text
stringlengths
78
104k
score
float64
0
0.18
def propagate_average_up(self, cols=['lat', 'lon'], target_df_name='sites', source_df_name='samples'): """ Propagate average values from a lower table to a higher one. For example, propagate average lats/lons from samples to sites. Pre-existing values will not be overwritten. Parameters ---------- cols : list-like list of columns to propagate target_df_name : str name of table to propagate values into source_df_name: name of table to propagate values from Returns --------- target_df : MagicDataFrame or None returns table with propagated data, or None if no propagation could be done """ # make sure target/source table are appropriate target_ind = self.ancestry.index(target_df_name) source_ind = self.ancestry.index(source_df_name) if target_ind - source_ind != 1: print('-W- propagate_average_up only works with tables that are spaced one apart, i.e. sites and samples.') print(' Source table must be lower in the hierarchy than the target table.') print(' You have provided "{}" as the target table and "{}" as the source table.'.format(target_df_name, source_df_name)) return None # make sure target table is read in if target_df_name not in self.tables: self.add_magic_table(target_df_name) if target_df_name not in self.tables: print("-W- Couldn't read in {} table".format(target_df_name)) return # make sure source table is read in if source_df_name not in self.tables: self.add_magic_table(source_df_name) if source_df_name not in self.tables: print("-W- Couldn't read in {} table".format(source_df_name)) return # get tables target_df = self.tables[target_df_name] source_df = self.tables[source_df_name] target_name = target_df_name[:-1] # step 1: make sure columns exist in target_df for col in cols: if col not in target_df.df.columns: target_df.df[col] = None # step 2: propagate target_df columns forward & back target_df.front_and_backfill(cols) # step 3: see if any column values are missing values = [not_null(val) for val in target_df.df[cols].values.ravel()] if all(values): print('-I- {} table already has {} filled column(s)'.format(target_df_name, cols)) self.tables[target_df_name] = target_df return target_df # step 4: make sure columns are in source table, also target name if target_name not in source_df.df.columns: print("-W- can't propagate from {} to {} table".format(source_df_name, target_df_name)) print(" Missing {} column in {} table".format(target_name, source_df_name)) self.tables[target_df_name] = target_df return target_df for col in cols: if col not in target_df.df.columns: target_df.df[col] = None # step 5: if needed, average from source table and apply to target table for col in cols: if col not in source_df.df.columns: source_df.df[col] = np.nan else: # make sure is numeric source_df.df[col] = pd.to_numeric(source_df.df[col], errors='coerce') grouped = source_df.df[cols + [target_name]].groupby(target_name) grouped = grouped[cols].apply(np.mean) for col in cols: target_df.df['new_' + col] = grouped[col] # use custom not_null mask = [not_null(val) for val in target_df.df[col]] target_df.df[col] = np.where(mask, #target_df.df[col].notnull(), target_df.df[col], target_df.df['new_' + col]) target_df.df.drop(['new_' + col], inplace=True, axis=1) # round column to 5 decimal points try: target_df.df[col] = target_df.df[col].astype(float) target_df.df = target_df.df.round({col: 5}) except ValueError: # if there are sneaky strings... pass self.tables[target_df_name] = target_df return target_df
0.003135
def _execActions(self, type, msg): """ Execute Registered Actions """ for action in self.ACTIONS: action(type, msg)
0.013986
def all(cls): """ Returns a list of all configured endpoints the server is listening on. For each endpoint, the list of allowed databases is returned too if set. The result is a JSON hash which has the endpoints as keys, and the list of mapped database names as values for each endpoint. If a list of mapped databases is empty, it means that all databases can be accessed via the endpoint. If a list of mapped databases contains more than one database name, this means that any of the databases might be accessed via the endpoint, and the first database in the list will be treated as the default database for the endpoint. The default database will be used when an incoming request does not specify a database name in the request explicitly. *Note*: retrieving the list of all endpoints is allowed in the system database only. Calling this action in any other database will make the server return an error. """ api = Client.instance().api endpoint_list = api.endpoint.get() return endpoint_list
0.008525
def p2wpkh_input_and_witness(outpoint, sig, pubkey, sequence=0xFFFFFFFE): ''' Outpoint, hex_string, hex_string, int -> (TxIn, InputWitness) Create a signed witness TxIn and InputWitness from a p2wpkh prevout ''' return tb.make_witness_input_and_witness( outpoint=outpoint, sequence=sequence, stack=[bytes.fromhex(sig), bytes.fromhex(pubkey)])
0.002591
def DEFINE_point(name, default, help): # pylint: disable=invalid-name,redefined-builtin """Registers a flag whose value parses as a point.""" flags.DEFINE(PointParser(), name, default, help)
0.020513
def set_priors(self, priors=None, fixed=None, random=None, match_derived_names=True): '''Set priors for one or more existing terms. Args: priors (dict): Dict of priors to update. Keys are names of terms to update; values are the new priors (either a Prior instance, or an int or float that scales the default priors). Note that a tuple can be passed as the key, in which case the same prior will be applied to all terms named in the tuple. fixed (Prior, int, float, str): a prior specification to apply to all fixed terms currently included in the model. random (Prior, int, float, str): a prior specification to apply to all random terms currently included in the model. match_derived_names (bool): if True, the specified prior(s) will be applied not only to terms that match the keyword exactly, but to the levels of random effects that were derived from the original specification with the passed name. For example, `priors={'condition|subject':0.5}` would apply the prior to the terms with names '1|subject', 'condition[T.1]|subject', and so on. If False, an exact match is required for the prior to be applied. ''' # save arguments to pass to _set_priors() at build time kwargs = dict(zip( ['priors', 'fixed', 'random', 'match_derived_names'], [priors, fixed, random, match_derived_names])) self._added_priors.update(kwargs) self.built = False
0.00176
def browserify_file(entry_point, output_file, babelify=False, export_as=None): """ Browserify a single javascript entry point plus non-external dependencies into a single javascript file. Generates source maps in debug mode. Minifies the output in release mode. By default, it is not possible to ``require()`` any exports from the entry point or included files. If ``export_as`` is specified, any module exports in the specified entry point are exposed for ``require()`` with the name specified by ``export_as``. """ from .modules import browserify if not isinstance(entry_point, str): raise RuntimeError('Browserify File compiler takes a single entry point as input.') return { 'dependencies_fn': browserify.browserify_deps_file, 'compiler_fn': browserify.browserify_compile_file, 'input': entry_point, 'output': output_file, 'kwargs': { 'babelify': babelify, 'export_as': export_as, }, }
0.001953
async def get_profile(self, *tags): '''Get a profile object using tag(s)''' url = '{0.BASE}/profile/{1}'.format(self, ','.join(tags)) data = await self.request(url) if isinstance(data, list): return [Profile(self, c) for c in data] else: return Profile(self, data)
0.008671
def get_stops_in_polygon( feed: "Feed", polygon: Polygon, geo_stops=None ) -> DataFrame: """ Return the slice of ``feed.stops`` that contains all stops that lie within the given Shapely Polygon object that is specified in WGS84 coordinates. Parameters ---------- feed : Feed polygon : Shapely Polygon Specified in WGS84 coordinates geo_stops : Geopandas GeoDataFrame A geographic version of ``feed.stops`` which will be computed if not given. Specify this parameter in batch jobs to avoid unnecessary computation. Returns ------- DataFrame Subset of ``feed.stops`` Notes ----- - Requires GeoPandas - Assume the following feed attributes are not ``None``: * ``feed.stops``, if ``geo_stops`` is not given """ if geo_stops is not None: f = geo_stops.copy() else: f = geometrize_stops(feed.stops) cols = f.columns f["hit"] = f["geometry"].within(polygon) f = f[f["hit"]][cols] return ungeometrize_stops(f)
0.00093
def readAlignedString(self, align = 4): """ Reads an ASCII string aligned to the next align-bytes boundary. @type align: int @param align: (Optional) The value we want the ASCII string to be aligned. @rtype: str @return: A 4-bytes aligned (default) ASCII string. """ s = self.readString() r = align - len(s) % align while r: s += self.data[self.offset] self.offset += 1 r -= 1 return s.rstrip("\x00")
0.014733
def request(self, method, url, **kwargs): """Build remote url request. Constructs necessary auth.""" user_token = kwargs.pop('token', self.token) token, secret, expires_at = self.parse_raw_token(user_token) if token is not None: params = kwargs.get('params', {}) params['access_token'] = token kwargs['params'] = params return super(OAuth2Provider, self).request(method, url, **kwargs)
0.004338
def get_filter(cls, mimetype): """ Returns a filter string for the file dialog. The filter is based on the mime type. :param mimetype: path from which the filter must be derived. :return: Filter string """ filters = ' '.join( ['*%s' % ext for ext in mimetypes.guess_all_extensions(mimetype)]) return '%s (%s)' % (mimetype, filters)
0.004902
def freeze(self): """Make the SchemaElement's connections immutable.""" self.in_connections = frozenset(self.in_connections) self.out_connections = frozenset(self.out_connections)
0.009852
def write(self): """ Write the current text to self.file, and flush it. This can be overridden to handle custom writes. """ if self._text is not None: with self.lock: self.file.write(str(self._text).encode()) self.file.flush() sleep(self.nice_delay)
0.005935
def info(self): '''Return a nested dictionary of information related to the actor status and performance. The dictionary contains the following entries: * ``actor`` a dictionary containing information regarding the type of actor and its status. * ``events`` a dictionary of information about the :ref:`event loop <asyncio-event-loop>` running the actor. * ``extra`` the :attr:`extra` attribute (you can use it to add stuff). * ``system`` system info. This method is invoked when you run the :ref:`info command <actor_info_command>` from another actor. ''' if not self.started(): return isp = self.is_process() actor = {'name': self.name, 'state': self.info_state, 'actor_id': self.aid, 'uptime': self._loop.time() - self._started, 'thread_id': self.tid, 'process_id': self.pid, 'is_process': isp, 'age': self.concurrency.age} data = {'actor': actor, 'extra': self.extra} if isp: data['system'] = system.process_info(self.pid) self.event('on_info').fire(data=data) return data
0.001556
def tweets_for_user(screen_name, limit=1e10): """ Collect the most recent 3200 tweets for this user, sleeping to deal with rate limits.""" qu = Queue() p = Thread(target=_tweets_for_user, args=(qu, screen_name, limit)) p.start() p.join(910) if p.is_alive(): sys.stderr.write('no results after 15 minutes for %s. Aborting.' % screen_name) return [] else: return qu.get()
0.007126
def runExperiment(args): """ Run experiment. What did you think this does? args is a dict representing the parameters. We do it this way to support multiprocessing. args contains one or more of the following keys: @param featureNoise (float) Noise level to add to the features during inference. Default: None @param locationNoise (float) Noise level to add to the locations during inference. Default: None @param numObjects (int) The number of objects we will train. Default: 10 @param numPoints (int) The number of points on each object. Default: 10 @param numLocations (int) For each point, the number of locations to choose from. Default: 10 @param numFeatures (int) For each point, the number of features to choose from. Default: 10 @param numColumns (int) The total number of cortical columns in network. Default: 2 @param networkType (string)The type of network to use. Options are: "MultipleL4L2Columns", "MultipleL4L2ColumnsWithTopology" and "MultipleL4L2ColumnsWithRandomTopology". Default: "MultipleL4L2Columns" @param longDistanceConnections (float) The probability that a column will connect to a distant column. Only relevant when using the random topology network type. If > 1, will instead be taken as desired number of long-distance connections per column. @param settlingTime (int) Number of iterations we wait to let columns stabilize. Important for multicolumn experiments with lateral connections. @param includeRandomLocation (bool) If True, a random location SDR will be generated during inference for each feature. @param enableFeedback (bool) If True, enable feedback, default is True @param numAmbiguousLocations (int) number of ambiguous locations. Ambiguous locations will present during inference if this parameter is set to be a positive number The method returns the args dict updated with multiple additional keys representing accuracy metrics. """ numObjects = args.get("numObjects", 10) numLocations = args.get("numLocations", 10) numFeatures = args.get("numFeatures", 10) numColumns = args.get("numColumns", 2) networkType = args.get("networkType", "MultipleL4L2Columns") longDistanceConnections = args.get("longDistanceConnections", 0) locationNoise = args.get("locationNoise", 0.0) featureNoise = args.get("featureNoise", 0.0) numPoints = args.get("numPoints", 10) trialNum = args.get("trialNum", 42) plotInferenceStats = args.get("plotInferenceStats", True) settlingTime = args.get("settlingTime", 3) includeRandomLocation = args.get("includeRandomLocation", False) enableFeedback = args.get("enableFeedback", True) numAmbiguousLocations = args.get("numAmbiguousLocations", 0) numInferenceRpts = args.get("numInferenceRpts", 1) l2Params = args.get("l2Params", None) l4Params = args.get("l4Params", None) # Create the objects objects = createObjectMachine( machineType="simple", numInputBits=20, sensorInputSize=150, externalInputSize=2400, numCorticalColumns=numColumns, numFeatures=numFeatures, numLocations=numLocations, seed=trialNum ) objects.createRandomObjects(numObjects, numPoints=numPoints, numLocations=numLocations, numFeatures=numFeatures) r = objects.objectConfusion() print "Average common pairs in objects=", r[0], print ", locations=",r[1],", features=",r[2] # print "Total number of objects created:",len(objects.getObjects()) # print "Objects are:" # for o in objects: # pairs = objects[o] # pairs.sort() # print str(o) + ": " + str(pairs) # Setup experiment and train the network name = "convergence_O%03d_L%03d_F%03d_C%03d_T%03d" % ( numObjects, numLocations, numFeatures, numColumns, trialNum ) exp = L4L2Experiment( name, numCorticalColumns=numColumns, L2Overrides=l2Params, L4Overrides=l4Params, networkType = networkType, longDistanceConnections=longDistanceConnections, inputSize=150, externalInputSize=2400, numInputBits=20, seed=trialNum, enableFeedback=enableFeedback, ) exp.learnObjects(objects.provideObjectsToLearn()) # For inference, we will check and plot convergence for each object. For each # object, we create a sequence of random sensations for each column. We will # present each sensation for settlingTime time steps to let it settle and # ensure it converges. numCorrectClassifications=0 classificationPerSensation = numpy.zeros(settlingTime*numPoints) for objectId in objects: exp.sendReset() obj = objects[objectId] objectSensations = {} for c in range(numColumns): objectSensations[c] = [] if numColumns > 1: # Create sequence of random sensations for this object for all columns At # any point in time, ensure each column touches a unique loc,feature pair # on the object. It is ok for a given column to sense a loc,feature pair # more than once. The total number of sensations is equal to the number of # points on the object. for sensationNumber in range(len(obj)): # Randomly shuffle points for each sensation objectCopy = [pair for pair in obj] random.shuffle(objectCopy) for c in range(numColumns): # stay multiple steps on each sensation for _ in xrange(settlingTime): objectSensations[c].append(objectCopy[c]) else: # Create sequence of sensations for this object for one column. The total # number of sensations is equal to the number of points on the object. No # point should be visited more than once. objectCopy = [pair for pair in obj] random.shuffle(objectCopy) for pair in objectCopy: # stay multiple steps on each sensation for _ in xrange(settlingTime): objectSensations[0].append(pair) inferConfig = { "object": objectId, "numSteps": len(objectSensations[0]), "pairs": objectSensations, "noiseLevel": featureNoise, "locationNoise": locationNoise, "includeRandomLocation": includeRandomLocation, "numAmbiguousLocations": numAmbiguousLocations, } inferenceSDRs = objects.provideObjectToInfer(inferConfig) exp.infer(inferenceSDRs, objectName=objectId, reset=False) classificationPerSensation += numpy.array( exp.statistics[objectId]["Correct classification"]) if exp.isObjectClassified(objectId, minOverlap=30): numCorrectClassifications += 1 if plotInferenceStats: exp.plotInferenceStats( fields=["L2 Representation", "Overlap L2 with object", "L4 Representation"], experimentID=objectId, onePlot=False, ) convergencePoint, accuracy = exp.averageConvergencePoint("L2 Representation", 30, 40, settlingTime) classificationAccuracy = float(numCorrectClassifications) / numObjects classificationPerSensation = classificationPerSensation / numObjects print "# objects {} # features {} # locations {} # columns {} trial # {} network type {}".format( numObjects, numFeatures, numLocations, numColumns, trialNum, networkType) print "Average convergence point=",convergencePoint print "Classification accuracy=",classificationAccuracy print # Return our convergence point as well as all the parameters and objects args.update({"objects": objects.getObjects()}) args.update({"convergencePoint":convergencePoint}) args.update({"classificationAccuracy":classificationAccuracy}) args.update({"classificationPerSensation":classificationPerSensation.tolist()}) # Can't pickle experiment so can't return it for batch multiprocessing runs. # However this is very useful for debugging when running in a single thread. if plotInferenceStats: args.update({"experiment": exp}) return args
0.011167
def next(self) -> mx.io.DataBatch: """ Returns the next batch from the data iterator. """ if not self.iter_next(): raise StopIteration i, j = self.batch_indices[self.curr_batch_index] self.curr_batch_index += 1 batch_size = self.bucket_batch_sizes[i].batch_size source = self.data.source[i][j:j + batch_size] target = self.data.target[i][j:j + batch_size] data = [source, target] label = [self.data.label[i][j:j + batch_size]] provide_data = [mx.io.DataDesc(name=n, shape=x.shape, layout=C.BATCH_MAJOR) for n, x in zip(self.data_names, data)] provide_label = [mx.io.DataDesc(name=n, shape=x.shape, layout=C.BATCH_MAJOR) for n, x in zip(self.label_names, label)] # TODO: num pad examples is not set here if fillup policy would be padding return mx.io.DataBatch(data, label, pad=0, index=None, bucket_key=self.buckets[i], provide_data=provide_data, provide_label=provide_label)
0.005348
def setRegisterNumbersForTemporaries(ast, start): """Assign register numbers for temporary registers, keeping track of aliases and handling immediate operands. """ seen = 0 signature = '' aliases = [] for node in ast.postorderWalk(): if node.astType == 'alias': aliases.append(node) node = node.value if node.reg.immediate: node.reg.n = node.value continue reg = node.reg if reg.n is None: reg.n = start + seen seen += 1 signature += reg.node.typecode() for node in aliases: node.reg = node.value.reg return start + seen, signature
0.001447
def to_python(self, value, resource): """Converts to unicode if `self.encoding != None`, otherwise returns input without attempting to decode""" if value is None: return self._transform(value) if isinstance(value, six.text_type): return self._transform(value) if self.encoding is None and isinstance(value, (six.text_type, six.binary_type)): return self._transform(value) if self.encoding is not None and isinstance(value, six.binary_type): return self._transform(value.decode(self.encoding)) return self._transform(six.text_type(value))
0.00627
def create(self, **kwargs): """Create a new instance of this resource type. As a general rule, the identifier should have been provided, but in some subclasses the identifier is server-side-generated. Those classes have to overload this method to deal with that scenario. """ if self.primary_key in kwargs: del kwargs[self.primary_key] data = self._generate_input_dict(**kwargs) self.load(self.client.post('/'.join(self.url.split('/')[:-1]) + 's', data=data)) return self
0.005386
def _set_get_vnetwork_dvpgs(self, v, load=False): """ Setter method for get_vnetwork_dvpgs, mapped from YANG variable /brocade_vswitch_rpc/get_vnetwork_dvpgs (rpc) If this variable is read-only (config: false) in the source YANG file, then _set_get_vnetwork_dvpgs is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_get_vnetwork_dvpgs() directly. YANG Description: Shows discovered distributed virtual port-groups """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=get_vnetwork_dvpgs.get_vnetwork_dvpgs, is_leaf=True, yang_name="get-vnetwork-dvpgs", rest_name="get-vnetwork-dvpgs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=False, extensions={u'tailf-common': {u'hidden': u'rpccmd', u'actionpoint': u'dvpg-name'}}, namespace='urn:brocade.com:mgmt:brocade-vswitch', defining_module='brocade-vswitch', yang_type='rpc', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """get_vnetwork_dvpgs must be of a type compatible with rpc""", 'defined-type': "rpc", 'generated-type': """YANGDynClass(base=get_vnetwork_dvpgs.get_vnetwork_dvpgs, is_leaf=True, yang_name="get-vnetwork-dvpgs", rest_name="get-vnetwork-dvpgs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=False, extensions={u'tailf-common': {u'hidden': u'rpccmd', u'actionpoint': u'dvpg-name'}}, namespace='urn:brocade.com:mgmt:brocade-vswitch', defining_module='brocade-vswitch', yang_type='rpc', is_config=True)""", }) self.__get_vnetwork_dvpgs = t if hasattr(self, '_set'): self._set()
0.005672
def load_variables(layout, types=None, levels=None, skip_empty=True, dataset=None, scope='all', **kwargs): ''' A convenience wrapper for one or more load_*_variables() calls. Args: layout (BIDSLayout): BIDSLayout containing variable files. types (str, list): Types of variables to retrieve. All valid values reflect the filename stipulated in the BIDS spec for each kind of variable. Valid values include: 'events', 'physio', 'stim', 'scans', 'participants', 'sessions', and 'regressors'. levels (str, list): Optional level(s) of variables to load. Valid values are 'run', 'session', 'subject', or 'dataset'. This is simply a shorthand way to specify types--e.g., 'run' will be converted to types=['events', 'physio', 'stim', 'regressors']. skip_empty (bool): Whether or not to skip empty Variables (i.e., where there are no rows/records in a file after applying any filtering operations like dropping NaNs). dataset (NodeIndex): An existing NodeIndex container to store the loaded data in. Can be used to iteratively construct a dataset that contains otherwise heterogeneous sets of variables. If None, a new NodeIndex is used. scope (str, list): The scope of the space to search for variables. See docstring for BIDSLayout for details and valid predefined values. kwargs: Optional keyword arguments to pass onto the individual load_*_variables() calls. Returns: A NodeIndex instance. Example: >>> load_variables(layout, ['events', 'physio'], subject='01') # returns all variables stored in _events.tsv and _physio.tsv.gz files # for runs that belong to subject with id '01'. ''' TYPES = ['events', 'physio', 'stim', 'scans', 'participants', 'sessions', 'regressors'] types = listify(types) if types is None: if levels is not None: types = [] lev_map = { 'run': ['events', 'physio', 'stim', 'regressors'], 'session': ['scans'], 'subject': ['sessions'], 'dataset': ['participants'] } [types.extend(lev_map[l.lower()]) for l in listify(levels)] else: types = TYPES bad_types = set(types) - set(TYPES) if bad_types: raise ValueError("Invalid variable types: %s" % bad_types) dataset = dataset or NodeIndex() run_types = list({'events', 'physio', 'stim', 'regressors'} - set(types)) type_flags = {t: False for t in run_types} if len(type_flags) < 4: _kwargs = kwargs.copy() _kwargs.update(type_flags) dataset = _load_time_variables(layout, dataset, scope=scope, **_kwargs) for t in ({'scans', 'sessions', 'participants'} & set(types)): kwargs.pop('suffix', None) # suffix is always one of values aboves dataset = _load_tsv_variables(layout, t, dataset, scope=scope, **kwargs) return dataset
0.000948
def set_header(self, header, value): """ Set header value """ # requests>=2.11 only accepts `str` or `bytes` header values # raising an exception here, instead of leaving it to `requests` makes # it easy to know where we passed a wrong header type in the code. if not isinstance(value, (str, bytes)): raise TypeError("header values must be str or bytes, but %s value has type %s" % (header, type(value))) self._headers[header] = value
0.006073
def execute_on_all_members(self, task): """ Executes a task on all of the known cluster members. :param task: (Task), the task executed on the all of the members. :return: (Map), :class:`~hazelcast.future.Future` tuples representing pending completion of the task on each member. """ return self.execute_on_members(self._client.cluster.get_member_list(), task)
0.00978
def adapter_update_nio_binding(self, adapter_number, nio): """ Update a port NIO binding. :param adapter_number: adapter number :param nio: NIO instance to add to the adapter """ if self.is_running(): try: yield from self.update_ubridge_udp_connection( "VBOX-{}-{}".format(self._id, adapter_number), self._local_udp_tunnels[adapter_number][1], nio) except IndexError: raise VirtualBoxError('Adapter {adapter_number} does not exist on VirtualBox VM "{name}"'.format( name=self._name, adapter_number=adapter_number ))
0.004071
def collect_variables(self, selections) -> None: """Apply method |ChangeItem.collect_variables| of the base class |ChangeItem| and also apply method |ExchangeItem.insert_variables| of class |ExchangeItem| to collect the relevant base variables handled by the devices of the given |Selections| object. >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> from hydpy import AddItem >>> item = AddItem( ... 'alpha', 'hland_v1', 'control.sfcf', 'control.rfcf', 0) >>> item.collect_variables(pub.selections) >>> land_dill = hp.elements.land_dill >>> control = land_dill.model.parameters.control >>> item.device2target[land_dill] is control.sfcf True >>> item.device2base[land_dill] is control.rfcf True >>> for device in sorted(item.device2base, key=lambda x: x.name): ... print(device) land_dill land_lahn_1 land_lahn_2 land_lahn_3 """ super().collect_variables(selections) self.insert_variables(self.device2base, self.basespecs, selections)
0.001663
def import_data(self, file_name='*', folder_name='.', head_row=0, index_col=0, convert_col=True, concat_files=False, save_file=True): """ Imports csv file(s) and stores the result in self.imported_data. Note ---- 1. If folder exists out of current directory, folder_name should contain correct regex 2. Assuming there's no file called "\*.csv" Parameters ---------- file_name : str CSV file to be imported. Defaults to '\*' - all csv files in the folder. folder_name : str Folder where file resides. Defaults to '.' - current directory. head_row : int Skips all rows from 0 to head_row-1 index_col : int Skips all columns from 0 to index_col-1 convert_col : bool Convert columns to numeric type concat_files : bool Appends data from files to result dataframe save_file : bool Specifies whether to save file or not. Defaults to True. Returns ------- pd.DataFrame() Dataframe containing imported data. """ # Create instance and import the data import_data_obj = Import_Data() import_data_obj.import_csv(file_name=file_name, folder_name=folder_name, head_row=head_row, index_col=index_col, convert_col=convert_col, concat_files=concat_files) # Store imported data in wrapper class self.imported_data = import_data_obj.data # Logging self.result['Import'] = { 'File Name': file_name, 'Folder Name': folder_name, 'Head Row': head_row, 'Index Col': index_col, 'Convert Col': convert_col, 'Concat Files': concat_files, 'Save File': save_file } if save_file: f = self.results_folder_name + '/imported_data-' + str(self.get_global_count()) + '.csv' self.imported_data.to_csv(f) self.result['Import']['Saved File'] = f else: self.result['Import']['Saved File'] = '' return self.imported_data
0.007799
def get_name(self, use_alias=True): """ Gets the name to reference the sorted field :return: the name to reference the sorted field :rtype: str """ if self.desc: direction = 'DESC' else: direction = 'ASC' if use_alias: return '{0} {1}'.format(self.field.get_identifier(), direction) return '{0} {1}'.format(self.field.get_select_sql(), direction)
0.004386
def sync_account(self, sync_message): """同步账户 Arguments: sync_message {[type]} -- [description] """ self.init_hold = sync_message['hold_available'] self.init_cash = sync_message['cash_available'] self.sell_available = copy.deepcopy(self.init_hold) self.history = [] self.cash = [self.init_cash] self.cash_available = self.cash[-1]
0.004796
def load(self, filename, **kwargs): """ Parse a file specified with the filename and return an numpy array Parameters ---------- filename : string A path of a file Returns ------- ndarray An instance of numpy array """ with open(filename, 'r') as f: return self.parse(f, **kwargs)
0.004914
def Create(name,template,group_id,network_id,cpu=None,memory=None,alias=None,password=None,ip_address=None, storage_type="standard",type="standard",primary_dns=None,secondary_dns=None, additional_disks=[],custom_fields=[],ttl=None,managed_os=False,description=None, source_server_password=None,cpu_autoscale_policy_id=None,anti_affinity_policy_id=None, packages=[],configuration_id=None,session=None): """Creates a new server. https://www.centurylinkcloud.com/api-docs/v2/#servers-create-server cpu and memory are optional and if not provided we pull from the default server size values associated with the provided group_id. Set ttl as number of seconds before server is to be terminated. Must be >3600 >>> d = clc.v2.Datacenter() >>> clc.v2.Server.Create(name="api2",cpu=1,memory=1, group_id=d.Groups().Get("Default Group").id, template=d.Templates().Search("centos-6-64")[0].id, network_id=d.Networks().networks[0].id).WaitUntilComplete() 0 """ if not alias: alias = clc.v2.Account.GetAlias(session=session) if not description: description = name if type.lower() != "baremetal": if not cpu or not memory: group = clc.v2.Group(id=group_id,alias=alias,session=session) if not cpu and group.Defaults("cpu"): cpu = group.Defaults("cpu") elif not cpu: raise(clc.CLCException("No default CPU defined")) if not memory and group.Defaults("memory"): memory = group.Defaults("memory") elif not memory: raise(clc.CLCException("No default Memory defined")) if type.lower() == "standard" and storage_type.lower() not in ("standard","premium"): raise(clc.CLCException("Invalid type/storage_type combo")) if type.lower() == "hyperscale" and storage_type.lower() != "hyperscale": raise(clc.CLCException("Invalid type/storage_type combo")) if type.lower() == "baremetal": type = "bareMetal" if ttl and ttl<=3600: raise(clc.CLCException("ttl must be greater than 3600 seconds")) if ttl: ttl = clc.v2.time_utils.SecondsToZuluTS(int(time.time())+ttl) # TODO - validate custom_fields as a list of dicts with an id and a value key # TODO - validate template exists # TODO - validate additional_disks as a list of dicts with a path, sizeGB, and type (partitioned,raw) keys # TODO - validate addition_disks path not in template reserved paths # TODO - validate antiaffinity policy id set only with type=hyperscale payload = { 'name': name, 'description': description, 'groupId': group_id, 'primaryDNS': primary_dns, 'secondaryDNS': secondary_dns, 'networkId': network_id, 'password': password, 'type': type, 'customFields': custom_fields } if type == 'bareMetal': payload.update({'configurationId': configuration_id, 'osType': template}) else: payload.update({'sourceServerId': template, 'isManagedOS': managed_os, 'ipAddress': ip_address, 'sourceServerPassword': source_server_password, 'cpu': cpu, 'cpuAutoscalePolicyId': cpu_autoscale_policy_id, 'memoryGB': memory, 'storageType': storage_type, 'antiAffinityPolicyId': anti_affinity_policy_id, 'additionalDisks': additional_disks, 'ttl': ttl, 'packages': packages}) return clc.v2.Requests(clc.v2.API.Call('POST','servers/%s' % (alias), json.dumps(payload), session=session), alias=alias, session=session)
0.03501
def padRect(rect, padTop, padBottom, padLeft, padRight, bounds, clipExcess = True): """ Pads a rectangle by the specified values on each individual side, ensuring the padded rectangle falls within the specified bounds. The input rectangle, bounds, and return value are all a tuple of (x,y,w,h). """ # Unpack the rectangle x, y, w, h = rect # Pad by the specified value x -= padLeft y -= padTop w += (padLeft + padRight) h += (padTop + padBottom) # Determine if we are clipping overflows/underflows or # shifting the centre of the rectangle to compensate if clipExcess == True: # Clip any underflows x = max(0, x) y = max(0, y) # Clip any overflows overflowY = max(0, (y + h) - bounds[0]) overflowX = max(0, (x + w) - bounds[1]) h -= overflowY w -= overflowX else: # Compensate for any underflows underflowX = max(0, 0 - x) underflowY = max(0, 0 - y) x += underflowX y += underflowY # Compensate for any overflows overflowY = max(0, (y + h) - bounds[0]) overflowX = max(0, (x + w) - bounds[1]) x -= overflowX w += overflowX y -= overflowY h += overflowY # If there are still overflows or underflows after our # modifications, we have no choice but to clip them x, y, w, h = padRect((x,y,w,h), 0, 0, 0, 0, bounds, True) # Re-pack the padded rect return (x,y,w,h)
0.054734
def get_type(bind): """ Detect the ideal type for the data, either using the explicit type definition or the format (for date, date-time, not supported by JSON). """ types = bind.types + [bind.schema.get('format')] for type_name in ('date-time', 'date', 'decimal', 'integer', 'boolean', 'number', 'string'): if type_name in types: return type_name return 'string'
0.002353
def set_of_vars(arg_plot): """Build set of needed variables. Args: arg_plot (str): string with variable names separated with ``,``. Returns: set of str: set of variables. """ return set(var for var in arg_plot.split(',') if var in phyvars.PLATES)
0.003534
def read_vcf(vcf_file, ref_file): """ Reads in a vcf/vcf.gz file and associated reference sequence fasta (to which the VCF file is mapped). Parses mutations, insertions, and deletions and stores them in a nested dict, see 'returns' for the dict structure. Calls with heterozygous values 0/1, 0/2, etc and no-calls (./.) are replaced with Ns at the associated sites. Positions are stored to correspond the location in the reference sequence in Python (numbering is transformed to start at 0) Parameters ---------- vcf_file : string Path to the vcf or vcf.gz file to be read in ref_file : string Path to the fasta reference file to be read in Returns -------- compress_seq : nested dict In the format: :: { 'reference':'AGCTCGA..A', 'sequences': { 'seq1':{4:'A', 7:'-'}, 'seq2':{100:'C'} }, 'insertions': { 'seq1':{4:'ATT'}, 'seq3':{1:'TT', 10:'CAG'} }, 'positions': [1,4,7,10,100...] } references : string String of the reference sequence read from the Fasta, to which the variable sites are mapped sequences : nested dict Dict containing sequence names as keys which map to dicts that have position as key and the single-base mutation (or deletion) as values insertions : nested dict Dict in the same format as the above, which stores insertions and their locations. The first base of the insertion is the same as whatever is currently in that position (Ref if no mutation, mutation in 'sequences' otherwise), so the current base can be directly replaced by the bases held here. positions : list Python list of all positions with a mutation, insertion, or deletion. """ #Programming Note: # Note on VCF Format # ------------------- # 'Insertion where there are also deletions' (special handling) # Ex: # REF ALT Seq1 Seq2 # GC GCC,G 1/1 2/2 # Insertions formatted differently - don't know how many bp match # the Ref (unlike simple insert below). Could be mutations, also. # 'Deletion' # Ex: # REF ALT # GC G # Alt does not have to be 1 bp - any length shorter than Ref. # 'Insertion' # Ex: # REF ALT # A ATT # First base always matches Ref. # 'No indel' # Ex: # REF ALT # A G #define here, so that all sub-functions can access them sequences = defaultdict(dict) insertions = defaultdict(dict) #Currently not used, but kept in case of future use. #TreeTime handles 2-3 base ambig codes, this will allow that. def getAmbigCode(bp1, bp2, bp3=""): bps = [bp1,bp2,bp3] bps.sort() key = "".join(bps) return { 'CT': 'Y', 'AG': 'R', 'AT': 'W', 'CG': 'S', 'GT': 'K', 'AC': 'M', 'AGT': 'D', 'ACG': 'V', 'ACT': 'H', 'CGT': 'B' }[key] #Parses a 'normal' (not hetero or no-call) call depending if insertion+deletion, insertion, #deletion, or single bp subsitution def parseCall(snps, ins, pos, ref, alt): #Insertion where there are also deletions (special handling) if len(ref) > 1 and len(alt)>len(ref): for i in range(len(ref)): #if the pos doesn't match, store in sequences if ref[i] != alt[i]: snps[pos+i] = alt[i] if alt[i] != '.' else 'N' #'.' = no-call #if about to run out of ref, store rest: if (i+1) >= len(ref): ins[pos+i] = alt[i:] #Deletion elif len(ref) > 1: for i in range(len(ref)): #if ref is longer than alt, these are deletion positions if i+1 > len(alt): snps[pos+i] = '-' #if not, there may be mutations else: if ref[i] != alt[i]: snps[pos+i] = alt[i] if alt[i] != '.' else 'N' #'.' = no-call #Insertion elif len(alt) > 1: ins[pos] = alt #No indel else: snps[pos] = alt #Parses a 'bad' (hetero or no-call) call depending on what it is def parseBadCall(snps, ins, pos, ref, ALT): #Deletion # REF ALT Seq1 Seq2 Seq3 # GCC G 1/1 0/1 ./. # Seq1 (processed by parseCall, above) will become 'G--' # Seq2 will become 'GNN' # Seq3 will become 'GNN' if len(ref) > 1: #Deleted part becomes Ns if gen[0] == '0' or gen[0] == '.': if gen[0] == '0': #if het, get first bp alt = str(ALT[int(gen[2])-1]) else: #if no-call, there is no alt, so just put Ns after 1st ref base alt = ref[0] for i in range(len(ref)): #if ref is longer than alt, these are deletion positions if i+1 > len(alt): snps[pos+i] = 'N' #if not, there may be mutations else: if ref[i] != alt[i]: snps[pos+i] = alt[i] if alt[i] != '.' else 'N' #'.' = no-call #If not deletion, need to know call type #if het, see if proposed alt is 1bp mutation elif gen[0] == '0': alt = str(ALT[int(gen[2])-1]) if len(alt)==1: #alt = getAmbigCode(ref,alt) #if want to allow ambig alt = 'N' #if you want to disregard ambig snps[pos] = alt #else a het-call insertion, so ignore. #else it's a no-call; see if all alts have a length of 1 #(meaning a simple 1bp mutation) elif len(ALT)==len("".join(ALT)): alt = 'N' snps[pos] = alt #else a no-call insertion, so ignore. #House code is *much* faster than pyvcf because we don't care about all info #about coverage, quality, counts, etc, which pyvcf goes to effort to parse #(and it's not easy as there's no standard ordering). Custom code can completely #ignore all of this. import gzip from Bio import SeqIO import numpy as np nsamp = 0 posLoc = 0 refLoc = 0 altLoc = 0 sampLoc = 9 #Use different openers depending on whether compressed opn = gzip.open if vcf_file.endswith(('.gz', '.GZ')) else open with opn(vcf_file, mode='rt') as f: for line in f: if line[0] != '#': #actual data - most common so first in 'if-list'! line = line.strip() dat = line.split('\t') POS = int(dat[posLoc]) REF = dat[refLoc] ALT = dat[altLoc].split(',') calls = np.array(dat[sampLoc:]) #get samples that differ from Ref at this site recCalls = {} for sname, sa in zip(samps, calls): if ':' in sa: #if proper VCF file (followed by quality/coverage info) gt = sa.split(':')[0] else: #if 'pseudo' VCF file (nextstrain output, or otherwise stripped) gt = sa if gt == '0' or gt == '1': #for haploid calls in VCF gt = '0/0' if gt == '0' else '1/1' #ignore if ref call: '.' or '0/0', depending on VCF if ('/' in gt and gt != '0/0') or ('|' in gt and gt != '0|0'): recCalls[sname] = gt #store the position and the alt for seq, gen in recCalls.items(): ref = REF pos = POS-1 #VCF numbering starts from 1, but Reference seq numbering #will be from 0 because it's python! #Accepts only calls that are 1/1, 2/2 etc. Rejects hets and no-calls if gen[0] != '0' and gen[2] != '0' and gen[0] != '.' and gen[2] != '.': alt = str(ALT[int(gen[0])-1]) #get the index of the alternate if seq not in sequences.keys(): sequences[seq] = {} parseCall(sequences[seq],insertions[seq], pos, ref, alt) #If is heterozygote call (0/1) or no call (./.) else: #alt will differ here depending on het or no-call, must pass original parseBadCall(sequences[seq],insertions[seq], pos, ref, ALT) elif line[0] == '#' and line[1] == 'C': #header line, get all the information header = line.strip().split('\t') posLoc = header.index("POS") refLoc = header.index('REF') altLoc = header.index('ALT') sampLoc = header.index('FORMAT')+1 samps = header[sampLoc:] samps = [ x.strip() for x in samps ] #ensure no leading/trailing spaces nsamp = len(samps) #else you are a comment line, ignore. #Gather all variable positions positions = set() for seq, muts in sequences.items(): positions.update(muts.keys()) #One or more seqs are same as ref! (No non-ref calls) So haven't been 'seen' yet if nsamp > len(sequences): missings = set(samps).difference(sequences.keys()) for s in missings: sequences[s] = {} refSeq = SeqIO.read(ref_file, format='fasta') refSeq = refSeq.upper() #convert to uppercase to avoid unknown chars later refSeqStr = str(refSeq.seq) compress_seq = {'reference':refSeqStr, 'sequences': sequences, 'insertions': insertions, 'positions': sorted(positions)} return compress_seq
0.010369
def place_svg_dict(self, x, y, svg_dict, layer_id, group=None): """Same as :meth:`place` but with a dictionary as :paramref:`svg_dict`. :param dict svg_dict: a dictionary returned by `xmltodict.parse() <https://github.com/martinblech/xmltodict>`__ :param dict group: a dictionary of values to add to the group the :paramref:`svg_dict` will be added to or :obj:`None` if nothing should be added """ if group is None: group = {} group_ = { "@transform": "translate({},{})".format(x, y), "g": list(svg_dict.values()) } group_.update(group) layer = self._get_layer(layer_id) layer["g"].append(group_)
0.002692
def is_valid_timestamp(date, unit='millis'): """ Checks that a number that represents a date as milliseconds is correct. """ assert isinstance(date, int), "Input is not instance of int" if unit is 'millis': return is_positive(date) and len(str(date)) == 13 elif unit is 'seconds': return is_positive(date) and len(str(date)) == 10 else: raise ValueError('Unknown unit "%s"' % unit)
0.002304
def read(self, size=None): """Reads a byte string from the file-like object at the current offset. The function will read a byte string of the specified size or all of the remaining data if no size was specified. Args: size (Optional[int]): number of bytes to read, where None is all remaining data. Returns: bytes: data read. Raises: IOError: if the read failed. OSError: if the read failed. """ if not self._is_open: raise IOError('Not opened.') if self._current_offset < 0: raise IOError('Invalid current offset value less than zero.') # The SleuthKit is not POSIX compliant in its read behavior. Therefore # pytsk3 will raise an IOError if the read offset is beyond the data size. if self._current_offset >= self._size: return b'' if size is None or self._current_offset + size > self._size: size = self._size - self._current_offset if self._tsk_attribute: data = self._tsk_file.read_random( self._current_offset, size, self._tsk_attribute.info.type, self._tsk_attribute.info.id) else: data = self._tsk_file.read_random(self._current_offset, size) # It is possible the that returned data size is not the same as the # requested data size. At this layer we don't care and this discrepancy # should be dealt with on a higher layer if necessary. self._current_offset += len(data) return data
0.004755
def _generate_nodes(self, name, command, parent=None, show_nested=False, commands=None): """Generate the relevant Sphinx nodes. Format a `click.Group` or `click.Command`. :param name: Name of command, as used on the command line :param command: Instance of `click.Group` or `click.Command` :param parent: Instance of `click.Context`, or None :param show_nested: Whether subcommands should be included in output :param commands: Display only listed commands or skip the section if empty :returns: A list of nested docutil nodes """ ctx = click.Context(command, info_name=name, parent=parent) # Title section = nodes.section( '', nodes.title(text=name), ids=[nodes.make_id(ctx.command_path)], names=[nodes.fully_normalize_name(ctx.command_path)]) # Summary source_name = ctx.command_path result = statemachine.ViewList() lines = _format_command(ctx, show_nested, commands) for line in lines: LOG.debug(line) result.append(line, source_name) self.state.nested_parse(result, 0, section) # Subcommands if show_nested: commands = _filter_commands(ctx, commands) for command in commands: section.extend( self._generate_nodes(command.name, command, ctx, show_nested)) return [section]
0.004217
def collect(self): """Collect statistics from /proc/self/mountstats. Currently, we do fairly naive parsing and do not actually check the statvers value returned by mountstats. """ if str_to_bool(self.config['use_sudo']): if not os.access(self.config['sudo_cmd'], os.X_OK): self.log.error("Cannot find or exec %s" % self.config['sudo_cmd']) return None command = [self.config['sudo_cmd'], '/bin/cat', self.MOUNTSTATS] p = subprocess.Popen(command, stdout=subprocess.PIPE).communicate()[0][:-1] lines = p.split("\n") else: if not os.access(self.MOUNTSTATS, os.R_OK): self.log.error("Cannot read path %s" % self.MOUNTSTATS) return None f = open(self.MOUNTSTATS) lines = f.readlines() f.close() path = None for line in lines: tokens = line.split() if len(tokens) == 0: continue if tokens[0] == 'device': path = tokens[4] skip = False if self.exclude_reg: skip = self.exclude_reg.match(path) if self.include_reg: skip = not self.include_reg.match(path) if skip: self.log.debug("Ignoring %s", path) else: self.log.debug("Keeping %s", path) path = path.replace('.', '_') path = path.replace('/', '_') elif skip: # If we are in a skip state, don't pay any attention to # anything that isn't the next device line continue elif tokens[0] == 'events:': for i in range(0, len(self.EVENTS_MAP)): metric_name = "%s.events.%s" % (path, self.EVENTS_MAP[i]) metric_value = long(tokens[i + 1]) self.publish_counter(metric_name, metric_value) elif tokens[0] == 'bytes:': for i in range(0, len(self.BYTES_MAP)): metric_name = "%s.bytes.%s" % (path, self.BYTES_MAP[i]) metric_value = long(tokens[i + 1]) self.publish_counter(metric_name, metric_value) elif tokens[0] == 'xprt:': proto = tokens[1] if not self.XPRT_MAP[proto]: self.log.error("Unknown protocol %s", proto) continue for i in range(0, len(self.XPRT_MAP[proto])): metric_name = "%s.xprt.%s.%s" % (path, proto, self.XPRT_MAP[proto][i]) metric_value = long(tokens[i + 2]) self.publish_counter(metric_name, metric_value) elif tokens[0][:-1] in self.RPCS_MAP: rpc = tokens[0][:-1] ops = long(tokens[1]) rtt = long(tokens[7]) exe = long(tokens[8]) metric_fmt = "%s.rpc.%s.%s" ops_name = metric_fmt % (path, rpc.lower(), 'ops') rtt_name = metric_fmt % (path, rpc.lower(), 'rtt') exe_name = metric_fmt % (path, rpc.lower(), 'exe') self.publish_counter(ops_name, ops) self.publish_counter(rtt_name, rtt) self.publish_counter(exe_name, exe)
0.00056
def pformat(self, prefix=()): ''' Makes a pretty ASCII format of the data, suitable for displaying in a console or saving to a text file. Returns a list of lines. ''' nan = float("nan") def sformat(segment, stat): FMT = "n={0}, mean={1}, p50/95={2}/{3}, max={4}" line_segs = [segment] for s in [stat]: p = s.get_percentiles() p50, p95 = p.get(0.50, nan), p.get(0.95, nan) line_segs.append(FMT.format(s.n, s.mean, p50, p95, s.max)) return '{0}: {1}'.format(*line_segs) lines = [] for path in sorted(self.path_stats.keys()): lines.append('=====================') for seg, stat in zip(path, self.path_stats[path]): lines.append(sformat(seg, stat)) return lines
0.00223
def get_pullrequest(self, project, repository, pull_request_id): """ Retrieve a pull request. The authenticated user must have REPO_READ permission for the repository that this pull request targets to call this resource. :param project: :param repository: :param pull_request_id: the ID of the pull request within the repository :return: """ url = 'rest/api/1.0/projects/{project}/repos/{repository}/pull-requests/{pullRequestId}'.format(project=project, repository=repository, pullRequestId=pull_request_id) return self.get(url)
0.008485
def encipher(self,string): """Encipher string using Polybius square cipher according to initialised key. Example:: ciphertext = Polybius('APCZWRLFBDKOTYUQGENHXMIVS',5,'MKSBU').encipher(plaintext) :param string: The string to encipher. :returns: The enciphered string. The ciphertext will be twice the length of the plaintext. """ string = self.remove_punctuation(string)#,filter='[^'+self.key+']') ret = '' for c in range(0,len(string)): ret += self.encipher_char(string[c]) return ret
0.018333
def predict(self, X, b=0.5, pos_label=1, return_probs=False): """Return numpy array of class predictions for X based on predicted marginal probabilities. :param X: Input data. :param b: Decision boundary *for binary setting only*. :type b: float :param pos_label: Positive class index *for binary setting only*. Default: 1 :type pos_label: int :param return_probs: If True, return predict probability. Default: False :type return_probs: bool """ if self._check_input(X): X = self._preprocess_data(X) Y_prob = self.marginals(X) if self.cardinality > 2: Y_pred = Y_prob.argmax(axis=1) + 1 if return_probs: return Y_pred, Y_prob else: return Y_pred if pos_label not in [1, 2]: raise ValueError("pos_label must have values in {1,2}.") self.logger.info(f"Using positive label class {pos_label} with threshold {b}") Y_pred = np.array( [pos_label if p[pos_label - 1] > b else 3 - pos_label for p in Y_prob] ) if return_probs: return Y_pred, Y_prob else: return Y_pred
0.004815
def batch_get_item(self, batch_list): """ Return a set of attributes for a multiple items in multiple tables using their primary keys. :type batch_list: :class:`boto.dynamodb.batch.BatchList` :param batch_list: A BatchList object which consists of a list of :class:`boto.dynamoddb.batch.Batch` objects. Each Batch object contains the information about one batch of objects that you wish to retrieve in this request. """ request_items = self.dynamize_request_items(batch_list) return self.layer1.batch_get_item(request_items, object_hook=item_object_hook)
0.002821
def get_time(): ''' Get the current system time. :return: The current time in 24 hour format :rtype: str CLI Example: .. code-block:: bash salt '*' timezone.get_time ''' ret = salt.utils.mac_utils.execute_return_result('systemsetup -gettime') return salt.utils.mac_utils.parse_return(ret)
0.002976
def fcoe_get_interface_output_fcoe_intf_list_fcoe_intf_ifindex(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") fcoe_get_interface = ET.Element("fcoe_get_interface") config = fcoe_get_interface output = ET.SubElement(fcoe_get_interface, "output") fcoe_intf_list = ET.SubElement(output, "fcoe-intf-list") fcoe_intf_fcoe_port_id_key = ET.SubElement(fcoe_intf_list, "fcoe-intf-fcoe-port-id") fcoe_intf_fcoe_port_id_key.text = kwargs.pop('fcoe_intf_fcoe_port_id') fcoe_intf_ifindex = ET.SubElement(fcoe_intf_list, "fcoe-intf-ifindex") fcoe_intf_ifindex.text = kwargs.pop('fcoe_intf_ifindex') callback = kwargs.pop('callback', self._callback) return callback(config)
0.003793
def verify_selenium_server_is_running(self): """ Start the Selenium standalone server, if it isn't already running. Returns a tuple of two elements: * A boolean which is True if the server is now running * The Popen object representing the process so it can be terminated later; if the server was already running, this value is "None" """ selenium_jar = settings.SELENIUM_JAR_PATH if len(selenium_jar) < 5: self.stdout.write('You need to configure SELENIUM_JAR_PATH') return False, None _jar_dir, jar_name = os.path.split(selenium_jar) # Is it already running? process = Popen(['ps -e | grep "%s"' % jar_name[:-4]], shell=True, stdout=PIPE) (grep_output, _grep_error) = process.communicate() lines = grep_output.split('\n') for line in lines: if jar_name in line: self.stdout.write('Selenium standalone server is already running') return True, None self.stdout.write('Starting the Selenium standalone server') output = OutputMonitor() selenium_process = Popen(['java', '-jar', selenium_jar], stdout=open(os.devnull, 'w'), stderr=output.stream.input) ready_log_line = 'Selenium Server is up and running' if not output.wait_for(ready_log_line, 10): self.stdout.write('Timeout starting the Selenium server:\n') self.stdout.write('\n'.join(output.lines)) return False, None return True, selenium_process
0.001803
def models(cls, api_version=DEFAULT_API_VERSION): """Module depends on the API version: * 2017-07-01: :mod:`v2017_07_01.models<azure.mgmt.containerservice.v2017_07_01.models>` * 2018-03-31: :mod:`v2018_03_31.models<azure.mgmt.containerservice.v2018_03_31.models>` * 2018-08-01-preview: :mod:`v2018_08_01_preview.models<azure.mgmt.containerservice.v2018_08_01_preview.models>` * 2018-09-30-preview: :mod:`v2018_09_30_preview.models<azure.mgmt.containerservice.v2018_09_30_preview.models>` * 2019-02-01: :mod:`v2019_02_01.models<azure.mgmt.containerservice.v2019_02_01.models>` """ if api_version == '2017-07-01': from .v2017_07_01 import models return models elif api_version == '2018-03-31': from .v2018_03_31 import models return models elif api_version == '2018-08-01-preview': from .v2018_08_01_preview import models return models elif api_version == '2018-09-30-preview': from .v2018_09_30_preview import models return models elif api_version == '2019-02-01': from .v2019_02_01 import models return models raise NotImplementedError("APIVersion {} is not available".format(api_version))
0.00602
def pipe_urlbuilder(context=None, _INPUT=None, conf=None, **kwargs): """A url module that builds a url. Loopable. Parameters ---------- context : pipe2py.Context object _INPUT : pipeforever pipe or an iterable of items or fields conf : { 'PARAM': [ {'key': {'value': <'order'>}, 'value': {'value': <'desc'>}}, {'key': {'value': <'page'>}, 'value': {'value': <'2'>}} ] 'PATH': {'type': 'text', 'value': <''>}, 'BASE': {'type': 'text', 'value': <'http://site.com/feed.xml'>}, } Yields ------ _OUTPUT : url """ pkwargs = cdicts(opts, kwargs) get_params = get_funcs(conf.get('PARAM', []), **kwargs)[0] get_paths = get_funcs(conf.get('PATH', []), **pkwargs)[0] get_base = get_funcs(conf['BASE'], listize=False, **pkwargs)[0] parse_params = utils.parse_params splits = get_splits(_INPUT, funcs=[get_params, get_paths, get_base]) parsed = utils.dispatch(splits, *get_dispatch_funcs('pass', parse_params)) _OUTPUT = starmap(parse_result, parsed) return _OUTPUT
0.000917
def plot_estimates(positions, estimates): """ Plots density, and probability estimates. Parameters ---------- positions : iterable of float Paragraph positions for which densities, and probabilities were estimated. estimates : six-tuple of (sequence of float) Estimates of P(relevant), p(position), p(position | relevant), P(position, relevant), and P(relevant | position). Returns ------- matplotlib.figure.Figure The plotted figure. """ x = list(positions) fig = plt.figure(figsize=(SUBPLOT_WIDTH * len(estimates), FIGURE_HEIGHT)) for i, (title, y) in enumerate(zip(ESTIMATE_TITLES, estimates)): ax = fig.add_subplot(1, len(estimates), i + 1) ax.plot(x, y, linewidth=LINE_WIDTH, c=LINE_COLOR) ax.title.set_text(title) ax.set_xlim(0, 1) ax.set_xlabel("position") ax.set_ylabel("$\\hat P$") ax.grid() return fig
0.003135
def create_branch(profile, name, branch_off): """Create a branch. Args: profile A profile generated from ``simplygithub.authentication.profile``. Such profiles tell this module (i) the ``repo`` to connect to, and (ii) the ``token`` to connect with. name The name of the new branch. branch_off The name of a branch to create the new branch off of. Returns: A dict with data about the new branch. """ branch_off_sha = get_branch_sha(profile, branch_off) ref = "heads/" + name data = refs.create_ref(profile, ref, branch_off_sha) return data
0.001497
def infer_x(self, y): """Infer probable x from input y @param y the desired output for infered x. @return a list of probable x """ OptimizedInverseModel.infer_x(self, y) if self.fmodel.size() == 0: return self._random_x() x_guesses = [self._guess_x_simple(y)[0]] result = [] for xg in x_guesses: res = cma.fmin(self._error, xg, self.cmaes_sigma, options={'bounds':[self.lower, self.upper], 'verb_log':0, 'verb_disp':False, 'maxfevals':self.maxfevals, 'seed': self.seed}) result.append((res[1], res[0])) return [xi for fi, xi in sorted(result)]
0.0125
def run(ctx, commandline): """Run command with environment variables present.""" file = ctx.obj['FILE'] dotenv_as_dict = dotenv_values(file) if not commandline: click.echo('No command given.') exit(1) ret = run_command(commandline, dotenv_as_dict) exit(ret)
0.003367
def get_scope_list(self) -> list: """ Return the list of all contained scope from global to local """ # by default only return scoped name lstparent = [self] p = self.get_parent() while p is not None: lstparent.append(p) p = p.get_parent() return lstparent
0.005814
def SvcStop(self) -> None: """ Called when the service is being shut down. """ # tell the SCM we're shutting down # noinspection PyUnresolvedReferences self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING) # fire the stop event win32event.SetEvent(self.h_stop_event)
0.005952
def _maybe_match_name(a, b): """ Try to find a name to attach to the result of an operation between a and b. If only one of these has a `name` attribute, return that name. Otherwise return a consensus name if they match of None if they have different names. Parameters ---------- a : object b : object Returns ------- name : str or None See Also -------- pandas.core.common.consensus_name_attr """ a_has = hasattr(a, 'name') b_has = hasattr(b, 'name') if a_has and b_has: if a.name == b.name: return a.name else: # TODO: what if they both have np.nan for their names? return None elif a_has: return a.name elif b_has: return b.name return None
0.001244
def count_with_multiplier(groups, multiplier): """ Update group counts with multiplier This is for handling atom counts on groups like (OH)2 :param groups: iterable of Group/Element :param multiplier: the number to multiply by """ counts = collections.defaultdict(float) for group in groups: for element, count in group.count().items(): counts[element] += count*multiplier return counts
0.002268
def _get_value_from_config(self, section, name): """Loads the default from the config. Returns _no_value if it doesn't exist""" conf = configuration.get_config() try: value = conf.get(section, name) except (NoSectionError, NoOptionError, KeyError): return _no_value return self.parse(value)
0.008403
def set(self, data_type, values): """Update/Create a new attribute and set its value(s). Args:: data_type : attribute data type (see constants SDC.xxx) values : attribute value(s); specify a list to create a multi-valued attribute; a string valued attribute can be created by setting 'data_type' to SDC.CHAR8 and 'values' to the corresponding string Returns:: None C library equivalent : SDsetattr Attributes can also be written like ordinary python attributes, using the dot notation. See "High level attribute access". """ try: n_values = len(values) except: n_values = 1 values = [values] if data_type == SDC.CHAR8: buf = _C.array_byte(n_values) # Allow values to be passed as a string. # Noop if a list is passed. values = list(values) for n in range(n_values): values[n] = ord(values[n]) elif data_type in [SDC.UCHAR8, SDC.UINT8]: buf = _C.array_byte(n_values) elif data_type == SDC.INT8: buf = _C.array_int8(n_values) elif data_type == SDC.INT16: buf = _C.array_int16(n_values) elif data_type == SDC.UINT16: buf = _C.array_uint16(n_values) elif data_type == SDC.INT32: buf = _C.array_int32(n_values) elif data_type == SDC.UINT32: buf = _C.array_uint32(n_values) elif data_type == SDC.FLOAT32: buf = _C.array_float32(n_values) elif data_type == SDC.FLOAT64: buf = _C.array_float64(n_values) else: raise HDF4Error("set: illegal or unimplemented data_type") for n in range(n_values): buf[n] = values[n] status = _C.SDsetattr(self._obj._id, self._name, data_type, n_values, buf) _checkErr('set', status, 'illegal attribute') # Init index following attribute creation. self._index = _C.SDfindattr(self._obj._id, self._name) _checkErr('find', self._index, 'illegal attribute')
0.001284
def transfer(ctx, _to='address', _value='uint256', returns=STATUS): """ Standardized Contract API: function transfer(address _to, uint256 _value) returns (bool _success) """ log.DEV('In Fungible.transfer') if ctx.accounts[ctx.msg_sender] >= _value: ctx.accounts[ctx.msg_sender] -= _value ctx.accounts[_to] += _value ctx.Transfer(ctx.msg_sender, _to, _value) return OK else: return INSUFFICIENTFUNDS
0.003953
def normalize(es, esnull): """normalize the ES(S,pi) and the observed ES(S), separately rescaling the positive and negative scores by dividing the mean of the ES(S,pi). return: NES, NESnull """ nEnrichmentScores =np.zeros(es.shape) nEnrichmentNulls=np.zeros(esnull.shape) esnull_pos = (esnull * (esnull >= 0)).mean(axis=1) esnull_neg = (esnull * (esnull < 0)).mean(axis=1) # calculate nESnulls for i in range(esnull.shape[0]): # NES if es[i] >= 0: nEnrichmentScores[i] = es[i] / esnull_pos[i] else: nEnrichmentScores[i] = - es[i] / esnull_neg[i] # NESnull for j in range(esnull.shape[1]): if esnull[i,j] >= 0: nEnrichmentNulls[i,j] = esnull[i,j] / esnull_pos[i] else: nEnrichmentNulls[i,j] = - esnull[i,j] / esnull_neg[i] return nEnrichmentScores, nEnrichmentNulls
0.009514
def get_fields_by_class(cls, field_class): """ Return a list of field names matching a field class :param field_class: field class object :return: list """ ret = [] for key, val in getattr(cls, '_fields').items(): if isinstance(val, field_class): ret.append(key) return ret
0.005556
def clear_boxes(self): """ Clear all boxes """ self.tmin_box.Clear() self.tmin_box.SetStringSelection("") if self.current_fit: self.tmin_box.SetItems(self.T_list) self.tmin_box.SetSelection(-1) self.tmax_box.Clear() self.tmax_box.SetStringSelection("") if self.current_fit: self.tmax_box.SetItems(self.T_list) self.tmax_box.SetSelection(-1) self.fit_box.Clear() self.fit_box.SetStringSelection("") if self.s in self.pmag_results_data['specimens'] and self.pmag_results_data['specimens'][self.s]: self.fit_box.SetItems( list([x.name for x in self.pmag_results_data['specimens'][self.s]])) for parameter in ['dec', 'inc', 'n', 'mad', 'dang', 'alpha95']: COMMAND = "self.s%s_window.SetValue('')" % parameter exec(COMMAND) COMMAND = "self.s%s_window.SetBackgroundColour(wx.Colour('grey'))" % parameter exec(COMMAND)
0.004798
def read_ipv6_frag(self, length, extension): """Read Fragment Header for IPv6. Structure of IPv6-Frag header [RFC 8200]: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Next Header | Reserved | Fragment Offset |Res|M| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identification | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Octets Bits Name Description 0 0 frag.next Next Header 1 8 - Reserved 2 16 frag.offset Fragment Offset 3 29 - Reserved 3 31 frag.mf More Flag 4 32 frag.id Identification """ if length is None: length = len(self) _next = self._read_protos(1) _temp = self._read_fileng(1) _offm = self._read_binary(2) _ipid = self._read_unpack(4) ipv6_frag = dict( next=_next, length=8, offset=int(_offm[:13], base=2), mf=True if int(_offm[15], base=2) else False, id=_ipid, ) length -= ipv6_frag['length'] ipv6_frag['packet'] = self._read_packet(header=8, payload=length) if extension: self._protos = None return ipv6_frag return self._decode_next_layer(ipv6_frag, _next, length)
0.001179
def benchmark_method(f): "decorator to turn f into a factory of benchmarks" @wraps(f) def inner(name, *args, **kwargs): return Benchmark(name, f, args, kwargs) return inner
0.005102
def delete(filething): """ delete(filething) Arguments: filething (filething) Raises: mutagen.MutagenError Remove tags from a file. """ t = OggTheora(filething) filething.fileobj.seek(0) t.delete(filething)
0.003891
def get(self, key, default=None): """ Returns the contents of the named key. **key** is a :ref:`type-string`, and the returned values will either be ``list`` of key contents or ``None`` if no key was found. :: >>> font.lib["public.glyphOrder"] ["A", "B", "C"] It is important to understand that any changes to the returned key contents will not be reflected in the Lib object. If one wants to make a change to the key contents, one should do the following:: >>> lib = font.lib["public.glyphOrder"] >>> lib.remove("A") >>> font.lib["public.glyphOrder"] = lib """ return super(BaseLib, self).get(key, default)
0.002667
def _find_bounds_1d(data, x): """ Find the index of the lower bound where ``x`` should be inserted into ``a`` to maintain order. The index of the upper bound is the index of the lower bound plus 2. Both bound indices must be within the array. Parameters ---------- data : 1D `~numpy.ndarray` The 1D array to search. x : float The value to insert. Returns ------- index : int The index of the lower bound. """ idx = np.searchsorted(data, x) if idx == 0: idx0 = 0 elif idx == len(data): # pragma: no cover idx0 = idx - 2 else: idx0 = idx - 1 return idx0
0.002581
def lambda_handler(event, context): """Run the script.""" body = event.get('body', dict()) events = body.get('events', list()) source_ip = str(event.get('source_ip', '')) if len(events) == 0: return {'success': False, 'message': "No events sent in"} status = process_events(events, source_ip) msg = "Wrote {} events to the cloud".format(len(events)) return {'success': True, 'message': msg}
0.002326
def _calcEnergyStretchTwist(self, diff, es, which): r"""Calculate energy for ``estype='ST'`` using a difference vector. It is called in :meth:`dnaEY.getGlobalDeformationEnergy` for energy calculation of each frame. Parameters ---------- diff : numpy.ndarray Array of difference between minimum and current parameter values. .. math:: \mathbf{x} = \begin{bmatrix} (L_i - L_0) & (\phi_i - \phi_0) \end{bmatrix} es : numpy.ndarray Elastic matrix. See in :meth:`dnaEY.getStretchTwistModulus` about elastic matrix. which : str For which type of motions, energy will be calculated. See ``which`` parameter in :meth:`dnaEY.getGlobalDeformationEnergy` for keywords. Return ------ energy : float Deformation free energy value """ if which not in self.enGlobalTypes[:5]: raise ValueError('{0} is not a supported energy keywords.\n Use any of the following: \n {1}'.format( which, self.enGlobalTypes[:5])) energy = None if which == 'full': temp = np.matrix(diff) energy = 0.5 * ((temp * es) * temp.T) energy = energy[0,0] if which == 'diag': energy = 0.5 * ((diff[0] ** 2 * es[0][0]) + (diff[1] ** 2 * es[1][1])) if which == 'stretch': energy = 0.5 * (diff[0] ** 2 * es[0][0]) if which == 'twist': energy = 0.5 * (diff[1] ** 2 * es[1][1]) if which == 'st_coupling': energy = 0.5 * (diff[0] * diff[1] * es[0][1]) return energy
0.003984
def dict(value, allow_empty = False, json_serializer = None, **kwargs): """Validate that ``value`` is a :class:`dict <python:dict>`. .. hint:: If ``value`` is a string, this validator will assume it is a JSON object and try to convert it into a :class:`dict <python:dict>` You can override the JSON serializer used by passing it to the ``json_serializer`` property. By default, will utilize the Python :class:`json <json>` encoder/decoder. :param value: The value to validate. :param allow_empty: If ``True``, returns :obj:`None <python:None>` if ``value`` is empty. If ``False``, raises a :class:`EmptyValueError <validator_collection.errors.EmptyValueError>` if ``value`` is empty. Defaults to ``False``. :type allow_empty: :class:`bool <python:bool>` :param json_serializer: The JSON encoder/decoder to use to deserialize a string passed in ``value``. If not supplied, will default to the Python :class:`json <python:json>` encoder/decoder. :type json_serializer: callable :returns: ``value`` / :obj:`None <python:None>` :rtype: :class:`dict <python:dict>` / :obj:`None <python:None>` :raises EmptyValueError: if ``value`` is empty and ``allow_empty`` is ``False`` :raises CannotCoerceError: if ``value`` cannot be coerced to a :class:`dict <python:dict>` :raises NotADictError: if ``value`` is not a :class:`dict <python:dict>` """ original_value = value if not value and not allow_empty: raise errors.EmptyValueError('value (%s) was empty' % value) elif not value: return None if json_serializer is None: json_serializer = json_ if isinstance(value, str): try: value = json_serializer.loads(value) except Exception: raise errors.CannotCoerceError( 'value (%s) cannot be coerced to a dict' % original_value ) value = dict(value, json_serializer = json_serializer) if not isinstance(value, dict_): raise errors.NotADictError('value (%s) is not a dict' % original_value) return value
0.003635
def read(self, sources, cache_duration=None): """ Queues the config sources to be read later (when config is accessed), or reads immediately if config has already been accessed. :param file/str/list sources: Config source URL (http/https), source string, file name, or file pointer, or list of the other sources. If file source does not exist, it is ignored. :param int cache_duration: Default cache durationg for for URL source only. Optionally cache the URL content for the given duration (seconds) to avoid downloading too often. This sets the default for all reads now and subsequent reads. :return: True if all sources were successfully read or will be read, otherwise False """ if cache_duration is not None: self._cache_duration = cache_duration return super(RemoteConfig, self).read(sources)
0.008911
def run(self): ''' Main loop of the ConCache, starts updates in intervals and answers requests from the MWorkers ''' context = zmq.Context() # the socket for incoming cache requests creq_in = context.socket(zmq.REP) creq_in.setsockopt(zmq.LINGER, 100) creq_in.bind('ipc://' + self.cache_sock) # the socket for incoming cache-updates from workers cupd_in = context.socket(zmq.SUB) cupd_in.setsockopt(zmq.SUBSCRIBE, b'') cupd_in.setsockopt(zmq.LINGER, 100) cupd_in.bind('ipc://' + self.update_sock) # the socket for the timer-event timer_in = context.socket(zmq.SUB) timer_in.setsockopt(zmq.SUBSCRIBE, b'') timer_in.setsockopt(zmq.LINGER, 100) timer_in.connect('ipc://' + self.upd_t_sock) poller = zmq.Poller() poller.register(creq_in, zmq.POLLIN) poller.register(cupd_in, zmq.POLLIN) poller.register(timer_in, zmq.POLLIN) # our serializer serial = salt.payload.Serial(self.opts.get('serial', '')) # register a signal handler signal.signal(signal.SIGINT, self.signal_handler) # secure the sockets from the world self.secure() log.info('ConCache started') while self.running: # we check for new events with the poller try: socks = dict(poller.poll(1)) except KeyboardInterrupt: self.stop() except zmq.ZMQError as zmq_err: log.error('ConCache ZeroMQ-Error occurred') log.exception(zmq_err) self.stop() # check for next cache-request if socks.get(creq_in) == zmq.POLLIN: msg = serial.loads(creq_in.recv()) log.debug('ConCache Received request: %s', msg) # requests to the minion list are send as str's if isinstance(msg, six.string_types): if msg == 'minions': # Send reply back to client reply = serial.dumps(self.minions) creq_in.send(reply) # check for next cache-update from workers if socks.get(cupd_in) == zmq.POLLIN: new_c_data = serial.loads(cupd_in.recv()) # tell the worker to exit #cupd_in.send(serial.dumps('ACK')) # check if the returned data is usable if not isinstance(new_c_data, list): log.error('ConCache Worker returned unusable result') del new_c_data continue # the cache will receive lists of minions # 1. if the list only has 1 item, its from an MWorker, we append it # 2. if the list contains another list, its from a CacheWorker and # the currently cached minions are replaced with that list # 3. anything else is considered malformed try: if not new_c_data: log.debug('ConCache Got empty update from worker') continue data = new_c_data[0] if isinstance(data, six.string_types): if data not in self.minions: log.debug('ConCache Adding minion %s to cache', new_c_data[0]) self.minions.append(data) elif isinstance(data, list): log.debug('ConCache Replacing minion list from worker') self.minions = data except IndexError: log.debug('ConCache Got malformed result dict from worker') del new_c_data log.info('ConCache %s entries in cache', len(self.minions)) # check for next timer-event to start new jobs if socks.get(timer_in) == zmq.POLLIN: sec_event = serial.loads(timer_in.recv()) # update the list every 30 seconds if int(sec_event % 30) == 0: cw = CacheWorker(self.opts) cw.start() self.stop() creq_in.close() cupd_in.close() timer_in.close() context.term() log.debug('ConCache Shutting down')
0.001115
def get_acs(self): """ Returns an instance of the Asset Control Service. """ import predix.security.acs acs = predix.security.acs.AccessControl() return acs
0.009804
def pmt_angles(self): """A list of PMT directions sorted by PMT channel, on DU-1, floor-1""" if self._pmt_angles == []: mask = (self.pmts.du == 1) & (self.pmts.floor == 1) self._pmt_angles = self.pmts.dir[mask] return self._pmt_angles
0.007092
def sanitize_filename(filename): """preserve the file ending, but replace the name with a random token """ # TODO: fix broken splitext (it reveals everything of the filename after the first `.` - doh!) token = generate_drop_id() name, extension = splitext(filename) if extension: return '%s%s' % (token, extension) else: return token
0.005362
def home_mode_set_state(self, state, **kwargs): """Set the state of Home Mode""" # It appears that surveillance station needs lowercase text # true/false for the on switch if state not in (HOME_MODE_ON, HOME_MODE_OFF): raise ValueError('Invalid home mode state') api = self._api_info['home_mode'] payload = dict({ 'api': api['name'], 'method': 'Switch', 'version': api['version'], 'on': state, '_sid': self._sid, }, **kwargs) response = self._get_json_with_retry(api['url'], payload) if response['success']: return True return False
0.002857
def _get_users(self, user_base): """"Get users from LDAP""" results = self._search( getattr(self, '_%s_user_base' % user_base), '(objectClass=*)', ['*'], scope=ldap.SCOPE_ONELEVEL ) for dn, attrs in results: uid = attrs.get('uid')[0].decode('utf-8', 'ignore') getattr(self, '_%s_users' % user_base)[uid] = FreeIPAUser(dn, attrs) # print(attrs) log.debug('%s users: %s' % (user_base.capitalize(), len(getattr(self, '_%s_users' % user_base))))
0.00708
def setRecordSet( self, recordSet ): """ Sets the record set instance that this widget will use. :param recordSet | <orb.RecordSet> """ if ( recordSet ): self.setQuery( recordSet.query() ) self.setGroupBy( recordSet.groupBy() ) self.setPageSize( recordSet.pageSize() ) self.setSortBy( recordSet.order() ) self.uiPagedCHK.setChecked( recordSet.isPaged() ) else: self.setQuery(Q()) self.setGroupBy('') self.setPageSize(100) self.setSortBy('') self.uiPagedCHK.setChecked( False )
0.029289
def _check_equal_shape(name, static_shape, dynamic_shape, static_target_shape, dynamic_target_shape=None): """Check that source and target shape match, statically if possible.""" static_target_shape = tf.TensorShape(static_target_shape) if tensorshape_util.is_fully_defined( static_shape) and tensorshape_util.is_fully_defined(static_target_shape): if static_shape != static_target_shape: raise ValueError("{}: required shape {} but found {}". format(name, static_target_shape, static_shape)) return None else: if dynamic_target_shape is None: if tensorshape_util.is_fully_defined(static_target_shape): dynamic_target_shape = tensorshape_util.as_list(static_target_shape) else: raise ValueError("{}: cannot infer target shape: no dynamic shape " "specified and static shape {} is not fully defined". format(name, static_target_shape)) return assert_util.assert_equal( dynamic_shape, dynamic_target_shape, message=("{}: required shape {}".format(name, static_target_shape)))
0.007335
def prefix(prefix): """Returns a dictionary of all environment variables starting with the given prefix, lower cased and stripped. """ d = {} e = lower_dict(environ.copy()) prefix = prefix.lower() for k, v in e.items(): try: if k.startswith(prefix): k = k[len(prefix):] d[k] = v except AttributeError: pass return d
0.002364
def collectSingleContribs(self, measure='LFP'): """ Collect single cell data and save them to HDF5 file. The function will also return signals generated by all cells Parameters ---------- measure : str {'LFP', 'CSD'}: Either 'LFP' or 'CSD'. Returns ------- numpy.ndarray output of all neurons in population, axis 0 correspond to neuron ind """ try: assert(self.recordSingleContribFrac <= 1 and self.recordSingleContribFrac >= 0) except AssertionError as ae: raise ae, 'recordSingleContribFrac {} not in [0, 1]'.format( self.recordSingleContribFrac) if not self.recordSingleContribFrac: return else: #reconstruct RANK_CELLINDICES of all RANKs for controlling #communication if self.recordSingleContribFrac == 1.: SAMPLESIZE = self.POPULATION_SIZE RANK_CELLINDICES = [] for i in range(SIZE): RANK_CELLINDICES += [self.CELLINDICES[ self.CELLINDICES % SIZE == i]] else: SAMPLESIZE = int(self.recordSingleContribFrac * self.POPULATION_SIZE) RANK_CELLINDICES = [] for i in range(SIZE): ids = self.CELLINDICES[self.CELLINDICES % SIZE == i] RANK_CELLINDICES += [ids[ids < SAMPLESIZE]] #gather data on this RANK if RANK_CELLINDICES[RANK].size > 0: for i, cellindex in enumerate(RANK_CELLINDICES[RANK]): if i == 0: data_temp = np.zeros([RANK_CELLINDICES[RANK].size] + list(self.output[cellindex ][measure].shape), dtype=np.float32) data_temp[i, ] = self.output[cellindex][measure] if RANK == 0: #container of all output data = np.zeros([SAMPLESIZE] + list(self.output[cellindex][measure].shape), dtype=np.float32) #fill in values from this RANK if RANK_CELLINDICES[0].size > 0: for j, k in enumerate(RANK_CELLINDICES[0]): data[k, ] = data_temp[j, ] #iterate over all other RANKs for i in range(1, len(RANK_CELLINDICES)): if RANK_CELLINDICES[i].size > 0: #receive on RANK 0 from all other RANK data_temp = np.zeros([RANK_CELLINDICES[i].size] + list(self.output[cellindex ][measure].shape), dtype=np.float32) COMM.Recv([data_temp, MPI.FLOAT], source=i, tag=13) #fill in values for j, k in enumerate(RANK_CELLINDICES[i]): data[k, ] = data_temp[j, ] else: data = None if RANK_CELLINDICES[RANK].size > 0: #send to RANK 0 COMM.Send([data_temp, MPI.FLOAT], dest=0, tag=13) if RANK == 0: #save all single-cell data to file fname = os.path.join(self.populations_path, '%s_%ss.h5' % (self.y, measure)) f = h5py.File(fname, 'w') f.create_dataset('data', data=data, compression=4) f['srate'] = self.output[0]['srate'] f.close() assert(os.path.isfile(fname)) print('file %s_%ss.h5 ok' % (self.y, measure)) COMM.Barrier() return data
0.004896
def request_callback_answer( self, chat_id: Union[int, str], message_id: int, callback_data: bytes ): """Use this method to request a callback answer from bots. This is the equivalent of clicking an inline button containing callback data. Args: chat_id (``int`` | ``str``): Unique identifier (int) or username (str) of the target chat. For your personal cloud (Saved Messages) you can simply use "me" or "self". For a contact that exists in your Telegram address book you can use his phone number (str). message_id (``int``): The message id the inline keyboard is attached on. callback_data (``bytes``): Callback data associated with the inline button you want to get the answer from. Returns: The answer containing info useful for clients to display a notification at the top of the chat screen or as an alert. Raises: :class:`RPCError <pyrogram.RPCError>` in case of a Telegram RPC error. ``TimeoutError`` if the bot fails to answer within 10 seconds. """ return self.send( functions.messages.GetBotCallbackAnswer( peer=self.resolve_peer(chat_id), msg_id=message_id, data=callback_data ), retries=0, timeout=10 )
0.006085
def update_alarm(self, entity, alarm, criteria=None, disabled=False, label=None, name=None, metadata=None): """ Updates an existing alarm on the given entity. """ return entity.update_alarm(alarm, criteria=criteria, disabled=disabled, label=label, name=name, metadata=metadata)
0.012012
def replace_anc(dataset, parent_dataset): """Replace *dataset* the *parent_dataset*'s `ancillary_variables` field.""" if parent_dataset is None: return current_dsid = DatasetID.from_dict(dataset.attrs) for idx, ds in enumerate(parent_dataset.attrs['ancillary_variables']): if current_dsid == DatasetID.from_dict(ds.attrs): parent_dataset.attrs['ancillary_variables'][idx] = dataset return
0.002252
def add_records(self, domain, records): """ Adds the records to this domain. Each record should be a dict with the following keys: - type (required) - name (required) - data (required) - ttl (optional) - comment (optional) - priority (required for MX and SRV records; forbidden otherwise) """ if isinstance(records, dict): # Single record passed records = [records] dom_id = utils.get_id(domain) uri = "/domains/%s/records" % dom_id body = {"records": records} resp, resp_body = self._async_call(uri, method="POST", body=body, error_class=exc.DomainRecordAdditionFailed, has_response=False) records = resp_body.get("response", {}).get("records", []) for record in records: record["domain_id"] = dom_id return [CloudDNSRecord(self, record, loaded=False) for record in records if record]
0.002938
def hybrid_forward(self, F, samples, valid_length, outputs, scores, beam_alive_mask, states): """ Parameters ---------- F samples : NDArray or Symbol The current samples generated by beam search. Shape (batch_size, beam_size, L) valid_length : NDArray or Symbol The current valid lengths of the samples outputs: NDArray or Symbol Decoder output (unnormalized) scores of the current step. Shape (batch_size * beam_size, V) scores : NDArray or Symbol The previous scores. Shape (batch_size, beam_size) beam_alive_mask : NDArray or Symbol Shape (batch_size, beam_size) states : nested structure of NDArrays/Symbols Inner NDArrays have shape (batch_size * beam_size, ...) Returns ------- new_samples : NDArray or Symbol The updated samples. Shape (batch_size, beam_size, L + 1) new_valid_length : NDArray or Symbol Valid lengths of the samples. Shape (batch_size, beam_size) new_scores : NDArray or Symbol Shape (batch_size, beam_size) chosen_word_ids : NDArray or Symbol The chosen word ids of the step. Shape (batch_size, beam_size). If it's negative, no word will be appended to the beam. beam_alive_mask : NDArray or Symbol Shape (batch_size, beam_size) new_states : nested structure of NDArrays/Symbols Inner NDArrays have shape (batch_size * beam_size, ...) """ beam_size = self._beam_size # outputs: (batch_size, beam_size, vocab_size) outputs = outputs.reshape(shape=(-4, -1, beam_size, 0)) smoothed_probs = (outputs / self._temperature).softmax(axis=2) log_probs = F.log_softmax(outputs, axis=2).reshape(-3, -1) # (batch_size, beam_size) chosen_word_ids = F.sample_multinomial(smoothed_probs, dtype=np.int32) chosen_word_ids = F.where(beam_alive_mask, chosen_word_ids, -1*F.ones_like(beam_alive_mask)) chosen_word_log_probs = log_probs[mx.nd.arange(log_probs.shape[0]), chosen_word_ids.reshape(-1)].reshape(-4, -1, beam_size) # Don't update for finished beams new_scores = scores + F.where(beam_alive_mask, chosen_word_log_probs, F.zeros_like(chosen_word_log_probs)) new_valid_length = valid_length + beam_alive_mask # Update the samples and vaild_length new_samples = F.concat(samples, chosen_word_ids.expand_dims(2), dim=2) # Update the states new_states = states # Update the alive mask. beam_alive_mask = beam_alive_mask * (chosen_word_ids != self._eos_id) return new_samples, new_valid_length, new_scores,\ chosen_word_ids, beam_alive_mask, new_states
0.002302
def handle_ref(attr, language=DEFAULT_LANG): """ Receives something like: { "$ref": "#/files/description/1" }, Or: { "$ref": "#/files/fix/39" } And returns the contents of the description or fix file. :param attr: A dict containing a reference :param language: The user's language (en, es, etc.) :return: Markdown referenced by the attr """ ref = attr.get('$ref', None) if ref is None: raise NotFoundException('No $ref in attribute') _, files, _type, _id = ref.split('/') if 'files' != files: raise NotFoundException('Mandatory "files" path was not found in $ref') if _type not in ('fix', 'description'): raise NotFoundException('Mandatory fix or description not found in $ref') if not _id.isdigit(): raise NotFoundException('Mandatory integer ID not found in $ref') file_path = os.path.join(DBVuln.get_json_path(language=language), _type, '%s.md' % _id) if not os.path.exists(file_path): raise NotFoundException('$ref points to a non existing file') return file(file_path).read()
0.003021
def delete(self, table, condition): """.. :py:method:: Usage:: >>> delete('hospital', {'id': '12de3wrv'}) delete from hospital where id='12de3wrv'; """ sql = "delete from {}".format(table) sql += self.parse_condition(condition) + ";" super(PGWrapper, self).execute(sql, result=False)
0.005587
def update(self, resource, force=False, timeout=-1): """ Updates the Deployment Server resource. The properties that are omitted (not included as part of the request body) are ignored. Args: resource (dict): Object to update. force: If set to true, the operation completes despite any problems with network connectivity or errors on the resource itself. The default is false. timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView, just stops waiting for its completion. Returns: Updated resource. """ return self._client.update(resource, timeout=timeout, force=force)
0.006242
def parse_from_dict(json_dict): """ Given a Unified Uploader message, parse the contents and return a MarketHistoryList instance. :param dict json_dict: A Unified Uploader message as a dict. :rtype: MarketOrderList :returns: An instance of MarketOrderList, containing the orders within. """ history_columns = json_dict['columns'] history_list = MarketHistoryList( upload_keys=json_dict['uploadKeys'], history_generator=json_dict['generator'], ) for rowset in json_dict['rowsets']: generated_at = parse_datetime(rowset['generatedAt']) region_id = rowset['regionID'] type_id = rowset['typeID'] history_list.set_empty_region(region_id, type_id, generated_at) for row in rowset['rows']: history_kwargs = _columns_to_kwargs( SPEC_TO_KWARG_CONVERSION, history_columns, row) historical_date = parse_datetime(history_kwargs['historical_date']) history_kwargs.update({ 'type_id': type_id, 'region_id': region_id, 'historical_date': historical_date, 'generated_at': generated_at, }) history_list.add_entry(MarketHistoryEntry(**history_kwargs)) return history_list
0.000762
def _set_options(self, qobj_config=None, backend_options=None): """Set the backend options for all experiments in a qobj""" # Reset default options self._initial_unitary = self.DEFAULT_OPTIONS["initial_unitary"] self._chop_threshold = self.DEFAULT_OPTIONS["chop_threshold"] if backend_options is None: backend_options = {} # Check for custom initial statevector in backend_options first, # then config second if 'initial_unitary' in backend_options: self._initial_unitary = np.array(backend_options['initial_unitary'], dtype=complex) elif hasattr(qobj_config, 'initial_unitary'): self._initial_unitary = np.array(qobj_config.initial_unitary, dtype=complex) if self._initial_unitary is not None: # Check the initial unitary is actually unitary shape = np.shape(self._initial_unitary) if len(shape) != 2 or shape[0] != shape[1]: raise BasicAerError("initial unitary is not a square matrix") iden = np.eye(len(self._initial_unitary)) u_dagger_u = np.dot(self._initial_unitary.T.conj(), self._initial_unitary) norm = np.linalg.norm(u_dagger_u - iden) if round(norm, 10) != 0: raise BasicAerError("initial unitary is not unitary") # Check the initial statevector is normalized # Check for custom chop threshold # Replace with custom options if 'chop_threshold' in backend_options: self._chop_threshold = backend_options['chop_threshold'] elif hasattr(qobj_config, 'chop_threshold'): self._chop_threshold = qobj_config.chop_threshold
0.001621
def autoreg(self, data: ['SASdata', str] = None, by: [str, list] = None, cls: [str, list] = None, hetero: str = None, model: str = None, nloptions: str = None, output: [str, bool, 'SASdata'] = None, restrict: str = None, test: str = None, procopts: str = None, stmtpassthrough: str = None, **kwargs: dict) -> 'SASresults': """ Python method to call the AUTOREG procedure Documentation link: :param data: SASdata object or string. This parameter is required. :parm by: The by variable can be a string or list type. :parm cls: The cls variable can be a string or list type. It refers to the categorical, or nominal variables. :parm hetero: The hetero variable can only be a string type. :parm model: The model variable can only be a string type. :parm nloptions: The nloptions variable can only be a string type. :parm output: The output variable can be a string, boolean or SASdata type. The member name for a boolean is "_output". :parm restrict: The restrict variable can only be a string type. :parm test: The test variable can only be a string type. :parm procopts: The procopts variable is a generic option available for advanced use. It can only be a string type. :parm stmtpassthrough: The stmtpassthrough variable is a generic option available for advanced use. It can only be a string type. :return: SAS Result Object """
0.011009
def p_file_cr_value_1(self, p): """file_cr_value : TEXT""" if six.PY2: p[0] = p[1].decode(encoding='utf-8') else: p[0] = p[1]
0.011561
def nlerp_quat(from_quat, to_quat, percent): """Return normalized linear interpolation of two quaternions. Less computationally expensive than slerp (which not implemented in this lib yet), but does not maintain a constant velocity like slerp. """ result = lerp_quat(from_quat, to_quat, percent) result.normalize() return result
0.002793
def _sync_io(self): """Update the stream with changes to the file object contents.""" if self._file_epoch == self.file_object.epoch: return if self._io.binary: contents = self.file_object.byte_contents else: contents = self.file_object.contents self._set_stream_contents(contents) self._file_epoch = self.file_object.epoch
0.004902
def result_to_dict(raw_result): """ Parse raw result from fetcher into readable dictionary Args: raw_result (dict) - raw data from `fetcher` Returns: dict - readable dictionary """ result = {} for channel_index, channel in enumerate(raw_result): channel_id, channel_name = channel[0], channel[1] channel_result = { 'id': channel_id, 'name': channel_name, 'movies': [] } for movie in channel[2]: channel_result['movies'].append({ 'title': movie[1], 'start_time': datetime.fromtimestamp(movie[2]), 'end_time': datetime.fromtimestamp(movie[2] + movie[3]), 'inf': True if movie[3] else False, }) result[channel_id] = channel_result return result
0.001166
def _getEndpoint(self, add_tags=None): """ Override Build Loggly's RESTful API endpoint """ return 'https://logs-01.loggly.com/bulk/{0}/tag/{1}/'.format( self.custom_token, self._implodeTags(add_tags=add_tags) )
0.007246