| text
				 stringlengths 78 104k | score
				 float64 0 0.18 | 
|---|---|
| 
	def make_lines_texture(num_lines=10, resolution=50):
    """Makes a texture consisting of a given number of horizontal lines.
    Args:
        num_lines (int): the number of lines to draw
        resolution (int): the number of midpoints on each line
    Returns:
        A texture.
    """
    x, y = np.meshgrid(
        np.hstack([np.linspace(0, 1, resolution), np.nan]),
        np.linspace(0, 1, num_lines),
    )
    
    y[np.isnan(x)] = np.nan
    return x.flatten(), y.flatten() | 0.004082 | 
| 
	def tokens(self):
        """
        `generator` : the tokens in this segment
        """
        for subsegment_or_token in self:
            if isinstance(subsegment_or_token, Segment):
                subsegment = subsegment_or_token
                for token in subsegment.tokens():
                    yield token
            else:
                token = subsegment_or_token
                yield token | 0.00489 | 
| 
	def _det_inference(self):
        """
        Internal method for determining the inference method
        """
        # 2 random effects with complete design -> gp2KronSum
        # TODO: add check for low-rankness, use GP3KronSumLR and GP2KronSumLR when possible
        if (self.n_randEffs==2) and (~sp.isnan(self.Y).any()):
            rv = 'GP2KronSum'
        else:
            rv = 'GP'
        return rv | 0.009732 | 
| 
	def get_host(self, hostname):
        """ Returns a Host dict with config options, or None if none exists"""
        if hostname in self.get_hosts():
            return self.load_ssh_conf().lookup(hostname)
        logger.warn('Tried to find host with name {0}, but host not found'.format(hostname))
        return None | 0.009404 | 
| 
	def _ResolutionOrder(self, variables_to_solve):
        """
        return a list of lists of tuples (block,output,ndof) to be solved
        """
#    Gp=nx.DiGraph()
#
#    for i in range(nvar):
#        Gp.add_node('v'+str(i),bipartite=0)
#
#    for i in range(neq):
#        Gp.add_node('e'+str(i),bipartite=1)
#        for j in range(nvar):
#            if Mo[i,j]==1:
#                Gp.add_edge('e'+str(i),'v'+str(j))
        Gp = nx.DiGraph()
        for variable in self.variables:
            Gp.add_node(variable, bipartite=0)
        for block in self.blocks:
            for iov, output_variable in enumerate(block.outputs):
                Gp.add_node((block, iov), bipartite=1)
                Gp.add_edge((block, iov), output_variable)
                Gp.add_edge(output_variable, (block, iov))
                for input_variable in block.inputs:
                    if not isinstance(input_variable, Signal):
                        Gp.add_edge(input_variable, (block, iov))
    #    for n1,n2 in M.items():
    #        Gp.add_edge(n1,n2)
        sinks = []
        sources = []
        for node in Gp.nodes():
            if Gp.out_degree(node) == 0:
                sinks.append(node)
            elif Gp.in_degree(node) == 0:
                sources.append(node)
        G2 = sources[:]
        for node in sources:
            for node2 in nx.descendants(Gp, node):
                if node2 not in G2:
                    G2.append(node2)
        if G2 != []:
            print(G2)
            raise ModelError('Overconstrained variables')
        G3 = sinks[:]
        for node in sinks:
            for node2 in nx.ancestors(Gp, node):
                if node2 not in G3:
                    G3.append(node2)
        if G3 != []:
            raise ModelError('Underconstrained variables')
#        vars_resolvables=[]
#        for var in vars_resoudre:
#            if not 'v'+str(var) in G2+G3:
#                vars_resolvables.append(var)
#        G1=Gp.copy()
#        G1.remove_nodes_from(G2+G3)
#
#        M1=nx.bipartite.maximum_matching(G1)
#        G1p=nx.DiGraph()
#
#        G1p.add_nodes_from(G1.nodes())
#        for e in G1.edges():
#            # equation vers variable
#            if e[0][0]=='v':
#                G1p.add_edge(e[0],e[1])
#            else:
#                G1p.add_edge(e[1],e[0])
#    #    print(len(M))
#        for n1,n2 in M1.items():
#    #        print(n1,n2)
#            if n1[0]=='e':
#                G1p.add_edge(n1,n2)
#            else:
#                G1p.add_edge(n2,n1)
        scc = list(nx.strongly_connected_components(Gp))
    #    pos=nx.spring_layout(G1p)
    #    plt.figure()
    #    nx.draw(G1p,pos)
    #    nx.draw_networkx_labels(G1p,pos)
#        print(scc)
        if scc != []:
            C = nx.condensation(Gp, scc)
            isc_vars = []
            for isc, sc in enumerate(scc):
                for var in variables_to_solve:
                    if var in sc:
                        isc_vars.append(isc)
                        break
            ancestors_vars = isc_vars[:]
            for isc_var in isc_vars:
                for ancetre in nx.ancestors(C, isc_var):
                    if ancetre not in ancestors_vars:
                        ancestors_vars.append(ancetre)
            order_sc = [sc for sc in nx.topological_sort(
                C) if sc in ancestors_vars]
            order_ev = []
            for isc in order_sc:
                # liste d'équations et de variables triées pour être séparées
                evs = list(scc[isc])
#                print(evs)
#                levs=int(len(evs)/2)
                eqs = []
                var = []
                for element in evs:
                    if type(element) == tuple:
                        eqs.append(element)
                    else:
                        var.append(element)
                order_ev.append((len(eqs), eqs, var))
            return order_ev
        raise ModelError | 0.000501 | 
| 
	def cross_dir(self, forcex86=False):
        r"""
        Cross platform specific subfolder.
        Parameters
        ----------
        forcex86: bool
            Use 'x86' as current architecture even if current acritecture is
            not x86.
        Return
        ------
        subfolder: str
            '' if target architecture is current architecture,
            '\current_target' if not.
        """
        current = 'x86' if forcex86 else self.current_cpu
        return (
            '' if self.target_cpu == current else
            self.target_dir().replace('\\', '\\%s_' % current)
        ) | 0.003241 | 
| 
	def get_interpolation_function(self, times, data):
        """ Initializes interpolation model
        :param times: Array of reference times in second relative to the first timestamp
        :type times: numpy.array
        :param data: One dimensional array of time series
        :type data: numpy.array
        :return: Initialized interpolation model class
        """
        return self.interpolation_object(times, data, axis=0, **self.interpolation_parameters) | 0.008529 | 
| 
	def enterContainer(self, entry, query):
        """
        Enters a new container for the given entry widget.
        
        :param      entry | <XOrbQueryEntryWidget> || None
        """
        self._compoundStack.append(entry)
        self.addContainer(query) | 0.011029 | 
| 
	def delete_rows(self, row, no_rows=1):
        """Deletes no_rows rows and marks grid as changed"""
        # Mark content as changed
        post_command_event(self.main_window, self.ContentChangedMsg)
        tab = self.grid.current_table
        try:
            self.code_array.delete(row, no_rows, axis=0, tab=tab)
        except ValueError, err:
            post_command_event(self.main_window, self.StatusBarMsg,
                               text=err.message) | 0.004237 | 
| 
	def avail_locations(call=None):
    '''
    List all available locations
    '''
    if call == 'action':
        raise SaltCloudSystemExit(
            'The avail_locations function must be called with '
            '-f or --function, or with the --list-locations option'
        )
    ret = {}
    conn = get_conn()
    response = conn.getCreateObjectOptions()
    #return response
    for datacenter in response['datacenters']:
        #return data center
        ret[datacenter['template']['datacenter']['name']] = {
            'name': datacenter['template']['datacenter']['name'],
        }
    return ret | 0.004902 | 
| 
	def mutualReceptions(self, idA, idB):
        """ Returns all pairs of dignities in mutual reception. """
        AB = self.receives(idA, idB)
        BA = self.receives(idB, idA)
        # Returns a product of both lists
        return [(a,b) for a in AB for b in BA] | 0.011194 | 
| 
	def decrease_exponent_to(self, new_exp):
        """Return an EncryptedNumber with same value but lower exponent.
        If we multiply the encoded value by :attr:`EncodedNumber.BASE` and
        decrement :attr:`exponent`, then the decoded value does not change.
        Thus we can almost arbitrarily ratchet down the exponent of an
        `EncryptedNumber` - we only run into trouble when the encoded
        integer overflows. There may not be a warning if this happens.
        When adding `EncryptedNumber` instances, their exponents must
        match.
        This method is also useful for hiding information about the
        precision of numbers - e.g. a protocol can fix the exponent of
        all transmitted `EncryptedNumber` instances to some lower bound(s).
        Args:
          new_exp (int): the desired exponent.
        Returns:
          EncryptedNumber: Instance with the same plaintext and desired
            exponent.
        Raises:
          ValueError: You tried to increase the exponent.
        """
        if new_exp > self.exponent:
            raise ValueError('New exponent %i should be more negative than '
                             'old exponent %i' % (new_exp, self.exponent))
        multiplied = self * pow(EncodedNumber.BASE, self.exponent - new_exp)
        multiplied.exponent = new_exp
        return multiplied | 0.001461 | 
| 
	def drag_and_release(self, start_x, start_y, end_x, end_y, pre_dl=None, post_dl=None):
        """Drag something from (start_x, start_y) to (end_x, endy)
        **中文文档**
        从start的坐标处鼠标左键单击拖曳到end的坐标处
        start, end是tuple. 格式是(x, y)
        """
        self.delay(pre_dl)
        self.m.press(start_x, start_y, 1)
        self.m.drag(end_x, end_y)
        self.m.release(end_x, end_y, 1)
        self.delay(post_dl) | 0.007042 | 
| 
	def create_signed_value(
        self, name: str, value: Union[str, bytes], version: int = None
    ) -> bytes:
        """Signs and timestamps a string so it cannot be forged.
        Normally used via set_secure_cookie, but provided as a separate
        method for non-cookie uses.  To decode a value not stored
        as a cookie use the optional value argument to get_secure_cookie.
        .. versionchanged:: 3.2.1
           Added the ``version`` argument.  Introduced cookie version 2
           and made it the default.
        """
        self.require_setting("cookie_secret", "secure cookies")
        secret = self.application.settings["cookie_secret"]
        key_version = None
        if isinstance(secret, dict):
            if self.application.settings.get("key_version") is None:
                raise Exception("key_version setting must be used for secret_key dicts")
            key_version = self.application.settings["key_version"]
        return create_signed_value(
            secret, name, value, version=version, key_version=key_version
        ) | 0.003707 | 
| 
	def run_query(self, body):
        """
        Run a query for entities.
        .. seealso::
            https://cloud.google.com/datastore/docs/reference/rest/v1/projects/runQuery
        :param body: the body of the query request.
        :type body: dict
        :return: the batch of query results.
        :rtype: dict
        """
        conn = self.get_conn()
        resp = (conn
                .projects()
                .runQuery(projectId=self.project_id, body=body)
                .execute(num_retries=self.num_retries))
        return resp['batch'] | 0.003515 | 
| 
	def open_hierarchy(self, path, relative_to_object_id, object_id, create_file_type=0):
        """
          CreateFileType
          0 - Creates no new object.
          1 - Creates a notebook with the specified name at the specified location.
          2 - Creates a section group with the specified name at the specified location.
          3 - Creates a section with the specified name at the specified location.
        """
        try:
            return(self.process.OpenHierarchy(path, relative_to_object_id, "", create_file_type))
        except Exception as e: 
            print(e)
            print("Could not Open Hierarchy") | 0.012559 | 
| 
	def toggle_pac(self):
        """Enable and disable PAC options."""
        if Pac is not None:
            pac_on = self.pac['pac_on'].get_value()
            self.pac['prep'].setEnabled(pac_on)
            self.pac['box_metric'].setEnabled(pac_on)
            self.pac['box_complex'].setEnabled(pac_on)
            self.pac['box_surro'].setEnabled(pac_on)
            self.pac['box_opts'].setEnabled(pac_on)
            if not pac_on:
                self.pac['prep'].set_value(False)
        if Pac is not None and pac_on:
            pac = self.pac
            hilb_on = pac['hilbert_on'].isChecked()
            wav_on = pac['wavelet_on'].isChecked()
            for button in pac['hilbert'].values():
                button[0].setEnabled(hilb_on)
                if button[1] is not None:
                    button[1].setEnabled(hilb_on)
            pac['wav_width'][0].setEnabled(wav_on)
            pac['wav_width'][1].setEnabled(wav_on)
            if pac['metric'].get_value() in [
                    'Kullback-Leibler Distance',
                    'Heights ratio']:
                pac['nbin'][0].setEnabled(True)
                pac['nbin'][1].setEnabled(True)
            else:
                pac['nbin'][0].setEnabled(False)
                pac['nbin'][1].setEnabled(False)
            if pac['metric'] == 'ndPac':
                for button in pac['surro'].values():
                    button[0].setEnabled(False)
                    if button[1] is not None:
                        button[1].setEnabled(False)
                pac['surro']['pval'][0].setEnabled(True)
            ndpac_on = pac['metric'].get_value() == 'ndPac'
            surro_on = logical_and(pac['surro_method'].get_value() != ''
                                       'No surrogates', not ndpac_on)
            norm_on = pac['surro_norm'].get_value() != 'No normalization'
            blocks_on = 'across time' in pac['surro_method'].get_value()
            pac['surro_method'].setEnabled(not ndpac_on)
            for button in pac['surro'].values():
                button[0].setEnabled(surro_on and norm_on)
                if button[1] is not None:
                    button[1].setEnabled(surro_on and norm_on)
            pac['surro']['nblocks'][0].setEnabled(blocks_on)
            pac['surro']['nblocks'][1].setEnabled(blocks_on)
            if ndpac_on:
                pac['surro_method'].set_value('No surrogates')
                pac['surro']['pval'][0].setEnabled(True) | 0.001209 | 
| 
	def _add_crud(self, model_data, object_type, results):
        """
        Creates a menu entry for given model data.
        Updates results in place.
        Args:
            model_data: Model data.
            object_type: Relation name.
            results: Results dict.
        """
        model = model_registry.get_model(model_data['name'])
        field_name = model_data.get('field')
        verbose_name = model_data.get('verbose_name', model.Meta.verbose_name_plural)
        category = model_data.get('category', settings.DEFAULT_OBJECT_CATEGORY_NAME)
        wf_dict = {"text": verbose_name,
                   "wf": model_data.get('wf', "crud"),
                   "model": model_data['name'],
                   "kategori": category}
        if field_name:
            wf_dict['param'] = field_name
        results[object_type].append(wf_dict)
        self._add_to_quick_menu(wf_dict['model'], wf_dict) | 0.004348 | 
| 
	def save_report(session):
    '''
    Saves the session to a temp file, and returns that path.
    Also prunes the number of reports to 10 so there aren't loads building up.
    '''
    # prune this folder to contain the last 10 sessions
    previous_reports = glob.glob(os.path.join(report_dir(), '*.pyireport'))
    previous_reports.sort(reverse=True)
    while len(previous_reports) > 10:
        report_file = previous_reports.pop()
        os.remove(report_file)
    identifier = time.strftime('%Y-%m-%dT%H-%M-%S', time.localtime(session.start_time))
    path = os.path.join(
        report_dir(),
        identifier + '.pyireport'
    )
    session.save(path)
    return path, identifier | 0.002878 | 
| 
	def eval_string(self, s):
        """
        Returns the tristate value of the expression 's', represented as 0, 1,
        and 2 for n, m, and y, respectively. Raises KconfigError if syntax
        errors are detected in 's'. Warns if undefined symbols are referenced.
        As an example, if FOO and BAR are tristate symbols at least one of
        which has the value y, then config.eval_string("y && (FOO || BAR)")
        returns 2 (y).
        To get the string value of non-bool/tristate symbols, use
        Symbol.str_value. eval_string() always returns a tristate value, and
        all non-bool/tristate symbols have the tristate value 0 (n).
        The expression parsing is consistent with how parsing works for
        conditional ('if ...') expressions in the configuration, and matches
        the C implementation. m is rewritten to 'm && MODULES', so
        eval_string("m") will return 0 (n) unless modules are enabled.
        """
        # The parser is optimized to be fast when parsing Kconfig files (where
        # an expression can never appear at the beginning of a line). We have
        # to monkey-patch things a bit here to reuse it.
        self._filename = None
        # Don't include the "if " from below to avoid giving confusing error
        # messages
        self._line = s
        self._tokens = self._tokenize("if " + s)
        self._tokens_i = 1  # Skip the 'if' token
        return expr_value(self._expect_expr_and_eol()) | 0.001353 | 
| 
	def validateNodeMsg(self, wrappedMsg):
        """
        Validate another node's message sent to this node.
        :param wrappedMsg: Tuple of message and the name of the node that sent
        the message
        :return: Tuple of message from node and name of the node
        """
        msg, frm = wrappedMsg
        if self.isNodeBlacklisted(frm):
            self.discard(str(msg)[:256], "received from blacklisted node {}".format(frm), logger.display)
            return None
        with self.metrics.measure_time(MetricsName.INT_VALIDATE_NODE_MSG_TIME):
            try:
                message = node_message_factory.get_instance(**msg)
            except (MissingNodeOp, InvalidNodeOp) as ex:
                raise ex
            except Exception as ex:
                raise InvalidNodeMsg(str(ex))
        try:
            self.verifySignature(message)
        except BaseExc as ex:
            raise SuspiciousNode(frm, ex, message) from ex
        logger.debug("{} received node message from {}: {}".format(self, frm, message), extra={"cli": False})
        return message, frm | 0.003643 | 
| 
	def _mark_lines(lines, sender):
    """Mark message lines with markers to distinguish signature lines.
    Markers:
    * e - empty line
    * s - line identified as signature
    * t - other i.e. ordinary text line
    >>> mark_message_lines(['Some text', '', 'Bob'], 'Bob')
    'tes'
    """
    global EXTRACTOR
    candidate = get_signature_candidate(lines)
    # at first consider everything to be text no signature
    markers = list('t' * len(lines))
    # mark lines starting from bottom up
    # mark only lines that belong to candidate
    # no need to mark all lines of the message
    for i, line in reversed(list(enumerate(candidate))):
        # markers correspond to lines not candidate
        # so we need to recalculate our index to be
        # relative to lines not candidate
        j = len(lines) - len(candidate) + i
        if not line.strip():
            markers[j] = 'e'
        elif is_signature_line(line, sender, EXTRACTOR):
            markers[j] = 's'
    return "".join(markers) | 0.000982 | 
| 
	def parse_hex_color(value):
    """
    Convert a CSS color in hexadecimal notation into its R, G, B components.
    :param value: A CSS color in hexadecimal notation (a string like '#000000').
    :return: A tuple with three integers (with values between 0 and 255)
             corresponding to the R, G and B components of the color.
    :raises: :exc:`~exceptions.ValueError` on values that can't be parsed.
    """
    if value.startswith('#'):
        value = value[1:]
    if len(value) == 3:
        return (
            int(value[0] * 2, 16),
            int(value[1] * 2, 16),
            int(value[2] * 2, 16),
        )
    elif len(value) == 6:
        return (
            int(value[0:2], 16),
            int(value[2:4], 16),
            int(value[4:6], 16),
        )
    else:
        raise ValueError() | 0.002436 | 
| 
	def get_paths_cfg(
    sys_file='pythran.cfg',
    platform_file='pythran-{}.cfg'.format(sys.platform),
    user_file='.pythranrc'
):
    """
    >>> os.environ['HOME'] = '/tmp/test'
    >>> get_paths_cfg()['user']
    '/tmp/test/.pythranrc'
    >>> os.environ['HOME'] = '/tmp/test'
    >>> os.environ['XDG_CONFIG_HOME'] = '/tmp/test2'
    >>> get_paths_cfg()['user']
    '/tmp/test2/.pythranrc'
    >>> os.environ['HOME'] = '/tmp/test'
    >>> os.environ['XDG_CONFIG_HOME'] = '/tmp/test2'
    >>> os.environ['PYTHRANRC'] = '/tmp/test3/pythranrc'
    >>> get_paths_cfg()['user']
    '/tmp/test3/pythranrc'
    """
    sys_config_dir = os.path.dirname(__file__)
    sys_config_path = os.path.join(sys_config_dir, sys_file)
    platform_config_path = os.path.join(sys_config_dir, platform_file)
    user_config_path = os.environ.get('PYTHRANRC', None)
    if not user_config_path:
        user_config_dir = os.environ.get('XDG_CONFIG_HOME', '~')
        user_config_path = os.path.expanduser(
            os.path.join(user_config_dir, user_file))
    return {"sys": sys_config_path, "platform": platform_config_path, "user": user_config_path} | 0.001751 | 
| 
	def set_value(self, option, value, index=None):
        """
        Sets the value on the given option.
        :param option: The name of the option as it appears in the config file
        :param value: The value that is being applied. If this section is indexed then the
        value must be a list (to be applied directly) or you must supply the index parameter,
        which will cause the value to be inserted into an existing list.
        :param index: If the attribute is indexed, we will use this index to insert
        the value you have supplied.
        :return: an instance of itself so that you can chain setting values together.
        """
        if self.is_indexed and index is None and not isinstance(value, list):
            raise TypeError("Value should be a list when not giving an index in an indexed header")
        self.values[option].set_value(value=value, index=index)
        return self | 0.0076 | 
| 
	def unwrap(self, value):
        """
        A helper method for unwrapping the loaderplugin fragment out of
        the provided value (typically a modname) and return it.
        Note that the filter chaining is very implementation specific to
        each and every loader plugin and their specific toolchain, so
        this default implementation is not going to attempt to consume
        everything in one go.
        Another note: if this is to be subclassed and if the return
        value does not actually remove the loaderplugin fragment, issues
        like default implmenetation of ``modname_source_to_target`` in
        this class to recurse forever.
        """
        globs = value.split('!', 1)
        if globs[0].split('?', 1)[0] == self.name:
            return globs[-1]
        else:
            return value | 0.002389 | 
| 
	def enterprise_customer_required(view):
    """
    Ensure the user making the API request is associated with an EnterpriseCustomer.
    This decorator attempts to find an EnterpriseCustomer associated with the requesting
    user and passes that EnterpriseCustomer to the view as a parameter. It will return a
    PermissionDenied error if an EnterpriseCustomer cannot be found.
    Usage::
        @enterprise_customer_required()
        def my_view(request, enterprise_customer):
            # Some functionality ...
        OR
        class MyView(View):
            ...
            @method_decorator(enterprise_customer_required)
            def get(self, request, enterprise_customer):
                # Some functionality ...
    """
    @wraps(view)
    def wrapper(request, *args, **kwargs):
        """
        Checks for an enterprise customer associated with the user, calls the view function
        if one exists, raises PermissionDenied if not.
        """
        user = request.user
        enterprise_customer = get_enterprise_customer_for_user(user)
        if enterprise_customer:
            args = args + (enterprise_customer,)
            return view(request, *args, **kwargs)
        else:
            raise PermissionDenied(
                'User {username} is not associated with an EnterpriseCustomer.'.format(
                    username=user.username
                )
            )
    return wrapper | 0.004181 | 
| 
	def connectDropzone( self, 
                         rect, 
                         slot, 
                         color = None,
                         style = None,
                         name  = '',
                         toolTip = '' ):
        """
        Connects the inputed dropzone to the given slot at the defined rect.
        
        :param      rect    | <QRectF>
                    slot    | <method> || <function>
        
        :return     <XNodeHotspot>
        """
        if not color:
            color = self.hotspotColor()
        if not style:
            style = self.hotspotStyle()
        
        hotspot = XNodeHotspot(rect, 
                               slot, 
                               name,
                               toolTip)
        
        hotspot.setColor(color)
        hotspot.setStyle(style)
        self._dropzones.append(hotspot)
        return hotspot | 0.030601 | 
| 
	def nnz_obs_names(self):
        """ wrapper around pyemu.Pst.nnz_obs_names for listing non-zero
        observation names
        Returns
        -------
        nnz_obs_names : list
            pyemu.Pst.nnz_obs_names
        
        """
        if self.__pst is not None:
            return self.pst.nnz_obs_names
        else:
            return self.jco.obs_names | 0.008108 | 
| 
	def hyphen(self):
        '''
        Returns ISBN number with segment hypenation
        Data obtained from https://www.isbn-international.org/
        https://www.isbn-international.org/export_rangemessage.xml
        @return: ISBN formated as ISBN13 with hyphens
        '''
        if not ISBN.hyphenRange:
            ISBN.hyphenRange = hyphen.ISBNRange()
        return ISBN.hyphenRange.hyphenformat(self._id) | 0.004808 | 
| 
	def genCaCert(self, name, signas=None, outp=None, save=True):
        '''
        Generates a CA keypair.
        Args:
            name (str): The name of the CA keypair.
            signas (str): The CA keypair to sign the new CA with.
            outp (synapse.lib.output.Output): The output buffer.
        Examples:
            Make a CA named "myca":
                mycakey, mycacert = cdir.genCaCert('myca')
        Returns:
            ((OpenSSL.crypto.PKey, OpenSSL.crypto.X509)): Tuple containing the private key and certificate objects.
        '''
        pkey, cert = self._genBasePkeyCert(name)
        ext0 = crypto.X509Extension(b'basicConstraints', False, b'CA:TRUE')
        cert.add_extensions([ext0])
        if signas is not None:
            self.signCertAs(cert, signas)
        else:
            self.selfSignCert(cert, pkey)
        if save:
            keypath = self._savePkeyTo(pkey, 'cas', '%s.key' % name)
            if outp is not None:
                outp.printf('key saved: %s' % (keypath,))
            crtpath = self._saveCertTo(cert, 'cas', '%s.crt' % name)
            if outp is not None:
                outp.printf('cert saved: %s' % (crtpath,))
        return pkey, cert | 0.002453 | 
| 
	def find_version(*paths):
    '''reads a file and returns the defined __version__ value'''
    version_match = re.search(r"^__version__ ?= ?['\"]([^'\"]*)['\"]",
                              read(*paths), re.M)
    if version_match:
        return version_match.group(1)
    raise RuntimeError("Unable to find version string.") | 0.003049 | 
| 
	def _uprint(dest, text):
    """
    Write text to dest, adding a newline character.
    Text may be a unicode string, or a byte string in UTF-8 encoding.
    It must not be None.
    If dest is None, the text is encoded to a codepage suitable for the current
    stdout and is written to stdout.
    Otherwise, dest must be a file path, and the text is encoded to a UTF-8
    Byte sequence and is appended to the file (opening and closing the file).
    """
    if isinstance(text, six.text_type):
        text = text + u'\n'
    elif isinstance(text, six.binary_type):
        text = text + b'\n'
    else:
        raise TypeError(
            "text must be a unicode or byte string, but is {0}".
            format(type(text)))
    if dest is None:
        if six.PY2:
            # On py2, stdout.write() requires byte strings
            if isinstance(text, six.text_type):
                text = text.encode(STDOUT_ENCODING, 'replace')
        else:
            # On py3, stdout.write() requires unicode strings
            if isinstance(text, six.binary_type):
                text = text.decode('utf-8')
        sys.stdout.write(text)
    elif isinstance(dest, (six.text_type, six.binary_type)):
        if isinstance(text, six.text_type):
            open_kwargs = dict(mode='a', encoding='utf-8')
        else:
            open_kwargs = dict(mode='ab')
        if six.PY2:
            # Open with codecs to be able to set text mode
            with codecs.open(dest, **open_kwargs) as f:
                f.write(text)
        else:
            with open(dest, **open_kwargs) as f:
                f.write(text)
    else:
        raise TypeError(
            "dest must be None or a string, but is {0}".
            format(type(text))) | 0.000572 | 
| 
	def msg2usernames(msg, **config):
    ''' Return cached fedmsg.meta.msg2usernames(...) '''
    if not _cache.is_configured:
        _cache.configure(**config['fmn.rules.cache'])
    key = "|".join(['usernames', msg['msg_id']]).encode('utf-8')
    creator = lambda: fedmsg.meta.msg2usernames(msg, **config)
    return _cache.get_or_create(key, creator) | 0.005666 | 
| 
	def boot(zone, single=False, altinit=None, smf_options=None):
    '''
    Boot (or activate) the specified zone.
    zone : string
        name or uuid of the zone
    single : boolean
        boots only to milestone svc:/milestone/single-user:default.
    altinit : string
        valid path to an alternative executable to be the primordial process.
    smf_options : string
        include two categories of options to control booting behavior of
        the service management facility: recovery options and messages options.
    CLI Example:
    .. code-block:: bash
        salt '*' zoneadm.boot clementine
        salt '*' zoneadm.boot maeve single=True
        salt '*' zoneadm.boot teddy single=True smf_options=verbose
    '''
    ret = {'status': True}
    ## build boot_options
    boot_options = ''
    if single:
        boot_options = '-s {0}'.format(boot_options)
    if altinit:  # note: we cannot validate the path, as this is local to the zonepath.
        boot_options = '-i {0} {1}'.format(altinit, boot_options)
    if smf_options:
        boot_options = '-m {0} {1}'.format(smf_options, boot_options)
    if boot_options != '':
        boot_options = ' -- {0}'.format(boot_options.strip())
    ## execute boot
    res = __salt__['cmd.run_all']('zoneadm {zone} boot{boot_opts}'.format(
        zone='-u {0}'.format(zone) if _is_uuid(zone) else '-z {0}'.format(zone),
        boot_opts=boot_options,
    ))
    ret['status'] = res['retcode'] == 0
    ret['message'] = res['stdout'] if ret['status'] else res['stderr']
    ret['message'] = ret['message'].replace('zoneadm: ', '')
    if ret['message'] == '':
        del ret['message']
    return ret | 0.002982 | 
| 
	def from_genes(cls, genes: List[ExpGene]):
        """Initialize instance using a list of `ExpGene` objects."""
        data = [g.to_dict() for g in genes]
        index = [d.pop('ensembl_id') for d in data]
        table = cls(data, index=index)
        return table | 0.007491 | 
| 
	def exists(self, path_or_index):
        """
        Checks if a path exists in the document. This is meant to be used
        for a corresponding :meth:`~couchbase.subdocument.exists` request.
        :param path_or_index: The path (or index) to check
        :return: `True` if the path exists, `False` if the path does not exist
        :raise: An exception if the server-side check failed for a reason other
            than the path not existing.
        """
        result = self._resolve(path_or_index)
        if not result[0]:
            return True
        elif E.SubdocPathNotFoundError._can_derive(result[0]):
            return False
        else:
            raise E.exc_from_rc(result[0]) | 0.002837 | 
| 
	def load_freesurfer_geometry(filename, to='mesh', warn=False):
    '''
    load_freesurfer_geometry(filename) yields the data stored at the freesurfer geometry file given
      by filename. The optional argument 'to' may be used to change the kind of data that is
      returned.
    The following are valid settings for the 'to' keyword argument:
      * 'mesh' (the default) yields a mesh object
      * 'tess' yields a tess object (discarding coordinates)
      * 'raw' yields a tuple of numpy arrays, identical to the read_geometry return value.
    '''
    if not warn:
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore',
                                    category=UserWarning,
                                    module='nibabel')
            (xs, fs, info) = fsio.read_geometry(filename, read_metadata=True)
    else:
        (xs, fs, info) = fsio.read_geometry(filename, read_metadata=True)
    # see if there's chirality data here...
    filename = os.path.split(filename)[1]
    filename = filename.lower()
    if   filename.startswith('lh'): info['chirality'] = 'lh.'
    elif filename.startswith('rh'): info['chirality'] = 'rh.'
    # parse it into something
    to = to.lower()
    if to in ['mesh', 'auto', 'automatic']:
        return geo.Mesh(fs, xs, meta_data=info)
    elif to in ['tess', 'tesselation']:
        return geo.Tesselation(fs, meta_data=info)
    elif to in ['coords', 'coordinates']:
        return xs
    elif to in ['triangles', 'faces']:
        return fs
    elif to in ['meta', 'meta_data']:
        return info
    elif to =='raw':
        return (xs, fs)
    else:
        raise ValueError('Could not understand \'to\' argument: %s' % to) | 0.004667 | 
| 
	def fix_logging_path(config, main_section):
    """
    Expand environment variables and user home (~) in the log.file and return
    as relative path.
    """
    log_file = config.get(main_section, 'log.file')
    if log_file:
        log_file = os.path.expanduser(os.path.expandvars(log_file))
        if os.path.isabs(log_file):
            log_file = os.path.relpath(log_file)
    return log_file | 0.002494 | 
| 
	def parse_message(
        self, body, timestamp=None, nonce=None, msg_signature=None
    ):
        """
        解析获取到的 Raw XML ,如果需要的话进行解密,返回 WeRoBot Message。
        :param body: 微信服务器发来的请求中的 Body。
        :return: WeRoBot Message
        """
        message_dict = parse_xml(body)
        if "Encrypt" in message_dict:
            xml = self.crypto.decrypt_message(
                timestamp=timestamp,
                nonce=nonce,
                msg_signature=msg_signature,
                encrypt_msg=message_dict["Encrypt"]
            )
            message_dict = parse_xml(xml)
        return process_message(message_dict) | 0.004747 | 
| 
	def _convert_value(val):
    """Handle multiple input type values.
    """
    def _is_number(x, op):
        try:
            op(x)
            return True
        except ValueError:
            return False
    if isinstance(val, (list, tuple)):
        return [_convert_value(x) for x in val]
    elif val is None:
        return val
    elif _is_number(val, int):
        return int(val)
    elif _is_number(val, float):
        return float(val)
    elif val.find(";;") >= 0:
        return [_convert_value(v) for v in val.split(";;")]
    elif val.startswith(("{", "[")):
        # Can get ugly JSON output from CWL with unicode and ' instead of "
        # This tries to fix it so parsed correctly by json loader
        return json.loads(val.replace("u'", "'").replace("'", '"'))
    elif val.lower() == "true":
        return True
    elif val.lower() == "false":
        return False
    else:
        return val | 0.001085 | 
| 
	def protected_resource_view(scopes=None):
    """
    View decorator. The client accesses protected resources by presenting the
    access token to the resource server.
    https://tools.ietf.org/html/rfc6749#section-7
    """
    if scopes is None:
        scopes = []
    def wrapper(view):
        def view_wrapper(request,  *args, **kwargs):
            access_token = extract_access_token(request)
            try:
                try:
                    kwargs['token'] = Token.objects.get(access_token=access_token)
                except Token.DoesNotExist:
                    logger.debug('[UserInfo] Token does not exist: %s', access_token)
                    raise BearerTokenError('invalid_token')
                if kwargs['token'].has_expired():
                    logger.debug('[UserInfo] Token has expired: %s', access_token)
                    raise BearerTokenError('invalid_token')
                if not set(scopes).issubset(set(kwargs['token'].scope)):
                    logger.debug('[UserInfo] Missing openid scope.')
                    raise BearerTokenError('insufficient_scope')
            except BearerTokenError as error:
                response = HttpResponse(status=error.status)
                response['WWW-Authenticate'] = 'error="{0}", error_description="{1}"'.format(
                    error.code, error.description)
                return response
            return view(request,  *args, **kwargs)
        return view_wrapper
    return wrapper | 0.003331 | 
| 
	def matches(self, node, value):
        """
        Returns whether the given node matches the filter rule with the given value.
        Args:
            node (Element): The node to filter.
            value (object): The desired value with which the node should be evaluated.
        Returns:
            bool: Whether the given node matches.
        """
        if self.skip(value):
            return True
        if not self._valid_value(value):
            msg = "Invalid value {value} passed to filter {name} - ".format(
                value=repr(value),
                name=self.name)
            if self.default is not None:
                warn(msg + "defaulting to {}".format(self.default))
                value = self.default
            else:
                warn(msg + "skipping")
                return True
        return self.func(node, value) | 0.004603 | 
| 
	def debugTreePrint(node,pfx="->"):
  """Purely a debugging aid: Ascii-art picture of a tree descended from node"""
  print pfx,node.item
  for c in node.children:
    debugTreePrint(c,"  "+pfx) | 0.036269 | 
| 
	def _Complete(self):
    """Marks the hunt as completed."""
    self._RemoveForemanRule()
    if "w" in self.hunt_obj.mode:
      self.hunt_obj.Set(self.hunt_obj.Schema.STATE("COMPLETED"))
      self.hunt_obj.Flush() | 0.013889 | 
| 
	def selectnotin(table, field, value, complement=False):
    """Select rows where the given field is not a member of the given value."""
    return select(table, field, lambda v: v not in value,
                  complement=complement) | 0.004255 | 
| 
	def git_checkout(branch_name, create=False):
    # type: (str, bool) -> None
    """ Checkout or create a given branch
    Args:
        branch_name (str):
            The name of the branch to checkout or create.
        create (bool):
            If set to **True** it will create the branch instead of checking it
            out.
    """
    log.info("Checking out <33>{}".format(branch_name))
    shell.run('git checkout {} {}'.format('-b' if create else '', branch_name)) | 0.002092 | 
| 
	def feed_index(service, opts):
    """Feed the named index in a specific manner."""
    indexname = opts.args[0]
    itype = opts.kwargs['ingest']
    # get index handle
    try:
        index = service.indexes[indexname]
    except KeyError:
        print("Index %s not found" % indexname)
        return
    if itype in ["stream", "submit"]:
        stream = index.attach()
    else:
        # create a tcp input if one doesn't exist
        input_host = opts.kwargs.get("inputhost", SPLUNK_HOST)
        input_port = int(opts.kwargs.get("inputport", SPLUNK_PORT))
        input_name = "tcp:%s" % (input_port)
        if input_name not in service.inputs.list():
            service.inputs.create("tcp", input_port, index=indexname)
        # connect to socket
        ingest = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        ingest.connect((input_host, input_port))
    count = 0
    lastevent = ""
    try:
        for i in range(0, 10):
            for j in range(0, 5000):
                lastevent = "%s: event bunch %d, number %d\n" % \
                             (datetime.datetime.now().isoformat(), i, j)
                if itype == "stream":
                    stream.write(lastevent + "\n")
                elif itype == "submit":
                    index.submit(lastevent + "\n")
                else:
                    ingest.send(lastevent + "\n")
                count = count + 1
            
            print("submitted %d events, sleeping 1 second" % count)
            time.sleep(1)
    except KeyboardInterrupt:
        print("^C detected, last event written:")
        print(lastevent) | 0.001839 | 
| 
	def _set_nameserver_cos(self, v, load=False):
    """
    Setter method for nameserver_cos, mapped from YANG variable /brocade_nameserver_rpc/get_nameserver_detail/output/show_nameserver/nameserver_cos (nameserver-cos-type)
    If this variable is read-only (config: false) in the
    source YANG file, then _set_nameserver_cos is considered as a private
    method. Backends looking to populate this variable should
    do so via calling thisObj._set_nameserver_cos() directly.
    YANG Description: Indicates the Fibre Channel Class of
Service supported by the device.
    """
    if hasattr(v, "_utype"):
      v = v._utype(v)
    try:
      t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'F|1|2|3|,', 'length': [u'0..8']}), is_leaf=True, yang_name="nameserver-cos", rest_name="nameserver-cos", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=False, extensions={u'tailf-common': {u'info': u'class of service'}}, namespace='urn:brocade.com:mgmt:brocade-nameserver', defining_module='brocade-nameserver', yang_type='nameserver-cos-type', is_config=True)
    except (TypeError, ValueError):
      raise ValueError({
          'error-string': """nameserver_cos must be of a type compatible with nameserver-cos-type""",
          'defined-type': "brocade-nameserver:nameserver-cos-type",
          'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'F|1|2|3|,', 'length': [u'0..8']}), is_leaf=True, yang_name="nameserver-cos", rest_name="nameserver-cos", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=False, extensions={u'tailf-common': {u'info': u'class of service'}}, namespace='urn:brocade.com:mgmt:brocade-nameserver', defining_module='brocade-nameserver', yang_type='nameserver-cos-type', is_config=True)""",
        })
    self.__nameserver_cos = t
    if hasattr(self, '_set'):
      self._set() | 0.005033 | 
| 
	def process_config_section(cls, config_section, storage):
        """Process the config section and store the extracted data in
        the param:`storage` (as outgoing param).
        """
        # -- CONCEPT:
        # if not storage:
        #     # -- INIT DATA: With default parts.
        #     storage.update(dict(_PERSONS={}))
        schema = cls.select_config_schema_for(config_section.name)
        if not schema:
            message = "No schema found for: section=%s"
            raise LookupError(message % config_section.name)
        # -- PARSE AND STORE CONFIG SECTION:
        section_storage = cls.select_storage_for(config_section.name, storage)
        section_data = parse_config_section(config_section, schema)
        section_storage.update(section_data) | 0.002564 | 
| 
	def zcat_make_temps(data, raws, num, tmpdir, optim, njobs, start):
    """ 
    Call bash command 'cat' and 'split' to split large files. The goal
    is to create N splitfiles where N is a multiple of the number of processors
    so that each processor can work on a file in parallel.
    """
    printstr = ' chunking large files  | {} | s1 |'
    ## split args
    tmpdir = os.path.realpath(tmpdir)
    LOGGER.info("zcat is using optim = %s", optim)
    ## read it, is it gzipped?
    catcmd = ["cat"]
    if raws[0].endswith(".gz"):
        catcmd = ["gunzip", "-c"]
    ## get reading commands for r1s, r2s
    cmd1 = catcmd + [raws[0]]
    cmd2 = catcmd + [raws[1]]
    ## second command splits and writes with name prefix
    cmd3 = ["split", "-a", "4", "-l", str(int(optim)), "-", 
            os.path.join(tmpdir, "chunk1_"+str(num)+"_")]
    cmd4 = ["split", "-a", "4", "-l", str(int(optim)), "-", 
            os.path.join(tmpdir, "chunk2_"+str(num)+"_")]
    ### run splitter
    proc1 = sps.Popen(cmd1, stderr=sps.STDOUT, stdout=sps.PIPE)
    proc3 = sps.Popen(cmd3, stderr=sps.STDOUT, stdout=sps.PIPE, stdin=proc1.stdout)
    ## wrap the actual call so we can kill it if anything goes awry
    while 1:
        try:
            if not isinstance(proc3.poll(), int):
                elapsed = datetime.timedelta(seconds=int(time.time()-start))
                done = len(glob.glob(os.path.join(tmpdir, 'chunk1_*')))
                progressbar(njobs, min(njobs, done), printstr.format(elapsed), spacer=data._spacer)
                time.sleep(0.1)
            else:
                res = proc3.communicate()[0]
                proc1.stdout.close()
                break
        except KeyboardInterrupt:
            proc1.kill()
            proc3.kill()
            raise KeyboardInterrupt()
    if proc3.returncode:
        raise IPyradWarningExit(" error in %s: %s", cmd3, res)
    ## grab output handles
    chunks1 = glob.glob(os.path.join(tmpdir, "chunk1_"+str(num)+"_*"))
    chunks1.sort()
    if "pair" in data.paramsdict["datatype"]:
        proc2 = sps.Popen(cmd2, stderr=sps.STDOUT, stdout=sps.PIPE)
        proc4 = sps.Popen(cmd4, stderr=sps.STDOUT, stdout=sps.PIPE, stdin=proc2.stdout)
        ## wrap the actual call so we can kill it if anything goes awry
        while 1:
            try:
                if not isinstance(proc4.poll(), int):
                    elapsed = datetime.timedelta(seconds=int(time.time()-start))
                    done = len(glob.glob(os.path.join(tmpdir, 'chunk1_*')))
                    progressbar(njobs, min(njobs, done), printstr.format(elapsed), data._spacer)
                    time.sleep(0.1)
                else:
                    res = proc4.communicate()[0]
                    proc2.stdout.close()
                    break
            except KeyboardInterrupt:
                proc2.kill()
                proc4.kill()
                raise KeyboardInterrupt()
        if proc4.returncode:
            raise IPyradWarningExit(" error in %s: %s", cmd4, res)
        ## grab output handles
        chunks2 = glob.glob(os.path.join(tmpdir, "chunk2_"+str(num)+"_*"))
        chunks2.sort()
    
    else:
        chunks2 = [0]*len(chunks1)
    assert len(chunks1) == len(chunks2), \
        "R1 and R2 files are not the same length."
    ## ensure full progress bar b/c estimates njobs could be off
    progressbar(10, 10, printstr.format(elapsed), spacer=data._spacer)
    return zip(chunks1, chunks2) | 0.005727 | 
| 
	def _add_data(self, eopatch, data):
        """ Adds downloaded data to EOPatch """
        valid_mask = data[..., -1]
        data = data[..., :-1]
        if data.ndim == 3:
            data = data.reshape(data.shape + (1,))
        if not self.feature_type.is_time_dependent():
            if data.shape[0] > 1:
                raise ValueError('Cannot save time dependent data to time independent feature')
            data = data.squeeze(axis=0)
        if self.feature_type.is_discrete():
            data = data.astype(np.int32)
        eopatch[self.feature_type][self.feature_name] = data
        mask_feature_type, mask_feature_name = next(self.valid_data_mask_feature())
        max_value = self.image_format.get_expected_max_value()
        valid_data = (valid_mask == max_value).astype(np.bool).reshape(valid_mask.shape + (1,))
        if mask_feature_name not in eopatch[mask_feature_type]:
            eopatch[mask_feature_type][mask_feature_name] = valid_data | 0.005107 | 
| 
	def sort_menus(c):
        """
        sort_menus goes through the items and sorts them based on
        their weight
        """
        for name in c.items:
            if not c.sorted[name]:
                c.items[name].sort(key=lambda x: x.weight)
                c.sorted[name] = True | 0.006897 | 
| 
	def get_gradebook_column(self):
        """Gets the ``GradebookColumn``.
        return: (osid.grading.GradebookColumn) - the ``GradebookColumn``
        raise:  OperationFailed - unable to complete request
        *compliance: mandatory -- This method must be implemented.*
        """
        # Implemented from template for osid.learning.Activity.get_objective
        if not bool(self._my_map['gradebookColumnId']):
            raise errors.IllegalState('gradebook_column empty')
        mgr = self._get_provider_manager('GRADING')
        if not mgr.supports_gradebook_column_lookup():
            raise errors.OperationFailed('Grading does not support GradebookColumn lookup')
        lookup_session = mgr.get_gradebook_column_lookup_session(proxy=getattr(self, "_proxy", None))
        lookup_session.use_federated_gradebook_view()
        return lookup_session.get_gradebook_column(self.get_gradebook_column_id()) | 0.005417 | 
| 
	def add(self, data, overwrite=False):
        """Add given data string by guessing its format. The format must be
        Motorola S-Records, Intel HEX or TI-TXT. Set `overwrite` to
        ``True`` to allow already added data to be overwritten.
        """
        if is_srec(data):
            self.add_srec(data, overwrite)
        elif is_ihex(data):
            self.add_ihex(data, overwrite)
        elif is_ti_txt(data):
            self.add_ti_txt(data, overwrite)
        else:
            raise UnsupportedFileFormatError() | 0.003738 | 
| 
	def get_body_region(defined):
    """Return the start and end offsets of function body"""
    scope = defined.get_scope()
    pymodule = defined.get_module()
    lines = pymodule.lines
    node = defined.get_ast()
    start_line = node.lineno
    if defined.get_doc() is None:
        start_line = node.body[0].lineno
    elif len(node.body) > 1:
        start_line = node.body[1].lineno
    start = lines.get_line_start(start_line)
    scope_start = pymodule.logical_lines.logical_line_in(scope.start)
    if scope_start[1] >= start_line:
        # a one-liner!
        # XXX: what if colon appears in a string
        start = pymodule.source_code.index(':', start) + 1
        while pymodule.source_code[start].isspace():
            start += 1
    end = min(lines.get_line_end(scope.end) + 1, len(pymodule.source_code))
    return start, end | 0.001185 | 
| 
	def compile_flags(args):
    """
    Build a dictionnary with an entry for cppflags, ldflags, and cxxflags.
    These options are filled according to the command line defined options
    """
    compiler_options = {
        'define_macros': args.defines,
        'undef_macros': args.undefs,
        'include_dirs': args.include_dirs,
        'extra_compile_args': args.extra_flags,
        'library_dirs': args.libraries_dir,
        'extra_link_args': args.extra_flags,
    }
    for param in ('opts', ):
        val = getattr(args, param, None)
        if val:
            compiler_options[param] = val
    return compiler_options | 0.00157 | 
| 
	def lmfit_jacobian(pars, x, y, errs=None, B=None, emp=False):
    """
    Wrapper around :func:`AegeanTools.fitting.jacobian` and :func:`AegeanTools.fitting.emp_jacobian`
    which gives the output in a format that is required for lmfit.
    Parameters
    ----------
    pars : lmfit.Model
        The model parameters
    x, y : list
        Locations at which the jacobian is being evaluated
    errs : list
        a vector of 1\sigma errors (optional). Default = None
    B : 2d-array
        a B-matrix (optional) see :func:`AegeanTools.fitting.Bmatrix`
    emp : bool
        If true the use the empirical Jacobian, otherwise use the analytical one.
        Default = False.
    Returns
    -------
    j : 2d-array
        A Jacobian.
    See Also
    --------
    :func:`AegeanTools.fitting.Bmatrix`
    :func:`AegeanTools.fitting.jacobian`
    :func:`AegeanTools.fitting.emp_jacobian`
    """
    if emp:
        matrix = emp_jacobian(pars, x, y)
    else:
        # calculate in the normal way
        matrix = jacobian(pars, x, y)
    # now munge this to be as expected for lmfit
    matrix = np.vstack(matrix)
    if errs is not None:
        matrix /= errs
        # matrix = matrix.dot(errs)
    if B is not None:
        matrix = matrix.dot(B)
    matrix = np.transpose(matrix)
    return matrix | 0.003026 | 
| 
	def update_loan_entry(database, entry):
    """Update a record of a loan report in the provided database.
    @param db: The MongoDB database to operate on. The loans collection will be
        used from this database.
    @type db: pymongo.database.Database
    @param entry: The entry to insert into the database, updating the entry with
        the same recordID if one exists.
    @type entry: dict
    """
    entry = clean_entry(entry)
    database.loans.update(
        {'recordID': entry['recordID']},
        {'$set': entry},
        upsert=True
    ) | 0.003565 | 
| 
	def updateGeometry(self):
        """Move widget to point under cursor
        """
        WIDGET_BORDER_MARGIN = 5
        SCROLLBAR_WIDTH = 30  # just a guess
        sizeHint = self.sizeHint()
        width = sizeHint.width()
        height = sizeHint.height()
        cursorRect = self._qpart.cursorRect()
        parentSize = self.parentWidget().size()
        spaceBelow = parentSize.height() - cursorRect.bottom() - WIDGET_BORDER_MARGIN
        spaceAbove = cursorRect.top() - WIDGET_BORDER_MARGIN
        if height <= spaceBelow or \
           spaceBelow > spaceAbove:
            yPos = cursorRect.bottom()
            if height > spaceBelow and \
               spaceBelow > self.minimumHeight():
                height = spaceBelow
                width = width + SCROLLBAR_WIDTH
        else:
            if height > spaceAbove and \
               spaceAbove > self.minimumHeight():
                height = spaceAbove
                width = width + SCROLLBAR_WIDTH
            yPos = max(3, cursorRect.top() - height)
        xPos = cursorRect.right() - self._horizontalShift()
        if xPos + width + WIDGET_BORDER_MARGIN > parentSize.width():
            xPos = max(3, parentSize.width() - WIDGET_BORDER_MARGIN - width)
        self.setGeometry(xPos, yPos, width, height)
        self._closeIfNotUpdatedTimer.stop() | 0.002235 | 
| 
	def _completion_checker(async_id, context_id):
    """Check if all Async jobs within a Context have been run."""
    if not context_id:
        logging.debug("Context for async %s does not exist", async_id)
        return
    context = FuriousContext.from_id(context_id)
    marker = FuriousCompletionMarker.get_by_id(context_id)
    if marker and marker.complete:
        logging.info("Context %s already complete" % context_id)
        return True
    task_ids = context.task_ids
    if async_id in task_ids:
        task_ids.remove(async_id)
    logging.debug("Loaded context.")
    logging.debug(task_ids)
    done, has_errors = _check_markers(task_ids)
    if not done:
        return False
    _mark_context_complete(marker, context, has_errors)
    return True | 0.001289 | 
| 
	def locate_arcgis():
  '''
  Find the path to the ArcGIS Desktop installation.
  Keys to check:
  HLKM/SOFTWARE/ESRI/ArcGIS 'RealVersion' - will give the version, then we can use
  that to go to
  HKLM/SOFTWARE/ESRI/DesktopXX.X 'InstallDir'. Where XX.X is the version
  We may need to check HKLM/SOFTWARE/Wow6432Node/ESRI instead
  '''
  try:
    key = _winreg.OpenKey(_winreg.HKEY_LOCAL_MACHINE,
                          'SOFTWARE\\Wow6432Node\\ESRI\\ArcGIS', 0)
    version = _winreg.QueryValueEx(key, "RealVersion")[0][:4]
    key_string = "SOFTWARE\\Wow6432Node\\ESRI\\Desktop{0}".format(version)
    desktop_key = _winreg.OpenKey(_winreg.HKEY_LOCAL_MACHINE,
                                  key_string, 0)
    install_dir = _winreg.QueryValueEx(desktop_key, "InstallDir")[0]
    return install_dir
  except WindowsError:
    raise ImportError("Could not locate the ArcGIS directory on this machine") | 0.005482 | 
| 
	def QA_indicator_PBX(DataFrame, N1=3, N2=5, N3=8, N4=13, N5=18, N6=24):
    '瀑布线'
    C = DataFrame['close']
    PBX1 = (EMA(C, N1) + EMA(C, 2 * N1) + EMA(C, 4 * N1)) / 3
    PBX2 = (EMA(C, N2) + EMA(C, 2 * N2) + EMA(C, 4 * N2)) / 3
    PBX3 = (EMA(C, N3) + EMA(C, 2 * N3) + EMA(C, 4 * N3)) / 3
    PBX4 = (EMA(C, N4) + EMA(C, 2 * N4) + EMA(C, 4 * N4)) / 3
    PBX5 = (EMA(C, N5) + EMA(C, 2 * N5) + EMA(C, 4 * N5)) / 3
    PBX6 = (EMA(C, N6) + EMA(C, 2 * N6) + EMA(C, 4 * N6)) / 3
    DICT = {'PBX1': PBX1, 'PBX2': PBX2, 'PBX3': PBX3,
            'PBX4': PBX4, 'PBX5': PBX5, 'PBX6': PBX6}
    return pd.DataFrame(DICT) | 0.001616 | 
| 
	def settings_view_for_block(block_wrapper, settings_view_factory):
        """
        Returns the settings view for an arbitrary block.
        Args:
            block_wrapper (BlockWrapper): The block for which a settings
                view is to be returned
            settings_view_factory (SettingsViewFactory): The settings
                view factory used to create the SettingsView object
        Returns:
            SettingsView object associated with the block
        """
        state_root_hash = \
            block_wrapper.state_root_hash \
            if block_wrapper is not None else None
        return settings_view_factory.create_settings_view(state_root_hash) | 0.002907 | 
| 
	def build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None, param_noise_filter_func=None):
    """Creates the act function with support for parameter space noise exploration (https://arxiv.org/abs/1706.01905):
    Parameters
    ----------
    make_obs_ph: str -> tf.placeholder or TfInput
        a function that take a name and creates a placeholder of input with that name
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    num_actions: int
        number of actions.
    scope: str or VariableScope
        optional scope for variable_scope.
    reuse: bool or None
        whether or not the variables should be reused. To be able to reuse the scope must be given.
    param_noise_filter_func: tf.Variable -> bool
        function that decides whether or not a variable should be perturbed. Only applicable
        if param_noise is True. If set to None, default_param_noise_filter is used by default.
    Returns
    -------
    act: (tf.Variable, bool, float, bool, float, bool) -> tf.Variable
        function to select and action given observation.
`       See the top of the file for details.
    """
    if param_noise_filter_func is None:
        param_noise_filter_func = default_param_noise_filter
    with tf.variable_scope(scope, reuse=reuse):
        observations_ph = make_obs_ph("observation")
        stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
        update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
        update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
        update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
        reset_ph = tf.placeholder(tf.bool, (), name="reset")
        eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
        param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False)
        param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False)
        # Unmodified Q.
        q_values = q_func(observations_ph.get(), num_actions, scope="q_func")
        # Perturbable Q used for the actual rollout.
        q_values_perturbed = q_func(observations_ph.get(), num_actions, scope="perturbed_q_func")
        # We have to wrap this code into a function due to the way tf.cond() works. See
        # https://stackoverflow.com/questions/37063952/confused-by-the-behavior-of-tf-cond for
        # a more detailed discussion.
        def perturb_vars(original_scope, perturbed_scope):
            all_vars = scope_vars(absolute_scope_name(original_scope))
            all_perturbed_vars = scope_vars(absolute_scope_name(perturbed_scope))
            assert len(all_vars) == len(all_perturbed_vars)
            perturb_ops = []
            for var, perturbed_var in zip(all_vars, all_perturbed_vars):
                if param_noise_filter_func(perturbed_var):
                    # Perturb this variable.
                    op = tf.assign(perturbed_var, var + tf.random_normal(shape=tf.shape(var), mean=0., stddev=param_noise_scale))
                else:
                    # Do not perturb, just assign.
                    op = tf.assign(perturbed_var, var)
                perturb_ops.append(op)
            assert len(perturb_ops) == len(all_vars)
            return tf.group(*perturb_ops)
        # Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy
        # of the network and measures the effect of that perturbation in action space. If the perturbation
        # is too big, reduce scale of perturbation, otherwise increase.
        q_values_adaptive = q_func(observations_ph.get(), num_actions, scope="adaptive_q_func")
        perturb_for_adaption = perturb_vars(original_scope="q_func", perturbed_scope="adaptive_q_func")
        kl = tf.reduce_sum(tf.nn.softmax(q_values) * (tf.log(tf.nn.softmax(q_values)) - tf.log(tf.nn.softmax(q_values_adaptive))), axis=-1)
        mean_kl = tf.reduce_mean(kl)
        def update_scale():
            with tf.control_dependencies([perturb_for_adaption]):
                update_scale_expr = tf.cond(mean_kl < param_noise_threshold,
                    lambda: param_noise_scale.assign(param_noise_scale * 1.01),
                    lambda: param_noise_scale.assign(param_noise_scale / 1.01),
                )
            return update_scale_expr
        # Functionality to update the threshold for parameter space noise.
        update_param_noise_threshold_expr = param_noise_threshold.assign(tf.cond(update_param_noise_threshold_ph >= 0,
            lambda: update_param_noise_threshold_ph, lambda: param_noise_threshold))
        # Put everything together.
        deterministic_actions = tf.argmax(q_values_perturbed, axis=1)
        batch_size = tf.shape(observations_ph.get())[0]
        random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64)
        chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
        stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
        output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
        update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
        updates = [
            update_eps_expr,
            tf.cond(reset_ph, lambda: perturb_vars(original_scope="q_func", perturbed_scope="perturbed_q_func"), lambda: tf.group(*[])),
            tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)),
            update_param_noise_threshold_expr,
        ]
        _act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph, reset_ph, update_param_noise_threshold_ph, update_param_noise_scale_ph],
                         outputs=output_actions,
                         givens={update_eps_ph: -1.0, stochastic_ph: True, reset_ph: False, update_param_noise_threshold_ph: False, update_param_noise_scale_ph: False},
                         updates=updates)
        def act(ob, reset=False, update_param_noise_threshold=False, update_param_noise_scale=False, stochastic=True, update_eps=-1):
            return _act(ob, stochastic, update_eps, reset, update_param_noise_threshold, update_param_noise_scale)
        return act | 0.006655 | 
| 
	def to_output(self, value):
        """Convert value to process output format."""
        return json.loads(resolwe_runtime_utils.save(self.name, str(value))) | 0.012658 | 
| 
	def plot_vs_mass(dataset, vars, filename, bins=60):
    """ Plot 2D marginalised posteriors of the 'vars' vs the dark matter mass.
    We plot the one sigma, and two sigma filled contours. More contours can be plotted
    which produces something more akin to a heatmap.
    If one require more complicated plotting, it is recommended to write a custom
    plotting function by extending the default plot() method.
    """
    n = len(vars)
    fig, axes = plt.subplots(nrows=n,
                             ncols=1,
                             sharex='col',
                             sharey=False)
    plt.subplots_adjust(wspace=0, hspace=0)
    m = 'log(m_{\chi})'
    for i, y in enumerate(vars):
        ax = axes[i]
        P = posterior.twoD(dataset+'.h5', m, y,
                           xlimits=limits(m), ylimits=limits(y), xbins=bins, ybins=bins)
        # apply some gaussian smoothing to make the contours slightly smoother
        sigmas = (np.diff(P.ycenters)[0], np.diff(P.xcenters)[0])
        P.pdf = gaussian_filter(P.pdf, sigmas, mode='nearest')
        P.plot(ax, levels=np.linspace(0.9, 0.1, 9))
        ax.set_xlabel(labels('log(m_{\chi})'))
        ax.set_ylabel(labels(y))
    fig.set_size_inches(4,n*3)
    fig.savefig(filename, dpi=200, bbox_inches='tight')
    plt.close(fig) | 0.005323 | 
| 
	def init_UI(self):
        """
        Builds User Interface for the interpretation Editor
        """
        #set fonts
        FONT_WEIGHT=1
        if sys.platform.startswith('win'): FONT_WEIGHT=-1
        font1 = wx.Font(9+FONT_WEIGHT, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type)
        font2 = wx.Font(12+FONT_WEIGHT, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type)
        #if you're on mac do some funny stuff to make it look okay
        is_mac = False
        if sys.platform.startswith("darwin"):
            is_mac = True
        self.search_bar = wx.SearchCtrl(self.panel, size=(350*self.GUI_RESOLUTION,25) ,style=wx.TE_PROCESS_ENTER | wx.TE_PROCESS_TAB | wx.TE_NOHIDESEL)
        self.Bind(wx.EVT_TEXT_ENTER, self.on_enter_search_bar,self.search_bar)
        self.Bind(wx.EVT_SEARCHCTRL_SEARCH_BTN, self.on_enter_search_bar,self.search_bar)
        self.search_bar.SetHelpText(dieh.search_help)
#        self.Bind(wx.EVT_TEXT, self.on_complete_search_bar,self.search_bar)
        #build logger
        self.logger = wx.ListCtrl(self.panel, -1, size=(100*self.GUI_RESOLUTION,475*self.GUI_RESOLUTION),style=wx.LC_REPORT)
        self.logger.SetFont(font1)
        self.logger.InsertColumn(0, 'specimen',width=75*self.GUI_RESOLUTION)
        self.logger.InsertColumn(1, 'fit name',width=65*self.GUI_RESOLUTION)
        self.logger.InsertColumn(2, 'max',width=55*self.GUI_RESOLUTION)
        self.logger.InsertColumn(3, 'min',width=55*self.GUI_RESOLUTION)
        self.logger.InsertColumn(4, 'n',width=25*self.GUI_RESOLUTION)
        self.logger.InsertColumn(5, 'fit type',width=60*self.GUI_RESOLUTION)
        self.logger.InsertColumn(6, 'dec',width=45*self.GUI_RESOLUTION)
        self.logger.InsertColumn(7, 'inc',width=45*self.GUI_RESOLUTION)
        self.logger.InsertColumn(8, 'mad',width=45*self.GUI_RESOLUTION)
        self.logger.InsertColumn(9, 'dang',width=45*self.GUI_RESOLUTION)
        self.logger.InsertColumn(10, 'a95',width=45*self.GUI_RESOLUTION)
        self.logger.InsertColumn(11, 'K',width=45*self.GUI_RESOLUTION)
        self.logger.InsertColumn(12, 'R',width=45*self.GUI_RESOLUTION)
        self.Bind(wx.EVT_LIST_ITEM_ACTIVATED, self.OnClick_listctrl, self.logger)
        self.Bind(wx.EVT_LIST_ITEM_RIGHT_CLICK,self.OnRightClickListctrl,self.logger)
        self.logger.SetHelpText(dieh.logger_help)
        #set fit attributes boxsizers
        self.display_sizer = wx.StaticBoxSizer(wx.StaticBox(self.panel, wx.ID_ANY, "display options"), wx.HORIZONTAL)
        self.name_sizer = wx.StaticBoxSizer(wx.StaticBox(self.panel, wx.ID_ANY, "fit name/color"), wx.VERTICAL)
        self.bounds_sizer = wx.StaticBoxSizer(wx.StaticBox(self.panel, wx.ID_ANY, "fit bounds"), wx.VERTICAL)
        self.buttons_sizer = wx.StaticBoxSizer(wx.StaticBox(self.panel, wx.ID_ANY), wx.VERTICAL)
        #logger display selection box
        UPPER_LEVEL = self.parent.level_box.GetValue()
        if UPPER_LEVEL=='sample':
            name_choices = self.parent.samples
        if UPPER_LEVEL=='site':
            name_choices = self.parent.sites
        if UPPER_LEVEL=='location':
            name_choices = self.parent.locations
        if UPPER_LEVEL=='study':
            name_choices = ['this study']
        self.level_box = wx.ComboBox(self.panel, -1, size=(110*self.GUI_RESOLUTION, 25), value=UPPER_LEVEL, choices=['sample','site','location','study'], style=wx.CB_DROPDOWN|wx.TE_READONLY)
        self.Bind(wx.EVT_COMBOBOX, self.on_select_high_level,self.level_box)
        self.level_box.SetHelpText(dieh.level_box_help)
        self.level_names = wx.ComboBox(self.panel, -1, size=(110*self.GUI_RESOLUTION, 25), value=self.parent.level_names.GetValue(), choices=name_choices, style=wx.CB_DROPDOWN|wx.TE_READONLY)
        self.Bind(wx.EVT_COMBOBOX, self.on_select_level_name,self.level_names)
        self.level_names.SetHelpText(dieh.level_names_help)
        #mean type and plot display boxes
        self.mean_type_box = wx.ComboBox(self.panel, -1, size=(110*self.GUI_RESOLUTION, 25), value=self.parent.mean_type_box.GetValue(), choices=['Fisher','Fisher by polarity','None'], style=wx.CB_DROPDOWN|wx.TE_READONLY, name="high_type")
        self.Bind(wx.EVT_COMBOBOX, self.on_select_mean_type_box,self.mean_type_box)
        self.mean_type_box.SetHelpText(dieh.mean_type_help)
        self.mean_fit_box = wx.ComboBox(self.panel, -1, size=(110*self.GUI_RESOLUTION, 25), value=self.parent.mean_fit, choices=(['None','All'] + self.parent.fit_list), style=wx.CB_DROPDOWN|wx.TE_READONLY, name="high_type")
        self.Bind(wx.EVT_COMBOBOX, self.on_select_mean_fit_box,self.mean_fit_box)
        self.mean_fit_box.SetHelpText(dieh.mean_fit_help)
        #show box
        if UPPER_LEVEL == "study" or UPPER_LEVEL == "location":
            show_box_choices = ['specimens','samples','sites']
        if UPPER_LEVEL == "site":
            show_box_choices = ['specimens','samples']
        if UPPER_LEVEL == "sample":
            show_box_choices = ['specimens']
        self.show_box = wx.ComboBox(self.panel, -1, size=(110*self.GUI_RESOLUTION, 25), value='specimens', choices=show_box_choices, style=wx.CB_DROPDOWN|wx.TE_READONLY,name="high_elements")
        self.Bind(wx.EVT_COMBOBOX, self.on_select_show_box,self.show_box)
        self.show_box.SetHelpText(dieh.show_help)
        #coordinates box
        self.coordinates_box = wx.ComboBox(self.panel, -1, size=(110*self.GUI_RESOLUTION, 25), choices=self.parent.coordinate_list, value=self.parent.coordinates_box.GetValue(), style=wx.CB_DROPDOWN|wx.TE_READONLY, name="coordinates")
        self.Bind(wx.EVT_COMBOBOX, self.on_select_coordinates,self.coordinates_box)
        self.coordinates_box.SetHelpText(dieh.coordinates_box_help)
        #bounds select boxes
        self.tmin_box = wx.ComboBox(self.panel, -1, size=(80*self.GUI_RESOLUTION, 25), choices=[''] + self.parent.T_list, style=wx.CB_DROPDOWN|wx.TE_READONLY, name="lower bound")
        self.tmin_box.SetHelpText(dieh.tmin_box_help)
        self.tmax_box = wx.ComboBox(self.panel, -1, size=(80*self.GUI_RESOLUTION, 25), choices=[''] + self.parent.T_list, style=wx.CB_DROPDOWN|wx.TE_READONLY, name="upper bound")
        self.tmax_box.SetHelpText(dieh.tmax_box_help)
        #color box
        self.color_dict = self.parent.color_dict
        self.color_box = wx.ComboBox(self.panel, -1, size=(80*self.GUI_RESOLUTION, 25), choices=[''] + sorted(self.color_dict.keys()), style=wx.CB_DROPDOWN|wx.TE_PROCESS_ENTER, name="color")
        self.Bind(wx.EVT_TEXT_ENTER, self.add_new_color, self.color_box)
        self.color_box.SetHelpText(dieh.color_box_help)
        #name box
        self.name_box = wx.TextCtrl(self.panel, -1, size=(80*self.GUI_RESOLUTION, 25), name="name")
        self.name_box.SetHelpText(dieh.name_box_help)
        #more mac stuff
        h_size_buttons,button_spacing = 25,5.5
        if is_mac: h_size_buttons,button_spacing = 18,0.
        #buttons
        self.add_all_button = wx.Button(self.panel, id=-1, label='add new fit to all specimens',size=(160*self.GUI_RESOLUTION,h_size_buttons))
        self.add_all_button.SetFont(font1)
        self.Bind(wx.EVT_BUTTON, self.add_fit_to_all, self.add_all_button)
        self.add_all_button.SetHelpText(dieh.add_all_help)
        self.add_fit_button = wx.Button(self.panel, id=-1, label='add fit to highlighted specimens',size=(160*self.GUI_RESOLUTION,h_size_buttons))
        self.add_fit_button.SetFont(font1)
        self.Bind(wx.EVT_BUTTON, self.add_highlighted_fits, self.add_fit_button)
        self.add_fit_button.SetHelpText(dieh.add_fit_btn_help)
        self.delete_fit_button = wx.Button(self.panel, id=-1, label='delete highlighted fits',size=(160*self.GUI_RESOLUTION,h_size_buttons))
        self.delete_fit_button.SetFont(font1)
        self.Bind(wx.EVT_BUTTON, self.delete_highlighted_fits, self.delete_fit_button)
        self.delete_fit_button.SetHelpText(dieh.delete_fit_btn_help)
        self.apply_changes_button = wx.Button(self.panel, id=-1, label='apply changes to highlighted fits',size=(160*self.GUI_RESOLUTION,h_size_buttons))
        self.apply_changes_button.SetFont(font1)
        self.Bind(wx.EVT_BUTTON, self.apply_changes, self.apply_changes_button)
        self.apply_changes_button.SetHelpText(dieh.apply_changes_help)
        #windows
        display_window_0 = wx.GridSizer(2, 1, 10*self.GUI_RESOLUTION, 19*self.GUI_RESOLUTION)
        display_window_1 = wx.GridSizer(2, 1, 10*self.GUI_RESOLUTION, 19*self.GUI_RESOLUTION)
        display_window_2 = wx.GridSizer(2, 1, 10*self.GUI_RESOLUTION, 19*self.GUI_RESOLUTION)
        name_window = wx.GridSizer(2, 1, 10*self.GUI_RESOLUTION, 19*self.GUI_RESOLUTION)
        bounds_window = wx.GridSizer(2, 1, 10*self.GUI_RESOLUTION, 19*self.GUI_RESOLUTION)
        buttons1_window = wx.GridSizer(4, 1, 5*self.GUI_RESOLUTION, 19*self.GUI_RESOLUTION)
        display_window_0.AddMany( [(self.coordinates_box, wx.ALIGN_LEFT),
                                   (self.show_box, wx.ALIGN_LEFT)] )
        display_window_1.AddMany( [(self.level_box, wx.ALIGN_LEFT),
                                   (self.level_names, wx.ALIGN_LEFT)] )
        display_window_2.AddMany( [(self.mean_type_box, wx.ALIGN_LEFT),
                                   (self.mean_fit_box, wx.ALIGN_LEFT)] )
        name_window.AddMany( [(self.name_box, wx.ALIGN_LEFT),
                                (self.color_box, wx.ALIGN_LEFT)] )
        bounds_window.AddMany( [(self.tmin_box, wx.ALIGN_LEFT),
                                (self.tmax_box, wx.ALIGN_LEFT)] )
        buttons1_window.AddMany( [(self.add_fit_button, wx.ALL|wx.ALIGN_CENTER|wx.SHAPED, 0),
                                  (self.add_all_button, wx.ALL|wx.ALIGN_CENTER|wx.SHAPED, 0),
                                  (self.delete_fit_button, wx.ALL|wx.ALIGN_CENTER|wx.SHAPED, 0),
                                  (self.apply_changes_button, wx.ALL|wx.ALIGN_CENTER|wx.SHAPED, 0)])
        self.display_sizer.Add(display_window_0, 1, wx.TOP|wx.EXPAND, 8)
        self.display_sizer.Add(display_window_1, 1, wx.TOP | wx.LEFT|wx.EXPAND, 8)
        self.display_sizer.Add(display_window_2, 1, wx.TOP | wx.LEFT|wx.EXPAND, 8)
        self.name_sizer.Add(name_window, 1, wx.TOP, 5.5)
        self.bounds_sizer.Add(bounds_window, 1, wx.TOP, 5.5)
        self.buttons_sizer.Add(buttons1_window, 1, wx.TOP, 0)
        #duplicate high levels plot
        self.fig = Figure((2.5*self.GUI_RESOLUTION, 2.5*self.GUI_RESOLUTION), dpi=100)
        self.canvas = FigCanvas(self.panel, -1, self.fig, )
        self.toolbar = NavigationToolbar(self.canvas)
        self.toolbar.Hide()
        self.toolbar.zoom()
        self.high_EA_setting = "Zoom"
        self.canvas.Bind(wx.EVT_LEFT_DCLICK,self.on_equalarea_high_select)
        self.canvas.Bind(wx.EVT_MOTION,self.on_change_high_mouse_cursor)
        self.canvas.Bind(wx.EVT_MIDDLE_DOWN,self.home_high_equalarea)
        self.canvas.Bind(wx.EVT_RIGHT_DOWN,self.pan_zoom_high_equalarea)
        self.canvas.SetHelpText(dieh.eqarea_help)
        self.eqarea = self.fig.add_subplot(111)
        draw_net(self.eqarea)
        #Higher Level Statistics Box
        self.stats_sizer = wx.StaticBoxSizer( wx.StaticBox( self.panel, wx.ID_ANY,"mean statistics"  ), wx.VERTICAL)
        for parameter in ['mean_type','dec','inc','alpha95','K','R','n_lines','n_planes']:
            COMMAND="self.%s_window=wx.TextCtrl(self.panel,style=wx.TE_CENTER|wx.TE_READONLY,size=(100*self.GUI_RESOLUTION,25))"%parameter
            exec(COMMAND)
            COMMAND="self.%s_window.SetBackgroundColour(wx.WHITE)"%parameter
            exec(COMMAND)
            COMMAND="self.%s_window.SetFont(font2)"%parameter
            exec(COMMAND)
            COMMAND="self.%s_outer_window = wx.GridSizer(1,2,5*self.GUI_RESOLUTION,15*self.GUI_RESOLUTION)"%parameter
            exec(COMMAND)
            COMMAND="""self.%s_outer_window.AddMany([
                    (wx.StaticText(self.panel,label='%s',style=wx.TE_CENTER),wx.EXPAND),
                    (self.%s_window, wx.EXPAND)])"""%(parameter,parameter,parameter)
            exec(COMMAND)
            COMMAND="self.stats_sizer.Add(self.%s_outer_window, 1, wx.ALIGN_LEFT|wx.EXPAND, 0)"%parameter
            exec(COMMAND)
        self.switch_stats_button = wx.SpinButton(self.panel, id=wx.ID_ANY, style=wx.SP_HORIZONTAL|wx.SP_ARROW_KEYS|wx.SP_WRAP, name="change stats")
        self.Bind(wx.EVT_SPIN, self.on_select_stats_button,self.switch_stats_button)
        self.switch_stats_button.SetHelpText(dieh.switch_stats_btn_help)
        #construct panel
        hbox0 = wx.BoxSizer(wx.HORIZONTAL)
        hbox0.Add(self.name_sizer,flag=wx.ALIGN_TOP|wx.EXPAND,border=8)
        hbox0.Add(self.bounds_sizer,flag=wx.ALIGN_TOP|wx.EXPAND,border=8)
        vbox0 = wx.BoxSizer(wx.VERTICAL)
        vbox0.Add(hbox0,flag=wx.ALIGN_TOP,border=8)
        vbox0.Add(self.buttons_sizer,flag=wx.ALIGN_TOP,border=8)
        hbox1 = wx.BoxSizer(wx.HORIZONTAL)
        hbox1.Add(vbox0,flag=wx.ALIGN_TOP,border=8)
        hbox1.Add(self.stats_sizer,flag=wx.ALIGN_TOP,border=8)
        hbox1.Add(self.switch_stats_button,flag=wx.ALIGN_TOP|wx.EXPAND,border=8)
        vbox1 = wx.BoxSizer(wx.VERTICAL)
        vbox1.Add(self.display_sizer,flag=wx.ALIGN_TOP,border=8)
        vbox1.Add(hbox1,flag=wx.ALIGN_TOP,border=8)
        vbox1.Add(self.canvas,proportion=1,flag=wx.ALIGN_CENTER_HORIZONTAL | wx.ALIGN_CENTER_VERTICAL | wx.EXPAND,border=8)
        vbox2 = wx.BoxSizer(wx.VERTICAL)
        vbox2.Add(self.search_bar,proportion=.5,flag=wx.ALIGN_LEFT | wx.ALIGN_BOTTOM | wx.EXPAND, border=8)
        vbox2.Add(self.logger,proportion=1,flag=wx.ALIGN_LEFT|wx.EXPAND,border=8)
        hbox2 = wx.BoxSizer(wx.HORIZONTAL)
        hbox2.Add(vbox2,proportion=1,flag=wx.ALIGN_LEFT|wx.EXPAND)
        hbox2.Add(vbox1,flag=wx.ALIGN_TOP|wx.EXPAND)
        self.panel.SetSizerAndFit(hbox2)
        hbox2.Fit(self) | 0.016602 | 
| 
	def dump_stats(self, filename):
        """
        Similar to profile.Profile.dump_stats - but different output format !
        """
        if _isCallgrindName(filename):
            with open(filename, 'w') as out:
                self.callgrind(out)
        else:
            with io.open(filename, 'w', errors='replace') as out:
                self.annotate(out) | 0.005435 | 
| 
	def append_to_list(self, source, start=None, hasIndex=False):
        '''Appends new list to self.nameDict
        Argument:
        source -- source of new name list (filename or list)
        start  -- starting index of new list
        hasIndex -- the file is already indexed
        '''
        nfy = Numberify()
        try:
            if start is None:
                if type(source) is str:
                    if hasIndex is True:
                        newList = self.get_from_indexedFile(source)
                else:
                    newList = nfy.numberify_data(source,
                                                 len(self.nameDict) + 1)
            else:
                newList = nfy.numberify_data(source, start)
            self.nameDict = dict(self.nameDict.items() + newList.items())
            self.totalCount = len(self.nameDict)
        except:
            print 'Unknown error:', exc_info()[0] | 0.003236 | 
| 
	def wait_for(self, timeout):
        """
        A decorator factory that ensures the wrapped function runs in the
        reactor thread.
        When the wrapped function is called, its result is returned or its
        exception raised. Deferreds are handled transparently. Calls will
        timeout after the given number of seconds (a float), raising a
        crochet.TimeoutError, and cancelling the Deferred being waited on.
        """
        def decorator(function):
            @wrapt.decorator
            def wrapper(function, _, args, kwargs):
                @self.run_in_reactor
                def run():
                    return function(*args, **kwargs)
                eventual_result = run()
                try:
                    return eventual_result.wait(timeout)
                except TimeoutError:
                    eventual_result.cancel()
                    raise
            result = wrapper(function)
            # Expose underling function for testing purposes; this attribute is
            # deprecated, use __wrapped__ instead:
            try:
                result.wrapped_function = function
            except AttributeError:
                pass
            return result
        return decorator | 0.001597 | 
| 
	def calcAcceptanceRatio(self, V, W):
        """
        Given a order vector V and a proposed order vector W, calculate the acceptance ratio for 
        changing to W when using MCMC.
        ivar: dict<int,<dict,<int,int>>> wmg: A two-dimensional dictionary that associates integer
            representations of each pair of candidates, cand1 and cand2, with the number of times
            cand1 is ranked above cand2 minus the number of times cand2 is ranked above cand1. The
            dictionary represents a weighted majority graph for an election.
        :ivar float phi: A value for phi such that 0 <= phi <= 1.   
        :ivar list<int> V: Contains integer representations of each candidate in order of their
            ranking in a vote, from first to last. This is the current sample.
        :ivar list<int> W: Contains integer representations of each candidate in order of their
            ranking in a vote, from first to last. This is the proposed sample.
        """
        acceptanceRatio = 1.0
        for comb in itertools.combinations(V, 2):
            #Check if comb[0] is ranked before comb[1] in V and W
            vIOverJ = 1
            wIOverJ = 1
            if V.index(comb[0]) > V.index(comb[1]):
                vIOverJ = 0
            if W.index(comb[0]) > W.index(comb[1]):
                wIOverJ = 0
        
            acceptanceRatio = acceptanceRatio * self.phi**(self.wmg[comb[0]][comb[1]]*(vIOverJ-wIOverJ))
        return acceptanceRatio | 0.008713 | 
| 
	def slicedIterator(sourceList, sliceSize):
    """
    :param: sourceList: list which need to be sliced
    :type: list
    :param: sliceSize: size of the slice
    :type: int
    :return: iterator of the sliced list
    """
    start = 0
    end = 0
    while len(sourceList) > end:
        end = start + sliceSize
        yield sourceList[start: end]
        start = end | 0.002681 | 
| 
	def bivconvolve (sx_a, sy_a, cxy_a, sx_b, sy_b, cxy_b):
    """Given two independent bivariate distributions, compute a bivariate
    distribution corresponding to their convolution.
    I'm sure this is worked out in a ton of places, but I got the equations
    from Pineau+ (2011A&A...527A.126P).
    Returns: (sx_c, sy_c, cxy_c), the parameters of the convolved
    distribution.
    """
    _bivcheck (sx_a, sy_a, cxy_a)
    _bivcheck (sx_b, sy_b, cxy_b)
    sx_c = np.sqrt (sx_a**2 + sx_b**2)
    sy_c = np.sqrt (sy_a**2 + sy_b**2)
    cxy_c = cxy_a + cxy_b
    return _bivcheck (sx_c, sy_c, cxy_c) | 0.011513 | 
| 
	def on_resize(self, event):
        """Resize handler
        Parameters
        ----------
        event : instance of Event
            The event.
        """
        if self._aspect is None:
            return
        w, h = self._canvas.size
        aspect = self._aspect / (w / h)
        self.scale = (self.scale[0], self.scale[0] / aspect)
        self.shader_map() | 0.005362 | 
| 
	def format_formula(formula):
    """
    Converts str of chemical formula into
    latex format for labelling purposes
    Args:
        formula (str): Chemical formula
    """
    formatted_formula = ""
    number_format = ""
    for i, s in enumerate(formula):
        if s.isdigit():
            if not number_format:
                number_format = "_{"
            number_format += s
            if i == len(formula) - 1:
                number_format += "}"
                formatted_formula += number_format
        else:
            if number_format:
                number_format += "}"
                formatted_formula += number_format
                number_format = ""
            formatted_formula += s
    return r"$%s$" % (formatted_formula) | 0.001316 | 
| 
	def activationFunctionASIG(self, x):
        """
        Determine the activation of a node based on that nodes net input.
        """
        def act(v):
            if   v < -15.0: return 0.0
            elif v >  15.0: return 1.0
            else: return 1.0 / (1.0 + Numeric.exp(-v))
        return Numeric.array(list(map(act, x)), 'f') | 0.020588 | 
| 
	def parse(self, rec):
        """Retrieve row data from files associated with the ISATabRecord.
        """
        final_studies = []
        for study in rec.studies:
            source_data = self._parse_study(study.metadata["Study File Name"],
                                            ["Source Name", "Sample Name", "Comment[ENA_SAMPLE]"])
            if source_data:
                study.nodes = source_data
                final_assays = []
                for assay in study.assays:
                    cur_assay = ISATabAssayRecord(assay)
                    assay_data = self._parse_study(assay["Study Assay File Name"],
                                                   ["Sample Name","Extract Name","Raw Data File","Derived Data File", "Image File", "Acquisition Parameter Data File", "Free Induction Decay Data File"])
                    cur_assay.nodes = assay_data
                    self._get_process_nodes(assay["Study Assay File Name"], cur_assay)
                    final_assays.append(cur_assay)
                study.assays = final_assays
                #get process nodes
                self._get_process_nodes(study.metadata["Study File Name"], study)
                final_studies.append(study)
        rec.studies = final_studies
        return rec | 0.008574 | 
| 
	def write_wonambi(data, filename, subj_id='', dtype='float64'):
    """Write file in simple Wonambi format.
    Parameters
    ----------
    data : instance of ChanTime
        data with only one trial
    filename : path to file
        file to export to (the extensions .won and .dat will be added)
    subj_id : str
        subject id
    dtype : str
        numpy dtype in which you want to save the data
    Notes
    -----
    Wonambi format creates two files, one .won with the dataset info as json
    file and one .dat with the memmap recordings.
    It will happily overwrite any existing file with the same name.
    Memory-mapped matrices are column-major, Fortran-style, to be compatible
    with Matlab.
    """
    filename = Path(filename)
    json_file = filename.with_suffix('.won')
    memmap_file = filename.with_suffix('.dat')
    start_time = data.start_time + timedelta(seconds=data.axis['time'][0][0])
    start_time_str = start_time.strftime('%Y-%m-%d %H:%M:%S.%f')
    dataset = {'subj_id': subj_id,
               'start_time': start_time_str,
               's_freq': data.s_freq,
               'chan_name': list(data.axis['chan'][0]),
               'n_samples': int(data.number_of('time')[0]),
               'dtype': dtype,
               }
    with json_file.open('w') as f:
        dump(dataset, f, sort_keys=True, indent=4)
    memshape = (len(dataset['chan_name']),
                dataset['n_samples'])
    mem = memmap(str(memmap_file), dtype, mode='w+', shape=memshape, order='F')
    mem[:, :] = data.data[0]
    mem.flush() | 0.000635 | 
| 
	def new_project():
    """New Project."""
    form = NewProjectForm()
    if not form.validate_on_submit():
        return jsonify(errors=form.errors), 400
    data = form.data
    data['slug'] = slugify(data['name'])
    data['owner_id'] = get_current_user_id()
    id = add_instance('project', **data)
    if not id:
        return jsonify(errors={'name': ['duplicated slug.']}), 400
    project = get_data_or_404('project', id)
    return jsonify(**project) | 0.002151 | 
| 
	def validate_examples(example_file):
    """Validate that examples are well formed.
    Pi should sum to 1.0
    value should be {-1,1}
    Usage:
        validate_examples("../data/300.tfrecord.zz")
    """
    def test_example(raw):
        example = tf.train.Example()
        example.ParseFromString(raw)
        pi = np.frombuffer(example.features.feature['pi'].bytes_list.value[0], np.float32)
        value = example.features.feature['outcome'].float_list.value[0]
        assert abs(pi.sum() - 1) < 1e-4, pi.sum()
        assert value in (-1, 1), value
    opts = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.ZLIB)
    for record in tqdm(tf.python_io.tf_record_iterator(example_file, opts)):
        test_example(record) | 0.003979 | 
| 
	def pending_assignment(self):
        """Return the pending partition assignment that this state represents."""
        return {
            self.partitions[pid].name: [
                self.brokers[bid].id for bid in self.replicas[pid]
            ]
            for pid in set(self.pending_partitions)
        } | 0.009615 | 
| 
	def get_active_window_pos():
    '''screen coordinates massaged so that movewindow command works to
    restore the window to the same position
    returns x, y
    '''
    # http://stackoverflow.com/questions/26050788/in-bash-on-ubuntu-14-04-unity-how-can-i-get-the-total-size-of-an-open-window-i/26060527#26060527
    cmd = ['xdotool','getactivewindow', 'getwindowgeometry']
    res = subprocess.Popen(cmd, stdout = subprocess.PIPE, stderr= subprocess.PIPE).communicate()
    stdout = res[0].decode('utf-8').splitlines()
    pos = stdout[1].split(':')[1].split(',')
    geo = stdout[2].split(':')[1].split('x')
    x, y = int(pos[0].strip()), int(pos[1].split('(')[0].strip())
    w, h = int(geo[0].strip()), int(geo[1].strip())
    # get the window decorations
    window_id = get_window_id()
    cmd = ['xprop', '_NET_FRAME_EXTENTS', '-id', window_id]
    res = subprocess.Popen(cmd, stdout = subprocess.PIPE, stderr= subprocess.PIPE).communicate()
    decos = res[0].decode('utf-8').split('=')[1].split(',')
    l, r = int(decos[0].strip()), int(decos[1].strip())
    t, b = int(decos[2].strip()), int(decos[3].strip())
    return x-l, y-t | 0.008726 | 
| 
	def configparser(self):
        """
        Adapter to dump/load INI format strings and files using standard library's
        ``ConfigParser`` (or the backported configparser module in Python 2).
        
        Returns:
            ConfigPersistenceAdapter
        """
        if self._configparser_adapter is None:
            self._configparser_adapter = ConfigPersistenceAdapter(
                config=self,
                reader_writer=ConfigParserReaderWriter(
                    config_parser_factory=self.settings.configparser_factory,
                ),
            )
        return self._configparser_adapter | 0.006421 | 
| 
	def check(self):
        """
        Basic checks that don't depend on any context.
        Adapted from Bicoin Code: main.cpp
        """
        self._check_tx_inout_count()
        self._check_txs_out()
        self._check_txs_in()
        # Size limits
        self._check_size_limit() | 0.00692 | 
| 
	def randomise_labels(
            self,
            inplace=False,
    ):
        """ Shuffles the leaf labels, but doesn't alter the tree structure """
        if not inplace:
            t = self.copy()
        else:
            t = self
        names = list(t.labels)
        random.shuffle(names)
        for l in t._tree.leaf_node_iter():
            l.taxon._label = names.pop()
        t._dirty = True
        return t | 0.009368 | 
| 
	def load_config_yaml(self, flags, config_dict):
        """ Load config dict and yaml dict and then override both with flags dict. """
        if config_dict is None:
            print('Config File not specified. Using only input flags.')
            return flags
        try:
            config_yaml_dict = self.cfg_from_file(flags['YAML_FILE'], config_dict)
        except KeyError:
            print('Yaml File not specified. Using only input flags and config file.')
            return config_dict
        print('Using input flags, config file, and yaml file.')
        config_yaml_flags_dict = self._merge_a_into_b_simple(flags, config_yaml_dict)
        return config_yaml_flags_dict | 0.008708 | 
| 
	def validate_config_key(ctx, param, value):
    """Validate a configuration key according to `section.item`."""
    if not value:
        return value
    try:
        section, item = value.split(".", 1)
    except ValueError:
        raise click.BadArgumentUsage("Given key does not contain a section name.")
    else:
        return section, item | 0.005731 | 
| 
	def _any(self, memory, addr, **kwargs):
        """
        Gets any solution of an address.
        """
        return memory.state.solver.eval(addr, exact=kwargs.pop('exact', self._exact), **kwargs) | 0.015 | 
| 
	def get_content_object(self, page, language, ctype):
        """Gets the latest published :class:`Content <pages.models.Content>`
        for a particular page, language and placeholder type."""
        params = {
            'language': language,
            'type': ctype,
            'page': None if page is fake_page else page
        }
        if page.freeze_date:
            params['creation_date__lte'] = page.freeze_date
        return self.filter(**params).latest() | 0.004211 | 
| 
	def render_string(self, template_name, **kwargs):
        """
            添加注入模板的自定义参数等信息
        """
        if hasattr(self, "session"): kwargs["session"] = self.session
        return super(BaseHandler, self).render_string(template_name, **kwargs) | 0.011765 | 
| 
	def config_delete(args):
    """ Remove a method config from a workspace """
    r = fapi.delete_workspace_config(args.project, args.workspace,
                                        args.namespace, args.config)
    fapi._check_response_code(r, [200,204])
    return r.text if r.text else None | 0.010204 | 
| 
	def dasonw(fname, ftype, ifname, ncomch):
    """
    Internal undocumented command for creating a new DAS file
    
    :param fname: filename
    :type fname: str
    :param ftype: type
    :type ftype: str
    :param ifname: internal file name
    :type ifname: str
    :param ncomch: amount of comment area
    :type ncomch: int
    :return: Handle to new DAS file
    :rtype: int
    """
    fnamelen = ctypes.c_int(len(fname))
    ftypelen = ctypes.c_int(len(ftype))
    ifnamelen = ctypes.c_int(len(ifname))
    ncomch  = ctypes.c_int(ncomch)
    handle  = ctypes.c_int()
    fname   = stypes.stringToCharP(fname)
    ftype   = stypes.stringToCharP(ftype)
    ifname  = stypes.stringToCharP(ifname)
    libspice.dasonw_(fname, ftype, ifname, ctypes.byref(ncomch), ctypes.byref(handle), fnamelen, ftypelen, ifnamelen)
    return handle.value | 0.009445 | 
| 
	def gen_nf_quick_check(output, ascii_props=False, append=False, prefix=""):
    """Generate quick check properties."""
    categories = []
    nf = {}
    all_chars = ALL_ASCII if ascii_props else ALL_CHARS
    file_name = os.path.join(HOME, 'unicodedata', UNIVERSION, 'DerivedNormalizationProps.txt')
    with codecs.open(file_name, 'r', 'utf-8') as uf:
        for line in uf:
            if not line.startswith('#'):
                data = line.split('#')[0].split(';')
                if len(data) < 2:
                    continue
                if not data[1].strip().lower().endswith('_qc'):
                    continue
                span = create_span([int(i, 16) for i in data[0].strip().split('..')], is_bytes=ascii_props)
                if span is None:
                    continue
                name = format_name(data[1][:-3] + 'quickcheck')
                subvalue = format_name(data[2])
                if name not in nf:
                    nf[name] = {}
                    categories.append(name)
                if subvalue not in nf[name]:
                    nf[name][subvalue] = []
                nf[name][subvalue].extend(span)
    for k1, v1 in nf.items():
        temp = set()
        for k2 in list(v1.keys()):
            temp |= set(v1[k2])
        v1['y'] = list(all_chars - temp)
    for k1, v1 in nf.items():
        for name in list(v1.keys()):
            s = set(nf[k1][name])
            nf[k1][name] = sorted(s)
    # Convert characters values to ranges
    char2range(nf, is_bytes=ascii_props)
    with codecs.open(output, 'a' if append else 'w', 'utf-8') as f:
        if not append:
            f.write(HEADER)
        for key, value in sorted(nf.items()):
            # Write out the Unicode properties
            f.write('%s_%s = {\n' % (prefix, key.replace('quickcheck', '_quick_check')))
            count = len(value) - 1
            i = 0
            for k1, v1 in sorted(value.items()):
                f.write('    "%s": "%s"' % (k1, v1))
                if i == count:
                    f.write('\n}\n')
                else:
                    f.write(',\n')
                i += 1
    return categories | 0.001841 | 
| 
	def get_market_most_active(*args, **kwargs):
    """
    MOVED to iexfinance.stocks.get_market_most_active
    """
    import warnings
    warnings.warn(WNG_MSG, ("get_market_most_active",
                            "stocks.get_market_most_active"))
    return stocks.get_market_most_active(*args, **kwargs) | 0.003175 | 
| 
	def show_dependencies(self, stream=sys.stdout):
        """Writes to the given stream the ASCII representation of the dependency tree."""
        def child_iter(node):
            return [d.node for d in node.deps]
        def text_str(node):
            return colored(str(node), color=node.status.color_opts["color"])
        for task in self.iflat_tasks():
            print(draw_tree(task, child_iter, text_str), file=stream) | 0.006961 | 
| 
	def get_all_maintenance_window(self, **kwargs):  # noqa: E501
        """Get all maintenance windows for a customer  # noqa: E501
          # noqa: E501
        This method makes a synchronous HTTP request by default. To make an
        asynchronous HTTP request, please pass async_req=True
        >>> thread = api.get_all_maintenance_window(async_req=True)
        >>> result = thread.get()
        :param async_req bool
        :param int offset:
        :param int limit:
        :return: ResponseContainerPagedMaintenanceWindow
                 If the method is called asynchronously,
                 returns the request thread.
        """
        kwargs['_return_http_data_only'] = True
        if kwargs.get('async_req'):
            return self.get_all_maintenance_window_with_http_info(**kwargs)  # noqa: E501
        else:
            (data) = self.get_all_maintenance_window_with_http_info(**kwargs)  # noqa: E501
            return data | 0.002101 | 
| 
	def from_dict(data, ctx):
        """
        Instantiate a new MarketOrderTransaction from a dict (generally from
        loading a JSON response). The data used to instantiate the
        MarketOrderTransaction is a shallow copy of the dict passed in, with
        any complex child types instantiated appropriately.
        """
        data = data.copy()
        if data.get('units') is not None:
            data['units'] = ctx.convert_decimal_number(
                data.get('units')
            )
        if data.get('priceBound') is not None:
            data['priceBound'] = ctx.convert_decimal_number(
                data.get('priceBound')
            )
        if data.get('tradeClose') is not None:
            data['tradeClose'] = \
                ctx.transaction.MarketOrderTradeClose.from_dict(
                    data['tradeClose'], ctx
                )
        if data.get('longPositionCloseout') is not None:
            data['longPositionCloseout'] = \
                ctx.transaction.MarketOrderPositionCloseout.from_dict(
                    data['longPositionCloseout'], ctx
                )
        if data.get('shortPositionCloseout') is not None:
            data['shortPositionCloseout'] = \
                ctx.transaction.MarketOrderPositionCloseout.from_dict(
                    data['shortPositionCloseout'], ctx
                )
        if data.get('marginCloseout') is not None:
            data['marginCloseout'] = \
                ctx.transaction.MarketOrderMarginCloseout.from_dict(
                    data['marginCloseout'], ctx
                )
        if data.get('delayedTradeClose') is not None:
            data['delayedTradeClose'] = \
                ctx.transaction.MarketOrderDelayedTradeClose.from_dict(
                    data['delayedTradeClose'], ctx
                )
        if data.get('clientExtensions') is not None:
            data['clientExtensions'] = \
                ctx.transaction.ClientExtensions.from_dict(
                    data['clientExtensions'], ctx
                )
        if data.get('takeProfitOnFill') is not None:
            data['takeProfitOnFill'] = \
                ctx.transaction.TakeProfitDetails.from_dict(
                    data['takeProfitOnFill'], ctx
                )
        if data.get('stopLossOnFill') is not None:
            data['stopLossOnFill'] = \
                ctx.transaction.StopLossDetails.from_dict(
                    data['stopLossOnFill'], ctx
                )
        if data.get('trailingStopLossOnFill') is not None:
            data['trailingStopLossOnFill'] = \
                ctx.transaction.TrailingStopLossDetails.from_dict(
                    data['trailingStopLossOnFill'], ctx
                )
        if data.get('tradeClientExtensions') is not None:
            data['tradeClientExtensions'] = \
                ctx.transaction.ClientExtensions.from_dict(
                    data['tradeClientExtensions'], ctx
                )
        return MarketOrderTransaction(**data) | 0.00066 | 
| 
	def dict(self):
        """A dict that holds key/values for all of the properties in the
        object.
        :return:
        """
        d = {p.key: getattr(self, p.key) for p in self.__mapper__.attrs
             if p.key not in ('contents', 'dataset')}
        d['modified_datetime'] = self.modified_datetime
        d['modified_ago'] = self.modified_ago
        return d | 0.005236 | 
| 
	def standardize_cell(cell,
                     to_primitive=False,
                     no_idealize=False,
                     symprec=1e-5,
                     angle_tolerance=-1.0):
    """Return standardized cell.
    Args:
        cell, symprec, angle_tolerance:
            See the docstring of get_symmetry.
        to_primitive:
            bool: If True, the standardized primitive cell is created.
        no_idealize:
            bool: If True,  it is disabled to idealize lengths and angles of
                  basis vectors and positions of atoms according to crystal
                  symmetry.
    Return:
        The standardized unit cell or primitive cell is returned by a tuple of
        (lattice, positions, numbers).
        If it fails, None is returned.
    """
    _set_no_error()
    lattice, _positions, _numbers, _ = _expand_cell(cell)
    if lattice is None:
        return None
    # Atomic positions have to be specified by scaled positions for spglib.
    num_atom = len(_positions)
    positions = np.zeros((num_atom * 4, 3), dtype='double', order='C')
    positions[:num_atom] = _positions
    numbers = np.zeros(num_atom * 4, dtype='intc')
    numbers[:num_atom] = _numbers
    num_atom_std = spg.standardize_cell(lattice,
                                        positions,
                                        numbers,
                                        num_atom,
                                        to_primitive * 1,
                                        no_idealize * 1,
                                        symprec,
                                        angle_tolerance)
    _set_error_message()
    if num_atom_std > 0:
        return (np.array(lattice.T, dtype='double', order='C'),
                np.array(positions[:num_atom_std], dtype='double', order='C'),
                np.array(numbers[:num_atom_std], dtype='intc'))
    else:
        return None | 0.00052 | 
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.
