text
stringlengths
78
104k
score
float64
0
0.18
def generate_py_units(data): """Generate the list of units in units.py.""" units = collections.defaultdict(list) for unit in sorted(data.units, key=lambda a: a.name): if unit.unit_id in static_data.UNIT_TYPES: units[unit.race].append(unit) def print_race(name, race): print("class %s(enum.IntEnum):" % name) print(' """%s units."""' % name) for unit in units[race]: print(" %s = %s" % (unit.name, unit.unit_id)) print("\n") print_race("Neutral", sc_common.NoRace) print_race("Protoss", sc_common.Protoss) print_race("Terran", sc_common.Terran) print_race("Zerg", sc_common.Zerg)
0.01746
def _insert_to_array(self, chunk, results): """ Enters results arrays into the HDF5 database. """ ## two result arrs chunksize = self._chunksize qrts, invs = results ## enter into db with h5py.File(self.database.output, 'r+') as io5: io5['quartets'][chunk:chunk+chunksize] = qrts ## entered as 0-indexed ! if self.params.save_invariants: if self.checkpoint.boots: key = "invariants/boot{}".format(self.checkpoint.boots) io5[key][chunk:chunk+chunksize] = invs else: io5["invariants/boot0"][chunk:chunk+chunksize] = invs
0.007013
def csv_list(models, attr, link=False, separator=", "): """Return a comma-separated list of models, optionaly with a link.""" values = [] for model in models: value = getattr(model, attr) if link and hasattr(model, "get_admin_url") and callable(model.get_admin_url): value = get_admin_html_link(model, label=value) values.append(value) return separator.join(values)
0.004796
def xslt(request): """Shows xml output transformed with standard xslt""" foos = foobar_models.Foo.objects.all() return render_xslt_to_response('xslt/model-to-xml.xsl', foos, mimetype='text/xml')
0.009709
def sendMultiPart(smtp, gpg_context, sender, recipients, subject, text, attachments): """ a helper method that composes and sends an email with attachments requires a pre-configured smtplib.SMTP instance""" sent = 0 for to in recipients: if not to.startswith('<'): uid = '<%s>' % to else: uid = to if not checkRecipient(gpg_context, uid): continue msg = MIMEMultipart() msg['From'] = sender msg['To'] = to msg['Subject'] = subject msg["Date"] = formatdate(localtime=True) msg.preamble = u'This is an email in encrypted multipart format.' attach = MIMEText(str(gpg_context.encrypt(text.encode('utf-8'), uid, always_trust=True))) attach.set_charset('UTF-8') msg.attach(attach) for attachment in attachments: with open(attachment, 'rb') as fp: attach = MIMEBase('application', 'octet-stream') attach.set_payload(str(gpg_context.encrypt_file(fp, uid, always_trust=True))) attach.add_header('Content-Disposition', 'attachment', filename=basename('%s.pgp' % attachment)) msg.attach(attach) # TODO: need to catch exception? # yes :-) we need to adjust the status accordingly (>500 so it will be destroyed) smtp.begin() smtp.sendmail(sender, to, msg.as_string()) smtp.quit() sent += 1 return sent
0.004079
def _get_orientation_changes(self): """ Returns a list of the pages that have orientation changes.""" self.orientation_changes = [] for page in self.pages: if page.orientation_change is True: self.orientation_changes.append(page.index) else: pass return self.orientation_changes
0.005168
def html_diff(self, old, new): """ Return HTML formatted character-based diff between old and new (used for CS50 IDE). """ def html_transition(old_type, new_type): tags = [] for tag in [("/", old_type), ("", new_type)]: if tag[1] not in ["+", "-"]: continue tags.append("<{}{}>".format(tag[0], "ins" if tag[1] == "+" else "del")) return "".join(tags) return self._char_diff(old, new, html_transition, fmt=cgi.escape)
0.007339
def progress(self, *restrictions, display=True): """ report progress of populating the table :return: remaining, total -- tuples to be populated """ todo = self._jobs_to_do(restrictions) total = len(todo) remaining = len(todo - self.target) if display: print('%-20s' % self.__class__.__name__, 'Completed %d of %d (%2.1f%%) %s' % ( total - remaining, total, 100 - 100 * remaining / (total+1e-12), datetime.datetime.strftime(datetime.datetime.now(), '%Y-%m-%d %H:%M:%S')), flush=True) return remaining, total
0.006107
def export(self, contentType): """ Export message to specified contentType via munge contentType <str> - eg. "json", "yaml" """ cls = munge.get_codec(contentType) codec = cls() return codec.dumps(self.__dict__())
0.007435
def encode(arg, delimiter=None, encodeseq=None, encoded=tuple()): '''Encode a single argument for the file-system''' arg = coerce_unicode(arg, _c.FSQ_CHARSET) new_arg = sep = u'' delimiter, encodeseq = delimiter_encodeseq( _c.FSQ_DELIMITER if delimiter is None else delimiter, _c.FSQ_ENCODE if encodeseq is None else encodeseq, _c.FSQ_CHARSET) # validate encoded tuple for enc in encoded: enc = coerce_unicode(enc, _c.FSQ_CHARSET) try: enc = enc.encode('ascii') except UnicodeEncodeError: raise FSQEncodeError(errno.EINVAL, u'invalid encoded value: {0}'\ u' non-ascii'.format(enc)) # char-wise encode walk for seq in arg: if seq == delimiter or seq == encodeseq or seq in _ENCODED + encoded: h_val = hex(ord(seq)) # front-pad with zeroes if 3 == len(h_val): h_val = sep.join([h_val[:2], u'0', h_val[2:]]) if 4 != len(h_val): raise FSQEncodeError(errno.EINVAL, u'invalid hex ({0}) for'\ ' encode-target: {1}'.format(h_val, seq)) seq = sep.join([encodeseq, h_val[2:]]) new_arg = sep.join([new_arg, seq]) return new_arg
0.002299
def clean_pubmed_identifiers(pmids: Iterable[str]) -> List[str]: """Clean a list of PubMed identifiers with string strips, deduplicates, and sorting.""" return sorted({str(pmid).strip() for pmid in pmids})
0.00939
def at(self, time_str): """ Schedule the job every day at a specific time. Calling this is only valid for jobs scheduled to run every N day(s). :param time_str: A string in `XX:YY` format. :return: The invoked job instance """ assert self.unit in ('days', 'hours') or self.start_day hour, minute = time_str.split(':') minute = int(minute) if self.unit == 'days' or self.start_day: hour = int(hour) assert 0 <= hour <= 23 elif self.unit == 'hours': hour = 0 assert 0 <= minute <= 59 self.at_time = datetime.time(hour, minute) return self
0.002882
def autohelp_directive(dirname, arguments, options, content, lineno, content_offset, block_text, state, state_machine): """produces rst from nose help""" config = Config(parserClass=OptBucket, plugins=BuiltinPluginManager()) parser = config.getParser(TestProgram.usage()) rst = ViewList() for line in parser.format_help().split('\n'): rst.append(line, '<autodoc>') rst.append('Options', '<autodoc>') rst.append('-------', '<autodoc>') rst.append('', '<autodoc>') for opt in parser: rst.append(opt.options(), '<autodoc>') rst.append(' \n', '<autodoc>') rst.append(' ' + opt.help + '\n', '<autodoc>') rst.append('\n', '<autodoc>') node = nodes.section() node.document = state.document surrounding_title_styles = state.memo.title_styles surrounding_section_level = state.memo.section_level state.memo.title_styles = [] state.memo.section_level = 0 state.nested_parse(rst, 0, node, match_titles=1) state.memo.title_styles = surrounding_title_styles state.memo.section_level = surrounding_section_level return node.children
0.001685
def _get_rate(self, value): """Return the rate in Hz from the short int value""" if value == 0: return 0 else: return MINIMAL_RATE_HZ * math.exp(value * self._get_factor())
0.009091
def _prepare_bam_file(bam_file, tmp_dir, config): """ Pipe sort by name cmd in case sort by coordinates """ sort_mode = _get_sort_order(bam_file, config) if sort_mode != "queryname": bam_file = sort(bam_file, config, "queryname") return bam_file
0.00361
def merge_enums(xml): '''merge enums between XML files''' emap = {} for x in xml: newenums = [] for enum in x.enum: if enum.name in emap: emapitem = emap[enum.name] # check for possible conflicting auto-assigned values after merge if (emapitem.start_value <= enum.highest_value and emapitem.highest_value >= enum.start_value): for entry in emapitem.entry: # correct the value if necessary, but only if it was auto-assigned to begin with if entry.value <= enum.highest_value and entry.autovalue == True: entry.value = enum.highest_value + 1 enum.highest_value = entry.value # merge the entries emapitem.entry.extend(enum.entry) if not emapitem.description: emapitem.description = enum.description print("Merged enum %s" % enum.name) else: newenums.append(enum) emap[enum.name] = enum x.enum = newenums for e in emap: # sort by value emap[e].entry = sorted(emap[e].entry, key=operator.attrgetter('value'), reverse=False) # add a ENUM_END emap[e].entry.append(MAVEnumEntry("%s_ENUM_END" % emap[e].name, emap[e].entry[-1].value+1, end_marker=True))
0.005215
def flatten(args): """ %prog flatten filename > ids Convert a list of IDs (say, multiple IDs per line) and move them into one per line. For example, convert this, to this: A,B,C | A 1 | B a,4 | C | 1 | a | 4 If multi-column file with multiple elements per column, zip then flatten like so: A,B,C 2,10,gg | A,2 1,3 4 | B,10 | C,gg | 1,4 | 3,na """ from six.moves import zip_longest p = OptionParser(flatten.__doc__) p.set_sep(sep=",") p.add_option("--zipflatten", default=None, dest="zipsep", help="Specify if columns of the file should be zipped before" + " flattening. If so, specify delimiter separating column elements" + " [default: %default]") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) tabfile, = args zipsep = opts.zipsep fp = must_open(tabfile) for row in fp: if zipsep: row = row.rstrip() atoms = row.split(opts.sep) frows = [] for atom in atoms: frows.append(atom.split(zipsep)) print("\n".join([zipsep.join(x) for x in list(zip_longest(*frows, fillvalue="na"))])) else: print(row.strip().replace(opts.sep, "\n"))
0.003155
async def get_cred_briefs_by_proof_req_q(self, proof_req_json: str, x_queries_json: str = None) -> str: """ A cred-brief aggregates a cred-info and a non-revocation interval. A cred-brief-dict maps wallet cred-ids to their corresponding cred-briefs. Return json (cred-brief-dict) object mapping wallet credential identifiers to cred-briefs by proof request and WQL queries by proof request referent. Return empty dict on no WQL query and empty requested predicates specification within proof request. Utility util.proof_req2wql_all() builds WQL to retrieve all cred-briefs for (some or all) cred-def-ids in a proof request. For each WQL query on an item referent, indy-sdk takes the WQL and the attribute name and restrictions (e.g., cred def id, schema id, etc.) from its referent. Note that util.proof_req_attr_referents() maps cred defs and attr names to proof req item referents, bridging the gap between attribute names and their corresponding item referents. Raise WalletState if the wallet is closed. :param proof_req_json: proof request as per Verifier.build_proof_req_json(); e.g., :: { "nonce": "1532429687", "name": "proof_req", "version": "0.0", "requested_predicates": {}, "requested_attributes": { "17_name_uuid": { "restrictions": [ { "cred_def_id": "LjgpST2rjsoxYegQDRm7EL:3:CL:17:tag" } ], "name": "name" }, "17_thing_uuid": { "restrictions": [ { "cred_def_id": "LjgpST2rjsoxYegQDRm7EL:3:CL:17:tag" } ], "name": "thing" } } } :param x_queries_json: json list of extra queries to apply to proof request attribute and predicate referents; e.g., :: { "17_thing_uuid": { # require attr presence on name 'thing', cred def id from proof req above "$or": [ { "attr::name::value": "J.R. 'Bob' Dobbs" }, { "attr::thing::value": "slack" }, ] }, } :return: json (cred-brief-dict) object mapping wallet cred ids to cred briefs; e.g., :: { "b42ce5bc-b690-43cd-9493-6fe86ad25e85": { "interval": null, "cred_info": { "schema_id": "LjgpST2rjsoxYegQDRm7EL:2:non-revo:1.0", "rev_reg_id": null, "attrs": { "name": "J.R. \"Bob\" Dobbs", "thing": "slack" }, "cred_rev_id": null, "referent": "b42ce5bc-b690-43cd-9493-6fe86ad25e85", "cred_def_id": "LjgpST2rjsoxYegQDRm7EL:3:CL:17:tag" } }, "d773434a-0080-4e3e-a03b-f2033eae7d75": { "interval": null, "cred_info": { "schema_id": "LjgpST2rjsoxYegQDRm7EL:2:non-revo:1.0", "rev_reg_id": null, "attrs": { "name": "Chicken Hawk", "thing": "chicken" }, "cred_rev_id": null, "referent": "d773434a-0080-4e3e-a03b-f2033eae7d75", "cred_def_id": "LjgpST2rjsoxYegQDRm7EL:3:CL:17:tag" } } } """ LOGGER.debug( ('HolderProver.get_cred_briefs_by_proof_req_q >>> proof_req_json: %s, x_queries_json: %s'), proof_req_json, x_queries_json) if not self.wallet.handle: LOGGER.debug('HolderProver.get_cred_briefs_by_proof_req_q <!< Wallet %s is closed', self.name) raise WalletState('Wallet {} is closed'.format(self.name)) def _pred_filter(brief): nonlocal pred_refts for attr, preds in pred_refts.get(brief['cred_info']['cred_def_id'], {}).items(): if any(Predicate.get(p[0]).value.no(brief['cred_info']['attrs'][attr], p[1]) for p in preds.values()): return False return True rv = {} item_refts = set() x_queries = json.loads(x_queries_json or '{}') for k in x_queries: x_queries[k] = canon_cred_wql(x_queries[k]) # indy-sdk requires attr name canonicalization item_refts.add(k) proof_req = json.loads(proof_req_json) item_refts.update(uuid for uuid in proof_req['requested_predicates']) if not x_queries: item_refts.update(uuid for uuid in proof_req['requested_attributes']) # get all req attrs if no extra wql handle = await anoncreds.prover_search_credentials_for_proof_req( self.wallet.handle, proof_req_json, json.dumps(x_queries) if x_queries else None) pred_refts = proof_req_pred_referents(proof_req) try: for item_referent in item_refts: count = Wallet.DEFAULT_CHUNK while count == Wallet.DEFAULT_CHUNK: fetched = json.loads(await anoncreds.prover_fetch_credentials_for_proof_req( handle, item_referent, Wallet.DEFAULT_CHUNK)) count = len(fetched) for brief in fetched: # apply predicates from proof req here if brief['cred_info']['referent'] not in rv and _pred_filter(brief): rv[brief['cred_info']['referent']] = brief finally: await anoncreds.prover_close_credentials_search_for_proof_req(handle) rv_json = json.dumps(rv) LOGGER.debug('HolderProver.get_cred_briefs_by_proof_req_q <<< %s', rv_json) return rv_json
0.004435
def trits_from_int(n, pad=1): # type: (int, Optional[int]) -> List[int] """ Returns a trit representation of an integer value. :param n: Integer value to convert. :param pad: Ensure the result has at least this many trits. References: - https://dev.to/buntine/the-balanced-ternary-machines-of-soviet-russia - https://en.wikipedia.org/wiki/Balanced_ternary - https://rosettacode.org/wiki/Balanced_ternary#Python """ if n == 0: trits = [] else: quotient, remainder = divmod(n, 3) if remainder == 2: # Lend 1 to the next place so we can make this trit # negative. quotient += 1 remainder = -1 trits = [remainder] + trits_from_int(quotient, pad=0) if pad: trits += [0] * max(0, pad - len(trits)) return trits
0.001147
def _find_flag_groups(h5f): """Return all groups in `h5f` that look like flags """ flag_groups = [] def _find(name, obj): if _is_flag_group(obj): flag_groups.append(name) h5f.visititems(_find) return flag_groups
0.003891
def _check_params(self): """Check validity of parameters and raise ValueError if not valid. """ if self.n_estimators <= 0: raise ValueError("n_estimators must be greater than 0 but " "was %r" % self.n_estimators) if not 0.0 < self.subsample <= 1.0: raise ValueError("subsample must be in ]0; 1] but " "was %r" % self.subsample) if not 0.0 < self.learning_rate <= 1.0: raise ValueError("learning_rate must be within ]0; 1] but " "was %r" % self.learning_rate) if not 0.0 <= self.dropout_rate < 1.0: raise ValueError("dropout_rate must be within [0; 1[, but " "was %r" % self.dropout_rate) if self.loss not in LOSS_FUNCTIONS: raise ValueError("Loss '{0:s}' not supported. ".format(self.loss))
0.002179
def get_file_relative_path_by_id(self, id): """ Given an id, get the corresponding file info relative path joined with file name. Parameters: #. id (string): The file unique id string. :Returns: #. relativePath (string): The file relative path joined with file name. If None, it means file was not found. """ for path, info in self.walk_files_info(): if info['id']==id: return path # none was found return None
0.009208
def collect_scripts_from_sources(script_paths, files_deployment, project_path='.', is_package=False, logger=None): """ Collects postgres scripts from source files :param script_paths: list of strings or a string with a relative path to the directory containing files with scripts :param files_deployment: list of files that need to be harvested. Scripts from there will only be taken if the path to the file is in script_paths :param project_path: path to the project source code :param is_package: are files packaged with pip egg :param logger: pass the logger object if needed :return: """ logger = logger or logging.getLogger(__name__) scripts_dict = {} if script_paths: if not isinstance(script_paths, list): # can be list of paths or a string, anyways converted to list script_paths = [script_paths] if is_package: for script_path in script_paths: for file_info in pkg_resources.resource_listdir('pgpm', script_path): file_content = pkg_resources.resource_string('pgpm', '{0}/{1}'.format(script_path, file_info))\ .decode('utf-8') if file_content: scripts_dict[file_info] = file_content logger.debug('File {0}/{1} collected.'.format(script_path, file_info)) else: logger.debug('File {0}/{1} not collected as it\'s empty.'.format(script_path, file_info)) else: if files_deployment: # if specific script to be deployed, only find them for list_file_name in files_deployment: list_file_full_path = os.path.join(project_path, list_file_name) if os.path.isfile(list_file_full_path): for i in range(len(script_paths)): if script_paths[i] in list_file_full_path: file_content = io.open(list_file_full_path, 'r', -1, 'utf-8-sig', 'ignore').read() if file_content: scripts_dict[list_file_name] = file_content logger.debug('File {0} collected.'.format(list_file_full_path)) else: logger.debug('File {0} not collected as it\'s empty.'.format(list_file_full_path)) else: logger.debug('File {0} is not found in any of {1} folders, please specify a correct path' .format(list_file_full_path, script_paths)) else: for script_path in script_paths: for subdir, dirs, files in os.walk(script_path): files = sorted(files) for file_info in files: if file_info != settings.CONFIG_FILE_NAME and file_info[0] != '.': file_content = io.open(os.path.join(subdir, file_info), 'r', -1, 'utf-8-sig', 'ignore').read() if file_content: scripts_dict[file_info] = file_content logger.debug('File {0} collected'.format(os.path.join(subdir, file_info))) else: logger.debug('File {0} not collected as it\'s empty.' .format(os.path.join(subdir, file_info))) return scripts_dict
0.006277
def trainOn(self, dstream): """Train the model on the incoming dstream.""" self._validate(dstream) def update(rdd): self._model.update(rdd, self._decayFactor, self._timeUnit) dstream.foreachRDD(update)
0.008097
def get_temp_and_dew(wxdata: str) -> ([str], Number, Number): # type: ignore """ Returns the report list and removed temperature and dewpoint strings """ for i, item in reversed(list(enumerate(wxdata))): if '/' in item: # ///07 if item[0] == '/': item = '/' + item.lstrip('/') # 07/// elif item[-1] == '/': item = item.rstrip('/') + '/' tempdew = item.split('/') if len(tempdew) != 2: continue valid = True for j, temp in enumerate(tempdew): if temp in ['MM', 'XX']: tempdew[j] = '' elif not is_possible_temp(temp): valid = False break if valid: wxdata.pop(i) # type: ignore return (wxdata, *[make_number(t) for t in tempdew]) return wxdata, None, None
0.00104
def _expand_shorthand(model_formula, variables): """Expand shorthand terms in the model formula. """ wm = 'white_matter' gsr = 'global_signal' rps = 'trans_x + trans_y + trans_z + rot_x + rot_y + rot_z' fd = 'framewise_displacement' acc = _get_matches_from_data('a_comp_cor_[0-9]+', variables) tcc = _get_matches_from_data('t_comp_cor_[0-9]+', variables) dv = _get_matches_from_data('^std_dvars$', variables) dvall = _get_matches_from_data('.*dvars', variables) nss = _get_matches_from_data('non_steady_state_outlier[0-9]+', variables) spikes = _get_matches_from_data('motion_outlier[0-9]+', variables) model_formula = re.sub('wm', wm, model_formula) model_formula = re.sub('gsr', gsr, model_formula) model_formula = re.sub('rps', rps, model_formula) model_formula = re.sub('fd', fd, model_formula) model_formula = re.sub('acc', acc, model_formula) model_formula = re.sub('tcc', tcc, model_formula) model_formula = re.sub('dv', dv, model_formula) model_formula = re.sub('dvall', dvall, model_formula) model_formula = re.sub('nss', nss, model_formula) model_formula = re.sub('spikes', spikes, model_formula) formula_variables = _get_variables_from_formula(model_formula) others = ' + '.join(set(variables) - set(formula_variables)) model_formula = re.sub('others', others, model_formula) return model_formula
0.000692
def put(self, key, data, ttl_secs=None): """Like :meth:`~simplekv.KeyValueStore.put`, but with an additional parameter: :param ttl_secs: Number of seconds until the key expires. See above for valid values. :raises exceptions.ValueError: If ``ttl_secs`` is invalid. :raises exceptions.IOError: If storing failed or the file could not be read """ self._check_valid_key(key) if not isinstance(data, bytes): raise IOError("Provided data is not of type bytes") return self._put(key, data, self._valid_ttl(ttl_secs))
0.003012
def _generate_examples(self, imgs_path, csv_path): """Yields examples.""" with tf.io.gfile.GFile(csv_path) as csv_f: reader = csv.DictReader(csv_f) # Get keys for each label from csv label_keys = reader.fieldnames[5:] data = [] for row in reader: # Get image based on indicated path in csv name = row["Path"] labels = [_LABELS[row[key]] for key in label_keys] data.append((name, labels)) for name, labels in data: yield { "name": name, "image": os.path.join(imgs_path, name), "label": labels }
0.011475
def get_user_info(self, recipient_id, fields=None): """Getting information about the user https://developers.facebook.com/docs/messenger-platform/user-profile Input: recipient_id: recipient id to send to Output: Response from API as <dict> """ params = {} if fields is not None and isinstance(fields, (list, tuple)): params['fields'] = ",".join(fields) params.update(self.auth_args) request_endpoint = '{0}/{1}'.format(self.graph_url, recipient_id) response = requests.get(request_endpoint, params=params) if response.status_code == 200: return response.json() return None
0.002797
def mod(self): """ Cached compiled binary of the Generic_Code class. To clear cache invoke :meth:`clear_mod_cache`. """ if self._mod is None: self._mod = self.compile_and_import_binary() return self._mod
0.007813
def setup_logging(verbose=False, logger=None): """Setup console logging. Info and below go to stdout, others go to stderr. :param bool verbose: Print debug statements. :param str logger: Which logger to set handlers to. Used for testing. """ if not verbose: logging.getLogger('requests').setLevel(logging.WARNING) format_ = '%(asctime)s %(levelname)-8s %(name)-40s %(message)s' if verbose else '%(message)s' level = logging.DEBUG if verbose else logging.INFO handler_stdout = logging.StreamHandler(sys.stdout) handler_stdout.setFormatter(logging.Formatter(format_)) handler_stdout.setLevel(logging.DEBUG) handler_stdout.addFilter(InfoFilter()) handler_stderr = logging.StreamHandler(sys.stderr) handler_stderr.setFormatter(logging.Formatter(format_)) handler_stderr.setLevel(logging.WARNING) root_logger = logging.getLogger(logger) root_logger.setLevel(level) root_logger.addHandler(handler_stdout) root_logger.addHandler(handler_stderr)
0.001957
def eval(self): """ Evaluates the given input and returns a string containing the actual filenames represented. If the input token represents multiple independent files, then eval will return a list of all the input files needed, otherwise it returns the filenames in a string. """ if self.and_or == 'or': return [Input(self.alias, file, self.cwd, 'and') for file in self.files] return ' '.join(self.files)
0.006122
def htmlsafe(unsafe): """ Escapes all x(ht)ml control characters. """ unsafe = unsafe.replace('&', '&amp;') unsafe = unsafe.replace('<', '&lt;') unsafe = unsafe.replace('>', '&gt;') return unsafe
0.004484
def solve_gcp(V,E): """solve_gcp -- solve the graph coloring problem with bisection and fixed-k model Parameters: - V: set/list of nodes in the graph - E: set/list of edges in the graph Returns tuple with number of colors used, and dictionary mapping colors to vertices """ LB = 0 UB = len(V) color = {} while UB-LB > 1: K = int((UB+LB) / 2) gcp = gcp_fixed_k(V,E,K) # gcp.Params.OutputFlag = 0 # silent mode #gcp.Params.Cutoff = .1 gcp.setObjlimit(0.1) gcp.optimize() status = gcp.getStatus() if status == "optimal": x,z = gcp.data for i in V: for k in range(K): if gcp.getVal(x[i,k]) > 0.5: color[i] = k break # else: # raise "undefined color for", i UB = K else: LB = K return UB,color
0.010194
def _assert_is_dictlike(maybe_dictlike, valid_keys): """Raises a TypeError iff `maybe_dictlike` is not a dictlike object.""" # This covers a common mistake when people use incorrect dictionary nesting # for initializers / partitioners etc. The previous error message was quite # opaque, this should be much clearer. if not hasattr(maybe_dictlike, "__getitem__"): raise TypeError( "Expected a dict-like object with possible keys %s, received %s" % (str(valid_keys), str(maybe_dictlike)))
0.011628
def make_param_dict_from_file(self,path_to_params): """ make param dict from a file on disk """ # then we were given a path to a parameter file param_list = list(csv.reader(open(path_to_params,"rb"))) # delete empty elements (if any) param_file = [x for x in param_list if x != []] # make dict of [wavenames] = raw_params name_list = [] param_list = [] # get header names for each param (names of param_list columns) param_colnames = param_file[0][1:] # 0th element is "Name" or "Wavename" # start from 1. (row 0 is the header) for i in np.arange(1, len(param_file)): name_list.append(param_file[i][0]) param_list.append(param_file[i][1:]) # remove ' ' blank spaces from param_list param_list = [[x.strip() for x in y] for y in param_list] param_dict = {} # i loops through param_colnames, j loops thru param values per wave for i in np.arange(0, len(param_colnames)): param_dict[param_colnames[i]] = [] for j in np.arange(0,len(name_list)): param_dict[param_colnames[i]].append(param_list[j][i]) # now we have param_dict, and name_list self._param_dict = param_dict self._row_names = name_list
0.005243
def _diff(self, x, th, eps): """ Differentiation function. Numerical approximation of a Rosenblatt transformation created from copula formulation. """ foo = lambda y: self.igen(numpy.sum(self.gen(y, th), 0), th) out1 = out2 = 0. sign = 1 - 2*(x > .5).T for I in numpy.ndindex(*((2,)*(len(x)-1)+(1,))): eps_ = numpy.array(I)*eps x_ = (x.T + sign*eps_).T out1 += (-1)**sum(I)*foo(x_) x_[-1] = 1 out2 += (-1)**sum(I)*foo(x_) out = out1/out2 return out
0.006656
def delete_pipeline_stage(self, pipeline_key, stage_key, sort_by = None): '''Deletes a stage in the pipeline by stage key and pipeline key Args: pipeline_key key for pipeline stage_key key for stage sort_by in desc order by 'creationTimestamp' or 'lastUpdatedTimestamp' returns (status code for the GET request, dict of op report) ''' if not (pipeline_key and stage_key): return requests.codes.bad_request, None uri = '/'.join([ self.api_uri, self.pipelines_suffix, pipeline_key, self.stages_suffix, stage_key ]) code, data = self._req('delete', uri) return code, data
0.041796
def _init_map(self, record_types=None, **kwargs): """Initialize form map""" osid_objects.OsidObjectForm._init_map(self, record_types=record_types) self._my_map['levelId'] = self._level_default self._my_map['startTime'] = self._start_time_default self._my_map['gradeSystemId'] = self._grade_system_default self._my_map['itemsShuffled'] = self._items_shuffled_default self._my_map['scoreSystemId'] = self._score_system_default self._my_map['deadline'] = self._deadline_default self._my_map['assignedBankIds'] = [str(kwargs['bank_id'])] self._my_map['duration'] = self._duration_default self._my_map['assessmentId'] = str(kwargs['assessment_id']) self._my_map['itemsSequential'] = self._items_sequential_default
0.002488
def getlist(self, name): """ Retrieve given property from class/instance, ensuring it is a list. Also determine whether the list contains simple text/numeric values or nested dictionaries (a "complex" list) """ value = self.getvalue(name) complex = {} def str_value(val): # TODO: nonlocal complex if isinstance(val, dict): complex['complex'] = True return val else: return str(val) if value is None: pass else: value = [str_value(val) for val in as_list(value)] return value, bool(complex)
0.002907
def get_region_bed(region, items, out_file, want_gzip=True): """Retrieve BED file of regions to analyze, either single or multi-region. """ variant_regions = bedutils.population_variant_regions(items, merged=True) target = shared.subset_variant_regions(variant_regions, region, out_file, items) if not target: raise ValueError("Need BED input for strelka2 regions: %s %s" % (region, target)) if not isinstance(target, six.string_types) or not os.path.isfile(target): chrom, start, end = target target = "%s-regions.bed" % utils.splitext_plus(out_file)[0] with file_transaction(items[0], target) as tx_out_file: with open(tx_out_file, "w") as out_handle: out_handle.write("%s\t%s\t%s\n" % (chrom, start, end)) out_file = target if want_gzip: out_file = vcfutils.bgzip_and_index(out_file, items[0]["config"]) return out_file
0.00324
def strptime(cls, date_string, fmt): """ This is opposite of the :py:meth:`khayyam.JalaliDate.strftime`, and used to parse date strings into date object. `ValueError` is raised if the date_string and format can’t be parsed by time.strptime() or if it returns a value which isn’t a time tuple. For a complete list of formatting directives, see :doc:`/directives`. :param date_string: :param fmt: :return: A :py:class:`khayyam.JalaliDate` corresponding to date_string, parsed according to format :rtype: :py:class:`khayyam.JalaiDate` """ # noinspection PyUnresolvedReferences result = cls.formatterfactory(fmt).parse(date_string) result = {k: v for k, v in result.items() if k in ('year', 'month', 'day')} return cls(**result)
0.005903
def _decode_region(decoder, region, corrections, shrink): """Decodes and returns the value in a region. Args: region (DmtxRegion): Yields: Decoded or None: The decoded value. """ with _decoded_matrix_region(decoder, region, corrections) as msg: if msg: # Coordinates p00 = DmtxVector2() p11 = DmtxVector2(1.0, 1.0) dmtxMatrix3VMultiplyBy( p00, region.contents.fit2raw ) dmtxMatrix3VMultiplyBy(p11, region.contents.fit2raw) x0 = int((shrink * p00.X) + 0.5) y0 = int((shrink * p00.Y) + 0.5) x1 = int((shrink * p11.X) + 0.5) y1 = int((shrink * p11.Y) + 0.5) return Decoded( string_at(msg.contents.output), Rect(x0, y0, x1 - x0, y1 - y0) ) else: return None
0.001079
def render_list(self, cnt, unique=False, progress_callback=None, **kwargs): '''Return a list of generated strings. Args: cnt (int): length of list unique (bool): whether to make entries unique Returns: list. We keep track of total attempts because a template may specify something impossible to attain, like [1-9]{} with cnt==1000 ''' rendered_list = [] i = 0 total_attempts = 0 while True: if i >= cnt: break if total_attempts > cnt * self.unique_attempts_factor: raise StringGenerator.UniquenessError(u"couldn't satisfy uniqueness") s = self.render(**kwargs) if unique: if not s in rendered_list: rendered_list.append(s) i += 1 else: rendered_list.append(s) i += 1 total_attempts += 1 # Optionally trigger the progress indicator to inform others about our progress if progress_callback and callable(progress_callback): progress_callback(i, cnt) return rendered_list
0.004847
def download(url: str, filename: str, skip_cert_verify: bool = True) -> None: """ Downloads a URL to a file. Args: url: URL to download from filename: file to save to skip_cert_verify: skip SSL certificate check? """ log.info("Downloading from {} to {}", url, filename) # urllib.request.urlretrieve(url, filename) # ... sometimes fails (e.g. downloading # https://www.openssl.org/source/openssl-1.1.0g.tar.gz under Windows) with: # ssl.SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:777) # noqa # ... due to this certificate root problem (probably because OpenSSL # [used by Python] doesn't play entirely by the same rules as others?): # https://stackoverflow.com/questions/27804710 # So: ctx = ssl.create_default_context() # type: ssl.SSLContext if skip_cert_verify: log.debug("Skipping SSL certificate check for " + url) ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE with urllib.request.urlopen(url, context=ctx) as u, open(filename, 'wb') as f: # noqa f.write(u.read())
0.00082
def store(config, archiver, revision, stats): """ Store a revision record within an archiver folder. :param config: The configuration :type config: :class:`wily.config.WilyConfig` :param archiver: The name of the archiver type (e.g. 'git') :type archiver: ``str`` :param revision: The revision ID :type revision: ``str`` :param stats: The collected data :type stats: ``dict`` :return: The absolute path to the created file :rtype: ``str`` :rtype: `pathlib.Path` """ root = pathlib.Path(config.cache_path) / archiver.name if not root.exists(): logger.debug("Creating wily cache") root.mkdir() # fix absolute path references. if config.path != ".": for operator, operator_data in list(stats["operator_data"].items()): if operator_data: new_operator_data = operator_data.copy() for k, v in list(operator_data.items()): new_key = os.path.relpath(str(k), str(config.path)) del new_operator_data[k] new_operator_data[new_key] = v del stats["operator_data"][operator] stats["operator_data"][operator] = new_operator_data logger.debug(f"Creating {revision.key} output") filename = root / (revision.key + ".json") if filename.exists(): raise RuntimeError(f"File {filename} already exists, index may be corrupt.") with open(filename, "w") as out: out.write(json.dumps(stats, indent=2)) return filename
0.003157
def parse(self, callback_data: str) -> typing.Dict[str, str]: """ Parse data from the callback data :param callback_data: :return: """ prefix, *parts = callback_data.split(self.sep) if prefix != self.prefix: raise ValueError("Passed callback data can't be parsed with that prefix.") elif len(parts) != len(self._part_names): raise ValueError('Invalid parts count!') result = {'@': prefix} result.update(zip(self._part_names, parts)) return result
0.005357
def set(self, name, valu): ''' Set a name in the SlabDict. Args: name (str): The key name. valu (obj): A msgpack compatible value. Returns: None ''' byts = s_msgpack.en(valu) lkey = self.pref + name.encode('utf8') self.slab.put(lkey, byts, db=self.db) self.info[name] = valu
0.005208
def destroy_volume_snapshot(volume_id, snapshot_id, profile, **libcloud_kwargs): ''' Destroy a volume snapshot. :param volume_id: Volume ID from which the snapshot belongs :type volume_id: ``str`` :param snapshot_id: Volume Snapshot ID from which to destroy :type snapshot_id: ``str`` :param profile: The profile key :type profile: ``str`` :param libcloud_kwargs: Extra arguments for the driver's destroy_volume_snapshot method :type libcloud_kwargs: ``dict`` CLI Example: .. code-block:: bash salt myminion libcloud_compute.destroy_volume_snapshot snap1 profile1 ''' conn = _get_driver(profile=profile) libcloud_kwargs = salt.utils.args.clean_kwargs(**libcloud_kwargs) volume = _get_by_id(conn.list_volumes(), volume_id) snapshot = _get_by_id(conn.list_volume_snapshots(volume), snapshot_id) return conn.destroy_volume_snapshot(snapshot, **libcloud_kwargs)
0.003158
def get_entity_by_netid(self, netid): """ Returns a restclients.Entity object for the given netid. If the netid isn't found, or if there is an error communicating with the PWS, a DataFailureException will be thrown. """ if not self.valid_uwnetid(netid): raise InvalidNetID(netid) url = "{}/{}.json".format(ENTITY_PREFIX, netid.lower()) response = DAO.getURL(url, {"Accept": "application/json"}) if response.status != 200: raise DataFailureException(url, response.status, response.data) return self._entity_from_json(response.data)
0.003135
def _is_tp(pkt): """Returns true if pkt is using SOMEIP-TP, else returns false.""" tp = [SOMEIP.TYPE_TP_REQUEST, SOMEIP.TYPE_TP_REQUEST_NO_RET, SOMEIP.TYPE_TP_NOTIFICATION, SOMEIP.TYPE_TP_RESPONSE, SOMEIP.TYPE_TP_ERROR] if isinstance(pkt, Packet): return pkt.msg_type in tp else: return pkt[15] in tp
0.005195
def peek_path_info(environ, charset='utf-8', errors='replace'): """Returns the next segment on the `PATH_INFO` or `None` if there is none. Works like :func:`pop_path_info` without modifying the environment: >>> env = {'SCRIPT_NAME': '/foo', 'PATH_INFO': '/a/b'} >>> peek_path_info(env) 'a' >>> peek_path_info(env) 'a' If the `charset` is set to `None` a bytestring is returned. .. versionadded:: 0.5 .. versionchanged:: 0.9 The path is now decoded and a charset and encoding parameter can be provided. :param environ: the WSGI environment that is checked. """ segments = environ.get('PATH_INFO', '').lstrip('/').split('/', 1) if segments: return to_unicode(wsgi_get_bytes(segments[0]), charset, errors, allow_none_charset=True)
0.001189
def ensure_traj(traj): r"""Makes sure that traj is a trajectory (array of float) """ if is_float_matrix(traj) or is_bool_matrix(traj): return traj elif is_float_vector(traj): return traj[:,None] else: try: arr = np.array(traj) arr = ensure_dtype_float(arr) if is_float_matrix(arr): return arr if is_float_vector(arr): return arr[:,None] else: raise TypeError('Argument traj cannot be cast into a two-dimensional array. Check type.') except: raise TypeError('Argument traj is not a trajectory - only float-arrays or list of float-arrays are allowed. Types is %s' % type(traj))
0.008021
def sg_expand_dims(tensor, opt): r"""Inserts a new axis. See tf.expand_dims() in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis : Dimension to expand. Default is -1. name: If provided, it replaces current tensor's name. Returns: A `Tensor`. """ opt += tf.sg_opt(axis=-1) return tf.expand_dims(tensor, opt.axis, name=opt.name)
0.004673
def rm(self, line): """ Remove all occurrences of 'line' from contents where 'line' is an entire line or a list of lines. Return true if the file was changed by rm(), False otherwise. Multi-line strings are converted to a list delimited by new lines. :param line: String, or List of Strings; each string represents an entire line to be removed from file. :return: Boolean, whether contents were changed. """ self.log('rm({0})'.format(line)) if line is False: return False if isinstance(line, str): line = line.split('\n') if not isinstance(line, list): raise TypeError("Parameter 'line' not a 'string' or 'list', is {0}".format(type(line))) local_changes = False for this in line: if this in self.contents: while this in self.contents: self.log('Removed "{0}" from position {1}'.format(this, self.contents.index(this))) self.contents.remove(this) self.changed = local_changes = True else: self.log('"{0}" not in {1}'.format(this, self.filename)) if self.sorted and local_changes: self.sort() return local_changes
0.003814
def _load_config(self): """Read the configuration file and load it into memory.""" self._config = ConfigParser.SafeConfigParser() self._config.read(self.config_path)
0.010582
def iyang(imgIn, krnl, imgSeg, Cnt, itr=5): '''partial volume correction using iterative Yang method imgIn: input image which is blurred due to the PSF of the scanner krnl: shift invariant kernel of the PSF imgSeg: segmentation into regions starting with 0 (e.g., background) and then next integer numbers itr: number of iteration (default 5) ''' dim = imgIn.shape m = np.int32(np.max(imgSeg)) m_a = np.zeros(( m+1, itr ), dtype=np.float32) for jr in range(0,m+1): m_a[jr, 0] = np.mean( imgIn[imgSeg==jr] ) # init output image imgOut = np.copy(imgIn) # iterative Yang algorithm: for i in range(0, itr): if Cnt['VERBOSE']: print 'i> PVC Yang iteration =', i # piece-wise constant image imgPWC = imgOut imgPWC[imgPWC<0] = 0 for jr in range(0,m+1): imgPWC[imgSeg==jr] = np.mean( imgPWC[imgSeg==jr] ) #> blur the piece-wise constant image using either: #> (1) GPU convolution with a separable kernel (x,y,z), or #> (2) CPU, Python-based convolution if 'CCARCH' in Cnt and 'compute' in Cnt['CCARCH']: #> convert to dimensions of GPU processing [y,x,z] imin_d = np.transpose(imgPWC, (1, 2, 0)) imout_d = np.zeros(imin_d.shape, dtype=np.float32) improc.convolve(imout_d, imin_d, krnl, Cnt) imgSmo = np.transpose(imout_d, (2,0,1)) else: hxy = np.outer(krnl[1,:], krnl[2,:]) hxyz = np.multiply.outer(krnl[0,:], hxy) imgSmo = ndi.convolve(imgPWC, hxyz, mode='constant', cval=0.) # correction factors imgCrr = np.ones(dim, dtype=np.float32) imgCrr[imgSmo>0] = imgPWC[imgSmo>0] / imgSmo[imgSmo>0] imgOut = imgIn * imgCrr; for jr in range(0,m+1): m_a[jr, i] = np.mean( imgOut[imgSeg==jr] ) return imgOut, m_a
0.018163
def makesubatoffset(self, bitoffset, *, _offsetideal=None): """Create a copy of this promise with an offset, and use it as this promise's child. If this promise's primitive is being merged with another primitive, a new subpromise may be required to keep track of the new offset of data coming from the new primitive. Args: bitoffset: An integer offset of the data in the new primitive. _offsetideal: integer offset of the data if terms of bits actually used for promises. Used to calculate the start index to read if the associated primitive has arbitrary TDO control. Returns: A TDOPromise registered with this promise, and with the correct offset. """ if _offsetideal is None: _offsetideal = bitoffset if bitoffset is 0: return self newpromise = TDOPromise( self._chain, self._bitstart + bitoffset, self._bitlength, _parent=self, bitstartselective=self._bitstartselective+_offsetideal ) self._addsub(newpromise, 0) return newpromise
0.003416
def add_tags(self): """Add a Vorbis comment block to the file.""" if self.tags is None: self.tags = VCFLACDict() self.metadata_blocks.append(self.tags) else: raise FLACVorbisError("a Vorbis comment already exists")
0.007299
def distorted_bounding_box_crop(image, bbox, min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0), max_attempts=100, scope=None): """Generates cropped_image using a one of the bboxes randomly distorted. See `tf.image.sample_distorted_bounding_box` for more documentation. Args: image: `Tensor` of image (it will be converted to floats in [0, 1]). bbox: `Tensor` of bounding boxes arranged `[1, num_boxes, coords]` where each coordinate is [0, 1) and the coordinates are arranged as `[ymin, xmin, ymax, xmax]`. If num_boxes is 0 then use the whole image. min_object_covered: An optional `float`. Defaults to `0.1`. The cropped area of the image must contain at least this fraction of any bounding box supplied. aspect_ratio_range: An optional list of `float`s. The cropped area of the image must have an aspect ratio = width / height within this range. area_range: An optional list of `float`s. The cropped area of the image must contain a fraction of the supplied image within in this range. max_attempts: An optional `int`. Number of attempts at generating a cropped region of the image of the specified constraints. After `max_attempts` failures, return the entire image. scope: Optional `str` for name scope. Returns: (cropped image `Tensor`, distorted bbox `Tensor`). """ with tf.name_scope(scope, default_name="distorted_bounding_box_crop", values=[image, bbox]): # Each bounding box has shape [1, num_boxes, box coords] and # the coordinates are ordered [ymin, xmin, ymax, xmax]. # A large fraction of image datasets contain a human-annotated bounding # box delineating the region of the image containing the object of interest. # We choose to create a new bounding box for the object which is a randomly # distorted version of the human-annotated bounding box that obeys an # allowed range of aspect ratios, sizes and overlap with the human-annotated # bounding box. If no box is supplied, then we assume the bounding box is # the entire image. sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=bbox, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=True) bbox_begin, bbox_size, distort_bbox = sample_distorted_bounding_box # Crop the image to the specified bounding box. cropped_image = tf.slice(image, bbox_begin, bbox_size) return cropped_image, distort_bbox
0.001722
def _read_opt_ilnp(self, code, *, desc): """Read HOPOPT ILNP Nonce option. Structure of HOPOPT ILNP Nonce option [RFC 6744]: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Next Header | Hdr Ext Len | Option Type | Option Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / Nonce Value / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Octets Bits Name Description 0 0 hopopt.ilnp.type Option Type 0 0 hopopt.ilnp.type.value Option Number 0 0 hopopt.ilnp.type.action Action (10) 0 2 hopopt.ilnp.type.change Change Flag (0) 1 8 hopopt.ilnp.length Length of Option Data 2 16 hopopt.ilnp.value Nonce Value """ _type = self._read_opt_type(code) _size = self._read_unpack(1) _nval = self._read_fileng(_size) opt = dict( desc=desc, type=_type, length=_size + 2, value=_nval, ) return opt
0.002008
def xyz2lonlat(x__, y__, z__): """Get longitudes from cartesian coordinates. """ R = 6370997.0 lons = da.rad2deg(da.arccos(x__ / da.sqrt(x__ ** 2 + y__ ** 2))) * da.sign(y__) lats = da.sign(z__) * (90 - da.rad2deg(da.arcsin(da.sqrt(x__ ** 2 + y__ ** 2) / R))) return lons, lats
0.009934
def _rc_sinter(self, src, *args): """ Returns the members of the set resulting from the difference between the first set and all the successive sets. """ args = list_or_args(src, args) src_set = self.smembers(args.pop(0)) if src_set is not set([]): for key in args: src_set.intersection_update(self.smembers(key)) return src_set
0.004762
def add_sections(app, doctree, fromdocname): """Add section titles to the needs as additional attributes that can be used in tables and filters""" needs = getattr(app.builder.env, 'needs_all_needs', {}) for key, need_info in needs.items(): sections = get_sections(need_info) need_info['sections'] = sections need_info['section_name'] = sections[0] if sections else ""
0.002457
def get_mrca_idx_from_tip_labels(self, names=None, wildcard=None, regex=None): """ Returns the node idx label of the most recent common ancestor node for the clade that includes the selected tips. Arguments can use fuzzy name matching: a list of tip names, wildcard selector, or regex string. """ if not any([names, wildcard, regex]): raise ToytreeError("at least one argument required") node = fuzzy_match_tipnames( self, names, wildcard, regex, True, False) return node.idx
0.005319
def match(self, filepath): """ The function to check file. Should return True if match, False otherwise. """ # no extension? if filepath.find(".") == -1: return False # match extension return filepath.lower().split(".")[-1] in self.__extensions
0.006231
def get_overlapping_values(plates): """ Need to find where in the tree the two plates intersect, e.g. We are given as input plates D, E, whose positions in the tree are: root -> A -> B -> C -> D root -> A -> B -> E The results should then be the cartesian product between C, D, E looped over A and B If there's a shared plate in the hierarchy, we need to join on this shared plate, e.g.: [self.plates[p].values for p in plate_ids][0] = [(('house', '1'), ('location', 'hallway'), ('wearable', 'A')), (('house', '1'), ('location', 'kitchen'), ('wearable', 'A'))] [self.plates[p].values for p in plate_ids][1] = [(('house', '1'), ('scripted', '15')), (('house', '1'), ('scripted', '13'))] Result should be one stream for each of: [(('house', '1'), ('location', 'hallway'), ('wearable', 'A'), ('scripted', '15)), (('house', '1'), ('location', 'hallway'), ('wearable', 'A'), ('scripted', '13)), (('house', '1'), ('location', 'kitchen'), ('wearable', 'A'), ('scripted', '15)), (('house', '1'), ('location', 'kitchen'), ('wearable', 'A'), ('scripted', '13))] :param plates: The input plates :return: The plate values :type plates: list[Plate] | list[Plate] """ if not plates: return None if len(plates) == 1: return plates[0].values if len(plates) > 2: raise NotImplementedError # First check for the simple case where one of the plates has no parent # and does not share meta data with the other plates_sorted = sorted(plates, key=lambda item: len(item.ancestor_plates)) if plates_sorted[0].is_root: if plates_sorted[0].meta_data_id not in plates_sorted[1].ancestor_meta_data_ids: return map(lambda x: tuple(itertools.chain(*x)), itertools.product(plates[0].values, plates[1].values)) # Get all of the ancestors zipped together, padded with None ancestors = deque(itertools.izip_longest(*(p.ancestor_plates for p in plates))) last_values = [] while len(ancestors) > 0: current = ancestors.popleft() if current[0] == current[1]: # Plates are identical, take all values valid for matching parents if last_values: raise NotImplementedError else: last_values.extend(current[0].values) elif current[0] is not None and current[1] is not None \ and current[0].meta_data_id == current[1].meta_data_id: # Not identical, but same meta data id. Take all overlapping values valid for matching parents if last_values: raise NotImplementedError else: raise NotImplementedError else: # Different plates, take cartesian product of values with matching parents. # Note that one of them may be none if last_values: tmp = [] for v in last_values: # Get the valid ones based on v # valid = [filter(lambda x: all(xx in v for xx in x[:-1]), c.values) # for c in current if c is not None] valid = [filter(lambda x: all(vv in x for vv in v), c.values) for c in current if c is not None] # Strip out v from the valid ones stripped = [map(lambda y: tuple(itertools.chain(*(yy for yy in y if yy not in v))), val) for val in valid] # Get the cartesian product. Note that this still works if one of the current is None prod = list(itertools.product(*stripped)) # Now update the last values be the product with v put back in new_values = [v + p for p in prod] if new_values: tmp.append(new_values) last_values = list(itertools.chain(*tmp)) if not last_values: raise ValueError("Plate value computation failed - possibly there were no shared plate values") else: raise NotImplementedError if not last_values: raise ValueError("Plate value computation failed - possibly there were no shared plate values") return last_values
0.004697
def remove_xml_element_string(name, content): """ Remove XML elements from a string """ ET.register_namespace("", "http://soap.sforce.com/2006/04/metadata") tree = ET.fromstring(content) tree = remove_xml_element(name, tree) clean_content = ET.tostring(tree, encoding=UTF8) return clean_content
0.003145
def get(self, **params): ''' Returns details for a specific airport. .. code-block:: python amadeus.reference_data.location('ALHR').get() :rtype: amadeus.Response :raises amadeus.ResponseError: if the request could not be completed ''' return self.client.get('/v1/reference-data/locations/{0}' .format(self.location_id), **params)
0.00463
def _addMethod(self, effect, verb, resource, conditions): """Adds a method to the internal lists of allowed or denied methods. Each object in the internal list contains a resource ARN and a condition statement. The condition statement can be null.""" if verb != "*" and not hasattr(HttpVerb, verb): raise NameError("Invalid HTTP verb " + verb + ". Allowed verbs in HttpVerb class") resourcePattern = re.compile(self.pathRegex) if not resourcePattern.match(resource): raise NameError("Invalid resource path: " + resource + ". Path should match " + self.pathRegex) if resource[:1] == "/": resource = resource[1:] resourceArn = ("arn:aws:execute-api:" + self.region + ":" + self.awsAccountId + ":" + self.restApiId + "/" + self.stage + "/" + verb + "/" + resource) if effect.lower() == "allow": self.allowMethods.append({ 'resourceArn' : resourceArn, 'conditions' : conditions }) elif effect.lower() == "deny": self.denyMethods.append({ 'resourceArn' : resourceArn, 'conditions' : conditions })
0.012365
def ref(function, callback=None): """ Returns a weak reference to the given method or function. If the callback argument is not None, it is called as soon as the referenced function is garbage deleted. :type function: callable :param function: The function to reference. :type callback: callable :param callback: Called when the function dies. """ try: function.__func__ except AttributeError: return _WeakMethodFree(function, callback) return _WeakMethodBound(function, callback)
0.001828
def find_videos_by_playlist(self, playlist_id, page=1, count=20): """doc: http://open.youku.com/docs/doc?id=71 """ url = 'https://openapi.youku.com/v2/playlists/videos.json' params = { 'client_id': self.client_id, 'playlist_id': playlist_id, 'page': page, 'count': count } r = requests.get(url, params=params) check_error(r) return r.json()
0.004425
def ready(self): """Initialisation for django-ddp (setup lookups and signal handlers).""" if not settings.DATABASES: raise ImproperlyConfigured('No databases configured.') for (alias, conf) in settings.DATABASES.items(): engine = conf['ENGINE'] if engine not in [ 'django.db.backends.postgresql', 'django.db.backends.postgresql_psycopg2', ]: warnings.warn( 'Database %r uses unsupported %r engine.' % ( alias, engine, ), UserWarning, ) self.api = autodiscover() self.api.ready()
0.004202
def execute(self, uri, namespace, action, timeout=2, **kwargs): """Executes a given action with optional arguments. The execution of an action of an UPnP/TR64 device needs more than just the name of an action. It needs the control URI which is called to place the action and also the namespace aka service type is needed. The namespace defines the scope or service type of the given action, the same action name can appear in different namespaces. The way how to obtain the needed information's is either through the documentation of the vendor of the device. Or through a discovery requests which return's the URL to the root device description XML. :param str uri: the control URI, for example ``/upnp/control/hosts`` :param str namespace: the namespace for the given action, for example ``urn:dslforum-org:service:Hosts:1`` :param str action: the name of the action to call, for example ``GetGenericHostEntry`` :param float timeout: the timeout to wait for the action to be executed :param kwargs: optional arguments for the given action, depends if the action needs parameter. The arguments are given as dict where the key is the parameter name and the value the value of the parameter. :type kwargs: dict[str, str] :return: returns the results of the action, if any. The results are structured as dict where the key is the name of the result argument and the value is the value of the result. :rtype: dict[str,str] :raises ValueError: if parameters are not set correctly :raises requests.exceptions.ConnectionError: when the action can not be placed on the device :raises requests.exceptions.ConnectTimeout: when download time out Example: :: device = DeviceTR64(...) device.execute("/upnp/control/hosts", "urn:dslforum-org:service:Hosts:1", "GetGenericHostEntry", {"NewIndex": 1}) {'NewActive': '0', 'NewIPAddress': '192.168.0.23', 'NewMACAddress': '9C:20:7B:E7:FF:5F', 'NewInterfaceType': 'Ethernet', 'NewHostName': 'Apple-TV', 'NewAddressSource': 'DHCP', 'NewLeaseTimeRemaining': '0'} .. seealso:: `Additional short explanation of the UPnP protocol <http://www.upnp-hacks.org/upnp.html>`_ :class:`~simpletr64.Discover`, :meth:`~simpletr64.DeviceTR64.loadDeviceDefinitions`, :meth:`~simpletr64.DeviceTR64.loadSCPD` """ if not uri: raise ValueError("No action URI has been defined.") if not namespace: raise ValueError("No namespace has been defined.") if not action: raise ValueError("No action has been defined.") # soap headers header = {'Content-Type': 'text/xml; charset="UTF-8"', 'Soapaction': '"' + namespace + "#" + action + '"'} # build SOAP body body = '''<?xml version="1.0" encoding="UTF-8"?> <s:Envelope s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <s:Header/> <s:Body>\n''' body += " <u:" + action + ' xmlns="' + namespace + '">\n' arguments = {} for key in kwargs.keys(): body += " <" + key + ">" + str(kwargs[key]) + "</" + key + ">\n" arguments[key] = str(kwargs[key]) body += " </u:" + action + ">\n" body += '''</s:Body> </s:Envelope>''' # setup proxies proxies = {} if self.__httpsProxy: proxies = {"https": self.__httpsProxy} if self.__httpProxy: proxies = {"http": self.__httpProxy} # setup authentication auth = None if self.__password: auth = HTTPDigestAuth(self.__username, self.__password) # build the URL location = self.__protocol + "://" + self.__hostname + ":" + str(self.port) + uri # Post http request request = requests.post(location, data=body, headers=header, auth=auth, proxies=proxies, timeout=float(timeout), verify=self.__verify) if request.status_code != 200: errorStr = DeviceTR64._extractErrorString(request) raise ValueError('Could not execute "' + action + str(arguments) + '": ' + str(request.status_code) + ' - ' + request.reason + " -- " + errorStr) # parse XML return try: root = ET.fromstring(request.text.encode('utf-8')) except Exception as e: raise ValueError("Can not parse results for the action: " + str(e)) # iterate in the XML structure to get the action result actionNode = root[0][0] # we need to remove XML namespace for the action node namespaceLength = len(namespace) + 2 # add braces tag = actionNode.tag[namespaceLength:] if tag != (action + "Response"): raise ValueError('Soap result structure is wrong, expected action "' + action + 'Response" got "' + tag + '".') # pack all the received results results = {} for resultNode in actionNode: results[resultNode.tag] = resultNode.text return results
0.00454
def to_iris(dataarray): """ Convert a DataArray into a Iris Cube """ # Iris not a hard dependency import iris from iris.fileformats.netcdf import parse_cell_methods dim_coords = [] aux_coords = [] for coord_name in dataarray.coords: coord = encode(dataarray.coords[coord_name]) coord_args = _get_iris_args(coord.attrs) coord_args['var_name'] = coord_name axis = None if coord.dims: axis = dataarray.get_axis_num(coord.dims) if coord_name in dataarray.dims: try: iris_coord = iris.coords.DimCoord(coord.values, **coord_args) dim_coords.append((iris_coord, axis)) except ValueError: iris_coord = iris.coords.AuxCoord(coord.values, **coord_args) aux_coords.append((iris_coord, axis)) else: iris_coord = iris.coords.AuxCoord(coord.values, **coord_args) aux_coords.append((iris_coord, axis)) args = _get_iris_args(dataarray.attrs) args['var_name'] = dataarray.name args['dim_coords_and_dims'] = dim_coords args['aux_coords_and_dims'] = aux_coords if 'cell_methods' in dataarray.attrs: args['cell_methods'] = \ parse_cell_methods(dataarray.attrs['cell_methods']) masked_data = duck_array_ops.masked_invalid(dataarray.data) cube = iris.cube.Cube(masked_data, **args) return cube
0.000694
def set_storage_container_acl(kwargs=None, storage_conn=None, call=None): ''' .. versionadded:: 2015.8.0 Set a storage container's acl CLI Example: .. code-block:: bash salt-cloud -f set_storage_container my-azure name=mycontainer name: Name of existing container. signed_identifiers: SignedIdentifers instance blob_public_access: Optional. Possible values include: container, blob lease_id: If specified, set_storage_container_acl only succeeds if the container's lease is active and matches this ID. ''' if call != 'function': raise SaltCloudSystemExit( 'The create_storage_container function must be called with -f or --function.' ) if not storage_conn: storage_conn = get_storage_conn(conn_kwargs=kwargs) try: data = storage_conn.set_container_acl( container_name=kwargs['name'], signed_identifiers=kwargs.get('signed_identifiers', None), x_ms_blob_public_access=kwargs.get('blob_public_access', None), x_ms_lease_id=kwargs.get('lease_id', None), ) return {'Success': 'The storage container was successfully updated'} except AzureConflictHttpError: raise SaltCloudSystemExit('There was a conflict.')
0.001504
def show(self, start_date, end_date): """setting suggested name to something readable, replace backslashes with dots so the name is valid in linux""" # title in the report file name vars = {"title": _("Time track"), "start": start_date.strftime("%x").replace("/", "."), "end": end_date.strftime("%x").replace("/", ".")} if start_date != end_date: filename = "%(title)s, %(start)s - %(end)s.html" % vars else: filename = "%(title)s, %(start)s.html" % vars self.dialog.set_current_name(filename) response = self.dialog.run() if response != gtk.ResponseType.OK: self.emit("report-chooser-closed") self.dialog.destroy() self.dialog = None else: self.on_save_button_clicked()
0.002323
def build_transform(self): """ Creates a basic transformation that was used to train the models """ cfg = self.cfg # we are loading images with OpenCV, so we don't need to convert them # to BGR, they are already! So all we need to do is to normalize # by 255 if we want to convert to BGR255 format, or flip the channels # if we want it to be in RGB in [0-1] range. if cfg.INPUT.TO_BGR255: to_bgr_transform = T.Lambda(lambda x: x * 255) else: to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]]) normalize_transform = T.Normalize( mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD ) transform = T.Compose( [ T.ToPILImage(), T.Resize(self.min_image_size), T.ToTensor(), to_bgr_transform, normalize_transform, ] ) return transform
0.00202
def iter_bases(bases): """ Performs MRO linearization of a set of base classes. Yields each base class in turn. """ sequences = ([list(inspect.getmro(base)) for base in bases] + [list(bases)]) # Loop over sequences while True: sequences = [seq for seq in sequences if seq] if not sequences: return # Select a good head for seq in sequences: head = seq[0] tails = [seq for seq in sequences if head in seq[1:]] if not tails: break else: raise TypeError('Cannot create a consistent method ' 'resolution order (MRO) for bases %s' % ', '.join([base.__name__ for base in bases])) # Yield this base class yield head # Remove base class from all the other sequences for seq in sequences: if seq[0] == head: del seq[0]
0.001817
def validate_pai_trial_conifg(experiment_config): '''validate the trial config in pai platform''' if experiment_config.get('trainingServicePlatform') == 'pai': if experiment_config.get('trial').get('shmMB') and \ experiment_config['trial']['shmMB'] > experiment_config['trial']['memoryMB']: print_error('shmMB should be no more than memoryMB!') exit(1)
0.0075
def hold_absent(name, snapshot, recursive=False): ''' ensure hold is absent on the system name : string name of hold snapshot : string name of snapshot recursive : boolean recursively releases a hold with the given tag on the snapshots of all descendent file systems. ''' ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} ## log configuration log.debug('zfs.hold_absent::%s::config::snapshot = %s', name, snapshot) log.debug('zfs.hold_absent::%s::config::recursive = %s', name, recursive) ## check we have a snapshot/tag name if not __utils__['zfs.is_snapshot'](snapshot): ret['result'] = False ret['comment'] = 'invalid snapshot name: {0}'.format(snapshot) return ret if __utils__['zfs.is_snapshot'](name) or \ __utils__['zfs.is_bookmark'](name) or \ name == 'error': ret['result'] = False ret['comment'] = 'invalid tag name: {0}'.format(name) return ret ## release hold if required holds = __salt__['zfs.holds'](snapshot) if name in holds: ## NOTE: hold found for snapshot, release it if not __opts__['test']: mod_res = __salt__['zfs.release'](name, snapshot, **{'recursive': recursive}) else: mod_res = OrderedDict([('released', True)]) ret['result'] = mod_res['released'] if ret['result']: ret['changes'] = {snapshot: {name: 'released'}} ret['comment'] = 'hold {0} released'.format( name, ) else: ret['comment'] = 'failed to release hold {0}'.format( name, ) if 'error' in mod_res: ret['comment'] = mod_res['error'] elif 'error' in holds: ## NOTE: we have an error ret['result'] = False ret['comment'] = holds['error'] else: ## NOTE: no hold found with name for snapshot ret['comment'] = 'hold {0} is absent'.format( name, ) return ret
0.004208
def b58encode_int(i, default_one=True): '''Encode an integer using Base58''' if not i and default_one: return alphabet[0] string = "" while i: i, idx = divmod(i, 58) string = alphabet[idx] + string return string
0.003922
def _parse_blob(self): """Parse a blob command.""" lineno = self.lineno mark = self._get_mark_if_any() data = self._get_data(b'blob') return commands.BlobCommand(mark, data, lineno)
0.00905
def urldefrag(url): """Removes any existing fragment from URL. Returns a tuple of the defragmented URL and the fragment. If the URL contained no fragments, the second element is the empty string. """ if '#' in url: s, n, p, a, q, frag = urlparse(url) defrag = urlunparse((s, n, p, a, q, '')) return defrag, frag else: return url, ''
0.002538
def build_payload(self, tag, message): """ Encode, sign payload(optional) and attach subscription tag """ message = self.encode(message) message = self.sign(message) payload = bytes(tag.encode('utf-8')) + message return payload
0.007491
def _safe_getattr(o): """Gets the attribute from the specified object, taking the acorn decoration into account. """ def getattribute(attr): # pragma: no cover if hasattr(o, "__acornext__") and o.__acornext__ is not None: return o.__acornext__.__getattribute__(attr) elif hasattr(o, "__acorn__") and o.__acorn__ is not None: #Some of the functions have the original function (when it was not #extended) in the __acorn__ attribute. return o.__acorn__.__getattribute__(attr) else: return getattr(o, attr) return getattribute
0.007987
def value(self): """Returns a formatted version of the data for final output. This takes into consideration the :attr:`~horizon.tables.Column.link`` and :attr:`~horizon.tables.Column.empty_value` attributes. """ try: data = self.column.get_data(self.datum) if data is None: if callable(self.column.empty_value): data = self.column.empty_value(self.datum) else: data = self.column.empty_value except Exception: data = None exc_info = sys.exc_info() raise six.reraise(template.TemplateSyntaxError, exc_info[1], exc_info[2]) if self.url and not self.column.auto == "form_field": link_attrs = ' '.join(['%s="%s"' % (k, v) for (k, v) in self.column.link_attrs.items()]) # Escape the data inside while allowing our HTML to render data = mark_safe('<a href="%s" %s>%s</a>' % ( (escape(self.url), link_attrs, escape(six.text_type(data))))) return data
0.001605
def create(style_dataset, content_dataset, style_feature=None, content_feature=None, max_iterations=None, model='resnet-16', verbose=True, batch_size = 6, **kwargs): """ Create a :class:`StyleTransfer` model. Parameters ---------- style_dataset: SFrame Input style images. The columns named by the ``style_feature`` parameters will be extracted for training the model. content_dataset : SFrame Input content images. The columns named by the ``content_feature`` parameters will be extracted for training the model. style_feature: string Name of the column containing the input images in style SFrame. 'None' (the default) indicates the only image column in the style SFrame should be used as the feature. content_feature: string Name of the column containing the input images in content SFrame. 'None' (the default) indicates the only image column in the content SFrame should be used as the feature. max_iterations : int The number of training iterations. If 'None' (the default), then it will be automatically determined based on the amount of data you provide. model : string optional Style transfer model to use: - "resnet-16" : Fast and small-sized residual network that uses VGG-16 as reference network during training. batch_size : int, optional If you are getting memory errors, try decreasing this value. If you have a powerful computer, increasing this value may improve training throughput. verbose : bool, optional If True, print progress updates and model details. Returns ------- out : StyleTransfer A trained :class:`StyleTransfer` model. See Also -------- StyleTransfer Examples -------- .. sourcecode:: python # Create datasets >>> content_dataset = turicreate.image_analysis.load_images('content_images/') >>> style_dataset = turicreate.image_analysis.load_images('style_images/') # Train a style transfer model >>> model = turicreate.style_transfer.create(content_dataset, style_dataset) # Stylize an image on all styles >>> stylized_images = model.stylize(data) # Visualize the stylized images >>> stylized_images.explore() """ if len(style_dataset) == 0: raise _ToolkitError("style_dataset SFrame cannot be empty") if len(content_dataset) == 0: raise _ToolkitError("content_dataset SFrame cannot be empty") if(batch_size < 1): raise _ToolkitError("'batch_size' must be greater than or equal to 1") from ._sframe_loader import SFrameSTIter as _SFrameSTIter import mxnet as _mx from .._mxnet import _mxnet_utils if style_feature is None: style_feature = _tkutl._find_only_image_column(style_dataset) if content_feature is None: content_feature = _tkutl._find_only_image_column(content_dataset) if verbose: print("Using '{}' in style_dataset as feature column and using " "'{}' in content_dataset as feature column".format(style_feature, content_feature)) _raise_error_if_not_training_sframe(style_dataset, style_feature) _raise_error_if_not_training_sframe(content_dataset, content_feature) params = { 'batch_size': batch_size, 'vgg16_content_loss_layer': 2, # conv3_3 layer 'lr': 0.001, 'content_loss_mult': 1.0, 'style_loss_mult': [1e-4, 1e-4, 1e-4, 1e-4], # conv 1-4 layers 'finetune_all_params': True, 'pretrained_weights': False, 'print_loss_breakdown': False, 'input_shape': (256, 256), 'training_content_loader_type': 'stretch', 'use_augmentation': False, 'sequential_image_processing': False, # Only used if use_augmentaion is True 'aug_resize': 0, 'aug_min_object_covered': 0, 'aug_rand_crop': 0.9, 'aug_rand_pad': 0.9, 'aug_rand_gray': 0.0, 'aug_aspect_ratio': 1.25, 'aug_hue': 0.05, 'aug_brightness': 0.05, 'aug_saturation': 0.05, 'aug_contrast': 0.05, 'aug_horizontal_flip': True, 'aug_area_range': (.05, 1.5), 'aug_pca_noise': 0.0, 'aug_max_attempts': 20, 'aug_inter_method': 2, } if '_advanced_parameters' in kwargs: # Make sure no additional parameters are provided new_keys = set(kwargs['_advanced_parameters'].keys()) set_keys = set(params.keys()) unsupported = new_keys - set_keys if unsupported: raise _ToolkitError('Unknown advanced parameters: {}'.format(unsupported)) params.update(kwargs['_advanced_parameters']) _content_loss_mult = params['content_loss_mult'] _style_loss_mult = params['style_loss_mult'] num_gpus = _mxnet_utils.get_num_gpus_in_use(max_devices=params['batch_size']) batch_size_each = params['batch_size'] // max(num_gpus, 1) batch_size = max(num_gpus, 1) * batch_size_each input_shape = params['input_shape'] iterations = 0 if max_iterations is None: max_iterations = len(style_dataset) * 10000 if verbose: print('Setting max_iterations to be {}'.format(max_iterations)) # data loader if params['use_augmentation']: content_loader_type = '%s-with-augmentation' % params['training_content_loader_type'] else: content_loader_type = params['training_content_loader_type'] content_images_loader = _SFrameSTIter(content_dataset, batch_size, shuffle=True, feature_column=content_feature, input_shape=input_shape, loader_type=content_loader_type, aug_params=params, sequential=params['sequential_image_processing']) ctx = _mxnet_utils.get_mxnet_context(max_devices=params['batch_size']) num_styles = len(style_dataset) # TRANSFORMER MODEL from ._model import Transformer as _Transformer transformer_model_path = _pre_trained_models.STYLE_TRANSFER_BASE_MODELS[model]().get_model_path() transformer = _Transformer(num_styles, batch_size_each) transformer.collect_params().initialize(ctx=ctx) if params['pretrained_weights']: transformer.load_params(transformer_model_path, ctx, allow_missing=True) # For some reason, the transformer fails to hybridize for training, so we # avoid this until resolved # transformer.hybridize() # VGG MODEL from ._model import Vgg16 as _Vgg16 vgg_model_path = _pre_trained_models.STYLE_TRANSFER_BASE_MODELS['Vgg16']().get_model_path() vgg_model = _Vgg16() vgg_model.collect_params().initialize(ctx=ctx) vgg_model.load_params(vgg_model_path, ctx=ctx, ignore_extra=True) vgg_model.hybridize() # TRAINER from mxnet import gluon as _gluon from ._model import gram_matrix as _gram_matrix if params['finetune_all_params']: trainable_params = transformer.collect_params() else: trainable_params = transformer.collect_params('.*gamma|.*beta') trainer = _gluon.Trainer(trainable_params, 'adam', {'learning_rate': params['lr']}) mse_loss = _gluon.loss.L2Loss() start_time = _time.time() smoothed_loss = None last_time = 0 cuda_gpus = _mxnet_utils.get_gpus_in_use(max_devices=params['batch_size']) num_mxnet_gpus = len(cuda_gpus) if verbose: # Estimate memory usage (based on experiments) cuda_mem_req = 260 + batch_size_each * 880 + num_styles * 1.4 _tkutl._print_neural_compute_device(cuda_gpus=cuda_gpus, use_mps=False, cuda_mem_req=cuda_mem_req, has_mps_impl=False) # # Pre-compute gram matrices for style images # if verbose: print('Analyzing visual features of the style images') style_images_loader = _SFrameSTIter(style_dataset, batch_size, shuffle=False, num_epochs=1, feature_column=style_feature, input_shape=input_shape, loader_type='stretch', sequential=params['sequential_image_processing']) num_layers = len(params['style_loss_mult']) gram_chunks = [[] for _ in range(num_layers)] for s_batch in style_images_loader: s_data = _gluon.utils.split_and_load(s_batch.data[0], ctx_list=ctx, batch_axis=0) for s in s_data: vgg16_s = _vgg16_data_prep(s) ret = vgg_model(vgg16_s) grams = [_gram_matrix(x) for x in ret] for i, gram in enumerate(grams): if gram.context != _mx.cpu(0): gram = gram.as_in_context(_mx.cpu(0)) gram_chunks[i].append(gram) del style_images_loader grams = [ # The concatenated styles may be padded, so we slice overflow _mx.nd.concat(*chunks, dim=0)[:num_styles] for chunks in gram_chunks ] # A context->grams look-up table, where all the gram matrices have been # distributed ctx_grams = {} if ctx[0] == _mx.cpu(0): ctx_grams[_mx.cpu(0)] = grams else: for ctx0 in ctx: ctx_grams[ctx0] = [gram.as_in_context(ctx0) for gram in grams] # # Training loop # vgg_content_loss_layer = params['vgg16_content_loss_layer'] rs = _np.random.RandomState(1234) while iterations < max_iterations: content_images_loader.reset() for c_batch in content_images_loader: c_data = _gluon.utils.split_and_load(c_batch.data[0], ctx_list=ctx, batch_axis=0) Ls = [] curr_content_loss = [] curr_style_loss = [] with _mx.autograd.record(): for c in c_data: # Randomize styles to train indices = _mx.nd.array(rs.randint(num_styles, size=batch_size_each), dtype=_np.int64, ctx=c.context) # Generate pastiche p = transformer(c, indices) # mean subtraction vgg16_p = _vgg16_data_prep(p) vgg16_c = _vgg16_data_prep(c) # vgg forward p_vgg_outputs = vgg_model(vgg16_p) c_vgg_outputs = vgg_model(vgg16_c) c_content_layer = c_vgg_outputs[vgg_content_loss_layer] p_content_layer = p_vgg_outputs[vgg_content_loss_layer] # Calculate Loss # Style Loss between style image and stylized image # Ls = sum of L2 norm of gram matrix of vgg16's conv layers style_losses = [] for gram, p_vgg_output, style_loss_mult in zip(ctx_grams[c.context], p_vgg_outputs, _style_loss_mult): gram_s_vgg = gram[indices] gram_p_vgg = _gram_matrix(p_vgg_output) style_losses.append(style_loss_mult * mse_loss(gram_s_vgg, gram_p_vgg)) style_loss = _mx.nd.add_n(*style_losses) # Content Loss between content image and stylized image # Lc = L2 norm at a single layer in vgg16 content_loss = _content_loss_mult * mse_loss(c_content_layer, p_content_layer) curr_content_loss.append(content_loss) curr_style_loss.append(style_loss) # Divide loss by large number to get into a more legible # range total_loss = (content_loss + style_loss) / 10000.0 Ls.append(total_loss) for L in Ls: L.backward() cur_loss = _np.mean([L.asnumpy()[0] for L in Ls]) if smoothed_loss is None: smoothed_loss = cur_loss else: smoothed_loss = 0.9 * smoothed_loss + 0.1 * cur_loss iterations += 1 trainer.step(batch_size) if verbose and iterations == 1: # Print progress table header column_names = ['Iteration', 'Loss', 'Elapsed Time'] num_columns = len(column_names) column_width = max(map(lambda x: len(x), column_names)) + 2 hr = '+' + '+'.join(['-' * column_width] * num_columns) + '+' print(hr) print(('| {:<{width}}' * num_columns + '|').format(*column_names, width=column_width-1)) print(hr) cur_time = _time.time() if verbose and (cur_time > last_time + 10 or iterations == max_iterations): # Print progress table row elapsed_time = cur_time - start_time print("| {cur_iter:<{width}}| {loss:<{width}.3f}| {time:<{width}.1f}|".format( cur_iter = iterations, loss = smoothed_loss, time = elapsed_time , width = column_width-1)) if params['print_loss_breakdown']: print_content_loss = _np.mean([L.asnumpy()[0] for L in curr_content_loss]) print_style_loss = _np.mean([L.asnumpy()[0] for L in curr_style_loss]) print('Total Loss: {:6.3f} | Content Loss: {:6.3f} | Style Loss: {:6.3f}'.format(cur_loss, print_content_loss, print_style_loss)) last_time = cur_time if iterations == max_iterations: print(hr) break training_time = _time.time() - start_time style_sa = style_dataset[style_feature] idx_column = _tc.SArray(range(0, style_sa.shape[0])) style_sframe = _tc.SFrame({"style": idx_column, style_feature: style_sa}) # Save the model state state = { '_model': transformer, '_training_time_as_string': _seconds_as_string(training_time), 'batch_size': batch_size, 'num_styles': num_styles, 'model': model, 'input_image_shape': input_shape, 'styles': style_sframe, 'num_content_images': len(content_dataset), 'training_time': training_time, 'max_iterations': max_iterations, 'training_iterations': iterations, 'training_epochs': content_images_loader.cur_epoch, 'style_feature': style_feature, 'content_feature': content_feature, "_index_column": "style", 'training_loss': smoothed_loss, } return StyleTransfer(state)
0.003663
def _create_info_struct(file, mode, samplerate, channels, format, subtype, endian): """Check arguments and create SF_INFO struct.""" original_format = format if format is None: format = _get_format_from_filename(file, mode) assert isinstance(format, (_unicode, str)) else: _check_format(format) info = _ffi.new("SF_INFO*") if 'r' not in mode or format.upper() == 'RAW': if samplerate is None: raise TypeError("samplerate must be specified") info.samplerate = samplerate if channels is None: raise TypeError("channels must be specified") info.channels = channels info.format = _format_int(format, subtype, endian) else: if any(arg is not None for arg in ( samplerate, channels, original_format, subtype, endian)): raise TypeError("Not allowed for existing files (except 'RAW'): " "samplerate, channels, format, subtype, endian") return info
0.000954
def tokenize(self, sentence, normalize=True, is_feature=False, is_surface=False, return_list=False, func_normalizer=text_preprocess.normalize_text): # type: (text_type, bool, bool, bool, bool, Callable[[text_type], text_type]) -> Union[TokenizedSenetence, List[text_type]] """* What you can do - """ if normalize: normalized_sentence = func_normalizer(sentence) else: normalized_sentence = sentence ml_token_object = self.call_juman_interface(normalized_sentence) token_objects = [ juman_utils.extract_morphological_information( mrph_object=morph_object, is_surface=is_surface, is_feature=is_feature ) for morph_object in ml_token_object] if return_list: tokenized_objects = TokenizedSenetence( sentence=sentence, tokenized_objects=token_objects) return tokenized_objects.convert_list_object() else: tokenized_objects = TokenizedSenetence( sentence=sentence, tokenized_objects=token_objects) return tokenized_objects
0.006902
def vsan_supported(service_instance): ''' Returns whether vsan is supported on the vCenter: api version needs to be 6 or higher service_instance Service instance to the host or vCenter ''' try: api_version = service_instance.content.about.apiVersion except vim.fault.NoPermission as exc: log.exception(exc) raise VMwareApiError('Not enough permissions. Required privilege: ' '{0}'.format(exc.privilegeId)) except vim.fault.VimFault as exc: log.exception(exc) raise VMwareApiError(exc.msg) except vmodl.RuntimeFault as exc: log.exception(exc) raise VMwareRuntimeError(exc.msg) if int(api_version.split('.')[0]) < 6: return False return True
0.001267
def register_microscope_files(self, plate_name, acquisition_name, path): ''' Register microscope files contained in `path` (Server side). If `path` is a directory, upload all files contained in it. Parameters ---------- plate_name: str name of the parent plate acquisition_name: str name of the parent acquisition path: str path to a directory on disk where the files that should be uploaded are located Returns: ------- List[str] names of registered files ''' logger.info( 'register microscope files for experiment "%s", plate "%s" ' 'and acquisition "%s"', self.experiment_name, plate_name, acquisition_name ) acquisition_id = self._get_acquisition_id(plate_name, acquisition_name) register_url = self._build_api_url( '/experiments/{experiment_id}/acquisitions/{acquisition_id}/register' .format(experiment_id=self._experiment_id, acquisition_id=acquisition_id) ) logger.debug('register files for upload') url = self._build_api_url('/experiments/{experiment_id}/acquisitions/{acquisition_id}/register'.format(experiment_id=self._experiment_id, acquisition_id=acquisition_id)) payload = {'path': path} res = self._session.post(url, json=payload) res.raise_for_status() return res.json()['message']
0.005879
def timed(f: Optional[Callable[[int], None]] = None): """Time the execution of code in the with-block, calling the function f (if it is given) with the resulting time in nanoseconds.""" start = time.perf_counter() yield end = time.perf_counter() if f: ns = int((end - start) * 1_000_000_000) f(ns)
0.002967
def fit(self, X, y, **fit_params): """Find the best parameters for a particular model. Parameters ---------- X, y : array-like **fit_params Additional partial fit keyword arguments for the estimator. """ return default_client().sync(self._fit, X, y, **fit_params)
0.006024
def line_to_variables(source, line, inherit_permission, parent): """ Returns a list of variables declared in the provided line of code. The line of code should be provided as a string. """ vartype, kind, strlen, proto, rest = parse_type(line,parent.strings,parent.settings) attribs = [] intent = "" optional = False permission = inherit_permission parameter = False attribmatch = ATTRIBSPLIT_RE.match(rest) if attribmatch: attribstr = attribmatch.group(1).strip() declarestr = attribmatch.group(2).strip() tmp_attribs = ford.utils.paren_split(",",attribstr) for i in range(len(tmp_attribs)): tmp_attribs[i] = tmp_attribs[i].strip() if tmp_attribs[i].lower() == "public": permission = "public" elif tmp_attribs[i].lower() == "private": permission = "private" elif tmp_attribs[i].lower() == "protected": permission = "protected" elif tmp_attribs[i].lower() == "optional": optional = True elif tmp_attribs[i].lower() == "parameter": parameter = True elif tmp_attribs[i].lower().replace(' ','') == "intent(in)": intent = 'in' elif tmp_attribs[i].lower().replace(' ','') == "intent(out)": intent = 'out' elif tmp_attribs[i].lower().replace(' ','') == "intent(inout)": intent = 'inout' else: attribs.append(tmp_attribs[i]) else: declarestr = ATTRIBSPLIT2_RE.match(rest).group(2) declarations = ford.utils.paren_split(",",declarestr) varlist = [] for dec in declarations: dec = re.sub(" ","",dec) split = ford.utils.paren_split('=',dec) if len(split) > 1: name = split[0] if split[1][0] == '>': initial = split[1][1:] points = True else: initial = split[1] points = False else: name = dec.strip() initial = None points = False if initial: initial = COMMA_RE.sub(', ',initial) search_from = 0 while QUOTES_RE.search(initial[search_from:]): num = int(QUOTES_RE.search(initial[search_from:]).group()[1:-1]) old_string = NBSP_RE.sub('&nbsp;',parent.strings[num]) string = '' for i in range(len(old_string)): if old_string[i] == "\\" and (old_string[i+1] in '0123456789' or old_string[i+1] == 'g'): string += r'\\' elif old_string[i] == '(' and old_string[i+1] =='?': string += r'\(' else: string += old_string[i] initial = initial[0:search_from] + QUOTES_RE.sub(string,initial[search_from:],count=1) search_from += QUOTES_RE.search(initial[search_from:]).end(0) if proto: varlist.append(FortranVariable(name,vartype,parent,copy.copy(attribs),intent, optional,permission,parameter,kind,strlen,list(proto), [],points,initial)) else: varlist.append(FortranVariable(name,vartype,parent,copy.copy(attribs),intent, optional,permission,parameter,kind,strlen,proto, [],points,initial)) doc = [] docline = source.__next__() while docline[0:2] == "!" + parent.settings['docmark']: doc.append(docline[2:]) docline = source.__next__() source.pass_back(docline) for var in varlist: var.doc = doc return varlist
0.014431
def dafec(handle, bufsiz, lenout=_default_len_out): """ Extract comments from the comment area of a binary DAF. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/dafec_c.html :param handle: Handle of binary DAF opened with read access. :type handle: int :param bufsiz: Maximum size, in lines, of buffer. :type bufsiz: int :param lenout: Length of strings in output buffer. :type lenout: int :return: Number of extracted comment lines, buffer where extracted comment lines are placed, Indicates whether all comments have been extracted. :rtype: tuple """ handle = ctypes.c_int(handle) buffer = stypes.emptyCharArray(yLen=bufsiz, xLen=lenout) bufsiz = ctypes.c_int(bufsiz) lenout = ctypes.c_int(lenout) n = ctypes.c_int() done = ctypes.c_int() libspice.dafec_c(handle, bufsiz, lenout, ctypes.byref(n), ctypes.byref(buffer), ctypes.byref(done)) return n.value, stypes.cVectorToPython(buffer), bool(done.value)
0.000951
def readInfo(stream): """ Read previously-written information about diffs. """ try: for line in stream: (toUUID, fromUUID, size) = line.split() try: size = int(size) except Exception: logger.warning("Bad size: %s", size) continue logger.debug("diff info: %s %s %d", toUUID, fromUUID, size) Diff.theKnownSizes[toUUID][fromUUID] = size except Exception as error: logger.warn("Can't read .bs info file (%s)", error)
0.003333
def replace_table_rate_rule_by_id(cls, table_rate_rule_id, table_rate_rule, **kwargs): """Replace TableRateRule Replace all attributes of TableRateRule This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.replace_table_rate_rule_by_id(table_rate_rule_id, table_rate_rule, async=True) >>> result = thread.get() :param async bool :param str table_rate_rule_id: ID of tableRateRule to replace (required) :param TableRateRule table_rate_rule: Attributes of tableRateRule to replace (required) :return: TableRateRule If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return cls._replace_table_rate_rule_by_id_with_http_info(table_rate_rule_id, table_rate_rule, **kwargs) else: (data) = cls._replace_table_rate_rule_by_id_with_http_info(table_rate_rule_id, table_rate_rule, **kwargs) return data
0.007011
def lock(self): """ Lock the config database. Use if Locking/Unlocking is not performaed automatically by lock=False """ if not self.locked: rpc_command = '<Lock/>' try: self._execute_rpc(rpc_command) except XMLCLIError: raise LockError('Unable to enter in configure exclusive mode!', self) self.locked = True
0.006977
def _collected_label(collect, label): """Label of a collected column.""" if not collect.__name__.startswith('<'): return label + ' ' + collect.__name__ else: return label
0.005051