text
stringlengths
78
104k
score
float64
0
0.18
def getsourcelines(object): """Return a list of source lines and starting line number for an object. The argument may be a module, class, method, function, traceback, frame, or code object. The source code is returned as a list of the lines corresponding to the object and the line number indicates where in the original source file the first line of code was found. An IOError is raised if the source code cannot be retrieved.""" lines, lnum = findsource(object) if ismodule(object): return lines, 0 else: return getblock(lines[lnum:]), lnum + 1
0.005119
def XMPP_display(self,*arg): """ For XMPP Demo 輸出到 XMPP 之樣式。 """ MA = '' for i in arg: MAs = '- MA%02s: %.2f %s(%s)\n' % ( unicode(i), self.MA(i), self.MAC(i), unicode(self.MA_serial(i)[0]) ) MA = MA + MAs vol = '- Volume: %s %s(%s)' % ( unicode(self.MAVOL(1)/1000), unicode(self.MACVOL(1)), unicode(self.MAVOL_serial(1)[0]) ) MAO = self.MAO(3,6) re = """%(stock_name)s %(stock_no)s %(stock_date)s: %(stock_price)s %(stock_range)s(%(range_per)+.2f%%) %(MA)s%(vol)s - MAO(3-6): %(MAO_v).2f %(MAO_c)s(%(MAO_times)s) - RABC: %(RABC)s""" % { 'stock_name': unicode(self.stock_name), 'stock_no': unicode(self.stock_no), 'stock_date': unicode(self.data_date[-1]), 'stock_price': unicode(self.raw_data[-1]), 'stock_range': unicode(self.stock_range[-1]), 'range_per': self.range_per, 'MA': MA, 'vol': vol, 'MAO_v': MAO[0][1][-1], 'MAO_c': unicode(MAO[1]), 'MAO_times': unicode(MAO[0][0]), 'RABC': self.RABC } return re
0.004433
def as_completed(objects, count=None, timeout=None): """Wait for one or more waitable objects, yielding them as they become ready. This is the iterator/generator version of :func:`wait`. """ for obj in objects: if not hasattr(obj, 'add_done_callback'): raise TypeError('Expecting sequence of waitable objects') if count is None: count = len(objects) if count < 0 or count > len(objects): raise ValueError('count must be between 0 and len(objects)') if count == 0: return pending = list(objects) for obj in _wait(pending, timeout): yield obj count -= 1 if count == 0: break
0.001443
def reassign_log_entry_to_log(self, log_entry_id, from_log_id, to_log_id): """Moves a ``LogEntry`` from one ``Log`` to another. Mappings to other ``Logs`` are unaffected. arg: log_entry_id (osid.id.Id): the ``Id`` of the ``LogEntry`` arg: from_log_id (osid.id.Id): the ``Id`` of the current ``Log`` arg: to_log_id (osid.id.Id): the ``Id`` of the destination ``Log`` raise: NotFound - ``log_entry_id, from_log_id,`` or ``to_log_id`` not found or ``log_entry_id`` not mapped to ``from_log_id`` raise: NullArgument - ``log_entry_id, from_log_id,`` or ``to_log_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.ResourceBinAssignmentSession.reassign_resource_to_bin self.assign_log_entry_to_log(log_entry_id, to_log_id) try: self.unassign_log_entry_from_log(log_entry_id, from_log_id) except: # something went wrong, roll back assignment to to_log_id self.unassign_log_entry_from_log(log_entry_id, to_log_id) raise
0.002198
def _eta_from_phi(self): """Update `eta` using current `phi`.""" self.eta = scipy.ndarray(N_NT - 1, dtype='float') etaprod = 1.0 for w in range(N_NT - 1): self.eta[w] = 1.0 - self.phi[w] / etaprod etaprod *= self.eta[w] _checkParam('eta', self.eta, self.PARAMLIMITS, self.PARAMTYPES)
0.005764
def after_install(options, home_dir): # --- CUT here --- """ called after virtualenv was created and pip/setuptools installed. Now we installed requirement libs/packages. """ if options.install_type==INST_PYPI: requirements=NORMAL_INSTALLATION elif options.install_type==INST_GIT: requirements=GIT_READONLY_INSTALLATION elif options.install_type==INST_DEV: requirements=DEVELOPER_INSTALLATION else: # Should never happen raise RuntimeError("Install type %r unknown?!?" % options.install_type) env_subprocess = EnvSubprocess(home_dir) # from bootstrap_env.bootstrap_install_pip logfile = os.path.join(env_subprocess.abs_home_dir, "install.log") for requirement in requirements: sys.stdout.write("\n\nInstall %r:\n" % requirement) env_subprocess.call_env_pip(["install", "--log=%s" % logfile, requirement]) sys.stdout.write("\n")
0.010616
def _adjustSectionAlignment(self, value, fileAlignment, sectionAlignment): """ Align a value to C{SectionAligment}. @type value: int @param value: The value to be aligned. @type fileAlignment: int @param fileAlignment: The value to be used as C{FileAlignment}. @type sectionAlignment: int @param sectionAlignment: The value to be used as C{SectionAlignment}. @rtype: int @return: The aligned value. """ if fileAlignment < consts.DEFAULT_FILE_ALIGNMENT: if fileAligment != sectionAlignment: print "FileAlignment does not match SectionAlignment." if sectionAlignment < consts.DEFAULT_PAGE_SIZE: sectionAlignment = fileAlignment if sectionAlignment and value % sectionAlignment: return sectionAlignment * ((value / sectionAlignment) + 1) return value
0.009202
def get_upcoming_events(self): """Retreives a list of Notification_Occurrence_Events that have not ended yet :return: SoftLayer_Notification_Occurrence_Event """ mask = "mask[id, subject, startDate, endDate, statusCode, acknowledgedFlag, impactedResourceCount, updateCount]" _filter = { 'endDate': { 'operation': '> sysdate' }, 'startDate': { 'operation': 'orderBy', 'options': [{ 'name': 'sort', 'value': ['ASC'] }] } } return self.client.call('Notification_Occurrence_Event', 'getAllObjects', filter=_filter, mask=mask, iter=True)
0.006748
def __search_files(self, files): """ Searches in given files. :param files: Files. :type files: list """ for file in files: if self.__interrupt: return if not foundations.common.path_exists(file): continue if foundations.io.is_readable(file): if foundations.io.is_binary_file(file): continue LOGGER.info("{0} | Searching '{1}' file!".format(self.__class__.__name__, file)) cache_data = self.__container.files_cache.get_content(file) if not cache_data: reader = foundations.io.File(file) content = reader.read() if content is None: LOGGER.warning("!> Error occured while reading '{0}' file proceeding to next one!".format(file)) continue self.__container.files_cache.add_content(**{file: CacheData(content=content, document=None)}) else: content = cache_data.content occurrences = self.__search_document(QTextDocument(QString(content)), self.__pattern, self.__settings) occurrences and self.__search_results.append(SearchResult(file=file, pattern=self.__pattern, settings=self.__settings, occurrences=occurrences))
0.006361
def registration_success(self, stanza): """Handle registration success. [client only] Clean up registration stuff, change state to "registered" and initialize authentication. :Parameters: - `stanza`: the stanza received. :Types: - `stanza`: `pyxmpp.iq.Iq`""" _unused = stanza self.lock.acquire() try: self.state_change("registered", self.registration_form) if ('FORM_TYPE' in self.registration_form and self.registration_form['FORM_TYPE'].value == 'jabber:iq:register'): if 'username' in self.registration_form: self.my_jid = JID(self.registration_form['username'].value, self.my_jid.domain, self.my_jid.resource) if 'password' in self.registration_form: self.password = self.registration_form['password'].value self.registration_callback = None self._post_connect() finally: self.lock.release()
0.004621
def cmd_msg(self, args): '''control behaviour of the module''' if len(args) == 0: print(self.usage()) txt = ' '.join(args) self.master.mav.statustext_send(mavutil.mavlink.MAV_SEVERITY_NOTICE, txt)
0.007143
def backward(self, diff_x, influences, activations, **kwargs): """ Backward pass through the network, including update. Parameters ---------- diff_x : numpy array A matrix containing the differences between the input and neurons. influences : numpy array A matrix containing the influence each neuron has on each other neuron. This is used to calculate the updates. activations : numpy array The activations each neuron has to each data point. This is used to calculate the BMU. differency_y : numpy array The differences between the input and context neurons. Returns ------- updates : tuple of arrays The updates to the weights and context weights, respectively. """ diff_y = kwargs['diff_y'] bmu = self._get_bmu(activations) influence = influences[bmu] # Update x_update = np.multiply(diff_x, influence) y_update = np.multiply(diff_y, influence) return x_update, y_update
0.001794
def resizeAllSections(header, sectionSize): """ Sets all sections (columns or rows) of a header to the same section size. :param header: a QHeaderView :param sectionSize: the new size of the header section in pixels """ for idx in range(header.length()): header.resizeSection(idx, sectionSize)
0.006061
def get_cert_serial(cert_file): ''' Get the serial number of a certificate file cert_file The certificate file to find the serial for CLI Example: .. code-block:: bash salt '*' certutil.get_cert_serial <certificate name> ''' cmd = "certutil.exe -silent -verify {0}".format(cert_file) out = __salt__['cmd.run'](cmd) # match serial number by paragraph to work with multiple languages matches = re.search(r":\s*(\w*)\r\n\r\n", out) if matches is not None: return matches.groups()[0].strip() else: return None
0.001698
def getyrdoy(date): """Return a tuple of year, day of year for a supplied datetime object.""" try: doy = date.toordinal()-datetime(date.year,1,1).toordinal()+1 except AttributeError: raise AttributeError("Must supply a pandas datetime object or " + "equivalent") else: return date.year, doy
0.008333
def add_text_item(self, collection_uri, name, metadata, text, title=None): """Add a new item to a collection containing a single text document. The full text of the text document is specified as the text argument and will be stored with the same name as the item and a .txt extension. This is a shorthand for the more general add_item method. :param collection_uri: The URI that references the collection :type collection_uri: String :param name: The item name, suitable for use in a URI (no spaces) :type name: String :param metadata: a dictionary of metadata values describing the item :type metadata: Dict :param text: the full text of the document associated with this item :type text: String :param title: document title, defaults to the item name :type title: String :rtype String :returns: the URI of the created item :raises: APIError if the request was not successful """ docname = name + ".txt" if title is None: title = name metadata['dcterms:identifier'] = name metadata['@type'] = 'ausnc:AusNCObject' metadata['hcsvlab:display_document'] = {'@id': docname} metadata['hcsvlab:indexable_document'] = {'@id': docname} metadata['ausnc:document'] = [{ '@id': 'document1.txt', '@type': 'foaf:Document', 'dcterms:extent': len(text), 'dcterms:identifier': docname, 'dcterms:title': title, 'dcterms:type': 'Text'}] meta = {'items': [{'metadata': { '@context': self.context, '@graph': [metadata] }, 'documents': [{'content': text, 'identifier': docname}] }] } response = self.api_request(collection_uri, method='POST', data=json.dumps(meta)) # this will raise an exception if the request fails self.__check_success(response) item_uri = collection_uri + "/" + response['success'][0] return item_uri
0.004254
def subvolume_get_default(path): ''' Get the default subvolume of the filesystem path path Mount point for the subvolume CLI Example: .. code-block:: bash salt '*' btrfs.subvolume_get_default /var/volumes/tmp ''' cmd = ['btrfs', 'subvolume', 'get-default', path] res = __salt__['cmd.run_all'](cmd) salt.utils.fsutils._verify_run(res) line = res['stdout'].strip() # The ID is the second parameter, and the name the last one, or # '(FS_TREE)' # # When the default one is set: # ID 5 (FS_TREE) # # When we manually set a different one (var): # ID 257 gen 8 top level 5 path var # id_ = line.split()[1] name = line.split()[-1] return { 'id': id_, 'name': name, }
0.001267
def _calc_snr(volume, mask, dilation=5, reference_tr=None, ): """ Calculate the the SNR of a volume Calculates the Signal to Noise Ratio, the mean of brain voxels divided by the standard deviation across non-brain voxels. Specify a TR value to calculate the mean and standard deviation for that TR. To calculate the standard deviation of non-brain voxels we can subtract any baseline structure away first, hence getting at deviations due to the system noise and not something like high baseline values in non-brain parts of the body. Parameters ---------- volume : 4d array, float Take a volume time series mask : 3d array, binary A binary mask the same size as the volume dilation : int How many binary dilations do you want to perform on the mask to determine the non-brain voxels. If you increase this the SNR increases and the non-brain voxels (after baseline subtraction) more closely resemble a gaussian reference_tr : int or list Specifies the TR to calculate the SNR for. If multiple are supplied then it will use the average of them. Returns ------- snr : float
 The SNR of the volume """ # If no TR is specified then take all of them if reference_tr is None: reference_tr = list(range(volume.shape[3])) # Dilate the mask in order to ensure that non-brain voxels are far from # the brain if dilation > 0: mask_dilated = ndimage.morphology.binary_dilation(mask, iterations=dilation) else: mask_dilated = mask # Make a matrix of brain and non_brain voxels, selecting the timepoint/s brain_voxels = volume[mask > 0][:, reference_tr] nonbrain_voxels = (volume[:, :, :, reference_tr]).astype('float64') # If you have multiple TRs if len(brain_voxels.shape) > 1: brain_voxels = np.mean(brain_voxels, 1) nonbrain_voxels = np.mean(nonbrain_voxels, 3) nonbrain_voxels = nonbrain_voxels[mask_dilated == 0] # Take the means of each voxel over time mean_voxels = np.nanmean(brain_voxels) # Find the standard deviation of the voxels std_voxels = np.nanstd(nonbrain_voxels) # Return the snr return mean_voxels / std_voxels
0.000416
def copy_dir(bucket_name, src_path, dest_path, aws_access_key_id=None, aws_secret_access_key=None, aws_profile=None, surrogate_key=None, cache_control=None, surrogate_control=None, create_directory_redirect_object=True): """Copy objects from one directory in a bucket to another directory in the same bucket. Object metadata is preserved while copying, with the following exceptions: - If a new surrogate key is provided it will replace the original one. - If ``cache_control`` and ``surrogate_control`` values are provided they will replace the old one. Parameters ---------- bucket_name : `str` Name of an S3 bucket. src_path : `str` Source directory in the S3 bucket. The ``src_path`` should ideally end in a trailing `'/'`. E.g. `'dir/dir2/'`. dest_path : `str` Destination directory in the S3 bucket. The ``dest_path`` should ideally end in a trailing `'/'`. E.g. `'dir/dir2/'`. The destination path cannot contain the source path. aws_access_key_id : `str` The access key for your AWS account. Also set ``aws_secret_access_key``. aws_secret_access_key : `str` The secret key for your AWS account. aws_profile : `str`, optional Name of AWS profile in :file:`~/.aws/credentials`. Use this instead of ``aws_access_key_id`` and ``aws_secret_access_key`` for file-based credentials. surrogate_key : `str`, optional The surrogate key to insert in the header of all objects in the ``x-amz-meta-surrogate-key`` field. This key is used to purge builds from the Fastly CDN when Editions change. If `None` then no header will be set. If the object already has a ``x-amz-meta-surrogate-key`` header then it will be replaced. cache_control : `str`, optional This sets (and overrides) the ``Cache-Control`` header on the copied files. The ``Cache-Control`` header specifically dictates how content is cached by the browser (if ``surrogate_control`` is also set). surrogate_control : `str`, optional This sets (and overrides) the ``x-amz-meta-surrogate-control`` header on the copied files. The ``Surrogate-Control`` or ``x-amz-meta-surrogate-control`` header is used in priority by Fastly to givern it's caching. This caching policy is *not* passed to the browser. create_directory_redirect_object : `bool`, optional Create a directory redirect object for the root directory. The directory redirect object is an empty S3 object named after the directory (without a trailing slash) that contains a ``x-amz-meta-dir-redirect=true`` HTTP header. LSST the Docs' Fastly VCL is configured to redirect requests for a directory path to the directory's ``index.html`` (known as *courtesy redirects*). Raises ------ ltdconveyor.s3.S3Error Thrown by any unexpected faults from the S3 API. RuntimeError Thrown when the source and destination directories are the same. """ if not src_path.endswith('/'): src_path += '/' if not dest_path.endswith('/'): dest_path += '/' # Ensure the src_path and dest_path don't contain each other common_prefix = os.path.commonprefix([src_path, dest_path]) if common_prefix == src_path: msg = 'Common prefix {0} is same as source dir {1}'.format( common_prefix, src_path) raise RuntimeError(msg) if common_prefix == dest_path: msg = 'Common prefix {0} is same as dest dir {1}'.format( common_prefix, dest_path) raise RuntimeError(msg) # Delete any existing objects in the destination delete_dir(bucket_name, dest_path, aws_access_key_id, aws_secret_access_key) session = boto3.session.Session( aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, profile_name=aws_profile) s3 = session.resource('s3') bucket = s3.Bucket(bucket_name) # Copy each object from source to destination for src_obj in bucket.objects.filter(Prefix=src_path): src_rel_path = os.path.relpath(src_obj.key, start=src_path) dest_key_path = os.path.join(dest_path, src_rel_path) # the src_obj (ObjectSummary) doesn't include headers afaik head = s3.meta.client.head_object(Bucket=bucket_name, Key=src_obj.key) metadata = head['Metadata'] content_type = head['ContentType'] # try to use original Cache-Control header if new one is not set if cache_control is None and 'CacheControl' in head: cache_control = head['CacheControl'] if surrogate_control is not None: metadata['surrogate-control'] = surrogate_control if surrogate_key is not None: metadata['surrogate-key'] = surrogate_key s3.meta.client.copy_object( Bucket=bucket_name, Key=dest_key_path, CopySource={'Bucket': bucket_name, 'Key': src_obj.key}, MetadataDirective='REPLACE', Metadata=metadata, ACL='public-read', CacheControl=cache_control, ContentType=content_type) if create_directory_redirect_object: dest_dirname = dest_path.rstrip('/') obj = bucket.Object(dest_dirname) metadata = {'dir-redirect': 'true'} obj.put(Body='', ACL='public-read', Metadata=metadata, CacheControl=cache_control)
0.000175
def plural(text): """ >>> plural('activity') 'activities' """ aberrant = { 'knife': 'knives', 'self': 'selves', 'elf': 'elves', 'life': 'lives', 'hoof': 'hooves', 'leaf': 'leaves', 'echo': 'echoes', 'embargo': 'embargoes', 'hero': 'heroes', 'potato': 'potatoes', 'tomato': 'tomatoes', 'torpedo': 'torpedoes', 'veto': 'vetoes', 'child': 'children', 'woman': 'women', 'man': 'men', 'person': 'people', 'goose': 'geese', 'mouse': 'mice', 'barracks': 'barracks', 'deer': 'deer', 'nucleus': 'nuclei', 'syllabus': 'syllabi', 'focus': 'foci', 'fungus': 'fungi', 'cactus': 'cacti', 'phenomenon': 'phenomena', 'index': 'indices', 'appendix': 'appendices', 'criterion': 'criteria', } if text in aberrant: result = '%s' % aberrant[text] else: postfix = 's' if len(text) > 2: vowels = 'aeiou' if text[-2:] in ('ch', 'sh'): postfix = 'es' elif text[-1:] == 'y': if (text[-2:-1] in vowels) or (text[0] in string.ascii_uppercase): postfix = 's' else: postfix = 'ies' text = text[:-1] elif text[-2:] == 'is': postfix = 'es' text = text[:-2] elif text[-1:] in ('s', 'z', 'x'): postfix = 'es' result = '%s%s' % (text, postfix) return result
0.001206
def set(self, data, size): """ Set chunk data from user-supplied data; truncate if too large. Data may be null. Returns actual size of chunk """ return lib.zchunk_set(self._as_parameter_, data, size)
0.008658
def serialize(self, config): """ :param config: :type config: yowsup.config.base.config.Config :return: :rtype: bytes """ for transform in self._transforms: config = transform.transform(config) return config
0.007067
def convert(gr, raw_node): """ Convert raw node information to a Node or Leaf instance. This is passed to the parser driver which calls it whenever a reduction of a grammar rule produces a new complete node, so that the tree is build strictly bottom-up. """ type, value, context, children = raw_node if children or type in gr.number2symbol: # If there's exactly one child, return that child instead of # creating a new node. if len(children) == 1: return children[0] return Node(type, children, context=context) else: return Leaf(type, value, context=context)
0.003086
def produce_csv_output(filehandle: TextIO, fields: Sequence[str], values: Iterable[str]) -> None: """ Produce CSV output, without using ``csv.writer``, so the log can be used for lots of things. - ... eh? What was I talking about? - POOR; DEPRECATED. Args: filehandle: file to write to fields: field names values: values """ output_csv(filehandle, fields) for row in values: output_csv(filehandle, row)
0.001931
def straight_line(title, length=100, linestyle="=", pad=0): """Return a fixed-length straight line with some text at the center. Usage Example:: >>> StringTemplate.straight_line("Hello world!", 20, "-", 1) --- Hello world! --- """ text = "{:%s^%s}" % (linestyle, length) return text.format("%s%s%s" % (" "*pad, title, " "*pad))
0.009685
def delete_relay(self, relayid, data): """Delete relay settings""" return self.api_call( ENDPOINTS['relays']['delete'], dict(relayid=relayid), body=data)
0.009756
def get_configured_hdfs_client(): """ This is a helper that fetches the configuration value for 'client' in the [hdfs] section. It will return the client that retains backwards compatibility when 'client' isn't configured. """ config = hdfs() custom = config.client conf_usinf_snakebite = [ "snakebite_with_hadoopcli_fallback", "snakebite", ] if six.PY3 and (custom in conf_usinf_snakebite): warnings.warn( "snakebite client not compatible with python3 at the moment" "falling back on hadoopcli", stacklevel=2 ) return "hadoopcli" return custom
0.001506
def remove_droplets(self, droplet_ids): """ Unassign a LoadBalancer. Args: droplet_ids (obj:`list` of `int`): A list of Droplet IDs """ return self.get_data( "load_balancers/%s/droplets/" % self.id, type=DELETE, params={"droplet_ids": droplet_ids} )
0.00578
def _setup_cgroup_memory_limit(self, memlimit, cgroups, pid_to_kill): """Start memory-limit handler. @return None or the memory-limit handler for calling cancel() """ if memlimit is not None: try: oomThread = oomhandler.KillProcessOnOomThread( cgroups=cgroups, pid_to_kill=pid_to_kill, callbackFn=self._set_termination_reason, kill_process_fn=self._kill_process) oomThread.start() return oomThread except OSError as e: logging.critical("OSError %s during setup of OomEventListenerThread: %s.", e.errno, e.strerror) return None
0.004016
def api_key(value=None): """Set or get the API key. Also set via environment variable GRAPHISTRY_API_KEY.""" if value is None: return PyGraphistry._config['api_key'] # setter if value is not PyGraphistry._config['api_key']: PyGraphistry._config['api_key'] = value.strip() PyGraphistry._is_authenticated = False
0.005155
def get_lb_conn(dd_driver=None): ''' Return a load-balancer conn object ''' vm_ = get_configured_provider() region = config.get_cloud_config_value( 'region', vm_, __opts__ ) user_id = config.get_cloud_config_value( 'user_id', vm_, __opts__ ) key = config.get_cloud_config_value( 'key', vm_, __opts__ ) if not dd_driver: raise SaltCloudSystemExit( 'Missing dimensiondata_driver for get_lb_conn method.' ) return get_driver_lb(Provider_lb.DIMENSIONDATA)(user_id, key, region=region)
0.003448
def mask_brain(volume, template_name=None, mask_threshold=None, mask_self=True, ): """ Mask the simulated volume This creates a mask specifying the approximate likelihood that a voxel is part of the brain. All values are bounded to the range of 0 to 1. An appropriate threshold to isolate brain voxels is >0.2. Critically, the data that should be used to create a template shouldn't already be masked/skull stripped. If it is then it will give in accurate estimates of non-brain noise and corrupt estimations of SNR. Parameters ---------- volume : multidimensional array Either numpy array of a volume or a tuple describing the dimensions of the mask to be created template_name : str What is the path to the template to be loaded? If empty then it defaults to an MNI152 grey matter mask. This is ignored if mask_self is True. mask_threshold : float What is the threshold (0 -> 1) for including a voxel in the mask? If None then the program will try and identify the last wide peak in a histogram of the template (assumed to be the brain voxels) and takes the minima before that peak as the threshold. Won't work when the data is not bimodal. mask_self : bool or None If set to true then it makes a mask from the volume supplied (by averaging across time points and changing the range). If it is set to false then it will use the template_name as an input. Returns ---------- mask : 3 dimensional array, binary The masked brain, thresholded to distinguish brain and non-brain template : 3 dimensional array, float A continuous (0 -> 1) volume describing the likelihood a voxel is in the brain. This can be used to contrast the brain and non brain. """ # If the volume supplied is a 1d array then output a volume of the # supplied dimensions if len(volume.shape) == 1: volume = np.ones(volume) # Load in the mask if mask_self is True: mask_raw = volume elif template_name is None: mask_raw = np.load(resource_stream(__name__, "grey_matter_mask.npy")) else: mask_raw = np.load(template_name) # Make the masks 3dremove_baseline if len(mask_raw.shape) == 3: mask_raw = np.array(mask_raw) elif len(mask_raw.shape) == 4 and mask_raw.shape[3] == 1: mask_raw = np.array(mask_raw[:, :, :, 0]) else: mask_raw = np.mean(mask_raw, 3) # Find the max value (so you can calulate these as proportions) mask_max = mask_raw.max() # Make sure the mask values range from 0 to 1 (make out of max of volume # so that this is invertible later) mask_raw = mask_raw / mask_max # If there is only one brain volume then make this a forth dimension if len(volume.shape) == 3: temp = np.zeros([volume.shape[0], volume.shape[1], volume.shape[2], 1]) temp[:, :, :, 0] = volume volume = temp # Reshape the mask to be the size as the brain brain_dim = volume.shape mask_dim = mask_raw.shape zoom_factor = (brain_dim[0] / mask_dim[0], brain_dim[1] / mask_dim[1], brain_dim[2] / mask_dim[2], ) # Scale the mask according to the input brain # You might get a warning if the zoom_factor is not an integer but you # can safely ignore that. template = ndimage.zoom(mask_raw, zoom_factor, order=2) template[template < 0] = 0 # If the mask threshold is not supplied then guess it is a minima # between the two peaks of the bimodal distribution of voxel activity if mask_threshold is None: # How many bins on either side of a peak will be compared order = 5 # Make the histogram template_vector = template.reshape(brain_dim[0] * brain_dim[1] * brain_dim[2]) template_hist = np.histogram(template_vector, 100) # Zero pad the values binval = np.concatenate([np.zeros((order,)), template_hist[0]]) bins = np.concatenate([np.zeros((order,)), template_hist[1]]) # Identify the first two peaks peaks = signal.argrelmax(binval, order=order)[0][0:2] # What is the minima between peaks minima = binval[peaks[0]:peaks[1]].min() # What is the index of the last idx with this min value (since if # zero, there may be many) minima_idx = (np.where(binval[peaks[0]:peaks[1]] == minima) + peaks[ 0])[-1] # Convert the minima into a threshold mask_threshold = bins[minima_idx][0] # Mask the template based on the threshold mask = np.zeros(template.shape) mask[template > mask_threshold] = 1 return mask, template
0.000204
def set_data(self, data): """Set data.""" if data != self.editor.model.get_data(): self.editor.set_data(data) self.editor.adjust_columns()
0.010989
def calculate(seqnon, mapcol, nmask, tests): """ groups together several numba compiled funcs """ ## create empty matrices #LOGGER.info("tests[0] %s", tests[0]) #LOGGER.info('seqnon[[tests[0]]] %s', seqnon[[tests[0]]]) mats = chunk_to_matrices(seqnon, mapcol, nmask) ## empty svdscores for each arrangement of seqchunk svds = np.zeros((3, 16), dtype=np.float64) qscores = np.zeros(3, dtype=np.float64) ranks = np.zeros(3, dtype=np.float64) for test in range(3): ## get svd scores svds[test] = np.linalg.svd(mats[test].astype(np.float64))[1] ranks[test] = np.linalg.matrix_rank(mats[test].astype(np.float64)) ## get minrank, or 11 minrank = int(min(11, ranks.min())) for test in range(3): qscores[test] = np.sqrt(np.sum(svds[test, minrank:]**2)) ## sort to find the best qorder best = np.where(qscores == qscores.min())[0] #best = qscores[qscores == qscores.min()][0] bidx = tests[best][0] qsnps = count_snps(mats[best][0]) return bidx, qsnps
0.008531
def register(id, url=None): """Register a UUID key in the global S3 bucket.""" bucket = registration_s3_bucket() key = registration_key(id) obj = bucket.Object(key) obj.put(Body=url or "missing") return _generate_s3_url(bucket, key)
0.003906
def convert_multiPlanesRupture(self, node): """ Convert a multiPlanesRupture node. :param node: the rupture node """ mag, rake, hypocenter = self.get_mag_rake_hypo(node) with context(self.fname, node): surfaces = list(node.getnodes('planarSurface')) rupt = source.rupture.BaseRupture( mag=mag, rake=rake, tectonic_region_type=None, hypocenter=hypocenter, surface=self.convert_surfaces(surfaces)) return rupt
0.003759
def logout(self, request): "Logs out user and redirects them to Nexus home" from django.contrib.auth import logout logout(request) return HttpResponseRedirect(reverse('nexus:index', current_app=self.name))
0.012552
def send_event(self, name, *args, **kwargs): """ Send an event to the native handler. This call is queued and batched. Parameters ---------- name : str The event name to be processed by MainActivity.processMessages. *args: args The arguments required by the event. **kwargs: kwargs Options for sending. These are: now: boolean Send the event now """ n = len(self._bridge_queue) # Add to queue self._bridge_queue.append((name, args)) if n == 0: # First event, send at next available time self._bridge_last_scheduled = time() self.deferred_call(self._bridge_send) return elif kwargs.get('now'): self._bridge_send(now=True) return # If it's been over 5 ms since we last scheduled, run now dt = time() - self._bridge_last_scheduled if dt > self._bridge_max_delay: self._bridge_send(now=True)
0.002804
def print_variables_info(self, output_file=sys.stdout): """Print variables information in human readble format.""" table = (' name | type size \n' + '---------+-------------------------\n') for name, var_info in list(self.variables.items()): table += '{:>8} | {:>6} {!s:<10}\n'.format(name, var_info[0], var_info[1]) print(prefix_indent('variables: ', table), file=output_file)
0.006593
def write_metadata(self, fp): """Adds data to the metadata that's written. Parameters ---------- fp : pycbc.inference.io.BaseInferenceFile instance The inference file to write to. """ super(BaseDataModel, self).write_metadata(fp) fp.write_stilde(self.data)
0.006154
def unpack(self, source: IO): """ Read the Field from the file-like object `fio`. .. note:: Advanced usage only. You will typically never need to call this method as it will be called for you when loading a ClassFile. :param source: Any file-like object providing `read()` """ self.access_flags.unpack(source.read(2)) self._name_index, self._descriptor_index = unpack('>HH', source.read(4)) self.attributes.unpack(source)
0.005859
def map_sections(fun, neurites, neurite_type=NeuriteType.all, iterator_type=Tree.ipreorder): '''Map `fun` to all the sections in a collection of neurites''' return map(fun, iter_sections(neurites, iterator_type=iterator_type, neurite_filter=is_type(neurite_type)))
0.005882
def show(self): """Show the circuit expression in an IPython notebook.""" # noinspection PyPackageRequirements from IPython.display import Image, display fname = self.render() display(Image(filename=fname))
0.008065
def start(self): """Start the consumer. This starts a listen loop on a zmq.PULL socket, calling ``self.handle`` on each incoming request and pushing the response on a zmq.PUSH socket back to the producer.""" if not self.initialized: raise Exception("Consumer not initialized (no Producer).") producer = self.producer context = zmq._Context() self.pull = context.socket(zmq.PULL) self.push = context.socket(zmq.PUSH) self.pull.connect('tcp://%s:%s' % (producer.host, producer.push_port)) self.push.connect('tcp://%s:%s' % (producer.host, producer.pull_port)) # TODO: notify the producer that this consumer's ready for work? self.listen()
0.004027
def _write_file_network(data, filename): ''' Writes a file to disk ''' with salt.utils.files.fopen(filename, 'w') as fp_: fp_.write(salt.utils.stringutils.to_str(data))
0.005208
def get_manager(self, osid=None, impl_class_name=None, version=None): """Finds, loads and instantiates providers of OSID managers. Providers must conform to an OsidManager interface. The interfaces are defined in the OSID enumeration. For all OSID requests, an instance of ``OsidManager`` that implements the ``OsidManager`` interface is returned. In bindings where permitted, this can be safely cast into the requested manager. arg: osid (osid.OSID): represents the OSID arg: impl_class_name (string): the name of the implementation arg: version (osid.installation.Version): the minimum required OSID specification version return: (osid.OsidManager) - the manager of the service raise: ConfigurationError - an error in configuring the implementation raise: NotFound - the implementation class was not found raise: NullArgument - ``impl_class_name`` or ``version`` is ``null`` raise: OperationFailed - unable to complete request raise: Unsupported - ``impl_class_name`` does not support the requested OSID *compliance: mandatory -- This method must be implemented.* *implementation notes*: After finding and instantiating the requested ``OsidManager,`` providers must invoke ``OsidManager.initialize(OsidRuntimeManager)`` where the environment is an instance of the current environment that includes the configuration for the service being initialized. The ``OsidRuntimeManager`` passed may include information useful for the configuration such as the identity of the service being instantiated. """ # This implementation assumes that all osid impls reside as seperate # packages in the dlkit library, so that for instance the proxy manager for an # OSID = 'osidpackage' in an implementation named 'impl_name' manager can # be found in the python path for the module: dlkit.impl_name.osid.managers # Also this implementation currently ignores the OSID specification version. from importlib import import_module try: manager_module = import_module('dlkit.' + impl_class_name + '.' + osid.lower() + '.managers') except ImportError: raise NotFound() try: manager = getattr(manager_module, osid.title() + 'Manager') except AttributeError: raise Unsupported() return manager
0.002707
def get_web_element(self, element): """Return the web element from a page element or its locator :param element: either a WebElement, PageElement or element locator as a tuple (locator_type, locator_value) :returns: WebElement object """ from toolium.pageelements.page_element import PageElement if isinstance(element, WebElement): web_element = element elif isinstance(element, PageElement): web_element = element.web_element elif isinstance(element, tuple): web_element = self.driver_wrapper.driver.find_element(*element) else: web_element = None return web_element
0.00431
def _doClobber(self): """Remove the work directory""" rc = yield self.runRmdir(self.workdir, timeout=self.timeout) if rc != RC_SUCCESS: raise RuntimeError("Failed to delete directory") return rc
0.008403
async def addreaction(self, ctx, *, reactor=""): """Interactively adds a custom reaction""" if not reactor: await self.bot.say("What should I react to?") response = await self.bot.wait_for_message(author=ctx.message.author) reactor = response.content data = self.config.get(ctx.message.server.id, {}) keyword = data.get(reactor, {}) if keyword: await self.bot.responses.failure(message="Reaction '{}' already exists.".format(reactor)) return await self.bot.say("Okay, I'll react to '{}'. What do you want me to say? (Type $none for no response)".format(reactor)) response = await self.bot.wait_for_message(author=ctx.message.author) reactions = [] def check(reaction, user): if str(reaction.emoji) != "\U000023f9": reactions.append(reaction.emoji) return False else: return user == ctx.message.author msg = await self.bot.say("Awesome! Now react to this message any reactions I should have to '{}'. (React \U000023f9 to stop)".format(reactor)) await self.bot.wait_for_reaction(message=msg, check=check) for i, reaction in enumerate(reactions): reaction = reaction if isinstance(reaction, str) else reaction.name + ":" + str(reaction.id) await self.bot.add_reaction(ctx.message, reaction) reactions[i] = reaction if response: keyword["response"] = response.content if response.content.lower() != "$none" else "" keyword["reaction"] = reactions data[reactor] = keyword await self.config.put(ctx.message.server.id, data) await self.bot.responses.success(message="Reaction '{}' has been added.".format(reactor))
0.005461
def get_default_recipients(self): ''' Overrides EmailRecipientMixin ''' return [x.registration.customer.email for x in self.eventregistration_set.filter(cancelled=False)]
0.016129
def wait_for_a_future(futures, print_traceback=False): """ Return the next future that completes. If a KeyboardInterrupt is received, then the entire process is exited immediately. See wait_for_all_futures for more notes. """ while True: try: future = next(concurrent.futures.as_completed(futures, timeout=THREAD_TIMEOUT_MAX)) break except concurrent.futures.TimeoutError: pass except KeyboardInterrupt: if print_traceback: traceback.print_stack() else: print('') os._exit(os.EX_IOERR) return future
0.00304
def build_image_path(self, src): """\ This method will take an image path and build out the absolute path to that image * using the initial url we crawled so we can find a link to the image if they use relative urls like ../myimage.jpg """ o = urlparse(src) # we have a full url if o.netloc != '': return o.geturl() # we have a relative url return urljoin(self.article.final_url, src)
0.004032
def get_list(self, terms, limit=0, sort=False, ranks=None): """ Get the specified cards from the stack. :arg term: The search term. Can be a card full name, value, suit, abbreviation, or stack indice. :arg int limit: The number of items to retrieve for each term. :arg bool sort: Whether or not to sort the results, by poker ranks. :arg dict ranks: The rank dict to reference for sorting. If ``None``, it will default to ``DEFAULT_RANKS``. :returns: A list of the specified cards, if found. """ ranks = ranks or self.ranks got_cards = [] try: indices = self.find_list(terms, limit=limit) got_cards = [self.cards[i] for i in indices if self.cards[i] not in got_cards] self.cards = [v for i, v in enumerate(self.cards) if i not in indices] except: indices = [] for item in terms: try: card = self.cards[item] if card not in got_cards: got_cards.append(card) indices.append(item) except: indices += self.find(item, limit=limit) got_cards += [self.cards[i] for i in indices if self.cards[i] not in got_cards] self.cards = [v for i, v in enumerate(self.cards) if i not in indices] if sort: got_cards = sort_cards(got_cards, ranks) return got_cards
0.004819
def send_response(self, transaction): """ Handles the Blocks option in a outgoing response. :type transaction: Transaction :param transaction: the transaction that owns the response :rtype : Transaction :return: the edited transaction """ host, port = transaction.request.source key_token = hash(str(host) + str(port) + str(transaction.request.token)) if (key_token in self._block2_receive and transaction.response.payload is not None) or \ (transaction.response.payload is not None and len(transaction.response.payload) > defines.MAX_PAYLOAD): if key_token in self._block2_receive: byte = self._block2_receive[key_token].byte size = self._block2_receive[key_token].size num = self._block2_receive[key_token].num else: byte = 0 num = 0 size = defines.MAX_PAYLOAD m = 1 self._block2_receive[key_token] = BlockItem(byte, num, m, size) if len(transaction.response.payload) > (byte + size): m = 1 else: m = 0 transaction.response.payload = transaction.response.payload[byte:byte + size] del transaction.response.block2 transaction.response.block2 = (num, m, size) self._block2_receive[key_token].byte += size self._block2_receive[key_token].num += 1 if m == 0: del self._block2_receive[key_token] return transaction
0.003708
async def change_url(self, url: str, description: str = None): """ change the url of that attachment |methcoro| Args: url: url you want to change description: *optional* description for your attachment Raises: ValueError: url must not be None APIException """ await self._change(url=url, description=description)
0.004854
def _disconnected(self, uri): """Disconnected callback from Crazyflie API""" self.param_updater.close() self.is_updated = False # Clear all values from the previous Crazyflie self.toc = Toc() self.values = {}
0.007813
def hup_hook(signal_or_callable=signal.SIGTERM, verbose=False): """ Register a signal handler for `signal.SIGHUP` that checks for modified files and only acts if at least one modified file is found. @type signal_or_callable: str, int or callable @param signal_or_callable: You can pass either a signal or a callable. The signal can be specified by name or number. If specifying by name, the 'SIG' portion is optional. For example, valid values for SIGINT include 'INT', 'SIGINT' and `signal.SIGINT`. Alternatively, you can pass a callable that will be called with the list of changed files. So the call signature should be `func(list)`. The return value of the callable is ignored. @type verbose: bool or callable @param verbose: Defaults to False. True indicates that a message should be printed. You can also pass a callable such as log.info. """ #noinspection PyUnusedLocal def handle_hup(signum, frame): changed = modified() if changed: if callable(signal_or_callable): func = signal_or_callable args = (changed,) op = 'Calling' try: name = signal_or_callable.__name__ except Exception: name = str(signal_or_callable) else: if isinstance(signal_or_callable, int): name = str(signal_or_callable) signum = signal_or_callable if verbose: for item in dir(signal): if item.startswith('SIG') and getattr(signal, item) == signal_or_callable: name = item break else: name = signal_or_callable if signal_or_callable.startswith('SIG') else 'SIG' + signal_or_callable signum = getattr(signal, name) func = os.kill args = (os.getpid(), signum) op = 'Sending' if verbose: more = ' and {0} other files'.format(len(changed)) if len(changed) > 1 else '' message = '{0} {1} because {2}{3} changed'.format(op, name, changed[0], more) if callable(verbose): #noinspection PyCallingNonCallable verbose(message) else: print(message) func(*args) files() signal.signal(signal.SIGHUP, handle_hup) signal.siginterrupt(signal.SIGHUP, False)
0.003418
def read_reference_resource_list(self, ref_sitemap, name='reference'): """Read reference resource list and return the ResourceList object. The name parameter is used just in output messages to say what type of resource list is being read. """ rl = ResourceList() self.logger.info( "Reading %s resource list from %s ..." % (name, ref_sitemap)) rl.mapper = self.mapper rl.read(uri=ref_sitemap, index_only=(not self.allow_multifile)) num_entries = len(rl.resources) self.logger.info( "Read %s resource list with %d entries in %d sitemaps" % (name, num_entries, rl.num_files)) if (self.verbose): to_show = 100 override_str = ' (override with --max-sitemap-entries)' if (self.max_sitemap_entries): to_show = self.max_sitemap_entries override_str = '' if (num_entries > to_show): print( "Showing first %d entries sorted by URI%s..." % (to_show, override_str)) n = 0 for r in rl.resources: print(r) n += 1 if (n >= to_show): break return(rl)
0.00153
def _conditional(Xnew, feat, kern, f, *, full_cov=False, full_output_cov=False, q_sqrt=None, white=False): """ Multi-output GP with fully correlated inducing variables. The inducing variables are shaped in the same way as evaluations of K, to allow a default inducing point scheme for multi-output kernels. The covariance matrices used to calculate the conditional have the following shape: - Kuu: M x L x M x L - Kuf: M x L x N x P - Kff: N x P x N x P, N x P x P, N x P Further reference ----------------- - See `gpflow.conditionals._conditional` for a detailed explanation of conditional in the single-output case. - See the multiouput notebook for more information about the multiouput framework. Parameters ---------- :param f: variational mean, ML x 1 :param q_sqrt: standard-deviations or cholesky, ML x 1 or 1 x ML x ML """ logger.debug("Conditional: InducingPoints -- Mok") Kmm = Kuu(feat, kern, jitter=settings.numerics.jitter_level) # M x L x M x L Kmn = Kuf(feat, kern, Xnew) # M x L x N x P Knn = kern.K(Xnew, full_output_cov=full_output_cov) if full_cov \ else kern.Kdiag(Xnew, full_output_cov=full_output_cov) # N x P(x N)x P or N x P(x P) M, L, N, K = [tf.shape(Kmn)[i] for i in range(Kmn.shape.ndims)] Kmm = tf.reshape(Kmm, (M * L, M * L)) if full_cov == full_output_cov: Kmn = tf.reshape(Kmn, (M * L, N * K)) Knn = tf.reshape(Knn, (N * K, N * K)) if full_cov else tf.reshape(Knn, (N * K,)) fmean, fvar = base_conditional(Kmn, Kmm, Knn, f, full_cov=full_cov, q_sqrt=q_sqrt, white=white) # NK x 1, 1 x NK(x NK) fmean = tf.reshape(fmean, (N, K)) fvar = tf.reshape(fvar, (N, K, N, K) if full_cov else (N, K)) else: Kmn = tf.reshape(Kmn, (M * L, N, K)) fmean, fvar = fully_correlated_conditional(Kmn, Kmm, Knn, f, full_cov=full_cov, full_output_cov=full_output_cov, q_sqrt=q_sqrt, white=white) return fmean, fvar
0.005332
def dense_dropconnect(inputs, output_size, dropconnect_dropout=0.0, name="dense_dropconnect", **kwargs): """Dense layer with dropconnect.""" if dropconnect_dropout != 0.0: tf.logging.info("Applying dropconnect as the kernel regularization.") kwargs["kernel_regularizer"] = functools.partial( tf.nn.dropout, keep_prob=1.0 - dropconnect_dropout) return dense(inputs, output_size, use_bias=True, name=name, **kwargs)
0.007619
def duplicate(cls, other): """Create a copy of the layer.""" return cls(other.soil_type, other.thickness, other.shear_vel)
0.014493
def get_level_fmt(self, level): """Get format for log level.""" key = None if level == logging.DEBUG: key = 'debug' elif level == logging.INFO: key = 'info' elif level == logging.WARNING: key = 'warning' elif level == logging.ERROR: key = 'error' elif level == logging.CRITICAL: key = 'critical' return self.overwrites.get(key, self.fmt)
0.004338
def create_sequences(colors, vte_fix=False): """Create the escape sequences.""" alpha = colors["alpha"] # Colors 0-15. sequences = [set_color(index, colors["colors"]["color%s" % index]) for index in range(16)] # Special colors. # Source: https://goo.gl/KcoQgP # 10 = foreground, 11 = background, 12 = cursor foregound # 13 = mouse foreground, 708 = background border color. sequences.extend([ set_special(10, colors["special"]["foreground"], "g"), set_special(11, colors["special"]["background"], "h", alpha), set_special(12, colors["special"]["cursor"], "l"), set_special(13, colors["special"]["foreground"], "j"), set_special(17, colors["special"]["foreground"], "k"), set_special(19, colors["special"]["background"], "m"), set_color(232, colors["special"]["background"]), set_color(256, colors["special"]["foreground"]) ]) if not vte_fix: sequences.extend( set_special(708, colors["special"]["background"], "", alpha) ) if OS == "Darwin": sequences += set_iterm_tab_color(colors["special"]["background"]) return "".join(sequences)
0.000829
def calculate_size(name, expected, updated): """ Calculates the request payload size""" data_size = 0 data_size += calculate_size_str(name) data_size += LONG_SIZE_IN_BYTES data_size += LONG_SIZE_IN_BYTES return data_size
0.004098
def mass_inform(self, msg): """Send an inform message to all clients. Parameters ---------- msg : Message object The inform message to send. """ assert (msg.mtype == Message.INFORM) self._server.mass_send_message_from_thread(msg)
0.006689
def download(self, chunk_size=1024): """Download attachment Args: chunk_size (int): Byte-size of chunked download request stream Returns: BytesIO: Stream ready for reading containing the attachment file contents """ stream = BytesIO() response = self._swimlane.request( 'get', 'attachment/download/{}'.format(self.file_id), stream=True ) for chunk in response.iter_content(chunk_size): stream.write(chunk) stream.seek(0) return stream
0.005068
def catch_exceptions(*exceptions): """Catch all exceptions provided as arguments, and raise CloudApiException instead.""" def wrap(fn): @functools.wraps(fn) def wrapped_f(*args, **kwargs): try: return fn(*args, **kwargs) except exceptions: t, value, traceback = sys.exc_info() # If any resource does not exist, return None instead of raising if str(value.status) == '404': return None e = CloudApiException(str(value), value.reason, value.status) raise_(CloudApiException, e, traceback) return wrapped_f return wrap
0.004342
def from_json(self, data, deref=False): """Decode the string from JSON to return the original object (if `deref` is true. Uses the `json.loads` function with `self.decode` as object_hook. :param data: JSON encoded string. :type data: str :param deref: Whether to decode records that gave `ref=True` at encoding. :type deref: bool""" return self.deep_decode(json.loads(data), deref)
0.004246
def fraction_correct_fuzzy_linear_create_vector(z, z_cutoff, z_fuzzy_range): '''A helper function for fraction_correct_fuzzy_linear.''' assert(z_fuzzy_range * 2 < z_cutoff) if (z == None or numpy.isnan(z)): # todo: and ignore_null_values: # If we are missing values then we either discount the case or consider it as incorrect depending on ignore_null_values return None elif (z >= z_cutoff + z_fuzzy_range): # positive e.g. z >= 1.1 return [0, 0, 1] elif (z <= -z_cutoff - z_fuzzy_range): # negative e.g. z <= -1.1 return [1, 0, 0] elif (-z_cutoff + z_fuzzy_range <= z <= z_cutoff - z_fuzzy_range): # neutral e.g. -0.9 <= z <= 0.9 return [0, 1, 0] elif (-z_cutoff - z_fuzzy_range < z < -z_cutoff + z_fuzzy_range): # negative/neutral e.g. -1.1 < z < 0.9 neutrality = (z + z_cutoff + z_fuzzy_range) / (z_fuzzy_range * 2) zvec = [1 - neutrality, neutrality, 0] elif (z_cutoff - z_fuzzy_range < z < z_cutoff + z_fuzzy_range): # neutral/positive e.g. 0.9 < z < 1.1 positivity = (z - z_cutoff + z_fuzzy_range) / (z_fuzzy_range * 2) zvec = [0, 1 - positivity, positivity] else: raise Exception('Logical error.') # normalize the vector length = math.sqrt(numpy.dot(zvec, zvec)) return numpy.divide(zvec, length)
0.008296
def is_new_namespace_preorder( self, namespace_id_hash, lastblock=None ): """ Given a namespace preorder hash, determine whether or not is is unseen before. """ if lastblock is None: lastblock = self.lastblock preorder = namedb_get_namespace_preorder( self.db, namespace_id_hash, lastblock ) if preorder is not None: return False else: return True
0.022624
def remove_page(self, route): """Remove a proxied page from the Web UI. Parameters ---------- route : str The route for the proxied page. Must be a valid path *segment* in a url (e.g. ``foo`` in ``/foo/bar/baz``). Routes must be unique across the application. """ req = proto.RemoveProxyRequest(route=route) self._client._call('RemoveProxy', req)
0.004556
def get_cached_moderated_reddits(self): """Return a cached dictionary of the user's moderated reddits. This list is used internally. Consider using the `get_my_moderation` function instead. """ if self._mod_subs is None: self._mod_subs = {'mod': self.reddit_session.get_subreddit('mod')} for sub in self.reddit_session.get_my_moderation(limit=None): self._mod_subs[six.text_type(sub).lower()] = sub return self._mod_subs
0.003922
def do_execute(self): """ The actual execution of the actor. :return: None if successful, otherwise error message :rtype: str """ result = None cont = self.input.payload serialization.write_all( str(self.resolve_option("output")), [cont.get("Model").jobject, cont.get("Header").jobject]) return result
0.005025
def _transform_list_args(self, args): # type: (dict) -> None """Transforms all list arguments from json-server to model-resource ones. This modifies the given arguments. """ if '_limit' in args: args['limit'] = int(args['_limit']) del args['_limit'] if '_page' in args: page = int(args['_page']) if page < 0: page = 1 args['page'] = page del args['_page'] if 'limit' not in args: args['limit'] = 10 if '_end' in args: end = int(args['_end']) args['limit'] = end - int(args.get('_start', 0)) if '_start' in args: args['offset'] = args['_start'] del args['_start'] if '_sort' in args: args['order_by'] = args['_sort'].replace('__', '.') del args['_sort'] if args.get('_order', 'ASC') == 'DESC': args['order_by'] = '-' + args['order_by'] if '_order' in args: del args['_order'] filter_by = self._create_filter_by() if filter_by: args['filter_by'] = filter_by
0.003328
def to_dict(self, remove_nones=False): """Return the dict representation of the instance. Args: remove_nones (bool, optional): Optionally remove dictionary elements when their value is `None`. Returns: dict: a dict representation of the `DidlObject`. """ content = {} # Get the value of each attribute listed in _translation, and add it # to the content dict for key in self._translation: if hasattr(self, key): content[key] = getattr(self, key) # also add parent_id, item_id, restricted, title and resources because # they are not listed in _translation content['parent_id'] = self.parent_id content['item_id'] = self.item_id content['restricted'] = self.restricted content['title'] = self.title if self.resources != []: content['resources'] = [resource.to_dict(remove_nones=remove_nones) for resource in self.resources] content['desc'] = self.desc return content
0.001791
def load_file(self, filename): """Load config from a YAML file.""" filename = os.path.abspath(filename) with open(filename) as f: self.load_dict(yaml.load(f)) self._loaded_files.append(filename)
0.008333
def query_phenomizer(usr, pwd, *hpo_terms): """ Query the phenomizer web tool Arguments: usr (str): A username for phenomizer pwd (str): A password for phenomizer hpo_terms (list): A list with hpo terms Returns: raw_answer : The raw result from phenomizer """ base_string = 'http://compbio.charite.de/phenomizer/phenomizer/PhenomizerServiceURI' questions = {'mobilequery':'true', 'terms':','.join(hpo_terms), 'username':usr, 'password':pwd} try: r = requests.get(base_string, params=questions, timeout=10) except requests.exceptions.Timeout: raise RuntimeError("The request timed out.") if not r.status_code == requests.codes.ok: raise RuntimeError("Phenomizer returned a bad status code: %s" % r.status_code) r.encoding = 'utf-8' return r
0.014891
def getConnectorStats(self): """Return dictionary of Connector Stats for Apache Tomcat Server. @return: Nested dictionary of Connector Stats. """ if self._statusxml is None: self.initStats() connnodes = self._statusxml.findall('connector') connstats = {} if connnodes: for connnode in connnodes: namestr = connnode.get('name') if namestr is not None: mobj = re.match('(.*)-(\d+)', namestr) if mobj: proto = mobj.group(1) port = int(mobj.group(2)) connstats[port] = {'proto': proto} for tag in ('threadInfo', 'requestInfo'): stats = {} node = connnode.find(tag) if node is not None: for (key,val) in node.items(): if re.search('Time$', key): stats[key] = float(val) / 1000.0 else: stats[key] = util.parse_value(val) if stats: connstats[port][tag] = stats return connstats
0.004373
def list_all_files(i): """ Input: { path - top level path (file_name) - search for a specific file name (pattern) - return only files with this pattern (path_ext) - path extension (needed for recursion) (limit) - limit number of files (if directories with a large number of files) (number) - current number of files (all) - if 'yes' do not ignore special directories (like .cm) (ignore_names) - list of names to ignore (ignore_symb_dirs) - if 'yes', ignore symbolically linked dirs (to avoid recursion such as in LLVM) (add_path) - if 'yes', add path } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 list - dictionary of all files: {"file_with_full_path":{"size":.., "path":..} sizes - sizes of files (the same order) number - number of files in a current directory (needed for recursion) } """ number=0 if i.get('number','')!='': number=int(i['number']) inames=i.get('ignore_names',[]) fname=i.get('file_name','') limit=-1 if i.get('limit','')!='': limit=int(i['limit']) a={} iall=i.get('all','') pe='' if i.get('path_ext','')!='': pe=i['path_ext'] po=i.get('path','') if sys.version_info[0]<3: po=unicode(po) pattern=i.get('pattern','') if pattern!='': import fnmatch xisd=i.get('ignore_symb_dirs','') isd=False if xisd=='yes': isd=True ap=i.get('add_path','') try: dirList=os.listdir(po) except Exception as e: None else: for fn in dirList: p=os.path.join(po, fn) if iall=='yes' or fn not in cfg['special_directories']: if len(inames)==0 or fn not in inames: if os.path.isdir(p): if not isd or os.path.realpath(p)==p: r=list_all_files({'path':p, 'all':iall, 'path_ext':os.path.join(pe, fn), 'number':str(number), 'ignore_names':inames, 'pattern':pattern, 'file_name':fname, 'ignore_symb_dirs':xisd, 'add_path':ap, 'limit': limit}) if r['return']>0: return r a.update(r['list']) else: add=True if fname!='' and fname!=fn: add=False if pattern!='' and not fnmatch.fnmatch(fn, pattern): add=False if add: pg=os.path.join(pe, fn) if os.path.isfile(p): a[pg]={'size':os.stat(p).st_size} if ap=='yes': a[pg]['path']=po number=len(a) if limit!=-1 and number>=limit: break return {'return':0, 'list':a, 'number':str(number)}
0.029815
def read_interactions(path, comments="#", directed=False, delimiter=None, nodetype=None, timestamptype=None, encoding='utf-8', keys=False): """Read a DyNetx graph from interaction list format. Parameters ---------- path : basestring The desired output filename delimiter : character Column delimiter """ ids = None lines = (line.decode(encoding) for line in path) if keys: ids = read_ids(path.name, delimiter=delimiter, timestamptype=timestamptype) return parse_interactions(lines, comments=comments, directed=directed, delimiter=delimiter, nodetype=nodetype, timestamptype=timestamptype, keys=ids)
0.00813
def get_signed_url(self, params): '''Returns a Premier account signed url.''' params['client'] = self.client_id url_params = {'protocol': self.protocol, 'domain': self.domain, 'service': self.service, 'params': urlencode(params)} secret = base64.urlsafe_b64decode(self.secret_key) url_params['url_part'] = ( '/maps/api/%(service)s/json?%(params)s' % url_params) signature = hmac.new(secret, url_params['url_part'], hashlib.sha1) url_params['signature'] = base64.urlsafe_b64encode(signature.digest()) return ('%(protocol)s://%(domain)s%(url_part)s' '&signature=%(signature)s' % url_params)
0.004132
def enhance_function_signatures(spec_dict: Mapping[str, Any]) -> Mapping[str, Any]: """Enhance function signatures Add required and optional objects to signatures objects for semantic validation support. Args: spec_dict (Mapping[str, Any]): bel specification dictionary Returns: Mapping[str, Any]: return enhanced bel specification dict """ for func in spec_dict["functions"]["signatures"]: for i, sig in enumerate(spec_dict["functions"]["signatures"][func]["signatures"]): args = sig["arguments"] req_args = [] pos_args = [] opt_args = [] mult_args = [] for arg in args: # Multiple argument types if arg.get("multiple", False): if arg["type"] in ["Function", "Modifier"]: mult_args.extend(arg.get("values", [])) elif arg["type"] in ["StrArgNSArg", "NSArg", "StrArg"]: # Complex signature has this mult_args.append(arg["type"]) # Optional, position dependent - will be added after req_args based on order in bel_specification elif arg.get("optional", False) and arg.get("position", False): if arg["type"] in ["Function", "Modifier"]: pos_args.append(arg.get("values", [])) elif arg["type"] in ["StrArgNSArg", "NSArg", "StrArg"]: pos_args.append(arg["type"]) # Optional, position independent elif arg.get("optional", False): if arg["type"] in ["Function", "Modifier"]: opt_args.extend(arg.get("values", [])) elif arg["type"] in ["StrArgNSArg", "NSArg", "StrArg"]: opt_args.append(arg["type"]) # Required arguments, position dependent else: if arg["type"] in ["Function", "Modifier"]: req_args.append(arg.get("values", [])) elif arg["type"] in ["StrArgNSArg", "NSArg", "StrArg"]: req_args.append(arg["type"]) spec_dict["functions"]["signatures"][func]["signatures"][i]["req_args"] = copy.deepcopy( req_args ) spec_dict["functions"]["signatures"][func]["signatures"][i]["pos_args"] = copy.deepcopy( pos_args ) spec_dict["functions"]["signatures"][func]["signatures"][i]["opt_args"] = copy.deepcopy( opt_args ) spec_dict["functions"]["signatures"][func]["signatures"][i][ "mult_args" ] = copy.deepcopy(mult_args) return spec_dict
0.002831
def Sample(self, task, status): """Takes a sample of the status of a task for profiling. Args: task (Task): a task. status (str): status. """ sample_time = time.time() sample = '{0:f}\t{1:s}\t{2:s}\n'.format( sample_time, task.identifier, status) self._WritesString(sample)
0.003145
def smart_search_prefix(self, auth, query_str, search_options=None, extra_query=None): """ Perform a smart search on prefix list. * `auth` [BaseAuth] AAA options. * `query_str` [string] Search string * `search_options` [options_dict] Search options. See :func:`search_prefix`. * `extra_query` [dict_to_sql] Extra search terms, will be AND:ed together with what is extracted from the query string. Return a dict with three elements: * :attr:`interpretation` - How the query string was interpreted. * :attr:`search_options` - Various search_options. * :attr:`result` - The search result. The :attr:`interpretation` is given as a list of dicts, each explaining how a part of the search key was interpreted (ie. what prefix attribute the search operation was performed on). The :attr:`result` is a list of dicts containing the search result. The smart search function tries to convert the query from a text string to a `query` dict which is passed to the :func:`search_prefix` function. If multiple search keys are detected, they are combined with a logical AND. It tries to automatically detect IP addresses and prefixes and put these into the `query` dict with "contains_within" operators and so forth. See the :func:`search_prefix` function for an explanation of the `search_options` argument. This is the documentation of the internal backend function. It's exposed over XML-RPC, please also see the XML-RPC documentation for :py:func:`nipap.xmlrpc.NipapXMLRPC.smart_search_prefix` for full understanding. """ if search_options is None: search_options = {} self._logger.debug("smart_search_prefix query string: %s" % query_str) success, query = self._parse_prefix_query(query_str) if not success: return { 'interpretation': query, 'search_options': search_options, 'result': [], 'error': True, 'error_message': 'query interpretation failed' } if extra_query is not None: query = { 'operator': 'and', 'val1': query, 'val2': extra_query } self._logger.debug("smart_search_prefix: query expanded to: %s" % unicode(query)) search_result = self.search_prefix(auth, query, search_options) search_result['interpretation'] = query search_result['error'] = False return search_result
0.002429
def _seconds_to_section_split(record, sections): """ Finds the seconds to the next section from the datetime of a record. """ next_section = sections[ bisect_right(sections, _find_weektime(record.datetime))] * 60 return next_section - _find_weektime(record.datetime, time_type='sec')
0.003205
def extract_jtl_string_pairs_from_text_file(results_dict, file_path): """ Extracts all string pairs matching the JTL pattern from given text file. This can be used as an "extract_func" argument in the extract_string_pairs_in_directory method. Args: results_dict (dict): The dict to add the the string pairs to. file_path (str): The path of the file from which to extract the string pairs. """ result_pairs = re.findall(JTL_REGEX, open(file_path).read()) for result_key, result_comment in result_pairs: results_dict[result_key] = result_comment return results_dict
0.006472
def natsort_key(s, number_type=int, signed=False, exp=False): """\ Key to sort strings and numbers naturally, not lexicographically. It also has basic support for version numbers. For use in passing to the :py:func:`sorted` builtin or :py:meth:`sort` attribute of lists. Use natsort_key just like any other sorting key. >>> a = ['num3', 'num5', 'num2'] >>> a.sort(key=natsort_key) >>> a ['num2', 'num3', 'num5'] Below illustrates how the key works, and how the different options affect sorting. >>> natsort_key('a-5.034e1') ('a-', 5, '.', 34, 'e', 1) >>> natsort_key('a-5.034e1', number_type=float, signed=True, exp=True) ('a', -50.34) >>> natsort_key('a-5.034e1', number_type=float, signed=True, exp=False) ('a', -5.034, 'e', 1.0) >>> natsort_key('a-5.034e1', number_type=float, signed=False, exp=True) ('a-', 50.34) >>> natsort_key('a-5.034e1', number_type=float, signed=False, exp=False) ('a-', 5.034, 'e', 1.0) >>> natsort_key('a-5.034e1', number_type=int, signed=True) ('a', -5, '.', 34, 'e', 1) >>> natsort_key('a-5.034e1', number_type=int, signed=False) ('a-', 5, '.', 34, 'e', 1) >>> natsort_key('a-5.034e1', number_type=int, exp=False) ('a-', 5, '.', 34, 'e', 1) >>> natsort_key('a-5.034e1', number_type=None) ('a-', 5, '.', 34, 'e', 1) This is a demonstration of what number_type=None works. >>> natsort_key('a-5.034e1', number_type=None) == natsort_key('a-5.034e1', number_type=None, signed=False) True >>> natsort_key('a-5.034e1', number_type=None) == natsort_key('a-5.034e1', number_type=None, exp=False) True >>> natsort_key('a-5.034e1', number_type=None) == natsort_key('a-5.034e1', number_type=int, signed=False) True Iterables are parsed recursively so you can sort lists of lists. >>> natsort_key(('a1', 'a10')) (('a', 1), ('a', 10)) Strings that lead with a number get an empty string at the front of the tuple. This is designed to get around the "unorderable types" issue. >>> natsort_key(('15a', '6')) (('', 15, 'a'), ('', 6)) You can give numbers, too. >>> natsort_key(10) ('', 10) """ # If we are dealing with non-strings, return now if not isinstance(s, six.string_types): if hasattr(s, '__getitem__'): return tuple(natsort_key(x) for x in s) else: return ('', s,) # Convert to the proper tuple and return inp_options = (number_type, signed, exp) args = (s,) + regex_and_num_function_chooser[inp_options] try: return tuple(_number_finder(*args)) except KeyError: # Report errors properly if number_type not in (float, int) or number_type is not None: raise ValueError("natsort_key: 'number_type' " "parameter '{0}'' invalid".format(str(number_type))) elif signed not in (True, False): raise ValueError("natsort_key: 'signed' " "parameter '{0}'' invalid".format(str(signed))) elif exp not in (True, False): raise ValueError("natsort_key: 'exp' " "parameter '{0}'' invalid".format(str(exp)))
0.002365
def create_schema(host): """ Create exchanges, queues and route them. Args: host (str): One of the possible hosts. """ connection = create_blocking_connection(host) channel = connection.channel() exchange = settings.get_amqp_settings()[host]["exchange"] channel.exchange_declare( exchange=exchange, exchange_type="topic", durable=True ) print "Created exchange '%s'." % exchange print "Creating queues:" queues = settings.get_amqp_settings()[host]["queues"] for queue in queues.keys(): channel.queue_declare( queue=queue, durable=True, # arguments={'x-message-ttl': int(1000 * 60 * 60 * 24)} # :S ) print "\tCreated durable queue '%s'." % queue print print "Routing exchanges using routing key to queues:" for queue in queues.keys(): channel.queue_bind( queue=queue, exchange=exchange, routing_key=queues[queue] ) print "\tRouting exchange %s['%s'] -> '%s'." % ( exchange, queues[queue], queue )
0.000861
def email(self, to, msg): """ Quickly send an email from a default address. Calls :py:meth:`gmail_email`. * *stored credential name: GMAIL_EMAIL* :param string to: The email address to send the email to. :param msg: The content of the email. See :py:meth:`gmail_email`. """ logging.debug('Emailing someone') return self.gmail_email(self._credentials['GMAIL_EMAIL'], to, msg)
0.013129
def _compute_fixed_point_ig(T, v, max_iter, verbose, print_skip, is_approx_fp, *args, **kwargs): """ Implement the imitation game algorithm by McLennan and Tourky (2006) for computing an approximate fixed point of `T`. Parameters ---------- is_approx_fp : callable A callable with signature `is_approx_fp(v)` which determines whether `v` is an approximate fixed point with a bool return value (i.e., True or False) For the other parameters, see Parameters in compute_fixed_point. Returns ------- x_new : scalar(float) or ndarray(float) Approximate fixed point. converged : bool Whether the routine has converged. iterate : scalar(int) Number of iterations. """ if verbose == 2: start_time = time.time() _print_after_skip(print_skip, it=None) x_new = v y_new = T(x_new, *args, **kwargs) iterate = 1 converged = is_approx_fp(x_new) if converged or iterate >= max_iter: if verbose == 2: error = np.max(np.abs(y_new - x_new)) etime = time.time() - start_time print_skip = 1 _print_after_skip(print_skip, iterate, error, etime) if verbose >= 1: if not converged: warnings.warn(_non_convergence_msg, RuntimeWarning) elif verbose == 2: print(_convergence_msg.format(iterate=iterate)) return x_new, converged, iterate if verbose == 2: error = np.max(np.abs(y_new - x_new)) etime = time.time() - start_time _print_after_skip(print_skip, iterate, error, etime) # Length of the arrays to store the computed sequences of x and y. # If exceeded, reset to min(max_iter, buff_size*2). buff_size = 2**8 buff_size = min(max_iter, buff_size) shape = (buff_size,) + np.asarray(x_new).shape X, Y = np.empty(shape), np.empty(shape) X[0], Y[0] = x_new, y_new x_new = Y[0] tableaux = tuple(np.empty((buff_size, buff_size*2+1)) for i in range(2)) bases = tuple(np.empty(buff_size, dtype=int) for i in range(2)) max_piv = 10**6 # Max number of pivoting steps in _lemke_howson_tbl while True: y_new = T(x_new, *args, **kwargs) iterate += 1 converged = is_approx_fp(x_new) if converged or iterate >= max_iter: break if verbose == 2: error = np.max(np.abs(y_new - x_new)) etime = time.time() - start_time _print_after_skip(print_skip, iterate, error, etime) try: X[iterate-1] = x_new Y[iterate-1] = y_new except IndexError: buff_size = min(max_iter, buff_size*2) shape = (buff_size,) + X.shape[1:] X_tmp, Y_tmp = X, Y X, Y = np.empty(shape), np.empty(shape) X[:X_tmp.shape[0]], Y[:Y_tmp.shape[0]] = X_tmp, Y_tmp X[iterate-1], Y[iterate-1] = x_new, y_new tableaux = tuple(np.empty((buff_size, buff_size*2+1)) for i in range(2)) bases = tuple(np.empty(buff_size, dtype=int) for i in range(2)) m = iterate tableaux_curr = tuple(tableau[:m, :2*m+1] for tableau in tableaux) bases_curr = tuple(basis[:m] for basis in bases) _initialize_tableaux_ig(X[:m], Y[:m], tableaux_curr, bases_curr) converged, num_iter = _lemke_howson_tbl( tableaux_curr, bases_curr, init_pivot=m-1, max_iter=max_piv ) _, rho = _get_mixed_actions(tableaux_curr, bases_curr) if Y.ndim <= 2: x_new = rho.dot(Y[:m]) else: shape_Y = Y.shape Y_2d = Y.reshape(shape_Y[0], np.prod(shape_Y[1:])) x_new = rho.dot(Y_2d[:m]).reshape(shape_Y[1:]) if verbose == 2: error = np.max(np.abs(y_new - x_new)) etime = time.time() - start_time print_skip = 1 _print_after_skip(print_skip, iterate, error, etime) if verbose >= 1: if not converged: warnings.warn(_non_convergence_msg, RuntimeWarning) elif verbose == 2: print(_convergence_msg.format(iterate=iterate)) return x_new, converged, iterate
0.000234
def split_call(lines, open_paren_line=0): """Returns a 2-tuple where the first element is the list of lines from the first open paren in lines to the matching closed paren. The second element is all remaining lines in a list.""" num_open = 0 num_closed = 0 for i, line in enumerate(lines): c = line.count('(') num_open += c if not c and i==open_paren_line: raise Exception('Exception open parenthesis in line %d but there is not one there: %s' % (i, str(lines))) num_closed += line.count(')') if num_open == num_closed: return (lines[:i+1], lines[i+1:]) print(''.join(lines)) raise Exception('parenthesis are mismatched (%d open, %d closed found)' % (num_open, num_closed))
0.005181
def local_bifurcation_angles(neurites, neurite_type=NeuriteType.all): '''Get a list of local bifurcation angles in a collection of neurites''' return map_sections(_bifurcationfunc.local_bifurcation_angle, neurites, neurite_type=neurite_type, iterator_type=Tree.ibifurcation_point)
0.002778
def setMaximum(self, maximum): """setter to _maximum. Args: maximum (int or long): new _maximum value """ if not isinstance(maximum, int): raise TypeError("Argument is not of type int or long") self._maximum = maximum
0.007092
def empty(cls): """ Returns an empty set. An empty set is unbounded and only contain the empty set. >>> intrange.empty() in intrange.empty() True It is unbounded but the boundaries are not infinite. Its boundaries are returned as ``None``. Every set contains the empty set. """ self = cls.__new__(cls) self._range = _empty_internal_range return self
0.004464
def remover(self, id_tipo_acesso): """Removes access type by its identifier. :param id_tipo_acesso: Access type identifier. :return: None :raise TipoAcessoError: Access type associated with equipment, cannot be removed. :raise InvalidParameterError: Protocol value is invalid or none. :raise TipoAcessoNaoExisteError: Access type doesn't exist. :raise DataBaseError: Networkapi failed to access the database. :raise XMLError: Networkapi failed to generate the XML response. """ if not is_valid_int_param(id_tipo_acesso): raise InvalidParameterError( u'Access type id is invalid or was not informed.') url = 'tipoacesso/' + str(id_tipo_acesso) + '/' code, xml = self.submit(None, 'DELETE', url) return self.response(code, xml)
0.003476
def add_to_group(self, group_path): """Add a device to a group, if the group doesn't exist it is created :param group_path: Path or "name" of the group """ if self.get_group_path() != group_path: post_data = ADD_GROUP_TEMPLATE.format(connectware_id=self.get_connectware_id(), group_path=group_path) self._conn.put('/ws/DeviceCore', post_data) # Invalidate cache self._device_json = None
0.00578
def next(self): """Move to the next token in the token stream.""" self.current_token = next(self.token_stream, None) if self.current_token is None: self.token_span = self.token_span[1], self.token_span[1] raise self.error('Unexpected end of input') self.token_span = self.current_token.span return self
0.005464
def CODECOPY(self, mem_offset, code_offset, size): """Copy code running in current environment to memory""" self._allocate(mem_offset, size) GCOPY = 3 # cost to copy one 32 byte word copyfee = self.safe_mul(GCOPY, Operators.UDIV(self.safe_add(size, 31), 32)) self._consume(copyfee) if issymbolic(size): max_size = solver.max(self.constraints, size) else: max_size = size for i in range(max_size): if issymbolic(i < size): default = Operators.ITEBV(8, i < size, 0, self._load(mem_offset + i, 1)) # Fixme. unnecessary memory read else: if i < size: default = 0 else: default = self._load(mem_offset + i, 1) if issymbolic(code_offset): value = Operators.ITEBV(8, code_offset + i >= len(self.bytecode), default, self.bytecode[code_offset + i]) else: if code_offset + i >= len(self.bytecode): value = default else: value = self.bytecode[code_offset + i] self._store(mem_offset + i, value) self._publish('did_evm_read_code', code_offset, size)
0.003888
def setUserKeyCredentials(self, username, public_key=None, private_key=None): """Set these properties in ``disk.0.os.credentials``.""" self.setCredentialValues(username=username, public_key=public_key, private_key=private_key)
0.012346
def get_field_class(qs, field_name): """ Given a queryset and a field name, it will return the field's class """ try: return qs.model._meta.get_field(field_name).__class__.__name__ # while annotating, it's possible that field does not exists. except FieldDoesNotExist: return None
0.003125