text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def category_label(arg, labels, nulls=None):
"""
Format a known number of categories as strings
Parameters
----------
labels : list of string
nulls : string, optional
How to label any null values among the categories
Returns
-------
string_categories : string value expression
"""
op = CategoryLabel(arg, labels, nulls)
return op.to_expr() | 0.002532 |
def math_dataset_init(alphabet_size=26, digits=None, functions=None):
"""Initializes required objects to generate symbolic math datasets.
Produces token set, ExprOp instances, solve_op dictionary, encoders, and
decoders needed to generate the algebra inverse dataset.
Args:
alphabet_size: How many possible variables there are. Max 52.
digits: How many numerical digits to encode as tokens, "0" through
str(digits-1), or None to encode no digits.
functions: Defines special functions. A dict mapping human readable string
names, like "log", "exp", "sin", "cos", etc., to single chars. Each
function gets a unique token, like "L" for "log".
WARNING, Make sure these tokens do not conflict with the list of
possible variable names.
Returns:
AlgebraConfig instance holding all the objects listed above.
Raises:
ValueError: If `alphabet_size` is not in range [2, 52].
"""
ops_list = ["+", "-", "*", "/"]
ops = {
"+": ExprOp("+", 0, True),
"-": ExprOp("-", 0, False),
"*": ExprOp("*", 1, True),
"/": ExprOp("/", 1, False)
}
solve_ops = {
"+l": lambda l, r, to: (l, ExprNode(to, r, ops["-"])),
"+r": lambda l, r, to: (r, ExprNode(to, l, ops["-"])),
"-l": lambda l, r, to: (l, ExprNode(to, r, ops["+"])),
"-r": lambda l, r, to: (r, ExprNode(l, to, ops["-"])),
"*l": lambda l, r, to: (l, ExprNode(to, r, ops["/"])),
"*r": lambda l, r, to: (r, ExprNode(to, l, ops["/"])),
"/l": lambda l, r, to: (l, ExprNode(to, r, ops["*"])),
"/r": lambda l, r, to: (r, ExprNode(l, to, ops["/"])),
}
alphabet = (
[six.int2byte(ord("a") + c).decode("utf-8") for c in range(26)] +
[six.int2byte(ord("A") + c).decode("utf-8") for c in range(26)])
if alphabet_size > 52:
raise ValueError(
"alphabet_size cannot be greater than 52. Got %s." % alphabet_size)
if alphabet_size < 2:
raise ValueError(
"alphabet_size cannot be less than 2. Got %s." % alphabet_size)
if digits is not None and not 1 <= digits <= 10:
raise ValueError("digits cannot must be between 1 and 10. Got %s." % digits)
vlist = alphabet[:alphabet_size]
if digits is not None:
dlist = [str(d) for d in range(digits)]
else:
dlist = []
if functions is None:
functions = {}
flist = sorted(functions.values())
pad = "_"
tokens = [pad] + [":", "(", ")", "="] + ops_list + vlist + dlist + flist
if len(tokens) != len(set(tokens)):
raise ValueError("Duplicate token. Tokens: %s" % tokens)
token_map = dict([(t, i) for i, t in enumerate(tokens)])
def int_encoder(sequence):
return [token_map[s] for s in sequence]
def int_decoder(tensor_1d):
return "".join([tokens[i] for i in tensor_1d])
return AlgebraConfig(
vlist=vlist,
dlist=dlist,
flist=flist,
functions=functions,
ops=ops,
solve_ops=solve_ops,
int_encoder=int_encoder,
int_decoder=int_decoder) | 0.007368 |
def unlock(name,
zk_hosts=None, # in case you need to unlock without having run lock (failed execution for example)
identifier=None,
max_concurrency=1,
ephemeral_lease=False,
profile=None,
scheme=None,
username=None,
password=None,
default_acl=None):
'''
Remove lease from semaphore.
'''
ret = {'name': name,
'changes': {},
'result': False,
'comment': ''}
conn_kwargs = {'profile': profile, 'scheme': scheme,
'username': username, 'password': password, 'default_acl': default_acl}
if __opts__['test']:
ret['result'] = None
ret['comment'] = 'Released lock if it is here'
return ret
if identifier is None:
identifier = __grains__['id']
unlocked = __salt__['zk_concurrency.unlock'](name,
zk_hosts=zk_hosts,
identifier=identifier,
max_concurrency=max_concurrency,
ephemeral_lease=ephemeral_lease,
**conn_kwargs)
if unlocked:
ret['result'] = True
else:
ret['comment'] = 'Unable to find lease for path {0}'.format(name)
return ret | 0.003526 |
def _handle_start_relation(self, attrs):
"""
Handle opening relation element
:param attrs: Attributes of the element
:type attrs: Dict
"""
self._curr = {
'attributes': dict(attrs),
'members': [],
'rel_id': None,
'tags': {}
}
if attrs.get('id', None) is not None:
self._curr['rel_id'] = int(attrs['id'])
del self._curr['attributes']['id'] | 0.004219 |
def train_on_audio(self, fn: str):
"""Run through a single audio file"""
save_test = random() > 0.8
audio = load_audio(fn)
num_chunks = len(audio) // self.args.chunk_size
self.listener.clear()
for i, chunk in enumerate(chunk_audio(audio, self.args.chunk_size)):
print('\r' + str(i * 100. / num_chunks) + '%', end='', flush=True)
self.audio_buffer = np.concatenate((self.audio_buffer[len(chunk):], chunk))
conf = self.listener.update(chunk)
if conf > self.args.threshold:
self.samples_since_train += 1
name = splitext(basename(fn))[0] + '-' + str(i) + '.wav'
name = join(self.args.folder, 'test' if save_test else '', 'not-wake-word',
'generated', name)
save_audio(name, self.audio_buffer)
print()
print('Saved to:', name)
if not save_test and self.samples_since_train >= self.args.delay_samples and \
self.args.epochs > 0:
self.samples_since_train = 0
self.retrain() | 0.004337 |
def total_surface_energy(self):
"""
Total surface energy of the Wulff shape.
Returns:
(float) sum(surface_energy_hkl * area_hkl)
"""
tot_surface_energy = 0
for hkl in self.miller_energy_dict.keys():
tot_surface_energy += self.miller_energy_dict[hkl] * \
self.miller_area_dict[hkl]
return tot_surface_energy | 0.004751 |
def get_logfile_path(working_dir):
"""
Get the logfile path for our service endpoint.
"""
logfile_filename = virtualchain_hooks.get_virtual_chain_name() + ".log"
return os.path.join( working_dir, logfile_filename ) | 0.026201 |
def add_event(self, key, event):
"""Add an event and its corresponding key to the store."""
assert isinstance(key, str)
assert isinstance(event, bytes)
if all([char.isalnum() or char == '-' for char in key]):
safe_key = key
else:
raise ValueError("Key must be alphanumeric or a dash (-):"
" {0}".format(key))
safe_event = base64.encodestring(event).decode().strip()
data = "{0}\t{1}\n".format(safe_key, safe_event)
# Important to make a single atomic write here
self._hasher.update(data.encode())
self.f.write(data) | 0.003082 |
def token_generator(self, texts, **kwargs):
"""Yields tokens from texts as `(text_idx, character)`
"""
for text_idx, text in enumerate(texts):
if self.lower:
text = text.lower()
for char in text:
yield text_idx, char | 0.006757 |
def datetime_entry(self, prompt, message=None, formats=['%x %X'], show_example=False,
rofi_args=None, **kwargs):
"""Prompt the user to enter a date and time.
Parameters
----------
prompt: string
Prompt to display to the user.
message: string, optional
Message to display under the entry line.
formats: list of strings, optional
The formats that the user can enter the date and time in. These
should be format strings as accepted by the
datetime.datetime.strptime() function from the standard library.
They are tried in order, and the first that returns a datetime
object without error is selected. Note that the '%x %X' in the
default list is the current locale's date and time representation.
show_example: Boolean
If True, the current date and time in the first format given is appended to
the message.
Returns
-------
datetime.datetime, or None if the dialog is cancelled.
"""
def datetime_validator(text):
# Try them in order.
for format in formats:
try:
dt = datetime.strptime(text, format)
except ValueError:
continue
else:
# This one worked; good enough for us.
return (dt, None)
# None of the formats worked.
return (None, 'Please enter a valid date and time.')
# Add an example to the message?
if show_example:
message = message or ""
message += "Current date and time in the correct format: " + datetime.now().strftime(formats[0])
return self.generic_entry(prompt, datetime_validator, message, rofi_args, **kwargs) | 0.003717 |
def logfile_generator(self):
"""Yield each line of the file, or the next line if several files."""
if not self.args['exclude']:
# ask all filters for a start_limit and fast-forward to the maximum
start_limits = [f.start_limit for f in self.filters
if hasattr(f, 'start_limit')]
if start_limits:
for logfile in self.args['logfile']:
logfile.fast_forward(max(start_limits))
if len(self.args['logfile']) > 1:
# merge log files by time
for logevent in self._merge_logfiles():
yield logevent
else:
# only one file
for logevent in self.args['logfile'][0]:
if self.args['timezone'][0] != 0 and logevent.datetime:
logevent._datetime = (logevent.datetime +
timedelta(hours=self
.args['timezone'][0]))
yield logevent | 0.001905 |
def profil_hebdo(df, func='mean'):
"""
Calcul du profil journalier
Paramètres:
df: DataFrame de données dont l'index est une série temporelle
(cf module xair par exemple)
func: function permettant le calcul. Soit un nom de fonction numpy ('mean', 'max', ...)
soit la fonction elle-même (np.mean, np.max, ...)
Retourne:
Un DataFrame de moyennes par journée sur la semaine
"""
func = _get_funky(func)
res = df.groupby(lambda x: x.weekday).aggregate(func)
# On met des noms de jour à la place des numéros dans l'index
res.index = [cal.day_name[i] for i in range(0,7)]
return res | 0.004651 |
def tsp(points, start=0):
"""
Find an ordering of points where each is visited and
the next point is the closest in euclidean distance,
and if there are multiple points with equal distance
go to an arbitrary one.
Assumes every point is visitable from every other point,
i.e. the travelling salesman problem on a fully connected
graph. It is not a MINIMUM traversal; rather it is a
"not totally goofy traversal, quickly." On random points
this traversal is often ~20x shorter than random ordering.
Parameters
---------------
points : (n, dimension) float
ND points in space
start : int
The index of points we should start at
Returns
---------------
traversal : (n,) int
Ordered traversal visiting every point
distances : (n - 1,) float
The euclidean distance between points in traversal
"""
# points should be float
points = np.asanyarray(points, dtype=np.float64)
if len(points.shape) != 2:
raise ValueError('points must be (n, dimension)!')
# start should be an index
start = int(start)
# a mask of unvisited points by index
unvisited = np.ones(len(points), dtype=np.bool)
unvisited[start] = False
# traversal of points by index
traversal = np.zeros(len(points), dtype=np.int64) - 1
traversal[0] = start
# list of distances
distances = np.zeros(len(points) - 1, dtype=np.float64)
# a mask of indexes in order
index_mask = np.arange(len(points), dtype=np.int64)
# in the loop we want to call distances.sum(axis=1)
# a lot and it's actually kind of slow for "reasons"
# dot products with ones is equivalent and ~2x faster
sum_ones = np.ones(points.shape[1])
# loop through all points
for i in range(len(points) - 1):
# which point are we currently on
current = points[traversal[i]]
# do NlogN distance query
# use dot instead of .sum(axis=1) or np.linalg.norm
# as it is faster, also don't square root here
dist = np.dot((points[unvisited] - current) ** 2,
sum_ones)
# minimum distance index
min_index = dist.argmin()
# successor is closest unvisited point
successor = index_mask[unvisited][min_index]
# update the mask
unvisited[successor] = False
# store the index to the traversal
traversal[i + 1] = successor
# store the distance
distances[i] = dist[min_index]
# we were comparing distance^2 so take square root
distances **= 0.5
return traversal, distances | 0.000381 |
def _parse_networks(networks):
'''
Common logic for parsing the networks
'''
networks = salt.utils.args.split_input(networks or [])
if not networks:
networks = {}
else:
# We don't want to recurse the repack, as the values of the kwargs
# being passed when connecting to the network will not be dictlists.
networks = salt.utils.data.repack_dictlist(networks)
if not networks:
raise CommandExecutionError(
'Invalid network configuration (see documentation)'
)
for net_name, net_conf in six.iteritems(networks):
if net_conf is None:
networks[net_name] = {}
else:
networks[net_name] = salt.utils.data.repack_dictlist(net_conf)
if not networks[net_name]:
raise CommandExecutionError(
'Invalid configuration for network \'{0}\' '
'(see documentation)'.format(net_name)
)
for key in ('links', 'aliases'):
try:
networks[net_name][key] = salt.utils.args.split_input(
networks[net_name][key]
)
except KeyError:
continue
# Iterate over the networks again now, looking for
# incorrectly-formatted arguments
errors = []
for net_name, net_conf in six.iteritems(networks):
if net_conf is not None:
for key, val in six.iteritems(net_conf):
if val is None:
errors.append(
'Config option \'{0}\' for network \'{1}\' is '
'missing a value'.format(key, net_name)
)
if errors:
raise CommandExecutionError(
'Invalid network configuration', info=errors)
if networks:
try:
all_networks = [
x['Name'] for x in __salt__['docker.networks']()
if 'Name' in x
]
except CommandExecutionError as exc:
raise CommandExecutionError(
'Failed to get list of existing networks: {0}.'.format(exc)
)
else:
missing_networks = [
x for x in sorted(networks) if x not in all_networks]
if missing_networks:
raise CommandExecutionError(
'The following networks are not present: {0}'.format(
', '.join(missing_networks)
)
)
return networks | 0.000369 |
def name(self):
"""The identifier of the machine."""
name = self.__class__.__name__
for i, character in enumerate(name):
if character.isdigit():
return name[:i] + "-" + name[i:]
return name | 0.008032 |
def get_params(self, params, name_request):
'''
Prepare and add for further render parameters.
:param params: --dictionary with parameters
:type params: dict
:param name_request: --type of the parameters
:type name_request: str, unicode
:return:
'''
self.write('')
for elem in params:
request_type = elem['type'] if elem.get('type', None) else 'schema'
name = elem['name']
if elem.get('required', None):
name += '(required)'
schema = elem.get('schema', None)
name = ':{} {} {}:'.format(name_request, request_type, name)
if schema:
definition = schema['$ref'].split('/')[-1]
self.write(name + ' :ref:`{}`'.format(definition), 1)
self.write('')
else:
desc = elem.get('description', '')
self.write(name)
self.write('{}'.format(desc), self.indent_depth + 1)
self.write('') | 0.001901 |
def read_legacy_cfg_files(self, cfg_files, alignak_env_files=None):
# pylint: disable=too-many-nested-blocks,too-many-statements
# pylint: disable=too-many-branches, too-many-locals
"""Read and parse the Nagios legacy configuration files
and store their content into a StringIO object which content
will be returned as the function result
:param cfg_files: list of file to read
:type cfg_files: list
:param alignak_env_files: name of the alignak environment file
:type alignak_env_files: list
:return: a buffer containing all files
:rtype: str
"""
cfg_buffer = ''
if not cfg_files:
return cfg_buffer
# Update configuration with the first legacy configuration file name and path
# This will update macro properties
self.alignak_env = 'n/a'
if alignak_env_files is not None:
self.alignak_env = alignak_env_files
if not isinstance(alignak_env_files, list):
self.alignak_env = [os.path.abspath(alignak_env_files)]
else:
self.alignak_env = [os.path.abspath(f) for f in alignak_env_files]
self.main_config_file = os.path.abspath(cfg_files[0])
self.config_base_dir = os.path.dirname(self.main_config_file)
# Universal newline mode (all new lines are managed internally)
res = StringIO(u"# Configuration cfg_files buffer", newline=None)
if not self.read_config_silent and cfg_files:
logger.info("Reading the configuration cfg_files...")
# A first pass to get all the configuration cfg_files in a buffer
for cfg_file in cfg_files:
# Make sure the configuration cfg_files are not repeated...
if os.path.abspath(cfg_file) in self.my_cfg_files:
logger.warning("- ignoring repeated file: %s", os.path.abspath(cfg_file))
continue
self.my_cfg_files.append(os.path.abspath(cfg_file))
# File header
res.write(u"\n")
res.write(u"# imported_from=%s" % cfg_file)
res.write(u"\n")
if not self.read_config_silent:
logger.info("- opening '%s' configuration file", cfg_file)
try:
# Open in Universal way for Windows, Mac, Linux-based systems
file_d = open(cfg_file, 'r')
buf = file_d.readlines()
file_d.close()
except IOError as exp:
self.add_error("cannot open main file '%s' for reading: %s" % (cfg_file, exp))
continue
for line in buf:
try:
line = line.decode('utf8', 'replace')
except AttributeError:
# Python 3 will raise an exception because the line is still unicode
pass
line = line.strip()
res.write(line)
res.write(u"\n")
if (re.search("^cfg_file", line) or re.search("^resource_file", line)) \
and '=' in line:
elts = line.split('=', 1)
if os.path.isabs(elts[1]):
cfg_file_name = elts[1]
else:
cfg_file_name = os.path.join(self.config_base_dir, elts[1])
cfg_file_name = cfg_file_name.strip()
cfg_file_name = os.path.abspath(cfg_file_name)
# Make sure the configuration cfg_files are not repeated...
if cfg_file_name in self.my_cfg_files:
logger.warning("- ignoring repeated file: %s", cfg_file_name)
else:
self.my_cfg_files.append(cfg_file_name)
if not self.read_config_silent:
logger.info(" reading: %s", cfg_file_name)
try:
# Read the file content to the buffer
file_d = open(cfg_file_name, 'r')
# File header
res.write(u"\n")
res.write(u"# imported_from=%s" % cfg_file_name)
res.write(u"\n")
content = file_d.read()
try:
content = content.decode('utf8', 'replace')
except AttributeError:
# Python 3 will raise an exception
pass
res.write(content)
res.write(u"\n")
file_d.close()
except IOError as exp:
self.add_error(u"cannot open file '%s' for reading: %s"
% (cfg_file_name, exp))
elif re.search("^cfg_dir", line) and '=' in line:
elts = line.split('=', 1)
if os.path.isabs(elts[1]):
cfg_dir_name = elts[1]
else:
cfg_dir_name = os.path.join(self.config_base_dir, elts[1])
# Ok, look if it's really a directory
if not os.path.isdir(cfg_dir_name):
self.add_error(u"cannot open directory '%s' for reading" % cfg_dir_name)
continue
# Now walk for it.
for root, _, walk_files in os.walk(cfg_dir_name, followlinks=True):
for found_file in walk_files:
if not re.search(r"\.cfg$", found_file):
continue
cfg_file_name = os.path.join(root, found_file)
# Make sure the configuration cfg_files are not repeated...
if os.path.abspath(cfg_file_name) in self.my_cfg_files:
logger.warning("- ignoring repeated file: %s", cfg_file_name)
else:
self.my_cfg_files.append(cfg_file_name)
if not self.read_config_silent:
logger.info(" reading: %s", cfg_file_name)
try:
# Read the file content to the buffer
file_d = open(cfg_file_name, 'r')
# File header
res.write(u"\n")
res.write(u"# imported_from=%s" % cfg_file_name)
res.write(u"\n")
content = file_d.read()
try:
content = content.decode('utf8', 'replace')
except AttributeError:
# Python 3 will raise an exception
pass
res.write(content)
res.write(u"\n")
file_d.close()
except IOError as exp:
self.add_error(u"cannot open file '%s' for reading: %s"
% (cfg_file_name, exp))
cfg_buffer = res.getvalue()
res.close()
return cfg_buffer | 0.00286 |
def make_archive(name, repo, ref, destdir):
"""Makes an archive of a repository in the given destdir.
:param text name: Name to give the archive. For instance foo. The file
that is created will be called foo.tar.gz.
:param text repo: Repository to clone.
:param text ref: Tag/SHA/branch to check out.
:param text destdir: Directory to place archives in.
"""
output_path = os.path.join(destdir, name + '.tar.gz')
with tmpdir() as tempdir:
# Clone the repository to the temporary directory
cmd_output('git', 'clone', repo, tempdir)
cmd_output('git', 'checkout', ref, cwd=tempdir)
# We don't want the '.git' directory
# It adds a bunch of size to the archive and we don't use it at
# runtime
rmtree(os.path.join(tempdir, '.git'))
with tarfile.open(output_path, 'w|gz') as tf:
tf.add(tempdir, name)
return output_path | 0.00107 |
def signal_to_exception(signum, frame):
"""
Called by the timeout alarm during the collector run time
"""
if signum == signal.SIGALRM:
raise SIGALRMException()
if signum == signal.SIGHUP:
raise SIGHUPException()
if signum == signal.SIGUSR1:
raise SIGUSR1Exception()
if signum == signal.SIGUSR2:
raise SIGUSR2Exception()
raise SignalException(signum) | 0.002421 |
def to_task(self):
"""Return a task object representing this MessageProcessor job."""
task_args = self.get_task_args()
# check for name in task args
name = task_args.get('name', MESSAGE_PROCESSOR_NAME)
# if the countdown isn't in the task_args set it to the frequency
if not 'countdown' in task_args:
task_args['countdown'] = self.frequency
task_args['name'] = "%s-%s-%s-%s" % (
name, self.tag, self.current_batch, self.time_throttle)
self.update_options(task_args=task_args)
return super(MessageProcessor, self).to_task() | 0.004815 |
def get_tiles_list(element):
"""
Returns the list of all tile names from Product_Organisation element
in metadata.xml
"""
tiles = {}
for el in element:
g = (el.findall('.//Granules') or el.findall('.//Granule'))[0]
name = g.attrib['granuleIdentifier']
name_parts = name.split('_')
mgs = name_parts[-2]
tiles[mgs] = name
return tiles | 0.002475 |
def _copy(self):
"""
Called during a PUT request where the action specifies
a copy operation. Returns resource URI of the new file.
"""
copypath = self.action['copypath']
try:
self.fs.copy(self.fp,copypath)
except OSError:
raise tornado.web.HTTPError(400)
return copypath | 0.008357 |
def transform_record(self, pid, record, links_factory=None, **kwargs):
"""Transform record into an intermediate representation."""
context = kwargs.get('marshmallow_context', {})
context.setdefault('pid', pid)
return self.dump(self.preprocess_record(pid, record,
links_factory=links_factory, **kwargs), context) | 0.005435 |
def cmd_gimbal_roi(self, args):
'''control roi position'''
latlon = None
try:
latlon = self.module('map').click_position
except Exception:
print("No map available")
return
if latlon is None:
print("No map click position available")
return
self.master.mav.mount_control_send(self.target_system,
self.target_component,
latlon[0]*1e7,
latlon[1]*1e7,
0, # altitude zero for now
0) | 0.004292 |
def persist(self):
'''
Persist the modified schedule into <<configdir>>/<<default_include>>/_schedule.conf
'''
config_dir = self.opts.get('conf_dir', None)
if config_dir is None and 'conf_file' in self.opts:
config_dir = os.path.dirname(self.opts['conf_file'])
if config_dir is None:
config_dir = salt.syspaths.CONFIG_DIR
minion_d_dir = os.path.join(
config_dir,
os.path.dirname(self.opts.get('default_include',
salt.config.DEFAULT_MINION_OPTS['default_include'])))
if not os.path.isdir(minion_d_dir):
os.makedirs(minion_d_dir)
schedule_conf = os.path.join(minion_d_dir, '_schedule.conf')
log.debug('Persisting schedule')
schedule_data = self._get_schedule(include_pillar=False,
remove_hidden=True)
try:
with salt.utils.files.fopen(schedule_conf, 'wb+') as fp_:
fp_.write(
salt.utils.stringutils.to_bytes(
salt.utils.yaml.safe_dump(
{'schedule': schedule_data}
)
)
)
except (IOError, OSError):
log.error('Failed to persist the updated schedule',
exc_info_on_loglevel=logging.DEBUG) | 0.002803 |
def key_present(name, save_private=None, upload_public=None, region=None,
key=None, keyid=None, profile=None):
'''
Ensure key pair is present.
'''
ret = {'name': name,
'result': True,
'comment': '',
'changes': {}
}
exists = __salt__['boto_ec2.get_key'](name, region, key, keyid, profile)
log.debug('exists is %s', exists)
if upload_public is not None and 'salt://' in upload_public:
try:
upload_public = __salt__['cp.get_file_str'](upload_public)
except IOError as e:
log.debug(e)
ret['comment'] = 'File {0} not found.'.format(upload_public)
ret['result'] = False
return ret
if not exists:
if __opts__['test']:
ret['comment'] = 'The key {0} is set to be created.'.format(name)
ret['result'] = None
return ret
if save_private and not upload_public:
created = __salt__['boto_ec2.create_key'](
name, save_private, region, key, keyid, profile
)
if created:
ret['result'] = True
ret['comment'] = 'The key {0} is created.'.format(name)
ret['changes']['new'] = created
else:
ret['result'] = False
ret['comment'] = 'Could not create key {0} '.format(name)
elif not save_private and upload_public:
imported = __salt__['boto_ec2.import_key'](name, upload_public,
region, key, keyid,
profile)
if imported:
ret['result'] = True
ret['comment'] = 'The key {0} is created.'.format(name)
ret['changes']['old'] = None
ret['changes']['new'] = imported
else:
ret['result'] = False
ret['comment'] = 'Could not create key {0} '.format(name)
else:
ret['result'] = False
ret['comment'] = 'You can either upload or download a private key '
else:
ret['result'] = True
ret['comment'] = 'The key name {0} already exists'.format(name)
return ret | 0.000437 |
async def patch_register(self, register: Dict, request: 'Request'):
"""
Store all options in the "choices" sub-register. We store both the
text and the potential intent, in order to match both regular
quick reply clicks but also the user typing stuff on his keyboard that
matches more or less the content of quick replies.
"""
register['choices'] = {
o.slug: {
'intent': o.intent.key if o.intent else None,
'text': await render(o.text, request),
} for o in self.options
if isinstance(o, QuickRepliesList.TextOption)
}
return register | 0.002963 |
def get(self, thing_id='0'):
"""
Handle a GET request, including websocket requests.
thing_id -- ID of the thing this request is for
"""
self.thing = self.get_thing(thing_id)
if self.thing is None:
self.set_status(404)
self.finish()
return
if self.request.headers.get('Upgrade', '').lower() == 'websocket':
yield tornado.websocket.WebSocketHandler.get(self)
return
self.set_header('Content-Type', 'application/json')
ws_href = '{}://{}'.format(
'wss' if self.request.protocol == 'https' else 'ws',
self.request.headers.get('Host', '')
)
description = self.thing.as_thing_description()
description['links'].append({
'rel': 'alternate',
'href': '{}{}'.format(ws_href, self.thing.get_href()),
})
self.write(json.dumps(description))
self.finish() | 0.002051 |
def legend(self, txt=None):
"""Set/get ``Actor`` legend text.
:param str txt: legend text.
Size and positions can be modified by setting attributes
``Plotter.legendSize``, ``Plotter.legendBC`` and ``Plotter.legendPos``.
.. hint:: |fillholes.py|_
"""
if txt:
self._legend = txt
else:
return self._legend
return self | 0.004843 |
def set_sampling_strategies(self, filter, strategy_and_parms):
"""Set a strategy for all sensors matching the filter, including unseen sensors
The strategy should persist across sensor disconnect/reconnect.
filter : str
Filter for sensor names
strategy_and_params : seq of str or str
As tuple contains (<strat_name>, [<strat_parm1>, ...]) where the strategy
names and parameters are as defined by the KATCP spec. As str contains the
same elements in space-separated form.
Returns
-------
done : tornado Future
Resolves when done
"""
sensor_list = yield self.list_sensors(filter=filter)
sensor_dict = {}
for sens in sensor_list:
# Set the strategy on each sensor
try:
sensor_name = sens.object.normalised_name
yield self.set_sampling_strategy(sensor_name, strategy_and_parms)
sensor_dict[sensor_name] = strategy_and_parms
except Exception as exc:
self._logger.exception(
'Unhandled exception trying to set sensor strategies {!r} for {} ({})'
.format(strategy_and_parms, sens, exc))
sensor_dict[sensor_name] = None
# Otherwise, depend on self._add_sensors() to handle it from the cache when the sensor appears\
raise tornado.gen.Return(sensor_dict) | 0.00545 |
def well_images(self, well_row, well_column):
"""Get list of paths to images in specified well.
Parameters
----------
well_row : int
Starts at 0. Same as --V in files.
well_column : int
Starts at 0. Save as --U in files.
Returns
-------
list of strings
Paths to images or empty list if no images are found.
"""
return list(i for i in self.images
if attribute(i, 'u') == well_column and
attribute(i, 'v') == well_row) | 0.00519 |
def sam2fastq(line):
"""
print fastq from sam
"""
fastq = []
fastq.append('@%s' % line[0])
fastq.append(line[9])
fastq.append('+%s' % line[0])
fastq.append(line[10])
return fastq | 0.004673 |
def downgrade():
"""alexm: i believe this method is never called"""
with op.batch_alter_table(t2_name) as batch_op:
batch_op.drop_column('do_not_use')
with op.batch_alter_table(t1_name) as batch_op:
batch_op.drop_column('enabled') | 0.003861 |
def _normalize(self, string):
''' Returns a sanitized string. '''
string = super(VerbixDe, self)._normalize(string)
string = string.replace('sie; Sie', 'sie')
string = string.strip()
return string | 0.033816 |
def get(cls, tag_id_or_URI, label=None):
'''Return the tag with the given id or URI, or None.
:param tag_id_or_name: the id or name of the tag to return
:type tag_id_or_name: string
:returns: the tag object with the given id or name, or None if there is
no tag with that id or name
:rtype: ckan.model.tag.Tag
'''
# First try to get the tag by ID.
semantictag = SemanticTag.by_id(tag_id_or_URI)
if semantictag:
return semantictag
else:
semantictag = SemanticTag.by_URI(tag_id_or_URI)
return semantictag | 0.029795 |
def Network_setCookie(self, name, value, **kwargs):
"""
Function path: Network.setCookie
Domain: Network
Method name: setCookie
WARNING: This function is marked 'Experimental'!
Parameters:
Required arguments:
'name' (type: string) -> Cookie name.
'value' (type: string) -> Cookie value.
Optional arguments:
'url' (type: string) -> The request-URI to associate with the setting of the cookie. This value can affect the default domain and path values of the created cookie.
'domain' (type: string) -> Cookie domain.
'path' (type: string) -> Cookie path.
'secure' (type: boolean) -> True if cookie is secure.
'httpOnly' (type: boolean) -> True if cookie is http-only.
'sameSite' (type: CookieSameSite) -> Cookie SameSite type.
'expires' (type: TimeSinceEpoch) -> Cookie expiration date, session cookie if not set
Returns:
'success' (type: boolean) -> True if successfully set cookie.
Description: Sets a cookie with the given cookie data; may overwrite equivalent cookies if they exist.
"""
assert isinstance(name, (str,)
), "Argument 'name' must be of type '['str']'. Received type: '%s'" % type(
name)
assert isinstance(value, (str,)
), "Argument 'value' must be of type '['str']'. Received type: '%s'" % type(
value)
if 'url' in kwargs:
assert isinstance(kwargs['url'], (str,)
), "Optional argument 'url' must be of type '['str']'. Received type: '%s'" % type(
kwargs['url'])
if 'domain' in kwargs:
assert isinstance(kwargs['domain'], (str,)
), "Optional argument 'domain' must be of type '['str']'. Received type: '%s'" % type(
kwargs['domain'])
if 'path' in kwargs:
assert isinstance(kwargs['path'], (str,)
), "Optional argument 'path' must be of type '['str']'. Received type: '%s'" % type(
kwargs['path'])
if 'secure' in kwargs:
assert isinstance(kwargs['secure'], (bool,)
), "Optional argument 'secure' must be of type '['bool']'. Received type: '%s'" % type(
kwargs['secure'])
if 'httpOnly' in kwargs:
assert isinstance(kwargs['httpOnly'], (bool,)
), "Optional argument 'httpOnly' must be of type '['bool']'. Received type: '%s'" % type(
kwargs['httpOnly'])
expected = ['url', 'domain', 'path', 'secure', 'httpOnly', 'sameSite',
'expires']
passed_keys = list(kwargs.keys())
assert all([(key in expected) for key in passed_keys]
), "Allowed kwargs are ['url', 'domain', 'path', 'secure', 'httpOnly', 'sameSite', 'expires']. Passed kwargs: %s" % passed_keys
subdom_funcs = self.synchronous_command('Network.setCookie', name=name,
value=value, **kwargs)
return subdom_funcs | 0.037173 |
def getaddrlist(self, name):
"""Get a list of addresses from a header.
Retrieves a list of addresses from a header, where each address is a
tuple as returned by getaddr(). Scans all named headers, so it works
properly with multiple To: or Cc: headers for example.
"""
raw = []
for h in self.getallmatchingheaders(name):
if h[0] in ' \t':
raw.append(h)
else:
if raw:
raw.append(', ')
i = h.find(':')
if i > 0:
addr = h[i+1:]
raw.append(addr)
alladdrs = ''.join(raw)
a = AddressList(alladdrs)
return a.addresslist | 0.002714 |
def set_system_conf(self, key=None, value=None, d=None):
""" Sets a java system property as a ('key', 'value') pair of using a dictionary
{'key': 'value', ...}
:param key: string
:param value: string
:param d: dictionary
:return: None
"""
if isinstance(d, dict):
self._system.update(d)
elif isinstance(key, str) and isinstance(value, str):
self._system[key] = value
else:
raise TypeError("key, value must be strings") | 0.005618 |
def getElementsByAttr(self, attrName, attrValue, root='root'):
'''
getElementsByAttr - Searches the full tree for elements with a given attribute name and value combination. This is always a full scan.
@param attrName <lowercase str> - A lowercase attribute name
@param attrValue <str> - Expected value of attribute
@param root <AdvancedTag/'root'> - Search starting at a specific node, if provided. if string 'root', the root of the parsed tree will be used.
'''
(root, isFromRoot) = self._handleRootArg(root)
elements = []
if isFromRoot is True and root.getAttribute(attrName) == attrValue:
elements.append(root)
getElementsByAttr = self.getElementsByAttr
for child in root.children:
if child.getAttribute(attrName) == attrValue:
elements.append(child)
elements += getElementsByAttr(attrName, attrValue, child)
return TagCollection(elements) | 0.004803 |
def perform_experiment(self, engine_list):
"""
Performs nearest neighbour experiments with custom vector data
for all engines in the specified list.
Returns self.result contains list of (distance_ratio, search_time)
tuple. All are the averaged values over all request vectors.
search_time is the average retrieval/search time compared to the
average exact search time.
"""
# We will fill this array with measures for all the engines.
result = []
# For each engine, first index vectors and then retrieve neighbours
for engine in engine_list:
print('Engine %d / %d' % (engine_list.index(engine),
len(engine_list)))
# Clean storage
engine.clean_all_buckets()
# Use this to compute average distance_ratio
avg_distance_ratio = 0.0
# Use this to compute average result set size
avg_result_size = 0.0
# Use this to compute average search time
avg_search_time = 0.0
# Index all vectors and store them
for index in range(self.vectors.shape[1]):
engine.store_vector(self.vectors[:, index],
'data_%d' % index)
# Look for N nearest neighbours for query vectors
for index in self.query_indices:
# We have to time the search
search_time_start = time.time()
# Get nearest N according to engine
nearest = engine.neighbours(self.vectors[:, index])
# Get search time
search_time = time.time() - search_time_start
# Get average distance ratio (with respect to radius
# of real N closest neighbours)
distance_ratio = 0.0
for n in nearest:
# If the vector is outside the real neighbour radius
if n[2] > self.nearest_radius[index]:
# Compute distance to real neighbour radius
d = (n[2] - self.nearest_radius[index])
# And normalize it. 1.0 means: distance to
# real neighbour radius is identical to radius
d /= self.nearest_radius[index]
# If all neighbours are in the radius, the
# distance ratio is 0.0
distance_ratio += d
# Normalize distance ratio over all neighbours
distance_ratio /= len(nearest)
# Add to accumulator
avg_distance_ratio += distance_ratio
# Add to accumulator
avg_result_size += len(nearest)
# Add to accumulator
avg_search_time += search_time
# Normalize distance ratio over query set
avg_distance_ratio /= float(len(self.query_indices))
# Normalize avg result size
avg_result_size /= float(len(self.query_indices))
# Normalize search time over query set
avg_search_time = avg_search_time / float(len(self.query_indices))
# Normalize search time with respect to exact search
avg_search_time /= self.exact_search_time_per_vector
print(' distance_ratio=%f, result_size=%f, time=%f' % (avg_distance_ratio,
avg_result_size,
avg_search_time))
result.append((avg_distance_ratio, avg_result_size, avg_search_time))
return result | 0.001593 |
def percentile(values, percent):
"""
PERCENTILE WITH INTERPOLATION
RETURN VALUE AT, OR ABOVE, percentile OF THE VALUES
snagged from http://code.activestate.com/recipes/511478-finding-the-percentile-of-the-values/
"""
N = sorted(values)
if not N:
return None
k = (len(N) - 1) * percent
f = int(math.floor(k))
c = int(math.ceil(k))
if f == c:
return N[int(k)]
d0 = N[f] * (c - k)
d1 = N[c] * (k - f)
return d0 + d1 | 0.004124 |
def find_argument_target(xmrs, nodeid, rargname):
"""
Return the target of an argument (rather than just the variable).
Note:
If the argument value is an intrinsic variable whose target is
an EP that has a quantifier, the non-quantifier EP's nodeid
will be returned. With this nodeid, one can then use
:meth:`Xmrs.nodeid() <delphin.mrs.xmrs.Xmrs.nodeid>` to get its
quantifier's nodeid.
Args:
xmrs (:class:`~delphin.mrs.xmrs.Xmrs`): semantic structure to
use
nodeid: nodeid of the argument.
rargname: role name of the argument.
Returns:
The object that is the target of the argument. Possible values
include:
================== ===== =============================
Argument value e.g. Target
------------------ ----- -----------------------------
intrinsic variable x4 nodeid; of the EP with the IV
hole variable h0 nodeid; HCONS's labelset head
label h1 nodeid; label's labelset head
unbound variable i3 the variable itself
constant "IBM" the constant itself
================== ===== =============================
"""
tgt = xmrs.args(nodeid)[rargname]
if tgt in xmrs.variables():
try:
return xmrs.nodeid(tgt)
except KeyError:
pass
try:
tgt = xmrs.hcon(tgt).lo
return next(iter(xmrs.labelset_heads(tgt)), None)
except KeyError:
pass
try:
return next(iter(xmrs.labelset_heads(tgt)))
except (KeyError, StopIteration):
pass
return tgt | 0.000578 |
def pinyin_to_zhuyin(s):
"""Convert all Pinyin syllables in *s* to Zhuyin.
Spaces are added between connected syllables and syllable-separating
apostrophes are removed.
"""
return _convert(s, zhon.pinyin.syllable, pinyin_syllable_to_zhuyin,
remove_apostrophes=True, separate_syllables=True) | 0.003012 |
def normalize_list_of_dicts(value, default_key, default_value=UNDEFINED):
"""
Converts given value to a list of dictionaries as follows:
* ``[{...}]`` → ``[{...}]``
* ``{...}`` → ``[{...}]``
* ``'xyz'`` → ``[{default_key: 'xyz'}]``
* ``None`` → ``[{default_key: default_value}]`` (if specified)
* ``None`` → ``[]``
:param default_value:
only Unicode, i.e. `str` in Python 3.x and **only** `unicode` in Python 2.x
"""
if value is None:
if default_value is UNDEFINED:
return []
value = default_value
if isinstance(value, dict):
return [value]
if isinstance(value, text_type):
return [{default_key: value}]
if isinstance(value, list):
if not all(isinstance(x, dict) for x in value):
def _fix(x):
return {default_key: x} if isinstance(x, text_type) else x
return list(map(_fix, value))
return value | 0.002066 |
def get_by_addr(self, address):
"""
Lookup a set of notifications by address
Args:
address (UInt160 or str): hash of address for notifications
Returns:
list: a list of notifications
"""
addr = address
if isinstance(address, str) and len(address) == 34:
addr = Helper.AddrStrToScriptHash(address)
if not isinstance(addr, UInt160):
raise Exception("Incorrect address format")
addrlist_snapshot = self.db.prefixed_db(NotificationPrefix.PREFIX_ADDR).snapshot()
results = []
for val in addrlist_snapshot.iterator(prefix=bytes(addr.Data), include_key=False):
if len(val) > 4:
try:
event = SmartContractEvent.FromByteArray(val)
results.append(event)
except Exception as e:
logger.error("could not parse event: %s %s" % (e, val))
return results | 0.004049 |
def resume_writing(self, exc=None):
'''Resume writing.
Successive calls to this method will fails unless
:meth:`pause_writing` is called first.
'''
assert self._paused
self._paused = False
waiter = self._waiter
if waiter is not None:
self._waiter = None
if not waiter.done():
if exc is None:
waiter.set_result(None)
else:
waiter.set_exception(exc)
self.transport.resume_reading()
self._write_from_buffer() | 0.003413 |
def list_user(context, id, sort, limit, where, verbose):
"""list_user(context, id, sort, limit, where, verbose)
List users attached to a remoteci.
>>> dcictl remoteci-list-user [OPTIONS]
:param string id: ID of the remoteci to list the user from
[required]
:param string sort: Field to apply sort
:param integer limit: Max number of rows to return
:param string where: An optional filter criteria
:param boolean verbose: Display verbose output
"""
result = remoteci.list_users(context, id=id, sort=sort, limit=limit,
where=where)
utils.format_output(result, context.format, verbose=verbose) | 0.001445 |
def dataRestoreRecords(mimeData):
"""
Extracts the records from the inputed drag & drop mime data information.
This will lookup the models based on their primary key information and
generate the element class.
:param mimeData | <QMimeData>
:return [<orb.Table>, ..]
"""
if not mimeData.hasFormat('application/x-orb-records'):
return []
from orb import Orb
repros = nativestring(mimeData.data('application/x-orb-records'))
repros = repros.split(';')
output =[]
for repro in repros:
cls, pkey = re.match('^(\w+)\((.*)\)$', repro).groups()
pkey = eval(pkey)
model = Orb.instance().model(cls)
if not model:
continue
record = model(pkey)
if record.isRecord():
output.append(record)
return output | 0.014451 |
def _loadData(self, data):
""" Load attribute values from Plex XML response. """
self._data = data
self.codec = data.attrib.get('codec')
self.codecID = data.attrib.get('codecID')
self.id = cast(int, data.attrib.get('id'))
self.index = cast(int, data.attrib.get('index', '-1'))
self.language = data.attrib.get('language')
self.languageCode = data.attrib.get('languageCode')
self.selected = cast(bool, data.attrib.get('selected', '0'))
self.streamType = cast(int, data.attrib.get('streamType'))
self.type = cast(int, data.attrib.get('streamType')) | 0.00316 |
def list2html(lst):
"""
convert a list to html using table formatting
"""
txt = '<TABLE width=100% border=0>'
for l in lst:
txt += '<TR>\n'
if type(l) is str:
txt+= '<TD>' + l + '</TD>\n'
elif type(l) is list:
txt+= '<TD>'
for i in l:
txt += i + ', '
txt+= '</TD>'
else:
txt+= '<TD>' + str(l) + '</TD>\n'
txt += '</TR>\n'
txt += '</TABLE><BR>\n'
return txt | 0.015936 |
def asjsonld(self):
"""Create JSON-LD with the original source data."""
source = {}
if self.__source__:
source.update(self.__source__)
source.update(asjsonld(self))
return source | 0.008696 |
def set_const(const, val):
'''Convenience wrapper to reliably set the value of a constant from
outside of package scope'''
try:
cur = getattr(_c, const)
except AttributeError:
raise FSQEnvError(errno.ENOENT, u'no such constant:'\
u' {0}'.format(const))
except TypeError:
raise TypeError(errno.EINVAL, u'const name must be a string or'\
u' unicode object, not:'\
u' {0}'.format(const.__class__.__name__))
should_be = cur.__class__
try:
if not isinstance(val, should_be):
if should_be is unicode or cur is None:
val = coerce_unicode(val, _c.FSQ_CHARSET)
elif should_be is int and const.endswith('MODE'):
val = int(val, 8)
elif isinstance(cur, numbers.Integral):
val = int(val)
else:
should_be(val)
except (TypeError, ValueError, ):
raise FSQEnvError(errno.EINVAL, u'invalid type for constant {0},'\
u' should be {1}, not:'\
u' {2}'.format(const, should_be.__name__,
val.__class__.__name__))
setattr(_c, const, val)
return val | 0.004669 |
def smart_content_encoding(self):
"""Smart content encoding."""
encoding = self.content_encoding
if not encoding:
base_list = self.basename.split('.')
while (not encoding) and len(base_list) > 1:
_, encoding = mimetypes.guess_type('.'.join(base_list))
base_list.pop()
return encoding | 0.005376 |
def get_items(self, query_params=None):
'''
Get all the items for this label. Returns a list of dictionaries.
Each dictionary has the values for an item.
'''
return self.fetch_json(
uri_path=self.base_uri + '/checkItems',
query_params=query_params or {}
) | 0.006116 |
def _pop_params(cls, kwargs):
"""
Pop entries from the `kwargs` passed to cls.__new__ based on the values
in `cls.params`.
Parameters
----------
kwargs : dict
The kwargs passed to cls.__new__.
Returns
-------
params : list[(str, object)]
A list of string, value pairs containing the entries in cls.params.
Raises
------
TypeError
Raised if any parameter values are not passed or not hashable.
"""
params = cls.params
if not isinstance(params, Mapping):
params = {k: NotSpecified for k in params}
param_values = []
for key, default_value in params.items():
try:
value = kwargs.pop(key, default_value)
if value is NotSpecified:
raise KeyError(key)
# Check here that the value is hashable so that we fail here
# instead of trying to hash the param values tuple later.
hash(value)
except KeyError:
raise TypeError(
"{typename} expected a keyword parameter {name!r}.".format(
typename=cls.__name__,
name=key
)
)
except TypeError:
# Value wasn't hashable.
raise TypeError(
"{typename} expected a hashable value for parameter "
"{name!r}, but got {value!r} instead.".format(
typename=cls.__name__,
name=key,
value=value,
)
)
param_values.append((key, value))
return tuple(param_values) | 0.001097 |
async def resolve(
self, host, port=80, family=None, qtype='A', logging=True
):
"""Return resolving IP address(es) from host name."""
if self.host_is_ip(host):
return host
_host = self._cached_hosts.get(host)
if _host:
return _host
resp = await self._resolve(host, qtype)
if resp:
hosts = [
{
'hostname': host,
'host': r.host,
'port': port,
'family': family,
'proto': socket.IPPROTO_IP,
'flags': socket.AI_NUMERICHOST,
}
for r in resp
]
if family:
self._cached_hosts[host] = hosts
else:
self._cached_hosts[host] = hosts[0]['host']
if logging:
log.debug(
'%s: Host resolved: %s' % (host, self._cached_hosts[host])
)
else:
if logging:
log.warning('%s: Could not resolve host' % host)
return self._cached_hosts.get(host) | 0.002586 |
def pluralize(count, item_type):
"""Pluralizes the item_type if the count does not equal one.
For example `pluralize(1, 'apple')` returns '1 apple',
while `pluralize(0, 'apple') returns '0 apples'.
:return The count and inflected item_type together as a string
:rtype string
"""
def pluralize_string(x):
if x.endswith('s'):
return x + 'es'
else:
return x + 's'
text = '{} {}'.format(count, item_type if count == 1 else pluralize_string(item_type))
return text | 0.016 |
def _get_limits_spot(self):
"""
Return a dict of limits for spot requests only.
This method should only be used internally by
:py:meth:~.get_limits`.
:rtype: dict
"""
limits = {}
limits['Max spot instance requests per region'] = AwsLimit(
'Max spot instance requests per region',
self,
20,
self.warning_threshold,
self.critical_threshold,
limit_type='Spot instance requests'
)
limits['Max active spot fleets per region'] = AwsLimit(
'Max active spot fleets per region',
self,
1000,
self.warning_threshold,
self.critical_threshold,
)
limits['Max launch specifications per spot fleet'] = AwsLimit(
'Max launch specifications per spot fleet',
self,
50,
self.warning_threshold,
self.critical_threshold,
)
limits['Max target capacity per spot fleet'] = AwsLimit(
'Max target capacity per spot fleet',
self,
3000,
self.warning_threshold,
self.critical_threshold
)
limits['Max target capacity for all spot fleets in region'] = AwsLimit(
'Max target capacity for all spot fleets in region',
self,
5000,
self.warning_threshold,
self.critical_threshold
)
return limits | 0.001317 |
def info(self, text):
"""
Posts an info message adding a timestamp and logging level to it for both file and console handlers.
Logger uses a redraw rate because of console flickering. That means it will not draw new messages or progress
at the very time they are being logged but their timestamp will be captured at the right time. Logger will
redraw at a given time period AND when new messages or progress are logged. If you still want to force redraw
immediately (may produce flickering) then call 'flush' method.
:param text: The text to log into file and console.
"""
self.queue.put(dill.dumps(LogMessageCommand(text=text, level=logging.INFO))) | 0.009709 |
def get_all_knoreq_user_objects(self, include_machine = False):
"""
Fetches all user objects with useraccountcontrol DONT_REQ_PREAUTH flag set from the AD, and returns MSADUser object.
"""
logger.debug('Polling AD for all user objects, machine accounts included: %s'% include_machine)
if include_machine == True:
ldap_filter = r'(userAccountControl:1.2.840.113556.1.4.803:=4194304)'
else:
ldap_filter = r'(&(userAccountControl:1.2.840.113556.1.4.803:=4194304)(!(sAMAccountName = *$)))'
attributes = MSADUser.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
# TODO: return ldapuser object
yield MSADUser.from_ldap(entry, self._ldapinfo)
logger.debug('Finished polling for entries!') | 0.032967 |
def Weibull(lamda, k, tag=None):
"""
A Weibull random variate
Parameters
----------
lamda : scalar
The scale parameter
k : scalar
The shape parameter
"""
assert (
lamda > 0 and k > 0
), 'Weibull "lamda" and "k" parameters must be greater than zero'
return uv(ss.exponweib(lamda, k), tag=tag) | 0.005556 |
def branchScale(self):
"""See docs for `Model` abstract base class."""
bs = -(self.Phi_x * scipy.diagonal(self.Pxy[0])).sum() * self.mu
assert bs > 0
return bs | 0.010471 |
def human_readable_number(number, suffix=""):
"""
Format the given number into a human-readable string.
Code adapted from http://stackoverflow.com/a/1094933
:param variant number: the number (int or float)
:param string suffix: the unit of the number
:rtype: string
"""
for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]:
if abs(number) < 1024.0:
return "%3.1f%s%s" % (number, unit, suffix)
number /= 1024.0
return "%.1f%s%s" % (number, "Y", suffix) | 0.001938 |
def load_url(self, url, force=False, reload_seconds=0,
callback_function=None):
"""
Starts loading a URL with an optional reload time
in seconds.
Setting force to True may load pages which block
iframe embedding, but will prevent reload from
working and will cause calls to load_url()
to reload the app.
"""
def launch_callback():
"""Loads requested URL after app launched."""
should_reload = not force and reload_seconds not in (0, None)
reload_milliseconds = (0 if not should_reload
else reload_seconds * 1000)
msg = {
"url": url,
"force": force,
"reload": should_reload,
"reload_time": reload_milliseconds
}
self.send_message(msg, inc_session_id=True,
callback_function=callback_function)
self.launch(callback_function=launch_callback) | 0.002887 |
def contains_extractor(document):
"""A basic document feature extractor that returns a dict of words that the
document contains."""
tokens = _get_document_tokens(document)
features = dict((u'contains({0})'.format(w), True) for w in tokens)
return features | 0.003636 |
def sync_user(self, url, token, encoding_aes_key, media_id, to_invite=True):
"""
增量更新成员
https://work.weixin.qq.com/api/doc#90000/90135/90980
:param url: 企业应用接收企业微信推送请求的访问协议和地址,支持http或https协议
:param token: 用于生成签名
:param encoding_aes_key: 用于消息体的加密,是AES密钥的Base64编码
:param media_id: 上传的csv文件的media_id
:param to_invite: 是否邀请新建的成员使用企业微信(将通过微信服务通知或短信或邮件下发邀请,每天自动下发一次,最多持续3个工作日),默认值为true。
:return: 返回的 JSON 数据包
"""
return self._post(
'batch/syncuser',
data={
'media_id': media_id,
'to_invite': to_invite,
'callback': {
'url': url,
'token': token,
'encodingaeskey': encoding_aes_key
}
}
) | 0.003584 |
def get_diff_idxs(array, rtol, atol):
"""
Given an array with (C, N, L) values, being the first the reference value,
compute the relative differences and discard the one below the tolerance.
:returns: indices where there are sensible differences.
"""
C, N, L = array.shape
diff_idxs = set() # indices of the sites with differences
for c in range(1, C):
for n in range(N):
if not numpy.allclose(array[c, n], array[0, n], rtol, atol):
diff_idxs.add(n)
return numpy.fromiter(diff_idxs, int) | 0.001786 |
def create(self, store_id, data):
"""
Add a new customer to a store.
:param store_id: The store id.
:type store_id: :py:class:`str`
:param data: The request body parameters
:type data: :py:class:`dict`
data = {
"id": string*,
"email_address": string*,
"opt_in_status": boolean*
}
"""
self.store_id = store_id
if 'id' not in data:
raise KeyError('The store customer must have an id')
if 'email_address' not in data:
raise KeyError('The store customer must have an email_address')
check_email(data['email_address'])
if 'opt_in_status' not in data:
raise KeyError('The store customer must have an opt_in_status')
if data['opt_in_status'] not in [True, False]:
raise TypeError('The opt_in_status must be True or False')
response = self._mc_client._post(url=self._build_path(store_id, 'customers'), data=data)
if response is not None:
self.customer_id = response['id']
else:
self.customer_id = None
return response | 0.002564 |
def pipe_to_process(self, payload):
"""Send something to stdin of a specific process."""
message = payload['input']
key = payload['key']
if not self.process_handler.is_running(key):
return {'message': 'No running process for this key',
'status': 'error'}
self.process_handler.send_to_process(message, key)
return {'message': 'Message sent',
'status': 'success'} | 0.004376 |
def StartRun(self, wait_for_start_event, signal_event, wait_for_write_event):
"""Starts a new run for the given cron job."""
# Signal that the cron thread has started. This way the cron scheduler
# will know that the task is not sitting in a threadpool queue, but is
# actually executing.
wait_for_start_event.set()
# Wait until the cron scheduler acknowledges the run. If it doesn't
# acknowledge, just return (it means that the cron scheduler considers
# this task as "not started" and has returned the lease so that another
# worker can pick it up).
if not signal_event.wait(TASK_STARTUP_WAIT):
return
try:
logging.info("Processing cron job: %s", self.job.cron_job_id)
self.run_state.started_at = rdfvalue.RDFDatetime.Now()
self.run_state.status = "RUNNING"
data_store.REL_DB.WriteCronJobRun(self.run_state)
data_store.REL_DB.UpdateCronJob(
self.job.cron_job_id,
last_run_time=rdfvalue.RDFDatetime.Now(),
current_run_id=self.run_state.run_id,
forced_run_requested=False)
finally:
# Notify the cron scheduler that all the DB updates are done. At this
# point the cron scheduler can safely return this job's lease.
wait_for_write_event.set()
try:
self.Run()
self.run_state.status = "FINISHED"
except LifetimeExceededError:
self.run_state.status = "LIFETIME_EXCEEDED"
stats_collector_instance.Get().IncrementCounter(
"cron_job_failure", fields=[self.job.cron_job_id])
except Exception as e: # pylint: disable=broad-except
logging.exception("Cronjob %s failed with an error: %s",
self.job.cron_job_id, e)
stats_collector_instance.Get().IncrementCounter(
"cron_job_failure", fields=[self.job.cron_job_id])
self.run_state.status = "ERROR"
self.run_state.backtrace = str(e)
finally:
self.run_state.finished_at = rdfvalue.RDFDatetime.Now()
elapsed = self.run_state.finished_at - self.run_state.started_at
stats_collector_instance.Get().RecordEvent(
"cron_job_latency", elapsed.seconds, fields=[self.job.cron_job_id])
if self.job.lifetime:
expiration_time = self.run_state.started_at + self.job.lifetime
if self.run_state.finished_at > expiration_time:
self.run_state.status = "LIFETIME_EXCEEDED"
stats_collector_instance.Get().IncrementCounter(
"cron_job_timeout", fields=[self.job.cron_job_id])
data_store.REL_DB.WriteCronJobRun(self.run_state)
current_job = data_store.REL_DB.ReadCronJob(self.job.cron_job_id)
# If no other job was started while we were running, update last status
# information.
if current_job.current_run_id == self.run_state.run_id:
data_store.REL_DB.UpdateCronJob(
self.job.cron_job_id,
current_run_id=None,
last_run_status=self.run_state.status) | 0.008778 |
def get_hostfirmware(self,callb=None):
"""Convenience method to request the device firmware info from the device
This method will check whether the value has already been retrieved from the device,
if so, it will simply return it. If no, it will request the information from the device
and request that callb be executed when a response is received. The default callback
will simply cache the value.
:param callb: Callable to be used when the response is received. If not set,
self.resp_set_label will be used.
:type callb: callable
:returns: The cached value
:rtype: str
"""
if self.host_firmware_version is None:
mypartial=partial(self.resp_set_hostfirmware)
if callb:
mycallb=lambda x,y:(mypartial(y),callb(x,y))
else:
mycallb=lambda x,y:mypartial(y)
response = self.req_with_resp(GetHostFirmware, StateHostFirmware,mycallb )
return (self.host_firmware_version,self.host_firmware_build_timestamp) | 0.020928 |
def _recursive_dict_update(dict_, other, **kwargs):
"""Deep/recursive version of ``dict.update``.
If a key is present in both dictionaries, and points to
"child" dictionaries, those will be appropriately merged.
:param overwrite: Whether to overwrite exisiting dictionary values
"""
overwrite = kwargs['overwrite']
for key, other_value in iteritems(other):
if key in dict_:
value = dict_[key]
if is_mapping(value) and is_mapping(other_value):
_recursive_dict_update(value, other_value, overwrite=overwrite)
continue
if overwrite:
dict_[key] = other_value
else:
dict_.setdefault(key, other_value) | 0.00137 |
def exists(self):
"""
Determine if any rows exist for the current query.
:return: Whether the rows exist or not
:rtype: bool
"""
limit = self.limit_
result = self.limit(1).count() > 0
self.limit(limit)
return result | 0.006873 |
def format_norm(kwargs, current=None):
"""Format a `~matplotlib.colors.Normalize` from a set of kwargs
Returns
-------
norm, kwargs
the formatted `Normalize` instance, and the remaining keywords
"""
norm = kwargs.pop('norm', current) or 'linear'
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
clim = kwargs.pop('clim', (vmin, vmax)) or (None, None)
clip = kwargs.pop('clip', None)
if norm == 'linear':
norm = colors.Normalize()
elif norm == 'log':
norm = colors.LogNorm()
elif not isinstance(norm, colors.Normalize):
raise ValueError("unrecognised value for norm {!r}".format(norm))
for attr, value in (('vmin', clim[0]), ('vmax', clim[1]), ('clip', clip)):
if value is not None:
setattr(norm, attr, value)
return norm, kwargs | 0.001164 |
def run_cutadapt(job, fastqs, univ_options, cutadapt_options):
"""
This module runs cutadapt on the input RNA fastq files and then calls the RNA aligners.
ARGUMENTS
1. fastqs: Dict of list of input RNA-Seq fastqs
fastqs
+- 'tumor_rna': [<JSid for 1.fastq> , <JSid for 2.fastq>]
2. univ_options: Dict of universal arguments used by almost all tools
univ_options
+- 'dockerhub': <dockerhub to use>
3. cutadapt_options: Dict of parameters specific to cutadapt
cutadapt_options
|- 'a': <sequence of 3' adapter to trim from fwd read>
+- 'A': <sequence of 3' adapter to trim from rev read>
RETURN VALUES
1. output_files: Dict of cutadapted fastqs
output_files
|- 'rna_cutadapt_1.fastq': <JSid>
+- 'rna_cutadapt_2.fastq': <JSid>
This module corresponds to node 2 on the tree
"""
job.fileStore.logToMaster('Running cutadapt on %s' %univ_options['patient'])
work_dir = job.fileStore.getLocalTempDir()
fq_extn = '.gz' if fastqs['gzipped'] else ''
input_files = {
'rna_1.fastq' + fq_extn: fastqs['tumor_rna'][0],
'rna_2.fastq' + fq_extn: fastqs['tumor_rna'][1]}
input_files = get_files_from_filestore(job, input_files, work_dir, docker=True)
parameters = ['-a', cutadapt_options['a'], # Fwd read 3' adapter
'-A', cutadapt_options['A'], # Rev read 3' adapter
'-m', '35', # Minimum size of read
'-o', docker_path('rna_cutadapt_1.fastq'), # Output for R1
'-p', docker_path('rna_cutadapt_2.fastq'), # Output for R2
input_files['rna_1.fastq'],
input_files['rna_2.fastq']]
docker_call(tool='cutadapt', tool_parameters=parameters, work_dir=work_dir,
dockerhub=univ_options['dockerhub'])
output_files = defaultdict()
for fastq_file in ['rna_cutadapt_1.fastq', 'rna_cutadapt_2.fastq']:
output_files[fastq_file] = job.fileStore.writeGlobalFile('/'.join([work_dir, fastq_file]))
return output_files | 0.002821 |
def connect(self, inputs):
'''Create Theano variables representing the outputs of this layer.
Parameters
----------
inputs : dict of Theano expressions
Symbolic inputs to this layer, given as a dictionary mapping string
names to Theano expressions. Each string key should be of the form
"{layer_name}:{output_name}" and refers to a specific output from
a specific layer in the graph.
Returns
-------
outputs : dict
A dictionary mapping names to Theano expressions for the outputs
from this layer.
updates : sequence of (parameter, expression) tuples
Updates that should be performed by a Theano function that computes
something using this layer.
'''
outputs, updates = self.transform(inputs)
# transform the outputs to be a list of ordered pairs if needed.
if isinstance(outputs, dict):
outputs = sorted(outputs.items())
if isinstance(outputs, (TT.TensorVariable, SS.SparseVariable)):
outputs = [('out', outputs)]
outs = {self.full_name(name): expr for name, expr in outputs}
return outs, updates | 0.001616 |
def load_lime(self, remote_path, listen_port, dump_format='lime'):
"""
Load LiME kernel module from remote filesystem
:type remote_path: str
:param remote_path: path to LiME kernel module on remote host
:type listen_port: int
:param listen_port: port LiME uses to listen to remote connections
:type dump_format: str
:param dump_format: LiME memory dump file format
"""
load_command = self.commands.load_lime.value.format(remote_path,
listen_port,
dump_format)
self.shell.execute_async(load_command) | 0.002829 |
def get_help(self, prefix='', include_special_flags=True):
"""Returns a help string for all known flags.
Args:
prefix: str, per-line output prefix.
include_special_flags: bool, whether to include description of
SPECIAL_FLAGS, i.e. --flagfile and --undefok.
Returns:
str, formatted help message.
"""
flags_by_module = self.flags_by_module_dict()
if flags_by_module:
modules = sorted(flags_by_module)
# Print the help for the main module first, if possible.
main_module = sys.argv[0]
if main_module in modules:
modules.remove(main_module)
modules = [main_module] + modules
return self._get_help_for_modules(modules, prefix, include_special_flags)
else:
output_lines = []
# Just print one long list of flags.
values = six.itervalues(self._flags())
if include_special_flags:
values = itertools.chain(
values, six.itervalues(_helpers.SPECIAL_FLAGS._flags())) # pylint: disable=protected-access
self._render_flag_list(values, output_lines, prefix)
return '\n'.join(output_lines) | 0.011494 |
def _read_output(path):
"""Read CmdStan output.csv.
Parameters
----------
path : str
Returns
-------
List[DataFrame, DataFrame, List[str], List[str], List[str]]
pandas.DataFrame
Sample data
pandas.DataFrame
Sample stats
List[str]
Configuration information
List[str]
Adaptation information
List[str]
Timing info
"""
chains = []
configuration_info = []
adaptation_info = []
timing_info = []
i = 0
# Read (first) configuration and adaption
with open(path, "r") as f_obj:
column_names = False
for i, line in enumerate(f_obj):
line = line.strip()
if line.startswith("#"):
if column_names:
adaptation_info.append(line.strip())
else:
configuration_info.append(line.strip())
elif not column_names:
column_names = True
pconf = _process_configuration(configuration_info)
if pconf["save_warmup"]:
warmup_range = range(pconf["num_warmup"] // pconf["thin"])
for _, _ in zip(warmup_range, f_obj):
continue
else:
break
# Read data
with open(path, "r") as f_obj:
df = pd.read_csv(f_obj, comment="#")
# split dataframe if header found multiple times
if df.iloc[:, 0].dtype.kind == "O":
first_col = df.columns[0]
col_locations = first_col == df.loc[:, first_col]
col_locations = list(col_locations.loc[col_locations].index)
dfs = []
for idx, last_idx in zip(col_locations, [-1] + list(col_locations[:-1])):
df_ = deepcopy(df.loc[last_idx + 1 : idx - 1, :])
for col in df_.columns:
df_.loc[:, col] = pd.to_numeric(df_.loc[:, col])
if len(df_):
dfs.append(df_.reset_index(drop=True))
df = df.loc[idx + 1 :, :]
for col in df.columns:
df.loc[:, col] = pd.to_numeric(df.loc[:, col])
dfs.append(df)
else:
dfs = [df]
for j, df in enumerate(dfs):
if j == 0:
# Read timing info (first) from the end of the file
line_num = i + df.shape[0] + 1
for k in range(5):
line = linecache.getline(path, line_num + k).strip()
if len(line):
timing_info.append(line)
configuration_info_len = len(configuration_info)
adaptation_info_len = len(adaptation_info)
timing_info_len = len(timing_info)
num_of_samples = df.shape[0]
header_count = 1
last_line_num = (
configuration_info_len
+ adaptation_info_len
+ timing_info_len
+ num_of_samples
+ header_count
)
else:
# header location found in the dataframe (not first)
configuration_info = []
adaptation_info = []
timing_info = []
# line number for the next dataframe in csv
line_num = last_line_num + 1
# row ranges
config_start = line_num
config_end = config_start + configuration_info_len
# read configuration_info
for reading_line in range(config_start, config_end):
line = linecache.getline(path, reading_line)
if line.startswith("#"):
configuration_info.append(line)
else:
msg = (
"Invalid input file. "
"Header information missing from combined csv. "
"Configuration: {}".format(path)
)
raise ValueError(msg)
pconf = _process_configuration(configuration_info)
warmup_rows = pconf["save_warmup"] * pconf["num_warmup"] // pconf["thin"]
adaption_start = config_end + 1 + warmup_rows
adaption_end = adaption_start + adaptation_info_len
# read adaptation_info
for reading_line in range(adaption_start, adaption_end):
line = linecache.getline(path, reading_line)
if line.startswith("#"):
adaptation_info.append(line)
else:
msg = (
"Invalid input file. "
"Header information missing from combined csv. "
"Adaptation: {}".format(path)
)
raise ValueError(msg)
timing_start = adaption_end + len(df) - warmup_rows
timing_end = timing_start + timing_info_len
# read timing_info
raise_timing_error = False
for reading_line in range(timing_start, timing_end):
line = linecache.getline(path, reading_line)
if line.startswith("#"):
timing_info.append(line)
else:
raise_timing_error = True
break
no_elapsed_time = not any("elapsed time" in row.lower() for row in timing_info)
if raise_timing_error or no_elapsed_time:
msg = (
"Invalid input file. "
"Header information missing from combined csv. "
"Timing: {}".format(path)
)
raise ValueError(msg)
last_line_num = reading_line
# Remove warmup
if pconf["save_warmup"]:
saved_samples = pconf["num_samples"] // pconf["thin"]
df = df.iloc[-saved_samples:, :]
# Split data to sample_stats and sample
sample_stats_columns = [col for col in df.columns if col.endswith("__")]
sample_columns = [col for col in df.columns if col not in sample_stats_columns]
sample_stats = df.loc[:, sample_stats_columns]
sample_df = df.loc[:, sample_columns]
chains.append((sample_df, sample_stats, configuration_info, adaptation_info, timing_info))
return chains | 0.001432 |
def pointsToVoronoiGridShapefile(lat, lon, vor_shp_path, extent=None):
"""
Converts points to shapefile grid via voronoi
"""
voronoi_centroids = _get_voronoi_centroid_array(lat, lon, extent)
# set-up output polygon shp
log("Creating output polygon shp {0}"
.format(os.path.basename(vor_shp_path)))
if os.path.exists(vor_shp_path):
os.remove(vor_shp_path)
drv = ogr.GetDriverByName('ESRI Shapefile')
outShp = drv.CreateDataSource(vor_shp_path)
osr_geographic_proj = osr.SpatialReference()
osr_geographic_proj.ImportFromEPSG(4326)
layer = outShp.CreateLayer('', osr_geographic_proj, ogr.wkbPolygon)
layer.CreateField(ogr.FieldDefn('GRID_LAT', ogr.OFTReal))
layer.CreateField(ogr.FieldDefn('GRID_LON', ogr.OFTReal))
layerDefn = layer.GetLayerDefn()
# find nodes surrounding polygon centroid
# sort nodes in counterclockwise order
# create polygon perimeter through nodes
log("Building Voronoi polygons...")
# compute voronoi
voronoi_manager = Voronoi(voronoi_centroids)
voronoi_vertices = voronoi_manager.vertices
voronoi_regions = voronoi_manager.regions
for point_id, region_index in enumerate(voronoi_manager.point_region):
vert_index_list = np.array(voronoi_regions[region_index])
voronoi_centroid = voronoi_centroids[point_id]
voronoi_poly_points = _get_voronoi_poly_points(vert_index_list,
voronoi_vertices,
voronoi_centroid)
if len(voronoi_poly_points) == 4:
poly = ogr.Geometry(ogr.wkbPolygon)
ring = ogr.Geometry(ogr.wkbLinearRing)
for node in voronoi_poly_points:
ring.AddPoint(node[0], node[1])
# grab first node to close ring
ring.AddPoint(voronoi_poly_points[0][0], voronoi_poly_points[0][1])
poly.AddGeometry(ring)
feat = ogr.Feature(layerDefn)
feat.SetField('GRID_LON', float(voronoi_centroid[0]))
feat.SetField('GRID_LAT', float(voronoi_centroid[1]))
feat.SetGeometry(poly)
layer.CreateFeature(feat) | 0.000451 |
def reportMemory(k, options, field=None, isBytes=False):
""" Given k kilobytes, report back the correct format as string.
"""
if options.pretty:
return prettyMemory(int(k), field=field, isBytes=isBytes)
else:
if isBytes:
k /= 1024.
if field is not None:
return "%*dK" % (field - 1, k) # -1 for the "K"
else:
return "%dK" % int(k) | 0.002415 |
def build_catalog_info(self, catalog_info):
""" Build a CatalogInfo object """
cat = SourceFactory.build_catalog(**catalog_info)
catalog_info['catalog'] = cat
# catalog_info['catalog_table'] =
# Table.read(catalog_info['catalog_file'])
catalog_info['catalog_table'] = cat.table
catalog_info['roi_model'] =\
SourceFactory.make_fermipy_roi_model_from_catalogs([cat])
catalog_info['srcmdl_name'] =\
self._name_factory.srcmdl_xml(sourcekey=catalog_info['catalog_name'])
return CatalogInfo(**catalog_info) | 0.005008 |
def request(
self,
method,
url,
data=None,
headers=None,
withhold_token=False,
client_id=None,
client_secret=None,
**kwargs
):
"""Intercept all requests and add the OAuth 2 token if present."""
if not is_secure_transport(url):
raise InsecureTransportError()
if self.token and not withhold_token:
log.debug(
"Invoking %d protected resource request hooks.",
len(self.compliance_hook["protected_request"]),
)
for hook in self.compliance_hook["protected_request"]:
log.debug("Invoking hook %s.", hook)
url, headers, data = hook(url, headers, data)
log.debug("Adding token %s to request.", self.token)
try:
url, headers, data = self._client.add_token(
url, http_method=method, body=data, headers=headers
)
# Attempt to retrieve and save new access token if expired
except TokenExpiredError:
if self.auto_refresh_url:
log.debug(
"Auto refresh is set, attempting to refresh at %s.",
self.auto_refresh_url,
)
# We mustn't pass auth twice.
auth = kwargs.pop("auth", None)
if client_id and client_secret and (auth is None):
log.debug(
'Encoding client_id "%s" with client_secret as Basic auth credentials.',
client_id,
)
auth = requests.auth.HTTPBasicAuth(client_id, client_secret)
token = self.refresh_token(
self.auto_refresh_url, auth=auth, **kwargs
)
if self.token_updater:
log.debug(
"Updating token to %s using %s.", token, self.token_updater
)
self.token_updater(token)
url, headers, data = self._client.add_token(
url, http_method=method, body=data, headers=headers
)
else:
raise TokenUpdated(token)
else:
raise
log.debug("Requesting url %s using method %s.", url, method)
log.debug("Supplying headers %s and data %s", headers, data)
log.debug("Passing through key word arguments %s.", kwargs)
return super(OAuth2Session, self).request(
method, url, headers=headers, data=data, **kwargs
) | 0.002154 |
def dependency_lines(self):
"""The formatted dependencies=[...] lines for this target.
If there are no dependencies, this returns an empty list.
"""
deps = sorted(self._dependencies_by_address.values(), key=lambda d: d.spec)
def dep_lines():
yield ' dependencies = ['
for dep in deps:
for line in dep.lines():
yield line
yield ' ],'
return list(dep_lines()) if deps else [] | 0.013761 |
def from_string(cls, epstr, name, distro=None):
"""Parse an entry point from the syntax in entry_points.txt
:param str epstr: The entry point string (not including 'name =')
:param str name: The name of this entry point
:param Distribution distro: The distribution in which the entry point was found
:rtype: EntryPoint
:raises BadEntryPoint: if *epstr* can't be parsed as an entry point.
"""
m = entry_point_pattern.match(epstr)
if m:
mod, obj, extras = m.group('modulename', 'objectname', 'extras')
if extras is not None:
extras = re.split(r',\s*', extras)
return cls(name, mod, obj, extras, distro)
else:
raise BadEntryPoint(epstr) | 0.003856 |
def computeMultipleExpectations(self, A_in, u_n, compute_uncertainty=True, compute_covariance=False,
uncertainty_method=None, warning_cutoff=1.0e-10, return_theta=False):
"""Compute the expectations of multiple observables of phase space functions.
Compute the expectations of multiple observables of phase
space functions [A_0(x),A_1(x),...,A_i(x)] at a single state,
along with the error in the estimates and the uncertainty in
the estimates. The state is specified by the choice of u_n,
which is the energy of the n samples evaluated at a the chosen
state.
Parameters:
-------------
A_in : np.ndarray, float, shape=(I, k, N)
A_in[i,n] = A_i(x_n), the value of phase observable i for configuration n at state of interest
u_n : np.ndarray, float, shape=(N)
u_n[n] is the reduced potential of configuration n at the state of interest
compute_uncertainty : bool, optional, default=True
If True, calculate the uncertainty
compute_covariance : bool, optional, default=False
If True, calculate the covariance
uncertainty_method : string, optional
Choice of method used to compute asymptotic covariance method, or None to use default
See help for computeAsymptoticCovarianceMatrix() for more information on various methods. (default: None)
warning_cutoff : float, optional
Warn if squared-uncertainty is negative and larger in magnitude than this number (default: 1.0e-10)
Returns
-------------
result_vals : dictionary
Possible keys in the result_vals dictionary:
'mu' : np.ndarray, float, shape=(I)
result_vals['mu'] is the estimate for the expectation of A_i(x) at the state specified by u_kn
'sigma' : np.ndarray, float, shape = (I)
result_vals['sigma'] is the uncertainty in the expectation of A_state_map[i](x) at the state specified by u_n[state_map[i],:]
or None if compute_uncertainty is False
'covariances' : np.ndarray, float, shape=(I, I)
result_vals['covariances'] is the COVARIANCE in the estimates of A_i[i] and A_i[j]: we can't actually take a square root
or None if compute_covariance is False
'Theta': np.ndarray, float, shape=(I, I), covariances of the log weights, useful for some additional calculations.
Examples
--------
>>> from pymbar import testsystems
>>> (x_n, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> mbar = MBAR(u_kn, N_k)
>>> A_in = np.array([x_n,x_n**2,x_n**3])
>>> u_n = u_kn[0,:]
>>> results = mbar.computeMultipleExpectations(A_in, u_kn)
"""
# Retrieve N and K for convenience.
I = A_in.shape[0] # number of observables
K = self.K
N = self.N # N is total number of samples
if len(np.shape(A_in)) == 3:
A_in_old = A_in.copy() # convert to k by n format
A_in = np.zeros([I, N], np.float64)
for i in range(I):
A_in[i,:] = kn_to_n(A_in_old[i, :, :], N_k=self.N_k)
if len(np.shape(u_n)) == 2:
u_n = kn_to_n(u_n, N_k = self.N_k)
state_map = np.zeros([2,I],int)
state_map[1,:] = np.arange(I) # same (first) state for all variables.
inner_results = self.computeExpectationsInner(A_in,u_n,state_map,
return_theta=(compute_uncertainty or compute_covariance),
uncertainty_method=uncertainty_method,
warning_cutoff=warning_cutoff)
result_vals = dict()
expectations, uncertainties, covariances = None, None, None
result_vals['mu'] = inner_results['observables']
if compute_uncertainty or compute_covariance or return_theta:
Adiag = np.zeros([2*I,2*I],dtype=np.float64)
diag = np.ones(2*I,dtype=np.float64)
diag[0:I] = diag[I:2*I] = inner_results['observables']-inner_results['Amin']
np.fill_diagonal(Adiag,diag)
Theta = Adiag*inner_results['Theta']*Adiag
if return_theta:
result_vals['Theta'] = Theta
if compute_uncertainty:
covA_ij = np.array(Theta[0:I,0:I]+Theta[I:2*I,I:2*I]-Theta[0:I,I:2*I]-Theta[I:2*I,0:I])
result_vals['sigma'] = np.sqrt(covA_ij[0:I,0:I].diagonal())
if compute_covariance:
# compute estimate of statistical covariance of the observables
result_vals['covariances'] = inner_results['Theta'][0:I,0:I]
return result_vals | 0.0084 |
def yiq_to_rgb(y, i=None, q=None):
"""Convert the color from YIQ coordinates to RGB.
Parameters:
:y:
Tte Y component value [0...1]
:i:
The I component value [0...1]
:q:
The Q component value [0...1]
Returns:
The color as an (r, g, b) tuple in the range:
r[0...1],
g[0...1],
b[0...1]
>>> '({}, {}, {})'.format(*[round(v, 6) for v in yiq_to_rgb(0.592263, 0.458874, -0.0499818)])
'(1.0, 0.5, 1e-06)'
"""
if type(y) in [list,tuple]:
y, i, q = y
r = y + (i * 0.9562) + (q * 0.6210)
g = y - (i * 0.2717) - (q * 0.6485)
b = y - (i * 1.1053) + (q * 1.7020)
return (r, g, b) | 0.014041 |
def _self_pipe(self):
"""
This sets up a self-pipe so we can hand back an fd to the caller
allowing the object to manage event triggers. The ends of the pipe are
set non-blocking so it doesn't really matter if a bunch of events fill
the pipe buffer.
"""
import fcntl
self._poll_fd, self._poll_send = os.pipe()
for fd in [self._poll_fd, self._poll_send]:
fl = fcntl.fcntl(fd, fcntl.F_GETFL)
fcntl.fcntl(fd, fcntl.F_SETFL, fl | os.O_NONBLOCK) | 0.003745 |
def mk_token(opts, tdata):
'''
Mint a new token using the config option hash_type and store tdata with 'token' attribute set
to the token.
This module uses the hash of random 512 bytes as a token.
:param opts: Salt master config options
:param tdata: Token data to be stored with 'token' attirbute of this dict set to the token.
:returns: tdata with token if successful. Empty dict if failed.
'''
redis_client = _redis_client(opts)
if not redis_client:
return {}
hash_type = getattr(hashlib, opts.get('hash_type', 'md5'))
tok = six.text_type(hash_type(os.urandom(512)).hexdigest())
try:
while redis_client.get(tok) is not None:
tok = six.text_type(hash_type(os.urandom(512)).hexdigest())
except Exception as err:
log.warning(
'Authentication failure: cannot get token %s from redis: %s',
tok, err
)
return {}
tdata['token'] = tok
serial = salt.payload.Serial(opts)
try:
redis_client.set(tok, serial.dumps(tdata))
except Exception as err:
log.warning(
'Authentication failure: cannot save token %s to redis: %s',
tok, err
)
return {}
return tdata | 0.002392 |
def good_sequences_to_track(flow, motion_threshold=1.0):
"""Get list of good frames to do tracking in.
Looking at the optical flow, this function chooses a span of frames
that fulfill certain criteria.
These include
* not being too short or too long
* not too low or too high mean flow magnitude
* a low max value (avoids motion blur)
Currently, the cost function for a sequence is hard coded. Sorry about that.
Parameters
-------------
flow : ndarray
The optical flow magnitude
motion_threshold : float
The maximum amount of motion to consider for sequence endpoints.
Returns
------------
sequences : list
Sorted list of (a, b, score) elements (highest scpre first) of sequences
where a sequence is frames with frame indices in the span [a, b].
"""
endpoints = []
in_low = False
for i, val in enumerate(flow):
if val < motion_threshold:
if not in_low:
endpoints.append(i)
in_low = True
else:
if in_low:
endpoints.append(i-1) # Previous was last in a low spot
in_low = False
def mean_score_func(m):
mu = 15
sigma = 8
top_val = normpdf(mu, mu, sigma)
return normpdf(m, mu, sigma) / top_val
def max_score_func(m):
mu = 40
sigma = 8
if m <= mu:
return 1.
else:
top_val = normpdf(mu, mu, sigma)
return normpdf(m, mu, sigma) / top_val
def length_score_func(l):
mu = 30
sigma = 10
top_val = normpdf(mu, mu, sigma)
return normpdf(l, mu, sigma) / top_val
min_length = 5 # frames
sequences = []
for k, i in enumerate(endpoints[:-1]):
for j in endpoints[k+1:]:
length = j - i
if length < min_length:
continue
seq = flow[i:j+1]
m_score = mean_score_func(np.mean(seq))
mx_score = max_score_func(np.max(seq))
l_score = length_score_func(length)
logger.debug("%d, %d scores: (mean=%.5f, max=%.5f, length=%.5f)" % (i,j,m_score, mx_score, l_score))
if min(m_score, mx_score, l_score) < 0.2:
continue
score = m_score + mx_score + l_score
sequences.append((i, j, score))
return sorted(sequences, key=lambda x: x[2], reverse=True) | 0.006743 |
def iso_to_datetime(date):
""" Convert ISO 8601 time format to datetime format
This function converts a date in ISO format, e.g. ``2017-09-14`` to a `datetime` instance, e.g.
``datetime.datetime(2017,9,14,0,0)``
:param date: date in ISO 8601 format
:type date: str
:return: datetime instance
:rtype: datetime
"""
chunks = list(map(int, date.split('T')[0].split('-')))
return datetime.datetime(chunks[0], chunks[1], chunks[2]) | 0.004283 |
def flatten_phases_and_groups(phases_or_groups):
"""Recursively flatten nested lists for the list of phases or groups."""
if isinstance(phases_or_groups, PhaseGroup):
phases_or_groups = [phases_or_groups]
ret = []
for phase in phases_or_groups:
if isinstance(phase, PhaseGroup):
ret.append(phase.flatten())
elif isinstance(phase, collections.Iterable):
ret.extend(flatten_phases_and_groups(phase))
else:
ret.append(phase_descriptor.PhaseDescriptor.wrap_or_copy(phase))
return ret | 0.017208 |
def _patch_stats_request(request):
'''If the request has no filter config, add one that should do what is
expected (include all items)
see: PE-11813
'''
filt = request.get('filter', {})
if not filt.get('config', None):
request['filter'] = filters.date_range('acquired',
gt='1970-01-01T00:00:00Z')
return request | 0.002538 |
def fire(self, name, operation, args=None, **kwargs):
"""Send a message without waiting for a reply
@param name: name of destination service queue
@param operation: name of service operation to invoke
@param args: dictionary of keyword args to pass to operation.
Use this OR kwargs.
@param kwargs: additional args to pass to operation
"""
if args:
if kwargs:
raise TypeError("specify args dict or keyword arguments, not both")
else:
args = kwargs
d = dict(op=operation, args=args)
headers = {'sender': self.add_sysname(self.name)}
dest = self.add_sysname(name)
def _fire(channel):
with Producer(channel) as producer:
producer.publish(d, routing_key=dest,
headers=headers, serializer=self._serializer,
exchange=self._exchange, declare=[self._exchange])
log.debug("sending message to %s", dest)
with connections[self._pool_conn].acquire(block=True) as conn:
_, channel = self.ensure(conn, _fire)
conn.maybe_close_channel(channel) | 0.004174 |
def _bind(self):
"""Bind events to handlers"""
main_window = self.main_window
handlers = self.handlers
c_handlers = self.cell_handlers
# Non wx.Grid events
self.Bind(wx.EVT_MOUSEWHEEL, handlers.OnMouseWheel)
self.Bind(wx.EVT_KEY_DOWN, handlers.OnKey)
# Grid events
self.GetGridWindow().Bind(wx.EVT_MOTION, handlers.OnMouseMotion)
self.Bind(wx.grid.EVT_GRID_RANGE_SELECT, handlers.OnRangeSelected)
# Context menu
self.Bind(wx.grid.EVT_GRID_CELL_RIGHT_CLICK, handlers.OnContextMenu)
# Cell code events
main_window.Bind(self.EVT_CMD_CODE_ENTRY, c_handlers.OnCellText)
main_window.Bind(self.EVT_CMD_INSERT_BMP, c_handlers.OnInsertBitmap)
main_window.Bind(self.EVT_CMD_LINK_BMP, c_handlers.OnLinkBitmap)
main_window.Bind(self.EVT_CMD_VIDEO_CELL, c_handlers.OnLinkVLCVideo)
main_window.Bind(self.EVT_CMD_INSERT_CHART,
c_handlers.OnInsertChartDialog)
# Cell attribute events
main_window.Bind(self.EVT_CMD_COPY_FORMAT, c_handlers.OnCopyFormat)
main_window.Bind(self.EVT_CMD_PASTE_FORMAT, c_handlers.OnPasteFormat)
main_window.Bind(self.EVT_CMD_FONT, c_handlers.OnCellFont)
main_window.Bind(self.EVT_CMD_FONTSIZE, c_handlers.OnCellFontSize)
main_window.Bind(self.EVT_CMD_FONTBOLD, c_handlers.OnCellFontBold)
main_window.Bind(self.EVT_CMD_FONTITALICS,
c_handlers.OnCellFontItalics)
main_window.Bind(self.EVT_CMD_FONTUNDERLINE,
c_handlers.OnCellFontUnderline)
main_window.Bind(self.EVT_CMD_FONTSTRIKETHROUGH,
c_handlers.OnCellFontStrikethrough)
main_window.Bind(self.EVT_CMD_FROZEN, c_handlers.OnCellFrozen)
main_window.Bind(self.EVT_CMD_LOCK, c_handlers.OnCellLocked)
main_window.Bind(self.EVT_CMD_BUTTON_CELL, c_handlers.OnButtonCell)
main_window.Bind(self.EVT_CMD_MARKUP, c_handlers.OnCellMarkup)
main_window.Bind(self.EVT_CMD_MERGE, c_handlers.OnMerge)
main_window.Bind(self.EVT_CMD_JUSTIFICATION,
c_handlers.OnCellJustification)
main_window.Bind(self.EVT_CMD_ALIGNMENT, c_handlers.OnCellAlignment)
main_window.Bind(self.EVT_CMD_BORDERWIDTH,
c_handlers.OnCellBorderWidth)
main_window.Bind(self.EVT_CMD_BORDERCOLOR,
c_handlers.OnCellBorderColor)
main_window.Bind(self.EVT_CMD_BACKGROUNDCOLOR,
c_handlers.OnCellBackgroundColor)
main_window.Bind(self.EVT_CMD_TEXTCOLOR, c_handlers.OnCellTextColor)
main_window.Bind(self.EVT_CMD_ROTATION0,
c_handlers.OnTextRotation0)
main_window.Bind(self.EVT_CMD_ROTATION90,
c_handlers.OnTextRotation90)
main_window.Bind(self.EVT_CMD_ROTATION180,
c_handlers.OnTextRotation180)
main_window.Bind(self.EVT_CMD_ROTATION270,
c_handlers.OnTextRotation270)
main_window.Bind(self.EVT_CMD_TEXTROTATATION,
c_handlers.OnCellTextRotation)
# Cell selection events
self.Bind(wx.grid.EVT_GRID_CMD_SELECT_CELL, c_handlers.OnCellSelected)
# Grid edit mode events
main_window.Bind(self.EVT_CMD_ENTER_SELECTION_MODE,
handlers.OnEnterSelectionMode)
main_window.Bind(self.EVT_CMD_EXIT_SELECTION_MODE,
handlers.OnExitSelectionMode)
# Grid view events
main_window.Bind(self.EVT_CMD_VIEW_FROZEN, handlers.OnViewFrozen)
main_window.Bind(self.EVT_CMD_REFRESH_SELECTION,
handlers.OnRefreshSelectedCells)
main_window.Bind(self.EVT_CMD_TIMER_TOGGLE,
handlers.OnTimerToggle)
self.Bind(wx.EVT_TIMER, handlers.OnTimer)
main_window.Bind(self.EVT_CMD_DISPLAY_GOTO_CELL_DIALOG,
handlers.OnDisplayGoToCellDialog)
main_window.Bind(self.EVT_CMD_GOTO_CELL, handlers.OnGoToCell)
main_window.Bind(self.EVT_CMD_ZOOM_IN, handlers.OnZoomIn)
main_window.Bind(self.EVT_CMD_ZOOM_OUT, handlers.OnZoomOut)
main_window.Bind(self.EVT_CMD_ZOOM_STANDARD, handlers.OnZoomStandard)
main_window.Bind(self.EVT_CMD_ZOOM_FIT, handlers.OnZoomFit)
# Find events
main_window.Bind(self.EVT_CMD_FIND, handlers.OnFind)
main_window.Bind(self.EVT_CMD_REPLACE, handlers.OnShowFindReplace)
main_window.Bind(wx.EVT_FIND, handlers.OnReplaceFind)
main_window.Bind(wx.EVT_FIND_NEXT, handlers.OnReplaceFind)
main_window.Bind(wx.EVT_FIND_REPLACE, handlers.OnReplace)
main_window.Bind(wx.EVT_FIND_REPLACE_ALL, handlers.OnReplaceAll)
main_window.Bind(wx.EVT_FIND_CLOSE, handlers.OnCloseFindReplace)
# Grid change events
main_window.Bind(self.EVT_CMD_INSERT_ROWS, handlers.OnInsertRows)
main_window.Bind(self.EVT_CMD_INSERT_COLS, handlers.OnInsertCols)
main_window.Bind(self.EVT_CMD_INSERT_TABS, handlers.OnInsertTabs)
main_window.Bind(self.EVT_CMD_DELETE_ROWS, handlers.OnDeleteRows)
main_window.Bind(self.EVT_CMD_DELETE_COLS, handlers.OnDeleteCols)
main_window.Bind(self.EVT_CMD_DELETE_TABS, handlers.OnDeleteTabs)
main_window.Bind(self.EVT_CMD_SHOW_RESIZE_GRID_DIALOG,
handlers.OnResizeGridDialog)
main_window.Bind(self.EVT_CMD_QUOTE, handlers.OnQuote)
main_window.Bind(wx.grid.EVT_GRID_ROW_SIZE, handlers.OnRowSize)
main_window.Bind(wx.grid.EVT_GRID_COL_SIZE, handlers.OnColSize)
main_window.Bind(self.EVT_CMD_SORT_ASCENDING, handlers.OnSortAscending)
main_window.Bind(self.EVT_CMD_SORT_DESCENDING,
handlers.OnSortDescending)
# Undo/Redo events
main_window.Bind(self.EVT_CMD_UNDO, handlers.OnUndo)
main_window.Bind(self.EVT_CMD_REDO, handlers.OnRedo) | 0.000328 |
def _inning_actions(self, soup, inning_number, inning_id):
"""
Inning Actions.
:param soup: Beautifulsoup object
:param inning_number: Inning Number
:param inning_id: Inning Id(0:home, 1:away)
"""
# at bat(batter box data) & pitching data
for act in soup.find_all('action'):
self.actions.append(InningAction.action(act, self.game, self.players.rosters, inning_number, inning_id)) | 0.006593 |
def zpopmin(self, name, count=None):
"""
Remove and return up to ``count`` members with the lowest scores
from the sorted set ``name``.
"""
args = (count is not None) and [count] or []
options = {
'withscores': True
}
return self.execute_command('ZPOPMIN', name, *args, **options) | 0.005618 |
def get_ar(self):
"""Create a temporary AR to fetch the fields from
"""
if not self.tmp_ar:
logger.info("*** CREATING TEMPORARY AR ***")
self.tmp_ar = self.context.restrictedTraverse(
"portal_factory/AnalysisRequest/Request new analyses")
return self.tmp_ar | 0.006079 |
def manage_submissions(self):
"""
If there are no or only one submissions left, get new submissions.
This function manages URL creation and the specifics for front page
or subreddit mode.
"""
if not hasattr(self, 'submissions') or len(self.submissions) == 1:
self.submissions = []
if self.options['mode'] == 'front':
# If there are no login details, the standard front
# page will be displayed.
if self.options['password'] and self.options['username']:
self.login()
url = 'http://reddit.com/.json?sort={0}'.format(self.options['sort'])
self.submissions = self.get_submissions(url)
elif self.options['mode'] == 'subreddit':
for subreddit in self.options['subreddits']:
url = 'http://reddit.com/r/{0}/.json?sort={1}'.format(
subreddit, self.options['limit'])
self.submissions += self.get_submissions(url)
else:
return | 0.00273 |
def get_node_type(type_str):
"""Returns the NodeType given a name of a JSON function object."""
if type_str == "container":
return NodeType.CONTAINER
elif type_str == "loop_plate":
return NodeType.LOOP
elif type_str == "assign":
return NodeType.ASSIGN
elif type_str == "condition":
return NodeType.CONDITION
elif type_str == "decision":
return NodeType.DECISION
else:
raise ValueError("Unrecognized type string: ", type_str) | 0.002 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.