text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def _create_image_url(self, file_path, type_, target_size):
"""The the closest available size for specified image type.
Arguments:
file_path (:py:class:`str`): The image file path.
type_ (:py:class:`str`): The type of image to create a URL
for, (``'poster'`` or ``'profile'``).
target_size (:py:class:`int`): The size of image to aim for (used
as either width or height).
"""
if self.image_config is None:
logger.warning('no image configuration available')
return
return ''.join([
self.image_config['secure_base_url'],
self._image_size(self.image_config, type_, target_size),
file_path,
]) | 0.002656 |
def round_linestring_coords(ls, precision):
"""
Round the coordinates of a shapely LineString to some decimal precision.
Parameters
----------
ls : shapely LineString
the LineString to round the coordinates of
precision : int
decimal precision to round coordinates to
Returns
-------
LineString
"""
return LineString([[round(x, precision) for x in c] for c in ls.coords]) | 0.004566 |
def clear(self):
"""
Clears out all the items from this tab bar.
"""
self.blockSignals(True)
items = list(self.items())
for item in items:
item.close()
self.blockSignals(False)
self._currentIndex = -1
self.currentIndexChanged.emit(self._currentIndex) | 0.00597 |
def progress(rest):
"Display the progress of something: start|end|percent"
if rest:
left, right, amount = [piece.strip() for piece in rest.split('|')]
ticks = min(int(round(float(amount) / 10)), 10)
bar = "=" * ticks
return "%s [%-10s] %s" % (left, bar, right) | 0.025926 |
def iter_links(self):
# type: () -> Iterable[Link]
"""Yields all links in the page"""
document = html5lib.parse(
self.content,
transport_encoding=_get_encoding_from_headers(self.headers),
namespaceHTMLElements=False,
)
base_url = _determine_base_url(document, self.url)
for anchor in document.findall(".//a"):
if anchor.get("href"):
href = anchor.get("href")
url = _clean_link(urllib_parse.urljoin(base_url, href))
pyrequire = anchor.get('data-requires-python')
pyrequire = unescape(pyrequire) if pyrequire else None
yield Link(url, self.url, requires_python=pyrequire) | 0.004027 |
def get_updates(self, offset=None, limit=None, timeout=None):
"""
Use this method to receive incoming updates using long polling (wiki).
An Array of Update objects is returned.
"""
payload = dict(offset=offset, limit=limit, timeout=timeout)
return self._get('getUpdates', payload) | 0.008929 |
def disconnect_layer_listener(self):
"""Destroy the signal/slot to listen for layers loaded in QGIS.
..seealso:: connect_layer_listener
"""
project = QgsProject.instance()
project.layersWillBeRemoved.disconnect(self.get_layers)
project.layersAdded.disconnect(self.get_layers)
project.layersRemoved.disconnect(self.get_layers)
self.iface.mapCanvas().layersChanged.disconnect(self.get_layers)
self.iface.currentLayerChanged.disconnect(self.layer_changed) | 0.003802 |
def encrypt_assertion(self, statement, enc_key, template, key_type='des-192', node_xpath=None, node_id=None):
"""
Will encrypt an assertion
:param statement: A XML document that contains the assertion to encrypt
:param enc_key: File name of a file containing the encryption key
:param template: A template for the encryption part to be added.
:param key_type: The type of session key to use.
:return: The encrypted text
"""
if six.PY2:
_str = unicode
else:
_str = str
if isinstance(statement, SamlBase):
statement = pre_encrypt_assertion(statement)
_, fil = make_temp(
_str(statement), decode=False, delete=self._xmlsec_delete_tmpfiles
)
_, tmpl = make_temp(_str(template), decode=False)
if not node_xpath:
node_xpath = ASSERT_XPATH
com_list = [
self.xmlsec,
'--encrypt',
'--pubkey-cert-pem', enc_key,
'--session-key', key_type,
'--xml-data', fil,
'--node-xpath', node_xpath,
]
if node_id:
com_list.extend(['--node-id', node_id])
try:
(_stdout, _stderr, output) = self._run_xmlsec(com_list, [tmpl])
except XmlsecError as e:
six.raise_from(EncryptError(com_list), e)
return output.decode('utf-8') | 0.002085 |
def unset_state(self):
"""
Resets the state required for this actor to the default state.
Currently only disables the target of the texture of the material, it may still be bound.
"""
glDisable(self.region.material.target)
self.region.bone.unsetRotate(self.data) | 0.012539 |
def concatechain(*generators: types.FrameGenerator, separator: str = ''):
"""Return a generator that in each iteration takes one value from each of the
supplied generators, joins them together with the specified separator and
yields the result. Stops as soon as any iterator raises StopIteration and
returns the value contained in it.
Primarily created for chaining string generators, hence the name.
Args:
generators: Any number of generators that yield types that can be
joined together with the separator string.
separator: A separator to insert between each value yielded by
the different generators.
Returns:
A generator that yields strings that are the concatenation of one value
from each of the generators, joined together with the separator string.
"""
while True:
try:
next_ = [next(gen) for gen in generators]
yield separator.join(next_)
except StopIteration as exc:
return exc.value | 0.001938 |
def _update_limits_from_api(self):
"""
Query DynamoDB's DescribeLimits API action, and update limits
with the quotas returned. Updates ``self.limits``.
"""
self.connect()
logger.info("Querying DynamoDB DescribeLimits for limits")
# no need to paginate
lims = self.conn.describe_limits()
self.limits['Account Max Read Capacity Units']._set_api_limit(
lims['AccountMaxReadCapacityUnits']
)
self.limits['Account Max Write Capacity Units']._set_api_limit(
lims['AccountMaxWriteCapacityUnits']
)
self.limits['Table Max Read Capacity Units']._set_api_limit(
lims['TableMaxReadCapacityUnits']
)
self.limits['Table Max Write Capacity Units']._set_api_limit(
lims['TableMaxWriteCapacityUnits']
)
logger.debug("Done setting limits from API") | 0.002186 |
def authenticate_nova_user(self, keystone, user, password, tenant):
"""Authenticates a regular user with nova-api."""
self.log.debug('Authenticating nova user ({})...'.format(user))
ep = keystone.service_catalog.url_for(service_type='identity',
interface='publicURL')
if keystone.session:
return nova_client.Client(NOVA_CLIENT_VERSION,
session=keystone.session,
auth_url=ep)
elif novaclient.__version__[0] >= "7":
return nova_client.Client(NOVA_CLIENT_VERSION,
username=user, password=password,
project_name=tenant, auth_url=ep)
else:
return nova_client.Client(NOVA_CLIENT_VERSION,
username=user, api_key=password,
project_id=tenant, auth_url=ep) | 0.001992 |
def fast_combine_pairs(files, force_single, full_name, separators):
"""
assume files that need to be paired are within 10 entries of each other, once the list is sorted
"""
files = sort_filenames(files)
chunks = tz.sliding_window(10, files)
pairs = [combine_pairs(chunk, force_single, full_name, separators) for chunk in chunks]
pairs = [y for x in pairs for y in x]
longest = defaultdict(list)
# for each file, save the longest pair it is in
for pair in pairs:
for file in pair:
if len(longest[file]) < len(pair):
longest[file] = pair
# keep only unique pairs
longest = {tuple(sort_filenames(x)) for x in longest.values()}
# ensure filenames are R1 followed by R2
return [sort_filenames(list(x)) for x in longest] | 0.003722 |
def init(*, threshold_lvl=1, quiet_stdout=False, log_file):
"""
Initiate the log module
:param threshold_lvl: messages under this level won't be issued/logged
:param to_stdout: activate stdout log stream
"""
global _logger, _log_lvl
# translate lvl to those used by 'logging' module
_log_lvl = _set_lvl(threshold_lvl)
# logger Creation
_logger = logging.getLogger(PKG_NAME)
_logger.setLevel(_log_lvl)
# create syslog handler and set level to info
log_h = logging.FileHandler(log_file)
# Base message format
base_fmt = '%(asctime)s - %(name)s - [%(levelname)s] - %(message)s'
# set formatter
log_fmt = logging.Formatter(base_fmt)
log_h.setFormatter(log_fmt)
# add Handler
_logger.addHandler(log_h)
# create stout handler
if not quiet_stdout:
global _stdout
_stdout = True | 0.001135 |
def belu(x):
"""Bipolar ELU as in https://arxiv.org/abs/1709.04054."""
x_shape = shape_list(x)
x1, x2 = tf.split(tf.reshape(x, x_shape[:-1] + [-1, 2]), 2, axis=-1)
y1 = tf.nn.elu(x1)
y2 = -tf.nn.elu(-x2)
return tf.reshape(tf.concat([y1, y2], axis=-1), x_shape) | 0.025735 |
def ExecuteQuery(self, query, args=None):
"""Get connection from pool and execute query."""
def Action(connection):
connection.cursor.execute(query, args)
rowcount = connection.cursor.rowcount
results = connection.cursor.fetchall()
return results, rowcount
return self._RetryWrapper(Action) | 0.015244 |
def IntegerDifference(left: vertex_constructor_param_types, right: vertex_constructor_param_types, label: Optional[str]=None) -> Vertex:
"""
Subtracts one vertex from another
:param left: the vertex to be subtracted from
:param right: the vertex to subtract
"""
return Integer(context.jvm_view().IntegerDifferenceVertex, label, cast_to_integer_vertex(left), cast_to_integer_vertex(right)) | 0.014388 |
def mime(self):
'''
Retrieves mime metadata if available
:return:
'''
return self.metadata['ContentType'] if 'ContentType' in self.metadata else BaseEngine.get_mimetype(self.buffer) | 0.013575 |
async def get_counts(self):
"""
see :class:`datasketch.MinHashLSH`.
"""
fs = (hashtable.itemcounts() for hashtable in self.hashtables)
return await asyncio.gather(*fs) | 0.009662 |
def killJobs(self, jobsToKill):
"""
Kills the given set of jobs and then sends them for processing
"""
if len(jobsToKill) > 0:
self.batchSystem.killBatchJobs(jobsToKill)
for jobBatchSystemID in jobsToKill:
self.processFinishedJob(jobBatchSystemID, 1) | 0.006211 |
def partial_steps_data(self, start=0):
"""
Iterates 5 steps from start position and
provides tuple for packing into buffer.
returns (0, 0) if stpe doesn't exist.
:param start: Position to start from (typically 0 or 5)
:yield: (setting, duration)
"""
cnt = 0
if len(self._prog_steps) >= start:
# yields actual steps for encoding
for step in self._prog_steps[start:start+5]:
yield((step.raw_data))
cnt += 1
while cnt < 5:
yield((0, 0))
cnt += 1 | 0.003311 |
def max_rigid_id(self):
"""Returns the maximum rigid body ID contained in the Compound.
This is usually used by compound.root to determine the maximum
rigid_id in the containment hierarchy.
Returns
-------
int or None
The maximum rigid body ID contained in the Compound. If no
rigid body IDs are found, None is returned
"""
try:
return max([particle.rigid_id for particle in self.particles()
if particle.rigid_id is not None])
except ValueError:
return | 0.003339 |
def generate_private_key(key_type):
"""
Generate a random private key using sensible parameters.
:param str key_type: The type of key to generate. One of: ``rsa``.
"""
if key_type == u'rsa':
return rsa.generate_private_key(
public_exponent=65537, key_size=2048, backend=default_backend())
raise ValueError(key_type) | 0.002778 |
def errors(self):
"""
Get the errors of the tag.
If invalid then the list will consist of errors containing each a code and message explaining the error.
Each error also refers to the respective (sub)tag(s).
:return: list of errors of the tag. If the tag is valid, it returns an empty list.
"""
errors = []
data = self.data
error = self.error
# Check if the tag is grandfathered and if the grandfathered tag is deprecated (e.g. no-nyn).
if 'record' in data:
if 'Deprecated' in data['record']:
errors.append(error(self.ERR_DEPRECATED))
# Only check every subtag if the tag is not explicitly listed as grandfathered or redundant.
return errors
# Check that all subtag codes are meaningful.
codes = data['tag'].split('-')
for i, code in enumerate(codes):
# Ignore anything after a singleton (break)
if len(code) < 2:
# Check that each private-use subtag is within the maximum allowed length.
for code in codes[i + 1:]:
if len(code) > 8:
errors.append(error(self.ERR_TOO_LONG, code))
break
if code not in index:
errors.append(error(self.ERR_UNKNOWN, code))
# Continue to the next item.
continue
# Check that first tag is a language tag.
subtags = self.subtags
if not len(subtags):
errors.append(error(self.ERR_NO_LANGUAGE))
return errors
elif subtags[0].type != 'language':
errors.append(error(self.ERR_NO_LANGUAGE))
return errors
# Check for more than one of some types and for deprecation.
found = dict(language=[], extlang=[], variant=[], script=[], region=[])
for subtag in subtags:
type = subtag.type
if subtag.deprecated:
errors.append(error(self.ERR_SUBTAG_DEPRECATED, subtag))
if type in found:
found[type].append(subtag)
if 'language' == type:
if len(found['language']) > 1:
errors.append(error(self.ERR_EXTRA_LANGUAGE, subtag))
elif 'region' == type:
if len(found['region']) > 1:
errors.append(error(self.ERR_EXTRA_REGION, subtag))
elif 'extlang' == type:
if len(found['extlang']) > 1:
errors.append(error(self.ERR_EXTRA_EXTLANG, subtag))
elif 'script' == type:
if len(found['script']) > 1:
errors.append(error(self.ERR_EXTRA_SCRIPT, subtag))
# Check if script is same as language suppress-script.
else:
script = subtags[0].script
if script:
if script.format == subtag.format:
errors.append(error(self.ERR_SUPPRESS_SCRIPT, subtag))
elif 'variant' == type:
if len(found['variant']) > 1:
for variant in found['variant']:
if variant.format == subtag.format:
errors.append(error(self.ERR_DUPLICATE_VARIANT, subtag))
break
# Check for correct order.
if len(subtags) > 1:
priority = dict(language=4, extlang=5, script=6, region=7, variant=8)
for i, subtag in enumerate(subtags[0:len(subtags)-1]):
next = subtags[i + 1]
if next:
if priority[subtag.type] > priority[next.type]:
errors.append(error(self.ERR_WRONG_ORDER, [subtag, next]))
return errors | 0.002865 |
def set_client_params(
self, start_unsubscribed=None, clear_on_exit=None, unsubscribe_on_reload=None,
announce_interval=None):
"""Sets subscribers related params.
:param bool start_unsubscribed: Configure subscriptions but do not send them.
.. note:: Useful with master FIFO.
:param bool clear_on_exit: Force clear instead of unsubscribe during shutdown.
:param bool unsubscribe_on_reload: Force unsubscribe request even during graceful reload.
:param int announce_interval: Send subscription announce at the specified interval. Default: 10 master cycles.
"""
self._set('start-unsubscribed', start_unsubscribed, cast=bool)
self._set('subscription-clear-on-shutdown', clear_on_exit, cast=bool)
self._set('unsubscribe-on-graceful-reload', unsubscribe_on_reload, cast=bool)
self._set('subscribe-freq', announce_interval)
return self._section | 0.008264 |
def Execute(self, message):
"""This function parses the RDFValue from the server.
The Run method will be called with the specified RDFValue.
Args:
message: The GrrMessage that we are called to process.
Returns:
Upon return a callback will be called on the server to register
the end of the function and pass back exceptions.
Raises:
RuntimeError: The arguments from the server do not match the expected
rdf type.
"""
self.message = message
if message:
self.require_fastpoll = message.require_fastpoll
args = None
try:
if self.message.args_rdf_name:
if not self.in_rdfvalue:
raise RuntimeError("Did not expect arguments, got %s." %
self.message.args_rdf_name)
if self.in_rdfvalue.__name__ != self.message.args_rdf_name:
raise RuntimeError(
"Unexpected arg type %s != %s." %
(self.message.args_rdf_name, self.in_rdfvalue.__name__))
args = self.message.payload
# Only allow authenticated messages in the client
if self._authentication_required and (
self.message.auth_state !=
rdf_flows.GrrMessage.AuthorizationState.AUTHENTICATED):
raise RuntimeError("Message for %s was not Authenticated." %
self.message.name)
self.cpu_start = self.proc.cpu_times()
self.cpu_limit = self.message.cpu_limit
if getattr(flags.FLAGS, "debug_client_actions", False):
pdb.set_trace()
try:
self.Run(args)
# Ensure we always add CPU usage even if an exception occurred.
finally:
used = self.proc.cpu_times()
self.cpu_used = (used.user - self.cpu_start.user,
used.system - self.cpu_start.system)
except NetworkBytesExceededError as e:
self.SetStatus(rdf_flows.GrrStatus.ReturnedStatus.NETWORK_LIMIT_EXCEEDED,
"%r: %s" % (e, e), traceback.format_exc())
# We want to report back all errors and map Python exceptions to
# Grr Errors.
except Exception as e: # pylint: disable=broad-except
self.SetStatus(rdf_flows.GrrStatus.ReturnedStatus.GENERIC_ERROR,
"%r: %s" % (e, e), traceback.format_exc())
if flags.FLAGS.pdb_post_mortem:
self.DisableNanny()
pdb.post_mortem()
if self.status.status != rdf_flows.GrrStatus.ReturnedStatus.OK:
logging.info("Job Error (%s): %s", self.__class__.__name__,
self.status.error_message)
if self.status.backtrace:
logging.debug(self.status.backtrace)
if self.cpu_used:
self.status.cpu_time_used.user_cpu_time = self.cpu_used[0]
self.status.cpu_time_used.system_cpu_time = self.cpu_used[1]
# This returns the error status of the Actions to the flow.
self.SendReply(self.status, message_type=rdf_flows.GrrMessage.Type.STATUS)
self._RunGC() | 0.007035 |
def instruction_BVS(self, opcode, ea):
"""
Tests the state of the V (overflow) bit and causes a branch if it is
set. That is, branch if the twos complement result was invalid. When
used after an operation on twos complement binary values, this
instruction will branch if there was an overflow.
source code forms: BVS dd; LBVS DDDD
CC bits "HNZVC": -----
"""
if self.V == 1:
# log.info("$%x BVS branch to $%x, because V==1 \t| %s" % (
# self.program_counter, ea, self.cfg.mem_info.get_shortest(ea)
# ))
self.program_counter.set(ea) | 0.007657 |
def thumbnail(self):
"""
Returns a thumbnail image in PIL.Image. When the file does not
contain an embedded thumbnail image, returns None.
"""
if 'THUMBNAIL_RESOURCE' in self.image_resources:
return pil_io.convert_thumbnail_to_pil(
self.image_resources.get_data('THUMBNAIL_RESOURCE')
)
elif 'THUMBNAIL_RESOURCE_PS4' in self.image_resources:
return pil_io.convert_thumbnail_to_pil(
self.image_resources.get_data('THUMBNAIL_RESOURCE_PS4'), 'BGR'
)
return None | 0.003373 |
def MPTfileCSV(file_or_path):
"""Simple function to open MPT files as csv.DictReader objects
Checks for the correct headings, skips any comments and returns a
csv.DictReader object and a list of comments
"""
if isinstance(file_or_path, str):
mpt_file = open(file_or_path, 'r')
else:
mpt_file = file_or_path
magic = next(mpt_file)
if magic.rstrip() != 'EC-Lab ASCII FILE':
raise ValueError("Bad first line for EC-Lab file: '%s'" % magic)
nb_headers_match = re.match('Nb header lines : (\d+)\s*$', next(mpt_file))
nb_headers = int(nb_headers_match.group(1))
if nb_headers < 3:
raise ValueError("Too few header lines: %d" % nb_headers)
## The 'magic number' line, the 'Nb headers' line and the column headers
## make three lines. Every additional line is a comment line.
comments = [next(mpt_file) for i in range(nb_headers - 3)]
mpt_csv = csv.DictReader(mpt_file, dialect='excel-tab')
expected_fieldnames = (
["mode", "ox/red", "error", "control changes", "Ns changes",
"counter inc.", "time/s", "control/V/mA", "Ewe/V", "dq/mA.h",
"P/W", "<I>/mA", "(Q-Qo)/mA.h", "x"],
['mode', 'ox/red', 'error', 'control changes', 'Ns changes',
'counter inc.', 'time/s', 'control/V', 'Ewe/V', 'dq/mA.h',
'<I>/mA', '(Q-Qo)/mA.h', 'x'],
["mode", "ox/red", "error", "control changes", "Ns changes",
"counter inc.", "time/s", "control/V", "Ewe/V", "I/mA",
"dQ/mA.h", "P/W"],
["mode", "ox/red", "error", "control changes", "Ns changes",
"counter inc.", "time/s", "control/V", "Ewe/V", "<I>/mA",
"dQ/mA.h", "P/W"])
if mpt_csv.fieldnames not in expected_fieldnames:
raise ValueError("Unrecognised headers for MPT file format")
return mpt_csv, comments | 0.0027 |
def demultiplex_samples(fastq, out_dir, nedit, barcodes):
''' Demultiplex a fastqtransformed FASTQ file into a FASTQ file for
each sample.
'''
annotations = detect_fastq_annotations(fastq)
re_string = construct_transformed_regex(annotations)
parser_re = re.compile(re_string)
if barcodes:
barcodes = set(barcode.strip() for barcode in barcodes)
else:
barcodes = set()
if nedit == 0:
filter_bc = partial(exact_sample_filter, barcodes=barcodes)
else:
barcodehash = MutationHash(barcodes, nedit)
filter_bc = partial(correcting_sample_filter, barcodehash=barcodehash)
sample_set = set()
batch = collections.defaultdict(list)
parsed = 0
safe_makedir(out_dir)
for read in read_fastq(fastq):
parsed += 1
read = filter_bc(read)
if not read:
continue
match = parser_re.search(read).groupdict()
sample = match['SB']
sample_set.add(sample)
batch[sample].append(read)
# write in batches to avoid opening up file handles repeatedly
if not parsed % 10000000:
for sample, reads in batch.items():
out_file = os.path.join(out_dir, sample + ".fq")
with open(out_file, "a") as out_handle:
for read in reads:
fixed = filter_bc(read)
if fixed:
out_handle.write(fixed)
batch = collections.defaultdict(list)
for sample, reads in batch.items():
out_file = os.path.join(out_dir, sample + ".fq")
with open(out_file, "a") as out_handle:
for read in reads:
fixed = filter_bc(read)
if fixed:
out_handle.write(read) | 0.000553 |
def _call(self, x):
"""Apply the functional to the given point."""
return (self.functional(x) +
self.quadratic_coeff * x.inner(x) +
x.inner(self.linear_term) + self.constant) | 0.009009 |
def calc_pvalue(self, study_count, study_n, pop_count, pop_n):
"""pvalues are calculated in derived classes."""
fnc_call = "calc_pvalue({SCNT}, {STOT}, {PCNT} {PTOT})".format(
SCNT=study_count, STOT=study_n, PCNT=pop_count, PTOT=pop_n)
raise Exception("NOT IMPLEMENTED: {FNC_CALL} using {FNC}.".format(
FNC_CALL=fnc_call, FNC=self.pval_fnc)) | 0.005141 |
def infer(msg, mrar=False):
"""Estimate the most likely BDS code of an message.
Args:
msg (String): 28 bytes hexadecimal message string
mrar (bool): Also infer MRAR (BDS 44) and MHR (BDS 45). Defaults to False.
Returns:
String or None: BDS version, or possible versions, or None if nothing matches.
"""
df = common.df(msg)
if common.allzeros(msg):
return 'EMPTY'
# For ADS-B / Mode-S extended squitter
if df == 17:
tc = common.typecode(msg)
if 1 <= tc <= 4:
return 'BDS08' # indentification and category
if 5 <= tc <= 8:
return 'BDS06' # surface movement
if 9 <= tc <= 18:
return 'BDS05' # airborne position, baro-alt
if tc == 19:
return 'BDS09' # airborne velocity
if 20 <= tc <= 22:
return 'BDS05' # airborne position, gnss-alt
if tc == 28:
return 'BDS61' # aircraft status
if tc == 29:
return 'BDS62' # target state and status
if tc == 31:
return 'BDS65' # operational status
# For Comm-B replies
IS10 = bds10.is10(msg)
IS17 = bds17.is17(msg)
IS20 = bds20.is20(msg)
IS30 = bds30.is30(msg)
IS40 = bds40.is40(msg)
IS50 = bds50.is50(msg)
IS60 = bds60.is60(msg)
IS44 = bds44.is44(msg)
IS45 = bds45.is45(msg)
if mrar:
allbds = np.array(["BDS10", "BDS17", "BDS20", "BDS30", "BDS40",
"BDS44", "BDS45", "BDS50", "BDS60"])
mask = [IS10, IS17, IS20, IS30, IS40, IS44, IS45, IS50, IS60]
else:
allbds = np.array(["BDS10", "BDS17", "BDS20", "BDS30", "BDS40",
"BDS50", "BDS60"])
mask = [IS10, IS17, IS20, IS30, IS40, IS50, IS60]
bds = ','.join(sorted(allbds[mask]))
if len(bds) == 0:
return None
else:
return bds | 0.001568 |
def count_multiplicities(times, tmax=20):
"""Calculate an array of multiplicities and corresponding coincidence IDs
Note that this algorithm does not take care about DOM IDs, so it has to
be fed with DOM hits.
Parameters
----------
times: array[float], shape=(n,)
Hit times for n hits
dt: int [default: 20]
Time window of a coincidence
Returns
-------
(array[int]), array[int]), shape=(n,)
"""
n = times.shape[0]
mtp = np.ones(n, dtype='<i4') # multiplicities
cid = np.zeros(n, '<i4') # coincidence id
idx0 = 0
_mtp = 1
_cid = 0
t0 = times[idx0]
for i in range(1, n):
dt = times[i] - t0
if dt > tmax:
mtp[idx0:i] = _mtp
cid[idx0:i] = _cid
_mtp = 0
_cid += 1
idx0 = i
t0 = times[i]
_mtp += 1
if i == n - 1:
mtp[idx0:] = _mtp
cid[idx0:] = _cid
break
return mtp, cid | 0.00099 |
def stop_if(expr, msg='', no_output=False):
'''Abort the execution of the current step or loop and yield
an warning message `msg` if `expr` is False '''
if expr:
raise StopInputGroup(msg=msg, keep_output=not no_output)
return 0 | 0.003984 |
def segment_tripoints(self, ratio=0.33333):
"""
Identify the trisection points of every line segment in the triangulation
"""
segments = self.identify_segments()
points = self.points
mids1 = ratio * points[segments[:,0]] + (1.0-ratio) * points[segments[:,1]]
mids1 /= np.linalg.norm(mids1, axis=1).reshape(-1,1)
mids2 = (1.0-ratio) * points[segments[:,0]] + ratio * points[segments[:,1]]
mids2 /= np.linalg.norm(mids2, axis=1).reshape(-1,1)
mids = np.vstack((mids1,mids2))
midlls = xyz2lonlat(mids[:,0], mids[:,1], mids[:,2])
return midlls | 0.024922 |
def delete_project_actors(self, project_key, role_id, actor, actor_type=None):
"""
Deletes actors (users or groups) from a project role.
Delete a user from the role: /rest/api/2/project/{projectIdOrKey}/role/{roleId}?user={username}
Delete a group from the role: /rest/api/2/project/{projectIdOrKey}/role/{roleId}?group={groupname}
:param project_key:
:param role_id:
:param actor:
:param actor_type: str : group or user string
:return:
"""
url = 'rest/api/2/project/{projectIdOrKey}/role/{roleId}'.format(projectIdOrKey=project_key,
roleId=role_id)
params = {}
if actor_type is not None and actor_type in ['group', 'user']:
params[actor_type] = actor
return self.delete(url, params=params) | 0.006764 |
def snapshots(self):
"""
Get all Volumes of type Snapshot. Updates every time - no caching.
:return: a `list` of all the `ScaleIO_Volume` that have a are of type Snapshot.
:rtype: list
"""
self.connection._check_login()
response = self.connection._do_get("{}/{}".format(self.connection._api_url, "types/Volume/instances")).json()
all_volumes_snapshot = []
for volume in response:
if volume['volumeType'] == 'Snapshot':
all_volumes_snapshot.append(
Volume.from_dict(volume)
)
return all_volumes_snapshot | 0.007776 |
def realtimeBar(self, reqId, time, open, high, low, close, volume, wap, count):
"""realtimeBar(EWrapper self, TickerId reqId, long time, double open, double high, double low, double close, long volume, double wap, int count)"""
return _swigibpy.EWrapper_realtimeBar(self, reqId, time, open, high, low, close, volume, wap, count) | 0.011628 |
def format_trigger(self, stream):
"""Create a user understandable string like count(stream) >= X.
Args:
stream (DataStream): The stream to use to format ourselves.
Returns:
str: The formatted string
"""
src = u'value'
if self.use_count:
src = u'count'
return u"{}({}) {} {}".format(src, stream, self.comp_string, self.reference) | 0.007075 |
def _wrapNavFrag(self, frag, useAthena):
"""
Wrap the given L{INavigableFragment} in an appropriate
L{_FragmentWrapperMixin} subclass.
"""
username = self._privateApplication._getUsername()
cf = getattr(frag, 'customizeFor', None)
if cf is not None:
frag = cf(username)
if useAthena:
pageClass = GenericNavigationAthenaPage
else:
pageClass = GenericNavigationPage
return pageClass(self._privateApplication, frag,
self._privateApplication.getPageComponents(),
username) | 0.003155 |
def dist_percentile_threshold(dist_matrix, perc_thr=0.05, k=1):
"""Thresholds a distance matrix and returns the result.
Parameters
----------
dist_matrix: array_like
Input array or object that can be converted to an array.
perc_thr: float in range of [0,100]
Percentile to compute which must be between 0 and 100 inclusive.
k: int, optional
Diagonal above which to zero elements.
k = 0 (the default) is the main diagonal,
k < 0 is below it and k > 0 is above.
Returns
-------
array_like
"""
triu_idx = np.triu_indices(dist_matrix.shape[0], k=k)
upper = np.zeros_like(dist_matrix)
upper[triu_idx] = dist_matrix[triu_idx] < np.percentile(dist_matrix[triu_idx], perc_thr)
return upper | 0.003576 |
def _add_new_spawn_method(cls):
"""
TODO
"""
def new_spawn_method(self, dependency_mapping):
# TODO/FIXME: Check that this does the right thing:
# (i) the spawned generator is independent of the original one (i.e. they can be reset independently without altering the other's behaviour)
# (ii) ensure that it also works if this custom generator's __init__ requires additional arguments
#new_instance = self.__class__()
#
# FIXME: It would be good to explicitly spawn the field generators of `self`
# here because this would ensure that the internal random generators
# of the spawned versions are in the same state as the ones in `self`.
# This would guarantee that the spawned custom generator produces the
# same elements as `self` even before reset() is called explicitly.
new_instance = cls()
return new_instance
cls.spawn = new_spawn_method | 0.009091 |
def _other_to_dict(self, other):
"""When serializing models, this allows attached models (children, parents, etc.) to also be
serialized.
"""
if isinstance(other, ModelBase):
return other.to_dict()
elif isinstance(other, list):
# TODO: what if it's not a list?
return [self._other_to_dict(i) for i in other]
else:
return other | 0.016043 |
def SqueezeNet(include_top=True, weights='imagenet',
input_tensor=None, input_shape=None,
pooling=None,
classes=1000):
"""Instantiates the SqueezeNet architecture.
"""
if weights not in {'imagenet', None}:
raise ValueError('The `weights` argument should be either '
'`None` (random initialization) or `imagenet` '
'(pre-training on ImageNet).')
if weights == 'imagenet' and classes != 1000:
raise ValueError('If using `weights` as imagenet with `include_top`'
' as true, `classes` should be 1000')
input_shape = _obtain_input_shape(input_shape,
default_size=227,
min_size=48,
data_format=K.image_data_format(),
require_flatten=include_top)
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
x = Convolution2D(64, (3, 3), strides=(2, 2), padding='valid', name='conv1')(img_input)
x = Activation('relu', name='relu_conv1')(x)
x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='pool1')(x)
x = fire_module(x, fire_id=2, squeeze=16, expand=64)
x = fire_module(x, fire_id=3, squeeze=16, expand=64)
x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='pool3')(x)
x = fire_module(x, fire_id=4, squeeze=32, expand=128)
x = fire_module(x, fire_id=5, squeeze=32, expand=128)
x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='pool5')(x)
x = fire_module(x, fire_id=6, squeeze=48, expand=192)
x = fire_module(x, fire_id=7, squeeze=48, expand=192)
x = fire_module(x, fire_id=8, squeeze=64, expand=256)
x = fire_module(x, fire_id=9, squeeze=64, expand=256)
if include_top:
# It's not obvious where to cut the network...
# Could do the 8th or 9th layer... some work recommends cutting earlier layers.
x = Dropout(0.5, name='drop9')(x)
x = Convolution2D(classes, (1, 1), padding='valid', name='conv10')(x)
x = Activation('relu', name='relu_conv10')(x)
x = GlobalAveragePooling2D()(x)
x = Activation('softmax', name='loss')(x)
else:
if pooling == 'avg':
x = GlobalAveragePooling2D()(x)
elif pooling=='max':
x = GlobalMaxPooling2D()(x)
elif pooling==None:
pass
else:
raise ValueError("Unknown argument for 'pooling'=" + pooling)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input
model = Model(inputs, x, name='squeezenet')
# load weights
if weights == 'imagenet':
if include_top:
weights_path = get_file('squeezenet_weights_tf_dim_ordering_tf_kernels.h5',
WEIGHTS_PATH,
cache_subdir='models')
else:
weights_path = get_file('squeezenet_weights_tf_dim_ordering_tf_kernels_notop.h5',
WEIGHTS_PATH_NO_TOP,
cache_subdir='models')
model.load_weights(weights_path)
if K.backend() == 'theano':
layer_utils.convert_all_kernels_in_model(model)
if K.image_data_format() == 'channels_first':
if K.backend() == 'tensorflow':
warnings.warn('You are using the TensorFlow backend, yet you '
'are using the Theano '
'image data format convention '
'(`image_data_format="channels_first"`). '
'For best performance, set '
'`image_data_format="channels_last"` in '
'your Keras config '
'at ~/.keras/keras.json.')
return model | 0.00349 |
def get_float(prompt=None):
"""
Read a line of text from standard input and return the equivalent float
as precisely as possible; if text does not represent a double, user is
prompted to retry. If line can't be read, return None.
"""
while True:
s = get_string(prompt)
if s is None:
return None
if len(s) > 0 and re.search(r"^[+-]?\d*(?:\.\d*)?$", s):
try:
return float(s)
except ValueError:
pass
# Temporarily here for backwards compatibility
if prompt is None:
print("Retry: ", end="") | 0.001582 |
def running_apps(self):
"""Return a list of running user applications."""
ps = self.adb_shell(RUNNING_APPS_CMD)
if ps:
return [line.strip().rsplit(' ', 1)[-1] for line in ps.splitlines() if line.strip()]
return [] | 0.011673 |
def case_report_content(store, institute_obj, case_obj):
"""Gather contents to be visualized in a case report
Args:
store(adapter.MongoAdapter)
institute_obj(models.Institute)
case_obj(models.Case)
Returns:
data(dict)
"""
variant_types = {
'causatives_detailed': 'causatives',
'suspects_detailed': 'suspects',
'classified_detailed': 'acmg_classification',
'tagged_detailed': 'manual_rank',
'dismissed_detailed': 'dismiss_variant',
'commented_detailed': 'is_commented',
}
data = case_obj
for individual in data['individuals']:
try:
sex = int(individual.get('sex', 0))
except ValueError as err:
sex = 0
individual['sex_human'] = SEX_MAP[sex]
individual['phenotype_human'] = PHENOTYPE_MAP.get(individual['phenotype'])
# Add the case comments
data['comments'] = store.events(institute_obj, case=case_obj, comments=True)
data['manual_rank_options'] = MANUAL_RANK_OPTIONS
data['dismissed_options'] = DISMISS_VARIANT_OPTIONS
data['genetic_models'] = dict(GENETIC_MODELS)
data['report_created_at'] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M")
evaluated_variants = {}
for vt in variant_types:
evaluated_variants[vt] = []
# We collect all causatives and suspected variants
# These are handeled in separate since they are on case level
for var_type in ['causatives', 'suspects']:
#These include references to variants
vt = '_'.join([var_type, 'detailed'])
for var_id in case_obj.get(var_type,[]):
variant_obj = store.variant(var_id)
if not variant_obj:
continue
# If the variant exists we add it to the evaluated variants
evaluated_variants[vt].append(variant_obj)
## get variants for this case that are either classified, commented, tagged or dismissed.
for var_obj in store.evaluated_variants(case_id=case_obj['_id']):
# Check which category it belongs to
for vt in variant_types:
keyword = variant_types[vt]
# When found we add it to the categpry
# Eac variant can belong to multiple categories
if keyword in var_obj:
evaluated_variants[vt].append(var_obj)
for var_type in evaluated_variants:
decorated_variants = []
for var_obj in evaluated_variants[var_type]:
# We decorate the variant with some extra information
if var_obj['category'] == 'snv':
decorated_info = variant_decorator(
store=store,
institute_obj=institute_obj,
case_obj=case_obj,
variant_id=None,
variant_obj=var_obj,
add_case=False,
add_other=False,
get_overlapping=False
)
else:
decorated_info = sv_variant(
store=store,
institute_id=institute_obj['_id'],
case_name=case_obj['display_name'],
variant_obj=var_obj,
add_case=False,
get_overlapping=False
)
decorated_variants.append(decorated_info['variant'])
# Add the decorated variants to the case
data[var_type] = decorated_variants
return data | 0.002545 |
def get_rounded(self, digits):
""" Return a vector with the elements rounded to the given number of digits. """
result = self.copy()
result.round(digits)
return result | 0.015075 |
def request(input, representation, resolvers=None, get3d=False, tautomers=False, **kwargs):
"""Make a request to CIR and return the XML response.
:param string input: Chemical identifier to resolve
:param string representation: Desired output representation
:param list(string) resolvers: (Optional) Ordered list of resolvers to use
:param bool get3d: (Optional) Whether to return 3D coordinates (where applicable)
:param bool tautomers: (Optional) Whether to return all tautomers
:returns: XML response from CIR
:rtype: Element
:raises HTTPError: if CIR returns an error code
:raises ParseError: if CIR response is uninterpretable
"""
url = construct_api_url(input, representation, resolvers, get3d, tautomers, **kwargs)
log.debug('Making request: %s', url)
response = urlopen(url)
return etree.parse(response).getroot() | 0.004535 |
def callproc(self, procname, parameters=()):
"""
Call a stored procedure with the given name.
:param procname: The name of the procedure to call
:type procname: str
:keyword parameters: The optional parameters for the procedure
:type parameters: sequence
"""
self._assert_open()
return self._callproc(procname, parameters) | 0.005063 |
def get_scenarios(network_id,**kwargs):
"""
Get all the scenarios in a given network.
"""
user_id = kwargs.get('user_id')
try:
net_i = db.DBSession.query(Network).filter(Network.id == network_id).one()
net_i.check_read_permission(user_id=user_id)
except NoResultFound:
raise ResourceNotFoundError("Network %s not found"%(network_id))
return net_i.scenarios | 0.009662 |
def shrink(self):
"""
Calculate the Constant-Correlation covariance matrix.
:return: shrunk sample covariance matrix
:rtype: np.ndarray
"""
x = np.nan_to_num(self.X.values)
# de-mean returns
t, n = np.shape(x)
meanx = x.mean(axis=0)
x = x - np.tile(meanx, (t, 1))
# compute sample covariance matrix
sample = (1.0 / t) * np.dot(x.T, x)
# compute prior
var = np.diag(sample).reshape(-1, 1)
sqrtvar = np.sqrt(var)
_var = np.tile(var, (n,))
_sqrtvar = np.tile(sqrtvar, (n,))
r_bar = (np.sum(sample / (_sqrtvar * _sqrtvar.T)) - n) / (n * (n - 1))
prior = r_bar * (_sqrtvar * _sqrtvar.T)
prior[np.eye(n) == 1] = var.reshape(-1)
# compute shrinkage parameters and constant
if self.delta is None:
# what we call pi-hat
y = x ** 2.0
phi_mat = np.dot(y.T, y) / t - 2 * np.dot(x.T, x) * sample / t + sample ** 2
phi = np.sum(phi_mat)
# what we call rho-hat
term1 = np.dot((x ** 3).T, x) / t
help_ = np.dot(x.T, x) / t
help_diag = np.diag(help_)
term2 = np.tile(help_diag, (n, 1)).T * sample
term3 = help_ * _var
term4 = _var * sample
theta_mat = term1 - term2 - term3 + term4
theta_mat[np.eye(n) == 1] = np.zeros(n)
rho = sum(np.diag(phi_mat)) + r_bar * np.sum(
np.dot((1.0 / sqrtvar), sqrtvar.T) * theta_mat
)
# what we call gamma-hat
gamma = np.linalg.norm(sample - prior, "fro") ** 2
# compute shrinkage constant
kappa = (phi - rho) / gamma
shrinkage = max(0.0, min(1.0, kappa / t))
self.delta = shrinkage
else:
# use specified constant
shrinkage = self.delta
# compute the estimator
sigma = shrinkage * prior + (1 - shrinkage) * sample
return self.format_and_annualise(sigma) | 0.001444 |
def get_sortkey(table):
"""Get a field to sort by
"""
# Just pick the first column in the table in alphabetical order.
# Ideally we would get the primary key from bcdc api, but it doesn't
# seem to be available
wfs = WebFeatureService(url=bcdata.OWS_URL, version="2.0.0")
return sorted(wfs.get_schema("pub:" + table)["properties"].keys())[0] | 0.00271 |
def check_rollout(edits_service, package_name, days):
"""Check if package_name has a release on staged rollout for too long"""
edit = edits_service.insert(body={}, packageName=package_name).execute()
response = edits_service.tracks().get(editId=edit['id'], track='production', packageName=package_name).execute()
releases = response['releases']
for release in releases:
if release['status'] == 'inProgress':
url = 'https://archive.mozilla.org/pub/mobile/releases/{}/SHA512SUMS'.format(release['name'])
resp = requests.head(url)
if resp.status_code != 200:
if resp.status_code != 404: # 404 is expected for release candidates
logger.warning("Could not check %s: %s", url, resp.status_code)
continue
age = time.time() - calendar.timegm(eu.parsedate(resp.headers['Last-Modified']))
if age >= days * DAY:
yield release, age | 0.006148 |
def get_color_mode(mode):
"""Convert PIL mode to ColorMode."""
name = mode.upper()
name = name.rstrip('A') # Trim alpha.
name = {'1': 'BITMAP', 'L': 'GRAYSCALE'}.get(name, name)
return getattr(ColorMode, name) | 0.004348 |
def word2vec(
train,
output,
size=100,
window=5,
sample="1e-3",
hs=0,
negative=5,
threads=12,
iter_=5,
min_count=5,
alpha=0.025,
debug=2,
binary=1,
cbow=1,
save_vocab=None,
read_vocab=None,
verbose=False,
):
"""
word2vec execution
Parameters for training:
train <file>
Use text data from <file> to train the model
output <file>
Use <file> to save the resulting word vectors / word clusters
size <int>
Set size of word vectors; default is 100
window <int>
Set max skip length between words; default is 5
sample <float>
Set threshold for occurrence of words. Those that appear with
higher frequency in the training data will be randomly
down-sampled; default is 0 (off), useful value is 1e-5
hs <int>
Use Hierarchical Softmax; default is 1 (0 = not used)
negative <int>
Number of negative examples; default is 0, common values are 5 - 10
(0 = not used)
threads <int>
Use <int> threads (default 1)
min_count <int>
This will discard words that appear less than <int> times; default
is 5
alpha <float>
Set the starting learning rate; default is 0.025
debug <int>
Set the debug mode (default = 2 = more info during training)
binary <int>
Save the resulting vectors in binary moded; default is 0 (off)
cbow <int>
Use the continuous back of words model; default is 1 (use 0 for
skip-gram model)
save_vocab <file>
The vocabulary will be saved to <file>
read_vocab <file>
The vocabulary will be read from <file>, not constructed from the
training data
verbose
Print output from training
"""
command = ["word2vec"]
args = [
"-train",
"-output",
"-size",
"-window",
"-sample",
"-hs",
"-negative",
"-threads",
"-iter",
"-min-count",
"-alpha",
"-debug",
"-binary",
"-cbow",
]
values = [
train,
output,
size,
window,
sample,
hs,
negative,
threads,
iter_,
min_count,
alpha,
debug,
binary,
cbow,
]
for arg, value in zip(args, values):
command.append(arg)
command.append(str(value))
if save_vocab is not None:
command.append("-save-vocab")
command.append(str(save_vocab))
if read_vocab is not None:
command.append("-read-vocab")
command.append(str(read_vocab))
run_cmd(command, verbose=verbose) | 0.000341 |
def t_OPTION_AND_VALUE(self, t):
r'[^ \n\r\t=#]+[ \t=]+[^\r\n#]+' # TODO(etingof) escape hash
if t.value.endswith('\\'):
t.lexer.multiline_newline_seen = False
t.lexer.code_start = t.lexer.lexpos - len(t.value)
t.lexer.begin('multiline')
return
lineno = len(re.findall(r'\r\n|\n|\r', t.value))
option, value = self._parse_option_value(t.value)
process, option, value = self._pre_parse_value(option, value)
if not process:
return
if value.startswith('<<'):
t.lexer.heredoc_anchor = value[2:].strip()
t.lexer.heredoc_option = option
t.lexer.code_start = t.lexer.lexpos
t.lexer.begin('heredoc')
return
t.value = option, value
t.lexer.lineno += lineno
return t | 0.002315 |
def retire_subjects(self, subjects, reason='other'):
"""
Retires subjects in this workflow.
- **subjects** can be a list of :py:class:`Subject` instances, a list
of subject IDs, a single :py:class:`Subject` instance, or a single
subject ID.
- **reason** gives the reason the :py:class:`Subject` has been retired.
Defaults to **other**.
Examples::
workflow.retire_subjects(1234)
workflow.retire_subjects([1,2,3,4])
workflow.retire_subjects(Subject(1234))
workflow.retire_subjects([Subject(12), Subject(34)])
"""
subjects = [ s.id if isinstance(s, Subject) else s for s in subjects ]
return Workflow.http_post(
'{}/retired_subjects'.format(self.id),
json={
'subject_ids': subjects,
'retirement_reason': reason
}
) | 0.004283 |
def _create_storage_folder(self):
'''
Creates a storage folder using the query name by replacing
spaces in the query with '_' (underscore)
'''
try:
print(colored('\nCreating Storage Folder...', 'yellow'))
self._storageFolder = os.path.join(
self._destinationFolder, self._imageQuery.replace(' ', '_'))
os.makedirs(self._storageFolder)
print(colored('Storage Folder - ' +
self._storageFolder + ' created.', 'green'))
except FileExistsError:
print(colored('Storage Folder - ' +
self._storageFolder + ' already exists.', 'yellow'))
except Exception as exception:
raise exception | 0.002558 |
def prepare_params(modeline, fileconfig, options):
"""Prepare and merge a params from modelines and configs.
:return dict:
"""
params = dict(skip=False, ignore=[], select=[], linters=[])
if options:
params['ignore'] = list(options.ignore)
params['select'] = list(options.select)
for config in filter(None, [modeline, fileconfig]):
for key in ('ignore', 'select', 'linters'):
params[key] += process_value(key, config.get(key, []))
params['skip'] = bool(int(config.get('skip', False)))
# TODO: skip what? This is causing erratic behavior for linters.
params['skip'] = False
params['ignore'] = set(params['ignore'])
params['select'] = set(params['select'])
return params | 0.001316 |
def add_to_path(p):
'''
Adds a path to python paths and removes it after the 'with' block ends
'''
old_path = sys.path
if p not in sys.path:
sys.path = sys.path[:]
sys.path.insert(0, p)
try:
yield
finally:
sys.path = old_path | 0.00346 |
def delete_observation(observation_id: int, access_token: str) -> List[Dict[str, Any]]:
"""
Delete an observation.
:param observation_id:
:param access_token:
:return:
"""
headers = _build_auth_header(access_token)
headers['Content-type'] = 'application/json'
response = requests.delete(url="{base_url}/observations/{id}.json".format(base_url=INAT_BASE_URL,
id=observation_id),
headers=headers)
response.raise_for_status()
# According to iNaturalist documentation, proper JSON should be returned. It seems however that the response is
# currently empty (while the requests succeed), so you may receive a JSONDecode exception.
# TODO: report to iNaturalist team if the issue persists
return response.json() | 0.006873 |
def slugify(value, allow_unicode=False):
"""
Convert to ASCII if 'allow_unicode' is False. Convert spaces to hyphens.
Remove characters that aren't alphanumerics, underscores, or hyphens.
Convert to lowercase. Also strip leading and trailing whitespace.
Copyright: https://docs.djangoproject.com/en/1.9/_modules/django/utils/text/#slugify
TODO: replace after stopping support for Django 1.8
"""
value = force_text(value)
if allow_unicode:
value = unicodedata.normalize('NFKC', value)
value = re.sub('[^\w\s-]', '', value, flags=re.U).strip().lower()
return mark_safe(re.sub('[-\s]+', '-', value, flags=re.U))
value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii')
value = re.sub('[^\w\s-]', '', value).strip().lower()
return mark_safe(re.sub('[-\s]+', '-', value)) | 0.010369 |
def _folder_item_remarks(self, analysis_brain, item):
"""Renders the Remarks field for the passed in analysis
If the edition of the analysis is permitted, adds the field into the
list of editable fields.
:param analysis_brain: Brain that represents an analysis
:param item: analysis' dictionary counterpart that represents a row
"""
if self.analysis_remarks_enabled():
item["Remarks"] = analysis_brain.getRemarks
if self.is_analysis_edition_allowed(analysis_brain):
item["allow_edit"].extend(["Remarks"]) | 0.003356 |
def getAddressBinding(self):
"""A convenience method to obtain the extension element used
as the address binding for the port."""
for item in self.extensions:
if isinstance(item, SoapAddressBinding) or \
isinstance(item, HttpAddressBinding):
return item
raise WSDLError(
'No address binding found in port.'
) | 0.004878 |
def order_by(self, *colnames):
"""
orders the result set.
ordering can only use clustering columns.
Default order is ascending, prepend a '-' to the column name for descending
"""
if len(colnames) == 0:
clone = copy.deepcopy(self)
clone._order = []
return clone
conditions = []
for colname in colnames:
conditions.append('"{}" {}'.format(*self._get_ordering_condition(colname)))
clone = copy.deepcopy(self)
clone._order.extend(conditions)
return clone | 0.00678 |
def set_images(self, images):
"""
Set the images in this album.
:param images: A list of the images we want the album to contain.
Can be Image objects, ids or a combination of the two. Images that
images that you cannot set (non-existing or not owned by you) will
not cause exceptions, but fail silently.
"""
url = (self._imgur._base_url + "/3/album/"
"{0}/".format(self._delete_or_id_hash))
params = {'ids': images}
return self._imgur._send_request(url, needs_auth=True, params=params,
method="POST") | 0.003077 |
def STEL(CASRN, AvailableMethods=False, Method=None): # pragma: no cover
'''This function handles the retrieval of Short-term Exposure Limit on
worker exposure to dangerous chemicals.
This API is considered experimental, and is expected to be removed in a
future release in favor of a more complete object-oriented interface.
>>> STEL('67-64-1')
(750.0, 'ppm')
>>> STEL('7664-38-2')
(0.7489774978301237, 'ppm')
>>> STEL('55720-99-5')
(2.0, 'mg/m^3')
>>> STEL('86290-81-5', AvailableMethods=True)
['Ontario Limits', 'None']
'''
def list_methods():
methods = []
if CASRN in _OntarioExposureLimits and (_OntarioExposureLimits[CASRN]["STEL (ppm)"] or _OntarioExposureLimits[CASRN]["STEL (mg/m^3)"]):
methods.append(ONTARIO)
methods.append(NONE)
return methods
if AvailableMethods:
return list_methods()
if not Method:
Method = list_methods()[0]
if Method == ONTARIO:
if _OntarioExposureLimits[CASRN]["STEL (ppm)"]:
_STEL = (_OntarioExposureLimits[CASRN]["STEL (ppm)"], 'ppm')
elif _OntarioExposureLimits[CASRN]["STEL (mg/m^3)"]:
_STEL = (_OntarioExposureLimits[CASRN]["STEL (mg/m^3)"], 'mg/m^3')
elif Method == NONE:
_STEL = None
else:
raise Exception('Failure in in function')
return _STEL | 0.001443 |
def format(self, message_format):
"""
Set the message format
:param message_format: The format to set
:type message_format: str
"""
if message_format not in self.formats:
self._log.error('Invalid Message format specified: {format}'.format(format=message_format))
return
self._log.debug('Setting message format to {format}'.format(format=message_format))
self._format = message_format | 0.008457 |
def extract_gzip (archive, compression, cmd, verbosity, interactive, outdir):
"""Extract a GZIP archive with the gzip Python module."""
targetname = util.get_single_outfile(outdir, archive)
try:
with gzip.GzipFile(archive) as gzipfile:
with open(targetname, 'wb') as targetfile:
data = gzipfile.read(READ_SIZE_BYTES)
while data:
targetfile.write(data)
data = gzipfile.read(READ_SIZE_BYTES)
except Exception as err:
msg = "error extracting %s to %s: %s" % (archive, targetname, err)
raise util.PatoolError(msg)
return None | 0.003082 |
def rectwidth(self, wavelengths=None):
"""Calculate :ref:`bandpass rectangular width <synphot-formula-rectw>`.
Parameters
----------
wavelengths : array-like, `~astropy.units.quantity.Quantity`, or `None`
Wavelength values for sampling.
If not a Quantity, assumed to be in Angstrom.
If `None`, ``self.waveset`` is used.
Returns
-------
rectw : `~astropy.units.quantity.Quantity`
Bandpass rectangular width.
"""
equvw = self.equivwidth(wavelengths=wavelengths)
tpeak = self.tpeak(wavelengths=wavelengths)
if tpeak.value == 0: # pragma: no cover
rectw = 0.0 * self._internal_wave_unit
else:
rectw = equvw / tpeak
return rectw | 0.002484 |
def snr_ratio(in1, in2):
"""
The following function simply calculates the signal to noise ratio between two signals.
INPUTS:
in1 (no default): Array containing values for signal 1.
in2 (no default): Array containing values for signal 2.
OUTPUTS:
out1 The ratio of the signal to noise ratios of two signals.
"""
out1 = 20*(np.log10(np.linalg.norm(in1)/np.linalg.norm(in1-in2)))
return out1 | 0.006316 |
def delete(self):
"""Del or Backspace pressed. Delete selection"""
with self._qpart:
for cursor in self.cursors():
if cursor.hasSelection():
cursor.deleteChar() | 0.008929 |
def get_code(self, *args, **kwargs):
"""
get the python source code from callback
"""
# FIXME: Honestly should allow multiple commands
callback = self._commands[args[0]]
# TODO: syntax color would be nice
source = _inspect.getsourcelines(callback)[0]
"""
source_len = len(source)
source = PygmentsLexer(CythonLexer).lex_document(source)()
"""
# FIXME: formatting sucks
return "\n" + "".join(source) | 0.002222 |
def get_mim_phenotypes(genemap_lines):
"""Get a dictionary with phenotypes
Use the mim numbers for phenotypes as keys and phenotype information as
values.
Args:
genemap_lines(iterable(str))
Returns:
phenotypes_found(dict): A dictionary with mim_numbers as keys and
dictionaries with phenotype information as values.
{
'description': str, # Description of the phenotype
'hgnc_symbols': set(), # Associated hgnc symbols
'inheritance': set(), # Associated phenotypes
'mim_number': int, # mim number of phenotype
}
"""
# Set with all omim numbers that are phenotypes
# Parsed from mim2gene.txt
phenotype_mims = set()
phenotypes_found = {}
# Genemap is a file with one entry per gene.
# Each line hold a lot of information and in specific it
# has information about the phenotypes that a gene is associated with
# From this source we collect inheritane patterns and what hgnc symbols
# a phenotype is associated with
for entry in parse_genemap2(genemap_lines):
hgnc_symbol = entry['hgnc_symbol']
for phenotype in entry['phenotypes']:
mim_nr = phenotype['mim_number']
if mim_nr in phenotypes_found:
phenotype_entry = phenotypes_found[mim_nr]
phenotype_entry['inheritance'] = phenotype_entry['inheritance'].union(phenotype['inheritance'])
phenotype_entry['hgnc_symbols'].add(hgnc_symbol)
else:
phenotype['hgnc_symbols'] = set([hgnc_symbol])
phenotypes_found[mim_nr] = phenotype
return phenotypes_found | 0.004673 |
def digit(m: Union[int, pd.Series], n: int) -> Union[int, pd.Series]:
"""Returns the nth digit of each number in m."""
return (m // (10 ** n)) % 10 | 0.01227 |
def get_model(name, dataset_name='wikitext-2', **kwargs):
"""Returns a pre-defined model by name.
Parameters
----------
name : str
Name of the model.
dataset_name : str or None, default 'wikitext-2'.
The dataset name on which the pre-trained model is trained.
For language model, options are 'wikitext-2'.
For ELMo, Options are 'gbw' and '5bw'.
'gbw' represents 1 Billion Word Language Model Benchmark
http://www.statmt.org/lm-benchmark/;
'5bw' represents a dataset of 5.5B tokens consisting of
Wikipedia (1.9B) and all of the monolingual news crawl data from WMT 2008-2012 (3.6B).
If specified, then the returned vocabulary is extracted from
the training set of the dataset.
If None, then vocab is required, for specifying embedding weight size, and is directly
returned.
vocab : gluonnlp.Vocab or None, default None
Vocabulary object to be used with the language model.
Required when dataset_name is not specified.
None Vocabulary object is required with the ELMo model.
pretrained : bool, default False
Whether to load the pre-trained weights for model.
ctx : Context, default CPU
The context in which to load the pre-trained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
Returns
-------
gluon.Block, gluonnlp.Vocab, (optional) gluonnlp.Vocab
"""
models = {'standard_lstm_lm_200' : standard_lstm_lm_200,
'standard_lstm_lm_650' : standard_lstm_lm_650,
'standard_lstm_lm_1500': standard_lstm_lm_1500,
'awd_lstm_lm_1150': awd_lstm_lm_1150,
'awd_lstm_lm_600': awd_lstm_lm_600,
'big_rnn_lm_2048_512': big_rnn_lm_2048_512,
'elmo_2x1024_128_2048cnn_1xhighway': elmo_2x1024_128_2048cnn_1xhighway,
'elmo_2x2048_256_2048cnn_1xhighway': elmo_2x2048_256_2048cnn_1xhighway,
'elmo_2x4096_512_2048cnn_2xhighway': elmo_2x4096_512_2048cnn_2xhighway,
'transformer_en_de_512': transformer_en_de_512,
'bert_12_768_12' : bert_12_768_12,
'bert_24_1024_16' : bert_24_1024_16}
name = name.lower()
if name not in models:
raise ValueError(
'Model %s is not supported. Available options are\n\t%s'%(
name, '\n\t'.join(sorted(models.keys()))))
kwargs['dataset_name'] = dataset_name
return models[name](**kwargs) | 0.004315 |
def intercom_user_hash(data):
"""
Return a SHA-256 HMAC `user_hash` as expected by Intercom, if configured.
Return None if the `INTERCOM_HMAC_SECRET_KEY` setting is not configured.
"""
if getattr(settings, 'INTERCOM_HMAC_SECRET_KEY', None):
return hmac.new(
key=_hashable_bytes(settings.INTERCOM_HMAC_SECRET_KEY),
msg=_hashable_bytes(data),
digestmod=hashlib.sha256,
).hexdigest()
else:
return None | 0.00207 |
def check_grandparents(self, mother = None, father = None):
"""
Check if there are any grand parents.
Set the grandparents id:s
Arguments:
mother (Individual): An Individual object that represents the mother
father (Individual): An Individual object that represents the father
"""
if mother:
if mother.mother != '0':
self.grandparents[mother.mother] = ''
elif mother.father != '0':
self.grandparents[mother.father] = ''
if father:
if father.mother != '0':
self.grandparents[father.mother] = ''
elif father.father != '0':
self.grandparents[father.father] = ''
return | 0.017435 |
def flag(name=None):
"""
Creates the grammar for a Flag (F) field, accepting only 'Y', 'N' or 'U'.
:param name: name for the field
:return: grammar for the flag field
"""
if name is None:
name = 'Flag Field'
# Basic field
field = pp.Regex('[YNU]')
# Name
field.setName(name)
field.leaveWhitespace()
return field | 0.002681 |
def initial_validation(request, prefix):
"""
Returns the related model instance and post data to use in the
comment/rating views below.
Both comments and ratings have a ``prefix_ACCOUNT_REQUIRED``
setting. If this is ``True`` and the user is unauthenticated, we
store their post data in their session, and redirect to login with
the view's url (also defined by the prefix arg) as the ``next``
param. We can then check the session data once they log in,
and complete the action authenticated.
On successful post, we pass the related object and post data back,
which may have come from the session, for each of the comments and
ratings view functions to deal with as needed.
"""
post_data = request.POST
login_required_setting_name = prefix.upper() + "S_ACCOUNT_REQUIRED"
posted_session_key = "unauthenticated_" + prefix
redirect_url = ""
if getattr(settings, login_required_setting_name, False):
if not request.user.is_authenticated():
request.session[posted_session_key] = request.POST
error(request, _("You must be logged in. Please log in or "
"sign up to complete this action."))
redirect_url = "%s?next=%s" % (settings.LOGIN_URL, reverse(prefix))
elif posted_session_key in request.session:
post_data = request.session.pop(posted_session_key)
if not redirect_url:
model_data = post_data.get("content_type", "").split(".", 1)
if len(model_data) != 2:
return HttpResponseBadRequest()
try:
model = apps.get_model(*model_data)
obj = model.objects.get(id=post_data.get("object_pk", None))
except (TypeError, ObjectDoesNotExist, LookupError):
redirect_url = "/"
if redirect_url:
if request.is_ajax():
return HttpResponse(dumps({"location": redirect_url}))
else:
return redirect(redirect_url)
return obj, post_data | 0.000498 |
def chunks(iterable, chunksize, cast=tuple):
# type: (Iterable, int, Callable) -> Iterable
"""
Yields items from an iterator in iterable chunks.
"""
it = iter(iterable)
while True:
yield cast(itertools.chain([next(it)],
itertools.islice(it, chunksize - 1))) | 0.003205 |
def list_consumers(self, publisher_id=None):
"""ListConsumers.
Get a list of available service hook consumer services. Optionally filter by consumers that support at least one event type from the specific publisher.
:param str publisher_id:
:rtype: [Consumer]
"""
query_parameters = {}
if publisher_id is not None:
query_parameters['publisherId'] = self._serialize.query('publisher_id', publisher_id, 'str')
response = self._send(http_method='GET',
location_id='4301c514-5f34-4f5d-a145-f0ea7b5b7d19',
version='5.0',
query_parameters=query_parameters)
return self._deserialize('[Consumer]', self._unwrap_collection(response)) | 0.007519 |
def stop(self):
"""Stop the underlying :class:`SparkContext`.
"""
self._sc.stop()
# We should clean the default session up. See SPARK-23228.
self._jvm.SparkSession.clearDefaultSession()
self._jvm.SparkSession.clearActiveSession()
SparkSession._instantiatedSession = None
SparkSession._activeSession = None | 0.00542 |
def match(ctx, features, profile, gps_precision):
"""Mapbox Map Matching API lets you use snap your GPS traces
to the OpenStreetMap road and path network.
$ mapbox mapmatching trace.geojson
An access token is required, see `mapbox --help`.
"""
access_token = (ctx.obj and ctx.obj.get('access_token')) or None
features = list(features)
if len(features) != 1:
raise click.BadParameter(
"Mapmatching requires a single LineString feature")
service = mapbox.MapMatcher(access_token=access_token)
try:
res = service.match(
features[0],
profile=profile,
gps_precision=gps_precision)
except mapbox.errors.ValidationError as exc:
raise click.BadParameter(str(exc))
if res.status_code == 200:
stdout = click.open_file('-', 'w')
click.echo(res.text, file=stdout)
else:
raise MapboxCLIException(res.text.strip()) | 0.001056 |
def setValue( self, value ):
"""
Moves the line to the given value and rebuilds it
:param value | <variant>
"""
scene = self.scene()
point = scene.mapFromChart(value, None)
self.setPos(point.x(), self.pos().y())
self.rebuild(scene.gridRect()) | 0.017699 |
def getPositionFromState(pState):
"""Return the position of a particle given its state dict.
Parameters:
--------------------------------------------------------------
retval: dict() of particle position, keys are the variable names,
values are their positions
"""
result = dict()
for (varName, value) in pState['varStates'].iteritems():
result[varName] = value['position']
return result | 0.004454 |
def add_camera_make_model(self, make, model):
''' Add camera make and model.'''
self._ef['0th'][piexif.ImageIFD.Make] = make
self._ef['0th'][piexif.ImageIFD.Model] = model | 0.010256 |
def _post_init(self):
"""Call the find devices method for the relevant platform."""
if WIN:
self._find_devices_win()
elif MAC:
self._find_devices_mac()
else:
self._find_devices()
self._update_all_devices()
if NIX:
self._find_leds() | 0.006116 |
def _divide_heigths(self, cli, write_position):
"""
Return the heights for all rows.
Or None when there is not enough space.
"""
if not self.children:
return []
# Calculate heights.
given_dimensions = self.get_dimensions(cli) if self.get_dimensions else None
def get_dimension_for_child(c, index):
if given_dimensions and given_dimensions[index] is not None:
return given_dimensions[index]
else:
return c.preferred_height(cli, write_position.width, write_position.extended_height)
dimensions = [get_dimension_for_child(c, index) for index, c in enumerate(self.children)]
# Sum dimensions
sum_dimensions = sum_layout_dimensions(dimensions)
# If there is not enough space for both.
# Don't do anything.
if sum_dimensions.min > write_position.extended_height:
return
# Find optimal sizes. (Start with minimal size, increase until we cover
# the whole height.)
sizes = [d.min for d in dimensions]
child_generator = take_using_weights(
items=list(range(len(dimensions))),
weights=[d.weight for d in dimensions])
i = next(child_generator)
while sum(sizes) < min(write_position.extended_height, sum_dimensions.preferred):
# Increase until we meet at least the 'preferred' size.
if sizes[i] < dimensions[i].preferred:
sizes[i] += 1
i = next(child_generator)
if not any([cli.is_returning, cli.is_exiting, cli.is_aborting]):
while sum(sizes) < min(write_position.height, sum_dimensions.max):
# Increase until we use all the available space. (or until "max")
if sizes[i] < dimensions[i].max:
sizes[i] += 1
i = next(child_generator)
return sizes | 0.003579 |
def make_three_color(data, time, step, config, shape=(1280, 1280), lower_val=(0, 0, 0), upper_val=(2.5, 2.5, 2.5)):
"""
create a three color image according to the config file
:param data: a dictionary of fetched data where keys correspond to products
:param config: a config object
:param shape: the size of a composite image
:param lower_val: a tuple of lower values for RGB, any value below this is set to the low value
:param upper_val: a tuple of upper values for RGB, any value above this is set to the high value
:return: a (m,n,3) numpy array for a three color image where all values are between 0 and 1
"""
order = {'red': 0, 'green': 1, 'blue': 2}
three_color = np.zeros((shape[0], shape[1], 3))
channel_colors = {color: config.default[color] for color in ['red', 'green', 'blue']}
for color, channel in channel_colors.items():
if data[channel][1] is None or \
abs((time - date_parser.parse(data[channel][0]['date-end'])).total_seconds()) > step.total_seconds()/2.0:
return np.zeros((shape[0], shape[1], 3))
three_color[:, :, order[color]] = data[channel][1]
# scale the image by the power
three_color[:, :, order[color]] = np.power(three_color[:, :, order[color]],
config.default["{}_power".format(color)])
# adjust the percentile thresholds
lower = lower_val[order[color]]
upper = upper_val[order[color]]
three_color[np.where(three_color[:, :, order[color]] < lower)] = lower
three_color[np.where(three_color[:, :, order[color]] > upper)] = upper
# image values must be between (0,1) so scale image
for color, index in order.items():
three_color[:, :, index] /= upper_val[order[color]]
return three_color | 0.004878 |
def reject(self, pn_condition=None):
"""See Link Reject, AMQP1.0 spec."""
self._pn_link.source.type = proton.Terminus.UNSPECIFIED
super(SenderLink, self).reject(pn_condition) | 0.010101 |
def expire_hit(self, hitid):
''' Expire HIT '''
if not self.connect_to_turk():
return False
try:
self.mtc.update_expiration_for_hit(
HITId=hitid,
ExpireAt=datetime.datetime.now()
)
return True
except Exception as e:
print "Failed to expire HIT. Please check the ID and try again."
print e
return False | 0.004454 |
def busmap_from_psql(network, session, scn_name):
""" Retrieves busmap from `model_draft.ego_grid_pf_hv_busmap` on the
<OpenEnergyPlatform>[www.openenergy-platform.org] by a given scenario
name. If this busmap does not exist, it is created with default values.
Parameters
----------
network : pypsa.Network object
Container for all network components.
session : sqlalchemy.orm.session.Session object
Establishes interactions with the database.
scn_name : str
Name of the scenario.
Returns
-------
busmap : dict
Maps old bus_ids to new bus_ids.
"""
def fetch():
query = session.query(EgoGridPfHvBusmap.bus0, EgoGridPfHvBusmap.bus1).\
filter(EgoGridPfHvBusmap.scn_name == scn_name)
return dict(query.all())
busmap = fetch()
# TODO: Or better try/except/finally
if not busmap:
print('Busmap does not exist and will be created.\n')
cpu_cores = input('cpu_cores (default 4): ') or '4'
busmap_by_shortest_path(network, session, scn_name,
fromlvl=[110], tolvl=[220, 380, 400, 450],
cpu_cores=int(cpu_cores))
busmap = fetch()
return busmap | 0.000789 |
def draw_rect(self, pos, size, color, fillcolor=None):
"""
Draw a rectangle with the given color on the screen and optionally fill it with fillcolor.
:param pos: Top left corner of the rectangle
:param size: Sieze of the rectangle
:param color: Color for borders
:param fillcolor: Color for infill
:type pos: tuple
:type size: tuple
:type color: tuple
:type fillcolor: tuple
"""
# draw top and botton line
for x in range(size[0]):
self.draw_dot((pos[0] + x, pos[1]), color)
self.draw_dot((pos[0] + x, pos[1] + size[1] - 1), color)
# draw left and right side
for y in range(size[1]):
self.draw_dot((pos[0], pos[1] + y), color)
self.draw_dot((pos[0] + size[0] - 1, pos[1] + y), color)
# draw filled rect
if fillcolor and size[0] >= 3 and size[1] >= 3:
for x in range(size[0] - 2):
for y in range(size[1] - 2):
self.draw_dot((pos[0] + 1 + x, pos[1] + 1 + y), fillcolor) | 0.00273 |
def get_users_for_sis_course_id(self, sis_course_id, params={}):
"""
Returns a list of users for the given sis course id.
"""
return self.get_users_for_course(
self._sis_id(sis_course_id, sis_field="course"), params) | 0.007692 |
def transform(self, X, lenscale=None):
"""
Apply the Fast Food RBF basis to X.
Parameters
----------
X: ndarray
(N, d) array of observations where N is the number of samples, and
d is the dimensionality of X.
lenscale: scalar or ndarray, optional
scalar or array of shape (d,) length scales (one for each dimension
of X).If not input, this uses the value of the initial length
scale.
Returns
-------
ndarray:
of shape (N, 2*nbases) where nbases is number of random bases to
use, given in the constructor (to nearest larger two power).
"""
lenscale = self._check_dim(X.shape[1], lenscale)
VX = self._makeVX(X / lenscale)
Phi = np.hstack((np.cos(VX), np.sin(VX))) / np.sqrt(self.n)
return Phi | 0.002247 |
def check_oversized_pickle(pickled, name, obj_type, worker):
"""Send a warning message if the pickled object is too large.
Args:
pickled: the pickled object.
name: name of the pickled object.
obj_type: type of the pickled object, can be 'function',
'remote function', 'actor', or 'object'.
worker: the worker used to send warning message.
"""
length = len(pickled)
if length <= ray_constants.PICKLE_OBJECT_WARNING_SIZE:
return
warning_message = (
"Warning: The {} {} has size {} when pickled. "
"It will be stored in Redis, which could cause memory issues. "
"This may mean that its definition uses a large array or other object."
).format(obj_type, name, length)
push_error_to_driver(
worker,
ray_constants.PICKLING_LARGE_OBJECT_PUSH_ERROR,
warning_message,
driver_id=worker.task_driver_id) | 0.001073 |
def FailoverInstance(r, instance, iallocator=None, ignore_consistency=False,
target_node=None):
"""Does a failover of an instance.
@type instance: string
@param instance: Instance name
@type iallocator: string
@param iallocator: Iallocator for deciding the target node for
shared-storage instances
@type ignore_consistency: bool
@param ignore_consistency: Whether to ignore disk consistency
@type target_node: string
@param target_node: Target node for shared-storage instances
@rtype: string
@return: job id
"""
body = {
"ignore_consistency": ignore_consistency,
}
if iallocator is not None:
body["iallocator"] = iallocator
if target_node is not None:
body["target_node"] = target_node
return r.request("put", "/2/instances/%s/failover" % instance,
content=body) | 0.002198 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.