text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def exists(self, path):
"""
Use ``hadoop fs -stat`` to check file existence.
"""
cmd = load_hadoop_cmd() + ['fs', '-stat', path]
logger.debug('Running file existence check: %s', subprocess.list2cmdline(cmd))
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, universal_newlines=True)
stdout, stderr = p.communicate()
if p.returncode == 0:
return True
else:
not_found_pattern = "^.*No such file or directory$"
not_found_re = re.compile(not_found_pattern)
for line in stderr.split('\n'):
if not_found_re.match(line):
return False
raise hdfs_error.HDFSCliError(cmd, p.returncode, stdout, stderr) | 0.005 |
def unpack_fraction(num: str) -> str:
"""
Returns unpacked fraction string 5/2 -> 2 1/2
"""
nums = [int(n) for n in num.split('/') if n]
if len(nums) == 2 and nums[0] > nums[1]:
over = nums[0] // nums[1]
rem = nums[0] % nums[1]
return f'{over} {rem}/{nums[1]}'
return num | 0.003135 |
def from_wire(rdclass, rdtype, wire, current, rdlen, origin = None):
"""Build an rdata object from wire format
This function attempts to dynamically load a class which
implements the specified rdata class and type. If there is no
class-and-type-specific implementation, the GenericRdata class
is used.
Once a class is chosen, its from_wire() class method is called
with the parameters to this function.
@param rdclass: The rdata class
@type rdclass: int
@param rdtype: The rdata type
@type rdtype: int
@param wire: The wire-format message
@type wire: string
@param current: The offet in wire of the beginning of the rdata.
@type current: int
@param rdlen: The length of the wire-format rdata
@type rdlen: int
@param origin: The origin to use for relative names
@type origin: dns.name.Name
@rtype: dns.rdata.Rdata instance"""
wire = dns.wiredata.maybe_wrap(wire)
cls = get_rdata_class(rdclass, rdtype)
return cls.from_wire(rdclass, rdtype, wire, current, rdlen, origin) | 0.002817 |
def terminate(self, signal_chain=KILL_CHAIN, kill_wait=KILL_WAIT_SEC, purge=True):
"""Ensure a process is terminated by sending a chain of kill signals (SIGTERM, SIGKILL)."""
alive = self.is_alive()
if alive:
logger.debug('terminating {}'.format(self._name))
for signal_type in signal_chain:
pid = self.pid
try:
logger.debug('sending signal {} to pid {}'.format(signal_type, pid))
self._kill(signal_type)
except OSError as e:
logger.warning('caught OSError({e!s}) during attempt to kill -{signal} {pid}!'
.format(e=e, signal=signal_type, pid=pid))
# Wait up to kill_wait seconds to terminate or move onto the next signal.
try:
if self._deadline_until(self.is_dead, 'daemon to exit', timeout=kill_wait):
alive = False
logger.debug('successfully terminated pid {}'.format(pid))
break
except self.Timeout:
# Loop to the next kill signal on timeout.
pass
if alive:
raise ProcessManager.NonResponsiveProcess('failed to kill pid {pid} with signals {chain}'
.format(pid=self.pid, chain=signal_chain))
if purge:
self.purge_metadata(force=True) | 0.01474 |
def normalRDD(sc, size, numPartitions=None, seed=None):
"""
Generates an RDD comprised of i.i.d. samples from the standard normal
distribution.
To transform the distribution in the generated RDD from standard normal
to some other normal N(mean, sigma^2), use
C{RandomRDDs.normal(sc, n, p, seed)\
.map(lambda v: mean + sigma * v)}
:param sc: SparkContext used to create the RDD.
:param size: Size of the RDD.
:param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
:param seed: Random seed (default: a random long integer).
:return: RDD of float comprised of i.i.d. samples ~ N(0.0, 1.0).
>>> x = RandomRDDs.normalRDD(sc, 1000, seed=1)
>>> stats = x.stats()
>>> stats.count()
1000
>>> abs(stats.mean() - 0.0) < 0.1
True
>>> abs(stats.stdev() - 1.0) < 0.1
True
"""
return callMLlibFunc("normalRDD", sc._jsc, size, numPartitions, seed) | 0.002865 |
def remove(self, experiment):
"""Remove the configuration of an experiment"""
try:
project_path = self.projects[self[experiment]['project']]['root']
except KeyError:
return
config_path = osp.join(project_path, '.project', experiment + '.yml')
for f in [config_path, config_path + '~', config_path + '.lck']:
if os.path.exists(f):
os.remove(f)
del self[experiment] | 0.00432 |
def generate(env):
"""Add Builders and construction variables for masm to an Environment."""
static_obj, shared_obj = SCons.Tool.createObjBuilders(env)
for suffix in ASSuffixes:
static_obj.add_action(suffix, SCons.Defaults.ASAction)
shared_obj.add_action(suffix, SCons.Defaults.ASAction)
static_obj.add_emitter(suffix, SCons.Defaults.StaticObjectEmitter)
shared_obj.add_emitter(suffix, SCons.Defaults.SharedObjectEmitter)
for suffix in ASPPSuffixes:
static_obj.add_action(suffix, SCons.Defaults.ASPPAction)
shared_obj.add_action(suffix, SCons.Defaults.ASPPAction)
static_obj.add_emitter(suffix, SCons.Defaults.StaticObjectEmitter)
shared_obj.add_emitter(suffix, SCons.Defaults.SharedObjectEmitter)
env['AS'] = 'ml'
env['ASFLAGS'] = SCons.Util.CLVar('/nologo')
env['ASPPFLAGS'] = '$ASFLAGS'
env['ASCOM'] = '$AS $ASFLAGS /c /Fo$TARGET $SOURCES'
env['ASPPCOM'] = '$CC $ASPPFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS /c /Fo$TARGET $SOURCES'
env['STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME'] = 1 | 0.00541 |
def unique_id(self):
"""Creates a unique ID for the `Atom` based on its parents.
Returns
-------
unique_id : (str, str, str)
(polymer.id, residue.id, atom.id)
"""
chain = self.parent.parent.id
residue = self.parent.id
return chain, residue, self.id | 0.006154 |
def print_packet_count():
"""Print the number of packets grouped by packet name."""
for name in archive.list_packet_names():
packet_count = 0
for group in archive.list_packet_histogram(name):
for rec in group.records:
packet_count += rec.count
print(' {: <40} {: >20}'.format(name, packet_count)) | 0.002801 |
def replace_one(self, filter, replacement, upsert=False,
bypass_document_validation=False, collation=None,
session=None):
"""Replace a single document matching the filter.
>>> for doc in db.test.find({}):
... print(doc)
...
{u'x': 1, u'_id': ObjectId('54f4c5befba5220aa4d6dee7')}
>>> result = db.test.replace_one({'x': 1}, {'y': 1})
>>> result.matched_count
1
>>> result.modified_count
1
>>> for doc in db.test.find({}):
... print(doc)
...
{u'y': 1, u'_id': ObjectId('54f4c5befba5220aa4d6dee7')}
The *upsert* option can be used to insert a new document if a matching
document does not exist.
>>> result = db.test.replace_one({'x': 1}, {'x': 1}, True)
>>> result.matched_count
0
>>> result.modified_count
0
>>> result.upserted_id
ObjectId('54f11e5c8891e756a6e1abd4')
>>> db.test.find_one({'x': 1})
{u'x': 1, u'_id': ObjectId('54f11e5c8891e756a6e1abd4')}
:Parameters:
- `filter`: A query that matches the document to replace.
- `replacement`: The new document.
- `upsert` (optional): If ``True``, perform an insert if no documents
match the filter.
- `bypass_document_validation`: (optional) If ``True``, allows the
write to opt-out of document level validation. Default is
``False``.
- `collation` (optional): An instance of
:class:`~pymongo.collation.Collation`. This option is only supported
on MongoDB 3.4 and above.
- `session` (optional): a
:class:`~pymongo.client_session.ClientSession`.
:Returns:
- An instance of :class:`~pymongo.results.UpdateResult`.
.. note:: `bypass_document_validation` requires server version
**>= 3.2**
.. versionchanged:: 3.6
Added ``session`` parameter.
.. versionchanged:: 3.4
Added the `collation` option.
.. versionchanged:: 3.2
Added bypass_document_validation support
.. versionadded:: 3.0
"""
common.validate_is_mapping("filter", filter)
common.validate_ok_for_replace(replacement)
write_concern = self._write_concern_for(session)
return UpdateResult(
self._update_retryable(
filter, replacement, upsert,
write_concern=write_concern,
bypass_doc_val=bypass_document_validation,
collation=collation, session=session),
write_concern.acknowledged) | 0.001817 |
def render_image(self, rgbobj, dst_x, dst_y):
"""Render the image represented by (rgbobj) at dst_x, dst_y
in the pixel space.
*** internal method-- do not use ***
"""
self.logger.debug("redraw surface=%s" % (self.surface))
if self.surface is None:
return
self.logger.debug("drawing to surface")
# Prepare array for rendering
# TODO: what are options for high bit depth under Qt?
data = rgbobj.get_array(self.rgb_order, dtype=np.uint8)
(height, width) = data.shape[:2]
daht, dawd, depth = data.shape
self.logger.debug("data shape is %dx%dx%d" % (dawd, daht, depth))
# Get qimage for copying pixel data
qimage = self._get_qimage(data)
drawable = self.surface
painter = QPainter(drawable)
#painter.setWorldMatrixEnabled(True)
# fill surface with background color
#imgwin_wd, imgwin_ht = self.viewer.get_window_size()
size = drawable.size()
sf_wd, sf_ht = size.width(), size.height()
bg = self.viewer.img_bg
bgclr = self._get_color(*bg)
painter.fillRect(QtCore.QRect(0, 0, sf_wd, sf_ht), bgclr)
# draw image data from buffer to offscreen pixmap
painter.drawImage(QtCore.QRect(dst_x, dst_y, width, height),
qimage,
QtCore.QRect(0, 0, width, height)) | 0.002797 |
def get_user_modified_lines(self):
"""
Output: {file_path: [(line_a_start, line_a_end), (line_b_start, line_b_end)]}
Lines ranges are sorted and not overlapping
"""
# I assume that git diff:
# - doesn't mix diffs from different files,
# - diffs are not overlapping
# - diffs are sorted based on line numbers
output = {}
FILE_NAME_RE = r'^\+\+\+ (.+)$'
CHANGED_LINES_RE = r'^@@ -[0-9,]+ \+([0-9]+)(?:,([0-9]+))? @@'
current_file_name = None
for line in self.git_wrapper.get_min_diff(self.remote_sha1, self.local_sha1).split('\n'):
file_name_match = re.match(FILE_NAME_RE, line)
if file_name_match:
current_file_name, = file_name_match.groups()
output[current_file_name] = []
continue
line_number_match = re.match(CHANGED_LINES_RE, line)
if line_number_match:
assert current_file_name
if current_file_name == '/dev/null':
continue
line_start, diff_len = line_number_match.groups()
line_start, diff_len = int(line_start), int(diff_len or 0)
output[current_file_name].append(LinesRange(line_start, line_start + diff_len))
continue
return output | 0.003652 |
def byName(cls, name, recurse=True, default=None):
"""
Returns the addon whose name matches the inputted name. If
the optional recurse flag is set to True, then all the base classes
will be searched for the given addon as well. If no addon is found,
the default is returned.
:param name | <str>
recurse | <bool>
default | <variant>
"""
cls.initAddons()
prop = '_{0}__addons'.format(cls.__name__)
try:
return getattr(cls, prop, {})[name]
except KeyError:
if recurse:
for base in cls.__bases__:
if issubclass(base, AddonManager):
return base.byName(name, recurse)
return default | 0.003686 |
def resolve_one(self, correlation_id, key):
"""
Resolves a single connection parameters by its key.
:param correlation_id: (optional) transaction id to trace execution through call chain.
:param key: a key to uniquely identify the connection.
:return: a resolved connection.
"""
connection = None
for item in self._items:
if item.key == key and item.connection != None:
connection = item.connection
break
return connection | 0.007394 |
def find_blocked_biomass_precursors(reaction, model):
"""
Return a list of all biomass precursors that cannot be produced.
Parameters
----------
reaction : cobra.core.reaction.Reaction
The biomass reaction of the model under investigation.
model : cobra.Model
The metabolic model under investigation.
Returns
-------
list
Metabolite objects that are reactants of the biomass reaction excluding
ATP and H2O that cannot be produced by flux balance analysis.
"""
LOGGER.debug("Finding blocked biomass precursors")
precursors = find_biomass_precursors(model, reaction)
blocked_precursors = list()
_, ub = helpers.find_bounds(model)
for precursor in precursors:
with model:
dm_rxn = model.add_boundary(
precursor,
type="safe-demand",
reaction_id="safe_demand",
lb=0,
ub=ub
)
flux = helpers.run_fba(model, dm_rxn.id, direction='max')
if np.isnan(flux) or abs(flux) < 1E-08:
blocked_precursors.append(precursor)
return blocked_precursors | 0.000847 |
def _match_operator(self, p, value):
"""
Returns True or False if the operator (&, |, or ! with filters, or ^ with filters) matches the value dictionary
"""
if p[0] == '!':
return self._OPERATOR_MAP[p[0]](self._match(p[1], value))
elif p[0] == '^':
return self._OPERATOR_MAP[p[0]](self._match(p[1][0], value), self._match(p[1][1], value))
else:
return self._OPERATOR_MAP[p[0]]([self._match(operator_or_filter, value) for operator_or_filter in p[1]]) | 0.009381 |
def get_unique_reads(self, ignore_haplotype=False, shallow=False):
"""
Pull out alignments of uniquely-aligning reads
:param ignore_haplotype: whether to regard allelic multiread as uniquely-aligning read
:param shallow: whether to copy sparse 3D matrix only or not
:return: a new AlignmentPropertyMatrix object that particular reads are
"""
if self.finalized:
if ignore_haplotype:
summat = self.sum(axis=self.Axis.HAPLOTYPE)
nnz_per_read = np.diff(summat.tocsr().indptr)
unique_reads = np.logical_and(nnz_per_read > 0, nnz_per_read < 2)
else: # allelic multireads should be removed
alncnt_per_read = self.sum(axis=self.Axis.LOCUS).sum(axis=self.Axis.HAPLOTYPE)
unique_reads = np.logical_and(alncnt_per_read > 0, alncnt_per_read < 2)
return self.pull_alignments_from(unique_reads, shallow=shallow)
else:
raise RuntimeError('The matrix is not finalized.') | 0.005629 |
def getAnalysisServiceSettings(self, uid):
"""Returns a dictionary with the settings for the analysis service that
match with the uid provided.
If there are no settings for the analysis service and
analysis requests:
1. looks for settings in AR's ARTemplate. If found, returns the
settings for the AnalysisService set in the Template
2. If no settings found, looks in AR's ARProfile. If found, returns the
settings for the AnalysisService from the AR Profile. Otherwise,
returns a one entry dictionary with only the key 'uid'
"""
sets = [s for s in self.getAnalysisServicesSettings()
if s.get('uid', '') == uid]
# Created by using an ARTemplate?
if not sets and self.getTemplate():
adv = self.getTemplate().getAnalysisServiceSettings(uid)
sets = [adv] if 'hidden' in adv else []
# Created by using an AR Profile?
if not sets and self.getProfiles():
adv = []
adv += [profile.getAnalysisServiceSettings(uid) for profile in
self.getProfiles()]
sets = adv if 'hidden' in adv[0] else []
return sets[0] if sets else {'uid': uid} | 0.001587 |
def num_samples(self, sr=None):
"""
Return the number of samples.
Args:
sr (int): Calculate the number of samples with the given
sampling-rate. If None use the native sampling-rate.
Returns:
int: Number of samples
"""
native_sr = self.sampling_rate
num_samples = units.seconds_to_sample(self.duration, native_sr)
if sr is not None:
ratio = float(sr) / native_sr
num_samples = int(np.ceil(num_samples * ratio))
return num_samples | 0.003484 |
def request_access_token(self, access_code):
"Request access token from GitHub"
token_response = request_session.post(
"https://github.com/login/oauth/access_token",
data={
"client_id": self.oauth_client_id,
"client_secret": self.oauth_client_secret,
"code": access_code
},
headers={"Accept": "application/json"},
)
return helper_request_access_token(token_response.json()) | 0.003992 |
def items(self, *args, **kwargs):
""" Return the list of items within this tag. This function is only applicable
in search results from PlexServer :func:`~plexapi.server.PlexServer.search()`.
"""
if not self.key:
raise BadRequest('Key is not defined for this tag: %s' % self.tag)
return self.fetchItems(self.key) | 0.01087 |
def _check_operations(ctx, need_ops, arg):
''' Checks an allow or a deny caveat. The need_ops parameter specifies
whether we require all the operations in the caveat to be declared in
the context.
'''
ctx_ops = ctx.get(OP_KEY, [])
if len(ctx_ops) == 0:
if need_ops:
f = arg.split()
if len(f) == 0:
return 'no operations allowed'
return '{} not allowed'.format(f[0])
return None
fields = arg.split()
for op in ctx_ops:
err = _check_op(op, need_ops, fields)
if err is not None:
return err
return None | 0.001585 |
def get_texture(self, label: str) -> Union[moderngl.Texture, moderngl.TextureArray,
moderngl.Texture3D, moderngl.TextureCube]:
"""
Get a texture by label
Args:
label (str): The label for the texture to fetch
Returns:
Texture instance
"""
return self._get_resource(label, self._textures, "texture") | 0.011655 |
def disable_tracing(self):
""" Disable tracing if it is disabled and debugged program is running,
else do nothing.
:return: False if tracing has been disabled, True else.
"""
_logger.x_debug("disable_tracing()")
#self.dump_tracing_state("before disable_tracing()")
if self.tracing_enabled and self.execution_started:
threading.settrace(None) # don't trace threads to come
iksettrace3._set_trace_off()
self.tracing_enabled = False
#self.dump_tracing_state("after disable_tracing()")
return self.tracing_enabled | 0.008065 |
def quickinfo(self):
"""
Returns a short string describing some of the options of the actor.
:return: the info, None if not available
:rtype: str
"""
return "incremental: " + str(self.config["incremental"]) \
+ ", custom: " + str(self.config["use_custom_loader"]) \
+ ", loader: " + base.to_commandline(self.config["custom_loader"]) | 0.007299 |
def get_zone(server, token, domain, keyword='', raw_flag=False):
"""Retrieve zone records.
Argument:
server: TonicDNS API server
token: TonicDNS API authentication token
domain: Specify domain name
keyword: Search keyword
x-authentication-token: token
"""
method = 'GET'
uri = 'https://' + server + '/zone/' + domain
data = connect.tonicdns_client(uri, method, token, data=False,
keyword=keyword, raw_flag=raw_flag)
return data | 0.001876 |
def get_profile(self):
"""
Get my own profile
"""
r = self._session.get(API_URL + "/logins/me")
r.raise_for_status()
return r.json() | 0.01105 |
def fdfilter(data, *filt, **kwargs):
"""Filter a frequency-domain data object
See Also
--------
gwpy.frequencyseries.FrequencySeries.filter
gwpy.spectrogram.Spectrogram.filter
"""
# parse keyword args
inplace = kwargs.pop('inplace', False)
analog = kwargs.pop('analog', False)
fs = kwargs.pop('sample_rate', None)
if kwargs:
raise TypeError("filter() got an unexpected keyword argument '%s'"
% list(kwargs.keys())[0])
# parse filter
if fs is None:
fs = 2 * (data.shape[-1] * data.df).to('Hz').value
form, filt = parse_filter(filt, analog=analog, sample_rate=fs)
lti = signal.lti(*filt)
# generate frequency response
freqs = data.frequencies.value.copy()
fresp = numpy.nan_to_num(abs(lti.freqresp(w=freqs)[1]))
# apply to array
if inplace:
data *= fresp
return data
new = data * fresp
return new | 0.001062 |
def init_registry_from_json(mongo, filename, clear_collection=False):
"""Initialize a model registry with a list of model definitions that are
stored in a given file in Json format.
Parameters
----------
mongo : scodata.MongoDBFactory
Connector for MongoDB
filename : string
Path to file containing model definitions
clear_collection : boolean
If true, collection will be dropped before models are created
"""
# Read model definition file (JSON)
with open(filename, 'r') as f:
models = json.load(f)
init_registry(mongo, models, clear_collection) | 0.001608 |
def badge_width(self):
"""The total width of badge.
>>> badge = Badge('pylint', '5', font_name='DejaVu Sans,Verdana,Geneva,sans-serif',
... font_size=11)
>>> badge.badge_width
91
"""
return self.get_text_width(' ' + ' ' * int(float(self.num_padding_chars) * 2.0)) \
+ self.label_width + self.value_width | 0.010309 |
def create_NT_hashed_password_v1(passwd, user=None, domain=None):
"create NT hashed password"
# if the passwd provided is already a hash, we just return the second half
if re.match(r'^[\w]{32}:[\w]{32}$', passwd):
return binascii.unhexlify(passwd.split(':')[1])
digest = hashlib.new('md4', passwd.encode('utf-16le')).digest()
return digest | 0.002717 |
def sra_download_paired_end(credentials, instance_config, instance_name,
script_dir, sra_run_acc, output_dir, **kwargs):
"""Download paired-end reads from SRA and convert to gzip'ed FASTQ files.
TODO: docstring"""
template = _TEMPLATE_ENV.get_template('sra_download_paired-end.sh')
startup_script = template.render(
script_dir=script_dir,
sra_run_acc=sra_run_acc,
output_dir=output_dir)
if len(startup_script) > 32768:
raise ValueError('Startup script larger than 32,768 bytes!')
#print(startup_script)
instance_config.create_instance(
credentials, instance_name, startup_script=startup_script, **kwargs) | 0.004231 |
def get_uids(self):
"""Returns a uids list of the objects this action must be performed
against to. If no values for uids param found in the request, returns
the uid of the current context
"""
uids = self.get_uids_from_request()
if not uids and api.is_object(self.context):
uids = [api.get_uid(self.context)]
return uids | 0.005155 |
def value_get(method_name):
"""
Creates a getter that will call value's method with specified name
using the context's key as first argument.
@param method_name: the name of a method belonging to the value.
@type method_name: str
"""
def value_get(value, context, **_params):
method = getattr(value, method_name)
return _get(method, context["key"], (), {})
return value_get | 0.002364 |
def nl_list_for_each_entry(pos, head, member):
"""https://github.com/thom311/libnl/blob/libnl3_2_25/include/netlink/list.h#L79.
Positional arguments:
pos -- class instance holding an nl_list_head instance.
head -- nl_list_head class instance.
member -- attribute (string).
Returns:
Generator yielding a class instances.
"""
pos = nl_list_entry(head.next_, type(pos), member)
while True:
yield pos
if getattr(pos, member) != head:
pos = nl_list_entry(getattr(pos, member).next_, type(pos), member)
continue
break | 0.001664 |
def create_user(self, claims):
"""Return object for a newly created user account."""
email = claims.get('email')
username = self.get_username(claims)
return self.UserModel.objects.create_user(username, email) | 0.008333 |
def _rest_make_phenotypes():
#phenotype sources
neuroner = Path(devconfig.git_local_base,
'neuroNER/resources/bluima/neuroner/hbp_morphology_ontology.obo').as_posix()
neuroner1 = Path(devconfig.git_local_base,
'neuroNER/resources/bluima/neuroner/hbp_electrophysiology_ontology.obo').as_posix()
neuroner2 = Path(devconfig.git_local_base,
'neuroNER/resources/bluima/neuroner/hbp_electrophysiology-triggers_ontology.obo').as_posix()
nif_qual = Path(devconfig.ontology_local_repo,
'ttl/NIF-Quality.ttl').as_posix()
mo = OboFile(os.path.expanduser(neuroner))
mo1 = OboFile(os.path.expanduser(neuroner1))
mo2 = OboFile(os.path.expanduser(neuroner2))
mo_ttl = mo.__ttl__() + mo1.__ttl__() + mo2.__ttl__()
mo_ttl = """\
@prefix : <http://FIXME.org/> .
@prefix nsu: <http://www.FIXME.org/nsupper#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
""" + mo_ttl
#sio = io.StringIO()
#sio.write(mo_ttl)
ng = rdflib.Graph()
ng.parse(data=mo_ttl, format='turtle')
ng.parse(os.path.expanduser(nif_qual), format='turtle')
#ng.namespace_manager.bind('default1', None, override=False, replace=True)
ng.remove((None, rdflib.OWL.imports, None))
bad_match = {
'http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Quality.owl#nlx_qual_20090505',
'http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Quality.owl#sao1693353776',
'http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Quality.owl#sao1288413465',
'http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Quality.owl#sao4459136323',
'http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Quality.owl#nlx_qual_20090507',
}
exact = []
similar = []
quals = []
s2 = {}
for subject, label in sorted(ng.subject_objects(rdflib.RDFS.label)):
syns = set([a for a in ng.objects(subject, rdflib.URIRef('http://www.FIXME.org/nsupper#synonym'))])
syns.update(set([a for a in ng.objects(subject, rdflib.URIRef('http://ontology.neuinfo.org/NIF/Backend/OBO_annotation_properties.owl#synonym'))]))
#if syns:
#print(syns)
#print(subject)
#print(label.lower())
if 'quality' in label.lower():
quals.append((subject, label))
subpre = ng.namespace_manager.compute_qname(subject)[1]
llower = rdflib.Literal(label.lower(), lang='en')
for s in ng.subjects(rdflib.RDFS.label, llower):
if s != subject:
exact.append((subject, s, label, llower))
for s, p, o in sorted(ng.triples((None, rdflib.RDFS.label, None))):
spre = ng.namespace_manager.compute_qname(s)[1]
if subject != s and label.lower() in o.lower().split(' ') and spre != subpre:
if s.toPython() in bad_match or subject.toPython() in bad_match:
continue
#print()
#print(spre, subpre)
similar.append((subject, s, label, o))
if subpre.toPython() == 'http://FIXME.org/':
print('YAY')
print(label, ',', o)
print(subject, s)
subject, s = s, subject
label, o = o, label
if subject in s2:
#print('YES IT EXISTS')
#print(syns, label, [subject, s])
s2[subject]['syns'].update(syns)
s2[subject]['syns'].add(label)
s2[subject]['xrefs'] += [subject, s]
else:
s2[subject] = {'label': label.toPython(), 'o': o.toPython(), 'xrefs':[subject, s], 'syns':syns} # FIXME overwrites
pprint(quals)
""" print stuff
print('matches')
pprint(exact)
pprint(similar)
#print('EXACT', exact)
print()
for k, v in s2.items():
print(k)
for k, v2 in sorted(v.items()):
print(' ', k, ':', v2)
#"""
desired_nif_terms = set() #{
#'NIFQUAL:sao1959705051', # dendrite
#'NIFQUAL:sao2088691397', # axon
#'NIFQUAL:sao1057800815', # morphological
#'NIFQUAL:sao-1126011106', # soma
#'NIFQUAL:',
#'NIFQUAL:',
#}
starts = [
#"NIFQUAL:sao2088691397",
#"NIFQUAL:sao1278200674",
#"NIFQUAL:sao2088691397",
#"NIFQUAL:sao-1126011106", # FIXME WTF IS THIS NONSENSE (scigraph bug?)
quote("http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Quality.owl#sao1959705051").replace('/','%2F'),
quote("http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Quality.owl#sao2088691397").replace('/','%2F'),
quote("http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Quality.owl#sao1278200674").replace('/','%2F'),
quote("http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Quality.owl#sao2088691397").replace('/','%2F'),
quote("http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Quality.owl#sao-1126011106").replace('/','%2F'),
]
for id_ in starts:
want = sgg.getNeighbors(id_, relationshipType='subClassOf', direction='INCOMING', depth=5)
#print(id_, want)
desired_nif_terms.update([n['id'] for n in want['nodes']])
print(desired_nif_terms)
ilx_start = 50114
print(ilx_base.format(ilx_start))
new_terms = {}
dg = makeGraph('uwotm8', prefixes=PREFIXES)
xr = makeGraph('xrefs', prefixes=PREFIXES)
for s, o in sorted(ng.subject_objects(rdflib.RDFS.label))[::-1]:
spre = ng.namespace_manager.compute_qname(s)[1]
#if spre.toPython() == g.namespaces['NIFQUAL']:
#print('skipping', s)
#continue # TODO
if s in new_terms:
print(s, 'already in as xref probably')
continue
#elif spre.toPython() != 'http://uri.interlex.org/base/ilx_' or spre.toPython() != 'http://FIXME.org/' and s.toPython() not in desired_nif_terms:
#elif spre.toPython() != 'http://FIXME.org/' and s.toPython() not in desired_nif_terms:
#print('DO NOT WANT', s, spre)
#continue
syns = set([s for s in ng.objects(s, dg.namespaces['nsu']['synonym'])])
#data['syns'] += syns
data = {}
id_ = ilx_base.format(ilx_start)
ilx_start += 1
if s in s2:
d = s2[s]
syns.update(d['syns'])
new_terms[d['xrefs'][0]] = {'replaced_by':id_}
xr.add_trip(d['xrefs'][0], 'oboInOwl:replacedBy', id_)
#dg.add_trip(d['xrefs'][0], 'oboInOwl:replacedBy', id_)
new_terms[d['xrefs'][1]] = {'replaced_by':id_}
xr.add_trip(d['xrefs'][1], 'oboInOwl:replacedBy', id_)
#dg.add_trip(d['xrefs'][1], 'oboInOwl:replacedBy', id_)
data['labels'] = [d['label'], d['o']]
#dg.add_trip(id_, rdflib.RDFS.label, d['label'])
dg.add_trip(id_, rdflib.RDFS.label, d['o'])
data['xrefs'] = d['xrefs']
for x in d['xrefs']: # FIXME... expecting order of evaluation errors here...
dg.add_trip(id_, 'oboInOwl:hasDbXref', x) # xr
xr.add_trip(id_, 'oboInOwl:hasDbXref', x) # x
elif spre.toPython() != 'http://ontology.neuinfo.org/NIF/BiomaterialEntities/NIF-Quality.owl#' or ng.namespace_manager.qname(s).replace('default1','NIFQUAL') in desired_nif_terms: # skip non-xref quals
#print(ng.namespace_manager.qname(s).replace('default1','NIFQUAL'))
new_terms[s] = {'replaced_by':id_}
xr.add_trip(s, 'oboInOwl:replacedBy', id_)
data['labels'] = [o.toPython()]
dg.add_trip(id_, rdflib.RDFS.label, o.toPython())
data['xrefs'] = [s]
dg.add_trip(id_, 'oboInOwl:hasDbXref', s) # xr
xr.add_trip(id_, 'oboInOwl:hasDbXref', s) # xr
else:
ilx_start -= 1
continue
new_terms[id_] = data
dg.add_trip(id_, rdflib.RDF.type, rdflib.OWL.Class)
xr.add_trip(id_, rdflib.RDF.type, rdflib.OWL.Class)
for syn in syns:
if syn.toPython() not in data['labels']:
if len(syn) > 3:
dg.add_trip(id_, 'NIFRID:synonym', syn)
elif syn:
dg.add_trip(id_, 'NIFRID:abbrev', syn)
if 'EPHYS' in s or any(['EPHYS' in x for x in data['xrefs']]):
dg.add_trip(id_, rdflib.RDFS.subClassOf, ephys_phenotype)
elif 'MORPHOLOGY' in s or any(['MORPHOLOGY' in x for x in data['xrefs']]):
dg.add_trip(id_, rdflib.RDFS.subClassOf, morpho_phenotype)
#dg.write(convert=False)
xr.write(convert=False)
#skip this for now, we can use DG to do lookups later
#for t in dg.g.triples((None, None, None)):
#g.add_trip(*t) # only way to clean prefixes :/
add_phenotypes(g)
g.write(convert=False)
g2 = makeGraph('pheno-comp', PREFIXES)
for t in ng.triples((None, None, None)):
g2.add_trip(*t) # only way to clean prefixes :/
g2.write(convert=False)
syn_mappings = {}
for sub, syn in [_ for _ in g.g.subject_objects(g.expand('NIFRID:synonym'))] + [_ for _ in g.g.subject_objects(rdflib.RDFS.label)]:
syn = syn.toPython()
if syn in syn_mappings:
log.error(f'duplicate synonym! {syn} {sub}')
syn_mappings[syn] = sub
#embed()
return syn_mappings, pedges, ilx_start | 0.009853 |
def _upsample(self, method, limit=None, fill_value=None):
"""
Parameters
----------
method : string {'backfill', 'bfill', 'pad', 'ffill'}
method for upsampling
limit : int, default None
Maximum size gap to fill when reindexing
fill_value : scalar, default None
Value to use for missing values
See Also
--------
.fillna
"""
# we may need to actually resample as if we are timestamps
if self.kind == 'timestamp':
return super()._upsample(method, limit=limit,
fill_value=fill_value)
self._set_binner()
ax = self.ax
obj = self.obj
new_index = self.binner
# Start vs. end of period
memb = ax.asfreq(self.freq, how=self.convention)
# Get the fill indexer
indexer = memb.get_indexer(new_index, method=method, limit=limit)
return self._wrap_result(_take_new_index(
obj, indexer, new_index, axis=self.axis)) | 0.001871 |
def clean_file_name(filename, unique=True, replace="_", force_nt=False):
"""
Return a filename version, which has no characters in it which are forbidden.
On Windows these are for example <, /, ?, ...
The intention of this function is to allow distribution of files to different OSes.
:param filename: string to clean
:param unique: check if the filename is already taken and append an integer to be unique (default: True)
:param replace: replacement character. (default: '_')
:param force_nt: Force shortening of paths like on NT systems (default: False)
:return: clean string
"""
if re.match(r'[<>:"/\\|?* .\x00-\x1f]', replace):
raise ValueError("replacement character is not allowed!")
path, fname = os.path.split(filename)
# For Windows see: https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx
# Other operating systems seems to be more tolerant...
# Not allowed filenames, attach replace character if necessary
if re.match(r'(CON|PRN|AUX|NUL|COM[1-9]|LPT[1-9])', fname):
fname += replace
# reserved characters
fname = re.sub(r'[<>:"/\\|?*\x00-\x1f]', replace, fname)
# Do not end with dot or space
fname = re.sub(r'[ .]$', replace, fname)
if force_nt or os.name == 'nt':
PATH_MAX_LENGTH = 230 # give extra space for other stuff...
# Check filename length limit, usually a problem on older Windows versions
if len(fname) > PATH_MAX_LENGTH:
if "." in fname:
f, ext = fname.rsplit(".", 1)
fname = "{}.{}".format(f[:PATH_MAX_LENGTH-(len(ext)+1)], ext)
else:
fname = fname[:PATH_MAX_LENGTH]
# Special behaviour... On Windows, there is also a problem with the maximum path length in explorer.exe
# maximum length is limited to 260 chars, so use 250 to have room for other stuff
if len(os.path.abspath(os.path.join(path, fname))) > 250:
fname = fname[:250 - (len(os.path.abspath(path)) + 1)]
if unique:
counter = 0
origname = fname
while os.path.isfile(os.path.join(path, fname)):
if "." in fname:
# assume extension
f, ext = origname.rsplit(".", 1)
fname = "{}_{}.{}".format(f, counter, ext)
else:
fname = "{}_{}".format(origname, counter)
counter += 1
return os.path.join(path, fname) | 0.003617 |
def get_periodicfeatures(
pfpickle,
lcbasedir,
outdir,
fourierorder=5,
# these are depth, duration, ingress duration
transitparams=(-0.01,0.1,0.1),
# these are depth, duration, depth ratio, secphase
ebparams=(-0.2,0.3,0.7,0.5),
pdiff_threshold=1.0e-4,
sidereal_threshold=1.0e-4,
sampling_peak_multiplier=5.0,
sampling_startp=None,
sampling_endp=None,
starfeatures=None,
timecols=None,
magcols=None,
errcols=None,
lcformat='hat-sql',
lcformatdir=None,
sigclip=10.0,
verbose=True,
raiseonfail=False
):
'''This gets all periodic features for the object.
Parameters
----------
pfpickle : str
The period-finding result pickle containing period-finder results to use
for the calculation of LC fit, periodogram, and phased LC features.
lcbasedir : str
The base directory where the light curve for the current object is
located.
outdir : str
The output directory where the results will be written.
fourierorder : int
The Fourier order to use to generate sinusoidal function and fit that to
the phased light curve.
transitparams : list of floats
The transit depth, duration, and ingress duration to use to generate a
trapezoid planet transit model fit to the phased light curve. The period
used is the one provided in `period`, while the epoch is automatically
obtained from a spline fit to the phased light curve.
ebparams : list of floats
The primary eclipse depth, eclipse duration, the primary-secondary depth
ratio, and the phase of the secondary eclipse to use to generate an
eclipsing binary model fit to the phased light curve. The period used is
the one provided in `period`, while the epoch is automatically obtained
from a spline fit to the phased light curve.
pdiff_threshold : float
This is the max difference between periods to consider them the same.
sidereal_threshold : float
This is the max difference between any of the 'best' periods and the
sidereal day periods to consider them the same.
sampling_peak_multiplier : float
This is the minimum multiplicative factor of a 'best' period's
normalized periodogram peak over the sampling periodogram peak at the
same period required to accept the 'best' period as possibly real.
sampling_startp, sampling_endp : float
If the `pgramlist` doesn't have a time-sampling Lomb-Scargle
periodogram, it will be obtained automatically. Use these kwargs to
control the minimum and maximum period interval to be searched when
generating this periodogram.
starfeatures : str or None
If not None, this should be the filename of the
`starfeatures-<objectid>.pkl` created by
:py:func:`astrobase.lcproc.lcsfeatures.get_starfeatures` for this
object. This is used to get the neighbor's light curve and phase it with
this object's period to see if this object is blended.
timecols : list of str or None
The timecol keys to use from the lcdict in calculating the features.
magcols : list of str or None
The magcol keys to use from the lcdict in calculating the features.
errcols : list of str or None
The errcol keys to use from the lcdict in calculating the features.
lcformat : str
This is the `formatkey` associated with your light curve format, which
you previously passed in to the `lcproc.register_lcformat`
function. This will be used to look up how to find and read the light
curves specified in `basedir` or `use_list_of_filenames`.
lcformatdir : str or None
If this is provided, gives the path to a directory when you've stored
your lcformat description JSONs, other than the usual directories lcproc
knows to search for them in. Use this along with `lcformat` to specify
an LC format JSON file that's not currently registered with lcproc.
sigclip : float or int or sequence of two floats/ints or None
If a single float or int, a symmetric sigma-clip will be performed using
the number provided as the sigma-multiplier to cut out from the input
time-series.
If a list of two ints/floats is provided, the function will perform an
'asymmetric' sigma-clip. The first element in this list is the sigma
value to use for fainter flux/mag values; the second element in this
list is the sigma value to use for brighter flux/mag values. For
example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma
dimmings and greater than 3-sigma brightenings. Here the meaning of
"dimming" and "brightening" is set by *physics* (not the magnitude
system), which is why the `magsarefluxes` kwarg must be correctly set.
If `sigclip` is None, no sigma-clipping will be performed, and the
time-series (with non-finite elems removed) will be passed through to
the output.
verbose : bool
If True, will indicate progress while working.
raiseonfail : bool
If True, will raise an Exception if something goes wrong.
Returns
-------
str
Returns a filename for the output pickle containing all of the periodic
features for the input object's LC.
'''
try:
formatinfo = get_lcformat(lcformat,
use_lcformat_dir=lcformatdir)
if formatinfo:
(fileglob, readerfunc,
dtimecols, dmagcols, derrcols,
magsarefluxes, normfunc) = formatinfo
else:
LOGERROR("can't figure out the light curve format")
return None
except Exception as e:
LOGEXCEPTION("can't figure out the light curve format")
return None
# open the pfpickle
if pfpickle.endswith('.gz'):
infd = gzip.open(pfpickle)
else:
infd = open(pfpickle)
pf = pickle.load(infd)
infd.close()
lcfile = os.path.join(lcbasedir, pf['lcfbasename'])
objectid = pf['objectid']
if 'kwargs' in pf:
kwargs = pf['kwargs']
else:
kwargs = None
# override the default timecols, magcols, and errcols
# using the ones provided to the periodfinder
# if those don't exist, use the defaults from the lcformat def
if kwargs and 'timecols' in kwargs and timecols is None:
timecols = kwargs['timecols']
elif not kwargs and not timecols:
timecols = dtimecols
if kwargs and 'magcols' in kwargs and magcols is None:
magcols = kwargs['magcols']
elif not kwargs and not magcols:
magcols = dmagcols
if kwargs and 'errcols' in kwargs and errcols is None:
errcols = kwargs['errcols']
elif not kwargs and not errcols:
errcols = derrcols
# check if the light curve file exists
if not os.path.exists(lcfile):
LOGERROR("can't find LC %s for object %s" % (lcfile, objectid))
return None
# check if we have neighbors we can get the LCs for
if starfeatures is not None and os.path.exists(starfeatures):
with open(starfeatures,'rb') as infd:
starfeat = pickle.load(infd)
if starfeat['closestnbrlcfname'].size > 0:
nbr_full_lcf = starfeat['closestnbrlcfname'][0]
# check for this LC in the lcbasedir
if os.path.exists(os.path.join(lcbasedir,
os.path.basename(nbr_full_lcf))):
nbrlcf = os.path.join(lcbasedir,
os.path.basename(nbr_full_lcf))
# if it's not there, check for this file at the full LC location
elif os.path.exists(nbr_full_lcf):
nbrlcf = nbr_full_lcf
# otherwise, we can't find it, so complain
else:
LOGWARNING("can't find neighbor light curve file: %s in "
"its original directory: %s, or in this object's "
"lcbasedir: %s, skipping neighbor processing..." %
(os.path.basename(nbr_full_lcf),
os.path.dirname(nbr_full_lcf),
lcbasedir))
nbrlcf = None
else:
nbrlcf = None
else:
nbrlcf = None
# now, start processing for periodic feature extraction
try:
# get the object LC into a dict
lcdict = readerfunc(lcfile)
# this should handle lists/tuples being returned by readerfunc
# we assume that the first element is the actual lcdict
# FIXME: figure out how to not need this assumption
if ( (isinstance(lcdict, (list, tuple))) and
(isinstance(lcdict[0], dict)) ):
lcdict = lcdict[0]
# get the nbr object LC into a dict if there is one
if nbrlcf is not None:
nbrlcdict = readerfunc(nbrlcf)
# this should handle lists/tuples being returned by readerfunc
# we assume that the first element is the actual lcdict
# FIXME: figure out how to not need this assumption
if ( (isinstance(nbrlcdict, (list, tuple))) and
(isinstance(nbrlcdict[0], dict)) ):
nbrlcdict = nbrlcdict[0]
# this will be the output file
outfile = os.path.join(outdir, 'periodicfeatures-%s.pkl' %
squeeze(objectid).replace(' ','-'))
# normalize using the special function if specified
if normfunc is not None:
lcdict = normfunc(lcdict)
if nbrlcf:
nbrlcdict = normfunc(nbrlcdict)
resultdict = {}
for tcol, mcol, ecol in zip(timecols, magcols, errcols):
# dereference the columns and get them from the lcdict
if '.' in tcol:
tcolget = tcol.split('.')
else:
tcolget = [tcol]
times = _dict_get(lcdict, tcolget)
if nbrlcf:
nbrtimes = _dict_get(nbrlcdict, tcolget)
else:
nbrtimes = None
if '.' in mcol:
mcolget = mcol.split('.')
else:
mcolget = [mcol]
mags = _dict_get(lcdict, mcolget)
if nbrlcf:
nbrmags = _dict_get(nbrlcdict, mcolget)
else:
nbrmags = None
if '.' in ecol:
ecolget = ecol.split('.')
else:
ecolget = [ecol]
errs = _dict_get(lcdict, ecolget)
if nbrlcf:
nbrerrs = _dict_get(nbrlcdict, ecolget)
else:
nbrerrs = None
#
# filter out nans, etc. from the object and any neighbor LC
#
# get the finite values
finind = np.isfinite(times) & np.isfinite(mags) & np.isfinite(errs)
ftimes, fmags, ferrs = times[finind], mags[finind], errs[finind]
if nbrlcf:
nfinind = (np.isfinite(nbrtimes) &
np.isfinite(nbrmags) &
np.isfinite(nbrerrs))
nbrftimes, nbrfmags, nbrferrs = (nbrtimes[nfinind],
nbrmags[nfinind],
nbrerrs[nfinind])
# get nonzero errors
nzind = np.nonzero(ferrs)
ftimes, fmags, ferrs = ftimes[nzind], fmags[nzind], ferrs[nzind]
if nbrlcf:
nnzind = np.nonzero(nbrferrs)
nbrftimes, nbrfmags, nbrferrs = (nbrftimes[nnzind],
nbrfmags[nnzind],
nbrferrs[nnzind])
# normalize here if not using special normalization
if normfunc is None:
ntimes, nmags = normalize_magseries(
ftimes, fmags,
magsarefluxes=magsarefluxes
)
times, mags, errs = ntimes, nmags, ferrs
if nbrlcf:
nbrntimes, nbrnmags = normalize_magseries(
nbrftimes, nbrfmags,
magsarefluxes=magsarefluxes
)
nbrtimes, nbrmags, nbrerrs = nbrntimes, nbrnmags, nbrferrs
else:
nbrtimes, nbrmags, nbrerrs = None, None, None
else:
times, mags, errs = ftimes, fmags, ferrs
if times.size > 999:
#
# now we have times, mags, errs (and nbrtimes, nbrmags, nbrerrs)
#
available_pfmethods = []
available_pgrams = []
available_bestperiods = []
for k in pf[mcol].keys():
if k in PFMETHODS:
available_pgrams.append(pf[mcol][k])
if k != 'win':
available_pfmethods.append(
pf[mcol][k]['method']
)
available_bestperiods.append(
pf[mcol][k]['bestperiod']
)
#
# process periodic features for this magcol
#
featkey = 'periodicfeatures-%s' % mcol
resultdict[featkey] = {}
# first, handle the periodogram features
pgramfeat = periodicfeatures.periodogram_features(
available_pgrams, times, mags, errs,
sigclip=sigclip,
pdiff_threshold=pdiff_threshold,
sidereal_threshold=sidereal_threshold,
sampling_peak_multiplier=sampling_peak_multiplier,
sampling_startp=sampling_startp,
sampling_endp=sampling_endp,
verbose=verbose
)
resultdict[featkey].update(pgramfeat)
resultdict[featkey]['pfmethods'] = available_pfmethods
# then for each bestperiod, get phasedlc and lcfit features
for _ind, pfm, bp in zip(range(len(available_bestperiods)),
available_pfmethods,
available_bestperiods):
resultdict[featkey][pfm] = periodicfeatures.lcfit_features(
times, mags, errs, bp,
fourierorder=fourierorder,
transitparams=transitparams,
ebparams=ebparams,
sigclip=sigclip,
magsarefluxes=magsarefluxes,
verbose=verbose
)
phasedlcfeat = periodicfeatures.phasedlc_features(
times, mags, errs, bp,
nbrtimes=nbrtimes,
nbrmags=nbrmags,
nbrerrs=nbrerrs
)
resultdict[featkey][pfm].update(phasedlcfeat)
else:
LOGERROR('not enough finite measurements in magcol: %s, for '
'pfpickle: %s, skipping this magcol'
% (mcol, pfpickle))
featkey = 'periodicfeatures-%s' % mcol
resultdict[featkey] = None
#
# end of per magcol processing
#
# write resultdict to pickle
outfile = os.path.join(outdir, 'periodicfeatures-%s.pkl' %
squeeze(objectid).replace(' ','-'))
with open(outfile,'wb') as outfd:
pickle.dump(resultdict, outfd, pickle.HIGHEST_PROTOCOL)
return outfile
except Exception as e:
LOGEXCEPTION('failed to run for pf: %s, lcfile: %s' %
(pfpickle, lcfile))
if raiseonfail:
raise
else:
return None | 0.00183 |
def _data(self, copy=False):
"""
Get all data associated with the container as key value pairs.
"""
data = {}
for key, obj in self.__dict__.items():
if isinstance(obj, (pd.Series, pd.DataFrame, pd.SparseSeries, pd.SparseDataFrame)):
if copy:
data[key] = obj.copy()
else:
data[key] = obj
return data | 0.006977 |
def get_account_funds(self, wallet=None, session=None, lightweight=None):
"""
Get available to bet amount.
:param str wallet: Name of the wallet in question
:param requests.session session: Requests session object
:param bool lightweight: If True will return dict not a resource
:rtype: resources.AccountFunds
"""
params = clean_locals(locals())
method = '%s%s' % (self.URI, 'getAccountFunds')
(response, elapsed_time) = self.request(method, params, session)
return self.process_response(response, resources.AccountFunds, elapsed_time, lightweight) | 0.004702 |
def program_binary_data(cls, session, address, data):
"""! @brief Helper routine to write a single chunk of data.
The session options for chip_erase and trust_crc are used.
@param cls
@param session The session instance.
@param address Start address of the data to program.
@param data A list of byte values that will be programmed starting at _address_.
"""
mgr = cls(session)
mgr.add_data(address, data)
mgr.commit() | 0.00969 |
def update_field(self, f, obj):
""" update a field
:param str f: name of field to be updated.
:param obj: value of field to be updated.
"""
n = self.get_private_name(f)
if not hasattr(self, n):
raise AttributeError('{0} is not in {1}'.format(n, self.__class__.__name__))
setattr(self, n, obj)
self.__origin_keys.add(f) | 0.007576 |
def find_transition(self, gene: Gene, multiplexes: Tuple[Multiplex, ...]) -> Transition:
"""
Find and return a transition in the model for the given gene and multiplexes.
Raise an AttributeError if there is no multiplex in the graph with the given name.
"""
multiplexes = tuple(multiplex for multiplex in multiplexes if gene in multiplex.genes)
for transition in self.transitions:
if transition.gene == gene and set(transition.multiplexes) == set(multiplexes):
return transition
raise AttributeError(f'transition K_{gene.name}' + ''.join(f"+{multiplex!r}" for multiplex in multiplexes) + ' does not exist') | 0.013025 |
def copy(self):
"""
Copy this object into a new object of the same type.
The returned object will not have a parent object.
"""
copyClass = self.copyClass
if copyClass is None:
copyClass = self.__class__
copied = copyClass()
copied.copyData(self)
return copied | 0.005814 |
def _save_config(self, filename=None):
"""
Save the given user configuration.
"""
if filename is None:
filename = self._config_filename
parent_path = os.path.dirname(filename)
if not os.path.isdir(parent_path):
os.makedirs(parent_path)
with open(filename, "w") as configfile:
self._config.write(configfile) | 0.005025 |
def sync_media(self, sync_set=None, clean=0, iter_local_paths=0):
"""
Uploads select media to an Apache accessible directory.
"""
# Ensure a site is selected.
self.genv.SITE = self.genv.SITE or self.genv.default_site
r = self.local_renderer
clean = int(clean)
self.vprint('Getting site data for %s...' % self.genv.SITE)
self.set_site_specifics(self.genv.SITE)
sync_sets = r.env.sync_sets
if sync_set:
sync_sets = [sync_set]
ret_paths = []
for _sync_set in sync_sets:
for paths in r.env.sync_sets[_sync_set]:
r.env.sync_local_path = os.path.abspath(paths['local_path'] % self.genv)
if paths['local_path'].endswith('/') and not r.env.sync_local_path.endswith('/'):
r.env.sync_local_path += '/'
if iter_local_paths:
ret_paths.append(r.env.sync_local_path)
continue
r.env.sync_remote_path = paths['remote_path'] % self.genv
if clean:
r.sudo('rm -Rf {apache_sync_remote_path}')
print('Syncing %s to %s...' % (r.env.sync_local_path, r.env.sync_remote_path))
r.env.tmp_chmod = paths.get('chmod', r.env.chmod)
r.sudo('mkdir -p {apache_sync_remote_path}')
r.sudo('chmod -R {apache_tmp_chmod} {apache_sync_remote_path}')
r.local('rsync -rvz --progress --recursive --no-p --no-g '
'--rsh "ssh -o StrictHostKeyChecking=no -i {key_filename}" {apache_sync_local_path} {user}@{host_string}:{apache_sync_remote_path}')
r.sudo('chown -R {apache_web_user}:{apache_web_group} {apache_sync_remote_path}')
if iter_local_paths:
return ret_paths | 0.004306 |
def validate(self, data):
"""Apply a JSON schema to an object"""
try:
schema_path = os.path.normpath(SCHEMA_ROOT)
location = u'file://%s' % (schema_path)
fs_resolver = resolver.LocalRefResolver(location, self.schema)
jsonschema.Draft3Validator(self.schema, resolver=fs_resolver).validate(data)
except jsonschema.ValidationError as exc:
# print "data %s" % (data)
raise jsonschema.exceptions.ValidationError(str(exc)) | 0.005848 |
def _get_demand_array_construct(self):
""" Returns a construct for an array of power demand data.
"""
bus_no = integer.setResultsName("bus_no")
s_rating = real.setResultsName("s_rating") # MVA
p_direction = real.setResultsName("p_direction") # p.u.
q_direction = real.setResultsName("q_direction") # p.u.
p_bid_max = real.setResultsName("p_bid_max") # p.u.
p_bid_min = real.setResultsName("p_bid_min") # p.u.
p_optimal_bid = Optional(real).setResultsName("p_optimal_bid")
p_fixed = real.setResultsName("p_fixed") # $/hr
p_proportional = real.setResultsName("p_proportional") # $/MWh
p_quadratic = real.setResultsName("p_quadratic") # $/MW^2h
q_fixed = real.setResultsName("q_fixed") # $/hr
q_proportional = real.setResultsName("q_proportional") # $/MVArh
q_quadratic = real.setResultsName("q_quadratic") # $/MVAr^2h
commitment = boolean.setResultsName("commitment")
cost_tie_break = real.setResultsName("cost_tie_break") # $/MWh
cost_cong_up = real.setResultsName("cost_cong_up") # $/h
cost_cong_down = real.setResultsName("cost_cong_down") # $/h
status = Optional(boolean).setResultsName("status")
demand_data = bus_no + s_rating + p_direction + q_direction + \
p_bid_max + p_bid_min + p_optimal_bid + p_fixed + \
p_proportional + p_quadratic + q_fixed + q_proportional + \
q_quadratic + commitment + cost_tie_break + cost_cong_up + \
cost_cong_down + status + scolon
demand_data.setParseAction(self.push_demand)
demand_array = Literal("Demand.con") + "=" + "[" + "..." + \
ZeroOrMore(demand_data + Optional("]" + scolon))
return demand_array | 0.008894 |
def modify_mempool(mempool, remove=0, add=0, verbose=False):
"""
Given a list of txids (mempool), add and remove some items to simulate
an out of sync mempool.
"""
for i in range(remove):
popped = mempool.pop()
if verbose: print("removed:", popped)
for i in range(add):
new_txid = _make_txid()
mempool.append(new_txid)
if verbose: print("added:", new_txid)
return mempool | 0.006803 |
def execute(self, processProtocol, command, env={},
path=None, uid=None, gid=None, usePTY=0, childFDs=None):
"""Execute a process on the remote machine using SSH
@param processProtocol: the ProcessProtocol instance to connect
@param executable: the executable program to run
@param args: the arguments to pass to the process
@param env: environment variables to request the remote ssh server to set
@param path: the remote path to start the remote process on
@param uid: user id or username to connect to the ssh server with
@param gid: this is not used for remote ssh processes
@param usePTY: wither to request a pty for the process
@param childFDs: file descriptors to use for stdin, stdout and stderr
"""
sshCommand = (command if isinstance(command, SSHCommand)
else SSHCommand(command, self.precursor, path))
commandLine = sshCommand.getCommandLine()
# Get connection to ssh server
connectionDeferred = self.getConnection(uid)
# spawn the remote process
connectionDeferred.addCallback(connectProcess, processProtocol,
commandLine, env, usePTY, childFDs)
return connectionDeferred | 0.00306 |
def ULE(a: BitVec, b: BitVec) -> Bool:
"""Create an unsigned less than expression.
:param a:
:param b:
:return:
"""
return Or(ULT(a, b), a == b) | 0.005917 |
def execute_command_in_message(controller, cliargs, clioptions, message):
"""
Runs the command in message['command'], which is one of: 'start' / 'stop'.
Updates the chef's initial command line args and options with args and options
provided in message['args'] and message['options'].
"""
SUPPORTED_COMMANDS = ['start'] # , 'stop'] # TODO
print(message)
# args and options from SushiBar overrride command line args and options
args = cliargs
options = clioptions
if 'args' in message:
args.update(message['args'])
if 'options' in message:
options.update(message['options'])
if message['command'] == 'start':
if not controller.thread or not controller.thread.isAlive():
controller.thread = threading.Thread(
target=controller.chef.run,
args=(args, options),
)
controller.thread.start()
else:
config.LOGGER.info('Not starting because chef is already running.')
else:
config.LOGGER.info('Command not supported: %s' % message['command']) | 0.002703 |
def range_minmax(ranges):
"""
Returns the span of a collection of ranges where start is the smallest of
all starts, and end is the largest of all ends.
>>> ranges = [(30, 45), (40, 50), (10, 100)]
>>> range_minmax(ranges)
(10, 100)
"""
rmin = min(ranges)[0]
rmax = max(ranges, key=lambda x: x[1])[1]
return rmin, rmax | 0.002793 |
def must_stop(self):
"""
Return True if the worker must stop when the current loop is over.
"""
return bool(self.terminate_gracefuly and self.end_signal_caught
or self.num_loops >= self.max_loops or self.end_forced
or self.wanted_end_date and datetime.utcnow() >= self.wanted_end_date) | 0.014245 |
def solvePerfForesight(solution_next,DiscFac,LivPrb,CRRA,Rfree,PermGroFac):
'''
Solves a single period consumption-saving problem for a consumer with perfect foresight.
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
DiscFac : float
Intertemporal discount factor for future utility.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
CRRA : float
Coefficient of relative risk aversion.
Rfree : float
Risk free interest factor on end-of-period assets.
PermGroFac : float
Expected permanent income growth factor at the end of this period.
Returns
-------
solution : ConsumerSolution
The solution to this period's problem.
'''
solver = ConsPerfForesightSolver(solution_next,DiscFac,LivPrb,CRRA,Rfree,PermGroFac)
solution = solver.solve()
return solution | 0.013 |
def emulate_until(self, target: int):
"""
Tells the CPU to set up a concrete unicorn emulator and use it to execute instructions
until target is reached.
:param target: Where Unicorn should hand control back to Manticore. Set to 0 for all instructions.
"""
self._concrete = True
self._break_unicorn_at = target
if self.emu:
self.emu._stop_at = target | 0.009368 |
def get_sql(self, with_default_expression=True):
'''
Returns an SQL expression describing the field (e.g. for CREATE TABLE).
:param with_default_expression: If True, adds default value to sql.
It doesn't affect fields with alias and materialized values.
'''
if with_default_expression:
if self.alias:
return '%s ALIAS %s' % (self.db_type, self.alias)
elif self.materialized:
return '%s MATERIALIZED %s' % (self.db_type, self.materialized)
else:
default = self.to_db_string(self.default)
return '%s DEFAULT %s' % (self.db_type, default)
else:
return self.db_type | 0.002729 |
def save_history(self, f):
"""Saves the history of ``NeuralNet`` as a json file. In order
to use this feature, the history must only contain JSON encodable
Python data structures. Numpy and PyTorch types should not
be in the history.
Parameters
----------
f : file-like object or str
Examples
--------
>>> before = NeuralNetClassifier(mymodule)
>>> before.fit(X, y, epoch=2) # Train for 2 epochs
>>> before.save_params('path/to/params')
>>> before.save_history('path/to/history.json')
>>> after = NeuralNetClassifier(mymodule).initialize()
>>> after.load_params('path/to/params')
>>> after.load_history('path/to/history.json')
>>> after.fit(X, y, epoch=2) # Train for another 2 epochs
"""
# TODO: Remove warning in a future release
warnings.warn(
"save_history is deprecated and will be removed in the next "
"release, please use save_params with the f_history keyword",
DeprecationWarning)
self.history.to_file(f) | 0.001781 |
def apmAggregate(self, **criteria):
"""collect all match history's apm data to report player's calculated MMR"""
apms = [m.apm(self) for m in self.matchSubset(**criteria)]
if not apms: return 0 # no apm information without match history
return sum(apms) / len(apms) | 0.016835 |
def download_object(container_name, object_name, destination_path, profile,
overwrite_existing=False, delete_on_failure=True, **libcloud_kwargs):
'''
Download an object to the specified destination path.
:param container_name: Container name
:type container_name: ``str``
:param object_name: Object name
:type object_name: ``str``
:param destination_path: Full path to a file or a directory where the
incoming file will be saved.
:type destination_path: ``str``
:param profile: The profile key
:type profile: ``str``
:param overwrite_existing: True to overwrite an existing file,
defaults to False.
:type overwrite_existing: ``bool``
:param delete_on_failure: True to delete a partially downloaded file if
the download was not successful (hash
mismatch / file size).
:type delete_on_failure: ``bool``
:param libcloud_kwargs: Extra arguments for the driver's download_object method
:type libcloud_kwargs: ``dict``
:return: True if an object has been successfully downloaded, False
otherwise.
:rtype: ``bool``
CLI Example:
.. code-block:: bash
salt myminion libcloud_storage.download_object MyFolder me.jpg /tmp/me.jpg profile1
'''
conn = _get_driver(profile=profile)
obj = conn.get_object(container_name, object_name)
libcloud_kwargs = salt.utils.args.clean_kwargs(**libcloud_kwargs)
return conn.download_object(obj, destination_path, overwrite_existing, delete_on_failure, **libcloud_kwargs) | 0.002978 |
def find_worst(rho, pval, m=1, rlim=.10, plim=.35):
"""Find the N "worst", i.e. insignificant/random and low, correlations
Parameters
----------
rho : ndarray, list
1D array with correlation coefficients
pval : ndarray, list
1D array with p-values
m : int
The desired number of indicies to return
(How many "worst" correlations to find?)
rlim : float
Desired maximum absolute correlation coefficient
(Default: 0.10)
plim : float
Desired minimum p-value
(Default: 0.35)
Return
------
selected : list
Indicies of rho and pval of the "worst" correlations.
"""
# convert to lists
n = len(rho)
r = list(np.abs(rho))
p = list(pval)
i = list(range(n))
# check m
if m > n:
warnings.warn(
'm is bigger than the available correlations in rho and pval.')
m = n
# selected indicies
selected = list()
# (1) pick the highest/worst p-value
# |r| <= r_lim
# p > p_lim
it = 0
while (len(selected) < m) and (it < n):
temp = p.index(max(p)) # temporary index of the remaining values
worst = i[temp] # store original index as 'worst' before abort loop
# check
if (r[temp] <= rlim) and (p[temp] > plim):
# delete from lists
r.pop(temp)
p.pop(temp)
i.pop(temp)
# append to abort
selected.append(worst)
# next step
it = it + 1
# print(selected, i)
# (2) Just pick the highest/worst p-value of the remaining
# with bad correlations
# |r| <= r_lim
it = 0
n2 = len(i)
while (len(selected) < m) and (it < n2):
temp = p.index(max(p)) # temporary index of the remaining values
worst = i[temp] # store original index as 'worst' before abort loop
# check
if (r[temp] <= rlim):
# delete from lists
r.pop(temp)
p.pop(temp)
i.pop(temp)
# append to abort
selected.append(worst)
# next step
it = it + 1
# (3) Pick the lowest correlations
it = 0
n3 = len(i)
while (len(selected) < m) and (it < n3):
# find the smallest p-value
temp = r.index(min(r))
worst = i[temp]
# delete from lists
r.pop(temp)
p.pop(temp)
i.pop(temp)
# append to abort
selected.append(worst)
# next step
it = it + 1
return selected | 0.000389 |
def extract_hook_names(ent):
"""Extract hook names from the given entity"""
hnames = []
for hook in ent["hooks"]["enter"] + ent["hooks"]["exit"]:
hname = os.path.basename(hook["fpath_orig"])
hname = os.path.splitext(hname)[0]
hname = hname.strip()
hname = hname.replace("_enter", "")
hname = hname.replace("_exit", "")
if hname in hnames:
continue
hnames.append(hname)
hnames.sort()
return hnames | 0.002049 |
def dangling(self):
"""
List of entities that aren't included in a closed path
Returns
----------
dangling: (n,) int, index of self.entities
"""
if len(self.paths) == 0:
return np.arange(len(self.entities))
else:
included = np.hstack(self.paths)
dangling = np.setdiff1d(np.arange(len(self.entities)),
included)
return dangling | 0.00432 |
def _create_raw_data(self):
"""
Gathers the different sections ids and creates a string as first
cookie data.
:return: A dictionary like:
{'analyses':'all','analysisrequest':'all','worksheets':'all'}
"""
result = {}
for section in self.get_sections():
result[section.get('id')] = 'all'
return result | 0.005155 |
def validate_user(user,
device,
token):
'''
Send a message to a Pushover user or group.
:param user: The user or group name, either will work.
:param device: The device for the user.
:param token: The PushOver token.
'''
res = {
'message': 'User key is invalid',
'result': False
}
parameters = dict()
parameters['user'] = user
parameters['token'] = token
if device:
parameters['device'] = device
response = query(function='validate_user',
method='POST',
header_dict={'Content-Type': 'application/x-www-form-urlencoded'},
data=_urlencode(parameters))
if response['res']:
if 'message' in response:
_message = response.get('message', '')
if 'status' in _message:
if _message.get('dict', {}).get('status', None) == 1:
res['result'] = True
res['message'] = 'User key is valid.'
else:
res['result'] = False
res['message'] = ''.join(_message.get('dict', {}).get('errors'))
return res | 0.002421 |
def get_basic_functional_groups(self, func_groups=None):
"""
Identify functional groups that cannot be identified by the Ertl method
of get_special_carbon and get_heteroatoms, such as benzene rings, methyl
groups, and ethyl groups.
TODO: Think of other functional groups that are important enough to be
added (ex: do we need ethyl, butyl, propyl?)
:param func_groups: List of strs representing the functional groups of
interest. Default to None, meaning that all of the functional groups
defined in this function will be sought.
:return: list of sets of ints, representing groups of connected atoms
"""
strat = OpenBabelNN()
hydrogens = {n for n in self.molgraph.graph.nodes if
str(self.species[n]) == "H"}
carbons = [n for n in self.molgraph.graph.nodes if
str(self.species[n]) == "C"]
if func_groups is None:
func_groups = ["methyl", "phenyl"]
results = []
if "methyl" in func_groups:
for node in carbons:
neighbors = strat.get_nn_info(self.molecule, node)
hs = {n["site_index"] for n in neighbors if n["site_index"] in hydrogens}
# Methyl group is CH3, but this will also catch methane
if len(hs) >= 3:
hs.add(node)
results.append(hs)
if "phenyl" in func_groups:
rings_indices = [set(sum(ring, ())) for ring in
self.molgraph.find_rings()]
possible_phenyl = [r for r in rings_indices if len(r) == 6]
for ring in possible_phenyl:
# Phenyl group should have only one (0 for benzene) member whose
# neighbors are not two carbons and one hydrogen
num_deviants = 0
for node in ring:
neighbors = strat.get_nn_info(self.molecule, node)
neighbor_spec = sorted([str(self.species[n["site_index"]])
for n in neighbors])
if neighbor_spec != ["C", "C", "H"]:
num_deviants += 1
if num_deviants <= 1:
for node in ring:
ring_group = copy.deepcopy(ring)
neighbors = self.molgraph.graph[node]
# Add hydrogens to the functional group
for neighbor in neighbors.keys():
if neighbor in hydrogens:
ring_group.add(neighbor)
results.append(ring_group)
return results | 0.002178 |
def get_session(region, profile=None):
"""Creates a boto3 session with a cache
Args:
region (str): The region for the session
profile (str): The profile for the session
Returns:
:class:`boto3.session.Session`: A boto3 session with
credential caching
"""
if profile is None:
logger.debug("No AWS profile explicitly provided. "
"Falling back to default.")
profile = default_profile
logger.debug("Building session using profile \"%s\" in region \"%s\""
% (profile, region))
session = boto3.Session(region_name=region, profile_name=profile)
c = session._session.get_component('credential_provider')
provider = c.get_provider('assume-role')
provider.cache = credential_cache
provider._prompter = ui.getpass
return session | 0.001166 |
def encode(input, output_filename):
"""Encodes the input data with reed-solomon error correction in 223 byte
blocks, and outputs each block along with 32 parity bytes to a new file by
the given filename.
input is a file-like object
The outputted image will be in png format, and will be 255 by x pixels with
one color channel. X is the number of 255 byte blocks from the input. Each
block of data will be one row, therefore, the data can be recovered if no
more than 16 pixels per row are altered.
"""
coder = rs.RSCoder(255,223)
output = []
while True:
block = input.read(223)
if not block: break
code = coder.encode_fast(block)
output.append(code)
sys.stderr.write(".")
sys.stderr.write("\n")
out = Image.new("L", (rowstride,len(output)))
out.putdata("".join(output))
out.save(output_filename) | 0.00442 |
def get_success_url(self):
"""
Returns the url to redirect to after a successful update.
if `self.redirect_to_view` is None the current url will
be used. Otherwise the get_view_url will be called
on the current bundle using `self.redirect_to_view` as the
view name. If the name is "main" or "main_list" no object
will be passed. Otherwise `self.object` will be passed as
a kwarg.
"""
if self.redirect_to_view:
kwargs = {}
if self.redirect_to_view != 'main' and \
self.redirect_to_view != 'main_list':
kwargs['object'] = self.object
return self.bundle.get_view_url(self.redirect_to_view,
self.request.user, kwargs,
self.kwargs)
else:
return self.request.build_absolute_uri() | 0.003195 |
def diff(name_a, name_b=None, **kwargs):
'''
Display the difference between a snapshot of a given filesystem and
another snapshot of that filesystem from a later time or the current
contents of the filesystem.
name_a : string
name of snapshot
name_b : string
(optional) name of snapshot or filesystem
show_changetime : boolean
display the path's inode change time as the first column of output. (default = True)
show_indication : boolean
display an indication of the type of file. (default = True)
parsable : boolean
if true we don't parse the timestamp to a more readable date (default = True)
.. versionadded:: 2016.3.0
CLI Example:
.. code-block:: bash
salt '*' zfs.diff myzpool/mydataset@yesterday myzpool/mydataset
'''
## Configure command
# NOTE: initialize the defaults
flags = ['-H']
target = []
# NOTE: set extra config from kwargs
if kwargs.get('show_changetime', True):
flags.append('-t')
if kwargs.get('show_indication', True):
flags.append('-F')
# NOTE: update target
target.append(name_a)
if name_b:
target.append(name_b)
## Diff filesystem/snapshot
res = __salt__['cmd.run_all'](
__utils__['zfs.zfs_command'](
command='diff',
flags=flags,
target=target,
),
python_shell=False,
)
if res['retcode'] != 0:
return __utils__['zfs.parse_command_result'](res)
else:
if not kwargs.get('parsable', True) and kwargs.get('show_changetime', True):
ret = OrderedDict()
for entry in res['stdout'].splitlines():
entry = entry.split()
entry_timestamp = __utils__['dateutils.strftime'](entry[0], '%Y-%m-%d.%H:%M:%S.%f')
entry_data = "\t\t".join(entry[1:])
ret[entry_timestamp] = entry_data
else:
ret = res['stdout'].splitlines()
return ret | 0.00346 |
def add_gene_info(self, variant_obj, gene_panels=None):
"""Add extra information about genes from gene panels
Args:
variant_obj(dict): A variant from the database
gene_panels(list(dict)): List of panels from database
"""
gene_panels = gene_panels or []
# Add a variable that checks if there are any refseq transcripts
variant_obj['has_refseq'] = False
# We need to check if there are any additional information in the gene panels
# extra_info will hold information from gene panels
# Collect all extra info from the panels in a dictionary with hgnc_id as keys
extra_info = {}
for panel_obj in gene_panels:
for gene_info in panel_obj['genes']:
hgnc_id = gene_info['hgnc_id']
if hgnc_id not in extra_info:
extra_info[hgnc_id] = []
extra_info[hgnc_id].append(gene_info)
# Loop over the genes in the variant object to add information
# from hgnc_genes and panel genes to the variant object
for variant_gene in variant_obj.get('genes', []):
hgnc_id = variant_gene['hgnc_id']
# Get the hgnc_gene
hgnc_gene = self.hgnc_gene(hgnc_id)
if not hgnc_gene:
continue
# Create a dictionary with transcripts information
# Use ensembl transcript id as keys
transcripts_dict = {}
# Add transcript information from the hgnc gene
for transcript in hgnc_gene.get('transcripts', []):
tx_id = transcript['ensembl_transcript_id']
transcripts_dict[tx_id] = transcript
# Add the transcripts to the gene object
hgnc_gene['transcripts_dict'] = transcripts_dict
if hgnc_gene.get('incomplete_penetrance'):
variant_gene['omim_penetrance'] = True
############# PANEL SPECIFIC INFORMATION #############
# Panels can have extra information about genes and transcripts
panel_info = extra_info.get(hgnc_id, [])
# Manually annotated disease associated transcripts
disease_associated = set()
# We need to strip the version to compare against others
disease_associated_no_version = set()
manual_penetrance = False
mosaicism = False
manual_inheritance = set()
# We need to loop since there can be information from multiple panels
for gene_info in panel_info:
# Check if there are manually annotated disease transcripts
for tx in gene_info.get('disease_associated_transcripts', []):
# We remove the version of transcript at this stage
stripped = re.sub(r'\.[0-9]', '', tx)
disease_associated_no_version.add(stripped)
disease_associated.add(tx)
if gene_info.get('reduced_penetrance'):
manual_penetrance = True
if gene_info.get('mosaicism'):
mosaicism = True
manual_inheritance.update(gene_info.get('inheritance_models', []))
variant_gene['disease_associated_transcripts'] = list(disease_associated)
variant_gene['manual_penetrance'] = manual_penetrance
variant_gene['mosaicism'] = mosaicism
variant_gene['manual_inheritance'] = list(manual_inheritance)
# Now add the information from hgnc and panels
# to the transcripts on the variant
# First loop over the variants transcripts
for transcript in variant_gene.get('transcripts', []):
tx_id = transcript['transcript_id']
if not tx_id in transcripts_dict:
continue
# This is the common information about the transcript
hgnc_transcript = transcripts_dict[tx_id]
# Check in the common information if it is a primary transcript
if hgnc_transcript.get('is_primary'):
transcript['is_primary'] = True
# If the transcript has a ref seq identifier we add that
# to the variants transcript
if not hgnc_transcript.get('refseq_id'):
continue
refseq_id = hgnc_transcript['refseq_id']
transcript['refseq_id'] = refseq_id
variant_obj['has_refseq'] = True
# Check if the refseq id are disease associated
if refseq_id in disease_associated_no_version:
transcript['is_disease_associated'] = True
# Since a ensemble transcript can have multiple refseq identifiers we add all of
# those
transcript['refseq_identifiers'] = hgnc_transcript.get('refseq_identifiers',[])
variant_gene['common'] = hgnc_gene
# Add the associated disease terms
variant_gene['disease_terms'] = self.disease_terms(hgnc_id)
return variant_obj | 0.002313 |
def redistribute_duplicates(data):
"""Given a dictionary of photo sets, will look at lat/lon between
sets, if they match, randomly move them around so the google map
markeres do not overlap
"""
coordinate_list=[]
# Build a list of coordinates
for myset in data['sets']:
coordinate_list.append((myset['latitude'],myset['longitude']))
for myset in data['sets']:
lat=myset['latitude']
lon=myset['longitude']
item=(lat,lon)
if coordinate_list.count(item) > 1:
print("moving %s"%(myset['set_title']))
random_number=random.random()
myset['latitude']=str(random_number*POS_MOVE_DEG\
+float(myset['latitude']))
myset['longitude']=str(random_number*POS_MOVE_DEG\
+float(myset['longitude'])) | 0.021251 |
def disconnect(self):
"""disconnect events"""
self.canvas.mpl_disconnect(self._cidmotion)
self.canvas.mpl_disconnect(self._ciddraw) | 0.012903 |
def acked_tuple(self, stream_id, complete_latency_ns):
"""Apply updates to the ack metrics"""
self.update_count(self.ACK_COUNT, key=stream_id)
self.update_reduced_metric(self.COMPLETE_LATENCY, complete_latency_ns, key=stream_id) | 0.008333 |
def get_asset_composition_design_session(self, proxy):
"""Gets the session for creating asset compositions.
arg: proxy (osid.proxy.Proxy): a proxy
return: (osid.repository.AssetCompositionDesignSession) - an
``AssetCompositionDesignSession``
raise: NullArgument - ``proxy`` is ``null``
raise: OperationFailed - unable to complete request
raise: Unimplemented - ``supports_asset_composition_design()``
is ``false``
*compliance: optional -- This method must be implemented if
``supports_asset_composition_design()`` is ``true``.*
"""
if not self.supports_asset_composition_design():
raise errors.Unimplemented()
# pylint: disable=no-member
return sessions.AssetCompositionDesignSession(proxy=proxy, runtime=self._runtime) | 0.00346 |
def cache_affected_objects_review_history(portal):
"""Fills the review_history_cache dict. The keys are the uids of the objects
to be bound to new workflow and the values are their current review_history
"""
logger.info("Caching review_history ...")
query = dict(portal_type=NEW_SENAITE_WORKFLOW_BINDINGS)
brains = api.search(query, UID_CATALOG)
total = len(brains)
for num, brain in enumerate(brains):
if num % 100 == 0:
logger.info("Caching review_history: {}/{}"
.format(num, total))
review_history = get_review_history_for(brain)
review_history_cache[api.get_uid(brain)] = review_history | 0.002928 |
def from_taxtable(cls, taxtable_fp):
"""
Generate a node from an open handle to a taxtable, as generated by
``taxit taxtable``
"""
r = csv.reader(taxtable_fp)
headers = next(r)
rows = (collections.OrderedDict(list(zip(headers, i))) for i in r)
row = next(rows)
root = cls(rank=row['rank'], tax_id=row[
'tax_id'], name=row['tax_name'])
path_root = headers.index('root')
root.ranks = headers[path_root:]
for row in rows:
rank, tax_id, name = [
row[i] for i in ('rank', 'tax_id', 'tax_name')]
path = [_f for _f in list(row.values())[path_root:] if _f]
parent = root.path(path[:-1])
parent.add_child(cls(rank, tax_id, name=name))
return root | 0.002421 |
def add(self, *tasks):
""" Interfaces the GraphNode `add` method
"""
nodes = [x.node for x in tasks]
self.node.add(*nodes)
return self | 0.011494 |
def _sign_of(money):
"""Determines the amount sign of a money instance
Args:
money (:class:`endpoints_management.gen.servicecontrol_v1_messages.Money`): the
instance to test
Return:
int: 1, 0 or -1
"""
units = money.units
nanos = money.nanos
if units:
if units > 0:
return 1
elif units < 0:
return -1
if nanos:
if nanos > 0:
return 1
elif nanos < 0:
return -1
return 0 | 0.003945 |
def configure_retrievefor(self, ns, definition):
"""
Register a relation endpoint.
The definition's func should be a retrieve function, which must:
- accept kwargs for path data and optional request data
- return an item
The definition's request_schema will be used to process query string arguments, if any.
:param ns: the namespace
:param definition: the endpoint definition
"""
request_schema = definition.request_schema or Schema()
@self.add_route(ns.relation_path, Operation.RetrieveFor, ns)
@qs(request_schema)
@response(definition.response_schema)
@wraps(definition.func)
def retrieve(**path_data):
headers = dict()
request_data = load_query_string_data(request_schema)
response_data = require_response_data(definition.func(**merge_data(path_data, request_data)))
definition.header_func(headers, response_data)
response_format = self.negotiate_response_content(definition.response_formats)
return dump_response_data(
definition.response_schema,
response_data,
headers=headers,
response_format=response_format,
)
retrieve.__doc__ = "Retrieve {} relative to a {}".format(pluralize(ns.object_name), ns.subject_name) | 0.004283 |
def has_types(self, types, all_=True):
''' Check whether the current component list matches all Stim types
in the types argument.
Args:
types (Stim, list): a Stim class or iterable of Stim classes.
all_ (bool): if True, all input types must match; if False, at
least one input type must match.
Returns:
True if all passed types match at least one Stim in the component
list, otherwise False.
'''
func = all if all_ else any
return func([self.get_stim(t) for t in listify(types)]) | 0.003328 |
def match(self, url):
"""
Return a list of all active Messages which match the given
URL.
"""
return list({
message for message in self.active() if
message.is_global or message.match(url)
}) | 0.007605 |
def _PromptUserForInput(self, input_text):
"""Prompts user for an input.
Args:
input_text (str): text used for prompting the user for input.
Returns:
str: input read from the user.
"""
self._output_writer.Write('{0:s}: '.format(input_text))
return self._input_reader.Read() | 0.003215 |
def transfer_command(
batch,
sync_level,
recursive,
destination,
source,
label,
preserve_mtime,
verify_checksum,
encrypt,
submission_id,
dry_run,
delete,
deadline,
skip_activation_check,
notify,
perf_cc,
perf_p,
perf_pp,
perf_udt,
):
"""
Executor for `globus transfer`
"""
source_endpoint, cmd_source_path = source
dest_endpoint, cmd_dest_path = destination
if recursive and batch:
raise click.UsageError(
(
"You cannot use --recursive in addition to --batch. "
"Instead, use --recursive on lines of --batch input "
"which need it"
)
)
if (cmd_source_path is None or cmd_dest_path is None) and (not batch):
raise click.UsageError(
("transfer requires either SOURCE_PATH and DEST_PATH or " "--batch")
)
# because python can't handle multiple **kwargs expansions in a single
# call, we need to get a little bit clever
# both the performance options (of which there are a few), and the
# notification options (also there are a few) have elements which should be
# omitted in some cases
# notify comes to us clean, perf opts need more care
# put them together into a dict before passing to TransferData
kwargs = {}
perf_opts = dict(
(k, v)
for (k, v) in dict(
perf_cc=perf_cc, perf_p=perf_p, perf_pp=perf_pp, perf_udt=perf_udt
).items()
if v is not None
)
kwargs.update(perf_opts)
kwargs.update(notify)
client = get_client()
transfer_data = TransferData(
client,
source_endpoint,
dest_endpoint,
label=label,
sync_level=sync_level,
verify_checksum=verify_checksum,
preserve_timestamp=preserve_mtime,
encrypt_data=encrypt,
submission_id=submission_id,
delete_destination_extra=delete,
deadline=deadline,
skip_activation_check=skip_activation_check,
**kwargs
)
if batch:
@click.command()
@click.option("--recursive", "-r", is_flag=True)
@click.argument("source_path", type=TaskPath(base_dir=cmd_source_path))
@click.argument("dest_path", type=TaskPath(base_dir=cmd_dest_path))
def process_batch_line(dest_path, source_path, recursive):
"""
Parse a line of batch input and turn it into a transfer submission
item.
"""
transfer_data.add_item(
str(source_path), str(dest_path), recursive=recursive
)
shlex_process_stdin(
process_batch_line,
(
"Enter transfers, line by line, as\n\n"
" [--recursive] SOURCE_PATH DEST_PATH\n"
),
)
else:
transfer_data.add_item(cmd_source_path, cmd_dest_path, recursive=recursive)
if dry_run:
formatted_print(
transfer_data,
response_key="DATA",
fields=(
("Source Path", "source_path"),
("Dest Path", "destination_path"),
("Recursive", "recursive"),
),
)
# exit safely
return
# autoactivate after parsing all args and putting things together
# skip this if skip-activation-check is given
if not skip_activation_check:
autoactivate(client, source_endpoint, if_expires_in=60)
autoactivate(client, dest_endpoint, if_expires_in=60)
res = client.submit_transfer(transfer_data)
formatted_print(
res,
text_format=FORMAT_TEXT_RECORD,
fields=(("Message", "message"), ("Task ID", "task_id")),
) | 0.000796 |
def accept_publication_license(cursor, publication_id, user_id,
document_ids, is_accepted=False):
"""Accept or deny the document license for the publication
(``publication_id``) and user (at ``user_id``)
for the documents (listed by id as ``document_ids``).
"""
cursor.execute("""\
UPDATE license_acceptances AS la
SET accepted = %s
FROM pending_documents AS pd
WHERE
pd.publication_id = %s
AND
la.user_id = %s
AND
pd.uuid = ANY(%s::UUID[])
AND
pd.uuid = la.uuid""",
(is_accepted, publication_id, user_id, document_ids,)) | 0.00165 |
def fan_speed(self, speed: int = None) -> bool:
"""Adjust Fan Speed by Specifying 1,2,3 as argument or cycle
through speeds increasing by one"""
body = helpers.req_body(self.manager, 'devicestatus')
body['uuid'] = self.uuid
head = helpers.req_headers(self.manager)
if self.details.get('mode') != 'manual':
self.mode_toggle('manual')
else:
if speed is not None:
level = int(self.details.get('level'))
if speed == level:
return False
elif speed in [1, 2, 3]:
body['level'] = speed
else:
if (level + 1) > 3:
body['level'] = 1
else:
body['level'] = int(level + 1)
r, _ = helpers.call_api('/131airPurifier/v1/device/updateSpeed',
'put', json=body, headers=head)
if r is not None and helpers.check_response(r, 'airpur_status'):
self.details['level'] = body['level']
return True
else:
return False | 0.001712 |
def verify(token, key, algorithms, verify=True):
"""Verifies a JWS string's signature.
Args:
token (str): A signed JWS to be verified.
key (str or dict): A key to attempt to verify the payload with. Can be
individual JWK or JWK set.
algorithms (str or list): Valid algorithms that should be used to verify the JWS.
Returns:
str: The str representation of the payload, assuming the signature is valid.
Raises:
JWSError: If there is an exception verifying a token.
Examples:
>>> token = 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhIjoiYiJ9.jiMyrsmD8AoHWeQgmxZ5yq8z0lXS67_QGs52AzC8Ru8'
>>> jws.verify(token, 'secret', algorithms='HS256')
"""
header, payload, signing_input, signature = _load(token)
if verify:
_verify_signature(signing_input, header, signature, key, algorithms)
return payload | 0.0044 |
def delete(self, database, key, callback=None):
"""
Delete an item from the given database.
:param database: The database from which to delete the value.
:type database: .BlobDatabaseID
:param key: The key to delete.
:type key: uuid.UUID
:param callback: A callback to be called on success or failure.
"""
token = self._get_token()
self._enqueue(self._PendingItem(token, BlobCommand(token=token, database=database,
content=DeleteCommand(key=key.bytes)),
callback)) | 0.006211 |
def create_new_space(self, space_definition, callback=None):
"""
Creates a new Space.
The incoming Space does not include an id, but must include a Key and Name, and should include a Description.
:param space_definition (dict): The dictionary describing the new space. Must include keys "key", "name",
and "description".
:param callback: OPTIONAL: The callback to execute on the resulting data, before the method returns.
Default: None (no callback, raw data returned).
:return: The JSON data returned from the space endpoint,
or the results of the callback. Will raise requests.HTTPError on bad input, potentially.
Example space data:
{
"key": "TST",
"name": "Example space",
"description": {
"plain": {
"value": "This is an example space",
"representation": "plain"
}
}
}
"""
assert isinstance(space_definition, dict) and {"key", "name", "description"} <= set(space_definition.keys())
return self._service_post_request("rest/api/space", data=json.dumps(space_definition),
headers={"Content-Type": "application/json"}, callback=callback) | 0.006522 |
def get_pages(self, url, page=1, page_size=100, yield_pages=False, **filters):
"""
Get all pages at url, yielding individual results
:param url: the url to fetch
:param page: start from this page
:param page_size: results per page
:param yield_pages: yield whole pages rather than individual results
:param filters: additional filters
:return: a generator of objects (dicts) from the API
"""
n = 0
for page in itertools.count(page):
r = self.request(url, page=page, page_size=page_size, **filters)
n += len(r['results'])
log.debug("Got {url} page {page} / {pages}".format(url=url, **r))
if yield_pages:
yield r
else:
for row in r['results']:
yield row
if r['next'] is None:
break | 0.002205 |
def load_config(filename=None,
text=None,
test=False,
commit=True,
debug=False,
replace=False,
commit_in=None,
commit_at=None,
revert_in=None,
revert_at=None,
commit_jid=None,
inherit_napalm_device=None,
saltenv='base',
**kwargs): # pylint: disable=unused-argument
'''
Applies configuration changes on the device. It can be loaded from a file or from inline string.
If you send both a filename and a string containing the configuration, the file has higher precedence.
By default this function will commit the changes. If there are no changes, it does not commit and
the flag ``already_configured`` will be set as ``True`` to point this out.
To avoid committing the configuration, set the argument ``test`` to ``True`` and will discard (dry run).
To keep the changes but not commit, set ``commit`` to ``False``.
To replace the config, set ``replace`` to ``True``.
filename
Path to the file containing the desired configuration.
This can be specified using the absolute path to the file,
or using one of the following URL schemes:
- ``salt://``, to fetch the template from the Salt fileserver.
- ``http://`` or ``https://``
- ``ftp://``
- ``s3://``
- ``swift://``
.. versionchanged:: 2018.3.0
text
String containing the desired configuration.
This argument is ignored when ``filename`` is specified.
test: False
Dry run? If set as ``True``, will apply the config, discard and return the changes. Default: ``False``
and will commit the changes on the device.
commit: True
Commit? Default: ``True``.
debug: False
Debug mode. Will insert a new key under the output dictionary, as ``loaded_config`` containing the raw
configuration loaded on the device.
.. versionadded:: 2016.11.2
replace: False
Load and replace the configuration. Default: ``False``.
.. versionadded:: 2016.11.2
commit_in: ``None``
Commit the changes in a specific number of minutes / hours. Example of
accepted formats: ``5`` (commit in 5 minutes), ``2m`` (commit in 2
minutes), ``1h`` (commit the changes in 1 hour)`, ``5h30m`` (commit
the changes in 5 hours and 30 minutes).
.. note::
This feature works on any platforms, as it does not rely on the
native features of the network operating system.
.. note::
After the command is executed and the ``diff`` is not satisfactory,
or for any other reasons you have to discard the commit, you are
able to do so using the
:py:func:`net.cancel_commit <salt.modules.napalm_network.cancel_commit>`
execution function, using the commit ID returned by this function.
.. warning::
Using this feature, Salt will load the exact configuration you
expect, however the diff may change in time (i.e., if an user
applies a manual configuration change, or a different process or
command changes the configuration in the meanwhile).
.. versionadded:: 2019.2.0
commit_at: ``None``
Commit the changes at a specific time. Example of accepted formats:
``1am`` (will commit the changes at the next 1AM), ``13:20`` (will
commit at 13:20), ``1:20am``, etc.
.. note::
This feature works on any platforms, as it does not rely on the
native features of the network operating system.
.. note::
After the command is executed and the ``diff`` is not satisfactory,
or for any other reasons you have to discard the commit, you are
able to do so using the
:py:func:`net.cancel_commit <salt.modules.napalm_network.cancel_commit>`
execution function, using the commit ID returned by this function.
.. warning::
Using this feature, Salt will load the exact configuration you
expect, however the diff may change in time (i.e., if an user
applies a manual configuration change, or a different process or
command changes the configuration in the meanwhile).
.. versionadded:: 2019.2.0
revert_in: ``None``
Commit and revert the changes in a specific number of minutes / hours.
Example of accepted formats: ``5`` (revert in 5 minutes), ``2m`` (revert
in 2 minutes), ``1h`` (revert the changes in 1 hour)`, ``5h30m`` (revert
the changes in 5 hours and 30 minutes).
.. note::
To confirm the commit, and prevent reverting the changes, you will
have to execute the
:mod:`net.confirm_commit <salt.modules.napalm_network.confirm_commit>`
function, using the commit ID returned by this function.
.. warning::
This works on any platform, regardless if they have or don't have
native capabilities to confirming a commit. However, please be
*very* cautious when using this feature: on Junos (as it is the only
NAPALM core platform supporting this natively) it executes a commit
confirmed as you would do from the command line.
All the other platforms don't have this capability natively,
therefore the revert is done via Salt. That means, your device needs
to be reachable at the moment when Salt will attempt to revert your
changes. Be cautious when pushing configuration changes that would
prevent you reach the device.
Similarly, if an user or a different process apply other
configuration changes in the meanwhile (between the moment you
commit and till the changes are reverted), these changes would be
equally reverted, as Salt cannot be aware of them.
.. versionadded:: 2019.2.0
revert_at: ``None``
Commit and revert the changes at a specific time. Example of accepted
formats: ``1am`` (will commit and revert the changes at the next 1AM),
``13:20`` (will commit and revert at 13:20), ``1:20am``, etc.
.. note::
To confirm the commit, and prevent reverting the changes, you will
have to execute the
:mod:`net.confirm_commit <salt.modules.napalm_network.confirm_commit>`
function, using the commit ID returned by this function.
.. warning::
This works on any platform, regardless if they have or don't have
native capabilities to confirming a commit. However, please be
*very* cautious when using this feature: on Junos (as it is the only
NAPALM core platform supporting this natively) it executes a commit
confirmed as you would do from the command line.
All the other platforms don't have this capability natively,
therefore the revert is done via Salt. That means, your device needs
to be reachable at the moment when Salt will attempt to revert your
changes. Be cautious when pushing configuration changes that would
prevent you reach the device.
Similarly, if an user or a different process apply other
configuration changes in the meanwhile (between the moment you
commit and till the changes are reverted), these changes would be
equally reverted, as Salt cannot be aware of them.
.. versionadded:: 2019.2.0
saltenv: ``base``
Specifies the Salt environment name.
.. versionadded:: 2018.3.0
:return: a dictionary having the following keys:
* result (bool): if the config was applied successfully. It is ``False`` only in case of failure. In case \
there are no changes to be applied and successfully performs all operations it is still ``True`` and so will be \
the ``already_configured`` flag (example below)
* comment (str): a message for the user
* already_configured (bool): flag to check if there were no changes applied
* loaded_config (str): the configuration loaded on the device. Requires ``debug`` to be set as ``True``
* diff (str): returns the config changes applied
CLI Example:
.. code-block:: bash
salt '*' net.load_config text='ntp peer 192.168.0.1'
salt '*' net.load_config filename='/absolute/path/to/your/file'
salt '*' net.load_config filename='/absolute/path/to/your/file' test=True
salt '*' net.load_config filename='/absolute/path/to/your/file' commit=False
Example output:
.. code-block:: python
{
'comment': 'Configuration discarded.',
'already_configured': False,
'result': True,
'diff': '[edit interfaces xe-0/0/5]+ description "Adding a description";'
}
'''
fun = 'load_merge_candidate'
if replace:
fun = 'load_replace_candidate'
if salt.utils.napalm.not_always_alive(__opts__):
# if a not-always-alive proxy
# or regular minion
# do not close the connection after loading the config
# this will be handled in _config_logic
# after running the other features:
# compare_config, discard / commit
# which have to be over the same session
napalm_device['CLOSE'] = False # pylint: disable=undefined-variable
if filename:
text = __salt__['cp.get_file_str'](filename, saltenv=saltenv)
if text is False:
# When using salt:// or https://, if the resource is not available,
# it will either raise an exception, or return False.
ret = {
'result': False,
'out': None
}
ret['comment'] = 'Unable to read from {}. Please specify a valid file or text.'.format(filename)
log.error(ret['comment'])
return ret
if commit_jid:
# When the commit_jid argument is passed, it probably is a scheduled
# commit to be executed, and filename is a temporary file which
# can be removed after reading it.
salt.utils.files.safe_rm(filename)
_loaded = salt.utils.napalm.call(
napalm_device, # pylint: disable=undefined-variable
fun,
**{
'config': text
}
)
return _config_logic(napalm_device, # pylint: disable=undefined-variable
_loaded,
test=test,
debug=debug,
replace=replace,
commit_config=commit,
loaded_config=text,
commit_at=commit_at,
commit_in=commit_in,
revert_in=revert_in,
revert_at=revert_at,
commit_jid=commit_jid,
**kwargs) | 0.00223 |
def set_default_option(cls, key, value):
"""Class method. Set the default value of the option `key` (string)
to `value` for all future instances of the class.
Note that this does not affect existing instances or the instance
called from."""
cls._default_options.update(cls._option_schema({key: value})) | 0.005831 |
def _validate_checksum(self, buffer):
"""Validate the buffer response against the checksum.
When reading the serial interface, data will come back in a raw format
with an included checksum process.
:returns: bool
"""
self._log.debug("Validating the buffer")
if len(buffer) == 0:
self._log.debug("Buffer was empty")
if self._conn.isOpen():
self._log.debug('Closing connection')
self._conn.close()
return False
p0 = hex2int(buffer[0])
p1 = hex2int(buffer[1])
checksum = sum([hex2int(c) for c in buffer[:35]]) & 0xFF
p35 = hex2int(buffer[35])
if p0 != 165 or p1 != 150 or p35 != checksum:
self._log.debug("Buffer checksum was not valid")
return False
return True | 0.002334 |
def _example_rt_data(quote_ctx):
"""
获取分时数据,输出 时间,数据状态,开盘多少分钟,目前价,昨收价,平均价,成交量,成交额
"""
stock_code_list = ["US.AAPL", "HK.00700"]
ret_status, ret_data = quote_ctx.subscribe(stock_code_list, ft.SubType.RT_DATA)
if ret_status != ft.RET_OK:
print(ret_data)
exit()
for stk_code in stock_code_list:
ret_status, ret_data = quote_ctx.get_rt_data(stk_code)
if ret_status != ft.RET_OK:
print(stk_code, ret_data)
exit()
print("%s RT_DATA" % stk_code)
print(ret_data)
print("\n\n") | 0.003454 |
def _call_zincrby(self, command, value, *args, **kwargs):
"""
This command update a score of a given value. But it can be a new value
of the sorted set, so we index it.
"""
if self.indexable:
self.index([value])
return self._traverse_command(command, value, *args, **kwargs) | 0.005988 |
def Ergun(dp, voidage, vs, rho, mu, L=1):
r'''Calculates pressure drop across a packed bed of spheres using a
correlation developed in [1]_, as shown in [2]_ and [3]_. Eighteenth most
accurate correlation overall in the review of [2]_.
Most often presented in the following form:
.. math::
\Delta P = \frac{150\mu (1-\epsilon)^2 v_s L}{\epsilon^3 d_p^2}
+ \frac{1.75 (1-\epsilon) \rho v_s^2 L}{\epsilon^3 d_p}
It is also often presented with a term for sphericity, which is multiplied
by particle diameter everywhere in the equation. However, this is highly
empirical and better correlations for beds of differently-shaped particles
exist. To use sphericity in this model, multiple the input particle
diameter by the spericity separately.
In the review of [2]_, it is expressed in terms of a parameter `fp`, shown
below. This is a convenient means of expressing all forms of pressure drop
in packed beds correlations in a way that allows for easy comparison.
.. math::
f_p = \left(150 + 1.75\left(\frac{Re}{1-\epsilon}\right)\right)
\frac{(1-\epsilon)^2}{\epsilon^3 Re}
.. math::
f_p = \frac{\Delta P d_p}{\rho v_s^2 L}
.. math::
Re = \frac{\rho v_s d_p}{\mu}
Parameters
----------
dp : float
Particle diameter of spheres [m]
voidage : float
Void fraction of bed packing [-]
vs : float
Superficial velocity of the fluid (volumetric flow rate/cross-sectional
area)[m/s]
rho : float
Density of the fluid [kg/m^3]
mu : float
Viscosity of the fluid, [Pa*s]
L : float, optional
Length the fluid flows in the packed bed [m]
Returns
-------
dP : float
Pressure drop across the bed [Pa]
Notes
-----
The first term in this equation represents laminar loses, and the second,
turbulent loses. Developed with data from spheres, sand, and pulverized
coke. Fluids tested were carbon dioxide, nitrogen, methane, and hydrogen.
Validity range shown in [3]_ is :math:`1 < Re_{Erg} < 2300`.
Over predicts pressure drop for :math:`Re_{Erg} > 700`.
Examples
--------
>>> Ergun(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3)
1338.8671874999995
References
----------
.. [1] Ergun, S. (1952) "Fluid flow through packed columns",
Chem. Eng. Prog., 48, 89-94.
.. [2] Erdim, Esra, Ömer Akgiray, and İbrahim Demir. "A Revisit of Pressure
Drop-Flow Rate Correlations for Packed Beds of Spheres." Powder
Technology 283 (October 2015): 488-504. doi:10.1016/j.powtec.2015.06.017.
.. [3] Jones, D. P., and H. Krier. "Gas Flow Resistance Measurements
Through Packed Beds at High Reynolds Numbers." Journal of Fluids
Engineering 105, no. 2 (June 1, 1983): 168-172. doi:10.1115/1.3240959.
'''
Re = dp*rho*vs/mu
fp = (150 + 1.75*(Re/(1-voidage)))*(1-voidage)**2/(voidage**3*Re)
return fp*rho*vs**2*L/dp | 0.000994 |
def _calc_T_var(self,X) -> int:
"""Calculate the number of samples, T, from the shape of X"""
shape = X.shape
tensor_rank: int = len(shape)
if tensor_rank == 0:
return 1
if tensor_rank == 1:
return shape[0]
if tensor_rank == 2:
if shape[1] > 1:
raise ValueError('Initial value of a variable must have dimension T*1.')
return shape[0] | 0.008989 |
def bio_write(self, buf):
"""
If the Connection was created with a memory BIO, this method can be
used to add bytes to the read end of that memory BIO. The Connection
can then read the bytes (for example, in response to a call to
:meth:`recv`).
:param buf: The string to put into the memory BIO.
:return: The number of bytes written
"""
buf = _text_to_bytes_and_warn("buf", buf)
if self._into_ssl is None:
raise TypeError("Connection sock was not None")
result = _lib.BIO_write(self._into_ssl, buf, len(buf))
if result <= 0:
self._handle_bio_errors(self._into_ssl, result)
return result | 0.002786 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.