text
stringlengths
78
104k
score
float64
0
0.18
def set_background_color(self, color): """ Given a background color (a QColor), attempt to set a color map that will be aesthetically pleasing. """ # Set a new default color map. self.default_color_map = self.darkbg_color_map.copy() if color.value() >= 127: # Colors appropriate for a terminal with a light background. For # now, only use non-bright colors... for i in xrange(8): self.default_color_map[i + 8] = self.default_color_map[i] # ...and replace white with black. self.default_color_map[7] = self.default_color_map[15] = 'black' # Update the current color map with the new defaults. self.color_map.update(self.default_color_map)
0.002551
def to_utc_datetime(self, value): """ from value to datetime with tzinfo format (datetime.datetime instance) """ if isinstance(value, (six.integer_types, float, six.string_types)): value = self.to_naive_datetime(value) if isinstance(value, datetime.datetime): if timezone.is_naive(value): value = timezone.make_aware(value, timezone.utc) else: value = timezone.localtime(value, timezone.utc) return value raise exceptions.ValidationError( "Unable to convert value: '%s' to python data type" % value, code="invalid_datetime" )
0.002911
def get_required_pull_request_reviews(self): """ :calls: `GET /repos/:owner/:repo/branches/:branch/protection/required_pull_request_reviews <https://developer.github.com/v3/repos/branches>`_ :rtype: :class:`github.RequiredPullRequestReviews.RequiredPullRequestReviews` """ headers, data = self._requester.requestJsonAndCheck( "GET", self.protection_url + "/required_pull_request_reviews", headers={'Accept': Consts.mediaTypeRequireMultipleApprovingReviews} ) return github.RequiredPullRequestReviews.RequiredPullRequestReviews(self._requester, headers, data, completed=True)
0.007508
def event_types(self): """ Raises ------ IndexError When there is no selected rater """ try: events = self.rater.find('events') except AttributeError: raise IndexError('You need to have at least one rater') return [x.get('type') for x in events]
0.00578
def eval_objfn(self): r"""Compute components of objective function as well as total contribution to objective function. Data fidelity term is :math:`(1/2) \| H \mathbf{x} - \mathbf{s} \|_2^2` and regularisation term is :math:`\| W_{\mathrm{tv}} \sqrt{(G_r \mathbf{x})^2 + (G_c \mathbf{x})^2}\|_1`. """ Ef = self.Af * self.Xf - self.Sf dfd = sl.rfl2norm2(Ef, self.S.shape, axis=self.axes) / 2.0 reg = np.sum(self.Wtv * np.sqrt(np.sum(self.obfn_gvar()**2, axis=self.saxes))) obj = dfd + self.lmbda*reg return (obj, dfd, reg)
0.00304
def ensure_str(text): u"""Convert unicode to str using pyreadline_codepage""" if isinstance(text, unicode): try: return text.encode(pyreadline_codepage, u"replace") except (LookupError, TypeError): return text.encode(u"ascii", u"replace") return text
0.003236
def write_puml(self, filename=''): """ Writes PUML from the system. If filename is given, stores result in the file. Otherwise returns result as a string. """ def get_type(o): type = 'program' if isinstance(o, AbstractSensor): type = 'sensor' elif isinstance(o, AbstractActuator): type = 'actuator' return type if filename: s = open(filename, 'w') else: s = io.StringIO() s.write('@startuml\n') s.write('skinparam state {\n') for k, v in list(self.background_colors.items()): s.write('BackGroundColor<<%s>> %s\n' % (k, v)) s.write('}\n') for o in self.system.objects: if isinstance(o, DefaultProgram) or o.hide_in_uml: continue if isinstance(o, ProgrammableSystemObject): s.write('state "%s" as %s <<%s>>\n' % (o, o, get_type(o))) s.write('%s: %s\n' % (o, o.class_name)) if isinstance(o, AbstractActuator): for p in reversed(o.program_stack): s.write('%s: %s :: %s\n' % (o, p, o.program_status.get(p, '-'))) elif hasattr(o, 'status'): s.write('%s: Status: %s\n' % (o, o.status)) if getattr(o, 'is_program', False): s.write('%s: Priority: %s\n' % (o, o.priority)) for t in o.actual_triggers: if isinstance(t, DefaultProgram) or t.hide_in_uml: continue s.write('%s -[%s]-> %s\n' % (t, self.arrow_colors['trigger'], o)) for t in o.actual_targets: if t.hide_in_uml: continue if o.active: color = 'active_target' else: color = 'inactive_target' if getattr(t, 'program', None) == o: color = 'controlled_target' s.write('%s -[%s]-> %s\n' % (o, self.arrow_colors[color], t)) s.write('@enduml\n') if filename: s.close() else: return s.getvalue()
0.002602
def is_valid_github_uri(uri: URI, expected_path_terms: Tuple[str, ...]) -> bool: """ Return a bool indicating whether or not the URI fulfills the following specs Valid Github URIs *must*: - Have 'https' scheme - Have 'api.github.com' authority - Have a path that contains all "expected_path_terms" """ if not is_text(uri): return False parsed = parse.urlparse(uri) path, scheme, authority = parsed.path, parsed.scheme, parsed.netloc if not all((path, scheme, authority)): return False if any(term for term in expected_path_terms if term not in path): return False if scheme != "https": return False if authority != GITHUB_API_AUTHORITY: return False return True
0.003922
def update_attrs(self): """ Add attributes such as count/end_time that can be present """ for key, value in self._response_json.items(): if key != 'results' and type(value) not in (list, dict): setattr(self, key, value)
0.007605
def check_specifier(dist, attr, value): """Verify that value is a valid version specifier""" try: packaging.specifiers.SpecifierSet(value) except packaging.specifiers.InvalidSpecifier as error: tmpl = ( "{attr!r} must be a string " "containing valid version specifiers; {error}" ) raise DistutilsSetupError(tmpl.format(attr=attr, error=error))
0.002433
def DocInheritMeta(style="parent", abstract_base_class=False): """ A metaclass that merges the respective docstrings of a parent class and of its child, along with their properties, methods (including classmethod, staticmethod, decorated methods). Parameters ---------- style: Union[Any, Callable[[str, str], str]], optional (default: "parent") A valid inheritance-scheme style ID or function that merges two docstrings. abstract_base_class: bool, optional(default: False) If True, the returned metaclass inherits from abc.ABCMeta. Thus a class that derives from DocInheritMeta(style="numpy", abstract_base_class=True) will be an abstract base class, whose derived classes will inherit docstrings using the numpy-style inheritance scheme. Returns ------- custom_inherit.DocInheritorBase""" merge_func = store[style] metaclass = _DocInheritorBase metaclass.class_doc_inherit = staticmethod(merge_func) metaclass.attr_doc_inherit = staticmethod(merge_func) return metaclass if not abstract_base_class else type("abc" + metaclass.__name__, (_ABCMeta, metaclass), {})
0.006568
def best_response(self, opponents_actions, tie_breaking='smallest', payoff_perturbation=None, tol=None, random_state=None): """ Return the best response action(s) to `opponents_actions`. Parameters ---------- opponents_actions : scalar(int) or array_like A profile of N-1 opponents' actions, represented by either scalar(int), array_like(float), array_like(int), or array_like(array_like(float)). If N=2, then it must be a scalar of integer (in which case it is treated as the opponent's pure action) or a 1-dimensional array of floats (in which case it is treated as the opponent's mixed action). If N>2, then it must be an array of N-1 objects, where each object must be an integer (pure action) or an array of floats (mixed action). tie_breaking : str, optional(default='smallest') str in {'smallest', 'random', False}. Control how, or whether, to break a tie (see Returns for details). payoff_perturbation : array_like(float), optional(default=None) Array of length equal to the number of actions of the player containing the values ("noises") to be added to the payoffs in determining the best response. tol : scalar(float), optional(default=None) Tolerance level used in determining best responses. If None, default to the value of the `tol` attribute. random_state : int or np.random.RandomState, optional Random seed (integer) or np.random.RandomState instance to set the initial state of the random number generator for reproducibility. If None, a randomly initialized RandomState is used. Relevant only when tie_breaking='random'. Returns ------- scalar(int) or ndarray(int, ndim=1) If tie_breaking=False, returns an array containing all the best response pure actions. If tie_breaking='smallest', returns the best response action with the smallest index; if tie_breaking='random', returns an action randomly chosen from the best response actions. """ if tol is None: tol = self.tol payoff_vector = self.payoff_vector(opponents_actions) if payoff_perturbation is not None: try: payoff_vector += payoff_perturbation except TypeError: # type mismatch payoff_vector = payoff_vector + payoff_perturbation best_responses = \ np.where(payoff_vector >= payoff_vector.max() - tol)[0] if tie_breaking == 'smallest': return best_responses[0] elif tie_breaking == 'random': return self.random_choice(best_responses, random_state=random_state) elif tie_breaking is False: return best_responses else: msg = "tie_breaking must be one of 'smallest', 'random', or False" raise ValueError(msg)
0.000948
def on_person_update(self, people): """ People have changed Should always include all people (all that were added via on_person_new) :param people: People to update :type people: list[paps.people.People] :rtype: None :raises Exception: On error (for now just an exception) """ try: self.sensor_client.person_update(people) except: self.exception("Failed to update people") raise Exception("Updating people failed")
0.005556
def merge(adata, ldata, copy=True): """Merges two annotated data matrices. Arguments --------- adata: :class:`~anndata.AnnData` Annotated data matrix (reference data set). ldata: :class:`~anndata.AnnData` Annotated data matrix (to be merged into adata). Returns ------- Returns a :class:`~anndata.AnnData` object """ if 'spliced' in ldata.layers.keys() and 'initial_size_spliced' not in ldata.obs.keys(): set_initial_size(ldata) elif 'spliced' in adata.layers.keys() and 'initial_size_spliced' not in adata.obs.keys(): set_initial_size(adata) common_obs = adata.obs_names.intersection(ldata.obs_names) common_vars = adata.var_names.intersection(ldata.var_names) if len(common_obs) == 0: clean_obs_names(adata) clean_obs_names(ldata) common_obs = adata.obs_names.intersection(ldata.obs_names) if copy: _adata = adata[common_obs].copy() if adata.shape[1] >= ldata.shape[1] else ldata[common_obs].copy() _ldata = ldata[common_obs].copy() if adata.shape[1] >= ldata.shape[1] else adata[common_obs].copy() else: adata._inplace_subset_obs(common_obs) _adata, _ldata = adata, ldata[common_obs] same_vars = (len(_adata.var_names) == len(_ldata.var_names) and np.all(_adata.var_names == _ldata.var_names)) if len(common_vars) > 0 and not same_vars: _adata._inplace_subset_var(common_vars) _ldata._inplace_subset_var(common_vars) for attr in _ldata.obs.keys(): _adata.obs[attr] = _ldata.obs[attr] for attr in _ldata.obsm.keys(): _adata.obsm[attr] = _ldata.obsm[attr] for attr in _ldata.uns.keys(): _adata.uns[attr] = _ldata.uns[attr] for attr in _ldata.layers.keys(): _adata.layers[attr] = _ldata.layers[attr] if _adata.shape[1] == _ldata.shape[1]: same_vars = (len(_adata.var_names) == len(_ldata.var_names) and np.all(_adata.var_names == _ldata.var_names)) if same_vars: for attr in _ldata.var.keys(): _adata.var[attr] = _ldata.var[attr] for attr in _ldata.varm.keys(): _adata.varm[attr] = _ldata.varm[attr] else: raise ValueError('Variable names are not identical.') return _adata if copy else None
0.003899
def split_and_strip_without(string, exclude, separator_regexp=None): """Split a string into items, and trim any excess spaces Any items in exclude are not in the returned list >>> split_and_strip_without('fred, was, here ', ['was']) ['fred', 'here'] """ result = split_and_strip(string, separator_regexp) if not exclude: return result return [x for x in result if x not in exclude]
0.002358
def extrusion(target, throat_perimeter='throat.perimeter', throat_length='throat.length'): r""" Calculate surface area for an arbitrary shaped throat give the perimeter and length. Parameters ---------- target : OpenPNM Object The object which this model is associated with. This controls the length of the calculated array, and also provides access to other necessary properties. throat_perimeter : string Dictionary key to the throat perimeter array. Default is 'throat.perimeter'. throat_length : string Dictionary key to the throat length array. Default is 'throat.length'. """ P = target[throat_perimeter] L = target[throat_length] value = P*L return value
0.00128
def _split_constraints(constraints, concrete=True): """ Returns independent constraints, split from this Frontend's `constraints`. """ splitted = [ ] for i in constraints: splitted.extend(i.split(['And'])) l.debug("... splitted of size %d", len(splitted)) concrete_constraints = [ ] variable_connections = { } constraint_connections = { } for n,s in enumerate(splitted): l.debug("... processing constraint with %d variables", len(s.variables)) connected_variables = set(s.variables) connected_constraints = { n } if len(connected_variables) == 0: concrete_constraints.append(s) for v in s.variables: if v in variable_connections: connected_variables |= variable_connections[v] if v in constraint_connections: connected_constraints |= constraint_connections[v] for v in connected_variables: variable_connections[v] = connected_variables constraint_connections[v] = connected_constraints unique_constraint_sets = set() for v in variable_connections: unique_constraint_sets.add((frozenset(variable_connections[v]), frozenset(constraint_connections[v]))) results = [ ] for v,c_indexes in unique_constraint_sets: results.append((set(v), [ splitted[c] for c in c_indexes ])) if concrete and len(concrete_constraints) > 0: results.append(({ 'CONCRETE' }, concrete_constraints)) return results
0.010817
def server_doc(self_or_cls, obj, doc=None): """ Get a bokeh Document with the plot attached. May supply an existing doc, otherwise bokeh.io.curdoc() is used to attach the plot to the global document instance. """ if not isinstance(obj, (Plot, BokehServerWidgets)): if not isinstance(self_or_cls, BokehRenderer) or self_or_cls.mode != 'server': renderer = self_or_cls.instance(mode='server') else: renderer = self_or_cls plot, _ = renderer._validate(obj, 'auto') else: plot = obj root = plot.state if isinstance(plot, BokehServerWidgets): plot = plot.plot if doc is None: doc = plot.document else: plot.document = doc plot.traverse(lambda x: attach_periodic(x), [GenericElementPlot]) doc.add_root(root) return doc
0.004237
def _get_mixing_indices(size, seed=None, name=None): """Generates an array of indices suitable for mutation operation. The mutation operation in differential evolution requires that for every element of the population, three distinct other elements be chosen to produce a trial candidate. This function generates an array of shape [size, 3] satisfying the properties that: (a). array[i, :] does not contain the index 'i'. (b). array[i, :] does not contain any overlapping indices. (c). All elements in the array are between 0 and size - 1 inclusive. Args: size: Scalar integer `Tensor`. The number of samples as well as a the range of the indices to sample from. seed: `int` or None. The random seed for this `Op`. If `None`, no seed is applied. Default value: `None`. name: Python `str` name prefixed to Ops created by this function. Default value: 'get_mixing_indices'. Returns: sample: A `Tensor` of shape [size, 3] and same dtype as `size` containing samples without replacement between 0 and size - 1 (inclusive) with the `i`th row not including the number `i`. """ with tf.compat.v1.name_scope( name, default_name='get_mixing_indices', values=[size]): size = tf.convert_to_tensor(value=size) dtype = size.dtype seed_stream = distributions.SeedStream(seed, salt='get_mixing_indices') first = tf.random.uniform([size], maxval=size-1, dtype=dtype, seed=seed_stream()) second = tf.random.uniform([size], maxval=size-2, dtype=dtype, seed=seed_stream()) third = tf.random.uniform([size], maxval=size-3, dtype=dtype, seed=seed_stream()) # Shift second if it is on top of or to the right of first second = tf.where(first < second, x=second, y=second + 1) smaller = tf.math.minimum(first, second) larger = tf.math.maximum(first, second) # Shift the third one so it does not coincide with either the first or the # second number. Assuming first < second, shift by 1 if the number is in # [first, second) and by 2 if the number is greater than or equal to the # second. third = tf.where(third < smaller, x=third, y=third + 1) third = tf.where(third < larger, x=third, y=third + 1) sample = tf.stack([first, second, third], axis=1) to_avoid = tf.expand_dims(tf.range(size), axis=-1) sample = tf.where(sample < to_avoid, x=sample, y=sample + 1) return sample
0.001485
def find_charged(self, mol): """Looks for positive charges in arginine, histidine or lysine, for negative in aspartic and glutamic acid.""" data = namedtuple('pcharge', 'atoms atoms_orig_idx type center restype resnr reschain') a_set = [] # Iterate through all residue, exclude those in chains defined as peptides for res in [r for r in pybel.ob.OBResidueIter(mol.OBMol) if not r.GetChain() in config.PEPTIDES]: if config.INTRA is not None: if res.GetChain() != config.INTRA: continue a_contributing = [] a_contributing_orig_idx = [] if res.GetName() in ('ARG', 'HIS', 'LYS'): # Arginine, Histidine or Lysine have charged sidechains for a in pybel.ob.OBResidueAtomIter(res): if a.GetType().startswith('N') and res.GetAtomProperty(a, 8) \ and not self.Mapper.mapid(a.GetIdx(), mtype='protein') in self.altconf: a_contributing.append(pybel.Atom(a)) a_contributing_orig_idx.append(self.Mapper.mapid(a.GetIdx(), mtype='protein')) if not len(a_contributing) == 0: a_set.append(data(atoms=a_contributing, atoms_orig_idx=a_contributing_orig_idx, type='positive', center=centroid([ac.coords for ac in a_contributing]), restype=res.GetName(), resnr=res.GetNum(), reschain=res.GetChain())) if res.GetName() in ('GLU', 'ASP'): # Aspartic or Glutamic Acid for a in pybel.ob.OBResidueAtomIter(res): if a.GetType().startswith('O') and res.GetAtomProperty(a, 8) \ and not self.Mapper.mapid(a.GetIdx(), mtype='protein') in self.altconf: a_contributing.append(pybel.Atom(a)) a_contributing_orig_idx.append(self.Mapper.mapid(a.GetIdx(), mtype='protein')) if not len(a_contributing) == 0: a_set.append(data(atoms=a_contributing, atoms_orig_idx=a_contributing_orig_idx, type='negative', center=centroid([ac.coords for ac in a_contributing]), restype=res.GetName(), resnr=res.GetNum(), reschain=res.GetChain())) return a_set
0.005553
def retrieve_paths(self, products, report_path, suffix=None): """Helper method to retrieve path from particular report metadata. :param products: Report products. :type products: list :param report_path: Path of the IF output. :type report_path: str :param suffix: Expected output product file type (extension). :type suffix: str :return: List of absolute path of the output product. :rtype: list """ paths = [] for product in products: path = ImpactReport.absolute_output_path( join(report_path, 'output'), products, product.key) if isinstance(path, list): for p in path: paths.append(p) elif isinstance(path, dict): for p in list(path.values()): paths.append(p) else: paths.append(path) if suffix: paths = [p for p in paths if p.endswith(suffix)] paths = [p for p in paths if exists(p)] return paths
0.001783
def traverse(self, traverser, **kwargs): """ Implementation of mandatory interface for traversing the whole rule tree. This method will call the ``traverse`` method of child rule tree and then perform arbitrary conversion of the result before returning it back. The optional ``kwargs`` are passed down to traverser callback as additional arguments and can be used to provide additional data or context. :param pynspect.rules.RuleTreeTraverser traverser: Traverser object providing appropriate interface. :param dict kwargs: Additional optional keyword arguments to be passed down to traverser callback. """ result = self.rule.traverse(traverser, **kwargs) return self.conversion(result)
0.009032
def send(r, pools=None): """Sends a given Request object.""" if pools: r._pools = pools r.send() return r.response
0.007092
def as_call(self): """ Return this call as it is called in its source. """ default = self._default() default = ', ' + default if default else '' return "pyconfig.%s(%r%s)" % (self.method, self.get_key(), default)
0.007663
def _store32(ins): """ Stores 2nd operand content into address of 1st operand. store16 a, x => *(&a) = x """ op = ins.quad[1] indirect = op[0] == '*' if indirect: op = op[1:] immediate = op[0] == '#' # Might make no sense here? if immediate: op = op[1:] if is_int(op) or op[0] == '_' or immediate: output = _32bit_oper(ins.quad[2], preserveHL=indirect) if is_int(op): op = str(int(op) & 0xFFFF) if indirect: output.append('ld hl, (%s)' % op) output.append('call __STORE32') REQUIRES.add('store32.asm') return output output.append('ld (%s), hl' % op) output.append('ld (%s + 2), de' % op) return output output = _32bit_oper(ins.quad[2], preserveHL=True) output.append('pop hl') if indirect: output.append('call __ISTORE32') REQUIRES.add('store32.asm') return output output.append('call __STORE32') REQUIRES.add('store32.asm') return output
0.000943
def convert_to_int(x: Any, default: int = None) -> int: """ Transforms its input into an integer, or returns ``default``. """ try: return int(x) except (TypeError, ValueError): return default
0.004405
def _end_flusher_loop(self): """ Let flusher_loop coroutine quit - useful when disconnecting. """ if not self.is_connected or self.is_connecting or self.io.closed(): if self._flush_queue is not None and self._flush_queue.empty(): self._flush_pending(check_connected=False) yield tornado.gen.moment
0.00542
def observe(self): """ Check if the request is an observing request. :return: 0, if the request is an observing request """ for option in self.options: if option.number == defines.OptionRegistry.OBSERVE.number: # if option.value is None: # return 0 if option.value is None: return 0 return option.value return None
0.004329
def show_limit(entries, **kwargs): """Shows a menu but limits the number of entries shown at a time. Functionally equivalent to `show_menu()` with the `limit` parameter set.""" limit = kwargs.pop('limit', 5) if limit <= 0: return show_menu(entries, **kwargs) istart = 0 # Index of group start. iend = limit # Index of group end. dft = kwargs.pop('dft', None) if type(dft) == int: dft = str(dft) while True: if iend > len(entries): iend = len(entries) istart = iend - limit if istart < 0: istart = 0 iend = limit unext = len(entries) - iend # Number of next entries. uprev = istart # Number of previous entries. nnext = "" # Name of 'next' menu entry. nprev = "" # Name of 'prev' menu entry. dnext = "" # Description of 'next' menu entry. dprev = "" # Description of 'prev' menu entry. group = copy.deepcopy(entries[istart:iend]) names = [i.name for i in group] if unext > 0: for i in ["n", "N", "next", "NEXT", "->", ">>", ">>>"]: if i not in names: nnext = i dnext = "Next %u of %u entries" % (unext, len(entries)) group.append(MenuEntry(nnext, dnext, None, None, None)) names.append("n") break if uprev > 0: for i in ["p", "P", "prev", "PREV", "<-", "<<", "<<<"]: if i not in names: nprev = i dprev = "Previous %u of %u entries" % (uprev, len(entries)) group.append(MenuEntry(nprev, dprev, None, None, None)) names.append("p") break tmpdft = None if dft != None: if dft not in names: if "n" in names: tmpdft = "n" else: tmpdft = dft result = show_menu(group, dft=tmpdft, **kwargs) if result == nnext or result == dnext: istart += limit iend += limit elif result == nprev or result == dprev: istart -= limit iend -= limit else: return result
0.00439
def decode_to_unicode(text, default_encoding='utf-8'): """Decode input text into Unicode representation. Decode input text into Unicode representation by first using the default encoding utf-8. If the operation fails, it detects the type of encoding used in the given text. For optimal result, it is recommended that the 'chardet' module is installed. NOTE: Beware that this might be slow for *very* large strings. If chardet detection fails, it will try to decode the string using the basic detection function guess_minimum_encoding(). Also, bear in mind that it is impossible to detect the correct encoding at all times, other then taking educated guesses. With that said, this function will always return some decoded Unicode string, however the data returned may not be the same as original data in some cases. :param text: the text to decode :type text: string :param default_encoding: the character encoding to use. Optional. :type default_encoding: string :return: input text as Unicode :rtype: string """ if not text: return "" try: return text.decode(default_encoding) except (UnicodeError, LookupError): pass detected_encoding = None if CHARDET_AVAILABLE: # We can use chardet to perform detection res = chardet.detect(text) if res['confidence'] >= 0.8: detected_encoding = res['encoding'] if detected_encoding is None: # No chardet detection, try to make a basic guess dummy, detected_encoding = guess_minimum_encoding(text) return text.decode(detected_encoding)
0.0018
def render_app_description(context, app, fallback="", template="/admin_app_description.html"): """ Render the application description using the default template name. If it cannot find a template matching the given path, fallback to the fallback argument. """ try: template = app['app_label'] + template text = render_to_string(template, context) except: text = fallback return text
0.009217
def OnSelectCard(self, card): """Called when a card is selected by clicking on the card or reader tree control or toolbar.""" SimpleSCardAppEventObserver.OnSelectCard(self, card) self.feedbacktext.SetLabel('Selected card: ' + repr(card)) if hasattr(self.selectedcard, 'connection'): self.transmitbutton.Enable()
0.00551
def recurse_module( overall_record, index, shared, stop_types=STOP_TYPES, already_seen=None, min_size=0 ): """Creates a has-a recursive-cost hierarchy Mutates objects in-place to produce a hierarchy of memory usage based on reference-holding cost assignment """ for record in recurse( overall_record, index, stop_types=stop_types, already_seen=already_seen, type_group=True, ): # anything with a totsize we've already processed... if record.get('totsize') is not None: continue rinfo = record rinfo['module'] = overall_record.get('name',NON_MODULE_REFS ) if not record['refs']: rinfo['rsize'] = 0 rinfo['children'] = [] else: # TODO: provide a flag to coalesce based on e.g. type at each level or throughout... rinfo['children'] = rinfo_children = list ( children( record, index, stop_types=stop_types ) ) rinfo['rsize'] = sum([ ( child.get('totsize',0.0)/float(len(shared.get( child['address'], [])) or 1) ) for child in rinfo_children ], 0.0 ) rinfo['totsize'] = record['size'] + rinfo['rsize'] return None
0.020108
def get_resources(connection): """ Do an RTSP-DESCRIBE request, then parse out available resources from the response """ resp = connection.describe(verbose=False).split('\r\n') resources = [x.replace('a=control:','') for x in resp if (x.find('control:') != -1 and x[-1] != '*' )] return resources
0.016026
def run(cmd, shell=False, debug=False): 'Run a command and return the output.' proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=shell) (out, _) = proc.communicate() # no need for stderr if debug: print(cmd) print(out) return out
0.003636
def _truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100): """ Truncates a colormap to use. Code originall from http://stackoverflow.com/questions/18926031/how-to-extract-a-subset-of-a-colormap-as-a-new-colormap-in-matplotlib """ new_cmap = LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval), cmap(numpy.linspace(minval, maxval, n)) ) return new_cmap
0.004454
def filter_muons(blob): """Write all muons from McTracks to Muons.""" tracks = blob['McTracks'] muons = tracks[tracks.type == -13] # PDG particle code blob["Muons"] = Table(muons) return blob
0.004673
def interpolate(self, lat, lon, var): """ Interpolate each var on the coordinates requested """ subset, dims = self.crop(lat, lon, var) if np.all([y in dims['lat'] for y in lat]) & \ np.all([x in dims['lon'] for x in lon]): yn = np.nonzero([y in lat for y in dims['lat']])[0] xn = np.nonzero([x in lon for x in dims['lon']])[0] output = {} for v in subset: # output[v] = subset[v][dn, zn, yn, xn] # Seriously that this is the way to do it?!!?? output[v] = subset[v][:, xn][yn] return output # The output coordinates shall be created only once. points_out = [] for latn in lat: for lonn in lon: points_out.append([latn, lonn]) points_out = np.array(points_out) output = {} for v in var: output[v] = ma.masked_all( (lat.size, lon.size), dtype=subset[v].dtype) # The valid data idx = np.nonzero(~ma.getmaskarray(subset[v])) if idx[0].size > 0: points = np.array([ dims['lat'][idx[0]], dims['lon'][idx[1]]]).T values = subset[v][idx] # Interpolate along the dimensions that have more than one # position, otherwise it means that the output is exactly # on that coordinate. ind = np.array( [np.unique(points[:, i]).size > 1 for i in range(points.shape[1])]) assert ind.any() values_out = griddata( np.atleast_1d(np.squeeze(points[:, ind])), values, np.atleast_1d(np.squeeze(points_out[:, ind])) ) # Remap the interpolated value back into a 4D array idx = np.isfinite(values_out) for [y, x], out in zip(points_out[idx], values_out[idx]): output[v][y==lat, x==lon] = out return output
0.002224
def summary(self, indicator_data): """Return a summary value for any given indicator type.""" summary = None for v in self._value_fields: if indicator_data.get(v) is not None: summary = indicator_data.get(v) break return indicator_data.get('summary', summary)
0.00597
def _format_assertmsg(obj): """Format the custom assertion message given. For strings this simply replaces newlines with '\n~' so that util.format_explanation() will preserve them instead of escaping newlines. For other objects py.io.saferepr() is used first. """ # reprlib appears to have a bug which means that if a string # contains a newline it gets escaped, however if an object has a # .__repr__() which contains newlines it does not get escaped. # However in either case we want to preserve the newline. if py.builtin._istext(obj) or py.builtin._isbytes(obj): s = obj is_repr = False else: s = py.io.saferepr(obj) is_repr = True if py.builtin._istext(s): t = py.builtin.text else: t = py.builtin.bytes s = s.replace(t("\n"), t("\n~")).replace(t("%"), t("%%")) if is_repr: s = s.replace(t("\\n"), t("\n~")) return s
0.001059
def pspawn_wrapper(self, sh, escape, cmd, args, env): """Wrapper function for handling piped spawns. This looks to the calling interface (in Action.py) like a "normal" spawn, but associates the call with the PSPAWN variable from the construction environment and with the streams to which we want the output logged. This gets slid into the construction environment as the SPAWN variable so Action.py doesn't have to know or care whether it's spawning a piped command or not. """ return self.pspawn(sh, escape, cmd, args, env, self.logstream, self.logstream)
0.004762
def _alpha(self, L): """ Covariance-derived term to construct expectations. See Rasmussen & Williams. Parameters ---------- L : np.ndarray Cholesky triangular Returns ---------- np.ndarray (alpha) """ return la.cho_solve((L.T, True), la.cho_solve((L, True), np.transpose(self.data)))
0.015707
def find_additional_properties(instance, schema): """ Return the set of additional properties for the given ``instance``. Weeds out properties that should have been validated by ``properties`` and / or ``patternProperties``. Assumes ``instance`` is dict-like already. """ properties = schema.get("properties", {}) patterns = "|".join(schema.get("patternProperties", {})) for property in instance: if property not in properties: if patterns and re.search(patterns, property): continue yield property
0.001706
def on_epoch_end(self, last_metrics, **kwargs): "Set the final result in `last_metrics`." return add_metrics(last_metrics, self.val/self.count)
0.012579
def _cursor_position_changed(self): """ Updates the document formatting based on the new cursor position. """ # Clear out the old formatting. self._text_edit.setExtraSelections([]) # Attempt to match a bracket for the new cursor position. cursor = self._text_edit.textCursor() if not cursor.hasSelection(): position = cursor.position() - 1 match_position = self._find_match(position) if match_position != -1: extra_selections = [ self._selection_for_character(pos) for pos in (position, match_position) ] self._text_edit.setExtraSelections(extra_selections)
0.005563
def _GetCachedFileByPath(self, key_path_upper): """Retrieves a cached Windows Registry file for a key path. Args: key_path_upper (str): Windows Registry key path, in upper case with a resolved root key alias. Returns: tuple: consist: str: key path prefix WinRegistryFile: corresponding Windows Registry file or None if not available. """ longest_key_path_prefix_upper = '' longest_key_path_prefix_length = len(longest_key_path_prefix_upper) for key_path_prefix_upper in self._registry_files: if key_path_upper.startswith(key_path_prefix_upper): key_path_prefix_length = len(key_path_prefix_upper) if key_path_prefix_length > longest_key_path_prefix_length: longest_key_path_prefix_upper = key_path_prefix_upper longest_key_path_prefix_length = key_path_prefix_length if not longest_key_path_prefix_upper: return None, None registry_file = self._registry_files.get( longest_key_path_prefix_upper, None) return longest_key_path_prefix_upper, registry_file
0.004529
def get_cache(self, cache_name, miss_fn): """ Get an L{AsyncLRUCache} object with the given name. If such an object does not exist, it will be created. Since the cache is permanent, this method can be called only once, e.g., in C{startService}, and it value stored indefinitely. @param cache_name: name of the cache (usually the name of the type of object it stores) @param miss_fn: miss function for the cache; see L{AsyncLRUCache} constructor. @returns: L{AsyncLRUCache} instance """ try: return self._caches[cache_name] except KeyError: max_size = self.config.get(cache_name, self.DEFAULT_CACHE_SIZE) assert max_size >= 1 c = self._caches[cache_name] = lru.AsyncLRUCache(miss_fn, max_size) return c
0.002304
def _fstat_sig(self): """p-value of the F-statistic.""" return 1.0 - scs.f.cdf(self._fstat, self._df_reg, self._df_err)
0.014599
def parse_list_cmd(proc, args, listsize=10): """Parses arguments for the "list" command and returns the tuple: (filename, first line number, last line number) or sets these to None if there was some problem.""" text = proc.current_command[len(args[0])+1:].strip() if text in frozenset(('', '.', '+', '-')): if text == '.': location = resolve_location(proc, '.') return location.path, location.line_number, listsize else: if proc.list_lineno is None: proc.errmsg("Don't have previous list location") return INVALID_PARSE_LIST filename = proc.list_filename if text == '+': first = max(1, proc.list_lineno + listsize) elif text == '-': if proc.list_lineno == 1 + listsize: proc.errmsg("Already at start of %s." % proc.list_filename) return INVALID_PARSE_LIST first = max(1, proc.list_lineno - (2*listsize) - 1) elif text == '': # Continue from where we last left off first = proc.list_lineno + 1 last = first + listsize - 1 return filename, first, last else: try: list_range = build_range(text) except LocationError as e: proc.errmsg("Error in parsing list range at or around:") proc.errmsg(e.text) proc.errmsg(e.text_cursor) return INVALID_PARSE_LIST except ScannerError as e: proc.errmsg("Lexical error in parsing list range at or around:") proc.errmsg(e.text) proc.errmsg(e.text_cursor) return INVALID_PARSE_LIST if list_range.first is None: # Last must have been given assert isinstance(list_range.last, Location) location = resolve_location(proc, list_range.last) if not location: return INVALID_PARSE_LIST last = location.line_number first = max(1, last - listsize) return location.path, first, last elif isinstance(list_range.first, int): first = list_range.first location = resolve_location(proc, list_range.last) if not location: return INVALID_PARSE_LIST filename = location.path last = location.line_number if last < first: # Treat as a count rather than an absolute location last = first + last return location.path, first, last else: # First is location. Last may be empty or a number assert isinstance(list_range.first, Location) location = resolve_location(proc, list_range.first) if not location: return INVALID_PARSE_LIST first = location.line_number last = list_range.last if location.method: first -= listsize // 2 if isinstance(last, str): # Is an offset +number assert last[0] == '+' last = first + int(last[1:]) elif not last: last = first + listsize elif last < first: # Treat as a count rather than an absolute location last = first + last return location.path, first, last pass return
0.00201
def fire_metric(metric_name, metric_value): """ Fires a metric using the MetricsApiClient """ metric_value = float(metric_value) metric = {metric_name: metric_value} metric_client.fire_metrics(**metric) return "Fired metric <{}> with value <{}>".format(metric_name, metric_value)
0.006601
def path_constant(self, name, value): """Declare and set a project global constant, whose value is a path. The path is adjusted to be relative to the invocation directory. The given value path is taken to be either absolute, or relative to this project root.""" assert is_iterable_typed(name, basestring) assert is_iterable_typed(value, basestring) if len(value) > 1: self.registry.manager.errors()("path constant should have one element") self.registry.current().add_constant(name[0], value, path=1)
0.006944
def _get_operations(self, context): """Returns a list of operations that need to be performed to turn the cached source code into the one in the buffer.""" #Most of the time, the real-time update is going to fire with #incomplete statements that don't result in any changes being made #to the module instances. The SequenceMatches caches hashes for the #second argument. Logically, we want to turn the cached version into #the buffer version; however, the buffer is the string that keeps #changing. #in order to optimize the real-time update, we *switch* the two strings #when we set the sequence and then fix the references on the operations #after the fact. if context.module.changed or self.unset: self.matcher.set_seq2(context.cachedstr) self.unset = False #Set the changed flag back to false now that the sequencer has #reloaded it. context.module.changed = False self.matcher.set_seq1(context.bufferstr) opcodes = self.matcher.get_opcodes() result = [] #Index i keeps track of how many operations were actually added because #they constituted a change we need to take care of. i = 0 for code in opcodes: if code[0] != "equal": #Replacements don't have a mode change. All of the operations #switch the order of the line indices for the two strings. if code[0] == "insert": newcode = ("delete", code[3], code[4], code[1], code[2]) elif code[0] == "delete": newcode = ("insert", code[3], code[4], code[1], code[2]) else: newcode = ("replace", code[3], code[4], code[1], code[2]) op = Operation(context, self.parser, newcode, i) result.append(op) i += 1 return result
0.009023
def split_emails(msg): """ Given a message (which may consist of an email conversation thread with multiple emails), mark the lines to identify split lines, content lines and empty lines. Correct the split line markers inside header blocks. Header blocks are identified by the regular expression RE_HEADER. Return the corrected markers """ msg_body = _replace_link_brackets(msg) # don't process too long messages lines = msg_body.splitlines()[:MAX_LINES_COUNT] markers = remove_initial_spaces_and_mark_message_lines(lines) markers = _mark_quoted_email_splitlines(markers, lines) # we don't want splitlines in header blocks markers = _correct_splitlines_in_headers(markers, lines) return markers
0.001309
def _bell(self): u'''ring the bell if requested.''' if self.bell_style == u'none': pass elif self.bell_style == u'visible': raise NotImplementedError(u"Bellstyle visible is not implemented yet.") elif self.bell_style == u'audible': self.console.bell() else: raise ReadlineError(u"Bellstyle %s unknown."%self.bell_style)
0.009828
def add(self, *args, **kwargs): """ Add new mapping from args and kwargs >>> om = OperationIdMapping() >>> om.add( ... OperationIdMapping(), ... 'aiohttp_apiset.swagger.operations', # any module ... getPets='mymod.handler', ... getPet='mymod.get_pet', ... ) >>> om['getPets'] 'mymod.handler' :param args: str, Mapping, module or obj :param kwargs: operationId='handler' or operationId=handler """ for arg in args: if isinstance(arg, str): self._operations.append(self._from_str(arg)) else: self._operations.append(arg) if kwargs: self._operations.append(kwargs)
0.002604
def deregister(self, key): """ Deregisters an existing key. `key` String key to deregister. Returns boolean. """ res = super(ExtRegistry, self).deregister(key) if key in self._type_info: del self._type_info[key] return res
0.006231
def build_blast_db_from_fasta_file(fasta_file, is_protein=False, output_dir=None, HALT_EXEC=False): """Build blast db from fasta_path; return db name and list of files created **If using to create temporary blast databases, you can call cogent.util.misc.remove_files(db_filepaths) to clean up all the files created by formatdb when you're done with the database. fasta_path: path to fasta file of sequences to build database from is_protein: True if working on protein seqs (default: False) output_dir: directory where output should be written (default: directory containing fasta_path) HALT_EXEC: halt just before running the formatdb command and print the command -- useful for debugging """ output_dir = output_dir or '.' _, fasta_path = mkstemp(dir=output_dir, prefix="BLAST_temp_db_", suffix=".fasta") fasta_f = open(fasta_path, 'w') for line in fasta_file: fasta_f.write('%s\n' % line.strip()) fasta_f.close() blast_db, db_filepaths = build_blast_db_from_fasta_path(fasta_path, is_protein=is_protein, output_dir=None, HALT_EXEC=HALT_EXEC ) db_filepaths.append(fasta_path) return blast_db, db_filepaths
0.0013
def _wait_until_machine_finish(self): """ Internal method wait until machine finish and kill main process (booted) :return: None """ self.image._wait_for_machine_finish(self.name) # kill main run process self.start_process.kill() # TODO: there are some backgroud processes, dbus async events or something similar, there is better to wait # to provide enough time to finish also some async ops time.sleep(constants.DEFAULT_SLEEP)
0.005803
def convert_via_profile(self, data_np, order, inprof_name, outprof_name): """Convert the given RGB data from the working ICC profile to the output profile in-place. Parameters ---------- data_np : ndarray RGB image data to be displayed. order : str Order of channels in the data (e.g. "BGRA"). inprof_name, outprof_name : str ICC profile names (see :func:`ginga.util.rgb_cms.get_profiles`). """ # get rest of necessary conversion parameters to_intent = self.t_.get('icc_output_intent', 'perceptual') proofprof_name = self.t_.get('icc_proof_profile', None) proof_intent = self.t_.get('icc_proof_intent', 'perceptual') use_black_pt = self.t_.get('icc_black_point_compensation', False) try: rgbobj = RGBMap.RGBPlanes(data_np, order) arr_np = rgbobj.get_array('RGB') arr = rgb_cms.convert_profile_fromto(arr_np, inprof_name, outprof_name, to_intent=to_intent, proof_name=proofprof_name, proof_intent=proof_intent, use_black_pt=use_black_pt, logger=self.logger) ri, gi, bi = rgbobj.get_order_indexes('RGB') out = data_np out[..., ri] = arr[..., 0] out[..., gi] = arr[..., 1] out[..., bi] = arr[..., 2] self.logger.debug("Converted from '%s' to '%s' profile" % ( inprof_name, outprof_name)) except Exception as e: self.logger.warning("Error converting output from working profile: %s" % (str(e))) # TODO: maybe should have a traceback here self.logger.info("Output left unprofiled")
0.002055
def _check_years(self, cell, prior_year): ''' Helper method which defines the rules for checking for existence of a year indicator. If the cell is blank then prior_year is used to determine validity. ''' # Anything outside these values shouldn't auto # categorize to strings min_year = 1900 max_year = 2100 # Empty cells could represent the prior cell's title, # but an empty cell before we find a year is not a title if is_empty_cell(cell): return bool(prior_year) # Check if we have a numbered cell between min and max years return is_num_cell(cell) and cell > min_year and cell < max_year
0.004237
def _transition_stage(self, step, total_steps, brightness=None, color=None): """ Get a transition stage at a specific step. :param step: The current step. :param total_steps: The total number of steps. :param brightness: The brightness to transition to (0.0-1.0). :param color: The color to transition to. :return: The stage at the specific step. """ if brightness is not None: self._assert_is_brightness(brightness) brightness = self._interpolate(self.brightness, brightness, step, total_steps) if color is not None: self._assert_is_color(color) color = Color(*[self._interpolate(self.color[i], color[i], step, total_steps) for i in range(3)]) return {'brightness': brightness, 'color': color}
0.003074
def get_keywords(self, entry): """ get list of models.Keyword objects from XML node entry :param entry: XML node entry :return: list of :class:`pyuniprot.manager.models.Keyword` objects """ keyword_objects = [] for keyword in entry.iterfind("./keyword"): identifier = keyword.get('id') name = keyword.text keyword_hash = hash(identifier) if keyword_hash not in self.keywords: self.keywords[keyword_hash] = models.Keyword(**{'identifier': identifier, 'name': name}) keyword_objects.append(self.keywords[keyword_hash]) return keyword_objects
0.004386
def runTask(self, task, timeout=None): """Run a child task to completion. Returns the result of the child task. """ # Initialize the task. task.initialize(self) # Start the task. task.start() # Lets other threads run time.sleep(0) # Wait for it to finish. res = task.wait(timeout=timeout) # Now we're done return res
0.004706
def normalizeURL(url): """Normalize a URL, converting normalization failures to DiscoveryFailure""" try: normalized = urinorm.urinorm(url) except ValueError, why: raise DiscoveryFailure('Normalizing identifier: %s' % (why[0],), None) else: return urlparse.urldefrag(normalized)[0]
0.003086
def is_network_source_fw(cls, nwk, nwk_name): """Check if SOURCE is FIREWALL, if yes return TRUE. If source is None or entry not in NWK DB, check from Name. Name should have constant AND length should match. """ if nwk is not None: if nwk.source == fw_const.FW_CONST: return True return False if nwk_name in fw_const.DUMMY_SERVICE_NWK and ( len(nwk_name) == len(fw_const.DUMMY_SERVICE_NWK) + fw_const.SERVICE_NAME_EXTRA_LEN): return True if nwk_name in fw_const.IN_SERVICE_NWK and ( len(nwk_name) == len(fw_const.IN_SERVICE_NWK) + fw_const.SERVICE_NAME_EXTRA_LEN): return True if nwk_name in fw_const.OUT_SERVICE_NWK and ( len(nwk_name) == len(fw_const.OUT_SERVICE_NWK) + fw_const.SERVICE_NAME_EXTRA_LEN): return True return False
0.002116
def intersectsExtent(self, extent): "Determine if an extent intersects this instance extent" return \ self.extent[0] <= extent[2] and self.extent[2] >= extent[0] and \ self.extent[1] <= extent[3] and self.extent[3] >= extent[1]
0.007491
def _build_likelihood(self): r""" q_alpha, q_lambda are variational parameters, size N x R This method computes the variational lower bound on the likelihood, which is: E_{q(F)} [ \log p(Y|F) ] - KL[ q(F) || p(F)] with q(f) = N(f | K alpha + mean, [K^-1 + diag(square(lambda))]^-1) . """ K = self.kern.K(self.X) K_alpha = tf.matmul(K, self.q_alpha) f_mean = K_alpha + self.mean_function(self.X) # compute the variance for each of the outputs I = tf.tile(tf.expand_dims(tf.eye(self.num_data, dtype=settings.float_type), 0), [self.num_latent, 1, 1]) A = I + tf.expand_dims(tf.transpose(self.q_lambda), 1) * \ tf.expand_dims(tf.transpose(self.q_lambda), 2) * K L = tf.cholesky(A) Li = tf.matrix_triangular_solve(L, I) tmp = Li / tf.expand_dims(tf.transpose(self.q_lambda), 1) f_var = 1. / tf.square(self.q_lambda) - tf.transpose(tf.reduce_sum(tf.square(tmp), 1)) # some statistics about A are used in the KL A_logdet = 2.0 * tf.reduce_sum(tf.log(tf.matrix_diag_part(L))) trAi = tf.reduce_sum(tf.square(Li)) KL = 0.5 * (A_logdet + trAi - self.num_data * self.num_latent + tf.reduce_sum(K_alpha * self.q_alpha)) v_exp = self.likelihood.variational_expectations(f_mean, f_var, self.Y) return tf.reduce_sum(v_exp) - KL
0.003408
def get_attached_devices_2(self): """ Return list of connected devices to the router with details. This call is slower and probably heavier on the router load. Returns None if error occurred. """ _LOGGER.info("Get attached devices 2") success, response = self._make_request(SERVICE_DEVICE_INFO, "GetAttachDevice2") if not success: return None success, devices_node = _find_node( response.text, ".//GetAttachDevice2Response/NewAttachDevice") if not success: return None xml_devices = devices_node.findall("Device") devices = [] for d in xml_devices: ip = _xml_get(d, 'IP') name = _xml_get(d, 'Name') mac = _xml_get(d, 'MAC') signal = _convert(_xml_get(d, 'SignalStrength'), int) link_type = _xml_get(d, 'ConnectionType') link_rate = _xml_get(d, 'Linkspeed') allow_or_block = _xml_get(d, 'AllowOrBlock') device_type = _convert(_xml_get(d, 'DeviceType'), int) device_model = _xml_get(d, 'DeviceModel') ssid = _xml_get(d, 'SSID') conn_ap_mac = _xml_get(d, 'ConnAPMAC') devices.append(Device(name, ip, mac, link_type, signal, link_rate, allow_or_block, device_type, device_model, ssid, conn_ap_mac)) return devices
0.001304
def refresh(self, token, timeout): """Modify an existing lock's timeout. token: Valid lock token. timeout: Suggested lifetime in seconds (-1 for infinite). The real expiration time may be shorter than requested! Returns: Lock dictionary. Raises ValueError, if token is invalid. """ assert token in self._dict, "Lock must exist" assert timeout == -1 or timeout > 0 if timeout < 0 or timeout > LockStorageDict.LOCK_TIME_OUT_MAX: timeout = LockStorageDict.LOCK_TIME_OUT_MAX self._lock.acquire_write() try: # Note: shelve dictionary returns copies, so we must reassign # values: lock = self._dict[token] lock["timeout"] = timeout lock["expire"] = time.time() + timeout self._dict[token] = lock self._flush() finally: self._lock.release() return lock
0.001978
def word(self): """Return last changes with word diff""" try: output = ensure_unicode(self.git.diff( '--no-color', '--word-diff=plain', 'HEAD~1:content', 'HEAD:content', ).stdout) except sh.ErrorReturnCode_128: result = ensure_unicode(self.git.show( "HEAD:content" ).stdout) else: ago = ensure_unicode(self.git.log( '-2', '--pretty=format:last change was %cr', 'content' ).stdout).splitlines() lines = output.splitlines() result = u'\n'.join( itertools.chain( itertools.islice( itertools.dropwhile( lambda x: not x.startswith('@@'), lines[1:], ), 1, None, ), itertools.islice(ago, 1, None), ) ) return result
0.001773
def create_user(server_context, email, container_path=None, send_email=False): """ Create new account :param server_context: A LabKey server context. See utils.create_server_context. :param email: :param container_path: :param send_email: true to send email notification to user :return: """ url = server_context.build_url(security_controller, 'createNewUser.api', container_path) payload = { 'email': email, 'sendEmail': send_email } return server_context.make_request(url, payload)
0.005474
def parse_idf(file_like): """ Records are created from string. They are not attached to idf yet. in idf: header comment, chapter comments, records in record: head comment, field comments, tail comment """ tables_data = {} head_comment = "" record_data = None make_new_record = True copyright_list = get_multi_line_copyright_message().split("\n") for i, raw_line in enumerate(file_like): # manage if copyright try: copyright_line = copyright_list[i] if raw_line.strip() == copyright_line: # skip copyright line continue except IndexError: pass # GET LINE CONTENT AND COMMENT split_line = raw_line.split("!") # no "!" in the raw_line if len(split_line) == 1: # this is an empty line if len(split_line[0].strip()) == 0: content, comment = None, None # this is a record line with no comments else: content, comment = split_line[0].strip(), None # there is at least one "!" in the raw_line else: # this is a comment line if len(split_line[0].strip()) == 0: content, comment = None, "!".join(split_line[1:]) # this is a record line with a comment else: content, comment = split_line[0].strip(), "!".join(split_line[1:]) # SKIP CURRENT LINE IF VOID if (content, comment) == (None, None): continue # NO CONTENT if not content: if record_data is None: # we only manage head idf comment head_comment += comment.strip() + "\n" continue # CONTENT # check if record end and prepare record_end = content[-1] == ";" content = content[:-1] # we tear comma or semi-colon content_l = [text.strip() for text in content.split(",")] # record creation if needed if make_new_record: # get table ref table_ref = table_name_to_ref(content_l[0].strip()) # skip if special table if table_ref.lower() in ( "lead input", "end lead input", "simulation data", "end simulation data" ): continue # declare table if necessary if table_ref not in tables_data: tables_data[table_ref] = [] # create and store record record_data = dict() tables_data[table_ref].append(record_data) # prepare in case fields on the same line content_l = content_l[1:] make_new_record = False # fields for value_s in content_l: field_index = len(record_data) record_data[field_index] = value_s # signal that new record must be created if record_end: make_new_record = True # add comment key tables_data["_comment"] = head_comment return tables_data
0.000636
async def handle_adapter_event(self, adapter_id, conn_string, conn_id, name, event): """Handle an event received from an adapter.""" if name == 'device_seen': self._track_device_seen(adapter_id, conn_string, event) event = self._translate_device_seen(adapter_id, conn_string, event) conn_string = self._translate_conn_string(adapter_id, conn_string) elif conn_id is not None and self._get_property(conn_id, 'translate'): conn_string = self._translate_conn_string(adapter_id, conn_string) else: conn_string = "adapter/%d/%s" % (adapter_id, conn_string) await self.notify_event(conn_string, name, event)
0.004261
def prepend(exception, message, end=': '): """Prepends the first argument (i.e., the exception message) of the a BaseException with the provided message. Useful for reraising exceptions with additional information. :param BaseException exception: the exception to prepend :param str message: the message to prepend :param str end: the separator to add to the end of the provided message :returns: the exception """ exception.args = exception.args or ('',) exception.args = (message + end + exception.args[0], ) + exception.args[1:] return exception
0.003396
def fill(self, paths): """ Initialise the tree. paths is a list of strings where each string is the relative path to some file. """ for path in paths: tree = self.tree parts = tuple(path.split('/')) dir_parts = parts[:-1] built = () for part in dir_parts: self.cache[built] = tree built += (part, ) parent = tree tree = parent.folders.get(part, empty) if tree is empty: tree = parent.folders[part] = TreeItem(name=built, folders={}, files=set(), parent=parent) self.cache[dir_parts] = tree tree.files.add(parts[-1])
0.00534
def calc_grad(self): """The gradient of the cost w.r.t. the parameters.""" if self._fresh_JTJ: return self._graderr else: residuals = self.calc_residuals() return 2*np.dot(self.J, residuals)
0.008
def walk(self, maxresults=100, maxdepth=None): """Walk the object tree, ignoring duplicates and circular refs.""" log.debug("step") self.seen = {} self.ignore(self, self.__dict__, self.obj, self.seen, self._ignore) # Ignore the calling frame, its builtins, globals and locals self.ignore_caller() self.maxdepth = maxdepth count = 0 log.debug("will iterate results") for result in self._gen(self.obj): log.debug("will yeld") yield result count += 1 if maxresults and count >= maxresults: yield 0, 0, "==== Max results reached ====" return
0.002865
def query(self, stringa): """SPARQL query / wrapper for rdflib sparql query method """ qres = self.rdflib_graph.query(stringa) return list(qres)
0.011905
def _get_par_summary(sim, n, probs): """Summarize chains merged and individually Parameters ---------- sim : dict from stanfit object n : int parameter index probs : iterable of int quantiles Returns ------- summary : dict Dictionary containing summaries """ # _get_samples gets chains for nth parameter ss = _get_samples(n, sim, inc_warmup=False) msdfun = lambda chain: (np.mean(chain), np.std(chain, ddof=1)) qfun = lambda chain: mquantiles(chain, probs) c_msd = np.array([msdfun(s) for s in ss]).flatten() c_quan = np.array([qfun(s) for s in ss]).flatten() ass = np.asarray(ss).flatten() msd = np.asarray(msdfun(ass)) quan = qfun(np.asarray(ass)) return dict(msd=msd, quan=quan, c_msd=c_msd, c_quan=c_quan)
0.003686
def collectData(reads1, reads2, square, matchAmbiguous): """ Get pairwise matching statistics for two sets of reads. @param reads1: An C{OrderedDict} of C{str} read ids whose values are C{Read} instances. These will be the rows of the table. @param reads2: An C{OrderedDict} of C{str} read ids whose values are C{Read} instances. These will be the columns of the table. @param square: If C{True} we are making a square table of a set of sequences against themselves (in which case we show nothing on the diagonal). @param matchAmbiguous: If C{True}, count ambiguous nucleotides that are possibly correct as actually being correct. Otherwise, we are strict and insist that only non-ambiguous nucleotides can contribute to the matching nucleotide count. """ result = defaultdict(dict) for id1, read1 in reads1.items(): for id2, read2 in reads2.items(): if id1 != id2 or not square: match = compareDNAReads( read1, read2, matchAmbiguous=matchAmbiguous)['match'] if not matchAmbiguous: assert match['ambiguousMatchCount'] == 0 result[id1][id2] = result[id2][id1] = match return result
0.000778
def hdate(self, date): """Set the dates of the HDate object based on a given Hebrew date.""" # Sanity checks if date is None and isinstance(self.gdate, datetime.date): # Calculate the value since gdate has been set date = self.hdate if not isinstance(date, HebrewDate): raise TypeError('date: {} is not of type HebrewDate'.format(date)) if not 0 < date.month < 15: raise ValueError( 'month ({}) legal values are 1-14'.format(date.month)) if not 0 < date.day < 31: raise ValueError('day ({}) legal values are 1-31'.format(date.day)) self._last_updated = "hdate" self._hdate = date
0.002774
def subs(self, *args): """Substitute a symbolic expression in ``['x', 'y', 'z']`` This is a wrapper around the substitution mechanism of `sympy <http://docs.sympy.org/latest/tutorial/basic_operations.html>`_. Any symbolic expression in the columns ``['x', 'y', 'z']`` of ``self`` will be substituted with value. Args: symb_expr (sympy expression): value : perform_checks (bool): If ``perform_checks is True``, it is asserted, that the resulting Zmatrix can be converted to cartesian coordinates. Dummy atoms will be inserted automatically if necessary. Returns: Cartesian: Cartesian with substituted symbolic expressions. If all resulting sympy expressions in a column are numbers, the column is recasted to 64bit float. """ cols = ['x', 'y', 'z'] out = self.copy() def get_subs_f(*args): def subs_function(x): if hasattr(x, 'subs'): x = x.subs(*args) try: x = float(x) except TypeError: pass return x return subs_function for col in cols: if out.loc[:, col].dtype is np.dtype('O'): out.loc[:, col] = out.loc[:, col].map(get_subs_f(*args)) try: out.loc[:, col] = out.loc[:, col].astype('f8') except (SystemError, TypeError): pass return out
0.001219
def set_position(cls, resource_id, to_position, db_session=None, *args, **kwargs): """ Sets node position for new node in the tree :param resource_id: resource to move :param to_position: new position :param db_session: :return:def count_children(cls, resource_id, db_session=None): """ db_session = get_db_session(db_session) # lets lock rows to prevent bad tree states resource = ResourceService.lock_resource_for_update( resource_id=resource_id, db_session=db_session ) cls.check_node_position( resource.parent_id, to_position, on_same_branch=True, db_session=db_session ) cls.shift_ordering_up(resource.parent_id, to_position, db_session=db_session) db_session.flush() db_session.expire(resource) resource.ordering = to_position return True
0.005476
def linear_regression(self, target, regression_length, mask=NotSpecified): """ Construct a new Factor that performs an ordinary least-squares regression predicting the columns of `self` from `target`. This method can only be called on factors which are deemed safe for use as inputs to other factors. This includes `Returns` and any factors created from `Factor.rank` or `Factor.zscore`. Parameters ---------- target : zipline.pipeline.Term with a numeric dtype The term to use as the predictor/independent variable in each regression. This may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, regressions are computed asset-wise. regression_length : int Length of the lookback window over which to compute each regression. mask : zipline.pipeline.Filter, optional A Filter describing which assets should be regressed with the target slice each day. Returns ------- regressions : zipline.pipeline.factors.RollingLinearRegression A new Factor that will compute linear regressions of `target` against the columns of `self`. Examples -------- Suppose we want to create a factor that regresses AAPL's 10-day returns against the 10-day returns of all other assets, computing each regression over 30 days. This can be achieved by doing the following:: returns = Returns(window_length=10) returns_slice = returns[sid(24)] aapl_regressions = returns.linear_regression( target=returns_slice, regression_length=30, ) This is equivalent to doing:: aapl_regressions = RollingLinearRegressionOfReturns( target=sid(24), returns_length=10, regression_length=30, ) See Also -------- :func:`scipy.stats.linregress` :class:`zipline.pipeline.factors.RollingLinearRegressionOfReturns` """ from .statistical import RollingLinearRegression return RollingLinearRegression( dependent=self, independent=target, regression_length=regression_length, mask=mask, )
0.000851
def calc_paired_insert_stats(in_bam, nsample=1000000): """Retrieve statistics for paired end read insert distances. """ dists = [] n = 0 with pysam.Samfile(in_bam, "rb") as in_pysam: for read in in_pysam: if read.is_proper_pair and read.is_read1: n += 1 dists.append(abs(read.isize)) if n >= nsample: break return insert_size_stats(dists)
0.002222
def envelope(self, instrument): """ Computes isotopic envelope for a given instrument model :param instrument: instrument model to use :returns: isotopic envelope as a function of mass :rtype: function float(mz: float) """ def envelopeFunc(mz): if isinstance(mz, numbers.Number): return ims.spectrum_envelope(self.ptr, instrument.ptr, mz) mzs = _cffi_buffer(mz, 'd') n = len(mz) buf = _cffi_buffer(n, 'f') ret = ims.spectrum_envelope_plot(self.ptr, instrument.ptr, mzs.ptr, n, buf.ptr) if ret < 0: _raise_ims_exception() return buf.python_data() return envelopeFunc
0.004011
def p_reset(self, program): """ reset : RESET primary """ program[0] = node.Reset([program[2]]) self.verify_reg(program[2], 'qreg')
0.011696
def ip_prefixes_sanity_check(config, bird_configuration): """Sanity check on IP prefixes. Arguments: config (obg): A configparser object which holds our configuration. bird_configuration (dict): A dictionary, which holds Bird configuration per IP protocol version. """ for ip_version in bird_configuration: modify_ip_prefixes(config, bird_configuration[ip_version]['config_file'], bird_configuration[ip_version]['variable_name'], bird_configuration[ip_version]['dummy_ip_prefix'], bird_configuration[ip_version]['reconfigure_cmd'], bird_configuration[ip_version]['keep_changes'], bird_configuration[ip_version]['changes_counter'], ip_version)
0.001135
def _get_indices(self, data): """ Compute indices along temporal dimension corresponding to the sought percentile :param data: Input 3D array holding the reference band :type data: numpy array :return: 2D array holding the temporal index corresponding to percentile """ indices = self._index_by_percentile(data, self.percentile) return indices
0.009709
def quantile(x, q): """ Calculates the q quantile of x. This is the value of x greater than q% of the ordered values from x. :param x: the time series to calculate the feature of :type x: numpy.ndarray :param q: the quantile to calculate :type q: float :return: the value of this feature :return type: float """ x = pd.Series(x) return pd.Series.quantile(x, q)
0.004938
def create_cache_cluster(name, wait=600, security_groups=None, region=None, key=None, keyid=None, profile=None, **args): ''' Create a cache cluster. Example: .. code-block:: bash salt myminion boto3_elasticache.create_cache_cluster name=myCacheCluster \ Engine=redis \ CacheNodeType=cache.t2.micro \ NumCacheNodes=1 \ SecurityGroupIds='[sg-11223344]' \ CacheSubnetGroupName=myCacheSubnetGroup ''' if security_groups: if not isinstance(security_groups, list): security_groups = [security_groups] sgs = __salt__['boto_secgroup.convert_to_group_ids'](groups=security_groups, region=region, key=key, keyid=keyid, profile=profile) if 'SecurityGroupIds' not in args: args['SecurityGroupIds'] = [] args['SecurityGroupIds'] += sgs args = dict([(k, v) for k, v in args.items() if not k.startswith('_')]) return _create_resource(name, name_param='CacheClusterId', desc='cache cluster', res_type='cache_cluster', wait=wait, status_param='CacheClusterStatus', region=region, key=key, keyid=keyid, profile=profile, **args)
0.006431
def has_readonly(self, s): """Tests whether store `s` is read-only.""" for t in self.transitions: if list(t.lhs[s]) != list(t.rhs[s]): return False return True
0.009479
def filter_counter(self, counter, min=2, max=100000000): """ Filter the counted records. Returns: List with record numbers. """ records_filterd = {} counter_all_records = 0 for item in counter: counter_all_records += 1 if max > counter[item] >= min: records_filterd[item] = counter[item] self.stat['user_record_events'] = counter_all_records self.stat['records_filtered'] = len(records_filterd) return records_filterd
0.003711
def null_lml(self): """ Log of the marginal likelihood for the null hypothesis. It is implemented as :: 2·log(p(Y)) = -n·p·log(2𝜋s) - log|K| - n·p, for which s and 𝚩 are optimal. Returns ------- lml : float Log of the marginal likelihood. """ np = self._nsamples * self._ntraits scale = self.null_scale return self._static_lml() / 2 - np * safe_log(scale) / 2 - np / 2
0.004132
def types(self): """A tuple containing the value types for this Slot. The Python equivalent of the CLIPS deftemplate-slot-types function. """ data = clips.data.DataObject(self._env) lib.EnvDeftemplateSlotTypes( self._env, self._tpl, self._name, data.byref) return tuple(data.value) if isinstance(data.value, list) else ()
0.005195
def set_copyright(self, copyright=None): """Sets the copyright. :param copyright: the new copyright :type copyright: ``string`` :raise: ``InvalidArgument`` -- ``copyright`` is invalid :raise: ``NoAccess`` -- ``Metadata.isReadOnly()`` is ``true`` :raise: ``NullArgument`` -- ``copyright`` is ``null`` *compliance: mandatory -- This method must be implemented.* """ if copyright is None: raise NullArgument() metadata = Metadata(**settings.METADATA['copyright']) if metadata.is_read_only(): raise NoAccess() if self._is_valid_input(copyright, metadata, array=False): self._my_map['copyright']['text'] = copyright else: raise InvalidArgument()
0.002516
def _initialize_rest(self): """Used to initialize the View object on first use. """ if self._submit_context is None: raise ValueError("View has not been created.") job = self._submit_context._job_access() self._view_object = job.get_views(name=self.name)[0]
0.006472
def calculate(self, token_list_x, token_list_y): ''' Calculate similarity with the Dice coefficient. Concrete method. Args: token_list_x: [token, token, token, ...] token_list_y: [token, token, token, ...] Returns: Similarity. ''' x, y = self.unique(token_list_x, token_list_y) try: result = 2 * len(x & y) / float(sum(map(len, (x, y)))) except ZeroDivisionError: result = 0.0 return result
0.008576
def create_code_cell(block): """Create a notebook code cell from a block.""" code_cell = nbbase.new_code_cell(source=block['content']) attr = block['attributes'] if not attr.is_empty: code_cell.metadata \ = nbbase.NotebookNode({'attributes': attr.to_dict()}) execution_count = attr.kvs.get('n') if not execution_count: code_cell.execution_count = None else: code_cell.execution_count = int(execution_count) return code_cell
0.003565
def get_vdW_settings(self): '''Determine the vdW type if using vdW xc functional or correction scheme from the input otherwise''' xc = self.get_xc_functional().scalars[0].value if 'vdw' in xc.lower(): # vdW xc functional return Value(scalars=[Scalar(value=xc)]) else: # look for vdw_corr in input vdW_dict = {'xdm':'Becke-Johnson XDM', 'ts': 'Tkatchenko-Scheffler', 'ts-vdw': 'Tkatchenko-Scheffler', 'tkatchenko-scheffler': 'Tkatchenko-Scheffler', 'grimme-d2': 'Grimme D2', 'dft-d': 'Grimme D2'} if self._get_line('vdw_corr', self.inputf, return_string=False, case_sens=False): line = self._get_line('vdw_corr', self.inputf, return_string=True, case_sens=False) vdwkey = str(line.split('=')[-1].replace("'", "").replace(',', '').lower().rstrip()) return Value(scalars=[Scalar(value=vdW_dict[vdwkey])]) return None
0.007569