text
stringlengths
78
104k
score
float64
0
0.18
def atomic_output_file(dest_path, make_parents=False, backup_suffix=None, suffix=".partial.%s"): """ A context manager for convenience in writing a file or directory in an atomic way. Set up a temporary name, then rename it after the operation is done, optionally making a backup of the previous file or directory, if present. """ if dest_path == os.devnull: # Handle the (probably rare) case of writing to /dev/null. yield dest_path else: tmp_path = ("%s" + suffix) % (dest_path, new_uid()) if make_parents: make_parent_dirs(tmp_path) yield tmp_path # Note this is not in a finally block, so that result won't be renamed to final location # in case of abnormal exit. if not os.path.exists(tmp_path): raise IOError("failure in writing file '%s': target file '%s' missing" % (dest_path, tmp_path)) if backup_suffix: move_to_backup(dest_path, backup_suffix=backup_suffix) # If the target already exists, and is a directory, it has to be removed. if os.path.isdir(dest_path): shutil.rmtree(dest_path) shutil.move(tmp_path, dest_path)
0.011628
def get_context_data(self, **kwargs): """Add context data to view""" context = super().get_context_data(**kwargs) context.update({ 'title': self.get_title(), 'ajax_url': self.get_ajax_url(), 'download_url': self.get_download_url(), 'create_url': self.get_create_url(), }) return context
0.005348
def is_instance_of(self, some_class): """Asserts that val is an instance of the given class.""" try: if not isinstance(self.val, some_class): if hasattr(self.val, '__name__'): t = self.val.__name__ elif hasattr(self.val, '__class__'): t = self.val.__class__.__name__ else: t = 'unknown' self._err('Expected <%s:%s> to be instance of class <%s>, but was not.' % (self.val, t, some_class.__name__)) except TypeError: raise TypeError('given arg must be a class') return self
0.004608
def sort_topologically(dag): """Sort the dag breath first topologically. Only the nodes inside the dag are returned, i.e. the nodes that are also keys. Returns: a topological ordering of the DAG. Raises: an error if this is not possible (graph is not valid). """ dag = copy.deepcopy(dag) sorted_nodes = [] independent_nodes = deque(get_independent_nodes(dag)) while independent_nodes: node = independent_nodes.popleft() sorted_nodes.append(node) # this alters the dag so that we are sure we are visiting the nodes only once downstream_nodes = dag[node] while downstream_nodes: downstream_node = downstream_nodes.pop(0) if downstream_node not in dag: continue if not has_dependencies(downstream_node, dag): independent_nodes.append(downstream_node) if len(sorted_nodes) != len(dag.keys()): raise ValueError('graph is not acyclic') return sorted_nodes
0.002913
def _activity_or_list(value): """Tries to convert value to :class:`tincan.ActivityList` :setter type: :class:`tincan.ActivityList` :rtype: :class:`tincan.ActivityList` """ result = value if value is not None and not isinstance(value, ActivityList): try: result = ActivityList([Activity(value)]) except (TypeError, AttributeError): result = ActivityList(value) return result
0.004115
def next(self): """Return the next transaction object. StopIteration will be propagated from self.csvreader.next() """ try: return self.dict_to_xn(self.csvreader.next()) except MetadataException: # row was metadata; proceed to next row return next(self)
0.006061
def create_ticket(self, ticket=None, **kwargs): """ Create a new ``Ticket``. Additional arguments are passed to the ``create()`` function. Return the newly created ``Ticket``. """ if not ticket: ticket = self.create_ticket_str() if 'service' in kwargs: kwargs['service'] = clean_service_url(kwargs['service']) if 'expires' not in kwargs: expires = now() + timedelta(seconds=self.model.TICKET_EXPIRE) kwargs['expires'] = expires t = self.create(ticket=ticket, **kwargs) logger.debug("Created %s %s" % (t.name, t.ticket)) return t
0.003049
def _convert_listlike(arg, unit='ns', box=True, errors='raise', name=None): """Convert a list of objects to a timedelta index object.""" if isinstance(arg, (list, tuple)) or not hasattr(arg, 'dtype'): # This is needed only to ensure that in the case where we end up # returning arg (errors == "ignore"), and where the input is a # generator, we return a useful list-like instead of a # used-up generator arg = np.array(list(arg), dtype=object) try: value = sequence_to_td64ns(arg, unit=unit, errors=errors, copy=False)[0] except ValueError: if errors == 'ignore': return arg else: # This else-block accounts for the cases when errors='raise' # and errors='coerce'. If errors == 'raise', these errors # should be raised. If errors == 'coerce', we shouldn't # expect any errors to be raised, since all parsing errors # cause coercion to pd.NaT. However, if an error / bug is # introduced that causes an Exception to be raised, we would # like to surface it. raise if box: from pandas import TimedeltaIndex value = TimedeltaIndex(value, unit='ns', name=name) return value
0.000757
def load_grouped_actions(spec, default_group=None, key_prefix="actions", pop_keys=False, expr_parser=None): """Instanciates actions from a dict. Will look for a key name key_prefix and for key starting with key_prefix followed by a dot and a group name. A group name can be any string and will can be used later to filter actions. Values associated to these keys should be lists that will be loaded using load_actions() """ actions = ActionList() if expr_parser is None: expr_parser = ExpressionParser() for key in spec.keys(): if key != key_prefix and not key.startswith(key_prefix + "."): continue group = default_group if "." in key: (_, group) = key.split(".") actions.extend(load_actions(spec[key], group, expr_parser)) if pop_keys: spec.pop(key) return actions
0.005643
def cdf(arr, pos=None): ''' Return the cumulative density function of a given array or its intensity at a given position (0-1) ''' r = (arr.min(), arr.max()) hist, bin_edges = np.histogram(arr, bins=2 * int(r[1] - r[0]), range=r) hist = np.asfarray(hist) / hist.sum() cdf = np.cumsum(hist) if pos is None: return cdf i = np.argmax(cdf > pos) return bin_edges[i]
0.002342
def not_user_filter(config, message, fasnick=None, *args, **kw): """ Everything except a particular user Use this rule to exclude messages that are associated with one or more users. Specify several users by separating them with a comma ','. """ fasnick = kw.get('fasnick', fasnick) if not fasnick: return False fasnick = (fasnick or []) and fasnick.split(',') valid = True for nick in fasnick: if nick.strip() in fmn.rules.utils.msg2usernames(message, **config): valid = False break return valid
0.001724
def generate_vector_color_map(self): """Generate color stops array for use with match expression in mapbox template""" vector_stops = [] # if join data specified as filename or URL, parse JSON to list of Python dicts if type(self.data) == str: self.data = geojson_to_dict_list(self.data) # loop through features in self.data to create join-data map for row in self.data: # map color to JSON feature using color_property color = color_map(row[self.color_property], self.color_stops, self.color_default) # link to vector feature using data_join_property (from JSON object) vector_stops.append([row[self.data_join_property], color]) return vector_stops
0.008951
def create_mssql_pyodbc(self, **kwargs): """ :rtype: Engine """ return self._ce( self._ccs(self.DialectAndDriver.mssql_pyodbc), **kwargs )
0.010526
def vcs_rbridge_config_input_vcs_id(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") vcs_rbridge_config = ET.Element("vcs_rbridge_config") config = vcs_rbridge_config input = ET.SubElement(vcs_rbridge_config, "input") vcs_id = ET.SubElement(input, "vcs-id") vcs_id.text = kwargs.pop('vcs_id') callback = kwargs.pop('callback', self._callback) return callback(config)
0.004237
def get_slide_context(self): """Return the context dict for rendering this slide.""" return { 'title': self.title, 'level': self.level, 'content': self.content, 'classes': self.classes, 'slide_classes': self._filter_classes(exclude='content-'), 'content_classes': self._filter_classes(include='content-'), 'slide_number': self.slide_number, 'config': self._translator.builder.config, 'id': self.id, }
0.003752
def interpolate_data(self, data, times, resampled_times): """ Interpolates data feature :param data: Array in a shape of t x nobs, where nobs = h x w x n :type data: numpy.ndarray :param times: Array of reference times in second relative to the first timestamp :type times: numpy.array :param resampled_times: Array of reference times in second relative to the first timestamp in initial timestamp array. :type resampled_times: numpy.array :return: Array of interpolated values :rtype: numpy.ndarray """ if True in np.unique(np.isnan(data)): raise ValueError('Data must not contain any masked/invalid pixels or NaN values') interp_func = self.get_interpolation_function(times, data) time_mask = (resampled_times >= np.min(times)) & (resampled_times <= np.max(times)) new_data = np.full((resampled_times.size,) + data.shape[1:], np.nan, dtype=data.dtype) new_data[time_mask] = interp_func(resampled_times[time_mask]) return new_data
0.006329
def check(self, value, major): """Check whether the value in the set of allowed values. Raise a ValueError if it is not. """ if self._case_insensitive: value = value.lower() values = self._valid_values_lower caseflag = " (case-insensitive)" else: values = self._valid_values caseflag = "" if value not in values: raise ValueError("Discrete value '%s' is not one of %s%s." % (value, list(self._values), caseflag))
0.003552
def phon(self, cls='current', previousdelimiter="", strict=False,correctionhandling=CorrectionHandling.CURRENT): """Get the phonetic representation associated with this element (of the specified class) The phonetic content will be constructed from child-elements whereever possible, as they are more specific. If no phonetic content can be obtained from the children and the element has itself phonetic content associated with it, then that will be used. Parameters: cls (str): The class of the phonetic content to obtain, defaults to ``current``. retaintokenisation (bool): If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to ``False``. previousdelimiter (str): Can be set to a delimiter that was last outputed, useful when chaining calls to :meth:`phon`. Defaults to an empty string. strict (bool): Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to ``False``. correctionhandling: Specifies what phonetic content to retrieve when corrections are encountered. The default is ``CorrectionHandling.CURRENT``, which will retrieve the corrected/current phonetic content. You can set this to ``CorrectionHandling.ORIGINAL`` if you want the phonetic content prior to correction, and ``CorrectionHandling.EITHER`` if you don't care. Example:: word.phon() Returns: The phonetic content of the element (``unicode`` instance in Python 2, ``str`` in Python 3) Raises: :class:`NoSuchPhon`: if no phonetic conent is found at all. See also: :meth:`phoncontent`: Retrieves the phonetic content as an element rather than a string :meth:`text` :meth:`textcontent` """ if strict: return self.phoncontent(cls,correctionhandling).phon() if self.PHONCONTAINER: s = "" for e in self: if isstring(e): s += e else: try: if s: s += e.TEXTDELIMITER #We use TEXTDELIMITER for phon too except AttributeError: pass s += e.phon() return s elif not self.SPEAKABLE: #only readable elements can hold phonetic content raise NoSuchPhon else: #Get text from children first delimiter = "" s = "" for e in self: if e.SPEAKABLE and not isinstance(e, PhonContent) and not isinstance(e,String): try: s += e.phon(cls, delimiter,False,correctionhandling) #delimiter will be buffered and only printed upon next iteration, this prevents the delimiter being outputted at the end of a sequence and to be compounded with other delimiters delimiter = e.gettextdelimiter() #We use TEXTDELIMITER for phon too except NoSuchPhon: #No text, that's okay, just continue continue if not s and self.hasphon(cls): s = self.phoncontent(cls,correctionhandling).phon() if s and previousdelimiter: return previousdelimiter + s elif s: return s else: #No text found at all :`( raise NoSuchPhon
0.00955
def set(context="notebook", style="darkgrid", palette="deep", font="sans-serif", font_scale=1, color_codes=False, rc=None): """Set aesthetic parameters in one step. Each set of parameters can be set directly or temporarily, see the referenced functions below for more information. Parameters ---------- context : string or dict Plotting context parameters, see :func:`plotting_context` style : string or dict Axes style parameters, see :func:`axes_style` palette : string or sequence Color palette, see :func:`color_palette` font : string Font family, see matplotlib font manager. font_scale : float, optional Separate scaling factor to independently scale the size of the font elements. color_codes : bool If ``True`` and ``palette`` is a seaborn palette, remap the shorthand color codes (e.g. "b", "g", "r", etc.) to the colors from this palette. rc : dict or None Dictionary of rc parameter mappings to override the above. """ mpl.rcParams = {} set_context(context, font_scale) set_style(style, rc={"font.family": font}) if rc is not None: mpl.rcParams.update(rc) return mpl.rcParams
0.000803
def _parse_config_file_impl(filename): """ Format for the file is: credentials: email: ... api_token: ... :param filename: The filename to parse :return: A tuple with: - email - api_token """ api_key = None email = None try: doc = yaml.load(file(filename).read()) email = doc['credentials']['email'] api_key = doc['credentials']['api_key'] except (KeyError, TypeError): print(INVALID_FILE) return None, None except yaml.scanner.ScannerError, e: print(SYNTAX_ERROR_FILE % (e.problem, e.problem_mark.line)) return None, None # Just in case, we don't want the auth to fail because of a space email = email.strip() api_key = api_key.strip() if not is_valid_api_key(api_key): cli_logger.debug(INVALID_UUID) api_key = None if not is_valid_email(email): cli_logger.debug('Invalid email address: %s' % email) email = None return email, api_key
0.003707
def stop(self): """ Stops the service. """ if self.log_file != PIPE and not (self.log_file == DEVNULL and _HAS_NATIVE_DEVNULL): try: self.log_file.close() except Exception: pass if self.process is None: return try: self.send_remote_shutdown_command() except TypeError: pass try: if self.process: for stream in [self.process.stdin, self.process.stdout, self.process.stderr]: try: stream.close() except AttributeError: pass self.process.terminate() self.process.wait() self.process.kill() self.process = None except OSError: pass
0.003165
def show_keyword_version_message(sender, keyword_version, inasafe_version): """Show a message indicating that the keywords version is mismatch .. versionadded: 3.2 :param sender: Sender of the message signal. Default to Any object. :type sender: object :param keyword_version: The version of the layer's keywords :type keyword_version: str :param inasafe_version: The version of the InaSAFE :type inasafe_version: str .. note:: The print button will be disabled if this method is called. """ LOGGER.debug('Showing Mismatch Version Message') message = generate_input_error_message( tr('Layer Keyword\'s Version Mismatch:'), m.Paragraph( tr( 'Your layer\'s keyword\'s version ({layer_version}) does not ' 'match with your InaSAFE version ({inasafe_version}). If you ' 'wish to use it as an exposure, hazard, or aggregation layer ' 'in an analysis, please use the keyword wizard to update the ' 'keywords. You can open the wizard by clicking on ' 'the ').format( layer_version=keyword_version, inasafe_version=inasafe_version), m.Image( 'file:///%s/img/icons/' 'show-keyword-wizard.svg' % resources_path(), **SMALL_ICON_STYLE), tr( ' icon in the toolbar.')) ) send_static_message(sender, message)
0.000668
def zk_client(host, scheme, credential): """ returns a connected (and possibly authenticated) ZK client """ if not re.match(r".*:\d+$", host): host = "%s:%d" % (host, DEFAULT_ZK_PORT) client = KazooClient(hosts=host) client.start() if scheme != "": client.add_auth(scheme, credential) return client
0.002924
def construct_formset(self): """ Returns an instance of the inline formset """ if not self.inline_model or not self.parent_model: msg = "Parent and Inline models are required in {}".format(self.__class__.__name__) raise NotModelException(msg) return inlineformset_factory( self.parent_model, self.inline_model, **self.get_factory_kwargs())
0.006818
def update(self, other): """ Merge two XmlCtsWorkMetadata Objects. - Original (left Object) keeps his parent. - Added document overwrite text if it already exists :param other: XmlCtsWorkMetadata object :type other: CtsWorkMetadata :return: XmlCtsWorkMetadata Object :rtype XmlCtsWorkMetadata: """ if not isinstance(other, CtsWorkMetadata): raise TypeError("Cannot add %s to CtsWorkMetadata" % type(other)) elif self.urn != other.urn: raise InvalidURN("Cannot add CtsWorkMetadata %s to CtsWorkMetadata %s " % (self.urn, other.urn)) for urn, text in other.children.items(): self.texts[urn] = text self.texts[urn].parent = self self.texts[urn].resource = None return self
0.003619
def zero_year_special_case(from_date, to_date, start, end): """strptime does not resolve a 0000 year, we must handle this.""" if start == 'pos' and end == 'pos': # always interval from earlier to later if from_date.startswith('0000') and not to_date.startswith('0000'): return True # always interval from later to earlier if not from_date.startswith('0000') and to_date.startswith('0000'): return False # an interval from 0000-MM-DD/0000-MM-DD ??? PARSE !!! if from_date.startswith('0000') and to_date.startswith('0000'): # fill from date assuming first subsequent date object if missing # missing m+d, assume jan 1 if len(from_date) == 4: fm, fd = 1, 1 # missing d, assume the 1st elif len(from_date) == 7: fm, fd = int(from_date[5:7]), 1 # not missing any date objects elif len(from_date) == 10: fm, fd = int(from_date[5:7]), int(from_date[8:10]) # fill to date assuming first subsequent date object if missing # missing m+d, assume jan 1 if len(to_date) == 4: tm, td = 1, 1 # missing d, assume the 1st elif len(to_date) == 7: tm, td = int(to_date[5:7]), 1 # not missing any date objects elif len(to_date) == 10: tm, td = int(to_date[5:7]), int(to_date[8:10]) # equality check if from_date == to_date: return True # compare the dates if fm <= tm: if fd <= td: return True else: return False else: return False # these cases are always one way or the other # "-0000" is an invalid edtf elif start == 'neg' and end == 'neg': return False # False unless start is not "0000" elif start == 'neg' and end == 'pos': if from_date.startswith("0000"): return False else: return True
0.000465
def combine_tax_scales(node): """ Combine all the MarginalRateTaxScales in the node into a single MarginalRateTaxScale. """ combined_tax_scales = None for child_name in node: child = node[child_name] if not isinstance(child, AbstractTaxScale): log.info('Skipping {} with value {} because it is not a tax scale'.format(child_name, child)) continue if combined_tax_scales is None: combined_tax_scales = MarginalRateTaxScale(name = child_name) combined_tax_scales.add_bracket(0, 0) combined_tax_scales.add_tax_scale(child) return combined_tax_scales
0.007622
def huji_sample(orient_file, meths='FS-FD:SO-POM:SO-SUN', location_name='unknown', samp_con="1", ignore_dip=True, data_model_num=3, samp_file="samples.txt", site_file="sites.txt", dir_path=".", input_dir_path=""): """ Convert HUJI sample file to MagIC file(s) Parameters ---------- orient_file : str input file name meths : str colon-delimited sampling methods, default FS-FD:SO-POM:SO-SUN for more options, see info below location : str location name, default "unknown" samp_con : str sample/site naming convention, default '1', see info below ignore_dip : bool set sample az/dip to 0, default True data_model_num : int MagIC data model 2 or 3, default 3 samp_file : str sample file name to output (default : samples.txt) site_file : str site file name to output (default : site.txt) dir_path : str output directory, default "." input_dir_path : str input file directory IF different from dir_path, default "" Returns -------- type - Tuple : (True or False indicating if conversion was sucessful, file name written) Info -------- Sampling method codes: FS-FD field sampling done with a drill FS-H field sampling done with hand samples FS-LOC-GPS field location done with GPS FS-LOC-MAP field location done with map SO-POM a Pomeroy orientation device was used SO-ASC an ASC orientation device was used SO-MAG orientation with magnetic compass Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name = sample name [6] site name entered in site_name column in the orient.txt format input file -- NOT CURRENTLY SUPPORTED [7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY """ try: samp_con, Z = samp_con.split("-") except ValueError: samp_con = samp_con Z = 1 version_num = pmag.get_version() if data_model_num == 2: loc_col = "er_location_name" site_col = "er_site_name" samp_col = "er_sample_name" citation_col = "er_citation_names" class_col = "site_class" lithology_col = "site_lithology" definition_col = "site_definition" type_col = "site_type" sample_bed_dip_direction_col = "sample_bed_dip_direction" sample_bed_dip_col = "sample_bed_dip" site_bed_dip_direction_col = "site_bed_dip_direction" site_bed_dip_col = "site_bed_dip" sample_dip_col = "sample_dip" sample_az_col = "sample_azimuth" sample_lat_col = "sample_lat" sample_lon_col = "sample_lon" site_lat_col = "site_lat" site_lon_col = "site_lon" meth_col = "magic_method_codes" software_col = "magic_software_packages" else: loc_col = "location" site_col = "site" samp_col = "sample" citation_col = "citations" class_col = "class" lithology_col = "lithology" definition_col = "definition" type_col = "type" sample_bed_dip_direction_col = 'bed_dip_direction' sample_bed_dip_col = 'bed_dip' site_bed_dip_direction_col = 'bed_dip_direction' site_bed_dip_col = "bed_dip" sample_dip_col = "dip" sample_az_col = "azimuth" sample_lat_col = "lat" sample_lon_col = "lon" site_lat_col = "lat" site_lon_col = "lon" meth_col = "method_codes" software_col = "software_packages" input_dir_path, dir_path = pmag.fix_directories(input_dir_path, dir_path) samp_file = pmag.resolve_file_name(samp_file, dir_path) site_file = pmag.resolve_file_name(site_file, dir_path) orient_file = pmag.resolve_file_name(orient_file, input_dir_path) print("-I- reading in: {}".format(orient_file)) # # read in file to convert # with open(orient_file, 'r') as azfile: AzDipDat = azfile.readlines() SampOut = [] SiteOut = [] for line in AzDipDat[1:]: orec = line.split() if len(orec) > 1: labaz, labdip = pmag.orient(float(orec[1]), float(orec[2]), '3') bed_dip_dir = (orec[3]) bed_dip = (orec[4]) SampRec = {} SiteRec = {} SampRec[loc_col] = location_name SampRec[citation_col] = "This study" SiteRec[loc_col] = location_name SiteRec[citation_col] = "This study" SiteRec[class_col] = "" SiteRec[lithology_col] = "" SiteRec[type_col] = "" SiteRec[definition_col] = "s" # # parse information common to all orientation methods # SampRec[samp_col] = orec[0] SampRec[sample_bed_dip_direction_col] = orec[3] SampRec[sample_bed_dip_col] = orec[4] SiteRec[site_bed_dip_direction_col] = orec[3] SiteRec[site_bed_dip_col] = orec[4] if not ignore_dip: SampRec[sample_dip_col] = '%7.1f' % (labdip) SampRec[sample_az_col] = '%7.1f' % (labaz) else: SampRec[sample_dip_col] = '0' SampRec[sample_az_col] = '0' SampRec[sample_lat_col] = orec[5] SampRec[sample_lon_col] = orec[6] SiteRec[site_lat_col] = orec[5] SiteRec[site_lon_col] = orec[6] SampRec[meth_col] = meths # parse out the site name site = pmag.parse_site(orec[0], samp_con, Z) SampRec[site_col] = site SampRec[software_col] = version_num SiteRec[site_col] = site SiteRec[software_col] = version_num SampOut.append(SampRec) SiteOut.append(SiteRec) if data_model_num == 2: pmag.magic_write(samp_file, SampOut, "er_samples") pmag.magic_write(site_file, SiteOut, "er_sites") else: pmag.magic_write(samp_file, SampOut, "samples") pmag.magic_write(site_file, SiteOut, "sites") print("Sample info saved in ", samp_file) print("Site info saved in ", site_file) return True, samp_file
0.000897
def is_cached(self): """Returns true if this rule is already cached.""" # TODO: cache by target+hash, not per file. try: for item in self.rule.output_files: log.info(item) self.cachemgr.in_cache(item, self._metahash()) except cache.CacheMiss: log.info('[%s]: Not cached.', self.address) return False else: log.info('[%s]: found in cache.', self.address) return True
0.004024
def display(self, *amplExpressions): """ Writes on the current OutputHandler the outcome of the AMPL statement. .. code-block:: ampl display e1, e2, .., en; where e1, ..., en are the strings passed to the procedure. Args: amplExpressions: Expressions to be evaluated. """ exprs = list(map(str, amplExpressions)) lock_and_call( lambda: self._impl.displayLst(exprs, len(exprs)), self._lock )
0.003899
def to_py(o, keyword_fn: Callable[[kw.Keyword], Any] = _kw_name): """Recursively convert Lisp collections into Python collections.""" if isinstance(o, ISeq): return _to_py_list(o, keyword_fn=keyword_fn) elif not isinstance( o, (IPersistentList, IPersistentMap, IPersistentSet, IPersistentVector) ): return o else: # pragma: no cover return _to_py_backup(o, keyword_fn=keyword_fn)
0.002315
def _year_month_delta_from_elements(elements): """ Return a tuple of (years, months) from a dict of date elements. Accepts a dict containing any of the following: - years - months Example: >>> _year_month_delta_from_elements({'years': 2, 'months': 14}) (3, 2) """ return divmod( (int(elements.get('years', 0)) * MONTHS_IN_YEAR) + elements.get('months', 0), MONTHS_IN_YEAR )
0.002232
def metastability(alpha, T, right_eigenvectors, square_map, pi): """Return the metastability PCCA+ objective function. Parameters ---------- alpha : ndarray Parameters of objective function (e.g. flattened A) T : csr sparse matrix Transition matrix right_eigenvectors : ndarray The right eigenvectors. square_map : ndarray Mapping from square indices (i,j) to flat indices (k). pi : ndarray Equilibrium Populations of transition matrix. Returns ------- obj : float The objective function Notes ------- metastability: try to make metastable fuzzy state decomposition. Defined in ref. [2]. """ num_micro, num_eigen = right_eigenvectors.shape A, chi, mapping = calculate_fuzzy_chi(alpha, square_map, right_eigenvectors) # If current point is infeasible or leads to degenerate lumping. if (len(np.unique(mapping)) != right_eigenvectors.shape[1] or has_constraint_violation(A, right_eigenvectors)): return -1.0 * np.inf obj = 0.0 # Calculate metastabilty of the lumped model. Eqn 4.20 in LAA. for i in range(num_eigen): obj += np.dot(T.dot(chi[:, i]), pi * chi[:, i]) / np.dot(chi[:, i], pi) return obj
0.000757
def update_subtask(self, subtask_id, revision, title=None, completed=None): ''' Updates the subtask with the given ID See https://developer.wunderlist.com/documentation/endpoints/subtask for detailed parameter information Returns: Subtask with given ID with properties and revision updated ''' return subtasks_endpoint.update_subtask(self, subtask_id, revision, title=title, completed=completed)
0.00883
def capture_pywarnings(handler): """Log python system warnings.""" logger = logging.getLogger('py.warnings') # Check for previously installed handlers. for h in logger.handlers: if isinstance(h, handler.__class__): return logger.addHandler(handler) logger.setLevel(logging.WARNING)
0.005602
def close(self): """Close this metrics repository.""" for reporter in self._reporters: reporter.close() self._metrics.clear()
0.012346
def _parse_date(self, date_string): """Parse the date_string and return a datetime object as UTC.""" date = datetime.strptime(date_string, self._DATE_FORMAT) self.date = self._TZ.localize(date).astimezone(pytz.UTC)
0.008403
def format_context( context: Context, formatter: typing.Union[str, Formatter] = "full" ) -> str: """Output the a context dictionary as a string.""" if not context: return "" if callable(formatter): formatter_func = formatter else: if formatter in CONTEXT_FORMATTERS: formatter_func = CONTEXT_FORMATTERS[formatter] else: raise ValueError(f'Invalid context format: "{formatter}"') return formatter_func(context)
0.002041
def _dryrun_cell(args, cell_body): """Implements the BigQuery cell magic used to dry run BQ queries. The supported syntax is: %%bq dryrun [-q|--sql <query identifier>] [<YAML or JSON cell_body or inline SQL>] Args: args: the argument following '%bq dryrun'. cell_body: optional contents of the cell interpreted as YAML or JSON. Returns: The response wrapped in a DryRunStats object """ query = _get_query_argument(args, cell_body, google.datalab.utils.commands.notebook_environment()) if args['verbose']: print(query.sql) context = google.datalab.utils._utils._construct_context_for_args(args) result = query.dry_run(context=context) return bigquery._query_stats.QueryStats( total_bytes=result['totalBytesProcessed'], is_cached=result['cacheHit'])
0.010025
def teardown_app_request(self, f): """Like :meth:`Flask.teardown_request` but for a blueprint. Such a function is executed when tearing down each request, even if outside of the blueprint. """ self.record_once(lambda s: s.app.teardown_request_funcs .setdefault(None, []).append(f)) return f
0.008547
def base64_process(**kwargs): """ Process base64 file io """ str_fileToSave = "" str_fileToRead = "" str_action = "encode" data = None for k,v in kwargs.items(): if k == 'action': str_action = v if k == 'payloadBytes': data = v if k == 'payloadFile': str_fileToRead = v if k == 'saveToFile': str_fileToSave = v # if k == 'sourcePath': str_sourcePath = v if str_action == "encode": # Encode the contents of the file at targetPath as ASCII for transmission if len(str_fileToRead): with open(str_fileToRead, 'rb') as f: data = f.read() f.close() data_b64 = base64.b64encode(data) with open(str_fileToSave, 'wb') as f: f.write(data_b64) f.close() return { 'msg': 'Encode successful', 'fileProcessed': str_fileToSave, 'status': True # 'encodedBytes': data_b64 } if str_action == "decode": # if len(data) % 4: # not a multiple of 4, add padding: # data += '=' * (4 - len(data) % 4) # adding 3 padding = will never succumb to the TypeError and will always produce the same result. # https://gist.github.com/perrygeo/ee7c65bb1541ff6ac770 bytes_decoded = base64.b64decode(data + "===") with open(str_fileToSave, 'wb') as f: f.write(bytes_decoded) f.close() return { 'msg': 'Decode successful', 'fileProcessed': str_fileToSave, 'status': True # 'decodedBytes': bytes_decoded }
0.012848
def django_include(context, template_name, **kwargs): ''' Mako tag to include a Django template withing the current DMP (Mako) template. Since this is a Django template, it is search for using the Django search algorithm (instead of the DMP app-based concept). See https://docs.djangoproject.com/en/2.1/topics/templates/. The current context is sent to the included template, which makes all context variables available to the Django template. Any additional kwargs are added to the context. ''' try: djengine = engines['django'] except KeyError as e: raise TemplateDoesNotExist("Django template engine not configured in settings, so template cannot be found: {}".format(template_name)) from e djtemplate = djengine.get_template(template_name) djcontext = {} djcontext.update(context) djcontext.update(kwargs) return djtemplate.render(djcontext, context['request'])
0.004228
def create_server(initialize=True): """Create a server""" with provider() as p: host_string = p.create_server() if initialize: env.host_string = host_string initialize_server()
0.004464
def validate(self, asset, amount, portfolio, algo_datetime, algo_current_data): """ Fail if we would hold negative shares of asset after completing this order. """ if portfolio.positions[asset].amount + amount < 0: self.handle_violation(asset, amount, algo_datetime)
0.01737
def _put(self, *args, **kwargs): """ A wrapper for putting things. It will also json encode your 'data' parameter :returns: The response of your put :rtype: dict :raises: This will raise a :class:`NewRelicAPIServerException<newrelic_api.exceptions.NewRelicAPIServerException>` if there is an error from New Relic """ if 'data' in kwargs: kwargs['data'] = json.dumps(kwargs['data']) response = requests.put(*args, **kwargs) if not response.ok: raise NewRelicAPIServerException('{}: {}'.format(response.status_code, response.text)) return response.json()
0.005857
def K2findCampaigns_main(args=None): """Exposes K2findCampaigns to the command line.""" parser = argparse.ArgumentParser( description="Check if a celestial coordinate is " "(or was) observable by any past or future " "observing campaign of NASA's K2 mission.") parser.add_argument('ra', nargs=1, type=float, help="Right Ascension in decimal degrees (J2000).") parser.add_argument('dec', nargs=1, type=float, help="Declination in decimal degrees (J2000).") parser.add_argument('-p', '--plot', action='store_true', help="Produce a plot showing the target position " "with respect to all K2 campaigns.") args = parser.parse_args(args) ra, dec = args.ra[0], args.dec[0] campaigns = findCampaigns(ra, dec) # Print the result if len(campaigns): print(Highlight.GREEN + "Success! The target is on silicon " "during K2 campaigns {0}.".format(campaigns) + Highlight.END) else: print(Highlight.RED + "Sorry, the target is not on silicon " "during any K2 campaign." + Highlight.END) # Print the pixel positions for c in campaigns: printChannelColRow(c, ra, dec) # Make a context plot if the user requested so if args.plot: save_context_plots(ra, dec, "Your object")
0.000685
def paragraph_sub(match): """Captures paragraphs.""" text = re.sub(r' \n', r'\n<br/>\n', match.group(0).strip()) return '<p>{}</p>'.format(text)
0.006369
def print_pack(document_loader, # type: Loader processobj, # type: CommentedMap uri, # type: Text metadata # type: Dict[Text, Any] ): # type (...) -> Text """Return a CWL serialization of the CWL document in JSON.""" packed = pack(document_loader, processobj, uri, metadata) if len(packed["$graph"]) > 1: return json_dumps(packed, indent=4) return json_dumps(packed["$graph"][0], indent=4)
0.003984
def explain_template_loading_attempts(app, template, attempts): """ This should help developers understand what failed. Mostly the same as :func:`flask.debughelpers.explain_template_loading_attempts`, except here we've extended it to support showing what :class:`UnchainedJinjaLoader` is doing. """ from flask import Flask, Blueprint from flask.debughelpers import _dump_loader_info from flask.globals import _request_ctx_stack template, expected_priors = parse_template(template) info = [f'Locating {pretty_num(expected_priors + 1)} template "{template}":'] total_found = 0 blueprint = None reqctx = _request_ctx_stack.top if reqctx is not None and reqctx.request.blueprint is not None: blueprint = reqctx.request.blueprint for idx, (loader, srcobj, triple) in enumerate(attempts): if isinstance(srcobj, Flask): src_info = 'application "%s"' % srcobj.import_name elif isinstance(srcobj, Blueprint): src_info = 'blueprint "%s" (%s)' % (srcobj.name, srcobj.import_name) else: src_info = repr(srcobj) info.append('% 5d: trying loader of %s' % ( idx + 1, src_info)) for line in _dump_loader_info(loader): info.append(' %s' % line) if triple is None: detail = 'no match' else: if total_found < expected_priors: action = 'skipping' elif total_found == expected_priors: action = 'using' else: action = 'ignoring' detail = '%s (%r)' % (action, triple[1] or '<string>') total_found += 1 info.append(' -> %s' % detail) seems_fishy = False if total_found < expected_priors: info.append('Error: the template could not be found.') seems_fishy = True if blueprint is not None and seems_fishy: info.append(' The template was looked up from an endpoint that ' 'belongs to the blueprint "%s".' % blueprint) info.append(' Maybe you did not place a template in the right folder?') info.append(' See http://flask.pocoo.org/docs/blueprints/#templates') app.logger.info('\n'.join(info))
0.00172
def intersect_leaderboards(self, destination, keys, aggregate='SUM'): ''' Intersect leaderboards given by keys with this leaderboard into a named destination leaderboard. @param destination [String] Destination leaderboard name. @param keys [Array] Leaderboards to be merged with the current leaderboard. @param options [Hash] Options for intersecting the leaderboards. ''' keys.insert(0, self.leaderboard_name) self.redis_connection.zinterstore(destination, keys, aggregate)
0.007407
def point(self, x, y, char): """Create a point on ASCII canvas. Args: x (int): x coordinate. Should be >= 0 and < number of columns in the canvas. y (int): y coordinate. Should be >= 0 an < number of lines in the canvas. char (str): character to place in the specified point on the canvas. """ assert len(char) == 1 assert x >= 0 assert x < self.cols assert y >= 0 assert y < self.lines self.canvas[y][x] = char
0.003515
def to_fits(self): """ Converts a `~regions.ShapeList` to a `~astropy.table.Table` object. """ max_length_coord = 1 coord_x = [] coord_y = [] shapes = [] radius = [] rotangle_deg = [] components = [] reg_reverse_mapping = {value: key for key, value in reg_mapping['FITS_REGION'].items()} reg_reverse_mapping['rectangle'] = 'ROTBOX' reg_reverse_mapping['circleannulus'] = 'ANNULUS' reg_reverse_mapping['ellipseannulus'] = 'ELLIPTANNULUS' for num, shape in enumerate(self): shapes.append(reg_reverse_mapping[shape.region_type]) if shape.region_type == 'polygon': max_length_coord = max(len(shape.coord)/2, max_length_coord) coord = [x.value for x in shape.coord] coord_x.append(coord[::2]) coord_y.append(coord[1::2]) radius.append(0) rotangle_deg.append(0) else: coord_x.append(shape.coord[0].value) coord_y.append(shape.coord[1].value) if shape.region_type in ['circle', 'circleannulus', 'point']: radius.append([float(val) for val in shape.coord[2:]]) rotangle_deg.append(0) else: radius.append([float(x) for x in shape.coord[2:-1]]) rotangle_deg.append(shape.coord[-1].to('deg').value) tag = shape.meta.get('tag', '') if tag.isdigit(): components.append(int(tag)) else: components.append(num + 1) # padding every value with zeros at the end to make sure that all values # in the column have same length. for i in range(len(self)): if np.isscalar(coord_x[i]): coord_x[i] = np.array([coord_x[i]]) if np.isscalar(coord_y[i]): coord_y[i] = np.array([coord_y[i]]) if np.isscalar(radius[i]): radius[i] = np.array([radius[i]]) coord_x[i] = np.pad(coord_x[i], (0, int(max_length_coord - len(coord_x[i]))), 'constant', constant_values=(0, 0)) coord_y[i] = np.pad(coord_y[i], (0, int(max_length_coord - len(coord_y[i]))), 'constant', constant_values=(0, 0)) radius[i] = np.pad(radius[i], (0, 4 - len(radius[i])), 'constant', constant_values=(0, 0)) table = Table([coord_x, coord_y, shapes, radius, rotangle_deg, components], names=('X', 'Y', 'SHAPE', 'R', 'ROTANG', 'COMPONENT')) table['X'].unit = 'pix' table['Y'].unit = 'pix' table['R'].unit = 'pix' table['ROTANG'].unit = 'deg' return table
0.002415
def isoncurve(self, p): """ verifies if a point is on the curve """ return p.iszero() or p.y ** 2 == p.x ** 3 + self.a * p.x + self.b
0.012121
def load_vpatt(filename1, filename2): """Loads a VectorPatternUniform pattern that is saved between two files. """ with open(filename1) as f: lines = f.readlines() lst = lines[0].split(',') patt1 = np.zeros([int(lst[0]), int(lst[1])], dtype=np.complex128) lines.pop(0) for line in lines: lst = line.split(',') n = int(lst[0]) m = int(lst[1]) re = float(lst[2]) im = float(lst[3]) patt1[n, m] = re + 1j * im with open(filename2) as f: lines2 = f.readlines() lst = lines2[0].split(',') patt2 = np.zeros([int(lst[0]), int(lst[1])], dtype=np.complex128) lines2.pop(0) for line in lines2: lst = line.split(',') n = int(lst[0]) m = int(lst[1]) re = float(lst[2]) im = float(lst[3]) patt2[n, m] = re + 1j * im return sp.VectorPatternUniform(patt1, patt2)
0.004753
def divisions(self): """ Recursively get all the text divisions directly part of this element. If an element contains parts or text without tag. Those will be returned in order and wrapped with a TextDivision. """ from .placeholder_division import PlaceholderDivision placeholder = None for item in self.__parts_and_divisions: if item.tag == 'part': if not placeholder: placeholder = PlaceholderDivision() placeholder.parts.append(item) else: if placeholder: yield placeholder placeholder = None yield item if placeholder: yield placeholder
0.005222
def get_tow_guide(session, vehicle_index): """Get tow guide information.""" profile = get_profile(session) _validate_vehicle(vehicle_index, profile) return session.post(TOW_URL, { 'vin': profile['vehicles'][vehicle_index]['vin'] }).json()
0.003759
def _fix_outputs(self, op, outputs): """A workaround to handle dropout or similar operator that have more than one out in ONNX. """ if op == 'Dropout': assert len(outputs) == 2, "ONNX have two outputs for dropout layer." outputs = outputs[:-1] return outputs
0.012422
def run_filters(actions, prepare=None, finalize=None, input_stream=None, output_stream=None, doc=None, **kwargs): """ Receive a Pandoc document from the input stream (default is stdin), walk through it applying the functions in *actions* to each element, and write it back to the output stream (default is stdout). Notes: - It receives and writes the Pandoc documents as JSON--encoded strings; this is done through the :func:`.load` and :func:`.dump` functions. - It walks through the document once for every function in *actions*, so the actions are applied sequentially. - By default, it will read from stdin and write to stdout, but these can be modified. - It can also apply functions to the entire document at the beginning and end; this allows for global operations on the document. - If ``doc`` is a :class:`.Doc` instead of ``None``, ``run_filters`` will return the document instead of writing it to the output stream. :param actions: sequence of functions; each function takes (element, doc) as argument, so a valid header would be ``def action(elem, doc):`` :type actions: [:class:`function`] :param prepare: function executed at the beginning; right after the document is received and parsed :type prepare: :class:`function` :param finalize: function executed at the end; right before the document is converted back to JSON and written to stdout. :type finalize: :class:`function` :param input_stream: text stream used as input (default is :data:`sys.stdin`) :param output_stream: text stream used as output (default is :data:`sys.stdout`) :param doc: ``None`` unless running panflute as a filter, in which case this will be a :class:`.Doc` element :type doc: ``None`` | :class:`.Doc` :param \*kwargs: keyword arguments will be passed through to the *action* functions (so they can actually receive more than just two arguments (*element* and *doc*) """ load_and_dump = (doc is None) if load_and_dump: doc = load(input_stream=input_stream) if prepare is not None: prepare(doc) for action in actions: if kwargs: action = partial(action, **kwargs) doc = doc.walk(action, doc) if finalize is not None: finalize(doc) if load_and_dump: dump(doc, output_stream=output_stream) else: return(doc)
0.001188
def get_object(brain_object_uid, default=_marker): """Get the full content object :param brain_object_uid: A catalog brain or content object or uid :type brain_object_uid: PortalObject/ATContentType/DexterityContentType /CatalogBrain/basestring :returns: The full object """ if is_uid(brain_object_uid): return get_object_by_uid(brain_object_uid) if not is_object(brain_object_uid): if default is _marker: fail("{} is not supported.".format(repr(brain_object_uid))) return default if is_brain(brain_object_uid): return brain_object_uid.getObject() return brain_object_uid
0.001524
def get_art(cache_dir, size, client): """Get the album art.""" song = client.currentsong() if len(song) < 2: print("album: Nothing currently playing.") return file_name = f"{song['artist']}_{song['album']}_{size}.jpg".replace("/", "") file_name = cache_dir / file_name if file_name.is_file(): shutil.copy(file_name, cache_dir / "current.jpg") print("album: Found cached art.") else: print("album: Downloading album art...") brainz.init() album_art = brainz.get_cover(song, size) if album_art: util.bytes_to_file(album_art, cache_dir / file_name) util.bytes_to_file(album_art, cache_dir / "current.jpg") print(f"album: Swapped art to {song['artist']}, {song['album']}.")
0.001244
def get_filtered_path(path_to_image, filename_key, storage): """ Return the 'filtered path' """ containing_folder, filename = os.path.split(path_to_image) filtered_filename = get_filtered_filename(filename, filename_key) path_to_return = os.path.join(*[ containing_folder, VERSATILEIMAGEFIELD_FILTERED_DIRNAME, filtered_filename ]) # Removing spaces so this path is memcached key friendly path_to_return = path_to_return.replace(' ', '') return path_to_return
0.001908
def redirect_to_ssl(self): """Redirect incoming requests to HTTPS.""" # Should we redirect? criteria = [ request.is_secure, current_app.debug, current_app.testing, request.headers.get('X-Forwarded-Proto', 'http') == 'https' ] if not any(criteria) and not self.skip: if request.url.startswith('http://'): url = request.url.replace('http://', 'https://', 1) code = 302 if self.permanent: code = 301 r = redirect(url, code=code) return r
0.00315
def fromseconds(cls, seconds): """Return a |Period| instance based on a given number of seconds.""" try: seconds = int(seconds) except TypeError: seconds = int(seconds.flatten()[0]) return cls(datetime.timedelta(0, int(seconds)))
0.007018
def save_pickle(obj, outfile, protocol=2): """Save the object as a pickle file Args: outfile (str): Filename protocol (int): Pickle protocol to use. Default is 2 to remain compatible with Python 2 Returns: str: Path to pickle file """ with open(outfile, 'wb') as f: pickle.dump(obj, f, protocol=protocol) return outfile
0.005277
def components(self): """ Returns full :class:`dict` of :class:`Component` instances, after a successful :meth:`build` :return: dict of named :class:`Component` instances :rtype: :class:`dict` For more information read about the :ref:`parts_assembly-build-cycle` . """ if self._components is None: self.build(recursive=False) return self._components
0.004598
def get_grid_mapping_variables(ds): ''' Returns a list of grid mapping variables :param netCDF4.Dataset ds: An open netCDF4 Dataset ''' grid_mapping_variables = [] for ncvar in ds.get_variables_by_attributes(grid_mapping=lambda x: x is not None): if ncvar.grid_mapping in ds.variables: grid_mapping_variables.append(ncvar.grid_mapping) return grid_mapping_variables
0.004831
def _expectation(p, constant_mean, none, kern, feat, nghp=None): """ Compute the expectation: expectation[n] = <m(x_n)^T K_{x_n, Z}>_p(x_n) - m(x_i) = c :: Constant function - K_{.,.} :: Kernel function :return: NxQxM """ with params_as_tensors_for(constant_mean): c = constant_mean(p.mu) # NxQ eKxz = expectation(p, (kern, feat), nghp=nghp) # NxM return c[..., None] * eKxz[:, None, :]
0.002188
def last_time_non_ok_or_up(self): """Get the last time the service was in a non-OK state :return: the nearest last time the service was not ok :rtype: int """ non_ok_times = [x for x in [self.last_time_warning, self.last_time_critical, self.last_time_unknown] if x > self.last_time_ok] if not non_ok_times: last_time_non_ok = 0 # todo: program_start would be better? else: last_time_non_ok = min(non_ok_times) return last_time_non_ok
0.003231
def recent(self): """ Retrieve a selection of conversations with the most recent activity, and store them in the cache. Each conversation is only retrieved once, so subsequent calls will retrieve older conversations. Returns: :class:`SkypeChat` list: collection of recent conversations """ url = "{0}/users/ME/conversations".format(self.skype.conn.msgsHost) params = {"startTime": 0, "view": "msnp24Equivalent", "targetType": "Passport|Skype|Lync|Thread"} resp = self.skype.conn.syncStateCall("GET", url, params, auth=SkypeConnection.Auth.RegToken).json() chats = {} for json in resp.get("conversations", []): cls = SkypeSingleChat if "threadProperties" in json: info = self.skype.conn("GET", "{0}/threads/{1}".format(self.skype.conn.msgsHost, json.get("id")), auth=SkypeConnection.Auth.RegToken, params={"view": "msnp24Equivalent"}).json() json.update(info) cls = SkypeGroupChat chats[json.get("id")] = self.merge(cls.fromRaw(self.skype, json)) return chats
0.005564
def build_variable_font( self, designspace, output_path=None, output_dir=None, master_bin_dir=None, ttf=True, ): """Build OpenType variable font from masters in a designspace.""" assert not (output_path and output_dir), "mutually exclusive args" ext = "ttf" if ttf else "otf" if hasattr(designspace, "__fspath__"): designspace = designspace.__fspath__() if isinstance(designspace, basestring): designspace = designspaceLib.DesignSpaceDocument.fromfile(designspace) if master_bin_dir is None: master_bin_dir = self._output_dir(ext, interpolatable=True) finder = partial(_varLib_finder, directory=master_bin_dir) else: assert all(isinstance(s.font, TTFont) for s in designspace.sources) finder = lambda s: s # noqa: E731 if output_path is None: output_path = ( os.path.splitext(os.path.basename(designspace.path))[0] + "-VF" ) output_path = self._output_path( output_path, ext, is_variable=True, output_dir=output_dir ) logger.info("Building variable font " + output_path) font, _, _ = varLib.build(designspace, finder) font.save(output_path)
0.003712
def generateVariant(self, referenceName, position, randomNumberGenerator): """ Generate a random variant for the specified position using the specified random number generator. This generator should be seeded with a value that is unique to this position so that the same variant will always be produced regardless of the order it is generated in. """ variant = self._createGaVariant() variant.reference_name = referenceName variant.start = position variant.end = position + 1 # SNPs only for now bases = ["A", "C", "G", "T"] ref = randomNumberGenerator.choice(bases) variant.reference_bases = ref alt = randomNumberGenerator.choice( [base for base in bases if base != ref]) variant.alternate_bases.append(alt) randChoice = randomNumberGenerator.randint(0, 2) if randChoice == 0: variant.filters_applied = False elif randChoice == 1: variant.filters_applied = True variant.filters_passed = True else: variant.filters_applied = True variant.filters_passed = False variant.filters_failed.append('q10') for callSet in self.getCallSets(): call = variant.calls.add() call.call_set_id = callSet.getId() # for now, the genotype is either [0,1], [1,1] or [1,0] with equal # probability; probably will want to do something more # sophisticated later. randomChoice = randomNumberGenerator.choice( [[0, 1], [1, 0], [1, 1]]) call.genotype.extend(randomChoice) # TODO What is a reasonable model for generating these likelihoods? # Are these log-scaled? Spec does not say. call.genotype_likelihood.extend([-100, -100, -100]) variant.id = self.getVariantId(variant) return variant
0.00102
def generate_safemode_windows(): """Produce batch file to run QML in safe-mode Usage: $ python -c "import compat;compat.generate_safemode_windows()" $ run.bat """ try: import pyblish import pyblish_qml import PyQt5 except ImportError: return sys.stderr.write( "Run this in a terminal with access to " "the Pyblish libraries and PyQt5.\n") template = r"""@echo off :: Clear all environment variables @echo off if exist ".\backup_env.bat" del ".\backup_env.bat" for /f "tokens=1* delims==" %%a in ('set') do ( echo set %%a=%%b>> .\backup_env.bat set %%a= ) :: Set only the bare essentials set PATH={PyQt5} set PATH=%PATH%;{python} set PYTHONPATH={pyblish} set PYTHONPATH=%PYTHONPATH%;{pyblish_qml} set PYTHONPATH=%PYTHONPATH%;{PyQt5} set SystemRoot=C:\Windows :: Run Pyblish python -m pyblish_qml :: Restore environment backup_env.bat """ values = {} for lib in (pyblish, pyblish_qml, PyQt5): values[lib.__name__] = os.path.dirname(os.path.dirname(lib.__file__)) values["python"] = os.path.dirname(sys.executable) with open("run.bat", "w") as f: print("Writing %s" % template.format(**values)) f.write(template.format(**values))
0.000738
def wraps(__fn, **kw): """Like ``functools.wraps``, with support for annotations.""" kw['assigned'] = kw.get('assigned', WRAPPER_ASSIGNMENTS) return functools.wraps(__fn, **kw)
0.01
def get_sorted_attachments(self): """Returns a sorted list of analysis info dictionaries """ inf = float("inf") order = self.get_attachments_order() attachments = self.get_attachments() def att_cmp(att1, att2): _n1 = att1.get('UID') _n2 = att2.get('UID') _i1 = _n1 in order and order.index(_n1) + 1 or inf _i2 = _n2 in order and order.index(_n2) + 1 or inf return cmp(_i1, _i2) sorted_attachments = sorted(attachments, cmp=att_cmp) return sorted_attachments
0.003431
def unregister(self, model): """ Unregister a permission handler from the model Parameters ---------- model : django model class A django model class Raises ------ KeyError Raise when the model have not registered in registry yet. """ if model not in self._registry: raise KeyError("A permission handler class have not been " "registered for '%s' yet" % model) # remove from registry del self._registry[model]
0.003509
def generator(self, output, target): "Evaluate the `output` with the critic then uses `self.loss_funcG` to combine it with `target`." fake_pred = self.gan_model.critic(output) return self.loss_funcG(fake_pred, target, output)
0.012048
def calc_conf_intervals(self, conf_percentage, interval_type='all', init_vals=None, epsilon=abc.EPSILON, **fit_kwargs): """ Calculates percentile, bias-corrected and accelerated, and approximate bootstrap confidence intervals. Parameters ---------- conf_percentage : scalar in the interval (0.0, 100.0). Denotes the confidence-level for the returned endpoints. For instance, to calculate a 95% confidence interval, pass `95`. interval_type : str in {'all', 'pi', 'bca', 'abc'}, optional. Denotes the type of confidence intervals that should be calculated. 'all' results in all types of confidence intervals being calculated. 'pi' means 'percentile intervals', 'bca' means 'bias-corrected and accelerated', and 'abc' means 'approximate bootstrap confidence' intervals. Default == 'all'. init_vals : 1D ndarray. The initial values used to estimate the one's choice model. epsilon : positive float, optional. Should denote the 'very small' value being used to calculate the desired finite difference approximations to the various influence functions for the 'abc' intervals. Should be close to zero. Default == sys.float_info.epsilon. fit_kwargs : additional keyword arguments, optional. Should contain any additional kwargs used to alter the default behavior of `model_obj.fit_mle` and thereby enforce conformity with how the MLE was obtained. Will be passed directly to `model_obj.fit_mle` when calculating the 'abc' intervals. Returns ------- None. Will store the confidence intervals on their respective model objects: `self.percentile_interval`, `self.bca_interval`, `self.abc_interval`, or all of these objects. """ if interval_type == 'pi': self.calc_percentile_interval(conf_percentage) elif interval_type == 'bca': self.calc_bca_interval(conf_percentage) elif interval_type == 'abc': self.calc_abc_interval(conf_percentage, init_vals, epsilon=epsilon, **fit_kwargs) elif interval_type == 'all': print("Calculating Percentile Confidence Intervals") sys.stdout.flush() self.calc_percentile_interval(conf_percentage) print("Calculating BCa Confidence Intervals") sys.stdout.flush() self.calc_bca_interval(conf_percentage) # Note we don't print a user message here since that is done in # self.calc_abc_interval(). self.calc_abc_interval(conf_percentage, init_vals, epsilon=epsilon, **fit_kwargs) # Get the alpha % for the given confidence percentage. alpha = bc.get_alpha_from_conf_percentage(conf_percentage) # Get lists of the interval type names and the endpoint names interval_type_names = ['percentile_interval', 'BCa_interval', 'ABC_interval'] endpoint_names = ['{:.3g}%'.format(alpha / 2.0), '{:.3g}%'.format(100 - alpha / 2.0)] # Create the column names for the dataframe of confidence intervals multi_index_names =\ list(itertools.product(interval_type_names, endpoint_names)) df_column_index = pd.MultiIndex.from_tuples(multi_index_names) # Create the dataframe containing all confidence intervals self.all_intervals = pd.concat([self.percentile_interval, self.bca_interval, self.abc_interval], axis=1, ignore_index=True) # Store the column names for the combined confidence intervals self.all_intervals.columns = df_column_index self.all_intervals.index = self.mle_params.index else: msg =\ "interval_type MUST be in `['pi', 'bca', 'abc', 'all']`" raise ValueError(msg) return None
0.001506
def get(self, node, path): """ Return instance at `path`. An example module tree: >>> from anytree import Node >>> top = Node("top", parent=None) >>> sub0 = Node("sub0", parent=top) >>> sub0sub0 = Node("sub0sub0", parent=sub0) >>> sub0sub1 = Node("sub0sub1", parent=sub0) >>> sub1 = Node("sub1", parent=top) A resolver using the `name` attribute: >>> r = Resolver('name') Relative paths: >>> r.get(top, "sub0/sub0sub0") Node('/top/sub0/sub0sub0') >>> r.get(sub1, "..") Node('/top') >>> r.get(sub1, "../sub0/sub0sub1") Node('/top/sub0/sub0sub1') >>> r.get(sub1, ".") Node('/top/sub1') >>> r.get(sub1, "") Node('/top/sub1') >>> r.get(top, "sub2") Traceback (most recent call last): ... anytree.resolver.ChildResolverError: Node('/top') has no child sub2. Children are: 'sub0', 'sub1'. Absolute paths: >>> r.get(sub0sub0, "/top") Node('/top') >>> r.get(sub0sub0, "/top/sub0") Node('/top/sub0') >>> r.get(sub0sub0, "/") Traceback (most recent call last): ... anytree.resolver.ResolverError: root node missing. root is '/top'. >>> r.get(sub0sub0, "/bar") Traceback (most recent call last): ... anytree.resolver.ResolverError: unknown root node '/bar'. root is '/top'. """ node, parts = self.__start(node, path) for part in parts: if part == "..": node = node.parent elif part in ("", "."): pass else: node = self.__get(node, part) return node
0.002248
def GeneralGuinier(q, G, Rg, s): """Generalized Guinier scattering Inputs: ------- ``q``: independent variable ``G``: factor ``Rg``: radius of gyration ``s``: dimensionality parameter (can be 1, 2, 3) Formula: -------- ``G/q**(3-s)*exp(-(q^2*Rg^2)/s)`` """ return G / q ** (3 - s) * np.exp(-(q * Rg) ** 2 / s)
0.002639
def FileTransfer(*args, **kwargs): """Factory function selects the proper SCP class and creates object based on device_type.""" if len(args) >= 1: device_type = args[0].device_type else: device_type = kwargs["ssh_conn"].device_type if device_type not in scp_platforms: raise ValueError( "Unsupported SCP device_type: " "currently supported platforms are: {}".format(scp_platforms_str) ) FileTransferClass = FILE_TRANSFER_MAP[device_type] return FileTransferClass(*args, **kwargs)
0.003578
def comment_sync(self, comment): """Update comments to host and notify subscribers""" self.host.update(key="comment", value=comment) self.host.emit("commented", comment=comment)
0.00995
def plot(X, marker='.', kind='plot', title=None, fig='current', ax=None, **kwargs): '''General plotting function that aims to cover most common cases. X : numpy array of 1d, 2d, or 3d points, with one point per row. marker : passed to the underlying plotting function kind : one of {plot, scatter} that controls the plot type. title : if given, used as the axis title fig : a matplotlib.Figure, or one of {current, new}. Only used when ax=None. ax : a matplotlib.Axes object, or None All other keyword arguments are passed on to the underlying plotting function. ''' X = np.asanyarray(X) if X.ndim not in (1,2) or (X.ndim == 2 and X.shape[1] not in (1,2,3)): raise ValueError('Input data must be rows of 1, 2, or 3 dimensional points') is_3d = X.ndim == 2 and X.shape[1] == 3 is_1d = X.ndim == 1 or X.shape[1] == 1 ax = _get_axis(fig, ax, is_3d) # XXX: support old-style scatter=True kwarg usage if kwargs.get('scatter', False): kind = 'scatter' del kwargs['scatter'] # Do the plotting if kind is 'scatter': if is_1d: ax.scatter(np.arange(len(X)), X, marker=marker, **kwargs) elif is_3d: ax.scatter(X[:,0], X[:,1], X[:,2], marker=marker, **kwargs) else: ax.scatter(X[:,0], X[:,1], marker=marker, **kwargs) elif kind is 'plot': if is_1d: ax.plot(X, marker, **kwargs) elif is_3d: ax.plot(X[:,0], X[:,1], X[:,2], marker, **kwargs) else: ax.plot(X[:,0], X[:,1], marker, **kwargs) else: raise ValueError('Unsupported kind: %r' % kind) if title: ax.set_title(title) return plt.show
0.022388
def root_parent(self, category=None): """ Returns the topmost parent of the current category. """ return next(filter(lambda c: c.is_root, self.hierarchy()))
0.011628
def image_query_record(self, imagename=None): """Query the image record from database, if imagename is None, all of the image records will be returned, otherwise only the specified image record will be returned.""" if imagename: with get_image_conn() as conn: result = conn.execute("SELECT * FROM image WHERE " "imagename=?", (imagename,)) image_list = result.fetchall() if not image_list: obj_desc = "Image with name: %s" % imagename raise exception.SDKObjectNotExistError(obj_desc=obj_desc, modID=self._module_id) else: with get_image_conn() as conn: result = conn.execute("SELECT * FROM image") image_list = result.fetchall() # Map each image record to be a dict, with the key is the field name in # image DB image_keys_list = ['imagename', 'imageosdistro', 'md5sum', 'disk_size_units', 'image_size_in_bytes', 'type', 'comments'] image_result = [] for item in image_list: image_item = dict(zip(image_keys_list, item)) image_result.append(image_item) return image_result
0.003698
def _magic_parser(stream, magic): """ Parse the section with the SCF cycle Returns: dict where the key are the name of columns and the values are list of numbers. Note if no section was found. .. warning:: The parser is very fragile and should be replaced by YAML. """ #Example (SCF cycle, similar format is used for phonons): # # iter Etot(hartree) deltaE(h) residm vres2 # ETOT 1 -8.8604027880849 -8.860E+00 2.458E-02 3.748E+00 # At SCF step 5 vres2 = 3.53E-08 < tolvrs= 1.00E-06 =>converged. in_doc, fields = 0, None for line in stream: line = line.strip() if line.startswith(magic): keys = line.split() fields = OrderedDict((k, []) for k in keys) if fields is not None: #print(line) in_doc += 1 if in_doc == 1: continue # End of the section. if not line: break tokens = list(map(float, line.split()[1:])) assert len(tokens) == len(keys) for l, v in zip(fields.values(), tokens): l.append(v) # Convert values to numpy arrays. if fields: return OrderedDict([(k, np.array(v)) for k, v in fields.items()]) else: return None
0.004471
def download_parsed(self, days=60): """Downloaded OFX response parsed by :py:meth:`OfxParser.parse` :param days: Number of days to look back at :type days: integer :rtype: :py:class:`ofxparser.Ofx` """ if IS_PYTHON_2: return OfxParser.parse( self.download(days=days) ) else: return OfxParser.parse( BytesIO(self.download(days=days).read().encode()) )
0.004107
def urisplit(uristring): """Split a well-formed URI reference string into a tuple with five components corresponding to a URI's general structure:: <scheme>://<authority>/<path>?<query>#<fragment> """ if isinstance(uristring, bytes): result = SplitResultBytes else: result = SplitResultUnicode return result(*result.RE.match(uristring).groups())
0.002545
def spin_thread(self, interval=1): """call Client.spin() in a background thread on some regular interval This helps ensure that messages don't pile up too much in the zmq queue while you are working on other things, or just leaving an idle terminal. It also helps limit potential padding of the `received` timestamp on AsyncResult objects, used for timings. Parameters ---------- interval : float, optional The interval on which to spin the client in the background thread (simply passed to time.sleep). Notes ----- For precision timing, you may want to use this method to put a bound on the jitter (in seconds) in `received` timestamps used in AsyncResult.wall_time. """ if self._spin_thread is not None: self.stop_spin_thread() self._stop_spinning.clear() self._spin_thread = Thread(target=self._spin_every, args=(interval,)) self._spin_thread.daemon = True self._spin_thread.start()
0.008803
def cp(hdfs_src, hdfs_dst): """Copy a file :param hdfs_src: Source (str) :param hdfs_dst: Destination (str) :raises: IOError: If unsuccessful """ cmd = "hadoop fs -cp %s %s" % (hdfs_src, hdfs_dst) rcode, stdout, stderr = _checked_hadoop_fs_command(cmd)
0.003559
def replace_tax_rate_by_id(cls, tax_rate_id, tax_rate, **kwargs): """Replace TaxRate Replace all attributes of TaxRate This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.replace_tax_rate_by_id(tax_rate_id, tax_rate, async=True) >>> result = thread.get() :param async bool :param str tax_rate_id: ID of taxRate to replace (required) :param TaxRate tax_rate: Attributes of taxRate to replace (required) :return: TaxRate If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return cls._replace_tax_rate_by_id_with_http_info(tax_rate_id, tax_rate, **kwargs) else: (data) = cls._replace_tax_rate_by_id_with_http_info(tax_rate_id, tax_rate, **kwargs) return data
0.004965
def gen_locale(locale, **kwargs): ''' Generate a locale. Options: .. versionadded:: 2014.7.0 :param locale: Any locale listed in /usr/share/i18n/locales or /usr/share/i18n/SUPPORTED for Debian and Gentoo based distributions, which require the charmap to be specified as part of the locale when generating it. verbose Show extra warnings about errors that are normally ignored. CLI Example: .. code-block:: bash salt '*' locale.gen_locale en_US.UTF-8 salt '*' locale.gen_locale 'en_IE.UTF-8 UTF-8' # Debian/Gentoo only ''' on_debian = __grains__.get('os') == 'Debian' on_ubuntu = __grains__.get('os') == 'Ubuntu' on_gentoo = __grains__.get('os_family') == 'Gentoo' on_suse = __grains__.get('os_family') == 'Suse' on_solaris = __grains__.get('os_family') == 'Solaris' if on_solaris: # all locales are pre-generated return locale in __salt__['locale.list_avail']() locale_info = salt.utils.locales.split_locale(locale) locale_search_str = '{0}_{1}'.format(locale_info['language'], locale_info['territory']) # if the charmap has not been supplied, normalize by appening it if not locale_info['charmap'] and not on_ubuntu: locale_info['charmap'] = locale_info['codeset'] locale = salt.utils.locales.join_locale(locale_info) if on_debian or on_gentoo: # file-based search search = '/usr/share/i18n/SUPPORTED' valid = __salt__['file.search'](search, '^{0}$'.format(locale), flags=re.MULTILINE) else: # directory-based search if on_suse: search = '/usr/share/locale' else: search = '/usr/share/i18n/locales' try: valid = locale_search_str in os.listdir(search) except OSError as ex: log.error(ex) raise CommandExecutionError( "Locale \"{0}\" is not available.".format(locale)) if not valid: log.error( 'The provided locale "%s" is not found in %s', locale, search) return False if os.path.exists('/etc/locale.gen'): __salt__['file.replace']( '/etc/locale.gen', r'^\s*#\s*{0}\s*$'.format(locale), '{0}\n'.format(locale), append_if_not_found=True ) elif on_ubuntu: __salt__['file.touch']( '/var/lib/locales/supported.d/{0}'.format(locale_info['language']) ) __salt__['file.replace']( '/var/lib/locales/supported.d/{0}'.format(locale_info['language']), locale, locale, append_if_not_found=True ) if salt.utils.path.which('locale-gen'): cmd = ['locale-gen'] if on_gentoo: cmd.append('--generate') if on_ubuntu: cmd.append(salt.utils.locales.normalize_locale(locale)) else: cmd.append(locale) elif salt.utils.path.which('localedef'): cmd = ['localedef', '--force', '-i', locale_search_str, '-f', locale_info['codeset'], '{0}.{1}'.format(locale_search_str, locale_info['codeset']), kwargs.get('verbose', False) and '--verbose' or '--quiet'] else: raise CommandExecutionError( 'Command "locale-gen" or "localedef" was not found on this system.') res = __salt__['cmd.run_all'](cmd) if res['retcode']: log.error(res['stderr']) if kwargs.get('verbose'): return res else: return res['retcode'] == 0
0.001092
def enumerate_joint_ask(X, e, P): """Return a probability distribution over the values of the variable X, given the {var:val} observations e, in the JointProbDist P. [Section 13.3] >>> P = JointProbDist(['X', 'Y']) >>> P[0,0] = 0.25; P[0,1] = 0.5; P[1,1] = P[2,1] = 0.125 >>> enumerate_joint_ask('X', dict(Y=1), P).show_approx() '0: 0.667, 1: 0.167, 2: 0.167' """ assert X not in e, "Query variable must be distinct from evidence" Q = ProbDist(X) # probability distribution for X, initially empty Y = [v for v in P.variables if v != X and v not in e] # hidden vars. for xi in P.values(X): Q[xi] = enumerate_joint(Y, extend(e, X, xi), P) return Q.normalize()
0.004208
def get_dict(self, only_attributes=None, exclude_attributes=None, df_format=False): """Get a dictionary of this object's attributes. Optional format for storage in a Pandas DataFrame. Args: only_attributes (str, list): Attributes that should be returned. If not provided, all are returned. exclude_attributes (str, list): Attributes that should be excluded. df_format (bool): If dictionary values should be formatted for a dataframe (everything possible is transformed into strings, int, or float - if something can't be transformed it is excluded) Returns: dict: Dictionary of attributes """ # Choose attributes to return, return everything in the object if a list is not specified if not only_attributes: keys = list(self.__dict__.keys()) else: keys = ssbio.utils.force_list(only_attributes) # Remove keys you don't want returned if exclude_attributes: exclude_attributes = ssbio.utils.force_list(exclude_attributes) for x in exclude_attributes: if x in keys: keys.remove(x) # Copy attributes into a new dictionary df_dict = {} for k, orig_v in self.__dict__.items(): if k in keys: v = deepcopy(orig_v) if df_format: if v and not isinstance(v, str) and not isinstance(v, int) and not isinstance(v, float) and not isinstance( v, bool): try: df_dict[k] = ssbio.utils.force_string(deepcopy(v)) except TypeError: log.warning('{}: excluding attribute from dict, cannot transform into string'.format(k)) elif not v and not isinstance(v, int) and not isinstance(v, float): df_dict[k] = None else: df_dict[k] = deepcopy(v) else: df_dict[k] = deepcopy(v) return df_dict
0.005324
def rewrite_subject_group(root, subjects, subject_group_type, overwrite=True): "add or rewrite subject tags inside subj-group tags" parent_tag_name = 'subj-group' tag_name = 'subject' wrap_tag_name = 'article-categories' tag_attribute = 'subj-group-type' # the parent tag where it should be found xpath_parent = './/front/article-meta/article-categories' # the wraping tag in case article-categories does not exist xpath_article_meta = './/front/article-meta' # the xpath to find the subject tags we are interested in xpath = './/{parent_tag_name}[@{tag_attribute}="{group_type}"]'.format( parent_tag_name=parent_tag_name, tag_attribute=tag_attribute, group_type=subject_group_type) count = 0 # get the parent tag parent_tag = root.find(xpath_parent) if parent_tag is None: # parent tag not found, add one wrap_tag = root.find(xpath_article_meta) article_categories_tag = SubElement(wrap_tag, wrap_tag_name) parent_tag = article_categories_tag insert_index = 0 # iterate all tags to find the index of the first tag we are interested in if parent_tag is not None: for tag_index, tag in enumerate(parent_tag.findall('*')): if tag.tag == parent_tag_name and tag.get(tag_attribute) == subject_group_type: insert_index = tag_index if overwrite is True: # if overwriting use the first one found break # if not overwriting, use the last one found + 1 if overwrite is not True: insert_index += 1 # remove the tag if overwriting the existing values if overwrite is True: # remove all the tags for tag in root.findall(xpath): parent_tag.remove(tag) # add the subjects for subject in subjects: subj_group_tag = Element(parent_tag_name) subj_group_tag.set(tag_attribute, subject_group_type) subject_tag = SubElement(subj_group_tag, tag_name) subject_tag.text = subject parent_tag.insert(insert_index, subj_group_tag) count += 1 insert_index += 1 return count
0.000905
def squash(self, a, b): """ Returns a generator that squashes two iterables into one. ``` ['this', 'that'], [[' and', ' or']] => ['this and', 'this or', 'that and', 'that or'] ``` """ return ((''.join(x) if isinstance(x, tuple) else x) for x in itertools.product(a, b))
0.012232
def set_checked(self, checked): """ Properly check the correct radio button. """ if not checked: self.widget.clearCheck() else: #: Checked is a reference to the radio declaration #: so we need to get the ID of it rb = checked.proxy.widget if not rb: return self.widget.check(rb.getId())
0.004914
def get_file_range(ase, offsets, timeout=None): # type: (blobxfer.models.azure.StorageEntity, # blobxfer.models.download.Offsets, int) -> bytes """Retrieve file range :param blobxfer.models.azure.StorageEntity ase: Azure StorageEntity :param blobxfer.models.download.Offsets offsets: download offsets :param int timeout: timeout :rtype: bytes :return: content for file range """ dir, fpath, _ = parse_file_path(ase.name) return ase.client._get_file( share_name=ase.container, directory_name=dir, file_name=fpath, start_range=offsets.range_start, end_range=offsets.range_end, validate_content=False, # HTTPS takes care of integrity during xfer timeout=timeout, snapshot=ase.snapshot, ).content
0.001232
def parse_args(): """Define and parse command line arguments""" parser = argparse.ArgumentParser( description='''Convert a set of files to a single h5features file, input files can be npz (numpy) or mat (MATLAB) files.''') parser.add_argument('file', nargs='+', type=str, help='File to convert in the h5features format') parser.add_argument('-o', '--output', default='features.h5', type=str, help='''The output h5features file to write on (default is %(default)s)''') parser.add_argument('-g', '--group', default='h5features', type=str, help='''The group to write in the output file (default is %(default)s)''') parser.add_argument('--chunk', default=0.1, type=float, help='''size of a file chunk in MB (default is %(default)s)''') return parser.parse_args()
0.002051
def main(argv=None): """ Invoke the cosmic ray evaluation. :param argv: the command line arguments """ signal.signal( signal.SIGINT, lambda *args: sys.exit(_SIGNAL_EXIT_CODE_BASE + signal.SIGINT)) if hasattr(signal, 'SIGINFO'): signal.signal( getattr(signal, 'SIGINFO'), lambda *args: report_progress(sys.stderr)) try: return docopt_subcommands.main( commands=dsc, argv=argv, doc_template=DOC_TEMPLATE, exit_at_end=False) except docopt.DocoptExit as exc: print(exc, file=sys.stderr) return ExitCode.USAGE except FileNotFoundError as exc: print(exc, file=sys.stderr) return ExitCode.NO_INPUT except PermissionError as exc: print(exc, file=sys.stderr) return ExitCode.NO_PERM except cosmic_ray.config.ConfigError as exc: print(repr(exc), file=sys.stderr) if exc.__cause__ is not None: print(exc.__cause__, file=sys.stderr) return ExitCode.CONFIG except subprocess.CalledProcessError as exc: print('Error in subprocess', file=sys.stderr) print(exc, file=sys.stderr) return exc.returncode
0.000805
def load(): """Loads the libdmtx shared library. """ if 'Windows' == platform.system(): # Possible scenarios here # 1. Run from source, DLLs are in pylibdmtx directory # cdll.LoadLibrary() imports DLLs in repo root directory # 2. Wheel install into CPython installation # cdll.LoadLibrary() imports DLLs in package directory # 3. Wheel install into virtualenv # cdll.LoadLibrary() imports DLLs in package directory # 4. Frozen # cdll.LoadLibrary() imports DLLs alongside executable fname = _windows_fname() try: libdmtx = cdll.LoadLibrary(fname) except OSError: libdmtx = cdll.LoadLibrary( str(Path(__file__).parent.joinpath(fname)) ) else: # Assume a shared library on the path path = find_library('dmtx') if not path: raise ImportError('Unable to find dmtx shared library') libdmtx = cdll.LoadLibrary(path) return libdmtx
0.000935