text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def _expectation(p, mean, none1, none2, none3, nghp=None):
"""
Compute the expectation:
<m(X)>_p(X)
- m(x) :: Linear, Identity or Constant mean function
:return: NxQ
"""
return mean(p.mu) | 0.004545 |
def is_valid_regex(string):
"""
Checks whether the re module can compile the given regular expression.
Parameters
----------
string: str
Returns
-------
boolean
"""
try:
re.compile(string)
is_valid = True
except re.error:
is_valid = False
return is_valid | 0.003049 |
def is_positive_semidefinite_matrix(mat, rtol=RTOL_DEFAULT, atol=ATOL_DEFAULT):
"""Test if a matrix is positive semidefinite"""
if atol is None:
atol = ATOL_DEFAULT
if rtol is None:
rtol = RTOL_DEFAULT
if not is_hermitian_matrix(mat, rtol=rtol, atol=atol):
return False
# Check eigenvalues are all positive
vals = np.linalg.eigvalsh(mat)
for v in vals:
if v < -atol:
return False
return True | 0.002141 |
def format_value(column_dict, value, key=None):
"""
Format a value coming from the database (for example converts datetimes to
strings)
:param column_dict: The column datas collected during inspection
:param value: A value coming from the database
:param key: The exportation key
"""
formatter = column_dict.get('formatter')
prop = column_dict['__col__']
res = value
if value in ('', None,):
res = ''
elif formatter is not None:
res = formatter(value)
else:
if hasattr(prop, "columns"):
sqla_column = prop.columns[0]
column_type = getattr(sqla_column.type, 'impl', sqla_column.type)
formatter = FORMATTERS_REGISTRY.get_formatter(column_type, key)
if formatter is not None:
res = formatter(value)
return res | 0.001168 |
def reload(self, d=None):
"""Reload model from given dict or database."""
if d:
self.clear()
self.update(d)
elif self.id:
new_dict = self.by_id(self._id)
self.clear()
self.update(new_dict)
else:
# should I raise an exception here?
# Like "Model must be saved first."
pass | 0.005013 |
def unstash(self):
"""
Pops the last stash if EPAB made a stash before
"""
if not self.stashed:
LOGGER.error('no stash')
else:
LOGGER.info('popping stash')
self.repo.git.stash('pop')
self.stashed = False | 0.006873 |
def execute(self, input_data):
# Spin up SWF class
swf = SWF()
# Get the raw_bytes
raw_bytes = input_data['sample']['raw_bytes']
# Parse it
swf.parse(StringIO(raw_bytes))
# Header info
head = swf.header
output = {'version':head.version,'file_length':head.file_length,'frame_count':head.frame_count,
'frame_rate':head.frame_rate,'frame_size':head.frame_size.__str__(),'compressed':head.compressed}
# Loop through all the tags
output['tags'] = [tag.__str__() for tag in swf.tags]
# Add the meta data to the output
output.update(input_data['meta'])
return output
'''
# Map all tag names to indexes
tag_map = {tag.name:index for tag,index in enumerate(swf.tags)}
# FileAttribute Info
file_attr_tag = swf.tags[tag_map]
'''
'''
# Build up return data structure
output = {name:value for name,value in locals().iteritems()
if name not in ['self', 'input_data','raw_bytes']}
output.update(input_data['meta'])
return output
''' | 0.016653 |
def int_to_bytes(i, minlen=1, order='big'): # pragma: no cover
"""convert integer to bytes"""
blen = max(minlen, PGPObject.int_byte_len(i), 1)
if six.PY2:
r = iter(_ * 8 for _ in (range(blen) if order == 'little' else range(blen - 1, -1, -1)))
return bytes(bytearray((i >> c) & 0xff for c in r))
return i.to_bytes(blen, order) | 0.007792 |
def dumped(text, level, indent=2):
"""Put curly brackets round an indented text"""
return indented("{\n%s\n}" % indented(text, level + 1, indent) or "None", level, indent) + "\n" | 0.010753 |
def getObject(self, url_or_requests_response, params=None):
'Take a url or some xml response from JottaCloud and wrap it up with the corresponding JFS* class'
if isinstance(url_or_requests_response, requests.models.Response):
# this is a raw xml response that we need to parse
url = url_or_requests_response.url
o = lxml.objectify.fromstring(url_or_requests_response.content)
else:
# this is an url that we need to fetch
url = url_or_requests_response
o = self.get(url, params=params) # (.get() will parse this for us)
parent = os.path.dirname(url).replace('up.jottacloud.com', 'www.jottacloud.com')
if o.tag == 'error':
JFSError.raiseError(o, url)
elif o.tag == 'device': return JFSDevice(o, jfs=self, parentpath=parent)
elif o.tag == 'folder': return JFSFolder(o, jfs=self, parentpath=parent)
elif o.tag == 'mountPoint': return JFSMountPoint(o, jfs=self, parentpath=parent)
elif o.tag == 'restoredFiles': return JFSFile(o, jfs=self, parentpath=parent)
elif o.tag == 'deleteFiles': return JFSFile(o, jfs=self, parentpath=parent)
elif o.tag == 'file':
return ProtoFile.factory(o, jfs=self, parentpath=parent)
# try:
# if o.latestRevision.state == 'INCOMPLETE':
# return JFSIncompleteFile(o, jfs=self, parentpath=parent)
# elif o.latestRevision.state == 'CORRUPT':
# return JFSCorruptFile(o, jfs=self, parentpath=parent)
# except AttributeError:
# return JFSFile(o, jfs=self, parentpath=parent)
elif o.tag == 'enableSharing': return JFSenableSharing(o, jfs=self)
elif o.tag == 'user':
self.fs = o
return self.fs
elif o.tag == 'filedirlist': return JFSFileDirList(o, jfs=self, parentpath=parent)
elif o.tag == 'searchresult': return JFSsearchresult(o, jfs=self)
raise JFSError("invalid object: %s <- %s" % (repr(o), url_or_requests_response)) | 0.009519 |
def _check_copy_conditions(self, src, dst):
# type: (SyncCopy, blobxfer.models.azure.StorageEntity,
# blobxfer.models.azure.StorageEntity) -> UploadAction
"""Check for synccopy conditions
:param SyncCopy self: this
:param blobxfer.models.azure.StorageEntity src: src
:param blobxfer.models.azure.StorageEntity dst: dst
:rtype: SynccopyAction
:return: synccopy action
"""
# if remote file doesn't exist, copy
if dst is None or dst.from_local:
return SynccopyAction.Copy
# check overwrite option
if not self._spec.options.overwrite:
logger.info(
'not overwriting remote file: {})'.format(dst.path))
return SynccopyAction.Skip
# check skip on options, MD5 match takes priority
src_md5 = blobxfer.models.metadata.get_md5_from_metadata(src)
dst_md5 = blobxfer.models.metadata.get_md5_from_metadata(dst)
if (self._spec.skip_on.md5_match and
blobxfer.util.is_not_empty(src_md5)):
if src_md5 == dst_md5:
return SynccopyAction.Skip
else:
return SynccopyAction.Copy
# if neither of the remaining skip on actions are activated, copy
if (not self._spec.skip_on.filesize_match and
not self._spec.skip_on.lmt_ge):
return SynccopyAction.Copy
# check skip on file size match
ul_fs = None
if self._spec.skip_on.filesize_match:
if src.size == dst.size:
ul_fs = False
else:
ul_fs = True
# check skip on lmt ge
ul_lmt = None
if self._spec.skip_on.lmt_ge:
if dst.lmt >= src.lmt:
ul_lmt = False
else:
ul_lmt = True
# upload if either skip on mismatch is True
if ul_fs or ul_lmt:
return SynccopyAction.Copy
else:
return SynccopyAction.Skip | 0.001966 |
def splitext(path):
"""splitext for paths with directories that may contain dots.
From https://stackoverflow.com/questions/5930036/separating-file-extensions-using-python-os-path-module"""
li = []
path_without_extensions = os.path.join(os.path.dirname(path),
os.path.basename(path).split(os.extsep)[0])
extensions = os.path.basename(path).split(os.extsep)[1:]
li.append(path_without_extensions)
# li.append(extensions) if you want extensions in another list inside the list that is returned.
li.extend(extensions)
return li | 0.007055 |
def add_custom_func(self, func, dim, *args, **kwargs):
""" adds a user defined function to extract features
Parameters
----------
func : function
a user-defined function, which accepts mdtraj.Trajectory object as
first parameter and as many optional and named arguments as desired.
Has to return a numpy.ndarray ndim=2.
dim : int
output dimension of :py:obj:`function`
description: str or None
a message for the describe feature list.
args : any number of positional arguments
these have to be in the same order as :py:obj:`func` is expecting them
kwargs : dictionary
named arguments passed to func
Notes
-----
You can pass a description list to describe the output of your function by element,
by passing a list of strings with the same lengths as dimensions.
Alternatively a single element list or str will be expanded to match the output dimension.
"""
description = kwargs.pop('description', None)
f = CustomFeature(func, dim=dim, description=description, fun_args=args, fun_kwargs=kwargs)
self.add_custom_feature(f) | 0.005632 |
def change_and_save(obj, update_only_changed_fields=False, save_kwargs=None, **changed_fields):
"""
Changes a given `changed_fields` on object, saves it and returns changed object.
"""
from chamber.models import SmartModel
change(obj, **changed_fields)
if update_only_changed_fields and not isinstance(obj, SmartModel):
raise TypeError('update_only_changed_fields can be used only with SmartModel')
save_kwargs = save_kwargs if save_kwargs is not None else {}
if update_only_changed_fields:
save_kwargs['update_only_changed_fields'] = True
obj.save(**save_kwargs)
return obj | 0.006319 |
def save_data(self, session, exp_id, content):
'''save data will obtain the current subid from the session, and save it
depending on the database type. Currently we just support flat files'''
subid = session.get('subid')
# We only attempt save if there is a subject id, set at start
data_file = None
if subid is not None:
data_base = "%s/%s" %(self.data_base, subid)
# If not running in headless, ensure path exists
if not self.headless and not os.path.exists(data_base):
mkdir_p(data_base)
# Conditions for saving:
do_save = False
# If headless with token pre-generated OR not headless
if self.headless and os.path.exists(data_base) or not self.headless:
do_save = True
if data_base.endswith(('revoked','finished')):
do_save = False
# If headless with token pre-generated OR not headless
if do_save is True:
data_file = "%s/%s-results.json" %(data_base, exp_id)
if os.path.exists(data_file):
self.logger.warning('%s exists, and is being overwritten.' %data_file)
write_json(content, data_file)
return data_file | 0.005738 |
def should_bypass_proxies(url):
"""
Returns whether we should bypass proxies or not.
"""
get_proxy = lambda k: os.environ.get(k) or os.environ.get(k.upper())
# First check whether no_proxy is defined. If it is, check that the URL
# we're getting isn't in the no_proxy list.
no_proxy = get_proxy('no_proxy')
netloc = urlparse(url).netloc
if no_proxy:
# We need to check whether we match here. We need to see if we match
# the end of the netloc, both with and without the port.
no_proxy = no_proxy.replace(' ', '').split(',')
ip = netloc.split(':')[0]
if is_ipv4_address(ip):
for proxy_ip in no_proxy:
if is_valid_cidr(proxy_ip):
if address_in_network(ip, proxy_ip):
return True
else:
for host in no_proxy:
if netloc.endswith(host) or netloc.split(':')[0].endswith(host):
# The URL does match something in no_proxy, so we don't want
# to apply the proxies on this URL.
return True
# If the system proxy settings indicate that this URL should be bypassed,
# don't proxy.
# The proxy_bypass function is incredibly buggy on OS X in early versions
# of Python 2.6, so allow this call to fail. Only catch the specific
# exceptions we've seen, though: this call failing in other ways can reveal
# legitimate problems.
try:
bypass = proxy_bypass(netloc)
except (TypeError, socket.gaierror):
bypass = False
if bypass:
return True
return False | 0.00243 |
def setTextEdit( self, textEdit ):
"""
Sets the text edit that this find widget will use to search.
:param textEdit | <QTextEdit>
"""
if ( self._textEdit ):
self._textEdit.removeAction(self._findAction)
self._textEdit = textEdit
if ( textEdit ):
textEdit.addAction(self._findAction) | 0.025 |
def prepare(self, node):
'''Gather analysis result required by this analysis'''
if isinstance(node, ast.Module):
self.ctx.module = node
elif isinstance(node, ast.FunctionDef):
self.ctx.function = node
for D in self.deps:
d = D()
d.attach(self.passmanager, self.ctx)
result = d.run(node)
setattr(self, uncamel(D.__name__), result) | 0.004608 |
def from_points(lons, lats):
"""
Compute the BoundingBox from a set of latitudes and longitudes
:param lons: longitudes
:param lats: latitudes
:return: BoundingBox
"""
north, west = max(lats), min(lons)
south, east = min(lats), max(lons)
return BoundingBox(north=north, west=west, south=south, east=east) | 0.005305 |
def is_pathlike(value, **kwargs):
"""Indicate whether ``value`` is a path-like object.
:param value: The value to evaluate.
:returns: ``True`` if ``value`` is valid, ``False`` if it is not.
:rtype: :class:`bool <python:bool>`
:raises SyntaxError: if ``kwargs`` contains duplicate keyword parameters or duplicates
keyword parameters passed to the underlying validator
"""
try:
value = validators.path(value, **kwargs)
except SyntaxError as error:
raise error
except Exception:
return False
return True | 0.003478 |
def create_document_dictionary(self, document, document_key=None,
owner_document=None):
"""
Given document generates a dictionary representation of the document.
Includes the widget for each for each field in the document.
"""
doc_dict = self.create_doc_dict(document, document_key, owner_document)
for doc_key, doc_field in doc_dict.items():
# Base fields should not be evaluated
if doc_key.startswith("_"):
continue
if isinstance(doc_field, ListField):
doc_dict[doc_key] = self.create_list_dict(document, doc_field, doc_key)
elif isinstance(doc_field, EmbeddedDocumentField):
doc_dict[doc_key] = self.create_document_dictionary(doc_dict[doc_key].document_type_obj,
doc_key)
else:
doc_dict[doc_key] = {"_document": document,
"_key": doc_key,
"_document_field": doc_field,
"_widget": get_widget(doc_dict[doc_key], getattr(doc_field, 'disabled', False))}
return doc_dict | 0.004658 |
def calc_columns_rows(n):
"""
Calculate the number of columns and rows required to divide an image
into ``n`` parts.
Return a tuple of integers in the format (num_columns, num_rows)
"""
num_columns = int(ceil(sqrt(n)))
num_rows = int(ceil(n / float(num_columns)))
return (num_columns, num_rows) | 0.003058 |
def reassemble_options(payload):
'''
Reassemble partial options to options, returns a list of dhcp_option
DHCP options are basically `|tag|length|value|` structure. When an
option is longer than 255 bytes, it can be splitted into multiple
structures with the same tag. The splitted structures must be
joined back to get the original option.
`dhcp_option_partial` is used to present the splitted options,
and `dhcp_option` is used for reassembled option.
'''
options = []
option_indices = {}
def process_option_list(partials):
for p in partials:
if p.tag == OPTION_END:
break
if p.tag == OPTION_PAD:
continue
if p.tag in option_indices:
# Reassemble the data
options[option_indices[p.tag]][1].append(p.data)
else:
options.append((p.tag, [p.data]))
option_indices[p.tag] = len(options) - 1
# First process options field
process_option_list(payload.options)
if OPTION_OVERLOAD in option_indices:
# There is an overload option
data = b''.join(options[option_indices[OPTION_OVERLOAD]][1])
overload_option = dhcp_overload.create(data)
if overload_option & OVERLOAD_FILE:
process_option_list(dhcp_option_partial[0].create(payload.file))
if overload_option & OVERLOAD_SNAME:
process_option_list(dhcp_option_partial[0].create(payload.sname))
def _create_dhcp_option(tag, data):
opt = dhcp_option(tag = tag)
opt._setextra(data)
opt._autosubclass()
return opt
return [_create_dhcp_option(tag, b''.join(data)) for tag,data in options] | 0.004577 |
def QA_indicator_DMA(DataFrame, M1=10, M2=50, M3=10):
"""
平均线差 DMA
"""
CLOSE = DataFrame.close
DDD = MA(CLOSE, M1) - MA(CLOSE, M2)
AMA = MA(DDD, M3)
return pd.DataFrame({
'DDD': DDD, 'AMA': AMA
}) | 0.004237 |
def json_validate(schema, resp):
"""
Validate an RPC response.
The response must either take the
form of the given schema, or it must
take the form of {'error': ...}
Returns the resp on success
Returns {'error': ...} on validation error
"""
# is this an error?
try:
json_validate_error(resp)
except ValidationError:
if json_is_exception(resp):
# got a traceback
if BLOCKSTACK_TEST:
log.error('\n{}'.format(resp['traceback']))
return {'error': 'Blockstack Core encountered an exception. See `traceback` for details', 'traceback': resp['traceback'], 'http_status': 500}
if 'error' in resp and 'http_status' not in resp:
# bad error message
raise
# not an error.
jsonschema.validate(resp, schema)
return resp | 0.004566 |
def domain_relationship(self):
"""
Returns a domain relationship equivalent with this resource
relationship.
"""
if self.__domain_relationship is None:
ent = self.relator.get_entity()
self.__domain_relationship = \
self.descriptor.make_relationship(ent)
return self.__domain_relationship | 0.007916 |
def wrap_objective(f, *args, **kwds):
"""Decorator for creating Objective factories.
Changes f from the closure: (args) => () => TF Tensor
into an Obejective factory: (args) => Objective
while perserving function name, arg info, docs... for interactive python.
"""
objective_func = f(*args, **kwds)
objective_name = f.__name__
args_str = " [" + ", ".join([_make_arg_str(arg) for arg in args]) + "]"
description = objective_name.title() + args_str
return Objective(objective_func, objective_name, description) | 0.013208 |
def _parseIsComment(self):
"""
Detect whether the element is HTML comment or not.
Result is saved to the :attr:`_iscomment` property.
"""
self._iscomment = (
self._element.startswith("<!--") and self._element.endswith("-->")
) | 0.006969 |
async def connect(self):
"""Create connection pool asynchronously.
"""
self.pool = await aiomysql.create_pool(
loop=self.loop,
db=self.database,
connect_timeout=self.timeout,
**self.connect_params) | 0.007435 |
def new(
name: str,
arity: Arity,
class_name: str=None,
*,
associative: bool=False,
commutative: bool=False,
one_identity: bool=False,
infix: bool=False
) -> Type['Operation']:
"""Utility method to create a new operation type.
Example:
>>> Times = Operation.new('*', Arity.polyadic, 'Times', associative=True, commutative=True, one_identity=True)
>>> Times
Times['*', Arity(min_count=2, fixed_size=False), associative, commutative, one_identity]
>>> str(Times(Symbol('a'), Symbol('b')))
'*(a, b)'
Args:
name:
Name or symbol for the operator. Will be used as name for the new class if
`class_name` is not specified.
arity:
The arity of the operator as explained in the documentation of `Operation`.
class_name:
Name for the new operation class to be used instead of name. This argument
is required if `name` is not a valid python identifier.
Keyword Args:
associative:
See :attr:`~Operation.associative`.
commutative:
See :attr:`~Operation.commutative`.
one_identity:
See :attr:`~Operation.one_identity`.
infix:
See :attr:`~Operation.infix`.
Raises:
ValueError: if the class name of the operation is not a valid class identifier.
"""
class_name = class_name or name
if not class_name.isidentifier() or keyword.iskeyword(class_name):
raise ValueError("Invalid identifier for new operator class.")
return type(
class_name, (Operation, ), {
'name': name,
'arity': arity,
'associative': associative,
'commutative': commutative,
'one_identity': one_identity,
'infix': infix
}
) | 0.009183 |
def get_explorer_pid(self):
"""
Tries to find the process ID for "explorer.exe".
@rtype: int or None
@return: Returns the process ID, or C{None} on error.
"""
try:
exp = win32.SHGetFolderPath(win32.CSIDL_WINDOWS)
except Exception:
exp = None
if not exp:
exp = os.getenv('SystemRoot')
if exp:
exp = os.path.join(exp, 'explorer.exe')
exp_list = self.find_processes_by_filename(exp)
if exp_list:
return exp_list[0][0].get_pid()
return None | 0.0033 |
def getChemicalPotential(self, solution):
"""Call solver in order to calculate chemical potential.
"""
if isinstance(solution, Solution):
solution = solution.getSolution()
self.mu = self.solver.chemicalPotential(solution)
return self.mu | 0.00692 |
def get_hosts_retriever(s=None):
"""
Given the function name, looks up the method for dynamically retrieving host data.
"""
s = s or env.hosts_retriever
# #assert s, 'No hosts retriever specified.'
if not s:
return env_hosts_retriever
# module_name = '.'.join(s.split('.')[:-1])
# func_name = s.split('.')[-1]
# retriever = getattr(importlib.import_module(module_name), func_name)
# return retriever
return str_to_callable(s) or env_hosts_retriever | 0.004 |
def longest_increasing_subsequence(xs):
'''Return a longest increasing subsequence of xs.
(Note that there may be more than one such subsequence.)
>>> longest_increasing_subsequence(range(3))
[0, 1, 2]
>>> longest_increasing_subsequence([3, 1, 2, 0])
[1, 2]
'''
# Patience sort xs, stacking (x, prev_ix) pairs on the piles.
# Prev_ix indexes the element at the top of the previous pile,
# which has a lower x value than the current x value.
piles = [[]] # Create a dummy pile 0
for x, p in patience_sort(xs):
if p + 1 == len(piles):
piles.append([])
# backlink to the top of the previous pile
piles[p + 1].append((x, len(piles[p]) - 1))
# Backtrack to find a longest increasing subsequence
npiles = len(piles) - 1
prev = 0
lis = list()
for pile in range(npiles, 0, -1):
x, prev = piles[pile][prev]
lis.append(x)
lis.reverse()
return lis | 0.001035 |
def format(self, full_info: bool = False):
"""
:param full_info: If True, adds more info about the chat. Please, note that this additional info requires
to make up to THREE synchronous api calls.
"""
chat = self.api_object
if full_info:
self.__format_full(chat)
else:
self.__format_simple(chat) | 0.007937 |
def use(plugin):
"""
Register plugin in grappa.
`plugin` argument can be a function or a object that implement `register`
method, which should accept one argument: `grappa.Engine` instance.
Arguments:
plugin (function|module): grappa plugin object to register.
Raises:
ValueError: if `plugin` is not a valid interface.
Example::
import grappa
class MyOperator(grappa.Operator):
pass
def my_plugin(engine):
engine.register(MyOperator)
grappa.use(my_plugin)
"""
log.debug('register new plugin: {}'.format(plugin))
if inspect.isfunction(plugin):
return plugin(Engine)
if plugin and hasattr(plugin, 'register'):
return plugin.register(Engine)
raise ValueError('invalid plugin: must be a function or '
'implement register() method') | 0.001117 |
def update_record(self, common_name, **fields):
"""Update fields in an existing record"""
record = self.get_record(common_name)
if fields is not None:
for field, value in fields:
record[field] = value
self.save()
return record | 0.00678 |
def parse_authorization_header(value, charset='utf-8'):
'''Parse an HTTP basic/digest authorisation header.
:param value: the authorisation header to parse.
:return: either `None` if the header was invalid or
not given, otherwise an :class:`Auth` object.
'''
if not value:
return
try:
auth_type, auth_info = value.split(None, 1)
auth_type = auth_type.lower()
except ValueError:
return
if auth_type == 'basic':
try:
up = b64decode(auth_info.encode(CHARSET)).decode(charset)
username, password = up.split(':', 1)
except Exception:
return
return BasicAuth(username, password)
elif auth_type == 'digest':
auth_map = parse_dict_header(auth_info)
if not digest_parameters.difference(auth_map):
return DigestAuth(auth_map.pop('username'), options=auth_map) | 0.001094 |
def solvemdbi_cg(ah, rho, b, axisM, axisK, tol=1e-5, mit=1000, isn=None):
r"""
Solve a multiple diagonal block linear system with a scaled
identity term using Conjugate Gradient (CG) via
:func:`scipy.sparse.linalg.cg`.
The solution is obtained by independently solving a set of linear
systems of the form (see :cite:`wohlberg-2016-efficient`)
.. math::
(\rho I + \mathbf{a}_0 \mathbf{a}_0^H + \mathbf{a}_1 \mathbf{a}_1^H +
\; \ldots \; + \mathbf{a}_{K-1} \mathbf{a}_{K-1}^H) \; \mathbf{x} =
\mathbf{b}
where each :math:`\mathbf{a}_k` is an :math:`M`-vector.
The inner products and matrix products in this equation are taken
along the M and K axes of the corresponding multi-dimensional arrays;
the solutions are independent over the other axes.
Parameters
----------
ah : array_like
Linear system component :math:`\mathbf{a}^H`
rho : float
Parameter rho
b : array_like
Linear system component :math:`\mathbf{b}`
axisM : int
Axis in input corresponding to index m in linear system
axisK : int
Axis in input corresponding to index k in linear system
tol : float
CG tolerance
mit : int
CG maximum iterations
isn : array_like
CG initial solution
Returns
-------
x : ndarray
Linear system solution :math:`\mathbf{x}`
cgit : int
Number of CG iterations
"""
a = np.conj(ah)
if isn is not None:
isn = isn.ravel()
Aop = lambda x: inner(ah, x, axis=axisM)
AHop = lambda x: inner(a, x, axis=axisK)
AHAop = lambda x: AHop(Aop(x))
vAHAoprI = lambda x: AHAop(x.reshape(b.shape)).ravel() + rho * x.ravel()
lop = LinearOperator((b.size, b.size), matvec=vAHAoprI, dtype=b.dtype)
vx, cgit = _cg_wrapper(lop, b.ravel(), isn, tol, mit)
return vx.reshape(b.shape), cgit | 0.002655 |
def _populate_reporting_tab(self):
"""Populate trees about layers."""
self.tree.clear()
self.add_layer.setEnabled(False)
self.remove_layer.setEnabled(False)
self.move_up.setEnabled(False)
self.move_down.setEnabled(False)
self.tree.setColumnCount(1)
self.tree.setRootIsDecorated(False)
self.tree.setHeaderHidden(True)
analysis_branch = QTreeWidgetItem(
self.tree.invisibleRootItem(), [FROM_ANALYSIS['name']])
analysis_branch.setFont(0, bold_font)
analysis_branch.setExpanded(True)
analysis_branch.setFlags(Qt.ItemIsEnabled)
if self._multi_exposure_if:
expected = self._multi_exposure_if.output_layers_expected()
for group, layers in list(expected.items()):
group_branch = QTreeWidgetItem(analysis_branch, [group])
group_branch.setFont(0, bold_font)
group_branch.setExpanded(True)
group_branch.setFlags(Qt.ItemIsEnabled)
for layer in layers:
layer = definition(layer)
if layer.get('allowed_geometries', None):
item = QTreeWidgetItem(
group_branch, [layer.get('name')])
item.setData(
0, LAYER_ORIGIN_ROLE, FROM_ANALYSIS['key'])
item.setData(0, LAYER_PARENT_ANALYSIS_ROLE, group)
item.setData(
0, LAYER_PURPOSE_KEY_OR_ID_ROLE, layer['key'])
item.setFlags(Qt.ItemIsEnabled | Qt.ItemIsSelectable)
canvas_branch = QTreeWidgetItem(
self.tree.invisibleRootItem(), [FROM_CANVAS['name']])
canvas_branch.setFont(0, bold_font)
canvas_branch.setExpanded(True)
canvas_branch.setFlags(Qt.ItemIsEnabled)
# List layers from the canvas
loaded_layers = list(QgsProject.instance().mapLayers().values())
canvas_layers = self.iface.mapCanvas().layers()
flag = setting('visibleLayersOnlyFlag', expected_type=bool)
for loaded_layer in loaded_layers:
if flag and loaded_layer not in canvas_layers:
continue
title = loaded_layer.name()
item = QTreeWidgetItem(canvas_branch, [title])
item.setData(0, LAYER_ORIGIN_ROLE, FROM_CANVAS['key'])
item.setData(0, LAYER_PURPOSE_KEY_OR_ID_ROLE, loaded_layer.id())
item.setFlags(Qt.ItemIsEnabled | Qt.ItemIsSelectable)
self.tree.resizeColumnToContents(0) | 0.000762 |
def helical_turbulent_fd_Srinivasan(Re, Di, Dc):
r'''Calculates Darcy friction factor for a fluid flowing inside a curved
pipe such as a helical coil under turbulent conditions, using the method of
Srinivasan [1]_, as shown in [2]_ and [3]_.
.. math::
f_d = \frac{0.336}{{\left[Re\sqrt{\frac{D_i}{D_c}}\right]^{0.2}}}
Parameters
----------
Re : float
Reynolds number with `D=Di`, [-]
Di : float
Inner diameter of the coil, [m]
Dc : float
Diameter of the helix/coil measured from the center of the tube on one
side to the center of the tube on the other side, [m]
Returns
-------
fd : float
Darcy friction factor for a curved pipe [-]
Notes
-----
Valid for 0.01 < Di/Dc < 0.15, with no Reynolds number criteria given in
[2]_ or [3]_.
[2]_ recommends this method, using the transition criteria of Srinivasan as
well. [3]_ recommends using either this method or the Ito method. This
method did not make it into the popular review articles on curved flow.
Examples
--------
>>> helical_turbulent_fd_Srinivasan(1E4, 0.01, .02)
0.0570745212117107
References
----------
.. [1] Srinivasan, PS, SS Nandapurkar, and FA Holland. "Friction Factors
for Coils." TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS AND
THE CHEMICAL ENGINEER 48, no. 4-6 (1970): T156
.. [2] Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.:
Van Nostrand Reinhold Co., 1984.
.. [3] Rohsenow, Warren and James Hartnett and Young Cho. Handbook of Heat
Transfer, 3E. New York: McGraw-Hill, 1998.
'''
De = Dean(Re=Re, Di=Di, D=Dc)
return 0.336*De**-0.2 | 0.004553 |
def deregisterevent(self, event_name):
"""
Remove callback of registered event
@param event_name: Event name in at-spi format.
@type event_name: string
@return: 1 if registration was successful, 0 if not.
@rtype: integer
"""
if event_name in self._pollEvents._callback:
del self._pollEvents._callback[event_name]
return self._remote_deregisterevent(event_name) | 0.004474 |
def topics(self):
"""获取问题所属话题.
:return: 问题所属话题
:rtype: Topic.Iterable
"""
from .topic import Topic
for topic in self.soup.find_all('a', class_='zm-item-tag'):
yield Topic(Zhihu_URL + topic['href'], topic.text.replace('\n', ''),
session=self._session) | 0.008929 |
def _codes_to_ints(self, codes):
"""
Transform combination(s) of uint64 in one uint64 (each), in a strictly
monotonic way (i.e. respecting the lexicographic order of integer
combinations): see BaseMultiIndexCodesEngine documentation.
Parameters
----------
codes : 1- or 2-dimensional array of dtype uint64
Combinations of integers (one per row)
Returns
------
int_keys : scalar or 1-dimensional array, of dtype uint64
Integer(s) representing one combination (each).
"""
# Shift the representation of each level by the pre-calculated number
# of bits:
codes <<= self.offsets
# Now sum and OR are in fact interchangeable. This is a simple
# composition of the (disjunct) significant bits of each level (i.e.
# each column in "codes") in a single positive integer:
if codes.ndim == 1:
# Single key
return np.bitwise_or.reduce(codes)
# Multiple keys
return np.bitwise_or.reduce(codes, axis=1) | 0.001818 |
def keywords_special_characters(keywords):
"""
Confirms that the keywords don't contain special characters
Args:
keywords (str)
Raises:
django.forms.ValidationError
"""
invalid_chars = '!\"#$%&\'()*+-./:;<=>?@[\\]^_{|}~\t\n'
if any(char in invalid_chars for char in keywords):
raise ValidationError(MESSAGE_KEYWORD_SPECIAL_CHARS) | 0.002611 |
def get_es(**overrides):
"""Return a elasticsearch Elasticsearch object using settings
from ``settings.py``.
:arg overrides: Allows you to override defaults to create the
ElasticSearch object. You can override any of the arguments
isted in :py:func:`elasticutils.get_es`.
For example, if you wanted to create an ElasticSearch with a
longer timeout to a different cluster, you'd do:
>>> from elasticutils.contrib.django import get_es
>>> es = get_es(urls=['http://some_other_cluster:9200'], timeout=30)
"""
defaults = {
'urls': settings.ES_URLS,
'timeout': getattr(settings, 'ES_TIMEOUT', 5)
}
defaults.update(overrides)
return base_get_es(**defaults) | 0.001353 |
def validate_txn_obj(obj_name, obj, key, validation_fun):
"""Validate value of `key` in `obj` using `validation_fun`.
Args:
obj_name (str): name for `obj` being validated.
obj (dict): dictionary object.
key (str): key to be validated in `obj`.
validation_fun (function): function used to validate the value
of `key`.
Returns:
None: indicates validation successful
Raises:
ValidationError: `validation_fun` will raise exception on failure
"""
backend = bigchaindb.config['database']['backend']
if backend == 'localmongodb':
data = obj.get(key, {})
if isinstance(data, dict):
validate_all_keys_in_obj(obj_name, data, validation_fun)
elif isinstance(data, list):
validate_all_items_in_list(obj_name, data, validation_fun) | 0.001119 |
def prune(self):
"""Removes the node and all descendents without looping back past the
root. Note this does not remove the associated data objects.
:returns:
list of :class:`BaseDataNode` subclassers associated with the
removed ``Node`` objects.
"""
targets = self.descendents_root()
try:
targets.remove(self.graph.root)
except ValueError:
# root wasn't in the target list, no problem
pass
results = [n.data for n in targets]
results.append(self.data)
for node in targets:
node.delete()
for parent in self.parents.all():
parent.children.remove(self)
self.delete()
return results | 0.002594 |
def file_object_supports_binary(fp):
# type: (BinaryIO) -> bool
'''
A function to check whether a file-like object supports binary mode.
Parameters:
fp - The file-like object to check for binary mode support.
Returns:
True if the file-like object supports binary mode, False otherwise.
'''
if hasattr(fp, 'mode'):
return 'b' in fp.mode
# Python 3
if sys.version_info >= (3, 0):
return isinstance(fp, (io.RawIOBase, io.BufferedIOBase))
# Python 2
return isinstance(fp, (cStringIO.OutputType, cStringIO.InputType, io.RawIOBase, io.BufferedIOBase)) | 0.003236 |
def check_cmake_exists(cmake_command):
"""
Check whether CMake is installed. If not, print
informative error message and quits.
"""
from subprocess import Popen, PIPE
p = Popen(
'{0} --version'.format(cmake_command),
shell=True,
stdin=PIPE,
stdout=PIPE)
if not ('cmake version' in p.communicate()[0].decode('UTF-8')):
sys.stderr.write(' This code is built using CMake\n\n')
sys.stderr.write(' CMake is not found\n')
sys.stderr.write(' get CMake at http://www.cmake.org/\n')
sys.stderr.write(' on many clusters CMake is installed\n')
sys.stderr.write(' but you have to load it first:\n')
sys.stderr.write(' $ module load cmake\n')
sys.exit(1) | 0.001299 |
def decompress_messages(self, partitions_offmsgs):
""" Decompress pre-defined compressed fields for each message. """
for pomsg in partitions_offmsgs:
if pomsg['message']:
pomsg['message'] = self.decompress_fun(pomsg['message'])
yield pomsg | 0.006734 |
def update_log_entry(self, log_entry_form):
"""Updates an existing log entry.
arg: log_entry_form (osid.logging.LogEntryForm): the form
containing the elements to be updated
raise: IllegalState - ``log_entry_form`` already used in an
update transaction
raise: InvalidArgument - the form contains an invalid value
raise: NullArgument - ``log_entry_form`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
raise: Unsupported - ``log_entry_form`` did not originate from
``get_log_entry_form_for_update()``
*compliance: mandatory -- This method must be implemented.*
"""
# Implemented from template for
# osid.resource.ResourceAdminSession.update_resource_template
collection = JSONClientValidated('logging',
collection='LogEntry',
runtime=self._runtime)
if not isinstance(log_entry_form, ABCLogEntryForm):
raise errors.InvalidArgument('argument type is not an LogEntryForm')
if not log_entry_form.is_for_update():
raise errors.InvalidArgument('the LogEntryForm is for update only, not create')
try:
if self._forms[log_entry_form.get_id().get_identifier()] == UPDATED:
raise errors.IllegalState('log_entry_form already used in an update transaction')
except KeyError:
raise errors.Unsupported('log_entry_form did not originate from this session')
if not log_entry_form.is_valid():
raise errors.InvalidArgument('one or more of the form elements is invalid')
collection.save(log_entry_form._my_map)
self._forms[log_entry_form.get_id().get_identifier()] = UPDATED
# Note: this is out of spec. The OSIDs don't require an object to be returned:
return objects.LogEntry(
osid_object_map=log_entry_form._my_map,
runtime=self._runtime,
proxy=self._proxy) | 0.004215 |
def absent(name, auth=None, **kwargs):
'''
Ensure a network does not exists
name
Name of the network
'''
ret = {'name': name,
'changes': {},
'result': True,
'comment': ''}
kwargs = __utils__['args.clean_kwargs'](**kwargs)
__salt__['neutronng.setup_clouds'](auth)
kwargs['name'] = name
network = __salt__['neutronng.network_get'](name=name)
if network:
if __opts__['test'] is True:
ret['result'] = None
ret['changes'] = {'id': network.id}
ret['comment'] = 'Network will be deleted.'
return ret
__salt__['neutronng.network_delete'](name=network)
ret['changes']['id'] = network.id
ret['comment'] = 'Deleted network'
return ret | 0.001256 |
def logsignalrate(self, s0, s1, slide, step):
"""Calculate the normalized log rate density of signals via lookup"""
td = numpy.array(s0['end_time'] - s1['end_time'] - slide*step, ndmin=1)
pd = numpy.array((s0['coa_phase'] - s1['coa_phase']) % \
(2. * numpy.pi), ndmin=1)
rd = numpy.array((s0['sigmasq'] / s1['sigmasq']) ** 0.5, ndmin=1)
sn0 = numpy.array(s0['snr'], ndmin=1)
sn1 = numpy.array(s1['snr'], ndmin=1)
snr0 = sn0 * 1
snr1 = sn1 * 1
snr0[rd > 1] = sn1[rd > 1]
snr1[rd > 1] = sn0[rd > 1]
rd[rd > 1] = 1. / rd[rd > 1]
# Find which bin each coinc falls into
tv = numpy.searchsorted(self.tbins, td) - 1
pv = numpy.searchsorted(self.pbins, pd) - 1
s0v = numpy.searchsorted(self.sbins, snr0) - 1
s1v = numpy.searchsorted(self.sbins, snr1) - 1
rv = numpy.searchsorted(self.rbins, rd) - 1
# Enforce that points fits into the bin boundaries: if a point lies
# outside the boundaries it is pushed back to the nearest bin.
tv[tv < 0] = 0
tv[tv >= len(self.tbins) - 1] = len(self.tbins) - 2
pv[pv < 0] = 0
pv[pv >= len(self.pbins) - 1] = len(self.pbins) - 2
s0v[s0v < 0] = 0
s0v[s0v >= len(self.sbins) - 1] = len(self.sbins) - 2
s1v[s1v < 0] = 0
s1v[s1v >= len(self.sbins) - 1] = len(self.sbins) - 2
rv[rv < 0] = 0
rv[rv >= len(self.rbins) - 1] = len(self.rbins) - 2
return self.hist[tv, pv, s0v, s1v, rv] | 0.001907 |
def SNNL(x, y, temp, cos_distance):
"""Soft Nearest Neighbor Loss
:param x: a matrix.
:param y: a list of labels for each element of x.
:param temp: Temperature.
:cos_distance: Boolean for using cosine or Euclidean distance.
:returns: A tensor for the Soft Nearest Neighbor Loss of the points
in x with labels y.
"""
summed_masked_pick_prob = tf.reduce_sum(
SNNLCrossEntropy.masked_pick_probability(x, y, temp, cos_distance), 1)
return tf.reduce_mean(
-tf.log(SNNLCrossEntropy.STABILITY_EPS + summed_masked_pick_prob)) | 0.001709 |
def load_data(filename):
"""Loads data from a file.
Parameters
----------
filename : :obj:`str`
The file to load the collection from.
Returns
-------
:obj:`numpy.ndarray` of float
The data read from the file.
Raises
------
ValueError
If the file extension is not .npy or .npz.
"""
file_root, file_ext = os.path.splitext(filename)
data = None
if file_ext == '.npy':
data = np.load(filename)
elif file_ext == '.npz':
data = np.load(filename)['arr_0']
else:
raise ValueError('Extension %s not supported for point reads' %(file_ext))
return data | 0.005319 |
def compare_operands(self, p_operand1, p_operand2):
"""
Returns True if conditional constructed from both operands and
self.operator is valid. Returns False otherwise.
"""
if self.operator == '<':
return p_operand1 < p_operand2
elif self.operator == '<=':
return p_operand1 <= p_operand2
elif self.operator == '=':
return p_operand1 == p_operand2
elif self.operator == '>=':
return p_operand1 >= p_operand2
elif self.operator == '>':
return p_operand1 > p_operand2
elif self.operator == '!':
return p_operand1 != p_operand2
return False | 0.002869 |
def entropy_calc(item, POP):
"""
Calculate reference and response likelihood.
:param item : TOP or P
:type item : dict
:param POP: population
:type POP : dict
:return: reference or response likelihood as float
"""
try:
result = 0
for i in item.keys():
likelihood = item[i] / POP[i]
if likelihood != 0:
result += likelihood * math.log(likelihood, 2)
return -result
except Exception:
return "None" | 0.001969 |
def _ResolveRelativeImport(name, package):
"""Resolves a relative import into an absolute path.
This is mostly an adapted version of the logic found in the backported
version of import_module in Python 2.7.
https://github.com/python/cpython/blob/2.7/Lib/importlib/__init__.py
Args:
name: relative name imported, such as '.a' or '..b.c'
package: absolute package path, such as 'a.b.c.d.e'
Returns:
The absolute path of the name to be imported, or None if it is invalid.
Examples:
_ResolveRelativeImport('.c', 'a.b') -> 'a.b.c'
_ResolveRelativeImport('..c', 'a.b') -> 'a.c'
_ResolveRelativeImport('...c', 'a.c') -> None
"""
level = sum(1 for c in itertools.takewhile(lambda c: c == '.', name))
if level == 1:
return package + name
else:
parts = package.split('.')[:-(level - 1)]
if not parts:
return None
parts.append(name[level:])
return '.'.join(parts) | 0.006417 |
def run(self, args):
"""
Give the user with user_full_name the auth_role permissions on the remote project with project_name.
:param args Namespace arguments parsed from the command line
"""
email = args.email # email of person to give permissions, will be None if username is specified
username = args.username # username of person to give permissions, will be None if email is specified
auth_role = args.auth_role # type of permission(project_admin)
project = self.fetch_project(args, must_exist=True, include_children=False)
user = self.remote_store.lookup_or_register_user_by_email_or_username(email, username)
self.remote_store.set_user_project_permission(project, user, auth_role)
print(u'Gave user {} {} permissions for project {}.'.format(user.full_name, auth_role, project.name)) | 0.008762 |
def pv_present(name, **kwargs):
'''
Set a Physical Device to be used as an LVM Physical Volume
name
The device name to initialize.
kwargs
Any supported options to pvcreate. See
:mod:`linux_lvm <salt.modules.linux_lvm>` for more details.
'''
ret = {'changes': {},
'comment': '',
'name': name,
'result': True}
if __salt__['lvm.pvdisplay'](name, quiet=True):
ret['comment'] = 'Physical Volume {0} already present'.format(name)
elif __opts__['test']:
ret['comment'] = 'Physical Volume {0} is set to be created'.format(name)
ret['result'] = None
return ret
else:
changes = __salt__['lvm.pvcreate'](name, **kwargs)
if __salt__['lvm.pvdisplay'](name):
ret['comment'] = 'Created Physical Volume {0}'.format(name)
ret['changes']['created'] = changes
else:
ret['comment'] = 'Failed to create Physical Volume {0}'.format(name)
ret['result'] = False
return ret | 0.002849 |
def find_module_defining_flag(self, flagname, default=None):
"""Return the name of the module defining this flag, or default.
Args:
flagname: str, name of the flag to lookup.
default: Value to return if flagname is not defined. Defaults
to None.
Returns:
The name of the module which registered the flag with this name.
If no such module exists (i.e. no flag with this name exists),
we return default.
"""
registered_flag = self._flags().get(flagname)
if registered_flag is None:
return default
for module, flags in six.iteritems(self.flags_by_module_dict()):
for flag in flags:
# It must compare the flag with the one in _flags. This is because a
# flag might be overridden only for its long name (or short name),
# and only its short name (or long name) is considered registered.
if (flag.name == registered_flag.name and
flag.short_name == registered_flag.short_name):
return module
return default | 0.004808 |
def nullity_sort(df, sort=None):
"""
Sorts a DataFrame according to its nullity, in either ascending or descending order.
:param df: The DataFrame object being sorted.
:param sort: The sorting method: either "ascending", "descending", or None (default).
:return: The nullity-sorted DataFrame.
"""
if sort == 'ascending':
return df.iloc[np.argsort(df.count(axis='columns').values), :]
elif sort == 'descending':
return df.iloc[np.flipud(np.argsort(df.count(axis='columns').values)), :]
else:
return df | 0.00713 |
def _set_fcoe_fsb(self, v, load=False):
"""
Setter method for fcoe_fsb, mapped from YANG variable /fcoe_fsb (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_fcoe_fsb is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_fcoe_fsb() directly.
YANG Description: This CLI will disable/enable fsb mode
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=fcoe_fsb.fcoe_fsb, is_container='container', presence=False, yang_name="fcoe-fsb", rest_name="fsb", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'fcoe_fsb_cp', u'info': u'Enable/Disable the fsb mode', u'hidden': u'debug', u'alt-name': u'fsb', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-fcoe', defining_module='brocade-fcoe', yang_type='container', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """fcoe_fsb must be of a type compatible with container""",
'defined-type': "container",
'generated-type': """YANGDynClass(base=fcoe_fsb.fcoe_fsb, is_container='container', presence=False, yang_name="fcoe-fsb", rest_name="fsb", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'fcoe_fsb_cp', u'info': u'Enable/Disable the fsb mode', u'hidden': u'debug', u'alt-name': u'fsb', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-fcoe', defining_module='brocade-fcoe', yang_type='container', is_config=True)""",
})
self.__fcoe_fsb = t
if hasattr(self, '_set'):
self._set() | 0.00494 |
def _set_redist_connected(self, v, load=False):
"""
Setter method for redist_connected, mapped from YANG variable /isis_state/router_isis_config/is_address_family_v6/redist_connected (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_redist_connected is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_redist_connected() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=redist_connected.redist_connected, is_container='container', presence=False, yang_name="redist-connected", rest_name="redist-connected", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'isis-redistribution-redist-connected-1'}}, namespace='urn:brocade.com:mgmt:brocade-isis-operational', defining_module='brocade-isis-operational', yang_type='container', is_config=False)
except (TypeError, ValueError):
raise ValueError({
'error-string': """redist_connected must be of a type compatible with container""",
'defined-type': "container",
'generated-type': """YANGDynClass(base=redist_connected.redist_connected, is_container='container', presence=False, yang_name="redist-connected", rest_name="redist-connected", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'isis-redistribution-redist-connected-1'}}, namespace='urn:brocade.com:mgmt:brocade-isis-operational', defining_module='brocade-isis-operational', yang_type='container', is_config=False)""",
})
self.__redist_connected = t
if hasattr(self, '_set'):
self._set() | 0.005482 |
def available_providers(request):
"Adds the list of enabled providers to the context."
if APPENGINE:
# Note: AppEngine inequality queries are limited to one property.
# See https://developers.google.com/appengine/docs/python/datastore/queries#Python_Restrictions_on_queries
# Users have also noted that the exclusion queries don't work
# See https://github.com/mlavin/django-all-access/pull/46
# So this is lazily-filtered in Python
qs = SimpleLazyObject(lambda: _get_enabled())
else:
qs = Provider.objects.filter(consumer_secret__isnull=False, consumer_key__isnull=False)
return {'allaccess_providers': qs} | 0.004418 |
def Write(packer_type, buf, head, n):
""" Write encodes `n` at buf[head] using `packer_type`. """
packer_type.pack_into(buf, head, n) | 0.007092 |
def to_hmtk(self, use_centroid=True):
'''
Convert the content of the GCMT catalogue to a HMTK
catalogue.
'''
self._preallocate_data_dict()
for iloc, gcmt in enumerate(self.catalogue.gcmts):
self.catalogue.data['eventID'][iloc] = iloc
if use_centroid:
self.catalogue.data['year'][iloc] = \
gcmt.centroid.date.year
self.catalogue.data['month'][iloc] = \
gcmt.centroid.date.month
self.catalogue.data['day'][iloc] = \
gcmt.centroid.date.day
self.catalogue.data['hour'][iloc] = \
gcmt.centroid.time.hour
self.catalogue.data['minute'][iloc] = \
gcmt.centroid.time.minute
self.catalogue.data['second'][iloc] = \
gcmt.centroid.time.second
self.catalogue.data['longitude'][iloc] = \
gcmt.centroid.longitude
self.catalogue.data['latitude'][iloc] = \
gcmt.centroid.latitude
self.catalogue.data['depth'][iloc] = \
gcmt.centroid.depth
else:
self.catalogue.data['year'][iloc] = \
gcmt.hypocentre.date.year
self.catalogue.data['month'][iloc] = \
gcmt.hypocentre.date.month
self.catalogue.data['day'][iloc] = \
gcmt.hypocentre.date.day
self.catalogue.data['hour'][iloc] = \
gcmt.hypocentre.time.hour
self.catalogue.data['minute'][iloc] = \
gcmt.hypocentre.time.minute
self.catalogue.data['second'][iloc] = \
gcmt.hypocentre.time.second
self.catalogue.data['longitude'][iloc] = \
gcmt.hypocentre.longitude
self.catalogue.data['latitude'][iloc] = \
gcmt.hypocentre.latitude
self.catalogue.data['depth'][iloc] = \
gcmt.hypocentre.depth
# Moment, magnitude and relative errors
self.catalogue.data['moment'][iloc] = gcmt.moment
self.catalogue.data['magnitude'][iloc] = gcmt.magnitude
self.catalogue.data['f_clvd'][iloc] = gcmt.f_clvd
self.catalogue.data['e_rel'][iloc] = gcmt.e_rel
self.catalogue.data['centroidID'][iloc] = gcmt.identifier
# Nodal planes
self.catalogue.data['strike1'][iloc] = \
gcmt.nodal_planes.nodal_plane_1['strike']
self.catalogue.data['dip1'][iloc] = \
gcmt.nodal_planes.nodal_plane_1['dip']
self.catalogue.data['rake1'][iloc] = \
gcmt.nodal_planes.nodal_plane_1['rake']
self.catalogue.data['strike2'][iloc] = \
gcmt.nodal_planes.nodal_plane_2['strike']
self.catalogue.data['dip2'][iloc] = \
gcmt.nodal_planes.nodal_plane_2['dip']
self.catalogue.data['rake2'][iloc] = \
gcmt.nodal_planes.nodal_plane_2['rake']
# Principal axes
self.catalogue.data['eigenvalue_b'][iloc] = \
gcmt.principal_axes.b_axis['eigenvalue']
self.catalogue.data['azimuth_b'][iloc] = \
gcmt.principal_axes.b_axis['azimuth']
self.catalogue.data['plunge_b'][iloc] = \
gcmt.principal_axes.b_axis['plunge']
self.catalogue.data['eigenvalue_p'][iloc] = \
gcmt.principal_axes.p_axis['eigenvalue']
self.catalogue.data['azimuth_p'][iloc] = \
gcmt.principal_axes.p_axis['azimuth']
self.catalogue.data['plunge_p'][iloc] = \
gcmt.principal_axes.p_axis['plunge']
self.catalogue.data['eigenvalue_t'][iloc] = \
gcmt.principal_axes.t_axis['eigenvalue']
self.catalogue.data['azimuth_t'][iloc] = \
gcmt.principal_axes.t_axis['azimuth']
self.catalogue.data['plunge_t'][iloc] = \
gcmt.principal_axes.t_axis['plunge']
return self.catalogue | 0.000471 |
def remove_completer(self):
"""
Removes current completer.
:return: Method success.
:rtype: bool
"""
if self.__completer:
LOGGER.debug("> Removing '{0}' completer.".format(self.__completer))
# Signals / Slots.
self.__completer.activated.disconnect(self.__insert_completion)
self.__completer.deleteLater()
self.__completer = None
return True | 0.006536 |
def _get_unique_index(self, dropna=False):
"""
Returns an index containing unique values.
Parameters
----------
dropna : bool
If True, NaN values are dropped.
Returns
-------
uniques : index
"""
if self.is_unique and not dropna:
return self
values = self.values
if not self.is_unique:
values = self.unique()
if dropna:
try:
if self.hasnans:
values = values[~isna(values)]
except NotImplementedError:
pass
return self._shallow_copy(values) | 0.002994 |
def _read_socket(socket):
"""
The stdout and stderr data from the container multiplexed into one stream of response from the Docker API.
It follows the protocol described here https://docs.docker.com/engine/api/v1.30/#operation/ContainerAttach.
The stream starts with a 8 byte header that contains the frame type and also payload size. Follwing that is the
actual payload of given size. Once you read off this payload, we are ready to read the next header.
This method will follow this protocol to read payload from the stream and return an iterator that returns
a tuple containing the frame type and frame data. Callers can handle the data appropriately based on the frame
type.
Stdout => Frame Type = 1
Stderr => Frame Type = 2
Parameters
----------
socket
Socket to read responses from
Yields
-------
int
Type of the stream (1 => stdout, 2 => stderr)
str
Data in the stream
"""
# Keep reading the stream until the stream terminates
while True:
try:
payload_type, payload_size = _read_header(socket)
if payload_size < 0:
# Something is wrong with the data stream. Payload size can't be less than zero
break
for data in _read_payload(socket, payload_size):
yield payload_type, data
except timeout:
# Timeouts are normal during debug sessions and long running tasks
LOG.debug("Ignoring docker socket timeout")
except SocketError:
# There isn't enough data in the stream. Probably the socket terminated
break | 0.005338 |
def as_dict(self, default=None):
"""
Returns a ``SettingDict`` object for this queryset.
"""
settings = SettingDict(queryset=self, default=default)
return settings | 0.009852 |
def _collapse_to_cwl_record_single(data, want_attrs, input_files):
"""Convert a single sample into a CWL record.
"""
out = {}
for key in want_attrs:
key_parts = key.split("__")
out[key] = _to_cwl(tz.get_in(key_parts, data), input_files)
return out | 0.003534 |
def adapt_package(package):
"""Adapts ``.epub.Package`` to a ``BinderItem`` and cascades
the adaptation downward to ``DocumentItem``
and ``ResourceItem``.
The results of this process provide the same interface as
``.models.Binder``, ``.models.Document`` and ``.models.Resource``.
"""
navigation_item = package.navigation
html = etree.parse(navigation_item.data)
tree = parse_navigation_html_to_tree(html, navigation_item.name)
return _node_to_model(tree, package) | 0.001988 |
def update_metadata(self, key, value):
"""Set *key* in the metadata to *value*.
Returns the previous value of *key*, or None if the key was
not previously set.
"""
old_value = self.contents['metadata'].get(key)
self.contents['metadata'][key] = value
self._log('Updated metadata: %s=%s' % (key, value))
return old_value | 0.005222 |
def get_logw(ns_run, simulate=False):
r"""Calculates the log posterior weights of the samples (using logarithms
to avoid overflow errors with very large or small values).
Uses the trapezium rule such that the weight of point i is
.. math:: w_i = \mathcal{L}_i (X_{i-1} - X_{i+1}) / 2
Parameters
----------
ns_run: dict
Nested sampling run dict (see data_processing module docstring for more
details).
simulate: bool, optional
Should log prior volumes logx be simulated from their distribution (if
false their expected values are used).
Returns
-------
logw: 1d numpy array
Log posterior masses of points.
"""
try:
# find logX value for each point
logx = get_logx(ns_run['nlive_array'], simulate=simulate)
logw = np.zeros(ns_run['logl'].shape[0])
# Vectorized trapezium rule: w_i prop to (X_{i-1} - X_{i+1}) / 2
logw[1:-1] = log_subtract(logx[:-2], logx[2:]) - np.log(2)
# Assign all prior volume closest to first point X_first to that point:
# that is from logx=0 to logx=log((X_first + X_second) / 2)
logw[0] = log_subtract(0, scipy.special.logsumexp([logx[0], logx[1]]) -
np.log(2))
# Assign all prior volume closest to final point X_last to that point:
# that is from logx=log((X_penultimate + X_last) / 2) to logx=-inf
logw[-1] = scipy.special.logsumexp([logx[-2], logx[-1]]) - np.log(2)
# multiply by likelihood (add in log space)
logw += ns_run['logl']
return logw
except IndexError:
if ns_run['logl'].shape[0] == 1:
# If there is only one point in the run then assign all prior
# volume X \in (0, 1) to that point, so the weight is just
# 1 * logl_0 = logl_0
return copy.deepcopy(ns_run['logl'])
else:
raise | 0.000517 |
def granule_paths(self, band_id):
"""Return the path of all granules of a given band."""
band_id = str(band_id).zfill(2)
try:
assert isinstance(band_id, str)
assert band_id in BAND_IDS
except AssertionError:
raise AttributeError(
"band ID not valid: %s" % band_id
)
return [
granule.band_path(band_id)
for granule in self.granules
] | 0.004202 |
def change_term_title(title):
"""
only works on unix systems only tested on Ubuntu GNOME changes text on
terminal title for identifying debugging tasks.
The title will remain until python exists
Args:
title (str):
References:
http://stackoverflow.com/questions/5343265/setting-title-for-tabs-in-terminator-console-application-in-ubuntu/8850484#8850484
CommandLine:
python -m utool change_term_title
echo -en "\033]0;newtitle\a"
printf "\e]2;newtitle\a";
echo -en "\033]0;DocTest /home/joncrall/code/ibeis/ibeis.algo.graph.core.py --test-AnnotInference._make_state_delta\a"
Example:
>>> # DISABLE_DOCTEST
>>> from utool.util_cplat import * # NOQA
>>> title = 'change title test'
>>> result = change_term_title(title)
>>> print(result)
"""
if True:
# Disabled
return
if not WIN32:
#print("CHANGE TERM TITLE to %r" % (title,))
if title:
#os.environ['PS1'] = os.environ['PS1'] + '''"\e]2;\"''' + title + '''\"\a"'''
cmd_str = r'''echo -en "\033]0;''' + title + '''\a"'''
os.system(cmd_str) | 0.004188 |
def _process_observations(base_env, policies, batch_builder_pool,
active_episodes, unfiltered_obs, rewards, dones,
infos, off_policy_actions, horizon, preprocessors,
obs_filters, unroll_length, pack, callbacks,
soft_horizon):
"""Record new data from the environment and prepare for policy evaluation.
Returns:
active_envs: set of non-terminated env ids
to_eval: map of policy_id to list of agent PolicyEvalData
outputs: list of metrics and samples to return from the sampler
"""
active_envs = set()
to_eval = defaultdict(list)
outputs = []
# For each environment
for env_id, agent_obs in unfiltered_obs.items():
new_episode = env_id not in active_episodes
episode = active_episodes[env_id]
if not new_episode:
episode.length += 1
episode.batch_builder.count += 1
episode._add_agent_rewards(rewards[env_id])
if (episode.batch_builder.total() > max(1000, unroll_length * 10)
and log_once("large_batch_warning")):
logger.warning(
"More than {} observations for {} env steps ".format(
episode.batch_builder.total(),
episode.batch_builder.count) + "are buffered in "
"the sampler. If this is more than you expected, check that "
"that you set a horizon on your environment correctly. Note "
"that in multi-agent environments, `sample_batch_size` sets "
"the batch size based on environment steps, not the steps of "
"individual agents, which can result in unexpectedly large "
"batches.")
# Check episode termination conditions
if dones[env_id]["__all__"] or episode.length >= horizon:
hit_horizon = (episode.length >= horizon
and not dones[env_id]["__all__"])
all_done = True
atari_metrics = _fetch_atari_metrics(base_env)
if atari_metrics is not None:
for m in atari_metrics:
outputs.append(
m._replace(custom_metrics=episode.custom_metrics))
else:
outputs.append(
RolloutMetrics(episode.length, episode.total_reward,
dict(episode.agent_rewards),
episode.custom_metrics, {}))
else:
hit_horizon = False
all_done = False
active_envs.add(env_id)
# For each agent in the environment
for agent_id, raw_obs in agent_obs.items():
policy_id = episode.policy_for(agent_id)
prep_obs = _get_or_raise(preprocessors,
policy_id).transform(raw_obs)
if log_once("prep_obs"):
logger.info("Preprocessed obs: {}".format(summarize(prep_obs)))
filtered_obs = _get_or_raise(obs_filters, policy_id)(prep_obs)
if log_once("filtered_obs"):
logger.info("Filtered obs: {}".format(summarize(filtered_obs)))
agent_done = bool(all_done or dones[env_id].get(agent_id))
if not agent_done:
to_eval[policy_id].append(
PolicyEvalData(env_id, agent_id, filtered_obs,
infos[env_id].get(agent_id, {}),
episode.rnn_state_for(agent_id),
episode.last_action_for(agent_id),
rewards[env_id][agent_id] or 0.0))
last_observation = episode.last_observation_for(agent_id)
episode._set_last_observation(agent_id, filtered_obs)
episode._set_last_raw_obs(agent_id, raw_obs)
episode._set_last_info(agent_id, infos[env_id].get(agent_id, {}))
# Record transition info if applicable
if (last_observation is not None and infos[env_id].get(
agent_id, {}).get("training_enabled", True)):
episode.batch_builder.add_values(
agent_id,
policy_id,
t=episode.length - 1,
eps_id=episode.episode_id,
agent_index=episode._agent_index(agent_id),
obs=last_observation,
actions=episode.last_action_for(agent_id),
rewards=rewards[env_id][agent_id],
prev_actions=episode.prev_action_for(agent_id),
prev_rewards=episode.prev_reward_for(agent_id),
dones=(False
if (hit_horizon and soft_horizon) else agent_done),
infos=infos[env_id].get(agent_id, {}),
new_obs=filtered_obs,
**episode.last_pi_info_for(agent_id))
# Invoke the step callback after the step is logged to the episode
if callbacks.get("on_episode_step"):
callbacks["on_episode_step"]({"env": base_env, "episode": episode})
# Cut the batch if we're not packing multiple episodes into one,
# or if we've exceeded the requested batch size.
if episode.batch_builder.has_pending_data():
if dones[env_id]["__all__"]:
episode.batch_builder.check_missing_dones()
if (all_done and not pack) or \
episode.batch_builder.count >= unroll_length:
outputs.append(episode.batch_builder.build_and_reset(episode))
elif all_done:
# Make sure postprocessor stays within one episode
episode.batch_builder.postprocess_batch_so_far(episode)
if all_done:
# Handle episode termination
batch_builder_pool.append(episode.batch_builder)
if callbacks.get("on_episode_end"):
callbacks["on_episode_end"]({
"env": base_env,
"policy": policies,
"episode": episode
})
if hit_horizon and soft_horizon:
episode.soft_reset()
resetted_obs = agent_obs
else:
del active_episodes[env_id]
resetted_obs = base_env.try_reset(env_id)
if resetted_obs is None:
# Reset not supported, drop this env from the ready list
if horizon != float("inf"):
raise ValueError(
"Setting episode horizon requires reset() support "
"from the environment.")
elif resetted_obs != ASYNC_RESET_RETURN:
# Creates a new episode if this is not async return
# If reset is async, we will get its result in some future poll
episode = active_episodes[env_id]
for agent_id, raw_obs in resetted_obs.items():
policy_id = episode.policy_for(agent_id)
policy = _get_or_raise(policies, policy_id)
prep_obs = _get_or_raise(preprocessors,
policy_id).transform(raw_obs)
filtered_obs = _get_or_raise(obs_filters,
policy_id)(prep_obs)
episode._set_last_observation(agent_id, filtered_obs)
to_eval[policy_id].append(
PolicyEvalData(
env_id, agent_id, filtered_obs,
episode.last_info_for(agent_id) or {},
episode.rnn_state_for(agent_id),
np.zeros_like(
_flatten_action(policy.action_space.sample())),
0.0))
return active_envs, to_eval, outputs | 0.000124 |
def use_with(data, fn, *attrs):
"""Apply a function on the attributes of the data
:param data: an object
:param fn: a function
:param attrs: some attributes of the object
:returns: an object
Let's create some data first::
>>> from collections import namedtuple
>>> Person = namedtuple('Person', ('name', 'age', 'gender'))
>>> alice = Person('Alice', 30, 'F')
Usage::
>>> make_csv_row = lambda n, a, g: '%s,%d,%s' % (n, a, g)
>>> use_with(alice, make_csv_row, 'name', 'age', 'gender')
'Alice,30,F'
"""
args = [getattr(data, x) for x in attrs]
return fn(*args) | 0.001534 |
def _image_data(self):
"""Returns the data in image format, with scaling and conversion to uint8 types.
Returns
-------
:obj:`numpy.ndarray` of uint8
A 3D matrix representing the image. The first dimension is rows, the
second is columns, and the third is simply the IR entry scaled to between 0 and BINARY_IM_MAX_VAL.
"""
return (self._data * (float(BINARY_IM_MAX_VAL) / MAX_IR)).astype(np.uint8) | 0.012793 |
def num_rows(self):
"""
Returns the number of rows.
Returns
-------
out : int
Number of rows in the SFrame.
"""
if self._is_vertex_frame():
return self.__graph__.summary()['num_vertices']
elif self._is_edge_frame():
return self.__graph__.summary()['num_edges'] | 0.00554 |
def RLS_SDR(anchors, W, r, print_out=False):
""" Range least squares (RLS) using SDR.
Algorithm cited by A.Beck, P.Stoica in "Approximate and Exact solutions of Source Localization Problems".
:param anchors: anchor points
:param r2: squared distances from anchors to point x.
:return: estimated position of point x.
"""
from pylocus.basics import low_rank_approximation, eigendecomp
from pylocus.mds import x_from_eigendecomp
m = anchors.shape[0]
d = anchors.shape[1]
G = Variable(m + 1, m + 1)
X = Variable(d + 1, d + 1)
constraints = [G[m, m] == 1.0,
X[d, d] == 1.0,
G >> 0, X >> 0,
G == G.T, X == X.T]
for i in range(m):
Ci = np.eye(d + 1)
Ci[:-1, -1] = -anchors[i]
Ci[-1, :-1] = -anchors[i].T
Ci[-1, -1] = np.linalg.norm(anchors[i])**2
constraints.append(G[i, i] == trace(Ci * X))
obj = Minimize(trace(G) - 2 * sum_entries(mul_elemwise(r, G[m, :-1].T)))
prob = Problem(obj, constraints)
## Solution
total = prob.solve(verbose=True)
rank_G = np.linalg.matrix_rank(G.value)
rank_X = np.linalg.matrix_rank(X.value)
if rank_G > 1:
u, s, v = np.linalg.svd(G.value, full_matrices=False)
print('optimal G is not of rank 1!')
print(s)
if rank_X > 1:
u, s, v = np.linalg.svd(X.value, full_matrices=False)
print('optimal X is not of rank 1!')
print(s)
factor, u = eigendecomp(X.value, 1)
xhat = x_from_eigendecomp(factor, u, 1)
return xhat | 0.001892 |
def make_statement(self, action, mention):
"""Makes an INDRA statement from a Geneways action and action mention.
Parameters
----------
action : GenewaysAction
The mechanism that the Geneways mention maps to. Note that
several text mentions can correspond to the same action if they are
referring to the same relationship - there may be multiple
Geneways action mentions corresponding to each action.
mention : GenewaysActionMention
The Geneways action mention object corresponding to a single
mention of a mechanism in a specific text. We make a new INDRA
statement corresponding to each action mention.
Returns
-------
statement : indra.statements.Statement
An INDRA statement corresponding to the provided Geneways action
mention, or None if the action mention's type does not map onto
any INDRA statement type in geneways_action_type_mapper.
"""
(statement_generator, is_direct) = \
geneways_action_to_indra_statement_type(mention.actiontype,
action.plo)
if statement_generator is None:
# Geneways statement does not map onto an indra statement
return None
# Try to find the full-text sentence
# Unfortunately, the sentence numbers in the Geneways dataset
# don't correspond to an obvious sentence segmentation.
# This code looks for sentences with the subject, object, and verb
# listed by the Geneways action mention table and only includes
# it in the evidence if there is exactly one such sentence
text = None
if self.get_ft_mention:
try:
content, content_type = get_full_text(mention.pmid, 'pmid')
if content is not None:
ftm = FullTextMention(mention, content)
sentences = ftm.find_matching_sentences()
if len(sentences) == 1:
text = sentences[0]
except Exception:
logger.warning('Could not fetch full text for PMID ' +
mention.pmid)
# Make an evidence object
epistemics = dict()
epistemics['direct'] = is_direct
annotations = mention.make_annotation()
annotations['plo'] = action.plo # plo only in action table
evidence = Evidence(source_api='geneways',
source_id=mention.actionmentionid,
pmid=mention.pmid, text=text,
epistemics=epistemics,
annotations=annotations)
# Construct the grounded and name standardized agents
# Note that this involves grounding the agent by
# converting the Entrez ID listed in the Geneways data with
# HGNC and UniProt
upstream_agent = get_agent(mention.upstream, action.up)
downstream_agent = get_agent(mention.downstream, action.dn)
# Make the statement
return statement_generator(upstream_agent, downstream_agent, evidence) | 0.000616 |
def uses_base_tear_down(cls):
"""Checks whether the tearDown method is the BasePlug implementation."""
this_tear_down = getattr(cls, 'tearDown')
base_tear_down = getattr(BasePlug, 'tearDown')
return this_tear_down.__code__ is base_tear_down.__code__ | 0.003774 |
def _variance_scale_term(self):
"""Helper to `_covariance` and `_variance` which computes a shared scale."""
# Expand back the last dim so the shape of _variance_scale_term matches the
# shape of self.concentration.
c0 = self.total_concentration[..., tf.newaxis]
return tf.sqrt((1. + c0 / self.total_count[..., tf.newaxis]) / (1. + c0)) | 0.005618 |
def statsd_middleware_factory(app, handler):
"""Send the application stats to statsd."""
@coroutine
def middleware(request):
"""Send stats to statsd."""
timer = Timer()
timer.start()
statsd = yield from app.ps.metrics.client()
pipe = statsd.pipe()
pipe.incr('request.method.%s' % request.method)
try:
response = yield from handler(request)
pipe.incr('response.status.%s' % response.status)
return response
except HTTPException as exc:
pipe.incr('response.status.%s' % exc.status_code)
raise
except Exception:
pipe.incr('response.exception')
raise
finally:
timer.stop()
pipe.timing('response.time', timer.ms)
pipe.disconnect()
return middleware | 0.001156 |
def get_tag(self, tagtype):
''' Get the first tag of a particular type'''
for tag in self.__tags:
if tag.tagtype == tagtype:
return tag
return None | 0.01005 |
def example_repl(self, text, example, start_index, continue_flag):
""" REPL for interactive tutorials """
if start_index:
start_index = start_index + 1
cmd = ' '.join(text.split()[:start_index])
example_cli = CommandLineInterface(
application=self.create_application(
full_layout=False),
eventloop=create_eventloop())
example_cli.buffers['example_line'].reset(
initial_document=Document(u'{}\n'.format(
add_new_lines(example)))
)
while start_index < len(text.split()):
if self.default_command:
cmd = cmd.replace(self.default_command + ' ', '')
example_cli.buffers[DEFAULT_BUFFER].reset(
initial_document=Document(
u'{}'.format(cmd),
cursor_position=len(cmd)))
example_cli.request_redraw()
answer = example_cli.run()
if not answer:
return "", True
answer = answer.text
if answer.strip('\n') == cmd.strip('\n'):
continue
else:
if len(answer.split()) > 1:
start_index += 1
cmd += " " + answer.split()[-1] + " " +\
u' '.join(text.split()[start_index:start_index + 1])
example_cli.exit()
del example_cli
else:
cmd = text
return cmd, continue_flag | 0.001846 |
def get_localzone():
"""Returns the zoneinfo-based tzinfo object that matches the Windows-configured timezone."""
global _cache_tz
if _cache_tz is None:
_cache_tz = pytz.timezone(get_localzone_name())
utils.assert_tz_offset(_cache_tz)
return _cache_tz | 0.007143 |
def get_group(name: str) -> _Group:
"""
Get a configuration variable group named |name|
"""
global _groups
if name in _groups:
return _groups[name]
group = _Group(name)
_groups[name] = group
return group | 0.004065 |
def _linux_disks():
'''
Return list of disk devices and work out if they are SSD or HDD.
'''
ret = {'disks': [], 'SSDs': []}
for entry in glob.glob('/sys/block/*/queue/rotational'):
try:
with salt.utils.files.fopen(entry) as entry_fp:
device = entry.split('/')[3]
flag = entry_fp.read(1)
if flag == '0':
ret['SSDs'].append(device)
log.trace('Device %s reports itself as an SSD', device)
elif flag == '1':
ret['disks'].append(device)
log.trace('Device %s reports itself as an HDD', device)
else:
log.trace(
'Unable to identify device %s as an SSD or HDD. It does '
'not report 0 or 1', device
)
except IOError:
pass
return ret | 0.002132 |
def mofval(value, indent=MOF_INDENT, maxline=MAX_MOF_LINE, line_pos=0,
end_space=0):
"""
Low level function that returns the MOF representation of a non-string
value (i.e. a value that cannot not be split into multiple parts, for
example a numeric or boolean value).
If the MOF representation of the value does not fit into the remaining
space of the current line, it is put into a new line, considering the
specified indentation. If it also does not fit on the remaining space of
the new line, ValueError is raised.
Parameters:
value (:term:`unicode string`): The non-string value. Must not be `None`.
indent (:term:`integer`): Number of spaces to indent any new lines that
are generated.
maxline (:term:`integer`): Maximum line length for the generated MOF.
line_pos (:term:`integer`): Length of content already on the current
line.
end_space (:term:`integer`): Length of space to be left free on the last
line.
Returns:
tuple of
* :term:`unicode string`: MOF string.
* new line_pos
Raises:
ValueError: The value does not fit onto an entire new line.
"""
assert isinstance(value, six.text_type)
# Check for output on current line
avl_len = maxline - line_pos - end_space
if len(value) <= avl_len:
line_pos += len(value)
return value, line_pos
# Check for output on new line
avl_len = maxline - indent - end_space
if len(value) <= avl_len:
mof_str = u'\n' + _indent_str(indent) + value
line_pos = indent + len(value)
return mof_str, line_pos
raise ValueError(
_format("Cannot fit value {0!A} onto new MOF line, missing {1} "
"characters", value, len(value) - avl_len)) | 0.000549 |
def getResourceTypes(self):
""" Get the list of resource types supported by the HydroShare server
:return: A set of strings representing the HydroShare resource types
:raises: HydroShareHTTPException to signal an HTTP error
"""
url = "{url_base}/resource/types".format(url_base=self.url_base)
r = self._request('GET', url)
if r.status_code != 200:
raise HydroShareHTTPException((url, 'GET', r.status_code))
resource_types = r.json()
return set([t['resource_type'] for t in resource_types]) | 0.003466 |
def run_command(self, cmd, history=True, new_prompt=True):
"""Run command in interpreter"""
if not cmd:
cmd = ''
else:
if history:
self.add_to_history(cmd)
if not self.multithreaded:
if 'input' not in cmd:
self.interpreter.stdin_write.write(
to_binary_string(cmd + '\n'))
self.interpreter.run_line()
self.refresh.emit()
else:
self.write(_('In order to use commands like "raw_input" '
'or "input" run Spyder with the multithread '
'option (--multithread) from a system terminal'),
error=True)
else:
self.interpreter.stdin_write.write(to_binary_string(cmd + '\n')) | 0.002237 |
def create_connection(self, from_obj, to_obj):
"""
Creates and returns a connection between the given objects. If a
connection already exists, that connection will be returned instead.
"""
self._validate_ctypes(from_obj, to_obj)
return Connection.objects.get_or_create(relationship_name=self.name,
from_pk=from_obj.pk, to_pk=to_obj.pk)[0] | 0.006912 |
def return_train_dataset(self):
"""Returns train data set
Returns:
X (numpy.ndarray): Features
y (numpy.ndarray): Labels
"""
X, y = self.return_main_dataset()
if self.test_dataset['method'] == 'split_from_main':
X, X_test, y, y_test = train_test_split(
X,
y,
test_size=self.test_dataset['split_ratio'],
random_state=self.test_dataset['split_seed'],
stratify=y
)
return X, y | 0.003617 |
def transform(self, image_feature, bigdl_type="float"):
"""
transform ImageFeature
"""
callBigDlFunc(bigdl_type, "transformImageFeature", self.value, image_feature)
return image_feature | 0.013333 |
def list_handler(HandlerResult="nparray"):
"""Wraps a function to handle list inputs."""
def decorate(func):
def wrapper(*args, **kwargs):
"""Run through the wrapped function once for each array element.
:param HandlerResult: output type. Defaults to numpy arrays.
"""
sequences = []
enumsUnitCheck = enumerate(args)
argsList = list(args)
#This for loop identifies pint unit objects and strips them
#of their units.
for num, arg in enumsUnitCheck:
if type(arg) == type(1 * u.m):
argsList[num] = arg.to_base_units().magnitude
enumsUnitless = enumerate(argsList)
#This for loop identifies arguments that are sequences and
#adds their index location to the list 'sequences'.
for num, arg in enumsUnitless:
if isinstance(arg, (list, tuple, np.ndarray)):
sequences.append(num)
#If there are no sequences to iterate through, simply return
#the function.
if len(sequences) == 0:
result = func(*args, **kwargs)
else:
#iterant keeps track of how many times we've iterated and
#limiter stops the loop once we've iterated as many times
#as there are list elements. Without this check, a few
#erroneous runs will occur, appending the last couple values
#to the end of the list multiple times.
#
#We only care about the length of sequences[0] because this
#function is recursive, and sequences[0] is always the relevant
#sequences for any given run.
limiter = len(argsList[sequences[0]])
iterant = 0
result = []
for num in sequences:
for arg in argsList[num]:
if iterant >= limiter:
break
#We can safely replace the entire list argument
#with a single element from it because of the looping
#we're doing. We redefine the object, but that
#definition remains within this namespace and does
#not penetrate further up the function.
argsList[num] = arg
#Here we dive down the rabbit hole. This ends up
#creating a multi-dimensional array shaped by the
#sizes and shapes of the lists passed.
result.append(wrapper(*argsList,
HandlerResult=HandlerResult, **kwargs))
iterant += 1
#HandlerResult allows the user to specify what type to
#return the generated sequence as. It defaults to numpy
#arrays because functions tend to handle them better, but if
#the user does not wish to import numpy the base Python options
#are available to them.
if HandlerResult == "nparray":
result = np.array(result)
elif HandlerResult == "tuple":
result = tuple(result)
elif HandlerResult == "list":
result == list(result)
return result
return wrapper
return decorate | 0.008477 |
def copymode(src, dst):
"""Copy mode bits from src to dst"""
if hasattr(os, 'chmod'):
st = os.stat(src)
mode = stat.S_IMODE(st.st_mode)
os.chmod(dst, mode) | 0.005348 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.