text
stringlengths
78
104k
score
float64
0
0.18
def build_napp_package(napp_name): """Build the .napp file to be sent to the napps server. Args: napp_identifier (str): Identifier formatted as <username>/<napp_name> Return: file_payload (binary): The binary representation of the napp package that will be POSTed to the napp server. """ ignored_extensions = ['.swp', '.pyc', '.napp'] ignored_dirs = ['__pycache__', '.git', '.tox'] files = os.listdir() for filename in files: if os.path.isfile(filename) and '.' in filename and \ filename.rsplit('.', 1)[1] in ignored_extensions: files.remove(filename) elif os.path.isdir(filename) and filename in ignored_dirs: files.remove(filename) # Create the '.napp' package napp_file = tarfile.open(napp_name + '.napp', 'x:xz') for local_f in files: napp_file.add(local_f) napp_file.close() # Get the binary payload of the package file_payload = open(napp_name + '.napp', 'rb') # remove the created package from the filesystem os.remove(napp_name + '.napp') return file_payload
0.001595
def validate(self, expected_type, is_array, val): """ Validates that the expected type matches the value Returns two element tuple: (bool, string) - `bool` - True if valid, False if not - `string` - Description of validation error, or None if valid :Parameters: expected_type string name of the type expected. This may be a Barrister primitive, or a user defined type. is_array If True then require that the val be a list val Value to validate against the expected type """ if val == None: if expected_type.optional: return True, None else: return False, "Value cannot be null" elif is_array: if not isinstance(val, list): return self._type_err(val, "list") else: for v in val: ok, msg = self.validate(expected_type, False, v) if not ok: return ok, msg elif expected_type.type == "int": if not isinstance(val, (long, int)): return self._type_err(val, "int") elif expected_type.type == "float": if not isinstance(val, (float, int, long)): return self._type_err(val, "float") elif expected_type.type == "bool": if not isinstance(val, bool): return self._type_err(val, "bool") elif expected_type.type == "string": if not isinstance(val, (str, unicode)): return self._type_err(val, "string") else: return self.get(expected_type.type).validate(val) return True, None
0.002286
def delete_processing_block(processing_block_id): """Delete Processing Block with the specified ID""" scheduling_block_id = processing_block_id.split(':')[0] config = get_scheduling_block(scheduling_block_id) processing_blocks = config.get('processing_blocks') processing_block = list(filter( lambda x: x.get('id') == processing_block_id, processing_blocks))[0] config['processing_blocks'].remove(processing_block) DB.set('scheduling_block/{}'.format(config['id']), json.dumps(config)) # Add a event to the scheduling block event list to notify # of a new scheduling block being added to the db. DB.rpush('processing_block_events', json.dumps(dict(type="deleted", id=processing_block_id)))
0.001332
def _register_if_needed(cls, run_object): """Registers Trainable or Function at runtime. Assumes already registered if run_object is a string. Does not register lambdas because they could be part of variant generation. Also, does not inspect interface of given run_object. Arguments: run_object (str|function|class): Trainable to run. If string, assumes it is an ID and does not modify it. Otherwise, returns a string corresponding to the run_object name. Returns: A string representing the trainable identifier. """ if isinstance(run_object, six.string_types): return run_object elif isinstance(run_object, types.FunctionType): if run_object.__name__ == "<lambda>": logger.warning( "Not auto-registering lambdas - resolving as variant.") return run_object else: name = run_object.__name__ register_trainable(name, run_object) return name elif isinstance(run_object, type): name = run_object.__name__ register_trainable(name, run_object) return name else: raise TuneError("Improper 'run' - not string nor trainable.")
0.001483
def set_fft_params(func): """Decorate a method to automatically convert quantities to samples """ @wraps(func) def wrapped_func(series, method_func, *args, **kwargs): """Wrap function to normalize FFT params before execution """ if isinstance(series, tuple): data = series[0] else: data = series # normalise FFT parmeters for all libraries normalize_fft_params(data, kwargs=kwargs, func=method_func) return func(series, method_func, *args, **kwargs) return wrapped_func
0.001748
def error(self, i: int=None) -> str: """ Returns an error message """ head = "[" + colors.red("error") + "]" if i is not None: head = str(i) + " " + head return head
0.017778
def segments(self, index=None, params=None): """ The segments command is the detailed view of Lucene segments per index. `<https://www.elastic.co/guide/en/elasticsearch/reference/current/cat-segments.html>`_ :arg index: A comma-separated list of index names to limit the returned information :arg bytes: The unit in which to display byte values, valid choices are: 'b', 'k', 'kb', 'm', 'mb', 'g', 'gb', 't', 'tb', 'p', 'pb' :arg format: a short version of the Accept header, e.g. json, yaml :arg h: Comma-separated list of column names to display :arg help: Return help information, default False :arg s: Comma-separated list of column names or column aliases to sort by :arg v: Verbose mode. Display column headers, default False """ return self.transport.perform_request('GET', _make_path('_cat', 'segments', index), params=params)
0.00409
def _process_stocks(self, limit): """ Stock definitions. Here we instantiate them as instances of the given taxon. :param limit: :return: """ if self.test_mode: graph = self.testgraph else: graph = self.graph model = Model(graph) line_counter = 0 raw = '/'.join((self.rawdir, 'stock')) LOG.info("building labels for stocks") with open(raw, 'r') as f: f.readline() # read the header row; skip filereader = csv.reader(f, delimiter='\t', quotechar='\"') for line in filereader: line_counter += 1 (stock_id, dbxref_id, organism_id, name, uniquename, description, type_id, is_obsolete) = line # 2 12153979 1 2 FBst0000002 w[*]; betaTub60D[2] Kr[If-1]/CyO 10670 stock_num = stock_id stock_id = 'FlyBase:'+uniquename self.idhash['stock'][stock_num] = stock_id stock_label = description organism_key = organism_id taxon = self.idhash['organism'][organism_key] # from what i can tell, the dbxrefs are just more FBst, # so no added information vs uniquename if not self.test_mode and limit is not None and line_counter > limit: pass else: if self.test_mode \ and int(stock_num) not in self.test_keys['strain']: continue # tax_label = self.label_hash[taxon] # unused # add the tax in case it hasn't been already model.addClassToGraph(taxon) model.addIndividualToGraph(stock_id, stock_label, taxon) if is_obsolete == 't': model.addDeprecatedIndividual(stock_id) return
0.001998
def parse_data_port_mappings(mappings, default_bridge='br-data'): """Parse data port mappings. Mappings must be a space-delimited list of bridge:port. Returns dict of the form {port:bridge} where ports may be mac addresses or interface names. """ # NOTE(dosaboy): we use rvalue for key to allow multiple values to be # proposed for <port> since it may be a mac address which will differ # across units this allowing first-known-good to be chosen. _mappings = parse_mappings(mappings, key_rvalue=True) if not _mappings or list(_mappings.values()) == ['']: if not mappings: return {} # For backwards-compatibility we need to support port-only provided in # config. _mappings = {mappings.split()[0]: default_bridge} ports = _mappings.keys() if len(set(ports)) != len(ports): raise Exception("It is not allowed to have the same port configured " "on more than one bridge") return _mappings
0.000981
def fqwe(fEM, time, freq, qweargs): r"""Fourier Transform using Quadrature-With-Extrapolation. It follows the QWE methodology [Key12]_ for the Hankel transform, see ``hqwe`` for more information. The function is called from one of the modelling routines in :mod:`model`. Consult these modelling routines for a description of the input and output parameters. This function is based on ``get_CSEM1D_TD_QWE.m`` from the source code distributed with [Key12]_. ``fqwe`` checks how steep the decay of the frequency-domain result is, and calls QUAD for the very steep interval, for which QWE is not suited. Returns ------- tEM : array Returns time-domain EM response of ``fEM`` for given ``time``. conv : bool If true, QWE/QUAD converged. If not, <ftarg> might have to be adjusted. """ # Get rtol, atol, nquad, maxint, diff_quad, a, b, and limit rtol, atol, nquad, maxint, _, diff_quad, a, b, limit, sincos = qweargs # Calculate quadrature intervals for all offset xint = np.concatenate((np.array([1e-20]), np.arange(1, maxint+1)*np.pi)) if sincos == np.cos: # Adjust zero-crossings if cosine-transform xint[1:] -= np.pi/2 intervals = xint/time[:, None] # Get Gauss Quadrature Weights g_x, g_w = special.p_roots(nquad) # Pre-compute the Bessel functions at fixed quadrature points, multiplied # by the corresponding Gauss quadrature weight. dx = np.repeat(np.diff(xint)/2, nquad) Bx = dx*(np.tile(g_x, maxint) + 1) + np.repeat(xint[:-1], nquad) SS = sincos(Bx)*np.tile(g_w, maxint) # Interpolate in frequency domain tEM_rint = iuSpline(np.log(2*np.pi*freq), fEM.real) tEM_iint = iuSpline(np.log(2*np.pi*freq), -fEM.imag) # Check if we use QWE or SciPy's QUAD # If there are any steep decays within an interval we have to use QUAD, as # QWE is not designed for these intervals. check0 = np.log(intervals[:, :-1]) check1 = np.log(intervals[:, 1:]) doqwe = np.all((np.abs(tEM_rint(check0) + 1j*tEM_iint(check0)) / np.abs(tEM_rint(check1) + 1j*tEM_iint(check1)) < diff_quad), 1) # Choose imaginary part if sine-transform, else real part if sincos == np.sin: tEM_int = tEM_iint else: tEM_int = tEM_rint # Set quadargs if not given: if not limit: limit = maxint if not a: a = intervals[:, 0] else: a = a*np.ones(time.shape) if not b: b = intervals[:, -1] else: b = b*np.ones(time.shape) # Pre-allocate output array tEM = np.zeros(time.size) conv = True # Carry out SciPy's Quad if required if np.any(~doqwe): def sEMquad(w, t): r"""Return scaled, interpolated value of tEM_int for ``w``.""" return tEM_int(np.log(w))*sincos(w*t) # Loop over times that require QUAD for i in np.where(~doqwe)[0]: out = integrate.quad(sEMquad, a[i], b[i], (time[i],), 1, atol, rtol, limit) tEM[i] = out[0] # If there is a fourth output from QUAD, it means it did not conv. if len(out) > 3: conv *= False # Carry out QWE for 'well-behaved' intervals if np.any(doqwe): sEM = tEM_int(np.log(Bx/time[doqwe, None]))*SS tEM[doqwe], _, tc = qwe(rtol, atol, maxint, sEM, intervals[doqwe, :]) conv *= tc return tEM, conv
0.000285
def find_element_by_jquery(step, browser, selector): """Find a single HTML element using jQuery-style selectors.""" elements = find_elements_by_jquery(browser, selector) assert_true(step, len(elements) > 0) return elements[0]
0.004149
def check_readable(self, timeout): """ Poll ``self.stdout`` and return True if it is readable. :param float timeout: seconds to wait I/O :return: True if readable, else False :rtype: boolean """ rlist, wlist, xlist = select.select([self._stdout], [], [], timeout) return bool(len(rlist))
0.005682
def find_melody(file='440_480_clean.wav', chunksize=512): """Cut the sample into chunks and analyze each chunk. Return a list [(Note, chunks)] where chunks is the number of chunks where that note is the most dominant. If two consequent chunks turn out to return the same Note they are grouped together. This is an experimental function. """ (data, freq, bits) = data_from_file(file) res = [] for d in analyze_chunks(data, freq, bits, chunksize): if res != []: if res[-1][0] == d: val = res[-1][1] res[-1] = (d, val + 1) else: res.append((d, 1)) else: res.append((d, 1)) return [(x, freq) for (x, freq) in res]
0.001323
def diff(section): """ For each section defined in the local config file, look up for a folder inside the local config folder named after the section. Uploads the environemnt file named as in the S3CONF variable for this section to the remote S3CONF path. """ try: settings = config.Settings(section=section) storage = STORAGES['s3'](settings=settings) conf = s3conf.S3Conf(storage=storage, settings=settings) local_root = os.path.join(config.LOCAL_CONFIG_FOLDER, section) click.echo(''.join(conf.diff(local_root))) except exceptions.EnvfilePathNotDefinedError: raise exceptions.EnvfilePathNotDefinedUsageError()
0.00436
def _make_read_lob_request(self, readoffset, readlength): """Make low level request to HANA database (READLOBREQUEST). Compose request message with proper parameters and read lob data from second part object of reply. """ self._connection._check_closed() request = RequestMessage.new( self._connection, RequestSegment( message_types.READLOB, (ReadLobRequest(self._lob_header.locator_id, readoffset, readlength),) ) ) response = self._connection.send_request(request) # The segment of the message contains two parts. # 1) StatementContext -> ignored for now # 2) ReadLobReply -> contains some header information and actual LOB data data_part = response.segments[0].parts[1] # return actual lob container (BytesIO/TextIO): return data_part.data
0.005459
def topics(text): """Return a list of topics.""" detectors = [ detector_50_Cent ] ts = [] for detector in detectors: ts.append(detector(text)) return [t[0] for t in ts if t[1] > 0.95]
0.004464
def get_transitions_for(brain_or_object): """List available workflow transitions for all workflows :param brain_or_object: A single catalog brain or content object :type brain_or_object: ATContentType/DexterityContentType/CatalogBrain :returns: All possible available and allowed transitions :rtype: list[dict] """ workflow = get_tool('portal_workflow') transitions = [] instance = get_object(brain_or_object) for wfid in get_workflows_for(brain_or_object): wf = workflow[wfid] tlist = wf.getTransitionsFor(instance) transitions.extend([t for t in tlist if t not in transitions]) return transitions
0.001499
def dim_iter(self, *dim_strides, **kwargs): """ Recursively iterate over the (dimension, stride) tuples specified in dim_strides, returning a tuple of dictionaries describing a dimension update. For example, the following call effectively produces 2 loops over the 'ntime' and 'nchan' dimensions in chunks of 10 and 4 respectively. .. code-block:: python for d in cube.dim_iter(('ntime', 10), ('nchan', 4)) cube.update_dimensions(d) Parameters ---------- *dim_stride: list list of (dimension, stride) tuples Returns ------- iterator Iterator produces dictionaries describing dimensions updates. :code:`{'name':'ntime', 'lower_extent': 100, 'upper_extent': 200 }` """ # Extract dimension names dims = [ds[0] for ds in dim_strides] def _create_dim_dicts(*args): return tuple({ 'name': d, 'lower_extent': s, 'upper_extent': e } for (d, (s, e)) in args) # Return a tuple-dict-creating generator return (_create_dim_dicts(*zip(dims, s)) for s in self.endpoint_iter(*dim_strides, **kwargs))
0.005397
def save(self): """ Save current state of config dictionary. """ with open(self.config_file, "w") as f: f.write(dump(self.config, default_flow_style=False))
0.014925
def copy_file(aws_access_key_id, aws_secret_access_key, bucket_name, file, s3_folder): """ copies file to bucket s3_folder """ # Connect to the bucket bucket = s3_bucket(aws_access_key_id, aws_secret_access_key, bucket_name) key = boto.s3.key.Key(bucket) if s3_folder: target_name = '%s/%s' % (s3_folder, os.path.basename(file)) else: target_name = os.path.basename(file) key.key = target_name print('Uploading %s to %s' % (file, target_name)) key.set_contents_from_filename(file) print('Upload %s FINISHED: %s' % (file, dt.now()))
0.003333
def duplicate(self, new_parent=None): "Create a new object exactly similar to self" kwargs = {} for spec_name, spec in self._meta.specs.items(): value = getattr(self, spec_name) if isinstance(value, Color): print "COLOR", value, value.default if value.default: value = None if value is not None: kwargs[spec_name] = value del kwargs['parent'] new_id = wx.NewId() kwargs['id'] = new_id kwargs['name'] = "%s_%s" % (kwargs['name'], new_id) new_obj = self.__class__(new_parent or self.get_parent(), **kwargs) # recursively create a copy of each child (in the new parent!) for child in self: child.duplicate(new_obj) return new_obj
0.003529
def get_timeout(self): """ Checks if any timeout for the requests to DigitalOcean is required. To set a timeout, use the REQUEST_TIMEOUT_ENV_VAR environment variable. """ timeout_str = os.environ.get(REQUEST_TIMEOUT_ENV_VAR) if timeout_str: try: return float(timeout_str) except: self._log.error('Failed parsing the request read timeout of ' '"%s". Please use a valid float number!' % timeout_str) return None
0.006525
def get_turn_delta(self, branch=None, turn=None, tick_from=0, tick_to=None): """Get a dictionary describing changes made on a given turn. If ``tick_to`` is not supplied, report all changes after ``tick_from`` (default 0). The keys are graph names. Their values are dictionaries of the graphs' attributes' new values, with ``None`` for deleted keys. Also in those graph dictionaries are special keys 'node_val' and 'edge_val' describing changes to node and edge attributes, and 'nodes' and 'edges' full of booleans indicating whether a node or edge exists. :arg branch: A branch of history; defaults to the current branch :arg turn: The turn in the branch; defaults to the current turn :arg tick_from: Starting tick; defaults to 0 """ branch = branch or self.branch turn = turn or self.turn tick_to = tick_to or self.tick delta = {} if tick_from < tick_to: gvbranches = self._graph_val_cache.settings nbranches = self._nodes_cache.settings nvbranches = self._node_val_cache.settings ebranches = self._edges_cache.settings evbranches = self._edge_val_cache.settings else: gvbranches = self._graph_val_cache.presettings nbranches = self._nodes_cache.presettings nvbranches = self._node_val_cache.presettings ebranches = self._edges_cache.presettings evbranches = self._edge_val_cache.presettings if branch in gvbranches and turn in gvbranches[branch]: for graph, key, value in gvbranches[branch][turn][tick_from:tick_to]: if graph in delta: delta[graph][key] = value else: delta[graph] = {key: value} if branch in nbranches and turn in nbranches[branch]: for graph, node, exists in nbranches[branch][turn][tick_from:tick_to]: delta.setdefault(graph, {}).setdefault('nodes', {})[node] = bool(exists) if branch in nvbranches and turn in nvbranches[branch]: for graph, node, key, value in nvbranches[branch][turn][tick_from:tick_to]: if ( graph in delta and 'nodes' in delta[graph] and node in delta[graph]['nodes'] and not delta[graph]['nodes'][node] ): continue nodevd = delta.setdefault(graph, {}).setdefault('node_val', {}) if node in nodevd: nodevd[node][key] = value else: nodevd[node] = {key: value} graph_objs = self._graph_objs if branch in ebranches and turn in ebranches[branch]: for graph, orig, dest, idx, exists in ebranches[branch][turn][tick_from:tick_to]: if graph_objs[graph].is_multigraph(): if ( graph in delta and 'edges' in delta[graph] and orig in delta[graph]['edges'] and dest in delta[graph]['edges'][orig] and idx in delta[graph]['edges'][orig][dest] and not delta[graph]['edges'][orig][dest][idx] ): continue delta.setdefault(graph, {}).setdefault('edges', {})\ .setdefault(orig, {}).setdefault(dest, {})[idx] = bool(exists) else: if ( graph in delta and 'edges' in delta[graph] and orig in delta[graph]['edges'] and dest in delta[graph]['edges'][orig] and not delta[graph]['edges'][orig][dest] ): continue delta.setdefault(graph, {}).setdefault('edges', {})\ .setdefault(orig, {})[dest] = bool(exists) if branch in evbranches and turn in evbranches[branch]: for graph, orig, dest, idx, key, value in evbranches[branch][turn][tick_from:tick_to]: edgevd = delta.setdefault(graph, {}).setdefault('edge_val', {})\ .setdefault(orig, {}).setdefault(dest, {}) if graph_objs[graph].is_multigraph(): if idx in edgevd: edgevd[idx][key] = value else: edgevd[idx] = {key: value} else: edgevd[key] = value return delta
0.003277
def add_field(self, model, field): """Ran when a field is added to a model.""" super(SchemaEditor, self).add_field(model, field) for mixin in self.post_processing_mixins: mixin.add_field(model, field)
0.008403
async def set_version(self, tp, params, version=None, elem=None): """ Stores version to the stream if not stored yet :param tp: :param params: :param version: :param elem: :return: """ self.registry.set_tr(None) tw = TypeWrapper(tp, params) if not tw.is_versioned(): return TypeWrapper.ELEMENTARY_RES # If not in the DB, store to the archive at the current position if not self.version_db.is_versioned(tw): if version is None: version = self._cur_version(tw, elem) await dump_uvarint(self.iobj, 0) await dump_uvarint(self.iobj, version) self.version_db.set_version(tw, 0, version) return self.version_db.get_version(tw)[1]
0.002457
def _convert_service_properties_to_xml(logging, hour_metrics, minute_metrics, cors, target_version=None, delete_retention_policy=None, static_website=None): ''' <?xml version="1.0" encoding="utf-8"?> <StorageServiceProperties> <Logging> <Version>version-number</Version> <Delete>true|false</Delete> <Read>true|false</Read> <Write>true|false</Write> <RetentionPolicy> <Enabled>true|false</Enabled> <Days>number-of-days</Days> </RetentionPolicy> </Logging> <HourMetrics> <Version>version-number</Version> <Enabled>true|false</Enabled> <IncludeAPIs>true|false</IncludeAPIs> <RetentionPolicy> <Enabled>true|false</Enabled> <Days>number-of-days</Days> </RetentionPolicy> </HourMetrics> <MinuteMetrics> <Version>version-number</Version> <Enabled>true|false</Enabled> <IncludeAPIs>true|false</IncludeAPIs> <RetentionPolicy> <Enabled>true|false</Enabled> <Days>number-of-days</Days> </RetentionPolicy> </MinuteMetrics> <Cors> <CorsRule> <AllowedOrigins>comma-separated-list-of-allowed-origins</AllowedOrigins> <AllowedMethods>comma-separated-list-of-HTTP-verb</AllowedMethods> <MaxAgeInSeconds>max-caching-age-in-seconds</MaxAgeInSeconds> <ExposedHeaders>comma-seperated-list-of-response-headers</ExposedHeaders> <AllowedHeaders>comma-seperated-list-of-request-headers</AllowedHeaders> </CorsRule> </Cors> <DeleteRetentionPolicy> <Enabled>true|false</Enabled> <Days>number-of-days</Days> </DeleteRetentionPolicy> <StaticWebsite> <Enabled>true|false</Enabled> <IndexDocument></IndexDocument> <ErrorDocument404Path></ErrorDocument404Path> </StaticWebsite> </StorageServiceProperties> ''' service_properties_element = ETree.Element('StorageServiceProperties') # Logging if logging: logging_element = ETree.SubElement(service_properties_element, 'Logging') ETree.SubElement(logging_element, 'Version').text = logging.version ETree.SubElement(logging_element, 'Delete').text = str(logging.delete) ETree.SubElement(logging_element, 'Read').text = str(logging.read) ETree.SubElement(logging_element, 'Write').text = str(logging.write) retention_element = ETree.SubElement(logging_element, 'RetentionPolicy') _convert_retention_policy_to_xml(logging.retention_policy, retention_element) # HourMetrics if hour_metrics: hour_metrics_element = ETree.SubElement(service_properties_element, 'HourMetrics') _convert_metrics_to_xml(hour_metrics, hour_metrics_element) # MinuteMetrics if minute_metrics: minute_metrics_element = ETree.SubElement(service_properties_element, 'MinuteMetrics') _convert_metrics_to_xml(minute_metrics, minute_metrics_element) # CORS # Make sure to still serialize empty list if cors is not None: cors_element = ETree.SubElement(service_properties_element, 'Cors') for rule in cors: cors_rule = ETree.SubElement(cors_element, 'CorsRule') ETree.SubElement(cors_rule, 'AllowedOrigins').text = ",".join(rule.allowed_origins) ETree.SubElement(cors_rule, 'AllowedMethods').text = ",".join(rule.allowed_methods) ETree.SubElement(cors_rule, 'MaxAgeInSeconds').text = str(rule.max_age_in_seconds) ETree.SubElement(cors_rule, 'ExposedHeaders').text = ",".join(rule.exposed_headers) ETree.SubElement(cors_rule, 'AllowedHeaders').text = ",".join(rule.allowed_headers) # Target version if target_version: ETree.SubElement(service_properties_element, 'DefaultServiceVersion').text = target_version # DeleteRetentionPolicy if delete_retention_policy: policy_element = ETree.SubElement(service_properties_element, 'DeleteRetentionPolicy') ETree.SubElement(policy_element, 'Enabled').text = str(delete_retention_policy.enabled) if delete_retention_policy.enabled: ETree.SubElement(policy_element, 'Days').text = str(delete_retention_policy.days) # StaticWebsite if static_website: static_website_element = ETree.SubElement(service_properties_element, 'StaticWebsite') ETree.SubElement(static_website_element, 'Enabled').text = str(static_website.enabled) if static_website.enabled: if static_website.index_document is not None: ETree.SubElement(static_website_element, 'IndexDocument').text = str(static_website.index_document) if static_website.error_document_404_path is not None: ETree.SubElement(static_website_element, 'ErrorDocument404Path').text = \ str(static_website.error_document_404_path) # Add xml declaration and serialize try: stream = BytesIO() ETree.ElementTree(service_properties_element).write(stream, xml_declaration=True, encoding='utf-8', method='xml') except: raise finally: output = stream.getvalue() stream.close() return output
0.003953
def get_task_workers(self, task_name=None, json_obj=None): """ Get workers from task :param task_name: task name :param json_obj: json object parsed from get_task_detail2 :return: list of workers .. seealso:: :class:`odps.models.Worker` """ if task_name is None and json_obj is None: raise ValueError('Either task_name or json_obj should be provided') if json_obj is None: json_obj = self.get_task_detail2(task_name) return WorkerDetail2.extract_from_json(json_obj, client=self._client, parent=self)
0.004959
def FromJsonString(self, value): """Converts a string to Duration. Args: value: A string to be converted. The string must end with 's'. Any fractional digits (or none) are accepted as long as they fit into precision. For example: "1s", "1.01s", "1.0000001s", "-3.100s Raises: ParseError: On parsing problems. """ if len(value) < 1 or value[-1] != 's': raise ParseError( 'Duration must end with letter "s": {0}.'.format(value)) try: pos = value.find('.') if pos == -1: self.seconds = int(value[:-1]) self.nanos = 0 else: self.seconds = int(value[:pos]) if value[0] == '-': self.nanos = int(round(float('-0{0}'.format(value[pos: -1])) *1e9)) else: self.nanos = int(round(float('0{0}'.format(value[pos: -1])) *1e9)) except ValueError: raise ParseError( 'Couldn\'t parse duration: {0}.'.format(value))
0.01032
def _transform_to_2d(t): """Convert vectors to column matrices, to always have a 2d shape.""" t = np.asarray(t) dim = len(t.shape) assert dim <= 2 if dim < 2: t = np.atleast_2d(t).T return t
0.004444
def get_instrument_variables(ds): ''' Returns a list of instrument variables :param netCDF4.Dataset ds: An open netCDF4 Dataset ''' candidates = [] for variable in ds.variables: instrument = getattr(ds.variables[variable], 'instrument', '') if instrument and instrument in ds.variables: if instrument not in candidates: candidates.append(instrument) instrument = getattr(ds, 'instrument', '') if instrument and instrument in ds.variables: if instrument not in candidates: candidates.append(instrument) return candidates
0.00161
def transform(self, X): """Convert categorical columns to numeric values. Parameters ---------- X : pandas.DataFrame Data to encode. Returns ------- Xt : pandas.DataFrame Encoded data. """ check_is_fitted(self, "encoded_columns_") check_columns_exist(X.columns, self.feature_names_) Xt = X.copy() for col, cat in self.categories_.items(): Xt[col].cat.set_categories(cat, inplace=True) new_data = self._encode(Xt, self.feature_names_) return new_data.loc[:, self.encoded_columns_]
0.00317
def get_unit_waveforms(recording, sorting, unit_ids=None, grouping_property=None, start_frame=None, end_frame=None, ms_before=3., ms_after=3., dtype=None, max_num_waveforms=np.inf, filter=False, bandpass=[300, 6000], save_as_features=True, verbose=False, compute_property_from_recording=False): ''' This function returns the spike waveforms from the specified unit_ids from t_start and t_stop in the form of a numpy array of spike waveforms. Parameters ---------- recording sorting unit_ids grouping_property start_frame end_frame ms_before ms_after dtype max_num_waveforms filter bandpass save_as_features verbose compute_property_from_recording Returns ------- waveforms ''' if isinstance(unit_ids, (int, np.integer)): unit_ids = [unit_ids] elif unit_ids is None: unit_ids = sorting.get_unit_ids() elif not isinstance(unit_ids, (list, np.ndarray)): raise Exception("unit_ids is not a valid in valid") if dtype is None: dtype = np.float32 waveform_list = [] if grouping_property is not None: if grouping_property not in recording.get_channel_property_names(): raise ValueError("'grouping_property' should be a property of recording extractors") if compute_property_from_recording: compute_sorting_group = True elif grouping_property not in sorting.get_unit_property_names(): print(grouping_property, ' not in sorting extractor. Computing it from the recording extractor') compute_sorting_group = True else: compute_sorting_group = False print("Waveforms by property: ", grouping_property) if not compute_sorting_group: rec_list, rec_props = se.get_sub_extractors_by_property(recording, grouping_property, return_property_list=True) sort_list, sort_props = se.get_sub_extractors_by_property(sorting, grouping_property, return_property_list=True) if len(rec_props) != len(sort_props): print('Different' + grouping_property + ' numbers: using largest number of ' + grouping_property) if len(rec_props) > len(sort_props): for i_r, rec in enumerate(rec_props): if rec not in sort_props: print('Inserting None for property ', rec) sort_list.insert(i_r, None) else: for i_s, sort in enumerate(sort_props): if sort not in rec_props: rec_list.insert(i_s, None) else: assert len(rec_list) == len(sort_list) for i_list, (rec, sort) in enumerate(zip(rec_list, sort_list)): for i, unit_id in enumerate(unit_ids): # ts_ = time.time() if sort is not None and rec is not None: if unit_id in sort.get_unit_ids(): if not filter: rec = rec else: rec = st.preprocessing.bandpass_filter(recording=rec, freq_min=bandpass[0], freq_max=bandpass[1]) fs = rec.get_sampling_frequency() n_pad = [int(ms_before * fs / 1000), int(ms_after * fs / 1000)] if verbose: print('Waveform ' + str(i + 1) + '/' + str(len(unit_ids))) waveforms, indices = _get_random_spike_waveforms(recording=rec, sorting=sort, unit=unit_id, max_num=max_num_waveforms, snippet_len=n_pad) waveforms = waveforms.swapaxes(0, 2) waveforms = waveforms.swapaxes(1, 2) waveforms = waveforms.astype(dtype) if save_as_features: if len(indices) < len(sort.get_unit_spike_train(unit_id)): if 'waveforms' not in sorting.get_unit_spike_feature_names(unit_id): features = np.array([None] * len(sorting.get_unit_spike_train(unit_id))) else: features = np.array(sorting.get_unit_spike_features(unit_id, 'waveforms')) for i, ind in enumerate(indices): features[ind] = waveforms[i] else: features = waveforms sorting.set_unit_spike_features(unit_id, 'waveforms', features) waveform_list.append(waveforms) else: for i, unit_id in enumerate(unit_ids): # ts_ = time.time() if unit_id in sorting.get_unit_ids(): rec_groups = np.array([recording.get_channel_property(ch, grouping_property) for ch in recording.get_channel_ids()]) if not filter: rec = recording else: rec = st.preprocessing.bandpass_filter(recording=recording, freq_min=bandpass[0], freq_max=bandpass[1]) fs = rec.get_sampling_frequency() n_pad = [int(ms_before * fs / 1000), int(ms_after * fs / 1000)] if verbose: print('Waveform ' + str(i + 1) + '/' + str(len(unit_ids))) waveforms, indices = _get_random_spike_waveforms(recording=recording, sorting=sorting, unit=unit_id, max_num=max_num_waveforms, snippet_len=n_pad) waveforms = waveforms.swapaxes(0, 2) waveforms = waveforms.swapaxes(1, 2) waveforms = waveforms.astype(dtype) mean_waveforms = np.squeeze(np.mean(waveforms, axis=0)) max_amp_elec = np.unravel_index(mean_waveforms.argmin(), mean_waveforms.shape)[0] group = recording.get_channel_property(recording.get_channel_ids()[max_amp_elec], grouping_property) elec_group = np.where(rec_groups == group) waveforms = np.squeeze(waveforms[:, elec_group, :]) if save_as_features: if len(indices) < len(sorting.get_unit_spike_train(unit_id)): if 'waveforms' not in sorting.get_unit_spike_feature_names(unit_id): features = np.array([None] * len(sorting.get_unit_spike_train(unit_id))) else: features = np.array(sorting.get_unit_spike_features(unit_id, 'waveforms')) for i, ind in enumerate(indices): features[ind] = waveforms[i] else: features = waveforms sorting.set_unit_spike_features(unit_id, 'waveforms', features) waveform_list.append(waveforms) return waveform_list else: for i, unit_id in enumerate(unit_ids): # ts_ = time.time() if unit_id not in sorting.get_unit_ids(): raise Exception("unit_ids is not in valid") if filter: recording = st.preprocessing.bandpass_filter(recording=recording, freq_min=bandpass[0], freq_max=bandpass[1]).get_traces(start_frame=start_frame, end_frame=end_frame) fs = recording.get_sampling_frequency() n_pad = [int(ms_before * fs / 1000), int(ms_after * fs / 1000)] if verbose: print('Waveform ' + str(i + 1) + '/' + str(len(unit_ids))) waveforms, indices = _get_random_spike_waveforms(recording=recording, sorting=sorting, unit=unit_id, max_num=max_num_waveforms, snippet_len=n_pad) # print('extract wf: ', time.time() - ts_) waveforms = waveforms.swapaxes(0, 2) waveforms = waveforms.swapaxes(1, 2) waveforms = waveforms.astype(dtype) # print('swap wf: ', time.time() - ts_) if save_as_features: if len(indices) < len(sorting.get_unit_spike_train(unit_id)): if 'waveforms' not in sorting.get_unit_spike_feature_names(unit_id): features = np.array([None] * len(sorting.get_unit_spike_train(unit_id))) else: features = np.array(sorting.get_unit_spike_features(unit_id, 'waveforms')) for i, ind in enumerate(indices): features[ind] = waveforms[i] else: features = waveforms sorting.set_unit_spike_features(unit_id, 'waveforms', features) # print('append feats: ', time.time() - ts_) waveform_list.append(waveforms) # print('append wf: ', time.time() - ts_) if len(waveform_list) == 1: return waveform_list[0] else: return waveform_list
0.004933
def GetStructFormatString(self): """Retrieves the Python struct format string. Returns: str: format string as used by Python struct or None if format string cannot be determined. """ if self._format_string is None and self._data_type_maps: format_strings = [] for member_data_type_map in self._data_type_maps: if member_data_type_map is None: return None member_format_string = member_data_type_map.GetStructFormatString() if member_format_string is None: return None format_strings.append(member_format_string) self._format_string = ''.join(format_strings) return self._format_string
0.008633
def make_psd_xmldoc(psddict, xmldoc=None): """Add a set of PSDs to a LIGOLW XML document. If the document is not given, a new one is created first. """ xmldoc = ligolw.Document() if xmldoc is None else xmldoc.childNodes[0] # the PSDs must be children of a LIGO_LW with name "psd" root_name = u"psd" Attributes = ligolw.sax.xmlreader.AttributesImpl lw = xmldoc.appendChild( ligolw.LIGO_LW(Attributes({u"Name": root_name}))) for instrument, psd in psddict.items(): xmlseries = _build_series(psd, (u"Frequency,Real", u"Frequency"), None, 'deltaF', 's^-1') fs = lw.appendChild(xmlseries) fs.appendChild(ligolw_param.Param.from_pyvalue(u"instrument", instrument)) return xmldoc
0.001198
def send(self, test=None): ''' Send the email through the Postmark system. Pass test=True to just print out the resulting JSON message being sent to Postmark ''' self._check_values() # Set up message dictionary json_message = self.to_json_message() # if (self.__html_body and not self.__text_body) and self.__multipart: # # TODO: Set up regex to strip html # pass # If test is not specified, attempt to read the Django setting if test is None: try: from django.conf import settings as django_settings test = getattr(django_settings, "POSTMARK_TEST_MODE", None) except ImportError: pass # If this is a test, just print the message if test: print('JSON message is:\n%s' % json.dumps(json_message, cls=PMJSONEncoder)) return if self.__template_id: endpoint_url = __POSTMARK_URL__ + 'email/withTemplate/' else: endpoint_url = __POSTMARK_URL__ + 'email' # Set up the url Request req = Request( endpoint_url, json.dumps(json_message, cls=PMJSONEncoder).encode('utf8'), { 'Accept': 'application/json', 'Content-Type': 'application/json', 'X-Postmark-Server-Token': self.__api_key, 'User-agent': self.__user_agent } ) # Attempt send try: # print 'sending request to postmark: %s' % json_message result = urlopen(req) jsontxt = result.read().decode('utf8') result.close() if result.code == 200: self.message_id = json.loads(jsontxt).get('MessageID', None) return True else: raise PMMailSendException('Return code %d: %s' % (result.code, result.msg)) except HTTPError as err: if err.code == 401: raise PMMailUnauthorizedException('Sending Unauthorized - incorrect API key.', err) elif err.code == 422: try: jsontxt = err.read().decode('utf8') jsonobj = json.loads(jsontxt) desc = jsonobj['Message'] error_code = jsonobj['ErrorCode'] except KeyError: raise PMMailUnprocessableEntityException('Unprocessable Entity: Description not given') if error_code == 406: raise PMMailInactiveRecipientException('You tried to send email to a recipient that has been marked as inactive.') raise PMMailUnprocessableEntityException('Unprocessable Entity: %s' % desc) elif err.code == 500: raise PMMailServerErrorException('Internal server error at Postmark. Admins have been alerted.', err) except URLError as err: if hasattr(err, 'reason'): raise PMMailURLException('URLError: Failed to reach the server: %s (See "inner_exception" for details)' % err.reason, err) elif hasattr(err, 'code'): raise PMMailURLException('URLError: %d: The server couldn\'t fufill the request. (See "inner_exception" for details)' % err.code, err) else: raise PMMailURLException('URLError: The server couldn\'t fufill the request. (See "inner_exception" for details)', err)
0.003406
def postinit(self, target, annotation, simple, value=None): """Do some setup after initialisation. :param target: What is being assigned to. :type target: NodeNG :param annotation: The type annotation of what is being assigned to. :type: NodeNG :param simple: Whether :attr:`target` is a pure name or a complex statement. :type simple: int :param value: The value being assigned to the variables. :type: NodeNG or None """ self.target = target self.annotation = annotation self.value = value self.simple = simple
0.003125
def save(self): '''saves our config objet to file''' if self.app.cfg_mode == 'json': with open(self.app.cfg_file, 'w') as opened_file: json.dump(self.app.cfg, opened_file) else: with open(self.app.cfg_file, 'w')as opened_file: yaml.dump(self.app.cfg, opened_file)
0.005831
def exists(self, path, **kwargs): """Return true if the given path exists""" try: self.get_file_status(path, **kwargs) return True except HdfsFileNotFoundException: return False
0.008439
def is_linear(self): """ Tests whether all filters in the list are linear. CascadeFilter and ParallelFilter instances are also linear if all filters they group are linear. """ return all(isinstance(filt, LinearFilter) or (hasattr(filt, "is_linear") and filt.is_linear()) for filt in self.callables)
0.002833
def get_nested_attribute(obj, attribute): """ Returns the value of the given (possibly dotted) attribute for the given object. If any of the parents on the nested attribute's name path are `None`, the value of the nested attribute is also assumed as `None`. :raises AttributeError: If any attribute access along the attribute path fails with an `AttributeError`. """ parent, attr = resolve_nested_attribute(obj, attribute) if not parent is None: attr_value = getattr(parent, attr) else: attr_value = None return attr_value
0.00339
def generate_hooked_command(cmd_name, cmd_cls, hooks): """ Returns a generated subclass of ``cmd_cls`` that runs the pre- and post-command hooks for that command before and after the ``cmd_cls.run`` method. """ def run(self, orig_run=cmd_cls.run): self.run_command_hooks('pre_hooks') orig_run(self) self.run_command_hooks('post_hooks') return type(cmd_name, (cmd_cls, object), {'run': run, 'run_command_hooks': run_command_hooks, 'pre_hooks': hooks.get('pre', []), 'post_hooks': hooks.get('post', [])})
0.00165
def direction_vector(self, other: "Point2") -> "Point2": """ Converts a vector to a direction that can face vertically, horizontally or diagonal or be zero, e.g. (0, 0), (1, -1), (1, 0) """ return self.__class__((_sign(other.x - self.x), _sign(other.y - self.y)))
0.014337
def identifierify(name): """ Clean up name so it works for a Python identifier. """ name = name.lower() name = re.sub('[^a-z0-9]', '_', name) return name
0.005917
def _tf_predict(model_dir, input_csvlines): """Prediction with a tf savedmodel. Args: model_dir: directory that contains a saved model input_csvlines: list of csv strings Returns: Dict in the form tensor_name:prediction_list. Note that the value is always a list, even if there was only 1 row in input_csvlines. """ with tf.Graph().as_default(), tf.Session() as sess: input_alias_map, output_alias_map = _tf_load_model(sess, model_dir) csv_tensor_name = list(input_alias_map.values())[0] results = sess.run(fetches=output_alias_map, feed_dict={csv_tensor_name: input_csvlines}) # convert any scalar values to a list. This may happen when there is one # example in input_csvlines and the model uses tf.squeeze on the output # tensor. if len(input_csvlines) == 1: for k, v in six.iteritems(results): if not isinstance(v, (list, np.ndarray)): results[k] = [v] # Convert bytes to string. In python3 the results may be bytes. for k, v in six.iteritems(results): if any(isinstance(x, bytes) for x in v): results[k] = [x.decode('utf-8') for x in v] return results
0.010265
def apply_security_groups(self, security_groups): """ Applies security groups to the load balancer. Applying security groups that are already registered with the Load Balancer has no effect. :type security_groups: string or List of strings :param security_groups: The name of the security group(s) to add. """ if isinstance(security_groups, str) or \ isinstance(security_groups, unicode): security_groups = [security_groups] new_sgs = self.connection.apply_security_groups_to_lb( self.name, security_groups) self.security_groups = new_sgs
0.005814
def run(self): """Load all artists into the database """ df = ArtistsInputData().load() # rename columns df.rename(columns={'artistLabel': 'name', 'genderLabel': 'gender'}, inplace=True) # attribute columns that exist in the data model attribute_columns = ['name', 'wiki_id'] # the extended model also stores the date of birth and gender if config.EXTENDED: attribute_columns += ['gender', 'year_of_birth'] # store entities and attributes self.store(df, attribute_columns) self.done()
0.00311
def netconf_session_start_source_host(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") netconf_session_start = ET.SubElement(config, "netconf-session-start", xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-notifications") source_host = ET.SubElement(netconf_session_start, "source-host") source_host.text = kwargs.pop('source_host') callback = kwargs.pop('callback', self._callback) return callback(config)
0.006048
def elapsed(self): """ Return a timedelta representation of the time passed sine the worker was running. """ if not self.start_date: return None return (self.end_date or datetime.utcnow()) - self.start_date
0.007519
def query_state(self, StateType): """ Is a button depressed? True if a button is pressed, false otherwise. """ if StateType == M_LEFT: # Checking left mouse button return self.left_pressed elif StateType == M_MIDDLE: # Checking middle mouse button return self.middle_pressed elif StateType == M_RIGHT: # Checking right mouse button return self.right_pressed
0.004124
def latents_to_frames(z_top_interp, level_eps_interp, hparams): """Decodes latents to frames.""" # Decode [z^1_t, z^2_t .. z^l_t] to [X_t] images, _, _, _ = glow_ops.encoder_decoder( "codec", z_top_interp, hparams, eps=level_eps_interp, reverse=True) images = glow_ops.postprocess(images) return images
0.018868
def vector_product(v0, v1, axis=0): """Return vector perpendicular to vectors. >>> v = vector_product([2, 0, 0], [0, 3, 0]) >>> np.allclose(v, [0, 0, 6]) True >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]] >>> v1 = [[3], [0], [0]] >>> v = vector_product(v0, v1) >>> np.allclose(v, [[0, 0, 0, 0], [0, 0, 6, 6], [0, -6, 0, -6]]) True >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]] >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]] >>> v = vector_product(v0, v1, axis=1) >>> np.allclose(v, [[0, 0, 6], [0, -6, 0], [6, 0, 0], [0, -6, 6]]) True """ return np.cross(v0, v1, axis=axis)
0.001515
def called_with(self, *args, **kwargs): """Return True if the spy was called with the specified args/kwargs. Otherwise raise VerificationError. """ expected_call = Call(*args, **kwargs) if expected_call in calls(self.spy): return True raise VerificationError( "expected %s to be called with %s, but it wasn't" % ( self.spy, expected_call.formatted_args))
0.004505
def PSD_fitting_eqn_with_background(A, OmegaTrap, Gamma, FlatBackground, omega): """ The value of the fitting equation: A / ((OmegaTrap**2 - omega**2)**2 + (omega * Gamma)**2) + FlatBackground to be fit to the PSD Parameters ---------- A : float Fitting constant A A = γ**2*Γ_0*(2*K_b*T_0)/(π*m) where: γ = conversionFactor Γ_0 = Damping factor due to environment π = pi OmegaTrap : float The trapping frequency in the axis of interest (in angular frequency) Gamma : float The damping factor Gamma = Γ = Γ_0 + δΓ where: Γ_0 = Damping factor due to environment δΓ = extra damping due to feedback or other effects FlatBackground : float Adds a constant offset to the peak to account for a flat noise background omega : float The angular frequency to calculate the value of the fitting equation at Returns ------- Value : float The value of the fitting equation """ return A / ((OmegaTrap**2 - omega**2)**2 + omega**2 * (Gamma)**2) + FlatBackground
0.005978
def __substituteFromClientStatement(self,match,prevResponse,extraSymbol="",sessionID = "general"): """ Substitute from Client statement into respose """ prev = 0 startPadding = 1+len(extraSymbol) finalResponse = "" for m in re.finditer(r'%'+extraSymbol+'[0-9]+', prevResponse): start = m.start(0) end = m.end(0) num = int(prevResponse[start+startPadding:end]) finalResponse += prevResponse[prev:start] try:finalResponse += self._quote(self._substitute(match.group(num)),sessionID) except IndexError as e:pass prev = end namedGroup = match.groupdict() if namedGroup: prevResponse = finalResponse + prevResponse[prev:] finalResponse = "" prev = 0 for m in re.finditer(r'%'+extraSymbol+'([a-zA-Z_][a-zA-Z_0-9]*)([^a-zA-Z_0-9]|$)', prevResponse): start = m.start(1) end = m.end(1) finalResponse += prevResponse[prev:start] try: value = namedGroup[prevResponse[start+startPadding:end]] if value:finalResponse += self._quote(self._substitute(value),sessionID) except KeyError as e:pass prev = end return finalResponse + prevResponse[prev:]
0.016595
def apply(cls, self, *args, **kwargs): """ Applies kwargs arguments to the instance passed as the first argument to the call. For defined INPUTS, OUTPUTS and PARAMETERS the method extracts a corresponding value from kwargs and sets it as an instance attribute. For example, if the processor has a 'foo' parameter declared and 'foo = something' is passed to apply(), self.foo will become 'something'. """ for key in kwargs: if key in [ x.name for x in cls.INPUTS ]: setattr(self, key, kwargs[key]) if key in [ x.name for x in cls.OUTPUTS ]: setattr(self, key, kwargs[key]) if key in [ x.name for x in cls.PARAMETERS ]: setattr(self, key, kwargs[key])
0.013819
def gotoHome(self): """ Navigates to the home position for the edit. """ mode = QTextCursor.MoveAnchor # select the home if QApplication.instance().keyboardModifiers() == Qt.ShiftModifier: mode = QTextCursor.KeepAnchor cursor = self.textCursor() block = projex.text.nativestring(cursor.block().text()) cursor.movePosition( QTextCursor.StartOfBlock, mode ) if block.startswith('>>> '): cursor.movePosition(QTextCursor.Right, mode, 4) elif block.startswith('... '): match = re.match('...\s*', block) cursor.movePosition(QTextCursor.Right, mode, match.end()) self.setTextCursor(cursor)
0.012771
def get_child_by_qualifier(self, parent_qualifier): """ :param parent_qualifier: time_qualifier of the parent process :return: <HierarchyEntry> child entry to the HierarchyEntry associated with the parent_qualifier or None if the given parent_qualifier is not registered in this hierarchy or None if the given parent_qualifier is the bottom process """ if parent_qualifier not in self.qualifiers: return None process_qualifiers = list(self.qualifiers) if parent_qualifier == process_qualifiers[-1]: return None parent_index = process_qualifiers.index(parent_qualifier) return self.qualifiers[process_qualifiers[parent_index + 1]]
0.00527
def norm(self, x): """Calculate the norm of an element. This is the standard implementation using `inner`. Subclasses should override it for optimization purposes. Parameters ---------- x1 : `LinearSpaceElement` Element whose norm is calculated. Returns ------- norm : float The norm of the element. """ return float(np.sqrt(self.inner(x, x).real))
0.00432
def _note_reply_pending(self, option, state): """Record the status of requested Telnet options.""" if not self.telnet_opt_dict.has_key(option): self.telnet_opt_dict[option] = TelnetOption() self.telnet_opt_dict[option].reply_pending = state
0.01087
def lemmatize(self): """Lemmatize all Units in self.unit_list. Modifies: - self.unit_list: converts the .text property into its lemmatized form. This method lemmatizes all inflected variants of permissible words to those words' respective canonical forms. This is done to ensure that each instance of a permissible word will correspond to a term vector with which semantic relatedness to other words' term vectors can be computed. (Term vectors were derived from a corpus in which inflected words were similarly lemmatized, meaning that , e.g., 'dogs' will not have a term vector to use for semantic relatedness computation.) """ for unit in self.unit_list: if lemmatizer.lemmatize(unit.text) in self.lemmas: unit.text = lemmatizer.lemmatize(unit.text)
0.006772
def populate_freqs(self): """ Populate frequency axis """ if self.header[b'foff'] < 0: f0 = self.f_end else: f0 = self.f_begin self._setup_chans() #create freq array i_vals = np.arange(self.chan_start_idx, self.chan_stop_idx) freqs = self.header[b'foff'] * i_vals + f0 return freqs
0.007692
def index(self): ''' Index funtion. ''' self.render('ext_excel/index.html', userinfo=self.userinfo, cfg=CMS_CFG, kwd={}, )
0.009259
def clean_tempdir(context, scenario): """ Clean up temporary test dirs for passed tests. Leave failed test dirs for manual inspection. """ tempdir = getattr(context, 'tempdir', None) if tempdir and scenario.status == 'passed': shutil.rmtree(tempdir) del(context.tempdir)
0.003205
def Print(self, output_writer): """Prints a human readable version of the filter. Args: output_writer (CLIOutputWriter): output writer. """ if self._date_time_ranges: for date_time_range in self._date_time_ranges: if date_time_range.start_date_time is None: end_time_string = date_time_range.end_date_time.CopyToDateTimeString() output_writer.Write('\t{0:s} after {1:s}\n'.format( date_time_range.time_value, end_time_string)) elif date_time_range.end_date_time is None: start_time_string = ( date_time_range.start_date_time.CopyToDateTimeString()) output_writer.Write('\t{0:s} before {1:s}\n'.format( date_time_range.time_value, start_time_string)) else: start_time_string = ( date_time_range.start_date_time.CopyToDateTimeString()) end_time_string = date_time_range.end_date_time.CopyToDateTimeString() output_writer.Write('\t{0:s} between {1:s} and {2:s}\n'.format( date_time_range.time_value, start_time_string, end_time_string))
0.009632
def set_min_leverage(self, min_leverage, grace_period): """Set a limit on the minimum leverage of the algorithm. Parameters ---------- min_leverage : float The minimum leverage for the algorithm. grace_period : pd.Timedelta The offset from the start date used to enforce a minimum leverage. """ deadline = self.sim_params.start_session + grace_period control = MinLeverage(min_leverage, deadline) self.register_account_control(control)
0.003759
def Defaults(self,key): """Returns default configurations for resources deployed to this group. If specified key is not defined returns None. # {"cpu":{"inherited":false},"memoryGB":{"inherited":false},"networkId":{"inherited":false}, # "primaryDns":{"value":"172.17.1.26","inherited":true},"secondaryDns":{"value":"172.17.1.27","inherited":true}, # "templateName":{"value":"WIN2012DTC-64","inherited":false}} """ if not hasattr(self,'defaults'): self.defaults = clc.v2.API.Call('GET','groups/%s/%s/defaults' % (self.alias,self.id), session=self.session) try: return(self.defaults[key]['value']) except: return(None)
0.03096
def pix2sky_ellipse(self, pixel, sx, sy, theta): """ Convert an ellipse from pixel to sky coordinates. Parameters ---------- pixel : (float, float) The (x, y) coordinates of the center of the ellipse. sx, sy : float The major and minor axes (FHWM) of the ellipse, in pixels. theta : float The rotation angle of the ellipse (degrees). theta = 0 corresponds to the ellipse being aligned with the x-axis. Returns ------- ra, dec : float The (ra, dec) coordinates of the center of the ellipse (degrees). a, b : float The semi-major and semi-minor axis of the ellipse (degrees). pa : float The position angle of the ellipse (degrees). """ ra, dec = self.pix2sky(pixel) x, y = pixel v_sx = [x + sx * np.cos(np.radians(theta)), y + sx * np.sin(np.radians(theta))] ra2, dec2 = self.pix2sky(v_sx) major = gcd(ra, dec, ra2, dec2) pa = bear(ra, dec, ra2, dec2) v_sy = [x + sy * np.cos(np.radians(theta - 90)), y + sy * np.sin(np.radians(theta - 90))] ra2, dec2 = self.pix2sky(v_sy) minor = gcd(ra, dec, ra2, dec2) pa2 = bear(ra, dec, ra2, dec2) - 90 # The a/b vectors are perpendicular in sky space, but not always in pixel space # so we have to account for this by calculating the angle between the two vectors # and modifying the minor axis length defect = pa - pa2 minor *= abs(np.cos(np.radians(defect))) return ra, dec, major, minor, pa
0.002375
def _install_indv_pkg(self, pkg_name, pkg_file): ''' Install one individual package ''' self.ui.status('... installing {0}'.format(pkg_name)) formula_tar = tarfile.open(pkg_file, 'r:bz2') formula_ref = formula_tar.extractfile('{0}/FORMULA'.format(pkg_name)) formula_def = salt.utils.yaml.safe_load(formula_ref) for field in ('version', 'release', 'summary', 'description'): if field not in formula_def: raise SPMPackageError('Invalid package: the {0} was not found'.format(field)) pkg_files = formula_tar.getmembers() # First pass: check for files that already exist existing_files = self._pkgfiles_fun('check_existing', pkg_name, pkg_files, formula_def) if existing_files and not self.opts['force']: raise SPMPackageError('Not installing {0} due to existing files:\n\n{1}'.format( pkg_name, '\n'.join(existing_files)) ) # We've decided to install self._pkgdb_fun('register_pkg', pkg_name, formula_def, self.db_conn) # Run the pre_local_state script, if present if 'pre_local_state' in formula_def: high_data = self._render(formula_def['pre_local_state'], formula_def) ret = self.caller.cmd('state.high', data=high_data) if 'pre_tgt_state' in formula_def: log.debug('Executing pre_tgt_state script') high_data = self._render(formula_def['pre_tgt_state']['data'], formula_def) tgt = formula_def['pre_tgt_state']['tgt'] ret = self.client.run_job( tgt=formula_def['pre_tgt_state']['tgt'], fun='state.high', tgt_type=formula_def['pre_tgt_state'].get('tgt_type', 'glob'), timout=self.opts['timeout'], data=high_data, ) # No defaults for this in config.py; default to the current running # user and group if salt.utils.platform.is_windows(): uname = gname = salt.utils.win_functions.get_current_user() uname_sid = salt.utils.win_functions.get_sid_from_name(uname) uid = self.opts.get('spm_uid', uname_sid) gid = self.opts.get('spm_gid', uname_sid) else: uid = self.opts.get('spm_uid', os.getuid()) gid = self.opts.get('spm_gid', os.getgid()) uname = pwd.getpwuid(uid)[0] gname = grp.getgrgid(gid)[0] # Second pass: install the files for member in pkg_files: member.uid = uid member.gid = gid member.uname = uname member.gname = gname out_path = self._pkgfiles_fun('install_file', pkg_name, formula_tar, member, formula_def, self.files_conn) if out_path is not False: if member.isdir(): digest = '' else: self._verbose('Installing file {0} to {1}'.format(member.name, out_path), log.trace) file_hash = hashlib.sha1() digest = self._pkgfiles_fun('hash_file', os.path.join(out_path, member.name), file_hash, self.files_conn) self._pkgdb_fun('register_file', pkg_name, member, out_path, digest, self.db_conn) # Run the post_local_state script, if present if 'post_local_state' in formula_def: log.debug('Executing post_local_state script') high_data = self._render(formula_def['post_local_state'], formula_def) self.caller.cmd('state.high', data=high_data) if 'post_tgt_state' in formula_def: log.debug('Executing post_tgt_state script') high_data = self._render(formula_def['post_tgt_state']['data'], formula_def) tgt = formula_def['post_tgt_state']['tgt'] ret = self.client.run_job( tgt=formula_def['post_tgt_state']['tgt'], fun='state.high', tgt_type=formula_def['post_tgt_state'].get('tgt_type', 'glob'), timout=self.opts['timeout'], data=high_data, ) formula_tar.close()
0.002335
def write_encoded(file_obj, stuff, encoding='utf-8'): """ If a file is open in binary mode and a string is passed, encode and write If a file is open in text mode and bytes are passed, decode and write Parameters ----------- file_obj: file object, with 'write' and 'mode' stuff: str or bytes, stuff to be written encoding: str, encoding of text """ binary_file = 'b' in file_obj.mode string_stuff = isinstance(stuff, basestring) binary_stuff = isinstance(stuff, bytes) if not PY3: file_obj.write(stuff) elif binary_file and string_stuff: file_obj.write(stuff.encode(encoding)) elif not binary_file and binary_stuff: file_obj.write(stuff.decode(encoding)) else: file_obj.write(stuff) file_obj.flush() return stuff
0.001149
def partition(pred, iterable, tolist=False): 'Use a predicate to partition entries into false entries and true entries' # partition(is_odd, range(10)) --> 0 2 4 6 8 and 1 3 5 7 9 t1, t2 = itertools.tee(iterable) ifalse = six.moves.filterfalse(pred, t1) itrue = six.moves.filter(pred, t2) if tolist: return list(ifalse), list(itrue) else: return ifalse, itrue
0.002469
def stats(data): '''Dictionary with summary stats for data Returns: dicitonary with length, mean, sum, standard deviation,\ min and max of data ''' return {'len': len(data), 'mean': np.mean(data), 'sum': np.sum(data), 'std': np.std(data), 'min': np.min(data), 'max': np.max(data)}
0.002653
def setTypingStatus(self, status, thread_id=None, thread_type=None): """ Sets users typing status in a thread :param status: Specify the typing status :param thread_id: User/Group ID to change status in. See :ref:`intro_threads` :param thread_type: See :ref:`intro_threads` :type status: models.TypingStatus :type thread_type: models.ThreadType :raises: FBchatException if request failed """ thread_id, thread_type = self._getThread(thread_id, thread_type) data = { "typ": status.value, "thread": thread_id, "to": thread_id if thread_type == ThreadType.USER else "", "source": "mercury-chat", } j = self._post(self.req_url.TYPING, data, fix_request=True, as_json=True)
0.004866
def adjust_commission_cost_basis(self, asset, cost): """ A note about cost-basis in zipline: all positions are considered to share a cost basis, even if they were executed in different transactions with different commission costs, different prices, etc. Due to limitations about how zipline handles positions, zipline will currently spread an externally-delivered commission charge across all shares in a position. """ if asset != self.asset: raise Exception('Updating a commission for a different asset?') if cost == 0.0: return # If we no longer hold this position, there is no cost basis to # adjust. if self.amount == 0: return # We treat cost basis as the share price where we have broken even. # For longs, commissions cause a relatively straight forward increase # in the cost basis. # # For shorts, you actually want to decrease the cost basis because you # break even and earn a profit when the share price decreases. # # Shorts are represented as having a negative `amount`. # # The multiplication and division by `amount` cancel out leaving the # cost_basis positive, while subtracting the commission. prev_cost = self.cost_basis * self.amount if isinstance(asset, Future): cost_to_use = cost / asset.price_multiplier else: cost_to_use = cost new_cost = prev_cost + cost_to_use self.cost_basis = new_cost / self.amount
0.00123
def nl_cb_call(cb, type_, msg): """Call a callback function. https://github.com/thom311/libnl/blob/libnl3_2_25/include/netlink-private/netlink.h#L136 Positional arguments: cb -- nl_cb class instance. type_ -- callback type integer (e.g. NL_CB_MSG_OUT). msg -- Netlink message (nl_msg class instance). Returns: Integer from the callback function (like NL_OK, NL_SKIP, etc). """ cb.cb_active = type_ ret = cb.cb_set[type_](msg, cb.cb_args[type_]) cb.cb_active = 10 + 1 # NL_CB_TYPE_MAX + 1 return int(ret)
0.001789
def set(self, item, column=None, value=None): """ Query or set the value of given item. With one argument, return a dictionary of column/value pairs for the specified item. With two arguments, return the current value of the specified column. With three arguments, set the value of given column in given item to the specified value. :param item: item's identifier :type item: str :param column: column's identifier :type column: str, int or None :param value: new value """ if value is not None: self._visual_drag.set(item, ttk.Treeview.column(self, column, 'id'), value) return ttk.Treeview.set(self, item, column, value)
0.004011
def run_script(self, script, in_shell=True, echo=None, note=None, loglevel=logging.DEBUG): """Run the passed-in string as a script on the target's command line. @param script: String representing the script. It will be de-indented and stripped before being run. @param in_shell: Indicate whether we are in a shell or not. (Default: True) @param note: See send() @type script: string @type in_shell: boolean """ shutit = self.shutit shutit.handle_note(note, 'Script: ' + str(script)) shutit.log('Running script beginning: "' + ''.join(script.split())[:30] + ' [...]', level=logging.INFO) # Trim any whitespace lines from start and end of script, then dedent lines = script.split('\n') while lines and re.match('^[ \t]*$', lines[0]): lines = lines[1:] while lines and re.match('^[ \t]*$', lines[-1]): lines = lines[:-1] if not lines: return True script = '\n'.join(lines) script = textwrap.dedent(script) # Send the script and run it in the manner specified if shutit.build['delivery'] in ('docker','dockerfile') and in_shell: script = ('set -o xtrace \n\n' + script + '\n\nset +o xtrace') self.quick_send('command mkdir -p ' + shutit_global.shutit_global_object.shutit_state_dir + '/scripts && chmod 777 ' + shutit_global.shutit_global_object.shutit_state_dir + '/scripts', echo=False) self.send_file(shutit_global.shutit_global_object.shutit_state_dir + '/scripts/shutit_script.sh', script, echo=False, loglevel=loglevel) self.quick_send('command chmod +x ' + shutit_global.shutit_global_object.shutit_state_dir + '/scripts/shutit_script.sh', echo=False) shutit.build['shutit_command_history'].append(' ' + script.replace('\n', '\n ')) if in_shell: ret = self.send(ShutItSendSpec(self, send=' . ' + shutit_global.shutit_global_object.shutit_state_dir + '/scripts/shutit_script.sh && rm -f ' + shutit_global.shutit_global_object.shutit_state_dir + '/scripts/shutit_script.sh && rm -f ' + shutit_global.shutit_global_object.shutit_state_dir + '/scripts/shutit_script.sh', echo=False, loglevel=loglevel)) else: ret = self.send(ShutItSendSpec(self, send=' ' + shutit_global.shutit_global_object.shutit_state_dir + '/scripts/shutit_script.sh && rm -f ' + shutit_global.shutit_global_object.shutit_state_dir + '/scripts/shutit_script.sh', echo=False, loglevel=loglevel)) shutit.handle_note_after(note=note) return ret
0.028436
def start_logging(out=_stdout, level='info'): """ Begin logging. :param out: if provided, a file-like object to log to. By default, this is stdout. :param level: the maximum log-level to emit (a string) """ global _log_level, _loggers, _started_logging if level not in log_levels: raise RuntimeError( "Invalid log level '{0}'; valid are: {1}".format( level, ', '.join(log_levels) ) ) if _started_logging: return _started_logging = True _log_level = level handler = _TxaioFileHandler(out) logging.getLogger().addHandler(handler) # note: Don't need to call basicConfig() or similar, because we've # now added at least one handler to the root logger logging.raiseExceptions = True # FIXME level_to_stdlib = { 'critical': logging.CRITICAL, 'error': logging.ERROR, 'warn': logging.WARNING, 'info': logging.INFO, 'debug': logging.DEBUG, 'trace': logging.DEBUG, } logging.getLogger().setLevel(level_to_stdlib[level]) # make sure any loggers we created before now have their log-level # set (any created after now will get it from _log_level for logger in _loggers: logger._set_log_level(level)
0.000763
def map_version(self, requirement, local_version): """ Maps a local version name to one recognised by the Requirement class Parameters ---------- requirement : str Name of the requirement version : str version string """ if isinstance(self._versions_map, dict): version = self._versions_map.get(requirement, {}).get( local_version, local_version) else: version = self._versions_map(requirement, local_version) return version
0.003515
def build_plugin(cls, class_name, config): """Create an instance of the named plugin and return it :param class_name: fully qualified name of class :type class_name: str :param config: the supporting configuration for plugin :type config: PluginConfig :rtype: AbstractPlugin :return: an instance of a concrete implementation of AbstractPlugin """ mod_path, class_name = class_name.rsplit('.', 1) plugin_cls = getattr(importlib.import_module(mod_path), class_name) return plugin_cls(config)
0.006908
def __initialize_ui(self): """ Initializes the Widget ui. """ self.setAutoScroll(True) self.setIndentation(self.__tree_view_indentation) self.setRootIsDecorated(False) self.setDragDropMode(QAbstractItemView.DragOnly) self.header().hide() self.setSortingEnabled(True) self.sortByColumn(0, Qt.AscendingOrder) self.__set_default_ui_state() # Signals / Slots. self.model().modelReset.connect(self.__set_default_ui_state)
0.00381
def bindargs(fun, *argsbind, **kwbind): """ _ = bind.placeholder # unbound placeholder (arg) f = bind(fun, _, _, arg3, kw=kw1, kw2=kw2), f(arg1, arg2) :param fun: :param argsbind: :param kwbind: :return: """ assert argsbind argsb = list(argsbind) iargs = [i for i in range(len(argsbind)) if argsbind[i] is bind.placeholder] # iargs = [a is bind.placeholder for a in argsbind] @functools.wraps(fun) def wrapped(*args, **kwargs): kws = kwbind.copy() args_this = [a for a in argsb] for i, arg in zip(iargs, args): args_this[i] = arg args_this.extend(args[len(iargs):]) # kwargs.update(kwbind) kws.update(kwargs) # return fun(*argsb, **kws) return fun(*args_this, **kws) return wrapped
0.002427
def merge_data_and_coords(data, coords, compat='broadcast_equals', join='outer'): """Used in Dataset.__init__.""" objs = [data, coords] explicit_coords = coords.keys() indexes = dict(extract_indexes(coords)) return merge_core(objs, compat, join, explicit_coords=explicit_coords, indexes=indexes)
0.002755
def as_matrix(self, depth=0): """ Create a matrix with self as node, cache it, return it. Args: depth (int): depth of the matrix. Returns: Matrix: an instance of Matrix. """ if depth in self._matrix_cache: return self._matrix_cache[depth] self._matrix_cache[depth] = matrix = Matrix(self, depth=depth) return matrix
0.004796
def convert_dropout(params, w_name, scope_name, inputs, layers, weights, names): """ Convert dropout. Args: params: dictionary with layer parameters w_name: name prefix in state_dict scope_name: pytorch scope name inputs: pytorch node inputs layers: dictionary with keras tensors weights: pytorch state_dict names: use short names for keras layers """ print('Converting dropout ...') if names == 'short': tf_name = 'DO' + random_string(6) elif names == 'keep': tf_name = w_name else: tf_name = w_name + str(random.random()) dropout = keras.layers.Dropout(rate=params['ratio'], name=tf_name) layers[scope_name] = dropout(layers[inputs[0]])
0.002628
def get_localhost(): ''' Should return 127.0.0.1 in ipv4 and ::1 in ipv6 localhost is not used because on windows vista/windows 7, there can be issues where the resolving doesn't work properly and takes a lot of time (had this issue on the pyunit server). Using the IP directly solves the problem. ''' # TODO: Needs better investigation! global _cache if _cache is None: try: for addr_info in socket.getaddrinfo("localhost", 80, 0, 0, socket.SOL_TCP): config = addr_info[4] if config[0] == '127.0.0.1': _cache = '127.0.0.1' return _cache except: # Ok, some versions of Python don't have getaddrinfo or SOL_TCP... Just consider it 127.0.0.1 in this case. _cache = '127.0.0.1' else: _cache = 'localhost' return _cache
0.005537
def read(self, **keys): """ Read the image. If the HDU is an IMAGE_HDU, read the corresponding image. Compression and scaling are dealt with properly. """ if not self.has_data(): return None dtype, shape = self._get_dtype_and_shape() array = numpy.zeros(shape, dtype=dtype) self._FITS.read_image(self._ext+1, array) return array
0.004728
def setdocument(self, doc): """Associate a document with this element. Arguments: doc (:class:`Document`): A document Each element must be associated with a FoLiA document. """ assert isinstance(doc, Document) if not self.doc: self.doc = doc if self.id: if self.id in doc: raise DuplicateIDError(self.id) else: self.doc.index[id] = self for e in self: #recursive for all children if isinstance(e,AbstractElement): e.setdocument(doc)
0.009804
def GetFlagSuggestions(attempt, longopt_list): """Get helpful similar matches for an invalid flag.""" # Don't suggest on very short strings, or if no longopts are specified. if len(attempt) <= 2 or not longopt_list: return [] option_names = [v.split('=')[0] for v in longopt_list] # Find close approximations in flag prefixes. # This also handles the case where the flag is spelled right but ambiguous. distances = [(_DamerauLevenshtein(attempt, option[0:len(attempt)]), option) for option in option_names] distances.sort(key=lambda t: t[0]) least_errors, _ = distances[0] # Don't suggest excessively bad matches. if least_errors >= _SUGGESTION_ERROR_RATE_THRESHOLD * len(attempt): return [] suggestions = [] for errors, name in distances: if errors == least_errors: suggestions.append(name) else: break return suggestions
0.018952
def bitsToString(arr): """Returns a string representing a numpy array of 0's and 1's""" s = array('c','.'*len(arr)) for i in xrange(len(arr)): if arr[i] == 1: s[i]='*' return s
0.041237
def create(vm_): ''' Create a single VM from a data dict ''' try: # Check for required profile parameters before sending any API calls. if vm_['profile'] and config.is_profile_configured(__opts__, __active_provider_name__ or 'softlayer_hw', vm_['profile'], vm_=vm_) is False: return False except AttributeError: pass name = vm_['name'] hostname = name domain = config.get_cloud_config_value( 'domain', vm_, __opts__, default=None ) if domain is None: SaltCloudSystemExit( 'A domain name is required for the SoftLayer driver.' ) if vm_.get('use_fqdn'): name = '.'.join([name, domain]) vm_['name'] = name __utils__['cloud.fire_event']( 'event', 'starting create', 'salt/cloud/{0}/creating'.format(name), args=__utils__['cloud.filter_event']('creating', vm_, ['name', 'profile', 'provider', 'driver']), sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) log.info('Creating Cloud VM %s', name) conn = get_conn(service='SoftLayer_Product_Order') kwargs = { 'complexType': 'SoftLayer_Container_Product_Order_Hardware_Server', 'quantity': 1, 'hardware': [{ 'hostname': hostname, 'domain': domain, }], # Baremetal Package 'packageId': 50, 'prices': [ # Size Ex: 1921: 2 x 2.0 GHz Core Bare Metal Instance - 2 GB Ram {'id': vm_['size']}, # HDD Ex: 19: 250GB SATA II {'id': vm_['hdd']}, # Image Ex: 13963: CentOS 6.0 - Minimal Install (64 bit) {'id': vm_['image']}, # The following items are currently required # Reboot / Remote Console {'id': '905'}, # 1 IP Address {'id': '21'}, # Host Ping Monitoring {'id': '55'}, # Email and Ticket Notifications {'id': '57'}, # Automated Notification Response {'id': '58'}, # Unlimited SSL VPN Users & 1 PPTP VPN User per account {'id': '420'}, # Nessus Vulnerability Assessment & Reporting {'id': '418'}, ], } optional_products = config.get_cloud_config_value( 'optional_products', vm_, __opts__, default=[] ) for product in optional_products: kwargs['prices'].append({'id': product}) # Default is 273 (100 Mbps Public & Private Networks) port_speed = config.get_cloud_config_value( 'port_speed', vm_, __opts__, default=273 ) kwargs['prices'].append({'id': port_speed}) # Default is 1800 (0 GB Bandwidth) bandwidth = config.get_cloud_config_value( 'bandwidth', vm_, __opts__, default=1800 ) kwargs['prices'].append({'id': bandwidth}) post_uri = config.get_cloud_config_value( 'post_uri', vm_, __opts__, default=None ) if post_uri: kwargs['prices'].append({'id': post_uri}) vlan_id = config.get_cloud_config_value( 'vlan', vm_, __opts__, default=False ) if vlan_id: kwargs['primaryNetworkComponent'] = { 'networkVlan': { 'id': vlan_id, } } location = get_location(vm_) if location: kwargs['location'] = location __utils__['cloud.fire_event']( 'event', 'requesting instance', 'salt/cloud/{0}/requesting'.format(name), args={ 'kwargs': __utils__['cloud.filter_event']('requesting', kwargs, list(kwargs)), }, sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) try: response = conn.placeOrder(kwargs) # Leaving the following line in, commented, for easy debugging #response = conn.verifyOrder(kwargs) except Exception as exc: log.error( 'Error creating %s on SoftLayer\n\n' 'The following exception was thrown when trying to ' 'run the initial deployment: \n%s', name, exc, # Show the traceback if the debug logging level is enabled exc_info_on_loglevel=logging.DEBUG ) return False def wait_for_ip(): ''' Wait for the IP address to become available ''' nodes = list_nodes_full() if 'primaryIpAddress' in nodes[hostname]: return nodes[hostname]['primaryIpAddress'] time.sleep(1) return False ip_address = salt.utils.cloud.wait_for_fun( wait_for_ip, timeout=config.get_cloud_config_value( 'wait_for_fun_timeout', vm_, __opts__, default=15 * 60), ) ssh_connect_timeout = config.get_cloud_config_value( # 15 minutes 'ssh_connect_timeout', vm_, __opts__, 900 ) if not salt.utils.cloud.wait_for_port(ip_address, timeout=ssh_connect_timeout): raise SaltCloudSystemExit( 'Failed to authenticate against remote ssh' ) pass_conn = get_conn(service='SoftLayer_Account') mask = { 'virtualGuests': { 'powerState': '', 'operatingSystem': { 'passwords': '' }, }, } def get_passwd(): ''' Wait for the password to become available ''' node_info = pass_conn.getVirtualGuests(id=response['id'], mask=mask) for node in node_info: if node['id'] == response['id'] \ and 'passwords' in node['operatingSystem'] \ and node['operatingSystem']['passwords']: return node['operatingSystem']['passwords'][0]['password'] time.sleep(5) return False passwd = salt.utils.cloud.wait_for_fun( get_passwd, timeout=config.get_cloud_config_value( 'wait_for_fun_timeout', vm_, __opts__, default=15 * 60), ) response['password'] = passwd response['public_ip'] = ip_address ssh_username = config.get_cloud_config_value( 'ssh_username', vm_, __opts__, default='root' ) vm_['ssh_host'] = ip_address vm_['password'] = passwd ret = __utils__['cloud.bootstrap'](vm_, __opts__) ret.update(response) __utils__['cloud.fire_event']( 'event', 'created instance', 'salt/cloud/{0}/created'.format(name), args=__utils__['cloud.filter_event']('created', vm_, ['name', 'profile', 'provider', 'driver']), sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) return ret
0.001021
def fix_lockfile(self): """Run each line of outfile through fix_pin""" with open(self.outfile, 'rt') as fp: lines = [ self.fix_pin(line) for line in self.concatenated(fp) ] with open(self.outfile, 'wt') as fp: fp.writelines([ line + '\n' for line in lines if line is not None ])
0.004651
def _make_routing_list(api_provider): """ Returns a list of routes to configure the Local API Service based on the APIs configured in the template. Parameters ---------- api_provider : samcli.commands.local.lib.sam_api_provider.SamApiProvider Returns ------- list(samcli.local.apigw.service.Route) List of Routes to pass to the service """ routes = [] for api in api_provider.get_all(): route = Route(methods=[api.method], function_name=api.function_name, path=api.path, binary_types=api.binary_media_types) routes.append(route) return routes
0.007102
def coarse_grain_transition_matrix(P, M): """ Coarse grain transition matrix P using memberships M Computes .. math: Pc = (M' M)^-1 M' P M Parameters ---------- P : ndarray(n, n) microstate transition matrix M : ndarray(n, m) membership matrix. Membership to macrostate m for each microstate. Returns ------- Pc : ndarray(m, m) coarse-grained transition matrix. """ # coarse-grain matrix: Pc = (M' M)^-1 M' P M W = np.linalg.inv(np.dot(M.T, M)) A = np.dot(np.dot(M.T, P), M) P_coarse = np.dot(W, A) # this coarse-graining can lead to negative elements. Setting them to zero here. P_coarse = np.maximum(P_coarse, 0) # and renormalize P_coarse /= P_coarse.sum(axis=1)[:, None] return P_coarse
0.002472
def amplification_type(self, channels=None): """ Get the amplification type used for the specified channel(s). Each channel uses one of two amplification types: linear or logarithmic. This function returns, for each channel, a tuple of two numbers, in which the first number indicates the number of decades covered by the logarithmic amplifier, and the second indicates the linear value corresponding to the channel value zero. If the first value is zero, the amplifier used is linear The amplification type for channel "n" is extracted from the required $PnE parameter. Parameters ---------- channels : int, str, list of int, list of str Channel(s) for which to get the amplification type. If None, return a list with the amplification type of all channels, in the order of ``FCSData.channels``. Return ------ tuple, or list of tuples The amplification type of the specified channel(s). This is reported as a tuple, in which the first element indicates how many decades the logarithmic amplifier covers, and the second indicates the linear value that corresponds to a channel value of zero. If the first element is zero, the amplification type is linear. """ # Check default if channels is None: channels = self._channels # Get numerical indices of channels channels = self._name_to_index(channels) # Get detector type of the specified channels if hasattr(channels, '__iter__') \ and not isinstance(channels, six.string_types): return [self._amplification_type[ch] for ch in channels] else: return self._amplification_type[channels]
0.001057
def _checkTimeValue( timevalue, maxvalue ): """Check that the given timevalue is valid. Args: * timevalue (numerical): The time value to be checked. Must be positive. * maxvalue (numerical): Upper limit for time value. Must be positive. Raises: TypeError, ValueError """ if maxvalue is None: raise TypeError('The maxvalue (for the time value) must not be None!') minimalmodbus._checkNumerical(timevalue, minvalue=0, maxvalue=maxvalue, description='time value')
0.016729
def classical(vulnerability_function, hazard_imls, hazard_poes, loss_ratios): """ :param vulnerability_function: an instance of :py:class:`openquake.risklib.scientific.VulnerabilityFunction` representing the vulnerability function used to compute the curve. :param hazard_imls: the hazard intensity measure type and levels :type hazard_poes: the hazard curve :param loss_ratios: a tuple of C loss ratios :returns: an array of shape (2, C) """ assert len(hazard_imls) == len(hazard_poes), ( len(hazard_imls), len(hazard_poes)) vf = vulnerability_function imls = vf.mean_imls() lrem = vf.loss_ratio_exceedance_matrix(loss_ratios) # saturate imls to hazard imls min_val, max_val = hazard_imls[0], hazard_imls[-1] numpy.putmask(imls, imls < min_val, min_val) numpy.putmask(imls, imls > max_val, max_val) # interpolate the hazard curve poes = interpolate.interp1d(hazard_imls, hazard_poes)(imls) # compute the poos pos = pairwise_diff(poes) lrem_po = numpy.empty(lrem.shape) for idx, po in enumerate(pos): lrem_po[:, idx] = lrem[:, idx] * po # column * po return numpy.array([loss_ratios, lrem_po.sum(axis=1)])
0.000788
def index(): """ This is not served anywhere in the web application. It is used explicitly in the context of generating static files since flask-frozen requires url_for's to crawl content. url_for's are not used with host.show_host directly and are instead dynamically generated through javascript for performance purposes. """ if current_app.config['ARA_PLAYBOOK_OVERRIDE'] is not None: override = current_app.config['ARA_PLAYBOOK_OVERRIDE'] hosts = (models.Host.query .filter(models.Host.playbook_id.in_(override))) else: hosts = models.Host.query.all() return render_template('host_index.html', hosts=hosts)
0.001445
def _getPFilename(self,native,prompt): """Get p_filename field for this parameter Same as get for non-list params """ return self.get(native=native,prompt=prompt)
0.025641
def size(self): """Get the current terminal size.""" for fd in range(3): cr = self._ioctl_GWINSZ(fd) if cr: break if not cr: try: fd = os.open(os.ctermid(), os.O_RDONLY) cr = self._ioctl_GWINSZ(fd) os.close(fd) except Exception: pass if not cr: env = os.environ cr = (env.get('LINES', 25), env.get('COLUMNS', 80)) return int(cr[1]), int(cr[0])
0.003724
def throws(self, exception=Exception): """ Customizes the stub function to raise an exception. If conditions like withArgs or onCall were specified, then the return value will only be returned when the conditions are met. Args: exception (by default=Exception, it could be any customized exception) Return: a SinonStub object (able to be chained) """ def exception_function(*args, **kwargs): raise exception self._copy._append_condition(self, exception_function) return self
0.008945