text
stringlengths
78
104k
score
float64
0
0.18
def check(self, inst, value): """Raise TypeError if value doesn't satisfy the constraints for use on instance inst. """ if not (self.or_none and value is None): if self.seq: self.checktype_seq(value, self.kind, unique=self.unique, inst=inst) else: self.checktype(value, self.kind, inst=inst)
0.004831
def _write_log(self): """ Write log info """ logger.info("Writing config file %s" % self.path) if settings.DEBUG: try: old_content = open(self.path, 'r').readlines() except IOError: old_content = '' new_content = self.contents().splitlines(True) diff = difflib.unified_diff(old_content, new_content, fromfile=self.path, tofile=self.path) if diff: logger.debug('Diff:\n' + ''.join(diff)) else: logger.debug('File not changed')
0.00311
def save_model(self, request, page, form, change): """Move the page in the tree if necessary and save every placeholder :class:`Content <pages.models.Content>`. """ language = form.cleaned_data['language'] target = form.data.get('target', None) position = form.data.get('position', None) page.save() # if True, we need to move the page if target and position: try: target = self.model.objects.get(pk=target) except self.model.DoesNotExist: pass else: target.invalidate() page.move_to(target, position) for name in self.mandatory_placeholders: data = form.cleaned_data[name] placeholder = PlaceholderNode(name) extra_data = placeholder.get_extra_data(form.data) placeholder.save(page, language, data, change, extra_data=extra_data) for placeholder in get_placeholders(page.get_template()): if(placeholder.ctype in form.cleaned_data and placeholder.ctype not in self.mandatory_placeholders): data = form.cleaned_data[placeholder.ctype] extra_data = placeholder.get_extra_data(form.data) placeholder.save(page, language, data, change, extra_data=extra_data) page.invalidate()
0.002786
def set_alembic_revision(path=None): """Create/Update alembic table to latest revision number""" config = Config() try: config.set_main_option("script_location", path or "migrations") script = ScriptDirectory.from_config(config) head = script.get_current_head() # create alembic table metadata, alembic_version = alembic_table_metadata() metadata.create_all() item = manager.db.session.query(alembic_version).first() if item and item.version_num != head: item.version_num = head else: item = alembic_version.insert().values(version_num=head) item.compile() conn = manager.db.engine.connect() conn.execute(item) manager.db.session.commit() stdout.write("alembic head is set to %s \n" % head) except CommandError as e: stdout.write(e.message)
0.001096
def load_observations((observations, regex, rename), path, filenames): """ Returns a provisional name based dictionary of observations of the object. Each observations is keyed on the date. ie. a dictionary of dictionaries. :rtype : None :param observations: dictionary to store observtions into :param path: the directory where filenames are. :param filenames: list of files in path. """ for filename in filenames: if re.search(regex, filename) is None: logging.warning("Skipping {}".format(filename)) continue print os.path.join(path,filename) obs = mpc.MPCReader().read(os.path.join(path,filename)) for ob in obs: if rename: new_provisional_name = os.path.basename(filename) new_provisional_name = new_provisional_name[0:new_provisional_name.find(".")] ob.provisional_name = new_provisional_name # ob.comment.name = new_provisional_name key1 = "{:.5f}".format(ob.date.mjd) key2 = ob.provisional_name if key1 not in observations: observations[key1] = {} if key2 in observations[key1]: if observations[key1][key2]: continue if not observation.null_observation: logger.error(filename) logger.error(line) logger.error(str(observations[key1][key2])) raise ValueError("conflicting observations for {} in {}".format(key2, key1)) observations[key1][key2] = ob
0.009219
def store_data(self, data, encoding='utf-8'): """Put the given content into a file, possibly encoding it as UTF-8 in the process.""" path = random_filename(self.work_path) try: with open(path, 'wb') as fh: if isinstance(data, str): data = data.encode(encoding) if data is not None: fh.write(data) return self.store_file(path) finally: try: os.unlink(path) except OSError: pass
0.003521
def _partition(entity, sep): """Python2.4 doesn't have a partition method so we provide our own that mimics str.partition from later releases. Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the string itself, followed by two empty strings. """ parts = entity.split(sep, 1) if len(parts) == 2: return parts[0], sep, parts[1] else: return entity, '', ''
0.001689
def encode(self, value): ''' :param value: value to encode ''' kassert.is_of_types(value, Bits) remainder = len(value) % 8 if remainder: value += Bits(bin='0' * (8 - remainder)) return value
0.007752
def get_object(self, queryset=None): """ Implement cache on ``get_object`` method to avoid repetitive calls, in POST. """ if self._cached_object is None: self._cached_object = super(EntryCacheMixin, self).get_object( queryset) return self._cached_object
0.006079
def phisheye_term_list(self, include_inactive=False, **kwargs): """Provides a list of terms that are set up for this account. This call is not charged against your API usage limit. NOTE: The terms must be configured in the PhishEye web interface: https://research.domaintools.com/phisheye. There is no API call to set up the terms. """ return self._results('phisheye_term_list', '/v1/phisheye/term-list', include_inactive=include_inactive, items_path=('terms', ), **kwargs)
0.007067
def dump_guest_core(self, filename, compression): """Takes a core dump of the guest. See include/VBox/dbgfcorefmt.h for details on the file format. in filename of type str The name of the output file. The file must not exist. in compression of type str Reserved for future compression method indicator. """ if not isinstance(filename, basestring): raise TypeError("filename can only be an instance of type basestring") if not isinstance(compression, basestring): raise TypeError("compression can only be an instance of type basestring") self._call("dumpGuestCore", in_p=[filename, compression])
0.008119
def _send_success_response(self, response, start_response): """Sends an HTTP 200 json success response. This calls start_response and returns the response body. Args: response: A string containing the response body to return. start_response: A function with semantics defined in PEP-333. Returns: A string, the response body. """ headers = [('Content-Type', 'application/json; charset=UTF-8')] return util.send_wsgi_response('200 OK', headers, response, start_response)
0.001931
def check(self, return_code=0): """Run command with arguments. Wait for command to complete. If the exit code was as expected and there is no exception then return, otherwise raise EasyProcessError. :param return_code: int, expected return code :rtype: self """ ret = self.call().return_code ok = ret == return_code if not ok: raise EasyProcessError( self, 'check error, return code is not {0}!'.format(return_code)) return self
0.005576
def request_acquisition(self, acquisition_request): """RequestAcquisition. [Preview API] :param :class:`<ExtensionAcquisitionRequest> <azure.devops.v5_1.gallery.models.ExtensionAcquisitionRequest>` acquisition_request: :rtype: :class:`<ExtensionAcquisitionRequest> <azure.devops.v5_1.gallery.models.ExtensionAcquisitionRequest>` """ content = self._serialize.body(acquisition_request, 'ExtensionAcquisitionRequest') response = self._send(http_method='POST', location_id='3adb1f2d-e328-446e-be73-9f6d98071c45', version='5.1-preview.1', content=content) return self._deserialize('ExtensionAcquisitionRequest', response)
0.007782
def flightmode_menu(): '''construct flightmode menu''' modes = mestate.mlog.flightmode_list() ret = [] idx = 0 for (mode,t1,t2) in modes: modestr = "%s %us" % (mode, (t2-t1)) ret.append(MPMenuCheckbox(modestr, modestr, 'mode-%u' % idx)) idx += 1 mestate.flightmode_selections.append(False) return ret
0.008427
def build_args(cmd, src, dst): """ Build arguments list for passing to subprocess.call_check :param cmd str: Command string to interpolate src and dst filepaths into. Typically the output of `config.Config.uic_command` or `config.Config.rcc_command`. :param src str: Source filepath. :param dst str: Destination filepath. """ cmd = cmd % (quote(src), quote(dst)) args = shlex.split(cmd) return [arg for arg in args if arg]
0.006148
def translate_obj(self,d,fname): """ Translate a field value from a solr document. This includes special logic for when the field value denotes an object, here we nest it """ if fname not in d: # TODO: consider adding arg for failure on null return None lf = M.label_field(fname) id = d[fname] id = self.make_canonical_identifier(id) #if id.startswith('MGI:MGI:'): # id = id.replace('MGI:MGI:','MGI:') obj = {'id': id} if id: if self._use_amigo_schema(self.object_category): iri = expand_uri(id) else: iri = expand_uri(id, [get_curie_map('{}/cypher/curies'.format(self.config.scigraph_data.url))]) obj['iri'] = iri if lf in d: obj['label'] = d[lf] cf = fname + "_category" if cf in d: obj['category'] = [d[cf]] if 'aspect' in d and id.startswith('GO:'): obj['category'] = [ASPECT_MAP[d['aspect']]] del d['aspect'] return obj
0.005367
def parse(self, data): # type: (bytes) -> None ''' Parse the passed in data into a UDF Long AD. Parameters: data - The data to parse. Returns: Nothing. ''' if self._initialized: raise pycdlibexception.PyCdlibInternalError('UDF Long Allocation descriptor already initialized') (self.extent_length, self.log_block_num, self.part_ref_num, self.impl_use) = struct.unpack_from(self.FMT, data, 0) self._initialized = True
0.007576
def UpdateNumberOfWarnings( self, number_of_consumed_warnings, number_of_produced_warnings): """Updates the number of warnings. Args: number_of_consumed_warnings (int): total number of warnings consumed by the process. number_of_produced_warnings (int): total number of warnings produced by the process. Returns: bool: True if either number of warnings has increased. Raises: ValueError: if the consumed or produced number of warnings is smaller than the value of the previous update. """ consumed_warnings_delta = 0 if number_of_consumed_warnings is not None: if number_of_consumed_warnings < self.number_of_consumed_warnings: raise ValueError( 'Number of consumed warnings smaller than previous update.') consumed_warnings_delta = ( number_of_consumed_warnings - self.number_of_consumed_warnings) self.number_of_consumed_warnings = number_of_consumed_warnings self.number_of_consumed_warnings_delta = consumed_warnings_delta produced_warnings_delta = 0 if number_of_produced_warnings is not None: if number_of_produced_warnings < self.number_of_produced_warnings: raise ValueError( 'Number of produced warnings smaller than previous update.') produced_warnings_delta = ( number_of_produced_warnings - self.number_of_produced_warnings) self.number_of_produced_warnings = number_of_produced_warnings self.number_of_produced_warnings_delta = produced_warnings_delta return consumed_warnings_delta > 0 or produced_warnings_delta > 0
0.005464
def update(self, iterations=1, item_id=None, force_flush=False): """ Updates the progress bar / percentage indicator. Parameters ---------- iterations : int (default: 1) default argument can be changed to integer values >=1 in order to update the progress indicators more than once per iteration. item_id : str (default: None) Print an item_id sring behind the progress bar force_flush : bool (default: False) If True, flushes the progress indicator to the output screen in each iteration. """ self.item_id = item_id self.cnt += iterations self._print(force_flush=force_flush) self._finish()
0.002628
def __request_except(self, requestId, exc, set_and_forget=True): """Set exception (if not None) for the given request and (optionally) remove from internal cache & setting its event""" try: with self.__requests: if set_and_forget: req = self.__requests.pop(requestId) else: req = self.__requests[requestId] except KeyError: logger.error('Unknown request %s - cannot set exception', requestId) else: if exc is not None: req.exception = exc if set_and_forget: req._set()
0.006033
def _tValueForPointOnCubicCurve(point, cubicCurve, isHorizontal=0): """ Finds a t value on a curve from a point. The points must be originaly be a point on the curve. This will only back trace the t value, needed to split the curve in parts """ pt1, pt2, pt3, pt4 = cubicCurve a, b, c, d = bezierTools.calcCubicParameters(pt1, pt2, pt3, pt4) solutions = bezierTools.solveCubic(a[isHorizontal], b[isHorizontal], c[isHorizontal], d[isHorizontal] - point[isHorizontal]) solutions = [t for t in solutions if 0 <= t < 1] if not solutions and not isHorizontal: # can happen that a horizontal line doens intersect, try the vertical return _tValueForPointOnCubicCurve(point, (pt1, pt2, pt3, pt4), isHorizontal=1) if len(solutions) > 1: intersectionLenghts = {} for t in solutions: tp = _getCubicPoint(t, pt1, pt2, pt3, pt4) dist = _distance(tp, point) intersectionLenghts[dist] = t minDist = min(intersectionLenghts.keys()) solutions = [intersectionLenghts[minDist]] return solutions
0.003587
def write_metrics_file(metrics: List[Dict[str, Any]], path: str): """ Write metrics data to tab-separated file. :param metrics: metrics data. :param path: Path to write to. """ with open(path, 'w') as metrics_out: for checkpoint, metric_dict in enumerate(metrics, 1): metrics_str = "\t".join(["{}={}".format(name, value) for name, value in sorted(metric_dict.items())]) metrics_out.write("{}\t{}\n".format(checkpoint, metrics_str))
0.004098
def _simulate_measurement(self, op: ops.Operation, data: _StateAndBuffer, indices: List[int], measurements: Dict[str, List[bool]], num_qubits: int) -> None: """Simulate an op that is a measurement in the computataional basis.""" meas = ops.op_gate_of_type(op, ops.MeasurementGate) # TODO: support measurement outside computational basis. if meas: invert_mask = meas.invert_mask or num_qubits * (False,) # Measure updates inline. bits, _ = wave_function.measure_state_vector(data.state, indices, data.state) corrected = [bit ^ mask for bit, mask in zip(bits, invert_mask)] key = protocols.measurement_key(meas) measurements[key].extend(corrected)
0.004386
def transformed_values(self): '''Return dictionary of transformed results, with keys being output names. Returns None if execution result isn't a success. Reconstructs the pipeline context to materialize values. ''' if self.success and self.transforms: with self.reconstruct_context() as context: values = { result.step_output_data.output_name: self._get_value( context, result.step_output_data ) for result in self.transforms if result.is_successful_output } return values else: return None
0.004213
def normalize(self): """ Return a new time series with all values normalized to 0 to 1. :return: `None` """ maximum = self.max() if maximum: self.values = [value / maximum for value in self.values]
0.007752
def bool_assignment(arg, patterns=None): """ Summary: Enforces correct bool argment assignment Arg: :arg (*): arg which must be interpreted as either bool True or False Returns: bool assignment | TYPE: bool """ arg = str(arg) # only eval type str try: if patterns is None: patterns = ( (re.compile(r'^(true|false)$', flags=re.IGNORECASE), lambda x: x.lower() == 'true'), (re.compile(r'^(yes|no)$', flags=re.IGNORECASE), lambda x: x.lower() == 'yes'), (re.compile(r'^(y|n)$', flags=re.IGNORECASE), lambda x: x.lower() == 'y') ) if not arg: return '' # default selected else: for pattern, func in patterns: if pattern.match(arg): return func(arg) except Exception as e: raise e
0.004435
def multiget(self, keys, r=None, pr=None, timeout=None, basic_quorum=None, notfound_ok=None, head_only=False): """ Retrieves a list of keys belonging to this bucket in parallel. :param keys: the keys to fetch :type keys: list :param r: R-Value for the requests (defaults to bucket's R) :type r: integer :param pr: PR-Value for the requests (defaults to bucket's PR) :type pr: integer :param timeout: a timeout value in milliseconds :type timeout: int :param basic_quorum: whether to use the "basic quorum" policy for not-founds :type basic_quorum: bool :param notfound_ok: whether to treat not-found responses as successful :type notfound_ok: bool :param head_only: whether to fetch without value, so only metadata (only available on PB transport) :type head_only: bool :rtype: list of :class:`RiakObjects <riak.riak_object.RiakObject>`, :class:`Datatypes <riak.datatypes.Datatype>`, or tuples of bucket_type, bucket, key, and the exception raised on fetch """ bkeys = [(self.bucket_type.name, self.name, key) for key in keys] return self._client.multiget(bkeys, r=r, pr=pr, timeout=timeout, basic_quorum=basic_quorum, notfound_ok=notfound_ok, head_only=head_only)
0.002639
def pyenv(): '''Install or update the pyenv python environment. Checkout or update the pyenv repo at ~/.pyenv and enable the pyenv. Pyenv wird also als Github-Repo "installiert" unter ~/.pyenv More info: * https://github.com/yyuu/pyenv * https://github.com/yyuu/pyenv/wiki/Common-build-problems#requirements Tutorial: * http://amaral-lab.org/resources/guides/pyenv-tutorial ''' install_packages([ 'make', 'build-essential', 'libssl-dev', 'zlib1g-dev', 'libbz2-dev', 'libreadline-dev', 'libsqlite3-dev', 'wget', 'curl', 'llvm', 'libncurses5-dev', 'libncursesw5-dev', ]) if exists('~/.pyenv'): run('cd ~/.pyenv && git pull') run('~/.pyenv/bin/pyenv update') else: run('curl -L https://raw.githubusercontent.com/yyuu/pyenv-installer/' 'master/bin/pyenv-installer | bash') # add pyenv to $PATH and set up pyenv init bash_snippet = '~/.bashrc_pyenv' install_file_legacy(path=bash_snippet) prefix = flo('if [ -f {bash_snippet} ]; ') enabler = flo('if [ -f {bash_snippet} ]; then source {bash_snippet}; fi') if env.host == 'localhost': # FIXME: next function currently only works for localhost uncomment_or_update_or_append_line(filename='~/.bashrc', prefix=prefix, new_line=enabler) else: print(cyan('\nappend to ~/.bashrc:\n\n ') + enabler)
0.000656
def load(self): """ Fetch data about tag """ tags = self.get_data("tags/%s" % self.name) tag = tags['tag'] for attr in tag.keys(): setattr(self, attr, tag[attr]) return self
0.00813
def mark_message_lines(lines): """Mark message lines with markers to distinguish quotation lines. Markers: * e - empty line * m - line that starts with quotation marker '>' * s - splitter line * t - presumably lines from the last message in the conversation >>> mark_message_lines(['answer', 'From: [email protected]', '', '> question']) 'tsem' """ markers = ['e' for _ in lines] i = 0 while i < len(lines): if not lines[i].strip(): markers[i] = 'e' # empty line elif QUOT_PATTERN.match(lines[i]): markers[i] = 'm' # line with quotation marker elif RE_FWD.match(lines[i]): markers[i] = 'f' # ---- Forwarded message ---- else: # in case splitter is spread across several lines splitter = is_splitter('\n'.join(lines[i:i + SPLITTER_MAX_LINES])) if splitter: # append as many splitter markers as lines in splitter splitter_lines = splitter.group().splitlines() for j in range(len(splitter_lines)): markers[i + j] = 's' # skip splitter lines i += len(splitter_lines) - 1 else: # probably the line from the last message in the conversation markers[i] = 't' i += 1 return ''.join(markers)
0.000718
def _consfcn(self, x): """ Evaluates nonlinear constraints and their Jacobian for OPF. """ h, g = self._gh(x) dh, dg = self._dgh(x) return h, g, dh, dg
0.010417
def find_object_hashes(root, meta_only=False): """ Iterator that returns hashes of all of the file and table nodes. :param root: starting node """ stack = [root] while stack: obj = stack.pop() if not meta_only and isinstance(obj, (TableNode, FileNode)): for objhash in obj.hashes: yield objhash stack.extend(itervalues(obj.get_children())) if obj.metadata_hash is not None: yield obj.metadata_hash
0.002024
def par_y0bstep(i): r"""The parallel component of the step to minimise the augmented Lagrangian with respect to :math:`\mathbf{y}_0`. Parameters ---------- i : int Index of grouping to update """ global mp_Y0 mp_Y0[i] = 1/mp_rho*mp_S + mp_DX[i] + mp_U0[i] + mp_b
0.003311
def update(self, docs=None, split=0, lfs=None, parallelism=None, progress_bar=True): """Update the labels of the specified candidates based on the provided LFs. :param docs: If provided, apply the updated LFs to all the candidates in these documents. :param split: If docs is None, apply the updated LFs to the candidates in this particular split. :param lfs: A list of lists of labeling functions to update. Each list should correspond with the candidate_classes used to initialize the Labeler. :param parallelism: How many threads to use for extraction. This will override the parallelism value used to initialize the Labeler if it is provided. :type parallelism: int :param progress_bar: Whether or not to display a progress bar. The progress bar is measured per document. :type progress_bar: bool """ if lfs is None: raise ValueError("Please provide a list of lists of labeling functions.") if len(lfs) != len(self.candidate_classes): raise ValueError("Please provide LFs for each candidate class.") self.apply( docs=docs, split=split, lfs=lfs, train=True, clear=False, parallelism=parallelism, progress_bar=progress_bar, )
0.003506
def launch_action_group(self, action_id): """Start action group.""" header = BASE_HEADERS.copy() header['Cookie'] = self.__cookie request = requests.get( BASE_URL + 'launchActionGroup?oid=' + action_id, headers=header, timeout=10) if request.status_code != 200: self.__logged_in = False self.login() self.launch_action_group(action_id) return try: result = request.json() except ValueError as error: raise Exception( "Not a valid result for launch" + "action group, protocol error: " + request.status_code + ' - ' + request.reason + " (" + error + ")") if 'actionGroup' not in result.keys(): raise Exception( "Could not launch action" + "group, missing execId.") return result['actionGroup'][0]['execId']
0.001982
def disconnect(self, silent=False): """Send a 'disconnect' packet, so that the user knows it has been disconnected (booted actually). This will trigger an onDisconnect() call on the client side. Over here, we will kill all ``spawn``ed processes and remove the namespace from the Socket object. :param silent: do not actually send the packet (if they asked for a disconnect for example), but just kill all jobs spawned by this Namespace, and remove it from the Socket. """ if not silent: packet = {"type": "disconnect", "endpoint": self.ns_name} self.socket.send_packet(packet) # remove_namespace might throw GreenletExit so # kill_local_jobs must be in finally try: self.socket.remove_namespace(self.ns_name) finally: self.kill_local_jobs()
0.002094
def is_http_running_on(port): """ Check if an http server runs on a given port. Args: The port to check. Returns: True if it is used by an http server. False otherwise. """ try: conn = httplib.HTTPConnection('127.0.0.1:' + str(port)) conn.connect() conn.close() return True except Exception: return False
0.011594
def weekday(cls, year, month, day): """Returns the weekday of the date. 0 = aaitabar""" return NepDate.from_bs_date(year, month, day).weekday()
0.012579
def file(self, md5=None, sha1=None, sha256=None, **kwargs): """Add File data to Batch object. .. note:: A least one file hash value must be specified. Args: md5 (str, optional): The md5 value for this Indicator. sha1 (str, optional): The sha1 value for this Indicator. sha256 (str, optional): The sha256 value for this Indicator. confidence (str, kwargs): The threat confidence for this Indicator. date_added (str, kwargs): The date timestamp the Indicator was created. last_modified (str, kwargs): The date timestamp the Indicator was last modified. rating (str, kwargs): The threat rating for this Indicator. size (str, kwargs): The file size for this Indicator. xid (str, kwargs): The external id for this Indicator. Returns: obj: An instance of File. """ indicator_obj = File(md5, sha1, sha256, **kwargs) return self._indicator(indicator_obj)
0.003899
def qasm(self, prec=15): """Return the corresponding OPENQASM string.""" return ",".join([self.children[j].qasm(prec) for j in range(self.size())])
0.010638
def answer(self): """ Return the answer for the question from the validator. This will ultimately only be called on the first validator if multiple validators have been added. """ if isinstance(self.validator, list): return self.validator[0].choice() return self.validator.choice()
0.005714
def get_setting(*args, **kwargs): """Get a setting and raise an appropriate user friendly error if the setting is not found.""" for name in args: if hasattr(settings, name): return getattr(settings, name) if kwargs.get('raise_error', False): setting_url = url % args[0].lower().replace('_', '-') raise ImproperlyConfigured('Please make sure you specified at ' 'least one of these settings: %s \r\nDocumentation: %s' % (args, setting_url)) return kwargs.get('default_value', None)
0.005367
def key_press(self, key, x, y): "Close the application when the player presses ESCAPE" if ord(key) == 27: # print "Escape!" if bool(glutLeaveMainLoop): glutLeaveMainLoop() else: raise Exception("Application quit")
0.006579
async def generate_status(self, status, avatar=None): """Generate a discord status icon below the image provided. This function is a coroutine. Parameters: status: str - a discord status, must be online, idle, dnd, or streaming avatar: str - http/s url pointing to an avatar, has to have proper headers and be a direct link to an image (Note, this url is encoded by the wrapper itself, so you don't have to worry about encoding it ;)) Return Type: image data""" if not isinstance(status, str): raise TypeError("type of 'status' must be str.") if avatar and not isinstance(avatar, str): raise TypeError("type of 'avatar' must be str.") url = f'https://api.weeb.sh/auto-image/discord-status?status={status}' + (f'&avatar={urllib.parse.quote(avatar, safe="")}' if avatar else '') async with aiohttp.ClientSession() as session: async with session.get(url, headers=self.__headers) as resp: if resp.status == 200: return await resp.read() else: raise Exception((await resp.json())['message'])
0.004979
def online_time_to_string(value, timeFormat, utcOffset=0): """Converts AGOL timestamp to formatted string. Args: value (float): A UTC timestamp as reported by AGOL (time in ms since Unix epoch * 1000) timeFormat (str): Date/Time format string as parsed by :py:func:`datetime.strftime`. utcOffset (int): Hours difference from UTC and desired output. Default is 0 (remain in UTC). Returns: str: A string representation of the timestamp. Examples: >>> arcresthelper.common.online_time_to_string(1457167261000.0, "%Y-%m-%d %H:%M:%S") '2016-03-05 00:41:01' >>> arcresthelper.common.online_time_to_string(731392515000.0, '%m/%d/%Y %H:%M:%S', -8) # PST is UTC-8:00 '03/05/1993 12:35:15' See Also: :py:func:`local_time_to_online` for converting a :py:class:`datetime.datetime` object to AGOL timestamp """ try: return datetime.datetime.fromtimestamp(value/1000 + utcOffset*3600).strftime(timeFormat) except: line, filename, synerror = trace() raise ArcRestHelperError({ "function": "online_time_to_string", "line": line, "filename": filename, "synerror": synerror, } ) finally: pass
0.007289
def getThirdPartyLibFiles(self, libs): """ Retrieves the list of library files for building against the Unreal-bundled versions of the specified third-party libraries """ platformDefaults = True if libs[0] == '--nodefaults': platformDefaults = False libs = libs[1:] details = self.getThirdpartyLibs(libs, includePlatformDefaults=platformDefaults) return details.getLibraryFiles(self.getEngineRoot(), delimiter='\n')
0.034247
def do_set(parser, token): '''Calls an arbitrary method on an object.''' code = token.contents firstspace = code.find(' ') if firstspace >= 0: code = code[firstspace+1:] return Setter(code)
0.029557
def infer(args): """ %prog infer scaffolds.fasta genome.fasta Infer where the components are in the genome. This function is rarely used, but can be useful when distributor does not ship an AGP file. """ from jcvi.apps.grid import WriteJobs from jcvi.formats.bed import sort p = OptionParser(infer.__doc__) p.set_cpus() opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) scaffoldsf, genomef = args inferbed = "infer-components.bed" if need_update((scaffoldsf, genomef), inferbed): scaffolds = Fasta(scaffoldsf, lazy=True) genome = Fasta(genomef) genome = genome.tostring() args = [(scaffold_name, scaffold, genome) \ for scaffold_name, scaffold in scaffolds.iteritems_ordered()] pool = WriteJobs(map_one_scaffold, args, inferbed, cpus=opts.cpus) pool.run() sort([inferbed, "-i"]) bed = Bed(inferbed) inferagpbed = "infer.bed" fw = open(inferagpbed, "w") seen = [] for b in bed: r = (b.seqid, b.start, b.end) if check_seen(r, seen): continue print("\t".join(str(x) for x in \ (b.accn, 0, b.span, b.seqid, b.score, b.strand)), file=fw) seen.append(r) fw.close() frombed([inferagpbed])
0.002981
def reload(self): """Reload this database. Refresh any configured schema into :attr:`ddl_statements`. See https://cloud.google.com/spanner/reference/rpc/google.spanner.admin.database.v1#google.spanner.admin.database.v1.DatabaseAdmin.GetDatabaseDDL :raises NotFound: if the database does not exist """ api = self._instance._client.database_admin_api metadata = _metadata_with_prefix(self.name) response = api.get_database_ddl(self.name, metadata=metadata) self._ddl_statements = tuple(response.statements)
0.003407
def fix_title_capitalization(title): """Try to capitalize properly a title string.""" if re.search("[A-Z]", title) and re.search("[a-z]", title): return title word_list = re.split(' +', title) final = [word_list[0].capitalize()] for word in word_list[1:]: if word.upper() in COMMON_ACRONYMS: final.append(word.upper()) elif len(word) > 3: final.append(word.capitalize()) else: final.append(word.lower()) return " ".join(final)
0.001931
def endpoint_create_and_update_params(*args, **kwargs): """ Collection of options consumed by Transfer endpoint create and update operations -- accepts toggle regarding create vs. update that makes display_name required vs. optional. Usage: >>> @endpoint_create_and_update_params(create=True) >>> def command_func(display_name, description, info_link, contact_info, >>> contact_email, organization, department, keywords, >>> public, location, disable_verify, myproxy_dn, >>> myproxy_server, oauth_server, force_encryption, >>> default_directory, subscription_id, network_use, >>> max_concurrency, preferred_concurrency, >>> max_parallelism, preferred_parallelism): >>> ... """ def inner_decorator(f, create=False): update_help_prefix = (not create and "New ") or "" # display name is required for create, not update if create: f = click.argument("display_name")(f) else: f = click.option( "--display-name", help=(update_help_prefix + "Name for the endpoint") )(f) # Options available to any endpoint f = click.option( "--description", help=(update_help_prefix + "Description for the endpoint") )(f) f = click.option( "--info-link", help=(update_help_prefix + "Link for Info about the endpoint"), )(f) f = click.option( "--contact-info", help=(update_help_prefix + "Contact Info for the endpoint"), )(f) f = click.option( "--contact-email", help=(update_help_prefix + "Contact Email for the endpoint"), )(f) f = click.option( "--organization", help=(update_help_prefix + "Organization for the endpoint"), )(f) f = click.option( "--department", help=(update_help_prefix + "Department which operates the endpoint"), )(f) f = click.option( "--keywords", help=( update_help_prefix + "Comma separated list of keywords to help searches " "for the endpoint" ), )(f) f = click.option("--default-directory", help=("Set the default directory"))(f) f = click.option( "--no-default-directory", is_flag=True, flag_value=True, default=None, help=("Unset any default directory on the endpoint"), )(f) f = click.option( "--force-encryption/--no-force-encryption", default=None, help=("(Un)Force the endpoint to encrypt transfers"), )(f) f = click.option( "--disable-verify/--no-disable-verify", is_flag=True, help="(Un)Set the endpoint to ignore checksum verification", )(f) # GCS only options f = click.option( "--public/--private", "public", default=None, help=( "Set the endpoint to be public or private " "(Globus Connect Server only)" ), )(f) f = click.option( "--myproxy-dn", help=("Set the MyProxy Server DN (Globus Connect Server only)"), )(f) f = click.option( "--myproxy-server", help=("Set the MyProxy Server URI " "(Globus Connect Server only)"), )(f) f = click.option( "--oauth-server", help=("Set the OAuth Server URI (Globus Connect Server only)"), )(f) f = click.option( "--location", type=LocationType(), default=None, help="Manually set the endpoint's latitude and longitude " "(Globus Connect Server only)", )(f) # Managed Endpoint options f = click.option( "--managed", "managed", is_flag=True, flag_value=True, default=None, help=( "Set the endpoint as a managed endpoint. Requires the " "user to be a subscription manager. If the user has " "multiple subscription IDs, --subscription-id must be used " "instead" ), )(f) f = click.option( "--no-managed", "managed", is_flag=True, flag_value=False, default=None, help=( "Unset the endpoint as a managed endpoint. " "Does not require the user to be a subscription manager. " "Mutually exclusive with --subscription-id" ), )(f) f = click.option( "--subscription-id", type=click.UUID, default=None, help=( "Set the endpoint as a managed endpoint with the given " "subscription ID. Mutually exclusive with " "--no-managed" ), )(f) f = click.option( "--network-use", default=None, type=click.Choice(["normal", "minimal", "aggressive", "custom"]), help=( "Set the endpoint's network use level. If using custom, " "the endpoint's max and preferred concurrency and " "parallelism must be set " "(Managed endpoints only) (Globus Connect Server only)" ), )(f) f = click.option( "--max-concurrency", type=int, default=None, help=( "Set the endpoint's max concurrency; " "requires --network-use=custom " "(Managed endpoints only) (Globus Connect Server only)" ), )(f) f = click.option( "--preferred-concurrency", type=int, default=None, help=( "Set the endpoint's preferred concurrency; " "requires --network-use=custom " "(Managed endpoints only) (Globus Connect Server only)" ), )(f) f = click.option( "--max-parallelism", type=int, default=None, help=( "Set the endpoint's max parallelism; " "requires --network-use=custom " "(Managed endpoints only) (Globus Connect Server only)" ), )(f) f = click.option( "--preferred-parallelism", type=int, default=None, help=( "Set the endpoint's preferred parallelism; " "requires --network-use=custom " "(Managed endpoints only) (Globus Connect Server only)" ), )(f) return f return detect_and_decorate(inner_decorator, args, kwargs)
0.000844
def override_config(self, path): """ Will take a yml located in home directory titled '.plugin_config.yml'. It'll then override, using the yml, the plugin's config file """ status = (True, None) config_override = False try: # parse the yml file c_dict = {} if exists(self.plugin_config_file): with open(self.plugin_config_file, 'r') as config_file: c_dict = yaml.safe_load(config_file.read()) # check for environment variable overrides check_c_dict = c_dict.copy() for tool in check_c_dict: for section in check_c_dict[tool]: for key in check_c_dict[tool][section]: if key in environ: c_dict[tool][section][key] = getenv(key) # assume the name of the plugin is its directory plugin_name = path.split('/')[-1] if plugin_name == '': plugin_name = path.split('/')[-2] plugin_config_path = path + '/config/' + plugin_name + '.config' if exists(plugin_config_path): plugin_template = Template(plugin_config_path) plugin_options = c_dict[plugin_name] for section in plugin_options: for option in plugin_options[section]: plugin_template.set_option(section, option, str(plugin_options[section][option])) plugin_template.write_config() config_override = True except Exception as e: # pragma: no cover status = (False, str(e)) return status, config_override
0.001681
def write_flows_to_gssha_time_series_xys(self, path_to_output_file, series_name, series_id, river_index=None, river_id=None, date_search_start=None, date_search_end=None, daily=False, filter_mode="mean"): """ Write out RAPID output to GSSHA WMS time series xys file. Parameters ---------- path_to_output_file: str Path to the output xys file. series_name: str The name for the series. series_id: int The ID to give the series. river_index: :obj:`datetime.datetime`, optional This is the index of the river in the file you want the streamflow for. river_id: :obj:`datetime.datetime`, optional This is the river ID that you want the streamflow for. date_search_start: :obj:`datetime.datetime`, optional This is a datetime object with the date of the minimum date for starting. date_search_end: :obj:`datetime.datetime`, optional This is a datetime object with the date of the maximum date for ending. daily: bool, optional If True and the file is CF-Compliant, write out daily flows. filter_mode: str, optional You can get the daily average "mean" or the maximum "max". Defauls is "mean". Example writing entire time series to file: .. code:: python from RAPIDpy import RAPIDDataset river_id = 3624735 path_to_rapid_qout = '/path/to/Qout.nc' with RAPIDDataset(path_to_rapid_qout) as qout_nc: qout_nc.write_flows_to_gssha_time_series_xys( '/timeseries/Qout_{0}.xys'.format(river_id), series_name="RAPID_TO_GSSHA_{0}".format(river_id), series_id=34, river_id=river_id) Example writing entire time series as daily average to file: .. code:: python from RAPIDpy import RAPIDDataset river_id = 3624735 path_to_rapid_qout = '/path/to/Qout.nc' with RAPIDDataset(path_to_rapid_qout) as qout_nc: # NOTE: Getting the river index is not necessary # this is just an example of how to use this river_index = qout_nc.get_river_index(river_id) # if file is CF compliant, you can write out daily average qout_nc.write_flows_to_gssha_time_series_xys( '/timeseries/Qout_daily.xys', series_name="RAPID_TO_GSSHA_{0}".format(river_id), series_id=34, river_index=river_index, daily=True) Example writing subset of time series as daily maximum to file: .. code:: python from datetime import datetime from RAPIDpy import RAPIDDataset river_id = 3624735 path_to_rapid_qout = '/path/to/Qout.nc' with RAPIDDataset(path_to_rapid_qout) as qout_nc: # NOTE: Getting the river index is not necessary # this is just an example of how to use this river_index = qout_nc.get_river_index(river_id) # if file is CF compliant, you can filter by date and # get daily values qout_nc.write_flows_to_gssha_time_series_xys( '/timeseries/Qout_daily_date_filter.xys', series_name="RAPID_TO_GSSHA_{0}".format(river_id), series_id=34, river_index=river_index, date_search_start=datetime(2002, 8, 31), date_search_end=datetime(2002, 9, 15), daily=True, filter_mode="max") """ if river_id is not None: river_index = self.get_river_index(river_id) elif river_id is None and river_index is None: raise ValueError(" Need reach id or reach index ...") self.raise_time_valid() # analyze and write qout_df = self.get_qout_index(river_index, date_search_start=date_search_start, date_search_end=date_search_end, daily=daily, filter_mode=filter_mode, as_dataframe=True) with open_csv(path_to_output_file, 'w') as out_ts: out_ts.write("XYS {0} {1} \"{2}\"\r\n".format(series_id, len(qout_df.index), series_name)) for index, pd_row in qout_df.iterrows(): date_str = index.strftime("%m/%d/%Y %I:%M:%S %p") out_ts.write("\"{0}\" {1:.5f}\n".format(date_str, pd_row[0]))
0.002027
def pre_install(portal_setup): """Runs berfore the first import step of the *default* profile This handler is registered as a *pre_handler* in the generic setup profile :param portal_setup: SetupTool """ logger.info("SENAITE LIMS pre-install handler [BEGIN]") # https://docs.plone.org/develop/addons/components/genericsetup.html#custom-installer-code-setuphandlers-py profile_id = "profile-senaite.lims:default" context = portal_setup._getImportContext(profile_id) portal = context.getSite() # noqa # Only install the core once! qi = portal.portal_quickinstaller if not qi.isProductInstalled("bika.lims"): portal_setup.runAllImportStepsFromProfile("profile-bika.lims:default") logger.info("SENAITE LIMS pre-install handler [DONE]")
0.001255
def _transformBy(self, matrix, **kwargs): """ Subclasses may override this method. """ for point in self.points: point.transformBy(matrix)
0.010989
def run(self): """Main entrypoint method. Returns ------- new_nodes : `list` Nodes to add to the doctree. """ from lsst.pex.config import ConfigurableField, RegistryField logger = getLogger(__name__) try: task_class_name = self.arguments[0] except IndexError: raise SphinxError( '{} directive requires a Task class ' 'name as an argument'.format(self.directive_name)) logger.debug('%s using Task class %s', task_class_name) task_config_class = get_task_config_class(task_class_name) config_fields = get_task_config_fields(task_config_class) all_nodes = [] for field_name, field in config_fields.items(): # Skip fields documented via the `lsst-task-config-subtasks` # directive if isinstance(field, (ConfigurableField, RegistryField)): continue field_id = format_configfield_id( '.'.join((task_config_class.__module__, task_config_class.__name__)), field_name) try: format_field_nodes = get_field_formatter(field) except ValueError: logger.debug('Skipping unknown config field type, ' '{0!r}'.format(field)) continue all_nodes.append( format_field_nodes(field_name, field, field_id, self.state, self.lineno) ) # Fallback if no configuration items are present if len(all_nodes) == 0: message = 'No configuration fields.' return [nodes.paragraph(text=message)] return all_nodes
0.001105
def validate_enum_attribute(self, attribute: str, candidates: Set[Union[str, int, float]]) -> None: """ Validates that the attribute value is among the candidates """ self.add_errors( validate_enum_attribute(self.fully_qualified_name, self._spec, attribute, candidates))
0.015152
def make_request_log_message(**args): ''' Creates a string containing all relevant information about a request made to the Handle System, for logging purposes. :handle: The handle that the request is about. :url: The url the request is sent to. :headers: The headers sent along with the request. :verify: Boolean parameter passed to the requests module (https verification). :resp: The request's response. :op: The library operation during which the request was sent. :payload: Optional. The payload sent with the request. :return: A formatted string. ''' mandatory_args = ['op', 'handle', 'url', 'headers', 'verify', 'resp'] optional_args = ['payload'] util.check_presence_of_mandatory_args(args, mandatory_args) util.add_missing_optional_args_with_value_none(args, optional_args) space = '\n ' message = '' message += '\n'+args['op']+' '+args['handle'] message += space+'URL: '+args['url'] message += space+'HEADERS: '+str(args['headers']) message += space+'VERIFY: '+str(args['verify']) if 'payload' in args.keys(): message += space+'PAYLOAD:'+space+str(args['payload']) message += space+'RESPONSECODE: '+str(args['resp'].status_code) message += space+'RESPONSE:'+space+str(args['resp'].content) return message
0.000729
def disable_switchport(self, inter_type, inter): """ Change an interface's operation to L3. Args: inter_type: The type of interface you want to configure. Ex. tengigabitethernet, gigabitethernet, fortygigabitethernet. inter: The ID for the interface you want to configure. Ex. 1/0/1 Returns: True if command completes successfully or False if not. Raises: None """ config = ET.Element('config') interface = ET.SubElement(config, 'interface', xmlns=("urn:brocade.com:mgmt:" "brocade-interface")) int_type = ET.SubElement(interface, inter_type) name = ET.SubElement(int_type, 'name') name.text = inter ET.SubElement(int_type, 'switchport-basic', operation='delete') try: self._callback(config) return True # TODO add logging and narrow exception window. except Exception as error: logging.error(error) return False
0.001783
def _ParseKey(self, knowledge_base, registry_key, value_name): """Parses a Windows Registry key for a preprocessing attribute. Args: knowledge_base (KnowledgeBase): to fill with preprocessing information. registry_key (dfwinreg.WinRegistryKey): Windows Registry key. value_name (str): name of the Windows Registry value. Raises: PreProcessFail: if the preprocessing fails. """ try: registry_value = registry_key.GetValueByName(value_name) except IOError as exception: raise errors.PreProcessFail(( 'Unable to retrieve Windows Registry key: {0:s} value: {1:s} ' 'with error: {2!s}').format( registry_key.path, value_name, exception)) if registry_value: value_object = registry_value.GetDataAsObject() if value_object: self._ParseValueData(knowledge_base, value_object)
0.005631
def classes(self): """the partial self.class_name will be used to find actual TestCase classes""" for module in self.modules(): cs = inspect.getmembers(module, inspect.isclass) class_name = getattr(self, 'class_name', '') class_regex = '' if class_name: if class_name.startswith("*"): class_name = class_name.strip("*") class_regex = re.compile(r'.*?{}'.format(class_name), re.I) else: class_regex = re.compile(r'^{}'.format(class_name), re.I) for c_name, c in cs: can_yield = True if class_regex and not class_regex.match(c_name): #if class_name and class_name not in c_name: can_yield = False if can_yield and issubclass(c, unittest.TestCase): if c is not unittest.TestCase: # ignore actual TestCase class logger.debug('class: {} matches {}'.format(c_name, class_name)) yield c
0.007266
def add_bidirlstm(self, name, W_h, W_x, b, W_h_back, W_x_back, b_back, hidden_size, input_size, input_names, output_names, inner_activation = 'SIGMOID', cell_state_update_activation = 'TANH', output_activation = 'TANH', peep = None, peep_back = None, output_all = False, forget_bias = False, coupled_input_forget_gate= False, cell_clip_threshold = 50000.0): """ Add a Bi-directional LSTM layer to the model. Parameters ---------- name: str The name of this layer. W_h: [numpy.array] List of recursion weight matrices for the forward layer. The ordering is [R_i, R_f, R_o, R_z], where R_i, R_f, R_o, R_z are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are (hidden_size, hidden_size). W_x: [numpy.array] List of input weight matrices for the forward layer. The ordering is [W_i, W_f, W_o, W_z], where W_i, W_f, W_o, W_z are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are (hidden_size, input_size). b: [numpy.array] List of biases for the forward layer. The ordering is [b_i, b_f, b_o, b_z], where b_i, b_f, b_o, b_z are biases at input gate, forget gate, output gate and cell gate. If None, biases are ignored. Otherwise the shapes of the biases are (hidden_size, ). W_h_back: [numpy.array] List of recursion weight matrices for the backward layer. The ordering is [R_i, R_f, R_o, R_z], where R_i, R_f, R_o, R_z are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are (hidden_size, hidden_size). W_x_back: [numpy.array] List of input weight matrices for the backward layer. The ordering is [W_i, W_f, W_o, W_z], where W_i, W_f, W_o, W_z are weight matrices at input gate, forget gate, output gate and cell gate. The shapes of these matrices are (hidden_size, input_size). b_back: [numpy.array] List of biases for the backward layer. The ordering is [b_i, b_f, b_o, b_z], where b_i, b_f, b_o, b_z are biases at input gate, forget gate, output gate and cell gate. The shapes of the biases (hidden_size). hidden_size: int Number of hidden units. This is equal to the number of channels of output shape. input_size: int Number of the number of channels of input shape. input_names: [str] The input blob name list of this layer, in the order of [x, h_input, c_input, h_reverse_input, c_reverse_input]. output_names: [str] The output blob name list of this layer, in the order of [y, h_output, c_output, h_reverse_output, c_reverse_output]. inner_activation: str Inner activation function used at input and forget gate. Can be one of the following option: ['RELU', 'TANH', 'SIGMOID', 'SCALED_TANH', 'SIGMOID_HARD', 'LINEAR']. Defaults to 'SIGMOID'. cell_state_update_activation: str Cell state update activation function used at the cell state update gate. ['RELU', 'TANH', 'SIGMOID', 'SCALED_TANH', 'SIGMOID_HARD', 'LINEAR']. Defaults to 'TANH'. output_activation: str Activation function used at the output gate. Can be one of the following option: ['RELU', 'TANH', 'SIGMOID', 'SCALED_TANH', 'SIGMOID_HARD', 'LINEAR']. Defaults to 'TANH'. peep: [numpy.array] | None List of peephole vectors for the forward layer. The ordering is [p_i, p_f, p_o], where p_i, p_f, and p_o are peephole vectors at input gate, forget gate, output gate. The shapes of the peephole vectors are (hidden_size,). Defaults to None. peep_back: [numpy.array] | None List of peephole vectors for the backward layer. The ordering is [p_i, p_f, p_o], where p_i, p_f, and p_o are peephole vectors at input gate, forget gate, output gate. The shapes of the peephole vectors are (hidden_size,). Defaults to None. output_all: boolean Whether the LSTM layer should output at every time step. Defaults to False. - If False, the output is the result after the final state update. - If True, the output is a sequence, containing outputs at all time steps. forget_bias: boolean If True, a vector of 1s is added to forget gate bias. Defaults to False. coupled_input_forget_gate : boolean If True, the input gate and forget gate is coupled. i.e. forget gate is not used. Defaults to False. cell_clip_threshold : float The limit on the maximum and minimum values on the cell state. Defaults to 50.0. See Also -------- add_activation, add_simple_rnn, add_unilstm, add_bidirlstm """ spec = self.spec nn_spec = self.nn_spec # Add a new Layer spec_layer = nn_spec.layers.add() spec_layer.name = name for name in input_names: spec_layer.input.append(name) for name in output_names: spec_layer.output.append(name) spec_layer_params = spec_layer.biDirectionalLSTM params = spec_layer_params.params weight_params = spec_layer_params.weightParams.add() weight_params_back = spec_layer_params.weightParams.add() # set the parameters spec_layer_params.inputVectorSize = input_size spec_layer_params.outputVectorSize = hidden_size if b is not None: params.hasBiasVectors = True params.sequenceOutput = output_all params.forgetBias = forget_bias if peep is not None: params.hasPeepholeVectors = True params.coupledInputAndForgetGate = coupled_input_forget_gate params.cellClipThreshold = cell_clip_threshold #set activations activation_f = spec_layer_params.activationsForwardLSTM.add() activation_g = spec_layer_params.activationsForwardLSTM.add() activation_h = spec_layer_params.activationsForwardLSTM.add() _set_recurrent_activation(activation_f, inner_activation) _set_recurrent_activation(activation_g, cell_state_update_activation) _set_recurrent_activation(activation_h, output_activation) activation_f_back = spec_layer_params.activationsBackwardLSTM.add() activation_g_back = spec_layer_params.activationsBackwardLSTM.add() activation_h_back = spec_layer_params.activationsBackwardLSTM.add() _set_recurrent_activation(activation_f_back, inner_activation) _set_recurrent_activation(activation_g_back, cell_state_update_activation) _set_recurrent_activation(activation_h_back, output_activation) # Write the forward lstm weights R_i, R_f, R_o, R_z = W_h W_i, W_f, W_o, W_z = W_x weight_params.inputGateWeightMatrix.floatValue.extend(map(float, W_i.flatten())) weight_params.forgetGateWeightMatrix.floatValue.extend(map(float, W_f.flatten())) weight_params.outputGateWeightMatrix.floatValue.extend(map(float, W_o.flatten())) weight_params.blockInputWeightMatrix.floatValue.extend(map(float, W_z.flatten())) weight_params.inputGateRecursionMatrix.floatValue.extend(map(float, R_i.flatten())) weight_params.forgetGateRecursionMatrix.floatValue.extend(map(float, R_f.flatten())) weight_params.outputGateRecursionMatrix.floatValue.extend(map(float, R_o.flatten())) weight_params.blockInputRecursionMatrix.floatValue.extend(map(float, R_z.flatten())) if b is not None: b_i, b_f, b_o, b_z = b weight_params.inputGateBiasVector.floatValue.extend(map(float, b_i.flatten())) weight_params.forgetGateBiasVector.floatValue.extend(map(float, b_f.flatten())) weight_params.outputGateBiasVector.floatValue.extend(map(float, b_o.flatten())) weight_params.blockInputBiasVector.floatValue.extend(map(float, b_z.flatten())) if peep is not None: p_i, p_f, p_o = peep weight_params.inputGatePeepholeVector.floatValue.extend(map(float, p_i.flatten())) weight_params.forgetGatePeepholeVector.floatValue.extend(map(float, p_f.flatten())) weight_params.outputGatePeepholeVector.floatValue.extend(map(float, p_o.flatten())) # Write the backward lstm weights R_i, R_f, R_o, R_z = W_h_back W_i, W_f, W_o, W_z = W_x_back weight_params_back.inputGateWeightMatrix.floatValue.extend(map(float, W_i.flatten())) weight_params_back.forgetGateWeightMatrix.floatValue.extend(map(float, W_f.flatten())) weight_params_back.outputGateWeightMatrix.floatValue.extend(map(float, W_o.flatten())) weight_params_back.blockInputWeightMatrix.floatValue.extend(map(float, W_z.flatten())) weight_params_back.inputGateRecursionMatrix.floatValue.extend(map(float, R_i.flatten())) weight_params_back.forgetGateRecursionMatrix.floatValue.extend(map(float, R_f.flatten())) weight_params_back.outputGateRecursionMatrix.floatValue.extend(map(float, R_o.flatten())) weight_params_back.blockInputRecursionMatrix.floatValue.extend(map(float, R_z.flatten())) if b_back is not None: b_i, b_f, b_o, b_z = b_back weight_params_back.inputGateBiasVector.floatValue.extend(map(float, b_i.flatten())) weight_params_back.forgetGateBiasVector.floatValue.extend(map(float, b_f.flatten())) weight_params_back.outputGateBiasVector.floatValue.extend(map(float, b_o.flatten())) weight_params_back.blockInputBiasVector.floatValue.extend(map(float, b_z.flatten())) if peep_back is not None: p_i, p_f, p_o = peep_back weight_params_back.inputGatePeepholeVector.floatValue.extend(map(float, p_i.flatten())) weight_params_back.forgetGatePeepholeVector.floatValue.extend(map(float, p_f.flatten())) weight_params_back.outputGatePeepholeVector.floatValue.extend(map(float, p_o.flatten()))
0.008914
def delete_rdataset(self, name, rdtype, covers=dns.rdatatype.NONE): """Delete the rdataset matching I{rdtype} and I{covers}, if it exists at the node specified by I{name}. The I{name}, I{rdtype}, and I{covers} parameters may be strings, in which case they will be converted to their proper type. It is not an error if the node does not exist, or if there is no matching rdataset at the node. If the node has no rdatasets after the deletion, it will itself be deleted. @param name: the owner name to look for @type name: DNS.name.Name object or string @param rdtype: the rdata type desired @type rdtype: int or string @param covers: the covered type (defaults to None) @type covers: int or string """ name = self._validate_name(name) if isinstance(rdtype, (str, unicode)): rdtype = dns.rdatatype.from_text(rdtype) if isinstance(covers, (str, unicode)): covers = dns.rdatatype.from_text(covers) node = self.get_node(name) if not node is None: node.delete_rdataset(self.rdclass, rdtype, covers) if len(node) == 0: self.delete_node(name)
0.002362
def p_expr1(p): """expr1 : MINUS expr %prec UMINUS | PLUS expr %prec UMINUS | NEG expr | HANDLE ident | PLUSPLUS ident | MINUSMINUS ident """ p[0] = node.expr(op=p[1], args=node.expr_list([p[2]]))
0.003663
def put_multipart(self, local_path, destination_s3_path, part_size=DEFAULT_PART_SIZE, **kwargs): """ Put an object stored locally to an S3 path using S3 multi-part upload (for files > 8Mb). :param local_path: Path to source local file :param destination_s3_path: URL for target S3 location :param part_size: Part size in bytes. Default: 8388608 (8MB) :param kwargs: Keyword arguments are passed to the boto function `upload_fileobj` as ExtraArgs """ self._check_deprecated_argument(**kwargs) from boto3.s3.transfer import TransferConfig # default part size for boto3 is 8Mb, changing it to fit part_size # provided as a parameter transfer_config = TransferConfig(multipart_chunksize=part_size) (bucket, key) = self._path_to_bucket_and_key(destination_s3_path) self.s3.meta.client.upload_fileobj( Fileobj=open(local_path, 'rb'), Bucket=bucket, Key=key, Config=transfer_config, ExtraArgs=kwargs)
0.004864
def enabled(name, **kwargs): ''' Return True if the named service is enabled, false otherwise CLI Example: .. code-block:: bash salt '*' service.enabled <service name> <runlevels=single-runlevel> salt '*' service.enabled <service name> <runlevels=[runlevel1,runlevel2]> ''' enabled_services = get_enabled() if name not in enabled_services: return False if 'runlevels' not in kwargs: return True requested_levels = set(kwargs['runlevels'] if isinstance(kwargs['runlevels'], list) else [kwargs['runlevels']]) return len(requested_levels - set(enabled_services[name])) == 0
0.005666
def get_description(self): ''' :return: description string (with listening host:port) ''' return '%(description)s listening on %(host)s:%(port)s' % { 'description': super(WebInterface, self).get_description(), 'host': self._host, 'port': self._port }
0.006135
def generate_encoded_samples(self, data_dir, tmp_dir, dataset_split): """Generate samples of the encoded frames with possible extra data. By default this function just encodes the numpy array returned as "frame" from `self.generate_samples` into a PNG image. Override this function to get other encodings on disk. Args: data_dir: final data directory. Typically only used in this method to copy over user-supplied vocab files if there are extra fields needing them. tmp_dir: temporary directory that you can use for downloading and scratch. dataset_split: problem.DatasetSplit, which data split to generate samples for (for example, training and evaluation). Yields: Sample: dict<str feature_name, feature value> which is in disk encoding. Raises: ValueError: if the frame has a different number of channels than required. """ writer = None with tf.Graph().as_default(): image_t = tf.placeholder(dtype=tf.uint8, shape=(None, None, None)) encoded_image_t = tf.image.encode_png(image_t) with tf.Session() as sess: for features in self.generate_samples(data_dir, tmp_dir, dataset_split): unencoded_frame = features.pop("frame") self.validate_frame(unencoded_frame) height, width, _ = unencoded_frame.shape encoded_frame = sess.run( encoded_image_t, feed_dict={image_t: unencoded_frame}) features["image/encoded"] = [encoded_frame] features["image/format"] = ["png"] features["image/height"] = [height] features["image/width"] = [width] has_debug_image = "image/debug" in features if has_debug_image: unencoded_debug = features.pop("image/debug") encoded_debug = sess.run( encoded_image_t, feed_dict={image_t: unencoded_debug}) features["image/encoded_debug"] = [encoded_debug] if self.debug_dump_frames_path: # Defer creating debug writer until we know debug_dump_frames_path. if writer is None: if not tf.gfile.Exists(self.debug_dump_frames_path): tf.gfile.MkDir(self.debug_dump_frames_path) writer = debug_video_writer_factory(self.debug_dump_frames_path) img = unencoded_debug if has_debug_image else unencoded_frame encoded_img = encoded_debug if has_debug_image else encoded_frame writer.write(img, encoded_img) yield features if self.debug_dump_frames_path: writer.finish_to_disk()
0.008829
def rms(x): """"Root Mean Square" Arguments: x (seq of float): A sequence of numerical values Returns: The square root of the average of the squares of the values math.sqrt(sum(x_i**2 for x_i in x) / len(x)) or return (np.array(x) ** 2).mean() ** 0.5 >>> rms([0, 2, 4, 4]) 3.0 """ try: return (np.array(x) ** 2).mean() ** 0.5 except: x = np.array(dropna(x)) invN = 1.0 / len(x) return (sum(invN * (x_i ** 2) for x_i in x)) ** .5
0.003717
def main(argv): """ Main program. @return: none """ global g_script_name global g_tmp_dir g_script_name = os.path.basename(argv[0]) # Override any defaults with the user's choices. parse_args(argv) # Create tmp dir and clean up on exit with a callback. g_tmp_dir = tempfile.mkdtemp(suffix=".tmp_minicran") print "Created tmp directory: " + g_tmp_dir atexit.register(remove_tmp_dir) # Do the work. try: b = MinicranBuilder(g_print_only, g_output_dir, g_tmp_dir, g_platform, g_rversion, g_branch, g_buildnum) b.build() except KeyboardInterrupt: print("") pass
0.00304
def uploadchannel(chef, update=False, thumbnails=False, download_attempts=3, resume=False, reset=False, step=Status.LAST.name, token="#", prompt=False, publish=False, debug=False, verbose=True, warn=False, quiet=False, compress=False, stage=False, **kwargs): """ uploadchannel: Upload channel to Kolibri Studio server Args: chef (BaseChef or subclass): class that implements the construct_channel method update (bool): indicates whether to re-download files (optional) thumbnails (bool): indicates whether to automatically derive thumbnails from content (optional) download_attempts (int): number of times to retry downloading files (optional) resume (bool): indicates whether to resume last session automatically (optional) step (str): step to resume process from (optional) reset (bool): indicates whether to start session from beginning automatically (optional) token (str): content server authorization token prompt (bool): indicates whether to prompt user to open channel when done (optional) publish (bool): indicates whether to automatically publish channel (optional) debug (bool): indicates whether to print out debugging statements (optional) verbose (bool): indicates whether to print out info statements (optional) warnings (bool): indicates whether to print out warnings (optional) quiet (bool): indicates whether to print out errors (optional) compress (bool): indicates whether to compress larger files (optional) stage (bool): indicates whether to stage rather than deploy channel (optional) kwargs (dict): extra keyword args will be passed to get_channel and construct_channel (optional) Returns: (str) link to access newly created channel """ # Set configuration settings global __logging_handler level = logging.NOTSET if debug: level = logging.DEBUG elif warn: level = logging.WARNING elif quiet: level = logging.ERROR elif verbose: level = logging.INFO __logging_handler = logging.StreamHandler() config.LOGGER.addHandler(__logging_handler) logging.getLogger("requests").setLevel(logging.WARNING) logging.getLogger("cachecontrol.controller").setLevel(logging.WARNING) logging.getLogger("requests.packages").setLevel(logging.WARNING) config.LOGGER.setLevel(level) config.UPDATE = update config.COMPRESS = compress config.THUMBNAILS = thumbnails config.STAGE = stage config.PUBLISH = publish # Set max retries for downloading config.DOWNLOAD_SESSION.mount('http://', requests.adapters.HTTPAdapter(max_retries=int(download_attempts))) config.DOWNLOAD_SESSION.mount('https://', requests.adapters.HTTPAdapter(max_retries=int(download_attempts))) # Get domain to upload to config.init_file_mapping_store() # Authenticate user and check current Ricecooker version username, token = authenticate_user(token) check_version_number() # Setup Sushibar client based on channel info in `get_channel` config.LOGGER.info("Running get_channel... ") channel = chef.get_channel(**kwargs) nomonitor = kwargs.get('nomonitor', False) config.SUSHI_BAR_CLIENT = SushiBarClient(channel, username, token, nomonitor=nomonitor) config.LOGGER.info("\n\n***** Starting channel build process *****\n\n") # Set up progress tracker config.PROGRESS_MANAGER = RestoreManager() if (reset or not config.PROGRESS_MANAGER.check_for_session()) and step.upper() != Status.DONE.name: config.PROGRESS_MANAGER.init_session() else: if resume or prompt_yes_or_no('Previous session detected. Would you like to resume your last session?'): config.LOGGER.info("Resuming your last session...") step = Status.LAST.name if step is None else step config.PROGRESS_MANAGER = config.PROGRESS_MANAGER.load_progress(step.upper()) else: config.PROGRESS_MANAGER.init_session() # Construct channel if it hasn't been constructed already if config.PROGRESS_MANAGER.get_status_val() <= Status.CONSTRUCT_CHANNEL.value: config.LOGGER.info("Calling construct_channel... ") channel = chef.construct_channel(**kwargs) config.PROGRESS_MANAGER.set_channel(channel) channel = config.PROGRESS_MANAGER.channel # Set initial tree if it hasn't been set already if config.PROGRESS_MANAGER.get_status_val() <= Status.CREATE_TREE.value: config.PROGRESS_MANAGER.set_tree(create_initial_tree(channel)) tree = config.PROGRESS_MANAGER.tree # Download files if they haven't been downloaded already if config.PROGRESS_MANAGER.get_status_val() <= Status.DOWNLOAD_FILES.value: config.LOGGER.info("Downloading files...") config.PROGRESS_MANAGER.set_files(*process_tree_files(tree)) # Set download manager in case steps were skipped files_to_diff = config.PROGRESS_MANAGER.files_downloaded config.FAILED_FILES = config.PROGRESS_MANAGER.files_failed # Get file diff if it hasn't been generated already if config.PROGRESS_MANAGER.get_status_val() <= Status.GET_FILE_DIFF.value: config.LOGGER.info("Getting file diff...") config.PROGRESS_MANAGER.set_diff(get_file_diff(tree, files_to_diff)) file_diff = config.PROGRESS_MANAGER.file_diff # Set which files have already been uploaded tree.uploaded_files = config.PROGRESS_MANAGER.files_uploaded # Upload files if they haven't been uploaded already if config.PROGRESS_MANAGER.get_status_val() <= Status.UPLOADING_FILES.value: config.LOGGER.info("Uploading files...") config.PROGRESS_MANAGER.set_uploaded(upload_files(tree, file_diff)) # Create channel on Kolibri Studio if it hasn't been created already if config.PROGRESS_MANAGER.get_status_val() <= Status.UPLOAD_CHANNEL.value: config.LOGGER.info("Creating channel...") config.PROGRESS_MANAGER.set_channel_created(*create_tree(tree)) channel_link = config.PROGRESS_MANAGER.channel_link channel_id = config.PROGRESS_MANAGER.channel_id # Publish tree if flag is set to True if config.PUBLISH and config.PROGRESS_MANAGER.get_status_val() <= Status.PUBLISH_CHANNEL.value: config.LOGGER.info("Publishing channel...") publish_tree(tree, channel_id) config.PROGRESS_MANAGER.set_published() # Open link on web browser (if specified) and return new link config.LOGGER.info("\n\nDONE: Channel created at {0}\n".format(channel_link)) if prompt and prompt_yes_or_no('Would you like to open your channel now?'): config.LOGGER.info("Opening channel... ") webbrowser.open_new_tab(channel_link) config.PROGRESS_MANAGER.set_done() return channel_link
0.003617
def next(self, *arg, **kwarg): """Load the next orbit into .data. Note ---- Forms complete orbits across day boundaries. If no data loaded then the first orbit from the first date of data is returned. """ # first, check if data exists if not self.sat.empty: # set up orbit metadata self._calcOrbits() # if current orbit near the last, must be careful if self._current == (self.num - 1): # first, load last orbit data self._getBasicOrbit(orbit=-1) # End of orbit may occur on the next day load_next = True if self.sat._iter_type == 'date': delta = self.sat.date - self.sat.data.index[-1] \ + pds.Timedelta('1 day') if delta >= self.orbit_period: # don't need to load the next day because this orbit # ends more than a orbital period from the next date load_next = False if load_next: # the end of the user's desired orbit occurs tomorrow, need # to form a complete orbit save this current orbit, load # the next day, combine data, select the correct orbit temp_orbit_data = self.sat.data.copy() try: # loading next day/file clears orbit breaks info self.sat.next() if not self.sat.empty: # combine this next day's data with previous last # orbit, grab the first one self.sat.data = pds.concat( [temp_orbit_data[:self.sat.data.index[0] - pds.DateOffset(microseconds=1)], self.sat.data]) self._getBasicOrbit(orbit=1) else: # no data, go back a day and grab the last orbit. # As complete as orbit can be self.sat.prev() self._getBasicOrbit(orbit=-1) except StopIteration: pass del temp_orbit_data # includes hack to appear to be zero indexed print('Loaded Orbit:%i' % (self._current - 1)) elif self._current == (self.num): # at the last orbit, need to be careful about getting the next # orbit save this current orbit and load the next day temp_orbit_data = self.sat.data.copy() # load next day, which clears orbit breaks info self.sat.next() # combine this next day orbit with previous last orbit to # ensure things are correct if not self.sat.empty: pad_next = True # check if data padding is really needed, only works when # loading by date if self.sat._iter_type == 'date': delta = self.sat.date - temp_orbit_data.index[-1] if delta >= self.orbit_period: # the end of the previous orbit is more than an # orbit away from today we don't have to worry # about it pad_next = False if pad_next: # orbit went across day break, stick old orbit onto new # data and grab second orbit (first is old) self.sat.data = pds.concat( [temp_orbit_data[:self.sat.data.index[0] - pds.DateOffset(microseconds=1)], self.sat.data]) # select second orbit of combined data self._getBasicOrbit(orbit=2) else: # padding from the previous orbit wasn't needed, can # just grab the first orbit of loaded data self._getBasicOrbit(orbit=1) if self.sat._iter_type == 'date': delta = self.sat.date + pds.DateOffset(days=1) \ - self.sat.data.index[0] if delta < self.orbit_period: # this orbits end occurs on the next day, though # we grabbed the first orbit, missing data # means the first available orbit in the data # is actually the last for the day. Resetting to # the second to last orbit and then calling # next() will get the last orbit, accounting # for tomorrow's data as well. self._current = self.num - 1 self.next() else: # no data for the next day # continue loading data until there is some # nextData raises StopIteration when it reaches the end, # leaving this function while self.sat.empty: self.sat.next() self._getBasicOrbit(orbit=1) del temp_orbit_data # includes hack to appear to be zero indexed print('Loaded Orbit:%i' % (self._current - 1)) elif self._current == 0: # no current orbit set, grab the first one # using load command to specify the first orbit, which # automatically loads prev day if needed to form complete orbit self.load(orbit=1) elif self._current < (self.num - 1): # since we aren't close to the last orbit, just pull the next # orbit self._getBasicOrbit(orbit=self._current + 1) # includes hack to appear to be zero indexed print('Loaded Orbit:%i' % (self._current - 1)) else: raise Exception('You ended up where nobody should ever be. ' + 'Talk to someone about this fundamental ' + 'failure.') else: # no data while self.sat.empty: # keep going until data is found # next raises stopIteration at end of data set, no more data # possible self.sat.next() # we've found data, grab the next orbit self.next()
0.000714
def queryResponse(self, queryEngine, query=None, vendorSpecific=None, **kwargs): """CNRead.query(session, queryEngine, query) → OctetStream https://releases.dataone.org/online/api- documentation-v2.0.1/apis/CN_APIs.html#CNRead.query. Args: queryEngine: query: vendorSpecific: **kwargs: Returns: """ return self.GET( ['query', queryEngine, query], headers=vendorSpecific, query=kwargs )
0.005952
def uav_example(): """A basic example of how to use the UAV agent.""" env = holodeck.make("UrbanCity") # This changes the control scheme for the uav env.set_control_scheme("uav0", ControlSchemes.UAV_ROLL_PITCH_YAW_RATE_ALT) for i in range(10): env.reset() # This command tells the UAV to not roll or pitch, but to constantly yaw left at 10m altitude. command = np.array([0, 0, 2, 10]) for _ in range(1000): state, reward, terminal, _ = env.step(command) # To access specific sensor data: pixels = state[Sensors.PIXEL_CAMERA] velocity = state[Sensors.VELOCITY_SENSOR]
0.002985
def parse_timecode(cls, timecode): """parses timecode string frames '00:00:00:00' or '00:00:00;00' or milliseconds '00:00:00:000' """ bfr = timecode.replace(';', ':').replace('.', ':').split(':') hrs = int(bfr[0]) mins = int(bfr[1]) secs = int(bfr[2]) frs = int(bfr[3]) return hrs, mins, secs, frs
0.00542
def get_context_data(self, *args, **kwargs): ''' Context: If GET parameters are given: - search_text - form (FilterBillsForm) - long_description - description - get_params Otherwise, the only context item is an unbound FilterBillsForm. Templates: - Are specified in subclasses. ''' context = super(RelatedBillsList, self).get_context_data(*args, **kwargs) metadata = context['metadata'] FilterBillsForm = get_filter_bills_form(metadata) if self.request.GET: form = FilterBillsForm(self.request.GET) search_text = form.data.get('search_text') context.update(search_text=search_text) context.update(form=FilterBillsForm(self.request.GET)) # human readable description of search description = [] if metadata: description.append(metadata['name']) else: description = ['Search All'] long_description = [] chamber = form.data.get('chamber') session = form.data.get('session') type = form.data.get('type') status = form.data.getlist('status') subjects = form.data.getlist('subjects') sponsor = form.data.get('sponsor__leg_id') if chamber: if metadata: description.append(metadata['chambers'][chamber]['name'] ) else: description.extend([chamber.title(), 'Chamber']) description.append((type or 'Bill') + 's') if session: description.append( '(%s)' % metadata['session_details'][session]['display_name'] ) if 'signed' in status: long_description.append('which have been signed into law') elif 'passed_upper' in status and 'passed_lower' in status: long_description.append('which have passed both chambers') elif 'passed_lower' in status: chamber_name = (metadata['chambers']['lower']['name'] if metadata else 'lower chamber') long_description.append('which have passed the ' + chamber_name) elif 'passed_upper' in status: chamber_name = (metadata['chambers']['upper']['name'] if metadata else 'upper chamber') long_description.append('which have passed the ' + chamber_name) if sponsor: leg = db.legislators.find_one({'_all_ids': sponsor}, fields=('full_name', '_id')) leg = leg['full_name'] long_description.append('sponsored by ' + leg) if subjects: long_description.append('related to ' + ', '.join(subjects)) if search_text: long_description.append(u'containing the term "{0}"'.format( search_text)) context.update(long_description=long_description) else: if metadata: description = [metadata['name'], 'Bills'] else: description = ['All Bills'] context.update(form=FilterBillsForm()) context.update(description=' '.join(description)) # Add the correct path to paginated links. params = list(self.request.GET.lists()) for k, v in params[:]: if k == 'page': params.remove((k, v)) get_params = urllib.urlencode(params, doseq=True) context['get_params'] = get_params # Add the abbr. context['abbr'] = self.kwargs['abbr'] return context
0.000741
def p_gate_id_list_1(self, program): """ gate_id_list : gate_id_list ',' id """ program[0] = program[1] program[0].add_child(program[3]) self.update_symtab(program[3])
0.009174
def open(self, url): """ Open an XML document at the specified I{URL}. First, a preparsed document is looked up in the I{object cache}. If not found, its content is fetched from an external source and parsed using the SAX parser. The result is cached for the next open(). @param url: A document URL. @type url: str. @return: The specified XML document. @rtype: I{Document} """ cache = self.__cache() id = self.mangle(url, "document") xml = cache.get(id) if xml is None: xml = self.__fetch(url) cache.put(id, xml) self.plugins.document.parsed(url=url, document=xml.root()) return xml
0.002714
def parse_args(self, args=None, namespace=None): """ Overrides argparse.ArgumentParser.parse_args Enables '@'-prefixed files to be expanded before arguments are processed by ArgumentParser.parse_args as usual """ self._expand_prefixed_files(args) return super(CLICommandParser, self).parse_args(args)
0.008596
def add_child_log(self, log_id, child_id): """Adds a child to a log. arg: log_id (osid.id.Id): the ``Id`` of a log arg: child_id (osid.id.Id): the ``Id`` of the new child raise: AlreadyExists - ``log_id`` is already a parent of ``child_id`` raise: NotFound - ``log_id`` or ``child_id`` not found raise: NullArgument - ``log_id`` or ``child_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.BinHierarchyDesignSession.add_child_bin_template if self._catalog_session is not None: return self._catalog_session.add_child_catalog(catalog_id=log_id, child_id=child_id) return self._hierarchy_session.add_child(id_=log_id, child_id=child_id)
0.003109
def _getel(key, value): """Returns an element given a key and value.""" if key in ['HorizontalRule', 'Null']: return elt(key, 0)() elif key in ['Plain', 'Para', 'BlockQuote', 'BulletList', 'DefinitionList', 'HorizontalRule', 'Null']: return elt(key, 1)(value) return elt(key, len(value))(*value)
0.002907
def format_uncertainty(analysis, result, decimalmark='.', sciformat=1): """ Returns the formatted uncertainty according to the analysis, result and decimal mark specified following these rules: If the "Calculate precision from uncertainties" is enabled in the Analysis service, and a) If the the non-decimal number of digits of the result is above the service's ExponentialFormatPrecision, the uncertainty will be formatted in scientific notation. The uncertainty exponential value used will be the same as the one used for the result. The uncertainty will be rounded according to the same precision as the result. Example: Given an Analysis with an uncertainty of 37 for a range of results between 30000 and 40000, with an ExponentialFormatPrecision equal to 4 and a result of 32092, this method will return 0.004E+04 b) If the number of digits of the integer part of the result is below the ExponentialFormatPrecision, the uncertainty will be formatted as decimal notation and the uncertainty will be rounded one position after reaching the last 0 (precision calculated according to the uncertainty value). Example: Given an Analysis with an uncertainty of 0.22 for a range of results between 1 and 10 with an ExponentialFormatPrecision equal to 4 and a result of 5.234, this method will return 0.2 If the "Calculate precision from Uncertainties" is disabled in the analysis service, the same rules described above applies, but the precision used for rounding the uncertainty is not calculated from the uncertainty neither the result. The fixed length precision is used instead. For further details, visit https://jira.bikalabs.com/browse/LIMS-1334 If the result is not floatable or no uncertainty defined, returns an empty string. The default decimal mark '.' will be replaced by the decimalmark specified. :param analysis: the analysis from which the uncertainty, precision and other additional info have to be retrieved :param result: result of the analysis. Used to retrieve and/or calculate the precision and/or uncertainty :param decimalmark: decimal mark to use. By default '.' :param sciformat: 1. The sci notation has to be formatted as aE^+b 2. The sci notation has to be formatted as ax10^b 3. As 2, but with super html entity for exp 4. The sci notation has to be formatted as a·10^b 5. As 4, but with super html entity for exp By default 1 :returns: the formatted uncertainty """ try: result = float(result) except ValueError: return "" objres = None try: objres = float(analysis.getResult()) except ValueError: pass if result == objres: # To avoid problems with DLs uncertainty = analysis.getUncertainty() else: uncertainty = analysis.getUncertainty(result) if uncertainty is None or uncertainty == 0: return "" # Scientific notation? # Get the default precision for scientific notation threshold = analysis.getExponentialFormatPrecision() precision = analysis.getPrecision(result) formatted = _format_decimal_or_sci(uncertainty, precision, threshold, sciformat) return formatDecimalMark(formatted, decimalmark)
0.000282
def evaluate(ref_time, ref_freq, est_time, est_freq, **kwargs): """Evaluate two melody (predominant f0) transcriptions, where the first is treated as the reference (ground truth) and the second as the estimate to be evaluated (prediction). Examples -------- >>> ref_time, ref_freq = mir_eval.io.load_time_series('ref.txt') >>> est_time, est_freq = mir_eval.io.load_time_series('est.txt') >>> scores = mir_eval.melody.evaluate(ref_time, ref_freq, ... est_time, est_freq) Parameters ---------- ref_time : np.ndarray Time of each reference frequency value ref_freq : np.ndarray Array of reference frequency values est_time : np.ndarray Time of each estimated frequency value est_freq : np.ndarray Array of estimated frequency values kwargs Additional keyword arguments which will be passed to the appropriate metric or preprocessing functions. Returns ------- scores : dict Dictionary of scores, where the key is the metric name (str) and the value is the (float) score achieved. """ # Convert to reference/estimated voicing/frequency (cent) arrays (ref_voicing, ref_cent, est_voicing, est_cent) = util.filter_kwargs( to_cent_voicing, ref_time, ref_freq, est_time, est_freq, **kwargs) # Compute metrics scores = collections.OrderedDict() (scores['Voicing Recall'], scores['Voicing False Alarm']) = util.filter_kwargs(voicing_measures, ref_voicing, est_voicing, **kwargs) scores['Raw Pitch Accuracy'] = util.filter_kwargs(raw_pitch_accuracy, ref_voicing, ref_cent, est_voicing, est_cent, **kwargs) scores['Raw Chroma Accuracy'] = util.filter_kwargs(raw_chroma_accuracy, ref_voicing, ref_cent, est_voicing, est_cent, **kwargs) scores['Overall Accuracy'] = util.filter_kwargs(overall_accuracy, ref_voicing, ref_cent, est_voicing, est_cent, **kwargs) return scores
0.000385
def load_tempo(filename, delimiter=r'\s+'): r"""Load tempo estimates from an annotation file in MIREX format. The file should consist of three numeric columns: the first two correspond to tempo estimates (in beats-per-minute), and the third denotes the relative confidence of the first value compared to the second (in the range [0, 1]). The file should contain only one row. Parameters ---------- filename : str Path to the annotation file delimiter : str Separator regular expression. By default, lines will be split by any amount of whitespace. Returns ------- tempi : np.ndarray, non-negative The two tempo estimates weight : float [0, 1] The relative importance of ``tempi[0]`` compared to ``tempi[1]`` """ # Use our universal function to load the key and mode strings t1, t2, weight = load_delimited(filename, [float, float, float], delimiter) weight = weight[0] tempi = np.concatenate([t1, t2]) if len(t1) != 1: raise ValueError('Tempo file should contain only one line.') # Validate them, but throw a warning in place of an error try: tempo.validate_tempi(tempi) except ValueError as error: warnings.warn(error.args[0]) if not 0 <= weight <= 1: raise ValueError('Invalid weight: {}'.format(weight)) return tempi, weight
0.000713
def get_stops( feed: "Feed", date: Optional[str] = None, trip_id: Optional[str] = None, route_id: Optional[str] = None, *, in_stations: bool = False, ) -> DataFrame: """ Return a section of ``feed.stops``. Parameters ----------- feed : Feed date : string YYYYMMDD string; restricts the output to stops active (visited by trips) on the date trip_id : string ID of a trip in ``feed.trips``; restricts output to stops visited by the trip route_id : string ID of route in ``feed.routes``; restricts output to stops visited by the route in_stations : boolean If ``True``, then restricts output to stops in stations if station data is available in ``feed.stops`` Returns ------- DataFrame A subset of ``feed.stops`` defined by the parameters above Notes ----- Assume the following feed attributes are not ``None``: - ``feed.stops`` - Those used in :func:`.stop_times.get_stop_times` """ s = feed.stops.copy() if date is not None: A = feed.get_stop_times(date)["stop_id"] s = s[s["stop_id"].isin(A)].copy() if trip_id is not None: st = feed.stop_times.copy() B = st[st["trip_id"] == trip_id]["stop_id"] s = s[s["stop_id"].isin(B)].copy() elif route_id is not None: A = feed.trips[feed.trips["route_id"] == route_id]["trip_id"] st = feed.stop_times.copy() B = st[st["trip_id"].isin(A)]["stop_id"] s = s[s["stop_id"].isin(B)].copy() if in_stations and set(["location_type", "parent_station"]) <= set( s.columns ): s = s[(s["location_type"] != 1) & (s["parent_station"].notnull())] return s
0.000565
def acquire(self, **kwargs): """ Copy the file and return its path Returns ------- str or None The path of the file or None if it does not exist or if verification failed. """ path = path_string(self.path) if os.path.exists(path): if config.verify_file(path, self.sha256): return path return None
0.004751
def save_hex(hex_file, path): """ Given a string representation of a hex file, this function copies it to the specified path thus causing the device mounted at that point to be flashed. If the hex_file is empty it will raise a ValueError. If the filename at the end of the path does not end in '.hex' it will raise a ValueError. """ if not hex_file: raise ValueError('Cannot flash an empty .hex file.') if not path.endswith('.hex'): raise ValueError('The path to flash must be for a .hex file.') with open(path, 'wb') as output: output.write(hex_file.encode('ascii'))
0.00157
def calc_delay(remainingDrops): ''' Calculate the idle delay Minimum play time for cards to drop is ~20min again. Except for accounts that requested a refund? Re-check every 15 mintes if there are more than 1 card drops remaining. If only one drop remains, check every 5 minutes ''' global sameDelay, lastDelay # Reset lastDelay for new appids if remainingDrops > 1: lastDelay = 5 sameDelay = 0 if remainingDrops > 2: return 15 * 60 # Check every 15 minutes elif remainingDrops == 2: return 10 * 60 # Check every 10 minutes else: # decrease delay by one minute every two calls if lastDelay > 1: if sameDelay == 2: sameDelay = 0 lastDelay -= 1 sameDelay += 1 return lastDelay * 60
0.004662
def two_phase_dP_dz_acceleration(m, D, x, rhol, rhog, dv_dP_l, dv_dP_g, dx_dP, dP_dL, dA_dL): r'''This function handles calculation of two-phase liquid-gas pressure drop due to acceleration for flow inside channels. This is a continuous calculation, providing the differential in pressure per unit length and should be called as part of an integration routine ([1]_, [2]_, [3]_). .. math:: -\left(\frac{\partial P}{\partial L}\right)_{A} = G^2 \left(\left(\frac{1}{\rho_g} - \frac{1}{\rho_l}\right)\frac{\partial P} {\partial L}\frac{\partial x}{\partial P} + \frac{\partial P}{\partial L}\left[x \frac{\partial (1/\rho_g)} {\partial P} + (1-x) \frac{\partial (1/\rho_l)}{\partial P} \right] \right) - \frac{G^2}{\rho_{hom}}\frac{1}{A}\frac{\partial A} {\partial L} Parameters ---------- m : float Mass flow rate of fluid, [kg/s] D : float Diameter of pipe, [m] x : float Quality of fluid [-] rhol : float Liquid density, [kg/m^3] rhog : float Gas density, [kg/m^3] dv_dP_l : float Derivative of mass specific volume of the liquid phase with respect to pressure, [m^3/(kg*Pa)] dv_dP_g : float Derivative of mass specific volume of the gas phase with respect to pressure, [m^3/(kg*Pa)] dx_dP : float Derivative of mass quality of the two-phase fluid with respect to pressure (numerical derivatives may be convenient for this), [1/Pa] dP_dL : float Pressure drop per unit length of pipe, [Pa/m] dA_dL : float Change in area of pipe per unit length of pipe, [m^2/m] Returns ------- dP_dz : float Acceleration component of pressure drop for two-phase flow, [Pa/m] Notes ----- This calculation has the `homogeneous` model built in to it as its derivation is shown in [1]_. The discrete calculation is more flexible as different void fractions may be used. Examples -------- >>> two_phase_dP_dz_acceleration(m=1, D=0.1, x=0.372, rhol=827.1, ... rhog=3.919, dv_dP_l=-5e-12, dv_dP_g=-4e-7, dx_dP=-2e-7, dP_dL=120.0, ... dA_dL=0.0001) 20.137876617489034 References ---------- .. [1] Shoham, Ovadia. Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes. Pap/Cdr edition. Richardson, TX: Society of Petroleum Engineers, 2006. .. [2] Rohsenow, Warren and James Hartnett and Young Cho. Handbook of Heat Transfer, 3E. New York: McGraw-Hill, 1998. .. [3] Kim, Sung-Min, and Issam Mudawar. "Review of Databases and Predictive Methods for Pressure Drop in Adiabatic, Condensing and Boiling Mini/Micro-Channel Flows." International Journal of Heat and Mass Transfer 77 (October 2014): 74-97. doi:10.1016/j.ijheatmasstransfer.2014.04.035. ''' A = 0.25*pi*D*D G = m/A t1 = (1.0/rhog - 1.0/rhol)*dP_dL*dx_dP + dP_dL*(x*dv_dP_g + (1.0 - x)*dv_dP_l) voidage_h = homogeneous(x, rhol, rhog) rho_h = rhol*(1.0 - voidage_h) + rhog*voidage_h return -G*G*(t1 - dA_dL/(rho_h*A))
0.004666
def pdf(self, x, e=0., w=1., a=0.): """ probability density function see: https://en.wikipedia.org/wiki/Skew_normal_distribution :param x: input value :param e: :param w: :param a: :return: """ t = (x-e) / w return 2. / w * stats.norm.pdf(t) * stats.norm.cdf(a*t)
0.005698
def create_standalone_context(require=None, **settings) -> 'Context': ''' Create a standalone ModernGL context. Example:: # Create a context with highest possible supported version ctx = moderngl.create_context() # Require at least OpenGL 4.3 ctx = moderngl.create_context(require=430) Keyword Arguments: require (int): OpenGL version code. Returns: :py:class:`Context` object ''' backend = os.environ.get('MODERNGL_BACKEND') if backend is not None: settings['backend'] = backend ctx = Context.__new__(Context) ctx.mglo, ctx.version_code = mgl.create_standalone_context(settings) ctx._screen = None ctx.fbo = None ctx._info = None ctx.extra = None if require is not None and ctx.version_code < require: raise ValueError('Requested OpenGL version {}, got version {}'.format( require, ctx.version_code)) return ctx
0.000999
def plot_source_topos(self, common_scale=None): """ Plot topography of the Source decomposition. Parameters ---------- common_scale : float, optional If set to None, each topoplot's color axis is scaled individually. Otherwise specifies the percentile (1-99) of values in all plot. This value is taken as the maximum color scale. """ if self.unmixing_ is None and self.mixing_ is None: raise RuntimeError("No sources available (run do_mvarica first)") self._prepare_plots(True, True) self.plotting.plot_sources(self.topo_, self.mixmaps_, self.unmixmaps_, common_scale)
0.007452
def get_eqsl_users(**kwargs): """Download the latest official list of `EQSL.cc`__ users. The list of users can be found here_. Args: url (str, optional): Download URL Returns: list: List containing the callsigns of EQSL users (unicode) Raises: IOError: When network is unavailable, file can't be downloaded or processed Example: The following example downloads the EQSL user list and checks if DH1TW is a user: >>> from pyhamtools.qsl import get_eqsl_users >>> mylist = get_eqsl_users() >>> try: >>> mylist.index('DH1TW') >>> except ValueError as e: >>> print e 'DH1TW' is not in list .. _here: http://www.eqsl.cc/QSLCard/DownloadedFiles/AGMemberlist.txt """ url = "" eqsl = [] try: url = kwargs['url'] except KeyError: url = "http://www.eqsl.cc/QSLCard/DownloadedFiles/AGMemberlist.txt" try: result = requests.get(url) except (ConnectionError, HTTPError, Timeout) as e: raise IOError(e) if result.status_code == requests.codes.ok: eqsl = re.sub("^List.+UTC", "", result.text) eqsl = eqsl.upper().split() else: raise IOError("HTTP Error: " + str(result.status_code)) return eqsl
0.002948
def get_current_word(self, completion=False): """Return current word, i.e. word at cursor position""" ret = self.get_current_word_and_position(completion) if ret is not None: return ret[0]
0.008772
def push(self, path, name, tag=None): '''push an image to an S3 endpoint''' path = os.path.abspath(path) image = os.path.basename(path) bot.debug("PUSH %s" % path) if not os.path.exists(path): bot.error('%s does not exist.' %path) sys.exit(1) # Extract the metadata names = parse_image_name(remove_uri(name), tag=tag) image_size = os.path.getsize(path) >> 20 # Create extra metadata, this is how we identify the image later # *important* bug in boto3 will return these capitalized # see https://github.com/boto/boto3/issues/1709 metadata = {'sizemb': "%s" % image_size, 'client': 'sregistry' } self.bucket.upload_file(path, names['storage_uri'], {"Metadata": metadata })
0.006588
def get_next_sort_string(self, field): """ If we're already sorted by the field then the sort query returned reverses the sort order. """ # self.sort_field is the currect sort field if field == self.sort_field: next_sort = self.toggle_sort_order() + field else: default_order_for_field = \ self._allowed_sort_fields[field]['default_direction'] next_sort = default_order_for_field + field return self.get_sort_string(next_sort)
0.00369
def get_assessment_offered_ids_by_bank(self, bank_id): """Gets the list of ``AssessmentOffered`` ``Ids`` associated with a ``Bank``. arg: bank_id (osid.id.Id): ``Id`` of the ``Bank`` return: (osid.id.IdList) - list of related assessment offered ``Ids`` raise: NotFound - ``bank_id`` is not found raise: NullArgument - ``bank_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure occurred *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.ResourceBinSession.get_resource_ids_by_bin id_list = [] for assessment_offered in self.get_assessments_offered_by_bank(bank_id): id_list.append(assessment_offered.get_id()) return IdList(id_list)
0.004405
def get_values(self, context_type): """ Get the values valid on this line. :param context_type: "ENV" or "LABEL" :return: values of given type valid on this line """ if context_type.upper() == "ENV": return self.envs elif context_type.upper() == "LABEL": return self.labels
0.00565
def rotate_image_180(): ''' Rotate the image ''' # Create the media service mycam = ONVIFCamera('192.168.0.112', 80, 'admin', '12345') media_service = mycam.create_media_service() profiles = media_service.GetProfiles() # Use the first profile and Profiles have at least one token = profiles[0]._token # Get all video source configurations configurations_list = media_service.GetVideoSourceConfigurations() # Use the first profile and Profiles have at least one video_source_configuration = configurations_list[0] # Enable rotate video_source_configuration.Extension[0].Rotate[0].Mode[0] = 'OFF' # Create request type instance request = media_service.create_type('SetVideoSourceConfiguration') request.Configuration = video_source_configuration # ForcePersistence is obsolete and should always be assumed to be True request.ForcePersistence = True # Set the video source configuration media_service.SetVideoSourceConfiguration(request)
0.000978