text
stringlengths
78
104k
score
float64
0
0.18
def agp(args): """ %prog agp Siirt_Female_pistachio_23May2017_table.txt The table file, as prepared by Dovetail Genomics, is not immediately useful to convert gene model coordinates, as assumed by formats.chain.fromagp(). This is a quick script to do such conversion. The file structure of this table file is described in the .manifest file shipped in the same package:: pistachio_b_23May2017_MeyIy.table.txt Tab-delimited table describing positions of input assembly scaffolds in the Hirise scaffolds. The table has the following format: 1. HiRise scaffold name 2. Input sequence name 3. Starting base (zero-based) of the input sequence 4. Ending base of the input sequence 5. Strand (- or +) of the input sequence in the scaffold 6. Starting base (zero-based) in the HiRise scaffold 7. Ending base in the HiRise scaffold where '-' in the strand column indicates that the sequence is reverse complemented relative to the input assembly. CAUTION: This is NOT a proper AGP format since it does not have gaps in them. """ p = OptionParser(agp.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) tablefile, = args fp = open(tablefile) for row in fp: atoms = row.split() hr = atoms[0] scaf = atoms[1] scaf_start = int(atoms[2]) + 1 scaf_end = int(atoms[3]) strand = atoms[4] hr_start = int(atoms[5]) + 1 hr_end = int(atoms[6]) print("\t".join(str(x) for x in \ (hr, hr_start, hr_end, 1, 'W', scaf, scaf_start, scaf_end, strand)))
0.001702
def catch(ignore=[], was_doing="something important", helpfull_tips="you should use a debugger", gbc=None): """ Catch, prepare and log error :param exc_cls: error class :param exc: exception :param tb: exception traceback """ exc_cls, exc, tb=sys.exc_info() if exc_cls in ignore: msg='exception in ignorelist' gbc.say('ignoring caught:'+str(exc_cls)) return 'exception in ignorelist' ex_message = traceback.format_exception_only(exc_cls, exc)[-1] ex_message = ex_message.strip() # TODO: print(ex_message) error_frame = tb while error_frame.tb_next is not None: error_frame = error_frame.tb_next file = error_frame.tb_frame.f_code.co_filename line = error_frame.tb_lineno stack = traceback.extract_tb(tb) formated_stack = [] for summary in stack: formated_stack.append({ 'file': summary[0], 'line': summary[1], 'func': summary[2], 'text': summary[3] }) event = { 'was_doing':was_doing, 'message': ex_message, 'errorLocation': { 'file': file, 'line': line, 'full': file + ' -> ' + str(line) }, 'stack': formated_stack #, #'time': time.time() } try: #logging.info('caught:'+pformat(event)) gbc.cry('caught:'+pformat(event)) print('Bubble3: written error to log') print('Bubble3: tips for fixing this:') print(helpfull_tips) except Exception as e: print('Bubble3: cant log error cause of %s' % e)
0.005995
def _get_var_from_string(item): """ Get resource variable. """ modname, varname = _split_mod_var_names(item) if modname: mod = __import__(modname, globals(), locals(), [varname], -1) return getattr(mod, varname) else: return globals()[varname]
0.003534
def isnat(obj): """ Check if a value is np.NaT. """ if obj.dtype.kind not in ('m', 'M'): raise ValueError("%s is not a numpy datetime or timedelta") return obj.view(int64_dtype) == iNaT
0.004695
def compare_values(values0, values1): """Compares all the values of a single registry key.""" values0 = {v[0]: v[1:] for v in values0} values1 = {v[0]: v[1:] for v in values1} created = [(k, v[0], v[1]) for k, v in values1.items() if k not in values0] deleted = [(k, v[0], v[1]) for k, v in values0.items() if k not in values1] modified = [(k, v[0], v[1]) for k, v in values0.items() if v != values1.get(k, None)] return created, deleted, modified
0.002028
def _GetProxies(self): """Gather a list of proxies to use.""" # Detect proxies from the OS environment. result = client_utils.FindProxies() # Also try to connect directly if all proxies fail. result.append("") # Also try all proxies configured in the config system. result.extend(config.CONFIG["Client.proxy_servers"]) return result
0.002725
def list_components(self, dependency_order=True): """ Lists the Components by dependency resolving. Usage:: >>> manager = Manager(("./manager/tests/tests_manager/resources/components/core",)) >>> manager.register_components() True >>> manager.list_components() [u'core.tests_component_a', u'core.tests_component_b'] :param dependency_order: Components are returned by dependency order. :type dependency_order: bool """ if dependency_order: return list(itertools.chain.from_iterable([sorted(list(batch)) for batch in foundations.common.dependency_resolver( dict((key, value.require) for (key, value) in self))])) else: return [key for (key, value) in self]
0.006515
def ncp_hals(X, rank, random_state=None, init='rand', **options): """ Fits nonnegtaive CP Decomposition using the Hierarcial Alternating Least Squares (HALS) Method. Parameters ---------- X : (I_1, ..., I_N) array_like A real array with nonnegative entries and ``X.ndim >= 3``. rank : integer The `rank` sets the number of components to be computed. random_state : integer, RandomState instance or None, optional (default ``None``) If integer, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. init : str, or KTensor, optional (default ``'rand'``). Specifies initial guess for KTensor factor matrices. If ``'randn'``, Gaussian random numbers are used to initialize. If ``'rand'``, uniform random numbers are used to initialize. If KTensor instance, a copy is made to initialize the optimization. options : dict, specifying fitting options. tol : float, optional (default ``tol=1E-5``) Stopping tolerance for reconstruction error. max_iter : integer, optional (default ``max_iter = 500``) Maximum number of iterations to perform before exiting. min_iter : integer, optional (default ``min_iter = 1``) Minimum number of iterations to perform before exiting. max_time : integer, optional (default ``max_time = np.inf``) Maximum computational time before exiting. verbose : bool ``{'True', 'False'}``, optional (default ``verbose=True``) Display progress. Returns ------- result : FitResult instance Object which holds the fitted results. It provides the factor matrices in form of a KTensor, ``result.factors``. Notes ----- This implemenation is using the Hierarcial Alternating Least Squares Method. References ---------- Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. Examples -------- """ # Check inputs. optim_utils._check_cpd_inputs(X, rank) # Initialize problem. U, normX = optim_utils._get_initial_ktensor(init, X, rank, random_state) result = FitResult(U, 'NCP_HALS', **options) # Store problem dimensions. normX = linalg.norm(X) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Iterate the HALS algorithm until convergence or maxiter is reached # i) compute the N gram matrices and multiply # ii) Compute Khatri-Rao product # iii) Update component U_1, U_2, ... U_N # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ while result.still_optimizing: violation = 0.0 for n in range(X.ndim): # Select all components, but U_n components = [U[j] for j in range(X.ndim) if j != n] # i) compute the N-1 gram matrices grams = sci.multiply.reduce([arr.T.dot(arr) for arr in components]) # ii) Compute Khatri-Rao product kr = khatri_rao(components) p = unfold(X, n).dot(kr) # iii) Update component U_n violation += _hals_update(U[n], grams, p) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update the optimization result, checks for convergence. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute objective function # grams *= U[X.ndim - 1].T.dot(U[X.ndim - 1]) # obj = np.sqrt( (sci.sum(grams) - 2 * sci.sum(U[X.ndim - 1] * p) + normX**2)) / normX result.update(linalg.norm(X - U.full()) / normX) # end optimization loop, return result. return result.finalize()
0.00171
def _make_options(x): """Standardize the options tuple format. The returned tuple should be in the format (('label', value), ('label', value), ...). The input can be * an iterable of (label, value) pairs * an iterable of values, and labels will be generated """ # Check if x is a mapping of labels to values if isinstance(x, Mapping): import warnings warnings.warn("Support for mapping types has been deprecated and will be dropped in a future release.", DeprecationWarning) return tuple((unicode_type(k), v) for k, v in x.items()) # only iterate once through the options. xlist = tuple(x) # Check if x is an iterable of (label, value) pairs if all((isinstance(i, (list, tuple)) and len(i) == 2) for i in xlist): return tuple((unicode_type(k), v) for k, v in xlist) # Otherwise, assume x is an iterable of values return tuple((unicode_type(i), i) for i in xlist)
0.003141
def get(self, name, default=None): """ Returns an extension instance with a given name. In case there are few extensions with a given name, the first one will be returned. If no extensions with a given name are exist, the `default` value will be returned. :param name: (str) an extension name :param default: (object) a fallback value :returns: (object) an extension instance """ try: value = self[name] except KeyError: value = default return value
0.003503
def compute_bearing(start_lat, start_lon, end_lat, end_lon): ''' Get the compass bearing from start to end. Formula from http://www.movable-type.co.uk/scripts/latlong.html ''' # make sure everything is in radians start_lat = math.radians(start_lat) start_lon = math.radians(start_lon) end_lat = math.radians(end_lat) end_lon = math.radians(end_lon) dLong = end_lon - start_lon dPhi = math.log(math.tan(end_lat / 2.0 + math.pi / 4.0) / math.tan(start_lat / 2.0 + math.pi / 4.0)) if abs(dLong) > math.pi: if dLong > 0.0: dLong = -(2.0 * math.pi - dLong) else: dLong = (2.0 * math.pi + dLong) y = math.sin(dLong) * math.cos(end_lat) x = math.cos(start_lat) * math.sin(end_lat) - \ math.sin(start_lat) * math.cos(end_lat) * math.cos(dLong) bearing = (math.degrees(math.atan2(y, x)) + 360.0) % 360.0 return bearing
0.001053
def write_elec_file(filename, mesh): """ Read in the electrode positions and return the indices of the electrodes # TODO: Check if you find all electrodes """ elecs = [] # print('Write electrodes') electrodes = np.loadtxt(filename) for i in electrodes: # find for nr, j in enumerate(mesh['nodes']): if np.isclose(j[1], i[0]) and np.isclose(j[2], i[1]): elecs.append(nr + 1) fid = open('elec.dat', 'w') fid.write('{0}\n'.format(len(elecs))) for i in elecs: fid.write('{0}\n'.format(i)) fid.close()
0.001672
def _selectView( self ): """ Matches the view selection to the trees selection. """ scene = self.uiGanttVIEW.scene() scene.blockSignals(True) scene.clearSelection() for item in self.uiGanttTREE.selectedItems(): item.viewItem().setSelected(True) scene.blockSignals(False) curr_item = self.uiGanttTREE.currentItem() vitem = curr_item.viewItem() if vitem: self.uiGanttVIEW.centerOn(vitem)
0.011321
def validateOneElement(self, doc, elem): """Try to validate a single element and it's attributes, basically it does the following checks as described by the XML-1.0 recommendation: - [ VC: Element Valid ] - [ VC: Required Attribute ] Then call xmlValidateOneAttribute() for each attribute present. The ID/IDREF checkings are done separately """ if doc is None: doc__o = None else: doc__o = doc._o if elem is None: elem__o = None else: elem__o = elem._o ret = libxml2mod.xmlValidateOneElement(self._o, doc__o, elem__o) return ret
0.009434
async def on_raw_433(self, message): """ Nickname in use. """ if not self.registered: self._registration_attempts += 1 # Attempt to set new nickname. if self._attempt_nicknames: await self.set_nickname(self._attempt_nicknames.pop(0)) else: await self.set_nickname( self._nicknames[0] + '_' * (self._registration_attempts - len(self._nicknames)))
0.006508
def traverse_many(self, attribute, source_sequence, target_sequence, visitor): """ Traverses the given source and target sequences and makes appropriate calls to :method:`traverse_one`. Algorithm: 1) Build a map target item ID -> target data item from the target sequence; 2) For each source data item in the source sequence check if it has a not-None ID; if yes, remove the corresponding target from the map generated in step 1) and use as target data item for the source data item; if no, use `None` as target data item; 3) For the remaining items in the target map from 1), call :method:`traverse_one` passing `None` as source (REMOVE); 4) For all source/target data item pairs generated in 2, call :method:`traverse_one` (ADD or UPDATE depending on whether target item is `None`). :param source_sequence: iterable of source data proxies :type source_sequence: iterator yielding instances of `DataTraversalProxy` or None :param target_sequence: iterable of target data proxies :type target_sequence: iterator yielding instances of `DataTraversalProxy` or None """ target_map = {} if not target_sequence is None: for target in target_sequence: target_map[target.get_id()] = target src_tgt_pairs = [] if not source_sequence is None: for source in source_sequence: source_id = source.get_id() if not source_id is None: # Check if target exists for UPDATE. target = target_map.pop(source_id, None) else: # Source is new, there is no target, so ADD. target = None src_tgt_pairs.append((source, target)) # All targets that are now still in the map where not present in the # source and therefore need to be REMOVEd. for target in itervalues_(target_map): if not (None, target) in self.__trv_path: self.traverse_one(attribute, None, target, visitor) # for source, target in src_tgt_pairs: if not (source, target) in self.__trv_path: self.traverse_one(attribute, source, target, visitor)
0.002438
def stationary_distribution_from_eigenvector(T, ncv=None): r"""Compute stationary distribution of stochastic matrix T. The stationary distribution is the left eigenvector corresponding to the 1 non-degenerate eigenvalue :math: `\lambda=1`. Input: ------ T : numpy array, shape(d,d) Transition matrix (stochastic matrix). ncv : int (optional) The number of Lanczos vectors generated, `ncv` must be greater than k; it is recommended that ncv > 2*k Returns ------- mu : numpy array, shape(d,) Vector of stationary probabilities. """ vals, vecs = scipy.sparse.linalg.eigs(T.transpose(), k=1, which='LR', ncv=ncv) nu = vecs[:, 0].real mu = nu / np.sum(nu) return mu
0.002646
def from_py_func(cls, func): """ Create a ``CustomJS`` instance from a Python function. The function is translated to JavaScript using PScript. """ from bokeh.util.deprecation import deprecated deprecated("'from_py_func' is deprecated and will be removed in an eventual 2.0 release. " "Use CustomJS directly instead.") if not isinstance(func, FunctionType): raise ValueError('CustomJS.from_py_func needs function object.') pscript = import_required('pscript', 'To use Python functions for CustomJS, you need PScript ' + '("conda install -c conda-forge pscript" or "pip install pscript")') # Collect default values default_values = func.__defaults__ # Python 2.6+ default_names = func.__code__.co_varnames[:len(default_values)] args = dict(zip(default_names, default_values)) args.pop('window', None) # Clear window, so we use the global window object # Get JS code, we could rip out the function def, or just # call the function. We do the latter. code = pscript.py2js(func, 'cb') + 'cb(%s);\n' % ', '.join(default_names) return cls(code=code, args=args)
0.005452
def _check_hetcaller(item): """Ensure upstream SV callers requires to heterogeneity analysis are available. """ svs = _get_as_list(item, "svcaller") hets = _get_as_list(item, "hetcaller") if hets or any([x in svs for x in ["titancna", "purecn"]]): if not any([x in svs for x in ["cnvkit", "gatk-cnv"]]): raise ValueError("Heterogeneity caller used but need CNV calls. Add `gatk4-cnv` " "or `cnvkit` to `svcaller` in sample: %s" % item["description"])
0.007707
def ionic_strength(mis, zis): r'''Calculate the ionic strength of a solution in one of two ways, depending on the inputs only. For Pitzer and Bromley models, `mis` should be molalities of each component. For eNRTL models, `mis` should be mole fractions of each electrolyte in the solution. This will sum to be much less than 1. .. math:: I = \frac{1}{2} \sum M_i z_i^2 I = \frac{1}{2} \sum x_i z_i^2 Parameters ---------- mis : list Molalities of each ion, or mole fractions of each ion [mol/kg or -] zis : list Charges of each ion [-] Returns ------- I : float ionic strength, [?] Examples -------- >>> ionic_strength([0.1393, 0.1393], [1, -1]) 0.1393 References ---------- .. [1] Chen, Chau-Chyun, H. I. Britt, J. F. Boston, and L. B. Evans. "Local Composition Model for Excess Gibbs Energy of Electrolyte Systems. Part I: Single Solvent, Single Completely Dissociated Electrolyte Systems." AIChE Journal 28, no. 4 (July 1, 1982): 588-96. doi:10.1002/aic.690280410 .. [2] Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation. Weinheim, Germany: Wiley-VCH, 2012. ''' return 0.5*sum([mi*zi*zi for mi, zi in zip(mis, zis)])
0.000765
def decode_network_values(ptype, plen, buf): """Decodes a list of DS values in collectd network format """ nvalues = short.unpack_from(buf, header.size)[0] off = header.size + short.size + nvalues valskip = double.size # Check whether our expected packet size is the reported one assert ((valskip + 1) * nvalues + short.size + header.size) == plen assert double.size == number.size result = [] for dstype in [ord(x) for x in buf[header.size + short.size:off]]: if dstype == DS_TYPE_COUNTER: result.append((dstype, number.unpack_from(buf, off)[0])) off += valskip elif dstype == DS_TYPE_GAUGE: result.append((dstype, double.unpack_from(buf, off)[0])) off += valskip elif dstype == DS_TYPE_DERIVE: result.append((dstype, number.unpack_from(buf, off)[0])) off += valskip elif dstype == DS_TYPE_ABSOLUTE: result.append((dstype, number.unpack_from(buf, off)[0])) off += valskip else: raise ValueError("DS type %i unsupported" % dstype) return result
0.000878
def _output_results( self): """ *output results* **Key Arguments:** # - **Return:** - None .. todo:: - @review: when complete, clean _output_results method - @review: when complete add logging """ self.log.info('starting the ``_output_results`` method') content = "" maxNameLen = 0 for r in self.results: if maxNameLen < len(r["ned_name"]): maxNameLen = len(r["ned_name"]) if len(self.results) == 0: content += "No resuls found" else: thisHeader = "| " thisLine = "| " for head in self.headers: if head == "ned_name": s = maxNameLen else: s = self.resultSpacing thisHeader += str(head).ljust(s, ' ') + " | " thisLine += ":".ljust(s, '-') + " | " content += thisHeader content += "\n" + thisLine for r in self.results: thisRow = "| " for head in self.headers: if head == "ned_name": s = maxNameLen else: s = self.resultSpacing thisRow += str(r[head]).ljust(s, ' ') + " | " content += "\n" + thisRow if self.quiet == False: print content if self.outputFilePath: import codecs writeFile = codecs.open( self.outputFilePath, encoding='utf-8', mode='w') writeFile.write(content) writeFile.close() self.log.info('completed the ``_output_results`` method') return None
0.001547
def _cacheAllJobs(self): """ Downloads all jobs in the current job store into self.jobCache. """ logger.debug('Caching all jobs in job store') self._jobCache = {jobGraph.jobStoreID: jobGraph for jobGraph in self._jobStore.jobs()} logger.debug('{} jobs downloaded.'.format(len(self._jobCache)))
0.008798
def correlations(self): """ Calculate the correlation coefficients. """ corr_df = self._sensors_num_df.corr() corr_names = [] corrs = [] for i in range(len(corr_df.index)): for j in range(len(corr_df.index)): c_name = corr_df.index[i] r_name = corr_df.columns[j] corr_names.append("%s-%s" % (c_name, r_name)) corrs.append(corr_df.ix[i, j]) corrs_all = pd.DataFrame(index=corr_names) corrs_all["value"] = corrs corrs_all = corrs_all.dropna().drop( corrs_all[(corrs_all["value"] == float(1))].index ) corrs_all = corrs_all.drop(corrs_all[corrs_all["value"] == float(-1)].index) corrs_all = corrs_all.sort_values("value", ascending=False) corrs_all = corrs_all.drop_duplicates() return corrs_all
0.003322
def update_record(self, domain, record, record_type=None, name=None): """Call to GoDaddy API to update a single DNS record :param name: only required if the record is None (deletion) :param record_type: only required if the record is None (deletion) :param domain: the domain where the DNS belongs to (eg. 'example.com') :param record: dict with record info (ex. {'name': 'dynamic', 'ttl': 3600, 'data': '1.1.1.1', 'type': 'A'}) :return: True if no exceptions occurred """ if record_type is None: record_type = record['type'] if name is None: name = record['name'] url = self.API_TEMPLATE + self.RECORDS_TYPE_NAME.format(domain=domain, type=record_type, name=name) self._put(url, json=[record]) self.logger.info( 'Updated record. Domain {} name {} type {}'.format(domain, str(record['name']), str(record['type']))) # If we didn't get any exceptions, return True to let the user know return True
0.00478
def urinorm(uri): ''' Normalize a URI ''' # TODO: use urllib.parse instead of these complex regular expressions if isinstance(uri, bytes): uri = str(uri, encoding='utf-8') uri = uri.encode('ascii', errors='oid_percent_escape').decode('utf-8') # _escapeme_re.sub(_pct_escape_unicode, uri).encode('ascii').decode() illegal_mo = uri_illegal_char_re.search(uri) if illegal_mo: raise ValueError('Illegal characters in URI: %r at position %s' % (illegal_mo.group(), illegal_mo.start())) uri_mo = uri_re.match(uri) scheme = uri_mo.group(2) if scheme is None: raise ValueError('No scheme specified') scheme = scheme.lower() if scheme not in ('http', 'https'): raise ValueError('Not an absolute HTTP or HTTPS URI: %r' % (uri, )) authority = uri_mo.group(4) if authority is None: raise ValueError('Not an absolute URI: %r' % (uri, )) authority_mo = authority_re.match(authority) if authority_mo is None: raise ValueError('URI does not have a valid authority: %r' % (uri, )) userinfo, host, port = authority_mo.groups() if userinfo is None: userinfo = '' if '%' in host: host = host.lower() host = pct_encoded_re.sub(_pct_encoded_replace, host) host = host.encode('idna').decode() else: host = host.lower() if port: if (port == ':' or (scheme == 'http' and port == ':80') or (scheme == 'https' and port == ':443')): port = '' else: port = '' authority = userinfo + host + port path = uri_mo.group(5) path = pct_encoded_re.sub(_pct_encoded_replace_unreserved, path) path = remove_dot_segments(path) if not path: path = '/' query = uri_mo.group(6) if query is None: query = '' fragment = uri_mo.group(8) if fragment is None: fragment = '' return scheme + '://' + authority + path + query + fragment
0.000993
def get_stats(self, obj, stat_name): """ Send CLI command that returns list of integer counters. :param obj: requested object. :param stat_name: statistics command name. :return: list of counters. :rtype: list(int) """ return [int(v) for v in self.send_command_return(obj, stat_name, '?').split()]
0.008475
def connect_s3_bucket_to_lambda(self, bucket, function_arn, events, prefix=None, suffix=None): # type: (str, str, List[str], OptStr, OptStr) -> None """Configure S3 bucket to invoke a lambda function. The S3 bucket must already have permission to invoke the lambda function before you call this function, otherwise the service will return an error. You can add permissions by using the ``add_permission_for_s3_event`` below. The ``events`` param matches the event strings supported by the service. This method also only supports a single prefix/suffix for now, which is what's offered in the Lambda console. """ s3 = self._client('s3') existing_config = s3.get_bucket_notification_configuration( Bucket=bucket) # Because we're going to PUT this config back to S3, we need # to remove `ResponseMetadata` because that's added in botocore # and isn't a param of the put_bucket_notification_configuration. existing_config.pop('ResponseMetadata', None) existing_lambda_config = existing_config.get( 'LambdaFunctionConfigurations', []) single_config = { 'LambdaFunctionArn': function_arn, 'Events': events } # type: Dict[str, Any] filter_rules = [] if prefix is not None: filter_rules.append({'Name': 'Prefix', 'Value': prefix}) if suffix is not None: filter_rules.append({'Name': 'Suffix', 'Value': suffix}) if filter_rules: single_config['Filter'] = {'Key': {'FilterRules': filter_rules}} new_config = self._merge_s3_notification_config(existing_lambda_config, single_config) existing_config['LambdaFunctionConfigurations'] = new_config s3.put_bucket_notification_configuration( Bucket=bucket, NotificationConfiguration=existing_config, )
0.001949
def process_rule(self,rule,pa,tuple): ''' Process a string that denotes a boolean rule. ''' for i,v in enumerate(tuple): rule = rule.replace(pa[i],str(v)) return eval(rule)
0.032407
def list_upgrades(refresh=True, **kwargs): # pylint: disable=W0613 ''' Lists all packages available for update. When run in global zone, it reports only upgradable packages for the global zone. When run in non-global zone, it can report more upgradable packages than ``pkg update -vn``, because ``pkg update`` hides packages that require newer version of ``pkg://solaris/entire`` (which means that they can be upgraded only from the global zone). If ``pkg://solaris/entire`` is found in the list of upgrades, then the global zone should be updated to get all possible updates. Use ``refresh=True`` to refresh the package database. refresh : True Runs a full package database refresh before listing. Set to ``False`` to disable running the refresh. .. versionchanged:: 2017.7.0 In previous versions of Salt, ``refresh`` defaulted to ``False``. This was changed to default to ``True`` in the 2017.7.0 release to make the behavior more consistent with the other package modules, which all default to ``True``. CLI Example: .. code-block:: bash salt '*' pkg.list_upgrades salt '*' pkg.list_upgrades refresh=False ''' if salt.utils.data.is_true(refresh): refresh_db(full=True) upgrades = {} # awk is in core-os package so we can use it without checking lines = __salt__['cmd.run_stdout']("/bin/pkg list -Huv").splitlines() for line in lines: upgrades[_ips_get_pkgname(line)] = _ips_get_pkgversion(line) return upgrades
0.003161
def keysym_to_keycodes(self, keysym): """Look up all the keycodes that is bound to keysym. A list of tuples (keycode, index) is returned, sorted primarily on the lowest index and secondarily on the lowest keycode.""" try: # Copy the map list, reversing the arguments return map(lambda x: (x[1], x[0]), self._keymap_syms[keysym]) except KeyError: return []
0.00464
def sum_all(iterable, start): """Sum up an iterable starting with a start value. In contrast to :func:`sum`, this also works on other types like :class:`lists <list>` and :class:`sets <set>`. """ if hasattr(start, "__add__"): for value in iterable: start += value else: for value in iterable: start |= value return start
0.002571
def sortedby(item_list, key_list, reverse=False): """ sorts ``item_list`` using key_list Args: list_ (list): list to sort key_list (list): list to sort by reverse (bool): sort order is descending (largest first) if reverse is True else acscending (smallest first) Returns: list : ``list_`` sorted by the values of another ``list``. defaults to ascending order SeeAlso: sortedby2 Examples: >>> # ENABLE_DOCTEST >>> import utool >>> list_ = [1, 2, 3, 4, 5] >>> key_list = [2, 5, 3, 1, 5] >>> result = utool.sortedby(list_, key_list, reverse=True) >>> print(result) [5, 2, 3, 1, 4] """ assert len(item_list) == len(key_list), ( 'Expected same len. Got: %r != %r' % (len(item_list), len(key_list))) sorted_list = [item for (key, item) in sorted(list(zip(key_list, item_list)), reverse=reverse)] return sorted_list
0.000992
def delete_record(cls, record): """Delete a record and it's persistent identifiers.""" record.delete() PersistentIdentifier.query.filter_by( object_type='rec', object_uuid=record.id, ).update({PersistentIdentifier.status: PIDStatus.DELETED}) cls.delete_buckets(record) db.session.commit()
0.005747
def maybe_connect(self, node_id, wakeup=True): """Queues a node for asynchronous connection during the next .poll()""" if self._can_connect(node_id): self._connecting.add(node_id) # Wakeup signal is useful in case another thread is # blocked waiting for incoming network traffic while holding # the client lock in poll(). if wakeup: self.wakeup() return True return False
0.004141
def load_dataset(relative_path): """Imports a data file within the 'h2o_data' folder.""" assert_is_type(relative_path, str) h2o_dir = os.path.split(__file__)[0] for possible_file in [os.path.join(h2o_dir, relative_path), os.path.join(h2o_dir, "h2o_data", relative_path), os.path.join(h2o_dir, "h2o_data", relative_path + ".csv")]: if os.path.exists(possible_file): return upload_file(possible_file) # File not found -- raise an error! raise H2OValueError("Data file %s cannot be found" % relative_path)
0.003344
def regret(self): ''' Calculate expected regret, where expected regret is maximum optimal reward - sum of collected rewards, i.e. expected regret = T*max_k(mean_k) - sum_(t=1-->T) (reward_t) Returns ------- float ''' return (sum(self.pulls)*np.max(np.nan_to_num(self.wins/self.pulls)) - sum(self.wins)) / sum(self.pulls)
0.004866
def generate_parser(): """Returns a parser configured with sub-commands and arguments.""" parser = argparse.ArgumentParser( description=constants.TACL_DESCRIPTION, formatter_class=ParagraphFormatter) subparsers = parser.add_subparsers(title='subcommands') generate_align_subparser(subparsers) generate_catalogue_subparser(subparsers) generate_counts_subparser(subparsers) generate_diff_subparser(subparsers) generate_excise_subparser(subparsers) generate_highlight_subparser(subparsers) generate_intersect_subparser(subparsers) generate_lifetime_subparser(subparsers) generate_ngrams_subparser(subparsers) generate_prepare_subparser(subparsers) generate_results_subparser(subparsers) generate_supplied_diff_subparser(subparsers) generate_search_subparser(subparsers) generate_supplied_intersect_subparser(subparsers) generate_statistics_subparser(subparsers) generate_strip_subparser(subparsers) return parser
0.000995
def encodeThetas(self, theta1, theta2): """Return the SDR for theta1 and theta2""" # print >> sys.stderr, "encoded theta1 value = ", theta1 # print >> sys.stderr, "encoded theta2 value = ", theta2 t1e = self.theta1Encoder.encode(theta1) t2e = self.theta2Encoder.encode(theta2) # print >> sys.stderr, "encoded theta1 = ", t1e.nonzero()[0] # print >> sys.stderr, "encoded theta2 = ", t2e.nonzero()[0] ex = numpy.outer(t2e,t1e) return ex.flatten().nonzero()[0]
0.004057
def get_book_currencies(self) -> List[Commodity]: """ Returns currencies used in the book """ query = ( self.currencies_query .order_by(Commodity.mnemonic) ) return query.all()
0.012712
def mwu(x, y, tail='two-sided'): """Mann-Whitney U Test (= Wilcoxon rank-sum test). It is the non-parametric version of the independent T-test. Parameters ---------- x, y : array_like First and second set of observations. x and y must be independent. tail : string Specify whether to return 'one-sided' or 'two-sided' p-value. Returns ------- stats : pandas DataFrame Test summary :: 'U-val' : U-value 'p-val' : p-value 'RBC' : rank-biserial correlation (effect size) 'CLES' : common language effect size Notes ----- mwu tests the hypothesis that data in x and y are samples from continuous distributions with equal medians. The test assumes that x and y are independent. This test corrects for ties and by default uses a continuity correction (see :py:func:`scipy.stats.mannwhitneyu` for details). The rank biserial correlation is the difference between the proportion of favorable evidence minus the proportion of unfavorable evidence (see Kerby 2014). The common language effect size is the probability (from 0 to 1) that a randomly selected observation from the first sample will be greater than a randomly selected observation from the second sample. References ---------- .. [1] Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The annals of mathematical statistics, 50-60. .. [2] Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. Comprehensive Psychology, 3, 11-IT. .. [3] McGraw, K. O., & Wong, S. P. (1992). A common language effect size statistic. Psychological bulletin, 111(2), 361. Examples -------- >>> import numpy as np >>> from pingouin import mwu >>> np.random.seed(123) >>> x = np.random.uniform(low=0, high=1, size=20) >>> y = np.random.uniform(low=0.2, high=1.2, size=20) >>> mwu(x, y, tail='two-sided') U-val p-val RBC CLES MWU 97.0 0.00556 0.515 0.758 """ from scipy.stats import mannwhitneyu x = np.asarray(x) y = np.asarray(y) # Remove NA x, y = remove_na(x, y, paired=False) # Compute test if tail == 'one-sided': tail = 'less' if np.median(x) < np.median(y) else 'greater' uval, pval = mannwhitneyu(x, y, use_continuity=True, alternative=tail) # Effect size 1: common language effect size (McGraw and Wong 1992) diff = x[:, None] - y cles = max((diff < 0).sum(), (diff > 0).sum()) / diff.size # Effect size 2: rank biserial correlation (Wendt 1972) rbc = 1 - (2 * uval) / diff.size # diff.size = x.size * y.size # Fill output DataFrame stats = pd.DataFrame({}, index=['MWU']) stats['U-val'] = round(uval, 3) stats['p-val'] = pval stats['RBC'] = round(rbc, 3) stats['CLES'] = round(cles, 3) col_order = ['U-val', 'p-val', 'RBC', 'CLES'] stats = stats.reindex(columns=col_order) return stats
0.000318
def _format_info(format_int, format_flag=_snd.SFC_GET_FORMAT_INFO): """Return the ID and short description of a given format.""" format_info = _ffi.new("SF_FORMAT_INFO*") format_info.format = format_int _snd.sf_command(_ffi.NULL, format_flag, format_info, _ffi.sizeof("SF_FORMAT_INFO")) name = format_info.name return (_format_str(format_info.format), _ffi.string(name).decode('utf-8', 'replace') if name else "")
0.002132
def post_comment_ajax(request, using=None): """ Post a comment, via an Ajax call. """ if not request.is_ajax(): return HttpResponseBadRequest("Expecting Ajax call") # This is copied from django_comments. # Basically that view does too much, and doesn't offer a hook to change the rendering. # The request object is not passed to next_redirect for example. # # This is a separate view to integrate both features. Previously this used django-ajaxcomments # which is unfortunately not thread-safe (it it changes the comment view per request). # Fill out some initial data fields from an authenticated user, if present data = request.POST.copy() if request.user.is_authenticated: if not data.get('name', ''): data["name"] = request.user.get_full_name() or request.user.username if not data.get('email', ''): data["email"] = request.user.email # Look up the object we're trying to comment about ctype = data.get("content_type") object_pk = data.get("object_pk") if ctype is None or object_pk is None: return CommentPostBadRequest("Missing content_type or object_pk field.") try: model = apps.get_model(*ctype.split(".", 1)) target = model._default_manager.using(using).get(pk=object_pk) except ValueError: return CommentPostBadRequest("Invalid object_pk value: {0}".format(escape(object_pk))) except (TypeError, LookupError): return CommentPostBadRequest("Invalid content_type value: {0}".format(escape(ctype))) except AttributeError: return CommentPostBadRequest("The given content-type {0} does not resolve to a valid model.".format(escape(ctype))) except ObjectDoesNotExist: return CommentPostBadRequest("No object matching content-type {0} and object PK {1} exists.".format(escape(ctype), escape(object_pk))) except (ValueError, ValidationError) as e: return CommentPostBadRequest("Attempting go get content-type {0!r} and object PK {1!r} exists raised {2}".format(escape(ctype), escape(object_pk), e.__class__.__name__)) # Do we want to preview the comment? is_preview = "preview" in data # Construct the comment form form = django_comments.get_form()(target, data=data, is_preview=is_preview) # Check security information if form.security_errors(): return CommentPostBadRequest("The comment form failed security verification: {0}".format(form.security_errors())) # If there are errors or if we requested a preview show the comment if is_preview: comment = form.get_comment_object() if not form.errors else None return _ajax_result(request, form, "preview", comment, object_id=object_pk) if form.errors: return _ajax_result(request, form, "post", object_id=object_pk) # Otherwise create the comment comment = form.get_comment_object() comment.ip_address = request.META.get("REMOTE_ADDR", None) if request.user.is_authenticated: comment.user = request.user # Signal that the comment is about to be saved responses = signals.comment_will_be_posted.send( sender=comment.__class__, comment=comment, request=request ) for (receiver, response) in responses: if response is False: return CommentPostBadRequest("comment_will_be_posted receiver {0} killed the comment".format(receiver.__name__)) # Save the comment and signal that it was saved comment.save() signals.comment_was_posted.send( sender = comment.__class__, comment = comment, request = request ) return _ajax_result(request, form, "post", comment, object_id=object_pk)
0.005622
def create_from_filedict(self, filedict): """ Creates h5 file from dictionary containing the file structure. Filedict is a regular dictinary whose keys are hdf5 paths and whose values are dictinaries containing the metadata and datasets. Metadata is given as normal key-value -pairs and dataset arrays are given using 'DATASET' key. Datasets must be numpy arrays. Method can also be used to append existing hdf5 file. If the file is opened in read only mode, method does nothing. Examples -------- Create newfile.h5 and fill it with data and metadata >>> h5f = HiisiHDF('newfile.h5', 'w') >>> filedict = {'/':{'attr1':'A'}, '/dataset1/data1/data':{'DATASET':np.zeros(100), 'quantity':'emptyarray'}, 'B':'b'} >>> h5f.create_from_filedict(filedict) """ if self.mode in ['r+','w', 'w-', 'x', 'a']: for h5path, path_content in filedict.iteritems(): if path_content.has_key('DATASET'): # If path exist, write only metadata if h5path in self: for key, value in path_content.iteritems(): if key != 'DATASET': self[h5path].attrs[key] = value else: try: group = self.create_group(os.path.dirname(h5path)) except ValueError: group = self[os.path.dirname(h5path)] pass # This pass has no effect? new_dataset = group.create_dataset(os.path.basename(h5path), data=path_content['DATASET']) for key, value in path_content.iteritems(): if key != 'DATASET': new_dataset.attrs[key] = value else: try: group = self.create_group(h5path) except ValueError: group = self[h5path] for key, value in path_content.iteritems(): group.attrs[key] = value
0.004409
def handle_profile_form(form): """Handle profile update form.""" form.process(formdata=request.form) if form.validate_on_submit(): email_changed = False with db.session.begin_nested(): # Update profile. current_userprofile.username = form.username.data current_userprofile.full_name = form.full_name.data db.session.add(current_userprofile) # Update email if current_app.config['USERPROFILES_EMAIL_ENABLED'] and \ form.email.data != current_user.email: current_user.email = form.email.data current_user.confirmed_at = None db.session.add(current_user) email_changed = True db.session.commit() if email_changed: send_confirmation_instructions(current_user) # NOTE: Flash message after successful update of profile. flash(_('Profile was updated. We have sent a verification ' 'email to %(email)s. Please check it.', email=current_user.email), category='success') else: # NOTE: Flash message after successful update of profile. flash(_('Profile was updated.'), category='success')
0.000769
def _get_category_from_pars_var(template_var, context): ''' get category from template variable or from tree_path ''' cat = template_var.resolve(context) if isinstance(cat, basestring): cat = Category.objects.get_by_tree_path(cat) return cat
0.003663
def detach(self, dwProcessId, bIgnoreExceptions = False): """ Detaches from a process currently being debugged. @note: On Windows 2000 and below the process is killed. @see: L{attach}, L{detach_from_all} @type dwProcessId: int @param dwProcessId: Global ID of a process to detach from. @type bIgnoreExceptions: bool @param bIgnoreExceptions: C{True} to ignore any exceptions that may be raised when detaching. C{False} to stop and raise an exception when encountering an error. @raise WindowsError: Raises an exception on error, unless C{bIgnoreExceptions} is C{True}. """ # Keep a reference to the process. We'll need it later. try: aProcess = self.system.get_process(dwProcessId) except KeyError: aProcess = Process(dwProcessId) # Determine if there is support for detaching. # This check should only fail on Windows 2000 and older. try: win32.DebugActiveProcessStop can_detach = True except AttributeError: can_detach = False # Continue the last event before detaching. # XXX not sure about this... try: if can_detach and self.lastEvent and \ self.lastEvent.get_pid() == dwProcessId: self.cont(self.lastEvent) except Exception: if not bIgnoreExceptions: raise e = sys.exc_info()[1] warnings.warn(str(e), RuntimeWarning) # Cleanup all data referring to the process. self.__cleanup_process(dwProcessId, bIgnoreExceptions = bIgnoreExceptions) try: # Detach from the process. # On Windows 2000 and before, kill the process. if can_detach: try: win32.DebugActiveProcessStop(dwProcessId) except Exception: if not bIgnoreExceptions: raise e = sys.exc_info()[1] warnings.warn(str(e), RuntimeWarning) else: try: aProcess.kill() except Exception: if not bIgnoreExceptions: raise e = sys.exc_info()[1] warnings.warn(str(e), RuntimeWarning) finally: # Cleanup what remains of the process data. aProcess.clear()
0.002306
def from_file(cls, fn, *args, **kwargs): """Constructor to build an AmiraHeader object from a file :param str fn: Amira file :return ah: object of class ``AmiraHeader`` containing header metadata :rtype: ah: :py:class:`ahds.header.AmiraHeader` """ return AmiraHeader(get_parsed_data(fn, *args, **kwargs))
0.00831
def attach(self, events): """ Attach this screen to a events that processes commands and dispatches events. Sets up the appropriate event handlers so that the screen will update itself automatically as the events processes data. """ if events is not None: events.add_event_listener("print", self._print) events.add_event_listener("backspace", self._backspace) events.add_event_listener("tab", self._tab) events.add_event_listener("linefeed", self._linefeed) events.add_event_listener("reverse-linefeed", self._reverse_linefeed) events.add_event_listener("carriage-return", self._carriage_return) events.add_event_listener("index", self._index) events.add_event_listener("reverse-index", self._reverse_index) events.add_event_listener("store-cursor", self._save_cursor) events.add_event_listener("restore-cursor", self._restore_cursor) events.add_event_listener("cursor-up", self._cursor_up) events.add_event_listener("cursor-down", self._cursor_down) events.add_event_listener("cursor-right", self._cursor_forward) events.add_event_listener("cursor-left", self._cursor_back) events.add_event_listener("cursor-move", self._cursor_position) events.add_event_listener("erase-in-line", self._erase_in_line) events.add_event_listener("erase-in-display", self._erase_in_display) events.add_event_listener("delete-characters", self._delete_character) events.add_event_listener("insert-lines", self._insert_line) events.add_event_listener("delete-lines", self._delete_line) events.add_event_listener("select-graphic-rendition", self._select_graphic_rendition) events.add_event_listener("charset-g0", self._charset_g0) events.add_event_listener("charset-g1", self._charset_g1) events.add_event_listener("shift-in", self._shift_in) events.add_event_listener("shift-out", self._shift_out) events.add_event_listener("bell", self._bell)
0.002564
def _read_eps_ctr(tomodir): """Parse a CRTomo eps.ctr file. TODO: change parameters to only provide eps.ctr file Parameters ---------- tomodir: string Path to directory path Returns ------- """ epsctr_file = tomodir + os.sep + 'inv' + os.sep + 'eps.ctr' if not os.path.isfile(epsctr_file): print('eps.ctr not found: {0}'.format(epsctr_file)) print(os.getcwd()) return 1 with open(epsctr_file, 'r') as fid: lines = fid.readlines() group = itertools.groupby(lines, lambda x: x == '\n') dfs = [] # group for x in group: # print(x) if not x[0]: data = [y for y in x[1]] if data[0].startswith('IT') or data[0].startswith('PIT'): del(data[0]) data[0] = data[0].replace('-Phase (rad)', '-Phase(rad)') tfile = StringIO(''.join(data)) df = pd.read_csv( tfile, delim_whitespace=True, na_values=['Infinity'], ) dfs.append(df) return dfs
0.001619
def tx_serialization_order(provider: Provider, blockhash: str, txid: str) -> int: '''find index of this tx in the blockid''' return provider.getblock(blockhash)["tx"].index(txid)
0.010695
def permissions(self): """Dynamically generate dictionary of privacy options """ # TODO: optimize this, it's kind of a bad solution for listing a mostly # static set of files. # We could either add a permissions dict as an attribute or cache this # in some way. Creating a dict would be another place we have to define # the permission, so I'm not a huge fan, but it would definitely be the # easier option. permissions_dict = {"self": {}, "parent": {}} for field in self.properties._meta.get_fields(): split_field = field.name.split('_', 1) if len(split_field) <= 0 or split_field[0] not in ['self', 'parent']: continue permissions_dict[split_field[0]][split_field[1]] = getattr(self.properties, field.name) return permissions_dict
0.004577
def _from_docstring_rst(doc): """ format from docstring to ReStructured Text """ def format_fn(line, status): """ format function """ if re_from_data.match(line): line = re_from_data.sub(r"**\1** ", line) status["add_line"] = True line = re_from_defaults.sub(r"*\1*", line) if status["listing"]: # parameters if re_from_param.match(line): m = re_from_param.match(line) line = " - ``{}`` {}".format(m.group(1), m.group(3)) # status items elif re_from_status.match(line): m = re_from_status.match(line) line = " - ``{}`` {}".format(m.group(1), m.group(3)) # bullets elif re_from_item.match(line): line = re_from_item.sub(r" -", line) # is continuation line else: line = " " * 4 + line.lstrip() # in .rst format code samples use double backticks vs single ones for # .md This converts them. line = re_lone_backtick.sub("``", line) return line return _reformat_docstring(doc, format_fn, code_newline="\n")
0.000829
def has_protocol(self, name): """Tells if a certain protocol is available""" return self.query(Protocol).filter(Protocol.name==name).count() != 0
0.012987
def _AtNonLeaf(self, attr_value, path): """Makes dictionaries expandable when dealing with plists.""" if isinstance(attr_value, dict): for value in self.Expand(attr_value, path[1:]): yield value else: for v in objectfilter.ValueExpander._AtNonLeaf(self, attr_value, path): yield v
0.009375
def scheduled_time(self): """Time this band was scheduled to be recorded.""" timeline = "{:04d}".format(self.basic_info['observation_timeline'][0]) return self.start_time.replace(hour=int(timeline[:2]), minute=int(timeline[2:4]), second=0, microsecond=0)
0.010791
def fromimportupdate(cls, bundle, import_reg): # type: (Bundle, ImportRegistration) -> RemoteServiceAdminEvent """ Creates a RemoteServiceAdminEvent object from the update of an ImportRegistration """ exc = import_reg.get_exception() if exc: return RemoteServiceAdminEvent( RemoteServiceAdminEvent.IMPORT_ERROR, bundle, import_reg.get_import_container_id(), import_reg.get_remoteservice_id(), None, None, exc, import_reg.get_description(), ) return RemoteServiceAdminEvent( RemoteServiceAdminEvent.IMPORT_UPDATE, bundle, import_reg.get_import_container_id(), import_reg.get_remoteservice_id(), import_reg.get_import_reference(), None, None, import_reg.get_description(), )
0.003021
def to_native(self, obj, name, value): # pylint:disable=unused-argument """Transform the MongoDB value into a Marrow Mongo value.""" if self.mapping: for original, new in self.mapping.items(): value = value.replace(original, new) return load(value, self.namespace)
0.038732
def listfolderpath(p): """ generator of list folder in the path. folders only """ for entry in scandir.scandir(p): if entry.is_dir(): yield entry.path
0.005263
def open(self): """Open Connection. :raises AMQPConnectionError: Raises if the connection encountered an error. """ LOGGER.debug('Connection Opening') self.set_state(self.OPENING) self._exceptions = [] self._channels = {} self._last_channel_id = None self._io.open() self._send_handshake() self._wait_for_connection_state(state=Stateful.OPEN) self.heartbeat.start(self._exceptions) LOGGER.debug('Connection Opened')
0.003591
def request_access_token(self, code, redirect_uri=None): ''' Return access token as a JsonDict: {"access_token":"your-access-token","expires":12345678,"uid":1234}, expires is represented using standard unix-epoch-time ''' redirect = redirect_uri or self._redirect_uri resp_text = _http('POST', 'https://api.weibo.com/oauth2/access_token', client_id=self._client_id, client_secret=self._client_secret, redirect_uri=redirect, code=code, grant_type='authorization_code') r = _parse_json(resp_text) current = int(time.time()) expires = r.expires_in + current remind_in = r.get('remind_in', None) if remind_in: rtime = int(remind_in) + current if rtime < expires: expires = rtime return JsonDict(access_token=r.access_token, expires=expires, uid=r.get('uid', None))
0.006383
def to_string(self): """ Return the current NDEF as a string (always 64 bytes). """ data = self.ndef_str if self.ndef_type == _NDEF_URI_TYPE: data = self._encode_ndef_uri_type(data) elif self.ndef_type == _NDEF_TEXT_TYPE: data = self._encode_ndef_text_params(data) if len(data) > _NDEF_DATA_SIZE: raise YubiKeyNEO_USBHIDError("NDEF payload too long") # typedef struct { # unsigned char len; // Payload length # unsigned char type; // NDEF type specifier # unsigned char data[NDEF_DATA_SIZE]; // Payload size # unsigned char curAccCode[ACC_CODE_SIZE]; // Access code # } YKNDEF; # fmt = '< B B %ss %ss' % (_NDEF_DATA_SIZE, _ACC_CODE_SIZE) first = struct.pack(fmt, len(data), self.ndef_type, data.ljust(_NDEF_DATA_SIZE, b'\0'), self.access_code, ) #crc = 0xffff - yubico_util.crc16(first) #second = first + struct.pack('<H', crc) + self.unlock_code return first
0.003257
def setquit(): """Define new built-ins 'quit' and 'exit'. These are simply strings that display a hint on how to exit. """ if os.sep == ':': eof = 'Cmd-Q' elif os.sep == '\\': eof = 'Ctrl-Z plus Return' else: eof = 'Ctrl-D (i.e. EOF)' class Quitter(object): def __init__(self, name): self.name = name def __repr__(self): return 'Use %s() or %s to exit' % (self.name, eof) def __call__(self, code=None): # Shells like IDLE catch the SystemExit, but listen when their # stdin wrapper is closed. try: sys.stdin.close() except: pass raise SystemExit(code) builtins.quit = Quitter('quit') builtins.exit = Quitter('exit')
0.004896
def check_has_version(self, api): '''An API class must have a `version` attribute.''' if not hasattr(api, 'version'): msg = 'The Api class "{}" lacks a `version` attribute.' return [msg.format(api.__name__)]
0.008097
def lookup(self, vtype, vname, target_id=None): """Return value of vname from the variable store vtype. Valid vtypes are `strings` 'counters', and `pending`. If the value is not found in the current steps store, earlier steps will be checked. If not found, '', 0, or (None, None) is returned. """ nullvals = {'strings': '', 'counters': 0, 'pending': (None, None)} nullval = nullvals[vtype] vstyle = None if vtype == 'counters': if len(vname) > 1: vname, vstyle = vname else: vname = vname[0] if target_id is not None: try: state = self.state[vtype][target_id] steps = self.state[vtype][target_id].keys() except KeyError: log(WARN, u'Bad ID target lookup {}'.format( target_id).encode('utf-8')) return nullval else: state = self.state steps = self.state['scope'] for step in steps: if vname in state[step][vtype]: if vtype == 'pending': return(state[step][vtype][vname], step) else: val = state[step][vtype][vname] if vstyle is not None: return self.counter_style(val, vstyle) return val else: return nullval
0.001366
def create_from_yamlfile(cls, yamlfile): """Create a Castro data object from a yaml file contains the likelihood data.""" data = load_yaml(yamlfile) nebins = len(data) emin = np.array([data[i]['emin'] for i in range(nebins)]) emax = np.array([data[i]['emax'] for i in range(nebins)]) ref_flux = np.array([data[i]['flux'][1] for i in range(nebins)]) ref_eflux = np.array([data[i]['eflux'][1] for i in range(nebins)]) conv = np.array([data[i]['eflux2npred'] for i in range(nebins)]) ref_npred = conv*ref_eflux ones = np.ones(ref_flux.shape) ref_spec = ReferenceSpec(emin, emax, ones, ref_flux, ref_eflux, ref_npred) norm_data = np.array([data[i]['eflux'] for i in range(nebins)]) ll_data = np.array([data[i]['logLike'] for i in range(nebins)]) max_ll = ll_data.max(1) nll_data = (max_ll - ll_data.T).T return cls(norm_data, nll_data, ref_spec, 'eflux')
0.004053
def set_measurements(test): """Test phase that sets a measurement.""" test.measurements.level_none = 0 time.sleep(1) test.measurements.level_some = 8 time.sleep(1) test.measurements.level_all = 9 time.sleep(1) level_all = test.get_measurement('level_all') assert level_all.value == 9
0.033223
def interpolate_delta_t(delta_t_table, tt): """Return interpolated Delta T values for the times in `tt`. The 2xN table should provide TT values as element 0 and corresponding Delta T values for element 1. For times outside the range of the table, a long-term formula is used instead. """ tt_array, delta_t_array = delta_t_table delta_t = _to_array(interp(tt, tt_array, delta_t_array, nan, nan)) missing = isnan(delta_t) if missing.any(): # Test if we are dealing with an array and proceed appropriately if missing.shape: tt = tt[missing] delta_t[missing] = delta_t_formula_morrison_and_stephenson_2004(tt) else: delta_t = delta_t_formula_morrison_and_stephenson_2004(tt) return delta_t
0.001267
def debug(self, *debugReqs): """send a debug command to control the game state's setup""" return self._client.send(debug=sc2api_pb2.RequestDebug(debug=debugReqs))
0.016854
def checkgrad(f, fprime, x, *args,**kw_args): """ Analytical gradient calculation using a 3-point method """ LG.debug("Checking gradient ...") import numpy as np # using machine precision to choose h eps = np.finfo(float).eps step = np.sqrt(eps)*(x.min()) # shake things up a bit by taking random steps for each x dimension h = step*np.sign(np.random.uniform(-1, 1, x.size)) f_ph = f(x+h, *args, **kw_args) f_mh = f(x-h, *args, **kw_args) numerical_gradient = (f_ph - f_mh)/(2*h) analytical_gradient = fprime(x, *args, **kw_args) ratio = (f_ph - f_mh)/(2*np.dot(h, analytical_gradient)) h = np.zeros_like(x) for i in range(len(x)): pdb.set_trace() h[i] = step f_ph = f(x+h, *args, **kw_args) f_mh = f(x-h, *args, **kw_args) numerical_gradient = (f_ph - f_mh)/(2*step) analytical_gradient = fprime(x, *args, **kw_args)[i] ratio = (f_ph - f_mh)/(2*step*analytical_gradient) h[i] = 0 LG.debug("[%d] numerical: %f, analytical: %f, ratio: %f" % (i, numerical_gradient,analytical_gradient,ratio))
0.004533
def stft(func=None, **kwparams): """ Short Time Fourier Transform block processor / phase vocoder wrapper. This function can be used in many ways: * Directly as a signal processor builder, wrapping a spectrum block/grain processor function; * Directly as a decorator to a block processor; * Called without the ``func`` parameter for a partial evalution style changing the defaults. See the examples below for more information about these use cases. The resulting function performs a full block-by-block analysis/synthesis phase vocoder keeping this sequence of actions: 1. Blockenize the signal with the given ``size`` and ``hop``; 2. Lazily apply the given ``wnd`` window to each block; 3. Perform the 5 actions calling their functions in order: a. ``before``: Pre-processing; b. ``transform``: A transform like the FFT; c. ``func``: the positional parameter with the single block processor; d. ``inverse_transform``: inverse FFT; e. ``after``: Post-processing. 4. Overlap-add with the ``ola`` overlap-add strategy. The given ``ola`` would deal with its own window application and normalization. Any parameter from steps 3 and 4 can be set to ``None`` to skip it from the full process, without changing the other [sub]steps. The parameters defaults are based on the Numpy FFT subpackage. Parameters ---------- func : The block/grain processor function that receives a transformed block in the frequency domain (the ``transform`` output) and should return the processed data (it will be the first ``inverse_transform`` input). This parameter shouldn't appear when this function is used as a decorator. size : Block size for the STFT process, in samples. hop : Duration in samples between two blocks. Defaults to the ``size`` value. transform : Function that receives the windowed block (in time domain) and the ``size`` as two positional inputs and should return the block (in frequency domain). Defaults to ``numpy.fft.rfft``, which outputs a Numpy 1D array with length equals to ``size // 2 + 1``. inverse_transform : Function that receives the processed block (in frequency domain) and the ``size`` as two positional inputs and should return the block (in time domain). Defaults to ``numpy.fft.irfft``. wnd : Window function to be called as ``wnd(size)`` or window iterable with length equals to ``size``. The windowing/apodization values are used before taking the FFT of each block. Defaults to None, which means no window should be applied (same behavior of a rectangular window). before : Function to be applied just before taking the transform, after the windowing. Defaults to the ``numpy.fft.ifftshift``, which, together with the ``after`` default, puts the time reference at the ``size // 2`` index of the block, centralizing it for the FFT (e.g. blocks ``[0, 1, 0]`` and ``[0, 0, 1, 0]`` would have zero phase). To disable this realignment, just change both ``before=None`` and ``after=None`` keywords. after : Function to be applied just after the inverse transform, before calling the overlap-add (as well as before its windowing, if any). Defaults to the ``numpy.fft.fftshift`` function, which undo the changes done by the default ``before`` pre-processing for block phase alignment. To avoid the default time-domain realignment, set both ``before=None`` and ``after=None`` keywords. ola : Overlap-add strategy. Uses the ``overlap_add`` default strategy when not given. The strategy should allow at least size and hop keyword arguments, besides a first positional argument for the iterable with blocks. If ``ola=None``, the result from using the STFT processor will be the ``Stream`` of blocks that would be the overlap-add input. ola_* : Extra keyword parameters for the overlap-add strategy, if any. The extra ``ola_`` prefix is removed when calling it. See the overlap-add strategy docs for more information about the valid parameters. Returns ------- A function with the same parameters above, besides ``func``, which is replaced by the signal input (if func was given). The parameters used when building the function should be seen as defaults that can be changed when calling the resulting function with the respective keyword arguments. Examples -------- Let's process something: >>> my_signal = Stream(.1, .3, -.1, -.3, .5, .4, .3) Wrapping directly the processor function: >>> processor_w = stft(abs, size=64) >>> sig = my_signal.copy() # Any iterable >>> processor_w(sig) <audiolazy.lazy_stream.Stream object at 0x...> >>> peek200_w = _.peek(200) # Needs Numpy >>> type(peek200_w[0]).__name__ # Result is a signal (numpy.float64 data) 'float64' Keyword parameters in a partial evaluation style (can be reassigned): >>> stft64 = stft(size=64) # Same to ``stft`` but with other defaults >>> processor_p = stft64(abs) >>> sig = my_signal.copy() # Any iterable >>> processor_p(sig) <audiolazy.lazy_stream.Stream object at 0x...> >>> _.peek(200) == peek200_w # This should do the same thing True As a decorator, this time with other windowing configuration: >>> stft64hann = stft64(wnd=window.hann, ola_wnd=window.hann) >>> @stft64hann # stft(...) can also be used as an anonymous decorator ... def processor_d(blk): ... return abs(blk) >>> processor_d(sig) # This leads to a different result <audiolazy.lazy_stream.Stream object at 0x...> >>> _.peek(200) == peek200_w False You can also use other iterables as input, and keep the parameters to be passed afterwards, as well as change transform calculation: >>> stft_no_zero_phase = stft(before=None, after=None) >>> stft_no_wnd = stft_no_zero_phase(ola=overlap_add.list, ola_wnd=None, ... ola_normalize=False) >>> on_blocks = stft_no_wnd(transform=None, inverse_transform=None) >>> processor_a = on_blocks(reversed, hop=4) # Reverse >>> processor_a([1, 2, 3, 4, 5], size=4, hop=2) <audiolazy.lazy_stream.Stream object at 0x...> >>> list(_) # From blocks [1, 2, 3, 4] and [3, 4, 5, 0.0] [4.0, 3.0, 2.0, 6, 4, 3] >>> processor_a([1, 2, 3, 4, 5], size=4) # Default hop instead <audiolazy.lazy_stream.Stream object at 0x...> >>> list(_) # No overlap, blocks [1, 2, 3, 4] and [5, 0.0, 0.0, 0.0] [4, 3, 2, 1, 0.0, 0.0, 0.0, 5] >>> processor_a([1, 2, 3, 4, 5]) # Size was never given Traceback (most recent call last): ... TypeError: Missing 'size' argument For analysis only, one can set ``ola=None``: >>> from numpy.fft import ifftshift # [1, 2, 3, 4, 5] -> [3, 4, 5, 1, 2] >>> analyzer = stft(ifftshift, ola=None, size=8, hop=2) >>> sig = Stream(1, 0, -1, 0) # A pi/2 rad/sample cosine signal >>> result = analyzer(sig) >>> result <audiolazy.lazy_stream.Stream object at 0x...> Let's see the result contents. That processing "rotates" the frequencies, converting the original ``[0, 0, 4, 0, 0]`` real FFT block to a ``[4, 0, 0, 0, 0]`` block, which means the block cosine was moved to a DC-only signal keeping original energy/integral: >>> result.take() array([ 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]) >>> result.take() # From [0, 0, -4, 0, 0] to [-4, 0, 0, 0, 0] array([-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5]) Note ---- Parameters should be passed as keyword arguments. The only exception is ``func`` for this function and ``sig`` for the returned function, which are always the first positional argument, ald also the one that shouldn't appear when using this function as a decorator. Hint ---- 1. When using Numpy FFT, one can keep data in place and return the changed input block to save time; 2. Actually, there's nothing in this function that imposes FFT or Numpy besides the default values. One can still use this even for other transforms that have nothing to do with the Fourier Transform. See Also -------- overlap_add : Overlap-add algorithm for an iterable (e.g. a Stream instance) of blocks (sequences such as lists or Numpy arrays). It's also a StrategyDict. window : Window/apodization/tapering functions for a given size as a StrategyDict. """ # Using as a decorator or to "replicate" this function with other defaults if func is None: cfi = chain.from_iterable mix_dict = lambda *dicts: dict(cfi(iteritems(d) for d in dicts)) result = lambda f=None, **new_kws: stft(f, **mix_dict(kwparams, new_kws)) return result # Using directly @tostream @wraps(func) def wrapper(sig, **kwargs): kws = kwparams.copy() kws.update(kwargs) if "size" not in kws: raise TypeError("Missing 'size' argument") if "hop" in kws and kws["hop"] > kws["size"]: raise ValueError("Hop value can't be higher than size") blk_params = {"size": kws.pop("size")} blk_params["hop"] = kws.pop("hop", None) ola_params = blk_params.copy() # Size and hop blk_params["wnd"] = kws.pop("wnd", None) ola = kws.pop("ola", overlap_add) class NotSpecified(object): pass for name in ["transform", "inverse_transform", "before", "after"]: blk_params[name] = kws.pop(name, NotSpecified) for k, v in kws.items(): if k.startswith("ola_"): if ola is not None: ola_params[k[len("ola_"):]] = v else: raise TypeError("Extra '{}' argument with no overlap-add " "strategy".format(k)) else: raise TypeError("Unknown '{}' extra argument".format(k)) def blk_gen(size, hop, wnd, transform, inverse_transform, before, after): if transform is NotSpecified: from numpy.fft import rfft as transform if inverse_transform is NotSpecified: from numpy.fft import irfft as inverse_transform if before is NotSpecified: from numpy.fft import ifftshift as before if after is NotSpecified: from numpy.fft import fftshift as after # Find the right windowing function to be applied if callable(wnd) and not isinstance(wnd, Stream): wnd = wnd(size) if isinstance(wnd, Iterable): wnd = list(wnd) if len(wnd) != size: raise ValueError("Incompatible window size") elif wnd is not None: raise TypeError("Window should be an iterable or a callable") # Pad size lambdas trans = transform and (lambda blk: transform(blk, size)) itrans = inverse_transform and (lambda blk: inverse_transform(blk, size)) # Continuation style calling funcs = [f for f in [before, trans, func, itrans, after] if f is not None] process = lambda blk: reduce(lambda data, f: f(data), funcs, blk) if wnd is None: for blk in Stream(sig).blocks(size=size, hop=hop): yield process(blk) else: blk_with_wnd = wnd[:] mul = operator.mul for blk in Stream(sig).blocks(size=size, hop=hop): blk_with_wnd[:] = xmap(mul, blk, wnd) yield process(blk_with_wnd) if ola is None: return blk_gen(**blk_params) else: return ola(blk_gen(**blk_params), **ola_params) return wrapper
0.00396
def source_properties(data, segment_img, error=None, mask=None, background=None, filter_kernel=None, wcs=None, labels=None): """ Calculate photometry and morphological properties of sources defined by a labeled segmentation image. Parameters ---------- data : array_like or `~astropy.units.Quantity` The 2D array from which to calculate the source photometry and properties. ``data`` should be background-subtracted. Non-finite ``data`` values (e.g. NaN or inf) are automatically masked. segment_img : `SegmentationImage` or array_like (int) A 2D segmentation image, either as a `SegmentationImage` object or an `~numpy.ndarray`, with the same shape as ``data`` where sources are labeled by different positive integer values. A value of zero is reserved for the background. error : array_like or `~astropy.units.Quantity`, optional The total error array corresponding to the input ``data`` array. ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources (see `~photutils.utils.calc_total_error`) . ``error`` must have the same shape as the input ``data``. Non-finite ``error`` values (e.g. NaN or inf) are not automatically masked, unless they are at the same position of non-finite values in the input ``data`` array. Such pixels can be masked using the ``mask`` keyword. See the Notes section below for details on the error propagation. mask : array_like (bool), optional A boolean mask with the same shape as ``data`` where a `True` value indicates the corresponding element of ``data`` is masked. Masked data are excluded from all calculations. Non-finite values (e.g. NaN or inf) in the input ``data`` are automatically masked. background : float, array_like, or `~astropy.units.Quantity`, optional The background level that was *previously* present in the input ``data``. ``background`` may either be a scalar value or a 2D image with the same shape as the input ``data``. Inputting the ``background`` merely allows for its properties to be measured within each source segment. The input ``background`` does *not* get subtracted from the input ``data``, which should already be background-subtracted. Non-finite ``background`` values (e.g. NaN or inf) are not automatically masked, unless they are at the same position of non-finite values in the input ``data`` array. Such pixels can be masked using the ``mask`` keyword. filter_kernel : array-like (2D) or `~astropy.convolution.Kernel2D`, optional The 2D array of the kernel used to filter the data prior to calculating the source centroid and morphological parameters. The kernel should be the same one used in defining the source segments, i.e. the detection image (e.g., see :func:`~photutils.detect_sources`). If `None`, then the unfiltered ``data`` will be used instead. wcs : `~astropy.wcs.WCS` The WCS transformation to use. If `None`, then any sky-based properties will be set to `None`. labels : int, array-like (1D, int) The segmentation labels for which to calculate source properties. If `None` (default), then the properties will be calculated for all labeled sources. Returns ------- output : `SourceCatalog` instance A `SourceCatalog` instance containing the properties of each source. Notes ----- `SExtractor`_'s centroid and morphological parameters are always calculated from a filtered "detection" image, i.e. the image used to define the segmentation image. The usual downside of the filtering is the sources will be made more circular than they actually are. If you wish to reproduce `SExtractor`_ centroid and morphology results, then input a filtered and background-subtracted "detection" image into the ``filtered_data`` keyword. If ``filtered_data`` is `None`, then the unfiltered ``data`` will be used for the source centroid and morphological parameters. Negative data values (``filtered_data`` or ``data``) within the source segment are set to zero when calculating morphological properties based on image moments. Negative values could occur, for example, if the segmentation image was defined from a different image (e.g., different bandpass) or if the background was oversubtracted. Note that `~photutils.SourceProperties.source_sum` always includes the contribution of negative ``data`` values. The input ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources. `~photutils.SourceProperties.source_sum_err` is simply the quadrature sum of the pixel-wise total errors over the non-masked pixels within the source segment: .. math:: \\Delta F = \\sqrt{\\sum_{i \\in S} \\sigma_{\\mathrm{tot}, i}^2} where :math:`\\Delta F` is `~photutils.SourceProperties.source_sum_err`, :math:`S` are the non-masked pixels in the source segment, and :math:`\\sigma_{\\mathrm{tot}, i}` is the input ``error`` array. .. _SExtractor: http://www.astromatic.net/software/sextractor See Also -------- SegmentationImage, SourceProperties, detect_sources Examples -------- >>> import numpy as np >>> from photutils import SegmentationImage, source_properties >>> image = np.arange(16.).reshape(4, 4) >>> print(image) # doctest: +SKIP [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.] [12. 13. 14. 15.]] >>> segm = SegmentationImage([[1, 1, 0, 0], ... [1, 0, 0, 2], ... [0, 0, 2, 2], ... [0, 2, 2, 0]]) >>> props = source_properties(image, segm) Print some properties of the first object (labeled with ``1`` in the segmentation image): >>> props[0].id # id corresponds to segment label number 1 >>> props[0].centroid # doctest: +FLOAT_CMP <Quantity [0.8, 0.2] pix> >>> props[0].source_sum # doctest: +FLOAT_CMP 5.0 >>> props[0].area # doctest: +FLOAT_CMP <Quantity 3. pix2> >>> props[0].max_value # doctest: +FLOAT_CMP 4.0 Print some properties of the second object (labeled with ``2`` in the segmentation image): >>> props[1].id # id corresponds to segment label number 2 >>> props[1].centroid # doctest: +FLOAT_CMP <Quantity [2.36363636, 2.09090909] pix> >>> props[1].perimeter # doctest: +FLOAT_CMP <Quantity 5.41421356 pix> >>> props[1].orientation # doctest: +FLOAT_CMP <Quantity -0.74175931 rad> """ if not isinstance(segment_img, SegmentationImage): segment_img = SegmentationImage(segment_img) if segment_img.shape != data.shape: raise ValueError('segment_img and data must have the same shape.') # filter the data once, instead of repeating for each source if filter_kernel is not None: filtered_data = filter_data(data, filter_kernel, mode='constant', fill_value=0.0, check_normalization=True) else: filtered_data = None if labels is None: labels = segment_img.labels labels = np.atleast_1d(labels) sources_props = [] for label in labels: if label not in segment_img.labels: warnings.warn('label {} is not in the segmentation image.' .format(label), AstropyUserWarning) continue # skip invalid labels sources_props.append(SourceProperties( data, segment_img, label, filtered_data=filtered_data, error=error, mask=mask, background=background, wcs=wcs)) if len(sources_props) == 0: raise ValueError('No sources are defined.') return SourceCatalog(sources_props, wcs=wcs)
0.000245
def get_page_content(id): """Return XHTML content of a page. Parameters: - id: id of a Confluence page. """ data = _json.loads(_api.rest("/" + str(id) + "?expand=body.storage")) return data["body"]["storage"]["value"]
0.004149
def Deserialize(self, reader): """ Deserialize full object. Args: reader (neocore.IO.BinaryReader): """ super(StorageItem, self).Deserialize(reader) self.Value = reader.ReadVarBytes()
0.008197
def current_model(self, controller_name=None, model_only=False): '''Return the current model, qualified by its controller name. If controller_name is specified, the current model for that controller will be returned. If model_only is true, only the model name, not qualified by its controller name, will be returned. ''' # TODO respect JUJU_MODEL environment variable. if not controller_name: controller_name = self.current_controller() if not controller_name: raise JujuError('No current controller') models = self.models()[controller_name] if 'current-model' not in models: return None if model_only: return models['current-model'] return controller_name + ':' + models['current-model']
0.002378
def set_pickle_converters(encode, decode): """ Modify the default Pickle conversion functions. This affects all :class:`~couchbase.bucket.Bucket` instances. These functions will be called instead of the default ones (``pickle.dumps`` and ``pickle.loads``) to encode and decode values to and from the Pickle format (when :const:`FMT_PICKLE` is used). :param callable encode: Callable to invoke when encoding an object to Pickle. This should have the same prototype as ``pickle.dumps`` with the exception that it is only ever called with a single argument :param callable decode: Callable to invoke when decoding a Pickle encoded object to a Python object. Should have the same prototype as ``pickle.loads`` with the exception that it is only ever passed a single argument :return: A tuple of ``(old encoder, old decoder)`` No exceptions are raised and it is the responsibility of the caller to ensure that the provided functions operate correctly. """ ret = _LCB._modify_helpers(pickle_encode=encode, pickle_decode=decode) return (ret['pickle_encode'], ret['pickle_decode'])
0.000852
def rollback_one_iter(self): """Rollback one iteration. Returns ------- self : Booster Booster with rolled back one iteration. """ _safe_call(_LIB.LGBM_BoosterRollbackOneIter( self.handle)) self.__is_predicted_cur_iter = [False for _ in range_(self.__num_dataset)] return self
0.008219
def _packb3(obj, **options): """ Serialize a Python object into MessagePack bytes. Args: obj: a Python object Kwargs: ext_handlers (dict): dictionary of Ext handlers, mapping a custom type to a callable that packs an instance of the type into an Ext object force_float_precision (str): "single" to force packing floats as IEEE-754 single-precision floats, "double" to force packing floats as IEEE-754 double-precision floats. Returns: A 'bytes' containing serialized MessagePack bytes. Raises: UnsupportedType(PackException): Object type not supported for packing. Example: >>> umsgpack.packb({u"compact": True, u"schema": 0}) b'\x82\xa7compact\xc3\xa6schema\x00' >>> """ fp = io.BytesIO() _pack3(obj, fp, **options) return fp.getvalue()
0.000981
def get_multiplicon_leaves(self, redundant=False): """ Return a generator of the IDs of multiplicons found at leaves of the tree (i.e. from which no further multiplicons were derived). Arguments: o redundant - if true, report redundant multiplicons """ for node in self._multiplicon_graph.nodes(): if not len(self._multiplicon_graph.out_edges(node)): if not self.is_redundant_multiplicon(node): yield node elif redundant: yield node else: continue else: continue
0.002976
def sample_wr(population, k): "Chooses k random elements (with replacement) from a population" n = len(population) _random, _int = random.random, int # speed hack result = [None] * k for i in xrange(k): j = _int(_random() * n) result[i] = population[j] return result
0.006329
def check_key(request): """ Check to see if we already have an access_key stored, if we do then we have already gone through OAuth. If not then we haven't and we probably need to. """ try: access_key = request.session.get('oauth_token', None) if not access_key: return False except KeyError: return False return True
0.002604
def install_ui_colorscheme(self, name, style_dict): """ Install a new UI color scheme. """ assert isinstance(name, six.text_type) assert isinstance(style_dict, dict) self.ui_styles[name] = style_dict
0.008065
def get_options_for_model(self, model): """ Thin wrapper around ``_get_options_for_model`` to preserve the semantic of throwing exception for models not directly registered. """ opts = self._get_options_for_model(model) if not opts.registered and not opts.related: raise NotRegistered('The model "%s" is not registered for ' 'translation' % model.__name__) return opts
0.004274
def _add_colorbar(self, m, CS, ax, name): ''' Add colorbar to the map instance ''' cb = m.colorbar(CS, "right", size="5%", pad="2%") cb.set_label(name, size=34) cb.ax.tick_params(labelsize=18)
0.008889
def enter(self, container_alias): ''' a method to open up a terminal inside a running container :param container_alias: string with name or id of container :return: None ''' title = '%s.enter' % self.__class__.__name__ # validate inputs input_fields = { 'container_alias': container_alias } for key, value in input_fields.items(): object_title = '%s(%s=%s)' % (title, key, str(value)) self.fields.validate(value, '.%s' % key, object_title) # compose system command from os import system sys_cmd = 'docker exec -it %s sh' % container_alias if self.localhost.os.sysname in ('Windows'): sys_cmd = 'winpty %s' % sys_cmd # open up terminal system(sys_cmd)
0.005794
def getTextTitle(self): """Return a title for texts and listings """ request_id = self.getRequestID() if not request_id: return "" analysis = self.getAnalysis() if not analysis: return request_id return "%s - %s" % (request_id, analysis.Title())
0.006116
def transform_title(self, content_metadata_item): """ Return the title of the content item. """ title_with_locales = [] for locale in self.enterprise_configuration.get_locales(): title_with_locales.append({ 'locale': locale, 'value': content_metadata_item.get('title', '') }) return title_with_locales
0.004914
def next_datetime(min_year = None, max_year = None): """ Generates a random Date and time in the range ['minYear', 'maxYear']. This method generate dates without time (or time set to 00:00:00) :param min_year: (optional) minimum range value :param max_year: max range value :return: a random Date and time value. """ date = RandomDateTime.next_date(min_year, max_year).date() time = RandomDateTime.next_time() return datetime.datetime.combine(date, time)
0.011173
def sort_card_indices(cards, indices, ranks=None): """ Sorts the given Deck indices by the given ranks. Must also supply the ``Stack``, ``Deck``, or ``list`` that the indices are from. :arg cards: The cards the indices are from. Can be a ``Stack``, ``Deck``, or ``list`` :arg list indices: The indices to sort. :arg dict ranks: The rank dict to reference for sorting. If ``None``, it will default to ``DEFAULT_RANKS``. :returns: The sorted indices. """ ranks = ranks or DEFAULT_RANKS if ranks.get("suits"): indices = sorted( indices, key=lambda x: ranks["suits"][cards[x].suit] if cards[x].suit != None else 0 ) if ranks.get("values"): indices = sorted( indices, key=lambda x: ranks["values"][cards[x].value] ) return indices
0.003254
def _case_stmt(self, stmt: Statement, sctx: SchemaContext) -> None: """Handle case statement.""" self._handle_child(CaseNode(), stmt, sctx)
0.012903
def labels(ctx): """Crate or update labels in github """ config = ctx.obj['agile'] repos = config.get('repositories') labels = config.get('labels') if not isinstance(repos, list): raise CommandError( 'You need to specify the "repos" list in the config' ) if not isinstance(labels, dict): raise CommandError( 'You need to specify the "labels" dictionary in the config' ) git = GithubApi() for repo in repos: repo = git.repo(repo) for label, color in labels.items(): if repo.label(label, color): click.echo('Created label "%s" @ %s' % (label, repo)) else: click.echo('Updated label "%s" @ %s' % (label, repo))
0.001297
def _set_collector_vrf(self, v, load=False): """ Setter method for collector_vrf, mapped from YANG variable /sflow/collector_vrf (common-def:vrf-name) If this variable is read-only (config: false) in the source YANG file, then _set_collector_vrf is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_collector_vrf() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((([a-zA-Z0-9_]([a-zA-Z0-9\\-_]){0,61})?[a-zA-Z0-9]\\.)*([a-zA-Z0-9_]([a-zA-Z0-9\\-_]){0,61})?[a-zA-Z0-9]\\.?)|\\.', 'length': [u'1..32']}), is_leaf=True, yang_name="collector-vrf", rest_name="collector-vrf", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Sflow Collector VRF Configuration', u'hidden': u'full'}}, namespace='urn:brocade.com:mgmt:brocade-sflow', defining_module='brocade-sflow', yang_type='common-def:vrf-name', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """collector_vrf must be of a type compatible with common-def:vrf-name""", 'defined-type': "common-def:vrf-name", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'((([a-zA-Z0-9_]([a-zA-Z0-9\\-_]){0,61})?[a-zA-Z0-9]\\.)*([a-zA-Z0-9_]([a-zA-Z0-9\\-_]){0,61})?[a-zA-Z0-9]\\.?)|\\.', 'length': [u'1..32']}), is_leaf=True, yang_name="collector-vrf", rest_name="collector-vrf", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Sflow Collector VRF Configuration', u'hidden': u'full'}}, namespace='urn:brocade.com:mgmt:brocade-sflow', defining_module='brocade-sflow', yang_type='common-def:vrf-name', is_config=True)""", }) self.__collector_vrf = t if hasattr(self, '_set'): self._set()
0.00484
def _catch_errors(a_func, to_catch): """Updates a_func to wrap exceptions with GaxError Args: a_func (callable): A callable. to_catch (list[Exception]): Configures the exceptions to wrap. Returns: Callable: A function that will wrap certain exceptions with GaxError """ def inner(*args, **kwargs): """Wraps specified exceptions""" try: return a_func(*args, **kwargs) # pylint: disable=catching-non-exception except tuple(to_catch) as exception: utils.raise_with_traceback( gax.errors.create_error('RPC failed', cause=exception)) return inner
0.001506
async def raw(self, command, *args, _conn=None, **kwargs): """ Send the raw command to the underlying client. Note that by using this CMD you will lose compatibility with other backends. Due to limitations with aiomcache client, args have to be provided as bytes. For rest of backends, str. :param command: str with the command. :param timeout: int or float in seconds specifying maximum timeout for the operations to last :returns: whatever the underlying client returns :raises: :class:`asyncio.TimeoutError` if it lasts more than self.timeout """ start = time.monotonic() ret = await self._raw( command, *args, encoding=self.serializer.encoding, _conn=_conn, **kwargs ) logger.debug("%s (%.4f)s", command, time.monotonic() - start) return ret
0.006734
def as_tensor_dict(self, padding_lengths: Dict[str, Dict[str, int]] = None, verbose: bool = False) -> Dict[str, Union[torch.Tensor, Dict[str, torch.Tensor]]]: # This complex return type is actually predefined elsewhere as a DataArray, # but we can't use it because mypy doesn't like it. """ This method converts this ``Batch`` into a set of pytorch Tensors that can be passed through a model. In order for the tensors to be valid tensors, all ``Instances`` in this batch need to be padded to the same lengths wherever padding is necessary, so we do that first, then we combine all of the tensors for each field in each instance into a set of batched tensors for each field. Parameters ---------- padding_lengths : ``Dict[str, Dict[str, int]]`` If a key is present in this dictionary with a non-``None`` value, we will pad to that length instead of the length calculated from the data. This lets you, e.g., set a maximum value for sentence length if you want to throw out long sequences. Entries in this dictionary are keyed first by field name (e.g., "question"), then by padding key (e.g., "num_tokens"). verbose : ``bool``, optional (default=``False``) Should we output logging information when we're doing this padding? If the batch is large, this is nice to have, because padding a large batch could take a long time. But if you're doing this inside of a data generator, having all of this output per batch is a bit obnoxious (and really slow). Returns ------- tensors : ``Dict[str, DataArray]`` A dictionary of tensors, keyed by field name, suitable for passing as input to a model. This is a `batch` of instances, so, e.g., if the instances have a "question" field and an "answer" field, the "question" fields for all of the instances will be grouped together into a single tensor, and the "answer" fields for all instances will be similarly grouped in a parallel set of tensors, for batched computation. Additionally, for complex ``Fields``, the value of the dictionary key is not necessarily a single tensor. For example, with the ``TextField``, the output is a dictionary mapping ``TokenIndexer`` keys to tensors. The number of elements in this sub-dictionary therefore corresponds to the number of ``TokenIndexers`` used to index the ``TextField``. Each ``Field`` class is responsible for batching its own output. """ if padding_lengths is None: padding_lengths = defaultdict(dict) # First we need to decide _how much_ to pad. To do that, we find the max length for all # relevant padding decisions from the instances themselves. Then we check whether we were # given a max length for a particular field and padding key. If we were, we use that # instead of the instance-based one. if verbose: logger.info("Padding batch of size %d to lengths %s", len(self.instances), str(padding_lengths)) logger.info("Getting max lengths from instances") instance_padding_lengths = self.get_padding_lengths() if verbose: logger.info("Instance max lengths: %s", str(instance_padding_lengths)) lengths_to_use: Dict[str, Dict[str, int]] = defaultdict(dict) for field_name, instance_field_lengths in instance_padding_lengths.items(): for padding_key in instance_field_lengths.keys(): if padding_lengths[field_name].get(padding_key) is not None: lengths_to_use[field_name][padding_key] = padding_lengths[field_name][padding_key] else: lengths_to_use[field_name][padding_key] = instance_field_lengths[padding_key] # Now we actually pad the instances to tensors. field_tensors: Dict[str, list] = defaultdict(list) if verbose: logger.info("Now actually padding instances to length: %s", str(lengths_to_use)) for instance in self.instances: for field, tensors in instance.as_tensor_dict(lengths_to_use).items(): field_tensors[field].append(tensors) # Finally, we combine the tensors that we got for each instance into one big tensor (or set # of tensors) per field. The `Field` classes themselves have the logic for batching the # tensors together, so we grab a dictionary of field_name -> field class from the first # instance in the batch. field_classes = self.instances[0].fields final_fields = {} for field_name, field_tensor_list in field_tensors.items(): final_fields[field_name] = field_classes[field_name].batch_tensors(field_tensor_list) return final_fields
0.00855
def p_pause(p): """ statement : PAUSE expr """ p[0] = make_sentence('PAUSE', make_typecast(TYPE.uinteger, p[2], p.lineno(1)))
0.006173
def json_processor(entity): ''' Unserialize raw POST data in JSON format to a Python data structure. :param entity: raw POST data ''' if six.PY2: body = entity.fp.read() else: # https://github.com/cherrypy/cherrypy/pull/1572 contents = BytesIO() body = entity.fp.read(fp_out=contents) contents.seek(0) body = salt.utils.stringutils.to_unicode(contents.read()) del contents try: cherrypy.serving.request.unserialized_data = salt.utils.json.loads(body) except ValueError: raise cherrypy.HTTPError(400, 'Invalid JSON document') cherrypy.serving.request.raw_body = body
0.002963
def OAuthClient( domain, consumer_key, consumer_secret, token, token_secret, user_agent=None, request_encoder=default_request_encoder, response_decoder=default_response_decoder ): """Creates a Freshbooks client for a freshbooks domain, using OAuth. Token management is assumed to have been handled out of band. The optional request_encoder and response_decoder parameters can be passed the logging_request_encoder and logging_response_decoder objects from this module, or custom encoders, to aid debugging or change the behaviour of refreshbooks' request-to-XML-to-response mapping. The optional user_agent keyword parameter can be used to specify the user agent string passed to FreshBooks. If unset, a default user agent string is used. """ return _create_oauth_client( AuthorizingClient, domain, consumer_key, consumer_secret, token, token_secret, user_agent=user_agent, request_encoder=request_encoder, response_decoder=response_decoder )
0.002717
def fit_from_cfg(cls, choosers, chosen_fname, alternatives, cfgname, outcfgname=None): """ Parameters ---------- choosers : DataFrame A dataframe in which rows represent choosers. chosen_fname : string A string indicating the column in the choosers dataframe which gives which alternatives the choosers have chosen. alternatives : DataFrame A table of alternatives. It should include the choices from the choosers table as well as other alternatives from which to sample. Values in choosers[chosen_fname] should index into the alternatives dataframe. cfgname : string The name of the yaml config file from which to read the discrete choice model. outcfgname : string, optional (default cfgname) The name of the output yaml config file where estimation results are written into. Returns ------- lcm : MNLDiscreteChoiceModel which was used to fit """ logger.debug('start: fit from configuration {}'.format(cfgname)) lcm = cls.from_yaml(str_or_buffer=cfgname) lcm.fit(choosers, alternatives, choosers[chosen_fname]) lcm.report_fit() outcfgname = outcfgname or cfgname lcm.to_yaml(str_or_buffer=outcfgname) logger.debug('finish: fit into configuration {}'.format(outcfgname)) return lcm
0.002732
def standardized_compound(self): """Return the :class:`~pubchempy.Compound` that was produced when this Substance was standardized. Requires an extra request. Result is cached. """ for c in self.record['compound']: if c['id']['type'] == CompoundIdType.STANDARDIZED: return Compound.from_cid(c['id']['id']['cid'])
0.008043