text
stringlengths
78
104k
score
float64
0
0.18
def sprinter(self): """ Called when parallelize is True. This function will generate the file names in a directory tree by adding directories to a Queue and continuously exploring directories in the Queue until Queue is emptied. Significantly faster than crawler method for larger directory trees. """ self._printer('Multiprocess Walk') # Loop through directories in case there is more than one (1) for directory in self.directory: self._get_root_files(directory) # Add file within root directory if filepaths is empty # acquire the list of paths first_level_dirs = next(os.walk(directory))[1] for path in first_level_dirs: self.unsearched.put((directory, path)) self._printer('Pool Processing STARTED') pool = Pool(self.pool_size) pool.map_async(self.parallel_worker, range(self.pool_size)) pool.close() self.unsearched.join() self._printer('Pool Processing ENDED') return self.filepaths
0.0037
def texture_array(self, size, components, data=None, *, alignment=1, dtype='f1') -> 'TextureArray': ''' Create a :py:class:`TextureArray` object. Args: size (tuple): The ``(width, height, layers)`` of the texture. components (int): The number of components 1, 2, 3 or 4. data (bytes): Content of the texture. The size must be ``(width, height * layers)`` so each layer is stacked vertically. Keyword Args: alignment (int): The byte alignment 1, 2, 4 or 8. dtype (str): Data type. Returns: :py:class:`Texture3D` object ''' res = TextureArray.__new__(TextureArray) res.mglo, res._glo = self.mglo.texture_array(size, components, data, alignment, dtype) res._size = size res._components = components res._dtype = dtype res.ctx = self res.extra = None return res
0.004926
def add_event_handler(self, action): """Add a event handler into actions list :param action: event handler to add :type action: alignak.eventhandler.EventHandler :return: None """ if action.uuid in self.actions: logger.info("Already existing event handler: %s", action) return self.actions[action.uuid] = action self.nb_event_handlers += 1
0.004662
def load_hdf(cls, filename, path='', ic=None): """ Loads stored ObservationTree from file. You can provide the isochrone to use; or it will default to MIST TODO: saving and loading must be fixed! save ic type, bands, etc. """ store = pd.HDFStore(filename) try: samples = store[path+'/df'] attrs = store.get_storer(path+'/df').attrs except: store.close() raise df = store[path+'/df'] new = cls.from_df(df) if ic is None: ic = get_ichrone('mist') new.define_models(ic, N=attrs.N, index=attrs.index) new.spectroscopy = attrs.spectroscopy new.parallax = attrs.parallax store.close() return new
0.003836
def __select_autocomplete_identities(self, sources): """Select the identities used for autocompleting""" MIN_PRIORITY = 99999999 checked = {} for source in sources: uids = api.unique_identities(self.db, source=source) for uid in uids: if uid.uuid in checked: continue max_priority = MIN_PRIORITY selected = [] for identity in sorted(uid.identities, key=lambda x: x.id): try: priority = sources.index(identity.source) if priority < max_priority: selected = [identity] max_priority = priority elif priority == max_priority: selected.append(identity) except ValueError: continue checked[uid.uuid] = selected identities = collections.OrderedDict(sorted(checked.items(), key=lambda t: t[0])) return identities
0.001738
def clear_last_check(self): """Clear the checksum of the file.""" with db.session.begin_nested(): self.last_check = None self.last_check_at = datetime.utcnow() return self
0.009132
def initialize( self, config_file: str = "bmi_config.txt", initialize_indicators=True ): """ Initialize the executable AnalysisGraph with a config file. Args: config_file Returns: AnalysisGraph """ self.t = 0.0 if not os.path.isfile(config_file): self.create_bmi_config_file(config_file) self.s0 = [ pd.read_csv( config_file, index_col=0, header=None, error_bad_lines=False )[1] for _ in range(self.res) ] self.s0_original = self.s0[0].copy(deep=True) self.latent_state_vector = self.construct_default_initial_state() for n in self.nodes(data=True): rv = LatentVar(n[0]) n[1]["rv"] = rv n[1]["update_function"] = self.default_update_function rv.dataset = [1.0 for _ in range(self.res)] rv.partial_t = self.s0[0][f"∂({n[0]})/∂t"] if initialize_indicators: for indicator in n[1]["indicators"].values(): indicator.samples = np.random.normal( indicator.mean * np.array(n[1]["rv"].dataset), scale=0.01, )
0.002366
def collate(self, graph): """ :type graph: VariantGraph """ # prepare the token index self.token_index.prepare() self.vertex_array = [None] * len(self.token_index.token_array) # Build the variant graph for the first witness # this is easy: generate a vertex for every token first_witness = self.collation.witnesses[0] tokens = first_witness.tokens() token_to_vertex = self.merge(graph, first_witness.sigil, tokens) # print("> token_to_vertex=", token_to_vertex) self.update_token_position_to_vertex(token_to_vertex) self.update_token_to_vertex_array(tokens, first_witness, self.token_position_to_vertex) # align witness 2 - n for x in range(1, len(self.collation.witnesses)): witness = self.collation.witnesses[x] tokens = witness.tokens() # print("\nwitness", witness.sigil) variant_graph_ranking = VariantGraphRanking.of(graph) # print("> x =", x, ", variant_graph_ranking =", variant_graph_ranking.byRank) variant_graph_ranks = list(set(map(lambda v: variant_graph_ranking.byVertex.get(v), graph.vertices()))) # we leave in the rank of the start vertex, but remove the rank of the end vertex variant_graph_ranks.pop() # now the vertical stuff tokens_as_index_list = self.as_index_list(tokens) match_cube = MatchCube(self.token_index, witness, self.vertex_array, variant_graph_ranking, self.properties_filter) # print("> match_cube.matches=", match_cube.matches) self.fill_needleman_wunsch_table(variant_graph_ranks, tokens_as_index_list, match_cube) aligned = self.align_matching_tokens(match_cube) # print("> aligned=", aligned) # print("self.token_index.token_array=", self.token_index.token_array) # alignment = self.align_function(superbase, next_witness, token_to_vertex, match_cube) # merge witness_token_to_generated_vertex = self.merge(graph, witness.sigil, witness.tokens(), aligned) # print("> witness_token_to_generated_vertex =", witness_token_to_generated_vertex) token_to_vertex.update(witness_token_to_generated_vertex) # print("> token_to_vertex =", token_to_vertex) self.update_token_position_to_vertex(token_to_vertex, aligned) witness_token_position_to_vertex = {} for p in self.token_index.get_range_for_witness(witness.sigil): # print("> p= ", p) witness_token_position_to_vertex[p] = self.token_position_to_vertex[p] self.update_token_to_vertex_array(tokens, witness, witness_token_position_to_vertex) # print("> vertex_array =", self.vertex_array) # print("actual") # self._debug_edit_graph_table(self.table) # print("expected") # self._debug_edit_graph_table(self.table2) # change superbase # superbase = self.new_superbase if self.detect_transpositions: detector = TranspositionDetection(self) detector.detect()
0.004202
def delete_event_ticket_class(self, id, ticket_class_id, **data): """ DELETE /events/:id/ticket_classes/:ticket_class_id/ Deletes the ticket class. Returns ``{"deleted": true}``. """ return self.delete("/events/{0}/ticket_classes/{0}/".format(id,ticket_class_id), data=data)
0.01548
def m_b(mbmb, scale, f, alphasMZ=0.1185, loop=3): r"""Get running b quark mass in the MSbar scheme at the scale `scale` in the theory with `f` dynamical quark flavours starting from $m_b(m_b)$""" if scale == mbmb and f == 5: return mbmb # nothing to do _sane(scale, f) alphas_mb = alpha_s(mbmb, 5, alphasMZ=alphasMZ, loop=loop) crd = rundec.CRunDec() if f == 5: alphas_scale = alpha_s(scale, f, alphasMZ=alphasMZ, loop=loop) return crd.mMS2mMS(mbmb, alphas_mb, alphas_scale, f, loop) elif f == 4: crd.nfMmu.Mth = 4.8 crd.nfMmu.muth = 4.8 crd.nfMmu.nf = 5 return crd.mH2mL(mbmb, alphas_mb, mbmb, crd.nfMmu, scale, loop) elif f == 3: mc = 1.3 crd.nfMmu.Mth = 4.8 crd.nfMmu.muth = 4.8 crd.nfMmu.nf = 5 mbmc = crd.mH2mL(mbmb, alphas_mb, mbmb, crd.nfMmu, mc, loop) crd.nfMmu.Mth = mc crd.nfMmu.muth = mc crd.nfMmu.nf = 4 alphas_mc = alpha_s(mc, 4, alphasMZ=alphasMZ, loop=loop) return crd.mH2mL(mbmc, alphas_mc, mc, crd.nfMmu, scale, loop) elif f == 6: crd.nfMmu.Mth = 170 crd.nfMmu.muth = 170 crd.nfMmu.nf = 6 return crd.mL2mH(mbmb, alphas_mb, mbmb, crd.nfMmu, scale, loop) else: raise ValueError("Invalid input: f={}, scale={}".format(f, scale))
0.000734
def _get_pwned(prefix): """ Fetches a dict of all hash suffixes from Pwned Passwords for a given SHA-1 prefix. """ try: response = requests.get( url=API_ENDPOINT.format(prefix), headers={'User-Agent': USER_AGENT}, timeout=getattr( settings, 'PWNED_PASSWORDS_API_TIMEOUT', REQUEST_TIMEOUT, ), ) response.raise_for_status() except requests.RequestException as e: # Gracefully handle timeouts and HTTP error response codes. log.warning( 'Skipped Pwned Passwords check due to error: %r', e ) return None results = {} for line in response.text.splitlines(): line_suffix, _, times = line.partition(':') results[line_suffix] = int(times) return results
0.001157
def save(self, *args): """ Save cache to file using pickle. Parameters ---------- *args: All but the last argument are inputs to the cached function. The last is the actual value of the function. """ with open(self.file_root + '.pkl', "wb") as f: pickle.dump(args, f, protocol=pickle.HIGHEST_PROTOCOL)
0.005181
def find_repositories_by_walking_and_following_symlinks(path): """Walk a tree and return a sequence of (directory, dotdir) pairs.""" repos = [] # This is for detecting symlink loops and escaping them. This is similar to # http://stackoverflow.com/questions/36977259/avoiding-infinite-recursion-with-os-walk/36977656#36977656 def inode(path): stats = os.stat(path) return stats.st_dev, stats.st_ino seen_inodes = {inode(path)} for dirpath, dirnames, filenames in os.walk(path, followlinks=True): inodes = [inode(os.path.join(dirpath, p)) for p in dirnames] dirnames[:] = [p for p, i in zip(dirnames, inodes) if not i in seen_inodes] seen_inodes.update(inodes) for dotdir in set(dirnames) & DOTDIRS: repos.append((dirpath, dotdir)) return repos
0.002326
def filter_image_sep2d(image, fh, fv, impl='numpy', padding=None): """Filter an image with a separable filter. Parameters ---------- image : 2D array-like The image to be filtered. It must have a real (vs. complex) dtype. fh, fv : 1D array-like Horizontal (axis 0) and vertical (axis 1) filters. Their sizes can be at most the image sizes in the respective axes. impl : {'numpy', 'pyfftw'}, optional FFT backend to use. The ``pyfftw`` backend requires the ``pyfftw`` package to be installed. It is usually significantly faster than the NumPy backend. padding : positive int, optional Amount of zeros added to the left and right of the image in all axes before FFT. This helps avoiding wraparound artifacts due to large boundary values. For ``None``, the padding is computed as :: padding = min(max(len(fh), len(fv)) - 1, 64) A padding of ``len(filt) - 1`` ensures that errors in FFT-based convolutions are small. At the same time, the padding should not be excessive to retain efficiency. Returns ------- filtered : 2D `numpy.ndarray` The image filtered horizontally by ``fh`` and vertically by ``fv``. It has the same shape as ``image``, and its dtype is ``np.result_type(image, fh, fv)``. """ # TODO: generalize for nD impl, impl_in = str(impl).lower(), impl if impl not in ('numpy', 'pyfftw'): raise ValueError('`impl` {!r} not understood' ''.format(impl_in)) image = np.asarray(image) if image.ndim != 2: raise ValueError('`image` must be 2-dimensional, got image with ' 'ndim={}'.format(image.ndim)) if image.size == 0: raise ValueError('`image` cannot have size 0') if not np.issubsctype(image.dtype, np.floating): image = image.astype(float) fh = np.asarray(fh).astype(image.dtype) if fh.ndim != 1: raise ValueError('`fh` must be one-dimensional') elif fh.size == 0: raise ValueError('`fh` cannot have size 0') elif fh.size > image.shape[0]: raise ValueError('`fh` can be at most `image.shape[0]`, got ' '{} > {}'.format(fh.size, image.shape[0])) fv = np.asarray(fv).astype(image.dtype) if fv.ndim != 1: raise ValueError('`fv` must be one-dimensional') elif fv.size == 0: raise ValueError('`fv` cannot have size 0') elif fv.size > image.shape[0]: raise ValueError('`fv` can be at most `image.shape[1]`, got ' '{} > {}'.format(fv.size, image.shape[1])) # Pad image with zeros if padding is None: padding = min(max(len(fh), len(fv)) - 1, 64) if padding != 0: image_padded = np.pad(image, padding, mode='constant') else: image_padded = image.copy() if impl == 'pyfftw' else image # Prepare filters for the convolution def prepare_for_fft(filt, n_new): """Return padded and shifted filter ready for FFT. The filter is padded with zeros to the new size, and then shifted such that such that the middle element of old filter, i.e., the one at index ``(len(filt) - 1) // 2`` ends up at index 0. """ mid = (len(filt) - 1) // 2 padded = np.zeros(n_new, dtype=filt.dtype) padded[:len(filt) - mid] = filt[mid:] padded[len(padded) - mid:] = filt[:mid] return padded fh = prepare_for_fft(fh, image_padded.shape[0]) fv = prepare_for_fft(fv, image_padded.shape[1]) # Perform the multiplication in Fourier space and apply inverse FFT if impl == 'numpy': image_ft = np.fft.rfftn(image_padded) fh_ft = np.fft.fft(fh) fv_ft = np.fft.rfft(fv) image_ft *= fh_ft[:, None] image_ft *= fv_ft[None, :] # Important to specify the shape since `irfftn` cannot know the # original shape conv = np.fft.irfftn(image_ft, s=image_padded.shape) if conv.dtype != image.dtype: conv = conv.astype(image.dtype) elif impl == 'pyfftw': if not PYFFTW_AVAILABLE: raise ValueError( '`pyfftw` package is not available; you need to install it ' 'to use the pyfftw backend') import pyfftw import multiprocessing # Generate output arrays, for half-complex transform of image and # vertical filter, and full FT of the horizontal filter out_img_shape = (image_padded.shape[0], image_padded.shape[1] // 2 + 1) out_img_dtype = np.result_type(image_padded, 1j) out_img = np.empty(out_img_shape, out_img_dtype) out_fh_shape = out_img_shape[0] out_fh_dtype = np.result_type(fh, 1j) fh_c = fh.astype(out_fh_dtype) # need to make this a C2C trafo out_fh = np.empty(out_fh_shape, out_fh_dtype) out_fv_shape = out_img_shape[1] out_fv_dtype = np.result_type(fv, 1j) out_fv = np.empty(out_fv_shape, out_fv_dtype) # Perform the forward transforms of image and filters. We use # the `FFTW_ESTIMATE` flag to not allow the planner to destroy # the input. plan = pyfftw.FFTW(image_padded, out_img, axes=(0, 1), direction='FFTW_FORWARD', flags=['FFTW_ESTIMATE'], threads=multiprocessing.cpu_count()) plan(image_padded, out_img) plan = pyfftw.FFTW(fh_c, out_fh, axes=(0,), direction='FFTW_FORWARD', flags=['FFTW_ESTIMATE'], threads=multiprocessing.cpu_count()) plan(fh_c, out_fh) plan = pyfftw.FFTW(fv, out_fv, axes=(0,), direction='FFTW_FORWARD', flags=['FFTW_ESTIMATE'], threads=multiprocessing.cpu_count()) plan(fv, out_fv) # Fourier space multiplication out_img *= out_fh[:, None] out_img *= out_fv[None, :] # Inverse trafo conv = image_padded # Overwrite plan = pyfftw.FFTW(out_img.copy(), conv, axes=(0, 1), direction='FFTW_BACKWARD', flags=['FFTW_ESTIMATE'], threads=multiprocessing.cpu_count()) plan(out_img, conv) else: raise ValueError('unsupported `impl` {!r}'.format(impl_in)) if padding: return conv[padding:-padding, padding:-padding] else: return conv
0.000151
def print_location(proc_obj): """Show where we are. GUI's and front-end interfaces often use this to update displays. So it is helpful to make sure we give at least some place that's located in a file. """ i_stack = proc_obj.curindex if i_stack is None or proc_obj.stack is None: return False core_obj = proc_obj.core dbgr_obj = proc_obj.debugger intf_obj = dbgr_obj.intf[-1] # Evaluation routines like "exec" don't show useful location # info. In these cases, we will use the position before that in # the stack. Hence the looping below which in practices loops # once and sometimes twice. remapped_file = None source_text = None while i_stack >= 0: frame_lineno = proc_obj.stack[i_stack] i_stack -= 1 frame, lineno = frame_lineno # # Next check to see that local variable breadcrumb exists and # # has the magic dynamic value. # # If so, it's us and we don't normally show this.a # if 'breadcrumb' in frame.f_locals: # if self.run == frame.f_locals['breadcrumb']: # break filename = Mstack.frame2file(core_obj, frame, canonic=False) if '<string>' == filename and dbgr_obj.eval_string: remapped_file = filename filename = pyficache.unmap_file(filename) if '<string>' == filename: remapped = cmdfns.source_tempfile_remap('eval_string', dbgr_obj.eval_string) pyficache.remap_file(filename, remapped) filename = remapped lineno = pyficache.unmap_file_line(filename, lineno) pass pass elif '<string>' == filename: source_text = deparse_fn(frame.f_code) filename = "<string: '%s'>" % source_text pass else: m = re.search('^<frozen (.*)>', filename) if m and m.group(1) in pyficache.file2file_remap: remapped_file = pyficache.file2file_remap[m.group(1)] pass elif filename in pyficache.file2file_remap: remapped_file = pyficache.unmap_file(filename) # FIXME: a remapped_file shouldn't be the same as its unmapped version if remapped_file == filename: remapped_file = None pass pass elif m and m.group(1) in sys.modules: remapped_file = m.group(1) pyficache.remap_file(filename, remapped_file) pass opts = { 'reload_on_change' : proc_obj.settings('reload'), 'output' : proc_obj.settings('highlight') } if 'style' in proc_obj.debugger.settings: opts['style'] = proc_obj.settings('style') pyficache.update_cache(filename) line = pyficache.getline(filename, lineno, opts) if not line: if (not source_text and filename.startswith("<string: ") and proc_obj.curframe.f_code): # Deparse the code object into a temp file and remap the line from code # into the corresponding line of the tempfile co = proc_obj.curframe.f_code temp_filename, name_for_code = deparse_and_cache(co, proc_obj.errmsg) lineno = 1 # _, lineno = pyficache.unmap_file_line(temp_filename, lineno, True) if temp_filename: filename = temp_filename pass else: # FIXME: if source_text: lines = source_text.split("\n") temp_name='string-' else: # try with good ol linecache and consider fixing pyficache lines = linecache.getlines(filename) temp_name = filename if lines: # FIXME: DRY code with version in cmdproc.py print_location prefix = os.path.basename(temp_name).split('.')[0] fd = tempfile.NamedTemporaryFile(suffix='.py', prefix=prefix, delete=False) with fd: fd.write(''.join(lines)) remapped_file = fd.name pyficache.remap_file(remapped_file, filename) fd.close() pass line = linecache.getline(filename, lineno, proc_obj.curframe.f_globals) if not line: m = re.search('^<frozen (.*)>', filename) if m and m.group(1): remapped_file = m.group(1) try_module = sys.modules.get(remapped_file) if (try_module and inspect.ismodule(try_module) and hasattr(try_module, '__file__')): remapped_file = sys.modules[remapped_file].__file__ pyficache.remap_file(filename, remapped_file) line = linecache.getline(remapped_file, lineno, proc_obj.curframe.f_globals) else: remapped_file = m.group(1) code = proc_obj.curframe.f_code filename, line = cmdfns.deparse_getline(code, remapped_file, lineno, opts) pass pass try: match, reason = Mstack.check_path_with_frame(frame, filename) if not match: if filename not in warned_file_mismatches: proc_obj.errmsg(reason) warned_file_mismatches.add(filename) except: pass fn_name = frame.f_code.co_name last_i = frame.f_lasti print_source_location_info(intf_obj.msg, filename, lineno, fn_name, remapped_file = remapped_file, f_lasti = last_i) if line and len(line.strip()) != 0: if proc_obj.event: print_source_line(intf_obj.msg, lineno, line, proc_obj.event2short[proc_obj.event]) pass if '<string>' != filename: break pass if proc_obj.event in ['return', 'exception']: val = proc_obj.event_arg intf_obj.msg('R=> %s' % proc_obj._saferepr(val)) pass return True
0.002661
def count_subgraph_sizes(graph: BELGraph, annotation: str = 'Subgraph') -> Counter[int]: """Count the number of nodes in each subgraph induced by an annotation. :param annotation: The annotation to group by and compare. Defaults to 'Subgraph' :return: A dictionary from {annotation value: number of nodes} """ return count_dict_values(group_nodes_by_annotation(graph, annotation))
0.007481
def raise_302(instance, location): """Abort the current request with a 302 (Found) response code. Sets the Location header correctly. If the location does not start with a slash, the path of the current request is prepended. :param instance: Resource instance (used to access the response) :type instance: :class:`webob.resource.Resource` :raises: :class:`webob.exceptions.ResponseException` of status 302 """ _set_location(instance, location) instance.response.status = 302 raise ResponseException(instance.response)
0.001792
def get_query_batch_request(self, batch_id, job_id=None): """ Fetch the request sent for the batch. Note should only used for query batches """ if not job_id: job_id = self.lookup_job_id(batch_id) url = self.endpoint + "/job/{}/batch/{}/request".format(job_id, batch_id) resp = requests.get(url, headers=self.headers()) self.check_status(resp) return resp.text
0.009501
def _extract_alphabet(self, grammar): """ Extract an alphabet from the given grammar. """ alphabet = set([]) for terminal in grammar.Terminals: alphabet |= set([x for x in terminal]) self.alphabet = list(alphabet)
0.007326
def update_from_item(self, item): """ Update from i3status output. returns if item has changed. """ if not self.is_time_module: # correct the output # Restore the name/instance. item["name"] = self.name item["instance"] = self.instance # change color good/bad is set specifically for module if "color" in item and item["color"] in self.color_map: item["color"] = self.color_map[item["color"]] # have we updated? is_updated = self.item != item self.item = item else: # If no timezone or a minute has passed update timezone t = time() if self.time_zone_check_due < t: # If we are late for our timezone update then schedule the next # update to happen when we next get new data from i3status interval = self.i3status.update_interval if not self.set_time_zone(item): # we had an issue with an invalid time zone probably due to # suspending. re check the time zone when we next can. self.time_zone_check_due = 0 elif self.time_zone_check_due and ( t - self.time_zone_check_due > 5 + interval ): self.time_zone_check_due = 0 else: # Check again in 30 mins. We do this in case the timezone # used has switched to/from summer time self.time_zone_check_due = ((int(t) // 1800) * 1800) + 1800 if not self.time_started: self.time_started = True self.i3status.py3_wrapper.timeout_queue_add(self) is_updated = False # update time to be shown return is_updated
0.001047
def read_namespaced_pod_disruption_budget(self, name, namespace, **kwargs): """ read the specified PodDisruptionBudget This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.read_namespaced_pod_disruption_budget(name, namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the PodDisruptionBudget (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str pretty: If 'true', then the output is pretty printed. :param bool exact: Should the export be exact. Exact export maintains cluster-specific fields like 'Namespace'. Deprecated. Planned for removal in 1.18. :param bool export: Should this value be exported. Export strips fields that a user can not specify. Deprecated. Planned for removal in 1.18. :return: V1beta1PodDisruptionBudget If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.read_namespaced_pod_disruption_budget_with_http_info(name, namespace, **kwargs) else: (data) = self.read_namespaced_pod_disruption_budget_with_http_info(name, namespace, **kwargs) return data
0.005416
def from_ase_atoms(cls, atoms): """Create an instance of the own class from an ase molecule Args: molecule (:class:`ase.atoms.Atoms`): Returns: Cartesian: """ return cls(atoms=atoms.get_chemical_symbols(), coords=atoms.positions)
0.00678
def _get_result_paths(self, data): """Gets the results for a run of bwa index. bwa index outputs 5 files when the index is created. The filename prefix will be the same as the input fasta, unless overridden with the -p option, and the 5 extensions are listed below: .amb .ann .bwt .pac .sa and these extentions (including the period) are the keys to the dictionary that is returned. """ # determine the names of the files. The name will be the same as the # input fasta file unless overridden with the -p option if self.Parameters['-p'].isOn(): prefix = self.Parameters['-p'].Value else: prefix = data['fasta_in'] # the 5 output file suffixes suffixes = ['.amb', '.ann', '.bwt', '.pac', '.sa'] out_files = {} for suffix in suffixes: out_files[suffix] = ResultPath(prefix + suffix, IsWritten=True) return out_files
0.001955
def save(self): """ Write data to user config file. """ with open(self._user_config_file, 'w', encoding='utf-8') as f: self.write(f)
0.011364
def addSignal(self, s): """ Adds a L{Signal} to the interface """ if s.nargs == -1: s.nargs = len([a for a in marshal.genCompleteTypes(s.sig)]) self.signals[s.name] = s self._xml = None
0.008163
def dynamic_presence(self): """ Determine presence based on bed heating level and end presence time reported by the api. Idea originated from Alex Lee Yuk Cheung SmartThings Code. """ # self.heating_stats() if not self.presence: if self.heating_level > 50: # Can likely make this better if not self.now_heating: self.presence = True elif self.heating_level - self.target_heating_level >= 8: self.presence = True elif self.heating_level > 25: # Catch rising edge if self.past_heating_level(0) - self.past_heating_level(1) >= 2 \ and self.past_heating_level(1) - self.past_heating_level(2) >= 2 \ and self.past_heating_level(2) - self.past_heating_level(3) >= 2: # Values are increasing so we are likely in bed if not self.now_heating: self.presence = True elif self.heating_level - self.target_heating_level >= 8: self.presence = True elif self.presence: if self.heating_level <= 15: # Failsafe, very slow self.presence = False elif self.heating_level < 50: if self.past_heating_level(0) - self.past_heating_level(1) < 0 \ and self.past_heating_level(1) - self.past_heating_level(2) < 0 \ and self.past_heating_level(2) - self.past_heating_level(3) < 0: # Values are decreasing so we are likely out of bed self.presence = False # Last seen can lag real-time by up to 35min so this is # mostly a backup to using the heat values. # seen_delta = datetime.fromtimestamp(time.time()) \ # - datetime.strptime(self.last_seen, '%Y-%m-%dT%H:%M:%S') # _LOGGER.debug('%s Last seen time delta: %s', self.side, # seen_delta.total_seconds()) # if self.presence and seen_delta.total_seconds() > 2100: # self.presence = False _LOGGER.debug('%s Presence Results: %s', self.side, self.presence)
0.003492
def is_valid_python(tkn: str) -> bool: """Determine whether tkn is a valid python identifier :param tkn: :return: """ try: root = ast.parse(tkn) except SyntaxError: return False return len(root.body) == 1 and isinstance(root.body[0], ast.Expr) and isinstance(root.body[0].value, ast.Name)
0.006006
def treat(request_body): """ Treat a notification and guarantee its authenticity. :param request_body: The request body in plain text. :type request_body: string :return: A safe APIResource :rtype: APIResource """ # Python 3+ support if isinstance(request_body, six.binary_type): request_body = request_body.decode('utf-8') try: data = json.loads(request_body) except ValueError: raise exceptions.UnknownAPIResource('Request body is malformed JSON.') unsafe_api_resource = APIResource.factory(data) try: consistent_api_resource = unsafe_api_resource.get_consistent_resource() except AttributeError: raise exceptions.UnknownAPIResource('The API resource provided is invalid.') return consistent_api_resource
0.002463
async def prover_get_credential(wallet_handle: int, cred_id: str) -> str: """ Gets human readable credential by the given id. :param wallet_handle: wallet handler (created by open_wallet). :param cred_id: Identifier by which requested credential is stored in the wallet :return: credential json { "referent": string, // cred_id in the wallet "attrs": {"key1":"raw_value1", "key2":"raw_value2"}, "schema_id": string, "cred_def_id": string, "rev_reg_id": Optional<string>, "cred_rev_id": Optional<string> } """ logger = logging.getLogger(__name__) logger.debug("prover_get_credential: >>> wallet_handle: %r, cred_id: %r", wallet_handle, cred_id) if not hasattr(prover_get_credential, "cb"): logger.debug("prover_get_credential: Creating callback") prover_get_credential.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_cred_id = c_char_p(cred_id.encode('utf-8')) credentials_json = await do_call('indy_prover_get_credential', c_wallet_handle, c_cred_id, prover_get_credential.cb) res = credentials_json.decode() logger.debug("prover_get_credential: <<< res: %r", res) return res
0.002063
def admin_permission_factory(admin_view): """Default factory for creating a permission for an admin. It tries to load a :class:`invenio_access.permissions.Permission` instance if `invenio_access` is installed. Otherwise, it loads a :class:`flask_principal.Permission` instance. :param admin_view: Instance of administration view which is currently being protected. :returns: Permission instance. """ try: pkg_resources.get_distribution('invenio-access') from invenio_access import Permission except pkg_resources.DistributionNotFound: from flask_principal import Permission return Permission(action_admin_access)
0.001456
def subscribe(self, name, params=[], callback=None): """Subscribe to a collection Arguments: name - the name of the publication params - the subscription parameters Keyword Arguments: callback - a function callback that returns an error (if exists)""" self._wait_for_connect() def subscribed(error, sub_id): if error: self._remove_sub_by_id(sub_id) if callback: callback(error.get('reason')) return if callback: callback(None) self.emit('subscribed', name) if name in self.subscriptions: raise MeteorClientException('Already subcribed to {}'.format(name)) sub_id = self.ddp_client.subscribe(name, params, subscribed) self.subscriptions[name] = { 'id': sub_id, 'params': params }
0.002141
def prepare_project(project, project_dir, binaries, ips, urls): """ Generates blacklists / whitelists """ # Get Various Lists / Project Waivers lists = get_lists.GetLists() # Get file name black list and project waivers file_audit_list, file_audit_project_list = lists.file_audit_list(project) # Get file content black list and project waivers flag_list, ignore_list = lists.file_content_list(project) # Get File Ignore Lists file_ignore = lists.file_ignore() ignore_directories = lists.ignore_directories(project) # Get URL Ignore Lists url_ignore = lists.url_ignore(project) # Get IP Ignore Lists ip_ignore = lists.ip_ignore(project) # Get Binary Ignore Lists hashlist = get_lists.GetLists() if binaries or ips or urls: try: apikey = os.environ["VT_KEY"] except KeyError: logger.error("Please set your virustotal.com API key as an environment variable") sys.exit(1) try: vt_rate_type = config.get('config', 'vt_rate_type') except six.moves.configparser.NoSectionError: logger.error("A config section is required for vt_rate_type with a public | private option") sys.exit(1) patten = re.compile(r'\bpublic\b|\bprivate\b') if not patten.match(vt_rate_type): logger.error("Unrecognized %s option for vt_rate_type", vt_rate_type) sys.exit(1) # Perform rudimentary scans scan_file(project, project_dir, binaries, ips, urls, file_audit_list, file_audit_project_list, flag_list, ignore_list, hashlist, file_ignore, ignore_directories, url_ignore, ip_ignore, apikey)
0.002316
def get_offsets(self): """ returns ------- a dictionary with these entries header_start: byte offset from beginning of the file to the start of the header data_start: byte offset from beginning of the file to the start of the data section data_end: byte offset from beginning of the file to the end of the data section Note these are also in the information dictionary, which you can access with get_info() """ return dict( header_start=self._info['header_start'], data_start=self._info['data_start'], data_end=self._info['data_end'], )
0.002695
def sanitize(s, normalize_whitespace=True, normalize_unicode=True, form='NFKC', enforce_encoding=True, encoding='utf-8'): """Normalize a string Args: s (unicode string): input unicode string normalize_whitespace (bool): if True, normalize all whitespace to single spaces (including newlines), strip whitespace at start/end normalize_unicode (bool): if True, normalize unicode form to 'form' form (str): unicode form enforce_encoding (bool): if True, encode string to target encoding and re-decode, ignoring errors and stripping all characters not part of the encoding encoding (str): target encoding for the above Returns: str: unicode output string """ if enforce_encoding: s = s.encode(encoding, errors='ignore').decode(encoding, errors='ignore') if normalize_unicode: s = unicodedata.normalize(form, s) if normalize_whitespace: s = re.sub(r'\s+', ' ', s).strip() return s
0.004437
def write(self, psd_data_or_future, time_start, time_stop, samples): """Write PSD of one frequency hop""" try: # Wait for result of future f_array, pwr_array = psd_data_or_future.result() except AttributeError: f_array, pwr_array = psd_data_or_future try: step = f_array[1] - f_array[0] row = [ time_stop.strftime('%Y-%m-%d'), time_stop.strftime('%H:%M:%S'), f_array[0], f_array[-1] + step, step, samples ] row += list(pwr_array) self.output.write('{}\n'.format(', '.join(str(x) for x in row))) self.output.flush() except Exception as e: logging.exception('Error writing to output file:')
0.002561
def _position_for_dispense(self, location=None, clearance=0.5): """ Position this :any:`Pipette` for an dispense """ if location: if isinstance(location, Placeable): location = location.bottom(min(location.z_size(), clearance)) self.move_to(location)
0.006192
def createCircle(self, cx, cy, r, strokewidth=1, stroke='black', fill='none'): """ Creates a circle @type cx: string or int @param cx: starting x-coordinate @type cy: string or int @param cy: starting y-coordinate @type r: string or int @param r: radius @type strokewidth: string or int @param strokewidth: width of the pen used to draw @type stroke: string (either css constants like "black" or numerical values like "#FFFFFF") @param stroke: color with which to draw the outer limits @type fill: string (either css constants like "black" or numerical values like "#FFFFFF") @param fill: color with which to fill the element (default: no filling) @return: a circle object """ style_dict = {'fill':fill, 'stroke-width':strokewidth, 'stroke':stroke} myStyle = StyleBuilder(style_dict) c = Circle(cx, cy, r) c.set_style(myStyle.getStyle()) return c
0.010669
def date_time_this_decade( self, before_now=True, after_now=False, tzinfo=None): """ Gets a DateTime object for the decade year. :param before_now: include days in current decade before today :param after_now: include days in current decade after today :param tzinfo: timezone, instance of datetime.tzinfo subclass :example DateTime('2012-04-04 11:02:02') :return DateTime """ now = datetime.now(tzinfo) this_decade_start = datetime( now.year - (now.year % 10), 1, 1, tzinfo=tzinfo) next_decade_start = datetime( min(this_decade_start.year + 10, MAXYEAR), 1, 1, tzinfo=tzinfo) if before_now and after_now: return self.date_time_between_dates( this_decade_start, next_decade_start, tzinfo) elif not before_now and after_now: return self.date_time_between_dates(now, next_decade_start, tzinfo) elif not after_now and before_now: return self.date_time_between_dates(this_decade_start, now, tzinfo) else: return now
0.001711
def floyd_warshall_get_path(self, distance, nextn, i, j): ''' API: floyd_warshall_get_path(self, distance, nextn, i, j): Description: Finds shortest path between i and j using distance and nextn dictionaries. Pre: (1) distance and nextn are outputs of floyd_warshall method. (2) The graph does not have a negative cycle, , ie. distance[(i,i)] >=0 for all node i. Return: Returns the list of nodes on the path from i to j, ie. [i,...,j] ''' if distance[(i,j)]=='infinity': return None k = nextn[(i,j)] path = self.floyd_warshall_get_path if i==k: return [i, j] else: return path(distance, nextn, i,k) + [k] + path(distance, nextn, k,j)
0.010689
async def arun_process(path: Union[Path, str], target: Callable, *, args: Tuple[Any]=(), kwargs: Dict[str, Any]=None, callback: Callable[[Set[Tuple[Change, str]]], Awaitable]=None, watcher_cls: Type[AllWatcher]=PythonWatcher, debounce=400, min_sleep=100): """ Run a function in a subprocess using multiprocessing.Process, restart it whenever files change in path. """ watcher = awatch(path, watcher_cls=watcher_cls, debounce=debounce, min_sleep=min_sleep) start_process = partial(_start_process, target=target, args=args, kwargs=kwargs) process = await watcher.run_in_executor(start_process) reloads = 0 async for changes in watcher: callback and await callback(changes) await watcher.run_in_executor(_stop_process, process) process = await watcher.run_in_executor(start_process) reloads += 1 return reloads
0.012821
def subscribe(self, topic, qos=0): # type: (str, int) -> Tuple[int, int] """ Subscribe to a certain topic. :param topic: a string specifying the subscription topic to subscribe to. :param qos: the desired quality of service level for the subscription. Defaults to 0. :rtype: (int, int) :result: (result, mid) A topic is a UTF-8 string, which is used by the broker to filter messages for each connected client. A topic consists of one or more topic levels. Each topic level is separated by a forward slash (topic level separator). The function returns a tuple (result, mid), where result is MQTT_ERR_SUCCESS to indicate success or (MQTT_ERR_NO_CONN, None) if the client is not currently connected. mid is the message ID for the subscribe request. The mid value can be used to track the subscribe request by checking against the mid argument in the on_subscribe() callback if it is defined. **Topic example:** `myhome/groundfloor/livingroom/temperature` """ # TODO: add support for list of topics # don't subscribe if already subscribed # try to subscribe result, mid = self.client.subscribe(topic=topic, qos=qos) # if successful add to topics if result == MQTT_ERR_SUCCESS: self.topics[topic] = TopicQos(topic=topic, qos=qos) logger.debug('Subscribed to topic: {0}, qos: {1}' .format(topic, qos)) else: logger.error('Error {0} subscribing to topic: {1}' .format(result, topic)) return (result, mid)
0.001723
def modify_karma(self, words): """ Given a regex object, look through the groups and modify karma as necessary """ # 'user': karma k = defaultdict(int) if words: # For loop through all of the group members for word_tuple in words: word = word_tuple[0] ending = word[-1] # This will either end with a - or +, if it's a - subract 1 # kara, if it ends with a +, add 1 karma change = -1 if ending == '-' else 1 # Now strip the ++ or -- from the end if '-' in ending: word = word.rstrip('-') elif '+' in ending: word = word.rstrip('+') # Check if surrounded by parens, if so, remove them if word.startswith('(') and word.endswith(')'): word = word[1:-1] # Finally strip whitespace word = word.strip() # Add the user to the dict if word: k[word] += change return k
0.001736
def do_map(input_dict, feature_format, positive_class=None): ''' Maps a new example to a set of features. ''' # Context of the unseen example(s) train_context = input_dict['train_ctx'] test_context = input_dict['test_ctx'] # Currently known examples & background knowledge features = input_dict['features'] format = input_dict['output_format'] evaluations = domain_map(features, feature_format, train_context, test_context, format=format, positive_class=positive_class) return {'evaluations': evaluations}
0.001642
def _verify_time_range(payload_dict): """Verifies the issued at and expiration from a JWT payload. Makes sure the current time (in UTC) falls between the issued at and expiration for the JWT (with some skew allowed for via ``CLOCK_SKEW_SECS``). Args: payload_dict: dict, A dictionary containing a JWT payload. Raises: AppIdentityError: If there is no ``'iat'`` field in the payload dictionary. AppIdentityError: If there is no ``'exp'`` field in the payload dictionary. AppIdentityError: If the JWT expiration is too far in the future (i.e. if the expiration would imply a token lifetime longer than what is allowed.) AppIdentityError: If the token appears to have been issued in the future (up to clock skew). AppIdentityError: If the token appears to have expired in the past (up to clock skew). """ # Get the current time to use throughout. now = int(time.time()) # Make sure issued at and expiration are in the payload. issued_at = payload_dict.get('iat') if issued_at is None: raise AppIdentityError( 'No iat field in token: {0}'.format(payload_dict)) expiration = payload_dict.get('exp') if expiration is None: raise AppIdentityError( 'No exp field in token: {0}'.format(payload_dict)) # Make sure the expiration gives an acceptable token lifetime. if expiration >= now + MAX_TOKEN_LIFETIME_SECS: raise AppIdentityError( 'exp field too far in future: {0}'.format(payload_dict)) # Make sure (up to clock skew) that the token wasn't issued in the future. earliest = issued_at - CLOCK_SKEW_SECS if now < earliest: raise AppIdentityError('Token used too early, {0} < {1}: {2}'.format( now, earliest, payload_dict)) # Make sure (up to clock skew) that the token isn't already expired. latest = expiration + CLOCK_SKEW_SECS if now > latest: raise AppIdentityError('Token used too late, {0} > {1}: {2}'.format( now, latest, payload_dict))
0.000447
def kerr_lightring_velocity(chi): """Return the velocity at the Kerr light ring""" # If chi > 0.9996, the algorithm cannot solve the function if chi >= 0.9996: return brentq(kerr_lightring, 0, 0.8, args=(0.9996)) else: return brentq(kerr_lightring, 0, 0.8, args=(chi))
0.003333
def list_calculations(db, job_type, user_name): """ Yield a summary of past calculations. :param db: a :class:`openquake.server.dbapi.Db` instance :param job_type: 'hazard' or 'risk' :param user_name: an user name """ jobs = db('SELECT *, %s FROM job WHERE user_name=?x ' 'AND job_type=?x ORDER BY start_time' % JOB_TYPE, user_name, job_type) out = [] if len(jobs) == 0: out.append('None') else: out.append('job_id | status | start_time | ' ' description') for job in jobs: descr = job.description start_time = job.start_time out.append('%6d | %10s | %s | %s' % ( job.id, job.status, start_time, descr)) return out
0.001247
def _from_rest_ignore(model, props): """ Purge fields that are completely unknown """ fields = model.all_fields for prop in props.keys(): if prop not in fields: del props[prop]
0.004762
def deactivate_version(self, service_id, version_number): """Deactivate the current version.""" content = self._fetch("/service/%s/version/%d/deactivate" % (service_id, version_number), method="PUT") return FastlyVersion(self, content)
0.024896
def publish_model(cursor, model, publisher, message): """Publishes the ``model`` and return its ident_hash.""" publishers = publisher if isinstance(publishers, list) and len(publishers) > 1: raise ValueError("Only one publisher is allowed. '{}' " "were given: {}" .format(len(publishers), publishers)) module_ident, ident_hash = _insert_metadata(cursor, model, publisher, message) for resource in getattr(model, 'resources', []): _insert_resource_file(cursor, module_ident, resource) if isinstance(model, Document): html = bytes(cnxepub.DocumentContentFormatter(model)) sha1 = hashlib.new('sha1', html).hexdigest() cursor.execute("SELECT fileid FROM files WHERE sha1 = %s", (sha1,)) try: fileid = cursor.fetchone()[0] except TypeError: file_args = { 'media_type': 'text/html', 'data': psycopg2.Binary(html), } cursor.execute("""\ insert into files (file, media_type) VALUES (%(data)s, %(media_type)s) returning fileid""", file_args) fileid = cursor.fetchone()[0] args = { 'module_ident': module_ident, 'filename': 'index.cnxml.html', 'fileid': fileid, } cursor.execute("""\ INSERT INTO module_files (module_ident, fileid, filename) VALUES (%(module_ident)s, %(fileid)s, %(filename)s)""", args) elif isinstance(model, Binder): tree = cnxepub.model_to_tree(model) tree = _insert_tree(cursor, tree) return ident_hash
0.000574
def draw(self, **kwargs): """ Creates the bar chart of the cross-validated scores generated from the fit method and places a dashed horizontal line that represents the average value of the scores. """ color = kwargs.pop("color", "b") width = kwargs.pop("width", 0.3) linewidth = kwargs.pop("linewidth", 1) xvals = np.arange(1, len(self.cv_scores_) + 1, 1) self.ax.bar(xvals, self.cv_scores_, width=width) self.ax.axhline( self.cv_scores_mean_, color=color, label="Mean score = {:0.3f}".format(self.cv_scores_mean_), linestyle='--', linewidth=linewidth ) return self.ax
0.002813
def ignore(self, tube): """Remove the given tube from the watchlist. :param tube: Name of tube to remove from the watchlist If all tubes are :func:`ignore()` d, beanstalk will auto-add "default" to the watchlist to prevent the list from being empty. See :func:`watch()` for more unformation. """ with self._sock_ctx() as socket: if tube not in self._watchlist: raise KeyError(tube) if tube != 'default': self.desired_watchlist.remove(tube) if tube in self._watchlist: self._send_message('ignore {0}'.format(tube), socket) self._receive_id(socket) self._watchlist.remove(tube) if not self._watchlist: self._watchlist.add('default')
0.004854
def build_menus(self, order_cats=[]): """ 生成全局内存菜单""" menus = [{'category': _cat, 'items': []} for _cat in order_cats] for path in self.routes: route = self.routes[path] for menu in menus: if route['category'] == menu['category']: menu['items'].append(route) return menus
0.00551
def to_fits(self, filename, wavelengths=None, **kwargs): """Write the reddening law to a FITS file. :math:`R(V)` column is automatically named 'Av/E(B-V)'. Parameters ---------- filename : str Output filename. wavelengths : array-like, `~astropy.units.quantity.Quantity`, or `None` Wavelength values for sampling. If not a Quantity, assumed to be in Angstrom. If `None`, ``self.waveset`` is used. kwargs : dict Keywords accepted by :func:`~synphot.specio.write_fits_spec`. """ w, y = self._get_arrays(wavelengths) kwargs['flux_col'] = 'Av/E(B-V)' kwargs['flux_unit'] = self._internal_flux_unit # No need to trim/pad zeroes, unless user chooses to do so. if 'pad_zero_ends' not in kwargs: kwargs['pad_zero_ends'] = False if 'trim_zero' not in kwargs: kwargs['trim_zero'] = False # There are some standard keywords that should be added # to the extension header. bkeys = {'tdisp1': 'G15.7', 'tdisp2': 'G15.7'} if 'expr' in self.meta: bkeys['expr'] = (self.meta['expr'], 'synphot expression') if 'ext_header' in kwargs: kwargs['ext_header'].update(bkeys) else: kwargs['ext_header'] = bkeys specio.write_fits_spec(filename, w, y, **kwargs)
0.001395
async def release(self): "Releases the already acquired lock" expected_token = self.local.token if expected_token is None: raise LockError("Cannot release an unlocked lock") self.local.token = None await self.do_release(expected_token)
0.006969
def get_views(self, path, year=None, month=None, day=None, hour=None): """ Get the number of views for a Telegraph article :param path: Path to the Telegraph page :param year: Required if month is passed. If passed, the number of page views for the requested year will be returned :param month: Required if day is passed. If passed, the number of page views for the requested month will be returned :param day: Required if hour is passed. If passed, the number of page views for the requested day will be returned :param hour: If passed, the number of page views for the requested hour will be returned """ return self._telegraph.method('getViews', path=path, values={ 'year': year, 'month': month, 'day': day, 'hour': hour })
0.002137
def get_default_database(self): """DEPRECATED - Get the database named in the MongoDB connection URI. >>> uri = 'mongodb://host/my_database' >>> client = MongoClient(uri) >>> db = client.get_default_database() >>> assert db.name == 'my_database' >>> db = client.get_database() >>> assert db.name == 'my_database' Useful in scripts where you want to choose which database to use based only on the URI in a configuration file. .. versionchanged:: 3.5 Deprecated, use :meth:`get_database` instead. """ warnings.warn("get_default_database is deprecated. Use get_database " "instead.", DeprecationWarning, stacklevel=2) if self.__default_database_name is None: raise ConfigurationError('No default database defined') return self[self.__default_database_name]
0.002188
def _get_field_schema(self): """ Get a list of all of the default fields for this query type. If data is available in the monitor type, a list of field definitions will be returned ahead of the actual data, providing insight into the available fields. If no data is available in a monitor, this will block on recv(). :return: list of dictionary fields with the field schema """ self.update_format(DetailedFormat()) for fields in self.execute(): if 'fields' in fields: return fields['fields']
0.004934
def get_request_data(self, path, action, body=None): """Get the default data and status code of the given path + action request. Args: path: path of the request. action: action of the request(get, post, delete...) body: body sent, used to sent it back for post request. Returns: A tuple with the default response data and status code In case of default status_code, use 0 """ body = body or '' path_name, path_spec = self.get_path_spec(path) response = {} # Get all status code if path_spec is not None and action in path_spec.keys(): for status_code in path_spec[action]['responses'].keys(): resp = path_spec[action]['responses'][status_code] try: response[int(status_code)] = self.get_response_example(resp) except ValueError: response[status_code] = self.get_response_example(resp) # If there is no status_code add a default 400 if response == {}: response[400] = '' return response
0.003457
def later(timeout, actor, method, *args, **kwargs): ''' Sets a timer that will call the *method* of the *actor* past *timeout* seconds. See example in :ref:`sample_inter` :param int timeout: seconds until the method is called. :param Proxy actor: actor to which make the call after *time* seconds. :param Str. method: method of the *actor* to be called. :param list args: arguments for *method*. :return: manager of the later (Timer in thread, Greenlet in green_thread) ''' call = getattr(actor, method, None) if not callable(call): raise IntervalError("later: The actor %s does not have the method \ %s." % (actor.get_id(), method)) if call.__class__.__name__ in ["TellWrapper", "TellRefWrapper"]: # As with the interval, args have already been dumped. if call.__class__.__name__ is "TellRefWrapper": call.__call__ = TellWrapper.__call__ return intervals.later(timeout, call, *args, **kwargs) else: raise IntervalError("The callable for the later must be a tell \ method of the actor.")
0.00086
def from_url(cls, url, **kwargs): """ Creates an instance of the KubeConfig class from a single URL (useful for interacting with kubectl proxy). """ doc = { "clusters": [ { "name": "self", "cluster": { "server": url, }, }, ], "contexts": [ { "name": "self", "context": { "cluster": "self", }, } ], "current-context": "self", } self = cls(doc, **kwargs) return self
0.002778
def guess_depth(self, root_dir): """ Try to guess the depth of a directory repository (i.e. whether it has sub-folders for multiple subjects or visits, depending on where files and/or derived label files are found in the hierarchy of sub-directories under the root dir. Parameters ---------- root_dir : str Path to the root directory of the repository """ deepest = -1 for path, dirs, files in os.walk(root_dir): depth = self.path_depth(path) filtered_files = self._filter_files(files, path) if filtered_files: logger.info("Guessing depth of directory repository at '{}' is" " {} due to unfiltered files ('{}') in '{}'" .format(root_dir, depth, "', '".join(filtered_files), path)) return depth if self.PROV_DIR in dirs: depth_to_return = max(depth - 1, 0) logger.info("Guessing depth of directory repository at '{}' is" "{} due to \"Derived label file\" in '{}'" .format(root_dir, depth_to_return, path)) return depth_to_return if depth >= self.MAX_DEPTH: logger.info("Guessing depth of directory repository at '{}' is" " {} as '{}' is already at maximum depth" .format(root_dir, self.MAX_DEPTH, path)) return self.MAX_DEPTH try: for fpath in chain(filtered_files, self._filter_dirs(dirs, path)): Fileset.from_path(fpath) except ArcanaError: pass else: if depth > deepest: deepest = depth if deepest == -1: raise ArcanaRepositoryError( "Could not guess depth of '{}' repository as did not find " "a valid session directory within sub-directories." .format(root_dir)) return deepest
0.000912
def delete_all_objects(self, async_=False): """ Deletes all objects from this container. By default the call will block until all objects have been deleted. By passing True for the 'async_' parameter, this method will not block, and instead return an object that can be used to follow the progress of the deletion. When deletion is complete the bulk deletion object's 'results' attribute will be populated with the information returned from the API call. In synchronous mode this is the value that is returned when the call completes. It is a dictionary with the following keys: deleted - the number of objects deleted not_found - the number of objects not found status - the HTTP return status code. '200 OK' indicates success errors - a list of any errors returned by the bulk delete call """ nms = self.list_object_names(full_listing=True) return self.object_manager.delete_all_objects(nms, async_=async_)
0.002825
def abort(*args, **kwargs): """ Usage: return abort("...") => will sys.exit() by default return abort("...", fatal=True) => Will sys.exit() # Not fatal, but will log/print message: return abort("...", fatal=False) => Will return False return abort("...", fatal=(False, None)) => Will return None return abort("...", fatal=(False, -1)) => Will return -1 # Not fatal, will not log/print any message: return abort("...", fatal=None) => Will return None return abort("...", fatal=(None, None)) => Will return None return abort("...", fatal=(None, -1)) => Will return -1 :param args: Args passed through for error reporting :param kwargs: Args passed through for error reporting :return: kwargs["return_value"] (default: -1) to signify failure to non-fatal callers """ code = kwargs.pop("code", 1) logger = kwargs.pop("logger", LOG.error if code else LOG.info) fatal = kwargs.pop("fatal", True) return_value = fatal if isinstance(fatal, tuple) and len(fatal) == 2: fatal, return_value = fatal if logger and fatal is not None and args: if logging.root.handlers: logger(*args, **kwargs) else: sys.stderr.write("%s\n" % formatted_string(*args)) if fatal: if isinstance(fatal, type) and issubclass(fatal, BaseException): raise fatal(code) if AbortException is not None: if isinstance(AbortException, type) and issubclass(AbortException, BaseException): raise AbortException(code) return AbortException(code) return return_value
0.001786
def check_inlet(self, helper): """ check the Inlets of Raritan PDUs """ # walk the data try: inlet_values = self.sess.walk_oid(self.oids['oid_inlet_value']) inlet_units = self.sess.walk_oid(self.oids['oid_inlet_unit']) inlet_digits = self.sess.walk_oid(self.oids['oid_inlet_digits']) inlet_states = self.sess.walk_oid(self.oids['oid_inlet_state']) inlet_warning_uppers = self.sess.walk_oid(self.oids['oid_inlet_warning_upper']) inlet_critical_uppers = self.sess.walk_oid(self.oids['oid_inlet_critical_upper']) inlet_critical_lowers = self.sess.walk_oid(self.oids['oid_inlet_critical_lower']) inlet_warning_lowers = self.sess.walk_oid(self.oids['oid_inlet_warning_lower']) except health_monitoring_plugins.SnmpException as e: helper.exit(summary=str(e), exit_code=unknown, perfdata='') # just print the summary, that the inlet sensors are checked helper.add_summary("Inlet") # all list must have the same length, if not something went wrong. that makes it easier and we need less loops # translate the data in human readable units with help of the dicts for x in range(len(inlet_values)): inlet_unit = units[int(inlet_units[x].val)] inlet_digit = inlet_digits[x].val inlet_state = states[int(inlet_states[x].val)] inlet_value = real_value(inlet_values[x].val, inlet_digit) inlet_warning_upper = real_value(inlet_warning_uppers[x].val, inlet_digit) inlet_critical_upper = real_value(inlet_critical_uppers[x].val, inlet_digit) inlet_warning_lower = real_value(inlet_warning_lowers[x].val, inlet_digit) inlet_critical_lower = real_value(inlet_critical_lowers[x].val, inlet_digit) if inlet_state != "normal": # we don't want to use the thresholds. we rely on the state value of the device helper.add_summary("%s %s is %s" % (inlet_value, inlet_unit, inlet_state)) helper.status(critical) # we always want to see the values in the long output and in the perf data helper.add_summary("%s %s" % (inlet_value, inlet_unit)) helper.add_long_output("%s %s: %s" % (inlet_value, inlet_unit, inlet_state)) helper.add_metric("Sensor " + str(x) + " -%s-" % inlet_unit, inlet_value, inlet_warning_lower +\ ":" + inlet_warning_upper, inlet_critical_lower + ":" +\ inlet_critical_upper, "", "", "")
0.007474
def split_data(data, squeeze=False): """ Split 1D or 2D into two parts, using the last axis Parameters ---------- data: squeeze : squeeze results to remove unnecessary dimensions """ vdata = np.atleast_2d(data) nr_freqs = int(vdata.shape[1] / 2) part1 = vdata[:, 0:nr_freqs] part2 = vdata[:, nr_freqs:] if(squeeze): part1 = part1.squeeze() part2 = part2.squeeze() return part1, part2
0.002212
def _compute_primary_smooths(self): """Compute fixed-span smooths with all of the default spans.""" for span in DEFAULT_SPANS: smooth = smoother.perform_smooth(self.x, self.y, span) self._primary_smooths.append(smooth)
0.007752
def _set_group_best(self, v, load=False): """ Setter method for group_best, mapped from YANG variable /routing_system/route_map/content/match/additional_paths/advertise_set/group_best (empty) If this variable is read-only (config: false) in the source YANG file, then _set_group_best is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_group_best() directly. YANG Description: BGP Add-Path advertise group-best path """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="group-best", rest_name="group-best", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'BGP Add-Path advertise group-best path', u'code-name': u'additional-paths-advertise-set-group-best', u'cli-full-command': None}}, namespace='urn:brocade.com:mgmt:brocade-ip-policy', defining_module='brocade-ip-policy', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """group_best must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="group-best", rest_name="group-best", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'BGP Add-Path advertise group-best path', u'code-name': u'additional-paths-advertise-set-group-best', u'cli-full-command': None}}, namespace='urn:brocade.com:mgmt:brocade-ip-policy', defining_module='brocade-ip-policy', yang_type='empty', is_config=True)""", }) self.__group_best = t if hasattr(self, '_set'): self._set()
0.005414
def process_class_docstrings(app, what, name, obj, options, lines): """ For those classes for which we use :: :template: autosummary/class_without_autosummary.rst the documented attributes/methods have to be listed in the class docstring. However, if one of those lists is empty, we use 'None', which then generates warnings in sphinx / ugly html output. This "autodoc-process-docstring" event connector removes that part from the processed docstring. """ if what == "class": joined = '\n'.join(lines) templates = [ """.. rubric:: Attributes .. autosummary:: :toctree: None """, """.. rubric:: Methods .. autosummary:: :toctree: None """ ] for template in templates: if template in joined: joined = joined.replace(template, '') lines[:] = joined.split('\n')
0.001099
def _parse_date_time_time_zone(self, date_time_time_zone): """ Parses and convert to protocol timezone a dateTimeTimeZone resource This resource is a dict with a date time and a windows timezone This is a common structure on Microsoft apis so it's included here. """ if date_time_time_zone is None: return None local_tz = self.protocol.timezone if isinstance(date_time_time_zone, dict): try: timezone = pytz.timezone( get_iana_tz(date_time_time_zone.get(self._cc('timeZone'), 'UTC'))) except pytz.UnknownTimeZoneError: timezone = local_tz date_time = date_time_time_zone.get(self._cc('dateTime'), None) try: date_time = timezone.localize(parse(date_time)) if date_time else None except OverflowError as e: log.debug('Could not parse dateTimeTimeZone: {}. Error: {}'.format(date_time_time_zone, str(e))) date_time = None if date_time and timezone != local_tz: date_time = date_time.astimezone(local_tz) else: # Outlook v1.0 api compatibility (fallback to datetime string) try: date_time = local_tz.localize(parse(date_time_time_zone)) if date_time_time_zone else None except Exception as e: log.debug('Could not parse dateTimeTimeZone: {}. Error: {}'.format(date_time_time_zone, str(e))) date_time = None return date_time
0.004433
def get_abs_file_path(self, rel_file_path, quit_on_error=None, check_relative_to_path=True): """ Returns the absolute file path of the given [relative] file path to either this script or to the config file. May throw a RuntimeError if quit_on_error is True. :param str rel_file_path: relative file path :param bool quit_on_error: determines if the script may throw an exception :return str: absolute file path of the given relative file path :raises RuntimeError: if the file path does not exist and quit_on_error is True """ if self.cfg_file_path is not None and \ check_relative_to_path and \ not self.cfg.section('Files')['relative_to_start_processes_file']: script_dir = os.path.dirname(self.cfg_file_path) else: # absolute dir this script is in script_dir = os.path.dirname(__file__) abs_file_path = os.path.abspath( os.path.join(script_dir, rel_file_path)) if not os.path.exists(abs_file_path): self.log.error(abs_file_path + " does not exist.") if quit_on_error is True: raise RuntimeError("Imported file not found. Quit.") return abs_file_path
0.002901
def update_timestep(self, modelparams, expparams): r""" Returns a set of model parameter vectors that is the update of an input set of model parameter vectors, such that the new models are conditioned on a particular experiment having been performed. By default, this is the trivial function :math:`\vec{x}(t_{k+1}) = \vec{x}(t_k)`. :param np.ndarray modelparams: Set of model parameter vectors to be updated. :param np.ndarray expparams: An experiment parameter array describing the experiment that was just performed. :return np.ndarray: Array of shape ``(n_models, n_modelparams, n_experiments)`` describing the update of each model according to each experiment. """ return np.tile(modelparams, (expparams.shape[0],1,1)).transpose((1,2,0))
0.010045
def reply_message(self, message_url, body): """回复某条站内消息 :param message_url: 该条消息的页面 URL :param body: 内容(不能超过 1024 个字符) """ id = re.findall(r'(\d+)/?$', message_url)[0] api = 'http://www.shanbay.com/api/v1/message/%s/reply/' url = api % id data = { 'body': body } response = self.request(url, 'post', data=data) return response.json()['status_code'] == 0
0.004405
def _encrypt(cipher, key, data, iv, padding): """ Encrypts plaintext :param cipher: A kSecAttrKeyType* value that specifies the cipher to use :param key: The encryption key - a byte string 5-16 bytes long :param data: The plaintext - a byte string :param iv: The initialization vector - a byte string - unused for RC4 :param padding: The padding mode to use, specified as a kSecPadding*Key value - unused for RC4 :raises: ValueError - when any of the parameters contain an invalid value TypeError - when any of the parameters are of the wrong type OSError - when an error is returned by the OS crypto library :return: A byte string of the ciphertext """ if not isinstance(key, byte_cls): raise TypeError(pretty_message( ''' key must be a byte string, not %s ''', type_name(key) )) if not isinstance(data, byte_cls): raise TypeError(pretty_message( ''' data must be a byte string, not %s ''', type_name(data) )) if cipher != Security.kSecAttrKeyTypeRC4 and not isinstance(iv, byte_cls): raise TypeError(pretty_message( ''' iv must be a byte string, not %s ''', type_name(iv) )) if cipher != Security.kSecAttrKeyTypeRC4 and not padding: raise ValueError('padding must be specified') cf_dict = None cf_key = None cf_data = None cf_iv = None sec_key = None sec_transform = None try: cf_dict = CFHelpers.cf_dictionary_from_pairs([(Security.kSecAttrKeyType, cipher)]) cf_key = CFHelpers.cf_data_from_bytes(key) cf_data = CFHelpers.cf_data_from_bytes(data) error_pointer = new(CoreFoundation, 'CFErrorRef *') sec_key = Security.SecKeyCreateFromData(cf_dict, cf_key, error_pointer) handle_cf_error(error_pointer) sec_transform = Security.SecEncryptTransformCreate(sec_key, error_pointer) handle_cf_error(error_pointer) if cipher != Security.kSecAttrKeyTypeRC4: Security.SecTransformSetAttribute(sec_transform, Security.kSecModeCBCKey, null(), error_pointer) handle_cf_error(error_pointer) Security.SecTransformSetAttribute(sec_transform, Security.kSecPaddingKey, padding, error_pointer) handle_cf_error(error_pointer) cf_iv = CFHelpers.cf_data_from_bytes(iv) Security.SecTransformSetAttribute(sec_transform, Security.kSecIVKey, cf_iv, error_pointer) handle_cf_error(error_pointer) Security.SecTransformSetAttribute( sec_transform, Security.kSecTransformInputAttributeName, cf_data, error_pointer ) handle_cf_error(error_pointer) ciphertext = Security.SecTransformExecute(sec_transform, error_pointer) handle_cf_error(error_pointer) return CFHelpers.cf_data_to_bytes(ciphertext) finally: if cf_dict: CoreFoundation.CFRelease(cf_dict) if cf_key: CoreFoundation.CFRelease(cf_key) if cf_data: CoreFoundation.CFRelease(cf_data) if cf_iv: CoreFoundation.CFRelease(cf_iv) if sec_key: CoreFoundation.CFRelease(sec_key) if sec_transform: CoreFoundation.CFRelease(sec_transform)
0.001992
def _load_converted_gssha_data_from_lsm(self, gssha_var, lsm_var, load_type, time_step=None): """ This function loads data from LSM and converts to GSSHA format """ if 'radiation' in gssha_var: conversion_factor = self.netcdf_attributes[gssha_var]['conversion_factor'][load_type] if gssha_var.startswith('direct_radiation') and not isinstance(lsm_var, basestring): # direct_radiation = (1-DIFFUSIVE_FRACION)*global_radiation global_radiation_var, diffusive_fraction_var = lsm_var global_radiation = self._load_lsm_data(global_radiation_var, conversion_factor) diffusive_fraction = self._load_lsm_data(diffusive_fraction_var) if gssha_var.endswith("cc"): diffusive_fraction /= 100.0 self.data = ((1-diffusive_fraction)*global_radiation) elif gssha_var.startswith('diffusive_radiation') and not isinstance(lsm_var, basestring): # diffusive_radiation = DIFFUSIVE_FRACION*global_radiation global_radiation_var, diffusive_fraction_var = lsm_var global_radiation = self._load_lsm_data(global_radiation_var, conversion_factor) diffusive_fraction = self._load_lsm_data(diffusive_fraction_var) if gssha_var.endswith("cc"): diffusive_fraction /= 100 self.data = (diffusive_fraction*global_radiation) elif isinstance(lsm_var, basestring): self.data = self._load_lsm_data(lsm_var, self.netcdf_attributes[gssha_var]['conversion_factor'][load_type]) else: raise ValueError("Invalid LSM variable ({0}) for GSSHA variable {1}".format(lsm_var, gssha_var)) elif gssha_var == 'relative_humidity' and not isinstance(lsm_var, str): ##CONVERSION ASSUMPTIONS: ##1) These equations are for liquid water and are less accurate below 0 deg C ##2) Not adjusting the pressure for the fact that the temperature ## and moisture measurements are given at 2 m AGL. ##Neither of these should have a significant impact on RH values ##given the uncertainty in the model values themselves. specific_humidity_var, pressure_var, temperature_var = lsm_var specific_humidity = self._load_lsm_data(specific_humidity_var) pressure = self._load_lsm_data(pressure_var) temperature = self._load_lsm_data(temperature_var) ##To compute the relative humidity at 2m, ##given T, Q (water vapor mixing ratio) at 2 m and PSFC (surface pressure): ##Es(saturation vapor pressure in Pa) ##Qs(saturation mixing ratio)=(0.622*es)/(PSFC-es) ##RH = 100*Q/Qs es = esat(temperature) self.data = 100 * specific_humidity/((0.622*es)/(pressure-es)) elif gssha_var == 'relative_humidity_dew': # https://software.ecmwf.int/wiki/display/CKB/Do+ERA+datasets+contain+parameters+for+near-surface+humidity # temperature in Kelvin # RH = 100 * es(Td)/es(T) dew_point_temp_var, temperature_var = lsm_var dew_point_temp = self._load_lsm_data(dew_point_temp_var) temperature = self._load_lsm_data(temperature_var) self.data = 100 * esat(dew_point_temp)/esat(temperature) elif gssha_var == 'wind_speed' and not isinstance(lsm_var, str): # WRF: http://www.meteo.unican.es/wiki/cordexwrf/OutputVariables u_vector_var, v_vector_var = lsm_var conversion_factor = self.netcdf_attributes[gssha_var]['conversion_factor'][load_type] u_vector = self._load_lsm_data(u_vector_var, conversion_factor) v_vector = self._load_lsm_data(v_vector_var, conversion_factor) self.data = (xu.sqrt(u_vector**2 + v_vector**2)) elif 'precipitation' in gssha_var and not isinstance(lsm_var, str): # WRF: http://www.meteo.unican.es/wiki/cordexwrf/OutputVariables rain_c_var, rain_nc_var = lsm_var conversion_factor = self.netcdf_attributes[gssha_var]['conversion_factor'][load_type] rain_c = self._load_lsm_data(rain_c_var, conversion_factor) rain_nc = self._load_lsm_data(rain_nc_var, conversion_factor) self.data = rain_c + rain_nc else: self.data = self._load_lsm_data(lsm_var, self.netcdf_attributes[gssha_var]['conversion_factor'][load_type], self.netcdf_attributes[gssha_var].get('calc_4d_method'), self.netcdf_attributes[gssha_var].get('calc_4d_dim'), time_step=time_step) conversion_function = self.netcdf_attributes[gssha_var].get('conversion_function') if conversion_function: self.data.values = self.netcdf_attributes[gssha_var]['conversion_function'][load_type](self.data.values) if 'precipitation' in gssha_var: # NOTE: Precipitation is converted from mm/s to mm/hr # with the conversion factor when it is a rate. if 'units' in self.data.attrs: if self.data.attrs['units'] == 'm': # convert from m to mm self.data.values *= 1000 if load_type == 'ascii' or load_type == 'netcdf': # CONVERT TO INCREMENTAL if gssha_var == 'precipitation_acc': self.data.values = np.lib.pad(self.data.diff(self.lsm_time_dim).values, ((1, 0), (0, 0), (0, 0)), 'constant', constant_values=0) # CONVERT PRECIP TO RADAR (mm/hr) IN FILE if gssha_var == 'precipitation_inc' or gssha_var == 'precipitation_acc': # convert from mm to mm/hr time_step_hours = np.diff(self.xd[self.lsm_time_var].values)[0]/np.timedelta64(1, 'h') self.data.values /= time_step_hours # convert to dataset gssha_data_var_name = self.netcdf_attributes[gssha_var]['gssha_name'] self.data = self.data.to_dataset(name=gssha_data_var_name) self.data.rename( { self.lsm_lon_dim: 'x', self.lsm_lat_dim: 'y', self.lsm_lon_var: 'lon', self.lsm_lat_var: 'lat' }, inplace=True ) self.data.attrs = {'proj4': self.xd.lsm.projection.ExportToProj4()} self.data[gssha_data_var_name].attrs = { 'standard_name': self.netcdf_attributes[gssha_var]['standard_name'], 'long_name': self.netcdf_attributes[gssha_var]['long_name'], 'units': self.netcdf_attributes[gssha_var]['units'][load_type], }
0.004925
def verify(verified_entity, verification_key): """ Метод должен райзить ошибки :param verified_entity: сущность :param verification_key: ключ :return: """ verification = get_object_or_none(Verification, verified_entity=verified_entity) if verification is None: raise ServerError(VerificationHandler.STATUS_VERIFICATION_NOT_FOUND) if not verification.verify(verification_key): raise ServerError(VerificationHandler.STATUS_INVALID_VERIFICATION_KEY) verification.verified = True verification.save()
0.00821
def add_const(features): """ Prepend the constant feature 1 as first feature and return the modified feature set. Parameters ---------- features : ndarray or DataFrame """ content = np.empty((features.shape[0], features.shape[1] + 1), dtype='float64') content[:, 0] = 1. if isinstance(features, np.ndarray): content[:, 1:] = features return content content[:, 1:] = features.iloc[:, :].values cols = ['Constant'] + features.columns.tolist() return pd.DataFrame(data=content, index=features.index, columns=cols, dtype='float64')
0.005034
def register_service( self, clazz, service, properties, send_event=True, factory=False, prototype=False, ): # type: (Union[List[Any], type, str], object, dict, bool, bool, bool) -> ServiceRegistration """ Registers a service :param clazz: Class or Classes (list) implemented by this service :param service: The service instance :param properties: The services properties (dictionary) :param send_event: If not, doesn't trigger a service registered event :param factory: If True, the given service is a service factory :param prototype: If True, the given service is a prototype service factory (the factory argument is considered True) :return: A ServiceRegistration object :raise BundleException: An error occurred while registering the service """ return self.__framework.register_service( self.__bundle, clazz, service, properties, send_event, factory, prototype, )
0.004344
def input(self, _in, out, **kw): """Input filtering.""" args = [self.binary or 'cleancss'] + self.rebase_opt if self.extra_args: args.extend(self.extra_args) self.subprocess(args, out, _in)
0.008584
def expand_path(path): ''' Given a compressed path, return a new path that has all the segments in it interpolated. ''' expanded = [] if len(path) < 2: return expanded for i in range(len(path)-1): expanded += bresenham(path[i], path[i + 1]) expanded += [path[:-1]] return expanded
0.003012
def make_url_fetcher(dispatcher=None, next_fetcher=weasyprint.default_url_fetcher): """Return an function suitable as a ``url_fetcher`` in WeasyPrint. You generally don’t need to call this directly. If ``dispatcher`` is not provided, :func:`make_flask_url_dispatcher` is called to get one. This requires a request context. Otherwise, it must be a callable that take an URL and return either ``None`` or a ``(wsgi_callable, base_url, path)`` tuple. For None ``next_fetcher`` is used. (By default, fetch normally over the network.) For a tuple the request is made at the WSGI level. ``wsgi_callable`` must be a Flask application or another WSGI callable. ``base_url`` is the root URL for the application while ``path`` is the path within the application. Typically ``base_url + path`` is equal or equivalent to the passed URL. """ if dispatcher is None: dispatcher = make_flask_url_dispatcher() def flask_url_fetcher(url): redirect_chain = set() while 1: result = dispatcher(url) if result is None: return next_fetcher(url) app, base_url, path = result client = Client(app, response_wrapper=Response) if isinstance(path, unicode): # TODO: double-check this. Apparently Werzeug %-unquotes bytes # but not Unicode URLs. (IRI vs. URI or something.) path = path.encode('utf8') response = client.get(path, base_url=base_url) if response.status_code == 200: return dict( string=response.data, mime_type=response.mimetype, encoding=response.charset, redirected_url=url) # The test client can follow redirects, but do it ourselves # to get access to the redirected URL. elif response.status_code in (301, 302, 303, 305, 307): redirect_chain.add(url) url = response.location if url in redirect_chain: raise ClientRedirectError('loop detected') else: raise ValueError('Flask-WeasyPrint got HTTP status %s for %s%s' % (response.status, base_url, path)) return flask_url_fetcher
0.000419
def connect_inputs(self, datas): """ Connects input ``Pipers`` to "datas" input data in the correct order determined, by the ``Piper.ornament`` attribute and the ``Dagger._cmp`` function. It is assumed that the input data is in the form of an iterator and that all inputs have the same number of input items. A pipeline will **deadlock** otherwise. Arguments: - datas (sequence of sequences) An ordered sequence of inputs for all input ``Pipers``. """ start_pipers = self.get_inputs() self.log.debug('%s trying to connect inputs in the order %s' % \ (repr(self), repr(start_pipers))) for piper, data in izip(start_pipers, datas): piper.connect([data]) self.log.debug('%s succesfuly connected inputs' % repr(self))
0.012141
def pmdec(self,*args,**kwargs): """ NAME: pmdec PURPOSE: return proper motion in declination (in mas/yr) INPUT: t - (optional) time at which to get pmdec (can be Quantity) obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer in the Galactocentric frame (in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]; entries can be Quantities) OR Orbit object that corresponds to the orbit of the observer Y is ignored and always assumed to be zero ro= (Object-wide default) physical scale for distances to use to convert (can be Quantity) vo= (Object-wide default) physical scale for velocities to use to convert (can be Quantity) OUTPUT: pm_dec(t) in mas/yr HISTORY: 2011-02-24 - Written - Bovy (NYU) """ out= self._orb.pmdec(*args,**kwargs) if len(out) == 1: return out[0] else: return out
0.010899
def data_iterator_cache(uri, batch_size, shuffle=False, rng=None, normalize=True, with_memory_cache=True, epoch_begin_callbacks=[], epoch_end_callbacks=[]): '''data_iterator_cache Get data from the cache directory. Cache files are read from the local file system. For example, .. code-block:: python batch = data_iterator_cache('CACHE_DIR', batch_size, shuffle=True) Args: uri (str): Location of directory with cache files. batch_size (int): Size of data unit. shuffle (bool): Indicates whether the dataset is shuffled or not. Default value is False. rng (None or :obj:`numpy.random.RandomState`): Numpy random number generator. normalize (bool): If True, each sample in the data gets normalized by a factor of 255. Default is True. with_memory_cache (bool): If ``True``, use :py:class:`.data_source.DataSourceWithMemoryCache` to wrap ``data_source``. It is a good idea to set this as true unless data_source provides on-memory data. Default value is True. epoch_begin_callbacks (list of functions): An item is a function which takes an epoch index as an argument. These are called at the beginning of an epoch. epoch_end_callbacks (list of functions): An item is a function which takes an epoch index as an argument. These are called at the end of an epoch. Returns: :py:class:`DataIterator <nnabla.utils.data_iterator.DataIterator>`: Instance of DataIterator ''' ds = CacheDataSource(uri, shuffle=shuffle, rng=rng, normalize=normalize) return data_iterator(ds, batch_size=batch_size, with_memory_cache=with_memory_cache, epoch_begin_callbacks=epoch_begin_callbacks, epoch_end_callbacks=epoch_end_callbacks)
0.002233
def lessThan(self, value): """ Sets the operator type to Query.Op.LessThan and sets the value to the inputted value. :param value <variant> :return <Query> :sa lessThan :usage |>>> from orb import Query as Q |>>> query = Q('test').lessThan(1) |>>> print query |test less_than 1 """ newq = self.copy() newq.setOp(Query.Op.LessThan) newq.setValue(value) return newq
0.010292
def Jobs(self, crawlId=None): """ Create a JobClient for listing and creating jobs. The JobClient inherits the confId from the Nutch client. :param crawlId: crawlIds to use for this client. If not provided, will be generated by nutch.defaultCrawlId() :return: a JobClient """ crawlId = crawlId if crawlId else defaultCrawlId() return JobClient(self.server, crawlId, self.confId)
0.006623
def make_at_least_n_items_valid(flag_list, n): """ tries to make at least min(len(flag_list, n) items True in flag_list Args: flag_list (list): list of booleans n (int): number of items to ensure are True CommandLine: python -m utool.util_dev --test-make_at_least_n_items_valid Example: >>> # ENABLE_DOCTEST >>> from utool.util_dev import * # NOQA >>> # build test data >>> flag_list = [False, True, False, False, False, False, False, True] >>> n = 5 >>> # execute function >>> flag_list = make_at_least_n_items_valid(flag_list, n) >>> # verify results >>> result = str(flag_list) >>> print(result) [ True True True True False False False True] """ flag_list = np.array(flag_list) num_valid = flag_list.sum() # Find how many places we need to make true num_extra = min(len(flag_list) - num_valid, n - num_valid) # make_at_least_n_items_valid # Add in some extra daids to show if there are not enough for index in range(len(flag_list)): if num_extra <= 0: break if not flag_list[index]: flag_list[index] = True num_extra -= 1 return flag_list
0.000788
def paintEvent(self, event): """ Overloads the paint event to handle painting pointers for the popup \ mode. :param event | <QPaintEvent> """ # use the base technique for the dialog mode if self.currentMode() == XPopupWidget.Mode.Dialog: super(XPopupWidget, self).paintEvent(event) return # setup the coloring options palette = self.palette() with XPainter(self) as painter: pen = QPen(palette.color(palette.Window).darker(130)) pen.setWidthF(1.75) painter.setPen(pen) painter.setRenderHint(painter.Antialiasing) painter.setBrush(palette.color(palette.Window)) painter.drawPath(self.borderPath())
0.007273
def to_xdr_object(self): """Creates an XDR Transaction object that represents this :class:`Transaction`. """ source_account = account_xdr_object(self.source) memo = self.memo.to_xdr_object() operations = [o.to_xdr_object() for o in self.operations] ext = Xdr.nullclass() ext.v = 0 return Xdr.types.Transaction(source_account, self.fee, self.sequence, self.time_bounds, memo, operations, ext)
0.003992
def select(self, space, key=None, **kwargs) -> _MethodRet: """ Select request coroutine. Examples: .. code-block:: pycon >>> await conn.select('tester') <Response sync=3 rowcount=2 data=[ <TarantoolTuple id=1 name='one'>, <TarantoolTuple id=2 name='two'> ]> >>> res = await conn.select('_space', ['tester'], index='name') >>> res.data [<TarantoolTuple id=512 owner=1 name='tester' engine='memtx' field_count=0 flags={} format=[ {'name': 'id', 'type': 'unsigned'}, {'name': 'name', 'type': 'string'} ]>] :param space: space id or space name. :param key: key to select :param offset: offset to use :param limit: limit to use :param index: index id or name :param iterator: one of the following * iterator id (int number), * :class:`asynctnt.Iterator` object * string with an iterator name :param timeout: Request timeout :returns: :class:`asynctnt.Response` instance """ return self._db.select(space, key, **kwargs)
0.001259
def initialize(self, runtime=None): """Initializes this manager. A manager is initialized once at the time of creation. arg: runtime (osid.OsidRuntimeManager): the runtime environment raise: CONFIGURATION_ERROR - an error with implementation configuration raise: ILLEGAL_STATE - this manager has already been initialized by the OsidRuntime raise: NullArgument - runtime is null raise: OperationFailed - unable to complete request compliance: mandatory - This method must be implemented. implementation notes: In addition to loading its runtime configuration an implementation may create shared resources such as connection pools to be shared among all sessions of this service and released when this manager is closed. Providers must thread-protect any data stored in the manager. To maximize interoperability, providers should not honor a second call to initialize() and must set an ILLEGAL_STATE error. """ if self._runtime is not None: raise IllegalState() self._runtime = runtime config = runtime.get_configuration() parameter_id = Id('parameter:hostName@dlkit_service') host = config.get_value_by_parameter(parameter_id).get_string_value() if host is not None: self._host = host parameter_id = Id('parameter:appKey@dlkit_service') app_key = config.get_value_by_parameter(parameter_id).get_string_value() if app_key is not None: self._app_key = app_key
0.001819
def get_default_config(self): """ Returns the default collector settings """ config = super(HttpdCollector, self).get_default_config() config.update({ 'path': 'httpd', 'urls': ['localhost http://localhost:8080/server-status?auto'] }) return config
0.00597
def list_users(self, objectmask=None, objectfilter=None): """Lists all users on an account :param string objectmask: Used to overwrite the default objectmask. :param dictionary objectfilter: If you want to use an objectfilter. :returns: A list of dictionaries that describe each user Example:: result = mgr.list_users() """ if objectmask is None: objectmask = """mask[id, username, displayName, userStatus[name], hardwareCount, virtualGuestCount, email, roles]""" return self.account_service.getUsers(mask=objectmask, filter=objectfilter)
0.006033
def _process_items(cls, vals): "Processes list of items assigning unique paths to each." if type(vals) is cls: return vals.data elif not isinstance(vals, (list, tuple)): vals = [vals] items = [] counts = defaultdict(lambda: 1) cls._unpack_paths(vals, items, counts) items = cls._deduplicate_items(items) return items
0.00495
def templates(self) -> List['Template']: """Return a list of templates as template objects.""" _lststr = self._lststr _type_to_spans = self._type_to_spans return [ Template(_lststr, _type_to_spans, span, 'Template') for span in self._subspans('Template')]
0.006431
def _get_to_many_relationship_value(self, obj, column): """ Get the resulting datas for a One To many or a many to many relationship :param obj obj: The instance we manage :param dict column: The column description dictionnary :returns: The associated value """ related_key = column.get('related_key', None) related = getattr(obj, column['__col__'].key) value = {} if related: total = len(related) for index, rel_obj in enumerate(related): if related_key: compiled_res = self._get_formatted_val( rel_obj, related_key, column ) else: compiled_res = column['__prop__'].compile_obj( rel_obj ) value['item_%d' % index] = compiled_res value[str(index)] = compiled_res value["_" + str(index)] = compiled_res if index == 0: value['first'] = compiled_res if index == total - 1: value['last'] = compiled_res return value
0.002483
def to_meshcode(lat, lon, level): """緯度経度から指定次の地域メッシュコードを算出する。 Args: lat: 世界測地系の緯度(度単位) lon: 世界測地系の経度(度単位) level: 地域メッシュコードの次数 1次(80km四方):1 40倍(40km四方):40000 20倍(20km四方):20000 16倍(16km四方):16000 2次(10km四方):2 8倍(8km四方):8000 5倍(5km四方):5000 4倍(4km四方):4000 2.5倍(2.5km四方):2500 2倍(2km四方):2000 3次(1km四方):3 4次(500m四方):4 5次(250m四方):5 6次(125m四方):6 Return: 指定次の地域メッシュコード """ if not 0 <= lat < 66.66: raise ValueError('the latitude is out of bound.') if not 100 <= lon < 180: raise ValueError('the longitude is out of bound.') # reminder of latitude and longitude by its unit in degree of mesh level. rem_lat_lv0 = lambda lat: lat rem_lon_lv0 = lambda lon: lon % 100 rem_lat_lv1 = lambda lat: rem_lat_lv0(lat) % _unit_lat_lv1() rem_lon_lv1 = lambda lon: rem_lon_lv0(lon) % _unit_lon_lv1() rem_lat_40000 = lambda lat: rem_lat_lv1(lat) % _unit_lat_40000() rem_lon_40000 = lambda lon: rem_lon_lv1(lon) % _unit_lon_40000() rem_lat_20000 = lambda lat: rem_lat_40000(lat) % _unit_lat_20000() rem_lon_20000 = lambda lon: rem_lon_40000(lon) % _unit_lon_20000() rem_lat_16000 = lambda lat: rem_lat_lv1(lat) % _unit_lat_16000() rem_lon_16000 = lambda lon: rem_lon_lv1(lon) % _unit_lon_16000() rem_lat_lv2 = lambda lat: rem_lat_lv1(lat) % _unit_lat_lv2() rem_lon_lv2 = lambda lon: rem_lon_lv1(lon) % _unit_lon_lv2() rem_lat_8000 = lambda lat: rem_lat_lv1(lat) % _unit_lat_8000() rem_lon_8000 = lambda lon: rem_lon_lv1(lon) % _unit_lon_8000() rem_lat_5000 = lambda lat: rem_lat_lv2(lat) % _unit_lat_5000() rem_lon_5000 = lambda lon: rem_lon_lv2(lon) % _unit_lon_5000() rem_lat_4000 = lambda lat: rem_lat_8000(lat) % _unit_lat_4000() rem_lon_4000 = lambda lon: rem_lon_8000(lon) % _unit_lon_4000() rem_lat_2500 = lambda lat: rem_lat_5000(lat) % _unit_lat_2500() rem_lon_2500 = lambda lon: rem_lon_5000(lon) % _unit_lon_2500() rem_lat_2000 = lambda lat: rem_lat_lv2(lat) % _unit_lat_2000() rem_lon_2000 = lambda lon: rem_lon_lv2(lon) % _unit_lon_2000() rem_lat_lv3 = lambda lat: rem_lat_lv2(lat) % _unit_lat_lv3() rem_lon_lv3 = lambda lon: rem_lon_lv2(lon) % _unit_lon_lv3() rem_lat_lv4 = lambda lat: rem_lat_lv3(lat) % _unit_lat_lv4() rem_lon_lv4 = lambda lon: rem_lon_lv3(lon) % _unit_lon_lv4() rem_lat_lv5 = lambda lat: rem_lat_lv4(lat) % _unit_lat_lv5() rem_lon_lv5 = lambda lon: rem_lon_lv4(lon) % _unit_lon_lv5() rem_lat_lv6 = lambda lat: rem_lat_lv5(lat) % _unit_lat_lv6() rem_lon_lv6 = lambda lon: rem_lon_lv5(lon) % _unit_lon_lv6() def meshcode_lv1(lat, lon): ab = int(rem_lat_lv0(lat) / _unit_lat_lv1()) cd = int(rem_lon_lv0(lon) / _unit_lon_lv1()) return str(ab) + str(cd) def meshcode_40000(lat, lon): e = int(rem_lat_lv1(lat) / _unit_lat_40000())*2 + int(rem_lon_lv1(lon) / _unit_lon_40000()) + 1 return meshcode_lv1(lat, lon) + str(e) def meshcode_20000(lat, lon): f = int(rem_lat_40000(lat) / _unit_lat_20000())*2 + int(rem_lon_40000(lon) / _unit_lon_20000()) + 1 g = 5 return meshcode_40000(lat, lon) + str(f) + str(g) def meshcode_16000(lat, lon): e = int(rem_lat_lv1(lat) / _unit_lat_16000())*2 f = int(rem_lon_lv1(lon) / _unit_lon_16000())*2 g = 7 return meshcode_lv1(lat, lon) + str(e) + str(f) + str(g) def meshcode_lv2(lat, lon): e = int(rem_lat_lv1(lat) / _unit_lat_lv2()) f = int(rem_lon_lv1(lon) / _unit_lon_lv2()) return meshcode_lv1(lat, lon) + str(e) + str(f) def meshcode_8000(lat, lon): e = int(rem_lat_lv1(lat) / _unit_lat_8000()) f = int(rem_lon_lv1(lon) / _unit_lon_8000()) g = 6 return meshcode_lv1(lat, lon) + str(e) + str(f) + str(g) def meshcode_5000(lat, lon): g = int(rem_lat_lv2(lat) / _unit_lat_5000())*2 + int(rem_lon_lv2(lon) / _unit_lon_5000()) + 1 return meshcode_lv2(lat, lon) + str(g) def meshcode_4000(lat, lon): h = int(rem_lat_8000(lat) / _unit_lat_4000())*2 + int(rem_lon_8000(lon) / _unit_lon_4000()) + 1 i = 7 return meshcode_8000(lat, lon) + str(h) + str(i) def meshcode_2500(lat, lon): h = int(rem_lat_5000(lat) / _unit_lat_2500())*2 + int(rem_lon_5000(lon) / _unit_lon_2500()) + 1 i = 6 return meshcode_5000(lat, lon) + str(h) + str(i) def meshcode_2000(lat, lon): g = int(rem_lat_lv2(lat) / _unit_lat_2000())*2 h = int(rem_lon_lv2(lon) / _unit_lon_2000())*2 i = 5 return meshcode_lv2(lat, lon) + str(g) + str(h) + str(i) def meshcode_lv3(lat, lon): g = int(rem_lat_lv2(lat) / _unit_lat_lv3()) h = int(rem_lon_lv2(lon) / _unit_lon_lv3()) return meshcode_lv2(lat, lon) + str(g) + str(h) def meshcode_lv4(lat, lon): i = int(rem_lat_lv3(lat) / _unit_lat_lv4())*2 + int(rem_lon_lv3(lon) / _unit_lon_lv4()) + 1 return meshcode_lv3(lat, lon) + str(i) def meshcode_lv5(lat, lon): j = int(rem_lat_lv4(lat) / _unit_lat_lv5())*2 + int(rem_lon_lv4(lon) / _unit_lon_lv5()) + 1 return meshcode_lv4(lat, lon) + str(j) def meshcode_lv6(lat, lon): k = int(rem_lat_lv5(lat) / _unit_lat_lv6())*2 + int(rem_lon_lv5(lon) / _unit_lon_lv6()) + 1 return meshcode_lv5(lat, lon) + str(k) if level == 1: return meshcode_lv1(lat, lon) if level == 40000: return meshcode_40000(lat, lon) if level == 20000: return meshcode_20000(lat, lon) if level == 16000: return meshcode_16000(lat, lon) if level == 2: return meshcode_lv2(lat, lon) if level == 8000: return meshcode_8000(lat, lon) if level == 5000: return meshcode_5000(lat, lon) if level == 4000: return meshcode_4000(lat, lon) if level == 2500: return meshcode_2500(lat, lon) if level == 2000: return meshcode_2000(lat, lon) if level == 3: return meshcode_lv3(lat, lon) if level == 4: return meshcode_lv4(lat, lon) if level == 5: return meshcode_lv5(lat, lon) if level == 6: return meshcode_lv6(lat, lon) raise ValueError("the level is unsupported.")
0.005994
def load(cls, filename, format=None): """ Return an instance of the class that is saved in the file with the given filename in the specified format. """ if format is None: # try to derive protocol from file extension format = format_from_extension(filename) with file(filename, 'rbU') as fp: obj = cls.load_from_file_object(fp, format) obj.filename = filename return obj
0.004219
def findWhere(self, attrs=None): """ Convenience version of a common use case of `find`: getting the first object containing specific `key:value` pairs. """ return self._wrap(self._clean.where(attrs, True))
0.007874
def asin(x): """ Inverse sine """ if isinstance(x, UncertainFunction): mcpts = np.arcsin(x._mcpts) return UncertainFunction(mcpts) else: return np.arcsin(x)
0.005
def _valid_ip(ip_address): ''' Check if the IP address is valid and routable Return either True or False ''' try: address = ipaddress.IPv4Address(ip_address) except ipaddress.AddressValueError: return False if address.is_unspecified or \ address.is_loopback or \ address.is_link_local or \ address.is_multicast or \ address.is_reserved: return False return True
0.004425