text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def _installed_snpeff_genome(base_name, config):
"""Find the most recent installed genome for snpEff with the given name.
"""
snpeff_config_file = os.path.join(config_utils.get_program("snpeff", config, "dir"),
"snpEff.config")
if os.path.exists(snpeff_config_file):
data_dir = _find_snpeff_datadir(snpeff_config_file)
dbs = [d for d in sorted(glob.glob(os.path.join(data_dir, "%s*" % base_name)), reverse=True)
if os.path.isdir(d)]
else:
data_dir = None
dbs = []
if len(dbs) == 0:
raise ValueError("No database found in %s for %s" % (data_dir, base_name))
else:
return data_dir, os.path.split(dbs[0])[-1] | 0.00545 |
def ToABMag(self, wave, flux, **kwargs):
"""Convert to ``abmag``.
.. math::
\\textnormal{AB}_{\\nu} = -2.5 \\; \\log(h \\lambda \\; \\textnormal{photlam}) - 48.6
where :math:`h` is as defined in :ref:`pysynphot-constants`.
Parameters
----------
wave, flux : number or array_like
Wavelength and flux values to be used for conversion.
kwargs : dict
Extra keywords (not used).
Returns
-------
result : number or array_like
Converted values.
"""
arg = H * flux * wave
return -1.085736 * N.log(arg) + ABZERO | 0.004539 |
def calculate_dependencies():
"""Calculate test dependencies
First do a topological sorting based on the dependencies.
Then sort the different dependency groups based on priorities.
"""
order = []
for group in toposort(dependencies):
priority_sorted_group = sorted(group, key=lambda x: (priorities[x], x))
order.extend(priority_sorted_group)
return order | 0.006897 |
def run(self, dag):
"""
Run one pass of cx cancellation on the circuit
Args:
dag (DAGCircuit): the directed acyclic graph to run on.
Returns:
DAGCircuit: Transformed DAG.
"""
cx_runs = dag.collect_runs(["cx"])
for cx_run in cx_runs:
# Partition the cx_run into chunks with equal gate arguments
partition = []
chunk = []
for i in range(len(cx_run) - 1):
chunk.append(cx_run[i])
qargs0 = cx_run[i].qargs
qargs1 = cx_run[i + 1].qargs
if qargs0 != qargs1:
partition.append(chunk)
chunk = []
chunk.append(cx_run[-1])
partition.append(chunk)
# Simplify each chunk in the partition
for chunk in partition:
if len(chunk) % 2 == 0:
for n in chunk:
dag.remove_op_node(n)
else:
for n in chunk[1:]:
dag.remove_op_node(n)
return dag | 0.00177 |
def get_feed(self, buckets=None, since=None, results=15, start=0):
"""
Returns feed (news, blogs, reviews, audio, video) for the catalog artists; response depends on requested buckets
Args:
Kwargs:
buckets (list): A list of strings specifying which feed items to retrieve
results (int): An integer number of results to return
start (int): An integer starting value for the result set
Returns:
A list of news, blogs, reviews, audio or video document dicts;
Example:
>>> c
<catalog - my_artists>
>>> c.get_feed(results=15)
{u'date_found': u'2011-02-06T07:50:25',
u'date_posted': u'2011-02-06T07:50:23',
u'id': u'caec686c0dff361e4c53dceb58fb9d2f',
u'name': u'Linkin Park \u2013 \u201cWaiting For The End\u201d + \u201cWhen They Come For Me\u201d 2/5 SNL',
u'references': [{u'artist_id': u'ARQUMH41187B9AF699',
u'artist_name': u'Linkin Park'}],
u'summary': u'<span>Linkin</span> <span>Park</span> performed "Waiting For The End" and "When They Come For Me" on Saturday Night Live. Watch the videos below and pick up their album A Thousand Suns on iTunes, Amazon MP3, CD Social Bookmarking ... ',
u'type': u'blogs',
u'url': u'http://theaudioperv.com/2011/02/06/linkin-park-waiting-for-the-end-when-they-come-for-me-25-snl/'}
>>>
"""
kwargs = {}
kwargs['bucket'] = buckets or []
if since:
kwargs['since']=since
response = self.get_attribute("feed", results=results, start=start, **kwargs)
rval = ResultList(response['feed'])
return rval | 0.019324 |
def update(self, request, *args, **kwargs):
"""Update the ``Relation`` object.
Reject the update if user doesn't have ``EDIT`` permission on
the collection referenced in the ``Relation``.
"""
instance = self.get_object()
if (not request.user.has_perm('edit_collection', instance.collection)
and not request.user.is_superuser):
return Response(status=status.HTTP_401_UNAUTHORIZED)
return super().update(request, *args, **kwargs) | 0.003899 |
def __disambiguate_with_lexicon(self, docs, lexicon, hiddenWords):
""" Teostab lemmade leksikoni järgi mitmeste morf analüüside
ühestamise - eemaldab üleliigsed analüüsid;
Toetub ideele "üks tähendus teksti kohta": kui mitmeseks jäänud
lemma esineb tekstis/korpuses ka mujal ning lõppkokkuvõttes
esineb sagedamini kui alternatiivsed analüüsid, siis tõenäoliselt
see ongi õige lemma/analüüs;
"""
for d in range(len(docs)):
for w in range(len(docs[d][WORDS])):
word = docs[d][WORDS][w]
# Jätame vahele nn peidetud sõnad
if (d, w) in hiddenWords:
continue
# Vaatame vaid mitmeseks jäänud analüüsidega sõnu
if len(word[ANALYSIS]) > 1:
# 1) Leiame suurima esinemissageduse mitmeste lemmade seas
highestFreq = 0
for analysis in word[ANALYSIS]:
lemma = analysis[ROOT]+'ma' if analysis[POSTAG]=='V' else analysis[ROOT]
if lemma in lexicon and lexicon[lemma] > highestFreq:
highestFreq = lexicon[lemma]
if highestFreq > 0:
# 2) Jätame välja kõik analüüsid, mille lemma esinemissagedus
# on väiksem kui suurim esinemissagedus;
toDelete = []
for analysis in word[ANALYSIS]:
lemma = analysis[ROOT]+'ma' if analysis[POSTAG]=='V' else analysis[ROOT]
freq = lexicon[lemma] if lemma in lexicon else 0
if freq < highestFreq:
toDelete.append(analysis)
for analysis in toDelete:
word[ANALYSIS].remove(analysis) | 0.005219 |
def sanitize(name):
"""
Sanitize the specified ``name`` for use with breathe directives.
**Parameters**
``name`` (:class:`python:str`)
The name to be sanitized.
**Return**
:class:`python:str`
The input ``name`` sanitized to use with breathe directives (primarily for use
with ``.. doxygenfunction::``). Replacements such as ``"<" -> "<"`` are
performed, as well as removing spaces ``"< " -> "<"`` must be done. Breathe is
particularly sensitive with respect to whitespace.
"""
return name.replace(
"<", "<"
).replace(
">", ">"
).replace(
"&", "&"
).replace(
"< ", "<"
).replace(
" >", ">"
).replace(
" &", "&"
).replace(
"& ", "&"
) | 0.004957 |
def joint_sfs_scaled(dac1, dac2, n1=None, n2=None):
"""Compute the joint site frequency spectrum between two populations,
scaled such that a constant value is expected across the spectrum for
neutral variation, constant population size and unrelated populations.
Parameters
----------
dac1 : array_like, int, shape (n_variants,)
Derived allele counts for the first population.
dac2 : array_like, int, shape (n_variants,)
Derived allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_scaled : ndarray, int, shape (n1 + 1, n2 + 1)
Array where the (i, j)th element is the scaled frequency of variant
sites with i derived alleles in the first population and j derived
alleles in the second population.
"""
# compute site frequency spectrum
s = joint_sfs(dac1, dac2, n1=n1, n2=n2)
# apply scaling
s = scale_joint_sfs(s)
return s | 0.000962 |
def formatDateParms(context, date_id):
""" Obtain and reformat the from and to dates
into a printable date parameter construct
"""
from_date = context.REQUEST.get('%s_fromdate' % date_id, None)
to_date = context.REQUEST.get('%s_todate' % date_id, None)
date_parms = {}
if from_date and to_date:
date_parms = 'from %s to %s' % (from_date, to_date)
elif from_date:
date_parms = 'from %s' % (from_date)
elif to_date:
date_parms = 'to %s' % (to_date)
return date_parms | 0.001873 |
def _src_path_stats(self, src_path):
"""
Return a dict of statistics for the source file at `src_path`.
"""
# Find violation lines
violation_lines = self.violation_lines(src_path)
violations = sorted(self._diff_violations()[src_path].violations)
# Load source snippets (if the report will display them)
# If we cannot load the file, then fail gracefully
if self.INCLUDE_SNIPPETS:
try:
snippets = Snippet.load_snippets_html(src_path, violation_lines)
except IOError:
snippets = []
else:
snippets = []
return {
'percent_covered': self.percent_covered(src_path),
'violation_lines': TemplateReportGenerator.combine_adjacent_lines(violation_lines),
'violations': violations,
'snippets_html': snippets
} | 0.004386 |
def notify(self, event_id):
"""Let the FlowControl system know that there is an event."""
self._event_buffer.extend([event_id])
self._event_count += 1
if self._event_count >= self.threshold:
logger.debug("Eventcount >= threshold")
self.make_callback(kind="event") | 0.00627 |
def create_grid_layout(rowNum=8, colNum=12, row_labels=None, col_labels=None,
xlim=None, ylim=None,
xlabel=None, ylabel=None,
row_label_xoffset=None, col_label_yoffset=None,
hide_tick_labels=True, hide_tick_lines=False,
hspace=0, wspace=0,
row_labels_kwargs={},
col_labels_kwargs={},
subplot_kw={},
xscale=None, yscale=None,
plotFuncList=None):
"""
Creates a figure with a 2d matrix of subplots (rows=rowNum, cols=colNum), automatically annotating
and setting default plotting settings for the subplots.
The function creates a main axes that is invisible but
can be used for setting x and y labels.
On top of the main axes, it creates the subplots, which are used for plotting.
Parameters
----------
rowNum : int
Specifies the number of rows
colNum : int
Specifies the number of columns
row_labels : [list of str, None]
Used for labeling each row of subplots
If set to None, no labels are written. Default is None.
col_labels : [list of str, None]
Used for labeling each col of subplots.
If set to None, no labels are written. Default is None.
{_graph_grid_layout}
plotFuncList : list of callable functions
Each function must accept row, col arguments
Each of these functions must know how to plot using the row, col arguments
Returns
-------
{_graph_grid_layout_returns}
How to use
----------
Call this function with the desired parameters.
Use the references to the individual subplot axis to plot.
Call autoscale() command after plotting on the subplots in order to adjust their limits properly.
"""
fig = plt.gcf() # get reference to current open figure
# Configure main axis appearance
ax_main = plt.gca()
# Hides the main axis but retains the ability to use xlabel, ylabel
for spine in ax_main.spines.values():
spine.set_visible(False)
ax_main.patch.set_alpha(0)
# ax_main.axison = False # If true, xlabel and ylabel do not work
_set_tick_lines_visibility(ax_main, False)
_set_tick_labels_visibility(ax_main, False)
# Configure subplot appearance
subplot_kw.update(xlim=xlim, ylim=ylim, xscale=xscale,
yscale=yscale) # This could potentially confuse a user
plt.subplots_adjust(wspace=wspace, hspace=hspace)
_, ax_subplots = plt.subplots(rowNum, colNum, squeeze=False,
subplot_kw=subplot_kw, num=fig.number)
# configure defaults for appearance of row and col labels
row_labels_kwargs.setdefault('horizontalalignment', 'right')
row_labels_kwargs.setdefault('verticalalignment', 'center')
row_labels_kwargs.setdefault('size', 'x-large')
col_labels_kwargs.setdefault('horizontalalignment', 'center')
col_labels_kwargs.setdefault('verticalalignment', 'top')
col_labels_kwargs.setdefault('size', 'x-large')
# Translate using figure coordinates
row_label_translation = -0.10
if row_label_xoffset:
row_label_translation -= row_label_xoffset
col_label_translation = -0.10
if col_label_yoffset:
col_label_translation -= col_label_yoffset
offset_row_labels = transforms.ScaledTranslation(row_label_translation, 0, fig.dpi_scale_trans)
offset_col_labels = transforms.ScaledTranslation(0, col_label_translation, fig.dpi_scale_trans)
for (row, col), ax in numpy.ndenumerate(ax_subplots):
plt.sca(ax) # Sets the current axis for all plotting operations
if row_labels is not None and col == 0:
plt.text(0, 0.5, '{0}'.format(row_labels[row]),
transform=(ax.transAxes + offset_row_labels), **row_labels_kwargs)
# plt.text(0 + row_label_translation, 0.5, '{0}'.format(row_labels[row]), transform=(ax.transAxes), **row_labels_kwargs)
if col_labels is not None and row == (rowNum - 1):
plt.text(0.5, 0, '{0}'.format(col_labels[col]),
transform=(ax.transAxes + offset_col_labels), **col_labels_kwargs)
# plt.text(0.5, 0+ col_label_translation, '{0}'.format(col_labels[col]), transform=(ax.transAxes), **col_labels_kwargs)
if row == 0 and col == colNum - 1:
visible = [False, False]
if xlabel:
ax.xaxis.tick_top()
ax.xaxis.set_label_position('top')
ax.set_xlabel(xlabel, fontsize='large', labelpad=5)
visible[0] = True
if ylabel:
ax.yaxis.tick_right()
ax.yaxis.set_label_position('right')
ax.set_ylabel(ylabel, fontsize='large', labelpad=5)
visible[1] = True
_set_tick_lines_visibility(ax, visible)
_set_tick_labels_visibility(ax, visible)
else:
if hide_tick_lines:
_set_tick_lines_visibility(ax, False)
if hide_tick_labels:
_set_tick_labels_visibility(ax, False)
if plotFuncList is not None:
for plot_function in plotFuncList:
plot_function(row, col)
# Make sure this is right before the return statement.
# It is here to comply with a user's expectation to calls that make reference to gca().
plt.sca(ax_main)
return (ax_main, ax_subplots) | 0.002158 |
def build_request_signature(self, saml_request, relay_state, sign_algorithm=OneLogin_Saml2_Constants.RSA_SHA1):
"""
Builds the Signature of the SAML Request.
:param saml_request: The SAML Request
:type saml_request: string
:param relay_state: The target URL the user should be redirected to
:type relay_state: string
:param sign_algorithm: Signature algorithm method
:type sign_algorithm: string
"""
return self.__build_signature(saml_request, relay_state, 'SAMLRequest', sign_algorithm) | 0.007018 |
def to_neo4j(graph, neo_connection, use_tqdm=False):
"""Upload a BEL graph to a Neo4j graph database using :mod:`py2neo`.
:param pybel.BELGraph graph: A BEL Graph
:param neo_connection: A :mod:`py2neo` connection object. Refer to the
`py2neo documentation <http://py2neo.org/v3/database.html#the-graph>`_ for how to build this object.
:type neo_connection: str or py2neo.Graph
Example Usage:
>>> import py2neo
>>> import pybel
>>> from pybel.examples import sialic_acid_graph
>>> neo_graph = py2neo.Graph("http://localhost:7474/db/data/") # use your own connection settings
>>> pybel.to_neo4j(sialic_acid_graph, neo_graph)
"""
import py2neo
if isinstance(neo_connection, str):
neo_connection = py2neo.Graph(neo_connection)
tx = neo_connection.begin()
node_map = {}
nodes = list(graph)
if use_tqdm:
nodes = tqdm(nodes, desc='nodes')
for node in nodes:
if NAMESPACE not in node or VARIANTS in node or MEMBERS in node or FUSION in node:
attrs = {'name': node.as_bel()}
else:
attrs = {'namespace': node.namespace}
if node.name and node.identifier:
attrs['name'] = node.name
attrs['identifier'] = node.identifier
elif node.identifier and not node.name:
attrs['name'] = node.identifier
elif node.name and not node.identifier:
attrs['name'] = node.name
node_map[node] = py2neo.Node(node.function, **attrs)
tx.create(node_map[node])
edges = graph.edges(keys=True, data=True)
if use_tqdm:
edges = tqdm(edges, desc='edges')
for u, v, key, node in edges:
rel_type = node[RELATION]
d = node.copy()
del d[RELATION]
attrs = {}
annotations = d.pop(ANNOTATIONS, None)
if annotations:
for annotation, values in annotations.items():
attrs[annotation] = list(values)
citation = d.pop(CITATION, None)
if citation:
attrs[CITATION] = '{}:{}'.format(citation[CITATION_TYPE], citation[CITATION_REFERENCE])
if EVIDENCE in d:
attrs[EVIDENCE] = d[EVIDENCE]
for side in (SUBJECT, OBJECT):
side_data = d.get(side)
if side_data:
attrs.update(flatten_dict(side_data, parent_key=side))
rel = py2neo.Relationship(node_map[u], rel_type, node_map[v], key=key, **attrs)
tx.create(rel)
tx.commit() | 0.002359 |
def get_design_run_results(self, data_view_id, run_uuid):
"""
Retrieves the results of an existing designrun
:param data_view_id: The ID number of the data view to which the
run belongs, as a string
:type data_view_id: str
:param run_uuid: The UUID of the design run to retrieve results from
:type run_uuid: str
:return: A :class:`DesignResults` object
"""
url = routes.get_data_view_design_results(data_view_id, run_uuid)
response = self._get(url).json()
result = response["data"]
return DesignResults(
best_materials=result.get("best_material_results"),
next_experiments=result.get("next_experiment_results")
) | 0.002642 |
def __build_sign_query(saml_data, relay_state, algorithm, saml_type, lowercase_urlencoding=False):
"""
Build sign query
:param saml_data: The Request data
:type saml_data: str
:param relay_state: The Relay State
:type relay_state: str
:param algorithm: The Signature Algorithm
:type algorithm: str
:param saml_type: The target URL the user should be redirected to
:type saml_type: string SAMLRequest | SAMLResponse
:param lowercase_urlencoding: lowercase or no
:type lowercase_urlencoding: boolean
"""
sign_data = ['%s=%s' % (saml_type, OneLogin_Saml2_Utils.escape_url(saml_data, lowercase_urlencoding))]
if relay_state is not None:
sign_data.append('RelayState=%s' % OneLogin_Saml2_Utils.escape_url(relay_state, lowercase_urlencoding))
sign_data.append('SigAlg=%s' % OneLogin_Saml2_Utils.escape_url(algorithm, lowercase_urlencoding))
return '&'.join(sign_data) | 0.005911 |
def read_table_pattern(self, header_pattern, row_pattern, footer_pattern,
postprocess=str, attribute_name=None,
last_one_only=True):
"""
Parse table-like data. A table composes of three parts: header,
main body, footer. All the data matches "row pattern" in the main body
will be returned.
Args:
header_pattern (str): The regular expression pattern matches the
table header. This pattern should match all the text
immediately before the main body of the table. For multiple
sections table match the text until the section of
interest. MULTILINE and DOTALL options are enforced, as a
result, the "." meta-character will also match "\n" in this
section.
row_pattern (str): The regular expression matches a single line in
the table. Capture interested field using regular expression
groups.
footer_pattern (str): The regular expression matches the end of the
table. E.g. a long dash line.
postprocess (callable): A post processing function to convert all
matches. Defaults to str, i.e., no change.
attribute_name (str): Name of this table. If present the parsed data
will be attached to "data. e.g. self.data["efg"] = [...]
last_one_only (bool): All the tables will be parsed, if this option
is set to True, only the last table will be returned. The
enclosing list will be removed. i.e. Only a single table will
be returned. Default to be True.
Returns:
List of tables. 1) A table is a list of rows. 2) A row if either a list of
attribute values in case the the capturing group is defined without name in
row_pattern, or a dict in case that named capturing groups are defined by
row_pattern.
"""
with zopen(self.filename, 'rt') as f:
text = f.read()
table_pattern_text = header_pattern + r"\s*^(?P<table_body>(?:\s+" + \
row_pattern + r")+)\s+" + footer_pattern
table_pattern = re.compile(table_pattern_text, re.MULTILINE | re.DOTALL)
rp = re.compile(row_pattern)
tables = []
for mt in table_pattern.finditer(text):
table_body_text = mt.group("table_body")
table_contents = []
for line in table_body_text.split("\n"):
ml = rp.search(line)
d = ml.groupdict()
if len(d) > 0:
processed_line = {k: postprocess(v) for k, v in d.items()}
else:
processed_line = [postprocess(v) for v in ml.groups()]
table_contents.append(processed_line)
tables.append(table_contents)
if last_one_only:
retained_data = tables[-1]
else:
retained_data = tables
if attribute_name is not None:
self.data[attribute_name] = retained_data
return retained_data | 0.003119 |
def load_file(self, path=None, just_settings=False):
"""
Loads a data file. After the file is loaded, calls self.after_load_file(self),
which you can overwrite if you like!
just_settings=True will only load the configuration of the controls,
and will not plot anything or run after_load_file
"""
# if it's just the settings file, make a new databox
if just_settings:
d = _d.databox()
header_only = True
# otherwise use the internal databox
else:
d = self
header_only = False
# import the settings if they exist in the header
if not None == _d.databox.load_file(d, path, filters=self.file_type, header_only=header_only, quiet=just_settings):
# loop over the autosettings and update the gui
for x in self._autosettings_controls: self._load_gui_setting(x,d)
# always sync the internal data
self._synchronize_controls()
# plot the data if this isn't just a settings load
if not just_settings:
self.plot()
self.after_load_file() | 0.006867 |
def list_permissions(self, group_name=None, resource=None):
"""
List permission sets associated filtering by group and/or resource.
Args:
group_name (string): Name of group.
resource (intern.resource.boss.Resource): Identifies which data
model object to operate on.
Returns:
(list): List of permissions.
Raises:
requests.HTTPError on failure.
"""
self.project_service.set_auth(self._token_project)
return self.project_service.list_permissions(group_name, resource) | 0.003361 |
def to_array(self):
"""
Serializes this VideoNote to a dictionary.
:return: dictionary representation of this object.
:rtype: dict
"""
array = super(VideoNote, self).to_array()
array['file_id'] = u(self.file_id) # py2: type unicode, py3: type str
array['length'] = int(self.length) # type int
array['duration'] = int(self.duration) # type int
if self.thumb is not None:
array['thumb'] = self.thumb.to_array() # type PhotoSize
if self.file_size is not None:
array['file_size'] = int(self.file_size) # type int
return array | 0.003082 |
def dynamic_content_item_show(self, id, **kwargs):
"https://developer.zendesk.com/rest_api/docs/core/dynamic_content#show-item"
api_path = "/api/v2/dynamic_content/items/{id}.json"
api_path = api_path.format(id=id)
return self.call(api_path, **kwargs) | 0.010601 |
def pipe(*args):
"""
Takes as parameters several dicts, each with the same
parameters passed to popen.
Runs the various processes in a pipeline, connecting
the stdout of every process except the last with the
stdin of the next process.
Adapted from http://www.enricozini.org/2009/debian/python-pipes/
"""
if len(args) < 2:
raise ValueError("pipe needs at least 2 processes")
# Set stdout=PIPE in every subprocess except the last
for i in args[:-1]:
i["stdout"] = subprocess.PIPE
# Runs all subprocesses connecting stdins and stdouts to create the
# pipeline. Closes stdouts to avoid deadlocks.
popens = [popen_sp(**args[0])]
for i in range(1, len(args)):
args[i]["stdin"] = popens[i - 1].stdout
popens.append(popen_sp(**args[i]))
popens[i - 1].stdout.close()
# Returns the array of subprocesses just created
return popens | 0.00107 |
def make_flask_url_dispatcher():
"""Return an URL dispatcher based on the current :ref:`request context
<flask:request-context>`.
You generally don’t need to call this directly.
The context is used when the dispatcher is first created but not
afterwards. It is not required after this function has returned.
Dispatch to the context’s app URLs below the context’s root URL.
If the app has a ``SERVER_NAME`` :ref:`config <flask:config>`, also
accept URLs that have that domain name or a subdomain thereof.
"""
def parse_netloc(netloc):
"""Return (hostname, port)."""
parsed = urlparse.urlsplit('http://' + netloc)
return parsed.hostname, parsed.port
app = current_app._get_current_object()
root_path = request.script_root
server_name = app.config.get('SERVER_NAME')
if server_name:
hostname, port = parse_netloc(server_name)
def accept(url):
"""Accept any URL scheme; also accept subdomains."""
return url.hostname is not None and (
url.hostname == hostname or
url.hostname.endswith('.' + hostname))
else:
scheme = request.scheme
hostname, port = parse_netloc(request.host)
if (scheme, port) in DEFAULT_PORTS:
port = None
def accept(url):
"""Do not accept subdomains."""
return (url.scheme, url.hostname) == (scheme, hostname)
def dispatch(url_string):
if isinstance(url_string, bytes):
url_string = url_string.decode('utf8')
url = urlparse.urlsplit(url_string)
url_port = url.port
if (url.scheme, url_port) in DEFAULT_PORTS:
url_port = None
if accept(url) and url_port == port and url.path.startswith(root_path):
netloc = url.netloc
if url.port and not url_port:
netloc = netloc.rsplit(':', 1)[0] # remove default port
base_url = '%s://%s%s' % (url.scheme, netloc, root_path)
path = url.path[len(root_path):]
if url.query:
path += '?' + url.query
# Ignore url.fragment
return app, base_url, path
return dispatch | 0.000448 |
def get_version():
"""
Get version of pydf and wkhtmltopdf binary
:return: version string
"""
try:
wk_version = _string_execute('-V')
except Exception as e:
# we catch all errors here to make sure we get a version no matter what
wk_version = '%s: %s' % (e.__class__.__name__, e)
return 'pydf version: %s\nwkhtmltopdf version: %s' % (VERSION, wk_version) | 0.002463 |
def SyncManagedObject(self, difference, deleteNotPresent=False, noVersionFilter=False, dumpXml=None):
"""
Syncs Managed Object.
Method takes the difference object (output of CompareManagedObject) and applies the differences on reference Managed Object.
- difference specifies the Difference object (output of ComparesManagedObject) which has differences of the properties of two or more Managed Objects.
- deleteNotPresent, if set as True, any missing MOs in reference Managed Object set will be deleted.
- noVersionFilter, If set as True, minversion for Mos or properties to be added in reference Managed Object will not be checked.
"""
from UcsBase import WriteUcsWarning, WriteObject, UcsUtils, ManagedObject, AbstractFilter, GenericMO, \
SyncAction, UcsException, UcsValidationException
from Ucs import ClassFactory, Pair, ConfigMap
if ((difference == None) or (isinstance(difference, list) and (len(difference) == 0))):
raise UcsValidationException("difference object parameter is not provided.")
# raise Exception("[Error]: SyncManagedObject: Difference Object can not be Null")
configMap = ConfigMap()
configDoc = xml.dom.minidom.parse(UcsUtils.GetSyncMoConfigFilePath())
moConfigMap = {}
moConfigMap = UcsUtils.GetSyncMoConfig(configDoc)
for moDiff in difference:
mo = moDiff.InputObject
classId = mo.classId
gMoDiff = None
metaClassId = UcsUtils.FindClassIdInMoMetaIgnoreCase(classId)
if metaClassId == None:
# TODO: Add Warning/Error messages in Logger.
WriteUcsWarning("Ignoring [%s]. Unknown ClassId [%s]." % (moDiff.InputObject.getattr("Dn"), classId))
continue
moConfigs = []
moConfig = None
if UcsUtils.WordL(classId) in moConfigMap:
moConfigs = moConfigMap[UcsUtils.WordL(classId)]
if moConfigs:
for conf in moConfigs:
if (self._version.CompareTo(conf.getActionVersion()) == 0):
moConfig = conf
# Removes Difference Object.
if ((moDiff.SideIndicator == UcsMoDiff.REMOVE) and (deleteNotPresent)):
if (
moConfig is not None and moConfig.getAction() == SyncAction.ignore and moConfig.getStatus() is not None and moConfig.getStatus().contains(
Status.DELETED)):
if (moConfig.getIgnoreReason() is None or len(moConfig.getIgnoreReason()) == 0):
continue
ir = moConfig.getIgnoreReason()
try:
for prop in ir:
propValue = ir[prop]
if mo.getattr(prop):
attrValue = mo.getattr(prop)
else:
attrValue = None
if (not propValue or not attrValue or propValue != attrValue):
ignore = False
break
except Exception, err:
ignore = False
if ignore:
continue
gMoDiff = ManagedObject(classId)
gMoDiff.setattr("Dn", mo.getattr("Dn"))
gMoDiff.setattr("Status", Status().DELETED)
gMoDiff = GenericMO(gMoDiff, WriteXmlOption.AllConfig) # gMoDiff should be generic object
if moDiff.SideIndicator == UcsMoDiff.ADD_MODIFY:
gMoDiff = ManagedObject(classId)
addExists = False
moMeta = UcsUtils.IsPropertyInMetaIgnoreCase(classId, "Meta")
if ((moMeta != None) and ('Add' in moMeta.verbs)):
addExists = True
# Add Difference Object.
if ((addExists) and ((moDiff.DiffProperty == None) or (len(moDiff.DiffProperty) == 0))):
if (
moConfig is not None and moConfig.getAction() == SyncAction.ignore and moConfig.getStatus() is not None and moConfig.getStatus().contains(
Status.CREATED)):
if (moConfig.getIgnoreReason() is None or len(moConfig.getIgnoreReason()) == 0):
continue
ir = moConfig.getIgnoreReason()
try:
for prop in ir:
propValue = ir[prop]
if mo.getattr(prop):
attrValue = mo.getattr(prop)
else:
attrValue = None
if (not propValue or not attrValue or propValue != attrValue):
ignore = False
break
except Exception, err:
ignore = False
if ignore:
continue
for prop in mo.__dict__:
propMoMeta = UcsUtils.IsPropertyInMetaIgnoreCase(classId, prop)
if (propMoMeta != None):
if (
prop.lower() == "rn" or prop.lower() == "dn" or propMoMeta.access == UcsPropertyMeta.ReadOnly):
continue
exclude = False
if (moConfig is not None and moConfig.getExcludeList() is not None):
for exProp in moConfig.getExcludeList():
if prop.lower() == exProp.lower():
exclude = True
if not exclude:
gMoDiff.setattr(propMoMeta.name, mo.getattr(prop))
gMoDiff.setattr("Dn", mo.getattr("Dn"))
if (moConfig is not None and moConfig.getAction() == SyncAction.statusChange):
gMoDiff.setattr("Status", moConfig.getStatus())
else:
gMoDiff.setattr("Status", Status().CREATED)
gMoDiff = GenericMO(gMoDiff, WriteXmlOption.AllConfig) # gMoDiff should be generic object
if (not noVersionFilter):
hReference = mo.GetHandle()
if ((hReference != None) and (hReference._version != None)):
gMoDiff.FilterVersion(hReference._version)
# Modify the Managed Object
else:
if (
moConfig is not None and moConfig.getAction() == SyncAction.ignore and moConfig.getStatus() is not None and moConfig.getStatus().contains(
Status.DELETED)):
if (moConfig.getIgnoreReason() is None or len(moConfig.getIgnoreReason()) == 0):
continue
ir = moConfig.getIgnoreReason()
try:
for prop in ir:
propValue = ir[prop]
if mo.getattr(prop):
attrValue = mo.getattr(prop)
else:
attrValue = None
if (not propValue or not attrValue or propValue != attrValue):
ignore = False
break
except Exception, err:
ignore = False
if ignore:
continue
if ((moDiff.DiffProperty == None) or (len(moDiff.DiffProperty) == 0)):
# TODO: Add Warning/Error messages in Logger.
WriteUcsWarning('Add not supported for classId ' + classId + '. Reverting to modify.')
continue
finalDiffPropStr = None
finalDiffProps = moDiff.DiffProperty
gMoDiff = ManagedObject(classId)
for diffprop in finalDiffProps:
exclude = False
if (moConfig is not None and moConfig.getExcludeList() is not None):
for exProp in moConfig.getExcludeList():
if diffprop.lower() == exProp.lower():
exclude = True
if not exclude:
finalDiffPropStr = finalDiffPropStr + ","
for prop in finalDiffProps:
propMoMeta = UcsUtils.IsPropertyInMetaIgnoreCase(classId, prop)
if (propMoMeta != None):
if (
prop.lower() == "rn" or prop.lower() == "dn" or propMoMeta.access == UcsPropertyMeta.ReadOnly):
continue
exclude = False
if (moConfig is not None and moConfig.getExcludeList() is not None):
for exProp in moConfig.getExcludeList():
if diffprop.lower() == exProp.lower():
exclude = True
if not exclude:
gMoDiff.setattr(propMoMeta.name, mo.getattr(prop))
gMoDiff.setattr("Dn", mo.getattr("Dn"))
gMoDiff.setattr("Status", Status().MODIFIED)
gMoDiff = GenericMO(gMoDiff,
WriteXmlOption.AllConfig) # gMoDiff should be generic object to apply FilterVersion on it.
# TODO: NoversionFilter functionality discussion.
if ((gMoDiff != None) and (not noVersionFilter)):
gMoMeta = UcsUtils.GetUcsPropertyMeta(gMoDiff.classId, "Meta")
if ((gMoMeta != None) and (self._version != None)):
if self._version < gMoMeta.version:
# TODO: Add Warning/Error messages in Logger.
WriteUcsWarning(
'Ignoring unsupported classId %s for Dn %s.' % (gMoDiff.classId, gMoDiff.getattr("Dn")))
gMoDiff = None
if ((gMoDiff != None) and (self._version != None)):
gMoDiff.FilterVersion(self._version)
if (gMoDiff != None):
if gMoDiff.__dict__.has_key("_excludePropList"):
for prop in gMoDiff.__dict__["_excludePropList"]:
if prop == "XtraProperty":
gMoDiff.__dict__[prop] = {}
continue
gMoDiff.__dict__[prop] = None
if (gMoDiff != None):
pair = Pair()
pair.setattr("Key", gMoDiff.getattr("Dn"))
pair.AddChild(gMoDiff)
configMap.AddChild(pair)
if configMap.GetChildCount() == 0:
return None
ccm = self.ConfigConfMos(configMap, False, dumpXml)
if ccm.errorCode == 0:
moList = []
for child in ccm.OutConfigs.GetChild():
if (isinstance(child, Pair) == True):
for mo in child.GetChild():
moList.append(mo)
elif (isinstance(child, ManagedObject) == True):
moList.append(child)
# WriteObject(moList)
return moList
else:
raise UcsException(ccm.errorCode, ccm.errorDescr) | 0.029048 |
def zero_disk(self, disk_xml=None):
""" Collector and publish not zeroed disk metrics
"""
troubled_disks = 0
for filer_disk in disk_xml:
raid_state = filer_disk.find('raid-state').text
if not raid_state == 'spare':
continue
is_zeroed = filer_disk.find('is-zeroed').text
if is_zeroed == 'false':
troubled_disks += 1
self.push('not_zeroed', 'disk', troubled_disks) | 0.004132 |
def set_cursor_enter_callback(window, cbfun):
"""
Sets the cursor enter/exit callback.
Wrapper for:
GLFWcursorenterfun glfwSetCursorEnterCallback(GLFWwindow* window, GLFWcursorenterfun cbfun);
"""
window_addr = ctypes.cast(ctypes.pointer(window),
ctypes.POINTER(ctypes.c_long)).contents.value
if window_addr in _cursor_enter_callback_repository:
previous_callback = _cursor_enter_callback_repository[window_addr]
else:
previous_callback = None
if cbfun is None:
cbfun = 0
c_cbfun = _GLFWcursorenterfun(cbfun)
_cursor_enter_callback_repository[window_addr] = (cbfun, c_cbfun)
cbfun = c_cbfun
_glfw.glfwSetCursorEnterCallback(window, cbfun)
if previous_callback is not None and previous_callback[0] != 0:
return previous_callback[0] | 0.002345 |
def approxMeanOneLognormal(N, sigma=1.0, **kwargs):
'''
Calculate a discrete approximation to a mean one lognormal distribution.
Based on function approxLognormal; see that function's documentation for
further notes.
Parameters
----------
N : int
Size of discrete space vector to be returned.
sigma : float
standard deviation associated with underlying normal probability distribution.
Returns
-------
X : np.array
Discrete points for discrete probability mass function.
pmf : np.array
Probability associated with each point in X.
Written by Nathan M. Palmer
Based on Matab function "setup_shocks.m," from Chris Carroll's
[Solution Methods for Microeconomic Dynamic Optimization Problems]
(http://www.econ2.jhu.edu/people/ccarroll/solvingmicrodsops/) toolkit.
Latest update: 01 May 2015
'''
mu_adj = - 0.5*sigma**2;
pmf,X = approxLognormal(N=N, mu=mu_adj, sigma=sigma, **kwargs)
return [pmf,X] | 0.004921 |
def prefix(self, sign: Optional[PrefixSign] = None,
symbol: bool = False) -> str:
"""Get a random prefix for the International System of Units.
:param sign: Sing of number.
:param symbol: Return symbol of prefix.
:return: Prefix for SI.
:raises NonEnumerableError: if sign is not supported.
:Example:
mega
"""
prefixes = SI_PREFIXES_SYM if \
symbol else SI_PREFIXES
key = self._validate_enum(item=sign, enum=PrefixSign)
return self.random.choice(prefixes[key]) | 0.005155 |
def _create_snapshot(volume):
""" Create a new snapshot
:type volume: boto.ec2.volume.Volume
:param volume: Volume to snapshot
:returns: boto.ec2.snapshot.Snapshot -- The new snapshot
"""
logger.info('Creating new snapshot for {}'.format(volume.id))
snapshot = volume.create_snapshot(
description="Automatic snapshot by Automated EBS Snapshots")
logger.info('Created snapshot {} for volume {}'.format(
snapshot.id, volume.id))
return snapshot | 0.002016 |
def has_permission(self, request, view):
"""
If the JWT has a user filter, verify that the filtered
user value matches the user in the URL.
"""
user_filter = self._get_user_filter(request)
if not user_filter:
# no user filters are present in the token to limit access
return True
username_param = get_username_param(request)
allowed = user_filter == username_param
if not allowed:
log.warning(
u"Permission JwtHasUserFilterForRequestedUser: user_filter %s doesn't match username %s.",
user_filter,
username_param,
)
return allowed | 0.004243 |
def add_message_for(users, level, message_text, extra_tags='', date=None, url=None, fail_silently=False):
"""
Send a message to a list of users without passing through `django.contrib.messages`
:param users: an iterable containing the recipients of the messages
:param level: message level
:param message_text: the string containing the message
:param extra_tags: like the Django api, a string containing extra tags for the message
:param date: a date, different than the default timezone.now
:param url: an optional url
:param fail_silently: not used at the moment
"""
BackendClass = stored_messages_settings.STORAGE_BACKEND
backend = BackendClass()
m = backend.create_message(level, message_text, extra_tags, date, url)
backend.archive_store(users, m)
backend.inbox_store(users, m) | 0.004739 |
def save_metadata(hparams):
"""Saves FLAGS and hparams to output_dir."""
output_dir = os.path.expanduser(FLAGS.output_dir)
if not tf.gfile.Exists(output_dir):
tf.gfile.MakeDirs(output_dir)
# Save FLAGS in txt file
if hasattr(FLAGS, "flags_into_string"):
flags_str = FLAGS.flags_into_string()
t2t_flags_str = "\n".join([
"--%s=%s" % (f.name, f.value)
for f in FLAGS.flags_by_module_dict()["tensor2tensor.utils.flags"]
])
else:
flags_dict = FLAGS.__dict__["__flags"]
flags_str = "\n".join(
["--%s=%s" % (name, str(f)) for (name, f) in flags_dict.items()])
t2t_flags_str = None
flags_txt = os.path.join(output_dir, "flags.txt")
with tf.gfile.Open(flags_txt, "w") as f:
f.write(flags_str)
if t2t_flags_str:
t2t_flags_txt = os.path.join(output_dir, "flags_t2t.txt")
with tf.gfile.Open(t2t_flags_txt, "w") as f:
f.write(t2t_flags_str)
# Save hparams as hparams.json
new_hparams = hparams_lib.copy_hparams(hparams)
# Modality class is not JSON serializable so remove.
new_hparams.del_hparam("modality")
hparams_fname = os.path.join(output_dir, "hparams.json")
with tf.gfile.Open(hparams_fname, "w") as f:
f.write(new_hparams.to_json(indent=0, sort_keys=True)) | 0.013481 |
def main():
"""
NAME
lnp_magic.py
DESCRIPTION
makes equal area projections site by site
from specimen formatted file with
Fisher confidence ellipse using McFadden and McElhinny (1988)
technique for combining lines and planes
SYNTAX
lnp_magic [command line options]
INPUT
takes magic formatted specimens file
OUPUT
prints site_name n_lines n_planes K alpha95 dec inc R
OPTIONS
-h prints help message and quits
-f FILE: specify input file, default is 'specimens.txt', ('pmag_specimens.txt' for legacy data model 2)
-fsa FILE: specify samples file, required to plot by site for data model 3 (otherwise will plot by sample)
default is 'samples.txt'
-crd [s,g,t]: specify coordinate system, [s]pecimen, [g]eographic, [t]ilt adjusted
default is specimen
-fmt [svg,png,jpg] format for plots, default is svg
-sav save plots and quit
-P: do not plot
-F FILE, specify output file of dec, inc, alpha95 data for plotting with plotdi_a and plotdi_e
-exc use criteria in criteria table # NOT IMPLEMENTED
-DM NUMBER MagIC data model (2 or 3, default 3)
"""
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
dir_path = pmag.get_named_arg("-WD", ".")
data_model = int(float(pmag.get_named_arg("-DM", 3)))
fmt = pmag.get_named_arg("-fmt", 'svg')
if data_model == 2:
in_file = pmag.get_named_arg('-f', 'pmag_specimens.txt')
crit_file = "pmag_criteria.txt"
else:
in_file = pmag.get_named_arg('-f', 'specimens.txt')
samp_file = pmag.get_named_arg('-fsa', 'samples.txt')
crit_file = "criteria.txt"
in_file = pmag.resolve_file_name(in_file, dir_path)
dir_path = os.path.split(in_file)[0]
if data_model == 3:
samp_file = pmag.resolve_file_name(samp_file, dir_path)
if '-crd' in sys.argv:
ind = sys.argv.index("-crd")
crd = sys.argv[ind+1]
if crd == 's':
coord = "-1"
if crd == 'g':
coord = "0"
if crd == 't':
coord = "100"
else:
coord = "-1"
out_file = pmag.get_named_arg('-F', '')
if out_file:
out = open(dir_path+'/'+out_file, 'w')
if '-P' in sys.argv:
make_plots = 0 # do not plot
else:
make_plots = 1 # do plot
if '-sav' in sys.argv:
plot = 1 # save plots and quit
else:
plot = 0 # show plots intereactively (if make_plots)
#
if data_model == 2:
Specs, file_type = pmag.magic_read(in_file)
if 'specimens' not in file_type:
print('Error opening ', in_file, file_type)
sys.exit()
else:
fnames = {'specimens': in_file, 'samples': samp_file}
con = cb.Contribution(dir_path, read_tables=['samples', 'specimens'],
custom_filenames=fnames)
con.propagate_name_down('site', 'specimens')
if 'site' in con.tables['specimens'].df.columns:
site_col = 'site'
else:
site_col = 'sample'
tilt_corr_col = "dir_tilt_correction"
mad_col = "dir_mad_free"
alpha95_col = "dir_alpha95"
site_alpha95_col = "dir_alpha95"
dec_col = "dir_dec"
inc_col = "dir_inc"
num_meas_col = "dir_n_measurements"
k_col = "dir_k"
cols = [site_col, tilt_corr_col, mad_col, alpha95_col, dec_col, inc_col]
con.tables['specimens'].front_and_backfill(cols)
con.tables['specimens'].df = con.tables['specimens'].df.where(con.tables['specimens'].df.notnull(), "")
Specs = con.tables['specimens'].convert_to_pmag_data_list()
## using criteria file was never fully implemented
#if '-exc' in sys.argv:
# Crits, file_type = pmag.magic_read(pmag.resolve_file_name(crit_file, dir_path))
# for crit in Crits:
# if mad_col in crit:
# M = float(crit['specimen_mad'])
# if num_meas_col in crit:
# N = float(crit['specimen_n'])
# if site_alpha95_col in crit and 'site' in crit:
# acutoff = float(crit['site_alpha95'])
# if k_col in crit:
# kcutoff = float(crit['site_k'])
#else:
# Crits = ""
sitelist = []
# initialize some variables
FIG = {} # plot dictionary
FIG['eqarea'] = 1 # eqarea is figure 1
M, N, acutoff, kcutoff = 180., 1, 180., 0.
if data_model == 2:
site_col = 'er_site_name'
tilt_corr_col = "specimen_tilt_correction"
mad_col = "specimen_mad"
alpha95_col = 'specimen_alpha95'
dec_col = "specimen_dec"
inc_col = "specimen_inc"
num_meas_col = "specimen_n"
site_alpha95_col = "site_alpha95"
else: # data model 3
pass
for rec in Specs:
if rec[site_col] not in sitelist:
sitelist.append(rec[site_col])
sitelist.sort()
if make_plots == 1:
EQ = {}
EQ['eqarea'] = 1
for site in sitelist:
pmagplotlib.plot_init(EQ['eqarea'], 4, 4)
print(site)
data = []
for spec in Specs:
if tilt_corr_col not in list(spec.keys()):
spec[tilt_corr_col] = '-1' # assume unoriented
if spec[site_col] == site:
if mad_col not in list(spec.keys()) or spec[mad_col] == "":
if alpha95_col in list(spec.keys()) and spec[alpha95_col] != "":
spec[mad_col] = spec[alpha95_col]
else:
spec[mad_col] = '180'
if not spec[num_meas_col]:
continue
if (float(spec[tilt_corr_col]) == float(coord)) and (float(spec[mad_col]) <= M) and (float(spec[num_meas_col]) >= N):
rec = {}
for key in list(spec.keys()):
rec[key] = spec[key]
rec["dec"] = float(spec[dec_col])
rec["inc"] = float(spec[inc_col])
rec["tilt_correction"] = spec[tilt_corr_col]
data.append(rec)
if len(data) > 2:
fpars = pmag.dolnp(data, 'specimen_direction_type')
print("Site lines planes kappa a95 dec inc")
print(site, fpars["n_lines"], fpars["n_planes"], fpars["K"],
fpars["alpha95"], fpars["dec"], fpars["inc"], fpars["R"])
if out_file != "":
if float(fpars["alpha95"]) <= acutoff and float(fpars["K"]) >= kcutoff:
out.write('%s %s %s\n' %
(fpars["dec"], fpars['inc'], fpars['alpha95']))
print('% tilt correction: ', coord)
if make_plots == 1:
files = {}
files['eqarea'] = site+'_'+crd+'_'+'eqarea'+'.'+fmt
pmagplotlib.plot_lnp(EQ['eqarea'], site,
data, fpars, 'specimen_direction_type')
if plot == 0:
pmagplotlib.draw_figs(EQ)
ans = input(
"s[a]ve plot, [q]uit, <return> to continue:\n ")
if ans == "a":
pmagplotlib.save_plots(EQ, files)
if ans == "q":
sys.exit()
else:
pmagplotlib.save_plots(EQ, files)
else:
print('skipping site - not enough data with specified coordinate system') | 0.002762 |
def cmd_host(verbose):
"""Collect information about the host where habu is running.
Example:
\b
$ habu.host
{
"kernel": [
"Linux",
"demo123",
"5.0.6-200.fc29.x86_64",
"#1 SMP Wed Apr 3 15:09:51 UTC 2019",
"x86_64",
"x86_64"
],
"distribution": [
"Fedora",
"29",
"Twenty Nine"
],
"libc": [
"glibc",
"2.2.5"
],
"arch": "x86_64",
"python_version": "3.7.3",
"os_name": "Linux",
"cpu": "x86_64",
"static_hostname": "demo123",
"fqdn": "demo123.lab.sierra"
}
"""
if verbose:
logging.basicConfig(level=logging.INFO, format='%(message)s')
print("Gather information about the host...", file=sys.stderr)
result = gather_details()
if result:
print(json.dumps(result, indent=4))
else:
print("[X] Unable to gather information")
return True | 0.000964 |
def check_clang_apply_replacements_binary(args):
"""Checks if invoking supplied clang-apply-replacements binary works."""
try:
subprocess.check_call([args.clang_apply_replacements_binary, '--version'])
except:
print('Unable to run clang-apply-replacements. Is clang-apply-replacements '
'binary correctly specified?', file=sys.stderr)
traceback.print_exc()
sys.exit(1) | 0.015 |
def trigger_switch_all_to(request, switch):
"""
switch the status of all the "my" triggers then go back home
:param request: request object
:param switch: the switch value
:type request: HttpRequest object
:type switch: string off or on
"""
now = arrow.utcnow().to(settings.TIME_ZONE).format('YYYY-MM-DD HH:mm:ss')
status = True
if switch == 'off':
status = False
if status:
TriggerService.objects.filter(user=request.user).update(status=status, date_triggered=now)
else:
TriggerService.objects.filter(user=request.user).update(status=status)
return HttpResponseRedirect(reverse('base')) | 0.002924 |
def likelihood_data_given_model(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, source_marg=False):
"""
computes the likelihood of the data given a model
This is specified with the non-linear parameters and a linear inversion and prior marginalisation.
:param kwargs_lens:
:param kwargs_source:
:param kwargs_lens_light:
:param kwargs_ps:
:return: log likelihood (natural logarithm) (sum of the log likelihoods of the individual images)
"""
# generate image
logL = 0
for i in range(self._num_bands):
if self._compute_bool[i] is True:
logL += self._imageModel_list[i].likelihood_data_given_model(kwargs_lens, kwargs_source,
kwargs_lens_light, kwargs_ps,
source_marg=source_marg)
return logL | 0.008073 |
def read_column(self, col, **keys):
"""
Read the specified column
Alternatively, you can use slice notation
fits=fitsio.FITS(filename)
fits[ext][colname][:]
fits[ext][colname][2:5]
fits[ext][colname][200:235:2]
fits[ext][colname][rows]
Note, if reading multiple columns, it is more efficient to use
read(columns=) or slice notation with a list of column names.
parameters
----------
col: string/int, required
The column name or number.
rows: optional
An optional set of row numbers to read.
vstorage: string, optional
Over-ride the default method to store variable length columns. Can
be 'fixed' or 'object'. See docs on fitsio.FITS for details.
"""
res = self.read_columns([col], **keys)
colname = res.dtype.names[0]
data = res[colname]
self._maybe_trim_strings(data, **keys)
return data | 0.001938 |
def remove_positive_resample(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Positive (resample)
xlabel = "Max fraction of features removed"
ylabel = "Negative mean model output"
transform = "negate"
sort_order = 13
"""
return __run_measure(measures.remove_resample, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred) | 0.008 |
def _set_config_keystone(self, username, password):
""" Set config to Keystone """
self._keystone_auth = KeystoneAuth(
settings.KEYSTONE_AUTH_URL, settings.KEYSTONE_PROJECT_NAME, username, password,
settings.KEYSTONE_USER_DOMAIN_NAME, settings.KEYSTONE_PROJECT_DOMAIN_NAME,
settings.KEYSTONE_TIMEOUT) | 0.011331 |
def _server_response_handler(self, response: Dict[str, Any]):
"""处理100~199段状态码,针对不同的服务响应进行操作.
Parameters:
(response): - 响应的python字典形式数据
Return:
(bool): - 准确地说没有错误就会返回True
"""
code = response.get("CODE")
if code == 100:
if self.debug:
print("auth succeed")
self._login_fut.set_result(response)
if code == 101:
if self.debug:
print('pong')
return True | 0.003937 |
def _extract_hunt_results(self, output_file_path):
"""Open a hunt output archive and extract files.
Args:
output_file_path: The path where the hunt archive is downloaded to.
Returns:
list: tuples containing:
str: The name of the client from where the files were downloaded.
str: The directory where the files were downloaded to.
"""
# Extract items from archive by host for processing
collection_paths = []
client_ids = set()
client_id_to_fqdn = {}
hunt_dir = None
try:
with zipfile.ZipFile(output_file_path) as archive:
items = archive.infolist()
for f in items:
if not hunt_dir:
hunt_dir = f.filename.split('/')[0]
# If we're dealing with client_info.yaml, use it to build a client
# ID to FQDN correspondence table & skip extraction.
if f.filename.split('/')[-1] == 'client_info.yaml':
client_id, fqdn = self._get_client_fqdn(archive.read(f))
client_id_to_fqdn[client_id] = fqdn
continue
client_id = f.filename.split('/')[1]
if client_id.startswith('C.'):
if client_id not in client_ids:
client_directory = os.path.join(self.output_path,
hunt_dir, client_id)
collection_paths.append((client_id, client_directory))
client_ids.add(client_id)
try:
archive.extract(f, self.output_path)
except KeyError as exception:
print('Extraction error: {0:s}'.format(exception))
return []
except OSError as exception:
msg = 'Error manipulating file {0:s}: {1!s}'.format(
output_file_path, exception)
self.state.add_error(msg, critical=True)
return []
except zipfile.BadZipfile as exception:
msg = 'Bad zipfile {0:s}: {1!s}'.format(
output_file_path, exception)
self.state.add_error(msg, critical=True)
return []
try:
os.remove(output_file_path)
except OSError as exception:
print('Output path {0:s} could not be removed: {1:s}'.format(
output_file_path, exception))
# Translate GRR client IDs to FQDNs with the information retrieved
# earlier
fqdn_collection_paths = []
for client_id, path in collection_paths:
fqdn = client_id_to_fqdn.get(client_id, client_id)
fqdn_collection_paths.append((fqdn, path))
if not fqdn_collection_paths:
self.state.add_error('Nothing was extracted from the hunt archive',
critical=True)
return []
return fqdn_collection_paths | 0.009665 |
def expire(self, key, timeout):
"""Set a timeout on key. After the timeout has expired, the key will
automatically be deleted. A key with an associated timeout is often
said to be volatile in Redis terminology.
The timeout is cleared only when the key is removed using the
:meth:`~tredis.RedisClient.delete` method or overwritten using the
:meth:`~tredis.RedisClient.set` or :meth:`~tredis.RedisClient.getset`
methods. This means that all the operations that conceptually alter the
value stored at the key without replacing it with a new one will leave
the timeout untouched. For instance, incrementing the value of a key
with :meth:`~tredis.RedisClient.incr`, pushing a new value into a
list with :meth:`~tredis.RedisClient.lpush`, or altering the field
value of a hash with :meth:`~tredis.RedisClient.hset` are all
operations that will leave the timeout untouched.
The timeout can also be cleared, turning the key back into a persistent
key, using the :meth:`~tredis.RedisClient.persist` method.
If a key is renamed with :meth:`~tredis.RedisClient.rename`,
the associated time to live is transferred to the new key name.
If a key is overwritten by :meth:`~tredis.RedisClient.rename`, like in
the case of an existing key ``Key_A`` that is overwritten by a call
like ``client.rename(Key_B, Key_A)`` it does not matter if the original
``Key_A`` had a timeout associated or not, the new key ``Key_A`` will
inherit all the characteristics of ``Key_B``.
.. note::
**Time complexity**: ``O(1)``
:param key: The key to set an expiration for
:type key: :class:`str`, :class:`bytes`
:param int timeout: The number of seconds to set the timeout to
:rtype: bool
:raises: :exc:`~tredis.exceptions.RedisError`
"""
return self._execute(
[b'EXPIRE', key, ascii(timeout).encode('ascii')], 1) | 0.000977 |
def latmio_dir(R, itr, D=None, seed=None):
'''
This function "latticizes" a directed network, while preserving the in-
and out-degree distributions. In weighted networks, the function
preserves the out-strength but not the in-strength distributions.
Parameters
----------
R : NxN np.ndarray
directed binary/weighted connection matrix
itr : int
rewiring parameter. Each edge is rewired approximately itr times.
D : np.ndarray | None
distance-to-diagonal matrix. Defaults to the actual distance matrix
if not specified.
seed : hashable, optional
If None (default), use the np.random's global random state to generate random numbers.
Otherwise, use a new np.random.RandomState instance seeded with the given value.
Returns
-------
Rlatt : NxN np.ndarray
latticized network in original node ordering
Rrp : NxN np.ndarray
latticized network in node ordering used for latticization
ind_rp : Nx1 np.ndarray
node ordering used for latticization
eff : int
number of actual rewirings carried out
'''
rng = get_rng(seed)
n = len(R)
ind_rp = rng.permutation(n) # randomly reorder matrix
R = R.copy()
R = R[np.ix_(ind_rp, ind_rp)]
# create distance to diagonal matrix if not specified by user
if D is None:
D = np.zeros((n, n))
un = np.mod(range(1, n), n)
um = np.mod(range(n - 1, 0, -1), n)
u = np.append((0,), np.where(un < um, un, um))
for v in range(int(np.ceil(n / 2))):
D[n - v - 1, :] = np.append(u[v + 1:], u[:v + 1])
D[v, :] = D[n - v - 1, :][::-1]
i, j = np.where(R)
k = len(i)
itr *= k
# maximal number of rewiring attempts per iteration
max_attempts = np.round(n * k / (n * (n - 1)))
# actual number of successful rewirings
eff = 0
for it in range(itr):
att = 0
while att <= max_attempts: # while not rewired
while True:
e1 = rng.randint(k)
e2 = rng.randint(k)
while e1 == e2:
e2 = rng.randint(k)
a = i[e1]
b = j[e1]
c = i[e2]
d = j[e2]
if a != c and a != d and b != c and b != d:
break
# rewiring condition
if not (R[a, d] or R[c, b]):
# lattice condition
if (D[a, b] * R[a, b] + D[c, d] * R[c, d] >= D[a, d] * R[a, b] + D[c, b] * R[c, d]):
R[a, d] = R[a, b]
R[a, b] = 0
R[c, b] = R[c, d]
R[c, d] = 0
j.setflags(write=True)
j[e1] = d
j[e2] = b # reassign edge indices
eff += 1
break
att += 1
Rlatt = R[np.ix_(ind_rp[::-1], ind_rp[::-1])] # reverse random permutation
return Rlatt, R, ind_rp, eff | 0.001317 |
def createEditor(self, parent, column, op, value):
"""
Creates a new editor for the parent based on the plugin parameters.
:param parent | <QWidget>
:return <QWidget> || None
"""
try:
cls = self._operatorMap[nativestring(op)].cls
except KeyError, AttributeError:
return None
# create the new editor
if cls:
widget = cls(parent)
widget.setAttribute(Qt.WA_DeleteOnClose)
projexui.setWidgetValue(widget, value)
return widget
return None | 0.009231 |
def _should_skip_entry(self, entry):
"""Determine if this oplog entry should be skipped.
This has the possible side effect of modifying the entry's namespace
and filtering fields from updates and inserts.
"""
# Don't replicate entries resulting from chunk moves
if entry.get("fromMigrate"):
return True, False
# Ignore no-ops
if entry["op"] == "n":
return True, False
ns = entry["ns"]
if "." not in ns:
return True, False
coll = ns.split(".", 1)[1]
# Ignore system collections
if coll.startswith("system."):
return True, False
# Ignore GridFS chunks
if coll.endswith(".chunks"):
return True, False
is_gridfs_file = False
if coll.endswith(".files"):
ns = ns[: -len(".files")]
if self.namespace_config.gridfs_namespace(ns):
is_gridfs_file = True
else:
return True, False
# Commands should not be ignored, filtered, or renamed. Renaming is
# handled by the DocManagers via the CommandHelper class.
if coll == "$cmd":
return False, False
# Rename or filter out namespaces that are ignored keeping
# included gridfs namespaces.
namespace = self.namespace_config.lookup(ns)
if namespace is None:
LOG.debug(
"OplogThread: Skipping oplog entry: "
"'%s' is not in the namespace configuration." % (ns,)
)
return True, False
# Update the namespace.
entry["ns"] = namespace.dest_name
# Take fields out of the oplog entry that shouldn't be replicated.
# This may nullify the document if there's nothing to do.
if not self.filter_oplog_entry(
entry,
include_fields=namespace.include_fields,
exclude_fields=namespace.exclude_fields,
):
return True, False
return False, is_gridfs_file | 0.000961 |
def referenceframe(self, event):
"""Handles navigational reference frame updates.
These are necessary to assign geo coordinates to alerts and other
misc things.
:param event with incoming referenceframe message
"""
self.log("Got a reference frame update! ", event, lvl=events)
self.reference_frame = event.data | 0.00542 |
def drag_to(self, target, duration=2.0):
"""
Similar to swipe action, but the end point is provide by a UI proxy or by fixed coordinates.
Args:
target (:py:class:`UIObjectProxy <poco.proxy.UIObjectProxy>`): a UI proxy or 2-list/2-tuple coordinates
(x, y) in NormalizedCoordinate system
duration (:py:obj:`float`): time interval in which the action is performed
Raises:
PocoNoSuchNodeException: raised when the UI element does not exist
"""
try:
duration = float(duration)
except ValueError:
raise ValueError('Argument `duration` should be <float>. Got {}'.format(repr(duration)))
if type(target) in (list, tuple):
target_pos = target
else:
target_pos = target.get_position()
origin_pos = self.get_position()
dir_ = [target_pos[0] - origin_pos[0], target_pos[1] - origin_pos[1]]
return self.swipe(dir_, duration=duration) | 0.0059 |
def _isCheckpointDir(checkpointDir):
"""Return true iff checkpointDir appears to be a checkpoint directory."""
lastSegment = os.path.split(checkpointDir)[1]
if lastSegment[0] == '.':
return False
if not checkpointDir.endswith(g_defaultCheckpointExtension):
return False
if not os.path.isdir(checkpointDir):
return False
return True | 0.019553 |
def _compose_restart(services):
"""Well, this is annoying. Compose 1.2 shipped with the
restart functionality fucking broken, so we can't set a faster
timeout than 10 seconds (which is way too long) using Compose.
We are therefore resigned to trying to hack this together
ourselves. Lame.
Relevant fix which will make it into the next release:
https://github.com/docker/compose/pull/1318"""
def _restart_container(client, container):
log_to_client('Restarting {}'.format(get_canonical_container_name(container)))
client.restart(container['Id'], timeout=1)
assembled_specs = get_assembled_specs()
if services == []:
services = [spec.name for spec in assembled_specs.get_apps_and_services()]
logging.info('Restarting service containers from list: {}'.format(services))
client = get_docker_client()
for service in services:
container = get_container_for_app_or_service(service, include_exited=True)
if container is None:
log_to_client('No container found for {}'.format(service))
continue
stopped_linked_containers = _check_stopped_linked_containers(container, assembled_specs)
if stopped_linked_containers:
log_to_client('No running containers {0}, which are linked to by {1}. Cannot restart {1}'.format(
stopped_linked_containers, service))
else:
_restart_container(client, container) | 0.004727 |
def __Delete(self, path, request, headers):
"""Azure Cosmos 'DELETE' http request.
:params str url:
:params str path:
:params dict headers:
:return:
Tuple of (result, headers).
:rtype:
tuple of (dict, dict)
"""
return synchronized_request.SynchronizedRequest(self,
request,
self._global_endpoint_manager,
self.connection_policy,
self._requests_session,
'DELETE',
path,
request_data=None,
query_params=None,
headers=headers) | 0.002947 |
def parse_pasv_response(s):
"""
Parsing `PASV` server response.
:param s: response line
:type s: :py:class:`str`
:return: (ip, port)
:rtype: (:py:class:`str`, :py:class:`int`)
"""
sub, *_ = re.findall(r"[^(]*\(([^)]*)", s)
nums = tuple(map(int, sub.split(",")))
ip = ".".join(map(str, nums[:4]))
port = (nums[4] << 8) | nums[5]
return ip, port | 0.004535 |
def imports_on_separate_lines(logical_line):
r"""Place imports on separate lines.
Okay: import os\nimport sys
E401: import sys, os
Okay: from subprocess import Popen, PIPE
Okay: from myclas import MyClass
Okay: from foo.bar.yourclass import YourClass
Okay: import myclass
Okay: import foo.bar.yourclass
"""
line = logical_line
if line.startswith('import '):
found = line.find(',')
if -1 < found and ';' not in line[:found]:
yield found, "E401 multiple imports on one line" | 0.001832 |
def reduce_paths(G):
"""
Make graph into a directed acyclic graph (DAG).
"""
from jcvi.algorithms.lpsolve import min_feedback_arc_set
while not nx.is_directed_acyclic_graph(G):
edges = []
for a, b, w in G.edges_iter(data=True):
w = w['weight']
edges.append((a, b, w))
mf, mf_score = min_feedback_arc_set(edges)
for a, b, w in mf:
G.remove_edge(a, b)
assert nx.is_directed_acyclic_graph(G)
G = transitive_reduction(G)
return G | 0.001898 |
def objHasUnsavedChanges(self):
'''
objHasUnsavedChanges - @see ForeignLinkData.objHasUnsavedChanges
True if ANY object has unsaved changes.
'''
if not self.obj:
return False
for thisObj in self.obj:
if not thisObj:
continue
if thisObj.hasUnsavedChanges(cascadeObjects=True):
return True
return False | 0.041667 |
def pre_scan(self, func=operator.add, seed=0):
'''
An exclusive prefix sum which returns the cumulative application of the
supplied function up to but excluding the current element.
Args:
func: An optional binary function which is commutative - that is,
the order of the arguments is unimportant. Defaults to a
summing operator.
seed: The first element of the prefix sum and therefore also the
first element of the returned sequence.
Returns:
A Queryable such that the nth element is the sum of the first n-1
elements of the source sequence.
Raises:
ValueError: If the Queryable has been closed.
TypeError: If func is not callable.
'''
if self.closed():
raise ValueError("Attempt to call pre_scan() on a "
"closed Queryable.")
if not is_callable(func):
raise TypeError("pre_scan() parameter func={0} is "
"not callable".format(repr(func)))
return self._create(self._generate_pre_scan_result(func, seed)) | 0.001672 |
def dirlist(self, path):
"""
This method returns the directory list for the path specified where SAS is running
"""
code = """
data _null_;
spd = '""" + path + """';
rc = filename('saspydir', spd);
did = dopen('saspydir');
if did > 0 then
do;
memcount = dnum(did);
put 'MEMCOUNT=' memcount;
do while (memcount > 0);
name = dread(did, memcount);
memcount = memcount - 1;
qname = spd || '"""+self.hostsep+"""' || name;
rc = filename('saspydq', qname);
dq = dopen('saspydq');
if dq NE 0 then
do;
dname = strip(name) || '"""+self.hostsep+"""';
put 'DIR=' dname;
rc = dclose(dq);
end;
else
put 'FILE=' name;
end;
put 'MEMEND';
rc = dclose(did);
end;
else
do;
put 'MEMCOUNT=0';
put 'MEMEND';
end;
rc = filename('saspydq');
rc = filename('saspydir');
run;
"""
if self.nosub:
print(code)
return None
else:
ll = self.submit(code, results='text')
dirlist = []
l2 = ll['LOG'].rpartition("MEMCOUNT=")[2].partition("\n")
memcount = int(l2[0])
l3 = l2[2].rpartition("MEMEND")[0]
for row in l3.split(sep='\n'):
i = row.partition('=')
if i[0] in ['FILE', 'DIR']:
dirlist.append(i[2])
if memcount != len(dirlist):
print("Some problem parsing list. Should be " + str(memcount) + " entries but got " + str(
len(dirlist)) + " instead.")
return dirlist | 0.00255 |
async def call(self, methname, *args, **kwargs):
'''
Call a remote method by name.
Args:
methname (str): The name of the remote method.
*args: Arguments to the method call.
**kwargs: Keyword arguments to the method call.
Most use cases will likely use the proxy methods directly:
The following two are effectively the same:
valu = proxy.getFooBar(x, y)
valu = proxy.call('getFooBar', x, y)
'''
todo = (methname, args, kwargs)
return await self.task(todo) | 0.003436 |
def analytics(account=None, *args, **kwargs):
"""
Simple Google Analytics integration.
First looks for an ``account`` parameter. If not supplied, uses
Django ``GOOGLE_ANALYTICS_ACCOUNT`` setting. If account not set,
raises ``TemplateSyntaxError``.
:param account:
Google Analytics account id to be used.
"""
if not account:
try:
account = settings.GOOGLE_ANALYTICS_ACCOUNT
except:
raise template.TemplateSyntaxError(
"Analytics account could not found either "
"in tag parameters or settings")
return {'account': account, 'params':kwargs } | 0.008982 |
def get_netconf_client_capabilities_output_session_session_id(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
get_netconf_client_capabilities = ET.Element("get_netconf_client_capabilities")
config = get_netconf_client_capabilities
output = ET.SubElement(get_netconf_client_capabilities, "output")
session = ET.SubElement(output, "session")
session_id = ET.SubElement(session, "session-id")
session_id.text = kwargs.pop('session_id')
callback = kwargs.pop('callback', self._callback)
return callback(config) | 0.004831 |
def cookiejar_from_dict(cookie_dict):
"""Returns a CookieJar from a key/value dictionary.
:param cookie_dict: Dict of key/values to insert into CookieJar.
"""
# return cookiejar if one was passed in
if isinstance(cookie_dict, cookielib.CookieJar):
return cookie_dict
# create cookiejar
cj = cookielib.CookieJar()
cj = add_dict_to_cookiejar(cj, cookie_dict)
return cj | 0.00241 |
def ensure(data_type, check_value, default_value=None):
"""
function to ensure the given check value is in the given data type, if yes,
return the check value directly, otherwise return the default value
:param data_type: different data type: can be int, str, list, tuple etc,
must be python supportable data type or new defined data type
:param check_value: different value: the value to check
:param default_value: None/ different value: provide the default value
:return: check value or default value
"""
if default_value is not None and not isinstance(default_value, data_type):
raise ValueError("default_value must be the value in the given data "
"type.")
elif isinstance(check_value, data_type):
return check_value
try:
new_value = data_type(check_value)
except:
return default_value
return new_value | 0.002167 |
def proc_check_guard(self, instance, sql):
"""
check to see if the guard SQL returns a single column containing 0 or 1
We return true if 1, else False
"""
self.open_db_connections(instance, self.PROC_GUARD_DB_KEY)
cursor = self.get_cursor(instance, self.PROC_GUARD_DB_KEY)
should_run = False
try:
cursor.execute(sql, ())
result = cursor.fetchone()
should_run = result[0] == 1
except Exception as e:
self.log.error("Failed to run proc_only_if sql {} : {}".format(sql, e))
self.close_cursor(cursor)
self.close_db_connections(instance, self.PROC_GUARD_DB_KEY)
return should_run | 0.004167 |
def log_level(self, subsystem, level, **kwargs):
r"""Changes the logging output of a running daemon.
.. code-block:: python
>>> c.log_level("path", "info")
{'Message': "Changed log level of 'path' to 'info'\n"}
Parameters
----------
subsystem : str
The subsystem logging identifier (Use ``"all"`` for all subsystems)
level : str
The desired logging level. Must be one of:
* ``"debug"``
* ``"info"``
* ``"warning"``
* ``"error"``
* ``"fatal"``
* ``"panic"``
Returns
-------
dict : Status message
"""
args = (subsystem, level)
return self._client.request('/log/level', args,
decoder='json', **kwargs) | 0.002312 |
def by_median_household_income(self,
lower=-1,
upper=2 ** 31,
zipcode_type=ZipcodeType.Standard,
sort_by=SimpleZipcode.median_household_income.name,
ascending=False,
returns=DEFAULT_LIMIT):
"""
Search zipcode information by median household income.
"""
return self.query(
median_household_income_lower=lower,
median_household_income_upper=upper,
sort_by=sort_by, zipcode_type=zipcode_type,
ascending=ascending, returns=returns,
) | 0.01238 |
def _copy_problem_hparams(p_hparams):
"""Use input modality, vocab, and space id for target."""
p = p_hparams
# Duplicate input modality.
p.modality["targets"] = p.modality["inputs"]
# Duplicate input vocab size.
p.vocab_size["targets"] = p.vocab_size["inputs"]
# Duplicate input vocabulary.
p.vocabulary["targets"] = p.vocabulary["inputs"]
# Duplicate input space ids.
p.target_space_id = p.input_space_id
# Mark that p was reversed.
p.was_copy = True | 0.027311 |
def init_app(self, app, sqla, namespace='api', route_prefix='/api'):
"""
Initialize the adapter if it hasn't already been initialized.
:param app: Flask application
:param sqla: Flask-SQLAlchemy instance
:param namespace: Prefixes all generated routes
:param route_prefix: The base path for the generated routes
"""
self.app = app
self.sqla = sqla
self._setup_adapter(namespace, route_prefix) | 0.004219 |
def raise_on_wrong_settings(self):
"""
Validates the configuration settings and raises RuntimeError on error
"""
self.__ensure_dir_exists(self.working_directory, 'working directory')
for idir in self.include_paths:
self.__ensure_dir_exists(idir, 'include directory')
if self.__xml_generator not in ["castxml", "gccxml"]:
msg = ('xml_generator("%s") should either be ' +
'"castxml" or "gccxml".') % self.xml_generator
raise RuntimeError(msg) | 0.003683 |
def __score_method(X, y, fcounts, model_generator, score_function, method_name, nreps=10, test_size=100, cache_dir="/tmp"):
""" Test an explanation method.
"""
old_seed = np.random.seed()
np.random.seed(3293)
# average the method scores over several train/test splits
method_reps = []
data_hash = hashlib.sha256(__toarray(X).flatten()).hexdigest() + hashlib.sha256(__toarray(y)).hexdigest()
for i in range(nreps):
X_train, X_test, y_train, y_test = train_test_split(__toarray(X), y, test_size=test_size, random_state=i)
# define the model we are going to explain, caching so we onlu build it once
model_id = "model_cache__v" + "__".join([__version__, data_hash, model_generator.__name__])+".pickle"
cache_file = os.path.join(cache_dir, model_id + ".pickle")
if os.path.isfile(cache_file):
with open(cache_file, "rb") as f:
model = pickle.load(f)
else:
model = model_generator()
model.fit(X_train, y_train)
with open(cache_file, "wb") as f:
pickle.dump(model, f)
attr_key = "_".join([model_generator.__name__, method_name, str(test_size), str(nreps), str(i), data_hash])
def score(attr_function):
def cached_attr_function(X_inner):
if attr_key not in _attribution_cache:
_attribution_cache[attr_key] = attr_function(X_inner)
return _attribution_cache[attr_key]
#cached_attr_function = lambda X: __check_cache(attr_function, X)
if fcounts is None:
return score_function(X_train, X_test, y_train, y_test, cached_attr_function, model, i)
else:
scores = []
for f in fcounts:
scores.append(score_function(f, X_train, X_test, y_train, y_test, cached_attr_function, model, i))
return np.array(scores)
# evaluate the method (only building the attribution function if we need to)
if attr_key not in _attribution_cache:
method_reps.append(score(getattr(methods, method_name)(model, X_train)))
else:
method_reps.append(score(None))
np.random.seed(old_seed)
return np.array(method_reps).mean(0) | 0.00564 |
def person_involved(self, person):
"""Return True if the given person has been involved in the
discussion, False otherwise.
"""
return any(message.posted_by == person for message in self.discussion) | 0.008658 |
def plotConvergenceByColumnTopology(results, columnRange, featureRange, networkType, numTrials):
"""
Plots the convergence graph: iterations vs number of columns.
Each curve shows the convergence for a given number of unique features.
"""
########################################################################
#
# Accumulate all the results per column in a convergence array.
#
# Convergence[f, c, t] = how long it took it to converge with f unique
# features, c columns and topology t.
convergence = numpy.zeros((max(featureRange), max(columnRange) + 1, len(networkType)))
networkTypeNames = {}
for i, topologyType in enumerate(networkType):
if "Topology" in topologyType:
networkTypeNames[i] = "Normal"
else:
networkTypeNames[i] = "Dense"
for r in results:
convergence[r["numFeatures"] - 1, r["numColumns"], networkType.index(r["networkType"])] += r["convergencePoint"]
convergence /= numTrials
# For each column, print convergence as fct of number of unique features
for c in range(1, max(columnRange) + 1):
for t in range(len(networkType)):
print c, convergence[:, c, t]
# Print everything anyway for debugging
print "Average convergence array=", convergence
########################################################################
#
# Create the plot. x-axis=
plt.figure()
plotPath = os.path.join("plots", "convergence_by_column_topology.pdf")
# Plot each curve
legendList = []
colormap = plt.get_cmap("jet")
colorList = [colormap(x) for x in numpy.linspace(0., 1.,
len(featureRange)*len(networkType))]
for i in range(len(featureRange)):
for t in range(len(networkType)):
f = featureRange[i]
print columnRange
print convergence[f-1,columnRange, t]
legendList.append('Unique features={}, topology={}'.format(f, networkTypeNames[t]))
plt.plot(columnRange, convergence[f-1,columnRange, t],
color=colorList[i*len(networkType) + t])
# format
plt.legend(legendList, loc="upper right")
plt.xlabel("Number of columns")
plt.xticks(columnRange)
plt.yticks(range(0,int(convergence.max())+1))
plt.ylabel("Average number of touches")
plt.title("Number of touches to recognize one object (multiple columns)")
# save
plt.savefig(plotPath)
plt.close() | 0.022825 |
def get_formset(self, request, obj=None, **kwargs):
"""
Load Synchronizer schema to display specific fields in admin
"""
if obj is not None:
try:
# this is enough to load the new schema
obj.external
except LayerExternal.DoesNotExist:
pass
return super(LayerExternalInline, self).get_formset(request, obj=None, **kwargs) | 0.006961 |
def acceptNavigationRequest(self, url, kind, is_main_frame):
"""Open external links in browser and internal links in the webview"""
ready_url = url.toEncoded().data().decode()
is_clicked = kind == self.NavigationTypeLinkClicked
if is_clicked and self.root_url not in ready_url:
QtGui.QDesktopServices.openUrl(url)
return False
return super(WebPage, self).acceptNavigationRequest(url, kind, is_main_frame) | 0.00641 |
def load_obsdata(self, idx: int) -> None:
"""Load the next obs sequence value (of the given index)."""
if self._obs_ramflag:
self.obs[0] = self._obs_array[idx]
elif self._obs_diskflag:
raw = self._obs_file.read(8)
self.obs[0] = struct.unpack('d', raw) | 0.006431 |
def to_capabilities(self):
"""Marshals the IE options to the correct object."""
caps = self._caps
opts = self._options.copy()
if len(self._arguments) > 0:
opts[self.SWITCHES] = ' '.join(self._arguments)
if len(self._additional) > 0:
opts.update(self._additional)
if len(opts) > 0:
caps[Options.KEY] = opts
return caps | 0.004854 |
def shorten_text(self, text):
"""Shortens text to fit into the :attr:`width`."""
if len(text) > self.width:
return text[:self.width - 3] + '...'
return text | 0.010417 |
def notification_message(cls, item):
'''Convert an RPCRequest item to a message.'''
assert isinstance(item, Notification)
return cls.encode_payload(cls.request_payload(item, None)) | 0.009804 |
def serve(args):
"""Start a server which will watch .md and .rst files for changes.
If a md file changes, the Home Documentation is rebuilt. If a .rst
file changes, the updated sphinx project is rebuilt
Args:
args (ArgumentParser): flags from the CLI
"""
# Sever's parameters
port = args.serve_port or PORT
host = "0.0.0.0"
# Current working directory
dir_path = Path().absolute()
web_dir = dir_path / "site"
# Update routes
utils.set_routes()
# Offline mode
if args.offline:
os.environ["MKINX_OFFLINE"] = "true"
_ = subprocess.check_output("mkdocs build > /dev/null", shell=True)
utils.make_offline()
class MkinxHTTPHandler(SimpleHTTPRequestHandler):
"""Class routing urls (paths) to projects (resources)
"""
def translate_path(self, path):
# default root -> cwd
location = str(web_dir)
route = location
if len(path) != 0 and path != "/":
for key, loc in utils.get_routes():
if path.startswith(key):
location = loc
path = path[len(key) :]
break
if location[-1] == "/" or not path or path[0] == "/":
route = location + path
else:
route = location + "/" + path
return route.split("?")[0]
# Serve as deamon thread
success = False
count = 0
print("Waiting for server port...")
try:
while not success:
try:
httpd = socketserver.TCPServer((host, port), MkinxHTTPHandler)
success = True
except OSError:
count += 1
finally:
if not success and count > 20:
s = "port {} seems occupied. Try with {} ? (y/n)"
if "y" in input(s.format(port, port + 1)):
port += 1
count = 0
else:
print("You can specify a custom port with mkinx serve -s")
return
time.sleep(0.5)
except KeyboardInterrupt:
print("Aborting.")
return
httpd.allow_reuse_address = True
print("\nServing at http://{}:{}\n".format(host, port))
thread = threading.Thread(target=httpd.serve_forever)
thread.daemon = True
thread.start()
# Watch for changes
event_handler = utils.MkinxFileHandler(
patterns=["*.rst", "*.md", "*.yml", "*.yaml"]
)
observer = Observer()
observer.schedule(event_handler, path=str(dir_path), recursive=True)
observer.start()
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
observer.stop()
httpd.server_close()
observer.join() | 0.001041 |
def contains_set(self, other):
"""Return ``True`` if ``other`` is a subset of the real numbers.
Returns
-------
contained : bool
``True`` if other is an instance of `RealNumbers` or
`Integers` False otherwise.
Examples
--------
>>> real_numbers = RealNumbers()
>>> real_numbers.contains_set(RealNumbers())
True
"""
if other is self:
return True
return (isinstance(other, RealNumbers) or
isinstance(other, Integers)) | 0.003534 |
def field_items(self, path=str(), **options):
""" Returns a **flatten** list of ``('field path', field item)`` tuples
for the `Pointer` field itself and for each :class:`Field` *nested* in the
:attr:`data` object referenced by the `Pointer` field.
:param str path: path of the `Pointer` field.
:keyword bool nested: if ``True`` all :class:`Pointer` fields in the
:attr:`data` object referenced by the `Pointer` field lists their
referenced :attr:`~Pointer.data` object field items as well
(chained method call).
"""
items = list()
# Field
items.append((path if path else 'field', self))
# Data Object
data_path = '{0}.{1}'.format(path, 'data') if path else 'data'
# Container
if is_container(self._data):
for field_item in self._data.field_items(data_path, **options):
items.append(field_item)
# Pointer
elif is_pointer(self._data) and get_nested(options):
for field_item in self._data.field_items(data_path, **options):
items.append(field_item)
# Field
elif is_field(self._data):
items.append((data_path, self._data))
return items | 0.002344 |
def unstub(*objs):
"""Unstubs all stubbed methods and functions
If you don't pass in any argument, *all* registered mocks and
patched modules, classes etc. will be unstubbed.
Note that additionally, the underlying registry will be cleaned.
After an `unstub` you can't :func:`verify` anymore because all
interactions will be forgotten.
"""
if objs:
for obj in objs:
mock_registry.unstub(obj)
else:
mock_registry.unstub_all() | 0.002041 |
def update(self):
"""Once you open a dataset, it activates all the widgets.
"""
self.info.display_dataset()
self.overview.update()
self.labels.update(labels=self.info.dataset.header['chan_name'])
self.channels.update()
try:
self.info.markers = self.info.dataset.read_markers()
except FileNotFoundError:
lg.info('No notes/markers present in the header of the file')
else:
self.notes.update_dataset_marker() | 0.003891 |
def n2s(n):
"""
Number to string.
"""
s = hex(n)[2:].rstrip("L")
if len(s) % 2 != 0:
s = "0" + s
return s.decode("hex") | 0.006623 |
def generate_random_string(length=6):
'''
Returns a random string of a specified length.
>>> len(generate_random_string(length=25))
25
Test randomness. Try N times and observe no duplicaton
>>> N = 100
>>> len(set(generate_random_string(10) for i in range(N))) == N
True
'''
n = int(length / 2 + 1)
x = binascii.hexlify(os.urandom(n))
s = x[:length]
return s.decode('utf-8') | 0.002336 |
def get_versioned_references_for(self, instance):
"""Returns the versioned references for the given instance
"""
vrefs = []
# Retrieve the referenced objects
refs = instance.getRefs(relationship=self.relationship)
ref_versions = getattr(instance, REFERENCE_VERSIONS, None)
# No versions stored, return the original references
if ref_versions is None:
return refs
for ref in refs:
uid = api.get_uid(ref)
# get the linked version to the reference
version = ref_versions.get(uid)
# append the versioned reference
vrefs.append(self.retrieve_version(ref, version))
return vrefs | 0.002747 |
def apply_obb(self):
"""
Transform the current path so that its OBB is axis aligned
and OBB center is at the origin.
"""
if len(self.root) == 1:
matrix, bounds = polygons.polygon_obb(
self.polygons_closed[self.root[0]])
self.apply_transform(matrix)
return matrix
else:
raise ValueError('Not implemented for multibody geometry') | 0.004556 |
def update_subnet(self, subnet, name=None):
'''
Updates a subnet
'''
subnet_id = self._find_subnet_id(subnet)
return self.network_conn.update_subnet(
subnet=subnet_id, body={'subnet': {'name': name}}) | 0.007937 |
def _get_app_libs_volume_mounts(app_name, assembled_specs):
""" Returns a list of the formatted volume mounts for all libs that an app uses """
volumes = []
for lib_name in assembled_specs['apps'][app_name]['depends']['libs']:
lib_spec = assembled_specs['libs'][lib_name]
volumes.append("{}:{}".format(Repo(lib_spec['repo']).vm_path, container_code_path(lib_spec)))
return volumes | 0.007282 |
def __erase_primes(self):
"""Erase all prime markings"""
for i in range(self.n):
for j in range(self.n):
if self.marked[i][j] == 2:
self.marked[i][j] = 0 | 0.009217 |
def clr(M, **kwargs):
"""Implementation of the Context Likelihood or Relatedness Network algorithm.
Args:
mat (numpy.ndarray): matrix, if it is a square matrix, the program assumes
it is a relevance matrix where mat(i,j) represents the similarity content
between nodes i and j. Elements of matrix should be
non-negative.
Returns:
mat_nd (numpy.ndarray): Output deconvolved matrix (direct dependency matrix). Its components
represent direct edge weights of observed interactions.
.. note::
Ref:Jeremiah J. Faith, Boris Hayete, Joshua T. Thaden, Ilaria Mogno, Jamey
Wierzbowski, Guillaume Cottarel, Simon Kasif, James J. Collins, and Timothy
S. Gardner. Large-scale mapping and validation of escherichia coli
transcriptional regulation from a compendium of expression profiles.
PLoS Biology, 2007
"""
R = np.zeros(M.shape)
Id = [[0, 0] for i in range(M.shape[0])]
for i in range(M.shape[0]):
mu_i = np.mean(M[i, :])
sigma_i = np.std(M[i, :])
Id[i] = [mu_i, sigma_i]
for i in range(M.shape[0]):
for j in range(i + 1, M.shape[0]):
z_i = np.max([0, (M[i, j] - Id[i][0]) / Id[i][0]])
z_j = np.max([0, (M[i, j] - Id[j][0]) / Id[j][0]])
R[i, j] = np.sqrt(z_i**2 + z_j**2)
R[j, i] = R[i, j] # Symmetric
return R | 0.004264 |
def read_config(cls, configparser):
"""Read configuration file options."""
config = dict()
config[cls._filename_re_key] = configparser.get(cls.__name__, cls._filename_re_key) \
if configparser.has_option(cls.__name__, cls._filename_re_key) else None
return config | 0.013029 |
def _convert_axes_to_absolute(dshape, axes):
"""axes = (-2,-1) does not work in reikna, so we have to convetr that"""
if axes is None:
return None
elif isinstance(axes, (tuple, list)):
return tuple(np.arange(len(dshape))[list(axes)])
else:
raise NotImplementedError("axes %s is of unsupported type %s "%(str(axes), type(axes))) | 0.008152 |
def on_presence(self, session, presence):
"""Handles presence stanzas"""
from_jid = presence.getFrom()
is_member = self.is_member(from_jid.getStripped())
if is_member:
member = self.get_member(from_jid.getStripped())
else:
member = None
logger.info('presence: from=%s is_member=%s type=%s' % (from_jid, is_member, presence.getType()))
if presence.getType() == 'subscribed':
if is_member:
logger.info('[%s] accepted their invitation' % (from_jid,))
member['STATUS'] = 'ACTIVE'
else:
#TODO: user accepted, but is no longer be on the roster, unsubscribe?
pass
elif presence.getType() == 'subscribe':
if is_member:
logger.info('Acknowledging subscription request from [%s]' % (from_jid,))
self.client.sendPresence(jid=from_jid, typ='subscribed')
member['STATUS'] = 'ACTIVE'
self.broadcast('%s has accepted their invitation!' % (from_jid,))
else:
#TODO: show that a user has requested membership?
pass
elif presence.getType() == None:
if is_member:
member['ONLINE'] += 1
elif presence.getType() == 'unavailable':
if is_member:
member['ONLINE'] -= 1
else:
logger.info('Unhandled presence stanza of type [%s] from [%s]' % (presence.getType(), from_jid)) | 0.00651 |
def locate_module(module_id: str, module_type: str = None):
"""
Locate module by module ID
Args:
module_id: Module ID
module_type: Type of module, one of ``'master'``, ``'slave'`` and ``'middleware'``
"""
entry_point = None
if module_type:
entry_point = 'ehforwarderbot.%s' % module_type
module_id = module_id.split('#', 1)[0]
if entry_point:
for i in pkg_resources.iter_entry_points(entry_point):
if i.name == module_id:
return i.load()
return pydoc.locate(module_id) | 0.003509 |
def _opening_bracket_index(self, text, bpair=('(', ')')):
"""Return the index of the opening bracket that matches the closing bracket at the end of the text."""
level = 1
for i, char in enumerate(reversed(text[:-1])):
if char == bpair[1]:
level += 1
elif char == bpair[0]:
level -= 1
if level == 0:
return len(text) - i - 2 | 0.006961 |
def solve(self,stops,
method="POST",
barriers=None,
polylineBarriers=None,
polygonBarriers=None,
travelMode=None,
attributeParameterValues=None,
returnDirections=None,
returnRoutes=True,
returnStops=False,
returnBarriers=False,
returnPolylineBarriers=True,
returnPolygonBarriers=True,
outSR=None,
ignoreInvalidLocations=True,
outputLines=None,
findBestSequence=False,
preserveFirstStop=True,
preserveLastStop=True,
useTimeWindows=False,
startTime=None,
startTimeIsUTC=False,
accumulateAttributeNames=None,
impedanceAttributeName=None,
restrictionAttributeNames=None,
restrictUTurns=None,
useHierarchy=True,
directionsLanguage=None,
directionsOutputType=None,
directionsStyleName=None,
directionsLengthUnits=None,
directionsTimeAttributeName=None,
outputGeometryPrecision=None,
outputGeometryPrecisionUnits=None,
returnZ=False
):
"""The solve operation is performed on a network layer resource.
The solve operation is supported on a network layer whose layerType
is esriNAServerRouteLayer. You can provide arguments to the solve
route operation as query parameters.
Inputs:
stops - The set of stops loaded as network locations during analysis.
Stops can be specified using a simple comma / semi-colon
based syntax or as a JSON structure. If stops are not
specified, preloaded stops from the map document are used in
the analysis.
barriers - The set of barriers loaded as network locations during
analysis. Barriers can be specified using a simple comma
/ semi-colon based syntax or as a JSON structure. If
barriers are not specified, preloaded barriers from the
map document are used in the analysis. If an empty json
object is passed ('{}') preloaded barriers are ignored.
polylineBarriers - The set of polyline barriers loaded as network
locations during analysis. If polyline barriers
are not specified, preloaded polyline barriers
from the map document are used in the analysis.
If an empty json object is passed ('{}')
preloaded polyline barriers are ignored.
polygonBarriers - The set of polygon barriers loaded as network
locations during analysis. If polygon barriers
are not specified, preloaded polygon barriers
from the map document are used in the analysis.
If an empty json object is passed ('{}') preloaded
polygon barriers are ignored.
travelMode - Travel modes provide override values that help you
quickly and consistently model a vehicle or mode of
transportation. The chosen travel mode must be
preconfigured on the network dataset that the routing
service references.
attributeParameterValues - A set of attribute parameter values that
can be parameterized to determine which
network elements can be used by a vehicle.
returnDirections - If true, directions will be generated and returned
with the analysis results. Default is true.
returnRoutes - If true, routes will be returned with the analysis
results. Default is true.
returnStops - If true, stops will be returned with the analysis
results. Default is false.
returnBarriers - If true, barriers will be returned with the analysis
results. Default is false.
returnPolylineBarriers - If true, polyline barriers will be returned
with the analysis results. Default is false.
returnPolygonBarriers - If true, polygon barriers will be returned with
the analysis results. Default is false.
outSR - The spatial reference of the geometries returned with the
analysis results.
ignoreInvalidLocations - If true, the solver will ignore invalid
locations. Otherwise, it will raise an error.
The default is as defined in the network layer.
outputLines - The type of output lines to be generated in the result.
The default is as defined in the network layer.
findBestSequence - If true, the solver should re-sequence the route in
the optimal order. The default is as defined in the
network layer.
preserveFirstStop - If true, the solver should keep the first stop
fixed in the sequence. The default is as defined
in the network layer.
preserveLastStop - If true, the solver should keep the last stop fixed
in the sequence. The default is as defined in the
network layer.
useTimeWindows - If true, the solver should consider time windows.
The default is as defined in the network layer.
startTime - The time the route begins. If not specified, the solver
will use the default as defined in the network layer.
startTimeIsUTC - The time zone of the startTime parameter.
accumulateAttributeNames - The list of network attribute names to be
accumulated with the analysis. The default is
as defined in the network layer. The value
should be specified as a comma separated list
of attribute names. You can also specify a
value of none to indicate that no network
attributes should be accumulated.
impedanceAttributeName - The network attribute name to be used as the
impedance attribute in analysis. The default is
as defined in the network layer.
restrictionAttributeNames -The list of network attribute names to be
used as restrictions with the analysis. The
default is as defined in the network layer.
The value should be specified as a comma
separated list of attribute names. You can
also specify a value of none to indicate that
no network attributes should be used as
restrictions.
restrictUTurns - Specifies how U-Turns should be restricted in the
analysis. The default is as defined in the network
layer. Values: esriNFSBAllowBacktrack |
esriNFSBAtDeadEndsOnly | esriNFSBNoBacktrack |
esriNFSBAtDeadEndsAndIntersections
useHierarchy - If true, the hierarchy attribute for the network should
be used in analysis. The default is as defined in the
network layer.
directionsLanguage - The language to be used when computing directions.
The default is as defined in the network layer. The
list of supported languages can be found in REST
layer description.
directionsOutputType - Defines content, verbosity of returned
directions. The default is esriDOTStandard.
Values: esriDOTComplete | esriDOTCompleteNoEvents
| esriDOTInstructionsOnly | esriDOTStandard |
esriDOTSummaryOnly
directionsStyleName - The style to be used when returning the directions.
The default is as defined in the network layer. The
list of supported styles can be found in REST
layer description.
directionsLengthUnits - The length units to use when computing directions.
The default is as defined in the network layer.
Values: esriNAUFeet | esriNAUKilometers |
esriNAUMeters | esriNAUMiles |
esriNAUNauticalMiles | esriNAUYards |
esriNAUUnknown
directionsTimeAttributeName - The name of network attribute to use for
the drive time when computing directions.
The default is as defined in the network
layer.
outputGeometryPrecision - The precision of the output geometry after
generalization. If 0, no generalization of
output geometry is performed. The default is
as defined in the network service
configuration.
outputGeometryPrecisionUnits - The units of the output geometry
precision. The default value is
esriUnknownUnits. Values: esriUnknownUnits
| esriCentimeters | esriDecimalDegrees |
esriDecimeters | esriFeet | esriInches |
esriKilometers | esriMeters | esriMiles |
esriMillimeters | esriNauticalMiles |
esriPoints | esriYards
returnZ - If true, Z values will be included in the returned routes and
compressed geometry if the network dataset is Z-aware.
The default is false.
"""
if not self.layerType == "esriNAServerRouteLayer":
raise ValueError("The solve operation is supported on a network "
"layer of Route type only")
url = self._url + "/solve"
params = {
"f" : "json",
"stops": stops
}
if not barriers is None:
params['barriers'] = barriers
if not polylineBarriers is None:
params['polylineBarriers'] = polylineBarriers
if not polygonBarriers is None:
params['polygonBarriers'] = polygonBarriers
if not travelMode is None:
params['travelMode'] = travelMode
if not attributeParameterValues is None:
params['attributeParameterValues'] = attributeParameterValues
if not returnDirections is None:
params['returnDirections'] = returnDirections
if not returnRoutes is None:
params['returnRoutes'] = returnRoutes
if not returnStops is None:
params['returnStops'] = returnStops
if not returnBarriers is None:
params['returnBarriers'] = returnBarriers
if not returnPolylineBarriers is None:
params['returnPolylineBarriers'] = returnPolylineBarriers
if not returnPolygonBarriers is None:
params['returnPolygonBarriers'] = returnPolygonBarriers
if not outSR is None:
params['outSR'] = outSR
if not ignoreInvalidLocations is None:
params['ignoreInvalidLocations'] = ignoreInvalidLocations
if not outputLines is None:
params['outputLines'] = outputLines
if not findBestSequence is None:
params['findBestSequence'] = findBestSequence
if not preserveFirstStop is None:
params['preserveFirstStop'] = preserveFirstStop
if not preserveLastStop is None:
params['preserveLastStop'] = preserveLastStop
if not useTimeWindows is None:
params['useTimeWindows'] = useTimeWindows
if not startTime is None:
params['startTime'] = startTime
if not startTimeIsUTC is None:
params['startTimeIsUTC'] = startTimeIsUTC
if not accumulateAttributeNames is None:
params['accumulateAttributeNames'] = accumulateAttributeNames
if not impedanceAttributeName is None:
params['impedanceAttributeName'] = impedanceAttributeName
if not restrictionAttributeNames is None:
params['restrictionAttributeNames'] = restrictionAttributeNames
if not restrictUTurns is None:
params['restrictUTurns'] = restrictUTurns
if not useHierarchy is None:
params['useHierarchy'] = useHierarchy
if not directionsLanguage is None:
params['directionsLanguage'] = directionsLanguage
if not directionsOutputType is None:
params['directionsOutputType'] = directionsOutputType
if not directionsStyleName is None:
params['directionsStyleName'] = directionsStyleName
if not directionsLengthUnits is None:
params['directionsLengthUnits'] = directionsLengthUnits
if not directionsTimeAttributeName is None:
params['directionsTimeAttributeName'] = directionsTimeAttributeName
if not outputGeometryPrecision is None:
params['outputGeometryPrecision'] = outputGeometryPrecision
if not outputGeometryPrecisionUnits is None:
params['outputGeometryPrecisionUnits'] = outputGeometryPrecisionUnits
if not returnZ is None:
params['returnZ'] = returnZ
if method.lower() == "post":
return self._post(url=url,
param_dict=params,
securityHandler=self._securityHandler,
proxy_url=self._proxy_url,
proxy_port=self._proxy_port)
else:
return self._get(url=url,
param_dict=params,
securityHandler=self._securityHandler,
proxy_url=self._proxy_url,
proxy_port=self._proxy_port) | 0.008649 |
def get_bugs(self, project, status=None):
""" Retrives a List of bugs for a given project.
By default, this will only return activate bugs. If you wish to
retrieve a non-active bug then specify the status through the
status parameter.
:param project: The formal project name.
:param status: Allows filtering of bugs by current status.
"""
uri = '{base}/{project}'.format(base=self.BASE_URI, project=project)
parameters = {'ws.op': 'searchTasks'}
if status:
parameters['status'] = status
resp = self._client.get(uri, model=models.Bug, is_collection=True,
params=parameters)
return resp | 0.002747 |
def active_conf_set_name(self):
'''The name of the currently-active configuration set.'''
with self._mutex:
if not self.conf_sets:
return ''
if not self._active_conf_set:
return ''
return self._active_conf_set | 0.006826 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.