python_code
stringlengths 0
290k
| repo_name
stringclasses 30
values | file_path
stringlengths 6
125
|
---|---|---|
from typing import Dict, Set, Type
from ..disaggregation_module import DisaggregationModule, DisaggregationModuleConfig, DisaggregationModuleLabels
class PronounLabels(DisaggregationModuleLabels):
SHE_HER = "she_her"
HE_HIM = "he_him"
THEY_THEM = "they_them"
class PronounConfig(DisaggregationModuleConfig):
def __init__(self, labels: Type[PronounLabels], pronouns: Dict[PronounLabels, Set[str]]):
self.labels = labels
self.pronouns = pronouns
class Pronoun(DisaggregationModule):
labels = PronounLabels
AVAILABLE_PRONOUNS = {
PronounLabels.SHE_HER: {"she", "her", "hers", "herself"},
PronounLabels.HE_HIM: {"he", "him", "his", "himself"},
PronounLabels.THEY_THEM: {"they", "them", "their", "theirs", "themself", "themselves"},
}
def __init__(self, *args, **kwargs):
super().__init__(module_id="pronoun", *args, **kwargs)
def _apply_config(self, config: PronounConfig):
self.labels = config.labels
self.AVAILABLE_PRONOUNS = {**config.pronouns, **self.AVAILABLE_PRONOUNS}
def __call__(self, row, *args, **kwargs):
text = row[self.column]
pronoun_flag = {
av_p: any(p in text.lower().split() for p in self.AVAILABLE_PRONOUNS[av_p])
for av_p in self.AVAILABLE_PRONOUNS
}
return pronoun_flag
| disaggregators-main | src/disaggregators/disaggregation_modules/pronoun/__init__.py |
import wandb
import numpy as np
import torch, torchvision
import torch.nn.functional as F
from PIL import Image
from tqdm.auto import tqdm
from fastcore.script import call_parse
from torchvision import transforms
from diffusers import DDPMPipeline
from diffusers import DDIMScheduler
from datasets import load_dataset
from matplotlib import pyplot as plt
@call_parse
def train(
image_size = 256,
batch_size = 16,
grad_accumulation_steps = 2,
num_epochs = 1,
start_model = "google/ddpm-bedroom-256",
dataset_name = "huggan/wikiart",
device='cuda',
model_save_name='wikiart_1e',
wandb_project='dm_finetune',
log_samples_every = 250,
save_model_every = 2500,
):
# Initialize wandb for logging
wandb.init(project=wandb_project, config=locals())
# Prepare pretrained model
image_pipe = DDPMPipeline.from_pretrained(start_model);
image_pipe.to(device)
# Get a scheduler for sampling
sampling_scheduler = DDIMScheduler.from_config(start_model)
sampling_scheduler.set_timesteps(num_inference_steps=50)
# Prepare dataset
dataset = load_dataset(dataset_name, split="train")
preprocess = transforms.Compose(
[
transforms.Resize((image_size, image_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def transform(examples):
images = [preprocess(image.convert("RGB")) for image in examples["image"]]
return {"images": images}
dataset.set_transform(transform)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Optimizer & lr scheduler
optimizer = torch.optim.AdamW(image_pipe.unet.parameters(), lr=1e-5)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
for epoch in range(num_epochs):
for step, batch in tqdm(enumerate(train_dataloader), total=len(train_dataloader)):
# Get the clean images
clean_images = batch['images'].to(device)
# Sample noise to add to the images
noise = torch.randn(clean_images.shape).to(clean_images.device)
bs = clean_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, image_pipe.scheduler.num_train_timesteps, (bs,), device=clean_images.device).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = image_pipe.scheduler.add_noise(clean_images, noise, timesteps)
# Get the model prediction for the noise
noise_pred = image_pipe.unet(noisy_images, timesteps, return_dict=False)[0]
# Compare the prediction with the actual noise:
loss = F.mse_loss(noise_pred, noise)
# Log the loss
wandb.log({'loss':loss.item()})
# Calculate the gradients
loss.backward()
# Gradient Acccumulation: Only update every grad_accumulation_steps
if (step+1)%grad_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
# Occasionally log samples
if (step+1)%log_samples_every == 0:
x = torch.randn(8, 3, 256, 256).to(device) # Batch of 8
for i, t in tqdm(enumerate(sampling_scheduler.timesteps)):
model_input = sampling_scheduler.scale_model_input(x, t)
with torch.no_grad():
noise_pred = image_pipe.unet(model_input, t)["sample"]
x = sampling_scheduler.step(noise_pred, t, x).prev_sample
grid = torchvision.utils.make_grid(x, nrow=4)
im = grid.permute(1, 2, 0).cpu().clip(-1, 1)*0.5 + 0.5
im = Image.fromarray(np.array(im*255).astype(np.uint8))
wandb.log({'Sample generations': wandb.Image(im)})
# Occasionally save model
if (step+1)%save_model_every == 0:
image_pipe.save_pretrained(model_save_name+f'step_{step+1}')
# Update the learning rate for the next epoch
scheduler.step()
# Save the pipeline one last time
image_pipe.save_pretrained(model_save_name)
# Wrap up the run
wandb.finish()
| diffusion-models-class-main | unit2/finetune_model.py |
from setuptools import setup
def readme():
with open('README.rst') as f:
return f.read()
setup(name='block_movement_pruning',
version='0.1',
description='block_movement_pruning is a python package for experimenting on block-sparse pruned version of popular networks.',
long_description=readme(),
classifiers=[
'Development Status :: 3 - Alpha',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.0',
'Topic :: Text Processing',
],
keywords='',
url='',
author='',
author_email='',
license='MIT',
packages=['block_movement_pruning'],
entry_points={
'console_scripts': ['block_movement_pruning_run=block_movement_pruning.command_line:train_command'],
},
include_package_data=True,
zip_safe=False) | block_movement_pruning-master | setup.py |
# Copyright 2020-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Once a model has been fine-pruned, the weights that are masked during the forward pass can be pruned once for all.
For instance, once the a model from the :class:`~emmental.MaskedBertForSequenceClassification` is trained, it can be saved (and then loaded)
as a standard :class:`~transformers.BertForSequenceClassification`.
"""
import argparse
import os
import shutil
import torch
from emmental.modules import MaskedLinear
def expand_mask(mask, args):
mask_block_rows = args.mask_block_rows
mask_block_cols = args.mask_block_cols
mask = torch.repeat_interleave(mask, mask_block_rows, dim=0)
mask = torch.repeat_interleave(mask, mask_block_cols, dim=1)
return mask
def main(args):
pruning_method = args.pruning_method
ampere_pruning_method = args.ampere_pruning_method
threshold = args.threshold
model_name_or_path = args.model_name_or_path.rstrip("/")
target_model_path = args.target_model_path
print(f"Load fine-pruned model from {model_name_or_path}")
model = torch.load(os.path.join(model_name_or_path, "pytorch_model.bin"))
pruned_model = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
pruned_model[name] = tensor
print(f"Copied layer {name}")
elif "classifier" in name or "qa_output" in name:
pruned_model[name] = tensor
print(f"Copied layer {name}")
elif "bias" in name:
pruned_model[name] = tensor
print(f"Copied layer {name}")
else:
if name.endswith(".weight"):
pruned_model[name] = MaskedLinear.masked_weights_from_state_dict(model, name, pruning_method, threshold, ampere_pruning_method)
else:
assert(MaskedLinear.check_name(name))
if target_model_path is None:
target_model_path = os.path.join(
os.path.dirname(model_name_or_path), f"bertarized_{os.path.basename(model_name_or_path)}"
)
if not os.path.isdir(target_model_path):
shutil.copytree(model_name_or_path, target_model_path)
print(f"\nCreated folder {target_model_path}")
torch.save(pruned_model, os.path.join(target_model_path, "pytorch_model.bin"))
print("\nPruned model saved! See you later!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--pruning_method",
choices=["l0", "magnitude", "topK", "sigmoied_threshold"],
type=str,
required=True,
help="Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning, sigmoied_threshold = Soft movement pruning)",
)
parser.add_argument(
"--threshold",
type=float,
required=False,
help="For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."
"For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."
"Not needed for `l0`",
)
parser.add_argument(
"--model_name_or_path",
type=str,
required=True,
help="Folder containing the model that was previously fine-pruned",
)
parser.add_argument(
"--target_model_path",
default=None,
type=str,
required=False,
help="Folder containing the model that was previously fine-pruned",
)
parser.add_argument(
"--mask_block_rows",
default=1,
type=int,
help="Block row size for masks. Default is 1 -> general sparsity, not block sparsity.",
)
parser.add_argument(
"--mask_block_cols",
default=1,
type=int,
help="Block row size for masks. Default is 1 -> general sparsity, not block sparsity.",
)
args = parser.parse_args()
main(args)
| block_movement_pruning-master | block_movement_pruning/bertarize.py |
import click
@click.group()
@click.pass_context
def cli(ctx):
ctx.obj = {}
@cli.command()
@click.pass_context
@click.argument('path', default = None, type=click.Path(exists = True, resolve_path = True))
@click.argument('output', default = None, type=click.Path(resolve_path = True))
@click.option('--arg', '-a', is_flag = True)
def command1(ctx, path, output, arg):
click.echo(click.style("Running !", fg="red"))
#print(path + ":" + main(path, output))
def train_command():
pass | block_movement_pruning-master | block_movement_pruning/command_line.py |
block_movement_pruning-master | block_movement_pruning/__init__.py |
|
# Copyright 2020-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Count remaining (non-zero) weights in the encoder (i.e. the transformer layers).
Sparsity and remaining weights levels are equivalent: sparsity % = 100 - remaining weights %.
"""
import argparse
import os
import torch
from emmental.modules import MaskedLinear
def expand_mask(mask, args):
mask_block_rows = args.mask_block_rows
mask_block_cols = args.mask_block_cols
mask = torch.repeat_interleave(mask, mask_block_rows, dim=0)
mask = torch.repeat_interleave(mask, mask_block_cols, dim=1)
return mask
def main(args):
serialization_dir = args.serialization_dir
pruning_method = args.pruning_method
threshold = args.threshold
ampere_pruning_method = args.ampere_pruning_method
st = torch.load(os.path.join(serialization_dir, "pytorch_model.bin"), map_location="cuda")
remaining_count = 0 # Number of remaining (not pruned) params in the encoder
encoder_count = 0 # Number of params in the encoder
print("name".ljust(60, " "), "Remaining Weights %", "Remaining Weight")
for name, param in st.items():
if "encoder" not in name:
continue
if name.endswith(".weight"):
weights = MaskedLinear.masked_weights_from_state_dict(st,
name,
pruning_method,
threshold,
ampere_pruning_method)
mask_ones = (weights != 0).sum().item()
print(name.ljust(60, " "), str(round(100 * mask_ones / param.numel(), 3)).ljust(20, " "), str(mask_ones))
remaining_count += mask_ones
elif MaskedLinear.check_name(name):
pass
else:
encoder_count += param.numel()
if name.endswith(".weight") and ".".join(name.split(".")[:-1] + ["mask_scores"]) in st:
pass
else:
remaining_count += param.numel()
print("")
print("Remaining Weights (global) %: ", 100 * remaining_count / encoder_count)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--pruning_method",
choices=["l0", "topK", "sigmoied_threshold"],
type=str,
required=True,
help="Pruning Method (l0 = L0 regularization, topK = Movement pruning, sigmoied_threshold = Soft movement pruning)",
)
parser.add_argument(
"--threshold",
type=float,
required=False,
help="For `topK`, it is the level of remaining weights (in %) in the fine-pruned model."
"For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."
"Not needed for `l0`",
)
parser.add_argument(
"--serialization_dir",
type=str,
required=True,
help="Folder containing the model that was previously fine-pruned",
)
parser.add_argument(
"--mask_block_rows",
default=1,
type=int,
help="Block row size for masks. Default is 1 -> general sparsity, not block sparsity.",
)
parser.add_argument(
"--mask_block_cols",
default=1,
type=int,
help="Block row size for masks. Default is 1 -> general sparsity, not block sparsity.",
)
args = parser.parse_args()
main(args)
| block_movement_pruning-master | block_movement_pruning/counts_parameters.py |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-pruning Masked BERT for question-answering on SQuAD."""
import argparse
import copy
import glob
import logging
import os
import random
import timeit
import shutil
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from emmental import MaskedBertConfig, MaskedBertForQuestionAnswering
from transformers import (
WEIGHTS_NAME,
AdamW,
BertConfig,
BertForQuestionAnswering,
BertTokenizer,
get_linear_schedule_with_warmup,
squad_convert_examples_to_features,
)
from transformers.data.metrics.squad_metrics import (
compute_predictions_log_probs,
compute_predictions_logits,
squad_evaluate,
)
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor
from transformers.utils.hp_naming import TrialShortNamer
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
"bert": (BertConfig, BertForQuestionAnswering, BertTokenizer),
"masked_bert": (MaskedBertConfig, MaskedBertForQuestionAnswering, BertTokenizer),
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def schedule_threshold(
step: int,
total_step: int,
warmup_steps: int,
initial_threshold: float,
final_threshold: float,
initial_warmup: int,
final_warmup: int,
final_lambda: float,
initial_ampere_temperature:float,
final_ampere_temperature:float,
initial_shuffling_temperature: float,
final_shuffling_temperature: float,
):
if step <= initial_warmup * warmup_steps:
threshold = initial_threshold
ampere_temperature = initial_ampere_temperature
shuffling_temperature = initial_shuffling_temperature
elif step > (total_step - final_warmup * warmup_steps):
threshold = final_threshold
ampere_temperature = final_ampere_temperature
shuffling_temperature = final_shuffling_temperature
else:
spars_warmup_steps = initial_warmup * warmup_steps
spars_schedu_steps = (final_warmup + initial_warmup) * warmup_steps
mul_coeff = 1 - (step - spars_warmup_steps) / (total_step - spars_schedu_steps)
threshold = final_threshold + (initial_threshold - final_threshold) * (mul_coeff ** 3)
ampere_temperature = final_ampere_temperature + (initial_ampere_temperature - final_ampere_temperature) * (mul_coeff ** 3)
shuffling_temperature = final_shuffling_temperature + (initial_shuffling_temperature - final_shuffling_temperature) * (mul_coeff ** 3)
regu_lambda = final_lambda * threshold / final_threshold
return threshold, regu_lambda, ampere_temperature, shuffling_temperature
def regularization(model: nn.Module, mode: str):
regu, counter = 0, 0
for name, param in model.named_parameters():
if "mask_scores" in name:
if mode == "l1":
regu += torch.norm(torch.sigmoid(param), p=1) / param.numel()
elif mode == "l0":
regu += torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1)).sum() / param.numel()
else:
ValueError("Don't know this mode.")
counter += 1
return regu / counter
def to_list(tensor):
return tensor.detach().cpu().tolist()
def train(args, train_dataset, model, tokenizer, teacher=None):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter(log_dir=args.output_dir)
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if "mask_score" in n and p.requires_grad],
"lr": args.mask_scores_learning_rate,
},
{
"params": [p for n, p in model.named_parameters() if "ampere_permut_scores" in n and p.requires_grad],
"lr": args.ampere_learning_rate,
},
{
"params": [p for n, p in model.named_parameters() if "permutation_scores" in n and p.requires_grad],
"lr": args.shuffling_learning_rate,
},
{
"params": [
p
for n, p in model.named_parameters()
if "mask_score" not in n and "ampere_permut_scores" not in n and "permutation_scores" not in n and p.requires_grad and not any(nd in n for nd in no_decay)
],
"lr": args.learning_rate,
"weight_decay": args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if "mask_score" not in n and "ampere_permut_scores" not in n and "permutation_scores" not in n and p.requires_grad and any(nd in n for nd in no_decay)
],
"lr": args.learning_rate,
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True,
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
# Distillation
if teacher is not None:
logger.info(" Training with distillation")
global_step = 1
# Global TopK
if args.global_topk:
threshold_mem = None
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
# set global_step to global_step of last saved checkpoint from model path
try:
checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
global_step = int(checkpoint_suffix)
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
except ValueError:
logger.info(" Starting fine-tuning.")
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
)
# Added here for reproducibility
set_seed(args)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
batch = tuple(t.to(args.device) for t in batch)
threshold, regu_lambda, ampere_temperature, shuffling_temperature = schedule_threshold(
step=global_step,
total_step=t_total,
warmup_steps=args.warmup_steps,
final_threshold=args.final_threshold,
initial_threshold=args.initial_threshold,
final_warmup=args.final_warmup,
initial_warmup=args.initial_warmup,
final_lambda=args.final_lambda,
initial_ampere_temperature=args.initial_ampere_temperature,
final_ampere_temperature=args.final_ampere_temperature,
initial_shuffling_temperature=args.initial_shuffling_temperature,
final_shuffling_temperature=args.final_shuffling_temperature,
)
# Global TopK
if args.global_topk:
if threshold == 1.0:
threshold = -1e2 # Or an indefinitely low quantity
else:
if (threshold_mem is None) or (global_step % args.global_topk_frequency_compute == 0):
# Sort all the values to get the global topK
concat = torch.cat(
[param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name]
)
n = concat.numel()
kth = max(n - (int(n * threshold) + 1), 1)
threshold_mem = concat.kthvalue(kth).values.item()
threshold = threshold_mem
else:
threshold = threshold_mem
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"start_positions": batch[3],
"end_positions": batch[4],
}
if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
if args.version_2_with_negative:
inputs.update({"is_impossible": batch[7]})
if hasattr(model, "config") and hasattr(model.config, "lang2id"):
inputs.update(
{"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
)
if "masked" in args.model_type:
current_config = dict(threshold = threshold,
ampere_temperature=ampere_temperature,
shuffling_temperature=shuffling_temperature)
inputs["current_config"] = current_config
outputs = model(**inputs)
# model outputs are always tuple in transformers (see doc)
loss, start_logits_stu, end_logits_stu = outputs
# Distillation loss
if teacher is not None:
with torch.no_grad():
start_logits_tea, end_logits_tea = teacher(
input_ids=inputs["input_ids"],
token_type_ids=inputs["token_type_ids"],
attention_mask=inputs["attention_mask"],
)
loss_start = (
F.kl_div(
input=F.log_softmax(start_logits_stu / args.temperature, dim=-1),
target=F.softmax(start_logits_tea / args.temperature, dim=-1),
reduction="batchmean",
)
* (args.temperature ** 2)
)
loss_end = (
F.kl_div(
input=F.log_softmax(end_logits_stu / args.temperature, dim=-1),
target=F.softmax(end_logits_tea / args.temperature, dim=-1),
reduction="batchmean",
)
* (args.temperature ** 2)
)
loss_logits = (loss_start + loss_end) / 2.0
loss = args.alpha_distil * loss_logits + args.alpha_ce * loss
# Regularization
if args.regularization is not None:
regu_ = regularization(model=model, mode=args.regularization)
loss = loss + regu_lambda * regu_
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
tb_writer.add_scalar("threshold", threshold, global_step)
for name, param in model.named_parameters():
try:
if not param.requires_grad:
continue
tb_writer.add_scalar("parameter_mean/" + name, param.data.mean(), global_step)
tb_writer.add_scalar("parameter_std/" + name, param.data.std(), global_step)
tb_writer.add_scalar("parameter_min/" + name, param.data.min(), global_step)
tb_writer.add_scalar("parameter_max/" + name, param.data.max(), global_step)
if "pooler" in name:
continue
tb_writer.add_scalar("grad_mean/" + name, param.grad.data.mean(), global_step)
tb_writer.add_scalar("grad_std/" + name, param.grad.data.std(), global_step)
if args.regularization is not None and "mask_scores" in name:
if args.regularization == "l1":
perc = (torch.sigmoid(param) > threshold).sum().item() / param.numel()
elif args.regularization == "l0":
perc = (torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1))).sum().item() / param.numel()
tb_writer.add_scalar("retained_weights_perc/" + name, perc, global_step)
except AttributeError as e:
print(f"name error with {name}", e)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
# Log metrics
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Only evaluate when single GPU otherwise metrics may not average well
if args.local_rank == -1 and args.evaluate_during_training:
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar("eval/{}".format(key), value, global_step)
learning_rate_scalar = scheduler.get_lr()
tb_writer.add_scalar("lr", learning_rate_scalar[0], global_step)
if len(learning_rate_scalar) > 1:
for idx, lr in enumerate(learning_rate_scalar[1:]):
tb_writer.add_scalar(f"lr/{idx+1}", lr, global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
if teacher is not None:
tb_writer.add_scalar("loss/distil", loss_logits.item(), global_step)
if args.regularization is not None:
tb_writer.add_scalar("loss/regularization", regu_.item(), global_step)
if (teacher is not None) or (args.regularization is not None):
if (teacher is not None) and (args.regularization is not None):
tb_writer.add_scalar(
"loss/instant_ce",
(loss.item() - regu_lambda * regu_.item() - args.alpha_distil * loss_logits.item())
/ args.alpha_ce,
global_step,
)
elif teacher is not None:
tb_writer.add_scalar(
"loss/instant_ce",
(loss.item() - args.alpha_distil * loss_logits.item()) / args.alpha_ce,
global_step,
)
else:
tb_writer.add_scalar(
"loss/instant_ce", loss.item() - regu_lambda * regu_.item(), global_step
)
logging_loss = tr_loss
# Save model checkpoint
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
# Log metrics
if args.eval_all_checkpoints:
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar("eval/{}".format(key), value, global_step)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu eval
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
all_results = []
start_time = timeit.default_timer()
# Global TopK
if args.global_topk:
threshold_mem = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
}
if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
example_indices = batch[3]
# XLNet and XLM use more arguments for their predictions
if args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
# for lang_id-sensitive xlm models
if hasattr(model, "config") and hasattr(model.config, "lang2id"):
inputs.update(
{"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
)
if "masked" in args.model_type:
inputs["current_config"] = {}
inputs["current_config"]["threshold"] = args.final_threshold
inputs["current_config"]["ampere_temperature"] = args.final_ampere_temperature
inputs["current_config"]["shuffling_temperature"] = args.final_shuffling_temperature
if args.global_topk:
if threshold_mem is None:
concat = torch.cat(
[param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name]
)
n = concat.numel()
kth = max(n - (int(n * args.final_threshold) + 1), 1)
threshold_mem = concat.kthvalue(kth).values.item()
inputs["current_config"]["threshold"] = threshold_mem
outputs = model(**inputs)
for i, example_index in enumerate(example_indices):
eval_feature = features[example_index.item()]
unique_id = int(eval_feature.unique_id)
output = [to_list(output[i]) for output in outputs]
# Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
# models only use two.
if len(output) >= 5:
start_logits = output[0]
start_top_index = output[1]
end_logits = output[2]
end_top_index = output[3]
cls_logits = output[4]
result = SquadResult(
unique_id,
start_logits,
end_logits,
start_top_index=start_top_index,
end_top_index=end_top_index,
cls_logits=cls_logits,
)
else:
start_logits, end_logits = output
result = SquadResult(unique_id, start_logits, end_logits)
all_results.append(result)
evalTime = timeit.default_timer() - start_time
logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
# Compute predictions
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
if args.version_2_with_negative:
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
else:
output_null_log_odds_file = None
# XLNet and XLM use a more complex post-processing procedure
if args.model_type in ["xlnet", "xlm"]:
start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top
end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top
predictions = compute_predictions_log_probs(
examples,
features,
all_results,
args.n_best_size,
args.max_answer_length,
output_prediction_file,
output_nbest_file,
output_null_log_odds_file,
start_n_top,
end_n_top,
args.version_2_with_negative,
tokenizer,
args.verbose_logging,
)
else:
predictions = compute_predictions_logits(
examples,
features,
all_results,
args.n_best_size,
args.max_answer_length,
args.do_lower_case,
output_prediction_file,
output_nbest_file,
output_null_log_odds_file,
args.verbose_logging,
args.version_2_with_negative,
args.null_score_diff_threshold,
tokenizer,
)
# Compute the F1 and exact scores.
results = squad_evaluate(examples, predictions)
return results
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
if args.local_rank not in [-1, 0] and not evaluate:
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
torch.distributed.barrier()
# Load data features from cache or dataset file
input_dir = args.data_dir if args.data_dir else "."
cached_features_file = os.path.join(
input_dir,
"cached_{}_{}_{}_{}".format(
"dev" if evaluate else "train",
args.tokenizer_name
if args.tokenizer_name
else list(filter(None, args.model_name_or_path.split("/"))).pop(),
str(args.max_seq_length),
list(filter(None, args.predict_file.split("/"))).pop()
if evaluate
else list(filter(None, args.train_file.split("/"))).pop(),
),
)
if args.truncate_train_examples != -1:
cached_features_file = cached_features_file[: -len(".json")] + f"_truncate_{args.truncate_train_examples}.json"
# Init features and dataset from cache if it exists
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features_and_dataset = torch.load(cached_features_file)
features, dataset, examples = (
features_and_dataset["features"],
features_and_dataset["dataset"],
features_and_dataset["examples"],
)
else:
logger.info("Creating features from dataset file at %s", input_dir)
if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)):
try:
import tensorflow_datasets as tfds
except ImportError:
raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")
if args.version_2_with_negative:
logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.")
tfds_examples = tfds.load("squad")
examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
else:
processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
if evaluate:
examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
else:
examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
if args.truncate_train_examples != -1:
examples = examples[: args.truncate_train_examples]
features, dataset = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=not evaluate,
return_dataset="pt",
threads=args.threads,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file)
if args.local_rank == 0 and not evaluate:
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
torch.distributed.barrier()
if output_examples:
return dataset, examples, features
return dataset
def create_parser():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints and predictions will be written.",
)
# Other parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
help="The input data dir. Should contain the .json files for the task."
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--train_file",
default=None,
type=str,
help="The input training file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--predict_file",
default=None,
type=str,
help="The input evaluation file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3",
)
parser.add_argument(
"--version_2_with_negative",
action="store_true",
help="If true, the SQuAD examples contain some that do not have an answer.",
)
parser.add_argument(
"--null_score_diff_threshold",
type=float,
default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.",
)
parser.add_argument(
"--max_seq_length",
default=384,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.",
)
parser.add_argument(
"--doc_stride",
default=128,
type=int,
help="When splitting up a long document into chunks, how much stride to take between chunks.",
)
parser.add_argument(
"--max_query_length",
default=64,
type=int,
help="The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length.",
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
)
parser.add_argument(
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
)
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
# Pruning parameters
parser.add_argument(
"--mask_scores_learning_rate",
default=1e-2,
type=float,
help="The Adam initial learning rate of the mask scores.",
)
# Pruning parameters
parser.add_argument(
"--ampere_learning_rate",
default=1e-2,
type=float,
help="The Adam initial learning rate of the mask scores.",
)
# Pruning parameters
parser.add_argument(
"--shuffling_learning_rate",
default=1e-3,
type=float,
help="The Adam initial learning rate of the mask scores.",
)
parser.add_argument(
"--initial_threshold", default=1.0, type=float, help="Initial value of the threshold (for scheduling)."
)
parser.add_argument(
"--final_threshold", default=0.7, type=float, help="Final value of the threshold (for scheduling)."
)
parser.add_argument(
"--initial_ampere_temperature", default=0.0, type=float, help="Initial value of the ampere temperature (for scheduling)."
)
parser.add_argument(
"--final_ampere_temperature", default=20, type=float, help="Final value of the ampere temperature (for scheduling)."
)
parser.add_argument(
"--initial_shuffling_temperature", default=0.1, type=float, help="Initial value of the shuffling temperature (for scheduling)."
)
parser.add_argument(
"--final_shuffling_temperature", default=20, type=float, help="Final value of the shuffling temperature (for scheduling)."
)
parser.add_argument(
"--initial_warmup",
default=1,
type=int,
help="Run `initial_warmup` * `warmup_steps` steps of threshold warmup during which threshold stays"
"at its `initial_threshold` value (sparsity schedule).",
)
parser.add_argument(
"--final_warmup",
default=2,
type=int,
help="Run `final_warmup` * `warmup_steps` steps of threshold cool-down during which threshold stays"
"at its final_threshold value (sparsity schedule).",
)
parser.add_argument(
"--pruning_method",
default="topK",
type=str,
help="Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning, sigmoied_threshold = Soft movement pruning).",
)
parser.add_argument(
"--mask_init",
default="constant",
type=str,
help="Initialization method for the mask scores. Choices: constant, uniform, kaiming.",
)
parser.add_argument(
"--mask_scale", default=0.0, type=float, help="Initialization parameter for the chosen initialization method."
)
parser.add_argument(
"--mask_block_rows",
default=1,
type=int,
help="Block row size for masks. Default is 1 -> general sparsity, not block sparsity.",
)
parser.add_argument(
"--mask_block_cols",
default=1,
type=int,
help="Block row size for masks. Default is 1 -> general sparsity, not block sparsity.",
)
parser.add_argument(
"--ampere_pruning_method",
default="disabled",
type=str,
help="Pruning Method (annealing: softmaxing mask values with temperature).",
)
parser.add_argument(
"--ampere_mask_init",
default="constant",
type=str,
help="Initialization method for the ampere mask scores"
)
parser.add_argument(
"--ampere_mask_scale", default=0.0, type=float,
help="Initialization parameter for the chosen ampere mask initialization method."
)
parser.add_argument(
"--shuffling_method",
default="disabled",
type=str,
help="Shuffling Method (annealing: softmaxing permutation scores with temperature).",
)
parser.add_argument(
"--in_shuffling_group",
default="4",
type=int,
help="Shuffling group size for matrix input (with shuffling_method == annealing).",
)
parser.add_argument(
"--out_shuffling_group",
default="4",
type=int,
help="Shuffling group size for matrix output (with shuffling_method == annealing).",
)
parser.add_argument("--regularization", default=None, help="Add L0 or L1 regularization to the mask scores.")
parser.add_argument(
"--final_lambda",
default=0.0,
type=float,
help="Regularization intensity (used in conjunction with `regularization`.",
)
parser.add_argument("--global_topk", action="store_true", help="Global TopK on the Scores.")
parser.add_argument(
"--global_topk_frequency_compute",
default=25,
type=int,
help="Frequency at which we compute the TopK global threshold.",
)
# Distillation parameters (optional)
parser.add_argument(
"--teacher_type",
default=None,
type=str,
help="Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for distillation.",
)
parser.add_argument(
"--teacher_name_or_path",
default=None,
type=str,
help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.",
)
parser.add_argument(
"--alpha_ce", default=0.5, type=float, help="Cross entropy loss linear weight. Only for distillation."
)
parser.add_argument(
"--alpha_distil", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation."
)
parser.add_argument(
"--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.",
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument(
"--n_best_size",
default=20,
type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
)
parser.add_argument(
"--max_answer_length",
default=30,
type=int,
help="The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another.",
)
parser.add_argument(
"--verbose_logging",
action="store_true",
help="If true, all of the warnings related to data processing will be printed. "
"A number of warnings are expected for a normal SQuAD evaluation.",
)
parser.add_argument(
"--lang_id",
default=0,
type=int,
help="language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)",
)
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
parser.add_argument(
"--truncate_train_examples",
type=int,
default=-1,
help="Only keep first train examples, for development purpose for example.",
)
return parser
class ShortNamer(TrialShortNamer):
DEFAULTS = dict(
adam_epsilon=1e-08,
alpha_ce=0.5,
alpha_distil=0.5,
cache_dir="",
config_name="",
data_dir="squad_data",
do_eval=True,
do_lower_case=True,
do_train=True,
doc_stride=128,
eval_all_checkpoints=True,
evaluate_during_training=False,
final_lambda=0.0,
final_threshold=0.1,
final_warmup=2,
fp16=False,
fp16_opt_level="O1",
global_topk=False,
global_topk_frequency_compute=25,
gradient_accumulation_steps=1,
initial_threshold=1.0,
initial_warmup=1,
lang_id=0,
learning_rate=3e-05,
local_rank=-1,
logging_steps=1000,
mask_init="constant",
mask_scale=0.0,
mask_scores_learning_rate=0.01,
ampere_learning_rate=0.01,
shuffling_learning_rate=0.001,
mask_block_rows=1,
mask_block_cols=1,
max_answer_length=30,
max_grad_norm=1.0,
max_query_length=64,
max_seq_length=384,
max_steps=-1,
model_name_or_path="bert-base-uncased",
model_type="masked_bert",
n_best_size=20,
no_cuda=False,
null_score_diff_threshold=0.0,
num_train_epochs=10.0,
output_dir="block_movement_pruning/output",
overwrite_cache=False,
overwrite_output_dir=True,
per_gpu_eval_batch_size=16,
per_gpu_train_batch_size=16,
predict_file="dev-v1.1.json",
pruning_method="topK",
regularization=None,
save_steps=5000,
seed=42,
server_ip="",
server_port="",
teacher_name_or_path=None,
teacher_type=None,
temperature=2.0,
threads=8,
tokenizer_name="",
train_file="train-v1.1.json",
truncate_train_examples=-1,
verbose_logging=False,
version_2_with_negative=False,
warmup_steps=5400,
weight_decay=0.0,
ampere_mask_init='constant',
ampere_mask_scale=0.0,
ampere_pruning_method='disabled',
initial_ampere_temperature=0.0,
final_ampere_temperature=20,
shuffling_method="disabled",
in_shuffling_group=4,
out_shuffling_group=4,
initial_shuffling_temperature=0.1,
final_shuffling_temperature=20,
)
def main_single(args):
short_name = ShortNamer.shortname(args.__dict__)
print(f"HP NAME {short_name}")
args.output_dir = os.path.join(args.output_dir, short_name)
if args.doc_stride >= args.max_seq_length - args.max_query_length:
logger.warning(
"WARNING - You've set a doc stride which may be superior to the document length in some "
"examples. This could result in errors when building features from the examples. Please reduce the doc "
"stride or increase the maximum length to ensure the features are correctly built."
)
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
if args.overwrite_output_dir:
shutil.rmtree(args.output_dir, ignore_errors=True)
os.makedirs(args.output_dir)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None,
pruning_method=args.pruning_method,
mask_init=args.mask_init,
mask_scale=args.mask_scale,
mask_block_rows=args.mask_block_rows,
mask_block_cols=args.mask_block_cols,
ampere_pruning_method=args.ampere_pruning_method,
ampere_mask_init=args.ampere_mask_init,
ampere_mask_scale=args.ampere_mask_scale,
shuffling_method=args.shuffling_method,
in_shuffling_group=args.in_shuffling_group,
out_shuffling_group=args.out_shuffling_group,
)
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if args.teacher_type is not None:
assert args.teacher_name_or_path is not None
assert args.alpha_distil > 0.0
assert args.alpha_distil + args.alpha_ce > 0.0
teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type]
teacher_config = teacher_config_class.from_pretrained(args.teacher_name_or_path)
teacher = teacher_model_class.from_pretrained(
args.teacher_name_or_path,
from_tf=False,
config=teacher_config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
teacher.to(args.device)
else:
teacher = None
if args.local_rank == 0:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
# Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
# remove the need for this code, but it is still valid.
if args.fp16:
try:
import apex
apex.amp.register_half_function(torch, "einsum")
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Save the trained model and the tokenizer
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir) # , force_download=True)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
if args.do_train:
logger.info("Loading checkpoints saved during training for evaluation")
checkpoints = [args.output_dir]
else:
logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
checkpoints = [args.model_name_or_path]
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
# Reload the model
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint) # , force_download=True)
model.to(args.device)
# Evaluate
result = evaluate(args, model, tokenizer, prefix=global_step)
result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
results.update(result)
logger.info("Results: {}".format(results))
predict_file = list(filter(None, args.predict_file.split("/"))).pop()
if not os.path.exists(os.path.join(args.output_dir, predict_file)):
os.makedirs(os.path.join(args.output_dir, predict_file))
output_eval_file = os.path.join(args.output_dir, predict_file, "eval_results.txt")
with open(output_eval_file, "w") as writer:
for key in sorted(results.keys()):
writer.write("%s = %s\n" % (key, str(results[key])))
return results
def main():
parser = create_parser()
args = parser.parse_args()
# Regularization
if args.regularization == "null":
args.regularization = None
sizes = [(2, 1), (8, 1), (32, 1), (128, 1), (4, 4), (8, 8), (32, 32), (1, 2), (1, 8), (1, 32), (1, 128)][::]
sizes = [(32,32), (16,16), (64,64)]
for size in sizes:
single_args = copy.deepcopy(args)
single_args.mask_block_rows = size[0]
single_args.mask_block_cols = size[1]
#try:
main_single(single_args)
#except Exception as e:
# print(e)
if __name__ == "__main__":
main()
| block_movement_pruning-master | block_movement_pruning/masked_run_squad.py |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-pruning Masked BERT on sequence classification on GLUE."""
import argparse
import glob
import json
import logging
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from emmental import MaskedBertConfig, MaskedBertForSequenceClassification
from transformers import (
WEIGHTS_NAME,
AdamW,
BertConfig,
BertForSequenceClassification,
BertTokenizer,
get_linear_schedule_with_warmup,
)
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
"bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
"masked_bert": (MaskedBertConfig, MaskedBertForSequenceClassification, BertTokenizer),
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def schedule_threshold(
step: int,
total_step: int,
warmup_steps: int,
initial_threshold: float,
final_threshold: float,
initial_warmup: int,
final_warmup: int,
final_lambda: float,
):
if step <= initial_warmup * warmup_steps:
threshold = initial_threshold
elif step > (total_step - final_warmup * warmup_steps):
threshold = final_threshold
else:
spars_warmup_steps = initial_warmup * warmup_steps
spars_schedu_steps = (final_warmup + initial_warmup) * warmup_steps
mul_coeff = 1 - (step - spars_warmup_steps) / (total_step - spars_schedu_steps)
threshold = final_threshold + (initial_threshold - final_threshold) * (mul_coeff ** 3)
regu_lambda = final_lambda * threshold / final_threshold
return threshold, regu_lambda
def regularization(model: nn.Module, mode: str):
regu, counter = 0, 0
for name, param in model.named_parameters():
if "mask_scores" in name:
if mode == "l1":
regu += torch.norm(torch.sigmoid(param), p=1) / param.numel()
elif mode == "l0":
regu += torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1)).sum() / param.numel()
else:
ValueError("Don't know this mode.")
counter += 1
return regu / counter
def train(args, train_dataset, model, tokenizer, teacher=None):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter(log_dir=args.output_dir)
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if "mask_score" in n and p.requires_grad],
"lr": args.mask_scores_learning_rate,
},
{
"params": [
p
for n, p in model.named_parameters()
if "mask_score" not in n and p.requires_grad and not any(nd in n for nd in no_decay)
],
"lr": args.learning_rate,
"weight_decay": args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if "mask_score" not in n and p.requires_grad and any(nd in n for nd in no_decay)
],
"lr": args.learning_rate,
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True,
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
# Distillation
if teacher is not None:
logger.info(" Training with distillation")
global_step = 0
# Global TopK
if args.global_topk:
threshold_mem = None
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
# set global_step to global_step of last saved checkpoint from model path
try:
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
except ValueError:
global_step = 0
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained,
int(args.num_train_epochs),
desc="Epoch",
disable=args.local_rank not in [-1, 0],
)
set_seed(args) # Added here for reproducibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
batch = tuple(t.to(args.device) for t in batch)
threshold, regu_lambda = schedule_threshold(
step=global_step,
total_step=t_total,
warmup_steps=args.warmup_steps,
final_threshold=args.final_threshold,
initial_threshold=args.initial_threshold,
final_warmup=args.final_warmup,
initial_warmup=args.initial_warmup,
final_lambda=args.final_lambda,
)
# Global TopK
if args.global_topk:
if threshold == 1.0:
threshold = -1e2 # Or an indefinitely low quantity
else:
if (threshold_mem is None) or (global_step % args.global_topk_frequency_compute == 0):
# Sort all the values to get the global topK
concat = torch.cat(
[param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name]
)
n = concat.numel()
kth = max(n - (int(n * threshold) + 1), 1)
threshold_mem = concat.kthvalue(kth).values.item()
threshold = threshold_mem
else:
threshold = threshold_mem
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert", "masked_bert", "xlnet", "albert"] else None
) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
if "masked" in args.model_type:
inputs["threshold"] = threshold
outputs = model(**inputs)
loss, logits_stu = outputs # model outputs are always tuple in transformers (see doc)
# Distillation loss
if teacher is not None:
if "token_type_ids" not in inputs:
inputs["token_type_ids"] = None if args.teacher_type == "xlm" else batch[2]
with torch.no_grad():
(logits_tea,) = teacher(
input_ids=inputs["input_ids"],
token_type_ids=inputs["token_type_ids"],
attention_mask=inputs["attention_mask"],
)
loss_logits = (
F.kl_div(
input=F.log_softmax(logits_stu / args.temperature, dim=-1),
target=F.softmax(logits_tea / args.temperature, dim=-1),
reduction="batchmean",
)
* (args.temperature ** 2)
)
loss = args.alpha_distil * loss_logits + args.alpha_ce * loss
# Regularization
if args.regularization is not None:
regu_ = regularization(model=model, mode=args.regularization)
loss = loss + regu_lambda * regu_
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0 or (
# last step in epoch but step is always smaller than gradient_accumulation_steps
len(epoch_iterator) <= args.gradient_accumulation_steps
and (step + 1) == len(epoch_iterator)
):
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
tb_writer.add_scalar("threshold", threshold, global_step)
for name, param in model.named_parameters():
if not param.requires_grad:
continue
tb_writer.add_scalar("parameter_mean/" + name, param.data.mean(), global_step)
tb_writer.add_scalar("parameter_std/" + name, param.data.std(), global_step)
tb_writer.add_scalar("parameter_min/" + name, param.data.min(), global_step)
tb_writer.add_scalar("parameter_max/" + name, param.data.max(), global_step)
tb_writer.add_scalar("grad_mean/" + name, param.grad.data.mean(), global_step)
tb_writer.add_scalar("grad_std/" + name, param.grad.data.std(), global_step)
if args.regularization is not None and "mask_scores" in name:
if args.regularization == "l1":
perc = (torch.sigmoid(param) > threshold).sum().item() / param.numel()
elif args.regularization == "l0":
perc = (torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1))).sum().item() / param.numel()
tb_writer.add_scalar("retained_weights_perc/" + name, perc, global_step)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logs = {}
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
eval_key = "eval_{}".format(key)
logs[eval_key] = value
loss_scalar = (tr_loss - logging_loss) / args.logging_steps
learning_rate_scalar = scheduler.get_lr()
logs["learning_rate"] = learning_rate_scalar[0]
if len(learning_rate_scalar) > 1:
for idx, lr in enumerate(learning_rate_scalar[1:]):
logs[f"learning_rate/{idx+1}"] = lr
logs["loss"] = loss_scalar
if teacher is not None:
logs["loss/distil"] = loss_logits.item()
if args.regularization is not None:
logs["loss/regularization"] = regu_.item()
if (teacher is not None) or (args.regularization is not None):
if (teacher is not None) and (args.regularization is not None):
logs["loss/instant_ce"] = (
loss.item()
- regu_lambda * logs["loss/regularization"]
- args.alpha_distil * logs["loss/distil"]
) / args.alpha_ce
elif teacher is not None:
logs["loss/instant_ce"] = (
loss.item() - args.alpha_distil * logs["loss/distil"]
) / args.alpha_ce
else:
logs["loss/instant_ce"] = loss.item() - regu_lambda * logs["loss/regularization"]
logging_loss = tr_loss
for key, value in logs.items():
tb_writer.add_scalar(key, value, global_step)
print(json.dumps({**logs, **{"step": global_step}}))
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
eval_outputs_dirs = (args.output_dir, args.output_dir + "/MM") if args.task_name == "mnli" else (args.output_dir,)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu eval
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
# Global TopK
if args.global_topk:
threshold_mem = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert", "masked_bert", "xlnet", "albert"] else None
) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
if "masked" in args.model_type:
inputs["threshold"] = args.final_threshold
if args.global_topk:
if threshold_mem is None:
concat = torch.cat(
[param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name]
)
n = concat.numel()
kth = max(n - (int(n * args.final_threshold) + 1), 1)
threshold_mem = concat.kthvalue(kth).values.item()
inputs["threshold"] = threshold_mem
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
if args.output_mode == "classification":
from scipy.special import softmax
probs = softmax(preds, axis=-1)
entropy = np.exp((-probs * np.log(probs)).sum(axis=-1).mean())
preds = np.argmax(preds, axis=1)
elif args.output_mode == "regression":
preds = np.squeeze(preds)
result = compute_metrics(eval_task, preds, out_label_ids)
results.update(result)
if entropy is not None:
result["eval_avg_entropy"] = entropy
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
processor = processors[task]()
output_mode = output_modes[task]
# Load data features from cache or dataset file
cached_features_file = os.path.join(
args.data_dir,
"cached_{}_{}_{}_{}".format(
"dev" if evaluate else "train",
list(filter(None, args.model_name_or_path.split("/"))).pop(),
str(args.max_seq_length),
str(task),
),
)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]:
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list[1], label_list[2] = label_list[2], label_list[1]
examples = (
processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
)
features = convert_examples_to_features(
examples,
tokenizer,
max_length=args.max_seq_length,
label_list=label_list,
output_mode=output_mode,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
if output_mode == "classification":
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
elif output_mode == "regression":
all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
return dataset
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
)
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
# Other parameters
parser.add_argument(
"--config_name",
default="",
type=str,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3",
)
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument(
"--evaluate_during_training",
action="store_true",
help="Run evaluation during training at each logging step.",
)
parser.add_argument(
"--do_lower_case",
action="store_true",
help="Set this flag if you are using an uncased model.",
)
parser.add_argument(
"--per_gpu_train_batch_size",
default=8,
type=int,
help="Batch size per GPU/CPU for training.",
)
parser.add_argument(
"--per_gpu_eval_batch_size",
default=8,
type=int,
help="Batch size per GPU/CPU for evaluation.",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
# Pruning parameters
parser.add_argument(
"--mask_scores_learning_rate",
default=1e-2,
type=float,
help="The Adam initial learning rate of the mask scores.",
)
parser.add_argument(
"--initial_threshold", default=1.0, type=float, help="Initial value of the threshold (for scheduling)."
)
parser.add_argument(
"--final_threshold", default=0.7, type=float, help="Final value of the threshold (for scheduling)."
)
parser.add_argument(
"--initial_warmup",
default=1,
type=int,
help="Run `initial_warmup` * `warmup_steps` steps of threshold warmup during which threshold stays"
"at its `initial_threshold` value (sparsity schedule).",
)
parser.add_argument(
"--final_warmup",
default=2,
type=int,
help="Run `final_warmup` * `warmup_steps` steps of threshold cool-down during which threshold stays"
"at its final_threshold value (sparsity schedule).",
)
parser.add_argument(
"--pruning_method",
default="topK",
type=str,
help="Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning, sigmoied_threshold = Soft movement pruning).",
)
parser.add_argument(
"--mask_init",
default="constant",
type=str,
help="Initialization method for the mask scores. Choices: constant, uniform, kaiming.",
)
parser.add_argument(
"--mask_scale", default=0.0, type=float, help="Initialization parameter for the chosen initialization method."
)
parser.add_argument("--regularization", default=None, help="Add L0 or L1 regularization to the mask scores.")
parser.add_argument(
"--final_lambda",
default=0.0,
type=float,
help="Regularization intensity (used in conjunction with `regularization`.",
)
parser.add_argument("--global_topk", action="store_true", help="Global TopK on the Scores.")
parser.add_argument(
"--global_topk_frequency_compute",
default=25,
type=int,
help="Frequency at which we compute the TopK global threshold.",
)
# Distillation parameters (optional)
parser.add_argument(
"--teacher_type",
default=None,
type=str,
help="Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for distillation.",
)
parser.add_argument(
"--teacher_name_or_path",
default=None,
type=str,
help="Path to the already fine-tuned teacher model. Only for distillation.",
)
parser.add_argument(
"--alpha_ce", default=0.5, type=float, help="Cross entropy loss linear weight. Only for distillation."
)
parser.add_argument(
"--alpha_distil", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation."
)
parser.add_argument(
"--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.",
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument(
"--overwrite_output_dir",
action="store_true",
help="Overwrite the content of the output directory",
)
parser.add_argument(
"--overwrite_cache",
action="store_true",
help="Overwrite the cached training and evaluation sets",
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
# Regularization
if args.regularization == "null":
args.regularization = None
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
# Prepare GLUE task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels,
finetuning_task=args.task_name,
cache_dir=args.cache_dir if args.cache_dir else None,
pruning_method=args.pruning_method,
mask_init=args.mask_init,
mask_scale=args.mask_scale,
)
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None,
do_lower_case=args.do_lower_case,
)
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if args.teacher_type is not None:
assert args.teacher_name_or_path is not None
assert args.alpha_distil > 0.0
assert args.alpha_distil + args.alpha_ce > 0.0
teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type]
teacher_config = teacher_config_class.from_pretrained(args.teacher_name_or_path)
teacher = teacher_model_class.from_pretrained(
args.teacher_name_or_path,
from_tf=False,
config=teacher_config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
teacher.to(args.device)
else:
teacher = None
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=prefix)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
return results
if __name__ == "__main__":
main()
| block_movement_pruning-master | block_movement_pruning/masked_run_glue.py |
import unittest
from unittest import TestCase
class TestFun(TestCase):
def test_basic(self):
pass
if __name__ == '__main__':
unittest.main() | block_movement_pruning-master | block_movement_pruning/tests/test_fun.py |
block_movement_pruning-master | block_movement_pruning/tests/__init__.py |
|
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Masked BERT model configuration. It replicates the class `~transformers.BertConfig`
and adapts it to the specificities of MaskedBert (`pruning_method`, `mask_init` and `mask_scale`."""
import logging
from transformers.configuration_utils import PretrainedConfig
logger = logging.getLogger(__name__)
class MaskedBertConfig(PretrainedConfig):
"""
A class replicating the `~transformers.BertConfig` with additional parameters for pruning/masking configuration.
"""
model_type = "masked_bert"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
pruning_method="topK",
mask_init="constant",
mask_scale=0.0,
mask_block_rows=1,
mask_block_cols=1,
ampere_pruning_method: str = None,
ampere_mask_init: str = "constant",
ampere_mask_scale: float = 0.0,
shuffling_method: str = None,
in_shuffling_group: int = 4,
out_shuffling_group: int = 4,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.pruning_method = pruning_method
self.mask_init = mask_init
self.mask_scale = mask_scale
self.mask_block_rows = mask_block_rows
self.mask_block_cols = mask_block_cols
self.ampere_pruning_method = ampere_pruning_method
self.ampere_mask_init = ampere_mask_init
self.ampere_mask_scale = ampere_mask_scale
self.shuffling_method = shuffling_method
self.in_shuffling_group = in_shuffling_group
self.out_shuffling_group = out_shuffling_group
| block_movement_pruning-master | block_movement_pruning/emmental/configuration_bert_masked.py |
# flake8: noqa
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| block_movement_pruning-master | block_movement_pruning/emmental/__init__.py |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Masked Version of BERT. It replaces the `torch.nn.Linear` layers with
:class:`~emmental.MaskedLinear` and add an additional parameters in the forward pass to
compute the adaptive mask.
Built on top of `transformers.modeling_bert`"""
import logging
import math
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.modeling_bert import ACT2FN, load_tf_weights_in_bert
from transformers.modeling_utils import PreTrainedModel, prune_linear_layer
from emmental import MaskedBertConfig
from emmental.modules import MaskedLinear
BertLayerNorm = torch.nn.LayerNorm
logger = logging.getLogger(__name__)
def create_masked_linear(in_features, out_features, config, bias=True):
ret = MaskedLinear(in_features=in_features,
out_features=out_features,
pruning_method=config.pruning_method,
mask_init=config.mask_init,
mask_scale=config.mask_scale,
mask_block_rows=config.mask_block_rows,
mask_block_cols=config.mask_block_cols,
ampere_pruning_method=config.ampere_pruning_method,
ampere_mask_init=config.ampere_mask_init,
ampere_mask_scale=config.ampere_mask_scale,
shuffling_method = config.shuffling_method,
in_shuffling_group = config.in_shuffling_group,
out_shuffling_group = config.out_shuffling_group,
)
return ret
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).expand(input_shape)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
)
self.output_attentions = config.output_attentions
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = create_masked_linear(config.hidden_size, self.all_head_size, config)
self.key = create_masked_linear(config.hidden_size, self.all_head_size, config)
self.value = create_masked_linear(config.hidden_size, self.all_head_size, config)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
current_config=None,
):
mixed_query_layer = self.query(hidden_states, current_config=current_config)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
if encoder_hidden_states is not None:
mixed_key_layer = self.key(encoder_hidden_states, current_config=current_config)
mixed_value_layer = self.value(encoder_hidden_states, current_config=current_config)
attention_mask = encoder_attention_mask
else:
mixed_key_layer = self.key(hidden_states, current_config=current_config)
mixed_value_layer = self.value(hidden_states, current_config=current_config)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
return outputs
class BertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = create_masked_linear(config.hidden_size, config.hidden_size, config)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor, current_config):
hidden_states = self.dense(hidden_states, current_config=current_config)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
heads = set(heads) - self.pruned_heads # Convert to set and remove already pruned heads
for head in heads:
# Compute how many pruned heads are before the head and move the index accordingly
head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
current_config=None,
):
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
current_config=current_config,
)
attention_output = self.output(self_outputs[0], hidden_states, current_config=current_config)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = create_masked_linear(config.hidden_size, config.intermediate_size, config)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states, current_config):
hidden_states = self.dense(hidden_states, current_config=current_config)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = create_masked_linear(config.intermediate_size, config.hidden_size, config)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor, current_config):
hidden_states = self.dense(hidden_states, current_config=current_config)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = BertAttention(config)
self.is_decoder = config.is_decoder
if self.is_decoder:
self.crossattention = BertAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
current_config=None,
):
self_attention_outputs = self.attention(hidden_states, attention_mask, head_mask, current_config=current_config)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
if self.is_decoder and encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights
intermediate_output = self.intermediate(attention_output, current_config=current_config)
layer_output = self.output(intermediate_output, attention_output, current_config=current_config)
outputs = (layer_output,) + outputs
return outputs
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
current_config=None,
):
all_hidden_states = ()
all_attentions = ()
for i, layer_module in enumerate(self.layer):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
current_config=current_config,
)
hidden_states = layer_outputs[0]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
return outputs # last-layer hidden state, (all hidden states), (all attentions)
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class MaskedBertPreTrainedModel(PreTrainedModel):
"""An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = MaskedBertConfig
load_tf_weights = load_tf_weights_in_bert
base_model_prefix = "bert"
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, BertLayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
MASKED_BERT_START_DOCSTRING = r"""
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
usage and behavior.
Parameters:
config (:class:`~emmental.MaskedBertConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
MASKED_BERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`transformers.BertTokenizer`.
See :func:`transformers.PreTrainedTokenizer.encode` and
:func:`transformers.PreTrainedTokenizer.__call__` for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
`What are attention masks? <../glossary.html#attention-mask>`__
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Segment token indices to indicate first and second portions of the inputs.
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
corresponds to a `sentence B` token
`What are token type IDs? <../glossary.html#token-type-ids>`_
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Indices of positions of each input sequence tokens in the position embeddings.
Selected in the range ``[0, config.max_position_embeddings - 1]``.
`What are position IDs? <../glossary.html#position-ids>`_
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
is used in the cross-attention if the model is configured as a decoder.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
"""
@add_start_docstrings(
"The bare Masked Bert Model transformer outputting raw hidden-states without any specific head on top.",
MASKED_BERT_START_DOCSTRING,
)
class MaskedBertModel(MaskedBertPreTrainedModel):
"""
The `MaskedBertModel` class replicates the :class:`~transformers.BertModel` class
and adds specific inputs to compute the adaptive mask on the fly.
Note that we freeze the embeddings modules from their pre-trained values.
"""
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = BertEmbeddings(config)
self.embeddings.requires_grad_(requires_grad=False)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config)
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
See base class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
current_config=None,
):
r"""
current_config dict
current_config dict (see :class:`emmental.MaskedLinear`).
Return:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token)
further processed by a Linear layer and a Tanh activation function. The Linear
layer weights are trained from the next sentence prediction (classification)
objective during pre-training.
This output is usually *not* a good summary
of the semantic content of the input, you're often better with averaging or pooling
the sequence of hidden-states for the whole input sequence.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder:
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
causal_mask = causal_mask.to(
attention_mask.dtype
) # causal and attention masks must have same type with pytorch version < 1.3
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
input_shape, attention_mask.shape
)
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
if encoder_attention_mask.dim() == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
elif encoder_attention_mask.dim() == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
else:
raise ValueError(
"Wrong shape for encoder_hidden_shape (shape {}) or encoder_attention_mask (shape {})".format(
encoder_hidden_shape, encoder_attention_mask.shape
)
)
encoder_extended_attention_mask = encoder_extended_attention_mask.to(
dtype=next(self.parameters()).dtype
) # fp16 compatibility
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = (
head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
) # We can specify head_mask for each layer
head_mask = head_mask.to(
dtype=next(self.parameters()).dtype
) # switch to float if need + fp16 compatibility
else:
head_mask = [None] * self.config.num_hidden_layers
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
current_config=current_config,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
outputs = (sequence_output, pooled_output,) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions)
@add_start_docstrings(
"""Masked Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks. """,
MASKED_BERT_START_DOCSTRING,
)
class MaskedBertForSequenceClassification(MaskedBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = MaskedBertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
self.init_weights()
@add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
current_config=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss.
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
current_config dict
current_config dict (see :class:`emmental.MaskedLinear`).
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
current_config=current_config,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs # (loss), logits, (hidden_states), (attentions)
@add_start_docstrings(
"""Masked Bert Model with a multiple choice classification head on top (a linear layer on top of
the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
MASKED_BERT_START_DOCSTRING,
)
class MaskedBertForMultipleChoice(MaskedBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = MaskedBertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
self.init_weights()
@add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
current_config=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the multiple choice classification loss.
Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
of the input tensors. (see `input_ids` above)
current_config dict
current_config dict (see :class:`emmental.MaskedLinear`).
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs:
loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided):
Classification loss.
classification_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
`num_choices` is the second dimension of the input tensors. (see `input_ids` above).
Classification scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
num_choices = input_ids.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1))
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
current_config=current_config,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
outputs = (loss,) + outputs
return outputs # (loss), reshaped_logits, (hidden_states), (attentions)
@add_start_docstrings(
"""Masked Bert Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
MASKED_BERT_START_DOCSTRING,
)
class MaskedBertForTokenClassification(MaskedBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = MaskedBertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
current_config=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the token classification loss.
Indices should be in ``[0, ..., config.num_labels - 1]``.
current_config dict
current_config dict (see :class:`emmental.MaskedLinear`).
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) :
Classification loss.
scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`)
Classification scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
current_config=current_config,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs # (loss), scores, (hidden_states), (attentions)
@add_start_docstrings(
"""Masked Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """,
MASKED_BERT_START_DOCSTRING,
)
class MaskedBertForQuestionAnswering(MaskedBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = MaskedBertModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
start_positions=None,
end_positions=None,
current_config=None,
):
r"""
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
current_config dict
current_config dict (see :class:`emmental.MaskedLinear`).
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
Span-start scores (before SoftMax).
end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
Span-end scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
current_config=current_config,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
outputs = (
start_logits,
end_logits,
) + outputs[2:]
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
outputs = (total_loss,) + outputs
return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)
| block_movement_pruning-master | block_movement_pruning/emmental/modeling_bert_masked.py |
# coding=utf-8
# Copyright 2020-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Masked Linear module: A fully connected layer that computes an adaptive binary mask on the fly.
The mask (binary or not) is computed at each forward pass and multiplied against
the weight matrix to prune a portion of the weights.
The pruned weight matrix is then multiplied against the inputs (and if necessary, the bias is added).
"""
import itertools
import math
import random
from itertools import permutations
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import init
from .binarizer import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
sparse_patterns = None
AMPERE_M = 4
AMPERE_N = 2
class StaticIndexDim1(torch.autograd.Function):
@staticmethod
def forward(ctx, input, index, reverse_index):
ctx.save_for_backward(reverse_index)
return input[:, index]
@staticmethod
def backward(ctx, grad_output):
reverse_index, = ctx.saved_tensors
return grad_output[:, reverse_index], None, None
class Index0(torch.autograd.Function):
@staticmethod
def forward(ctx, input, index, reverse_index):
ctx.save_for_backward(reverse_index)
return input[index, :]
@staticmethod
def backward(ctx, grad_output):
reverse_index, = ctx.saved_tensors
return grad_output[reverse_index, :], None, None
def ampere_pattern(device=None):
global sparse_patterns, AMPERE_N, AMPERE_M
if sparse_patterns is not None:
if device is not None:
if sparse_patterns.device != device:
sparse_patterns = sparse_patterns.to(device=device)
return sparse_patterns
patterns = torch.zeros(AMPERE_M)
patterns[:AMPERE_N] = 1
sparse_patterns = torch.Tensor(list(set(permutations(patterns.tolist()))))
return sparse_patterns
class DimensionShuffler(nn.Module):
def __init__(self, in_features, out_features, in_features_group = 4, out_features_group = 4):
super().__init__()
self.in_features = in_features
self.in_features_group = in_features_group
self.out_features = out_features
self.out_features_group = out_features_group
in_mapping = self.dimension_mapping(in_features)
out_mapping = self.dimension_mapping(out_features)
out_mapping_reverse = out_mapping.sort()[1]
self.register_buffer("in_mapping", in_mapping)
self.register_buffer("out_mapping", out_mapping)
self.register_buffer("out_mapping_reverse", out_mapping_reverse)
#in_permutations = self.all_permutations(in_features_group)[2]
#self.register_buffer("in_permutations", in_permutations)
#out_permutations = self.all_permutations(out_features_group)[2]
#self.register_buffer("out_permutations", out_permutations)
in_permutation_scores = torch.randn(in_features // in_features_group, in_features_group - 1)
out_permutation_scores = torch.randn(out_features // out_features_group, out_features_group - 1)
# self.register_buffer("in_permutation_scores", in_permutation_scores)
# self.register_buffer("out_permutation_scores", out_permutation_scores)
self.in_permutation_scores = nn.Parameter(in_permutation_scores)
self.out_permutation_scores = nn.Parameter(out_permutation_scores)
@staticmethod
def rotate_matrices(angles):
assert(angles.shape[-1] == 1)
c = angles.cos()
s = angles.sin()
rot0 = torch.cat([c, -s], dim=1)
rot1 = torch.cat([s, c], dim=1)
rot = torch.stack([rot0, rot1], dim=1)
return rot, rot.transpose(1, 2)
def forward(self, input, weight, mask, temperature):
in_permutations, in_permutations_inverse = self.rotate_matrices(self.in_permutation_scores)
out_permutations, out_permutations_inverse = self.rotate_matrices(self.out_permutation_scores)
#in_permutations = self.permutation_mix(self.in_permutation_scores, self.in_permutations, temperature, self.training)
#out_permutations = self.permutation_mix(self.out_permutation_scores, self.out_permutations, temperature, self.training)
return self.permutated_linear(input,
self.in_mapping,
in_permutations,
in_permutations_inverse,
weight,
mask,
self.out_mapping,
self.out_mapping_reverse,
out_permutations,
out_permutations_inverse
)
@staticmethod
def permutation_mix(permutation_scores,
permutations,
temperature: float,
training: bool):
if training: # True
s = F.softmax(permutation_scores * temperature, dim=-1)
else:
s = torch.argmax(permutation_scores, dim=-1)
s = F.one_hot(s, num_classes=permutation_scores.shape[-1]).float()
s = s.matmul(permutations.reshape(permutations.shape[0], -1))
s = s.view(-1, *permutations.shape[1:])
return s
@staticmethod
def all_permutations(d_group):
t = torch.tensor(list(itertools.permutations(range(d_group))))
tp = t.sort(dim=1)[1]
a = torch.arange(t.shape[0]).unsqueeze(-1).expand_as(t)
c = torch.arange(d_group).unsqueeze(0).expand_as(t)
ones = torch.stack([a, c, t], dim=-1).reshape(-1, 3).t()
m = torch.zeros(t.shape[0], d_group, d_group)
m[tuple(ones)] = 1.0
ones = torch.stack([a, c, tp], dim=-1).reshape(-1, 3).t()
mp = torch.zeros(t.shape[0], d_group, d_group)
mp[tuple(ones)] = 1.0
return t, tp, m, mp
def random_permutation(iterable, r=None):
"Random selection from itertools.permutations(iterable, r)"
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple(random.sample(pool, r))
@staticmethod
def dimension_mapping(d, testing=False):
while True:
m = torch.tensor(DimensionShuffler.random_permutation(range(d)))
if testing and (m == torch.arange(d)).all():
continue
return m
@staticmethod
def sequence_batch_group_permutation(s, mapping, permutations, final=False):
d_group = permutations.shape[-1]
d = s.shape[-1]
assert ((d % d_group) == 0)
assert (len(s.shape) == 3)
s_shape = s.shape
if not final:
s = s[:, :, mapping]
s = s.reshape(s.shape[:-1] + (s.shape[-1] // d_group, d_group))
s2 = torch.einsum('ijmk,mkn->ijmn', s, permutations)
s2 = s2.reshape(s_shape)
if final:
s2 = s2[:, :, mapping]
return s2
@staticmethod
def matrix_group_permutation_inverse(matrix, mapping, permutations, permutations_inverse, transposed=False):
d_group = permutations.shape[-1]
d = matrix.shape[-1]
assert ((d % d_group) == 0)
assert (len(matrix.shape) == 2)
matrix_shape = matrix.shape
matrix = matrix[:, mapping]
matrix = matrix.reshape(matrix.shape[0], matrix.shape[1] // d_group, d_group)
permutations_m = permutations_inverse
# mnk because matrix is transposed, we should transpose permutations_m too
perm_selector = "mkn" if transposed else "mnk"
matrix2 = torch.einsum(f'imk,{perm_selector}->imn', matrix, permutations_m)
matrix2 = matrix2.reshape(matrix_shape)
return matrix2
@staticmethod
def permutated_linear(s, in_map, in_permut, in_permut_inverse, matrix, mask, out_map, out_map_inverse, out_permut, out_permut_inverse):
s_in = DimensionShuffler.sequence_batch_group_permutation(s, in_map, in_permut)
matrix2 = DimensionShuffler.matrix_group_permutation_inverse(matrix, in_map, in_permut, in_permut_inverse)
matrix3 = DimensionShuffler.matrix_group_permutation_inverse(matrix2.t(), out_map, out_permut, out_permut_inverse, transposed=True)
matrix3 = matrix3 * mask.t()
s_inner = s_in.matmul(matrix3)
s_out = DimensionShuffler.sequence_batch_group_permutation(s_inner, out_map_inverse, out_permut, final=True)
return s_out
s_ref = s.matmul(matrix.t()) # REFERENCE
max_std = (s_out - s_ref).std().item()
max_diff = (s_out - s_ref).abs().max().item()
if max_diff > 0.1:
print("max difference", max_diff)
return s_out
class MaskDimensionShuffler(nn.Module):
def __init__(self, in_features, out_features, in_features_group=4, out_features_group=4):
super().__init__()
self.in_features = in_features
self.in_features_group = in_features_group
self.out_features = out_features
self.out_features_group = out_features_group
in_mapping = self.dimension_mapping(in_features)
in_mapping_reverse = in_mapping.sort()[1]
out_mapping = self.dimension_mapping(out_features)
out_mapping_reverse = out_mapping.sort()[1]
self.register_buffer("in_mapping", in_mapping)
self.register_buffer("in_mapping_reverse", in_mapping_reverse)
self.register_buffer("out_mapping", out_mapping)
self.register_buffer("out_mapping_reverse", out_mapping_reverse)
if in_features_group == 2:
score_dim = 1
else:
# Currently not supported
assert (False)
in_permutation_scores = torch.randn(in_features // in_features_group, score_dim)
out_permutation_scores = torch.randn(out_features // out_features_group, score_dim)
self.in_permutation_scores = nn.Parameter(in_permutation_scores)
self.out_permutation_scores = nn.Parameter(out_permutation_scores)
@staticmethod
def random_permutation(iterable, r=None):
"Random selection from itertools.permutations(iterable, r)"
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple(random.sample(pool, r))
@staticmethod
def dimension_mapping(d):
return torch.tensor(MaskDimensionShuffler.random_permutation(range(d)))
@staticmethod
def rotations_2d(angles):
c = angles.cos()
s = angles.sin()
rot0 = torch.stack([c, -s], dim=-1)
rot1 = torch.stack([s, c], dim=-1)
rot = torch.stack([rot0, rot1], dim=1)
return rot
@staticmethod
def angles(scores, temperature, training):
scores_0 = torch.zeros_like(scores)
scores = torch.stack([scores_0, scores], dim=-1)
if training:
s = F.softmax(scores * temperature, dim=-1)
else:
s = torch.argmax(scores, dim=-1)
s = F.one_hot(s, num_classes=scores.shape[-1]).float()
angles = s[:, :, 1] * (math.pi * 0.5)
return angles
@staticmethod
def matrices(angles):
if angles.shape[-1] == 1:
return MaskDimensionShuffler.rotations_2d(angles.squeeze(-1))
else:
assert(False)
@staticmethod
def rotate(mask, mapping, mapping_reverse, scores, temperature, training):
# Rotate each group of n lines
mask_shape = mask.shape
# Get the rotations angles
angles0 = MaskDimensionShuffler.angles(scores, temperature, training)
mat0 = MaskDimensionShuffler.matrices(angles0)
# The mixing factors are actually the squares of each of the coefficient of the rotation matrix
mat0 = mat0 * mat0
# Apply the global random dimension remapping
if mapping is not None:
mask = StaticIndexDim1.apply(mask, mapping, mapping_reverse)
# Create the groups of dimensions
rot_dim = mat0.shape[-1]
mask = mask.view(mask_shape[0], mask_shape[1] // rot_dim, rot_dim)
# Following lines: Rotate each group: we could use an einsum, but not much more difficult to do
# Adapt the mask to the shape of matrices by repeating the last dimension
mask = mask.unsqueeze(-1).repeat(1, 1, 1, rot_dim)
# Adapt the matrices to the shape of the mask
mat0 = mat0.unsqueeze(0).repeat(mask.shape[0], 1, 1, 1)
# Finish with the sum on the right dimension
mask = (mat0 * mask).sum(-2)
# Reshape the mask to remove the temporary grouping
return mask.view(mask_shape)
@staticmethod
def final_mapping(mapping, scores):
mapping = mapping.view(1, mapping.shape[0])
mapping = MaskDimensionShuffler.rotate(mapping, None, None, scores, 0, False)
mapping = (mapping.round() + 0.25).long().squeeze(0)
return mapping
def final_mappings(self):
# Those are the mappings that should be applied to the weights
# (and so inverted)
m0 = self.final_mapping(self.in_mapping, self.in_permutation_scores)
m0_p = m0.sort()[1]
m1 = self.final_mapping(self.out_mapping, self.out_permutation_scores)
m1_p = m1.sort()[1]
return m0, m0_p, m1, m1_p
def forward(self, mask, temperature):
training = self.training
mask = self.rotate(mask, self.in_mapping, self.in_mapping_reverse, self.in_permutation_scores, temperature, training)
mask = mask.t()
mask = self.rotate(mask, self.out_mapping, self.out_mapping_reverse, self.out_permutation_scores, temperature, training)
mask = mask.t()
return mask
class MaskedLinear(nn.Linear):
"""
Fully Connected layer with on the fly adaptive mask.
If needed, a score matrix is created to store the importance of each associated weight.
"""
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
mask_init: str = "constant",
mask_scale: float = 0.0,
pruning_method: str = "topK",
mask_block_rows:int = 1,
mask_block_cols:int = 1,
ampere_pruning_method: str = "disabled",
ampere_mask_init: str = "constant",
ampere_mask_scale: float = 0.0,
shuffling_method:str = "disabled",
in_shuffling_group:int = 4,
out_shuffling_group:int = 4,
):
"""
Args:
in_features (`int`)
Size of each input sample
out_features (`int`)
Size of each output sample
bias (`bool`)
If set to ``False``, the layer will not learn an additive bias.
Default: ``True``
mask_init (`str`)
The initialization method for the score matrix if a score matrix is needed.
Choices: ["constant", "uniform", "kaiming"]
Default: ``constant``
mask_scale (`float`)
The initialization parameter for the chosen initialization method `mask_init`.
Default: ``0.``
pruning_method (`str`)
Method to compute the mask.
Choices: ["topK", "threshold", "sigmoied_threshold", "magnitude", "l0"]
Default: ``topK``
"""
super().__init__(in_features=in_features, out_features=out_features, bias=bias)
assert pruning_method in ["topK", "threshold", "sigmoied_threshold", "magnitude", "l0"]
self.pruning_method = pruning_method
self.mask_block_rows = mask_block_rows
self.mask_block_cols = mask_block_cols
AMPERE_METHODS = ["disabled", "annealing"]
if ampere_pruning_method not in AMPERE_METHODS:
raise RuntimeError(f"Unknown ampere pruning method '{ampere_pruning_method}', should be in {AMPERE_METHODS}")
self.ampere_pruning_method = ampere_pruning_method
SHUFFLING_METHODS = ["disabled", "annealing", "mask_annealing"]
if shuffling_method not in SHUFFLING_METHODS:
raise RuntimeError(f"Unknown shuffle method '{shuffling_method}', should be in {SHUFFLING_METHODS}")
self.shuffling_method = shuffling_method
assert in_shuffling_group >= 1
self.in_shuffling_group = in_shuffling_group
assert out_shuffling_group >= 1
self.out_shuffling_group = out_shuffling_group
self.shuffler = None
self.mask_shuffler = None
if self.shuffling_method == "annealing":
self.shuffler = DimensionShuffler(in_features=in_features,
out_features=out_features,
in_features_group=self.in_shuffling_group,
out_features_group=self.out_shuffling_group)
elif self.shuffling_method == "mask_annealing":
self.mask_shuffler = MaskDimensionShuffler(in_features=in_features,
out_features=out_features,
in_features_group=self.in_shuffling_group,
out_features_group=self.out_shuffling_group)
if self.pruning_method in ["topK", "threshold", "sigmoied_threshold", "l0"]:
self.mask_scale = mask_scale
self.mask_init = mask_init
size = self.weight.size()
assert(size[0] % self.mask_block_rows == 0)
assert(size[1] % self.mask_block_cols == 0)
mask_size = (size[0] // self.mask_block_rows, size[1] // self.mask_block_cols)
self.mask_scores = nn.Parameter(torch.Tensor(size=mask_size))
self.init_mask()
if self.ampere_pruning_method == "annealing":
self.ampere_mask_init = ampere_mask_init
self.ampere_mask_scale = ampere_mask_scale
self.initialize_ampere_permut_scores()
else:
self.register_parameter("ampere_permut_scores", None)
def initialize_ampere_permut_scores(self):
""""We must remember that weights are used in transposed form for forward pass,
which we want to optimize the most.
So we make sure we are creating an Ampere sparse pattern on the right dimension -> 0"""
assert ((self.weight.shape[0] % AMPERE_M) == 0)
sparse_patterns_count = ampere_pattern(None).shape[0]
# Creating the pattern in a transposed way to avoid a few ops later
ampere_mask_size = (self.weight.shape[1], self.weight.shape[0] // AMPERE_M, sparse_patterns_count)
self.ampere_permut_scores = nn.Parameter(torch.Tensor(size=ampere_mask_size))
if self.ampere_mask_init == "constant":
init.constant_(self.ampere_permut_scores, val=self.ampere_mask_scale)
elif self.ampere_mask_init == "uniform":
init.uniform_(self.ampere_permut_scores, a=-self.ampere_mask_scale, b=self.ampere_mask_scale)
elif self.ampere_mask_init == "kaiming":
init.kaiming_uniform_(self.ampere_permut_scores, a=math.sqrt(5))
def init_mask(self):
if self.mask_init == "constant":
init.constant_(self.mask_scores, val=self.mask_scale)
elif self.mask_init == "uniform":
init.uniform_(self.mask_scores, a=-self.mask_scale, b=self.mask_scale)
elif self.mask_init == "kaiming":
init.kaiming_uniform_(self.mask_scores, a=math.sqrt(5))
@staticmethod
def expand_mask_(mask, mask_block_rows, mask_block_cols):
mask = torch.repeat_interleave(mask, mask_block_rows, dim=0)
mask = torch.repeat_interleave(mask, mask_block_cols, dim=1)
return mask
@staticmethod
def ampere_mask_(ampere_permut_scores,
ampere_temperature: float,
device:torch.DeviceObjType,
training:bool):
if training:
s = F.softmax(ampere_permut_scores * ampere_temperature, dim=-1)
else:
s = torch.argmax(ampere_permut_scores, dim=-1)
s = F.one_hot(s, num_classes=ampere_permut_scores.shape[-1]).float()
s = s.matmul(ampere_pattern(device))
s = s.view(-1, s.shape[1] * s.shape[2])
s = s.t()
return s
@staticmethod
def check_name(name):
return name.endswith(".ampere_permut_scores") or name.endswith(".mask_scores")
@staticmethod
def mask_(weight,
pruning_method,
threshold,
mask_scores,
ampere_pruning_method,
ampere_temperature,
ampere_permut_scores,
mask_block_rows,
mask_block_cols,
training):
if pruning_method == "topK":
mask = TopKBinarizer.apply(mask_scores, threshold)
elif pruning_method in ["threshold", "sigmoied_threshold"]:
sig = "sigmoied" in pruning_method
mask = ThresholdBinarizer.apply(mask_scores, threshold, sig)
elif pruning_method == "magnitude":
mask = MagnitudeBinarizer.apply(weight, threshold)
elif pruning_method == "l0":
l, r, b = -0.1, 1.1, 2 / 3
if training:
u = torch.zeros_like(mask_scores).uniform_().clamp(0.0001, 0.9999)
s = torch.sigmoid((u.log() - (1 - u).log() + mask_scores) / b)
else:
s = torch.sigmoid(mask_scores)
s_bar = s * (r - l) + l
mask = s_bar.clamp(min=0.0, max=1.0)
# Expand block mask to individual element mask
if pruning_method != "magnitude":
mask = MaskedLinear.expand_mask_(mask,
mask_block_rows=mask_block_rows,
mask_block_cols=mask_block_cols
)
if ampere_pruning_method != "disabled":
ampere_mask = MaskedLinear.ampere_mask_(ampere_permut_scores,
ampere_temperature,
device=mask.device,
training=training)
mask = mask * ampere_mask
return mask
@staticmethod
def masked_weights_from_state_dict(state_dict,
weight_name,
pruning_method,
threshold,
ampere_pruning_method,
mask_block_rows,
mask_block_cols):
def name_for_mask(weight_name, mask_name):
new_name = weight_name.split(".")[:-1] + [mask_name]
new_name = ".".join(new_name)
parameters = {}
for name in ["weight", "mask_scores", "ampere_permut_scores"]:
parameters[name] = state_dict.get(name_for_mask(weight_name, name))
ret = MaskedLinear.masked_weights(pruning_method=pruning_method,
threshold=threshold,
ampere_pruning_method=ampere_pruning_method,
ampere_temperature=0.0,
training=False,
mask_block_rows=mask_block_rows,
mask_block_cols=mask_block_cols,
**parameters)
return ret
def expand_mask(self, mask):
return self.expand_mask_(mask, self.mask_block_rows, self.mask_block_cols)
def forward(self, input: torch.tensor, current_config: dict):
# Get the mask
threshold = current_config["threshold"]
ampere_temperature = current_config["ampere_temperature"]
shuffle_temperature = current_config["shuffling_temperature"]
mask = self.mask_(self.weight,
self.pruning_method,
threshold,
self.mask_scores,
self.ampere_pruning_method,
ampere_temperature,
self.ampere_permut_scores,
self.mask_block_rows,
self.mask_block_cols,
training=self.training)
if self.shuffler is not None:
return self.shuffler(input, self.weight, mask, shuffle_temperature) + self.bias
else:
if self.mask_shuffler is not None:
mask = self.mask_shuffler(mask, shuffle_temperature)
weight_thresholded = mask * self.weight
# Compute output (linear layer) with masked weights
return F.linear(input, weight_thresholded, self.bias)
| block_movement_pruning-master | block_movement_pruning/emmental/modules/masked_nn.py |
# flake8: noqa
from .binarizer import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
from .masked_nn import MaskedLinear
| block_movement_pruning-master | block_movement_pruning/emmental/modules/__init__.py |
# coding=utf-8
# Copyright 2020-present, AllenAI Authors, University of Illinois Urbana-Champaign,
# Intel Nervana Systems and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Binarizers take a (real value) matrice as input and produce a binary (values in {0,1}) mask of the same shape.
"""
import torch
from torch import autograd
class ThresholdBinarizer(autograd.Function):
"""
Threshold binarizer.
Computes a binary mask M from a real value matrix S such that `M_{i,j} = 1` if and only if `S_{i,j} > \tau`
where `\tau` is a real value threshold.
Implementation is inspired from:
https://github.com/arunmallya/piggyback
Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights
Arun Mallya, Dillon Davis, Svetlana Lazebnik
"""
@staticmethod
def forward(ctx, inputs: torch.tensor, threshold: float, sigmoid: bool):
"""
Args:
inputs (`torch.FloatTensor`)
The input matrix from which the binarizer computes the binary mask.
threshold (`float`)
The threshold value (in R).
sigmoid (`bool`)
If set to ``True``, we apply the sigmoid function to the `inputs` matrix before comparing to `threshold`.
In this case, `threshold` should be a value between 0 and 1.
Returns:
mask (`torch.FloatTensor`)
Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is
retained, 0 - the associated weight is pruned).
"""
nb_elems = inputs.numel()
nb_min = int(0.005 * nb_elems) + 1
if sigmoid:
mask = (torch.sigmoid(inputs) > threshold).type(inputs.type())
else:
mask = (inputs > threshold).type(inputs.type())
if mask.sum() < nb_min:
# We limit the pruning so that at least 0.5% (half a percent) of the weights are remaining
k_threshold = inputs.flatten().kthvalue(max(nb_elems - nb_min, 1)).values
mask = (inputs > k_threshold).type(inputs.type())
return mask
@staticmethod
def backward(ctx, gradOutput):
return gradOutput, None, None
class TopKBinarizer(autograd.Function):
"""
Top-k Binarizer.
Computes a binary mask M from a real value matrix S such that `M_{i,j} = 1` if and only if `S_{i,j}`
is among the k% highest values of S.
Implementation is inspired from:
https://github.com/allenai/hidden-networks
What's hidden in a randomly weighted neural network?
Vivek Ramanujan*, Mitchell Wortsman*, Aniruddha Kembhavi, Ali Farhadi, Mohammad Rastegari
"""
@staticmethod
def forward(ctx, inputs: torch.tensor, threshold: float):
"""
Args:
inputs (`torch.FloatTensor`)
The input matrix from which the binarizer computes the binary mask.
threshold (`float`)
The percentage of weights to keep (the rest is pruned).
`threshold` is a float between 0 and 1.
Returns:
mask (`torch.FloatTensor`)
Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is
retained, 0 - the associated weight is pruned).
"""
# Get the subnetwork by sorting the inputs and using the top threshold %
mask = inputs.clone()
_, idx = inputs.flatten().sort(descending=True)
j = int(threshold * inputs.numel())
# flat_out and mask access the same memory.
flat_out = mask.flatten()
flat_out[idx[j:]] = 0
flat_out[idx[:j]] = 1
return mask
@staticmethod
def backward(ctx, gradOutput):
return gradOutput, None
class MagnitudeBinarizer(object):
"""
Magnitude Binarizer.
Computes a binary mask M from a real value matrix S such that `M_{i,j} = 1` if and only if `S_{i,j}`
is among the k% highest values of |S| (absolute value).
Implementation is inspired from https://github.com/NervanaSystems/distiller/blob/2291fdcc2ea642a98d4e20629acb5a9e2e04b4e6/distiller/pruning/automated_gradual_pruner.py#L24
"""
@staticmethod
def apply(inputs: torch.tensor, threshold: float):
"""
Args:
inputs (`torch.FloatTensor`)
The input matrix from which the binarizer computes the binary mask.
This input marix is typically the weight matrix.
threshold (`float`)
The percentage of weights to keep (the rest is pruned).
`threshold` is a float between 0 and 1.
Returns:
mask (`torch.FloatTensor`)
Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is
retained, 0 - the associated weight is pruned).
"""
# Get the subnetwork by sorting the inputs and using the top threshold %
mask = inputs.clone()
_, idx = inputs.abs().flatten().sort(descending=True)
j = int(threshold * inputs.numel())
# flat_out and mask access the same memory.
flat_out = mask.flatten()
flat_out[idx[j:]] = 0
flat_out[idx[:j]] = 1
return mask
| block_movement_pruning-master | block_movement_pruning/emmental/modules/binarizer.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/main/setup.py
To create the package for pypi.
1. Run `make pre-release` (or `make pre-patch` for a patch release) then run `make fix-copies` to fix the index of the
documentation.
If releasing on a special branch, copy the updated README.md on the main branch for your the commit you will make
for the post-release and run `make fix-copies` on the main branch as well.
2. Run Tests for Amazon Sagemaker. The documentation is located in `./tests/sagemaker/README.md`, otherwise @philschmid.
3. Unpin specific versions from setup.py that use a git install.
4. Checkout the release branch (v<RELEASE>-release, for example v4.19-release), and commit these changes with the
message: "Release: <RELEASE>" and push.
5. Wait for the tests on main to be completed and be green (otherwise revert and fix bugs)
6. Add a tag in git to mark the release: "git tag v<RELEASE> -m 'Adds tag v<RELEASE> for pypi' "
Push the tag to git: git push --tags origin v<RELEASE>-release
7. Build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
For the wheel, run: "python setup.py bdist_wheel" in the top level directory.
(this will build a wheel for the python version you use to build it).
For the sources, run: "python setup.py sdist"
You should now have a /dist directory with both .whl and .tar.gz source versions.
Long story cut short, you need to run both before you can upload the distribution to the
test pypi and the actual pypi servers:
python setup.py bdist_wheel && python setup.py sdist
8. Check that everything looks correct by uploading the package to the pypi test server:
twine upload dist/* -r pypitest
(pypi suggest using twine as other methods upload files via plaintext.)
You may have to specify the repository url, use the following command then:
twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi diffusers
If you are testing from a Colab Notebook, for instance, then do:
pip install diffusers && pip uninstall diffusers
pip install -i https://testpypi.python.org/pypi diffusers
Check you can run the following commands:
python -c "python -c "from diffusers import __version__; print(__version__)"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('fusing/unet-ldm-dummy-update'); pipe()"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=None); pipe('ah suh du')"
python -c "from diffusers import *"
9. Upload the final version to actual pypi:
twine upload dist/* -r pypi
10. Prepare the release notes and publish them on github once everything is looking hunky-dory.
11. Run `make post-release` (or, for a patch release, `make post-patch`). If you were on a branch for the release,
you need to go back to main before executing this.
"""
import os
import re
from distutils.core import Command
from setuptools import find_packages, setup
# IMPORTANT:
# 1. all dependencies should be listed here with their version requirements if any
# 2. once modified, run: `make deps_table_update` to update src/diffusers/dependency_versions_table.py
_deps = [
"Pillow", # keep the PIL.Image.Resampling deprecation away
"accelerate>=0.11.0",
"compel==0.1.8",
"black~=23.1",
"datasets",
"filelock",
"flax>=0.4.1",
"hf-doc-builder>=0.3.0",
"huggingface-hub>=0.13.2",
"requests-mock==1.10.0",
"importlib_metadata",
"invisible-watermark>=0.2.0",
"isort>=5.5.4",
"jax>=0.2.8,!=0.3.2",
"jaxlib>=0.1.65",
"Jinja2",
"k-diffusion>=0.0.12",
"torchsde",
"note_seq",
"librosa",
"numpy",
"omegaconf",
"parameterized",
"protobuf>=3.20.3,<4",
"pytest",
"pytest-timeout",
"pytest-xdist",
"ruff==0.0.280",
"safetensors>=0.3.1",
"sentencepiece>=0.1.91,!=0.1.92",
"scipy",
"onnx",
"regex!=2019.12.17",
"requests",
"tensorboard",
"torch>=1.4",
"torchvision",
"transformers>=4.25.1",
"urllib3<=2.0.0",
]
# this is a lookup table with items like:
#
# tokenizers: "huggingface-hub==0.8.0"
# packaging: "packaging"
#
# some of the values are versioned whereas others aren't.
deps = {b: a for a, b in (re.findall(r"^(([^!=<>~]+)(?:[!=<>~].*)?$)", x)[0] for x in _deps)}
# since we save this data in src/diffusers/dependency_versions_table.py it can be easily accessed from
# anywhere. If you need to quickly access the data from this table in a shell, you can do so easily with:
#
# python -c 'import sys; from diffusers.dependency_versions_table import deps; \
# print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets
#
# Just pass the desired package names to that script as it's shown with 2 packages above.
#
# If diffusers is not yet installed and the work is done from the cloned repo remember to add `PYTHONPATH=src` to the script above
#
# You can then feed this for example to `pip`:
#
# pip install -U $(python -c 'import sys; from diffusers.dependency_versions_table import deps; \
# print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets)
#
def deps_list(*pkgs):
return [deps[pkg] for pkg in pkgs]
class DepsTableUpdateCommand(Command):
"""
A custom distutils command that updates the dependency table.
usage: python setup.py deps_table_update
"""
description = "build runtime dependency table"
user_options = [
# format: (long option, short option, description).
("dep-table-update", None, "updates src/diffusers/dependency_versions_table.py"),
]
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
entries = "\n".join([f' "{k}": "{v}",' for k, v in deps.items()])
content = [
"# THIS FILE HAS BEEN AUTOGENERATED. To update:",
"# 1. modify the `_deps` dict in setup.py",
"# 2. run `make deps_table_update``",
"deps = {",
entries,
"}",
"",
]
target = "src/diffusers/dependency_versions_table.py"
print(f"updating {target}")
with open(target, "w", encoding="utf-8", newline="\n") as f:
f.write("\n".join(content))
extras = {}
extras = {}
extras["quality"] = deps_list("urllib3", "black", "isort", "ruff", "hf-doc-builder")
extras["docs"] = deps_list("hf-doc-builder")
extras["training"] = deps_list("accelerate", "datasets", "protobuf", "tensorboard", "Jinja2")
extras["test"] = deps_list(
"compel",
"datasets",
"Jinja2",
"invisible-watermark",
"k-diffusion",
"librosa",
"omegaconf",
"parameterized",
"pytest",
"pytest-timeout",
"pytest-xdist",
"requests-mock",
"safetensors",
"sentencepiece",
"scipy",
"torchvision",
"transformers",
)
extras["torch"] = deps_list("torch", "accelerate")
if os.name == "nt": # windows
extras["flax"] = [] # jax is not supported on windows
else:
extras["flax"] = deps_list("jax", "jaxlib", "flax")
extras["dev"] = (
extras["quality"] + extras["test"] + extras["training"] + extras["docs"] + extras["torch"] + extras["flax"]
)
install_requires = [
deps["importlib_metadata"],
deps["filelock"],
deps["huggingface-hub"],
deps["numpy"],
deps["regex"],
deps["requests"],
deps["safetensors"],
deps["Pillow"],
]
setup(
name="diffusers",
version="0.22.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description="State-of-the-art diffusion in PyTorch and JAX.",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",
keywords="deep learning diffusion jax pytorch stable diffusion audioldm",
license="Apache",
author="The HuggingFace team",
author_email="[email protected]",
url="https://github.com/huggingface/diffusers",
package_dir={"": "src"},
packages=find_packages("src"),
include_package_data=True,
python_requires=">=3.8.0",
install_requires=list(install_requires),
extras_require=extras,
entry_points={"console_scripts": ["diffusers-cli=diffusers.commands.diffusers_cli:main"]},
classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
cmdclass={"deps_table_update": DepsTableUpdateCommand},
)
# Release checklist
# 1. Change the version in __init__.py and setup.py.
# 2. Commit these changes with the message: "Release: Release"
# 3. Add a tag in git to mark the release: "git tag RELEASE -m 'Adds tag RELEASE for pypi' "
# Push the tag to git: git push --tags origin main
# 4. Run the following commands in the top-level directory:
# python setup.py bdist_wheel
# python setup.py sdist
# 5. Upload the package to the pypi test server first:
# twine upload dist/* -r pypitest
# twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
# 6. Check that you can install it in a virtualenv by running:
# pip install -i https://testpypi.python.org/pypi diffusers
# diffusers env
# diffusers test
# 7. Upload the final version to actual pypi:
# twine upload dist/* -r pypi
# 8. Add release notes to the tag in github once everything is looking hunky-dory.
# 9. Update the version in __init__.py, setup.py to the new version "-dev" and push to master
| diffusers-main | setup.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
git_repo_path = abspath(join(dirname(dirname(__file__)), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def pytest_addoption(parser):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(parser)
def pytest_terminal_summary(terminalreporter):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
make_reports = terminalreporter.config.getoption("--make-reports")
if make_reports:
pytest_terminal_summary_main(terminalreporter, id=make_reports)
| diffusers-main | tests/conftest.py |
diffusers-main | tests/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from distutils.util import strtobool
import pytest
from diffusers import __version__
from diffusers.utils import deprecate
# Used to test the hub
USER = "__DUMMY_TRANSFORMERS_USER__"
ENDPOINT_STAGING = "https://hub-ci.huggingface.co"
# Not critical, only usable on the sandboxed CI instance.
TOKEN = "hf_94wBhPGp6KrrTH3KDchhKpRxZwd6dmHWLL"
class DeprecateTester(unittest.TestCase):
higher_version = ".".join([str(int(__version__.split(".")[0]) + 1)] + __version__.split(".")[1:])
lower_version = "0.0.1"
def test_deprecate_function_arg(self):
kwargs = {"deprecated_arg": 4}
with self.assertWarns(FutureWarning) as warning:
output = deprecate("deprecated_arg", self.higher_version, "message", take_from=kwargs)
assert output == 4
assert (
str(warning.warning)
== f"The `deprecated_arg` argument is deprecated and will be removed in version {self.higher_version}."
" message"
)
def test_deprecate_function_arg_tuple(self):
kwargs = {"deprecated_arg": 4}
with self.assertWarns(FutureWarning) as warning:
output = deprecate(("deprecated_arg", self.higher_version, "message"), take_from=kwargs)
assert output == 4
assert (
str(warning.warning)
== f"The `deprecated_arg` argument is deprecated and will be removed in version {self.higher_version}."
" message"
)
def test_deprecate_function_args(self):
kwargs = {"deprecated_arg_1": 4, "deprecated_arg_2": 8}
with self.assertWarns(FutureWarning) as warning:
output_1, output_2 = deprecate(
("deprecated_arg_1", self.higher_version, "Hey"),
("deprecated_arg_2", self.higher_version, "Hey"),
take_from=kwargs,
)
assert output_1 == 4
assert output_2 == 8
assert (
str(warning.warnings[0].message)
== "The `deprecated_arg_1` argument is deprecated and will be removed in version"
f" {self.higher_version}. Hey"
)
assert (
str(warning.warnings[1].message)
== "The `deprecated_arg_2` argument is deprecated and will be removed in version"
f" {self.higher_version}. Hey"
)
def test_deprecate_function_incorrect_arg(self):
kwargs = {"deprecated_arg": 4}
with self.assertRaises(TypeError) as error:
deprecate(("wrong_arg", self.higher_version, "message"), take_from=kwargs)
assert "test_deprecate_function_incorrect_arg in" in str(error.exception)
assert "line" in str(error.exception)
assert "got an unexpected keyword argument `deprecated_arg`" in str(error.exception)
def test_deprecate_arg_no_kwarg(self):
with self.assertWarns(FutureWarning) as warning:
deprecate(("deprecated_arg", self.higher_version, "message"))
assert (
str(warning.warning)
== f"`deprecated_arg` is deprecated and will be removed in version {self.higher_version}. message"
)
def test_deprecate_args_no_kwarg(self):
with self.assertWarns(FutureWarning) as warning:
deprecate(
("deprecated_arg_1", self.higher_version, "Hey"),
("deprecated_arg_2", self.higher_version, "Hey"),
)
assert (
str(warning.warnings[0].message)
== f"`deprecated_arg_1` is deprecated and will be removed in version {self.higher_version}. Hey"
)
assert (
str(warning.warnings[1].message)
== f"`deprecated_arg_2` is deprecated and will be removed in version {self.higher_version}. Hey"
)
def test_deprecate_class_obj(self):
class Args:
arg = 5
with self.assertWarns(FutureWarning) as warning:
arg = deprecate(("arg", self.higher_version, "message"), take_from=Args())
assert arg == 5
assert (
str(warning.warning)
== f"The `arg` attribute is deprecated and will be removed in version {self.higher_version}. message"
)
def test_deprecate_class_objs(self):
class Args:
arg = 5
foo = 7
with self.assertWarns(FutureWarning) as warning:
arg_1, arg_2 = deprecate(
("arg", self.higher_version, "message"),
("foo", self.higher_version, "message"),
("does not exist", self.higher_version, "message"),
take_from=Args(),
)
assert arg_1 == 5
assert arg_2 == 7
assert (
str(warning.warning)
== f"The `arg` attribute is deprecated and will be removed in version {self.higher_version}. message"
)
assert (
str(warning.warnings[0].message)
== f"The `arg` attribute is deprecated and will be removed in version {self.higher_version}. message"
)
assert (
str(warning.warnings[1].message)
== f"The `foo` attribute is deprecated and will be removed in version {self.higher_version}. message"
)
def test_deprecate_incorrect_version(self):
kwargs = {"deprecated_arg": 4}
with self.assertRaises(ValueError) as error:
deprecate(("wrong_arg", self.lower_version, "message"), take_from=kwargs)
assert (
str(error.exception)
== "The deprecation tuple ('wrong_arg', '0.0.1', 'message') should be removed since diffusers' version"
f" {__version__} is >= {self.lower_version}"
)
def test_deprecate_incorrect_no_standard_warn(self):
with self.assertWarns(FutureWarning) as warning:
deprecate(("deprecated_arg", self.higher_version, "This message is better!!!"), standard_warn=False)
assert str(warning.warning) == "This message is better!!!"
def test_deprecate_stacklevel(self):
with self.assertWarns(FutureWarning) as warning:
deprecate(("deprecated_arg", self.higher_version, "This message is better!!!"), standard_warn=False)
assert str(warning.warning) == "This message is better!!!"
assert "diffusers/tests/others/test_utils.py" in warning.filename
def parse_flag_from_env(key, default=False):
try:
value = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_value = default
else:
# KEY is set, convert it to True or False.
try:
_value = strtobool(value)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"If set, {key} must be yes or no.")
return _value
_run_staging = parse_flag_from_env("HUGGINGFACE_CO_STAGING", default=False)
def is_staging_test(test_case):
"""
Decorator marking a test as a staging test.
Those tests will run using the staging environment of huggingface.co instead of the real model hub.
"""
if not _run_staging:
return unittest.skip("test is staging test")(test_case)
else:
return pytest.mark.is_staging_test()(test_case)
| diffusers-main | tests/others/test_utils.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import torch
from diffusers import UNet2DConditionModel
from diffusers.training_utils import EMAModel
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device
enable_full_determinism()
class EMAModelTests(unittest.TestCase):
model_id = "hf-internal-testing/tiny-stable-diffusion-pipe"
batch_size = 1
prompt_length = 77
text_encoder_hidden_dim = 32
num_in_channels = 4
latent_height = latent_width = 64
generator = torch.manual_seed(0)
def get_models(self, decay=0.9999):
unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet")
unet = unet.to(torch_device)
ema_unet = EMAModel(unet.parameters(), decay=decay, model_cls=UNet2DConditionModel, model_config=unet.config)
return unet, ema_unet
def get_dummy_inputs(self):
noisy_latents = torch.randn(
self.batch_size, self.num_in_channels, self.latent_height, self.latent_width, generator=self.generator
).to(torch_device)
timesteps = torch.randint(0, 1000, size=(self.batch_size,), generator=self.generator).to(torch_device)
encoder_hidden_states = torch.randn(
self.batch_size, self.prompt_length, self.text_encoder_hidden_dim, generator=self.generator
).to(torch_device)
return noisy_latents, timesteps, encoder_hidden_states
def simulate_backprop(self, unet):
updated_state_dict = {}
for k, param in unet.state_dict().items():
updated_param = torch.randn_like(param) + (param * torch.randn_like(param))
updated_state_dict.update({k: updated_param})
unet.load_state_dict(updated_state_dict)
return unet
def test_optimization_steps_updated(self):
unet, ema_unet = self.get_models()
# Take the first (hypothetical) EMA step.
ema_unet.step(unet.parameters())
assert ema_unet.optimization_step == 1
# Take two more.
for _ in range(2):
ema_unet.step(unet.parameters())
assert ema_unet.optimization_step == 3
def test_shadow_params_not_updated(self):
unet, ema_unet = self.get_models()
# Since the `unet` is not being updated (i.e., backprop'd)
# there won't be any difference between the `params` of `unet`
# and `ema_unet` even if we call `ema_unet.step(unet.parameters())`.
ema_unet.step(unet.parameters())
orig_params = list(unet.parameters())
for s_param, param in zip(ema_unet.shadow_params, orig_params):
assert torch.allclose(s_param, param)
# The above holds true even if we call `ema.step()` multiple times since
# `unet` params are still not being updated.
for _ in range(4):
ema_unet.step(unet.parameters())
for s_param, param in zip(ema_unet.shadow_params, orig_params):
assert torch.allclose(s_param, param)
def test_shadow_params_updated(self):
unet, ema_unet = self.get_models()
# Here we simulate the parameter updates for `unet`. Since there might
# be some parameters which are initialized to zero we take extra care to
# initialize their values to something non-zero before the multiplication.
unet_pseudo_updated_step_one = self.simulate_backprop(unet)
# Take the EMA step.
ema_unet.step(unet_pseudo_updated_step_one.parameters())
# Now the EMA'd parameters won't be equal to the original model parameters.
orig_params = list(unet_pseudo_updated_step_one.parameters())
for s_param, param in zip(ema_unet.shadow_params, orig_params):
assert ~torch.allclose(s_param, param)
# Ensure this is the case when we take multiple EMA steps.
for _ in range(4):
ema_unet.step(unet.parameters())
for s_param, param in zip(ema_unet.shadow_params, orig_params):
assert ~torch.allclose(s_param, param)
def test_consecutive_shadow_params_updated(self):
# If we call EMA step after a backpropagation consecutively for two times,
# the shadow params from those two steps should be different.
unet, ema_unet = self.get_models()
# First backprop + EMA
unet_step_one = self.simulate_backprop(unet)
ema_unet.step(unet_step_one.parameters())
step_one_shadow_params = ema_unet.shadow_params
# Second backprop + EMA
unet_step_two = self.simulate_backprop(unet_step_one)
ema_unet.step(unet_step_two.parameters())
step_two_shadow_params = ema_unet.shadow_params
for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params):
assert ~torch.allclose(step_one, step_two)
def test_zero_decay(self):
# If there's no decay even if there are backprops, EMA steps
# won't take any effect i.e., the shadow params would remain the
# same.
unet, ema_unet = self.get_models(decay=0.0)
unet_step_one = self.simulate_backprop(unet)
ema_unet.step(unet_step_one.parameters())
step_one_shadow_params = ema_unet.shadow_params
unet_step_two = self.simulate_backprop(unet_step_one)
ema_unet.step(unet_step_two.parameters())
step_two_shadow_params = ema_unet.shadow_params
for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params):
assert torch.allclose(step_one, step_two)
@skip_mps
def test_serialization(self):
unet, ema_unet = self.get_models()
noisy_latents, timesteps, encoder_hidden_states = self.get_dummy_inputs()
with tempfile.TemporaryDirectory() as tmpdir:
ema_unet.save_pretrained(tmpdir)
loaded_unet = UNet2DConditionModel.from_pretrained(tmpdir, model_cls=UNet2DConditionModel)
loaded_unet = loaded_unet.to(unet.device)
# Since no EMA step has been performed the outputs should match.
output = unet(noisy_latents, timesteps, encoder_hidden_states).sample
output_loaded = loaded_unet(noisy_latents, timesteps, encoder_hidden_states).sample
assert torch.allclose(output, output_loaded, atol=1e-4)
| diffusers-main | tests/others/test_ema.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from unittest.mock import Mock, patch
import diffusers.utils.hub_utils
class CreateModelCardTest(unittest.TestCase):
@patch("diffusers.utils.hub_utils.get_full_repo_name")
def test_create_model_card(self, repo_name_mock: Mock) -> None:
repo_name_mock.return_value = "full_repo_name"
with TemporaryDirectory() as tmpdir:
# Dummy args values
args = Mock()
args.output_dir = tmpdir
args.local_rank = 0
args.hub_token = "hub_token"
args.dataset_name = "dataset_name"
args.learning_rate = 0.01
args.train_batch_size = 100000
args.eval_batch_size = 10000
args.gradient_accumulation_steps = 0.01
args.adam_beta1 = 0.02
args.adam_beta2 = 0.03
args.adam_weight_decay = 0.0005
args.adam_epsilon = 0.000001
args.lr_scheduler = 1
args.lr_warmup_steps = 10
args.ema_inv_gamma = 0.001
args.ema_power = 0.1
args.ema_max_decay = 0.2
args.mixed_precision = True
# Model card mush be rendered and saved
diffusers.utils.hub_utils.create_model_card(args, model_name="model_name")
self.assertTrue((Path(tmpdir) / "README.md").is_file())
| diffusers-main | tests/others/test_hub_utils.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import unittest
from importlib import import_module
class DependencyTester(unittest.TestCase):
def test_diffusers_import(self):
try:
import diffusers # noqa: F401
except ImportError:
assert False
def test_backend_registration(self):
import diffusers
from diffusers.dependency_versions_table import deps
all_classes = inspect.getmembers(diffusers, inspect.isclass)
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
backend = "k-diffusion"
elif backend == "invisible_watermark":
backend = "invisible-watermark"
assert backend in deps, f"{backend} is not in the deps table!"
def test_pipeline_imports(self):
import diffusers
import diffusers.pipelines
all_classes = inspect.getmembers(diffusers, inspect.isclass)
for cls_name, cls_module in all_classes:
if hasattr(diffusers.pipelines, cls_name):
pipeline_folder_module = ".".join(str(cls_module.__module__).split(".")[:3])
_ = import_module(pipeline_folder_module, str(cls_name))
| diffusers-main | tests/others/test_dependencies.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
REFERENCE_CODE = """ \"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
"""
class CopyCheckTester(unittest.TestCase):
def setUp(self):
self.diffusers_dir = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir, "schedulers/"))
check_copies.DIFFUSERS_PATH = self.diffusers_dir
shutil.copy(
os.path.join(git_repo_path, "src/diffusers/schedulers/scheduling_ddpm.py"),
os.path.join(self.diffusers_dir, "schedulers/scheduling_ddpm.py"),
)
def tearDown(self):
check_copies.DIFFUSERS_PATH = "src/diffusers"
shutil.rmtree(self.diffusers_dir)
def check_copy_consistency(self, comment, class_name, class_code, overwrite_result=None):
code = comment + f"\nclass {class_name}(nn.Module):\n" + class_code
if overwrite_result is not None:
expected = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result
mode = black.Mode(target_versions={black.TargetVersion.PY35}, line_length=119)
code = black.format_str(code, mode=mode)
fname = os.path.join(self.diffusers_dir, "new_code.py")
with open(fname, "w", newline="\n") as f:
f.write(code)
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(fname)) == 0)
else:
check_copies.is_copy_consistent(f.name, overwrite=True)
with open(fname, "r") as f:
self.assertTrue(f.read(), expected)
def test_find_code_in_diffusers(self):
code = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput")
self.assertEqual(code, REFERENCE_CODE)
def test_is_copy_consistent(self):
# Base copy consistency
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput",
"DDPMSchedulerOutput",
REFERENCE_CODE + "\n",
)
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput",
"DDPMSchedulerOutput",
REFERENCE_CODE,
)
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test",
"TestSchedulerOutput",
re.sub("DDPM", "Test", REFERENCE_CODE),
)
# Copy consistency with a really long name
long_class_name = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}",
f"{long_class_name}SchedulerOutput",
re.sub("Bert", long_class_name, REFERENCE_CODE),
)
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test",
"TestSchedulerOutput",
REFERENCE_CODE,
overwrite_result=re.sub("DDPM", "Test", REFERENCE_CODE),
)
| diffusers-main | tests/others/test_check_copies.py |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
check_dummies.PATH_TO_DIFFUSERS = os.path.join(git_repo_path, "src", "diffusers")
class CheckDummiesTester(unittest.TestCase):
def test_find_backend(self):
simple_backend = find_backend(" if not is_torch_available():")
self.assertEqual(simple_backend, "torch")
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
double_backend = find_backend(" if not (is_torch_available() and is_transformers_available()):")
self.assertEqual(double_backend, "torch_and_transformers")
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
triple_backend = find_backend(
" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):"
)
self.assertEqual(triple_backend, "torch_and_transformers_and_onnx")
def test_read_init(self):
objects = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("torch", objects)
self.assertIn("torch_and_transformers", objects)
self.assertIn("flax_and_transformers", objects)
self.assertIn("torch_and_transformers_and_onnx", objects)
# Likewise, we can't assert on the exact content of a key
self.assertIn("UNet2DModel", objects["torch"])
self.assertIn("FlaxUNet2DConditionModel", objects["flax"])
self.assertIn("StableDiffusionPipeline", objects["torch_and_transformers"])
self.assertIn("FlaxStableDiffusionPipeline", objects["flax_and_transformers"])
self.assertIn("LMSDiscreteScheduler", objects["torch_and_scipy"])
self.assertIn("OnnxStableDiffusionPipeline", objects["torch_and_transformers_and_onnx"])
def test_create_dummy_object(self):
dummy_constant = create_dummy_object("CONSTANT", "'torch'")
self.assertEqual(dummy_constant, "\nCONSTANT = None\n")
dummy_function = create_dummy_object("function", "'torch'")
self.assertEqual(
dummy_function, "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n"
)
expected_dummy_class = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, 'torch')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, 'torch')
"""
dummy_class = create_dummy_object("FakeClass", "'torch'")
self.assertEqual(dummy_class, expected_dummy_class)
def test_create_dummy_files(self):
expected_dummy_pytorch_file = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, ["torch"])
class FakeClass(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
"""
dummy_files = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]})
self.assertEqual(dummy_files["torch"], expected_dummy_pytorch_file)
| diffusers-main | tests/others/test_check_dummies.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNet2DModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
torch.backends.cuda.matmul.allow_tf32 = False
class TrainingTests(unittest.TestCase):
def get_model_optimizer(self, resolution=32):
set_seed(0)
model = UNet2DModel(sample_size=resolution, in_channels=3, out_channels=3)
optimizer = torch.optim.SGD(model.parameters(), lr=0.0001)
return model, optimizer
@slow
def test_training_step_equality(self):
device = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
ddpm_scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_start=0.0001,
beta_end=0.02,
beta_schedule="linear",
clip_sample=True,
)
ddim_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.0001,
beta_end=0.02,
beta_schedule="linear",
clip_sample=True,
)
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0)
clean_images = [torch.randn((4, 3, 32, 32)).clip(-1, 1).to(device) for _ in range(4)]
noise = [torch.randn((4, 3, 32, 32)).to(device) for _ in range(4)]
timesteps = [torch.randint(0, 1000, (4,)).long().to(device) for _ in range(4)]
# train with a DDPM scheduler
model, optimizer = self.get_model_optimizer(resolution=32)
model.train().to(device)
for i in range(4):
optimizer.zero_grad()
ddpm_noisy_images = ddpm_scheduler.add_noise(clean_images[i], noise[i], timesteps[i])
ddpm_noise_pred = model(ddpm_noisy_images, timesteps[i]).sample
loss = torch.nn.functional.mse_loss(ddpm_noise_pred, noise[i])
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
model, optimizer = self.get_model_optimizer(resolution=32)
model.train().to(device)
for i in range(4):
optimizer.zero_grad()
ddim_noisy_images = ddim_scheduler.add_noise(clean_images[i], noise[i], timesteps[i])
ddim_noise_pred = model(ddim_noisy_images, timesteps[i]).sample
loss = torch.nn.functional.mse_loss(ddim_noise_pred, noise[i])
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(ddpm_noisy_images, ddim_noisy_images, atol=1e-5))
self.assertTrue(torch.allclose(ddpm_noise_pred, ddim_noise_pred, atol=1e-5))
| diffusers-main | tests/others/test_training.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import PIL.Image
import torch
from diffusers.image_processor import VaeImageProcessor
class ImageProcessorTest(unittest.TestCase):
@property
def dummy_sample(self):
batch_size = 1
num_channels = 3
height = 8
width = 8
sample = torch.rand((batch_size, num_channels, height, width))
return sample
@property
def dummy_mask(self):
batch_size = 1
num_channels = 1
height = 8
width = 8
sample = torch.rand((batch_size, num_channels, height, width))
return sample
def to_np(self, image):
if isinstance(image[0], PIL.Image.Image):
return np.stack([np.array(i) for i in image], axis=0)
elif isinstance(image, torch.Tensor):
return image.cpu().numpy().transpose(0, 2, 3, 1)
return image
def test_vae_image_processor_pt(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=True)
input_pt = self.dummy_sample
input_np = self.to_np(input_pt)
for output_type in ["pt", "np", "pil"]:
out = image_processor.postprocess(
image_processor.preprocess(input_pt),
output_type=output_type,
)
out_np = self.to_np(out)
in_np = (input_np * 255).round() if output_type == "pil" else input_np
assert (
np.abs(in_np - out_np).max() < 1e-6
), f"decoded output does not match input for output_type {output_type}"
def test_vae_image_processor_np(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=True)
input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1)
for output_type in ["pt", "np", "pil"]:
out = image_processor.postprocess(image_processor.preprocess(input_np), output_type=output_type)
out_np = self.to_np(out)
in_np = (input_np * 255).round() if output_type == "pil" else input_np
assert (
np.abs(in_np - out_np).max() < 1e-6
), f"decoded output does not match input for output_type {output_type}"
def test_vae_image_processor_pil(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=True)
input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1)
input_pil = image_processor.numpy_to_pil(input_np)
for output_type in ["pt", "np", "pil"]:
out = image_processor.postprocess(image_processor.preprocess(input_pil), output_type=output_type)
for i, o in zip(input_pil, out):
in_np = np.array(i)
out_np = self.to_np(out) if output_type == "pil" else (self.to_np(out) * 255).round()
assert (
np.abs(in_np - out_np).max() < 1e-6
), f"decoded output does not match input for output_type {output_type}"
def test_preprocess_input_3d(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
input_pt_4d = self.dummy_sample
input_pt_3d = input_pt_4d.squeeze(0)
out_pt_4d = image_processor.postprocess(
image_processor.preprocess(input_pt_4d),
output_type="np",
)
out_pt_3d = image_processor.postprocess(
image_processor.preprocess(input_pt_3d),
output_type="np",
)
input_np_4d = self.to_np(self.dummy_sample)
input_np_3d = input_np_4d.squeeze(0)
out_np_4d = image_processor.postprocess(
image_processor.preprocess(input_np_4d),
output_type="np",
)
out_np_3d = image_processor.postprocess(
image_processor.preprocess(input_np_3d),
output_type="np",
)
assert np.abs(out_pt_4d - out_pt_3d).max() < 1e-6
assert np.abs(out_np_4d - out_np_3d).max() < 1e-6
def test_preprocess_input_list(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
input_pt_4d = self.dummy_sample
input_pt_list = list(input_pt_4d)
out_pt_4d = image_processor.postprocess(
image_processor.preprocess(input_pt_4d),
output_type="np",
)
out_pt_list = image_processor.postprocess(
image_processor.preprocess(input_pt_list),
output_type="np",
)
input_np_4d = self.to_np(self.dummy_sample)
input_np_list = list(input_np_4d)
out_np_4d = image_processor.postprocess(
image_processor.preprocess(input_np_4d),
output_type="np",
)
out_np_list = image_processor.postprocess(
image_processor.preprocess(input_np_list),
output_type="np",
)
assert np.abs(out_pt_4d - out_pt_list).max() < 1e-6
assert np.abs(out_np_4d - out_np_list).max() < 1e-6
def test_preprocess_input_mask_3d(self):
image_processor = VaeImageProcessor(
do_resize=False, do_normalize=False, do_binarize=True, do_convert_grayscale=True
)
input_pt_4d = self.dummy_mask
input_pt_3d = input_pt_4d.squeeze(0)
input_pt_2d = input_pt_3d.squeeze(0)
out_pt_4d = image_processor.postprocess(
image_processor.preprocess(input_pt_4d),
output_type="np",
)
out_pt_3d = image_processor.postprocess(
image_processor.preprocess(input_pt_3d),
output_type="np",
)
out_pt_2d = image_processor.postprocess(
image_processor.preprocess(input_pt_2d),
output_type="np",
)
input_np_4d = self.to_np(self.dummy_mask)
input_np_3d = input_np_4d.squeeze(0)
input_np_3d_1 = input_np_4d.squeeze(-1)
input_np_2d = input_np_3d.squeeze(-1)
out_np_4d = image_processor.postprocess(
image_processor.preprocess(input_np_4d),
output_type="np",
)
out_np_3d = image_processor.postprocess(
image_processor.preprocess(input_np_3d),
output_type="np",
)
out_np_3d_1 = image_processor.postprocess(
image_processor.preprocess(input_np_3d_1),
output_type="np",
)
out_np_2d = image_processor.postprocess(
image_processor.preprocess(input_np_2d),
output_type="np",
)
assert np.abs(out_pt_4d - out_pt_3d).max() == 0
assert np.abs(out_pt_4d - out_pt_2d).max() == 0
assert np.abs(out_np_4d - out_np_3d).max() == 0
assert np.abs(out_np_4d - out_np_3d_1).max() == 0
assert np.abs(out_np_4d - out_np_2d).max() == 0
def test_preprocess_input_mask_list(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True)
input_pt_4d = self.dummy_mask
input_pt_3d = input_pt_4d.squeeze(0)
input_pt_2d = input_pt_3d.squeeze(0)
inputs_pt = [input_pt_4d, input_pt_3d, input_pt_2d]
inputs_pt_list = [[input_pt] for input_pt in inputs_pt]
for input_pt, input_pt_list in zip(inputs_pt, inputs_pt_list):
out_pt = image_processor.postprocess(
image_processor.preprocess(input_pt),
output_type="np",
)
out_pt_list = image_processor.postprocess(
image_processor.preprocess(input_pt_list),
output_type="np",
)
assert np.abs(out_pt - out_pt_list).max() < 1e-6
input_np_4d = self.to_np(self.dummy_mask)
input_np_3d = input_np_4d.squeeze(0)
input_np_2d = input_np_3d.squeeze(-1)
inputs_np = [input_np_4d, input_np_3d, input_np_2d]
inputs_np_list = [[input_np] for input_np in inputs_np]
for input_np, input_np_list in zip(inputs_np, inputs_np_list):
out_np = image_processor.postprocess(
image_processor.preprocess(input_np),
output_type="np",
)
out_np_list = image_processor.postprocess(
image_processor.preprocess(input_np_list),
output_type="np",
)
assert np.abs(out_np - out_np_list).max() < 1e-6
def test_preprocess_input_mask_3d_batch(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True)
# create a dummy mask input with batch_size 2
dummy_mask_batch = torch.cat([self.dummy_mask] * 2, axis=0)
# squeeze out the channel dimension
input_pt_3d = dummy_mask_batch.squeeze(1)
input_np_3d = self.to_np(dummy_mask_batch).squeeze(-1)
input_pt_3d_list = list(input_pt_3d)
input_np_3d_list = list(input_np_3d)
out_pt_3d = image_processor.postprocess(
image_processor.preprocess(input_pt_3d),
output_type="np",
)
out_pt_3d_list = image_processor.postprocess(
image_processor.preprocess(input_pt_3d_list),
output_type="np",
)
assert np.abs(out_pt_3d - out_pt_3d_list).max() < 1e-6
out_np_3d = image_processor.postprocess(
image_processor.preprocess(input_np_3d),
output_type="np",
)
out_np_3d_list = image_processor.postprocess(
image_processor.preprocess(input_np_3d_list),
output_type="np",
)
assert np.abs(out_np_3d - out_np_3d_list).max() < 1e-6
def test_vae_image_processor_resize_pt(self):
image_processor = VaeImageProcessor(do_resize=True, vae_scale_factor=1)
input_pt = self.dummy_sample
b, c, h, w = input_pt.shape
scale = 2
out_pt = image_processor.resize(image=input_pt, height=h // scale, width=w // scale)
exp_pt_shape = (b, c, h // scale, w // scale)
assert (
out_pt.shape == exp_pt_shape
), f"resized image output shape '{out_pt.shape}' didn't match expected shape '{exp_pt_shape}'."
def test_vae_image_processor_resize_np(self):
image_processor = VaeImageProcessor(do_resize=True, vae_scale_factor=1)
input_pt = self.dummy_sample
b, c, h, w = input_pt.shape
scale = 2
input_np = self.to_np(input_pt)
out_np = image_processor.resize(image=input_np, height=h // scale, width=w // scale)
exp_np_shape = (b, h // scale, w // scale, c)
assert (
out_np.shape == exp_np_shape
), f"resized image output shape '{out_np.shape}' didn't match expected shape '{exp_np_shape}'."
| diffusers-main | tests/others/test_image_processor.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from diffusers import (
DDIMScheduler,
DDPMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
PNDMScheduler,
logging,
)
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils.testing_utils import CaptureLogger
class SampleObject(ConfigMixin):
config_name = "config.json"
@register_to_config
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
e=[1, 3],
):
pass
class SampleObject2(ConfigMixin):
config_name = "config.json"
@register_to_config
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
f=[1, 3],
):
pass
class SampleObject3(ConfigMixin):
config_name = "config.json"
@register_to_config
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
e=[1, 3],
f=[1, 3],
):
pass
class SampleObject4(ConfigMixin):
config_name = "config.json"
@register_to_config
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
e=[1, 5],
f=[5, 4],
):
pass
class ConfigTester(unittest.TestCase):
def test_load_not_from_mixin(self):
with self.assertRaises(ValueError):
ConfigMixin.load_config("dummy_path")
def test_register_to_config(self):
obj = SampleObject()
config = obj.config
assert config["a"] == 2
assert config["b"] == 5
assert config["c"] == (2, 5)
assert config["d"] == "for diffusion"
assert config["e"] == [1, 3]
# init ignore private arguments
obj = SampleObject(_name_or_path="lalala")
config = obj.config
assert config["a"] == 2
assert config["b"] == 5
assert config["c"] == (2, 5)
assert config["d"] == "for diffusion"
assert config["e"] == [1, 3]
# can override default
obj = SampleObject(c=6)
config = obj.config
assert config["a"] == 2
assert config["b"] == 5
assert config["c"] == 6
assert config["d"] == "for diffusion"
assert config["e"] == [1, 3]
# can use positional arguments.
obj = SampleObject(1, c=6)
config = obj.config
assert config["a"] == 1
assert config["b"] == 5
assert config["c"] == 6
assert config["d"] == "for diffusion"
assert config["e"] == [1, 3]
def test_save_load(self):
obj = SampleObject()
config = obj.config
assert config["a"] == 2
assert config["b"] == 5
assert config["c"] == (2, 5)
assert config["d"] == "for diffusion"
assert config["e"] == [1, 3]
with tempfile.TemporaryDirectory() as tmpdirname:
obj.save_config(tmpdirname)
new_obj = SampleObject.from_config(SampleObject.load_config(tmpdirname))
new_config = new_obj.config
# unfreeze configs
config = dict(config)
new_config = dict(new_config)
assert config.pop("c") == (2, 5) # instantiated as tuple
assert new_config.pop("c") == [2, 5] # saved & loaded as list because of json
config.pop("_use_default_values")
assert config == new_config
def test_load_ddim_from_pndm(self):
logger = logging.get_logger("diffusers.configuration_utils")
# 30 for warning
logger.setLevel(30)
with CaptureLogger(logger) as cap_logger:
ddim = DDIMScheduler.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
)
assert ddim.__class__ == DDIMScheduler
# no warning should be thrown
assert cap_logger.out == ""
def test_load_euler_from_pndm(self):
logger = logging.get_logger("diffusers.configuration_utils")
# 30 for warning
logger.setLevel(30)
with CaptureLogger(logger) as cap_logger:
euler = EulerDiscreteScheduler.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
)
assert euler.__class__ == EulerDiscreteScheduler
# no warning should be thrown
assert cap_logger.out == ""
def test_load_euler_ancestral_from_pndm(self):
logger = logging.get_logger("diffusers.configuration_utils")
# 30 for warning
logger.setLevel(30)
with CaptureLogger(logger) as cap_logger:
euler = EulerAncestralDiscreteScheduler.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
)
assert euler.__class__ == EulerAncestralDiscreteScheduler
# no warning should be thrown
assert cap_logger.out == ""
def test_load_pndm(self):
logger = logging.get_logger("diffusers.configuration_utils")
# 30 for warning
logger.setLevel(30)
with CaptureLogger(logger) as cap_logger:
pndm = PNDMScheduler.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
)
assert pndm.__class__ == PNDMScheduler
# no warning should be thrown
assert cap_logger.out == ""
def test_overwrite_config_on_load(self):
logger = logging.get_logger("diffusers.configuration_utils")
# 30 for warning
logger.setLevel(30)
with CaptureLogger(logger) as cap_logger:
ddpm = DDPMScheduler.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch",
subfolder="scheduler",
prediction_type="sample",
beta_end=8,
)
with CaptureLogger(logger) as cap_logger_2:
ddpm_2 = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256", beta_start=88)
assert ddpm.__class__ == DDPMScheduler
assert ddpm.config.prediction_type == "sample"
assert ddpm.config.beta_end == 8
assert ddpm_2.config.beta_start == 88
# no warning should be thrown
assert cap_logger.out == ""
assert cap_logger_2.out == ""
def test_load_dpmsolver(self):
logger = logging.get_logger("diffusers.configuration_utils")
# 30 for warning
logger.setLevel(30)
with CaptureLogger(logger) as cap_logger:
dpm = DPMSolverMultistepScheduler.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
)
assert dpm.__class__ == DPMSolverMultistepScheduler
# no warning should be thrown
assert cap_logger.out == ""
def test_use_default_values(self):
# let's first save a config that should be in the form
# a=2,
# b=5,
# c=(2, 5),
# d="for diffusion",
# e=[1, 3],
config = SampleObject()
config_dict = {k: v for k, v in config.config.items() if not k.startswith("_")}
# make sure that default config has all keys in `_use_default_values`
assert set(config_dict.keys()) == set(config.config._use_default_values)
with tempfile.TemporaryDirectory() as tmpdirname:
config.save_config(tmpdirname)
# now loading it with SampleObject2 should put f into `_use_default_values`
config = SampleObject2.from_config(tmpdirname)
assert "f" in config._use_default_values
assert config.f == [1, 3]
# now loading the config, should **NOT** use [1, 3] for `f`, but the default [1, 4] value
# **BECAUSE** it is part of `config._use_default_values`
new_config = SampleObject4.from_config(config.config)
assert new_config.f == [5, 4]
config.config._use_default_values.pop()
new_config_2 = SampleObject4.from_config(config.config)
assert new_config_2.f == [1, 3]
# Nevertheless "e" should still be correctly loaded to [1, 3] from SampleObject2 instead of defaulting to [1, 5]
assert new_config_2.e == [1, 3]
| diffusers-main | tests/others/test_config.py |
import unittest
from dataclasses import dataclass
from typing import List, Union
import numpy as np
import PIL.Image
from diffusers.utils.outputs import BaseOutput
@dataclass
class CustomOutput(BaseOutput):
images: Union[List[PIL.Image.Image], np.ndarray]
class ConfigTester(unittest.TestCase):
def test_outputs_single_attribute(self):
outputs = CustomOutput(images=np.random.rand(1, 3, 4, 4))
# check every way of getting the attribute
assert isinstance(outputs.images, np.ndarray)
assert outputs.images.shape == (1, 3, 4, 4)
assert isinstance(outputs["images"], np.ndarray)
assert outputs["images"].shape == (1, 3, 4, 4)
assert isinstance(outputs[0], np.ndarray)
assert outputs[0].shape == (1, 3, 4, 4)
# test with a non-tensor attribute
outputs = CustomOutput(images=[PIL.Image.new("RGB", (4, 4))])
# check every way of getting the attribute
assert isinstance(outputs.images, list)
assert isinstance(outputs.images[0], PIL.Image.Image)
assert isinstance(outputs["images"], list)
assert isinstance(outputs["images"][0], PIL.Image.Image)
assert isinstance(outputs[0], list)
assert isinstance(outputs[0][0], PIL.Image.Image)
def test_outputs_dict_init(self):
# test output reinitialization with a `dict` for compatibility with `accelerate`
outputs = CustomOutput({"images": np.random.rand(1, 3, 4, 4)})
# check every way of getting the attribute
assert isinstance(outputs.images, np.ndarray)
assert outputs.images.shape == (1, 3, 4, 4)
assert isinstance(outputs["images"], np.ndarray)
assert outputs["images"].shape == (1, 3, 4, 4)
assert isinstance(outputs[0], np.ndarray)
assert outputs[0].shape == (1, 3, 4, 4)
# test with a non-tensor attribute
outputs = CustomOutput({"images": [PIL.Image.new("RGB", (4, 4))]})
# check every way of getting the attribute
assert isinstance(outputs.images, list)
assert isinstance(outputs.images[0], PIL.Image.Image)
assert isinstance(outputs["images"], list)
assert isinstance(outputs["images"][0], PIL.Image.Image)
assert isinstance(outputs[0], list)
assert isinstance(outputs[0][0], PIL.Image.Image)
| diffusers-main | tests/others/test_outputs.py |
import contextlib
import gc
import inspect
import io
import json
import os
import re
import tempfile
import unittest
import uuid
from typing import Callable, Union
import numpy as np
import PIL.Image
import torch
from huggingface_hub import delete_repo
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import AutoencoderKL, DDIMScheduler, DiffusionPipeline, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import logging
from diffusers.utils.import_utils import is_accelerate_available, is_accelerate_version, is_xformers_available
from diffusers.utils.testing_utils import (
CaptureLogger,
require_torch,
torch_device,
)
from ..others.test_utils import TOKEN, USER, is_staging_test
def to_np(tensor):
if isinstance(tensor, torch.Tensor):
tensor = tensor.detach().cpu().numpy()
return tensor
def check_same_shape(tensor_list):
shapes = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:])
class PipelineLatentTesterMixin:
"""
This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
It provides a set of common tests for PyTorch pipeline that has vae, e.g.
equivalence of different input and output types, etc.
"""
@property
def image_params(self) -> frozenset:
raise NotImplementedError(
"You need to set the attribute `image_params` in the child test class. "
"`image_params` are tested for if all accepted input image types (i.e. `pt`,`pil`,`np`) are producing same results"
)
@property
def image_latents_params(self) -> frozenset:
raise NotImplementedError(
"You need to set the attribute `image_latents_params` in the child test class. "
"`image_latents_params` are tested for if passing latents directly are producing same results"
)
def get_dummy_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"):
inputs = self.get_dummy_inputs(device, seed)
def convert_to_pt(image):
if isinstance(image, torch.Tensor):
input_image = image
elif isinstance(image, np.ndarray):
input_image = VaeImageProcessor.numpy_to_pt(image)
elif isinstance(image, PIL.Image.Image):
input_image = VaeImageProcessor.pil_to_numpy(image)
input_image = VaeImageProcessor.numpy_to_pt(input_image)
else:
raise ValueError(f"unsupported input_image_type {type(image)}")
return input_image
def convert_pt_to_type(image, input_image_type):
if input_image_type == "pt":
input_image = image
elif input_image_type == "np":
input_image = VaeImageProcessor.pt_to_numpy(image)
elif input_image_type == "pil":
input_image = VaeImageProcessor.pt_to_numpy(image)
input_image = VaeImageProcessor.numpy_to_pil(input_image)
else:
raise ValueError(f"unsupported input_image_type {input_image_type}.")
return input_image
for image_param in self.image_params:
if image_param in inputs.keys():
inputs[image_param] = convert_pt_to_type(
convert_to_pt(inputs[image_param]).to(device), input_image_type
)
inputs["output_type"] = output_type
return inputs
def test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4):
self._test_pt_np_pil_outputs_equivalent(expected_max_diff=expected_max_diff)
def _test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4, input_image_type="pt"):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
output_pt = pipe(
**self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pt")
)[0]
output_np = pipe(
**self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="np")
)[0]
output_pil = pipe(
**self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pil")
)[0]
max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max()
self.assertLess(
max_diff, expected_max_diff, "`output_type=='pt'` generate different results from `output_type=='np'`"
)
max_diff = np.abs(np.array(output_pil[0]) - (output_np * 255).round()).max()
self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`")
def test_pt_np_pil_inputs_equivalent(self):
if len(self.image_params) == 0:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
out_input_pt = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]
out_input_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
out_input_pil = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pil"))[0]
max_diff = np.abs(out_input_pt - out_input_np).max()
self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`")
max_diff = np.abs(out_input_pil - out_input_np).max()
self.assertLess(max_diff, 1e-2, "`input_type=='pt'` generate different result from `input_type=='np'`")
def test_latents_input(self):
if len(self.image_latents_params) == 0:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]
vae = components["vae"]
inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt")
generator = inputs["generator"]
for image_param in self.image_latents_params:
if image_param in inputs.keys():
inputs[image_param] = (
vae.encode(inputs[image_param]).latent_dist.sample(generator) * vae.config.scaling_factor
)
out_latents_inputs = pipe(**inputs)[0]
max_diff = np.abs(out - out_latents_inputs).max()
self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image")
@require_torch
class PipelineKarrasSchedulerTesterMixin:
"""
This mixin is designed to be used with unittest.TestCase classes.
It provides a set of common tests for each PyTorch pipeline that makes use of KarrasDiffusionSchedulers
equivalence of dict and tuple outputs, etc.
"""
def test_karras_schedulers_shape(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=True)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 2
if "strength" in inputs:
inputs["num_inference_steps"] = 4
inputs["strength"] = 0.5
outputs = []
for scheduler_enum in KarrasDiffusionSchedulers:
if "KDPM2" in scheduler_enum.name:
inputs["num_inference_steps"] = 5
scheduler_cls = getattr(diffusers, scheduler_enum.name)
pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config)
output = pipe(**inputs)[0]
outputs.append(output)
if "KDPM2" in scheduler_enum.name:
inputs["num_inference_steps"] = 2
assert check_same_shape(outputs)
@require_torch
class PipelineTesterMixin:
"""
This mixin is designed to be used with unittest.TestCase classes.
It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline,
equivalence of dict and tuple outputs, etc.
"""
# Canonical parameters that are passed to `__call__` regardless
# of the type of pipeline. They are always optional and have common
# sense default values.
required_optional_params = frozenset(
[
"num_inference_steps",
"num_images_per_prompt",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
]
)
# set these parameters to False in the child class if the pipeline does not support the corresponding functionality
test_attention_slicing = True
test_xformers_attention = True
def get_generator(self, seed):
device = torch_device if torch_device != "mps" else "cpu"
generator = torch.Generator(device).manual_seed(seed)
return generator
@property
def pipeline_class(self) -> Union[Callable, DiffusionPipeline]:
raise NotImplementedError(
"You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
"See existing pipeline tests for reference."
)
def get_dummy_components(self):
raise NotImplementedError(
"You need to implement `get_dummy_components(self)` in the child test class. "
"See existing pipeline tests for reference."
)
def get_dummy_inputs(self, device, seed=0):
raise NotImplementedError(
"You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
"See existing pipeline tests for reference."
)
@property
def params(self) -> frozenset:
raise NotImplementedError(
"You need to set the attribute `params` in the child test class. "
"`params` are checked for if all values are present in `__call__`'s signature."
" You can set `params` using one of the common set of parameters defined in `pipeline_params.py`"
" e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to "
"image pipelines, including prompts and prompt embedding overrides."
"If your pipeline's set of arguments has minor changes from one of the common sets of arguments, "
"do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline "
"with non-configurable height and width arguments should set the attribute as "
"`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. "
"See existing pipeline tests for reference."
)
@property
def batch_params(self) -> frozenset:
raise NotImplementedError(
"You need to set the attribute `batch_params` in the child test class. "
"`batch_params` are the parameters required to be batched when passed to the pipeline's "
"`__call__` method. `pipeline_params.py` provides some common sets of parameters such as "
"`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's "
"set of batch arguments has minor changes from one of the common sets of batch arguments, "
"do not make modifications to the existing common sets of batch arguments. I.e. a text to "
"image pipeline `negative_prompt` is not batched should set the attribute as "
"`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. "
"See existing pipeline tests for reference."
)
def tearDown(self):
# clean up the VRAM after each test in case of CUDA runtime errors
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_save_load_local(self, expected_max_difference=5e-4):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
logger.setLevel(diffusers.logging.INFO)
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir, safe_serialization=False)
with CaptureLogger(logger) as cap_logger:
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
for name in pipe_loaded.components.keys():
if name not in pipe_loaded._optional_components:
assert name in str(cap_logger)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, expected_max_difference)
def test_pipeline_call_signature(self):
self.assertTrue(
hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method"
)
parameters = inspect.signature(self.pipeline_class.__call__).parameters
optional_parameters = set()
for k, v in parameters.items():
if v.default != inspect._empty:
optional_parameters.add(k)
parameters = set(parameters.keys())
parameters.remove("self")
parameters.discard("kwargs") # kwargs can be added if arguments of pipeline call function are deprecated
remaining_required_parameters = set()
for param in self.params:
if param not in parameters:
remaining_required_parameters.add(param)
self.assertTrue(
len(remaining_required_parameters) == 0,
f"Required parameters not present: {remaining_required_parameters}",
)
remaining_required_optional_parameters = set()
for param in self.required_optional_params:
if param not in optional_parameters:
remaining_required_optional_parameters.add(param)
self.assertTrue(
len(remaining_required_optional_parameters) == 0,
f"Required optional parameters not present: {remaining_required_optional_parameters}",
)
def test_inference_batch_consistent(self, batch_sizes=[2]):
self._test_inference_batch_consistent(batch_sizes=batch_sizes)
def _test_inference_batch_consistent(
self, batch_sizes=[2], additional_params_copy_to_batched_inputs=["num_inference_steps"]
):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["generator"] = self.get_generator(0)
logger = logging.get_logger(pipe.__module__)
logger.setLevel(level=diffusers.logging.FATAL)
# prepare batched inputs
batched_inputs = []
for batch_size in batch_sizes:
batched_input = {}
batched_input.update(inputs)
for name in self.batch_params:
if name not in inputs:
continue
value = inputs[name]
if name == "prompt":
len_prompt = len(value)
# make unequal batch sizes
batched_input[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
# make last batch super long
batched_input[name][-1] = 100 * "very long"
else:
batched_input[name] = batch_size * [value]
if "generator" in inputs:
batched_input["generator"] = [self.get_generator(i) for i in range(batch_size)]
if "batch_size" in inputs:
batched_input["batch_size"] = batch_size
batched_inputs.append(batched_input)
logger.setLevel(level=diffusers.logging.WARNING)
for batch_size, batched_input in zip(batch_sizes, batched_inputs):
output = pipe(**batched_input)
assert len(output[0]) == batch_size
def test_inference_batch_single_identical(self, batch_size=3, expected_max_diff=1e-4):
self._test_inference_batch_single_identical(batch_size=batch_size, expected_max_diff=expected_max_diff)
def _test_inference_batch_single_identical(
self,
batch_size=2,
expected_max_diff=1e-4,
additional_params_copy_to_batched_inputs=["num_inference_steps"],
):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for components in pipe.components.values():
if hasattr(components, "set_default_attn_processor"):
components.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
# Reset generator in case it is has been used in self.get_dummy_inputs
inputs["generator"] = self.get_generator(0)
logger = logging.get_logger(pipe.__module__)
logger.setLevel(level=diffusers.logging.FATAL)
# batchify inputs
batched_inputs = {}
batched_inputs.update(inputs)
for name in self.batch_params:
if name not in inputs:
continue
value = inputs[name]
if name == "prompt":
len_prompt = len(value)
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
batched_inputs[name][-1] = 100 * "very long"
else:
batched_inputs[name] = batch_size * [value]
if "generator" in inputs:
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]
if "batch_size" in inputs:
batched_inputs["batch_size"] = batch_size
for arg in additional_params_copy_to_batched_inputs:
batched_inputs[arg] = inputs[arg]
output = pipe(**inputs)
output_batch = pipe(**batched_inputs)
assert output_batch[0].shape[0] == batch_size
max_diff = np.abs(output_batch[0][0] - output[0][0]).max()
assert max_diff < expected_max_diff
def test_dict_tuple_outputs_equivalent(self, expected_max_difference=1e-4):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
output = pipe(**self.get_dummy_inputs(generator_device))[0]
output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0]
max_diff = np.abs(to_np(output) - to_np(output_tuple)).max()
self.assertLess(max_diff, expected_max_difference)
def test_components_function(self):
init_components = self.get_dummy_components()
init_components = {k: v for k, v in init_components.items() if not isinstance(v, (str, int, float))}
pipe = self.pipeline_class(**init_components)
self.assertTrue(hasattr(pipe, "components"))
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_float16_inference(self, expected_max_diff=5e-2):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
components = self.get_dummy_components()
pipe_fp16 = self.pipeline_class(**components)
for component in pipe_fp16.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe_fp16.to(torch_device, torch.float16)
pipe_fp16.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
# Reset generator in case it is used inside dummy inputs
if "generator" in inputs:
inputs["generator"] = self.get_generator(0)
output = pipe(**inputs)[0]
fp16_inputs = self.get_dummy_inputs(torch_device)
# Reset generator in case it is used inside dummy inputs
if "generator" in fp16_inputs:
fp16_inputs["generator"] = self.get_generator(0)
output_fp16 = pipe_fp16(**fp16_inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_fp16)).max()
self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.")
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_save_load_float16(self, expected_max_diff=1e-2):
components = self.get_dummy_components()
for name, module in components.items():
if hasattr(module, "half"):
components[name] = module.to(torch_device).half()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
for component in pipe_loaded.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for name, component in pipe_loaded.components.items():
if hasattr(component, "dtype"):
self.assertTrue(
component.dtype == torch.float16,
f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(
max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading."
)
def test_save_load_optional_components(self, expected_max_difference=1e-4):
if not hasattr(self.pipeline_class, "_optional_components"):
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir, safe_serialization=False)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
for component in pipe_loaded.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(generator_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, expected_max_difference)
@unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
def test_to_device(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to("cpu")
model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
self.assertTrue(all(device == "cpu" for device in model_devices))
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
self.assertTrue(np.isnan(output_cpu).sum() == 0)
pipe.to("cuda")
model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
self.assertTrue(all(device == "cuda" for device in model_devices))
output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)
def test_to_dtype(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))
pipe.to(torch_dtype=torch.float16)
model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))
def test_attention_slicing_forward_pass(self, expected_max_diff=1e-3):
self._test_attention_slicing_forward_pass(expected_max_diff=expected_max_diff)
def _test_attention_slicing_forward_pass(
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
):
if not self.test_attention_slicing:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
output_without_slicing = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=1)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing = pipe(**inputs)[0]
if test_max_difference:
max_diff = np.abs(to_np(output_with_slicing) - to_np(output_without_slicing)).max()
self.assertLess(max_diff, expected_max_diff, "Attention slicing should not affect the inference results")
if test_mean_pixel_difference:
assert_mean_pixel_difference(output_with_slicing[0], output_without_slicing[0])
@unittest.skipIf(
torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"),
reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher",
)
def test_sequential_cpu_offload_forward_pass(self, expected_max_diff=1e-4):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
output_without_offload = pipe(**inputs)[0]
pipe.enable_sequential_cpu_offload()
inputs = self.get_dummy_inputs(generator_device)
output_with_offload = pipe(**inputs)[0]
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")
@unittest.skipIf(
torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.17.0"),
reason="CPU offload is only available with CUDA and `accelerate v0.17.0` or higher",
)
def test_model_cpu_offload_forward_pass(self, expected_max_diff=2e-4):
generator_device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(generator_device)
output_without_offload = pipe(**inputs)[0]
pipe.enable_model_cpu_offload()
inputs = self.get_dummy_inputs(generator_device)
output_with_offload = pipe(**inputs)[0]
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass()
def _test_xformers_attention_forwardGenerator_pass(
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-4
):
if not self.test_xformers_attention:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output_without_offload = pipe(**inputs)[0]
output_without_offload = (
output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
)
pipe.enable_xformers_memory_efficient_attention()
inputs = self.get_dummy_inputs(torch_device)
output_with_offload = pipe(**inputs)[0]
output_with_offload = (
output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
)
if test_max_difference:
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results")
if test_mean_pixel_difference:
assert_mean_pixel_difference(output_with_offload[0], output_without_offload[0])
def test_progress_bar(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
_ = pipe(**inputs)
stderr = stderr.getvalue()
# we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
# so we just match "5" in "#####| 1/5 [00:01<00:00]"
max_steps = re.search("/(.*?) ", stderr).group(1)
self.assertTrue(max_steps is not None and len(max_steps) > 0)
self.assertTrue(
f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
)
pipe.set_progress_bar_config(disable=True)
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
_ = pipe(**inputs)
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
def test_num_images_per_prompt(self):
sig = inspect.signature(self.pipeline_class.__call__)
if "num_images_per_prompt" not in sig.parameters:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
batch_sizes = [1, 2]
num_images_per_prompts = [1, 2]
for batch_size in batch_sizes:
for num_images_per_prompt in num_images_per_prompts:
inputs = self.get_dummy_inputs(torch_device)
for key in inputs.keys():
if key in self.batch_params:
inputs[key] = batch_size * [inputs[key]]
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
assert images.shape[0] == batch_size * num_images_per_prompt
def test_cfg(self):
sig = inspect.signature(self.pipeline_class.__call__)
if "guidance_scale" not in sig.parameters:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["guidance_scale"] = 1.0
out_no_cfg = pipe(**inputs)[0]
inputs["guidance_scale"] = 7.5
out_cfg = pipe(**inputs)[0]
assert out_cfg.shape == out_no_cfg.shape
@is_staging_test
class PipelinePushToHubTester(unittest.TestCase):
identifier = uuid.uuid4()
repo_id = f"test-pipeline-{identifier}"
org_repo_id = f"valid_org/{repo_id}-org"
def get_pipeline_components(self):
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
with tempfile.TemporaryDirectory() as tmpdir:
dummy_vocab = {"<|startoftext|>": 0, "<|endoftext|>": 1, "!": 2}
vocab_path = os.path.join(tmpdir, "vocab.json")
with open(vocab_path, "w") as f:
json.dump(dummy_vocab, f)
merges = "Ġ t\nĠt h"
merges_path = os.path.join(tmpdir, "merges.txt")
with open(merges_path, "w") as f:
f.writelines(merges)
tokenizer = CLIPTokenizer(vocab_file=vocab_path, merges_file=merges_path)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def test_push_to_hub(self):
components = self.get_pipeline_components()
pipeline = StableDiffusionPipeline(**components)
pipeline.push_to_hub(self.repo_id, token=TOKEN)
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet")
unet = components["unet"]
for p1, p2 in zip(unet.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(token=TOKEN, repo_id=self.repo_id)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet")
for p1, p2 in zip(unet.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(self.repo_id, token=TOKEN)
def test_push_to_hub_in_organization(self):
components = self.get_pipeline_components()
pipeline = StableDiffusionPipeline(**components)
pipeline.push_to_hub(self.org_repo_id, token=TOKEN)
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet")
unet = components["unet"]
for p1, p2 in zip(unet.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(token=TOKEN, repo_id=self.org_repo_id)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet")
for p1, p2 in zip(unet.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(self.org_repo_id, token=TOKEN)
# Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used.
# This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a
# reference image.
def assert_mean_pixel_difference(image, expected_image, expected_max_diff=10):
image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32)
expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32)
avg_diff = np.abs(image - expected_image).mean()
assert avg_diff < expected_max_diff, f"Error image deviates {avg_diff} pixels on average"
| diffusers-main | tests/pipelines/test_pipelines_common.py |
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class IsSafetensorsCompatibleTests(unittest.TestCase):
def test_all_is_compatible(self):
filenames = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertTrue(is_safetensors_compatible(filenames))
def test_diffusers_model_is_compatible(self):
filenames = [
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertTrue(is_safetensors_compatible(filenames))
def test_diffusers_model_is_not_compatible(self):
filenames = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
"unet/diffusion_pytorch_model.bin",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(filenames))
def test_transformer_model_is_compatible(self):
filenames = [
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
]
self.assertTrue(is_safetensors_compatible(filenames))
def test_transformer_model_is_not_compatible(self):
filenames = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
# Removed: 'text_encoder/model.safetensors',
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertFalse(is_safetensors_compatible(filenames))
def test_all_is_compatible_variant(self):
filenames = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
variant = "fp16"
self.assertTrue(is_safetensors_compatible(filenames, variant=variant))
def test_diffusers_model_is_compatible_variant(self):
filenames = [
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
variant = "fp16"
self.assertTrue(is_safetensors_compatible(filenames, variant=variant))
def test_diffusers_model_is_compatible_variant_partial(self):
# pass variant but use the non-variant filenames
filenames = [
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
variant = "fp16"
self.assertTrue(is_safetensors_compatible(filenames, variant=variant))
def test_diffusers_model_is_not_compatible_variant(self):
filenames = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
"unet/diffusion_pytorch_model.fp16.bin",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
variant = "fp16"
self.assertFalse(is_safetensors_compatible(filenames, variant=variant))
def test_transformer_model_is_compatible_variant(self):
filenames = [
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
]
variant = "fp16"
self.assertTrue(is_safetensors_compatible(filenames, variant=variant))
def test_transformer_model_is_compatible_variant_partial(self):
# pass variant but use the non-variant filenames
filenames = [
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
]
variant = "fp16"
self.assertTrue(is_safetensors_compatible(filenames, variant=variant))
def test_transformer_model_is_not_compatible_variant(self):
filenames = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
# 'text_encoder/model.fp16.safetensors',
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
variant = "fp16"
self.assertFalse(is_safetensors_compatible(filenames, variant=variant))
| diffusers-main | tests/pipelines/test_pipeline_utils.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import glob
import json
import os
import random
import shutil
import sys
import tempfile
import traceback
import unittest
import unittest.mock as mock
import numpy as np
import PIL.Image
import requests_mock
import safetensors.torch
import torch
from parameterized import parameterized
from PIL import Image
from requests.exceptions import HTTPError
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ConfigMixin,
DDIMPipeline,
DDIMScheduler,
DDPMPipeline,
DDPMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
ModelMixin,
PNDMScheduler,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionPipeline,
UNet2DConditionModel,
UNet2DModel,
UniPCMultistepScheduler,
logging,
)
from diffusers.pipelines.pipeline_utils import _get_pipeline_class, variant_compatible_siblings
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from diffusers.utils import (
CONFIG_NAME,
WEIGHTS_NAME,
)
from diffusers.utils.testing_utils import (
CaptureLogger,
enable_full_determinism,
floats_tensor,
get_tests_dir,
load_numpy,
nightly,
require_compel,
require_flax,
require_onnxruntime,
require_torch_2,
require_torch_gpu,
run_test_in_subprocess,
slow,
torch_device,
)
from diffusers.utils.torch_utils import is_compiled_module
enable_full_determinism()
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
error = None
try:
# 1. Load models
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
model = torch.compile(model)
scheduler = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline(model, scheduler)
# previous diffusers versions stripped compilation off
# compiled modules
assert is_compiled_module(ddpm.unet)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
new_ddpm.to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
class CustomEncoder(ModelMixin, ConfigMixin):
def __init__(self):
super().__init__()
class CustomPipeline(DiffusionPipeline):
def __init__(self, encoder: CustomEncoder, scheduler: DDIMScheduler):
super().__init__()
self.register_modules(encoder=encoder, scheduler=scheduler)
class DownloadTests(unittest.TestCase):
def test_one_request_upon_cached(self):
# TODO: For some reason this test fails on MPS where no HEAD call is made.
if torch_device == "mps":
return
with tempfile.TemporaryDirectory() as tmpdirname:
with requests_mock.mock(real_http=True) as m:
DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe", cache_dir=tmpdirname)
download_requests = [r.method for r in m.request_history]
assert download_requests.count("HEAD") == 15, "15 calls to files"
assert download_requests.count("GET") == 17, "15 calls to files + model_info + model_index.json"
assert (
len(download_requests) == 32
), "2 calls per file (15 files) + send_telemetry, model_info and model_index.json"
with requests_mock.mock(real_http=True) as m:
DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
cache_requests = [r.method for r in m.request_history]
assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
assert cache_requests.count("GET") == 1, "model info is only GET"
assert (
len(cache_requests) == 2
), "We should call only `model_info` to check for _commit hash and `send_telemetry`"
def test_less_downloads_passed_object(self):
with tempfile.TemporaryDirectory() as tmpdirname:
cached_folder = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
# make sure safety checker is not downloaded
assert "safety_checker" not in os.listdir(cached_folder)
# make sure rest is downloaded
assert "unet" in os.listdir(cached_folder)
assert "tokenizer" in os.listdir(cached_folder)
assert "vae" in os.listdir(cached_folder)
assert "model_index.json" in os.listdir(cached_folder)
assert "scheduler" in os.listdir(cached_folder)
assert "feature_extractor" in os.listdir(cached_folder)
def test_less_downloads_passed_object_calls(self):
# TODO: For some reason this test fails on MPS where no HEAD call is made.
if torch_device == "mps":
return
with tempfile.TemporaryDirectory() as tmpdirname:
with requests_mock.mock(real_http=True) as m:
DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
download_requests = [r.method for r in m.request_history]
# 15 - 2 because no call to config or model file for `safety_checker`
assert download_requests.count("HEAD") == 13, "13 calls to files"
# 17 - 2 because no call to config or model file for `safety_checker`
assert download_requests.count("GET") == 15, "13 calls to files + model_info + model_index.json"
assert (
len(download_requests) == 28
), "2 calls per file (13 files) + send_telemetry, model_info and model_index.json"
with requests_mock.mock(real_http=True) as m:
DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
cache_requests = [r.method for r in m.request_history]
assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
assert cache_requests.count("GET") == 1, "model info is only GET"
assert (
len(cache_requests) == 2
), "We should call only `model_info` to check for _commit hash and `send_telemetry`"
def test_download_only_pytorch(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a flax file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
assert not any(f.endswith(".msgpack") for f in files)
# We need to never convert this tiny model to safetensors for this test to pass
assert not any(f.endswith(".safetensors") for f in files)
def test_force_safetensors_error(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
with self.assertRaises(EnvironmentError):
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe-no-safetensors",
safety_checker=None,
cache_dir=tmpdirname,
use_safetensors=True,
)
def test_download_safetensors(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
safety_checker=None,
cache_dir=tmpdirname,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a pytorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
assert not any(f.endswith(".bin") for f in files)
def test_download_safetensors_index(self):
for variant in ["fp16", None]:
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
cache_dir=tmpdirname,
use_safetensors=True,
variant=variant,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a safetensors file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
if variant is None:
assert not any("fp16" in f for f in files)
else:
model_files = [f for f in files if "safetensors" in f]
assert all("fp16" in f for f in model_files)
assert len([f for f in files if ".safetensors" in f]) == 8
assert not any(".bin" in f for f in files)
def test_download_bin_index(self):
for variant in ["fp16", None]:
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
cache_dir=tmpdirname,
use_safetensors=False,
variant=variant,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a safetensors file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
if variant is None:
assert not any("fp16" in f for f in files)
else:
model_files = [f for f in files if "bin" in f]
assert all("fp16" in f for f in model_files)
assert len([f for f in files if ".bin" in f]) == 8
assert not any(".safetensors" in f for f in files)
def test_download_no_openvino_by_default(self):
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-open-vino",
cache_dir=tmpdirname,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# make sure that by default no openvino weights are downloaded
assert all((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
assert not any("openvino_" in f for f in files)
def test_download_no_onnx_by_default(self):
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-xl-pipe",
cache_dir=tmpdirname,
use_safetensors=False,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# make sure that by default no onnx weights are downloaded for non-ONNX pipelines
assert all((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
assert not any((f.endswith(".onnx") or f.endswith(".pb")) for f in files)
@require_onnxruntime
def test_download_onnx_by_default_for_onnx_pipelines(self):
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline",
cache_dir=tmpdirname,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# make sure that by default onnx weights are downloaded for ONNX pipelines
assert any((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
assert any((f.endswith(".onnx")) for f in files)
assert any((f.endswith(".pb")) for f in files)
def test_download_no_safety_checker(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_load_no_safety_checker_explicit_locally(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_load_no_safety_checker_default_locally(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_cached_files_are_used_when_no_internet(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
orig_pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.request", return_value=response_mock):
# Download this model to make sure it's in the cache.
pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}
for m1, m2 in zip(orig_comps.values(), comps.values()):
for p1, p2 in zip(m1.parameters(), m2.parameters()):
if p1.data.ne(p2.data).sum() > 0:
assert False, "Parameters not the same!"
def test_local_files_only_are_used_when_no_internet(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# first check that with local files only the pipeline can only be used if cached
with self.assertRaises(FileNotFoundError):
with tempfile.TemporaryDirectory() as tmpdirname:
orig_pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", local_files_only=True, cache_dir=tmpdirname
)
# now download
orig_pipe = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-torch")
# make sure it can be loaded with local_files_only
orig_pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", local_files_only=True
)
orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}
# Under the mock environment we get a 500 error when trying to connect to the internet.
# Make sure it works local_files_only only works here!
with mock.patch("requests.request", return_value=response_mock):
# Download this model to make sure it's in the cache.
pipe = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}
for m1, m2 in zip(orig_comps.values(), comps.values()):
for p1, p2 in zip(m1.parameters(), m2.parameters()):
if p1.data.ne(p2.data).sum() > 0:
assert False, "Parameters not the same!"
def test_download_from_variant_folder(self):
for use_safetensors in [False, True]:
other_format = ".bin" if use_safetensors else ".safetensors"
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.download(
"hf-internal-testing/stable-diffusion-all-variants",
cache_dir=tmpdirname,
use_safetensors=use_safetensors,
)
all_root_files = [t[-1] for t in os.walk(tmpdirname)]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a variant file even if we have some here:
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
assert not any(f.endswith(other_format) for f in files)
# no variants
assert not any(len(f.split(".")) == 3 for f in files)
def test_download_variant_all(self):
for use_safetensors in [False, True]:
other_format = ".bin" if use_safetensors else ".safetensors"
this_format = ".safetensors" if use_safetensors else ".bin"
variant = "fp16"
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.download(
"hf-internal-testing/stable-diffusion-all-variants",
cache_dir=tmpdirname,
variant=variant,
use_safetensors=use_safetensors,
)
all_root_files = [t[-1] for t in os.walk(tmpdirname)]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a non-variant file even if we have some here:
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
# unet, vae, text_encoder, safety_checker
assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 4
# all checkpoints should have variant ending
assert not any(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files)
assert not any(f.endswith(other_format) for f in files)
def test_download_variant_partly(self):
for use_safetensors in [False, True]:
other_format = ".bin" if use_safetensors else ".safetensors"
this_format = ".safetensors" if use_safetensors else ".bin"
variant = "no_ema"
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.download(
"hf-internal-testing/stable-diffusion-all-variants",
cache_dir=tmpdirname,
variant=variant,
use_safetensors=use_safetensors,
)
all_root_files = [t[-1] for t in os.walk(tmpdirname)]
files = [item for sublist in all_root_files for item in sublist]
unet_files = os.listdir(os.path.join(tmpdirname, "unet"))
# Some of the downloaded files should be a non-variant file, check:
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
# only unet has "no_ema" variant
assert f"diffusion_pytorch_model.{variant}{this_format}" in unet_files
assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 1
# vae, safety_checker and text_encoder should have no variant
assert sum(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) == 3
assert not any(f.endswith(other_format) for f in files)
def test_download_broken_variant(self):
for use_safetensors in [False, True]:
# text encoder is missing no variant and "no_ema" variant weights, so the following can't work
for variant in [None, "no_ema"]:
with self.assertRaises(OSError) as error_context:
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/stable-diffusion-broken-variants",
cache_dir=tmpdirname,
variant=variant,
use_safetensors=use_safetensors,
)
assert "Error no file name" in str(error_context.exception)
# text encoder has fp16 variants so we can load it
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.download(
"hf-internal-testing/stable-diffusion-broken-variants",
use_safetensors=use_safetensors,
cache_dir=tmpdirname,
variant="fp16",
)
all_root_files = [t[-1] for t in os.walk(tmpdirname)]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a non-variant file even if we have some here:
# https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
# only unet has "no_ema" variant
def test_local_save_load_index(self):
prompt = "hello"
for variant in [None, "fp16"]:
for use_safe in [True, False]:
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
variant=variant,
use_safetensors=use_safe,
safety_checker=None,
)
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_2 = StableDiffusionPipeline.from_pretrained(
tmpdirname, safe_serialization=use_safe, variant=variant
)
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_text_inversion_download(self):
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
num_tokens = len(pipe.tokenizer)
# single token load local
with tempfile.TemporaryDirectory() as tmpdirname:
ten = {"<*>": torch.ones((32,))}
torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))
pipe.load_textual_inversion(tmpdirname)
token = pipe.tokenizer.convert_tokens_to_ids("<*>")
assert token == num_tokens, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
assert pipe._maybe_convert_prompt("<*>", pipe.tokenizer) == "<*>"
prompt = "hey <*>"
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
assert out.shape == (1, 128, 128, 3)
# single token load local with weight name
with tempfile.TemporaryDirectory() as tmpdirname:
ten = {"<**>": 2 * torch.ones((1, 32))}
torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))
pipe.load_textual_inversion(tmpdirname, weight_name="learned_embeds.bin")
token = pipe.tokenizer.convert_tokens_to_ids("<**>")
assert token == num_tokens + 1, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
assert pipe._maybe_convert_prompt("<**>", pipe.tokenizer) == "<**>"
prompt = "hey <**>"
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
assert out.shape == (1, 128, 128, 3)
# multi token load
with tempfile.TemporaryDirectory() as tmpdirname:
ten = {"<***>": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])}
torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))
pipe.load_textual_inversion(tmpdirname)
token = pipe.tokenizer.convert_tokens_to_ids("<***>")
token_1 = pipe.tokenizer.convert_tokens_to_ids("<***>_1")
token_2 = pipe.tokenizer.convert_tokens_to_ids("<***>_2")
assert token == num_tokens + 2, "Added token must be at spot `num_tokens`"
assert token_1 == num_tokens + 3, "Added token must be at spot `num_tokens`"
assert token_2 == num_tokens + 4, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
assert pipe._maybe_convert_prompt("<***>", pipe.tokenizer) == "<***> <***>_1 <***>_2"
prompt = "hey <***>"
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
assert out.shape == (1, 128, 128, 3)
# multi token load a1111
with tempfile.TemporaryDirectory() as tmpdirname:
ten = {
"string_to_param": {
"*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
},
"name": "<****>",
}
torch.save(ten, os.path.join(tmpdirname, "a1111.bin"))
pipe.load_textual_inversion(tmpdirname, weight_name="a1111.bin")
token = pipe.tokenizer.convert_tokens_to_ids("<****>")
token_1 = pipe.tokenizer.convert_tokens_to_ids("<****>_1")
token_2 = pipe.tokenizer.convert_tokens_to_ids("<****>_2")
assert token == num_tokens + 5, "Added token must be at spot `num_tokens`"
assert token_1 == num_tokens + 6, "Added token must be at spot `num_tokens`"
assert token_2 == num_tokens + 7, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
assert pipe._maybe_convert_prompt("<****>", pipe.tokenizer) == "<****> <****>_1 <****>_2"
prompt = "hey <****>"
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
assert out.shape == (1, 128, 128, 3)
# multi embedding load
with tempfile.TemporaryDirectory() as tmpdirname1:
with tempfile.TemporaryDirectory() as tmpdirname2:
ten = {"<*****>": torch.ones((32,))}
torch.save(ten, os.path.join(tmpdirname1, "learned_embeds.bin"))
ten = {"<******>": 2 * torch.ones((1, 32))}
torch.save(ten, os.path.join(tmpdirname2, "learned_embeds.bin"))
pipe.load_textual_inversion([tmpdirname1, tmpdirname2])
token = pipe.tokenizer.convert_tokens_to_ids("<*****>")
assert token == num_tokens + 8, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32
assert pipe._maybe_convert_prompt("<*****>", pipe.tokenizer) == "<*****>"
token = pipe.tokenizer.convert_tokens_to_ids("<******>")
assert token == num_tokens + 9, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
assert pipe._maybe_convert_prompt("<******>", pipe.tokenizer) == "<******>"
prompt = "hey <*****> <******>"
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
assert out.shape == (1, 128, 128, 3)
# single token state dict load
ten = {"<x>": torch.ones((32,))}
pipe.load_textual_inversion(ten)
token = pipe.tokenizer.convert_tokens_to_ids("<x>")
assert token == num_tokens + 10, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
assert pipe._maybe_convert_prompt("<x>", pipe.tokenizer) == "<x>"
prompt = "hey <x>"
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
assert out.shape == (1, 128, 128, 3)
# multi embedding state dict load
ten1 = {"<xxxxx>": torch.ones((32,))}
ten2 = {"<xxxxxx>": 2 * torch.ones((1, 32))}
pipe.load_textual_inversion([ten1, ten2])
token = pipe.tokenizer.convert_tokens_to_ids("<xxxxx>")
assert token == num_tokens + 11, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32
assert pipe._maybe_convert_prompt("<xxxxx>", pipe.tokenizer) == "<xxxxx>"
token = pipe.tokenizer.convert_tokens_to_ids("<xxxxxx>")
assert token == num_tokens + 12, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
assert pipe._maybe_convert_prompt("<xxxxxx>", pipe.tokenizer) == "<xxxxxx>"
prompt = "hey <xxxxx> <xxxxxx>"
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
assert out.shape == (1, 128, 128, 3)
# auto1111 multi-token state dict load
ten = {
"string_to_param": {
"*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
},
"name": "<xxxx>",
}
pipe.load_textual_inversion(ten)
token = pipe.tokenizer.convert_tokens_to_ids("<xxxx>")
token_1 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_1")
token_2 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_2")
assert token == num_tokens + 13, "Added token must be at spot `num_tokens`"
assert token_1 == num_tokens + 14, "Added token must be at spot `num_tokens`"
assert token_2 == num_tokens + 15, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
assert pipe._maybe_convert_prompt("<xxxx>", pipe.tokenizer) == "<xxxx> <xxxx>_1 <xxxx>_2"
prompt = "hey <xxxx>"
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
assert out.shape == (1, 128, 128, 3)
# multiple references to multi embedding
ten = {"<cat>": torch.ones(3, 32)}
pipe.load_textual_inversion(ten)
assert (
pipe._maybe_convert_prompt("<cat> <cat>", pipe.tokenizer) == "<cat> <cat>_1 <cat>_2 <cat> <cat>_1 <cat>_2"
)
prompt = "hey <cat> <cat>"
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
assert out.shape == (1, 128, 128, 3)
def test_download_ignore_files(self):
# Check https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files/blob/72f58636e5508a218c6b3f60550dc96445547817/model_index.json#L4
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
tmpdirname = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files")
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a pytorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
assert not any(f in ["vae/diffusion_pytorch_model.bin", "text_encoder/config.json"] for f in files)
assert len(files) == 14
def test_get_pipeline_class_from_flax(self):
flax_config = {"_class_name": "FlaxStableDiffusionPipeline"}
config = {"_class_name": "StableDiffusionPipeline"}
# when loading a PyTorch Pipeline from a FlaxPipeline `model_index.json`, e.g.: https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-lms-pipe/blob/7a9063578b325779f0f1967874a6771caa973cad/model_index.json#L2
# we need to make sure that we don't load the Flax Pipeline class, but instead the PyTorch pipeline class
assert _get_pipeline_class(DiffusionPipeline, flax_config) == _get_pipeline_class(DiffusionPipeline, config)
class CustomPipelineTests(unittest.TestCase):
def test_load_custom_pipeline(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
)
pipeline = pipeline.to(torch_device)
# NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
# under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
assert pipeline.__class__.__name__ == "CustomPipeline"
def test_load_custom_github(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="main"
)
# make sure that on "main" pipeline gives only ones because of: https://github.com/huggingface/diffusers/pull/1690
with torch.no_grad():
output = pipeline()
assert output.numel() == output.sum()
# hack since Python doesn't like overwriting modules: https://stackoverflow.com/questions/3105801/unload-a-module-in-python
# Could in the future work with hashes instead.
del sys.modules["diffusers_modules.git.one_step_unet"]
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="0.10.2"
)
with torch.no_grad():
output = pipeline()
assert output.numel() != output.sum()
assert pipeline.__class__.__name__ == "UnetSchedulerOneForwardPipeline"
def test_run_custom_pipeline(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert images[0].shape == (1, 32, 32, 3)
# compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
assert output_str == "This is a test"
def test_local_custom_pipeline_repo(self):
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert pipeline.__class__.__name__ == "CustomLocalPipeline"
assert images[0].shape == (1, 32, 32, 3)
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
assert output_str == "This is a local test"
def test_local_custom_pipeline_file(self):
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert pipeline.__class__.__name__ == "CustomLocalPipeline"
assert images[0].shape == (1, 32, 32, 3)
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
assert output_str == "This is a local test"
def test_custom_model_and_pipeline(self):
pipe = CustomPipeline(
encoder=CustomEncoder(),
scheduler=DDIMScheduler(),
)
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname, safe_serialization=False)
pipe_new = CustomPipeline.from_pretrained(tmpdirname)
pipe_new.save_pretrained(tmpdirname)
conf_1 = dict(pipe.config)
conf_2 = dict(pipe_new.config)
del conf_2["_name_or_path"]
assert conf_1 == conf_2
@slow
@require_torch_gpu
def test_download_from_git(self):
# Because adaptive_avg_pool2d_backward_cuda
# does not have a deterministic implementation.
clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
feature_extractor = CLIPImageProcessor.from_pretrained(clip_model_id)
clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
custom_pipeline="clip_guided_stable_diffusion",
clip_model=clip_model,
feature_extractor=feature_extractor,
torch_dtype=torch.float16,
)
pipeline.enable_attention_slicing()
pipeline = pipeline.to(torch_device)
# NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
# https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"
image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
assert image.shape == (512, 512, 3)
def test_save_pipeline_change_config(self):
pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = DiffusionPipeline.from_pretrained(tmpdirname)
assert pipe.scheduler.__class__.__name__ == "PNDMScheduler"
# let's make sure that changing the scheduler is correctly reflected
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.save_pretrained(tmpdirname)
pipe = DiffusionPipeline.from_pretrained(tmpdirname)
assert pipe.scheduler.__class__.__name__ == "DPMSolverMultistepScheduler"
class PipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
def dummy_uncond_unet(self, sample_size=32):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=sample_size,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def dummy_cond_unet(self, sample_size=32):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=sample_size,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
@parameterized.expand(
[
[DDIMScheduler, DDIMPipeline, 32],
[DDPMScheduler, DDPMPipeline, 32],
[DDIMScheduler, DDIMPipeline, (32, 64)],
[DDPMScheduler, DDPMPipeline, (64, 32)],
]
)
def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
unet = self.dummy_uncond_unet(sample_size)
scheduler = scheduler_fn()
pipeline = pipeline_fn(unet, scheduler).to(torch_device)
generator = torch.manual_seed(0)
out_image = pipeline(
generator=generator,
num_inference_steps=2,
output_type="np",
).images
sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
assert out_image.shape == (1, *sample_size, 3)
def test_stable_diffusion_components(self):
"""Test that components property works correctly"""
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
# make sure here that pndm scheduler skips prk
inpaint = StableDiffusionInpaintPipelineLegacy(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
).to(torch_device)
img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image_inpaint = inpaint(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
).images
image_img2img = img2img(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
image=init_image,
).images
image_text2img = text2img(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images
assert image_inpaint.shape == (1, 32, 32, 3)
assert image_img2img.shape == (1, 32, 32, 3)
assert image_text2img.shape == (1, 64, 64, 3)
@require_torch_gpu
def test_pipe_false_offload_warn(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd.enable_model_cpu_offload()
logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
with CaptureLogger(logger) as cap_logger:
sd.to("cuda")
assert "It is strongly recommended against doing so" in str(cap_logger)
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
def test_set_scheduler(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DDIMScheduler)
sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DDPMScheduler)
sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, PNDMScheduler)
sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, LMSDiscreteScheduler)
sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, EulerDiscreteScheduler)
sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)
def test_set_component_to_none(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
pipeline = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "This is a flower"
out_image = pipeline(
prompt=prompt,
generator=generator,
num_inference_steps=1,
output_type="np",
).images
pipeline.feature_extractor = None
generator = torch.Generator(device="cpu").manual_seed(0)
out_image_2 = pipeline(
prompt=prompt,
generator=generator,
num_inference_steps=1,
output_type="np",
).images
assert out_image.shape == (1, 64, 64, 3)
assert np.abs(out_image - out_image_2).max() < 1e-3
def test_set_scheduler_consistency(self):
unet = self.dummy_cond_unet()
pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=pndm,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
pndm_config = sd.scheduler.config
sd.scheduler = DDPMScheduler.from_config(pndm_config)
sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
pndm_config_2 = sd.scheduler.config
pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}
assert dict(pndm_config) == dict(pndm_config_2)
sd = StableDiffusionPipeline(
unet=unet,
scheduler=ddim,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
ddim_config = sd.scheduler.config
sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
ddim_config_2 = sd.scheduler.config
ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}
assert dict(ddim_config) == dict(ddim_config_2)
def test_save_safe_serialization(self):
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
with tempfile.TemporaryDirectory() as tmpdirname:
pipeline.save_pretrained(tmpdirname, safe_serialization=True)
# Validate that the VAE safetensor exists and are of the correct format
vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors")
assert os.path.exists(vae_path), f"Could not find {vae_path}"
_ = safetensors.torch.load_file(vae_path)
# Validate that the UNet safetensor exists and are of the correct format
unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors")
assert os.path.exists(unet_path), f"Could not find {unet_path}"
_ = safetensors.torch.load_file(unet_path)
# Validate that the text encoder safetensor exists and are of the correct format
text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors")
assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}"
_ = safetensors.torch.load_file(text_encoder_path)
pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert pipeline.unet is not None
assert pipeline.vae is not None
assert pipeline.text_encoder is not None
assert pipeline.scheduler is not None
assert pipeline.feature_extractor is not None
def test_no_pytorch_download_when_doing_safetensors(self):
# by default we don't download
with tempfile.TemporaryDirectory() as tmpdirname:
_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
)
path = os.path.join(
tmpdirname,
"models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
"snapshots",
"07838d72e12f9bcec1375b0482b80c1d399be843",
"unet",
)
# safetensors exists
assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
# pytorch does not
assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))
def test_no_safetensors_download_when_doing_pytorch(self):
use_safetensors = False
with tempfile.TemporaryDirectory() as tmpdirname:
_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all",
cache_dir=tmpdirname,
use_safetensors=use_safetensors,
)
path = os.path.join(
tmpdirname,
"models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
"snapshots",
"07838d72e12f9bcec1375b0482b80c1d399be843",
"unet",
)
# safetensors does not exists
assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
# pytorch does
assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))
def test_optional_components(self):
unet = self.dummy_cond_unet()
pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
orig_sd = StableDiffusionPipeline(
unet=unet,
scheduler=pndm,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=unet,
feature_extractor=self.dummy_extractor,
)
sd = orig_sd
assert sd.config.requires_safety_checker is True
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that passing None works
sd = StableDiffusionPipeline.from_pretrained(
tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that loading previous None works
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
orig_sd.save_pretrained(tmpdirname)
# Test that loading without any directory works
shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
with open(os.path.join(tmpdirname, sd.config_name)) as f:
config = json.load(f)
config["safety_checker"] = [None, None]
with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
json.dump(config, f)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
sd.save_pretrained(tmpdirname)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
# Test that loading from deleted model index works
with open(os.path.join(tmpdirname, sd.config_name)) as f:
config = json.load(f)
del config["safety_checker"]
del config["feature_extractor"]
with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
json.dump(config, f)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that partially loading works
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor != (None, None)
# Test that partially loading works
sd = StableDiffusionPipeline.from_pretrained(
tmpdirname,
feature_extractor=self.dummy_extractor,
safety_checker=unet,
requires_safety_checker=[True, True],
)
assert sd.config.requires_safety_checker == [True, True]
assert sd.config.safety_checker != (None, None)
assert sd.config.feature_extractor != (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)
assert sd.config.requires_safety_checker == [True, True]
assert sd.config.safety_checker != (None, None)
assert sd.config.feature_extractor != (None, None)
def test_name_or_path(self):
model_path = "hf-internal-testing/tiny-stable-diffusion-torch"
sd = DiffusionPipeline.from_pretrained(model_path)
assert sd.name_or_path == model_path
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
sd = DiffusionPipeline.from_pretrained(tmpdirname)
assert sd.name_or_path == tmpdirname
def test_warning_no_variant_available(self):
variant = "fp16"
with self.assertWarns(FutureWarning) as warning_context:
cached_folder = StableDiffusionPipeline.download(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", variant=variant
)
assert "but no such modeling files are available" in str(warning_context.warning)
assert variant in str(warning_context.warning)
def get_all_filenames(directory):
filenames = glob.glob(directory + "/**", recursive=True)
filenames = [f for f in filenames if os.path.isfile(f)]
return filenames
filenames = get_all_filenames(str(cached_folder))
all_model_files, variant_model_files = variant_compatible_siblings(filenames, variant=variant)
# make sure that none of the model names are variant model names
assert len(variant_model_files) == 0
assert len(all_model_files) > 0
def test_pipe_to(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
device_type = torch.device(torch_device).type
sd1 = sd.to(device_type)
sd2 = sd.to(torch.device(device_type))
sd3 = sd.to(device_type, torch.float32)
sd4 = sd.to(device=device_type)
sd5 = sd.to(torch_device=device_type)
sd6 = sd.to(device_type, dtype=torch.float32)
sd7 = sd.to(device_type, torch_dtype=torch.float32)
assert sd1.device.type == device_type
assert sd2.device.type == device_type
assert sd3.device.type == device_type
assert sd4.device.type == device_type
assert sd5.device.type == device_type
assert sd6.device.type == device_type
assert sd7.device.type == device_type
sd1 = sd.to(torch.float16)
sd2 = sd.to(None, torch.float16)
sd3 = sd.to(dtype=torch.float16)
sd4 = sd.to(torch_dtype=torch.float16)
sd5 = sd.to(None, dtype=torch.float16)
sd6 = sd.to(None, torch_dtype=torch.float16)
assert sd1.dtype == torch.float16
assert sd2.dtype == torch.float16
assert sd3.dtype == torch.float16
assert sd4.dtype == torch.float16
assert sd5.dtype == torch.float16
assert sd6.dtype == torch.float16
sd1 = sd.to(device=device_type, dtype=torch.float16)
sd2 = sd.to(torch_device=device_type, torch_dtype=torch.float16)
sd3 = sd.to(device_type, torch.float16)
assert sd1.dtype == torch.float16
assert sd2.dtype == torch.float16
assert sd3.dtype == torch.float16
assert sd1.device.type == device_type
assert sd2.device.type == device_type
assert sd3.device.type == device_type
def test_pipe_same_device_id_offload(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd.enable_model_cpu_offload(gpu_id=5)
assert sd._offload_gpu_id == 5
sd.maybe_free_model_hooks()
assert sd._offload_gpu_id == 5
@slow
@require_torch_gpu
class PipelineSlowTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_smart_download(self):
model_id = "hf-internal-testing/unet-pipeline-dummy"
with tempfile.TemporaryDirectory() as tmpdirname:
_ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
local_repo_name = "--".join(["models"] + model_id.split("/"))
snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])
# inspect all downloaded files to make sure that everything is included
assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
# let's make sure the super large numpy file:
# https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
# is not downloaded, but all the expected ones
assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))
def test_warning_unused_kwargs(self):
model_id = "hf-internal-testing/unet-pipeline-dummy"
logger = logging.get_logger("diffusers.pipelines")
with tempfile.TemporaryDirectory() as tmpdirname:
with CaptureLogger(logger) as cap_logger:
DiffusionPipeline.from_pretrained(
model_id,
not_used=True,
cache_dir=tmpdirname,
force_download=True,
)
assert (
cap_logger.out.strip().split("\n")[-1]
== "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored."
)
def test_from_save_pretrained(self):
# 1. Load models
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
scheduler = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline(model, scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
new_ddpm.to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
@require_torch_2
def test_from_save_pretrained_dynamo(self):
run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=None)
def test_from_pretrained_hub(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm = ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm_from_hub = ddpm_from_hub.to(torch_device)
ddpm_from_hub.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
def test_from_pretrained_hub_pass_model(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDPMScheduler(num_train_timesteps=10)
# pass unet into DiffusionPipeline
unet = UNet2DModel.from_pretrained(model_path)
ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm_from_hub = ddpm_from_hub.to(torch_device)
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
def test_output_format(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDIMScheduler.from_pretrained(model_path)
pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
images = pipe(output_type="numpy").images
assert images.shape == (1, 32, 32, 3)
assert isinstance(images, np.ndarray)
images = pipe(output_type="pil", num_inference_steps=4).images
assert isinstance(images, list)
assert len(images) == 1
assert isinstance(images[0], PIL.Image.Image)
# use PIL by default
images = pipe(num_inference_steps=4).images
assert isinstance(images, list)
assert isinstance(images[0], PIL.Image.Image)
@require_flax
def test_from_flax_from_pt(self):
pipe_pt = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe_pt.to(torch_device)
from diffusers import FlaxStableDiffusionPipeline
with tempfile.TemporaryDirectory() as tmpdirname:
pipe_pt.save_pretrained(tmpdirname)
pipe_flax, params = FlaxStableDiffusionPipeline.from_pretrained(
tmpdirname, safety_checker=None, from_pt=True
)
with tempfile.TemporaryDirectory() as tmpdirname:
pipe_flax.save_pretrained(tmpdirname, params=params)
pipe_pt_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None, from_flax=True)
pipe_pt_2.to(torch_device)
prompt = "Hello"
generator = torch.manual_seed(0)
image_0 = pipe_pt(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images[0]
generator = torch.manual_seed(0)
image_1 = pipe_pt_2(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images[0]
assert np.abs(image_0 - image_1).sum() < 1e-5, "Models don't give the same forward pass"
@require_compel
def test_weighted_prompts_compel(self):
from compel import Compel
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing()
compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
prompt = "a red cat playing with a ball{}"
prompts = [prompt.format(s) for s in ["", "++", "--"]]
prompt_embeds = compel(prompts)
generator = [torch.Generator(device="cpu").manual_seed(33) for _ in range(prompt_embeds.shape[0])]
images = pipe(
prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20, output_type="numpy"
).images
for i, image in enumerate(images):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
f"/compel/forest_{i}.npy"
)
assert np.abs(image - expected_image).max() < 3e-1
@nightly
@require_torch_gpu
class PipelineNightlyTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_ddpm_ddim_equality_batched(self):
seed = 0
model_id = "google/ddpm-cifar10-32"
unet = UNet2DModel.from_pretrained(model_id)
ddpm_scheduler = DDPMScheduler()
ddim_scheduler = DDIMScheduler()
ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
ddim.to(torch_device)
ddim.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(seed)
ddpm_images = ddpm(batch_size=2, generator=generator, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(seed)
ddim_images = ddim(
batch_size=2,
generator=generator,
num_inference_steps=1000,
eta=1.0,
output_type="numpy",
use_clipped_model_output=True, # Need this to make DDIM match DDPM
).images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(ddpm_images - ddim_images).max() < 1e-1
| diffusers-main | tests/pipelines/test_pipelines.py |
diffusers-main | tests/pipelines/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from huggingface_hub import ModelCard
from diffusers import (
DDPMScheduler,
DiffusionPipeline,
KandinskyV22CombinedPipeline,
KandinskyV22Pipeline,
KandinskyV22PriorPipeline,
)
from diffusers.pipelines.pipeline_utils import CONNECTED_PIPES_KEYS
def state_dicts_almost_equal(sd1, sd2):
sd1 = dict(sorted(sd1.items()))
sd2 = dict(sorted(sd2.items()))
models_are_equal = True
for ten1, ten2 in zip(sd1.values(), sd2.values()):
if (ten1 - ten2).abs().sum() > 1e-3:
models_are_equal = False
return models_are_equal
class CombinedPipelineFastTest(unittest.TestCase):
def modelcard_has_connected_pipeline(self, model_id):
modelcard = ModelCard.load(model_id)
connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}
connected_pipes = {k: v for k, v in connected_pipes.items() if v is not None}
return len(connected_pipes) > 0
def test_correct_modelcard_format(self):
# hf-internal-testing/tiny-random-kandinsky-v22-prior has no metadata
assert not self.modelcard_has_connected_pipeline("hf-internal-testing/tiny-random-kandinsky-v22-prior")
# see https://huggingface.co/hf-internal-testing/tiny-random-kandinsky-v22-decoder/blob/8baff9897c6be017013e21b5c562e5a381646c7e/README.md?code=true#L2
assert self.modelcard_has_connected_pipeline("hf-internal-testing/tiny-random-kandinsky-v22-decoder")
def test_load_connected_checkpoint_when_specified(self):
pipeline_prior = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-random-kandinsky-v22-prior")
pipeline_prior_connected = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-random-kandinsky-v22-prior", load_connected_pipeline=True
)
# Passing `load_connected_pipeline` to prior is a no-op as the pipeline has no connected pipeline
assert pipeline_prior.__class__ == pipeline_prior_connected.__class__
pipeline = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-random-kandinsky-v22-decoder")
pipeline_connected = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-random-kandinsky-v22-decoder", load_connected_pipeline=True
)
# Passing `load_connected_pipeline` to decoder loads the combined pipeline
assert pipeline.__class__ != pipeline_connected.__class__
assert pipeline.__class__ == KandinskyV22Pipeline
assert pipeline_connected.__class__ == KandinskyV22CombinedPipeline
# check that loaded components match prior and decoder components
assert set(pipeline_connected.components.keys()) == set(
["prior_" + k for k in pipeline_prior.components.keys()] + list(pipeline.components.keys())
)
def test_load_connected_checkpoint_default(self):
prior = KandinskyV22PriorPipeline.from_pretrained("hf-internal-testing/tiny-random-kandinsky-v22-prior")
decoder = KandinskyV22Pipeline.from_pretrained("hf-internal-testing/tiny-random-kandinsky-v22-decoder")
# check that combined pipeline loads both prior & decoder because of
# https://huggingface.co/hf-internal-testing/tiny-random-kandinsky-v22-decoder/blob/8baff9897c6be017013e21b5c562e5a381646c7e/README.md?code=true#L3
assert (
KandinskyV22CombinedPipeline._load_connected_pipes
) # combined pipelines will download more checkpoints that just the one specified
pipeline = KandinskyV22CombinedPipeline.from_pretrained(
"hf-internal-testing/tiny-random-kandinsky-v22-decoder"
)
prior_comps = prior.components
decoder_comps = decoder.components
for k, component in pipeline.components.items():
if k.startswith("prior_"):
k = k[6:]
comp = prior_comps[k]
else:
comp = decoder_comps[k]
if isinstance(component, torch.nn.Module):
assert state_dicts_almost_equal(component.state_dict(), comp.state_dict())
elif hasattr(component, "config"):
assert dict(component.config) == dict(comp.config)
else:
assert component.__class__ == comp.__class__
def test_load_connected_checkpoint_with_passed_obj(self):
pipeline = KandinskyV22CombinedPipeline.from_pretrained(
"hf-internal-testing/tiny-random-kandinsky-v22-decoder"
)
prior_scheduler = DDPMScheduler.from_config(pipeline.prior_scheduler.config)
scheduler = DDPMScheduler.from_config(pipeline.scheduler.config)
# make sure we pass a different scheduler and prior_scheduler
assert pipeline.prior_scheduler.__class__ != prior_scheduler.__class__
assert pipeline.scheduler.__class__ != scheduler.__class__
pipeline_new = KandinskyV22CombinedPipeline.from_pretrained(
"hf-internal-testing/tiny-random-kandinsky-v22-decoder",
prior_scheduler=prior_scheduler,
scheduler=scheduler,
)
assert dict(pipeline_new.prior_scheduler.config) == dict(prior_scheduler.config)
assert dict(pipeline_new.scheduler.config) == dict(scheduler.config)
| diffusers-main | tests/pipelines/test_pipelines_combined.py |
from diffusers.utils.testing_utils import require_onnxruntime
@require_onnxruntime
class OnnxPipelineTesterMixin:
"""
This mixin is designed to be used with unittest.TestCase classes.
It provides a set of common tests for each ONNXRuntime pipeline, e.g. saving and loading the pipeline,
equivalence of dict and tuple outputs, etc.
"""
pass
| diffusers-main | tests/pipelines/test_pipelines_onnx_common.py |
# These are canonical sets of parameters for different types of pipelines.
# They are set on subclasses of `PipelineTesterMixin` as `params` and
# `batch_params`.
#
# If a pipeline's set of arguments has minor changes from one of the common sets
# of arguments, do not make modifications to the existing common sets of arguments.
# I.e. a text to image pipeline with non-configurable height and width arguments
# should set its attribute as `params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`.
TEXT_TO_IMAGE_PARAMS = frozenset(
[
"prompt",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
"cross_attention_kwargs",
]
)
TEXT_TO_IMAGE_BATCH_PARAMS = frozenset(["prompt", "negative_prompt"])
TEXT_TO_IMAGE_IMAGE_PARAMS = frozenset([])
IMAGE_TO_IMAGE_IMAGE_PARAMS = frozenset(["image"])
IMAGE_VARIATION_PARAMS = frozenset(
[
"image",
"height",
"width",
"guidance_scale",
]
)
IMAGE_VARIATION_BATCH_PARAMS = frozenset(["image"])
TEXT_GUIDED_IMAGE_VARIATION_PARAMS = frozenset(
[
"prompt",
"image",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS = frozenset(["prompt", "image", "negative_prompt"])
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS = frozenset(
[
# Text guided image variation with an image mask
"prompt",
"image",
"mask_image",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS = frozenset(["prompt", "image", "mask_image", "negative_prompt"])
IMAGE_INPAINTING_PARAMS = frozenset(
[
# image variation with an image mask
"image",
"mask_image",
"height",
"width",
"guidance_scale",
]
)
IMAGE_INPAINTING_BATCH_PARAMS = frozenset(["image", "mask_image"])
IMAGE_GUIDED_IMAGE_INPAINTING_PARAMS = frozenset(
[
"example_image",
"image",
"mask_image",
"height",
"width",
"guidance_scale",
]
)
IMAGE_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS = frozenset(["example_image", "image", "mask_image"])
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS = frozenset(["class_labels"])
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS = frozenset(["class_labels"])
UNCONDITIONAL_IMAGE_GENERATION_PARAMS = frozenset(["batch_size"])
UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS = frozenset([])
UNCONDITIONAL_AUDIO_GENERATION_PARAMS = frozenset(["batch_size"])
UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS = frozenset([])
TEXT_TO_AUDIO_PARAMS = frozenset(
[
"prompt",
"audio_length_in_s",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
"cross_attention_kwargs",
]
)
TEXT_TO_AUDIO_BATCH_PARAMS = frozenset(["prompt", "negative_prompt"])
TOKENS_TO_AUDIO_GENERATION_PARAMS = frozenset(["input_tokens"])
TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS = frozenset(["input_tokens"])
| diffusers-main | tests/pipelines/pipeline_params.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import os
import shutil
import unittest
from collections import OrderedDict
from pathlib import Path
import torch
from diffusers import (
AutoPipelineForImage2Image,
AutoPipelineForInpainting,
AutoPipelineForText2Image,
ControlNetModel,
DiffusionPipeline,
)
from diffusers.pipelines.auto_pipeline import (
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
AUTO_INPAINT_PIPELINES_MAPPING,
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
)
from diffusers.utils.testing_utils import slow
PRETRAINED_MODEL_REPO_MAPPING = OrderedDict(
[
("stable-diffusion", "runwayml/stable-diffusion-v1-5"),
("if", "DeepFloyd/IF-I-XL-v1.0"),
("kandinsky", "kandinsky-community/kandinsky-2-1"),
("kandinsky22", "kandinsky-community/kandinsky-2-2-decoder"),
]
)
class AutoPipelineFastTest(unittest.TestCase):
def test_from_pipe_consistent(self):
pipe = AutoPipelineForText2Image.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False
)
original_config = dict(pipe.config)
pipe = AutoPipelineForImage2Image.from_pipe(pipe)
assert dict(pipe.config) == original_config
pipe = AutoPipelineForText2Image.from_pipe(pipe)
assert dict(pipe.config) == original_config
def test_from_pipe_override(self):
pipe = AutoPipelineForText2Image.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False
)
pipe = AutoPipelineForImage2Image.from_pipe(pipe, requires_safety_checker=True)
assert pipe.config.requires_safety_checker is True
pipe = AutoPipelineForText2Image.from_pipe(pipe, requires_safety_checker=True)
assert pipe.config.requires_safety_checker is True
def test_from_pipe_consistent_sdxl(self):
pipe = AutoPipelineForImage2Image.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-xl-pipe",
requires_aesthetics_score=True,
force_zeros_for_empty_prompt=False,
)
original_config = dict(pipe.config)
pipe = AutoPipelineForText2Image.from_pipe(pipe)
pipe = AutoPipelineForImage2Image.from_pipe(pipe)
assert dict(pipe.config) == original_config
def test_kwargs_local_files_only(self):
repo = "hf-internal-testing/tiny-stable-diffusion-torch"
tmpdirname = DiffusionPipeline.download(repo)
tmpdirname = Path(tmpdirname)
# edit commit_id to so that it's not the latest commit
commit_id = tmpdirname.name
new_commit_id = commit_id + "hug"
ref_dir = tmpdirname.parent.parent / "refs/main"
with open(ref_dir, "w") as f:
f.write(new_commit_id)
new_tmpdirname = tmpdirname.parent / new_commit_id
os.rename(tmpdirname, new_tmpdirname)
try:
AutoPipelineForText2Image.from_pretrained(repo, local_files_only=True)
except OSError:
assert False, "not able to load local files"
shutil.rmtree(tmpdirname.parent.parent)
def test_from_pipe_controlnet_text2img(self):
pipe = AutoPipelineForText2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-pipe")
controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")
pipe = AutoPipelineForText2Image.from_pipe(pipe, controlnet=controlnet)
assert pipe.__class__.__name__ == "StableDiffusionControlNetPipeline"
assert "controlnet" in pipe.components
pipe = AutoPipelineForText2Image.from_pipe(pipe, controlnet=None)
assert pipe.__class__.__name__ == "StableDiffusionPipeline"
assert "controlnet" not in pipe.components
def test_from_pipe_controlnet_img2img(self):
pipe = AutoPipelineForImage2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-pipe")
controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")
pipe = AutoPipelineForImage2Image.from_pipe(pipe, controlnet=controlnet)
assert pipe.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
assert "controlnet" in pipe.components
pipe = AutoPipelineForImage2Image.from_pipe(pipe, controlnet=None)
assert pipe.__class__.__name__ == "StableDiffusionImg2ImgPipeline"
assert "controlnet" not in pipe.components
def test_from_pipe_controlnet_inpaint(self):
pipe = AutoPipelineForInpainting.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")
pipe = AutoPipelineForInpainting.from_pipe(pipe, controlnet=controlnet)
assert pipe.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
assert "controlnet" in pipe.components
pipe = AutoPipelineForInpainting.from_pipe(pipe, controlnet=None)
assert pipe.__class__.__name__ == "StableDiffusionInpaintPipeline"
assert "controlnet" not in pipe.components
def test_from_pipe_controlnet_new_task(self):
pipe_text2img = AutoPipelineForText2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")
pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_text2img, controlnet=controlnet)
assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
assert "controlnet" in pipe_control_img2img.components
pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_img2img, controlnet=None)
assert pipe_inpaint.__class__.__name__ == "StableDiffusionInpaintPipeline"
assert "controlnet" not in pipe_inpaint.components
@slow
class AutoPipelineIntegrationTest(unittest.TestCase):
def test_pipe_auto(self):
for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items():
# test txt2img
pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
model_repo, variant="fp16", torch_dtype=torch.float16
)
self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForText2Image.from_pipe(pipe_txt2img)
self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_txt2img)
self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])
if "kandinsky" not in model_name:
pipe_to = AutoPipelineForInpainting.from_pipe(pipe_txt2img)
self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])
del pipe_txt2img, pipe_to
gc.collect()
# test img2img
pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
model_repo, variant="fp16", torch_dtype=torch.float16
)
self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForText2Image.from_pipe(pipe_img2img)
self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_img2img)
self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])
if "kandinsky" not in model_name:
pipe_to = AutoPipelineForInpainting.from_pipe(pipe_img2img)
self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])
del pipe_img2img, pipe_to
gc.collect()
# test inpaint
if "kandinsky" not in model_name:
pipe_inpaint = AutoPipelineForInpainting.from_pretrained(
model_repo, variant="fp16", torch_dtype=torch.float16
)
self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForText2Image.from_pipe(pipe_inpaint)
self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_inpaint)
self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForInpainting.from_pipe(pipe_inpaint)
self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])
del pipe_inpaint, pipe_to
gc.collect()
def test_from_pipe_consistent(self):
for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items():
if model_name in ["kandinsky", "kandinsky22"]:
auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image]
else:
auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting]
# test from_pretrained
for pipe_from_class in auto_pipes:
pipe_from = pipe_from_class.from_pretrained(model_repo, variant="fp16", torch_dtype=torch.float16)
pipe_from_config = dict(pipe_from.config)
for pipe_to_class in auto_pipes:
pipe_to = pipe_to_class.from_pipe(pipe_from)
self.assertEqual(dict(pipe_to.config), pipe_from_config)
del pipe_from, pipe_to
gc.collect()
def test_controlnet(self):
# test from_pretrained
model_repo = "runwayml/stable-diffusion-v1-5"
controlnet_repo = "lllyasviel/sd-controlnet-canny"
controlnet = ControlNetModel.from_pretrained(controlnet_repo, torch_dtype=torch.float16)
pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
model_repo, controlnet=controlnet, torch_dtype=torch.float16
)
self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
model_repo, controlnet=controlnet, torch_dtype=torch.float16
)
self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
pipe_inpaint = AutoPipelineForInpainting.from_pretrained(
model_repo, controlnet=controlnet, torch_dtype=torch.float16
)
self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"])
# test from_pipe
for pipe_from in [pipe_txt2img, pipe_img2img, pipe_inpaint]:
pipe_to = AutoPipelineForText2Image.from_pipe(pipe_from)
self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
self.assertEqual(dict(pipe_to.config), dict(pipe_txt2img.config))
pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_from)
self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
self.assertEqual(dict(pipe_to.config), dict(pipe_img2img.config))
pipe_to = AutoPipelineForInpainting.from_pipe(pipe_from)
self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"])
self.assertEqual(dict(pipe_to.config), dict(pipe_inpaint.config))
| diffusers-main | tests/pipelines/test_pipelines_auto.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class DownloadTests(unittest.TestCase):
def test_download_only_pytorch(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
_ = FlaxDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith(".bin") for f in files)
@slow
@require_flax
class FlaxPipelineTests(unittest.TestCase):
def test_dummy_all_tpus(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None
)
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 4
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 4.1514745) < 1e-3
assert np.abs(np.abs(images, dtype=np.float32).sum() - 49947.875) < 5e-1
images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
assert len(images_pil) == num_samples
def test_stable_diffusion_v1_4(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="flax", safety_checker=None
)
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.05652401)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 5e-1
def test_stable_diffusion_v1_4_bfloat_16(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16, safety_checker=None
)
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.04003906)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2373516.75)) < 5e-1
def test_stable_diffusion_v1_4_bfloat_16_with_safety(self):
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16
)
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.04003906)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2373516.75)) < 5e-1
def test_stable_diffusion_v1_4_bfloat_16_ddim(self):
scheduler = FlaxDDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
set_alpha_to_one=False,
steps_offset=1,
)
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="bf16",
dtype=jnp.bfloat16,
scheduler=scheduler,
safety_checker=None,
)
scheduler_state = scheduler.create_state()
params["scheduler"] = scheduler_state
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, num_samples)
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.045043945)) < 1e-3
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2347693.5)) < 5e-1
def test_jax_memory_efficient_attention(self):
prompt = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prng_seed = jax.random.split(jax.random.PRNGKey(0), num_samples)
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="bf16",
dtype=jnp.bfloat16,
safety_checker=None,
)
params = replicate(params)
prompt_ids = pipeline.prepare_inputs(prompt)
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, jit=True).images
assert images.shape == (num_samples, 1, 512, 512, 3)
slice = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="bf16",
dtype=jnp.bfloat16,
safety_checker=None,
use_memory_efficient_attention=True,
)
params = replicate(params)
prompt_ids = pipeline.prepare_inputs(prompt)
prompt_ids = shard(prompt_ids)
images_eff = pipeline(prompt_ids, params, prng_seed, jit=True).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
slice_eff = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice).max() < 1e-2
| diffusers-main | tests/pipelines/test_pipelines_flax.py |
diffusers-main | tests/pipelines/stable_unclip/__init__.py |
|
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class StableUnCLIPPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableUnCLIPPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
test_xformers_attention = False
def get_dummy_components(self):
embedder_hidden_size = 32
embedder_projection_dim = embedder_hidden_size
# prior components
torch.manual_seed(0)
prior_tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
torch.manual_seed(0)
prior_text_encoder = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=embedder_hidden_size,
projection_dim=embedder_projection_dim,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
)
torch.manual_seed(0)
prior = PriorTransformer(
num_attention_heads=2,
attention_head_dim=12,
embedding_dim=embedder_projection_dim,
num_layers=1,
)
torch.manual_seed(0)
prior_scheduler = DDPMScheduler(
variance_type="fixed_small_log",
prediction_type="sample",
num_train_timesteps=1000,
clip_sample=True,
clip_sample_range=5.0,
beta_schedule="squaredcos_cap_v2",
)
# regular denoising components
torch.manual_seed(0)
image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedder_hidden_size)
image_noising_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2")
torch.manual_seed(0)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
torch.manual_seed(0)
text_encoder = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=embedder_hidden_size,
projection_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
)
torch.manual_seed(0)
unet = UNet2DConditionModel(
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),
block_out_channels=(32, 64),
attention_head_dim=(2, 4),
class_embed_type="projection",
# The class embeddings are the noise augmented image embeddings.
# I.e. the image embeddings concated with the noised embeddings of the same dimension
projection_class_embeddings_input_dim=embedder_projection_dim * 2,
cross_attention_dim=embedder_hidden_size,
layers_per_block=1,
upcast_attention=True,
use_linear_projection=True,
)
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_schedule="scaled_linear",
beta_start=0.00085,
beta_end=0.012,
prediction_type="v_prediction",
set_alpha_to_one=False,
steps_offset=1,
)
torch.manual_seed(0)
vae = AutoencoderKL()
components = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
# Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
# because UnCLIP GPU undeterminism requires a looser check.
def test_attention_slicing_forward_pass(self):
test_max_difference = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference)
# Overriding PipelineTesterMixin::test_inference_batch_single_identical
# because UnCLIP undeterminism requires a looser check.
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=1e-3)
@slow
@require_torch_gpu
class StableUnCLIPPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_unclip(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy"
)
pipe = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe("anime turle", generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(image, expected_image)
def test_stable_unclip_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l", torch_dtype=torch.float16)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_ = pipe(
"anime turtle",
prior_num_inference_steps=2,
num_inference_steps=2,
output_type="np",
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| diffusers-main | tests/pipelines/stable_unclip/test_stable_unclip.py |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImg2ImgPipeline, UNet2DConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class StableUnCLIPImg2ImgPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableUnCLIPImg2ImgPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = frozenset(
[]
) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
image_latents_params = frozenset([])
def get_dummy_components(self):
embedder_hidden_size = 32
embedder_projection_dim = embedder_hidden_size
# image encoding components
feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
torch.manual_seed(0)
image_encoder = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=embedder_hidden_size,
projection_dim=embedder_projection_dim,
num_hidden_layers=5,
num_attention_heads=4,
image_size=32,
intermediate_size=37,
patch_size=1,
)
)
# regular denoising components
torch.manual_seed(0)
image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedder_hidden_size)
image_noising_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2")
torch.manual_seed(0)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
torch.manual_seed(0)
text_encoder = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=embedder_hidden_size,
projection_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
)
torch.manual_seed(0)
unet = UNet2DConditionModel(
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),
block_out_channels=(32, 64),
attention_head_dim=(2, 4),
class_embed_type="projection",
# The class embeddings are the noise augmented image embeddings.
# I.e. the image embeddings concated with the noised embeddings of the same dimension
projection_class_embeddings_input_dim=embedder_projection_dim * 2,
cross_attention_dim=embedder_hidden_size,
layers_per_block=1,
upcast_attention=True,
use_linear_projection=True,
)
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_schedule="scaled_linear",
beta_start=0.00085,
beta_end=0.012,
prediction_type="v_prediction",
set_alpha_to_one=False,
steps_offset=1,
)
torch.manual_seed(0)
vae = AutoencoderKL()
components = {
# image encoding components
"feature_extractor": feature_extractor,
"image_encoder": image_encoder.eval(),
# image noising components
"image_normalizer": image_normalizer.eval(),
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder.eval(),
"unet": unet.eval(),
"scheduler": scheduler,
"vae": vae.eval(),
}
return components
def get_dummy_inputs(self, device, seed=0, pil_image=True):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
if pil_image:
input_image = input_image * 0.5 + 0.5
input_image = input_image.clamp(0, 1)
input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy()
input_image = DiffusionPipeline.numpy_to_pil(input_image)[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def test_image_embeds_none(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableUnCLIPImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs.update({"image_embeds": None})
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
# Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
# because GPU undeterminism requires a looser check.
def test_attention_slicing_forward_pass(self):
test_max_difference = torch_device in ["cpu", "mps"]
self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference)
# Overriding PipelineTesterMixin::test_inference_batch_single_identical
# because undeterminism requires a looser check.
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=1e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=False)
@slow
@require_torch_gpu
class StableUnCLIPImg2ImgPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_unclip_l_img2img(self):
input_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy"
)
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe(input_image, "anime turle", generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(image, expected_image)
def test_stable_unclip_h_img2img(self):
input_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy"
)
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe(input_image, "anime turle", generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(image, expected_image)
def test_stable_unclip_img2img_pipeline_with_sequential_cpu_offloading(self):
input_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
)
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_ = pipe(
input_image,
"anime turtle",
num_inference_steps=2,
output_type="np",
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| diffusers-main | tests/pipelines/stable_unclip/test_stable_unclip_img2img.py |
diffusers-main | tests/pipelines/karras_ve/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNet2DModel
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch, torch_device
enable_full_determinism()
class KarrasVePipelineFastTests(unittest.TestCase):
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def test_inference(self):
unet = self.dummy_uncond_unet
scheduler = KarrasVeScheduler()
pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images
generator = torch.manual_seed(0)
image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@nightly
@require_torch
class KarrasVePipelineIntegrationTests(unittest.TestCase):
def test_inference(self):
model_id = "google/ncsnpp-celebahq-256"
model = UNet2DModel.from_pretrained(model_id)
scheduler = KarrasVeScheduler()
pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/karras_ve/test_karras_ve.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import (
DDIMScheduler,
DDPMScheduler,
KandinskyImg2ImgPipeline,
KandinskyPriorPipeline,
UNet2DConditionModel,
VQModel,
)
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class Dummies:
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 32
@property
def dummy_tokenizer(self):
tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = MCLIPConfig(
numDims=self.cross_attention_dim,
transformerDimensions=self.text_embedder_hidden_size,
hidden_size=self.text_embedder_hidden_size,
intermediate_size=37,
num_attention_heads=4,
num_hidden_layers=5,
vocab_size=1005,
)
text_encoder = MultilingualCLIP(config)
text_encoder = text_encoder.eval()
return text_encoder
@property
def dummy_unet(self):
torch.manual_seed(0)
model_kwargs = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
model = UNet2DConditionModel(**model_kwargs)
return model
@property
def dummy_movq_kwargs(self):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def dummy_movq(self):
torch.manual_seed(0)
model = VQModel(**self.dummy_movq_kwargs)
return model
def get_dummy_components(self):
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
unet = self.dummy_unet
movq = self.dummy_movq
ddim_config = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.00085,
"beta_end": 0.012,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
scheduler = DDIMScheduler(**ddim_config)
components = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def get_dummy_inputs(self, device, seed=0):
image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device)
negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device)
# create init_image
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256))
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "horse",
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
class KandinskyImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyImg2ImgPipeline
params = ["prompt", "image_embeds", "negative_image_embeds", "image"]
batch_params = [
"prompt",
"negative_prompt",
"image_embeds",
"negative_image_embeds",
"image",
]
required_optional_params = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = False
def get_dummy_components(self):
dummies = Dummies()
return dummies.get_dummy_components()
def get_dummy_inputs(self, device, seed=0):
dummies = Dummies()
return dummies.get_dummy_inputs(device=device, seed=seed)
def test_kandinsky_img2img(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5816, 0.5872, 0.4634, 0.5982, 0.4767, 0.4710, 0.4669, 0.4717, 0.4966])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@require_torch_gpu
def test_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
@slow
@require_torch_gpu
class KandinskyImg2ImgPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_kandinsky_img2img(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_img2img_frog.npy"
)
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)
prompt = "A red cartoon frog, 4k"
pipe_prior = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to(torch_device)
pipeline = KandinskyImg2ImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
)
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
image_emb, zero_image_emb = pipe_prior(
prompt,
generator=generator,
num_inference_steps=5,
negative_prompt="",
).to_tuple()
output = pipeline(
prompt,
image=init_image,
image_embeds=image_emb,
negative_image_embeds=zero_image_emb,
generator=generator,
num_inference_steps=100,
height=768,
width=768,
strength=0.2,
output_type="np",
)
image = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(image, expected_image)
@nightly
@require_torch_gpu
class KandinskyImg2ImgPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_kandinsky_img2img_ddpm(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_img2img_ddpm_frog.npy"
)
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/frog.png"
)
prompt = "A red cartoon frog, 4k"
pipe_prior = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to(torch_device)
scheduler = DDPMScheduler.from_pretrained("kandinsky-community/kandinsky-2-1", subfolder="ddpm_scheduler")
pipeline = KandinskyImg2ImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1", scheduler=scheduler, torch_dtype=torch.float16
)
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
image_emb, zero_image_emb = pipe_prior(
prompt,
generator=generator,
num_inference_steps=5,
negative_prompt="",
).to_tuple()
output = pipeline(
prompt,
image=init_image,
image_embeds=image_emb,
negative_image_embeds=zero_image_emb,
generator=generator,
num_inference_steps=100,
height=768,
width=768,
strength=0.2,
output_type="np",
)
image = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(image, expected_image)
| diffusers-main | tests/pipelines/kandinsky/test_kandinsky_img2img.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyPipeline, KandinskyPriorPipeline, UNet2DConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class Dummies:
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 32
@property
def dummy_tokenizer(self):
tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = MCLIPConfig(
numDims=self.cross_attention_dim,
transformerDimensions=self.text_embedder_hidden_size,
hidden_size=self.text_embedder_hidden_size,
intermediate_size=37,
num_attention_heads=4,
num_hidden_layers=5,
vocab_size=1005,
)
text_encoder = MultilingualCLIP(config)
text_encoder = text_encoder.eval()
return text_encoder
@property
def dummy_unet(self):
torch.manual_seed(0)
model_kwargs = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
model = UNet2DConditionModel(**model_kwargs)
return model
@property
def dummy_movq_kwargs(self):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def dummy_movq(self):
torch.manual_seed(0)
model = VQModel(**self.dummy_movq_kwargs)
return model
def get_dummy_components(self):
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
unet = self.dummy_unet
movq = self.dummy_movq
scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_schedule="linear",
beta_start=0.00085,
beta_end=0.012,
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
prediction_type="epsilon",
thresholding=False,
)
components = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def get_dummy_inputs(self, device, seed=0):
image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device)
negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "horse",
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"guidance_scale": 4.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
class KandinskyPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyPipeline
params = [
"prompt",
"image_embeds",
"negative_image_embeds",
]
batch_params = ["prompt", "negative_prompt", "image_embeds", "negative_image_embeds"]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = False
def get_dummy_components(self):
dummy = Dummies()
return dummy.get_dummy_components()
def get_dummy_inputs(self, device, seed=0):
dummy = Dummies()
return dummy.get_dummy_inputs(device=device, seed=seed)
def test_kandinsky(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([1.0000, 1.0000, 0.2766, 1.0000, 0.5447, 0.1737, 1.0000, 0.4316, 0.9024])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@require_torch_gpu
def test_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
@slow
@require_torch_gpu
class KandinskyPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_kandinsky_text2img(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_text2img_cat_fp16.npy"
)
pipe_prior = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to(torch_device)
pipeline = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
prompt = "red cat, 4k photo"
generator = torch.Generator(device="cuda").manual_seed(0)
image_emb, zero_image_emb = pipe_prior(
prompt,
generator=generator,
num_inference_steps=5,
negative_prompt="",
).to_tuple()
generator = torch.Generator(device="cuda").manual_seed(0)
output = pipeline(
prompt,
image_embeds=image_emb,
negative_image_embeds=zero_image_emb,
generator=generator,
num_inference_steps=100,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(image, expected_image)
| diffusers-main | tests/pipelines/kandinsky/test_kandinsky.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from diffusers import KandinskyCombinedPipeline, KandinskyImg2ImgCombinedPipeline, KandinskyInpaintCombinedPipeline
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin
from .test_kandinsky import Dummies
from .test_kandinsky_img2img import Dummies as Img2ImgDummies
from .test_kandinsky_inpaint import Dummies as InpaintDummies
from .test_kandinsky_prior import Dummies as PriorDummies
enable_full_determinism()
class KandinskyPipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyCombinedPipeline
params = [
"prompt",
]
batch_params = ["prompt", "negative_prompt"]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = True
def get_dummy_components(self):
dummy = Dummies()
prior_dummy = PriorDummies()
components = dummy.get_dummy_components()
components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()})
return components
def get_dummy_inputs(self, device, seed=0):
prior_dummy = PriorDummies()
inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed)
inputs.update(
{
"height": 64,
"width": 64,
}
)
return inputs
def test_kandinsky(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.0000, 0.0000, 0.6777, 0.1363, 0.3624, 0.7868, 0.3869, 0.3395, 0.5068])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@require_torch_gpu
def test_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=1e-1)
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
class KandinskyPipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyImg2ImgCombinedPipeline
params = ["prompt", "image"]
batch_params = ["prompt", "negative_prompt", "image"]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = False
def get_dummy_components(self):
dummy = Img2ImgDummies()
prior_dummy = PriorDummies()
components = dummy.get_dummy_components()
components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()})
return components
def get_dummy_inputs(self, device, seed=0):
prior_dummy = PriorDummies()
dummy = Img2ImgDummies()
inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed)
inputs.update(dummy.get_dummy_inputs(device=device, seed=seed))
inputs.pop("image_embeds")
inputs.pop("negative_image_embeds")
return inputs
def test_kandinsky(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4260, 0.3596, 0.4571, 0.3890, 0.4087, 0.5137, 0.4819, 0.4116, 0.5053])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@require_torch_gpu
def test_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=5e-1)
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
class KandinskyPipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyInpaintCombinedPipeline
params = ["prompt", "image", "mask_image"]
batch_params = ["prompt", "negative_prompt", "image", "mask_image"]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = False
def get_dummy_components(self):
dummy = InpaintDummies()
prior_dummy = PriorDummies()
components = dummy.get_dummy_components()
components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()})
return components
def get_dummy_inputs(self, device, seed=0):
prior_dummy = PriorDummies()
dummy = InpaintDummies()
inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed)
inputs.update(dummy.get_dummy_inputs(device=device, seed=seed))
inputs.pop("image_embeds")
inputs.pop("negative_image_embeds")
return inputs
def test_kandinsky(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.0477, 0.0808, 0.2972, 0.2705, 0.3620, 0.6247, 0.4464, 0.2870, 0.3530])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@require_torch_gpu
def test_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=5e-1)
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
| diffusers-main | tests/pipelines/kandinsky/test_kandinsky_combined.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class Dummies:
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 100
@property
def dummy_tokenizer(self):
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=self.text_embedder_hidden_size,
projection_dim=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModelWithProjection(config)
@property
def dummy_prior(self):
torch.manual_seed(0)
model_kwargs = {
"num_attention_heads": 2,
"attention_head_dim": 12,
"embedding_dim": self.text_embedder_hidden_size,
"num_layers": 1,
}
model = PriorTransformer(**model_kwargs)
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
model.clip_std = nn.Parameter(torch.ones(model.clip_std.shape))
return model
@property
def dummy_image_encoder(self):
torch.manual_seed(0)
config = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size,
image_size=224,
projection_dim=self.text_embedder_hidden_size,
intermediate_size=37,
num_attention_heads=4,
num_channels=3,
num_hidden_layers=5,
patch_size=14,
)
model = CLIPVisionModelWithProjection(config)
return model
@property
def dummy_image_processor(self):
image_processor = CLIPImageProcessor(
crop_size=224,
do_center_crop=True,
do_normalize=True,
do_resize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
resample=3,
size=224,
)
return image_processor
def get_dummy_components(self):
prior = self.dummy_prior
image_encoder = self.dummy_image_encoder
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
image_processor = self.dummy_image_processor
scheduler = UnCLIPScheduler(
variance_type="fixed_small_log",
prediction_type="sample",
num_train_timesteps=1000,
clip_sample=True,
clip_sample_range=10.0,
)
components = {
"prior": prior,
"image_encoder": image_encoder,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"scheduler": scheduler,
"image_processor": image_processor,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "horse",
"generator": generator,
"guidance_scale": 4.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
class KandinskyPriorPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyPriorPipeline
params = ["prompt"]
batch_params = ["prompt", "negative_prompt"]
required_optional_params = [
"num_images_per_prompt",
"generator",
"num_inference_steps",
"latents",
"negative_prompt",
"guidance_scale",
"output_type",
"return_dict",
]
test_xformers_attention = False
def get_dummy_components(self):
dummy = Dummies()
return dummy.get_dummy_components()
def get_dummy_inputs(self, device, seed=0):
dummy = Dummies()
return dummy.get_dummy_inputs(device=device, seed=seed)
def test_kandinsky_prior(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.image_embeds
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -10:]
image_from_tuple_slice = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
expected_slice = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@skip_mps
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=1e-2)
@skip_mps
def test_attention_slicing_forward_pass(self):
test_max_difference = torch_device == "cpu"
test_mean_pixel_difference = False
self._test_attention_slicing_forward_pass(
test_max_difference=test_max_difference,
test_mean_pixel_difference=test_mean_pixel_difference,
)
| diffusers-main | tests/pipelines/kandinsky/test_kandinsky_prior.py |
diffusers-main | tests/pipelines/kandinsky/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNet2DConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
require_torch_gpu,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class Dummies:
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 32
@property
def dummy_tokenizer(self):
tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = MCLIPConfig(
numDims=self.cross_attention_dim,
transformerDimensions=self.text_embedder_hidden_size,
hidden_size=self.text_embedder_hidden_size,
intermediate_size=37,
num_attention_heads=4,
num_hidden_layers=5,
vocab_size=1005,
)
text_encoder = MultilingualCLIP(config)
text_encoder = text_encoder.eval()
return text_encoder
@property
def dummy_unet(self):
torch.manual_seed(0)
model_kwargs = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
model = UNet2DConditionModel(**model_kwargs)
return model
@property
def dummy_movq_kwargs(self):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def dummy_movq(self):
torch.manual_seed(0)
model = VQModel(**self.dummy_movq_kwargs)
return model
def get_dummy_components(self):
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
unet = self.dummy_unet
movq = self.dummy_movq
scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_schedule="linear",
beta_start=0.00085,
beta_end=0.012,
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
prediction_type="epsilon",
thresholding=False,
)
components = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def get_dummy_inputs(self, device, seed=0):
image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device)
negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device)
# create init_image
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256))
# create mask
mask = np.zeros((64, 64), dtype=np.float32)
mask[:32, :32] = 1
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
class KandinskyInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyInpaintPipeline
params = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"]
batch_params = [
"prompt",
"negative_prompt",
"image_embeds",
"negative_image_embeds",
"image",
"mask_image",
]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = False
def get_dummy_components(self):
dummies = Dummies()
return dummies.get_dummy_components()
def get_dummy_inputs(self, device, seed=0):
dummies = Dummies()
return dummies.get_dummy_inputs(device=device, seed=seed)
def test_kandinsky_inpaint(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.8222, 0.8896, 0.4373, 0.8088, 0.4905, 0.2609, 0.6816, 0.4291, 0.5129])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@require_torch_gpu
def test_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=5e-1)
@nightly
@require_torch_gpu
class KandinskyInpaintPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_kandinsky_inpaint(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy"
)
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)
mask = np.zeros((768, 768), dtype=np.float32)
mask[:250, 250:-250] = 1
prompt = "a hat"
pipe_prior = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to(torch_device)
pipeline = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16
)
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
image_emb, zero_image_emb = pipe_prior(
prompt,
generator=generator,
num_inference_steps=5,
negative_prompt="",
).to_tuple()
output = pipeline(
prompt,
image=init_image,
mask_image=mask,
image_embeds=image_emb,
negative_image_embeds=zero_image_emb,
generator=generator,
num_inference_steps=100,
height=768,
width=768,
output_type="np",
)
image = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(image, expected_image)
| diffusers-main | tests/pipelines/kandinsky/test_kandinsky_inpaint.py |
# coding=utf-8
# Copyright 2023 Harutatsu Akiyama, Jinbin Bai, and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
EulerDiscreteScheduler,
StableDiffusionXLControlNetInpaintPipeline,
UNet2DConditionModel,
)
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_TO_IMAGE_BATCH_PARAMS,
TEXT_TO_IMAGE_IMAGE_PARAMS,
TEXT_TO_IMAGE_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class ControlNetPipelineSDXLFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionXLControlNetInpaintPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = frozenset(IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"mask_image", "control_image"}))
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
controlnet = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
conditioning_embedding_out_channels=(16, 32),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
}
return components
def get_dummy_inputs(self, device, seed=0, img_res=64):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
# Get random floats in [0, 1] as image
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
mask_image = torch.ones_like(image)
controlnet_embedder_scale_factor = 2
control_image = (
floats_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
rng=random.Random(seed),
)
.to(device)
.cpu()
)
control_image = control_image.cpu().permute(0, 2, 3, 1)[0]
# Convert image and mask_image to [0, 255]
image = 255 * image
mask_image = 255 * mask_image
control_image = 255 * control_image
# Convert to PIL image
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((img_res, img_res))
mask_image = Image.fromarray(np.uint8(mask_image)).convert("L").resize((img_res, img_res))
control_image = Image.fromarray(np.uint8(control_image)).convert("RGB").resize((img_res, img_res))
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"image": init_image,
"mask_image": mask_image,
"control_image": control_image,
}
return inputs
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
@require_torch_gpu
def test_stable_diffusion_xl_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
pipe.unet.set_default_attn_processor()
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_stable_diffusion_xl_multi_prompts(self):
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
# forward with single prompt
inputs = self.get_dummy_inputs(torch_device)
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt_2"] = inputs["prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt_2"] = "different prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
# manually set a negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same negative_prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = inputs["negative_prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = "different negative prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
def test_controlnet_sdxl_guess(self):
device = "cpu"
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["guess_mode"] = True
output = sd_pipe(**inputs)
image_slice = output.images[0, -3:, -3:, -1]
expected_slice = np.array(
[0.5381963, 0.4836803, 0.45821992, 0.5577731, 0.51210403, 0.4794795, 0.59282357, 0.5647199, 0.43100584]
)
# make sure that it's equal
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4
# TODO(Patrick, Sayak) - skip for now as this requires more refiner tests
def test_save_load_optional_components(self):
pass
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=5e-1)
| diffusers-main | tests/pipelines/controlnet/test_controlnet_inpaint_sdxl.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
EulerDiscreteScheduler,
StableDiffusionXLControlNetPipeline,
UNet2DConditionModel,
)
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, slow, torch_device
from diffusers.utils.torch_utils import randn_tensor
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_TO_IMAGE_BATCH_PARAMS,
TEXT_TO_IMAGE_IMAGE_PARAMS,
TEXT_TO_IMAGE_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class StableDiffusionXLControlNetPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionXLControlNetPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
torch.manual_seed(0)
controlnet = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
conditioning_embedding_out_channels=(16, 32),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
torch.manual_seed(0)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
controlnet_embedder_scale_factor = 2
image = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "np",
"image": image,
}
return inputs
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
@require_torch_gpu
def test_stable_diffusion_xl_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
pipe.unet.set_default_attn_processor()
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_stable_diffusion_xl_multi_prompts(self):
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
# forward with single prompt
inputs = self.get_dummy_inputs(torch_device)
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt_2"] = inputs["prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt_2"] = "different prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
# manually set a negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same negative_prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = inputs["negative_prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = "different negative prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
# copied from test_stable_diffusion_xl.py
def test_stable_diffusion_xl_prompt_embeds(self):
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward without prompt embeds
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt"] = 2 * [inputs["prompt"]]
inputs["num_images_per_prompt"] = 2
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
inputs = self.get_dummy_inputs(torch_device)
prompt = 2 * [inputs.pop("prompt")]
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = sd_pipe.encode_prompt(prompt)
output = sd_pipe(
**inputs,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
)
image_slice_2 = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
def test_controlnet_sdxl_guess(self):
device = "cpu"
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["guess_mode"] = True
output = sd_pipe(**inputs)
image_slice = output.images[0, -3:, -3:, -1]
expected_slice = np.array(
[0.7330834, 0.590667, 0.5667336, 0.6029023, 0.5679491, 0.5968194, 0.4032986, 0.47612396, 0.5089609]
)
# make sure that it's equal
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4
class StableDiffusionXLMultiControlNetPipelineFastTests(
PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionXLControlNetPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
torch.manual_seed(0)
def init_weights(m):
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.normal(m.weight)
m.bias.data.fill_(1.0)
controlnet1 = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
conditioning_embedding_out_channels=(16, 32),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
controlnet1.controlnet_down_blocks.apply(init_weights)
torch.manual_seed(0)
controlnet2 = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
conditioning_embedding_out_channels=(16, 32),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
controlnet2.controlnet_down_blocks.apply(init_weights)
torch.manual_seed(0)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
controlnet = MultiControlNetModel([controlnet1, controlnet2])
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
controlnet_embedder_scale_factor = 2
images = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
),
]
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"image": images,
}
return inputs
def test_control_guidance_switch(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
scale = 10.0
steps = 4
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_1 = pipe(**inputs)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_1 - output_2)) > 1e-3
assert np.sum(np.abs(output_1 - output_3)) > 1e-3
assert np.sum(np.abs(output_1 - output_4)) > 1e-3
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
class StableDiffusionXLMultiControlNetOneModelPipelineFastTests(
PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionXLControlNetPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
torch.manual_seed(0)
def init_weights(m):
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.normal(m.weight)
m.bias.data.fill_(1.0)
controlnet = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
conditioning_embedding_out_channels=(16, 32),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
controlnet.controlnet_down_blocks.apply(init_weights)
torch.manual_seed(0)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
controlnet = MultiControlNetModel([controlnet])
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
controlnet_embedder_scale_factor = 2
images = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
),
]
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"image": images,
}
return inputs
def test_control_guidance_switch(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
scale = 10.0
steps = 4
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_1 = pipe(**inputs)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_3 = pipe(
**inputs,
control_guidance_start=[0.1],
control_guidance_end=[0.2],
)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_1 - output_2)) > 1e-3
assert np.sum(np.abs(output_1 - output_3)) > 1e-3
assert np.sum(np.abs(output_1 - output_4)) > 1e-3
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
def test_negative_conditions(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slice_without_neg_cond = image[0, -3:, -3:, -1]
image = pipe(
**inputs,
negative_original_size=(512, 512),
negative_crops_coords_top_left=(0, 0),
negative_target_size=(1024, 1024),
).images
image_slice_with_neg_cond = image[0, -3:, -3:, -1]
self.assertTrue(np.abs(image_slice_without_neg_cond - image_slice_with_neg_cond).max() > 1e-2)
@slow
@require_torch_gpu
class ControlNetSDXLPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_canny(self):
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
)
pipe.enable_sequential_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "bird"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images
assert images[0].shape == (768, 512, 3)
original_image = images[0, -3:, -3:, -1].flatten()
expected_image = np.array([0.4185, 0.4127, 0.4089, 0.4046, 0.4115, 0.4096, 0.4081, 0.4112, 0.3913])
assert np.allclose(original_image, expected_image, atol=1e-04)
def test_depth(self):
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0")
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
)
pipe.enable_sequential_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "Stormtrooper's lecture"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png"
)
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images
assert images[0].shape == (512, 512, 3)
original_image = images[0, -3:, -3:, -1].flatten()
expected_image = np.array([0.4399, 0.5112, 0.5478, 0.4314, 0.472, 0.4823, 0.4647, 0.4957, 0.4853])
assert np.allclose(original_image, expected_image, atol=1e-04)
| diffusers-main | tests/pipelines/controlnet/test_controlnet_sdxl.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTokenizer
from transformers.models.blip_2.configuration_blip_2 import Blip2Config
from transformers.models.clip.configuration_clip import CLIPTextConfig
from diffusers import (
AutoencoderKL,
BlipDiffusionControlNetPipeline,
ControlNetModel,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import enable_full_determinism
from src.diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor
from src.diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel
from src.diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class BlipDiffusionControlNetPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = BlipDiffusionControlNetPipeline
params = [
"prompt",
"reference_image",
"source_subject_category",
"target_subject_category",
"condtioning_image",
]
batch_params = [
"prompt",
"reference_image",
"source_subject_category",
"target_subject_category",
"condtioning_image",
]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"neg_prompt",
"guidance_scale",
"prompt_strength",
"prompt_reps",
]
def get_dummy_components(self):
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
vocab_size=1000,
hidden_size=16,
intermediate_size=16,
projection_dim=16,
num_hidden_layers=1,
num_attention_heads=1,
max_position_embeddings=77,
)
text_encoder = ContextCLIPTextModel(text_encoder_config)
vae = AutoencoderKL(
in_channels=4,
out_channels=4,
down_block_types=("DownEncoderBlock2D",),
up_block_types=("UpDecoderBlock2D",),
block_out_channels=(32,),
layers_per_block=1,
act_fn="silu",
latent_channels=4,
norm_num_groups=16,
sample_size=16,
)
blip_vision_config = {
"hidden_size": 16,
"intermediate_size": 16,
"num_hidden_layers": 1,
"num_attention_heads": 1,
"image_size": 224,
"patch_size": 14,
"hidden_act": "quick_gelu",
}
blip_qformer_config = {
"vocab_size": 1000,
"hidden_size": 16,
"num_hidden_layers": 1,
"num_attention_heads": 1,
"intermediate_size": 16,
"max_position_embeddings": 512,
"cross_attention_frequency": 1,
"encoder_hidden_size": 16,
}
qformer_config = Blip2Config(
vision_config=blip_vision_config,
qformer_config=blip_qformer_config,
num_query_tokens=16,
tokenizer="hf-internal-testing/tiny-random-bert",
)
qformer = Blip2QFormerModel(qformer_config)
unet = UNet2DConditionModel(
block_out_channels=(4, 16),
layers_per_block=1,
norm_num_groups=4,
sample_size=16,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=16,
)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
scheduler = PNDMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
set_alpha_to_one=False,
skip_prk_steps=True,
)
controlnet = ControlNetModel(
block_out_channels=(4, 16),
layers_per_block=1,
in_channels=4,
norm_num_groups=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=16,
conditioning_embedding_out_channels=(8, 16),
)
vae.eval()
qformer.eval()
text_encoder.eval()
image_processor = BlipImageProcessor()
components = {
"text_encoder": text_encoder,
"vae": vae,
"qformer": qformer,
"unet": unet,
"tokenizer": tokenizer,
"scheduler": scheduler,
"controlnet": controlnet,
"image_processor": image_processor,
}
return components
def get_dummy_inputs(self, device, seed=0):
np.random.seed(seed)
reference_image = np.random.rand(32, 32, 3) * 255
reference_image = Image.fromarray(reference_image.astype("uint8")).convert("RGBA")
cond_image = np.random.rand(32, 32, 3) * 255
cond_image = Image.fromarray(cond_image.astype("uint8")).convert("RGBA")
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "swimming underwater",
"generator": generator,
"reference_image": reference_image,
"condtioning_image": cond_image,
"source_subject_category": "dog",
"target_subject_category": "dog",
"height": 32,
"width": 32,
"guidance_scale": 7.5,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def test_blipdiffusion_controlnet(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
image = pipe(**self.get_dummy_inputs(device))[0]
image_slice = image[0, -3:, -3:, 0]
assert image.shape == (1, 16, 16, 4)
expected_slice = np.array([0.7953, 0.7136, 0.6597, 0.4779, 0.7389, 0.4111, 0.5826, 0.4150, 0.8422])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
| diffusers-main | tests/pipelines/controlnet/test_controlnet_blip_diffusion.py |
diffusers-main | tests/pipelines/controlnet/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
EulerDiscreteScheduler,
StableDiffusionXLControlNetImg2ImgPipeline,
UNet2DConditionModel,
)
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class ControlNetPipelineSDXLImg2ImgFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionXLControlNetImg2ImgPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self, skip_first_text_encoder=False):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64 if not skip_first_text_encoder else 32,
)
torch.manual_seed(0)
controlnet = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
conditioning_embedding_out_channels=(16, 32),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
torch.manual_seed(0)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder if not skip_first_text_encoder else None,
"tokenizer": tokenizer if not skip_first_text_encoder else None,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
}
return components
def get_dummy_inputs(self, device, seed=0):
controlnet_embedder_scale_factor = 2
image = floats_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
rng=random.Random(seed),
).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"image": image,
"control_image": image,
}
return inputs
def test_stable_diffusion_xl_controlnet_img2img(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[0.5557202, 0.46418434, 0.46983826, 0.623529, 0.5557242, 0.49262643, 0.6070508, 0.5702978, 0.43777135]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_xl_controlnet_img2img_guess(self):
device = "cpu"
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["guess_mode"] = True
output = sd_pipe(**inputs)
image_slice = output.images[0, -3:, -3:, -1]
assert output.images.shape == (1, 64, 64, 3)
expected_slice = np.array(
[0.5557202, 0.46418434, 0.46983826, 0.623529, 0.5557242, 0.49262643, 0.6070508, 0.5702978, 0.43777135]
)
# make sure that it's equal
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
# TODO(Patrick, Sayak) - skip for now as this requires more refiner tests
def test_save_load_optional_components(self):
pass
@require_torch_gpu
def test_stable_diffusion_xl_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
pipe.unet.set_default_attn_processor()
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_stable_diffusion_xl_multi_prompts(self):
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
# forward with single prompt
inputs = self.get_dummy_inputs(torch_device)
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt_2"] = inputs["prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt_2"] = "different prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
# manually set a negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same negative_prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = inputs["negative_prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = "different negative prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
# copied from test_stable_diffusion_xl.py
def test_stable_diffusion_xl_prompt_embeds(self):
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward without prompt embeds
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt"] = 2 * [inputs["prompt"]]
inputs["num_images_per_prompt"] = 2
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
inputs = self.get_dummy_inputs(torch_device)
prompt = 2 * [inputs.pop("prompt")]
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = sd_pipe.encode_prompt(prompt)
output = sd_pipe(
**inputs,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
)
image_slice_2 = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
| diffusers-main | tests/pipelines/controlnet/test_controlnet_sdxl_img2img.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImg2ImgPipeline,
UNet2DConditionModel,
)
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
from diffusers.utils import load_image
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class ControlNetImg2ImgPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionControlNetImg2ImgPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"})
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
torch.manual_seed(0)
controlnet = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
controlnet_embedder_scale_factor = 2
control_image = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
)
image = floats_tensor(control_image.shape, rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"image": image,
"control_image": control_image,
}
return inputs
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
class StableDiffusionMultiControlNetPipelineFastTests(
PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionControlNetImg2ImgPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
torch.manual_seed(0)
def init_weights(m):
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.normal(m.weight)
m.bias.data.fill_(1.0)
controlnet1 = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
controlnet1.controlnet_down_blocks.apply(init_weights)
torch.manual_seed(0)
controlnet2 = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
controlnet2.controlnet_down_blocks.apply(init_weights)
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
controlnet = MultiControlNetModel([controlnet1, controlnet2])
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
controlnet_embedder_scale_factor = 2
control_image = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
),
]
image = floats_tensor(control_image[0].shape, rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"image": image,
"control_image": control_image,
}
return inputs
def test_control_guidance_switch(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
scale = 10.0
steps = 4
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_1 = pipe(**inputs)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_1 - output_2)) > 1e-3
assert np.sum(np.abs(output_1 - output_3)) > 1e-3
assert np.sum(np.abs(output_1 - output_4)) > 1e-3
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
def test_save_pretrained_raise_not_implemented_exception(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(tmpdir)
except NotImplementedError:
pass
@slow
@require_torch_gpu
class ControlNetImg2ImgPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_canny(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "evil space-punk bird"
control_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
).resize((512, 512))
image = load_image(
"https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
).resize((512, 512))
output = pipe(
prompt,
image,
control_image=control_image,
generator=generator,
output_type="np",
num_inference_steps=50,
strength=0.6,
)
image = output.images[0]
assert image.shape == (512, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy"
)
assert np.abs(expected_image - image).max() < 9e-2
def test_load_local(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
pipe_1 = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
controlnet = ControlNetModel.from_single_file(
"https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"
)
pipe_2 = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
safety_checker=None,
controlnet=controlnet,
)
control_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
).resize((512, 512))
image = load_image(
"https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
).resize((512, 512))
pipes = [pipe_1, pipe_2]
images = []
for pipe in pipes:
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "bird"
output = pipe(
prompt,
image=image,
control_image=control_image,
strength=0.9,
generator=generator,
output_type="np",
num_inference_steps=3,
)
images.append(output.images[0])
del pipe
gc.collect()
torch.cuda.empty_cache()
assert np.abs(images[0] - images[1]).max() < 1e-3
| diffusers-main | tests/pipelines/controlnet/test_controlnet_img2img.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class FlaxControlNetPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def test_canny(self):
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.bfloat16
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16
)
params["controlnet"] = controlnet_params
prompts = "bird"
num_samples = jax.device_count()
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
canny_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
processed_image = pipe.prepare_image_inputs([canny_image] * num_samples)
rng = jax.random.PRNGKey(0)
rng = jax.random.split(rng, jax.device_count())
p_params = replicate(params)
prompt_ids = shard(prompt_ids)
processed_image = shard(processed_image)
images = pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=rng,
num_inference_steps=50,
jit=True,
).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
image_slice = images[0, 253:256, 253:256, -1]
output_slice = jnp.asarray(jax.device_get(image_slice.flatten()))
expected_slice = jnp.array(
[0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078]
)
print(f"output_slice: {output_slice}")
assert jnp.abs(output_slice - expected_slice).max() < 1e-2
def test_pose(self):
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-openpose", from_pt=True, dtype=jnp.bfloat16
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16
)
params["controlnet"] = controlnet_params
prompts = "Chef in the kitchen"
num_samples = jax.device_count()
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
pose_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
)
processed_image = pipe.prepare_image_inputs([pose_image] * num_samples)
rng = jax.random.PRNGKey(0)
rng = jax.random.split(rng, jax.device_count())
p_params = replicate(params)
prompt_ids = shard(prompt_ids)
processed_image = shard(processed_image)
images = pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=rng,
num_inference_steps=50,
jit=True,
).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
image_slice = images[0, 253:256, 253:256, -1]
output_slice = jnp.asarray(jax.device_get(image_slice.flatten()))
expected_slice = jnp.array(
[[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]]
)
print(f"output_slice: {output_slice}")
assert jnp.abs(output_slice - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/controlnet/test_flax_controlnet.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This model implementation is heavily based on:
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetInpaintPipeline,
UNet2DConditionModel,
)
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
from diffusers.utils import load_image
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
TEXT_TO_IMAGE_IMAGE_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class ControlNetInpaintPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionControlNetInpaintPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
image_params = frozenset({"control_image"}) # skip `image` and `mask` for now, only test for control_image
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
torch.manual_seed(0)
controlnet = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
controlnet_embedder_scale_factor = 2
control_image = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
)
init_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
init_image = init_image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(init_image)).convert("RGB").resize((64, 64))
mask_image = Image.fromarray(np.uint8(init_image + 4)).convert("RGB").resize((64, 64))
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"image": image,
"mask_image": mask_image,
"control_image": control_image,
}
return inputs
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
class ControlNetSimpleInpaintPipelineFastTests(ControlNetInpaintPipelineFastTests):
pipeline_class = StableDiffusionControlNetInpaintPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
image_params = frozenset([])
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
torch.manual_seed(0)
controlnet = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
class MultiControlNetInpaintPipelineFastTests(
PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionControlNetInpaintPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
torch.manual_seed(0)
def init_weights(m):
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.normal(m.weight)
m.bias.data.fill_(1.0)
controlnet1 = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
controlnet1.controlnet_down_blocks.apply(init_weights)
torch.manual_seed(0)
controlnet2 = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
controlnet2.controlnet_down_blocks.apply(init_weights)
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
controlnet = MultiControlNetModel([controlnet1, controlnet2])
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
controlnet_embedder_scale_factor = 2
control_image = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
),
]
init_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
init_image = init_image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(init_image)).convert("RGB").resize((64, 64))
mask_image = Image.fromarray(np.uint8(init_image + 4)).convert("RGB").resize((64, 64))
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"image": image,
"mask_image": mask_image,
"control_image": control_image,
}
return inputs
def test_control_guidance_switch(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
scale = 10.0
steps = 4
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_1 = pipe(**inputs)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_1 - output_2)) > 1e-3
assert np.sum(np.abs(output_1 - output_3)) > 1e-3
assert np.sum(np.abs(output_1 - output_4)) > 1e-3
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
def test_save_pretrained_raise_not_implemented_exception(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(tmpdir)
except NotImplementedError:
pass
@slow
@require_torch_gpu
class ControlNetInpaintPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_canny(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None, controlnet=controlnet
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
image = load_image(
"https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
).resize((512, 512))
mask_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_mask.png"
).resize((512, 512))
prompt = "pitch black hole"
control_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
).resize((512, 512))
output = pipe(
prompt,
image=image,
mask_image=mask_image,
control_image=control_image,
generator=generator,
output_type="np",
num_inference_steps=3,
)
image = output.images[0]
assert image.shape == (512, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/inpaint.npy"
)
assert np.abs(expected_image - image).max() < 9e-2
def test_inpaint(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint")
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(33)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
)
init_image = init_image.resize((512, 512))
mask_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
)
mask_image = mask_image.resize((512, 512))
prompt = "a handsome man with ray-ban sunglasses"
def make_inpaint_condition(image, image_mask):
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
image[image_mask > 0.5] = -1.0 # set as masked pixel
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
control_image = make_inpaint_condition(init_image, mask_image)
output = pipe(
prompt,
image=init_image,
mask_image=mask_image,
control_image=control_image,
guidance_scale=9.0,
eta=1.0,
generator=generator,
num_inference_steps=20,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/boy_ray_ban.npy"
)
assert np.abs(expected_image - image).max() < 9e-2
def test_load_local(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
pipe_1 = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
controlnet = ControlNetModel.from_single_file(
"https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"
)
pipe_2 = StableDiffusionControlNetInpaintPipeline.from_single_file(
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
safety_checker=None,
controlnet=controlnet,
)
control_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
).resize((512, 512))
image = load_image(
"https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
).resize((512, 512))
mask_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_mask.png"
).resize((512, 512))
pipes = [pipe_1, pipe_2]
images = []
for pipe in pipes:
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "bird"
output = pipe(
prompt,
image=image,
control_image=control_image,
mask_image=mask_image,
strength=0.9,
generator=generator,
output_type="np",
num_inference_steps=3,
)
images.append(output.images[0])
del pipe
gc.collect()
torch.cuda.empty_cache()
assert np.abs(images[0] - images[1]).max() < 1e-3
| diffusers-main | tests/pipelines/controlnet/test_controlnet_inpaint.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import traceback
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
EulerDiscreteScheduler,
StableDiffusionControlNetPipeline,
UNet2DConditionModel,
)
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_image,
load_numpy,
require_torch_2,
require_torch_gpu,
run_test_in_subprocess,
slow,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_TO_IMAGE_BATCH_PARAMS,
TEXT_TO_IMAGE_IMAGE_PARAMS,
TEXT_TO_IMAGE_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
error = None
try:
_ = in_queue.get(timeout=timeout)
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.to("cuda")
pipe.set_progress_bar_config(disable=None)
pipe.unet.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.controlnet.to(memory_format=torch.channels_last)
pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "bird"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
output = pipe(prompt, image, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out_full.npy"
)
assert np.abs(expected_image - image).max() < 1.0
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
class ControlNetPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionControlNetPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
torch.manual_seed(0)
controlnet = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
controlnet_embedder_scale_factor = 2
image = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"image": image,
}
return inputs
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
class StableDiffusionMultiControlNetPipelineFastTests(
PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionControlNetPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
torch.manual_seed(0)
def init_weights(m):
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.normal(m.weight)
m.bias.data.fill_(1.0)
controlnet1 = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
controlnet1.controlnet_down_blocks.apply(init_weights)
torch.manual_seed(0)
controlnet2 = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
controlnet2.controlnet_down_blocks.apply(init_weights)
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
controlnet = MultiControlNetModel([controlnet1, controlnet2])
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
controlnet_embedder_scale_factor = 2
images = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
),
]
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"image": images,
}
return inputs
def test_control_guidance_switch(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
scale = 10.0
steps = 4
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_1 = pipe(**inputs)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_1 - output_2)) > 1e-3
assert np.sum(np.abs(output_1 - output_3)) > 1e-3
assert np.sum(np.abs(output_1 - output_4)) > 1e-3
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
def test_save_pretrained_raise_not_implemented_exception(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(tmpdir)
except NotImplementedError:
pass
class StableDiffusionMultiControlNetOneModelPipelineFastTests(
PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionControlNetPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
torch.manual_seed(0)
def init_weights(m):
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.normal(m.weight)
m.bias.data.fill_(1.0)
controlnet = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
controlnet.controlnet_down_blocks.apply(init_weights)
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
controlnet = MultiControlNetModel([controlnet])
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
controlnet_embedder_scale_factor = 2
images = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
),
]
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"image": images,
}
return inputs
def test_control_guidance_switch(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
scale = 10.0
steps = 4
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_1 = pipe(**inputs)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_3 = pipe(
**inputs,
control_guidance_start=[0.1],
control_guidance_end=[0.2],
)[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = steps
inputs["controlnet_conditioning_scale"] = scale
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_1 - output_2)) > 1e-3
assert np.sum(np.abs(output_1 - output_3)) > 1e-3
assert np.sum(np.abs(output_1 - output_4)) > 1e-3
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
def test_save_pretrained_raise_not_implemented_exception(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(tmpdir)
except NotImplementedError:
pass
@slow
@require_torch_gpu
class ControlNetPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_canny(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "bird"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
image = output.images[0]
assert image.shape == (768, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out.npy"
)
assert np.abs(expected_image - image).max() < 9e-2
def test_depth(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "Stormtrooper's lecture"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png"
)
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
image = output.images[0]
assert image.shape == (512, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth_out.npy"
)
assert np.abs(expected_image - image).max() < 8e-1
def test_hed(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "oil painting of handsome old man, masterpiece"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed.png"
)
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
image = output.images[0]
assert image.shape == (704, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed_out.npy"
)
assert np.abs(expected_image - image).max() < 8e-2
def test_mlsd(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "room"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd.png"
)
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
image = output.images[0]
assert image.shape == (704, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd_out.npy"
)
assert np.abs(expected_image - image).max() < 5e-2
def test_normal(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "cute toy"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal.png"
)
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
image = output.images[0]
assert image.shape == (512, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal_out.npy"
)
assert np.abs(expected_image - image).max() < 5e-2
def test_openpose(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "Chef in the kitchen"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
)
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
image = output.images[0]
assert image.shape == (768, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/chef_pose_out.npy"
)
assert np.abs(expected_image - image).max() < 8e-2
def test_scribble(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(5)
prompt = "bag"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble.png"
)
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
image = output.images[0]
assert image.shape == (640, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble_out.npy"
)
assert np.abs(expected_image - image).max() < 8e-2
def test_seg(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(5)
prompt = "house"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
)
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
image = output.images[0]
assert image.shape == (512, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg_out.npy"
)
assert np.abs(expected_image - image).max() < 8e-2
def test_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
prompt = "house"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
)
_ = pipe(
prompt,
image,
num_inference_steps=2,
output_type="np",
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 4 * 10**9
def test_canny_guess_mode(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = ""
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
output = pipe(
prompt,
image,
generator=generator,
output_type="np",
num_inference_steps=3,
guidance_scale=3.0,
guess_mode=True,
)
image = output.images[0]
assert image.shape == (768, 512, 3)
image_slice = image[-3:, -3:, -1]
expected_slice = np.array([0.2724, 0.2846, 0.2724, 0.3843, 0.3682, 0.2736, 0.4675, 0.3862, 0.2887])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_canny_guess_mode_euler(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = ""
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
output = pipe(
prompt,
image,
generator=generator,
output_type="np",
num_inference_steps=3,
guidance_scale=3.0,
guess_mode=True,
)
image = output.images[0]
assert image.shape == (768, 512, 3)
image_slice = image[-3:, -3:, -1]
expected_slice = np.array([0.1655, 0.1721, 0.1623, 0.1685, 0.1711, 0.1646, 0.1651, 0.1631, 0.1494])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@require_torch_2
def test_stable_diffusion_compile(self):
run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=None)
def test_v11_shuffle_global_pool_conditions(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_shuffle")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "New York"
image = load_image(
"https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"
)
output = pipe(
prompt,
image,
generator=generator,
output_type="np",
num_inference_steps=3,
guidance_scale=7.0,
)
image = output.images[0]
assert image.shape == (512, 640, 3)
image_slice = image[-3:, -3:, -1]
expected_slice = np.array([0.1338, 0.1597, 0.1202, 0.1687, 0.1377, 0.1017, 0.2070, 0.1574, 0.1348])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_load_local(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
pipe_1 = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
controlnet = ControlNetModel.from_single_file(
"https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"
)
pipe_2 = StableDiffusionControlNetPipeline.from_single_file(
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
safety_checker=None,
controlnet=controlnet,
)
pipes = [pipe_1, pipe_2]
images = []
for pipe in pipes:
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "bird"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
images.append(output.images[0])
del pipe
gc.collect()
torch.cuda.empty_cache()
assert np.abs(images[0] - images[1]).max() < 1e-3
@slow
@require_torch_gpu
class StableDiffusionMultiControlNetPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_pose_and_canny(self):
controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
controlnet_pose = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=[controlnet_pose, controlnet_canny]
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "bird and Chef"
image_canny = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
image_pose = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
)
output = pipe(prompt, [image_pose, image_canny], generator=generator, output_type="np", num_inference_steps=3)
image = output.images[0]
assert image.shape == (768, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose_canny_out.npy"
)
assert np.abs(expected_image - image).max() < 5e-2
| diffusers-main | tests/pipelines/controlnet/test_controlnet.py |
diffusers-main | tests/pipelines/repaint/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_image,
load_numpy,
nightly,
require_torch_gpu,
skip_mps,
torch_device,
)
from ..pipeline_params import IMAGE_INPAINTING_BATCH_PARAMS, IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class RepaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = RePaintPipeline
params = IMAGE_INPAINTING_PARAMS - {"width", "height", "guidance_scale"}
required_optional_params = PipelineTesterMixin.required_optional_params - {
"latents",
"num_images_per_prompt",
"callback",
"callback_steps",
}
batch_params = IMAGE_INPAINTING_BATCH_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
torch.manual_seed(0)
unet = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
scheduler = RePaintScheduler()
components = {"unet": unet, "scheduler": scheduler}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image = np.random.RandomState(seed).standard_normal((1, 3, 32, 32))
image = torch.from_numpy(image).to(device=device, dtype=torch.float32)
mask = (image > 0).to(device=device, dtype=torch.float32)
inputs = {
"image": image,
"mask_image": mask,
"generator": generator,
"num_inference_steps": 5,
"eta": 0.0,
"jump_length": 2,
"jump_n_sample": 2,
"output_type": "numpy",
}
return inputs
def test_repaint(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = RePaintPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([1.0000, 0.5426, 0.5497, 0.2200, 1.0000, 1.0000, 0.5623, 1.0000, 0.6274])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@skip_mps
def test_save_load_local(self):
return super().test_save_load_local()
# RePaint can hardly be made deterministic since the scheduler is currently always
# nondeterministic
@unittest.skip("non-deterministic pipeline")
def test_inference_batch_single_identical(self):
return super().test_inference_batch_single_identical()
@skip_mps
def test_dict_tuple_outputs_equivalent(self):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def test_save_load_optional_components(self):
return super().test_save_load_optional_components()
@skip_mps
def test_attention_slicing_forward_pass(self):
return super().test_attention_slicing_forward_pass()
@nightly
@require_torch_gpu
class RepaintPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_celebahq(self):
original_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"repaint/celeba_hq_256.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"repaint/celeba_hq_256_result.npy"
)
model_id = "google/ddpm-ema-celebahq-256"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = RePaintScheduler.from_pretrained(model_id)
repaint = RePaintPipeline(unet=unet, scheduler=scheduler).to(torch_device)
repaint.set_progress_bar_config(disable=None)
repaint.enable_attention_slicing()
generator = torch.manual_seed(0)
output = repaint(
original_image,
mask_image,
num_inference_steps=250,
eta=0.0,
jump_length=10,
jump_n_sample=10,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image).mean() < 1e-2
| diffusers-main | tests/pipelines/repaint/test_repaint.py |
diffusers-main | tests/pipelines/unidiffuser/__init__.py |
|
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionModelWithProjection,
GPT2Tokenizer,
)
from diffusers import (
AutoencoderKL,
DPMSolverMultistepScheduler,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
)
from diffusers.utils.testing_utils import floats_tensor, load_image, nightly, require_torch_gpu, torch_device
from diffusers.utils.torch_utils import randn_tensor
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
class UniDiffuserPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = UniDiffuserPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
def get_dummy_components(self):
unet = UniDiffuserModel.from_pretrained(
"hf-internal-testing/unidiffuser-diffusers-test",
subfolder="unet",
)
scheduler = DPMSolverMultistepScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
solver_order=3,
)
vae = AutoencoderKL.from_pretrained(
"hf-internal-testing/unidiffuser-diffusers-test",
subfolder="vae",
)
text_encoder = CLIPTextModel.from_pretrained(
"hf-internal-testing/unidiffuser-diffusers-test",
subfolder="text_encoder",
)
clip_tokenizer = CLIPTokenizer.from_pretrained(
"hf-internal-testing/unidiffuser-diffusers-test",
subfolder="clip_tokenizer",
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"hf-internal-testing/unidiffuser-diffusers-test",
subfolder="image_encoder",
)
# From the Stable Diffusion Image Variation pipeline tests
image_processor = CLIPImageProcessor(crop_size=32, size=32)
# image_processor = CLIPImageProcessor.from_pretrained("hf-internal-testing/tiny-random-clip")
text_tokenizer = GPT2Tokenizer.from_pretrained(
"hf-internal-testing/unidiffuser-diffusers-test",
subfolder="text_tokenizer",
)
text_decoder = UniDiffuserTextDecoder.from_pretrained(
"hf-internal-testing/unidiffuser-diffusers-test",
subfolder="text_decoder",
)
components = {
"vae": vae,
"text_encoder": text_encoder,
"image_encoder": image_encoder,
"image_processor": image_processor,
"clip_tokenizer": clip_tokenizer,
"text_decoder": text_decoder,
"text_tokenizer": text_tokenizer,
"unet": unet,
"scheduler": scheduler,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB")
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "an elephant under the sea",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def get_fixed_latents(self, device, seed=0):
if isinstance(device, str):
device = torch.device(device)
generator = torch.Generator(device=device).manual_seed(seed)
# Hardcode the shapes for now.
prompt_latents = randn_tensor((1, 77, 32), generator=generator, device=device, dtype=torch.float32)
vae_latents = randn_tensor((1, 4, 16, 16), generator=generator, device=device, dtype=torch.float32)
clip_latents = randn_tensor((1, 1, 32), generator=generator, device=device, dtype=torch.float32)
latents = {
"prompt_latents": prompt_latents,
"vae_latents": vae_latents,
"clip_latents": clip_latents,
}
return latents
def get_dummy_inputs_with_latents(self, device, seed=0):
# image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
# image = image.cpu().permute(0, 2, 3, 1)[0]
# image = Image.fromarray(np.uint8(image)).convert("RGB")
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg",
)
image = image.resize((32, 32))
latents = self.get_fixed_latents(device, seed=seed)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "an elephant under the sea",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"prompt_latents": latents.get("prompt_latents"),
"vae_latents": latents.get("vae_latents"),
"clip_latents": latents.get("clip_latents"),
}
return inputs
def test_unidiffuser_default_joint_v0(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
unidiffuser_pipe = UniDiffuserPipeline(**components)
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'joint'
unidiffuser_pipe.set_joint_mode()
assert unidiffuser_pipe.mode == "joint"
# inputs = self.get_dummy_inputs(device)
inputs = self.get_dummy_inputs_with_latents(device)
# Delete prompt and image for joint inference.
del inputs["prompt"]
del inputs["image"]
sample = unidiffuser_pipe(**inputs)
image = sample.images
text = sample.text
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716])
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3
expected_text_prefix = " no no no "
assert text[0][:10] == expected_text_prefix
def test_unidiffuser_default_joint_no_cfg_v0(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
unidiffuser_pipe = UniDiffuserPipeline(**components)
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'joint'
unidiffuser_pipe.set_joint_mode()
assert unidiffuser_pipe.mode == "joint"
# inputs = self.get_dummy_inputs(device)
inputs = self.get_dummy_inputs_with_latents(device)
# Delete prompt and image for joint inference.
del inputs["prompt"]
del inputs["image"]
# Set guidance scale to 1.0 to turn off CFG
inputs["guidance_scale"] = 1.0
sample = unidiffuser_pipe(**inputs)
image = sample.images
text = sample.text
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716])
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3
expected_text_prefix = " no no no "
assert text[0][:10] == expected_text_prefix
def test_unidiffuser_default_text2img_v0(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
unidiffuser_pipe = UniDiffuserPipeline(**components)
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'text2img'
unidiffuser_pipe.set_text_to_image_mode()
assert unidiffuser_pipe.mode == "text2img"
inputs = self.get_dummy_inputs_with_latents(device)
# Delete image for text-conditioned image generation
del inputs["image"]
image = unidiffuser_pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.5758, 0.6269, 0.6570, 0.4967, 0.4639, 0.5664, 0.5257, 0.5067, 0.5715])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_unidiffuser_default_image_0(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
unidiffuser_pipe = UniDiffuserPipeline(**components)
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'img'
unidiffuser_pipe.set_image_mode()
assert unidiffuser_pipe.mode == "img"
inputs = self.get_dummy_inputs(device)
# Delete prompt and image for unconditional ("marginal") text generation.
del inputs["prompt"]
del inputs["image"]
image = unidiffuser_pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.5760, 0.6270, 0.6571, 0.4966, 0.4638, 0.5663, 0.5254, 0.5068, 0.5715])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_unidiffuser_default_text_v0(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
unidiffuser_pipe = UniDiffuserPipeline(**components)
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'img'
unidiffuser_pipe.set_text_mode()
assert unidiffuser_pipe.mode == "text"
inputs = self.get_dummy_inputs(device)
# Delete prompt and image for unconditional ("marginal") text generation.
del inputs["prompt"]
del inputs["image"]
text = unidiffuser_pipe(**inputs).text
expected_text_prefix = " no no no "
assert text[0][:10] == expected_text_prefix
def test_unidiffuser_default_img2text_v0(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
unidiffuser_pipe = UniDiffuserPipeline(**components)
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'img2text'
unidiffuser_pipe.set_image_to_text_mode()
assert unidiffuser_pipe.mode == "img2text"
inputs = self.get_dummy_inputs_with_latents(device)
# Delete text for image-conditioned text generation
del inputs["prompt"]
text = unidiffuser_pipe(**inputs).text
expected_text_prefix = " no no no "
assert text[0][:10] == expected_text_prefix
def test_unidiffuser_default_joint_v1(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1")
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'joint'
unidiffuser_pipe.set_joint_mode()
assert unidiffuser_pipe.mode == "joint"
# inputs = self.get_dummy_inputs(device)
inputs = self.get_dummy_inputs_with_latents(device)
# Delete prompt and image for joint inference.
del inputs["prompt"]
del inputs["image"]
inputs["data_type"] = 1
sample = unidiffuser_pipe(**inputs)
image = sample.images
text = sample.text
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716])
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3
expected_text_prefix = " no no no "
assert text[0][:10] == expected_text_prefix
def test_unidiffuser_default_text2img_v1(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1")
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'text2img'
unidiffuser_pipe.set_text_to_image_mode()
assert unidiffuser_pipe.mode == "text2img"
inputs = self.get_dummy_inputs_with_latents(device)
# Delete image for text-conditioned image generation
del inputs["image"]
image = unidiffuser_pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.5758, 0.6269, 0.6570, 0.4967, 0.4639, 0.5664, 0.5257, 0.5067, 0.5715])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_unidiffuser_default_img2text_v1(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1")
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'img2text'
unidiffuser_pipe.set_image_to_text_mode()
assert unidiffuser_pipe.mode == "img2text"
inputs = self.get_dummy_inputs_with_latents(device)
# Delete text for image-conditioned text generation
del inputs["prompt"]
text = unidiffuser_pipe(**inputs).text
expected_text_prefix = " no no no "
assert text[0][:10] == expected_text_prefix
def test_unidiffuser_text2img_multiple_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
unidiffuser_pipe = UniDiffuserPipeline(**components)
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'text2img'
unidiffuser_pipe.set_text_to_image_mode()
assert unidiffuser_pipe.mode == "text2img"
inputs = self.get_dummy_inputs(device)
# Delete image for text-conditioned image generation
del inputs["image"]
inputs["num_images_per_prompt"] = 2
inputs["num_prompts_per_image"] = 3
image = unidiffuser_pipe(**inputs).images
assert image.shape == (2, 32, 32, 3)
def test_unidiffuser_img2text_multiple_prompts(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
unidiffuser_pipe = UniDiffuserPipeline(**components)
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'img2text'
unidiffuser_pipe.set_image_to_text_mode()
assert unidiffuser_pipe.mode == "img2text"
inputs = self.get_dummy_inputs(device)
# Delete text for image-conditioned text generation
del inputs["prompt"]
inputs["num_images_per_prompt"] = 2
inputs["num_prompts_per_image"] = 3
text = unidiffuser_pipe(**inputs).text
assert len(text) == 3
def test_unidiffuser_text2img_multiple_images_with_latents(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
unidiffuser_pipe = UniDiffuserPipeline(**components)
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'text2img'
unidiffuser_pipe.set_text_to_image_mode()
assert unidiffuser_pipe.mode == "text2img"
inputs = self.get_dummy_inputs_with_latents(device)
# Delete image for text-conditioned image generation
del inputs["image"]
inputs["num_images_per_prompt"] = 2
inputs["num_prompts_per_image"] = 3
image = unidiffuser_pipe(**inputs).images
assert image.shape == (2, 32, 32, 3)
def test_unidiffuser_img2text_multiple_prompts_with_latents(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
unidiffuser_pipe = UniDiffuserPipeline(**components)
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'img2text'
unidiffuser_pipe.set_image_to_text_mode()
assert unidiffuser_pipe.mode == "img2text"
inputs = self.get_dummy_inputs_with_latents(device)
# Delete text for image-conditioned text generation
del inputs["prompt"]
inputs["num_images_per_prompt"] = 2
inputs["num_prompts_per_image"] = 3
text = unidiffuser_pipe(**inputs).text
assert len(text) == 3
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=2e-4)
@require_torch_gpu
def test_unidiffuser_default_joint_v1_cuda_fp16(self):
device = "cuda"
unidiffuser_pipe = UniDiffuserPipeline.from_pretrained(
"hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16
)
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'joint'
unidiffuser_pipe.set_joint_mode()
assert unidiffuser_pipe.mode == "joint"
inputs = self.get_dummy_inputs_with_latents(device)
# Delete prompt and image for joint inference.
del inputs["prompt"]
del inputs["image"]
inputs["data_type"] = 1
sample = unidiffuser_pipe(**inputs)
image = sample.images
text = sample.text
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_img_slice = np.array([0.5049, 0.5498, 0.5854, 0.3052, 0.4460, 0.6489, 0.5122, 0.4810, 0.6138])
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3
expected_text_prefix = '" This This'
assert text[0][: len(expected_text_prefix)] == expected_text_prefix
@require_torch_gpu
def test_unidiffuser_default_text2img_v1_cuda_fp16(self):
device = "cuda"
unidiffuser_pipe = UniDiffuserPipeline.from_pretrained(
"hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16
)
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'text2img'
unidiffuser_pipe.set_text_to_image_mode()
assert unidiffuser_pipe.mode == "text2img"
inputs = self.get_dummy_inputs_with_latents(device)
# Delete prompt and image for joint inference.
del inputs["image"]
inputs["data_type"] = 1
sample = unidiffuser_pipe(**inputs)
image = sample.images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_img_slice = np.array([0.5054, 0.5498, 0.5854, 0.3052, 0.4458, 0.6489, 0.5122, 0.4810, 0.6138])
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3
@require_torch_gpu
def test_unidiffuser_default_img2text_v1_cuda_fp16(self):
device = "cuda"
unidiffuser_pipe = UniDiffuserPipeline.from_pretrained(
"hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16
)
unidiffuser_pipe = unidiffuser_pipe.to(device)
unidiffuser_pipe.set_progress_bar_config(disable=None)
# Set mode to 'img2text'
unidiffuser_pipe.set_image_to_text_mode()
assert unidiffuser_pipe.mode == "img2text"
inputs = self.get_dummy_inputs_with_latents(device)
# Delete prompt and image for joint inference.
del inputs["prompt"]
inputs["data_type"] = 1
text = unidiffuser_pipe(**inputs).text
expected_text_prefix = '" This This'
assert text[0][: len(expected_text_prefix)] == expected_text_prefix
@nightly
@require_torch_gpu
class UniDiffuserPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, seed=0, generate_latents=False):
generator = torch.manual_seed(seed)
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg"
)
inputs = {
"prompt": "an elephant under the sea",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 8.0,
"output_type": "numpy",
}
if generate_latents:
latents = self.get_fixed_latents(device, seed=seed)
for latent_name, latent_tensor in latents.items():
inputs[latent_name] = latent_tensor
return inputs
def get_fixed_latents(self, device, seed=0):
if isinstance(device, str):
device = torch.device(device)
latent_device = torch.device("cpu")
generator = torch.Generator(device=latent_device).manual_seed(seed)
# Hardcode the shapes for now.
prompt_latents = randn_tensor((1, 77, 768), generator=generator, device=device, dtype=torch.float32)
vae_latents = randn_tensor((1, 4, 64, 64), generator=generator, device=device, dtype=torch.float32)
clip_latents = randn_tensor((1, 1, 512), generator=generator, device=device, dtype=torch.float32)
# Move latents onto desired device.
prompt_latents = prompt_latents.to(device)
vae_latents = vae_latents.to(device)
clip_latents = clip_latents.to(device)
latents = {
"prompt_latents": prompt_latents,
"vae_latents": vae_latents,
"clip_latents": clip_latents,
}
return latents
def test_unidiffuser_default_joint_v1(self):
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1")
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
# inputs = self.get_dummy_inputs(device)
inputs = self.get_inputs(device=torch_device, generate_latents=True)
# Delete prompt and image for joint inference.
del inputs["prompt"]
del inputs["image"]
sample = pipe(**inputs)
image = sample.images
text = sample.text
assert image.shape == (1, 512, 512, 3)
image_slice = image[0, -3:, -3:, -1]
expected_img_slice = np.array([0.2402, 0.2375, 0.2285, 0.2378, 0.2407, 0.2263, 0.2354, 0.2307, 0.2520])
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-1
expected_text_prefix = "a living room"
assert text[0][: len(expected_text_prefix)] == expected_text_prefix
def test_unidiffuser_default_text2img_v1(self):
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1")
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(device=torch_device, generate_latents=True)
del inputs["image"]
sample = pipe(**inputs)
image = sample.images
assert image.shape == (1, 512, 512, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.0242, 0.0103, 0.0022, 0.0129, 0.0000, 0.0090, 0.0376, 0.0508, 0.0005])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_unidiffuser_default_img2text_v1(self):
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1")
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(device=torch_device, generate_latents=True)
del inputs["prompt"]
sample = pipe(**inputs)
text = sample.text
expected_text_prefix = "An astronaut"
assert text[0][: len(expected_text_prefix)] == expected_text_prefix
@nightly
@require_torch_gpu
class UniDiffuserPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, seed=0, generate_latents=False):
generator = torch.manual_seed(seed)
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg"
)
inputs = {
"prompt": "an elephant under the sea",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 8.0,
"output_type": "numpy",
}
if generate_latents:
latents = self.get_fixed_latents(device, seed=seed)
for latent_name, latent_tensor in latents.items():
inputs[latent_name] = latent_tensor
return inputs
def get_fixed_latents(self, device, seed=0):
if isinstance(device, str):
device = torch.device(device)
latent_device = torch.device("cpu")
generator = torch.Generator(device=latent_device).manual_seed(seed)
# Hardcode the shapes for now.
prompt_latents = randn_tensor((1, 77, 768), generator=generator, device=device, dtype=torch.float32)
vae_latents = randn_tensor((1, 4, 64, 64), generator=generator, device=device, dtype=torch.float32)
clip_latents = randn_tensor((1, 1, 512), generator=generator, device=device, dtype=torch.float32)
# Move latents onto desired device.
prompt_latents = prompt_latents.to(device)
vae_latents = vae_latents.to(device)
clip_latents = clip_latents.to(device)
latents = {
"prompt_latents": prompt_latents,
"vae_latents": vae_latents,
"clip_latents": clip_latents,
}
return latents
def test_unidiffuser_default_joint_v1_fp16(self):
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
# inputs = self.get_dummy_inputs(device)
inputs = self.get_inputs(device=torch_device, generate_latents=True)
# Delete prompt and image for joint inference.
del inputs["prompt"]
del inputs["image"]
sample = pipe(**inputs)
image = sample.images
text = sample.text
assert image.shape == (1, 512, 512, 3)
image_slice = image[0, -3:, -3:, -1]
expected_img_slice = np.array([0.2402, 0.2375, 0.2285, 0.2378, 0.2407, 0.2263, 0.2354, 0.2307, 0.2520])
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 2e-1
expected_text_prefix = "a living room"
assert text[0][: len(expected_text_prefix)] == expected_text_prefix
def test_unidiffuser_default_text2img_v1_fp16(self):
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(device=torch_device, generate_latents=True)
del inputs["image"]
sample = pipe(**inputs)
image = sample.images
assert image.shape == (1, 512, 512, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.0242, 0.0103, 0.0022, 0.0129, 0.0000, 0.0090, 0.0376, 0.0508, 0.0005])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_unidiffuser_default_img2text_v1_fp16(self):
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(device=torch_device, generate_latents=True)
del inputs["prompt"]
sample = pipe(**inputs)
text = sample.text
expected_text_prefix = "An astronaut"
assert text[0][: len(expected_text_prefix)] == expected_text_prefix
| diffusers-main | tests/pipelines/unidiffuser/test_unidiffuser.py |
diffusers-main | tests/pipelines/musicldm/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import (
ClapAudioConfig,
ClapConfig,
ClapFeatureExtractor,
ClapModel,
ClapTextConfig,
RobertaTokenizer,
SpeechT5HifiGan,
SpeechT5HifiGanConfig,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
MusicLDMPipeline,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class MusicLDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = MusicLDMPipeline
params = TEXT_TO_AUDIO_PARAMS
batch_params = TEXT_TO_AUDIO_BATCH_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"num_waveforms_per_prompt",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
]
)
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=(32, 64),
class_embed_type="simple_projection",
projection_class_embeddings_input_dim=32,
class_embeddings_concat=True,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=1,
out_channels=1,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_branch_config = ClapTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=16,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=2,
num_hidden_layers=2,
pad_token_id=1,
vocab_size=1000,
)
audio_branch_config = ClapAudioConfig(
spec_size=64,
window_size=4,
num_mel_bins=64,
intermediate_size=37,
layer_norm_eps=1e-05,
depths=[2, 2],
num_attention_heads=[2, 2],
num_hidden_layers=2,
hidden_size=192,
patch_size=2,
patch_stride=2,
patch_embed_input_channels=4,
)
text_encoder_config = ClapConfig.from_text_audio_configs(
text_config=text_branch_config, audio_config=audio_branch_config, projection_dim=32
)
text_encoder = ClapModel(text_encoder_config)
tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77)
feature_extractor = ClapFeatureExtractor.from_pretrained(
"hf-internal-testing/tiny-random-ClapModel", hop_length=7900
)
torch.manual_seed(0)
vocoder_config = SpeechT5HifiGanConfig(
model_in_dim=8,
sampling_rate=16000,
upsample_initial_channel=16,
upsample_rates=[2, 2],
upsample_kernel_sizes=[4, 4],
resblock_kernel_sizes=[3, 7],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]],
normalize_before=False,
)
vocoder = SpeechT5HifiGan(vocoder_config)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"feature_extractor": feature_extractor,
"vocoder": vocoder,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A hammer hitting a wooden surface",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
}
return inputs
def test_musicldm_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
musicldm_pipe = MusicLDMPipeline(**components)
musicldm_pipe = musicldm_pipe.to(torch_device)
musicldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = musicldm_pipe(**inputs)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) == 256
audio_slice = audio[:10]
expected_slice = np.array(
[-0.0027, -0.0036, -0.0037, -0.0020, -0.0035, -0.0019, -0.0037, -0.0020, -0.0038, -0.0019]
)
assert np.abs(audio_slice - expected_slice).max() < 1e-4
def test_musicldm_prompt_embeds(self):
components = self.get_dummy_components()
musicldm_pipe = MusicLDMPipeline(**components)
musicldm_pipe = musicldm_pipe.to(torch_device)
musicldm_pipe = musicldm_pipe.to(torch_device)
musicldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = musicldm_pipe(**inputs)
audio_1 = output.audios[0]
inputs = self.get_dummy_inputs(torch_device)
prompt = 3 * [inputs.pop("prompt")]
text_inputs = musicldm_pipe.tokenizer(
prompt,
padding="max_length",
max_length=musicldm_pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
prompt_embeds = musicldm_pipe.text_encoder.get_text_features(text_inputs)
inputs["prompt_embeds"] = prompt_embeds
# forward
output = musicldm_pipe(**inputs)
audio_2 = output.audios[0]
assert np.abs(audio_1 - audio_2).max() < 1e-2
def test_musicldm_negative_prompt_embeds(self):
components = self.get_dummy_components()
musicldm_pipe = MusicLDMPipeline(**components)
musicldm_pipe = musicldm_pipe.to(torch_device)
musicldm_pipe = musicldm_pipe.to(torch_device)
musicldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = musicldm_pipe(**inputs)
audio_1 = output.audios[0]
inputs = self.get_dummy_inputs(torch_device)
prompt = 3 * [inputs.pop("prompt")]
embeds = []
for p in [prompt, negative_prompt]:
text_inputs = musicldm_pipe.tokenizer(
p,
padding="max_length",
max_length=musicldm_pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
text_embeds = musicldm_pipe.text_encoder.get_text_features(
text_inputs,
)
embeds.append(text_embeds)
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds
# forward
output = musicldm_pipe(**inputs)
audio_2 = output.audios[0]
assert np.abs(audio_1 - audio_2).max() < 1e-2
def test_musicldm_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
musicldm_pipe = MusicLDMPipeline(**components)
musicldm_pipe = musicldm_pipe.to(device)
musicldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "egg cracking"
output = musicldm_pipe(**inputs, negative_prompt=negative_prompt)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) == 256
audio_slice = audio[:10]
expected_slice = np.array(
[-0.0027, -0.0036, -0.0037, -0.0019, -0.0035, -0.0018, -0.0037, -0.0021, -0.0038, -0.0018]
)
assert np.abs(audio_slice - expected_slice).max() < 1e-4
def test_musicldm_num_waveforms_per_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
musicldm_pipe = MusicLDMPipeline(**components)
musicldm_pipe = musicldm_pipe.to(device)
musicldm_pipe.set_progress_bar_config(disable=None)
prompt = "A hammer hitting a wooden surface"
# test num_waveforms_per_prompt=1 (default)
audios = musicldm_pipe(prompt, num_inference_steps=2).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
batch_size = 2
audios = musicldm_pipe([prompt] * batch_size, num_inference_steps=2).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
num_waveforms_per_prompt = 2
audios = musicldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
batch_size = 2
audios = musicldm_pipe(
[prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def test_musicldm_audio_length_in_s(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
musicldm_pipe = MusicLDMPipeline(**components)
musicldm_pipe = musicldm_pipe.to(torch_device)
musicldm_pipe.set_progress_bar_config(disable=None)
vocoder_sampling_rate = musicldm_pipe.vocoder.config.sampling_rate
inputs = self.get_dummy_inputs(device)
output = musicldm_pipe(audio_length_in_s=0.016, **inputs)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) / vocoder_sampling_rate == 0.016
output = musicldm_pipe(audio_length_in_s=0.032, **inputs)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) / vocoder_sampling_rate == 0.032
def test_musicldm_vocoder_model_in_dim(self):
components = self.get_dummy_components()
musicldm_pipe = MusicLDMPipeline(**components)
musicldm_pipe = musicldm_pipe.to(torch_device)
musicldm_pipe.set_progress_bar_config(disable=None)
prompt = ["hey"]
output = musicldm_pipe(prompt, num_inference_steps=1)
audio_shape = output.audios.shape
assert audio_shape == (1, 256)
config = musicldm_pipe.vocoder.config
config.model_in_dim *= 2
musicldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device)
output = musicldm_pipe(prompt, num_inference_steps=1)
audio_shape = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def test_attention_slicing_forward_pass(self):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical()
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)
def test_to_dtype(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
# The method component.dtype returns the dtype of the first parameter registered in the model, not the
# dtype of the entire model. In the case of CLAP, the first parameter is a float64 constant (logit scale)
model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")}
# Without the logit scale parameters, everything is float32
model_dtypes.pop("text_encoder")
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values()))
# the CLAP sub-models are float32
model_dtypes["clap_text_branch"] = components["text_encoder"].text_model.dtype
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values()))
# Once we send to fp16, all params are in half-precision, including the logit scale
pipe.to(torch_dtype=torch.float16)
model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")}
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes.values()))
@nightly
@require_torch_gpu
class MusicLDMPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"prompt": "A hammer hitting a wooden surface",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 2.5,
}
return inputs
def test_musicldm(self):
musicldm_pipe = MusicLDMPipeline.from_pretrained("cvssp/musicldm")
musicldm_pipe = musicldm_pipe.to(torch_device)
musicldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 25
audio = musicldm_pipe(**inputs).audios[0]
assert audio.ndim == 1
assert len(audio) == 81952
# check the portion of the generated audio with the largest dynamic range (reduces flakiness)
audio_slice = audio[8680:8690]
expected_slice = np.array(
[-0.1042, -0.1068, -0.1235, -0.1387, -0.1428, -0.136, -0.1213, -0.1097, -0.0967, -0.0945]
)
max_diff = np.abs(expected_slice - audio_slice).max()
assert max_diff < 1e-3
def test_musicldm_lms(self):
musicldm_pipe = MusicLDMPipeline.from_pretrained("cvssp/musicldm")
musicldm_pipe.scheduler = LMSDiscreteScheduler.from_config(musicldm_pipe.scheduler.config)
musicldm_pipe = musicldm_pipe.to(torch_device)
musicldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
audio = musicldm_pipe(**inputs).audios[0]
assert audio.ndim == 1
assert len(audio) == 81952
# check the portion of the generated audio with the largest dynamic range (reduces flakiness)
audio_slice = audio[58020:58030]
expected_slice = np.array([0.3592, 0.3477, 0.4084, 0.4665, 0.5048, 0.5891, 0.6461, 0.5579, 0.4595, 0.4403])
max_diff = np.abs(expected_slice - audio_slice).max()
assert max_diff < 1e-3
| diffusers-main | tests/pipelines/musicldm/test_musicldm.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNet2DModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class DDIMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = DDIMPipeline
params = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
batch_params = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
scheduler = DDIMScheduler()
components = {"unet": unet, "scheduler": scheduler}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"batch_size": 1,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 32, 32, 3))
expected_slice = np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3)
def test_save_load_local(self):
super().test_save_load_local(expected_max_difference=3e-3)
def test_save_load_optional_components(self):
super().test_save_load_optional_components(expected_max_difference=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@slow
@require_torch_gpu
class DDIMPipelineIntegrationTests(unittest.TestCase):
def test_inference_cifar10(self):
model_id = "google/ddpm-cifar10-32"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = DDIMScheduler()
ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
ddim.to(torch_device)
ddim.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = ddim(generator=generator, eta=0.0, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_inference_ema_bedroom(self):
model_id = "google/ddpm-ema-bedroom-256"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = DDIMScheduler.from_pretrained(model_id)
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = ddpm(generator=generator, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/ddim/test_ddim.py |
diffusers-main | tests/pipelines/ddim/__init__.py |
|
diffusers-main | tests/pipelines/audioldm2/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import (
ClapAudioConfig,
ClapConfig,
ClapFeatureExtractor,
ClapModel,
ClapTextConfig,
GPT2Config,
GPT2Model,
RobertaTokenizer,
SpeechT5HifiGan,
SpeechT5HifiGanConfig,
T5Config,
T5EncoderModel,
T5Tokenizer,
)
from diffusers import (
AudioLDM2Pipeline,
AudioLDM2ProjectionModel,
AudioLDM2UNet2DConditionModel,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, nightly, torch_device
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class AudioLDM2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = AudioLDM2Pipeline
params = TEXT_TO_AUDIO_PARAMS
batch_params = TEXT_TO_AUDIO_BATCH_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"num_waveforms_per_prompt",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
]
)
def get_dummy_components(self):
torch.manual_seed(0)
unet = AudioLDM2UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=([None, 16, 32], [None, 16, 32]),
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=1,
out_channels=1,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_branch_config = ClapTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=16,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=2,
num_hidden_layers=2,
pad_token_id=1,
vocab_size=1000,
projection_dim=16,
)
audio_branch_config = ClapAudioConfig(
spec_size=64,
window_size=4,
num_mel_bins=64,
intermediate_size=37,
layer_norm_eps=1e-05,
depths=[2, 2],
num_attention_heads=[2, 2],
num_hidden_layers=2,
hidden_size=192,
projection_dim=16,
patch_size=2,
patch_stride=2,
patch_embed_input_channels=4,
)
text_encoder_config = ClapConfig.from_text_audio_configs(
text_config=text_branch_config, audio_config=audio_branch_config, projection_dim=16
)
text_encoder = ClapModel(text_encoder_config)
tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77)
feature_extractor = ClapFeatureExtractor.from_pretrained(
"hf-internal-testing/tiny-random-ClapModel", hop_length=7900
)
torch.manual_seed(0)
text_encoder_2_config = T5Config(
vocab_size=32100,
d_model=32,
d_ff=37,
d_kv=8,
num_heads=2,
num_layers=2,
)
text_encoder_2 = T5EncoderModel(text_encoder_2_config)
tokenizer_2 = T5Tokenizer.from_pretrained("hf-internal-testing/tiny-random-T5Model", model_max_length=77)
torch.manual_seed(0)
language_model_config = GPT2Config(
n_embd=16,
n_head=2,
n_layer=2,
vocab_size=1000,
n_ctx=99,
n_positions=99,
)
language_model = GPT2Model(language_model_config)
language_model.config.max_new_tokens = 8
torch.manual_seed(0)
projection_model = AudioLDM2ProjectionModel(text_encoder_dim=16, text_encoder_1_dim=32, langauge_model_dim=16)
vocoder_config = SpeechT5HifiGanConfig(
model_in_dim=8,
sampling_rate=16000,
upsample_initial_channel=16,
upsample_rates=[2, 2],
upsample_kernel_sizes=[4, 4],
resblock_kernel_sizes=[3, 7],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]],
normalize_before=False,
)
vocoder = SpeechT5HifiGan(vocoder_config)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"feature_extractor": feature_extractor,
"language_model": language_model,
"projection_model": projection_model,
"vocoder": vocoder,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A hammer hitting a wooden surface",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
}
return inputs
def test_audioldm2_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
audioldm_pipe = AudioLDM2Pipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = audioldm_pipe(**inputs)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) == 256
audio_slice = audio[:10]
expected_slice = np.array(
[0.0025, 0.0018, 0.0018, -0.0023, -0.0026, -0.0020, -0.0026, -0.0021, -0.0027, -0.0020]
)
assert np.abs(audio_slice - expected_slice).max() < 1e-4
def test_audioldm2_prompt_embeds(self):
components = self.get_dummy_components()
audioldm_pipe = AudioLDM2Pipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = audioldm_pipe(**inputs)
audio_1 = output.audios[0]
inputs = self.get_dummy_inputs(torch_device)
prompt = 3 * [inputs.pop("prompt")]
text_inputs = audioldm_pipe.tokenizer(
prompt,
padding="max_length",
max_length=audioldm_pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
clap_prompt_embeds = audioldm_pipe.text_encoder.get_text_features(text_inputs)
clap_prompt_embeds = clap_prompt_embeds[:, None, :]
text_inputs = audioldm_pipe.tokenizer_2(
prompt,
padding="max_length",
max_length=True,
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
t5_prompt_embeds = audioldm_pipe.text_encoder_2(
text_inputs,
)
t5_prompt_embeds = t5_prompt_embeds[0]
projection_embeds = audioldm_pipe.projection_model(clap_prompt_embeds, t5_prompt_embeds)[0]
generated_prompt_embeds = audioldm_pipe.generate_language_model(projection_embeds, max_new_tokens=8)
inputs["prompt_embeds"] = t5_prompt_embeds
inputs["generated_prompt_embeds"] = generated_prompt_embeds
# forward
output = audioldm_pipe(**inputs)
audio_2 = output.audios[0]
assert np.abs(audio_1 - audio_2).max() < 1e-2
def test_audioldm2_negative_prompt_embeds(self):
components = self.get_dummy_components()
audioldm_pipe = AudioLDM2Pipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = audioldm_pipe(**inputs)
audio_1 = output.audios[0]
inputs = self.get_dummy_inputs(torch_device)
prompt = 3 * [inputs.pop("prompt")]
embeds = []
generated_embeds = []
for p in [prompt, negative_prompt]:
text_inputs = audioldm_pipe.tokenizer(
p,
padding="max_length",
max_length=audioldm_pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
clap_prompt_embeds = audioldm_pipe.text_encoder.get_text_features(text_inputs)
clap_prompt_embeds = clap_prompt_embeds[:, None, :]
text_inputs = audioldm_pipe.tokenizer_2(
prompt,
padding="max_length",
max_length=True if len(embeds) == 0 else embeds[0].shape[1],
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
t5_prompt_embeds = audioldm_pipe.text_encoder_2(
text_inputs,
)
t5_prompt_embeds = t5_prompt_embeds[0]
projection_embeds = audioldm_pipe.projection_model(clap_prompt_embeds, t5_prompt_embeds)[0]
generated_prompt_embeds = audioldm_pipe.generate_language_model(projection_embeds, max_new_tokens=8)
embeds.append(t5_prompt_embeds)
generated_embeds.append(generated_prompt_embeds)
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds
inputs["generated_prompt_embeds"], inputs["negative_generated_prompt_embeds"] = generated_embeds
# forward
output = audioldm_pipe(**inputs)
audio_2 = output.audios[0]
assert np.abs(audio_1 - audio_2).max() < 1e-2
def test_audioldm2_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
audioldm_pipe = AudioLDM2Pipeline(**components)
audioldm_pipe = audioldm_pipe.to(device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "egg cracking"
output = audioldm_pipe(**inputs, negative_prompt=negative_prompt)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) == 256
audio_slice = audio[:10]
expected_slice = np.array(
[0.0025, 0.0018, 0.0018, -0.0023, -0.0026, -0.0020, -0.0026, -0.0021, -0.0027, -0.0020]
)
assert np.abs(audio_slice - expected_slice).max() < 1e-4
def test_audioldm2_num_waveforms_per_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
audioldm_pipe = AudioLDM2Pipeline(**components)
audioldm_pipe = audioldm_pipe.to(device)
audioldm_pipe.set_progress_bar_config(disable=None)
prompt = "A hammer hitting a wooden surface"
# test num_waveforms_per_prompt=1 (default)
audios = audioldm_pipe(prompt, num_inference_steps=2).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
batch_size = 2
audios = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
num_waveforms_per_prompt = 2
audios = audioldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
batch_size = 2
audios = audioldm_pipe(
[prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def test_audioldm2_audio_length_in_s(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
audioldm_pipe = AudioLDM2Pipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
vocoder_sampling_rate = audioldm_pipe.vocoder.config.sampling_rate
inputs = self.get_dummy_inputs(device)
output = audioldm_pipe(audio_length_in_s=0.016, **inputs)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) / vocoder_sampling_rate == 0.016
output = audioldm_pipe(audio_length_in_s=0.032, **inputs)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) / vocoder_sampling_rate == 0.032
def test_audioldm2_vocoder_model_in_dim(self):
components = self.get_dummy_components()
audioldm_pipe = AudioLDM2Pipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
prompt = ["hey"]
output = audioldm_pipe(prompt, num_inference_steps=1)
audio_shape = output.audios.shape
assert audio_shape == (1, 256)
config = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
audioldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device)
output = audioldm_pipe(prompt, num_inference_steps=1)
audio_shape = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def test_attention_slicing_forward_pass(self):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)
def test_dict_tuple_outputs_equivalent(self):
# increase tolerance from 1e-4 -> 2e-4 to account for large composite model
super().test_dict_tuple_outputs_equivalent(expected_max_difference=2e-4)
def test_inference_batch_single_identical(self):
# increase tolerance from 1e-4 -> 2e-4 to account for large composite model
self._test_inference_batch_single_identical(expected_max_diff=2e-4)
def test_save_load_local(self):
# increase tolerance from 1e-4 -> 2e-4 to account for large composite model
super().test_save_load_local(expected_max_difference=2e-4)
def test_save_load_optional_components(self):
# increase tolerance from 1e-4 -> 2e-4 to account for large composite model
super().test_save_load_optional_components(expected_max_difference=2e-4)
def test_to_dtype(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
# The method component.dtype returns the dtype of the first parameter registered in the model, not the
# dtype of the entire model. In the case of CLAP, the first parameter is a float64 constant (logit scale)
model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")}
# Without the logit scale parameters, everything is float32
model_dtypes.pop("text_encoder")
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values()))
# the CLAP sub-models are float32
model_dtypes["clap_text_branch"] = components["text_encoder"].text_model.dtype
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values()))
# Once we send to fp16, all params are in half-precision, including the logit scale
pipe.to(torch_dtype=torch.float16)
model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")}
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes.values()))
@nightly
class AudioLDM2PipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"prompt": "A hammer hitting a wooden surface",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 2.5,
}
return inputs
def test_audioldm2(self):
audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2")
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 25
audio = audioldm_pipe(**inputs).audios[0]
assert audio.ndim == 1
assert len(audio) == 81952
# check the portion of the generated audio with the largest dynamic range (reduces flakiness)
audio_slice = audio[17275:17285]
expected_slice = np.array([0.0791, 0.0666, 0.1158, 0.1227, 0.1171, -0.2880, -0.1940, -0.0283, -0.0126, 0.1127])
max_diff = np.abs(expected_slice - audio_slice).max()
assert max_diff < 1e-3
def test_audioldm2_lms(self):
audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2")
audioldm_pipe.scheduler = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
audio = audioldm_pipe(**inputs).audios[0]
assert audio.ndim == 1
assert len(audio) == 81952
# check the portion of the generated audio with the largest dynamic range (reduces flakiness)
audio_slice = audio[31390:31400]
expected_slice = np.array(
[-0.1318, -0.0577, 0.0446, -0.0573, 0.0659, 0.1074, -0.2600, 0.0080, -0.2190, -0.4301]
)
max_diff = np.abs(expected_slice - audio_slice).max()
assert max_diff < 1e-3
def test_audioldm2_large(self):
audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2-large")
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
audio = audioldm_pipe(**inputs).audios[0]
assert audio.ndim == 1
assert len(audio) == 81952
# check the portion of the generated audio with the largest dynamic range (reduces flakiness)
audio_slice = audio[8825:8835]
expected_slice = np.array(
[-0.1829, -0.1461, 0.0759, -0.1493, -0.1396, 0.5783, 0.3001, -0.3038, -0.0639, -0.2244]
)
max_diff = np.abs(expected_slice - audio_slice).max()
assert max_diff < 1e-3
| diffusers-main | tests/pipelines/audioldm2/test_audioldm2.py |
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImg2ImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils.testing_utils import (
floats_tensor,
load_image,
load_numpy,
nightly,
require_torch_gpu,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class ShapEImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = ShapEImg2ImgPipeline
params = ["image"]
batch_params = ["image"]
required_optional_params = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
test_xformers_attention = False
@property
def text_embedder_hidden_size(self):
return 16
@property
def time_input_dim(self):
return 16
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def renderer_dim(self):
return 8
@property
def dummy_image_encoder(self):
torch.manual_seed(0)
config = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size,
image_size=32,
projection_dim=self.text_embedder_hidden_size,
intermediate_size=24,
num_attention_heads=2,
num_channels=3,
num_hidden_layers=5,
patch_size=1,
)
model = CLIPVisionModel(config)
return model
@property
def dummy_image_processor(self):
image_processor = CLIPImageProcessor(
crop_size=224,
do_center_crop=True,
do_normalize=True,
do_resize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
resample=3,
size=224,
)
return image_processor
@property
def dummy_prior(self):
torch.manual_seed(0)
model_kwargs = {
"num_attention_heads": 2,
"attention_head_dim": 16,
"embedding_dim": self.time_input_dim,
"num_embeddings": 32,
"embedding_proj_dim": self.text_embedder_hidden_size,
"time_embed_dim": self.time_embed_dim,
"num_layers": 1,
"clip_embed_dim": self.time_input_dim * 2,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"embedding_proj_norm_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
}
model = PriorTransformer(**model_kwargs)
return model
@property
def dummy_renderer(self):
torch.manual_seed(0)
model_kwargs = {
"param_shapes": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"d_latent": self.time_input_dim,
"d_hidden": self.renderer_dim,
"n_output": 12,
"background": (
0.1,
0.1,
0.1,
),
}
model = ShapERenderer(**model_kwargs)
return model
def get_dummy_components(self):
prior = self.dummy_prior
image_encoder = self.dummy_image_encoder
image_processor = self.dummy_image_processor
shap_e_renderer = self.dummy_renderer
scheduler = HeunDiscreteScheduler(
beta_schedule="exp",
num_train_timesteps=1024,
prediction_type="sample",
use_karras_sigmas=True,
clip_sample=True,
clip_sample_range=1.0,
)
components = {
"prior": prior,
"image_encoder": image_encoder,
"image_processor": image_processor,
"shap_e_renderer": shap_e_renderer,
"scheduler": scheduler,
}
return components
def get_dummy_inputs(self, device, seed=0):
input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image": input_image,
"generator": generator,
"num_inference_steps": 1,
"frame_size": 32,
"output_type": "np",
}
return inputs
def test_shap_e(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images[0]
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
expected_slice = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_inference_batch_consistent(self):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[2])
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(
batch_size=2,
expected_max_diff=5e-3,
)
def test_num_images_per_prompt(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
batch_size = 1
num_images_per_prompt = 2
inputs = self.get_dummy_inputs(torch_device)
for key in inputs.keys():
if key in self.batch_params:
inputs[key] = batch_size * [inputs[key]]
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@nightly
@require_torch_gpu
class ShapEImg2ImgPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_shap_e_img2img(self):
input_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/shap_e/test_shap_e_img2img_out.npy"
)
pipe = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
images = pipe(
input_image,
generator=generator,
guidance_scale=3.0,
num_inference_steps=64,
frame_size=64,
output_type="np",
).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(images, expected_image)
| diffusers-main | tests/pipelines/shap_e/test_shap_e_img2img.py |
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils.testing_utils import load_numpy, nightly, require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class ShapEPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = ShapEPipeline
params = ["prompt"]
batch_params = ["prompt"]
required_optional_params = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
test_xformers_attention = False
@property
def text_embedder_hidden_size(self):
return 16
@property
def time_input_dim(self):
return 16
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def renderer_dim(self):
return 8
@property
def dummy_tokenizer(self):
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=self.text_embedder_hidden_size,
projection_dim=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModelWithProjection(config)
@property
def dummy_prior(self):
torch.manual_seed(0)
model_kwargs = {
"num_attention_heads": 2,
"attention_head_dim": 16,
"embedding_dim": self.time_input_dim,
"num_embeddings": 32,
"embedding_proj_dim": self.text_embedder_hidden_size,
"time_embed_dim": self.time_embed_dim,
"num_layers": 1,
"clip_embed_dim": self.time_input_dim * 2,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
}
model = PriorTransformer(**model_kwargs)
return model
@property
def dummy_renderer(self):
torch.manual_seed(0)
model_kwargs = {
"param_shapes": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"d_latent": self.time_input_dim,
"d_hidden": self.renderer_dim,
"n_output": 12,
"background": (
0.1,
0.1,
0.1,
),
}
model = ShapERenderer(**model_kwargs)
return model
def get_dummy_components(self):
prior = self.dummy_prior
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
shap_e_renderer = self.dummy_renderer
scheduler = HeunDiscreteScheduler(
beta_schedule="exp",
num_train_timesteps=1024,
prediction_type="sample",
use_karras_sigmas=True,
clip_sample=True,
clip_sample_range=1.0,
)
components = {
"prior": prior,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"shap_e_renderer": shap_e_renderer,
"scheduler": scheduler,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "horse",
"generator": generator,
"num_inference_steps": 1,
"frame_size": 32,
"output_type": "np",
}
return inputs
def test_shap_e(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images[0]
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
expected_slice = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_inference_batch_consistent(self):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2])
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(batch_size=2, expected_max_diff=6e-3)
def test_num_images_per_prompt(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
batch_size = 1
num_images_per_prompt = 2
inputs = self.get_dummy_inputs(torch_device)
for key in inputs.keys():
if key in self.batch_params:
inputs[key] = batch_size * [inputs[key]]
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@nightly
@require_torch_gpu
class ShapEPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_shap_e(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/shap_e/test_shap_e_np_out.npy"
)
pipe = ShapEPipeline.from_pretrained("openai/shap-e")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
images = pipe(
"a shark",
generator=generator,
guidance_scale=15.0,
num_inference_steps=64,
frame_size=64,
output_type="np",
).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(images, expected_image)
| diffusers-main | tests/pipelines/shap_e/test_shap_e.py |
diffusers-main | tests/pipelines/shap_e/__init__.py |
|
diffusers-main | tests/pipelines/semantic_stable_diffusion/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.semantic_stable_diffusion import SemanticStableDiffusionPipeline as StableDiffusionPipeline
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
nightly,
require_torch_gpu,
torch_device,
)
enable_full_determinism()
class SafeDiffusionPipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_semantic_diffusion_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5753, 0.6114, 0.5001, 0.5034, 0.5470, 0.4729, 0.4971, 0.4867, 0.4867])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_semantic_diffusion_pndm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5122, 0.5712, 0.4825, 0.5053, 0.5646, 0.4769, 0.5179, 0.4894, 0.4994])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_semantic_diffusion_no_safety_checker(self):
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
)
assert isinstance(pipe, StableDiffusionPipeline)
assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_semantic_diffusion_fp16(self):
"""Test that stable diffusion works with fp16"""
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
image = sd_pipe([prompt], num_inference_steps=2, output_type="np").images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_positive_guidance(self):
torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a photo of a cat"
edit = {
"editing_prompt": ["sunglasses"],
"reverse_editing_direction": [False],
"edit_warmup_steps": 10,
"edit_guidance_scale": 6,
"edit_threshold": 0.95,
"edit_momentum_scale": 0.5,
"edit_mom_beta": 0.6,
}
seed = 3
guidance_scale = 7
# no sega enabled
generator = torch.Generator(torch_device)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.34673113,
0.38492733,
0.37597352,
0.34086335,
0.35650748,
0.35579205,
0.3384763,
0.34340236,
0.3573271,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# with sega enabled
# generator = torch.manual_seed(seed)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
**edit,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.41887826,
0.37728766,
0.30138272,
0.41416335,
0.41664985,
0.36283392,
0.36191246,
0.43364465,
0.43001732,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_negative_guidance(self):
torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "an image of a crowded boulevard, realistic, 4k"
edit = {
"editing_prompt": "crowd, crowded, people",
"reverse_editing_direction": True,
"edit_warmup_steps": 10,
"edit_guidance_scale": 8.3,
"edit_threshold": 0.9,
"edit_momentum_scale": 0.5,
"edit_mom_beta": 0.6,
}
seed = 9
guidance_scale = 7
# no sega enabled
generator = torch.Generator(torch_device)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.43497998,
0.91814065,
0.7540739,
0.55580205,
0.8467265,
0.5389691,
0.62574506,
0.58897763,
0.50926757,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# with sega enabled
# generator = torch.manual_seed(seed)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
**edit,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.3089719,
0.30500144,
0.29016042,
0.30630964,
0.325687,
0.29419225,
0.2908091,
0.28723598,
0.27696294,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_multi_cond_guidance(self):
torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a castle next to a river"
edit = {
"editing_prompt": ["boat on a river, boat", "monet, impression, sunrise"],
"reverse_editing_direction": False,
"edit_warmup_steps": [15, 18],
"edit_guidance_scale": 6,
"edit_threshold": [0.9, 0.8],
"edit_momentum_scale": 0.5,
"edit_mom_beta": 0.6,
}
seed = 48
guidance_scale = 7
# no sega enabled
generator = torch.Generator(torch_device)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.75163555,
0.76037145,
0.61785,
0.9189673,
0.8627701,
0.85189694,
0.8512813,
0.87012076,
0.8312857,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# with sega enabled
# generator = torch.manual_seed(seed)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
**edit,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.73553365,
0.7537271,
0.74341905,
0.66480356,
0.6472925,
0.63039416,
0.64812905,
0.6749717,
0.6517102,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_guidance_fp16(self):
torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a photo of a cat"
edit = {
"editing_prompt": ["sunglasses"],
"reverse_editing_direction": [False],
"edit_warmup_steps": 10,
"edit_guidance_scale": 6,
"edit_threshold": 0.95,
"edit_momentum_scale": 0.5,
"edit_mom_beta": 0.6,
}
seed = 3
guidance_scale = 7
# no sega enabled
generator = torch.Generator(torch_device)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.34887695,
0.3876953,
0.375,
0.34423828,
0.3581543,
0.35717773,
0.3383789,
0.34570312,
0.359375,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# with sega enabled
# generator = torch.manual_seed(seed)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
**edit,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.42285156,
0.36914062,
0.29077148,
0.42041016,
0.41918945,
0.35498047,
0.3618164,
0.4423828,
0.43115234,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/semantic_stable_diffusion/test_semantic_diffusion.py |
diffusers-main | tests/pipelines/blipdiffusion/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTokenizer
from transformers.models.blip_2.configuration_blip_2 import Blip2Config
from transformers.models.clip.configuration_clip import CLIPTextConfig
from diffusers import AutoencoderKL, BlipDiffusionPipeline, PNDMScheduler, UNet2DConditionModel
from diffusers.utils.testing_utils import enable_full_determinism
from src.diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor
from src.diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel
from src.diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class BlipDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = BlipDiffusionPipeline
params = [
"prompt",
"reference_image",
"source_subject_category",
"target_subject_category",
]
batch_params = [
"prompt",
"reference_image",
"source_subject_category",
"target_subject_category",
]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"neg_prompt",
"guidance_scale",
"prompt_strength",
"prompt_reps",
]
def get_dummy_components(self):
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
vocab_size=1000,
hidden_size=16,
intermediate_size=16,
projection_dim=16,
num_hidden_layers=1,
num_attention_heads=1,
max_position_embeddings=77,
)
text_encoder = ContextCLIPTextModel(text_encoder_config)
vae = AutoencoderKL(
in_channels=4,
out_channels=4,
down_block_types=("DownEncoderBlock2D",),
up_block_types=("UpDecoderBlock2D",),
block_out_channels=(32,),
layers_per_block=1,
act_fn="silu",
latent_channels=4,
norm_num_groups=16,
sample_size=16,
)
blip_vision_config = {
"hidden_size": 16,
"intermediate_size": 16,
"num_hidden_layers": 1,
"num_attention_heads": 1,
"image_size": 224,
"patch_size": 14,
"hidden_act": "quick_gelu",
}
blip_qformer_config = {
"vocab_size": 1000,
"hidden_size": 16,
"num_hidden_layers": 1,
"num_attention_heads": 1,
"intermediate_size": 16,
"max_position_embeddings": 512,
"cross_attention_frequency": 1,
"encoder_hidden_size": 16,
}
qformer_config = Blip2Config(
vision_config=blip_vision_config,
qformer_config=blip_qformer_config,
num_query_tokens=16,
tokenizer="hf-internal-testing/tiny-random-bert",
)
qformer = Blip2QFormerModel(qformer_config)
unet = UNet2DConditionModel(
block_out_channels=(16, 32),
norm_num_groups=16,
layers_per_block=1,
sample_size=16,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=16,
)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
scheduler = PNDMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
set_alpha_to_one=False,
skip_prk_steps=True,
)
vae.eval()
qformer.eval()
text_encoder.eval()
image_processor = BlipImageProcessor()
components = {
"text_encoder": text_encoder,
"vae": vae,
"qformer": qformer,
"unet": unet,
"tokenizer": tokenizer,
"scheduler": scheduler,
"image_processor": image_processor,
}
return components
def get_dummy_inputs(self, device, seed=0):
np.random.seed(seed)
reference_image = np.random.rand(32, 32, 3) * 255
reference_image = Image.fromarray(reference_image.astype("uint8")).convert("RGBA")
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "swimming underwater",
"generator": generator,
"reference_image": reference_image,
"source_subject_category": "dog",
"target_subject_category": "dog",
"height": 32,
"width": 32,
"guidance_scale": 7.5,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def test_blipdiffusion(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
image = pipe(**self.get_dummy_inputs(device))[0]
image_slice = image[0, -3:, -3:, 0]
assert image.shape == (1, 16, 16, 4)
expected_slice = np.array([0.7096, 0.5900, 0.6703, 0.4032, 0.7766, 0.3629, 0.5447, 0.4149, 0.8172])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {image_slice.flatten()}, but got {image_slice.flatten()}"
| diffusers-main | tests/pipelines/blipdiffusion/test_blipdiffusion.py |
diffusers-main | tests/pipelines/audio_diffusion/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNet2DConditionModel,
UNet2DModel,
)
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, slow, torch_device
enable_full_determinism()
class PipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
sample_size=(32, 64),
in_channels=1,
out_channels=1,
layers_per_block=2,
block_out_channels=(128, 128),
down_block_types=("AttnDownBlock2D", "DownBlock2D"),
up_block_types=("UpBlock2D", "AttnUpBlock2D"),
)
return model
@property
def dummy_unet_condition(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
sample_size=(64, 32),
in_channels=1,
out_channels=1,
layers_per_block=2,
block_out_channels=(128, 128),
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),
cross_attention_dim=10,
)
return model
@property
def dummy_vqvae_and_unet(self):
torch.manual_seed(0)
vqvae = AutoencoderKL(
sample_size=(128, 64),
in_channels=1,
out_channels=1,
latent_channels=1,
layers_per_block=2,
block_out_channels=(128, 128),
down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"),
up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"),
)
unet = UNet2DModel(
sample_size=(64, 32),
in_channels=1,
out_channels=1,
layers_per_block=2,
block_out_channels=(128, 128),
down_block_types=("AttnDownBlock2D", "DownBlock2D"),
up_block_types=("UpBlock2D", "AttnUpBlock2D"),
)
return vqvae, unet
@slow
def test_audio_diffusion(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
mel = Mel(
x_res=self.dummy_unet.config.sample_size[1],
y_res=self.dummy_unet.config.sample_size[0],
)
scheduler = DDPMScheduler()
pipe = AudioDiffusionPipeline(vqvae=None, unet=self.dummy_unet, mel=mel, scheduler=scheduler)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(42)
output = pipe(generator=generator, steps=4)
audio = output.audios[0]
image = output.images[0]
generator = torch.Generator(device=device).manual_seed(42)
output = pipe(generator=generator, steps=4, return_dict=False)
image_from_tuple = output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
image_from_tuple_slice = np.frombuffer(image_from_tuple.tobytes(), dtype="uint8")[:10]
expected_slice = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() == 0
mel = Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1],
y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0],
)
scheduler = DDIMScheduler()
dummy_vqvae_and_unet = self.dummy_vqvae_and_unet
pipe = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=mel, scheduler=scheduler
)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
np.random.seed(0)
raw_audio = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,))
generator = torch.Generator(device=device).manual_seed(42)
output = pipe(raw_audio=raw_audio, generator=generator, start_step=5, steps=10)
image = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
expected_slice = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
dummy_unet_condition = self.dummy_unet_condition
pipe = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_unet_condition, mel=mel, scheduler=scheduler
)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
np.random.seed(0)
encoding = torch.rand((1, 1, 10))
output = pipe(generator=generator, encoding=encoding)
image = output.images[0]
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
expected_slice = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
@nightly
@require_torch_gpu
class PipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_audio_diffusion(self):
device = torch_device
pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256")
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(42)
output = pipe(generator=generator)
audio = output.audios[0]
image = output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
expected_slice = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
| diffusers-main | tests/pipelines/audio_diffusion/test_audio_diffusion.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import DDPMWuerstchenScheduler, WuerstchenCombinedPipeline
from diffusers.pipelines.wuerstchen import PaellaVQModel, WuerstchenDiffNeXt, WuerstchenPrior
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class WuerstchenCombinedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = WuerstchenCombinedPipeline
params = ["prompt"]
batch_params = ["prompt", "negative_prompt"]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"prior_guidance_scale",
"decoder_guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"prior_num_inference_steps",
"output_type",
"return_dict",
]
test_xformers_attention = True
@property
def text_embedder_hidden_size(self):
return 32
@property
def dummy_prior(self):
torch.manual_seed(0)
model_kwargs = {"c_in": 2, "c": 8, "depth": 2, "c_cond": 32, "c_r": 8, "nhead": 2}
model = WuerstchenPrior(**model_kwargs)
return model.eval()
@property
def dummy_tokenizer(self):
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
return tokenizer
@property
def dummy_prior_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config).eval()
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
projection_dim=self.text_embedder_hidden_size,
hidden_size=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config).eval()
@property
def dummy_vqgan(self):
torch.manual_seed(0)
model_kwargs = {
"bottleneck_blocks": 1,
"num_vq_embeddings": 2,
}
model = PaellaVQModel(**model_kwargs)
return model.eval()
@property
def dummy_decoder(self):
torch.manual_seed(0)
model_kwargs = {
"c_cond": self.text_embedder_hidden_size,
"c_hidden": [320],
"nhead": [-1],
"blocks": [4],
"level_config": ["CT"],
"clip_embd": self.text_embedder_hidden_size,
"inject_effnet": [False],
}
model = WuerstchenDiffNeXt(**model_kwargs)
return model.eval()
def get_dummy_components(self):
prior = self.dummy_prior
prior_text_encoder = self.dummy_prior_text_encoder
scheduler = DDPMWuerstchenScheduler()
tokenizer = self.dummy_tokenizer
text_encoder = self.dummy_text_encoder
decoder = self.dummy_decoder
vqgan = self.dummy_vqgan
components = {
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"decoder": decoder,
"vqgan": vqgan,
"scheduler": scheduler,
"prior_prior": prior,
"prior_text_encoder": prior_text_encoder,
"prior_tokenizer": tokenizer,
"prior_scheduler": scheduler,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "horse",
"generator": generator,
"prior_guidance_scale": 4.0,
"decoder_guidance_scale": 4.0,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "np",
"height": 128,
"width": 128,
}
return inputs
def test_wuerstchen(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[-3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.7616304, 0.0, 1.0, 0.0, 1.0, 0.0, 0.05925313, 0.0, 0.951898])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@require_torch_gpu
def test_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
@unittest.skip(reason="flakey and float16 requires CUDA")
def test_float16_inference(self):
super().test_float16_inference()
| diffusers-main | tests/pipelines/wuerstchen/test_wuerstchen_combined.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import DDPMWuerstchenScheduler, WuerstchenDecoderPipeline
from diffusers.pipelines.wuerstchen import PaellaVQModel, WuerstchenDiffNeXt
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class WuerstchenDecoderPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = WuerstchenDecoderPipeline
params = ["prompt"]
batch_params = ["image_embeddings", "prompt", "negative_prompt"]
required_optional_params = [
"num_images_per_prompt",
"num_inference_steps",
"latents",
"negative_prompt",
"guidance_scale",
"output_type",
"return_dict",
]
test_xformers_attention = False
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def dummy_tokenizer(self):
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
projection_dim=self.text_embedder_hidden_size,
hidden_size=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config).eval()
@property
def dummy_vqgan(self):
torch.manual_seed(0)
model_kwargs = {
"bottleneck_blocks": 1,
"num_vq_embeddings": 2,
}
model = PaellaVQModel(**model_kwargs)
return model.eval()
@property
def dummy_decoder(self):
torch.manual_seed(0)
model_kwargs = {
"c_cond": self.text_embedder_hidden_size,
"c_hidden": [320],
"nhead": [-1],
"blocks": [4],
"level_config": ["CT"],
"clip_embd": self.text_embedder_hidden_size,
"inject_effnet": [False],
}
model = WuerstchenDiffNeXt(**model_kwargs)
return model.eval()
def get_dummy_components(self):
decoder = self.dummy_decoder
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
vqgan = self.dummy_vqgan
scheduler = DDPMWuerstchenScheduler()
components = {
"decoder": decoder,
"vqgan": vqgan,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"scheduler": scheduler,
"latent_dim_scale": 4.0,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image_embeddings": torch.ones((1, 4, 4, 4), device=device),
"prompt": "horse",
"generator": generator,
"guidance_scale": 1.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def test_wuerstchen_decoder(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.0000, 0.0000, 0.0089, 1.0000, 1.0000, 0.3927, 1.0000, 1.0000, 1.0000])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@skip_mps
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=1e-5)
@skip_mps
def test_attention_slicing_forward_pass(self):
test_max_difference = torch_device == "cpu"
test_mean_pixel_difference = False
self._test_attention_slicing_forward_pass(
test_max_difference=test_max_difference,
test_mean_pixel_difference=test_mean_pixel_difference,
)
@unittest.skip(reason="bf16 not supported and requires CUDA")
def test_float16_inference(self):
super().test_float16_inference()
| diffusers-main | tests/pipelines/wuerstchen/test_wuerstchen_decoder.py |
diffusers-main | tests/pipelines/wuerstchen/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import DDPMWuerstchenScheduler, WuerstchenPriorPipeline
from diffusers.pipelines.wuerstchen import WuerstchenPrior
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class WuerstchenPriorPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = WuerstchenPriorPipeline
params = ["prompt"]
batch_params = ["prompt", "negative_prompt"]
required_optional_params = [
"num_images_per_prompt",
"generator",
"num_inference_steps",
"latents",
"negative_prompt",
"guidance_scale",
"output_type",
"return_dict",
]
test_xformers_attention = False
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def dummy_tokenizer(self):
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config).eval()
@property
def dummy_prior(self):
torch.manual_seed(0)
model_kwargs = {
"c_in": 2,
"c": 8,
"depth": 2,
"c_cond": 32,
"c_r": 8,
"nhead": 2,
}
model = WuerstchenPrior(**model_kwargs)
return model.eval()
def get_dummy_components(self):
prior = self.dummy_prior
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
scheduler = DDPMWuerstchenScheduler()
components = {
"prior": prior,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"scheduler": scheduler,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "horse",
"generator": generator,
"guidance_scale": 4.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def test_wuerstchen_prior(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.image_embeddings
image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)[0]
image_slice = image[0, 0, 0, -10:]
image_from_tuple_slice = image_from_tuple[0, 0, 0, -10:]
assert image.shape == (1, 2, 24, 24)
expected_slice = np.array(
[
-7172.837,
-3438.855,
-1093.312,
388.8835,
-7471.467,
-7998.1206,
-5328.259,
218.00089,
-2731.5745,
-8056.734,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@skip_mps
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(
expected_max_diff=2e-1,
)
@skip_mps
def test_attention_slicing_forward_pass(self):
test_max_difference = torch_device == "cpu"
test_mean_pixel_difference = False
self._test_attention_slicing_forward_pass(
test_max_difference=test_max_difference,
test_mean_pixel_difference=test_mean_pixel_difference,
)
@unittest.skip(reason="flaky for now")
def test_float16_inference(self):
super().test_float16_inference()
| diffusers-main | tests/pipelines/wuerstchen/test_wuerstchen_prior.py |
diffusers-main | tests/pipelines/altdiffusion/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImg2ImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_numpy,
nightly,
require_torch_gpu,
torch_device,
)
enable_full_determinism()
class AltDiffusionImg2ImgPipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = RobertaSeriesConfig(
hidden_size=32,
project_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=5006,
)
return RobertaSeriesModelWithTransformation(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_stable_diffusion_img2img_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
tokenizer.model_max_length = 77
init_image = self.dummy_image.to(device)
init_image = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
alt_pipe = AltDiffusionImg2ImgPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
alt_pipe.image_processor = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=True)
alt_pipe = alt_pipe.to(device)
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = alt_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = alt_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_img2img_fp16(self):
"""Test that stable diffusion img2img works with fp16"""
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
tokenizer.model_max_length = 77
init_image = self.dummy_image.to(torch_device)
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
alt_pipe = AltDiffusionImg2ImgPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
alt_pipe.image_processor = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=False)
alt_pipe = alt_pipe.to(torch_device)
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image = alt_pipe(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
image=init_image,
).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_img2img_pipeline_multiple_of_8(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
# resize to resolution that is divisible by 8 but not 16 or 32
init_image = init_image.resize((760, 504))
model_id = "BAAI/AltDiffusion"
pipe = AltDiffusionImg2ImgPipeline.from_pretrained(
model_id,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "A fantasy landscape, trending on artstation"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
strength=0.75,
guidance_scale=7.5,
generator=generator,
output_type="np",
)
image = output.images[0]
image_slice = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
expected_slice = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@nightly
@require_torch_gpu
class AltDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_img2img_pipeline_default(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy"
)
model_id = "BAAI/AltDiffusion"
pipe = AltDiffusionImg2ImgPipeline.from_pretrained(
model_id,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "A fantasy landscape, trending on artstation"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
strength=0.75,
guidance_scale=7.5,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image).max() < 1e-2
| diffusers-main | tests/pipelines/altdiffusion/test_alt_diffusion_img2img.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class AltDiffusionPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = AltDiffusionPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
projection_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=5002,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
tokenizer.model_max_length = 77
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
def test_alt_diffusion_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
torch.manual_seed(0)
text_encoder_config = RobertaSeriesConfig(
hidden_size=32,
project_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
vocab_size=5002,
)
# TODO: remove after fixing the non-deterministic text encoder
text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
components["text_encoder"] = text_encoder
alt_pipe = AltDiffusionPipeline(**components)
alt_pipe = alt_pipe.to(device)
alt_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = "A photo of an astronaut"
output = alt_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_alt_diffusion_pndm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
text_encoder_config = RobertaSeriesConfig(
hidden_size=32,
project_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
vocab_size=5002,
)
# TODO: remove after fixing the non-deterministic text encoder
text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
components["text_encoder"] = text_encoder
alt_pipe = AltDiffusionPipeline(**components)
alt_pipe = alt_pipe.to(device)
alt_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = alt_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@nightly
@require_torch_gpu
class AltDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_alt_diffusion(self):
# make sure here that pndm scheduler skips prk
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None)
alt_pipe = alt_pipe.to(torch_device)
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_alt_diffusion_fast_ddim(self):
scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler")
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None)
alt_pipe = alt_pipe.to(torch_device)
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/altdiffusion/test_alt_diffusion.py |
diffusers-main | tests/pipelines/stable_diffusion_safe/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils.testing_utils import floats_tensor, nightly, require_torch_gpu, torch_device
class SafeDiffusionPipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_safe_diffusion_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_pndm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_no_safety_checker(self):
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
)
assert isinstance(pipe, StableDiffusionPipeline)
assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_fp16(self):
"""Test that stable diffusion works with fp16"""
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
image = sd_pipe([prompt], num_inference_steps=2, output_type="np").images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class SafeDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_harm_safe_stable_diffusion(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = (
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"
" children from bahnhof zoo, detailed "
)
seed = 4003660346
guidance_scale = 7
# without safety guidance (sld_guidance_scale = 0)
generator = torch.manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
sld_guidance_scale=0,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# without safety guidance (strong configuration)
generator = torch.manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
sld_guidance_scale=2000,
sld_warmup_steps=7,
sld_threshold=0.025,
sld_momentum_scale=0.5,
sld_mom_beta=0.7,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_nudity_safe_stable_diffusion(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "padme amidala taking a bath artwork, safe for work, no nudity"
seed = 2734971755
guidance_scale = 7
generator = torch.manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
sld_guidance_scale=0,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
generator = torch.manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
sld_guidance_scale=2000,
sld_warmup_steps=7,
sld_threshold=0.025,
sld_momentum_scale=0.5,
sld_mom_beta=0.7,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_nudity_safetychecker_safe_stable_diffusion(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = (
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."
" leyendecker"
)
seed = 1044355234
guidance_scale = 12
generator = torch.manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
sld_guidance_scale=0,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7
generator = torch.manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
sld_guidance_scale=2000,
sld_warmup_steps=7,
sld_threshold=0.025,
sld_momentum_scale=0.5,
sld_mom_beta=0.7,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/stable_diffusion_safe/test_safe_diffusion.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechT5HifiGan,
SpeechT5HifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, nightly, slow, torch_device
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class AudioLDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = AudioLDMPipeline
params = TEXT_TO_AUDIO_PARAMS
batch_params = TEXT_TO_AUDIO_BATCH_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"num_waveforms_per_prompt",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
]
)
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=(32, 64),
class_embed_type="simple_projection",
projection_class_embeddings_input_dim=32,
class_embeddings_concat=True,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=1,
out_channels=1,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = ClapTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
projection_dim=32,
)
text_encoder = ClapTextModelWithProjection(text_encoder_config)
tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77)
vocoder_config = SpeechT5HifiGanConfig(
model_in_dim=8,
sampling_rate=16000,
upsample_initial_channel=16,
upsample_rates=[2, 2],
upsample_kernel_sizes=[4, 4],
resblock_kernel_sizes=[3, 7],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]],
normalize_before=False,
)
vocoder = SpeechT5HifiGan(vocoder_config)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"vocoder": vocoder,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A hammer hitting a wooden surface",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
}
return inputs
def test_audioldm_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = audioldm_pipe(**inputs)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) == 256
audio_slice = audio[:10]
expected_slice = np.array(
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033]
)
assert np.abs(audio_slice - expected_slice).max() < 1e-2
def test_audioldm_prompt_embeds(self):
components = self.get_dummy_components()
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = audioldm_pipe(**inputs)
audio_1 = output.audios[0]
inputs = self.get_dummy_inputs(torch_device)
prompt = 3 * [inputs.pop("prompt")]
text_inputs = audioldm_pipe.tokenizer(
prompt,
padding="max_length",
max_length=audioldm_pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
prompt_embeds = audioldm_pipe.text_encoder(
text_inputs,
)
prompt_embeds = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
prompt_embeds = F.normalize(prompt_embeds, dim=-1)
inputs["prompt_embeds"] = prompt_embeds
# forward
output = audioldm_pipe(**inputs)
audio_2 = output.audios[0]
assert np.abs(audio_1 - audio_2).max() < 1e-2
def test_audioldm_negative_prompt_embeds(self):
components = self.get_dummy_components()
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = audioldm_pipe(**inputs)
audio_1 = output.audios[0]
inputs = self.get_dummy_inputs(torch_device)
prompt = 3 * [inputs.pop("prompt")]
embeds = []
for p in [prompt, negative_prompt]:
text_inputs = audioldm_pipe.tokenizer(
p,
padding="max_length",
max_length=audioldm_pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
text_embeds = audioldm_pipe.text_encoder(
text_inputs,
)
text_embeds = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
text_embeds = F.normalize(text_embeds, dim=-1)
embeds.append(text_embeds)
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds
# forward
output = audioldm_pipe(**inputs)
audio_2 = output.audios[0]
assert np.abs(audio_1 - audio_2).max() < 1e-2
def test_audioldm_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "egg cracking"
output = audioldm_pipe(**inputs, negative_prompt=negative_prompt)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) == 256
audio_slice = audio[:10]
expected_slice = np.array(
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032]
)
assert np.abs(audio_slice - expected_slice).max() < 1e-2
def test_audioldm_num_waveforms_per_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(device)
audioldm_pipe.set_progress_bar_config(disable=None)
prompt = "A hammer hitting a wooden surface"
# test num_waveforms_per_prompt=1 (default)
audios = audioldm_pipe(prompt, num_inference_steps=2).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
batch_size = 2
audios = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
num_waveforms_per_prompt = 2
audios = audioldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
batch_size = 2
audios = audioldm_pipe(
[prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def test_audioldm_audio_length_in_s(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
vocoder_sampling_rate = audioldm_pipe.vocoder.config.sampling_rate
inputs = self.get_dummy_inputs(device)
output = audioldm_pipe(audio_length_in_s=0.016, **inputs)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) / vocoder_sampling_rate == 0.016
output = audioldm_pipe(audio_length_in_s=0.032, **inputs)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) / vocoder_sampling_rate == 0.032
def test_audioldm_vocoder_model_in_dim(self):
components = self.get_dummy_components()
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
prompt = ["hey"]
output = audioldm_pipe(prompt, num_inference_steps=1)
audio_shape = output.audios.shape
assert audio_shape == (1, 256)
config = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
audioldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device)
output = audioldm_pipe(prompt, num_inference_steps=1)
audio_shape = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def test_attention_slicing_forward_pass(self):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical()
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)
@slow
class AudioLDMPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"prompt": "A hammer hitting a wooden surface",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 2.5,
}
return inputs
def test_audioldm(self):
audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm")
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 25
audio = audioldm_pipe(**inputs).audios[0]
assert audio.ndim == 1
assert len(audio) == 81920
audio_slice = audio[77230:77240]
expected_slice = np.array(
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315]
)
max_diff = np.abs(expected_slice - audio_slice).max()
assert max_diff < 1e-2
@nightly
class AudioLDMPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"prompt": "A hammer hitting a wooden surface",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 2.5,
}
return inputs
def test_audioldm_lms(self):
audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm")
audioldm_pipe.scheduler = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
audio = audioldm_pipe(**inputs).audios[0]
assert audio.ndim == 1
assert len(audio) == 81920
audio_slice = audio[27780:27790]
expected_slice = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212])
max_diff = np.abs(expected_slice - audio_slice).max()
assert max_diff < 3e-2
| diffusers-main | tests/pipelines/audioldm/test_audioldm.py |
diffusers-main | tests/pipelines/audioldm/__init__.py |
|
diffusers-main | tests/pipelines/spectrogram_diffusion/__init__.py |
|
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from diffusers import DDPMScheduler, MidiProcessor, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, T5FilmDecoder
from diffusers.utils.testing_utils import (
enable_full_determinism,
nightly,
require_note_seq,
require_onnxruntime,
require_torch_gpu,
skip_mps,
torch_device,
)
from ..pipeline_params import TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS, TOKENS_TO_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
MIDI_FILE = "./tests/fixtures/elise_format0.mid"
# The note-seq package throws an error on import because the default installed version of Ipython
# is not compatible with python 3.8 which we run in the CI.
# https://github.com/huggingface/diffusers/actions/runs/4830121056/jobs/8605954838#step:7:98
@unittest.skip("The note-seq package currently throws an error on import")
class SpectrogramDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = SpectrogramDiffusionPipeline
required_optional_params = PipelineTesterMixin.required_optional_params - {
"callback",
"latents",
"callback_steps",
"output_type",
"num_images_per_prompt",
}
test_attention_slicing = False
batch_params = TOKENS_TO_AUDIO_GENERATION_PARAMS
params = TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
notes_encoder = SpectrogramNotesEncoder(
max_length=2048,
vocab_size=1536,
d_model=768,
dropout_rate=0.1,
num_layers=1,
num_heads=1,
d_kv=4,
d_ff=2048,
feed_forward_proj="gated-gelu",
)
continuous_encoder = SpectrogramContEncoder(
input_dims=128,
targets_context_length=256,
d_model=768,
dropout_rate=0.1,
num_layers=1,
num_heads=1,
d_kv=4,
d_ff=2048,
feed_forward_proj="gated-gelu",
)
decoder = T5FilmDecoder(
input_dims=128,
targets_length=256,
max_decoder_noise_time=20000.0,
d_model=768,
num_layers=1,
num_heads=1,
d_kv=4,
d_ff=2048,
dropout_rate=0.1,
)
scheduler = DDPMScheduler()
components = {
"notes_encoder": notes_encoder.eval(),
"continuous_encoder": continuous_encoder.eval(),
"decoder": decoder.eval(),
"scheduler": scheduler,
"melgan": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"input_tokens": [
[1134, 90, 1135, 1133, 1080, 112, 1132, 1080, 1133, 1079, 133, 1132, 1079, 1133, 1] + [0] * 2033
],
"generator": generator,
"num_inference_steps": 4,
"output_type": "mel",
}
return inputs
def test_spectrogram_diffusion(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = SpectrogramDiffusionPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = pipe(**inputs)
mel = output.audios
mel_slice = mel[0, -3:, -3:]
assert mel_slice.shape == (3, 3)
expected_slice = np.array(
[-11.512925, -4.788215, -0.46172905, -2.051715, -10.539147, -10.970963, -9.091634, 4.0, 4.0]
)
assert np.abs(mel_slice.flatten() - expected_slice).max() < 1e-2
@skip_mps
def test_save_load_local(self):
return super().test_save_load_local()
@skip_mps
def test_dict_tuple_outputs_equivalent(self):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def test_save_load_optional_components(self):
return super().test_save_load_optional_components()
@skip_mps
def test_attention_slicing_forward_pass(self):
return super().test_attention_slicing_forward_pass()
def test_inference_batch_single_identical(self):
pass
def test_inference_batch_consistent(self):
pass
@skip_mps
def test_progress_bar(self):
return super().test_progress_bar()
@nightly
@require_torch_gpu
@require_onnxruntime
@require_note_seq
class PipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_callback(self):
# TODO - test that pipeline can decode tokens in a callback
# so that music can be played live
device = torch_device
pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion")
melgan = pipe.melgan
pipe.melgan = None
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
def callback(step, mel_output):
# decode mel to audio
audio = melgan(input_features=mel_output.astype(np.float32))[0]
assert len(audio[0]) == 81920 * (step + 1)
# simulate that audio is played
return audio
processor = MidiProcessor()
input_tokens = processor(MIDI_FILE)
input_tokens = input_tokens[:3]
generator = torch.manual_seed(0)
pipe(input_tokens, num_inference_steps=5, generator=generator, callback=callback, output_type="mel")
def test_spectrogram_fast(self):
device = torch_device
pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion")
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
processor = MidiProcessor()
input_tokens = processor(MIDI_FILE)
# just run two denoising loops
input_tokens = input_tokens[:2]
generator = torch.manual_seed(0)
output = pipe(input_tokens, num_inference_steps=2, generator=generator)
audio = output.audios[0]
assert abs(np.abs(audio).sum() - 3612.841) < 1e-1
def test_spectrogram(self):
device = torch_device
pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion")
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
processor = MidiProcessor()
input_tokens = processor(MIDI_FILE)
# just run 4 denoising loops
input_tokens = input_tokens[:4]
generator = torch.manual_seed(0)
output = pipe(input_tokens, num_inference_steps=100, generator=generator)
audio = output.audios[0]
assert abs(np.abs(audio).sum() - 9389.1111) < 5e-2
| diffusers-main | tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils.testing_utils import load_numpy, nightly, require_torch_gpu, torch_device
torch.backends.cuda.matmul.allow_tf32 = False
class VQDiffusionPipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def num_embed(self):
return 12
@property
def num_embeds_ada_norm(self):
return 12
@property
def text_embedder_hidden_size(self):
return 32
@property
def dummy_vqvae(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
num_vq_embeddings=self.num_embed,
vq_embed_dim=3,
)
return model
@property
def dummy_tokenizer(self):
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_transformer(self):
torch.manual_seed(0)
height = 12
width = 12
model_kwargs = {
"attention_bias": True,
"cross_attention_dim": 32,
"attention_head_dim": height * width,
"num_attention_heads": 1,
"num_vector_embeds": self.num_embed,
"num_embeds_ada_norm": self.num_embeds_ada_norm,
"norm_num_groups": 32,
"sample_size": width,
"activation_fn": "geglu-approximate",
}
model = Transformer2DModel(**model_kwargs)
return model
def test_vq_diffusion(self):
device = "cpu"
vqvae = self.dummy_vqvae
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
transformer = self.dummy_transformer
scheduler = VQDiffusionScheduler(self.num_embed)
learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings(learnable=False)
pipe = VQDiffusionPipeline(
vqvae=vqvae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler,
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings,
)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
prompt = "teddy bear playing in the pool"
generator = torch.Generator(device=device).manual_seed(0)
output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = pipe(
[prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
expected_slice = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_vq_diffusion_classifier_free_sampling(self):
device = "cpu"
vqvae = self.dummy_vqvae
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
transformer = self.dummy_transformer
scheduler = VQDiffusionScheduler(self.num_embed)
learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings(
learnable=True, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length
)
pipe = VQDiffusionPipeline(
vqvae=vqvae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler,
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings,
)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
prompt = "teddy bear playing in the pool"
generator = torch.Generator(device=device).manual_seed(0)
output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = pipe(
[prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
expected_slice = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988])
assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@nightly
@require_torch_gpu
class VQDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_vq_diffusion_classifier_free_sampling(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy"
)
pipeline = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq")
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipeline(
"teddy bear playing in the pool",
num_images_per_prompt=1,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image).max() < 2.0
| diffusers-main | tests/pipelines/vq_diffusion/test_vq_diffusion.py |
diffusers-main | tests/pipelines/vq_diffusion/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNet2DConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class LDMTextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = LDMTextToImagePipeline
params = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
required_optional_params = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=(32, 64),
in_channels=3,
out_channels=3,
down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"),
up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"),
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vqvae": vae,
"bert": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_inference_text2img(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = LDMTextToImagePipeline(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
expected_slice = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@nightly
@require_torch_gpu
class LDMTextToImagePipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_ldm_default_ddim(self):
pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878])
max_diff = np.abs(expected_slice - image_slice).max()
assert max_diff < 1e-3
@nightly
@require_torch_gpu
class LDMTextToImagePipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 50,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_ldm_default_ddim(self):
pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
| diffusers-main | tests/pipelines/latent_diffusion/test_latent_diffusion.py |
diffusers-main | tests/pipelines/latent_diffusion/__init__.py |
|
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import torch
from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel
from diffusers.utils import PIL_INTERPOLATION
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
nightly,
require_torch,
torch_device,
)
enable_full_determinism()
class LDMSuperResolutionPipelineFastTests(unittest.TestCase):
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=6,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
@property
def dummy_vq_model(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
)
return model
def test_inference_superresolution(self):
device = "cpu"
unet = self.dummy_uncond_unet
scheduler = DDIMScheduler()
vqvae = self.dummy_vq_model
ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler)
ldm.to(device)
ldm.set_progress_bar_config(disable=None)
init_image = self.dummy_image.to(device)
generator = torch.Generator(device=device).manual_seed(0)
image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_inference_superresolution_fp16(self):
unet = self.dummy_uncond_unet
scheduler = DDIMScheduler()
vqvae = self.dummy_vq_model
# put models in fp16
unet = unet.half()
vqvae = vqvae.half()
ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler)
ldm.to(torch_device)
ldm.set_progress_bar_config(disable=None)
init_image = self.dummy_image.to(torch_device)
image = ldm(init_image, num_inference_steps=2, output_type="numpy").images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch
class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase):
def test_inference_superresolution(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/vq_diffusion/teddy_bear_pool.png"
)
init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"])
ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution", device_map="auto")
ldm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| diffusers-main | tests/pipelines/latent_diffusion/test_latent_diffusion_superresolution.py |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNet2DModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class LDMPipelineFastTests(unittest.TestCase):
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
@property
def dummy_vq_model(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
def test_inference_uncond(self):
unet = self.dummy_uncond_unet
scheduler = DDIMScheduler()
vae = self.dummy_vq_model
ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
ldm.to(torch_device)
ldm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images
generator = torch.manual_seed(0)
image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
tolerance = 1e-2 if torch_device != "mps" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
@slow
@require_torch
class LDMPipelineIntegrationTests(unittest.TestCase):
def test_inference_uncond(self):
ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
ldm.to(torch_device)
ldm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
tolerance = 1e-2 if torch_device != "mps" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
| diffusers-main | tests/pipelines/latent_diffusion/test_latent_diffusion_uncond.py |
diffusers-main | tests/pipelines/consistency_models/__init__.py |
|
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNet2DModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
nightly,
require_torch_2,
require_torch_gpu,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class ConsistencyModelPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = ConsistencyModelPipeline
params = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
batch_params = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
]
)
@property
def dummy_uncond_unet(self):
unet = UNet2DModel.from_pretrained(
"diffusers/consistency-models-test",
subfolder="test_unet",
)
return unet
@property
def dummy_cond_unet(self):
unet = UNet2DModel.from_pretrained(
"diffusers/consistency-models-test",
subfolder="test_unet_class_cond",
)
return unet
def get_dummy_components(self, class_cond=False):
if class_cond:
unet = self.dummy_cond_unet
else:
unet = self.dummy_uncond_unet
# Default to CM multistep sampler
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
components = {
"unet": unet,
"scheduler": scheduler,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"batch_size": 1,
"num_inference_steps": None,
"timesteps": [22, 0],
"generator": generator,
"output_type": "np",
}
return inputs
def test_consistency_model_pipeline_multistep(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = ConsistencyModelPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_consistency_model_pipeline_multistep_class_cond(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components(class_cond=True)
pipe = ConsistencyModelPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["class_labels"] = 0
image = pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_consistency_model_pipeline_onestep(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = ConsistencyModelPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["num_inference_steps"] = 1
inputs["timesteps"] = None
image = pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_consistency_model_pipeline_onestep_class_cond(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components(class_cond=True)
pipe = ConsistencyModelPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["num_inference_steps"] = 1
inputs["timesteps"] = None
inputs["class_labels"] = 0
image = pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@nightly
@require_torch_gpu
class ConsistencyModelPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, seed=0, get_fixed_latents=False, device="cpu", dtype=torch.float32, shape=(1, 3, 64, 64)):
generator = torch.manual_seed(seed)
inputs = {
"num_inference_steps": None,
"timesteps": [22, 0],
"class_labels": 0,
"generator": generator,
"output_type": "np",
}
if get_fixed_latents:
latents = self.get_fixed_latents(seed=seed, device=device, dtype=dtype, shape=shape)
inputs["latents"] = latents
return inputs
def get_fixed_latents(self, seed=0, device="cpu", dtype=torch.float32, shape=(1, 3, 64, 64)):
if isinstance(device, str):
device = torch.device(device)
generator = torch.Generator(device=device).manual_seed(seed)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
def test_consistency_model_cd_multistep(self):
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2")
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device=torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
image = pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.0146, 0.0158, 0.0092, 0.0086, 0.0000, 0.0000, 0.0000, 0.0000, 0.0058])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_consistency_model_cd_onestep(self):
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2")
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device=torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
inputs["num_inference_steps"] = 1
inputs["timesteps"] = None
image = pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.0059, 0.0003, 0.0000, 0.0023, 0.0052, 0.0007, 0.0165, 0.0081, 0.0095])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@require_torch_2
def test_consistency_model_cd_multistep_flash_attn(self):
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2")
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device=torch_device, torch_dtype=torch.float16)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(get_fixed_latents=True, device=torch_device)
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
image = pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.1845, 0.1371, 0.1211, 0.2035, 0.1954, 0.1323, 0.1773, 0.1593, 0.1314])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@require_torch_2
def test_consistency_model_cd_onestep_flash_attn(self):
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2")
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device=torch_device, torch_dtype=torch.float16)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(get_fixed_latents=True, device=torch_device)
inputs["num_inference_steps"] = 1
inputs["timesteps"] = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
image = pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.1623, 0.2009, 0.2387, 0.1731, 0.1168, 0.1202, 0.2031, 0.1327, 0.2447])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
| diffusers-main | tests/pipelines/consistency_models/test_consistency_models.py |
diffusers-main | tests/pipelines/dance_diffusion/__init__.py |
Subsets and Splits