text
stringlengths
78
104k
score
float64
0
0.18
def humanize_speed(c_per_sec): """convert a speed in counts per second to counts per [s, min, h, d], choosing the smallest value greater zero. """ scales = [60, 60, 24] units = ['c/s', 'c/min', 'c/h', 'c/d'] speed = c_per_sec i = 0 if speed > 0: while (speed < 1) and (i < len(scales)): speed *= scales[i] i += 1 return "{:.1f}{}".format(speed, units[i])
0.007026
def get_instance(self, payload): """ Build an instance of MonthlyInstance :param dict payload: Payload response from the API :returns: twilio.rest.api.v2010.account.usage.record.monthly.MonthlyInstance :rtype: twilio.rest.api.v2010.account.usage.record.monthly.MonthlyInstance """ return MonthlyInstance(self._version, payload, account_sid=self._solution['account_sid'], )
0.011628
def _get_argv(index, default=None): ''' get the argv input argument defined by index. Return the default attribute if that argument does not exist ''' return _sys.argv[index] if len(_sys.argv) > index else default
0.004292
def datetime(self, to_timezone=None, naive=False): """Returns a timezone-aware datetime... Defaulting to UTC (as it should). Keyword Arguments: to_timezone {str} -- timezone to convert to (default: None/UTC) naive {bool} -- if True, the tzinfo is simply dropped (default: False) """ if to_timezone: dt = self.datetime().astimezone(pytz.timezone(to_timezone)) else: dt = Datetime.utcfromtimestamp(self._epoch) dt.replace(tzinfo=self._tz) # Strip the timezone info if requested to do so. if naive: return dt.replace(tzinfo=None) else: if dt.tzinfo is None: dt = dt.replace(tzinfo=self._tz) return dt
0.002478
def stop_capture(self, cap_file_name=None, cap_file_format=IxeCapFileFormat.mem, *ports): """ Stop capture on ports. :param cap_file_name: prefix for the capture file name. Capture files for each port are saved as individual pcap file named 'prefix' + 'URI'.pcap. :param cap_file_format: exported file format :param ports: list of ports to stop traffic on, if empty stop all ports. :return: dictionary (port, nPackets) """ port_list = self.set_ports_list(*ports) self.api.call_rc('ixStopCapture {}'.format(port_list)) nPackets = {} for port in (ports if ports else self.ports.values()): nPackets[port] = port.capture.nPackets if nPackets[port]: if cap_file_format is not IxeCapFileFormat.mem: port.cap_file_name = cap_file_name + '-' + port.uri.replace(' ', '_') + '.' + cap_file_format.name port.captureBuffer.export(port.cap_file_name) return nPackets
0.005792
def _get_qvm_with_topology(name: str, topology: nx.Graph, noisy: bool = False, requires_executable: bool = True, connection: ForestConnection = None, qvm_type: str = 'qvm') -> QuantumComputer: """Construct a QVM with the provided topology. :param name: A name for your quantum computer. This field does not affect behavior of the constructed QuantumComputer. :param topology: A graph representing the desired qubit connectivity. :param noisy: Whether to include a generic noise model. If you want more control over the noise model, please construct your own :py:class:`NoiseModel` and use :py:func:`_get_qvm_qc` instead of this function. :param requires_executable: Whether this QVM will refuse to run a :py:class:`Program` and only accept the result of :py:func:`compiler.native_quil_to_executable`. Setting this to True better emulates the behavior of a QPU. :param connection: An optional :py:class:`ForestConnection` object. If not specified, the default values for URL endpoints will be used. :param qvm_type: The type of QVM. Either 'qvm' or 'pyqvm'. :return: A pre-configured QuantumComputer """ # Note to developers: consider making this function public and advertising it. device = NxDevice(topology=topology) if noisy: noise_model = decoherence_noise_with_asymmetric_ro(gates=gates_in_isa(device.get_isa())) else: noise_model = None return _get_qvm_qc(name=name, qvm_type=qvm_type, connection=connection, device=device, noise_model=noise_model, requires_executable=requires_executable)
0.006297
def read_frames(self, n, channels=None): """Read ``n`` frames from the track, starting with the current frame :param integer n: Number of frames to read :param integer channels: Number of channels to return (default is number of channels in track) :returns: Next ``n`` frames from the track, starting with ``current_frame`` :rtype: numpy array """ if channels is None: channels = self.channels if channels == 1: out = np.zeros(n) elif channels == 2: out = np.zeros((n, 2)) else: print "Input needs to be 1 or 2 channels" return if n > self.remaining_frames(): print "Trying to retrieve too many frames!" print "Asked for", n n = self.remaining_frames() print "Returning", n if self.channels == 1 and channels == 1: out = self.sound.read_frames(n) elif self.channels == 1 and channels == 2: frames = self.sound.read_frames(n) out = np.vstack((frames.copy(), frames.copy())).T elif self.channels == 2 and channels == 1: frames = self.sound.read_frames(n) out = np.mean(frames, axis=1) elif self.channels == 2 and channels == 2: out[:n, :] = self.sound.read_frames(n) self.current_frame += n return out
0.002083
def upgrade(): """Upgrade database.""" op.drop_constraint(u'fk_access_actionsusers_user_id_accounts_user', 'access_actionsusers', type_='foreignkey') op.drop_index(op.f('ix_access_actionsusers_user_id'), table_name='access_actionsusers') op.alter_column('access_actionsusers', 'user_id', nullable=False, existing_type=sa.Integer()) op.create_index(op.f('ix_access_actionsusers_user_id'), 'access_actionsusers', ['user_id'], unique=False) op.create_foreign_key(op.f('fk_access_actionsusers_user_id_accounts_user'), 'access_actionsusers', 'accounts_user', ['user_id'], ['id'], ondelete='CASCADE')
0.001328
def step(self, substeps=2): '''Step the world forward by one frame. Parameters ---------- substeps : int, optional Split the step into this many sub-steps. This helps to prevent the time delta for an update from being too large. ''' self.frame_no += 1 dt = self.dt / substeps for _ in range(substeps): self.ode_contactgroup.empty() self.ode_space.collide(None, self.on_collision) self.ode_world.step(dt)
0.003788
def with_aad_device_authentication(cls, connection_string, authority_id="common"): """Creates a KustoConnection string builder that will authenticate with AAD application and password. :param str connection_string: Kusto connection string should by of the format: https://<clusterName>.kusto.windows.net :param str authority_id: optional param. defaults to "common" """ kcsb = cls(connection_string) kcsb[kcsb.ValidKeywords.aad_federated_security] = True kcsb[kcsb.ValidKeywords.authority_id] = authority_id return kcsb
0.008306
def savecands(d, cands, domock=False): """ Save all candidates in pkl file for later aggregation and filtering. domock is option to save simulated cands file """ with open(getcandsfile(d, domock=domock), 'w') as pkl: pickle.dump(d, pkl) pickle.dump(cands, pkl)
0.003413
def lcumsum (inlist): """ Returns a list consisting of the cumulative sum of the items in the passed list. Usage: lcumsum(inlist) """ newlist = copy.deepcopy(inlist) for i in range(1,len(newlist)): newlist[i] = newlist[i] + newlist[i-1] return newlist
0.010791
def singlerun(job, task_id=0, job_id=0): """This task is for an example.""" import ecell4_base import ecell4 import ecell4.util.simulation import ecell4.util.decorator print('ecell4_base.__version__ = {:s}'.format(ecell4_base.__version__)) print('ecell4.__version__ = {:s}'.format(ecell4.__version__)) print('job={}, task_id={}, job_id={}'.format(str(job), task_id, job_id)) with ecell4.util.decorator.reaction_rules(): A + B == C | (0.01, 0.3) res = ecell4.util.simulation.run_simulation( 1.0, y0={'A': job[0], 'B': job[1], 'C': job[2]}, rndseed=job_id, solver='gillespie', return_type='array') print('A simulation was successfully done.') return res
0.001332
def DragDrop(x1: int, y1: int, x2: int, y2: int, moveSpeed: float = 1, waitTime: float = OPERATION_WAIT_TIME) -> None: """ Simulate mouse left button drag from point x1, y1 drop to point x2, y2. x1: int. y1: int. x2: int. y2: int. moveSpeed: float, 1 normal speed, < 1 move slower, > 1 move faster. waitTime: float. """ PressMouse(x1, y1, 0.05) MoveTo(x2, y2, moveSpeed, 0.05) ReleaseMouse(waitTime)
0.004474
def _get_spot_history(ctx, instance_type): """ Returns list of 1,000 most recent spot market data points represented as SpotPriceHistory objects. Note: The most recent object/data point will be first in the list. :rtype: list[SpotPriceHistory] """ one_week_ago = datetime.datetime.now() - datetime.timedelta(days=7) spot_data = ctx.ec2.get_spot_price_history(start_time=one_week_ago.isoformat(), instance_type=instance_type, product_description="Linux/UNIX") spot_data.sort(key=attrgetter("timestamp"), reverse=True) return spot_data
0.006015
def _ParseApplicationPasswordRecord(self, parser_mediator, record): """Extracts the information from an application password record. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. record (dict[str, object]): database record. Raises: ParseError: if Internet password record cannot be parsed. """ key = record.get('_key_', None) if not key or not key.startswith(b'ssgp'): raise errors.ParseError(( 'Unsupported application password record key value does not start ' 'with: "ssgp".')) event_data = KeychainApplicationRecordEventData() event_data.account_name = self._ParseBinaryDataAsString( parser_mediator, record['acct']) event_data.comments = self._ParseBinaryDataAsString( parser_mediator, record['crtr']) event_data.entry_name = self._ParseBinaryDataAsString( parser_mediator, record['PrintName']) ssgp_hash = codecs.encode(key[4:], 'hex') event_data.ssgp_hash = codecs.decode(ssgp_hash, 'utf-8') event_data.text_description = self._ParseBinaryDataAsString( parser_mediator, record['desc']) date_time = self._ParseDateTimeValue(parser_mediator, record['cdat']) if date_time: event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_CREATION) parser_mediator.ProduceEventWithEventData(event, event_data) date_time = self._ParseDateTimeValue(parser_mediator, record['mdat']) if date_time: event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_MODIFICATION) parser_mediator.ProduceEventWithEventData(event, event_data)
0.003425
def ifposition(parser, token): """ Syntax:: {% ifposition POSITION_NAME ... for CATEGORY [nofallback] %} {% else %} {% endifposition %} """ bits = list(token.split_contents()) end_tag = 'end' + bits[0] nofallback = False if bits[-1] == 'nofallback': nofallback = True bits.pop() if len(bits) >= 4 and bits[-2] == 'for': category = template.Variable(bits.pop()) pos_names = bits[1:-1] else: raise TemplateSyntaxError('Invalid syntax: {% ifposition POSITION_NAME ... for CATEGORY [nofallback] %}') nodelist_true = parser.parse(('else', end_tag)) token = parser.next_token() if token.contents == 'else': nodelist_false = parser.parse((end_tag,)) parser.delete_first_token() else: nodelist_false = template.NodeList() return IfPositionNode(category, pos_names, nofallback, nodelist_true, nodelist_false)
0.003158
def print_stats(self): """ Print a series of relevant stats about a full execution. This function is meant to be called at the end of the program. """ stats = self.calculate() total_time = '%d:%02d:%02d' % (stats['total_time'] / 3600, (stats['total_time'] / 3600) / 60, (stats['total_time'] % 3600) % 60) output = """\ Total runtime: {total_time} Lyrics found: {found} Lyrics not found:{notfound} Most useful source:\ {best} ({best_count} lyrics found) ({best_rate:.2f}% success rate) Least useful source:\ {worst} ({worst_count} lyrics found) ({worst_rate:.2f}% success rate) Fastest website to scrape: {fastest} (Avg: {fastest_time:.2f}s per search) Slowest website to scrape: {slowest} (Avg: {slowest_time:.2f}s per search) Average time per website: {avg_time:.2f}s xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxx PER WEBSITE STATS: xxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx """ output = output.format(total_time=total_time, found=stats['found'], notfound=stats['notfound'], best=stats['best'][0].capitalize(), best_count=stats['best'][1], best_rate=stats['best'][2], worst=stats['worst'][0].capitalize(), worst_count=stats['worst'][1], worst_rate=stats['worst'][2], fastest=stats['fastest'][0].capitalize(), fastest_time=stats['fastest'][1], slowest=stats['slowest'][0].capitalize(), slowest_time=stats['slowest'][1], avg_time=self.avg_time()) for source in sources: stat = str(self.source_stats[source.__name__]) output += f'\n{source.__name__.upper()}\n{stat}\n' print(output)
0.000956
def tileBounds(self, zoom, tileCol, tileRow): "Returns the bounds of a tile in LV03 (EPSG:21781)" assert zoom in range(0, len(self.RESOLUTIONS)) # 0,0 at top left: y axis down and x axis right tileSize = self.tileSize(zoom) minX = self.MINX + tileCol * tileSize maxX = self.MINX + (tileCol + 1) * tileSize if self.originCorner == 'bottom-left': minY = self.MINY + tileRow * tileSize maxY = self.MINY + (tileRow + 1) * tileSize elif self.originCorner == 'top-left': minY = self.MAXY - (tileRow + 1) * tileSize maxY = self.MAXY - tileRow * tileSize return [minX, minY, maxX, maxY]
0.002861
def runGetResults(cmd, stdout=True, stderr=True, encoding=sys.getdefaultencoding()): ''' runGetResults - Simple method to run a command and return the results of the execution as a dict. @param cmd <str/list> - String of command and arguments, or list of command and arguments If cmd is a string, the command will be executed as if ran exactly as written in a shell. This mode supports shell-isms like '&&' and '|' If cmd is a list, the first element will be the executable, and further elements are arguments that will be passed to that executable. @param stdout <True/False> - Default True, Whether to gather and include program's stdout data in results. If False, that data the program prints to stdout will just be output to the current tty and not recorded. If True, it will NOT be output to the tty, and will be recorded under the key "stdout" in the return dict. @param stderr <True/False or "stdout"/subprocess.STDOUT> - Default True, Whether to gather and include program's stderr data in results, or to combine with "stdout" data. If False, the data the program prints to stderr will just be output to the current tty and not recorded If True, it will NOT be output to the tty, and will be recorded under the key "stderr" in the return dict. If "stdout" or subprocess.STDOUT - stderr data will be blended with stdout data. This requires that stdout=True. @param encoding <None/str> - Default sys.getdefaultencoding(), the program's output will automatically be decoded using the provided codec (e.x. "utf-8" or "ascii"). If None or False-ish, data will not be decoded (i.e. in python3 will be "bytes" type) If unsure, leave this as it's default value, or provide "utf-8" @return <dict> - Dict of results. Has following keys: 'returnCode' - <int> - Always present, included the integer return-code from the command. 'stdout' <unciode/str/bytes (depending on #encoding)> - Present if stdout=True, contains data output by program to stdout, or stdout+stderr if stderr param is "stdout"/subprocess.STDOUT 'stderr' <unicode/str/bytes (depending on #encoding)> - Present if stderr=True, contains data output by program to stderr. @raises - SimpleCommandFailure if it cannot launch the given command, for reasons such as: cannot find the executable, or no permission to execute, etc ''' if stderr in ('stdout', subprocess.STDOUT): stderr = subprocess.STDOUT elif stderr == True or stderr == subprocess.PIPE: stderr = subprocess.PIPE else: stderr = None if stdout == True or stdout == subprocess.STDOUT: stdout = subprocess.PIPE else: stdout = None if stderr == subprocess.PIPE: raise ValueError('Cannot redirect stderr to stdout if stdout is not captured.') if issubclass(cmd.__class__, (list, tuple)): shell = False else: shell = True try: pipe = subprocess.Popen(cmd, stdout=stdout, stderr=stderr, shell=shell) except Exception as e: try: if shell is True: cmdStr = ' '.join(cmd) else: cmdStr = cmd except: cmdStr = repr(cmd) raise SimpleCommandFailure('Failed to execute "%s": %s' %(cmdStr, str(e)), returnCode=255) streams = [] fileNoToKey = {} ret = {} if stdout == subprocess.PIPE: streams.append(pipe.stdout) fileNoToKey[pipe.stdout.fileno()] = 'stdout' ret['stdout'] = [] if stderr == subprocess.PIPE: streams.append(pipe.stderr) fileNoToKey[pipe.stderr.fileno()] = 'stderr' ret['stderr'] = [] returnCode = None time.sleep(.02) while returnCode is None or streams: returnCode = pipe.poll() while True: (readyToRead, junk1, junk2) = select.select(streams, [], [], .005) if not readyToRead: # Don't strangle CPU time.sleep(.01) break for readyStream in readyToRead: retKey = fileNoToKey[readyStream.fileno()] curRead = readyStream.read() if curRead in (b'', ''): streams.remove(readyStream) continue ret[retKey].append(curRead) for key in list(ret.keys()): ret[key] = b''.join(ret[key]) if encoding: ret[key] = ret[key].decode(encoding) ret['returnCode'] = returnCode return ret
0.006583
def coverage(self): """ If there is a .coverage file available, this will attempt to form a DataFrame with that information in it, which will contain the columns: * filename * lines_covered * total_lines * coverage If it can't be found or parsed, an empty DataFrame of that form will be returned. :return: DataFrame """ if not self.has_coverage(): return DataFrame(columns=['filename', 'lines_covered', 'total_lines', 'coverage']) with open(self.git_dir + os.sep + '.coverage', 'r') as f: blob = f.read() blob = blob.split('!')[2] cov = json.loads(blob) ds = [] for filename in cov['lines'].keys(): idx = 0 try: with open(filename, 'r') as f: for idx, _ in enumerate(f): pass except FileNotFoundError as e: if self.verbose: warnings.warn('Could not find file %s for coverage' % (filename, )) num_lines = idx + 1 try: short_filename = filename.split(self.git_dir + os.sep)[1] ds.append([short_filename, len(cov['lines'][filename]), num_lines]) except IndexError as e: if self.verbose: warnings.warn('Could not find file %s for coverage' % (filename, )) df = DataFrame(ds, columns=['filename', 'lines_covered', 'total_lines']) df['coverage'] = df['lines_covered'] / df['total_lines'] return df
0.005538
def to_dict(self): """Prepare a minimal dictionary with keys mapping to attributes for the current instance. """ o_copy = copy.copy(self) # Remove some stuff that is not likely related to AD attributes for attribute in dir(self): if attribute == 'logger' or attribute == 'adq': try: delattr(o_copy, attribute) except AttributeError: pass return o_copy.__dict__
0.003984
def shlex_process_stdin(process_command, helptext): """ Use shlex to process stdin line-by-line. Also prints help text. Requires that @process_command be a Click command object, used for processing single lines of input. helptext is prepended to the standard message printed to interactive sessions. """ # if input is interactive, print help to stderr if sys.stdin.isatty(): safeprint( ( "{}\n".format(helptext) + "Lines are split with shlex in POSIX mode: " "https://docs.python.org/library/shlex.html#parsing-rules\n" "Terminate input with Ctrl+D or <EOF>\n" ), write_to_stderr=True, ) # use readlines() rather than implicit file read line looping to force # python to properly capture EOF (otherwise, EOF acts as a flush and # things get weird) for line in sys.stdin.readlines(): # get the argument vector: # do a shlex split to handle quoted paths with spaces in them # also lets us have comments with # argv = shlex.split(line, comments=True) if argv: try: process_command.main(args=argv) except SystemExit as e: if e.code != 0: raise
0.001528
def close(self): """ Destructor for this audio interface. Waits the threads to finish their streams, if desired. """ with self.halting: # Avoid simultaneous "close" threads if not self.finished: # Ignore all "close" calls, but the first, self.finished = True # and any call to play would raise ThreadError # Closes all playing AudioThread instances while True: with self.lock: # Ensure there's no other thread messing around try: thread = self._threads[0] # Needless to say: pop = deadlock except IndexError: # Empty list break # No more threads if not self.wait: thread.stop() thread.join() # Closes all recording RecStream instances while self._recordings: recst = self._recordings[-1] recst.stop() recst.take(inf) # Ensure it'll be closed # Finishes assert not self._pa._streams # No stream should survive self._pa.terminate()
0.017159
def get_parameter_dict(self, include_frozen=False): """ Get an ordered dictionary of the parameters Args: include_frozen (Optional[bool]): Should the frozen parameters be included in the returned value? (default: ``False``) """ return OrderedDict(zip( self.get_parameter_names(include_frozen=include_frozen), self.get_parameter_vector(include_frozen=include_frozen), ))
0.004246
def create_grade_system(self, grade_system_form): """Creates a new ``GradeSystem``. arg: grade_system_form (osid.grading.GradeSystemForm): the form for this ``GradeSystem`` return: (osid.grading.GradeSystem) - the new ``GradeSystem`` raise: IllegalState - ``grade_system_form`` already used in a create transaction raise: InvalidArgument - one or more of the form elements is invalid raise: NullArgument - ``grade_system_form`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure raise: Unsupported - ``grade_system_form`` did not originate from ``get_grade_system_form_for_create()`` *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.ResourceAdminSession.create_resource_template collection = JSONClientValidated('grading', collection='GradeSystem', runtime=self._runtime) if not isinstance(grade_system_form, ABCGradeSystemForm): raise errors.InvalidArgument('argument type is not an GradeSystemForm') if grade_system_form.is_for_update(): raise errors.InvalidArgument('the GradeSystemForm is for update only, not create') try: if self._forms[grade_system_form.get_id().get_identifier()] == CREATED: raise errors.IllegalState('grade_system_form already used in a create transaction') except KeyError: raise errors.Unsupported('grade_system_form did not originate from this session') if not grade_system_form.is_valid(): raise errors.InvalidArgument('one or more of the form elements is invalid') insert_result = collection.insert_one(grade_system_form._my_map) self._forms[grade_system_form.get_id().get_identifier()] = CREATED result = objects.GradeSystem( osid_object_map=collection.find_one({'_id': insert_result.inserted_id}), runtime=self._runtime, proxy=self._proxy) return result
0.003974
def freeze(self) -> dict: """ Returns a dictionary of all settings set for this object, including any values of its parents or hardcoded defaults. """ settings = {} for key, v in self._h.defaults.items(): settings[key] = self._unserialize(v.value, v.type) if self._parent: settings.update(getattr(self._parent, self._h.attribute_name).freeze()) for key in self._cache(): settings[key] = self.get(key) return settings
0.005725
def create_examples_all(): """create arduino/examples/all directory. :rtype: None """ remove_examples_all() examples_all_dir().mkdir() for lib in libraries(): maindir = examples_all_dir() / lib.upper()[0:1] / lib # libraries_dir() / maindir.makedirs_p() for ex in lib_examples(lib): d = lib_example_dir(lib, ex) if hasattr(os, 'symlink'): d.symlink(maindir / ex) else: d.copytree(maindir / ex)
0.001923
def _extract_header(time_series): """Return a copy of time_series with the points removed.""" return TimeSeries( metric=time_series.metric, resource=time_series.resource, metric_kind=time_series.metric_kind, value_type=time_series.value_type, )
0.003472
def depth_december_average_ground_temperature(self, value=None): """Corresponds to IDD Field `depth_december_average_ground_temperature` Args: value (float): value for IDD Field `depth_december_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_december_average_ground_temperature`'.format(value)) self._depth_december_average_ground_temperature = value
0.004657
def plot_covariance_ellipse( mean, cov=None, variance=1.0, std=None, ellipse=None, title=None, axis_equal=True, show_semiaxis=False, facecolor=None, edgecolor=None, fc='none', ec='#004080', alpha=1.0, xlim=None, ylim=None, ls='solid'): """ Deprecated function to plot a covariance ellipse. Use plot_covariance instead. See Also -------- plot_covariance """ warnings.warn("deprecated, use plot_covariance instead", DeprecationWarning) plot_covariance(mean=mean, cov=cov, variance=variance, std=std, ellipse=ellipse, title=title, axis_equal=axis_equal, show_semiaxis=show_semiaxis, facecolor=facecolor, edgecolor=edgecolor, fc=fc, ec=ec, alpha=alpha, xlim=xlim, ylim=ylim, ls=ls)
0.00237
def search_payload(self, fields=None, query=None): """Reset ``errata_id`` from DB ID to ``errata_id``.""" payload = super(ContentViewFilterRule, self).search_payload( fields, query) if 'errata_id' in payload: if not hasattr(self.errata, 'errata_id'): self.errata = self.errata.read() payload['errata_id'] = self.errata.errata_id return payload
0.004684
def avail_locations(): ''' Available locations ''' response = list_common_lookups(kwargs={'lookup': 'ip.datacenter'}) ret = {} for item in response['list']: name = item['name'] ret[name] = item return ret
0.004
def root(reference_labels, estimated_labels): """Compare chords according to roots. Examples -------- >>> (ref_intervals, ... ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab') >>> (est_intervals, ... est_labels) = mir_eval.io.load_labeled_intervals('est.lab') >>> est_intervals, est_labels = mir_eval.util.adjust_intervals( ... est_intervals, est_labels, ref_intervals.min(), ... ref_intervals.max(), mir_eval.chord.NO_CHORD, ... mir_eval.chord.NO_CHORD) >>> (intervals, ... ref_labels, ... est_labels) = mir_eval.util.merge_labeled_intervals( ... ref_intervals, ref_labels, est_intervals, est_labels) >>> durations = mir_eval.util.intervals_to_durations(intervals) >>> comparisons = mir_eval.chord.root(ref_labels, est_labels) >>> score = mir_eval.chord.weighted_accuracy(comparisons, durations) Parameters ---------- reference_labels : list, len=n Reference chord labels to score against. estimated_labels : list, len=n Estimated chord labels to score against. Returns ------- comparison_scores : np.ndarray, shape=(n,), dtype=float Comparison scores, in [0.0, 1.0], or -1 if the comparison is out of gamut. """ validate(reference_labels, estimated_labels) ref_roots, ref_semitones = encode_many(reference_labels, False)[:2] est_roots = encode_many(estimated_labels, False)[0] comparison_scores = (ref_roots == est_roots).astype(np.float) # Ignore 'X' chords comparison_scores[np.any(ref_semitones < 0, axis=1)] = -1.0 return comparison_scores
0.000608
def remover(self, id_brand): """Remove Brand from by the identifier. :param id_brand: Identifier of the Brand. Integer value and greater than zero. :return: None :raise InvalidParameterError: The identifier of Brand is null and invalid. :raise MarcaNaoExisteError: Brand not registered. :raise MarcaError: The brand is associated with a model. :raise DataBaseError: Networkapi failed to access the database. :raise XMLError: Networkapi failed to generate the XML response. """ if not is_valid_int_param(id_brand): raise InvalidParameterError( u'The identifier of Brand is invalid or was not informed.') url = 'brand/' + str(id_brand) + '/' code, xml = self.submit(None, 'DELETE', url) return self.response(code, xml)
0.004678
def calculate_P(self, T, P, method): r'''Method to calculate pressure-dependent gas thermal conductivity at temperature `T` and pressure `P` with a given method. This method has no exception handling; see `TP_dependent_property` for that. Parameters ---------- T : float Temperature at which to calculate gas thermal conductivity, [K] P : float Pressure at which to calculate gas thermal conductivity, [K] method : str Name of the method to use Returns ------- kg : float Thermal conductivity of the gas at T and P, [W/m/K] ''' if method == ELI_HANLEY_DENSE: Vmg = self.Vmg(T, P) if hasattr(self.Vmg, '__call__') else self.Vmg Cvgm = self.Cvgm(T) if hasattr(self.Cvgm, '__call__') else self.Cvgm kg = eli_hanley_dense(T, self.MW, self.Tc, self.Vc, self.Zc, self.omega, Cvgm, Vmg) elif method == CHUNG_DENSE: Vmg = self.Vmg(T, P) if hasattr(self.Vmg, '__call__') else self.Vmg Cvgm = self.Cvgm(T) if hasattr(self.Cvgm, '__call__') else self.Cvgm mug = self.mug(T, P) if hasattr(self.mug, '__call__') else self.mug kg = chung_dense(T, self.MW, self.Tc, self.Vc, self.omega, Cvgm, Vmg, mug, self.dipole) elif method == STIEL_THODOS_DENSE: kg = self.T_dependent_property(T) Vmg = self.Vmg(T, P) if hasattr(self.Vmg, '__call__') else self.Vmg kg = stiel_thodos_dense(T, self.MW, self.Tc, self.Pc, self.Vc, self.Zc, Vmg, kg) elif method == COOLPROP: kg = PropsSI('L', 'T', T, 'P', P, self.CASRN) elif method in self.tabular_data: kg = self.interpolate_P(T, P, method) return kg
0.00385
def bits_from_str(cls, s): """ Converts the output of __str__ into an integer. """ try: if len(s) <= len(cls.__name__) or not s.startswith(cls.__name__): return cls.bits_from_simple_str(s) c = s[len(cls.__name__)] if c == '(': if not s.endswith(')'): raise ValueError return cls.bits_from_simple_str(s[len(cls.__name__)+1:-1]) elif c == '.': member_name = s[len(cls.__name__)+1:] return int(cls.__all_members__[member_name]) else: raise ValueError except ValueError as ex: if ex.args: raise raise ValueError("%s.%s: invalid input: %r" % (cls.__name__, cls.bits_from_str.__name__, s)) except KeyError as ex: raise ValueError("%s.%s: Invalid flag name '%s' in input: %r" % (cls.__name__, cls.bits_from_str.__name__, ex.args[0], s))
0.00469
def ssn(self): """ Returns a 11 digits Belgian SSN called "rijksregisternummer" as a string The first 6 digits represent the birthdate with (in order) year, month and day. The second group of 3 digits is represents a sequence number (order of birth). It is even for women and odd for men. For men the range starts at 1 and ends 997, for women 2 until 998. The third group of 2 digits is a checksum based on the previous 9 digits (modulo 97). Divide those 9 digits by 97, subtract the remainder from 97 and that's the result. For persons born in or after 2000, the 9 digit number needs to be proceeded by a 2 (add 2000000000) before the division by 97. """ # see http://nl.wikipedia.org/wiki/Burgerservicenummer (in Dutch) def _checksum(digits): res = 97 - (digits % 97) return res # Generate a date (random) mydate = self.generator.date() # Convert it to an int elms = mydate.split("-") # Adjust for year 2000 if necessary if elms[0][0] == '2': above = True else: above = False # Only keep the last 2 digits of the year elms[0] = elms[0][2:4] # Simulate the gender/sequence - should be 3 digits seq = self.generator.random_int(1, 998) # Right justify sequence and append to list seq_str = "{:0>3}".format(seq) elms.append(seq_str) # Now convert list to an integer so the checksum can be calculated date_as_int = int("".join(elms)) if above: date_as_int += 2000000000 # Generate checksum s = _checksum(date_as_int) s_rjust = "{:0>2}".format(s) # return result as a string elms.append(s_rjust) return "".join(elms)
0.004294
def from_raw(self, rval: RawScalar, jptr: JSONPointer = "") -> ScalarValue: """Override the superclass method.""" res = self.type.from_raw(rval) if res is None: raise RawTypeError(jptr, self.type.yang_type() + " value") return res
0.007299
def update_collection_by_id(cls, collection_id, collection, **kwargs): """Update Collection Update attributes of Collection This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.update_collection_by_id(collection_id, collection, async=True) >>> result = thread.get() :param async bool :param str collection_id: ID of collection to update. (required) :param Collection collection: Attributes of collection to update. (required) :return: Collection If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return cls._update_collection_by_id_with_http_info(collection_id, collection, **kwargs) else: (data) = cls._update_collection_by_id_with_http_info(collection_id, collection, **kwargs) return data
0.005753
def getpaths(self): ''' If we have children, use a list comprehension to instantiate new paths objects to traverse. ''' self.children = self.getchildren() if self.children is None: return if self.paths is None: self.paths = [Paths(self.screen, os.path.join(self.name, child), self.hidden, self.picked, self.expanded, self.sized) for child in self.children] return self.paths
0.003086
def update_pricing(kwargs=None, call=None): ''' Download most recent pricing information from GCE and save locally CLI Examples: .. code-block:: bash salt-cloud -f update_pricing my-gce-config .. versionadded:: 2015.8.0 ''' url = 'https://cloudpricingcalculator.appspot.com/static/data/pricelist.json' price_json = salt.utils.http.query(url, decode=True, decode_type='json') outfile = os.path.join( __opts__['cachedir'], 'gce-pricing.p' ) with salt.utils.files.fopen(outfile, 'w') as fho: salt.utils.msgpack.dump(price_json['dict'], fho) return True
0.00319
def delete(self): r"""Delete this node from the parse tree. Where applicable, this will remove all descendants of this node from the parse tree. >>> from TexSoup import TexSoup >>> soup = TexSoup(r'''\textit{\color{blue}{Silly}}\textit{keep me!}''') >>> soup.textit.color.delete() >>> soup \textit{}\textit{keep me!} >>> soup.textit.delete() >>> soup \textit{keep me!} """ # TODO: needs better abstraction for supports contents parent = self.parent if parent.expr._supports_contents(): parent.remove(self) return # TODO: needs abstraction for removing from arg for arg in parent.args: if self.expr in arg.contents: arg.contents.remove(self.expr)
0.003584
async def append(self, reply: Reply) \ -> None: """ Add the given Reply to this transaction store's list of responses. Also add to processedRequests if not added previously. """ result = reply.result identifier = result.get(f.IDENTIFIER.nm) txnId = result.get(TXN_ID) logger.debug("Reply being sent {}".format(reply)) if self._isNewTxn(identifier, reply, txnId): self.addToProcessedTxns(identifier, txnId, reply) if identifier not in self.responses: self.responses[identifier] = asyncio.Queue() await self.responses[identifier].put(reply)
0.003021
def _flush(self): """ Flush all caches Might be used after classes, methods or fields are added. """ self.classes_names = None self.__cache_methods = None self.__cached_methods_idx = None self.__cache_fields = None # cache methods and fields as well, otherwise the decompiler is quite slow self.__cache_all_methods = None self.__cache_all_fields = None
0.006803
def overlay_images(self, canvas, data, whence=0.0): """Overlay data from any canvas image objects. Parameters ---------- canvas : `~ginga.canvas.types.layer.DrawingCanvas` Canvas containing possible images to overlay. data : ndarray Output array on which to overlay image data. whence See :meth:`get_rgb_object`. """ #if not canvas.is_compound(): if not hasattr(canvas, 'objects'): return for obj in canvas.get_objects(): if hasattr(obj, 'draw_image'): obj.draw_image(self, data, whence=whence) elif obj.is_compound() and (obj != canvas): self.overlay_images(obj, data, whence=whence)
0.003876
def summary_err_table(df, qvalues=[0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5]): """ Summary error table for some typical q-values """ qvalues = to_one_dim_array(qvalues) # find best matching fows in df for given qvalues: ix = find_nearest_matches(np.float32(df.qvalue.values), qvalues) # extract sub table df_sub = df.iloc[ix].copy() # remove duplicate hits, mark them with None / NAN: for i_sub, (i0, i1) in enumerate(zip(ix, ix[1:])): if i1 == i0: df_sub.iloc[i_sub + 1, :] = None # attach q values column df_sub.qvalue = qvalues # remove old index from original df: df_sub.reset_index(inplace=True, drop=True) return df_sub[['qvalue','pvalue','svalue','pep','fdr','fnr','fpr','tp','tn','fp','fn','cutoff']]
0.017834
def forward_word_end_extend_selection(self, e): # u"""Move forward to the end of the next word. Words are composed of letters and digits.""" self.l_buffer.forward_word_end_extend_selection(self.argument_reset) self.finalize()
0.015267
def import_lv_grid_districts(self, session, lv_stations): """Imports all lv grid districts within given load area Parameters ---------- session : sqlalchemy.orm.session.Session Database session Returns ------- lv_grid_districts: :pandas:`pandas.DataFrame<dataframe>` Table of lv_grid_districts """ # get ding0s' standard CRS (SRID) srid = str(int(cfg_ding0.get('geo', 'srid'))) # SET SRID 3035 to achieve correct area calculation of lv_grid_district # srid = '3035' gw2kw = 10 ** 6 # load in database is in GW -> scale to kW # 1. filter grid districts of relevant load area lv_grid_districs_sqla = session.query( self.orm['orm_lv_grid_district'].mvlv_subst_id, self.orm['orm_lv_grid_district'].la_id, self.orm['orm_lv_grid_district'].zensus_sum.label('population'), (self.orm[ 'orm_lv_grid_district'].sector_peakload_residential * gw2kw). label('peak_load_residential'), (self.orm['orm_lv_grid_district'].sector_peakload_retail * gw2kw). label('peak_load_retail'), (self.orm[ 'orm_lv_grid_district'].sector_peakload_industrial * gw2kw). label('peak_load_industrial'), (self.orm[ 'orm_lv_grid_district'].sector_peakload_agricultural * gw2kw). label('peak_load_agricultural'), ((self.orm['orm_lv_grid_district'].sector_peakload_residential + self.orm['orm_lv_grid_district'].sector_peakload_retail + self.orm['orm_lv_grid_district'].sector_peakload_industrial + self.orm['orm_lv_grid_district'].sector_peakload_agricultural) * gw2kw).label('peak_load'), func.ST_AsText(func.ST_Transform( self.orm['orm_lv_grid_district'].geom, srid)).label('geom'), self.orm['orm_lv_grid_district'].sector_count_residential, self.orm['orm_lv_grid_district'].sector_count_retail, self.orm['orm_lv_grid_district'].sector_count_industrial, self.orm['orm_lv_grid_district'].sector_count_agricultural, (self.orm[ 'orm_lv_grid_district'].sector_consumption_residential * gw2kw). \ label('sector_consumption_residential'), (self.orm['orm_lv_grid_district'].sector_consumption_retail * gw2kw). \ label('sector_consumption_retail'), (self.orm[ 'orm_lv_grid_district'].sector_consumption_industrial * gw2kw). \ label('sector_consumption_industrial'), (self.orm[ 'orm_lv_grid_district'].sector_consumption_agricultural * gw2kw). \ label('sector_consumption_agricultural'), self.orm['orm_lv_grid_district'].mvlv_subst_id). \ filter(self.orm['orm_lv_grid_district'].mvlv_subst_id.in_( lv_stations.index.tolist())). \ filter(self.orm['version_condition_lvgd']) # read data from db lv_grid_districts = pd.read_sql_query(lv_grid_districs_sqla.statement, session.bind, index_col='mvlv_subst_id') lv_grid_districts[ ['sector_count_residential', 'sector_count_retail', 'sector_count_industrial', 'sector_count_agricultural']] = lv_grid_districts[ ['sector_count_residential', 'sector_count_retail', 'sector_count_industrial', 'sector_count_agricultural']].fillna(0) return lv_grid_districts
0.005024
def forward(self, x): """ Arguments: x (list[Tensor]): feature maps for each feature level. Returns: results (tuple[Tensor]): feature maps after FPN layers. They are ordered from highest resolution first. """ last_inner = getattr(self, self.inner_blocks[-1])(x[-1]) results = [] results.append(getattr(self, self.layer_blocks[-1])(last_inner)) for feature, inner_block, layer_block in zip( x[:-1][::-1], self.inner_blocks[:-1][::-1], self.layer_blocks[:-1][::-1] ): if not inner_block: continue inner_top_down = F.interpolate(last_inner, scale_factor=2, mode="nearest") inner_lateral = getattr(self, inner_block)(feature) # TODO use size instead of scale to make it robust to different sizes # inner_top_down = F.upsample(last_inner, size=inner_lateral.shape[-2:], # mode='bilinear', align_corners=False) last_inner = inner_lateral + inner_top_down results.insert(0, getattr(self, layer_block)(last_inner)) if isinstance(self.top_blocks, LastLevelP6P7): last_results = self.top_blocks(x[-1], results[-1]) results.extend(last_results) elif isinstance(self.top_blocks, LastLevelMaxPool): last_results = self.top_blocks(results[-1]) results.extend(last_results) return tuple(results)
0.004027
def blockwise_inner_join(data, left, foreign_key, right, force_repeat=None, foreign_key_name=None): """Perform a blockwise inner join. Perform a blockwise inner join from names specified in ``left`` to ``right`` via ``foreign_key``: left->foreign_key->right. Parameters ---------- data : array A structured NumPy array. left : array Array of left side column names. foreign_key : array or string NumPy array or string ``foreign_key`` column name. This column can be either an integer or an array of ints. If ``foreign_key`` is an array of int column, left column will be treated according to left column type: * Scalar columns or columns in ``force_repeat`` will be repeated * Array columns not in ``force_repeat`` will be assumed to the same length as ``foreign_key`` and will be stretched by index right : array Array of right side column names. These are array columns that each index ``foreign_key`` points to. These columns are assumed to have the same length. force_repeat : array, optional (default=None) Array of left column names that will be forced to stretch even if it's an array (useful when you want to emulate a multiple join). foreign_key_name : str, optional (default=None) The name of foreign key column in the output array. Examples -------- >>> import numpy as np >>> from root_numpy import blockwise_inner_join >>> test_data = np.array([ (1.0, np.array([11, 12, 13]), np.array([1, 0, 1]), 0, np.array([1, 2, 3])), (2.0, np.array([21, 22, 23]), np.array([-1, 2, -1]), 1, np.array([31, 32, 33]))], dtype=[('sl', np.float), ('al', 'O'), ('fk', 'O'), ('s_fk', np.int), ('ar', 'O')]) >>> blockwise_inner_join(test_data, ['sl', 'al'], test_data['fk'], ['ar']) array([(1.0, 11, 2, 1), (1.0, 12, 1, 0), (1.0, 13, 2, 1), (2.0, 22, 33, 2)], dtype=[('sl', '<f8'), ('al', '<i8'), ('ar', '<i8'), ('fk', '<i8')]) >>> blockwise_inner_join(test_data, ['sl', 'al'], test_data['fk'], ['ar'], force_repeat=['al']) array([(1.0, [11, 12, 13], 2, 1), (1.0, [11, 12, 13], 1, 0), (1.0, [11, 12, 13], 2, 1), (2.0, [21, 22, 23], 33, 2)], dtype=[('sl', '<f8'), ('al', '|O8'), ('ar', '<i8'), ('fk', '<i8')]) """ if isinstance(foreign_key, string_types): foreign_key = data[foreign_key] return _blockwise_inner_join(data, left, foreign_key, right, force_repeat, foreign_key_name)
0.001918
def invoke_step(self, context): """Invoke 'run_step' in the dynamically loaded step module. Don't invoke this from outside the Step class. Use pypyr.dsl.Step.run_step instead. invoke_step just does the bare module step invocation, it does not evaluate any of the decorator logic surrounding the step. So unless you really know what you're doing, use run_step if you intend on executing the step the same way pypyr does. Args: context: (pypyr.context.Context) The pypyr context. This arg will mutate. """ logger.debug("starting") logger.debug(f"running step {self.module}") self.run_step_function(context) logger.debug(f"step {self.module} done")
0.002541
def dimensions(self): """(row_count, col_count) pair describing size of range.""" _, _, width, height = self._extents return height, width
0.012346
def get_conv_params(mass1, mass2, spin1z, spin2z, metricParams, fUpper, lambda1=None, lambda2=None, quadparam1=None, quadparam2=None): """ Function to convert between masses and spins and locations in the mu parameter space. Mu = Cartesian metric, but not principal components. Parameters ----------- mass1 : float Mass of heavier body. mass2 : float Mass of lighter body. spin1z : float Spin of body 1. spin2z : float Spin of body 2. metricParams : metricParameters instance Structure holding all the options for construction of the metric and the eigenvalues, eigenvectors and covariance matrix needed to manipulate the space. fUpper : float The value of fUpper to use when getting the mu coordinates from the lambda coordinates. This must be a key in metricParams.evals and metricParams.evecs (ie. we must know how to do the transformation for the given value of fUpper) Returns -------- mus : list of floats or numpy.arrays Position of the system(s) in the mu coordinate system """ # Do this by masses -> lambdas lambdas = get_chirp_params(mass1, mass2, spin1z, spin2z, metricParams.f0, metricParams.pnOrder, lambda1=lambda1, lambda2=lambda2, quadparam1=quadparam1, quadparam2=quadparam2) # and lambdas -> mus mus = get_mu_params(lambdas, metricParams, fUpper) return mus
0.00063
async def unixconnect(path): ''' Connect to a PF_UNIX server listening on the given path. ''' reader, writer = await asyncio.open_unix_connection(path=path) info = {'path': path, 'unix': True} return await Link.anit(reader, writer, info=info)
0.003759
def format_xpaths(xpath_map, *args, **kwargs): """ :return: a copy of xpath_map, but with XPATHs formatted with ordered or keyword values """ formatted = {}.fromkeys(xpath_map) for key, xpath in iteritems(xpath_map): formatted[key] = xpath.format(*args, **kwargs) return formatted
0.006515
async def _dump_message_field(self, writer, msg, field, fvalue=None): """ Dumps a message field to the writer. Field is defined by the message field specification. :param writer: :param msg: :param field: :param fvalue: :return: """ fname, ftype, params = field[0], field[1], field[2:] fvalue = getattr(msg, fname, None) if fvalue is None else fvalue await self.dump_field(writer, fvalue, ftype, params)
0.006098
def init_argparser(self, argparser): """ Other runtimes (or users of ArgumentParser) can pass their subparser into here to collect the arguments here for a subcommand. """ super(SourcePackageToolchainRuntime, self).init_argparser(argparser) self.init_argparser_source_registry(argparser) self.init_argparser_package_names(argparser)
0.005025
def register_actions(self, shortcut_manager): """Register callback methods for triggered actions :param rafcon.gui.shortcut_manager.ShortcutManager shortcut_manager: """ shortcut_manager.add_callback_for_action("undo", self.undo) shortcut_manager.add_callback_for_action("redo", self.redo)
0.006061
def factory(cfg, login, pswd, request_type): """ Instantiate ExportRequest :param cfg: request configuration, should consist of request description (url and optional parameters) :param login: :param pswd: :param request_type: TYPE_SET_FIELD_VALUE || TYPE_CREATE_ENTITY || TYPE_DELETE_ENTITY || TYPE_CREATE_RELATION :return: ExportRequest instance """ if request_type == ExportRequest.TYPE_SET_FIELD_VALUE: return SetFieldValueRequest(cfg, login, pswd) elif request_type == ExportRequest.TYPE_CREATE_ENTITY: return CreateEntityRequest(cfg, login, pswd) elif request_type == ExportRequest.TYPE_DELETE_ENTITY: return DeleteEntityRequest(cfg, login, pswd) elif request_type == ExportRequest.TYPE_CREATE_RELATION: return CreateRelationRequest(cfg, login, pswd) else: raise NotImplementedError('Not supported request type - {}'.format(request_type))
0.004965
def varchar(self, field=None): """ Returns a chunk of text, of maximum length 'max_length' """ assert field is not None, "The field parameter must be passed to the 'varchar' method." max_length = field.max_length def source(): length = random.choice(range(1, max_length + 1)) return "".join(random.choice(general_chars) for i in xrange(length)) return self.get_allowed_value(source, field)
0.008511
def get_authorizations_by_genus_type(self, authorization_genus_type): """Gets an ``AuthorizationList`` corresponding to the given authorization genus ``Type`` which does not include authorizations of genus types derived from the specified ``Type``. In plenary mode, the returned list contains all known authorizations or an error results. Otherwise, the returned list may contain only those authorizations that are accessible through this session. arg: authorization_genus_type (osid.type.Type): an authorization genus type return: (osid.authorization.AuthorizationList) - the returned ``Authorization`` list raise: NullArgument - ``authorization_genus_type`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure occurred *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.ResourceLookupSession.get_resources_by_genus_type # NOTE: This implementation currently ignores plenary view collection = JSONClientValidated('authorization', collection='Authorization', runtime=self._runtime) result = collection.find( dict({'genusTypeId': str(authorization_genus_type)}, **self._view_filter())).sort('_id', DESCENDING) return objects.AuthorizationList(result, runtime=self._runtime, proxy=self._proxy)
0.002488
def _post_processing(kwargs, skip_translate, invalid): ''' Additional container-specific post-translation processing ''' # Don't allow conflicting options to be set if kwargs.get('port_bindings') is not None \ and kwargs.get('publish_all_ports'): kwargs.pop('port_bindings') invalid['port_bindings'] = 'Cannot be used when publish_all_ports=True' if kwargs.get('hostname') is not None \ and kwargs.get('network_mode') == 'host': kwargs.pop('hostname') invalid['hostname'] = 'Cannot be used when network_mode=True' # Make sure volumes and ports are defined to match the binds and port_bindings if kwargs.get('binds') is not None \ and (skip_translate is True or all(x not in skip_translate for x in ('binds', 'volume', 'volumes'))): # Make sure that all volumes defined in "binds" are included in the # "volumes" param. auto_volumes = [] if isinstance(kwargs['binds'], dict): for val in six.itervalues(kwargs['binds']): try: if 'bind' in val: auto_volumes.append(val['bind']) except TypeError: continue else: if isinstance(kwargs['binds'], list): auto_volume_defs = kwargs['binds'] else: try: auto_volume_defs = helpers.split(kwargs['binds']) except AttributeError: auto_volume_defs = [] for val in auto_volume_defs: try: auto_volumes.append(helpers.split(val, ':')[1]) except IndexError: continue if auto_volumes: actual_volumes = kwargs.setdefault('volumes', []) actual_volumes.extend([x for x in auto_volumes if x not in actual_volumes]) # Sort list to make unit tests more reliable actual_volumes.sort() if kwargs.get('port_bindings') is not None \ and all(x not in skip_translate for x in ('port_bindings', 'expose', 'ports')): # Make sure that all ports defined in "port_bindings" are included in # the "ports" param. ports_to_bind = list(kwargs['port_bindings']) if ports_to_bind: ports_to_open = set(kwargs.get('ports', [])) ports_to_open.update([helpers.get_port_def(x) for x in ports_to_bind]) kwargs['ports'] = list(ports_to_open) if 'ports' in kwargs \ and all(x not in skip_translate for x in ('expose', 'ports')): # TCP ports should only be passed as the port number. Normalize the # input so a port definition of 80/tcp becomes just 80 instead of # (80, 'tcp'). for index, _ in enumerate(kwargs['ports']): try: if kwargs['ports'][index][1] == 'tcp': kwargs['ports'][index] = ports_to_open[index][0] except TypeError: continue
0.000955
def dot(poly1, poly2): """ Dot product of polynomial vectors. Args: poly1 (Poly) : left part of product. poly2 (Poly) : right part of product. Returns: (Poly) : product of poly1 and poly2. Examples: >>> poly = cp.prange(3, 1) >>> print(poly) [1, q0, q0^2] >>> print(cp.dot(poly, numpy.arange(3))) 2q0^2+q0 >>> print(cp.dot(poly, poly)) q0^4+q0^2+1 """ if not isinstance(poly1, Poly) and not isinstance(poly2, Poly): return numpy.dot(poly1, poly2) poly1 = Poly(poly1) poly2 = Poly(poly2) poly = poly1*poly2 if numpy.prod(poly1.shape) <= 1 or numpy.prod(poly2.shape) <= 1: return poly return chaospy.poly.sum(poly, 0)
0.001309
def rbac_policy_create(request, **kwargs): """Create a RBAC Policy. :param request: request context :param target_tenant: target tenant of the policy :param tenant_id: owner tenant of the policy(Not recommended) :param object_type: network or qos_policy :param object_id: object id of policy :param action: access_as_shared or access_as_external :return: RBACPolicy object """ body = {'rbac_policy': kwargs} rbac_policy = neutronclient(request).create_rbac_policy( body=body).get('rbac_policy') return RBACPolicy(rbac_policy)
0.001718
def run(self): """Run directive.""" try: language = self.arguments[0] except IndexError: language = '' code = '\n'.join(self.content) literal = docutils.nodes.literal_block(code, code) literal['classes'].append('code-block') literal['language'] = language return [literal]
0.005556
def is_none(node): "Determine if a node is the `None` keyword." return isinstance(node, parso.python.tree.Keyword) and node.value == 'None'
0.006803
def get_response(self, action, params, page=0, itemSet=None): """ Utility method to handle calls to ECS and parsing of responses. """ params['Service'] = "AWSECommerceService" params['Operation'] = action if page: params['ItemPage'] = page response = self.make_request(None, params, "/onca/xml") body = response.read() boto.log.debug(body) if response.status != 200: boto.log.error('%s %s' % (response.status, response.reason)) boto.log.error('%s' % body) raise self.ResponseError(response.status, response.reason, body) if itemSet == None: rs = ItemSet(self, action, params, page) else: rs = itemSet h = handler.XmlHandler(rs, self) xml.sax.parseString(body, h) return rs
0.003464
def files(self): """Extract files to download from GitHub payload.""" tag_name = self.release['tag_name'] repo_name = self.repository['full_name'] zipball_url = self.release['zipball_url'] filename = u'{name}-{tag}.zip'.format(name=repo_name, tag=tag_name) response = self.gh.api.session.head(zipball_url) assert response.status_code == 302, \ u'Could not retrieve archive from GitHub: {0}'.format(zipball_url) yield filename, zipball_url
0.003868
def compose(self): """ get CGR of reaction reagents will be presented as unchanged molecules :return: CGRContainer """ rr = self.__reagents + self.__reactants if rr: if not all(isinstance(x, (MoleculeContainer, CGRContainer)) for x in rr): raise TypeError('Queries not composable') r = reduce(or_, rr) else: r = MoleculeContainer() if self.__products: if not all(isinstance(x, (MoleculeContainer, CGRContainer)) for x in self.__products): raise TypeError('Queries not composable') p = reduce(or_, self.__products) else: p = MoleculeContainer() return r ^ p
0.00534
def _getf(self, id): """Open a cached file with the given id for reading.""" try: filename = self.__filename(id) self.__remove_if_expired(filename) return self.__open(filename, "rb") except Exception: pass
0.00722
def raise_routing_exception(self, request): """Exceptions that are recording during routing are reraised with this method. During debug we are not reraising redirect requests for non ``GET``, ``HEAD``, or ``OPTIONS`` requests and we're raising a different error instead to help debug situations. :internal: """ if not self.debug \ or not isinstance(request.routing_exception, RequestRedirect) \ or request.method in ('GET', 'HEAD', 'OPTIONS'): raise request.routing_exception from .debughelpers import FormDataRoutingRedirect raise FormDataRoutingRedirect(request)
0.002972
def block_transfer(self, buffer, x, y): """ Copy a buffer to the screen double buffer at a specified location. :param buffer: The double buffer to copy :param x: The X origin for where to place it in the Screen :param y: The Y origin for where to place it in the Screen """ self._buffer.block_transfer(buffer, x, y)
0.005376
def to_txt(self, verbose=False): """Write the program information to text, which can be printed in a terminal. Parameters ---------- verbose If True, more information is shown. Returns ------- string Program as text. """ # Get information related to formatting exercises = list(self._yield_exercises()) max_ex_name = 0 if len(exercises) != 0: max_ex_name = max(len(ex.name) for ex in exercises) # If rendered, find the length of the longest '6 x 75kg'-type string max_ex_scheme = 0 if self._rendered: for (week, day, dynamic_ex) in self._yield_week_day_dynamic(): lengths = [len(s) for s in self._rendered[week][day][dynamic_ex]['strings']] max_ex_scheme = max(max_ex_scheme, max(lengths)) env = self.jinja2_environment template = env.get_template(self.TEMPLATE_NAMES['txt']) return template.render(program=self, max_ex_name=max_ex_name, max_ex_scheme=max_ex_scheme, verbose=verbose)
0.002547
def modify_request(self, http_request=None): """Sets HTTP request components based on the URI.""" if http_request is None: http_request = HttpRequest() if http_request.uri is None: http_request.uri = Uri() # Determine the correct scheme. if self.scheme: http_request.uri.scheme = self.scheme if self.port: http_request.uri.port = self.port if self.host: http_request.uri.host = self.host # Set the relative uri path if self.path: http_request.uri.path = self.path if self.query: http_request.uri.query = self.query.copy() return http_request
0.012759
def enable_disable_on_bot_select_deselect(self): """ Disables the botconfig groupbox and minus buttons when no bot is selected :return: """ if not self.blue_listwidget.selectedItems() and not self.orange_listwidget.selectedItems(): self.bot_config_groupbox.setDisabled(True) self.blue_minus_toolbutton.setDisabled(True) self.orange_minus_toolbutton.setDisabled(True) else: self.bot_config_groupbox.setDisabled(False)
0.007813
def add_page_break(self): """Return newly |Paragraph| object containing only a page break.""" paragraph = self.add_paragraph() paragraph.add_run().add_break(WD_BREAK.PAGE) return paragraph
0.009091
def mtf_transformer_paper_tr(size): """Config for translation experiments. Train these on translate_enfr_wmt32k_packed for 154000 steps (3 epochs) The size parameter is an integer that controls the number of heads and the size of the size of the feedforward hidden layers. Increasing size by 1 doubles each of these. Args: size: an integer Returns: a hparams object """ n = 2 ** size hparams = mtf_transformer_base() hparams.label_smoothing = 0.1 hparams.batch_size = 128 hparams.d_model = 1024 hparams.d_ff = int(4096 * n) hparams.num_heads = int(8 * n) hparams.shared_embedding_and_softmax_weights = False # one epoch for translate_enfr_wmt32k_packed = 51400 steps hparams.learning_rate_decay_steps = 51400 return hparams
0.016818
def _resolve_command(self, command, target): """Get the correct event for the command Only for 'privmsg' and 'notice' commands. :param command: The command string :type command: :class:`str` :param target: either a user or a channel :type target: :class:`str` :returns: the correct event type :rtype: :class:`str` :raises: None """ if command == "privmsg": if irc.client.is_channel(target): command = "pubmsg" else: if irc.client.is_channel(target): command = "pubnotice" else: command = "privnotice" return command
0.002837
def copy(self): """ Returns a copy of the factor. Returns ------- DiscreteFactor: copy of the factor Examples -------- >>> import numpy as np >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 3], np.arange(18)) >>> phi_copy = phi.copy() >>> phi_copy.variables ['x1', 'x2', 'x3'] >>> phi_copy.cardinality array([2, 3, 3]) >>> phi_copy.values array([[[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8]], [[ 9, 10, 11], [12, 13, 14], [15, 16, 17]]]) """ # not creating a new copy of self.values and self.cardinality # because __init__ methods does that. return DiscreteFactor(self.scope(), self.cardinality, self.values, state_names=self.state_names)
0.003181
def derivative(n, coef, derivative=2, periodic=False): """ Builds a penalty matrix for P-Splines with continuous features. Penalizes the squared differences between basis coefficients. Parameters ---------- n : int number of splines coef : unused for compatibility with constraints derivative: int, default: 2 which derivative do we penalize. derivative is 1, we penalize 1st order derivatives, derivative is 2, we penalize 2nd order derivatives, etc Returns ------- penalty matrix : sparse csc matrix of shape (n,n) """ if n == 1: # no derivative for constant functions return sp.sparse.csc_matrix(0.) D = sparse_diff(sp.sparse.identity(n + 2*derivative*periodic).tocsc(), n=derivative).tolil() if periodic: # wrap penalty cols = D[:, :derivative] D[:, -2 * derivative:-derivative] += cols * (-1) ** derivative # do symmetric operation on lower half of matrix n_rows = int((n + 2 * derivative)/2) D[-n_rows:] = D[:n_rows][::-1, ::-1] # keep only the center of the augmented matrix D = D[derivative:-derivative, derivative:-derivative] return D.dot(D.T).tocsc()
0.001597
def permission_check(apikey, endpoint): """ return (user, seckey) if url end point is in allowed entry point list """ try: ak = APIKeys.objects.get(apikey=apikey) apitree = cPickle.loads(ak.apitree.encode("ascii")) if apitree.match(endpoint): return ak.user if ak.user else AnonymousUser(), ak.seckey except APIKeys.DoesNotExist: pass return None, None
0.00431
def import_class(class_path): ''' Imports the class for the given class name. ''' module_name, class_name = class_path.rsplit(".", 1) module = import_module(module_name) claz = getattr(module, class_name) return claz
0.004032
def update(collection_name, upsert, multi, spec, doc, safe, last_error_args): """Get an **update** message. """ options = 0 if upsert: options += 1 if multi: options += 2 data = __ZERO data += bson._make_c_string(collection_name) data += struct.pack("<i", options) data += bson.BSON.encode(spec) data += bson.BSON.encode(doc) if safe: (_, update_message) = __pack_message(2001, data) (request_id, error_message) = __last_error(last_error_args) return (request_id, update_message + error_message) else: return __pack_message(2001, data)
0.001582
def argument(self) -> bool: """Parse statement argument. Return ``True`` if the argument is followed by block of substatements. """ next = self.peek() if next == "'": quoted = True self.sq_argument() elif next == '"': quoted = True self.dq_argument() elif self._arg == "": quoted = False self.unq_argument() else: raise UnexpectedInput(self, "single or double quote") self.opt_separator() next = self.peek() if next == ";": return False if next == "{": return True elif quoted and next == "+": self.offset += 1 self.opt_separator() return self.argument() else: raise UnexpectedInput(self, "';', '{'" + (" or '+'" if quoted else ""))
0.002139
def _if_not_closed(f): """Run the method iff. the memory view hasn't been closed and the parent object has not been freed.""" @add_signature_to_docstring(f) @functools.wraps(f) def f_(self, *args, **kwargs): if self.closed or self._parent._freed: raise OSError return f(self, *args, **kwargs) return f_
0.002817
def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class. """ attribs = self._get_attributes_dict() attribs['name'] = name # do not pass tz to set because tzlocal cannot be hashed if len({str(x.dtype) for x in to_concat}) != 1: raise ValueError('to_concat must have the same tz') new_data = type(self._values)._concat_same_type(to_concat).asi8 # GH 3232: If the concat result is evenly spaced, we can retain the # original frequency is_diff_evenly_spaced = len(unique_deltas(new_data)) == 1 if not is_period_dtype(self) and not is_diff_evenly_spaced: # reset freq attribs['freq'] = None return self._simple_new(new_data, **attribs)
0.002454
def rollback(self): """Ignore all changes made in the latest session (terminate the session).""" if self.session is not None: logger.info("rolling back transaction in %s" % self) self.session.close() self.session = None self.lock_update.release() else: logger.warning("rollback called but there's no open session in %s" % self)
0.009732
def _treat_star_format(self,arg_format_list,args): """ Deal with "*" format if specified. """ num_stars = len([a for a in arg_format_list if a == "*"]) if num_stars > 0: # Make sure the repeated format argument only occurs once, is last, # and that there is at least one format in addition to it. if num_stars == 1 and arg_format_list[-1] == "*" and len(arg_format_list) > 1: # Trim * from end arg_format_list = arg_format_list[:-1] # If we need extra arguments... if len(arg_format_list) < len(args): f = arg_format_list[-1] len_diff = len(args) - len(arg_format_list) tmp = list(arg_format_list) tmp.extend([f for i in range(len_diff)]) arg_format_list = "".join(tmp) else: err = "'*' format must occur only once, be at end of string, and be preceded by at least one other format." raise ValueError(err) return arg_format_list
0.005333
def _arith_method_SPARSE_ARRAY(cls, op, special): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ op_name = _get_op_name(op, special) def wrapper(self, other): from pandas.core.arrays.sparse.array import ( SparseArray, _sparse_array_op, _wrap_result, _get_fill) if isinstance(other, np.ndarray): if len(self) != len(other): raise AssertionError("length mismatch: {self} vs. {other}" .format(self=len(self), other=len(other))) if not isinstance(other, SparseArray): dtype = getattr(other, 'dtype', None) other = SparseArray(other, fill_value=self.fill_value, dtype=dtype) return _sparse_array_op(self, other, op, op_name) elif is_scalar(other): with np.errstate(all='ignore'): fill = op(_get_fill(self), np.asarray(other)) result = op(self.sp_values, other) return _wrap_result(op_name, result, self.sp_index, fill) else: # pragma: no cover raise TypeError('operation with {other} not supported' .format(other=type(other))) wrapper.__name__ = op_name return wrapper
0.000749
def search(self, **kwargs): """ Method to search asns based on extends search. :param search: Dict containing QuerySets to find asns. :param include: Array containing fields to include on response. :param exclude: Array containing fields to exclude on response. :param fields: Array containing fields to override default fields. :param kind: Determine if result will be detailed ('detail') or basic ('basic'). :return: Dict containing asns """ return super(ApiV4As, self).get(self.prepare_url( 'api/v4/as/', kwargs))
0.00491
def get_artist_location(self, cache=True): """Get the location of a song's artist. Args: cache (bool): A boolean indicating whether or not the cached value should be used (if available). Defaults to True. Returns: An artist location object. Example: >>> s = song.Song('SOQKVPH12A58A7AF4D') >>> s.artist_location {u'latitude': 34.053489999999996, u'location': u'Los Angeles, CA', u'longitude': -118.24532000000001} >>> """ if not (cache and ('artist_location' in self.cache)): response = self.get_attribute('profile', bucket='artist_location') self.cache['artist_location'] = response['songs'][0]['artist_location'] return self.cache['artist_location']
0.010817
def xstep(self): r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{x}`. """ self.X = np.asarray(sl.lu_solve_AATI(self.Z, self.rho, self.SZT + self.rho*(self.Y - self.U), self.lu, self.piv,), dtype=self.dtype)
0.00641
def read_modis_response(filename, scale=1.0): """Read the Terra/Aqua MODIS relative spectral responses. Be aware that MODIS has several detectors (more than one) compared to e.g. AVHRR which has always only one. """ with open(filename, "r") as fid: lines = fid.readlines() nodata = -99.0 # The IR channels seem to be in microns, whereas the short wave channels are # in nanometers! For VIS/NIR scale should be 0.001 detectors = {} for line in lines: if line.find("#") == 0: continue dummy, det_num, s_1, s_2 = line.split() detector_name = 'det-{0:d}'.format(int(det_num)) if detector_name not in detectors: detectors[detector_name] = {'wavelength': [], 'response': []} detectors[detector_name]['wavelength'].append(float(s_1) * scale) detectors[detector_name]['response'].append(float(s_2)) for key in detectors: mask = np.array(detectors[key]['response']) == nodata detectors[key]['response'] = np.ma.masked_array( detectors[key]['response'], mask=mask).compressed() detectors[key]['wavelength'] = np.ma.masked_array( detectors[key]['wavelength'], mask=mask).compressed() return detectors
0.001576
def set_host(self, host): """ Set the host for a lightning server. Host can be local (e.g. http://localhost:3000), a heroku instance (e.g. http://lightning-test.herokuapp.com), or a independently hosted lightning server. """ if host[-1] == '/': host = host[:-1] self.host = host return self
0.005319
def _get_account(self, address): """Get account by address. :param address: :return: """ state = self._get_head_state() account_address = binascii.a2b_hex(utils.remove_0x_head(address)) return state.get_and_cache_account(account_address)
0.006803
def _proxy(self, url, urlparams=None): """Do the actual action of proxying the call. """ for k,v in request.params.iteritems(): urlparams[k]=v query = urlencode(urlparams) full_url = url if query: if not full_url.endswith("?"): full_url += "?" full_url += query # build the request with its headers req = urllib2.Request(url=full_url) for header in request.headers: if header.lower() == "host": req.add_header(header, urlparse.urlparse(url)[1]) else: req.add_header(header, request.headers[header]) res = urllib2.urlopen(req) # add response headers i = res.info() response.status = res.code got_content_length = False for header in i: # We don't support serving the result as chunked if header.lower() == "transfer-encoding": continue if header.lower() == "content-length": got_content_length = True response.headers[header] = i[header] # return the result result = res.read() res.close() #if not got_content_length: # response.headers['content-length'] = str(len(result)) return result
0.003706
def range_span(ranges): """ Returns the total span between the left most range to the right most range. >>> ranges = [("1", 30, 45), ("1", 40, 50), ("1", 10, 50)] >>> range_span(ranges) 41 >>> ranges = [("1", 30, 45), ("2", 40, 50)] >>> range_span(ranges) 27 >>> ranges = [("1", 30, 45), ("1", 45, 50)] >>> range_span(ranges) 21 >>> range_span([]) 0 """ if not ranges: return 0 ranges.sort() ans = 0 for seq, lt in groupby(ranges, key=lambda x: x[0]): lt = list(lt) ans += max(max(lt)[1:]) - min(min(lt)[1:]) + 1 return ans
0.0016
def convert_tensor_to_probability_map(scope, operator, container): ''' This converter tries to convert a special operator 'TensorToProbabilityMap' into a sequence of some ONNX operators. Those operators are used to create a dictionary in which keys are class labels and values are the associated probabilities. We assume that the elements in the given probability tensor are aligned with the class labels specified in the CoreML model. Notice that ONNX<1.2 doesn't support a CoreML classifier with a batch size larger than one because old ONNX ZipMap is not able to produce a sequence of dictionaries. This issue has been fixed in ONNX-1.2. ''' attrs = {'name': scope.get_unique_operator_name('ZipMap')} model_type = operator.raw_operator.WhichOneof('Type') if model_type == 'neuralNetworkClassifier': model = operator.raw_operator.neuralNetworkClassifier if model.WhichOneof('ClassLabels') == 'stringClassLabels': attrs['classlabels_strings'] = list(s.encode('utf-8') for s in model.stringClassLabels.vector) elif model.WhichOneof('ClassLabels') == 'int64ClassLabels': attrs['classlabels_int64s'] = list(int(i) for i in model.int64ClassLabels.vector) else: raise ValueError('Unknown label type found') elif model_type == 'pipelineClassifier': model = operator.raw_operator.pipelineClassifier if model.WhichOneof('ClassLabels') == 'stringClassLabels': attrs['classlabels_strings'] = list(s.encode('utf-8') for s in model.stringClassLabels.vector) elif model.WhichOneof('ClassLabels') == 'int64ClassLabels': attrs['classlabels_int64s'] = list(int(i) for i in model.int64ClassLabels.vector) else: raise ValueError('Unknown label type found') else: raise TypeError('Only neural network classifiers and pipeline classifiers are supported') input_shape = operator.inputs[0].type.shape if len(operator.inputs[0].type.shape) != 2: # Calculate the shape attribute of ONNX Reshape if input_shape[0] != 'None': N = input_shape[0] else: N = -1 # -1 means that this dimension is automatically determined in runtime and unknown in conversion time if all(isinstance(i, numbers.Integral) for i in input_shape[1:]): C = 1 for i in input_shape[1:]: C *= int(i) else: C = -1 # -1 means that this dimension is automatically determined in runtime and unknown in conversion time # ZipMap in ONNX only accepts [C] and [N, C] inputs. In cases of [N, C, 1, 1], we reshape the probability tensor # into [N, C] before feeding it into ZipMap. buffer_name = scope.get_unique_variable_name('buffer') apply_reshape(scope, operator.inputs[0].full_name, buffer_name, container, desired_shape=[N, C]) else: buffer_name = operator.inputs[0].full_name container.add_node('ZipMap', buffer_name, operator.outputs[0].full_name, op_domain='ai.onnx.ml', **attrs)
0.004806
def accepts(**schemas): """Create a decorator for validating function parameters. Example:: @accepts(a="number", body={"+field_ids": [int], "is_ok": bool}) def f(a, body): print (a, body["field_ids"], body.get("is_ok")) :param schemas: The schema for validating a given parameter. """ validate = parse(schemas).validate @decorator def validating(func, *args, **kwargs): validate(inspect.getcallargs(func, *args, **kwargs), adapt=False) return func(*args, **kwargs) return validating
0.001779