path
stringlengths 15
77
| type
stringclasses 1
value | project
stringclasses 1
value | commit_hash
stringlengths 40
40
| commit_message
stringlengths 15
198
| ground_truth
stringlengths 26
155
| main_code
stringlengths 176
2.5k
| context
stringlengths 91
9.37k
|
---|---|---|---|---|---|---|---|
coeditor.encoding/truncate_section | Modified | temp-1 | 0a557eb3eef82b76ad61c98704f8bfdf960a3ca1 | Improve encoder performance. | <0>:<add> assert_eq(direction.value, TruncateAt.Right.value)
| # module: coeditor.encoding
def truncate_section(
sec: TokenSeq,
direction: TruncateAt,
limit: int,
add_bos: bool = True,
) -> TokenSeq:
if len(sec) <= limit:
return sec
+ if direction.value == TruncateAt.Left.value:
- if direction == TruncateAt.Left:
sec = sec[-limit:]
if add_bos and sec:
sec[0] = BOS_id
else:
- assert_eq(direction, TruncateAt.Right)
<0> sec = sec[:limit]
if add_bos and sec:
sec[-1] = EOS_id
return sec
| ===========unchanged ref 0===========
at: coeditor.common
TokenSeq = list[Token]
at: coeditor.encoding
BOS_id = get_tk_id("<s>")
EOS_id = get_tk_id("</s>")
TruncateAt()
at: coeditor.encoding.break_into_chunks
chunks = list[TokenSeq]()
L = len(tks)
header = header_f(chunk_id)
progress = chunk_size - len(header) - this_overlap
===========changed ref 0===========
# module: coeditor.encoding
+ def encode_diffs(diffs: Sequence[str]) -> TokenSeq:
- def encode_diffs(diffs: list[str]) -> TokenSeq:
"""
A helper function to encode the diff lines (with '+', '-', or ' ' prefixes)
into a token sequence with the special <add> and <del> tokens.
"""
+ prefixes = list[TokenSeq]()
+ code_lines = list[str]()
- tokens = TokenSeq()
for i, diff in enumerate(diffs):
if diff.startswith("+"):
+ prefixes.append([Add_id])
- tokens.append(Add_id)
elif diff.startswith("-"):
+ prefixes.append([Del_id])
- tokens.append(Del_id)
else:
assert diff.startswith(" ")
+ prefixes.append([])
+ code_lines.append(diff[1:])
+ code_tks = _BaseTokenizer.encode("\n".join(code_lines), add_special_tokens=False)
+ code_lines = split_list(code_tks, Newline_id)
+ for i, line in enumerate(code_lines):
+ if prefixes[i]:
+ code_lines[i] = prefixes[i] + line
+ return join_list(code_lines, Newline_id)
- tokens.extend(_BaseTokenizer.encode(diff[1:], add_special_tokens=False))
- if i < len(diffs) - 1:
- tokens.append(Newline_id)
- return tokens
===========changed ref 1===========
# module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
+ match change:
+ case Modified(before=before, after=after, unchanged=unchanged):
+ if unchanged or before == after:
+ return encode_basic(before)
+ else:
+ diffs = change_to_line_diffs(change)
- diffs = change_to_line_diffs(change)
+ return encode_diffs(diffs)
- return encode_diffs(diffs)
+ case Added() | Deleted():
+ lines = split_list(encode_basic(change.earlier()), Newline_id)
+ tk = Add_id if isinstance(change, Added) else Del_id
+ return join_list([tk] + line for line in lines)
+ case _:
+ raise AssertionError(f"Not a change type: {change}")
===========changed ref 2===========
# module: coeditor.encoding
def get_extra_id(i: int) -> int:
assert 0 <= i < N_Extra_Ids
+ return _min_extra_id + (N_Extra_Ids - 1 - i)
- return _Tokenizer.additional_special_tokens_ids[N_Extra_Ids - 1 - i]
|
coeditor.history/Modified.map | Modified | temp-1 | 0a557eb3eef82b76ad61c98704f8bfdf960a3ca1 | Improve encoder performance. | <0>:<add> return Modified(f(self.before), f(self.after))
| # module: coeditor.history
@dataclass(frozen=True)
class Modified(_ChangeBase[E1]):
def map(self, f: Callable[[E1], T2]) -> "Modified[T2]":
+ if self.unchanged:
+ return Modified.from_unchanged(f(self.before))
+ else:
- return Modified(f(self.before), f(self.after))
<0>
| ===========unchanged ref 0===========
at: coeditor.common
T2 = TypeVar("T2")
at: coeditor.history
E1 = TypeVar("E1", covariant=True)
at: coeditor.history.Modified
before: E1
after: E1
unchanged: bool = False
at: typing
Callable = _CallableType(collections.abc.Callable, 2)
===========changed ref 0===========
# module: coeditor.encoding
def get_extra_id(i: int) -> int:
assert 0 <= i < N_Extra_Ids
+ return _min_extra_id + (N_Extra_Ids - 1 - i)
- return _Tokenizer.additional_special_tokens_ids[N_Extra_Ids - 1 - i]
===========changed ref 1===========
# module: coeditor.encoding
def truncate_section(
sec: TokenSeq,
direction: TruncateAt,
limit: int,
add_bos: bool = True,
) -> TokenSeq:
if len(sec) <= limit:
return sec
+ if direction.value == TruncateAt.Left.value:
- if direction == TruncateAt.Left:
sec = sec[-limit:]
if add_bos and sec:
sec[0] = BOS_id
else:
+ assert_eq(direction.value, TruncateAt.Right.value)
- assert_eq(direction, TruncateAt.Right)
sec = sec[:limit]
if add_bos and sec:
sec[-1] = EOS_id
return sec
===========changed ref 2===========
# module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
+ match change:
+ case Modified(before=before, after=after, unchanged=unchanged):
+ if unchanged or before == after:
+ return encode_basic(before)
+ else:
+ diffs = change_to_line_diffs(change)
- diffs = change_to_line_diffs(change)
+ return encode_diffs(diffs)
- return encode_diffs(diffs)
+ case Added() | Deleted():
+ lines = split_list(encode_basic(change.earlier()), Newline_id)
+ tk = Add_id if isinstance(change, Added) else Del_id
+ return join_list([tk] + line for line in lines)
+ case _:
+ raise AssertionError(f"Not a change type: {change}")
===========changed ref 3===========
# module: coeditor.encoding
+ def encode_diffs(diffs: Sequence[str]) -> TokenSeq:
- def encode_diffs(diffs: list[str]) -> TokenSeq:
"""
A helper function to encode the diff lines (with '+', '-', or ' ' prefixes)
into a token sequence with the special <add> and <del> tokens.
"""
+ prefixes = list[TokenSeq]()
+ code_lines = list[str]()
- tokens = TokenSeq()
for i, diff in enumerate(diffs):
if diff.startswith("+"):
+ prefixes.append([Add_id])
- tokens.append(Add_id)
elif diff.startswith("-"):
+ prefixes.append([Del_id])
- tokens.append(Del_id)
else:
assert diff.startswith(" ")
+ prefixes.append([])
+ code_lines.append(diff[1:])
+ code_tks = _BaseTokenizer.encode("\n".join(code_lines), add_special_tokens=False)
+ code_lines = split_list(code_tks, Newline_id)
+ for i, line in enumerate(code_lines):
+ if prefixes[i]:
+ code_lines[i] = prefixes[i] + line
+ return join_list(code_lines, Newline_id)
- tokens.extend(_BaseTokenizer.encode(diff[1:], add_special_tokens=False))
- if i < len(diffs) - 1:
- tokens.append(Newline_id)
- return tokens
|
coeditor.common/split_list | Modified | temp-1 | abb5f1bd488da1a987cc025440e395f8eeac3e1e | Fix tokenize_datasets to avoid duplicating lists. | <0>:<add> result.append(lst[ptr:])
| # module: coeditor.common
def split_list(
lst: list[T1],
sep: T1,
) -> list[list[T1]]:
"""
Split a list into segments by a separator, always ends with an empty list.
"""
result = list[list[T1]]()
+ ptr = 0
+ for i, item in enumerate(lst):
- buff = list[T1]()
- for item in lst:
if item == sep:
+ result.append(lst[ptr:i])
- result.append(buff)
- buff = list[T1]()
- else:
- buff.append(item)
- result.append(buff)
+ ptr = i + 1
<0> return result
| ===========unchanged ref 0===========
at: coeditor.common
T1 = TypeVar("T1")
|
coeditor.ctx_change_encoder/TkC3Problem.meta_data_lines | Modified | temp-1 | abb5f1bd488da1a987cc025440e395f8eeac3e1e | Fix tokenize_datasets to avoid duplicating lists. | <0>:<add> f"commit: {self.commit}",
| # module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
def meta_data_lines(self) -> list[str]:
return [
f"path: {self.path}",
f"n_references: {len(self.references)}",
f"total_reference_tks: {sum(len(ref) for ref in self.references)}",
+ f"project: {self.project}",
- f"src_info: {self.src_info}",
<0> ]
| ===========unchanged ref 0===========
at: coeditor.common
TokenSeq = list[Token]
at: coeditor.ctx_change_encoder.TkC3Problem
input_tks: TokenSeq
output_tks: TokenSeq
path: ProjectPath
change_type: Change[None]
named_references: Sequence[tuple[str, TokenSeq]]
project: str
commit: CommitInfo | None
at: coeditor.encoding.TokenizedEdit
input_tks: TokenSeq
output_tks: TokenSeq
main_tks: TokenSeq
path: ProjectPath
change_type: Change[None]
BAD_DELETE = encode_single_line("((bad delete))")
all_ctxs(self) -> dict[str, TokenSeq]
meta_data_lines(self) -> list[str]
show(self, pred_tks: TokenSeq | None=None, skip_ctx: bool=False, skip_meta: bool=False) -> str
===========changed ref 0===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
"Tokenized contextual code change prediction problem."
input_tks: TokenSeq
output_tks: TokenSeq
path: ProjectPath
change_type: Change[None]
# most relevant to least relevant
named_references: Sequence[tuple[str, TokenSeq]]
+ project: str
+ commit: CommitInfo | None
- src_info: dict[str, Any]
===========changed ref 1===========
# module: coeditor.ctx_change_encoder
PyFullName = NewType("PyFullName", str)
-
===========changed ref 2===========
# module: coeditor.ctx_change_encoder
+ class SrcInfo(TypedDict):
+ project: str
+ commit: CommitInfo | None
+
===========changed ref 3===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class C3Problem:
"Contextual code change prediction problem."
span: ChangedCodeSpan
# most relevant to least relevant
relevant_changes: Sequence[ChangedCodeSpan]
# most relevant to least relevant
relevant_unchanged: Sequence[ChangedCodeSpan]
# some optional information about how the problem was generated
+ src_info: SrcInfo
- src_info: dict[str, Any]
===========changed ref 4===========
# module: coeditor.common
def split_list(
lst: list[T1],
sep: T1,
) -> list[list[T1]]:
"""
Split a list into segments by a separator, always ends with an empty list.
"""
result = list[list[T1]]()
+ ptr = 0
+ for i, item in enumerate(lst):
- buff = list[T1]()
- for item in lst:
if item == sep:
+ result.append(lst[ptr:i])
- result.append(buff)
- buff = list[T1]()
- else:
- buff.append(item)
- result.append(buff)
+ ptr = i + 1
+ result.append(lst[ptr:])
return result
|
coeditor.ctx_change_encoder/C3ProblemTokenizer.__post_init__ | Modified | temp-1 | abb5f1bd488da1a987cc025440e395f8eeac3e1e | Fix tokenize_datasets to avoid duplicating lists. | <0>:<add> self._change_cache = LRUCache[Change[str], TokenSeq](maxsize=500)
| # module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def __post_init__(self):
- self._change_cache = LRUCache[Change[str], TokenSeq](maxsize=5000)
<0>
| ===========unchanged ref 0===========
at: coeditor.ctx_change_encoder.C3ProblemTokenizer
VERSION = "1.0"
max_ref_tks: int = 512
max_query_tks: int = 512
max_output_tks: int = 256
max_scope_tks: int = 128
max_lines_to_edit: int = 20
skip_unchanged_problems: bool = True
===========changed ref 0===========
# module: coeditor.ctx_change_encoder
- _ObjId = NewType("_ObjId", int)
-
===========changed ref 1===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
def meta_data_lines(self) -> list[str]:
return [
f"path: {self.path}",
f"n_references: {len(self.references)}",
f"total_reference_tks: {sum(len(ref) for ref in self.references)}",
+ f"project: {self.project}",
+ f"commit: {self.commit}",
- f"src_info: {self.src_info}",
]
===========changed ref 2===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
"Tokenized contextual code change prediction problem."
input_tks: TokenSeq
output_tks: TokenSeq
path: ProjectPath
change_type: Change[None]
# most relevant to least relevant
named_references: Sequence[tuple[str, TokenSeq]]
+ project: str
+ commit: CommitInfo | None
- src_info: dict[str, Any]
===========changed ref 3===========
# module: coeditor.ctx_change_encoder
PyFullName = NewType("PyFullName", str)
-
===========changed ref 4===========
# module: coeditor.ctx_change_encoder
+ class SrcInfo(TypedDict):
+ project: str
+ commit: CommitInfo | None
+
===========changed ref 5===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class C3Problem:
"Contextual code change prediction problem."
span: ChangedCodeSpan
# most relevant to least relevant
relevant_changes: Sequence[ChangedCodeSpan]
# most relevant to least relevant
relevant_unchanged: Sequence[ChangedCodeSpan]
# some optional information about how the problem was generated
+ src_info: SrcInfo
- src_info: dict[str, Any]
===========changed ref 6===========
# module: coeditor.common
def split_list(
lst: list[T1],
sep: T1,
) -> list[list[T1]]:
"""
Split a list into segments by a separator, always ends with an empty list.
"""
result = list[list[T1]]()
+ ptr = 0
+ for i, item in enumerate(lst):
- buff = list[T1]()
- for item in lst:
if item == sep:
+ result.append(lst[ptr:i])
- result.append(buff)
- buff = list[T1]()
- else:
- buff.append(item)
- result.append(buff)
+ ptr = i + 1
+ result.append(lst[ptr:])
return result
|
coeditor.ctx_change_encoder/C3ProblemTokenizer.tokenize_problem | Modified | temp-1 | abb5f1bd488da1a987cc025440e395f8eeac3e1e | Fix tokenize_datasets to avoid duplicating lists. | <0>:<add> commit=problem.src_info["commit"],
| # module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> Sequence[TkC3Problem]:
<s> lambda i: self._encode_headers(span.headers, i + 1),
chunk_size=self.max_ref_tks,
overlap=self.ref_chunk_overlap,
)
above_chunks = [
(f"above chunk {i}", chunk) for i, chunk in enumerate(above_chunks)
]
below_chunks = [
(f"below chunk {i}", chunk) for i, chunk in enumerate(below_chunks)
]
all_refs = above_chunks + below_chunks + named_references
return TkC3Problem(
scope_tks + chunk_input,
chunk_output,
path=span.headers[-1].path,
change_type=span.change.map(lambda _: None),
named_references=all_refs,
+ project=problem.src_info["project"],
- src_info=problem.src_info,
<0> )
problems = list[TkC3Problem]()
for l in range(len(tk_delta.deltas) + 1):
finished = l == len(tk_delta.deltas)
input_growth = len(origin_lines[l]) + 2 if l < len(origin_lines) else 1
if (
finished
or chunk_lines >= self.max_lines_to_edit
or len(chunk_input) + input_growth > input_limit
):
if has_change(chunk_output):
problems.append(get_problem(chunk_input, chunk_output))
if len(problems) >= self.max_chunks_per_elem:
break
if finished:
break
chunk_main_input = join_list(origin_lines[chunk_start_l:l], Newline_id)
chunk_main_delta = tk_delta.for_input</s> | ===========above chunk 0===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> Sequence[TkC3Problem]:
# offset: -1
<s>
chunk_start_l = 0
scope_tks = self._encode_headers(span.headers, 0)
chunk_input = TokenSeq()
input_limit = self.max_query_tks - len(scope_tks)
chunk_lines = 0
chunk_output = TokenSeq()
prev_change_tks = TokenSeq()
def get_problem(chunk_input, chunk_output):
# try move some prev_change_tks into the input
above_tks = prev_change_tks
below_tks = join_list(origin_lines[l:], Newline_id)
chunk_input, above_tks, below_tks = self._inline_some_context(
chunk_input, above_tks, below_tks, input_limit
)
# limit the input size if it's too long (can happen for later chunks)
chunk_input = truncate_section(chunk_input, TruncateAt.Right, input_limit)
chunk_output = truncate_output_tks(chunk_input, chunk_output)
chunk_output = truncate_section(
chunk_output, TruncateAt.Right, self.max_output_tks, add_bos=False
)
above_chunks = break_into_chunks(
above_tks,
lambda i: self._encode_headers(span.headers, -1 - i),
chunk_size=self.max_ref_tks,
overlap=self.ref_chunk_overlap,
right_to_left=True,
)
if finished:
below_chunks = []
else:
below_chunks = break_into_chunks(
below_tks,
lambda i: self._encode_headers(span.headers, i + 1),
chunk_size=self.max_ref_t</s>
===========above chunk 1===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> Sequence[TkC3Problem]:
# offset: -2
span = problem.span
named_references = list[tuple[str, TokenSeq]]()
# compute the references that are relevant to this span
relevant_chunks = self._group_encode_changed_refs(problem.relevant_changes)
for i, chunk in enumerate(relevant_chunks):
named_references.append((f"changed ref {i}", chunk))
relevant_chunks = self._group_encode_unchanged_refs(problem.relevant_unchanged)
for i, chunk in enumerate(relevant_chunks):
named_references.append((f"unchanged ref {i}", chunk))
diffs = change_to_line_diffs(span.change)
original, delta = line_diffs_to_original_delta(diffs)
origin_lines = split_list(encode_basic(original), Newline_id)
tk_delta = delta.to_tk_delta()
chunk_id = 0
chunk_start_l = 0
scope_tks = self._encode_headers(span.headers, 0)
</s>
===========below chunk 0===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> Sequence[TkC3Problem]:
# offset: 1
<s>lines[chunk_start_l:l], Newline_id)
chunk_main_delta = tk_delta.for_input_range((chunk_start_l, l))
chunk_main_change = chunk_main_delta.to_change_tks(chunk_main_input)
prev_change_tks.extend(chunk_main_change)
prev_change_tks.append(Newline_id)
chunk_id += 1
chunk_input = TokenSeq()
chunk_lines = 0
chunk_output = TokenSeq()
chunk_start_l = l
chunk_input.append(get_extra_id(chunk_lines))
if l < len(origin_lines):
chunk_input.extend(origin_lines[l])
chunk_input.append(Newline_id)
line_change = join_list(tk_delta.deltas[l], Newline_id)
chunk_output.append(get_extra_id(chunk_lines))
chunk_output.extend(line_change)
if line_change and line_change[-1] != Del_id:
chunk_output.append(Newline_id)
chunk_lines += 1
return problems
===========unchanged ref 0===========
at: cachetools.lru
LRUCache(maxsize: int, getsizeof: Optional[Callable[[_VT], int]]=...)
at: coeditor.common
TokenSeq = list[Token]
split_list(lst: list[T1], sep: T1) -> list[list[T1]]
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
at: coeditor.ctx_change_encoder
C3Problem(span: ChangedCodeSpan, relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Sequence[ChangedCodeSpan], src_info: SrcInfo)
TkC3Problem(input_tks: TokenSeq, output_tks: TokenSeq, path: ProjectPath, change_type: Change[None], named_references: Sequence[tuple[str, TokenSeq]], project: str, commit: CommitInfo | None)
at: coeditor.ctx_change_encoder.C3Problem
span: ChangedCodeSpan
relevant_changes: Sequence[ChangedCodeSpan]
relevant_unchanged: Sequence[ChangedCodeSpan]
src_info: SrcInfo
at: coeditor.ctx_change_encoder.C3ProblemTokenizer
max_ref_tks: int = 512
max_query_tks: int = 512
max_output_tks: int = 256
max_lines_to_edit: int = 20
ref_chunk_overlap: int = 32
max_chunks_per_elem: int = 4
_encode_headers(scope_changes: Sequence[ChangedHeader], offset: int) -> TokenSeq
_inline_some_context(input: TokenSeq, above_ctx: TokenSeq, below_ctx: TokenSeq, size_limit: int) -> tuple[TokenSeq, TokenSeq, TokenSeq]
_group_encode_unchanged_refs(elems: Sequence[ChangedCodeSpan]) -> Sequence[TokenSeq]
_group_encode_changed_refs(changes: Sequence[ChangedCodeSpan]) -> Sequence[TokenSeq]
|
coeditor.ctx_change_encoder/C3ProblemTokenizer.tokenize_datasets | Modified | temp-1 | abb5f1bd488da1a987cc025440e395f8eeac3e1e | Fix tokenize_datasets to avoid duplicating lists. | <0>:<add> datasets[key2split[key]].extend(edits)
| # module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def tokenize_datasets(
self,
split2problems: Mapping[str, Sequence[C3Problem]],
max_workers: int | None = None,
+ ) -> dict[str, list[TkC3Problem]]:
- ) -> dict[str, Sequence[TkC3Problem]]:
+ def get_key(p: C3Problem):
+ return (p.src_info["project"], not_none(p.src_info["commit"]).hash)
+
+ # we want problems from the same commit to be sent in groups
+ key2split = {
+ get_key(p): name for name, split in split2problems.items() for p in split
+ }
- datasets = dict[str, Sequence[TkC3Problem]]()
all_problems = join_list(split2problems.values())
+ key2problems = groupby(all_problems, lambda p: get_key(p))
+ all_probs = list(key2problems.values())
all_edits = pmap(
+ self._tokenize_problems,
- self.tokenize_problem,
+ all_probs,
- all_problems,
desc=f"Tokenizing dataset",
+ tqdm_args={"unit": "commit"},
max_workers=max_workers,
)
- start = 0
- for name, split in split2problems.items():
- split_edits = join_list(all_edits[start : start + len(split)])
- datasets[name] = split_edits
- start += len(split)
+ datasets = {name: list[TkC3Problem]() for name in split2problems}
+ for edits, key in zip(all_edits, key2problems.keys()):
<0> return datasets
| ===========unchanged ref 0===========
at: coeditor._utils
not_none(x: Optional[T1]) -> T1
at: coeditor.common
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
at: coeditor.ctx_change_encoder
C3Problem(span: ChangedCodeSpan, relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Sequence[ChangedCodeSpan], src_info: SrcInfo)
TkC3Problem(input_tks: TokenSeq, output_tks: TokenSeq, path: ProjectPath, change_type: Change[None], named_references: Sequence[tuple[str, TokenSeq]], project: str, commit: CommitInfo | None)
at: coeditor.ctx_change_encoder.C3Problem
src_info: SrcInfo
at: coeditor.ctx_change_encoder.C3ProblemTokenizer
tokenize_problem(problem: C3Problem) -> Sequence[TkC3Problem]
tokenize_problem(self, problem: C3Problem) -> Sequence[TkC3Problem]
at: coeditor.ctx_change_encoder.C3ProblemTokenizer.tokenize_problem
chunk_output = TokenSeq()
problems = list[TkC3Problem]()
line_change = join_list(tk_delta.deltas[l], Newline_id)
at: coeditor.encoding
Del_id = get_tk_id(Del)
Newline_id = get_tk_id("\n")
at: typing
Mapping = _alias(collections.abc.Mapping, 2)
Sequence = _alias(collections.abc.Sequence, 1)
at: typing.Mapping
items() -> AbstractSet[Tuple[_KT, _VT_co]]
===========changed ref 0===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
"Tokenized contextual code change prediction problem."
input_tks: TokenSeq
output_tks: TokenSeq
path: ProjectPath
change_type: Change[None]
# most relevant to least relevant
named_references: Sequence[tuple[str, TokenSeq]]
+ project: str
+ commit: CommitInfo | None
- src_info: dict[str, Any]
===========changed ref 1===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class C3Problem:
"Contextual code change prediction problem."
span: ChangedCodeSpan
# most relevant to least relevant
relevant_changes: Sequence[ChangedCodeSpan]
# most relevant to least relevant
relevant_unchanged: Sequence[ChangedCodeSpan]
# some optional information about how the problem was generated
+ src_info: SrcInfo
- src_info: dict[str, Any]
===========changed ref 2===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> Sequence[TkC3Problem]:
span = problem.span
named_references = list[tuple[str, TokenSeq]]()
# compute the references that are relevant to this span
relevant_chunks = self._group_encode_changed_refs(problem.relevant_changes)
for i, chunk in enumerate(relevant_chunks):
named_references.append((f"changed ref {i}", chunk))
relevant_chunks = self._group_encode_unchanged_refs(problem.relevant_unchanged)
for i, chunk in enumerate(relevant_chunks):
named_references.append((f"unchanged ref {i}", chunk))
diffs = change_to_line_diffs(span.change)
original, delta = line_diffs_to_original_delta(diffs)
origin_lines = split_list(encode_basic(original), Newline_id)
tk_delta = delta.to_tk_delta()
chunk_id = 0
chunk_start_l = 0
scope_tks = self._encode_headers(span.headers, 0)
chunk_input = TokenSeq()
input_limit = self.max_query_tks - len(scope_tks)
chunk_lines = 0
chunk_output = TokenSeq()
prev_change_tks = TokenSeq()
def get_problem(chunk_input, chunk_output):
# try move some prev_change_tks into the input
above_tks = prev_change_tks
below_tks = join_list(origin_lines[l:], Newline_id)
chunk_input, above_tks, below_tks = self._inline_some_context(
chunk_input, above_tks, below_tks, input_limit
)
# limit the input size if it's too long (can happen for later chunks)
chunk_input = truncate_section(chunk_input,</s>
===========changed ref 3===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> Sequence[TkC3Problem]:
# offset: 1
<s> limit the input size if it's too long (can happen for later chunks)
chunk_input = truncate_section(chunk_input, TruncateAt.Right, input_limit)
chunk_output = truncate_output_tks(chunk_input, chunk_output)
chunk_output = truncate_section(
chunk_output, TruncateAt.Right, self.max_output_tks, add_bos=False
)
above_chunks = break_into_chunks(
above_tks,
lambda i: self._encode_headers(span.headers, -1 - i),
chunk_size=self.max_ref_tks,
overlap=self.ref_chunk_overlap,
right_to_left=True,
)
if finished:
below_chunks = []
else:
below_chunks = break_into_chunks(
below_tks,
lambda i: self._encode_headers(span.headers, i + 1),
chunk_size=self.max_ref_tks,
overlap=self.ref_chunk_overlap,
)
above_chunks = [
(f"above chunk {i}", chunk) for i, chunk in enumerate(above_chunks)
]
below_chunks = [
(f"below chunk {i}", chunk) for i, chunk in enumerate(below_chunks)
]
all_refs = above_chunks + below_chunks + named_references
return TkC3Problem(
scope_tks + chunk_input,
chunk_output,
path=span.headers[-1].path,
change_type=span.change.map(lambda _: None),
named_references=all_refs,
+ project=</s> |
coeditor.encoding/StrDelta.apply_to_input | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> if delta := self._deltas.get(len(lines)):
| # module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
lines = input.split("\n")
- assert len(lines) <= len(self.deltas)
new_lines = list[str]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
<0> for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
| ===========unchanged ref 0===========
at: coeditor.encoding.StrDelta
_deltas: Mapping[int, tuple[str, ...]]
at: typing.Mapping
get(key: _KT) -> Optional[_VT_co]
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
|
coeditor.encoding/StrDelta.__repr__ | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
| # module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self.deltas) if a)
<0> return f"StrDelta(\n{line_diffs}\n)"
| ===========unchanged ref 0===========
at: coeditor.encoding.StrDelta.__repr__
line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
lines = input.split("\n")
- assert len(lines) <= len(self.deltas)
new_lines = list[str]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
|
coeditor.encoding/StrDelta.for_input_range | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
| # module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
- new_delta = self.deltas[line_range[0] : line_range[1]]
<0> return StrDelta(new_delta)
| ===========unchanged ref 0===========
at: coeditor.encoding
StrDelta(_deltas: Mapping[int, tuple[str, ...]])
at: coeditor.encoding.StrDelta
_deltas: Mapping[int, tuple[str, ...]]
at: typing.Mapping
items() -> AbstractSet[Tuple[_KT, _VT_co]]
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self.deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
lines = input.split("\n")
- assert len(lines) <= len(self.deltas)
new_lines = list[str]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
|
coeditor.encoding/StrDelta.__bool__ | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> return bool(self._deltas)
| # module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
- return any(bool(a) for a in self.deltas)
<0>
| ===========unchanged ref 0===========
at: coeditor.encoding.StrDelta
_deltas: Mapping[int, tuple[str, ...]]
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return StrDelta(new_delta)
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self.deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
lines = input.split("\n")
- assert len(lines) <= len(self.deltas)
new_lines = list[str]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
|
coeditor.encoding/StrDelta.to_tk_delta | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> deltas[k] = tuple(line_tk_delta)
| # module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def to_tk_delta(self) -> "TkDelta":
+ deltas = dict[int, tuple[TokenSeq, ...]]()
- deltas = []
+ for k, line_delta in self._deltas.items():
- for line_delta in self.deltas:
line_tk_delta = list[TokenSeq]()
for action in line_delta:
if action[0] == "+":
line_tk_delta.append([Add_id] + encode_basic(action[1:]))
elif action[0] == "-":
line_tk_delta.append([Del_id])
else:
raise ValueError(f"Invalid action: {action}")
- deltas.append(tuple(line_tk_delta))
<0> return TkDelta(deltas)
| ===========unchanged ref 0===========
at: coeditor.common
TokenSeq = list[Token]
at: coeditor.encoding
Add_id = get_tk_id(Add)
Del_id = get_tk_id(Del)
encode_basic(text: str, add_special_tokens=False) -> TokenSeq
TkDelta(_deltas: Mapping[int, tuple[TokenSeq, ...]])
at: coeditor.encoding.StrDelta
_deltas: Mapping[int, tuple[str, ...]]
at: typing.Mapping
items() -> AbstractSet[Tuple[_KT, _VT_co]]
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return StrDelta(new_delta)
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self.deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
lines = input.split("\n")
- assert len(lines) <= len(self.deltas)
new_lines = list[str]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
|
coeditor.encoding/TkDelta.apply_to_input | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> if delta := self._deltas.get(len(lines)):
| # module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def apply_to_input(self, input: TokenSeq):
lines = split_list(input, Newline_id)
- assert len(lines) <= len(self.deltas)
new_lines = list[TokenSeq]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == Add_id:
new_lines.append(action[1:])
elif action[0] == Del_id:
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
<0> for action in delta:
if action[0] == Add_id:
new_lines.append(action[1:])
return join_list(new_lines, Newline_id)
| ===========unchanged ref 0===========
at: coeditor.common
TokenSeq = list[Token]
split_list(lst: list[T1], sep: T1) -> list[list[T1]]
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
at: coeditor.encoding
Add_id = get_tk_id(Add)
Del_id = get_tk_id(Del)
Newline_id = get_tk_id("\n")
at: coeditor.encoding.TkDelta
_deltas: Mapping[int, tuple[TokenSeq, ...]]
at: coeditor.encoding.TkDelta.apply_to_input
lines = split_list(input, Newline_id)
new_lines = list[TokenSeq]()
at: typing.Mapping
get(key: _KT) -> Optional[_VT_co]
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
"""The Tokenized version of :class:`StrDelta`."""
+ _deltas: Mapping[int, tuple[TokenSeq, ...]]
- deltas: Sequence[tuple[TokenSeq, ...]]
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return sum(len(a) for a in self._deltas.values())
+
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return StrDelta(new_delta)
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self.deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def to_tk_delta(self) -> "TkDelta":
+ deltas = dict[int, tuple[TokenSeq, ...]]()
- deltas = []
+ for k, line_delta in self._deltas.items():
- for line_delta in self.deltas:
line_tk_delta = list[TokenSeq]()
for action in line_delta:
if action[0] == "+":
line_tk_delta.append([Add_id] + encode_basic(action[1:]))
elif action[0] == "-":
line_tk_delta.append([Del_id])
else:
raise ValueError(f"Invalid action: {action}")
+ deltas[k] = tuple(line_tk_delta)
- deltas.append(tuple(line_tk_delta))
return TkDelta(deltas)
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
lines = input.split("\n")
- assert len(lines) <= len(self.deltas)
new_lines = list[str]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
===========changed ref 8===========
# module: coeditor.encoding
def line_diffs_to_original_delta(diffs: list[str]) -> tuple[str, StrDelta]:
input_lines: list[str] = []
line_delta: list[str] = []
deltas = dict[int, tuple[str, ...]]()
for diff_line in diffs:
assert diff_line
assert not diff_line.endswith("\n"), f"bad diff line: {repr(diff_line)}"
if diff_line[0] == "+":
line_delta.append(diff_line)
elif diff_line[0] == "-":
line_delta.append("-")
deltas[len(input_lines)] = tuple(line_delta)
input_lines.append(diff_line[1:])
line_delta = []
else:
assert diff_line[0] == " ", f"unexpected diff_line: {repr(diff_line)}"
if line_delta:
deltas[len(input_lines)] = tuple(line_delta)
line_delta = []
input_lines.append(diff_line[1:])
if line_delta:
deltas[len(input_lines)] = tuple(line_delta)
- last_change_l = len(input_lines)
- else:
- last_change_l = len(input_lines) - 1
- str_delta = StrDelta([deltas.get(i, ()) for i in range(last_change_l + 1)])
-
+ str_delta = StrDelta(deltas)
input = "\n".join(input_lines)
- delta_size = len(str_delta.deltas)
- if not (delta_size - 1 <= count_lines(input) <= delta_size):
- print_err("input:", repr(input))
- print_err("deltas:", str_delta.deltas)
- print_err("diffs:", diffs)
- raise AssertionError("Invalid delta output.")
return input, str_delta
|
coeditor.encoding/TkDelta.to_change_tks | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> if delta := self._deltas.get(len(lines)):
| # module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def to_change_tks(self, input: TokenSeq) -> TokenSeq:
+ lines = split_list(input, Newline_id)
- lines = split_list(input, Newline_id) if input else []
- if len(lines) > len(self.deltas):
- print_err(f"{self.deltas=}")
- print_err(f"{input=}")
- raise ValueError(
- f"Input is longer than delta: {len(lines)=} > {len(self.deltas)=}"
- )
+
new_lines = list[TokenSeq]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == Add_id:
new_lines.append(action)
elif action[0] == Del_id:
deleted = True
if deleted:
new_lines.append([Del_id] + line)
else:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
<0> for action in delta:
if action[0] == Add_id:
new_lines.append(action)
return join_list(new_lines, Newline_id)
| ===========unchanged ref 0===========
at: coeditor.common
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
at: coeditor.encoding
Add_id = get_tk_id(Add)
Del_id = get_tk_id(Del)
Newline_id = get_tk_id("\n")
decode_tokens(tokens: TokenSeq, prettify: bool=False) -> str
at: coeditor.encoding.TkDelta
_deltas: Mapping[int, tuple[TokenSeq, ...]]
at: coeditor.encoding.TkDelta.to_change_tks
lines = split_list(input, Newline_id)
new_lines = list[TokenSeq]()
at: typing.Mapping
get(key: _KT) -> Optional[_VT_co]
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
items() -> AbstractSet[Tuple[_KT, _VT_co]]
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def get_line_change(self, line: int) -> tuple[TokenSeq, ...]:
+ return self._deltas.get(line, ())
+
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
"""The Tokenized version of :class:`StrDelta`."""
+ _deltas: Mapping[int, tuple[TokenSeq, ...]]
- deltas: Sequence[tuple[TokenSeq, ...]]
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return sum(len(a) for a in self._deltas.values())
+
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return StrDelta(new_delta)
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self.deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def apply_to_input(self, input: TokenSeq):
lines = split_list(input, Newline_id)
- assert len(lines) <= len(self.deltas)
new_lines = list[TokenSeq]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == Add_id:
new_lines.append(action[1:])
elif action[0] == Del_id:
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == Add_id:
new_lines.append(action[1:])
return join_list(new_lines, Newline_id)
===========changed ref 8===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def to_tk_delta(self) -> "TkDelta":
+ deltas = dict[int, tuple[TokenSeq, ...]]()
- deltas = []
+ for k, line_delta in self._deltas.items():
- for line_delta in self.deltas:
line_tk_delta = list[TokenSeq]()
for action in line_delta:
if action[0] == "+":
line_tk_delta.append([Add_id] + encode_basic(action[1:]))
elif action[0] == "-":
line_tk_delta.append([Del_id])
else:
raise ValueError(f"Invalid action: {action}")
+ deltas[k] = tuple(line_tk_delta)
- deltas.append(tuple(line_tk_delta))
return TkDelta(deltas)
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
lines = input.split("\n")
- assert len(lines) <= len(self.deltas)
new_lines = list[str]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
|
coeditor.encoding/TkDelta.__repr__ | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> for k, a in self._deltas.items()
| # module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __repr__(self):
line_diffs = "\n".join(
+ f" {k}: {tuple(map(decode_tokens, a))}"
- f" {l}: {tuple(map(decode_tokens, a))}"
- for l, a in enumerate(self.deltas)
<0> if a
)
return f"TkDelta(\n{line_diffs}\n)"
| ===========unchanged ref 0===========
at: coeditor.encoding
StrDelta(_deltas: Mapping[int, tuple[str, ...]])
TkDelta(_deltas: Mapping[int, tuple[TokenSeq, ...]])
at: coeditor.encoding.TkDelta
_deltas: Mapping[int, tuple[TokenSeq, ...]]
at: coeditor.encoding.TkDelta.for_input_range
new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
"""The Tokenized version of :class:`StrDelta`."""
+ _deltas: Mapping[int, tuple[TokenSeq, ...]]
- deltas: Sequence[tuple[TokenSeq, ...]]
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def get_line_change(self, line: int) -> tuple[TokenSeq, ...]:
+ return self._deltas.get(line, ())
+
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return sum(len(a) for a in self._deltas.values())
+
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return StrDelta(new_delta)
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self.deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def apply_to_input(self, input: TokenSeq):
lines = split_list(input, Newline_id)
- assert len(lines) <= len(self.deltas)
new_lines = list[TokenSeq]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == Add_id:
new_lines.append(action[1:])
elif action[0] == Del_id:
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == Add_id:
new_lines.append(action[1:])
return join_list(new_lines, Newline_id)
===========changed ref 8===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def to_tk_delta(self) -> "TkDelta":
+ deltas = dict[int, tuple[TokenSeq, ...]]()
- deltas = []
+ for k, line_delta in self._deltas.items():
- for line_delta in self.deltas:
line_tk_delta = list[TokenSeq]()
for action in line_delta:
if action[0] == "+":
line_tk_delta.append([Add_id] + encode_basic(action[1:]))
elif action[0] == "-":
line_tk_delta.append([Del_id])
else:
raise ValueError(f"Invalid action: {action}")
+ deltas[k] = tuple(line_tk_delta)
- deltas.append(tuple(line_tk_delta))
return TkDelta(deltas)
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def to_change_tks(self, input: TokenSeq) -> TokenSeq:
+ lines = split_list(input, Newline_id)
- lines = split_list(input, Newline_id) if input else []
- if len(lines) > len(self.deltas):
- print_err(f"{self.deltas=}")
- print_err(f"{input=}")
- raise ValueError(
- f"Input is longer than delta: {len(lines)=} > {len(self.deltas)=}"
- )
+
new_lines = list[TokenSeq]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == Add_id:
new_lines.append(action)
elif action[0] == Del_id:
deleted = True
if deleted:
new_lines.append([Del_id] + line)
else:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == Add_id:
new_lines.append(action)
return join_list(new_lines, Newline_id)
===========changed ref 10===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
lines = input.split("\n")
- assert len(lines) <= len(self.deltas)
new_lines = list[str]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
|
coeditor.encoding/TkDelta.for_input_range | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
| # module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
- new_delta = self.deltas[line_range[0] : line_range[1]]
<0> return TkDelta(new_delta)
| ===========unchanged ref 0===========
at: coeditor.encoding
Add_id = get_tk_id(Add)
decode_tokens(tokens: TokenSeq, prettify: bool=False) -> str
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def get_line_change(self, line: int) -> tuple[TokenSeq, ...]:
+ return self._deltas.get(line, ())
+
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
"""The Tokenized version of :class:`StrDelta`."""
+ _deltas: Mapping[int, tuple[TokenSeq, ...]]
- deltas: Sequence[tuple[TokenSeq, ...]]
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __repr__(self):
line_diffs = "\n".join(
+ f" {k}: {tuple(map(decode_tokens, a))}"
- f" {l}: {tuple(map(decode_tokens, a))}"
+ for k, a in self._deltas.items()
- for l, a in enumerate(self.deltas)
if a
)
return f"TkDelta(\n{line_diffs}\n)"
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return sum(len(a) for a in self._deltas.values())
+
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return StrDelta(new_delta)
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self.deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
===========changed ref 8===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def apply_to_input(self, input: TokenSeq):
lines = split_list(input, Newline_id)
- assert len(lines) <= len(self.deltas)
new_lines = list[TokenSeq]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == Add_id:
new_lines.append(action[1:])
elif action[0] == Del_id:
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == Add_id:
new_lines.append(action[1:])
return join_list(new_lines, Newline_id)
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def to_tk_delta(self) -> "TkDelta":
+ deltas = dict[int, tuple[TokenSeq, ...]]()
- deltas = []
+ for k, line_delta in self._deltas.items():
- for line_delta in self.deltas:
line_tk_delta = list[TokenSeq]()
for action in line_delta:
if action[0] == "+":
line_tk_delta.append([Add_id] + encode_basic(action[1:]))
elif action[0] == "-":
line_tk_delta.append([Del_id])
else:
raise ValueError(f"Invalid action: {action}")
+ deltas[k] = tuple(line_tk_delta)
- deltas.append(tuple(line_tk_delta))
return TkDelta(deltas)
===========changed ref 10===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def to_change_tks(self, input: TokenSeq) -> TokenSeq:
+ lines = split_list(input, Newline_id)
- lines = split_list(input, Newline_id) if input else []
- if len(lines) > len(self.deltas):
- print_err(f"{self.deltas=}")
- print_err(f"{input=}")
- raise ValueError(
- f"Input is longer than delta: {len(lines)=} > {len(self.deltas)=}"
- )
+
new_lines = list[TokenSeq]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == Add_id:
new_lines.append(action)
elif action[0] == Del_id:
deleted = True
if deleted:
new_lines.append([Del_id] + line)
else:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == Add_id:
new_lines.append(action)
return join_list(new_lines, Newline_id)
|
coeditor.encoding/TkDelta.__bool__ | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> return bool(self._deltas)
| # module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __bool__(self) -> bool:
- return any(bool(a) for a in self.deltas)
<0>
| ===========unchanged ref 0===========
at: coeditor.encoding.TkDelta.to_str_delta
line_str_delta = list[str]()
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def get_line_change(self, line: int) -> tuple[TokenSeq, ...]:
+ return self._deltas.get(line, ())
+
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return TkDelta(new_delta)
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
"""The Tokenized version of :class:`StrDelta`."""
+ _deltas: Mapping[int, tuple[TokenSeq, ...]]
- deltas: Sequence[tuple[TokenSeq, ...]]
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __repr__(self):
line_diffs = "\n".join(
+ f" {k}: {tuple(map(decode_tokens, a))}"
- f" {l}: {tuple(map(decode_tokens, a))}"
+ for k, a in self._deltas.items()
- for l, a in enumerate(self.deltas)
if a
)
return f"TkDelta(\n{line_diffs}\n)"
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return sum(len(a) for a in self._deltas.values())
+
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return StrDelta(new_delta)
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self.deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 8===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def apply_to_input(self, input: TokenSeq):
lines = split_list(input, Newline_id)
- assert len(lines) <= len(self.deltas)
new_lines = list[TokenSeq]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == Add_id:
new_lines.append(action[1:])
elif action[0] == Del_id:
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == Add_id:
new_lines.append(action[1:])
return join_list(new_lines, Newline_id)
===========changed ref 10===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def to_tk_delta(self) -> "TkDelta":
+ deltas = dict[int, tuple[TokenSeq, ...]]()
- deltas = []
+ for k, line_delta in self._deltas.items():
- for line_delta in self.deltas:
line_tk_delta = list[TokenSeq]()
for action in line_delta:
if action[0] == "+":
line_tk_delta.append([Add_id] + encode_basic(action[1:]))
elif action[0] == "-":
line_tk_delta.append([Del_id])
else:
raise ValueError(f"Invalid action: {action}")
+ deltas[k] = tuple(line_tk_delta)
- deltas.append(tuple(line_tk_delta))
return TkDelta(deltas)
===========changed ref 11===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def to_change_tks(self, input: TokenSeq) -> TokenSeq:
+ lines = split_list(input, Newline_id)
- lines = split_list(input, Newline_id) if input else []
- if len(lines) > len(self.deltas):
- print_err(f"{self.deltas=}")
- print_err(f"{input=}")
- raise ValueError(
- f"Input is longer than delta: {len(lines)=} > {len(self.deltas)=}"
- )
+
new_lines = list[TokenSeq]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == Add_id:
new_lines.append(action)
elif action[0] == Del_id:
deleted = True
if deleted:
new_lines.append([Del_id] + line)
else:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == Add_id:
new_lines.append(action)
return join_list(new_lines, Newline_id)
|
coeditor.encoding/TkDelta.to_str_delta | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> deltas[k] = tuple(line_str_delta)
| # module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def to_str_delta(self) -> StrDelta:
+ deltas = dict[int, tuple[str, ...]]()
- deltas = []
+ for k, line_delta in self._deltas.items():
- for line_delta in self.deltas:
+ line_str_delta = list[str]()
- line_str_delta = []
for action in line_delta:
if action[0] == Add_id:
line_str_delta.append(f"+{decode_tokens(action[1:])}")
elif action[0] == Del_id:
line_str_delta.append("-")
else:
raise ValueError(f"Invalid action: {decode_tokens(action)}")
- deltas.append(tuple(line_str_delta))
<0> return StrDelta(deltas)
| ===========unchanged ref 0===========
at: coeditor.common
TokenSeq = list[Token]
split_list(lst: list[T1], sep: T1) -> list[list[T1]]
at: coeditor.encoding
Newline_id = get_tk_id("\n")
StrDelta(_deltas: Mapping[int, tuple[str, ...]])
TkDelta(_deltas: Mapping[int, tuple[TokenSeq, ...]])
at: coeditor.encoding.StrDelta
num_changes(self) -> int
at: coeditor.encoding.TkDelta.to_str_delta
line_str_delta = list[str]()
at: typing
cast(typ: Type[_T], val: Any) -> _T
cast(typ: str, val: Any) -> Any
cast(typ: object, val: Any) -> Any
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
"""The Tokenized version of :class:`StrDelta`."""
+ _deltas: Mapping[int, tuple[TokenSeq, ...]]
- deltas: Sequence[tuple[TokenSeq, ...]]
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return sum(len(a) for a in self._deltas.values())
+
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def get_line_change(self, line: int) -> tuple[TokenSeq, ...]:
+ return self._deltas.get(line, ())
+
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return TkDelta(new_delta)
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __repr__(self):
line_diffs = "\n".join(
+ f" {k}: {tuple(map(decode_tokens, a))}"
- f" {l}: {tuple(map(decode_tokens, a))}"
+ for k, a in self._deltas.items()
- for l, a in enumerate(self.deltas)
if a
)
return f"TkDelta(\n{line_diffs}\n)"
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 8===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return StrDelta(new_delta)
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self.deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 10===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def apply_to_input(self, input: TokenSeq):
lines = split_list(input, Newline_id)
- assert len(lines) <= len(self.deltas)
new_lines = list[TokenSeq]()
+ for i, line in enumerate(lines):
- for line, delta in zip(lines, self.deltas):
deleted = False
+ if delta := self._deltas.get(i):
- if delta:
for action in delta:
if action[0] == Add_id:
new_lines.append(action[1:])
elif action[0] == Del_id:
deleted = True
if not deleted:
new_lines.append(line)
- if len(self.deltas) == len(lines) + 1:
- delta = self.deltas[-1]
+ if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == Add_id:
new_lines.append(action[1:])
return join_list(new_lines, Newline_id)
===========changed ref 11===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def to_tk_delta(self) -> "TkDelta":
+ deltas = dict[int, tuple[TokenSeq, ...]]()
- deltas = []
+ for k, line_delta in self._deltas.items():
- for line_delta in self.deltas:
line_tk_delta = list[TokenSeq]()
for action in line_delta:
if action[0] == "+":
line_tk_delta.append([Add_id] + encode_basic(action[1:]))
elif action[0] == "-":
line_tk_delta.append([Del_id])
else:
raise ValueError(f"Invalid action: {action}")
+ deltas[k] = tuple(line_tk_delta)
- deltas.append(tuple(line_tk_delta))
return TkDelta(deltas)
|
coeditor.encoding/truncate_section | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> sec = sec[:limit]
| # module: coeditor.encoding
def truncate_section(
sec: TokenSeq,
direction: TruncateAt,
limit: int,
add_bos: bool = True,
+ inplace: bool = False,
) -> TokenSeq:
if len(sec) <= limit:
return sec
if direction.value == TruncateAt.Left.value:
+ if inplace:
+ del sec[:-limit]
+ else:
+ sec = sec[-limit:]
- sec = sec[-limit:]
if add_bos and sec:
sec[0] = BOS_id
else:
assert_eq(direction.value, TruncateAt.Right.value)
+ if inplace:
+ del sec[limit:]
+ else:
- sec = sec[:limit]
<0> if add_bos and sec:
sec[-1] = EOS_id
return sec
| ===========unchanged ref 0===========
at: coeditor.encoding
BOS_id = get_tk_id("<s>")
EOS_id = get_tk_id("</s>")
at: coeditor.encoding.break_into_chunks
chunks = list[TokenSeq]()
L = len(tks)
header = header_f(chunk_id)
progress = chunk_size - len(header) - this_overlap
start = max(0, end - progress)
start = i - this_overlap
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return StrDelta.num_changes(cast(StrDelta, self))
+
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def get_line_change(self, line: int) -> tuple[TokenSeq, ...]:
+ return self._deltas.get(line, ())
+
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return TkDelta(new_delta)
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
"""The Tokenized version of :class:`StrDelta`."""
+ _deltas: Mapping[int, tuple[TokenSeq, ...]]
- deltas: Sequence[tuple[TokenSeq, ...]]
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __repr__(self):
line_diffs = "\n".join(
+ f" {k}: {tuple(map(decode_tokens, a))}"
- f" {l}: {tuple(map(decode_tokens, a))}"
+ for k, a in self._deltas.items()
- for l, a in enumerate(self.deltas)
if a
)
return f"TkDelta(\n{line_diffs}\n)"
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return sum(len(a) for a in self._deltas.values())
+
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 8===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def to_str_delta(self) -> StrDelta:
+ deltas = dict[int, tuple[str, ...]]()
- deltas = []
+ for k, line_delta in self._deltas.items():
- for line_delta in self.deltas:
+ line_str_delta = list[str]()
- line_str_delta = []
for action in line_delta:
if action[0] == Add_id:
line_str_delta.append(f"+{decode_tokens(action[1:])}")
elif action[0] == Del_id:
line_str_delta.append("-")
else:
raise ValueError(f"Invalid action: {decode_tokens(action)}")
+ deltas[k] = tuple(line_str_delta)
- deltas.append(tuple(line_str_delta))
return StrDelta(deltas)
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return StrDelta(new_delta)
===========changed ref 10===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self.deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 11===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
===========changed ref 12===========
# module: coeditor.encoding
+ def change_tks_to_original_delta(change: TokenSeq) -> tuple[TokenSeq, TkDelta]:
+ diffs = split_list(change, Newline_id)
+ input_lines: list[TokenSeq] = []
+ line_delta: list[TokenSeq] = []
+ deltas = dict[int, tuple[TokenSeq, ...]]()
+
+ for diff_line in diffs:
+ if diff_line and diff_line[0] == Add_id:
+ line_delta.append(diff_line)
+ elif diff_line and diff_line[0] == Del_id:
+ line_delta.append([Del_id])
+ deltas[len(input_lines)] = tuple(line_delta)
+ del diff_line[:1]
+ input_lines.append(diff_line)
+ line_delta = []
+ else:
+ if line_delta:
+ deltas[len(input_lines)] = tuple(line_delta)
+ line_delta = []
+ input_lines.append(diff_line)
+ if line_delta:
+ deltas[len(input_lines)] = tuple(line_delta)
+
+ str_delta = TkDelta(deltas)
+ input = join_list(input_lines, Newline_id)
+ return input, str_delta
+ |
coeditor.encoding/truncate_sections | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> truncate_section(tks, truncate_dir, section_lens[i], add_bos, inplace=inplace)
| # module: coeditor.encoding
def truncate_sections(
total_limit: int,
*sections: tuple[TokenSeq, TruncateAt],
add_bos: bool,
+ inplace: bool = False,
) -> tuple[TokenSeq, ...]:
"""Truncate a list of token sequences to fit within a total length limit.
Earlier sections have priority over later sections.
"""
# first, reserve equal space to each section
section_lens = [total_limit // len(sections) for _ in sections]
remaining = total_limit
for i, (tks, _) in enumerate(sections):
l = min(len(tks), section_lens[i])
remaining -= l
section_lens[i] = l
assert remaining >= 0
# for the unused space, assign to ealier sections when possible
for i, (tks, _) in enumerate(sections):
if remaining <= 0:
break
inc = min(remaining, len(tks) - section_lens[i])
section_lens[i] += inc
remaining -= inc
return tuple(
- truncate_section(tks, truncate_dir, section_lens[i], add_bos)
<0> for i, (tks, truncate_dir) in enumerate(sections)
)
| ===========unchanged ref 0===========
at: coeditor._utils
assert_eq(x: T1, y: T1, message: Callable[[], str]=lambda: "") -> None
at: coeditor.common
TokenSeq = list[Token]
at: coeditor.encoding
BOS_id = get_tk_id("<s>")
EOS_id = get_tk_id("</s>")
TruncateAt()
at: coeditor.encoding.TruncateAt
Left = 0
Right = 1
at: enum.Enum
name: str
value: Any
_name_: str
_value_: Any
_member_names_: List[str] # undocumented
_member_map_: Dict[str, Enum] # undocumented
_value2member_map_: Dict[int, Enum] # undocumented
_ignore_: Union[str, List[str]]
_order_: str
__order__: str
===========changed ref 0===========
# module: coeditor.encoding
def truncate_section(
sec: TokenSeq,
direction: TruncateAt,
limit: int,
add_bos: bool = True,
+ inplace: bool = False,
) -> TokenSeq:
if len(sec) <= limit:
return sec
if direction.value == TruncateAt.Left.value:
+ if inplace:
+ del sec[:-limit]
+ else:
+ sec = sec[-limit:]
- sec = sec[-limit:]
if add_bos and sec:
sec[0] = BOS_id
else:
assert_eq(direction.value, TruncateAt.Right.value)
+ if inplace:
+ del sec[limit:]
+ else:
+ sec = sec[:limit]
- sec = sec[:limit]
if add_bos and sec:
sec[-1] = EOS_id
return sec
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return StrDelta.num_changes(cast(StrDelta, self))
+
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def get_line_change(self, line: int) -> tuple[TokenSeq, ...]:
+ return self._deltas.get(line, ())
+
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return TkDelta(new_delta)
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
"""The Tokenized version of :class:`StrDelta`."""
+ _deltas: Mapping[int, tuple[TokenSeq, ...]]
- deltas: Sequence[tuple[TokenSeq, ...]]
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __repr__(self):
line_diffs = "\n".join(
+ f" {k}: {tuple(map(decode_tokens, a))}"
- f" {l}: {tuple(map(decode_tokens, a))}"
+ for k, a in self._deltas.items()
- for l, a in enumerate(self.deltas)
if a
)
return f"TkDelta(\n{line_diffs}\n)"
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return sum(len(a) for a in self._deltas.values())
+
===========changed ref 8===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def to_str_delta(self) -> StrDelta:
+ deltas = dict[int, tuple[str, ...]]()
- deltas = []
+ for k, line_delta in self._deltas.items():
- for line_delta in self.deltas:
+ line_str_delta = list[str]()
- line_str_delta = []
for action in line_delta:
if action[0] == Add_id:
line_str_delta.append(f"+{decode_tokens(action[1:])}")
elif action[0] == Del_id:
line_str_delta.append("-")
else:
raise ValueError(f"Invalid action: {decode_tokens(action)}")
+ deltas[k] = tuple(line_str_delta)
- deltas.append(tuple(line_str_delta))
return StrDelta(deltas)
===========changed ref 10===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return StrDelta(new_delta)
===========changed ref 11===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self.deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 12===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
|
tests.coeditor.test_code_change/TestChangedSpan.check_changed_spans | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> assert_eq(line_change, n, extra_message=lambda: f"{i=}, {span.change=}")
| # module: tests.coeditor.test_code_change
class TestChangedSpan:
@staticmethod
def check_changed_spans(
changed_spans: Sequence[ChangedSpan], *expects: tuple[type, int]
):
print(f"{changed_spans=}\nchanges={[cs.change for cs in changed_spans]}")
assert_eq(
len(changed_spans),
len(expects),
)
for i, (change_type, n) in enumerate(expects):
span = changed_spans[i]
assert_eq(type(span.change), change_type)
nl_change = span.change.map(count_lines)
line_change = nl_change.later() - nl_change.earlier()
- assert_eq(line_change, n)
<0>
| ===========unchanged ref 0===========
at: tests.coeditor.test_code_change.TestChangedSpan
code1 = dedent(
"""\
import os
x = 1
y = x + 1
def f1():
global x
x *= 5
return x
if __name__ == "__main__":
print(f1() + x)
"""
)
scope1 = ChangeScope.from_tree(ProjectPath("code1", ""), code_to_module(code1))
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def get_line_change(self, line: int) -> tuple[TokenSeq, ...]:
+ return self._deltas.get(line, ())
+
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return StrDelta.num_changes(cast(StrDelta, self))
+
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return sum(len(a) for a in self._deltas.values())
+
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
"""The Tokenized version of :class:`StrDelta`."""
+ _deltas: Mapping[int, tuple[TokenSeq, ...]]
- deltas: Sequence[tuple[TokenSeq, ...]]
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return StrDelta(new_delta)
===========changed ref 8===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return TkDelta(new_delta)
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self.deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 10===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __repr__(self):
line_diffs = "\n".join(
+ f" {k}: {tuple(map(decode_tokens, a))}"
- f" {l}: {tuple(map(decode_tokens, a))}"
+ for k, a in self._deltas.items()
- for l, a in enumerate(self.deltas)
if a
)
return f"TkDelta(\n{line_diffs}\n)"
===========changed ref 11===========
# module: coeditor.encoding
def truncate_section(
sec: TokenSeq,
direction: TruncateAt,
limit: int,
add_bos: bool = True,
+ inplace: bool = False,
) -> TokenSeq:
if len(sec) <= limit:
return sec
if direction.value == TruncateAt.Left.value:
+ if inplace:
+ del sec[:-limit]
+ else:
+ sec = sec[-limit:]
- sec = sec[-limit:]
if add_bos and sec:
sec[0] = BOS_id
else:
assert_eq(direction.value, TruncateAt.Right.value)
+ if inplace:
+ del sec[limit:]
+ else:
+ sec = sec[:limit]
- sec = sec[:limit]
if add_bos and sec:
sec[-1] = EOS_id
return sec
===========changed ref 12===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def to_tk_delta(self) -> "TkDelta":
+ deltas = dict[int, tuple[TokenSeq, ...]]()
- deltas = []
+ for k, line_delta in self._deltas.items():
- for line_delta in self.deltas:
line_tk_delta = list[TokenSeq]()
for action in line_delta:
if action[0] == "+":
line_tk_delta.append([Add_id] + encode_basic(action[1:]))
elif action[0] == "-":
line_tk_delta.append([Del_id])
else:
raise ValueError(f"Invalid action: {action}")
+ deltas[k] = tuple(line_tk_delta)
- deltas.append(tuple(line_tk_delta))
return TkDelta(deltas)
===========changed ref 13===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def to_str_delta(self) -> StrDelta:
+ deltas = dict[int, tuple[str, ...]]()
- deltas = []
+ for k, line_delta in self._deltas.items():
- for line_delta in self.deltas:
+ line_str_delta = list[str]()
- line_str_delta = []
for action in line_delta:
if action[0] == Add_id:
line_str_delta.append(f"+{decode_tokens(action[1:])}")
elif action[0] == Del_id:
line_str_delta.append("-")
else:
raise ValueError(f"Invalid action: {decode_tokens(action)}")
+ deltas[k] = tuple(line_str_delta)
- deltas.append(tuple(line_str_delta))
return StrDelta(deltas)
|
coeditor.ctx_change_encoder/ChangedHeader.__repr__ | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> f"change={self.change_tks})"
| # module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class ChangedHeader:
def __repr__(self) -> str:
return (
f"ChangedHeader(path={self.path}, range={self.line_range}, "
- f"change={self.change})"
<0> )
| ===========unchanged ref 0===========
at: coeditor.ctx_change_encoder.ChangedHeader
change_tks: TkArray
at: spot.static_analysis
ProjectPath(typename: str, fields: Iterable[Tuple[str, Any]]=..., **kwargs: Any)
===========changed ref 0===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class ChangedHeader:
"""Represents the changes made to a header.
This format does not store parent syntax nodes and is more suitable for serialization.
"""
+ change_tks: TkArray
- change: Change[str]
# below are pre-edit attributes
type: str
line_range: LineRange
path: ProjectPath
===========changed ref 1===========
+ # module: coeditor.tk_array
+
+
===========changed ref 2===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @abstractmethod
+ def tolist(self) -> TokenSeq:
+ ...
+
===========changed ref 3===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @abstractmethod
+ def __len__(self) -> int:
+ ...
+
===========changed ref 4===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _TruncatedTkArray(TkArray):
+ def __len__(self) -> int:
+ return self.length
+
===========changed ref 5===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _JoinedTkArray(TkArray):
+ def __len__(self) -> int:
+ return self.length
+
===========changed ref 6===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _NumpyTkArray(TkArray):
+ data: np.ndarray
+
===========changed ref 7===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _NumpyTkArray(TkArray):
+ def __len__(self) -> int:
+ return len(self.data)
+
===========changed ref 8===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _NumpyTkArray(TkArray):
+ def tolist(self) -> TokenSeq:
+ return self.data.tolist()
+
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def get_line_change(self, line: int) -> tuple[TokenSeq, ...]:
+ return self._deltas.get(line, ())
+
===========changed ref 10===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @staticmethod
+ def new(tks: Sequence[int]) -> "TkArray":
+ return _NumpyTkArray(np.array(tks, dtype=np.int32))
+
===========changed ref 11===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ def __repr__(self) -> str:
+ return f"TkArray(length={len(self)}, text={repr(self._peek())})"
+
===========changed ref 12===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 13===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 14===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @staticmethod
+ def join(segs: Iterable["TkArray"], sep: int | None) -> "TkArray":
+ return _JoinedTkArray(tuple(segs), sep, sum(len(seg) for seg in segs))
+
===========changed ref 15===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _TruncatedTkArray(TkArray):
+ def tolist(self) -> TokenSeq:
+ return truncate_section(
+ self.original.tolist(), self.direction, self.length, inplace=True
+ )
+
===========changed ref 16===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return StrDelta.num_changes(cast(StrDelta, self))
+
===========changed ref 17===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ def truncate(self, dir: TruncateAt, new_len: int) -> "TkArray":
+ if new_len >= len(self):
+ return self
+ return _TruncatedTkArray(self, dir, new_len)
+
===========changed ref 18===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return sum(len(a) for a in self._deltas.values())
+
===========changed ref 19===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _TruncatedTkArray(TkArray):
+ "A chain-like data structure for concatenated `TkArray`s."
+ original: TkArray
+ direction: TruncateAt
+ length: int
+
===========changed ref 20===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _JoinedTkArray(TkArray):
+ "A chain-like data structure for concatenated `TkArray`s."
+
+ segs: tuple[TkArray, ...]
+ sep: int | None
+ length: int
+
===========changed ref 21===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ def _peek(self) -> str:
+ tks = self.tolist()
+ text = decode_tokens(tks)
+ if len(text) > 100:
+ text = text[:100] + "..."
+ return text
+
===========changed ref 22===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
"""The Tokenized version of :class:`StrDelta`."""
+ _deltas: Mapping[int, tuple[TokenSeq, ...]]
- deltas: Sequence[tuple[TokenSeq, ...]]
===========changed ref 23===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _JoinedTkArray(TkArray):
+ def tolist(self) -> TokenSeq:
+ result = TokenSeq()
+ for i, seg in enumerate(self.segs):
+ if self.sep is not None and i > 0:
+ result.append(self.sep)
+ result.extend(seg.tolist())
+ return result
+
===========changed ref 24===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
"""Stores the line deltas for each line. A line delta is a list of added lines
(starting with a '+') followed by optionally a `-` line
(for deleting the current line)."""
+ _deltas: Mapping[int, tuple[str, ...]]
- deltas: Sequence[tuple[str, ...]]
===========changed ref 25===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
+ a, b = line_range
+ new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = self.deltas[line_range[0] : line_range[1]]
return StrDelta(new_delta)
|
coeditor.ctx_change_encoder/TkC3Problem.references | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> return [ref for _, ref in self.named_references]
| # module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
@property
+ def references(self) -> Sequence[TkArray]:
- def references(self) -> Sequence[TokenSeq]:
- return [ref for name, ref in self.named_references]
<0>
| ===========unchanged ref 0===========
at: coeditor.ctx_change_encoder.C3ProblemGenerator
VERSION = "2.1"
max_span_lines: int = 500
max_lines_to_edit: int = 20
max_problems_per_elem: int = 4
at: coeditor.ctx_change_encoder.C3ProblemGenerator.process_change
edit_ranges = list[range]()
r = range(i, min(n_lines, i + self.max_lines_to_edit))
c = change_counts(r)
===========changed ref 0===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
"Tokenized contextual code change prediction problem."
+ input: TkArray
+ output: TkArray
- input_tks: TokenSeq
- output_tks: TokenSeq
path: ProjectPath
change_type: Change[None]
# most relevant to least relevant
+ named_references: Sequence[tuple[str, TkArray]]
- named_references: Sequence[tuple[str, TokenSeq]]
project: str
commit: CommitInfo | None
===========changed ref 1===========
# module: coeditor.ctx_change_encoder
class C3ProblemGenerator(ProjectChangeProcessor[C3Problem]):
+ VERSION = "2.1"
- VERSION = "2.0"
# change spans with more than this many lines will be ignored
max_span_lines: int = 500
+ max_lines_to_edit: int = 20
+ max_problems_per_elem: int = 4
===========changed ref 2===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class ChangedHeader:
def __repr__(self) -> str:
return (
f"ChangedHeader(path={self.path}, range={self.line_range}, "
+ f"change={self.change_tks})"
- f"change={self.change})"
)
===========changed ref 3===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class ChangedCodeSpan:
"""Represents the changes made to a span of code.
This format does not store parent syntax nodes and is more suitable for serialization.
"""
headers: Sequence[ChangedHeader]
+ change_tks: TkArray
- change: Change[str]
# below are pre-edit attributes
line_range: LineRange
module: ModuleName
===========changed ref 4===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class C3Problem:
"Contextual code change prediction problem."
span: ChangedCodeSpan
+ # the lines to be edited
+ edit_lines: Collection[int]
# most relevant to least relevant
relevant_changes: Sequence[ChangedCodeSpan]
# most relevant to least relevant
relevant_unchanged: Sequence[ChangedCodeSpan]
# some optional information about how the problem was generated
+ change_type: Change[None]
src_info: SrcInfo
===========changed ref 5===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class ChangedHeader:
"""Represents the changes made to a header.
This format does not store parent syntax nodes and is more suitable for serialization.
"""
+ change_tks: TkArray
- change: Change[str]
# below are pre-edit attributes
type: str
line_range: LineRange
path: ProjectPath
===========changed ref 6===========
+ # module: coeditor.tk_array
+
+
===========changed ref 7===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @abstractmethod
+ def tolist(self) -> TokenSeq:
+ ...
+
===========changed ref 8===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @abstractmethod
+ def __len__(self) -> int:
+ ...
+
===========changed ref 9===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _TruncatedTkArray(TkArray):
+ def __len__(self) -> int:
+ return self.length
+
===========changed ref 10===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _JoinedTkArray(TkArray):
+ def __len__(self) -> int:
+ return self.length
+
===========changed ref 11===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _NumpyTkArray(TkArray):
+ data: np.ndarray
+
===========changed ref 12===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _NumpyTkArray(TkArray):
+ def __len__(self) -> int:
+ return len(self.data)
+
===========changed ref 13===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _NumpyTkArray(TkArray):
+ def tolist(self) -> TokenSeq:
+ return self.data.tolist()
+
===========changed ref 14===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def get_line_change(self, line: int) -> tuple[TokenSeq, ...]:
+ return self._deltas.get(line, ())
+
===========changed ref 15===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @staticmethod
+ def new(tks: Sequence[int]) -> "TkArray":
+ return _NumpyTkArray(np.array(tks, dtype=np.int32))
+
===========changed ref 16===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ def __repr__(self) -> str:
+ return f"TkArray(length={len(self)}, text={repr(self._peek())})"
+
===========changed ref 17===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 18===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 19===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @staticmethod
+ def join(segs: Iterable["TkArray"], sep: int | None) -> "TkArray":
+ return _JoinedTkArray(tuple(segs), sep, sum(len(seg) for seg in segs))
+
===========changed ref 20===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _TruncatedTkArray(TkArray):
+ def tolist(self) -> TokenSeq:
+ return truncate_section(
+ self.original.tolist(), self.direction, self.length, inplace=True
+ )
+
===========changed ref 21===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return StrDelta.num_changes(cast(StrDelta, self))
+
===========changed ref 22===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ def truncate(self, dir: TruncateAt, new_len: int) -> "TkArray":
+ if new_len >= len(self):
+ return self
+ return _TruncatedTkArray(self, dir, new_len)
+
===========changed ref 23===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return sum(len(a) for a in self._deltas.values())
+
===========changed ref 24===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _TruncatedTkArray(TkArray):
+ "A chain-like data structure for concatenated `TkArray`s."
+ original: TkArray
+ direction: TruncateAt
+ length: int
+ |
coeditor.ctx_change_encoder/TkC3Problem.all_ctxs | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> return {name: ref.tolist() for name, ref in self.named_references}
| # module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
def all_ctxs(self) -> dict[str, TokenSeq]:
- return {name: ref for name, ref in self.named_references}
<0>
| ===========unchanged ref 0===========
at: coeditor.ctx_change_encoder.C3ProblemGenerator.process_change
processed_cspans = list[ChangedCodeSpan]()
problems = list[C3Problem]()
code_span = ChangedCodeSpan(
headers=[to_header(cs) for cs in span.parent_scopes],
change_tks=TkArray.new(change_tks),
line_range=span.line_range,
module=span.path.module,
)
prob = C3Problem(
code_span,
r,
relevant_changes=relevant_changes,
relevant_unchanged=relevant_unchanged,
change_type=span.change.map(lambda _: None),
src_info=src_info,
)
===========changed ref 0===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
@property
+ def references(self) -> Sequence[TkArray]:
- def references(self) -> Sequence[TokenSeq]:
+ return [ref for _, ref in self.named_references]
- return [ref for name, ref in self.named_references]
===========changed ref 1===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
"Tokenized contextual code change prediction problem."
+ input: TkArray
+ output: TkArray
- input_tks: TokenSeq
- output_tks: TokenSeq
path: ProjectPath
change_type: Change[None]
# most relevant to least relevant
+ named_references: Sequence[tuple[str, TkArray]]
- named_references: Sequence[tuple[str, TokenSeq]]
project: str
commit: CommitInfo | None
===========changed ref 2===========
# module: coeditor.ctx_change_encoder
class C3ProblemGenerator(ProjectChangeProcessor[C3Problem]):
+ VERSION = "2.1"
- VERSION = "2.0"
# change spans with more than this many lines will be ignored
max_span_lines: int = 500
+ max_lines_to_edit: int = 20
+ max_problems_per_elem: int = 4
===========changed ref 3===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class ChangedHeader:
def __repr__(self) -> str:
return (
f"ChangedHeader(path={self.path}, range={self.line_range}, "
+ f"change={self.change_tks})"
- f"change={self.change})"
)
===========changed ref 4===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class ChangedCodeSpan:
"""Represents the changes made to a span of code.
This format does not store parent syntax nodes and is more suitable for serialization.
"""
headers: Sequence[ChangedHeader]
+ change_tks: TkArray
- change: Change[str]
# below are pre-edit attributes
line_range: LineRange
module: ModuleName
===========changed ref 5===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class C3Problem:
"Contextual code change prediction problem."
span: ChangedCodeSpan
+ # the lines to be edited
+ edit_lines: Collection[int]
# most relevant to least relevant
relevant_changes: Sequence[ChangedCodeSpan]
# most relevant to least relevant
relevant_unchanged: Sequence[ChangedCodeSpan]
# some optional information about how the problem was generated
+ change_type: Change[None]
src_info: SrcInfo
===========changed ref 6===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class ChangedHeader:
"""Represents the changes made to a header.
This format does not store parent syntax nodes and is more suitable for serialization.
"""
+ change_tks: TkArray
- change: Change[str]
# below are pre-edit attributes
type: str
line_range: LineRange
path: ProjectPath
===========changed ref 7===========
+ # module: coeditor.tk_array
+
+
===========changed ref 8===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @abstractmethod
+ def tolist(self) -> TokenSeq:
+ ...
+
===========changed ref 9===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @abstractmethod
+ def __len__(self) -> int:
+ ...
+
===========changed ref 10===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _TruncatedTkArray(TkArray):
+ def __len__(self) -> int:
+ return self.length
+
===========changed ref 11===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _JoinedTkArray(TkArray):
+ def __len__(self) -> int:
+ return self.length
+
===========changed ref 12===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _NumpyTkArray(TkArray):
+ data: np.ndarray
+
===========changed ref 13===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _NumpyTkArray(TkArray):
+ def __len__(self) -> int:
+ return len(self.data)
+
===========changed ref 14===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _NumpyTkArray(TkArray):
+ def tolist(self) -> TokenSeq:
+ return self.data.tolist()
+
===========changed ref 15===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def get_line_change(self, line: int) -> tuple[TokenSeq, ...]:
+ return self._deltas.get(line, ())
+
===========changed ref 16===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @staticmethod
+ def new(tks: Sequence[int]) -> "TkArray":
+ return _NumpyTkArray(np.array(tks, dtype=np.int32))
+
===========changed ref 17===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ def __repr__(self) -> str:
+ return f"TkArray(length={len(self)}, text={repr(self._peek())})"
+
===========changed ref 18===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 19===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
===========changed ref 20===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @staticmethod
+ def join(segs: Iterable["TkArray"], sep: int | None) -> "TkArray":
+ return _JoinedTkArray(tuple(segs), sep, sum(len(seg) for seg in segs))
+
===========changed ref 21===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _TruncatedTkArray(TkArray):
+ def tolist(self) -> TokenSeq:
+ return truncate_section(
+ self.original.tolist(), self.direction, self.length, inplace=True
+ )
+
===========changed ref 22===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def num_changes(self) -> int:
+ "Return the number of changed lines in the delta."
+ return StrDelta.num_changes(cast(StrDelta, self))
+ |
coeditor.ctx_change_encoder/C3ProblemTokenizer.__post_init__ | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> self._offset_cache = LRUCache[int, TkArray](maxsize=100)
| # module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def __post_init__(self):
- self._change_cache = LRUCache[Change[str], TokenSeq](maxsize=500)
<0>
| ===========unchanged ref 0===========
at: coeditor.common
TokenSeq = list[Token]
at: coeditor.ctx_change_encoder.TkC3Problem
input: TkArray
output: TkArray
path: ProjectPath
change_type: Change[None]
named_references: Sequence[tuple[str, TkArray]]
project: str
commit: CommitInfo | None
at: coeditor.encoding.TokenizedEdit
input_tks: TokenSeq
output_tks: TokenSeq
main_tks: TokenSeq
path: ProjectPath
change_type: Change[None]
BAD_DELETE = encode_single_line("((bad delete))")
===========changed ref 0===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
+ @property
+ def input_tks(self) -> TokenSeq:
+ return self.input.tolist()
+
===========changed ref 1===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
+ @property
+ def output_tks(self) -> TokenSeq:
+ return self.output.tolist()
+
===========changed ref 2===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
def all_ctxs(self) -> dict[str, TokenSeq]:
+ return {name: ref.tolist() for name, ref in self.named_references}
- return {name: ref for name, ref in self.named_references}
===========changed ref 3===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
@property
+ def references(self) -> Sequence[TkArray]:
- def references(self) -> Sequence[TokenSeq]:
+ return [ref for _, ref in self.named_references]
- return [ref for name, ref in self.named_references]
===========changed ref 4===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
+ VERSION = "2.0"
- VERSION = "1.0"
max_ref_tks: int = 512
max_query_tks: int = 512
max_output_tks: int = 256
max_scope_tks: int = 128
- max_lines_to_edit: int = 20
ref_chunk_overlap: int = 32
- max_chunks_per_elem: int = 4
- skip_unchanged_problems: bool = True
===========changed ref 5===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
"Tokenized contextual code change prediction problem."
+ input: TkArray
+ output: TkArray
- input_tks: TokenSeq
- output_tks: TokenSeq
path: ProjectPath
change_type: Change[None]
# most relevant to least relevant
+ named_references: Sequence[tuple[str, TkArray]]
- named_references: Sequence[tuple[str, TokenSeq]]
project: str
commit: CommitInfo | None
===========changed ref 6===========
# module: coeditor.ctx_change_encoder
class C3ProblemGenerator(ProjectChangeProcessor[C3Problem]):
+ VERSION = "2.1"
- VERSION = "2.0"
# change spans with more than this many lines will be ignored
max_span_lines: int = 500
+ max_lines_to_edit: int = 20
+ max_problems_per_elem: int = 4
===========changed ref 7===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class ChangedHeader:
def __repr__(self) -> str:
return (
f"ChangedHeader(path={self.path}, range={self.line_range}, "
+ f"change={self.change_tks})"
- f"change={self.change})"
)
===========changed ref 8===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class ChangedCodeSpan:
"""Represents the changes made to a span of code.
This format does not store parent syntax nodes and is more suitable for serialization.
"""
headers: Sequence[ChangedHeader]
+ change_tks: TkArray
- change: Change[str]
# below are pre-edit attributes
line_range: LineRange
module: ModuleName
===========changed ref 9===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class C3Problem:
"Contextual code change prediction problem."
span: ChangedCodeSpan
+ # the lines to be edited
+ edit_lines: Collection[int]
# most relevant to least relevant
relevant_changes: Sequence[ChangedCodeSpan]
# most relevant to least relevant
relevant_unchanged: Sequence[ChangedCodeSpan]
# some optional information about how the problem was generated
+ change_type: Change[None]
src_info: SrcInfo
===========changed ref 10===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class ChangedHeader:
"""Represents the changes made to a header.
This format does not store parent syntax nodes and is more suitable for serialization.
"""
+ change_tks: TkArray
- change: Change[str]
# below are pre-edit attributes
type: str
line_range: LineRange
path: ProjectPath
===========changed ref 11===========
+ # module: coeditor.tk_array
+
+
===========changed ref 12===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @abstractmethod
+ def tolist(self) -> TokenSeq:
+ ...
+
===========changed ref 13===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @abstractmethod
+ def __len__(self) -> int:
+ ...
+
===========changed ref 14===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _TruncatedTkArray(TkArray):
+ def __len__(self) -> int:
+ return self.length
+
===========changed ref 15===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _JoinedTkArray(TkArray):
+ def __len__(self) -> int:
+ return self.length
+
===========changed ref 16===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _NumpyTkArray(TkArray):
+ data: np.ndarray
+
===========changed ref 17===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _NumpyTkArray(TkArray):
+ def __len__(self) -> int:
+ return len(self.data)
+
===========changed ref 18===========
+ # module: coeditor.tk_array
+ @dataclass(frozen=True)
+ class _NumpyTkArray(TkArray):
+ def tolist(self) -> TokenSeq:
+ return self.data.tolist()
+
===========changed ref 19===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def get_line_change(self, line: int) -> tuple[TokenSeq, ...]:
+ return self._deltas.get(line, ())
+
===========changed ref 20===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ @staticmethod
+ def new(tks: Sequence[int]) -> "TkArray":
+ return _NumpyTkArray(np.array(tks, dtype=np.int32))
+
===========changed ref 21===========
+ # module: coeditor.tk_array
+ class TkArray(ABC):
+ def __repr__(self) -> str:
+ return f"TkArray(length={len(self)}, text={repr(self._peek())})"
+
===========changed ref 22===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __bool__(self) -> bool:
+ return bool(self._deltas)
- return any(bool(a) for a in self.deltas)
|
coeditor.ctx_change_encoder/C3ProblemTokenizer._group_encode_changed_refs | Modified | temp-1 | bcbd5c8b6ee7e867f66e2ccdd55dfd8e220b8ae8 | Move lossless toknization logic and problem splitting logic into C3ProblemGenerator. | <0>:<add> join_list(segs),
| # module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def _group_encode_changed_refs(
self, changes: Sequence[ChangedCodeSpan]
) -> Sequence[TokenSeq]:
<s> c.module)
all_chunks = list[TokenSeq]()
for change_group in module2changes.values():
change_group.sort(key=lambda c: c.line_range[0])
+ segs = list[TokenSeq]()
- file_tks = TokenSeq()
# we'll add module as the chunk header, so we start within the module
last_scope = change_group[0].headers[:1]
for c in change_group:
header_diff = list[ChangedHeader]()
for i, h in enumerate(c.headers):
if i >= len(last_scope) or h.path != last_scope[i].path:
header_diff.append(h)
if header_diff:
header_tks = self._encode_headers(header_diff, 0)
+ segs.append(header_tks)
- file_tks.extend(header_tks)
- body_tks = self._encode_change(c.change.map(lambda c: c.strip("\n")))
- file_tks.extend(body_tks)
+ segs.append(c.change_tks.tolist())
+ segs.append([Newline_id, Newline_id])
- file_tks.append(Newline_id)
- file_tks.append(Newline_id)
last_scope = c.headers
+ segs.append([Newline_id])
-
mod_change = change_group[0].headers[:1]
mod_chunks = break_into_chunks(
- file_tks,
<0> lambda i: self._encode_headers(mod_change, i),
self.max_ref_tks,
overlap=self.ref_chunk_overlap,
)
all_chunks.extend(mod_chunks)
return all_chunks
| ===========above chunk 0===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def _group_encode_changed_refs(
self, changes: Sequence[ChangedCodeSpan]
) -> Sequence[TokenSeq]:
# offset: -1
module2changes = groupby(changes, lambda c: c.module)
all_chunks = list[TokenSeq]()
for change_group in module2changes.values():
</s>
===========unchanged ref 0===========
at: coeditor._utils
TimeLogger(times: dict[str, list[float]]=field(default_factory=dict))
repr_modified_args(instance, flatten: bool=False) -> str
at: coeditor.common
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
at: coeditor.ctx_change_encoder.C3ProblemTokenizer
max_ref_tks: int = 512
ref_chunk_overlap: int = 32
_encode_headers(scope_changes: Sequence[ChangedHeader], offset: int) -> TokenSeq
at: coeditor.ctx_change_encoder.C3ProblemTokenizer._group_encode_changed_refs
all_chunks = list[TokenSeq]()
segs = list[TokenSeq]()
at: coeditor.ctx_change_encoder.ChangedCodeSpan
headers: Sequence[ChangedHeader]
at: coeditor.encoding
Newline_id = get_tk_id("\n")
break_into_chunks(tks: TokenSeq, header_f: Callable[[int], TokenSeq], chunk_size: int, overlap: int, right_to_left: bool=False, add_bos: bool=True, max_return_chunks: int | None=None) -> list[TokenSeq]
at: dataclasses
dataclass(_cls: Type[_T]) -> Type[_T]
dataclass(*, init: bool=..., repr: bool=..., eq: bool=..., order: bool=..., unsafe_hash: bool=..., frozen: bool=...) -> Callable[[Type[_T]], Type[_T]]
dataclass(_cls: None) -> Callable[[Type[_T]], Type[_T]]
at: jedi.api
Script(code=None, *, path=None, environment=None, project=None)
===========changed ref 0===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def _encode_headers(
self, scope_changes: Sequence[ChangedHeader], offset: int
) -> TokenSeq:
+ segs = [c.change_tks.tolist() for c in scope_changes]
+ if offset != 0:
+ segs.append(self._get_offset_tks(offset).tolist())
+ segs.append([])
+ scope_tks = join_list(segs, Newline_id)
- scope_tks = join_list(
+ scope_tks = truncate_section(
+ scope_tks, TruncateAt.Left, self.max_scope_tks, inplace=True
- (self._encode_header_change(c) for c in scope_changes), Newline_id
)
- if offset != 0:
- scope_tks.extend(encode_basic(f"\n# offset: {offset}\n"))
- else:
- scope_tks.append(Newline_id)
- scope_tks = truncate_section(scope_tks, TruncateAt.Left, self.max_scope_tks)
return scope_tks
===========changed ref 1===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
- def _encode_change(self, change: Change[str]) -> TokenSeq:
- if (change_tks := self._change_cache.get(change)) is None:
- change_tks = change_to_tokens(change)
- self._change_cache[change] = change_tks
- return change_tks
-
===========changed ref 2===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
- def _tokenize_problems(self, problems: Sequence[C3Problem]) -> list[TkC3Problem]:
- return join_list(self.tokenize_problem(p) for p in problems)
-
===========changed ref 3===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
+ def _get_offset_tks(self, offset: int) -> TkArray:
+ if (tks := self._offset_cache.get(offset)) is None:
+ tks = TkArray.new(encode_basic(f"# offset: {offset}"))
+ self._offset_cache[offset] = tks
+ return tks
+
===========changed ref 4===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
- def _encode_header_change(self, ch: ChangedHeader) -> TokenSeq:
- hchange = ch.change.map(lambda s: s.strip("\n"))
- tks = truncate_section(
- change_to_tokens(hchange), TruncateAt.Left, self.max_scope_tks
- )
- return tks
-
===========changed ref 5===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
+ @property
+ def output_tks(self) -> TokenSeq:
+ return self.output.tolist()
+
===========changed ref 6===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
+ @property
+ def input_tks(self) -> TokenSeq:
+ return self.input.tolist()
+
===========changed ref 7===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def __post_init__(self):
+ self._offset_cache = LRUCache[int, TkArray](maxsize=100)
- self._change_cache = LRUCache[Change[str], TokenSeq](maxsize=500)
===========changed ref 8===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
def all_ctxs(self) -> dict[str, TokenSeq]:
+ return {name: ref.tolist() for name, ref in self.named_references}
- return {name: ref for name, ref in self.named_references}
===========changed ref 9===========
# module: coeditor.ctx_change_encoder
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
@property
+ def references(self) -> Sequence[TkArray]:
- def references(self) -> Sequence[TokenSeq]:
+ return [ref for _, ref in self.named_references]
- return [ref for name, ref in self.named_references]
===========changed ref 10===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
+ VERSION = "2.0"
- VERSION = "1.0"
max_ref_tks: int = 512
max_query_tks: int = 512
max_output_tks: int = 256
max_scope_tks: int = 128
- max_lines_to_edit: int = 20
ref_chunk_overlap: int = 32
- max_chunks_per_elem: int = 4
- skip_unchanged_problems: bool = True
|
tests.coeditor.test_code_change/TestChangedSpan.test_comments_change | Modified | temp-1 | e4e82e3f8fa3a3fef5e2d51584aaa7644a6e1f5b | Pre-commit hook changes. | <0>:<add> # belongs to main
| # module: tests.coeditor.test_code_change
class TestChangedSpan:
def test_comments_change(self):
# have to update code as well for the changes to count
code2 = dedent(
"""\
import os
+
-
x = 1
# belongs to f1
+
-
def f1():
"added doc string"
global x
x *= 5
return x + 1
+
-
- # belongs to main
<0> if __name__ == "__main__":
print(f1() + x + 1) # belongs to print
"""
)
scope2 = ChangeScope.from_tree(ProjectPath("code1", ""), code_to_module(code2))
self.check_changed_spans(
get_changed_spans(Modified(self.scope1, scope2)),
(Modified, -1),
(Modified, 1),
(Modified, 1),
)
| ===========unchanged ref 0===========
at: tests.coeditor.test_code_change.TestChangedSpan
code1 = dedent(
"""\
import os
x = 1
y = x + 1
def f1():
global x
x *= 5
return x
if __name__ == "__main__":
print(f1() + x)
"""
)
scope1 = ChangeScope.from_tree(ProjectPath("code1", ""), code_to_module(code1))
check_changed_spans(changed_spans: Sequence[ChangedSpan], *expects: tuple[type, int])
===========changed ref 0===========
# module: coeditor.encoding
"""
Only use this when we want to avoid encoding <add> and <del> as special tokens.
"""
_BaseTokenizer = spot.utils.DefaultTokenizer
Add = "<add>"
Del = "<del>"
"""
+ `_BaseTokenizer` extended with <add> and <del> tokens.
- `_BaseTokenizer` extended with <add> and <del> tokens.
Note that you should avoid using _Tokenizer.encode(text) directly as it
will incorrectly eat the spaces around <add> and <del>.
Use `encode_change` instead.
"""
_Tokenizer = copy.deepcopy(_BaseTokenizer)
_Tokenizer.add_tokens([Add, Del])
|
tests.spot.test_type_env/test_self_parameter_annotation | Modified | temp-1 | e4e82e3f8fa3a3fef5e2d51584aaa7644a6e1f5b | Pre-commit hook changes. | <0>:<add> return "1"
| # module: tests.spot.test_type_env
def test_self_parameter_annotation():
code = """
def foo(self: float, x: int) -> str:
- return "1"
<0> """
parsed = cst.parse_module(code)
_, types = collect_user_annotations(parsed)
assert_eq(types, [PythonType.from_name("int"), PythonType.from_name("str")])
n_segs = len(mask_types(parsed).code.split(SpecialNames.TypeMask))
assert_eq(n_segs, len(types) + 1)
sig = FunctionSignature.from_function(as_any(parsed.body[0]), False)
assert len(sig.params) == len(types) - 1
| ===========unchanged ref 0===========
at: spot.static_analysis
mask_types(m: CNode, type_mask=SpecialNames.TypeMask) -> CNode
FunctionSignature(params: dict[str, cst.Annotation | None], returns: cst.Annotation | None, in_class: bool)
at: spot.static_analysis.FunctionSignature
params: dict[str, cst.Annotation | None]
returns: cst.Annotation | None
in_class: bool
from_function(func: cst.FunctionDef, in_class: bool) -> "FunctionSignature"
at: spot.type_check
PythonType(head: tuple[str, ...], args: tuple["PythonType", ...]=())
at: spot.type_check.PythonType
head: tuple[str, ...]
args: tuple["PythonType", ...] = ()
from_name(name: str) -> "PythonType"
at: spot.type_env
collect_user_annotations(code: cst.Module | cst.MetadataWrapper) -> tuple[list[AnnotInfo], list["PythonType"]]
at: spot.utils
SpecialNames()
as_any(x) -> Any
assert_eq(x: T1, *xs: T1, extra_message: Callable[[], str]=lambda: "") -> None
at: spot.utils.SpecialNames
Return = "<return>"
Missing = "<missing>"
Lambda = "<lambda>"
Empty = "<empty>"
TypeMask = "SPOT_TYPE_MASK"
===========changed ref 0===========
# module: coeditor.encoding
"""
Only use this when we want to avoid encoding <add> and <del> as special tokens.
"""
_BaseTokenizer = spot.utils.DefaultTokenizer
Add = "<add>"
Del = "<del>"
"""
+ `_BaseTokenizer` extended with <add> and <del> tokens.
- `_BaseTokenizer` extended with <add> and <del> tokens.
Note that you should avoid using _Tokenizer.encode(text) directly as it
will incorrectly eat the spaces around <add> and <del>.
Use `encode_change` instead.
"""
_Tokenizer = copy.deepcopy(_BaseTokenizer)
_Tokenizer.add_tokens([Add, Del])
===========changed ref 1===========
# module: tests.coeditor.test_code_change
class TestChangedSpan:
def test_comments_change(self):
# have to update code as well for the changes to count
code2 = dedent(
"""\
import os
+
-
x = 1
# belongs to f1
+
-
def f1():
"added doc string"
global x
x *= 5
return x + 1
+
-
+ # belongs to main
- # belongs to main
if __name__ == "__main__":
print(f1() + x + 1) # belongs to print
"""
)
scope2 = ChangeScope.from_tree(ProjectPath("code1", ""), code_to_module(code2))
self.check_changed_spans(
get_changed_spans(Modified(self.scope1, scope2)),
(Modified, -1),
(Modified, 1),
(Modified, 1),
)
|
tests.spot.test_static_analysis/test_module_imports | Modified | temp-1 | e4e82e3f8fa3a3fef5e2d51584aaa7644a6e1f5b | Pre-commit hook changes. | <0>:<add> from infer.type import *
| # module: tests.spot.test_static_analysis
def test_module_imports():
import_code = """
import A
import B.C
from D import a, b as c
from .utils import x
from ..top import *
- from infer.type import *
<0> from . import E
"""
proj = project_from_code({"root.file1": import_code})
mod = proj.modules["root.file1"]
assert mod.imported_modules == {
"A",
"B",
"B.C",
"D",
"D.a",
"D.b",
"root",
"root.utils",
"root.utils.x",
"top",
"infer",
"infer.type",
"root.E",
}
| ===========unchanged ref 0===========
at: spot.static_analysis.PythonModule
functions: list[PythonFunction]
global_vars: list[PythonVariable]
classes: list[PythonClass]
name: ModuleName
imported_modules: set[ModuleName]
defined_symbols: dict[str, ProjectPath]
tree: cst.Module
location_map: dict[cst.CSTNode, CodeRange]
elem2pos: dict[ElemPath, CodeRange]
removed_comments: list[cst.CSTNode]
at: spot.static_analysis.PythonProject
root_dir: Path
modules: dict[ModuleName, PythonModule]
symlinks: dict[ModuleName, ModuleName]
module2src_file: dict[ModuleName, Path]
DefaultIgnoreDirs = {".venv", ".mypy_cache", ".git", "venv", "build"}
at: tests.spot.test_static_analysis
project_from_code(name2code: dict[ModuleName, str])
===========changed ref 0===========
# module: coeditor.encoding
"""
Only use this when we want to avoid encoding <add> and <del> as special tokens.
"""
_BaseTokenizer = spot.utils.DefaultTokenizer
Add = "<add>"
Del = "<del>"
"""
+ `_BaseTokenizer` extended with <add> and <del> tokens.
- `_BaseTokenizer` extended with <add> and <del> tokens.
Note that you should avoid using _Tokenizer.encode(text) directly as it
will incorrectly eat the spaces around <add> and <del>.
Use `encode_change` instead.
"""
_Tokenizer = copy.deepcopy(_BaseTokenizer)
_Tokenizer.add_tokens([Add, Del])
===========changed ref 1===========
# module: tests.spot.test_type_env
def test_self_parameter_annotation():
code = """
def foo(self: float, x: int) -> str:
+ return "1"
- return "1"
"""
parsed = cst.parse_module(code)
_, types = collect_user_annotations(parsed)
assert_eq(types, [PythonType.from_name("int"), PythonType.from_name("str")])
n_segs = len(mask_types(parsed).code.split(SpecialNames.TypeMask))
assert_eq(n_segs, len(types) + 1)
sig = FunctionSignature.from_function(as_any(parsed.body[0]), False)
assert len(sig.params) == len(types) - 1
===========changed ref 2===========
# module: tests.coeditor.test_code_change
class TestChangedSpan:
def test_comments_change(self):
# have to update code as well for the changes to count
code2 = dedent(
"""\
import os
+
-
x = 1
# belongs to f1
+
-
def f1():
"added doc string"
global x
x *= 5
return x + 1
+
-
+ # belongs to main
- # belongs to main
if __name__ == "__main__":
print(f1() + x + 1) # belongs to print
"""
)
scope2 = ChangeScope.from_tree(ProjectPath("code1", ""), code_to_module(code2))
self.check_changed_spans(
get_changed_spans(Modified(self.scope1, scope2)),
(Modified, -1),
(Modified, 1),
(Modified, 1),
)
|
tests.spot.test_static_analysis/test_fixture_usages | Modified | temp-1 | e4e82e3f8fa3a3fef5e2d51584aaa7644a6e1f5b | Pre-commit hook changes. | <0>:<add> return fix1 + use_gfix
| # module: tests.spot.test_static_analysis
def test_fixture_usages():
<s>root.test_1/fix1", True),
)
analysis.assert_usages(
"root.test_1/test1",
("root.test_1/fix1", True),
("root.test_1/fix2", True),
)
code_conf = """
# root.conftest
+ import pytest
- import pytest
@pytest.fixture(scope="session")
def use_gfix():
return 1
+
-
"""
code2 = """
# root.nest.test_2
def test_global_fix(fix1, use_gfix):
# fix1 should not be visible
return fix1 + use_gfix
"""
code_out = """
+ # test_out
- # test_out
def test_global_fix(fix1, use_gfix):
# both fix1 and use_gfix should not be visible
- return fix1 + use_gfix
<0> """
project = project_from_code(
{
"root.test_1": code1,
"root.conftest": code_conf,
"root.nest.test_2": code2,
"test_out": code_out,
}
)
analysis = full_analysis(project)
analysis.assert_usages(
"root.nest.test_2/test_global_fix",
("root.conftest/use_gfix", True),
)
analysis.assert_usages(
"test_out/test_global_fix",
)
code_global = """
# conftest
import pytest
@pytest.fixture
def fix1():
# should be visible everywhere
return 1
"""
project = project_from_code(
{"root.test_1": code1, "conftest": code_global, "test_out": code_out}
)
</s> | ===========above chunk 0===========
# module: tests.spot.test_static_analysis
def test_fixture_usages():
# offset: -1
code1 = """
# root.test_1
from pytest import fixture
import pytest as pt
@fixture
def fix1():
return 1
@pt.fixture
def fix2(fix1):
return fix1 + 1
def test1(fix1, fix2):
assert fix1 + 1 == fix2
"""
project = project_from_code({"root.test_1": code1})
analysis = full_analysis(project)
analysis.assert_usages(
"root.test_1/fix2",
("root.test_1/fix1", True),
)
analysis.assert_usages(
"root.test</s>
===========below chunk 0===========
# module: tests.spot.test_static_analysis
def test_fixture_usages():
# offset: 1
<s>test_1": code1, "conftest": code_global, "test_out": code_out}
)
analysis = full_analysis(project)
analysis.assert_usages(
"test_out/test_global_fix",
("conftest/fix1", True),
)
===========unchanged ref 0===========
at: tests.spot.test_static_analysis
project_from_code(name2code: dict[ModuleName, str])
full_analysis(project: PythonProject) -> UsageAnalysis
===========changed ref 0===========
# module: tests.spot.test_static_analysis
def test_constructors():
code1 = """
# root.file1
class A:
x: int
def __init__(self, x):
self.x = x
class B(MaybeNamedTuple):
x: int
y: int = field(init=False)
@maybe_dataclass
class C:
u: int
v: int
# not a dataclass since A has __init__
class D(A):
y: int
class E(B):
z: int
def use():
A(1)
B(1, 2)
C(1, 2)
+ def use2():
- def use2():
D(1)
E(1,2,3)
"""
project = project_from_code(
{
"root.file1": code1,
}
)
analysis = full_analysis(project)
analysis.assert_usages(
"root.file1/use",
("root.file1/A.__init__", True),
("root.file1/B.x", True),
("root.file1/B.y", True),
("root.file1/C.u", True),
("root.file1/C.v", True),
)
analysis.assert_usages(
"root.file1/use2",
("root.file1/A.__init__", True),
("root.file1/B.x", False),
("root.file1/B.y", False),
("root.file1/E.z", True),
)
code2 = """
# root.file2
@dataclass
class B:
x: int
y: int = field(init=False)
def use():
# these should not trigger constructor usage.
B
isinstance(x, B)
list[B]()
"""
project = project_from_code(
{
"</s>
===========changed ref 1===========
# module: tests.spot.test_static_analysis
def test_constructors():
# offset: 1
<s> B)
list[B]()
"""
project = project_from_code(
{
"root.file2": code2,
}
)
analysis = full_analysis(project)
analysis.assert_usages(
"root.file2/use",
)
===========changed ref 2===========
# module: tests.spot.test_static_analysis
def test_type_usages():
code1 = """
class Arg:
+ pass
- pass
class Namespace:
pass
+
-
class Struct:
def __init__(self, arg: Arg):
self.arg = arg
"""
code2 = """
from code1 import Namespace, Arg, Struct
def f(x: Namespace, v):
assert isinstance(v, Arg)
return Struct(v)
"""
project = project_from_code({"code1": code1, "code2": code2})
analysis = UsageAnalysis(project, record_type_usages=False)
analysis.assert_usages("code2/f", ("code1/Struct.__init__", True))
analysis = UsageAnalysis(project, record_type_usages=True)
analysis.assert_usages(
"code2/f",
("code1/Struct.__init__", True),
("code1/Struct", True),
("code1/Arg", True),
("code1/Namespace", True),
)
===========changed ref 3===========
# module: tests.spot.test_static_analysis
def test_light_stub_gen():
code = """
import typing
T1 = typing.TypeVar("T1") # keep
T2 = list[T1] # keep
number = int # keep
Count = 0 # drop
class A(typing.Generic[T1]): # keep
# drop body
x = 0
def __init__(self, x: T1):
self.x = x
+
-
def some_f() -> number: # drop
return 1
"""
expected = """
import typing
T1 = typing.TypeVar("T1")
T2 = list[T1]
number = int
class A(typing.Generic[T1]):
...
"""
stub = stub_from_module(
cst.parse_module(code), lightweight=True, rm_comments=True, rm_imports=False
)
if stub.code.strip() != expected.strip():
print(show_string_diff(stub.code.strip(), expected.strip()))
assert False, "stub code does not match expected."
===========changed ref 4===========
# module: tests.spot.test_static_analysis
def test_module_imports():
import_code = """
import A
import B.C
from D import a, b as c
from .utils import x
from ..top import *
+ from infer.type import *
- from infer.type import *
from . import E
"""
proj = project_from_code({"root.file1": import_code})
mod = proj.modules["root.file1"]
assert mod.imported_modules == {
"A",
"B",
"B.C",
"D",
"D.a",
"D.b",
"root",
"root.utils",
"root.utils.x",
"top",
"infer",
"infer.type",
"root.E",
}
|
tests.spot.test_static_analysis/test_element_location_and_code | Modified | temp-1 | e4e82e3f8fa3a3fef5e2d51584aaa7644a6e1f5b | Pre-commit hook changes. | <0>:<add> def f2(x, y, z):
| # module: tests.spot.test_static_analysis
def test_element_location_and_code():
code1 = """
def f1(x, y):
return (
x + y
)
@annotation
- def f2(x, y, z):
<0> return x + y + z
class A:
def m1(self, x):
return x + 1
@staticmethod
def m2(x):
return x + 2
"""
lines = code1.split("\n")
def get_code_from_range(range: CodeRange):
start = range.start.line - 1
end = range.end.line - 1
snippet = "\n".join(lines[start : end + 1])
return snippet
project = project_from_code({"file1": code1})
m = project.modules["file1"]
for f in m.all_funcs():
f_range = m.location_map[f.tree]
assert get_code_from_range(f_range) == f.code
| ===========unchanged ref 0===========
at: spot.static_analysis.PythonFunction
name: str
path: ProjectPath
parent_class: ProjectPath | None
tree: cst.FunctionDef
at: spot.static_analysis.PythonModule
location_map: dict[cst.CSTNode, CodeRange]
all_funcs() -> Generator[PythonFunction, None, None]
at: spot.static_analysis.PythonProject
modules: dict[ModuleName, PythonModule]
at: tests.spot.test_static_analysis
project_from_code(name2code: dict[ModuleName, str])
===========changed ref 0===========
# module: tests.spot.test_static_analysis
def test_constructors():
code1 = """
# root.file1
class A:
x: int
def __init__(self, x):
self.x = x
class B(MaybeNamedTuple):
x: int
y: int = field(init=False)
@maybe_dataclass
class C:
u: int
v: int
# not a dataclass since A has __init__
class D(A):
y: int
class E(B):
z: int
def use():
A(1)
B(1, 2)
C(1, 2)
+ def use2():
- def use2():
D(1)
E(1,2,3)
"""
project = project_from_code(
{
"root.file1": code1,
}
)
analysis = full_analysis(project)
analysis.assert_usages(
"root.file1/use",
("root.file1/A.__init__", True),
("root.file1/B.x", True),
("root.file1/B.y", True),
("root.file1/C.u", True),
("root.file1/C.v", True),
)
analysis.assert_usages(
"root.file1/use2",
("root.file1/A.__init__", True),
("root.file1/B.x", False),
("root.file1/B.y", False),
("root.file1/E.z", True),
)
code2 = """
# root.file2
@dataclass
class B:
x: int
y: int = field(init=False)
def use():
# these should not trigger constructor usage.
B
isinstance(x, B)
list[B]()
"""
project = project_from_code(
{
"</s>
===========changed ref 1===========
# module: tests.spot.test_static_analysis
def test_constructors():
# offset: 1
<s> B)
list[B]()
"""
project = project_from_code(
{
"root.file2": code2,
}
)
analysis = full_analysis(project)
analysis.assert_usages(
"root.file2/use",
)
===========changed ref 2===========
# module: tests.spot.test_static_analysis
def test_fixture_usages():
code1 = """
# root.test_1
from pytest import fixture
import pytest as pt
@fixture
def fix1():
return 1
@pt.fixture
def fix2(fix1):
return fix1 + 1
def test1(fix1, fix2):
assert fix1 + 1 == fix2
"""
project = project_from_code({"root.test_1": code1})
analysis = full_analysis(project)
analysis.assert_usages(
"root.test_1/fix2",
("root.test_1/fix1", True),
)
analysis.assert_usages(
"root.test_1/test1",
("root.test_1/fix1", True),
("root.test_1/fix2", True),
)
code_conf = """
# root.conftest
+ import pytest
- import pytest
@pytest.fixture(scope="session")
def use_gfix():
return 1
+
-
"""
code2 = """
# root.nest.test_2
def test_global_fix(fix1, use_gfix):
# fix1 should not be visible
return fix1 + use_gfix
"""
code_out = """
+ # test_out
- # test_out
def test_global_fix(fix1, use_gfix):
# both fix1 and use_gfix should not be visible
+ return fix1 + use_gfix
- return fix1 + use_gfix
"""
project = project_from_code(
{
"root.test_1": code1,
"root.conftest": code_conf,
"root.nest.test_2": code2,
"test_out": code_out,
}
)
analysis = full_analysis(project)
analysis.assert_usages(
"</s>
===========changed ref 3===========
# module: tests.spot.test_static_analysis
def test_fixture_usages():
# offset: 1
<s>
}
)
analysis = full_analysis(project)
analysis.assert_usages(
"root.nest.test_2/test_global_fix",
("root.conftest/use_gfix", True),
)
analysis.assert_usages(
"test_out/test_global_fix",
)
code_global = """
# conftest
import pytest
@pytest.fixture
def fix1():
# should be visible everywhere
return 1
"""
project = project_from_code(
{"root.test_1": code1, "conftest": code_global, "test_out": code_out}
)
analysis = full_analysis(project)
analysis.assert_usages(
"test_out/test_global_fix",
("conftest/fix1", True),
)
===========changed ref 4===========
# module: tests.spot.test_static_analysis
def test_type_usages():
code1 = """
class Arg:
+ pass
- pass
class Namespace:
pass
+
-
class Struct:
def __init__(self, arg: Arg):
self.arg = arg
"""
code2 = """
from code1 import Namespace, Arg, Struct
def f(x: Namespace, v):
assert isinstance(v, Arg)
return Struct(v)
"""
project = project_from_code({"code1": code1, "code2": code2})
analysis = UsageAnalysis(project, record_type_usages=False)
analysis.assert_usages("code2/f", ("code1/Struct.__init__", True))
analysis = UsageAnalysis(project, record_type_usages=True)
analysis.assert_usages(
"code2/f",
("code1/Struct.__init__", True),
("code1/Struct", True),
("code1/Arg", True),
("code1/Namespace", True),
)
|
spot.data/output_ids_as_seqs | Modified | temp-1 | 237e7217d129b1ba160716f2fcb074989bbdd22d | Implement training for the new data formats. | <0>:<add> if _min_extra_id <= tk <= _max_extra_id:
| # module: spot.data
def output_ids_as_seqs(output_ids: Iterable[Token]) -> dict[Token, TokenSeq]:
"""Parse the CodeT5 model's output as a series of key-value pairs.
<pad>,<mask>, or <s> or </s> tokens are filtered out."""
buff = TokenSeq()
key = None
seqs = dict[Token, TokenSeq]()
tokenizer = DefaultTokenizer
- min_tk = tokenizer.additional_special_tokens_ids[0]
- max_tk = tokenizer.additional_special_tokens_ids[-1]
bos_tk = tokenizer.bos_token_id
eos_tk = tokenizer.eos_token_id
for tk in output_ids:
if tk <= 0 or tk == bos_tk or tk == eos_tk:
continue # pad, mask token, or sequence token
- if min_tk <= tk <= max_tk:
<0> if key is not None:
seqs[key] = buff
buff = TokenSeq()
key = tk
else:
buff.append(tk)
if key is not None:
seqs[key] = buff
return seqs
| ===========unchanged ref 0===========
at: spot.tokenized_src
Token = int
TokenSeq = list[int] # might need to make this more space-efficient
at: spot.utils
DefaultTokenizer = load_tokenizer_spot()
at: transformers.tokenization_utils_base.SpecialTokensMixin
SPECIAL_TOKENS_ATTRIBUTES = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
"additional_special_tokens",
]
bos_token_id(self, value)
NoneType()
eos_token_id(self, value)
NoneType()
additional_special_tokens_ids(self, values)
at: typing
Iterable = _alias(collections.abc.Iterable, 1)
|
coeditor.encoding/StrDelta.for_input_range | Modified | temp-1 | 237e7217d129b1ba160716f2fcb074989bbdd22d | Implement training for the new data formats. | <0>:<add> new_delta = {k: v for k, v in self._deltas.items() if a <= k < b}
| # module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
a, b = line_range
- new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
<0> return StrDelta(new_delta)
| ===========unchanged ref 0===========
at: coeditor.encoding
StrDelta(_deltas: Mapping[int, tuple[str, ...]])
at: coeditor.encoding.StrDelta
_deltas: Mapping[int, tuple[str, ...]]
at: typing.Mapping
items() -> AbstractSet[Tuple[_KT, _VT_co]]
===========changed ref 0===========
# module: spot.data
+ _min_extra_id = DefaultTokenizer.additional_special_tokens_ids[0]
+ _max_extra_id = DefaultTokenizer.additional_special_tokens_ids[-1]
===========changed ref 1===========
# module: spot.data
def output_ids_as_seqs(output_ids: Iterable[Token]) -> dict[Token, TokenSeq]:
"""Parse the CodeT5 model's output as a series of key-value pairs.
<pad>,<mask>, or <s> or </s> tokens are filtered out."""
buff = TokenSeq()
key = None
seqs = dict[Token, TokenSeq]()
tokenizer = DefaultTokenizer
- min_tk = tokenizer.additional_special_tokens_ids[0]
- max_tk = tokenizer.additional_special_tokens_ids[-1]
bos_tk = tokenizer.bos_token_id
eos_tk = tokenizer.eos_token_id
for tk in output_ids:
if tk <= 0 or tk == bos_tk or tk == eos_tk:
continue # pad, mask token, or sequence token
+ if _min_extra_id <= tk <= _max_extra_id:
- if min_tk <= tk <= max_tk:
if key is not None:
seqs[key] = buff
buff = TokenSeq()
key = tk
else:
buff.append(tk)
if key is not None:
seqs[key] = buff
return seqs
|
coeditor.encoding/TkDelta.for_input_range | Modified | temp-1 | 237e7217d129b1ba160716f2fcb074989bbdd22d | Implement training for the new data formats. | <0>:<add> new_delta = {k: v for k, v in self._deltas.items() if a <= k < b}
| # module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
a, b = line_range
- new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
<0> return TkDelta(new_delta)
| ===========unchanged ref 0===========
at: coeditor.encoding.TkDelta
_deltas: Mapping[int, tuple[TokenSeq, ...]]
at: coeditor.encoding.TkDelta.__repr__
line_diffs = "\n".join(
f" {k}: {tuple(map(decode_tokens, a))}"
for k, a in self._deltas.items()
if a
)
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def shifted(self, shift_lines: int) -> Self:
+ return StrDelta({k + shift_lines: v for k, v in self._deltas.items()})
+
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def shifted(self, shift_lines: int) -> Self:
+ return StrDelta({k + shift_lines: v for k, v in self._deltas.items()})
+
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
a, b = line_range
+ new_delta = {k: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
return StrDelta(new_delta)
===========changed ref 3===========
# module: spot.data
+ _min_extra_id = DefaultTokenizer.additional_special_tokens_ids[0]
+ _max_extra_id = DefaultTokenizer.additional_special_tokens_ids[-1]
===========changed ref 4===========
# module: spot.data
def output_ids_as_seqs(output_ids: Iterable[Token]) -> dict[Token, TokenSeq]:
"""Parse the CodeT5 model's output as a series of key-value pairs.
<pad>,<mask>, or <s> or </s> tokens are filtered out."""
buff = TokenSeq()
key = None
seqs = dict[Token, TokenSeq]()
tokenizer = DefaultTokenizer
- min_tk = tokenizer.additional_special_tokens_ids[0]
- max_tk = tokenizer.additional_special_tokens_ids[-1]
bos_tk = tokenizer.bos_token_id
eos_tk = tokenizer.eos_token_id
for tk in output_ids:
if tk <= 0 or tk == bos_tk or tk == eos_tk:
continue # pad, mask token, or sequence token
+ if _min_extra_id <= tk <= _max_extra_id:
- if min_tk <= tk <= max_tk:
if key is not None:
seqs[key] = buff
buff = TokenSeq()
key = tk
else:
buff.append(tk)
if key is not None:
seqs[key] = buff
return seqs
|
coeditor.encoding/TkDelta.__bool__ | Modified | temp-1 | 237e7217d129b1ba160716f2fcb074989bbdd22d | Implement training for the new data formats. | <0>:<add> return self.num_changes() > 0
| # module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __bool__(self) -> bool:
- return bool(self._deltas)
<0>
| ===========unchanged ref 0===========
at: coeditor.encoding
TkDelta(_deltas: Mapping[int, tuple[TokenSeq, ...]])
at: coeditor.encoding.TkDelta
_deltas: Mapping[int, tuple[TokenSeq, ...]]
at: coeditor.encoding.TkDelta.for_input_range
a, b = line_range
a, b = line_range
at: typing.Mapping
items() -> AbstractSet[Tuple[_KT, _VT_co]]
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
a, b = line_range
+ new_delta = {k: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
return TkDelta(new_delta)
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def shifted(self, shift_lines: int) -> Self:
+ return StrDelta({k + shift_lines: v for k, v in self._deltas.items()})
+
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def shifted(self, shift_lines: int) -> Self:
+ return StrDelta({k + shift_lines: v for k, v in self._deltas.items()})
+
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def for_input_range(self, line_range: tuple[int, int]) -> Self:
"""Compute the delta for the given line range."""
a, b = line_range
+ new_delta = {k: v for k, v in self._deltas.items() if a <= k < b}
- new_delta = {k - a: v for k, v in self._deltas.items() if a <= k < b}
return StrDelta(new_delta)
===========changed ref 4===========
# module: spot.data
+ _min_extra_id = DefaultTokenizer.additional_special_tokens_ids[0]
+ _max_extra_id = DefaultTokenizer.additional_special_tokens_ids[-1]
===========changed ref 5===========
# module: spot.data
def output_ids_as_seqs(output_ids: Iterable[Token]) -> dict[Token, TokenSeq]:
"""Parse the CodeT5 model's output as a series of key-value pairs.
<pad>,<mask>, or <s> or </s> tokens are filtered out."""
buff = TokenSeq()
key = None
seqs = dict[Token, TokenSeq]()
tokenizer = DefaultTokenizer
- min_tk = tokenizer.additional_special_tokens_ids[0]
- max_tk = tokenizer.additional_special_tokens_ids[-1]
bos_tk = tokenizer.bos_token_id
eos_tk = tokenizer.eos_token_id
for tk in output_ids:
if tk <= 0 or tk == bos_tk or tk == eos_tk:
continue # pad, mask token, or sequence token
+ if _min_extra_id <= tk <= _max_extra_id:
- if min_tk <= tk <= max_tk:
if key is not None:
seqs[key] = buff
buff = TokenSeq()
key = tk
else:
buff.append(tk)
if key is not None:
seqs[key] = buff
return seqs
|
coeditor.retrieval_model/RetrievalEditorModel.train_on_data | Modified | temp-1 | 237e7217d129b1ba160716f2fcb074989bbdd22d | Implement training for the new data formats. | <0>:<add> cprint("blue", "Number of training batches (estimate):", epoch_steps)
| <s>model
class RetrievalEditorModel(T5PreTrainedModel):
def train_on_data(
self,
training_name: str,
+ train_loader: "C3DataLoader",
+ eval_loader: "C3DataLoader",
- train_data: TokenizedEditDataset,
- eval_data: TokenizedEditDataset,
train_args: "TrainingArgs",
- batch_args: "BatchArgs",
- eval_batch_args: "BatchArgs",
) -> None:
<s>LoopOutput:
+ metrics = model.eval_loss_on_loader(as_any(dataloader))
- metrics = model.eval_loss_on_loader(dataloader)
n_samples = metrics["loss_per_ex"].weight
metrics = {
f"{metric_key_prefix}_{k}": v.mean() for k, v in metrics.items()
}
return EvalLoopOutput(
predictions=tuple(),
label_ids=tuple(),
metrics=metrics,
num_samples=n_samples,
)
+ epoch_steps = len(train_loader)
- epoch_steps = len(train_lodader)
- print("Number of training batches (estimate):", epoch_steps)
<0> trainer_args = Seq2SeqTrainingArguments(
output_dir=str(train_dir),
overwrite_output_dir=True,
evaluation_strategy="epoch",
save_strategy="epoch",
logging_steps=max(1, epoch_steps // 10),
num_train_epochs=train_args.max_train_epochs,
save_total_limit=2,
lr_scheduler_type=train_args.lr_scheduler_type,
learning_rate=train_args.learning_rate,
weight_decay=train_args.weight_decay,
metric_for_best_model="loss_per_tk",
greater_is_better=False,
fp16=True,
load_best_model_at_end=True,
push_to_hub=False</s> | ===========above chunk 0===========
<s>Model(T5PreTrainedModel):
def train_on_data(
self,
training_name: str,
+ train_loader: "C3DataLoader",
+ eval_loader: "C3DataLoader",
- train_data: TokenizedEditDataset,
- eval_data: TokenizedEditDataset,
train_args: "TrainingArgs",
- batch_args: "BatchArgs",
- eval_batch_args: "BatchArgs",
) -> None:
# offset: -1
<s>_edits()
- eval_edits = eval_data.all_edits()
- assert len(train_edits) > 0, "No training edits provided."
-
- train_lodader = edits_to_dataloader(
- train_edits, args=batch_args, shuffle=True, desc="Training Epoch"
- )
- eval_loader = edits_to_dataloader(
- eval_edits,
- args=eval_batch_args,
- shuffle=False,
- desc="Eval Epoch",
+ eval_loader.tqdm_args = {"disable": True}
- tqdm_args={"disable": True},
- )
model = self
# model = torch.compile(self.to("cuda")) # pytorch doesn't support python 3.11 yet.
class DynamicTrainer(Seq2SeqTrainer):
def get_train_dataloader(self):
+ return train_loader
- return train_lodader
def get_eval_dataloader(self, eval_dataset):
return eval_loader
def evaluation_loop(
self,
dataloader,
description: str,
prediction_loss_only: Optional[bool] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
) -> EvalLoopOutput:
+ metrics = model.eval_loss_on_loader(as_any(dataloader))
- </s>
===========above chunk 1===========
<s>Model(T5PreTrainedModel):
def train_on_data(
self,
training_name: str,
+ train_loader: "C3DataLoader",
+ eval_loader: "C3DataLoader",
- train_data: TokenizedEditDataset,
- eval_data: TokenizedEditDataset,
train_args: "TrainingArgs",
- batch_args: "BatchArgs",
- eval_batch_args: "BatchArgs",
) -> None:
# offset: -2
train_dir = get_model_dir(trained=False) / training_name
-
- train_edits = train_data.all_edits()
- eval_edits = eval_data.all_edits()
- assert len(train_ed</s>
===========below chunk 0===========
<s>EditorModel(T5PreTrainedModel):
def train_on_data(
self,
training_name: str,
+ train_loader: "C3DataLoader",
+ eval_loader: "C3DataLoader",
- train_data: TokenizedEditDataset,
- eval_data: TokenizedEditDataset,
train_args: "TrainingArgs",
- batch_args: "BatchArgs",
- eval_batch_args: "BatchArgs",
) -> None:
# offset: 1
<s>
fp16=True,
load_best_model_at_end=True,
push_to_hub=False,
report_to=["wandb"],
disable_tqdm=True,
# torchdynamo="inductor", # use compiled model
)
trainer = DynamicTrainer(
self,
trainer_args,
callbacks=[EarlyStoppingCallback(early_stopping_patience=1)],
)
trainer.train()
save_dir = get_model_dir(trained=True) / training_name
self.save(save_dir)
print("Model saved to:", save_dir)
===========unchanged ref 0===========
at: coeditor._utils
as_any(x) -> Any
TimeLogger(times: dict[str, list[float]]=field(default_factory=dict))
at: coeditor.common
get_model_dir(trained=True) -> Path
at: coeditor.common.WeightedSum
sum: V
weight: W
mean() -> float
at: coeditor.retrieval_model
AttentionMode()
at: coeditor.retrieval_model.C3DataLoader
all_probs: Sequence[C3Problem]
tokenizer: C3ProblemTokenizer
batch_args: BatchArgs
shuffle: bool
desc: str
tqdm_args: dict | None = None
chunk_size: int = 1000
workers: int = 10
at: coeditor.retrieval_model.RetrievalEditorModel
is_parallelizable = False
supports_gradient_checkpointing = False
eval_loss_on_loader(self, dataloader: "C3DataLoader")
eval_loss_on_loader(dataloader: "C3DataLoader")
decorate_autocast(dataloader: "C3DataLoader")
at: coeditor.retrieval_model.RetrievalEditorModel.__init__
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
self.encoder = T5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
self.decoder = T5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
amode = getattr(config, "attention_mode", AttentionMode.bidirectional.name)
self.attention_mode = AttentionMode[amode]
self.tlogger = TimeLogger()
|
coeditor.retrieval_model/RetrievalEditorModel.eval_loss_on_loader | Modified | temp-1 | 237e7217d129b1ba160716f2fcb074989bbdd22d | Implement training for the new data formats. | <0>:<add> for batch in dataloader.__iter__():
| # module: coeditor.retrieval_model
class RetrievalEditorModel(T5PreTrainedModel):
@torch.no_grad()
@torch.autocast("cuda")
+ def eval_loss_on_loader(self, dataloader: "C3DataLoader"):
- def eval_loss_on_loader(self, dataloader):
core = self
previous = core.training
core.eval()
metrics = dict[str, WeightedSum]()
- for batch in tqdm(
- dataloader, desc="evaluate loss", unit="batch", smoothing=0.0
- ):
<0> batch["input_ids"] = batch["input_ids"].to(core.device)
batch["labels"] = batch["labels"].to(core.device)
outputs = core.forward(**batch)
assert isinstance(outputs, Seq2SeqLMOutput)
if CheckNaN:
if outputs.logits.isnan().any():
print("loss:", not_none(outputs.loss).item())
print("batch:", batch)
raise ValueError("NaN in logits")
for k, v in compute_loss_metrics(outputs.logits, batch["labels"]).items():
v = v + metrics.get(k, WeightedSum(0.0, 0))
metrics[k] = v
core.train(mode=previous)
return metrics
| ===========unchanged ref 0===========
at: coeditor.common
get_model_dir(trained=True) -> Path
WeightedSum(sum: V, weight: W)
at: coeditor.retrieval_model.C3DataLoader
__iter__() -> Iterable[dict]
at: coeditor.retrieval_model.RetrievalEditorModel
save(save_dir: Path, is_main_process: bool=True, state_dict: Optional[dict]=None, save_function: Callable=torch.save, push_to_hub: bool=False, max_shard_size: Union[int, str]="10GB", safe_serialization: bool=False, variant: Optional[str]=None, /, *, is_main_process: bool=True, state_dict: Optional[dict]=None, save_function: Callable=torch.save, push_to_hub: bool=False, max_shard_size: Union[int, str]="10GB", safe_serialization: bool=False, variant: Optional[str]=None, private: Optional[bool]=None, use_auth_token: Optional[Union[bool, str]]=None, repo_url: Optional[str]=None, organization: Optional[str]=None)
forward(input_ids: LongTensor | None=None, references: Sequence[TokenSeq] | None=None, query_ref_list: Sequence[Sequence[int]] | None=None, labels: LongTensor | None=None, encoder_outputs: "RetrivalEncoderOutputs | None"=None, decoder_input_ids: LongTensor | None=None, decoder_inputs_embeds: Tensor | None=None, decoder_attention_mask: Tensor | None=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, tqdm=None) -> Seq2SeqLMOutput
===========unchanged ref 1===========
at: coeditor.retrieval_model.RetrievalEditorModel.train_on_data
DynamicTrainer(model: Union["PreTrainedModel", nn.Module]=None, args: "TrainingArguments"=None, data_collator: Optional["DataCollator"]=None, train_dataset: Optional[Dataset]=None, eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]]=None, tokenizer: Optional["PreTrainedTokenizerBase"]=None, model_init: Optional[Callable[[], "PreTrainedModel"]]=None, compute_metrics: Optional[Callable[["EvalPrediction"], Dict]]=None, callbacks: Optional[List["TrainerCallback"]]=None, optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]=(None, None), preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]]=None)
trainer_args = Seq2SeqTrainingArguments(
output_dir=str(train_dir),
overwrite_output_dir=True,
evaluation_strategy="epoch",
save_strategy="epoch",
logging_steps=max(1, epoch_steps // 10),
num_train_epochs=train_args.max_train_epochs,
save_total_limit=2,
lr_scheduler_type=train_args.lr_scheduler_type,
learning_rate=train_args.learning_rate,
weight_decay=train_args.weight_decay,
metric_for_best_model="loss_per_tk",
greater_is_better=False,
fp16=True,
load_best_model_at_end=True,
push_to_hub=False,
report_to=["wandb"],
disable_tqdm=True,
# torchdynamo="inductor", # use compiled model
)
at: torch.amp.autocast_mode
autocast(device_type: str, dtype: Optional[_dtype]=None, enabled: bool=True, cache_enabled: Optional[bool]=None)
===========unchanged ref 2===========
at: torch.autograd.grad_mode
no_grad()
at: torch.nn.modules.module.Module
dump_patches: bool = False
_version: int = 1
training: bool
_parameters: Dict[str, Optional[Parameter]]
_buffers: Dict[str, Optional[Tensor]]
_non_persistent_buffers_set: Set[str]
_backward_pre_hooks: Dict[int, Callable]
_backward_hooks: Dict[int, Callable]
_is_full_backward_hook: Optional[bool]
_forward_hooks: Dict[int, Callable]
_forward_hooks_with_kwargs: Dict[int, bool]
_forward_hooks_always_called: Dict[int, bool]
_forward_pre_hooks: Dict[int, Callable]
_forward_pre_hooks_with_kwargs: Dict[int, bool]
_state_dict_hooks: Dict[int, Callable]
_load_state_dict_pre_hooks: Dict[int, Callable]
_state_dict_pre_hooks: Dict[int, Callable]
_load_state_dict_post_hooks: Dict[int, Callable]
_modules: Dict[str, Optional['Module']]
call_super_init: bool = False
_compiled_call_impl : Optional[Callable] = None
forward: Callable[..., Any] = _forward_unimplemented
__call__ : Callable[..., Any] = _wrapped_call_impl
T_destination = TypeVar('T_destination', bound=Dict[str, Any])
eval() -> T
at: torch.nn.modules.module.Module.train
self.training = mode
===========unchanged ref 3===========
at: transformers.modeling_outputs
Seq2SeqLMOutput(loss: Optional[torch.FloatTensor]=None, logits: torch.FloatTensor=None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]]=None, decoder_hidden_states: Optional[Tuple[torch.FloatTensor]]=None, decoder_attentions: Optional[Tuple[torch.FloatTensor]]=None, cross_attentions: Optional[Tuple[torch.FloatTensor]]=None, encoder_last_hidden_state: Optional[torch.FloatTensor]=None, encoder_hidden_states: Optional[Tuple[torch.FloatTensor]]=None, encoder_attentions: Optional[Tuple[torch.FloatTensor]]=None)
at: transformers.trainer.Trainer
train(resume_from_checkpoint: Optional[Union[str, bool]]=None, trial: Union["optuna.Trial", Dict[str, Any]]=None, ignore_keys_for_eval: Optional[List[str]]=None, **kwargs)
at: transformers.trainer_callback
EarlyStoppingCallback(early_stopping_patience: int=1, early_stopping_threshold: Optional[float]=0.0)
===========changed ref 0===========
# module: coeditor.retrieval_model
class RetrievalEditorModel(T5PreTrainedModel):
- def eval_loss_on_data(
- self, data: TokenizedEditDataset, batch_args: "BatchArgs"
- ) -> dict[str, WeightedSum]:
- batch_args = copy.deepcopy(batch_args)
- batch_args.shuffle_extra_ids = False
- eval_loader = edits_to_dataloader(
- data.all_edits(),
- args=batch_args,
- shuffle=False,
- desc="Eval Epoch",
- )
- return self.eval_loss_on_loader(eval_loader)
-
===========changed ref 1===========
# module: coeditor.retrieval_model
+ @dataclass
+ class RetrievalDecodingResult:
- class RetrievalDecodingResult(DatasetDecodingResult[TkC3Problem]):
+ def __post_init__(self):
+ assert_eq(len(self.problems), len(self.predictions))
+ |
coeditor.retrieval_model/RetrievalEditorModel.predict_on_data | Modified | temp-1 | 237e7217d129b1ba160716f2fcb074989bbdd22d | Implement training for the new data formats. | <0>:<add> problems=eval_problems,
| # module: coeditor.retrieval_model
class RetrievalEditorModel(T5PreTrainedModel):
@torch.no_grad()
@torch.autocast("cuda")
def predict_on_data(
self,
+ eval_problems: Sequence[C3Problem],
+ tokenizer: C3ProblemTokenizer,
- eval_data: TokenizedEditDataset,
batch_args: "BatchArgs",
dec_args: DecodingArgs,
):
<s>False, desc="predict_on_data"
- eval_edits, batch_args, shuffle=False, desc="Decoding Epoch"
)
gen_args = dec_args.to_model_args()
+ batch_elems = list[RetrievalModelPrediction]()
- batch_elems = list[ModelPrediction]()
for batch in eval_loader: # type: ignore
out_tks = self.generate(
batch["input_ids"].to(self.device),
references=batch["references"],
query_ref_list=batch["query_ref_list"],
**gen_args,
).tolist() # type: ignore
input_ids = batch["input_ids"].tolist()
labels = batch["labels"].tolist()
query_ref_list = batch["query_ref_list"]
for i in range(len(input_ids)):
all_refs = batch["references"]
references = [all_refs[j] for j in query_ref_list[i]]
e = RetrievalModelPrediction(
input_ids=remove_pad_ids(input_ids[i]),
output_ids=remove_pad_ids(out_tks[i]),
labels=labels[i],
references=references,
)
batch_elems.append(e)
return RetrievalDecodingResult(
eval_args={"batch_args": batch_args, "dec_args": dec_args},
- edits=eval_edits,
<0> predictions=batch_elems,
)
| ===========above chunk 0===========
# module: coeditor.retrieval_model
class RetrievalEditorModel(T5PreTrainedModel):
@torch.no_grad()
@torch.autocast("cuda")
def predict_on_data(
self,
+ eval_problems: Sequence[C3Problem],
+ tokenizer: C3ProblemTokenizer,
- eval_data: TokenizedEditDataset,
batch_args: "BatchArgs",
dec_args: DecodingArgs,
):
# offset: -1
if batch_args.shuffle_extra_ids:
warnings.warn(
"Shuffling extra ids during eval can lead to incorrect results."
)
+
- eval_edits = eval_data.all_edits()
+ eval_loader = C3DataLoader(
- eval_loader = _BatchSampler(
+ eval_problems, tokenizer, batch_args, shuffle=False, desc="predict_on_data"
- eval_edits, batch_args, shuffle=False, desc="Decoding</s>
===========unchanged ref 0===========
at: _warnings
warn(message: str, category: Optional[Type[Warning]]=..., stacklevel: int=..., source: Optional[Any]=...) -> None
warn(message: Warning, category: Any=..., stacklevel: int=..., source: Optional[Any]=...) -> None
at: coeditor._utils
not_none(x: Optional[T1]) -> T1
at: coeditor.common
WeightedSum(sum: V, weight: W)
at: coeditor.model
DecodingArgs(max_output_tks: int=512, do_sample: bool=False, top_p: float=0.9, num_beams: Optional[int]=1, length_penalty: float=0.0, marginalize_samples: int=1)
compute_loss_metrics(logits: torch.Tensor, labels: torch.Tensor) -> Mapping[str, WeightedSum]
at: coeditor.model.DecodingArgs
max_output_tks: int = 512
do_sample: bool = False
top_p: float = 0.9
num_beams: Optional[int] = 1
length_penalty: float = 0.0
marginalize_samples: int = 1
to_model_args() -> dict
at: coeditor.retrieval_model
RetrievalModelPrediction(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT)
RetrievalModelPrediction(**kwargs: _VT)
RetrievalModelPrediction(map: Mapping[_KT, _VT], **kwargs: _VT)
C3DataLoader()
at: coeditor.retrieval_model.BatchArgs
min_queries: int = 1
max_queries: int = 8
shuffle_extra_ids: bool = True
at: coeditor.retrieval_model.RetrievalEditorModel.eval_loss_on_loader
core = self
previous = core.training
===========unchanged ref 1===========
batch["input_ids"] = batch["input_ids"].to(core.device)
batch["labels"] = batch["labels"].to(core.device)
outputs = core.forward(**batch)
at: torch.amp.autocast_mode
autocast(device_type: str, dtype: Optional[_dtype]=None, enabled: bool=True, cache_enabled: Optional[bool]=None)
at: torch.autograd.grad_mode
no_grad()
at: torch.nn.modules.module.Module
train(mode: bool=True) -> T
at: transformers.generation.utils.GenerationMixin
generate(inputs: Optional[torch.Tensor]=None, generation_config: Optional[GenerationConfig]=None, logits_processor: Optional[LogitsProcessorList]=None, stopping_criteria: Optional[StoppingCriteriaList]=None, prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]]=None, synced_gpus: Optional[bool]=None, assistant_model: Optional["PreTrainedModel"]=None, streamer: Optional["BaseStreamer"]=None, **kwargs) -> Union[GenerateOutput, torch.LongTensor]
at: transformers.modeling_outputs.Seq2SeqLMOutput
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
===========unchanged ref 2===========
at: typing.Mapping
get(key: _KT) -> Optional[_VT_co]
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
===========changed ref 0===========
# module: coeditor.retrieval_model
class RetrievalEditorModel(T5PreTrainedModel):
- def eval_loss_on_data(
- self, data: TokenizedEditDataset, batch_args: "BatchArgs"
- ) -> dict[str, WeightedSum]:
- batch_args = copy.deepcopy(batch_args)
- batch_args.shuffle_extra_ids = False
- eval_loader = edits_to_dataloader(
- data.all_edits(),
- args=batch_args,
- shuffle=False,
- desc="Eval Epoch",
- )
- return self.eval_loss_on_loader(eval_loader)
-
===========changed ref 1===========
# module: coeditor.retrieval_model
+ @dataclass
+ class RetrievalDecodingResult:
- class RetrievalDecodingResult(DatasetDecodingResult[TkC3Problem]):
+ def __post_init__(self):
+ assert_eq(len(self.problems), len(self.predictions))
+
===========changed ref 2===========
# module: coeditor.retrieval_model
class RetrievalEditorModel(T5PreTrainedModel):
@torch.no_grad()
@torch.autocast("cuda")
+ def eval_loss_on_loader(self, dataloader: "C3DataLoader"):
- def eval_loss_on_loader(self, dataloader):
core = self
previous = core.training
core.eval()
metrics = dict[str, WeightedSum]()
- for batch in tqdm(
- dataloader, desc="evaluate loss", unit="batch", smoothing=0.0
- ):
+ for batch in dataloader.__iter__():
batch["input_ids"] = batch["input_ids"].to(core.device)
batch["labels"] = batch["labels"].to(core.device)
outputs = core.forward(**batch)
assert isinstance(outputs, Seq2SeqLMOutput)
if CheckNaN:
if outputs.logits.isnan().any():
print("loss:", not_none(outputs.loss).item())
print("batch:", batch)
raise ValueError("NaN in logits")
for k, v in compute_loss_metrics(outputs.logits, batch["labels"]).items():
v = v + metrics.get(k, WeightedSum(0.0, 0))
metrics[k] = v
core.train(mode=previous)
return metrics
|
coeditor.retrieval_model/RetrivalEncoder.forward | Modified | temp-1 | 237e7217d129b1ba160716f2fcb074989bbdd22d | Implement training for the new data formats. | <0>:<add> [to_long_tensor(references[rid]) for rid in rids]
| # module: coeditor.retrieval_model
@dataclass
class RetrivalEncoder:
def forward(
self,
input_ids: LongTensor,
references: Sequence[TokenSeq] | None = None,
query_ref_list: Sequence[Sequence[int]] | None = None,
# not used arguments below:
output_attentions=None,
output_hidden_states=None,
return_dict=None,
tqdm=None,
) -> RetrivalEncoderOutputs:
<s> n_queries = input_ids.size(0)
q_lens = input_ids.ne(PAD_id).sum(dim=1).tolist()
n_refs = len(references)
if query_ref_list is None:
query_ref_list = [list(range(n_refs)) for _ in range(n_queries)]
if self.attention_mode.value == AttentionMode.bidirectional.value:
# use bidirectional implementation
queries = [cast(LongTensor, input_ids[i, :l]) for i, l in enumerate(q_lens)]
refs = [
- [
- cast(LongTensor, torch.tensor(references[rid]).to(device))
- for rid in rids
- ]
<0> for rids in query_ref_list
]
hidden_rows = self.bidirectional_forward(queries, refs)
last_hidden_state, hidden_state_mask = stack_pad_tensors(hidden_rows)
return RetrivalEncoderOutputs(
last_hidden_state=last_hidden_state, hidden_state_mask=hidden_state_mask
)
def split_outputs(
lens: Sequence[int], out: BaseModelOutputWithPastAndCrossAttentions
) -> Iterable[BaseModelOutputWithPastAndCrossAttentions]:
for i, l in enumerate(lens):
hidden_states = tuple(
s[i : i + 1, :l] for s in not_none(out.hidden_states)
)
yield BaseModelOutputWithPastAndCrossAttentions</s> | ===========above chunk 0===========
<s> coeditor.retrieval_model
@dataclass
class RetrivalEncoder:
def forward(
self,
input_ids: LongTensor,
references: Sequence[TokenSeq] | None = None,
query_ref_list: Sequence[Sequence[int]] | None = None,
# not used arguments below:
output_attentions=None,
output_hidden_states=None,
return_dict=None,
tqdm=None,
) -> RetrivalEncoderOutputs:
# offset: -1
"""
Shapes
- input_ids: (n_queries, seq_len)
- references: (num_refs, ref_len)
- ref_masks: for each query, a list of reference indices. If none,
assume all references are accessible to all queries.
"""
+
+ def to_long_tensor(data):
+ return cast(
+ LongTensor,
+ torch.tensor(data, dtype=torch.long).to(device),
+ )
+
if references is None:
references = []
assert_eq(input_ids.dim(), 2)
assert_eq(input_ids.dtype, torch.long)
device = self.encoder.device
n_queries = input_ids.size(0)
q_lens = input_ids.ne(PAD_id).sum</s>
===========below chunk 0===========
<s>: coeditor.retrieval_model
@dataclass
class RetrivalEncoder:
def forward(
self,
input_ids: LongTensor,
references: Sequence[TokenSeq] | None = None,
query_ref_list: Sequence[Sequence[int]] | None = None,
# not used arguments below:
output_attentions=None,
output_hidden_states=None,
return_dict=None,
tqdm=None,
) -> RetrivalEncoderOutputs:
# offset: 1
<s>] for s in not_none(out.hidden_states)
)
yield BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states[-1], # type: ignore
hidden_states=hidden_states, # type: ignore
)
ref_outputs = batched_map(
references,
group_key=lambda ref: _round_length_group(len(ref)),
f=lambda refs: split_outputs(
[len(x) for x in refs],
self.encoder.forward(
pad_token_seqs(refs).to(device),
output_hidden_states=True,
return_dict=True,
),
),
)
def encode_queries(query_ids: Sequence[int]) -> Iterable[Tensor]:
queries = [cast(LongTensor, input_ids[q, : q_lens[q]]) for q in query_ids]
assert query_ref_list is not None
query_refs = [query_ref_list[q] for q in query_ids]
q_tensor, q_mask = stack_pad_tensors(queries)
assert_eq(q_tensor.dim(), 2)
if self.attention_mode.value == AttentionMode.query2ref.value:
enc = self.encode_query_uni_directional(
query_ids=cast(LongTensor, q_tensor),
query_attention_mask=q_mask,
ref_outputs=ref_outputs,
query_ref_list=query_</s>
===========below chunk 1===========
<s>: coeditor.retrieval_model
@dataclass
class RetrivalEncoder:
def forward(
self,
input_ids: LongTensor,
references: Sequence[TokenSeq] | None = None,
query_ref_list: Sequence[Sequence[int]] | None = None,
# not used arguments below:
output_attentions=None,
output_hidden_states=None,
return_dict=None,
tqdm=None,
) -> RetrivalEncoderOutputs:
# offset: 2
<s> query_attention_mask=q_mask,
ref_outputs=ref_outputs,
query_ref_list=query_refs,
)
else:
assert_eq(self.attention_mode.value, AttentionMode.basic.value)
enc = self.encode_query_basic(
query_ids=cast(LongTensor, q_tensor),
query_attention_mask=q_mask,
ref_outputs=ref_outputs,
query_ref_list=query_refs,
)
last_hidden_state, hidden_state_mask = enc
for i, _ in enumerate(queries):
yield last_hidden_state[i, hidden_state_mask[i]]
def query_group_key(q: int) -> tuple[int, int]:
q_len = q_lens[q]
ref_len = sum(
len(not_none(references)[r]) for r in not_none(query_ref_list)[q]
)
return _round_length_group(q_len), _round_length_group(ref_len)
last_hidden_states = batched_map(
range(n_queries),
group_key=query_group_key,
f=encode_queries,
)
last_hidden_state, hidden_state_mask = stack_pad_tensors(last_hidden_states)
return RetrivalEncoderOutputs(
last
===========unchanged ref 0===========
at: coeditor._utils
not_none(x: Optional[T1]) -> T1
assert_eq(x: T1, y: T1, message: Callable[[], str]=lambda: "") -> None
at: coeditor.common
batched_map(xs: Sequence[T1], group_key: Callable[[T1], Any], f: Callable[[Sequence[T1]], Iterable[T2]]) -> list[T2]
at: coeditor.encoding
PAD_id = get_tk_id("<pad>")
at: coeditor.retrieval_model
AttentionMode()
RetrivalEncoderOutputs(last_hidden_state: Tensor, hidden_state_mask: Tensor | None=None)
stack_pad_tensors(xs: Sequence[Tensor]) -> tuple[Tensor, BoolTensor]
pad_token_seqs(seqs: Sequence[TokenSeq], pad_id=None) -> LongTensor
_round_length_group(x: int) -> int
at: coeditor.retrieval_model.AttentionMode
basic = enum.auto()
query2ref = enum.auto()
bidirectional = enum.auto()
at: coeditor.retrieval_model.RetrivalEncoder
encoder: T5Stack
attention_mode: AttentionMode
_init_embed(self, input_ids: LongTensor) -> Tensor
bidirectional_forward(queries: Sequence[LongTensor], references: Sequence[Sequence[LongTensor]]) -> Sequence[Tensor]
encode_query_basic(query_ids: LongTensor, query_attention_mask: Tensor, ref_outputs: Sequence[BaseModelOutputWithPastAndCrossAttentions], query_ref_list: Sequence[Sequence[int]]) -> tuple[Tensor, Tensor]
encode_query_uni_directional(query_ids: LongTensor, query_attention_mask: BoolTensor, ref_outputs: Sequence[BaseModelOutputWithPastAndCrossAttentions], query_ref_list: Sequence[Sequence[int]]) -> tuple[Tensor, Tensor]
|
coeditor.code_change/get_changed_spans | Modified | temp-1 | 237e7217d129b1ba160716f2fcb074989bbdd22d | Implement training for the new data formats. | <0>:<add> if subdelta := delta.for_input_range(line_range).shifted(-line):
| # module: coeditor.code_change
def get_changed_spans(
scope_change: Change[ChangeScope],
parent_changes: tuple[Change[ChangeScope], ...] = (),
) -> list[ChangedSpan]:
<s> such as class methods), then map the changes
to each line back to the original regions.
"""
def get_modified_spans(
old_scope: ChangeScope,
new_scope: ChangeScope,
parent_changes: Sequence[Change[ChangeScope]],
) -> Iterable[ChangedSpan]:
if code_equal(old_scope.spans_code, new_scope.spans_code):
return
diffs = change_to_line_diffs(
Modified(old_scope.spans_code, new_scope.spans_code)
)
original, delta = line_diffs_to_original_delta(diffs)
line = 0
for span in old_scope.spans:
code = span.code
line_range = (line, line + len(code.split("\n")))
- if subdelta := delta.for_input_range(line_range):
<0> new_code = subdelta.apply_to_input(code)
change = Modified(code, new_code)
yield ChangedSpan(
change,
parent_changes,
span.line_range,
)
line = line_range[1]
def recurse(
scope_change: Change[ChangeScope], parent_changes
) -> Iterable[ChangedSpan]:
parent_changes = (*parent_changes, scope_change)
match scope_change:
case Modified(old_scope, new_scope):
# compute statement differences
yield from get_modified_spans(old_scope, new_scope, parent_changes)
for sub_change in get_named_changes(
old_scope.subscopes, new_scope.subscopes
).values():
yield from recurse(sub_change, parent_changes)
case Added(scope) | Deleted(scope):
for span in scope.spans:
code_change = scope_</s> | ===========above chunk 0===========
# module: coeditor.code_change
def get_changed_spans(
scope_change: Change[ChangeScope],
parent_changes: tuple[Change[ChangeScope], ...] = (),
) -> list[ChangedSpan]:
# offset: -1
"""
Extract the change spans from scope change.
- We need a tree differencing algorithm that are robust to element movements.
- To compute the changes to each statement region, we can compute the differences
by concatenating all the regions before and after the edit
(and hiding all the sub spans such as class methods), then map the changes
to each line back to the original regions.
"""
def get_modified</s>
===========below chunk 0===========
# module: coeditor.code_change
def get_changed_spans(
scope_change: Change[ChangeScope],
parent_changes: tuple[Change[ChangeScope], ...] = (),
) -> list[ChangedSpan]:
# offset: 1
<s>)
case Added(scope) | Deleted(scope):
for span in scope.spans:
code_change = scope_change.new_value(span.code)
yield ChangedSpan(
code_change,
parent_changes,
span.line_range,
)
for s in scope.subscopes.values():
s_change = scope_change.new_value(s)
yield from recurse(s_change, parent_changes)
spans = list(recurse(scope_change, parent_changes))
spans.sort(key=lambda s: s.line_range[0])
return spans
===========unchanged ref 0===========
at: coeditor.code_change
ChangeScope(path: ProjectPath, tree: ScopeTree, spans: Sequence["StatementSpan"], subscopes: Mapping[str, Self], parent_scope: "ChangeScope | None")
ChangedSpan(change: Change[str], parent_scopes: Sequence[Change[ChangeScope]], line_range: LineRange)
at: coeditor.code_change.ChangeScope
path: ProjectPath
tree: ScopeTree
spans: Sequence["StatementSpan"]
subscopes: Mapping[str, Self]
parent_scope: "ChangeScope | None"
at: coeditor.code_change.StatementSpan.__post_init__
self.code: str = code + "\n"
self.line_range: LineRange = line_range(start, end)
at: coeditor.common
code_equal(code1: str, code2: str) -> bool
at: coeditor.encoding
change_to_line_diffs(change: Change[str]) -> list[str]
line_diffs_to_original_delta(diffs: list[str]) -> tuple[str, StrDelta]
at: typing
Iterable = _alias(collections.abc.Iterable, 1)
Sequence = _alias(collections.abc.Sequence, 1)
===========changed ref 0===========
# module: coeditor.retrieval_model
+ @dataclass
+ class C3DataLoader:
+ def __len__(self) -> int:
+ return self._len_est
+
===========changed ref 1===========
# module: coeditor.retrieval_model
- @dataclass
- class _BatchSampler:
- def __len__(self) -> int:
- return self._len_est
-
===========changed ref 2===========
# module: coeditor.retrieval_model
+ @dataclass
+ class RetrievalDecodingResult:
- class RetrievalDecodingResult(DatasetDecodingResult[TkC3Problem]):
+ def __post_init__(self):
+ assert_eq(len(self.problems), len(self.predictions))
+
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __bool__(self) -> bool:
+ return self.num_changes() > 0
- return bool(self._deltas)
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def shifted(self, shift_lines: int) -> Self:
+ return StrDelta({k + shift_lines: v for k, v in self._deltas.items()})
+
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ def shifted(self, shift_lines: int) -> Self:
+ return StrDelta({k + shift_lines: v for k, v in self._deltas.items()})
+
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def shifted(self, shift_lines: int) -> Self:
+ return TkDelta({k + shift_lines: v for k, v in self._deltas.items()})
+
===========changed ref 7===========
# module: coeditor.retrieval_model
- @dataclass
- class _BatchSampler:
- def estimate_n_batches(self) -> int:
- batches = tk_edits_to_batches(self.all_edits, self.batch_args, silent=True)
- return len(batches)
-
===========changed ref 8===========
# module: coeditor.retrieval_model
@dataclass
class BatchArgs:
@classmethod
def eval_default(cls) -> Self:
return BatchArgs(
- max_total_ref_tks=512 * 24,
max_queries=32,
shuffle_extra_ids=False,
)
===========changed ref 9===========
# module: spot.data
+ _min_extra_id = DefaultTokenizer.additional_special_tokens_ids[0]
+ _max_extra_id = DefaultTokenizer.additional_special_tokens_ids[-1]
===========changed ref 10===========
# module: coeditor.retrieval_model
- def edits_to_dataloader(
- edits: Sequence[TkC3Problem],
- args: BatchArgs,
- desc: str,
- shuffle: bool = False,
- tqdm_args: dict | None = None,
- ):
- assert edits
- return _BatchSampler(
- list(edits), args, shuffle=shuffle, desc=desc, tqdm_args=tqdm_args
- )
-
===========changed ref 11===========
# module: coeditor.retrieval_model
- @dataclass
- class _BatchSampler:
- def __post_init__(self):
- if self.shuffle:
- random.shuffle(self.all_edits)
- self._len_est = self.estimate_n_batches()
- self.epochs = 0
-
===========changed ref 12===========
# module: coeditor.retrieval_model
+ @dataclass
+ class C3DataLoader:
+ def __post_init__(self):
+ n_batches, batch_stats = self.estimate_batch_stats()
+ self._len_est = n_batches
+ self._batch_stast = batch_stats
+ self.epochs = 0
+
===========changed ref 13===========
# module: coeditor.retrieval_model
- @dataclass
- class _BatchSampler:
- all_edits: list[TkC3Problem]
- batch_args: BatchArgs
- shuffle: bool
- desc: str
- tqdm_args: dict | None = None
-
===========changed ref 14===========
# module: coeditor.retrieval_model
@dataclass
class BatchArgs:
- def cost_limit(self) -> float:
- return self.min_queires * retrieval_cost_model(
- self.max_total_ref_tks, self.max_query_tks, self.max_output_tks
- )
-
===========changed ref 15===========
# module: coeditor.retrieval_model
+ @dataclass
+ class C3DataLoader:
+ all_probs: Sequence[C3Problem]
+ tokenizer: C3ProblemTokenizer
+ batch_args: BatchArgs
+ shuffle: bool
+ desc: str
+ tqdm_args: dict | None = None
+ chunk_size: int = 1000
+ workers: int = 10
+ |
scripts.coeditor.train_retrieval_model/train_model | Modified | temp-1 | 237e7217d129b1ba160716f2fcb074989bbdd22d | Implement training for the new data formats. | <0>:<add> cprint("blue", "Exact-match samples saved to:", out_dir)
| <s>train_retrieval_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
+ eval_batch_args=BatchArgs.eval_default(),
- test_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
<s>model_name, train_loader, eval_loader, train_args)
model.to("cuda")
with timed_action("Loss Evaluation"):
+ eval_result = model.eval_loss_on_loader(eval_loader)
- eval_result = model.eval_loss_on_data(datasets["test"], test_batch_args)
eval_dict = {f"test/{k}": v.average() for k, v in eval_result.items()}
wandb.log(eval_dict)
max_saved_samples = 300
with timed_action("Accuracy Evaluation"):
+ dec_result = model.predict_on_data(
+ datasets["test"], eval_tkn, eval_batch_args, dec_args
+ )
- dec_result = model.predict_on_data(datasets["test"], test_batch_args, dec_args)
pickle_dump(get_model_dir() / model_name / "dec_result.pkl", dec_result)
exact_acc, exact_correct_map = dec_result.exact_match_accuracy()
wandb.log({"test/exact-acc": exact_acc.average()})
out_dir = get_model_dir() / model_name / "exact_match_samples"
dec_result.save_examples_to_dir(
out_dir, random_subset(exact_correct_map, max_saved_samples)
)
- print("Exact-match samples saved to:", out_dir)
<0>
return model
| ===========above chunk 0===========
<s>
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
+ eval_batch_args=BatchArgs.eval_default(),
- test_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: -1
<s> <add> warm_up_data,
+ warmup_tkn,
+ warmup_bargs,
+ shuffle=True,
+ desc="warm-up training",
+ )
warmup_targs = copy.deepcopy(train_args)
warmup_targs.learning_rate *= 4
warmup_targs.max_train_epochs = 1
- all_edits = datasets["train"].all_edits()
- warmup_edits = random_subset(all_edits, len(all_edits) // 4)
- model.train_on_data(
- model_name,
- TokenizedEditDataset.from_edits(warmup_edits),
- datasets["valid"],
- warmup_targs,
- batch_args=warmup_bargs,
- eval_batch_args=test_batch_args,
- )
+ model.train_on_data(model_name, warmup_loader, eval_loader, warmup_targs)
with timed_action("Fine-tune Training"):
- model.train_on_data(
- model_name,
- datasets["train"],
- datasets["valid"],
- train_args,
- batch_args=batch_args,
- eval_batch_args=test_batch_args,
- )
+ model.train_on_data(model_name, train_loader, eval_loader, train_args)
model.to("cuda")
with timed</s>
===========above chunk 1===========
<s>
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
+ eval_batch_args=BatchArgs.eval_default(),
- test_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: -2
<s> train_tkn = encoder.edit_tokenizer
+ eval_tkn = copy.deepcopy(train_tkn)
+ eval_tkn.max_ref_tks_sum *= 2
+ eval_loader = C3DataLoader(
+ datasets["valid"], eval_tkn, eval_batch_args, shuffle=False, desc="eval"
+ )
+
if not eval_only:
+ train_loader = C3DataLoader(
+ datasets["train"], train_tkn, batch_args, shuffle=True, desc="training"
+ )
+
with timed_action("Warm-up Training"):
warmup_bargs = copy.deepcopy(batch_args)
- warmup_bargs.max_total_ref_tks //= 3
+ warmup_bargs.min_queries *= 4
- warmup_bargs.min_queires *= 4
warmup_bargs.max_queries *= 2
+
+ warm_up_data = random_subset(datasets["train"], len(datasets["train"]) // 4)
+ warmup_tkn = copy.deepcopy(train_tkn)
+ warmup_tkn.max_ref_tks_sum //= 3
+ warmup_loader = C3DataLoader(
+ warm_up_data,
+ warmup_tkn,
+ warmup_bargs,
+ shuffle</s>
===========above chunk 2===========
<s>
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
+ eval_batch_args=BatchArgs.eval_default(),
- test_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: -3
<s>()
}
project = "Coeditor" if not train_args.quicktest else "Coeditor-quicktest"
+ if eval_only:
+ project = "eval-" + project
wandb.init(dir="..", project=project, name=model_name, config=config_dict)
if train_args.quicktest:
print("Using fewer data for quick test.")
n_quick_exs = 20
- for name, dataset in datasets.items():
- datasets[name] = TokenizedEditDataset.from_edits(
- dataset.all_edits()[:n_quick_exs]
- )
+ datasets = {name: data[:n_quick_exs] for name, data in datasets.items()}
if not eval_only:
model = RetrievalEditorModel.from_code_t5(
"base", reuse_embed=True, reinit_weights=train_args.reinit_weights
)
else:
model = RetrievalEditorModel.load(get_model_dir() / model_name)
if os.getenv("CUDA_VISIBLE_DEVICES") is None:
warnings.warn(
"CUDA_VISIBLE_DEVICES not set, using 0. Note that "
"the Huggingface Trainer will use all visible GPUs for training."
)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
</s>
===========above chunk 3===========
<s>
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
+ eval_batch_args=BatchArgs.eval_default(),
- test_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: -4
# model_variant = "-file"
model_name = f"coeditor-{dataset_name}"
model_name += model_variant
dec_args = DecodingArgs()
if train_args.quicktest:
model_name = "quicktest-" + model_name
if not eval_only:
check_save_dir(model_name)
+ datasets = make_or_load_datasets(
- split2problems = make_or_load_datasets(
dataset_name, encoder.change_processor, recreate_data=recreate_data
)
- datasets = {
- name: TokenizedEditDataset.from_edits(edits)
- for name, edits in encoder.edit_tokenizer.tokenize_datasets(
- split2problems
- ).items()
- }
config_dict = {
k: get_modified_args(v)
for k, v in {
+ "edit_tokenizer": encoder.edit_tokenizer.get_args(),
+ "batch_args": batch_args,
- "data_args": batch_args,
"train_args": train_args,
"dec_args": dec_args,
}</s> |
coeditor.ctx_change_encoder/C3ProblemTokenizer.tokenize_problem | Modified | temp-1 | 237e7217d129b1ba160716f2fcb074989bbdd22d | Implement training for the new data formats. | <0>:<add> named_references=kept_refs,
| # module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> TkC3Problem:
<s> + below_chunks
- all_refs = above_chunks + below_chunks + named_references
+ ref_size_sum = sum(len(ref) for _, ref in all_refs)
+
+ # compute the references that are relevant to this span
+ if ref_size_sum < self.max_ref_tks_sum:
+ changed = self._group_encode_changed_refs(problem.relevant_changes)
+ for i, chunk in enumerate(changed):
+ all_refs.append((f"changed ref {i}", TkArray.new(chunk)))
+ ref_size_sum += sum(len(x) for x in changed)
+ if ref_size_sum < self.max_ref_tks_sum:
+ unchanged = self._group_encode_unchanged_refs(problem.relevant_unchanged)
+ for i, chunk in enumerate(unchanged):
+ all_refs.append((f"unchanged ref {i}", TkArray.new(chunk)))
+
+ # take until we hit the limit
+ ref_size_sum = 0
+ kept_refs = list[tuple[str, TkArray]]()
+ for (name, ref) in all_refs:
+ if ref_size_sum + len(ref) > self.max_ref_tks_sum:
+ continue
+ ref_size_sum += len(ref)
+ kept_refs.append((name, ref))
return TkC3Problem(
TkArray.new(scope_tks + chunk_input),
TkArray.new(chunk_output),
path=span.headers[-1].path,
change_type=problem.change_type,
- named_references=all_refs,
<0> project=problem.src_info["project"],
commit=problem.src_info["commit"],
)
| ===========above chunk 0===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> TkC3Problem:
# offset: -1
<s>tks = tk_delta.for_input_range((0, edit_start)).apply_to_input(above_tks)
below_tks = join_list(origin_lines[edit_end:] + [TokenSeq()], Newline_id)
chunk_input, above_tks, below_tks = self._inline_some_context(
chunk_input, above_tks, below_tks, input_limit
)
chunk_output = truncate_section(
chunk_output,
TruncateAt.Right,
self.max_output_tks,
add_bos=False,
inplace=True,
)
above_chunks = break_into_chunks(
above_tks,
lambda i: self._encode_headers(span.headers, -1 - i),
chunk_size=self.max_ref_tks,
overlap=self.ref_chunk_overlap,
right_to_left=True,
)
if not below_tks:
below_chunks = []
else:
below_chunks = break_into_chunks(
below_tks,
lambda i: self._encode_headers(span.headers, i + 1),
chunk_size=self.max_ref_tks,
overlap=self.ref_chunk_overlap,
)
above_chunks = [
(f"above chunk {i}", TkArray.new(chunk))
for i, chunk in enumerate(above_chunks)
]
below_chunks = [
(f"below chunk {i}", TkArray.new(chunk))
for i, chunk in enumerate(below_chunks)
]
+ all_refs = above_chunks + below_chunks
- all_refs = above_chunks + below_chunks + named_references
+ ref_size_sum</s>
===========above chunk 1===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> TkC3Problem:
# offset: -2
<s>)
assert isinstance(problem.edit_lines, range), "Only support range for now"
edit_start = problem.edit_lines[0]
edit_end = problem.edit_lines[-1] + 1
scope_tks = self._encode_headers(span.headers, 0)
input_limit = self.max_query_tks - len(scope_tks)
chunk_input = TokenSeq()
chunk_output = TokenSeq()
for i in range(len(problem.edit_lines)):
chunk_input.append(get_extra_id(i))
l = edit_start + i
if l < len(origin_lines):
chunk_input.extend(origin_lines[l])
chunk_input.append(Newline_id)
line_change = join_list(tk_delta.get_line_change(l), Newline_id)
chunk_output.append(get_extra_id(i))
chunk_output.extend(line_change)
if line_change and line_change[-1] != Del_id:
chunk_output.append(Newline_id)
# limit the input size if it's too long
chunk_input = truncate_section(
chunk_input, TruncateAt.Right, input_limit, inplace=True
)
chunk_output = truncate_output_tks(chunk_input, chunk_output)
# try move some prev_change_tks into the input
above_tks = join_list(origin_lines[:edit_start] + [TokenSeq()], Newline_id)
above_tks = tk_delta.for_input_range((0, edit_start)).apply_to_input(above_tks</s>
===========above chunk 2===========
# module: coeditor.ctx_change_encoder
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> TkC3Problem:
# offset: -3
span = problem.span
- named_references = list[tuple[str, TkArray]]()
- # compute the references that are relevant to this span
- relevant_chunks = self._group_encode_changed_refs(problem.relevant_changes)
- for i, chunk in enumerate(relevant_chunks):
- named_references.append((f"changed ref {i}", TkArray.new(chunk)))
- relevant_chunks = self._group_encode_unchanged_refs(problem.relevant_unchanged)
- for i, chunk in enumerate(relevant_chunks):
- named_references.append((f"unchanged ref {i}", TkArray.new(chunk)))
original: TokenSeq
tk_delta: TkDelta
original, tk_delta = change_tks_to_original_delta(span.change_tks.tolist())
origin_lines = split_list(original, Newline</s>
===========unchanged ref 0===========
at: cachetools.lru
LRUCache(maxsize: int, getsizeof: Optional[Callable[[_VT], int]]=...)
at: coeditor.common
TokenSeq = list[Token]
split_list(lst: list[T1], sep: T1) -> list[list[T1]]
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
at: coeditor.ctx_change_encoder
C3Problem(span: ChangedCodeSpan, edit_lines: Collection[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Sequence[ChangedCodeSpan], change_type: Change[None], src_info: SrcInfo)
TkC3Problem(input: TkArray, output: TkArray, path: ProjectPath, change_type: Change[None], named_references: Sequence[tuple[str, TkArray]], project: str, commit: CommitInfo | None)
at: coeditor.ctx_change_encoder.C3Problem
span: ChangedCodeSpan
edit_lines: Collection[int]
relevant_changes: Sequence[ChangedCodeSpan]
relevant_unchanged: Sequence[ChangedCodeSpan]
change_type: Change[None]
src_info: SrcInfo
at: coeditor.ctx_change_encoder.C3ProblemTokenizer
_encode_headers(scope_changes: Sequence[ChangedHeader], offset: int) -> TokenSeq
_inline_some_context(input: TokenSeq, above_ctx: TokenSeq, below_ctx: TokenSeq, size_limit: int) -> tuple[TokenSeq, TokenSeq, TokenSeq]
at: coeditor.ctx_change_encoder.ChangedCodeSpan
headers: Sequence[ChangedHeader]
change_tks: TkArray
line_range: LineRange
module: ModuleName
at: coeditor.ctx_change_encoder.TkC3Problem
input: TkArray
output: TkArray
path: ProjectPath
change_type: Change[None]
|
coeditor.common/rec_add_dict_to | Modified | temp-1 | c88166371fbeac9f60c5f8d06dda5c9e20b3f46f | Clean up project. Remove unused code. | <0>:<add> if isinstance(v, Mapping):
| # module: coeditor.common
def rec_add_dict_to(
target: dict[str, Any],
+ value: Mapping[str, Any],
- value: dict[str, Any],
value_merger: Callable[[Any, Any], Any] = lambda x, y: x + y,
):
for k, v in value.items():
- if isinstance(v, dict):
<0> if k not in target:
target[k] = {}
rec_add_dict_to(target[k], v, value_merger)
elif isinstance(v, list):
target.setdefault(k, []).extend(v)
else:
if k in target:
target[k] = value_merger(target[k], v)
else:
target[k] = v
| ===========unchanged ref 0===========
at: coeditor.common
rec_add_dict_to(target: dict[str, Any], value: Mapping[str, Any], value_merger: Callable[[Any, Any], Any]=lambda x, y: x + y)
at: typing
Mapping = _alias(collections.abc.Mapping, 2)
at: typing.Mapping
items() -> AbstractSet[Tuple[_KT, _VT_co]]
===========changed ref 0===========
# module: coeditor.common
+ def code_equal(code1: str, code2: str) -> bool:
- def code_equal(code1: str | cst.CSTNode, code2: str | cst.CSTNode) -> bool:
- if isinstance(code1, cst.CSTNode):
- code1 = show_expr(code1)
- if isinstance(code2, cst.CSTNode):
- code2 = show_expr(code2)
if code1 == code2:
return True
code1 = normalize_code_by_ast(code1)
code2 = normalize_code_by_ast(code2)
return code1 == code2
|
coeditor.dataset/_process_commits | Modified | temp-1 | c88166371fbeac9f60c5f8d06dda5c9e20b3f46f | Clean up project. Remove unused code. | <0>:<add> rec_add_dict_to(stats, {"tlogger": scoped_changes._tlogger.times})
| # module: coeditor.dataset
def _process_commits(
root: Path,
workdir: Path,
commits: Sequence[CommitInfo],
is_training: bool,
change_processor: ProjectChangeProcessor[C3Problem],
) -> _ProcessingResult:
# use process-specific parso cache
+ fix_jedi_cache(workdir)
- _fix_jedi_cache(workdir)
+ scoped_changes._tlogger.clear()
- coeditor.code_change._tlogger.clear()
change_processor.clear_stats()
change_processor.set_training(is_training)
try:
# cannot return here since subprocess will be killed after returning
edits = edits_from_commit_history(
root,
commits,
tempdir=workdir / "code",
change_processor=change_processor,
silent=True,
time_limit=time_limit_per_commit * (len(commits) + 10),
)
except Exception as e:
if isinstance(e, KeyboardInterrupt):
raise
warnings.warn(f"Failed to process project: {root}\nError: {e}")
traceback.print_exception(e, limit=-6)
edits = []
stats = dict()
change_processor.append_stats(stats)
- rec_add_dict_to(stats, {"tlogger": coeditor.code_change._tlogger.times})
<0> return _ProcessingResult(edits, stats)
| ===========unchanged ref 0===========
at: _warnings
warn(message: str, category: Optional[Type[Warning]]=..., stacklevel: int=..., source: Optional[Any]=...) -> None
warn(message: Warning, category: Any=..., stacklevel: int=..., source: Optional[Any]=...) -> None
at: coeditor._utils.TimeLogger
times: dict[str, list[float]] = field(default_factory=dict)
clear()
at: coeditor.common
rec_add_dict_to(target: dict[str, Any], value: Mapping[str, Any], value_merger: Callable[[Any, Any], Any]=lambda x, y: x + y)
at: coeditor.dataset
_ProcessingResult(edits: Sequence[C3Problem], stats: dict[str, dict | Any])
time_limit_per_commit = 10.0
at: coeditor.git
CommitInfo(hash: str, parents: tuple[str, ...], msg: str)
at: coeditor.scoped_changes
_tlogger = TimeLogger()
ProjectChangeProcessor()
edits_from_commit_history(project_dir: Path, history: Sequence[CommitInfo], tempdir: Path, change_processor: ProjectChangeProcessor[TProb]=NoProcessing(), ignore_dirs=DefaultIgnoreDirs, silent: bool=False, time_limit: float | None=None) -> Sequence[TProb]
at: coeditor.scoped_changes.ProjectChangeProcessor
clear_stats()
append_stats(stats: dict[str, Any]) -> None
set_training(is_training: bool) -> None
at: pathlib
Path()
at: traceback
print_exception(etype: Optional[Type[BaseException]], value: Optional[BaseException], tb: Optional[TracebackType], limit: Optional[int]=..., file: Optional[IO[str]]=..., chain: bool=...) -> None
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
===========changed ref 0===========
+ # module: coeditor.scoped_changes
+ class ProjectChangeProcessor(Generic[TProb], ABC):
+ def set_training(self, is_training: bool) -> None:
+ return None
+
===========changed ref 1===========
+ # module: coeditor.scoped_changes
+ class ProjectChangeProcessor(Generic[TProb], ABC):
+ def append_stats(self, stats: dict[str, Any]) -> None:
+ return None
+
===========changed ref 2===========
+ # module: coeditor.scoped_changes
+ class ProjectChangeProcessor(Generic[TProb], ABC):
+ def clear_stats(self):
+ return None
+
===========changed ref 3===========
+ # module: coeditor.git
+ @dataclass(frozen=True)
+ class CommitInfo:
+ hash: str
+ parents: tuple[str, ...]
+ msg: str
+
===========changed ref 4===========
# module: coeditor.common
def rec_add_dict_to(
target: dict[str, Any],
+ value: Mapping[str, Any],
- value: dict[str, Any],
value_merger: Callable[[Any, Any], Any] = lambda x, y: x + y,
):
for k, v in value.items():
+ if isinstance(v, Mapping):
- if isinstance(v, dict):
if k not in target:
target[k] = {}
rec_add_dict_to(target[k], v, value_merger)
elif isinstance(v, list):
target.setdefault(k, []).extend(v)
else:
if k in target:
target[k] = value_merger(target[k], v)
else:
target[k] = v
===========changed ref 5===========
+ # module: coeditor.scoped_changes
+ def edits_from_commit_history(
+ project_dir: Path,
+ history: Sequence[CommitInfo],
+ tempdir: Path,
+ change_processor: ProjectChangeProcessor[TProb] = NoProcessing(),
+ ignore_dirs=DefaultIgnoreDirs,
+ silent: bool = False,
+ time_limit: float | None = None,
+ ) -> Sequence[TProb]:
+ """Incrementally compute the edits to a project from the git history.
+ Note that this will change the file states in the project directory, so
+ you should make a copy of the project before calling this function.
+ """
+ tempdir = tempdir.resolve()
+ if tempdir.exists():
+ raise FileExistsError(f"Workdir '{tempdir}' already exists.")
+ use_fast_parser = jedi.settings.fast_parser
+ tempdir.mkdir(parents=True, exist_ok=False)
+ try:
+ run_command(
+ ["cp", "-r", str(project_dir / ".git"), str(tempdir)],
+ cwd=project_dir.parent,
+ )
+
+ return _edits_from_commit_history(
+ tempdir,
+ history,
+ change_processor,
+ ignore_dirs,
+ silent,
+ time_limit=time_limit,
+ )
+ finally:
+ shutil.rmtree(tempdir)
+ jedi.settings.fast_parser = use_fast_parser
+
===========changed ref 6===========
+ # module: coeditor.scoped_changes
+
+
===========changed ref 7===========
+ # module: coeditor.git
+
+
===========changed ref 8===========
+ # module: coeditor.scoped_changes
+ class ProjectChangeProcessor(Generic[TProb], ABC):
+ @abstractmethod
+ def process_change(
+ self, pchange: "JProjectChange", pre_analysis: Any, post_analysis: Any
+ ) -> Sequence[TProb]:
+ ...
+
===========changed ref 9===========
+ # module: coeditor.change
+ class _ChangeBase(Generic[E1]):
+ @abstractmethod
+ def later(self) -> E1:
+ ...
+
===========changed ref 10===========
+ # module: coeditor.change
+ class _ChangeBase(Generic[E1]):
+ @abstractmethod
+ def earlier(self) -> E1:
+ ...
+
===========changed ref 11===========
+ # module: coeditor.scoped_changes
+ class ProjectChangeProcessor(Generic[TProb], ABC):
+ def post_edit_analysis(
+ self,
+ pstate: ProjectState,
+ modules: Mapping[RelPath, JModule],
+ changes: Mapping[ModuleName, JModuleChange],
+ ) -> Any:
+ return None
+
===========changed ref 12===========
+ # module: coeditor.scoped_changes
+ class ProjectChangeProcessor(Generic[TProb], ABC):
+ def pre_edit_analysis(
+ self,
+ pstate: ProjectState,
+ modules: Mapping[RelPath, JModule],
+ changes: Mapping[ModuleName, JModuleChange],
+ ) -> Any:
+ return None
+
===========changed ref 13===========
# module: coeditor.encoding
- class EditEncoder(Generic[T1], ABC):
- @abstractmethod
- def encode_pedit(
- self,
- pedit: ProjectEdit,
- training: bool,
- ) -> Iterable[T1]:
- pass
-
===========changed ref 14===========
+ # module: coeditor.scoped_changes
+ _Second = float
+
===========changed ref 15===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Modified(_ChangeBase[E1]):
+ @staticmethod
+ def as_char():
+ return "M"
+
===========changed ref 16===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Modified(_ChangeBase[E1]):
+ def later(self) -> E1:
+ return self.after
+
===========changed ref 17===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Modified(_ChangeBase[E1]):
+ def earlier(self) -> E1:
+ return self.before
+
===========changed ref 18===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Deleted(_ChangeBase[E1]):
+ @staticmethod
+ def as_char():
+ return "D"
+
===========changed ref 19===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Deleted(_ChangeBase[E1]):
+ def later(self) -> E1:
+ return self.before
+ |
coeditor.dataset/make_or_load_datasets | Modified | temp-1 | c88166371fbeac9f60c5f8d06dda5c9e20b3f46f | Clean up project. Remove unused code. | <0>:<add> save_dir.mkdir(parents=True, exist_ok=True)
| # module: coeditor.dataset
def make_or_load_datasets(
dataset_name: str,
change_processor: ProjectChangeProcessor[C3Problem],
recreate_data: bool = False,
workers: int = DefaultWorkers,
) -> Mapping[str, Sequence[C3Problem]]:
config_str = repr_modified_args(change_processor)
+ save_dir = get_dataset_dir(dataset_name) / "processed" / config_str
- save_dir = get_dataset_dir(dataset_name) / config_str
if recreate_data or not save_dir.exists():
if dataset_name == "SPOT":
datasets = {
"test": dataset_from_projects(
[proj_root()], change_processor, [False], workers=workers
)
}
else:
datasets = datasets_from_repos(
get_dataset_dir(dataset_name) / "repos",
change_processor,
workers=workers,
)
with timed_action("Saving datasets to disk"):
<0> save_datasets(datasets, save_dir)
print("Tokenized dataset saved to:", save_dir)
else:
with timed_action("Loading datasets from disk"):
datasets = load_datasets(save_dir)
size_info = run_command(["du", "-ha", "."], save_dir)
print(f"Dataset sizes:")
print(size_info)
return datasets
| ===========unchanged ref 0===========
at: coeditor._utils
DefaultWorkers: int = multiprocessing.cpu_count() // 2
global DefaultWorkers
timed_action(name: str, silent: bool=False)
repr_modified_args(instance, flatten: bool=False) -> str
at: coeditor.common
proj_root() -> Path
get_dataset_dir(dataname: str) -> Path
run_command(args: Sequence[str], cwd: str | Path) -> str
at: coeditor.dataset
dataset_from_projects(project_roots: Sequence[Path], change_processor: ProjectChangeProcessor[C3Problem], repo_training: Sequence[bool], max_history_per_repo: int=1000, workers: int=DefaultWorkers) -> "Mapping[Path, Sequence[C3Problem]]"
datasets_from_repos(repos_root: Path, change_processor: ProjectChangeProcessor[C3Problem], max_history_per_repo: int=1000, workers: int=DefaultWorkers) -> Mapping[str, Sequence[C3Problem]]
save_datasets(datasets: Mapping[str, Any], save_dir: Path) -> None
load_datasets(save_dir: Path, splits=("test", "valid", "train")) -> Mapping[str, Any]
at: coeditor.scoped_changes
ProjectChangeProcessor()
at: pathlib.Path
__slots__ = ()
mkdir(mode: int=..., parents: bool=..., exist_ok: bool=...) -> None
exists() -> bool
at: pathlib.PurePath
__slots__ = (
'_drv', '_root', '_parts',
'_str', '_hash', '_pparts', '_cached_cparts',
)
drive = property(attrgetter('_drv'),
doc="""The drive prefix (letter or UNC path), if any.""")
root = property(attrgetter('_root'),
doc="""The root of the path, if any.""")
at: typing
Mapping = _alias(collections.abc.Mapping, 2)
===========unchanged ref 1===========
Sequence = _alias(collections.abc.Sequence, 1)
===========changed ref 0===========
# module: coeditor.dataset
def _process_commits(
root: Path,
workdir: Path,
commits: Sequence[CommitInfo],
is_training: bool,
change_processor: ProjectChangeProcessor[C3Problem],
) -> _ProcessingResult:
# use process-specific parso cache
+ fix_jedi_cache(workdir)
- _fix_jedi_cache(workdir)
+ scoped_changes._tlogger.clear()
- coeditor.code_change._tlogger.clear()
change_processor.clear_stats()
change_processor.set_training(is_training)
try:
# cannot return here since subprocess will be killed after returning
edits = edits_from_commit_history(
root,
commits,
tempdir=workdir / "code",
change_processor=change_processor,
silent=True,
time_limit=time_limit_per_commit * (len(commits) + 10),
)
except Exception as e:
if isinstance(e, KeyboardInterrupt):
raise
warnings.warn(f"Failed to process project: {root}\nError: {e}")
traceback.print_exception(e, limit=-6)
edits = []
stats = dict()
change_processor.append_stats(stats)
+ rec_add_dict_to(stats, {"tlogger": scoped_changes._tlogger.times})
- rec_add_dict_to(stats, {"tlogger": coeditor.code_change._tlogger.times})
return _ProcessingResult(edits, stats)
===========changed ref 1===========
+ # module: coeditor.scoped_changes
+
+
===========changed ref 2===========
+ # module: coeditor.git
+
+
===========changed ref 3===========
+ # module: coeditor.scoped_changes
+ class ProjectChangeProcessor(Generic[TProb], ABC):
+ @abstractmethod
+ def process_change(
+ self, pchange: "JProjectChange", pre_analysis: Any, post_analysis: Any
+ ) -> Sequence[TProb]:
+ ...
+
===========changed ref 4===========
+ # module: coeditor.change
+ class _ChangeBase(Generic[E1]):
+ @abstractmethod
+ def later(self) -> E1:
+ ...
+
===========changed ref 5===========
+ # module: coeditor.change
+ class _ChangeBase(Generic[E1]):
+ @abstractmethod
+ def earlier(self) -> E1:
+ ...
+
===========changed ref 6===========
+ # module: coeditor.scoped_changes
+ class ProjectChangeProcessor(Generic[TProb], ABC):
+ def set_training(self, is_training: bool) -> None:
+ return None
+
===========changed ref 7===========
+ # module: coeditor.scoped_changes
+ class ProjectChangeProcessor(Generic[TProb], ABC):
+ def append_stats(self, stats: dict[str, Any]) -> None:
+ return None
+
===========changed ref 8===========
+ # module: coeditor.scoped_changes
+ class ProjectChangeProcessor(Generic[TProb], ABC):
+ def clear_stats(self):
+ return None
+
===========changed ref 9===========
+ # module: coeditor.scoped_changes
+ class ProjectChangeProcessor(Generic[TProb], ABC):
+ def post_edit_analysis(
+ self,
+ pstate: ProjectState,
+ modules: Mapping[RelPath, JModule],
+ changes: Mapping[ModuleName, JModuleChange],
+ ) -> Any:
+ return None
+
===========changed ref 10===========
+ # module: coeditor.scoped_changes
+ class ProjectChangeProcessor(Generic[TProb], ABC):
+ def pre_edit_analysis(
+ self,
+ pstate: ProjectState,
+ modules: Mapping[RelPath, JModule],
+ changes: Mapping[ModuleName, JModuleChange],
+ ) -> Any:
+ return None
+
===========changed ref 11===========
# module: coeditor.encoding
- class EditEncoder(Generic[T1], ABC):
- @abstractmethod
- def encode_pedit(
- self,
- pedit: ProjectEdit,
- training: bool,
- ) -> Iterable[T1]:
- pass
-
===========changed ref 12===========
+ # module: coeditor.scoped_changes
+ _Second = float
+
===========changed ref 13===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Modified(_ChangeBase[E1]):
+ @staticmethod
+ def as_char():
+ return "M"
+
===========changed ref 14===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Modified(_ChangeBase[E1]):
+ def later(self) -> E1:
+ return self.after
+
===========changed ref 15===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Modified(_ChangeBase[E1]):
+ def earlier(self) -> E1:
+ return self.before
+
===========changed ref 16===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Deleted(_ChangeBase[E1]):
+ @staticmethod
+ def as_char():
+ return "D"
+
===========changed ref 17===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Deleted(_ChangeBase[E1]):
+ def later(self) -> E1:
+ return self.before
+
===========changed ref 18===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Deleted(_ChangeBase[E1]):
+ def earlier(self) -> E1:
+ return self.before
+
===========changed ref 19===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Deleted(_ChangeBase[E1]):
+ before: E1
+
===========changed ref 20===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Added(_ChangeBase[E1]):
+ @staticmethod
+ def as_char():
+ return "A"
+
===========changed ref 21===========
+ # module: coeditor.change
+ @dataclass(frozen=True)
+ class Added(_ChangeBase[E1]):
+ def later(self) -> E1:
+ return self.after
+ |
coeditor._utils/replace_strs_by_pos | Modified | temp-1 | 19b037f36e74d7495cee5705bd945be6886bb6eb | Remove unused dependencies. - Update setup.py | <0>:<add> last_pos = CodePosition((len(lines), len(lines[-1]) + 1))
| # module: coeditor._utils
def replace_strs_by_pos(original: str, replaces: Sequence[tuple[CodeRange, int, str]]):
<s>"ptr: {ptr}, target: {target}"
+ out_segs.append(lines[ptr[0] - 1][ptr[1] - 1 : target[1] - 1])
- out_segs.append(lines[ptr.line - 1][ptr.column - 1 : target.column - 1])
ptr = target
+ replaces_sorted = sorted(replaces, key=lambda x: (as_tuple(x[0][0]), x[1]))
- replaces_sorted = sorted(replaces, key=lambda x: (as_tuple(x[0].start), x[1]))
- # for (r1, t1), (r2, t2) in zip(replaces_sorted, replaces_sorted[1:]):
- # assert as_tuple(r1.end) <= as_tuple(
- # r2.start
- # ), f"overlapping ranges:\n {r1}: {t1}\n {r2}: {t2}"
while bool(replaces_sorted):
r, _, rtext = replaces_sorted.pop(0)
try:
+ advance_to(r[0], True)
- advance_to(r.start, True)
except IndexError:
raise IndexError(
+ f"{r[0]} is out of range. Trying to replace with text <<{rtext}>>. Original str:\n<<{original}>>"
- f"{r.start} is out of range. Trying to replace with text <<{rtext}>>. Original str:\n<<{original}>>"
)
+ advance_to(r[1], False)
- advance_to(r.end, False)
out_segs.append(rtext)
- last_pos = CodePosition(len(lines), len(lines[-1]) + 1)
<0> advance_to(last_pos, True)
return "".join(out_segs)
| ===========above chunk 0===========
# module: coeditor._utils
def replace_strs_by_pos(original: str, replaces: Sequence[tuple[CodeRange, int, str]]):
# offset: -1
"""Replace the parts specificed by `replaces` with the given strings.
Each entry of `replaces` is a tuple of (code_range, priority, new_str)."""
def as_tuple(p: CodePosition):
+ return p
- return (p.line, p.column)
lines = original.split("\n")
out_segs = list[str]()
+ ptr = CodePosition((1, 1))
- ptr = CodePosition(1, 1)
def advance_to(target: CodePosition, output: bool):
nonlocal ptr
if as_tuple(target) <= as_tuple(ptr):
return
+ assert ptr[0] <= target[0], f"ptr: {ptr}, target: {target}"
- assert ptr.line <= target.line, f"ptr: {ptr}, target: {target}"
if output:
+ while ptr[0] < target[0]:
- while ptr.line < target.line:
+ out_segs.append(lines[ptr[0] - 1][ptr[1] - 1 :])
- out_segs.append(lines[ptr.line - 1][ptr.column - 1 :])
out_segs.append("\n")
+ ptr = CodePosition((ptr[0] + 1, 1))
- ptr = CodePosition(ptr.line + 1, 1)
+ assert ptr[0] == target[0], f"ptr: {ptr}, target: {target}"
- assert ptr.line == target.line, f"ptr: {ptr}, target: {target}"
+ out_segs.append(lines[ptr[0] - 1][</s>
===========unchanged ref 0===========
at: coeditor._utils
CodePosition = NewType("CodePosition", tuple[int, int])
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
|
coeditor._utils/show_code_range | Modified | temp-1 | 19b037f36e74d7495cee5705bd945be6886bb6eb | Remove unused dependencies. - Update setup.py | <0>:<add> return f"[{crange[0][0]}:{crange[0][1]+1}--{crange[1][0]}:{crange[1][1]+1}]"
| # module: coeditor._utils
def show_code_range(crange: CodeRange) -> str:
- return f"[{crange.start.line}:{crange.start.column+1}--{crange.end.line}:{crange.end.column+1}]"
<0>
| ===========changed ref 0===========
# module: coeditor._utils
+ CodePosition = NewType("CodePosition", tuple[int, int])
+ CodeRange = tuple[CodePosition, CodePosition]
+
_pushover_warned = [False]
===========changed ref 1===========
# module: coeditor._utils
def replace_strs_by_pos(original: str, replaces: Sequence[tuple[CodeRange, int, str]]):
"""Replace the parts specificed by `replaces` with the given strings.
Each entry of `replaces` is a tuple of (code_range, priority, new_str)."""
def as_tuple(p: CodePosition):
+ return p
- return (p.line, p.column)
lines = original.split("\n")
out_segs = list[str]()
+ ptr = CodePosition((1, 1))
- ptr = CodePosition(1, 1)
def advance_to(target: CodePosition, output: bool):
nonlocal ptr
if as_tuple(target) <= as_tuple(ptr):
return
+ assert ptr[0] <= target[0], f"ptr: {ptr}, target: {target}"
- assert ptr.line <= target.line, f"ptr: {ptr}, target: {target}"
if output:
+ while ptr[0] < target[0]:
- while ptr.line < target.line:
+ out_segs.append(lines[ptr[0] - 1][ptr[1] - 1 :])
- out_segs.append(lines[ptr.line - 1][ptr.column - 1 :])
out_segs.append("\n")
+ ptr = CodePosition((ptr[0] + 1, 1))
- ptr = CodePosition(ptr.line + 1, 1)
+ assert ptr[0] == target[0], f"ptr: {ptr}, target: {target}"
- assert ptr.line == target.line, f"ptr: {ptr}, target: {target}"
+ out_segs.append(lines[ptr[0] - 1][ptr[1] - 1 : target[1] - 1])
- out_segs.append(lines[ptr.line - 1][ptr.column - 1 : target.column - 1])
ptr = target
+ replaces_sorted = sorted(replaces, key=lambda x: (as_</s>
===========changed ref 2===========
# module: coeditor._utils
def replace_strs_by_pos(original: str, replaces: Sequence[tuple[CodeRange, int, str]]):
# offset: 1
<s>column - 1])
ptr = target
+ replaces_sorted = sorted(replaces, key=lambda x: (as_tuple(x[0][0]), x[1]))
- replaces_sorted = sorted(replaces, key=lambda x: (as_tuple(x[0].start), x[1]))
- # for (r1, t1), (r2, t2) in zip(replaces_sorted, replaces_sorted[1:]):
- # assert as_tuple(r1.end) <= as_tuple(
- # r2.start
- # ), f"overlapping ranges:\n {r1}: {t1}\n {r2}: {t2}"
while bool(replaces_sorted):
r, _, rtext = replaces_sorted.pop(0)
try:
+ advance_to(r[0], True)
- advance_to(r.start, True)
except IndexError:
raise IndexError(
+ f"{r[0]} is out of range. Trying to replace with text <<{rtext}>>. Original str:\n<<{original}>>"
- f"{r.start} is out of range. Trying to replace with text <<{rtext}>>. Original str:\n<<{original}>>"
)
+ advance_to(r[1], False)
- advance_to(r.end, False)
out_segs.append(rtext)
+ last_pos = CodePosition((len(lines), len(lines[-1]) + 1))
- last_pos = CodePosition(len(lines), len(lines[-1]) + 1)
advance_to(last_pos, True)
return "".join(out_segs)
|
coeditor._utils/add_line_numbers | Modified | temp-1 | 59740e7a9d5b2998ca11a37f650e7b056ba4da4f | Implement c3 change dropout. | <0>:<add> return "\n".join(format_s.format(ln=i + start, line=l) for i, l in enumerate(lines))
| # module: coeditor._utils
+ def add_line_numbers(code: str, start: int = 1):
- def add_line_numbers(code: str):
lines = code.split("\n")
ln_digits = int(math.log(len(lines), 10)) + 1
format_s = "{ln:" + str(ln_digits) + "d}| {line}"
- return "\n".join(format_s.format(ln=i + 1, line=l) for i, l in enumerate(lines))
<0>
| ===========unchanged ref 0===========
at: math
log(x: SupportsFloat, base: SupportsFloat=...) -> float
|
coeditor.encoding/TokenizedEdit.show_prediction | Modified | temp-1 | 59740e7a9d5b2998ca11a37f650e7b056ba4da4f | Implement c3 change dropout. | <0>:<add> line = " |" + show_content(line_tks)
| # module: coeditor.encoding
class TokenizedEdit(ABC):
def show_prediction(self, pred_tks: TokenSeq | None = None) -> str:
<s>_id)
seg = seg + origin_line
label = show_label(id_map.get(k, -1))
lines.append(f"{label}:{indent(decode_tokens(seg), ' ' * 4).lstrip()}")
return "".join(lines)
main_segs = output_ids_as_seqs(self.main_tks)
id_map = {k: i for i, k in enumerate(main_segs)}
main_lines = list[str]()
for line_tks in split_list(self.main_tks, Newline_id):
if line_tks and is_extra_id(line_tks[0]):
+ prefix = show_label(id_map.get(line_tks[0], -1))
- line = show_label(id_map.get(line_tks[0], -1)) + decode_tokens(
- line_tks[1:]
- )
+ line = prefix + show_content(line_tks[1:])
else:
- line = decode_tokens(line_tks)
<0> main_lines.append(line)
pred_lines = (
["========Prediction========", f"{show_extra_tokens(pred_tks, main_segs)}"]
if pred_tks
else []
)
outputs = [
"-" * 80,
*self.meta_data_lines(),
"========Ground Truth========",
show_extra_tokens(self.output_tks, main_segs),
*pred_lines,
"========Main Code========",
"\n".join(main_lines),
] + [
f"==========={name}===========\n" + decode_tokens(tks)
for name, tks in self.all_ctxs().items()
]
return "\n".join(outputs)
| ===========above chunk 0===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
def show_prediction(self, pred_tks: TokenSeq | None = None) -> str:
# offset: -1
def show_label(i: int):
return f" <{i}>" if i <= 9 else f"<{i}>"
+
+ def show_content(tks: TokenSeq):
+ if tks and tks[0] == Add_id:
+ return "+ " + decode_tokens(tks[1:])
+ elif tks and tks[0] == Del_id:
+ return "- " + decode_tokens(tks[1:])
+ else:
+ return " " + decode_tokens(tks)
def show_extra_tokens(tks: TokenSeq, main_tk_lines: dict[Token, TokenSeq]):
segs = output_ids_as_seqs(tks)
lines = []
for k, seg in segs.items():
if not seg:
continue # skip empty lines
if seg[-1] == Del_id:
+ # show the deleted line
- # show the delted line
+ origin_line = split_list(main_tk_lines.get(k, []), Newline_id)[0]
- origin_line = main_tk_lines.get(k, [])
+ origin_line.append(Newline_id)
seg = seg + origin_line
label = show_label(id_map.get(k, -1</s>
===========unchanged ref 0===========
at: coeditor.common
TokenSeq = list[Token]
at: coeditor.encoding
BOS_id = get_tk_id("<s>")
EOS_id = get_tk_id("</s>")
at: typing
Callable = _CallableType(collections.abc.Callable, 2)
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ @staticmethod
+ def empty() -> "TkDelta":
+ return TkDelta({})
+
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ @staticmethod
+ def from_change_tks(change_tks: TokenSeq) -> tuple[TokenSeq, "TkDelta"]:
+ "Return the original input and the delta."
+ return change_tks_to_original_delta(change_tks)
+
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def get_new_target_lines(self, lines: Sequence[int]) -> Sequence[int]:
+ """Given a list of lines to edit, return the corresponding new lines to edit
+ after applying this delta."""
+ new_edit_lines = list[int]()
+ offset = 0
+ for l in lines:
+ deleted = False
+ for act in self.get_line_change(l):
+ if act[0] == Add_id:
+ new_edit_lines.append(l + offset)
+ offset += 1
+ elif act[0] == Del_id:
+ deleted = True
+ if not deleted:
+ new_edit_lines.append(l + offset)
+ return tuple(new_edit_lines)
+
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def __getitem__(self, key: DeltaKey) -> TokenSeq:
+ line, i = key
+ return self._deltas[line][i]
+
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def changed_lines(self) -> Collection[int]:
+ return self._deltas.keys()
+
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def keys(self) -> Iterable[DeltaKey]:
+ for k, _ in self.items():
+ yield k
+
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def items(self) -> Iterable[tuple[DeltaKey, TokenSeq]]:
+ for l, acts in self._deltas.items():
+ for i, act in enumerate(acts):
+ yield DeltaKey((l, i)), act
+
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __repr__(self):
line_diffs = "\n".join(
+ f" {k}: {tuple(map(decode_tokens, a))}" for k, a in self._deltas.items()
- f" {k}: {tuple(map(decode_tokens, a))}"
- for k, a in self._deltas.items()
- if a
)
return f"TkDelta(\n{line_diffs}\n)"
===========changed ref 8===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def decompose_for_input(
+ self, first_keys: Collection[DeltaKey]
+ ) -> tuple[Self, Self]:
+ """
+ Decompose the delta into two deltas such that applying them sequentially
+ using `apply_to_input` is equivalent to applying the original delta.
+ """
+ key_set = set(first_keys)
+ acts1 = dict[int, list[TokenSeq]]()
+ acts2 = dict[int, list[TokenSeq]]()
+ l_shift = 0
+ for l, acts in self._deltas.items():
+ for i, act in enumerate(acts):
+ key = DeltaKey((l, i))
+ if key in key_set:
+ acts1.setdefault(l, []).append(act)
+ l_shift += 1 if act[0] == Add_id else -1
+ else:
+ acts2.setdefault(l + l_shift, []).append(act)
+ delta1 = TkDelta({k: tuple(v) for k, v in acts1.items()})
+ delta2 = TkDelta({k: tuple(v) for k, v in acts2.items()})
+ return delta1, delta2
+
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def decompose_for_change(
+ self, first_keys: Collection[DeltaKey]
+ ) -> tuple[Self, Self]:
+ """
+ Decompose the delta into two deltas such that applying them sequentially
+ using `to_change_tks` is equivalent to applying the original delta.
+ """
+
+ key_set = set(first_keys)
+ acts1 = dict[int, list[TokenSeq]]()
+ acts2 = dict[int, list[TokenSeq]]()
+ l_shift = 0
+ for l, acts in self._deltas.items():
+ for i, act in enumerate(acts):
+ key = DeltaKey((l, i))
+ if key in key_set:
+ acts1.setdefault(l, []).append(act)
+ if act[0] == Add_id:
+ l_shift += 1
+ else:
+ assert act[0] == Del_id
+ # the additions cannot be applied to a <del> line
+ if prev_acts := acts2.pop(l + l_shift, None):
+ acts2[l + l_shift + 1] = prev_acts
+ else:
+ acts2.setdefault(l + l_shift, []).append(act)
+ delta1 = TkDelta({k: tuple(v) for k, v in acts1.items()})
+ delta2 = TkDelta({k: tuple(v) for k, v in acts2.items()})
+ return delta1, delta2
+ |
coeditor.c3problem/C3ProblemTokenizer.tokenize_problem | Modified | temp-1 | 59740e7a9d5b2998ca11a37f650e7b056ba4da4f | Implement c3 change dropout. | <0>:<add> below_tks = join_list(origin_lines[edit_stop:] + [TokenSeq()], Newline_id)
| # module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> TkC3Problem:
<s> + 1
# limit the input size if it's too long
chunk_input = truncate_section(
chunk_input, TruncateAt.Right, input_limit, inplace=True
)
chunk_output = truncate_output_tks(chunk_input, chunk_output)
# try move some prev_change_tks into the input
above_tks = join_list(origin_lines[:edit_start] + [TokenSeq()], Newline_id)
+ above_tks = tk_delta.for_input_range((0, edit_start)).to_change_tks(above_tks)
- above_tks = tk_delta.for_input_range((0, edit_start)).apply_to_input(above_tks)
- below_tks = join_list(origin_lines[edit_end:] + [TokenSeq()], Newline_id)
<0> chunk_input, above_tks, below_tks = self._inline_some_context(
chunk_input, above_tks, below_tks, input_limit
)
chunk_output = truncate_section(
chunk_output,
TruncateAt.Right,
self.max_output_tks,
add_bos=False,
inplace=True,
)
above_chunks = break_into_chunks(
above_tks,
lambda i: self._encode_headers(span.headers, -1 - i),
chunk_size=self.max_ref_tks,
overlap=self.ref_chunk_overlap,
right_to_left=True,
)
if not below_tks:
below_chunks = []
else:
below_chunks = break_into_chunks(
below_tks,
lambda i: self._encode_headers(span.headers, i + 1),
chunk_size</s> | ===========above chunk 0===========
# module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> TkC3Problem:
# offset: -1
<s> = change_tks_to_original_delta(span.change_tks.tolist())
origin_lines = split_list(original, Newline_id)
- assert isinstance(problem.edit_lines, range), "Only support range for now"
edit_start = problem.edit_lines[0]
- edit_end = problem.edit_lines[-1] + 1
scope_tks = self._encode_headers(span.headers, 0)
input_limit = self.max_query_tks - len(scope_tks)
chunk_input = TokenSeq()
chunk_output = TokenSeq()
+ last_line = edit_start
+ for i, l in enumerate(problem.edit_lines):
- for i in range(len(problem.edit_lines)):
+ for line in origin_lines[last_line + 1 : l]:
+ chunk_input.extend(line)
+ chunk_input.append(Newline_id)
+
chunk_input.append(get_extra_id(i))
- l = edit_start + i
if l < len(origin_lines):
chunk_input.extend(origin_lines[l])
chunk_input.append(Newline_id)
+ last_line = l
line_change = join_list(tk_delta.get_line_change(l), Newline_id)
chunk_output.append(get_extra_id(i))
chunk_output.extend(line_change)
if line_change and line_change[-1] != Del_id:
chunk_output.append(Newline_id)
+ if len(chunk_input) > input_limit:
+ break
+ edit_stop = last_line + 1
# limit the input size if it's too long
chunk_input = truncate_section(
chunk_input</s>
===========above chunk 1===========
# module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> TkC3Problem:
# offset: -2
span = problem.span
+ original: TokenSeq = span.original.tolist()
- original: TokenSeq
+ tk_delta: TkDelta = span.delta
- tk_delta: TkDelta
- original, tk_delta = change_tks_to_original_delta(span.change_tks.tolist())
origin_lines = split_</s>
===========below chunk 0===========
# module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> TkC3Problem:
# offset: 1
<s> below_tks,
lambda i: self._encode_headers(span.headers, i + 1),
chunk_size=self.max_ref_tks,
overlap=self.ref_chunk_overlap,
)
above_chunks = [
(f"above chunk {i}", TkArray.new(chunk))
for i, chunk in enumerate(above_chunks)
]
below_chunks = [
(f"below chunk {i}", TkArray.new(chunk))
for i, chunk in enumerate(below_chunks)
]
all_refs = above_chunks + below_chunks
ref_size_sum = sum(len(ref) for _, ref in all_refs)
# compute the references that are relevant to this span
if ref_size_sum < self.max_ref_tks_sum:
changed = self._group_encode_changed_refs(problem.relevant_changes)
for i, chunk in enumerate(changed):
all_refs.append((f"changed ref {i}", TkArray.new(chunk)))
ref_size_sum += sum(len(x) for x in changed)
if ref_size_sum < self.max_ref_tks_sum:
unchanged = self._group_encode_unchanged_refs(problem.relevant_unchanged)
for i, chunk in enumerate(unchanged):
all_refs.append((f"unchanged ref {i}", TkArray.new(chunk)))
# take until we hit the limit
ref_size_sum = 0
kept_refs = list[tuple[str, TkArray]]()
for (name, ref) in all_refs:
if ref_size_sum + len(ref) > self.max_ref_tks_sum:
continue
ref_size_sum += len(ref)
kept_refs</s>
===========below chunk 1===========
# module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> TkC3Problem:
# offset: 2
<s>.max_ref_tks_sum:
continue
ref_size_sum += len(ref)
kept_refs.append((name, ref))
return TkC3Problem(
TkArray.new(scope_tks + chunk_input),
TkArray.new(chunk_output),
path=span.headers[-1].path,
change_type=problem.change_type,
named_references=kept_refs,
project=problem.src_info["project"],
commit=problem.src_info["commit"],
)
===========unchanged ref 0===========
at: cachetools.lru
LRUCache(maxsize: int, getsizeof: Optional[Callable[[_VT], int]]=...)
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_lines: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Sequence[ChangedCodeSpan], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
at: coeditor.c3problem.C3Problem
span: ChangedCodeSpan
edit_lines: Sequence[int]
relevant_changes: Sequence[ChangedCodeSpan]
relevant_unchanged: Sequence[ChangedCodeSpan]
change_type: Change[None]
src_info: SrcInfo
transformations: tuple[str, ...] = ()
at: coeditor.c3problem.C3ProblemTokenizer
_encode_headers(scope_changes: Sequence[ChangedHeader], offset: int) -> TokenSeq
at: coeditor.c3problem.ChangedCodeSpan
headers: Sequence[ChangedHeader]
original: TkArray
delta: TkDelta
line_range: LineRange
module: ModuleName
at: coeditor.change
Change = Added[E1] | Deleted[E1] | Modified[E1]
at: coeditor.change.Added
after: E1
as_char()
at: coeditor.change.Deleted
before: E1
as_char()
at: coeditor.change.Modified
before: E1
after: E1
unchanged: bool = False
as_char()
at: coeditor.common
TokenSeq = list[Token]
split_list(lst: list[T1], sep: T1) -> list[list[T1]]
ProjectPath(typename: str, fields: Iterable[Tuple[str, Any]]=..., **kwargs: Any)
at: coeditor.encoding
Newline_id = get_tk_id("\n")
|
coeditor.c3problem/C3ProblemTokenizer._group_encode_changed_refs | Modified | temp-1 | 59740e7a9d5b2998ca11a37f650e7b056ba4da4f | Implement c3 change dropout. | <0>:<add> segs.append(c_tks)
| # module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def _group_encode_changed_refs(
self, changes: Sequence[ChangedCodeSpan]
) -> Sequence[TokenSeq]:
module2changes = groupby(changes, lambda c: c.module)
all_chunks = list[TokenSeq]()
for change_group in module2changes.values():
change_group.sort(key=lambda c: c.line_range[0])
segs = list[TokenSeq]()
# we'll add module as the chunk header, so we start within the module
last_scope = change_group[0].headers[:1]
for c in change_group:
header_diff = list[ChangedHeader]()
for i, h in enumerate(c.headers):
if i >= len(last_scope) or h.path != last_scope[i].path:
header_diff.append(h)
if header_diff:
header_tks = self._encode_headers(header_diff, 0)
segs.append(header_tks)
+ c_tks = c.delta.to_change_tks(c.original.tolist())
- segs.append(c.change_tks.tolist())
<0> segs.append([Newline_id, Newline_id])
last_scope = c.headers
segs.append([Newline_id])
mod_change = change_group[0].headers[:1]
mod_chunks = break_into_chunks(
join_list(segs),
lambda i: self._encode_headers(mod_change, i),
self.max_ref_tks,
overlap=self.ref_chunk_overlap,
)
all_chunks.extend(mod_chunks)
return all_chunks
| ===========unchanged ref 0===========
at: coeditor.c3problem
TkC3Problem(input: TkArray, output: TkArray, path: ProjectPath, change_type: Change[None], named_references: Sequence[tuple[str, TkArray]], project: str, commit: CommitInfo | None)
at: coeditor.c3problem.C3Problem
relevant_changes: Sequence[ChangedCodeSpan]
relevant_unchanged: Sequence[ChangedCodeSpan]
at: coeditor.c3problem.C3ProblemTokenizer
max_ref_tks_sum: int = 512 * 12
_group_encode_unchanged_refs(elems: Sequence[ChangedCodeSpan]) -> Sequence[TokenSeq]
_group_encode_changed_refs(changes: Sequence[ChangedCodeSpan]) -> Sequence[TokenSeq]
at: coeditor.c3problem.C3ProblemTokenizer.tokenize_problem
above_chunks = [
(f"above chunk {i}", TkArray.new(chunk))
for i, chunk in enumerate(above_chunks)
]
above_chunks = break_into_chunks(
above_tks,
lambda i: self._encode_headers(span.headers, -1 - i),
chunk_size=self.max_ref_tks,
overlap=self.ref_chunk_overlap,
right_to_left=True,
)
at: coeditor.tk_array
TkArray()
at: coeditor.tk_array.TkArray
new(tks: Sequence[int]) -> "TkArray"
===========changed ref 0===========
# module: coeditor.c3problem
+ class C3ProblemTransformer(ABC):
+ @abstractmethod
+ def transform(self, prob: C3Problem) -> Iterable[C3Problem]:
+ ...
+
===========changed ref 1===========
# module: coeditor.c3problem
+ class C3ProblemTransformer(ABC):
+ "A strategy to generate new C3 problems from the orginal ones."
+
===========changed ref 2===========
# module: coeditor.c3problem
+ class C3ProblemSimpleSplit(C3ProblemTransformer):
+ "Simply split the problem into fixed-sized editing ranges."
+ max_lines_to_edit: int = 25
+ max_split_factor: int = 4
+
===========changed ref 3===========
# module: coeditor.c3problem
+ class C3ProblemChangeDropout(C3ProblemTransformer):
+ """Split the problem into fixed-sized editing ranges like `C3ProblemSimpleSplit`,
+ but also randomly keep some subset of changes in the input."""
+
+ max_lines_to_edit: int = 25
+ max_split_factor: int = 4
+ # the probability of dropping out some changes into the input
+ dropout_prob: float = 0.5
+ # when dropping the changes into the input, the biggest ratio of changes to drop
+ max_dropout_ratio: float = 0.5
+
===========changed ref 4===========
# module: coeditor.c3problem
+ class C3ProblemSimpleSplit(C3ProblemTransformer):
+ def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
+ delta = prob.span.delta
+ l_range = prob.edit_lines
+ assert isinstance(l_range, range)
+ start, stop = l_range.start, l_range.stop
+ problems = list[C3Problem]()
+ new_trans = prob.transformations + ("split",)
+ for i in range(start, stop, self.max_lines_to_edit):
+ j = min(i + self.max_lines_to_edit, stop)
+ sub_delta = delta.for_input_range((i, j))
+ if sub_delta.num_changes() > 0:
+ sub_prob = dataclasses.replace(
+ prob, edit_lines=range(i, j), transformations=new_trans
+ )
+ problems.append(sub_prob)
+ if len(problems) >= self.max_split_factor:
+ break
+ return problems
+
===========changed ref 5===========
# module: coeditor.c3problem
class C3ProblemGenerator(ProjectChangeProcessor[C3Problem]):
+ """
+ ### Change log
+ - v2.3: always generate problems with full editing range and move the problem
+ splitting logic elsewhere. Also changed the data format of `ChangedCodeSpan`.
+ """
+
+ VERSION = "2.3"
- VERSION = "2.2"
# change spans with more than this many lines will be ignored
max_span_lines: int = 500
- max_lines_to_edit: int = 25
- max_problems_per_elem: int = 4
===========changed ref 6===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class ChangedCodeSpan:
"""Represents the changes made to a span of code.
This format does not store parent syntax nodes and is more suitable for serialization.
"""
headers: Sequence[ChangedHeader]
+ original: TkArray
+ delta: TkDelta
- change_tks: TkArray
# below are pre-edit attributes
line_range: LineRange
module: ModuleName
===========changed ref 7===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
"Contextual code change prediction problem."
span: ChangedCodeSpan
# the lines to be edited
+ edit_lines: Sequence[int]
- edit_lines: Collection[int]
# most relevant to least relevant
relevant_changes: Sequence[ChangedCodeSpan]
# most relevant to least relevant
relevant_unchanged: Sequence[ChangedCodeSpan]
# some optional information about how the problem was generated
change_type: Change[None]
src_info: SrcInfo
+ transformations: tuple[str, ...] = ()
===========changed ref 8===========
# module: coeditor.c3problem
+ class C3ProblemChangeDropout(C3ProblemTransformer):
+ def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
+ original = prob.span.original
+ delta = prob.span.delta
+ l_range = prob.edit_lines
+ assert isinstance(l_range, range)
+ start, stop = l_range.start, l_range.stop
+ problems = list[C3Problem]()
+ for i in range(start, stop, self.max_lines_to_edit):
+ j = min(i + self.max_lines_to_edit, stop)
+ sub_delta = delta.for_input_range((i, j))
+ if sub_delta.num_changes() == 0:
+ continue
+ grouped_keys = sub_delta.change_groups()
+ should_dropout = (
+ len(grouped_keys) >= 2 and random.random() < self.dropout_prob
+ )
+ if should_dropout:
+ n_to_drop = int(
+ len(grouped_keys) * random.random() * self.max_dropout_ratio
+ )
+ assert n_to_drop < len(grouped_keys)
+ keys_to_drop = join_list(random_subset(grouped_keys, n_to_drop))
+ else:
+ keys_to_drop = []
+ if keys_to_drop:
+ _, delta2 = sub_delta.decompose_for_change(keys_to_drop)
+ if delta2.num_changes() == 0:
+ continue
+ delta1, delta2 = delta.decompose_for_change(keys_to_drop)
+ new_original = TkArray.new(delta1.to_change_tks(original.tolist()))
+ new_trans = prob.transformations + ("split", "dropout")
+ new_span = dataclasses.replace(
+ prob.span, original=new_original, delta=delta2
+ )
+ </s> |
coeditor.model/RetrievalDecodingResult.exact_match_accuracy | Modified | temp-1 | 59740e7a9d5b2998ca11a37f650e7b056ba4da4f | Implement c3 change dropout. | <0>:<add> original = prob.span.original.tolist()
| # module: coeditor.model
@dataclass
class RetrievalDecodingResult:
def exact_match_accuracy(self) -> tuple[CountedSum, dict[int, bool]]:
ex2correct = dict[int, bool]()
for i, mp in enumerate(self.predictions):
prob = self.problems[i]
- change_tks = prob.span.change_tks.tolist()
- original, _ = change_tks_to_original_delta(change_tks)
<0> pred_delta = TkDelta.from_output_tks(mp["output_ids"])
label_delta = TkDelta.from_output_tks(mp["labels"])
assert isinstance(prob.edit_lines, range)
line_shift = prob.edit_lines.start
pred_code = pred_delta.shifted(line_shift).apply_to_input(original)
label_code = label_delta.shifted(line_shift).apply_to_input(original)
is_correct = code_equal(decode_tokens(pred_code), decode_tokens(label_code))
ex2correct[i] = is_correct
correct_count = CountedSum(sum(ex2correct.values()), len(ex2correct))
return correct_count, ex2correct
| ===========unchanged ref 0===========
at: coeditor.c3problem.C3Problem
span: ChangedCodeSpan
edit_line_ids: Sequence[int]
relevant_changes: Sequence[ChangedCodeSpan]
relevant_unchanged: Mapping["PyFullName", "PyDefinition"]
change_type: Change[None]
src_info: SrcInfo
transformations: tuple[str, ...] = ()
at: coeditor.c3problem.ChangedCodeSpan
headers: Sequence[ChangedHeader]
original: TkArray
delta: TkDelta
line_range: LineRange
module: ModuleName
at: coeditor.common
CountedSum = WeightedSum[int, int]
code_equal(code1: str, code2: str) -> bool
at: coeditor.encoding
decode_tokens(tokens: TokenSeq, prettify: bool=False) -> str
TkDelta(_deltas: Mapping[int, tuple[TokenSeq, ...]])
at: coeditor.encoding.TkDelta
_deltas: Mapping[int, tuple[TokenSeq, ...]]
apply_to_input(input: TokenSeq)
shifted(shift_lines: int) -> Self
from_output_tks(edit_line_ids: Sequence[int], tks: TokenSeq, allow_truncated_tks: bool=True) -> "TkDelta"
at: coeditor.model.RetrievalDecodingResult
eval_args: dict
problems: Sequence[C3Problem]
predictions: Sequence[RetrievalModelPrediction]
at: coeditor.tk_array.TkArray
tolist() -> TokenSeq
===========changed ref 0===========
# module: coeditor.c3problem
+ class C3ProblemTransformer(ABC):
+ @abstractmethod
+ def transform(self, prob: C3Problem) -> Iterable[C3Problem]:
+ ...
+
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ @staticmethod
+ def empty() -> "TkDelta":
+ return TkDelta({})
+
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def changed_lines(self) -> Collection[int]:
+ return self._deltas.keys()
+
===========changed ref 3===========
# module: coeditor.common
+ SEP = "-" * 80
HtmlCode = str
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def keys(self) -> Iterable[DeltaKey]:
+ for k, _ in self.items():
+ yield k
+
===========changed ref 5===========
# module: coeditor.c3problem
+ class C3ProblemTransformer(ABC):
+ "A strategy to generate new C3 problems from the orginal ones."
+
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def __getitem__(self, key: DeltaKey) -> TokenSeq:
+ line, i = key
+ return self._deltas[line][i]
+
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ @staticmethod
+ def from_change_tks(change_tks: TokenSeq) -> tuple[TokenSeq, "TkDelta"]:
+ "Return the original input and the delta."
+ return change_tks_to_original_delta(change_tks)
+
===========changed ref 8===========
# module: coeditor.common
+ def print_sections(
+ sections: list[tuple[str, str]],
+ sep: str = SEP,
+ ) -> None:
+ for title, content in sections:
+ print(sep)
+ print(f"{title}:")
+ print(content)
+
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def items(self) -> Iterable[tuple[DeltaKey, TokenSeq]]:
+ for l, acts in self._deltas.items():
+ for i, act in enumerate(acts):
+ yield DeltaKey((l, i)), act
+
===========changed ref 10===========
# module: coeditor.c3problem
+ class C3ProblemSimpleSplit(C3ProblemTransformer):
+ "Simply split the problem into fixed-sized editing ranges."
+ max_lines_to_edit: int = 25
+ max_split_factor: int = 4
+
===========changed ref 11===========
# module: coeditor.encoding
+ # (line, action id)
+ DeltaKey = NewType("DeltaKey", tuple[int, int])
+
TEdit = TypeVar("TEdit", bound=TokenizedEdit)
===========changed ref 12===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class ChangedCodeSpan:
"""Represents the changes made to a span of code.
This format does not store parent syntax nodes and is more suitable for serialization.
"""
headers: Sequence[ChangedHeader]
+ original: TkArray
+ delta: TkDelta
- change_tks: TkArray
# below are pre-edit attributes
line_range: LineRange
module: ModuleName
===========changed ref 13===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __repr__(self):
line_diffs = "\n".join(
+ f" {k}: {tuple(map(decode_tokens, a))}" for k, a in self._deltas.items()
- f" {k}: {tuple(map(decode_tokens, a))}"
- for k, a in self._deltas.items()
- if a
)
return f"TkDelta(\n{line_diffs}\n)"
===========changed ref 14===========
# module: coeditor.c3problem
+ class C3ProblemChangeDropout(C3ProblemTransformer):
+ """Split the problem into fixed-sized editing ranges like `C3ProblemSimpleSplit`,
+ but also randomly keep some subset of changes in the input."""
+
+ max_lines_to_edit: int = 25
+ max_split_factor: int = 4
+ # the probability of dropping out some changes into the input
+ dropout_prob: float = 0.5
+ # when dropping the changes into the input, the biggest ratio of changes to drop
+ max_dropout_ratio: float = 0.5
+
===========changed ref 15===========
# module: coeditor.c3problem
class C3ProblemGenerator(ProjectChangeProcessor[C3Problem]):
+ """
+ ### Change log
+ - v2.3: always generate problems with full editing range and move the problem
+ splitting logic elsewhere. Also changed the data format of `ChangedCodeSpan`.
+ """
+
+ VERSION = "2.3"
- VERSION = "2.2"
# change spans with more than this many lines will be ignored
max_span_lines: int = 500
- max_lines_to_edit: int = 25
- max_problems_per_elem: int = 4
===========changed ref 16===========
# module: coeditor._utils
+ def add_line_numbers(code: str, start: int = 1):
- def add_line_numbers(code: str):
lines = code.split("\n")
ln_digits = int(math.log(len(lines), 10)) + 1
format_s = "{ln:" + str(ln_digits) + "d}| {line}"
+ return "\n".join(format_s.format(ln=i + start, line=l) for i, l in enumerate(lines))
- return "\n".join(format_s.format(ln=i + 1, line=l) for i, l in enumerate(lines))
|
coeditor.model/RetrievalEditorModel.train_on_data | Modified | temp-1 | 59740e7a9d5b2998ca11a37f650e7b056ba4da4f | Implement c3 change dropout. | <0>:<add> logging_steps=max(1, min(1000, epoch_steps // 10)),
| # module: coeditor.model
class RetrievalEditorModel(T5PreTrainedModel):
def train_on_data(
self,
training_name: str,
train_loader: "C3DataLoader",
eval_loader: "C3DataLoader",
train_args: "TrainingArgs",
) -> None:
<s>_loader(as_any(dataloader))
n_samples = metrics["loss_per_ex"].weight
metrics = {
f"{metric_key_prefix}_{k}": v.mean() for k, v in metrics.items()
}
return EvalLoopOutput(
predictions=tuple(),
label_ids=tuple(),
metrics=metrics,
num_samples=n_samples,
)
epoch_steps = len(train_loader)
cprint("blue", "Number of training batches (estimate):", epoch_steps)
trainer_args = Seq2SeqTrainingArguments(
output_dir=str(train_dir),
overwrite_output_dir=True,
evaluation_strategy="epoch",
save_strategy="epoch",
- logging_steps=max(1, epoch_steps // 10),
<0> num_train_epochs=train_args.max_train_epochs,
save_total_limit=2,
lr_scheduler_type=train_args.lr_scheduler_type,
learning_rate=train_args.learning_rate,
weight_decay=train_args.weight_decay,
metric_for_best_model="loss_per_tk",
greater_is_better=False,
fp16=True,
load_best_model_at_end=True,
push_to_hub=False,
report_to=["wandb"],
disable_tqdm=True,
# torchdynamo="inductor", # use compiled model
)
trainer = DynamicTrainer(
self,
trainer_args,
callbacks=[EarlyStoppingCallback(early_stopping_patience=1)],
)
trainer.train()</s> | ===========above chunk 0===========
# module: coeditor.model
class RetrievalEditorModel(T5PreTrainedModel):
def train_on_data(
self,
training_name: str,
train_loader: "C3DataLoader",
eval_loader: "C3DataLoader",
train_args: "TrainingArgs",
) -> None:
# offset: -1
train_dir = get_model_dir(trained=False) / training_name
eval_loader.tqdm_args = {"disable": True}
model = self
# model = torch.compile(self.to("cuda")) # pytorch doesn't support python 3.11 yet.
class DynamicTrainer(Seq2SeqTrainer):
def get_train_dataloader(self):
return train_loader
def get_eval_dataloader(self, eval_dataset):
return eval_loader
def evaluation_loop(
self,
dataloader,
description: str,
prediction_loss_only: Optional[bool] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
) -> EvalLoopOutput:
metrics = model.eval_loss_on_loader(as_any(dataloader))
n_samples = metrics["loss_per_ex"].weight
</s>
===========below chunk 0===========
# module: coeditor.model
class RetrievalEditorModel(T5PreTrainedModel):
def train_on_data(
self,
training_name: str,
train_loader: "C3DataLoader",
eval_loader: "C3DataLoader",
train_args: "TrainingArgs",
) -> None:
# offset: 1
<s> callbacks=[EarlyStoppingCallback(early_stopping_patience=1)],
)
trainer.train()
save_dir = get_model_dir(trained=True) / training_name
self.save(save_dir)
print("Model saved to:", save_dir)
===========unchanged ref 0===========
at: coeditor._utils
as_any(x) -> Any
cprint(color: str, *elems, sep: Optional[str]=..., end: Optional[str]=..., file: Optional[SupportsWrite[str]]=..., flush: bool=...)
at: coeditor.common
get_model_dir(trained=True) -> Path
at: coeditor.common.WeightedSum
sum: V
weight: W
mean() -> float
at: coeditor.model.C3DataLoader
all_probs: Sequence[C3Problem]
tokenizer: C3ProblemTokenizer
batch_args: BatchArgs
shuffle: bool
desc: str
tqdm_args: dict | None = None
chunk_size: int = 1000
workers: int = 10
at: coeditor.model.RetrievalEditorModel
is_parallelizable = False
supports_gradient_checkpointing = False
eval_loss_on_loader(dataloader: "C3DataLoader")
decorate_autocast(dataloader: "C3DataLoader")
save(save_dir: Path, is_main_process: bool=True, state_dict: Optional[dict]=None, save_function: Callable=torch.save, push_to_hub: bool=False, max_shard_size: Union[int, str]="10GB", safe_serialization: bool=False, variant: Optional[str]=None, /, *, is_main_process: bool=True, state_dict: Optional[dict]=None, save_function: Callable=torch.save, push_to_hub: bool=False, max_shard_size: Union[int, str]="10GB", safe_serialization: bool=False, variant: Optional[str]=None, private: Optional[bool]=None, use_auth_token: Optional[Union[bool, str]]=None, repo_url: Optional[str]=None, organization: Optional[str]=None)
at: coeditor.model.TrainingArgs
learning_rate: float = 2e-5
===========unchanged ref 1===========
weight_decay: float = 0.01
max_train_epochs: int = 3
reinit_weights: bool = False
quicktest: bool = False
lr_scheduler_type: SchedulerType = SchedulerType.LINEAR
at: transformers.trainer.Trainer
get_train_dataloader(self) -> DataLoader
get_eval_dataloader(self, eval_dataset: Optional[Dataset]=None) -> DataLoader
train(resume_from_checkpoint: Optional[Union[str, bool]]=None, trial: Union["optuna.Trial", Dict[str, Any]]=None, ignore_keys_for_eval: Optional[List[str]]=None, **kwargs)
evaluation_loop(self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool]=None, ignore_keys: Optional[List[str]]=None, metric_key_prefix: str="eval") -> EvalLoopOutput
at: transformers.trainer_callback
EarlyStoppingCallback(early_stopping_patience: int=1, early_stopping_threshold: Optional[float]=0.0)
at: transformers.trainer_seq2seq
Seq2SeqTrainer(model: Union["PreTrainedModel", nn.Module]=None, args: "TrainingArguments"=None, data_collator: Optional["DataCollator"]=None, train_dataset: Optional[Dataset]=None, eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]]=None, tokenizer: Optional["PreTrainedTokenizerBase"]=None, model_init: Optional[Callable[[], "PreTrainedModel"]]=None, compute_metrics: Optional[Callable[["EvalPrediction"], Dict]]=None, callbacks: Optional[List["TrainerCallback"]]=None, optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]=(None, None), preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]]=None)
|
coeditor.dataset/make_or_load_datasets | Modified | temp-1 | 59740e7a9d5b2998ca11a37f650e7b056ba4da4f | Implement c3 change dropout. | <0>:<add> ).values()
| # module: coeditor.dataset
def make_or_load_datasets(
dataset_name: str,
change_processor: ProjectChangeProcessor[C3Problem],
recreate_data: bool = False,
workers: int = DefaultWorkers,
) -> Mapping[str, Sequence[C3Problem]]:
config_str = repr_modified_args(change_processor)
save_dir = get_dataset_dir(dataset_name) / "processed" / config_str
if recreate_data or not save_dir.exists():
if dataset_name == "SPOT":
datasets = {
+ "test": join_list(
+ dataset_from_projects(
- "test": dataset_from_projects(
+ [proj_root()], change_processor, [False], workers=workers
- [proj_root()], change_processor, [False], workers=workers
<0> )
}
else:
datasets = datasets_from_repos(
get_dataset_dir(dataset_name) / "repos",
change_processor,
workers=workers,
)
with timed_action("Saving datasets to disk"):
save_dir.mkdir(parents=True, exist_ok=True)
save_datasets(datasets, save_dir)
print("Tokenized dataset saved to:", save_dir)
else:
with timed_action("Loading datasets from disk"):
datasets = load_datasets(save_dir)
size_info = run_command(["du", "-ha", "."], save_dir)
print(f"Dataset sizes:")
print(size_info)
return datasets
| ===========unchanged ref 0===========
at: coeditor._utils
DefaultWorkers: int = multiprocessing.cpu_count() // 2
global DefaultWorkers
timed_action(name: str, silent: bool=False)
repr_modified_args(instance, flatten: bool=False) -> str
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_line_ids: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Mapping["PyFullName", "PyDefinition"], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
at: coeditor.common
proj_root() -> Path
get_dataset_dir(dataname: str) -> Path
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
at: coeditor.dataset
dataset_from_projects(project_roots: Sequence[Path], change_processor: ProjectChangeProcessor[C3Problem], repo_training: Sequence[bool], max_history_per_repo: int=1000, workers: int=DefaultWorkers) -> "Mapping[Path, Sequence[C3Problem]]"
datasets_from_repos(repos_root: Path, change_processor: ProjectChangeProcessor[C3Problem], max_history_per_repo: int=1000, workers: int=DefaultWorkers) -> dict[str, Sequence[C3Problem]]
save_datasets(datasets: Mapping[str, Any], save_dir: Path) -> None
at: coeditor.dataset.datasets_from_repos
projects[split] = ps
dataset = dataset_from_projects(
join_list(projects.values()),
change_processor=change_processor,
repo_training=join_list(split_is_training.values()),
max_history_per_repo=max_history_per_repo,
workers=workers,
)
at: coeditor.scoped_changes
ProjectChangeProcessor()
at: pathlib.Path
__slots__ = ()
===========unchanged ref 1===========
mkdir(mode: int=..., parents: bool=..., exist_ok: bool=...) -> None
exists() -> bool
at: pathlib.PurePath
__slots__ = (
'_drv', '_root', '_parts',
'_str', '_hash', '_pparts', '_cached_cparts',
)
drive = property(attrgetter('_drv'),
doc="""The drive prefix (letter or UNC path), if any.""")
root = property(attrgetter('_root'),
doc="""The root of the path, if any.""")
at: typing
Mapping = _alias(collections.abc.Mapping, 2)
Sequence = _alias(collections.abc.Sequence, 1)
at: typing.Mapping
values() -> ValuesView[_VT_co]
===========changed ref 0===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
"Contextual code change prediction problem."
span: ChangedCodeSpan
# the lines to be edited
+ edit_lines: Sequence[int]
- edit_lines: Collection[int]
# most relevant to least relevant
relevant_changes: Sequence[ChangedCodeSpan]
# most relevant to least relevant
relevant_unchanged: Sequence[ChangedCodeSpan]
# some optional information about how the problem was generated
change_type: Change[None]
src_info: SrcInfo
+ transformations: tuple[str, ...] = ()
===========changed ref 1===========
# module: coeditor.dataset
@dataclass
class C3EditEncoder:
change_processor: ProjectChangeProcessor[C3Problem] = field(
default_factory=C3ProblemGenerator
)
+ problem_tranformer: C3ProblemTransformer = field(
+ default_factory=C3ProblemSimpleSplit
+ )
edit_tokenizer: C3ProblemTokenizer = field(default_factory=C3ProblemTokenizer)
===========changed ref 2===========
# module: coeditor.c3problem
+ class C3ProblemTransformer(ABC):
+ @abstractmethod
+ def transform(self, prob: C3Problem) -> Iterable[C3Problem]:
+ ...
+
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ @staticmethod
+ def empty() -> "TkDelta":
+ return TkDelta({})
+
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def changed_lines(self) -> Collection[int]:
+ return self._deltas.keys()
+
===========changed ref 5===========
# module: coeditor.common
+ SEP = "-" * 80
HtmlCode = str
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def keys(self) -> Iterable[DeltaKey]:
+ for k, _ in self.items():
+ yield k
+
===========changed ref 7===========
# module: coeditor.c3problem
+ class C3ProblemTransformer(ABC):
+ "A strategy to generate new C3 problems from the orginal ones."
+
===========changed ref 8===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def __getitem__(self, key: DeltaKey) -> TokenSeq:
+ line, i = key
+ return self._deltas[line][i]
+
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ @staticmethod
+ def from_change_tks(change_tks: TokenSeq) -> tuple[TokenSeq, "TkDelta"]:
+ "Return the original input and the delta."
+ return change_tks_to_original_delta(change_tks)
+
===========changed ref 10===========
# module: coeditor.common
+ def print_sections(
+ sections: list[tuple[str, str]],
+ sep: str = SEP,
+ ) -> None:
+ for title, content in sections:
+ print(sep)
+ print(f"{title}:")
+ print(content)
+
===========changed ref 11===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
+ def items(self) -> Iterable[tuple[DeltaKey, TokenSeq]]:
+ for l, acts in self._deltas.items():
+ for i, act in enumerate(acts):
+ yield DeltaKey((l, i)), act
+
===========changed ref 12===========
# module: coeditor.c3problem
+ class C3ProblemSimpleSplit(C3ProblemTransformer):
+ "Simply split the problem into fixed-sized editing ranges."
+ max_lines_to_edit: int = 25
+ max_split_factor: int = 4
+
===========changed ref 13===========
# module: coeditor.encoding
+ # (line, action id)
+ DeltaKey = NewType("DeltaKey", tuple[int, int])
+
TEdit = TypeVar("TEdit", bound=TokenizedEdit)
===========changed ref 14===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class ChangedCodeSpan:
"""Represents the changes made to a span of code.
This format does not store parent syntax nodes and is more suitable for serialization.
"""
headers: Sequence[ChangedHeader]
+ original: TkArray
+ delta: TkDelta
- change_tks: TkArray
# below are pre-edit attributes
line_range: LineRange
module: ModuleName
===========changed ref 15===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def __repr__(self):
line_diffs = "\n".join(
+ f" {k}: {tuple(map(decode_tokens, a))}" for k, a in self._deltas.items()
- f" {k}: {tuple(map(decode_tokens, a))}"
- for k, a in self._deltas.items()
- if a
)
return f"TkDelta(\n{line_diffs}\n)"
|
scripts.train_model/train_model | Modified | temp-1 | 59740e7a9d5b2998ca11a37f650e7b056ba4da4f | Implement c3 change dropout. | <0>:<add> datasets = {split: transform_data(data) for split, data in datasets.items()}
| # module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
<s> "base", reuse_embed=True, reinit_weights=train_args.reinit_weights
)
else:
model = RetrievalEditorModel.load(get_model_dir() / model_name)
if os.getenv("CUDA_VISIBLE_DEVICES") is None:
warnings.warn(
"CUDA_VISIBLE_DEVICES not set, using 0. Note that "
"the Huggingface Trainer will use all visible GPUs for training."
)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
+
+ def transform_data(data: Sequence[C3Problem]) -> list[C3Problem]:
+ transformed = pmap(encoder.problem_tranformer.transform, data, chunksize=1000)
+ return join_list(transformed)
+
<0>
train_tkn = encoder.edit_tokenizer
eval_tkn = copy.deepcopy(train_tkn)
eval_tkn.max_ref_tks_sum *= 2
eval_loader = C3DataLoader(
datasets["valid"], eval_tkn, eval_batch_args, shuffle=False, desc="eval"
)
if not eval_only:
train_loader = C3DataLoader(
datasets["train"], train_tkn, batch_args, shuffle=True, desc="training"
)
with timed_action("Warm-up Training"):
warmup_bargs = copy.deepcopy(batch_args)
warmup_bargs.min_queries *= 4
warmup_bargs.max_queries *= 2
warm_up_</s> | ===========above chunk 0===========
# module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: -1
<s> "-file"
model_name = f"coeditor-{dataset_name}"
model_name += model_variant
dec_args = DecodingArgs()
if train_args.quicktest:
model_name = "quicktest-" + model_name
if not eval_only:
check_save_dir(model_name)
datasets = make_or_load_datasets(
dataset_name, encoder.change_processor, recreate_data=recreate_data
)
config_dict = {
k: get_modified_args(v)
for k, v in {
"edit_tokenizer": encoder.edit_tokenizer.get_args(),
"batch_args": batch_args,
"train_args": train_args,
"dec_args": dec_args,
}.items()
}
project = "Coeditor" if not train_args.quicktest else "Coeditor-quicktest"
if eval_only:
project = "eval-" + project
wandb.init(dir="..", project=project, name=model_name, config=config_dict)
if train_args.quicktest:
print("Using fewer data for quick test.")
n_quick_exs = 20
datasets = {name: data[:n_quick_exs] for name, data in datasets.items()}
if not eval_only:
model = RetrievalEditorModel.from_code_t5(
"base", reuse_embed=True, reinit_weights=train_args.reinit_weights
)
else:
</s>
===========above chunk 1===========
# module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: -2
# model_variant = "-file"
model_name = f"coeditor-{dataset_name}"
model_name += model_variant
</s>
===========below chunk 0===========
# module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: 1
<s>up_bargs.min_queries *= 4
warmup_bargs.max_queries *= 2
warm_up_data = random_subset(datasets["train"], len(datasets["train"]) // 4)
warmup_tkn = copy.deepcopy(train_tkn)
warmup_tkn.max_ref_tks_sum //= 3
warmup_loader = C3DataLoader(
warm_up_data,
warmup_tkn,
warmup_bargs,
shuffle=True,
desc="warm-up training",
)
warmup_targs = copy.deepcopy(train_args)
warmup_targs.learning_rate *= 4
warmup_targs.max_train_epochs = 1
model.train_on_data(model_name, warmup_loader, eval_loader, warmup_targs)
with timed_action("Fine-tune Training"):
model.train_on_data(model_name, train_loader, eval_loader, train_args)
model.to("cuda")
with timed_action("Loss Evaluation"):
eval_result = model.eval_loss_on_loader(eval_loader)
eval_dict = {f"test/{k}": v.average() for k, v in eval_result.items()}
wandb.log(eval_dict)
max_saved_samples = 300
with timed_action("Accuracy Evaluation"):
dec_result = model.predict_on_data(
datasets["test"], eval_tkn, eval_batch_</s>
===========below chunk 1===========
# module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: 2
<s>
dec_result = model.predict_on_data(
datasets["test"], eval_tkn, eval_batch_args, dec_args
)
pickle_dump(get_model_dir() / model_name / "dec_result.pkl", dec_result)
exact_acc, exact_correct_map = dec_result.exact_match_accuracy()
wandb.log({"test/exact-acc": exact_acc.average()})
out_dir = get_model_dir() / model_name / "exact_match_samples"
dec_result.save_examples_to_dir(
out_dir, random_subset(exact_correct_map, max_saved_samples)
)
cprint("blue", "Exact-match samples saved to:", out_dir)
return model
===========unchanged ref 0===========
at: _warnings
warn(message: str, category: Optional[Type[Warning]]=..., stacklevel: int=..., source: Optional[Any]=...) -> None
warn(message: Warning, category: Any=..., stacklevel: int=..., source: Optional[Any]=...) -> None
at: coeditor._utils
pmap(f: Callable[..., T1], iter3: Iterable[Any], iter4: Iterable[Any], iter5: Iterable[Any], iter6: Iterable[Any], /, *iterables: Iterable[Any], desc: str | None=None, key_args: Mapping[str, Any] | None=None, max_workers: int | None=None, chunksize: int | None=None, tqdm_args: Mapping[str, Any] | None=None) -> list[T1]
timed_action(name: str, silent: bool=False)
pickle_dump(file: Path, obj: Any)
get_modified_args(instance, flatten: bool=False) -> dict[str, Any] | None
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_line_ids: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Mapping["PyFullName", "PyDefinition"], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
at: coeditor.common
get_model_dir(trained=True) -> Path
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
random_subset(all: Mapping[T1, T2], n: int, rng: random.Random | int | None=None) -> dict[T1, T2]
random_subset(all: Sequence[T1], n: int, rng: random.Random | int | None=None) -> list[T1]
at: coeditor.common.WeightedSum
sum: V
weight: W
average() -> float
|
coeditor.encoding/StrDelta.apply_to_input | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> lines = splitlines(input)
| # module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
- lines = input.split("\n")
<0> new_lines = list[str]()
for i, line in enumerate(lines):
deleted = False
if delta := self._deltas.get(i):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
| ===========unchanged ref 0===========
at: coeditor.common
splitlines(text: str) -> list[str]
at: coeditor.encoding.StrDelta
_deltas: Mapping[int, tuple[str, ...]]
at: typing.Mapping
get(key: _KT) -> Optional[_VT_co]
get(key: _KT, default: Union[_VT_co, _T]) -> Union[_VT_co, _T]
===========changed ref 0===========
# module: coeditor.common
def splitlines(text: str) -> list[str]:
"""Split a text into lines and apalways ends with an empty line."""
+ if not text:
+ return []
return text.split("\n")
===========changed ref 1===========
# module: coeditor.common
def count_lines(text: str) -> int:
+ if not text:
+ return 0
return text.count("\n") + 1
===========changed ref 2===========
# module: coeditor.common
def split_list(
lst: list[T1],
sep: T1,
) -> list[list[T1]]:
"""
Split a list into segments by a separator, always ends with an empty list.
"""
+ if not lst:
+ return []
result = list[list[T1]]()
ptr = 0
for i, item in enumerate(lst):
if item == sep:
result.append(lst[ptr:i])
ptr = i + 1
result.append(lst[ptr:])
return result
|
coeditor.encoding/StrDelta.__repr__ | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> line_diffs = "\n".join(f" {l}: {a}" for l, a in self._deltas.items())
| # module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
<0> return f"StrDelta(\n{line_diffs}\n)"
| ===========unchanged ref 0===========
at: coeditor.encoding.StrDelta
_deltas: Mapping[int, tuple[str, ...]]
at: typing.Mapping
items() -> AbstractSet[Tuple[_KT, _VT_co]]
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
+ lines = splitlines(input)
- lines = input.split("\n")
new_lines = list[str]()
for i, line in enumerate(lines):
deleted = False
if delta := self._deltas.get(i):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
===========changed ref 1===========
# module: coeditor.common
def count_lines(text: str) -> int:
+ if not text:
+ return 0
return text.count("\n") + 1
===========changed ref 2===========
# module: coeditor.common
def splitlines(text: str) -> list[str]:
"""Split a text into lines and apalways ends with an empty line."""
+ if not text:
+ return []
return text.split("\n")
===========changed ref 3===========
# module: coeditor.common
def split_list(
lst: list[T1],
sep: T1,
) -> list[list[T1]]:
"""
Split a list into segments by a separator, always ends with an empty list.
"""
+ if not lst:
+ return []
result = list[list[T1]]()
ptr = 0
for i, item in enumerate(lst):
if item == sep:
result.append(lst[ptr:i])
ptr = i + 1
result.append(lst[ptr:])
return result
|
coeditor.encoding/change_to_tokens | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> return join_list(([tk] + line for line in lines), Newline_id)
| # module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
match change:
case Modified(before=before, after=after, unchanged=unchanged):
if unchanged or before == after:
return encode_basic(before)
else:
diffs = change_to_line_diffs(change)
return encode_diffs(diffs)
case Added() | Deleted():
+ lines = split_list(encode_basic(change.earlier), Newline_id)
- lines = split_list(encode_basic(change.earlier()), Newline_id)
tk = Add_id if isinstance(change, Added) else Del_id
- return join_list([tk] + line for line in lines)
<0> case _:
raise AssertionError(f"Not a change type: {change}")
| ===========unchanged ref 0===========
at: coeditor.change
Added(after: E1)
Deleted(before: E1)
Modified(before: E1, after: E1, unchanged: bool=False)
Change = Added[E1] | Deleted[E1] | Modified[E1]
at: coeditor.change.Added
after: E1
at: coeditor.change.Deleted
before: E1
at: coeditor.change.Modified
before: E1
after: E1
unchanged: bool = False
at: coeditor.common
TokenSeq = list[Token]
split_list(lst: list[T1], sep: T1) -> list[list[T1]]
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
at: coeditor.encoding
Add_id = get_tk_id(Add)
Del_id = get_tk_id(Del)
Newline_id = get_tk_id("\n")
encode_basic(text: str, add_special_tokens=False) -> TokenSeq
change_to_line_diffs(change: Change[str]) -> list[str]
encode_diffs(diffs: Sequence[str]) -> TokenSeq
===========changed ref 0===========
# module: coeditor.common
def split_list(
lst: list[T1],
sep: T1,
) -> list[list[T1]]:
"""
Split a list into segments by a separator, always ends with an empty list.
"""
+ if not lst:
+ return []
result = list[list[T1]]()
ptr = 0
for i, item in enumerate(lst):
if item == sep:
result.append(lst[ptr:i])
ptr = i + 1
result.append(lst[ptr:])
return result
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in self._deltas.items())
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
+ lines = splitlines(input)
- lines = input.split("\n")
new_lines = list[str]()
for i, line in enumerate(lines):
deleted = False
if delta := self._deltas.get(i):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
===========changed ref 3===========
# module: coeditor.common
def count_lines(text: str) -> int:
+ if not text:
+ return 0
return text.count("\n") + 1
===========changed ref 4===========
# module: coeditor.common
def splitlines(text: str) -> list[str]:
"""Split a text into lines and apalways ends with an empty line."""
+ if not text:
+ return []
return text.split("\n")
|
coeditor.encoding/TokenizedEdit.show | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> return f" <{i}>" if i <= 9 else f"<{i}>"
| # module: coeditor.encoding
class TokenizedEdit(ABC):
+ def show(self, pred_tks: TokenSeq | None = None) -> str:
- def show(self) -> str:
+ def show_label(i: int):
- return self.show_prediction(None)
<0>
| ===========unchanged ref 0===========
at: coeditor.encoding.TokenizedEdit
input_tks: TokenSeq
output_tks: TokenSeq
main_tks: TokenSeq
path: ProjectPath
change_type: Change[None]
===========changed ref 0===========
# module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
match change:
case Modified(before=before, after=after, unchanged=unchanged):
if unchanged or before == after:
return encode_basic(before)
else:
diffs = change_to_line_diffs(change)
return encode_diffs(diffs)
case Added() | Deleted():
+ lines = split_list(encode_basic(change.earlier), Newline_id)
- lines = split_list(encode_basic(change.earlier()), Newline_id)
tk = Add_id if isinstance(change, Added) else Del_id
+ return join_list(([tk] + line for line in lines), Newline_id)
- return join_list([tk] + line for line in lines)
case _:
raise AssertionError(f"Not a change type: {change}")
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in self._deltas.items())
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
+ lines = splitlines(input)
- lines = input.split("\n")
new_lines = list[str]()
for i, line in enumerate(lines):
deleted = False
if delta := self._deltas.get(i):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
===========changed ref 3===========
# module: coeditor.common
def count_lines(text: str) -> int:
+ if not text:
+ return 0
return text.count("\n") + 1
===========changed ref 4===========
# module: coeditor.common
def splitlines(text: str) -> list[str]:
"""Split a text into lines and apalways ends with an empty line."""
+ if not text:
+ return []
return text.split("\n")
===========changed ref 5===========
# module: coeditor.common
def split_list(
lst: list[T1],
sep: T1,
) -> list[list[T1]]:
"""
Split a list into segments by a separator, always ends with an empty list.
"""
+ if not lst:
+ return []
result = list[list[T1]]()
ptr = 0
for i, item in enumerate(lst):
if item == sep:
result.append(lst[ptr:i])
ptr = i + 1
result.append(lst[ptr:])
return result
|
coeditor.scoped_changes/ChangedSpan.header_line_range | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> parent_scope = self.parent_scopes[-1].earlier
| # module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def header_line_range(self) -> LineRange:
- parent_scope = self.parent_scopes[-1].earlier()
<0> hrange = parent_scope.header_line_range
return hrange
| ===========unchanged ref 0===========
at: coeditor.change.Added
after: E1
at: coeditor.change.Deleted
before: E1
at: coeditor.change.Modified
before: E1
after: E1
unchanged: bool = False
at: coeditor.scoped_changes
LineRange = NewType("LineRange", tuple[int, int])
at: coeditor.scoped_changes.ChangeScope.__post_init__
self.header_line_range: LineRange = header_line_range
at: coeditor.scoped_changes.ChangedSpan
change: Change[str]
parent_scopes: Sequence[Change[ChangeScope]]
line_range: LineRange
===========changed ref 0===========
# module: coeditor.common
def count_lines(text: str) -> int:
+ if not text:
+ return 0
return text.count("\n") + 1
===========changed ref 1===========
# module: coeditor.common
def splitlines(text: str) -> list[str]:
"""Split a text into lines and apalways ends with an empty line."""
+ if not text:
+ return []
return text.split("\n")
===========changed ref 2===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
+ def show(self, pred_tks: TokenSeq | None = None) -> str:
- def show(self) -> str:
+ def show_label(i: int):
+ return f" <{i}>" if i <= 9 else f"<{i}>"
- return self.show_prediction(None)
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in self._deltas.items())
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 4===========
# module: coeditor.common
def split_list(
lst: list[T1],
sep: T1,
) -> list[list[T1]]:
"""
Split a list into segments by a separator, always ends with an empty list.
"""
+ if not lst:
+ return []
result = list[list[T1]]()
ptr = 0
for i, item in enumerate(lst):
if item == sep:
result.append(lst[ptr:i])
ptr = i + 1
result.append(lst[ptr:])
return result
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
+ lines = splitlines(input)
- lines = input.split("\n")
new_lines = list[str]()
for i, line in enumerate(lines):
deleted = False
if delta := self._deltas.get(i):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
===========changed ref 6===========
# module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
match change:
case Modified(before=before, after=after, unchanged=unchanged):
if unchanged or before == after:
return encode_basic(before)
else:
diffs = change_to_line_diffs(change)
return encode_diffs(diffs)
case Added() | Deleted():
+ lines = split_list(encode_basic(change.earlier), Newline_id)
- lines = split_list(encode_basic(change.earlier()), Newline_id)
tk = Add_id if isinstance(change, Added) else Del_id
+ return join_list(([tk] + line for line in lines), Newline_id)
- return join_list([tk] + line for line in lines)
case _:
raise AssertionError(f"Not a change type: {change}")
===========changed ref 7===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
- def show_prediction(self, pred_tks: TokenSeq | None = None) -> str:
- def show_label(i: int):
- return f" <{i}>" if i <= 9 else f"<{i}>"
-
- def show_content(tks: TokenSeq):
- if tks and tks[0] == Add_id:
- return "+ " + decode_tokens(tks[1:])
- elif tks and tks[0] == Del_id:
- return "- " + decode_tokens(tks[1:])
- else:
- return " " + decode_tokens(tks)
-
- def show_extra_tokens(tks: TokenSeq, main_tk_lines: dict[Token, TokenSeq]):
- segs = output_ids_as_seqs(tks)
- lines = []
- for k, seg in segs.items():
- if not seg:
- continue # skip empty lines
- if seg[-1] == Del_id:
- # show the deleted line
- origin_line = split_list(main_tk_lines.get(k, []), Newline_id)[0]
- origin_line.append(Newline_id)
- seg = seg + origin_line
- label = show_label(id_map.get(k, -1))
- lines.append(f"{label}:{indent(decode_tokens(seg), ' ' * 4).lstrip()}")
- return "".join(lines)
-
- main_segs = output_ids_as_seqs(self.main_tks)
- id_map = {k: i for i, k in enumerate(main_segs)}
- main_lines = list[str]()
- for line_tks in split_list(self.main_tks, Newline_id):
- if line_tks and is_extra_id(line_tks[0]):
- prefix = show_label(id</s>
===========changed ref 8===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
- def show_prediction(self, pred_tks: TokenSeq | None = None) -> str:
# offset: 1
<s> if line_tks and is_extra_id(line_tks[0]):
- prefix = show_label(id_map.get(line_tks[0], -1))
- line = prefix + show_content(line_tks[1:])
- else:
- line = " |" + show_content(line_tks)
- main_lines.append(line)
-
- pred_lines = (
- ["========Prediction========", f"{show_extra_tokens(pred_tks, main_segs)}"]
- if pred_tks
- else []
- )
- outputs = [
- "-" * 80,
- *self.meta_data_lines(),
- "========Ground Truth========",
- show_extra_tokens(self.output_tks, main_segs),
- *pred_lines,
- "========Main Code========",
- "\n".join(main_lines),
- ] + [
- f"==========={name}===========\n" + decode_tokens(tks)
- for name, tks in self.all_ctxs().items()
- ]
- return "\n".join(outputs)
- |
coeditor.scoped_changes/ChangedSpan.path | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> return self.parent_scopes[-1].earlier.path
| # module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def path(self) -> ProjectPath:
- return self.parent_scopes[-1].earlier().path
<0>
| ===========unchanged ref 0===========
at: coeditor.common
ProjectPath(typename: str, fields: Iterable[Tuple[str, Any]]=..., **kwargs: Any)
at: coeditor.scoped_changes.ChangeScope
path: ProjectPath
tree: ScopeTree
spans: Sequence["StatementSpan"]
subscopes: Mapping[str, Self]
parent_scope: "ChangeScope | None"
at: coeditor.scoped_changes.ChangedSpan
parent_scopes: Sequence[Change[ChangeScope]]
===========changed ref 0===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def header_line_range(self) -> LineRange:
+ parent_scope = self.parent_scopes[-1].earlier
- parent_scope = self.parent_scopes[-1].earlier()
hrange = parent_scope.header_line_range
return hrange
===========changed ref 1===========
# module: coeditor.common
def count_lines(text: str) -> int:
+ if not text:
+ return 0
return text.count("\n") + 1
===========changed ref 2===========
# module: coeditor.common
def splitlines(text: str) -> list[str]:
"""Split a text into lines and apalways ends with an empty line."""
+ if not text:
+ return []
return text.split("\n")
===========changed ref 3===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
+ def show(self, pred_tks: TokenSeq | None = None) -> str:
- def show(self) -> str:
+ def show_label(i: int):
+ return f" <{i}>" if i <= 9 else f"<{i}>"
- return self.show_prediction(None)
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in self._deltas.items())
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 5===========
# module: coeditor.common
def split_list(
lst: list[T1],
sep: T1,
) -> list[list[T1]]:
"""
Split a list into segments by a separator, always ends with an empty list.
"""
+ if not lst:
+ return []
result = list[list[T1]]()
ptr = 0
for i, item in enumerate(lst):
if item == sep:
result.append(lst[ptr:i])
ptr = i + 1
result.append(lst[ptr:])
return result
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
+ lines = splitlines(input)
- lines = input.split("\n")
new_lines = list[str]()
for i, line in enumerate(lines):
deleted = False
if delta := self._deltas.get(i):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
===========changed ref 7===========
# module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
match change:
case Modified(before=before, after=after, unchanged=unchanged):
if unchanged or before == after:
return encode_basic(before)
else:
diffs = change_to_line_diffs(change)
return encode_diffs(diffs)
case Added() | Deleted():
+ lines = split_list(encode_basic(change.earlier), Newline_id)
- lines = split_list(encode_basic(change.earlier()), Newline_id)
tk = Add_id if isinstance(change, Added) else Del_id
+ return join_list(([tk] + line for line in lines), Newline_id)
- return join_list([tk] + line for line in lines)
case _:
raise AssertionError(f"Not a change type: {change}")
===========changed ref 8===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
- def show_prediction(self, pred_tks: TokenSeq | None = None) -> str:
- def show_label(i: int):
- return f" <{i}>" if i <= 9 else f"<{i}>"
-
- def show_content(tks: TokenSeq):
- if tks and tks[0] == Add_id:
- return "+ " + decode_tokens(tks[1:])
- elif tks and tks[0] == Del_id:
- return "- " + decode_tokens(tks[1:])
- else:
- return " " + decode_tokens(tks)
-
- def show_extra_tokens(tks: TokenSeq, main_tk_lines: dict[Token, TokenSeq]):
- segs = output_ids_as_seqs(tks)
- lines = []
- for k, seg in segs.items():
- if not seg:
- continue # skip empty lines
- if seg[-1] == Del_id:
- # show the deleted line
- origin_line = split_list(main_tk_lines.get(k, []), Newline_id)[0]
- origin_line.append(Newline_id)
- seg = seg + origin_line
- label = show_label(id_map.get(k, -1))
- lines.append(f"{label}:{indent(decode_tokens(seg), ' ' * 4).lstrip()}")
- return "".join(lines)
-
- main_segs = output_ids_as_seqs(self.main_tks)
- id_map = {k: i for i, k in enumerate(main_segs)}
- main_lines = list[str]()
- for line_tks in split_list(self.main_tks, Newline_id):
- if line_tks and is_extra_id(line_tks[0]):
- prefix = show_label(id</s>
===========changed ref 9===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
- def show_prediction(self, pred_tks: TokenSeq | None = None) -> str:
# offset: 1
<s> if line_tks and is_extra_id(line_tks[0]):
- prefix = show_label(id_map.get(line_tks[0], -1))
- line = prefix + show_content(line_tks[1:])
- else:
- line = " |" + show_content(line_tks)
- main_lines.append(line)
-
- pred_lines = (
- ["========Prediction========", f"{show_extra_tokens(pred_tks, main_segs)}"]
- if pred_tks
- else []
- )
- outputs = [
- "-" * 80,
- *self.meta_data_lines(),
- "========Ground Truth========",
- show_extra_tokens(self.output_tks, main_segs),
- *pred_lines,
- "========Main Code========",
- "\n".join(main_lines),
- ] + [
- f"==========={name}===========\n" + decode_tokens(tks)
- for name, tks in self.all_ctxs().items()
- ]
- return "\n".join(outputs)
- |
coeditor.scoped_changes/ChangedSpan._is_func_body | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> return self.parent_scopes[-1].earlier.tree.type == ptree.Function.type
| # module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
def _is_func_body(self) -> bool:
- return self.parent_scopes[-1].earlier().tree.type == ptree.Function.type
<0>
| ===========unchanged ref 0===========
at: coeditor.scoped_changes.ChangeScope
tree: ScopeTree
at: coeditor.scoped_changes.ChangedSpan
parent_scopes: Sequence[Change[ChangeScope]]
at: parso.python.tree
Function(children)
at: parso.python.tree.Class
type = 'classdef'
__slots__ = ()
at: parso.python.tree.Function
type = 'funcdef'
at: parso.python.tree.Module
__slots__ = ('_used_names',)
type = 'file_input'
===========changed ref 0===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def path(self) -> ProjectPath:
+ return self.parent_scopes[-1].earlier.path
- return self.parent_scopes[-1].earlier().path
===========changed ref 1===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def header_line_range(self) -> LineRange:
+ parent_scope = self.parent_scopes[-1].earlier
- parent_scope = self.parent_scopes[-1].earlier()
hrange = parent_scope.header_line_range
return hrange
===========changed ref 2===========
# module: coeditor.common
def count_lines(text: str) -> int:
+ if not text:
+ return 0
return text.count("\n") + 1
===========changed ref 3===========
# module: coeditor.common
def splitlines(text: str) -> list[str]:
"""Split a text into lines and apalways ends with an empty line."""
+ if not text:
+ return []
return text.split("\n")
===========changed ref 4===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
+ def show(self, pred_tks: TokenSeq | None = None) -> str:
- def show(self) -> str:
+ def show_label(i: int):
+ return f" <{i}>" if i <= 9 else f"<{i}>"
- return self.show_prediction(None)
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in self._deltas.items())
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 6===========
# module: coeditor.common
def split_list(
lst: list[T1],
sep: T1,
) -> list[list[T1]]:
"""
Split a list into segments by a separator, always ends with an empty list.
"""
+ if not lst:
+ return []
result = list[list[T1]]()
ptr = 0
for i, item in enumerate(lst):
if item == sep:
result.append(lst[ptr:i])
ptr = i + 1
result.append(lst[ptr:])
return result
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
+ lines = splitlines(input)
- lines = input.split("\n")
new_lines = list[str]()
for i, line in enumerate(lines):
deleted = False
if delta := self._deltas.get(i):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
===========changed ref 8===========
# module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
match change:
case Modified(before=before, after=after, unchanged=unchanged):
if unchanged or before == after:
return encode_basic(before)
else:
diffs = change_to_line_diffs(change)
return encode_diffs(diffs)
case Added() | Deleted():
+ lines = split_list(encode_basic(change.earlier), Newline_id)
- lines = split_list(encode_basic(change.earlier()), Newline_id)
tk = Add_id if isinstance(change, Added) else Del_id
+ return join_list(([tk] + line for line in lines), Newline_id)
- return join_list([tk] + line for line in lines)
case _:
raise AssertionError(f"Not a change type: {change}")
===========changed ref 9===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
- def show_prediction(self, pred_tks: TokenSeq | None = None) -> str:
- def show_label(i: int):
- return f" <{i}>" if i <= 9 else f"<{i}>"
-
- def show_content(tks: TokenSeq):
- if tks and tks[0] == Add_id:
- return "+ " + decode_tokens(tks[1:])
- elif tks and tks[0] == Del_id:
- return "- " + decode_tokens(tks[1:])
- else:
- return " " + decode_tokens(tks)
-
- def show_extra_tokens(tks: TokenSeq, main_tk_lines: dict[Token, TokenSeq]):
- segs = output_ids_as_seqs(tks)
- lines = []
- for k, seg in segs.items():
- if not seg:
- continue # skip empty lines
- if seg[-1] == Del_id:
- # show the deleted line
- origin_line = split_list(main_tk_lines.get(k, []), Newline_id)[0]
- origin_line.append(Newline_id)
- seg = seg + origin_line
- label = show_label(id_map.get(k, -1))
- lines.append(f"{label}:{indent(decode_tokens(seg), ' ' * 4).lstrip()}")
- return "".join(lines)
-
- main_segs = output_ids_as_seqs(self.main_tks)
- id_map = {k: i for i, k in enumerate(main_segs)}
- main_lines = list[str]()
- for line_tks in split_list(self.main_tks, Newline_id):
- if line_tks and is_extra_id(line_tks[0]):
- prefix = show_label(id</s> |
coeditor.scoped_changes/JModuleChange.from_modules | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> path = cspan.parent_scopes[-1].earlier.path
| # module: coeditor.scoped_changes
@dataclass(frozen=True)
class JModuleChange:
@staticmethod
def from_modules(module_change: Change[JModule]):
"Compute the change spans from two versions of the same module."
with _tlogger.timed("JModuleChange.from_modules"):
changed = dict[ProjectPath, ChangedSpan]()
for cspan in get_changed_spans(
module_change.map(lambda m: m.as_scope), tuple()
):
- path = cspan.parent_scopes[-1].earlier().path
<0> changed[path] = cspan
return JModuleChange(module_change, changed)
| ===========unchanged ref 0===========
at: coeditor._utils.TimeLogger
times: dict[str, list[float]] = field(default_factory=dict)
timed(self, name: str)
at: coeditor.change
Change = Added[E1] | Deleted[E1] | Modified[E1]
at: coeditor.change.Added
map(f: Callable[[E1], T2]) -> "Added[T2]"
at: coeditor.change.Deleted
map(f: Callable[[E1], T2]) -> "Deleted[T2]"
at: coeditor.change.Modified
map(f: Callable[[E1], T2]) -> "Modified[T2]"
at: coeditor.common
ProjectPath(typename: str, fields: Iterable[Tuple[str, Any]]=..., **kwargs: Any)
at: coeditor.scoped_changes
_tlogger = TimeLogger()
ChangedSpan(change: Change[str], parent_scopes: Sequence[Change[ChangeScope]], line_range: LineRange)
JModule(mname: ModuleName, tree: ptree.Module)
JModuleChange(module_change: Change[JModule], changed: Mapping[ProjectPath, ChangedSpan])
get_changed_spans(scope_change: Change[ChangeScope], parent_changes: tuple[Change[ChangeScope], ...]=()) -> list[ChangedSpan]
at: coeditor.scoped_changes.ChangeScope
path: ProjectPath
at: coeditor.scoped_changes.ChangedSpan
parent_scopes: Sequence[Change[ChangeScope]]
at: coeditor.scoped_changes.JModuleChange
module_change: Change[JModule]
changed: Mapping[ProjectPath, ChangedSpan]
===========changed ref 0===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def path(self) -> ProjectPath:
+ return self.parent_scopes[-1].earlier.path
- return self.parent_scopes[-1].earlier().path
===========changed ref 1===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
def _is_func_body(self) -> bool:
+ return self.parent_scopes[-1].earlier.tree.type == ptree.Function.type
- return self.parent_scopes[-1].earlier().tree.type == ptree.Function.type
===========changed ref 2===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def header_line_range(self) -> LineRange:
+ parent_scope = self.parent_scopes[-1].earlier
- parent_scope = self.parent_scopes[-1].earlier()
hrange = parent_scope.header_line_range
return hrange
===========changed ref 3===========
# module: coeditor.common
def count_lines(text: str) -> int:
+ if not text:
+ return 0
return text.count("\n") + 1
===========changed ref 4===========
# module: coeditor.common
def splitlines(text: str) -> list[str]:
"""Split a text into lines and apalways ends with an empty line."""
+ if not text:
+ return []
return text.split("\n")
===========changed ref 5===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
+ def show(self, pred_tks: TokenSeq | None = None) -> str:
- def show(self) -> str:
+ def show_label(i: int):
+ return f" <{i}>" if i <= 9 else f"<{i}>"
- return self.show_prediction(None)
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in self._deltas.items())
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 7===========
# module: coeditor.common
def split_list(
lst: list[T1],
sep: T1,
) -> list[list[T1]]:
"""
Split a list into segments by a separator, always ends with an empty list.
"""
+ if not lst:
+ return []
result = list[list[T1]]()
ptr = 0
for i, item in enumerate(lst):
if item == sep:
result.append(lst[ptr:i])
ptr = i + 1
result.append(lst[ptr:])
return result
===========changed ref 8===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
+ lines = splitlines(input)
- lines = input.split("\n")
new_lines = list[str]()
for i, line in enumerate(lines):
deleted = False
if delta := self._deltas.get(i):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
===========changed ref 9===========
# module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
match change:
case Modified(before=before, after=after, unchanged=unchanged):
if unchanged or before == after:
return encode_basic(before)
else:
diffs = change_to_line_diffs(change)
return encode_diffs(diffs)
case Added() | Deleted():
+ lines = split_list(encode_basic(change.earlier), Newline_id)
- lines = split_list(encode_basic(change.earlier()), Newline_id)
tk = Add_id if isinstance(change, Added) else Del_id
+ return join_list(([tk] + line for line in lines), Newline_id)
- return join_list([tk] + line for line in lines)
case _:
raise AssertionError(f"Not a change type: {change}")
|
coeditor.scoped_changes/get_changed_spans | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> line_range = (line, line + count_lines(code))
| # module: coeditor.scoped_changes
def get_changed_spans(
scope_change: Change[ChangeScope],
parent_changes: tuple[Change[ChangeScope], ...] = (),
) -> list[ChangedSpan]:
<s> before and after the edit
(and hiding all the sub spans such as class methods), then map the changes
to each line back to the original regions.
"""
def get_modified_spans(
old_scope: ChangeScope,
new_scope: ChangeScope,
parent_changes: Sequence[Change[ChangeScope]],
) -> Iterable[ChangedSpan]:
if code_equal(old_scope.spans_code, new_scope.spans_code):
return
diffs = change_to_line_diffs(
Modified(old_scope.spans_code, new_scope.spans_code)
)
original, delta = line_diffs_to_original_delta(diffs)
line = 0
for span in old_scope.spans:
code = span.code
- line_range = (line, line + len(code.split("\n")))
<0> if subdelta := delta.for_input_range(line_range).shifted(-line):
new_code = subdelta.apply_to_input(code)
change = Modified(code, new_code)
yield ChangedSpan(
change,
parent_changes,
span.line_range,
)
line = line_range[1]
def recurse(
scope_change: Change[ChangeScope], parent_changes
) -> Iterable[ChangedSpan]:
parent_changes = (*parent_changes, scope_change)
match scope_change:
case Modified(old_scope, new_scope):
# compute statement differences
yield from get_modified_spans(old_scope, new_scope, parent_changes)
for sub_change in get_named_changes(
old_scope.subscopes, new_scope.subscopes
).values():
yield from recurse(sub_change, parent_changes)
case Added(scope) | Deleted</s> | ===========above chunk 0===========
# module: coeditor.scoped_changes
def get_changed_spans(
scope_change: Change[ChangeScope],
parent_changes: tuple[Change[ChangeScope], ...] = (),
) -> list[ChangedSpan]:
# offset: -1
"""
Extract the change spans from scope change.
- We need a tree differencing algorithm that are robust to element movements.
- To compute the changes to each statement region, we can compute the differences
by concatenating all the regions before and after the edit
(and hiding all the sub spans such as class methods), then map the changes
to each line back</s>
===========below chunk 0===========
# module: coeditor.scoped_changes
def get_changed_spans(
scope_change: Change[ChangeScope],
parent_changes: tuple[Change[ChangeScope], ...] = (),
) -> list[ChangedSpan]:
# offset: 1
<s>scopes
).values():
yield from recurse(sub_change, parent_changes)
case Added(scope) | Deleted(scope):
for span in scope.spans:
code_change = scope_change.new_value(span.code)
yield ChangedSpan(
code_change,
parent_changes,
span.line_range,
)
for s in scope.subscopes.values():
s_change = scope_change.new_value(s)
yield from recurse(s_change, parent_changes)
spans = list(recurse(scope_change, parent_changes))
spans.sort(key=lambda s: s.line_range[0])
return spans
===========unchanged ref 0===========
at: coeditor.change
Added(after: E1)
Deleted(before: E1)
Modified(before: E1, after: E1, unchanged: bool=False)
Change = Added[E1] | Deleted[E1] | Modified[E1]
get_named_changes(old_map: Mapping[T1, T2], new_map: Mapping[T1, T2]) -> Mapping[T1, Change[T2]]
at: coeditor.change.Added
new_value(v: T1) -> "Added[T1]"
at: coeditor.change.Deleted
new_value(v: T1) -> "Deleted[T1]"
at: coeditor.common
count_lines(text: str) -> int
code_equal(code1: str, code2: str) -> bool
at: coeditor.encoding
change_to_line_diffs(change: Change[str]) -> list[str]
line_diffs_to_original_delta(diffs: list[str]) -> tuple[str, StrDelta]
at: coeditor.scoped_changes
ChangeScope(path: ProjectPath, tree: ScopeTree, spans: Sequence["StatementSpan"], subscopes: Mapping[str, Self], parent_scope: "ChangeScope | None")
ChangedSpan(change: Change[str], parent_scopes: Sequence[Change[ChangeScope]], line_range: LineRange)
at: coeditor.scoped_changes.ChangeScope
spans: Sequence["StatementSpan"]
at: coeditor.scoped_changes.StatementSpan.__post_init__
self.code: str = code + "\n"
self.line_range: LineRange = line_range(start, end)
at: typing
Iterable = _alias(collections.abc.Iterable, 1)
Sequence = _alias(collections.abc.Sequence, 1)
at: typing.Mapping
values() -> ValuesView[_VT_co]
===========changed ref 0===========
# module: coeditor.common
def count_lines(text: str) -> int:
+ if not text:
+ return 0
return text.count("\n") + 1
===========changed ref 1===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def path(self) -> ProjectPath:
+ return self.parent_scopes[-1].earlier.path
- return self.parent_scopes[-1].earlier().path
===========changed ref 2===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
def _is_func_body(self) -> bool:
+ return self.parent_scopes[-1].earlier.tree.type == ptree.Function.type
- return self.parent_scopes[-1].earlier().tree.type == ptree.Function.type
===========changed ref 3===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def header_line_range(self) -> LineRange:
+ parent_scope = self.parent_scopes[-1].earlier
- parent_scope = self.parent_scopes[-1].earlier()
hrange = parent_scope.header_line_range
return hrange
===========changed ref 4===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class JModuleChange:
@staticmethod
def from_modules(module_change: Change[JModule]):
"Compute the change spans from two versions of the same module."
with _tlogger.timed("JModuleChange.from_modules"):
changed = dict[ProjectPath, ChangedSpan]()
for cspan in get_changed_spans(
module_change.map(lambda m: m.as_scope), tuple()
):
+ path = cspan.parent_scopes[-1].earlier.path
- path = cspan.parent_scopes[-1].earlier().path
changed[path] = cspan
return JModuleChange(module_change, changed)
===========changed ref 5===========
# module: coeditor.common
def splitlines(text: str) -> list[str]:
"""Split a text into lines and apalways ends with an empty line."""
+ if not text:
+ return []
return text.split("\n")
===========changed ref 6===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
+ def show(self, pred_tks: TokenSeq | None = None) -> str:
- def show(self) -> str:
+ def show_label(i: int):
+ return f" <{i}>" if i <= 9 else f"<{i}>"
- return self.show_prediction(None)
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in self._deltas.items())
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 8===========
# module: coeditor.common
def split_list(
lst: list[T1],
sep: T1,
) -> list[list[T1]]:
"""
Split a list into segments by a separator, always ends with an empty list.
"""
+ if not lst:
+ return []
result = list[list[T1]]()
ptr = 0
for i, item in enumerate(lst):
if item == sep:
result.append(lst[ptr:i])
ptr = i + 1
result.append(lst[ptr:])
return result
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def apply_to_input(self, input: str):
+ lines = splitlines(input)
- lines = input.split("\n")
new_lines = list[str]()
for i, line in enumerate(lines):
deleted = False
if delta := self._deltas.get(i):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
elif action[0] == "-":
deleted = True
if not deleted:
new_lines.append(line)
if delta := self._deltas.get(len(lines)):
for action in delta:
if action[0] == "+":
new_lines.append(action[1:])
return "\n".join(new_lines)
|
coeditor.c3problem/C3ProblemChangeDropout.transform | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> return probs[: self.max_split_factor]
| # module: coeditor.c3problem
class C3ProblemChangeDropout(C3ProblemTransformer):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
<s>to_drop = int(
- len(grouped_keys) * random.random() * self.max_dropout_ratio
)
- assert n_to_drop < len(grouped_keys)
- keys_to_drop = join_list(random_subset(grouped_keys, n_to_drop))
- else:
- keys_to_drop = []
- if keys_to_drop:
- _, delta2 = sub_delta.decompose_for_change(keys_to_drop)
- if delta2.num_changes() == 0:
- continue
- delta1, delta2 = delta.decompose_for_change(keys_to_drop)
- new_original = TkArray.new(delta1.to_change_tks(original.tolist()))
- new_trans = prob.transformations + ("split", "dropout")
- new_span = dataclasses.replace(
- prob.span, original=new_original, delta=delta2
- )
- edit_lines = delta1.get_new_target_lines(range(i, j))
- else:
- new_trans = prob.transformations + ("split",)
- new_span = prob.span
- edit_lines = range(i, j)
- sub_prob = dataclasses.replace(
- prob, span=new_span, edit_lines=edit_lines, transformations=new_trans
- )
- problems.append(sub_prob)
- if len(problems) >= self.max_split_factor:
- break
- return problems
+ prob_and_n.append((sub_prob, n_groups))
+ # return the problems with the most changes
+ prob_and_n.sort(key=lambda p: p[1], reverse=True)
+ probs = [p[0] for p in prob_and_n]
<0>
| ===========above chunk 0===========
# module: coeditor.c3problem
class C3ProblemChangeDropout(C3ProblemTransformer):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
# offset: -1
<s>original.tolist()))
+ new_trans = prob.transformations + ("split", "dropout")
+ new_span = dataclasses.replace(
+ prob.span, original=new_original, delta=delta2
+ )
+ else:
+ new_trans = prob.transformations + ("split",)
+ new_span = prob.span
+ delta1 = None
+ delta2_groups = delta.change_groups()
+
+ prob_and_n = list[tuple[C3Problem, int]]()
- problems = list[C3Problem]()
for i in range(start, stop, self.max_lines_to_edit):
j = min(i + self.max_lines_to_edit, stop)
+ edit_lines = range(i, j)
+ if delta1 is not None:
+ edit_lines = delta1.get_new_target_lines(edit_lines)
+ line_set = set(edit_lines)
+ n_groups = sum(any(key[0] in line_set for key in g) for g in delta2_groups)
+ if n_groups > 0:
+ sub_prob = dataclasses.replace(
+ prob,
+ span=new_span,
+ edit_lines=edit_lines,
+ transformations=new_trans,
- sub_delta = delta.for_input_range((i, j))
- if sub_delta.num_changes() == 0:
- continue
- grouped_keys = sub_delta.change_groups()
- should_dropout = (
- len(grouped_keys) >= 2 and random.random() < self.dropout_prob
- )
- if should_dropout:
- n_to_drop = int(
- len(grouped_keys) * random.random() * self.max_dropout_ratio
</s>
===========above chunk 1===========
# module: coeditor.c3problem
class C3ProblemChangeDropout(C3ProblemTransformer):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
# offset: -2
original = prob.span.original
delta = prob.span.delta
l_range = prob.edit_lines
assert isinstance(l_range, range)
start, stop = l_range.start, l_range.stop
+
+ grouped_keys = delta.change_groups()
+ should_dropout = len(grouped_keys) >= 2
+ if should_dropout:
+ n_to_drop = int(
+ len(grouped_keys) * random.random() * self.max_dropout_ratio
+ )
+ assert n_to_drop < len(grouped_keys)
+ keys_to_drop = join_list(random_subset(grouped_keys, n_to_drop))
+ else:
+ keys_to_drop = []
+ if keys_to_drop:
+ delta1, delta2 = delta.decompose_for_change(keys_to_drop)
+ delta2_groups = delta2.change_groups()
+ if not delta2_groups:
+ print_err(f"{delta=}, {keys_to_drop=}, {delta1=}")
+ raise AssertionError("Empty delta2_groups")
+ new_original = TkArray.new(delta1.to_change_tks(original.tolist()))
+ new_trans = prob.transformations + ("split", "dropout")
+ new_span</s>
===========unchanged ref 0===========
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_lines: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Sequence[ChangedCodeSpan], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
at: coeditor.c3problem.C3Problem
span: ChangedCodeSpan
edit_lines: Sequence[int]
relevant_changes: Sequence[ChangedCodeSpan]
relevant_unchanged: Sequence[ChangedCodeSpan]
change_type: Change[None]
src_info: SrcInfo
transformations: tuple[str, ...] = ()
at: coeditor.c3problem.C3ProblemTransformer
transform(self, prob: C3Problem) -> Iterable[C3Problem]
at: coeditor.c3problem.ChangedCodeSpan
headers: Sequence[ChangedHeader]
original: TkArray
delta: TkDelta
line_range: LineRange
module: ModuleName
at: coeditor.common
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
random_subset(all: Mapping[T1, T2], n: int, rng: random.Random | int | None=None) -> dict[T1, T2]
random_subset(all: Sequence[T1], n: int, rng: random.Random | int | None=None) -> list[T1]
print_err(*, sep: Optional[str]=..., end: Optional[str]=..., flush: bool=...) -> None
at: coeditor.encoding.TkDelta
_deltas: Mapping[int, tuple[TokenSeq, ...]]
decompose_for_change(first_keys: Collection[DeltaKey]) -> tuple[Self, Self]
change_groups() -> Sequence[tuple[DeltaKey, ...]]
at: coeditor.tk_array
TkArray()
===========unchanged ref 1===========
at: coeditor.tk_array.TkArray
tolist() -> TokenSeq
new(tks: Sequence[int]) -> "TkArray"
at: dataclasses
replace(obj: _T, **changes: Any) -> _T
at: random
random = _inst.random
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
===========changed ref 0===========
# module: coeditor.c3problem
class C3ProblemChangeDropout(C3ProblemTransformer):
"""Split the problem into fixed-sized editing ranges like `C3ProblemSimpleSplit`,
+ but also randomly keep some subset of changes in the input.
- but also randomly keep some subset of changes in the input."""
+
+ ### Change log
+ - v1.1
+ - Dropout changes using change groups instead of individual change actions.
+ - Perform dropout at entire problem level ratehr than chunk level. This way,
+ changes in later chunks will be visible as well.
+ - Removed `dropout_prob`.
+ """
+
+ VERSION = "1.1"
max_lines_to_edit: int = 25
max_split_factor: int = 4
- # the probability of dropping out some changes into the input
- dropout_prob: float = 0.5
# when dropping the changes into the input, the biggest ratio of changes to drop
max_dropout_ratio: float = 0.5
===========changed ref 1===========
# module: coeditor.c3problem
class C3ProblemGenerator(ProjectChangeProcessor[C3Problem]):
"""
### Change log
+ - v2.4: fix buggy encoding of `Added` and `Deleted` changes.
- v2.3: always generate problems with full editing range and move the problem
splitting logic elsewhere. Also changed the data format of `ChangedCodeSpan`.
"""
+ VERSION = "2.4"
- VERSION = "2.3"
# change spans with more than this many lines will be ignored
max_span_lines: int = 500
===========changed ref 2===========
# module: coeditor.common
def count_lines(text: str) -> int:
+ if not text:
+ return 0
return text.count("\n") + 1
===========changed ref 3===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def path(self) -> ProjectPath:
+ return self.parent_scopes[-1].earlier.path
- return self.parent_scopes[-1].earlier().path
|
tests.test_edits/TestChangeIdentities.test_str_encodings | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> assert_str_equal(after, get_after(c))
| # module: tests.test_edits
class TestChangeIdentities:
def test_str_encodings(self):
for name, c in self.cases.items():
try:
line_diffs = change_to_line_diffs(c)
print("line_diffs\n------\n" + "\n".join(line_diffs))
before, delta = line_diffs_to_original_delta(line_diffs)
+ print("before:")
+ print(before)
print("delta:", delta)
+ assert_str_equal(before, get_before(c))
- assert_str_equal(before, c.before)
after = delta.apply_to_input(before)
- assert_str_equal(after, c.after)
<0> except Exception:
print_err(f"Failed for case: {name}")
raise
| ===========unchanged ref 0===========
at: textwrap
dedent(text: str) -> str
===========changed ref 0===========
# module: tests.test_edits
+ def get_after(change: Change[str]) -> str:
+ if isinstance(change, Modified):
+ return change.after
+ elif isinstance(change, Added):
+ return change.after
+ elif isinstance(change, Deleted):
+ return ""
+ else:
+ raise ValueError(f"Unknown change type: {change}")
+
===========changed ref 1===========
# module: tests.test_edits
+ def get_before(change: Change[str]) -> str:
+ if isinstance(change, Modified):
+ return change.before
+ elif isinstance(change, Added):
+ return ""
+ elif isinstance(change, Deleted):
+ return change.before
+ else:
+ raise ValueError(f"Unknown change type: {change}")
+
===========changed ref 2===========
# module: tests.test_edits
def assert_tks_eq(actual: TokenSeq, expected: TokenSeq, name: str):
if actual != expected:
+ print_sections(
- print(f"Failed for case: {name}")
+ ("Expected", decode_tokens(expected)),
- print("Expected:\n", decode_tokens(expected), "<EOF>")
+ ("Reconstructed", decode_tokens(actual)),
+ )
- print("Actual:\n", decode_tokens(actual), "<EOF>")
raise ValueError(f"Failed for case: {name}")
===========changed ref 3===========
# module: tests.test_edits
+ def assert_change_eq(actual: Change[str], expected: Change[str], name: str):
- def assert_change_eq(actual: Modified[str], expected: Modified[str], name: str):
+ if get_before(actual) != get_before(expected):
+ print_sections(
+ ("Expected before", get_before(expected)),
+ ("Reconstructed before", get_before(actual)),
+ )
- if actual.before != expected.before:
- print(f"Failed for case: {name}")
- print("Expected before:\n", expected.before, "<EOF>")
- print("Reconstructed before:\n", actual.before, "<EOF>")
raise ValueError(f"Failed for case: {name}")
+ if get_after(actual) != get_after(expected):
+ print_sections(
+ ("Expected after", get_after(expected)),
+ ("Reconstructed after", get_after(actual)),
+ )
- if actual.after != expected.after:
- print(f"Failed for case: {name}")
- print("Expected after:\n", expected.after, "<EOF>")
- print("Reconstructed after:\n", actual.after, "<EOF>")
raise ValueError(f"Failed for case: {name}")
===========changed ref 4===========
# module: tests.test_edits
class TestChangeIdentities:
+ cases: dict[str, Change[str]] = {
- cases = {
"empty": Modified("", ""),
"generation": Modified("", "123"),
+ "added": Added("a\nb\nc\n"),
+ "deleted": Deleted("a\nb\nc\n"),
"no change": Modified(
dedent(
"""\
def f1():
x = 1
"""
),
dedent(
"""\
def f1():
x = 1
"""
),
),
"unchanged=True": Modified.from_unchanged(
dedent(
"""\
def f1():
x = 1
"""
),
),
# this test case cannot pass for some reason. Tokenizer bug?
# "leading_whitespace": Modified.from_unchanged(" ..."),
"replace last": Modified(
dedent(
"""\
def f1():
x = 1"""
),
dedent(
"""\
def f1():
x = 2
return x * 2"""
),
),
"no special tokens": Modified(
dedent(
"""\
def f1():
x = 1
y = 2
z = x + y
return z
def f2():
f1()"""
),
dedent(
"""\
# new comment
def f_new():
x = 1
if x > 0:
y = 2 * x
y *= 2
z = x + y
return z
def f2():
f1()
return f_new() + a
new_var = 0
"""
),
),
"with special tokens": Modified(
dedent(
"""\
def f1():
x = "<add>"
y = "<del>\tx"
return x + y
"""
),
</s>
===========changed ref 5===========
# module: tests.test_edits
class TestChangeIdentities:
# offset: 1
<s> x = "<add>"
y = "<del>\tx"
return x + y
"""
),
dedent(
"""\
# new comment 1
# new comment 2
def f1():
if newcond:
x = "<add>"
new_var = 5
y = "<del>"
return x + new_var + y
"""
),
),
"super long": Modified(
"\n".join(f"x = {i}" for i in range(0, 200)),
"\n".join(f"x = {2* (i // 2)}" for i in range(0, 200)),
),
}
===========changed ref 6===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
- def show(self) -> str:
- return self.show_prediction(None)
-
===========changed ref 7===========
# module: coeditor.common
def count_lines(text: str) -> int:
+ if not text:
+ return 0
return text.count("\n") + 1
===========changed ref 8===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def path(self) -> ProjectPath:
+ return self.parent_scopes[-1].earlier.path
- return self.parent_scopes[-1].earlier().path
===========changed ref 9===========
# module: coeditor.common
def splitlines(text: str) -> list[str]:
"""Split a text into lines and apalways ends with an empty line."""
+ if not text:
+ return []
return text.split("\n")
===========changed ref 10===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
+ def show(self, pred_tks: TokenSeq | None = None) -> str:
- def show(self) -> str:
+ def show_label(i: int):
+ return f" <{i}>" if i <= 9 else f"<{i}>"
- return self.show_prediction(None)
===========changed ref 11===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
def _is_func_body(self) -> bool:
+ return self.parent_scopes[-1].earlier.tree.type == ptree.Function.type
- return self.parent_scopes[-1].earlier().tree.type == ptree.Function.type
===========changed ref 12===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def header_line_range(self) -> LineRange:
+ parent_scope = self.parent_scopes[-1].earlier
- parent_scope = self.parent_scopes[-1].earlier()
hrange = parent_scope.header_line_range
return hrange
|
tests.test_edits/TestChangeIdentities.test_tk_encodings | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> assert inlined[-1] == Newline_id
| # module: tests.test_edits
class TestChangeIdentities:
def test_tk_encodings(self):
for name, c in self.cases.items():
# print(show_change(c))
c_tokens = change_to_tokens(c)
print("c_tokens\n------\n", decode_tokens(c_tokens))
c_rec = tokens_to_change(c_tokens)
assert_change_eq(
c_rec, c, "change_to_tokens |> tokens_to_change = identity: " + name
)
in_seq, out_seq = change_to_input_output(c)
print("in_seq\n------\n", decode_tokens(in_seq))
print("out_seq\n------\n", decode_tokens(out_seq))
assert_tks_eq(
in_seq,
code_to_input(
+ _BaseTokenizer.encode(get_before(c), add_special_tokens=False)
- _BaseTokenizer.encode(c.before, add_special_tokens=False)
),
"change_to_input_output mathese code_to_input: " + name,
)
+ if len(splitlines(get_before(c))) < N_Extra_Ids:
- if len(c.before.split("\n")) < N_Extra_Ids:
inlined = inline_output_tokens(in_seq, out_seq)
+ if inlined:
- assert inlined[-1] == Newline_id
<0> assert_tks_eq(
inlined[:-1], change_to_tokens(c), "inline_output_tokens: " + name
)
c_rec2 = tokens_to_change(inlined[:-1])
assert_change_eq(c_rec2, c, "tokens_to_change(inlined): " + name)
| ===========unchanged ref 0===========
at: coeditor.change
Modified(before: E1, after: E1, unchanged: bool=False)
at: coeditor.common
print_err(*, sep: Optional[str]=..., end: Optional[str]=..., flush: bool=...) -> None
assert_str_equal(actual: str, expect: str, name: str | None=None)
at: coeditor.encoding
change_to_line_diffs(change: Change[str]) -> list[str]
line_diffs_to_original_delta(diffs: list[str]) -> tuple[str, StrDelta]
at: tests.test_edits
get_before(change: Change[str]) -> str
get_after(change: Change[str]) -> str
===========unchanged ref 1===========
at: tests.test_edits.TestChangeIdentities
cases: dict[str, Change[str]] = {
"empty": Modified("", ""),
"generation": Modified("", "123"),
"added": Added("a\nb\nc\n"),
"deleted": Deleted("a\nb\nc\n"),
"no change": Modified(
dedent(
"""\
def f1():
x = 1
"""
),
dedent(
"""\
def f1():
x = 1
"""
),
),
"unchanged=True": Modified.from_unchanged(
dedent(
"""\
def f1():
x = 1
"""
),
),
# this test case cannot pass for some reason. Tokenizer bug?
# "leading_whitespace": Modified.from_unchanged(" ..."),
"replace last": Modified(
dedent(
"""\
def f1():
x = 1"""
),
dedent(
"""\
def f1():
x = 2
return x * 2"""
),
),
"no special tokens": Modified(
dedent(
"""\
def f1():
x = 1
y = 2
z = x + y
return z
def f2():
f1()"""
),
dedent(
"""\
# new comment
def f_new():
x = 1
if x > 0:
y = 2 * x
y *= 2
z = x + y
return z
def f2():
f1()
return f_new() + a
new_var = 0
"""
),
),
"with special tokens": Modified(
dedent(
"""\
def f1():
x = "<add>"
y = "<del>\tx"
return x + y
"""
),
dedent(
"""\
# new comment 1</s>
===========changed ref 0===========
# module: tests.test_edits
+ def get_after(change: Change[str]) -> str:
+ if isinstance(change, Modified):
+ return change.after
+ elif isinstance(change, Added):
+ return change.after
+ elif isinstance(change, Deleted):
+ return ""
+ else:
+ raise ValueError(f"Unknown change type: {change}")
+
===========changed ref 1===========
# module: tests.test_edits
+ def get_before(change: Change[str]) -> str:
+ if isinstance(change, Modified):
+ return change.before
+ elif isinstance(change, Added):
+ return ""
+ elif isinstance(change, Deleted):
+ return change.before
+ else:
+ raise ValueError(f"Unknown change type: {change}")
+
===========changed ref 2===========
# module: tests.test_edits
class TestChangeIdentities:
def test_str_encodings(self):
for name, c in self.cases.items():
try:
line_diffs = change_to_line_diffs(c)
print("line_diffs\n------\n" + "\n".join(line_diffs))
before, delta = line_diffs_to_original_delta(line_diffs)
+ print("before:")
+ print(before)
print("delta:", delta)
+ assert_str_equal(before, get_before(c))
- assert_str_equal(before, c.before)
after = delta.apply_to_input(before)
+ assert_str_equal(after, get_after(c))
- assert_str_equal(after, c.after)
except Exception:
print_err(f"Failed for case: {name}")
raise
===========changed ref 3===========
# module: tests.test_edits
def assert_tks_eq(actual: TokenSeq, expected: TokenSeq, name: str):
if actual != expected:
+ print_sections(
- print(f"Failed for case: {name}")
+ ("Expected", decode_tokens(expected)),
- print("Expected:\n", decode_tokens(expected), "<EOF>")
+ ("Reconstructed", decode_tokens(actual)),
+ )
- print("Actual:\n", decode_tokens(actual), "<EOF>")
raise ValueError(f"Failed for case: {name}")
===========changed ref 4===========
# module: tests.test_edits
+ def assert_change_eq(actual: Change[str], expected: Change[str], name: str):
- def assert_change_eq(actual: Modified[str], expected: Modified[str], name: str):
+ if get_before(actual) != get_before(expected):
+ print_sections(
+ ("Expected before", get_before(expected)),
+ ("Reconstructed before", get_before(actual)),
+ )
- if actual.before != expected.before:
- print(f"Failed for case: {name}")
- print("Expected before:\n", expected.before, "<EOF>")
- print("Reconstructed before:\n", actual.before, "<EOF>")
raise ValueError(f"Failed for case: {name}")
+ if get_after(actual) != get_after(expected):
+ print_sections(
+ ("Expected after", get_after(expected)),
+ ("Reconstructed after", get_after(actual)),
+ )
- if actual.after != expected.after:
- print(f"Failed for case: {name}")
- print("Expected after:\n", expected.after, "<EOF>")
- print("Reconstructed after:\n", actual.after, "<EOF>")
raise ValueError(f"Failed for case: {name}")
|
tests.test_edits/TestChangeIdentities.test_str_tk_conversion | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> print(show_string_diff(get_after(c), decode_tokens(tk_after)))
| # module: tests.test_edits
class TestChangeIdentities:
def test_str_tk_conversion(self):
for name, c in self.cases.items():
line_diffs = change_to_line_diffs(c)
print("line_diffs\n------\n" + "\n".join(line_diffs))
before, delta = line_diffs_to_original_delta(line_diffs)
print("delta:", delta)
tk_delta = delta.to_tk_delta()
tk_before = encode_basic(before)
tk_after = tk_delta.apply_to_input(tk_before)
+ if tk_after != encode_basic(get_after(c)):
- if tk_after != encode_basic(c.after):
print("after diff:\n")
- print(show_string_diff(c.after, decode_tokens(tk_after)))
<0>
c_tokens = tk_delta.to_change_tks(tk_before)
if c_tokens != change_to_tokens(c):
print("c_tokens diff:\n")
print(
show_string_diff(
decode_tokens(c_tokens), decode_tokens(change_to_tokens(c))
)
)
origin1, tk_delta1 = change_tks_to_original_delta(c_tokens)
if origin1 != tk_before:
print("origin diff:\n")
print(
show_string_diff(decode_tokens(origin1), decode_tokens(tk_before))
)
assert tk_delta1.apply_to_input(origin1) == tk_after
| ===========unchanged ref 0===========
at: coeditor.common
splitlines(text: str) -> list[str]
at: coeditor.encoding
_BaseTokenizer = cast(
TokenizerType, TokenizerType.from_pretrained("Salesforce/codet5-base")
)
Newline_id = get_tk_id("\n")
N_Extra_Ids = 100
decode_tokens(tokens: TokenSeq, prettify: bool=False) -> str
change_to_tokens(change: Change[str]) -> TokenSeq
tokens_to_change(tokens: TokenSeq) -> Modified[str]
code_to_input(code_tks: TokenSeq) -> TokenSeq
change_to_input_output(change: Change[str]) -> tuple[TokenSeq, TokenSeq]
inline_output_tokens(input: TokenSeq, output: TokenSeq, leave_unpredicted=False) -> TokenSeq
at: tests.test_edits
get_before(change: Change[str]) -> str
assert_change_eq(actual: Change[str], expected: Change[str], name: str)
assert_tks_eq(actual: TokenSeq, expected: TokenSeq, name: str)
at: transformers.tokenization_utils_base.PreTrainedTokenizerBase
vocab_files_names: Dict[str, str] = {}
pretrained_vocab_files_map: Dict[str, Dict[str, str]] = {}
pretrained_init_configuration: Dict[str, Dict[str, Any]] = {}
max_model_input_sizes: Dict[str, Optional[int]] = {}
_auto_class: Optional[str] = None
model_input_names: List[str] = ["input_ids", "token_type_ids", "attention_mask"]
padding_side: str = "right"
truncation_side: str = "right"
slow_tokenizer_class = None
===========unchanged ref 1===========
encode(text: Union[TextInput, PreTokenizedInput, EncodedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]]=None, add_special_tokens: bool=True, padding: Union[bool, str, PaddingStrategy]=False, truncation: Union[bool, str, TruncationStrategy]=None, max_length: Optional[int]=None, stride: int=0, return_tensors: Optional[Union[str, TensorType]]=None, *, is_split_into_words: bool=False, pad_to_multiple_of: Optional[int]=None, return_token_type_ids: Optional[bool]=None, return_attention_mask: Optional[bool]=None, return_overflowing_tokens: bool=False, return_special_tokens_mask: bool=False, return_offsets_mapping: bool=False, return_length: bool=False, verbose: bool=True, **kwargs) -> List[int]
===========changed ref 0===========
# module: tests.test_edits
+ def get_before(change: Change[str]) -> str:
+ if isinstance(change, Modified):
+ return change.before
+ elif isinstance(change, Added):
+ return ""
+ elif isinstance(change, Deleted):
+ return change.before
+ else:
+ raise ValueError(f"Unknown change type: {change}")
+
===========changed ref 1===========
# module: tests.test_edits
def assert_tks_eq(actual: TokenSeq, expected: TokenSeq, name: str):
if actual != expected:
+ print_sections(
- print(f"Failed for case: {name}")
+ ("Expected", decode_tokens(expected)),
- print("Expected:\n", decode_tokens(expected), "<EOF>")
+ ("Reconstructed", decode_tokens(actual)),
+ )
- print("Actual:\n", decode_tokens(actual), "<EOF>")
raise ValueError(f"Failed for case: {name}")
===========changed ref 2===========
# module: tests.test_edits
+ def assert_change_eq(actual: Change[str], expected: Change[str], name: str):
- def assert_change_eq(actual: Modified[str], expected: Modified[str], name: str):
+ if get_before(actual) != get_before(expected):
+ print_sections(
+ ("Expected before", get_before(expected)),
+ ("Reconstructed before", get_before(actual)),
+ )
- if actual.before != expected.before:
- print(f"Failed for case: {name}")
- print("Expected before:\n", expected.before, "<EOF>")
- print("Reconstructed before:\n", actual.before, "<EOF>")
raise ValueError(f"Failed for case: {name}")
+ if get_after(actual) != get_after(expected):
+ print_sections(
+ ("Expected after", get_after(expected)),
+ ("Reconstructed after", get_after(actual)),
+ )
- if actual.after != expected.after:
- print(f"Failed for case: {name}")
- print("Expected after:\n", expected.after, "<EOF>")
- print("Reconstructed after:\n", actual.after, "<EOF>")
raise ValueError(f"Failed for case: {name}")
===========changed ref 3===========
# module: coeditor.common
def splitlines(text: str) -> list[str]:
"""Split a text into lines and apalways ends with an empty line."""
+ if not text:
+ return []
return text.split("\n")
===========changed ref 4===========
# module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
match change:
case Modified(before=before, after=after, unchanged=unchanged):
if unchanged or before == after:
return encode_basic(before)
else:
diffs = change_to_line_diffs(change)
return encode_diffs(diffs)
case Added() | Deleted():
+ lines = split_list(encode_basic(change.earlier), Newline_id)
- lines = split_list(encode_basic(change.earlier()), Newline_id)
tk = Add_id if isinstance(change, Added) else Del_id
+ return join_list(([tk] + line for line in lines), Newline_id)
- return join_list([tk] + line for line in lines)
case _:
raise AssertionError(f"Not a change type: {change}")
===========changed ref 5===========
# module: tests.test_edits
+ def get_after(change: Change[str]) -> str:
+ if isinstance(change, Modified):
+ return change.after
+ elif isinstance(change, Added):
+ return change.after
+ elif isinstance(change, Deleted):
+ return ""
+ else:
+ raise ValueError(f"Unknown change type: {change}")
+
===========changed ref 6===========
# module: tests.test_edits
class TestChangeIdentities:
def test_str_encodings(self):
for name, c in self.cases.items():
try:
line_diffs = change_to_line_diffs(c)
print("line_diffs\n------\n" + "\n".join(line_diffs))
before, delta = line_diffs_to_original_delta(line_diffs)
+ print("before:")
+ print(before)
print("delta:", delta)
+ assert_str_equal(before, get_before(c))
- assert_str_equal(before, c.before)
after = delta.apply_to_input(before)
+ assert_str_equal(after, get_after(c))
- assert_str_equal(after, c.after)
except Exception:
print_err(f"Failed for case: {name}")
raise
|
tests.test_scoped_change/TestChangedSpan.check_changed_spans | Modified | temp-1 | 10c5e6f0d8a5440b63a9a41bac37d5eca50b6d6b | Update c3ProblemChangeDropout to v1.1. | <0>:<add> line_change = nl_change.later - nl_change.earlier
| # module: tests.test_scoped_change
class TestChangedSpan:
@staticmethod
def check_changed_spans(
changed_spans: Sequence[ChangedSpan], *expects: tuple[type, int]
):
print(f"{changed_spans=}\nchanges={[cs.change for cs in changed_spans]}")
assert_eq(
len(changed_spans),
len(expects),
)
for i, (change_type, n) in enumerate(expects):
span = changed_spans[i]
assert_eq(type(span.change), change_type)
nl_change = span.change.map(count_lines)
- line_change = nl_change.later() - nl_change.earlier()
<0> assert_eq(line_change, n, extra_message=lambda: f"{i=}, {span.change=}")
| ===========unchanged ref 0===========
at: coeditor._utils
assert_eq(x: T1, y: T1, message: Callable[[], str]=lambda: "") -> None
at: coeditor.change.Added
after: E1
map(f: Callable[[E1], T2]) -> "Added[T2]"
at: coeditor.change.Deleted
before: E1
map(f: Callable[[E1], T2]) -> "Deleted[T2]"
at: coeditor.change.Modified
before: E1
after: E1
unchanged: bool = False
map(f: Callable[[E1], T2]) -> "Modified[T2]"
at: coeditor.common
count_lines(text: str) -> int
at: coeditor.scoped_changes
ChangedSpan(change: Change[str], parent_scopes: Sequence[Change[ChangeScope]], line_range: LineRange)
at: coeditor.scoped_changes.ChangedSpan
change: Change[str]
parent_scopes: Sequence[Change[ChangeScope]]
line_range: LineRange
at: tests.test_scoped_change.TestChangedSpan
code1 = dedent(
"""\
import os
x = 1
y = x + 1
def f1():
global x
x *= 5
return x
if __name__ == "__main__":
print(f1() + x)
"""
)
scope1 = ChangeScope.from_tree(ProjectPath("code1", ""), code_to_module(code1))
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
===========changed ref 0===========
# module: coeditor.common
def count_lines(text: str) -> int:
+ if not text:
+ return 0
return text.count("\n") + 1
===========changed ref 1===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class TkC3Problem(TokenizedEdit):
- def show(self) -> str:
- return self.show_prediction(None)
-
===========changed ref 2===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def path(self) -> ProjectPath:
+ return self.parent_scopes[-1].earlier.path
- return self.parent_scopes[-1].earlier().path
===========changed ref 3===========
# module: coeditor.common
def splitlines(text: str) -> list[str]:
"""Split a text into lines and apalways ends with an empty line."""
+ if not text:
+ return []
return text.split("\n")
===========changed ref 4===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
+ def show(self, pred_tks: TokenSeq | None = None) -> str:
- def show(self) -> str:
+ def show_label(i: int):
+ return f" <{i}>" if i <= 9 else f"<{i}>"
- return self.show_prediction(None)
===========changed ref 5===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
def _is_func_body(self) -> bool:
+ return self.parent_scopes[-1].earlier.tree.type == ptree.Function.type
- return self.parent_scopes[-1].earlier().tree.type == ptree.Function.type
===========changed ref 6===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class ChangedSpan:
@property
def header_line_range(self) -> LineRange:
+ parent_scope = self.parent_scopes[-1].earlier
- parent_scope = self.parent_scopes[-1].earlier()
hrange = parent_scope.header_line_range
return hrange
===========changed ref 7===========
# module: tests.test_edits
+ def get_after(change: Change[str]) -> str:
+ if isinstance(change, Modified):
+ return change.after
+ elif isinstance(change, Added):
+ return change.after
+ elif isinstance(change, Deleted):
+ return ""
+ else:
+ raise ValueError(f"Unknown change type: {change}")
+
===========changed ref 8===========
# module: tests.test_edits
+ def get_before(change: Change[str]) -> str:
+ if isinstance(change, Modified):
+ return change.before
+ elif isinstance(change, Added):
+ return ""
+ elif isinstance(change, Deleted):
+ return change.before
+ else:
+ raise ValueError(f"Unknown change type: {change}")
+
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def __repr__(self):
+ line_diffs = "\n".join(f" {l}: {a}" for l, a in self._deltas.items())
- line_diffs = "\n".join(f" {l}: {a}" for l, a in enumerate(self._deltas) if a)
return f"StrDelta(\n{line_diffs}\n)"
===========changed ref 10===========
# module: coeditor.common
def split_list(
lst: list[T1],
sep: T1,
) -> list[list[T1]]:
"""
Split a list into segments by a separator, always ends with an empty list.
"""
+ if not lst:
+ return []
result = list[list[T1]]()
ptr = 0
for i, item in enumerate(lst):
if item == sep:
result.append(lst[ptr:i])
ptr = i + 1
result.append(lst[ptr:])
return result
===========changed ref 11===========
# module: tests.test_edits
def assert_tks_eq(actual: TokenSeq, expected: TokenSeq, name: str):
if actual != expected:
+ print_sections(
- print(f"Failed for case: {name}")
+ ("Expected", decode_tokens(expected)),
- print("Expected:\n", decode_tokens(expected), "<EOF>")
+ ("Reconstructed", decode_tokens(actual)),
+ )
- print("Actual:\n", decode_tokens(actual), "<EOF>")
raise ValueError(f"Failed for case: {name}")
===========changed ref 12===========
# module: coeditor.c3problem
class C3ProblemGenerator(ProjectChangeProcessor[C3Problem]):
"""
### Change log
+ - v2.4: fix buggy encoding of `Added` and `Deleted` changes.
- v2.3: always generate problems with full editing range and move the problem
splitting logic elsewhere. Also changed the data format of `ChangedCodeSpan`.
"""
+ VERSION = "2.4"
- VERSION = "2.3"
# change spans with more than this many lines will be ignored
max_span_lines: int = 500
===========changed ref 13===========
# module: coeditor.scoped_changes
@dataclass(frozen=True)
class JModuleChange:
@staticmethod
def from_modules(module_change: Change[JModule]):
"Compute the change spans from two versions of the same module."
with _tlogger.timed("JModuleChange.from_modules"):
changed = dict[ProjectPath, ChangedSpan]()
for cspan in get_changed_spans(
module_change.map(lambda m: m.as_scope), tuple()
):
+ path = cspan.parent_scopes[-1].earlier.path
- path = cspan.parent_scopes[-1].earlier().path
changed[path] = cspan
return JModuleChange(module_change, changed)
|
coeditor.encoding/TkDelta.get_new_target_lines | Modified | temp-1 | c0c02f6eb043d817203cf5e558c2cebc27992cb1 | Make `get_new_target_lines` consider early changes. | <0>:<add> if not deleted and l in line_set:
| # module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
def get_new_target_lines(self, lines: Sequence[int]) -> Sequence[int]:
"""Given a list of lines to edit, return the corresponding new lines to edit
after applying this delta."""
+ if not lines:
+ return tuple()
+ last_line = lines[-1]
+ line_set = set(lines)
new_edit_lines = list[int]()
offset = 0
+ for l in range(last_line + 1):
- for l in lines:
deleted = False
for act in self.get_line_change(l):
if act[0] == Add_id:
+ if l in line_set:
+ new_edit_lines.append(l + offset)
- new_edit_lines.append(l + offset)
offset += 1
elif act[0] == Del_id:
deleted = True
- if not deleted:
<0> new_edit_lines.append(l + offset)
return tuple(new_edit_lines)
| ===========unchanged ref 0===========
at: coeditor.encoding
Add_id = get_tk_id(Add)
at: coeditor.encoding.TkDelta
_deltas: Mapping[int, tuple[TokenSeq, ...]]
get_line_change(line: int) -> tuple[TokenSeq, ...]
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
|
coeditor._utils/pmap | Modified | temp-1 | 5cf0e571591acdb4fb8928f8267c6e46181cae47 | Add dynamic prob transform to training pipeline. | <0>:<add> chunksize = max(1, n // (20 * max_workers))
| # module: coeditor._utils
def pmap(
f: Callable[..., T1],
*f_args: Any,
desc: str | None = None,
key_args: Mapping[str, Any] | None = None,
max_workers: int | None = None,
chunksize: int | None = None,
tqdm_args: Mapping[str, Any] | None = None,
) -> list[T1]:
"""
Parallel map with progress displaying.
"""
n = len(f_args[0])
assert_eq(n, *(len(xs) for xs in f_args))
tqdm_args = dict(tqdm_args) if tqdm_args else {}
tqdm_args.setdefault("smoothing", 0.0)
if desc is None:
desc = "pmap: " + f.__name__
if key_args is None:
key_args = {}
if max_workers is None:
max_workers = DefaultWorkers
if max_workers <= 1:
outs = list[T1]()
for i in tqdm(range(n), desc=desc, **tqdm_args):
outs.append(f(*(a[i] for a in f_args), **key_args))
return outs
if chunksize is None:
- chunksize = max(1, n // (50 * max_workers))
<0>
tag_f = _TaggedFunc(f, key_args)
arg_tuples = zip(range(n), *f_args)
with (
multiprocessing.Pool(max_workers) as pool,
tqdm(total=n, desc=desc, **tqdm_args) as pbar,
):
results = dict[int, T1]()
for i, r in pool.imap_unordered(tag_f, arg_tuples, chunksize=chunksize):
results[i] = r
pbar.update()
return [results[i] for i in range(n)]
| ===========unchanged ref 0===========
at: coeditor._utils
T1 = TypeVar("T1")
DefaultWorkers: int = multiprocessing.cpu_count() // 2
global DefaultWorkers
_TaggedFunc(f: Callable[..., T1], key_args: Mapping[str, Any])
assert_eq(x: T1, *xs: T1, extra_message: Callable[[], str]=lambda: "") -> None
at: multiprocessing
Pool(processes: Optional[int]=..., initializer: Optional[Callable[..., Any]]=..., initargs: Iterable[Any]=..., maxtasksperchild: Optional[int]=...) -> pool.Pool
at: tqdm.std
tqdm(iterable=None, desc=None, total=None, leave=True, file=None, ncols=None, mininterval=0.1, maxinterval=10.0, miniters=None, ascii=None, disable=False, unit='it', unit_scale=False, dynamic_ncols=False, smoothing=0.3, bar_format=None, initial=0, position=None, postfix=None, unit_divisor=1000, write_bytes=False, lock_args=None, nrows=None, colour=None, delay=0, gui=False, **kwargs)
at: typing
Callable = _CallableType(collections.abc.Callable, 2)
Mapping = _alias(collections.abc.Mapping, 2)
|
coeditor._utils/PickleCache.cached | Modified | temp-1 | 5cf0e571591acdb4fb8928f8267c6e46181cae47 | Add dynamic prob transform to training pipeline. | <0>:<add> if remake or not path.exists():
| # module: coeditor._utils
class PickleCache:
+ def cached(
+ self, rel_path: Path | str, func: Callable[[], T1], remake: bool = False
+ ) -> T1:
- def cached(self, rel_path: Path | str, func: Callable[[], T1]) -> T1:
path = self.cache_dir / rel_path
- if not path.exists():
<0> value = func()
path.parent.mkdir(parents=True, exist_ok=True)
logging.info(f"[PickleCache] Saving to cache: '{path}'")
with path.open("wb") as f:
pickle.dump(value, f)
return value
else:
logging.info(f"[PickleCache] Loading from cache: '{path}'")
with path.open("rb") as f:
return pickle.load(f)
| ===========unchanged ref 0===========
at: _pickle
dump(obj, file, protocol=None, *, fix_imports=True, buffer_callback=None)
at: coeditor._utils
T1 = TypeVar("T1")
at: coeditor._utils.PickleCache.__init__
self.cache_dir = cache_dir
at: logging
info(msg: Any, *args: Any, exc_info: _ExcInfoType=..., stack_info: bool=..., extra: Optional[Dict[str, Any]]=..., **kwargs: Any) -> None
at: pathlib
Path()
at: pathlib.Path
__slots__ = ()
open(mode: OpenBinaryMode, buffering: Literal[0], encoding: None=..., errors: None=..., newline: None=...) -> FileIO
open(mode: OpenBinaryModeReading, buffering: Literal[-1, 1]=..., encoding: None=..., errors: None=..., newline: None=...) -> BufferedReader
open(mode: OpenBinaryModeWriting, buffering: Literal[-1, 1]=..., encoding: None=..., errors: None=..., newline: None=...) -> BufferedWriter
open(mode: OpenBinaryModeUpdating, buffering: Literal[-1, 1]=..., encoding: None=..., errors: None=..., newline: None=...) -> BufferedRandom
open(mode: str, buffering: int=..., encoding: Optional[str]=..., errors: Optional[str]=..., newline: Optional[str]=...) -> IO[Any]
open(mode: OpenTextMode=..., buffering: int=..., encoding: Optional[str]=..., errors: Optional[str]=..., newline: Optional[str]=...) -> TextIOWrapper
open(mode: OpenBinaryMode, buffering: int, encoding: None=..., errors: None=..., newline: None=...) -> BinaryIO
mkdir(mode: int=..., parents: bool=..., exist_ok: bool=...) -> None
exists() -> bool
===========unchanged ref 1===========
at: pathlib.PurePath
__slots__ = (
'_drv', '_root', '_parts',
'_str', '_hash', '_pparts', '_cached_cparts',
)
drive = property(attrgetter('_drv'),
doc="""The drive prefix (letter or UNC path), if any.""")
root = property(attrgetter('_root'),
doc="""The root of the path, if any.""")
at: pickle
dump, dumps, load, loads = _dump, _dumps, _load, _loads
at: typing
Callable = _CallableType(collections.abc.Callable, 2)
===========changed ref 0===========
# module: coeditor._utils
def pmap(
f: Callable[..., T1],
*f_args: Any,
desc: str | None = None,
key_args: Mapping[str, Any] | None = None,
max_workers: int | None = None,
chunksize: int | None = None,
tqdm_args: Mapping[str, Any] | None = None,
) -> list[T1]:
"""
Parallel map with progress displaying.
"""
n = len(f_args[0])
assert_eq(n, *(len(xs) for xs in f_args))
tqdm_args = dict(tqdm_args) if tqdm_args else {}
tqdm_args.setdefault("smoothing", 0.0)
if desc is None:
desc = "pmap: " + f.__name__
if key_args is None:
key_args = {}
if max_workers is None:
max_workers = DefaultWorkers
if max_workers <= 1:
outs = list[T1]()
for i in tqdm(range(n), desc=desc, **tqdm_args):
outs.append(f(*(a[i] for a in f_args), **key_args))
return outs
if chunksize is None:
+ chunksize = max(1, n // (20 * max_workers))
- chunksize = max(1, n // (50 * max_workers))
tag_f = _TaggedFunc(f, key_args)
arg_tuples = zip(range(n), *f_args)
with (
multiprocessing.Pool(max_workers) as pool,
tqdm(total=n, desc=desc, **tqdm_args) as pbar,
):
results = dict[int, T1]()
for i, r in pool.imap_unordered(tag_f, arg_tuples, chunksize=chunksize):
results[i] = r
pbar.update()
return [results[i] for i in range(n)]
|
coeditor.model/RetrievalEditorModel.predict_on_data | Modified | temp-1 | 5cf0e571591acdb4fb8928f8267c6e46181cae47 | Add dynamic prob transform to training pipeline. | <0>:<add> desc="predict_on_data",
| # module: coeditor.model
class RetrievalEditorModel(T5PreTrainedModel):
@torch.no_grad()
@torch.autocast("cuda")
def predict_on_data(
self,
eval_problems: Sequence[C3Problem],
tokenizer: C3ProblemTokenizer,
batch_args: "BatchArgs",
dec_args: DecodingArgs,
):
if batch_args.shuffle_extra_ids:
warnings.warn(
"Shuffling extra ids during eval can lead to incorrect results."
)
eval_loader = C3DataLoader(
+ eval_problems,
+ None,
+ tokenizer,
+ batch_args,
+ shuffle=False,
- eval_problems, tokenizer, batch_args, shuffle=False, desc="predict_on_data"
<0> )
gen_args = dec_args.to_model_args()
batch_elems = list[RetrievalModelPrediction]()
for batch in eval_loader: # type: ignore
out_tks = self.generate(
batch["input_ids"].to(self.device),
references=batch["references"],
query_ref_list=batch["query_ref_list"],
**gen_args,
).tolist() # type: ignore
input_ids = batch["input_ids"].tolist()
labels = batch["labels"].tolist()
query_ref_list = batch["query_ref_list"]
for i in range(len(input_ids)):
all_refs = batch["references"]
references = [all_refs[j] for j in query_ref_list[i]]
e = RetrievalModelPrediction(
input_ids=remove_pad_ids(input_ids[i]),
output_ids=remove_pad_ids(out_tks[i]),
labels=labels[i],
references=references,
)
batch_elems.append(e)
return RetrievalDecodingResult(
eval_args={"</s> | ===========below chunk 0===========
# module: coeditor.model
class RetrievalEditorModel(T5PreTrainedModel):
@torch.no_grad()
@torch.autocast("cuda")
def predict_on_data(
self,
eval_problems: Sequence[C3Problem],
tokenizer: C3ProblemTokenizer,
batch_args: "BatchArgs",
dec_args: DecodingArgs,
):
# offset: 1
<s>
)
batch_elems.append(e)
return RetrievalDecodingResult(
eval_args={"batch_args": batch_args, "dec_args": dec_args},
problems=eval_problems,
predictions=batch_elems,
)
===========unchanged ref 0===========
at: _warnings
warn(message: str, category: Optional[Type[Warning]]=..., stacklevel: int=..., source: Optional[Any]=...) -> None
warn(message: Warning, category: Any=..., stacklevel: int=..., source: Optional[Any]=...) -> None
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_line_ids: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Mapping["PyFullName", "PyDefinition"], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
C3ProblemTokenizer(max_ref_tks: int=512, max_query_tks: int=512, max_output_tks: int=256, max_scope_tks: int=128, max_ref_tks_sum: int=512 * 16, ref_chunk_overlap: int=32, disable_builtin_defs: bool=True, disable_unchanged_refs: bool=False, current_code_only: bool=False)
at: coeditor.model
DecodingArgs(max_output_tks: int=512, do_sample: bool=False, top_p: float=0.9, num_beams: Optional[int]=1, length_penalty: float=0.0, marginalize_samples: int=1)
remove_pad_ids(ids: TokenSeq) -> TokenSeq
RetrievalModelPrediction(iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT)
RetrievalModelPrediction(**kwargs: _VT)
RetrievalModelPrediction(map: Mapping[_KT, _VT], **kwargs: _VT)
C3DataLoader(all_probs: Sequence[C3Problem], transform: C3ProblemTransform | None, tokenizer: C3ProblemTokenizer, batch_args: BatchArgs, shuffle: bool, desc: str, tqdm_args: dict | None=None, chunk_size: int=1000, workers: int=10)
===========unchanged ref 1===========
at: coeditor.model.BatchArgs
min_queries: int = 1
max_queries: int = 8
shuffle_extra_ids: bool = True
at: coeditor.model.C3DataLoader
all_probs: Sequence[C3Problem]
transform: C3ProblemTransform | None
tokenizer: C3ProblemTokenizer
batch_args: BatchArgs
shuffle: bool
desc: str
tqdm_args: dict | None = None
chunk_size: int = 1000
workers: int = 10
at: coeditor.model.DecodingArgs
max_output_tks: int = 512
do_sample: bool = False
top_p: float = 0.9
num_beams: Optional[int] = 1
length_penalty: float = 0.0
marginalize_samples: int = 1
to_model_args() -> dict
at: coeditor.model.RetrievalEditorModel
is_parallelizable = False
supports_gradient_checkpointing = False
at: coeditor.model.RetrievalEditorModel.eval_loss_on_loader
core = self
previous = core.training
v = v + metrics.get(k, WeightedSum(0.0, 0))
at: torch.amp.autocast_mode
autocast(device_type: str, dtype: Optional[_dtype]=None, enabled: bool=True, cache_enabled: Optional[bool]=None)
at: torch.autograd.grad_mode
no_grad()
at: torch.nn.modules.module.Module
dump_patches: bool = False
_version: int = 1
training: bool
_parameters: Dict[str, Optional[Parameter]]
_buffers: Dict[str, Optional[Tensor]]
_non_persistent_buffers_set: Set[str]
_backward_pre_hooks: Dict[int, Callable]
_backward_hooks: Dict[int, Callable]
===========unchanged ref 2===========
_is_full_backward_hook: Optional[bool]
_forward_hooks: Dict[int, Callable]
_forward_hooks_with_kwargs: Dict[int, bool]
_forward_hooks_always_called: Dict[int, bool]
_forward_pre_hooks: Dict[int, Callable]
_forward_pre_hooks_with_kwargs: Dict[int, bool]
_state_dict_hooks: Dict[int, Callable]
_load_state_dict_pre_hooks: Dict[int, Callable]
_state_dict_pre_hooks: Dict[int, Callable]
_load_state_dict_post_hooks: Dict[int, Callable]
_modules: Dict[str, Optional['Module']]
call_super_init: bool = False
_compiled_call_impl : Optional[Callable] = None
forward: Callable[..., Any] = _forward_unimplemented
__call__ : Callable[..., Any] = _wrapped_call_impl
T_destination = TypeVar('T_destination', bound=Dict[str, Any])
train(mode: bool=True) -> T
at: transformers.generation.utils.GenerationMixin
generate(inputs: Optional[torch.Tensor]=None, generation_config: Optional[GenerationConfig]=None, logits_processor: Optional[LogitsProcessorList]=None, stopping_criteria: Optional[StoppingCriteriaList]=None, prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]]=None, synced_gpus: Optional[bool]=None, assistant_model: Optional["PreTrainedModel"]=None, streamer: Optional["BaseStreamer"]=None, **kwargs) -> Union[GenerateOutput, torch.LongTensor]
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
===========changed ref 0===========
# module: coeditor.c3problem
- class C3ProblemTransformer(ABC):
- @abstractmethod
- def transform(self, prob: C3Problem) -> Iterable[C3Problem]:
- ...
-
===========changed ref 1===========
# module: coeditor.c3problem
- class C3ProblemTransformer(ABC):
- @abstractmethod
- def transform(self, prob: C3Problem) -> Iterable[C3Problem]:
- ...
-
===========changed ref 2===========
# module: coeditor.c3problem
- class C3ProblemTransformer(ABC):
- "A strategy to generate new C3 problems from the orginal ones."
-
===========changed ref 3===========
# module: coeditor.c3problem
- class C3ProblemTransformer(ABC):
- "A strategy to generate new C3 problems from the orginal ones."
- |
coeditor.model/C3DataLoader.estimate_batch_stats | Modified | temp-1 | 5cf0e571591acdb4fb8928f8267c6e46181cae47 | Add dynamic prob transform to training pipeline. | <0>:<add> batches = self._problems_to_batches(self._to_tokenized(self.all_probs))
| # module: coeditor.model
@dataclass
class C3DataLoader:
def estimate_batch_stats(self):
- probs = list(self.all_probs)
- if self.shuffle:
- random.shuffle(probs)
- batches = self._problems_to_batches(self._to_tokenized(probs))
<0> bsizes = list[int]()
for b in batches:
bsizes.append(len(b["input_ids"]))
batch_stats = {k: f"{v:.1f}" for k, v in scalar_stats(bsizes).items()}
return len(bsizes), batch_stats
| ===========unchanged ref 0===========
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_line_ids: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Mapping["PyFullName", "PyDefinition"], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
TkC3Problem(main_input: TkArray, header: TkArray, output: TkArray, path: ProjectPath, change_type: Change[None], named_references: Sequence[tuple[str, TkArray]], project: str, commit: CommitInfo | None, truncated: bool)
at: coeditor.model.C3DataLoader
shuffle: bool
__len__(self) -> int
chunk_size: int = 1000
at: coeditor.model.C3DataLoader.__post_init__
self._len_est = n_batches
at: random
shuffle = _inst.shuffle
at: typing
Iterable = _alias(collections.abc.Iterable, 1)
Sequence = _alias(collections.abc.Sequence, 1)
===========changed ref 0===========
# module: coeditor.model
@dataclass
class C3DataLoader:
all_probs: Sequence[C3Problem]
+ transform: C3ProblemTransform | None
tokenizer: C3ProblemTokenizer
batch_args: BatchArgs
shuffle: bool
desc: str
tqdm_args: dict | None = None
chunk_size: int = 1000
workers: int = 10
===========changed ref 1===========
# module: coeditor.model
@dataclass
class C3DataLoader:
def _to_tokenized(self, probs: Sequence[C3Problem]) -> Iterable[TkC3Problem]:
+ probs = list(probs)
+ if self.shuffle:
+ random.shuffle(probs)
for i in range(0, len(probs), self.chunk_size):
group = probs[i : i + self.chunk_size]
+ if self.transform is not None:
+ group = join_list(
+ pmap(self.transform.transform, group, tqdm_args={"disable": True})
+ )
yield from pmap(
self.tokenizer.tokenize_problem, group, tqdm_args={"disable": True}
)
===========changed ref 2===========
# module: coeditor.c3problem
- class C3ProblemTransformer(ABC):
- @abstractmethod
- def transform(self, prob: C3Problem) -> Iterable[C3Problem]:
- ...
-
===========changed ref 3===========
# module: coeditor.c3problem
- class C3ProblemTransformer(ABC):
- @abstractmethod
- def transform(self, prob: C3Problem) -> Iterable[C3Problem]:
- ...
-
===========changed ref 4===========
# module: coeditor.c3problem
- class C3ProblemTransformer(ABC):
- "A strategy to generate new C3 problems from the orginal ones."
-
===========changed ref 5===========
# module: coeditor.c3problem
- class C3ProblemTransformer(ABC):
- "A strategy to generate new C3 problems from the orginal ones."
-
===========changed ref 6===========
# module: coeditor._utils
class PickleCache:
+ def cached(
+ self, rel_path: Path | str, func: Callable[[], T1], remake: bool = False
+ ) -> T1:
- def cached(self, rel_path: Path | str, func: Callable[[], T1]) -> T1:
path = self.cache_dir / rel_path
+ if remake or not path.exists():
- if not path.exists():
value = func()
path.parent.mkdir(parents=True, exist_ok=True)
logging.info(f"[PickleCache] Saving to cache: '{path}'")
with path.open("wb") as f:
pickle.dump(value, f)
return value
else:
logging.info(f"[PickleCache] Loading from cache: '{path}'")
with path.open("rb") as f:
return pickle.load(f)
===========changed ref 7===========
# module: coeditor._utils
def pmap(
f: Callable[..., T1],
*f_args: Any,
desc: str | None = None,
key_args: Mapping[str, Any] | None = None,
max_workers: int | None = None,
chunksize: int | None = None,
tqdm_args: Mapping[str, Any] | None = None,
) -> list[T1]:
"""
Parallel map with progress displaying.
"""
n = len(f_args[0])
assert_eq(n, *(len(xs) for xs in f_args))
tqdm_args = dict(tqdm_args) if tqdm_args else {}
tqdm_args.setdefault("smoothing", 0.0)
if desc is None:
desc = "pmap: " + f.__name__
if key_args is None:
key_args = {}
if max_workers is None:
max_workers = DefaultWorkers
if max_workers <= 1:
outs = list[T1]()
for i in tqdm(range(n), desc=desc, **tqdm_args):
outs.append(f(*(a[i] for a in f_args), **key_args))
return outs
if chunksize is None:
+ chunksize = max(1, n // (20 * max_workers))
- chunksize = max(1, n // (50 * max_workers))
tag_f = _TaggedFunc(f, key_args)
arg_tuples = zip(range(n), *f_args)
with (
multiprocessing.Pool(max_workers) as pool,
tqdm(total=n, desc=desc, **tqdm_args) as pbar,
):
results = dict[int, T1]()
for i, r in pool.imap_unordered(tag_f, arg_tuples, chunksize=chunksize):
results[i] = r
pbar.update()
return [results[i] for i in range(n)]
===========changed ref 8===========
# module: coeditor.model
class RetrievalEditorModel(T5PreTrainedModel):
@torch.no_grad()
@torch.autocast("cuda")
def predict_on_data(
self,
eval_problems: Sequence[C3Problem],
tokenizer: C3ProblemTokenizer,
batch_args: "BatchArgs",
dec_args: DecodingArgs,
):
if batch_args.shuffle_extra_ids:
warnings.warn(
"Shuffling extra ids during eval can lead to incorrect results."
)
eval_loader = C3DataLoader(
+ eval_problems,
+ None,
+ tokenizer,
+ batch_args,
+ shuffle=False,
+ desc="predict_on_data",
- eval_problems, tokenizer, batch_args, shuffle=False, desc="predict_on_data"
)
gen_args = dec_args.to_model_args()
batch_elems = list[RetrievalModelPrediction]()
for batch in eval_loader: # type: ignore
out_tks = self.generate(
batch["input_ids"].to(self.device),
references=batch["references"],
query_ref_list=batch["query_ref_list"],
**gen_args,
).tolist() # type: ignore
input_ids = batch["input_ids"].tolist()
labels = batch["labels"].tolist()
query_ref_list = batch["query_ref_list"]
for i in range(len(input_ids)):
all_refs = batch["references"]
references = [all_refs[j] for j in query_ref_list[i]]
e = RetrievalModelPrediction(
input_ids=remove_pad_ids(input_ids[i]),
output_ids=remove_pad_ids(out_tks[i]),
labels=labels[i],
references=references,
)
batch_elems.append(e)
return RetrievalDec</s> |
scripts.train_model/train_model | Modified | temp-1 | 5cf0e571591acdb4fb8928f8267c6e46181cae47 | Add dynamic prob transform to training pipeline. | <0>:<add> encoder.problem_tranform,
| # module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
<s>n,
+ batch_args,
+ shuffle=True,
+ desc="training",
- datasets["train"], train_tkn, batch_args, shuffle=True, desc="training"
)
with timed_action("Warm-up Training"):
warmup_bargs = copy.deepcopy(batch_args)
warmup_bargs.min_queries *= 4
warmup_bargs.max_queries *= 2
warm_up_data = random_subset(datasets["train"], len(datasets["train"]) // 4)
warmup_tkn = copy.deepcopy(train_tkn)
warmup_tkn.max_ref_tks_sum //= 3
warmup_loader = C3DataLoader(
warm_up_data,
<0> warmup_tkn,
warmup_bargs,
shuffle=True,
desc="warm-up training",
)
warmup_targs = copy.deepcopy(train_args)
warmup_targs.learning_rate *= 4
warmup_targs.max_train_epochs = 1
model.train_on_data(model_name, warmup_loader, eval_loader, warmup_targs)
with timed_action("Fine-tune Training"):
model.train_on_data(model_name, train_loader, eval_loader, train_args)
model.to("cuda")
with timed_action("Loss Evaluation"):
eval_result = model.eval_loss_on_loader(eval_loader)
eval_dict = {f"test/{k</s> | ===========above chunk 0===========
# module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: -1
<s>model_dir() / model_name)
if os.getenv("CUDA_VISIBLE_DEVICES") is None:
warnings.warn(
"CUDA_VISIBLE_DEVICES not set, using 0. Note that "
"the Huggingface Trainer will use all visible GPUs for training."
)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
- def transform_data(data: Sequence[C3Problem]) -> list[C3Problem]:
- transformed = pmap(encoder.problem_tranformer.transform, data, chunksize=1000)
- return join_list(transformed)
-
- datasets = {split: transform_data(data) for split, data in datasets.items()}
-
train_tkn = encoder.edit_tokenizer
eval_tkn = copy.deepcopy(train_tkn)
eval_tkn.max_ref_tks_sum *= 2
eval_loader = C3DataLoader(
+ datasets["valid"], None, eval_tkn, eval_batch_args, shuffle=False, desc="eval"
- datasets["valid"], eval_tkn, eval_batch_args, shuffle=False, desc="eval"
)
if not eval_only:
+ # we attach the problem transform to the dataloader to generate data on-the-fly
train_loader = C3DataLoader(
+ datasets["train"],
+ encoder.problem_tranform,
+ train_tkn,
+ batch_args,
+ shuffle=True,
+ desc="training",
- datasets["train"</s>
===========above chunk 1===========
# module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: -2
<s>, v in {
"edit_tokenizer": encoder.edit_tokenizer.get_args(),
"batch_args": batch_args,
"train_args": train_args,
"dec_args": dec_args,
}.items()
}
project = "Coeditor" if not train_args.quicktest else "Coeditor-quicktest"
if eval_only:
project = "eval-" + project
wandb.init(dir="..", project=project, name=model_name, config=config_dict)
if train_args.quicktest:
print("Using fewer data for quick test.")
n_quick_exs = 20
+ datasets = C3ProblemDataset(
+ train=datasets["train"][:n_quick_exs],
+ valid=datasets["valid"][:n_quick_exs],
+ test=datasets["test"][:n_quick_exs],
+ )
- datasets = {name: data[:n_quick_exs] for name, data in datasets.items()}
if not eval_only:
model = RetrievalEditorModel.from_code_t5(
"base", reuse_embed=True, reinit_weights=train_args.reinit_weights
)
else:
model = RetrievalEditorModel.load(get_model_dir() / model_name)
if os.getenv("CUDA_VISIBLE_DEVICES") is None:
</s>
===========above chunk 2===========
# module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: -3
# model_variant = "-file"
model_name = f"coeditor-{dataset_name}"
model_name += model_variant
dec_args = DecodingArgs()
if train_args.quicktest:
model_name = "quicktest-" + model_name
if not eval_only:
check_save_dir(model_name)
+ # problems will be transformed and saved for valid and test but not train.
+ datasets = make_or_load_dataset(
- datasets = make_or_load_datasets(
+ dataset_name,
+ encoder.change_processor,
+ encoder.problem_tranform,
+ remake_problems=recreate_data,
- dataset_name, encoder.change_processor, recreate_data=recreate_data
)
config_dict = {
k: get_modified_args(v)
</s>
===========below chunk 0===========
# module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: 1
<s> eval_result = model.eval_loss_on_loader(eval_loader)
eval_dict = {f"test/{k}": v.average() for k, v in eval_result.items()}
wandb.log(eval_dict)
max_saved_samples = 300
with timed_action("Accuracy Evaluation"):
dec_result = model.predict_on_data(
datasets["test"], eval_tkn, eval_batch_args, dec_args
)
pickle_dump(get_model_dir() / model_name / "dec_result.pkl", dec_result)
exact_acc, exact_correct_map = dec_result.exact_match_accuracy()
wandb.log({"test/exact-acc": exact_acc.average()})
out_dir = get_model_dir() / model_name / "exact_match_samples"
dec_result.save_examples_to_dir(
out_dir, random_subset(exact_correct_map, max_saved_samples)
)
cprint("blue", "Exact-match samples saved to:", out_dir)
return model
|
coeditor.encoding/tokens_to_change | Modified | temp-1 | 76c8cd1ea3625e687e9109c30b69dc7e42c69f95 | Improve prediction visualization. - rename `to_change_tks`. | <0>:<add> return Modified(before_code, after_code)
| # module: coeditor.encoding
def tokens_to_change(tokens: TokenSeq) -> Modified[str]:
"Decode a token sequence into a change."
tk_lines = split_list(tokens, Newline_id)
+ before_lines = list[TokenSeq]()
- before_lines = list[str]()
+ after_lines = list[TokenSeq]()
- after_lines = list[str]()
for tk_line in tk_lines:
if tk_line and tk_line[0] == Add_id:
+ after_lines.append(tk_line[1:])
- after_lines.append(_Tokenizer.decode(tk_line[1:]))
elif tk_line and tk_line[0] == Del_id:
+ before_lines.append(tk_line[1:])
- before_lines.append(_Tokenizer.decode(tk_line[1:]))
else:
- line = _Tokenizer.decode(tk_line)
+ before_lines.append(tk_line)
- before_lines.append(line)
+ after_lines.append(tk_line)
- after_lines.append(line)
+ before_code = decode_tokens(join_list(before_lines, Newline_id))
+ after_code = decode_tokens(join_list(after_lines, Newline_id))
- return Modified(before="\n".join(before_lines), after="\n".join(after_lines))
<0>
| ===========unchanged ref 0===========
at: coeditor.change
Modified(before: E1, after: E1, unchanged: bool=False)
at: coeditor.common
TokenSeq = list[Token]
split_list(lst: list[T1], sep: T1) -> list[list[T1]]
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
at: coeditor.encoding
Add_id = get_tk_id(Add)
Del_id = get_tk_id(Del)
Newline_id = get_tk_id("\n")
decode_tokens(tokens: TokenSeq, prettify: bool=False) -> str
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
- def to_change_tks(self, input: TokenSeq) -> TokenSeq:
- lines = split_list(input, Newline_id)
-
- new_lines = list[TokenSeq]()
- for i, line in enumerate(lines):
- deleted = False
- if delta := self._deltas.get(i):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- elif action[0] == Del_id:
- deleted = True
- if deleted:
- new_lines.append([Del_id] + line)
- else:
- new_lines.append(line)
- if delta := self._deltas.get(len(lines)):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- return join_list(new_lines, Newline_id)
-
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
- def to_change_tks(self, input: TokenSeq) -> TokenSeq:
- lines = split_list(input, Newline_id)
-
- new_lines = list[TokenSeq]()
- for i, line in enumerate(lines):
- deleted = False
- if delta := self._deltas.get(i):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- elif action[0] == Del_id:
- deleted = True
- if deleted:
- new_lines.append([Del_id] + line)
- else:
- new_lines.append(line)
- if delta := self._deltas.get(len(lines)):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- return join_list(new_lines, Newline_id)
- |
coeditor.c3problem/C3ProblemChangeDropout.transform | Modified | temp-1 | 76c8cd1ea3625e687e9109c30b69dc7e42c69f95 | Improve prediction visualization. - rename `to_change_tks`. | <0>:<add> new_original = TkArray.new(delta1.apply_to_change(original.tolist()))
| # module: coeditor.c3problem
class C3ProblemChangeDropout(C3ProblemTransform):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
<s> len(grouped_keys) >= 2
if should_dropout:
n_to_drop = int(
len(grouped_keys) * random.random() * self.max_dropout_ratio
)
assert n_to_drop < len(grouped_keys)
keys_to_drop = join_list(random_subset(grouped_keys, n_to_drop))
else:
keys_to_drop = []
if keys_to_drop:
delta1, delta2 = delta.decompose_for_change(keys_to_drop)
delta2_groups = delta2.change_groups()
if not delta2_groups:
print_err(f"{delta=}, {keys_to_drop=}, {delta1=}")
raise AssertionError("Empty delta2_groups")
- new_original = TkArray.new(delta1.to_change_tks(original.tolist()))
<0> new_trans = prob.transformations + ("split", "dropout")
new_span = dataclasses.replace(
prob.span, original=new_original, delta=delta2
)
else:
new_trans = prob.transformations + ("split",)
new_span = prob.span
delta1 = None
delta2_groups = delta.change_groups()
prob_and_n = list[tuple[C3Problem, int]]()
for i in range(start, stop, self.max_lines_to_edit):
j = min(i + self.max_lines_to_edit, stop)
edit_lines = range(i, j)
if delta1 is not None:
edit_lines = delta1.get_new_target_lines(edit_lines)
line_set = set(edit_lines)
n_groups = sum(any(key[0] in line_set for key in g) for g in delta2_groups)
</s> | ===========above chunk 0===========
# module: coeditor.c3problem
class C3ProblemChangeDropout(C3ProblemTransform):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
# offset: -1
original = prob.span.original
delta = prob.span.delta
l_range = prob.edit_lines
assert isinstance(l_range, range)
start, stop = l_range.start, l_range.stop
grouped_keys = delta.change_groups()
should_dropout = len(grouped_keys) >= 2
if should_dropout:
n_to_drop = int(
len(grouped</s>
===========below chunk 0===========
# module: coeditor.c3problem
class C3ProblemChangeDropout(C3ProblemTransform):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
# offset: 1
<s>_groups = sum(any(key[0] in line_set for key in g) for g in delta2_groups)
if n_groups > 0:
sub_prob = dataclasses.replace(
prob,
span=new_span,
edit_lines=edit_lines,
transformations=new_trans,
)
prob_and_n.append((sub_prob, n_groups))
# return the problems with the most changes
prob_and_n.sort(key=lambda p: p[1], reverse=True)
probs = [p[0] for p in prob_and_n]
return probs[: self.max_split_factor]
===========unchanged ref 0===========
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_lines: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Sequence[ChangedCodeSpan], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
at: coeditor.c3problem.C3Problem
span: ChangedCodeSpan
edit_lines: Sequence[int]
relevant_changes: Sequence[ChangedCodeSpan]
relevant_unchanged: Sequence[ChangedCodeSpan]
change_type: Change[None]
src_info: SrcInfo
transformations: tuple[str, ...] = ()
at: coeditor.c3problem.C3ProblemChangeDropout
VERSION = "1.1"
max_lines_to_edit: int = 25
max_split_factor: int = 4
at: coeditor.c3problem.C3ProblemTransform
transform(self, prob: C3Problem) -> Sequence[C3Problem]
at: coeditor.c3problem.ChangedCodeSpan
headers: Sequence[ChangedHeader]
original: TkArray
delta: TkDelta
line_range: LineRange
module: ModuleName
at: coeditor.common
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
random_subset(all: Mapping[T1, T2], n: int, rng: random.Random | int | None=None) -> dict[T1, T2]
random_subset(all: Sequence[T1], n: int, rng: random.Random | int | None=None) -> list[T1]
print_err(*, sep: Optional[str]=..., end: Optional[str]=..., flush: bool=...) -> None
at: coeditor.encoding.TkDelta
_deltas: Mapping[int, tuple[TokenSeq, ...]]
===========unchanged ref 1===========
decompose_for_change(first_keys: Collection[DeltaKey]) -> tuple[Self, Self]
change_groups() -> Sequence[tuple[DeltaKey, ...]]
at: coeditor.tk_array
TkArray()
at: coeditor.tk_array.TkArray
tolist() -> TokenSeq
new(tks: Sequence[int]) -> "TkArray"
at: dataclasses
replace(obj: _T, **changes: Any) -> _T
at: random
random = _inst.random
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
===========changed ref 0===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def summarize(self) -> str:
+ return "\n".join(self.meta_data_lines())
+
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
- def to_change_tks(self, input: TokenSeq) -> TokenSeq:
- lines = split_list(input, Newline_id)
-
- new_lines = list[TokenSeq]()
- for i, line in enumerate(lines):
- deleted = False
- if delta := self._deltas.get(i):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- elif action[0] == Del_id:
- deleted = True
- if deleted:
- new_lines.append([Del_id] + line)
- else:
- new_lines.append(line)
- if delta := self._deltas.get(len(lines)):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- return join_list(new_lines, Newline_id)
-
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
- def to_change_tks(self, input: TokenSeq) -> TokenSeq:
- lines = split_list(input, Newline_id)
-
- new_lines = list[TokenSeq]()
- for i, line in enumerate(lines):
- deleted = False
- if delta := self._deltas.get(i):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- elif action[0] == Del_id:
- deleted = True
- if deleted:
- new_lines.append([Del_id] + line)
- else:
- new_lines.append(line)
- if delta := self._deltas.get(len(lines)):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- return join_list(new_lines, Newline_id)
-
===========changed ref 3===========
# module: coeditor.encoding
def tokens_to_change(tokens: TokenSeq) -> Modified[str]:
"Decode a token sequence into a change."
tk_lines = split_list(tokens, Newline_id)
+ before_lines = list[TokenSeq]()
- before_lines = list[str]()
+ after_lines = list[TokenSeq]()
- after_lines = list[str]()
for tk_line in tk_lines:
if tk_line and tk_line[0] == Add_id:
+ after_lines.append(tk_line[1:])
- after_lines.append(_Tokenizer.decode(tk_line[1:]))
elif tk_line and tk_line[0] == Del_id:
+ before_lines.append(tk_line[1:])
- before_lines.append(_Tokenizer.decode(tk_line[1:]))
else:
- line = _Tokenizer.decode(tk_line)
+ before_lines.append(tk_line)
- before_lines.append(line)
+ after_lines.append(tk_line)
- after_lines.append(line)
+ before_code = decode_tokens(join_list(before_lines, Newline_id))
+ after_code = decode_tokens(join_list(after_lines, Newline_id))
+ return Modified(before_code, after_code)
- return Modified(before="\n".join(before_lines), after="\n".join(after_lines))
|
coeditor.c3problem/C3ProblemTokenizer.tokenize_problem | Modified | temp-1 | 76c8cd1ea3625e687e9109c30b69dc7e42c69f95 | Improve prediction visualization. - rename `to_change_tks`. | <0>:<add> above_tks = tk_delta.for_input_range((0, edit_start)).apply_to_change(above_tks)
| # module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> TkC3Problem:
<s>output.extend(line_change)
if line_change and line_change[-1] != Del_id:
chunk_output.append(Newline_id)
if len(chunk_input) > input_limit:
break
edit_stop = last_line + 1
# limit the input size if it's too long
chunk_input = truncate_section(
chunk_input, TruncateAt.Right, input_limit, inplace=True
)
chunk_output = truncate_output_tks(chunk_input, chunk_output)
# try move some prev_change_tks into the input
above_tks = join_list(origin_lines[:edit_start] + [TokenSeq()], Newline_id)
- above_tks = tk_delta.for_input_range((0, edit_start)).to_change_tks(above_tks)
<0> below_tks = join_list(origin_lines[edit_stop:] + [TokenSeq()], Newline_id)
chunk_input, above_tks, below_tks = self._inline_some_context(
chunk_input, above_tks, below_tks, input_limit
)
chunk_output = truncate_section(
chunk_output,
TruncateAt.Right,
self.max_output_tks,
add_bos=False,
inplace=True,
)
above_chunks = break_into_chunks(
above_tks,
lambda i: self._encode_headers(span.headers, -1 - i),
chunk_size=self.max_ref_tks,
overlap=self.ref_chunk_overlap,
right_to_left=True,
)
if not below_tks:
below_chunks = []
else:
below_chunks = break_into_chunks(
below_</s> | ===========above chunk 0===========
# module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> TkC3Problem:
# offset: -1
span = problem.span
original: TokenSeq = span.original.tolist()
tk_delta: TkDelta = span.delta
origin_lines = split_list(original, Newline_id)
edit_start = problem.edit_lines[0]
scope_tks = self._encode_headers(span.headers, 0)
input_limit = self.max_query_tks - len(scope_tks)
chunk_input = TokenSeq()
chunk_output = TokenSeq()
last_line = edit_start
for i, l in enumerate(problem.edit_lines):
for line in origin_lines[last_line + 1 : l]:
chunk_input.extend(line)
chunk_input.append(Newline_id)
chunk_input.append(get_extra_id(i))
if l < len(origin_lines):
chunk_input.extend(origin_lines[l])
chunk_input.append(Newline_id)
last_line = l
line_change = join_list(tk_delta.get_line_change(l), Newline_id)
chunk_output.append(get_extra_id(i))
chunk_output.extend(line_change)
if line_change and line_change[-1] != Del_id:
chunk_</s>
===========below chunk 0===========
# module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> TkC3Problem:
# offset: 1
<s>tks:
below_chunks = []
else:
below_chunks = break_into_chunks(
below_tks,
lambda i: self._encode_headers(span.headers, i + 1),
chunk_size=self.max_ref_tks,
overlap=self.ref_chunk_overlap,
)
above_chunks = [
(f"above chunk {i}", TkArray.new(chunk))
for i, chunk in enumerate(above_chunks)
]
below_chunks = [
(f"below chunk {i}", TkArray.new(chunk))
for i, chunk in enumerate(below_chunks)
]
all_refs = above_chunks + below_chunks
ref_size_sum = sum(len(ref) for _, ref in all_refs)
# compute the references that are relevant to this span
if ref_size_sum < self.max_ref_tks_sum:
changed = self._group_encode_changed_refs(problem.relevant_changes)
for i, chunk in enumerate(changed):
all_refs.append((f"changed ref {i}", TkArray.new(chunk)))
ref_size_sum += sum(len(x) for x in changed)
if ref_size_sum < self.max_ref_tks_sum:
unchanged = self._group_encode_unchanged_refs(problem.relevant_unchanged)
for i, chunk in enumerate(unchanged):
all_refs.append((f"unchanged ref {i}", TkArray.new(chunk)))
# take until we hit the limit
ref_size_sum = 0
kept_refs = list[tuple[str, TkArray]]()
for (name, ref) in all_refs:
if ref_size_sum + len(ref) > self.max_</s>
===========below chunk 1===========
# module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def tokenize_problem(
self,
problem: C3Problem,
) -> TkC3Problem:
# offset: 2
<s> for (name, ref) in all_refs:
if ref_size_sum + len(ref) > self.max_ref_tks_sum:
continue
ref_size_sum += len(ref)
kept_refs.append((name, ref))
return TkC3Problem(
TkArray.new(scope_tks + chunk_input),
TkArray.new(chunk_output),
path=span.headers[-1].path,
change_type=problem.change_type,
named_references=kept_refs,
project=problem.src_info["project"],
commit=problem.src_info["commit"],
)
===========unchanged ref 0===========
at: cachetools.lru
LRUCache(maxsize: int, getsizeof: Optional[Callable[[_VT], int]]=...)
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_lines: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Sequence[ChangedCodeSpan], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
TkC3Problem(input: TkArray, output: TkArray, path: ProjectPath, change_type: Change[None], named_references: Sequence[tuple[str, TkArray]], project: str, commit: CommitInfo | None)
at: coeditor.c3problem.C3Problem
span: ChangedCodeSpan
edit_lines: Sequence[int]
relevant_changes: Sequence[ChangedCodeSpan]
relevant_unchanged: Sequence[ChangedCodeSpan]
at: coeditor.c3problem.C3ProblemTokenizer
VERSION = "2.3"
max_ref_tks: int = 512
max_query_tks: int = 512
max_output_tks: int = 256
max_scope_tks: int = 128
max_ref_tks_sum: int = 512 * 12
ref_chunk_overlap: int = 32
_encode_headers(scope_changes: Sequence[ChangedHeader], offset: int) -> TokenSeq
_inline_some_context(input: TokenSeq, above_ctx: TokenSeq, below_ctx: TokenSeq, size_limit: int) -> tuple[TokenSeq, TokenSeq, TokenSeq]
_group_encode_unchanged_refs(elems: Sequence[ChangedCodeSpan]) -> Sequence[TokenSeq]
_group_encode_changed_refs(changes: Sequence[ChangedCodeSpan]) -> Sequence[TokenSeq]
_group_encode_changed_refs(self, changes: Sequence[ChangedCodeSpan]) -> Sequence[TokenSeq]
at: coeditor.c3problem.ChangedCodeSpan
headers: Sequence[ChangedHeader]
|
coeditor.c3problem/C3ProblemTokenizer._group_encode_changed_refs | Modified | temp-1 | 76c8cd1ea3625e687e9109c30b69dc7e42c69f95 | Improve prediction visualization. - rename `to_change_tks`. | <0>:<add> c_tks = c.delta.apply_to_change(c.original.tolist())
| # module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def _group_encode_changed_refs(
self, changes: Sequence[ChangedCodeSpan]
) -> Sequence[TokenSeq]:
module2changes = groupby(changes, lambda c: c.module)
all_chunks = list[TokenSeq]()
for change_group in module2changes.values():
change_group.sort(key=lambda c: c.line_range[0])
segs = list[TokenSeq]()
# we'll add module as the chunk header, so we start within the module
last_scope = change_group[0].headers[:1]
for c in change_group:
header_diff = list[ChangedHeader]()
for i, h in enumerate(c.headers):
if i >= len(last_scope) or h.path != last_scope[i].path:
header_diff.append(h)
if header_diff:
header_tks = self._encode_headers(header_diff, 0)
segs.append(header_tks)
- c_tks = c.delta.to_change_tks(c.original.tolist())
<0> segs.append(c_tks)
segs.append([Newline_id, Newline_id])
last_scope = c.headers
segs.append([Newline_id])
mod_change = change_group[0].headers[:1]
mod_chunks = break_into_chunks(
join_list(segs),
lambda i: self._encode_headers(mod_change, i),
self.max_ref_tks,
overlap=self.ref_chunk_overlap,
)
all_chunks.extend(mod_chunks)
return all_chunks
| ===========unchanged ref 0===========
at: coeditor._utils
groupby(iterable: Iterable[T1], keyfunc: Callable[[T1], T2]) -> dict[T2, list[T1]]
at: coeditor.c3problem
ChangedHeader(change_tks: TkArray, type: str, line_range: LineRange, path: ProjectPath)
ChangedCodeSpan(headers: Sequence[ChangedHeader], original: TkArray, delta: TkDelta, line_range: LineRange, module: ModuleName)
at: coeditor.c3problem.C3ProblemTokenizer
max_ref_tks: int = 512
ref_chunk_overlap: int = 32
_encode_headers(scope_changes: Sequence[ChangedHeader], offset: int) -> TokenSeq
at: coeditor.c3problem.ChangedCodeSpan
headers: Sequence[ChangedHeader]
at: coeditor.c3problem.ChangedHeader
path: ProjectPath
at: coeditor.common
TokenSeq = list[Token]
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
at: coeditor.encoding
Newline_id = get_tk_id("\n")
break_into_chunks(tks: TokenSeq, header_f: Callable[[int], TokenSeq], chunk_size: int, overlap: int, right_to_left: bool=False, add_bos: bool=True, max_return_chunks: int | None=None) -> list[TokenSeq]
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
===========changed ref 0===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def summarize(self) -> str:
+ return "\n".join(self.meta_data_lines())
+
===========changed ref 1===========
# module: coeditor.c3problem
class C3ProblemChangeDropout(C3ProblemTransform):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
original = prob.span.original
delta = prob.span.delta
l_range = prob.edit_lines
assert isinstance(l_range, range)
start, stop = l_range.start, l_range.stop
grouped_keys = delta.change_groups()
should_dropout = len(grouped_keys) >= 2
if should_dropout:
n_to_drop = int(
len(grouped_keys) * random.random() * self.max_dropout_ratio
)
assert n_to_drop < len(grouped_keys)
keys_to_drop = join_list(random_subset(grouped_keys, n_to_drop))
else:
keys_to_drop = []
if keys_to_drop:
delta1, delta2 = delta.decompose_for_change(keys_to_drop)
delta2_groups = delta2.change_groups()
if not delta2_groups:
print_err(f"{delta=}, {keys_to_drop=}, {delta1=}")
raise AssertionError("Empty delta2_groups")
+ new_original = TkArray.new(delta1.apply_to_change(original.tolist()))
- new_original = TkArray.new(delta1.to_change_tks(original.tolist()))
new_trans = prob.transformations + ("split", "dropout")
new_span = dataclasses.replace(
prob.span, original=new_original, delta=delta2
)
else:
new_trans = prob.transformations + ("split",)
new_span = prob.span
delta1 = None
delta2_groups = delta.change_groups()
prob_and_n = list[tuple[C3Problem, int]]()
for i in range(start, stop, self.max_lines_to_edit):
j = min(</s>
===========changed ref 2===========
# module: coeditor.c3problem
class C3ProblemChangeDropout(C3ProblemTransform):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
# offset: 1
<s> int]]()
for i in range(start, stop, self.max_lines_to_edit):
j = min(i + self.max_lines_to_edit, stop)
edit_lines = range(i, j)
if delta1 is not None:
edit_lines = delta1.get_new_target_lines(edit_lines)
line_set = set(edit_lines)
n_groups = sum(any(key[0] in line_set for key in g) for g in delta2_groups)
if n_groups > 0:
sub_prob = dataclasses.replace(
prob,
span=new_span,
edit_lines=edit_lines,
transformations=new_trans,
)
prob_and_n.append((sub_prob, n_groups))
# return the problems with the most changes
prob_and_n.sort(key=lambda p: p[1], reverse=True)
probs = [p[0] for p in prob_and_n]
return probs[: self.max_split_factor]
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
- def to_change_tks(self, input: TokenSeq) -> TokenSeq:
- lines = split_list(input, Newline_id)
-
- new_lines = list[TokenSeq]()
- for i, line in enumerate(lines):
- deleted = False
- if delta := self._deltas.get(i):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- elif action[0] == Del_id:
- deleted = True
- if deleted:
- new_lines.append([Del_id] + line)
- else:
- new_lines.append(line)
- if delta := self._deltas.get(len(lines)):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- return join_list(new_lines, Newline_id)
-
===========changed ref 4===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
- def to_change_tks(self, input: TokenSeq) -> TokenSeq:
- lines = split_list(input, Newline_id)
-
- new_lines = list[TokenSeq]()
- for i, line in enumerate(lines):
- deleted = False
- if delta := self._deltas.get(i):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- elif action[0] == Del_id:
- deleted = True
- if deleted:
- new_lines.append([Del_id] + line)
- else:
- new_lines.append(line)
- if delta := self._deltas.get(len(lines)):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- return join_list(new_lines, Newline_id)
- |
coeditor.model/RetrievalDecodingResult.exact_match_accuracy | Modified | temp-1 | 76c8cd1ea3625e687e9109c30b69dc7e42c69f95 | Improve prediction visualization. - rename `to_change_tks`. | <0>:<add> print(prob.summarize())
| # module: coeditor.model
@dataclass
class RetrievalDecodingResult:
def exact_match_accuracy(self) -> tuple[CountedSum, dict[int, bool]]:
ex2correct = dict[int, bool]()
+ bad_probs = list[C3Problem]()
for i, mp in enumerate(self.predictions):
prob = self.problems[i]
original = prob.span.original.tolist()
pred_delta = TkDelta.from_output_tks(mp["output_ids"])
label_delta = TkDelta.from_output_tks(mp["labels"])
+ if not prob.edit_lines:
+ bad_probs.append(prob)
+ continue
- assert isinstance(prob.edit_lines, range)
+ line_shift = prob.edit_lines[0]
- line_shift = prob.edit_lines.start
+ pred_change = pred_delta.shifted(line_shift).apply_to_change(original)
- pred_code = pred_delta.shifted(line_shift).apply_to_input(original)
+ label_change = label_delta.shifted(line_shift).apply_to_change(original)
- label_code = label_delta.shifted(line_shift).apply_to_input(original)
+ pred_code = tokens_to_change(pred_change).after
+ label_code = tokens_to_change(label_change).after
+ ex2correct[i] = code_equal(pred_code, label_code)
- is_correct = code_equal(decode_tokens(pred_code), decode_tokens(label_code))
- ex2correct[i] = is_correct
correct_count = CountedSum(sum(ex2correct.values()), len(ex2correct))
+ if bad_probs:
+ cprint("yellow", "Number of problems with no edits:", len(bad_probs))
+ for prob in bad_probs[:5]:
<0> return correct_count, ex2correct
| ===========unchanged ref 0===========
at: coeditor._utils
assert_eq(x: T1, y: T1, message: Callable[[], str]=lambda: "") -> None
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_line_ids: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Mapping["PyFullName", "PyDefinition"], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
at: coeditor.c3problem.C3Problem
span: ChangedCodeSpan
edit_line_ids: Sequence[int]
relevant_changes: Sequence[ChangedCodeSpan]
relevant_unchanged: Mapping["PyFullName", "PyDefinition"]
change_type: Change[None]
src_info: SrcInfo
transformations: tuple[str, ...] = ()
at: coeditor.c3problem.ChangedCodeSpan
headers: Sequence[ChangedHeader]
original: TkArray
delta: TkDelta
line_range: LineRange
module: ModuleName
at: coeditor.common
CountedSum = WeightedSum[int, int]
at: coeditor.encoding
TkDelta(_deltas: Mapping[int, tuple[TokenSeq, ...]])
at: coeditor.encoding.TkDelta
_deltas: Mapping[int, tuple[TokenSeq, ...]]
apply_to_change(change: TokenSeq) -> TokenSeq
shifted(shift_lines: int) -> Self
from_output_tks(edit_line_ids: Sequence[int], tks: TokenSeq, allow_truncated_tks: bool=True) -> "TkDelta"
at: coeditor.model.RetrievalDecodingResult
eval_args: dict
problems: Sequence[C3Problem]
predictions: Sequence[RetrievalModelPrediction]
at: coeditor.tk_array.TkArray
tolist() -> TokenSeq
===========changed ref 0===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def summarize(self) -> str:
+ return "\n".join(self.meta_data_lines())
+
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
- def to_change_tks(self, input: TokenSeq) -> TokenSeq:
- lines = split_list(input, Newline_id)
-
- new_lines = list[TokenSeq]()
- for i, line in enumerate(lines):
- deleted = False
- if delta := self._deltas.get(i):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- elif action[0] == Del_id:
- deleted = True
- if deleted:
- new_lines.append([Del_id] + line)
- else:
- new_lines.append(line)
- if delta := self._deltas.get(len(lines)):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- return join_list(new_lines, Newline_id)
-
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
- def to_change_tks(self, input: TokenSeq) -> TokenSeq:
- lines = split_list(input, Newline_id)
-
- new_lines = list[TokenSeq]()
- for i, line in enumerate(lines):
- deleted = False
- if delta := self._deltas.get(i):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- elif action[0] == Del_id:
- deleted = True
- if deleted:
- new_lines.append([Del_id] + line)
- else:
- new_lines.append(line)
- if delta := self._deltas.get(len(lines)):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- return join_list(new_lines, Newline_id)
-
===========changed ref 3===========
# module: coeditor.encoding
def tokens_to_change(tokens: TokenSeq) -> Modified[str]:
"Decode a token sequence into a change."
tk_lines = split_list(tokens, Newline_id)
+ before_lines = list[TokenSeq]()
- before_lines = list[str]()
+ after_lines = list[TokenSeq]()
- after_lines = list[str]()
for tk_line in tk_lines:
if tk_line and tk_line[0] == Add_id:
+ after_lines.append(tk_line[1:])
- after_lines.append(_Tokenizer.decode(tk_line[1:]))
elif tk_line and tk_line[0] == Del_id:
+ before_lines.append(tk_line[1:])
- before_lines.append(_Tokenizer.decode(tk_line[1:]))
else:
- line = _Tokenizer.decode(tk_line)
+ before_lines.append(tk_line)
- before_lines.append(line)
+ after_lines.append(tk_line)
- after_lines.append(line)
+ before_code = decode_tokens(join_list(before_lines, Newline_id))
+ after_code = decode_tokens(join_list(after_lines, Newline_id))
+ return Modified(before_code, after_code)
- return Modified(before="\n".join(before_lines), after="\n".join(after_lines))
===========changed ref 4===========
# module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def _group_encode_changed_refs(
self, changes: Sequence[ChangedCodeSpan]
) -> Sequence[TokenSeq]:
module2changes = groupby(changes, lambda c: c.module)
all_chunks = list[TokenSeq]()
for change_group in module2changes.values():
change_group.sort(key=lambda c: c.line_range[0])
segs = list[TokenSeq]()
# we'll add module as the chunk header, so we start within the module
last_scope = change_group[0].headers[:1]
for c in change_group:
header_diff = list[ChangedHeader]()
for i, h in enumerate(c.headers):
if i >= len(last_scope) or h.path != last_scope[i].path:
header_diff.append(h)
if header_diff:
header_tks = self._encode_headers(header_diff, 0)
segs.append(header_tks)
+ c_tks = c.delta.apply_to_change(c.original.tolist())
- c_tks = c.delta.to_change_tks(c.original.tolist())
segs.append(c_tks)
segs.append([Newline_id, Newline_id])
last_scope = c.headers
segs.append([Newline_id])
mod_change = change_group[0].headers[:1]
mod_chunks = break_into_chunks(
join_list(segs),
lambda i: self._encode_headers(mod_change, i),
self.max_ref_tks,
overlap=self.ref_chunk_overlap,
)
all_chunks.extend(mod_chunks)
return all_chunks
|
tests.test_edits/TestChangeIdentities.test_str_tk_conversion | Modified | temp-1 | 76c8cd1ea3625e687e9109c30b69dc7e42c69f95 | Improve prediction visualization. - rename `to_change_tks`. | <0>:<add> c_tokens = tk_delta.apply_to_change(tk_before)
| # module: tests.test_edits
class TestChangeIdentities:
def test_str_tk_conversion(self):
for name, c in self.cases.items():
line_diffs = change_to_line_diffs(c)
print("line_diffs\n------\n" + "\n".join(line_diffs))
before, delta = line_diffs_to_original_delta(line_diffs)
print("delta:", delta)
tk_delta = delta.to_tk_delta()
tk_before = encode_basic(before)
tk_after = tk_delta.apply_to_input(tk_before)
if tk_after != encode_basic(get_after(c)):
print("after diff:\n")
print(show_string_diff(get_after(c), decode_tokens(tk_after)))
- c_tokens = tk_delta.to_change_tks(tk_before)
<0> if c_tokens != change_to_tokens(c):
print("c_tokens diff:\n")
print(
show_string_diff(
decode_tokens(c_tokens), decode_tokens(change_to_tokens(c))
)
)
origin1, tk_delta1 = change_tks_to_original_delta(c_tokens)
if origin1 != tk_before:
print("origin diff:\n")
print(
show_string_diff(decode_tokens(origin1), decode_tokens(tk_before))
)
assert tk_delta1.apply_to_input(origin1) == tk_after
| ===========unchanged ref 0===========
at: coeditor._utils
show_string_diff(str1: str, str2: str, max_ctx: int | None=6) -> str
at: coeditor.encoding
decode_tokens(tokens: TokenSeq, prettify: bool=False) -> str
change_to_line_diffs(change: Change[str]) -> list[str]
line_diffs_to_original_delta(diffs: list[str]) -> tuple[str, StrDelta]
change_tks_to_original_delta(change: TokenSeq) -> tuple[TokenSeq, TkDelta]
change_to_tokens(change: Change[str]) -> TokenSeq
at: tests.test_edits
get_after(change: Change[str]) -> str
===========unchanged ref 1===========
at: tests.test_edits.TestChangeIdentities
cases: dict[str, Change[str]] = {
"empty": Modified("", ""),
"generation": Modified("", "123"),
"added": Added("a\nb\nc\n"),
"deleted": Deleted("a\nb\nc\n"),
"no change": Modified(
dedent(
"""\
def f1():
x = 1
"""
),
dedent(
"""\
def f1():
x = 1
"""
),
),
"unchanged=True": Modified.from_unchanged(
dedent(
"""\
def f1():
x = 1
"""
),
),
# this test case cannot pass for some reason. Tokenizer bug?
# "leading_whitespace": Modified.from_unchanged(" ..."),
"replace last": Modified(
dedent(
"""\
def f1():
x = 1"""
),
dedent(
"""\
def f1():
x = 2
return x * 2"""
),
),
"no special tokens": Modified(
dedent(
"""\
def f1():
x = 1
y = 2
z = x + y
return z
def f2():
f1()"""
),
dedent(
"""\
# new comment
def f_new():
x = 1
if x > 0:
y = 2 * x
y *= 2
z = x + y
return z
def f2():
f1()
return f_new() + a
new_var = 0
"""
),
),
"with special tokens": Modified(
dedent(
"""\
def f1():
x = "<add>"
y = "<del>\tx"
return x + y
"""
),
dedent(
"""\
# new comment 1</s>
===========changed ref 0===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def summarize(self) -> str:
+ return "\n".join(self.meta_data_lines())
+
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
- def to_change_tks(self, input: TokenSeq) -> TokenSeq:
- lines = split_list(input, Newline_id)
-
- new_lines = list[TokenSeq]()
- for i, line in enumerate(lines):
- deleted = False
- if delta := self._deltas.get(i):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- elif action[0] == Del_id:
- deleted = True
- if deleted:
- new_lines.append([Del_id] + line)
- else:
- new_lines.append(line)
- if delta := self._deltas.get(len(lines)):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- return join_list(new_lines, Newline_id)
-
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
- def to_change_tks(self, input: TokenSeq) -> TokenSeq:
- lines = split_list(input, Newline_id)
-
- new_lines = list[TokenSeq]()
- for i, line in enumerate(lines):
- deleted = False
- if delta := self._deltas.get(i):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- elif action[0] == Del_id:
- deleted = True
- if deleted:
- new_lines.append([Del_id] + line)
- else:
- new_lines.append(line)
- if delta := self._deltas.get(len(lines)):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- return join_list(new_lines, Newline_id)
-
===========changed ref 3===========
# module: coeditor.encoding
def tokens_to_change(tokens: TokenSeq) -> Modified[str]:
"Decode a token sequence into a change."
tk_lines = split_list(tokens, Newline_id)
+ before_lines = list[TokenSeq]()
- before_lines = list[str]()
+ after_lines = list[TokenSeq]()
- after_lines = list[str]()
for tk_line in tk_lines:
if tk_line and tk_line[0] == Add_id:
+ after_lines.append(tk_line[1:])
- after_lines.append(_Tokenizer.decode(tk_line[1:]))
elif tk_line and tk_line[0] == Del_id:
+ before_lines.append(tk_line[1:])
- before_lines.append(_Tokenizer.decode(tk_line[1:]))
else:
- line = _Tokenizer.decode(tk_line)
+ before_lines.append(tk_line)
- before_lines.append(line)
+ after_lines.append(tk_line)
- after_lines.append(line)
+ before_code = decode_tokens(join_list(before_lines, Newline_id))
+ after_code = decode_tokens(join_list(after_lines, Newline_id))
+ return Modified(before_code, after_code)
- return Modified(before="\n".join(before_lines), after="\n".join(after_lines))
|
tests.test_edits/TestChangeIdentities.test_get_new_target_lines | Modified | temp-1 | 76c8cd1ea3625e687e9109c30b69dc7e42c69f95 | Improve prediction visualization. - rename `to_change_tks`. | <0>:<add> step1 = delta1.apply_to_change(original)
| # module: tests.test_edits
class TestChangeIdentities:
def test_get_new_target_lines(self):
for name, c in self.cases.items():
original, delta = TkDelta.from_change_tks(change_to_tokens(c))
n_origin_lines = len(split_list(original, Newline_id))
edit_lines = range(n_origin_lines + 1)
keys = tuple(delta.keys())
for _ in range(10):
n_keys = int(len(keys) * random.random())
sub_keys = random_subset(keys, n_keys)
sub_keys.sort()
delta1, delta2 = delta.decompose_for_change(sub_keys)
new_edit_lines = delta1.get_new_target_lines(edit_lines)
new_edit_set = set(new_edit_lines)
for l in delta2.changed_lines():
if l not in new_edit_set and l != n_origin_lines:
print_err(f"{edit_lines=}")
print_err("original", SEP)
print_err(add_line_numbers(decode_tokens(original), start=0))
print_err(SEP)
print_err(f"{delta=}")
print_err(f"{sub_keys=}")
print_err(f"{delta1=}")
print_err("step1", SEP)
- step1 = delta1.to_change_tks(original)
<0> print_err(add_line_numbers(decode_tokens(step1), start=0))
print_err(SEP)
print_err(f"{new_edit_lines=}")
print_err(f"{delta2=}")
raise AssertionError(f"{l=} not in {new_edit_lines=}")
| ===========unchanged ref 0===========
at: coeditor._utils
add_line_numbers(code: str, start: int=1)
at: coeditor.common
split_list(lst: list[T1], sep: T1) -> list[list[T1]]
SEP = "-" * 80
random_subset(all: Mapping[T1, T2], n: int, rng: random.Random | int | None=None) -> dict[T1, T2]
random_subset(all: Sequence[T1], n: int, rng: random.Random | int | None=None) -> list[T1]
print_err(*, sep: Optional[str]=..., end: Optional[str]=..., flush: bool=...) -> None
at: coeditor.encoding
Newline_id = get_tk_id("\n")
decode_tokens(tokens: TokenSeq, prettify: bool=False) -> str
TkDelta(_deltas: Mapping[int, tuple[TokenSeq, ...]])
change_to_tokens(change: Change[str]) -> TokenSeq
at: coeditor.encoding.TkDelta
_deltas: Mapping[int, tuple[TokenSeq, ...]]
from_change_tks(change_tks: TokenSeq) -> tuple[TokenSeq, "TkDelta"]
at: random
random = _inst.random
===========unchanged ref 1===========
at: tests.test_edits.TestChangeIdentities
cases: dict[str, Change[str]] = {
"empty": Modified("", ""),
"generation": Modified("", "123"),
"added": Added("a\nb\nc\n"),
"deleted": Deleted("a\nb\nc\n"),
"no change": Modified(
dedent(
"""\
def f1():
x = 1
"""
),
dedent(
"""\
def f1():
x = 1
"""
),
),
"unchanged=True": Modified.from_unchanged(
dedent(
"""\
def f1():
x = 1
"""
),
),
# this test case cannot pass for some reason. Tokenizer bug?
# "leading_whitespace": Modified.from_unchanged(" ..."),
"replace last": Modified(
dedent(
"""\
def f1():
x = 1"""
),
dedent(
"""\
def f1():
x = 2
return x * 2"""
),
),
"no special tokens": Modified(
dedent(
"""\
def f1():
x = 1
y = 2
z = x + y
return z
def f2():
f1()"""
),
dedent(
"""\
# new comment
def f_new():
x = 1
if x > 0:
y = 2 * x
y *= 2
z = x + y
return z
def f2():
f1()
return f_new() + a
new_var = 0
"""
),
),
"with special tokens": Modified(
dedent(
"""\
def f1():
x = "<add>"
y = "<del>\tx"
return x + y
"""
),
dedent(
"""\
# new comment 1</s>
===========changed ref 0===========
# module: tests.test_edits
class TestChangeIdentities:
def test_str_tk_conversion(self):
for name, c in self.cases.items():
line_diffs = change_to_line_diffs(c)
print("line_diffs\n------\n" + "\n".join(line_diffs))
before, delta = line_diffs_to_original_delta(line_diffs)
print("delta:", delta)
tk_delta = delta.to_tk_delta()
tk_before = encode_basic(before)
tk_after = tk_delta.apply_to_input(tk_before)
if tk_after != encode_basic(get_after(c)):
print("after diff:\n")
print(show_string_diff(get_after(c), decode_tokens(tk_after)))
+ c_tokens = tk_delta.apply_to_change(tk_before)
- c_tokens = tk_delta.to_change_tks(tk_before)
if c_tokens != change_to_tokens(c):
print("c_tokens diff:\n")
print(
show_string_diff(
decode_tokens(c_tokens), decode_tokens(change_to_tokens(c))
)
)
origin1, tk_delta1 = change_tks_to_original_delta(c_tokens)
if origin1 != tk_before:
print("origin diff:\n")
print(
show_string_diff(decode_tokens(origin1), decode_tokens(tk_before))
)
assert tk_delta1.apply_to_input(origin1) == tk_after
===========changed ref 1===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def summarize(self) -> str:
+ return "\n".join(self.meta_data_lines())
+
===========changed ref 2===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
- def to_change_tks(self, input: TokenSeq) -> TokenSeq:
- lines = split_list(input, Newline_id)
-
- new_lines = list[TokenSeq]()
- for i, line in enumerate(lines):
- deleted = False
- if delta := self._deltas.get(i):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- elif action[0] == Del_id:
- deleted = True
- if deleted:
- new_lines.append([Del_id] + line)
- else:
- new_lines.append(line)
- if delta := self._deltas.get(len(lines)):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- return join_list(new_lines, Newline_id)
-
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class TkDelta:
- def to_change_tks(self, input: TokenSeq) -> TokenSeq:
- lines = split_list(input, Newline_id)
-
- new_lines = list[TokenSeq]()
- for i, line in enumerate(lines):
- deleted = False
- if delta := self._deltas.get(i):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- elif action[0] == Del_id:
- deleted = True
- if deleted:
- new_lines.append([Del_id] + line)
- else:
- new_lines.append(line)
- if delta := self._deltas.get(len(lines)):
- for action in delta:
- if action[0] == Add_id:
- new_lines.append(action)
- return join_list(new_lines, Newline_id)
- |
coeditor.encoding/StrDelta.to_tk_delta | Modified | temp-1 | 703cdaf8bc6456ee94a5afffc6c9f902bae79b03 | Fix inconsistent encoding of newlines. | <0>:<add> line_tk_delta.append([Add_id] + encode_single_line(action[1:]))
| # module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def to_tk_delta(self) -> "TkDelta":
deltas = dict[int, tuple[TokenSeq, ...]]()
for k, line_delta in self._deltas.items():
line_tk_delta = list[TokenSeq]()
for action in line_delta:
if action[0] == "+":
- line_tk_delta.append([Add_id] + encode_basic(action[1:]))
<0> elif action[0] == "-":
line_tk_delta.append([Del_id])
else:
raise ValueError(f"Invalid action: {action}")
deltas[k] = tuple(line_tk_delta)
return TkDelta(deltas)
| ===========unchanged ref 0===========
at: coeditor.encoding
StrDelta(_deltas: Mapping[int, tuple[str, ...]])
at: coeditor.encoding.StrDelta
_deltas: Mapping[int, tuple[str, ...]]
num_changes() -> int
at: typing.Mapping
items() -> AbstractSet[Tuple[_KT, _VT_co]]
===========changed ref 0===========
# module: coeditor.encoding
+ def encode_lines(text: str) -> Iterable[TokenSeq]:
+ return (encode_single_line(l) for l in splitlines(text))
+
===========changed ref 1===========
# module: coeditor.encoding
+ def encode_lines_join(text: str) -> TokenSeq:
+ """Encode a mutliple line str such that the line breaks are consistently encoded."""
+ return join_list(encode_lines(text), sep=Newline_id)
+
===========changed ref 2===========
# module: coeditor.encoding
- def encode_basic(text: str, add_special_tokens=False) -> TokenSeq:
- "Encode a string into a token sequence using the base tokenizer."
- return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
-
===========changed ref 3===========
# module: coeditor.encoding
+ def encode_single_line(text: str, add_special_tokens=False) -> TokenSeq:
+ """Encode a string into a token sequence using the base tokenizer.
+ Note that you should use `encode_lines_join` when `text` contains multiple lines
+ to ensure that newline characters are consistently encoded as the same token.
+ """
+ return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
+ |
coeditor.encoding/change_to_tokens | Modified | temp-1 | 703cdaf8bc6456ee94a5afffc6c9f902bae79b03 | Fix inconsistent encoding of newlines. | <0>:<add> lines = encode_lines(change.earlier)
| # module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
match change:
case Modified(before=before, after=after, unchanged=unchanged):
if unchanged or before == after:
+ return encode_lines_join(before)
- return encode_basic(before)
else:
diffs = change_to_line_diffs(change)
return encode_diffs(diffs)
case Added() | Deleted():
- lines = split_list(encode_basic(change.earlier), Newline_id)
<0> tk = Add_id if isinstance(change, Added) else Del_id
return join_list(([tk] + line for line in lines), Newline_id)
case _:
raise AssertionError(f"Not a change type: {change}")
| ===========unchanged ref 0===========
at: coeditor.common
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
at: coeditor.encoding
Newline_id = get_tk_id("\n")
TkDelta(_deltas: Mapping[int, tuple[TokenSeq, ...]])
at: coeditor.encoding.change_tks_to_original_delta
input_lines: list[TokenSeq] = []
===========changed ref 0===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ @staticmethod
+ def from_change(change: Change[str]) -> tuple[str, "StrDelta"]:
+ line_diffs = change_to_line_diffs(change)
+ return line_diffs_to_original_delta(line_diffs)
+
===========changed ref 1===========
# module: coeditor.encoding
+ def encode_lines(text: str) -> Iterable[TokenSeq]:
+ return (encode_single_line(l) for l in splitlines(text))
+
===========changed ref 2===========
# module: coeditor.encoding
+ def encode_lines_join(text: str) -> TokenSeq:
+ """Encode a mutliple line str such that the line breaks are consistently encoded."""
+ return join_list(encode_lines(text), sep=Newline_id)
+
===========changed ref 3===========
# module: coeditor.encoding
- def encode_basic(text: str, add_special_tokens=False) -> TokenSeq:
- "Encode a string into a token sequence using the base tokenizer."
- return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
-
===========changed ref 4===========
# module: coeditor.encoding
+ def encode_single_line(text: str, add_special_tokens=False) -> TokenSeq:
+ """Encode a string into a token sequence using the base tokenizer.
+ Note that you should use `encode_lines_join` when `text` contains multiple lines
+ to ensure that newline characters are consistently encoded as the same token.
+ """
+ return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
+
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def to_tk_delta(self) -> "TkDelta":
deltas = dict[int, tuple[TokenSeq, ...]]()
for k, line_delta in self._deltas.items():
line_tk_delta = list[TokenSeq]()
for action in line_delta:
if action[0] == "+":
+ line_tk_delta.append([Add_id] + encode_single_line(action[1:]))
- line_tk_delta.append([Add_id] + encode_basic(action[1:]))
elif action[0] == "-":
line_tk_delta.append([Del_id])
else:
raise ValueError(f"Invalid action: {action}")
deltas[k] = tuple(line_tk_delta)
return TkDelta(deltas)
|
coeditor.encoding/encode_diffs | Modified | temp-1 | 703cdaf8bc6456ee94a5afffc6c9f902bae79b03 | Fix inconsistent encoding of newlines. | <0>:<add> result.append(Newline_id)
| # module: coeditor.encoding
def encode_diffs(diffs: Sequence[str]) -> TokenSeq:
"""
A helper function to encode the diff lines (with '+', '-', or ' ' prefixes)
into a token sequence with the special <add> and <del> tokens.
"""
+ result = TokenSeq()
+ max_i = len(diffs) - 1
- prefixes = list[TokenSeq]()
- code_lines = list[str]()
for i, diff in enumerate(diffs):
if diff.startswith("+"):
+ result.append(Add_id)
- prefixes.append([Add_id])
elif diff.startswith("-"):
+ result.append(Del_id)
- prefixes.append([Del_id])
else:
assert diff.startswith(" ")
- prefixes.append([])
- code_lines.append(diff[1:])
- code_tks = _BaseTokenizer.encode("\n".join(code_lines), add_special_tokens=False)
- code_lines = split_list(code_tks, Newline_id)
- for i, line in enumerate(code_lines):
- if prefixes[i]:
- code_lines[i] = prefixes[i] + line
- return join_list(code_lines, Newline_id)
+ result.extend(encode_single_line(diff[1:]))
+ if i < max_i:
<0>
| ===========unchanged ref 0===========
at: coeditor.common
TokenSeq = list[Token]
at: coeditor.encoding.rearrange_diffs_
del_start = i
del_end = i
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
===========changed ref 0===========
# module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
match change:
case Modified(before=before, after=after, unchanged=unchanged):
if unchanged or before == after:
+ return encode_lines_join(before)
- return encode_basic(before)
else:
diffs = change_to_line_diffs(change)
return encode_diffs(diffs)
case Added() | Deleted():
+ lines = encode_lines(change.earlier)
- lines = split_list(encode_basic(change.earlier), Newline_id)
tk = Add_id if isinstance(change, Added) else Del_id
return join_list(([tk] + line for line in lines), Newline_id)
case _:
raise AssertionError(f"Not a change type: {change}")
===========changed ref 1===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ @staticmethod
+ def from_change(change: Change[str]) -> tuple[str, "StrDelta"]:
+ line_diffs = change_to_line_diffs(change)
+ return line_diffs_to_original_delta(line_diffs)
+
===========changed ref 2===========
# module: coeditor.encoding
+ def encode_lines(text: str) -> Iterable[TokenSeq]:
+ return (encode_single_line(l) for l in splitlines(text))
+
===========changed ref 3===========
# module: coeditor.encoding
+ def encode_lines_join(text: str) -> TokenSeq:
+ """Encode a mutliple line str such that the line breaks are consistently encoded."""
+ return join_list(encode_lines(text), sep=Newline_id)
+
===========changed ref 4===========
# module: coeditor.encoding
- def encode_basic(text: str, add_special_tokens=False) -> TokenSeq:
- "Encode a string into a token sequence using the base tokenizer."
- return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
-
===========changed ref 5===========
# module: coeditor.encoding
+ def encode_single_line(text: str, add_special_tokens=False) -> TokenSeq:
+ """Encode a string into a token sequence using the base tokenizer.
+ Note that you should use `encode_lines_join` when `text` contains multiple lines
+ to ensure that newline characters are consistently encoded as the same token.
+ """
+ return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
+
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def to_tk_delta(self) -> "TkDelta":
deltas = dict[int, tuple[TokenSeq, ...]]()
for k, line_delta in self._deltas.items():
line_tk_delta = list[TokenSeq]()
for action in line_delta:
if action[0] == "+":
+ line_tk_delta.append([Add_id] + encode_single_line(action[1:]))
- line_tk_delta.append([Add_id] + encode_basic(action[1:]))
elif action[0] == "-":
line_tk_delta.append([Del_id])
else:
raise ValueError(f"Invalid action: {action}")
deltas[k] = tuple(line_tk_delta)
return TkDelta(deltas)
|
coeditor.encoding/TokenizedEdit.is_repetitive_edit | Modified | temp-1 | 703cdaf8bc6456ee94a5afffc6c9f902bae79b03 | Fix inconsistent encoding of newlines. | <0>:<add> return encode_single_line(s)
| # module: coeditor.encoding
class TokenizedEdit(ABC):
def is_repetitive_edit(self, blue_threshold=0.8) -> bool:
"""Check if all additions in the output_tokens can be matched to
an addition in the input_tokens with a BLEU score above the threshold."""
def get_changes(tks, key_tk: Token):
if tks and tks[0] == key_tk:
s = decode_tokens(tks[1:])
s.strip()
- return encode_basic(s)
<0> else:
return []
ctx_lines = split_list(self.input_tks, Newline_id)
main_lines = output_ids_as_seqs(self.input_tks)
ctx_addtions = [tks for l in ctx_lines if (tks := get_changes(l, Add_id))]
ctx_deletions = [tks for l in ctx_lines if (tks := get_changes(l, Del_id))]
def has_match(line, line_key: Token):
if line:
if line[0] == Add_id:
added = line[1:]
return any(
as_any(sentence_bleu([ref], added)) > blue_threshold
for ref in ctx_addtions
)
elif line == [Del_id]:
if line_key not in main_lines:
print(f"Key {decode_tokens([line_key])} not found.")
print("Main tokens:")
print(decode_tokens(self.main_tks))
deleted = main_lines[line_key]
return any(
as_any(sentence_bleu([ref], deleted)) > blue_threshold
for ref in ctx_deletions
)
else:
raise ValueError(f"Unexpected line: {decode_tokens(line)}")
else:
return True
out_segs = output_ids_as_seqs(self.output_tks)
if all(not s for s in out</s> | ===========below chunk 0===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
def is_repetitive_edit(self, blue_threshold=0.8) -> bool:
# offset: 1
<s>_segs = output_ids_as_seqs(self.output_tks)
if all(not s for s in out_segs.values()):
return False
for k, seg in out_segs.items():
for line in split_list(seg, Newline_id):
if not has_match(line, k):
return False
return True
===========unchanged ref 0===========
at: coeditor._utils
as_any(x) -> Any
at: coeditor.common
Token = int
split_list(lst: list[T1], sep: T1) -> list[list[T1]]
at: coeditor.encoding
Add_id = get_tk_id(Add)
Del_id = get_tk_id(Del)
Newline_id = get_tk_id("\n")
decode_tokens(tokens: TokenSeq, prettify: bool=False) -> str
encode_single_line(text: str, add_special_tokens=False) -> TokenSeq
output_ids_as_seqs(output_ids: Iterable[Token]) -> dict[Token, TokenSeq]
at: coeditor.encoding.TokenizedEdit
input_tks: TokenSeq
output_tks: TokenSeq
main_tks: TokenSeq
path: ProjectPath
change_type: Change[None]
all_ctxs() -> dict[str, TokenSeq]
at: coeditor.encoding.TokenizedEdit.show
show_ctx(ctx_tks: TokenSeq)
outputs = [
"-" * 80,
*self.meta_data_lines(),
"========Ground Truth========",
show_extra_tokens(self.output_tks, main_segs),
*pred_lines,
"========Main Code========",
"\n".join(main_lines),
] + [
f"==========={name}===========\n" + show_ctx(tks)
for name, tks in self.all_ctxs().items()
]
at: nltk.translate.bleu_score
sentence_bleu(references, hypothesis, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=None, auto_reweigh=False)
at: warnings
simplefilter(action: str, category: Type[Warning]=..., lineno: int=..., append: bool=...) -> None
===========changed ref 0===========
# module: coeditor.encoding
+ def encode_single_line(text: str, add_special_tokens=False) -> TokenSeq:
+ """Encode a string into a token sequence using the base tokenizer.
+ Note that you should use `encode_lines_join` when `text` contains multiple lines
+ to ensure that newline characters are consistently encoded as the same token.
+ """
+ return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
+
===========changed ref 1===========
# module: coeditor.encoding
def encode_diffs(diffs: Sequence[str]) -> TokenSeq:
"""
A helper function to encode the diff lines (with '+', '-', or ' ' prefixes)
into a token sequence with the special <add> and <del> tokens.
"""
+ result = TokenSeq()
+ max_i = len(diffs) - 1
- prefixes = list[TokenSeq]()
- code_lines = list[str]()
for i, diff in enumerate(diffs):
if diff.startswith("+"):
+ result.append(Add_id)
- prefixes.append([Add_id])
elif diff.startswith("-"):
+ result.append(Del_id)
- prefixes.append([Del_id])
else:
assert diff.startswith(" ")
- prefixes.append([])
- code_lines.append(diff[1:])
- code_tks = _BaseTokenizer.encode("\n".join(code_lines), add_special_tokens=False)
- code_lines = split_list(code_tks, Newline_id)
- for i, line in enumerate(code_lines):
- if prefixes[i]:
- code_lines[i] = prefixes[i] + line
- return join_list(code_lines, Newline_id)
+ result.extend(encode_single_line(diff[1:]))
+ if i < max_i:
+ result.append(Newline_id)
===========changed ref 2===========
# module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
match change:
case Modified(before=before, after=after, unchanged=unchanged):
if unchanged or before == after:
+ return encode_lines_join(before)
- return encode_basic(before)
else:
diffs = change_to_line_diffs(change)
return encode_diffs(diffs)
case Added() | Deleted():
+ lines = encode_lines(change.earlier)
- lines = split_list(encode_basic(change.earlier), Newline_id)
tk = Add_id if isinstance(change, Added) else Del_id
return join_list(([tk] + line for line in lines), Newline_id)
case _:
raise AssertionError(f"Not a change type: {change}")
===========changed ref 3===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ @staticmethod
+ def from_change(change: Change[str]) -> tuple[str, "StrDelta"]:
+ line_diffs = change_to_line_diffs(change)
+ return line_diffs_to_original_delta(line_diffs)
+
===========changed ref 4===========
# module: coeditor.encoding
+ def encode_lines(text: str) -> Iterable[TokenSeq]:
+ return (encode_single_line(l) for l in splitlines(text))
+
===========changed ref 5===========
# module: coeditor.encoding
+ def encode_lines_join(text: str) -> TokenSeq:
+ """Encode a mutliple line str such that the line breaks are consistently encoded."""
+ return join_list(encode_lines(text), sep=Newline_id)
+
===========changed ref 6===========
# module: coeditor.encoding
- def encode_basic(text: str, add_special_tokens=False) -> TokenSeq:
- "Encode a string into a token sequence using the base tokenizer."
- return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
-
===========changed ref 7===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def to_tk_delta(self) -> "TkDelta":
deltas = dict[int, tuple[TokenSeq, ...]]()
for k, line_delta in self._deltas.items():
line_tk_delta = list[TokenSeq]()
for action in line_delta:
if action[0] == "+":
+ line_tk_delta.append([Add_id] + encode_single_line(action[1:]))
- line_tk_delta.append([Add_id] + encode_basic(action[1:]))
elif action[0] == "-":
line_tk_delta.append([Del_id])
else:
raise ValueError(f"Invalid action: {action}")
deltas[k] = tuple(line_tk_delta)
return TkDelta(deltas)
|
coeditor.encoding/compress_change_tks | Modified | temp-1 | 703cdaf8bc6456ee94a5afffc6c9f902bae79b03 | Fix inconsistent encoding of newlines. | <0>:<add> new_lines.append(_OMIT)
| # module: coeditor.encoding
def compress_change_tks(tks: TokenSeq, max_ctx: int):
lines = split_list(tks, sep=Newline_id)
to_keep = [False for _ in lines]
# mark which lines to keep
for i, line in enumerate(lines):
if line and (line[0] == Add_id or line[0] == Del_id):
for j in range(max(0, i - max_ctx), min(len(lines), i + max_ctx + 1)):
to_keep[j] = True
new_lines = list[TokenSeq]()
i = 0
- OMIT = encode_basic("...")
while i < len(lines):
if to_keep[i]:
new_lines.append(lines[i])
i += 1
else:
j = i + 1
while j < len(lines) and not to_keep[j]:
j += 1
- new_lines.append(OMIT)
<0> i = j
return join_list(new_lines, sep=Newline_id)
| ===========unchanged ref 0===========
at: coeditor.common
TokenSeq = list[Token]
split_list(lst: list[T1], sep: T1) -> list[list[T1]]
at: coeditor.encoding
Add_id = get_tk_id(Add)
Del_id = get_tk_id(Del)
Newline_id = get_tk_id("\n")
is_extra_id(tk: int) -> bool
encode_single_line(text: str, add_special_tokens=False) -> TokenSeq
TokenizedEdit()
at: coeditor.encoding.TokenizedEdit
output_tks: TokenSeq
main_tks: TokenSeq
at: typing
TypeVar(name: str, *constraints: Type[Any], bound: Union[None, Type[Any], str]=..., covariant: bool=..., contravariant: bool=...)
===========changed ref 0===========
# module: coeditor.encoding
+ def encode_single_line(text: str, add_special_tokens=False) -> TokenSeq:
+ """Encode a string into a token sequence using the base tokenizer.
+ Note that you should use `encode_lines_join` when `text` contains multiple lines
+ to ensure that newline characters are consistently encoded as the same token.
+ """
+ return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
+
===========changed ref 1===========
# module: coeditor.encoding
TEdit = TypeVar("TEdit", bound=TokenizedEdit)
+ _OMIT = encode_single_line("...")
===========changed ref 2===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
def is_repetitive_edit(self, blue_threshold=0.8) -> bool:
"""Check if all additions in the output_tokens can be matched to
an addition in the input_tokens with a BLEU score above the threshold."""
def get_changes(tks, key_tk: Token):
if tks and tks[0] == key_tk:
s = decode_tokens(tks[1:])
s.strip()
+ return encode_single_line(s)
- return encode_basic(s)
else:
return []
ctx_lines = split_list(self.input_tks, Newline_id)
main_lines = output_ids_as_seqs(self.input_tks)
ctx_addtions = [tks for l in ctx_lines if (tks := get_changes(l, Add_id))]
ctx_deletions = [tks for l in ctx_lines if (tks := get_changes(l, Del_id))]
def has_match(line, line_key: Token):
if line:
if line[0] == Add_id:
added = line[1:]
return any(
as_any(sentence_bleu([ref], added)) > blue_threshold
for ref in ctx_addtions
)
elif line == [Del_id]:
if line_key not in main_lines:
print(f"Key {decode_tokens([line_key])} not found.")
print("Main tokens:")
print(decode_tokens(self.main_tks))
deleted = main_lines[line_key]
return any(
as_any(sentence_bleu([ref], deleted)) > blue_threshold
for ref in ctx_deletions
)
else:
raise ValueError(f"Unexpected line: {decode_tokens(line)}")
else:
return True
out_segs = output_ids_as_seqs(self.output_tks)</s>
===========changed ref 3===========
# module: coeditor.encoding
class TokenizedEdit(ABC):
def is_repetitive_edit(self, blue_threshold=0.8) -> bool:
# offset: 1
<s> else:
return True
out_segs = output_ids_as_seqs(self.output_tks)
if all(not s for s in out_segs.values()):
return False
for k, seg in out_segs.items():
for line in split_list(seg, Newline_id):
if not has_match(line, k):
return False
return True
===========changed ref 4===========
# module: coeditor.encoding
def encode_diffs(diffs: Sequence[str]) -> TokenSeq:
"""
A helper function to encode the diff lines (with '+', '-', or ' ' prefixes)
into a token sequence with the special <add> and <del> tokens.
"""
+ result = TokenSeq()
+ max_i = len(diffs) - 1
- prefixes = list[TokenSeq]()
- code_lines = list[str]()
for i, diff in enumerate(diffs):
if diff.startswith("+"):
+ result.append(Add_id)
- prefixes.append([Add_id])
elif diff.startswith("-"):
+ result.append(Del_id)
- prefixes.append([Del_id])
else:
assert diff.startswith(" ")
- prefixes.append([])
- code_lines.append(diff[1:])
- code_tks = _BaseTokenizer.encode("\n".join(code_lines), add_special_tokens=False)
- code_lines = split_list(code_tks, Newline_id)
- for i, line in enumerate(code_lines):
- if prefixes[i]:
- code_lines[i] = prefixes[i] + line
- return join_list(code_lines, Newline_id)
+ result.extend(encode_single_line(diff[1:]))
+ if i < max_i:
+ result.append(Newline_id)
===========changed ref 5===========
# module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
match change:
case Modified(before=before, after=after, unchanged=unchanged):
if unchanged or before == after:
+ return encode_lines_join(before)
- return encode_basic(before)
else:
diffs = change_to_line_diffs(change)
return encode_diffs(diffs)
case Added() | Deleted():
+ lines = encode_lines(change.earlier)
- lines = split_list(encode_basic(change.earlier), Newline_id)
tk = Add_id if isinstance(change, Added) else Del_id
return join_list(([tk] + line for line in lines), Newline_id)
case _:
raise AssertionError(f"Not a change type: {change}")
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ @staticmethod
+ def from_change(change: Change[str]) -> tuple[str, "StrDelta"]:
+ line_diffs = change_to_line_diffs(change)
+ return line_diffs_to_original_delta(line_diffs)
+
===========changed ref 7===========
# module: coeditor.encoding
+ def encode_lines(text: str) -> Iterable[TokenSeq]:
+ return (encode_single_line(l) for l in splitlines(text))
+
===========changed ref 8===========
# module: coeditor.encoding
+ def encode_lines_join(text: str) -> TokenSeq:
+ """Encode a mutliple line str such that the line breaks are consistently encoded."""
+ return join_list(encode_lines(text), sep=Newline_id)
+
===========changed ref 9===========
# module: coeditor.encoding
- def encode_basic(text: str, add_special_tokens=False) -> TokenSeq:
- "Encode a string into a token sequence using the base tokenizer."
- return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
- |
coeditor.c3problem/C3ProblemChangeDropout.transform | Modified | temp-1 | 703cdaf8bc6456ee94a5afffc6c9f902bae79b03 | Fix inconsistent encoding of newlines. | <0>:<add> raise AssertionError("decompose_for_change failed.")
| # module: coeditor.c3problem
+ @dataclass
class C3ProblemChangeDropout(C3ProblemTransform):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
<s>decompose_for_change(keys_to_drop)
+ if random.random() < self._test_prob:
+ result1 = delta2.apply_to_change(
+ delta1.apply_to_change(original.tolist())
+ )
+ result2 = delta.apply_to_change(original.tolist())
+ code1 = tokens_to_change(result1).after
+ code2 = tokens_to_change(result2).after
+ if code1 != code2:
+ print_sections(
+ ("result1", decode_tokens(result1)),
+ ("result2", decode_tokens(result2)),
+ ("delta", str(delta)),
+ ("keys_to_drop", str(keys_to_drop)),
+ ("delta1", str(delta1)),
+ ("delta2", str(delta2)),
+ )
<0> delta2_groups = delta2.change_groups()
if not delta2_groups:
print_err(f"{delta=}, {keys_to_drop=}, {delta1=}")
raise AssertionError("Empty delta2_groups")
new_original = TkArray.new(delta1.apply_to_change(original.tolist()))
new_trans = prob.transformations + ("split", "dropout")
new_span = dataclasses.replace(
prob.span, original=new_original, delta=delta2
)
else:
new_trans = prob.transformations + ("split",)
new_span = prob.span
delta1 = None
delta2_groups = delta.change_groups()
prob_and_n = list[tuple[C3Problem, int]]()
for i in range(start, stop, self.max_lines_to_edit):
j = min(i + self.max_lines_to_edit</s> | ===========above chunk 0===========
# module: coeditor.c3problem
+ @dataclass
class C3ProblemChangeDropout(C3ProblemTransform):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
# offset: -1
original = prob.span.original
delta = prob.span.delta
l_range = prob.edit_lines
assert isinstance(l_range, range)
start, stop = l_range.start, l_range.stop
grouped_keys = delta.change_groups()
should_dropout = len(grouped_keys) >= 2
if should_dropout:
n_to_drop = int(
len(grouped_keys) * random.random() * self.max_dropout_ratio
)
assert n_to_drop < len(grouped_keys)
keys_to_drop = join_list(random_subset(grouped_keys, n_to_drop))
else:
keys_to_drop = []
if keys_to_drop:
delta1, delta2 = delta.decompose_for_change(keys_to_drop)
+ if random.random() < self._test_prob:
+ </s>
===========below chunk 0===========
# module: coeditor.c3problem
+ @dataclass
class C3ProblemChangeDropout(C3ProblemTransform):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
# offset: 1
<s>, stop, self.max_lines_to_edit):
j = min(i + self.max_lines_to_edit, stop)
edit_lines = range(i, j)
if delta1 is not None:
edit_lines = delta1.get_new_target_lines(edit_lines)
line_set = set(edit_lines)
n_groups = sum(any(key[0] in line_set for key in g) for g in delta2_groups)
if n_groups > 0:
sub_prob = dataclasses.replace(
prob,
span=new_span,
edit_lines=edit_lines,
transformations=new_trans,
)
prob_and_n.append((sub_prob, n_groups))
# return the problems with the most changes
prob_and_n.sort(key=lambda p: p[1], reverse=True)
probs = [p[0] for p in prob_and_n]
return probs[: self.max_split_factor]
===========unchanged ref 0===========
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_lines: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Sequence[ChangedCodeSpan], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
at: coeditor.c3problem.C3Problem
span: ChangedCodeSpan
edit_lines: Sequence[int]
relevant_changes: Sequence[ChangedCodeSpan]
relevant_unchanged: Sequence[ChangedCodeSpan]
change_type: Change[None]
src_info: SrcInfo
transformations: tuple[str, ...] = ()
at: coeditor.c3problem.C3ProblemTransform
transform(self, prob: C3Problem) -> Sequence[C3Problem]
at: coeditor.c3problem.ChangedCodeSpan
headers: Sequence[ChangedHeader]
original: TkArray
delta: TkDelta
line_range: LineRange
module: ModuleName
at: coeditor.change.Modified
before: E1
after: E1
unchanged: bool = False
at: coeditor.common
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
print_sections(*, sep: str=SEP, file: TextIO=sys.stdout) -> None
random_subset(all: Mapping[T1, T2], n: int, rng: random.Random | int | None=None) -> dict[T1, T2]
random_subset(all: Sequence[T1], n: int, rng: random.Random | int | None=None) -> list[T1]
print_err(*, sep: Optional[str]=..., end: Optional[str]=..., flush: bool=...) -> None
at: coeditor.encoding
decode_tokens(tokens: TokenSeq, prettify: bool=False) -> str
tokens_to_change(tokens: TokenSeq) -> Modified[str]
===========unchanged ref 1===========
at: coeditor.encoding.TkDelta
_deltas: Mapping[int, tuple[TokenSeq, ...]]
apply_to_change(change: TokenSeq) -> TokenSeq
decompose_for_change(first_keys: Collection[DeltaKey]) -> tuple[Self, Self]
change_groups() -> Sequence[tuple[DeltaKey, ...]]
at: coeditor.tk_array.TkArray
tolist() -> TokenSeq
at: random
random = _inst.random
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
===========changed ref 0===========
# module: coeditor.c3problem
+ @dataclass
class C3ProblemChangeDropout(C3ProblemTransform):
"""Split the problem into fixed-sized editing ranges like `C3ProblemSimpleSplit`,
but also randomly keep some subset of changes in the input.
### Change log
+ - v1.2: fix newline encoding bug.
- v1.1
- Dropout changes using change groups instead of individual change actions.
- Perform dropout at entire problem level ratehr than chunk level. This way,
changes in later chunks will be visible as well.
- Removed `dropout_prob`.
"""
+ VERSION = "1.2"
- VERSION = "1.1"
max_lines_to_edit: int = 25
max_split_factor: int = 4
# when dropping the changes into the input, the biggest ratio of changes to drop
max_dropout_ratio: float = 0.5
+ _test_prob: float = 0.01
===========changed ref 1===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def summary(self) -> str:
+ return "\n".join(self.meta_data_lines())
+
===========changed ref 2===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
- def summarize(self) -> str:
- return "\n".join(self.meta_data_lines())
-
===========changed ref 3===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ @property
+ def path(self) -> ProjectPath:
+ return self.span.headers[-1].path
+
===========changed ref 4===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def print(self):
+ main_change = self.span.delta.apply_to_change(self.span.original.tolist())
+ print_sections(
+ ("summary", self.summary()),
+ ("main change", decode_tokens(main_change)),
+ ("edit_lines", str(self.edit_lines)),
+ )
+
===========changed ref 5===========
# module: coeditor.c3problem
class C3ProblemGenerator(ProjectChangeProcessor[C3Problem]):
"""
### Change log
+ - v2.5: fix newline encoding bug.
- v2.4: fix buggy encoding of `Added` and `Deleted` changes.
- v2.3: always generate problems with full editing range and move the problem
splitting logic elsewhere. Also changed the data format of `ChangedCodeSpan`.
"""
+ VERSION = "2.5"
- VERSION = "2.4"
# change spans with more than this many lines will be ignored
max_span_lines: int = 500
===========changed ref 6===========
# module: coeditor.encoding
+ def encode_lines(text: str) -> Iterable[TokenSeq]:
+ return (encode_single_line(l) for l in splitlines(text))
+ |
coeditor.c3problem/C3ProblemTokenizer._get_offset_tks | Modified | temp-1 | 703cdaf8bc6456ee94a5afffc6c9f902bae79b03 | Fix inconsistent encoding of newlines. | <0>:<add> tks = TkArray.new(encode_single_line(f"# offset: {offset}"))
| # module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def _get_offset_tks(self, offset: int) -> TkArray:
if (tks := self._offset_cache.get(offset)) is None:
- tks = TkArray.new(encode_basic(f"# offset: {offset}"))
<0> self._offset_cache[offset] = tks
return tks
| ===========unchanged ref 0===========
at: coeditor.c3problem.C3ProblemTokenizer
VERSION = "2.3"
max_ref_tks: int = 512
max_query_tks: int = 512
max_output_tks: int = 256
max_scope_tks: int = 128
max_ref_tks_sum: int = 512 * 12
ref_chunk_overlap: int = 32
at: coeditor.c3problem.C3ProblemTokenizer.tokenize_problem
all_refs = above_chunks + below_chunks
at: coeditor.tk_array
TkArray()
===========changed ref 0===========
# module: coeditor.c3problem
+ @dataclass
class C3ProblemChangeDropout(C3ProblemTransform):
"""Split the problem into fixed-sized editing ranges like `C3ProblemSimpleSplit`,
but also randomly keep some subset of changes in the input.
### Change log
+ - v1.2: fix newline encoding bug.
- v1.1
- Dropout changes using change groups instead of individual change actions.
- Perform dropout at entire problem level ratehr than chunk level. This way,
changes in later chunks will be visible as well.
- Removed `dropout_prob`.
"""
+ VERSION = "1.2"
- VERSION = "1.1"
max_lines_to_edit: int = 25
max_split_factor: int = 4
# when dropping the changes into the input, the biggest ratio of changes to drop
max_dropout_ratio: float = 0.5
+ _test_prob: float = 0.01
===========changed ref 1===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def summary(self) -> str:
+ return "\n".join(self.meta_data_lines())
+
===========changed ref 2===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
- def summarize(self) -> str:
- return "\n".join(self.meta_data_lines())
-
===========changed ref 3===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ @property
+ def path(self) -> ProjectPath:
+ return self.span.headers[-1].path
+
===========changed ref 4===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def print(self):
+ main_change = self.span.delta.apply_to_change(self.span.original.tolist())
+ print_sections(
+ ("summary", self.summary()),
+ ("main change", decode_tokens(main_change)),
+ ("edit_lines", str(self.edit_lines)),
+ )
+
===========changed ref 5===========
# module: coeditor.c3problem
class C3ProblemGenerator(ProjectChangeProcessor[C3Problem]):
"""
### Change log
+ - v2.5: fix newline encoding bug.
- v2.4: fix buggy encoding of `Added` and `Deleted` changes.
- v2.3: always generate problems with full editing range and move the problem
splitting logic elsewhere. Also changed the data format of `ChangedCodeSpan`.
"""
+ VERSION = "2.5"
- VERSION = "2.4"
# change spans with more than this many lines will be ignored
max_span_lines: int = 500
===========changed ref 6===========
# module: coeditor.encoding
+ def encode_lines(text: str) -> Iterable[TokenSeq]:
+ return (encode_single_line(l) for l in splitlines(text))
+
===========changed ref 7===========
# module: coeditor.encoding
TEdit = TypeVar("TEdit", bound=TokenizedEdit)
+ _OMIT = encode_single_line("...")
===========changed ref 8===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ @staticmethod
+ def from_change(change: Change[str]) -> tuple[str, "StrDelta"]:
+ line_diffs = change_to_line_diffs(change)
+ return line_diffs_to_original_delta(line_diffs)
+
===========changed ref 9===========
# module: coeditor.encoding
+ def encode_lines_join(text: str) -> TokenSeq:
+ """Encode a mutliple line str such that the line breaks are consistently encoded."""
+ return join_list(encode_lines(text), sep=Newline_id)
+
===========changed ref 10===========
# module: coeditor.encoding
- def encode_basic(text: str, add_special_tokens=False) -> TokenSeq:
- "Encode a string into a token sequence using the base tokenizer."
- return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
-
===========changed ref 11===========
# module: coeditor.encoding
+ def encode_single_line(text: str, add_special_tokens=False) -> TokenSeq:
+ """Encode a string into a token sequence using the base tokenizer.
+ Note that you should use `encode_lines_join` when `text` contains multiple lines
+ to ensure that newline characters are consistently encoded as the same token.
+ """
+ return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
+
===========changed ref 12===========
# module: coeditor.c3problem
+ @dataclass
class C3ProblemChangeDropout(C3ProblemTransform):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
original = prob.span.original
delta = prob.span.delta
l_range = prob.edit_lines
assert isinstance(l_range, range)
start, stop = l_range.start, l_range.stop
grouped_keys = delta.change_groups()
should_dropout = len(grouped_keys) >= 2
if should_dropout:
n_to_drop = int(
len(grouped_keys) * random.random() * self.max_dropout_ratio
)
assert n_to_drop < len(grouped_keys)
keys_to_drop = join_list(random_subset(grouped_keys, n_to_drop))
else:
keys_to_drop = []
if keys_to_drop:
delta1, delta2 = delta.decompose_for_change(keys_to_drop)
+ if random.random() < self._test_prob:
+ result1 = delta2.apply_to_change(
+ delta1.apply_to_change(original.tolist())
+ )
+ result2 = delta.apply_to_change(original.tolist())
+ code1 = tokens_to_change(result1).after
+ code2 = tokens_to_change(result2).after
+ if code1 != code2:
+ print_sections(
+ ("result1", decode_tokens(result1)),
+ ("result2", decode_tokens(result2)),
+ ("delta", str(delta)),
+ ("keys_to_drop", str(keys_to_drop)),
+ ("delta1", str(delta1)),
+ ("delta2", str(delta2)),
+ )
+ raise AssertionError("decompose_for_change failed.")
delta2_groups = delta2.change_groups()
if not delta2_groups:
print_err</s> |
coeditor.model/RetrievalDecodingResult.exact_match_accuracy | Modified | temp-1 | 703cdaf8bc6456ee94a5afffc6c9f902bae79b03 | Fix inconsistent encoding of newlines. | <0>:<add> print(prob.summary())
| # module: coeditor.model
@dataclass
class RetrievalDecodingResult:
def exact_match_accuracy(self) -> tuple[CountedSum, dict[int, bool]]:
ex2correct = dict[int, bool]()
bad_probs = list[C3Problem]()
for i, mp in enumerate(self.predictions):
prob = self.problems[i]
original = prob.span.original.tolist()
pred_delta = TkDelta.from_output_tks(mp["output_ids"])
label_delta = TkDelta.from_output_tks(mp["labels"])
if not prob.edit_lines:
bad_probs.append(prob)
continue
line_shift = prob.edit_lines[0]
pred_change = pred_delta.shifted(line_shift).apply_to_change(original)
label_change = label_delta.shifted(line_shift).apply_to_change(original)
pred_code = tokens_to_change(pred_change).after
label_code = tokens_to_change(label_change).after
ex2correct[i] = code_equal(pred_code, label_code)
correct_count = CountedSum(sum(ex2correct.values()), len(ex2correct))
if bad_probs:
cprint("yellow", "Number of problems with no edits:", len(bad_probs))
for prob in bad_probs[:5]:
- print(prob.summarize())
<0> return correct_count, ex2correct
| ===========unchanged ref 0===========
at: coeditor._utils
cprint(color: str, *elems, sep: Optional[str]=..., end: Optional[str]=..., file: Optional[SupportsWrite[str]]=..., flush: bool=...)
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_line_ids: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Mapping["PyFullName", "PyDefinition"], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
at: coeditor.c3problem.C3Problem
span: ChangedCodeSpan
edit_line_ids: Sequence[int]
relevant_changes: Sequence[ChangedCodeSpan]
relevant_unchanged: Mapping["PyFullName", "PyDefinition"]
change_type: Change[None]
src_info: SrcInfo
transformations: tuple[str, ...] = ()
summary() -> str
at: coeditor.c3problem.ChangedCodeSpan
headers: Sequence[ChangedHeader]
original: TkArray
delta: TkDelta
line_range: LineRange
module: ModuleName
at: coeditor.change.Modified
before: E1
after: E1
unchanged: bool = False
at: coeditor.common
CountedSum = WeightedSum[int, int]
code_equal(code1: str, code2: str) -> bool
at: coeditor.encoding
TkDelta(_deltas: Mapping[int, tuple[TokenSeq, ...]])
tokens_to_change(tokens: TokenSeq) -> Modified[str]
at: coeditor.encoding.TkDelta
_deltas: Mapping[int, tuple[TokenSeq, ...]]
apply_to_change(change: TokenSeq) -> TokenSeq
shifted(shift_lines: int) -> Self
===========unchanged ref 1===========
from_output_tks(edit_line_ids: Sequence[int], tks: TokenSeq, allow_truncated_tks: bool=True) -> "TkDelta"
at: coeditor.model.RetrievalDecodingResult
eval_args: dict
problems: Sequence[C3Problem]
predictions: Sequence[RetrievalModelPrediction]
at: coeditor.tk_array.TkArray
tolist() -> TokenSeq
===========changed ref 0===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def summary(self) -> str:
+ return "\n".join(self.meta_data_lines())
+
===========changed ref 1===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ @property
+ def path(self) -> ProjectPath:
+ return self.span.headers[-1].path
+
===========changed ref 2===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
- def summarize(self) -> str:
- return "\n".join(self.meta_data_lines())
-
===========changed ref 3===========
# module: coeditor.encoding
+ def encode_lines(text: str) -> Iterable[TokenSeq]:
+ return (encode_single_line(l) for l in splitlines(text))
+
===========changed ref 4===========
# module: coeditor.encoding
TEdit = TypeVar("TEdit", bound=TokenizedEdit)
+ _OMIT = encode_single_line("...")
===========changed ref 5===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ @staticmethod
+ def from_change(change: Change[str]) -> tuple[str, "StrDelta"]:
+ line_diffs = change_to_line_diffs(change)
+ return line_diffs_to_original_delta(line_diffs)
+
===========changed ref 6===========
# module: coeditor.encoding
+ def encode_lines_join(text: str) -> TokenSeq:
+ """Encode a mutliple line str such that the line breaks are consistently encoded."""
+ return join_list(encode_lines(text), sep=Newline_id)
+
===========changed ref 7===========
# module: coeditor.encoding
- def encode_basic(text: str, add_special_tokens=False) -> TokenSeq:
- "Encode a string into a token sequence using the base tokenizer."
- return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
-
===========changed ref 8===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def print(self):
+ main_change = self.span.delta.apply_to_change(self.span.original.tolist())
+ print_sections(
+ ("summary", self.summary()),
+ ("main change", decode_tokens(main_change)),
+ ("edit_lines", str(self.edit_lines)),
+ )
+
===========changed ref 9===========
# module: coeditor.encoding
+ def encode_single_line(text: str, add_special_tokens=False) -> TokenSeq:
+ """Encode a string into a token sequence using the base tokenizer.
+ Note that you should use `encode_lines_join` when `text` contains multiple lines
+ to ensure that newline characters are consistently encoded as the same token.
+ """
+ return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
+
===========changed ref 10===========
# module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def _get_offset_tks(self, offset: int) -> TkArray:
if (tks := self._offset_cache.get(offset)) is None:
+ tks = TkArray.new(encode_single_line(f"# offset: {offset}"))
- tks = TkArray.new(encode_basic(f"# offset: {offset}"))
self._offset_cache[offset] = tks
return tks
===========changed ref 11===========
# module: coeditor.c3problem
class C3ProblemGenerator(ProjectChangeProcessor[C3Problem]):
"""
### Change log
+ - v2.5: fix newline encoding bug.
- v2.4: fix buggy encoding of `Added` and `Deleted` changes.
- v2.3: always generate problems with full editing range and move the problem
splitting logic elsewhere. Also changed the data format of `ChangedCodeSpan`.
"""
+ VERSION = "2.5"
- VERSION = "2.4"
# change spans with more than this many lines will be ignored
max_span_lines: int = 500
===========changed ref 12===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
def to_tk_delta(self) -> "TkDelta":
deltas = dict[int, tuple[TokenSeq, ...]]()
for k, line_delta in self._deltas.items():
line_tk_delta = list[TokenSeq]()
for action in line_delta:
if action[0] == "+":
+ line_tk_delta.append([Add_id] + encode_single_line(action[1:]))
- line_tk_delta.append([Add_id] + encode_basic(action[1:]))
elif action[0] == "-":
line_tk_delta.append([Del_id])
else:
raise ValueError(f"Invalid action: {action}")
deltas[k] = tuple(line_tk_delta)
return TkDelta(deltas)
|
coeditor.model/RetrievalDecodingResult.save_examples_to_dir | Modified | temp-1 | 703cdaf8bc6456ee94a5afffc6c9f902bae79b03 | Fix inconsistent encoding of newlines. | <0>:<add> pickle_dump(out_dir / "ex_probs.pkl", all_probs)
| # module: coeditor.model
@dataclass
class RetrievalDecodingResult:
def save_examples_to_dir(self, out_dir: Path, ex2correct: dict[int, bool]) -> None:
shutil.rmtree(out_dir, ignore_errors=True)
(out_dir / "correct").mkdir(parents=True, exist_ok=True)
(out_dir / "incorrect").mkdir(parents=True, exist_ok=True)
+ all_probs = dict[int, C3Problem]()
for ex_id, correct in tqdm(ex2correct.items(), desc="saving examples"):
ex = self.predictions[ex_id]
+ prob = self.problems[ex_id]
+ compare_str = self.show_prediction(prob, ex)
- compare_str = self.show_prediction(self.problems[ex_id], ex)
out_file = (
out_dir / ("correct" if correct else "incorrect") / f"ex-{ex_id}.txt"
)
out_file.write_text(compare_str)
+ all_probs[ex_id] = prob
<0>
| ===========unchanged ref 0===========
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_line_ids: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Mapping["PyFullName", "PyDefinition"], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
at: coeditor.model.RetrievalDecodingResult
problems: Sequence[C3Problem]
predictions: Sequence[RetrievalModelPrediction]
show_prediction(prob: C3Problem, pred: RetrievalModelPrediction) -> str
at: pathlib
Path()
at: pathlib.Path
__slots__ = ()
mkdir(mode: int=..., parents: bool=..., exist_ok: bool=...) -> None
at: pathlib.PurePath
__slots__ = (
'_drv', '_root', '_parts',
'_str', '_hash', '_pparts', '_cached_cparts',
)
drive = property(attrgetter('_drv'),
doc="""The drive prefix (letter or UNC path), if any.""")
root = property(attrgetter('_root'),
doc="""The root of the path, if any.""")
at: shutil
rmtree(path: Union[bytes, StrPath], ignore_errors: bool=..., onerror: Optional[Callable[[Any, Any, Any], Any]]=...) -> None
at: tqdm.std
tqdm(iterable=None, desc=None, total=None, leave=True, file=None, ncols=None, mininterval=0.1, maxinterval=10.0, miniters=None, ascii=None, disable=False, unit='it', unit_scale=False, dynamic_ncols=False, smoothing=0.3, bar_format=None, initial=0, position=None, postfix=None, unit_divisor=1000, write_bytes=False, lock_args=None, nrows=None, colour=None, delay=0, gui=False, **kwargs)
===========changed ref 0===========
# module: coeditor.model
@dataclass
class RetrievalDecodingResult:
def exact_match_accuracy(self) -> tuple[CountedSum, dict[int, bool]]:
ex2correct = dict[int, bool]()
bad_probs = list[C3Problem]()
for i, mp in enumerate(self.predictions):
prob = self.problems[i]
original = prob.span.original.tolist()
pred_delta = TkDelta.from_output_tks(mp["output_ids"])
label_delta = TkDelta.from_output_tks(mp["labels"])
if not prob.edit_lines:
bad_probs.append(prob)
continue
line_shift = prob.edit_lines[0]
pred_change = pred_delta.shifted(line_shift).apply_to_change(original)
label_change = label_delta.shifted(line_shift).apply_to_change(original)
pred_code = tokens_to_change(pred_change).after
label_code = tokens_to_change(label_change).after
ex2correct[i] = code_equal(pred_code, label_code)
correct_count = CountedSum(sum(ex2correct.values()), len(ex2correct))
if bad_probs:
cprint("yellow", "Number of problems with no edits:", len(bad_probs))
for prob in bad_probs[:5]:
+ print(prob.summary())
- print(prob.summarize())
return correct_count, ex2correct
===========changed ref 1===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ @property
+ def path(self) -> ProjectPath:
+ return self.span.headers[-1].path
+
===========changed ref 2===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def summary(self) -> str:
+ return "\n".join(self.meta_data_lines())
+
===========changed ref 3===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
- def summarize(self) -> str:
- return "\n".join(self.meta_data_lines())
-
===========changed ref 4===========
# module: coeditor.encoding
+ def encode_lines(text: str) -> Iterable[TokenSeq]:
+ return (encode_single_line(l) for l in splitlines(text))
+
===========changed ref 5===========
# module: coeditor.encoding
TEdit = TypeVar("TEdit", bound=TokenizedEdit)
+ _OMIT = encode_single_line("...")
===========changed ref 6===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ @staticmethod
+ def from_change(change: Change[str]) -> tuple[str, "StrDelta"]:
+ line_diffs = change_to_line_diffs(change)
+ return line_diffs_to_original_delta(line_diffs)
+
===========changed ref 7===========
# module: coeditor.encoding
+ def encode_lines_join(text: str) -> TokenSeq:
+ """Encode a mutliple line str such that the line breaks are consistently encoded."""
+ return join_list(encode_lines(text), sep=Newline_id)
+
===========changed ref 8===========
# module: coeditor.encoding
- def encode_basic(text: str, add_special_tokens=False) -> TokenSeq:
- "Encode a string into a token sequence using the base tokenizer."
- return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
-
===========changed ref 9===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def print(self):
+ main_change = self.span.delta.apply_to_change(self.span.original.tolist())
+ print_sections(
+ ("summary", self.summary()),
+ ("main change", decode_tokens(main_change)),
+ ("edit_lines", str(self.edit_lines)),
+ )
+
===========changed ref 10===========
# module: coeditor.encoding
+ def encode_single_line(text: str, add_special_tokens=False) -> TokenSeq:
+ """Encode a string into a token sequence using the base tokenizer.
+ Note that you should use `encode_lines_join` when `text` contains multiple lines
+ to ensure that newline characters are consistently encoded as the same token.
+ """
+ return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
+
===========changed ref 11===========
# module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def _get_offset_tks(self, offset: int) -> TkArray:
if (tks := self._offset_cache.get(offset)) is None:
+ tks = TkArray.new(encode_single_line(f"# offset: {offset}"))
- tks = TkArray.new(encode_basic(f"# offset: {offset}"))
self._offset_cache[offset] = tks
return tks
===========changed ref 12===========
# module: coeditor.c3problem
class C3ProblemGenerator(ProjectChangeProcessor[C3Problem]):
"""
### Change log
+ - v2.5: fix newline encoding bug.
- v2.4: fix buggy encoding of `Added` and `Deleted` changes.
- v2.3: always generate problems with full editing range and move the problem
splitting logic elsewhere. Also changed the data format of `ChangedCodeSpan`.
"""
+ VERSION = "2.5"
- VERSION = "2.4"
# change spans with more than this many lines will be ignored
max_span_lines: int = 500
|
coeditor.model/RetrievalEditorModel.encode_token_seqs | Modified | temp-1 | 703cdaf8bc6456ee94a5afffc6c9f902bae79b03 | Fix inconsistent encoding of newlines. | <0>:<add> for ref in references
| # module: coeditor.model
class RetrievalEditorModel(T5PreTrainedModel):
def encode_token_seqs(
self, references: Sequence[TokenSeq] | Sequence[str], pad_id=None
) -> LongTensor:
references = [
+ encode_lines_join(ref) if isinstance(ref, str) else ref
- encode_basic(ref) if isinstance(ref, str) else ref for ref in references
<0> ]
out = pad_token_seqs(references, pad_id=pad_id)
out = out.to(self.device)
return cast(LongTensor, out)
| ===========unchanged ref 0===========
at: coeditor.common
TokenSeq = list[Token]
at: coeditor.encoding
encode_lines_join(text: str) -> TokenSeq
at: coeditor.model.RetrievalEditorModel
is_parallelizable = False
supports_gradient_checkpointing = False
at: coeditor.model.RetrievalEditorModel.load
model = RetrievalEditorModel.from_pretrained(save_dir)
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
===========changed ref 0===========
# module: coeditor.encoding
+ def encode_lines_join(text: str) -> TokenSeq:
+ """Encode a mutliple line str such that the line breaks are consistently encoded."""
+ return join_list(encode_lines(text), sep=Newline_id)
+
===========changed ref 1===========
# module: coeditor.model
@dataclass
class RetrievalDecodingResult:
@classmethod
def show_prediction(cls, prob: C3Problem, pred: RetrievalModelPrediction) -> str:
span = prob.span
tk_prob = TkC3Problem(
input=TkArray.new(pred["input_ids"]),
output=TkArray.new(pred["labels"]),
path=span.headers[-1].path,
change_type=prob.change_type,
named_references=[
(f"reference-{i}", TkArray.new(ref))
for i, ref in enumerate(pred["references"])
],
project=prob.src_info["project"],
commit=prob.src_info["commit"],
)
- meta_lines = prob.meta_data_lines()
+ return tk_prob.show(pred["output_ids"])
- all_secs = [*meta_lines, tk_prob.show(pred["output_ids"])]
- return "\n".join(all_secs)
===========changed ref 2===========
# module: coeditor.model
@dataclass
class RetrievalDecodingResult:
def save_examples_to_dir(self, out_dir: Path, ex2correct: dict[int, bool]) -> None:
shutil.rmtree(out_dir, ignore_errors=True)
(out_dir / "correct").mkdir(parents=True, exist_ok=True)
(out_dir / "incorrect").mkdir(parents=True, exist_ok=True)
+ all_probs = dict[int, C3Problem]()
for ex_id, correct in tqdm(ex2correct.items(), desc="saving examples"):
ex = self.predictions[ex_id]
+ prob = self.problems[ex_id]
+ compare_str = self.show_prediction(prob, ex)
- compare_str = self.show_prediction(self.problems[ex_id], ex)
out_file = (
out_dir / ("correct" if correct else "incorrect") / f"ex-{ex_id}.txt"
)
out_file.write_text(compare_str)
+ all_probs[ex_id] = prob
+ pickle_dump(out_dir / "ex_probs.pkl", all_probs)
===========changed ref 3===========
# module: coeditor.model
@dataclass
class RetrievalDecodingResult:
def exact_match_accuracy(self) -> tuple[CountedSum, dict[int, bool]]:
ex2correct = dict[int, bool]()
bad_probs = list[C3Problem]()
for i, mp in enumerate(self.predictions):
prob = self.problems[i]
original = prob.span.original.tolist()
pred_delta = TkDelta.from_output_tks(mp["output_ids"])
label_delta = TkDelta.from_output_tks(mp["labels"])
if not prob.edit_lines:
bad_probs.append(prob)
continue
line_shift = prob.edit_lines[0]
pred_change = pred_delta.shifted(line_shift).apply_to_change(original)
label_change = label_delta.shifted(line_shift).apply_to_change(original)
pred_code = tokens_to_change(pred_change).after
label_code = tokens_to_change(label_change).after
ex2correct[i] = code_equal(pred_code, label_code)
correct_count = CountedSum(sum(ex2correct.values()), len(ex2correct))
if bad_probs:
cprint("yellow", "Number of problems with no edits:", len(bad_probs))
for prob in bad_probs[:5]:
+ print(prob.summary())
- print(prob.summarize())
return correct_count, ex2correct
===========changed ref 4===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ @property
+ def path(self) -> ProjectPath:
+ return self.span.headers[-1].path
+
===========changed ref 5===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def summary(self) -> str:
+ return "\n".join(self.meta_data_lines())
+
===========changed ref 6===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
- def summarize(self) -> str:
- return "\n".join(self.meta_data_lines())
-
===========changed ref 7===========
# module: coeditor.encoding
+ def encode_lines(text: str) -> Iterable[TokenSeq]:
+ return (encode_single_line(l) for l in splitlines(text))
+
===========changed ref 8===========
# module: coeditor.encoding
TEdit = TypeVar("TEdit", bound=TokenizedEdit)
+ _OMIT = encode_single_line("...")
===========changed ref 9===========
# module: coeditor.encoding
@dataclass(frozen=True)
class StrDelta:
+ @staticmethod
+ def from_change(change: Change[str]) -> tuple[str, "StrDelta"]:
+ line_diffs = change_to_line_diffs(change)
+ return line_diffs_to_original_delta(line_diffs)
+
===========changed ref 10===========
# module: coeditor.encoding
- def encode_basic(text: str, add_special_tokens=False) -> TokenSeq:
- "Encode a string into a token sequence using the base tokenizer."
- return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
-
===========changed ref 11===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def print(self):
+ main_change = self.span.delta.apply_to_change(self.span.original.tolist())
+ print_sections(
+ ("summary", self.summary()),
+ ("main change", decode_tokens(main_change)),
+ ("edit_lines", str(self.edit_lines)),
+ )
+
===========changed ref 12===========
# module: coeditor.encoding
+ def encode_single_line(text: str, add_special_tokens=False) -> TokenSeq:
+ """Encode a string into a token sequence using the base tokenizer.
+ Note that you should use `encode_lines_join` when `text` contains multiple lines
+ to ensure that newline characters are consistently encoded as the same token.
+ """
+ return _BaseTokenizer.encode(text, add_special_tokens=add_special_tokens)
+
===========changed ref 13===========
# module: coeditor.c3problem
@dataclass
class C3ProblemTokenizer:
def _get_offset_tks(self, offset: int) -> TkArray:
if (tks := self._offset_cache.get(offset)) is None:
+ tks = TkArray.new(encode_single_line(f"# offset: {offset}"))
- tks = TkArray.new(encode_basic(f"# offset: {offset}"))
self._offset_cache[offset] = tks
return tks
|
tests.test_edits/TestChangeIdentities.test_tk_encodings | Modified | temp-1 | 703cdaf8bc6456ee94a5afffc6c9f902bae79b03 | Fix inconsistent encoding of newlines. | <0>:<add> code_to_input(encode_lines_join(get_before(c))),
| # module: tests.test_edits
class TestChangeIdentities:
def test_tk_encodings(self):
for name, c in self.cases.items():
# print(show_change(c))
c_tokens = change_to_tokens(c)
print("c_tokens\n------\n", decode_tokens(c_tokens))
c_rec = tokens_to_change(c_tokens)
assert_change_eq(
c_rec, c, "change_to_tokens |> tokens_to_change = identity: " + name
)
in_seq, out_seq = change_to_input_output(c)
print("in_seq\n------\n", decode_tokens(in_seq))
print("out_seq\n------\n", decode_tokens(out_seq))
assert_tks_eq(
in_seq,
- code_to_input(
- _BaseTokenizer.encode(get_before(c), add_special_tokens=False)
- ),
<0> "change_to_input_output mathese code_to_input: " + name,
)
if len(splitlines(get_before(c))) < N_Extra_Ids:
inlined = inline_output_tokens(in_seq, out_seq)
if inlined:
assert inlined[-1] == Newline_id
assert_tks_eq(
inlined[:-1], change_to_tokens(c), "inline_output_tokens: " + name
)
c_rec2 = tokens_to_change(inlined[:-1])
assert_change_eq(c_rec2, c, "tokens_to_change(inlined): " + name)
| ===========unchanged ref 0===========
at: coeditor.common
print_err(*, sep: Optional[str]=..., end: Optional[str]=..., flush: bool=...) -> None
assert_str_equal(actual: str, expect: str, name: str | None=None)
at: coeditor.encoding
decode_tokens(tokens: TokenSeq, prettify: bool=False) -> str
change_to_line_diffs(change: Change[str]) -> list[str]
line_diffs_to_original_delta(diffs: list[str]) -> tuple[str, StrDelta]
change_to_tokens(change: Change[str]) -> TokenSeq
tokens_to_change(tokens: TokenSeq) -> Modified[str]
change_to_input_output(change: Change[str]) -> tuple[TokenSeq, TokenSeq]
at: tests.test_edits
get_before(change: Change[str]) -> str
get_after(change: Change[str]) -> str
assert_change_eq(actual: Change[str], expected: Change[str], name: str)
assert_tks_eq(actual: TokenSeq, expected: TokenSeq, name: str)
===========unchanged ref 1===========
at: tests.test_edits.TestChangeIdentities
cases: dict[str, Change[str]] = {
"empty": Modified("", ""),
"generation": Modified("", "123"),
"added": Added("a\nb\nc\n"),
"deleted": Deleted("a\nb\nc\n"),
"no change": Modified(
dedent(
"""\
def f1():
x = 1
"""
),
dedent(
"""\
def f1():
x = 1
"""
),
),
"unchanged=True": Modified.from_unchanged(
dedent(
"""\
def f1():
x = 1
"""
),
),
# this test case cannot pass for some reason. Tokenizer bug?
# "leading_whitespace": Modified.from_unchanged(" ..."),
"replace last": Modified(
dedent(
"""\
def f1():
x = 1"""
),
dedent(
"""\
def f1():
x = 2
return x * 2"""
),
),
"no special tokens": Modified(
dedent(
"""\
def f1():
x = 1
y = 2
z = x + y
return z
def f2():
f1()"""
),
dedent(
"""\
# new comment
def f_new():
x = 1
if x > 0:
y = 2 * x
y *= 2
z = x + y
return z
def f2():
f1()
return f_new() + a
new_var = 0
"""
),
),
"with special tokens": Modified(
dedent(
"""\
def f1():
x = "<add>"
y = "<del>\tx"
return x + y
"""
),
dedent(
"""\
# new comment 1</s>
===========changed ref 0===========
# module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
match change:
case Modified(before=before, after=after, unchanged=unchanged):
if unchanged or before == after:
+ return encode_lines_join(before)
- return encode_basic(before)
else:
diffs = change_to_line_diffs(change)
return encode_diffs(diffs)
case Added() | Deleted():
+ lines = encode_lines(change.earlier)
- lines = split_list(encode_basic(change.earlier), Newline_id)
tk = Add_id if isinstance(change, Added) else Del_id
return join_list(([tk] + line for line in lines), Newline_id)
case _:
raise AssertionError(f"Not a change type: {change}")
===========changed ref 1===========
# module: tests.test_edits
class TestChangeIdentities:
cases: dict[str, Change[str]] = {
"empty": Modified("", ""),
"generation": Modified("", "123"),
"added": Added("a\nb\nc\n"),
"deleted": Deleted("a\nb\nc\n"),
"no change": Modified(
dedent(
"""\
def f1():
x = 1
"""
),
dedent(
"""\
def f1():
x = 1
"""
),
),
"unchanged=True": Modified.from_unchanged(
dedent(
"""\
def f1():
x = 1
"""
),
),
# this test case cannot pass for some reason. Tokenizer bug?
# "leading_whitespace": Modified.from_unchanged(" ..."),
"replace last": Modified(
dedent(
"""\
def f1():
x = 1"""
),
dedent(
"""\
def f1():
x = 2
return x * 2"""
),
),
"no special tokens": Modified(
dedent(
"""\
def f1():
x = 1
y = 2
z = x + y
return z
def f2():
f1()"""
),
dedent(
"""\
# new comment
def f_new():
x = 1
if x > 0:
y = 2 * x
y *= 2
z = x + y
return z
def f2():
f1()
return f_new() + a
new_var = 0
"""
),
),
"with special tokens": Modified(
dedent(
"""\
def f1():
x = "<add>"
y = "<del>\tx"
return x + y
"""
),
dedent(
"""\
#</s>
===========changed ref 2===========
# module: tests.test_edits
class TestChangeIdentities:
# offset: 1
<s> "<del>\tx"
return x + y
"""
),
dedent(
"""\
# new comment 1
# new comment 2
def f1():
if newcond:
x = "<add>"
new_var = 5
y = "<del>"
return x + new_var + y
"""
),
),
"super long": Modified(
"\n".join(f"x = {i}" for i in range(0, 200)),
"\n".join(f"x = {2* (i // 2)}" for i in range(0, 200)),
),
+ "strings with newlines": Modified(
+ dedent(
+ """\
+ If `True`, wraps the environments in an `AsyncVectorEnv` (which uses \n
+ `multiprocessing` to run the environments in parallel) \n
+ """
+ ),
+ dedent(
+ """\
+ If `True`, wraps the environments in an `AsyncVectorEnv` (which uses \n
+ `multiprocessing` to run the environments in parallel) \n
+ Added a line here. \n
+ and here.
+ """
+ ),
+ ),
}
===========changed ref 3===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ @property
+ def path(self) -> ProjectPath:
+ return self.span.headers[-1].path
+
===========changed ref 4===========
# module: coeditor.c3problem
@dataclass(frozen=True)
class C3Problem:
+ def summary(self) -> str:
+ return "\n".join(self.meta_data_lines())
+ |
tests.test_edits/TestChangeIdentities.test_str_tk_conversion | Modified | temp-1 | 703cdaf8bc6456ee94a5afffc6c9f902bae79b03 | Fix inconsistent encoding of newlines. | <0>:<add> if tk_after != encode_lines_join(get_after(c)):
| # module: tests.test_edits
class TestChangeIdentities:
def test_str_tk_conversion(self):
for name, c in self.cases.items():
line_diffs = change_to_line_diffs(c)
print("line_diffs\n------\n" + "\n".join(line_diffs))
before, delta = line_diffs_to_original_delta(line_diffs)
print("delta:", delta)
tk_delta = delta.to_tk_delta()
+ tk_before = encode_lines_join(before)
- tk_before = encode_basic(before)
tk_after = tk_delta.apply_to_input(tk_before)
- if tk_after != encode_basic(get_after(c)):
<0> print("after diff:\n")
print(show_string_diff(get_after(c), decode_tokens(tk_after)))
c_tokens = tk_delta.apply_to_change(tk_before)
if c_tokens != change_to_tokens(c):
print("c_tokens diff:\n")
print(
show_string_diff(
decode_tokens(c_tokens), decode_tokens(change_to_tokens(c))
)
)
origin1, tk_delta1 = change_tks_to_original_delta(c_tokens)
if origin1 != tk_before:
print("origin diff:\n")
print(
show_string_diff(decode_tokens(origin1), decode_tokens(tk_before))
)
assert tk_delta1.apply_to_input(origin1) == tk_after
| ===========unchanged ref 0===========
at: coeditor._utils
show_string_diff(str1: str, str2: str, max_ctx: int | None=6) -> str
at: coeditor.common
splitlines(text: str) -> list[str]
at: coeditor.encoding
Newline_id = get_tk_id("\n")
N_Extra_Ids = 100
decode_tokens(tokens: TokenSeq, prettify: bool=False) -> str
encode_lines_join(text: str) -> TokenSeq
change_to_line_diffs(change: Change[str]) -> list[str]
line_diffs_to_original_delta(diffs: list[str]) -> tuple[str, StrDelta]
change_to_tokens(change: Change[str]) -> TokenSeq
tokens_to_change(tokens: TokenSeq) -> Modified[str]
code_to_input(code_tks: TokenSeq) -> TokenSeq
inline_output_tokens(input: TokenSeq, output: TokenSeq, leave_unpredicted=False) -> TokenSeq
at: tests.test_edits
get_before(change: Change[str]) -> str
get_after(change: Change[str]) -> str
assert_change_eq(actual: Change[str], expected: Change[str], name: str)
assert_tks_eq(actual: TokenSeq, expected: TokenSeq, name: str)
===========unchanged ref 1===========
at: tests.test_edits.TestChangeIdentities
cases: dict[str, Change[str]] = {
"empty": Modified("", ""),
"generation": Modified("", "123"),
"added": Added("a\nb\nc\n"),
"deleted": Deleted("a\nb\nc\n"),
"no change": Modified(
dedent(
"""\
def f1():
x = 1
"""
),
dedent(
"""\
def f1():
x = 1
"""
),
),
"unchanged=True": Modified.from_unchanged(
dedent(
"""\
def f1():
x = 1
"""
),
),
# this test case cannot pass for some reason. Tokenizer bug?
# "leading_whitespace": Modified.from_unchanged(" ..."),
"replace last": Modified(
dedent(
"""\
def f1():
x = 1"""
),
dedent(
"""\
def f1():
x = 2
return x * 2"""
),
),
"no special tokens": Modified(
dedent(
"""\
def f1():
x = 1
y = 2
z = x + y
return z
def f2():
f1()"""
),
dedent(
"""\
# new comment
def f_new():
x = 1
if x > 0:
y = 2 * x
y *= 2
z = x + y
return z
def f2():
f1()
return f_new() + a
new_var = 0
"""
),
),
"with special tokens": Modified(
dedent(
"""\
def f1():
x = "<add>"
y = "<del>\tx"
return x + y
"""
),
dedent(
"""\
# new comment 1</s>
===========unchanged ref 2===========
at: tests.test_edits.TestChangeIdentities.test_tk_encodings
in_seq, out_seq = change_to_input_output(c)
in_seq, out_seq = change_to_input_output(c)
===========changed ref 0===========
# module: coeditor.encoding
+ def encode_lines_join(text: str) -> TokenSeq:
+ """Encode a mutliple line str such that the line breaks are consistently encoded."""
+ return join_list(encode_lines(text), sep=Newline_id)
+
===========changed ref 1===========
# module: coeditor.encoding
def change_to_tokens(change: Change[str]) -> TokenSeq:
match change:
case Modified(before=before, after=after, unchanged=unchanged):
if unchanged or before == after:
+ return encode_lines_join(before)
- return encode_basic(before)
else:
diffs = change_to_line_diffs(change)
return encode_diffs(diffs)
case Added() | Deleted():
+ lines = encode_lines(change.earlier)
- lines = split_list(encode_basic(change.earlier), Newline_id)
tk = Add_id if isinstance(change, Added) else Del_id
return join_list(([tk] + line for line in lines), Newline_id)
case _:
raise AssertionError(f"Not a change type: {change}")
===========changed ref 2===========
# module: tests.test_edits
class TestChangeIdentities:
def test_tk_encodings(self):
for name, c in self.cases.items():
# print(show_change(c))
c_tokens = change_to_tokens(c)
print("c_tokens\n------\n", decode_tokens(c_tokens))
c_rec = tokens_to_change(c_tokens)
assert_change_eq(
c_rec, c, "change_to_tokens |> tokens_to_change = identity: " + name
)
in_seq, out_seq = change_to_input_output(c)
print("in_seq\n------\n", decode_tokens(in_seq))
print("out_seq\n------\n", decode_tokens(out_seq))
assert_tks_eq(
in_seq,
- code_to_input(
- _BaseTokenizer.encode(get_before(c), add_special_tokens=False)
- ),
+ code_to_input(encode_lines_join(get_before(c))),
"change_to_input_output mathese code_to_input: " + name,
)
if len(splitlines(get_before(c))) < N_Extra_Ids:
inlined = inline_output_tokens(in_seq, out_seq)
if inlined:
assert inlined[-1] == Newline_id
assert_tks_eq(
inlined[:-1], change_to_tokens(c), "inline_output_tokens: " + name
)
c_rec2 = tokens_to_change(inlined[:-1])
assert_change_eq(c_rec2, c, "tokens_to_change(inlined): " + name)
|
coeditor.dataset/_process_commits | Modified | temp-1 | fedac8b34b8f35d0fc50414ef2c88c227f1464cf | Fix data processing temp paths. | <0>:<add> tempdir=workdir / "code" / root.name,
| # module: coeditor.dataset
def _process_commits(
root: Path,
workdir: Path,
commits: Sequence[CommitInfo],
is_training: bool,
change_processor: ProjectChangeProcessor[C3Problem],
) -> _ProcessingResult:
# use process-specific parso cache
fix_jedi_cache(workdir)
scoped_changes._tlogger.clear()
change_processor.clear_stats()
change_processor.set_training(is_training)
try:
# cannot return here since subprocess will be killed after returning
edits = edits_from_commit_history(
root,
commits,
- tempdir=workdir / "code",
<0> change_processor=change_processor,
silent=True,
time_limit=time_limit_per_commit * (len(commits) + 10),
)
except Exception as e:
if isinstance(e, KeyboardInterrupt):
raise
warnings.warn(f"Failed to process project: {root}\nError: {e}")
traceback.print_exception(e, limit=-6)
edits = []
stats = dict()
change_processor.append_stats(stats)
rec_add_dict_to(stats, {"tlogger": scoped_changes._tlogger.times})
return _ProcessingResult(edits, stats)
| ===========unchanged ref 0===========
at: _warnings
warn(message: str, category: Optional[Type[Warning]]=..., stacklevel: int=..., source: Optional[Any]=...) -> None
warn(message: Warning, category: Any=..., stacklevel: int=..., source: Optional[Any]=...) -> None
at: coeditor._utils.TimeLogger
times: dict[str, list[float]] = field(default_factory=dict)
clear()
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_line_ids: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Mapping["PyFullName", "PyDefinition"], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
fix_jedi_cache(cache_dir: Path)
at: coeditor.common
rec_add_dict_to(target: dict[str, Any], value: Mapping[str, Any], value_merger: Callable[[Any, Any], Any]=lambda x, y: x + y)
at: coeditor.dataset
_ProcessingResult(edits: Sequence[C3Problem], stats: dict[str, dict | Any])
time_limit_per_commit = 10.0
at: coeditor.git
CommitInfo(hash: str, parents: tuple[str, ...], msg: str)
at: coeditor.scoped_changes
_tlogger = TimeLogger()
ProjectChangeProcessor()
edits_from_commit_history(project_dir: Path, history: Sequence[CommitInfo], tempdir: Path, change_processor: ProjectChangeProcessor[TProb]=NoProcessing(), ignore_dirs=DefaultIgnoreDirs, silent: bool=False, time_limit: float | None=None) -> Sequence[TProb]
at: coeditor.scoped_changes.ProjectChangeProcessor
clear_stats()
append_stats(stats: dict[str, Any]) -> None
set_training(is_training: bool) -> None
at: pathlib
Path()
===========unchanged ref 1===========
at: pathlib.PurePath
__slots__ = (
'_drv', '_root', '_parts',
'_str', '_hash', '_pparts', '_cached_cparts',
)
drive = property(attrgetter('_drv'),
doc="""The drive prefix (letter or UNC path), if any.""")
root = property(attrgetter('_root'),
doc="""The root of the path, if any.""")
at: traceback
print_exception(etype: Optional[Type[BaseException]], value: Optional[BaseException], tb: Optional[TracebackType], limit: Optional[int]=..., file: Optional[IO[str]]=..., chain: bool=...) -> None
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
|
coeditor.dataset/dataset_from_projects | Modified | temp-1 | fedac8b34b8f35d0fc50414ef2c88c227f1464cf | Fix data processing temp paths. | <0>:<add> workdir = Path(tempfile.gettempdir()) / "dataset_from_projects" / f"pid-{pid}"
| # module: coeditor.dataset
def dataset_from_projects(
project_roots: Sequence[Path],
change_processor: ProjectChangeProcessor[C3Problem],
repo_training: Sequence[bool],
max_history_per_repo: int = 1000,
workers: int = DefaultWorkers,
) -> "Mapping[Path, Sequence[C3Problem]]":
"""
Create a TokenizedEditDataset from a list of project roots and a given encoder.
Args:
- max_history_per_repo (int, optional): When the repo history is longer than
this value, only the oldest portion is going to be used. Defaults to 1000.
"""
+ # get the process id
+ pid = os.getpid()
- workdir = Path(tempfile.gettempdir()) / "dataset_from_projects"
<0> histories = pmap(
get_commit_history,
project_roots,
max_workers=workers,
desc="Getting commit histories",
tqdm_args={"unit": "repo"},
)
# keep the oldest portion of the history
histories = [commits[-max_history_per_repo:] for commits in histories]
# break long commit sequences into chunks for parallelization
roots = list[Path]()
chunk_training = list[bool]()
chunked_histories = list[list[CommitInfo]]()
for root, h, train in zip(project_roots, histories, repo_training):
history_chunk_size = max(50, math.ceil(len(h) / 10))
for i in range(0, len(h), history_chunk_size):
roots.append(root)
chunk_training.append(train)
# note that we need 1 extra overlapping commit to get all diffs
chunked_histories.append(h[i : i + history_chunk_size + 1])
workdirs = [workdir / f"chunk-{i}" for i in range(len(roots))]
try:
presults = pmap(
_process_commits,
roots,
workdirs,
chunked_</s> | ===========below chunk 0===========
# module: coeditor.dataset
def dataset_from_projects(
project_roots: Sequence[Path],
change_processor: ProjectChangeProcessor[C3Problem],
repo_training: Sequence[bool],
max_history_per_repo: int = 1000,
workers: int = DefaultWorkers,
) -> "Mapping[Path, Sequence[C3Problem]]":
# offset: 1
<s> try:
presults = pmap(
_process_commits,
roots,
workdirs,
chunked_histories,
chunk_training,
key_args={"change_processor": change_processor},
max_workers=workers,
tqdm_args={"unit": "chunk"},
)
finally:
if workdir.exists():
shutil.rmtree(workdir)
print("Workdir removed:", workdir)
project2edits = dict[Path, list[C3Problem]]()
try:
stats = dict[str, Any]()
for root, pr in zip(roots, presults):
project2edits.setdefault(root, []).extend(pr.edits)
rec_add_dict_to(stats, pr.stats)
if "tlogger" in stats:
df = TimeLogger.times_to_dataframe(stats.pop("tlogger"))
print("Time stats:")
display(df)
if "analyzer_errors" in list(stats.keys()):
errors: dict = stats.pop("analyzer_errors")
for k in list(errors.keys()):
if JediUsageAnalyzer.is_known_error(k):
errors.pop(k)
if errors:
print("Analyzer errors:")
for k in sorted(errors.keys(), key=lambda k: errors[k], reverse=True):
print(f"{k}:\t{errors[k]}")
if stats:
print("Other Stats:")
pretty_print_dict(stats)
except Exception as e:
if not isinstance(e, KeyboardInterrupt):
print("Error while printing stats:", e)
</s>
===========below chunk 1===========
# module: coeditor.dataset
def dataset_from_projects(
project_roots: Sequence[Path],
change_processor: ProjectChangeProcessor[C3Problem],
repo_training: Sequence[bool],
max_history_per_repo: int = 1000,
workers: int = DefaultWorkers,
) -> "Mapping[Path, Sequence[C3Problem]]":
# offset: 2
<s> except Exception as e:
if not isinstance(e, KeyboardInterrupt):
print("Error while printing stats:", e)
return project2edits
===========unchanged ref 0===========
at: IPython.core.display_functions
display(*, include=None, exclude=None, metadata=None, transient=None, display_id=None, raw=False, clear=False, source=_sentinel, **kwargs)
at: coeditor._utils
DefaultWorkers: int = multiprocessing.cpu_count() // 2
global DefaultWorkers
pmap(f: Callable[..., T1], iter3: Iterable[Any], iter4: Iterable[Any], iter5: Iterable[Any], iter6: Iterable[Any], /, *iterables: Iterable[Any], desc: str | None=None, key_args: Mapping[str, Any] | None=None, max_workers: int | None=None, chunksize: int | None=None, tqdm_args: Mapping[str, Any] | None=None) -> list[T1]
TimeLogger(times: dict[str, list[float]]=field(default_factory=dict))
pretty_print_dict(d: dict, level: int=0, max_show_level: int=1000, float_precision: int=5)
at: coeditor._utils.TimeLogger
times_to_dataframe(times: dict[str, list[float]])
at: coeditor.c3problem
C3Problem(span: ChangedCodeSpan, edit_line_ids: Sequence[int], relevant_changes: Sequence[ChangedCodeSpan], relevant_unchanged: Mapping["PyFullName", "PyDefinition"], change_type: Change[None], src_info: SrcInfo, transformations: tuple[str, ...]=())
JediUsageAnalyzer(include_parent_usages: bool=True, include_builtins: bool=False)
at: coeditor.c3problem.JediUsageAnalyzer
include_parent_usages: bool = True
include_builtins: bool = False
===========unchanged ref 1===========
_KnownJediErrors = {
"not enough values to unpack (expected 2",
"'Newline' object has no attribute 'children'",
"trailer_op is actually ",
"There's a scope that was not managed: <Module",
"maximum recursion depth exceeded",
"'NoneType' object has no attribute 'type'",
}
is_known_error(err_text: str)
at: coeditor.common
rec_add_dict_to(target: dict[str, Any], value: Mapping[str, Any], value_merger: Callable[[Any, Any], Any]=lambda x, y: x + y)
at: coeditor.dataset
_process_commits(root: Path, workdir: Path, commits: Sequence[CommitInfo], is_training: bool, change_processor: ProjectChangeProcessor[C3Problem]) -> _ProcessingResult
at: coeditor.dataset._ProcessingResult
edits: Sequence[C3Problem]
stats: dict[str, dict | Any]
at: coeditor.git
CommitInfo(hash: str, parents: tuple[str, ...], msg: str)
get_commit_history(project_dir: Path, max_history: int | None=None, commit_id: str="HEAD") -> list[CommitInfo]
at: coeditor.scoped_changes
ProjectChangeProcessor()
at: math
ceil(x: SupportsFloat, /) -> int
at: os
getpid() -> int
at: pathlib
Path()
at: pathlib.Path
__slots__ = ()
exists() -> bool
at: shutil
rmtree(path: Union[bytes, StrPath], ignore_errors: bool=..., onerror: Optional[Callable[[Any, Any, Any], Any]]=...) -> None
at: tempfile
gettempdir() -> str
at: typing
Sequence = _alias(collections.abc.Sequence, 1)
===========unchanged ref 2===========
at: typing.MutableMapping
pop(key: _KT, default: Union[_VT, _T]=...) -> Union[_VT, _T]
pop(key: _KT) -> _VT
===========changed ref 0===========
# module: coeditor.dataset
def _process_commits(
root: Path,
workdir: Path,
commits: Sequence[CommitInfo],
is_training: bool,
change_processor: ProjectChangeProcessor[C3Problem],
) -> _ProcessingResult:
# use process-specific parso cache
fix_jedi_cache(workdir)
scoped_changes._tlogger.clear()
change_processor.clear_stats()
change_processor.set_training(is_training)
try:
# cannot return here since subprocess will be killed after returning
edits = edits_from_commit_history(
root,
commits,
+ tempdir=workdir / "code" / root.name,
- tempdir=workdir / "code",
change_processor=change_processor,
silent=True,
time_limit=time_limit_per_commit * (len(commits) + 10),
)
except Exception as e:
if isinstance(e, KeyboardInterrupt):
raise
warnings.warn(f"Failed to process project: {root}\nError: {e}")
traceback.print_exception(e, limit=-6)
edits = []
stats = dict()
change_processor.append_stats(stats)
rec_add_dict_to(stats, {"tlogger": scoped_changes._tlogger.times})
return _ProcessingResult(edits, stats)
|
coeditor.common/random_subset | Modified | temp-1 | 4f5cb29cfbc55d7d9f6407473bc0766f831b8a94 | Improve C3DataLoader performance. | <0>:<add> return {(k := keys[i]): all[k] for i in ids[:n]}
| # module: coeditor.common
+ def random_subset(all, n: int, rng: random.Random | int | None = None):
- def random_subset(all, n: int, rng: random.Random | None = None):
if rng is None:
+ rng = random.Random()
- rng = random.Random(42)
+ elif isinstance(rng, int):
+ rng = random.Random(rng)
if isinstance(all, Sequence):
+ ids = list(range(len(all)))
- xs = [x for x in all]
+ rng.shuffle(ids)
- rng.shuffle(xs)
+ xs = [all[i] for i in ids[:n]]
+ return xs
- return xs[:n]
elif isinstance(all, Mapping):
keys = [k for k in all]
+ ids = list(range(len(keys)))
+ rng.shuffle(ids)
- rng.shuffle(keys)
- return {k: all[k] for k in keys[:n]}
<0> else:
raise ArgumentError(all, f"Unsupported arg type: {type(all)}")
| ===========unchanged ref 0===========
at: random
Random(x: Any=...)
at: random.Random
VERSION = 3 # used by getstate/setstate
_randbelow = _randbelow_with_getrandbits
shuffle(x: MutableSequence[Any], random: Optional[Callable[[], float]]=...) -> None
at: typing
Mapping = _alias(collections.abc.Mapping, 2)
Sequence = _alias(collections.abc.Sequence, 1)
|
coeditor.model/C3DataLoader._to_tokenized | Modified | temp-1 | 4f5cb29cfbc55d7d9f6407473bc0766f831b8a94 | Improve C3DataLoader performance. | <0>:<add> tqdm_args={"disable": True},
| # module: coeditor.model
@dataclass
class C3DataLoader:
def _to_tokenized(self, probs: Sequence[C3Problem]) -> Iterable[TkC3Problem]:
probs = list(probs)
+ if self.transform is not None:
+ # we can afford to store all transformed problems beforehand
+ probs = join_list(pmap(self.transform.transform, probs, chunksize=500))
if self.shuffle:
+ # we need to shuffle after the transform to help serialization
+ # this also mixes the problems better
random.shuffle(probs)
for i in range(0, len(probs), self.chunk_size):
+ # we can only afford to tokenize the problems on-the-fly
group = probs[i : i + self.chunk_size]
- if self.transform is not None:
- group = join_list(
- pmap(self.transform.transform, group, tqdm_args={"disable": True})
- )
yield from pmap(
+ self.tokenizer.tokenize_problem,
+ group,
- self.tokenizer.tokenize_problem, group, tqdm_args={"disable": True}
<0> )
| ===========unchanged ref 0===========
at: coeditor._utils
pmap(f: Callable[..., T1], iter3: Iterable[Any], iter4: Iterable[Any], iter5: Iterable[Any], iter6: Iterable[Any], /, *iterables: Iterable[Any], desc: str | None=None, key_args: Mapping[str, Any] | None=None, max_workers: int | None=None, chunksize: int | None=None, tqdm_args: Mapping[str, Any] | None=None) -> list[T1]
at: coeditor.c3problem.C3ProblemTokenizer
VERSION = "2.7"
max_ref_tks: int = 512
max_query_tks: int = 512
max_output_tks: int = 256
max_scope_tks: int = 128
max_ref_tks_sum: int = 512 * 16
ref_chunk_overlap: int = 32
disable_builtin_defs: bool = True
disable_unchanged_refs: bool = False
current_code_only: bool = False
tokenize_problem(problem: C3Problem) -> TkC3Problem
at: coeditor.c3problem.C3ProblemTransform
transform(prob: C3Problem) -> Sequence[C3Problem]
at: coeditor.common
join_list(segs: Iterable[Iterable[T1]], sep: T1 | None=None) -> list[T1]
at: coeditor.model.C3DataLoader
all_probs: Sequence[C3Problem]
transform: C3ProblemTransform | None
tokenizer: C3ProblemTokenizer
batch_args: BatchArgs
shuffle: bool
desc: str
tqdm_args: dict | None = None
chunk_size: int = 1000
at: random
shuffle = _inst.shuffle
===========changed ref 0===========
# module: coeditor.model
@dataclass
class C3DataLoader:
all_probs: Sequence[C3Problem]
transform: C3ProblemTransform | None
tokenizer: C3ProblemTokenizer
batch_args: BatchArgs
shuffle: bool
desc: str
tqdm_args: dict | None = None
chunk_size: int = 1000
- workers: int = 10
===========changed ref 1===========
# module: coeditor.c3problem
@dataclass
class C3ProblemChangeDropout(C3ProblemTransform):
+ def __post_init__(self):
+ self._rng = random.Random()
+
===========changed ref 2===========
# module: coeditor.c3problem
@dataclass
class C3ProblemChangeDropout(C3ProblemTransform):
"""Split the problem into fixed-sized editing ranges like `C3ProblemSimpleSplit`,
but also randomly keep some subset of changes in the input.
### Change log
+ - v1.3: make `random_subset` truely random.
- v1.2: fix newline encoding bug.
- v1.1
- Dropout changes using change groups instead of individual change actions.
- Perform dropout at entire problem level ratehr than chunk level. This way,
changes in later chunks will be visible as well.
- Removed `dropout_prob`.
"""
+ VERSION = "1.3"
- VERSION = "1.2"
max_lines_to_edit: int = 25
max_split_factor: int = 4
# when dropping the changes into the input, the biggest ratio of changes to drop
max_dropout_ratio: float = 0.5
_test_prob: float = 0.01
===========changed ref 3===========
# module: coeditor.common
+ def random_subset(all, n: int, rng: random.Random | int | None = None):
- def random_subset(all, n: int, rng: random.Random | None = None):
if rng is None:
+ rng = random.Random()
- rng = random.Random(42)
+ elif isinstance(rng, int):
+ rng = random.Random(rng)
if isinstance(all, Sequence):
+ ids = list(range(len(all)))
- xs = [x for x in all]
+ rng.shuffle(ids)
- rng.shuffle(xs)
+ xs = [all[i] for i in ids[:n]]
+ return xs
- return xs[:n]
elif isinstance(all, Mapping):
keys = [k for k in all]
+ ids = list(range(len(keys)))
+ rng.shuffle(ids)
- rng.shuffle(keys)
+ return {(k := keys[i]): all[k] for i in ids[:n]}
- return {k: all[k] for k in keys[:n]}
else:
raise ArgumentError(all, f"Unsupported arg type: {type(all)}")
===========changed ref 4===========
# module: coeditor.c3problem
@dataclass
class C3ProblemChangeDropout(C3ProblemTransform):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
original = prob.span.original
delta = prob.span.delta
l_range = prob.edit_lines
assert isinstance(l_range, range)
start, stop = l_range.start, l_range.stop
grouped_keys = delta.change_groups()
should_dropout = len(grouped_keys) >= 2
if should_dropout:
n_to_drop = int(
len(grouped_keys) * random.random() * self.max_dropout_ratio
)
assert n_to_drop < len(grouped_keys)
+ keys_to_drop = join_list(
+ random_subset(grouped_keys, n_to_drop, rng=self._rng)
+ )
- keys_to_drop = join_list(random_subset(grouped_keys, n_to_drop))
else:
keys_to_drop = []
if keys_to_drop:
delta1, delta2 = delta.decompose_for_change(keys_to_drop)
if random.random() < self._test_prob:
result1 = delta2.apply_to_change(
delta1.apply_to_change(original.tolist())
)
result2 = delta.apply_to_change(original.tolist())
code1 = tokens_to_change(result1).after
code2 = tokens_to_change(result2).after
if code1 != code2:
print_sections(
("result1", decode_tokens(result1)),
("result2", decode_tokens(result2)),
("delta", str(delta)),
("keys_to_drop", str(keys_to_drop)),
("delta1", str(delta1)),
("delta2", str(delta2)),
)
raise AssertionError("decompose_for_change failed.")
delta2</s> |
coeditor.model/C3DataLoader.estimate_batch_stats | Modified | temp-1 | 4f5cb29cfbc55d7d9f6407473bc0766f831b8a94 | Improve C3DataLoader performance. | <0>:<add> return size_est, batch_stats
| # module: coeditor.model
@dataclass
class C3DataLoader:
def estimate_batch_stats(self):
+ factor = 10
+ n = max(1, len(self.all_probs) // factor)
+ subset = random_subset(self.all_probs, n, rng=42)
+ batches = self._problems_to_batches(self._to_tokenized(subset))
- batches = self._problems_to_batches(self._to_tokenized(self.all_probs))
bsizes = list[int]()
+ for b in tqdm(batches, desc="estimate_batch_stats", smoothing=0.0):
- for b in batches:
bsizes.append(len(b["input_ids"]))
batch_stats = {k: f"{v:.1f}" for k, v in scalar_stats(bsizes).items()}
+ # better to have a smaller estimate to avoid triggering data regeneration
+ size_est = max(1, int(len(self.all_probs) / n * len(bsizes) * 0.99))
- return len(bsizes), batch_stats
<0>
| ===========unchanged ref 0===========
at: coeditor.common
random_subset(all: Mapping[T1, T2], n: int, rng: random.Random | int | None=None) -> dict[T1, T2]
random_subset(all: Sequence[T1], n: int, rng: random.Random | int | None=None) -> list[T1]
at: coeditor.model.C3DataLoader
all_probs: Sequence[C3Problem]
===========changed ref 0===========
# module: coeditor.common
+ def random_subset(all, n: int, rng: random.Random | int | None = None):
- def random_subset(all, n: int, rng: random.Random | None = None):
if rng is None:
+ rng = random.Random()
- rng = random.Random(42)
+ elif isinstance(rng, int):
+ rng = random.Random(rng)
if isinstance(all, Sequence):
+ ids = list(range(len(all)))
- xs = [x for x in all]
+ rng.shuffle(ids)
- rng.shuffle(xs)
+ xs = [all[i] for i in ids[:n]]
+ return xs
- return xs[:n]
elif isinstance(all, Mapping):
keys = [k for k in all]
+ ids = list(range(len(keys)))
+ rng.shuffle(ids)
- rng.shuffle(keys)
+ return {(k := keys[i]): all[k] for i in ids[:n]}
- return {k: all[k] for k in keys[:n]}
else:
raise ArgumentError(all, f"Unsupported arg type: {type(all)}")
===========changed ref 1===========
# module: coeditor.model
@dataclass
class C3DataLoader:
all_probs: Sequence[C3Problem]
transform: C3ProblemTransform | None
tokenizer: C3ProblemTokenizer
batch_args: BatchArgs
shuffle: bool
desc: str
tqdm_args: dict | None = None
chunk_size: int = 1000
- workers: int = 10
===========changed ref 2===========
# module: coeditor.model
@dataclass
class C3DataLoader:
def _to_tokenized(self, probs: Sequence[C3Problem]) -> Iterable[TkC3Problem]:
probs = list(probs)
+ if self.transform is not None:
+ # we can afford to store all transformed problems beforehand
+ probs = join_list(pmap(self.transform.transform, probs, chunksize=500))
if self.shuffle:
+ # we need to shuffle after the transform to help serialization
+ # this also mixes the problems better
random.shuffle(probs)
for i in range(0, len(probs), self.chunk_size):
+ # we can only afford to tokenize the problems on-the-fly
group = probs[i : i + self.chunk_size]
- if self.transform is not None:
- group = join_list(
- pmap(self.transform.transform, group, tqdm_args={"disable": True})
- )
yield from pmap(
+ self.tokenizer.tokenize_problem,
+ group,
+ tqdm_args={"disable": True},
- self.tokenizer.tokenize_problem, group, tqdm_args={"disable": True}
)
===========changed ref 3===========
# module: coeditor.c3problem
@dataclass
class C3ProblemChangeDropout(C3ProblemTransform):
+ def __post_init__(self):
+ self._rng = random.Random()
+
===========changed ref 4===========
# module: coeditor.c3problem
@dataclass
class C3ProblemChangeDropout(C3ProblemTransform):
"""Split the problem into fixed-sized editing ranges like `C3ProblemSimpleSplit`,
but also randomly keep some subset of changes in the input.
### Change log
+ - v1.3: make `random_subset` truely random.
- v1.2: fix newline encoding bug.
- v1.1
- Dropout changes using change groups instead of individual change actions.
- Perform dropout at entire problem level ratehr than chunk level. This way,
changes in later chunks will be visible as well.
- Removed `dropout_prob`.
"""
+ VERSION = "1.3"
- VERSION = "1.2"
max_lines_to_edit: int = 25
max_split_factor: int = 4
# when dropping the changes into the input, the biggest ratio of changes to drop
max_dropout_ratio: float = 0.5
_test_prob: float = 0.01
===========changed ref 5===========
# module: coeditor.c3problem
@dataclass
class C3ProblemChangeDropout(C3ProblemTransform):
def transform(self, prob: C3Problem) -> Sequence[C3Problem]:
original = prob.span.original
delta = prob.span.delta
l_range = prob.edit_lines
assert isinstance(l_range, range)
start, stop = l_range.start, l_range.stop
grouped_keys = delta.change_groups()
should_dropout = len(grouped_keys) >= 2
if should_dropout:
n_to_drop = int(
len(grouped_keys) * random.random() * self.max_dropout_ratio
)
assert n_to_drop < len(grouped_keys)
+ keys_to_drop = join_list(
+ random_subset(grouped_keys, n_to_drop, rng=self._rng)
+ )
- keys_to_drop = join_list(random_subset(grouped_keys, n_to_drop))
else:
keys_to_drop = []
if keys_to_drop:
delta1, delta2 = delta.decompose_for_change(keys_to_drop)
if random.random() < self._test_prob:
result1 = delta2.apply_to_change(
delta1.apply_to_change(original.tolist())
)
result2 = delta.apply_to_change(original.tolist())
code1 = tokens_to_change(result1).after
code2 = tokens_to_change(result2).after
if code1 != code2:
print_sections(
("result1", decode_tokens(result1)),
("result2", decode_tokens(result2)),
("delta", str(delta)),
("keys_to_drop", str(keys_to_drop)),
("delta1", str(delta1)),
("delta2", str(delta2)),
)
raise AssertionError("decompose_for_change failed.")
delta2</s> |
scripts.train_model/train_model | Modified | temp-1 | 4f5cb29cfbc55d7d9f6407473bc0766f831b8a94 | Improve C3DataLoader performance. | <0>:<add> out_dir, random_subset(exact_correct_map, max_saved_samples, rng=42)
| # module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
<s>fly
+ train_loader = C3DataLoader(
+ datasets["train"],
+ encoder.problem_tranform,
+ train_tkn,
+ batch_args,
+ shuffle=True,
+ desc="training",
+ )
model.train_on_data(model_name, train_loader, eval_loader, train_args)
model.to("cuda")
with timed_action("Loss Evaluation"):
eval_result = model.eval_loss_on_loader(eval_loader)
eval_dict = {f"test/{k}": v.average() for k, v in eval_result.items()}
wandb.log(eval_dict)
max_saved_samples = 300
with timed_action("Accuracy Evaluation"):
dec_result = model.predict_on_data(
datasets["test"], eval_tkn, eval_batch_args, dec_args
)
pickle_dump(get_model_dir() / model_name / "dec_result.pkl", dec_result)
exact_acc, exact_correct_map = dec_result.exact_match_accuracy()
wandb.log({"test/exact-acc": exact_acc.average()})
out_dir = get_model_dir() / model_name / "exact_match_samples"
dec_result.save_examples_to_dir(
- out_dir, random_subset(exact_correct_map, max_saved_samples)
<0> )
cprint("blue", "Exact-match samples saved to:", out_dir)
return model
| ===========above chunk 0===========
# module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: -1
<s>training",
- )
-
with timed_action("Warm-up Training"):
warmup_bargs = copy.deepcopy(batch_args)
warmup_bargs.min_queries *= 4
warmup_bargs.max_queries *= 2
+ warm_up_data = random_subset(
+ datasets["train"], len(datasets["train"]) // 4, rng=42
- warm_up_data = random_subset(datasets["train"], len(datasets["train"]) // 4)
+ )
+ warmup_tkn = copy.copy(train_tkn)
- warmup_tkn = copy.deepcopy(train_tkn)
warmup_tkn.max_ref_tks_sum //= 3
warmup_loader = C3DataLoader(
warm_up_data,
encoder.problem_tranform,
warmup_tkn,
warmup_bargs,
shuffle=True,
desc="warm-up training",
)
warmup_targs = copy.deepcopy(train_args)
warmup_targs.learning_rate *= 4
warmup_targs.max_train_epochs = 1
model.train_on_data(model_name, warmup_loader, eval_loader, warmup_targs)
with timed_action("Fine-tune Training"):
+ # we attach the problem transform to the dataloader to generate data on-the-fly
+ train_loader = C3DataLoader(
+ datasets["train"],
+ encoder.problem_tranform</s>
===========above chunk 1===========
# module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: -2
<s> model = RetrievalEditorModel.from_code_t5(
"base", reuse_embed=True, reinit_weights=train_args.reinit_weights
)
else:
model = RetrievalEditorModel.load(get_model_dir() / model_name)
if os.getenv("CUDA_VISIBLE_DEVICES") is None:
warnings.warn(
"CUDA_VISIBLE_DEVICES not set, using 0. Note that "
"the Huggingface Trainer will use all visible GPUs for training."
)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
train_tkn = encoder.edit_tokenizer
eval_tkn = copy.deepcopy(train_tkn)
eval_tkn.max_ref_tks_sum *= 2
eval_loader = C3DataLoader(
datasets["valid"], None, eval_tkn, eval_batch_args, shuffle=False, desc="eval"
)
if not eval_only:
- # we attach the problem transform to the dataloader to generate data on-the-fly
- train_loader = C3DataLoader(
- datasets["train"],
- encoder.problem_tranform,
- train_tkn,
- batch_args,
- shuffle=True,
- desc="training",
- )
-
with timed_action("Warm-up Training"):
warmup_bargs =</s>
===========above chunk 2===========
# module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: -3
<s> "quicktest-" + model_name
if not eval_only:
check_save_dir(model_name)
# problems will be transformed and saved for valid and test but not train.
datasets = make_or_load_dataset(
dataset_name,
encoder.change_processor,
encoder.problem_tranform,
remake_problems=recreate_data,
)
config_dict = {
k: get_modified_args(v)
for k, v in {
"edit_tokenizer": encoder.edit_tokenizer.get_args(),
"batch_args": batch_args,
"train_args": train_args,
"dec_args": dec_args,
}.items()
}
project = "Coeditor" if not train_args.quicktest else "Coeditor-quicktest"
if eval_only:
project = "eval-" + project
wandb.init(dir="..", project=project, name=model_name, config=config_dict)
if train_args.quicktest:
print("Using fewer data for quick test.")
n_quick_exs = 20
datasets = C3ProblemDataset(
train=datasets["train"][:n_quick_exs],
valid=datasets["valid"][:n_quick_exs],
test=datasets["test"][:n_quick_exs],
)
if not eval_only:</s>
===========above chunk 3===========
# module: scripts.train_model
def train_model(
dataset_name="medium",
model_variant="-sig-analysis-post_usees",
encoder: C3EditEncoder = C3EditEncoder(),
batch_args=BatchArgs.train_default(),
eval_batch_args=BatchArgs.eval_default(),
train_args=TrainingArgs(),
recreate_data: bool = False,
eval_only: bool = False,
):
# offset: -4
# model_variant = "-file"
model_name = f"coeditor-{dataset_name}"
model_name += model_variant
dec_args = DecodingArgs()
if train_args.quicktest:
model_</s> |
Subsets and Splits