text
stringlengths
78
104k
score
float64
0
0.18
def corrwith(self, other, axis=0, drop=False, method='pearson'): """ Compute pairwise correlation between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float .. versionadded:: 0.24.0 Returns ------- Series Pairwise correlations. See Also ------- DataFrame.corr """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(lambda x: other.corr(x, method=method), axis=axis) other = other._get_numeric_data() left, right = this.align(other, join='inner', copy=False) if axis == 1: left = left.T right = right.T if method == 'pearson': # mask missing values left = left + right * 0 right = right + left * 0 # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom elif method in ['kendall', 'spearman'] or callable(method): def c(x): return nanops.nancorr(x[0], x[1], method=method) correl = Series(map(c, zip(left.values.T, right.values.T)), index=left.columns) else: raise ValueError("Invalid method {method} was passed, " "valid methods are: 'pearson', 'kendall', " "'spearman', or callable". format(method=method)) if not drop: # Find non-matching labels along the given axis # and append missing correlations (GH 22375) raxis = 1 if axis == 0 else 0 result_index = (this._get_axis(raxis). union(other._get_axis(raxis))) idx_diff = result_index.difference(correl.index) if len(idx_diff) > 0: correl = correl.append(Series([np.nan] * len(idx_diff), index=idx_diff)) return correl
0.00065
def empty(self, name, **kwargs): """Create an array. Keyword arguments as per :func:`zarr.creation.empty`.""" return self._write_op(self._empty_nosync, name, **kwargs)
0.010471
def _linkUser(self, user): """Set the UID of the current Contact in the User properties and update all relevant own properties. """ KEY = "linked_contact_uid" username = user.getId() contact = self.getContactByUsername(username) # User is linked to another contact (fix in UI) if contact and contact.UID() != self.UID(): raise ValueError("User '{}' is already linked to Contact '{}'" .format(username, contact.Title())) # User is linked to multiple other contacts (fix in Data) if isinstance(contact, list): raise ValueError("User '{}' is linked to multiple Contacts: '{}'" .format(username, ",".join( map(lambda x: x.Title(), contact)))) # XXX: Does it make sense to "remember" the UID as a User property? tool = user.getTool() try: user.getProperty(KEY) except ValueError: logger.info("Adding User property {}".format(KEY)) tool.manage_addProperty(KEY, "", "string") # Set the UID as a User Property uid = self.UID() user.setMemberProperties({KEY: uid}) logger.info("Linked Contact UID {} to User {}".format( user.getProperty(KEY), username)) # Set the Username self.setUsername(user.getId()) # Update the Email address from the user self.setEmailAddress(user.getProperty("email")) # somehow the `getUsername` index gets out of sync self.reindexObject() # N.B. Local owner role and client group applies only to client # contacts, but not lab contacts. if IClient.providedBy(self.aq_parent): # Grant local Owner role self._addLocalOwnerRole(username) # Add user to "Clients" group self._addUserToGroup(username, group="Clients") return True
0.001005
def _place_order(self, side, product_id='BTC-USD', client_oid=None, type=None, stp=None, price=None, size=None, funds=None, time_in_force=None, cancel_after=None, post_only=None): """`<https://docs.exchange.coinbase.com/#orders>`_""" data = { 'side':side, 'product_id':product_id, 'client_oid':client_oid, 'type':type, 'stp':stp, 'price':price, 'size':size, 'funds':funds, 'time_in_force':time_in_force, 'cancel_after':cancel_after, 'post_only':post_only } return self._post('orders', data=data)
0.029262
def _transform_constant_sequence(self, seq): """ Transform a frozenset or tuple. """ should_transform = is_a(self.types) if not any(filter(should_transform, flatten(seq))): # Tuple doesn't contain any transformable strings. Ignore. yield LOAD_CONST(seq) return for const in seq: if should_transform(const): yield from self.transform_stringlike(const) elif isinstance(const, (tuple, frozenset)): yield from self._transform_constant_sequence(const) else: yield LOAD_CONST(const) if isinstance(seq, tuple): yield BUILD_TUPLE(len(seq)) else: assert isinstance(seq, frozenset) yield BUILD_TUPLE(len(seq)) yield LOAD_CONST(frozenset) yield ROT_TWO() yield CALL_FUNCTION(1)
0.002162
def is_pre_prepare_time_acceptable(self, pp: PrePrepare, sender: str) -> bool: """ Returns True or False depending on the whether the time in PRE-PREPARE is acceptable. Can return True if time is not acceptable but sufficient PREPAREs are found to support the PRE-PREPARE :param pp: :return: """ key = (pp.viewNo, pp.ppSeqNo) if key in self.requested_pre_prepares: # Special case for requested PrePrepares return True correct = self.is_pre_prepare_time_correct(pp, sender) if not correct: if key in self.pre_prepares_stashed_for_incorrect_time and \ self.pre_prepares_stashed_for_incorrect_time[key][-1]: self.logger.debug('{} marking time as correct for {}'.format(self, pp)) correct = True else: self.logger.warning('{} found {} to have incorrect time.'.format(self, pp)) return correct
0.004
def unsplat(f: Callable[[Iterable], A]) -> Callable[..., A]: """Convert a function taking a single iterable argument into a function taking multiple arguments. Args: f: Any function taking a single iterable argument Returns: A function that accepts multiple arguments. Each argument of this function is passed as an element of an iterable to ``f``. Example: $ def f(a): $ return a[0] + a[1] + a[2] $ $ f([1, 2, 3]) # 6 $ g = unsplat(f) $ g(1, 2, 3) # 6 """ def unsplatted(*args): return f(args) return unsplatted
0.004754
def plot_lines(f, x, samples, ax=None, **kwargs): r""" Plot a representative set of functions to sample Additionally, if a list of log-evidences are passed, along with list of functions, and list of samples, this function plots the probability mass function for all models marginalised according to the evidences. Parameters ---------- f: function function :math:`f(x;\theta)` (or list of functions for each model) with dependent variable :math:`x`, parameterised by :math:`\theta`. x: 1D array-like `x` values to evaluate :math:`f(x;\theta)` at. samples: 2D array-like :math:`\theta` samples (or list of :math:`\theta` samples) to evaluate :math:`f(x;\theta)` at. `shape = (nsamples, npars)` ax: axes object, optional :class:`matplotlib.axes._subplots.AxesSubplot` to plot the contours onto. If unsupplied, then :func:`matplotlib.pyplot.gca()` is used to get the last axis used, or create a new one. logZ: 1D array-like, optional log-evidences of each model if multiple models are passed. Should be same length as the list `f`, and need not be normalised. Default: `numpy.ones_like(f)` weights: 1D array-like, optional sample weights (or list of weights), if desired. Should have length same as `samples.shape[0]`. Default: `numpy.ones_like(samples)` ntrim: int, optional Approximate number of samples to trim down to, if desired. Useful if the posterior is dramatically oversampled. Default: None cache: str, optional File root for saving previous calculations for re-use parallel, tqdm_args: see docstring for :func:`fgivenx.parallel.parallel_apply` kwargs: further keyword arguments Any further keyword arguments are plotting keywords that are passed to :func:`fgivenx.plot.plot_lines`. """ logZ = kwargs.pop('logZ', None) weights = kwargs.pop('weights', None) ntrim = kwargs.pop('ntrim', None) cache = kwargs.pop('cache', '') parallel = kwargs.pop('parallel', False) tqdm_kwargs = kwargs.pop('tqdm_kwargs', {}) fsamps = compute_samples(f, x, samples, logZ=logZ, weights=weights, ntrim=ntrim, parallel=parallel, cache=cache, tqdm_kwargs=tqdm_kwargs) fgivenx.plot.plot_lines(x, fsamps, ax, **kwargs)
0.000403
def force_unicode(raw): '''Try really really hard to get a Unicode copy of a string. First try :class:`BeautifulSoup.UnicodeDammit` to try to force to Unicode; if that fails, assume UTF-8 encoding, and ignore all errors. :param str raw: string to coerce :return: Unicode approximation of `raw` :returntype: :class:`unicode` ''' converted = UnicodeDammit(raw, isHTML=True) if not converted.unicode: converted.unicode = unicode(raw, 'utf8', errors='ignore') encoding_m = encoding_re.match(converted.unicode) if encoding_m: converted.unicode = \ encoding_m.group('start_xml') + \ encoding_m.group('remainder') return converted.unicode
0.001374
def ResolveObject(self, document): '''Tries to locate a document in the archive. This function tries to locate the document inside the archive. It returns a tuple where the first element is zero if the function was successful, and the second is the UnitInfo for that document. The UnitInfo is used to retrieve the document contents ''' if self.file: path = os.path.abspath(document) return chmlib.chm_resolve_object(self.file, path) else: return (1, None)
0.003604
def _partition(iter_dims, data_sources): """ Partition data sources into 1. Dictionary of data sources associated with radio sources. 2. List of data sources to feed multiple times. 3. List of data sources to feed once. """ src_nr_vars = set(source_var_types().values()) iter_dims = set(iter_dims) src_data_sources = collections.defaultdict(list) feed_many = [] feed_once = [] for ds in data_sources: # Is this data source associated with # a radio source (point, gaussian, etc.?) src_int = src_nr_vars.intersection(ds.shape) if len(src_int) > 1: raise ValueError("Data source '{}' contains multiple " "source types '{}'".format(ds.name, src_int)) elif len(src_int) == 1: # Yep, record appropriately and iterate src_data_sources[src_int.pop()].append(ds) continue # Are we feeding this data source multiple times # (Does it possess dimensions on which we iterate?) if len(iter_dims.intersection(ds.shape)) > 0: feed_many.append(ds) continue # Assume this is a data source that we only feed once feed_once.append(ds) return src_data_sources, feed_many, feed_once
0.001537
def mgmt_request(self, message, operation, op_type=None, node=None, callback=None, **kwargs): """Run a request/response operation. These are frequently used for management tasks against a $management node, however any node name can be specified and the available options will depend on the target service. :param message: The message to send in the management request. :type message: ~uamqp.message.Message :param operation: The type of operation to be performed. This value will be service-specific, but common values include READ, CREATE and UPDATE. This value will be added as an application property on the message. :type operation: bytes :param op_type: The type on which to carry out the operation. This will be specific to the entities of the service. This value will be added as an application property on the message. :type op_type: bytes :param node: The target node. Default is `b"$management"`. :type node: bytes :param timeout: Provide an optional timeout in milliseconds within which a response to the management request must be received. :type timeout: int :param callback: The function to process the returned parameters of the management request including status code and a description if available. This can be used to reformat the response or raise an error based on content. The function must take 3 arguments - status code, response message and description. :type callback: ~callable[int, bytes, ~uamqp.message.Message] :param status_code_field: Provide an alternate name for the status code in the response body which can vary between services due to the spec still being in draft. The default is `b"statusCode"`. :type status_code_field: bytes :param description_fields: Provide an alternate name for the description in the response body which can vary between services due to the spec still being in draft. The default is `b"statusDescription"`. :type description_fields: bytes :rtype: ~uamqp.message.Message """ while not self.auth_complete(): time.sleep(0.05) response = self._session.mgmt_request( message, operation, op_type=op_type, node=node, callback=callback, encoding=self._encoding, debug=self._debug_trace, **kwargs) return response
0.006211
def remove_duplicates(list_to_prune: List) -> List: """Removes duplicates from a list while preserving order of the items. :param list_to_prune: the list being pruned of duplicates :return: The pruned list """ temp_dict = collections.OrderedDict() for item in list_to_prune: temp_dict[item] = None return list(temp_dict.keys())
0.00274
def aggregate_task_lm_losses(hparams, problem_hparams, logits, feature_name, feature): """LM loss for multiproblems.""" summaries = [] vocab_size = problem_hparams.vocab_size[feature_name] if vocab_size is not None and hasattr(hparams, "vocab_divisor"): vocab_size += (-vocab_size) % hparams.vocab_divisor modality = problem_hparams.modality[feature_name] loss = hparams.loss.get(feature_name, modalities.get_loss(modality)) weights_fn = hparams.weights_fn.get( feature_name, modalities.get_weights_fn(modality)) loss_num = 0. loss_den = 0. for task in hparams.problem.task_list: loss_num_, loss_den_ = loss( logits, feature, lambda x: common_layers.weights_multi_problem_all(x, task.task_id), # pylint: disable=cell-var-from-loop hparams, vocab_size, weights_fn) loss_num += loss_num_ loss_den += loss_den_ loss_val = loss_num_ / tf.maximum(1.0, loss_den_) summaries.append([task.name+"_loss", loss_val]) return loss_num, loss_den, summaries
0.011424
def get_attributes(self, template_pack=TEMPLATE_PACK): """ Used by crispy_forms_tags to get helper attributes """ items = { 'form_method': self.form_method.strip(), 'form_tag': self.form_tag, 'form_style': self.form_style.strip(), 'form_show_errors': self.form_show_errors, 'help_text_inline': self.help_text_inline, 'error_text_inline': self.error_text_inline, 'html5_required': self.html5_required, 'form_show_labels': self.form_show_labels, 'disable_csrf': self.disable_csrf, 'label_class': self.label_class, 'field_class': self.field_class, 'include_media': self.include_media } if template_pack == 'bootstrap4': bootstrap_size_match = re.findall('col-(xl|lg|md|sm)-(\d+)', self.label_class) if bootstrap_size_match: if template_pack == 'bootstrap4': offset_pattern = 'offset-%s-%s' else: offset_pattern = 'col-%s-offset-%s' items['bootstrap_checkbox_offsets'] = [offset_pattern % m for m in bootstrap_size_match] else: bootstrap_size_match = re.findall('col-(lg|md|sm|xs)-(\d+)', self.label_class) if bootstrap_size_match: if template_pack == 'bootstrap4': offset_pattern = 'offset-%s-%s' else: offset_pattern = 'col-%s-offset-%s' items['bootstrap_checkbox_offsets'] = [offset_pattern % m for m in bootstrap_size_match] items['attrs'] = {} if self.attrs: items['attrs'] = self.attrs.copy() if self.form_action: items['attrs']['action'] = self.form_action.strip() if self.form_id: items['attrs']['id'] = self.form_id.strip() if self.form_class: # uni_form TEMPLATE PACK has a uniForm class by default if template_pack == 'uni_form': items['attrs']['class'] = "uniForm %s" % self.form_class.strip() else: items['attrs']['class'] = self.form_class.strip() else: if template_pack == 'uni_form': items['attrs']['class'] = self.attrs.get('class', '') + " uniForm" if self.form_group_wrapper_class: items['attrs']['form_group_wrapper_class'] = self.form_group_wrapper_class items['flat_attrs'] = flatatt(items['attrs']) if self.inputs: items['inputs'] = self.inputs if self.form_error_title: items['form_error_title'] = self.form_error_title.strip() if self.formset_error_title: items['formset_error_title'] = self.formset_error_title.strip() for attribute_name, value in self.__dict__.items(): if attribute_name not in items and attribute_name not in ['layout', 'inputs'] and not attribute_name.startswith('_'): items[attribute_name] = value return items
0.004189
def get_input_string_port(self, port_name, default=None): """ Get input string port value :param port_name: :param default: :return: :rtype: """ if self.__string_input_ports: return self.__string_input_ports.get(port_name, default) return default
0.006211
def get_gradebook_column_query_session(self, proxy): """Gets the ``OsidSession`` associated with the gradebook column query service. arg: proxy (osid.proxy.Proxy): a proxy return: (osid.grading.GradebookColumnQuerySession) - a ``GradebookColumnQuerySession`` raise: NullArgument - ``proxy`` is ``null`` raise: OperationFailed - unable to complete request raise: Unimplemented - ``supports_gradebook_column_query()`` is ``false`` *compliance: optional -- This method must be implemented if ``supports_gradebook_column_query()`` is ``true``.* """ if not self.supports_gradebook_column_query(): raise errors.Unimplemented() # pylint: disable=no-member return sessions.GradebookColumnQuerySession(proxy=proxy, runtime=self._runtime)
0.004566
def _ParseStringOption(cls, options, argument_name, default_value=None): """Parses a string command line argument. Args: options (argparse.Namespace): parser options. argument_name (str): name of the command line argument. default_value (Optional[str]): default value of the command line argument. Returns: str: command line argument value or the default value if the command line argument is not set Raises: BadConfigOption: if the command line argument value cannot be converted to a Unicode string. """ argument_value = getattr(options, argument_name, None) if argument_value is None: return default_value if isinstance(argument_value, py2to3.BYTES_TYPE): encoding = sys.stdin.encoding # Note that sys.stdin.encoding can be None. if not encoding: encoding = locale.getpreferredencoding() if not encoding: encoding = cls._PREFERRED_ENCODING try: argument_value = argument_value.decode(encoding) except UnicodeDecodeError as exception: raise errors.BadConfigOption(( 'Unable to convert option: {0:s} to Unicode with error: ' '{1!s}.').format(argument_name, exception)) elif not isinstance(argument_value, py2to3.UNICODE_TYPE): raise errors.BadConfigOption( 'Unsupported option: {0:s} string type required.'.format( argument_name)) return argument_value
0.006761
def calibrate_dates(chron, calib_curve, d_r, d_std, cutoff=0.0001, normal_distr=False, t_a=[3], t_b=[4]): """Get density of calendar dates for chron date segment in core Parameters ---------- chron : DatedProxy-like calib_curve : CalibCurve or list of CalibCurves d_r : scalar or ndarray Carbon reservoir offset. d_std : scalar or ndarray Carbon reservoir offset error standard deviation. cutoff : scalar, optional Unknown. normal_distr : Bool, optional Use normal distribution for date errors. If False, then use Student's t-distribution. t_a : scalar or ndarray, optional Student's t-distribution parameter, a. t_a - 1 must equal t_b. t_b : scalar or ndarray, optional Student's t-distribution parameter, b. t_a - 1 must equal t_b. Returns ------- depth : ndarray Depth of dated sediment sample. probs : list of 2d arrays Density of calendar age for each dated sediment sample. For each sediment sample, the 2d array has two columns, the first is the calendar age. The second column is the density for that calendar age. """ # Python version of .bacon.calib() on line 908 in Bacon.R # .bacon.calib - line 908 # rcmean = 4128; w2 = 4225; t_a=3; t_b=4 # test = d_cal(cc = calib_curve.rename(columns = {0:'a', 1:'b', 2:'c'}), rcmean = 4128, w2 = 4225, t_a=t_a, # t_b=t_b, cutoff=cutoff, normal = normal) # Line 959 of Bacon.R # calib = list(dets.iloc[:, 3]) # Now Bacon goes and checks the ncol in the dets See line #960 in Bacon.R # Line #973 # TODO(brews): Check that `normal_dist` is used and documented correctly in docstring above. # TODO(brews): Check whether we call returned values densities, freqs or what options we should have. n = len(chron.depth) calib_curve = np.array(calib_curve) t_a = np.array(t_a) t_b = np.array(t_b) assert t_b - 1 == t_a d_r = np.array(d_r) d_std = np.array(d_std) if len(t_a) == 1: t_a = np.repeat(t_a, n) if len(t_b) == 1: t_b = np.repeat(t_b, n) if len(d_r) == 1: d_r = np.repeat(d_r, n) if len(d_std) == 1: d_std = np.repeat(d_std, n) if len(calib_curve) == 1: calib_curve = np.repeat(calib_curve, n) calib_probs = [] rcmean = chron.age - d_r w2 = chron.error ** 2 + d_std ** 2 for i in range(n): age_realizations = d_cal(calib_curve[i], rcmean=rcmean[i], w2=w2[i], t_a=t_a[i], t_b=t_b[i], cutoff=cutoff, normal_distr=normal_distr) calib_probs.append(age_realizations) return np.array(chron.depth), calib_probs
0.002193
def find_descriptor(self, uuid): """Return the first child descriptor found that has the specified UUID. Will return None if no descriptor that matches is found. """ for desc in self.list_descriptors(): if desc.uuid == uuid: return desc return None
0.006309
def PrivateKeyFromWIF(wif): """ Get the private key from a WIF key Args: wif (str): The wif key Returns: bytes: The private key """ if wif is None or len(wif) is not 52: raise ValueError('Please provide a wif with a length of 52 bytes (LEN: {0:d})'.format(len(wif))) data = base58.b58decode(wif) length = len(data) if length is not 38 or data[0] is not 0x80 or data[33] is not 0x01: raise ValueError("Invalid format!") checksum = Crypto.Hash256(data[0:34])[0:4] if checksum != data[34:]: raise ValueError("Invalid WIF Checksum!") return data[1:33]
0.004219
def velocity(adata, var_names=None, basis=None, groupby=None, groups=None, mode=None, fits='all', layers='all', color=None, color_map='RdBu_r', colorbar=False, perc=[2,98], use_raw=False, size=None, alpha=.5, fontsize=None, figsize=None, dpi=None, show=True, save=None, ax=None, ncols=None, **kwargs): """Phase and velocity plot for set of genes. The phase plot shows spliced against unspliced expressions with steady-state fit. Further the embedding is shown colored by velocity and expression. Arguments --------- adata: :class:`~anndata.AnnData` Annotated data matrix. var_names: `str` or list of `str` (default: `None`) Which variables to show. basis: `str` (default: `'umap'`) Key for embedding coordinates. mode: `'stochastic'` or `None` (default: `None`) Whether to show show covariability phase portrait. fits: `str` or list of `str` (default: `'all'`) Which steady-state estimates to show. layers: `str` or list of `str` (default: `'all'`) Which layers to show. color: `str`, list of `str` or `None` (default: `None`) Key for annotations of observations/cells or variables/genes color_map: `str` (default: `matplotlib.rcParams['image.cmap']`) String denoting matplotlib color map. perc: tuple, e.g. [2,98] (default: `None`) Specify percentile for continuous coloring. size: `float` (default: 5) Point size. alpha: `float` (default: 1) Set blending - 0 transparent to 1 opaque. fontsize: `float` (default: `None`) Label font size. figsize: tuple (default: `(7,5)`) Figure size. dpi: `int` (default: 80) Figure dpi. show: `bool`, optional (default: `None`) Show the plot, do not return axis. save: `bool` or `str`, optional (default: `None`) If `True` or a `str`, save the figure. A string is appended to the default filename. Infer the filetype if ending on {'.pdf', '.png', '.svg'}. ax: `matplotlib.Axes`, optional (default: `None`) A matplotlib axes object. Only works if plotting a single component. """ basis = default_basis(adata) if basis is None else basis if isinstance(groupby, str) and groupby in adata.obs.keys(): if 'rank_velocity_genes' not in adata.uns.keys() or adata.uns['rank_velocity_genes']['params']['groupby'] != groupby: rank_velocity_genes(adata, vkey='velocity', n_genes=10, groupby=groupby) names = np.array(adata.uns['rank_velocity_genes']['names'].tolist()) if groups is None: var_names = names[:, 0] else: groups = [groups] if isinstance(groups, str) else groups idx = np.array([any([g in group for g in groups]) for group in adata.obs[groupby].cat.categories]) var_names = np.hstack(names[idx, :int(10 / idx.sum())]) elif var_names is not None: var_names = [var_names] if isinstance(var_names, str) else [var for var in var_names if var in adata.var_names] else: raise ValueError('No var_names or groups specified.') var_names = pd.unique(var_names) (skey, ukey) = ('spliced', 'unspliced') if use_raw else ('Ms', 'Mu') layers = ['velocity', skey, 'variance_velocity'] if layers == 'all' else layers layers = [layer for layer in layers if layer in adata.layers.keys()] fits = adata.layers.keys() if fits == 'all' else fits fits = [fit for fit in fits if all(['velocity' in fit, fit + '_gamma' in adata.var.keys()])] stochastic_fits = [fit for fit in fits if 'variance_' + fit in adata.layers.keys()] nplts = (1 + len(layers) + (mode == 'stochastic') * 2) ncols = 1 if ncols is None else ncols nrows = int(np.ceil(len(var_names) / ncols)) ncols = int(ncols * nplts) figsize = rcParams['figure.figsize'] if figsize is None else figsize ax = pl.figure(figsize=(figsize[0] * ncols / 2, figsize[1] * nrows / 2), dpi=dpi) if ax is None else ax gs = pl.GridSpec(nrows, ncols, wspace=0.3, hspace=0.5) size = default_size(adata) / 2 if size is None else size # since fontsize is halved in width and height fontsize = rcParams['font.size'] if fontsize is None else fontsize for v, var in enumerate(var_names): _adata = adata[:, var] s, u = _adata.layers[skey], _adata.layers[ukey] if issparse(s): s, u = s.A, u.A # spliced/unspliced phase portrait with steady-state estimate ax = pl.subplot(gs[v * nplts]) scatter(adata, basis=var, color=color, colorbar=colorbar, frameon=True, title=var, size=size, use_raw=use_raw, alpha=alpha, fontsize=fontsize, xlabel='spliced', ylabel='unspliced', show=False, ax=ax, save=False, legend_loc=None if v < len(var_names)-1 else 'lower right', **kwargs) # velocity and expression plots for l, layer in enumerate(layers): ax = pl.subplot(gs[v * nplts + l + 1]) title = 'expression' if layer == skey else layer scatter(adata, basis=basis, color=var, layer=layer, color_map=color_map, colorbar=colorbar, title=title, perc=perc, use_raw=use_raw, fontsize=fontsize, size=size, alpha=alpha, frameon=False, show=False, ax=ax, save=False, **kwargs) if mode == 'stochastic': ss, us = second_order_moments(_adata) ss, us = ss.flatten(), us.flatten() fit = stochastic_fits[0] ax = pl.subplot(gs[v * nplts + len(layers) + 1]) offset = _adata.var[fit + '_offset'] if fit + '_offset' in adata.var.keys() else 0 beta = _adata.var[fit + '_beta'] if fit + '_beta' in adata.var.keys() else 1 x = 2 * (ss - s**2) - s y = 2 * (us - u * s) + u + 2 * s * offset / beta scatter(adata, x=x, y=y, color=color, colorbar=colorbar, title=var, fontsize=40/ncols, size=size, perc=perc, xlabel=r'2 $\Sigma_s - \langle s \rangle$', ylabel=r'2 $\Sigma_{us} + \langle u \rangle$', use_raw=use_raw, frameon=True, ax=ax, save=False, show=False, **kwargs) xnew = np.linspace(x.min(), x.max() * 1.02) for fit in stochastic_fits: gamma = _adata.var[fit + '_gamma'].values if fit + '_gamma' in adata.var.keys() else 1 beta = _adata.var[fit + '_beta'].values if fit + '_beta' in adata.var.keys() else 1 offset2 = _adata.var[fit + '_offset2'].values if fit + '_offset2' in adata.var.keys() else 0 pl.plot(xnew, gamma / beta * xnew + offset2 / beta, c='k', linestyle='--') if v == len(var_names) - 1: pl.legend(fits, loc='lower right', prop={'size': 34/ncols}) savefig_or_show('', dpi=dpi, save=save, show=show) if not show: return ax
0.005118
def call(self, command, params=None, expect_body=True, stream=False): """ Sends the provided command to Serf for evaluation, with any parameters as the message body. """ if self._socket is None: raise SerfConnectionError('handshake must be made first') header = msgpack.packb({"Seq": self._counter(), "Command": command}) if params is not None: body = msgpack.packb(params) self._socket.sendall(header + body) else: self._socket.sendall(header) unpacker = msgpack.Unpacker(object_hook=self._decode_addr_key) def read_from_socket(): try: buf = self._socket.recv(self._socket_recv_size) if len(buf) == 0: # Connection was closed. raise SerfConnectionError("Connection closed by peer") unpacker.feed(buf) except socket.timeout: raise SerfTimeout( "timeout while waiting for an RPC response. (Have %s so" "far)", response) if stream: def keep_reading_from_stream(init=[]): sub_response = SerfResult() while True: if init is not None: it = init init = None else: if self._socket is None: return read_from_socket() it = unpacker for msg in it: if sub_response.head is None: sub_response.head = msg elif sub_response.body is None: sub_response.body = msg yield sub_response sub_response = SerfResult() mem = [] messages_expected = 1 while messages_expected > 0: read_from_socket() # Might have received enough to deserialise one or more # messages, try to fill out the response object. for message in unpacker: mem.append(message) messages_expected -= 1 # Disable timeout while we are in streaming mode self._socket.settimeout(None) response = SerfResult() response.head = mem.pop() response.body = keep_reading_from_stream(mem) else: # The number of msgpack messages that are expected # in response to this command. messages_expected = 2 if expect_body else 1 response = SerfResult() # Continue reading from the network until the expected number of # msgpack messages have been received. while messages_expected > 0: read_from_socket() # Might have received enough to deserialise one or more # messages, try to fill out the response object. for message in unpacker: if response.head is None: response.head = message elif response.body is None: response.body = message else: raise SerfProtocolError( "protocol handler got more than 2 messages. " "Unexpected message is: %s", message) # Expecting one fewer message now. messages_expected -= 1 return response
0.000548
def kurtosis(data): """ Return the kurtosis for ``data``. """ if len(data) == 0: return None num = moment(data, 4) denom = moment(data, 2) ** 2. return num / denom if denom != 0 else 0
0.004484
def omnigraffle(self): """ tries to open an export directly in omnigraffle """ temp = self.rdf_source("dot") try: # try to put in the user/tmp folder from os.path import expanduser home = expanduser("~") filename = home + "/tmp/turtle_sketch.dot" f = open(filename, "w") except: filename = "turtle_sketch.dot" f = open(filename, "w") f.write(temp) f.close() try: os.system("open " + filename) except: os.system("start " + filename)
0.042283
def _write_config(config): ''' writes /usbkey/config ''' try: with salt.utils.atomicfile.atomic_open('/usbkey/config', 'w') as config_file: config_file.write("#\n# This file was generated by salt\n#\n") for prop in salt.utils.odict.OrderedDict(sorted(config.items())): if ' ' in six.text_type(config[prop]): if not config[prop].startswith('"') or not config[prop].endswith('"'): config[prop] = '"{0}"'.format(config[prop]) config_file.write( salt.utils.stringutils.to_str( "{0}={1}\n".format(prop, config[prop]) ) ) log.debug('smartos.config - wrote /usbkey/config: %s', config) except IOError: return False return True
0.003538
def minimal_raw_seqs(self): ''' m.minimal_raw_seqs() -- Return minimal list of seqs that represent consensus ''' seqs = [[], []] for letter in self.oneletter: if one2two.has_key(letter): seqs[0].append(one2two[letter][0]) seqs[1].append(one2two[letter][1]) else: seqs[0].append(letter) seqs[1].append(letter) if ''.join(seqs[0]) == ''.join(seqs[1]): return( [''.join(seqs[0])] ) else: return( [''.join(seqs[0]), ''.join(seqs[0])] )
0.013722
def is_address_readable(self, address): """ Determines if an address belongs to a commited and readable page. The page may or may not have additional permissions. @note: Returns always C{False} for kernel mode addresses. @type address: int @param address: Memory address to query. @rtype: bool @return: C{True} if the address belongs to a commited and readable page. @raise WindowsError: An exception is raised on error. """ try: mbi = self.mquery(address) except WindowsError: e = sys.exc_info()[1] if e.winerror == win32.ERROR_INVALID_PARAMETER: return False raise return mbi.is_readable()
0.002574
def periodic_send(self, content, interval, title=''): """ 发送周期消息 :param content: (必填|str) - 需要发送的消息内容 :param interval: (必填|int|datetime.timedelta) - 发送消息间隔时间,支持 datetime.timedelta 或 integer 表示的秒数 :param title: (选填|str) - 需要发送的消息标题 :return: * status:发送状态,True 发送成,False 发送失败 * message:发送失败详情 """ url = '{0}periodic_message'.format(self.remote) if isinstance(interval, datetime.timedelta): interval = int(interval.total_seconds()) if not isinstance(interval, int): raise ValueError data = self._wrap_post_data(title=title, content=content, interval=interval) res = requests.post(url, data, timeout=self.timeout) if res.status_code == requests.codes.ok: res_data = json.loads(self._convert_bytes(res.content)) if res_data.get('status') == STATUS_SUCCESS: return True, res_data.get('message') return False, res_data.get('message') res.raise_for_status() return False, 'Request or Response Error'
0.003617
def tag_media_sibling_ordinal(tag): """ Count sibling ordinal differently depending on if the mimetype is video or not """ if hasattr(tag, 'name') and tag.name != 'media': return None nodenames = ['fig','supplementary-material','sub-article'] first_parent_tag = first_parent(tag, nodenames) sibling_ordinal = None if first_parent_tag: # Start counting at 0 sibling_ordinal = 0 for media_tag in first_parent_tag.find_all(tag.name): if 'mimetype' in tag.attrs and tag['mimetype'] == 'video': # Count all video type media tags if 'mimetype' in media_tag.attrs and tag['mimetype'] == 'video': sibling_ordinal += 1 if media_tag == tag: break else: # Count all non-video type media tags if (('mimetype' not in media_tag.attrs) or ('mimetype' in media_tag.attrs and tag['mimetype'] != 'video')): sibling_ordinal += 1 if media_tag == tag: break else: # Start counting at 1 sibling_ordinal = 1 for prev_tag in tag.find_all_previous(tag.name): if not first_parent(prev_tag, nodenames): if 'mimetype' in tag.attrs and tag['mimetype'] == 'video': # Count all video type media tags if supp_asset(prev_tag) == supp_asset(tag) and 'mimetype' in prev_tag.attrs: sibling_ordinal += 1 else: if supp_asset(prev_tag) == supp_asset(tag) and 'mimetype' not in prev_tag.attrs: sibling_ordinal += 1 return sibling_ordinal
0.00451
def fstab_present(name, fs_file, fs_vfstype, fs_mntops='defaults', fs_freq=0, fs_passno=0, mount_by=None, config='/etc/fstab', mount=True, match_on='auto'): ''' Makes sure that a fstab mount point is pressent. name The name of block device. Can be any valid fs_spec value. fs_file Mount point (target) for the filesystem. fs_vfstype The type of the filesystem (e.g. ext4, xfs, btrfs, ...) fs_mntops The mount options associated with the filesystem. Default is ``defaults``. fs_freq Field is used by dump to determine which fs need to be dumped. Default is ``0`` fs_passno Field is used by fsck to determine the order in which filesystem checks are done at boot time. Default is ``0`` mount_by Select the final value for fs_spec. Can be [``None``, ``device``, ``label``, ``uuid``, ``partlabel``, ``partuuid``]. If ``None``, the value for fs_spect will be the parameter ``name``, in other case will search the correct value based on the device name. For example, for ``uuid``, the value for fs_spec will be of type 'UUID=xxx' instead of the device name set in ``name``. config Place where the fstab file lives. Default is ``/etc/fstab`` mount Set if the mount should be mounted immediately. Default is ``True`` match_on A name or list of fstab properties on which this state should be applied. Default is ``auto``, a special value indicating to guess based on fstype. In general, ``auto`` matches on name for recognized special devices and device otherwise. ''' ret = { 'name': name, 'result': False, 'changes': {}, 'comment': [], } # Adjust fs_mntops based on the OS if fs_mntops == 'defaults': if __grains__['os'] in ['MacOS', 'Darwin']: fs_mntops = 'noowners' elif __grains__['os'] == 'AIX': fs_mntops = '' # Adjust the config file based on the OS if config == '/etc/fstab': if __grains__['os'] in ['MacOS', 'Darwin']: config = '/etc/auto_salt' elif __grains__['os'] == 'AIX': config = '/etc/filesystems' if not fs_file == '/': fs_file = fs_file.rstrip('/') fs_spec = _convert_to(name, mount_by) # Validate that the device is valid after the conversion if not fs_spec: msg = 'Device {} cannot be converted to {}' ret['comment'].append(msg.format(name, mount_by)) return ret if __opts__['test']: if __grains__['os'] in ['MacOS', 'Darwin']: out = __salt__['mount.set_automaster'](name=fs_file, device=fs_spec, fstype=fs_vfstype, opts=fs_mntops, config=config, test=True) elif __grains__['os'] == 'AIX': out = __salt__['mount.set_filesystems'](name=fs_file, device=fs_spec, fstype=fs_vfstype, opts=fs_mntops, mount=mount, config=config, test=True, match_on=match_on) else: out = __salt__['mount.set_fstab'](name=fs_file, device=fs_spec, fstype=fs_vfstype, opts=fs_mntops, dump=fs_freq, pass_num=fs_passno, config=config, test=True, match_on=match_on) ret['result'] = None if out == 'present': msg = '{} entry is already in {}.' ret['comment'].append(msg.format(fs_file, config)) elif out == 'new': msg = '{} entry will be written in {}.' ret['comment'].append(msg.format(fs_file, config)) elif out == 'change': msg = '{} entry will be updated in {}.' ret['comment'].append(msg.format(fs_file, config)) else: ret['result'] = False msg = '{} entry cannot be created in {}: {}.' ret['comment'].append(msg.format(fs_file, config, out)) return ret if __grains__['os'] in ['MacOS', 'Darwin']: out = __salt__['mount.set_automaster'](name=fs_file, device=fs_spec, fstype=fs_vfstype, opts=fs_mntops, config=config) elif __grains__['os'] == 'AIX': out = __salt__['mount.set_filesystems'](name=fs_file, device=fs_spec, fstype=fs_vfstype, opts=fs_mntops, mount=mount, config=config, match_on=match_on) else: out = __salt__['mount.set_fstab'](name=fs_file, device=fs_spec, fstype=fs_vfstype, opts=fs_mntops, dump=fs_freq, pass_num=fs_passno, config=config, match_on=match_on) ret['result'] = True if out == 'present': msg = '{} entry was already in {}.' ret['comment'].append(msg.format(fs_file, config)) elif out == 'new': ret['changes']['persist'] = out msg = '{} entry added in {}.' ret['comment'].append(msg.format(fs_file, config)) elif out == 'change': ret['changes']['persist'] = out msg = '{} entry updated in {}.' ret['comment'].append(msg.format(fs_file, config)) else: ret['result'] = False msg = '{} entry cannot be changed in {}: {}.' ret['comment'].append(msg.format(fs_file, config, out)) return ret
0.000145
def _init_from_csr(self, csr): """ Initialize data from a CSR matrix. """ if len(csr.indices) != len(csr.data): raise ValueError('length mismatch: {} vs {}'.format(len(csr.indices), len(csr.data))) handle = ctypes.c_void_p() _check_call(_LIB.XGDMatrixCreateFromCSREx(c_array(ctypes.c_size_t, csr.indptr), c_array(ctypes.c_uint, csr.indices), c_array(ctypes.c_float, csr.data), ctypes.c_size_t(len(csr.indptr)), ctypes.c_size_t(len(csr.data)), ctypes.c_size_t(csr.shape[1]), ctypes.byref(handle))) self.handle = handle
0.010169
def main(): """ NAME remanence_aniso_magic.py DESCRIPTION This program is similar to aarm_magic.py and atrm_magic.py with minor modifications. Converts magic measurement file with ATRM/AARM data to best-fit tensor (6 elements plus sigma) following Hext (1963), and calculates F-test statistics. Comments: - infield steps are marked with method codes LT-T-I:LP-AN-TRM; LT-AF-I:LP-AN-ARM - zerofield steps are marked with method codes LT-T-Z:LP-AN-TRM; LT-AF-Z:LP-AN-ARM - alteration check is marked with method codes LT-PTRM-I:LP-AN-TRM please notice; - ATRM: The program uses treatment_dc_field_phi/treatment_dc_field_theta columns to infer the direction of the applied field (this is a change from atrm_magic.py) - ATRM: zerofield (baseline) magnetization is subtructed from all infield measurements - AARM: The program uses measurement number (running number) to to infer the direction of the applied field assuming the SIO protocol for 6,9,15 measurements scheme. See cookbook for diagram and details. - AARM: zerofield (baseline) are assumed to be before any infield, and the baseline is subtructed from the subsequent infield magnetization. SYNTAX remanence_aniso_magic.py [-h] [command line options] OPTIONS -h prints help message and quits -f FILE: specify input file, default is magic_measurements.txt INPUT magic measurement file with ATRM and/or AARM data. if both types of measurements exist then the program calculates both. OUTPUT rmag_anisotropy.log -I- information -W- Warning -E- Error rmag_anistropy.txt: This file contains in addition to some some magic information the following: - anistropy tensor s1 to s6 normalized by the trace: |Mx| |s1 s4 s6| |Bx| |My| = |s4 s2 s5| . |By| |Mz| |s6 s5 s3| |Bz| - anisotropy_sigma (Hext, 1963) - anisotropy_alt (altertion check for ATRM in units of %): 100* [abs(M_first-Mlast)/max(M_first,M_last)] - rmag_results.txt: This file contains in addition to some magic information the follow(ing: - anisotropy_t1,anisotropy_t2,anisotropy_t3 : eigenvalues - anisotropy_v*_dec,anisotropy_v*_inc: declination/inclination of the eigenvectors - anisotropy_ftest,anisotropy_ftest12,anisotropy_ftest13 - (the crtical F for 95% confidence level of anistropy is given in result_description column). """ #================================================================================== meas_file="magic_measurements.txt" args=sys.argv dir_path='.' # # get name of file from command line # if '-WD' in args: ind=args.index('-WD') dir_path=args[ind+1] if "-h" in args: print(main.__doc__) sys.exit() if "-f" in args: ind=args.index("-f") meas_file=sys.argv[ind+1] else: meas_file=dir_path+'/'+meas_file WD=dir_path #====================================== # functions #====================================== def get_Data(magic_file): #------------------------------------------------ # Read magic measurement file and sort to blocks #------------------------------------------------ Data={} try: meas_data,file_type=pmag.magic_read(magic_file) except: print("-E- ERROR: Cant read magic_measurement.txt file. File is corrupted.") return Data # get list of unique specimen names #sids=pmag.get_specs(meas_data) # samples ID's for rec in meas_data: s=rec["er_specimen_name"] method_codes= rec["magic_method_codes"].strip('\n') method_codes.replace(" ","") methods=method_codes.split(":") if "LP-AN-TRM" in methods: if s not in list(Data.keys()): Data[s]={} if 'atrmblock' not in list(Data[s].keys()): Data[s]['atrmblock']=[] Data[s]['atrmblock'].append(rec) if "LP-AN-ARM" in methods: if s not in list(Data.keys()): Data[s]={} if 'aarmblock' not in list(Data[s].keys()): Data[s]['aarmblock']=[] Data[s]['aarmblock'].append(rec) return (Data) #====================================== # better to put this one in pmagpy #====================================== def calculate_aniso_parameters(B,K): aniso_parameters={} S_bs=dot(B,K) # normalize by trace trace=S_bs[0]+S_bs[1]+S_bs[2] S_bs=old_div(S_bs,trace) s1,s2,s3,s4,s5,s6=S_bs[0],S_bs[1],S_bs[2],S_bs[3],S_bs[4],S_bs[5] s_matrix=[[s1,s4,s6],[s4,s2,s5],[s6,s5,s3]] # calculate eigen vector, t,evectors=eig(s_matrix) # sort vectors t=list(t) t1=max(t) ix_1=t.index(t1) t3=min(t) ix_3=t.index(t3) for tt in range(3): if t[tt]!=t1 and t[tt]!=t3: t2=t[tt] ix_2=t.index(t2) v1=[evectors[0][ix_1],evectors[1][ix_1],evectors[2][ix_1]] v2=[evectors[0][ix_2],evectors[1][ix_2],evectors[2][ix_2]] v3=[evectors[0][ix_3],evectors[1][ix_3],evectors[2][ix_3]] DIR_v1=pmag.cart2dir(v1) DIR_v2=pmag.cart2dir(v2) DIR_v3=pmag.cart2dir(v3) aniso_parameters['anisotropy_s1']="%f"%s1 aniso_parameters['anisotropy_s2']="%f"%s2 aniso_parameters['anisotropy_s3']="%f"%s3 aniso_parameters['anisotropy_s4']="%f"%s4 aniso_parameters['anisotropy_s5']="%f"%s5 aniso_parameters['anisotropy_s6']="%f"%s6 aniso_parameters['anisotropy_degree']="%f"%(old_div(t1,t3)) aniso_parameters['anisotropy_t1']="%f"%t1 aniso_parameters['anisotropy_t2']="%f"%t2 aniso_parameters['anisotropy_t3']="%f"%t3 aniso_parameters['anisotropy_v1_dec']="%.1f"%DIR_v1[0] aniso_parameters['anisotropy_v1_inc']="%.1f"%DIR_v1[1] aniso_parameters['anisotropy_v2_dec']="%.1f"%DIR_v2[0] aniso_parameters['anisotropy_v2_inc']="%.1f"%DIR_v2[1] aniso_parameters['anisotropy_v3_dec']="%.1f"%DIR_v3[0] aniso_parameters['anisotropy_v3_inc']="%.1f"%DIR_v3[1] # modified from pmagpy: if old_div(len(K),3)==9 or old_div(len(K),3)==6 or old_div(len(K),3)==15: n_pos=old_div(len(K),3) tmpH = Matrices[n_pos]['tmpH'] a=s_matrix S=0. comp=zeros((n_pos*3),'f') for i in range(n_pos): for j in range(3): index=i*3+j compare=a[j][0]*tmpH[i][0]+a[j][1]*tmpH[i][1]+a[j][2]*tmpH[i][2] comp[index]=compare for i in range(n_pos*3): d=old_div(K[i],trace) - comp[i] # del values S+=d*d nf=float(n_pos*3-6) # number of degrees of freedom if S >0: sigma=math.sqrt(old_div(S,nf)) hpars=pmag.dohext(nf,sigma,[s1,s2,s3,s4,s5,s6]) aniso_parameters['anisotropy_sigma']="%f"%sigma aniso_parameters['anisotropy_ftest']="%f"%hpars["F"] aniso_parameters['anisotropy_ftest12']="%f"%hpars["F12"] aniso_parameters['anisotropy_ftest23']="%f"%hpars["F23"] aniso_parameters['result_description']="Critical F: %s"%(hpars['F_crit']) aniso_parameters['anisotropy_F_crit']="%f"%float(hpars['F_crit']) aniso_parameters['anisotropy_n']=n_pos return(aniso_parameters) #====================================== # Main #====================================== aniso_logfile=open(WD+"/rmag_anisotropy.log",'w') aniso_logfile.write("------------------------\n") aniso_logfile.write( "-I- Start rmag anisrotropy script\n") aniso_logfile.write( "------------------------\n") Data=get_Data(meas_file) #try: # Data=get_Data(meas_file) #except: # aniso_logfile.write( "-E- Cant open measurement file %s\n" %meas_file) # print "-E- Cant open measurement file %s\n exiting" %meas_file # exit() aniso_logfile.write( "-I- Open measurement file %s\n" %meas_file) Data_anisotropy={} specimens=list(Data.keys()) specimens.sort() #----------------------------------- # Prepare rmag_anisotropy.txt file for writing #----------------------------------- rmag_anisotropy_file =open(WD+"/rmag_anisotropy.txt",'w') rmag_anisotropy_file.write("tab\trmag_anisotropy\n") rmag_results_file =open(WD+"/rmag_results.txt",'w') rmag_results_file.write("tab\trmag_results\n") rmag_anistropy_header=['er_specimen_name','er_sample_name','er_site_name','anisotropy_type','anisotropy_n','anisotropy_description','anisotropy_s1','anisotropy_s2','anisotropy_s3','anisotropy_s4','anisotropy_s5','anisotropy_s6','anisotropy_sigma','anisotropy_alt','magic_experiment_names','magic_method_codes'] String="" for i in range (len(rmag_anistropy_header)): String=String+rmag_anistropy_header[i]+'\t' rmag_anisotropy_file.write(String[:-1]+"\n") rmag_results_header=['er_specimen_names','er_sample_names','er_site_names','anisotropy_type','magic_method_codes','magic_experiment_names','result_description','anisotropy_t1','anisotropy_t2','anisotropy_t3','anisotropy_ftest','anisotropy_ftest12','anisotropy_ftest23',\ 'anisotropy_v1_dec','anisotropy_v1_inc','anisotropy_v2_dec','anisotropy_v2_inc','anisotropy_v3_dec','anisotropy_v3_inc'] String="" for i in range (len(rmag_results_header)): String=String+rmag_results_header[i]+'\t' rmag_results_file.write(String[:-1]+"\n") #----------------------------------- # Matrices definitions: # A design matrix # B dot(inv(dot(A.transpose(),A)),A.transpose()) # tmpH is used for sigma calculation (9,15 measurements only) # # Anisotropy tensor: # # |Mx| |s1 s4 s6| |Bx| # |My| = |s4 s2 s5| . |By| # |Mz| |s6 s5 s3| |Bz| # # A matrix (measurement matrix): # Each mesurement yields three lines in "A" matrix # # |Mi | |Bx 0 0 By 0 Bz| |s1| # |Mi+1| = |0 By 0 Bx Bz 0 | . |s2| # |Mi+2| |0 0 Bz 0 By Bx| |s3| # |s4| # |s5| # #----------------------------------- Matrices={} for n_pos in [6,9,15]: Matrices[n_pos]={} A=zeros((n_pos*3,6),'f') if n_pos==6: positions=[[0.,0.,1.],[90.,0.,1.],[0.,90.,1.],\ [180.,0.,1.],[270.,0.,1.],[0.,-90.,1.]] if n_pos==15: positions=[[315.,0.,1.],[225.,0.,1.],[180.,0.,1.],[135.,0.,1.],[45.,0.,1.],\ [90.,-45.,1.],[270.,-45.,1.],[270.,0.,1.],[270.,45.,1.],[90.,45.,1.],\ [180.,45.,1.],[180.,-45.,1.],[0.,-90.,1.],[0,-45.,1.],[0,45.,1.]] if n_pos==9: positions=[[315.,0.,1.],[225.,0.,1.],[180.,0.,1.],\ [90.,-45.,1.],[270.,-45.,1.],[270.,0.,1.],\ [180.,45.,1.],[180.,-45.,1.],[0.,-90.,1.]] tmpH=zeros((n_pos,3),'f') # define tmpH for i in range(len(positions)): CART=pmag.dir2cart(positions[i]) a=CART[0];b=CART[1];c=CART[2] A[3*i][0]=a A[3*i][3]=b A[3*i][5]=c A[3*i+1][1]=b A[3*i+1][3]=a A[3*i+1][4]=c A[3*i+2][2]=c A[3*i+2][4]=b A[3*i+2][5]=a tmpH[i][0]=CART[0] tmpH[i][1]=CART[1] tmpH[i][2]=CART[2] B=dot(inv(dot(A.transpose(),A)),A.transpose()) Matrices[n_pos]['A']=A Matrices[n_pos]['B']=B Matrices[n_pos]['tmpH']=tmpH for specimen in specimens: if 'atrmblock' in list(Data[specimen].keys()): #----------------------------------- # aTRM 6 positions #----------------------------------- aniso_logfile.write("-I- Start calculating ATRM tensor for specimen %s\n "%specimen) atrmblock=Data[specimen]['atrmblock'] if len(atrmblock)<6: aniso_logfile.write("-W- specimen %s has not enough measurementf for ATRM calculation\n"%specimen) continue B=Matrices[6]['B'] Reject_specimen = False # The zero field step is a "baseline" # Search the baseline in the ATRM measurement baseline="" Alteration_check="" Alteration_check_index="" baselines=[] # search for baseline in atrm blocks for rec in atrmblock: dec=float(rec['measurement_dec']) inc=float(rec['measurement_inc']) moment=float(rec['measurement_magn_moment']) # find the temperature of the atrm if float(rec['treatment_dc_field'])!=0 and float(rec['treatment_temp'])!=273: atrm_temperature=float(rec['treatment_temp']) # find baseline if float(rec['treatment_dc_field'])==0 and float(rec['treatment_temp'])!=273: baselines.append(array(pmag.dir2cart([dec,inc,moment]))) # Find alteration check #print rec['measurement_number'] if len(baselines)!=0: aniso_logfile.write( "-I- found ATRM baseline for specimen %s\n"%specimen) baselines=array(baselines) baseline=array([mean(baselines[:,0]),mean(baselines[:,1]),mean(baselines[:,2])]) else: baseline=zeros(3,'f') aniso_logfile.write( "-I- No aTRM baseline for specimen %s\n"%specimen) # sort measurements M=zeros([6,3],'f') for rec in atrmblock: dec=float(rec['measurement_dec']) inc=float(rec['measurement_inc']) moment=float(rec['measurement_magn_moment']) CART=array(pmag.dir2cart([dec,inc,moment]))-baseline if float(rec['treatment_dc_field'])==0: # Ignore zero field steps continue if "LT-PTRM-I" in rec['magic_method_codes'].split(":"): # alteration check Alteration_check=CART Alteration_check_dc_field_phi=float(rec['treatment_dc_field_phi']) Alteration_check_dc_field_theta=float(rec['treatment_dc_field_theta']) if Alteration_check_dc_field_phi==0 and Alteration_check_dc_field_theta==0 : Alteration_check_index=0 if Alteration_check_dc_field_phi==90 and Alteration_check_dc_field_theta==0 : Alteration_check_index=1 if Alteration_check_dc_field_phi==0 and Alteration_check_dc_field_theta==90 : Alteration_check_index=2 if Alteration_check_dc_field_phi==180 and Alteration_check_dc_field_theta==0 : Alteration_check_index=3 if Alteration_check_dc_field_phi==270 and Alteration_check_dc_field_theta==0 : Alteration_check_index=4 if Alteration_check_dc_field_phi==0 and Alteration_check_dc_field_theta==-90 : Alteration_check_index=5 aniso_logfile.write( "-I- found alteration check for specimen %s\n"%specimen) continue treatment_dc_field_phi=float(rec['treatment_dc_field_phi']) treatment_dc_field_theta=float(rec['treatment_dc_field_theta']) treatment_dc_field=float(rec['treatment_dc_field']) #+x, M[0] if treatment_dc_field_phi==0 and treatment_dc_field_theta==0 : M[0]=CART #+Y , M[1] if treatment_dc_field_phi==90 and treatment_dc_field_theta==0 : M[1]=CART #+Z , M[2] if treatment_dc_field_phi==0 and treatment_dc_field_theta==90 : M[2]=CART #-x, M[3] if treatment_dc_field_phi==180 and treatment_dc_field_theta==0 : M[3]=CART #-Y , M[4] if treatment_dc_field_phi==270 and treatment_dc_field_theta==0 : M[4]=CART #-Z , M[5] if treatment_dc_field_phi==0 and treatment_dc_field_theta==-90 : M[5]=CART # check if at least one measurement in missing for i in range(len(M)): if M[i][0]==0 and M[i][1]==0 and M[i][2]==0: aniso_logfile.write( "-E- ERROR: missing atrm data for specimen %s\n"%(specimen)) Reject_specimen=True # alteration check anisotropy_alt=0 if Alteration_check!="": for i in range(len(M)): if Alteration_check_index==i: M_1=sqrt(sum((array(M[i])**2))) M_2=sqrt(sum(Alteration_check**2)) diff=abs(M_1-M_2) diff_ratio=old_div(diff,mean([M_1,M_2])) diff_ratio_perc=100*diff_ratio if diff_ratio_perc > anisotropy_alt: anisotropy_alt=diff_ratio_perc else: aniso_logfile.write( "-W- Warning: no alteration check for specimen %s \n "%specimen ) # Check for maximum difference in anti parallel directions. # if the difference between the two measurements is more than maximum_diff # The specimen is rejected # i.e. +x versus -x, +y versus -y, etc.s for i in range(3): M_1=sqrt(sum(array(M[i])**2)) M_2=sqrt(sum(array(M[i+3])**2)) diff=abs(M_1-M_2) diff_ratio=old_div(diff,max(M_1,M_2)) diff_ratio_perc=100*diff_ratio if diff_ratio_perc>anisotropy_alt: anisotropy_alt=diff_ratio_perc if not Reject_specimen: # K vector (18 elements, M1[x], M1[y], M1[z], ... etc.) K=zeros(18,'f') K[0],K[1],K[2]=M[0][0],M[0][1],M[0][2] K[3],K[4],K[5]=M[1][0],M[1][1],M[1][2] K[6],K[7],K[8]=M[2][0],M[2][1],M[2][2] K[9],K[10],K[11]=M[3][0],M[3][1],M[3][2] K[12],K[13],K[14]=M[4][0],M[4][1],M[4][2] K[15],K[16],K[17]=M[5][0],M[5][1],M[5][2] if specimen not in list(Data_anisotropy.keys()): Data_anisotropy[specimen]={} aniso_parameters=calculate_aniso_parameters(B,K) Data_anisotropy[specimen]['ATRM']=aniso_parameters Data_anisotropy[specimen]['ATRM']['anisotropy_alt']="%.2f"%anisotropy_alt Data_anisotropy[specimen]['ATRM']['anisotropy_type']="ATRM" Data_anisotropy[specimen]['ATRM']['er_sample_name']=atrmblock[0]['er_sample_name'] Data_anisotropy[specimen]['ATRM']['er_specimen_name']=specimen Data_anisotropy[specimen]['ATRM']['er_site_name']=atrmblock[0]['er_site_name'] Data_anisotropy[specimen]['ATRM']['anisotropy_description']='Hext statistics adapted to ATRM' Data_anisotropy[specimen]['ATRM']['magic_experiment_names']=specimen+";ATRM" Data_anisotropy[specimen]['ATRM']['magic_method_codes']="LP-AN-TRM:AE-H" #Data_anisotropy[specimen]['ATRM']['rmag_anisotropy_name']=specimen if 'aarmblock' in list(Data[specimen].keys()): #----------------------------------- # AARM - 6, 9 or 15 positions #----------------------------------- aniso_logfile.write( "-I- Start calculating AARM tensors specimen %s\n"%specimen) aarmblock=Data[specimen]['aarmblock'] if len(aarmblock)<12: aniso_logfile.write( "-W- WARNING: not enough aarm measurement for specimen %s\n"%specimen) continue elif len(aarmblock)==12: n_pos=6 B=Matrices[6]['B'] M=zeros([6,3],'f') elif len(aarmblock)==18: n_pos=9 B=Matrices[9]['B'] M=zeros([9,3],'f') # 15 positions elif len(aarmblock)==30: n_pos=15 B=Matrices[15]['B'] M=zeros([15,3],'f') else: aniso_logfile.write( "-E- ERROR: number of measurements in aarm block is incorrect sample %s\n"%specimen) continue Reject_specimen = False for i in range(n_pos): for rec in aarmblock: if float(rec['measurement_number'])==i*2+1: dec=float(rec['measurement_dec']) inc=float(rec['measurement_inc']) moment=float(rec['measurement_magn_moment']) M_baseline=array(pmag.dir2cart([dec,inc,moment])) if float(rec['measurement_number'])==i*2+2: dec=float(rec['measurement_dec']) inc=float(rec['measurement_inc']) moment=float(rec['measurement_magn_moment']) M_arm=array(pmag.dir2cart([dec,inc,moment])) M[i]=M_arm-M_baseline K=zeros(3*n_pos,'f') for i in range(n_pos): K[i*3]=M[i][0] K[i*3+1]=M[i][1] K[i*3+2]=M[i][2] if specimen not in list(Data_anisotropy.keys()): Data_anisotropy[specimen]={} aniso_parameters=calculate_aniso_parameters(B,K) Data_anisotropy[specimen]['AARM']=aniso_parameters Data_anisotropy[specimen]['AARM']['anisotropy_alt']="" Data_anisotropy[specimen]['AARM']['anisotropy_type']="AARM" Data_anisotropy[specimen]['AARM']['er_sample_name']=aarmblock[0]['er_sample_name'] Data_anisotropy[specimen]['AARM']['er_site_name']=aarmblock[0]['er_site_name'] Data_anisotropy[specimen]['AARM']['er_specimen_name']=specimen Data_anisotropy[specimen]['AARM']['anisotropy_description']='Hext statistics adapted to AARM' Data_anisotropy[specimen]['AARM']['magic_experiment_names']=specimen+";AARM" Data_anisotropy[specimen]['AARM']['magic_method_codes']="LP-AN-ARM:AE-H" #Data_anisotropy[specimen]['AARM']['rmag_anisotropy_name']=specimen #----------------------------------- specimens=list(Data_anisotropy.keys()) specimens.sort # remove previous anistropy data, and replace with the new one: s_list=list(Data.keys()) for sp in s_list: if 'AniSpec' in list(Data[sp].keys()): del Data[sp]['AniSpec'] for specimen in specimens: # if both AARM and ATRM axist prefer the AARM !! if 'AARM' in list(Data_anisotropy[specimen].keys()): TYPES=['AARM'] if 'ATRM' in list(Data_anisotropy[specimen].keys()): TYPES=['ATRM'] if 'AARM' in list(Data_anisotropy[specimen].keys()) and 'ATRM' in list(Data_anisotropy[specimen].keys()): TYPES=['ATRM','AARM'] aniso_logfile.write( "-W- WARNING: both aarm and atrm data exist for specimen %s. using AARM by default. If you prefer using one of them, delete the other!\n"%specimen) for TYPE in TYPES: String="" for i in range (len(rmag_anistropy_header)): try: String=String+Data_anisotropy[specimen][TYPE][rmag_anistropy_header[i]]+'\t' except: String=String+"%f"%(Data_anisotropy[specimen][TYPE][rmag_anistropy_header[i]])+'\t' rmag_anisotropy_file.write(String[:-1]+"\n") String="" Data_anisotropy[specimen][TYPE]['er_specimen_names']=Data_anisotropy[specimen][TYPE]['er_specimen_name'] Data_anisotropy[specimen][TYPE]['er_sample_names']=Data_anisotropy[specimen][TYPE]['er_sample_name'] Data_anisotropy[specimen][TYPE]['er_site_names']=Data_anisotropy[specimen][TYPE]['er_site_name'] for i in range (len(rmag_results_header)): try: String=String+Data_anisotropy[specimen][TYPE][rmag_results_header[i]]+'\t' except: String=String+"%f"%(Data_anisotropy[specimen][TYPE][rmag_results_header[i]])+'\t' rmag_results_file.write(String[:-1]+"\n") if 'AniSpec' not in Data[specimen]: Data[specimen]['AniSpec']={} Data[specimen]['AniSpec'][TYPE]=Data_anisotropy[specimen][TYPE] aniso_logfile.write("------------------------\n") aniso_logfile.write("-I- remanence_aniso_magic script finished sucsessfuly\n") aniso_logfile.write( "------------------------\n") rmag_anisotropy_file.close() print("Anisotropy tensors elements are saved in rmag_anistropy.txt") print("Other anisotropy statistics are saved in rmag_results.txt") print("log file is in rmag_anisotropy.log")
0.031564
def run(cmd, filename=None, threads=True, verbose=False): """Similar to profile.run .""" _run(threads, verbose, 'run', filename, cmd)
0.007092
def bilinear_interpolation(x, y, points): '''Interpolate (x,y) from values associated with four points. The four points are a list of four triplets: (x, y, value). The four points can be in any order. They should form a rectangle. >>> bilinear_interpolation(12, 5.5, ... [(10, 4, 100), ... (20, 4, 200), ... (10, 6, 150), ... (20, 6, 300)]) 165.0 @note : source -> http://stackoverflow.com/questions/8661537/how-to-perform-bilinear-interpolation-in-python ''' # See formula at: http://en.wikipedia.org/wiki/Bilinear_interpolation points = sorted(points) # order points by x, then by y (x1, y1, q11), (_x1, y2, q12), (x2, _y1, q21), (_x2, _y2, q22) = points # if x1 != _x1 or x2 != _x2 or y1 != _y1 or y2 != _y2: # raise ValueError('points do not form a rectangle') # if not x1 <= x <= x2 or not y1 <= y <= y2: # raise ValueError('(x, y) not within the rectangle') try : if x1 != _x1 or x2 != _x2 or y1 != _y1 or y2 != _y2: raise ValueError('points do not form a rectangle') if not x1 <= x <= x2 or not y1 <= y <= y2: raise ValueError('(x, y) not within the rectangle') return (q11 * (x2 - x) * (y2 - y) + q21 * (x - x1) * (y2 - y) + q12 * (x2 - x) * (y - y1) + q22 * (x - x1) * (y - y1) ) / ((x2 - x1) * (y2 - y1) + 0.0) except ValueError : return np.nan
0.006165
def DoxySourceScan(node, env, path): """ Doxygen Doxyfile source scanner. This should scan the Doxygen file and add any files used to generate docs to the list of source files. """ default_file_patterns = [ '*.c', '*.cc', '*.cxx', '*.cpp', '*.c++', '*.java', '*.ii', '*.ixx', '*.ipp', '*.i++', '*.inl', '*.h', '*.hh ', '*.hxx', '*.hpp', '*.h++', '*.idl', '*.odl', '*.cs', '*.php', '*.php3', '*.inc', '*.m', '*.mm', '*.py', ] default_exclude_patterns = [ '*~', ] sources = [] data = DoxyfileParse(node.get_contents()) if data.get("RECURSIVE", "NO") == "YES": recursive = True else: recursive = False file_patterns = data.get("FILE_PATTERNS", default_file_patterns) exclude_patterns = data.get("EXCLUDE_PATTERNS", default_exclude_patterns) # We're running in the top-level directory, but the doxygen # configuration file is in the same directory as node; this means # that relative pathnames in node must be adjusted before they can # go onto the sources list conf_dir = os.path.dirname(str(node)) for node in data.get("INPUT", []): if not os.path.isabs(node): node = os.path.join(conf_dir, node) if os.path.isfile(node): sources.append(node) elif os.path.isdir(node): if recursive: for root, dirs, files in os.walk(node): for f in files: filename = os.path.join(root, f) pattern_check = reduce(lambda x, y: x or bool(fnmatch(filename, y)), file_patterns, False) exclude_check = reduce(lambda x, y: x and fnmatch(filename, y), exclude_patterns, True) if pattern_check and not exclude_check: sources.append(filename) else: for pattern in file_patterns: sources.extend(glob.glob("/".join([node, pattern]))) # Add tagfiles to the list of source files: for node in data.get("TAGFILES", []): file = node.split("=")[0] if not os.path.isabs(file): file = os.path.join(conf_dir, file) sources.append(file) # Add additional files to the list of source files: def append_additional_source(option): file = data.get(option, "") if file != "": if not os.path.isabs(file): file = os.path.join(conf_dir, file) if os.path.isfile(file): sources.append(file) append_additional_source("HTML_STYLESHEET") append_additional_source("HTML_HEADER") append_additional_source("HTML_FOOTER") sources = map( lambda path: env.File(path), sources ) return sources
0.020661
def _create_wx_app(): """ Creates a wx.App instance if it has not been created sofar. """ wxapp = wx.GetApp() if wxapp is None: wxapp = wx.App(False) wxapp.SetExitOnFrameDelete(True) # retain a reference to the app object so it does not get garbage # collected and cause segmentation faults _create_wx_app.theWxApp = wxapp
0.002618
def is_primitive(self): """is the value a built-in type?""" if is_py2: return isinstance( self.val, ( types.NoneType, types.BooleanType, types.IntType, types.LongType, types.FloatType ) ) else: return isinstance( self.val, ( type(None), bool, int, float ) )
0.004942
def reply(self, message: typing.Union[int, types.Message]): """ Reply to message :param message: :obj:`int` or :obj:`types.Message` :return: self """ setattr(self, 'reply_to_message_id', message.message_id if isinstance(message, types.Message) else message) return self
0.009174
def _set_id_variable_by_entity_key(self) -> Dict[str, str]: '''Identify and set the good ids for the different entities''' if self.id_variable_by_entity_key is None: self.id_variable_by_entity_key = dict( (entity.key, entity.key + '_id') for entity in self.tax_benefit_system.entities) log.debug("Use default id_variable names:\n {}".format(self.id_variable_by_entity_key)) return self.id_variable_by_entity_key
0.008386
def parse_token_list_rec(self, min_precedence): """ Parses a tokenized arithmetic expression into a parse tree. It calls itself recursively to handle bracketed subexpressions. @return: Returns a token string. @rtype: lems.parser.expr.ExprNode @attention: Does not handle unary minuses at the moment. Needs to be fixed. """ exit_loop = False ExprParser.depth = ExprParser.depth + 1 if self.debug: print('>>>>> Depth: %i'% ExprParser.depth) precedence = min_precedence while self.token_list: token = self.token_list[0] la = self.token_list[1] if len(self.token_list) > 1 else None if self.debug: print('0> %s'% self.token_list) if self.debug: print('1> Token: %s, next: %s, op stack: %s, val stack: %s, node stack: %s'% (token, la, self.op_stack, self.val_stack, self.node_stack)) self.token_list = self.token_list[1:] close_bracket = False if token == '(': np = ExprParser('') np.token_list = self.token_list nexp = np.parse2() self.node_stack.push(nexp) self.val_stack.push('$') self.token_list = np.token_list if self.debug: print('>>> Tokens left: %s'%self.token_list) close_bracket = True elif token == ')': break elif self.is_func(token): self.op_stack.push(token) elif self.is_op(token): stack_top = self.op_stack.top() if self.debug: print('OP Token: %s (prior: %i), top: %s (prior: %i)'% (token, self.priority(token), stack_top, self.priority(stack_top))) if self.priority(token) < self.priority(stack_top): if self.debug: print(' Priority of %s is less than %s'%(token, stack_top)) self.node_stack.push(self.cleanup_stacks()) self.val_stack.push('$') else: if self.debug: print(' Priority of %s is greater than %s'%(token, stack_top)) self.op_stack.push(token) else: if self.debug: print('Not a bracket func or op...') if la == '(': raise Exception("Error parsing expression: %s\nToken: %s is placed like a function but is not recognised!\nKnown functions: %s"%(self.parse_string, token, known_functions)) stack_top = self.op_stack.top() if stack_top == '$': if self.debug: print("option a") self.node_stack.push(ValueNode(token)) self.val_stack.push('$') else: if (self.is_op(la) and self.priority(stack_top) < self.priority(la)): if self.debug: print("option b") self.node_stack.push(ValueNode(token)) self.val_stack.push('$') else: if self.debug: print("option c, nodes: %s"% self.node_stack) op = self.op_stack.pop() right = ValueNode(token) op_node = self.make_op_node(op,right) self.node_stack.push(op_node) self.val_stack.push('$') if close_bracket: stack_top = self.op_stack.top() if self.debug: print("+ Closing bracket, op stack: %s, node stack: %s la: %s"%(self.op_stack, self.node_stack, la)) if self.debug: print('>>> Tokens left: %s'%self.token_list) if stack_top == '$': if self.debug: print("+ option a") ''' self.node_stack.push(ValueNode(token)) self.val_stack.push('$')''' else: la = self.token_list[0] if len(self.token_list) > 1 else None if (self.is_op(la) and self.priority(stack_top) < self.priority(la)): if self.debug: print("+ option b") #self.node_stack.push(ValueNode(token)) #self.val_stack.push('$') else: if self.debug: print("+ option c, nodes: %s"% self.node_stack) if self.debug: print('35> op stack: %s, val stack: %s, node stack: %s'% ( self.op_stack, self.val_stack, self.node_stack)) right = self.node_stack.pop() op = self.op_stack.pop() op_node = self.make_op_node(stack_top,right) if self.debug: print("Made op node: %s, right: %s"%(op_node, right)) self.node_stack.push(op_node) self.val_stack.push('$') if self.debug: print('36> op stack: %s, val stack: %s, node stack: %s'% ( self.op_stack, self.val_stack, self.node_stack)) if self.debug: print('2> Token: %s, next: %s, op stack: %s, val stack: %s, node stack: %s'% (token, la, self.op_stack, self.val_stack, self.node_stack)) if self.debug: print('') if self.debug: print('3> op stack: %s, val stack: %s, node stack: %s'% ( self.op_stack, self.val_stack, self.node_stack)) ret = self.cleanup_stacks() if self.debug: print('4> op stack: %s, val stack: %s, node stack: %s'% ( self.op_stack, self.val_stack, self.node_stack)) if self.debug: print('<<<<< Depth: %s, returning: %s'% (ExprParser.depth, ret)) ExprParser.depth = ExprParser.depth - 1 if self.debug: print('') return ret
0.013676
def _handle_invite(self, room_id: _RoomID, state: dict): """ Join rooms invited by whitelisted partners """ if self._stop_event.ready(): return self.log.debug('Got invite', room_id=room_id) invite_events = [ event for event in state['events'] if event['type'] == 'm.room.member' and event['content'].get('membership') == 'invite' and event['state_key'] == self._user_id ] if not invite_events: self.log.debug('Invite: no invite event found', room_id=room_id) return # there should always be one and only one invite membership event for us invite_event = invite_events[0] sender = invite_event['sender'] sender_join_events = [ event for event in state['events'] if event['type'] == 'm.room.member' and event['content'].get('membership') == 'join' and event['state_key'] == sender ] if not sender_join_events: self.log.debug('Invite: no sender join event', room_id=room_id) return # there should always be one and only one join membership event for the sender sender_join_event = sender_join_events[0] user = self._get_user(sender) user.displayname = sender_join_event['content'].get('displayname') or user.displayname peer_address = validate_userid_signature(user) if not peer_address: self.log.debug( 'Got invited to a room by invalid signed user - ignoring', room_id=room_id, user=user, ) return if not self._address_mgr.is_address_known(peer_address): self.log.debug( 'Got invited by a non-whitelisted user - ignoring', room_id=room_id, user=user, ) return join_rules_events = [ event for event in state['events'] if event['type'] == 'm.room.join_rules' ] # room privacy as seen from the event private_room: bool = False if join_rules_events: join_rules_event = join_rules_events[0] private_room = join_rules_event['content'].get('join_rule') == 'invite' # we join room and _set_room_id_for_address despite room privacy and requirements, # _get_room_ids_for_address will take care of returning only matching rooms and # _leave_unused_rooms will clear it in the future, if and when needed room: Room = None last_ex: Optional[Exception] = None retry_interval = 0.1 for _ in range(JOIN_RETRIES): try: room = self._client.join_room(room_id) except MatrixRequestError as e: last_ex = e if self._stop_event.wait(retry_interval): break retry_interval = retry_interval * 2 else: break else: assert last_ex is not None raise last_ex # re-raise if couldn't succeed in retries if not room.listeners: room.add_listener(self._handle_message, 'm.room.message') # room state may not populated yet, so we populate 'invite_only' from event room.invite_only = private_room self._set_room_id_for_address(address=peer_address, room_id=room_id) self.log.debug( 'Joined from invite', room_id=room_id, aliases=room.aliases, peer=to_checksum_address(peer_address), )
0.00245
def run(self, *, connector: Union[EnvVar, Token, SlackClient, None] = None, interval: float = 0.5, retries: int = 16, backoff: Callable[[int], float] = None, until: Callable[[List[dict]], bool] = None) -> None: """ Connect to the Slack API and run the event handler loop. Args: connector: A means of connecting to the Slack API. This can be an API :obj:`Token`, an :obj:`EnvVar` from which a token can be retrieved, or an established :obj:`SlackClient` instance. If absent an attempt will be made to use the ``LAYABOUT_TOKEN`` environment variable. interval: The number of seconds to wait between fetching events from the Slack API. retries: The number of retry attempts to make if a connection to Slack is not established or is lost. backoff: The strategy used to determine how long to wait between retries. Must take as input the number of the current retry and output a :obj:`float`. The retry count begins at 1 and continues up to ``retries``. If absent a `truncated exponential backoff`_ strategy will be used. until: The condition used to evaluate whether this method terminates. Must take as input a :obj:`list` of :obj:`dict` representing Slack RTM API events and return a :obj:`bool`. If absent this method will run forever. Raises: TypeError: If an unsupported connector is given. MissingToken: If no API token is available. FailedConnection: If connecting to the Slack API fails. .. _truncated exponential backoff: https://cloud.google.com/storage/docs/exponential-backoff """ backoff = backoff or _truncated_exponential until = until or _forever self._ensure_slack( connector=connector, retries=retries, backoff=backoff ) assert self._slack is not None while True: events = self._slack.fetch_events() if not until(events): log.debug('Exiting event loop') break # Handle events! for event in events: type_ = event.get('type', '') for handler in self._handlers[type_] + self._handlers['*']: fn, kwargs = handler fn(self._slack.inner, event, **kwargs) # Maybe don't pester the Slack API too much. time.sleep(interval)
0.002217
def to_segment_xml(self, override_file_if_exists=False): """ Write the segment list in self.segmentList to self.storage_path. """ # create XML doc and add process table outdoc = ligolw.Document() outdoc.appendChild(ligolw.LIGO_LW()) process = ligolw_process.register_to_xmldoc(outdoc, sys.argv[0], {}) for key, seglist in self.segment_dict.items(): ifo, name = self.parse_segdict_key(key) # Ensure we have LIGOTimeGPS fsegs = [(lal.LIGOTimeGPS(seg[0]), lal.LIGOTimeGPS(seg[1])) for seg in seglist] if self.seg_summ_dict is None: vsegs = [(lal.LIGOTimeGPS(seg[0]), lal.LIGOTimeGPS(seg[1])) \ for seg in self.valid_segments] else: vsegs = [(lal.LIGOTimeGPS(seg[0]), lal.LIGOTimeGPS(seg[1])) \ for seg in self.seg_summ_dict[key]] # Add using glue library to set all segment tables with ligolw_segments.LigolwSegments(outdoc, process) as x: x.add(ligolw_segments.LigolwSegmentList(active=fsegs, instruments=set([ifo]), name=name, version=1, valid=vsegs)) # write file url = urlparse.urljoin('file:', urllib.pathname2url(self.storage_path)) if not override_file_if_exists or not self.has_pfn(url, site='local'): self.PFN(url, site='local') ligolw_utils.write_filename(outdoc, self.storage_path)
0.003069
def setCurrentIndex(self, index): """ Sets the current index on self and on the tab bar to keep the two insync. :param index | <int> """ super(XViewPanel, self).setCurrentIndex(index) self.tabBar().setCurrentIndex(index)
0.010989
def set_end_of_event_function(self, function): ''' Adding function to module. This is maybe the only way to make the clusterizer to work with multiprocessing. ''' self.cluster_functions._end_of_event_function = self._jitted(function) self._end_of_event_function = function
0.009615
def set_distribute_compositions(self, distribute_comps): """Sets the distribution rights. This sets distribute verbatim to ``true``. arg: distribute_comps (boolean): right to distribute modifications raise: InvalidArgument - ``distribute_comps`` is invalid raise: NoAccess - authorization failure *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for osid.resource.ResourceForm.set_group_template if self.get_distribute_compositions_metadata().is_read_only(): raise errors.NoAccess() if not self._is_valid_boolean(distribute_comps): raise errors.InvalidArgument() self._my_map['distributeCompositions'] = distribute_comps
0.003755
def start_udp_client(self, ip=None, port=None, name=None, timeout=None, protocol=None, family='ipv4'): """Starts a new UDP client. Client can be optionally given `ip` and `port` to bind to, as well as `name`, default `timeout` and a `protocol`. `family` can be either ipv4 (default) or ipv6. You should use `Connect` keyword to connect client to a host. Examples: | Start UDP client | | Start UDP client | name=Client1 | protocol=GTPV2 | | Start UDP client | 10.10.10.2 | 53 | name=Server1 | protocol=GTPV2 | | Start UDP client | timeout=5 | | Start UDP client | 0:0:0:0:0:0:0:1 | 53 | family=ipv6 | """ self._start_client(UDPClient, ip, port, name, timeout, protocol, family)
0.005102
def get_function_argspec(func, is_class_method=None): ''' A small wrapper around getargspec that also supports callable classes :param is_class_method: Pass True if you are sure that the function being passed is a class method. The reason for this is that on Python 3 ``inspect.ismethod`` only returns ``True`` for bound methods, while on Python 2, it returns ``True`` for bound and unbound methods. So, on Python 3, in case of a class method, you'd need the class to which the function belongs to be instantiated and this is not always wanted. ''' if not callable(func): raise TypeError('{0} is not a callable'.format(func)) if six.PY2: if is_class_method is True: aspec = inspect.getargspec(func) del aspec.args[0] # self elif inspect.isfunction(func): aspec = inspect.getargspec(func) elif inspect.ismethod(func): aspec = inspect.getargspec(func) del aspec.args[0] # self elif isinstance(func, object): aspec = inspect.getargspec(func.__call__) del aspec.args[0] # self else: raise TypeError( 'Cannot inspect argument list for \'{0}\''.format(func) ) else: if is_class_method is True: aspec = _getargspec(func) del aspec.args[0] # self elif inspect.isfunction(func): aspec = _getargspec(func) # pylint: disable=redefined-variable-type elif inspect.ismethod(func): aspec = _getargspec(func) del aspec.args[0] # self elif isinstance(func, object): aspec = _getargspec(func.__call__) del aspec.args[0] # self else: raise TypeError( 'Cannot inspect argument list for \'{0}\''.format(func) ) return aspec
0.00391
def estimate_ride(api_client): """Use an UberRidesClient to fetch a ride estimate and print the results. Parameters api_client (UberRidesClient) An authorized UberRidesClient with 'request' scope. """ try: estimate = api_client.estimate_ride( product_id=SURGE_PRODUCT_ID, start_latitude=START_LAT, start_longitude=START_LNG, end_latitude=END_LAT, end_longitude=END_LNG, seat_count=2 ) except (ClientError, ServerError) as error: fail_print(error) else: success_print(estimate.json)
0.001582
def check_config_options(_class, required_options, optional_options, options): """Helper method to check options. Arguments: _class -- the original class that takes received the options. required_options -- the options that are required. If they are not present, a ConfigurationError is raised. Given as a tuple. optional_options -- the options that are optional. Given options that are not present in `optional_options` nor in `required_options` will be logged as unrecognized. Given as a tuple. options -- a dictionary of given options. Raises: ConfigurationError -- if any required option is missing. """ for opt in required_options: if opt not in options: msg = "Required option missing: {0}" raise ConfigurationError(msg.format(opt)) for opt in options: if opt not in (required_options + optional_options): msg = "Unknown config option to `{0}`: {1}" _logger.warn(msg.format(_class, opt))
0.000875
def simple_time(value): """ Format a datetime or timedelta object to a string of format HH:MM """ if isinstance(value, timedelta): return ':'.join(str(value).split(':')[:2]) return datetime_to_string(value, '%H:%M')
0.004115
def _createGsshaPyObjects(self, eventChunk): """ Create GSSHAPY PrecipEvent, PrecipValue, and PrecipGage Objects Method """ ## TODO: Add Support for RADAR file format type values # Create GSSHAPY PrecipEvent event = PrecipEvent(description=eventChunk['description'], nrGag=eventChunk['nrgag'], nrPds=eventChunk['nrpds']) # Associate PrecipEvent with PrecipFile event.precipFile = self gages = [] for coord in eventChunk['coords']: # Create GSSHAPY PrecipGage object gage = PrecipGage(description=coord['description'], x=coord['x'], y=coord['y']) # Associate PrecipGage with PrecipEvent gage.event = event # Append to gages list for association with PrecipValues gages.append(gage) for valLine in eventChunk['valLines']: for index, value in enumerate(valLine['values']): # Create GSSHAPY PrecipValue object val = PrecipValue(valueType=valLine['type'], dateTime=valLine['dateTime'], value=value) # Associate PrecipValue with PrecipEvent and PrecipGage val.event = event val.gage = gages[index]
0.002092
def motif_tree_plot(outfile, tree, data, circle=True, vmin=None, vmax=None, dpi=300): """ Plot a "phylogenetic" tree """ try: from ete3 import Tree, faces, AttrFace, TreeStyle, NodeStyle except ImportError: print("Please install ete3 to use this functionality") sys.exit(1) # Define the tree t, ts = _get_motif_tree(tree, data, circle, vmin, vmax) # Save image t.render(outfile, tree_style=ts, w=100, dpi=dpi, units="mm"); # Remove the bottom (empty) half of the figure if circle: img = Image.open(outfile) size = img.size[0] spacer = 50 img.crop((0,0,size,size/2 + spacer)).save(outfile)
0.012857
def branch_type(cls, branch): """ Return the string representation for the type of a branch """ typename = branch.GetClassName() if not typename: leaf = branch.GetListOfLeaves()[0] typename = leaf.GetTypeName() # check if leaf has multiple elements leaf_count = leaf.GetLeafCount() if leaf_count: length = leaf_count.GetMaximum() else: length = leaf.GetLen() if length > 1: typename = '{0}[{1:d}]'.format(typename, length) return typename
0.003236
def undeploy_api_gateway(self, lambda_name, domain_name=None, base_path=None): """ Delete a deployed REST API Gateway. """ print("Deleting API Gateway..") api_id = self.get_api_id(lambda_name) if domain_name: # XXX - Remove Route53 smartly here? # XXX - This doesn't raise, but doesn't work either. try: self.apigateway_client.delete_base_path_mapping( domainName=domain_name, basePath='(none)' if base_path is None else base_path ) except Exception as e: # We may not have actually set up the domain. pass was_deleted = self.delete_stack(lambda_name, wait=True) if not was_deleted: # try erasing it with the older method for api in self.get_rest_apis(lambda_name): self.apigateway_client.delete_rest_api( restApiId=api['id'] )
0.001951
def qeuler(yaw, pitch, roll): """Convert Euler angle to quaternion. Parameters ---------- yaw: number pitch: number roll: number Returns ------- np.array """ yaw = np.radians(yaw) pitch = np.radians(pitch) roll = np.radians(roll) cy = np.cos(yaw * 0.5) sy = np.sin(yaw * 0.5) cr = np.cos(roll * 0.5) sr = np.sin(roll * 0.5) cp = np.cos(pitch * 0.5) sp = np.sin(pitch * 0.5) q = np.array(( cy * cr * cp + sy * sr * sp, cy * sr * cp - sy * cr * sp, cy * cr * sp + sy * sr * cp, sy * cr * cp - cy * sr * sp )) return q
0.001603
def update(self, cookies): """Add specified cookies to our cookie jar, and persists it. :param cookies: Any iterable that yields http.cookiejar.Cookie instances, such as a CookieJar. """ cookie_jar = self.get_cookie_jar() for cookie in cookies: cookie_jar.set_cookie(cookie) with self._lock: cookie_jar.save()
0.011561
def _reschedule(self, node): """Maybe schedule new items on the node. If there are any globally pending work units left then this will check if the given node should be given any more tests. """ # Do not add more work to a node shutting down if node.shutting_down: return # Check that more work is available if not self.workqueue: node.shutdown() return self.log("Number of units waiting for node:", len(self.workqueue)) # Check that the node is almost depleted of work # 2: Heuristic of minimum tests to enqueue more work if self._pending_of(self.assigned_work[node]) > 2: return # Pop one unit of work and assign it self._assign_work_unit(node)
0.002463
def name(self): """Concatenates the names of the given criteria in alphabetical order. If a sub-criterion is itself a combined criterion, its name is first split into the individual names and the names of the sub-sub criteria is used instead of the name of the sub-criterion. This is done recursively to ensure that the order and the hierarchy of the criteria does not influence the name. Returns ------- str The alphabetically sorted names of the sub-criteria concatenated using double underscores between them. """ names = (criterion.name() for criterion in self._criteria) return '__'.join(sorted(names))
0.00274
def members(self, is_manager=None): """ Retrieve members of the scope. :param is_manager: (optional) set to True to return only Scope members that are also managers. :type is_manager: bool :return: List of members (usernames) Examples -------- >>> members = project.members() >>> managers = project.members(is_manager=True) """ if not is_manager: return [member for member in self._json_data['members'] if member['is_active']] else: return [member for member in self._json_data['members'] if member.get('is_active', False) and member.get('is_manager', False)]
0.007123
def _parse_categories(element): """ Returns a list with categories with relations. """ reference = {} items = element.findall("./{%s}category" % WP_NAMESPACE) for item in items: term_id = item.find("./{%s}term_id" % WP_NAMESPACE).text nicename = item.find("./{%s}category_nicename" % WP_NAMESPACE).text name = item.find("./{%s}cat_name" % WP_NAMESPACE).text parent = item.find("./{%s}category_parent" % WP_NAMESPACE).text category = { "term_id": term_id, "nicename": nicename, "name": name, "parent": parent } reference[nicename] = category return _build_category_tree(None, reference=reference)
0.001368
def comparator(objective): """ Higher order function creating a compare function for objectives. Args: objective (cipy.algorithms.core.Objective): The objective to create a compare for. Returns: callable: Function accepting two objectives to compare. Examples: >>> a = Minimum(0.1) >>> b = Minimum(0.2) >>> compare = comparator(a) >>> comparison = compare(a, b) # False """ if isinstance(objective, Minimum): return lambda l, r: l < r else: return lambda l, r: l > r
0.00173
def download(self, protocol, host, user, password, file_name, rbridge='all'): """ Download firmware to device """ urn = "{urn:brocade.com:mgmt:brocade-firmware}" request_fwdl = self.get_firmware_download_request(protocol, host, user, password, file_name, rbridge) response = self._callback(request_fwdl, 'get') fwdl_result = None for item in response.findall('%scluster-output' % urn): fwdl_result = item.find('%sfwdl-msg' % urn).text if not fwdl_result: fwdl_result = response.find('%sfwdl-cmd-msg' % urn).text return fwdl_result
0.003911
def best_fit_font_size(cls, text, extents, max_size, font_file): """ Return the largest whole-number point size less than or equal to *max_size* that allows *text* to fit completely within *extents* when rendered using font defined in *font_file*. """ line_source = _LineSource(text) text_fitter = cls(line_source, extents, font_file) return text_fitter._best_fit_font_size(max_size)
0.004474
def deep_force_unicode(value): """ Recursively call force_text on value. """ if isinstance(value, (list, tuple, set)): value = type(value)(map(deep_force_unicode, value)) elif isinstance(value, dict): value = type(value)(map(deep_force_unicode, value.items())) elif isinstance(value, Promise): value = force_text(value) return value
0.002604
def buckets_list(self, projection='noAcl', max_results=0, page_token=None, project_id=None): """Issues a request to retrieve the list of buckets. Args: projection: the projection of the bucket information to retrieve. max_results: an optional maximum number of objects to retrieve. page_token: an optional token to continue the retrieval. project_id: the project whose buckets should be listed. Returns: A parsed list of bucket information dictionaries. Raises: Exception if there is an error performing the operation. """ if max_results == 0: max_results = Api._MAX_RESULTS args = {'project': project_id if project_id else self._project_id, 'maxResults': max_results} if projection is not None: args['projection'] = projection if page_token is not None: args['pageToken'] = page_token url = Api._ENDPOINT + (Api._BUCKET_PATH % '') return google.datalab.utils.Http.request(url, args=args, credentials=self._credentials)
0.006863
def _validate_input_data(self, data, request): """ Validate input data. :param request: the HTTP request :param data: the parsed data :return: if validation is performed and succeeds the data is converted into whatever format the validation uses (by default Django's Forms) If not, the data is returned unchanged. :raises: HttpStatusCodeError if data is not valid """ validator = self._get_input_validator(request) if isinstance(data, (list, tuple)): return map(validator.validate, data) else: return validator.validate(data)
0.003044
def as_dataframe(self, fillna=True, subjects=None): """ Return association set as pandas DataFrame Each row is a subject (e.g. gene) Each column is the inferred class used to describe the subject """ entries = [] selected_subjects = self.subjects if subjects is not None: selected_subjects = subjects for s in selected_subjects: vmap = {} for c in self.inferred_types(s): vmap[c] = 1 entries.append(vmap) logging.debug("Creating DataFrame") df = pd.DataFrame(entries, index=selected_subjects) if fillna: logging.debug("Performing fillna...") df = df.fillna(0) return df
0.003871
def calc_xyz2surf(surf, xyz, threshold=20, exponent=None, std=None): """Calculate transformation matrix from xyz values to vertices. Parameters ---------- surf : instance of wonambi.attr.Surf the surface of only one hemisphere. xyz : numpy.ndarray nChan x 3 matrix, with the locations in x, y, z. std : float distance in mm of the Gaussian kernel exponent : int inverse law (1-> direct inverse, 2-> inverse square, 3-> inverse cube) threshold : float distance in mm for a vertex to pick up electrode activity (if distance is above the threshold, one electrode does not affect a vertex). Returns ------- numpy.ndarray nVertices X xyz.shape[0] matrix Notes ----- This function is a helper when plotting onto brain surface, by creating a transformation matrix from the values in space (f.e. at each electrode) to the position of the vertices (used to show the brain surface). There are many ways to move from values to vertices. The crucial parameter is the function at which activity decreases in respect to the distance. You can have an inverse relationship by specifying 'exponent'. If 'exponent' is 2, then the activity will decrease as inverse square of the distance. The function can be a Gaussian. With std, you specify the width of the gaussian kernel in mm. For each vertex, it uses a threshold based on the distance ('threshold' value, in mm). Finally, it normalizes the contribution of all the channels to 1, so that the sum of the coefficients for each vertex is 1. You can also create your own matrix (and skip calc_xyz2surf altogether) and pass it as attribute to the main figure. Because it's a loop over all the vertices, this function is pretty slow, but if you calculate it once, you can reuse it. We take advantage of multiprocessing, which speeds it up considerably. """ if exponent is None and std is None: exponent = 1 if exponent is not None: lg.debug('Vertex values based on inverse-law, with exponent ' + str(exponent)) funct = partial(calc_one_vert_inverse, xyz=xyz, exponent=exponent) elif std is not None: lg.debug('Vertex values based on gaussian, with s.d. ' + str(std)) funct = partial(calc_one_vert_gauss, xyz=xyz, std=std) with Pool() as p: xyz2surf = p.map(funct, surf.vert) xyz2surf = asarray(xyz2surf) if exponent is not None: threshold_value = (1 / (threshold ** exponent)) external_threshold_value = threshold_value elif std is not None: threshold_value = gauss(threshold, std) external_threshold_value = gauss(std, std) # this is around 0.607 lg.debug('Values thresholded at ' + str(threshold_value)) xyz2surf[xyz2surf < threshold_value] = NaN # here we deal with vertices that are within the threshold value but far # from a single electrodes, so those remain empty sumval = nansum(xyz2surf, axis=1) sumval[sumval < external_threshold_value] = NaN # normalize by the number of electrodes xyz2surf /= atleast_2d(sumval).T xyz2surf[isnan(xyz2surf)] = 0 return xyz2surf
0.000613
def aggregate_region(self, variable, region='World', subregions=None, components=None, append=False): """Compute the aggregate of timeseries over a number of regions including variable components only defined at the `region` level Parameters ---------- variable: str variable for which the aggregate should be computed region: str, default 'World' dimension subregions: list of str list of subregions, defaults to all regions other than `region` components: list of str list of variables, defaults to all sub-categories of `variable` included in `region` but not in any of `subregions` append: bool, default False append the aggregate timeseries to `data` and return None, else return aggregate timeseries """ # default subregions to all regions other than `region` if subregions is None: rows = self._apply_filters(variable=variable) subregions = set(self.data[rows].region) - set([region]) if not len(subregions): msg = 'cannot aggregate variable `{}` to `{}` because it does not'\ ' exist in any subregion' logger().info(msg.format(variable, region)) return # compute aggregate over all subregions subregion_df = self.filter(region=subregions) cols = ['region', 'variable'] _data = _aggregate(subregion_df.filter(variable=variable).data, cols) # add components at the `region` level, defaults to all variables one # level below `variable` that are only present in `region` region_df = self.filter(region=region) components = components or ( set(region_df._variable_components(variable)).difference( subregion_df._variable_components(variable))) if len(components): rows = region_df._apply_filters(variable=components) _data = _data.add(_aggregate(region_df.data[rows], cols), fill_value=0) if append is True: self.append(_data, region=region, variable=variable, inplace=True) else: return _data
0.001311
def create_chan_labels(self): """Create the channel labels, but don't plot them yet. Notes ----- It's necessary to have the width of the labels, so that we can adjust the main scene. """ self.idx_label = [] for one_grp in self.parent.channels.groups: for one_label in one_grp['chan_to_plot']: item = QGraphicsSimpleTextItem(one_label) item.setBrush(QBrush(QColor(one_grp['color']))) item.setFlag(QGraphicsItem.ItemIgnoresTransformations) self.idx_label.append(item)
0.0033
def bind(self, data_shapes, label_shapes=None, for_training=True, inputs_need_grad=False, force_rebind=False, shared_module=None, grad_req='write'): """Binds the symbols to construct executors. This is necessary before one can perform computation with the module. Parameters ---------- data_shapes : list of (str, tuple) Typically is `data_iter.provide_data`. label_shapes : list of (str, tuple) Typically is `data_iter.provide_label`. for_training : bool Default is ``True``. Whether the executors should be bind for training. inputs_need_grad : bool Default is ``False``. Whether the gradients to the input data need to be computed. Typically this is not needed. But this might be needed when implementing composition of modules. force_rebind : bool Default is ``False``. This function does nothing if the executors are already bound. But with this ``True``, the executors will be forced to rebind. shared_module : Module Default is ``None``. Currently shared module is not supported for `SequentialModule`. grad_req : str, list of str, dict of str to str Requirement for gradient accumulation. Can be 'write', 'add', or 'null' (default to 'write'). Can be specified globally (str) or for each argument (list, dict). """ if self.binded and not force_rebind: self.logger.warning('Already bound, ignoring bind()') return if inputs_need_grad: assert for_training is True assert shared_module is None, 'Shared module is not supported' assert len(self._modules) > 0, 'Attempting to bind an empty SequentialModule' self.binded = True # the same label shapes are used for all chained modules self._label_shapes = label_shapes my_data_shapes = data_shapes anybody_ever_needs_label = False for i_layer, module in enumerate(self._modules): meta = self._metas[i_layer] if SequentialModule.META_TAKE_LABELS in meta and \ meta[SequentialModule.META_TAKE_LABELS]: my_label_shapes = label_shapes anybody_ever_needs_label = True else: my_label_shapes = None my_inputs_need_grad = bool(inputs_need_grad or (for_training and i_layer > 0)) if meta.get(SequentialModule.META_AUTO_WIRING, False): data_names = module.data_names assert len(data_names) == len(my_data_shapes) my_data_shapes = [(new_name, shape) for (new_name, (_, shape)) in zip(data_names, my_data_shapes)] module.bind(data_shapes=my_data_shapes, label_shapes=my_label_shapes, for_training=for_training, inputs_need_grad=my_inputs_need_grad, force_rebind=force_rebind, shared_module=None, grad_req=grad_req) # the output of the previous module is the data of the next module my_data_shapes = module.output_shapes if not anybody_ever_needs_label: # then I do not need label either self._label_shapes = None
0.004693
def fcoe_fcoe_map_fcoe_map_fabric_map_fcoe_map_fabric_map_name(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") fcoe = ET.SubElement(config, "fcoe", xmlns="urn:brocade.com:mgmt:brocade-fcoe") fcoe_map = ET.SubElement(fcoe, "fcoe-map") fcoe_map_name_key = ET.SubElement(fcoe_map, "fcoe-map-name") fcoe_map_name_key.text = kwargs.pop('fcoe_map_name') fcoe_map_fabric_map = ET.SubElement(fcoe_map, "fcoe-map-fabric-map") fcoe_map_fabric_map_name = ET.SubElement(fcoe_map_fabric_map, "fcoe-map-fabric-map-name") fcoe_map_fabric_map_name.text = kwargs.pop('fcoe_map_fabric_map_name') callback = kwargs.pop('callback', self._callback) return callback(config)
0.005168
def get_ldap(cls, global_options=None): """ Returns the configured ldap module. """ # Apply global LDAP options once if not cls._ldap_configured and global_options is not None: for opt, value in global_options.items(): ldap.set_option(opt, value) cls._ldap_configured = True return ldap
0.005319
def __put_names_on_csv_cols(names, cols): """ Put the variableNames with the corresponding column data. :param list names: variableNames :param list cols: List of Lists of column data :return dict: """ _combined = {} for idx, name in enumerate(names): # Use the variableName, and the column data from the same index _combined[name] = cols[idx] return _combined
0.006536
def process_allele(allele_data, dbsnp_data, header, reference): """Combine data from multiple lines refering to a single allele. Returns three items in this order: (string) concatenated variant sequence (ie allele the genome has) (string) concatenated reference sequence (string) start position (1-based) """ # One-based start to match VCF coordinates start = str(int(allele_data[0][header['begin']])) var_allele = '' ref_allele = '' filters = [] for data in allele_data: if 'varQuality' in header: if 'VQLOW' in data[header['varQuality']]: filters.append('VQLOW') else: var_filter = data[header['varFilter']] if var_filter and not var_filter == "PASS": filters = filters + var_filter.split(';') if data[header['varType']] == 'no-call': filters = ['NOCALL'] ref_allele = ref_allele + data[header['reference']] continue var_allele = var_allele + data[header['alleleSeq']] ref_allele = ref_allele + data[header['reference']] if data[header['xRef']]: for dbsnp_item in data[header['xRef']].split(';'): dbsnp_data.append(dbsnp_item.split(':')[1]) # It's theoretically possible to break up a partial no-call allele into # separated gVCF lines, but it's hard. Treat the whole allele as no-call. if 'NOCALL' in filters: filters = ['NOCALL'] var_allele = '?' return var_allele, ref_allele, start, filters
0.000637
def process_tcase(tcase): """Goes through the trun and processes "run.log" """ tcase["src_content"] = src_to_html(tcase["fpath"]) tcase["log_content"] = runlogs_to_html(tcase["res_root"]) tcase["aux_list"] = aux_listing(tcase["aux_root"]) tcase["descr_short"], tcase["descr_long"] = tcase_parse_descr(tcase) tcase["hnames"] = extract_hook_names(tcase) return True
0.002545
def TextToAttachmentStatus(self, Text): """Returns attachment status code. :Parameters: Text : unicode Text, one of 'UNKNOWN', 'SUCCESS', 'PENDING_AUTHORIZATION', 'REFUSED', 'NOT_AVAILABLE', 'AVAILABLE'. :return: Attachment status. :rtype: `enums`.apiAttach* """ conv = {'UNKNOWN': enums.apiAttachUnknown, 'SUCCESS': enums.apiAttachSuccess, 'PENDING_AUTHORIZATION': enums.apiAttachPendingAuthorization, 'REFUSED': enums.apiAttachRefused, 'NOT_AVAILABLE': enums.apiAttachNotAvailable, 'AVAILABLE': enums.apiAttachAvailable} try: return self._TextTo('api', conv[Text.upper()]) except KeyError: raise ValueError('Bad text')
0.003641
def Match(pattern, s): """Matches the string with the pattern, caching the compiled regexp.""" # The regexp compilation caching is inlined in both Match and Search for # performance reasons; factoring it out into a separate function turns out # to be noticeably expensive. if pattern not in _regexp_compile_cache: _regexp_compile_cache[pattern] = sre_compile.compile(pattern) return _regexp_compile_cache[pattern].match(s)
0.015982
def parse_args(): '''Parse args ''' parser = argparse.ArgumentParser(description='Train and Test an Adversarial Variatiional Encoder') parser.add_argument('--train', help='train the network', action='store_true') parser.add_argument('--test', help='test the network', action='store_true') parser.add_argument('--save_embedding', help='saves the shape embedding of each input image', action='store_true') parser.add_argument('--dataset', help='dataset name', default='caltech', type=str) parser.add_argument('--activation', help='activation i.e. sigmoid or tanh', default='sigmoid', type=str) parser.add_argument('--training_data_path', help='training data path', default='datasets/caltech101/data/images32x32', type=str) parser.add_argument('--testing_data_path', help='testing data path', default='datasets/caltech101/test_data', type=str) parser.add_argument('--pretrained_encoder_path', help='pretrained encoder model path', default='checkpoints32x32_sigmoid/caltech_E-0045.params', type=str) parser.add_argument('--pretrained_generator_path', help='pretrained generator model path', default='checkpoints32x32_sigmoid/caltech_G-0045.params', type=str) parser.add_argument('--output_path', help='output path for the generated images', default='outputs32x32_sigmoid', type=str) parser.add_argument('--embedding_path', help='output path for the generated embeddings', default='outputs32x32_sigmoid', type=str) parser.add_argument('--checkpoint_path', help='checkpoint saving path ', default='checkpoints32x32_sigmoid', type=str) parser.add_argument('--nef', help='encoder filter count in the first layer', default=64, type=int) parser.add_argument('--ndf', help='discriminator filter count in the first layer', default=64, type=int) parser.add_argument('--ngf', help='generator filter count in the second last layer', default=64, type=int) parser.add_argument('--nc', help='generator filter count in the last layer i.e. 1 for grayscale image, 3 for RGB image', default=1, type=int) parser.add_argument('--batch_size', help='batch size, keep it 1 during testing', default=64, type=int) parser.add_argument('--Z', help='embedding size', default=100, type=int) parser.add_argument('--lr', help='learning rate', default=0.0002, type=float) parser.add_argument('--beta1', help='beta1 for adam optimizer', default=0.5, type=float) parser.add_argument('--epsilon', help='epsilon for adam optimizer', default=1e-5, type=float) parser.add_argument('--g_dl_weight', help='discriminator layer loss weight', default=1e-1, type=float) parser.add_argument('--gpu', help='gpu index', default=0, type=int) parser.add_argument('--use_cpu', help='use cpu', action='store_true') parser.add_argument('--num_epoch', help='number of maximum epochs ', default=45, type=int) parser.add_argument('--save_after_every', help='save checkpoint after every this number of epochs ', default=5, type=int) parser.add_argument('--visualize_after_every', help='save output images after every this number of epochs', default=5, type=int) parser.add_argument('--show_after_every', help='show metrics after this number of iterations', default=10, type=int) args = parser.parse_args() return args
0.0079
def is_commit_id_equal(self, dest, name): """ Return whether the current commit hash equals the given name. Args: dest: the repository directory. name: a string name. """ if not name: # Then avoid an unnecessary subprocess call. return False return self.get_revision(dest) == name
0.005348
def _index_counter_keys(self, counter, unknown_token, reserved_tokens, most_freq_count, min_freq): """Indexes keys of `counter`. Indexes keys of `counter` according to frequency thresholds such as `most_freq_count` and `min_freq`. """ assert isinstance(counter, collections.Counter), \ '`counter` must be an instance of collections.Counter.' unknown_and_reserved_tokens = set(reserved_tokens) if reserved_tokens is not None else set() unknown_and_reserved_tokens.add(unknown_token) token_freqs = sorted(counter.items(), key=lambda x: x[0]) token_freqs.sort(key=lambda x: x[1], reverse=True) token_cap = len(unknown_and_reserved_tokens) + ( len(counter) if most_freq_count is None else most_freq_count) for token, freq in token_freqs: if freq < min_freq or len(self._idx_to_token) == token_cap: break if token not in unknown_and_reserved_tokens: self._idx_to_token.append(token) self._token_to_idx[token] = len(self._idx_to_token) - 1
0.005208
def plugins(self): """ Newest version of all plugins in the group filtered by ``blacklist`` Returns: dict: Nested dictionary of plugins accessible through dot-notation. Plugins are returned in a nested dictionary, but can also be accessed through dot-notion. Just as when accessing an undefined dictionary key with index-notation, a :py:exc:`KeyError` will be raised if the plugin type or plugin does not exist. Parent types are always included. Child plugins will only be included if a valid, non-blacklisted plugin is available. """ if not self.loaded: self.load_modules() # pylint: disable=protected-access return get_plugins()[self.group]._filter(blacklist=self.blacklist, newest_only=True, type_filter=self.type_filter)
0.006682
def config(ctx): """[GROUP] Configuration management operations""" from hfos import database database.initialize(ctx.obj['dbhost'], ctx.obj['dbname']) from hfos.schemata.component import ComponentConfigSchemaTemplate ctx.obj['col'] = model_factory(ComponentConfigSchemaTemplate)
0.003333
def init_log(logger, filename=None, loglevel=None): """ Initializes the log file in the proper format. Arguments: filename (str): Path to a file. Or None if logging is to be disabled. loglevel (str): Determines the level of the log output. """ formatter = logging.Formatter( '[%(asctime)s] %(levelname)s: %(name)s: %(message)s' ) if loglevel: logger.setLevel(getattr(logging, loglevel)) # We will allways print warnings and higher to stderr ch = logging.StreamHandler() ch.setLevel('WARNING') ch.setFormatter(formatter) if filename: fi = logging.FileHandler(filename, encoding='utf-8') if loglevel: fi.setLevel(getattr(logging, loglevel)) fi.setFormatter(formatter) logger.addHandler(fi) # If no logfile is provided we print all log messages that the user has # defined to stderr else: if loglevel: ch.setLevel(getattr(logging, loglevel)) logger.addHandler(ch)
0.006381
def retrieve_file_from_url(url): """ Retrieve a file from an URL Args: url: The URL to retrieve the file from. Returns: The absolute path of the downloaded file. """ try: alias_source, _ = urlretrieve(url) # Check for HTTPError in Python 2.x with open(alias_source, 'r') as f: content = f.read() if content[:3].isdigit(): raise CLIError(ALIAS_FILE_URL_ERROR.format(url, content.strip())) except Exception as exception: if isinstance(exception, CLIError): raise # Python 3.x raise CLIError(ALIAS_FILE_URL_ERROR.format(url, exception)) return alias_source
0.002837
def fpn_map_rois_to_levels(boxes): """ Assign boxes to level 2~5. Args: boxes (nx4): Returns: [tf.Tensor]: 4 tensors for level 2-5. Each tensor is a vector of indices of boxes in its level. [tf.Tensor]: 4 tensors, the gathered boxes in each level. Be careful that the returned tensor could be empty. """ sqrtarea = tf.sqrt(tf_area(boxes)) level = tf.cast(tf.floor( 4 + tf.log(sqrtarea * (1. / 224) + 1e-6) * (1.0 / np.log(2))), tf.int32) # RoI levels range from 2~5 (not 6) level_ids = [ tf.where(level <= 2), tf.where(tf.equal(level, 3)), # == is not supported tf.where(tf.equal(level, 4)), tf.where(level >= 5)] level_ids = [tf.reshape(x, [-1], name='roi_level{}_id'.format(i + 2)) for i, x in enumerate(level_ids)] num_in_levels = [tf.size(x, name='num_roi_level{}'.format(i + 2)) for i, x in enumerate(level_ids)] add_moving_summary(*num_in_levels) level_boxes = [tf.gather(boxes, ids) for ids in level_ids] return level_ids, level_boxes
0.002703
def _get_api_params(api_url=None, page_id=None, api_key=None, api_version=None): ''' Retrieve the API params from the config file. ''' statuspage_cfg = __salt__['config.get']('statuspage') if not statuspage_cfg: statuspage_cfg = {} return { 'api_url': api_url or statuspage_cfg.get('api_url') or BASE_URL, # optional 'api_page_id': page_id or statuspage_cfg.get('page_id'), # mandatory 'api_key': api_key or statuspage_cfg.get('api_key'), # mandatory 'api_version': api_version or statuspage_cfg.get('api_version') or DEFAULT_VERSION }
0.004505
def _get_uploaded_versions_warehouse(project_name, index_url, requests_verify=True): """ Query the pypi index at index_url using warehouse api to find all of the "releases" """ url = '/'.join((index_url, project_name, 'json')) response = requests.get(url, verify=requests_verify) if response.status_code == 200: return response.json()['releases'].keys() return None
0.007634
def update(data_df, cal_dict, param, bound, start, end): '''Update calibration times for give parameter and boundary''' from collections import OrderedDict if param not in cal_dict['parameters']: cal_dict['parameters'][param] = OrderedDict() if bound not in cal_dict['parameters'][param]: cal_dict['parameters'][param][bound] = OrderedDict() cal_dict['parameters'][param][bound]['start'] = start cal_dict['parameters'][param][bound]['end'] = end return cal_dict
0.003922
def _write_summary_cnts(self, cnts): """Write summary of level and depth counts for active GO Terms.""" # Count level(shortest path to root) and depth(longest path to root) # values for all unique GO Terms. max_val = max(max(dep for dep in cnts['depth']), max(lev for lev in cnts['level'])) self.log.write('Dep <-Depth Counts-> <-Level Counts->\n') self.log.write('Lev BP MF CC BP MF CC\n') self.log.write('--- ---- ---- ---- ---- ---- ----\n') for i in range(max_val+1): vals = ['{:>5}'.format(cnts[desc][i][ns]) for desc in sorted(cnts) for ns in self.nss] self.log.write('{:>02} {}\n'.format(i, ' '.join(vals)))
0.004016
def get_fields(model, fields, meta=None): """ Acording to model and fields to get fields list Each field element is a two elements tuple, just like: (name, field_obj) """ model = get_model(model) if fields is not None: f = fields elif meta and hasattr(model, meta): m = getattr(model, meta) if hasattr(m, 'fields'): f = m.fields else: f = model._fields_list else: f = model._fields_list fields_list = [] for x in f: field = {} if isinstance(x, str): #so x is field_name field['name'] = x elif isinstance(x, tuple): field['name'] = x[0] field['field'] = x[1] elif isinstance(x, dict): field = x.copy() else: raise UliwebError('Field definition {!r} is not right, it should be just like (field_name, form_field_obj)'.format(x)) if 'prop' not in field: if hasattr(model, field['name']): field['prop'] = getattr(model, field['name']) else: field['prop'] = None fields_list.append((field['name'], field)) return fields_list
0.004717
def get_nnsoap(obj, first_shell, alphas, betas, rcut=6, nmax=10, lmax=9, all_atomtypes=[]): """Takes cluster structure and nearest neighbour information of a datapoint, Returns concatenated soap vectors for each nearest neighbour (up to 3). Top, bridge, hollow fill the initial zero soap vector from left to right. """ soap_vector = [] nnn = len(first_shell) for tbh in range(0,3): try: atom_idx = first_shell[tbh] except: soap_vector.append(soap_zero) else: Hpos = [] print(atom_idx) pos = obj.get_positions()[atom_idx] Hpos.append(pos) x = soapPy.get_soap_locals(obj, Hpos, myAlphas, myBetas, rCut=rcut, NradBas=nmax, Lmax=lmax,crossOver=False, all_atomtypes=all_atomtypes) soap_zero = np.zeros(x.shape) soap_vector.append(x) print(len(soap_vector), soap_vector[0].shape, soap_vector[1].shape, soap_vector[2].shape) print("exemplary soapvalues",soap_vector[0][0,1], soap_vector[1][0,1], soap_vector[2][0,1]) soap_array = np.hstack(soap_vector) return soap_array
0.011364
def _decrypt_data(self, data, options): '''Decrypt data''' if options['encryption_algorithm_id'] not in self.encryption_algorithms: raise Exception('Unknown encryption algorithm id: %d' % options['encryption_algorithm_id']) encryption_algorithm = \ self.encryption_algorithms[options['encryption_algorithm_id']] algorithm = self._get_algorithm_info(encryption_algorithm) key_salt = '' if algorithm['salt_size']: key_salt = data[-algorithm['salt_size']:] data = data[:-algorithm['salt_size']] key = self._generate_key(options['encryption_passphrase_id'], self.encryption_passphrases, key_salt, algorithm) data = self._decode(data, algorithm, key) return data
0.004762
def append_lookup_key(model, lookup_key): "Transform spanned__lookup__key into all possible translation versions, on all levels" pieces = lookup_key.split('__', 1) fields = append_translated(model, (pieces[0],)) if len(pieces) > 1: # Check if we are doing a lookup to a related trans model fields_to_trans_models = get_fields_to_translatable_models(model) if pieces[0] in fields_to_trans_models: transmodel = fields_to_trans_models[pieces[0]] rest = append_lookup_key(transmodel, pieces[1]) fields = set('__'.join(pr) for pr in itertools.product(fields, rest)) else: fields = set('%s__%s' % (f, pieces[1]) for f in fields) return fields
0.004065
def can_access_api(self): """ :return: True when we can access the REST API """ try: version_dict = self.get_version() except Exception, e: msg = 'An exception was raised when connecting to REST API: "%s"' raise APIException(msg % e) else: """ This is an example response from the REST API { "branch": "develop", "dirty": "Yes", "revision": "f1cae98161 - 24 Jun 2015 16:29", "version": "1.7.2" } """ if 'version' in version_dict: # Yup, this looks like a w3af REST API return True msg = 'Unexpected HTTP response when connecting to REST API' raise APIException(msg)
0.002375
def gen_file_path(self, name): """ Returns full path to generated files. Checks to see if directory exists where generated files are stored and creates one otherwise. """ relative_path = self.convert_path(name) file_path = self.get_path("%s.ipynb"%relative_path) parent_path = rec_apply(os.path.dirname, self.gen_file_level)(file_path) gen_file_name = name if isinstance(name,str) else name[1] #Name of generated file gen_dir_path = self.get_path(os.path.join(parent_path, self.gen_dir_name)) if not os.path.exists(gen_dir_path): # Create folder for generated files if needed os.makedirs(gen_dir_path) new_file_path = self.get_path('%s.py'%os.path.join(gen_dir_path, gen_file_name)) return new_file_path
0.01722
def split_merged_reads(outhandles, input_derep): """ Takes merged/concat derep file from vsearch derep and split it back into separate R1 and R2 parts. - sample_fastq: a list of the two file paths to write out to. - input_reads: the path to the input merged reads """ handle1, handle2 = outhandles splitderep1 = open(handle1, 'w') splitderep2 = open(handle2, 'w') with open(input_derep, 'r') as infile: ## Read in the infile two lines at a time: (seqname, sequence) duo = itertools.izip(*[iter(infile)]*2) ## lists for storing results until ready to write split1s = [] split2s = [] ## iterate over input splitting, saving, and writing. idx = 0 while 1: try: itera = duo.next() except StopIteration: break ## split the duo into separate parts and inc counter part1, part2 = itera[1].split("nnnn") idx += 1 ## R1 needs a newline, but R2 inherits it from the original file ## store parts in lists until ready to write split1s.append("{}{}\n".format(itera[0], part1)) split2s.append("{}{}".format(itera[0], part2)) ## if large enough then write to file if not idx % 10000: splitderep1.write("".join(split1s)) splitderep2.write("".join(split2s)) split1s = [] split2s = [] ## write final chunk if there is any if any(split1s): splitderep1.write("".join(split1s)) splitderep2.write("".join(split2s)) ## close handles splitderep1.close() splitderep2.close()
0.008616
def set_executing(on: bool): """ Toggle whether or not the current thread is executing a step file. This will only apply when the current thread is a CauldronThread. This function has no effect when run on a Main thread. :param on: Whether or not the thread should be annotated as executing a step file. """ my_thread = threading.current_thread() if isinstance(my_thread, threads.CauldronThread): my_thread.is_executing = on
0.002105