text
stringlengths
78
104k
score
float64
0
0.18
def _convert_epytext(line): """ >>> _convert_epytext("L{A}") :class:`A` """ line = line.replace('@', ':') for p, sub in RULES: line = re.sub(p, sub, line) return line
0.00495
def appliance_device_read_community(self): """ Gets the ApplianceDeviceReadCommunity API client. Returns: ApplianceDeviceReadCommunity: """ if not self.__appliance_device_read_community: self.__appliance_device_read_community = ApplianceDeviceReadCommunity(self.__connection) return self.__appliance_device_read_community
0.007614
def apply( self, value, locale, currency=None, currency_digits=True, decimal_quantization=True): """Renders into a string a number following the defined pattern. Forced decimal quantization is active by default so we'll produce a number string that is strictly following CLDR pattern definitions. """ if not isinstance(value, decimal.Decimal): value = decimal.Decimal(str(value)) value = value.scaleb(self.scale) # Separate the absolute value from its sign. is_negative = int(value.is_signed()) value = abs(value).normalize() # Prepare scientific notation metadata. if self.exp_prec: value, exp, exp_sign = self.scientific_notation_elements( value, locale) # Adjust the precision of the fractionnal part and force it to the # currency's if neccessary. frac_prec = self.frac_prec if currency and currency_digits: frac_prec = (babel.numbers.get_currency_precision(currency), ) * 2 # Bump decimal precision to the natural precision of the number if it # exceeds the one we're about to use. This adaptative precision is only # triggered if the decimal quantization is disabled or if a scientific # notation pattern has a missing mandatory fractional part (as in the # default '#E0' pattern). This special case has been extensively # discussed at # https://github.com/python-babel/babel/pull/494#issuecomment-307649969 if not decimal_quantization or (self.exp_prec and frac_prec == (0, 0)): frac_prec = (frac_prec[0], max([frac_prec[1], get_decimal_precision(value)])) # Render scientific notation. if self.exp_prec: number = ''.join([ self._quantize_value(value, locale, frac_prec), babel.numbers.get_exponential_symbol(locale), exp_sign, self._format_int( str(exp), self.exp_prec[0], self.exp_prec[1], locale)]) # Is it a siginificant digits pattern? elif '@' in self.pattern: text = self._format_significant(value, self.int_prec[0], self.int_prec[1]) a, sep, b = text.partition(".") number = self._format_int(a, 0, 1000, locale) if sep: number += babel.numbers.get_decimal_symbol(locale) + b # A normal number pattern. else: number = self._quantize_value(value, locale, frac_prec) retval = ''.join([ self.prefix[is_negative], number, self.suffix[is_negative]]) if u'¤' in retval: retval = retval.replace(u'¤¤¤', babel.numbers.get_currency_name( currency, value, locale)) retval = retval.replace(u'¤¤', currency.upper()) retval = retval.replace(u'¤', babel.numbers.get_currency_symbol( currency, locale)) return retval
0.000618
def create_sym_log_bar_chart(self, x_labels, y_values, y_label): """Creates bar chart (log version) :param x_labels: Names for each variable :param y_values: Values of x labels :param y_label: Label of y axis :return: Sym-log bar chart """ ax1 = self.create_bar_chart(x_labels, y_values, y_label) ax1.set_yscale("sym-log", linthreshy=1e-12) # logarithmic plot return ax1
0.004505
def __split_genomic_interval_filename(fn): """ Split a filename of the format chrom:start-end.ext or chrom.ext (full chrom). :return: tuple of (chrom, start, end) -- 'start' and 'end' are None if not present in the filename. """ if fn is None or fn == "": raise ValueError("invalid filename: " + str(fn)) fn = ".".join(fn.split(".")[:-1]) parts = fn.split(":") if len(parts) == 1: return (parts[0].strip(), None, None) else: r_parts = parts[1].split("-") if len(r_parts) != 2: raise ValueError("Invalid filename: " + str(fn)) return (parts[0].strip(), int(r_parts[0]), int(r_parts[1]))
0.01248
def ignore_after(seconds, coro=None, *args, timeout_result=None): '''Execute the specified coroutine and return its result. Issue a cancellation request after seconds have elapsed. When a timeout occurs, no exception is raised. Instead, timeout_result is returned. If coro is None, the result is an asynchronous context manager that applies a timeout to a block of statements. For the context manager case, the resulting context manager object has an expired attribute set to True if time expired. Note: ignore_after() may also be composed with other timeout operations. TimeoutCancellationError and UncaughtTimeoutError exceptions might be raised according to the same rules as for timeout_after(). ''' if coro: return _ignore_after_func(seconds, False, coro, args, timeout_result) return TimeoutAfter(seconds, ignore=True)
0.001117
def _add_series_or_dataframe_operations(cls): """ Add the series or dataframe only operations to the cls; evaluate the doc strings again. """ from pandas.core import window as rwindow @Appender(rwindow.rolling.__doc__) def rolling(self, window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None): axis = self._get_axis_number(axis) return rwindow.rolling(self, window=window, min_periods=min_periods, center=center, win_type=win_type, on=on, axis=axis, closed=closed) cls.rolling = rolling @Appender(rwindow.expanding.__doc__) def expanding(self, min_periods=1, center=False, axis=0): axis = self._get_axis_number(axis) return rwindow.expanding(self, min_periods=min_periods, center=center, axis=axis) cls.expanding = expanding @Appender(rwindow.ewm.__doc__) def ewm(self, com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False, axis=0): axis = self._get_axis_number(axis) return rwindow.ewm(self, com=com, span=span, halflife=halflife, alpha=alpha, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na, axis=axis) cls.ewm = ewm
0.001294
def get(self, buffer_type, offset): """Get a reading from the buffer at offset. Offset is specified relative to the start of the data buffer. This means that if the buffer rolls over, the offset for a given item will appear to change. Anyone holding an offset outside of this engine object will need to be notified when rollovers happen (i.e. popn is called so that they can update their offset indices) Args: buffer_type (str): The buffer to pop from (either u"storage" or u"streaming") offset (int): The offset of the reading to get """ if buffer_type == u'streaming': chosen_buffer = self.streaming_data else: chosen_buffer = self.storage_data if offset >= len(chosen_buffer): raise StreamEmptyError("Invalid index given in get command", requested=offset, stored=len(chosen_buffer), buffer=buffer_type) return chosen_buffer[offset]
0.004016
def dump_poly_data(dataset_dir, data_dir, dataset, color_array_info, root=None, compress=True): """Dump poly data object to vtkjs""" if root is None: root = {} root['vtkClass'] = 'vtkPolyData' container = root # Points points = dump_data_array(dataset_dir, data_dir, dataset.GetPoints().GetData(), {}, compress) points['vtkClass'] = 'vtkPoints' container['points'] = points # Cells _cells = container # Verts if dataset.GetVerts() and dataset.GetVerts().GetData().GetNumberOfTuples() > 0: _verts = dump_data_array(dataset_dir, data_dir, dataset.GetVerts().GetData(), {}, compress) _cells['verts'] = _verts _cells['verts']['vtkClass'] = 'vtkCellArray' # Lines if dataset.GetLines() and dataset.GetLines().GetData().GetNumberOfTuples() > 0: _lines = dump_data_array(dataset_dir, data_dir, dataset.GetLines().GetData(), {}, compress) _cells['lines'] = _lines _cells['lines']['vtkClass'] = 'vtkCellArray' # Polys if dataset.GetPolys() and dataset.GetPolys().GetData().GetNumberOfTuples() > 0: _polys = dump_data_array(dataset_dir, data_dir, dataset.GetPolys().GetData(), {}, compress) _cells['polys'] = _polys _cells['polys']['vtkClass'] = 'vtkCellArray' # Strips if dataset.GetStrips() and dataset.GetStrips().GetData().GetNumberOfTuples() > 0: _strips = dump_data_array(dataset_dir, data_dir, dataset.GetStrips().GetData(), {}, compress) _cells['strips'] = _strips _cells['strips']['vtkClass'] = 'vtkCellArray' dump_color_array(dataset_dir, data_dir, color_array_info, container, compress) # PointData TCoords dump_t_coords(dataset_dir, data_dir, dataset, container, compress) # dump_normals(dataset_dir, data_dir, dataset, container, compress) return root
0.005967
def main(): """ Simple command-line program for powering on virtual machines on a system. """ args = GetArgs() if args.password: password = args.password else: password = getpass.getpass(prompt='Enter password for host %s and user %s: ' % (args.host,args.user)) try: vmnames = args.vmname if not len(vmnames): print("No virtual machine specified for poweron") sys.exit() context = None if hasattr(ssl, '_create_unverified_context'): context = ssl._create_unverified_context() si = SmartConnect(host=args.host, user=args.user, pwd=password, port=int(args.port), sslContext=context) if not si: print("Cannot connect to specified host using specified username and password") sys.exit() atexit.register(Disconnect, si) # Retreive the list of Virtual Machines from the inventory objects # under the rootFolder content = si.content objView = content.viewManager.CreateContainerView(content.rootFolder, [vim.VirtualMachine], True) vmList = objView.view objView.Destroy() # Find the vm and power it on tasks = [vm.PowerOn() for vm in vmList if vm.name in vmnames] # Wait for power on to complete WaitForTasks(tasks, si) print("Virtual Machine(s) have been powered on successfully") except vmodl.MethodFault as e: print("Caught vmodl fault : " + e.msg) except Exception as e: print("Caught Exception : " + str(e))
0.022042
def create_class(self, method): """ Build the estimator class. Returns ------- :return : string The built class as string. """ temp_type = self.temp('type') temp_arr = self.temp('arr') temp_arr_ = self.temp('arr[]') temp_arr__ = self.temp('arr[][]') # Samples: temps = [] for atts in enumerate(self.estimator._fit_X): # pylint: disable=W0212 tmp = [temp_type.format(self.repr(a)) for a in atts[1]] tmp = temp_arr.format(', '.join(tmp)) temps.append(tmp) temps = ', '.join(temps) temps = temp_arr__.format(type='double', name='X', values=temps, n=self.n_templates, m=self.n_features) # Classes: classes = self.estimator._y # pylint: disable=W0212 classes = [temp_type.format(int(c)) for c in classes] classes = ', '.join(classes) classes = temp_arr_.format(type='int', name='y', values=classes, n=self.n_templates) temp_class = self.temp('separated.class') return temp_class.format(class_name=self.class_name, method_name=self.method_name, method=method, n_features=self.n_features, X=temps, y=classes, n_neighbors=self.n_neighbors, n_templates=self.n_templates, n_classes=self.n_classes, power=self.power_param)
0.001866
def read_excitation_energies(self): """ Read a excitation energies after a TD-DFT calculation. Returns: A list: A list of tuple for each transition such as [(energie (eV), lambda (nm), oscillatory strength), ... ] """ transitions = list() # read in file with zopen(self.filename, "r") as f: line = f.readline() td = False while line != "": if re.search(r"^\sExcitation energies and oscillator strengths:", line): td = True if td: if re.search(r"^\sExcited State\s*\d", line): val = [float(v) for v in float_patt.findall(line)] transitions.append(tuple(val[0:3])) line = f.readline() return transitions
0.003432
def sls(mods, saltenv='base', test=None, exclude=None, **kwargs): ''' Create the seed file for a state.sls run ''' st_kwargs = __salt__.kwargs __opts__['grains'] = __grains__ __pillar__.update(kwargs.get('pillar', {})) opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) st_ = salt.client.ssh.state.SSHHighState( opts, __pillar__, __salt__, __context__['fileclient']) st_.push_active() mods = _parse_mods(mods) high_data, errors = st_.render_highstate({saltenv: mods}) if exclude: if isinstance(exclude, six.string_types): exclude = exclude.split(',') if '__exclude__' in high_data: high_data['__exclude__'].extend(exclude) else: high_data['__exclude__'] = exclude high_data, ext_errors = st_.state.reconcile_extend(high_data) errors += ext_errors errors += st_.state.verify_high(high_data) if errors: return errors high_data, req_in_errors = st_.state.requisite_in(high_data) errors += req_in_errors high_data = st_.state.apply_exclude(high_data) # Verify that the high data is structurally sound if errors: return errors # Compile and verify the raw chunks chunks = st_.state.compile_high_data(high_data) file_refs = salt.client.ssh.state.lowstate_file_refs( chunks, _merge_extra_filerefs( kwargs.get('extra_filerefs', ''), opts.get('extra_filerefs', '') ) ) roster = salt.roster.Roster(opts, opts.get('roster', 'flat')) roster_grains = roster.opts['grains'] # Create the tar containing the state pkg and relevant files. _cleanup_slsmod_low_data(chunks) trans_tar = salt.client.ssh.state.prep_trans_tar( __context__['fileclient'], chunks, file_refs, __pillar__, st_kwargs['id_'], roster_grains) trans_tar_sum = salt.utils.hashutils.get_hash(trans_tar, opts['hash_type']) cmd = 'state.pkg {0}/salt_state.tgz test={1} pkg_sum={2} hash_type={3}'.format( opts['thin_dir'], test, trans_tar_sum, opts['hash_type']) single = salt.client.ssh.Single( opts, cmd, fsclient=__context__['fileclient'], minion_opts=__salt__.minion_opts, **st_kwargs) single.shell.send( trans_tar, '{0}/salt_state.tgz'.format(opts['thin_dir'])) stdout, stderr, _ = single.cmd_block() # Clean up our tar try: os.remove(trans_tar) except (OSError, IOError): pass # Read in the JSON data and return the data structure try: return salt.utils.json.loads(stdout) except Exception as e: log.error("JSON Render failed for: %s\n%s", stdout, stderr) log.error(six.text_type(e)) # If for some reason the json load fails, return the stdout return stdout
0.000658
def getBucketInfo(self, buckets): """ See the function description in base.py """ # For the category encoder, the bucket index is the category index bucketInfo = self.encoder.getBucketInfo(buckets)[0] categoryIndex = int(round(bucketInfo.value)) category = self.indexToCategory[categoryIndex] return [EncoderResult(value=category, scalar=categoryIndex, encoding=bucketInfo.encoding)]
0.004556
def to_html_(self) -> str: """Convert the main dataframe to html :return: html data :rtype: str :example: ``ds.to_html_()`` """ try: renderer = pytablewriter.HtmlTableWriter data = self._build_export(renderer) return data except Exception as e: self.err(e, "Can not convert data to html")
0.005076
def Open(self, filename): """Opens the database reader object. Args: filename (str): filename of the database. Returns: bool: True if successful. Raises: RuntimeError: if the version or string format of the database is not supported. """ if not super(WinevtResourcesSqlite3DatabaseReader, self).Open(filename): return False version = self.GetMetadataAttribute('version') if not version or version != '20150315': raise RuntimeError('Unsupported version: {0:s}'.format(version)) string_format = self.GetMetadataAttribute('string_format') if not string_format: string_format = 'wrc' if string_format not in ('pep3101', 'wrc'): raise RuntimeError('Unsupported string format: {0:s}'.format( string_format)) self._string_format = string_format return True
0.005682
def set_config_variables(repo, variables): """Set config variables Args: repo (git.Repo): repo variables (dict): entries of the form 'user.email': '[email protected]' """ with repo.config_writer() as writer: for k, value in variables.items(): section, option = k.split('.') writer.set_value(section, option, value) writer.release()
0.002488
def record_process(self, process, prg=''): """ log a process or program - log a physical program (.py, .bat, .exe) """ self._log(self.logFileProcess, force_to_string(process), prg)
0.009434
def read_inp(path): """ Reads Abaqus inp file """ def lineInfo(line): out = {"type": "data"} if line[0] == "*": if line[1] == "*": out["type"] = "comment" out["text"] = line[2:] else: out["type"] = "command" words = line[1:].split(",") out["value"] = words[0].strip() out["options"] = {} for word in words[1:]: key, value = [s.strip() for s in word.split("=")] out["options"][key] = value return out def elementMapper(inpeltype): if inpeltype == "t3d2": return "Line2" if inpeltype[:3] in ["cps", "cpe", "cax"]: if inpeltype[3] == "3": return "tri3" if inpeltype[3] == "4": return "quad4" if inpeltype[:3] in ["c3d"]: if inpeltype[3] == "4": return "tetra4" if inpeltype[3] == "5": return "pyra5" if inpeltype[3] == "6": return "prism6" if inpeltype[3] == "8": return "hexa8" nlabels = [] coords = [] nsets = {} elabels = [] etypes = [] connectivity = [] esets = {} surfaces = {} # File preprocessing lines = np.array([l.strip().lower() for l in open(path).readlines()]) lines = [line for line in lines if len(line) != 0] # Data processing env, setlabel = None, None for line in lines: d = lineInfo(line) if d["type"] == "command": env = d["value"] # Nodes if env == "node": opt = d["options"] currentset = None if "nset" in opt.keys(): currentset = opt["nset"] nsets[currentset] = [] # Elements if env == "element": opt = d["options"] eltype = elementMapper(opt["type"]) currentset = None if "elset" in opt.keys(): currentset = opt["elset"] esets[currentset] = [] # Nsets if env == "nset": opt = d["options"] currentset = opt["nset"] nsets[currentset] = [] # Elsets if env == "elset": opt = d["options"] currentset = opt["elset"] esets[currentset] = [] # Surfaces if env == "surface": opt = d["options"] currentsurface = opt["name"] if opt["type"] == "element": surfaces[currentsurface] = [] if d["type"] == "data": words = line.strip().split(",") if env == "node": label = int(words[0]) nlabels.append(label) coords.append( np.array([np.float64(w) for w in words[1:4]]) ) if currentset != None: nsets[currentset].append(label) if env == "element": label = int(words[0]) elabels.append(label) connectivity.append( np.array( [np.int32(w) for w in words[1:] if len(w) != 0 ]) ) etypes.append(eltype) if currentset != None: esets[currentset].append(label) if env == "nset": nsets[currentset] += [int(w) for w in words if len(w) != 0] if env == "elset": esets[currentset] += [int(w) for w in words if len(w) != 0] if env == "surface": if opt["type"] == "element": surfaces[currentsurface].append([w.strip() for w in words]) surfaces2 = {} for tag, surface in surfaces.items(): surfaces2[tag] = [] for sdata in surface: labels = esets[sdata[0]] face = int(sdata[1].split("s")[1].strip())-1 for label in labels: surfaces2[tag].append((label, face)) return Mesh(nlabels = nlabels, coords = coords, nsets = nsets, elabels = elabels, etypes = etypes, connectivity = connectivity, esets = esets,)
0.034579
def setComponentByName(self, name, value=noValue, verifyConstraints=True, matchTags=True, matchConstraints=True): """Assign |ASN.1| type component by name. Equivalent to Python :class:`dict` item assignment operation (e.g. `[]`). Parameters ---------- name: :class:`str` |ASN.1| type component name Keyword Args ------------ value: :class:`object` or :py:class:`~pyasn1.type.base.PyAsn1Item` derivative A Python value to initialize |ASN.1| component with (if *componentType* is set) or ASN.1 value object to assign to |ASN.1| component. verifyConstraints: :class:`bool` If `False`, skip constraints validation matchTags: :class:`bool` If `False`, skip component tags matching matchConstraints: :class:`bool` If `False`, skip component constraints matching Returns ------- self """ if self._componentTypeLen: idx = self.componentType.getPositionByName(name) else: try: idx = self._dynamicNames.getPositionByName(name) except KeyError: raise error.PyAsn1Error('Name %s not found' % (name,)) return self.setComponentByPosition( idx, value, verifyConstraints, matchTags, matchConstraints )
0.005398
def fix_config(self, options): """ Fixes the options, if necessary. I.e., it adds all required elements to the dictionary. :param options: the options to fix :type options: dict :return: the (potentially) fixed options :rtype: dict """ options = super(ForLoop, self).fix_config(options) opt = "min" if opt not in options: options[opt] = 1 if opt not in self.help: self.help[opt] = "The minimum for the loop (included, int)." opt = "max" if opt not in options: options[opt] = 10 if opt not in self.help: self.help[opt] = "The maximum for the loop (included, int)." opt = "step" if opt not in options: options[opt] = 1 if opt not in self.help: self.help[opt] = "The step size (int)." return options
0.003272
def name_to_hex(name, spec=u'css3'): """ Convert a color name to a normalized hexadecimal color value. The optional keyword argument ``spec`` determines which specification's list of color names will be used; valid values are ``html4``, ``css2``, ``css21`` and ``css3``, and the default is ``css3``. When no color of that name exists in the given specification, ``ValueError`` is raised. """ if spec not in SUPPORTED_SPECIFICATIONS: raise ValueError(SPECIFICATION_ERROR_TEMPLATE.format(spec=spec)) normalized = name.lower() hex_value = {u'css2': CSS2_NAMES_TO_HEX, u'css21': CSS21_NAMES_TO_HEX, u'css3': CSS3_NAMES_TO_HEX, u'html4': HTML4_NAMES_TO_HEX}[spec].get(normalized) if hex_value is None: raise ValueError( u"'{name}' is not defined as a named color in {spec}".format( name=name, spec=spec ) ) return hex_value
0.001008
def pack_data(self, remaining_size): """Pack data. readoffset has to be increased by one, seems like HANA starts from 1, not zero.""" payload = self.part_struct.pack(self.locator_id, self.readoffset + 1, self.readlength, b' ') return 4, payload
0.01476
def init_app(self, app): """ Initializes a Flask app object for the extension. Args: app(Flask): Flask app """ app.config.setdefault('FEDORA_BASE_URL', 'http://localhost:8080') if hasattr(app, 'teardown_appcontext'): app.teardown_appcontext(self.teardown) else: app.teardown_request(self.teardown)
0.005128
def error_asymptotes(pca,**kwargs): """ Plots asymptotic error bounds for hyperbola on a stereonet. """ ax = kwargs.pop("ax",current_axes()) lon,lat = pca.plane_errors('upper', n=1000) ax.plot(lon,lat,'-') lon,lat = pca.plane_errors('lower', n=1000) ax.plot(lon,lat,'-') ax.plane(*pca.strike_dip())
0.026393
def gen_gmfs(self): """ Compute the GMFs for the given realization and yields arrays of the dtype (sid, eid, imti, gmv), one for rupture """ self.sig_eps = [] for computer in self.computers: rup = computer.rupture sids = computer.sids eids_by_rlz = rup.get_eids_by_rlz(self.rlzs_by_gsim) data = [] for gs, rlzs in self.rlzs_by_gsim.items(): num_events = sum(len(eids_by_rlz[rlzi]) for rlzi in rlzs) if num_events == 0: continue # NB: the trick for performance is to keep the call to # compute.compute outside of the loop over the realizations # it is better to have few calls producing big arrays array, sig, eps = computer.compute(gs, num_events) array = array.transpose(1, 0, 2) # from M, N, E to N, M, E for i, miniml in enumerate(self.min_iml): # gmv < minimum arr = array[:, i, :] arr[arr < miniml] = 0 n = 0 for rlzi in rlzs: eids = eids_by_rlz[rlzi] e = len(eids) if not e: continue for ei, eid in enumerate(eids): gmf = array[:, :, n + ei] # shape (N, M) tot = gmf.sum(axis=0) # shape (M,) if not tot.sum(): continue sigmas = sig[:, n + ei] self.sig_eps.append((eid, sigmas, eps[:, n + ei])) for sid, gmv in zip(sids, gmf): if gmv.sum(): data.append((rlzi, sid, eid, gmv)) n += e yield numpy.array(data, self.gmv_dt)
0.00104
def endpoint(cls): """Return the :class:`sandman.model.Model`'s endpoint. :rtype: string """ endpoint = '' if cls.__endpoint__ is not None: return cls.__endpoint__ elif cls.__from_class__ is not None: endpoint = cls.__from_class__.__name__.lower() else: endpoint = cls.__tablename__.lower() if not endpoint.endswith('s'): endpoint += 's' return endpoint
0.004211
def setup_catalog_mappings(portal): """Setup portal_type -> catalog mappings """ logger.info("*** Setup Catalog Mappings ***") at = api.get_tool("archetype_tool") for portal_type, catalogs in CATALOG_MAPPINGS: at.setCatalogsByType(portal_type, catalogs)
0.003546
def main(arguments=None): '''Converts a given url with the specified arguments.''' parsed_options, arguments = get_options(arguments) image_url = arguments[0] image_url = quote(image_url) try: config = Config.load(None) except Exception: config = None if not parsed_options.key and not config: sys.stdout.write('Error: The -k or --key argument is mandatory. For more information type thumbor-url -h\n') return security_key, thumbor_params = get_thumbor_params(image_url, parsed_options, config) crypto = CryptoURL(key=security_key) url = crypto.generate(**thumbor_params) sys.stdout.write('URL:\n') sys.stdout.write('%s\n' % url) return url
0.004104
def get_application_logo_label(self): """ Provides the default **Application_Logo_label** widget. :return: Application logo label. :rtype: QLabel """ logo_label = QLabel() logo_label.setObjectName("Application_Logo_label") logo_label.setPixmap(QPixmap(umbra.ui.common.get_resource_path(UiConstants.logo_image))) return logo_label
0.007444
def rgb_percent_to_name(rgb_percent_triplet, spec=u'css3'): """ Convert a 3-tuple of percentages, suitable for use in an ``rgb()`` color triplet, to its corresponding normalized color name, if any such name exists. The optional keyword argument ``spec`` determines which specification's list of color names will be used; valid values are ``html4``, ``css2``, ``css21`` and ``css3``, and the default is ``css3``. If there is no matching name, ``ValueError`` is raised. """ return rgb_to_name( rgb_percent_to_rgb( normalize_percent_triplet( rgb_percent_triplet ) ), spec=spec )
0.001449
def reverse_code_map(self): """Return a map from a code ( usually a string ) to the shorter numeric value""" return {c.value: (c.ikey if c.ikey else c.key) for c in self.codes}
0.015464
def has_slave(self): '''Returns True/False wether we have a slave agency which is not standalone running.''' slave = first(x for x in self.slaves.itervalues() if not x.is_standalone) return slave is not None
0.007663
def _check_ising_quadratic_ranges(quad_ranges, graph): """check correctness/populate defaults for ising_quadratic_ranges.""" if quad_ranges is None: quad_ranges = {} # first just populate the top level so we can rely on the structure for u in graph: if u not in quad_ranges: quad_ranges[u] = {} # next let's propgate and check what is already present for u, neighbors in iteritems(quad_ranges): for v, rang in iteritems(neighbors): # check the range rang = Specification._check_range(rang) if u in quad_ranges[v]: # it's symmetric if quad_ranges[u][v] != quad_ranges[v][u]: raise ValueError("mismatched ranges for ising_quadratic_ranges") quad_ranges[v][u] = quad_ranges[u][v] = rang # finally fill in the missing stuff for u, v in graph.edges: if u not in quad_ranges[v]: quad_ranges[u][v] = quad_ranges[v][u] = [-1, 1] return quad_ranges
0.002669
def copy_table(tbl, start=0, stop=None, blen=None, storage=None, create='table', **kwargs): """Copy `tbl` block-wise into a new table.""" # setup names, columns = _util.check_table_like(tbl) storage = _util.get_storage(storage) blen = _util.get_blen_table(tbl, blen) if stop is None: stop = len(columns[0]) else: stop = min(stop, len(columns[0])) length = stop - start if length < 0: raise ValueError('invalid stop/start') # copy block-wise out = None for i in range(start, stop, blen): j = min(i+blen, stop) res = [c[i:j] for c in columns] if out is None: out = getattr(storage, create)(res, names=names, expectedlen=length, **kwargs) else: out.append(res) return out
0.001161
def db_connect(connection_string=None, **kwargs): """Function to supply a database connection object.""" if connection_string is None: connection_string = get_current_registry().settings[CONNECTION_STRING] db_conn = psycopg2.connect(connection_string, **kwargs) try: with db_conn: yield db_conn finally: db_conn.close()
0.002667
def objectConfusion(self): """ Compute overlap between each pair of objects. Computes the average number of feature/location pairs that are identical, as well as the average number of shared locations and features. This function will raise an exception if two objects are identical. Returns the tuple: (avg common pairs, avg common locations, avg common features) """ objects = self.getObjects() if len(objects) == 0: return 0.0, 0.0, 0.0 sumCommonLocations = 0 sumCommonFeatures = 0 sumCommonPairs = 0 numObjects = 0 commonPairHistogram = numpy.zeros(len(objects[0]), dtype=numpy.int32) for o1, s1 in objects.iteritems(): for o2, s2 in objects.iteritems(): if o1 != o2: # Count number of common locations id's and common feature id's commonLocations = 0 commonFeatures = 0 for pair1 in s1: for pair2 in s2: if pair1[0] == pair2[0]: commonLocations += 1 if pair1[1] == pair2[1]: commonFeatures += 1 # print "Confusion",o1,o2,", common pairs=",len(set(s1)&set(s2)), # print ", common locations=",commonLocations,"common features=",commonFeatures if len(set(s1) & set(s2)) == len(s1): raise RuntimeError("Two objects are identical!") sumCommonPairs += len(set(s1) & set(s2)) sumCommonLocations += commonLocations sumCommonFeatures += commonFeatures commonPairHistogram[len(set(s1) & set(s2))] += 1 numObjects += 1 # print "Common pair histogram=", commonPairHistogram return (sumCommonPairs / float(numObjects), sumCommonLocations / float(numObjects), sumCommonFeatures / float(numObjects) )
0.011105
def gen_edge_knots(data, dtype, verbose=True): """ generate uniform knots from data including the edges of the data for discrete data, assumes k categories in [0, k-1] interval Parameters ---------- data : array-like with one dimension dtype : str in {'categorical', 'numerical'} verbose : bool, default: True whether to print warnings Returns ------- np.array containing ordered knots """ if dtype not in ['categorical', 'numerical']: raise ValueError('unsupported dtype: {}'.format(dtype)) if dtype == 'categorical': return np.r_[np.min(data) - 0.5, np.max(data) + 0.5] else: knots = np.r_[np.min(data), np.max(data)] if knots[0] == knots[1] and verbose: warnings.warn('Data contains constant feature. '\ 'Consider removing and setting fit_intercept=True', stacklevel=2) return knots
0.002083
def _to_patches(self, X): """ Reshapes input to patches of the size of classifier's receptive field. For example: input X shape: [n_samples, n_pixels_y, n_pixels_x, n_bands] output: [n_samples * n_pixels_y/receptive_field_y * n_pixels_x/receptive_field_x, receptive_field_y, receptive_field_x, n_bands] """ window = self.patch_size asteps = self.patch_size if len(X.shape) == 4: window += (0,) asteps += (1,) image_view = rolling_window(X, window, asteps) new_shape = image_view.shape return image_view, new_shape
0.004405
def _total_seconds(t): ''' Takes a `datetime.timedelta` object and returns the delta in seconds. >>> _total_seconds(datetime.timedelta(23, 42, 123456)) 1987242 >>> _total_seconds(datetime.timedelta(23, 42, 654321)) 1987243 ''' return sum([ int(t.days * 86400 + t.seconds), int(round(t.microseconds / 1000000.0)) ])
0.002725
def list_databases(self, name): ''' List the SQL databases defined on the specified server name ''' response = self._perform_get(self._get_list_databases_path(name), None) return _MinidomXmlToObject.parse_service_resources_response( response, Database)
0.005865
def set_output_fields(self, output_fields): """Defines where to put the dictionary output of the extractor in the doc, but renames the fields of the extracted output for the document or just filters the keys""" if isinstance(output_fields, dict) or isinstance(output_fields, list): self.output_fields = output_fields elif isinstance(output_fields, basestring): self.output_field = output_fields else: raise ValueError("set_output_fields requires a dictionary of " + "output fields to remap, a list of keys to filter, or a scalar string") return self
0.007553
def value_to_string(self, obj): """Prepare field for serialization.""" if DJANGO_VERSION > (1, 9): value = self.value_from_object(obj) else: value = self._get_val_from_obj(obj) return self.get_prep_value(value)
0.007519
def absent(name, orgname=None, profile='grafana'): ''' Ensure the named grafana dashboard is absent. name Name of the grafana dashboard. orgname Name of the organization in which the dashboard should be present. profile Configuration profile used to connect to the Grafana instance. Default is 'grafana'. ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} if isinstance(profile, six.string_types): profile = __salt__['config.option'](profile) existing_dashboard = __salt__['grafana4.get_dashboard']( name, orgname, profile) if existing_dashboard: if __opts__['test']: ret['result'] = None ret['comment'] = 'Dashboard {0} is set to be deleted.'.format(name) return ret __salt__['grafana4.delete_dashboard'](name, profile=profile) ret['comment'] = 'Dashboard {0} deleted.'.format(name) ret['changes']['new'] = 'Dashboard {0} deleted.'.format(name) return ret ret['comment'] = 'Dashboard absent' return ret
0.000907
def add_edge(self, fro, to): """ When doing topological sorting, the semantics of the edge mean that the depedency runs from the parent to the child - which is to say that the parent is required to be sorted *before* the child. [ FROM ] ------> [ TO ] Committee on Finance -> Subcommittee of the Finance Committee on Budget -> Subcommittee of the Finance Committee on Roads """ self.add_node(fro) self.add_node(to) self.edges[fro].add(to)
0.003584
def _build(self, inputs, memory, treat_input_as_matrix=False): """Adds relational memory to the TensorFlow graph. Args: inputs: Tensor input. memory: Memory output from the previous time step. treat_input_as_matrix: Optional, whether to treat `input` as a sequence of matrices. Defaulta to False, in which case the input is flattened into a vector. Returns: output: This time step's output. next_memory: The next version of memory to use. """ if treat_input_as_matrix: inputs = basic.BatchFlatten(preserve_dims=2)(inputs) inputs_reshape = basic.BatchApply( basic.Linear(self._mem_size), n_dims=2)(inputs) else: inputs = basic.BatchFlatten()(inputs) inputs = basic.Linear(self._mem_size)(inputs) inputs_reshape = tf.expand_dims(inputs, 1) memory_plus_input = tf.concat([memory, inputs_reshape], axis=1) next_memory = self._attend_over_memory(memory_plus_input) n = inputs_reshape.get_shape().as_list()[1] next_memory = next_memory[:, :-n, :] if self._gate_style == 'unit' or self._gate_style == 'memory': self._input_gate, self._forget_gate = self._create_gates( inputs_reshape, memory) next_memory = self._input_gate * tf.tanh(next_memory) next_memory += self._forget_gate * memory output = basic.BatchFlatten()(next_memory) return output, next_memory
0.006325
def jr6_jr6(mag_file, dir_path=".", input_dir_path="", meas_file="measurements.txt", spec_file="specimens.txt", samp_file="samples.txt", site_file="sites.txt", loc_file="locations.txt", specnum=1, samp_con='1', location='unknown', lat='', lon='', noave=False, meth_code="LP-NO", volume=12, JR=False, user=""): """ Convert JR6 .jr6 files to MagIC file(s) Parameters ---------- mag_file : str input file name dir_path : str working directory, default "." input_dir_path : str input file directory IF different from dir_path, default "" meas_file : str output measurement file name, default "measurements.txt" spec_file : str output specimen file name, default "specimens.txt" samp_file: str output sample file name, default "samples.txt" site_file : str output site file name, default "sites.txt" loc_file : str output location file name, default "locations.txt" specnum : int number of characters to designate a specimen, default 0 samp_con : str sample/site naming convention, default '1', see info below location : str location name, default "unknown" lat : float latitude, default "" lon : float longitude, default "" noave : bool do not average duplicate measurements, default False (so by default, DO average) meth_code : str colon-delimited method codes, default "LP-NO" volume : float volume in ccs, default 12 JR : bool IODP samples were measured on the JOIDES RESOLUTION, default False user : str user name, default "" Returns --------- Tuple : (True or False indicating if conversion was sucessful, meas_file name written) Info -------- Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY """ version_num = pmag.get_version() input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path, dir_path) specnum = - int(specnum) samp_con = str(samp_con) volume = float(volume) * 1e-6 # need to add these meas_file = pmag.resolve_file_name(meas_file, output_dir_path) spec_file = pmag.resolve_file_name(spec_file, output_dir_path) samp_file = pmag.resolve_file_name(samp_file, output_dir_path) site_file = pmag.resolve_file_name(site_file, output_dir_path) loc_file = pmag.resolve_file_name(loc_file, output_dir_path) mag_file = pmag.resolve_file_name(mag_file, input_dir_path) if JR: if meth_code == "LP-NO": meth_code = "" meth_code = meth_code+":FS-C-DRILL-IODP:SP-SS-C:SO-V" meth_code = meth_code.strip(":") samp_con = '5' # format variables tmp_file = mag_file.split(os.extsep)[0]+os.extsep+'tmp' mag_file = pmag.resolve_file_name(mag_file, input_dir_path) if samp_con.startswith("4"): if "-" not in samp_con: print("option [4] must be in form 4-Z where Z is an integer") return False, "naming convention option [4] must be in form 4-Z where Z is an integer" else: Z = samp_con.split("-")[1] samp_con = "4" elif samp_con.startswith("7"): if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") return False, "naming convention option [7] must be in form 7-Z where Z is an integer" else: Z = samp_con.split("-")[1] samp_con = "7" else: Z = 1 # parse data # fix .jr6 file so that there are spaces between all the columns. pre_data = open(mag_file, 'r') tmp_data = open(tmp_file, 'w') if samp_con != '2': fixed_data = pre_data.read().replace('-', ' -') else: fixed_data = "" for line in pre_data.readlines(): entries = line.split() if len(entries) < 2: continue fixed_line = entries[0] + ' ' + reduce( lambda x, y: x+' '+y, [x.replace('-', ' -') for x in entries[1:]]) fixed_data += fixed_line+os.linesep tmp_data.write(fixed_data) tmp_data.close() pre_data.close() if not JR: column_names = ['specimen', 'step', 'x', 'y', 'z', 'expon', 'azimuth', 'dip', 'bed_dip_direction', 'bed_dip', 'bed_dip_dir2', 'bed_dip2', 'param1', 'param2', 'param3', 'param4', 'dir_csd'] else: # measured on the Joides Resolution JR6 column_names = ['specimen', 'step', 'negz', 'y', 'x', 'expon', 'azimuth', 'dip', 'bed_dip_direction', 'bed_dip', 'bed_dip_dir2', 'bed_dip2', 'param1', 'param2', 'param3', 'param4', 'dir_csd'] data = pd.read_csv(tmp_file, delim_whitespace=True, names=column_names, index_col=False) if isinstance(data['x'][0], str): column_names = ['specimen', 'step', 'step_unit', 'x', 'y', 'z', 'expon', 'azimuth', 'dip', 'bed_dip_direction', 'bed_dip', 'bed_dip_dir2', 'bed_dip2', 'param1', 'param2', 'param3', 'param4', 'dir_csd'] data = pd.read_csv(tmp_file, delim_whitespace=True, names=column_names, index_col=False) if JR: data['z'] = -data['negz'] cart = np.array([data['x'], data['y'], data['z']]).transpose() dir_dat = pmag.cart2dir(cart).transpose() data['dir_dec'] = dir_dat[0] data['dir_inc'] = dir_dat[1] # the data are in A/m - this converts to Am^2 data['magn_moment'] = dir_dat[2]*(10.0**data['expon'])*volume data['magn_volume'] = dir_dat[2] * \ (10.0**data['expon']) # A/m - data in A/m data['dip'] = -data['dip'] data['specimen'] # put data into magic tables MagRecs, SpecRecs, SampRecs, SiteRecs, LocRecs = [], [], [], [], [] for rowNum, row in data.iterrows(): MeasRec, SpecRec, SampRec, SiteRec, LocRec = {}, {}, {}, {}, {} specimen = row['specimen'] if specnum != 0: sample = specimen[:specnum] else: sample = specimen site = pmag.parse_site(sample, samp_con, Z) if specimen != "" and specimen not in [x['specimen'] if 'specimen' in list(x.keys()) else "" for x in SpecRecs]: SpecRec['specimen'] = specimen SpecRec['sample'] = sample SpecRec["citations"] = "This study" SpecRec["analysts"] = user SpecRec['volume'] = volume SpecRecs.append(SpecRec) if sample != "" and sample not in [x['sample'] if 'sample' in list(x.keys()) else "" for x in SampRecs]: SampRec['sample'] = sample SampRec['site'] = site SampRec["citations"] = "This study" SampRec["analysts"] = user SampRec['azimuth'] = row['azimuth'] SampRec['dip'] = row['dip'] SampRec['bed_dip_direction'] = row['bed_dip_direction'] SampRec['bed_dip'] = row['bed_dip'] SampRec['method_codes'] = meth_code SampRecs.append(SampRec) if site != "" and site not in [x['site'] if 'site' in list(x.keys()) else "" for x in SiteRecs]: SiteRec['site'] = site SiteRec['location'] = location SiteRec["citations"] = "This study" SiteRec["analysts"] = user SiteRec['lat'] = lat SiteRec['lon'] = lon SiteRecs.append(SiteRec) if location != "" and location not in [x['location'] if 'location' in list(x.keys()) else "" for x in LocRecs]: LocRec['location'] = location LocRec["citations"] = "This study" LocRec["analysts"] = user LocRec['lat_n'] = lat LocRec['lon_e'] = lon LocRec['lat_s'] = lat LocRec['lon_w'] = lon LocRecs.append(LocRec) MeasRec["citations"] = "This study" MeasRec["analysts"] = user MeasRec["specimen"] = specimen MeasRec['software_packages'] = version_num MeasRec["treat_temp"] = '%8.3e' % (273) # room temp in kelvin MeasRec["meas_temp"] = '%8.3e' % (273) # room temp in kelvin MeasRec["quality"] = 'g' MeasRec["standard"] = 'u' MeasRec["treat_step_num"] = 0 MeasRec["treat_ac_field"] = '0' if row['step'] == 'NRM': meas_type = "LT-NO" elif 'step_unit' in row and row['step_unit'] == 'C': meas_type = "LT-T-Z" treat = float(row['step']) MeasRec["treat_temp"] = '%8.3e' % (treat+273.) # temp in kelvin elif row['step'][0:2] == 'AD': meas_type = "LT-AF-Z" treat = float(row['step'][2:]) MeasRec["treat_ac_field"] = '%8.3e' % ( treat*1e-3) # convert from mT to tesla elif row['step'][0] == 'A': meas_type = "LT-AF-Z" treat = float(row['step'][1:]) MeasRec["treat_ac_field"] = '%8.3e' % ( treat*1e-3) # convert from mT to tesla elif row['step'][0] == 'TD': meas_type = "LT-T-Z" treat = float(row['step'][2:]) MeasRec["treat_temp"] = '%8.3e' % (treat+273.) # temp in kelvin elif row['step'][0] == 'T': meas_type = "LT-T-Z" treat = float(row['step'][1:]) MeasRec["treat_temp"] = '%8.3e' % (treat+273.) # temp in kelvin else: # need to add IRM, and ARM options print("measurement type unknown", row['step']) return False, "measurement type unknown" MeasRec["magn_moment"] = str(row['magn_moment']) MeasRec["magn_volume"] = str(row['magn_volume']) MeasRec["dir_dec"] = str(row['dir_dec']) MeasRec["dir_inc"] = str(row['dir_inc']) MeasRec['method_codes'] = meas_type MagRecs.append(MeasRec) con = cb.Contribution(output_dir_path, read_tables=[]) con.add_magic_table_from_data(dtype='specimens', data=SpecRecs) con.add_magic_table_from_data(dtype='samples', data=SampRecs) con.add_magic_table_from_data(dtype='sites', data=SiteRecs) con.add_magic_table_from_data(dtype='locations', data=LocRecs) MeasOuts = pmag.measurements_methods3(MagRecs, noave) con.add_magic_table_from_data(dtype='measurements', data=MeasOuts) con.tables['specimens'].write_magic_file(custom_name=spec_file) con.tables['samples'].write_magic_file(custom_name=samp_file) con.tables['sites'].write_magic_file(custom_name=site_file) con.tables['locations'].write_magic_file(custom_name=loc_file) con.tables['measurements'].write_magic_file(custom_name=meas_file) try: os.remove(tmp_file) except (OSError, IOError) as e: print("couldn't remove temperary fixed JR6 file %s" % tmp_file) return True, meas_file
0.001745
def wait_for_vacancy(self, processor_type): """Waits for a particular processor type to have the capacity to handle additional transactions or until is_cancelled is True. Args: processor_type (ProcessorType): The family, and version of the transaction processor. Returns: Processor """ with self._condition: self._condition.wait_for(lambda: ( self._processor_available(processor_type) or self._cancelled_event.is_set())) if self._cancelled_event.is_set(): raise WaitCancelledException() processor = self[processor_type].next_processor() return processor
0.002703
def notify_ready(self, apply_result): """Called by the ApplyResult object (already registered via register_result()) that it is now ready (ie. the Job's result is available or an exception has been raised). \param apply_result ApplyResult object telling us that the job has been processed """ got_first = False got_last = False self._lock.acquire() try: assert self._remaining > 0 got_first = len(self._results) == self._remaining self._remaining -= 1 got_last = self._remaining == 0 finally: self._lock.release() if self._to_notify is not None: if self._as_iterator and got_first: self._to_notify._set_value(iter(self)) elif not self._as_iterator and got_last: try: lst = [r.get(0) for r in self._results] except: self._to_notify._set_exception() else: self._to_notify._set_value(lst)
0.00367
def getAssociation(self, assoc_handle, dumb, checkExpiration=True): """Get the association with the specified handle. @type assoc_handle: str @param dumb: Is this association used with dumb mode? @type dumb: bool @returns: the association, or None if no valid association with that handle was found. @returntype: L{openid.association.Association} """ # Hmm. We've created an interface that deals almost entirely with # assoc_handles. The only place outside the Signatory that uses this # (and thus the only place that ever sees Association objects) is # when creating a response to an association request, as it must have # the association's secret. if assoc_handle is None: raise ValueError("assoc_handle must not be None") if dumb: key = self._dumb_key else: key = self._normal_key assoc = self.store.getAssociation(key, assoc_handle) if assoc is not None and assoc.expiresIn <= 0: logging.info("requested %sdumb key %r is expired (by %s seconds)" % ((not dumb) and 'not-' or '', assoc_handle, assoc.expiresIn)) if checkExpiration: self.store.removeAssociation(key, assoc_handle) assoc = None return assoc
0.002126
def mutate_node(node, context): """ :type context: Context """ context.stack.append(node) try: if node.type in ('tfpdef', 'import_from', 'import_name'): return if node.start_pos[0] - 1 != context.current_line_index: context.current_line_index = node.start_pos[0] - 1 context.index = 0 # indexes are unique per line, so start over here! if hasattr(node, 'children'): mutate_list_of_nodes(node, context=context) # this is just an optimization to stop early if context.number_of_performed_mutations and context.mutation_id != ALL: return mutation = mutations_by_type.get(node.type) if mutation is None: return for key, value in sorted(mutation.items()): old = getattr(node, key) if context.exclude_line(): continue new = evaluate( value, context=context, node=node, value=getattr(node, 'value', None), children=getattr(node, 'children', None), ) assert not callable(new) if new is not None and new != old: if context.should_mutate(): context.number_of_performed_mutations += 1 context.performed_mutation_ids.append(context.mutation_id_of_current_index) setattr(node, key, new) context.index += 1 # this is just an optimization to stop early if context.number_of_performed_mutations and context.mutation_id != ALL: return finally: context.stack.pop()
0.002882
def _building_cost(self, use_mix, stories): """ Generate building cost for a set of buildings Parameters ---------- use_mix : array The mix of uses for this form stories : series A Pandas Series of stories Returns ------- array The cost per sqft for this unit mix and height. """ c = self.config # stories to heights heights = stories * c.height_per_story # cost index for this height costs = np.searchsorted(c.heights_for_costs, heights) # this will get set to nan later costs[np.isnan(heights)] = 0 # compute cost with matrix multiply costs = np.dot(np.squeeze(c.costs[costs.astype('int32')]), use_mix) # some heights aren't allowed - cost should be nan costs[np.isnan(stories).flatten()] = np.nan return costs.flatten()
0.002134
def build_definitions_example(self): """Parse all definitions in the swagger specification.""" for def_name, def_spec in self.specification.get('definitions', {}).items(): self.build_one_definition_example(def_name)
0.012346
def situation_parameters(self): """ Situation parameters defining detection logic for the context. This will return a list of SituationParameter indicating how the detection is made, i.e. regular expression, integer value, etc. :rtype: list(SituationParameter) """ for param in self.data.get('situation_parameters', []): cache = ElementCache(data=self.make_request(href=param)) yield type('SituationParameter', (SituationParameter,), { 'data': cache})(name=cache.name, type=cache.type, href=param)
0.004918
def this(obj, **kwargs): """Prints series of debugging steps to user. Runs through pipeline of functions and print results of each. """ verbose = kwargs.get("verbose", True) if verbose: print('{:=^30}'.format(" whatis.this? ")) for func in pipeline: s = func(obj, **kwargs) if s is not None: print(s) if verbose: print('{:=^30}\n'.format(" whatis.this? "))
0.002315
def frequencies_plot(self, xmin=0, xmax=200): """ Generate the qualities plot """ helptext = ''' A possible way to assess the complexity of a library even in absence of a reference sequence is to look at the kmer profile of the reads. The idea is to count all the kmers (_i.e._, sequence of length `k`) that occur in the reads. In this way it is possible to know how many kmers occur `1,2,.., N` times and represent this as a plot. This plot tell us for each x, how many k-mers (y-axis) are present in the dataset in exactly x-copies. In an ideal world (no errors in sequencing, no bias, no repeated regions) this plot should be as close as possible to a gaussian distribution. In reality we will always see a peak for `x=1` (_i.e._, the errors) and another peak close to the expected coverage. If the genome is highly heterozygous a second peak at half of the coverage can be expected.''' pconfig = { 'id': 'Jellyfish_kmer_plot', 'title': 'Jellyfish: K-mer plot', 'ylab': 'Counts', 'xlab': 'k-mer frequency', 'xDecimals': False, 'xmin': xmin, 'xmax': xmax } self.add_section( anchor = 'jellyfish_kmer_plot', description = 'The K-mer plot lets you estimate library complexity and coverage from k-mer content.', helptext = helptext, plot = linegraph.plot(self.jellyfish_data, pconfig) )
0.011765
def symbols_bollinger(symbols='sp5002012', start=datetime.datetime(2008, 1, 1), end=datetime.datetime(2009, 12, 31), price_type='adjusted_close', cleaner=clean_dataframe, window=20, sigma=1.): """Calculate the Bolinger for a list or set of symbols Example: >>> symbols_bollinger(["AAPL", "GOOG", "IBM", "MSFT"], '10-12-01', '10-12-30')[-5:] # doctest: +NORMALIZE_WHITESPACE GOOG AAPL IBM MSFT 2010-12-23 16:00:00 1.298178 1.185009 1.177220 1.237684 2010-12-27 16:00:00 1.073603 1.371298 0.590403 0.932911 2010-12-28 16:00:00 0.745548 1.436278 0.863406 0.812844 2010-12-29 16:00:00 0.874885 1.464894 2.096242 0.752602 2010-12-30 16:00:00 0.634661 0.793493 1.959324 0.498395 """ symbols = normalize_symbols(symbols) prices = price_dataframe(symbols, start=start, end=end, price_type=price_type, cleaner=cleaner) return frame_bollinger(prices, window=window, sigma=sigma, plot=False)
0.006979
def update_tcs(self): """ Periodically update TCS info. A long running process, so run in a thread and fill a queue """ g = get_root(self).globals if not g.cpars['tcs_on']: self.after(20000, self.update_tcs) return if g.cpars['telins_name'] == 'WHT': tcsfunc = tcs.getWhtTcs elif g.cpars['telins_name'] == 'GTC': tcsfunc = tcs.getGtcTcs else: g.clog.debug('TCS error: could not recognise ' + g.cpars['telins_name']) return def tcs_threaded_update(): try: ra, dec, pa, focus = tcsfunc() self.tcs_data_queue.put((ra, dec, pa, focus)) except Exception as err: t, v, tb = sys.exc_info() error = traceback.format_exception_only(t, v)[0].strip() tback = 'TCS Traceback (most recent call last):\n' + \ ''.join(traceback.format_tb(tb)) g.FIFO.put(('TCS', error, tback)) t = threading.Thread(target=tcs_threaded_update) t.start() self.after(20000, self.update_tcs)
0.00166
def prt_report_grp1(self, prt=sys.stdout, **kws_grp): """Print full GO/gene report with grouping.""" summaryline = self.str_summaryline() # Print grouped GO IDs prt.write("{SUMMARY}\n".format(SUMMARY=summaryline)) self.prt_gos_grouped(prt, **kws_grp) # genes genes = sorted(self.gene2gos.keys()) prt.write("\n\n{SUMMARY}\n\n".format(SUMMARY=summaryline)) self.prt_section_key(prt) self.prt_gene_aart(genes, prt) # Sort genes prt.write("\n\n{SUMMARY}\n\n".format(SUMMARY=summaryline)) self.prt_gene_aart_details(genes, prt) return (self.name, self.get_section_marks())
0.002946
def _float_check(self, attribute_array, value, irow, key): '''Checks if value is valid float, appends to array if valid, appends nan if not''' value = value.strip(' ') try: if value: attribute_array = np.hstack([attribute_array, float(value)]) else: attribute_array = np.hstack([attribute_array, np.nan]) except: print(irow, key) msg = 'Input file format error at line: %d' % (irow + 2) msg += ' key: %s' % (key) raise ValueError(msg) return attribute_array
0.004926
def unsubscribe(request, watch_id): """Unsubscribe from (i.e. delete) the watch of ID ``watch_id``. Expects an ``s`` querystring parameter matching the watch's secret. GET will result in a confirmation page (or a failure page if the secret is wrong). POST will actually delete the watch (again, if the secret is correct). Uses these templates: * tidings/unsubscribe.html - Asks user to confirm deleting a watch * tidings/unsubscribe_error.html - Shown when a watch is not found * tidings/unsubscribe_success.html - Shown when a watch is deleted The shipped templates assume a ``head_title`` and a ``content`` block in a ``base.html`` template. The template extension can be changed from the default ``html`` using the setting :data:`~django.conf.settings.TIDINGS_TEMPLATE_EXTENSION`. """ ext = getattr(settings, 'TIDINGS_TEMPLATE_EXTENSION', 'html') # Grab the watch and secret; complain if either is wrong: try: watch = Watch.objects.get(pk=watch_id) # 's' is for 'secret' but saves wrapping in mails secret = request.GET.get('s') if secret != watch.secret: raise Watch.DoesNotExist except Watch.DoesNotExist: return render(request, 'tidings/unsubscribe_error.' + ext) if request.method == 'POST': watch.delete() return render(request, 'tidings/unsubscribe_success.' + ext) return render(request, 'tidings/unsubscribe.' + ext)
0.000674
def directory(context, data): """Store the collected files to a given directory.""" with context.http.rehash(data) as result: if not result.ok: return content_hash = data.get('content_hash') if content_hash is None: context.emit_warning("No content hash in data.") return path = _get_directory_path(context) file_name = data.get('file_name', result.file_name) file_name = safe_filename(file_name, default='raw') file_name = '%s.%s' % (content_hash, file_name) data['_file_name'] = file_name file_path = os.path.join(path, file_name) if not os.path.exists(file_path): shutil.copyfile(result.file_path, file_path) context.log.info("Store [directory]: %s", file_name) meta_path = os.path.join(path, '%s.json' % content_hash) with open(meta_path, 'w') as fh: json.dump(data, fh)
0.001053
def where_entry_first(query, ref): """ Generate a where clause where this is the first entry ref -- the entry of reference """ return orm.select( e for e in query if e.local_date > ref.local_date or (e.local_date == ref.local_date and e.id >= ref.id ) )
0.003165
def read_until_done(self, command, timeout=None): """Yield messages read until we receive a 'DONE' command. Read messages of the given command until we receive a 'DONE' command. If a command different than the requested one is received, an AdbProtocolError is raised. Args: command: The command to expect, like 'DENT' or 'DATA'. timeout: The timeouts.PolledTimeout to use for this operation. Yields: Messages read, of type self.RECV_MSG_TYPE, see read_message(). Raises: AdbProtocolError: If an unexpected command is read. AdbRemoteError: If a 'FAIL' message is read. """ message = self.read_message(timeout) while message.command != 'DONE': message.assert_command_is(command) yield message message = self.read_message(timeout)
0.004878
def process_lines( self, input_lines, **kwargs ): ''' Executes the pipeline of subsequent VISL_CG3 commands. The first process in pipeline gets input_lines as an input, and each subsequent process gets the output of the previous process as an input. The idea of how to construct the pipeline borrows from: https://github.com/estnltk/estnltk/blob/1.4.0/estnltk/syntax/tagger.py Returns the result of the last process in the pipeline, either as a string or, alternatively, as a list of strings (if split_result == True); Parameters ----------- input_lines : list of str The input text for the pipeline; Should be in same format as the output of SyntaxPreprocessing; split_result : bool Optional argument specifying whether the result should be split by newlines, and returned as a list of strings/lines instead; Default:False remove_info : bool Optional argument specifying whether the additional information added during the preprocessing and syntactic processing should be removed from the results; Default:True; The method cleanup_lines() will be used for removing additional info, and all the parameters passed to this method will be also forwarded to the cleanup method; ''' split_result_lines = False remove_info = True for argName, argVal in kwargs.items() : if argName in ['split_result_lines', 'split_result'] and argVal in [True, False]: split_result_lines = argVal if argName in ['remove_info', 'info_remover', 'clean_up'] and argVal in [True, False]: remove_info = argVal # 1) Construct the input file for the first process in the pipeline temp_input_file = \ tempfile.NamedTemporaryFile(prefix='vislcg3_in.', mode='w', delete=False) temp_input_file.close() # We have to open separately here for writing, because Py 2.7 does not support # passing parameter encoding='utf-8' to the NamedTemporaryFile; out_f = codecs.open(temp_input_file.name, mode='w', encoding='utf-8') for line in input_lines: out_f.write( line.rstrip() ) out_f.write( '\n' ) out_f.close() # TODO: tempfile is currently used to ensure that the input is in 'utf-8', # but perhaps we can somehow ensure it without using tempfile ?? # 2) Dynamically construct the pipeline and open processes pipeline = [] for i in range( len(self.rules_pipeline) ): rule_file = self.rules_pipeline[i] process_cmd = [self.vislcg_cmd, '-o', '-g', os.path.join(self.rules_dir, rule_file)] process = None if i == 0: # The first process takes input from the file process_cmd.extend( ['-I', temp_input_file.name] ) process = Popen(process_cmd, stdin=PIPE, stdout=PIPE) else: # A subsequent process takes output of the last process as an input process = Popen(process_cmd, stdin=pipeline[-1]['process'].stdout, stdout=PIPE) # Record the process process_dict = {'process':process, 'cmd':process_cmd} pipeline.append( process_dict ) # 3) Close all stdout streams, except the last one for i in range( len(pipeline) ): if i != len(pipeline) - 1: pipeline[i]['process'].stdout.close() # 4) Communicate results form the last item in the pipeline result = as_unicode( pipeline[-1]['process'].communicate()[0] ) pipeline[-1]['process'].stdout.close() # Close the last process # Clean-up # 1) remove temp file os.remove(temp_input_file.name) # 2) remove additional info, if required if remove_info: result = '\n'.join( cleanup_lines( result.split('\n'), **kwargs )) return result if not split_result_lines else result.split('\n')
0.014627
def classes(request): """Get all classes of current user""" if not request.user.is_authenticated() or not hasattr(request.user, "userprofile"): return render_json(request, { 'error': _('User is not logged in'), 'error_type': 'user_unauthorized' }, template='user_json.html', status=401) clss = [c.to_json() for c in Class.objects.filter(owner=request.user.userprofile)] return render_json(request, clss, status=200, template='user_json.html', help_text=classes.__doc__)
0.00759
def load(file): """ This function expects a path to a file containing a **Detailed billing report with resources and tags** report from AWS. It returns a ``Costs`` object containing all of the lineitems from that detailed billing report """ fp = open(file) reader = csv.reader(fp) headers = next(reader) costs = Costs(headers) for line in reader: data = {} for i in range(0, len(headers)): data[headers[i]] = line[i] data['UnBlendedCost'] = decimal.Decimal(data['UnBlendedCost']) data['BlendedCost'] = decimal.Decimal(data['BlendedCost']) costs.add(data) fp.close() return costs
0.001456
def groupby_with_null(data, *args, **kwargs): """ Groupby on columns with NaN/None/Null values Pandas currently does have proper support for groupby on columns with null values. The nulls are discarded and so not grouped on. """ by = kwargs.get('by', args[0]) altered_columns = {} if not isinstance(by, (list, tuple)): by = [by] # Convert NaNs & Nones in the grouping columns # to sum unique string value. And, for those # columns record which rows have been converted # Note: this may affect the dtype of the column, # so we record the dtype too. Both these changes # are undone. for col in by: bool_idx = pd.isnull(data[col]) idx = bool_idx.index[bool_idx] if idx.size: altered_columns[col] = (idx, data[col].dtype) data.loc[idx, col] = '-*-null-*-' # Groupby on the columns, making sure to revert back # to NaN/None and the correct dtype. for group, df in data.groupby(*args, **kwargs): for col, (orig_idx, orig_dtype) in altered_columns.items(): # Indices in the grouped df that need correction sub_idx = orig_idx.intersection(df[col].index) # NaN/None if sub_idx.size: df.loc[sub_idx, col] = None # dtype if df[col].dtype != orig_dtype: df[col] = df[col].astype(orig_dtype) yield group, df # Undo the NaN / None conversion and any dtype # changes on the original dataframe for col, (orig_idx, orig_dtype) in altered_columns.items(): data.loc[orig_idx, col] = None if data[col].dtype != orig_dtype: data[col] = data[col].astype(orig_dtype)
0.000574
def is_set(self, key): """Return True if variable is a set""" data = self.model.get_data() return isinstance(data[key], set)
0.013245
def wait(self, timeout=None): """Wait for command to complete. Timeout: - discussion: http://stackoverflow.com/questions/1191374/subprocess-with-timeout - implementation: threading :rtype: self """ if timeout is not None: if not self._thread: self._thread = threading.Thread(target=self._wait4process) self._thread.daemon = 1 self._thread.start() if self._thread: self._thread.join(timeout=timeout) self.timeout_happened = self.timeout_happened or self._thread.isAlive() else: # no timeout and no existing thread self._wait4process() return self
0.005398
def gchart(self, s = 0, size = [], candle = 20): """ Chart for serious stocks 輸出 Google Chart 圖表。 s = 資料筆數 size = 圖表寬度、高度 [寬度,高度] candle = K 棒的寬度 """ if s == 0: s = len(self.raw_data) if len(size) == 2: sw,sh = size else: sh = 300 sw = 25 * s if sw > 1000: sw = 1000 candle = 950/s stc = '' for i in self.raw_data[-s:]: stc += str(i) + ',' sto = '' for i in self.stock_open[-s:]: sto += str(i) + ',' sth = '' for i in self.stock_h[-s:]: sth += str(i) + ',' stl = '' for i in self.stock_l[-s:]: stl += str(i) + ',' stdate = '' for i in self.data_date[-s:]: stdate += str(i[-2:]) + '|' stmax = max(self.stock_h[-s:]) stmin = min(self.stock_l[-s:]) strange = (stmax-stmin) / 10 re = "http://%(rand)s.chart.apis.google.com/chart?chs=%(sw)sx%(sh)s&cht=lc&chd=t1:0,0,0|0,%(h)s0|0,%(c)s0|0,%(o)s0|0,%(l)s0&chm=F,,1,1:-1,%(candle)s&chxt=y,x&chds=%(min)s,%(max)s&chxr=0,%(min)s,%(max)s,%(range)s&chg=20,%(chg)s&chtt=%(chtt)s&chxl=1:||%(chxl)s" % { 'h': sth, 'c': stc, 'o': sto, 'l': stl, 'min': stmin, 'max': stmax, 'sw': sw, 'sh': sh, 'range': strange, 'candle': candle, 'chg': 10, 'rand': random.randint(0,9), 'chxl': stdate, 'chtt': '%s %s' % (self.stock_name,self.stock_no) } return re
0.014393
def _get_cookie(self, mgmt_ip, config, refresh=False): """Performs authentication and retries cookie.""" if mgmt_ip not in self.credentials: return None security_data = self.credentials[mgmt_ip] verify = security_data[const.HTTPS_CERT_TUPLE] if not verify: verify = security_data[const.HTTPS_VERIFY_TUPLE] if not refresh and security_data[const.COOKIE_TUPLE]: return security_data[const.COOKIE_TUPLE], verify payload = {"aaaUser": {"attributes": { "name": security_data[const.UNAME_TUPLE], "pwd": security_data[const.PW_TUPLE]}}} headers = {"Content-type": "application/json", "Accept": "text/plain"} url = "{0}://{1}/api/aaaLogin.json".format(DEFAULT_SCHEME, mgmt_ip) try: response = self.session.request('POST', url, data=jsonutils.dumps(payload), headers=headers, verify=verify, timeout=self.timeout * 2) except Exception as e: raise cexc.NexusConnectFailed(nexus_host=mgmt_ip, exc=e) self.status = response.status_code if response.status_code == requests.codes.OK: cookie = response.headers.get('Set-Cookie') security_data = ( security_data[const.UNAME_TUPLE:const.COOKIE_TUPLE] + (cookie,)) self.credentials[mgmt_ip] = security_data return cookie, verify else: e = "REST API connect returned Error code: " e += str(self.status) raise cexc.NexusConnectFailed(nexus_host=mgmt_ip, exc=e)
0.004894
def _to_dict(self): """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'word') and self.word is not None: _dict['word'] = self.word if hasattr(self, 'sounds_like') and self.sounds_like is not None: _dict['sounds_like'] = self.sounds_like if hasattr(self, 'display_as') and self.display_as is not None: _dict['display_as'] = self.display_as return _dict
0.004264
def dec2hms(dec): """ ADW: This should really be replaced by astropy """ DEGREE = 360. HOUR = 24. MINUTE = 60. SECOND = 3600. dec = float(dec) fhour = dec*(HOUR/DEGREE) hour = int(fhour) fminute = (fhour - hour)*MINUTE minute = int(fminute) second = (fminute - minute)*MINUTE return (hour, minute, second)
0.008065
def mcs_to_rate(mcs, bw=20, long_gi=True): """Convert MCS index to rate in Mbps. See http://mcsindex.com/ Args: mcs (int): MCS index bw (int): bandwidth, 20, 40, 80, ... long_gi(bool): True if long GI is used. Returns: rate (float): bitrate in Mbps >>> mcs_to_rate(5, bw=20, long_gi=False) 57.8 >>> mcs_to_rate(4, bw=40, long_gi=True) 81 >>> mcs_to_rate(3, bw=80, long_gi=False) 130 >>> mcs_to_rate(13, bw=160, long_gi=True) 936 """ if bw not in [20, 40, 80, 160]: raise Exception("Unknown bandwidth: %d MHz" % (bw)) if mcs not in MCS_TABLE: raise Exception("Unknown MCS: %d" % (mcs)) idx = int((math.log(bw/10, 2)-1)*2) if not long_gi: idx += 1 return MCS_TABLE[mcs][idx]
0.001236
def state(self): """ State of this instance. One of ``OFFLINE``, ``INITIALIZING``, ``INITIALIZED``, ``STARTING``, ``RUNNING``, ``STOPPING`` or ``FAILED``. """ if self._proto.HasField('state'): return yamcsManagement_pb2.YamcsInstance.InstanceState.Name(self._proto.state) return None
0.008547
def convert_to_LHC(imt): """ Converts from GMRotI50 to Larger of two horizontal components using global equation of: Boore, D and Kishida, T (2016). Relations between some horizontal- component ground-motion intensity measures used in practice. Bulletin of the Seismological Society of America, 107(1), 334-343. doi:10.1785/0120160250 No standard deviation modification required. """ # get period t if isinstance(imt, SA): t = imt.period else: t = 0.01 T1 = 0.08 T2 = 0.56 T3 = 4.40 T4 = 8.70 R1 = 1.106 R2 = 1.158 R3 = 1.178 R4 = 1.241 R5 = 1.241 Ratio = max(R1, max(min(R1+(R2-R1)/np.log(T2/T1)*np.log(t/T1), R2+(R3-R2)/np.log(T3/T2)*np.log(t/T2)), min(R3+(R4-R3)/np.log(T4/T3)*np.log(t/T3), R5))) SF = np.log(Ratio) return SF
0.001107
def parse_log(self, bowtie_log): """Parse a bowtie log file. This is a bowtie log parsing method that populates the :py:attr:`self.n_reads, self.align_0x, self.align_1x, self.align_mt1x and self.overall_rate` attributes with data from the log file. Disclamer: THIS METHOD IS HORRIBLE BECAUSE THE BOWTIE LOG IS HORRIBLE. The insertion of data on the attribytes is done by the :py:meth:`set_attribute method. Parameters ---------- bowtie_log : str Path to the boetie log file. """ print("is here!") # Regexes - thanks to https://github.com/ewels/MultiQC/blob/master/multiqc/modules/bowtie2/bowtie2.py regexes = { 'unpaired': { 'unpaired_aligned_none': r"(\\d+) \\([\\d\\.]+%\\) aligned 0 times", 'unpaired_aligned_one': r"(\\d+) \\([\\d\\.]+%\\) aligned exactly 1 time", 'unpaired_aligned_multi': r"(\\d+) \\([\\d\\.]+%\\) aligned >1 times" }, 'paired': { 'paired_aligned_none': r"(\\d+) \\([\\d\\.]+%\\) aligned concordantly 0 times", 'paired_aligned_one': r"(\\d+) \\([\\d\\.]+%\\) aligned concordantly exactly 1 time", 'paired_aligned_multi': r"(\\d+) \\([\\d\\.]+%\\) aligned concordantly >1 times", 'paired_aligned_discord_one': r"(\\d+) \\([\\d\\.]+%\\) aligned discordantly 1 time", 'paired_aligned_discord_multi': r"(\\d+) \\([\\d\\.]+%\\) aligned discordantly >1 times", 'paired_aligned_mate_one': r"(\\d+) \\([\\d\\.]+%\\) aligned exactly 1 time", 'paired_aligned_mate_multi': r"(\\d+) \\([\\d\\.]+%\\) aligned >1 times", 'paired_aligned_mate_none': r"(\\d+) \\([\\d\\.]+%\\) aligned 0 times" } } #Missing parser for unpaired (not implemented in flowcraft yet) with open(bowtie_log, "r") as f: #Go through log file line by line for l in f: print(l) #total reads total = re.search(r"(\\d+) reads; of these:", l) print(total) if total: print(total) self.set_n_reads(total.group(1)) # Paired end reads aka the pain paired = re.search(r"(\\d+) \\([\\d\\.]+%\\) were paired; of these:", l) if paired: paired_total = int(paired.group(1)) paired_numbers = {} # Do nested loop whilst we have this level of indentation l = f.readline() while l.startswith(' '): for k, r in regexes['paired'].items(): match = re.search(r, l) if match: paired_numbers[k] = int(match.group(1)) l = f.readline() align_zero_times = paired_numbers['paired_aligned_none'] + paired_numbers['paired_aligned_mate_none'] if align_zero_times: self.set_align_0x(align_zero_times) align_one_time = paired_numbers['paired_aligned_one'] + paired_numbers['paired_aligned_mate_one'] if align_one_time: self.set_align_1x(align_one_time) align_more_than_one_time = paired_numbers['paired_aligned_multi'] + paired_numbers['paired_aligned_mate_multi'] if align_more_than_one_time: self.set_align_mt1x(align_more_than_one_time) # Overall alignment rate overall = re.search(r"([\\d\\.]+)% overall alignment rate", l) if overall: self.overall_rate = float(overall.group(1))
0.007156
def evaluate(tensor: BKTensor) -> TensorLike: """Return the value of a tensor""" if isinstance(tensor, _DTYPE): if torch.numel(tensor) == 1: return tensor.item() if tensor.numel() == 2: return tensor[0].cpu().numpy() + 1.0j * tensor[1].cpu().numpy() return tensor[0].cpu().numpy() + 1.0j * tensor[1].cpu().numpy() return tensor
0.002577
def league_header(self, league): """Prints the league header""" league_name = " {0} ".format(league) click.secho("{:=^62}".format(league_name), fg=self.colors.MISC) click.echo()
0.009569
def refund_order(self, order_id, **params): """https://developers.coinbase.com/api/v2#refund-an-order""" for required in ['currency']: if required not in params: raise ValueError("Missing required parameter: %s" % required) response = self._post('v2', 'orders', order_id, 'refund', data=params) return self._make_api_object(response, Order)
0.005
def prior_prior_model_dict(self): """ Returns ------- prior_prior_model_dict: {Prior: PriorModel} A dictionary mapping priors to associated prior models. Each prior will only have one prior model; if a prior is shared by two prior models then one of those prior models will be in this dictionary. """ return {prior: prior_model[1] for prior_model in self.prior_model_tuples for _, prior in prior_model[1].prior_tuples}
0.009881
def extent(self): """ Return the source range (the range of text) occupied by the entity pointed at by the cursor. """ if not hasattr(self, '_extent'): self._extent = conf.lib.clang_getCursorExtent(self) return self._extent
0.007042
def add_stats_plot(self): """Plots alignment stats as bargraph.""" keys = OrderedDict() keys['species_a'] = {'color': '#437bb1', 'name': 'Species a'} keys['species_b'] = {'color': '#b1084c', 'name': 'Species b'} keys['ambiguous'] = {'color': '#333333', 'name': 'Ambiguous'} plot_config = { 'id': "disambiguated_alignments", 'title': "Disambiguate: Alignment Counts", 'cpswitch_counts_label': "# Reads", 'ylab': "# Reads" } self.add_section( plot=bargraph.plot(self.data, keys, plot_config) )
0.003195
def get_display_names_metadata(self): """Gets the metadata for all display_names. return: (osid.Metadata) - metadata for the display_names *compliance: mandatory -- This method must be implemented.* """ metadata = dict(self._display_names_metadata) metadata.update({'existing_string_values': [t['text'] for t in self.my_osid_object_form._my_map['displayNames']]}) return Metadata(**metadata)
0.006682
def get_value(self, row, column): """Return the value of the DataFrame.""" # To increase the performance iat is used but that requires error # handling, so fallback uses iloc try: value = self.df.iat[row, column] except OutOfBoundsDatetime: value = self.df.iloc[:, column].astype(str).iat[row] except: value = self.df.iloc[row, column] return value
0.006667
def multi_stream_iter(client, log_group, streams, positions=None): """Iterate over the available events coming from a set of log streams in a single log group interleaving the events from each stream so they're yielded in timestamp order. Args: client (boto3 client): The boto client for logs. log_group (str): The name of the log group. streams (list of str): A list of the log stream names. The position of the stream in this list is the stream number. positions: (list of Positions): A list of pairs of (timestamp, skip) which represents the last record read from each stream. Yields: A tuple of (stream number, cloudwatch log event). """ positions = positions or {s: Position(timestamp=0, skip=0) for s in streams} event_iters = [log_stream(client, log_group, s, positions[s].timestamp, positions[s].skip) for s in streams] events = [] for s in event_iters: if not s: events.append(None) continue try: events.append(next(s)) except StopIteration: events.append(None) while some(events): i = argmin(events, lambda x: x['timestamp'] if x else 9999999999) yield (i, events[i]) try: events[i] = next(event_iters[i]) except StopIteration: events[i] = None
0.004885
def filter_leading_non_json_lines(buf): ''' used to avoid random output from SSH at the top of JSON output, like messages from tcagetattr, or where dropbear spews MOTD on every single command (which is nuts). need to filter anything which starts not with '{', '[', ', '=' or is an empty line. filter only leading lines since multiline JSON is valid. ''' filtered_lines = StringIO.StringIO() stop_filtering = False for line in buf.splitlines(): if stop_filtering or "=" in line or line.startswith('{') or line.startswith('['): stop_filtering = True filtered_lines.write(line + '\n') return filtered_lines.getvalue()
0.007267
def add_renderer(self, klass, *args, **kwargs): '''Add a renderer to the current scene. **Parameter** klass: renderer class The renderer class to be added args, kwargs: Arguments used by the renderer constructor, except for the *widget* argument. .. seealso:: :py:class:`~chemlab.graphics.renderers.AbstractRenderer` .. seealso:: :doc:`/api/chemlab.graphics.renderers` **Return** The istantiated renderer. You should keep the return value to be able to update the renderer at run-time. ''' renderer = klass(self.widget, *args, **kwargs) self.widget.renderers.append(renderer) return renderer
0.007802
async def _deferred_init(self): """ Register the web hook onto which Telegram should send its messages. """ hook_path = self.make_hook_path() url = urljoin(settings.BERNARD_BASE_URL, hook_path) await self.call('setWebhook', url=url) logger.info('Setting Telegram webhook to "%s"', url)
0.005848
def decode(self, encoded, parentFieldName=''): """ See the function description in base.py """ assert (encoded[0:self.n] <= 1.0).all() resultString = "" resultRanges = [] overlaps = (self.sdrs * encoded[0:self.n]).sum(axis=1) if self.verbosity >= 2: print "Overlaps for decoding:" for i in xrange(0, self.ncategories): print "%d %s" % (overlaps[i], self.categories[i]) matchingCategories = (overlaps > self.thresholdOverlap).nonzero()[0] for index in matchingCategories: if resultString != "": resultString += " " resultString += str(self.categories[index]) resultRanges.append([int(index),int(index)]) if parentFieldName != '': fieldName = "%s.%s" % (parentFieldName, self.name) else: fieldName = self.name return ({fieldName: (resultRanges, resultString)}, [fieldName])
0.01464
def plotMultipleInferenceRun(stats, fields, basename, plotDir="plots"): """ Plots individual inference runs. """ if not os.path.exists(plotDir): os.makedirs(plotDir) plt.figure() colorList = ['r', 'b', 'g', 'm', 'c', 'k', 'y'] # plot request stats for i, field in enumerate(fields): fieldKey = field[0] + " C0" trace = [] for s in stats: trace += s[fieldKey] plt.plot(trace, label=field[1], color=colorList[i]) # format plt.legend(loc="upper right") plt.xlabel("Input number") plt.xticks(range(0, len(stats)*stats[0]["numSteps"]+1,5)) plt.ylabel("Number of cells") plt.ylim(-5, 55) plt.title("Inferring combined sensorimotor and temporal sequence stream") # save relPath = "{}_exp_combined.pdf".format(basename) path = os.path.join(plotDir, relPath) plt.savefig(path) plt.close()
0.026115
def regroup_vectorized(srccat, eps, far=None, dist=norm_dist): """ Regroup the islands of a catalog according to their normalised distance. Assumes srccat is recarray-like for efficiency. Return a list of island groups. Parameters ---------- srccat : np.rec.arry or pd.DataFrame Should have the following fields[units]: ra[deg],dec[deg], a[arcsec],b[arcsec],pa[deg], peak_flux[any] eps : float maximum normalised distance within which sources are considered to be grouped far : float (degrees) sources that are further than this distance apart will not be grouped, and will not be tested. Default = 0.5. dist : func a function that calculates the distance between a source and each element of an array of sources. Default = :func:`AegeanTools.cluster.norm_dist` Returns ------- islands : list of lists Each island contians integer indices for members from srccat (in descending dec order). """ if far is None: far = 0.5 # 10*max(a.a/3600 for a in srccat) # most negative declination first # XXX: kind='mergesort' ensures stable sorting for determinism. # Do we need this? order = np.argsort(srccat.dec, kind='mergesort')[::-1] # TODO: is it better to store groups as arrays even if appends are more # costly? groups = [[order[0]]] for idx in order[1:]: rec = srccat[idx] # TODO: Find out if groups are big enough for this to give us a speed # gain. If not, get distance to all entries in groups above # decmin simultaneously. decmin = rec.dec - far for group in reversed(groups): # when an island's largest (last) declination is smaller than # decmin, we don't need to look at any more islands if srccat.dec[group[-1]] < decmin: # new group groups.append([idx]) rafar = far / np.cos(np.radians(rec.dec)) group_recs = np.take(srccat, group, mode='clip') group_recs = group_recs[abs(rec.ra - group_recs.ra) <= rafar] if len(group_recs) and dist(rec, group_recs).min() < eps: group.append(idx) break else: # new group groups.append([idx]) # TODO?: a more numpy-like interface would return only an array providing # the mapping: # group_idx = np.empty(len(srccat), dtype=int) # for i, group in enumerate(groups): # group_idx[group] = i # return group_idx return groups
0.000375
def resolve_nested_schema(self, schema): """Return the Open API representation of a marshmallow Schema. Adds the schema to the spec if it isn't already present. Typically will return a dictionary with the reference to the schema's path in the spec unless the `schema_name_resolver` returns `None`, in which case the returned dictoinary will contain a JSON Schema Object representation of the schema. :param schema: schema to add to the spec """ schema_instance = resolve_schema_instance(schema) schema_key = make_schema_key(schema_instance) if schema_key not in self.refs: schema_cls = self.resolve_schema_class(schema) name = self.schema_name_resolver(schema_cls) if not name: try: json_schema = self.schema2jsonschema(schema) except RuntimeError: raise APISpecError( "Name resolver returned None for schema {schema} which is " "part of a chain of circular referencing schemas. Please" " ensure that the schema_name_resolver passed to" " MarshmallowPlugin returns a string for all circular" " referencing schemas.".format(schema=schema) ) if getattr(schema, "many", False): return {"type": "array", "items": json_schema} return json_schema name = get_unique_schema_name(self.spec.components, name) self.spec.components.schema(name, schema=schema) return self.get_ref_dict(schema_instance)
0.002336
def blocks_to_mark_complete_on_view(self, blocks): """ Returns a set of blocks which should be marked complete on view and haven't been yet. """ blocks = {block for block in blocks if self.can_mark_block_complete_on_view(block)} completions = self.get_completions({block.location for block in blocks}) return {block for block in blocks if completions.get(block.location, 0) < 1.0}
0.014019
def use_plenary_resource_view(self): """Pass through to provider ResourceLookupSession.use_plenary_resource_view""" self._object_views['resource'] = PLENARY # self._get_provider_session('resource_lookup_session') # To make sure the session is tracked for session in self._get_provider_sessions(): try: session.use_plenary_resource_view() except AttributeError: pass
0.00883
def task_list(): """ Scans the modules set in RQ_JOBS_MODULES for RQ jobs decorated with @task Compiles a readable list for Job model task choices """ try: jobs_module = settings.RQ_JOBS_MODULE except AttributeError: raise ImproperlyConfigured(_("You have to define RQ_JOBS_MODULE in settings.py")) if isinstance(jobs_module, string_types): jobs_modules = (jobs_module,) elif isinstance(jobs_module, (tuple, list)): jobs_modules = jobs_module else: raise ImproperlyConfigured(_("RQ_JOBS_MODULE must be a string or a tuple")) choices = [] for module in jobs_modules: try: tasks = importlib.import_module(module) except ImportError: raise ImproperlyConfigured(_("Can not find module {}").format(module)) module_choices = [('%s.%s' % (module, x), underscore_to_camelcase(x)) for x, y in list(tasks.__dict__.items()) if type(y) == FunctionType and hasattr(y, 'delay')] choices.extend(module_choices) choices.sort(key=lambda tup: tup[1]) return choices
0.004433
def annToRLE(self, ann): """ Convert annotation which can be polygons, uncompressed RLE to RLE. :return: binary mask (numpy 2D array) """ t = self.imgs[ann['image_id']] h, w = t['height'], t['width'] segm = ann['segmentation'] if type(segm) == list: # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = maskUtils.frPyObjects(segm, h, w) rle = maskUtils.merge(rles) elif type(segm['counts']) == list: # uncompressed RLE rle = maskUtils.frPyObjects(segm, h, w) else: # rle rle = ann['segmentation'] return rle
0.002667
def _GetRoutingMap(self, router): """Returns a routing map for a given router instance.""" try: routing_map = self._routing_maps_cache.Get(router.__class__) except KeyError: routing_map = self._BuildHttpRoutingMap(router.__class__) self._routing_maps_cache.Put(router.__class__, routing_map) return routing_map
0.011561
def bot_has_any_role(*items): """Similar to :func:`.has_any_role` except checks if the bot itself has any of the roles listed. This check raises one of two special exceptions, :exc:`.BotMissingAnyRole` if the bot is missing all roles, or :exc:`.NoPrivateMessage` if it is used in a private message. Both inherit from :exc:`.CheckFailure`. .. versionchanged:: 1.1.0 Raise :exc:`.BotMissingAnyRole` or :exc:`.NoPrivateMessage` instead of generic checkfailure """ def predicate(ctx): ch = ctx.channel if not isinstance(ch, discord.abc.GuildChannel): raise NoPrivateMessage() me = ch.guild.me getter = functools.partial(discord.utils.get, me.roles) if any(getter(id=item) is not None if isinstance(item, int) else getter(name=item) is not None for item in items): return True raise BotMissingAnyRole(items) return check(predicate)
0.004193