Ubuntu
Initial commit
e67edda

Model fine-tuning

This directory contains scripts for:

  • Model fine-tuning: Generate datasets and fine-tune an LLM on GitHub PRs and commits.
  • RAG indexing: Generate vector indexes (embeddings) based on the repository.
  • GitHub crawler: Retrieve PR metadata, comments, reviews, and commit diffs from a public GitHub repository.

Directory structure

  • model/: Python scripts for dataset generation, fine-tuning, and RAG vector indexing.
  • github/: Node.js CLI tool for crawling GitHub repositories.
  • ../data/: Output directory for crawled data, generated datasets, and vector indexes.

Dataset generation & RAG indexing

Overview

  • generate_dataset.py: Processes raw PR metadata and commit diffs (from ../data/) to generate training examples in JSONL format.
  • rag.py: Generates vector indexes (embeddings) from processed data for retrieval-augmented generation.

Quick Start

  1. Install dependencies:
    pip3 install -r requirements.txt
    
  2. Prepare a settings.json file:
    {
      "system_instruction": "...",
      "base_model": "microsoft/Phi-4-reasoning",
      "max_context_size": 32768,
      "embed_model": "all-MiniLM-L6-v2",
      "repository": "https://github.com/dotnet/runtime"
    }
    
  3. Data preparation & indexing:
    • Run the dataset generator and RAG indexer:
      python3 generate_dataset.py
      python3 rag.py
      

GitHub Crawler

A CLI tool to retrieve PR metadata, comments, reviews, and commit diffs from a public GitHub repo.

Quick Start

  1. Install dependencies:
    npm install
    
  2. Set your GitHub token:
    export GITHUB_TOKEN=YOUR_TOKEN
    
  3. Run the crawler:
    node main.js
    

Expected Output

After running, you'll find:

../data/raw_sample/
β”œβ”€β”€ prs/
β”‚   β”œβ”€β”€ pr-1.json
β”‚   β”œβ”€β”€ pr-2.json
β”‚   └── ...
└── diffs/
    β”œβ”€β”€ <sha1>.diff
    β”œβ”€β”€ <sha2>.diff
    └── ...
../data/processed/
    train.parquet
    test.parquet
../data/faiss/
    index