text
stringlengths
78
104k
score
float64
0
0.18
def build(cls, data, *args, **kwargs): """ Constructs a classification or regression tree in a single batch by analyzing the given data. """ assert isinstance(data, Data) if data.is_continuous_class: fitness_func = gain_variance else: fitness_func = get_gain t = cls(data=data, *args, **kwargs) t._data = data t.sample_count = len(data) t._tree = create_decision_tree( data=data, attributes=data.attribute_names, class_attr=data.class_attribute_name, fitness_func=fitness_func, wrapper=t, ) return t
0.00431
def pb_id(self, pb_id: str): """Set the PB Id for this device.""" # FIXME(BMo) instead of creating the object to check if the PB exists # use a method on PB List? # ProcessingBlock(pb_id) self.set_state(DevState.ON) self._pb_id = pb_id
0.006803
def is_prime( n ): """Return True if x is prime, False otherwise. We use the Miller-Rabin test, as given in Menezes et al. p. 138. This test is not exact: there are composite values n for which it returns True. In testing the odd numbers from 10000001 to 19999999, about 66 composites got past the first test, 5 got past the second test, and none got past the third. Since factors of 2, 3, 5, 7, and 11 were detected during preliminary screening, the number of numbers tested by Miller-Rabin was (19999999 - 10000001)*(2/3)*(4/5)*(6/7) = 4.57 million. """ # (This is used to study the risk of false positives:) global miller_rabin_test_count miller_rabin_test_count = 0 if n <= smallprimes[-1]: if n in smallprimes: return True else: return False if gcd( n, 2*3*5*7*11 ) != 1: return False # Choose a number of iterations sufficient to reduce the # probability of accepting a composite below 2**-80 # (from Menezes et al. Table 4.4): t = 40 n_bits = 1 + int( math.log( n, 2 ) ) for k, tt in ( ( 100, 27 ), ( 150, 18 ), ( 200, 15 ), ( 250, 12 ), ( 300, 9 ), ( 350, 8 ), ( 400, 7 ), ( 450, 6 ), ( 550, 5 ), ( 650, 4 ), ( 850, 3 ), ( 1300, 2 ), ): if n_bits < k: break t = tt # Run the test t times: s = 0 r = n - 1 while ( r % 2 ) == 0: s = s + 1 r = r // 2 for i in range( t ): a = smallprimes[ i ] y = modular_exp( a, r, n ) if y != 1 and y != n-1: j = 1 while j <= s - 1 and y != n - 1: y = modular_exp( y, 2, n ) if y == 1: miller_rabin_test_count = i + 1 return False j = j + 1 if y != n-1: miller_rabin_test_count = i + 1 return False return True
0.036541
def create_from_table(cls, tab_e): """ Parameters ---------- tab_e : `~astropy.table.Table` EBOUNDS table. """ convert_sed_cols(tab_e) try: emin = np.array(tab_e['e_min'].to(u.MeV)) emax = np.array(tab_e['e_max'].to(u.MeV)) except: emin = np.array(tab_e['e_min']) emax = np.array(tab_e['e_max']) ne = len(emin) try: ref_dnde = np.array(tab_e['ref_dnde']) except: ref_dnde = np.ones((ne)) try: ref_flux = np.array(tab_e['ref_flux']) except: ref_flux = np.ones((ne)) try: ref_eflux = np.array(tab_e['ref_eflux']) except: ref_eflux = np.ones((ne)) try: ref_npred = np.array(tab_e['ref_npred']) except: ref_npred = np.ones((ne)) return cls(emin, emax, ref_dnde, ref_flux, ref_eflux, ref_npred)
0.007976
def fetch_official_missions(data_dir, start_date, end_date): """ :param data_dir: (str) directory in which the output file will be saved :param start_date: (datetime) first date of the range to be scraped :param end_date: (datetime) last date of the range to be scraped """ official_missions = OfficialMissionsDataset() df = official_missions.fetch(start_date, end_date) save_to_csv(df, data_dir, "official-missions") return df
0.002155
def tf_if(condition, a, b): """ Implements an if condition in tensorflow. :param condition: A boolean condition. :param a: Case a. :param b: Case b. :return: A if condition was true, b otherwise. """ int_condition = tf.to_float(tf.to_int64(condition)) return a * int_condition + (1 - int_condition) * b
0.002959
def get_from(input_file, property_names): ''' Reads a geojson and returns a list of value tuples, each value corresponding to a property in property_names. Args: input_file (str): File name. property_names: List of strings; each string is a property name. Returns: List of value tuples. ''' # get feature collections with open(input_file) as f: feature_collection = geojson.load(f) features = feature_collection['features'] values = [tuple([feat['properties'].get(x) for x in property_names]) for feat in features] return values
0.003155
def api_key_post(params, request_path, _async=False): """ from 火币demo, 构造post请求并调用post方法 :param params: :param request_path: :return: """ method = 'POST' timestamp = datetime.datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%S') params_to_sign = { 'AccessKeyId': ACCESS_KEY, 'SignatureMethod': 'HmacSHA256', 'SignatureVersion': '2', 'Timestamp': timestamp } host_url = TRADE_URL host_name = urllib.parse.urlparse(host_url).hostname host_name = host_name.lower() secret_sign = createSign(params_to_sign, method, host_name, request_path, SECRET_KEY) params_to_sign['Signature'] = secret_sign if PRIVATE_KEY: params_to_sign['PrivateSignature'] = createPrivateSign(secret_sign, PRIVATE_KEY) url = host_url + request_path + '?' + urllib.parse.urlencode(params_to_sign) return http_post_request(url, params, _async=_async)
0.004132
def _redirect_edge(self, u_id, v_id, new_v_id): """Redirect the layer to a new node. Change the edge originally from `u_id` to `v_id` into an edge from `u_id` to `new_v_id` while keeping all other property of the edge the same. """ layer_id = None for index, edge_tuple in enumerate(self.adj_list[u_id]): if edge_tuple[0] == v_id: layer_id = edge_tuple[1] self.adj_list[u_id][index] = (new_v_id, layer_id) self.layer_list[layer_id].output = self.node_list[new_v_id] break for index, edge_tuple in enumerate(self.reverse_adj_list[v_id]): if edge_tuple[0] == u_id: layer_id = edge_tuple[1] self.reverse_adj_list[v_id].remove(edge_tuple) break self.reverse_adj_list[new_v_id].append((u_id, layer_id)) for index, value in enumerate(self.layer_id_to_output_node_ids[layer_id]): if value == v_id: self.layer_id_to_output_node_ids[layer_id][index] = new_v_id break
0.003604
def append_data(self, data_buffer): """ Append data to this audio stream :Parameters: `data_buffer` : str, basestring, Bytes a buffer with a length multiple of (sample_width * channels) """ if len(data_buffer) % (self.sample_width * self.channels) != 0: raise ValueError("length of data_buffer must be a multiple of (sample_width * channels)") self._buffer += data_buffer self._left += len(data_buffer)
0.006073
def hash_func(name): """Hash the string using a hash algorithm found in tombkeeper/Shellcode_Template_in_C. """ ret = 0 for char in name: ret = ((ret << 5) + ret + ord(char)) & 0xffffffff return hex(ret)
0.004255
def _parse(self): """ Parse atomic data of the XML file. """ atom_counter = 0 structure_build = self.structure_builder residues = self._extract_residues() cur_model = None cur_chain = None structure_build.init_seg(' ') # There is never a SEGID present for r in residues: # New model? if cur_model != r['model']: cur_model = r['model'] try: structure_build.init_model(cur_model) except PDBConstructionException, message: self._handle_builder_exception(message, r) # New chain? if cur_chain != r['chain']: cur_chain = r['chain'] try: structure_build.init_chain(cur_chain) except PDBConstructionException, message: self._handle_builder_exception(message, r) # Create residue if r['name'] in AA_LIST: # Get residue type crudely since there is no HETATM / ATOM hetero_flag = ' ' elif r['name'] == 'WAT' or r['name'] == 'HOH': hetero_flag = 'W' else: hetero_flag = 'H' # Some terminal atoms are added at residue 0. This residue has a small number of atoms. # Protonated non-terminal glycine has 7 atoms. Any of these residues is smaller. # HETATMs have only a couple of atoms (3 for water for example) and they are ok. if (len(r['atoms']) >= 7) or (hetero_flag != " "): try: structure_build.init_residue(r['name'], hetero_flag, r['number'], r['icode']) except PDBConstructionException, message: self._handle_builder_exception(message, r) # Create Atoms for atom in r['atoms']: a = self._parse_atom(atom) if not sum(a['coord']): # e.g. HG of metal bound CYS coords are 0,0,0. continue try: atom_counter += 1 # fullname = name; altloc is empty; structure_build.init_atom(a['name'], a['coord'], a['bfactor'], a['occupancy'], ' ', a['name'], atom_counter, a['element'], hetero_flag) except PDBConstructionException, message: self._handle_builder_exception(message, r) elif len(r['atoms']) < 7: # Terminal Residues for atom in r['atoms']: a = self._parse_atom(atom) if not sum(a['coord']): # e.g. HG of metal bound CYS coords are 0,0,0. continue atom_counter += 1 ter_atom = Atom(a['name'], a['coord'], a['bfactor'], a['occupancy'], ' ', a['name'], atom_counter, a['element'], hetero_flag) if a['name'] in N_TERMINAL_ATOMS: inc_struct = self.structure_builder.get_structure() for model in inc_struct: for chain in model: if chain.id == r['chain']: for residue in chain: # Find First residue matching name if residue.resname == r['name']: residue.add(ter_atom) break elif a['name'] in C_TERMINAL_ATOMS: inc_struct = self.structure_builder.get_structure() c_ter = None for model in inc_struct: for chain in model: if chain.id == r['chain']: for residue in chain: # Find Last residue matching name if residue.resname == r['name']: c_ter = residue if c_ter: c_ter.add(ter_atom)
0.00938
def set_coords(self, x=0, y=0, z=0, t=0): """ set coords of agent in an arbitrary world """ self.coords = {} self.coords['x'] = x self.coords['y'] = y self.coords['z'] = z self.coords['t'] = t
0.007813
def _aload16(ins): ''' Loads a 16 bit value from a memory address If 2nd arg. start with '*', it is always treated as an indirect value. ''' output = _addr(ins.quad[2]) output.append('ld e, (hl)') output.append('inc hl') output.append('ld d, (hl)') output.append('ex de, hl') output.append('push hl') return output
0.002778
def InitLocCheck(self): """ make an interactive grid in which users can edit locations """ # if there is a location without a name, name it 'unknown' self.contribution.rename_item('locations', 'nan', 'unknown') # propagate lat/lon values from sites table self.contribution.get_min_max_lat_lon() # propagate lithologies & geologic classes from sites table self.contribution.propagate_cols_up(['lithologies', 'geologic_classes'], 'locations', 'sites') res = self.contribution.propagate_min_max_up() if cb.not_null(res): self.contribution.propagate_cols_up(['age_unit'], 'locations', 'sites') # set up frame self.panel = wx.Panel(self, style=wx.SIMPLE_BORDER) self.grid_frame = grid_frame3.GridFrame(self.contribution, self.WD, 'locations', 'locations', self.panel, main_frame=self.main_frame) # redefine default 'save & exit grid' button to go to next dialog instead self.grid_frame.exitButton.SetLabel('Save and continue') grid = self.grid_frame.grid self.grid_frame.Bind(wx.EVT_BUTTON, lambda event: self.onContinue(event, grid, self.InitAgeCheck), self.grid_frame.exitButton) # add back button self.backButton = wx.Button(self.grid_frame.panel, id=-1, label='Back', name='back_btn') self.Bind(wx.EVT_BUTTON, lambda event: self.onbackButton(event, self.InitSiteCheck), self.backButton) self.grid_frame.main_btn_vbox.Add(self.backButton, flag=wx.ALL, border=5) # re-do fit self.grid_frame.do_fit(None, min_size=self.min_size) # center self.grid_frame.Centre() return
0.004575
def select(self): """ Makes this fit the selected fit on the GUI that is it's parent (Note: may be moved into GUI soon) """ if self.GUI==None: return self.GUI.current_fit = self if self.tmax != None and self.tmin != None: self.GUI.update_bounds_boxes() if self.PCA_type != None: self.GUI.update_PCA_box() try: self.GUI.zijplot except AttributeError: self.GUI.draw_figure(self.GUI.s) self.GUI.fit_box.SetStringSelection(self.name) self.GUI.get_new_PCA_parameters(-1)
0.017094
def take_complement(list_, index_list): """ Returns items in ``list_`` not indexed by index_list """ mask = not_list(index_to_boolmask(index_list, len(list_))) return compress(list_, mask)
0.005
def set_time(self, timestamp): """ set Device time (pass datetime object) :param timestamp: python datetime object """ command = const.CMD_SET_TIME command_string = pack(b'I', self.__encode_time(timestamp)) cmd_response = self.__send_command(command, command_string) if cmd_response.get('status'): return True else: raise ZKErrorResponse("can't set time")
0.004425
def add_state(self): """Adds a new state""" sid = len(self.states) self.states.append(DFAState(sid)) return sid
0.013986
async def CreateModel(self, cloud_tag, config, credential, name, owner_tag, region): ''' cloud_tag : str config : typing.Mapping[str, typing.Any] credential : str name : str owner_tag : str region : str Returns -> typing.Union[_ForwardRef('Number'), str, typing.Sequence[~ModelMachineInfo], _ForwardRef('ModelMigrationStatus'), _ForwardRef('ModelSLAInfo'), _ForwardRef('EntityStatus'), typing.Sequence[~ModelUserInfo]] ''' # map input types to rpc msg _params = dict() msg = dict(type='ModelManager', request='CreateModel', version=5, params=_params) _params['cloud-tag'] = cloud_tag _params['config'] = config _params['credential'] = credential _params['name'] = name _params['owner-tag'] = owner_tag _params['region'] = region reply = await self.rpc(msg) return reply
0.004057
def get_websensors(self): """ Get sensors with defined tag as a dictionary of format ``{name: status}`` """ return {i.name: i.status for i in self.system.sensors if self.tag & i.tags}
0.018265
def json_clean(obj): """Clean an object to ensure it's safe to encode in JSON. Atomic, immutable objects are returned unmodified. Sets and tuples are converted to lists, lists are copied and dicts are also copied. Note: dicts whose keys could cause collisions upon encoding (such as a dict with both the number 1 and the string '1' as keys) will cause a ValueError to be raised. Parameters ---------- obj : any python object Returns ------- out : object A version of the input which will not cause an encoding error when encoded as JSON. Note that this function does not *encode* its inputs, it simply sanitizes it so that there will be no encoding errors later. Examples -------- >>> json_clean(4) 4 >>> json_clean(range(10)) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> sorted(json_clean(dict(x=1, y=2)).items()) [('x', 1), ('y', 2)] >>> sorted(json_clean(dict(x=1, y=2, z=[1,2,3])).items()) [('x', 1), ('y', 2), ('z', [1, 2, 3])] >>> json_clean(True) True """ # types that are 'atomic' and ok in json as-is. bool doesn't need to be # listed explicitly because bools pass as int instances atomic_ok = (unicode, int, types.NoneType) # containers that we need to convert into lists container_to_list = (tuple, set, types.GeneratorType) if isinstance(obj, float): # cast out-of-range floats to their reprs if math.isnan(obj) or math.isinf(obj): return repr(obj) return obj if isinstance(obj, atomic_ok): return obj if isinstance(obj, bytes): return obj.decode(DEFAULT_ENCODING, 'replace') if isinstance(obj, container_to_list) or ( hasattr(obj, '__iter__') and hasattr(obj, next_attr_name)): obj = list(obj) if isinstance(obj, list): return [json_clean(x) for x in obj] if isinstance(obj, dict): # First, validate that the dict won't lose data in conversion due to # key collisions after stringification. This can happen with keys like # True and 'true' or 1 and '1', which collide in JSON. nkeys = len(obj) nkeys_collapsed = len(set(map(str, obj))) if nkeys != nkeys_collapsed: raise ValueError('dict can not be safely converted to JSON: ' 'key collision would lead to dropped values') # If all OK, proceed by making the new dict that will be json-safe out = {} for k,v in obj.iteritems(): out[str(k)] = json_clean(v) return out # If we get here, we don't know how to handle the object, so we just get # its repr and return that. This will catch lambdas, open sockets, class # objects, and any other complicated contraption that json can't encode return repr(obj)
0.003117
def daynum_to_date(daynum, max_days=1000000): """ Convert a number of days to a date. If it's out of range, default to a max date. If it is not a number (or a numeric string), return None. Using a max_days of more than 2932896 (9999-12-31) will throw an exception if the specified daynum exceeds the max. :param daynum: A number of days since Jan 1, 1970 """ if daynum is None: return None try: daycount = int(daynum) except ValueError: return None if daycount > max_days: # Using default: some time in the 48th century, clearly bogus. daycount = max_days return date(1970, 1, 1) + timedelta(daycount)
0.001458
def append_new_text(destination, text, join_str=None): """ This method provides the functionality of adding text appropriately underneath the destination node. This will be either to the destination's text attribute or to the tail attribute of the last child. """ if join_str is None: join_str = ' ' if len(destination) > 0: # Destination has children last = destination[-1] if last.tail is None: # Last child has no tail last.tail = text else: # Last child has a tail last.tail = join_str.join([last.tail, text]) else: # Destination has no children if destination.text is None: # Destination has no text destination.text = text else: # Destination has a text destination.text = join_str.join([destination.text, text])
0.001174
def get_modes(self, zone): """Returns the set of modes the device can be assigned.""" self._populate_full_data() device = self._get_device(zone) return device['thermostat']['allowedModes']
0.009091
def nearby(self, expand=50): """ Returns a new Region that includes the nearby neighbourhood of the the current region. The new region is defined by extending the current region's dimensions all directions by range number of pixels. The center of the new region remains the same. """ return Region( self.x-expand, self.y-expand, self.w+(2*expand), self.h+(2*expand)).clipRegionToScreen()
0.008264
def get_variable_value_for_variation(self, variable, variation): """ Get the variable value for the given variation. Args: variable: The Variable for which we are getting the value. variation: The Variation for which we are getting the variable value. Returns: The variable value or None if any of the inputs are invalid. """ if not variable or not variation: return None if variation.id not in self.variation_variable_usage_map: self.logger.error('Variation with ID "%s" is not in the datafile.' % variation.id) return None # Get all variable usages for the given variation variable_usages = self.variation_variable_usage_map[variation.id] # Find usage in given variation variable_usage = None if variable_usages: variable_usage = variable_usages.get(variable.id) if variable_usage: variable_value = variable_usage.value self.logger.info('Value for variable "%s" for variation "%s" is "%s".' % ( variable.key, variation.key, variable_value )) else: variable_value = variable.defaultValue self.logger.info('Variable "%s" is not used in variation "%s". Assigning default value "%s".' % ( variable.key, variation.key, variable_value )) return variable_value
0.008915
def broadcast_event(self, event, *args): """ This is sent to all in the sockets in this particular Namespace, including itself. """ pkt = dict(type="event", name=event, args=args, endpoint=self.ns_name) for sessid, socket in six.iteritems(self.socket.server.sockets): socket.send_packet(pkt)
0.00489
def fetch_arc_errors(self): ''' Evaluates the current tree of the arc and provides a list of errors that the user should correct. ''' error_list = [] hnode = self.validate_first_element() if hnode: error_list.append({'hook_error': hnode}) rnode = self.validate_last_element() if rnode: error_list.append({'reso_error': rnode}) try: self.validate_generations() except ArcGenerationError as ag: error_list.append({'generation_error': str(ag)}) milecheck = self.validate_milestones() if milecheck: error_list.append({'mseq_error': milecheck}) return error_list
0.004115
def add_at(self, index: int, requester: int, track: dict): """ Adds a track at a specific index in the queue. """ self.queue.insert(min(index, len(self.queue) - 1), AudioTrack().build(track, requester))
0.013636
def _validate_volumes(input_volumes): '''Check input_volumes contains a valid list of volumes. Parameters ---------- input_volumes : list list of volume values. Castable to numbers. ''' if not (input_volumes is None or isinstance(input_volumes, list)): raise TypeError("input_volumes must be None or a list.") if isinstance(input_volumes, list): for vol in input_volumes: if not core.is_number(vol): raise ValueError( "Elements of input_volumes must be numbers: found {}" .format(vol) )
0.0016
def mad(y_true, y_pred): """Median absolute deviation """ y_true, y_pred = _mask_nan(y_true, y_pred) return np.mean(np.abs(y_true - y_pred))
0.00641
def load_SUEWS_Forcing_met_df_pattern(path_input, forcingfile_met_pattern): """Short summary. Parameters ---------- forcingfile_met_pattern : type Description of parameter `forcingfile_met_pattern`. Returns ------- type Description of returned object. """ # list of met forcing files path_input = path_input.resolve() # forcingfile_met_pattern = os.path.abspath(forcingfile_met_pattern) list_file_MetForcing = sorted([ f for f in path_input.glob(forcingfile_met_pattern) if 'ESTM' not in f.name]) # print(forcingfile_met_pattern) # print(list_file_MetForcing) # load raw data # read in forcing with dask.dataframe in parallel dd_forcing_met = dd.read_csv( list_file_MetForcing, delim_whitespace=True, comment='!', error_bad_lines=True ) # convert to normal pandas dataframe df_forcing_met = dd_forcing_met.compute() # `drop_duplicates` in case some duplicates mixed df_forcing_met = df_forcing_met.drop_duplicates() col_suews_met_forcing = [ 'iy', 'id', 'it', 'imin', 'qn', 'qh', 'qe', 'qs', 'qf', 'U', 'RH', 'Tair', 'pres', 'rain', 'kdown', 'snow', 'ldown', 'fcld', 'Wuh', 'xsmd', 'lai', 'kdiff', 'kdir', 'wdir' ] # rename these columns to match variables via the driver interface df_forcing_met.columns = col_suews_met_forcing # convert unit from kPa to hPa df_forcing_met['pres'] *= 10 # add `isec` for WRF-SUEWS interface df_forcing_met['isec'] = 0 # set correct data types df_forcing_met[['iy', 'id', 'it', 'imin', 'isec']] = df_forcing_met[[ 'iy', 'id', 'it', 'imin', 'isec']].astype(np.int64) # set timestamp as index idx_dt = pd.date_range( *df_forcing_met.iloc[[0, -1], :4].astype(int).astype(str).apply( lambda ser: ser.str.cat(sep=' '), axis=1).map( lambda dt: pd.Timestamp.strptime(dt, '%Y %j %H %M')), periods=df_forcing_met.shape[0]) df_forcing_met = df_forcing_met.set_index(idx_dt) return df_forcing_met
0.00047
def __regkey_value(self, path, name='', start_key=None): r'''Return the data of value mecabrc at MeCab HKEY node. On Windows, the path to the mecabrc as set in the Windows Registry is used to deduce the path to libmecab.dll. Returns: The full path to the mecabrc on Windows. Raises: WindowsError: A problem was encountered in trying to locate the value mecabrc at HKEY_CURRENT_USER\Software\MeCab. ''' if sys.version < '3': import _winreg as reg else: import winreg as reg def _fn(path, name='', start_key=None): if isinstance(path, str): path = path.split('\\') if start_key is None: start_key = getattr(reg, path[0]) return _fn(path[1:], name, start_key) else: subkey = path.pop(0) with reg.OpenKey(start_key, subkey) as handle: if path: return _fn(path, name, handle) else: desc, i = None, 0 while not desc or desc[0] != name: desc = reg.EnumValue(handle, i) i += 1 return desc[1] return _fn(path, name, start_key)
0.001458
def makeImages(self): """Make spiral images in sectors and steps. Plain, reversed, sectorialized, negative sectorialized outline, outline reversed, lonely only nodes, only edges, both """ # make layout self.makeLayout() self.setAgraph() # make function that accepts a mode, a sector # and nodes and edges True and False self.plotGraph() self.plotGraph("reversed",filename="tgraphR.png") agents=n.concatenate(self.np.sectorialized_agents__) for i, sector in enumerate(self.np.sectorialized_agents__): self.plotGraph("plain", sector,"sector{:02}.png".format(i)) self.plotGraph("reversed",sector,"sector{:02}R.png".format(i)) self.plotGraph("plain", n.setdiff1d(agents,sector),"sector{:02}N.png".format(i)) self.plotGraph("reversed",n.setdiff1d(agents,sector),"sector{:02}RN.png".format(i)) self.plotGraph("plain", [],"BLANK.png")
0.014881
def _parse_list(self, text, i): """Parse a list from source text starting at i.""" res = [] end_match = self.end_list_re.match(text, i) old_current_type = self.current_type while not end_match: list_item, i = self._parse(text, i) res.append(list_item) end_match = self.end_list_re.match(text, i) if not end_match: m = self.list_delim_re.match(text, i) if not m: self._fail("Missing delimiter in list before content", text, i) parsed = m.group(0) i += len(parsed) self.current_type = old_current_type parsed = end_match.group(0) i += len(parsed) return res, i
0.003896
def iou_coe(output, target, threshold=0.5, axis=(1, 2, 3), smooth=1e-5): """Non-differentiable Intersection over Union (IoU) for comparing the similarity of two batch of data, usually be used for evaluating binary image segmentation. The coefficient between 0 to 1, and 1 means totally match. Parameters ----------- output : tensor A batch of distribution with shape: [batch_size, ....], (any dimensions). target : tensor The target distribution, format the same with `output`. threshold : float The threshold value to be true. axis : tuple of integer All dimensions are reduced, default ``(1,2,3)``. smooth : float This small value will be added to the numerator and denominator, see ``dice_coe``. Notes ------ - IoU cannot be used as training loss, people usually use dice coefficient for training, IoU and hard-dice for evaluating. """ pre = tf.cast(output > threshold, dtype=tf.float32) truth = tf.cast(target > threshold, dtype=tf.float32) inse = tf.reduce_sum(tf.multiply(pre, truth), axis=axis) # AND union = tf.reduce_sum(tf.cast(tf.add(pre, truth) >= 1, dtype=tf.float32), axis=axis) # OR # old axis=[0,1,2,3] # epsilon = 1e-5 # batch_iou = inse / (union + epsilon) # new haodong batch_iou = (inse + smooth) / (union + smooth) iou = tf.reduce_mean(batch_iou, name='iou_coe') return iou
0.00417
def from_cli(opt, dyn_range_fac=1, precision='single', inj_filter_rejector=None): """Parses the CLI options related to strain data reading and conditioning. Parameters ---------- opt : object Result of parsing the CLI with OptionParser, or any object with the required attributes (gps-start-time, gps-end-time, strain-high-pass, pad-data, sample-rate, (frame-cache or frame-files), channel-name, fake-strain, fake-strain-seed, fake-strain-from-file, gating_file). dyn_range_fac : {float, 1}, optional A large constant to reduce the dynamic range of the strain. precision : string Precision of the returned strain ('single' or 'double'). inj_filter_rejector : InjFilterRejector instance; optional, default=None If given send the InjFilterRejector instance to the inject module so that it can store a reduced representation of injections if necessary. Returns ------- strain : TimeSeries The time series containing the conditioned strain data. """ gating_info = {} if opt.frame_cache or opt.frame_files or opt.frame_type: if opt.frame_cache: frame_source = opt.frame_cache if opt.frame_files: frame_source = opt.frame_files logging.info("Reading Frames") if hasattr(opt, 'frame_sieve') and opt.frame_sieve: sieve = opt.frame_sieve else: sieve = None if opt.frame_type: strain = pycbc.frame.query_and_read_frame( opt.frame_type, opt.channel_name, start_time=opt.gps_start_time-opt.pad_data, end_time=opt.gps_end_time+opt.pad_data, sieve=sieve) else: strain = pycbc.frame.read_frame( frame_source, opt.channel_name, start_time=opt.gps_start_time-opt.pad_data, end_time=opt.gps_end_time+opt.pad_data, sieve=sieve) if opt.zpk_z and opt.zpk_p and opt.zpk_k: logging.info("Highpass Filtering") strain = highpass(strain, frequency=opt.strain_high_pass) logging.info("Applying zpk filter") z = numpy.array(opt.zpk_z) p = numpy.array(opt.zpk_p) k = float(opt.zpk_k) strain = filter_zpk(strain.astype(numpy.float64), z, p, k) if opt.normalize_strain: logging.info("Dividing strain by constant") l = opt.normalize_strain strain = strain / l if opt.injection_file: logging.info("Applying injections") injector = InjectionSet(opt.injection_file) injections = \ injector.apply(strain, opt.channel_name[0:2], distance_scale=opt.injection_scale_factor, inj_filter_rejector=inj_filter_rejector) if opt.sgburst_injection_file: logging.info("Applying sine-Gaussian burst injections") injector = SGBurstInjectionSet(opt.sgburst_injection_file) injector.apply(strain, opt.channel_name[0:2], distance_scale=opt.injection_scale_factor) logging.info("Highpass Filtering") strain = highpass(strain, frequency=opt.strain_high_pass) if precision == 'single': logging.info("Converting to float32") strain = (strain * dyn_range_fac).astype(pycbc.types.float32) elif precision == "double": logging.info("Converting to float64") strain = (strain * dyn_range_fac).astype(pycbc.types.float64) else: raise ValueError("Unrecognized precision {}".format(precision)) if opt.gating_file is not None: logging.info("Gating times contained in gating file") gate_params = numpy.loadtxt(opt.gating_file) if len(gate_params.shape) == 1: gate_params = [gate_params] strain = gate_data(strain, gate_params) gating_info['file'] = \ [gp for gp in gate_params \ if (gp[0] + gp[1] + gp[2] >= strain.start_time) \ and (gp[0] - gp[1] - gp[2] <= strain.end_time)] if opt.autogating_threshold is not None: # the + 0 is for making a copy glitch_times = detect_loud_glitches( strain + 0., threshold=opt.autogating_threshold, cluster_window=opt.autogating_cluster, low_freq_cutoff=opt.strain_high_pass, high_freq_cutoff=opt.sample_rate/2, corrupt_time=opt.pad_data+opt.autogating_pad) gate_params = [[gt, opt.autogating_width, opt.autogating_taper] \ for gt in glitch_times] if len(glitch_times) > 0: logging.info('Autogating at %s', ', '.join(['%.3f' % gt for gt in glitch_times])) strain = gate_data(strain, gate_params) gating_info['auto'] = gate_params logging.info("Resampling data") strain = resample_to_delta_t(strain, 1.0/opt.sample_rate, method='ldas') logging.info("Highpass Filtering") strain = highpass(strain, frequency=opt.strain_high_pass) if hasattr(opt, 'witness_frame_type') and opt.witness_frame_type: stilde = strain.to_frequencyseries() import h5py tf_file = h5py.File(opt.witness_tf_file) for key in tf_file: witness = pycbc.frame.query_and_read_frame(opt.witness_frame_type, str(key), start_time=strain.start_time, end_time=strain.end_time) witness = (witness * dyn_range_fac).astype(strain.dtype) tf = pycbc.types.load_frequencyseries(opt.witness_tf_file, group=key) tf = tf.astype(stilde.dtype) flen = int(opt.witness_filter_length * strain.sample_rate) tf = pycbc.psd.interpolate(tf, stilde.delta_f) tf_time = tf.to_timeseries() window = Array(numpy.hanning(flen*2), dtype=strain.dtype) tf_time[0:flen] *= window[flen:] tf_time[len(tf_time)-flen:] *= window[0:flen] tf = tf_time.to_frequencyseries() kmax = min(len(tf), len(stilde)-1) stilde[:kmax] -= tf[:kmax] * witness.to_frequencyseries()[:kmax] strain = stilde.to_timeseries() logging.info("Remove Padding") start = opt.pad_data*opt.sample_rate end = len(strain)-opt.sample_rate*opt.pad_data strain = strain[start:end] if opt.fake_strain or opt.fake_strain_from_file: logging.info("Generating Fake Strain") if not opt.low_frequency_cutoff: raise ValueError('Please provide low frequency cutoff to ' 'generate a fake strain') duration = opt.gps_end_time - opt.gps_start_time tlen = duration * opt.sample_rate pdf = 1.0/128 plen = int(opt.sample_rate / pdf) / 2 + 1 if opt.fake_strain_from_file: logging.info("Reading ASD from file") strain_psd = pycbc.psd.from_txt(opt.fake_strain_from_file, plen, pdf, opt.low_frequency_cutoff, is_asd_file=True) elif opt.fake_strain != 'zeroNoise': logging.info("Making PSD for strain") strain_psd = pycbc.psd.from_string(opt.fake_strain, plen, pdf, opt.low_frequency_cutoff) if opt.fake_strain == 'zeroNoise': logging.info("Making zero-noise time series") strain = TimeSeries(pycbc.types.zeros(tlen), delta_t=1.0/opt.sample_rate, epoch=opt.gps_start_time) else: logging.info("Making colored noise") from pycbc.noise.reproduceable import colored_noise lowfreq = opt.low_frequency_cutoff / 2. strain = colored_noise(strain_psd, opt.gps_start_time, opt.gps_end_time, seed=opt.fake_strain_seed, low_frequency_cutoff=lowfreq) strain = resample_to_delta_t(strain, 1.0/opt.sample_rate) if not opt.channel_name and (opt.injection_file \ or opt.sgburst_injection_file): raise ValueError('Please provide channel names with the format ' 'ifo:channel (e.g. H1:CALIB-STRAIN) to inject ' 'simulated signals into fake strain') if opt.injection_file: logging.info("Applying injections") injector = InjectionSet(opt.injection_file) injections = \ injector.apply(strain, opt.channel_name[0:2], distance_scale=opt.injection_scale_factor, inj_filter_rejector=inj_filter_rejector) if opt.sgburst_injection_file: logging.info("Applying sine-Gaussian burst injections") injector = SGBurstInjectionSet(opt.sgburst_injection_file) injector.apply(strain, opt.channel_name[0:2], distance_scale=opt.injection_scale_factor) if precision == 'single': logging.info("Converting to float32") strain = (dyn_range_fac * strain).astype(pycbc.types.float32) elif precision == 'double': logging.info("Converting to float64") strain = (dyn_range_fac * strain).astype(pycbc.types.float64) else: raise ValueError("Unrecognized precision {}".format(precision)) if opt.taper_data: logging.info("Tapering data") # Use auto-gating stuff for this, a one-sided gate is a taper pd_taper_window = opt.taper_data gate_params = [(strain.start_time, 0., pd_taper_window)] gate_params.append( (strain.end_time, 0., pd_taper_window) ) gate_data(strain, gate_params) if opt.injection_file: strain.injections = injections strain.gating_info = gating_info return strain
0.002198
def threaded_per_region(q, params): """ Helper for multithreading on a per-region basis :param q: :param params: :return: """ while True: try: params['region'] = q.get() method = params['method'] method(params) except Exception as e: printException(e) finally: q.task_done()
0.002577
def wif(self, s): """ Parse a WIF. Return a :class:`Key <pycoin.key.Key>` or None. """ data = self.parse_b58_hashed(s) if data is None or not data.startswith(self._wif_prefix): return None data = data[len(self._wif_prefix):] is_compressed = (len(data) > 32) if is_compressed: data = data[:-1] se = from_bytes_32(data) return self._network.keys.private(se, is_compressed=is_compressed)
0.004032
def get_vlan_brief_output_vlan_vlan_name(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") get_vlan_brief = ET.Element("get_vlan_brief") config = get_vlan_brief output = ET.SubElement(get_vlan_brief, "output") vlan = ET.SubElement(output, "vlan") vlan_id_key = ET.SubElement(vlan, "vlan-id") vlan_id_key.text = kwargs.pop('vlan_id') vlan_name = ET.SubElement(vlan, "vlan-name") vlan_name.text = kwargs.pop('vlan_name') callback = kwargs.pop('callback', self._callback) return callback(config)
0.003221
def write_buffers(self, conn, locked=True): ''' Write any buffer headers and payloads to the given connection. Args: conn (object) : May be any object with a ``write_message`` method. Typically, a Tornado ``WSHandler`` or ``WebSocketClientConnection`` locked (bool) : Returns: int : number of bytes sent ''' if conn is None: raise ValueError("Cannot write_buffers to connection None") sent = 0 for header, payload in self._buffers: yield conn.write_message(header, locked=locked) yield conn.write_message(payload, binary=True, locked=locked) sent += (len(header) + len(payload)) raise gen.Return(sent)
0.002548
def query_list_of_words(target_word, list_of_words, edit_distance=1): """ Checks whether a target word is within editing distance of any one in a set of keywords. Inputs: - target_word: A string containing the word we want to search in a list. - list_of_words: A python list of words. - edit_distance: For larger words, we also check for similar words based on edit_distance. Outputs: - new_list_of_words: This is the input list of words minus any found keywords. - found_list_of_words: This is the list of words that are within edit distance of the target word. """ # Initialize lists new_list_of_words = list() found_list_of_words = list() append_left_keyword = new_list_of_words.append append_found_keyword = found_list_of_words.append # Iterate over the list of words for word in list_of_words: if len(word) > 6: effective_edit_distance = edit_distance else: effective_edit_distance = 0 # No edit distance for small words. if abs(len(word)-len(target_word)) <= effective_edit_distance: if nltk.edit_distance(word, target_word) <= effective_edit_distance: append_found_keyword(word) else: append_left_keyword(word) else: append_left_keyword(word) return new_list_of_words, found_list_of_words
0.00495
def is_title(p): """ Certain p tags are denoted as ``Title`` tags. This function will return True if the passed in p tag is considered a title. """ w_namespace = get_namespace(p, 'w') styles = p.xpath('.//w:pStyle', namespaces=p.nsmap) if len(styles) == 0: return False style = styles[0] return style.get('%sval' % w_namespace) == 'Title'
0.002618
def _setup_metric_group_values(self): """ Return the list of MetricGroupValues objects for this metrics response, by processing its metrics response string. The lines in the metrics response string are:: MetricsResponse: MetricsGroup{0,*} <emptyline> a third empty line at the end MetricsGroup: MetricsGroupName ObjectValues{0,*} <emptyline> a second empty line after each MG ObjectValues: ObjectURI Timestamp ValueRow{1,*} <emptyline> a first empty line after this blk """ mg_defs = self._metrics_context.metric_group_definitions metric_group_name = None resource_uri = None dt_timestamp = None object_values = None metric_group_values = list() state = 0 for mr_line in self._metrics_response_str.splitlines(): if state == 0: if object_values is not None: # Store the result from the previous metric group mgv = MetricGroupValues(metric_group_name, object_values) metric_group_values.append(mgv) object_values = None if mr_line == '': # Skip initial (or trailing) empty lines pass else: # Process the next metrics group metric_group_name = mr_line.strip('"') # No " or \ inside assert metric_group_name in mg_defs m_defs = mg_defs[metric_group_name].metric_definitions object_values = list() state = 1 elif state == 1: if mr_line == '': # There are no (or no more) ObjectValues items in this # metrics group state = 0 else: # There are ObjectValues items resource_uri = mr_line.strip('"') # No " or \ inside state = 2 elif state == 2: # Process the timestamp assert mr_line != '' try: dt_timestamp = datetime_from_timestamp(int(mr_line)) except ValueError: # Sometimes, the returned epoch timestamp values are way # too large, e.g. 3651584404810066 (which would translate # to the year 115791 A.D.). Python datetime supports # up to the year 9999. We circumvent this issue by # simply using the current date&time. # TODO: Remove the circumvention for too large timestamps. dt_timestamp = datetime.now(pytz.utc) state = 3 elif state == 3: if mr_line != '': # Process the metric values in the ValueRow line str_values = mr_line.split(',') metrics = dict() for m_name in m_defs: m_def = m_defs[m_name] m_type = m_def.type m_value_str = str_values[m_def.index] m_value = _metric_value(m_value_str, m_type) metrics[m_name] = m_value ov = MetricObjectValues( self._client, mg_defs[metric_group_name], resource_uri, dt_timestamp, metrics) object_values.append(ov) # stay in this state, for more ValueRow lines else: # On the empty line after the last ValueRow line state = 1 return metric_group_values
0.000506
def whois(ip_address): """Whois client for Python""" whois_ip = str(ip_address) try: query = socket.gethostbyname(whois_ip) except Exception: query = whois_ip s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect(("whois.ripe.net", 43)) s.send(query.encode("utf8") + b"\r\n") answer = b"" while True: d = s.recv(4096) answer += d if not d: break s.close() ignore_tag = b"remarks:" # ignore all lines starting with the ignore_tag lines = [line for line in answer.split(b"\n") if not line or (line and not line.startswith(ignore_tag))] # noqa: E501 # remove empty lines at the bottom for i in range(1, len(lines)): if not lines[-i].strip(): del lines[-i] else: break return b"\n".join(lines[3:])
0.001163
def bbox(self, out_crs=None): """ Return data bounding box. Parameters ---------- out_crs : ``rasterio.crs.CRS`` rasterio CRS object (default: CRS of process pyramid) Returns ------- bounding box : geometry Shapely geometry object """ return reproject_geometry( self.process.config.area_at_zoom(), src_crs=self.process.config.process_pyramid.crs, dst_crs=self.pyramid.crs if out_crs is None else out_crs )
0.003604
def sitetree_breadcrumbs(parser, token): """Parses sitetree_breadcrumbs tag parameters. Two notation types are possible: 1. Two arguments: {% sitetree_breadcrumbs from "mytree" %} Used to render breadcrumb path for "mytree" site tree. 2. Four arguments: {% sitetree_breadcrumbs from "mytree" template "sitetree/mycrumb.html" %} Used to render breadcrumb path for "mytree" site tree using specific template "sitetree/mycrumb.html" """ tokens = token.split_contents() use_template = detect_clause(parser, 'template', tokens) tokens_num = len(tokens) if tokens_num == 3: tree_alias = parser.compile_filter(tokens[2]) return sitetree_breadcrumbsNode(tree_alias, use_template) else: raise template.TemplateSyntaxError( '%r tag requires two arguments. E.g. {%% sitetree_breadcrumbs from "mytree" %%}.' % tokens[0])
0.003155
def get_fqn(base_fqn, delimiter, name=None): """Return the fully qualified name of an object within this context. If the name passed already appears to be a fully qualified name, it will be returned with no further processing. """ if name and name.startswith("%s%s" % (base_fqn, delimiter)): return name return delimiter.join([_f for _f in [base_fqn, name] if _f])
0.002506
def iter_content(self, chunk_size=1024): """Return the file content as an iterable stream.""" r = self._session.get(self.content, stream=True) return r.iter_content(chunk_size)
0.01
def get(self, key, default=None): """Returns a token by text or local ID, with a default. A given text image may be associated with more than one symbol ID. This will return the first definition. Note: User defined symbol IDs are always one-based. Symbol zero is a special symbol that always has no text. Args: key (unicode | int): The key to lookup. default(Optional[SymbolToken]): The default to return if the key is not found Returns: SymbolToken: The token associated with the key or the default if it doesn't exist. """ if isinstance(key, six.text_type): return self.__mapping.get(key, None) if not isinstance(key, int): raise TypeError('Key must be int or Unicode sequence.') # TODO determine if $0 should be returned for all symbol tables. if key == 0: return SYMBOL_ZERO_TOKEN # Translate one-based SID to zero-based intern table index = key - 1 if index < 0 or key > len(self): return default return self.__symbols[index]
0.005177
def get_parent_families(self, family_id): """Gets the parent families of the given ``id``. arg: family_id (osid.id.Id): the ``Id`` of the ``Family`` to query return: (osid.relationship.FamilyList) - the parent families of the ``id`` raise: NotFound - a ``Family`` identified by ``Id is`` not found raise: NullArgument - ``family_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.BinHierarchySession.get_parent_bins if self._catalog_session is not None: return self._catalog_session.get_parent_catalogs(catalog_id=family_id) return FamilyLookupSession( self._proxy, self._runtime).get_families_by_ids( list(self.get_parent_family_ids(family_id)))
0.002893
def is_venv(directory, executable='python'): """ :param directory: base directory of python environment """ path=os.path.join(directory, 'bin', executable) return os.path.isfile(path)
0.009852
def hosts_append(hostsfile='/etc/hosts', ip_addr=None, entries=None): ''' Append a single line to the /etc/hosts file. CLI Example: .. code-block:: bash salt '*' dnsutil.hosts_append /etc/hosts 127.0.0.1 ad1.yuk.co,ad2.yuk.co ''' host_list = entries.split(',') hosts = parse_hosts(hostsfile=hostsfile) if ip_addr in hosts: for host in host_list: if host in hosts[ip_addr]: host_list.remove(host) if not host_list: return 'No additional hosts were added to {0}'.format(hostsfile) append_line = '\n{0} {1}'.format(ip_addr, ' '.join(host_list)) with salt.utils.files.fopen(hostsfile, 'a') as fp_: fp_.write(salt.utils.stringutils.to_str(append_line)) return 'The following line was added to {0}:{1}'.format(hostsfile, append_line)
0.00222
def get_shake_info(self, ticket): """ 获取摇周边的设备及用户信息 详情请参考 http://mp.weixin.qq.com/wiki/3/34904a5db3d0ec7bb5306335b8da1faf.html :param ticket: 摇周边业务的ticket,可在摇到的URL中得到,ticket生效时间为30分钟 :return: 设备及用户信息 """ res = self._post( 'shakearound/user/getshakeinfo', data={ 'ticket': ticket }, result_processor=lambda x: x['data'] ) return res
0.004202
async def clear(self): """Manually expire all sessions in the pool.""" for session in list(self.values()): if session.state != STATE_CLOSED: await session._remote_closed() self.sessions.clear() super(SessionManager, self).clear()
0.006897
def text_to_speech(text, synthesizer, synth_args, sentence_break): """ Converts given text to a pydub AudioSegment using a specified speech synthesizer. At the moment, IBM Watson's text-to-speech API is the only available synthesizer. :param text: The text that will be synthesized to audio. :param synthesizer: The text-to-speech synthesizer to use. At the moment, 'watson' is the only available input. :param synth_args: A dictionary of arguments to pass to the synthesizer. Parameters for authorization (username/password) should be passed here. :param sentence_break: A string that identifies a sentence break or another logical break in the text. Necessary for text longer than 50 words. Defaults to '. '. """ if len(text.split()) < 50: if synthesizer == 'watson': with open('.temp.wav', 'wb') as temp: temp.write(watson_request(text=text, synth_args=synth_args).content) response = AudioSegment.from_wav('.temp.wav') os.remove('.temp.wav') return response else: raise ValueError('"' + synthesizer + '" synthesizer not found.') else: segments = [] for i, sentence in enumerate(text.split(sentence_break)): if synthesizer == 'watson': with open('.temp' + str(i) + '.wav', 'wb') as temp: temp.write(watson_request(text=sentence, synth_args=synth_args).content) segments.append(AudioSegment.from_wav('.temp' + str(i) + '.wav')) os.remove('.temp' + str(i) + '.wav') else: raise ValueError('"' + synthesizer + '" synthesizer not found.') response = segments[0] for segment in segments[1:]: response = response + segment return response
0.002644
def _filter_version_specific_options(self, tmos_ver, **kwargs): '''Filter version-specific optional parameters Some optional parameters only exist in v12.1.0 and greater, filter these out for earlier versions to allow backward comatibility. ''' if LooseVersion(tmos_ver) < LooseVersion('12.1.0'): for k, parms in self._meta_data['optional_parameters'].items(): for r in kwargs.get(k, []): for parm in parms: value = r.pop(parm, None) if value is not None: logger.info( "Policy parameter %s:%s is invalid for v%s", k, parm, tmos_ver)
0.002625
def intersects(self, b): """ Return True if a part of the two bounds overlaps. """ return max(self.x, b.x) < min(self.x+self.width, b.x+b.width) \ and max(self.y, b.y) < min(self.y+self.height, b.y+b.height)
0.012195
def reset_stats_history(self): """Reset the stats history (dict of GlancesAttribute).""" if self.history_enable(): reset_list = [a['name'] for a in self.get_items_history_list()] logger.debug("Reset history for plugin {} (items: {})".format(self.plugin_name, reset_list)) self.stats_history.reset()
0.008571
def check_array(array, accept_sparse=None, dtype="numeric", order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, ensure_min_samples=1, ensure_min_features=1, warn_on_dtype=False): """Input validation on an array, list, sparse matrix or similar. By default, the input is converted to an at least 2nd numpy array. If the dtype of the array is object, attempt converting to float, raising on failure. Parameters ---------- array : object Input object to check / convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type, list of types or None (default="numeric") Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. ensure_min_samples : int (default=1) Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check. ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when the input data has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. warn_on_dtype : boolean (default=False) Raise DataConversionWarning if the dtype of the input data structure does not match the requested dtype, causing a memory copy. estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages. Returns ------- X_converted : object The converted and validated X. """ if isinstance(accept_sparse, str): accept_sparse = [accept_sparse] # store whether originally we wanted numeric dtype dtype_numeric = dtype == "numeric" dtype_orig = getattr(array, "dtype", None) if not hasattr(dtype_orig, 'kind'): # not a data type (e.g. a column named dtype in a pandas DataFrame) dtype_orig = None if dtype_numeric: if dtype_orig is not None and dtype_orig.kind == "O": # if input is object, convert to float. dtype = np.float64 else: dtype = None if isinstance(dtype, (list, tuple)): if dtype_orig is not None and dtype_orig in dtype: # no dtype conversion required dtype = None else: # dtype conversion required. Let's select the first element of the # list of accepted types. dtype = dtype[0] if sp.issparse(array): array = _ensure_sparse_format(array, accept_sparse, dtype, copy, force_all_finite) else: array = np.array(array, dtype=dtype, order=order, copy=copy) if ensure_2d: if array.ndim == 1: if ensure_min_samples >= 2: raise ValueError("%s expects at least 2 samples provided " "in a 2 dimensional array-like input" % estimator_name) warnings.warn( "Passing 1d arrays as data is deprecated in 0.17 and will" "raise ValueError in 0.19. Reshape your data either using " "X.reshape(-1, 1) if your data has a single feature or " "X.reshape(1, -1) if it contains a single sample.", DeprecationWarning) array = np.atleast_2d(array) # To ensure that array flags are maintained array = np.array(array, dtype=dtype, order=order, copy=copy) # make sure we acually converted to numeric: if dtype_numeric and array.dtype.kind == "O": array = array.astype(np.float64) if not allow_nd and array.ndim >= 3: raise ValueError("Found array with dim %d. expected <= 2." % (array.ndim)) if force_all_finite: _assert_all_finite(array) shape_repr = _shape_repr(array.shape) if ensure_min_samples > 0: n_samples = _num_samples(array) if n_samples < ensure_min_samples: raise ValueError("Found array with %d sample(s) (shape=%s) while a" " minimum of %d is required." % (n_samples, shape_repr, ensure_min_samples)) if ensure_min_features > 0 and array.ndim == 2: n_features = array.shape[1] if n_features < ensure_min_features: raise ValueError("Found array with %d feature(s) (shape=%s) while" " a minimum of %d is required." % (n_features, shape_repr, ensure_min_features)) if warn_on_dtype and dtype_orig is not None and array.dtype != dtype_orig: msg = ("Data with input dtype %s was converted to %s." % (dtype_orig, array.dtype)) warnings.warn(msg, DataConversionWarning) return array
0.000164
def start(self): ''' Start the fuzzing session If fuzzer already running, it will return immediatly ''' if self._started: self.logger.warning('called while fuzzer is running. ignoring.') return self._started = True assert(self.model) assert(self.user_interface) assert(self.target) if self._load_session(): self._check_session_validity() self._set_test_ranges( self.session_info.start_index, self.session_info.end_index, self.session_info.test_list_str ) else: self.session_info.kitty_version = _get_current_version() # TODO: write hash for high level self.session_info.data_model_hash = self.model.hash() # if self.session_info.end_index is None: # self.session_info.end_index = self.model.last_index() if self._test_list is None: self._test_list = StartEndList(0, self.model.num_mutations()) else: self._test_list.set_last(self.model.last_index()) list_count = self._test_list.get_count() self._test_list.skip(list_count - 1) self.session_info.end_index = self._test_list.current() self._test_list.reset() self._store_session() self._test_list.skip(self.session_info.current_index) self.session_info.test_list_str = self._test_list.as_test_list_str() self._set_signal_handler() self.user_interface.set_data_provider(self.dataman) self.user_interface.set_continue_event(self._continue_event) self.user_interface.start() self.session_info.start_time = time.time() try: self._start_message() self.target.setup() start_from = self.session_info.current_index if self._skip_env_test: self.logger.info('Skipping environment test') else: self.logger.info('Performing environment test') self._test_environment() self._in_environment_test = False self._test_list.reset() self._test_list.skip(start_from) self.session_info.current_index = start_from self.model.skip(self._test_list.current()) self._start() return True except Exception as e: self.logger.error('Error occurred while fuzzing: %s', repr(e)) self.logger.error(traceback.format_exc()) return False
0.000773
def remove_perm(perm, user_or_group, forum=None): """ Remove a permission to a user (anonymous or not) or a group. """ user, group = get_identity(user_or_group) perm = ForumPermission.objects.get(codename=perm) if user: UserForumPermission.objects.filter( forum=forum, permission=perm, user=user if not user.is_anonymous else None, anonymous_user=user.is_anonymous, ).delete() if group: GroupForumPermission.objects.filter(forum=forum, permission=perm, group=group).delete()
0.003534
def save_ckpt( sess=None, mode_name='model.ckpt', save_dir='checkpoint', var_list=None, global_step=None, printable=False ): """Save parameters into `ckpt` file. Parameters ------------ sess : Session TensorFlow Session. mode_name : str The name of the model, default is ``model.ckpt``. save_dir : str The path / file directory to the `ckpt`, default is ``checkpoint``. var_list : list of tensor The parameters / variables (tensor) to be saved. If empty, save all global variables (default). global_step : int or None Step number. printable : boolean Whether to print all parameters information. See Also -------- load_ckpt """ if sess is None: raise ValueError("session is None.") if var_list is None: var_list = [] ckpt_file = os.path.join(save_dir, mode_name) if var_list == []: var_list = tf.global_variables() logging.info("[*] save %s n_params: %d" % (ckpt_file, len(var_list))) if printable: for idx, v in enumerate(var_list): logging.info(" param {:3}: {:15} {}".format(idx, v.name, str(v.get_shape()))) saver = tf.train.Saver(var_list) saver.save(sess, ckpt_file, global_step=global_step)
0.003098
def _expectation(p, obj1, feat1, obj2, feat2, nghp=None): """ Nota Bene: if only one object is passed, obj1 is associated with x_n, whereas obj2 with x_{n+1} """ if obj2 is None: gaussian = Gaussian(p.mu[:-1], p.cov[0, :-1]) return expectation(gaussian, (obj1, feat1), nghp=nghp) elif obj1 is None: gaussian = Gaussian(p.mu[1:], p.cov[0, 1:]) return expectation(gaussian, (obj2, feat2), nghp=nghp) else: return expectation(p, (obj1, feat1), (obj2, feat2), nghp=nghp)
0.001869
def execute(api): """Executes operation. Args: api: The base API object Returns: A response body object """ try: return api.execute() except Exception as exception: now = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f') _print_error('%s: Exception %s: %s' % (now, type(exception).__name__, str(exception))) # Re-raise exception to be handled by retry logic raise exception
0.012371
def check(self, obj, prefix=None): """Recursively look for :class:`.LocalSetting`s in ``obj``. ``obj`` can be a dict, tuple, or list. Other types are skipped. This will prompt to get the value of local settings (excluding those that have had prompting disabled) that haven't already been set locally. Returns ``True`` or ``False`` to indicate whether settings were successfully checked. """ self._populate_registry(obj, prefix) settings_to_write, missing = self._check(obj, prefix, {}, {}) if settings_to_write: self.strategy.write_settings(settings_to_write, self.file_name, self.section) if missing: for name, local_setting in missing.items(): printer.print_error('Local setting `{name}` must be set'.format(name=name)) return False return True
0.004415
def _generateFind(self, **kwargs): """Generator which yields matches on AXChildren.""" for needle in self._generateChildren(): if needle._match(**kwargs): yield needle
0.009479
def eurominder_explorer(): """Generate interactive data exploration tool Output is an html page, rendered to 'eurominder_explorer.html' in the output directory. Data structure (only relevant items are shown below): .. code-block:: none { "nuts2Features": [{"geometry": [<boundary geometry>], "properties": { "NUTS_ID": "AT11" } }, {"geometry": [<boundary geometry>], "properties": { "NUTS_ID": "AT12" } }, ...], "regionNames": {"AT11": "Burgenland", "AT13": "Wien", ... }, "indicatorDescriptions": {"000005": "some description", "000010": "another description", ...}, "indicators": [ {"key": "AT11", "000005 2010": 37.0 "000005 2011": 38.0 ... "000010 2010": 1234.0 "000010 2011": 1235.0 ... "Mean temperature (C) Apr-Sep": 16.0, "Mean temperature (C) Oct-Mar": 9.0, ... }, {"key": "AT12", "000005 2010: 19.0, .. }, ... ] "ranges": {"000005": [10, 20], "000010": [1234, 5678], ..., "Mean temperature (C) Apr-Sep": 16.0, "Mean temperature (C) Oct-Mar": 9.0, ... }, "years": ["1999", "2000", ...], } """ # switch off some pandas warnings import pandas as pd pd.options.mode.chained_assignment = None # page template template = jenv.get_template("eurominder_explorer.html") # container for template context context = dict() # plot data data = dict() # a database client/session to run queries in cl = client.get_client() session = cl.create_session() # # query data # # get region names and keys query = session.query(models.NUTS2Region.key, models.NUTS2Region.name).all() data['regionNames'] = {t[0]: t[1] for t in query} # get indicator descriptions query = session.query(models.EuroStatIndicator.number, models.EuroStatIndicator.description) data['indicatorDescriptions'] = {t[0]: t[1] for t in query} # build options for HTML selector for selecting which indicator to show context['y_field_selector_options'] = '' context['x_field_selector_options'] = '' for i_field, number in enumerate(sorted(data['indicatorDescriptions'].keys())): description = data['indicatorDescriptions'][number] # first field is default option for y selector, second field for x selector y_selected = " selected=\"selected\"" if i_field == 0 else "" x_selected = " selected=\"selected\"" if i_field == 1 else "" context['y_field_selector_options'] += "<option value=\"{:s}\" {:s}>{:s}</option>" \ "".format(number, y_selected, description) context['x_field_selector_options'] += "<option value=\"{:s}\" {:s}>{:s}</option>" \ "".format(number, x_selected, description) # get all eurostats data query = session.query(models.EuroStatValue.value, models.EuroStatValue.year, models.EuroStatIndicator.number, models.NUTS2Region.key) \ .join(models.EuroStatIndicator) \ .join(models.NUTS2Region) eurostat = cl.df_query(query) # reformat to list of value dicts per region, as described above data['indicators'] = [] for region_key, region_data in eurostat.groupby('key'): region_data['str_id'] = region_data['number'] + ' ' + region_data['year'].apply(lambda x: str(x)) value_dict = region_data.set_index('str_id')['value'].to_dict() value_dict['key'] = region_key data['indicators'].append(value_dict) # store min/max values per indicator across all years, to keep plot scales fixed on playback data['ranges'] = dict() for number, indicator_data in eurostat.groupby('number'): data['ranges'][number] = [indicator_data['value'].min(), indicator_data['value'].max()] # build options for year selector (also store options in a list, for playback control) data['years'] = sorted([str(y) for y in eurostat['year'].unique()]) context['year_selector_options'] = '' for year in data['years']: year_selected = " selected=\"selected\"" if year == "2010" else "" context['year_selector_options'] += "<option {:s}>{:s}</option>".format(year_selected, year) # query climate data query = session.query(models.ClimateValue.value, models.ClimateIndicator.description, models.NUTS2Region.key) \ .join(models.ClimateIndicator) \ .join(models.NUTS2Region) climate = cl.df_query(query).set_index('key') # inject data into 'indicators' records for record in data['indicators']: try: # index by a list of keys to be sure to get back a DataFrame even for one matching record cdata = climate.loc[[record['key']]] except KeyError: # no data available continue for description, value in cdata.set_index('description')['value'].iteritems(): record[description] = value # sorted list of climate descriptions data['climateDescriptions'] = sorted(list(climate['description'].unique())) # store ranges of climate indicators, lump summer and winter together (by stripping season indicator) # to get comparable scales climate['variable_description'] = climate['description'].map(lambda s: ' '.join(s.split()[:-1])) for variable_description, indicator_data in climate.groupby('variable_description'): r = [indicator_data['value'].min(), indicator_data['value'].max()] data['ranges'][variable_description + pipeline.CLIMATE_SEASON_SUFFIXES['winter']] = r data['ranges'][variable_description + pipeline.CLIMATE_SEASON_SUFFIXES['summer']] = r # inject GeoJSON polygons with open(pipeline.NUTS2GeoJSONInputFile().input_file) as in_file: nuts2_boundaries = json.load(in_file) data['nuts2Features'] = nuts2_boundaries['features'] # # render template # # inject data context['data'] = json.dumps(data, indent=4) out_file = path.join(out_dir, "eurominder_explorer.html") html_content = template.render(**context) with open(out_file, 'w') as f: f.write(html_content) # done, clean up session.close()
0.002767
def dim_range_key(eldim): """ Returns the key to look up a dimension range. """ if isinstance(eldim, dim): dim_name = repr(eldim) if dim_name.startswith("'") and dim_name.endswith("'"): dim_name = dim_name[1:-1] else: dim_name = eldim.name return dim_name
0.003175
def fromProfileName(cls, name): """Return an `Origin` from a given configuration profile name. :see: `ProfileStore`. """ session = bones.SessionAPI.fromProfileName(name) return cls(session)
0.008696
def viewBoxAxisRange(viewBox, axisNumber): """ Calculates the range of an axis of a viewBox. """ rect = viewBox.childrenBoundingRect() # taken from viewBox.autoRange() if rect is not None: if axisNumber == X_AXIS: return rect.left(), rect.right() elif axisNumber == Y_AXIS: return rect.bottom(), rect.top() else: raise ValueError("axisNumber should be 0 or 1, got: {}".format(axisNumber)) else: # Does this happen? Probably when the plot is empty. raise AssertionError("No children bbox. Plot range not updated.")
0.004926
def consistency(self, consistency): """ Sets the consistency level for the operation. See :class:`.ConsistencyLevel`. .. code-block:: python for user in User.objects(id=3).consistency(CL.ONE): print(user) """ clone = copy.deepcopy(self) clone._consistency = consistency return clone
0.008152
def batch_workflow_status(self, batch_workflow_id): """Checks GBDX batch workflow status. Args: batch workflow_id (str): Batch workflow id. Returns: Batch Workflow status (str). """ self.logger.debug('Get status of batch workflow: ' + batch_workflow_id) url = '%(base_url)s/batch_workflows/%(batch_id)s' % { 'base_url': self.base_url, 'batch_id': batch_workflow_id } r = self.gbdx_connection.get(url) return r.json()
0.003766
def perform_command(self): """ Perform command and return the appropriate exit code. :rtype: int """ if len(self.actual_arguments) < 4: return self.print_help() text_format = gf.safe_unicode(self.actual_arguments[0]) if text_format == u"list": text = gf.safe_unicode(self.actual_arguments[1]) elif text_format in TextFileFormat.ALLOWED_VALUES: text = self.actual_arguments[1] if not self.check_input_file(text): return self.ERROR_EXIT_CODE else: return self.print_help() l1_id_regex = self.has_option_with_value(u"--l1-id-regex") l2_id_regex = self.has_option_with_value(u"--l2-id-regex") l3_id_regex = self.has_option_with_value(u"--l3-id-regex") id_regex = self.has_option_with_value(u"--id-regex") class_regex = self.has_option_with_value(u"--class-regex") sort = self.has_option_with_value(u"--sort") backwards = self.has_option([u"-b", u"--backwards"]) quit_after = gf.safe_float(self.has_option_with_value(u"--quit-after"), None) start_fragment = gf.safe_int(self.has_option_with_value(u"--start"), None) end_fragment = gf.safe_int(self.has_option_with_value(u"--end"), None) parameters = { gc.PPN_TASK_IS_TEXT_MUNPARSED_L1_ID_REGEX: l1_id_regex, gc.PPN_TASK_IS_TEXT_MUNPARSED_L2_ID_REGEX: l2_id_regex, gc.PPN_TASK_IS_TEXT_MUNPARSED_L3_ID_REGEX: l3_id_regex, gc.PPN_TASK_IS_TEXT_UNPARSED_CLASS_REGEX: class_regex, gc.PPN_TASK_IS_TEXT_UNPARSED_ID_REGEX: id_regex, gc.PPN_TASK_IS_TEXT_UNPARSED_ID_SORT: sort, } if (text_format == TextFileFormat.MUNPARSED) and ((l1_id_regex is None) or (l2_id_regex is None) or (l3_id_regex is None)): self.print_error(u"You must specify --l1-id-regex and --l2-id-regex and --l3-id-regex for munparsed format") return self.ERROR_EXIT_CODE if (text_format == TextFileFormat.UNPARSED) and (id_regex is None) and (class_regex is None): self.print_error(u"You must specify --id-regex and/or --class-regex for unparsed format") return self.ERROR_EXIT_CODE language = gf.safe_unicode(self.actual_arguments[2]) output_file_path = self.actual_arguments[3] if not self.check_output_file(output_file_path): return self.ERROR_EXIT_CODE text_file = self.get_text_file(text_format, text, parameters) if text_file is None: self.print_error(u"Unable to build a TextFile from the given parameters") return self.ERROR_EXIT_CODE elif len(text_file) == 0: self.print_error(u"No text fragments found") return self.ERROR_EXIT_CODE text_file.set_language(language) self.print_info(u"Read input text with %d fragments" % (len(text_file))) if start_fragment is not None: self.print_info(u"Slicing from index %d" % (start_fragment)) if end_fragment is not None: self.print_info(u"Slicing to index %d" % (end_fragment)) text_slice = text_file.get_slice(start_fragment, end_fragment) self.print_info(u"Synthesizing %d fragments" % (len(text_slice))) if quit_after is not None: self.print_info(u"Stop synthesizing upon reaching %.3f seconds" % (quit_after)) try: synt = Synthesizer(rconf=self.rconf, logger=self.logger) synt.synthesize( text_slice, output_file_path, quit_after=quit_after, backwards=backwards ) self.print_success(u"Created file '%s'" % output_file_path) synt.clear_cache() return self.NO_ERROR_EXIT_CODE except ImportError as exc: tts = self.rconf[RuntimeConfiguration.TTS] if tts == Synthesizer.AWS: self.print_error(u"You need to install Python module boto3 to use the AWS Polly TTS API wrapper. Run:") self.print_error(u"$ pip install boto3") self.print_error(u"or, to install for all users:") self.print_error(u"$ sudo pip install boto3") elif tts == Synthesizer.NUANCE: self.print_error(u"You need to install Python module requests to use the Nuance TTS API wrapper. Run:") self.print_error(u"$ pip install requests") self.print_error(u"or, to install for all users:") self.print_error(u"$ sudo pip install requests") else: self.print_error(u"An unexpected error occurred while synthesizing text:") self.print_error(u"%s" % exc) except Exception as exc: self.print_error(u"An unexpected error occurred while synthesizing text:") self.print_error(u"%s" % exc) return self.ERROR_EXIT_CODE
0.002996
def find_resistance(record): """Infer the antibiotics resistance of the given record. Arguments: record (`~Bio.SeqRecord.SeqRecord`): an annotated sequence. Raises: RuntimeError: when there's not exactly one resistance cassette. """ for feature in record.features: labels = set(feature.qualifiers.get("label", [])) cassettes = labels.intersection(_ANTIBIOTICS) if len(cassettes) > 1: raise RuntimeError("multiple resistance cassettes detected") elif len(cassettes) == 1: return _ANTIBIOTICS.get(cassettes.pop()) raise RuntimeError("could not find the resistance of '{}'".format(record.id))
0.002907
def create_profile(ctx, package): """Creates an importable Maltego profile (*.mtz) file.""" from canari.commands.create_profile import create_profile create_profile(ctx.config_dir, ctx.project, package)
0.004673
def add_node(self, n, layers=None, attr_dict=None, **attr): """Add a single node n and update node attributes. Parameters ---------- n : node A node can be any hashable Python object except None. layers : set of str or None the set of layers the node belongs to, e.g. {'tiger:token', 'anaphoricity:annotation'}. Will be set to {self.ns} if None. attr_dict : dictionary, optional (default= no attributes) Dictionary of node attributes. Key/value pairs will update existing data associated with the node. attr : keyword arguments, optional Set or change attributes using key=value. See Also -------- add_nodes_from Examples -------- >>> from discoursegraphs import DiscourseDocumentGraph >>> d = DiscourseDocumentGraph() >>> d.add_node(1, {'node'}) # adding the same node with a different layer >>> d.add_node(1, {'number'}) >>> d.nodes(data=True) [(1, {'layers': {'node', 'number'}})] Use keywords set/change node attributes: >>> d.add_node(1, {'node'}, size=10) >>> d.add_node(3, layers={'num'}, weight=0.4, UTM=('13S',382)) >>> d.nodes(data=True) [(1, {'layers': {'node', 'number'}, 'size': 10}), (3, {'UTM': ('13S', 382), 'layers': {'num'}, 'weight': 0.4})] Notes ----- A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. """ if not layers: layers = {self.ns} assert isinstance(layers, set), \ "'layers' parameter must be given as a set of strings." assert all((isinstance(layer, str) for layer in layers)), \ "All elements of the 'layers' set must be strings." # add layers to keyword arguments dict attr.update({'layers': layers}) # set up attribute dict if attr_dict is None: attr_dict = attr else: assert isinstance(attr_dict, dict), \ "attr_dict must be a dictionary, not a '{}'".format(type(attr_dict)) attr_dict.update(attr) # if there's no node with this ID in the graph, yet if n not in self.succ: self.succ[n] = {} self.pred[n] = {} self.node[n] = attr_dict else: # update attr even if node already exists # if a node exists, its attributes will be updated, except # for the layers attribute. the value of 'layers' will # be the union of the existing layers set and the new one. existing_layers = self.node[n]['layers'] all_layers = existing_layers.union(layers) attrs_without_layers = {k: v for (k, v) in attr_dict.items() if k != 'layers'} self.node[n].update(attrs_without_layers) self.node[n].update({'layers': all_layers})
0.000911
def deps_from_pydit_json(requires, runtime=True): """Parses dependencies returned by pydist.json, since versions uses brackets we can't use pkg_resources to parse and we need a separate method Args: requires: list of dependencies as written in pydist.json of the package runtime: are the dependencies runtime (True) or build time (False) Returns: List of semi-SPECFILE dependecies (see dependency_to_rpm for format) """ parsed = [] for req in requires: # req looks like 'some-name (>=X.Y,!=Y.X)' or 'someme-name' where # 'some-name' is the name of required package and '(>=X.Y,!=Y.X)' # are specs name, specs = None, None # len(reqs) == 1 if there are not specified versions, 2 otherwise reqs = req.split(' ') name = reqs[0] if len(reqs) == 2: specs = reqs[1] # try if there are more specs in spec part of the requires specs = specs.split(",") # strip brackets specs = [re.sub('[()]', '', spec) for spec in specs] # this will divide (>=0.1.2) to ['>=', '0', '.1.2'] # or (0.1.2) into ['', '0', '.1.2'] specs = [re.split('([0-9])', spec, 1) for spec in specs] # we have separated specs based on number as delimiter # so we need to join it back to rest of version number # e.g ['>=', '0', '.1.2'] to ['>=', '0.1.2'] for spec in specs: spec[1:3] = [''.join(spec[1:3])] if specs: for spec in specs: if '!' in spec[0]: parsed.append(['Conflicts', name, '=', spec[1]]) elif specs[0] == '==': parsed.append(['Requires', name, '=', spec[1]]) else: parsed.append(['Requires', name, spec[0], spec[1]]) else: parsed.append(['Requires', name]) if not runtime: for pars in parsed: pars[0] = 'Build' + pars[0] return parsed
0.000484
def start_instances(instances, region): '''Start all the instances given by its ids''' if not instances: return conn = ec2_connect(region) log("Starting instances {0}.".format(instances)) conn.start_instances(instances) log("Done")
0.007843
def cmd_cammsg(self, args): '''cammsg''' params = [0, 0, 0, 0, 1, 0, 0] # fill in any args passed by user for i in range(min(len(args),len(params))): params[i] = float(args[i]) print("Sent DIGICAM_CONTROL CMD_LONG") self.master.mav.command_long_send( self.settings.target_system, # target_system 0, # target_component mavutil.mavlink.MAV_CMD_DO_DIGICAM_CONTROL, # command 0, # confirmation params[0], # param1 params[1], # param2 params[2], # param3 params[3], # param4 params[4], # param5 params[5], # param6 params[6])
0.01676
def save(self, path, verbose=False): """Save the suite to disk. Args: path (str): Path to save the suite to. If a suite is already saved at `path`, then it will be overwritten. Otherwise, if `path` exists, an error is raised. """ path = os.path.realpath(path) if os.path.exists(path): if self.load_path and self.load_path == path: if verbose: print "saving over previous suite..." for context_name in self.context_names: self.context(context_name) # load before dir deleted shutil.rmtree(path) else: raise SuiteError("Cannot save, path exists: %r" % path) contexts_path = os.path.join(path, "contexts") os.makedirs(contexts_path) # write suite data data = self.to_dict() filepath = os.path.join(path, "suite.yaml") with open(filepath, "w") as f: f.write(dump_yaml(data)) # write contexts for context_name in self.context_names: context = self.context(context_name) context._set_parent_suite(path, context_name) filepath = self._context_path(context_name, path) if verbose: print "writing %r..." % filepath context.save(filepath) # create alias wrappers tools_path = os.path.join(path, "bin") os.makedirs(tools_path) if verbose: print "creating alias wrappers in %r..." % tools_path tools = self.get_tools() for tool_alias, d in tools.iteritems(): tool_name = d["tool_name"] context_name = d["context_name"] data = self._context(context_name) prefix_char = data.get("prefix_char") if verbose: print ("creating %r -> %r (%s context)..." % (tool_alias, tool_name, context_name)) filepath = os.path.join(tools_path, tool_alias) create_forwarding_script(filepath, module="suite", func_name="_FWD__invoke_suite_tool_alias", context_name=context_name, tool_name=tool_name, prefix_char=prefix_char)
0.001234
def _pre_process_cfg(self): """ Pre-process the acyclic CFG. - Change all FakeRet edges to normal edges when necessary (e.g. the normal/expected return edge does not exist) """ for _, dst, data in self._acyclic_cfg.graph.edges(data=True): if 'jumpkind' in data and data['jumpkind'] == 'Ijk_FakeRet': all_edges_to_dst = self._acyclic_cfg.graph.in_edges([ dst ], data=True) if not any((s, d) for s, d, da in all_edges_to_dst if da['jumpkind'] != 'Ijk_FakeRet' ): # All in edges are FakeRets # Change them to a normal edge for _, _, data_ in all_edges_to_dst: data_['jumpkind'] = 'Ijk_Boring'
0.010568
def close(self): """ Close the connection to the AMQP compliant broker. """ if self.channel is not None: self.channel.close() if self.__connection is not None: self.__connection.close()
0.017778
def smart_text(s, encoding="utf-8", strings_only=False, errors="strict"): """Return a unicode object representing 's'. Treats bytes using the 'encoding' codec. If strings_only is True, don't convert (some) non-string-like objects. """ if isinstance(s, six.text_type): return s if strings_only and not isinstance(s, six.string_types): return s if not isinstance(s, six.string_types): if hasattr(s, "__unicode__"): s = s.__unicode__() else: if six.PY3: if isinstance(s, six.binary_type): s = six.text_type(s, encoding, errors) else: s = six.text_type(s) else: s = six.text_type(six.binary_type(s), encoding, errors) else: # Note: We use .decode() here, instead of six.text_type(s, encoding, # errors), so that if s is a SafeBytes, it ends up being a # SafeText at the end. s = s.decode(encoding, errors) return s
0.000941
def heightmap_new(w: int, h: int, order: str = "C") -> np.ndarray: """Return a new numpy.ndarray formatted for use with heightmap functions. `w` and `h` are the width and height of the array. `order` is given to the new NumPy array, it can be 'C' or 'F'. You can pass a NumPy array to any heightmap function as long as all the following are true:: * The array is 2 dimensional. * The array has the C_CONTIGUOUS or F_CONTIGUOUS flag. * The array's dtype is :any:`dtype.float32`. The returned NumPy array will fit all these conditions. .. versionchanged:: 8.1 Added the `order` parameter. """ if order == "C": return np.zeros((h, w), np.float32, order="C") elif order == "F": return np.zeros((w, h), np.float32, order="F") else: raise ValueError("Invalid order parameter, should be 'C' or 'F'.")
0.001129
async def trigger_event(self, event, *args): """Dispatch an event to the proper handler method. In the most common usage, this method is not overloaded by subclasses, as it performs the routing of events to methods. However, this method can be overriden if special dispatching rules are needed, or if having a single method that catches all events is desired. Note: this method is a coroutine. """ handler_name = 'on_' + event if hasattr(self, handler_name): handler = getattr(self, handler_name) if asyncio.iscoroutinefunction(handler) is True: try: ret = await handler(*args) except asyncio.CancelledError: # pragma: no cover ret = None else: ret = handler(*args) return ret
0.002255
def toXml(self): """ Saves this profile toolbar as XML information. :return <xml.etree.ElementTree.Element> """ xtoolbar = ElementTree.Element('toolbar') prof = self._currentProfile if prof is not None: xtoolbar.set('current', prof.name()) for profile in self.profiles(): profile.toXml(xtoolbar) return xtoolbar
0.012987
def build_ingest_fs(self): """Return a pyfilesystem subdirectory for the ingested source files""" base_path = 'ingest' if not self.build_fs.exists(base_path): self.build_fs.makedir(base_path, recursive=True, allow_recreate=True) return self.build_fs.opendir(base_path)
0.009524
def expand_entry(entry, ignore_xs=0x0): """Turn all Xs which are not marked in `ignore_xs` into ``0``\ s and ``1``\ s. The following will expand any Xs in bits ``1..3``\ :: >>> entry = RoutingTableEntry(set(), 0b0100, 0xfffffff0 | 0b1100) >>> list(expand_entry(entry, 0xfffffff1)) == [ ... RoutingTableEntry(set(), 0b0100, 0xfffffff0 | 0b1110), # 010X ... RoutingTableEntry(set(), 0b0110, 0xfffffff0 | 0b1110), # 011X ... ] True Parameters ---------- entry : :py:class:`~rig.routing_table.RoutingTableEntry` or similar The entry to expand. ignore_xs : int Bit-mask of Xs which should not be expanded. Yields ------ :py:class:`~rig.routing_table.RoutingTableEntry` Routing table entries which represent the original entry but with all Xs not masked off by `ignore_xs` replaced with 1s and 0s. """ # Get all the Xs in the entry that are not ignored xs = (~entry.key & ~entry.mask) & ~ignore_xs # Find the most significant X for bit in (1 << i for i in range(31, -1, -1)): if bit & xs: # Yield all the entries with this bit set as 0 entry_0 = RoutingTableEntry(entry.route, entry.key, entry.mask | bit, entry.sources) for new_entry in expand_entry(entry_0, ignore_xs): yield new_entry # And yield all the entries with this bit set as 1 entry_1 = RoutingTableEntry(entry.route, entry.key | bit, entry.mask | bit, entry.sources) for new_entry in expand_entry(entry_1, ignore_xs): yield new_entry # Stop looking for Xs break else: # If there are no Xs then yield the entry we were given. yield entry
0.002121
def draw_circle(ctx, x, y, radius, cairo_color): """ Draw a circle. :param radius: radius in pixels :param cairo_color: normalized rgb color """ ctx.new_path() ctx.set_source_rgb(cairo_color.red, cairo_color.green, cairo_color.blue) ctx.arc(x, y, radius, 0, 2 * pi) ctx.fill()
0.003205
def call_fdel(self, obj) -> None: """Remove the predefined custom value and call the delete function.""" self.fdel(obj) try: del vars(obj)[self.name] except KeyError: pass
0.008811
def opensearch(self, query, results=10, redirect=True): """ Execute a MediaWiki opensearch request, similar to search box suggestions and conforming to the OpenSearch specification Args: query (str): Title to search for results (int): Number of pages within the radius to return redirect (bool): If **False** return the redirect itself, \ otherwise resolve redirects Returns: List: List of results that are stored in a tuple \ (Title, Summary, URL) """ self._check_query(query, "Query must be specified") query_params = { "action": "opensearch", "search": query, "limit": (100 if results > 100 else results), "redirects": ("resolve" if redirect else "return"), "warningsaserror": True, "namespace": "", } results = self.wiki_request(query_params) self._check_error_response(results, query) res = list() for i, item in enumerate(results[1]): res.append((item, results[2][i], results[3][i])) return res
0.001642
def line_nbr_from_position(self, y_pos): """ Returns the line number from the y_pos. :param y_pos: Y pos in the editor :return: Line number (0 based), -1 if out of range """ editor = self._editor height = editor.fontMetrics().height() for top, line, block in editor.visible_blocks: if top <= y_pos <= top + height: return line return -1
0.004577
def get_interface_detail_output_interface_if_description(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") get_interface_detail = ET.Element("get_interface_detail") config = get_interface_detail output = ET.SubElement(get_interface_detail, "output") interface = ET.SubElement(output, "interface") interface_type_key = ET.SubElement(interface, "interface-type") interface_type_key.text = kwargs.pop('interface_type') interface_name_key = ET.SubElement(interface, "interface-name") interface_name_key.text = kwargs.pop('interface_name') if_description = ET.SubElement(interface, "if-description") if_description.text = kwargs.pop('if_description') callback = kwargs.pop('callback', self._callback) return callback(config)
0.002315
def onfini(self, func): ''' Add a function/coroutine/Base to be called on fini(). ''' if isinstance(func, Base): self.tofini.add(func) return assert self.anitted self._fini_funcs.append(func)
0.007576
def setup_exchange(self, exchange_name): """Setup the exchange on RabbitMQ by invoking the Exchange.Declare RPC command. When it is complete, the on_exchange_declareok method will be invoked by pika. :param str|unicode exchange_name: The name of the exchange to declare """ logger.info('Declaring exchange', name=exchange_name) self._channel.exchange_declare(self.on_exchange_declareok, exchange_name, self._exchange_type)
0.003584
def modify_main_app(app, config: Config): """ Modify the app we're serving to make development easier, eg. * modify responses to add the livereload snippet * set ``static_root_url`` on the app * setup the debug toolbar """ app._debug = True dft_logger.debug('livereload enabled: %s', '✓' if config.livereload else '✖') def get_host(request): if config.infer_host: return request.headers.get('host', 'localhost').split(':', 1)[0] else: return config.host if config.livereload: async def on_prepare(request, response): if (not request.path.startswith('/_debugtoolbar') and 'text/html' in response.content_type and getattr(response, 'body', False)): lr_snippet = LIVE_RELOAD_HOST_SNIPPET.format(get_host(request), config.aux_port) dft_logger.debug('appending live reload snippet "%s" to body', lr_snippet) response.body += lr_snippet.encode() app.on_response_prepare.append(on_prepare) static_path = config.static_url.strip('/') if config.infer_host and config.static_path is not None: # we set the app key even in middleware to make the switch to production easier and for backwards compat. @web.middleware async def static_middleware(request, handler): static_url = 'http://{}:{}/{}'.format(get_host(request), config.aux_port, static_path) dft_logger.debug('settings app static_root_url to "%s"', static_url) request.app['static_root_url'].change(static_url) return await handler(request) app.middlewares.insert(0, static_middleware) if config.static_path is not None: static_url = 'http://{}:{}/{}'.format(config.host, config.aux_port, static_path) dft_logger.debug('settings app static_root_url to "%s"', static_url) app['static_root_url'] = MutableValue(static_url) if config.debug_toolbar and aiohttp_debugtoolbar: aiohttp_debugtoolbar.setup(app, intercept_redirects=False)
0.003799
def create_equipamento(self): """Get an instance of equipamento services facade.""" return Equipamento( self.networkapi_url, self.user, self.password, self.user_ldap)
0.008696
def _run_snpeff(snp_in, out_format, data): """Run effects prediction with snpEff, skipping if snpEff database not present. """ snpeff_db, datadir = get_db(data) if not snpeff_db: return None, None assert os.path.exists(os.path.join(datadir, snpeff_db)), \ "Did not find %s snpEff genome data in %s" % (snpeff_db, datadir) ext = utils.splitext_plus(snp_in)[1] if out_format == "vcf" else ".tsv" out_file = "%s-effects%s" % (utils.splitext_plus(snp_in)[0], ext) stats_file = "%s-stats.html" % utils.splitext_plus(out_file)[0] csv_file = "%s-stats.csv" % utils.splitext_plus(out_file)[0] if not utils.file_exists(out_file): config_args = " ".join(_snpeff_args_from_config(data)) if ext.endswith(".gz"): bgzip_cmd = "| %s -c" % tools.get_bgzip_cmd(data["config"]) else: bgzip_cmd = "" with file_transaction(data, out_file) as tx_out_file: snpeff_cmd = _get_snpeff_cmd("eff", datadir, data, tx_out_file) cmd = ("{snpeff_cmd} {config_args} -noLog -i vcf -o {out_format} " "-csvStats {csv_file} -s {stats_file} {snpeff_db} {snp_in} {bgzip_cmd} > {tx_out_file}") do.run(cmd.format(**locals()), "snpEff effects", data) if ext.endswith(".gz"): out_file = vcfutils.bgzip_and_index(out_file, data["config"]) return out_file, [stats_file, csv_file]
0.002114