text
stringlengths
78
104k
score
float64
0
0.18
def _build_instance_count_and_type_args(self, master_instance_type, slave_instance_type, num_instances): """ Takes a master instance type (string), a slave instance type (string), and a number of instances. Returns a comparable dict for use in making a RunJobFlow request. """ params = { 'Instances.MasterInstanceType' : master_instance_type, 'Instances.SlaveInstanceType' : slave_instance_type, 'Instances.InstanceCount' : num_instances, } return params
0.011628
def bytes_iter(obj): """Turn a complex object into an iterator of byte strings. The resulting iterator can be used for caching. """ if obj is None: return elif isinstance(obj, six.binary_type): yield obj elif isinstance(obj, six.string_types): yield obj elif isinstance(obj, (date, datetime)): yield obj.isoformat() elif is_mapping(obj): for key in sorted(obj.keys()): for out in chain(bytes_iter(key), bytes_iter(obj[key])): yield out elif is_sequence(obj): if isinstance(obj, (list, set)): try: obj = sorted(obj) except Exception: pass for item in obj: for out in bytes_iter(item): yield out elif isinstance(obj, (types.FunctionType, types.BuiltinFunctionType, types.MethodType, types.BuiltinMethodType)): yield getattr(obj, 'func_name', '') else: yield six.text_type(obj)
0.000973
def FromStream(cls, stream): """Create a DataStreamSelector from a DataStream. Args: stream (DataStream): The data stream that we want to convert. """ if stream.system: specifier = DataStreamSelector.MatchSystemOnly else: specifier = DataStreamSelector.MatchUserOnly return DataStreamSelector(stream.stream_type, stream.stream_id, specifier)
0.007009
def publish_ap(self, apid, args): """绑定自定义域名 绑定用户自定义的域名,仅对公网域名模式接入点生效。 Args: - apid: 接入点ID - args: 请求参数(json),参考 http://kirk-docs.qiniu.com/apidocs/ Returns: 返回一个tuple对象,其格式为(<result>, <ResponseInfo>) - result 成功返回空dict{},失败返回{"error": "<errMsg string>"} - ResponseInfo 请求的Response信息 """ url = '{0}/v3/aps/{1}/publish'.format(self.host, apid) return self.__post(url, args)
0.003976
def _to_dict(self): """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'collection_id') and self.collection_id is not None: _dict['collection_id'] = self.collection_id if hasattr(self, 'name') and self.name is not None: _dict['name'] = self.name if hasattr(self, 'description') and self.description is not None: _dict['description'] = self.description if hasattr(self, 'created') and self.created is not None: _dict['created'] = datetime_to_string(self.created) if hasattr(self, 'updated') and self.updated is not None: _dict['updated'] = datetime_to_string(self.updated) if hasattr(self, 'status') and self.status is not None: _dict['status'] = self.status if hasattr(self, 'configuration_id') and self.configuration_id is not None: _dict['configuration_id'] = self.configuration_id if hasattr(self, 'language') and self.language is not None: _dict['language'] = self.language if hasattr(self, 'document_counts') and self.document_counts is not None: _dict['document_counts'] = self.document_counts._to_dict() if hasattr(self, 'disk_usage') and self.disk_usage is not None: _dict['disk_usage'] = self.disk_usage._to_dict() if hasattr(self, 'training_status') and self.training_status is not None: _dict['training_status'] = self.training_status._to_dict() if hasattr(self, 'source_crawl') and self.source_crawl is not None: _dict['source_crawl'] = self.source_crawl._to_dict() return _dict
0.001147
def new_knitting_pattern_set_loader(specification=DefaultSpecification()): """Create a loader for a knitting pattern set. :param specification: a :class:`specification <knittingpattern.ParsingSpecification.ParsingSpecification>` for the knitting pattern set, default :class:`DefaultSpecification` """ parser = specification.new_parser(specification) loader = specification.new_loader(parser.knitting_pattern_set) return loader
0.002132
def coordination_geometry_symmetry_measures_standard(self, coordination_geometry, algo, points_perfect=None, optimization=None): """ Returns the symmetry measures for a set of permutations (whose setup depends on the coordination geometry) for the coordination geometry "coordination_geometry". Standard implementation looking for the symmetry measures of each permutation :param coordination_geometry: The coordination geometry to be investigated :return: The symmetry measures for the given coordination geometry for each permutation investigated """ # permutations_symmetry_measures = np.zeros(len(algo.permutations), # np.float) if optimization == 2: permutations_symmetry_measures = [None] * len(algo.permutations) permutations = list() algos = list() local2perfect_maps = list() perfect2local_maps = list() for iperm, perm in enumerate(algo.permutations): local2perfect_map = {} perfect2local_map = {} permutations.append(perm) for iperfect, ii in enumerate(perm): perfect2local_map[iperfect] = ii local2perfect_map[ii] = iperfect local2perfect_maps.append(local2perfect_map) perfect2local_maps.append(perfect2local_map) points_distorted = self.local_geometry.points_wcs_ctwcc( permutation=perm) sm_info = symmetry_measure(points_distorted=points_distorted, points_perfect=points_perfect) sm_info['translation_vector'] = self.local_geometry.centroid_with_centre permutations_symmetry_measures[iperm] = sm_info algos.append(str(algo)) return permutations_symmetry_measures, permutations, algos, local2perfect_maps, perfect2local_maps else: permutations_symmetry_measures = [None] * len(algo.permutations) permutations = list() algos = list() local2perfect_maps = list() perfect2local_maps = list() for iperm, perm in enumerate(algo.permutations): local2perfect_map = {} perfect2local_map = {} permutations.append(perm) for iperfect, ii in enumerate(perm): perfect2local_map[iperfect] = ii local2perfect_map[ii] = iperfect local2perfect_maps.append(local2perfect_map) perfect2local_maps.append(perfect2local_map) points_distorted = self.local_geometry.points_wcs_ctwcc( permutation=perm) sm_info = symmetry_measure(points_distorted=points_distorted, points_perfect=points_perfect) sm_info['translation_vector'] = self.local_geometry.centroid_with_centre permutations_symmetry_measures[iperm] = sm_info algos.append(str(algo)) return permutations_symmetry_measures, permutations, algos, local2perfect_maps, perfect2local_maps
0.004257
def _set_fcoe_map_cee_map(self, v, load=False): """ Setter method for fcoe_map_cee_map, mapped from YANG variable /fcoe/fcoe_map/fcoe_map_cee_map (container) If this variable is read-only (config: false) in the source YANG file, then _set_fcoe_map_cee_map is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_fcoe_map_cee_map() directly. YANG Description: This provides the grouping for FCoE CEE map configuration elements. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=fcoe_map_cee_map.fcoe_map_cee_map, is_container='container', presence=False, yang_name="fcoe-map-cee-map", rest_name="cee-map", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure the CEE-map in the FCoE Map', u'alt-name': u'cee-map'}}, namespace='urn:brocade.com:mgmt:brocade-fcoe', defining_module='brocade-fcoe', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """fcoe_map_cee_map must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=fcoe_map_cee_map.fcoe_map_cee_map, is_container='container', presence=False, yang_name="fcoe-map-cee-map", rest_name="cee-map", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure the CEE-map in the FCoE Map', u'alt-name': u'cee-map'}}, namespace='urn:brocade.com:mgmt:brocade-fcoe', defining_module='brocade-fcoe', yang_type='container', is_config=True)""", }) self.__fcoe_map_cee_map = t if hasattr(self, '_set'): self._set()
0.005411
def require_flush(fun): """Decorator for methods that need to query security. It ensures all security related operations are flushed to DB, but avoids unneeded flushes. """ @wraps(fun) def ensure_flushed(service, *args, **kwargs): if service.app_state.needs_db_flush: session = db.session() if not session._flushing and any( isinstance(m, (RoleAssignment, SecurityAudit)) for models in (session.new, session.dirty, session.deleted) for m in models ): session.flush() service.app_state.needs_db_flush = False return fun(service, *args, **kwargs) return ensure_flushed
0.001377
def get_statement_queries(stmts, **params): """Get queries used to search based on a statement. In addition to the stmts, you can enter any parameters standard to the query. See https://github.com/indralab/indra_db/rest_api for a full list. Parameters ---------- stmts : list[Statement] A list of INDRA statements. """ def pick_ns(ag): for ns in ['HGNC', 'FPLX', 'CHEMBL', 'CHEBI', 'GO', 'MESH']: if ns in ag.db_refs.keys(): dbid = ag.db_refs[ns] break else: ns = 'TEXT' dbid = ag.name return '%s@%s' % (dbid, ns) queries = [] url_base = get_url_base('statements/from_agents') non_binary_statements = [Complex, SelfModification, ActiveForm] for stmt in stmts: kwargs = {} if type(stmt) not in non_binary_statements: for pos, ag in zip(['subject', 'object'], stmt.agent_list()): if ag is not None: kwargs[pos] = pick_ns(ag) else: for i, ag in enumerate(stmt.agent_list()): if ag is not None: kwargs['agent%d' % i] = pick_ns(ag) kwargs['type'] = stmt.__class__.__name__ kwargs.update(params) query_str = '?' + '&'.join(['%s=%s' % (k, v) for k, v in kwargs.items() if v is not None]) queries.append(url_base + query_str) return queries
0.000678
def generate_read_batches( self, table, columns, keyset, index="", partition_size_bytes=None, max_partitions=None, ): """Start a partitioned batch read operation. Uses the ``PartitionRead`` API request to initiate the partitioned read. Returns a list of batch information needed to perform the actual reads. :type table: str :param table: name of the table from which to fetch data :type columns: list of str :param columns: names of columns to be retrieved :type keyset: :class:`~google.cloud.spanner_v1.keyset.KeySet` :param keyset: keys / ranges identifying rows to be retrieved :type index: str :param index: (Optional) name of index to use, rather than the table's primary key :type partition_size_bytes: int :param partition_size_bytes: (Optional) desired size for each partition generated. The service uses this as a hint, the actual partition size may differ. :type max_partitions: int :param max_partitions: (Optional) desired maximum number of partitions generated. The service uses this as a hint, the actual number of partitions may differ. :rtype: iterable of dict :returns: mappings of information used peform actual partitioned reads via :meth:`process_read_batch`. """ partitions = self._get_snapshot().partition_read( table=table, columns=columns, keyset=keyset, index=index, partition_size_bytes=partition_size_bytes, max_partitions=max_partitions, ) read_info = { "table": table, "columns": columns, "keyset": keyset._to_dict(), "index": index, } for partition in partitions: yield {"partition": partition, "read": read_info.copy()}
0.001462
def to_json_object(self): """Returns a dict representation that can be serialized to JSON.""" obj_dict = dict(namespace_start=self.namespace_start, namespace_end=self.namespace_end) if self.app is not None: obj_dict['app'] = self.app return obj_dict
0.006873
def verbose_option(default=False): """ Attaches the option ``verbose`` with its *default* value to the keyword arguments when the option does not exist. All positional arguments and keyword arguments are forwarded unchanged. """ def decorator(method): @wraps(method) def wrapper(*args, **kwargs): option = Option.verbose.value kwargs[option] = kwargs.get(option, bool(default)) return method(*args, **kwargs) return wrapper return decorator
0.001898
def _init_edges(self, dst_srcs_list): """Create all GO edges given a list of (dst, srcs).""" from goatools.gosubdag.go_paths import get_paths_goobjs, paths2edges edges_all = set() goid_all = set() go2obj = self.go2obj for dst, srcs in dst_srcs_list: go2obj_srcs = {} for goid in srcs: go2obj_srcs[goid] = go2obj[goid] go_paths, go_all = get_paths_goobjs(go2obj_srcs.values(), go_top=dst, go2obj=go2obj) edges_all |= paths2edges(go_paths) goid_all |= go_all self.edges = [(a.id, b.id) for a, b in edges_all] self.goid_all = goid_all
0.004471
def set_start_timestamp(self, start_timestamp=None): """stub""" if start_timestamp is None: raise NullArgument() if self.get_start_timestamp_metadata().is_read_only(): raise NoAccess() if not self.my_osid_object_form._is_valid_integer( start_timestamp, self.get_start_timestamp_metadata()): raise InvalidArgument() self.my_osid_object_form._my_map['startTimestamp'] = start_timestamp
0.004073
def parse_docstring(self): """Parse a single docstring and return its value.""" self.log.debug( "parsing docstring, token is %r (%s)", self.current.kind, self.current.value ) while self.current.kind in (tk.COMMENT, tk.NEWLINE, tk.NL): self.stream.move() self.log.debug( "parsing docstring, token is %r (%s)", self.current.kind, self.current.value, ) if self.current.kind == tk.STRING: docstring = self.current.value self.stream.move() return docstring return None
0.004666
def _repo_packages(self, args, search=False): ''' List packages for one or more configured repos ''' packages = [] repo_metadata = self._get_repo_metadata() for repo in repo_metadata: for pkg in repo_metadata[repo]['packages']: if args[1] in pkg: version = repo_metadata[repo]['packages'][pkg]['info']['version'] release = repo_metadata[repo]['packages'][pkg]['info']['release'] packages.append((pkg, version, release, repo)) for pkg in sorted(packages): self.ui.status( '{0}\t{1}-{2}\t{3}'.format(pkg[0], pkg[1], pkg[2], pkg[3]) ) return packages
0.005413
def ensure_time_avg_has_cf_metadata(ds): """Add time interval length and bounds coordinates for time avg data. If the Dataset or DataArray contains time average data, enforce that there are coordinates that track the lower and upper bounds of the time intervals, and that there is a coordinate that tracks the amount of time per time average interval. CF conventions require that a quantity stored as time averages over time intervals must have time and time_bounds coordinates [1]_. aospy further requires AVERAGE_DT for time average data, for accurate time-weighted averages, which can be inferred from the CF-required time_bounds coordinate if needed. This step should be done prior to decoding CF metadata with xarray to ensure proper computed timedeltas for different calendar types. .. [1] http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#_data_representative_of_cells Parameters ---------- ds : Dataset or DataArray Input data Returns ------- Dataset or DataArray Time average metadata attributes added if needed. """ # noqa: E501 if TIME_WEIGHTS_STR not in ds: time_weights = ds[TIME_BOUNDS_STR].diff(BOUNDS_STR) time_weights = time_weights.rename(TIME_WEIGHTS_STR).squeeze() if BOUNDS_STR in time_weights.coords: time_weights = time_weights.drop(BOUNDS_STR) ds[TIME_WEIGHTS_STR] = time_weights raw_start_date = ds[TIME_BOUNDS_STR].isel(**{TIME_STR: 0, BOUNDS_STR: 0}) ds[RAW_START_DATE_STR] = raw_start_date.reset_coords(drop=True) raw_end_date = ds[TIME_BOUNDS_STR].isel(**{TIME_STR: -1, BOUNDS_STR: 1}) ds[RAW_END_DATE_STR] = raw_end_date.reset_coords(drop=True) for coord in [TIME_BOUNDS_STR, RAW_START_DATE_STR, RAW_END_DATE_STR]: ds[coord].attrs['units'] = ds[TIME_STR].attrs['units'] if 'calendar' in ds[TIME_STR].attrs: ds[coord].attrs['calendar'] = ds[TIME_STR].attrs['calendar'] unit_interval = ds[TIME_STR].attrs['units'].split('since')[0].strip() ds[TIME_WEIGHTS_STR].attrs['units'] = unit_interval return ds
0.000463
def create_aql_text(*args): """ Create AQL querty from string or list or dict arguments """ aql_query_text = "" for arg in args: if isinstance(arg, dict): arg = "({})".format(json.dumps(arg)) elif isinstance(arg, list): arg = "({})".format(json.dumps(arg)).replace("[", "").replace("]", "") aql_query_text += arg return aql_query_text
0.006667
def createDevice(self, deviceCfg): """ Creates a measurement deviceCfg from the input configuration. :param: deviceCfg: the deviceCfg cfg. :param: handlers: the loaded handlers. :return: the constructed deviceCfg. """ ioCfg = deviceCfg['io'] type = deviceCfg['type'] if type == 'mpu6050': fs = deviceCfg.get('fs') name = deviceCfg.get('name') if ioCfg['type'] == 'mock': provider = ioCfg.get('provider') if provider is not None and provider == 'white noise': dataProvider = WhiteNoiseProvider() else: raise ValueError(provider + " is not a supported mock io data provider") self.logger.warning("Loading mock data provider for mpu6050") io = mock_io(dataProvider=dataProvider.provide) elif ioCfg['type'] == 'smbus': busId = ioCfg['busId'] self.logger.warning("Loading smbus %d", busId) io = smbus_io(busId) else: raise ValueError(ioCfg['type'] + " is not a supported io provider") self.logger.warning("Loading mpu6050 " + name + "/" + str(fs)) return mpu6050(io, name=name, fs=fs) if name is not None else mpu6050(io, fs=fs) else: raise ValueError(type + " is not a supported device")
0.003465
def _check_update_fw(self, tenant_id, drvr_name): """Update the Firewall config by calling the driver. This function calls the device manager routine to update the device with modified FW cfg. """ if self.fwid_attr[tenant_id].is_fw_complete(): fw_dict = self.fwid_attr[tenant_id].get_fw_dict() self.modify_fw_device(tenant_id, fw_dict.get('fw_id'), fw_dict)
0.004739
def TRCCp_integral(T, a0, a1, a2, a3, a4, a5, a6, a7, I=0): r'''Integrates ideal gas heat capacity using the model developed in [1]_. Best used as a delta only. The difference in enthalpy with respect to 0 K is given by: .. math:: \frac{H(T) - H^{ref}}{RT} = a_0 + a_1x(a_2)/(a_2T) + I/T + h(T)/T h(T) = (a_5 + a_7)\left[(2a_3 + 8a_4)\ln(1-y)+ \left\{a_3\left(1 + \frac{1}{1-y}\right) + a_4\left(7 + \frac{1}{1-y}\right)\right\}y + a_4\left\{3y^2 + (5/3)y^3 + y^4 + (3/5)y^5 + (1/3)y^6\right\} + (1/7)\left\{a_4 - \frac{a_5}{(a_6+a_7)^2}\right\}y^7\right] h(T) = 0 \text{ for } T \le a_7 y = \frac{T-a_7}{T+a_6} \text{ for } T > a_7 \text{ otherwise } 0 Parameters ---------- T : float Temperature [K] a1-a7 : float Coefficients I : float, optional Integral offset Returns ------- H-H(0) : float Difference in enthalpy from 0 K , [J/mol] Notes ----- Analytical integral as provided in [1]_ and verified with numerical integration. Examples -------- >>> TRCCp_integral(298.15, 4.0, 7.65E5, 720., 3.565, -0.052, -1.55E6, 52., ... 201., 1.2) 10802.532600592816 References ---------- .. [1] Kabo, G. J., and G. N. Roganov. Thermodynamics of Organic Compounds in the Gas State, Volume II: V. 2. College Station, Tex: CRC Press, 1994. ''' if T <= a7: y = 0. else: y = (T - a7)/(T + a6) y2 = y*y y4 = y2*y2 if T <= a7: h = 0.0 else: first = a6 + a7 second = (2.*a3 + 8.*a4)*log(1. - y) third = (a3*(1. + 1./(1. - y)) + a4*(7. + 1./(1. - y)))*y fourth = a4*(3.*y2 + 5./3.*y*y2 + y4 + 0.6*y4*y + 1/3.*y4*y2) fifth = 1/7.*(a4 - a5/((a6 + a7)**2))*y4*y2*y h = first*(second + third + fourth + fifth) return (a0 + a1*exp(-a2/T)/(a2*T) + I/T + h/T)*R*T
0.005081
def updateGroupResponse(self, group, vendorSpecific=None): """CNIdentity.addGroupMembers(session, groupName, members) → boolean https://releases.dataone.org/online/api- documentation-v2.0.1/apis/CN_APIs.html#CNIdentity.addGroupMembers. Args: group: vendorSpecific: Returns: """ mmp_dict = {'group': ('group.xml', group.toxml('utf-8'))} return self.PUT('groups', fields=mmp_dict, headers=vendorSpecific)
0.00409
def update_beliefs(self, corpus_id): """Return updated belief scores for a given corpus. Parameters ---------- corpus_id : str The ID of the corpus for which beliefs are to be updated. Returns ------- dict A dictionary of belief scores with keys corresponding to Statement UUIDs and values to new belief scores. """ corpus = self.get_corpus(corpus_id) be = BeliefEngine(self.scorer) stmts = list(corpus.statements.values()) be.set_prior_probs(stmts) # Here we set beliefs based on actual curation for uuid, correct in corpus.curations.items(): stmt = corpus.statements.get(uuid) if stmt is None: logger.warning('%s is not in the corpus.' % uuid) continue stmt.belief = correct belief_dict = {st.uuid: st.belief for st in stmts} return belief_dict
0.002041
def _check_for_misplaced(xs, subkey, other_keys): """Ensure configuration keys are not incorrectly nested under other keys. """ problems = [] for x in xs: check_dict = x.get(subkey, {}) for to_check in other_keys: if to_check in check_dict: problems.append((x["description"], to_check, subkey)) if len(problems) > 0: raise ValueError("\n".join(["Incorrectly nested keys found in sample YAML. These should be top level:", " sample | key name | nested under ", "----------------+-----------------+----------------"] + ["% 15s | % 15s | % 15s" % (a, b, c) for (a, b, c) in problems]))
0.006435
def filter(self, filter_func): """Return a new SampleCollection containing only samples meeting the filter criteria. Will pass any kwargs (e.g., field or skip_missing) used when instantiating the current class on to the new SampleCollection that is returned. Parameters ---------- filter_func : `callable` A function that will be evaluated on every object in the collection. The function must return a `bool`. If True, the object will be kept. If False, it will be removed from the SampleCollection that is returned. Returns ------- `onecodex.models.SampleCollection` containing only objects `filter_func` returned True on. Examples -------- Generate a new collection of Samples that have a specific filename extension: new_collection = samples.filter(lambda s: s.filename.endswith('.fastq.gz')) """ if callable(filter_func): return self.__class__([obj for obj in self if filter_func(obj) is True], **self._kwargs) else: raise OneCodexException( "Expected callable for filter, got: {}".format(type(filter_func).__name__) )
0.008821
def _eval_density(means, variances,observed_values, distribution): """ Calculates gamma/lognormal/normal pdf given mean variance, x where x is the experimental species number measured at a particular timepoint. Returns ln(pdf) :param mean: mean :param var: variance :param observed_values: experimental species number measured at a particular timepoint :param distribution: distribution to consider. Either 'gamma', 'normal' or 'lognormal' :return: normal log of the pdf """ means = np.array(means, dtype=NP_FLOATING_POINT_PRECISION) variances = np.array(variances, dtype=NP_FLOATING_POINT_PRECISION) observed_values = np.array(observed_values, dtype=NP_FLOATING_POINT_PRECISION) # Remove data about unobserved datapoints means = means[~np.isnan(observed_values)] variances = variances[~np.isnan(observed_values)] observed_values = observed_values[~np.isnan(observed_values)] # Remove data for when variance is zero as we cannot estimate distributions that way non_zero_varianes = ~(variances == 0) means = means[non_zero_varianes] variances = variances[~(variances == 0)] observed_values = observed_values[non_zero_varianes] if distribution == 'gamma': b = variances / means a = means / b log_observed_values = np.log(observed_values) log_density = (a - 1.0) * log_observed_values - (observed_values / b) - a * np.log(b) - gammaln(a) elif distribution == 'normal': log_density = -(observed_values - means) ** 2 / (2 * variances) - np.log(np.sqrt(2 * np.pi * variances)) elif distribution == 'lognormal': log_density = -(np.log(observed_values) - means) ** 2 / (2 * variances) - np.log(observed_values * np.sqrt(2 * np.pi * variances)) else: raise ValueError('Unsupported distribution {0!r}'.format(distribution)) total_log_density = np.sum(log_density) return total_log_density
0.005133
def do_help(self, line): """Displays help information.""" print "" print "Perfdump CLI provides a handful of simple ways to query your" print "performance data." print "" print "The simplest queries are of the form:" print "" print "\t[slowest|fastest] [tests|setups]" print "" print "For example:" print "" print "\tperfdump > slowest tests" print "" print "Prints the slowest 10 tests" print "" print "Additional grouping of results can be request." print "" print "\tperfdump > slowest tests groupby file" print "" print "Grouping options include:" print "" print "\tfile | module | class | function" print ""
0.002513
def run_lda(abstracts, n_topics=50, n_words=31, n_iters=1000, alpha=None, beta=0.001): """ Perform topic modeling using Latent Dirichlet Allocation with the Java toolbox MALLET. Args: abstracts: A pandas DataFrame with two columns ('pmid' and 'abstract') containing article abstracts. n_topics: Number of topics to generate. Default=50. n_words: Number of top words to return for each topic. Default=31, based on Poldrack et al. (2012). n_iters: Number of iterations to run in training topic model. Default=1000. alpha: The Dirichlet prior on the per-document topic distributions. Default: 50 / n_topics, based on Poldrack et al. (2012). beta: The Dirichlet prior on the per-topic word distribution. Default: 0.001, based on Poldrack et al. (2012). Returns: weights_df: A pandas DataFrame derived from the MALLET output-doc-topics output file. Contains the weight assigned to each article for each topic, which can be used to select articles for topic-based meta-analyses (accepted threshold from Poldrack article is 0.001). [n_topics]+1 columns: 'pmid' is the first column and the following columns are the topic names. The names of the topics match the names in df (e.g., topic_000). keys_df: A pandas DataFrame derived from the MALLET output-topic-keys output file. Contains the top [n_words] words for each topic, which can act as a summary of the topic's content. Two columns: 'topic' and 'terms'. The names of the topics match the names in weights (e.g., topic_000). """ if abstracts.index.name != 'pmid': abstracts.index = abstracts['pmid'] resdir = os.path.abspath(get_resource_path()) tempdir = os.path.join(resdir, 'topic_models') absdir = os.path.join(tempdir, 'abstracts') if not os.path.isdir(tempdir): os.mkdir(tempdir) if alpha is None: alpha = 50. / n_topics # Check for presence of abstract files and convert if necessary if not os.path.isdir(absdir): print('Abstracts folder not found. Creating abstract files...') os.mkdir(absdir) for pmid in abstracts.index.values: abstract = abstracts.loc[pmid]['abstract'] with open(os.path.join(absdir, str(pmid) + '.txt'), 'w') as fo: fo.write(abstract) # Run MALLET topic modeling print('Generating topics...') mallet_bin = join(dirname(dirname(__file__)), 'resources/mallet/bin/mallet') import_str = ('{mallet} import-dir ' '--input {absdir} ' '--output {outdir}/topic-input.mallet ' '--keep-sequence ' '--remove-stopwords').format(mallet=mallet_bin, absdir=absdir, outdir=tempdir) train_str = ('{mallet} train-topics ' '--input {out}/topic-input.mallet ' '--num-topics {n_topics} ' '--num-top-words {n_words} ' '--output-topic-keys {out}/topic_keys.txt ' '--output-doc-topics {out}/doc_topics.txt ' '--num-iterations {n_iters} ' '--output-model {out}/saved_model.mallet ' '--random-seed 1 ' '--alpha {alpha} ' '--beta {beta}').format(mallet=mallet_bin, out=tempdir, n_topics=n_topics, n_words=n_words, n_iters=n_iters, alpha=alpha, beta=beta) subprocess.call(import_str, shell=True) subprocess.call(train_str, shell=True) # Read in and convert doc_topics and topic_keys. def clean_str(string): return os.path.basename(os.path.splitext(string)[0]) def get_sort(lst): return [i[0] for i in sorted(enumerate(lst), key=lambda x:x[1])] topic_names = ['topic_{0:03d}'.format(i) for i in range(n_topics)] # doc_topics: Topic weights for each paper. # The conversion here is pretty ugly at the moment. # First row should be dropped. First column is row number and can be used # as the index. # Second column is 'file: /full/path/to/pmid.txt' <-- Parse to get pmid. # After that, odd columns are topic numbers and even columns are the # weights for the topics in the preceding column. These columns are sorted # on an individual pmid basis by the weights. n_cols = (2 * n_topics) + 1 dt_df = pd.read_csv(os.path.join(tempdir, 'doc_topics.txt'), delimiter='\t', skiprows=1, header=None, index_col=0) dt_df = dt_df[dt_df.columns[:n_cols]] # Get pmids from filenames dt_df[1] = dt_df[1].apply(clean_str) # Put weights (even cols) and topics (odd cols) into separate dfs. weights_df = dt_df[dt_df.columns[2::2]] weights_df.index = dt_df[1] weights_df.columns = range(n_topics) topics_df = dt_df[dt_df.columns[1::2]] topics_df.index = dt_df[1] topics_df.columns = range(n_topics) # Sort columns in weights_df separately for each row using topics_df. sorters_df = topics_df.apply(get_sort, axis=1) weights = weights_df.as_matrix() sorters = sorters_df.as_matrix() # there has to be a better way to do this. for i in range(sorters.shape[0]): weights[i, :] = weights[i, sorters[i, :]] # Define topic names (e.g., topic_000) index = dt_df[1] weights_df = pd.DataFrame(columns=topic_names, data=weights, index=index) weights_df.index.name = 'pmid' # topic_keys: Top [n_words] words for each topic. keys_df = pd.read_csv(os.path.join(tempdir, 'topic_keys.txt'), delimiter='\t', header=None, index_col=0) # Second column is a list of the terms. keys_df = keys_df[[2]] keys_df.rename(columns={2: 'terms'}, inplace=True) keys_df.index = topic_names keys_df.index.name = 'topic' # Remove all temporary files (abstract files, model, and outputs). shutil.rmtree(tempdir) # Return article topic weights and topic keys. return weights_df, keys_df
0.000152
def get_staff_url(self): """ Return the Admin URL for the current view. By default, it uses the :func:`get_staff_object` function to base the URL on. """ object = self.get_staff_object() if object is not None: # View is likely using SingleObjectMixin return reverse(admin_urlname(object._meta, 'change'), args=(object.pk,)) model = _get_view_model(self) if model is not None: # View is likely using MultipleObjectMixin (e.g. ListView) return reverse(admin_urlname(object._meta, 'changelist')) return None
0.00639
def get_keybindings(self, mode): """look up keybindings from `MODE-maps` sections :param mode: mode identifier :type mode: str :returns: dictionaries of key-cmd for global and specific mode :rtype: 2-tuple of dicts """ globalmaps, modemaps = {}, {} bindings = self._bindings # get bindings for mode `mode` # retain empty assignations to silence corresponding global mappings if mode in bindings.sections: for key in bindings[mode].scalars: value = bindings[mode][key] if isinstance(value, list): value = ','.join(value) modemaps[key] = value # get global bindings # ignore the ones already mapped in mode bindings for key in bindings.scalars: if key not in modemaps: value = bindings[key] if isinstance(value, list): value = ','.join(value) if value and value != '': globalmaps[key] = value # get rid of empty commands left in mode bindings for k, v in list(modemaps.items()): if not v: del modemaps[k] return globalmaps, modemaps
0.001567
def move_datetime_year(dt, direction, num_shifts): """ Move datetime 1 year in the chosen direction. unit is a no-op, to keep the API the same as the day case """ delta = relativedelta(years=+num_shifts) return _move_datetime(dt, direction, delta)
0.00369
def isJournal(self, dbname = abrevDBname, manualDB = manualDBname, returnDict ='both', checkIfExcluded = False): """Returns `True` if the `Citation`'s `journal` field is a journal abbreviation from the WOS listing found at [http://images.webofknowledge.com/WOK46/help/WOS/A_abrvjt.html](http://images.webofknowledge.com/WOK46/help/WOS/A_abrvjt.html), i.e. checks if the citation is citing a journal. **Note**: Requires the [j9Abbreviations](../modules/journalAbbreviations.html#metaknowledge.journalAbbreviations.backend.getj9dict) database file and will raise an error if it cannot be found. **Note**: All parameters are used for getting the data base with [getj9dict](../modules/journalAbbreviations.html#metaknowledge.journalAbbreviations.backend.getj9dict). # Parameters _dbname_ : `optional [str]` > The name of the downloaded database file, the default is determined at run time. It is recommended that this remain untouched. _manualDB_ : `optional [str]` > The name of the manually created database file, the default is determined at run time. It is recommended that this remain untouched. _returnDict_ : `optional [str]` > default `'both'`, can be used to get both databases or only one with `'WOS'` or `'manual'`. # Returns `bool` > `True` if the `Citation` is for a journal """ global abbrevDict if abbrevDict is None: abbrevDict = getj9dict(dbname = dbname, manualDB = manualDB, returnDict = returnDict) if not hasattr(self, 'journal'): return False elif checkIfExcluded and self.journal: try: if abbrevDict.get(self.journal, [True])[0]: return False else: return True except IndexError: return False else: if self.journal: dictVal = abbrevDict.get(self.journal, [b''])[0] if dictVal: return dictVal else: return False else: return False
0.010565
def result(self, timeout=None): """ Waits up to timeout for the result the threaded job. Returns immediately the result if the job has already been done. :param timeout: The maximum time to wait for a result (in seconds) :raise OSError: The timeout raised before the job finished :raise Exception: The exception encountered during the call, if any """ if self._done_event.wait(timeout): return self._done_event.data else: raise OSError("Timeout raised")
0.003636
def _parse_environment(env_str): ''' Parsing template ''' try: env = salt.utils.yaml.safe_load(env_str) except salt.utils.yaml.YAMLError as exc: raise ValueError(six.text_type(exc)) else: if env is None: env = {} elif not isinstance(env, dict): raise ValueError( 'The environment is not a valid YAML mapping data type.' ) for param in env: if param not in SECTIONS: raise ValueError('environment has wrong section "{0}"'.format(param)) return env
0.003425
def plugins(flags=None): """ Returns the plugins registered for the exporter. If the optional flags are set then only plugins with the inputed flags will be returned. :param flags | <XExporter.Flags> """ XExporter.init() plugs = XExporter._plugins[:] if flags is not None: return filter(lambda x: x.testFlag(flags), plugs) return plugs
0.008621
def touch(self, filepath): """Touches the specified file so that its modified time changes.""" if self.is_ssh(filepath): self._check_ssh() remotepath = self._get_remote(filepath) stdin, stdout, stderr = self.ssh.exec_command("touch {}".format(remotepath)) stdin.close() else: os.system("touch {}".format(filepath))
0.007538
def remove_tenant_from_flavor(request, flavor, tenant): """Remove a tenant from the given flavor access list.""" return _nova.novaclient(request).flavor_access.remove_tenant_access( flavor=flavor, tenant=tenant)
0.004405
def print_pretty(text, **kwargs): ''' Prints using pycolorterm formatting :param text: Text with formatting :type text: string :param kwargs: Keyword args that will be passed to the print function :type kwargs: dict Example:: print_pretty('Hello {BG_RED}WORLD{END}') ''' text = _prepare(text) print('{}{}'.format(text.format(**styles).replace(styles['END'], styles['ALL_OFF']), styles['ALL_OFF']))
0.004454
def contains(self, key): """Checks if the specified item exists. Args: key: the key of the item to lookup. Returns: True if the item exists; False otherwise. Raises: Exception if there was an error requesting information about the item. """ try: self._api.objects_get(self._bucket, key) except datalab.utils.RequestException as e: if e.status == 404: return False raise e except Exception as e: raise e return True
0.00998
def unitary_function(mappings: Dict[str, str]) -> np.ndarray: """ Creates a unitary transformation that maps each state to the values specified in mappings. Some (but not all) of these transformations involve a scratch qubit, so room for one is always provided. That is, if given the mapping of n qubits, the calculated transformation will be on n + 1 qubits, where the 0th is the scratch bit and the return value of the function is left in the 1st. :param mappings: Dictionary of the mappings of f(x) on all length n bitstrings, e.g. >>> {'00': '0', '01': '1', '10': '1', '11': '0'} :return: ndarray representing specified unitary transformation. """ num_qubits = int(np.log2(len(mappings))) bitsum = sum([int(bit) for bit in mappings.values()]) # Only zeros were entered if bitsum == 0: return np.kron(SWAP_MATRIX, np.identity(2 ** (num_qubits - 1))) # Half of the entries were 0, half 1 elif bitsum == 2 ** (num_qubits - 1): unitary_funct = np.zeros(shape=(2 ** num_qubits, 2 ** num_qubits)) index_lists = [list(range(2 ** (num_qubits - 1))), list(range(2 ** (num_qubits - 1), 2 ** num_qubits))] for j in range(2 ** num_qubits): bitstring = np.binary_repr(j, num_qubits) value = int(mappings[bitstring]) mappings.pop(bitstring) i = index_lists[value].pop() unitary_funct[i, j] = 1 return np.kron(np.identity(2), unitary_funct) # Only ones were entered elif bitsum == 2 ** num_qubits: x_gate = np.array([[0, 1], [1, 0]]) return np.kron(SWAP_MATRIX, np.identity(2 ** (num_qubits - 1))).dot( np.kron(x_gate, np.identity(2 ** num_qubits))) else: raise ValueError("f(x) must be constant or balanced")
0.00404
def format_docstring(template_="{__doc__}", *args, **kwargs): r""" Parametrized decorator for adding/changing a function docstring. For changing a already available docstring in the function, the ``"{__doc__}"`` in the template is replaced by the original function docstring. Parameters ---------- template_ : A format-style template. *args, **kwargs : Positional and keyword arguments passed to the formatter. Examples -------- Closure docstring personalization: >>> def add(n): ... @format_docstring(number=n) ... def func(m): ... '''Adds {number} to the given value.''' ... return n + m ... return func >>> add(3).__doc__ 'Adds 3 to the given value.' >>> add("__").__doc__ 'Adds __ to the given value.' Same but using a lambda (you can also try with ``**locals()``): >>> def add_with_lambda(n): ... return format_docstring("Adds {0}.", n)(lambda m: n + m) >>> add_with_lambda(15).__doc__ 'Adds 15.' >>> add_with_lambda("something").__doc__ 'Adds something.' Mixing both template styles with ``{__doc__}``: >>> templ = "{0}, {1} is my {name} docstring:{__doc__}->\nEND!" >>> @format_docstring(templ, "zero", "one", "two", name="testing", k=[1, 2]) ... def test(): ... ''' ... Not empty! ... {2} != {k[0]} but {2} == {k[1]} ... ''' >>> print(test.__doc__) zero, one is my testing docstring: Not empty! two != 1 but two == 2 -> END! """ def decorator(func): if func.__doc__: kwargs["__doc__"] = func.__doc__.format(*args, **kwargs) func.__doc__ = template_.format(*args, **kwargs) return func return decorator
0.003003
def shutdown(self): """Shuts down the scheduler and immediately end all pending callbacks. """ # Drop all pending item from the executor. Without this, the executor # will block until all pending items are complete, which is # undesirable. try: while True: self._executor._work_queue.get(block=False) except queue.Empty: pass self._executor.shutdown()
0.004396
def olympic_sprints(data_set='rogers_girolami_data'): """All olympics sprint winning times for multiple output prediction.""" X = np.zeros((0, 2)) Y = np.zeros((0, 1)) cats = {} for i, dataset in enumerate([olympic_100m_men, olympic_100m_women, olympic_200m_men, olympic_200m_women, olympic_400m_men, olympic_400m_women]): data = dataset() year = data['X'] time = data['Y'] X = np.vstack((X, np.hstack((year, np.ones_like(year)*i)))) Y = np.vstack((Y, time)) cats[dataset.__name__] = i data['X'] = X data['Y'] = Y data['info'] = "Olympics sprint event winning for men and women to 2008. Data is from Rogers and Girolami's First Course in Machine Learning." return data_details_return({ 'X': X, 'Y': Y, 'covariates' : [decimalyear('year', '%Y'), discrete(cats, 'event')], 'response' : ['time'], 'info': "Olympics sprint event winning for men and women to 2008. Data is from Rogers and Girolami's First Course in Machine Learning.", 'output_info': { 0:'100m Men', 1:'100m Women', 2:'200m Men', 3:'200m Women', 4:'400m Men', 5:'400m Women'} }, data_set)
0.011429
def membership_vector(clusterer, points_to_predict): """Predict soft cluster membership. The result produces a vector for each point in ``points_to_predict`` that gives a probability that the given point is a member of a cluster for each of the selected clusters of the ``clusterer``. Parameters ---------- clusterer : HDBSCAN A clustering object that has been fit to the data and either had ``prediction_data=True`` set, or called the ``generate_prediction_data`` method after the fact. points_to_predict : array, or array-like (n_samples, n_features) The new data points to predict cluster labels for. They should have the same dimensionality as the original dataset over which clusterer was fit. Returns ------- membership_vectors : array (n_samples, n_clusters) The probability that point ``i`` is a member of cluster ``j`` is in ``membership_vectors[i, j]``. See Also -------- :py:func:`hdbscan.predict.predict` :py:func:`hdbscan.predict.all_points_membership_vectors` """ points_to_predict = points_to_predict.astype(np.float64) clusters = np.array( sorted(list(clusterer.condensed_tree_._select_clusters()))).astype(np.intp) result = np.empty((points_to_predict.shape[0], clusters.shape[0]), dtype=np.float64) min_samples = clusterer.min_samples or clusterer.min_cluster_size neighbor_distances, neighbor_indices = \ clusterer.prediction_data_.tree.query(points_to_predict, k=2 * min_samples) for i in range(points_to_predict.shape[0]): # We need to find where in the tree the new point would go # for the purposes of outlier membership approximation nearest_neighbor, lambda_ = \ _find_neighbor_and_lambda( neighbor_indices[i], neighbor_distances[i], clusterer.prediction_data_.core_distances, min_samples) neighbor_tree_row = get_tree_row_with_child( clusterer.condensed_tree_._raw_tree, nearest_neighbor) if neighbor_tree_row['lambda_val'] <= lambda_: lambda_ = neighbor_tree_row['lambda_val'] distance_vec = dist_membership_vector( points_to_predict[i], clusterer.prediction_data_.exemplars, clusterer.prediction_data_.dist_metric) outlier_vec = outlier_membership_vector( nearest_neighbor, lambda_, clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) result[i] = distance_vec ** 0.5 * outlier_vec ** 2.0 result[i] /= result[i].sum() result[i] *= prob_in_some_cluster( nearest_neighbor, lambda_, clusters, clusterer.condensed_tree_._raw_tree, clusterer.prediction_data_.leaf_max_lambdas, clusterer.prediction_data_.cluster_tree) return result
0.000636
def to_yellow(self, on: bool=False): """ Change the LED to yellow (on or off) :param on: True or False :return: None """ self._on = on if on: self._load_new(led_yellow_on) if self._toggle_on_click: self._canvas.bind('<Button-1>', lambda x: self.to_yellow(False)) else: self._load_new(led_yellow) if self._toggle_on_click: self._canvas.bind('<Button-1>', lambda x: self.to_yellow(True))
0.006678
def copy(src_uri, dest_base_uri, config_path=None, progressbar=None): """Copy a dataset to another location. :param src_uri: URI of dataset to be copied :param dest_base_uri: base of URI for copy target :param config_path: path to dtool configuration file :returns: URI of new dataset """ dataset = DataSet.from_uri(src_uri) proto_dataset = _copy_create_proto_dataset( dataset, dest_base_uri, config_path, progressbar ) _copy_content(dataset, proto_dataset, progressbar) proto_dataset.freeze(progressbar=progressbar) return proto_dataset.uri
0.001603
def _annotate_with_past_uses(cls, queryset, user): ''' Annotates the queryset with a usage count for that discount claus by the given user. ''' if queryset.model == conditions.DiscountForCategory: matches = ( Q(category=F('discount__discountitem__product__category')) ) elif queryset.model == conditions.DiscountForProduct: matches = ( Q(product=F('discount__discountitem__product')) ) in_carts = ( Q(discount__discountitem__cart__user=user) & Q(discount__discountitem__cart__status=commerce.Cart.STATUS_PAID) ) past_use_quantity = When( in_carts & matches, then="discount__discountitem__quantity", ) past_use_quantity_or_zero = Case( past_use_quantity, default=Value(0), ) queryset = queryset.annotate( past_use_count=Sum(past_use_quantity_or_zero) ) return queryset
0.001923
def fetch_entries(self): """Fetch data and parse it to build a list of broadcast entries.""" current_time = '' data = [] for row in self.get_rows(): # Stop fetching data if limit has been met if exceeded_limit(self.limit, len(data)): break entry = row.find_all('td') entry_dict = {} show_time = entry[0].string if show_time and show_time != current_time: current_time = show_time if not show_time: show_time = current_time entry_dict['time'] = show_time show_string = entry[1].string.split('(') show = show_string[0][:-1] net = self._get_net(show_string) if not self._match_query(show, net): continue entry_dict['show'] = show entry_dict['net'] = net entry_dict['viewers'] = entry[3].string.strip('*') entry_dict['rating'], entry_dict['share'] = self._get_rating(entry) # Add data to initialize broadcast entry data.append(Entry(**entry_dict)) return data
0.001692
def superReadText(filepath, **kwargs): """ A wrapper to superReadCSV which wraps pandas.read_csv(). The benefit of using this function is that it automatically identifies the column separator. .tsv files are assumed to have a \t (tab) separation .csv files are assumed to have a comma separation. .txt (or any other type) get the first line of the file opened and get tested for various separators as defined in the identify_sep function. """ if isinstance(filepath, pd.DataFrame): return filepath sep = kwargs.get('sep', None) ext = os.path.splitext(filepath)[1].lower() if sep is None: if ext == '.tsv': kwargs['sep'] = '\t' elif ext == '.csv': kwargs['sep'] = ',' else: found_sep = identify_sep(filepath) print(found_sep) kwargs['sep'] = found_sep return superReadCSV(filepath, **kwargs)
0.001056
def fast_sync_sign_snapshot( snapshot_path, private_key, first=False ): """ Append a signature to the end of a snapshot path with the given private key. If first is True, then don't expect the signature trailer. Return True on success Return False on error """ if not os.path.exists(snapshot_path): log.error("No such file or directory: {}".format(snapshot_path)) return False file_size = 0 payload_size = 0 write_offset = 0 try: sb = os.stat(snapshot_path) file_size = sb.st_size assert file_size > 8 except Exception as e: log.exception(e) return False num_sigs = 0 snapshot_hash = None with open(snapshot_path, 'r+') as f: if not first: info = fast_sync_inspect(f) if 'error' in info: log.error("Failed to inspect {}: {}".format(snapshot_path, info['error'])) return False num_sigs = len(info['signatures']) write_offset = info['sig_append_offset'] payload_size = info['payload_size'] else: # no one has signed yet. write_offset = file_size num_sigs = 0 payload_size = file_size # hash the file and sign the (bin-encoded) hash privkey_hex = keylib.ECPrivateKey(private_key).to_hex() hash_hex = get_file_hash( f, hashlib.sha256, fd_len=payload_size ) sigb64 = sign_digest( hash_hex, privkey_hex, hashfunc=hashlib.sha256 ) if BLOCKSTACK_TEST: log.debug("Signed {} with {} to make {}".format(hash_hex, keylib.ECPrivateKey(private_key).public_key().to_hex(), sigb64)) # append f.seek(write_offset, os.SEEK_SET) f.write(sigb64) f.write('{:08x}'.format(len(sigb64))) # append number of signatures num_sigs += 1 f.write('{:08x}'.format(num_sigs)) f.flush() os.fsync(f.fileno()) return True
0.006927
def find_child(sexpr: Sexpr, *tags: str) -> Optional[Sexpr]: """Search for a tag among direct children of the s-expression.""" _assert_valid_sexpr(sexpr) for child in sexpr[1:]: if _is_sexpr(child) and child[0] in tags: return child return None
0.003546
def _process_uniprot_ids(self, limit=None): """ This method processes the mappings from ZFIN gene IDs to UniProtKB IDs. Triples created: <zfin_gene_id> a class <zfin_gene_id> rdfs:label gene_symbol <uniprot_id> is an Individual <uniprot_id> has type <polypeptide> <zfin_gene_id> has_gene_product <uniprot_id> :param limit: :return: """ LOG.info("Processing UniProt IDs") if self.test_mode: graph = self.testgraph else: graph = self.graph line_counter = 0 model = Model(graph) geno = Genotype(graph) raw = '/'.join((self.rawdir, self.files['uniprot']['file'])) with open(raw, 'r', encoding="iso-8859-1") as csvfile: filereader = csv.reader(csvfile, delimiter='\t', quotechar='\"') for row in filereader: line_counter += 1 (gene_id, gene_so_id, gene_symbol, uniprot_id # , empty ) = row if self.test_mode and gene_id not in self.test_ids['gene']: continue gene_id = 'ZFIN:' + gene_id.strip() uniprot_id = 'UniProtKB:' + uniprot_id.strip() geno.addGene(gene_id, gene_symbol) # TODO: Abstract to one of the model utilities model.addIndividualToGraph( uniprot_id, None, self.globaltt['polypeptide']) graph.addTriple( gene_id, self.globaltt['has gene product'], uniprot_id) if not self.test_mode and limit is not None and line_counter > limit: break LOG.info("Done with UniProt IDs") return
0.002242
def from_fp(self, file_pointer, comment_lead=['c']): """ Read a WCNF+ formula from a file pointer. A file pointer should be specified as an argument. The only default argument is ``comment_lead``, which can be used for parsing specific comment lines. :param file_pointer: a file pointer to read the formula from. :param comment_lead: a list of characters leading comment lines :type file_pointer: file pointer :type comment_lead: list(str) Usage example: .. code-block:: python >>> with open('some-file.wcnf+', 'r') as fp: ... cnf1 = WCNFPlus() ... cnf1.from_fp(fp) >>> >>> with open('another-file.wcnf+', 'r') as fp: ... cnf2 = WCNFPlus(from_fp=fp) """ self.nv = 0 self.hard = [] self.atms = [] self.soft = [] self.wght = [] self.topw = 0 self.comments = [] comment_lead = tuple('p') + tuple(comment_lead) for line in file_pointer: line = line.strip() if line: if line[0] not in comment_lead: if line[-1] == '0': # normal clause cl = [int(l) for l in line.split()[:-1]] w = cl.pop(0) self.nv = max([abs(l) for l in cl] + [self.nv]) if w >= self.topw: self.hard.append(cl) else: self.soft.append(cl) self.wght.append(w) else: # atmost/atleast constraint items = [i for i in line.split()] lits = [int(l) for l in items[1:-2]] rhs = int(items[-1]) self.nv = max([abs(l) for l in lits] + [self.nv]) if items[-2][0] == '>': lits = list(map(lambda l: -l, lits)) rhs = len(lits) - rhs self.atms.append([lits, rhs]) elif not line.startswith('p wcnf+ '): self.comments.append(line) else: # expecting the preamble self.topw = int(line.rsplit(' ', 1)[1])
0.00247
def from_deformation(cls, deformation): """ Factory method that returns a Strain object from a deformation gradient Args: deformation (3x3 array-like): """ dfm = Deformation(deformation) return cls(0.5 * (np.dot(dfm.trans, dfm) - np.eye(3)))
0.006452
def add_highlights_docs(docs): """ "highlight": { "knowledge_graph.title.value": [ "Before 1 January 2018, will <em>South</em> <em>Korea</em> file a World Trade Organization dispute against the United States related to solar panels?" ] } """ if not isinstance(docs, list): docs = [docs] for doc in docs: if 'matched_sentence' in doc['_source']: matched_sentences = doc['_source']['matched_sentence'] for sentence in matched_sentences: # also add matched sentence to knowledge graph doc['_source']['knowledge_graph']['matched_sentence'] = [{'key': sentence, 'value': sentence}] paragraph = SimilarityScoreRerank.get_description(doc) if paragraph: high_para = SimilarityScoreRerank.create_highlighted_sentences(matched_sentences, paragraph) if high_para: if 'highlight' not in doc: doc['highlight'] = dict() doc['highlight']['knowledge_graph.description.value'] = [high_para] return docs
0.004922
def json_decode(s: str) -> Any: """ Decodes an object from JSON using our custom decoder. """ try: return json.JSONDecoder(object_hook=json_class_decoder_hook).decode(s) except json.JSONDecodeError: log.warning("Failed to decode JSON (returning None): {!r}", s) return None
0.003155
def get_scheduling_block_event(): """Return the latest Scheduling Block event""" event = DB.rpoplpush('scheduling_block_events', 'scheduling_block_event_history') if event: event = json.loads(event.decode('utf-8')) return event
0.003623
def connect(self, action=None, method=None, **kwargs): """ Create a <Connect> element :param action: Action URL :param method: Action URL method :param kwargs: additional attributes :returns: <Connect> element """ return self.nest(Connect(action=action, method=method, **kwargs))
0.005797
def get_kmgraph_meta(mapper_summary): """ Extract info from mapper summary to be displayed below the graph plot """ d = mapper_summary["custom_meta"] meta = ( "<b>N_cubes:</b> " + str(d["n_cubes"]) + " <b>Perc_overlap:</b> " + str(d["perc_overlap"]) ) meta += ( "<br><b>Nodes:</b> " + str(mapper_summary["n_nodes"]) + " <b>Edges:</b> " + str(mapper_summary["n_edges"]) + " <b>Total samples:</b> " + str(mapper_summary["n_total"]) + " <b>Unique_samples:</b> " + str(mapper_summary["n_unique"]) ) return meta
0.001524
def neg_loglik(self, beta): """ Creates negative loglikelihood of the model Parameters ---------- beta : np.array Contains untransformed starting values for latent variables Returns ---------- - Negative loglikelihood """ Z = np.zeros(2) Z[0] = 1 states = np.zeros([self.state_no, self.data.shape[0]]) states[0,:] = beta[self.z_no:self.z_no+self.data.shape[0]] states[1,:] = beta[self.z_no+self.data.shape[0]:] parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(self.z_no)]) # transformed distribution parameters scale, shape, skewness = self._get_scale_and_shape(parm) return self.state_likelihood(beta, states) + self.family.neg_loglikelihood(self.data, self.link(np.dot(Z, states)), scale, shape, skewness)
0.012141
def make_exttrig_file(cp, ifos, sci_seg, out_dir): ''' Make an ExtTrig xml file containing information on the external trigger Parameters ---------- cp : pycbc.workflow.configuration.WorkflowConfigParser object The parsed configuration options of a pycbc.workflow.core.Workflow. ifos : str String containing the analysis interferometer IDs. sci_seg : ligo.segments.segment The science segment for the analysis run. out_dir : str The output directory, destination for xml file. Returns ------- xml_file : pycbc.workflow.File object The xml file with external trigger information. ''' # Initialise objects xmldoc = ligolw.Document() xmldoc.appendChild(ligolw.LIGO_LW()) tbl = lsctables.New(lsctables.ExtTriggersTable) cols = tbl.validcolumns xmldoc.childNodes[-1].appendChild(tbl) row = tbl.appendRow() # Add known attributes for this GRB setattr(row, "event_ra", float(cp.get("workflow", "ra"))) setattr(row, "event_dec", float(cp.get("workflow", "dec"))) setattr(row, "start_time", int(cp.get("workflow", "trigger-time"))) setattr(row, "event_number_grb", str(cp.get("workflow", "trigger-name"))) # Fill in all empty rows for entry in cols.keys(): if not hasattr(row, entry): if cols[entry] in ['real_4','real_8']: setattr(row,entry,0.) elif cols[entry] == 'int_4s': setattr(row,entry,0) elif cols[entry] == 'lstring': setattr(row,entry,'') elif entry == 'process_id': row.process_id = ilwd.ilwdchar("external_trigger:process_id:0") elif entry == 'event_id': row.event_id = ilwd.ilwdchar("external_trigger:event_id:0") else: print("Column %s not recognized" %(entry), file=sys.stderr) raise ValueError # Save file xml_file_name = "triggerGRB%s.xml" % str(cp.get("workflow", "trigger-name")) xml_file_path = os.path.join(out_dir, xml_file_name) utils.write_filename(xmldoc, xml_file_path) xml_file_url = urlparse.urljoin("file:", urllib.pathname2url(xml_file_path)) xml_file = File(ifos, xml_file_name, sci_seg, file_url=xml_file_url) xml_file.PFN(xml_file_url, site="local") return xml_file
0.004167
def resample(self, sampling_rate=None, variables=None, force_dense=False, in_place=False, kind='linear'): ''' Resample all dense variables (and optionally, sparse ones) to the specified sampling rate. Args: sampling_rate (int, float): Target sampling rate (in Hz). If None, uses the instance sampling rate. variables (list): Optional list of Variables to resample. If None, all variables are resampled. force_dense (bool): if True, all sparse variables will be forced to dense. in_place (bool): When True, all variables are overwritten in-place. When False, returns resampled versions of all variables. kind (str): Argument to pass to scipy's interp1d; indicates the kind of interpolation approach to use. See interp1d docs for valid values. ''' # Store old sampling rate-based variables sampling_rate = sampling_rate or self.sampling_rate _variables = {} for name, var in self.variables.items(): if variables is not None and name not in variables: continue if isinstance(var, SparseRunVariable): if force_dense and is_numeric_dtype(var.values): _variables[name] = var.to_dense(sampling_rate) else: # None if in_place; no update needed _var = var.resample(sampling_rate, inplace=in_place, kind=kind) if not in_place: _variables[name] = _var if in_place: for k, v in _variables.items(): self.variables[k] = v self.sampling_rate = sampling_rate else: return _variables
0.001576
def _update_persistent_boot(self, device_type=[], persistent=False): """Changes the persistent boot device order in BIOS boot mode for host Note: It uses first boot device from the device_type and ignores rest. :param device_type: ordered list of boot devices :param persistent: Boolean flag to indicate if the device to be set as a persistent boot device :raises: IloError, on an error from iLO. :raises: IloCommandNotSupportedError, if the command is not supported on the server. """ tenure = 'Once' new_device = device_type[0] # If it is a standard device, we need to convert in RIS convention if device_type[0].upper() in DEVICE_COMMON_TO_RIS: new_device = DEVICE_COMMON_TO_RIS[device_type[0].upper()] if persistent: tenure = 'Continuous' systems_uri = "/rest/v1/Systems/1" # Need to set this option first if device is 'UefiTarget' if new_device is 'UefiTarget': system = self._get_host_details() uefi_devices = ( system['Boot']['UefiTargetBootSourceOverrideSupported']) iscsi_device = None for device in uefi_devices: if device is not None and 'iSCSI' in device: iscsi_device = device break if iscsi_device is None: msg = 'No UEFI iSCSI bootable device found' raise exception.IloError(msg) new_boot_settings = {} new_boot_settings['Boot'] = {'UefiTargetBootSourceOverride': iscsi_device} status, headers, response = self._rest_patch(systems_uri, None, new_boot_settings) if status >= 300: msg = self._get_extended_error(response) raise exception.IloError(msg) new_boot_settings = {} new_boot_settings['Boot'] = {'BootSourceOverrideEnabled': tenure, 'BootSourceOverrideTarget': new_device} status, headers, response = self._rest_patch(systems_uri, None, new_boot_settings) if status >= 300: msg = self._get_extended_error(response) raise exception.IloError(msg)
0.000817
def _post(self, *args, **kwargs): """ Make a POST request. """ data = self._default_data() data.update(kwargs.get('data') or {}) kwargs['data'] = data return self._request(requests.post, *args, **kwargs)
0.007722
def pickByDistribution(distribution, r=None): """ Pick a value according to the provided distribution. Example: :: pickByDistribution([.2, .1]) Returns 0 two thirds of the time and 1 one third of the time. :param distribution: Probability distribution. Need not be normalized. :param r: Instance of random.Random. Uses the system instance if one is not provided. """ if r is None: r = random x = r.uniform(0, sum(distribution)) for i, d in enumerate(distribution): if x <= d: return i x -= d
0.010889
def cmd_list(self, argv, help): """Return a list of various things""" parser = argparse.ArgumentParser( prog="%s list" % self.progname, description=help, ) parser.add_argument("list", nargs=1, metavar="listname", help="Name of list to show.", choices=sorted(self.list_cmds)) parser.add_argument("listopts", metavar="...", nargs=argparse.REMAINDER, help="list command options") args = parser.parse_args(argv) for name, func in sorted(self.list_cmds[args.list[0]]): func(args.listopts, func.__doc__)
0.002642
def set_ref(self, ref_key, ref_id): """ Using a ref key and ref id set the reference to the appropriate resource type. """ if ref_key == 'NETWORK': self.network_id = ref_id elif ref_key == 'NODE': self.node_id = ref_id elif ref_key == 'LINK': self.link_id = ref_id elif ref_key == 'GROUP': self.group_id = ref_id elif ref_key == 'SCENARIO': self.scenario_id = ref_id elif ref_key == 'PROJECT': self.project_id = ref_id else: raise HydraError("Ref Key %s not recognised."%ref_key)
0.004545
def augment(self, session, parent, addendum): ''' Augments a DATASET with some calcs NB: this is the PUBLIC method @returns error ''' parent_calc = session.query(model.Calculation).get(parent) if not parent_calc or not parent_calc.siblings_count: return 'Dataset is erroneously selected!' existing_children, filtered_addendum = [child.checksum for child in parent_calc.children], [] for child in addendum: if not child in existing_children: filtered_addendum.append(child) if not filtered_addendum: return 'All these data are already present in this dataset.' if parent_calc.checksum in filtered_addendum: return 'A dataset cannot be added into itself.' higher_lookup = {} more = parent_calc.parent distance = 0 while True: distance += 1 higher, more = more, [] if not higher: break for item in higher: try: higher_lookup[distance].add(item) except KeyError: higher_lookup[distance] = set([item]) if item.parent: more += item.parent for members in list(higher_lookup.values()): for member in members: if member.checksum in filtered_addendum: return 'A parent dataset cannot be added to its children dataset.' parent_meta = session.query(model.Metadata).get(parent) parent_grid = session.query(model.Grid).get(parent) info_obj = json.loads(parent_grid.info) for nested_depth, grid_item, download_size in session.query(model.Calculation.nested_depth, model.Grid.info, model.Metadata.download_size).filter(model.Calculation.checksum == model.Grid.checksum, model.Grid.checksum == model.Metadata.checksum, model.Calculation.checksum.in_(filtered_addendum)).all(): if nested_depth >= parent_calc.nested_depth: parent_calc.nested_depth = nested_depth + 1 grid_item = json.loads(grid_item) for entity in self.hierarchy: topic = grid_item.get(entity['source']) if not topic: continue if entity['source'] == 'standard': topic = [] if not isinstance(topic, list): topic = [ topic ] existing_term = info_obj.get(entity['source'], []) if not isinstance(existing_term, list): existing_term = [ existing_term ] # TODO info_obj[ entity['source'] ] = list(set( existing_term + topic )) parent_meta.download_size += download_size info_obj['standard'] = info_obj['standard'][0] # TODO parent_grid.info = json.dumps(info_obj) # tags ORM for entity in self.hierarchy: if not entity['creates_topic']: continue for item in info_obj.get( entity['source'], [] ): parent_calc.uitopics.append( model.Topic.as_unique(session, cid=entity['cid'], topic="%s" % item) ) for child in session.query(model.Calculation).filter(model.Calculation.checksum.in_(filtered_addendum)).all(): parent_calc.children.append(child) parent_calc.siblings_count = len(parent_calc.children) for distance, members in higher_lookup.items(): for member in members: d = parent_calc.nested_depth - member.nested_depth + distance if d > 0: member.nested_depth += d member.meta_data.download_size += parent_meta.download_size # FIXME session.add(member) session.add_all([parent_calc, parent_meta, parent_grid]) session.commit() return False
0.006328
def send_file_to_host(src_filename, dst_file, filesize): """Function which runs on the pyboard. Matches up with recv_file_from_remote.""" import sys import ubinascii try: with open(src_filename, 'rb') as src_file: bytes_remaining = filesize if HAS_BUFFER: buf_size = BUFFER_SIZE else: buf_size = BUFFER_SIZE // 2 while bytes_remaining > 0: read_size = min(bytes_remaining, buf_size) buf = src_file.read(read_size) if HAS_BUFFER: sys.stdout.buffer.write(buf) else: sys.stdout.write(ubinascii.hexlify(buf)) bytes_remaining -= read_size # Wait for an ack so we don't get ahead of the remote while True: char = sys.stdin.read(1) if char: if char == '\x06': break # This should only happen if an error occurs sys.stdout.write(char) return True except: return False
0.002553
def _iterate_namespace_models(self, **kwargs) -> Iterable: """Return an iterator over the models to be converted to the namespace.""" return tqdm( self._get_query(self.namespace_model), total=self._count_model(self.namespace_model), **kwargs )
0.009901
def put(self, thing_id='0', property_name=None): """ Handle a PUT request. thing_id -- ID of the thing this request is for property_name -- the name of the property from the URL path """ thing = self.get_thing(thing_id) if thing is None: self.set_status(404) return try: args = json.loads(self.request.body.decode()) except ValueError: self.set_status(400) return if property_name not in args: self.set_status(400) return if thing.has_property(property_name): try: thing.set_property(property_name, args[property_name]) except PropertyError: self.set_status(400) return self.set_header('Content-Type', 'application/json') self.write(json.dumps({ property_name: thing.get_property(property_name), })) else: self.set_status(404)
0.00191
def format (self, record): """Returns the given LogRecord as formatted text.""" record.hostname = self.hostname return logging.Formatter.format(self, record)
0.016575
def cast_to_number_or_bool(inputstr): """Cast a string to int, float or bool. Return original string if it can't be converted. Scientific expression is converted into float. """ if inputstr.strip().lower() == "true": return True elif inputstr.strip().lower() == "false": return False try: return int(inputstr) except ValueError: try: return float(inputstr) except ValueError: return inputstr
0.004098
def p_save_data(p): """ statement : SAVE expr DATA | SAVE expr DATA ID | SAVE expr DATA ID LP RP """ if p[2].type_ != TYPE.string: api.errmsg.syntax_error_expected_string(p.lineno(1), p[2].type_) if len(p) != 4: entry = SYMBOL_TABLE.access_id(p[4], p.lineno(4)) if entry is None: p[0] = None return entry.accessed = True access = entry start = make_unary(p.lineno(4), 'ADDRESS', access, type_=TYPE.uinteger) if entry.class_ == CLASS.array: length = make_number(entry.memsize, lineno=p.lineno(4)) else: length = make_number(entry.type_.size, lineno=p.lineno(4)) else: access = SYMBOL_TABLE.access_id('.ZXBASIC_USER_DATA', p.lineno(3)) start = make_unary(p.lineno(3), 'ADDRESS', access, type_=TYPE.uinteger) access = SYMBOL_TABLE.access_id('.ZXBASIC_USER_DATA_LEN', p.lineno(3)) length = make_unary(p.lineno(3), 'ADDRESS', access, type_=TYPE.uinteger) p[0] = make_sentence(p[1], p[2], start, length)
0.001805
def convert_sub(sub): """Convert BEL1 sub() to BEL2 var()""" args = sub.args (ref_aa, pos, new_aa) = args parent_fn_name = sub.parent_function.name_short prefix_list = {"p": "p.", "r": "r.", "g": "c."} prefix = prefix_list[parent_fn_name] new_var_arg = f'"{prefix}{spec["namespaces"]["AminoAcid"]["to_short"][ref_aa.value]}{pos.value}{spec["namespaces"]["AminoAcid"]["to_short"][new_aa.value]}"' new_var = bel.lang.ast.Function("var", bo.spec) new_var.add_argument(StrArg(new_var_arg, new_var)) return new_var
0.003604
def collect(self): """ Collect and publish metrics """ stats = self.parse_stats_file(self.config["status_path"]) if len(stats) == 0: return {} elif "info" not in stats.keys(): return {} elif "programstatus" not in stats.keys(): return {} metrics = self.get_icinga_stats(stats["programstatus"]) if "hoststatus" in stats.keys(): metrics = dict( metrics.items() + self.get_host_stats( stats["hoststatus"]).items()) if "servicestatus" in stats.keys(): metrics = dict( metrics.items() + self.get_svc_stats( stats["servicestatus"]).items()) for metric in metrics.keys(): self.log.debug("Publishing '%s %s'.", metric, metrics[metric]) self.publish(metric, metrics[metric])
0.002193
def _set_compression(self, value): """ May be used to compress PDF files. Code is more readable for testing and inspection if not compressed. Requires a boolean. """ if isinstance(value, bool): self.compression = value else: raise Exception( TypeError, "%s is not a valid option for compression" % value)
0.007752
def join(self, *colrs, **colorkwargs): """ Like str.join, except it returns a Colr. Arguments: colrs : One or more Colrs. If a list or tuple is passed as an argument it will be flattened. Keyword Arguments: fore, back, style... see color(). """ flat = [] for clr in colrs: if isinstance(clr, (list, tuple, GeneratorType)): # Flatten any lists, at least once. flat.extend(str(c) for c in clr) else: flat.append(str(clr)) if colorkwargs: fore = colorkwargs.get('fore', None) back = colorkwargs.get('back', None) style = colorkwargs.get('style', None) flat = ( self.color(s, fore=fore, back=back, style=style) for s in flat ) return self.__class__(self.data.join(flat))
0.002047
def validate(self, messages): """Returns True if the fields are valid according to the SPDX standard. Appends user friendly messages to the messages parameter. """ messages = self.validate_creators(messages) messages = self.validate_created(messages) return messages
0.006349
def get_lib_ffi_shared(libpath, c_hdr): ''' libpath-->str: shared library filename with optional path c_hdr-->str: C-style header definitions for functions to wrap Returns-->(ffi, lib) ''' lib = SharedLibWrapper(libpath, c_hdr) ffi = lib.ffi return (ffi, lib)
0.003436
def kpoints(self): """ k_product, default to 50, is kpoint number * length for a & b directions, also for c direction in bulk calculations Automatic mesh & Gamma is the default setting. """ # To get input sets, the input structure has to has the same number # of required parameters as a Structure object (ie. 4). Slab # attributes aren't going to affect the VASP inputs anyways so # converting the slab into a structure should not matter kpt = super().kpoints kpt.comment = "Automatic mesh" kpt.style = 'Gamma' # use k_product to calculate kpoints, k_product = kpts[0][0] * a abc = self.structure.lattice.abc kpt_calc = [int(self.k_product / abc[0] + 0.5), int(self.k_product / abc[1] + 0.5), 1] self.kpt_calc = kpt_calc # calculate kpts (c direction) for bulk. (for slab, set to 1) if self.bulk: kpt_calc[2] = int(self.k_product / abc[2] + 0.5) kpt.kpts[0] = kpt_calc return kpt
0.00185
def delete(cls, cert_id, background=False): """ Delete a certificate.""" result = cls.call('cert.delete', cert_id) if background: return result cls.echo("Deleting your certificate.") cls.display_progress(result) cls.echo('Your certificate %s has been deleted.' % cert_id) return result
0.005618
def resample(sig, old=1, new=1, order=3, zero=0.): """ Generic resampler based on Waring-Lagrange interpolators. Parameters ---------- sig : Input signal (any iterable). old : Time duration reference (defaults to 1, allowing percentages to the ``new`` keyword argument). This can be float number, or perhaps a Stream instance. new : Time duration that the reference will have after resampling. For example, if ``old = 1, new = 2``, then there will be 2 samples yielded for each sample from input. This can be a float number, or perhaps a Stream instance. order : Lagrange interpolator order. The amount of neighboring samples to be used by the interpolator is ``order + 1``. zero : The input should be thought as zero-padded from the left with this value. Returns ------- The first value will be the first sample from ``sig``, and then the interpolator will find the next samples towards the end of the ``sig``. The actual sampling interval (or time step) for this interpolator obeys to the ``old / new`` relationship. Hint ---- The time step can also be time-varying, although that's certainly difficult to synchonize (one sample is needed for each output sample). Perhaps the best approach for this case would be a ControlStream keeping the desired value at any time. Note ---- The input isn't zero-padded at right. It means that the last output will be one with interpolated with known data. For endless inputs that's ok, this makes no difference, but for finite inputs that may be undesirable. """ sig = Stream(sig) threshold = .5 * (order + 1) step = old / new data = deque([zero] * (order + 1), maxlen=order + 1) data.extend(sig.take(rint(threshold))) idx = int(threshold) isig = iter(sig) if isinstance(step, Iterable): step = iter(step) while True: yield lagrange(enumerate(data))(idx) idx += next(step) while idx > threshold: data.append(next(isig)) idx -= 1 else: while True: yield lagrange(enumerate(data))(idx) idx += step while idx > threshold: data.append(next(isig)) idx -= 1
0.00823
def isexec(self, mode=stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH): """ isexec: @rtype: bool @return: Indicates whether the path points to a file or folder which has the executable flag set. Note that on systems which do not support executables flags the result may be unpredicatable. On Windows the value is determined by the file extension, a *.exe file is executable, a *.sh not. """ return self.connection.isexec(self, mode)
0.003922
def _dinic_step(graph, capacity, lev, flow, u, target, limit): """ tenter de pousser le plus de flot de u à target, sans dépasser limit """ if limit <= 0: return 0 if u == target: return limit val = 0 for v in graph[u]: residual = capacity[u][v] - flow[u][v] if lev[v] == lev[u] + 1 and residual > 0: z = min(limit, residual) aug = _dinic_step(graph, capacity, lev, flow, v, target, z) flow[u][v] += aug flow[v][u] -= aug val += aug limit -= aug if val == 0: lev[u] = None # remove unreachable node return val
0.001513
def _incr_exceptions(self): """Increment the number of exceptions for the current connection.""" self._pool_manager.get_connection(self.pid, self._conn).exceptions += 1
0.01087
def trace(self, data, callback=None): """Queue data for tracing Args: data (bytearray, string): Unstructured data to trace to any connected client. callback (callable): An optional callback that will be called with a bool value of True when this data actually gets traced. If the client disconnects and the data is dropped instead, callback will be called with False. """ conn_id = self._find_connection(self.conn_string) if conn_id is not None: self.adapter.notify_event_nowait(self.conn_string, 'trace', data) if callback is not None: callback(conn_id is not None)
0.00274
def describe_event_source_mapping(UUID=None, EventSourceArn=None, FunctionName=None, region=None, key=None, keyid=None, profile=None): ''' Given an event source mapping ID or an event source ARN and FunctionName, obtain the current settings of that mapping. Returns a dictionary of interesting properties. CLI Example: .. code-block:: bash salt myminion boto_lambda.describe_event_source_mapping uuid ''' ids = _get_ids(UUID, EventSourceArn=EventSourceArn, FunctionName=FunctionName) if not ids: return {'event_source_mapping': None} UUID = ids[0] try: conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) desc = conn.get_event_source_mapping(UUID=UUID) if desc: keys = ('UUID', 'BatchSize', 'EventSourceArn', 'FunctionArn', 'LastModified', 'LastProcessingResult', 'State', 'StateTransitionReason') return {'event_source_mapping': dict([(k, desc.get(k)) for k in keys])} else: return {'event_source_mapping': None} except ClientError as e: return {'error': __utils__['boto3.get_error'](e)}
0.002342
def lz4f_decode(payload): """Decode payload using interoperable LZ4 framing. Requires Kafka >= 0.10""" # pylint: disable-msg=no-member ctx = lz4f.createDecompContext() data = lz4f.decompressFrame(payload, ctx) lz4f.freeDecompContext(ctx) # lz4f python module does not expose how much of the payload was # actually read if the decompression was only partial. if data['next'] != 0: raise RuntimeError('lz4f unable to decompress full payload') return data['decomp']
0.003945
def status(self, value): """ Property for getting or setting the bug status >>> bug.status = "REOPENED" """ if self._bug.get('id', None): if value in VALID_STATUS: self._bug['status'] = value else: raise BugException("Invalid status type was used") else: raise BugException("Can not set status unless there is a bug id." " Please call Update() before setting")
0.003876
def upload_entities(namespace, workspace, entity_data): """Upload entities from tab-delimited string. Args: namespace (str): project to which workspace belongs workspace (str): Workspace name entity_data (str): TSV string describing entites Swagger: https://api.firecloud.org/#!/Entities/importEntities """ body = urlencode({"entities" : entity_data}) headers = _fiss_agent_header({ 'Content-type': "application/x-www-form-urlencoded" }) uri = "workspaces/{0}/{1}/importEntities".format(namespace, workspace) return __post(uri, headers=headers, data=body)
0.003155
def get_params(self): "Parameters used to initialize the class" import inspect a = inspect.getargspec(self.__init__)[0] out = dict() for key in a[1:]: value = getattr(self, "_%s" % key, None) out[key] = value return out
0.006873
def wait_for_device_ready(self, timeout=None, wait_polling_interval=None, after_first=None): """Wait for the device to become ready for reliable interaction via adb. NOTE: if the device is *already* ready this method will timeout. :param timeout: Maximum time to wait for the device to become ready :param wait_polling_interval: Interval at which to poll for device readiness. :param after_first: A function to run after first polling for device readiness. This allows use cases such as stopping b2g setting the unready state, and then restarting b2g. """ if timeout is None: timeout = self._timeout if wait_polling_interval is None: wait_polling_interval = self._wait_polling_interval self._logger.info("Waiting for device to become ready") profiles = self.get_profiles() assert len(profiles) == 1 profile_dir = profiles.itervalues().next() prefs_file = posixpath.normpath(profile_dir + "/prefs.js") current_date = int(self.shell_output('date +\"%s\"')) set_date = current_date - (365 * 24 * 3600 + 24 * 3600 + 3600 + 60 + 1) try: self.shell_output("touch -t %i %s" % (set_date, prefs_file)) except adb.ADBError: # See Bug 1092383, the format for the touch command # has changed for flame-kk builds. set_date = datetime.datetime.fromtimestamp(set_date) self.shell_output("touch -t %s %s" % (set_date.strftime('%Y%m%d.%H%M%S'), prefs_file)) def prefs_modified(): times = [None, None] def inner(): try: listing = self.shell_output("ls -l %s" % (prefs_file)) mode, user, group, size, date, time, name = listing.split(None, 6) mtime = "%s %s" % (date, time) except: return False if times[0] is None: times[0] = mtime else: times[1] = mtime if times[1] != times[0]: return True return False return inner poll_wait(prefs_modified(), timeout=timeout, polling_interval=wait_polling_interval, after_first=after_first)
0.004049
def get_DRAT(delta_x_prime, delta_y_prime, max_ptrm_check): """ Input: TRM length of best fit line (delta_x_prime), NRM length of best fit line, max_ptrm_check Output: DRAT (maximum difference produced by a ptrm check normed by best fit line), length best fit line """ L = numpy.sqrt(delta_x_prime**2 + delta_y_prime**2) DRAT = (old_div(max_ptrm_check, L)) * 100 return DRAT, L
0.004662
def xinfo_help(self): """Retrieve help regarding the ``XINFO`` sub-commands""" fut = self.execute(b'XINFO', b'HELP') return wait_convert(fut, lambda l: b'\n'.join(l))
0.010526
def _write(self, ret): """ This function needs to correspond to this: https://github.com/saltstack/salt/blob/develop/salt/returners/redis_return.py#L88 """ self.redis.set('{0}:{1}'.format(ret['id'], ret['jid']), json.dumps(ret)) self.redis.lpush('{0}:{1}'.format(ret['id'], ret['fun']), ret['jid']) self.redis.sadd('minions', ret['id']) self.redis.sadd('jids', ret['jid'])
0.006881
def _gaps_from(intervals): """ From a list of intervals extract a list of sorted gaps in the form of [(g,i)] where g is the size of the ith gap. """ sliding_window = zip(intervals, intervals[1:]) gaps = [b[0] - a[1] for a, b in sliding_window] return gaps
0.003484
def fetch(self, start=False, full_data=True): """ Get the current job data and possibly flag it as started. """ if self.id is None: return self if full_data is True: fields = None elif isinstance(full_data, dict): fields = full_data else: fields = { "_id": 0, "path": 1, "params": 1, "status": 1, "retry_count": 1, } if start: self.datestarted = datetime.datetime.utcnow() self.set_data(self.collection.find_and_modify( { "_id": self.id, "status": {"$nin": ["cancel", "abort", "maxretries"]} }, {"$set": { "status": "started", "datestarted": self.datestarted, "worker": self.worker.id }, "$unset": { "dateexpires": 1 # we don't want started jobs to expire unexpectedly }}, projection=fields) ) context.metric("jobs.status.started") else: self.set_data(self.collection.find_one({ "_id": self.id }, projection=fields)) if self.data is None: context.log.info( "Job %s not found in MongoDB or status was cancelled!" % self.id) self.stored = True return self
0.003236
def _find_batch_containing_event(self, uuid): """Find the batch number that contains a certain event. Parameters: uuid -- the event uuid to search for. returns -- a batch number, or None if not found. """ if self.estore.key_exists(uuid): # Reusing already opened DB if possible return self.batchno else: for batchno in range(self.batchno - 1, -1, -1): # Iterating backwards here because we are more likely to find # the event in an later archive, than earlier. db = self._open_event_store(batchno) with contextlib.closing(db): if db.key_exists(uuid): return batchno return None
0.002528