|
--- |
|
pretty_name: ".NET Runtime" |
|
tags: |
|
- raw-json |
|
- parquet |
|
- faiss-index |
|
- text |
|
- large-scale |
|
- offline-processing |
|
- github |
|
- code |
|
- datasets |
|
license: mit |
|
language: |
|
- en |
|
size_categories: |
|
- 100K<n<1M |
|
task_categories: |
|
- text-classification |
|
- text-retrieval |
|
source_datasets: [] |
|
annotations_creators: |
|
- machine-generated |
|
- human-verified |
|
--- |
|
|
|
# .NET Runtime Fine-Tuning Data and Index |
|
|
|
This directory contains data for fine-tuning models and building RAGs for the dotnet/runtime repository. |
|
|
|
## Overview |
|
|
|
- **data/**: Contains all datasets and indexes. |
|
- **raw/sample/**: Sample PRs and diffs collected from GitHub. |
|
- **raw_data.tar**: Archive of collected PRs and diffs from GitHub. |
|
- **samples/**: Json files with processed samples suitable for dataset generation. |
|
- **processed/**: Parquet files for fine-tuning (e.g., `train.parquet`, `test.parquet`). |
|
- **faiss/**: Vector indexes for RAG workflows. |
|
- **scripts/**: Python and nodejs scripts for crawling, processing, and indexing. |
|
|
|
## Data Structure |
|
|
|
``` |
|
data/ |
|
βββ raw/ |
|
| βββ sample/ |
|
β β βββ prs/ |
|
β β βββ diffs/ |
|
β βββ raw_data.tar |
|
βββ processed/ |
|
β βββ train.parquet |
|
β βββ test.parquet |
|
βββ faiss/ |
|
βββ index.faiss |
|
βββ index.pkl |
|
``` |
|
|
|
## Generated dataset |
|
|
|
PR is considered as a timeline with events. Input is PR metadata (title, description, label) and commit n-1, with all events between n-1 and n. Completion is n. It is possible to filter by time, label, authors, etc. |
|
|
|
## Scripts |
|
|
|
See [scripts/README.md](scripts/README.md) for details on running the crawler, dataset generation, and RAG indexing. |
|
|
|
## PyTorch Dataset Example |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load Parquet train/test splits |
|
train = load_dataset("parquet", data_files="data/processed/train.parquet", split="train") |
|
test = load_dataset("parquet", data_files="data/processed/test.parquet", split="train") |
|
``` |
|
|
|
## RAG Vector Search Example |
|
|
|
```python |
|
import faiss |
|
import numpy as np |
|
|
|
# Load FAISS index |
|
index = faiss.read_index("data/faiss/index.faiss") |
|
|
|
# Example query embedding (replace with your embedding) |
|
query_embedding = ... |
|
|
|
# Search |
|
D, I = index.search(query_embedding.reshape(1, -1), k=5) |
|
print("Top 5 similar PR indices:", I[0]) |
|
``` |