text
stringlengths
78
104k
score
float64
0
0.18
def main(): """ Example to show AIKIF logging of results. Generates a sequence of random grids and runs the Game of Life, saving results """ iterations = 9 # how many simulations to run years = 3 # how many times to run each simulation width = 22 # grid height height = 78 # grid width time_delay = 0.03 # delay when printing on screen lg = mod_log.Log('test') lg.record_process('Game of Life', 'game_of_life_console.py') for _ in range(iterations): s,e = run_game_of_life(years, width, height, time_delay, 'N') lg.record_result("Started with " + str(s) + " cells and ended with " + str(e) + " cells")
0.014144
def get_cacheable(cache_key, cache_ttl, calculate, recalculate=False): """ Gets the result of a method call, using the given key and TTL as a cache """ if not recalculate: cached = cache.get(cache_key) if cached is not None: return json.loads(cached) calculated = calculate() cache.set(cache_key, json.dumps(calculated), cache_ttl) return calculated
0.002457
def generate_identity_binding_access_token( self, name, scope, jwt, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None, ): """ Exchange a JWT signed by third party identity provider to an OAuth 2.0 access token Example: >>> from google.cloud import iam_credentials_v1 >>> >>> client = iam_credentials_v1.IAMCredentialsClient() >>> >>> name = client.service_account_path('[PROJECT]', '[SERVICE_ACCOUNT]') >>> >>> # TODO: Initialize `scope`: >>> scope = [] >>> >>> # TODO: Initialize `jwt`: >>> jwt = '' >>> >>> response = client.generate_identity_binding_access_token(name, scope, jwt) Args: name (str): The resource name of the service account for which the credentials are requested, in the following format: ``projects/-/serviceAccounts/{ACCOUNT_EMAIL_OR_UNIQUEID}``. scope (list[str]): Code to identify the scopes to be included in the OAuth 2.0 access token. See https://developers.google.com/identity/protocols/googlescopes for more information. At least one value required. jwt (str): Required. Input token. Must be in JWT format according to RFC7523 (https://tools.ietf.org/html/rfc7523) and must have 'kid' field in the header. Supported signing algorithms: RS256 (RS512, ES256, ES512 coming soon). Mandatory payload fields (along the lines of RFC 7523, section 3): - iss: issuer of the token. Must provide a discovery document at $iss/.well-known/openid-configuration . The document needs to be formatted according to section 4.2 of the OpenID Connect Discovery 1.0 specification. - iat: Issue time in seconds since epoch. Must be in the past. - exp: Expiration time in seconds since epoch. Must be less than 48 hours after iat. We recommend to create tokens that last shorter than 6 hours to improve security unless business reasons mandate longer expiration times. Shorter token lifetimes are generally more secure since tokens that have been exfiltrated by attackers can be used for a shorter time. you can configure the maximum lifetime of the incoming token in the configuration of the mapper. The resulting Google token will expire within an hour or at "exp", whichever is earlier. - sub: JWT subject, identity asserted in the JWT. - aud: Configured in the mapper policy. By default the service account email. Claims from the incoming token can be transferred into the output token accoding to the mapper configuration. The outgoing claim size is limited. Outgoing claims size must be less than 4kB serialized as JSON without whitespace. Example header: { "alg": "RS256", "kid": "92a4265e14ab04d4d228a48d10d4ca31610936f8" } Example payload: { "iss": "https://accounts.google.com", "iat": 1517963104, "exp": 1517966704, "aud": "https://iamcredentials.googleapis.com/", "sub": "113475438248934895348", "my\_claims": { "additional\_claim": "value" } } retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.iam_credentials_v1.types.GenerateIdentityBindingAccessTokenResponse` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if "generate_identity_binding_access_token" not in self._inner_api_calls: self._inner_api_calls[ "generate_identity_binding_access_token" ] = google.api_core.gapic_v1.method.wrap_method( self.transport.generate_identity_binding_access_token, default_retry=self._method_configs[ "GenerateIdentityBindingAccessToken" ].retry, default_timeout=self._method_configs[ "GenerateIdentityBindingAccessToken" ].timeout, client_info=self._client_info, ) request = common_pb2.GenerateIdentityBindingAccessTokenRequest( name=name, scope=scope, jwt=jwt ) if metadata is None: metadata = [] metadata = list(metadata) try: routing_header = [("name", name)] except AttributeError: pass else: routing_metadata = google.api_core.gapic_v1.routing_header.to_grpc_metadata( routing_header ) metadata.append(routing_metadata) return self._inner_api_calls["generate_identity_binding_access_token"]( request, retry=retry, timeout=timeout, metadata=metadata )
0.005701
def overlay_gateway_access_lists_ipv4_out_ipv4_acl_out_name(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") overlay_gateway = ET.SubElement(config, "overlay-gateway", xmlns="urn:brocade.com:mgmt:brocade-tunnels") name_key = ET.SubElement(overlay_gateway, "name") name_key.text = kwargs.pop('name') access_lists = ET.SubElement(overlay_gateway, "access-lists") ipv4 = ET.SubElement(access_lists, "ipv4") out = ET.SubElement(ipv4, "out") ipv4_acl_out_name = ET.SubElement(out, "ipv4-acl-out-name") ipv4_acl_out_name.text = kwargs.pop('ipv4_acl_out_name') callback = kwargs.pop('callback', self._callback) return callback(config)
0.003963
def apply_t0(self, hits): """Apply only t0s""" if HAVE_NUMBA: apply_t0_nb( hits.time, hits.dom_id, hits.channel_id, self._lookup_tables ) else: n = len(hits) cal = np.empty(n) lookup = self._calib_by_dom_and_channel for i in range(n): calib = lookup[hits['dom_id'][i]][hits['channel_id'][i]] cal[i] = calib[6] hits.time += cal return hits
0.003984
def load_mplstyle(): """Try to load conf.plot.mplstyle matplotlib style.""" plt = importlib.import_module('matplotlib.pyplot') if conf.plot.mplstyle: for style in conf.plot.mplstyle.split(): stfile = config.CONFIG_DIR / (style + '.mplstyle') if stfile.is_file(): style = str(stfile) try: plt.style.use(style) except OSError: print('Cannot import style {}.'.format(style), file=sys.stderr) conf.plot.mplstyle = '' if conf.plot.xkcd: plt.xkcd()
0.001645
def created(self): """Union[datetime.datetime, None]: Datetime at which the model was created (:data:`None` until set from the server). Read-only. """ value = self._proto.creation_time if value is not None and value != 0: # value will be in milliseconds. return google.cloud._helpers._datetime_from_microseconds( 1000.0 * float(value) )
0.004577
def set_collections_acl(self): """ Calculate and set ACL valid for requested collections. DENY_ALL is added to ACL to make sure no access rules are inherited. """ acl = [(Allow, 'g:admin', ALL_PERMISSIONS)] collections = self.get_collections() resources = self.get_resources(collections) aces = self._get_least_permissions_aces(resources) if aces is not None: for ace in aces: acl.append(ace) acl.append(DENY_ALL) self.__acl__ = tuple(acl)
0.003597
def get_lines_from_file(filename, lineno, context_lines, loader=None, module_name=None): """ Returns context_lines before and after lineno from file. Returns (pre_context_lineno, pre_context, context_line, post_context). """ source = None if loader is not None and hasattr(loader, "get_source"): try: source = loader.get_source(module_name) except ImportError: # Traceback (most recent call last): # File "/Users/dcramer/Development/django-sentry/sentry/client/handlers.py", line 31, in emit # get_client().create_from_record(record, request=request) # File "/Users/dcramer/Development/django-sentry/sentry/client/base.py", line 325, in create_from_record # data['__sentry__']['frames'] = varmap(shorten, get_stack_info(stack)) # File "/Users/dcramer/Development/django-sentry/sentry/utils/stacks.py", line 112, in get_stack_info # pre_context_lineno, pre_context, context_line, post_context = get_lines_from_file(filename, lineno, 7, loader, module_name) # File "/Users/dcramer/Development/django-sentry/sentry/utils/stacks.py", line 24, in get_lines_from_file # source = loader.get_source(module_name) # File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/pkgutil.py", line 287, in get_source # fullname = self._fix_name(fullname) # File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/pkgutil.py", line 262, in _fix_name # "module %s" % (self.fullname, fullname)) # ImportError: Loader for module cProfile cannot handle module __main__ source = None if source is not None: source = source.splitlines() if source is None: try: f = open(filename) try: source = f.readlines() finally: f.close() except (OSError, IOError): pass if source is None: return [] encoding = 'ascii' for line in source[:2]: # File coding may be specified. Match pattern from PEP-263 # (http://www.python.org/dev/peps/pep-0263/) match = _coding_re.search(line) if match: encoding = match.group(1) break source = [unicode(sline, encoding, 'replace') for sline in source] lower_bound = max(0, lineno - context_lines) upper_bound = min(lineno + context_lines + 1, len(source)) try: return [(lineno + 1, source[lineno].strip('\n')) for lineno in xrange(lower_bound, upper_bound)] except IndexError: # the file may have changed since it was loaded into memory return []
0.004286
def tokens(self, sentence_dom): ''' Tokenize all the words and preserve NER labels from ENAMEX tags ''' ## keep track of sentence position, which is reset for each ## sentence, and used above in _make_token self.sent_pos = 0 ## keep track of mention_id, so we can distinguish adjacent ## multi-token mentions within the same coref chain mention_id = 0 while len(sentence_dom.childNodes) > 0: ## shrink the sentence_dom's child nodes. In v0_2_0 this ## was required to cope with HitMaxi16. Now it is just to ## save memory. node = sentence_dom.childNodes.pop(0) if node.nodeType == node.TEXT_NODE: ## process portion before an ENAMEX tag for line in node.data.splitlines(True): self._input_string = line for start, end in self.word_tokenizer.span_tokenize(line): tok = self._make_token(start, end) if tok: yield tok if line.endswith('\n'): ## maintain the index to the current line self.line_idx += 1 ## increment index pasat the 'before' portion self.byte_idx += len(line.encode('utf-8')) else: ## process text inside an ENAMEX tag assert node.nodeName == 'ENAMEX', node.nodeName chain_id = node.attributes.get('ID').value entity_type = node.attributes.get('TYPE').value for node in node.childNodes: assert node.nodeType == node.TEXT_NODE, node.nodeType for line in node.data.splitlines(True): self._input_string = line for start, end in self.word_tokenizer.span_tokenize(line): tok = self._make_token(start, end) if tok: if entity_type in _PRONOUNS: tok.mention_type = MentionType.PRO tok.entity_type = _ENTITY_TYPES[entity_type] ## create an attribute attr = Attribute( attribute_type=AttributeType.PER_GENDER, value=str(_PRONOUNS[entity_type]) ) self.attributes.append(attr) else: ## regular entity_type tok.mention_type = MentionType.NAME tok.entity_type = _ENTITY_TYPES[entity_type] tok.equiv_id = int(chain_id) tok.mention_id = mention_id yield tok if line.endswith('\n'): ## maintain the index to the current line self.line_idx += 1 ## increment index pasat the 'before' portion self.byte_idx += len(line.encode('utf-8')) ## increment mention_id within this sentence mention_id += 1
0.006851
def _get_spec(self, spec_file): """Get json specification from package data.""" spec_file_path = os.path.join( pkg_resources. resource_filename( 'reana_commons', 'openapi_specifications'), spec_file) with open(spec_file_path) as f: json_spec = json.load(f) return json_spec
0.005181
def build_tree(self, *args, **kwargs): """Dispatch a tree build call. Note that you need at least four taxa to express some evolutionary history on an unrooted tree.""" # Check length # assert len(self) > 3 # Default option # algorithm = kwargs.pop(kwargs, None) if algorithm is None: algorithm = 'raxml' # Dispatch # if algorithm is 'raxml': return self.build_tree_raxml(*args, **kwargs) if algorithm is 'fasttree': return self.build_tree_fast(*args, **kwargs)
0.014706
def _initURL(self, org_url, referer_url): """ sets proper URLs for AGOL """ if org_url is not None and org_url != '': if not org_url.startswith('http://') and not org_url.startswith('https://'): org_url = 'https://' + org_url self._org_url = org_url if self._org_url.lower().find('/sharing/rest') > -1: self._url = self._org_url else: self._url = self._org_url + "/sharing/rest" if self._url.startswith('http://'): self._surl = self._url.replace('http://', 'https://') else: self._surl = self._url parsed_url = urlparse(self._org_url) self._parsed_org_url = urlunparse((parsed_url[0],parsed_url[1],"","","","")) if referer_url is None: parsed_org = urlparse(self._org_url) self._referer_url = parsed_org.netloc url = '{}/portals/self'.format( self._url) parameters = { 'f': 'json' } portal_info = self._post(url=url, param_dict=parameters, securityHandler=self, proxy_port=self._proxy_port, proxy_url=self._proxy_url) if 'user' in portal_info: if 'username' in portal_info['user']: self._username = portal_info['user']['username']
0.007947
def receivable_id(self, receivable_id): """ Sets the receivable_id of this AdditionalRecipientReceivableRefund. The ID of the receivable that the refund was applied to. :param receivable_id: The receivable_id of this AdditionalRecipientReceivableRefund. :type: str """ if receivable_id is None: raise ValueError("Invalid value for `receivable_id`, must not be `None`") if len(receivable_id) < 1: raise ValueError("Invalid value for `receivable_id`, length must be greater than or equal to `1`") self._receivable_id = receivable_id
0.007949
def __balance(self, account_id, **kwargs): """Call documentation: `/account/balance <https://www.wepay.com/developer/reference/account-2011-01-15#balance>`_, plus extra keyword parameters: :keyword str access_token: will be used instead of instance's ``access_token``, with ``batch_mode=True`` will set `authorization` param to it's value. :keyword bool batch_mode: turn on/off the batch_mode, see :class:`wepay.api.WePay` :keyword str batch_reference_id: `reference_id` param for batch call, see :class:`wepay.api.WePay` :keyword str api_version: WePay API version, see :class:`wepay.api.WePay` .. warning :: This call is depricated as of API version '2014-01-08'. """ params = { 'account_id': account_id } return self.make_call(self.__balance, params, kwargs)
0.005252
def dump_OrderedDict(self, obj, class_name="collections.OrderedDict"): """ ``collections.OrderedDict`` dumper. """ return { "$" + class_name: [ (key, self._json_convert(value)) for key, value in iteritems(obj) ] }
0.010239
def quantile_for_single_value(self, **kwargs): """Returns quantile of each column or row. Returns: A new QueryCompiler object containing the quantile of each column or row. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().quantile_for_single_value(**kwargs) axis = kwargs.get("axis", 0) q = kwargs.get("q", 0.5) assert type(q) is float def quantile_builder(df, **kwargs): try: return pandas.DataFrame.quantile(df, **kwargs) except ValueError: return pandas.Series() func = self._build_mapreduce_func(quantile_builder, **kwargs) result = self._full_axis_reduce(axis, func) if axis == 0: result.index = [q] else: result.columns = [q] return result
0.003282
def add_group_grant(self, permission, group_id): """ Convenience method that provides a quick way to add a canonical group grant to a key. This method retrieves the current ACL, creates a new grant based on the parameters passed in, adds that grant to the ACL and then PUT's the new ACL back to GS. :type permission: string :param permission: The permission being granted. Should be one of: READ|FULL_CONTROL See http://code.google.com/apis/storage/docs/developer-guide.html#authorization for more details on permissions. :type group_id: string :param group_id: The canonical group id associated with the Google Groups account you are granting the permission to. """ acl = self.get_acl() acl.add_group_grant(permission, group_id) self.set_acl(acl)
0.00333
def get_expr(self, ctx): """ Returns the MUF needed to get the contents of the lvalue. Returned MUF will push the contained value onto the stack. """ varname = ctx.lookup_variable(self.varname) if varname is None: val = ctx.lookup_constant(self.varname) if val: try: return val.generate_code(ctx) except AttributeError: return val raise MuvError( "Undeclared identifier '%s'." % self.varname, position=self.position ) if len(self.indexing) == 0: return "{var} @".format( var=varname, ) if len(self.indexing) == 1: return "{var} @ {idx} []".format( var=varname, idx=self.indexing[0], ) return ( "{var} @ {{ {idx} }}list array_nested_get".format( var=varname, idx=" ".join(str(x) for x in self.indexing), ) )
0.001835
def send_at(self, value): """A unix timestamp specifying when your email should be delivered. :param value: A unix timestamp specifying when your email should be delivered. :type value: SendAt, int """ if isinstance(value, SendAt): if value.personalization is not None: try: personalization = \ self._personalizations[value.personalization] has_internal_personalization = True except IndexError: personalization = Personalization() has_internal_personalization = False personalization.send_at = value.send_at if not has_internal_personalization: self.add_personalization( personalization, index=value.personalization) else: self._send_at = value else: self._send_at = SendAt(value)
0.001978
def highlight_multi_regex(str_, pat_to_color, reflags=0): """ FIXME Use pygments instead. must be mututally exclusive """ #import colorama # from colorama import Fore, Style #color = Fore.MAGENTA # color = Fore.RED #match = re.search(pat, str_, flags=reflags) colored = str_ to_replace = [] for pat, color in pat_to_color.items(): matches = list(re.finditer(pat, str_, flags=reflags)) for match in matches: start = match.start() end = match.end() to_replace.append((end, start, color)) for tup in reversed(sorted(to_replace)): end, start, color = tup colored_part = color_text(colored[start:end], color) colored = colored[:start] + colored_part + colored[end:] return colored
0.00495
def text_to_qcolor(text): """ Create a QColor from specified string Avoid warning from Qt when an invalid QColor is instantiated """ color = QColor() if not is_string(text): # testing for QString (PyQt API#1) text = str(text) if not is_text_string(text): return color if text.startswith('#') and len(text)==7: correct = '#0123456789abcdef' for char in text: if char.lower() not in correct: return color elif text not in list(QColor.colorNames()): return color color.setNamedColor(text) return color
0.004918
def rock(self): """Starts and does the parsing.""" if not self.argv: self.arg.view() while(self.argv): arg = self.argv.popleft() if arg == "-h" or arg == "--help": print( """Usage: td [-h (--help)] [-v (--version)] [command]""" """, where [command] is one of:\n\n""" """v (view)\tChanges the way next output""" """ will look like. See [td v -h].\n""" """m (modify)\tApplies one time changes to""" """ the database. See [td m -h].\n""" """o (options)\tSets persistent options, applied""" """ on every next execution. See [td o -h].\n""" """a (add)\t\tAdds new item. See [td a -h].\n""" """e (edit)\tEdits existing item. See [td e -h].\n""" """r (rm)\t\tRemoves existing item. See [td r -h].\n""" """d (done)\tMarks items as done. See [td d -h].\n""" """D (undone)\tMarks items as not done. See [td D -h].\n""" """\nAdditional options:\n""" """ -h (--help)\tShows this screen.\n""" """ -v (--version)Shows version number.""" ) elif arg == "-v" or arg == "--version": print("td :: {}".format(__version__)) elif arg == "v" or arg == "view": self._part("view", self.arg.view, { "--no-color": ("nocolor", False), "-s": ("sort", True), "--sort": ("sort", True), "-p": ("purge", False), "--purge": ("purge", False), "-d": ("done", True), "--done": ("done", True), "-D": ("undone", True), "--undone": ("undone", True) }, """Usage: td v [-h (--help)] [command(s)]""" """, where [command(s)] are any of:\n\n""" """-s (--sort) <pattern>\tSorts the output using""" """ <pattern>.\n""" """-p (--purge)\t\tHides items marked as done.\n""" """-d (--done) <pattern>\tDisplays items matching""" """ <pattern> as done.\n""" """-D (--undone) <pattern>\tDisplays items matching""" """ <pattern> as not done.\n""" """--no-color\t\tDo not add color codes to the output.\n""" """\nAdditional options:\n""" """ -h (--help)\t\tShows this screen.""" ) elif arg == "m" or arg == "modify": self._part("modify", self.arg.modify, { "-s": ("sort", True), "--sort": ("sort", True), "-p": ("purge", False), "--purge": ("purge", False), "-d": ("done", True), "--done": ("done", True), "-D": ("undone", True), "--undone": ("undone", True) }, """Usage: td m [-h (--help)] [command(s)]""" """, where [command(s)] are any of:\n\n""" """-s (--sort) <pattern>\tSorts database using""" """ <pattern>.\n""" """-p (--purge)\t\tRemoves items marked as done.\n""" """-d (--done) <pattern>\tMarks items matching""" """ <pattern> as done.\n""" """-D (--undone) <pattern>\tMarks items matching""" """ <pattern> as not done.\n""" """\nAdditional options:\n""" """ -h (--help)\t\tShows this screen.""" ) elif arg == "a" or arg == "add": args = dict() if self.argv and self.arg.model.exists(self.argv[0]): args["parent"] = self.argv.popleft() self._part("add", self.arg.add, { "-n": ("name", True), "--name": ("name", True), "-p": ("priority", True), "--priority": ("priority", True), "-c": ("comment", True), "--comment": ("comment", True) }, """Usage: td a [-h (--help)] [parent] [command(s)]""" """, where [command(s)] are any of:\n\n""" """-n (--name) <text>\t\tSets item's name.\n""" """-p (--priority) <no|name>\tSets item's priority.\n""" """-c (--comment) <text>\t\tSets item's comment.\n""" """\nIf [parent] index is specified, new item will""" """ become it's child.\n""" """If any of the arguments is omitted,""" """ this command will launch an interactive session""" """ letting the user supply the rest of them.\n""" """\nAdditional options:\n""" """ -h (--help)\t\t\tShows this screen.""", **args ) elif arg == "e" or arg == "edit": if not self.argv: raise NotEnoughArgumentsError("edit") args = dict() if self.argv[0] not in ["-h", "--help"]: args["index"] = self.argv.popleft() self._part("edit", self.arg.edit, { "--parent": ("parent", True), "-n": ("name", True), "--name": ("name", True), "-p": ("priority", True), "--priority": ("priority", True), "-c": ("comment", True), "--comment": ("comment", True) }, """Usage: td e [-h (--help)] <index> [command(s)]""" """, where [command(s)] are any of:\n\n""" """--parent <index>\t\tChanges item's parent.\n""" """-n (--name) <text>\t\tChanges item's name.\n""" """-p (--priority) <no|name>\tChanges item's priority.\n""" """-c (--comment) <text>\t\tChanges item's comment.\n""" """\nIndex argument is required and has to point at""" """ an existing item.\n""" """If any of the arguments is omitted, it will launch""" """ an interactive session letting the user supply the""" """ rest of them.\n""" """\nAdditions options:\n""" """ -h (--help)\t\t\tShows this screen.""", **args ) elif arg == "r" or arg == "rm": args = dict() if not self.argv: raise NotEnoughArgumentsError("rm") elif self.argv[0] not in ["-h", "--help"]: args["index"] = self.argv.popleft() self._part("rm", self.arg.rm, { }, """Usage: td r [-h (--help)] <index>\n\n""" """Index argument is required and has to point at""" """ an existing item.\n""" """\nAdditions options:\n""" """ -h (--help)\tShows this screen.""", **args ) elif arg == "d" or arg == "done": args = dict() if not self.argv: raise NotEnoughArgumentsError("done") elif self.argv[0] not in ["-h", "--help"]: args["index"] = self.argv.popleft() self._part("done", self.arg.done, { }, """Usage: td d [-h (--help)] <index>\n\n""" """Index argument is required and has to point at""" """ an existing item.\n""" """\nAdditional options:\n""" """ -h (--help)\tShows this screen.""", **args ) elif arg == "D" or arg == "undone": args = dict() if not self.argv: raise NotEnoughArgumentsError("undone") elif self.argv[0] not in ["-h", "--help"]: args["index"] = self.argv.popleft() self._part("undone", self.arg.undone, { }, """Usage: td D [-h (--help)] <index>\n\n""" """Index argument is required and has to point at""" """ an existing item.\n""" """\nAdditional options:\n""" """ -h (--help)\tShows this screen.""", **args ) elif arg == "o" or arg == "options": self._part("options", self.arg.options, { "-g": ("glob", False), "--global": ("glob", False), "-s": ("sort", True), "--sort": ("sort", True), "-p": ("purge", False), "--purge": ("purge", False), "-d": ("done", True), "--done": ("done", True), "-D": ("undone", True), "--undone": ("undone", True) }, """Usage: td o [-h (--help)] [command(s)]""" """, where [command(s)] are any of:\n\n""" """-g (--global)\t\tApply specified options to all""" """ ToDo lists (store in ~/.tdrc).\n""" """-s (--sort) <pattern>\tAlways sorts using""" """ <pattern>.\n""" """-p (--purge)\t\tAlways removes items marked""" """as done.\n""" """-d (--done) <pattern>\tAlways marks items maching""" """ <pattern> as done.\n""" """-D (--undone) <pattern>\tAlways marks items maching""" """ <pattern> as not done.\n""" """\nAdditional options:\n""" """ -h (--help)\t\tShows this screen.""" ) else: raise UnrecognizedCommandError("td", arg)
0.000197
def _GetTfRecordEntries(self, path, max_entries, is_sequence, iterator_options): """Extracts TFRecord examples into a dictionary of feature values. Args: path: The path to the TFRecord file(s). max_entries: The maximum number of examples to load. is_sequence: True if the input data from 'path' are tf.SequenceExamples, False if tf.Examples. Defaults to false. iterator_options: Options to pass to the iterator that reads the examples. Defaults to None. Returns: A tuple with two elements: - A dictionary of all features parsed thus far and arrays of their values. - The number of examples parsed. """ return self._GetEntries([path], max_entries, partial( tf.python_io.tf_record_iterator, options=iterator_options), is_sequence)
0.003155
def reloader_thread(softexit=False): """If ``soft_exit`` is True, we use sys.exit(); otherwise ``os_exit`` will be used to end the process. """ while RUN_RELOADER: if code_changed(): # force reload if softexit: sys.exit(3) else: os._exit(3) time.sleep(1)
0.002825
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.number_of_records_per_hour)) out.append(self._to_str(self.data_period_name_or_description)) out.append(self._to_str(self.data_period_start_day_of_week)) out.append(self._to_str(self.data_period_start_day)) out.append(self._to_str(self.data_period_end_day)) return ",".join(out)
0.00224
def GetGroups(location=None,alias=None): """Return all of alias' groups in the given location. http://www.centurylinkcloud.com/api-docs/v2/#groups-get-group :param alias: short code for a particular account. If none will use account's default alias :param location: datacenter where group resides """ if alias is None: alias = clc.v1.Account.GetAlias() if location is None: location = clc.v1.Account.GetLocation() r = clc.v1.API.Call('post','Group/GetGroups',{'AccountAlias': alias, 'Location': location}) for group in r['HardwareGroups']: clc._GROUP_MAPPING[group['UUID']] = group['Name'] if int(r['StatusCode']) == 0: return(r['HardwareGroups'])
0.034125
def PrettyPrinter(obj): """Pretty printers for AppEngine objects.""" if ndb and isinstance(obj, ndb.Model): return six.iteritems(obj.to_dict()), 'ndb.Model(%s)' % type(obj).__name__ if messages and isinstance(obj, messages.Enum): return [('name', obj.name), ('number', obj.number)], type(obj).__name__ return None
0.01506
def get_tower_results(iterator, optimizer, dropout_rates): r''' With this preliminary step out of the way, we can for each GPU introduce a tower for which's batch we calculate and return the optimization gradients and the average loss across towers. ''' # To calculate the mean of the losses tower_avg_losses = [] # Tower gradients to return tower_gradients = [] with tf.variable_scope(tf.get_variable_scope()): # Loop over available_devices for i in range(len(Config.available_devices)): # Execute operations of tower i on device i device = Config.available_devices[i] with tf.device(device): # Create a scope for all operations of tower i with tf.name_scope('tower_%d' % i): # Calculate the avg_loss and mean_edit_distance and retrieve the decoded # batch along with the original batch's labels (Y) of this tower avg_loss = calculate_mean_edit_distance_and_loss(iterator, dropout_rates, reuse=i > 0) # Allow for variables to be re-used by the next tower tf.get_variable_scope().reuse_variables() # Retain tower's avg losses tower_avg_losses.append(avg_loss) # Compute gradients for model parameters using tower's mini-batch gradients = optimizer.compute_gradients(avg_loss) # Retain tower's gradients tower_gradients.append(gradients) avg_loss_across_towers = tf.reduce_mean(tower_avg_losses, 0) tf.summary.scalar(name='step_loss', tensor=avg_loss_across_towers, collections=['step_summaries']) # Return gradients and the average loss return tower_gradients, avg_loss_across_towers
0.003778
def method2jpg(output, mx, raw=False): """ Export method to a jpg file format :param output: output filename :type output: string :param mx: specify the MethodAnalysis object :type mx: :class:`MethodAnalysis` object :param raw: use directly a dot raw buffer (optional) :type raw: string """ buff = raw if not raw: buff = method2dot(mx) method2format(output, "jpg", mx, buff)
0.002315
def normrelpath(base, target): """ This function takes the base and target arguments as paths, and returns an equivalent relative path from base to the target, if both provided paths are absolute. """ if not all(map(isabs, [base, target])): return target return relpath(normpath(target), dirname(normpath(base)))
0.002857
def from_file(cls, file_path: Path, w3: Web3) -> "Package": """ Returns a ``Package`` instantiated by a manifest located at the provided Path. ``file_path`` arg must be a ``pathlib.Path`` instance. A valid ``Web3`` instance is required to instantiate a ``Package``. """ if isinstance(file_path, Path): raw_manifest = file_path.read_text() validate_raw_manifest_format(raw_manifest) manifest = json.loads(raw_manifest) else: raise TypeError( "The Package.from_file method expects a pathlib.Path instance." f"Got {type(file_path)} instead." ) return cls(manifest, w3, file_path.as_uri())
0.004049
def rot_points(pnts, pb, alfa): """Rotate a list of points by an angle alfa (radians) around pivotal point pb. Intended for modifying the control points of trigonometric functions. """ points = [] # rotated points calfa = math.cos(alfa) salfa = math.sin(alfa) for p in pnts: s = p - pb r = abs(s) if r > 0: s /= r np = (s.x * calfa - s.y * salfa, s.y * calfa + s.x * salfa) points.append(pb + fitz.Point(np)*r) return points
0.005837
def open(self, baudrate=None, no_reader_thread=False): """ Opens the device. :param baudrate: baudrate to use :type baudrate: int :param no_reader_thread: whether or not to automatically open the reader thread. :type no_reader_thread: bool :raises: :py:class:`~alarmdecoder.util.NoDeviceError`, :py:class:`~alarmdecoder.util.CommError` """ try: self._read_thread = Device.ReadThread(self) self._device = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if self._use_ssl: self._init_ssl() self._device.connect((self._host, self._port)) if self._use_ssl: while True: try: self._device.do_handshake() break except SSL.WantReadError: pass self._id = '{0}:{1}'.format(self._host, self._port) except socket.error as err: raise NoDeviceError('Error opening device at {0}:{1}'.format(self._host, self._port), err) else: self._running = True self.on_open() if not no_reader_thread: self._read_thread.start() return self
0.003754
def routing_area_2_json(self): """ transform ariane_clip3 routing area object to Ariane server JSON obj :return: Ariane JSON obj """ LOGGER.debug("RoutingArea.routing_area_2_json") json_obj = { 'routingAreaID': self.id, 'routingAreaName': self.name, 'routingAreaDescription': self.description, 'routingAreaType': self.type, 'routingAreaMulticast': self.multicast, 'routingAreaLocationsID': self.loc_ids, 'routingAreaSubnetsID': self.subnet_ids } return json.dumps(json_obj)
0.003221
def hash_data(data, hasher=NoParam, base=NoParam, types=False, hashlen=NoParam, convert=False): """ Get a unique hash depending on the state of the data. Args: data (object): Any sort of loosely organized data hasher (str or HASHER): Hash algorithm from hashlib, defaults to `sha512`. base (str or List[str]): Shorthand key or a list of symbols. Valid keys are: 'abc', 'hex', and 'dec'. Defaults to 'hex'. types (bool): If True data types are included in the hash, otherwise only the raw data is hashed. Defaults to False. hashlen (int): Maximum number of symbols in the returned hash. If not specified, all are returned. DEPRECATED. Use slice syntax instead. convert (bool, optional, default=True): if True, try and convert the data to json an the json is hashed instead. This can improve runtime in some instances, however the hash may differ from the case where convert=False. Notes: alphabet26 is a pretty nice base, I recommend it. However we default to hex because it is standard. This means the output of hashdata with base=sha1 will be the same as the output of `sha1sum`. Returns: str: text - hash string Example: >>> import ubelt as ub >>> print(ub.hash_data([1, 2, (3, '4')], convert=False)) 60b758587f599663931057e6ebdf185a... >>> print(ub.hash_data([1, 2, (3, '4')], base='abc', hasher='sha512')[:32]) hsrgqvfiuxvvhcdnypivhhthmrolkzej """ if convert and isinstance(data, six.string_types): # nocover try: data = json.dumps(data) except TypeError as ex: # import warnings # warnings.warn('Unable to encode input as json due to: {!r}'.format(ex)) pass base = _rectify_base(base) hashlen = _rectify_hashlen(hashlen) hasher = _rectify_hasher(hasher)() # Feed the data into the hasher _update_hasher(hasher, data, types=types) # Get the hashed representation text = _digest_hasher(hasher, hashlen, base) return text
0.001339
def resetEditorValue(self, checked=False): """ Resets the editor to the default value. Also resets the children. """ # Block all signals to prevent duplicate inspector updates. # No need to restore, the editors will be deleted after the reset. for subEditor in self._subEditors: subEditor.blockSignals(True) self.cti.resetToDefault(resetChildren=True) # This will commit the children as well. self.setData(self.cti.defaultData) self.commitAndClose()
0.003745
def apply(self, search, field, value): """Apply lookup expression to search query.""" # We assume that the field in question has a "raw" counterpart. return search.query('match', **{'{}.raw'.format(field): value})
0.008439
def chunk_X( self, select: Union[int, List[int], Tuple[int, ...], np.ndarray] = 1000, replace: bool = True, ): """Return a chunk of the data matrix :attr:`X` with random or specified indices. Parameters ---------- select If select is an integer, a random chunk of row size = select will be returned. If select is a list, tuple or numpy array of integers, then a chunk with these indices will be returned. replace If select is an integer then ``replace=True`` specifies random sampling of indices with replacement, ``replace=False`` - without replacement. """ if isinstance(select, int): select = select if select < self.n_obs else self.n_obs choice = np.random.choice(self.n_obs, select, replace) elif isinstance(select, (np.ndarray, list, tuple)): choice = np.asarray(select) else: raise ValueError('select should be int or array') reverse = None if self.isbacked: # h5py can only slice with a sorted list of unique index values # so random batch with indices [2, 2, 5, 3, 8, 10, 8] will fail # this fixes the problem indices, reverse = np.unique(choice, return_inverse=True) selection = self.X[indices.tolist()] else: selection = self.X[choice] selection = selection.toarray() if issparse(selection) else selection return selection if reverse is None else selection[reverse]
0.00375
def load_py_instance(self, is_spout): """Loads user defined component (spout/bolt)""" try: if is_spout: spout_proto = self.pplan_helper.get_my_spout() py_classpath = spout_proto.comp.class_name self.logger.info("Loading Spout from: %s", py_classpath) else: bolt_proto = self.pplan_helper.get_my_bolt() py_classpath = bolt_proto.comp.class_name self.logger.info("Loading Bolt from: %s", py_classpath) pex_loader.load_pex(self.pplan_helper.topology_pex_abs_path) spbl_class = pex_loader.import_and_get_class(self.pplan_helper.topology_pex_abs_path, py_classpath) except Exception as e: spbl = "spout" if is_spout else "bolt" self.logger.error(traceback.format_exc()) raise RuntimeError("Error when loading a %s from pex: %s" % (spbl, str(e))) return spbl_class
0.010917
def txn_useNonce(self, server_url, timestamp, salt): """Return whether this nonce is present, and if it is, then remove it from the set. str -> bool""" if abs(timestamp - time.time()) > nonce.SKEW: return False try: self.db_add_nonce(server_url, timestamp, salt) except self.exceptions.IntegrityError: # The key uniqueness check failed return False else: # The nonce was successfully added return True
0.003766
def save_issue_data_task(self, issue, task_id, namespace='open'): """Saves a issue data (tasks, etc.) to local data. Args: issue: `int`. Github issue number. task: `int`. Asana task ID. namespace: `str`. Namespace for storing this issue. """ issue_data = self.get_saved_issue_data(issue, namespace) if not issue_data.has_key('tasks'): issue_data['tasks'] = [task_id] elif task_id not in issue_data['tasks']: issue_data['tasks'].append(task_id)
0.004983
def help_center_user_segment_delete(self, id, **kwargs): "https://developer.zendesk.com/rest_api/docs/help_center/user_segments#delete-user-segment" api_path = "/api/v2/help_center/user_segments/{id}.json" api_path = api_path.format(id=id) return self.call(api_path, method="DELETE", **kwargs)
0.009231
def get_default_field_names(self, declared_fields, model_info): """ Return the default list of field names that will be used if the `Meta.fields` option is not specified. """ return ( [self.url_field_name] + list(declared_fields.keys()) + list(model_info.fields.keys()) + list(model_info.forward_relations.keys()) )
0.004866
def fork_detached_process (): """Fork this process, creating a subprocess detached from the current context. Returns a :class:`pwkit.Holder` instance with information about what happened. Its fields are: whoami A string, either "original" or "forked" depending on which process we are. pipe An open binary file descriptor. It is readable by the original process and writable by the forked one. This can be used to pass information from the forked process to the one that launched it. forkedpid The PID of the forked process. Note that this process is *not* a child of the original one, so waitpid() and friends may not be used on it. Example:: from pwkit import cli info = cli.fork_detached_process () if info.whoami == 'original': message = info.pipe.readline ().decode ('utf-8') if not len (message): cli.die ('forked process (PID %d) appears to have died', info.forkedpid) info.pipe.close () print ('forked process said:', message) else: info.pipe.write ('hello world'.encode ('utf-8')) info.pipe.close () As always, the *vital* thing to understand is that immediately after a call to this function, you have **two** nearly-identical but **entirely independent** programs that are now both running simultaneously. Until you execute some kind of ``if`` statement, the only difference between the two processes is the value of the ``info.whoami`` field and whether ``info.pipe`` is readable or writeable. This function uses :func:`os.fork` twice and also calls :func:`os.setsid` in between the two invocations, which creates new session and process groups for the forked subprocess. It does *not* perform other operations that you might want, such as changing the current directory, dropping privileges, closing file descriptors, and so on. For more discussion of best practices when it comes to “daemonizing” processes, see (stalled) `PEP 3143`_. .. _PEP 3143: https://www.python.org/dev/peps/pep-3143/ """ import os, struct from .. import Holder payload = struct.Struct ('L') info = Holder () readfd, writefd = os.pipe () pid1 = os.fork () if pid1 > 0: info.whoami = 'original' info.pipe = os.fdopen (readfd, 'rb') os.close (writefd) retcode = os.waitpid (pid1, 0)[1] if retcode: raise Exception ('child process exited with error code %d' % retcode) (info.forkedpid,) = payload.unpack (info.pipe.read (payload.size)) else: # We're the intermediate child process. Start new session and process # groups, detaching us from TTY signals and whatnot. os.setsid () pid2 = os.fork () if pid2 > 0: # We're the intermediate process; we're all done os._exit (0) # If we get here, we're the detached child process. info.whoami = 'forked' info.pipe = os.fdopen (writefd, 'wb') os.close (readfd) info.forkedpid = os.getpid () info.pipe.write (payload.pack (info.forkedpid)) return info
0.007762
def _to_dict(self): """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'recognitions') and self.recognitions is not None: _dict['recognitions'] = [x._to_dict() for x in self.recognitions] return _dict
0.00722
def like_units(a, b): ''' like_units(a,b) yields True if a and b can be cast to each other in terms of units and False otherwise. Non-united units are considered dimensionless units. ''' a = quant(0.0, a) if is_unit(a) else a if is_quantity(a) else quant(a, units.dimensionless) b = quant(0.0, b) if is_unit(b) else b if is_quantity(b) else quant(b, units.dimensionless) if a == b: return True try: c = a.to(b.u) return True except: return False
0.011834
def bounding_box(self): """Bounding box (`~regions.BoundingBox`).""" xmin = self.center.x - self.radius xmax = self.center.x + self.radius ymin = self.center.y - self.radius ymax = self.center.y + self.radius return BoundingBox.from_float(xmin, xmax, ymin, ymax)
0.006431
def get_portchannel_info_by_intf_output_lacp_system_priority(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") get_portchannel_info_by_intf = ET.Element("get_portchannel_info_by_intf") config = get_portchannel_info_by_intf output = ET.SubElement(get_portchannel_info_by_intf, "output") lacp = ET.SubElement(output, "lacp") system_priority = ET.SubElement(lacp, "system-priority") system_priority.text = kwargs.pop('system_priority') callback = kwargs.pop('callback', self._callback) return callback(config)
0.004847
def setdict(self, D): """Set dictionary array.""" self.D = np.asarray(D, dtype=self.dtype) # Factorise dictionary for efficient solves self.lu, self.piv = sl.cho_factor(self.D, 1.0) self.lu = np.asarray(self.lu, dtype=self.dtype)
0.007407
def get_dimension_by_unit_measure_or_abbreviation(measure_or_unit_abbreviation,**kwargs): """ Return the physical dimension a given unit abbreviation of a measure, or the measure itself, refers to. The search key is the abbreviation or the full measure """ unit_abbreviation, factor = _parse_unit(measure_or_unit_abbreviation) units = db.DBSession.query(Unit).filter(Unit.abbreviation==unit_abbreviation).all() if len(units) == 0: raise HydraError('Unit %s not found.'%(unit_abbreviation)) elif len(units) > 1: raise HydraError('Unit %s has multiple dimensions not found.'%(unit_abbreviation)) else: dimension = db.DBSession.query(Dimension).filter(Dimension.id==units[0].dimension_id).one() return str(dimension.name)
0.013802
def is_block(bin_list): """Check if a bin list has exclusively consecutive bin ids. """ id_set = set((my_bin[1] for my_bin in bin_list)) start_id, end_id = min(id_set), max(id_set) return id_set == set(range(start_id, end_id + 1))
0.003984
def readTEXTRECORD(self, glyphBits, advanceBits, previousRecord=None, level=1): """ Read a SWFTextRecord """ if self.readUI8() == 0: return None else: self.seek(self.tell() - 1) return SWFTextRecord(self, glyphBits, advanceBits, previousRecord, level)
0.009646
def solve(self, linear_system, vector_factory=None, *args, **kwargs): '''Solve the given linear system with recycling. The provided `vector_factory` determines which vectors are used for deflation. :param linear_system: the :py:class:`~krypy.linsys.LinearSystem` that is about to be solved. :param vector_factory: (optional) see description in constructor. All remaining arguments are passed to the ``DeflatedSolver``. :returns: instance of ``DeflatedSolver`` which was used to obtain the approximate solution. The approximate solution is available under the attribute ``xk``. ''' # replace linear_system with equivalent TimedLinearSystem on demand if not isinstance(linear_system, linsys.TimedLinearSystem): linear_system = linsys.ConvertedTimedLinearSystem(linear_system) with self.timings['vector_factory']: if vector_factory is None: vector_factory = self._vector_factory # construct vector_factory if strings are provided if vector_factory == 'RitzApproxKrylov': vector_factory = factories.RitzFactory( subset_evaluator=evaluators.RitzApproxKrylov() ) elif vector_factory == 'RitzAprioriCg': vector_factory = factories.RitzFactory( subset_evaluator=evaluators.RitzApriori( Bound=utils.BoundCG ) ) elif vector_factory == 'RitzAprioriMinres': vector_factory = factories.RitzFactory( subset_evaluator=evaluators.RitzApriori( Bound=utils.BoundMinres ) ) # get deflation vectors if self.last_solver is None or vector_factory is None: U = numpy.zeros((linear_system.N, 0)) else: U = vector_factory.get(self.last_solver) with self.timings['solve']: # solve deflated linear system self.last_solver = self._DeflatedSolver(linear_system, U=U, store_arnoldi=True, *args, **kwargs) # return solver instance return self.last_solver
0.001598
def replycomposite(self, rtypes, nodes): """ Construct a I{composite} reply. This method is called when it has been detected that the reply has multiple root nodes. @param rtypes: A list of known return I{types}. @type rtypes: [L{suds.xsd.sxbase.SchemaObject},...] @param nodes: A collection of XML nodes. @type nodes: [L{Element},...] @return: The I{unmarshalled} composite object. @rtype: L{Object},... """ dictionary = {} for rt in rtypes: dictionary[rt.name] = rt unmarshaller = self.unmarshaller() composite = Factory.object('reply') for node in nodes: tag = node.name rt = dictionary.get(tag, None) if rt is None: if node.get('id') is None: raise Exception('<%s/> not mapped to message part' % tag) else: continue resolved = rt.resolve(nobuiltin=True) sobject = unmarshaller.process(node, resolved) value = getattr(composite, tag, None) if value is None: if rt.unbounded(): value = [] setattr(composite, tag, value) value.append(sobject) else: setattr(composite, tag, sobject) else: if not isinstance(value, list): value = [value, ] setattr(composite, tag, value) value.append(sobject) return composite
0.001249
def get_storage_controller_by_name(self, name): """Returns a storage controller with the given name. in name of type str return storage_controller of type :class:`IStorageController` raises :class:`VBoxErrorObjectNotFound` A storage controller with given name doesn't exist. """ if not isinstance(name, basestring): raise TypeError("name can only be an instance of type basestring") storage_controller = self._call("getStorageControllerByName", in_p=[name]) storage_controller = IStorageController(storage_controller) return storage_controller
0.005952
def response_cookies(self): """ This will return all cookies set :return: dict {name, value} """ try: ret = {} for cookie_base_uris in self.response.cookies._cookies.values(): for cookies in cookie_base_uris.values(): for cookie in cookies.keys(): ret[cookie] = cookies[cookie].value return ret except Exception as e: self.error = ApiError( "Exception in making Request with:: %s\n%s" % ( e_, traceback.format_exc())) raise Exception(self.error)
0.003082
def remove_subkey(self, subkey): """ Remove the given subkey, if existed, from this AdfKey. Parameters ---------- subkey : str or AdfKey The subkey to remove. """ if len(self.subkeys) > 0: key = subkey if isinstance(subkey, str) else subkey.key for i in range(len(self.subkeys)): if self.subkeys[i].key == key: self.subkeys.pop(i) break
0.004115
def human_to_bytes(size): ''' Given a human-readable byte string (e.g. 2G, 30M), return the number of bytes. Will return 0 if the argument has unexpected form. .. versionadded:: 2018.3.0 ''' sbytes = size[:-1] unit = size[-1] if sbytes.isdigit(): sbytes = int(sbytes) if unit == 'P': sbytes *= 1125899906842624 elif unit == 'T': sbytes *= 1099511627776 elif unit == 'G': sbytes *= 1073741824 elif unit == 'M': sbytes *= 1048576 else: sbytes = 0 else: sbytes = 0 return sbytes
0.00157
def get_threats_lists(self): """Retrieve all available threat lists""" response = self.service.threatLists().list().execute() self.set_wait_duration(response.get('minimumWaitDuration')) return response['threatLists']
0.008065
def unregister(self, fd): """ Unregister an USB-unrelated fd from poller. Convenience method. """ if fd in self.__fd_set: raise ValueError( 'This fd is a special USB event fd, it must stay registered.' ) self.__poller.unregister(fd)
0.00625
def getResponse(neighbors, weights=None): """ Calculated weighted response based on a list of nearest neighbors :param neighbors: a list of neighbors, each entry is a data instance :param weights: a numpy array of the same length as the neighbors :return: weightedAvg: weighted average response """ neighborResponse = [] for x in range(len(neighbors)): neighborResponse.append(neighbors[x][-1]) neighborResponse = np.array(neighborResponse).astype('float') if weights is None: weightedAvg = np.mean(neighborResponse) else: weightedAvg = np.sum(weights * neighborResponse) return weightedAvg
0.012739
def get_self(self): """GetSelf. Read identity of the home tenant request user. :rtype: :class:`<IdentitySelf> <azure.devops.v5_0.identity.models.IdentitySelf>` """ response = self._send(http_method='GET', location_id='4bb02b5b-c120-4be2-b68e-21f7c50a4b82', version='5.0') return self._deserialize('IdentitySelf', response)
0.009302
def _get_rate(self, mag): """ Calculate and return the annual occurrence rate for a specific bin. :param mag: Magnitude value corresponding to the center of the bin of interest. :returns: Float number, the annual occurrence rate for the :param mag value. """ mag_lo = mag - self.bin_width / 2.0 mag_hi = mag + self.bin_width / 2.0 if mag >= self.min_mag and mag < self.char_mag - DELTA_CHAR / 2: # return rate according to exponential distribution return (10 ** (self.a_val - self.b_val * mag_lo) - 10 ** (self.a_val - self.b_val * mag_hi)) else: # return characteristic rate (distributed over the characteristic # range) for the given bin width return (self.char_rate / DELTA_CHAR) * self.bin_width
0.002281
def start_all_linking(self, mode, group): """Put the IM into All-Linking mode. Puts the IM into All-Linking mode for 4 minutes. Parameters: mode: 0 | 1 | 3 | 255 0 - PLM is responder 1 - PLM is controller 3 - Device that initiated All-Linking is Controller 255 = Delete All-Link group: All-Link group number (0 - 255) """ msg = StartAllLinking(mode, group) self.send_msg(msg)
0.003846
def clear_cache_fields(self): '''Set cache fields to ``None``. Check :attr:`Field.as_cache` for information regarding fields which are considered cache.''' for field in self._meta.scalarfields: if field.as_cache: setattr(self, field.name, None)
0.006944
def speriodogram(x, NFFT=None, detrend=True, sampling=1., scale_by_freq=True, window='hamming', axis=0): """Simple periodogram, but matrices accepted. :param x: an array or matrix of data samples. :param NFFT: length of the data before FFT is computed (zero padding) :param bool detrend: detrend the data before co,puteing the FFT :param float sampling: sampling frequency of the input :attr:`data`. :param scale_by_freq: :param str window: :return: 2-sided PSD if complex data, 1-sided if real. if a matrix is provided (using numpy.matrix), then a periodogram is computed for each row. The returned matrix has the same shape as the input matrix. The mean of the input data is also removed from the data before computing the psd. .. plot:: :width: 80% :include-source: from pylab import grid, semilogy from spectrum import data_cosine, speriodogram data = data_cosine(N=1024, A=0.1, sampling=1024, freq=200) semilogy(speriodogram(data, detrend=False, sampling=1024), marker='o') grid(True) .. plot:: :width: 80% :include-source: import numpy from spectrum import speriodogram, data_cosine from pylab import figure, semilogy, figure ,imshow # create N data sets and make the frequency dependent on the time N = 100 m = numpy.concatenate([data_cosine(N=1024, A=0.1, sampling=1024, freq=x) for x in range(1, N)]); m.resize(N, 1024) res = speriodogram(m) figure(1) semilogy(res) figure(2) imshow(res.transpose(), aspect='auto') .. todo:: a proper spectrogram class/function that takes care of normalisation """ x = np.array(x) # array with 1 dimension case if x.ndim == 1: axis = 0 r = x.shape[0] w = Window(r, window) #same size as input data w = w.data # matrix case elif x.ndim == 2: logging.debug('2D array. each row is a 1D array') [r, c] = x.shape w = np.array([Window(r, window).data for this in range(c)]).reshape(r,c) if NFFT is None: NFFT = len(x) isreal = np.isrealobj(x) if detrend == True: m = np.mean(x, axis=axis) else: m = 0 if isreal == True: if x.ndim == 2: res = (abs (rfft (x*w - m, NFFT, axis=0))) ** 2. / r else: res = (abs (rfft (x*w - m, NFFT, axis=-1))) ** 2. / r else: if x.ndim == 2: res = (abs (fft (x*w - m, NFFT, axis=0))) ** 2. / r else: res = (abs (fft (x*w - m, NFFT, axis=-1))) ** 2. / r if scale_by_freq is True: df = sampling / float(NFFT) res*= 2 * np.pi / df if x.ndim == 1: return res.transpose() else: return res
0.008657
def day(self): '''set unit to day''' self.magnification = 86400 self._update(self.baseNumber, self.magnification) return self
0.012739
def get_pdb_sets(self): '''Return a record to be used for database storage. This only makes sense if self.id is set. See usage example above.''' assert(self.id != None) data = [] for pdb_set in self.pdb_sets: pdb_set_record = dict( PPComplexID = self.id, SetNumber = pdb_set['set_number'], IsComplex = pdb_set['is_complex'], Notes = pdb_set['notes'], ) chain_records = [] for side, chain_details in sorted(pdb_set['chains'].iteritems()): chain_records.append(dict( PPComplexID = self.id, SetNumber = pdb_set['set_number'], Side = side, ChainIndex = chain_details['chain_index'], PDBFileID = chain_details['pdb_file_id'], Chain = chain_details['chain_id'], NMRModel = chain_details['nmr_model'], )) data.append(dict(pdb_set = pdb_set_record, chain_records = chain_records)) return data
0.027265
def consolidate(self, volume, source, dest, *args, **kwargs): """ Consolidate will move a volume of liquid from a list of sources to a single target location. See :any:`Transfer` for details and a full list of optional arguments. Returns ------- This instance of :class:`Pipette`. Examples -------- .. >>> from opentrons import instruments, labware, robot # doctest: +SKIP >>> robot.reset() # doctest: +SKIP >>> plate = labware.load('96-flat', 'A3') # doctest: +SKIP >>> p300 = instruments.P300_Single(mount='left') # doctest: +SKIP >>> p300.consolidate(50, plate.cols[0], plate[1]) # doctest: +SKIP """ kwargs['mode'] = 'consolidate' kwargs['mix_before'] = (0, 0) kwargs['air_gap'] = 0 kwargs['disposal_vol'] = 0 args = [volume, source, dest, *args] return self.transfer(*args, **kwargs)
0.002066
def chat_meMessage(self, *, channel: str, text: str, **kwargs) -> SlackResponse: """Share a me message into a channel. Args: channel (str): The channel id. e.g. 'C1234567890' text (str): The message you'd like to share. e.g. 'Hello world' """ kwargs.update({"channel": channel, "text": text}) return self.api_call("chat.meMessage", json=kwargs)
0.007335
def set(self, key, value, confidence=100): """ Defines the given value with the given confidence, unless the same value is already defined with a higher confidence level. """ if value is None: return if key in self.info: old_confidence, old_value = self.info.get(key) if old_confidence >= confidence: return self.info[key] = (confidence, value)
0.004425
def public_notes_500(self, key, value): """Populate the ``public_notes`` key.""" return [ { 'source': value.get('9'), 'value': public_note, } for public_note in force_list(value.get('a')) ]
0.004149
def liftover_cpra(self, chromosome, position, verbose=False): """ Given chromosome, position in 1-based co-ordinates, This will use pyliftover to liftover a CPRA, will return a (c,p) tuple or raise NonUniqueLiftover if no unique and strand maintaining liftover is possible :param chromosome: string with the chromosome as it's represented in the from_genome :param position: position on chromosome (will be cast to int) :return: ((str) chromosome, (int) position) or None if no liftover """ chromosome = str(chromosome) position = int(position) # Perform the liftover lookup, shift the position by 1 as pyliftover deals in 0-based co-ords new = self.liftover.convert_coordinate(chromosome, position - 1) # This has to be here as new will be NoneType when the chromosome doesn't exist in the chainfile if new: # If the liftover is unique if len(new) == 1: # If the liftover hasn't changed strand if new[0][2] == "+": # Set the co-ordinates to the lifted-over ones and write out new_chromosome = str(new[0][0]) # Shift the position forward by one to convert back to a 1-based co-ords new_position = int(new[0][1]) + 1 return new_chromosome, new_position else: exception_string = "{},{} has a flipped strand in liftover: {}".format(chromosome, position, new) else: exception_string = "{},{} lifts over to multiple positions: {}".format(chromosome, position, new) elif new is None: exception_string = "Chromosome '{}' provided not in chain file".format(chromosome) if verbose: logging.error(exception_string) return None, None
0.005774
def _createFromRDD(self, rdd, schema, samplingRatio): """ Create an RDD for DataFrame from an existing RDD, returns the RDD and schema. """ if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchema(rdd, samplingRatio, names=schema) converter = _create_converter(struct) rdd = rdd.map(converter) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data rdd = rdd.map(schema.toInternal) return rdd, schema
0.004608
def dijkstra(G, start, weight='weight'): """ Compute shortest path length between satrt and all other reachable nodes for a weight graph. return -> ({vertex: weight form start, }, {vertex: predeseccor, }) """ if start not in G.vertices: raise GraphInsertError("Vertex %s doesn't exist." % (start,)) visited = {start: 0} path = {} vertices = set(G.vertices.keys()) while vertices: min_vertex = None for vertex in vertices: if vertex in visited: if min_vertex is None or visited[vertex] < visited[min_vertex]: min_vertex = vertex if min_vertex is None: break vertices.remove(min_vertex) current_weight = visited[min_vertex] for edge in G.vertices[min_vertex]: edge_weight = current_weight + G.edges[(min_vertex, edge)][weight] if edge not in visited or edge_weight < visited[edge]: visited[edge] = edge_weight path[edge] = min_vertex return visited, path
0.000914
def API_GET(self, courseid, taskid=None): # pylint: disable=arguments-differ """ List tasks available to the connected client. Returns a dict in the form :: { "taskid1": { "name": "Name of the course", #the name of the course "authors": [], "deadline": "", "status": "success" # can be "succeeded", "failed" or "notattempted" "grade": 0.0, "grade_weight": 0.0, "context": "" # context of the task, in RST "problems": # dict of the subproblems { # see the format of task.yaml for the content of the dict. Contains everything but # responses of multiple-choice and match problems. } } #... } If you use the endpoint /api/v0/courses/the_course_id/tasks/the_task_id, this dict will contain one entry or the page will return 404 Not Found. """ try: course = self.course_factory.get_course(courseid) except: raise APINotFound("Course not found") if not self.user_manager.course_is_open_to_user(course, lti=False): raise APIForbidden("You are not registered to this course") if taskid is None: tasks = course.get_tasks() else: try: tasks = {taskid: course.get_task(taskid)} except: raise APINotFound("Task not found") output = [] for taskid, task in tasks.items(): task_cache = self.user_manager.get_task_cache(self.user_manager.session_username(), task.get_course_id(), task.get_id()) data = { "id": taskid, "name": task.get_name(self.user_manager.session_language()), "authors": task.get_authors(self.user_manager.session_language()), "deadline": task.get_deadline(), "status": "notviewed" if task_cache is None else "notattempted" if task_cache["tried"] == 0 else "succeeded" if task_cache["succeeded"] else "failed", "grade": task_cache.get("grade", 0.0) if task_cache is not None else 0.0, "grade_weight": task.get_grading_weight(), "context": task.get_context(self.user_manager.session_language()).original_content(), "problems": [] } for problem in task.get_problems(): pcontent = problem.get_original_content() pcontent["id"] = problem.get_id() if pcontent["type"] == "match": del pcontent["answer"] if pcontent["type"] == "multiple_choice": pcontent["choices"] = {key: val["text"] for key, val in enumerate(pcontent["choices"])} pcontent = self._check_for_parsable_text(pcontent) data["problems"].append(pcontent) output.append(data) return 200, output
0.005348
def append_formula(self, formula, no_return=True): """ This method can be used to add a given list of clauses into the solver. :param formula: a list of clauses. :param no_return: check solver's internal formula and return the result, if set to ``False``. :type formula: iterable(iterable(int)) :type no_return: bool The ``no_return`` argument is set to ``True`` by default. :rtype: bool if ``no_return`` is set to ``False``. .. code-block:: python >>> cnf = CNF() ... # assume the formula contains clauses >>> s = Solver() >>> s.append_formula(cnf.clauses, no_return=False) True """ if self.solver: res = self.solver.append_formula(formula, no_return) if not no_return: return res
0.002092
def create_dir(directory): """Create given directory, if doesn't exist. Parameters ---------- directory : string Directory path (can be relative or absolute) Returns ------- string Absolute directory path """ if not os.access(directory, os.F_OK): os.makedirs(directory) return os.path.abspath(directory)
0.00271
def to_gpx(self): """Converts track to a GPX format Uses GPXPY library as an intermediate format Returns: A string with the GPX/XML track """ gpx_segments = [] for segment in self.segments: gpx_points = [] for point in segment.points: time = '' if point.time: iso_time = point.time.isoformat().split('.')[0] time = '<time>%s</time>' % iso_time gpx_points.append( u'<trkpt lat="%f" lon="%f">%s</trkpt>' % (point.lat, point.lon, time) ) points = u'\n\t\t\t'.join(gpx_points) gpx_segments.append(u'\t\t<trkseg>\n\t\t\t%s\n\t\t</trkseg>' % points) segments = u'\t\n'.join(gpx_segments) content = [ u'<?xml version="1.0" encoding="UTF-8"?>', u'<gpx xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.topografix.com/GPX/1/0" xsi:schemaLocation="http://www.topografix.com/GPX/1/0 http://www.topografix.com/GPX/1/0/gpx.xsd" version="1.0" creator="GatherMySteps">', u'\t<trk>', segments, u'\t</trk>', u'</gpx>' ] return u'\n'.join(content)
0.003876
def lines(self): '''Display the system bonds as lines. ''' if "bonds" not in self.topology: return bond_start, bond_end = zip(*self.topology['bonds']) bond_start = np.array(bond_start) bond_end = np.array(bond_end) color_array = np.array([get_atom_color(t) for t in self.topology['atom_types']]) lines = self.add_representation('lines', {'startCoords': self.coordinates[bond_start], 'endCoords': self.coordinates[bond_end], 'startColors': color_array[bond_start].tolist(), 'endColors': color_array[bond_end].tolist()}) def update(self=self, lines=lines): bond_start, bond_end = zip(*self.topology['bonds']) bond_start = np.array(bond_start) bond_end = np.array(bond_end) self.update_representation(lines, {'startCoords': self.coordinates[bond_start], 'endCoords': self.coordinates[bond_end]}) self.update_callbacks.append(update) self.autozoom(self.coordinates)
0.008244
def _find_class(self, class_name): "Resolve the class from the name." classes = {} classes.update(globals()) classes.update(self.INSTANCE_CLASSES) logger.debug(f'looking up class: {class_name}') cls = classes[class_name] logger.debug(f'found class: {cls}') return cls
0.006042
def build_catalog(self, body): """ Create the I{catalog} of multiref nodes by id and the list of non-multiref nodes. @param body: A soap envelope body node. @type body: L{Element} """ for child in body.children: if self.soaproot(child): self.nodes.append(child) id = child.get('id') if id is None: continue key = '#%s' % id self.catalog[key] = child
0.004024
def hidelist(self, window_name, object_name): """ Hide combo box list / menu @param window_name: Window name to type in, either full name, LDTP's name convention, or a Unix glob. @type window_name: string @param object_name: Object name to type in, either full name, LDTP's name convention, or a Unix glob. @type object_name: string @return: 1 on success. @rtype: integer """ object_handle = self._get_object_handle(window_name, object_name) object_handle.activate() object_handle.sendKey(AXKeyCodeConstants.ESCAPE) return 1
0.006107
def switch(self): """Switch if time for eAgc has come""" t = self.system.dae.t for idx in range(0, self.n): if t >= self.tl[idx]: if self.en[idx] == 0: self.en[idx] = 1 logger.info( 'Extended ACE <{}> activated at t = {}.'.format( self.idx[idx], t))
0.005089
def evaluate(self, text): """ Given a string of `text`, compute confusion matrix for the classification task. """ cx = BinaryConfusion() for (L, P, R, gold, _) in Detector.candidates(text): guess = self.predict(L, P, R) cx.update(gold, guess) if not gold and guess: logger.debug("False pos.: L='{}', R='{}'.".format(L, R)) elif gold and not guess: logger.debug("False neg.: L='{}', R='{}'.".format(L, R)) return cx
0.003636
def _connect(self, context): """Initialize the database connection.""" if __debug__: log.info("Connecting " + self.engine.partition(':')[0] + " database layer.", extra=dict( uri = redact_uri(self.uri, self.protect), config = self.config, alias = self.alias, )) self.connection = context.db[self.alias] = self._connector(self.uri, **self.config)
0.058201
def simpixel(new=0, autoraise=True): """Open an instance of simpixel in the browser""" simpixel_driver.open_browser(new=new, autoraise=autoraise)
0.012422
def get_parameter(self): """Obtain list parameter object from the current widget state. :returns: A DefaultValueParameter from the current state of widget :rtype: DefaultValueParameter """ radio_button_checked_id = self.input_button_group.checkedId() # No radio button checked, then default value = None if radio_button_checked_id == -1: self._parameter.value = None # The last radio button (custom) is checked, get the value from the # line edit elif radio_button_checked_id == len(self._parameter.options) - 1: self._parameter.options[radio_button_checked_id] = \ self.custom_value.value() self._parameter.value = self.custom_value.value() else: self._parameter.value = self._parameter.options[ radio_button_checked_id] return self._parameter
0.002169
def resumeProducing(self): """ Starts or resumes the retrieval of messages from the server queue. This method starts receiving messages from the server, they will be passed to the consumer callback. .. note:: This is called automatically when :meth:`.consume` is called, so users should not need to call this unless :meth:`.pauseProducing` has been called. Returns: defer.Deferred: fired when the production is ready to start """ # Start consuming self._running = True for consumer in self._consumers.values(): queue_object, _ = yield consumer.channel.basic_consume( queue=consumer.queue, consumer_tag=consumer.tag ) deferred = self._read(queue_object, consumer) deferred.addErrback( lambda f: _legacy_twisted_log.msg, "_read failed on consumer {c}", c=consumer, logLevel=logging.ERROR, ) _legacy_twisted_log.msg("AMQP connection successfully established")
0.002671
def forms(self): """ :rtype: twilio.rest.authy.v1.form.FormList """ if self._forms is None: self._forms = FormList(self) return self._forms
0.010471
def get_all_hosted_zones(self, start_marker=None, zone_list=None): """ Returns a Python data structure with information about all Hosted Zones defined for the AWS account. :param int start_marker: start marker to pass when fetching additional results after a truncated list :param list zone_list: a HostedZones list to prepend to results """ params = {} if start_marker: params = {'marker': start_marker} response = self.make_request('GET', '/%s/hostedzone' % self.Version, params=params) body = response.read() boto.log.debug(body) if response.status >= 300: raise exception.DNSServerError(response.status, response.reason, body) e = boto.jsonresponse.Element(list_marker='HostedZones', item_marker=('HostedZone',)) h = boto.jsonresponse.XmlHandler(e, None) h.parse(body) if zone_list: e['ListHostedZonesResponse']['HostedZones'].extend(zone_list) while e['ListHostedZonesResponse'].has_key('NextMarker'): next_marker = e['ListHostedZonesResponse']['NextMarker'] zone_list = e['ListHostedZonesResponse']['HostedZones'] e = self.get_all_hosted_zones(next_marker, zone_list) return e
0.002757
def _ParseTimezoneOption(self, options): """Parses the timezone options. Args: options (argparse.Namespace): command line arguments. Raises: BadConfigOption: if the options are invalid. """ time_zone_string = self.ParseStringOption(options, 'timezone') if isinstance(time_zone_string, py2to3.STRING_TYPES): if time_zone_string.lower() == 'list': self.list_timezones = True elif time_zone_string: try: pytz.timezone(time_zone_string) except pytz.UnknownTimeZoneError: raise errors.BadConfigOption( 'Unknown time zone: {0:s}'.format(time_zone_string)) self._preferred_time_zone = time_zone_string
0.007022
def logout(self, command='exit', note=None, echo=None, timeout=shutit_global.shutit_global_object.default_timeout, nonewline=False, loglevel=logging.DEBUG): """Logs the user out. Assumes that login has been called. If login has never been called, throw an error. @param command: Command to run to log out (default=exit) @param note: See send() """ shutit_global.shutit_global_object.yield_to_draw() shutit_pexpect_session = self.get_current_shutit_pexpect_session() return shutit_pexpect_session.logout(ShutItSendSpec(shutit_pexpect_session, send=command, note=note, timeout=timeout, nonewline=nonewline, loglevel=loglevel, echo=echo))
0.037418
def p_global_var(p): '''global_var : VARIABLE | DOLLAR variable | DOLLAR LBRACE expr RBRACE''' if len(p) == 2: p[0] = ast.Variable(p[1], lineno=p.lineno(1)) elif len(p) == 3: p[0] = ast.Variable(p[2], lineno=p.lineno(1)) else: p[0] = ast.Variable(p[3], lineno=p.lineno(1))
0.002874
def install_integration(self, id, **kwargs): # noqa: E501 """Installs a Wavefront integration # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.install_integration(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :return: ResponseContainerIntegrationStatus If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.install_integration_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.install_integration_with_http_info(id, **kwargs) # noqa: E501 return data
0.002208
def check_data_types(self, ds): ''' Checks the data type of all netCDF variables to ensure they are valid data types under CF. CF §2.2 The netCDF data types char, byte, short, int, float or real, and double are all acceptable :param netCDF4.Dataset ds: An open netCDF dataset :rtype: compliance_checker.base.Result ''' fails = [] total = len(ds.variables) for k, v in ds.variables.items(): if (v.dtype.kind != 'S' and all(v.dtype.type != t for t in (np.character, np.dtype('|S1'), np.dtype('b'), np.dtype('i2'), np.dtype('i4'), np.float32, np.double))): fails.append('The variable {} failed because the datatype is {}'.format(k, v.datatype)) return Result(BaseCheck.HIGH, (total - len(fails), total), self.section_titles["2.2"], msgs=fails)
0.006042
def __validate_email(self, email): """Checks if a string looks like an email address""" e = re.match(self.EMAIL_ADDRESS_REGEX, email, re.UNICODE) if e: return email else: error = "Invalid email address: " + str(email) msg = self.GRIMOIRELAB_INVALID_FORMAT % {'error': error} raise InvalidFormatError(cause=msg)
0.005115
def read_data(self, blocksize=4096): """Generates byte strings reflecting the audio data in the file. """ frames = ctypes.c_uint(blocksize // self._client_fmt.mBytesPerFrame) buf = ctypes.create_string_buffer(blocksize) buflist = AudioBufferList() buflist.mNumberBuffers = 1 buflist.mBuffers[0].mNumberChannels = \ self._client_fmt.mChannelsPerFrame buflist.mBuffers[0].mDataByteSize = blocksize buflist.mBuffers[0].mData = ctypes.cast(buf, ctypes.c_void_p) while True: check(_coreaudio.ExtAudioFileRead( self._obj, ctypes.byref(frames), ctypes.byref(buflist) )) assert buflist.mNumberBuffers == 1 size = buflist.mBuffers[0].mDataByteSize if not size: break data = ctypes.cast(buflist.mBuffers[0].mData, ctypes.POINTER(ctypes.c_char)) blob = data[:size] yield blob
0.001963
def pivot(self, attrlist): """Pivots the data using the given attributes, returning a L{PivotTable}. @param attrlist: list of attributes to be used to construct the pivot table @type attrlist: list of strings, or string of space-delimited attribute names """ if isinstance(attrlist, basestring): attrlist = attrlist.split() if all(a in self._indexes for a in attrlist): return PivotTable(self, [], attrlist) else: raise ValueError("pivot can only be called using indexed attributes")
0.010292