text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def _notify_change(self):
""" After all changes have settled, tell Java it changed """
d = self.declaration
self._notify_count -= 1
if self._notify_count == 0:
#: Tell the UI we made changes
self.adapter.notifyDataSetChanged(now=True)
self.get_context().timed_call(
500, self._queue_pending_calls) | 0.005249 |
def is_list_of_list(item):
"""
check whether the item is list (tuple)
and consist of list (tuple) elements
"""
if (
type(item) in (list, tuple)
and len(item)
and isinstance(item[0], (list, tuple))
):
return True
return False | 0.003521 |
def res(self):
"""Get all target values found and corresponding parametes."""
params = [dict(zip(self.keys, p)) for p in self.params]
return [
{"target": target, "params": param}
for target, param in zip(self.target, params)
] | 0.007067 |
def get_logger(level=None, name=None, filename=None):
"""
Create a logger or return the current one if already instantiated.
Parameters
----------
level : int
one of the logger.level constants
name : string
name of the logger
filename : string
name of the log file
Returns
-------
logger.logger
"""
if level is None:
level = settings.log_level
if name is None:
name = settings.log_name
if filename is None:
filename = settings.log_filename
logger = lg.getLogger(name)
# if a logger with this name is not already set up
if not getattr(logger, 'handler_set', None):
# get today's date and construct a log filename
todays_date = dt.datetime.today().strftime('%Y_%m_%d')
log_filename = os.path.join(settings.logs_folder, '{}_{}.log'.format(filename, todays_date))
# if the logs folder does not already exist, create it
if not os.path.exists(settings.logs_folder):
os.makedirs(settings.logs_folder)
# create file handler and log formatter and set them up
handler = lg.FileHandler(log_filename, encoding='utf-8')
formatter = lg.Formatter('%(asctime)s %(levelname)s %(name)s %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(level)
logger.handler_set = True
return logger | 0.002083 |
def step(self, actions):
"""Makes a step in all environments.
Does any preprocessing and records frames.
Args:
actions: Batch of actions.
Returns:
(obs, rewards, dones) - batches of observations, rewards and done flags
respectively.
Raises:
ValueError: when the data for current epoch has already been loaded.
"""
if self._store_rollouts and \
self._rollouts_by_epoch_and_split[self.current_epoch]:
raise ValueError(
"Data for current epoch has already been loaded from disk."
)
(obs, unclipped_rewards, dones) = self._step(actions)
obs = self._preprocess_observations(obs)
(min_reward, max_reward) = self.reward_range
rewards = np.around(np.clip(unclipped_rewards, min_reward, max_reward))
if self._store_rollouts:
unclipped_rewards = unclipped_rewards.astype(np.float64)
encoded_obs = self._encode_observations(obs)
for (rollout, frame, action) in zip(
self._current_batch_rollouts, self._current_batch_frames, actions
):
rollout.append(frame._replace(action=action))
# orud = (observation, reward, unclipped_reward, done)
self._current_batch_frames = [
Frame(*orud, action=None)
for orud in zip(encoded_obs, rewards, unclipped_rewards, dones)
]
return (obs, rewards, dones) | 0.005852 |
def _dopost(url, params=None, payload=None, progress_cb=None):
"""Do a HTTP post to upload some data. If progress_cb is not None, it
should be a callable which takes two arguments: the total number of bytes
to upload and the number of bytes which have been uploaded. The callable is
called periodically to show the progress of the upload.
"""
if params:
encoded = urlencode(params)
else:
encoded = ''
url = str(url + encoded)
if payload is None:
payload = ''
# Try to make use of PyCURL if we have it
try:
c = pycurl.Curl()
except NameError:
c = None
if c is not None:
response = [ ]
def append_to_response(buf):
response.append(buf.decode())
def progress(download_t, download_d, upload_t, upload_d):
if progress_cb is not None:
progress_cb(upload_d, upload_t)
c = pycurl.Curl()
c.setopt(pycurl.URL, url)
c.setopt(pycurl.POST, 1)
c.setopt(pycurl.POSTFIELDS, payload)
c.setopt(pycurl.INFILESIZE, len(payload))
c.setopt(pycurl.WRITEFUNCTION, append_to_response)
c.setopt(pycurl.NOPROGRESS, 0)
c.setopt(pycurl.PROGRESSFUNCTION, progress)
c.perform()
c.close()
return json.loads(''.join(response))
else:
if progress_cb is not None:
progress_cb(0, len(payload))
response = [x.decode() for x in urlopen(url, payload).readlines()]
if progress_cb is not None:
progress_cb(len(payload), len(payload))
return json.loads(''.join(response)) | 0.001829 |
def items(self):
"""
A generator yielding ``(key, value)`` attribute pairs, sorted by key name.
"""
for key in sorted(self.attrs):
yield key, self.attrs[key] | 0.014925 |
def plot_divers(self, iabscissa=1, foffset=1e-19):
"""plot fitness, sigma, axis ratio...
:param iabscissa: 0 means vs evaluations, 1 means vs iterations
:param foffset: added to f-value
:See: `plot()`
"""
from matplotlib.pyplot import semilogy, hold, grid, \
axis, title, text
fontsize = pyplot.rcParams['font.size']
if not hasattr(self, 'f'):
self.load()
dat = self
minfit = min(dat.f[:, 5])
dfit = dat.f[:, 5] - minfit # why not using idx?
dfit[dfit < 1e-98] = np.NaN
self._enter_plotting()
if dat.f.shape[1] > 7:
# semilogy(dat.f[:, iabscissa], abs(dat.f[:,[6, 7, 10, 12]])+foffset,'-k')
semilogy(dat.f[:, iabscissa], abs(dat.f[:, [6, 7]]) + foffset, '-k')
hold(True)
# (larger indices): additional fitness data, for example constraints values
if dat.f.shape[1] > 8:
# dd = abs(dat.f[:,7:]) + 10*foffset
# dd = np.where(dat.f[:,7:]==0, np.NaN, dd) # cannot be
semilogy(dat.f[:, iabscissa], np.abs(dat.f[:, 8:]) + 10 * foffset, 'y')
hold(True)
idx = np.where(dat.f[:, 5] > 1e-98)[0] # positive values
semilogy(dat.f[idx, iabscissa], dat.f[idx, 5] + foffset, '.b')
hold(True)
grid(True)
semilogy(dat.f[:, iabscissa], abs(dat.f[:, 5]) + foffset, '-b')
text(dat.f[-1, iabscissa], abs(dat.f[-1, 5]) + foffset,
r'$|f_\mathsf{best}|$', fontsize=fontsize + 2)
# negative f-values, dots
sgn = np.sign(dat.f[:, 5])
sgn[np.abs(dat.f[:, 5]) < 1e-98] = 0
idx = np.where(sgn < 0)[0]
semilogy(dat.f[idx, iabscissa], abs(dat.f[idx, 5]) + foffset,
'.m') # , markersize=5
# lines between negative f-values
dsgn = np.diff(sgn)
start_idx = 1 + np.where((dsgn < 0) * (sgn[1:] < 0))[0]
stop_idx = 1 + np.where(dsgn > 0)[0]
if sgn[0] < 0:
start_idx = np.concatenate(([0], start_idx))
for istart in start_idx:
istop = stop_idx[stop_idx > istart]
istop = istop[0] if len(istop) else 0
idx = xrange(istart, istop if istop else dat.f.shape[0])
if len(idx) > 1:
semilogy(dat.f[idx, iabscissa], abs(dat.f[idx, 5]) + foffset,
'm') # , markersize=5
# lines between positive and negative f-values
# TODO: the following might plot values very close to zero
if istart > 0: # line to the left of istart
semilogy(dat.f[istart-1:istart+1, iabscissa],
abs(dat.f[istart-1:istart+1, 5]) +
foffset, '--m')
if istop: # line to the left of istop
semilogy(dat.f[istop-1:istop+1, iabscissa],
abs(dat.f[istop-1:istop+1, 5]) +
foffset, '--m')
# mark the respective first positive values
semilogy(dat.f[istop, iabscissa], abs(dat.f[istop, 5]) +
foffset, '.b', markersize=7)
# mark the respective first negative values
semilogy(dat.f[istart, iabscissa], abs(dat.f[istart, 5]) +
foffset, '.r', markersize=7)
# standard deviations std
semilogy(dat.std[:-1, iabscissa],
np.vstack([list(map(max, dat.std[:-1, 5:])),
list(map(min, dat.std[:-1, 5:]))]).T,
'-m', linewidth=2)
text(dat.std[-2, iabscissa], max(dat.std[-2, 5:]), 'max std',
fontsize=fontsize)
text(dat.std[-2, iabscissa], min(dat.std[-2, 5:]), 'min std',
fontsize=fontsize)
# delta-fitness in cyan
idx = isfinite(dfit)
if 1 < 3:
idx_nan = np.where(idx == False)[0] # gaps
if not len(idx_nan): # should never happen
semilogy(dat.f[:, iabscissa][idx], dfit[idx], '-c')
else:
i_start = 0
for i_end in idx_nan:
if i_end > i_start:
semilogy(dat.f[:, iabscissa][i_start:i_end],
dfit[i_start:i_end], '-c')
i_start = i_end + 1
if len(dfit) > idx_nan[-1] + 1:
semilogy(dat.f[:, iabscissa][idx_nan[-1]+1:],
dfit[idx_nan[-1]+1:], '-c')
text(dat.f[idx, iabscissa][-1], dfit[idx][-1],
r'$f_\mathsf{best} - \min(f)$', fontsize=fontsize + 2)
# overall minimum
i = np.argmin(dat.f[:, 5])
semilogy(dat.f[i, iabscissa], np.abs(dat.f[i, 5]), 'ro',
markersize=9)
semilogy(dat.f[i, iabscissa], dfit[idx][np.argmin(dfit[idx])]
+ 1e-98, 'ro', markersize=9)
# semilogy(dat.f[-1, iabscissa]*np.ones(2), dat.f[-1,4]*np.ones(2), 'rd')
# AR and sigma
semilogy(dat.f[:, iabscissa], dat.f[:, 3], '-r') # AR
semilogy(dat.f[:, iabscissa], dat.f[:, 2], '-g') # sigma
text(dat.f[-1, iabscissa], dat.f[-1, 3], r'axis ratio',
fontsize=fontsize)
text(dat.f[-1, iabscissa], dat.f[-1, 2] / 1.5, r'$\sigma$',
fontsize=fontsize+3)
ax = array(axis())
# ax[1] = max(minxend, ax[1])
axis(ax)
text(ax[0] + 0.01, ax[2], # 10**(log10(ax[2])+0.05*(log10(ax[3])-log10(ax[2]))),
'.min($f$)=' + repr(minfit))
#'.f_recent=' + repr(dat.f[-1, 5]))
# title('abs(f) (blue), f-min(f) (cyan), Sigma (green), Axis Ratio (red)')
# title(r'blue:$\mathrm{abs}(f)$, cyan:$f - \min(f)$, green:$\sigma$, red:axis ratio',
# fontsize=fontsize - 0.0)
title(r'$|f_{\mathrm{best},\mathrm{med},\mathrm{worst}}|$, $f - \min(f)$, $\sigma$, axis ratio')
# if __name__ != 'cma': # should be handled by the caller
self._xlabel(iabscissa)
self._finalize_plotting()
return self | 0.003257 |
def mapping_match(uri, mapping):
"""Determine whether the given URI matches one of the given mappings.
Returns True if a match was found, False otherwise.
"""
try:
val = mapping_get(uri, mapping)
return True
except KeyError:
return False | 0.003534 |
def set_var_log_arr(self, value):
''' setter '''
if isinstance(value, np.ndarray):
self.__var_log_arr = value
else:
raise TypeError() | 0.01105 |
def create_img():
"""Creates an image, as a `peri.util.Image`, which is similar
to the image in the tutorial"""
# 1. particles + coverslip
rad = 0.5 * np.random.randn(POS.shape[0]) + 4.5 # 4.5 +- 0.5 px particles
part = objs.PlatonicSpheresCollection(POS, rad, zscale=0.89)
slab = objs.Slab(zpos=4.92, angles=(-4.7e-3, -7.3e-4))
objects = comp.ComponentCollection([part, slab], category='obj')
# 2. psf, ilm
p = exactpsf.FixedSSChebLinePSF(kfki=1.07, zslab=-29.3, alpha=1.17,
n2n1=0.98, sigkf=-0.33, zscale=0.89, laser_wavelength=0.45)
i = ilms.BarnesStreakLegPoly2P1D(npts=(16,10,8,4), zorder=8)
b = ilms.LegendrePoly2P1D(order=(7,2,2), category='bkg')
off = comp.GlobalScalar(name='offset', value=-2.11)
mdl = models.ConfocalImageModel()
st = states.ImageState(util.NullImage(shape=[48,64,64]),
[objects, p, i, b, off], mdl=mdl, model_as_data=True)
b.update(b.params, BKGVALS)
i.update(i.params, ILMVALS)
im = st.model + np.random.randn(*st.model.shape) * 0.03
return util.Image(im) | 0.009242 |
def check_passwd(guess, passwd):
"""
Tests to see if the guess, after salting and hashing, matches the
passwd from the database.
@param guess: incoming password trying to be used for authentication
@param passwd: already encrypted password from the database
@returns: boolean
"""
m = sha1()
salt = passwd[:salt_len * 2] # salt_len * 2 due to encode('hex_codec')
m.update(unicode2bytes(guess) + unicode2bytes(salt))
crypted_guess = bytes2unicode(salt) + m.hexdigest()
return (crypted_guess == bytes2unicode(passwd)) | 0.001767 |
def getservers(self, vhost = None):
'''
Return current servers
:param vhost: return only servers of vhost if specified. '' to return only default servers.
None for all servers.
'''
if vhost is not None:
return [s for s in self.connections if s.protocol.vhost == vhost]
else:
return list(self.connections) | 0.014742 |
def _recv(self, rm_colon=False, blocking=True,
expected_replies=None, default_rvalue=[''],
ignore_unexpected_replies=True, rm_first=True, recur_limit=10):
"""
Receives and processes an IRC protocol message.
Optional arguments:
* rm_colon=False - If True:
If the message is > 3 items long:
Remove the colon(if found) from the [3] item.
Else:
Remove the colon(if found) from the [2] item.
* blocking=True - Should this call block?
* expected_replies=None - If specified:
If no matching reply is found:
Return the default_rvalue.
Else:
Return the message.
* default_rvalue=[''] - If no message or a matching message;
is found, return default_rvalue.
* ignore_unexpected_replies=True - If an,
unexpected reply is encountered,
should we keep going,
until we get a valid reply?
If False, it will just return
default_rvalue(If a valid reply isn't found).
* rm_first=True - If True,
remove [0] from the message before returning it.
"""
append = False
if expected_replies:
if len(expected_replies) > 1:
append = True
if self.readable():
msg = self._raw_recv()
else:
if not blocking:
return default_rvalue
else:
msg = self._raw_recv()
msg = msg.split(None, 3)
if msg[1] in self.error_dictionary:
self.exception(msg[1])
if rm_colon:
if len(msg) > 3:
if msg[3][0] == ':':
msg[3] = msg[3][1:]
elif len(msg) > 2:
if msg[2][0] == ':':
msg[2] = msg[2][1:]
if expected_replies:
if msg[1] not in expected_replies:
self.stepback(append)
if ignore_unexpected_replies and recur_limit > 0:
recur_limit -= 1
return self._recv(rm_colon=rm_colon, blocking=blocking, \
expected_replies=expected_replies, \
default_rvalue=default_rvalue, \
ignore_unexpected_replies=ignore_unexpected_replies,
rm_first=rm_first, recur_limit=recur_limit)
return default_rvalue
if rm_first:
return msg[1:]
return msg | 0.00399 |
def setLevel(self, level):
r"""Overrides the parent method to adapt the formatting string to the level.
Parameters
----------
level : int
The new log level to set. See the logging levels in the logging module for details.
Examples
--------
>>> import logging
>>> Logger.setLevel(logging.DEBUG)
"""
if logging.DEBUG >= level:
formatter = logging.Formatter("%(asctime)s [%(levelname)-8s] %(message)s (in %(module)s.%(funcName)s:%(lineno)s)",
"%d.%m.%Y %H:%M:%S")
self._handler.setFormatter(formatter)
else:
formatter = logging.Formatter("%(asctime)s [%(levelname)-8s] %(message)s",
"%d.%m.%Y %H:%M:%S")
self._handler.setFormatter(formatter)
NativeLogger.setLevel(self, level) | 0.013655 |
def from_str(cls, version_str: str):
"""
Alternate constructor that accepts a string SemVer.
"""
o = cls()
o.version = version_str
return o | 0.010695 |
def cli(env):
"""Server order options for a given chassis."""
hardware_manager = hardware.HardwareManager(env.client)
options = hardware_manager.get_create_options()
tables = []
# Datacenters
dc_table = formatting.Table(['datacenter', 'value'])
dc_table.sortby = 'value'
for location in options['locations']:
dc_table.add_row([location['name'], location['key']])
tables.append(dc_table)
# Presets
preset_table = formatting.Table(['size', 'value'])
preset_table.sortby = 'value'
for size in options['sizes']:
preset_table.add_row([size['name'], size['key']])
tables.append(preset_table)
# Operating systems
os_table = formatting.Table(['operating_system', 'value'])
os_table.sortby = 'value'
for operating_system in options['operating_systems']:
os_table.add_row([operating_system['name'], operating_system['key']])
tables.append(os_table)
# Port speed
port_speed_table = formatting.Table(['port_speed', 'value'])
port_speed_table.sortby = 'value'
for speed in options['port_speeds']:
port_speed_table.add_row([speed['name'], speed['key']])
tables.append(port_speed_table)
# Extras
extras_table = formatting.Table(['extras', 'value'])
extras_table.sortby = 'value'
for extra in options['extras']:
extras_table.add_row([extra['name'], extra['key']])
tables.append(extras_table)
env.fout(formatting.listing(tables, separator='\n')) | 0.000668 |
def parse_bulk_delete(prs, conn):
"""Delete bulk_records.
Arguments:
prs: parser object of argparse
conn: dictionary of connection information
"""
prs_delete = prs.add_parser(
'bulk_delete', help='delete bulk records of specific zone')
set_option(prs_delete, 'infile')
conn_options(prs_delete, conn)
prs_delete.add_argument('--domain', action='store',
help='delete records with specify zone')
prs_delete.set_defaults(func=delete) | 0.001938 |
def get_overlapping_ranges(self, collection_link, partition_key_ranges):
'''
Given a partition key range and a collection,
returns the list of overlapping partition key ranges
:param str collection_link:
The name of the collection.
:param list partition_key_range:
List of partition key range.
:return:
List of overlapping partition key ranges.
:rtype: list
'''
cl = self._documentClient
collection_id = base.GetResourceIdOrFullNameFromLink(collection_link)
collection_routing_map = self._collection_routing_map_by_item.get(collection_id)
if collection_routing_map is None:
collection_pk_ranges = list(cl._ReadPartitionKeyRanges(collection_link))
# for large collections, a split may complete between the read partition key ranges query page responses,
# causing the partitionKeyRanges to have both the children ranges and their parents. Therefore, we need
# to discard the parent ranges to have a valid routing map.
collection_pk_ranges = _PartitionKeyRangeCache._discard_parent_ranges(collection_pk_ranges)
collection_routing_map = _CollectionRoutingMap.CompleteRoutingMap([(r, True) for r in collection_pk_ranges], collection_id)
self._collection_routing_map_by_item[collection_id] = collection_routing_map
return collection_routing_map.get_overlapping_ranges(partition_key_ranges) | 0.011628 |
def _set_extended(self, v, load=False):
"""
Setter method for extended, mapped from YANG variable /overlay/access_list/type/vxlan/extended (list)
If this variable is read-only (config: false) in the
source YANG file, then _set_extended is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_extended() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=YANGListType("ext_user_acl_name",extended.extended, yang_name="extended", rest_name="extended", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='ext-user-acl-name', extensions={u'tailf-common': {u'info': u'extended <user-acl-name>', u'cli-sequence-commands': None, u'callpoint': u'VxlanVisibilityExtendedCallpoint', u'cli-mode-name': u'config-overlay-vxlan-ext-$(ext-user-acl-name)'}}), is_container='list', yang_name="extended", rest_name="extended", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'extended <user-acl-name>', u'cli-sequence-commands': None, u'callpoint': u'VxlanVisibilityExtendedCallpoint', u'cli-mode-name': u'config-overlay-vxlan-ext-$(ext-user-acl-name)'}}, namespace='urn:brocade.com:mgmt:brocade-vxlan-visibility', defining_module='brocade-vxlan-visibility', yang_type='list', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """extended must be of a type compatible with list""",
'defined-type': "list",
'generated-type': """YANGDynClass(base=YANGListType("ext_user_acl_name",extended.extended, yang_name="extended", rest_name="extended", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='ext-user-acl-name', extensions={u'tailf-common': {u'info': u'extended <user-acl-name>', u'cli-sequence-commands': None, u'callpoint': u'VxlanVisibilityExtendedCallpoint', u'cli-mode-name': u'config-overlay-vxlan-ext-$(ext-user-acl-name)'}}), is_container='list', yang_name="extended", rest_name="extended", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'extended <user-acl-name>', u'cli-sequence-commands': None, u'callpoint': u'VxlanVisibilityExtendedCallpoint', u'cli-mode-name': u'config-overlay-vxlan-ext-$(ext-user-acl-name)'}}, namespace='urn:brocade.com:mgmt:brocade-vxlan-visibility', defining_module='brocade-vxlan-visibility', yang_type='list', is_config=True)""",
})
self.__extended = t
if hasattr(self, '_set'):
self._set() | 0.004061 |
def next_offsets(self):
# type: (Descriptor) -> Offsets
"""Retrieve the next offsets
:param Descriptor self: this
:rtype: Offsets
:return: download offsets
"""
resume_bytes = self._resume()
with self._meta_lock:
if self._chunk_num >= self._total_chunks:
return None, resume_bytes
if self._chunk_size == -1 and self._src_block_list is not None:
num_bytes = self._src_block_list[self._chunk_num].size
else:
if self._offset + self._chunk_size > self._src_ase.size:
num_bytes = self._src_ase.size - self._offset
else:
num_bytes = self._chunk_size
chunk_num = self._chunk_num
range_start = self._offset
range_end = self._offset + num_bytes - 1
self._offset += num_bytes
self._chunk_num += 1
return Offsets(
chunk_num=chunk_num,
num_bytes=num_bytes,
range_start=range_start,
range_end=range_end,
), resume_bytes | 0.002593 |
def get_port_profile_status_output_port_profile_name(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
get_port_profile_status = ET.Element("get_port_profile_status")
config = get_port_profile_status
output = ET.SubElement(get_port_profile_status, "output")
port_profile = ET.SubElement(output, "port-profile")
name = ET.SubElement(port_profile, "name")
name.text = kwargs.pop('name')
callback = kwargs.pop('callback', self._callback)
return callback(config) | 0.003503 |
def add(message, level=0, user=None, message_short=None,log_file_name='%s/pyscada_daemon.log' % settings.BASE_DIR,):
"""
add a new massage/error notice to the log
<0 - Debug
1 - Emergency
2 - Critical
3 - Errors
4 - Alerts
5 - Warnings
6 - Notification (webnotice)
7 - Information (webinfo)
8 - Notification (notice)
9 - Information (info)
"""
#if not access(path.dirname(self.log_file_name), W_OK):
# self.stderr.write("logfile path is not writeable\n")
# sys.exit(0)
#if access(self.log_file_name, F_OK) and not access(self.log_file_name, W_OK):
# self.stderr.write("logfile is not writeable\n")
# sys.exit(0)
if message_short is None:
message_len = len(message)
if message_len > 35:
message_short = message[0:31] + '...'
else:
message_short = message
#log_ob = Log(message=message, level=level, message_short=message_short, timestamp=time())
#if user:
# log_ob.user = user
#log_ob.save()
stdout = open(log_file_name, "a+")
stdout.write("%s (%s,%d):%s\n" % (datetime.now().isoformat(' '),'none',level,message))
stdout.flush() | 0.011657 |
def add_to_public_members(self, public_member):
"""
:calls: `PUT /orgs/:org/public_members/:user <http://developer.github.com/v3/orgs/members>`_
:param public_member: :class:`github.NamedUser.NamedUser`
:rtype: None
"""
assert isinstance(public_member, github.NamedUser.NamedUser), public_member
headers, data = self._requester.requestJsonAndCheck(
"PUT",
self.url + "/public_members/" + public_member._identity
) | 0.007984 |
def staged_predict_proba(self, test_data):
"""
Predict class probabilities at each stage of an H2O Model (only GBM models).
The output structure is analogous to the output of function predict_leaf_node_assignment. For each tree t and
class c there will be a column Tt.Cc (eg. T3.C1 for tree 3 and class 1). The value will be the corresponding
predicted probability of this class by combining the raw contributions of trees T1.Cc,..,TtCc. Binomial models
build the trees just for the first class and values in columns Tx.C1 thus correspond to the the probability p0.
:param H2OFrame test_data: Data on which to make predictions.
:returns: A new H2OFrame of staged predictions.
"""
if not isinstance(test_data, h2o.H2OFrame): raise ValueError("test_data must be an instance of H2OFrame")
j = h2o.api("POST /3/Predictions/models/%s/frames/%s" % (self.model_id, test_data.frame_id),
data={"predict_staged_proba": True})
return h2o.get_frame(j["predictions_frame"]["name"]) | 0.0092 |
def _update_physical_disk_details(raid_config, server):
"""Adds the physical disk details to the RAID configuration passed."""
raid_config['physical_disks'] = []
physical_drives = server.get_physical_drives()
for physical_drive in physical_drives:
physical_drive_dict = physical_drive.get_physical_drive_dict()
raid_config['physical_disks'].append(physical_drive_dict) | 0.0025 |
def _runAuction(self, gteeOfferPrice, gteeBidPrice, haveQ):
""" Clears an auction to determine the quantity and price for each
offer/bid.
"""
pOffers = [offer for offer in self.offers if not offer.reactive]
pBids = [bid for bid in self.bids if not bid.reactive]
# Clear offer/bid quantities and prices.
auction = Auction(self.case, pOffers, pBids, self.auctionType,
gteeOfferPrice, gteeBidPrice, self.limits)
auction.run()
# Separate auction for reactive power.
if haveQ:
qOffers = [offer for offer in self.offers if offer.reactive]
qBids = [bid for bid in self.bids if bid.reactive]
# Too complicated to scale with mixed bids/offers (only
# auction_types LAO and FIRST_PRICE allowed)
qAuction = Auction(self.case, qOffers, qBids, self.auctionType,
gteeOfferPrice, gteeBidPrice, self.limits)
qAuction.run() | 0.002933 |
def find_django_migrations_module(module_name):
""" Tries to locate <module_name>.migrations_django (without actually importing it).
Appends either ".migrations_django" or ".migrations" to module_name.
For details why:
https://docs.djangoproject.com/en/1.7/topics/migrations/#libraries-third-party-apps
"""
import imp
try:
module_info = imp.find_module(module_name)
module = imp.load_module(module_name, *module_info)
imp.find_module('migrations_django', module.__path__)
return module_name + '.migrations_django'
except ImportError:
return module_name + '.migrations' | 0.003115 |
def get_content(self, force_download=False):
""" Retrieve the content for this Document from the server
:type force_download: Boolean
:param force_download: True to download from the server
regardless of the cache's contents
:rtype: String
:returns: the content data
:raises: APIError if the API request is not successful
"""
return self.client.get_document(self.url(), force_download) | 0.004292 |
def unzip_from_uri(uri, layer_zip_path, unzip_output_dir, progressbar_label):
"""
Download the LayerVersion Zip to the Layer Pkg Cache
Parameters
----------
uri str
Uri to download from
layer_zip_path str
Path to where the content from the uri should be downloaded to
unzip_output_dir str
Path to unzip the zip to
progressbar_label str
Label to use in the Progressbar
"""
try:
get_request = requests.get(uri, stream=True, verify=os.environ.get('AWS_CA_BUNDLE', True))
with open(layer_zip_path, 'wb') as local_layer_file:
file_length = int(get_request.headers['Content-length'])
with progressbar(file_length, progressbar_label) as p_bar:
# Set the chunk size to None. Since we are streaming the request, None will allow the data to be
# read as it arrives in whatever size the chunks are received.
for data in get_request.iter_content(chunk_size=None):
local_layer_file.write(data)
p_bar.update(len(data))
# Forcefully set the permissions to 700 on files and directories. This is to ensure the owner
# of the files is the only one that can read, write, or execute the files.
unzip(layer_zip_path, unzip_output_dir, permission=0o700)
finally:
# Remove the downloaded zip file
path_to_layer = Path(layer_zip_path)
if path_to_layer.exists():
path_to_layer.unlink() | 0.00327 |
def run_main():
"""run_main
Get Splunk Service Token
"""
parser = argparse.ArgumentParser(
description=(
'AntiNex - '
'Get Token from Splunk'))
parser.add_argument(
'-u',
help='username',
required=False,
dest='user')
parser.add_argument(
'-p',
help='user password',
required=False,
dest='password')
parser.add_argument(
'-f',
help='splunk-ready request in a json file',
required=False,
dest='datafile')
parser.add_argument(
'-a',
help='host address: <fqdn:port>',
required=False,
dest='address')
parser.add_argument(
'-s',
help='silent',
required=False,
dest='silent',
action='store_true')
args = parser.parse_args()
user = ev(
'API_USER',
'user-not-set')
password = ev(
'API_PASSWORD',
'password-not-set')
address = ev(
'API_ADDRESS',
'localhost:8088')
admin_address = ev(
'API_ADDRESS',
'localhost:8089')
host = ev(
'API_HOST',
'localhost')
port = int(ev(
'API_PORT',
'8088'))
verbose = bool(str(ev(
'API_VERBOSE',
'true')).lower() == 'true')
datafile = None
if args.user:
user = args.user
if args.password:
password = args.password
if args.address:
address = args.address
if args.datafile:
datafile = args.datafile
if args.silent:
verbose = False
usage = ('Please run with -u <username> '
'-p <password> '
'-a <host address as: fqdn:port> ')
valid = True
if not user or user == 'user-not-set':
log.error('missing user')
valid = False
if not password or password == 'password-not-set':
log.error('missing password')
valid = False
if not valid:
log.error(usage)
sys.exit(1)
if verbose:
log.info((
'creating client user={} address={}').format(
user,
address))
last_msg = ''
host = ''
port = -1
try:
last_msg = (
'Invalid address={}').format(
address)
address_split = address.split(':')
last_msg = (
'Failed finding host in address={} '
'- please use: -a <fqdn:port>').format(
address)
host = address_split[0]
last_msg = (
'Failed finding integer port in address={} '
'- please use: -a <fqdn:port>').format(
address)
port = int(address_split[1])
except Exception as e:
log.error((
'Failed to parse -a {} for the '
'splunk host address: {} which threw an '
'ex={}').format(
address,
last_msg,
e))
sys.exit(1)
# end of try ex
if verbose:
log.info((
'connecting {}@{}:{}').format(
user,
host,
port))
req_body = None
if datafile:
if verbose:
log.info((
'loading request in datafile={}').format(
datafile))
with open(datafile, 'r') as f:
req_body = json.loads(f.read())
servercontent = requests.post(
'https://{}/services/auth/login'.format(
admin_address),
headers={},
verify=False,
data={
'username': user,
'password': password
})
token = parseString(
servercontent.text).getElementsByTagName(
'sessionKey')[0].childNodes[0].nodeValue
log.info((
'user={} has token={}').format(
user,
token))
if verbose:
if req_body:
log.info('starting with req_body')
else:
log.info('starting')
if verbose:
log.info('done') | 0.000242 |
async def _fair_get_in_peer(self):
"""
Get the first available available inbound peer in a fair manner.
:returns: A `Peer` inbox, whose inbox is guaranteed not to be
empty (and thus can be read from without blocking).
"""
peer = None
while not peer:
await self._wait_peers()
# This rotates the list, implementing fair-queuing.
peers = list(self._in_peers)
tasks = [asyncio.ensure_future(self._in_peers.wait_change())]
tasks.extend([
asyncio.ensure_future(
p.inbox.wait_not_empty(),
loop=self.loop,
)
for p in peers
])
try:
done, pending = await asyncio.wait(
tasks,
return_when=asyncio.FIRST_COMPLETED,
loop=self.loop,
)
finally:
for task in tasks:
task.cancel()
tasks.pop(0) # pop the wait_change task.
peer = next(
(
p
for task, p in zip(tasks, peers)
if task in done and not task.cancelled()
),
None,
)
return peer | 0.001483 |
def _get_macd(df):
""" Moving Average Convergence Divergence
This function will initialize all following columns.
MACD Line (macd): (12-day EMA - 26-day EMA)
Signal Line (macds): 9-day EMA of MACD Line
MACD Histogram (macdh): MACD Line - Signal Line
:param df: data
:return: None
"""
fast = df['close_12_ema']
slow = df['close_26_ema']
df['macd'] = fast - slow
df['macds'] = df['macd_9_ema']
df['macdh'] = (df['macd'] - df['macds'])
log.critical("NOTE: Behavior of MACDH calculation has changed as of "
"July 2017 - it is now 1/2 of previous calculated values")
del df['macd_9_ema']
del fast
del slow | 0.002567 |
def get_objective_admin_session_for_objective_bank(self, objective_bank_id):
"""Gets the ``OsidSession`` associated with the objective admin service for the given objective bank.
arg: objective_bank_id (osid.id.Id): the ``Id`` of the
objective bank
return: (osid.learning.ObjectiveAdminSession) - ``an
_objective_admin_session``
raise: NotFound - ``objective_bank_id`` not found
raise: NullArgument - ``objective_bank_id`` is ``null``
raise: OperationFailed - ``unable to complete request``
raise: Unimplemented - ``supports_objective_admin()`` or
``supports_visible_federation()`` is ``false``
*compliance: optional -- This method must be implemented if
``supports_objective_admin()`` and
``supports_visible_federation()`` are ``true``.*
"""
if not self.supports_objective_admin():
raise errors.Unimplemented()
##
# Also include check to see if the catalog Id is found otherwise raise errors.NotFound
##
# pylint: disable=no-member
return sessions.ObjectiveAdminSession(objective_bank_id, runtime=self._runtime) | 0.004108 |
def pd_plot_data(self):
"""
Plot data for phase diagram.
2-comp - Full hull with energies
3/4-comp - Projection into 2D or 3D Gibbs triangle.
Returns:
(lines, stable_entries, unstable_entries):
- lines is a list of list of coordinates for lines in the PD.
- stable_entries is a {coordinate : entry} for each stable node
in the phase diagram. (Each coordinate can only have one
stable phase)
- unstable_entries is a {entry: coordinates} for all unstable
nodes in the phase diagram.
"""
pd = self._pd
entries = pd.qhull_entries
data = np.array(pd.qhull_data)
lines = []
stable_entries = {}
for line in self.lines:
entry1 = entries[line[0]]
entry2 = entries[line[1]]
if self._dim < 3:
x = [data[line[0]][0], data[line[1]][0]]
y = [pd.get_form_energy_per_atom(entry1),
pd.get_form_energy_per_atom(entry2)]
coord = [x, y]
elif self._dim == 3:
coord = triangular_coord(data[line, 0:2])
else:
coord = tet_coord(data[line, 0:3])
lines.append(coord)
labelcoord = list(zip(*coord))
stable_entries[labelcoord[0]] = entry1
stable_entries[labelcoord[1]] = entry2
all_entries = pd.all_entries
all_data = np.array(pd.all_entries_hulldata)
unstable_entries = dict()
stable = pd.stable_entries
for i in range(0, len(all_entries)):
entry = all_entries[i]
if entry not in stable:
if self._dim < 3:
x = [all_data[i][0], all_data[i][0]]
y = [pd.get_form_energy_per_atom(entry),
pd.get_form_energy_per_atom(entry)]
coord = [x, y]
elif self._dim == 3:
coord = triangular_coord([all_data[i, 0:2],
all_data[i, 0:2]])
else:
coord = tet_coord([all_data[i, 0:3], all_data[i, 0:3],
all_data[i, 0:3]])
labelcoord = list(zip(*coord))
unstable_entries[entry] = labelcoord[0]
return lines, stable_entries, unstable_entries | 0.000819 |
def _read_interleaved(self, f, data_objects):
"""Read interleaved data that doesn't have a numpy type"""
log.debug("Reading interleaved data point by point")
object_data = {}
points_added = {}
for obj in data_objects:
object_data[obj.path] = obj._new_segment_data()
points_added[obj.path] = 0
while any([points_added[o.path] < o.number_values
for o in data_objects]):
for obj in data_objects:
if points_added[obj.path] < obj.number_values:
object_data[obj.path][points_added[obj.path]] = (
obj._read_value(f))
points_added[obj.path] += 1
for obj in data_objects:
obj.tdms_object._update_data(object_data[obj.path]) | 0.002448 |
async def listWorkers(self, *args, **kwargs):
"""
Get a list of all active workers of a workerType
Get a list of all active workers of a workerType.
`listWorkers` allows a response to be filtered by quarantined and non quarantined workers.
To filter the query, you should call the end-point with `quarantined` as a query-string option with a
true or false value.
The response is paged. If this end-point returns a `continuationToken`, you
should call the end-point again with the `continuationToken` as a query-string
option. By default this end-point will list up to 1000 workers in a single
page. You may limit this with the query-string parameter `limit`.
This method gives output: ``v1/list-workers-response.json#``
This method is ``experimental``
"""
return await self._makeApiCall(self.funcinfo["listWorkers"], *args, **kwargs) | 0.008412 |
def _get_json(self,
path,
params=None,
base=JIRA_BASE_URL,
):
"""Get the json for a given path and params.
:param path: The subpath required
:type path: str
:param params: Parameters to filter the json query.
:type params: Optional[Dict[str, Any]]
:param base: The Base JIRA URL, defaults to the instance base.
:type base: Optional[str]
:rtype: Union[Dict[str, Any], List[Dict[str, str]]]
"""
url = self._get_url(path, base)
r = self._session.get(url, params=params)
try:
r_json = json_loads(r)
except ValueError as e:
logging.error("%s\n%s" % (e, r.text))
raise e
return r_json | 0.007491 |
def stream(self, opNames=[], *args, **kwargs):
""" Yield specific operations (e.g. comments) only
:param array opNames: List of operations to filter for
:param int start: Start at this block
:param int stop: Stop at this block
:param str mode: We here have the choice between
* "head": the last block
* "irreversible": the block that is confirmed by 2/3 of all
block producers and is thus irreversible!
The dict output is formated such that ``type`` caries the
operation type, timestamp and block_num are taken from the
block the operation was stored in and the other key depend
on the actualy operation.
"""
for op in self.ops(**kwargs):
if not opNames or op["op"][0] in opNames:
r = {
"type": op["op"][0],
"timestamp": op.get("timestamp"),
"block_num": op.get("block_num"),
}
r.update(op["op"][1])
yield r | 0.001787 |
def periodic_corr1d(sp_reference, sp_offset,
fminmax=None,
naround_zero=None,
norm_spectra=False,
plottitle=None,
pdf=None,
debugplot=0):
"""Periodic correlation between two spectra, implemented using FFT.
Parameters
----------
sp_reference : numpy array
Reference spectrum.
sp_offset : numpy array
Spectrum which offset is going to be measured relative to the
reference spectrum.
fminmax : tuple of floats or None
Minimum and maximum frequencies to be used. If None, no
frequency filtering is employed.
naround_zero : int
Half width of the window (around zero offset) to look for
the correlation peak. If None, the whole correlation
spectrum is employed. Otherwise, the peak will be sought
in the interval [-naround_zero, +naround_zero].
norm_spectra : bool
If True, the filtered spectra are normalized before computing
the correlation function. This can be important when comparing
the peak value of this function using different spectra.
plottitle : str
Optional plot title.
pdf : PdfFile object or None
If not None, output is sent to PDF file.
debugplot : int
Determines whether intermediate computations and/or plots
are displayed. The valid codes are defined in
numina.array.display.pause_debugplot.
Returns
-------
offset : float
Offset between the two input spectra.
fpeak : float
Maximum of the cross-correlation function.
"""
# protections
if sp_reference.ndim != 1 or sp_offset.ndim != 1:
raise ValueError("Invalid array dimensions")
if sp_reference.shape != sp_offset.shape:
raise ValueError("x and y shapes are different")
if plottitle is None:
plottitle = ' '
naxis1 = len(sp_reference)
xcorr = np.arange(naxis1)
naxis1_half = int(naxis1 / 2)
for i in range(naxis1_half):
xcorr[i + naxis1_half] -= naxis1
isort = xcorr.argsort()
xcorr = xcorr[isort]
if fminmax is not None:
fmin, fmax = fminmax
sp_reference_filtmask = filtmask(sp_reference, fmin=fmin, fmax=fmax,
debugplot=debugplot)
sp_offset_filtmask = filtmask(sp_offset, fmin=fmin, fmax=fmax,
debugplot=debugplot)
if abs(debugplot) in (21, 22):
from numina.array.display.matplotlib_qt import plt
xdum = np.arange(naxis1) + 1
# reference spectrum
ax = ximplotxy(xdum, sp_reference, show=False,
title='reference spectrum',
label='original spectrum')
ax.plot(xdum, sp_reference_filtmask,
label='filtered and masked spectrum')
ax.legend()
plt.show()
# offset spectrum
ax = ximplotxy(xdum, sp_offset, show=False,
title='offset spectrum',
label='original spectrum')
ax.plot(xdum, sp_offset_filtmask,
label='filtered and masked spectrum')
ax.legend()
plt.show()
else:
sp_reference_filtmask = sp_reference
sp_offset_filtmask = sp_offset
if (abs(debugplot) in (21, 22)) or (pdf is not None):
xdum = np.arange(naxis1) + 1
ax = ximplotxy(xdum, sp_reference_filtmask, show=False,
title=plottitle,
label='reference spectrum')
ax.plot(xdum, sp_offset_filtmask, label='offset spectrum')
ax.legend()
if pdf is not None:
pdf.savefig()
else:
pause_debugplot(debugplot=debugplot, pltshow=True)
# normalize spectra if required
if norm_spectra:
sp_reference_norm = np.copy(sp_reference_filtmask)
sp_offset_norm = np.copy(sp_offset_filtmask)
sp_dum = np.concatenate((sp_reference_norm, sp_offset_norm))
spmin = min(sp_dum)
spmax = max(sp_dum)
idum = np.where(sp_reference_norm > 0)
sp_reference_norm[idum] /= spmax
idum = np.where(sp_reference_norm < 0)
sp_reference_norm[idum] /= -spmin
idum = np.where(sp_offset_norm > 0)
sp_offset_norm[idum] /= spmax
idum = np.where(sp_offset_norm < 0)
sp_offset_norm[idum] /= -spmin
if (abs(debugplot) in (21, 22)) or (pdf is not None):
xdum = np.arange(naxis1) + 1
ax = ximplotxy(xdum, sp_reference_norm, show=False,
title=plottitle + ' [normalized]',
label='reference spectrum')
ax.plot(xdum, sp_offset_norm, label='offset spectrum')
ax.legend()
if pdf is not None:
pdf.savefig()
else:
pause_debugplot(debugplot=debugplot, pltshow=True)
else:
sp_reference_norm = sp_reference_filtmask
sp_offset_norm = sp_offset_filtmask
corr = np.fft.ifft(np.fft.fft(sp_offset_norm) *
np.fft.fft(sp_reference_norm).conj()).real
corr = corr[isort]
# determine correlation peak
if naround_zero is None:
iminpeak = 0
imaxpeak = naxis1
else:
iminpeak = max(int(naxis1 / 2 - naround_zero), 0)
imaxpeak = min(int(naxis1 / 2 + naround_zero), naxis1)
ixpeak = corr[iminpeak:imaxpeak].argmax() + iminpeak
# fit correlation peak with 2nd order polynomial
nfit = 7
nmed = nfit // 2
imin = ixpeak - nmed
imax = ixpeak + nmed
lpeak_ok = True
if imin < 0 or imax > len(corr):
x_refined_peak = 0
y_refined_peak = 0
lpeak_ok = False
poly_peak = Polynomial([0.0])
else:
x_fit = np.arange(-nmed, nmed + 1, dtype=np.float)
y_fit = corr[imin:(imax+1)]
poly_peak = Polynomial.fit(x_fit, y_fit, 2)
poly_peak = Polynomial.cast(poly_peak)
coef = poly_peak.coef
if coef[2] != 0:
x_refined_peak = -coef[1] / (2.0 * coef[2])
else:
x_refined_peak = 0.0
y_refined_peak = poly_peak(x_refined_peak)
x_refined_peak += ixpeak
offset = x_refined_peak - naxis1_half
fpeak = y_refined_peak
if (abs(debugplot) % 10 != 0) or (pdf is not None):
ax = ximplotxy(xcorr, corr,
xlabel='offset (pixels)',
ylabel='cross-correlation function',
title=plottitle,
xlim=(-naxis1/2, naxis1/2), show=False)
ax.axvline(offset, color='grey', linestyle='dashed')
coffset = "(offset:{0:6.2f} pixels)".format(offset)
ax.text(0.01, 0.99, coffset,
horizontalalignment='left',
verticalalignment='top',
transform=ax.transAxes)
if naround_zero is not None:
cwindow = "(peak region: [{},{}] pixels)".format(-naround_zero,
naround_zero)
ax.text(0.01, 0.93, cwindow,
horizontalalignment='left',
verticalalignment='top',
transform=ax.transAxes)
# inset plot
inset_ax = inset_axes(
ax,
width="40%",
height="40%",
loc=1
)
inset_ax.plot(xcorr, corr)
if naround_zero is not None:
inset_ax.set_xlim([-naround_zero, naround_zero])
else:
inset_ax.set_xlim([-50, 50])
if lpeak_ok:
xplot = np.arange(-nmed, nmed, 0.5)
yplot = poly_peak(xplot)
xplot += ixpeak - naxis1_half
inset_ax.plot(xplot, yplot, '-')
inset_ax.plot([x_refined_peak - naxis1_half],
[y_refined_peak], 'o')
inset_ax.axvline(offset, color='grey', linestyle='dashed')
if pdf is not None:
pdf.savefig()
else:
pause_debugplot(debugplot=debugplot,
tight_layout=False, pltshow=True)
return offset, fpeak | 0.00012 |
def ed25519_public_key_from_string(string):
"""Create an ed25519 public key from ``string``, which is a seed.
Args:
string (str): the string to use as a seed.
Returns:
Ed25519PublicKey: the public key
"""
try:
return Ed25519PublicKey.from_public_bytes(
base64.b64decode(string)
)
except (UnsupportedAlgorithm, Base64Error) as exc:
raise ScriptWorkerEd25519Error("Can't create Ed25519PublicKey: {}!".format(str(exc))) | 0.00404 |
def apply(query, collection=None):
"""Enhance the query restricting not permitted collections.
Get the permitted restricted collection for the current user from the
user_info object and all the restriced collections from the
restricted_collection_cache.
"""
if not collection:
return query
result_tree = create_collection_query(collection)
return AndOp(query, result_tree) | 0.002421 |
def get(*dataset, **kwargs):
'''
Displays properties for the given datasets.
dataset : string
name of snapshot(s), filesystem(s), or volume(s)
properties : string
comma-separated list of properties to list, defaults to all
recursive : boolean
recursively list children
depth : int
recursively list children to depth
fields : string
comma-separated list of fields to include, the name and property field will always be added
type : string
comma-separated list of types to display, where type is one of
filesystem, snapshot, volume, bookmark, or all.
source : string
comma-separated list of sources to display. Must be one of the following:
local, default, inherited, temporary, and none. The default value is all sources.
parsable : boolean
display numbers in parsable (exact) values (default = True)
.. versionadded:: 2018.3.0
.. note::
If no datasets are specified, then the command displays properties
for all datasets on the system.
.. versionadded:: 2016.3.0
CLI Example:
.. code-block:: bash
salt '*' zfs.get
salt '*' zfs.get myzpool/mydataset [recursive=True|False]
salt '*' zfs.get myzpool/mydataset properties="sharenfs,mountpoint" [recursive=True|False]
salt '*' zfs.get myzpool/mydataset myzpool/myotherdataset properties=available fields=value depth=1
'''
## Configure command
# NOTE: initialize the defaults
flags = ['-H']
opts = {}
# NOTE: set extra config from kwargs
if kwargs.get('depth', False):
opts['-d'] = kwargs.get('depth')
elif kwargs.get('recursive', False):
flags.append('-r')
fields = kwargs.get('fields', 'value,source').split(',')
if 'name' in fields: # ensure name is first
fields.remove('name')
if 'property' in fields: # ensure property is second
fields.remove('property')
fields.insert(0, 'name')
fields.insert(1, 'property')
opts['-o'] = ",".join(fields)
if kwargs.get('type', False):
opts['-t'] = kwargs.get('type')
if kwargs.get('source', False):
opts['-s'] = kwargs.get('source')
# NOTE: set property_name
property_name = kwargs.get('properties', 'all')
## Get properties
res = __salt__['cmd.run_all'](
__utils__['zfs.zfs_command'](
command='get',
flags=flags,
opts=opts,
property_name=property_name,
target=list(dataset),
),
python_shell=False,
)
ret = __utils__['zfs.parse_command_result'](res)
if res['retcode'] == 0:
for ds in res['stdout'].splitlines():
ds_data = OrderedDict(list(zip(
fields,
ds.split("\t")
)))
if 'value' in ds_data:
if kwargs.get('parsable', True):
ds_data['value'] = __utils__['zfs.from_auto'](
ds_data['property'],
ds_data['value'],
)
else:
ds_data['value'] = __utils__['zfs.to_auto'](
ds_data['property'],
ds_data['value'],
convert_to_human=True,
)
if ds_data['name'] not in ret:
ret[ds_data['name']] = OrderedDict()
ret[ds_data['name']][ds_data['property']] = ds_data
del ds_data['name']
del ds_data['property']
return ret | 0.002222 |
def save_results(self, output_dir='.', prefix='', prefix_sep='_',
image_list=None):
""" Write out any images generated by the meta-analysis.
Args:
output_dir (str): folder to write images to
prefix (str): all image files will be prepended with this string
prefix_sep (str): glue between the prefix and rest of filename
image_list (list): optional list of images to save--e.g.,
['pFgA_z', 'pAgF']. If image_list is None (default), will save
all images.
"""
if prefix == '':
prefix_sep = ''
if not exists(output_dir):
makedirs(output_dir)
logger.debug("Saving results...")
if image_list is None:
image_list = self.images.keys()
for suffix, img in self.images.items():
if suffix in image_list:
filename = prefix + prefix_sep + suffix + '.nii.gz'
outpath = join(output_dir, filename)
imageutils.save_img(img, outpath, self.dataset.masker) | 0.002732 |
def symorth(S):
"Symmetric orthogonalization"
E,U = np.linalg.eigh(S)
n = len(E)
Shalf = np.identity(n,'d')
for i in range(n):
Shalf[i,i] /= np.sqrt(E[i])
return simx(Shalf,U,True) | 0.028302 |
def from_native(cls, t):
""" Convert from a native Python `datetime.time` value.
"""
second = (1000000 * t.second + t.microsecond) / 1000000
return Time(t.hour, t.minute, second, t.tzinfo) | 0.009091 |
def power_off(self, si, logger, session, vcenter_data_model, vm_uuid, resource_fullname):
"""
Power off of a vm
:param vcenter_data_model: vcenter model
:param si: Service Instance
:param logger:
:param session:
:param vcenter_data_model: vcenter_data_model
:param vm_uuid: the uuid of the vm
:param resource_fullname: the full name of the deployed app resource
:return:
"""
logger.info('retrieving vm by uuid: {0}'.format(vm_uuid))
vm = self.pv_service.find_by_uuid(si, vm_uuid)
if vm.summary.runtime.powerState == 'poweredOff':
logger.info('vm already powered off')
task_result = 'Already powered off'
else:
# hard power off
logger.info('{0} powering of vm'.format(vcenter_data_model.shutdown_method))
if vcenter_data_model.shutdown_method.lower() != 'soft':
task = vm.PowerOff()
task_result = self.synchronous_task_waiter.wait_for_task(task=task,
logger=logger,
action_name='Power Off')
else:
if vm.guest.toolsStatus == 'toolsNotInstalled':
logger.warning('VMWare Tools status on virtual machine \'{0}\' are not installed'.format(vm.name))
raise ValueError('Cannot power off the vm softly because VMWare Tools are not installed')
if vm.guest.toolsStatus == 'toolsNotRunning':
logger.warning('VMWare Tools status on virtual machine \'{0}\' are not running'.format(vm.name))
raise ValueError('Cannot power off the vm softly because VMWare Tools are not running')
vm.ShutdownGuest()
task_result = 'vm powered off'
return task_result | 0.006101 |
def signal_optimiser(self, analytes, min_points=5,
threshold_mode='kde_first_max',
threshold_mult=1., x_bias=0,
weights=None, filt=True, mode='minimise'):
"""
Optimise data selection based on specified analytes.
Identifies the longest possible contiguous data region in
the signal where the relative standard deviation (std) and
concentration of all analytes is minimised.
Optimisation is performed via a grid search of all possible
contiguous data regions. For each region, the mean std and
mean scaled analyte concentration ('amplitude') are calculated.
The size and position of the optimal data region are identified
using threshold std and amplitude values. Thresholds are derived
from all calculated stds and amplitudes using the method specified
by `threshold_mode`. For example, using the 'kde_max' method, a
probability density function (PDF) is calculated for std and
amplitude values, and the threshold is set as the maximum of the
PDF. These thresholds are then used to identify the size and position
of the longest contiguous region where the std is below the threshold,
and the amplitude is either below the threshold.
All possible regions of the data that have at least
`min_points` are considered.
For a graphical demonstration of the action of signal_optimiser,
use `optimisation_plot`.
Parameters
----------
d : latools.D object
An latools data object.
analytes : str or array-like
Which analytes to consider.
min_points : int
The minimum number of contiguous points to
consider.
threshold_mode : str
The method used to calculate the optimisation
thresholds. Can be 'mean', 'median', 'kde_max'
or 'bayes_mvs', or a custom function. If a
function, must take a 1D array, and return a
single, real number.
weights : array-like of length len(analytes)
An array of numbers specifying the importance of
each analyte considered. Larger number makes the
analyte have a greater effect on the optimisation.
Default is None.
"""
params = locals()
del(params['self'])
setn = self.filt.maxset + 1
if isinstance(analytes, str):
analytes = [analytes]
# get filter
if filt is not False:
ind = (self.filt.grab_filt(filt, analytes))
else:
ind = np.full(self.Time.shape, True)
errmsg = []
ofilt = []
self.opt = {}
for i in range(self.n):
nind = ind & (self.ns == i + 1)
self.opt[i + 1], err = signal_optimiser(self, analytes=analytes,
min_points=min_points,
threshold_mode=threshold_mode,
threshold_mult=threshold_mult,
weights=weights,
ind=nind, x_bias=x_bias,
mode=mode)
if err == '':
ofilt.append(self.opt[i + 1].filt)
else:
errmsg.append(self.sample + '_{:.0f}: '.format(i + 1) + err)
if len(ofilt) > 0:
ofilt = np.apply_along_axis(any, 0, ofilt)
name = 'optimise_' + '_'.join(analytes)
self.filt.add(name=name,
filt=ofilt,
info="Optimisation filter to minimise " + ', '.join(analytes),
params=params, setn=setn)
if len(errmsg) > 0:
return '\n'.join(errmsg)
else:
return '' | 0.005644 |
def users(self, params):
"""
This is a private API and requires whitelisting from Twitter.
This endpoint will allow partners to add, update and remove users from a given
tailored_audience_id.
The endpoint will also accept multiple user identifier types per user as well.
"""
resource = self.RESOURCE_USERS.format(account_id=self.account.id, id=self.id)
headers = {'Content-Type': 'application/json'}
response = Request(self.account.client,
'post',
resource,
headers=headers,
body=json.dumps(params)).perform()
success_count = response.body['data']['success_count']
total_count = response.body['data']['total_count']
return (success_count, total_count) | 0.005821 |
def convert(self, element):
"""Convert an element to a chainlink"""
if isinstance(element, self.base_link_type):
return element
for converter in self.converters:
link = converter(element)
if link is not NotImplemented:
return link
raise TypeError('%r cannot be converted to a chainlink' % element) | 0.005249 |
def counter(self, position=None, **kwargs):
"""
Args:
position(int): Line number counting from the bottom of the screen
kwargs(dict): Any additional :py:term:`keyword arguments<keyword argument>`
are passed to :py:class:`Counter`
Returns:
:py:class:`Counter`: Instance of counter class
Get a new progress bar instance
If ``position`` is specified, the counter's position can change dynamically if
additional counters are called without a ``position`` argument.
"""
for key, val in self.defaults.items():
if key not in kwargs:
kwargs[key] = val
kwargs['manager'] = self
counter = self.counter_class(**kwargs)
if position is None:
toRefresh = []
if self.counters:
pos = 2
for cter in reversed(self.counters):
if self.counters[cter] < pos:
toRefresh.append(cter)
cter.clear(flush=False)
self.counters[cter] = pos
pos += 1
self.counters[counter] = 1
self._set_scroll_area()
for cter in reversed(toRefresh):
cter.refresh(flush=False)
self.stream.flush()
elif position in self.counters.values():
raise ValueError('Counter position %d is already occupied.' % position)
elif position > self.height:
raise ValueError('Counter position %d is greater than terminal height.' % position)
else:
self.counters[counter] = position
return counter | 0.003507 |
def get_distance(
self, l_motor: float, r_motor: float, tm_diff: float
) -> typing.Tuple[float, float]:
"""
Given motor values and the amount of time elapsed since this was last
called, retrieves the x,y,angle that the robot has moved. Pass these
values to :meth:`PhysicsInterface.distance_drive`.
To update your encoders, use the ``l_position`` and ``r_position``
attributes of this object.
:param l_motor: Left motor value (-1 to 1); -1 is forward
:param r_motor: Right motor value (-1 to 1); 1 is forward
:param tm_diff: Elapsed time since last call to this function
:returns: x travel, y travel, angle turned (radians)
.. note:: If you are using more than 2 motors, it is assumed that
all motors on each side are set to the same speed. Only
pass in one of the values from each side
"""
# This isn't quite right, the right way is to use matrix math. However,
# this is Good Enough for now...
x = 0
y = 0
angle = 0
# split the time difference into timestep_ms steps
total_time = int(tm_diff * 100000)
steps = total_time // self._timestep
remainder = total_time % self._timestep
step = self._timestep / 100000.0
if remainder:
last_step = remainder / 100000.0
steps += 1
else:
last_step = step
while steps != 0:
if steps == 1:
tm_diff = last_step
else:
tm_diff = step
steps -= 1
l = self._lmotor.compute(-l_motor, tm_diff)
r = self._rmotor.compute(r_motor, tm_diff)
# Tank drive motion equations
velocity = (l + r) * 0.5
# Thanks to Tyler Veness for fixing the rotation equation, via conservation
# of angular momentum equations
# -> omega = b * m * (l - r) / J
rotation = self._bm * (l - r) / self._inertia
distance = velocity * tm_diff
turn = rotation * tm_diff
x += distance * math.cos(angle)
y += distance * math.sin(angle)
angle += turn
return x, y, angle | 0.004203 |
def generate_local_url(self, js_name):
"""
Generate the local url for a js file.
:param js_name:
:return:
"""
host = self._settings['local_host'].format(**self._host_context).rstrip('/')
return '{}/{}.js'.format(host, js_name) | 0.010638 |
def copyTargets(self, arr):
"""
Copies the targets of the argument array into the self.target attribute.
"""
array = Numeric.array(arr)
if not len(array) == self.size:
raise LayerError('Mismatched target size and layer size in call to copyTargets()', \
(len(array), self.size))
# Removed this because both propagate and backprop (via compute_error) set targets
#if self.verify and not self.targetSet == 0:
# if not self.warningIssued:
# print 'Warning! Targets have already been set and no intervening backprop() was called.', \
# (self.name, self.targetSet)
# print "(Warning will not be issued again)"
# self.warningIssued = 1
if Numeric.add.reduce(array < self.minTarget) or Numeric.add.reduce(array > self.maxTarget):
print(self.name, self.minTarget, self.maxTarget)
raise LayerError('Targets for this layer are out of range.', (self.name, array))
self.target = array
self.targetSet = 1 | 0.009982 |
def users_profile_get(self, **kwargs) -> SlackResponse:
"""Retrieves a user's profile information."""
self._validate_xoxp_token()
return self.api_call("users.profile.get", http_verb="GET", params=kwargs) | 0.013216 |
def rgb_to_vector(image):
"""
Convert an RGB ANTsImage to a Vector ANTsImage
Arguments
---------
image : ANTsImage
RGB image to be converted
Returns
-------
ANTsImage
Example
-------
>>> import ants
>>> mni = ants.image_read(ants.get_data('mni'))
>>> mni_rgb = mni.scalar_to_rgb()
>>> mni_vector = mni.rgb_to_vector()
>>> mni_rgb2 = mni.vector_to_rgb()
"""
if image.pixeltype != 'unsigned char':
image = image.clone('unsigned char')
idim = image.dimension
libfn = utils.get_lib_fn('RgbToVector%i' % idim)
new_ptr = libfn(image.pointer)
new_img = iio.ANTsImage(pixeltype=image.pixeltype, dimension=image.dimension,
components=3, pointer=new_ptr, is_rgb=False)
return new_img | 0.003708 |
def insert(self, val):
"""\
Inserts a value and returns a :class:`Pair <Pair>`.
If the generated key exists or memcache cannot store it, a
:class:`KeyInsertError <shorten.KeyInsertError>` is raised (or a
:class:`TokenInsertError <shorten.TokenInsertError>` if a token
exists or cannot be stored).
"""
key, token, formatted_key, formatted_token = self.next_formatted_pair()
if self.has_key(key):
raise KeyInsertError(key)
if self.has_token(token):
raise TokenInsertError(token)
# Memcache is down or read-only
if not self._mc.add(formatted_key, (val, token)):
raise KeyInsertError(key, 'key could not be stored')
if not self._mc.add(formatted_token, key):
raise TokenInsertError(token, 'token could not be stored')
return Pair(key, token) | 0.020525 |
def combine_hex(data):
''' Combine list of integer values to one big integer '''
output = 0x00
for i, value in enumerate(reversed(data)):
output |= (value << i * 8)
return output | 0.00495 |
def distribute_javaclasses(self, javaclass_dir, dest_dir="src"):
'''Copy existing javaclasses from build dir to current dist dir.'''
info('Copying java files')
ensure_dir(dest_dir)
for filename in glob.glob(javaclass_dir):
shprint(sh.cp, '-a', filename, dest_dir) | 0.006515 |
def scan(self, search_path=None):
"""Scan `search_path` for distributions usable in this environment
Any distributions found are added to the environment.
`search_path` should be a sequence of ``sys.path`` items. If not
supplied, ``sys.path`` is used. Only distributions conforming to
the platform/python version defined at initialization are added.
"""
if search_path is None:
search_path = sys.path
for item in search_path:
for dist in find_distributions(item):
self.add(dist) | 0.003413 |
def remove(self, fieldspec):
"""
Removes fields or subfields according to `fieldspec`.
If a non-control field subfield removal leaves no other subfields,
delete the field entirely.
"""
pattern = r'(?P<field>[^.]+)(.(?P<subfield>[^.]+))?'
match = re.match(pattern, fieldspec)
if not match:
return None
grp = match.groupdict()
for field in self.get_fields(grp['field']):
if grp['subfield']:
updated = []
for code, value in pairwise(field.subfields):
if not code == grp['subfield']:
updated += [code, value]
# if we removed the last subfield entry,
# remove the whole field, too
if not updated:
self.remove_field(field)
else:
field.subfields = updated
else:
# it is a control field
self.remove_field(field) | 0.001934 |
def mask_xdata_with_shape(self, shape: DataAndMetadata.ShapeType) -> DataAndMetadata.DataAndMetadata:
"""Return the mask created by this graphic as extended data.
.. versionadded:: 1.0
Scriptable: Yes
"""
mask = self._graphic.get_mask(shape)
return DataAndMetadata.DataAndMetadata.from_data(mask) | 0.008671 |
def traverse_dict_and_list(data, key, default=None, delimiter=DEFAULT_TARGET_DELIM):
'''
Traverse a dict or list using a colon-delimited (or otherwise delimited,
using the 'delimiter' param) target string. The target 'foo:bar:0' will
return data['foo']['bar'][0] if this value exists, and will otherwise
return the dict in the default argument.
Function will automatically determine the target type.
The target 'foo:bar:0' will return data['foo']['bar'][0] if data like
{'foo':{'bar':['baz']}} , if data like {'foo':{'bar':{'0':'baz'}}}
then return data['foo']['bar']['0']
'''
ptr = data
for each in key.split(delimiter):
if isinstance(ptr, list):
try:
idx = int(each)
except ValueError:
embed_match = False
# Index was not numeric, lets look at any embedded dicts
for embedded in (x for x in ptr if isinstance(x, dict)):
try:
ptr = embedded[each]
embed_match = True
break
except KeyError:
pass
if not embed_match:
# No embedded dicts matched, return the default
return default
else:
try:
ptr = ptr[idx]
except IndexError:
return default
else:
try:
ptr = ptr[each]
except (KeyError, TypeError):
return default
return ptr | 0.001244 |
def filter_query(key, expression):
"""Filter documents with a key that satisfies an expression."""
if (isinstance(expression, dict)
and len(expression) == 1
and list(expression.keys())[0].startswith('$')):
compiled_expression = compile_query(expression)
elif callable(expression):
def _filter(index, expression=expression):
result = [store_key
for value, store_keys in index.get_index().items()
if expression(value)
for store_key in store_keys]
return result
compiled_expression = _filter
else:
compiled_expression = expression
def _get(query_function, key=key, expression=compiled_expression):
"""Get document key and check against expression."""
return query_function(key, expression)
return _get | 0.001129 |
def show_inventory(self, pretty=False):
"""
Satisfies the ``--list`` portion of ansible's external inventory API.
Allows ``bang`` to be used as an external inventory script, for example
when running ad-hoc ops tasks. For more details, see:
http://ansible.cc/docs/api.html#external-inventory-scripts
"""
inv_lists = copy.deepcopy(self.groups_and_vars.lists)
# sort the host lists to help consumers of the inventory (e.g. ansible
# playbooks)
for l in inv_lists.values():
l.sort()
# new in ansible 1.3: add hostvars directly into ``--list`` output
inv_lists['_meta'] = {
'hostvars': self.groups_and_vars.dicts.copy()
}
if pretty:
kwargs = {
'sort_keys': True,
'indent': 2,
'separators': (',', ': '),
}
else:
kwargs = {}
print json.dumps(inv_lists, **kwargs) | 0.002918 |
def filter(self, f: Callable[[A], B]) -> 'List[T]':
"""doufo.List.filter: filter this `List` obj with input `f` function
Args:
`self`:
f (`Callable[[A],B]`): function that tells `True` or `False`
Returns:
return (`List[T]`): Filtered List
Raises:
"""
return List([x for x in self.unbox() if f(x) is True]) | 0.01995 |
def get_default_classes(self):
"""Returns a list of the default classes for the tab.
Defaults to and empty list (``[]``), however additional classes may
be added depending on the state of the tab as follows:
If the tab is the active tab for the tab group, in which
the class ``"active"`` will be added.
If the tab is not enabled, the classes the class ``"disabled"``
will be added.
"""
default_classes = super(Tab, self).get_default_classes()
if self.is_active():
default_classes.extend(CSS_ACTIVE_TAB_CLASSES)
if not self._enabled:
default_classes.extend(CSS_DISABLED_TAB_CLASSES)
return default_classes | 0.002751 |
def _native_size(self):
"""
A (width, height) 2-tuple representing the native dimensions of the
image in EMU, calculated based on the image DPI value, if present,
assuming 72 dpi as a default.
"""
EMU_PER_INCH = 914400
horz_dpi, vert_dpi = self._dpi
width_px, height_px = self._px_size
width = EMU_PER_INCH * width_px / horz_dpi
height = EMU_PER_INCH * height_px / vert_dpi
return width, height | 0.004132 |
def vgremove(vgname):
'''
Remove an LVM volume group
CLI Examples:
.. code-block:: bash
salt mymachine lvm.vgremove vgname
salt mymachine lvm.vgremove vgname force=True
'''
cmd = ['vgremove', '-f', vgname]
out = __salt__['cmd.run'](cmd, python_shell=False)
return out.strip() | 0.003067 |
def _reg_sighandlers(self):
""" Registers signal handlers to this class.
"""
# SIGCHLD, so we shutdown when any of the child processes exit
_handler = lambda signo, frame: self.shutdown()
signal.signal(signal.SIGCHLD, _handler)
signal.signal(signal.SIGTERM, _handler) | 0.009375 |
def bulk_update(cls, files, api=None):
"""
This call updates the details for multiple specified files.
Use this call to set new information for the files, thus replacing
all existing information and erasing omitted parameters. For each
of the specified files, the call sets a new name, new tags and
metadata.
:param files: List of file instances.
:param api: Api instance.
:return: List of FileBulkRecord objects.
"""
if not files:
raise SbgError('Files are required.')
api = api or cls._API
data = {
'items': [
{
'id': file_.id,
'name': file_.name,
'tags': file_.tags,
'metadata': file_.metadata,
}
for file_ in files
]
}
logger.info('Updating files in bulk.')
response = api.post(url=cls._URL['bulk_update'], data=data)
return FileBulkRecord.parse_records(response=response, api=api) | 0.00184 |
def get_unique_constraints(self, connection, table_name,
schema=None, **kw):
"""
Return information about unique constraints in `table_name`.
Overrides interface
:meth:`~sqlalchemy.engine.interfaces.Dialect.get_unique_constraints`.
"""
constraints = self._get_redshift_constraints(connection,
table_name, schema, **kw)
constraints = [c for c in constraints if c.contype == 'u']
uniques = defaultdict(lambda: defaultdict(dict))
for con in constraints:
uniques[con.conname]["key"] = con.conkey
uniques[con.conname]["cols"][con.attnum] = con.attname
return [
{'name': None,
'column_names': [uc["cols"][i] for i in uc["key"]]}
for name, uc in uniques.items()
] | 0.003367 |
def longest_run(da, dim='time'):
"""Return the length of the longest consecutive run of True values.
Parameters
----------
arr : N-dimensional array (boolean)
Input array
dim : Xarray dimension (default = 'time')
Dimension along which to calculate consecutive run
Returns
-------
N-dimensional array (int)
Length of longest run of True values along dimension
"""
d = rle(da, dim=dim)
rl_long = d.max(dim=dim)
return rl_long | 0.001862 |
def split_page_artid(page_artid):
"""Split page_artid into page_start/end and artid."""
page_start = None
page_end = None
artid = None
if not page_artid:
return None, None, None
# normalize unicode dashes
page_artid = unidecode(six.text_type(page_artid))
if '-' in page_artid:
# if it has a dash it's a page range
page_range = page_artid.replace('--', '-').split('-')
if len(page_range) == 2:
page_start, page_end = page_range
else:
artid = page_artid
elif _RE_2_CHARS.search(page_artid):
# if it has 2 or more letters it's an article ID
artid = page_artid
elif len(_RE_CHAR.sub('', page_artid)) >= 5:
# if there are more than 5 digits it's an article ID
artid = page_artid
else:
if artid is None:
artid = page_artid
if page_start is None:
page_start = page_artid
return page_start, page_end, artid | 0.001014 |
def _results(self, scheduler_instance_id):
"""Get the results of the executed actions for the scheduler which instance id is provided
Calling this method for daemons that are not configured as passive do not make sense.
Indeed, this service should only be exposed on poller and reactionner daemons.
:param scheduler_instance_id: instance id of the scheduler
:type scheduler_instance_id: string
:return: serialized list
:rtype: str
"""
with self.app.lock:
res = self.app.get_results_from_passive(scheduler_instance_id)
return serialize(res, True) | 0.007825 |
def init_app(state):
"""
Prepare the Flask application for Flask-Split.
:param state: :class:`BlueprintSetupState` instance
"""
app = state.app
app.config.setdefault('SPLIT_ALLOW_MULTIPLE_EXPERIMENTS', False)
app.config.setdefault('SPLIT_DB_FAILOVER', False)
app.config.setdefault('SPLIT_IGNORE_IP_ADDRESSES', [])
app.config.setdefault('SPLIT_ROBOT_REGEX', r"""
(?i)\b(
Baidu|
Gigabot|
Googlebot|
libwww-perl|
lwp-trivial|
msnbot|
SiteUptime|
Slurp|
WordPress|
ZIBB|
ZyBorg
)\b
""")
app.jinja_env.globals.update({
'ab_test': ab_test,
'finished': finished
})
@app.template_filter()
def percentage(number):
number *= 100
if abs(number) < 10:
return "%.1f%%" % round(number, 1)
else:
return "%d%%" % round(number) | 0.001018 |
def filter_for_probability(key: str, population: Union[pd.DataFrame, pd.Series, Index],
probability: Array, index_map: IndexMap=None) -> Union[pd.DataFrame, pd.Series, Index]:
"""Decide an event outcome for each individual in a population from probabilities.
Given a population or its index and an array of associated probabilities
for some event to happen, we create and return the sub-population for whom
the event occurred.
Parameters
----------
key :
A string used to create a seed for the random number generation.
population :
A view on the simulants for which we are determining the
outcome of an event.
probability :
A 1d list of probabilities of the event under consideration
occurring which corresponds (i.e. `len(population) == len(probability)`)
to the population array passed in.
index_map :
A mapping between the provided index (which may contain ints, floats,
datetimes or any arbitrary combination of them) and an integer index
into the random number array.
Returns
-------
pd.core.generic.PandasObject
The sub-population of the simulants for whom the event occurred.
The return type will be the same as type(population)
"""
if population.empty:
return population
index = population if isinstance(population, pd.Index) else population.index
draw = random(key, index, index_map)
mask = np.array(draw < probability)
return population[mask] | 0.005141 |
def resolve_extensions(bot: commands.Bot, name: str) -> list:
"""
Tries to resolve extension queries into a list of extension names.
"""
if name.endswith('.*'):
module_parts = name[:-2].split('.')
path = pathlib.Path(module_parts.pop(0))
for part in module_parts:
path = path / part
return find_extensions_in(path)
if name == '~':
return list(bot.extensions.keys())
return [name] | 0.002174 |
def get_plugin_client_settings(self):
settings = {}
user_path = self.get_plugin_settings_path("User")
def_path = self.get_plugin_settings_path("MavensMate")
'''
if the default path for settings is none, we're either dealing with a bad client setup or
a new client like Atom.io. Let's load the settings from the default cache and optionally allow
them to pipe settings in via STDIN
'''
if def_path == None:
if 'ATOM' in self.plugin_client:
file_name = 'atom'
elif 'SUBLIME_TEXT' in self.plugin_client:
file_name = 'st3'
elif 'BRACKETS' in self.plugin_client:
file_name = 'brackets'
settings['default'] = util.parse_json_from_file(config.base_path + "/"+config.support_dir+"/config/"+file_name+".json")
if config.plugin_client_settings != None:
settings['user'] = config.plugin_client_settings
else:
workspace = self.params.get('workspace', None)
if self.project_name != None and workspace != None:
try:
settings['project'] = util.parse_json_from_file(os.path.join(workspace,self.project_name,self.project_name+'.sublime-settings'))
except:
debug('Project settings could not be loaded')
if not user_path == None:
try:
settings['user'] = util.parse_json_from_file(user_path)
except:
debug('User settings could not be loaded')
if not def_path == None:
try:
settings['default'] = util.parse_json_from_file(def_path)
except:
raise MMException('Could not load default MavensMate settings.')
if settings == {}:
raise MMException('Could not load MavensMate settings. Please ensure they contain valid JSON')
return settings | 0.009881 |
def validate(self, value):
"""
Validate the I{value} is of the correct class.
@param value: The value to validate.
@type value: any
@raise AttributeError: When I{value} is invalid.
"""
if value is None:
return
if len(self.classes) and not isinstance(value, self.classes):
msg = '"%s" must be: %s' % (self.name, self.classes)
raise AttributeError(msg) | 0.004444 |
def random_markov_chain(n, k=None, sparse=False, random_state=None):
"""
Return a randomly sampled MarkovChain instance with n states, where
each state has k states with positive transition probability.
Parameters
----------
n : scalar(int)
Number of states.
k : scalar(int), optional(default=None)
Number of states that may be reached from each state with
positive probability. Set to n if not specified.
sparse : bool, optional(default=False)
Whether to store the transition probability matrix in sparse
matrix form.
random_state : int or np.random.RandomState, optional
Random seed (integer) or np.random.RandomState instance to set
the initial state of the random number generator for
reproducibility. If None, a randomly initialized RandomState is
used.
Returns
-------
mc : MarkovChain
Examples
--------
>>> mc = qe.markov.random_markov_chain(3, random_state=1234)
>>> mc.P
array([[ 0.19151945, 0.43058932, 0.37789123],
[ 0.43772774, 0.34763084, 0.21464142],
[ 0.27259261, 0.5073832 , 0.22002419]])
>>> mc = qe.markov.random_markov_chain(3, k=2, random_state=1234)
>>> mc.P
array([[ 0.19151945, 0.80848055, 0. ],
[ 0. , 0.62210877, 0.37789123],
[ 0.56227226, 0. , 0.43772774]])
"""
P = random_stochastic_matrix(n, k, sparse, format='csr',
random_state=random_state)
mc = MarkovChain(P)
return mc | 0.000631 |
def _validate_params(self):
"""
method to sanitize model parameters
Parameters
---------
None
Returns
-------
None
"""
self.distribution = NormalDist(scale=self.scale)
super(LinearGAM, self)._validate_params() | 0.006689 |
def build_overviews(source_file, factors=None, minsize=256, external=False,
blocksize=256, interleave='pixel', compress='lzw',
resampling=Resampling.gauss, **kwargs):
"""Build overviews at one or more decimation factors for all
bands of the dataset.
Parameters
------------
source_file : str, file object or pathlib.Path object
Source file.
factors : list, optional
A list of integral overview levels to build.
minsize : int, optional
Maximum width or height of the smallest overview level. Only taken into account
if explicit factors are not specified. Defaults to `256`.
external : bool, optional
Can be set to `True` to force external overviews in the GeoTIFF (.ovr) format.
Default is False.
blocksize : int, optional
The block size (tile width and height) used for overviews. Should be a
power-of-two value between 64 and 4096. Default value is `256`.
interleave : str, optional
Interleaving. Default value is `pixel`.
compress : str, optional
Set the compression to use. Default is `lzw`.
resampling : rasterio.enums.Resampling
Resampling method. Default is `gauss`.
kwargs : optional
Additional arguments passed to rasterio.Env.
Returns
---------
out: None
Original file is altered or external .ovr can be created.
"""
with rasterio.open(source_file, 'r+') as dst:
if factors is None:
factors = _calc_overviews_factors(
SimpleNamespace(width=dst.width, height=dst.height), minsize)
with rasterio.Env(
GDAL_TIFF_OVR_BLOCKSIZE=blocksize,
INTERLEAVE_OVERVIEW=interleave,
COMPRESS_OVERVIEW=compress,
TIFF_USE_OVR=external,
**kwargs
):
dst.build_overviews(factors, resampling) | 0.001561 |
def add_layer2image(grid2d, x_pos, y_pos, kernel, order=1):
"""
adds a kernel on the grid2d image at position x_pos, y_pos with an interpolated subgrid pixel shift of order=order
:param grid2d: 2d pixel grid (i.e. image)
:param x_pos: x-position center (pixel coordinate) of the layer to be added
:param y_pos: y-position center (pixel coordinate) of the layer to be added
:param kernel: the layer to be added to the image
:param order: interpolation order for sub-pixel shift of the kernel to be added
:return: image with added layer, cut to original size
"""
x_int = int(round(x_pos))
y_int = int(round(y_pos))
shift_x = x_int - x_pos
shift_y = y_int - y_pos
kernel_shifted = interp.shift(kernel, [-shift_y, -shift_x], order=order)
return add_layer2image_int(grid2d, x_int, y_int, kernel_shifted) | 0.003492 |
def blueprint(self):
"""The name of the current blueprint"""
if self.url_rule and '.' in self.url_rule.endpoint:
return self.url_rule.endpoint.rsplit('.', 1)[0] | 0.010638 |
def to_dict(self):
"""Create a dict representation of this exception.
:return: The dictionary representation.
:rtype: dict
"""
rv = dict(self.payload or ())
rv["message"] = self.message
return rv | 0.007905 |
def _parse_east_asian(fname, properties=(u'W', u'F',)):
"""Parse unicode east-asian width tables."""
version, date, values = None, None, []
print("parsing {} ..".format(fname))
for line in open(fname, 'rb'):
uline = line.decode('utf-8')
if version is None:
version = uline.split(None, 1)[1].rstrip()
continue
elif date is None:
date = uline.split(':', 1)[1].rstrip()
continue
if uline.startswith('#') or not uline.lstrip():
continue
addrs, details = uline.split(';', 1)
if any(details.startswith(property)
for property in properties):
start, stop = addrs, addrs
if '..' in addrs:
start, stop = addrs.split('..')
values.extend(range(int(start, 16), int(stop, 16) + 1))
return version, date, sorted(values) | 0.002035 |
def is_address_in_network(ip, net):
"""Is an address in a network"""
# http://stackoverflow.com/questions/819355/how-can-i-check-if-an-ip-is-in-a-network-in-python
import socket
import struct
ipaddr = struct.unpack('=L', socket.inet_aton(ip))[0]
netaddr, bits = net.split('/')
if int(bits) == 0:
return True
net = struct.unpack('=L', socket.inet_aton(netaddr))[0]
mask = ((2L << int(bits) - 1) - 1)
return (ipaddr & mask) == (net & mask) | 0.002053 |
def register_socket(self, socket):
"""Registers the given socket(s) for further use.
:param Socket|list[Socket] socket: Socket type object. See ``.sockets``.
"""
sockets = self._sockets
for socket in listify(socket):
uses_shared = isinstance(socket.address, SocketShared)
if uses_shared:
# Handling shared sockets involves socket index resolution.
shared_socket = socket.address # type: SocketShared
if shared_socket not in sockets:
self.register_socket(shared_socket)
socket.address = self._get_shared_socket_idx(shared_socket)
socket.address = self._section.replace_placeholders(socket.address)
self._set(socket.name, socket, multi=True)
socket._contribute_to_opts(self)
bound_workers = socket.bound_workers
if bound_workers:
self._set(
'map-socket', '%s:%s' % (len(sockets), ','.join(map(str, bound_workers))),
multi=True)
if not uses_shared:
sockets.append(socket)
return self._section | 0.003322 |
def _drain(writer, ion_event):
"""Drain the writer of its pending write events.
Args:
writer (Coroutine): A writer co-routine.
ion_event (amazon.ion.core.IonEvent): The first event to apply to the writer.
Yields:
DataEvent: Yields each pending data event.
"""
result_event = _WRITE_EVENT_HAS_PENDING_EMPTY
while result_event.type is WriteEventType.HAS_PENDING:
result_event = writer.send(ion_event)
ion_event = None
yield result_event | 0.003937 |
def mag_calibration(self):
"""Perform magnetometer calibration for current IMU."""
self.calibration_state = self.CAL_MAG
self.mag_dialog = SK8MagDialog(self.sk8.get_imu(self.spinIMU.value()), self)
if self.mag_dialog.exec_() == QDialog.Rejected:
return
self.calculate_mag_calibration(self.mag_dialog.samples) | 0.00831 |
def parse_masked_phone_number(html, parser=None):
"""Get masked phone number from security check html
:param html: str: raw html text
:param parser: bs4.BeautifulSoup: html parser
:return: tuple of phone prefix and suffix, for example: ('+1234', '89')
:rtype : tuple
"""
if parser is None:
parser = bs4.BeautifulSoup(html, 'html.parser')
fields = parser.find_all('span', {'class': 'field_prefix'})
if not fields:
raise VkParseError(
'No <span class="field_prefix">...</span> in the \n%s' % html)
result = []
for f in fields:
value = f.get_text().replace(six.u('\xa0'), '')
result.append(value)
return tuple(result) | 0.00141 |
def split_string(x: str, n: int) -> List[str]:
"""
Split string into chunks of length n
"""
# https://stackoverflow.com/questions/9475241/split-string-every-nth-character # noqa
return [x[i:i+n] for i in range(0, len(x), n)] | 0.004082 |
def get_nodes_with_recipe(recipe_name, environment=None):
"""Get all nodes which include a given recipe,
prefix-searches are also supported
"""
prefix_search = recipe_name.endswith("*")
if prefix_search:
recipe_name = recipe_name.rstrip("*")
for n in get_nodes(environment):
recipes = get_recipes_in_node(n)
for role in get_roles_in_node(n, recursive=True):
recipes.extend(get_recipes_in_role(role))
if prefix_search:
if any(recipe.startswith(recipe_name) for recipe in recipes):
yield n
else:
if recipe_name in recipes:
yield n | 0.001513 |
def append(self, child, *args, **kwargs):
"""See :meth:`AbstractElement.append`"""
#if no set is associated with the layer yet, we learn it from span annotation elements that are added
if self.set is False or self.set is None:
if inspect.isclass(child):
if issubclass(child,AbstractSpanAnnotation):
if 'set' in kwargs:
self.set = kwargs['set']
elif isinstance(child, AbstractSpanAnnotation):
if child.set:
self.set = child.set
elif isinstance(child, Correction):
#descend into corrections to find the proper set for this layer (derived from span annotation elements)
for e in itertools.chain( child.new(), child.original(), child.suggestions() ):
if isinstance(e, AbstractSpanAnnotation) and e.set:
self.set = e.set
break
return super(AbstractAnnotationLayer, self).append(child, *args, **kwargs) | 0.010368 |
def lambda_handler(event, context):
'''A Python AWS Lambda function to process aggregated records sent to KinesisAnalytics.'''
raw_kpl_records = event['records']
output = [process_kpl_record(kpl_record) for kpl_record in raw_kpl_records]
# Print number of successful and failed records.
success_count = sum(1 for record in output if record['result'] == 'Ok')
failure_count = sum(1 for record in output if record['result'] == 'ProcessingFailed')
print('Processing completed. Successful records: {0}, Failed records: {1}.'.format(success_count, failure_count))
return {'records': output} | 0.006452 |
def parse_bookmark_data (data):
"""Parse data string.
Return iterator for bookmarks of the form (url, name).
Bookmarks are not sorted.
"""
for url, name in parse_bookmark_json(json.loads(data)):
yield url, name | 0.008403 |
def fixup_ins_del_tags(html):
""" Given an html string, move any <ins> or <del> tags inside of any
block-level elements, e.g. transform <ins><p>word</p></ins> to
<p><ins>word</ins></p> """
doc = parse_html(html, cleanup=False)
_fixup_ins_del_tags(doc)
html = serialize_html_fragment(doc, skip_outer=True)
return html | 0.002907 |
def create_button_label(icon, font_size=constants.FONT_SIZE_NORMAL):
"""Create a button label with a chosen icon.
:param icon: The icon
:param font_size: The size of the icon
:return: The created label
"""
label = Gtk.Label()
set_label_markup(label, '&#x' + icon + ';', constants.ICON_FONT, font_size)
label.show()
return label | 0.002747 |
def is_bbox_not_intersecting(self, other):
"""Returns False iif bounding boxed of self and other intersect"""
self_x_min, self_x_max, self_y_min, self_y_max = self.get_bbox()
other_x_min, other_x_max, other_y_min, other_y_max = other.get_bbox()
return \
self_x_min > other_x_max or \
other_x_min > self_x_max or \
self_y_min > other_y_max or \
other_y_min > self_y_max | 0.004444 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.