dataclass class GenTrtEngineExpConfig: """Gen TRT Engine experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 onnx_file: Optional[str] = None trt_engine: Optional[str] = None input_channel: int = 3 input_width: int = 224 input_height: int = 224 opset_version: int = 12 batch_size: int = -1 verbose: bool = False tensorrt: TrtConfig = TrtConfig() @dataclass class ExperimentConfig: """Experiment config.""" model: ModelConfig = ModelConfig() dataset: DatasetConfig = DatasetConfig() train: TrainExpConfig = TrainExpConfig() evaluate: EvalExpConfig = EvalExpConfig() inference: InferenceExpConfig = InferenceExpConfig() gen_trt_engine: GenTrtEngineExpConfig = GenTrtEngineExpConfig() export: ExportExpConfig = ExportExpConfig() results_dir: str = MISSING
tao_deploy-main
nvidia_tao_deploy/cv/classification_pyt/hydra_config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classification convert etlt model to TRT engine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os import tempfile from nvidia_tao_deploy.utils.decoding import decode_model from nvidia_tao_deploy.cv.classification_tf1.engine_builder import ClassificationEngineBuilder from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.classification_pyt.hydra_config.default_config import ExperimentConfig from nvidia_tao_deploy.engine.builder import NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="gen_trt_engine", schema=ExperimentConfig ) @monitor_status(name='classification_pyt', mode='gen_trt_engine') def main(cfg: ExperimentConfig) -> None: """Classification TRT convert.""" # decrypt EFF or etlt tmp_onnx_file, file_format = decode_model(cfg.gen_trt_engine.onnx_file) data_type = cfg.gen_trt_engine.tensorrt.data_type.lower() # TODO: TRT8.6.1 improves INT8 perf if data_type == 'int8': raise NotImplementedError("INT8 calibration for PyTorch classification models is not yet supported") if cfg.gen_trt_engine.trt_engine is not None: if cfg.gen_trt_engine.trt_engine is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = cfg.gen_trt_engine.trt_engine min_batch_size = cfg.gen_trt_engine.tensorrt.min_batch_size opt_batch_size = cfg.gen_trt_engine.tensorrt.opt_batch_size max_batch_size = cfg.gen_trt_engine.tensorrt.max_batch_size # TODO: Remove this when we upgrade to DLFW 23.04+ trt_version_number = NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + NV_TENSORRT_PATCH if data_type == "fp16" and trt_version_number < 8600: logger.warning("[WARNING]: LayerNorm has overflow issue in FP16 upto TensorRT version 8.5 " "which can lead to accuracy drop compared to FP32.\n" "[WARNING]: Please re-export ONNX using opset 17 and use TensorRT version 8.6.\n") builder = ClassificationEngineBuilder(verbose=cfg.gen_trt_engine.verbose, workspace=cfg.gen_trt_engine.tensorrt.workspace_size, min_batch_size=min_batch_size, opt_batch_size=opt_batch_size, max_batch_size=max_batch_size, is_qat=False, data_format="channels_first", preprocess_mode="torch") builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, cfg.gen_trt_engine.tensorrt.data_type) if cfg.gen_trt_engine.results_dir is not None: results_dir = cfg.gen_trt_engine.results_dir else: results_dir = os.path.join(cfg.results_dir, "gen_trt_engine") os.makedirs(results_dir, exist_ok=True) logging.info("Export finished successfully.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/classification_pyt/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Classification PyT scripts module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/classification_pyt/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os import pandas as pd import numpy as np from tqdm.auto import tqdm from nvidia_tao_deploy.cv.classification_tf1.inferencer import ClassificationInferencer from nvidia_tao_deploy.cv.classification_tf1.dataloader import ClassificationLoader from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.classification_pyt.hydra_config.default_config import ExperimentConfig logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="inference", schema=ExperimentConfig ) @monitor_status(name='classification_pyt', mode='inference') def main(cfg: ExperimentConfig) -> None: """Classification TRT inference.""" classmap = cfg.dataset.data.test.classes if classmap: # if classmap is provided, we explicitly set the mapping from the text file if not os.path.exists(classmap): raise FileNotFoundError(f"{classmap} does not exist!") with open(classmap, "r", encoding="utf-8") as f: mapping_dict = {line.rstrip(): idx for idx, line in enumerate(f.readlines())} else: # If not, the order of the classes are alphanumeric as defined by Keras # Ref: https://github.com/keras-team/keras/blob/07e13740fd181fc3ddec7d9a594d8a08666645f6/keras/preprocessing/image.py#L507 mapping_dict = {} for idx, subdir in enumerate(sorted(os.listdir(cfg.dataset.data.test.data_prefix))): if os.path.isdir(os.path.join(cfg.dataset.data.test.data_prefix, subdir)): mapping_dict[subdir] = idx image_mean = [x / 255 for x in cfg.dataset.img_norm_cfg.mean] img_std = [x / 255 for x in cfg.dataset.img_norm_cfg.std] batch_size = cfg.inference.batch_size trt_infer = ClassificationInferencer(cfg.inference.trt_engine, data_format="channels_first", batch_size=batch_size) dl = ClassificationLoader( trt_infer._input_shape, [cfg.dataset.data.test.data_prefix], mapping_dict, is_inference=True, data_format="channels_first", mode="torch", batch_size=batch_size, image_mean=image_mean, image_std=img_std, dtype=trt_infer.inputs[0].host.dtype) if cfg.inference.results_dir is not None: results_dir = cfg.inference.results_dir else: results_dir = os.path.join(cfg.results_dir, "trt_inference") os.makedirs(results_dir, exist_ok=True) result_csv_path = os.path.join(results_dir, 'result.csv') with open(result_csv_path, 'w', encoding="utf-8") as csv_f: for i, (imgs, _) in tqdm(enumerate(dl), total=len(dl), desc="Producing predictions"): image_paths = dl.image_paths[np.arange(batch_size) + batch_size * i] y_pred = trt_infer.infer(imgs) # Class output from softmax layer class_indices = np.argmax(y_pred, axis=1) # Map label index to label name class_labels = map(lambda i: list(mapping_dict.keys()) [list(mapping_dict.values()).index(i)], class_indices) conf = np.max(y_pred, axis=1) # Write predictions to file df = pd.DataFrame(zip(image_paths, class_labels, conf)) df.to_csv(csv_f, header=False, index=False) logging.info("Finished inference.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/classification_pyt/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os import json import numpy as np from tqdm.auto import tqdm from sklearn.metrics import classification_report, confusion_matrix, top_k_accuracy_score from nvidia_tao_deploy.cv.classification_tf1.inferencer import ClassificationInferencer from nvidia_tao_deploy.cv.classification_tf1.dataloader import ClassificationLoader from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.classification_pyt.hydra_config.default_config import ExperimentConfig logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="evaluate", schema=ExperimentConfig ) @monitor_status(name='classification_pyt', mode='evaluation') def main(cfg: ExperimentConfig) -> None: """Classification TRT evaluation.""" classmap = cfg.dataset.data.test.classes if classmap: # if classmap is provided, we explicitly set the mapping from the text file if not os.path.exists(classmap): raise FileNotFoundError(f"{classmap} does not exist!") with open(classmap, "r", encoding="utf-8") as f: mapping_dict = {line.rstrip(): idx for idx, line in enumerate(sorted(f.readlines()))} else: # If not, the order of the classes are alphanumeric as defined by Keras # Ref: https://github.com/keras-team/keras/blob/07e13740fd181fc3ddec7d9a594d8a08666645f6/keras/preprocessing/image.py#L507 mapping_dict = {} for idx, subdir in enumerate(sorted(os.listdir(cfg.dataset.data.test.data_prefix))): if os.path.isdir(os.path.join(cfg.dataset.data.test.data_prefix, subdir)): mapping_dict[subdir] = idx # Load hparams target_names = [c[0] for c in sorted(mapping_dict.items(), key=lambda x:x[1])] top_k = cfg.evaluate.topk image_mean = [x / 255 for x in cfg.dataset.img_norm_cfg.mean] img_std = [x / 255 for x in cfg.dataset.img_norm_cfg.std] batch_size = cfg.evaluate.batch_size trt_infer = ClassificationInferencer(cfg.evaluate.trt_engine, data_format="channels_first", batch_size=batch_size) dl = ClassificationLoader( trt_infer._input_shape, [cfg.dataset.data.test.data_prefix], mapping_dict, data_format="channels_first", mode="torch", batch_size=cfg.evaluate.batch_size, image_mean=image_mean, image_std=img_std, dtype=trt_infer.inputs[0].host.dtype) gt_labels = [] pred_labels = [] for imgs, labels in tqdm(dl, total=len(dl), desc="Producing predictions"): gt_labels.extend(labels) y_pred = trt_infer.infer(imgs) pred_labels.extend(y_pred) # Check output classes output_num_classes = pred_labels[0].shape[0] if len(mapping_dict) != output_num_classes: raise ValueError(f"Provided class map has {len(mapping_dict)} classes while the engine expects {output_num_classes} classes.") gt_labels = np.array(gt_labels) pred_labels = np.array(pred_labels) # Metric calculation target_names = np.array([c[0] for c in sorted(mapping_dict.items(), key=lambda x:x[1])]) target_labels = np.array([c[1] for c in sorted(mapping_dict.items(), key=lambda x:x[1])]) if len(target_labels) == 2: # If there are only two classes, sklearn perceive the problem as binary classification # and requires predictions to be in (num_samples, ) rather than (num_samples, num_classes) scores = top_k_accuracy_score(gt_labels, pred_labels[:, 1], k=top_k, labels=target_labels) else: scores = top_k_accuracy_score(gt_labels, pred_labels, k=top_k, labels=target_labels) logging.info("Top %s scores: %s", top_k, scores) logging.info("Confusion Matrix") y_predictions = np.argmax(pred_labels, axis=1) print(confusion_matrix(gt_labels, y_predictions)) logging.info("Classification Report") print(classification_report(gt_labels, y_predictions, labels=target_labels, target_names=target_names)) # Store evaluation results into JSON eval_results = {"top_k_accuracy": scores} if cfg.evaluate.results_dir is not None: results_dir = cfg.evaluate.results_dir else: results_dir = os.path.join(cfg.results_dir, "trt_evaluate") os.makedirs(results_dir, exist_ok=True) with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(eval_results, f) logging.info("Finished evaluation.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/classification_pyt/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import argparse from nvidia_tao_deploy.cv.classification_pyt import scripts from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_hydra import get_subtasks, launch def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "classification_pyt", add_help=True, description="Train Adapt Optimize Deploy entrypoint for PyTorch classification" ) # Build list of subtasks by inspecting the scripts package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch(parser, subtasks, override_results_dir="results_dir", override_threshold=None, # No threshold in Classification override_key="key", network="classification_pyt") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/classification_pyt/entrypoint/classification_pyt.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for classification."""
tao_deploy-main
nvidia_tao_deploy/cv/classification_pyt/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility class for performing TensorRT image inference.""" import numpy as np import tensorrt as trt from nvidia_tao_deploy.inferencer.trt_inferencer import TRTInferencer from nvidia_tao_deploy.inferencer.utils import allocate_buffers, do_inference def trt_output_process_fn(y_encoded, etlt_type="onnx"): """Function to process TRT model output.""" if etlt_type == "uff": # UFF output node is in reverse order y_encoded.reverse() return y_encoded class MClassificationInferencer(TRTInferencer): """Manages TensorRT objects for model inference.""" def __init__(self, engine_path, input_shape=None, batch_size=None, data_format="channel_first"): """Initializes TensorRT objects needed for model inference. Args: engine_path (str): path where TensorRT engine should be stored input_shape (tuple): (batch, channel, height, width) for dynamic shape engine batch_size (int): batch size for dynamic shape engine data_format (str): either channel_first or channel_last """ # Load TRT engine super().__init__(engine_path) self.max_batch_size = self.engine.max_batch_size self.execute_v2 = False # Execution context is needed for inference self.context = None # Allocate memory for multiple usage [e.g. multiple batch inference] self._input_shape = [] for binding in range(self.engine.num_bindings): if self.engine.binding_is_input(binding): binding_shape = self.engine.get_binding_shape(binding) self._input_shape = binding_shape[-3:] if len(binding_shape) == 4: self.etlt_type = "onnx" else: self.etlt_type = "uff" assert len(self._input_shape) == 3, "Engine doesn't have valid input dimensions" if data_format == "channel_first": self.height = self._input_shape[1] self.width = self._input_shape[2] else: self.height = self._input_shape[0] self.width = self._input_shape[1] # set binding_shape for dynamic input if (input_shape is not None) or (batch_size is not None): self.context = self.engine.create_execution_context() if input_shape is not None: self.context.set_binding_shape(0, input_shape) self.max_batch_size = input_shape[0] else: self.context.set_binding_shape(0, [batch_size] + list(self._input_shape)) self.max_batch_size = batch_size self.execute_v2 = True # This allocates memory for network inputs/outputs on both CPU and GPU self.inputs, self.outputs, self.bindings, self.stream = allocate_buffers(self.engine, self.context) if self.context is None: self.context = self.engine.create_execution_context() input_volume = trt.volume(self._input_shape) self.numpy_array = np.zeros((self.max_batch_size, input_volume)) def infer(self, imgs): """Infers model on batch of same sized images resized to fit the model. Args: image_paths (str): paths to images, that will be packed into batch and fed into model """ # Verify if the supplied batch size is not too big max_batch_size = self.max_batch_size actual_batch_size = len(imgs) if actual_batch_size > max_batch_size: raise ValueError(f"image_paths list bigger ({actual_batch_size}) than \ engine max batch size ({max_batch_size})") self.numpy_array[:actual_batch_size] = imgs.reshape(actual_batch_size, -1) # ...copy them into appropriate place into memory... # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[0].host, self.numpy_array.ravel()) # ...fetch model outputs... results = do_inference( self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, batch_size=max_batch_size, execute_v2=self.execute_v2) # ...and return results up to the actual batch size. y_pred = [i.reshape(max_batch_size, -1)[:actual_batch_size] for i in results] # Process TRT outputs to proper format return trt_output_process_fn(y_pred, etlt_type=self.etlt_type) def __del__(self): """Clear things up on object deletion.""" # Clear session and buffer if self.trt_runtime: del self.trt_runtime if self.context: del self.context if self.engine: del self.engine if self.stream: del self.stream # Loop through inputs and free inputs. for inp in self.inputs: inp.device.free() # Loop through outputs and free them. for out in self.outputs: out.device.free()
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Multitask Classification TensorRT engine builder.""" import logging import os import random from six.moves import xrange import sys import onnx import traceback from tqdm import tqdm try: from uff.model.uff_pb2 import MetaGraph except ImportError: print("Loading uff directly from the package source code") # @scha: To disable tensorflow import issue import importlib import types import pkgutil package = pkgutil.get_loader("uff") # Returns __init__.py path src_code = package.get_filename().replace('__init__.py', 'model/uff_pb2.py') loader = importlib.machinery.SourceFileLoader('helper', src_code) helper = types.ModuleType(loader.name) loader.exec_module(helper) MetaGraph = helper.MetaGraph import numpy as np import tensorrt as trt from nvidia_tao_deploy.engine.builder import EngineBuilder from nvidia_tao_deploy.engine.tensorfile import TensorFile from nvidia_tao_deploy.engine.tensorfile_calibrator import TensorfileCalibrator from nvidia_tao_deploy.engine.utils import generate_random_tensorfile, prepare_chunk logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class MClassificationEngineBuilder(EngineBuilder): """Parses an UFF graph and builds a TensorRT engine from it.""" def __init__( self, output_tasks, data_format="channels_first", **kwargs ): """Init. Args: output_tasks (list): list of names of output tasks to be used data_format (str): data_format. """ super().__init__(**kwargs) self._data_format = data_format self.output_tasks = output_tasks def set_input_output_node_names(self): """Set input output node names.""" self._output_node_names = [n + "/Softmax" for n in self.output_tasks] self._input_node_names = ["input_1"] def get_uff_input_dims(self, model_path): """Get input dimension of UFF model.""" metagraph = MetaGraph() with open(model_path, "rb") as f: metagraph.ParseFromString(f.read()) for node in metagraph.graphs[0].nodes: if node.operation == "Input": return np.array(node.fields['shape'].i_list.val)[1:] raise ValueError("Input dimension is not found in the UFF metagraph.") def get_onnx_input_dims(self, model_path): """Get input dimension of ONNX model.""" onnx_model = onnx.load(model_path) onnx_inputs = onnx_model.graph.input logger.info('List inputs:') for i, inputs in enumerate(onnx_inputs): logger.info('Input %s -> %s.', i, inputs.name) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][1:]) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][0]) return [i.dim_value for i in inputs.type.tensor_type.shape.dim][:] def create_network(self, model_path, file_format="uff"): """Parse the UFF/ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the UFF/ONNX graph to load. file_format: The file format of the decrypted etlt file (default: onnx). """ if file_format == "uff": logger.info("Parsing UFF model") self.network = self.builder.create_network() self.parser = trt.UffParser() self.set_input_output_node_names() in_tensor_name = self._input_node_names[0] self._input_dims = self.get_uff_input_dims(model_path) input_dict = {in_tensor_name: self._input_dims} for key, value in input_dict.items(): if self._data_format == "channels_first": self.parser.register_input(key, value, trt.UffInputOrder(0)) else: self.parser.register_input(key, value, trt.UffInputOrder(1)) for name in self._output_node_names: self.parser.register_output(name) try: assert self.parser.parse(model_path, self.network, trt.DataType.FLOAT) except AssertionError as e: logger.error("Failed to parse UFF File") _, _, tb = sys.exc_info() traceback.print_tb(tb) # Fixed format tb_info = traceback.extract_tb(tb) _, line, _, text = tb_info[-1] raise AssertionError( f"UFF parsing failed on line {line} in statement {text}" ) from e else: logger.info("Parsing ONNX model") self._input_dims = self.get_onnx_input_dims(model_path) self.batch_size = self._input_dims[0] self._input_dims = self._input_dims[1:] network_flags = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) model_path = os.path.realpath(model_path) with open(model_path, "rb") as f: if not self.parser.parse(f.read()): logger.error("Failed to load ONNX file: %s", model_path) for error in range(self.parser.num_errors): logger.error(self.parser.get_error(error)) sys.exit(1) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] logger.info("Network Description") for input in inputs: # noqa pylint: disable=W0622 logger.info("Input '%s' with shape %s and dtype %s", input.name, input.shape, input.dtype) for output in outputs: logger.info("Output '%s' with shape %s and dtype %s", output.name, output.shape, output.dtype) if self.batch_size <= 0: # dynamic batch size logger.info("dynamic batch size handling") opt_profile = self.builder.create_optimization_profile() model_input = self.network.get_input(0) input_shape = model_input.shape input_name = model_input.name real_shape_min = (self.min_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_opt = (self.opt_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_max = (self.max_batch_size, input_shape[1], input_shape[2], input_shape[3]) opt_profile.set_shape(input=input_name, min=real_shape_min, opt=real_shape_opt, max=real_shape_max) self.config.add_optimization_profile(opt_profile) def set_calibrator(self, inputs=None, calib_cache=None, calib_input=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None, image_mean=None): """Simple function to set an Tensorfile based int8 calibrator. Args: calib_data_file: Path to the TensorFile. If the tensorfile doesn't exist at this path, then one is created with either n_batches of random tensors, images from the file in calib_input of dimensions (batch_size,) + (input_dims). calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. image_mean: Image mean per channel. Returns: No explicit returns. """ logger.info("Calibrating using TensorfileCalibrator") n_batches = calib_num_images // calib_batch_size if not os.path.exists(calib_data_file): self.generate_tensor_file(calib_data_file, calib_input, self._input_dims, n_batches=n_batches, batch_size=calib_batch_size, image_mean=image_mean) self.config.int8_calibrator = TensorfileCalibrator(calib_data_file, calib_cache, n_batches, calib_batch_size) def generate_tensor_file(self, data_file_name, calibration_images_dir, input_dims, n_batches=10, batch_size=1, image_mean=None): """Generate calibration Tensorfile for int8 calibrator. This function generates a calibration tensorfile from a directory of images, or dumps n_batches of random numpy arrays of shape (batch_size,) + (input_dims). Args: data_file_name (str): Path to the output tensorfile to be saved. calibration_images_dir (str): Path to the images to generate a tensorfile from. input_dims (list): Input shape in CHW order. n_batches (int): Number of batches to be saved. batch_size (int): Number of images per batch. image_mean (list): Image mean per channel. Returns: No explicit returns. """ if not os.path.exists(calibration_images_dir): logger.info("Generating a tensorfile with random tensor images. This may work well as " "a profiling tool, however, it may result in inaccurate results at " "inference. Please generate a tensorfile using the tlt-int8-tensorfile, " "or provide a custom directory of images for best performance.") generate_random_tensorfile(data_file_name, input_dims, n_batches=n_batches, batch_size=batch_size) else: # Preparing the list of images to be saved. num_images = n_batches * batch_size valid_image_ext = ('jpg', 'jpeg', 'png') image_list = [os.path.join(calibration_images_dir, image) for image in os.listdir(calibration_images_dir) if image.lower().endswith(valid_image_ext)] if len(image_list) < num_images: raise ValueError('Not enough number of images provided:' f' {len(image_list)} < {num_images}') image_idx = random.sample(xrange(len(image_list)), num_images) self.set_data_preprocessing_parameters(input_dims, image_mean) # Writing out processed dump. with TensorFile(data_file_name, 'w') as f: for chunk in tqdm(image_idx[x:x + batch_size] for x in xrange(0, len(image_idx), batch_size)): dump_data = prepare_chunk(chunk, image_list, image_width=input_dims[2], image_height=input_dims[1], channels=input_dims[0], batch_size=batch_size, **self.preprocessing_arguments) f.write(dump_data) f.closed def set_data_preprocessing_parameters(self, input_dims, image_mean=None): """Set data pre-processing parameters for the int8 calibration.""" num_channels = input_dims[0] if num_channels == 3: if not image_mean: means = [103.939, 116.779, 123.68] else: assert len(image_mean) == 3, "Image mean should have 3 values for RGB inputs." means = image_mean elif num_channels == 1: if not image_mean: means = [117.3786] else: assert len(image_mean) == 1, "Image mean should have 1 value for grayscale inputs." means = image_mean else: raise NotImplementedError( f"Invalid number of dimensions {num_channels}.") self.preprocessing_arguments = {"scale": 1.0, "means": means, "flip_channel": True}
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Multitask Classification.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Multitask Classification loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from abc import ABC import numpy as np import pandas as pd from collections import defaultdict from PIL import Image from nvidia_tao_deploy.inferencer.preprocess_input import preprocess_input # padding size. # We firstly resize to (target_width + CROP_PADDING, target_height + CROP_PADDING) # , then crop to (target_width, target_height). # for standard ImageNet size: 224x224 the ratio is 0.875(224 / (224 + 32)). # but for EfficientNet B1-B7, larger resolution is used, hence this ratio # is no longer 0.875 # ref: # https://github.com/tensorflow/tpu/blob/r1.15/models/official/efficientnet/preprocessing.py#L110 CROP_PADDING = 32 class MClassificationLoader(ABC): """Multitask Classification Dataloader.""" def __init__(self, shape, image_dirs, label_csv, batch_size=10, data_format="channels_first", interpolation_method="bicubic", dtype=None): """Init. Args: image_dirs (list): list of image directories. label_dirs (list): list of label directories. interpolation_method (str): Bilinear / Bicubic. mode (str): caffe / torch crop (str): random / center batch_size (int): size of the batch. image_mean (list): image mean used for preprocessing. dtype (str): data type to cast to """ self.image_paths = [] self.data_df = pd.read_csv(label_csv) self._generate_class_mapping(self.data_df) self._add_source(image_dirs[0]) self.image_paths = np.array(self.image_paths) self.data_inds = np.arange(len(self.image_paths)) self.resample = Image.BILINEAR if interpolation_method == "bilinear" else Image.BICUBIC self.data_format = data_format if self.data_format == "channels_first": self.height, self.width = shape[1], shape[2] else: self.height, self.width = shape[0], shape[1] self.batch_size = batch_size self.n_samples = len(self.data_inds) self.dtype = dtype self.n_batches = int(len(self.image_paths) // self.batch_size) assert self.n_batches > 0, "empty image dir or batch size too large!" def _add_source(self, image_folder): """Add classification sources.""" supported_img_format = ('.jpg', '.jpeg', '.png', '.bmp', '.gif') for filename in self.filenames: # Only add valid items to paths img_path = os.path.join(image_folder, filename) if filename.lower().endswith(supported_img_format) and os.path.exists(img_path): self.image_paths.append(os.path.join(image_folder, img_path)) def __len__(self): """Get length of Sequence.""" return self.n_batches def _generate_class_mapping(self, class_table): """Prepare task dictionary and class mapping.""" self.filenames = class_table.iloc[:, 0].values self.samples = len(self.filenames) self.tasks_header = sorted(class_table.columns.tolist()[1:]) self.class_dict = {} self.class_mapping = {} for task in self.tasks_header: unique_vals = sorted(class_table.loc[:, task].unique()) self.class_dict[task] = len(unique_vals) self.class_mapping[task] = dict(zip(unique_vals, range(len(unique_vals)))) # convert class dictionary to a sorted tolist self.class_dict_list_sorted = sorted(self.class_dict.items(), key=lambda x: x[0]) self.class_mapping_inv = {} for key, val in self.class_mapping.items(): self.class_mapping_inv[key] = {v: k for k, v in val.items()} def _load_gt_image(self, image_path): """Load GT image from file.""" img = Image.open(image_path).convert('RGB') return img def __iter__(self): """Iterate.""" self.n = 0 return self def __next__(self): """Load a full batch.""" images = [] labels = defaultdict(list) if self.n < self.n_batches: for idx in range(self.n * self.batch_size, (self.n + 1) * self.batch_size): image, label = self._get_single_processed_item(idx) images.append(image) for k, v in label.items(): labels[k].append(v) self.n += 1 return self._batch_post_processing(images, labels) raise StopIteration def _batch_post_processing(self, images, labels): """Post processing for a batch.""" images = np.array(images) final_labels = [] for _, v in labels.items(): final_labels.append(np.array(v)) return images, final_labels def _get_single_processed_item(self, idx): """Load and process single image and its label.""" image, label = self._get_single_item_raw(idx) image, label = self.preprocessing(image, label) return image, label def _get_single_item_raw(self, idx): """Load single image and its label. Returns: image (PIL.image): image object in original resolution label (int): one-hot encoded class label """ image = self._load_gt_image(self.image_paths[self.data_inds[idx]]) label = self.data_df.iloc[idx, :] return image, label def preprocessing(self, image, label): """The image preprocessor loads an image from disk and prepares it as needed for batching. This includes padding, resizing, normalization, data type casting, and transposing. Args: image (PIL.image): The Pillow image on disk to load. Returns: image (np.array): A numpy array holding the image sample, ready to be concatenated into the rest of the batch """ image = image.resize((self.width, self.height), self.resample) image = np.asarray(image, dtype=self.dtype) if self.data_format == "channels_first": image = np.transpose(image, (2, 0, 1)) # Normalize and apply imag mean and std image = preprocess_input(image, data_format=self.data_format) # one-hot-encoding batch_y = {} for c, cls_cnt in self.class_dict_list_sorted: batch_y[c] = np.zeros(cls_cnt, dtype=self.dtype) for c, _ in self.class_dict_list_sorted: batch_y[c][self.class_mapping[c][label[c]]] = 1 return image, batch_y
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/dataloader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Multitask Classification Proto.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/proto/__init__.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/multitask_classification/proto/experiment.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.common.proto import training_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_training__config__pb2 from nvidia_tao_deploy.cv.classification_tf1.proto import model_config_pb2 as nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_model__config__pb2 from nvidia_tao_deploy.cv.multitask_classification.proto import dataset_config_pb2 as nvidia__tao__deploy_dot_cv_dot_multitask__classification_dot_proto_dot_dataset__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/multitask_classification/proto/experiment.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nDnvidia_tao_deploy/cv/multitask_classification/proto/experiment.proto\x1a\x37nvidia_tao_deploy/cv/common/proto/training_config.proto\x1a@nvidia_tao_deploy/cv/classification_tf1/proto/model_config.proto\x1aHnvidia_tao_deploy/cv/multitask_classification/proto/dataset_config.proto\"\x94\x01\n\nExperiment\x12#\n\x0e\x64\x61taset_config\x18\x01 \x01(\x0b\x32\x0b.DataSource\x12\"\n\x0cmodel_config\x18\x02 \x01(\x0b\x32\x0c.ModelConfig\x12(\n\x0ftraining_config\x18\x03 \x01(\x0b\x32\x0f.TrainingConfig\x12\x13\n\x0brandom_seed\x18\x04 \x01(\rb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_training__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_model__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_multitask__classification_dot_proto_dot_dataset__config__pb2.DESCRIPTOR,]) _EXPERIMENT = _descriptor.Descriptor( name='Experiment', full_name='Experiment', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dataset_config', full_name='Experiment.dataset_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_config', full_name='Experiment.model_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='training_config', full_name='Experiment.training_config', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_seed', full_name='Experiment.random_seed', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=270, serialized_end=418, ) _EXPERIMENT.fields_by_name['dataset_config'].message_type = nvidia__tao__deploy_dot_cv_dot_multitask__classification_dot_proto_dot_dataset__config__pb2._DATASOURCE _EXPERIMENT.fields_by_name['model_config'].message_type = nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_model__config__pb2._MODELCONFIG _EXPERIMENT.fields_by_name['training_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_training__config__pb2._TRAININGCONFIG DESCRIPTOR.message_types_by_name['Experiment'] = _EXPERIMENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) Experiment = _reflection.GeneratedProtocolMessageType('Experiment', (_message.Message,), dict( DESCRIPTOR = _EXPERIMENT, __module__ = 'nvidia_tao_deploy.cv.multitask_classification.proto.experiment_pb2' # @@protoc_insertion_point(class_scope:Experiment) )) _sym_db.RegisterMessage(Experiment) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/proto/experiment_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Config Base Utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging from google.protobuf.text_format import Merge as merge_text_proto from nvidia_tao_deploy.cv.multitask_classification.proto.experiment_pb2 import Experiment logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) def load_proto(config): """Load the experiment proto.""" proto = Experiment() def _load_from_file(filename, pb2): if not os.path.exists(filename): raise IOError(f"Specfile not found at: {filename}") with open(filename, "r", encoding="utf-8") as f: merge_text_proto(f.read(), pb2) _load_from_file(config, proto) return proto
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/proto/utils.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/multitask_classification/proto/dataset_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/multitask_classification/proto/dataset_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nHnvidia_tao_deploy/cv/multitask_classification/proto/dataset_config.proto\"X\n\nDataSource\x12\x16\n\x0etrain_csv_path\x18\x01 \x01(\t\x12\x1c\n\x14image_directory_path\x18\x02 \x01(\t\x12\x14\n\x0cval_csv_path\x18\x03 \x01(\tb\x06proto3') ) _DATASOURCE = _descriptor.Descriptor( name='DataSource', full_name='DataSource', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='train_csv_path', full_name='DataSource.train_csv_path', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_directory_path', full_name='DataSource.image_directory_path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='val_csv_path', full_name='DataSource.val_csv_path', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=76, serialized_end=164, ) DESCRIPTOR.message_types_by_name['DataSource'] = _DATASOURCE _sym_db.RegisterFileDescriptor(DESCRIPTOR) DataSource = _reflection.GeneratedProtocolMessageType('DataSource', (_message.Message,), dict( DESCRIPTOR = _DATASOURCE, __module__ = 'nvidia_tao_deploy.cv.multitask_classification.proto.dataset_config_pb2' # @@protoc_insertion_point(class_scope:DataSource) )) _sym_db.RegisterMessage(DataSource) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/proto/dataset_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Multitask Classification convert etlt/onnx model to TRT engine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import json import tempfile from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.multitask_classification.engine_builder import MClassificationEngineBuilder from nvidia_tao_deploy.utils.decoding import decode_model logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) DEFAULT_MAX_BATCH_SIZE = 1 DEFAULT_MIN_BATCH_SIZE = 1 DEFAULT_OPT_BATCH_SIZE = 1 @monitor_status(name='multitask_classification', mode='gen_trt_engine') def main(args): """Multitask Classification TRT convert.""" # decrypt etlt tmp_onnx_file, file_format = decode_model(args.model_path, args.key) if args.engine_file is not None or args.data_type == 'int8': if args.engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = args.engine_file with open(args.class_map, "r", encoding="utf-8") as f: output_tasks = json.load(f)['tasks'] builder = MClassificationEngineBuilder(output_tasks=output_tasks, verbose=args.verbose, workspace=args.max_workspace_size, min_batch_size=args.min_batch_size, opt_batch_size=args.opt_batch_size, max_batch_size=args.max_batch_size, strict_type_constraints=args.strict_type_constraints) builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, args.data_type, calib_data_file=args.cal_data_file, calib_input=args.cal_image_dir, calib_cache=args.cal_cache_file, calib_num_images=args.batch_size * args.batches, calib_batch_size=args.batch_size) logging.info("Export finished successfully.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='gen_trt_engine', description='Generate TRT engine of multitask classification model.') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to a multitask classification .etlt or .onnx model file.' ) parser.add_argument( '-k', '--key', type=str, required=False, help='Key to save or load a .etlt model.' ) parser.add_argument( "-cm", "--class_map", type=str, help="Path to the classmap JSON file.") parser.add_argument( "--data_type", type=str, default="fp32", help="Data type for the TensorRT export.", choices=["fp32", "fp16", "int8"]) parser.add_argument( "--cal_image_dir", default="", type=str, help="Directory of images to run int8 calibration.") parser.add_argument( "--cal_data_file", default=None, type=str, help="Tensorfile to run calibration for int8 optimization.") parser.add_argument( '--cal_cache_file', default=None, type=str, help='Calibration cache file to write to.') parser.add_argument( "--engine_file", type=str, default=None, help="Path to the exported TRT engine.") parser.add_argument( "--max_batch_size", type=int, default=DEFAULT_MAX_BATCH_SIZE, help="Max batch size for TensorRT engine builder.") parser.add_argument( "--min_batch_size", type=int, default=DEFAULT_MIN_BATCH_SIZE, help="Min batch size for TensorRT engine builder.") parser.add_argument( "--opt_batch_size", type=int, default=DEFAULT_OPT_BATCH_SIZE, help="Opt batch size for TensorRT engine builder.") parser.add_argument( "--batch_size", type=int, default=1, help="Number of images per batch for calibration.") parser.add_argument( "--batches", type=int, default=10, help="Number of batches to calibrate over.") parser.add_argument( "--max_workspace_size", type=int, default=2, help="Max memory workspace size to allow in Gb for TensorRT engine builder (default: 2).") parser.add_argument( "-s", "--strict_type_constraints", action="store_true", default=False, help="A Boolean flag indicating whether to apply the \ TensorRT strict type constraints when building the TensorRT engine.") parser.add_argument( "-v", "--verbose", action="store_true", default=False, help="Verbosity of the logger.") parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Classification TF1 scripts module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import pandas as pd import numpy as np from tqdm.auto import tqdm from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.multitask_classification.inferencer import MClassificationInferencer from nvidia_tao_deploy.cv.multitask_classification.dataloader import MClassificationLoader from nvidia_tao_deploy.cv.multitask_classification.proto.utils import load_proto logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='multitask_classification', mode='inference') def main(args): """Multitask Classification TRT inference.""" es = load_proto(args.experiment_spec) interpolation = es.model_config.resize_interpolation_method if es.model_config.resize_interpolation_method else 0 interpolation_map = { 0: "bilinear", 1: "bicubic" } interpolation_method = interpolation_map[interpolation] # Override spec file if argument is provided image_dirs = args.image_dir if args.image_dir else es.dataset_config.image_directory_path batch_size = 1 # Inference is set to 1 trt_infer = MClassificationInferencer(args.model_path, batch_size=batch_size) if trt_infer._input_shape[0] in [1, 3]: data_format = "channels_first" else: data_format = "channels_last" dl = MClassificationLoader( trt_infer._input_shape, [image_dirs], es.dataset_config.val_csv_path, data_format=data_format, interpolation_method=interpolation_method, batch_size=batch_size, dtype=trt_infer.inputs[0].host.dtype) if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir result_csv_path = os.path.join(results_dir, 'result.csv') with open(result_csv_path, 'w', encoding="utf-8") as csv_f: for i, (imgs, _) in tqdm(enumerate(dl), total=len(dl), desc="Producing predictions"): y_pred = trt_infer.infer(imgs) image_paths = dl.image_paths[np.arange(batch_size) + batch_size * i] conf = [np.max(pred.reshape(-1)) for pred in y_pred] class_labels = [] for (c, _), pred in zip(dl.class_dict_list_sorted, y_pred): class_labels.extend([dl.class_mapping_inv[c][np.argmax(p)] for p in pred]) r = {"filename": image_paths} for idx, (c, _) in enumerate(dl.class_dict_list_sorted): r[c] = [f"{class_labels[idx]} ({conf[idx]:.4f})"] # Write predictions to file df = pd.DataFrame.from_dict(r) # Add header only for the first item df.to_csv(csv_f, header=bool(i == 0), index=False) logging.info("Finished inference.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='infer', description='Inference with a Multitask Classification TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the Classification TensorRT engine.' ) parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import json import numpy as np from collections import defaultdict from tqdm.auto import tqdm from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.multitask_classification.inferencer import MClassificationInferencer from nvidia_tao_deploy.cv.multitask_classification.dataloader import MClassificationLoader from nvidia_tao_deploy.cv.multitask_classification.proto.utils import load_proto logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='multitask_classification', mode='evaluation') def main(args): """Multitask Classification TRT evaluation.""" es = load_proto(args.experiment_spec) interpolation = es.model_config.resize_interpolation_method if es.model_config.resize_interpolation_method else 0 interpolation_map = { 0: "bilinear", 1: "bicubic" } interpolation_method = interpolation_map[interpolation] # Override spec file if argument is provided image_dirs = args.image_dir if args.image_dir else es.dataset_config.image_directory_path batch_size = args.batch_size if args.batch_size else es.eval_config.batch_size trt_infer = MClassificationInferencer(args.model_path, batch_size=batch_size) if trt_infer._input_shape[0] in [1, 3]: data_format = "channels_first" else: data_format = "channels_last" dl = MClassificationLoader( trt_infer._input_shape, [image_dirs], es.dataset_config.val_csv_path, data_format=data_format, interpolation_method=interpolation_method, batch_size=batch_size, dtype=trt_infer.inputs[0].host.dtype) tp = defaultdict(list) for imgs, labels in tqdm(dl, total=len(dl), desc="Producing predictions"): y_pred = trt_infer.infer(imgs) assert len(dl.class_dict_list_sorted) == len(labels) == len(y_pred), "Output size mismatch!" for (c, _), gt, pred in zip(dl.class_dict_list_sorted, labels, y_pred): tp[c].append((np.argmax(gt, axis=1) == np.argmax(pred, axis=1)).sum()) # Get acc for each task eval_results = {} for k, v in tp.items(): acc = sum(v) / len(dl.image_paths) logging.info("%s accuracy: %s", k, acc) eval_results[k] = float(acc) # Store evaluation results into JSON if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(eval_results, f) logging.info("Finished evaluation.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='eval', description='Evaluate with a Multitask Classification TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the Classification TensorRT engine.' ) parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.') parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for multitask classification."""
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import sys from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto import launch_job import nvidia_tao_deploy.cv.multitask_classification.scripts def main(): """Function to launch the job.""" launch_job(nvidia_tao_deploy.cv.multitask_classification.scripts, "multitask_classification", sys.argv[1:]) if __name__ == "__main__": main()
tao_deploy-main
nvidia_tao_deploy/cv/multitask_classification/entrypoint/multitask_classification.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference module.""" import numpy as np from tqdm.auto import tqdm from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import normalize from nvidia_tao_deploy.cv.classification_tf1.inferencer import ClassificationInferencer from nvidia_tao_deploy.inferencer.utils import do_inference def trt_output_process_fn(y_encoded): """Function to process TRT model output.""" cls_out = y_encoded[0] return np.copy(cls_out) class MLRecogInferencer(ClassificationInferencer): """Manages TensorRT objects for model inference.""" def __init__(self, engine_path, input_shape=None, batch_size=None): """Initializes TensorRT objects needed for model inference. Args: engine_path (str): path where TensorRT engine should be stored input_shape (tuple): (batch, channel, height, width) for dynamic shape engine batch_size (int): batch size for dynamic shape engine """ # Load TRT engine super().__init__(engine_path, input_shape, batch_size, "channel_first") def train_knn(self, gallery_dl, k=1): """Trains KNN model on gallery dataset. Args: gallery_dl (MLRecogClassificationLoader): gallery dataset loader k (int): number of nearest neighbors to use """ image_embeds = [] labels = [] for imgs, labs in tqdm(gallery_dl): image_embeds.append(self.get_embeddings(imgs)) labels.append(labs) image_embeds = np.concatenate(image_embeds) labels = np.concatenate(labels) self.knn = KNeighborsClassifier(n_neighbors=k, metric="l2") self.knn.fit(image_embeds, labels) def infer(self, imgs): """Infers model on batch of same sized images resized to fit the model. Args: query (numpy.ndarray): batch of image numpy arrays Returns: dists (numpy.ndarray): distances to the nearest neighbors indices (numpy.ndarray): indices of the nearest neighbors """ query_emb = self.get_embeddings(imgs) dists, indices = self.knn.kneighbors(query_emb) return dists, indices def get_embeddings(self, imgs): """Returns normalized embeddings for a batch of images. Args: imgs (np.ndarray): batch of numpy arrays of images Returns: x_emb (np.ndarray): normalized embeddings """ x_emb = self.get_embeddings_from_batch(imgs) x_emb = normalize(x_emb, norm="l2", axis=1) return x_emb def get_embeddings_from_batch(self, imgs): """Infers model on batch of same sized images resized to fit the model. Args: imgs (np.ndarray): batch of numpy arrays of images Returns: x_emb (np.ndarray): embeddings output from trt engine """ # Verify if the supplied batch size is not too big max_batch_size = self.max_batch_size actual_batch_size = len(imgs) if actual_batch_size > max_batch_size: raise ValueError(f"image_paths list bigger ({actual_batch_size}) than \ engine max batch size ({max_batch_size})") self.numpy_array[:actual_batch_size] = imgs.reshape(actual_batch_size, -1) # ...copy them into appropriate place into memory... # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[0].host, self.numpy_array.ravel()) # ...fetch model outputs... results = do_inference( self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, batch_size=max_batch_size, execute_v2=self.execute_v2) # ...and return results up to the actual batch size. y_pred = [i.reshape(max_batch_size, -1)[:actual_batch_size] for i in results] # Process TRT outputs to proper format return trt_output_process_fn(y_pred)
tao_deploy-main
nvidia_tao_deploy/cv/metric_learning_recognition/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metric Learning Recognition TensorRT engine builder.""" import logging import os import sys import onnx import tensorrt as trt from nvidia_tao_deploy.engine.builder import EngineBuilder from nvidia_tao_deploy.engine.calibrator import EngineCalibrator from nvidia_tao_deploy.utils.image_batcher import ImageBatcher logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class MLRecogEngineBuilder(EngineBuilder): """Parses an ONNX graph and builds a TensorRT engine from it.""" def __init__( self, input_dims, is_dynamic=False, img_mean=[0.485, 0.456, 0.406], img_std=[0.229, 0.224, 0.225], **kwargs ): """Init. Args: TODO """ super().__init__(**kwargs) self._input_dims = input_dims self.is_dynamic = is_dynamic self._img_std = img_std self._img_mean = img_mean def get_onnx_input_dims(self, model_path): """Get input dimension of ONNX model.""" onnx_model = onnx.load(model_path) onnx_inputs = onnx_model.graph.input logger.info('List inputs:') for i, inputs in enumerate(onnx_inputs): logger.info('Input %s -> %s.', i, inputs.name) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][1:]) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][0]) return [i.dim_value for i in inputs.type.tensor_type.shape.dim][:] def create_network(self, model_path, file_format="onnx"): """Parse the UFF/ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the UFF/ONNX graph to load. file_format: The file format of the decrypte file (default: onnx). """ if file_format == "onnx": logger.info("Parsing ONNX model") self.batch_size = self._input_dims[0] self._input_dims = self._input_dims[1:] network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) network_flags = network_flags | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) model_path = os.path.realpath(model_path) with open(model_path, "rb") as f: if not self.parser.parse(f.read()): logger.error("Failed to load ONNX file: %s", model_path) for error in range(self.parser.num_errors): logger.error(self.parser.get_error(error)) sys.exit(1) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] logger.info("Network Description") for input in inputs: # noqa pylint: disable=W0622 logger.info("Input '%s' with shape %s and dtype %s", input.name, input.shape, input.dtype) for output in outputs: logger.info("Output '%s' with shape %s and dtype %s", output.name, output.shape, output.dtype) if self.is_dynamic: # dynamic batch size logger.info("dynamic batch size handling") opt_profile = self.builder.create_optimization_profile() model_input = self.network.get_input(0) input_shape = model_input.shape input_name = model_input.name real_shape_min = (self.min_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_opt = (self.opt_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_max = (self.max_batch_size, input_shape[1], input_shape[2], input_shape[3]) opt_profile.set_shape(input=input_name, min=real_shape_min, opt=real_shape_opt, max=real_shape_max) self.config.add_optimization_profile(opt_profile) self.config.set_calibration_profile(opt_profile) else: logger.info("Parsing UFF model") raise NotImplementedError("UFF for MLRecog is not supported") def create_engine(self, engine_path, precision, calib_input=None, calib_cache=None, calib_num_images=5000, calib_batch_size=8): """Build the TensorRT engine and serialize it to disk. Args: engine_path: The path where to serialize the engine to. precision: The datatype to use for the engine, either 'fp32', 'fp16' or 'int8'. calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. """ engine_path = os.path.realpath(engine_path) engine_dir = os.path.dirname(engine_path) os.makedirs(engine_dir, exist_ok=True) logger.debug("Building %s Engine in %s", precision, engine_path) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] if self.batch_size is None: self.batch_size = calib_batch_size self.builder.max_batch_size = self.batch_size if precision == "fp16": if not self.builder.platform_has_fast_fp16: logger.warning("FP16 is not supported natively on this platform/device") else: self.config.set_flag(trt.BuilderFlag.FP16) elif precision == "int8": if not self.builder.platform_has_fast_int8: logger.warning("INT8 is not supported natively on this platform/device") else: logger.warning("Enabling INT8 builder") if self.builder.platform_has_fast_fp16 and not self._strict_type: # Also enable fp16, as some layers may be even more efficient in fp16 than int8 self.config.set_flag(trt.BuilderFlag.FP16) else: self.config.set_flag(trt.BuilderFlag.STRICT_TYPES) self.config.set_flag(trt.BuilderFlag.INT8) # Set ImageBatcher based calibrator self.set_calibrator(inputs=inputs, calib_cache=calib_cache, calib_input=calib_input, calib_num_images=calib_num_images, calib_batch_size=calib_batch_size) self._logger_info_IBuilderConfig() with self.builder.build_engine(self.network, self.config) as engine, \ open(engine_path, "wb") as f: logger.debug("Serializing engine to file: %s", engine_path) f.write(engine.serialize()) def set_calibrator(self, inputs=None, calib_cache=None, calib_input=None, calib_num_images=5000, calib_batch_size=8): """Simple function to set an int8 calibrator. (Default is ImageBatcher based) Args: inputs (list): Inputs to the network calib_input (str): The path to a directory holding the calibration images. calib_cache (str): The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images (int): The maximum number of images to use for calibration. calib_batch_size (int): The batch size to use for the calibration process. """ logger.info("Calibrating using ImageBatcher") self.config.int8_calibrator = EngineCalibrator(calib_cache) if not os.path.exists(calib_cache): calib_shape = [calib_batch_size] + list(inputs[0].shape[1:]) calib_dtype = trt.nptype(inputs[0].dtype) self.config.int8_calibrator.set_image_batcher( ImageBatcher(calib_input, calib_shape, calib_dtype, max_num_images=calib_num_images, exact_batches=True, preprocessor='MLRecog', img_std=self._img_std, img_mean=self._img_mean))
tao_deploy-main
nvidia_tao_deploy/cv/metric_learning_recognition/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Metric Learning Recognition."""
tao_deploy-main
nvidia_tao_deploy/cv/metric_learning_recognition/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classification and inference datasets loaders.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from pathlib import Path from abc import ABC, abstractmethod import numpy as np from PIL import Image from nvidia_tao_deploy.cv.common.constants import VALID_IMAGE_EXTENSIONS def center_crop(img, new_width, new_height): """Center crops the image with given width and height. Args: img (Pillow.Image): input Pillow opened image. new_width (int): the target width to resize to. new_height (int): the target height to resize to. Returns: img (Pillow.Image): output Pillow image. """ width, height = img.size # Get dimensions left = (width - new_width) / 2 top = (height - new_height) / 2 right = (width + new_width) / 2 bottom = (height + new_height) / 2 # Crop the center of the image img = img.crop((left, top, right, bottom)) return img class MLRecogDataLoader(ABC): """A base class for MLRecog classification and inference data loader.""" def __init__(self, shape, batch_size=10, image_mean=None, image_std=None, image_depth=8, dtype=None): """Init. Args: shape (list): list of input dimension that is either (c, h, w) or (h, w, c) format. batch_size (int): size of the batch. image_mean (list): image mean used for preprocessing. image_std (list): image std used for preprocessing. image_depth(int): Bit depth of images(8 or 16). dtype (str): data type to cast to """ self.image_paths = [] self.labels = [] self.num_channels, self.height, self.width = shape self.image_depth = image_depth self.batch_size = batch_size self.n_batches = 0 self.image_mean = image_mean if image_mean is not None else [0.0] * self.num_channels self.image_std = image_std if image_std is not None else [1.0] * self.num_channels self.model_img_mode = 'rgb' if self.num_channels == 3 else 'grayscale' self.dtype = dtype def __len__(self): """Get length of Sequence.""" return self.n_batches def __iter__(self): """Iterate.""" self.n = 0 return self @abstractmethod def __next__(self): """Next object in loader""" pass def preprocessing(self, image): """The image preprocessor loads an image from disk and prepares it as needed for batching. This includes resizing, centercrop, normalization, data type casting, and transposing. Args: image (PIL.image): The Pillow image on disk to load. Returns: image (np.array): A numpy array holding the image sample, ready to be concatenated into the rest of the batch """ init_size = (int(self.width * 1.14), int(self.height * 1.14)) image = image.resize(init_size, resample=Image.BILINEAR) image = center_crop(image, self.width, self.height) image = np.asarray(image, dtype=self.dtype) image /= 255. rgb_mean = np.array(self.image_mean) image -= rgb_mean image /= np.array(self.image_std) # fixed to channel first if image.ndim == 2 and self.model_img_mode == 'grayscale': image = np.expand_dims(image, axis=2) image = np.transpose(image, (2, 0, 1)) return image class MLRecogClassificationLoader(MLRecogDataLoader): """Classification Dataloader.""" def __init__(self, shape, image_dir, class_mapping, batch_size=10, image_mean=None, image_std=None, image_depth=8, dtype=None): """Initiates the classification dataloader. Args: shape (list): list of input dimension that is either (c, h, w) or (h, w, c) format. image_dir (str): path of input directory. class_mapping (dict): class mapping. e.g. {'aeroplane': 0, 'car': 1} batch_size (int): size of the batch. image_mean (list): image mean used for preprocessing. image_std (list): image std used for preprocessing. image_depth(int): Bit depth of images(8 or 16). dtype (str): data type to cast to """ super().__init__(shape, batch_size, image_mean, image_std, image_depth, dtype) self.class_mapping = class_mapping self._add_source(image_dir) # add both image paths and labels self.image_paths = np.array(self.image_paths) self.data_inds = np.arange(len(self.image_paths)) self.n_samples = len(self.data_inds) self.n_batches = int(len(self.image_paths) // self.batch_size) assert self.n_batches > 0, "empty image dir or batch size too large!" def _add_source(self, image_folder): """Adds classification sources.""" images = [p.resolve() for p in Path(image_folder).glob("**/*") if p.suffix in VALID_IMAGE_EXTENSIONS] images = sorted(images) labels = [self.class_mapping[p.parent.name] for p in images] self.image_paths = images self.labels = labels def _load_gt_image(self, image_path): """Loads GT image from file.""" img = Image.open(image_path) if self.num_channels == 3: img = img.convert('RGB') # Color Image else: if self.image_depth == 16: img = img.convert('I') # PIL int32 mode for 16-bit images else: img = img.convert('L') # Grayscale Image return img def __next__(self): """Loads a full batch.""" images = [] labels = [] if self.n < self.n_batches: for idx in range(self.n * self.batch_size, (self.n + 1) * self.batch_size): image, label = self._get_single_processed_item(idx) images.append(image) labels.append(label) self.n += 1 return self._batch_post_processing(images, labels) raise StopIteration def _batch_post_processing(self, images, labels): """Posts processing for a batch.""" images = np.array(images) # try to make labels a numpy array is_make_array = True x_shape = None for x in labels: if not isinstance(x, np.ndarray): is_make_array = False break if x_shape is None: x_shape = x.shape elif x_shape != x.shape: is_make_array = False break if is_make_array: labels = np.array(labels) return images, labels def _get_single_processed_item(self, idx): """Load and process single image and its label.""" image, label = self._get_single_item_raw(idx) image = self.preprocessing(image) return image, label def _get_single_item_raw(self, idx): """Load single image and its label. Returns: image (PIL.image): image object in original resolution label (int): one-hot encoded class label """ image = self._load_gt_image(self.image_paths[self.data_inds[idx]]) label = self.labels[idx] return image, label class MLRecogInferenceLoader(MLRecogDataLoader): """Inference Dataloader.""" def __init__(self, shape, image_dir, input_type, batch_size=10, image_mean=None, image_std=None, image_depth=8, dtype=None): """Initiates the inference loader. Args: shape (list): list of input dimension that is either (c, h, w) or (h, w, c) format. image_dirs (list): list of image directories. input_type (str): input type of the `image_dir`. Can be [`image_folder`, `classification_folder`] batch_size (int): size of the batch. image_mean (list): image mean used for preprocessing. image_std (list): image std used for preprocessing. image_depth(int): Bit depth of images(8 or 16). dtype (str): data type to cast to """ super().__init__(shape, batch_size, image_mean, image_std, image_depth, dtype) self._add_source(image_dir, input_type) self.image_paths = np.array(self.image_paths) self.data_inds = np.arange(len(self.image_paths)) self.n_samples = len(self.data_inds) self.n_batches = int(len(self.image_paths) // self.batch_size) assert self.n_batches > 0, "empty image dir or batch size too large!" def _add_source(self, image_folder, input_type): """Add classification sources.""" if input_type == 'classification_folder': images = [p.resolve() for p in Path(image_folder).glob("**/*") if p.suffix in VALID_IMAGE_EXTENSIONS] elif input_type == 'image_folder': images = [p.resolve() for p in Path(image_folder).glob("*") if p.suffix in VALID_IMAGE_EXTENSIONS] else: raise ValueError(f"Invalid input type: {input_type}") images = sorted(images) self.image_paths = images def _load_gt_image(self, image_path): """Load GT image from file.""" img = Image.open(image_path) if self.num_channels == 3: img = img.convert('RGB') # Color Image else: if self.image_depth == 16: img = img.convert('I') # PIL int32 mode for 16-bit images else: img = img.convert('L') # Grayscale Image return img def __next__(self): """Load a full batch.""" images = [] if self.n < self.n_batches: for idx in range(self.n * self.batch_size, (self.n + 1) * self.batch_size): image = self._get_single_processed_item(idx) images.append(image) self.n += 1 return np.array(images) raise StopIteration def _get_single_processed_item(self, idx): """Load and process single image and its label.""" image = self._load_gt_image(self.image_paths[self.data_inds[idx]]) image = self.preprocessing(image) return image
tao_deploy-main
nvidia_tao_deploy/cv/metric_learning_recognition/dataloader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Metric Learning Recognition Hydra."""
tao_deploy-main
nvidia_tao_deploy/cv/metric_learning_recognition/hydra_config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file.""" from typing import Optional, List, Dict from dataclasses import dataclass, field from omegaconf import MISSING @dataclass class GaussianBlur: """Gaussian Blur configuration template.""" enabled: bool = True kernel: List[int] = field(default_factory=lambda: [15, 15]) sigma: List[float] = field(default_factory=lambda: [0.3, 0.7]) @dataclass class ColorAugmentation: """Color Augmentation configuration template.""" enabled: bool = True brightness: float = 0.5 contrast: float = 0.3 saturation: float = 0.1 hue: float = 0.1 @dataclass class DatasetConfig: """Metric Learning Recognition Dataset configuration template.""" train_dataset: Optional[str] = None val_dataset: Optional[Dict[str, str]] = None workers: int = 8 class_map: Optional[str] = None # TODO: add class_map support pixel_mean: List[float] = field(default_factory=lambda: [0.485, 0.456, 0.406]) pixel_std: List[float] = field(default_factory=lambda: [0.226, 0.226, 0.226]) prob: float = 0.5 re_prob: float = 0.5 gaussian_blur: GaussianBlur = GaussianBlur() color_augmentation: ColorAugmentation = ColorAugmentation() random_rotation: bool = False num_instance: int = 4 @dataclass class ModelConfig: """Metric Learning Recognition model configuration for training, testing & validation.""" backbone: str = "resnet_50" pretrain_choice: str = "imagenet" pretrained_model_path: Optional[str] = None input_channels: int = 3 input_width: int = 224 input_height: int = 224 feat_dim: int = 256 @dataclass class EvalConfig: """Evaluation experiment configuration template.""" trt_engine: Optional[str] = None checkpoint: Optional[str] = None gpu_id: int = 0 batch_size: int = 64 topk: int = 1 report_accuracy_per_class: bool = True results_dir: Optional[str] = None @dataclass class InferenceConfig: """Inference experiment configuration template.""" trt_engine: Optional[str] = None checkpoint: Optional[str] = None input_path: str = MISSING # a image file or a folder inference_input_type: str = "image_folder" # possible values are "image_folder" and "classification_foler" gpu_id: int = 0 topk: int = 1 batch_size: int = 64 results_dir: Optional[str] = None @dataclass class CalibrationConfig: """Calibration config.""" cal_cache_file: Optional[str] = None cal_batch_size: int = 1 cal_batches: int = 1 cal_image_dir: Optional[List[str]] = field(default_factory=lambda: []) @dataclass class TrtConfig: """Trt config.""" data_type: str = "FP32" workspace_size: int = 1024 min_batch_size: int = 1 opt_batch_size: int = 1 max_batch_size: int = 1 calibration: CalibrationConfig = CalibrationConfig() @dataclass class TrtEngineConfig: """Gen TRT Engine experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 onnx_file: str = MISSING trt_engine: Optional[str] = None batch_size: int = -1 verbose: bool = False tensorrt: TrtConfig = TrtConfig() @dataclass class ExperimentConfig: """Experiment config.""" model: ModelConfig = ModelConfig() evaluate: EvalConfig = EvalConfig() dataset: DatasetConfig = DatasetConfig() inference: InferenceConfig = InferenceConfig() gen_trt_engine: TrtEngineConfig = TrtEngineConfig() results_dir: Optional[str] = None
tao_deploy-main
nvidia_tao_deploy/cv/metric_learning_recognition/hydra_config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metric Learning Recognition convert onnx model to TRT engine.""" import logging import os import tempfile from nvidia_tao_deploy.cv.metric_learning_recognition.engine_builder import MLRecogEngineBuilder from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.metric_learning_recognition.hydra_config.default_config import ExperimentConfig from nvidia_tao_deploy.cv.common.decorators import monitor_status logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="export", schema=ExperimentConfig ) @monitor_status(name='ml_recog', mode='gen_trt_engine') def main(cfg: ExperimentConfig) -> None: """Convert encrypted uff or onnx model to TRT engine.""" if cfg.gen_trt_engine.results_dir is not None: results_dir = cfg.gen_trt_engine.results_dir else: results_dir = os.path.join(cfg.results_dir, "gen_trt_engine") os.makedirs(results_dir, exist_ok=True) engine_file = cfg.gen_trt_engine.trt_engine data_type = cfg.gen_trt_engine.tensorrt.data_type workspace_size = cfg.gen_trt_engine.tensorrt.workspace_size min_batch_size = cfg.gen_trt_engine.tensorrt.min_batch_size opt_batch_size = cfg.gen_trt_engine.tensorrt.opt_batch_size max_batch_size = cfg.gen_trt_engine.tensorrt.max_batch_size batch_size = cfg.gen_trt_engine.batch_size num_channels = cfg.model.input_channels input_width = cfg.model.input_width input_height = cfg.model.input_height # INT8 related configs img_std = cfg.dataset.pixel_std img_mean = cfg.dataset.pixel_mean calib_input = list(cfg.gen_trt_engine.tensorrt.calibration.get('cal_image_dir', [])) calib_cache = cfg.gen_trt_engine.tensorrt.calibration.get('cal_cache_file', None) if batch_size is None or batch_size == -1: input_batch_size = 1 is_dynamic = True else: input_batch_size = batch_size is_dynamic = False if engine_file is not None: if engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = engine_file builder = MLRecogEngineBuilder( workspace=workspace_size // 1024, input_dims=(input_batch_size, num_channels, input_height, input_width), is_dynamic=is_dynamic, min_batch_size=min_batch_size, opt_batch_size=opt_batch_size, max_batch_size=max_batch_size, img_std=img_std, img_mean=img_mean) builder.create_network(cfg.gen_trt_engine.onnx_file, "onnx") builder.create_engine( output_engine_path, data_type, calib_input=calib_input, calib_cache=calib_cache, calib_num_images=cfg.gen_trt_engine.tensorrt.calibration.cal_batch_size * cfg.gen_trt_engine.tensorrt.calibration.cal_batches, calib_batch_size=cfg.gen_trt_engine.tensorrt.calibration.cal_batch_size ) logging.info("Export finished successfully.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/metric_learning_recognition/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Metric Learning Recognition scripts modules."""
tao_deploy-main
nvidia_tao_deploy/cv/metric_learning_recognition/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os import numpy as np import pandas as pd from tqdm.auto import tqdm from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.metric_learning_recognition.hydra_config.default_config import ExperimentConfig from nvidia_tao_deploy.cv.metric_learning_recognition.inferencer import MLRecogInferencer from nvidia_tao_deploy.cv.metric_learning_recognition.dataloader import MLRecogInferenceLoader, MLRecogClassificationLoader from nvidia_tao_deploy.utils.path_utils import expand_path logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="inference", schema=ExperimentConfig ) @monitor_status(name='ml_recog', mode='inference') def main(cfg: ExperimentConfig) -> None: """MLRecog TRT inference.""" classmap = cfg.dataset.class_map if classmap: # if classmap is provided, we explicitly set the mapping from the text file if not os.path.exists(classmap): raise FileNotFoundError(f"{classmap} does not exist!") with open(classmap, "r", encoding="utf-8") as f: mapping_dict = {line.rstrip(): idx for idx, line in enumerate(f.readlines())} else: # If not, the order of the classes are alphanumeric as defined by Keras # Ref: https://github.com/keras-team/keras/blob/07e13740fd181fc3ddec7d9a594d8a08666645f6/keras/preprocessing/image.py#L507 mapping_dict = {} for idx, subdir in enumerate(sorted(os.listdir(cfg.dataset.val_dataset["reference"]))): if os.path.isdir(os.path.join(cfg.dataset.val_dataset["reference"], subdir)): mapping_dict[subdir] = idx top_k = cfg.inference.topk img_mean = cfg.dataset.pixel_mean img_std = cfg.dataset.pixel_std batch_size = cfg.inference.batch_size input_shape = (batch_size, cfg.model.input_channels, cfg.model.input_height, cfg.model.input_width) trt_infer = MLRecogInferencer(cfg.inference.trt_engine, input_shape=input_shape, batch_size=batch_size) gallery_dl = MLRecogClassificationLoader( trt_infer._input_shape, cfg.dataset.val_dataset["reference"], mapping_dict, batch_size=batch_size, image_mean=img_mean, image_std=img_std, dtype=trt_infer.inputs[0].host.dtype) query_dl = MLRecogInferenceLoader( trt_infer._input_shape, cfg.inference.input_path, cfg.inference.inference_input_type, batch_size=batch_size, image_mean=img_mean, image_std=img_std, dtype=trt_infer.inputs[0].host.dtype) logging.info("Loading gallery dataset...") trt_infer.train_knn(gallery_dl, k=top_k) if cfg.inference.results_dir is not None: results_dir = cfg.inference.results_dir else: results_dir = os.path.join(cfg.results_dir, "trt_inference") os.makedirs(results_dir, exist_ok=True) result_csv_path = os.path.join(results_dir, 'trt_result.csv') with open(expand_path(result_csv_path), 'w', encoding="utf-8") as csv_f: for i, imgs in tqdm(enumerate(query_dl), total=len(query_dl), desc="Producing predictions"): dists, indices = trt_infer.infer(imgs) image_paths = query_dl.image_paths[np.arange(batch_size) + batch_size * i] class_indices = [] class_labels = [] for ind in indices: class_inds = [gallery_dl.labels[i] for i in ind] class_indices.append(class_inds) # Map label index to label name class_lab = map(lambda i: list(mapping_dict.keys()) [list(mapping_dict.values()).index(i)], class_inds) class_labels.append(list(class_lab)) dist_list = [] for dist in dists: dist_list.append([round(float(d)**2, 4) for d in dist]) # match tao distance outputs: L2 distance squared # Write predictions to file df = pd.DataFrame(zip(image_paths, class_labels, dist_list)) df.to_csv(csv_f, header=False, index=False) logging.info("Finished inference.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/metric_learning_recognition/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os import json import numpy as np from tqdm.auto import tqdm from sklearn.metrics import classification_report, confusion_matrix from nvidia_tao_deploy.cv.metric_learning_recognition.inferencer import MLRecogInferencer from nvidia_tao_deploy.cv.metric_learning_recognition.dataloader import MLRecogClassificationLoader from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.metric_learning_recognition.hydra_config.default_config import ExperimentConfig logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) def top_k_accuracy(ground_truth, predicted_labels, k): """Calculates the top k accuracy given ground truth labels and predicted labels. Args: ground_truth (numpy.ndarray): Array of ground truth labels. predicted_labels (numpy.ndarray): Array of predicted labels. k (int): The value of k for top k accuracy. Returns: float: The top k accuracy. """ top_k = predicted_labels[:, :k] correct = np.sum(np.any(top_k == ground_truth, axis=1)) return correct / len(predicted_labels) def average_topk_accuracy_per_class(ground_truth, predicted_labels, k): """Calculates the average top k accuracy per class given ground truth labels and predicted labels. Args: ground_truth (numpy.ndarray): Array of ground truth labels. predicted_labels (numpy.ndarray): Array of predicted labels. k (int): The value of k for top k accuracy. Returns: accuracy (numpy.float64): The average top k accuracy per class. """ num_classes = len(np.unique(ground_truth)) class_acc = [] for i in range(num_classes): class_indices = np.where(ground_truth == i)[0] class_pred = predicted_labels[class_indices] class_acc.append(top_k_accuracy(i, class_pred, k)) return np.mean(class_acc) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="evaluate", schema=ExperimentConfig ) @monitor_status(name='ml_recog', mode='evaluation') def main(cfg: ExperimentConfig) -> None: """Mwteic Learning Recognition TRT evaluation.""" classmap = cfg.dataset.class_map if classmap: # if classmap is provided, we explicitly set the mapping from the text file if not os.path.exists(classmap): raise FileNotFoundError(f"{classmap} does not exist!") with open(classmap, "r", encoding="utf-8") as f: mapping_dict = {line.rstrip(): idx for idx, line in enumerate(f.readlines())} else: # If not, the order of the classes are alphanumeric as defined by Keras # Ref: https://github.com/keras-team/keras/blob/07e13740fd181fc3ddec7d9a594d8a08666645f6/keras/preprocessing/image.py#L507 mapping_dict = {} for idx, subdir in enumerate(sorted(os.listdir(cfg.dataset.val_dataset["reference"]))): if os.path.isdir(os.path.join(cfg.dataset.val_dataset["reference"], subdir)): mapping_dict[subdir] = idx # Load hparams target_names = [c[0] for c in sorted(mapping_dict.items(), key=lambda x:x[1])] top_k = cfg.evaluate.topk image_mean = cfg.dataset.pixel_mean img_std = cfg.dataset.pixel_std batch_size = cfg.evaluate.batch_size input_shape = (batch_size, cfg.model.input_channels, cfg.model.input_height, cfg.model.input_width) trt_infer = MLRecogInferencer(cfg.evaluate.trt_engine, input_shape=input_shape, batch_size=batch_size) gallery_dl = MLRecogClassificationLoader( trt_infer._input_shape, cfg.dataset.val_dataset["reference"], mapping_dict, batch_size=batch_size, image_mean=image_mean, image_std=img_std, dtype=trt_infer.inputs[0].host.dtype) query_dl = MLRecogClassificationLoader( trt_infer._input_shape, cfg.dataset.val_dataset["query"], mapping_dict, batch_size=batch_size, image_mean=image_mean, image_std=img_std, dtype=trt_infer.inputs[0].host.dtype) logging.info("Loading gallery dataset...") trt_infer.train_knn(gallery_dl, k=top_k) gt_labels = [] pred_labels = [] for imgs, labels in tqdm(query_dl, total=len(query_dl), desc="Producing predictions"): gt_labels.extend(labels) _, indices = trt_infer.infer(imgs) pred_y = [] for ind in indices: pred_y.append([gallery_dl.labels[i] for i in ind]) pred_labels.extend(pred_y) gt_labels = np.array(gt_labels) pred_labels = np.array(pred_labels) # Metric calculation target_names = np.array([c[0] for c in sorted(mapping_dict.items(), key=lambda x:x[1])]) target_labels = np.array([c[1] for c in sorted(mapping_dict.items(), key=lambda x:x[1])]) # get the average of class accuracies: scores = average_topk_accuracy_per_class(gt_labels, pred_labels, k=top_k) scores_top1 = average_topk_accuracy_per_class(gt_labels, pred_labels, k=1) logging.info("Top %s scores: %s", 1, scores_top1) logging.info("Top %s scores: %s", top_k, scores) logging.info("Confusion Matrix") y_predictions = pred_labels[:, 0] # get the top 1 prediction print(confusion_matrix(gt_labels, y_predictions)) logging.info("Classification Report") print(classification_report(gt_labels, y_predictions, labels=target_labels, target_names=target_names)) # Store evaluation results into JSON eval_results = {"top_k_accuracy": scores, "top_1_accuracy": scores_top1} if cfg.evaluate.results_dir is not None: results_dir = cfg.evaluate.results_dir else: results_dir = os.path.join(cfg.results_dir, "trt_evaluate") os.makedirs(results_dir, exist_ok=True) with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(eval_results, f) logging.info("Finished evaluation.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/metric_learning_recognition/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import argparse from nvidia_tao_deploy.cv.metric_learning_recognition import scripts from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_hydra import get_subtasks, launch def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "ml_recog", add_help=True, description="Train Adapt Optimize Deploy entrypoint for Metric Learning Recognition model" ) # Build list of subtasks by inspecting the scripts package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch(parser, subtasks, network="ml_recog") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/metric_learning_recognition/entrypoint/metric_learning_recognition.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for metric learning recognition."""
tao_deploy-main
nvidia_tao_deploy/cv/metric_learning_recognition/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Post processing handler for TLT DetectNet_v2 models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import operator from time import time import numpy as np from six.moves import range from nvidia_tao_deploy.cv.detectnet_v2.utils import cluster_bboxes logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) criterion = 'IOU' scales = [(1.0, 'cc')] CLUSTERING_ALGORITHM = { 0: "dbscan", 1: "nms", 2: "hybrid", "dbscan": "dbscan", "nms": "nms", "hybrid": "hybrid", } class BboxHandler(object): """Class to handle bbox output from the inference script.""" def __init__(self, spec=None, **kwargs): """Setting up Bbox handler.""" self.spec = spec self.cluster_params = {} self.frame_height = kwargs.get('frame_height', 544) self.frame_width = kwargs.get('frame_width', 960) self.bbox_normalizer = kwargs.get('bbox_normalizer', 35) self.bbox = kwargs.get('bbox', 'ltrb') self.cluster_params = kwargs.get('cluster_params', None) self.classwise_cluster_params = kwargs.get("classwise_cluster_params", None) self.bbox_norm = (self.bbox_normalizer, ) * 2 self.stride = kwargs.get("stride", 16) self.train_img_size = kwargs.get('train_img_size', None) self.save_kitti = kwargs.get('save_kitti', True) self.image_overlay = kwargs.get('image_overlay', True) self.extract_crops = kwargs.get('extract_crops', True) self.target_classes = kwargs.get('target_classes', None) self.bbox_offset = kwargs.get("bbox_offset", 0.5) self.clustering_criterion = kwargs.get("criterion", "IOU") self.postproc_classes = kwargs.get('postproc_classes', self.target_classes) confidence_threshold = {} nms_confidence_threshold = {} for key, value in list(self.classwise_cluster_params.items()): confidence_threshold[key] = value.clustering_config.dbscan_confidence_threshold if value.clustering_config.nms_confidence_threshold: nms_confidence_threshold[key] = value.clustering_config.nms_confidence_threshold self.state = { 'scales': scales, 'display_classes': self.target_classes, 'min_height': 0, 'criterion': criterion, 'confidence_th': {'car': 0.9, 'person': 0.1, 'truck': 0.1}, 'nms_confidence_th': {'car': 0.9, 'person': 0.1, 'truck': 0.1}, 'cluster_weights': (1.0, 1.0, 1.0, 1.0, 1.0, 1.0) } self.state['confidence_th'] = confidence_threshold self.state['nms_confidence_th'] = nms_confidence_threshold def bbox_preprocessing(self, input_cluster): """Function to perform inplace manipulation of prediction dicts before clustering. Args: input_cluster (Dict): prediction dictionary of output cov and bbox per class. Returns: input_cluster (Dict): shape manipulated prediction dictionary. """ for classes in self.target_classes: input_cluster[classes]['bbox'] = self.abs_bbox_converter(input_cluster[classes] ['bbox']) # Stack predictions for keys in list(input_cluster[classes].keys()): if 'bbox' in keys: input_cluster[classes][keys] = \ input_cluster[classes][keys][np.newaxis, :, :, :, :] input_cluster[classes][keys] = \ np.asarray(input_cluster[classes][keys]).transpose((1, 2, 3, 4, 0)) elif 'cov' in keys: input_cluster[classes][keys] = input_cluster[classes][keys][np.newaxis, np.newaxis, :, :, :] input_cluster[classes][keys] = \ np.asarray(input_cluster[classes][keys]).transpose((2, 1, 3, 4, 0)) return input_cluster def abs_bbox_converter(self, bbox): """Convert the raw grid cell corrdinates to image space coordinates. Args: bbox (np.array): BBox coordinates blob per batch with shape [n, 4, h, w]. Returns: bbox (np.array): BBox coordinates reconstructed from grid cell based coordinates with the same dimensions. """ target_shape = bbox.shape[-2:] # Define grid cell centers gc_centers = [(np.arange(s) * self.stride + self.bbox_offset) for s in target_shape] gc_centers = [s / n for s, n in zip(gc_centers, self.bbox_norm)] # Mapping cluster output if self.bbox == 'arxy': assert not self.train_img_size, \ "ARXY bbox format needs same train and inference image shapes." # reverse mapping of abs bbox to arxy area = (bbox[:, 0, :, :] / 10.) ** 2. width = np.sqrt(area * bbox[:, 1, :, :]) height = np.sqrt(area / bbox[:, 1, :, :]) cen_x = width * bbox[:, 2, :, :] + gc_centers[0][:, np.newaxis] cen_y = height * bbox[:, 3, :, :] + gc_centers[1] bbox[:, 0, :, :] = cen_x - width / 2. bbox[:, 1, :, :] = cen_y - height / 2. bbox[:, 2, :, :] = cen_x + width / 2. bbox[:, 3, :, :] = cen_y + height / 2. bbox[:, 0, :, :] *= self.bbox_norm[0] bbox[:, 1, :, :] *= self.bbox_norm[1] bbox[:, 2, :, :] *= self.bbox_norm[0] bbox[:, 3, :, :] *= self.bbox_norm[1] elif self.bbox == 'ltrb': # Convert relative LTRB bboxes to absolute bboxes inplace. # Input bbox in format (image, bbox_value, # grid_cell_x, grid_cell_y). # Ouput bboxes given in pixel coordinates in the source resolution. if not self.train_img_size: self.train_img_size = self.bbox_norm # Compute scalers that allow using different resolution in # inference and training scale_w = self.bbox_norm[0] / self.train_img_size[0] scale_h = self.bbox_norm[1] / self.train_img_size[1] bbox[:, 0, :, :] -= gc_centers[0][:, np.newaxis] * scale_w bbox[:, 1, :, :] -= gc_centers[1] * scale_h bbox[:, 2, :, :] += gc_centers[0][:, np.newaxis] * scale_w bbox[:, 3, :, :] += gc_centers[1] * scale_h bbox[:, 0, :, :] *= -self.train_img_size[0] bbox[:, 1, :, :] *= -self.train_img_size[1] bbox[:, 2, :, :] *= self.train_img_size[0] bbox[:, 3, :, :] *= self.train_img_size[1] return bbox def cluster_detections(self, preds): """Cluster detections and filter based on confidence. Also determines false positives and missed detections based on the clustered detections. Args: - spec: The experiment spec - preds: Raw predictions, a Dict of Dicts - state: The DetectNet_v2 viz state Returns: - classwise_detections (NamedTuple): DBSCan clustered detections. """ # Cluster classwise_detections = {} clustering_time = 0. for object_type in preds: start_time = time() if object_type not in list(self.classwise_cluster_params.keys()): logger.info("Object type %s not defined in cluster file. Falling back to default" "values", object_type) buffer_type = "default" if buffer_type not in list(self.classwise_cluster_params.keys()): raise ValueError("If the class-wise cluster params for an object isn't " "there then please mention a default class.") else: buffer_type = object_type logger.debug("Clustering bboxes %s", buffer_type) classwise_params = self.classwise_cluster_params[buffer_type] clustering_config = classwise_params.clustering_config clustering_algorithm = CLUSTERING_ALGORITHM[clustering_config.clustering_algorithm] # clustering_algorithm = clustering_config.clustering_algorithm nms_iou_threshold = 0.3 if clustering_config.nms_iou_threshold: nms_iou_threshold = clustering_config.nms_iou_threshold confidence_threshold = self.state['confidence_th'].get(buffer_type, 0.1) nms_confidence_threshold = self.state['nms_confidence_th'].get(buffer_type, 0.1) detections = cluster_bboxes(preds[object_type], criterion=self.clustering_criterion, eps=classwise_params.clustering_config.dbscan_eps + 1e-12, min_samples=clustering_config.dbscan_min_samples, min_weight=clustering_config.coverage_threshold, min_height=clustering_config.minimum_bounding_box_height, confidence_model='aggregate_cov', # TODO: Not hardcode (evaluation doesn't have this option) cluster_weights=self.state['cluster_weights'], confidence_threshold=confidence_threshold, clustering_algorithm=clustering_algorithm, nms_iou_threshold=nms_iou_threshold, nms_confidence_threshold=nms_confidence_threshold) clustering_time += (time() - start_time) / len(preds) classwise_detections[object_type] = detections return classwise_detections def postprocess(self, class_wise_detections, batch_size, image_size, resized_size, classes): """Reformat classwise detections into a single 2d-array for metric calculation. Args: class_wise_detections (dict): detections per target classes batch_size (int): size of batches to process image_size (list): list of tuples containing original image size resized_size (tuple): a tuple containing the model input size classes (list): list containing target classes in the correct order """ results = [] for image_idx in range(batch_size): frame_width, frame_height = resized_size scaling_factor = tuple(map(operator.truediv, image_size[image_idx], resized_size)) per_image_results = [] for key in class_wise_detections.keys(): bbox_list, confidence_list = _get_bbox_and_confs(class_wise_detections[key][image_idx], scaling_factor, key, "aggregate_cov", # TODO: Not hard-code frame_height, frame_width) bbox_list = np.array(bbox_list) cls_id = [classes[key]] * len(bbox_list) if not len(bbox_list): continue # each row: cls_id, conf, x1, y1, x2, y2 result = np.stack((cls_id, confidence_list, bbox_list[:, 0], bbox_list[:, 1], bbox_list[:, 2], bbox_list[:, 3]), axis=-1) per_image_results.append(result) # Handle cases when there was no detections made at all if len(per_image_results) == 0: null_prediction = np.zeros((1, 6)) null_prediction[0][0] = 1 # Dummy class which will be filtered out later. results.append(null_prediction) logger.debug("Adding null predictions as there were no predictions made.") continue per_image_results = np.concatenate(per_image_results) results.append(per_image_results) return results def _get_bbox_and_confs(classwise_detections, scaling_factor, key, confidence_model, frame_height, frame_width): """Simple function to get bbox and confidence formatted list.""" bbox_list = [] confidence_list = [] for i in range(len(classwise_detections)): bbox_object = classwise_detections[i] coords_scaled = _scale_bbox(bbox_object.bbox, scaling_factor, frame_height, frame_width) if confidence_model == 'mlp': confidence = bbox_object.confidence[0] else: confidence = bbox_object.confidence bbox_list.append(coords_scaled) confidence_list.append(confidence) return bbox_list, confidence_list def _scale_bbox(bbox, scaling_factor, frame_height, frame_width): """Scale bbox coordinates back to original image dimensions. Args: bbox (list): bbox coordinates ltrb scaling factor (float): input_image size/model inference size Returns: bbox_scaled (list): list of scaled coordinates """ # Clipping and clamping coordinates. x1 = min(max(0.0, float(bbox[0])), frame_width) y1 = min(max(0.0, float(bbox[1])), frame_height) x2 = max(min(float(bbox[2]), frame_width), x1) y2 = max(min(float(bbox[3]), frame_height), y1) # Rescaling center. hx, hy = x2 - x1, y2 - y1 cx = x1 + hx / 2 cy = y1 + hy / 2 # Rescaling height, width nx, ny = cx * scaling_factor[0], cy * scaling_factor[1] nhx, nhy = hx * scaling_factor[0], hy * scaling_factor[1] # Final bbox coordinates. nx1, nx2 = nx - nhx / 2, nx + nhx / 2 ny1, ny2 = ny - nhy / 2, ny + nhy / 2 # Stacked coordinates. bbox_scaled = np.asarray([nx1, ny1, nx2, ny2]) return bbox_scaled
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/postprocessor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility class for performing TensorRT image inference.""" import numpy as np from PIL import ImageDraw import tensorrt as trt from nvidia_tao_deploy.inferencer.trt_inferencer import TRTInferencer from nvidia_tao_deploy.inferencer.utils import allocate_buffers, do_inference def trt_output_process_fn(y_encoded, target_classes, dims, batch_size=1): """Function to process TRT model output. This function takes the raw output tensors from the detectnet_v2 model and performs the following steps: 1. Denormalize the output bbox coordinates 2. Threshold the coverage output to get the valid indices for the bboxes. 3. Filter out the bboxes from the "output_bbox/BiasAdd" blob. 4. Cluster the filterred boxes using DBSCAN. 5. Render the outputs on images and save them to the output_path/images 6. Serialize the output bboxes to KITTI Format label files in output_path/labels. """ out2cluster = {} for idx, out in enumerate(y_encoded): # TF1 get_reshaped_outputs() out_shape = [batch_size,] + list(dims[idx])[-3:] out = np.reshape(out, out_shape) # TF1 predictions_to_dict() & keras_output_map() if out.shape[-3] == len(target_classes): output_meta_cov = out.transpose(0, 1, 3, 2) if out.shape[-3] == len(target_classes) * 4: output_meta_bbox = out.transpose(0, 1, 3, 2) # TF1 keras_output_map() for i in range(len(target_classes)): key = target_classes[i] out2cluster[key] = {'cov': output_meta_cov[:, i, :, :], 'bbox': output_meta_bbox[:, 4 * i: 4 * i + 4, :, :]} return out2cluster class DetectNetInferencer(TRTInferencer): """Manages TensorRT objects for model inference.""" def __init__(self, engine_path, target_classes=None, input_shape=None, batch_size=None, data_format="channel_first"): """Initializes TensorRT objects needed for model inference. Args: engine_path (str): path where TensorRT engine should be stored target_classes (list): list of target classes to be used input_shape (tuple): (batch, channel, height, width) for dynamic shape engine batch_size (int): batch size for dynamic shape engine data_format (str): either channel_first or channel_last """ # Load TRT engine super().__init__(engine_path) self.max_batch_size = self.engine.max_batch_size self.execute_v2 = False self.target_classes = target_classes # Execution context is needed for inference self.context = None # Allocate memory for multiple usage [e.g. multiple batch inference] self._input_shape = [] for binding in range(self.engine.num_bindings): if self.engine.binding_is_input(binding): binding_shape = self.engine.get_binding_shape(binding) self._input_shape = binding_shape[-3:] if len(binding_shape) == 4: self.etlt_type = "onnx" else: self.etlt_type = "uff" assert len(self._input_shape) == 3, "Engine doesn't have valid input dimensions" if data_format == "channel_first": self.height = self._input_shape[1] self.width = self._input_shape[2] else: self.height = self._input_shape[0] self.width = self._input_shape[1] # set binding_shape for dynamic input # do not override if the original model was uff if (input_shape is not None or batch_size is not None) and (self.etlt_type != "uff"): self.context = self.engine.create_execution_context() if input_shape is not None: self.context.set_binding_shape(0, input_shape) self.max_batch_size = input_shape[0] else: self.context.set_binding_shape(0, [batch_size] + list(self._input_shape)) self.max_batch_size = batch_size self.execute_v2 = True # This allocates memory for network inputs/outputs on both CPU and GPU self.inputs, self.outputs, self.bindings, self.stream = allocate_buffers(self.engine, self.context) if self.context is None: self.context = self.engine.create_execution_context() input_volume = trt.volume(self._input_shape) self.numpy_array = np.zeros((self.max_batch_size, input_volume)) def infer(self, imgs): """Infers model on batch of same sized images resized to fit the model. Args: image_paths (str): paths to images, that will be packed into batch and fed into model """ # Verify if the supplied batch size is not too big max_batch_size = self.max_batch_size actual_batch_size = len(imgs) if actual_batch_size > max_batch_size: raise ValueError(f"image_paths list bigger ({actual_batch_size}) than \ engine max batch size ({max_batch_size})") self.numpy_array[:actual_batch_size] = imgs.reshape(actual_batch_size, -1) # ...copy them into appropriate place into memory... # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[0].host, self.numpy_array.ravel()) # ...fetch model outputs... results = do_inference( self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, batch_size=max_batch_size, execute_v2=self.execute_v2, return_raw=True) dims = [out.numpy_shape for out in results] outputs = [out.host for out in results] # Process TRT outputs to proper format return trt_output_process_fn(outputs, self.target_classes, dims, self.max_batch_size) def __del__(self): """Clear things up on object deletion.""" # Clear session and buffer if self.trt_runtime: del self.trt_runtime if self.context: del self.context if self.engine: del self.engine if self.stream: del self.stream # Loop through inputs and free inputs. for inp in self.inputs: inp.device.free() # Loop through outputs and free them. for out in self.outputs: out.device.free() def draw_bbox(self, img, prediction, class_mapping, threshold=None, color_map=None): """Draws bbox on image and dump prediction in KITTI format Args: img (numpy.ndarray): Preprocessed image prediction (numpy.ndarray): (N x 6) predictions class_mapping (dict): key is the class index and value is the class string threshold (dict): dict containing class based threshold to filter predictions color_map (dict): key is the class name and value is the RGB value to be used """ draw = ImageDraw.Draw(img) label_strings = [] for i in prediction: cls_name = class_mapping[int(i[0])] if float(i[1]) < threshold[cls_name]: continue draw.rectangle(((i[2], i[3]), (i[4], i[5])), outline=color_map[cls_name]) # txt pad draw.rectangle(((i[2], i[3]), (i[2] + 75, i[3] + 10)), fill=color_map[cls_name]) draw.text((i[2], i[3]), f"{cls_name}: {i[1]:.2f}") # Dump predictions x1, y1, x2, y2 = float(i[2]), float(i[3]), float(i[4]), float(i[5]) label_head = cls_name + " 0.00 0 0.00 " bbox_string = f"{x1:.3f} {y1:.3f} {x2:.3f} {y2:.3f}" label_tail = f" 0.00 0.00 0.00 0.00 0.00 0.00 0.00 {float(i[1]):.3f}\n" label_string = label_head + bbox_string + label_tail label_strings.append(label_string) return img, label_strings
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DetectNetv2 TensorRT engine builder.""" import logging import os import random from six.moves import xrange import sys import traceback from tqdm import tqdm try: from uff.model.uff_pb2 import MetaGraph except ImportError: print("Loading uff directly from the package source code") # @scha: To disable tensorflow import issue import importlib import types import pkgutil package = pkgutil.get_loader("uff") # Returns __init__.py path src_code = package.get_filename().replace('__init__.py', 'model/uff_pb2.py') loader = importlib.machinery.SourceFileLoader('helper', src_code) helper = types.ModuleType(loader.name) loader.exec_module(helper) MetaGraph = helper.MetaGraph import numpy as np import onnx import tensorrt as trt from nvidia_tao_deploy.cv.common.constants import VALID_IMAGE_EXTENSIONS from nvidia_tao_deploy.engine.builder import EngineBuilder from nvidia_tao_deploy.engine.tensorfile import TensorFile from nvidia_tao_deploy.engine.tensorfile_calibrator import TensorfileCalibrator from nvidia_tao_deploy.engine.utils import generate_random_tensorfile, prepare_chunk from nvidia_tao_deploy.engine.calibrator import EngineCalibrator from nvidia_tao_deploy.utils.image_batcher import ImageBatcher logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class DetectNetEngineBuilder(EngineBuilder): """Parses an UFF graph and builds a TensorRT engine from it.""" def __init__( self, data_format="channels_first", **kwargs ): """Init. Args: data_format (str): data_format. """ super().__init__(**kwargs) self._data_format = data_format def set_input_output_node_names(self): """Set input output node names.""" self._output_node_names = ["output_cov/Sigmoid", "output_bbox/BiasAdd"] self._input_node_names = ["input_1"] def get_uff_input_dims(self, model_path): """Get input dimension of UFF model.""" metagraph = MetaGraph() with open(model_path, "rb") as f: metagraph.ParseFromString(f.read()) for node in metagraph.graphs[0].nodes: # if node.operation == "MarkOutput": # print(f"Output: {node.inputs[0]}") if node.operation == "Input": return np.array(node.fields['shape'].i_list.val)[1:] raise ValueError("Input dimension is not found in the UFF metagraph.") def get_onnx_input_dims(self, model_path): """Get input dimension of ONNX model.""" onnx_model = onnx.load(model_path) onnx_inputs = onnx_model.graph.input logger.info('List inputs:') for i, inputs in enumerate(onnx_inputs): logger.info('Input %s -> %s.', i, inputs.name) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][1:]) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][0]) return [i.dim_value for i in inputs.type.tensor_type.shape.dim][:] def create_network(self, model_path, file_format="uff"): """Parse the ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the UFF/ONNX graph to load. file_format: The file format of the decrypted etlt file (default: uff). """ if file_format == "uff": logger.info("Parsing UFF model") self.network = self.builder.create_network() self.parser = trt.UffParser() self.set_input_output_node_names() in_tensor_name = self._input_node_names[0] self._input_dims = self.get_uff_input_dims(model_path) input_dict = {in_tensor_name: self._input_dims} for key, value in input_dict.items(): if self._data_format == "channels_first": self.parser.register_input(key, value, trt.UffInputOrder(0)) else: self.parser.register_input(key, value, trt.UffInputOrder(1)) for name in self._output_node_names: self.parser.register_output(name) self.builder.max_batch_size = self.max_batch_size try: assert self.parser.parse(model_path, self.network, trt.DataType.FLOAT) except AssertionError as e: logger.error("Failed to parse UFF File") _, _, tb = sys.exc_info() traceback.print_tb(tb) # Fixed format tb_info = traceback.extract_tb(tb) _, line, _, text = tb_info[-1] raise AssertionError( f"UFF parsing failed on line {line} in statement {text}" ) from e else: logger.info("Parsing ONNX model") self._input_dims = self.get_onnx_input_dims(model_path) self.batch_size = self._input_dims[0] network_flags = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) model_path = os.path.realpath(model_path) with open(model_path, "rb") as f: if not self.parser.parse(f.read()): logger.error("Failed to load ONNX file: %s", model_path) for error in range(self.parser.num_errors): logger.error(self.parser.get_error(error)) sys.exit(1) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] logger.info("Network Description") for inp in inputs: # noqa pylint: disable=W0622 logger.info("Input '%s' with shape %s and dtype %s", inp.name, inp.shape, inp.dtype) for output in outputs: logger.info("Output '%s' with shape %s and dtype %s", output.name, output.shape, output.dtype) if self.batch_size <= 0: # dynamic batch size logger.info("dynamic batch size handling") opt_profile = self.builder.create_optimization_profile() model_input = self.network.get_input(0) input_shape = model_input.shape input_name = model_input.name real_shape_min = (self.min_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_opt = (self.opt_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_max = (self.max_batch_size, input_shape[1], input_shape[2], input_shape[3]) opt_profile.set_shape(input=input_name, min=real_shape_min, opt=real_shape_opt, max=real_shape_max) self.config.add_optimization_profile(opt_profile) def set_calibrator(self, inputs=None, calib_cache=None, calib_input=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None, image_mean=None): """Simple function to set an Tensorfile based int8 calibrator. Args: calib_data_file: Path to the TensorFile. If the tensorfile doesn't exist at this path, then one is created with either n_batches of random tensors, images from the file in calib_input of dimensions (batch_size,) + (input_dims). calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. image_mean: Image mean per channel. Returns: No explicit returns. """ if not calib_data_file: logger.info("Calibrating using ImageBatcher") self.config.int8_calibrator = EngineCalibrator(calib_cache) if not os.path.exists(calib_cache): calib_shape = [calib_batch_size] + list(inputs[0].shape)[-3:] calib_dtype = trt.nptype(inputs[0].dtype) logger.info(calib_shape) self.config.int8_calibrator.set_image_batcher( ImageBatcher(calib_input, calib_shape, calib_dtype, max_num_images=calib_num_images, exact_batches=True, preprocessor="DetectNetv2")) else: logger.info("Calibrating using TensorfileCalibrator") n_batches = calib_num_images // calib_batch_size if not os.path.exists(calib_data_file): self.generate_tensor_file(calib_data_file, calib_input, self._input_dims[1:], n_batches=n_batches, batch_size=calib_batch_size, image_mean=image_mean) self.config.int8_calibrator = TensorfileCalibrator(calib_data_file, calib_cache, n_batches, calib_batch_size) def generate_tensor_file(self, data_file_name, calibration_images_dir, input_dims, n_batches=10, batch_size=1, image_mean=None): """Generate calibration Tensorfile for int8 calibrator. This function generates a calibration tensorfile from a directory of images, or dumps n_batches of random numpy arrays of shape (batch_size,) + (input_dims). Args: data_file_name (str): Path to the output tensorfile to be saved. calibration_images_dir (str): Path to the images to generate a tensorfile from. input_dims (list): Input shape in CHW order. n_batches (int): Number of batches to be saved. batch_size (int): Number of images per batch. image_mean (list): Image mean per channel. Returns: No explicit returns. """ if not os.path.exists(calibration_images_dir): logger.info("Generating a tensorfile with random tensor images. This may work well as " "a profiling tool, however, it may result in inaccurate results at " "inference. Please provide a custom directory of images for best performance.") generate_random_tensorfile(data_file_name, input_dims, n_batches=n_batches, batch_size=batch_size) else: # Preparing the list of images to be saved. num_images = n_batches * batch_size image_list = [os.path.join(calibration_images_dir, image) for image in os.listdir(calibration_images_dir) if image.split('.')[-1] in VALID_IMAGE_EXTENSIONS] if len(image_list) < num_images: raise ValueError('Not enough number of images provided:' f' {len(image_list)} < {num_images}') image_idx = random.sample(xrange(len(image_list)), num_images) self.set_data_preprocessing_parameters(input_dims, image_mean) # Writing out processed dump. with TensorFile(data_file_name, 'w') as f: for chunk in tqdm(image_idx[x:x + batch_size] for x in xrange(0, len(image_idx), batch_size)): dump_data = prepare_chunk(chunk, image_list, image_width=input_dims[2], image_height=input_dims[1], channels=input_dims[0], batch_size=batch_size, **self.preprocessing_arguments) f.write(dump_data) f.closed def set_data_preprocessing_parameters(self, input_dims, image_mean=None): """Set data pre-processing parameters for the int8 calibration.""" logger.debug("Input dimensions: %s", input_dims) num_channels = input_dims[0] scale = 1.0 / 255.0 if num_channels == 3: means = [0., 0., 0.] elif num_channels == 1: means = [0] else: raise NotImplementedError(f"Invalid number of dimensions {num_channels}.") self.preprocessing_arguments = {"scale": scale, "means": means, "flip_channel": False}
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy DetectNetv2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities file containing helper functions to post process raw predictions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import numpy as np from collections import namedtuple from sklearn.cluster import DBSCAN as dbscan logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) Detection = namedtuple('Detection', [ # Bounding box of the detection in the LTRB format: [left, top, right, bottom] 'bbox', # Confidence of detection 'confidence', # Weighted variance of the bounding boxes in this cluster, normalized for the size of the box 'cluster_cv', # Number of raw bounding boxes that went into this cluster 'num_raw_boxes', # Sum of of the raw bounding boxes' coverage values in this cluster 'sum_coverages', # Maximum coverage value among bboxes 'max_cov_value', # Minimum converage value among bboxes 'min_cov_value', # Candidate coverages. 'candidate_covs', # Candidate bbox coordinates. 'candidate_bboxes' ]) def cluster_bboxes(raw_detections, criterion, eps, min_samples, min_weight, min_height, confidence_model, cluster_weights=(1.0, 0.0, 0.0, 0.0, 0.0, 0.0), clustering_algorithm="dbscan", confidence_threshold=0.01, nms_iou_threshold=0.01, nms_confidence_threshold=0.1): """Cluster the bboxes from the raw feature map to output boxes. It works in two steps. 1. Obtain grid cell indices where coverage > min_weight. 2. Make a list of all bboxes from the grid cells short listed from 1. 3. Cluster this list of bboxes using a density based clustering algorithm.. Inputs: raw_detections : dict with keys: bbox: rectangle coordinates, (num_imgs, 4, W, H) array cov: weights for the rectangles, (num_imgs, 1, W, H) array criterion (str): clustering criterion ('MSE' or 'IOU') eps (float): threshold for considering two rectangles as one min_samples (int): minimum cumulative weight for output rectangle min_weight (float): filter out bboxes with weight smaller than min_weight prior to clustering min_height (float): filter out bboxes with height smaller than min_height after clustering cluster_weights (dict): weighting of different distance components (bbox, depth, orientation, bottom_vis, width_vis, orient_markers) confidence_model (str): Dict of {kind: 'mlp' or 'aggregate_cov' model: the expected model format or None} clustering_algorithm (str): Algorithm used to cluster the raw predictions. confidence_threshold (float): The final overlay threshold post clustering. nms_iou_threshold (float): IOU overlap threshold to be used when running NMS. Returns: detections_per_image (list): A list of lists of Detection objects, one list for each input frame. """ db = None if clustering_algorithm in ["dbscan", "hybrid"]: db = setup_dbscan_object(eps, min_samples, criterion) num_images = len(raw_detections['cov']) if confidence_model == 'mlp': raise NotImplementedError("MLP confidence thresholding not supported.") # Initialize output detections to empty lists # DO NOT DO a=[[]]*num_images --> that means 'a[0] is a[1] == True' !!! detections_per_image = [[] for _ in range(num_images)] # Needed when doing keras confidence model. # keras.backend.get_session().run(tf.initialize_all_variables()) # Loop images logger.debug("Clustering bboxes") for image_idx in range(num_images): # Check if the input was empty. if raw_detections['cov'][image_idx].size == 0: continue bboxes, covs = threshold_bboxes(raw_detections, image_idx, min_weight) if covs.size == 0: continue # Cluster using DBSCAN. if clustering_algorithm == "dbscan": logger.debug("Clustering bboxes using dbscan.") clustered_boxes_per_image = cluster_with_dbscan(bboxes, covs, criterion, db, confidence_model, cluster_weights, min_height, threshold=confidence_threshold) # Clustering detections with NMS. elif clustering_algorithm == "nms": logger.debug("Clustering using NMS") clustered_boxes_per_image = cluster_with_nms(bboxes, covs, min_height, nms_iou_threshold=nms_iou_threshold, threshold=nms_confidence_threshold) elif clustering_algorithm == "hybrid": logger.debug("Clustering with DBSCAN + NMS") clustered_boxes_per_image = cluster_with_hybrid( bboxes, covs, criterion, db, confidence_model, cluster_weights, min_height, nms_iou_threshold=nms_iou_threshold, confidence_threshold=confidence_threshold, nms_confidence_threshold=nms_confidence_threshold ) else: raise NotImplementedError(f"Clustering with {clustering_algorithm} algorithm not supported.") detections_per_image[image_idx].extend(clustered_boxes_per_image) # Sort in descending order of cumulative weight detections_per_image = [sorted(dets, key=lambda det: -det.confidence) for dets in detections_per_image] return detections_per_image def get_keep_indices(dets, covs, min_height, Nt=0.3, sigma=0.4, threshold=0.01, method=4): """Perform NMS over raw detections. This function implements clustering using multiple variants of NMS, namely, Linear, Soft-NMS, D-NMS and NMS. It computes the indexes of the raw detections that may be preserved post NMS. Args: dets (np.ndarray): Array of filtered bboxes. scores (np.ndarray): Array of filtered scores (coverages). min_height (int): Minimum height of the boxes to be retained. Nt (float): Overlap threshold. sigma (float): Variance using in the Gaussian soft nms. threshold (float): Filtering threshold post bbox clustering. method (int): Variant of nms to be used. Returns: keep (np.ndarray): Array of indices of boxes to be retained after clustering. """ N = dets.shape[0] assert len(dets.shape) == 2 and dets.shape[1] == 4, \ f"BBox dimensions are invalid, {dets.shape}." indexes = np.array([np.arange(N)]) assert len(covs.shape) == 1 and covs.shape[0] == N, \ f"Coverage dimensions are invalid. {covs.shape}" # Convert to t, l, b, r representation for NMS. l, t, r, b = dets.T dets = np.asarray([t, l, b, r]).T dets = np.concatenate((dets, indexes.T), axis=1) scores = covs # Compute box areas. areas = (r - l + 1) * (b - t + 1) for i in range(N): # intermediate parameters for later parameters exchange tBD = dets[i, :].copy() tscore = scores[i].copy() tarea = areas[i].copy() pos = i + 1 if i != N - 1: maxscore = np.max(scores[pos:], axis=0) maxpos = np.argmax(scores[pos:], axis=0) else: maxscore = scores[-1] maxpos = 0 if tscore < maxscore: dets[i, :] = dets[maxpos + i + 1, :] dets[maxpos + i + 1, :] = tBD tBD = dets[i, :] scores[i] = scores[maxpos + i + 1] scores[maxpos + i + 1] = tscore tscore = scores[i] areas[i] = areas[maxpos + i + 1] areas[maxpos + i + 1] = tarea tarea = areas[i] # IoU calculate xx1 = np.maximum(dets[i, 1], dets[pos:, 1]) yy1 = np.maximum(dets[i, 0], dets[pos:, 0]) xx2 = np.minimum(dets[i, 3], dets[pos:, 3]) yy2 = np.minimum(dets[i, 2], dets[pos:, 2]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[pos:] - inter) # min_overlap_box x1c = np.minimum(dets[i, 1], dets[pos:, 1]) y1c = np.minimum(dets[i, 0], dets[pos:, 0]) x2c = np.maximum(dets[i, 3], dets[pos:, 3]) y2c = np.maximum(dets[i, 2], dets[pos:, 2]) c1x, c1y = (dets[i, 1] + dets[i, 3]) / 2.0, (dets[i, 0] + dets[i, 2]) / 2.0 c2x, c2y = (dets[pos:, 1] + dets[pos:, 3]) / 2.0, (dets[pos:, 0] + dets[pos:, 2]) / 2.0 centre_dis = ((c1x - c2x) ** 2) + ((c1y - c2y) ** 2) diag = ((x1c - x2c) ** 2) + ((y1c - y2c) ** 2) ovr_dis = ovr - centre_dis / diag # Four methods: 1.linear 2.gaussian soft NMS 3. D-NMS 4.original NMS if method == 1: # linear NMS weight = np.ones(ovr.shape) weight[ovr > Nt] = weight[ovr > Nt] - ovr[ovr > Nt] elif method == 2: # gaussian # Gaussian Soft NMS weight = np.exp(-(ovr * ovr) / sigma) elif method == 3: # D-NMS weight = np.ones(ovr.shape) weight[ovr_dis > Nt] = 0 elif method == 4: # original NMS weight = np.ones(ovr.shape) weight[ovr > Nt] = 0 else: raise NotImplementedError("NMS variants can only be between [1 - 4] where \n" "1. linear NMS\n2. Gaussian Soft NMS\n3. D-NMS\n4. " "Original NMS") scores[pos:] = weight * scores[pos:] # Filtering based on confidence threshold. inds = dets[:, 4][scores > threshold] keep = inds.astype(int) keep = np.array([[f] for f in keep]) return keep def cluster_with_nms(bboxes, covs, min_height, nms_iou_threshold=0.01, threshold=0.01): """Cluster raw detections with NMS. Args: bboxes (np.ndarray): The raw bbox predictions from the network. covs (np.ndarray): The raw coverage predictions from the network. min_height (float): The minimum height to filter out bboxes post clustering. nms_iou_threshold (float): The overlap threshold to be used when running NMS. threshold (float): The final confidence threshold to filter out bboxes after clustering. Returns: clustered_boxes_per_images (list): List of clustered and filtered detections. """ keep_indices = get_keep_indices(bboxes, covs, min_height, threshold=threshold, Nt=nms_iou_threshold) logger.debug("Keep indices: shape: %s, type: %s", keep_indices.shape, type(keep_indices)) if keep_indices.size == 0: return [] filterred_boxes = np.take_along_axis(bboxes, keep_indices, axis=0) filterred_coverages = covs[keep_indices] assert (filterred_boxes.shape[0] == filterred_coverages.shape[0]) clustered_boxes_per_image = [] for idx in range(len(filterred_boxes)): clustered_boxes_per_image.append(Detection( bbox=filterred_boxes[idx, :], confidence=filterred_coverages[idx][0], cluster_cv=None, num_raw_boxes=None, sum_coverages=None, max_cov_value=None, min_cov_value=None, candidate_covs=filterred_coverages[idx], candidate_bboxes=filterred_boxes[idx])) return clustered_boxes_per_image def cluster_with_dbscan(bboxes, covs, criterion, db, confidence_model, cluster_weights, min_height, threshold=0.01): """Cluster raw predictions using dbscan. Args: boxes (np.array): Thresholded raw bbox blob covs (np.array): Thresholded raw covs blob criterion (str): DBSCAN clustering criterion. db: Instantiated dbscan object. cluster_weights (dict): weighting of different distance components (bbox, depth, orientation, bottom_vis, width_vis, orient_markers) min_height (float): filter out bboxes with height smaller than min_height after clustering threshold (float): Final threshold to filter bboxes post clustering. Returns: detections_per_image. """ detections_per_image = [] if criterion[:3] in ['MSE', 'IOU']: if criterion[:3] == 'MSE': data = bboxes labeling = db.fit_predict(X=data, sample_weight=covs) elif criterion[:3] == 'IOU': pairwise_dist = \ cluster_weights[0] * (1.0 - iou_vectorized(bboxes)) labeling = db.fit_predict(X=pairwise_dist, sample_weight=covs) labels = np.unique(labeling[labeling >= 0]) logger.debug("Number of boxes: %d", len(labels)) for label in labels: w = covs[labeling == label] aggregated_w = np.sum(w) w_norm = w / aggregated_w n = len(w) w_max = np.max(w) w_min = np.min(w) # Mean bounding box b = bboxes[labeling == label] mean_bbox = np.sum((b.T * w_norm).T, axis=0) # Compute coefficient of variation of the box coords bbox_area = (mean_bbox[2] - mean_bbox[0]) * (mean_bbox[3] - mean_bbox[1]) # Calculate weighted bounding box variance normalized by # bounding box size cluster_cv = np.sum(w_norm.reshape((-1, 1)) * (b - mean_bbox) ** 2, axis=0) cluster_cv = np.sqrt(np.mean(cluster_cv) / bbox_area) # Update confidence output based on mode of confidence. if confidence_model == 'aggregate_cov': confidence = aggregated_w elif confidence_model == 'mean_cov': w_mean = aggregated_w / n confidence = (w_mean - w_min) / (w_max - w_min) else: raise NotImplementedError(f"Unknown confidence kind {confidence_model.kind}!") # Filter out too small bboxes if mean_bbox[3] - mean_bbox[1] <= min_height: continue if confidence >= threshold: detections_per_image += [Detection( bbox=mean_bbox, confidence=confidence, cluster_cv=cluster_cv, num_raw_boxes=n, sum_coverages=aggregated_w, max_cov_value=w_max, min_cov_value=w_min, candidate_covs=w, candidate_bboxes=b )] return detections_per_image raise NotImplementedError(f"DBSCAN for this criterion is not implemented. {criterion}") def threshold_bboxes(raw_detections, image_idx, min_weight): """Threshold raw predictions based on coverages. Args: raw_detections (dict): Dictionary containing raw detections, cov and bboxes. Returns: bboxes, covs: The filtered numpy array of bboxes and covs. """ # Get bbox coverage values, flatten (discard spatial and scale info) covs = raw_detections['cov'][image_idx].flatten() valid_indices = covs > min_weight covs = covs[valid_indices] # Flatten last three dimensions (discard spatial and scale info) # assume bbox is always present bboxes = raw_detections['bbox'][image_idx] bboxes = bboxes.reshape(bboxes.shape[:1] + (-1,)).T[valid_indices] return bboxes, covs def setup_dbscan_object(eps, min_samples, criterion): """Instantiate dbscan object for clustering predictions with dbscan. Args: eps (float): DBSCAN epsilon value (search distance parameter) min_samples (int): minimum cumulative weight for output rectangle criterion (str): clustering criterion ('MSE' or 'IOU') Returns: db (dbscan object): DBSCAN object from scikit learn. """ min_samples = max(int(min_samples), 1) if criterion[:3] == 'MSE': # MSE between coordinates is used as the distance # If depth and orientation are included, add them as # additional coordinates db = dbscan(eps=eps, min_samples=min_samples) elif criterion[:3] == 'IOU': # 1.-IOU is used as distance between bboxes # For depth and orientation, use a normalized difference # measure # The final distance metric is a weighted sum of the above db = dbscan(eps=eps, min_samples=min_samples, metric='precomputed') else: raise NotImplementedError("cluster_bboxes: Unknown bbox clustering criterion!") return db def cluster_with_hybrid(bboxes, covs, criterion, db, confidence_model, cluster_weights, min_height, nms_iou_threshold=0.3, confidence_threshold=0.1, nms_confidence_threshold=0.1): """Cluster raw predictions with DBSCAN + NMS. Args: boxes (np.array): Thresholded raw bbox blob covs (np.array): Thresholded raw covs blob criterion (str): DBSCAN clustering criterion. db: Instantiated dbscan object. cluster_weights (dict): weighting of different distance components (bbox, depth, orientation, bottom_vis, width_vis, orient_markers) min_height (float): filter out bboxes with height smaller than min_height after clustering nms_iou_threshold (float): The overlap threshold to be used when running NMS. confiedence_threshold (float): The confidence threshold to filter out bboxes after clustering by dbscan. nms_confidence_threshold (float): The confidence threshold to filter out bboxes after clustering by NMS. Returns: nms_clustered_detection_per_image (list): List of clustered detections after hybrid clustering. """ dbscan_clustered_detections_per_image = cluster_with_dbscan( bboxes, covs, criterion, db, confidence_model, cluster_weights, min_height, threshold=confidence_threshold ) # Extract raw detections from clustered outputs. nms_candidate_boxes = [] nms_candidate_covs = [] for detections in dbscan_clustered_detections_per_image: nms_candidate_boxes.extend(detections.candidate_bboxes) nms_candidate_covs.extend(detections.candidate_covs) nms_candidate_boxes = np.asarray(nms_candidate_boxes).astype(np.float32) nms_candidate_covs = np.asarray(nms_candidate_covs).astype(np.float32) if nms_candidate_covs.size == 0: return [] # Clustered candidates from dbscan to run NMS. nms_clustered_detections_per_image = cluster_with_nms( nms_candidate_boxes, nms_candidate_covs, min_height, nms_iou_threshold=nms_iou_threshold, threshold=nms_confidence_threshold ) return nms_clustered_detections_per_image def iou_vectorized(rects): """Intersection over union among a list of rectangles in LTRB format. Args: rects (np.array) : numpy array of shape (N, 4), LTRB format, assumes L<R and T<B Returns:: d (np.array) : numpy array of shape (N, N) of the IOU between all pairs of rects """ # coordinates l, t, r, b = rects.T # form intersection coordinates isect_l = np.maximum(l[:, None], l[None, :]) isect_t = np.maximum(t[:, None], t[None, :]) isect_r = np.minimum(r[:, None], r[None, :]) isect_b = np.minimum(b[:, None], b[None, :]) # form intersection area isect_w = np.maximum(0, isect_r - isect_l) isect_h = np.maximum(0, isect_b - isect_t) area_isect = isect_w * isect_h # original rect areas areas = (r - l) * (b - t) # Union area is area_a + area_b - intersection area denom = (areas[:, None] + areas[None, :] - area_isect) # Return IOU regularized with .01, to avoid outputing NaN in pathological # cases (area_a = area_b = isect = 0) return area_isect / (denom + .01)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DetectNetv2 loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from PIL import Image from nvidia_tao_deploy.dataloader.kitti import KITTILoader class DetectNetKITTILoader(KITTILoader): """DetectNetv2 Dataloader.""" def __init__(self, **kwargs): """Init.""" super().__init__(**kwargs) self.image_size = [] def _load_gt_image(self, image_path): """Load GT image from file.""" img = Image.open(image_path).convert('RGB') return img, img.size # DNv2 requires original image size def _get_single_item_raw(self, idx): """Load single image and its label. Returns: image (PIL.image): image object in original resolution label (np.array): [class_idx, is_difficult, x_min, y_min, x_max, y_max] with normalized coordinates """ image, image_size = self._load_gt_image(self.image_paths[self.data_inds[idx]]) if self.is_inference: label = np.zeros((1, 6)) # Random array to label else: label = self._load_gt_label(self.label_paths[self.data_inds[idx]]) return image, label, image_size def _get_single_processed_item(self, idx): """Load and process single image and its label.""" image, label, image_size = self._get_single_item_raw(idx) image, label = self.preprocessing(image, label) return image, label, image_size def __next__(self): """Load a full batch.""" images = [] labels = [] image_sizes = [] if self.n < self.n_batches: for idx in range(self.n * self.batch_size, (self.n + 1) * self.batch_size): image, label, image_size = self._get_single_processed_item(idx) images.append(image) labels.append(label) image_sizes.append(image_size) self.n += 1 self.image_size.append(image_sizes) return self._batch_post_processing(images, labels) raise StopIteration def preprocessing(self, image, label): """The image preprocessor loads an image from disk and prepares it as needed for batching. This includes padding, resizing, normalization, data type casting, and transposing. Args: image (PIL.image): The Pillow image on disk to load. label (np.array): labels Returns: image (np.array): A numpy array holding the image sample, ready to be concatenated into the rest of the batch label (np.array): labels """ image = image.resize((self.width, self.height), Image.LANCZOS) image = np.asarray(image, dtype=self.dtype) / 255.0 # Handle Grayscale if self.num_channels == 1: image = np.expand_dims(image, axis=2) image = np.transpose(image, (2, 0, 1)) # Round label = np.round(label, decimals=0) # Filter out invalid labels label = self._filter_invalid_labels(label) return image, label def _batch_post_processing(self, images, labels): """Post processing for a batch.""" images = np.array(images) # try to make labels a numpy array is_make_array = True x_shape = None for x in labels: if not isinstance(x, np.ndarray): is_make_array = False break if x_shape is None: x_shape = x.shape elif x_shape != x.shape: is_make_array = False break if is_make_array: labels = np.array(labels) return images, labels def _filter_invalid_labels(self, labels): """filter out invalid labels. Arg: labels: size (N, 6). Returns: labels: size (M, 6), filtered bboxes with clipped boxes. """ return labels
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/dataloader.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/optimizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.detectnet_v2.proto import adam_optimizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_adam__optimizer__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/optimizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n>nvidia_tao_deploy/cv/detectnet_v2/proto/optimizer_config.proto\x1a\x43nvidia_tao_deploy/cv/detectnet_v2/proto/adam_optimizer_config.proto\"D\n\x0fOptimizerConfig\x12$\n\x04\x61\x64\x61m\x18\x01 \x01(\x0b\x32\x14.AdamOptimizerConfigH\x00\x42\x0b\n\toptimizerb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_adam__optimizer__config__pb2.DESCRIPTOR,]) _OPTIMIZERCONFIG = _descriptor.Descriptor( name='OptimizerConfig', full_name='OptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='adam', full_name='OptimizerConfig.adam', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='optimizer', full_name='OptimizerConfig.optimizer', index=0, containing_type=None, fields=[]), ], serialized_start=135, serialized_end=203, ) _OPTIMIZERCONFIG.fields_by_name['adam'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_adam__optimizer__config__pb2._ADAMOPTIMIZERCONFIG _OPTIMIZERCONFIG.oneofs_by_name['optimizer'].fields.append( _OPTIMIZERCONFIG.fields_by_name['adam']) _OPTIMIZERCONFIG.fields_by_name['adam'].containing_oneof = _OPTIMIZERCONFIG.oneofs_by_name['optimizer'] DESCRIPTOR.message_types_by_name['OptimizerConfig'] = _OPTIMIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) OptimizerConfig = _reflection.GeneratedProtocolMessageType('OptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _OPTIMIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.optimizer_config_pb2' # @@protoc_insertion_point(class_scope:OptimizerConfig) )) _sym_db.RegisterMessage(OptimizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/optimizer_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Confidence config class that holds parameters for postprocessing confidence.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from nvidia_tao_deploy.cv.detectnet_v2.proto.postprocessing_config_pb2 import ConfidenceConfig as ConfidenceProto def build_confidence_config(confidence_config): """Build ConfidenceConfig from a proto. Args: confidence_config: confidence_config proto message. Returns: ConfidenceConfig object. """ return ConfidenceConfig(confidence_config.confidence_model_filename, confidence_config.confidence_threshold) def build_confidence_proto(confidence_config): """Build proto from ConfidenceConfig. Args: confidence_config: ConfidenceConfig object. Returns: confidence_config: confidence_config proto. """ proto = ConfidenceProto() proto.confidence_model_filename = confidence_config.confidence_model_filename proto.confidence_threshold = confidence_config.confidence_threshold return proto class ConfidenceConfig(object): """Hold the parameters for postprocessing confidence.""" def __init__(self, confidence_model_filename, confidence_threshold): """Constructor. Args: confidence_model_filename (str): Absolute path to the confidence model hdf5. confidence_threshold (float): Confidence threshold value. Must be >= 0. Raises: ValueError: If the input arg is not within the accepted range. """ if confidence_threshold < 0.0: raise ValueError("ConfidenceConfig.confidence_threshold must be >= 0") self.confidence_model_filename = confidence_model_filename self.confidence_threshold = confidence_threshold
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/confidence_config.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/objective_label_filter.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.detectnet_v2.proto import label_filter_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_label__filter__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/objective_label_filter.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nDnvidia_tao_deploy/cv/detectnet_v2/proto/objective_label_filter.proto\x1a:nvidia_tao_deploy/cv/detectnet_v2/proto/label_filter.proto\"\x9f\x02\n\x14ObjectiveLabelFilter\x12X\n\x1eobjective_label_filter_configs\x18\x01 \x03(\x0b\x32\x30.ObjectiveLabelFilter.ObjectiveLabelFilterConfig\x12\x17\n\x0fmask_multiplier\x18\x02 \x01(\x02\x12\x1d\n\x15preserve_ground_truth\x18\x03 \x01(\x08\x1au\n\x1aObjectiveLabelFilterConfig\x12\"\n\x0clabel_filter\x18\x01 \x01(\x0b\x32\x0c.LabelFilter\x12\x1a\n\x12target_class_names\x18\x02 \x03(\t\x12\x17\n\x0fobjective_names\x18\x03 \x03(\tb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_label__filter__pb2.DESCRIPTOR,]) _OBJECTIVELABELFILTER_OBJECTIVELABELFILTERCONFIG = _descriptor.Descriptor( name='ObjectiveLabelFilterConfig', full_name='ObjectiveLabelFilter.ObjectiveLabelFilterConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='label_filter', full_name='ObjectiveLabelFilter.ObjectiveLabelFilterConfig.label_filter', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_class_names', full_name='ObjectiveLabelFilter.ObjectiveLabelFilterConfig.target_class_names', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='objective_names', full_name='ObjectiveLabelFilter.ObjectiveLabelFilterConfig.objective_names', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=303, serialized_end=420, ) _OBJECTIVELABELFILTER = _descriptor.Descriptor( name='ObjectiveLabelFilter', full_name='ObjectiveLabelFilter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='objective_label_filter_configs', full_name='ObjectiveLabelFilter.objective_label_filter_configs', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mask_multiplier', full_name='ObjectiveLabelFilter.mask_multiplier', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='preserve_ground_truth', full_name='ObjectiveLabelFilter.preserve_ground_truth', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_OBJECTIVELABELFILTER_OBJECTIVELABELFILTERCONFIG, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=133, serialized_end=420, ) _OBJECTIVELABELFILTER_OBJECTIVELABELFILTERCONFIG.fields_by_name['label_filter'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_label__filter__pb2._LABELFILTER _OBJECTIVELABELFILTER_OBJECTIVELABELFILTERCONFIG.containing_type = _OBJECTIVELABELFILTER _OBJECTIVELABELFILTER.fields_by_name['objective_label_filter_configs'].message_type = _OBJECTIVELABELFILTER_OBJECTIVELABELFILTERCONFIG DESCRIPTOR.message_types_by_name['ObjectiveLabelFilter'] = _OBJECTIVELABELFILTER _sym_db.RegisterFileDescriptor(DESCRIPTOR) ObjectiveLabelFilter = _reflection.GeneratedProtocolMessageType('ObjectiveLabelFilter', (_message.Message,), dict( ObjectiveLabelFilterConfig = _reflection.GeneratedProtocolMessageType('ObjectiveLabelFilterConfig', (_message.Message,), dict( DESCRIPTOR = _OBJECTIVELABELFILTER_OBJECTIVELABELFILTERCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.objective_label_filter_pb2' # @@protoc_insertion_point(class_scope:ObjectiveLabelFilter.ObjectiveLabelFilterConfig) )) , DESCRIPTOR = _OBJECTIVELABELFILTER, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.objective_label_filter_pb2' # @@protoc_insertion_point(class_scope:ObjectiveLabelFilter) )) _sym_db.RegisterMessage(ObjectiveLabelFilter) _sym_db.RegisterMessage(ObjectiveLabelFilter.ObjectiveLabelFilterConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/objective_label_filter_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/adam_optimizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/adam_optimizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nCnvidia_tao_deploy/cv/detectnet_v2/proto/adam_optimizer_config.proto\"D\n\x13\x41\x64\x61mOptimizerConfig\x12\x0f\n\x07\x65psilon\x18\x01 \x01(\x02\x12\r\n\x05\x62\x65ta1\x18\x02 \x01(\x02\x12\r\n\x05\x62\x65ta2\x18\x03 \x01(\x02\x62\x06proto3') ) _ADAMOPTIMIZERCONFIG = _descriptor.Descriptor( name='AdamOptimizerConfig', full_name='AdamOptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='epsilon', full_name='AdamOptimizerConfig.epsilon', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='beta1', full_name='AdamOptimizerConfig.beta1', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='beta2', full_name='AdamOptimizerConfig.beta2', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=71, serialized_end=139, ) DESCRIPTOR.message_types_by_name['AdamOptimizerConfig'] = _ADAMOPTIMIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) AdamOptimizerConfig = _reflection.GeneratedProtocolMessageType('AdamOptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _ADAMOPTIMIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.adam_optimizer_config_pb2' # @@protoc_insertion_point(class_scope:AdamOptimizerConfig) )) _sym_db.RegisterMessage(AdamOptimizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/adam_optimizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/training_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.detectnet_v2.proto import cost_scaling_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_cost__scaling__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import learning_rate_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_learning__rate__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import optimizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_optimizer__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import regularizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_regularizer__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import visualizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_visualizer__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/training_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n=nvidia_tao_deploy/cv/detectnet_v2/proto/training_config.proto\x1a\x41nvidia_tao_deploy/cv/detectnet_v2/proto/cost_scaling_config.proto\x1a\x42nvidia_tao_deploy/cv/detectnet_v2/proto/learning_rate_config.proto\x1a>nvidia_tao_deploy/cv/detectnet_v2/proto/optimizer_config.proto\x1a@nvidia_tao_deploy/cv/detectnet_v2/proto/regularizer_config.proto\x1a?nvidia_tao_deploy/cv/detectnet_v2/proto/visualizer_config.proto\"\xbc\x02\n\x0eTrainingConfig\x12\x1a\n\x12\x62\x61tch_size_per_gpu\x18\x01 \x01(\r\x12\x12\n\nnum_epochs\x18\x02 \x01(\r\x12*\n\rlearning_rate\x18\x03 \x01(\x0b\x32\x13.LearningRateConfig\x12\'\n\x0bregularizer\x18\x04 \x01(\x0b\x32\x12.RegularizerConfig\x12#\n\toptimizer\x18\x05 \x01(\x0b\x32\x10.OptimizerConfig\x12(\n\x0c\x63ost_scaling\x18\x06 \x01(\x0b\x32\x12.CostScalingConfig\x12\x1b\n\x13\x63heckpoint_interval\x18\x07 \x01(\r\x12\x12\n\nenable_qat\x18\x08 \x01(\x08\x12%\n\nvisualizer\x18\t \x01(\x0b\x32\x11.VisualizerConfigb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_cost__scaling__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_learning__rate__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_optimizer__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_regularizer__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_visualizer__config__pb2.DESCRIPTOR,]) _TRAININGCONFIG = _descriptor.Descriptor( name='TrainingConfig', full_name='TrainingConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='batch_size_per_gpu', full_name='TrainingConfig.batch_size_per_gpu', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_epochs', full_name='TrainingConfig.num_epochs', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='learning_rate', full_name='TrainingConfig.learning_rate', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='regularizer', full_name='TrainingConfig.regularizer', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='optimizer', full_name='TrainingConfig.optimizer', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cost_scaling', full_name='TrainingConfig.cost_scaling', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='checkpoint_interval', full_name='TrainingConfig.checkpoint_interval', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_qat', full_name='TrainingConfig.enable_qat', index=7, number=8, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='visualizer', full_name='TrainingConfig.visualizer', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=396, serialized_end=712, ) _TRAININGCONFIG.fields_by_name['learning_rate'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_learning__rate__config__pb2._LEARNINGRATECONFIG _TRAININGCONFIG.fields_by_name['regularizer'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_regularizer__config__pb2._REGULARIZERCONFIG _TRAININGCONFIG.fields_by_name['optimizer'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_optimizer__config__pb2._OPTIMIZERCONFIG _TRAININGCONFIG.fields_by_name['cost_scaling'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_cost__scaling__config__pb2._COSTSCALINGCONFIG _TRAININGCONFIG.fields_by_name['visualizer'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_visualizer__config__pb2._VISUALIZERCONFIG DESCRIPTOR.message_types_by_name['TrainingConfig'] = _TRAININGCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) TrainingConfig = _reflection.GeneratedProtocolMessageType('TrainingConfig', (_message.Message,), dict( DESCRIPTOR = _TRAININGCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.training_config_pb2' # @@protoc_insertion_point(class_scope:TrainingConfig) )) _sym_db.RegisterMessage(TrainingConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/training_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/cost_scaling_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/cost_scaling_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nAnvidia_tao_deploy/cv/detectnet_v2/proto/cost_scaling_config.proto\"d\n\x11\x43ostScalingConfig\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\x12\x18\n\x10initial_exponent\x18\x02 \x01(\x01\x12\x11\n\tincrement\x18\x03 \x01(\x01\x12\x11\n\tdecrement\x18\x04 \x01(\x01\x62\x06proto3') ) _COSTSCALINGCONFIG = _descriptor.Descriptor( name='CostScalingConfig', full_name='CostScalingConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='enabled', full_name='CostScalingConfig.enabled', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='initial_exponent', full_name='CostScalingConfig.initial_exponent', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='increment', full_name='CostScalingConfig.increment', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='decrement', full_name='CostScalingConfig.decrement', index=3, number=4, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=69, serialized_end=169, ) DESCRIPTOR.message_types_by_name['CostScalingConfig'] = _COSTSCALINGCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) CostScalingConfig = _reflection.GeneratedProtocolMessageType('CostScalingConfig', (_message.Message,), dict( DESCRIPTOR = _COSTSCALINGCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.cost_scaling_config_pb2' # @@protoc_insertion_point(class_scope:CostScalingConfig) )) _sym_db.RegisterMessage(CostScalingConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/cost_scaling_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/early_stopping_annealing_schedule_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/early_stopping_annealing_schedule_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nVnvidia_tao_deploy/cv/detectnet_v2/proto/early_stopping_annealing_schedule_config.proto\"\xa9\x01\n$EarlyStoppingAnnealingScheduleConfig\x12\x19\n\x11min_learning_rate\x18\x01 \x01(\x02\x12\x19\n\x11max_learning_rate\x18\x02 \x01(\x02\x12\x19\n\x11soft_start_epochs\x18\x03 \x01(\r\x12\x18\n\x10\x61nnealing_epochs\x18\x04 \x01(\r\x12\x16\n\x0epatience_steps\x18\x05 \x01(\rb\x06proto3') ) _EARLYSTOPPINGANNEALINGSCHEDULECONFIG = _descriptor.Descriptor( name='EarlyStoppingAnnealingScheduleConfig', full_name='EarlyStoppingAnnealingScheduleConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='min_learning_rate', full_name='EarlyStoppingAnnealingScheduleConfig.min_learning_rate', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_learning_rate', full_name='EarlyStoppingAnnealingScheduleConfig.max_learning_rate', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='soft_start_epochs', full_name='EarlyStoppingAnnealingScheduleConfig.soft_start_epochs', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='annealing_epochs', full_name='EarlyStoppingAnnealingScheduleConfig.annealing_epochs', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='patience_steps', full_name='EarlyStoppingAnnealingScheduleConfig.patience_steps', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=91, serialized_end=260, ) DESCRIPTOR.message_types_by_name['EarlyStoppingAnnealingScheduleConfig'] = _EARLYSTOPPINGANNEALINGSCHEDULECONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) EarlyStoppingAnnealingScheduleConfig = _reflection.GeneratedProtocolMessageType('EarlyStoppingAnnealingScheduleConfig', (_message.Message,), dict( DESCRIPTOR = _EARLYSTOPPINGANNEALINGSCHEDULECONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.early_stopping_annealing_schedule_config_pb2' # @@protoc_insertion_point(class_scope:EarlyStoppingAnnealingScheduleConfig) )) _sym_db.RegisterMessage(EarlyStoppingAnnealingScheduleConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/early_stopping_annealing_schedule_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/regularizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/regularizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n@nvidia_tao_deploy/cv/detectnet_v2/proto/regularizer_config.proto\"\x8a\x01\n\x11RegularizerConfig\x12\x33\n\x04type\x18\x01 \x01(\x0e\x32%.RegularizerConfig.RegularizationType\x12\x0e\n\x06weight\x18\x02 \x01(\x02\"0\n\x12RegularizationType\x12\n\n\x06NO_REG\x10\x00\x12\x06\n\x02L1\x10\x01\x12\x06\n\x02L2\x10\x02\x62\x06proto3') ) _REGULARIZERCONFIG_REGULARIZATIONTYPE = _descriptor.EnumDescriptor( name='RegularizationType', full_name='RegularizerConfig.RegularizationType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NO_REG', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='L1', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='L2', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=159, serialized_end=207, ) _sym_db.RegisterEnumDescriptor(_REGULARIZERCONFIG_REGULARIZATIONTYPE) _REGULARIZERCONFIG = _descriptor.Descriptor( name='RegularizerConfig', full_name='RegularizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='type', full_name='RegularizerConfig.type', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight', full_name='RegularizerConfig.weight', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _REGULARIZERCONFIG_REGULARIZATIONTYPE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=69, serialized_end=207, ) _REGULARIZERCONFIG.fields_by_name['type'].enum_type = _REGULARIZERCONFIG_REGULARIZATIONTYPE _REGULARIZERCONFIG_REGULARIZATIONTYPE.containing_type = _REGULARIZERCONFIG DESCRIPTOR.message_types_by_name['RegularizerConfig'] = _REGULARIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) RegularizerConfig = _reflection.GeneratedProtocolMessageType('RegularizerConfig', (_message.Message,), dict( DESCRIPTOR = _REGULARIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.regularizer_config_pb2' # @@protoc_insertion_point(class_scope:RegularizerConfig) )) _sym_db.RegisterMessage(RegularizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/regularizer_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy DetectNetv2 Proto.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/__init__.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/augmentation_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/augmentation_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nAnvidia_tao_deploy/cv/detectnet_v2/proto/augmentation_config.proto\"\xb2\x07\n\x12\x41ugmentationConfig\x12\x38\n\rpreprocessing\x18\x01 \x01(\x0b\x32!.AugmentationConfig.Preprocessing\x12\x45\n\x14spatial_augmentation\x18\x02 \x01(\x0b\x32\'.AugmentationConfig.SpatialAugmentation\x12\x41\n\x12\x63olor_augmentation\x18\x03 \x01(\x0b\x32%.AugmentationConfig.ColorAugmentation\x1a\xe0\x02\n\rPreprocessing\x12\x1a\n\x12output_image_width\x18\x01 \x01(\r\x12\x1b\n\x13output_image_height\x18\x02 \x01(\r\x12\x18\n\x10output_image_min\x18\x0e \x01(\r\x12\x18\n\x10output_image_max\x18\x0f \x01(\r\x12\x1a\n\x12\x65nable_auto_resize\x18\x10 \x01(\x08\x12\x1c\n\x14output_image_channel\x18\r \x01(\r\x12\x11\n\tcrop_left\x18\x04 \x01(\r\x12\x10\n\x08\x63rop_top\x18\x05 \x01(\r\x12\x12\n\ncrop_right\x18\x06 \x01(\r\x12\x13\n\x0b\x63rop_bottom\x18\x07 \x01(\r\x12\x16\n\x0emin_bbox_width\x18\x08 \x01(\x02\x12\x17\n\x0fmin_bbox_height\x18\t \x01(\x02\x12\x13\n\x0bscale_width\x18\n \x01(\x02\x12\x14\n\x0cscale_height\x18\x0b \x01(\x02\x1a\xd5\x01\n\x13SpatialAugmentation\x12\x19\n\x11hflip_probability\x18\x01 \x01(\x02\x12\x19\n\x11vflip_probability\x18\x02 \x01(\x02\x12\x10\n\x08zoom_min\x18\x03 \x01(\x02\x12\x10\n\x08zoom_max\x18\x04 \x01(\x02\x12\x17\n\x0ftranslate_max_x\x18\x05 \x01(\x02\x12\x17\n\x0ftranslate_max_y\x18\x06 \x01(\x02\x12\x16\n\x0erotate_rad_max\x18\x07 \x01(\x02\x12\x1a\n\x12rotate_probability\x18\x08 \x01(\x02\x1a\x9c\x01\n\x11\x43olorAugmentation\x12\x1a\n\x12\x63olor_shift_stddev\x18\x01 \x01(\x02\x12\x18\n\x10hue_rotation_max\x18\x02 \x01(\x02\x12\x1c\n\x14saturation_shift_max\x18\x03 \x01(\x02\x12\x1a\n\x12\x63ontrast_scale_max\x18\x05 \x01(\x02\x12\x17\n\x0f\x63ontrast_center\x18\x08 \x01(\x02\x62\x06proto3') ) _AUGMENTATIONCONFIG_PREPROCESSING = _descriptor.Descriptor( name='Preprocessing', full_name='AugmentationConfig.Preprocessing', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='output_image_width', full_name='AugmentationConfig.Preprocessing.output_image_width', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_image_height', full_name='AugmentationConfig.Preprocessing.output_image_height', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_image_min', full_name='AugmentationConfig.Preprocessing.output_image_min', index=2, number=14, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_image_max', full_name='AugmentationConfig.Preprocessing.output_image_max', index=3, number=15, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_auto_resize', full_name='AugmentationConfig.Preprocessing.enable_auto_resize', index=4, number=16, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_image_channel', full_name='AugmentationConfig.Preprocessing.output_image_channel', index=5, number=13, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_left', full_name='AugmentationConfig.Preprocessing.crop_left', index=6, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_top', full_name='AugmentationConfig.Preprocessing.crop_top', index=7, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_right', full_name='AugmentationConfig.Preprocessing.crop_right', index=8, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_bottom', full_name='AugmentationConfig.Preprocessing.crop_bottom', index=9, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_bbox_width', full_name='AugmentationConfig.Preprocessing.min_bbox_width', index=10, number=8, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_bbox_height', full_name='AugmentationConfig.Preprocessing.min_bbox_height', index=11, number=9, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scale_width', full_name='AugmentationConfig.Preprocessing.scale_width', index=12, number=10, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scale_height', full_name='AugmentationConfig.Preprocessing.scale_height', index=13, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=289, serialized_end=641, ) _AUGMENTATIONCONFIG_SPATIALAUGMENTATION = _descriptor.Descriptor( name='SpatialAugmentation', full_name='AugmentationConfig.SpatialAugmentation', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='hflip_probability', full_name='AugmentationConfig.SpatialAugmentation.hflip_probability', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='vflip_probability', full_name='AugmentationConfig.SpatialAugmentation.vflip_probability', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='zoom_min', full_name='AugmentationConfig.SpatialAugmentation.zoom_min', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='zoom_max', full_name='AugmentationConfig.SpatialAugmentation.zoom_max', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='translate_max_x', full_name='AugmentationConfig.SpatialAugmentation.translate_max_x', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='translate_max_y', full_name='AugmentationConfig.SpatialAugmentation.translate_max_y', index=5, number=6, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rotate_rad_max', full_name='AugmentationConfig.SpatialAugmentation.rotate_rad_max', index=6, number=7, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rotate_probability', full_name='AugmentationConfig.SpatialAugmentation.rotate_probability', index=7, number=8, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=644, serialized_end=857, ) _AUGMENTATIONCONFIG_COLORAUGMENTATION = _descriptor.Descriptor( name='ColorAugmentation', full_name='AugmentationConfig.ColorAugmentation', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='color_shift_stddev', full_name='AugmentationConfig.ColorAugmentation.color_shift_stddev', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='hue_rotation_max', full_name='AugmentationConfig.ColorAugmentation.hue_rotation_max', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='saturation_shift_max', full_name='AugmentationConfig.ColorAugmentation.saturation_shift_max', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='contrast_scale_max', full_name='AugmentationConfig.ColorAugmentation.contrast_scale_max', index=3, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='contrast_center', full_name='AugmentationConfig.ColorAugmentation.contrast_center', index=4, number=8, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=860, serialized_end=1016, ) _AUGMENTATIONCONFIG = _descriptor.Descriptor( name='AugmentationConfig', full_name='AugmentationConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='preprocessing', full_name='AugmentationConfig.preprocessing', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='spatial_augmentation', full_name='AugmentationConfig.spatial_augmentation', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='color_augmentation', full_name='AugmentationConfig.color_augmentation', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_AUGMENTATIONCONFIG_PREPROCESSING, _AUGMENTATIONCONFIG_SPATIALAUGMENTATION, _AUGMENTATIONCONFIG_COLORAUGMENTATION, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=70, serialized_end=1016, ) _AUGMENTATIONCONFIG_PREPROCESSING.containing_type = _AUGMENTATIONCONFIG _AUGMENTATIONCONFIG_SPATIALAUGMENTATION.containing_type = _AUGMENTATIONCONFIG _AUGMENTATIONCONFIG_COLORAUGMENTATION.containing_type = _AUGMENTATIONCONFIG _AUGMENTATIONCONFIG.fields_by_name['preprocessing'].message_type = _AUGMENTATIONCONFIG_PREPROCESSING _AUGMENTATIONCONFIG.fields_by_name['spatial_augmentation'].message_type = _AUGMENTATIONCONFIG_SPATIALAUGMENTATION _AUGMENTATIONCONFIG.fields_by_name['color_augmentation'].message_type = _AUGMENTATIONCONFIG_COLORAUGMENTATION DESCRIPTOR.message_types_by_name['AugmentationConfig'] = _AUGMENTATIONCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) AugmentationConfig = _reflection.GeneratedProtocolMessageType('AugmentationConfig', (_message.Message,), dict( Preprocessing = _reflection.GeneratedProtocolMessageType('Preprocessing', (_message.Message,), dict( DESCRIPTOR = _AUGMENTATIONCONFIG_PREPROCESSING, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig.Preprocessing) )) , SpatialAugmentation = _reflection.GeneratedProtocolMessageType('SpatialAugmentation', (_message.Message,), dict( DESCRIPTOR = _AUGMENTATIONCONFIG_SPATIALAUGMENTATION, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig.SpatialAugmentation) )) , ColorAugmentation = _reflection.GeneratedProtocolMessageType('ColorAugmentation', (_message.Message,), dict( DESCRIPTOR = _AUGMENTATIONCONFIG_COLORAUGMENTATION, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig.ColorAugmentation) )) , DESCRIPTOR = _AUGMENTATIONCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig) )) _sym_db.RegisterMessage(AugmentationConfig) _sym_db.RegisterMessage(AugmentationConfig.Preprocessing) _sym_db.RegisterMessage(AugmentationConfig.SpatialAugmentation) _sym_db.RegisterMessage(AugmentationConfig.ColorAugmentation) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/augmentation_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/coco_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/coco_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n9nvidia_tao_deploy/cv/detectnet_v2/proto/coco_config.proto\"\x86\x01\n\nCOCOConfig\x12\x1b\n\x13root_directory_path\x18\x01 \x01(\t\x12\x15\n\rimg_dir_names\x18\x02 \x03(\t\x12\x18\n\x10\x61nnotation_files\x18\x03 \x03(\t\x12\x16\n\x0enum_partitions\x18\x04 \x01(\r\x12\x12\n\nnum_shards\x18\x05 \x03(\rb\x06proto3') ) _COCOCONFIG = _descriptor.Descriptor( name='COCOConfig', full_name='COCOConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='root_directory_path', full_name='COCOConfig.root_directory_path', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='img_dir_names', full_name='COCOConfig.img_dir_names', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='annotation_files', full_name='COCOConfig.annotation_files', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_partitions', full_name='COCOConfig.num_partitions', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_shards', full_name='COCOConfig.num_shards', index=4, number=5, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=62, serialized_end=196, ) DESCRIPTOR.message_types_by_name['COCOConfig'] = _COCOCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) COCOConfig = _reflection.GeneratedProtocolMessageType('COCOConfig', (_message.Message,), dict( DESCRIPTOR = _COCOCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.coco_config_pb2' # @@protoc_insertion_point(class_scope:COCOConfig) )) _sym_db.RegisterMessage(COCOConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/coco_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/postprocessing_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/postprocessing_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nCnvidia_tao_deploy/cv/detectnet_v2/proto/postprocessing_config.proto\"\xfd\x02\n\x10\x43lusteringConfig\x12\x1a\n\x12\x63overage_threshold\x18\x01 \x01(\x02\x12#\n\x1bminimum_bounding_box_height\x18\x02 \x01(\x05\x12\x43\n\x14\x63lustering_algorithm\x18\x03 \x01(\x0e\x32%.ClusteringConfig.ClusteringAlgorithm\x12\x12\n\ndbscan_eps\x18\x04 \x01(\x02\x12\x1a\n\x12\x64\x62scan_min_samples\x18\x05 \x01(\x05\x12\x19\n\x11neighborhood_size\x18\x06 \x01(\x05\x12#\n\x1b\x64\x62scan_confidence_threshold\x18\x07 \x01(\x02\x12\x19\n\x11nms_iou_threshold\x18\x08 \x01(\x02\x12 \n\x18nms_confidence_threshold\x18\t \x01(\x02\"6\n\x13\x43lusteringAlgorithm\x12\n\n\x06\x44\x42SCAN\x10\x00\x12\x07\n\x03NMS\x10\x01\x12\n\n\x06HYBRID\x10\x02\"o\n\x10\x43onfidenceConfig\x12\x1c\n\x14\x63onfidence_threshold\x18\x01 \x01(\x02\x12!\n\x19\x63onfidence_model_filename\x18\x02 \x01(\t\x12\x1a\n\x12normalization_mode\x18\x03 \x01(\t\"\xb5\x02\n\x14PostProcessingConfig\x12I\n\x13target_class_config\x18\x01 \x03(\x0b\x32,.PostProcessingConfig.TargetClassConfigEntry\x1ao\n\x11TargetClassConfig\x12,\n\x11\x63lustering_config\x18\x01 \x01(\x0b\x32\x11.ClusteringConfig\x12,\n\x11\x63onfidence_config\x18\x02 \x01(\x0b\x32\x11.ConfidenceConfig\x1a\x61\n\x16TargetClassConfigEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x36\n\x05value\x18\x02 \x01(\x0b\x32\'.PostProcessingConfig.TargetClassConfig:\x02\x38\x01\x62\x06proto3') ) _CLUSTERINGCONFIG_CLUSTERINGALGORITHM = _descriptor.EnumDescriptor( name='ClusteringAlgorithm', full_name='ClusteringConfig.ClusteringAlgorithm', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DBSCAN', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='NMS', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='HYBRID', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=399, serialized_end=453, ) _sym_db.RegisterEnumDescriptor(_CLUSTERINGCONFIG_CLUSTERINGALGORITHM) _CLUSTERINGCONFIG = _descriptor.Descriptor( name='ClusteringConfig', full_name='ClusteringConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='coverage_threshold', full_name='ClusteringConfig.coverage_threshold', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='minimum_bounding_box_height', full_name='ClusteringConfig.minimum_bounding_box_height', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='clustering_algorithm', full_name='ClusteringConfig.clustering_algorithm', index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dbscan_eps', full_name='ClusteringConfig.dbscan_eps', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dbscan_min_samples', full_name='ClusteringConfig.dbscan_min_samples', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='neighborhood_size', full_name='ClusteringConfig.neighborhood_size', index=5, number=6, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dbscan_confidence_threshold', full_name='ClusteringConfig.dbscan_confidence_threshold', index=6, number=7, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nms_iou_threshold', full_name='ClusteringConfig.nms_iou_threshold', index=7, number=8, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nms_confidence_threshold', full_name='ClusteringConfig.nms_confidence_threshold', index=8, number=9, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _CLUSTERINGCONFIG_CLUSTERINGALGORITHM, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=72, serialized_end=453, ) _CONFIDENCECONFIG = _descriptor.Descriptor( name='ConfidenceConfig', full_name='ConfidenceConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='confidence_threshold', full_name='ConfidenceConfig.confidence_threshold', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='confidence_model_filename', full_name='ConfidenceConfig.confidence_model_filename', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='normalization_mode', full_name='ConfidenceConfig.normalization_mode', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=455, serialized_end=566, ) _POSTPROCESSINGCONFIG_TARGETCLASSCONFIG = _descriptor.Descriptor( name='TargetClassConfig', full_name='PostProcessingConfig.TargetClassConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='clustering_config', full_name='PostProcessingConfig.TargetClassConfig.clustering_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='confidence_config', full_name='PostProcessingConfig.TargetClassConfig.confidence_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=668, serialized_end=779, ) _POSTPROCESSINGCONFIG_TARGETCLASSCONFIGENTRY = _descriptor.Descriptor( name='TargetClassConfigEntry', full_name='PostProcessingConfig.TargetClassConfigEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='PostProcessingConfig.TargetClassConfigEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='PostProcessingConfig.TargetClassConfigEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=781, serialized_end=878, ) _POSTPROCESSINGCONFIG = _descriptor.Descriptor( name='PostProcessingConfig', full_name='PostProcessingConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='target_class_config', full_name='PostProcessingConfig.target_class_config', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_POSTPROCESSINGCONFIG_TARGETCLASSCONFIG, _POSTPROCESSINGCONFIG_TARGETCLASSCONFIGENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=569, serialized_end=878, ) _CLUSTERINGCONFIG.fields_by_name['clustering_algorithm'].enum_type = _CLUSTERINGCONFIG_CLUSTERINGALGORITHM _CLUSTERINGCONFIG_CLUSTERINGALGORITHM.containing_type = _CLUSTERINGCONFIG _POSTPROCESSINGCONFIG_TARGETCLASSCONFIG.fields_by_name['clustering_config'].message_type = _CLUSTERINGCONFIG _POSTPROCESSINGCONFIG_TARGETCLASSCONFIG.fields_by_name['confidence_config'].message_type = _CONFIDENCECONFIG _POSTPROCESSINGCONFIG_TARGETCLASSCONFIG.containing_type = _POSTPROCESSINGCONFIG _POSTPROCESSINGCONFIG_TARGETCLASSCONFIGENTRY.fields_by_name['value'].message_type = _POSTPROCESSINGCONFIG_TARGETCLASSCONFIG _POSTPROCESSINGCONFIG_TARGETCLASSCONFIGENTRY.containing_type = _POSTPROCESSINGCONFIG _POSTPROCESSINGCONFIG.fields_by_name['target_class_config'].message_type = _POSTPROCESSINGCONFIG_TARGETCLASSCONFIGENTRY DESCRIPTOR.message_types_by_name['ClusteringConfig'] = _CLUSTERINGCONFIG DESCRIPTOR.message_types_by_name['ConfidenceConfig'] = _CONFIDENCECONFIG DESCRIPTOR.message_types_by_name['PostProcessingConfig'] = _POSTPROCESSINGCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) ClusteringConfig = _reflection.GeneratedProtocolMessageType('ClusteringConfig', (_message.Message,), dict( DESCRIPTOR = _CLUSTERINGCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.postprocessing_config_pb2' # @@protoc_insertion_point(class_scope:ClusteringConfig) )) _sym_db.RegisterMessage(ClusteringConfig) ConfidenceConfig = _reflection.GeneratedProtocolMessageType('ConfidenceConfig', (_message.Message,), dict( DESCRIPTOR = _CONFIDENCECONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.postprocessing_config_pb2' # @@protoc_insertion_point(class_scope:ConfidenceConfig) )) _sym_db.RegisterMessage(ConfidenceConfig) PostProcessingConfig = _reflection.GeneratedProtocolMessageType('PostProcessingConfig', (_message.Message,), dict( TargetClassConfig = _reflection.GeneratedProtocolMessageType('TargetClassConfig', (_message.Message,), dict( DESCRIPTOR = _POSTPROCESSINGCONFIG_TARGETCLASSCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.postprocessing_config_pb2' # @@protoc_insertion_point(class_scope:PostProcessingConfig.TargetClassConfig) )) , TargetClassConfigEntry = _reflection.GeneratedProtocolMessageType('TargetClassConfigEntry', (_message.Message,), dict( DESCRIPTOR = _POSTPROCESSINGCONFIG_TARGETCLASSCONFIGENTRY, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.postprocessing_config_pb2' # @@protoc_insertion_point(class_scope:PostProcessingConfig.TargetClassConfigEntry) )) , DESCRIPTOR = _POSTPROCESSINGCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.postprocessing_config_pb2' # @@protoc_insertion_point(class_scope:PostProcessingConfig) )) _sym_db.RegisterMessage(PostProcessingConfig) _sym_db.RegisterMessage(PostProcessingConfig.TargetClassConfig) _sym_db.RegisterMessage(PostProcessingConfig.TargetClassConfigEntry) _POSTPROCESSINGCONFIG_TARGETCLASSCONFIGENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/postprocessing_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/visualizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.common.proto import clearml_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_clearml__config__pb2 from nvidia_tao_deploy.cv.common.proto import wandb_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_wandb__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/visualizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n?nvidia_tao_deploy/cv/detectnet_v2/proto/visualizer_config.proto\x1a\x36nvidia_tao_deploy/cv/common/proto/clearml_config.proto\x1a\x34nvidia_tao_deploy/cv/common/proto/wandb_config.proto\"\xa2\x03\n\x10VisualizerConfig\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\x12\x12\n\nnum_images\x18\x02 \x01(\r\x12 \n\x18scalar_logging_frequency\x18\x03 \x01(\r\x12$\n\x1cinfrequent_logging_frequency\x18\x04 \x01(\r\x12\x45\n\x13target_class_config\x18\x05 \x03(\x0b\x32(.VisualizerConfig.TargetClassConfigEntry\x12\"\n\x0cwandb_config\x18\x06 \x01(\x0b\x32\x0c.WandBConfig\x12&\n\x0e\x63learml_config\x18\x07 \x01(\x0b\x32\x0e.ClearMLConfig\x1a/\n\x11TargetClassConfig\x12\x1a\n\x12\x63overage_threshold\x18\x01 \x01(\x02\x1a]\n\x16TargetClassConfigEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x32\n\x05value\x18\x02 \x01(\x0b\x32#.VisualizerConfig.TargetClassConfig:\x02\x38\x01\x62\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_clearml__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_wandb__config__pb2.DESCRIPTOR,]) _VISUALIZERCONFIG_TARGETCLASSCONFIG = _descriptor.Descriptor( name='TargetClassConfig', full_name='VisualizerConfig.TargetClassConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='coverage_threshold', full_name='VisualizerConfig.TargetClassConfig.coverage_threshold', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=454, serialized_end=501, ) _VISUALIZERCONFIG_TARGETCLASSCONFIGENTRY = _descriptor.Descriptor( name='TargetClassConfigEntry', full_name='VisualizerConfig.TargetClassConfigEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='VisualizerConfig.TargetClassConfigEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='VisualizerConfig.TargetClassConfigEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=503, serialized_end=596, ) _VISUALIZERCONFIG = _descriptor.Descriptor( name='VisualizerConfig', full_name='VisualizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='enabled', full_name='VisualizerConfig.enabled', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_images', full_name='VisualizerConfig.num_images', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scalar_logging_frequency', full_name='VisualizerConfig.scalar_logging_frequency', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='infrequent_logging_frequency', full_name='VisualizerConfig.infrequent_logging_frequency', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_class_config', full_name='VisualizerConfig.target_class_config', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='wandb_config', full_name='VisualizerConfig.wandb_config', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='clearml_config', full_name='VisualizerConfig.clearml_config', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_VISUALIZERCONFIG_TARGETCLASSCONFIG, _VISUALIZERCONFIG_TARGETCLASSCONFIGENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=178, serialized_end=596, ) _VISUALIZERCONFIG_TARGETCLASSCONFIG.containing_type = _VISUALIZERCONFIG _VISUALIZERCONFIG_TARGETCLASSCONFIGENTRY.fields_by_name['value'].message_type = _VISUALIZERCONFIG_TARGETCLASSCONFIG _VISUALIZERCONFIG_TARGETCLASSCONFIGENTRY.containing_type = _VISUALIZERCONFIG _VISUALIZERCONFIG.fields_by_name['target_class_config'].message_type = _VISUALIZERCONFIG_TARGETCLASSCONFIGENTRY _VISUALIZERCONFIG.fields_by_name['wandb_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_wandb__config__pb2._WANDBCONFIG _VISUALIZERCONFIG.fields_by_name['clearml_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_clearml__config__pb2._CLEARMLCONFIG DESCRIPTOR.message_types_by_name['VisualizerConfig'] = _VISUALIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) VisualizerConfig = _reflection.GeneratedProtocolMessageType('VisualizerConfig', (_message.Message,), dict( TargetClassConfig = _reflection.GeneratedProtocolMessageType('TargetClassConfig', (_message.Message,), dict( DESCRIPTOR = _VISUALIZERCONFIG_TARGETCLASSCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.visualizer_config_pb2' # @@protoc_insertion_point(class_scope:VisualizerConfig.TargetClassConfig) )) , TargetClassConfigEntry = _reflection.GeneratedProtocolMessageType('TargetClassConfigEntry', (_message.Message,), dict( DESCRIPTOR = _VISUALIZERCONFIG_TARGETCLASSCONFIGENTRY, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.visualizer_config_pb2' # @@protoc_insertion_point(class_scope:VisualizerConfig.TargetClassConfigEntry) )) , DESCRIPTOR = _VISUALIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.visualizer_config_pb2' # @@protoc_insertion_point(class_scope:VisualizerConfig) )) _sym_db.RegisterMessage(VisualizerConfig) _sym_db.RegisterMessage(VisualizerConfig.TargetClassConfig) _sym_db.RegisterMessage(VisualizerConfig.TargetClassConfigEntry) _VISUALIZERCONFIG_TARGETCLASSCONFIGENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/visualizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/learning_rate_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.detectnet_v2.proto import soft_start_annealing_schedule_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_soft__start__annealing__schedule__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import early_stopping_annealing_schedule_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_early__stopping__annealing__schedule__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/learning_rate_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nBnvidia_tao_deploy/cv/detectnet_v2/proto/learning_rate_config.proto\x1aRnvidia_tao_deploy/cv/detectnet_v2/proto/soft_start_annealing_schedule_config.proto\x1aVnvidia_tao_deploy/cv/detectnet_v2/proto/early_stopping_annealing_schedule_config.proto\"\xc5\x01\n\x12LearningRateConfig\x12J\n\x1dsoft_start_annealing_schedule\x18\x01 \x01(\x0b\x32!.SoftStartAnnealingScheduleConfigH\x00\x12R\n!early_stopping_annealing_schedule\x18\x02 \x01(\x0b\x32%.EarlyStoppingAnnealingScheduleConfigH\x00\x42\x0f\n\rlearning_rateb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_soft__start__annealing__schedule__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_early__stopping__annealing__schedule__config__pb2.DESCRIPTOR,]) _LEARNINGRATECONFIG = _descriptor.Descriptor( name='LearningRateConfig', full_name='LearningRateConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='soft_start_annealing_schedule', full_name='LearningRateConfig.soft_start_annealing_schedule', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='early_stopping_annealing_schedule', full_name='LearningRateConfig.early_stopping_annealing_schedule', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='learning_rate', full_name='LearningRateConfig.learning_rate', index=0, containing_type=None, fields=[]), ], serialized_start=243, serialized_end=440, ) _LEARNINGRATECONFIG.fields_by_name['soft_start_annealing_schedule'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_soft__start__annealing__schedule__config__pb2._SOFTSTARTANNEALINGSCHEDULECONFIG _LEARNINGRATECONFIG.fields_by_name['early_stopping_annealing_schedule'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_early__stopping__annealing__schedule__config__pb2._EARLYSTOPPINGANNEALINGSCHEDULECONFIG _LEARNINGRATECONFIG.oneofs_by_name['learning_rate'].fields.append( _LEARNINGRATECONFIG.fields_by_name['soft_start_annealing_schedule']) _LEARNINGRATECONFIG.fields_by_name['soft_start_annealing_schedule'].containing_oneof = _LEARNINGRATECONFIG.oneofs_by_name['learning_rate'] _LEARNINGRATECONFIG.oneofs_by_name['learning_rate'].fields.append( _LEARNINGRATECONFIG.fields_by_name['early_stopping_annealing_schedule']) _LEARNINGRATECONFIG.fields_by_name['early_stopping_annealing_schedule'].containing_oneof = _LEARNINGRATECONFIG.oneofs_by_name['learning_rate'] DESCRIPTOR.message_types_by_name['LearningRateConfig'] = _LEARNINGRATECONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) LearningRateConfig = _reflection.GeneratedProtocolMessageType('LearningRateConfig', (_message.Message,), dict( DESCRIPTOR = _LEARNINGRATECONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.learning_rate_config_pb2' # @@protoc_insertion_point(class_scope:LearningRateConfig) )) _sym_db.RegisterMessage(LearningRateConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/learning_rate_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/inference.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.detectnet_v2.proto import inferencer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_inferencer__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import postprocessing_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_postprocessing__config__pb2 from nvidia_tao_deploy.cv.common.proto import wandb_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_wandb__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/inference.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n7nvidia_tao_deploy/cv/detectnet_v2/proto/inference.proto\x1a?nvidia_tao_deploy/cv/detectnet_v2/proto/inferencer_config.proto\x1a\x43nvidia_tao_deploy/cv/detectnet_v2/proto/postprocessing_config.proto\x1a\x34nvidia_tao_deploy/cv/common/proto/wandb_config.proto\"\xe1\x01\n\x1a\x43lasswiseBboxHandlerConfig\x12,\n\x11\x63lustering_config\x18\x01 \x01(\x0b\x32\x11.ClusteringConfig\x12\x18\n\x10\x63onfidence_model\x18\x02 \x01(\t\x12\x12\n\noutput_map\x18\x03 \x01(\t\x12\x39\n\nbbox_color\x18\x07 \x01(\x0b\x32%.ClasswiseBboxHandlerConfig.BboxColor\x1a,\n\tBboxColor\x12\t\n\x01R\x18\x01 \x01(\x05\x12\t\n\x01G\x18\x02 \x01(\x05\x12\t\n\x01\x42\x18\x03 \x01(\x05\"\xd4\x02\n\x11\x42\x62oxHandlerConfig\x12\x12\n\nkitti_dump\x18\x01 \x01(\x08\x12\x17\n\x0f\x64isable_overlay\x18\x02 \x01(\x08\x12\x19\n\x11overlay_linewidth\x18\x03 \x01(\x05\x12Y\n\x1d\x63lasswise_bbox_handler_config\x18\x04 \x03(\x0b\x32\x32.BboxHandlerConfig.ClasswiseBboxHandlerConfigEntry\x12\x18\n\x10postproc_classes\x18\x05 \x03(\t\x12\"\n\x0cwandb_config\x18\x06 \x01(\x0b\x32\x0c.WandBConfig\x1a^\n\x1f\x43lasswiseBboxHandlerConfigEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12*\n\x05value\x18\x02 \x01(\x0b\x32\x1b.ClasswiseBboxHandlerConfig:\x02\x38\x01\"j\n\tInference\x12,\n\x11inferencer_config\x18\x01 \x01(\x0b\x32\x11.InferencerConfig\x12/\n\x13\x62\x62ox_handler_config\x18\x02 \x01(\x0b\x32\x12.BboxHandlerConfigb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_inferencer__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_postprocessing__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_wandb__config__pb2.DESCRIPTOR,]) _CLASSWISEBBOXHANDLERCONFIG_BBOXCOLOR = _descriptor.Descriptor( name='BboxColor', full_name='ClasswiseBboxHandlerConfig.BboxColor', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='R', full_name='ClasswiseBboxHandlerConfig.BboxColor.R', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='G', full_name='ClasswiseBboxHandlerConfig.BboxColor.G', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='B', full_name='ClasswiseBboxHandlerConfig.BboxColor.B', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=429, serialized_end=473, ) _CLASSWISEBBOXHANDLERCONFIG = _descriptor.Descriptor( name='ClasswiseBboxHandlerConfig', full_name='ClasswiseBboxHandlerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='clustering_config', full_name='ClasswiseBboxHandlerConfig.clustering_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='confidence_model', full_name='ClasswiseBboxHandlerConfig.confidence_model', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_map', full_name='ClasswiseBboxHandlerConfig.output_map', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bbox_color', full_name='ClasswiseBboxHandlerConfig.bbox_color', index=3, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_CLASSWISEBBOXHANDLERCONFIG_BBOXCOLOR, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=248, serialized_end=473, ) _BBOXHANDLERCONFIG_CLASSWISEBBOXHANDLERCONFIGENTRY = _descriptor.Descriptor( name='ClasswiseBboxHandlerConfigEntry', full_name='BboxHandlerConfig.ClasswiseBboxHandlerConfigEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='BboxHandlerConfig.ClasswiseBboxHandlerConfigEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='BboxHandlerConfig.ClasswiseBboxHandlerConfigEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=722, serialized_end=816, ) _BBOXHANDLERCONFIG = _descriptor.Descriptor( name='BboxHandlerConfig', full_name='BboxHandlerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='kitti_dump', full_name='BboxHandlerConfig.kitti_dump', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='disable_overlay', full_name='BboxHandlerConfig.disable_overlay', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='overlay_linewidth', full_name='BboxHandlerConfig.overlay_linewidth', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='classwise_bbox_handler_config', full_name='BboxHandlerConfig.classwise_bbox_handler_config', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='postproc_classes', full_name='BboxHandlerConfig.postproc_classes', index=4, number=5, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='wandb_config', full_name='BboxHandlerConfig.wandb_config', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_BBOXHANDLERCONFIG_CLASSWISEBBOXHANDLERCONFIGENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=476, serialized_end=816, ) _INFERENCE = _descriptor.Descriptor( name='Inference', full_name='Inference', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='inferencer_config', full_name='Inference.inferencer_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bbox_handler_config', full_name='Inference.bbox_handler_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=818, serialized_end=924, ) _CLASSWISEBBOXHANDLERCONFIG_BBOXCOLOR.containing_type = _CLASSWISEBBOXHANDLERCONFIG _CLASSWISEBBOXHANDLERCONFIG.fields_by_name['clustering_config'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_postprocessing__config__pb2._CLUSTERINGCONFIG _CLASSWISEBBOXHANDLERCONFIG.fields_by_name['bbox_color'].message_type = _CLASSWISEBBOXHANDLERCONFIG_BBOXCOLOR _BBOXHANDLERCONFIG_CLASSWISEBBOXHANDLERCONFIGENTRY.fields_by_name['value'].message_type = _CLASSWISEBBOXHANDLERCONFIG _BBOXHANDLERCONFIG_CLASSWISEBBOXHANDLERCONFIGENTRY.containing_type = _BBOXHANDLERCONFIG _BBOXHANDLERCONFIG.fields_by_name['classwise_bbox_handler_config'].message_type = _BBOXHANDLERCONFIG_CLASSWISEBBOXHANDLERCONFIGENTRY _BBOXHANDLERCONFIG.fields_by_name['wandb_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_wandb__config__pb2._WANDBCONFIG _INFERENCE.fields_by_name['inferencer_config'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_inferencer__config__pb2._INFERENCERCONFIG _INFERENCE.fields_by_name['bbox_handler_config'].message_type = _BBOXHANDLERCONFIG DESCRIPTOR.message_types_by_name['ClasswiseBboxHandlerConfig'] = _CLASSWISEBBOXHANDLERCONFIG DESCRIPTOR.message_types_by_name['BboxHandlerConfig'] = _BBOXHANDLERCONFIG DESCRIPTOR.message_types_by_name['Inference'] = _INFERENCE _sym_db.RegisterFileDescriptor(DESCRIPTOR) ClasswiseBboxHandlerConfig = _reflection.GeneratedProtocolMessageType('ClasswiseBboxHandlerConfig', (_message.Message,), dict( BboxColor = _reflection.GeneratedProtocolMessageType('BboxColor', (_message.Message,), dict( DESCRIPTOR = _CLASSWISEBBOXHANDLERCONFIG_BBOXCOLOR, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.inference_pb2' # @@protoc_insertion_point(class_scope:ClasswiseBboxHandlerConfig.BboxColor) )) , DESCRIPTOR = _CLASSWISEBBOXHANDLERCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.inference_pb2' # @@protoc_insertion_point(class_scope:ClasswiseBboxHandlerConfig) )) _sym_db.RegisterMessage(ClasswiseBboxHandlerConfig) _sym_db.RegisterMessage(ClasswiseBboxHandlerConfig.BboxColor) BboxHandlerConfig = _reflection.GeneratedProtocolMessageType('BboxHandlerConfig', (_message.Message,), dict( ClasswiseBboxHandlerConfigEntry = _reflection.GeneratedProtocolMessageType('ClasswiseBboxHandlerConfigEntry', (_message.Message,), dict( DESCRIPTOR = _BBOXHANDLERCONFIG_CLASSWISEBBOXHANDLERCONFIGENTRY, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.inference_pb2' # @@protoc_insertion_point(class_scope:BboxHandlerConfig.ClasswiseBboxHandlerConfigEntry) )) , DESCRIPTOR = _BBOXHANDLERCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.inference_pb2' # @@protoc_insertion_point(class_scope:BboxHandlerConfig) )) _sym_db.RegisterMessage(BboxHandlerConfig) _sym_db.RegisterMessage(BboxHandlerConfig.ClasswiseBboxHandlerConfigEntry) Inference = _reflection.GeneratedProtocolMessageType('Inference', (_message.Message,), dict( DESCRIPTOR = _INFERENCE, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.inference_pb2' # @@protoc_insertion_point(class_scope:Inference) )) _sym_db.RegisterMessage(Inference) _BBOXHANDLERCONFIG_CLASSWISEBBOXHANDLERCONFIGENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/inference_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/bbox_rasterizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/bbox_rasterizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nDnvidia_tao_deploy/cv/detectnet_v2/proto/bbox_rasterizer_config.proto\"\xe4\x02\n\x14\x42\x62oxRasterizerConfig\x12I\n\x13target_class_config\x18\x01 \x03(\x0b\x32,.BboxRasterizerConfig.TargetClassConfigEntry\x12\x17\n\x0f\x64\x65\x61\x64zone_radius\x18\x02 \x01(\x02\x1a\x84\x01\n\x11TargetClassConfig\x12\x14\n\x0c\x63ov_center_x\x18\x01 \x01(\x02\x12\x14\n\x0c\x63ov_center_y\x18\x02 \x01(\x02\x12\x14\n\x0c\x63ov_radius_x\x18\x03 \x01(\x02\x12\x14\n\x0c\x63ov_radius_y\x18\x04 \x01(\x02\x12\x17\n\x0f\x62\x62ox_min_radius\x18\x05 \x01(\x02\x1a\x61\n\x16TargetClassConfigEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x36\n\x05value\x18\x02 \x01(\x0b\x32\'.BboxRasterizerConfig.TargetClassConfig:\x02\x38\x01\x62\x06proto3') ) _BBOXRASTERIZERCONFIG_TARGETCLASSCONFIG = _descriptor.Descriptor( name='TargetClassConfig', full_name='BboxRasterizerConfig.TargetClassConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='cov_center_x', full_name='BboxRasterizerConfig.TargetClassConfig.cov_center_x', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cov_center_y', full_name='BboxRasterizerConfig.TargetClassConfig.cov_center_y', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cov_radius_x', full_name='BboxRasterizerConfig.TargetClassConfig.cov_radius_x', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cov_radius_y', full_name='BboxRasterizerConfig.TargetClassConfig.cov_radius_y', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bbox_min_radius', full_name='BboxRasterizerConfig.TargetClassConfig.bbox_min_radius', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=198, serialized_end=330, ) _BBOXRASTERIZERCONFIG_TARGETCLASSCONFIGENTRY = _descriptor.Descriptor( name='TargetClassConfigEntry', full_name='BboxRasterizerConfig.TargetClassConfigEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='BboxRasterizerConfig.TargetClassConfigEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='BboxRasterizerConfig.TargetClassConfigEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=332, serialized_end=429, ) _BBOXRASTERIZERCONFIG = _descriptor.Descriptor( name='BboxRasterizerConfig', full_name='BboxRasterizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='target_class_config', full_name='BboxRasterizerConfig.target_class_config', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='deadzone_radius', full_name='BboxRasterizerConfig.deadzone_radius', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_BBOXRASTERIZERCONFIG_TARGETCLASSCONFIG, _BBOXRASTERIZERCONFIG_TARGETCLASSCONFIGENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=73, serialized_end=429, ) _BBOXRASTERIZERCONFIG_TARGETCLASSCONFIG.containing_type = _BBOXRASTERIZERCONFIG _BBOXRASTERIZERCONFIG_TARGETCLASSCONFIGENTRY.fields_by_name['value'].message_type = _BBOXRASTERIZERCONFIG_TARGETCLASSCONFIG _BBOXRASTERIZERCONFIG_TARGETCLASSCONFIGENTRY.containing_type = _BBOXRASTERIZERCONFIG _BBOXRASTERIZERCONFIG.fields_by_name['target_class_config'].message_type = _BBOXRASTERIZERCONFIG_TARGETCLASSCONFIGENTRY DESCRIPTOR.message_types_by_name['BboxRasterizerConfig'] = _BBOXRASTERIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) BboxRasterizerConfig = _reflection.GeneratedProtocolMessageType('BboxRasterizerConfig', (_message.Message,), dict( TargetClassConfig = _reflection.GeneratedProtocolMessageType('TargetClassConfig', (_message.Message,), dict( DESCRIPTOR = _BBOXRASTERIZERCONFIG_TARGETCLASSCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.bbox_rasterizer_config_pb2' # @@protoc_insertion_point(class_scope:BboxRasterizerConfig.TargetClassConfig) )) , TargetClassConfigEntry = _reflection.GeneratedProtocolMessageType('TargetClassConfigEntry', (_message.Message,), dict( DESCRIPTOR = _BBOXRASTERIZERCONFIG_TARGETCLASSCONFIGENTRY, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.bbox_rasterizer_config_pb2' # @@protoc_insertion_point(class_scope:BboxRasterizerConfig.TargetClassConfigEntry) )) , DESCRIPTOR = _BBOXRASTERIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.bbox_rasterizer_config_pb2' # @@protoc_insertion_point(class_scope:BboxRasterizerConfig) )) _sym_db.RegisterMessage(BboxRasterizerConfig) _sym_db.RegisterMessage(BboxRasterizerConfig.TargetClassConfig) _sym_db.RegisterMessage(BboxRasterizerConfig.TargetClassConfigEntry) _BBOXRASTERIZERCONFIG_TARGETCLASSCONFIGENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/bbox_rasterizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/soft_start_annealing_schedule_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/soft_start_annealing_schedule_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nRnvidia_tao_deploy/cv/detectnet_v2/proto/soft_start_annealing_schedule_config.proto\"\x7f\n SoftStartAnnealingScheduleConfig\x12\x19\n\x11min_learning_rate\x18\x01 \x01(\x02\x12\x19\n\x11max_learning_rate\x18\x02 \x01(\x02\x12\x12\n\nsoft_start\x18\x03 \x01(\x02\x12\x11\n\tannealing\x18\x04 \x01(\x02\x62\x06proto3') ) _SOFTSTARTANNEALINGSCHEDULECONFIG = _descriptor.Descriptor( name='SoftStartAnnealingScheduleConfig', full_name='SoftStartAnnealingScheduleConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='min_learning_rate', full_name='SoftStartAnnealingScheduleConfig.min_learning_rate', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_learning_rate', full_name='SoftStartAnnealingScheduleConfig.max_learning_rate', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='soft_start', full_name='SoftStartAnnealingScheduleConfig.soft_start', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='annealing', full_name='SoftStartAnnealingScheduleConfig.annealing', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=86, serialized_end=213, ) DESCRIPTOR.message_types_by_name['SoftStartAnnealingScheduleConfig'] = _SOFTSTARTANNEALINGSCHEDULECONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) SoftStartAnnealingScheduleConfig = _reflection.GeneratedProtocolMessageType('SoftStartAnnealingScheduleConfig', (_message.Message,), dict( DESCRIPTOR = _SOFTSTARTANNEALINGSCHEDULECONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.soft_start_annealing_schedule_config_pb2' # @@protoc_insertion_point(class_scope:SoftStartAnnealingScheduleConfig) )) _sym_db.RegisterMessage(SoftStartAnnealingScheduleConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/soft_start_annealing_schedule_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/experiment.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.detectnet_v2.proto import augmentation_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_augmentation__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import bbox_rasterizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_bbox__rasterizer__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import cost_function_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_cost__function__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import dataset_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_dataset__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import evaluation_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_evaluation__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import model_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_model__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import objective_label_filter_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_objective__label__filter__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import postprocessing_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_postprocessing__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import training_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_training__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import dataset_export_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_dataset__export__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/experiment.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n8nvidia_tao_deploy/cv/detectnet_v2/proto/experiment.proto\x1a\x41nvidia_tao_deploy/cv/detectnet_v2/proto/augmentation_config.proto\x1a\x44nvidia_tao_deploy/cv/detectnet_v2/proto/bbox_rasterizer_config.proto\x1a\x42nvidia_tao_deploy/cv/detectnet_v2/proto/cost_function_config.proto\x1a<nvidia_tao_deploy/cv/detectnet_v2/proto/dataset_config.proto\x1a?nvidia_tao_deploy/cv/detectnet_v2/proto/evaluation_config.proto\x1a:nvidia_tao_deploy/cv/detectnet_v2/proto/model_config.proto\x1a\x44nvidia_tao_deploy/cv/detectnet_v2/proto/objective_label_filter.proto\x1a\x43nvidia_tao_deploy/cv/detectnet_v2/proto/postprocessing_config.proto\x1a=nvidia_tao_deploy/cv/detectnet_v2/proto/training_config.proto\x1a\x43nvidia_tao_deploy/cv/detectnet_v2/proto/dataset_export_config.proto\"\x83\x04\n\nExperiment\x12\x13\n\x0brandom_seed\x18\x01 \x01(\r\x12&\n\x0e\x64\x61taset_config\x18\x02 \x01(\x0b\x32\x0e.DatasetConfig\x12\x30\n\x13\x61ugmentation_config\x18\x03 \x01(\x0b\x32\x13.AugmentationConfig\x12\x34\n\x15postprocessing_config\x18\x04 \x01(\x0b\x32\x15.PostProcessingConfig\x12\"\n\x0cmodel_config\x18\x05 \x01(\x0b\x32\x0c.ModelConfig\x12,\n\x11\x65valuation_config\x18\x06 \x01(\x0b\x32\x11.EvaluationConfig\x12\x31\n\x14\x63ost_function_config\x18\x08 \x01(\x0b\x32\x13.CostFunctionConfig\x12(\n\x0ftraining_config\x18\t \x01(\x0b\x32\x0f.TrainingConfig\x12\x35\n\x16\x62\x62ox_rasterizer_config\x18\n \x01(\x0b\x32\x15.BboxRasterizerConfig\x12\x35\n\x16loss_mask_label_filter\x18\x0b \x01(\x0b\x32\x15.ObjectiveLabelFilter\x12\x33\n\x15\x64\x61taset_export_config\x18\x0c \x03(\x0b\x32\x14.DatasetExportConfigb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_augmentation__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_bbox__rasterizer__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_cost__function__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_dataset__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_evaluation__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_model__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_objective__label__filter__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_postprocessing__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_training__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_dataset__export__config__pb2.DESCRIPTOR,]) _EXPERIMENT = _descriptor.Descriptor( name='Experiment', full_name='Experiment', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='random_seed', full_name='Experiment.random_seed', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dataset_config', full_name='Experiment.dataset_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='augmentation_config', full_name='Experiment.augmentation_config', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='postprocessing_config', full_name='Experiment.postprocessing_config', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_config', full_name='Experiment.model_config', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='evaluation_config', full_name='Experiment.evaluation_config', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cost_function_config', full_name='Experiment.cost_function_config', index=6, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='training_config', full_name='Experiment.training_config', index=7, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bbox_rasterizer_config', full_name='Experiment.bbox_rasterizer_config', index=8, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss_mask_label_filter', full_name='Experiment.loss_mask_label_filter', index=9, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dataset_export_config', full_name='Experiment.dataset_export_config', index=10, number=12, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=724, serialized_end=1239, ) _EXPERIMENT.fields_by_name['dataset_config'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_dataset__config__pb2._DATASETCONFIG _EXPERIMENT.fields_by_name['augmentation_config'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_augmentation__config__pb2._AUGMENTATIONCONFIG _EXPERIMENT.fields_by_name['postprocessing_config'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_postprocessing__config__pb2._POSTPROCESSINGCONFIG _EXPERIMENT.fields_by_name['model_config'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_model__config__pb2._MODELCONFIG _EXPERIMENT.fields_by_name['evaluation_config'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_evaluation__config__pb2._EVALUATIONCONFIG _EXPERIMENT.fields_by_name['cost_function_config'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_cost__function__config__pb2._COSTFUNCTIONCONFIG _EXPERIMENT.fields_by_name['training_config'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_training__config__pb2._TRAININGCONFIG _EXPERIMENT.fields_by_name['bbox_rasterizer_config'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_bbox__rasterizer__config__pb2._BBOXRASTERIZERCONFIG _EXPERIMENT.fields_by_name['loss_mask_label_filter'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_objective__label__filter__pb2._OBJECTIVELABELFILTER _EXPERIMENT.fields_by_name['dataset_export_config'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_dataset__export__config__pb2._DATASETEXPORTCONFIG DESCRIPTOR.message_types_by_name['Experiment'] = _EXPERIMENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) Experiment = _reflection.GeneratedProtocolMessageType('Experiment', (_message.Message,), dict( DESCRIPTOR = _EXPERIMENT, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.experiment_pb2' # @@protoc_insertion_point(class_scope:Experiment) )) _sym_db.RegisterMessage(Experiment) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/experiment_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PostProcessingConfig class that holds postprocessing parameters.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from nvidia_tao_deploy.cv.detectnet_v2.proto.clustering_config import build_clustering_config from nvidia_tao_deploy.cv.detectnet_v2.proto.clustering_config import build_clustering_proto from nvidia_tao_deploy.cv.detectnet_v2.proto.confidence_config import build_confidence_config from nvidia_tao_deploy.cv.detectnet_v2.proto.confidence_config import build_confidence_proto from nvidia_tao_deploy.cv.detectnet_v2.proto.postprocessing_config_pb2 import PostProcessingConfig as\ PostProcessingProto def build_postprocessing_config(postprocessing_proto): """Build PostProcessingConfig from a proto. Args: postprocessing_proto: proto.postprocessing_config proto message. Returns: configs: A dict of PostProcessingConfig instances indexed by target class name. """ configs = {} for class_name, config in six.iteritems(postprocessing_proto.target_class_config): clustering_config = build_clustering_config(config.clustering_config) confidence_config = build_confidence_config(config.confidence_config) configs[class_name] = PostProcessingConfig(clustering_config, confidence_config) return configs class PostProcessingConfig(object): """Hold the post-processing parameters for one class.""" def __init__(self, clustering_config, confidence_config): """Constructor. Args: clustering_config (ClusteringConfig object): Built clustering configuration object. confidence_config (ConfidenceConfig object): Built confidence configuration object. """ self.clustering_config = clustering_config self.confidence_config = confidence_config def build_postprocessing_proto(postprocessing_config): """Build proto from a PostProcessingConfig dictionary. Args: postprocessing_config: A dict of PostProcessingConfig instances indexed by target class name. Returns: postprocessing_proto: proto.postprocessing_config proto message. """ proto = PostProcessingProto() for target_class_name, target_class in six.iteritems(postprocessing_config): proto.target_class_config[target_class_name].clustering_config.CopyFrom( build_clustering_proto(target_class.clustering_config)) proto.target_class_config[target_class_name].confidence_config.CopyFrom( build_confidence_proto(target_class.confidence_config)) return proto
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/postprocessing_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Config Base Utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from google.protobuf.text_format import Merge as merge_text_proto from nvidia_tao_deploy.cv.detectnet_v2.proto.experiment_pb2 import Experiment from nvidia_tao_deploy.cv.detectnet_v2.proto.inference_pb2 import Inference def load_proto(config, proto_type="experiment"): """Load the experiment proto.""" if proto_type == "experiment": proto = Experiment() else: proto = Inference() def _load_from_file(filename, pb2): if not os.path.exists(filename): raise IOError(f"Specfile not found at: {filename}") with open(filename, "r", encoding="utf-8") as f: merge_text_proto(f.read(), pb2) _load_from_file(config, proto) return proto
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """TAO Deploy Clustering Config.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from nvidia_tao_deploy.cv.detectnet_v2.proto.postprocessing_config_pb2 import ClusteringConfig as ClusteringProto CLUSTERING_ALGORITHM = { 0: "dbscan", 1: "nms", 2: "hybrid" } def build_clustering_config(clustering_config): """Build ClusteringConfig from a proto. Args: clustering_config: clustering_config proto message. Returns: ClusteringConfig object. """ return ClusteringConfig(clustering_config.coverage_threshold, clustering_config.dbscan_eps, clustering_config.dbscan_min_samples, clustering_config.minimum_bounding_box_height, clustering_config.clustering_algorithm, clustering_config.nms_iou_threshold, clustering_config.nms_confidence_threshold, clustering_config.dbscan_confidence_threshold) def build_clustering_proto(clustering_config): """Build proto from ClusteringConfig. Args: clustering_config: ClusteringConfig object. Returns: clustering_config: clustering_config proto message. """ proto = ClusteringProto() proto.coverage_threshold = clustering_config.coverage_threshold proto.dbscan_eps = clustering_config.dbscan_eps proto.dbscan_min_samples = clustering_config.dbscan_min_samples proto.minimum_bounding_box_height = clustering_config.minimum_bounding_box_height proto.clustering_algorithm = clustering_config.clustering_algorithm proto.nms_iou_threshold = clustering_config.nms_iou_threshold proto.nms_confidence_threshold = clustering_config.nms_confidence_threshold proto.dbscan_confidence_threshold = clustering_config.dbscan_confidence_threshold return proto class ClusteringConfig(object): """Hold the parameters for clustering detections.""" def __init__(self, coverage_threshold, dbscan_eps, dbscan_min_samples, minimum_bounding_box_height, clustering_algorithm, nms_iou_threshold, nms_confidence_threshold, dbscan_confidence_threshold): """Constructor. Args: coverage_threshold (float): Grid cells with coverage lower than this threshold will be ignored. Valid range [0.0, 1.0]. dbscan_eps (float): DBSCAN eps parameter. The maximum distance between two samples for them to be considered as in the same neighborhood. Valid range [0.0, 1.0]. dbscan_min_samples (float): DBSCAN min samples parameter. The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. Must be >= 0.0. minimum_bounding_box_height (int): Minimum bbox height. Must be >= 0. clustering_algorithm (clustering_config.clustering_algorithm): The type of clustering algorithm. nms_iou_threshold (float): The iou threshold for NMS. dbscan_confidence_threshold (float): The dbscan confidence threshold. nms_confidence_threshold (float): The nms confidence threshold. Raises: ValueError: If the input arg is not within the accepted range. """ if coverage_threshold < 0.0 or coverage_threshold > 1.0: raise ValueError("ClusteringConfig.coverage_threshold must be in [0.0, 1.0]") clustering_algorithm = CLUSTERING_ALGORITHM[clustering_algorithm] if clustering_algorithm not in ["dbscan", "nms"]: raise NotImplementedError( f"Invalid clustering algorithm: {clustering_algorithm}" ) if clustering_algorithm == "dbscan": if dbscan_eps < 0.0 or dbscan_eps > 1.0: raise ValueError("ClusteringConfig.dbscan_eps must be in [0.0, 1.0]") if dbscan_min_samples < 0.0: raise ValueError("ClusteringConfig.dbscan_min_samples must be >= 0.0") if minimum_bounding_box_height < 0: raise ValueError( "ClusteringConfig.minimum_bounding_box_height must be >= 0" ) if clustering_algorithm == "nms": if nms_iou_threshold < 0.0 or nms_iou_threshold > 1.0: raise ValueError( "ClusteringConfig.nms_iou_threshold must be in [0.0, 1.0]" ) self.coverage_threshold = coverage_threshold self.dbscan_eps = dbscan_eps self.dbscan_min_samples = dbscan_min_samples self.dbscan_confidence_threshold = dbscan_confidence_threshold self.minimum_bounding_box_height = minimum_bounding_box_height self.clustering_algorithm = clustering_algorithm self.nms_iou_threshold = nms_iou_threshold self.nms_confidence_threshold = nms_confidence_threshold
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/clustering_config.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/label_filter.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/label_filter.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n:nvidia_tao_deploy/cv/detectnet_v2/proto/label_filter.proto\"\x88\x04\n\x0bLabelFilter\x12N\n\x1c\x62\x62ox_dimensions_label_filter\x18\x01 \x01(\x0b\x32&.LabelFilter.BboxDimensionsLabelFilterH\x00\x12\x42\n\x16\x62\x62ox_crop_label_filter\x18\x02 \x01(\x0b\x32 .LabelFilter.BboxCropLabelFilterH\x00\x12H\n\x19source_class_label_filter\x18\x03 \x01(\x0b\x32#.LabelFilter.SourceClassLabelFilterH\x00\x1ai\n\x19\x42\x62oxDimensionsLabelFilter\x12\x11\n\tmin_width\x18\x01 \x01(\x02\x12\x12\n\nmin_height\x18\x02 \x01(\x02\x12\x11\n\tmax_width\x18\x03 \x01(\x02\x12\x12\n\nmax_height\x18\x04 \x01(\x02\x1a\x63\n\x13\x42\x62oxCropLabelFilter\x12\x11\n\tcrop_left\x18\x01 \x01(\x02\x12\x12\n\ncrop_right\x18\x02 \x01(\x02\x12\x10\n\x08\x63rop_top\x18\x03 \x01(\x02\x12\x13\n\x0b\x63rop_bottom\x18\x04 \x01(\x02\x1a\x34\n\x16SourceClassLabelFilter\x12\x1a\n\x12source_class_names\x18\x04 \x03(\tB\x15\n\x13label_filter_paramsb\x06proto3') ) _LABELFILTER_BBOXDIMENSIONSLABELFILTER = _descriptor.Descriptor( name='BboxDimensionsLabelFilter', full_name='LabelFilter.BboxDimensionsLabelFilter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='min_width', full_name='LabelFilter.BboxDimensionsLabelFilter.min_width', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_height', full_name='LabelFilter.BboxDimensionsLabelFilter.min_height', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_width', full_name='LabelFilter.BboxDimensionsLabelFilter.max_width', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_height', full_name='LabelFilter.BboxDimensionsLabelFilter.max_height', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=300, serialized_end=405, ) _LABELFILTER_BBOXCROPLABELFILTER = _descriptor.Descriptor( name='BboxCropLabelFilter', full_name='LabelFilter.BboxCropLabelFilter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='crop_left', full_name='LabelFilter.BboxCropLabelFilter.crop_left', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_right', full_name='LabelFilter.BboxCropLabelFilter.crop_right', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_top', full_name='LabelFilter.BboxCropLabelFilter.crop_top', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_bottom', full_name='LabelFilter.BboxCropLabelFilter.crop_bottom', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=407, serialized_end=506, ) _LABELFILTER_SOURCECLASSLABELFILTER = _descriptor.Descriptor( name='SourceClassLabelFilter', full_name='LabelFilter.SourceClassLabelFilter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source_class_names', full_name='LabelFilter.SourceClassLabelFilter.source_class_names', index=0, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=508, serialized_end=560, ) _LABELFILTER = _descriptor.Descriptor( name='LabelFilter', full_name='LabelFilter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='bbox_dimensions_label_filter', full_name='LabelFilter.bbox_dimensions_label_filter', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bbox_crop_label_filter', full_name='LabelFilter.bbox_crop_label_filter', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='source_class_label_filter', full_name='LabelFilter.source_class_label_filter', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_LABELFILTER_BBOXDIMENSIONSLABELFILTER, _LABELFILTER_BBOXCROPLABELFILTER, _LABELFILTER_SOURCECLASSLABELFILTER, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='label_filter_params', full_name='LabelFilter.label_filter_params', index=0, containing_type=None, fields=[]), ], serialized_start=63, serialized_end=583, ) _LABELFILTER_BBOXDIMENSIONSLABELFILTER.containing_type = _LABELFILTER _LABELFILTER_BBOXCROPLABELFILTER.containing_type = _LABELFILTER _LABELFILTER_SOURCECLASSLABELFILTER.containing_type = _LABELFILTER _LABELFILTER.fields_by_name['bbox_dimensions_label_filter'].message_type = _LABELFILTER_BBOXDIMENSIONSLABELFILTER _LABELFILTER.fields_by_name['bbox_crop_label_filter'].message_type = _LABELFILTER_BBOXCROPLABELFILTER _LABELFILTER.fields_by_name['source_class_label_filter'].message_type = _LABELFILTER_SOURCECLASSLABELFILTER _LABELFILTER.oneofs_by_name['label_filter_params'].fields.append( _LABELFILTER.fields_by_name['bbox_dimensions_label_filter']) _LABELFILTER.fields_by_name['bbox_dimensions_label_filter'].containing_oneof = _LABELFILTER.oneofs_by_name['label_filter_params'] _LABELFILTER.oneofs_by_name['label_filter_params'].fields.append( _LABELFILTER.fields_by_name['bbox_crop_label_filter']) _LABELFILTER.fields_by_name['bbox_crop_label_filter'].containing_oneof = _LABELFILTER.oneofs_by_name['label_filter_params'] _LABELFILTER.oneofs_by_name['label_filter_params'].fields.append( _LABELFILTER.fields_by_name['source_class_label_filter']) _LABELFILTER.fields_by_name['source_class_label_filter'].containing_oneof = _LABELFILTER.oneofs_by_name['label_filter_params'] DESCRIPTOR.message_types_by_name['LabelFilter'] = _LABELFILTER _sym_db.RegisterFileDescriptor(DESCRIPTOR) LabelFilter = _reflection.GeneratedProtocolMessageType('LabelFilter', (_message.Message,), dict( BboxDimensionsLabelFilter = _reflection.GeneratedProtocolMessageType('BboxDimensionsLabelFilter', (_message.Message,), dict( DESCRIPTOR = _LABELFILTER_BBOXDIMENSIONSLABELFILTER, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.label_filter_pb2' # @@protoc_insertion_point(class_scope:LabelFilter.BboxDimensionsLabelFilter) )) , BboxCropLabelFilter = _reflection.GeneratedProtocolMessageType('BboxCropLabelFilter', (_message.Message,), dict( DESCRIPTOR = _LABELFILTER_BBOXCROPLABELFILTER, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.label_filter_pb2' # @@protoc_insertion_point(class_scope:LabelFilter.BboxCropLabelFilter) )) , SourceClassLabelFilter = _reflection.GeneratedProtocolMessageType('SourceClassLabelFilter', (_message.Message,), dict( DESCRIPTOR = _LABELFILTER_SOURCECLASSLABELFILTER, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.label_filter_pb2' # @@protoc_insertion_point(class_scope:LabelFilter.SourceClassLabelFilter) )) , DESCRIPTOR = _LABELFILTER, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.label_filter_pb2' # @@protoc_insertion_point(class_scope:LabelFilter) )) _sym_db.RegisterMessage(LabelFilter) _sym_db.RegisterMessage(LabelFilter.BboxDimensionsLabelFilter) _sym_db.RegisterMessage(LabelFilter.BboxCropLabelFilter) _sym_db.RegisterMessage(LabelFilter.SourceClassLabelFilter) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/label_filter_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/kitti_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/kitti_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n:nvidia_tao_deploy/cv/detectnet_v2/proto/kitti_config.proto\"\xa5\x02\n\x0bKITTIConfig\x12\x1b\n\x13root_directory_path\x18\x01 \x01(\t\x12\x16\n\x0eimage_dir_name\x18\x02 \x01(\t\x12\x16\n\x0elabel_dir_name\x18\x03 \x01(\t\x12\x18\n\x10point_clouds_dir\x18\x04 \x01(\t\x12\x18\n\x10\x63\x61librations_dir\x18\x05 \x01(\t\x12%\n\x1dkitti_sequence_to_frames_file\x18\x06 \x01(\t\x12\x17\n\x0fimage_extension\x18\x07 \x01(\t\x12\x16\n\x0enum_partitions\x18\x08 \x01(\r\x12\x12\n\nnum_shards\x18\t \x01(\r\x12\x16\n\x0epartition_mode\x18\n \x01(\t\x12\x11\n\tval_split\x18\x0b \x01(\x02\x62\x06proto3') ) _KITTICONFIG = _descriptor.Descriptor( name='KITTIConfig', full_name='KITTIConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='root_directory_path', full_name='KITTIConfig.root_directory_path', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_dir_name', full_name='KITTIConfig.image_dir_name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='label_dir_name', full_name='KITTIConfig.label_dir_name', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='point_clouds_dir', full_name='KITTIConfig.point_clouds_dir', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='calibrations_dir', full_name='KITTIConfig.calibrations_dir', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='kitti_sequence_to_frames_file', full_name='KITTIConfig.kitti_sequence_to_frames_file', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_extension', full_name='KITTIConfig.image_extension', index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_partitions', full_name='KITTIConfig.num_partitions', index=7, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_shards', full_name='KITTIConfig.num_shards', index=8, number=9, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='partition_mode', full_name='KITTIConfig.partition_mode', index=9, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='val_split', full_name='KITTIConfig.val_split', index=10, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=63, serialized_end=356, ) DESCRIPTOR.message_types_by_name['KITTIConfig'] = _KITTICONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) KITTIConfig = _reflection.GeneratedProtocolMessageType('KITTIConfig', (_message.Message,), dict( DESCRIPTOR = _KITTICONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.kitti_config_pb2' # @@protoc_insertion_point(class_scope:KITTIConfig) )) _sym_db.RegisterMessage(KITTIConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/kitti_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/evaluation_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/evaluation_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n?nvidia_tao_deploy/cv/detectnet_v2/proto/evaluation_config.proto\"\xbe\x05\n\x10\x45valuationConfig\x12)\n!validation_period_during_training\x18\x01 \x01(\r\x12\x1e\n\x16\x66irst_validation_epoch\x18\x02 \x01(\r\x12%\n\x1d\x65\x61rly_stopping_patience_steps\x18\x06 \x01(\r\x12i\n&minimum_detection_ground_truth_overlap\x18\x03 \x03(\x0b\x32\x39.EvaluationConfig.MinimumDetectionGroundTruthOverlapEntry\x12I\n\x15\x65valuation_box_config\x18\x04 \x03(\x0b\x32*.EvaluationConfig.EvaluationBoxConfigEntry\x12\x39\n\x16\x61verage_precision_mode\x18\x05 \x01(\x0e\x32\x19.EvaluationConfig.AP_MODE\x1aI\n\'MinimumDetectionGroundTruthOverlapEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x02:\x02\x38\x01\x1as\n\x13\x45valuationBoxConfig\x12\x16\n\x0eminimum_height\x18\x01 \x01(\x05\x12\x16\n\x0emaximum_height\x18\x02 \x01(\x05\x12\x15\n\rminimum_width\x18\x03 \x01(\x05\x12\x15\n\rmaximum_width\x18\x04 \x01(\x05\x1a\x61\n\x18\x45valuationBoxConfigEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x34\n\x05value\x18\x02 \x01(\x0b\x32%.EvaluationConfig.EvaluationBoxConfig:\x02\x38\x01\"$\n\x07\x41P_MODE\x12\n\n\x06SAMPLE\x10\x00\x12\r\n\tINTEGRATE\x10\x01\x62\x06proto3') ) _EVALUATIONCONFIG_AP_MODE = _descriptor.EnumDescriptor( name='AP_MODE', full_name='EvaluationConfig.AP_MODE', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='SAMPLE', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTEGRATE', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=734, serialized_end=770, ) _sym_db.RegisterEnumDescriptor(_EVALUATIONCONFIG_AP_MODE) _EVALUATIONCONFIG_MINIMUMDETECTIONGROUNDTRUTHOVERLAPENTRY = _descriptor.Descriptor( name='MinimumDetectionGroundTruthOverlapEntry', full_name='EvaluationConfig.MinimumDetectionGroundTruthOverlapEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='EvaluationConfig.MinimumDetectionGroundTruthOverlapEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='EvaluationConfig.MinimumDetectionGroundTruthOverlapEntry.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=443, serialized_end=516, ) _EVALUATIONCONFIG_EVALUATIONBOXCONFIG = _descriptor.Descriptor( name='EvaluationBoxConfig', full_name='EvaluationConfig.EvaluationBoxConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='minimum_height', full_name='EvaluationConfig.EvaluationBoxConfig.minimum_height', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='maximum_height', full_name='EvaluationConfig.EvaluationBoxConfig.maximum_height', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='minimum_width', full_name='EvaluationConfig.EvaluationBoxConfig.minimum_width', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='maximum_width', full_name='EvaluationConfig.EvaluationBoxConfig.maximum_width', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=518, serialized_end=633, ) _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY = _descriptor.Descriptor( name='EvaluationBoxConfigEntry', full_name='EvaluationConfig.EvaluationBoxConfigEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='EvaluationConfig.EvaluationBoxConfigEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='EvaluationConfig.EvaluationBoxConfigEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=635, serialized_end=732, ) _EVALUATIONCONFIG = _descriptor.Descriptor( name='EvaluationConfig', full_name='EvaluationConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='validation_period_during_training', full_name='EvaluationConfig.validation_period_during_training', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='first_validation_epoch', full_name='EvaluationConfig.first_validation_epoch', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='early_stopping_patience_steps', full_name='EvaluationConfig.early_stopping_patience_steps', index=2, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='minimum_detection_ground_truth_overlap', full_name='EvaluationConfig.minimum_detection_ground_truth_overlap', index=3, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='evaluation_box_config', full_name='EvaluationConfig.evaluation_box_config', index=4, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='average_precision_mode', full_name='EvaluationConfig.average_precision_mode', index=5, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_EVALUATIONCONFIG_MINIMUMDETECTIONGROUNDTRUTHOVERLAPENTRY, _EVALUATIONCONFIG_EVALUATIONBOXCONFIG, _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY, ], enum_types=[ _EVALUATIONCONFIG_AP_MODE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=68, serialized_end=770, ) _EVALUATIONCONFIG_MINIMUMDETECTIONGROUNDTRUTHOVERLAPENTRY.containing_type = _EVALUATIONCONFIG _EVALUATIONCONFIG_EVALUATIONBOXCONFIG.containing_type = _EVALUATIONCONFIG _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY.fields_by_name['value'].message_type = _EVALUATIONCONFIG_EVALUATIONBOXCONFIG _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY.containing_type = _EVALUATIONCONFIG _EVALUATIONCONFIG.fields_by_name['minimum_detection_ground_truth_overlap'].message_type = _EVALUATIONCONFIG_MINIMUMDETECTIONGROUNDTRUTHOVERLAPENTRY _EVALUATIONCONFIG.fields_by_name['evaluation_box_config'].message_type = _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY _EVALUATIONCONFIG.fields_by_name['average_precision_mode'].enum_type = _EVALUATIONCONFIG_AP_MODE _EVALUATIONCONFIG_AP_MODE.containing_type = _EVALUATIONCONFIG DESCRIPTOR.message_types_by_name['EvaluationConfig'] = _EVALUATIONCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) EvaluationConfig = _reflection.GeneratedProtocolMessageType('EvaluationConfig', (_message.Message,), dict( MinimumDetectionGroundTruthOverlapEntry = _reflection.GeneratedProtocolMessageType('MinimumDetectionGroundTruthOverlapEntry', (_message.Message,), dict( DESCRIPTOR = _EVALUATIONCONFIG_MINIMUMDETECTIONGROUNDTRUTHOVERLAPENTRY, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.evaluation_config_pb2' # @@protoc_insertion_point(class_scope:EvaluationConfig.MinimumDetectionGroundTruthOverlapEntry) )) , EvaluationBoxConfig = _reflection.GeneratedProtocolMessageType('EvaluationBoxConfig', (_message.Message,), dict( DESCRIPTOR = _EVALUATIONCONFIG_EVALUATIONBOXCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.evaluation_config_pb2' # @@protoc_insertion_point(class_scope:EvaluationConfig.EvaluationBoxConfig) )) , EvaluationBoxConfigEntry = _reflection.GeneratedProtocolMessageType('EvaluationBoxConfigEntry', (_message.Message,), dict( DESCRIPTOR = _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.evaluation_config_pb2' # @@protoc_insertion_point(class_scope:EvaluationConfig.EvaluationBoxConfigEntry) )) , DESCRIPTOR = _EVALUATIONCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.evaluation_config_pb2' # @@protoc_insertion_point(class_scope:EvaluationConfig) )) _sym_db.RegisterMessage(EvaluationConfig) _sym_db.RegisterMessage(EvaluationConfig.MinimumDetectionGroundTruthOverlapEntry) _sym_db.RegisterMessage(EvaluationConfig.EvaluationBoxConfig) _sym_db.RegisterMessage(EvaluationConfig.EvaluationBoxConfigEntry) _EVALUATIONCONFIG_MINIMUMDETECTIONGROUNDTRUTHOVERLAPENTRY._options = None _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/evaluation_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/dataset_export_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.detectnet_v2.proto import kitti_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_kitti__config__pb2 from nvidia_tao_deploy.cv.detectnet_v2.proto import coco_config_pb2 as nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_coco__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/dataset_export_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nCnvidia_tao_deploy/cv/detectnet_v2/proto/dataset_export_config.proto\x1a:nvidia_tao_deploy/cv/detectnet_v2/proto/kitti_config.proto\x1a\x39nvidia_tao_deploy/cv/detectnet_v2/proto/coco_config.proto\"\xec\x06\n\x13\x44\x61tasetExportConfig\x12\"\n\x0b\x63oco_config\x18\x01 \x01(\x0b\x32\x0b.COCOConfigH\x00\x12$\n\x0ckitti_config\x18\x02 \x01(\x0b\x32\x0c.KITTIConfigH\x00\x12I\n\x16sample_modifier_config\x18\x05 \x01(\x0b\x32).DatasetExportConfig.SampleModifierConfig\x12\x1c\n\x14image_directory_path\x18\x06 \x01(\t\x12J\n\x14target_class_mapping\x18\x07 \x03(\x0b\x32,.DatasetExportConfig.TargetClassMappingEntry\x1a\x83\x04\n\x14SampleModifierConfig\x12&\n\x1e\x66ilter_samples_containing_only\x18\x01 \x03(\t\x12\x1f\n\x17\x64ominant_target_classes\x18\x02 \x03(\t\x12r\n\x1eminimum_target_class_imbalance\x18\x03 \x03(\x0b\x32J.DatasetExportConfig.SampleModifierConfig.MinimumTargetClassImbalanceEntry\x12\x16\n\x0enum_duplicates\x18\x04 \x01(\r\x12\x1c\n\x14max_training_samples\x18\x05 \x01(\r\x12q\n\x1esource_to_target_class_mapping\x18\x06 \x03(\x0b\x32I.DatasetExportConfig.SampleModifierConfig.SourceToTargetClassMappingEntry\x1a\x42\n MinimumTargetClassImbalanceEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x02:\x02\x38\x01\x1a\x41\n\x1fSourceToTargetClassMappingEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\x1a\x39\n\x17TargetClassMappingEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\x42\x15\n\x13\x63onvert_config_typeb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_kitti__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_coco__config__pb2.DESCRIPTOR,]) _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG_MINIMUMTARGETCLASSIMBALANCEENTRY = _descriptor.Descriptor( name='MinimumTargetClassImbalanceEntry', full_name='DatasetExportConfig.SampleModifierConfig.MinimumTargetClassImbalanceEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='DatasetExportConfig.SampleModifierConfig.MinimumTargetClassImbalanceEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='DatasetExportConfig.SampleModifierConfig.MinimumTargetClassImbalanceEntry.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=852, serialized_end=918, ) _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG_SOURCETOTARGETCLASSMAPPINGENTRY = _descriptor.Descriptor( name='SourceToTargetClassMappingEntry', full_name='DatasetExportConfig.SampleModifierConfig.SourceToTargetClassMappingEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='DatasetExportConfig.SampleModifierConfig.SourceToTargetClassMappingEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='DatasetExportConfig.SampleModifierConfig.SourceToTargetClassMappingEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=920, serialized_end=985, ) _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG = _descriptor.Descriptor( name='SampleModifierConfig', full_name='DatasetExportConfig.SampleModifierConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='filter_samples_containing_only', full_name='DatasetExportConfig.SampleModifierConfig.filter_samples_containing_only', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dominant_target_classes', full_name='DatasetExportConfig.SampleModifierConfig.dominant_target_classes', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='minimum_target_class_imbalance', full_name='DatasetExportConfig.SampleModifierConfig.minimum_target_class_imbalance', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_duplicates', full_name='DatasetExportConfig.SampleModifierConfig.num_duplicates', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_training_samples', full_name='DatasetExportConfig.SampleModifierConfig.max_training_samples', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='source_to_target_class_mapping', full_name='DatasetExportConfig.SampleModifierConfig.source_to_target_class_mapping', index=5, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG_MINIMUMTARGETCLASSIMBALANCEENTRY, _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG_SOURCETOTARGETCLASSMAPPINGENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=470, serialized_end=985, ) _DATASETEXPORTCONFIG_TARGETCLASSMAPPINGENTRY = _descriptor.Descriptor( name='TargetClassMappingEntry', full_name='DatasetExportConfig.TargetClassMappingEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='DatasetExportConfig.TargetClassMappingEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='DatasetExportConfig.TargetClassMappingEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=987, serialized_end=1044, ) _DATASETEXPORTCONFIG = _descriptor.Descriptor( name='DatasetExportConfig', full_name='DatasetExportConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='coco_config', full_name='DatasetExportConfig.coco_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='kitti_config', full_name='DatasetExportConfig.kitti_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='sample_modifier_config', full_name='DatasetExportConfig.sample_modifier_config', index=2, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_directory_path', full_name='DatasetExportConfig.image_directory_path', index=3, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_class_mapping', full_name='DatasetExportConfig.target_class_mapping', index=4, number=7, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG, _DATASETEXPORTCONFIG_TARGETCLASSMAPPINGENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='convert_config_type', full_name='DatasetExportConfig.convert_config_type', index=0, containing_type=None, fields=[]), ], serialized_start=191, serialized_end=1067, ) _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG_MINIMUMTARGETCLASSIMBALANCEENTRY.containing_type = _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG_SOURCETOTARGETCLASSMAPPINGENTRY.containing_type = _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG.fields_by_name['minimum_target_class_imbalance'].message_type = _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG_MINIMUMTARGETCLASSIMBALANCEENTRY _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG.fields_by_name['source_to_target_class_mapping'].message_type = _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG_SOURCETOTARGETCLASSMAPPINGENTRY _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG.containing_type = _DATASETEXPORTCONFIG _DATASETEXPORTCONFIG_TARGETCLASSMAPPINGENTRY.containing_type = _DATASETEXPORTCONFIG _DATASETEXPORTCONFIG.fields_by_name['coco_config'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_coco__config__pb2._COCOCONFIG _DATASETEXPORTCONFIG.fields_by_name['kitti_config'].message_type = nvidia__tao__deploy_dot_cv_dot_detectnet__v2_dot_proto_dot_kitti__config__pb2._KITTICONFIG _DATASETEXPORTCONFIG.fields_by_name['sample_modifier_config'].message_type = _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG _DATASETEXPORTCONFIG.fields_by_name['target_class_mapping'].message_type = _DATASETEXPORTCONFIG_TARGETCLASSMAPPINGENTRY _DATASETEXPORTCONFIG.oneofs_by_name['convert_config_type'].fields.append( _DATASETEXPORTCONFIG.fields_by_name['coco_config']) _DATASETEXPORTCONFIG.fields_by_name['coco_config'].containing_oneof = _DATASETEXPORTCONFIG.oneofs_by_name['convert_config_type'] _DATASETEXPORTCONFIG.oneofs_by_name['convert_config_type'].fields.append( _DATASETEXPORTCONFIG.fields_by_name['kitti_config']) _DATASETEXPORTCONFIG.fields_by_name['kitti_config'].containing_oneof = _DATASETEXPORTCONFIG.oneofs_by_name['convert_config_type'] DESCRIPTOR.message_types_by_name['DatasetExportConfig'] = _DATASETEXPORTCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) DatasetExportConfig = _reflection.GeneratedProtocolMessageType('DatasetExportConfig', (_message.Message,), dict( SampleModifierConfig = _reflection.GeneratedProtocolMessageType('SampleModifierConfig', (_message.Message,), dict( MinimumTargetClassImbalanceEntry = _reflection.GeneratedProtocolMessageType('MinimumTargetClassImbalanceEntry', (_message.Message,), dict( DESCRIPTOR = _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG_MINIMUMTARGETCLASSIMBALANCEENTRY, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.dataset_export_config_pb2' # @@protoc_insertion_point(class_scope:DatasetExportConfig.SampleModifierConfig.MinimumTargetClassImbalanceEntry) )) , SourceToTargetClassMappingEntry = _reflection.GeneratedProtocolMessageType('SourceToTargetClassMappingEntry', (_message.Message,), dict( DESCRIPTOR = _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG_SOURCETOTARGETCLASSMAPPINGENTRY, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.dataset_export_config_pb2' # @@protoc_insertion_point(class_scope:DatasetExportConfig.SampleModifierConfig.SourceToTargetClassMappingEntry) )) , DESCRIPTOR = _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.dataset_export_config_pb2' # @@protoc_insertion_point(class_scope:DatasetExportConfig.SampleModifierConfig) )) , TargetClassMappingEntry = _reflection.GeneratedProtocolMessageType('TargetClassMappingEntry', (_message.Message,), dict( DESCRIPTOR = _DATASETEXPORTCONFIG_TARGETCLASSMAPPINGENTRY, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.dataset_export_config_pb2' # @@protoc_insertion_point(class_scope:DatasetExportConfig.TargetClassMappingEntry) )) , DESCRIPTOR = _DATASETEXPORTCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.dataset_export_config_pb2' # @@protoc_insertion_point(class_scope:DatasetExportConfig) )) _sym_db.RegisterMessage(DatasetExportConfig) _sym_db.RegisterMessage(DatasetExportConfig.SampleModifierConfig) _sym_db.RegisterMessage(DatasetExportConfig.SampleModifierConfig.MinimumTargetClassImbalanceEntry) _sym_db.RegisterMessage(DatasetExportConfig.SampleModifierConfig.SourceToTargetClassMappingEntry) _sym_db.RegisterMessage(DatasetExportConfig.TargetClassMappingEntry) _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG_MINIMUMTARGETCLASSIMBALANCEENTRY._options = None _DATASETEXPORTCONFIG_SAMPLEMODIFIERCONFIG_SOURCETOTARGETCLASSMAPPINGENTRY._options = None _DATASETEXPORTCONFIG_TARGETCLASSMAPPINGENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/dataset_export_config_pb2.py