text
stringlengths
78
104k
score
float64
0
0.18
def responds(status=status.HTTP_200_OK, meaning='Undocumented status code', schema=None, schema_name=None, **kwargs): """Documents the status code per handled case. Additional parameters may make it into the OpenAPI documentation per view. Examples of those parameters include examples={'application/json': <example>}. As schemata are needed in order to render the examples in the Web UI, an error will be signaled if examples= are provided without a schema= parameter. Schemas can be easily built using a specific syntax. TODO: Document the syntax here """ # TODO: Document syntax in above docstring if status is None: status = 'default' obj = {} obj['description'] = meaning if schema: obj['schema'] = parse_schema(schema) if schema_name: obj['schema_name'] = schema_name obj.update(kwargs) def decorator(func): # We do not return a decorator function, we just modify # in-place our function to have the property that we will look # forward later for. if not hasattr(func, '_responses'): func._responses = {} func._responses[status] = obj return func return decorator
0.000778
def get_user_language(user): """ Simple helper that will fire django signal in order to get User language possibly given by other part of application. :param user: :return: string or None """ return_value = {} user_language.send(sender=user, user=user, return_value=return_value) return return_value.get('language')
0.005831
def predictions_iter(self): """ property decorated prediction iterator Returns ------- iterator : iterator iterator on prediction sensitivity vectors (matrix) """ for fname in self.forecast_names: yield self.predictions.get(col_names=fname)
0.006369
def watch_file(path, func, *args, **kwargs): """ Watch a file for changes by polling its last modification time. Call the provided function with *args and **kwargs upon modification. """ if not path: raise ValueError('Please specify a file to watch') print('Watching "{}" for changes'.format(path)) last_modification_time = os.path.getmtime(path) try: while True: time.sleep(1) new_modification_time = os.path.getmtime(path) if new_modification_time == last_modification_time: continue func(*args, **kwargs) last_modification_time = new_modification_time except KeyboardInterrupt: pass
0.001387
def apply_mtd(self, mtd, *args, cont=False, tag=None, **kwargs): """Call the method `mtd` on both sides of the equation That is, the left-hand-side and right-hand-side are replaced by:: lhs=lhs.<mtd>(*args, **kwargs) rhs=rhs.<mtd>(*args, **kwargs) The `cont` and `tag` parameters are as in :meth:`apply`. """ new_lhs = getattr(self.lhs, mtd)(*args, **kwargs) if new_lhs == self.lhs and cont: new_lhs = None new_rhs = getattr(self.rhs, mtd)(*args, **kwargs) new_tag = tag return self._update(new_lhs, new_rhs, new_tag, cont)
0.003155
def as_dict(self): """ Return the dependencies as a dictionary. Returns: dict: dictionary of dependencies. """ return { 'name': str(self), 'modules': [m.as_dict() for m in self.modules], 'packages': [p.as_dict() for p in self.packages] }
0.005988
def post(self, url, body=None): """Sends this `Resource` instance to the service with a ``POST`` request to the given URL. Takes an optional body""" response = self.http_request(url, 'POST', body or self, {'Content-Type': 'application/xml; charset=utf-8'}) if response.status not in (200, 201, 204): self.raise_http_error(response) self._url = response.getheader('Location') if response.status in (200, 201): response_xml = response.read() logging.getLogger('recurly.http.response').debug(response_xml) self.update_from_element(ElementTree.fromstring(response_xml))
0.004525
def call_later(self, delay, callback): """Schedule a one-shot timeout given delay seconds. This method is only useful for compatibility with older versions of pika. Args: delay (float): Non-negative number of seconds from now until expiration callback (method): The callback method, having the signature `callback()` """ if hasattr(self._connection.ioloop, "call_later"): self._connection.ioloop.call_later(delay, callback) else: self._connection.ioloop.add_timeout(delay, callback)
0.004902
def set_published_date(self): """Parses published date and set value""" try: self.published_date = self.soup.find('pubdate').string except AttributeError: self.published_date = None
0.008734
def from_floats(red, green, blue): """Return a new Color object from red/green/blue values from 0.0 to 1.0.""" return Color(int(red * Color.MAX_VALUE), int(green * Color.MAX_VALUE), int(blue * Color.MAX_VALUE))
0.011152
async def dump_devinfo(dev: Device, file): """Dump developer information. Pass `file` to write the results directly into a file. """ import attr methods = await dev.get_supported_methods() res = { "supported_methods": {k: v.asdict() for k, v in methods.items()}, "settings": [attr.asdict(x) for x in await dev.get_settings()], "sysinfo": attr.asdict(await dev.get_system_info()), "interface_info": attr.asdict(await dev.get_interface_information()), } if file: click.echo("Saving to file: %s" % file.name) json.dump(res, file, sort_keys=True, indent=4) else: click.echo(json.dumps(res, sort_keys=True, indent=4))
0.001416
def _maxlength(X): """ Returns the maximum length of signal trajectories X """ return np.fromiter((map(lambda x: len(x), X)), dtype=int).max()
0.006667
def outside_root_to_404(fn): """ Decorator for converting PathOutsideRoot errors to 404s. """ @wraps(fn) def wrapped(*args, **kwargs): try: return fn(*args, **kwargs) except PathOutsideRoot as e: raise HTTPError(404, "Path outside root: [%s]" % e.args[0]) return wrapped
0.002994
def from_url(cls, url, db=None, skip_full_coverage_check=False, **kwargs): """ Return a Redis client object configured from the given URL, which must use either `the ``redis://`` scheme <http://www.iana.org/assignments/uri-schemes/prov/redis>`_ for RESP connections or the ``unix://`` scheme for Unix domain sockets. For example:: redis://[:password]@localhost:6379/0 unix://[:password]@/path/to/socket.sock?db=0 There are several ways to specify a database number. The parse function will return the first specified option: 1. A ``db`` querystring option, e.g. redis://localhost?db=0 2. If using the redis:// scheme, the path argument of the url, e.g. redis://localhost/0 3. The ``db`` argument to this function. If none of these options are specified, db=0 is used. Any additional querystring arguments and keyword arguments will be passed along to the ConnectionPool class's initializer. In the case of conflicting arguments, querystring arguments always win. """ connection_pool = ClusterConnectionPool.from_url(url, db=db, **kwargs) return cls(connection_pool=connection_pool, skip_full_coverage_check=skip_full_coverage_check)
0.002308
def is_homogeneous(self): """True if all the elements of the array are the same.""" hom_base = isinstance(self.base_value, (int, long, numpy.integer, float, bool)) \ or type(self.base_value) == self.dtype \ or (isinstance(self.dtype, type) and isinstance(self.base_value, self.dtype)) hom_ops = all(obj.is_homogeneous for f, obj in self.operations if isinstance(obj, larray)) return hom_base and hom_ops
0.014799
def generate_megaman_manifold(sampling=2, nfolds=2, rotate=True, random_state=None): """Generate a manifold of the megaman data""" X, c = generate_megaman_data(sampling) for i in range(nfolds): X = np.hstack([_make_S_curve(x) for x in X.T]) if rotate: rand = check_random_state(random_state) R = rand.randn(X.shape[1], X.shape[1]) U, s, VT = np.linalg.svd(R) X = np.dot(X, U) return X, c
0.002088
def segmentlistdict_fromsearchsummary_in(xmldoc, program = None): """ Convenience wrapper for a common case usage of the segmentlistdict class: searches the process table in xmldoc for occurances of a program named program, then scans the search summary table for matching process IDs and constructs a segmentlistdict object from the in segments in those rows. Note: the segmentlists in the segmentlistdict are not necessarily coalesced, they contain the segments as they appear in the search_summary table. """ stbl = lsctables.SearchSummaryTable.get_table(xmldoc) ptbl = lsctables.ProcessTable.get_table(xmldoc) return stbl.get_in_segmentlistdict(program and ptbl.get_ids_by_program(program))
0.023944
def configure_volume(before_change=lambda: None, after_change=lambda: None): '''Set up storage (or don't) according to the charm's volume configuration. Returns the mount point or "ephemeral". before_change and after_change are optional functions to be called if the volume configuration changes. ''' config = get_config() if not config: hookenv.log('Failed to read volume configuration', hookenv.CRITICAL) raise VolumeConfigurationError() if config['ephemeral']: if os.path.ismount(config['mountpoint']): before_change() unmount_volume(config) after_change() return 'ephemeral' else: # persistent storage if os.path.ismount(config['mountpoint']): mounts = dict(managed_mounts()) if mounts.get(config['mountpoint']) != config['device']: before_change() unmount_volume(config) mount_volume(config) after_change() else: before_change() mount_volume(config) after_change() return config['mountpoint']
0.000861
def parse_options(cls, line, ns={}): """ Similar to parse but returns a list of Options objects instead of the dictionary format. """ parsed = cls.parse(line, ns=ns) options_list = [] for spec in sorted(parsed.keys()): options = parsed[spec] merged = {} for group in options.values(): merged = dict(group.kwargs, **merged) options_list.append(Options(spec, **merged)) return options_list
0.003883
def seek(self, offset, whence=0): """Seek to the specified position. :param int offset: The offset in bytes. :param int whence: Where the offset is from. Returns the position after seeking.""" logger.debug('seeking to offset: %r whence: %r', offset, whence) if whence not in s3.WHENCE_CHOICES: raise ValueError('invalid whence, expected one of %r' % s3.WHENCE_CHOICES) if not self.seekable(): raise OSError if whence == s3.START: new_pos = offset elif whence == s3.CURRENT: new_pos = self._current_pos + offset elif whence == s3.END: new_pos = self.content_length + offset new_pos = s3.clamp(new_pos, 0, self.content_length) if self._current_pos == new_pos: return self._current_pos logger.debug("http seeking from current_pos: %d to new_pos: %d", self._current_pos, new_pos) self._current_pos = new_pos if new_pos == self.content_length: self.response = None self._read_iter = None self._read_buffer.empty() else: response = self._partial_request(new_pos) if response.ok: self.response = response self._read_iter = self.response.iter_content(self.buffer_size) self._read_buffer.empty() else: self.response = None return self._current_pos
0.002681
def _starts_with_drive_letter(self, file_path): """Return True if file_path starts with a drive letter. Args: file_path: the full path to be examined. Returns: `True` if drive letter support is enabled in the filesystem and the path starts with a drive letter. """ colon = self._matching_string(file_path, ':') return (self.is_windows_fs and len(file_path) >= 2 and file_path[:1].isalpha and (file_path[1:2]) == colon)
0.003846
def set_permitted_ip(address=None, deploy=False): ''' Add an IPv4 address or network to the permitted IP list. CLI Example: Args: address (str): The IPv4 address or network to allow access to add to the Palo Alto device. deploy (bool): If true then commit the full candidate configuration, if false only set pending change. .. code-block:: bash salt '*' panos.set_permitted_ip 10.0.0.1 salt '*' panos.set_permitted_ip 10.0.0.0/24 salt '*' panos.set_permitted_ip 10.0.0.1 deploy=True ''' if not address: raise CommandExecutionError("Address option must not be empty.") ret = {} query = {'type': 'config', 'action': 'set', 'xpath': '/config/devices/entry[@name=\'localhost.localdomain\']/deviceconfig/system/permitted-ip', 'element': '<entry name=\'{0}\'></entry>'.format(address)} ret.update(__proxy__['panos.call'](query)) if deploy is True: ret.update(commit()) return ret
0.003891
def generateCatalog(wcs, mode='automatic', catalog=None, src_find_filters=None, **kwargs): """ Function which determines what type of catalog object needs to be instantiated based on what type of source selection algorithm the user specified. Parameters ---------- wcs : obj WCS object generated by STWCS or PyWCS catalog : str or ndarray Filename of existing catalog or ndarray of image for generation of source catalog. kwargs : dict Parameters needed to interpret source catalog from input catalog with `findmode` being required. Returns ------- catalog : obj A Catalog-based class instance for keeping track of WCS and associated source catalog """ if not isinstance(catalog,Catalog): if mode == 'automatic': # if an array is provided as the source # Create a new catalog directly from the image catalog = ImageCatalog(wcs,catalog,src_find_filters,**kwargs) else: # a catalog file was provided as the catalog source catalog = UserCatalog(wcs,catalog,**kwargs) return catalog
0.007705
def remove_go(self, target): """ FOR SAVING MEMORY """ with self.lock: if not self._go: try: self.job_queue.remove(target) except ValueError: pass
0.007634
def get_node_pos(self, key): """Given a string key a corresponding node in the hash ring is returned along with it's position in the ring. If the hash ring is empty, (`None`, `None`) is returned. """ if len(self.ring) == 0: return [None, None] crc = self.hash_method(b(key)) idx = bisect.bisect(self.sorted_keys, crc) # prevents out of range index idx = min(idx, (self.replicas * len(self.nodes)) - 1) return [self.ring[self.sorted_keys[idx]], idx]
0.003697
def trainRegressor(cls, data, categoricalFeaturesInfo, impurity="variance", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0): """ Train a decision tree model for regression. :param data: Training data: RDD of LabeledPoint. Labels are real numbers. :param categoricalFeaturesInfo: Map storing arity of categorical features. An entry (n -> k) indicates that feature n is categorical with k categories indexed from 0: {0, 1, ..., k-1}. :param impurity: Criterion used for information gain calculation. The only supported value for regression is "variance". (default: "variance") :param maxDepth: Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes). (default: 5) :param maxBins: Number of bins used for finding splits at each node. (default: 32) :param minInstancesPerNode: Minimum number of instances required at child nodes to create the parent split. (default: 1) :param minInfoGain: Minimum info gain required to create a split. (default: 0.0) :return: DecisionTreeModel. Example usage: >>> from pyspark.mllib.regression import LabeledPoint >>> from pyspark.mllib.tree import DecisionTree >>> from pyspark.mllib.linalg import SparseVector >>> >>> sparse_data = [ ... LabeledPoint(0.0, SparseVector(2, {0: 0.0})), ... LabeledPoint(1.0, SparseVector(2, {1: 1.0})), ... LabeledPoint(0.0, SparseVector(2, {0: 0.0})), ... LabeledPoint(1.0, SparseVector(2, {1: 2.0})) ... ] >>> >>> model = DecisionTree.trainRegressor(sc.parallelize(sparse_data), {}) >>> model.predict(SparseVector(2, {1: 1.0})) 1.0 >>> model.predict(SparseVector(2, {1: 0.0})) 0.0 >>> rdd = sc.parallelize([[0.0, 1.0], [0.0, 0.0]]) >>> model.predict(rdd).collect() [1.0, 0.0] """ return cls._train(data, "regression", 0, categoricalFeaturesInfo, impurity, maxDepth, maxBins, minInstancesPerNode, minInfoGain)
0.002965
def generate_docker_compose(self): """ Generate a sample docker compose """ example = {} example['app'] = {} example['app']['environment'] = [] for key in sorted(list(self.spec.keys())): if self.spec[key]['type'] in (dict, list): value = f"\'{json.dumps(self.spec[key].get('example', ''))}\'" else: value = f"{self.spec[key].get('example', '')}" example['app']['environment'].append(f"{self.env_prefix}_{key.upper()}={value}") print(yaml.dump(example, default_flow_style=False))
0.004983
def receive(self): """I receive data+hash, check for a match, confirm or not confirm to the sender, and return the data payload. """ def _receive(input_message): self.data = input_message[:-64] _hash = input_message[-64:] if h.sha256(self.data).hexdigest() == _hash: self._w.send_message('Confirmed!') else: self._w.send_message('Not Confirmed!') yield self.start_tor() self._w = wormhole.create(u'axotor', RENDEZVOUS_RELAY, self._reactor, tor=self._tor, timing=self._timing) self._w.set_code(self._code) yield self._w.get_message().addCallback(_receive) yield self._w.close() self._reactor.stop() return
0.002478
def copy(self: BaseBoardT) -> BaseBoardT: """Creates a copy of the board.""" board = type(self)(None) board.pawns = self.pawns board.knights = self.knights board.bishops = self.bishops board.rooks = self.rooks board.queens = self.queens board.kings = self.kings board.occupied_co[WHITE] = self.occupied_co[WHITE] board.occupied_co[BLACK] = self.occupied_co[BLACK] board.occupied = self.occupied board.promoted = self.promoted return board
0.00367
def find_content(self, text): """Find content.""" if self.trigraphs: text = RE_TRIGRAPHS.sub(self.process_trigraphs, text) for m in self.pattern.finditer(self.norm_nl(text)): self.evaluate(m)
0.008299
def type_id(self) -> UnitTypeId: """ UnitTypeId found in sc2/ids/unit_typeid Caches all type_ids of the same unit type""" unit_type = self._proto.unit_type if unit_type not in self._game_data.unit_types: self._game_data.unit_types[unit_type] = UnitTypeId(unit_type) return self._game_data.unit_types[unit_type]
0.005525
def noise4d(self, x, y, z, w): """ Generate 4D OpenSimplex noise from X,Y,Z,W coordinates. """ # Place input coordinates on simplectic honeycomb. stretch_offset = (x + y + z + w) * STRETCH_CONSTANT_4D xs = x + stretch_offset ys = y + stretch_offset zs = z + stretch_offset ws = w + stretch_offset # Floor to get simplectic honeycomb coordinates of rhombo-hypercube super-cell origin. xsb = floor(xs) ysb = floor(ys) zsb = floor(zs) wsb = floor(ws) # Skew out to get actual coordinates of stretched rhombo-hypercube origin. We'll need these later. squish_offset = (xsb + ysb + zsb + wsb) * SQUISH_CONSTANT_4D xb = xsb + squish_offset yb = ysb + squish_offset zb = zsb + squish_offset wb = wsb + squish_offset # Compute simplectic honeycomb coordinates relative to rhombo-hypercube origin. xins = xs - xsb yins = ys - ysb zins = zs - zsb wins = ws - wsb # Sum those together to get a value that determines which region we're in. in_sum = xins + yins + zins + wins # Positions relative to origin po. dx0 = x - xb dy0 = y - yb dz0 = z - zb dw0 = w - wb value = 0 extrapolate = self._extrapolate4d if in_sum <= 1: # We're inside the pentachoron (4-Simplex) at (0,0,0,0) # Determine which two of (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0) are closest. a_po = 0x01 a_score = xins b_po = 0x02 b_score = yins if a_score >= b_score and zins > b_score: b_score = zins b_po = 0x04 elif a_score < b_score and zins > a_score: a_score = zins a_po = 0x04 if a_score >= b_score and wins > b_score: b_score = wins b_po = 0x08 elif a_score < b_score and wins > a_score: a_score = wins a_po = 0x08 # Now we determine the three lattice pos not part of the pentachoron that may contribute. # This depends on the closest two pentachoron vertices, including (0,0,0,0) uins = 1 - in_sum if uins > a_score or uins > b_score: # (0,0,0,0) is one of the closest two pentachoron vertices. c = b_po if (b_score > a_score) else a_po # Our other closest vertex is the closest out of a and b. if (c & 0x01) == 0: xsv_ext0 = xsb - 1 xsv_ext1 = xsv_ext2 = xsb dx_ext0 = dx0 + 1 dx_ext1 = dx_ext2 = dx0 else: xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1 dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 1 if (c & 0x02) == 0: ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb dy_ext0 = dy_ext1 = dy_ext2 = dy0 if (c & 0x01) == 0x01: ysv_ext0 -= 1 dy_ext0 += 1 else: ysv_ext1 -= 1 dy_ext1 += 1 else: ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1 dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1 if (c & 0x04) == 0: zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb dz_ext0 = dz_ext1 = dz_ext2 = dz0 if (c & 0x03) != 0: if (c & 0x03) == 0x03: zsv_ext0 -= 1 dz_ext0 += 1 else: zsv_ext1 -= 1 dz_ext1 += 1 else: zsv_ext2 -= 1 dz_ext2 += 1 else: zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1 dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1 if (c & 0x08) == 0: wsv_ext0 = wsv_ext1 = wsb wsv_ext2 = wsb - 1 dw_ext0 = dw_ext1 = dw0 dw_ext2 = dw0 + 1 else: wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1 dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 1 else: # (0,0,0,0) is not one of the closest two pentachoron vertices. c = (a_po | b_po) # Our three extra vertices are determined by the closest two. if (c & 0x01) == 0: xsv_ext0 = xsv_ext2 = xsb xsv_ext1 = xsb - 1 dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_4D dx_ext2 = dx0 - SQUISH_CONSTANT_4D else: xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1 dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D dx_ext1 = dx_ext2 = dx0 - 1 - SQUISH_CONSTANT_4D if (c & 0x02) == 0: ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D dy_ext1 = dy_ext2 = dy0 - SQUISH_CONSTANT_4D if (c & 0x01) == 0x01: ysv_ext1 -= 1 dy_ext1 += 1 else: ysv_ext2 -= 1 dy_ext2 += 1 else: ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1 dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D dy_ext1 = dy_ext2 = dy0 - 1 - SQUISH_CONSTANT_4D if (c & 0x04) == 0: zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D dz_ext1 = dz_ext2 = dz0 - SQUISH_CONSTANT_4D if (c & 0x03) == 0x03: zsv_ext1 -= 1 dz_ext1 += 1 else: zsv_ext2 -= 1 dz_ext2 += 1 else: zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1 dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D dz_ext1 = dz_ext2 = dz0 - 1 - SQUISH_CONSTANT_4D if (c & 0x08) == 0: wsv_ext0 = wsv_ext1 = wsb wsv_ext2 = wsb - 1 dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D dw_ext1 = dw0 - SQUISH_CONSTANT_4D dw_ext2 = dw0 + 1 - SQUISH_CONSTANT_4D else: wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1 dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D dw_ext1 = dw_ext2 = dw0 - 1 - SQUISH_CONSTANT_4D # Contribution (0,0,0,0) attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0 if attn0 > 0: attn0 *= attn0 value += attn0 * attn0 * extrapolate(xsb + 0, ysb + 0, zsb + 0, wsb + 0, dx0, dy0, dz0, dw0) # Contribution (1,0,0,0) dx1 = dx0 - 1 - SQUISH_CONSTANT_4D dy1 = dy0 - 0 - SQUISH_CONSTANT_4D dz1 = dz0 - 0 - SQUISH_CONSTANT_4D dw1 = dw0 - 0 - SQUISH_CONSTANT_4D attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1 if attn1 > 0: attn1 *= attn1 value += attn1 * attn1 * extrapolate(xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1) # Contribution (0,1,0,0) dx2 = dx0 - 0 - SQUISH_CONSTANT_4D dy2 = dy0 - 1 - SQUISH_CONSTANT_4D dz2 = dz1 dw2 = dw1 attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2 if attn2 > 0: attn2 *= attn2 value += attn2 * attn2 * extrapolate(xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2) # Contribution (0,0,1,0) dx3 = dx2 dy3 = dy1 dz3 = dz0 - 1 - SQUISH_CONSTANT_4D dw3 = dw1 attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3 if attn3 > 0: attn3 *= attn3 value += attn3 * attn3 * extrapolate(xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3) # Contribution (0,0,0,1) dx4 = dx2 dy4 = dy1 dz4 = dz1 dw4 = dw0 - 1 - SQUISH_CONSTANT_4D attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4 if attn4 > 0: attn4 *= attn4 value += attn4 * attn4 * extrapolate(xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4) elif in_sum >= 3: # We're inside the pentachoron (4-Simplex) at (1,1,1,1) # Determine which two of (1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1) are closest. a_po = 0x0E a_score = xins b_po = 0x0D b_score = yins if a_score <= b_score and zins < b_score: b_score = zins b_po = 0x0B elif a_score > b_score and zins < a_score: a_score = zins a_po = 0x0B if a_score <= b_score and wins < b_score: b_score = wins b_po = 0x07 elif a_score > b_score and wins < a_score: a_score = wins a_po = 0x07 # Now we determine the three lattice pos not part of the pentachoron that may contribute. # This depends on the closest two pentachoron vertices, including (0,0,0,0) uins = 4 - in_sum if uins < a_score or uins < b_score: # (1,1,1,1) is one of the closest two pentachoron vertices. c = b_po if (b_score < a_score) else a_po # Our other closest vertex is the closest out of a and b. if (c & 0x01) != 0: xsv_ext0 = xsb + 2 xsv_ext1 = xsv_ext2 = xsb + 1 dx_ext0 = dx0 - 2 - 4 * SQUISH_CONSTANT_4D dx_ext1 = dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D else: xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 4 * SQUISH_CONSTANT_4D if (c & 0x02) != 0: ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1 dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D if (c & 0x01) != 0: ysv_ext1 += 1 dy_ext1 -= 1 else: ysv_ext0 += 1 dy_ext0 -= 1 else: ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 4 * SQUISH_CONSTANT_4D if (c & 0x04) != 0: zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1 dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D if (c & 0x03) != 0x03: if (c & 0x03) == 0: zsv_ext0 += 1 dz_ext0 -= 1 else: zsv_ext1 += 1 dz_ext1 -= 1 else: zsv_ext2 += 1 dz_ext2 -= 1 else: zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 4 * SQUISH_CONSTANT_4D if (c & 0x08) != 0: wsv_ext0 = wsv_ext1 = wsb + 1 wsv_ext2 = wsb + 2 dw_ext0 = dw_ext1 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D dw_ext2 = dw0 - 2 - 4 * SQUISH_CONSTANT_4D else: wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 4 * SQUISH_CONSTANT_4D else: # (1,1,1,1) is not one of the closest two pentachoron vertices. c = (a_po & b_po) # Our three extra vertices are determined by the closest two. if (c & 0x01) != 0: xsv_ext0 = xsv_ext2 = xsb + 1 xsv_ext1 = xsb + 2 dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D dx_ext1 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D dx_ext2 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D else: xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D dx_ext1 = dx_ext2 = dx0 - 3 * SQUISH_CONSTANT_4D if (c & 0x02) != 0: ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1 dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D dy_ext1 = dy_ext2 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D if (c & 0x01) != 0: ysv_ext2 += 1 dy_ext2 -= 1 else: ysv_ext1 += 1 dy_ext1 -= 1 else: ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D dy_ext1 = dy_ext2 = dy0 - 3 * SQUISH_CONSTANT_4D if (c & 0x04) != 0: zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1 dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D dz_ext1 = dz_ext2 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D if (c & 0x03) != 0: zsv_ext2 += 1 dz_ext2 -= 1 else: zsv_ext1 += 1 dz_ext1 -= 1 else: zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D dz_ext1 = dz_ext2 = dz0 - 3 * SQUISH_CONSTANT_4D if (c & 0x08) != 0: wsv_ext0 = wsv_ext1 = wsb + 1 wsv_ext2 = wsb + 2 dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D dw_ext1 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D dw_ext2 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D else: wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D dw_ext1 = dw_ext2 = dw0 - 3 * SQUISH_CONSTANT_4D # Contribution (1,1,1,0) dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D dw4 = dw0 - 3 * SQUISH_CONSTANT_4D attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4 if attn4 > 0: attn4 *= attn4 value += attn4 * attn4 * extrapolate(xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4) # Contribution (1,1,0,1) dx3 = dx4 dy3 = dy4 dz3 = dz0 - 3 * SQUISH_CONSTANT_4D dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3 if attn3 > 0: attn3 *= attn3 value += attn3 * attn3 * extrapolate(xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3) # Contribution (1,0,1,1) dx2 = dx4 dy2 = dy0 - 3 * SQUISH_CONSTANT_4D dz2 = dz4 dw2 = dw3 attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2 if attn2 > 0: attn2 *= attn2 value += attn2 * attn2 * extrapolate(xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2) # Contribution (0,1,1,1) dx1 = dx0 - 3 * SQUISH_CONSTANT_4D dz1 = dz4 dy1 = dy4 dw1 = dw3 attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1 if attn1 > 0: attn1 *= attn1 value += attn1 * attn1 * extrapolate(xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1) # Contribution (1,1,1,1) dx0 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D dy0 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D dz0 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D dw0 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0 if attn0 > 0: attn0 *= attn0 value += attn0 * attn0 * extrapolate(xsb + 1, ysb + 1, zsb + 1, wsb + 1, dx0, dy0, dz0, dw0) elif in_sum <= 2: # We're inside the first dispentachoron (Rectified 4-Simplex) a_is_bigger_side = True b_is_bigger_side = True # Decide between (1,1,0,0) and (0,0,1,1) if xins + yins > zins + wins: a_score = xins + yins a_po = 0x03 else: a_score = zins + wins a_po = 0x0C # Decide between (1,0,1,0) and (0,1,0,1) if xins + zins > yins + wins: b_score = xins + zins b_po = 0x05 else: b_score = yins + wins b_po = 0x0A # Closer between (1,0,0,1) and (0,1,1,0) will replace the further of a and b, if closer. if xins + wins > yins + zins: score = xins + wins if a_score >= b_score and score > b_score: b_score = score b_po = 0x09 elif a_score < b_score and score > a_score: a_score = score a_po = 0x09 else: score = yins + zins if a_score >= b_score and score > b_score: b_score = score b_po = 0x06 elif a_score < b_score and score > a_score: a_score = score a_po = 0x06 # Decide if (1,0,0,0) is closer. p1 = 2 - in_sum + xins if a_score >= b_score and p1 > b_score: b_score = p1 b_po = 0x01 b_is_bigger_side = False elif a_score < b_score and p1 > a_score: a_score = p1 a_po = 0x01 a_is_bigger_side = False # Decide if (0,1,0,0) is closer. p2 = 2 - in_sum + yins if a_score >= b_score and p2 > b_score: b_score = p2 b_po = 0x02 b_is_bigger_side = False elif a_score < b_score and p2 > a_score: a_score = p2 a_po = 0x02 a_is_bigger_side = False # Decide if (0,0,1,0) is closer. p3 = 2 - in_sum + zins if a_score >= b_score and p3 > b_score: b_score = p3 b_po = 0x04 b_is_bigger_side = False elif a_score < b_score and p3 > a_score: a_score = p3 a_po = 0x04 a_is_bigger_side = False # Decide if (0,0,0,1) is closer. p4 = 2 - in_sum + wins if a_score >= b_score and p4 > b_score: b_po = 0x08 b_is_bigger_side = False elif a_score < b_score and p4 > a_score: a_po = 0x08 a_is_bigger_side = False # Where each of the two closest pos are determines how the extra three vertices are calculated. if a_is_bigger_side == b_is_bigger_side: if a_is_bigger_side: # Both closest pos on the bigger side c1 = (a_po | b_po) c2 = (a_po & b_po) if (c1 & 0x01) == 0: xsv_ext0 = xsb xsv_ext1 = xsb - 1 dx_ext0 = dx0 - 3 * SQUISH_CONSTANT_4D dx_ext1 = dx0 + 1 - 2 * SQUISH_CONSTANT_4D else: xsv_ext0 = xsv_ext1 = xsb + 1 dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D dx_ext1 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D if (c1 & 0x02) == 0: ysv_ext0 = ysb ysv_ext1 = ysb - 1 dy_ext0 = dy0 - 3 * SQUISH_CONSTANT_4D dy_ext1 = dy0 + 1 - 2 * SQUISH_CONSTANT_4D else: ysv_ext0 = ysv_ext1 = ysb + 1 dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D dy_ext1 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D if (c1 & 0x04) == 0: zsv_ext0 = zsb zsv_ext1 = zsb - 1 dz_ext0 = dz0 - 3 * SQUISH_CONSTANT_4D dz_ext1 = dz0 + 1 - 2 * SQUISH_CONSTANT_4D else: zsv_ext0 = zsv_ext1 = zsb + 1 dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D dz_ext1 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D if (c1 & 0x08) == 0: wsv_ext0 = wsb wsv_ext1 = wsb - 1 dw_ext0 = dw0 - 3 * SQUISH_CONSTANT_4D dw_ext1 = dw0 + 1 - 2 * SQUISH_CONSTANT_4D else: wsv_ext0 = wsv_ext1 = wsb + 1 dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D dw_ext1 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D # One combination is a _permutation of (0,0,0,2) based on c2 xsv_ext2 = xsb ysv_ext2 = ysb zsv_ext2 = zsb wsv_ext2 = wsb dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D if (c2 & 0x01) != 0: xsv_ext2 += 2 dx_ext2 -= 2 elif (c2 & 0x02) != 0: ysv_ext2 += 2 dy_ext2 -= 2 elif (c2 & 0x04) != 0: zsv_ext2 += 2 dz_ext2 -= 2 else: wsv_ext2 += 2 dw_ext2 -= 2 else: # Both closest pos on the smaller side # One of the two extra pos is (0,0,0,0) xsv_ext2 = xsb ysv_ext2 = ysb zsv_ext2 = zsb wsv_ext2 = wsb dx_ext2 = dx0 dy_ext2 = dy0 dz_ext2 = dz0 dw_ext2 = dw0 # Other two pos are based on the omitted axes. c = (a_po | b_po) if (c & 0x01) == 0: xsv_ext0 = xsb - 1 xsv_ext1 = xsb dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D dx_ext1 = dx0 - SQUISH_CONSTANT_4D else: xsv_ext0 = xsv_ext1 = xsb + 1 dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D if (c & 0x02) == 0: ysv_ext0 = ysv_ext1 = ysb dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D if (c & 0x01) == 0x01: ysv_ext0 -= 1 dy_ext0 += 1 else: ysv_ext1 -= 1 dy_ext1 += 1 else: ysv_ext0 = ysv_ext1 = ysb + 1 dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D if (c & 0x04) == 0: zsv_ext0 = zsv_ext1 = zsb dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D if (c & 0x03) == 0x03: zsv_ext0 -= 1 dz_ext0 += 1 else: zsv_ext1 -= 1 dz_ext1 += 1 else: zsv_ext0 = zsv_ext1 = zsb + 1 dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D if (c & 0x08) == 0: wsv_ext0 = wsb wsv_ext1 = wsb - 1 dw_ext0 = dw0 - SQUISH_CONSTANT_4D dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D else: wsv_ext0 = wsv_ext1 = wsb + 1 dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D else: # One po on each "side" if a_is_bigger_side: c1 = a_po c2 = b_po else: c1 = b_po c2 = a_po # Two contributions are the bigger-sided po with each 0 replaced with -1. if (c1 & 0x01) == 0: xsv_ext0 = xsb - 1 xsv_ext1 = xsb dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D dx_ext1 = dx0 - SQUISH_CONSTANT_4D else: xsv_ext0 = xsv_ext1 = xsb + 1 dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D if (c1 & 0x02) == 0: ysv_ext0 = ysv_ext1 = ysb dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D if (c1 & 0x01) == 0x01: ysv_ext0 -= 1 dy_ext0 += 1 else: ysv_ext1 -= 1 dy_ext1 += 1 else: ysv_ext0 = ysv_ext1 = ysb + 1 dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D if (c1 & 0x04) == 0: zsv_ext0 = zsv_ext1 = zsb dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D if (c1 & 0x03) == 0x03: zsv_ext0 -= 1 dz_ext0 += 1 else: zsv_ext1 -= 1 dz_ext1 += 1 else: zsv_ext0 = zsv_ext1 = zsb + 1 dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D if (c1 & 0x08) == 0: wsv_ext0 = wsb wsv_ext1 = wsb - 1 dw_ext0 = dw0 - SQUISH_CONSTANT_4D dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D else: wsv_ext0 = wsv_ext1 = wsb + 1 dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D # One contribution is a _permutation of (0,0,0,2) based on the smaller-sided po xsv_ext2 = xsb ysv_ext2 = ysb zsv_ext2 = zsb wsv_ext2 = wsb dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D if (c2 & 0x01) != 0: xsv_ext2 += 2 dx_ext2 -= 2 elif (c2 & 0x02) != 0: ysv_ext2 += 2 dy_ext2 -= 2 elif (c2 & 0x04) != 0: zsv_ext2 += 2 dz_ext2 -= 2 else: wsv_ext2 += 2 dw_ext2 -= 2 # Contribution (1,0,0,0) dx1 = dx0 - 1 - SQUISH_CONSTANT_4D dy1 = dy0 - 0 - SQUISH_CONSTANT_4D dz1 = dz0 - 0 - SQUISH_CONSTANT_4D dw1 = dw0 - 0 - SQUISH_CONSTANT_4D attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1 if attn1 > 0: attn1 *= attn1 value += attn1 * attn1 * extrapolate(xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1) # Contribution (0,1,0,0) dx2 = dx0 - 0 - SQUISH_CONSTANT_4D dy2 = dy0 - 1 - SQUISH_CONSTANT_4D dz2 = dz1 dw2 = dw1 attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2 if attn2 > 0: attn2 *= attn2 value += attn2 * attn2 * extrapolate(xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2) # Contribution (0,0,1,0) dx3 = dx2 dy3 = dy1 dz3 = dz0 - 1 - SQUISH_CONSTANT_4D dw3 = dw1 attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3 if attn3 > 0: attn3 *= attn3 value += attn3 * attn3 * extrapolate(xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3) # Contribution (0,0,0,1) dx4 = dx2 dy4 = dy1 dz4 = dz1 dw4 = dw0 - 1 - SQUISH_CONSTANT_4D attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4 if attn4 > 0: attn4 *= attn4 value += attn4 * attn4 * extrapolate(xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4) # Contribution (1,1,0,0) dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5 if attn5 > 0: attn5 *= attn5 value += attn5 * attn5 * extrapolate(xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5) # Contribution (1,0,1,0) dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6 if attn6 > 0: attn6 *= attn6 value += attn6 * attn6 * extrapolate(xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6) # Contribution (1,0,0,1) dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7 if attn7 > 0: attn7 *= attn7 value += attn7 * attn7 * extrapolate(xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7) # Contribution (0,1,1,0) dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8 if attn8 > 0: attn8 *= attn8 value += attn8 * attn8 * extrapolate(xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8) # Contribution (0,1,0,1) dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9 if attn9 > 0: attn9 *= attn9 value += attn9 * attn9 * extrapolate(xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9) # Contribution (0,0,1,1) dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10 if attn10 > 0: attn10 *= attn10 value += attn10 * attn10 * extrapolate(xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10) else: # We're inside the second dispentachoron (Rectified 4-Simplex) a_is_bigger_side = True b_is_bigger_side = True # Decide between (0,0,1,1) and (1,1,0,0) if xins + yins < zins + wins: a_score = xins + yins a_po = 0x0C else: a_score = zins + wins a_po = 0x03 # Decide between (0,1,0,1) and (1,0,1,0) if xins + zins < yins + wins: b_score = xins + zins b_po = 0x0A else: b_score = yins + wins b_po = 0x05 # Closer between (0,1,1,0) and (1,0,0,1) will replace the further of a and b, if closer. if xins + wins < yins + zins: score = xins + wins if a_score <= b_score and score < b_score: b_score = score b_po = 0x06 elif a_score > b_score and score < a_score: a_score = score a_po = 0x06 else: score = yins + zins if a_score <= b_score and score < b_score: b_score = score b_po = 0x09 elif a_score > b_score and score < a_score: a_score = score a_po = 0x09 # Decide if (0,1,1,1) is closer. p1 = 3 - in_sum + xins if a_score <= b_score and p1 < b_score: b_score = p1 b_po = 0x0E b_is_bigger_side = False elif a_score > b_score and p1 < a_score: a_score = p1 a_po = 0x0E a_is_bigger_side = False # Decide if (1,0,1,1) is closer. p2 = 3 - in_sum + yins if a_score <= b_score and p2 < b_score: b_score = p2 b_po = 0x0D b_is_bigger_side = False elif a_score > b_score and p2 < a_score: a_score = p2 a_po = 0x0D a_is_bigger_side = False # Decide if (1,1,0,1) is closer. p3 = 3 - in_sum + zins if a_score <= b_score and p3 < b_score: b_score = p3 b_po = 0x0B b_is_bigger_side = False elif a_score > b_score and p3 < a_score: a_score = p3 a_po = 0x0B a_is_bigger_side = False # Decide if (1,1,1,0) is closer. p4 = 3 - in_sum + wins if a_score <= b_score and p4 < b_score: b_po = 0x07 b_is_bigger_side = False elif a_score > b_score and p4 < a_score: a_po = 0x07 a_is_bigger_side = False # Where each of the two closest pos are determines how the extra three vertices are calculated. if a_is_bigger_side == b_is_bigger_side: if a_is_bigger_side: # Both closest pos on the bigger side c1 = (a_po & b_po) c2 = (a_po | b_po) # Two contributions are _permutations of (0,0,0,1) and (0,0,0,2) based on c1 xsv_ext0 = xsv_ext1 = xsb ysv_ext0 = ysv_ext1 = ysb zsv_ext0 = zsv_ext1 = zsb wsv_ext0 = wsv_ext1 = wsb dx_ext0 = dx0 - SQUISH_CONSTANT_4D dy_ext0 = dy0 - SQUISH_CONSTANT_4D dz_ext0 = dz0 - SQUISH_CONSTANT_4D dw_ext0 = dw0 - SQUISH_CONSTANT_4D dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_4D dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_4D dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_4D dw_ext1 = dw0 - 2 * SQUISH_CONSTANT_4D if (c1 & 0x01) != 0: xsv_ext0 += 1 dx_ext0 -= 1 xsv_ext1 += 2 dx_ext1 -= 2 elif (c1 & 0x02) != 0: ysv_ext0 += 1 dy_ext0 -= 1 ysv_ext1 += 2 dy_ext1 -= 2 elif (c1 & 0x04) != 0: zsv_ext0 += 1 dz_ext0 -= 1 zsv_ext1 += 2 dz_ext1 -= 2 else: wsv_ext0 += 1 dw_ext0 -= 1 wsv_ext1 += 2 dw_ext1 -= 2 # One contribution is a _permutation of (1,1,1,-1) based on c2 xsv_ext2 = xsb + 1 ysv_ext2 = ysb + 1 zsv_ext2 = zsb + 1 wsv_ext2 = wsb + 1 dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D if (c2 & 0x01) == 0: xsv_ext2 -= 2 dx_ext2 += 2 elif (c2 & 0x02) == 0: ysv_ext2 -= 2 dy_ext2 += 2 elif (c2 & 0x04) == 0: zsv_ext2 -= 2 dz_ext2 += 2 else: wsv_ext2 -= 2 dw_ext2 += 2 else: # Both closest pos on the smaller side # One of the two extra pos is (1,1,1,1) xsv_ext2 = xsb + 1 ysv_ext2 = ysb + 1 zsv_ext2 = zsb + 1 wsv_ext2 = wsb + 1 dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D dw_ext2 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D # Other two pos are based on the shared axes. c = (a_po & b_po) if (c & 0x01) != 0: xsv_ext0 = xsb + 2 xsv_ext1 = xsb + 1 dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D else: xsv_ext0 = xsv_ext1 = xsb dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D if (c & 0x02) != 0: ysv_ext0 = ysv_ext1 = ysb + 1 dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D if (c & 0x01) == 0: ysv_ext0 += 1 dy_ext0 -= 1 else: ysv_ext1 += 1 dy_ext1 -= 1 else: ysv_ext0 = ysv_ext1 = ysb dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D if (c & 0x04) != 0: zsv_ext0 = zsv_ext1 = zsb + 1 dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D if (c & 0x03) == 0: zsv_ext0 += 1 dz_ext0 -= 1 else: zsv_ext1 += 1 dz_ext1 -= 1 else: zsv_ext0 = zsv_ext1 = zsb dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D if (c & 0x08) != 0: wsv_ext0 = wsb + 1 wsv_ext1 = wsb + 2 dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D else: wsv_ext0 = wsv_ext1 = wsb dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D else: # One po on each "side" if a_is_bigger_side: c1 = a_po c2 = b_po else: c1 = b_po c2 = a_po # Two contributions are the bigger-sided po with each 1 replaced with 2. if (c1 & 0x01) != 0: xsv_ext0 = xsb + 2 xsv_ext1 = xsb + 1 dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D else: xsv_ext0 = xsv_ext1 = xsb dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D if (c1 & 0x02) != 0: ysv_ext0 = ysv_ext1 = ysb + 1 dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D if (c1 & 0x01) == 0: ysv_ext0 += 1 dy_ext0 -= 1 else: ysv_ext1 += 1 dy_ext1 -= 1 else: ysv_ext0 = ysv_ext1 = ysb dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D if (c1 & 0x04) != 0: zsv_ext0 = zsv_ext1 = zsb + 1 dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D if (c1 & 0x03) == 0: zsv_ext0 += 1 dz_ext0 -= 1 else: zsv_ext1 += 1 dz_ext1 -= 1 else: zsv_ext0 = zsv_ext1 = zsb dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D if (c1 & 0x08) != 0: wsv_ext0 = wsb + 1 wsv_ext1 = wsb + 2 dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D else: wsv_ext0 = wsv_ext1 = wsb dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D # One contribution is a _permutation of (1,1,1,-1) based on the smaller-sided po xsv_ext2 = xsb + 1 ysv_ext2 = ysb + 1 zsv_ext2 = zsb + 1 wsv_ext2 = wsb + 1 dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D if (c2 & 0x01) == 0: xsv_ext2 -= 2 dx_ext2 += 2 elif (c2 & 0x02) == 0: ysv_ext2 -= 2 dy_ext2 += 2 elif (c2 & 0x04) == 0: zsv_ext2 -= 2 dz_ext2 += 2 else: wsv_ext2 -= 2 dw_ext2 += 2 # Contribution (1,1,1,0) dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D dw4 = dw0 - 3 * SQUISH_CONSTANT_4D attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4 if attn4 > 0: attn4 *= attn4 value += attn4 * attn4 * extrapolate(xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4) # Contribution (1,1,0,1) dx3 = dx4 dy3 = dy4 dz3 = dz0 - 3 * SQUISH_CONSTANT_4D dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3 if attn3 > 0: attn3 *= attn3 value += attn3 * attn3 * extrapolate(xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3) # Contribution (1,0,1,1) dx2 = dx4 dy2 = dy0 - 3 * SQUISH_CONSTANT_4D dz2 = dz4 dw2 = dw3 attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2 if attn2 > 0: attn2 *= attn2 value += attn2 * attn2 * extrapolate(xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2) # Contribution (0,1,1,1) dx1 = dx0 - 3 * SQUISH_CONSTANT_4D dz1 = dz4 dy1 = dy4 dw1 = dw3 attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1 if attn1 > 0: attn1 *= attn1 value += attn1 * attn1 * extrapolate(xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1) # Contribution (1,1,0,0) dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5 if attn5 > 0: attn5 *= attn5 value += attn5 * attn5 * extrapolate(xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5) # Contribution (1,0,1,0) dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6 if attn6 > 0: attn6 *= attn6 value += attn6 * attn6 * extrapolate(xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6) # Contribution (1,0,0,1) dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7 if attn7 > 0: attn7 *= attn7 value += attn7 * attn7 * extrapolate(xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7) # Contribution (0,1,1,0) dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8 if attn8 > 0: attn8 *= attn8 value += attn8 * attn8 * extrapolate(xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8) # Contribution (0,1,0,1) dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9 if attn9 > 0: attn9 *= attn9 value += attn9 * attn9 * extrapolate(xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9) # Contribution (0,0,1,1) dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10 if attn10 > 0: attn10 *= attn10 value += attn10 * attn10 * extrapolate(xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10) # First extra vertex attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0 - dw_ext0 * dw_ext0 if attn_ext0 > 0: attn_ext0 *= attn_ext0 value += attn_ext0 * attn_ext0 * extrapolate(xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0, dx_ext0, dy_ext0, dz_ext0, dw_ext0) # Second extra vertex attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1 - dw_ext1 * dw_ext1 if attn_ext1 > 0: attn_ext1 *= attn_ext1 value += attn_ext1 * attn_ext1 * extrapolate(xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1, dx_ext1, dy_ext1, dz_ext1, dw_ext1) # Third extra vertex attn_ext2 = 2 - dx_ext2 * dx_ext2 - dy_ext2 * dy_ext2 - dz_ext2 * dz_ext2 - dw_ext2 * dw_ext2 if attn_ext2 > 0: attn_ext2 *= attn_ext2 value += attn_ext2 * attn_ext2 * extrapolate(xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2, dx_ext2, dy_ext2, dz_ext2, dw_ext2) return value / NORM_CONSTANT_4D
0.001882
def plot_feature_histograms(xyzall, feature_labels=None, ax=None, ylog=False, outfile=None, n_bins=50, ignore_dim_warning=False, **kwargs): r"""Feature histogram plot Parameters ---------- xyzall : np.ndarray(T, d) (Concatenated list of) input features; containing time series data to be plotted. Array of T data points in d dimensions (features). feature_labels : iterable of str or pyemma.Featurizer, optional, default=None Labels of histogramed features, defaults to feature index. ax : matplotlib.Axes object, optional, default=None. The ax to plot to; if ax=None, a new ax (and fig) is created. ylog : boolean, default=False If True, plot logarithm of histogram values. n_bins : int, default=50 Number of bins the histogram uses. outfile : str, default=None If not None, saves plot to this file. ignore_dim_warning : boolean, default=False Enable plotting for more than 50 dimensions (on your own risk). **kwargs: kwargs passed to pyplot.fill_between. See the doc of pyplot for options. Returns ------- fig : matplotlib.Figure object The figure in which the used ax resides. ax : matplotlib.Axes object The ax in which the historams were plotted. """ if not isinstance(xyzall, _np.ndarray): raise ValueError('Input data hast to be a numpy array. Did you concatenate your data?') if xyzall.shape[1] > 50 and not ignore_dim_warning: raise RuntimeError('This function is only useful for less than 50 dimensions. Turn-off this warning ' 'at your own risk with ignore_dim_warning=True.') if feature_labels is not None: if not isinstance(feature_labels, list): from pyemma.coordinates.data.featurization.featurizer import MDFeaturizer as _MDFeaturizer if isinstance(feature_labels, _MDFeaturizer): feature_labels = feature_labels.describe() else: raise ValueError('feature_labels must be a list of feature labels, ' 'a pyemma featurizer object or None.') if not xyzall.shape[1] == len(feature_labels): raise ValueError('feature_labels must have the same dimension as the input data xyzall.') # make nice plots if user does not decide on color and transparency if 'color' not in kwargs.keys(): kwargs['color'] = 'b' if 'alpha' not in kwargs.keys(): kwargs['alpha'] = .25 import matplotlib.pyplot as _plt # check input if ax is None: fig, ax = _plt.subplots() else: fig = ax.get_figure() hist_offset = -.2 for h, coordinate in enumerate(reversed(xyzall.T)): hist, edges = _np.histogram(coordinate, bins=n_bins) if not ylog: y = hist / hist.max() else: y = _np.zeros_like(hist) + _np.NaN pos_idx = hist > 0 y[pos_idx] = _np.log(hist[pos_idx]) / _np.log(hist[pos_idx]).max() ax.fill_between(edges[:-1], y + h + hist_offset, y2=h + hist_offset, **kwargs) ax.axhline(y=h + hist_offset, xmin=0, xmax=1, color='k', linewidth=.2) ax.set_ylim(hist_offset, h + hist_offset + 1) # formatting if feature_labels is None: feature_labels = [str(n) for n in range(xyzall.shape[1])] ax.set_ylabel('Feature histograms') ax.set_yticks(_np.array(range(len(feature_labels))) + .3) ax.set_yticklabels(feature_labels[::-1]) ax.set_xlabel('Feature values') # save if outfile is not None: fig.savefig(outfile) return fig, ax
0.002598
def getbalance(self, address: str) -> Decimal: '''Returns current balance of given address.''' try: return Decimal(cast(float, self.ext_fetch('getbalance/' + address))) except TypeError: return Decimal(0)
0.011858
def install_from_rpm_py_package(self): """Run install from RPM Python binding RPM package.""" self._download_and_extract_rpm_py_package() # Find ./usr/lib64/pythonN.N/site-packages/rpm directory. # A binary built by same version Python with used Python is target # for the safe installation. if self.rpm.has_set_up_py_in(): # If RPM has setup.py.in, this strict check is okay. # Because we can still install from the source. py_dir_name = 'python{0}.{1}'.format( sys.version_info[0], sys.version_info[1]) else: # If RPM does not have setup.py.in such as CentOS6, # Only way to install is by different Python's RPM package. py_dir_name = '*' python_lib_dir_pattern = os.path.join( 'usr', '*', py_dir_name, 'site-packages') rpm_dir_pattern = os.path.join(python_lib_dir_pattern, 'rpm') downloaded_rpm_dirs = glob.glob(rpm_dir_pattern) if not downloaded_rpm_dirs: message = 'Directory with a pattern: {0} not found.'.format( rpm_dir_pattern) raise RpmPyPackageNotFoundError(message) src_rpm_dir = downloaded_rpm_dirs[0] # Remove rpm directory for the possible installed directories. for rpm_dir in self.python.python_lib_rpm_dirs: if os.path.isdir(rpm_dir): Log.debug("Remove existing rpm directory {0}".format(rpm_dir)) shutil.rmtree(rpm_dir) dst_rpm_dir = self.python.python_lib_rpm_dir Log.debug("Copy directory from '{0}' to '{1}'".format( src_rpm_dir, dst_rpm_dir)) shutil.copytree(src_rpm_dir, dst_rpm_dir) file_name_pattern = 'rpm-*.egg-info' rpm_egg_info_pattern = os.path.join( python_lib_dir_pattern, file_name_pattern) downloaded_rpm_egg_infos = glob.glob(rpm_egg_info_pattern) if downloaded_rpm_egg_infos: existing_rpm_egg_info_pattern = os.path.join( self.python.python_lib_dir, file_name_pattern) existing_rpm_egg_infos = glob.glob(existing_rpm_egg_info_pattern) for existing_rpm_egg_info in existing_rpm_egg_infos: Log.debug("Remove existing rpm egg info file '{0}'".format( existing_rpm_egg_info)) os.remove(existing_rpm_egg_info) Log.debug("Copy file from '{0}' to '{1}'".format( downloaded_rpm_egg_infos[0], self.python.python_lib_dir)) shutil.copy2(downloaded_rpm_egg_infos[0], self.python.python_lib_dir)
0.000729
def imshow(*imgs, **options): """ Plots multiple images using matplotlib by dynamically finding the required number of rows and cols. :param imgs: Images as any number of arguments :param options: Dict of options - cmap: Color map for gray scale images - vmin: Minimum value to be used in color map - vmax: Maximum value to be used in color map """ n = len(imgs) nrows = int(math.ceil(math.sqrt(n))) ncols = int(math.ceil(n / nrows)) for row in range(nrows): for col in range(ncols): i = row * ncols + col if i >= n: break plt.subplot(nrows, ncols, i+1) show_img(imgs[i], options) plt.show()
0.001361
def set_metadata(self, obj, metadata, clear=False, prefix=None): """ Accepts a dictionary of metadata key/value pairs and updates the specified object metadata with them. If 'clear' is True, any existing metadata is deleted and only the passed metadata is retained. Otherwise, the values passed here update the object's metadata. By default, the standard object metadata prefix ('X-Object-Meta-') is prepended to the header name if it isn't present. For non-standard headers, you must include a non-None prefix, such as an empty string. """ # Add the metadata prefix, if needed. if prefix is None: prefix = OBJECT_META_PREFIX massaged = _massage_metakeys(metadata, prefix) cname = utils.get_name(self.container) oname = utils.get_name(obj) new_meta = {} # Note that the API for object POST is the opposite of that for # container POST: for objects, all current metadata is deleted, # whereas for containers you need to set the values to an empty # string to delete them. if not clear: obj_meta = self.get_metadata(obj, prefix=prefix) new_meta = _massage_metakeys(obj_meta, prefix) utils.case_insensitive_update(new_meta, massaged) # Remove any empty values, since the object metadata API will # store them. to_pop = [] for key, val in six.iteritems(new_meta): if not val: to_pop.append(key) for key in to_pop: new_meta.pop(key) uri = "/%s/%s" % (cname, oname) resp, resp_body = self.api.method_post(uri, headers=new_meta)
0.001155
def closePanel(self): """ Closes a full view panel. """ # make sure we can close all the widgets in the view first for i in range(self.count()): if not self.widget(i).canClose(): return False container = self.parentWidget() viewWidget = self.viewWidget() # close all the child views for i in xrange(self.count() - 1, -1, -1): self.widget(i).close() self.tabBar().clear() if isinstance(container, XSplitter): parent_container = container.parentWidget() if container.count() == 2: if isinstance(parent_container, XSplitter): sizes = parent_container.sizes() widget = container.widget(int(not container.indexOf(self))) index = parent_container.indexOf(container) parent_container.insertWidget(index, widget) container.setParent(None) container.close() container.deleteLater() parent_container.setSizes(sizes) elif parent_container.parentWidget() == viewWidget: widget = container.widget(int(not container.indexOf(self))) widget.setParent(viewWidget) if projexui.QT_WRAPPER == 'PySide': _ = viewWidget.takeWidget() else: old_widget = viewWidget.widget() old_widget.setParent(None) old_widget.close() old_widget.deleteLater() QtGui.QApplication.instance().processEvents() viewWidget.setWidget(widget) else: container.setParent(None) container.close() container.deleteLater() else: self.setFocus() self._hintLabel.setText(self.hint()) self._hintLabel.show() return True
0.003678
def add(self, arg1, arg2=None, arg3=None, bucket_type=None): """ Start assembling a Map/Reduce operation. A shortcut for :func:`RiakMapReduce.add`. :param arg1: the object or bucket to add :type arg1: RiakObject, string :param arg2: a key or list of keys to add (if a bucket is given in arg1) :type arg2: string, list, None :param arg3: key data for this input (must be convertible to JSON) :type arg3: string, list, dict, None :param bucket_type: Optional name of a bucket type :type bucket_type: string, None :rtype: :class:`RiakMapReduce` """ mr = RiakMapReduce(self) return mr.add(arg1, arg2, arg3, bucket_type)
0.002681
def loadcache(json_file): """ Loads json file as dictionary, feeds it to monkeycache and spits result """ f = open(json_file, 'r') data = f.read() f.close() try: apicache = json.loads(data) except ValueError as e: print("Error processing json:", json_file, e) return {} return apicache
0.002899
def GLOBAL(self, node): """ Keep track of globals declarations. """ global_scope_index = 1 if self._in_doctest() else 0 global_scope = self.scopeStack[global_scope_index] # Ignore 'global' statement in global scope. if self.scope is not global_scope: # One 'global' statement can bind multiple (comma-delimited) names. for node_name in node.names: node_value = Assignment(node_name, node) # Remove UndefinedName messages already reported for this name. # TODO: if the global is not used in this scope, it does not # become a globally defined name. See test_unused_global. self.messages = [ m for m in self.messages if not isinstance(m, messages.UndefinedName) or m.message_args[0] != node_name] # Bind name to global scope if it doesn't exist already. global_scope.setdefault(node_name, node_value) # Bind name to non-global scopes, but as already "used". node_value.used = (global_scope, node) for scope in self.scopeStack[global_scope_index + 1:]: scope[node_name] = node_value
0.001533
def _from_dict(cls, _dict): """Initialize a LanguageModels object from a json dictionary.""" args = {} if 'customizations' in _dict: args['customizations'] = [ LanguageModel._from_dict(x) for x in (_dict.get('customizations')) ] else: raise ValueError( 'Required property \'customizations\' not present in LanguageModels JSON' ) return cls(**args)
0.006211
def update_buttons(self): """Updates the enable status of delete and reset buttons.""" current_scheme = self.current_scheme names = self.get_option("names") try: names.pop(names.index(u'Custom')) except ValueError: pass delete_enabled = current_scheme not in names self.delete_button.setEnabled(delete_enabled) self.reset_button.setEnabled(not delete_enabled)
0.004474
def create(self): """ Create the local repository (if it doesn't already exist). :returns: :data:`True` if the local repository was just created, :data:`False` if it already existed. What :func:`create()` does depends on the situation: - When :attr:`exists` is :data:`True` nothing is done. - When the :attr:`local` repository doesn't exist but a :attr:`remote` repository location is given, a clone of the remote repository is created. - When the :attr:`local` repository doesn't exist and no :attr:`remote` repository has been specified then a new local repository will be created. When :func:`create()` is responsible for creating the :attr:`local` repository it will make sure the :attr:`bare` option is respected. """ if self.exists: logger.debug("Local %s repository (%s) already exists, ignoring request to create it.", self.friendly_name, format_path(self.local)) return False else: timer = Timer() if self.remote: logger.info("Creating local %s repository (%s) by cloning %s ..", self.friendly_name, format_path(self.local), self.remote) else: logger.info("Creating local %s repository (%s) ..", self.friendly_name, format_path(self.local)) self.context.execute(*self.get_create_command()) logger.debug("Took %s to %s local %s repository.", timer, "clone" if self.remote else "create", self.friendly_name) if self.remote: self.mark_updated() # Ensure that all further commands are executed in the local repository. self.update_context() return True
0.003115
def get_scale(self): """ If exposure was not set in the __init__, get the exposure associated with this RawImage so that it may be used in other :class:`~peri.util.RawImage`. This is useful for transferring exposure parameters to a series of images. Returns ------- exposure : tuple of floats The (emin, emax) which get mapped to (0, 1) """ if self.exposure is not None: return self.exposure raw = initializers.load_tiff(self.filename) return raw.min(), raw.max()
0.003419
async def set_ignore_version(request): """ This handler expects a POST request of form application/json. The request body should be formatted as: {"version": version_ignored} The POST will 400 in the following scenarios: 1. Sending an empty dict 2. Sending a dict with an empty string """ data = await request.json() if 'version' in data.keys(): ignored_version = data.get('version') log.debug('Set Ignore Version to {}'.format(ignored_version)) if ignored_version == '': status = 400 res = {'version': None} else: _set_ignored_version(ignored_version) status = 200 res = {'version': ignored_version} else: status = 400 res = {'version': None} return web.json_response(res, status=status)
0.001181
def revisions( request, slug, template_name='wakawaka/revisions.html', extra_context=None ): """ Displays the list of all revisions for a specific WikiPage """ queryset = WikiPage.objects.all() page = get_object_or_404(queryset, slug=slug) template_context = {'page': page} template_context.update(extra_context or {}) return render(request, template_name, template_context)
0.002433
def apply_mask_4d(image, mask_img): # , smooth_mm=None, remove_nans=True): """Read a Nifti file nii_file and a mask Nifti file. Extract the signals in nii_file that are within the mask, the mask indices and the mask shape. Parameters ---------- image: img-like object or boyle.nifti.NeuroImage or str Can either be: - a file path to a Nifti image - any object with get_data() and get_affine() methods, e.g., nibabel.Nifti1Image. If niimg is a string, consider it as a path to Nifti image and call nibabel.load on it. If it is an object, check if get_data() and get_affine() methods are present, raise TypeError otherwise. mask_img: img-like object or boyle.nifti.NeuroImage or str 3D mask array: True where a voxel should be used. See img description. smooth_mm: float #TBD (optional) The size in mm of the FWHM Gaussian kernel to smooth the signal. If True, remove_nans is True. remove_nans: bool #TBD If remove_nans is True (default), the non-finite values (NaNs and infs) found in the images will be replaced by zeros. Returns ------- session_series, mask_data session_series: numpy.ndarray 2D array of series with shape (voxel number, image number) Note ---- nii_file and mask_file must have the same shape. Raises ------ FileNotFound, NiftiFilesNotCompatible """ img = check_img(image) mask = check_img(mask_img) check_img_compatibility(img, mask, only_check_3d=True) vol = get_data(img) series, mask_data = _apply_mask_to_4d_data(vol, mask) return series, mask_data
0.002367
def pkcs12_key_as_pem(private_key_bytes, private_key_password): """Convert the contents of a PKCS#12 key to PEM using pyOpenSSL. Args: private_key_bytes: Bytes. PKCS#12 key in DER format. private_key_password: String. Password for PKCS#12 key. Returns: String. PEM contents of ``private_key_bytes``. """ private_key_password = _helpers._to_bytes(private_key_password) pkcs12 = crypto.load_pkcs12(private_key_bytes, private_key_password) return crypto.dump_privatekey(crypto.FILETYPE_PEM, pkcs12.get_privatekey())
0.001667
def get_compositions_by_search(self, composition_query, composition_search): """Gets the search results matching the given search query using the given search. arg: composition_query (osid.repository.CompositionQuery): the composition query arg: composition_search (osid.repository.CompositionSearch): the composition search return: (osid.repository.CompositionSearchResults) - the composition search results raise: NullArgument - ``composition_query`` or ``composition_search`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure raise: Unsupported - ``composition_query`` or ``composition_search`` is not of this service *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.ResourceSearchSession.get_resources_by_search_template # Copied from osid.resource.ResourceQuerySession.get_resources_by_query_template and_list = list() or_list = list() for term in composition_query._query_terms: and_list.append({term: composition_query._query_terms[term]}) for term in composition_query._keyword_terms: or_list.append({term: composition_query._keyword_terms[term]}) if composition_search._id_list is not None: identifiers = [ObjectId(i.identifier) for i in composition_search._id_list] and_list.append({'_id': {'$in': identifiers}}) if or_list: and_list.append({'$or': or_list}) view_filter = self._view_filter() if view_filter: and_list.append(view_filter) if and_list: query_terms = {'$and': and_list} collection = JSONClientValidated('repository', collection='Composition', runtime=self._runtime) if composition_search.start is not None and composition_search.end is not None: result = collection.find(query_terms)[composition_search.start:composition_search.end] else: result = collection.find(query_terms) return searches.CompositionSearchResults(result, dict(composition_query._query_terms), runtime=self._runtime)
0.003299
def get_telex_definition(w_shorthand=True, brackets_shorthand=True): """Create a definition dictionary for the TELEX input method Args: w_shorthand (optional): allow a stand-alone w to be interpreted as an ư. Default to True. brackets_shorthand (optional, True): allow typing ][ as shorthand for ươ. Default to True. Returns a dictionary to be passed into process_key(). """ telex = { "a": "a^", "o": "o^", "e": "e^", "w": ["u*", "o*", "a+"], "d": "d-", "f": "\\", "s": "/", "r": "?", "x": "~", "j": ".", } if w_shorthand: telex["w"].append('<ư') if brackets_shorthand: telex.update({ "]": "<ư", "[": "<ơ", "}": "<Ư", "{": "<Ơ" }) return telex
0.001142
def remove_stage_from_deployed_values(key, filename): # type: (str, str) -> None """Delete a top level key from the deployed JSON file.""" final_values = {} # type: Dict[str, Any] try: with open(filename, 'r') as f: final_values = json.load(f) except IOError: # If there is no file to delete from, then this funciton is a noop. return try: del final_values[key] with open(filename, 'wb') as f: data = serialize_to_json(final_values) f.write(data.encode('utf-8')) except KeyError: # If they key didn't exist then there is nothing to remove. pass
0.001502
def cartesian(self, other): """ Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of elements C{(a, b)} where C{a} is in C{self} and C{b} is in C{other}. >>> rdd = sc.parallelize([1, 2]) >>> sorted(rdd.cartesian(rdd).collect()) [(1, 1), (1, 2), (2, 1), (2, 2)] """ # Due to batching, we can't use the Java cartesian method. deserializer = CartesianDeserializer(self._jrdd_deserializer, other._jrdd_deserializer) return RDD(self._jrdd.cartesian(other._jrdd), self.ctx, deserializer)
0.003063
def _coarsegrain_space(coarse_grain, is_cut, system): """Spatially coarse-grain the TPM and CM.""" tpm = coarse_grain.macro_tpm( system.tpm, check_independence=(not is_cut)) node_indices = coarse_grain.macro_indices state = coarse_grain.macro_state(system.state) # Universal connectivity, for now. n = len(node_indices) cm = np.ones((n, n)) return SystemAttrs(tpm, cm, node_indices, state)
0.004274
def fit(self, X, y=None, **kwargs): """Fit the underlying estimator. Parameters ---------- X, y : array-like **kwargs Additional fit-kwargs for the underlying estimator. Returns ------- self : object """ logger.info("Starting fit") with _timer("fit", _logger=logger): result = self.estimator.fit(X, y, **kwargs) # Copy over learned attributes copy_learned_attributes(result, self) copy_learned_attributes(result, self.estimator) return self
0.003407
def _getFileNumber(self, filename): """ Given a file name, get its file number (if any). @param filename: A C{str} file name. @return: An C{int} file number or C{None} if no file with that name has been added. """ cur = self._connection.cursor() cur.execute('SELECT id FROM files WHERE name = ?', (filename,)) row = cur.fetchone() if row is None: return None else: return row[0]
0.00404
def titleOf(self, url): """ Returns the title for the inputed url. :param url | <str> :return <str> """ for m_url, m_title in self._stack: if url == m_url: return m_title return nativestring(url).split('/')[-1]
0.01462
def close(self): """Close the http/https connect.""" try: self.response.close() self.logger.debug("close connect succeed.") except Exception as e: self.unknown("close connect error: %s" % e)
0.008
def feedback(self): """ Access the feedback :returns: twilio.rest.api.v2010.account.message.feedback.FeedbackList :rtype: twilio.rest.api.v2010.account.message.feedback.FeedbackList """ if self._feedback is None: self._feedback = FeedbackList( self._version, account_sid=self._solution['account_sid'], message_sid=self._solution['sid'], ) return self._feedback
0.00409
def encode(self, obj): """ Add the given object to the result. """ if isinstance(obj, int_like_types): self.result.append("i%de" % obj) elif isinstance(obj, string_types): self.result.extend([str(len(obj)), ':', str(obj)]) elif hasattr(obj, "__bencode__"): self.encode(obj.__bencode__()) elif hasattr(obj, "items"): # Dictionary self.result.append('d') for key, val in sorted(obj.items()): key = str(key) self.result.extend([str(len(key)), ':', key]) self.encode(val) self.result.append('e') else: # Treat as iterable try: items = iter(obj) except TypeError as exc: raise BencodeError("Unsupported non-iterable object %r of type %s (%s)" % ( obj, type(obj), exc )) else: self.result.append('l') for item in items: self.encode(item) self.result.append('e') return self.result
0.002597
def _annotated_unpack_infer(stmt, context=None): """ Recursively generate nodes inferred by the given statement. If the inferred value is a list or a tuple, recurse on the elements. Returns an iterator which yields tuples in the format ('original node', 'infered node'). """ if isinstance(stmt, (astroid.List, astroid.Tuple)): for elt in stmt.elts: inferred = utils.safe_infer(elt) if inferred and inferred is not astroid.Uninferable: yield elt, inferred return for infered in stmt.infer(context): if infered is astroid.Uninferable: continue yield stmt, infered
0.001477
def random_val(index, tune_params): """return a random value for a parameter""" key = list(tune_params.keys())[index] return random.choice(tune_params[key])
0.005952
def do_update(pool,request,models): "unlike *_check() below, update doesn't worry about missing children" return {k:fkapply(models,pool,process_update,missing_update,k,v) for k,v in request.items()}
0.064356
def get_address(self, account_id, address_id, **params): """https://developers.coinbase.com/api/v2#show-addresss""" response = self._get('v2', 'accounts', account_id, 'addresses', address_id, params=params) return self._make_api_object(response, Address)
0.010791
def from_tuples(cls, tups): """ Create a new IntervalTree from an iterable of 2- or 3-tuples, where the tuple lists begin, end, and optionally data. """ ivs = [Interval(*t) for t in tups] return IntervalTree(ivs)
0.007663
def install_webpi(name, install_args=None, override_args=False): ''' Instructs Chocolatey to install a package via the Microsoft Web PI service. name The name of the package to be installed. Only accepts a single argument. install_args A list of install arguments you want to pass to the installation process i.e product key or feature list override_args Set to true if you want to override the original install arguments (for the native installer) in the package and use your own. When this is set to False install_args will be appended to the end of the default arguments CLI Example: .. code-block:: bash salt '*' chocolatey.install_webpi <package name> salt '*' chocolatey.install_webpi <package name> install_args=<args> override_args=True ''' return install(name, source='webpi', install_args=install_args, override_args=override_args)
0.003953
def set_admin(msg, handler): """Handle admin verification responses from NickServ. | If NickServ tells us that the nick is authed, mark it as verified. """ if handler.config['feature']['servicestype'] == "ircservices": match = re.match("STATUS (.*) ([0-3])", msg) elif handler.config['feature']['servicestype'] == "atheme": match = re.match("(.*) ACC ([0-3])", msg) if match: status = int(match.group(2)) nick = match.group(1) if status != 3: return with handler.db.session_scope() as session: admin = session.query(Permissions).filter(Permissions.nick == nick).first() if admin is None: session.add(Permissions(nick=nick, role='admin', registered=True, time=datetime.now())) else: admin.registered = True admin.time = datetime.now()
0.003322
def split_results(self): """ Convenience method to separate failed and successful results. .. versionadded:: 2.0.0 This function will split the results of the failed operation (see :attr:`.all_results`) into "good" and "bad" dictionaries. The intent is for the application to handle any successful results in a success code path, and handle any failed results in a "retry" code path. For example .. code-block:: python try: cb.add_multi(docs) except CouchbaseTransientError as e: # Temporary failure or server OOM _, fail = e.split_results() # Sleep for a bit to reduce the load on the server time.sleep(0.5) # Try to add only the failed results again cb.add_multi(fail) Of course, in the example above, the second retry may fail as well, and a more robust implementation is left as an exercise to the reader. :return: A tuple of ( `ok`, `bad` ) dictionaries. """ ret_ok, ret_fail = {}, {} count = 0 nokey_prefix = ([""] + sorted(filter(bool, self.all_results.keys())))[-1] for key, v in self.all_results.items(): if not key: key = nokey_prefix + ":nokey:" + str(count) count += 1 success = getattr(v,'success', True) if success: ret_ok[key] = v else: ret_fail[key] = v return ret_ok, ret_fail
0.002494
def plot_samples( ax, sampler, modelidx=0, sed=True, n_samples=100, e_unit=u.eV, e_range=None, e_npoints=100, threads=None, label=None, last_step=False, ): """Plot a number of samples from the sampler chain. Parameters ---------- ax : `matplotlib.Axes` Axes to plot on. sampler : `emcee.EnsembleSampler` Sampler modelidx : int, optional Model index. Default is 0 sed : bool, optional Whether to plot SED or differential spectrum. If `None`, the units of the observed spectrum will be used. n_samples : int, optional Number of samples to plot. Default is 100. e_unit : :class:`~astropy.units.Unit` or str parseable to unit Unit in which to plot energy axis. e_range : list of `~astropy.units.Quantity`, length 2, optional Limits in energy for the computation of the model samples and ML model. Note that setting this parameter will mean that the samples for the model are recomputed and depending on the model speed might be quite slow. e_npoints : int, optional How many points to compute for the model samples and ML model if `e_range` is set. threads : int, optional How many parallel processing threads to use when computing the samples. Defaults to the number of available cores. last_step : bool, optional Whether to only use the positions in the final step of the run (True, default) or the whole chain (False). """ modelx, model = _read_or_calc_samples( sampler, modelidx, last_step=last_step, e_range=e_range, e_npoints=e_npoints, threads=threads, ) # pick first model sample for units f_unit, sedf = sed_conversion(modelx, model[0].unit, sed) sample_alpha = min(5.0 / n_samples, 0.5) for my in model[np.random.randint(len(model), size=n_samples)]: ax.loglog( modelx.to(e_unit).value, (my * sedf).to(f_unit).value, color=(0.1,) * 3, alpha=sample_alpha, lw=1.0, ) _plot_MLmodel(ax, sampler, modelidx, e_range, e_npoints, e_unit, sed) if label is not None: ax.set_ylabel( "{0} [{1}]".format(label, f_unit.to_string("latex_inline")) )
0.000423
def update_subscription(netid, action, subscription_code, data_field=None): """ Post a subscription action for the given netid and subscription_code """ url = '{0}/subscription.json'.format(url_version()) action_list = [] if isinstance(subscription_code, list): for code in subscription_code: action_list.append(_set_action( netid, action, code, data_field)) else: action_list.append(_set_action( netid, action, subscription_code, data_field)) body = {'actionList': action_list} response = post_resource(url, json.dumps(body)) return _json_to_subscription_post_response(response)
0.001477
def argparse_funckw(func, defaults={}, **kwargs): """ allows kwargs to be specified on the commandline from testfuncs Args: func (function): Kwargs: lbl, verbose, only_specified, force_keys, type_hint, alias_dict Returns: dict: funckw CommandLine: python -m utool.util_inspect argparse_funckw SeeAlso: exec_funckw recursive_parse_kwargs parse_kwarg_keys Example: >>> # ENABLE_DOCTEST >>> from utool.util_inspect import * # NOQA >>> import utool as ut >>> func = get_instance_attrnames >>> funckw = argparse_funckw(func) >>> result = ('funckw = %s' % (ut.repr3(funckw),)) >>> print(result) funckw = { 'default': True, 'with_methods': True, 'with_properties': True, } """ import utool as ut funckw_ = ut.get_funckw(func, recursive=True) funckw_.update(defaults) funckw = ut.argparse_dict(funckw_, **kwargs) return funckw
0.000957
def breadcrumb(self): """List of ``(url, title)`` tuples defining the current breadcrumb path. """ if self.path == '.': return [] path = self.path breadcrumb = [((self.url_ext or '.'), self.title)] while True: path = os.path.normpath(os.path.join(path, '..')) if path == '.': break url = (url_from_path(os.path.relpath(path, self.path)) + '/' + self.url_ext) breadcrumb.append((url, self.gallery.albums[path].title)) breadcrumb.reverse() return breadcrumb
0.003195
def broadcast_tx(cls, tx_hex): # pragma: no cover """Broadcasts a transaction to the blockchain. :param tx_hex: A signed transaction in hex form. :type tx_hex: ``str`` :raises ConnectionError: If all API services fail. """ success = None for api_call in cls.BROADCAST_TX_MAIN: try: success = api_call(tx_hex) if not success: continue return except cls.IGNORED_ERRORS: pass if success is False: raise ConnectionError('Transaction broadcast failed, or ' 'Unspents were already used.') raise ConnectionError('All APIs are unreachable.')
0.002618
def plot_spectra(self, nmax, convention='power', unit='per_l', base=10., maxcolumns=3, xscale='lin', yscale='log', grid=True, xlim=(None, None), ylim=(None, None), show=True, title=True, axes_labelsize=None, tick_labelsize=None, title_labelsize=None, ax=None, fname=None): """ Plot the spectra of the best-concentrated Slepian functions. Usage ----- x.plot_spectra(nmax, [convention, unit, base, maxcolumns, xscale, yscale, grid, xlim, ylim, show, title, axes_labelsize, tick_labelsize, title_labelsize, ax, fname]) Parameters ---------- nmax : int The number of Slepian functions to plot. convention : str, optional, default = 'power' The type of spectra to plot: 'power' for power spectrum, and 'energy' for energy spectrum. unit : str, optional, default = 'per_l' If 'per_l', return the total contribution to the spectrum for each spherical harmonic degree l. If 'per_lm', return the average contribution to the spectrum for each coefficient at spherical harmonic degree l. If 'per_dlogl', return the spectrum per log interval dlog_a(l). base : float, optional, default = 10. The logarithm base when calculating the 'per_dlogl' spectrum. maxcolumns : int, optional, default = 3 The maximum number of columns to use when plotting the spectra of multiple localization windows. xscale : str, optional, default = 'lin' Scale of the x axis: 'lin' for linear or 'log' for logarithmic. yscale : str, optional, default = 'log' Scale of the y axis: 'lin' for linear or 'log' for logarithmic. grid : bool, optional, default = True If True, plot grid lines. xlim : tuple, optional, default = (None, None) The upper and lower limits used for the x axis. ylim : tuple, optional, default = (None, None) The lower and upper limits used for the y axis. show : bool, optional, default = True If True, plot the image to the screen. title : bool, optional, default = True If True, plot a legend on top of each subplot providing the taper number and 1 minus the concentration factor. axes_labelsize : int, optional, default = None The font size for the x and y axes labels. tick_labelsize : int, optional, default = None The font size for the x and y tick labels. title_labelsize : int, optional, default = None The font size for the subplot titles. ax : matplotlib axes object, optional, default = None An array of matplotlib axes objects where the plots will appear. fname : str, optional, default = None If present, save the image to the file. """ if axes_labelsize is None: axes_labelsize = _mpl.rcParams['axes.labelsize'] if tick_labelsize is None: tick_labelsize = _mpl.rcParams['xtick.labelsize'] if title_labelsize is None: title_labelsize = _mpl.rcParams['axes.titlesize'] degrees = self.degrees() spectrum = self.spectra(nmax=nmax, convention=convention, unit=unit, base=base) ncolumns = min(maxcolumns, nmax) nrows = _np.ceil(nmax / ncolumns).astype(int) figsize = (_mpl.rcParams['figure.figsize'][0], _mpl.rcParams['figure.figsize'][0] * 0.7 * nrows / ncolumns + 0.41) if ax is None: fig, axes = _plt.subplots(nrows, ncolumns, figsize=figsize, sharex='all', sharey='all') else: if hasattr(ax, 'flatten') and ax.size < nmax: raise ValueError('ax.size must be greater or equal to nmax. ' + 'nmax = {:s}'.format(repr(nmax)) + ' and ax.size = {:s}.'.format(repr(ax.size))) axes = ax if ax is None: if nrows > 1: for axtemp in axes[:-1, :].flatten(): for xlabel_i in axtemp.get_xticklabels(): xlabel_i.set_visible(False) axtemp.set_xlabel('', visible=False) for axtemp in axes[:, 1:].flatten(): for ylabel_i in axtemp.get_yticklabels(): ylabel_i.set_visible(False) axtemp.set_ylabel('', visible=False) elif nmax > 1: for axtemp in axes[1:].flatten(): for ylabel_i in axtemp.get_yticklabels(): ylabel_i.set_visible(False) axtemp.set_ylabel('', visible=False) if ylim == (None, None): upper = spectrum[:, :min(self.nmax, nmax)].max() lower = upper * 1.e-6 ylim = (lower, 5 * upper) if xlim == (None, None): if xscale == 'lin': xlim = (degrees[0], degrees[-1]) for alpha in range(min(self.nmax, nmax)): evalue = self.eigenvalues[alpha] if min(self.nmax, nmax) == 1 and ax is None: axtemp = axes elif hasattr(axes, 'flatten'): axtemp = axes.flatten()[alpha] else: axtemp = axes[alpha] if (convention == 'power'): axtemp.set_ylabel('Power', fontsize=axes_labelsize) else: axtemp.set_ylabel('Energy', fontsize=axes_labelsize) if yscale == 'log': axtemp.set_yscale('log', basey=base) if xscale == 'log': axtemp.set_xscale('log', basex=base) axtemp.plot(degrees[1:], spectrum[1:, alpha], label='#{:d} [loss={:2.2g}]' .format(alpha, 1-evalue)) else: axtemp.plot(degrees[0:], spectrum[0:, alpha], label='#{:d} [loss={:2.2g}]' .format(alpha, 1-evalue)) axtemp.set_xlabel('Spherical harmonic degree', fontsize=axes_labelsize) axtemp.set(xlim=xlim, ylim=ylim) axtemp.minorticks_on() axtemp.grid(grid, which='major') axtemp.tick_params(labelsize=tick_labelsize) if title is True: axtemp.set_title('#{:d} [loss={:2.2g}]' .format(alpha, 1-evalue), fontsize=title_labelsize) if ax is None: fig.tight_layout(pad=0.5) if show: fig.show() if fname is not None: fig.savefig(fname) return fig, axes
0.000848
def keyPress(self, key): """ Send a key press to the server key: string: either [a-z] or a from KEYMAP """ log.debug('keyPress %s', key) self.keyDown(key) self.keyUp(key) return self
0.008197
def check_recursion_depth(self): """Check recursion depth, raise AsyncRecursionError if too deep.""" from furious.async import MAX_DEPTH recursion_options = self._options.get('_recursion', {}) max_depth = recursion_options.get('max', MAX_DEPTH) # Check if recursion check has been disabled, then check depth. if (max_depth != DISABLE_RECURSION_CHECK and self.recursion_depth > max_depth): raise errors.AsyncRecursionError('Max recursion depth reached.')
0.00565
def _add_item(self, dim_vals, data, sort=True, update=True): """ Adds item to the data, applying dimension types and ensuring key conforms to Dimension type and values. """ sort = sort and self.sort if not isinstance(dim_vals, tuple): dim_vals = (dim_vals,) self._item_check(dim_vals, data) # Apply dimension types dim_types = zip([kd.type for kd in self.kdims], dim_vals) dim_vals = tuple(v if None in [t, v] else t(v) for t, v in dim_types) valid_vals = zip(self.kdims, dim_vals) for dim, val in valid_vals: if dim.values and val is not None and val not in dim.values: raise KeyError('%s dimension value %s not in' ' specified dimension values.' % (dim, repr(val))) # Updates nested data structures rather than simply overriding them. if (update and (dim_vals in self.data) and isinstance(self.data[dim_vals], (MultiDimensionalMapping, OrderedDict))): self.data[dim_vals].update(data) else: self.data[dim_vals] = data if sort: self._resort()
0.004184
def convert2wkt(self, set3D=True): """ export the geometry of each feature as a wkt string Parameters ---------- set3D: bool keep the third (height) dimension? Returns ------- """ features = self.getfeatures() for feature in features: try: feature.geometry().Set3D(set3D) except AttributeError: dim = 3 if set3D else 2 feature.geometry().SetCoordinateDimension(dim) return [feature.geometry().ExportToWkt() for feature in features]
0.004878
def execute(self, statement, params = ()): """ execute sql statement. optionally you can give multiple statements to save on cursor creation and closure """ con = self.__con or self.connection cur = self.__cur or con.cursor() if isinstance(statement, list) == False: # we expect to receive instructions in list statement = [statement] params = [params] for state, param in zip(statement, params): logger.debug("%s %s" % (state, param)) cur.execute(state, param) if not self.__con: con.commit() cur.close() self.register_modification()
0.010101
def login(self, username, password): """ Log into the WS interface and get the authentication token if login is: - accepted, returns True - refused, returns False In case of any error, raises a BackendException :param username: login name :type username: str :param password: password :type password: str :param generate: Can have these values: enabled | force | disabled :type generate: str :return: return True if authentication is successfull, otherwise False :rtype: bool """ logger.debug("login for: %s", username) # Configured as not authenticated WS if not username and not password: self.set_token(token=None) return False if not username or not password: logger.error("Username or password cannot be None!") self.set_token(token=None) return False endpoint = 'login' json = {'username': username, 'password': password} response = self.get_response(method='POST', endpoint=endpoint, json=json) if response.status_code == 401: logger.error("Access denied to %s", self.url_endpoint_root) self.set_token(token=None) return False resp = self.decode(response=response) if 'token' in resp: self.set_token(token=resp['token']) return True return False
0.002015
def compute_diffusion_maps(lapl_type, diffusion_map, lambdas, diffusion_time): """ Credit to Satrajit Ghosh (http://satra.cogitatum.org/) for final steps """ # Check that diffusion maps is using the correct laplacian, warn otherwise if lapl_type not in ['geometric', 'renormalized']: warnings.warn("for correct diffusion maps embedding use laplacian type 'geometric' or 'renormalized'.") # Step 5 of diffusion maps: vectors = diffusion_map.copy() psi = vectors/vectors[:,[0]] diffusion_times = diffusion_time if diffusion_time == 0: lambdas = np.abs(lambdas) diffusion_times = np.exp(1. - np.log(1 - lambdas[1:])/np.log(lambdas[1:])) lambdas = lambdas / (1 - lambdas) else: lambdas = np.abs(lambdas) lambdas = lambdas ** float(diffusion_time) diffusion_map = psi * lambdas return diffusion_map
0.006772
def framework_version_from_tag(image_tag): """Extract the framework version from the image tag. Args: image_tag (str): Image tag, which should take the form '<framework_version>-<device>-<py_version>' Returns: str: The framework version. """ tag_pattern = re.compile('^(.*)-(cpu|gpu)-(py2|py3)$') tag_match = tag_pattern.match(image_tag) return None if tag_match is None else tag_match.group(1)
0.004545
def cmd_delete(args): """Deletes a node""" major = args.get(0) minor = args.get(1) if major is not None: if major in penStore.data: if minor is None: if len(penStore.data[major]) > 0: if raw_input("are you sure (y/n)? ") not in ['y', 'Y', 'yes', 'Yes']: return ExitStatus.ABORT penStore.deleteList(major) puts("list deleted") elif minor in penStore.data[major]: penStore.deleteNote(major, minor) puts("note deleted") else: puts("no such note, sorry! (%s)" % minor) else: puts("no such list, sorry! (%s)" % major) else: print """ - pen: delete help ------------------------------------------------------------ pen delete <list> deletes list and all of its notes pen delete <list> <note> deletes note """
0.003125
def save_form(self, request, form, change): """ Given a ModelForm return an unsaved instance. ``change`` is True if the object is being changed, and False if it's being added. """ r = form.save(commit=False) parent_id = request.REQUEST.get('parent_id', None) if parent_id: parent = Folder.objects.get(id=parent_id) r.parent = parent return r
0.004662
def upload(self, params={}): """start uploading the file until upload is complete or error. This is the main method to used, If you do not care about state of process. Args: params: a dict object describe video info, eg title, tags, description, category. all video params see the doc of prepare_video_params. Returns: return video_id if upload successfully """ if self.upload_token is not None: # resume upload status = self.check() if status['status'] != 4: return self.commit() else: self.new_slice() while self.slice_task_id != 0: self.upload_slice() return self.commit() else: # new upload self.create(self.prepare_video_params(**params)) self.create_file() self.new_slice() while self.slice_task_id != 0: self.upload_slice() return self.commit()
0.001797
def update(gandi, fqdn, name, type, value, ttl, file): """Update record entry for a domain. --file option will ignore other parameters and overwrite current zone content with provided file content. """ domains = gandi.dns.list() domains = [domain['fqdn'] for domain in domains] if fqdn not in domains: gandi.echo('Sorry domain %s does not exist' % fqdn) gandi.echo('Please use one of the following: %s' % ', '.join(domains)) return content = '' if file: content = file.read() elif not sys.stdin.isatty(): content = click.get_text_stream('stdin').read() content = content.strip() if not content and not name and not type and not value: click.echo('Cannot find parameters for zone content to update.') return if name and type and not value: click.echo('You must provide one or more value parameter.') return result = gandi.dns.update_record(fqdn, name, type, value, ttl, content) gandi.echo(result['message'])
0.000958
def create_conversation(self, body, recipients, attachment_ids=None, context_code=None, filter=None, filter_mode=None, group_conversation=None, media_comment_id=None, media_comment_type=None, mode=None, scope=None, subject=None, user_note=None): """ Create a conversation. Create a new conversation with one or more recipients. If there is already an existing private conversation with the given recipients, it will be reused. """ path = {} data = {} params = {} # REQUIRED - recipients """An array of recipient ids. These may be user ids or course/group ids prefixed with "course_" or "group_" respectively, e.g. recipients[]=1&recipients[]=2&recipients[]=course_3""" data["recipients"] = recipients # OPTIONAL - subject """The subject of the conversation. This is ignored when reusing a conversation. Maximum length is 255 characters.""" if subject is not None: data["subject"] = subject # REQUIRED - body """The message to be sent""" data["body"] = body # OPTIONAL - group_conversation """Defaults to false. If true, this will be a group conversation (i.e. all recipients may see all messages and replies). If false, individual private conversations will be started with each recipient. Must be set false if the number of recipients is over the set maximum (default is 100).""" if group_conversation is not None: data["group_conversation"] = group_conversation # OPTIONAL - attachment_ids """An array of attachments ids. These must be files that have been previously uploaded to the sender's "conversation attachments" folder.""" if attachment_ids is not None: data["attachment_ids"] = attachment_ids # OPTIONAL - media_comment_id """Media comment id of an audio of video file to be associated with this message.""" if media_comment_id is not None: data["media_comment_id"] = media_comment_id # OPTIONAL - media_comment_type """Type of the associated media file""" if media_comment_type is not None: self._validate_enum(media_comment_type, ["audio", "video"]) data["media_comment_type"] = media_comment_type # OPTIONAL - user_note """Will add a faculty journal entry for each recipient as long as the user making the api call has permission, the recipient is a student and faculty journals are enabled in the account.""" if user_note is not None: data["user_note"] = user_note # OPTIONAL - mode """Determines whether the messages will be created/sent synchronously or asynchronously. Defaults to sync, and this option is ignored if this is a group conversation or there is just one recipient (i.e. it must be a bulk private message). When sent async, the response will be an empty array (batch status can be queried via the {api:ConversationsController#batches batches API})""" if mode is not None: self._validate_enum(mode, ["sync", "async"]) data["mode"] = mode # OPTIONAL - scope """Used when generating "visible" in the API response. See the explanation under the {api:ConversationsController#index index API action}""" if scope is not None: self._validate_enum(scope, ["unread", "starred", "archived"]) data["scope"] = scope # OPTIONAL - filter """Used when generating "visible" in the API response. See the explanation under the {api:ConversationsController#index index API action}""" if filter is not None: data["filter"] = filter # OPTIONAL - filter_mode """Used when generating "visible" in the API response. See the explanation under the {api:ConversationsController#index index API action}""" if filter_mode is not None: self._validate_enum(filter_mode, ["and", "or", "default or"]) data["filter_mode"] = filter_mode # OPTIONAL - context_code """The course or group that is the context for this conversation. Same format as courses or groups in the recipients argument.""" if context_code is not None: data["context_code"] = context_code self.logger.debug("POST /api/v1/conversations with query params: {params} and form data: {data}".format(params=params, data=data, **path)) return self.generic_request("POST", "/api/v1/conversations".format(**path), data=data, params=params, no_data=True)
0.00413
def contians_attribute(self, attribute): """ Returns how many cards in the deck have the specified attribute. This method requires a library to be stored in the deck instance and will return `None` if there is no library. """ if self.library is None: return 0 load = self.library.load_card matches = 0 for code in self.cards: card = load(code) if card.has_attribute(attribute): matches += 1 return matches
0.003711
def to_python(self, data): """ Adds support for txtinfo format """ try: return super(OlsrParser, self).to_python(data) except ConversionException as e: return self._txtinfo_to_jsoninfo(e.data)
0.007813
def _fix_unmapped(mapped_file, unmapped_file, data): """ The unmapped.bam file up until at least Tophat 2.1.1 is broken in various ways, see https://github.com/cbrueffer/tophat-recondition for details. Run TopHat-Recondition to fix these issues. """ out_file = os.path.splitext(unmapped_file)[0] + "_fixup.bam" if file_exists(out_file): return out_file assert os.path.dirname(mapped_file) == os.path.dirname(unmapped_file) cmd = config_utils.get_program("tophat-recondition", data) cmd += " -q" tophat_out_dir = os.path.dirname(mapped_file) tophat_logfile = os.path.join(tophat_out_dir, 'tophat-recondition.log') with file_transaction(data, tophat_logfile) as tx_logfile: cmd += ' --logfile %s' % tx_logfile cmd += " -m %s" % mapped_file cmd += " -u %s" % unmapped_file cmd += " %s" % tophat_out_dir do.run(cmd, "Fixing unmapped reads with Tophat-Recondition.", None) return out_file
0.001009
def parse_plotFingerprint(self): """Find plotFingerprint output. Both --outQualityMetrics and --outRawCounts""" self.deeptools_plotFingerprintOutQualityMetrics = dict() for f in self.find_log_files('deeptools/plotFingerprintOutQualityMetrics'): parsed_data = self.parsePlotFingerprintOutQualityMetrics(f) for k, v in parsed_data.items(): if k in self.deeptools_plotFingerprintOutQualityMetrics: log.warning("Replacing duplicate sample {}.".format(k)) # Values are fractions - convert to percentages for consistency with other MultiQC output self.deeptools_plotFingerprintOutQualityMetrics[k] = { i:float(j)*100.0 for i,j in v.items() } if len(parsed_data) > 0: self.add_data_source(f, section='plotFingerprint') self.deeptools_plotFingerprintOutRawCounts= dict() for f in self.find_log_files('deeptools/plotFingerprintOutRawCounts'): parsed_data = self.parsePlotFingerprintOutRawCounts(f) for k, v in parsed_data.items(): if k in self.deeptools_plotFingerprintOutRawCounts: log.warning("Replacing duplicate sample {}.".format(k)) self.deeptools_plotFingerprintOutRawCounts[k] = v if len(parsed_data) > 0: self.add_data_source(f, section='plotFingerprint') if len(self.deeptools_plotFingerprintOutRawCounts) > 0: self.add_section(name="Fingerprint plot", anchor="deeptools_fingerprint", description="Signal fingerprint according to plotFingerprint", plot=linegraph.plot( self.deeptools_plotFingerprintOutRawCounts, { 'id': 'deeptools_fingerprint_plot', 'title': 'deepTools: Fingerprint plot', 'xmin': 0.0, 'xmax': 1.0, 'ymin': 0.0, 'ymax': 1.0, 'xlab': 'rank', 'ylab': 'Fraction w.r.t. bin with highest coverage' } )) if len(self.deeptools_plotFingerprintOutQualityMetrics) > 0: self.add_section(name="Fingerprint quality metrics", anchor="plotFingerprint", description="Various quality metrics returned by plotFingerprint", plot=linegraph.plot( self.deeptools_plotFingerprintOutQualityMetrics, { 'id': 'plotFingerprint_quality_metrics', 'title': 'deepTools: Fingerprint quality metrics', 'stacking': None, 'ymin': 0, 'ymax': 100, 'yLabelFormat': '{value}%', 'ylab': 'Percentage of fragments', 'categories': True, 'tt_label': '<strong>{point.x}</strong>: {point.y:.2f}%' } )) return len(self.deeptools_plotFingerprintOutQualityMetrics), len(self.deeptools_plotFingerprintOutRawCounts)
0.004949
def rvs(self, size=1): """ Rejection samples the parameter space. """ # create output FieldArray out = record.FieldArray(size, dtype=[(arg, float) for arg in self.variable_args]) # loop until enough samples accepted n = 0 while n < size: # draw samples samples = {} for dist in self.distributions: draw = dist.rvs(1) for param in dist.params: samples[param] = draw[param][0] vals = numpy.array([samples[arg] for arg in self.variable_args]) # determine if all parameter values are in prior space # if they are then add to output if self(**dict(zip(self.variable_args, vals))) > -numpy.inf: out[n] = vals n += 1 return out
0.003359
def update_qa(quietly=False): """ Merge code from develop to qa """ switch('dev') switch('qa') local('git merge --no-edit develop') local('git push') if not quietly: print(red('PLEASE DEPLOY CODE: fab deploy:all'))
0.003876
def issubset(self, other): """Test whether the resources available in this machine description are a (non-strict) subset of those available in another machine. .. note:: This test being False does not imply that the this machine is a superset of the other machine; machines may have disjoint resources. """ return (set(self).issubset(set(other)) and set(self.iter_links()).issubset(set(other.iter_links())) and all(set(self[chip]).issubset(other[chip]) and all(self[chip][r] <= other[chip][r] for r in self[chip]) for chip in self))
0.002833
def reload(self): ''' Clear plugin manager state and reload plugins. This method will make use of :meth:`clear` and :meth:`load_plugin`, so all internal state will be cleared, and all plugins defined in :data:`self.app.config['plugin_modules']` will be loaded. ''' self.clear() for plugin in self.app.config.get('plugin_modules', ()): self.load_plugin(plugin)
0.004587
def SvelteComponent(name, path): """Display svelte components in iPython. Args: name: name of svelte component (must match component filename when built) path: path to compile svelte .js file or source svelte .html file. (If html file, we try to call svelte and build the file.) Returns: A function mapping data to a rendered svelte component in ipython. """ if path[-3:] == ".js": js_path = path elif path[-5:] == ".html": print("Trying to build svelte component from html...") js_path = build_svelte(path) js_content = read(js_path, mode='r') def inner(data): id_str = js_id(name) html = _template \ .replace("$js", js_content) \ .replace("$name", name) \ .replace("$data", json.dumps(data)) \ .replace("$id", id_str) _display_html(html) return inner
0.009456
def geo_length(arg, use_spheroid=None): """ Compute length of a geo spatial data Parameters ---------- arg : geometry or geography use_spheroid : default None Returns ------- length : double scalar """ op = ops.GeoLength(arg, use_spheroid) return op.to_expr()
0.003236
def _wordAfterCursor(self): """Get word, which is located before cursor """ cursor = self._qpart.textCursor() textAfterCursor = cursor.block().text()[cursor.positionInBlock():] match = _wordAtStartRegExp.search(textAfterCursor) if match: return match.group(0) else: return ''
0.005634
def _handle_hr(self): """Handle a wiki-style horizontal rule (``----``) in the string.""" length = 4 self._head += 3 while self._read(1) == "-": length += 1 self._head += 1 self._emit(tokens.TagOpenOpen(wiki_markup="-" * length)) self._emit_text("hr") self._emit(tokens.TagCloseSelfclose())
0.005405
def selectOptimalChunk(self, peer): """ select an optimal chunk to send to a peer. @return: int(chunkNumber), str(chunkData) if there is data to be sent, otherwise None, None """ # stuff I have have = sets.Set(self.mask.positions(1)) # stuff that this peer wants want = sets.Set(self.peers[peer].mask.positions(0)) exchangeable = have.intersection(want) finalSet = dict.fromkeys(exchangeable, 0) # taking a page from bittorrent, rarest-first for chunkNumber in exchangeable: for otherPeer in self.peers.itervalues(): finalSet[chunkNumber] += not otherPeer.mask[chunkNumber] rarityList = [(rarity, random.random(), chunkNumber) for (chunkNumber, rarity) in finalSet.iteritems()] if not rarityList: return None, None rarityList.sort() chunkNumber = rarityList[-1][-1] # sorted in ascending order of rarity # sanity check assert self.mask[chunkNumber], "I wanted to send a chunk I didn't have" self.file.seek(chunkNumber * CHUNK_SIZE) chunkData = self.file.read(CHUNK_SIZE) self.sha1sums[chunkNumber] = sha.new(chunkData).digest() return chunkNumber, chunkData
0.002256