text
stringlengths
78
104k
score
float64
0
0.18
def plot_compare(self, lD, key=None, cmap=None, ms=4, vmin=None, vmax=None, vmin_map=None, vmax_map=None, cmap_map=None, normt_map=False, ntMax=None, nchMax=None, nlbdMax=3, lls=None, lct=None, lcch=None, lclbd=None, cbck=None, inct=[1,10], incX=[1,5], inclbd=[1,10], fmt_t='06.3f', fmt_X='01.0f', fmt_l='07.3f', invert=True, Lplot='In', dmarker=None, sharey=True, sharelamb=True, Bck=True, fs=None, dmargin=None, wintit=None, tit=None, fontsize=None, labelpad=None, draw=True, connect=True): """ Plot several Data instances of the same diag Useful to compare : - the diag data for 2 different shots - experimental vs synthetic data for the same shot """ C0 = isinstance(lD,list) C0 = C0 and all([issubclass(dd.__class__,DataAbstract) for dd in lD]) C1 = issubclass(lD.__class__,DataAbstract) assert C0 or C1, 'Provided first arg. must be a tf.data.DataAbstract or list !' lD = [lD] if C1 else lD kh = _plot.Data_plot([self]+lD, key=key, indref=0, cmap=cmap, ms=ms, vmin=vmin, vmax=vmax, vmin_map=vmin_map, vmax_map=vmax_map, cmap_map=cmap_map, normt_map=normt_map, ntMax=ntMax, nchMax=nchMax, nlbdMax=nlbdMax, lls=lls, lct=lct, lcch=lcch, lclbd=lclbd, cbck=cbck, inct=inct, incX=incX, inclbd=inclbd, fmt_t=fmt_t, fmt_X=fmt_X, fmt_l=fmt_l, Lplot=Lplot, invert=invert, dmarker=dmarker, Bck=Bck, sharey=sharey, sharelamb=sharelamb, fs=fs, dmargin=dmargin, wintit=wintit, tit=tit, fontsize=fontsize, labelpad=labelpad, draw=draw, connect=connect) return kh
0.010353
def genstis(outname): """ Generate TestCases from cmdfile according to the pattern in patternfile""" pattern="""class stisS%d(countrateCase): def setUp(self): self.obsmode="%s" self.spectrum="%s" self.setglobal(__file__) self.runpy()\n""" speclist=['/grp/hst/cdbs/calspec/gd71_mod_005.fits', '/grp/hst/cdbs/calspec/gd153_mod_004.fits', '/grp/hst/cdbs/calspec/g191b2b_mod_004.fits'] glist={'g140l':'fuvmama','g230l':'nuvmama','g430l':'ccd','g750l':'ccd', 'g230lb':'ccd'} out=open(outname,'a') out.write("""from pytools import testutil import sys from basecase import calcphotCase, calcspecCase, countrateCase,SpecSourcerateSpecCase\n """) count=0 for g in glist: for sp in speclist: obsmode='stis,%s,fuvmama,s52x2'%g defn=pattern%(count,obsmode,sp) out.write(defn) count+=1 out.write("""\n\n if __name__ == '__main__': if 'debug' in sys.argv: testutil.debug(__name__) else: testutil.testall(__name__,2) """) out.close()
0.022502
def find_config_files( path=['~/.vcspull'], match=['*'], filetype=['json', 'yaml'], include_home=False ): """Return repos from a directory and match. Not recursive. :param path: list of paths to search :type path: list :param match: list of globs to search against :type match: list :param filetype: list of filetypes to search against :type filetype: list :param include_home: Include home configuration files :type include_home: bool :raises: - LoadConfigRepoConflict: There are two configs that have same path and name with different repo urls. :returns: list of absolute paths to config files. :rtype: list """ configs = [] if include_home is True: configs.extend(find_home_config_files()) if isinstance(path, list): for p in path: configs.extend(find_config_files(p, match, filetype)) return configs else: path = os.path.expanduser(path) if isinstance(match, list): for m in match: configs.extend(find_config_files(path, m, filetype)) else: if isinstance(filetype, list): for f in filetype: configs.extend(find_config_files(path, match, f)) else: match = os.path.join(path, match) match += ".{filetype}".format(filetype=filetype) configs = glob.glob(match) return configs
0.001355
def root(self, parts): """ Find the path root. @param parts: A list of path parts. @type parts: [str,..] @return: The root. @rtype: L{xsd.sxbase.SchemaObject} """ result = None name = parts[0] log.debug('searching schema for (%s)', name) qref = self.qualify(parts[0]) query = BlindQuery(qref) result = query.execute(self.schema) if result is None: log.error('(%s) not-found', name) raise PathResolver.BadPath(name) log.debug('found (%s) as (%s)', name, Repr(result)) return result
0.003165
def print_languages_and_exit(lst, status=1, header=True): """print a list of languages and exit""" if header: print("Available languages:") for lg in lst: print("- %s" % lg) sys.exit(status)
0.004505
def multiplicity(keys, axis=semantics.axis_default): """return the multiplicity of each key, or how often it occurs in the set Parameters ---------- keys : indexable object Returns ------- ndarray, [keys.size], int the number of times each input item occurs in the set """ index = as_index(keys, axis) return index.count[index.inverse]
0.002597
def get_specs(data): """ Takes a magic format file and returns a list of unique specimen names """ # sort the specimen names speclist = [] for rec in data: try: spec = rec["er_specimen_name"] except KeyError as e: spec = rec["specimen"] if spec not in speclist: speclist.append(spec) speclist.sort() return speclist
0.002457
def to_struct(cls, name=None): """ Convert the TreeModel into a compiled C struct """ if name is None: name = cls.__name__ basic_attrs = dict([(attr_name, value) for attr_name, value in cls.get_attrs() if isinstance(value, Column)]) if not basic_attrs: return None src = 'struct {0} {{'.format(name) for attr_name, value in basic_attrs.items(): src += '{0} {1};'.format(value.type.typename, attr_name) src += '};' if ROOT.gROOT.ProcessLine(src) != 0: return None return getattr(ROOT, name, None)
0.002911
def _split_along_width(x_left_right_blocks): """Helper function for local 2d attention. Takes a tensor of [batch, heads, num_h_blocks, num_w_blocks, height, width, depth] and returns two tensors which contain every alternate position along the width Args: x_left_right_blocks: A [batch, num_h_blocks, num_w_blocks, height, width, depth] tensor Returns: x_left_blocks, x_right_blocks: two [batch, num_h_blocks, (num_w_blocks-2)/2, height, width, depth] tensors """ (_, x_num_h_blocks, x_num_outer_w_blocks, x_memory_flange_h, x_memory_flange_w, depth) = common_layers.shape_list(x_left_right_blocks) x_num_w_blocks = (x_num_outer_w_blocks-1)//2 # get it ready for splitting the left and right memory blocks x_left_right_blocks = tf.reshape(x_left_right_blocks, [-1, x_num_h_blocks, x_num_outer_w_blocks//2, 2, x_memory_flange_h, x_memory_flange_w, depth]) x_left_blocks, x_right_blocks = tf.split(x_left_right_blocks, num_or_size_splits=2, axis=3) x_left_blocks = tf.squeeze(x_left_blocks, axis=3) x_right_blocks = tf.squeeze(x_right_blocks, axis=3) x_left_blocks = tf.slice(x_left_blocks, [0, 0, 0, 0, 0, 0], [-1, -1, x_num_w_blocks, -1, -1, -1]) x_right_blocks = tf.slice(x_right_blocks, [0, 0, 1, 0, 0, 0], [-1, -1, x_num_w_blocks, -1, -1, -1]) return x_left_blocks, x_right_blocks
0.006981
def get_v_total_stress_at_depth(self, z): """ Determine the vertical total stress at depth z, where z can be a number or an array of numbers. """ if not hasattr(z, "__len__"): return self.one_vertical_total_stress(z) else: sigma_v_effs = [] for value in z: sigma_v_effs.append(self.one_vertical_total_stress(value)) return np.array(sigma_v_effs)
0.006667
def on_action_run(self, task_vars, delegate_to_hostname, loader_basedir): """ Invoked by ActionModuleMixin to indicate a new task is about to start executing. We use the opportunity to grab relevant bits from the task-specific data. :param dict task_vars: Task variable dictionary. :param str delegate_to_hostname: :data:`None`, or the template-expanded inventory hostname this task is being delegated to. A similar variable exists on PlayContext when ``delegate_to:`` is active, however it is unexpanded. :param str loader_basedir: Loader base directory; see :attr:`loader_basedir`. """ self.inventory_hostname = task_vars['inventory_hostname'] self._task_vars = task_vars self.host_vars = task_vars['hostvars'] self.delegate_to_hostname = delegate_to_hostname self.loader_basedir = loader_basedir self._mitogen_reset(mode='put')
0.001994
async def send_rpc(self, client_id, conn_string, address, rpc_id, payload, timeout): """Send an RPC on behalf of a client. See :meth:`AbstractDeviceAdapter.send_rpc`. Args: client_id (str): The client we are working for. conn_string (str): A connection string that will be passed to the underlying device adapter to connect. address (int): The RPC address. rpc_id (int): The ID number of the RPC payload (bytes): The RPC argument payload timeout (float): The RPC's expected timeout to hand to the underlying device adapter. Returns: bytes: The RPC response. Raises: DeviceServerError: There is an issue with your client_id such as not being connected to the device. TileNotFoundError: The destination tile address does not exist RPCNotFoundError: The rpc_id does not exist on the given tile RPCErrorCode: The RPC was invoked successfully and wishes to fail with a non-zero status code. RPCInvalidIDError: The rpc_id is too large to fit in 16-bits. TileBusSerror: The tile was busy and could not respond to the RPC. Exception: The rpc raised an exception during processing. DeviceAdapterError: If there is a hardware or communication issue invoking the RPC. """ conn_id = self._client_connection(client_id, conn_string) return await self.adapter.send_rpc(conn_id, address, rpc_id, payload, timeout)
0.003075
def del_location(self, location, sync=True): """ delete location from this routing area :param location: the location to be deleted from this routing area :param sync: If sync=True(default) synchronize with Ariane server. If sync=False, add the location object on list to be removed on next save(). :return: """ LOGGER.debug("RoutingArea.del_location") if not sync: self.loc_2_rm.append(location) else: if location.id is None: location.sync() if self.id is not None and location.id is not None: params = { 'id': self.id, 'locationID': location.id } args = {'http_operation': 'GET', 'operation_path': 'update/locations/delete', 'parameters': params} response = RoutingAreaService.requester.call(args) if response.rc != 0: LOGGER.warning( 'RoutingArea.del_location - Problem while updating routing area ' + self.name + '. Reason: ' + str(response.response_content) + '-' + str(response.error_message) + " (" + str(response.rc) + ")" ) else: self.loc_ids.remove(location.id) location.routing_area_ids.remove(self.id) else: LOGGER.warning( 'RoutingArea.del_location - Problem while updating routing area ' + self.name + '. Reason: location ' + location.name + ' id is None or self.id is None' )
0.004084
def call(self, name, request=None, **params): """ Call resource by ``Api`` name. :param name: The resource's name (short form) :param request: django.http.Request instance :param **params: Params for a resource's call :return object: Result of resource's execution """ if name not in self.resources: raise exceptions.HttpError( 'Unknown method \'%s\'' % name, status=status.HTTP_501_NOT_IMPLEMENTED) request = request or HttpRequest() resource = self.resources[name] view = resource.as_view(api=self) return view(request, **params)
0.003003
def set(self, point): """Set pixel at (x, y) point.""" if not isinstance(point, Point): point = Point(point) rx = self.round(point.x) ry = self.round(point.y) item = Point((rx >> 1, min(ry >> 2, self.size.y))) self.screen[item] |= self.pixels[ry & 3][rx & 1]
0.00625
def invoke_rest_method(**kwargs): """ Invokes a rest api test :param kwargs: REQUIRED: method = 'GET', 'POST', 'PUT', 'DELETE' url = "http://localhost/api/controller" or baseurl = "http://localhost/" endpoint = "api/controller" OPTIONAL: headers = {'header_name':'header_value', 'header2_name':'header2_value'} json = {'key1':'value1', 'key2':'value2'} #Will be sent as json encoded data or form = {'key1':'value1', 'key2':'value2'} #Will be sent as form encoded data api_key = "ey123asdk93e378hsdfsfdf" silent = True,False (to not log request/response. Default False) :return: """ logger = kwargs.get('logger', get_default_logger()) args = {} headers = kwargs.get('headers', {}) api_key = kwargs.get('api_key', None) if api_key is not None: headers['Authorization'] = api_key if headers is not {}: args['headers'] = headers json = kwargs.get('json', None) if json is not None: args['json'] = json form = kwargs.get('form', None) if form is not None: args['data'] = form if json is not None and form is not None: raise ValueError('Cannot specify both json and form parameters') url = kwargs.get('url', None) if url is None: baseurl = kwargs.get('baseurl', None) endpoint = kwargs.get('endpoint', None) if baseurl is None or endpoint is None: raise ValueError('Invalid test arguments. Must specify {url} or {baseurl, endpoint}') url = urljoin(baseurl, endpoint) method = kwargs.get('method', None) if method is None: raise ValueError('Invalid test arguments. Must specify {method}') silent = kwargs.get('silent', False) if not silent: logger.debug("Sending {} to url: {}".format(method, url)) req = requests.request(method, url, **args) if not silent: logger.debug("Received response code: {}".format(req.status_code)) return req
0.002651
def get_band_structure_from_vasp_multiple_branches(dir_name, efermi=None, projections=False): """ This method is used to get band structure info from a VASP directory. It takes into account that the run can be divided in several branches named "branch_x". If the run has not been divided in branches the method will turn to parsing vasprun.xml directly. The method returns None is there"s a parsing error Args: dir_name: Directory containing all bandstructure runs. efermi: Efermi for bandstructure. projections: True if you want to get the data on site projections if any. Note that this is sometimes very large Returns: A BandStructure Object """ # TODO: Add better error handling!!! if os.path.exists(os.path.join(dir_name, "branch_0")): # get all branch dir names branch_dir_names = [os.path.abspath(d) for d in glob.glob("{i}/branch_*" .format(i=dir_name)) if os.path.isdir(d)] # sort by the directory name (e.g, branch_10) sort_by = lambda x: int(x.split("_")[-1]) sorted_branch_dir_names = sorted(branch_dir_names, key=sort_by) # populate branches with Bandstructure instances branches = [] for dir_name in sorted_branch_dir_names: xml_file = os.path.join(dir_name, "vasprun.xml") if os.path.exists(xml_file): run = Vasprun(xml_file, parse_projected_eigen=projections) branches.append(run.get_band_structure(efermi=efermi)) else: # It might be better to throw an exception warnings.warn("Skipping {}. Unable to find {}" .format(d=dir_name, f=xml_file)) return get_reconstructed_band_structure(branches, efermi) else: xml_file = os.path.join(dir_name, "vasprun.xml") # Better handling of Errors if os.path.exists(xml_file): return Vasprun(xml_file, parse_projected_eigen=projections) \ .get_band_structure(kpoints_filename=None, efermi=efermi) else: return None
0.000872
def set_prop(self, prop, value, ef=None): """ set attributes values :param prop: :param value: :param ef: :return: """ if ef: # prop should be restricted to n_decoys, an int, the no. of decoys corresponding to a given FPF. # value is restricted to the corresponding enrichment factor and should be a float self.ef[prop] = value else: if prop == 'ensemble': # value is a tuple of strings that gives the ensemble composition self.ensemble = value elif prop == 'auc': # value is a float that gives the auc value self.auc = value
0.006935
def match_one(self, models, results, relation): """ Match the eargerly loaded resuls to their single parents. :param models: The parents :type models: list :param results: The results collection :type results: Collection :param relation: The relation :type relation: str :rtype: list """ return self._match_one_or_many(models, results, relation, 'one')
0.004505
def clip(obj, lower=0, upper=127): """ Return a copy of the object with piano-roll(s) clipped by a lower bound and an upper bound specified by `lower` and `upper`, respectively. Parameters ---------- lower : int or float The lower bound to clip the piano-roll. Default to 0. upper : int or float The upper bound to clip the piano-roll. Default to 127. """ _check_supported(obj) copied = deepcopy(obj) copied.clip(lower, upper) return copied
0.001976
def build_pyfile_path_from_docname(self, docfile): """Build the expected Python file name based on the given documentation file name. :param str docfile: The documentation file name from which to build the Python file name. :rtype: str """ name, ext = os.path.splitext(docfile) expected_py_name = name.replace('.', '/') + '.py' return expected_py_name
0.009804
def convert_bool(key, val, attr_type, attr={}, cdata=False): """Converts a boolean into an XML element""" LOG.info('Inside convert_bool(): key="%s", val="%s", type(val) is: "%s"' % ( unicode_me(key), unicode_me(val), type(val).__name__) ) key, attr = make_valid_xml_name(key, attr) if attr_type: attr['type'] = get_xml_type(val) attrstring = make_attrstring(attr) return '<%s%s>%s</%s>' % (key, attrstring, unicode(val).lower(), key)
0.004175
def has_adjacent_fragments_only(self, min_index=None, max_index=None): """ Return ``True`` if the list contains only adjacent fragments, that is, if it does not have gaps. :param int min_index: examine fragments with index greater than or equal to this index (i.e., included) :param int max_index: examine fragments with index smaller than this index (i.e., excluded) :raises ValueError: if ``min_index`` is negative or ``max_index`` is bigger than the current number of fragments :rtype: bool """ min_index, max_index = self._check_min_max_indices(min_index, max_index) for i in range(min_index, max_index - 1): current_interval = self[i].interval next_interval = self[i + 1].interval if not current_interval.is_adjacent_before(next_interval): self.log(u"Found non adjacent fragments") self.log([u" Index %d => %s", i, current_interval]) self.log([u" Index %d => %s", i + 1, next_interval]) return False return True
0.004405
def __update_central_neurons(self, t, next_cn_membrane, next_cn_active_sodium, next_cn_inactive_sodium, next_cn_active_potassium): """! @brief Update of central neurons in line with new values of current in channels. @param[in] t (doubles): Current time of simulation. @param[in] next_membrane (list): New values of membrane potentials for central neurons. @Param[in] next_active_sodium (list): New values of activation conductances of the sodium channels for central neurons. @param[in] next_inactive_sodium (list): New values of inactivaton conductances of the sodium channels for central neurons. @param[in] next_active_potassium (list): New values of activation conductances of the potassium channel for central neurons. """ for index in range(0, len(self._central_element)): self._central_element[index].membrane_potential = next_cn_membrane[index]; self._central_element[index].active_cond_sodium = next_cn_active_sodium[index]; self._central_element[index].inactive_cond_sodium = next_cn_inactive_sodium[index]; self._central_element[index].active_cond_potassium = next_cn_active_potassium[index]; if (self._central_element[index].pulse_generation is False): if (self._central_element[index].membrane_potential >= 0.0): self._central_element[index].pulse_generation = True; self._central_element[index].pulse_generation_time.append(t); elif (self._central_element[index].membrane_potential < 0.0): self._central_element[index].pulse_generation = False;
0.013809
def meta_enter_message(python_input): """ Create the `Layout` for the 'Meta+Enter` message. """ def get_text_fragments(): return [('class:accept-message', ' [Meta+Enter] Execute ')] def extra_condition(): " Only show when... " b = python_input.default_buffer return ( python_input.show_meta_enter_message and (not b.document.is_cursor_at_the_end or python_input.accept_input_on_enter is None) and '\n' in b.text) visible = ~is_done & has_focus(DEFAULT_BUFFER) & Condition(extra_condition) return ConditionalContainer( content=Window(FormattedTextControl(get_text_fragments)), filter=visible)
0.001383
def _get_object(objname, objtype): ''' Helper function to retrieve objtype from pillars if objname is string_types, used for SupportedLoginProviders and OpenIdConnectProviderARNs. ''' ret = None if objname is None: return ret if isinstance(objname, string_types): if objname in __opts__: ret = __opts__[objname] master_opts = __pillar__.get('master', {}) if objname in master_opts: ret = master_opts[objname] if objname in __pillar__: ret = __pillar__[objname] elif isinstance(objname, objtype): ret = objname if not isinstance(ret, objtype): ret = None return ret
0.001422
def normalize(value, unit): """Converts the value so that it belongs to some expected range. Returns the new value and new unit. E.g: >>> normalize(1024, 'KB') (1, 'MB') >>> normalize(90, 'min') (1.5, 'hr') >>> normalize(1.0, 'object') (1, 'object') """ if value < 0: raise ValueError('Negative value: %s %s.' % (value, unit)) if unit in functions.get_keys(INFORMATION_UNITS): return _normalize_information(value, unit) elif unit in TIME_UNITS: return _normalize_time(value, unit) else: # Unknown unit, just return it return functions.format_value(value), unit
0.001515
def delete(key, host=DEFAULT_HOST, port=DEFAULT_PORT, time=DEFAULT_TIME): ''' Delete a key from memcache server CLI Example: .. code-block:: bash salt '*' memcached.delete <key> ''' if not isinstance(time, six.integer_types): raise SaltInvocationError('\'time\' must be an integer') conn = _connect(host, port) _check_stats(conn) return bool(conn.delete(key, time))
0.002208
def rewrite_elife_datasets_json(json_content, doi): """ this does the work of rewriting elife datasets json """ # Add dates in bulk elife_dataset_dates = [] elife_dataset_dates.append(("10.7554/eLife.00348", "used", "dataro17", u"2010")) elife_dataset_dates.append(("10.7554/eLife.01179", "used", "dataro4", u"2016")) elife_dataset_dates.append(("10.7554/eLife.01603", "used", "dataro2", u"2012")) elife_dataset_dates.append(("10.7554/eLife.02304", "used", "dataro15", u"2005")) elife_dataset_dates.append(("10.7554/eLife.02935", "used", "dataro2", u"2014")) elife_dataset_dates.append(("10.7554/eLife.03583", "used", "dataro5", u"2013")) if doi in map(lambda dataset: dataset[0], elife_dataset_dates): for (match_doi, used_or_generated, id, dataset_date) in elife_dataset_dates: if doi == match_doi: if json_content.get(used_or_generated): for dataset in json_content[used_or_generated]: if dataset.get("id") and dataset["id"] == id: if not dataset.get("date"): dataset["date"] = dataset_date # Continue with individual article JSON rewriting if doi == "10.7554/eLife.01311": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] in ["dataro3", "dataro4", "dataro5"]: if not dataset.get("date"): dataset["date"] = u"2012" if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Duke"}] if dataset.get("id") and dataset["id"] == "dataro6": if not dataset.get("date"): dataset["date"] = u"2011" if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "FlyBase"}] if dataset.get("id") and dataset["id"] == "dataro7": if not dataset.get("date"): dataset["date"] = u"2011" if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Baylor College of Medicine (BCM)"}] if dataset.get("id") and dataset["id"] in ["dataro8", "dataro9"]: if not dataset.get("date"): dataset["date"] = u"2012" if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "University of California, Berkeley"}] if doi == "10.7554/eLife.01440": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro1": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "EnsemblMetazoa"}] if doi == "10.7554/eLife.01535": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro1": if dataset.get("date") and dataset.get("date") == "2000, 2005": dataset["date"] = u"2000" if doi == "10.7554/eLife.02304": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro11": if not dataset.get("title"): dataset["title"] = u"T.gondii LDH1 ternary complex with APAD+ and oxalate" if doi == "10.7554/eLife.03574": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro2": if not dataset.get("date"): dataset["date"] = u"2006" if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Riley,M."}, {"type": "group", "name": "Abe,T."}, {"type": "group", "name": "Arnaud,M.B."}, {"type": "group", "name": "Berlyn,M.K."}, {"type": "group", "name": "Blattner,F.R."}, {"type": "group", "name": "Chaudhuri,R.R."}, {"type": "group", "name": "Glasner,J.D."}, {"type": "group", "name": "Horiuchi,T."}, {"type": "group", "name": "Keseler,I.M."}, {"type": "group", "name": "Kosuge,T."}, {"type": "group", "name": "Mori,H."}, {"type": "group", "name": "Perna,N.T."}, {"type": "group", "name": "Plunkett,G. III"}, {"type": "group", "name": "Rudd,K.E."}, {"type": "group", "name": "Serres,M.H."}, {"type": "group", "name": "Thomas,G.H."}, {"type": "group", "name": "Thomson,N.R."}, {"type": "group", "name": "Wishart,D."}, {"type": "group", "name": "Wanner,B.L."}] if doi == "10.7554/eLife.03676": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro4": if not dataset.get("date"): dataset["date"] = u"2013" if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Human Gene Sequencing Center"}] if doi == "10.7554/eLife.03971": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro2": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Vanderperre B."}] if doi == "10.7554/eLife.04660": if json_content.get("generated"): for dataset in json_content["generated"]: if dataset.get("id") and dataset["id"] == "dataro1": if dataset.get("date") and dataset.get("date") == "2014-2015": dataset["date"] = u"2014" if doi == "10.7554/eLife.06421": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro2": if dataset.get("date") and dataset.get("date") == "NA": dataset["date"] = u"2006" if doi == "10.7554/eLife.08445": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "data-ro1": if not dataset.get("date"): dataset["date"] = u"2006" if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "BDTNP SELEX"}] if doi == "10.7554/eLife.08916": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro2": if dataset.get("date") and dataset.get("date") == "2008, updated 2014": dataset["date"] = u"2008" if dataset.get("id") and dataset["id"] == "dataro3": if dataset.get("date") and dataset.get("date") == "2013, updated 2014": dataset["date"] = u"2013" if doi == "10.7554/eLife.08955": if json_content.get("generated"): for dataset in json_content["generated"]: if dataset.get("id") and dataset["id"] == "dataro2": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Kurdistani S"}, {"type": "group", "name": "Marrban C"}, {"type": "group", "name": "Su T"}] if doi == "10.7554/eLife.09207": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro1": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Prostate Cancer Genome Sequencing Project"}] if doi == "10.7554/eLife.10607": if json_content.get("generated"): for dataset in json_content["generated"]: if dataset.get("id") and dataset["id"] == "data-ro4": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Authors"}] if doi == "10.7554/eLife.10670": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "data-ro1": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "HIVdb"}] # Add dates, authors, other details if doi == "10.7554/eLife.10856": if json_content.get("generated"): datasets_authors_for_10856 = [{"type": "group", "name": "Dagdas YF"}, {"type": "group", "name": "Belhaj K"}, {"type": "group", "name": "Maqbool A"}, {"type": "group", "name": "Chaparro-Garcia A"}, {"type": "group", "name": "Pandey P"}, {"type": "group", "name": "Petre B"}, {"type": "group", "name": "Tabassum N"}, {"type": "group", "name": "Cruz-Mireles N"}, {"type": "group", "name": "Hughes RK"}, {"type": "group", "name": "Sklenar J"}, {"type": "group", "name": "Win J"}, {"type": "group", "name": "Menke F"}, {"type": "group", "name": "Findlay K"}, {"type": "group", "name": "Banfield MJ"}, {"type": "group", "name": "Kamoun S"}, {"type": "group", "name": "Bozkurt TO"}] for dataset in json_content["generated"]: if dataset.get("id") and dataset["id"] == "dataro7": if not dataset.get("date"): dataset["date"] = u"2016" if not dataset.get("title"): dataset["title"] = u"An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor" if not dataset.get("authors"): dataset["authors"] = datasets_authors_for_10856 if dataset.get("uri") and dataset["uri"] == "http://www.ncbi.nlm.nih.": dataset["uri"] = "https://www.ncbi.nlm.nih.gov/nuccore/976151098/" if dataset.get("id") and dataset["id"] == "dataro8": if not dataset.get("date"): dataset["date"] = u"2015" if not dataset.get("title"): dataset["title"] = u"An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor" if not dataset.get("authors"): dataset["authors"] = datasets_authors_for_10856 if dataset.get("uri") and dataset["uri"] == "http://www.ncbi.nlm.nih.": dataset["uri"] = "https://www.ncbi.nlm.nih.gov/nuccore/976151096/" if dataset.get("id") and dataset["id"] == "dataro9": if not dataset.get("authors"): dataset["authors"] = datasets_authors_for_10856 if doi == "10.7554/eLife.10877": if json_content.get("generated"): for dataset in json_content["generated"]: if dataset.get("id") and dataset["id"] == "dataro1": if not dataset.get("title"): dataset["title"] = u"Oct4 ChIP-Seq at G1 and G2/M phase of cell cycle in mouse embryonic stem cells" if doi == "10.7554/eLife.10921": if json_content.get("generated"): for dataset in json_content["generated"]: if dataset.get("id") and dataset["id"] == "dataro1": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Floor SN"}, {"type": "group", "name": "Doudna JA"}] if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro2": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Sidrauski C"}, {"type": "group", "name": "McGeachy A"}, {"type": "group", "name": "Ingolia N"}, {"type": "group", "name": "Walter P"}] if doi == "10.7554/eLife.11117": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro14": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Authors"}] if doi == "10.7554/eLife.12204": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro1": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Rhodes DR"}, {"type": "group", "name": "Kalyana-Sundaram S"}, {"type": "group", "name": "Mahavisno V"}, {"type": "group", "name": "Varambally R"}, {"type": "group", "name": "Yu J"}, {"type": "group", "name": "Briggs BB"}, {"type": "group", "name": "Barrette TR"}, {"type": "group", "name": "Anstet MJ"}, {"type": "group", "name": "Kincead-Beal C"}, {"type": "group", "name": "Kulkarni P"}, {"type": "group", "name": "Varambally S"}, {"type": "group", "name": "Ghosh D"}, {"type": "group", "name": "Chinnaiyan AM."}] if dataset.get("id") and dataset["id"] == "dataro2": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Gaspar C"}, {"type": "group", "name": "Cardoso J"}, {"type": "group", "name": "Franken P"}, {"type": "group", "name": "Molenaar L"}, {"type": "group", "name": "Morreau H"}, {"type": "group", "name": "Möslein G"}, {"type": "group", "name": "Sampson J"}, {"type": "group", "name": "Boer JM"}, {"type": "group", "name": "de Menezes RX"}, {"type": "group", "name": "Fodde R."}] if dataset.get("id") and dataset["id"] == "dataro3": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Graudens E"}, {"type": "group", "name": "Boulanger V"}, {"type": "group", "name": "Mollard C"}, {"type": "group", "name": "Mariage-Samson R"}, {"type": "group", "name": "Barlet X"}, {"type": "group", "name": "Grémy G"}, {"type": "group", "name": "Couillault C"}, {"type": "group", "name": "Lajémi M"}, {"type": "group", "name": "Piatier-Tonneau D"}, {"type": "group", "name": "Zaborski P"}, {"type": "group", "name": "Eveno E"}, {"type": "group", "name": "Auffray C"}, {"type": "group", "name": "Imbeaud S."}] if dataset.get("id") and dataset["id"] == "dataro4": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Hong Y"}, {"type": "group", "name": "Downey T"}, {"type": "group", "name": "Eu KW"}, {"type": "group", "name": "Koh PK"},{"type": "group", "name": "Cheah PY"}] if dataset.get("id") and dataset["id"] == "dataro5": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Kaiser S"}, {"type": "group", "name": "Park YK"}, {"type": "group", "name": "Franklin JL"}, {"type": "group", "name": "Halberg RB"}, {"type": "group", "name": "Yu M"}, {"type": "group", "name": "Jessen WJ"}, {"type": "group", "name": "Freudenberg J"}, {"type": "group", "name": "Chen X"}, {"type": "group", "name": "Haigis K"}, {"type": "group", "name": "Jegga AG"}, {"type": "group", "name": "Kong S"}, {"type": "group", "name": "Sakthivel B"}, {"type": "group", "name": "Xu H"}, {"type": "group", "name": "Reichling T"}, {"type": "group", "name": "Azhar M"}, {"type": "group", "name": "Boivin GP"}, {"type": "group", "name": "Roberts RB"}, {"type": "group", "name": "Bissahoyo AC"}, {"type": "group", "name": "Gonzales F"}, {"type": "group", "name": "Bloom GC"}, {"type": "group", "name": "Eschrich S"}, {"type": "group", "name": "Carter SL"}, {"type": "group", "name": "Aronow JE"}, {"type": "group", "name": "Kleimeyer J"}, {"type": "group", "name": "Kleimeyer M"}, {"type": "group", "name": "Ramaswamy V"}, {"type": "group", "name": "Settle SH"}, {"type": "group", "name": "Boone B"}, {"type": "group", "name": "Levy S"}, {"type": "group", "name": "Graff JM"}, {"type": "group", "name": "Doetschman T"}, {"type": "group", "name": "Groden J"}, {"type": "group", "name": "Dove WF"}, {"type": "group", "name": "Threadgill DW"}, {"type": "group", "name": "Yeatman TJ"}, {"type": "group", "name": "Coffey RJ Jr"}, {"type": "group", "name": "Aronow BJ."}] if dataset.get("id") and dataset["id"] == "dataro6": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Muzny DM et al"}] if dataset.get("id") and dataset["id"] == "dataro7": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Skrzypczak M"}, {"type": "group", "name": "Goryca K"}, {"type": "group", "name": "Rubel T"}, {"type": "group", "name": "Paziewska A"}, {"type": "group", "name": "Mikula M"}, {"type": "group", "name": "Jarosz D"}, {"type": "group", "name": "Pachlewski J"}, {"type": "group", "name": "Oledzki J"}, {"type": "group", "name": "Ostrowski J."}] if dataset.get("id") and dataset["id"] == "dataro8": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Cancer Genome Atlas Network"}] if doi == "10.7554/eLife.12876": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro1": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Department of Human Genetics, University of Utah"}] if doi == "10.7554/eLife.13195": if json_content.get("generated"): for dataset in json_content["generated"]: if dataset.get("id") and dataset["id"] == "dataro1": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Microbial Ecology Group, Colorado State University"}] if doi == "10.7554/eLife.14158": if json_content.get("generated"): for dataset in json_content["generated"]: if dataset.get("id") and dataset["id"] == "data-ro1": if not dataset.get("title"): dataset["title"] = u"Bacterial initiation protein" if dataset.get("id") and dataset["id"] == "data-ro2": if not dataset.get("title"): dataset["title"] = u"Bacterial initiation protein in complex with Phage inhibitor protein" if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "dataro3": if not dataset.get("date"): dataset["date"] = u"2007" if doi == "10.7554/eLife.14243": if json_content.get("generated"): for dataset in json_content["generated"]: if dataset.get("id") and dataset["id"] == "dataro2": if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "Tramantano M"}, {"type": "group", "name": "Sun L"}, {"type": "group", "name": "Au C"}, {"type": "group", "name": "Labuz D"}, {"type": "group", "name": "Liu Z"}, {"type": "group", "name": "Chou M"}, {"type": "group", "name": "Shen C"}, {"type": "group", "name": "Luk E"}] if doi == "10.7554/eLife.16078": if json_content.get("generated"): for dataset in json_content["generated"]: if dataset.get("id") and dataset["id"] == "dataro1": if dataset.get("date") and dataset.get("date") == "current manuscript": dataset["date"] = u"2016" if doi == "10.7554/eLife.17082": if json_content.get("used"): for dataset in json_content["used"]: if dataset.get("id") and dataset["id"] == "data-ro4": if not dataset.get("date"): dataset["date"] = u"2012" if dataset.get("id") and dataset["id"] == "data-ro5": if not dataset.get("date"): dataset["date"] = u"2014" if dataset.get("id") and dataset["id"] == "data-ro6": if not dataset.get("date"): dataset["date"] = u"2014" if not dataset.get("authors"): dataset["authors"] = [{"type": "group", "name": "The Cancer Genome Atlas (TCGA)"}] if doi == "10.7554/eLife.17473": if json_content.get("generated"): for dataset in json_content["generated"]: if dataset.get("id") and dataset["id"] == "dataro1": if dataset.get("date") and dataset.get("date").startswith("Release date"): dataset["date"] = u"2016" return json_content
0.002816
def delete_alarms(deployment_id, alert_id=None, metric_name=None, api_key=None, profile='telemetry'): '''delete an alert specified by alert_id or if not specified blows away all the alerts in the current deployment. Returns (bool success, str message) tuple. CLI Example: salt myminion telemetry.delete_alarms rs-ds033197 profile=telemetry ''' auth = _auth(profile=profile) if alert_id is None: # Delete all the alarms associated with this deployment alert_ids = get_alert_config(deployment_id, api_key=api_key, profile=profile) else: alert_ids = [alert_id] if not alert_ids: return False, "failed to find alert associated with deployment: {0}".format(deployment_id) failed_to_delete = [] for id in alert_ids: delete_url = _get_telemetry_base(profile) + "/alerts/{0}".format(id) try: response = requests.delete(delete_url, headers=auth) if metric_name: log.debug("updating cache and delete %s key from %s", metric_name, deployment_id) _update_cache(deployment_id, metric_name, None) except requests.exceptions.RequestException as e: log.error('Delete failed: %s', e) if response.status_code != 200: failed_to_delete.append(id) if failed_to_delete: return False, "Failed to delete {0} alarms in deployment: {1}" .format(', '.join(failed_to_delete), deployment_id) return True, "Successfully deleted {0} alerts in deployment: {1}".format(', '.join(alert_ids), deployment_id)
0.004302
def drag(self, point): """Update the tracball during a drag. Parameters ---------- point : (2,) int The current x and y pixel coordinates of the mouse during a drag. This will compute a movement for the trackball with the relative motion between this point and the one marked by down(). """ point = np.array(point, dtype=np.float32) dx, dy = point - self._pdown mindim = 0.3 * np.min(self._size) target = self._target x_axis = self._pose[:3, 0].flatten() y_axis = self._pose[:3, 1].flatten() z_axis = self._pose[:3, 2].flatten() eye = self._pose[:3, 3].flatten() # Interpret drag as a rotation if self._state == Trackball.STATE_ROTATE: x_angle = -dx / mindim x_rot_mat = transformations.rotation_matrix( x_angle, y_axis, target ) y_angle = dy / mindim y_rot_mat = transformations.rotation_matrix( y_angle, x_axis, target ) self._n_pose = y_rot_mat.dot(x_rot_mat.dot(self._pose)) # Interpret drag as a roll about the camera axis elif self._state == Trackball.STATE_ROLL: center = self._size / 2.0 v_init = self._pdown - center v_curr = point - center v_init = v_init / np.linalg.norm(v_init) v_curr = v_curr / np.linalg.norm(v_curr) theta = (-np.arctan2(v_curr[1], v_curr[0]) + np.arctan2(v_init[1], v_init[0])) rot_mat = transformations.rotation_matrix(theta, z_axis, target) self._n_pose = rot_mat.dot(self._pose) # Interpret drag as a camera pan in view plane elif self._state == Trackball.STATE_PAN: dx = -dx / (5.0 * mindim) * self._scale dy = -dy / (5.0 * mindim) * self._scale translation = dx * x_axis + dy * y_axis self._n_target = self._target + translation t_tf = np.eye(4) t_tf[:3, 3] = translation self._n_pose = t_tf.dot(self._pose) # Interpret drag as a zoom motion elif self._state == Trackball.STATE_ZOOM: radius = np.linalg.norm(eye - target) ratio = 0.0 if dy > 0: ratio = np.exp(abs(dy) / (0.5 * self._size[1])) - 1.0 elif dy < 0: ratio = 1.0 - np.exp(dy / (0.5 * (self._size[1]))) translation = -np.sign(dy) * ratio * radius * z_axis t_tf = np.eye(4) t_tf[:3, 3] = translation self._n_pose = t_tf.dot(self._pose)
0.000743
def handle_scroll(self, *args): """When my ``scroll`` changes, tell my deckbuilder how it's scrolled now. """ if 'bar' not in self.ids: Clock.schedule_once(self.handle_scroll, 0) return att = 'deck_{}_hint_offsets'.format( 'x' if self.orientation == 'horizontal' else 'y' ) offs = list(getattr(self.deckbuilder, att)) if len(offs) <= self.deckidx: Clock.schedule_once(self.on_scroll, 0) return offs[self.deckidx] = self._scroll setattr(self.deckbuilder, att, offs) self.deckbuilder._trigger_layout()
0.003086
def _get_definitions(source): # type: (str) -> Tuple[Dict[str, str], int] """Extract a dictionary of arguments and definitions. Args: source: The source for a section of a usage string that contains definitions. Returns: A two-tuple containing a dictionary of all arguments and definitions as well as the length of the longest argument. """ max_len = 0 descs = collections.OrderedDict() # type: Dict[str, str] lines = (s.strip() for s in source.splitlines()) non_empty_lines = (s for s in lines if s) for line in non_empty_lines: if line: arg, desc = re.split(r'\s\s+', line.strip()) arg_len = len(arg) if arg_len > max_len: max_len = arg_len descs[arg] = desc return descs, max_len
0.001195
def expect_column_values_to_be_in_type_list( self, column, type_list, mostly=None, result_format=None, include_config=False, catch_exceptions=None, meta=None ): """Expect each column entry to match a list of specified data types. expect_column_values_to_be_in_type_list is a :func:`column_map_expectation <great_expectations.data_asset.dataset.Dataset.column_map_expectation>`. Args: column (str): \ The column name. type_list (list of str): \ A list of strings representing the data type that each column should have as entries. For example, "double integer" refers to an integer with double precision. Keyword Args: mostly (None or a float between 0 and 1): \ Return `"success": True` if at least mostly percent of values match the expectation. \ For more detail, see :ref:`mostly`. Other Parameters: result_format (str or None): \ Which output mode to use: `BOOLEAN_ONLY`, `BASIC`, `COMPLETE`, or `SUMMARY`. For more detail, see :ref:`result_format <result_format>`. include_config (boolean): \ If True, then include the expectation config as part of the result object. \ For more detail, see :ref:`include_config`. catch_exceptions (boolean or None): \ If True, then catch exceptions and include them as part of the result object. \ For more detail, see :ref:`catch_exceptions`. meta (dict or None): \ A JSON-serializable dictionary (nesting allowed) that will be included in the output without modification. \ For more detail, see :ref:`meta`. Returns: A JSON-serializable expectation result object. Exact fields vary depending on the values passed to :ref:`result_format <result_format>` and :ref:`include_config`, :ref:`catch_exceptions`, and :ref:`meta`. Warning: expect_column_values_to_be_in_type_list is slated for major changes in future versions of great_expectations. As of v0.3, great_expectations is exclusively based on pandas, which handles typing in its own peculiar way. Future versions of great_expectations will allow for Datasets in SQL, spark, etc. When we make that change, we expect some breaking changes in parts of the codebase that are based strongly on pandas notions of typing. See also: expect_column_values_to_be_of_type """ raise NotImplementedError
0.006287
def __cloudflare_request(self, *, account, path, args=None): """Helper function to interact with the CloudFlare API. Args: account (:obj:`CloudFlareAccount`): CloudFlare Account object path (`str`): URL endpoint to communicate with args (:obj:`dict` of `str`: `str`): A dictionary of arguments for the endpoint to consume Returns: `dict` """ if not args: args = {} if not self.cloudflare_initialized[account.account_id]: self.cloudflare_session[account.account_id] = requests.Session() self.cloudflare_session[account.account_id].headers.update({ 'X-Auth-Email': account.email, 'X-Auth-Key': account.api_key, 'Content-Type': 'application/json' }) self.cloudflare_initialized[account.account_id] = True if 'per_page' not in args: args['per_page'] = 100 response = self.cloudflare_session[account.account_id].get(account.endpoint + path, params=args) if response.status_code != 200: raise CloudFlareError('Request failed: {}'.format(response.text)) return response.json()
0.003239
def AddFrequency(self, start_time, end_time, headway_secs, exact_times=0, problem_reporter=problems_module.default_problem_reporter): """Adds a period to this trip during which the vehicle travels at regular intervals (rather than specifying exact times for each stop). Args: start_time: The time at which this headway period starts, either in numerical seconds since midnight or as "HH:MM:SS" since midnight. end_time: The time at which this headway period ends, either in numerical seconds since midnight or as "HH:MM:SS" since midnight. This value should be larger than start_time. headway_secs: The amount of time, in seconds, between occurences of this trip. exact_times: If 1, indicates that frequency trips should be scheduled exactly as determined by their start time and headway. Default is 0. problem_reporter: Optional parameter that can be used to select how any errors in the other input parameters will be reported. Returns: None """ if start_time == None or start_time == '': # 0 is OK problem_reporter.MissingValue('start_time') return if isinstance(start_time, basestring): try: start_time = util.TimeToSecondsSinceMidnight(start_time) except problems_module.Error: problem_reporter.InvalidValue('start_time', start_time) return elif start_time < 0: problem_reporter.InvalidValue('start_time', start_time) if end_time == None or end_time == '': problem_reporter.MissingValue('end_time') return if isinstance(end_time, basestring): try: end_time = util.TimeToSecondsSinceMidnight(end_time) except problems_module.Error: problem_reporter.InvalidValue('end_time', end_time) return elif end_time < 0: problem_reporter.InvalidValue('end_time', end_time) return if not headway_secs: problem_reporter.MissingValue('headway_secs') return try: headway_secs = int(headway_secs) except ValueError: problem_reporter.InvalidValue('headway_secs', headway_secs) return if headway_secs <= 0: problem_reporter.InvalidValue('headway_secs', headway_secs) return if end_time <= start_time: problem_reporter.InvalidValue('end_time', end_time, 'should be greater than start_time') if not exact_times: exact_times = 0 if exact_times not in (0, 1): problem_reporter.InvalidValue('exact_times', exact_times, 'Should be 0 (no fixed schedule) or 1 (fixed and regular schedule)') self._headways.append((start_time, end_time, headway_secs, exact_times))
0.009804
def order_by(self, order_by: Union[set, str]): """Update order_by setting for filter set""" clone = self._clone() if isinstance(order_by, str): order_by = {order_by} clone._order_by = clone._order_by.union(order_by) return clone
0.007092
def netgetdata(url, maxtry=3, timeout=10): """ Get content of a file via a URL. Parameters ---------- url : string URL of the file to be downloaded maxtry : int, optional (default 3) Maximum number of download retries timeout : int, optional (default 10) Timeout in seconds for blocking operations Returns ------- str : io.BytesIO Buffered I/O stream Raises ------ urlerror.URLError (urllib2.URLError in Python 2, urllib.error.URLError in Python 3) If the file cannot be downloaded """ err = ValueError('maxtry parameter should be greater than zero') for ntry in range(maxtry): try: rspns = urlrequest.urlopen(url, timeout=timeout) cntnt = rspns.read() break except urlerror.URLError as e: err = e if not isinstance(e.reason, socket.timeout): raise else: raise err return io.BytesIO(cntnt)
0.001
def get_my_data(self, session=None): """ Returns a list of data descriptions for data which has been purchased by the signed in user. :param requests.session session: Requests session object :rtype: dict """ params = clean_locals(locals()) method = 'GetMyData' (response, elapsed_time) = self.request(method, params, session) return response
0.007229
def url_to_destination_params(url): """Convert a legacy runner URL to a job destination >>> params_simple = url_to_destination_params("http://localhost:8913/") >>> params_simple["url"] 'http://localhost:8913/' >>> params_simple["private_token"] is None True >>> advanced_url = "https://[email protected]:8914/managers/longqueue" >>> params_advanced = url_to_destination_params(advanced_url) >>> params_advanced["url"] 'https://example.com:8914/managers/longqueue/' >>> params_advanced["private_token"] '1234x' >>> runner_url = "pulsar://http://localhost:8913/" >>> runner_params = url_to_destination_params(runner_url) >>> runner_params['url'] 'http://localhost:8913/' """ if url.startswith("pulsar://"): url = url[len("pulsar://"):] if not url.endswith("/"): url += "/" # Check for private token embedded in the URL. A URL of the form # https://moo@cow:8913 will try to contact https://cow:8913 # with a private key of moo private_token_format = "https?://(.*)@.*/?" private_token_match = match(private_token_format, url) private_token = None if private_token_match: private_token = private_token_match.group(1) url = url.replace("%s@" % private_token, '', 1) destination_args = {"url": url, "private_token": private_token} return destination_args
0.000703
def extend_reservation(request, user_id, days=7): ''' Allows staff to extend the reservation on a given user's cart. ''' user = User.objects.get(id=int(user_id)) cart = CartController.for_user(user) cart.extend_reservation(datetime.timedelta(days=days)) return redirect(request.META["HTTP_REFERER"])
0.003077
def plot_lnp(fignum, s, datablock, fpars, direction_type_key): """ plots lines and planes on a great circle with alpha 95 and mean Parameters _________ fignum : number of plt.figure() object datablock : nested list of dictionaries with keys in 3.0 or 2.5 format 3.0 keys: dir_dec, dir_inc, dir_tilt_correction = [-1,0,100], direction_type_key =['p','l'] 2.5 keys: dec, inc, tilt_correction = [-1,0,100],direction_type_key =['p','l'] fpars : Fisher parameters calculated by, e.g., pmag.dolnp() or pmag.dolnp3_0() direction_type_key : key for dictionary direction_type ('specimen_direction_type') Effects _______ plots the site level figure """ # make the stereonet plot_net(fignum) # # plot on the data # dec_key, inc_key, tilt_key = 'dec', 'inc', 'tilt_correction' if 'dir_dec' in datablock[0].keys(): # this is data model 3.0 dec_key, inc_key, tilt_key = 'dir_dec', 'dir_inc', 'dir_tilt_correction' coord = datablock[0][tilt_key] title = s if coord == '-1': title = title + ": specimen coordinates" if coord == '0': title = title + ": geographic coordinates" if coord == '100': title = title + ": tilt corrected coordinates" DIblock, GCblock = [], [] for plotrec in datablock: if plotrec[direction_type_key] == 'p': # direction is pole to plane GCblock.append((float(plotrec[dec_key]), float(plotrec[inc_key]))) else: # assume direction is a directed line DIblock.append((float(plotrec[dec_key]), float(plotrec[inc_key]))) if len(DIblock) > 0: plot_di(fignum, DIblock) # plot directed lines if len(GCblock) > 0: for pole in GCblock: plot_circ(fignum, pole, 90., 'g') # plot directed lines # # put on the mean direction # x, y = [], [] XY = pmag.dimap(float(fpars["dec"]), float(fpars["inc"])) x.append(XY[0]) y.append(XY[1]) plt.figure(num=fignum) plt.scatter(x, y, marker='d', s=80, c='g') plt.title(title) # # get the alpha95 # Xcirc, Ycirc = [], [] Da95, Ia95 = pmag.circ(float(fpars["dec"]), float( fpars["inc"]), float(fpars["alpha95"])) for k in range(len(Da95)): XY = pmag.dimap(Da95[k], Ia95[k]) Xcirc.append(XY[0]) Ycirc.append(XY[1]) plt.plot(Xcirc, Ycirc, 'g')
0.002533
def check_attr_dimension(attr_id, **kwargs): """ Check that the dimension of the resource attribute data is consistent with the definition of the attribute. If the attribute says 'volume', make sure every dataset connected with this attribute via a resource attribute also has a dimension of 'volume'. """ attr_i = _get_attr(attr_id) datasets = db.DBSession.query(Dataset).filter(Dataset.id == ResourceScenario.dataset_id, ResourceScenario.resource_attr_id == ResourceAttr.id, ResourceAttr.attr_id == attr_id).all() bad_datasets = [] for d in datasets: if attr_i.dimension_id is None and d.unit is not None or \ attr_i.dimension_id is not None and d.unit is None or \ units.get_dimension_by_unit_id(d.unit_id) != attr_i.dimension_id: # If there is an inconsistency bad_datasets.append(d.id) if len(bad_datasets) > 0: raise HydraError("Datasets %s have a different dimension_id to attribute %s"%(bad_datasets, attr_id)) return 'OK'
0.008881
def stretch_linear(self, ch_nb, cutoffs=(0.005, 0.005)): """Stretch linearly the contrast of the current image on channel *ch_nb*, using *cutoffs* for left and right trimming. """ logger.debug("Perform a linear contrast stretch.") if((self.channels[ch_nb].size == np.ma.count_masked(self.channels[ch_nb])) or self.channels[ch_nb].min() == self.channels[ch_nb].max()): logger.warning("Nothing to stretch !") return arr = self.channels[ch_nb] carr = arr.compressed() logger.debug("Calculate the histogram percentiles: ") logger.debug("Left and right percentiles: " + str(cutoffs[0] * 100) + " " + str(cutoffs[1] * 100)) left, right = np.percentile( carr, [cutoffs[0] * 100, 100. - cutoffs[1] * 100]) delta_x = (right - left) logger.debug("Interval: left=%f, right=%f width=%f", left, right, delta_x) if delta_x > 0.0: self.channels[ch_nb] = np.ma.array((arr - left) / delta_x, mask=arr.mask) else: logger.warning("Unable to make a contrast stretch!")
0.001616
def asset_url_for(self, asset): """ Lookup the hashed asset path of a file name unless it starts with something that resembles a web address, then take it as is. :param asset: A logical path to an asset :type asset: str :return: Asset path or None if not found """ if '//' in asset: return asset if asset not in self.assets: return None return '{0}{1}'.format(self.assets_url, self.assets[asset])
0.003976
def get(self, key, default=None, type=None): """Returns the first value for a key. If `type` is not None, the value will be converted by calling `type` with the value as argument. If type() raises `ValueError`, it will be treated as if the value didn't exist, and `default` will be returned instead. """ try: value = self[key] if type is not None: return type(value) return value except (KeyError, ValueError): return default
0.00361
def _should_retry(resp): """Given a urlfetch response, decide whether to retry that request.""" return (resp.status_code == httplib.REQUEST_TIMEOUT or (resp.status_code >= 500 and resp.status_code < 600))
0.0131
def set_env(envName, envValue): """ 设置环境变量 :params envName: env名字 :params envValue: 值 """ os.environ[envName] = os.environ[envName] + ':' + envValue
0.005814
def plot_resp_diff(signal, rect_signal, sample_rate): """ Function design to generate a Bokeh figure containing the evolution of RIP signal, when respiration was suspended for a long period, the rectangular signal that defines the stages of inhalation and exhalation and the first derivative of the RIP signal. Applied in the Notebook "Particularities of Inductive Respiration (RIP) Sensor ". ---------- Parameters ---------- signal : list List with the acquired RIP signal. rect_signal : list Data samples of the rectangular signal that identifies inhalation and exhalation segments. sample_rate : int Sampling rate of acquisition. """ signal = numpy.array(signal) - numpy.average(signal) rect_signal = numpy.array(rect_signal) time = numpy.linspace(0, len(signal) / sample_rate, len(signal)) signal_diff = numpy.diff(signal) # Inhalation and Exhalation time segments. # [Signal Binarization] rect_signal_rev = rect_signal - numpy.average(rect_signal) inhal_segments = numpy.where(rect_signal_rev >= 0)[0] exhal_segments = numpy.where(rect_signal_rev < 0)[0] rect_signal_rev[inhal_segments] = numpy.max(rect_signal_rev) rect_signal_rev[exhal_segments] = numpy.min(rect_signal_rev) # Normalized Data. norm_signal = signal / numpy.max(signal) norm_rect_signal = rect_signal_rev / numpy.max(rect_signal_rev) norm_signal_diff = signal_diff / numpy.max(signal_diff) # Smoothed Data. smooth_diff = smooth(signal_diff, int(sample_rate / 10)) smooth_norm_diff = smooth(norm_signal_diff, int(sample_rate / 10)) # Scaled Rectangular Signal. scaled_rect_signal = (rect_signal_rev * numpy.max(smooth_diff)) / numpy.max(rect_signal_rev) # [Signal Differentiation] diff_rect_signal = numpy.diff(rect_signal_rev) inhal_begin = numpy.where(diff_rect_signal > 0)[0] inhal_end = numpy.where(diff_rect_signal < 0)[0] exhal_begin = inhal_end exhal_end = inhal_begin[1:] # Generation of a Bokeh figure where data will be plotted. figure_list = plot([list([0]), list([0]), list([0])], [list([0]), list([0]), list([0])], gridPlot=True, gridLines=3, gridColumns=1, showPlot=False) # Edition of Bokeh figure (title, axes labels...) # [Top Figure] title = Title() title.text = "RIP Signal and Respiration Cycles" figure_list[0].title = title figure_list[0].line(time, signal, **opensignals_kwargs("line")) # [Plot of inhalation and exhalation segments] _inhal_exhal_segments(figure_list[0], list(time), list(rect_signal_rev), inhal_begin, inhal_end, exhal_begin, exhal_end) figure_list[0].yaxis.axis_label = "Raw Data (without DC component)" # [Middle Figure] title = Title() title.text = "1st Derivative of RIP Signal and Respiration Cycles" figure_list[1].title = title figure_list[1].line(time[1:], smooth_diff, **opensignals_kwargs("line")) # [Plot of inhalation and exhalation segments] _inhal_exhal_segments(figure_list[1], list(time), list(scaled_rect_signal), inhal_begin, inhal_end, exhal_begin, exhal_end) figure_list[1].yaxis.axis_label = "Raw Differential Data" # [Bottom Figure] title = Title() title.text = "RIP Signal and 1st Derivative (Normalized)" figure_list[2].title = title figure_list[2].line(time, norm_signal, **opensignals_kwargs("line")) figure_list[2].line(time[1:], smooth_norm_diff, legend="RIP 1st Derivative", **opensignals_kwargs("line")) # [Plot of inhalation and exhalation segments] _inhal_exhal_segments(figure_list[2], list(time), list(norm_rect_signal), inhal_begin, inhal_end, exhal_begin, exhal_end) figure_list[2].yaxis.axis_label = "Normalized Data" figure_list[2].xaxis.axis_label = "Time (s)" grid_plot_ref = gridplot([[figure_list[0]], [figure_list[1]], [figure_list[2]]], **opensignals_kwargs("gridplot")) show(grid_plot_ref)
0.00361
def get_properties(obj): """ Get values of all properties in specified object and its subobjects and returns them as a map. The object can be a user defined object, map or array. Returned properties correspondently are object properties, map key-pairs or array elements with their indexes. :param obj: an object to get properties from. :return: a map, containing the names of the object's properties and their values. """ properties = {} if obj != None: cycle_detect = [] RecursiveObjectReader._perform_get_properties(obj, None, properties, cycle_detect) return properties
0.011611
def rotate_shift_mask_simplifier(a, b): """ Handles the following case: ((A << a) | (A >> (_N - a))) & mask, where A being a BVS, a being a integer that is less than _N, _N is either 32 or 64, and mask can be evaluated to 0xffffffff (64-bit) or 0xffff (32-bit) after reversing the rotate-shift operation. It will be simplified to: (A & (mask >>> a)) <<< a """ # is the second argument a BVV? if b.op != 'BVV': return None # is it a rotate-shift? if a.op != '__or__' or len(a.args) != 2: return None a_0, a_1 = a.args if a_0.op != '__lshift__': return None if a_1.op != 'LShR': return None a_00, a_01 = a_0.args a_10, a_11 = a_1.args if not a_00 is a_10: return None if a_01.op != 'BVV' or a_11.op != 'BVV': return None lshift_ = a_01.args[0] rshift_ = a_11.args[0] bitwidth = lshift_ + rshift_ if bitwidth not in (32, 64): return None # is the second argument a mask? # Note: the following check can be further loosen if we want to support more masks. if bitwidth == 32: m = ((b.args[0] << rshift_) & 0xffffffff) | (b.args[0] >> lshift_) if m != 0xffff: return None else: # bitwidth == 64 m = ((b.args[0] << rshift_) & 0xffffffffffffffff) | (b.args[0] >> lshift_) if m != 0xffffffff: return None # Show our power! masked_a = (a_00 & m) expr = (masked_a << lshift_) | (masked_a >> rshift_) return expr
0.003911
def _preprocess_scan_params(self, xml_params): """ Processes the scan parameters. """ params = {} for param in xml_params: params[param.tag] = param.text or '' # Set default values. for key in self.scanner_params: if key not in params: params[key] = self.get_scanner_param_default(key) if self.get_scanner_param_type(key) == 'selection': params[key] = params[key].split('|')[0] # Validate values. for key in params: param_type = self.get_scanner_param_type(key) if not param_type: continue if param_type in ['integer', 'boolean']: try: params[key] = int(params[key]) except ValueError: raise OSPDError('Invalid %s value' % key, 'start_scan') if param_type == 'boolean': if params[key] not in [0, 1]: raise OSPDError('Invalid %s value' % key, 'start_scan') elif param_type == 'selection': selection = self.get_scanner_param_default(key).split('|') if params[key] not in selection: raise OSPDError('Invalid %s value' % key, 'start_scan') if self.get_scanner_param_mandatory(key) and params[key] == '': raise OSPDError('Mandatory %s value is missing' % key, 'start_scan') return params
0.001966
def wait(self, *args, **kwargs): """Wait for the completion event to be set.""" if _debug: IOCB._debug("wait(%d) %r %r", self.ioID, args, kwargs) # waiting from a non-daemon thread could be trouble return self.ioComplete.wait(*args, **kwargs)
0.010909
def fw_update(self, data, fw_name=None): """Top level FW update function. """ LOG.debug("FW Update %s", data) self._fw_update(fw_name, data)
0.012195
def decr(self, key, value, default=0, time=100): """ Decrement a key, if it exists, returns its actual value, if it doesn't, return 0. Minimum value of decrement return is 0. :param key: Key's name :type key: six.string_types :param value: Number to be decremented :type value: int :param default: Default value if key does not exist. :type default: int :param time: Time in seconds to expire key. :type time: int :return: Actual value of the key on server :rtype: int """ return self._incr_decr('decr', key, value, default, time)
0.004608
def get_all_units(self, params=None): """ Get all units This will iterate over all pages until it gets all elements. So if the rate limit exceeded it will throw an Exception and you will get nothing :param params: search params :return: list """ if not params: params = {} return self._iterate_through_pages(self.get_units_per_page, resource=UNITS, **{'params': params})
0.008791
def set_l2cap_mtu (sock, mtu): """set_l2cap_mtu (sock, mtu) Adjusts the MTU for the specified L2CAP socket. This method needs to be invoked on both sides of the connection for it to work! The default mtu that all L2CAP connections start with is 672 bytes. mtu must be between 48 and 65535, inclusive. """ options = get_l2cap_options (sock) options[0] = options[1] = mtu set_l2cap_options (sock, options)
0.009029
def get_document( self, collection_id, ref=None, mimetype="application/tei+xml, application/xml"): """ Make a navigation request on the DTS API :param collection_id: Id of the collection :param ref: If ref is a tuple, it is treated as a range. String or int are treated as single ref :param mimetype: Media type to request :return: Response :rtype: requests.Response """ parameters = { "id": collection_id } _parse_ref_parameters(parameters, ref) return self.call( "documents", parameters, mimetype=mimetype )
0.005891
def rm(ctx, dataset, kwargs): "removes the dataset's folder if it exists" kwargs = parse_kwargs(kwargs) data(dataset, **ctx.obj).rm(**kwargs)
0.006494
def _create_deserializer(self) -> JsonObjectDeserializer: """ Creates a deserializer that is to be used by this decoder. :return: the deserializer """ if self._deserializer_cache is None: deserializer_cls = type( "%sInternalDeserializer" % type(self), (JsonObjectDeserializer,), { "_JSON_ENCODER_ARGS": self._args, "_JSON_ENCODER_KWARGS": self._kwargs } ) self._deserializer_cache = deserializer_cls(self._get_property_mappings(), self._get_deserializable_cls()) return self._deserializer_cache
0.004399
def local_subset(self, *args, **kwargs): ''' Run :ref:`execution modules <all-salt.modules>` against subsets of minions .. versionadded:: 2016.3.0 Wraps :py:meth:`salt.client.LocalClient.cmd_subset` ''' local = salt.client.get_local_client(mopts=self.opts) return local.cmd_subset(*args, **kwargs)
0.008451
def _model_unique(ins): """ Get unique constraints info :type ins: sqlalchemy.orm.mapper.Mapper :rtype: list[tuple[str]] """ unique = [] for t in ins.tables: for c in t.constraints: if isinstance(c, UniqueConstraint): unique.append(tuple(col.key for col in c.columns)) return unique
0.002882
def get_json(self): """Create JSON data for iSCSI target. :returns: JSON data for iSCSI target as follows: { "DHCPUsage":{ }, "Name":{ }, "IPv4Address":{ }, "PortNumber":{ }, "BootLUN":{ }, "AuthenticationMethod":{ }, "ChapUserName":{ }, "ChapSecret":{ }, "MutualChapSecret":{ } } """ json = { 'DHCPUsage': self.dhcp_usage, 'AuthenticationMethod': self.auth_method, } if not self.dhcp_usage: json['Name'] = self.iqn json['IPv4Address'] = self.ip json['PortNumber'] = self.port json['BootLUN'] = self.lun if self.chap_user: json['ChapUserName'] = self.chap_user if self.chap_secret: json['ChapSecret'] = self.chap_secret if self.mutual_chap_secret: json['MutualChapSecret'] = self.mutual_chap_secret return json
0.00165
def discrete_rainbow(N=7, cmap=cm.Set1, usepreset=True, shuffle=False, \ plot=False): """ Return a discrete colormap and the set of colors. modified from <http://www.scipy.org/Cookbook/Matplotlib/ColormapTransformations> cmap: colormap instance, eg. cm.jet. N: Number of colors. Example >>> x = resize(arange(100), (5,100)) >>> djet = cmap_discretize(cm.jet, 5) >>> imshow(x, cmap=djet) See available matplotlib colormaps at: <http://dept.astro.lsa.umich.edu/~msshin/science/code/matplotlib_cm/> If N>20 the sampled colors might not be very distinctive. If you want to error and try anyway, set usepreset=False """ import random from scipy import interpolate if usepreset: if 0 < N <= 5: cmap = cm.gist_rainbow elif N <= 20: cmap = cm.Set1 else: sys.exit(discrete_rainbow.__doc__) cdict = cmap._segmentdata.copy() # N colors colors_i = np.linspace(0,1.,N) # N+1 indices indices = np.linspace(0,1.,N+1) rgbs = [] for key in ('red','green','blue'): # Find the N colors D = np.array(cdict[key]) I = interpolate.interp1d(D[:,0], D[:,1]) colors = I(colors_i) rgbs.append(colors) # Place these colors at the correct indices. A = np.zeros((N+1,3), float) A[:,0] = indices A[1:,1] = colors A[:-1,2] = colors # Create a tuple for the dictionary. L = [] for l in A: L.append(tuple(l)) cdict[key] = tuple(L) palette = zip(*rgbs) if shuffle: random.shuffle(palette) if plot: print_colors(palette) # Return (colormap object, RGB tuples) return mpl.colors.LinearSegmentedColormap('colormap',cdict,1024), palette
0.017993
async def modify(self, **kwargs): ''' Corresponds to PATCH request with a resource identifier, modifying a single document in the database ''' try: pk = self.pk_type(kwargs['pk']) # modify is a class method on MongoCollectionMixin result = await self._meta.object_class.modify(self.db, key=pk, data=self.data) if result is None: raise NotFound('Object matching the given {} was not found'.format(self.pk)) return await result.serialize() except Exception as ex: logger.exception(ex) raise BadRequest(ex)
0.007776
def stream_subsegments(self): """ Stream all closed subsegments to the daemon and remove reference to the parent segment. No-op for a not sampled segment. """ segment = self.current_segment() if self.streaming.is_eligible(segment): self.streaming.stream(segment, self._stream_subsegment_out)
0.005556
def read_mnist_labels(filename): """Read MNIST labels from the original ubyte file format. Parameters ---------- filename : str Filename/path from which to read labels. Returns ------- labels : :class:`~numpy.ndarray`, shape (nlabels, 1) A one-dimensional unsigned byte array containing the labels as integers. """ with gzip.open(filename, 'rb') as f: magic, _ = struct.unpack('>ii', f.read(8)) if magic != MNIST_LABEL_MAGIC: raise ValueError("Wrong magic number reading MNIST label file") array = numpy.frombuffer(f.read(), dtype='uint8') array = array.reshape(array.size, 1) return array
0.001437
def cli(ctx, packages, all, list, force, platform): """Install packages.""" if packages: for package in packages: Installer(package, platform, force).install() elif all: # pragma: no cover packages = Resources(platform).packages for package in packages: Installer(package, platform, force).install() elif list: Resources(platform).list_packages(installed=True, notinstalled=True) else: click.secho(ctx.get_help())
0.002004
def mainloop(self): """ The main loop. """ # Print usage if not enough args or bad options if len(self.args) < 2: self.parser.error("No event type and info hash given!") if sys.stdin.isatty(): self.options.no_fork = True
0.007018
def format_date(date, gmt_offset=0, relative=True, shorter=False, full_format=False): """Formats the given date (which should be GMT). By default, we return a relative time (e.g., "2 minutes ago"). You can return an absolute date string with ``relative=False``. You can force a full format date ("July 10, 1980") with ``full_format=True``. This method is primarily intended for dates in the past. For dates in the future, we fall back to full format. From tornado """ if not date: return '-' if isinstance(date, float) or isinstance(date, int): date = datetime.datetime.utcfromtimestamp(date) now = datetime.datetime.utcnow() if date > now: if relative and (date - now).seconds < 60: # Due to click skew, things are some things slightly # in the future. Round timestamps in the immediate # future down to now in relative mode. date = now else: # Otherwise, future dates always use the full format. full_format = True local_date = date - datetime.timedelta(minutes=gmt_offset) local_now = now - datetime.timedelta(minutes=gmt_offset) local_yesterday = local_now - datetime.timedelta(hours=24) difference = now - date seconds = difference.seconds days = difference.days format = None if not full_format: ret_, fff_format = fix_full_format(days, seconds, relative, shorter, local_date, local_yesterday) format = fff_format if ret_: return format else: format = format if format is None: format = "%(month_name)s %(day)s, %(year)s" if shorter else \ "%(month_name)s %(day)s, %(year)s at %(time)s" str_time = "%d:%02d" % (local_date.hour, local_date.minute) return format % { "month_name": local_date.strftime('%b'), "weekday": local_date.strftime('%A'), "day": str(local_date.day), "year": str(local_date.year), "month": local_date.month, "time": str_time }
0.001435
def has_all_nonzero_segment_lengths(neuron, threshold=0.0): '''Check presence of neuron segments with length not above threshold Arguments: neuron(Neuron): The neuron object to test threshold(float): value above which a segment length is considered to be non-zero Returns: CheckResult with result including list of (section_id, segment_id) of zero length segments ''' bad_ids = [] for sec in _nf.iter_sections(neuron): p = sec.points for i, s in enumerate(zip(p[:-1], p[1:])): if segment_length(s) <= threshold: bad_ids.append((sec.id, i)) return CheckResult(len(bad_ids) == 0, bad_ids)
0.001427
def generate_items(self): """ Means array is valid only when all items are valid by this definition. .. code-block:: python { 'items': [ {'type': 'integer'}, {'type': 'string'}, ], } Valid arrays are those with integers or strings, nothing else. Since draft 06 definition can be also boolean. True means nothing, False means everything is invalid. """ items_definition = self._definition['items'] if items_definition is True: return self.create_variable_is_list() with self.l('if {variable}_is_list:'): self.create_variable_with_length() if items_definition is False: with self.l('if {variable}:'): self.l('raise JsonSchemaException("{name} must not be there")') elif isinstance(items_definition, list): for idx, item_definition in enumerate(items_definition): with self.l('if {variable}_len > {}:', idx): self.l('{variable}__{0} = {variable}[{0}]', idx) self.generate_func_code_block( item_definition, '{}__{}'.format(self._variable, idx), '{}[{}]'.format(self._variable_name, idx), ) if isinstance(item_definition, dict) and 'default' in item_definition: self.l('else: {variable}.append({})', repr(item_definition['default'])) if 'additionalItems' in self._definition: if self._definition['additionalItems'] is False: self.l('if {variable}_len > {}: raise JsonSchemaException("{name} must contain only specified items")', len(items_definition)) else: with self.l('for {variable}_x, {variable}_item in enumerate({variable}[{0}:], {0}):', len(items_definition)): self.generate_func_code_block( self._definition['additionalItems'], '{}_item'.format(self._variable), '{}[{{{}_x}}]'.format(self._variable_name, self._variable), ) else: if items_definition: with self.l('for {variable}_x, {variable}_item in enumerate({variable}):'): self.generate_func_code_block( items_definition, '{}_item'.format(self._variable), '{}[{{{}_x}}]'.format(self._variable_name, self._variable), )
0.003901
def syzygyJD(jd): """ Finds the latest new or full moon and returns the julian date of that event. """ sun = swe.sweObjectLon(const.SUN, jd) moon = swe.sweObjectLon(const.MOON, jd) dist = angle.distance(sun, moon) # Offset represents the Syzygy type. # Zero is conjunction and 180 is opposition. offset = 180 if (dist >= 180) else 0 while abs(dist) > MAX_ERROR: jd = jd - dist / 13.1833 # Moon mean daily motion sun = swe.sweObjectLon(const.SUN, jd) moon = swe.sweObjectLon(const.MOON, jd) dist = angle.closestdistance(sun - offset, moon) return jd
0.007849
def vad_collector(self, padding_ms=300, ratio=0.75, frames=None): """Generator that yields series of consecutive audio frames comprising each utterence, separated by yielding a single None. Determines voice activity by ratio of frames in padding_ms. Uses a buffer to include padding_ms prior to being triggered. Example: (frame, ..., frame, None, frame, ..., frame, None, ...) |---utterence---| |---utterence---| """ if frames is None: frames = self.frame_generator() num_padding_frames = padding_ms // self.frame_duration_ms ring_buffer = collections.deque(maxlen=num_padding_frames) triggered = False for frame in frames: is_speech = self.vad.is_speech(frame, self.sample_rate) if not triggered: ring_buffer.append((frame, is_speech)) num_voiced = len([f for f, speech in ring_buffer if speech]) if num_voiced > ratio * ring_buffer.maxlen: triggered = True for f, s in ring_buffer: yield f ring_buffer.clear() else: yield frame ring_buffer.append((frame, is_speech)) num_unvoiced = len([f for f, speech in ring_buffer if not speech]) if num_unvoiced > ratio * ring_buffer.maxlen: triggered = False yield None ring_buffer.clear()
0.003911
def __get_percpu(self): """Update and/or return the per CPU list using the psutil library.""" # Never update more than 1 time per cached_time if self.timer_percpu.finished(): self.percpu_percent = [] for cpu_number, cputimes in enumerate(psutil.cpu_times_percent(interval=0.0, percpu=True)): cpu = {'key': self.get_key(), 'cpu_number': cpu_number, 'total': round(100 - cputimes.idle, 1), 'user': cputimes.user, 'system': cputimes.system, 'idle': cputimes.idle} # The following stats are for API purposes only if hasattr(cputimes, 'nice'): cpu['nice'] = cputimes.nice if hasattr(cputimes, 'iowait'): cpu['iowait'] = cputimes.iowait if hasattr(cputimes, 'irq'): cpu['irq'] = cputimes.irq if hasattr(cputimes, 'softirq'): cpu['softirq'] = cputimes.softirq if hasattr(cputimes, 'steal'): cpu['steal'] = cputimes.steal if hasattr(cputimes, 'guest'): cpu['guest'] = cputimes.guest if hasattr(cputimes, 'guest_nice'): cpu['guest_nice'] = cputimes.guest_nice # Append new CPU to the list self.percpu_percent.append(cpu) # Reset timer for cache self.timer_percpu = Timer(self.cached_time) return self.percpu_percent
0.001846
def _fill(self, direction, limit=None): """ Shared function for `pad` and `backfill` to call Cython method. Parameters ---------- direction : {'ffill', 'bfill'} Direction passed to underlying Cython function. `bfill` will cause values to be filled backwards. `ffill` and any other values will default to a forward fill limit : int, default None Maximum number of consecutive values to fill. If `None`, this method will convert to -1 prior to passing to Cython Returns ------- `Series` or `DataFrame` with filled values See Also -------- pad backfill """ # Need int value for Cython if limit is None: limit = -1 return self._get_cythonized_result('group_fillna_indexer', self.grouper, needs_mask=True, cython_dtype=np.int64, result_is_index=True, direction=direction, limit=limit)
0.00172
def _recursively_replace_dict_for_pretty_dict(x): """Recursively replace `dict`s with `_PrettyDict`.""" # We use "PrettyDict" because collections.OrderedDict repr/str has the word # "OrderedDict" in it. We only want to print "OrderedDict" if in fact the # input really is an OrderedDict. if isinstance(x, dict): return _PrettyDict({ k: _recursively_replace_dict_for_pretty_dict(v) for k, v in x.items()}) if (isinstance(x, collections.Sequence) and not isinstance(x, six.string_types)): args = (_recursively_replace_dict_for_pretty_dict(x_) for x_ in x) is_named_tuple = (isinstance(x, tuple) and hasattr(x, "_asdict") and hasattr(x, "_fields")) return type(x)(*args) if is_named_tuple else type(x)(args) if isinstance(x, collections.Mapping): return type(x)(**{k: _recursively_replace_dict_for_pretty_dict(v) for k, v in x.items()}) return x
0.010352
def save_ids(f, self, *args, **kwargs): """Keep our history and outstanding attributes up to date after a method call.""" n_previous = len(self.client.history) try: ret = f(self, *args, **kwargs) finally: nmsgs = len(self.client.history) - n_previous msg_ids = self.client.history[-nmsgs:] self.history.extend(msg_ids) map(self.outstanding.add, msg_ids) return ret
0.004717
def set_data_and_metadata(self, data_and_metadata, data_modified=None): """Sets the underlying data and data-metadata to the data_and_metadata. Note: this does not make a copy of the data. """ self.increment_data_ref_count() try: if data_and_metadata: data = data_and_metadata.data data_shape_and_dtype = data_and_metadata.data_shape_and_dtype intensity_calibration = data_and_metadata.intensity_calibration dimensional_calibrations = data_and_metadata.dimensional_calibrations metadata = data_and_metadata.metadata timestamp = data_and_metadata.timestamp data_descriptor = data_and_metadata.data_descriptor timezone = data_and_metadata.timezone or Utility.get_local_timezone() timezone_offset = data_and_metadata.timezone_offset or Utility.TimezoneMinutesToStringConverter().convert(Utility.local_utcoffset_minutes()) new_data_and_metadata = DataAndMetadata.DataAndMetadata(self.__load_data, data_shape_and_dtype, intensity_calibration, dimensional_calibrations, metadata, timestamp, data, data_descriptor, timezone, timezone_offset) else: new_data_and_metadata = None self.__set_data_metadata_direct(new_data_and_metadata, data_modified) if self.__data_and_metadata is not None: if self.persistent_object_context and not self.persistent_object_context.is_write_delayed(self): self.persistent_object_context.write_external_data(self, "data", self.__data_and_metadata.data) self.__data_and_metadata.unloadable = True finally: self.decrement_data_ref_count()
0.005006
def _create_serializer_of_type_with_cache(self, serializer_type: Type) -> "Serializer": """ Creates a deserializer of the given type, exploiting a cache. :param serializer_type: the type of deserializer to create :return: the created serializer """ if serializer_type not in self._serializers_cache: self._serializers_cache[serializer_type] = self._create_serializer_of_type(serializer_type) return self._serializers_cache[serializer_type]
0.00789
def main(*args): """Launch the main routine.""" parser = argparse.ArgumentParser() parser.add_argument("action", help="create, check, run, make-nb, or run-nb") parser.add_argument("--directory", "-dir", default=os.getcwd(), help="path to directory with a .sciunit file") parser.add_argument("--stop", "-s", default=True, help="stop and raise errors, halting the program") parser.add_argument("--tests", "-t", default=False, help="runs tests instead of suites") if args: args = parser.parse_args(args) else: args = parser.parse_args() file_path = os.path.join(args.directory, '.sciunit') config = None if args.action == 'create': create(file_path) elif args.action == 'check': config = parse(file_path, show=True) print("\nNo configuration errors reported.") elif args.action == 'run': config = parse(file_path) run(config, path=args.directory, stop_on_error=args.stop, just_tests=args.tests) elif args.action == 'make-nb': config = parse(file_path) make_nb(config, path=args.directory, stop_on_error=args.stop, just_tests=args.tests) elif args.action == 'run-nb': config = parse(file_path) run_nb(config, path=args.directory) else: raise NameError('No such action %s' % args.action) if config: cleanup(config, path=args.directory)
0.000655
def parquet_to_df(filename, use_threads=1): """parquet_to_df: Reads a Parquet file into a Pandas DataFrame Args: filename (string): The full path to the filename for the Parquet file ntreads (int): The number of threads to use (defaults to 1) """ try: return pq.read_table(filename, use_threads=use_threads).to_pandas() except pa.lib.ArrowIOError: print('Could not read parquet file {:s}'.format(filename)) return None
0.004082
def did_you_mean(message: str, user_input: str, choices: Sequence[str]) -> str: """ Given a list of choices and an invalid user input, display the closest items in the list that match the input. """ if not choices: return message else: result = { difflib.SequenceMatcher(a=user_input, b=choice).ratio(): choice for choice in choices } message += "\nDid you mean: %s?" % result[max(result)] return message
0.002045
def select_each(conn, query: str, parameter_groups, name=None): """Run select query for each parameter set in single transaction.""" with conn: with conn.cursor(name=name) as cursor: for parameters in parameter_groups: cursor.execute(query, parameters) yield cursor.fetchone()
0.002967
def branch_out(self, limb=None): ''' Set the individual section branches This adds the various sections of the config file into the tree environment for access later. Optically can specify a specific branch. This does not yet load them into the os environment. Parameters: limb (str/list): The name of the section of the config to add into the environ or a list of strings ''' # Filter on sections if not limb: limbs = self._cfg.sections() else: # we must have the general always + secton limb = limb if isinstance(limb, list) else [limb] limbs = ['general'] limbs.extend(limb) # add all limbs into the tree environ for leaf in limbs: leaf = leaf if leaf in self._cfg.sections() else leaf.upper() self.environ[leaf] = OrderedDict() options = self._cfg.options(leaf) for opt in options: if opt in self.environ['default']: continue val = self._cfg.get(leaf, opt) if val.find(self._file_replace) == 0: val = val.replace(self._file_replace, self.sasbasedir) self.environ[leaf][opt] = val
0.001499
def inject(): """Injects pout into the builtins module so it can be called from anywhere without having to be explicitely imported, this is really just for convenience when debugging https://stackoverflow.com/questions/142545/python-how-to-make-a-cross-module-variable """ try: from .compat import builtins module = sys.modules[__name__] setattr(builtins, __name__, module) #builtins.pout = pout except ImportError: pass
0.00611
def snapshot_peek_sigb64( fd, off, bytelen ): """ Read the last :bytelen bytes of fd and interpret it as a base64-encoded string """ fd.seek( off - bytelen, os.SEEK_SET ) sigb64 = fd.read(bytelen) if len(sigb64) != bytelen: return None try: base64.b64decode(sigb64) except: return None return sigb64
0.01626
def get_key(raw=False): """ Gets a single key from stdin """ while True: try: if kbhit(): char = getch() ordinal = ord(char) if ordinal in (0, 224): extention = ord(getch()) scan_code = ordinal + extention * 256 result = scan_codes.get(scan_code) break else: result = char.decode() break except KeyboardInterrupt: return "ctrl-c" return result if raw else keys_flipped.get(result, result)
0.001592
def find_txt(xml_tree, path, default=''): """ Extracts the text value from an XML tree, using XPath. In case of error, will return a default value. :param xml_tree: the XML Tree object. Assumed is <type 'lxml.etree._Element'>. :param path: XPath to be applied, in order to extract the desired data. :param default: Value to be returned in case of error. :return: a str value. """ value = '' try: xpath_applied = xml_tree.xpath(path) # will consider the first match only if len(xpath_applied) and xpath_applied[0] is not None: xpath_result = xpath_applied[0] if isinstance(xpath_result, type(xml_tree)): value = xpath_result.text.strip() else: value = xpath_result except Exception: # in case of any exception, returns default value = default return py23_compat.text_type(value)
0.003243
def update_pidfile(pidfile): """Update pidfile. Notice: We should call this function only after we have successfully acquired a lock and never before. It exits main program if it fails to parse and/or write pidfile. Arguments: pidfile (str): pidfile to update """ try: with open(pidfile, mode='r') as _file: pid = _file.read(1024).rstrip() try: pid = int(pid) except ValueError: print("cleaning stale pidfile with invalid data:'{}'".format(pid)) write_pid(pidfile) else: if running(pid): # This is to catch migration issues from 0.7.x to 0.8.x # version, where old process is still around as it failed to # be stopped. Since newer version has a different locking # mechanism, we can end up with both versions running. # In order to avoid this situation we refuse to startup. sys.exit("process {} is already running".format(pid)) else: # pidfile exists with a PID for a process that is not running. # Let's update PID. print("updating stale processID({}) in pidfile".format(pid)) write_pid(pidfile) except FileNotFoundError: # Either it's 1st time we run or previous run was terminated # successfully. print("creating pidfile {f}".format(f=pidfile)) write_pid(pidfile) except OSError as exc: sys.exit("failed to update pidfile:{e}".format(e=exc))
0.00062
def _log_error(self, request, error): '''Log exceptions during a fetch.''' _logger.error( _('Fetching ‘{url}’ encountered an error: {error}'), url=request.url, error=error )
0.00905
def size(self, units="MiB"): """ Returns the physical volume size in the given units. Default units are MiB. *Args:* * units (str): Unit label ('MiB', 'GiB', etc...). Default is MiB. """ self.open() size = lvm_pv_get_size(self.handle) self.close() return size_convert(size, units)
0.010989
def list_opts(): """List all conf modules opts. Goes through all conf modules and yields their opts. """ for mod in load_conf_modules(): mod_opts = mod.list_opts() if type(mod_opts) is list: for single_mod_opts in mod_opts: yield single_mod_opts[0], single_mod_opts[1] else: yield mod_opts[0], mod_opts[1]
0.002584
def get_psf_pix(self, ra, dec): """ Determine the local psf (a,b,pa) at a given sky location. The psf is in pixel coordinates. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- a, b, pa : float The psf semi-major axis (pixels), semi-minor axis (pixels), and rotation angle (degrees). If a psf is defined then it is the psf that is returned, otherwise the image restoring beam is returned. """ psf_sky = self.get_psf_sky(ra, dec) psf_pix = self.wcshelper.sky2pix_ellipse([ra, dec], psf_sky[0], psf_sky[1], psf_sky[2])[2:] return psf_pix
0.006916
def load_permissions_on_identity_loaded(sender, identity): """Add system roles "Needs" to users' identities. Every user gets the **any_user** Need. Authenticated users get in addition the **authenticated_user** Need. """ identity.provides.add( any_user ) # if the user is not anonymous if current_user.is_authenticated: # Add the need provided to authenticated users identity.provides.add( authenticated_user )
0.002053
def batch_snapshot(self, read_timestamp=None, exact_staleness=None): """Return an object which wraps a batch read / query. :type read_timestamp: :class:`datetime.datetime` :param read_timestamp: Execute all reads at the given timestamp. :type exact_staleness: :class:`datetime.timedelta` :param exact_staleness: Execute all reads at a timestamp that is ``exact_staleness`` old. :rtype: :class:`~google.cloud.spanner_v1.database.BatchSnapshot` :returns: new wrapper """ return BatchSnapshot( self, read_timestamp=read_timestamp, exact_staleness=exact_staleness )
0.00436
def download_from_host(self, source, output_directory, filename): """Download a file from a given host. This method renames the file to the given string. :param source: Dictionary containing information about host. :type source: dict :param output_directory: Directory to place output in. :type output_directory: str :param filename: The filename to rename to. :type filename: str :returns: Dictionary with information about downloaded file. :rtype: dict """ result = self._run_command( ["plowdown", source["url"], "-o", output_directory, "--temp-rename"], stderr=open("/dev/null", "w") ) result['host_name'] = source['host_name'] if 'error' in result: return result temporary_filename = self.parse_output( result['host_name'], result['output']) result['filename'] = os.path.join(output_directory, filename) result.pop('output') os.rename(temporary_filename, result['filename']) return result
0.001781
def init_widget(self): """ Initialize the underlying widget. """ # Create and init the client c = self.client = BridgedWebViewClient() c.setWebView(self.widget, c.getId()) c.onLoadResource.connect(self.on_load_resource) c.onPageFinished.connect(self.on_page_finished) c.onPageStarted.connect(self.on_page_started) c.onReceivedError.connect(self.on_received_error) c.onScaleChanged.connect(self.on_scale_changed) c.onProgressChanged.connect(self.on_progress_changed) c.onReceivedTitle.connect(self.on_page_title_changed) super(AndroidWebView, self).init_widget()
0.002999
def p_let_arr_substr_in_args(p): """ statement : LET ARRAY_ID LP arguments TO RP EQ expr | ARRAY_ID LP arguments TO RP EQ expr """ i = 2 if p[1].upper() == 'LET' else 1 id_ = p[i] arg_list = p[i + 2] substr = (arg_list.children.pop().value, make_number(gl.MAX_STRSLICE_IDX, lineno=p.lineno(i + 3))) expr_ = p[i + 6] p[0] = make_array_substr_assign(p.lineno(i), id_, arg_list, substr, expr_)
0.002198
def _safe_match_argument(expected_type, argument_value): """Return a MATCH (SQL) string representing the given argument value.""" if GraphQLString.is_same_type(expected_type): return _safe_match_string(argument_value) elif GraphQLID.is_same_type(expected_type): # IDs can be strings or numbers, but the GraphQL library coerces them to strings. # We will follow suit and treat them as strings. if not isinstance(argument_value, six.string_types): if isinstance(argument_value, bytes): # should only happen in py3 argument_value = argument_value.decode('utf-8') else: argument_value = six.text_type(argument_value) return _safe_match_string(argument_value) elif GraphQLFloat.is_same_type(expected_type): return represent_float_as_str(argument_value) elif GraphQLInt.is_same_type(expected_type): # Special case: in Python, isinstance(True, int) returns True. # Safeguard against this with an explicit check against bool type. if isinstance(argument_value, bool): raise GraphQLInvalidArgumentError(u'Attempting to represent a non-int as an int: ' u'{}'.format(argument_value)) return type_check_and_str(int, argument_value) elif GraphQLBoolean.is_same_type(expected_type): return type_check_and_str(bool, argument_value) elif GraphQLDecimal.is_same_type(expected_type): return _safe_match_decimal(argument_value) elif GraphQLDate.is_same_type(expected_type): return _safe_match_date_and_datetime(expected_type, (datetime.date,), argument_value) elif GraphQLDateTime.is_same_type(expected_type): return _safe_match_date_and_datetime(expected_type, (datetime.datetime, arrow.Arrow), argument_value) elif isinstance(expected_type, GraphQLList): return _safe_match_list(expected_type.of_type, argument_value) else: raise AssertionError(u'Could not safely represent the requested GraphQL type: ' u'{} {}'.format(expected_type, argument_value))
0.002733