text
stringlengths
78
104k
score
float64
0
0.18
def mark_log(self, filename='system.log'): """ Returns "a mark" to the current position of this node Cassandra log. This is for use with the from_mark parameter of watch_log_for_* methods, allowing to watch the log from the position when this method was called. """ log_file = os.path.join(self.get_path(), 'logs', filename) if not os.path.exists(log_file): return 0 with open(log_file) as f: f.seek(0, os.SEEK_END) return f.tell()
0.007533
def _smartos_zone_pkgsrc_data(): ''' SmartOS zone pkgsrc information ''' # Provides: # pkgsrcversion # pkgsrcpath grains = { 'pkgsrcversion': 'Unknown', 'pkgsrcpath': 'Unknown', } pkgsrcversion = re.compile('^release:\\s(.+)') if os.path.isfile('/etc/pkgsrc_version'): with salt.utils.files.fopen('/etc/pkgsrc_version', 'r') as fp_: for line in fp_: line = salt.utils.stringutils.to_unicode(line) match = pkgsrcversion.match(line) if match: grains['pkgsrcversion'] = match.group(1) pkgsrcpath = re.compile('PKG_PATH=(.+)') if os.path.isfile('/opt/local/etc/pkg_install.conf'): with salt.utils.files.fopen('/opt/local/etc/pkg_install.conf', 'r') as fp_: for line in fp_: line = salt.utils.stringutils.to_unicode(line) match = pkgsrcpath.match(line) if match: grains['pkgsrcpath'] = match.group(1) return grains
0.001885
def toxml(self): """ Exports this object into a LEMS XML object """ # Probably name should be removed altogether until its usage is decided, see # https://github.com/LEMS/LEMS/issues/4 # '''(' name = "{0}"'.format(self.name) if self.name else '') +\''' return '<Unit' +\ (' symbol = "{0}"'.format(self.symbol) if self.symbol else '') +\ (' dimension = "{0}"'.format(self.dimension) if self.dimension else '') +\ (' power = "{0}"'.format(self.power) if self.power else '') +\ (' scale = "{0}"'.format(self.scale) if self.scale else '') +\ (' offset = "{0}"'.format(self.offset) if self.offset else '') +\ (' description = "{0}"'.format(self.description) if self.description else '') +\ '/>'
0.008557
def rsolve(A, y): """ Robust solve Ax=y. """ from numpy_sugar.linalg import rsolve as _rsolve try: beta = _rsolve(A, y) except LinAlgError: msg = "Could not converge to solve Ax=y." msg += " Setting x to zero." warnings.warn(msg, RuntimeWarning) beta = zeros(A.shape[0]) return beta
0.002841
def _getState(self, name, default=None): "private wrapper around C{self.db.state.getState}" d = self.getObjectId() @d.addCallback def get(objectid): return self.db.state.getState(objectid, name, default) return d
0.007547
def wait(*coros_or_futures, limit=0, timeout=None, loop=None, return_exceptions=False, return_when='ALL_COMPLETED'): """ Wait for the Futures and coroutine objects given by the sequence futures to complete, with optional concurrency limit. Coroutines will be wrapped in Tasks. ``timeout`` can be used to control the maximum number of seconds to wait before returning. timeout can be an int or float. If timeout is not specified or None, there is no limit to the wait time. If ``return_exceptions`` is True, exceptions in the tasks are treated the same as successful results, and gathered in the result list; otherwise, the first raised exception will be immediately propagated to the returned future. ``return_when`` indicates when this function should return. It must be one of the following constants of the concurrent.futures module. All futures must share the same event loop. This functions is mostly compatible with Python standard ``asyncio.wait()``. Arguments: *coros_or_futures (iter|list): an iterable collection yielding coroutines functions. limit (int): optional concurrency execution limit. Use ``0`` for no limit. timeout (int/float): maximum number of seconds to wait before returning. return_exceptions (bool): exceptions in the tasks are treated the same as successful results, instead of raising them. return_when (str): indicates when this function should return. loop (asyncio.BaseEventLoop): optional event loop to use. *args (mixed): optional variadic argument to pass to the coroutines function. Returns: tuple: Returns two sets of Future: (done, pending). Raises: TypeError: in case of invalid coroutine object. ValueError: in case of empty set of coroutines or futures. TimeoutError: if execution takes more than expected. Usage:: async def sum(x, y): return x + y done, pending = await paco.wait( sum(1, 2), sum(3, 4)) [task.result() for task in done] # => [3, 7] """ # Support iterable as first argument for better interoperability if len(coros_or_futures) == 1 and isiter(coros_or_futures[0]): coros_or_futures = coros_or_futures[0] # If no coroutines to schedule, return empty list # Mimics asyncio behaviour. if len(coros_or_futures) == 0: raise ValueError('paco: set of coroutines/futures is empty') # Create concurrent executor pool = ConcurrentExecutor(limit=limit, loop=loop, coros=coros_or_futures) # Wait until all the tasks finishes return (yield from pool.run(timeout=timeout, return_when=return_when, return_exceptions=return_exceptions))
0.000335
def phase_type(self, value): '''compresses the waveform horizontally; one of ``"normal"``, ``"resync"``, ``"resync2"``''' self._params.phase_type = value self._overwrite_lock.disable()
0.009259
def join(cls, splits): """ Join an array of ids into a compound id string """ segments = [] for split in splits: segments.append('"{}",'.format(split)) if len(segments) > 0: segments[-1] = segments[-1][:-1] jsonString = '[{}]'.format(''.join(segments)) return jsonString
0.005587
def now(years=0, days=0, hours=0, minutes=0, seconds=0): """ :param years: int delta of years from now :param days: int delta of days from now :param hours: int delta of hours from now :param minutes: int delta of minutes from now :param seconds: float delta of seconds from now :return: str of the now timestamp """ date_time = datetime.utcnow() date_time += timedelta(days=days + years * 365, hours=hours, minutes=minutes, seconds=seconds) return datetime_to_str(date_time)
0.001786
def Decompress(self, compressed_data): """Decompresses the compressed data. Args: compressed_data (bytes): compressed data. Returns: tuple(bytes, bytes): uncompressed data and remaining compressed data. Raises: BackEndError: if the zlib compressed stream cannot be decompressed. """ try: uncompressed_data = self._zlib_decompressor.decompress(compressed_data) remaining_compressed_data = getattr( self._zlib_decompressor, 'unused_data', b'') except zlib.error as exception: raise errors.BackEndError(( 'Unable to decompress zlib compressed stream with error: ' '{0!s}.').format(exception)) return uncompressed_data, remaining_compressed_data
0.005376
def Page(QLExportable): ''' For multi-page files, e.g. if pdf preview ''' def __init__(self, filename, page_id): self.id = page_id super(Page, self).__init__(filename) def export(self, export_format=ExportFormat.PNG): pass
0.016598
def subdivide(network, pores, shape, labels=[]): r''' It trim the pores and replace them by cubic networks with the sent shape. Parameters ---------- network : OpenPNM Network Object pores : array_like The first group of pores to be replaced shape : array_like The shape of cubic networks in the target locations Notes ----- - It works only for cubic networks. Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[5, 6, 5], spacing=0.001) >>> pn.Np 150 >>> nano_pores = [2, 13, 14, 15] >>> op.topotools.subdivide(network=pn, pores=nano_pores, shape=[4, 7, 3], ... labels='nano') >>> pn.Np 482 ''' mro = network._mro() if 'Cubic' not in mro: raise Exception('Subdivide is only supported for Cubic Networks') from openpnm.network import Cubic pores = network._parse_indices(pores) # Checks to find boundary pores in the selected pores if 'pore.boundary' in network.labels(): if (sp.in1d(pores, network.pores('boundary'))).any(): raise Exception('boundary pores cannot be subdivided!') if not hasattr(network, '_subdivide_flag'): network._subdivide_flag = True else: raise Exception('The network has subdivided pores, so the method \ does not support another subdivision') # Assigning right shape and division if sp.size(shape) != 2 and sp.size(shape) != 3: raise Exception('Subdivide not implemented for Networks other than 2D \ and 3D') elif sp.size(shape) == 3 and 1 not in shape: div = sp.array(shape, ndmin=1) single_dim = None else: single_dim = sp.where(sp.array(network.shape) == 1)[0] if sp.size(single_dim) == 0: single_dim = None if sp.size(shape) == 3: div = sp.array(shape, ndmin=1) else: div = sp.zeros(3, dtype=sp.int32) if single_dim is None: dim = 2 else: dim = single_dim div[dim] = 1 div[-sp.array(div, ndmin=1, dtype=bool)] = sp.array(shape, ndmin=1) # Creating small network and handling labels networkspacing = network.spacing new_netspacing = networkspacing/div new_net = Cubic(shape=div, spacing=new_netspacing) main_labels = ['left', 'right', 'front', 'back', 'top', 'bottom'] if single_dim is not None: label_groups = sp.array([['front', 'back'], ['left', 'right'], ['top', 'bottom']]) non_single_labels = label_groups[sp.array([0, 1, 2]) != single_dim] for l in main_labels: new_net['pore.surface_' + l] = False network['pore.surface_' + l] = False if single_dim is None: new_net['pore.surface_' + l][new_net.pores(labels=l)] = True else: for ind in [0, 1]: loc = (non_single_labels[ind] == l) temp_pores = new_net.pores(non_single_labels[ind][loc]) new_net['pore.surface_' + l][temp_pores] = True old_coords = sp.copy(new_net['pore.coords']) if labels == []: labels = ['pore.subdivided_' + new_net.name] for P in pores: # Shifting the new network to the right location and attaching it to # the main network shift = network['pore.coords'][P] - networkspacing/2 new_net['pore.coords'] += shift Pn = network.find_neighbor_pores(pores=P) try: Pn_new_net = network.pores(labels) except KeyError: Pn_new_net = [] Pn_old_net = Pn[~sp.in1d(Pn, Pn_new_net)] Np1 = network.Np extend(pore_coords=new_net['pore.coords'], throat_conns=new_net['throat.conns'] + Np1, labels=labels, network=network) # Moving the temporary labels to the big network for l in main_labels: network['pore.surface_'+l][Np1:] = new_net['pore.surface_'+l] # Stitching the old pores of the main network to the new extended pores surf_pores = network.pores('surface_*') surf_coord = network['pore.coords'][surf_pores] for neighbor in Pn: neighbor_coord = network['pore.coords'][neighbor] dist = [round(sp.inner(neighbor_coord-x, neighbor_coord-x), 20) for x in surf_coord] nearest_neighbor = surf_pores[dist == sp.amin(dist)] if neighbor in Pn_old_net: coplanar_labels = network.labels(pores=nearest_neighbor) new_neighbors = network.pores(coplanar_labels, mode='xnor') # This might happen to the edge of the small network if sp.size(new_neighbors) == 0: labels = network.labels(pores=nearest_neighbor, mode='xnor') common_label = [l for l in labels if 'surface_' in l] new_neighbors = network.pores(common_label) elif neighbor in Pn_new_net: new_neighbors = nearest_neighbor connect_pores(network=network, pores1=neighbor, pores2=new_neighbors, labels=labels) # Removing temporary labels for l in main_labels: network['pore.surface_' + l] = False new_net['pore.coords'] = sp.copy(old_coords) label_faces(network=network) for l in main_labels: del network['pore.surface_'+l] trim(network=network, pores=pores) ws = network.project.workspace ws.close_project(new_net.project)
0.001038
def do_fish_complete(cli, prog_name): """Do the fish completion Parameters ---------- cli : click.Command The main click Command of the program prog_name : str The program name on the command line Returns ------- bool True if the completion was successful, False otherwise """ commandline = os.environ['COMMANDLINE'] args = split_args(commandline)[1:] if args and not commandline.endswith(' '): incomplete = args[-1] args = args[:-1] else: incomplete = '' for item, help in get_choices(cli, prog_name, args, incomplete): if help: echo("%s\t%s" % (item, re.sub('\s', ' ', help))) else: echo(item) return True
0.002635
def keyPressEvent(self, event): """ Listens for the left/right keys and the escape key to control the slides. :param event | <QtCore.Qt.QKeyEvent> """ if event.key() == QtCore.Qt.Key_Escape: self.cancel() elif event.key() == QtCore.Qt.Key_Left: self.goBack() elif event.key() == QtCore.Qt.Key_Right: self.goForward() elif event.key() == QtCore.Qt.Key_Home: self.restart() super(XWalkthroughWidget, self).keyPressEvent(event)
0.006768
def str_extract(arr, pat, flags=0, expand=True): r""" Extract capture groups in the regex `pat` as columns in a DataFrame. For each subject string in the Series, extract groups from the first match of regular expression `pat`. Parameters ---------- pat : str Regular expression pattern with capturing groups. flags : int, default 0 (no flags) Flags from the ``re`` module, e.g. ``re.IGNORECASE``, that modify regular expression matching for things like case, spaces, etc. For more details, see :mod:`re`. expand : bool, default True If True, return DataFrame with one column per capture group. If False, return a Series/Index if there is one capture group or DataFrame if there are multiple capture groups. .. versionadded:: 0.18.0 Returns ------- DataFrame or Series or Index A DataFrame with one row for each subject string, and one column for each group. Any capture group names in regular expression pat will be used for column names; otherwise capture group numbers will be used. The dtype of each result column is always object, even when no match is found. If ``expand=False`` and pat has only one capture group, then return a Series (if subject is a Series) or Index (if subject is an Index). See Also -------- extractall : Returns all matches (not just the first match). Examples -------- A pattern with two groups will return a DataFrame with two columns. Non-matches will be NaN. >>> s = pd.Series(['a1', 'b2', 'c3']) >>> s.str.extract(r'([ab])(\d)') 0 1 0 a 1 1 b 2 2 NaN NaN A pattern may contain optional groups. >>> s.str.extract(r'([ab])?(\d)') 0 1 0 a 1 1 b 2 2 NaN 3 Named groups will become column names in the result. >>> s.str.extract(r'(?P<letter>[ab])(?P<digit>\d)') letter digit 0 a 1 1 b 2 2 NaN NaN A pattern with one group will return a DataFrame with one column if expand=True. >>> s.str.extract(r'[ab](\d)', expand=True) 0 0 1 1 2 2 NaN A pattern with one group will return a Series if expand=False. >>> s.str.extract(r'[ab](\d)', expand=False) 0 1 1 2 2 NaN dtype: object """ if not isinstance(expand, bool): raise ValueError("expand must be True or False") if expand: return _str_extract_frame(arr._orig, pat, flags=flags) else: result, name = _str_extract_noexpand(arr._parent, pat, flags=flags) return arr._wrap_result(result, name=name, expand=expand)
0.000362
def reacher(): """Configuration for MuJoCo's reacher task.""" locals().update(default()) # Environment env = 'Reacher-v2' max_length = 1000 steps = 5e6 # 5M discount = 0.985 update_every = 60 return locals()
0.044248
def map(cls, x, palette, limits, na_value=None, oob=censor): """ Map values to a continuous palette Parameters ---------- x : array_like Continuous values to scale palette : callable ``f(x)`` palette to use na_value : object Value to use for missing values. oob : callable ``f(x)`` Function to deal with values that are beyond the limits Returns ------- out : array_like Values mapped onto a palette """ x = oob(rescale(x, _from=limits)) pal = palette(x) try: pal[pd.isnull(x)] = na_value except TypeError: pal = [v if not pd.isnull(v) else na_value for v in pal] return pal
0.002472
def calc_lfp_layer(self): """ Calculate the LFP from concatenated subpopulations residing in a certain layer, e.g all L4E pops are summed, according to the `mapping_Yy` attribute of the `hybridLFPy.Population` objects. """ LFPdict = {} lastY = None for Y, y in self.mapping_Yy: if lastY != Y: try: LFPdict.update({Y : self.LFPdict[y]}) except KeyError: pass else: try: LFPdict[Y] += self.LFPdict[y] except KeyError: pass lastY = Y return LFPdict
0.005722
def is_valid_image_extension(file_path): """is_valid_image_extension.""" valid_extensions = ['.jpeg', '.jpg', '.gif', '.png'] _, extension = os.path.splitext(file_path) return extension.lower() in valid_extensions
0.004367
def uncons_term(params, c): """ Description: Computes an additional value for the objective function value when used in an unconstrained optimization formulation. Parameters: params: all parameters for the Plackett-Luce mixture model (numpy ndarray) c: constant multiplier scaling factor of the returned term """ return (c * ((np.sum(params[1:5]) - 1)**2)) + (c * ((np.sum(params[5:]) - 1)**2))
0.006652
def load_ds_ids_from_config(self): """Get the dataset ids from the config.""" ids = [] for dataset in self.datasets.values(): # xarray doesn't like concatenating attributes that are lists # https://github.com/pydata/xarray/issues/2060 if 'coordinates' in dataset and \ isinstance(dataset['coordinates'], list): dataset['coordinates'] = tuple(dataset['coordinates']) # Build each permutation/product of the dataset id_kwargs = [] for key in DATASET_KEYS: val = dataset.get(key) if key in ["wavelength", "modifiers"] and isinstance(val, list): # special case: wavelength can be [min, nominal, max] # but is still considered 1 option # it also needs to be a tuple so it can be used in # a dictionary key (DatasetID) id_kwargs.append((tuple(val), )) elif key == "modifiers" and val is None: # empty modifiers means no modifiers applied id_kwargs.append((tuple(), )) elif isinstance(val, (list, tuple, set)): # this key has multiple choices # (ex. 250 meter, 500 meter, 1000 meter resolutions) id_kwargs.append(val) elif isinstance(val, dict): id_kwargs.append(val.keys()) else: # this key only has one choice so make it a one # item iterable id_kwargs.append((val, )) for id_params in itertools.product(*id_kwargs): dsid = DatasetID(*id_params) ids.append(dsid) # create dataset infos specifically for this permutation ds_info = dataset.copy() for key in DATASET_KEYS: if isinstance(ds_info.get(key), dict): ds_info.update(ds_info[key][getattr(dsid, key)]) # this is important for wavelength which was converted # to a tuple ds_info[key] = getattr(dsid, key) self.ids[dsid] = ds_info return ids
0.000837
def newTextLen(content, len): """Creation of a new text node with an extra parameter for the content's length """ ret = libxml2mod.xmlNewTextLen(content, len) if ret is None:raise treeError('xmlNewTextLen() failed') return xmlNode(_obj=ret)
0.011407
def eaSimpleConverge(population, toolbox, cxpb, mutpb, ngen, stats=None, halloffame=None, callback=None, verbose=True): """This algorithm reproduce the simplest evolutionary algorithm as presented in chapter 7 of [Back2000]_. Modified to allow checking if there is no change for ngen, as a simple rule for convergence. Interface is similar to eaSimple(). However, in eaSimple, ngen is total number of iterations; in eaSimpleConverge, we terminate only when the best is NOT updated for ngen iterations. """ # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit if halloffame is not None: halloffame.update(population) record = stats.compile(population) if stats else {} # Begin the generational process gen = 1 best = (0,) while True: # Select the next generation individuals offspring = toolbox.select(population, len(population)) # Vary the pool of individuals offspring = varAnd(offspring, toolbox, cxpb, mutpb) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit # Update the hall of fame with the generated individuals if halloffame is not None: halloffame.update(offspring) if callback is not None: callback(halloffame[0], gen) # Replace the current population by the offspring population[:] = offspring # Append the current generation statistics to the logbook record = stats.compile(population) if stats else {} current_best = record['max'] if gen % 20 == 0 and verbose: print("Current iteration {0}: max_score={1}". format(gen, current_best), file=sys.stderr) if current_best > best: best = current_best updated = gen gen += 1 if gen - updated > ngen: break return population
0.000426
def find_time_base(self, gps): '''work out time basis for the log - PX4 native''' t = gps.GPSTime * 1.0e-6 self.timebase = t - self.px4_timebase
0.011905
def room(self, name, participantIdentity=None, **kwargs): """ Create a <Room> element :param name: Room name :param participantIdentity: Participant identity when connecting to the Room :param kwargs: additional attributes :returns: <Room> element """ return self.nest(Room(name, participantIdentity=participantIdentity, **kwargs))
0.010076
def write_nowait(self, item): """ Write in the box in a non-blocking manner. If the box is full, an exception is thrown. You should always check for fullness with `full` or `wait_not_full` before calling this method. :param item: An item. """ self._queue.put_nowait(item) self._can_read.set() if self._queue.full(): self._can_write.clear()
0.004695
def _choi_to_chi(data, input_dim, output_dim): """Transform Choi representation to the Chi representation.""" num_qubits = int(np.log2(input_dim)) return _transform_to_pauli(data, num_qubits)
0.004926
def format_line_context(filename, lineno, context=10): ''' Formats the the line context for error rendering. :param filename: the location of the file, within which the error occurred :param lineno: the offending line number :param context: number of lines of code to display before and after the offending line. ''' with open(filename) as f: lines = f.readlines() lineno = lineno - 1 # files are indexed by 1 not 0 if lineno > 0: start_lineno = max(lineno - context, 0) end_lineno = lineno + context lines = [escape(l, True) for l in lines[start_lineno:end_lineno]] i = lineno - start_lineno lines[i] = '<strong>%s</strong>' % lines[i] else: lines = [escape(l, True) for l in lines[:context]] msg = '<pre style="background-color:#ccc;padding:2em;">%s</pre>' return msg % ''.join(lines)
0.003279
def _get_tls_object(self, ssl_params): """ Return a TLS object to establish a secure connection to a server """ if ssl_params is None: return None if not ssl_params["verify"] and ssl_params["ca_certs"]: self.warning( "Incorrect configuration: trying to disable server certificate validation, " "while also specifying a capath. No validation will be performed. Fix your " "configuration to remove this warning" ) validate = ssl.CERT_REQUIRED if ssl_params["verify"] else ssl.CERT_NONE if ssl_params["ca_certs"] is None or os.path.isfile(ssl_params["ca_certs"]): tls = ldap3.core.tls.Tls( local_private_key_file=ssl_params["key"], local_certificate_file=ssl_params["cert"], ca_certs_file=ssl_params["ca_certs"], version=ssl.PROTOCOL_SSLv23, validate=validate, ) elif os.path.isdir(ssl_params["ca_certs"]): tls = ldap3.core.tls.Tls( local_private_key_file=ssl_params["key"], local_certificate_file=ssl_params["cert"], ca_certs_path=ssl_params["ca_certs"], version=ssl.PROTOCOL_SSLv23, validate=validate, ) else: raise ConfigurationError( 'Invalid path {} for ssl_ca_certs: no such file or directory'.format(ssl_params['ca_certs']) ) return tls
0.003859
def print_tables(xmldoc, output, output_format, tableList = [], columnList = [], round_floats = True, decimal_places = 2, format_links = True, title = None, print_table_names = True, unique_rows = False, row_span_columns = [], rspan_break_columns = []): """ Method to print tables in an xml file in other formats. Input is an xmldoc, output is a file object containing the tables. @xmldoc: document to convert @output: file object to write output to; if None, will write to stdout @output_format: format to convert to @tableList: only convert the listed tables. Default is to convert all the tables found in the xmldoc. Tables not converted will not be included in the returned file object. @columnList: only print the columns listed, in the order given. This applies to all tables (if a table doesn't have a listed column, it's just skipped). To specify a column in a specific table, use table_name:column_name. Default is to print all columns. @round_floats: If turned on, will smart_round floats to specifed number of places. @format_links: If turned on, will convert any html hyperlinks to specified output_format. @decimal_places: If round_floats turned on, will smart_round to this number of decimal places. @title: Add a title to this set of tables. @unique_rows: If two consecutive rows are exactly the same, will condense into one row. @print_table_names: If set to True, will print the name of each table in the caption section. @row_span_columns: For the columns listed, will concatenate consecutive cells with the same values into one cell that spans those rows. Default is to span no rows. @rspan_break_column: Columns listed will prevent all cells from rowspanning across two rows in which values in the columns are diffrent. Default is to have no break columns. """ # get the tables to convert if tableList == []: tableList = [tb.getAttribute("Name") for tb in xmldoc.childNodes[0].getElementsByTagName(u'Table')] # set the output if output is None: output = sys.stdout # get table bits ttx, xtt, tx, xt, capx, xcap, rx, xr, cx, xc, rspx, xrsp, hlx, hxl, xhl = set_output_format( output_format ) # set the title if desired if title is not None: print >> output, "%s%s%s" %(ttx,str(title),xtt) # cycle over the tables in the xmldoc for table_name in tableList: this_table = table.get_table(xmldoc, table_name) if columnList == []: col_names = [ col.getAttribute("Name").split(":")[-1] for col in this_table.getElementsByTagName(u'Column') ] else: requested_columns = [col.split(':')[-1] for col in columnList if not (':' in col and col.split(':')[0] != table_name) ] requested_columns = sorted(set(requested_columns), key=requested_columns.index) actual_columns = [actual_column.getAttribute("Name").split(":")[-1] for actual_column in this_table.getElementsByTagName(u'Column') ] col_names = [col for col in requested_columns if col in actual_columns] # get the relevant row_span/break column indices rspan_indices = [ n for n,col in enumerate(col_names) if col in row_span_columns or ':'.join([table_name,col]) in row_span_columns ] break_indices = [ n for n,col in enumerate(col_names) if col in rspan_break_columns or ':'.join([table_name,col]) in rspan_break_columns ] # start the table and print table name print >> output, tx if print_table_names: print >> output, "%s%s%s" %(capx, table_name, xcap) print >> output, "%s%s%s%s%s" %(rx, cx, (xc+cx).join(format_header_cell(val) for val in col_names), xc, xr) # format the data in the table out_table = [] last_row = '' for row in this_table: out_row = [ str(format_cell( get_row_data(row, col_name), round_floats = round_floats, decimal_places = decimal_places, format_links = format_links, hlx = hlx, hxl = hxl, xhl = xhl )) for col_name in col_names ] if unique_rows and out_row == last_row: continue out_table.append(out_row) last_row = out_row rspan_count = {} for mm, row in enumerate(out_table[::-1]): this_row_idx = len(out_table) - (mm+1) next_row_idx = this_row_idx - 1 # cheack if it's ok to do row-span rspan_ok = rspan_indices != [] and this_row_idx != 0 if rspan_ok: for jj in break_indices: rspan_ok = out_table[this_row_idx][jj] == out_table[next_row_idx][jj] if not rspan_ok: break # cycle over columns in the row setting row span values for nn, val in enumerate(row): # check if this cell should be spanned; # if so, delete it, update rspan_count and go on to next cell if rspan_ok and nn in rspan_indices: if val == out_table[next_row_idx][nn]: out_table[this_row_idx][nn] = '' if (this_row_idx, nn) in rspan_count: rspan_count[(next_row_idx,nn)] = rspan_count[(this_row_idx,nn)] + 1 del rspan_count[(this_row_idx,nn)] else: rspan_count[(next_row_idx,nn)] = 2 elif (this_row_idx, nn) in rspan_count: out_table[this_row_idx][nn] = ''.join([rspx, str(rspan_count[(this_row_idx,nn)]), xrsp, str(val), xc]) else: out_table[this_row_idx][nn] = ''.join([cx, str(val), xc]) continue # format cell appropriately if (this_row_idx, nn) in rspan_count: out_table[this_row_idx][nn] = ''.join([rspx, str(rspan_count[(this_row_idx,nn)]), xrsp, str(val), xc]) else: out_table[this_row_idx][nn] = ''.join([cx, str(val), xc]) # print the table to output for row in out_table: print >> output, "%s%s%s" % (rx, ''.join(row), xr) # close the table and go on to the next print >> output, xt
0.014594
def _update_proxy(self, change): """ An observer which sends the state change to the proxy. """ if change['type'] == 'event': name = 'do_'+change['name'] if hasattr(self.proxy, name): handler = getattr(self.proxy, name) handler() else: super(WebView, self)._update_proxy(change)
0.005277
def request_path(request): """Path component of request-URI, as defined by RFC 2965.""" url = request.get_full_url() parts = urlsplit(url) path = escape_path(parts.path) if not path.startswith("/"): # fix bad RFC 2396 absoluteURI path = "/" + path return path
0.003344
def node(self,port, hub_address=("localhost", 4444)): ''' java -jar selenium-server.jar -role node -port 5555 -hub http://127.0.0.1:4444/grid/register/ @param port: listen port of selenium node @param hub_address: hub address which node will connect to ''' self._ip, self._port = hub_address self.command = [self._conf["java_path"], "-jar", self._conf["jar_path"], "-port", str(port), "-role", "node", "-hub", "http://%s:%s/grid/register/" %(self._ip, self._port)] return self
0.014572
def native(self): """ The native Python datatype representation of this value :return: A byte string or None """ if self.contents is None: return None if self._parsed is not None: return self._parsed[0].native else: return self.__bytes__()
0.00578
def create_value(cls, prop_name, val, model=None): # @NoSelf """This is used to create a value to be assigned to a property. Depending on the type of the value, different values are created and returned. For example, for a list, a ListWrapper is created to wrap it, and returned for the assignment. model is different from None when the value is changed (a model exists). Otherwise, during property creation model is None""" if isinstance(val, tuple): # this might be a class instance to be wrapped # (thanks to Tobias Weber for # providing a bug fix to avoid TypeError (in 1.99.1) if len(val) == 3: try: wrap_instance = isinstance(val[1], val[0]) and \ (isinstance(val[2], tuple) or isinstance(val[2], list)) except TypeError: pass # not recognized, it must be another type of tuple else: if wrap_instance: res = wrappers.ObsUserClassWrapper(val[1], val[2]) if model: res.__add_model__(model, prop_name) return res elif isinstance(val, list): res = wrappers.ObsListWrapper(val) if model: res.__add_model__(model, prop_name) return res elif isinstance(val, set): res = wrappers.ObsSetWrapper(val) if model: res.__add_model__(model, prop_name) return res elif isinstance(val, dict): res = wrappers.ObsMapWrapper(val) if model: res.__add_model__(model, prop_name) return res return val
0.001083
def _transpose(cls, char): """Convert unicode char to something similar to it.""" try: loc = ord(char) - 65 if loc < 0 or loc > 56: return char return cls.UNICODE_MAP[loc] except UnicodeDecodeError: return char
0.006711
def get_nonmatching_blocks(matching_blocks): """Given a list of matching blocks, output the gaps between them. Non-matches have the format (alo, ahi, blo, bhi). This specifies two index ranges, one in the A sequence, and one in the B sequence. """ i = j = 0 for match in matching_blocks: a, b, size = match yield (i, a, j, b) i = a + size j = b + size
0.002451
def _create_update_expression(): """ Create the grammar for an update expression """ ine = ( Word("if_not_exists") + Suppress("(") + var + Suppress(",") + var_val + Suppress(")") ) list_append = ( Word("list_append") + Suppress("(") + var_val + Suppress(",") + var_val + Suppress(")") ) fxn = Group(ine | list_append).setResultsName("set_function") # value has to come before var to prevent parsing TRUE/FALSE as variables path = value | fxn | var set_val = (path + oneOf("+ -") + path) | path set_cmd = Group(var + Suppress("=") + set_val) set_expr = (Suppress(upkey("set")) + delimitedList(set_cmd)).setResultsName( "set_expr" ) add_expr = ( Suppress(upkey("add")) + delimitedList(Group(var + value)) ).setResultsName("add_expr") delete_expr = ( Suppress(upkey("delete")) + delimitedList(Group(var + value)) ).setResultsName("delete_expr") remove_expr = (Suppress(upkey("remove")) + delimitedList(var)).setResultsName( "remove_expr" ) return OneOrMore(set_expr | add_expr | delete_expr | remove_expr).setResultsName( "update" )
0.003213
def _convert_from_pandas(self, pdf, schema, timezone): """ Convert a pandas.DataFrame to list of records that can be used to make a DataFrame :return list of records """ if timezone is not None: from pyspark.sql.types import _check_series_convert_timestamps_tz_local copied = False if isinstance(schema, StructType): for field in schema: # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if isinstance(field.dataType, TimestampType): s = _check_series_convert_timestamps_tz_local(pdf[field.name], timezone) if s is not pdf[field.name]: if not copied: # Copy once if the series is modified to prevent the original # Pandas DataFrame from being updated pdf = pdf.copy() copied = True pdf[field.name] = s else: for column, series in pdf.iteritems(): s = _check_series_convert_timestamps_tz_local(series, timezone) if s is not series: if not copied: # Copy once if the series is modified to prevent the original # Pandas DataFrame from being updated pdf = pdf.copy() copied = True pdf[column] = s # Convert pandas.DataFrame to list of numpy records np_records = pdf.to_records(index=False) # Check if any columns need to be fixed for Spark to infer properly if len(np_records) > 0: record_dtype = self._get_numpy_record_dtype(np_records[0]) if record_dtype is not None: return [r.astype(record_dtype).tolist() for r in np_records] # Convert list of numpy records to python lists return [r.tolist() for r in np_records]
0.004247
def create_zone(zone, private=False, vpc_id=None, vpc_region=None, region=None, key=None, keyid=None, profile=None): ''' Create a Route53 hosted zone. .. versionadded:: 2015.8.0 zone DNS zone to create private True/False if the zone will be a private zone vpc_id VPC ID to associate the zone to (required if private is True) vpc_region VPC Region (required if private is True) region region endpoint to connect to key AWS key keyid AWS keyid profile AWS pillar profile CLI Example:: salt myminion boto_route53.create_zone example.org ''' if region is None: region = 'universal' if private: if not vpc_id or not vpc_region: msg = 'vpc_id and vpc_region must be specified for a private zone' raise SaltInvocationError(msg) conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) _zone = conn.get_zone(zone) if _zone: return False conn.create_zone(zone, private_zone=private, vpc_id=vpc_id, vpc_region=vpc_region) return True
0.00084
def websocket_safe_read(self): """Returns data if available, otherwise ''. Newlines indicate multiple messages """ data = '' while True: try: data += '{0}\n'.format(self.websocket.recv()) except WebSocketException as e: if isinstance(e, WebSocketConnectionClosedException): logger.warning('lost websocket connection, try to reconnect now') else: logger.warning('websocket exception: %s', e) self.reconnect() except Exception as e: if isinstance(e, SSLError) and e.errno == 2: pass else: logger.warning('Exception in websocket_safe_read: %s', e) return data.rstrip()
0.004896
def send(self, data): """ :param data: :type data: bytearray | bytes :return: :rtype: """ data = bytes(data) if type(data) is not bytes else data self._wa_noiseprotocol.send(data)
0.00823
def to_fastq_apipe_cl(sdf_file, start=None, end=None): """Return a command lines to provide streaming fastq input. For paired end, returns a forward and reverse command line. For single end returns a single command line and None for the pair. """ cmd = ["rtg", "sdf2fastq", "--no-gzip", "-o", "-"] if start is not None: cmd += ["--start-id=%s" % start] if end is not None: cmd += ["--end-id=%s" % end] if is_paired(sdf_file): out = [] for ext in ["left", "right"]: out.append("<(%s)" % _rtg_cmd(cmd + ["-i", os.path.join(sdf_file, ext)])) return out else: cmd += ["-i", sdf_file] return ["<(%s)" % _rtg_cmd(cmd), None]
0.002766
def add_or_update(self, app_id, value): ''' Adding or updating the evalution. :param app_id: the ID of the post. :param value: the evaluation :return: in JSON format. ''' MEvaluation.add_or_update(self.userinfo.uid, app_id, value) out_dic = { 'eval0': MEvaluation.app_evaluation_count(app_id, 0), 'eval1': MEvaluation.app_evaluation_count(app_id, 1) } return json.dump(out_dic, self)
0.004073
def send(self, command): "Send rcon command to server" if self.secure_rcon == self.RCON_NOSECURE: self.sock.send(rcon_nosecure_packet(self.password, command)) elif self.secure_rcon == self.RCON_SECURE_TIME: self.sock.send(rcon_secure_time_packet(self.password, command)) elif self.secure_rcon == self.RCON_SECURE_CHALLENGE: challenge = self.getchallenge() self.sock.send(rcon_secure_challenge_packet(self.password, challenge, command)) else: raise ValueError("Bad value of secure_rcon")
0.003115
def prune(self, depth=0): """ Removes all nodes with less or equal links than depth. """ for n in list(self.nodes): if len(n.links) <= depth: self.remove_node(n.id)
0.009259
def timing(self, stat, value, tags=None): """Report a timing.""" self._log('timing', stat, value, tags)
0.016807
def unpackb(packed, **kwargs): """ Unpack an object from `packed`. Raises `ExtraData` when `packed` contains extra bytes. See :class:`Unpacker` for options. """ unpacker = Unpacker(None, **kwargs) unpacker.feed(packed) try: ret = unpacker._unpack() except OutOfData: raise UnpackValueError("Data is not enough.") if unpacker._got_extradata(): raise ExtraData(ret, unpacker._get_extradata()) return ret
0.002128
def expanded_indexer(key, ndim): """Given a key for indexing an ndarray, return an equivalent key which is a tuple with length equal to the number of dimensions. The expansion is done by replacing all `Ellipsis` items with the right number of full slices and then padding the key with full slices so that it reaches the appropriate dimensionality. """ if not isinstance(key, tuple): # numpy treats non-tuple keys equivalent to tuples of length 1 key = (key,) new_key = [] # handling Ellipsis right is a little tricky, see: # http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing found_ellipsis = False for k in key: if k is Ellipsis: if not found_ellipsis: new_key.extend((ndim + 1 - len(key)) * [slice(None)]) found_ellipsis = True else: new_key.append(slice(None)) else: new_key.append(k) if len(new_key) > ndim: raise IndexError('too many indices') new_key.extend((ndim - len(new_key)) * [slice(None)]) return tuple(new_key)
0.000878
def parse_dict_strings(code): """Generator of elements of a dict that is given in the code string Parsing is shallow, i.e. all content is yielded as strings Parameters ---------- code: String \tString that contains a dict """ i = 0 level = 0 chunk_start = 0 curr_paren = None for i, char in enumerate(code): if char in ["(", "[", "{"] and curr_paren is None: level += 1 elif char in [")", "]", "}"] and curr_paren is None: level -= 1 elif char in ['"', "'"]: if curr_paren == char: curr_paren = None elif curr_paren is None: curr_paren = char if level == 0 and char in [':', ','] and curr_paren is None: yield code[chunk_start: i].strip() chunk_start = i + 1 yield code[chunk_start:i + 1].strip()
0.001122
def process(self, batch, device=None): """ Process a list of examples to create a torch.Tensor. Pad, numericalize, and postprocess a batch and create a tensor. Args: batch (list(object)): A list of object from a batch of examples. Returns: torch.autograd.Variable: Processed object given the input and custom postprocessing Pipeline. """ padded = self.pad(batch) tensor = self.numericalize(padded, device=device) return tensor
0.003788
def _load_general(data, targets): """Load a list of arrays into a list of arrays specified by slices.""" for d_src, d_targets in zip(data, targets): if isinstance(d_targets, nd.NDArray): d_src.copyto(d_targets) else: assert d_targets[-1][0].stop == d_src.shape[0], \ "Batch size miss match. Expected %d, got %d"%( \ d_targets[-1][0].stop, d_src.shape[0]) for slice_idx, d_dst in d_targets: d_src[slice_idx].copyto(d_dst)
0.005639
def build_from_token_counts(self, token_counts, min_count, num_iterations=4, reserved_tokens=None, max_subtoken_length=None): """Train a SubwordTextEncoder based on a dictionary of word counts. Args: token_counts: a dictionary of Unicode strings to int. min_count: an integer - discard subtokens with lower counts. num_iterations: an integer. how many iterations of refinement. reserved_tokens: List of reserved tokens. The global variable `RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this argument is `None`, it will use `RESERVED_TOKENS`. max_subtoken_length: Maximum length of a subtoken. If this is not set, then the runtime and memory use of creating the vocab is quadratic in the length of the longest token. If this is set, then it is instead O(max_subtoken_length * length of longest token). Raises: ValueError: if reserved is not 0 or len(RESERVED_TOKENS). In this case, it is not clear what the space is being reserved for, or when it will be filled in. """ if reserved_tokens is None: reserved_tokens = RESERVED_TOKENS else: # There is not complete freedom in replacing RESERVED_TOKENS. for default, proposed in zip(RESERVED_TOKENS, reserved_tokens): if default != proposed: raise ValueError("RESERVED_TOKENS must be a prefix of " "reserved_tokens.") # Initialize the alphabet. Note, this must include reserved tokens or it can # result in encoding failures. alphabet_tokens = chain(six.iterkeys(token_counts), [native_to_unicode(t) for t in reserved_tokens]) self._init_alphabet_from_tokens(alphabet_tokens) # Bootstrap the initial list of subtokens with the characters from the # alphabet plus the escaping characters. self._init_subtokens_from_list(list(self._alphabet), reserved_tokens=reserved_tokens) # We build iteratively. On each iteration, we segment all the words, # then count the resulting potential subtokens, keeping the ones # with high enough counts for our new vocabulary. if min_count < 1: min_count = 1 for i in range(num_iterations): tf.logging.info("Iteration {0}".format(i)) # Collect all substrings of the encoded token that break along current # subtoken boundaries. subtoken_counts = collections.defaultdict(int) for token, count in six.iteritems(token_counts): iter_start_time = time.time() escaped_token = _escape_token(token, self._alphabet) subtokens = self._escaped_token_to_subtoken_strings(escaped_token) start = 0 for subtoken in subtokens: last_position = len(escaped_token) + 1 if max_subtoken_length is not None: last_position = min(last_position, start + max_subtoken_length) for end in range(start + 1, last_position): new_subtoken = escaped_token[start:end] subtoken_counts[new_subtoken] += count start += len(subtoken) iter_time_secs = time.time() - iter_start_time if iter_time_secs > 0.1: tf.logging.info(u"Processing token [{0}] took {1} seconds, consider " "setting Text2TextProblem.max_subtoken_length to a " "smaller value.".format(token, iter_time_secs)) # Array of sets of candidate subtoken strings, by length. len_to_subtoken_strings = [] for subtoken_string, count in six.iteritems(subtoken_counts): lsub = len(subtoken_string) if count >= min_count: while len(len_to_subtoken_strings) <= lsub: len_to_subtoken_strings.append(set()) len_to_subtoken_strings[lsub].add(subtoken_string) # Consider the candidates longest to shortest, so that if we accept # a longer subtoken string, we can decrement the counts of its prefixes. new_subtoken_strings = [] for lsub in range(len(len_to_subtoken_strings) - 1, 0, -1): subtoken_strings = len_to_subtoken_strings[lsub] for subtoken_string in subtoken_strings: count = subtoken_counts[subtoken_string] if count >= min_count: # Exclude alphabet tokens here, as they must be included later, # explicitly, regardless of count. if subtoken_string not in self._alphabet: new_subtoken_strings.append((count, subtoken_string)) for l in range(1, lsub): subtoken_counts[subtoken_string[:l]] -= count # Include the alphabet explicitly to guarantee all strings are encodable. new_subtoken_strings.extend((subtoken_counts.get(a, 0), a) for a in self._alphabet) new_subtoken_strings.sort(reverse=True) # Reinitialize to the candidate vocabulary. new_subtoken_strings = [subtoken for _, subtoken in new_subtoken_strings] if reserved_tokens: escaped_reserved_tokens = [ _escape_token(native_to_unicode(t), self._alphabet) for t in reserved_tokens ] new_subtoken_strings = escaped_reserved_tokens + new_subtoken_strings self._init_subtokens_from_list(new_subtoken_strings) tf.logging.info("vocab_size = %d" % self.vocab_size)
0.008117
def receive_offer(self, pkt): """Receive offer on SELECTING state.""" logger.debug("C2. Received OFFER?, in SELECTING state.") if isoffer(pkt): logger.debug("C2: T, OFFER received") self.offers.append(pkt) if len(self.offers) >= MAX_OFFERS_COLLECTED: logger.debug("C2.5: T, raise REQUESTING.") self.select_offer() raise self.REQUESTING() logger.debug("C2.5: F, raise SELECTING.") raise self.SELECTING()
0.003745
def _ep_need_close(self): """The remote has closed its end of the endpoint.""" LOG.debug("Connection remotely closed") if self._handler: cond = self._pn_connection.remote_condition with self._callback_lock: self._handler.connection_remote_closed(self, cond)
0.006231
def prompt_yes_or_no(message): """ prompt_yes_or_no: Prompt user to reply with a y/n response Args: None Returns: None """ user_input = input("{} [y/n]:".format(message)).lower() if user_input.startswith("y"): return True elif user_input.startswith("n"): return False else: return prompt_yes_or_no(message)
0.002703
def stop(self, api=None): """ Stop automation run. :param api: sevenbridges Api instance. :return: AutomationRun object """ api = api or self._API return api.post( url=self._URL['actions'].format( id=self.id, action=AutomationRunActions.STOP ) ).content
0.005587
def print_table(graph, tails, node_id_map): """Print out a table of nodes and the blocks they have at each block height starting with the common ancestor.""" node_count = len(tails) # Get the width of the table columns num_col_width = max( floor(log(max(get_heights(tails)), 10)) + 1, len("NUM")) node_col_width = max( floor(log(node_count, 10)) + 1, 8) # Construct the output format string format_str = '' format_str += '{:<' + str(num_col_width) + '} ' for _ in range(node_count): format_str += '{:<' + str(node_col_width) + '} ' nodes_header = ["NODE " + str(node_id_map[i]) for i in range(node_count)] header = format_str.format("NUM", *nodes_header) print(header) print('-' * len(header)) prev_block_num = -1 node_list = [''] * node_count for block_num, _, siblings in graph.walk(): if block_num != prev_block_num: # Need to skip the first one if prev_block_num != -1: print(format_str.format(prev_block_num, *node_list)) node_list.clear() node_list.extend([''] * node_count) prev_block_num = block_num for block_id, node_ids in siblings.items(): for node_id in node_ids: node_list[node_id] = block_id[:8] # Print the last one print(format_str.format(prev_block_num, *node_list))
0.000701
def reward_proximity(self): """ Add a wall proximity reward """ if not 'proximity' in self.mode: return mode = self.mode['proximity'] # Calculate proximity reward reward = 0 for sensor in self.player.sensors: if sensor.sensed_type == 'wall': reward += sensor.proximity_norm() else: reward += 1 reward /= len(self.player.sensors) #reward = min(1.0, reward * 2) reward = min(1.0, reward * reward) # TODO: Configurable bonus reward threshold. Pass extra args to `__test_cond`? #if mode and mode and reward > 0.75 and self.__test_cond(mode): if mode and mode and self.__test_cond(mode): # Apply bonus reward *= mode['reward'] self.player.stats['reward'] += reward
0.006865
def _extract_next_filename(self): """ changes metadata! """ self.ensure_metadata() metadata, body = self[-1] metadata['section'] = sanitize_section(metadata['section']) metadata['root'] = root path = "{root}/Misc/NEWS.d/next/{section}/{date}.bpo-{bpo}.{nonce}.rst".format_map(metadata) for name in "root section date bpo nonce".split(): del metadata[name] return path
0.006536
def write_passes(self, outfile, rows, packed=False): """ Write a PNG image to the output file. Most users are expected to find the :meth:`write` or :meth:`write_array` method more convenient. The rows should be given to this method in the order that they appear in the output file. For straightlaced images, this is the usual top to bottom ordering, but for interlaced images the rows should have already been interlaced before passing them to this function. `rows` should be an iterable that yields each row. When `packed` is ``False`` the rows should be in boxed row flat pixel format; when `packed` is ``True`` each row should be a packed sequence of bytes. """ # Try to optimize if not packed: if self.greyscale == 'try': rows1, rows2 = tee(rows) greyrows = try_greyscale(rows1, self.alpha) if greyrows is not False: rows = greyrows self.greyscale = True self.planes -= 2 else: self.greyscale = False rows = rows2 if not self.palette: # No palette, check for rescale targetbitdepth = None srcbitdepth = self.bitdepth if self.alpha or not self.greyscale: if self.bitdepth not in (8, 16): targetbitdepth = (8, 16)[self.bitdepth > 8] else: assert self.greyscale assert not self.alpha if self.bitdepth not in (1, 2, 4, 8, 16): if self.bitdepth > 8: targetbitdepth = 16 elif self.bitdepth == 3: targetbitdepth = 4 else: assert self.bitdepth in (5, 6, 7) targetbitdepth = 8 if targetbitdepth: if packed: raise Error("writing packed pixels not suitable for" " bit depth %d" % self.bitdepth) self.bitdepth = targetbitdepth factor = \ float(2**targetbitdepth - 1) / float(2**srcbitdepth - 1) def scalerow(inrows): """Rescale all pixels""" for row in inrows: yield [int(round(factor * x)) for x in row] rows = scalerow(rows) self.write_idat(outfile, self.comp_idat(self.idat(rows, packed))) return self.irows
0.00075
def integer_partition(size: int, nparts: int) -> Iterator[List[List[int]]]: """ Partition a list of integers into a list of partitions """ for part in algorithm_u(range(size), nparts): yield part
0.004739
def enable_device(self): """ re-enable the connected device and allow user activity in device again :return: bool """ cmd_response = self.__send_command(const.CMD_ENABLEDEVICE) if cmd_response.get('status'): self.is_enabled = True return True else: raise ZKErrorResponse("Can't enable device")
0.005181
def sigres_path(self): """Absolute path of the SIGRES file. Empty string if file is not present.""" # Lazy property to avoid multiple calls to has_abiext. try: return self._sigres_path except AttributeError: path = self.outdir.has_abiext("SIGRES") if path: self._sigres_path = path return path
0.010724
def create(self, phone_number, sms_capability, account_sid=values.unset, friendly_name=values.unset, unique_name=values.unset, cc_emails=values.unset, sms_url=values.unset, sms_method=values.unset, sms_fallback_url=values.unset, sms_fallback_method=values.unset, status_callback_url=values.unset, status_callback_method=values.unset, sms_application_sid=values.unset, address_sid=values.unset, email=values.unset, verification_type=values.unset, verification_document_sid=values.unset): """ Create a new HostedNumberOrderInstance :param unicode phone_number: An E164 formatted phone number. :param bool sms_capability: Specify SMS capability to host. :param unicode account_sid: Account Sid. :param unicode friendly_name: A human readable description of this resource. :param unicode unique_name: A unique, developer assigned name of this HostedNumberOrder. :param unicode cc_emails: A list of emails. :param unicode sms_url: SMS URL. :param unicode sms_method: SMS Method. :param unicode sms_fallback_url: SMS Fallback URL. :param unicode sms_fallback_method: SMS Fallback Method. :param unicode status_callback_url: Status Callback URL. :param unicode status_callback_method: Status Callback Method. :param unicode sms_application_sid: SMS Application Sid. :param unicode address_sid: Address sid. :param unicode email: Email. :param HostedNumberOrderInstance.VerificationType verification_type: Verification Type. :param unicode verification_document_sid: Verification Document Sid :returns: Newly created HostedNumberOrderInstance :rtype: twilio.rest.preview.hosted_numbers.hosted_number_order.HostedNumberOrderInstance """ data = values.of({ 'PhoneNumber': phone_number, 'SmsCapability': sms_capability, 'AccountSid': account_sid, 'FriendlyName': friendly_name, 'UniqueName': unique_name, 'CcEmails': serialize.map(cc_emails, lambda e: e), 'SmsUrl': sms_url, 'SmsMethod': sms_method, 'SmsFallbackUrl': sms_fallback_url, 'SmsFallbackMethod': sms_fallback_method, 'StatusCallbackUrl': status_callback_url, 'StatusCallbackMethod': status_callback_method, 'SmsApplicationSid': sms_application_sid, 'AddressSid': address_sid, 'Email': email, 'VerificationType': verification_type, 'VerificationDocumentSid': verification_document_sid, }) payload = self._version.create( 'POST', self._uri, data=data, ) return HostedNumberOrderInstance(self._version, payload, )
0.005102
def delete(domain, key, user=None): ''' Delete a default from the system CLI Example: .. code-block:: bash salt '*' macdefaults.delete com.apple.CrashReporter DialogType salt '*' macdefaults.delete NSGlobalDomain ApplePersistence domain The name of the domain to delete from key The key of the given domain to delete user The user to delete the defaults with ''' cmd = 'defaults delete "{0}" "{1}"'.format(domain, key) return __salt__['cmd.run_all'](cmd, runas=user, output_loglevel='debug')
0.001727
def clear_to_reset(self, config_vars): """Clear all volatile information across a reset.""" self._logger.info("Config vars in sensor log reset: %s", config_vars) super(SensorLogSubsystem, self).clear_to_reset(config_vars) self.storage.destroy_all_walkers() self.dump_walker = None if config_vars.get('storage_fillstop', False): self._logger.debug("Marking storage log fill/stop") self.storage.set_rollover('storage', False) if config_vars.get('streaming_fillstop', False): self._logger.debug("Marking streaming log fill/stop") self.storage.set_rollover('streaming', False)
0.002941
def get_tasks(self, state=Task.ANY_MASK): """ Returns a list of Task objects with the given state. :type state: integer :param state: A bitmask of states. :rtype: list[Task] :returns: A list of tasks. """ return [t for t in Task.Iterator(self.task_tree, state)]
0.006098
def update_history(self, it, j=0, M=None, **kwargs): """Add the current state for all kwargs to the history """ # Create a new entry in the history for new variables (if they don't exist) if not np.any([k in self.history[j] for k in kwargs]): for k in kwargs: if M is None or M == 0: self.history[j][k] = [[]] else: self.history[j][k] = [[] for m in range(M)] """ # Check that the variables have been updated once per iteration elif np.any([[len(h)!=it+self.offset for h in self.history[j][k]] for k in kwargs.keys()]): for k in kwargs.keys(): for n,h in enumerate(self.history[j][k]): if len(h) != it+self.offset: err_str = "At iteration {0}, {1}[{2}] already has {3} entries" raise Exception(err_str.format(it, k, n, len(h)-self.offset)) """ # Add the variables to the history for k,v in kwargs.items(): if M is None or M == 0: self._store_variable(j, k, 0, v) else: for m in range(M): self._store_variable(j, k, m, v[m])
0.00556
def reindex(self, kdims=[], force=False): """Reindexes object dropping static or supplied kdims Creates a new object with a reordered or reduced set of key dimensions. By default drops all non-varying key dimensions. Reducing the number of key dimensions will discard information from the keys. All data values are accessible in the newly created object as the new labels must be sufficient to address each value uniquely. Args: kdims (optional): New list of key dimensions after reindexing force (bool, optional): Whether to drop non-unique items Returns: Reindexed object """ old_kdims = [d.name for d in self.kdims] if not isinstance(kdims, list): kdims = [kdims] elif not len(kdims): kdims = [d for d in old_kdims if not len(set(self.dimension_values(d))) == 1] indices = [self.get_dimension_index(el) for el in kdims] keys = [tuple(k[i] for i in indices) for k in self.data.keys()] reindexed_items = OrderedDict( (k, v) for (k, v) in zip(keys, self.data.values())) reduced_dims = set([d.name for d in self.kdims]).difference(kdims) dimensions = [self.get_dimension(d) for d in kdims if d not in reduced_dims] if len(set(keys)) != len(keys) and not force: raise Exception("Given dimension labels not sufficient" "to address all values uniquely") if len(keys): cdims = {self.get_dimension(d): self.dimension_values(d)[0] for d in reduced_dims} else: cdims = {} with item_check(indices == sorted(indices)): return self.clone(reindexed_items, kdims=dimensions, cdims=cdims)
0.001597
def inverse_dynamics(self, angles, start=0, end=1e100, states=None, max_force=100): '''Follow a set of angle data, yielding dynamic joint torques. Parameters ---------- angles : ndarray (num-frames x num-dofs) Follow angle data provided by this array of angle values. start : int, optional Start following angle data after this frame. Defaults to the start of the angle data. end : int, optional Stop following angle data after this frame. Defaults to the end of the angle data. states : list of body states, optional If given, set the states of the skeleton bodies to these values before starting to follow the marker data. max_force : float, optional Allow each degree of freedom in the skeleton to exert at most this force when attempting to follow the given joint angles. Defaults to 100N. Setting this value to be large results in more accurate following but can cause oscillations in the PID controllers, resulting in noisy torques. Returns ------- torques : sequence of torque frames Returns a generator of joint torque data for the skeleton. One set of joint torques will be generated for each frame of angle data between `start` and `end`. ''' if states is not None: self.skeleton.set_body_states(states) for frame_no, frame in enumerate(angles): if frame_no < start: continue if frame_no >= end: break self.ode_space.collide(None, self.on_collision) states = self.skeleton.get_body_states() self.skeleton.set_body_states(states) # joseph's stability fix: step to compute torques, then reset the # skeleton to the start of the step, and then step using computed # torques. thus any numerical errors between the body states after # stepping using angle constraints will be removed, because we # will be stepping the model using the computed torques. self.skeleton.enable_motors(max_force) self.skeleton.set_target_angles(angles[frame_no]) self.ode_world.step(self.dt) torques = self.skeleton.joint_torques self.skeleton.disable_motors() self.skeleton.set_body_states(states) self.skeleton.add_torques(torques) yield torques self.ode_world.step(self.dt) self.ode_contactgroup.empty()
0.001121
def try_run(obj, names): """Given a list of possible method names, try to run them with the provided object. Keep going until something works. Used to run setup/teardown methods for module, package, and function tests. """ for name in names: func = getattr(obj, name, None) if func is not None: if type(obj) == types.ModuleType: # py.test compatibility try: args, varargs, varkw, defaults = inspect.getargspec(func) except TypeError: # Not a function. If it's callable, call it anyway if hasattr(func, '__call__'): func = func.__call__ try: args, varargs, varkw, defaults = \ inspect.getargspec(func) args.pop(0) # pop the self off except TypeError: raise TypeError("Attribute %s of %r is not a python " "function. Only functions or callables" " may be used as fixtures." % (name, obj)) if len(args): log.debug("call fixture %s.%s(%s)", obj, name, obj) return func(obj) log.debug("call fixture %s.%s", obj, name) return func()
0.002075
def makesubatoffset(self, bitoffset, *, _offsetideal=None): """Create a copy of this PromiseCollection with an offset applied to each contained promise and register each with their parent. If this promise's primitive is being merged with another primitive, a new subpromise may be required to keep track of the new offset of data coming from the new primitive. Args: bitoffset: An integer offset of the data in the new primitive. _offsetideal: An integer offset to use if the associated primitive supports arbitrary TDO control. Returns: A new TDOPromiseCollection registered with this promise collection, and with the correct offset. """ if _offsetideal is None: _offsetideal = bitoffset if bitoffset is 0: return self newpromise = TDOPromiseCollection(self._chain) for promise in self._promises: newpromise.add(promise, bitoffset, _offsetideal=_offsetideal) return newpromise
0.00377
def _get_pretty_exception_message(e): """ Parses some DatabaseError to provide a better error message """ if (hasattr(e, 'message') and 'errorName' in e.message and 'message' in e.message): return ('{name}: {message}'.format( name=e.message['errorName'], message=e.message['message'])) else: return str(e)
0.004577
def description_of(file, name='stdin'): """Return a string describing the probable encoding of a file.""" u = UniversalDetector() for line in file: u.feed(line) u.close() result = u.result if result['encoding']: return '%s: %s with confidence %s' % (name, result['encoding'], result['confidence']) else: return '%s: no result' % name
0.002096
def select_action_key(self, next_action_arr, next_q_arr): ''' Select action by Q(state, action). Args: next_action_arr: `np.ndarray` of actions. next_q_arr: `np.ndarray` of Q-Values. Retruns: `np.ndarray` of keys. ''' epsilon_greedy_flag = bool(np.random.binomial(n=1, p=self.epsilon_greedy_rate)) if epsilon_greedy_flag is False: key = np.random.randint(low=0, high=next_action_arr.shape[0]) else: key = next_q_arr.argmax() return key
0.005093
def pylint_raw(options): """ Use check_output to run pylint. Because pylint changes the exit code based on the code score, we have to wrap it in a try/except block. :param options: :return: """ command = ['pylint'] command.extend(options) proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) outs, __ = proc.communicate() return outs.decode()
0.004751
def key_exists(self, key, secret=False): ''' Check is given key exists. :param key: Key ID :param secret: Check secret key :rtype: bool ''' if len(key) < 8: return False key = key.upper() res = self.list_keys(secret) for fingerprint in res.keys: if fingerprint.endswith(key): return True return False
0.004662
def lookup_folder(event, filesystem): """Lookup the parent folder in the filesystem content.""" for dirent in filesystem[event.parent_inode]: if dirent.type == 'd' and dirent.allocated: return ntpath.join(dirent.path, event.name)
0.003891
def _root_unhook(self): """Change this root console into a normal Console object and delete the root console from TCOD """ global _rootinitialized, _rootConsoleRef # do we recognise this as the root console? # if not then assume the console has already been taken care of if(_rootConsoleRef and _rootConsoleRef() is self): # turn this console into a regular console unhooked = _lib.TCOD_console_new(self.width, self.height) _lib.TCOD_console_blit(self.console_c, 0, 0, self.width, self.height, unhooked, 0, 0, 1, 1) # delete root console from TDL and TCOD _rootinitialized = False _rootConsoleRef = None _lib.TCOD_console_delete(self.console_c) # this Console object is now a regular console self.console_c = unhooked
0.002103
def QueryAndOwn(self, queue, lease_seconds=10, limit=1): """Returns a list of Tasks leased for a certain time. Args: queue: The queue to query from. lease_seconds: The tasks will be leased for this long. limit: Number of values to fetch. Returns: A list of GrrMessage() objects leased. """ with self.data_store.GetMutationPool() as mutation_pool: return mutation_pool.QueueQueryAndOwn(queue, lease_seconds, limit, self.frozen_timestamp)
0.003745
def run_with_snapshots(self, tsnapstart=0., tsnapint=432000.): """Run the model forward, yielding to user code at specified intervals. Parameters ---------- tsnapstart : int The timestep at which to begin yielding. tstapint : int The interval at which to yield. """ tsnapints = np.ceil(tsnapint/self.dt) while(self.t < self.tmax): self._step_forward() if self.t>=tsnapstart and (self.tc%tsnapints)==0: yield self.t return
0.008913
def matching_base_url(self, url): """ Return True if the initial part of `url` matches the base url passed to the initialiser of this object, and False otherwise. """ n = len(self.baseurl) return url[0:n] == self.baseurl
0.007435
async def send_tokens(payment_handle: int, tokens: int, address: str) -> str: """ Sends tokens to an address payment_handle is always 0 :param payment_handle: Integer :param tokens: Integer :param address: String Example: payment_handle = 0 amount = 1000 address = await Wallet.create_payment_address('00000000000000000000000001234567') await Wallet.send_tokens(payment_handle, amount, address) :return: """ logger = logging.getLogger(__name__) if not hasattr(Wallet.send_tokens, "cb"): logger.debug("vcx_wallet_send_tokens: Creating callback") Wallet.send_tokens.cb = create_cb(CFUNCTYPE(None, c_uint32, c_uint32, c_char_p)) c_payment_handle = c_uint32(payment_handle) c_tokens = c_char_p(str(tokens).encode('utf-8')) c_address = c_char_p(address.encode('utf-8')) result = await do_call('vcx_wallet_send_tokens', c_payment_handle, c_tokens, c_address, Wallet.send_tokens.cb) logger.debug("vcx_wallet_send_tokens completed") return result
0.00318
def _expand_address(addy): ''' Convert the libcloud GCEAddress object into something more serializable. ''' ret = {} ret.update(addy.__dict__) ret['extra']['zone'] = addy.region.name return ret
0.004525
def type_id(self): """ A short string representing the provider implementation id used for serialization of :class:`.Credentials` and to identify the type of provider in JavaScript. The part before hyphen denotes the type of the provider, the part after hyphen denotes the class id e.g. ``oauth2.Facebook.type_id = '2-5'``, ``oauth1.Twitter.type_id = '1-5'``. """ cls = self.__class__ mod = sys.modules.get(cls.__module__) return str(self.PROVIDER_TYPE_ID) + '-' + \ str(mod.PROVIDER_ID_MAP.index(cls))
0.003257
def stop_all(self): """ Stop all nodes """ pool = Pool(concurrency=3) for node in self.nodes.values(): pool.append(node.stop) yield from pool.join()
0.009615
def start(self, start_loop=True): """Start all the things. :param start_loop bool: whether to start the ioloop. should be False if the IOLoop is managed externally """ self.start_alerts() if self.options.get('pidfile'): with open(self.options.get('pidfile'), 'w') as fpid: fpid.write(str(os.getpid())) self.callback.start() LOGGER.info('Reactor starts') if start_loop: self.loop.start()
0.003817
def _get_reference(document_path, reference_map): """Get a document reference from a dictionary. This just wraps a simple dictionary look-up with a helpful error that is specific to :meth:`~.firestore.client.Client.get_all`, the **public** caller of this function. Args: document_path (str): A fully-qualified document path. reference_map (Dict[str, .DocumentReference]): A mapping (produced by :func:`_reference_info`) of fully-qualified document paths to document references. Returns: .DocumentReference: The matching reference. Raises: ValueError: If ``document_path`` has not been encountered. """ try: return reference_map[document_path] except KeyError: msg = _BAD_DOC_TEMPLATE.format(document_path) raise ValueError(msg)
0.001175
def tag(iterable, tags=None, key='@tags'): """ Add tags to each dict or dict-like object in ``iterable``. Tags are added to each dict with a key set by ``key``. If a key already exists under the key given by ``key``, this function will attempt to ``.extend()``` it, but will fall back to replacing it in the event of error. """ if not tags: for item in iterable: yield item else: for item in iterable: yield _tag(item, tags, key)
0.001992
def _process_human_orthos(self, limit=None): """ This table provides ortholog mappings between zebrafish and humans. ZFIN has their own process of creating orthology mappings, that we take in addition to other orthology-calling sources (like PANTHER). We ignore the omim ids, and only use the gene_id. Triples created: <zfin gene id> a class <zfin gene id> rdfs:label gene_symbol <zfin gene id> dc:description gene_name <human gene id> a class <human gene id> rdfs:label gene_symbol <human gene id> dc:description gene_name <human gene id> equivalent class <omim id> <zfin gene id> orthology association <human gene id> :param limit: :return: """ if self.test_mode: graph = self.testgraph else: graph = self.graph LOG.info("Processing human orthos") line_counter = 0 geno = Genotype(graph) # model = Model(graph) # unused raw = '/'.join((self.rawdir, self.files['human_orthos']['file'])) with open(raw, 'r', encoding="iso-8859-1") as csvfile: filereader = csv.reader(csvfile, delimiter='\t', quotechar='\"') for row in filereader: line_counter += 1 (zfin_id, zfin_symbol, zfin_name, human_symbol, human_name, omim_id, gene_id, hgnc_id, evidence_code, pub_id # , empty ) = row if self.test_mode and zfin_id not in self.test_ids['gene']: continue # Add the zebrafish gene. zfin_id = 'ZFIN:' + zfin_id.strip() geno.addGene(zfin_id, zfin_symbol, None, zfin_name) # Add the human gene. gene_id = 'NCBIGene:' + gene_id.strip() geno.addGene(gene_id, human_symbol, None, human_name) # make the association assoc = OrthologyAssoc(graph, self.name, zfin_id, gene_id) # we don't know anything about the orthology type, # so we just use the default if re.match(r'ZDB', pub_id): assoc.add_source('ZFIN:'+pub_id) eco_id = self.get_orthology_evidence_code(evidence_code) if eco_id is not None: assoc.add_evidence(eco_id) assoc.add_association_to_graph() if not self.test_mode and limit is not None and line_counter > limit: break LOG.info("Done with human orthos") return
0.001508
def get_all(self, attr, value, e=0.000001, sort_by="__name__", reverse=False): """Get all nested Constant class that met ``klass.attr == value``. :param attr: attribute name. :param value: value. :param e: used for float value comparison. :param sort_by: nested class is ordered by <sort_by> attribute. .. versionchanged:: 0.0.5 """ matched = list() for _, klass in self.subclasses(sort_by, reverse): try: if getattr(klass, attr) == approx(value, e): matched.append(klass) except: # pragma: no cover pass return matched
0.005755
def write( contents: str, path: Union[str, pathlib.Path], verbose: bool = False, logger_func=None, ) -> bool: """ Writes ``contents`` to ``path``. Checks if ``path`` already exists and only write out new contents if the old contents do not match. Creates any intermediate missing directories. :param contents: the file contents to write :param path: the path to write to :param verbose: whether to print output """ print_func = logger_func or print path = pathlib.Path(path) if path.exists(): with path.open("r") as file_pointer: old_contents = file_pointer.read() if old_contents == contents: if verbose: print_func("preserved {}".format(path)) return False else: with path.open("w") as file_pointer: file_pointer.write(contents) if verbose: print_func("rewrote {}".format(path)) return True elif not path.exists(): if not path.parent.exists(): path.parent.mkdir(parents=True) with path.open("w") as file_pointer: file_pointer.write(contents) if verbose: print_func("wrote {}".format(path)) return True
0.00078
def process_readme(): """ Function which will process README.md file and divide it into INTRO.md and INSTALL.md, which will be used in documentation """ with open('../../README.md', 'r') as file: readme = file.read() readme = readme.replace('# eo-learn', '# Introduction').replace('docs/source/', '') readme = readme.replace('**`', '**').replace('`**', '**') chapters = [[]] for line in readme.split('\n'): if line.strip().startswith('## '): chapters.append([]) if line.startswith('<img'): line = '<p></p>' chapters[-1].append(line) chapters = ['\n'.join(chapter) for chapter in chapters] intro = '\n'.join([chapter for chapter in chapters if not (chapter.startswith('## Install') or chapter.startswith('## Documentation'))]) install = '\n'.join([chapter for chapter in chapters if chapter.startswith('## Install')]) with open(os.path.join(MARKDOWNS_FOLDER, 'INTRO.md'), 'w') as file: file.write(intro) with open(os.path.join(MARKDOWNS_FOLDER, 'INSTALL.md'), 'w') as file: file.write(install)
0.005063
def bam_conversion(job, samfile, sample_type, univ_options): """ This module converts SAMFILE from sam to bam ARGUMENTS 1. samfile: <JSid for a sam file> 2. sample_type: string of 'tumor_dna' or 'normal_dna' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> RETURN VALUES 1. output_files: REFER output_files in run_bwa() """ job.fileStore.logToMaster('Running sam2bam on %s:%s' % (univ_options['patient'], sample_type)) work_dir = job.fileStore.getLocalTempDir() input_files = { 'aligned.sam': samfile} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) bamfile = '/'.join([work_dir, 'aligned.bam']) parameters = ['view', '-bS', '-o', docker_path(bamfile), input_files['aligned.sam'] ] docker_call(tool='samtools', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_file = job.fileStore.writeGlobalFile(bamfile) job.fileStore.deleteGlobalFile(samfile) reheader_bam = job.wrapJobFn(fix_bam_header, output_file, sample_type, univ_options, disk='60G') job.addChild(reheader_bam) return reheader_bam.rv()
0.002165
def _cnv_prioritize(data): """Perform confidence interval based prioritization for CNVs. """ supported = {"cnvkit": {"inputs": ["call_file", "segmetrics"], "fn": _cnvkit_prioritize}} pcall = None priority_files = None for call in data.get("sv", []): if call["variantcaller"] in supported: priority_files = [call.get(x) for x in supported[call["variantcaller"]]["inputs"]] priority_files = [x for x in priority_files if x is not None and utils.file_exists(x)] if len(priority_files) == len(supported[call["variantcaller"]]["inputs"]): pcall = call break prioritize_by = tz.get_in(["config", "algorithm", "svprioritize"], data) if pcall and prioritize_by: out_file = "%s-prioritize.tsv" % utils.splitext_plus(priority_files[0])[0] gene_list = _find_gene_list_from_bed(prioritize_by, out_file, data) if gene_list: with open(gene_list) as in_handle: genes = [x.strip() for x in in_handle] args = [dd.get_sample_name(data), genes] + priority_files df = supported[pcall["variantcaller"]]["fn"](*args) with file_transaction(data, out_file) as tx_out_file: df.to_csv(tx_out_file, sep="\t", index=False) pcall["priority"] = out_file return data
0.004402
def get_dweets_for(thing_name, key=None, session=None): """Read all the dweets for a dweeter """ if key is not None: params = {'key': key} else: params = None return _request('get', '/get/dweets/for/{0}'.format(thing_name), params=params, session=None)
0.006944
def from_phase(self, phase_name): """ Returns the result of a previous phase by its name Parameters ---------- phase_name: str The name of a previous phase Returns ------- result: Result The result of that phase Raises ------ exc.PipelineException If no phase with the expected result is found """ try: return self.__result_dict[phase_name] except KeyError: raise exc.PipelineException("No previous phase named {} found in results ({})".format(phase_name, ", ".join( self.__result_dict.keys())))
0.004373
def zip_dicts(left, right, prefix=()): """ Modified zip through two dictionaries. Iterate through all keys of left dictionary, returning: - A nested path - A value and parent for both dictionaries """ for key, left_value in left.items(): path = prefix + (key, ) right_value = right.get(key) if isinstance(left_value, dict): yield from zip_dicts(left_value, right_value or {}, path) else: yield path, left, left_value, right, right_value
0.001887
def __calculate_radius(self, number_neighbors, radius): """! @brief Calculate new connectivity radius. @param[in] number_neighbors (uint): Average amount of neighbors that should be connected by new radius. @param[in] radius (double): Current connectivity radius. @return New connectivity radius. """ if (number_neighbors >= len(self._osc_loc)): return radius * self.__increase_persent + radius; return average_neighbor_distance(self._osc_loc, number_neighbors);
0.01675