repository_name
stringlengths 7
55
| func_path_in_repository
stringlengths 4
223
| func_name
stringlengths 1
134
| whole_func_string
stringlengths 75
104k
| language
stringclasses 1
value | func_code_string
stringlengths 75
104k
| func_code_tokens
sequencelengths 19
28.4k
| func_documentation_string
stringlengths 1
46.9k
| func_documentation_tokens
sequencelengths 1
1.97k
| split_name
stringclasses 1
value | func_code_url
stringlengths 87
315
|
---|---|---|---|---|---|---|---|---|---|---|
praekeltfoundation/seed-stage-based-messaging | subscriptions/tasks.py | calculate_subscription_lifecycle | def calculate_subscription_lifecycle(subscription_id):
"""
Calculates the expected lifecycle position the subscription in
subscription_ids, and creates a BehindSubscription entry for them.
Args:
subscription_id (str): ID of subscription to calculate lifecycle for
"""
subscription = Subscription.objects.select_related("messageset", "schedule").get(
id=subscription_id
)
behind = subscription.messages_behind()
if behind == 0:
return
current_messageset = subscription.messageset
current_sequence_number = subscription.next_sequence_number
end_subscription = Subscription.fast_forward_lifecycle(subscription, save=False)[-1]
BehindSubscription.objects.create(
subscription=subscription,
messages_behind=behind,
current_messageset=current_messageset,
current_sequence_number=current_sequence_number,
expected_messageset=end_subscription.messageset,
expected_sequence_number=end_subscription.next_sequence_number,
) | python | def calculate_subscription_lifecycle(subscription_id):
"""
Calculates the expected lifecycle position the subscription in
subscription_ids, and creates a BehindSubscription entry for them.
Args:
subscription_id (str): ID of subscription to calculate lifecycle for
"""
subscription = Subscription.objects.select_related("messageset", "schedule").get(
id=subscription_id
)
behind = subscription.messages_behind()
if behind == 0:
return
current_messageset = subscription.messageset
current_sequence_number = subscription.next_sequence_number
end_subscription = Subscription.fast_forward_lifecycle(subscription, save=False)[-1]
BehindSubscription.objects.create(
subscription=subscription,
messages_behind=behind,
current_messageset=current_messageset,
current_sequence_number=current_sequence_number,
expected_messageset=end_subscription.messageset,
expected_sequence_number=end_subscription.next_sequence_number,
) | [
"def",
"calculate_subscription_lifecycle",
"(",
"subscription_id",
")",
":",
"subscription",
"=",
"Subscription",
".",
"objects",
".",
"select_related",
"(",
"\"messageset\"",
",",
"\"schedule\"",
")",
".",
"get",
"(",
"id",
"=",
"subscription_id",
")",
"behind",
"=",
"subscription",
".",
"messages_behind",
"(",
")",
"if",
"behind",
"==",
"0",
":",
"return",
"current_messageset",
"=",
"subscription",
".",
"messageset",
"current_sequence_number",
"=",
"subscription",
".",
"next_sequence_number",
"end_subscription",
"=",
"Subscription",
".",
"fast_forward_lifecycle",
"(",
"subscription",
",",
"save",
"=",
"False",
")",
"[",
"-",
"1",
"]",
"BehindSubscription",
".",
"objects",
".",
"create",
"(",
"subscription",
"=",
"subscription",
",",
"messages_behind",
"=",
"behind",
",",
"current_messageset",
"=",
"current_messageset",
",",
"current_sequence_number",
"=",
"current_sequence_number",
",",
"expected_messageset",
"=",
"end_subscription",
".",
"messageset",
",",
"expected_sequence_number",
"=",
"end_subscription",
".",
"next_sequence_number",
",",
")"
] | Calculates the expected lifecycle position the subscription in
subscription_ids, and creates a BehindSubscription entry for them.
Args:
subscription_id (str): ID of subscription to calculate lifecycle for | [
"Calculates",
"the",
"expected",
"lifecycle",
"position",
"the",
"subscription",
"in",
"subscription_ids",
"and",
"creates",
"a",
"BehindSubscription",
"entry",
"for",
"them",
"."
] | train | https://github.com/praekeltfoundation/seed-stage-based-messaging/blob/6f0cacf0727ac2ed19877de214d58009c685b8fa/subscriptions/tasks.py#L597-L622 |
praekeltfoundation/seed-stage-based-messaging | subscriptions/tasks.py | find_behind_subscriptions | def find_behind_subscriptions():
"""
Finds any subscriptions that are behind according to where they should be,
and creates a BehindSubscription entry for them.
"""
subscriptions = Subscription.objects.filter(
active=True, completed=False, process_status=0
).values_list("id", flat=True)
for subscription_id in subscriptions.iterator():
calculate_subscription_lifecycle.delay(str(subscription_id)) | python | def find_behind_subscriptions():
"""
Finds any subscriptions that are behind according to where they should be,
and creates a BehindSubscription entry for them.
"""
subscriptions = Subscription.objects.filter(
active=True, completed=False, process_status=0
).values_list("id", flat=True)
for subscription_id in subscriptions.iterator():
calculate_subscription_lifecycle.delay(str(subscription_id)) | [
"def",
"find_behind_subscriptions",
"(",
")",
":",
"subscriptions",
"=",
"Subscription",
".",
"objects",
".",
"filter",
"(",
"active",
"=",
"True",
",",
"completed",
"=",
"False",
",",
"process_status",
"=",
"0",
")",
".",
"values_list",
"(",
"\"id\"",
",",
"flat",
"=",
"True",
")",
"for",
"subscription_id",
"in",
"subscriptions",
".",
"iterator",
"(",
")",
":",
"calculate_subscription_lifecycle",
".",
"delay",
"(",
"str",
"(",
"subscription_id",
")",
")"
] | Finds any subscriptions that are behind according to where they should be,
and creates a BehindSubscription entry for them. | [
"Finds",
"any",
"subscriptions",
"that",
"are",
"behind",
"according",
"to",
"where",
"they",
"should",
"be",
"and",
"creates",
"a",
"BehindSubscription",
"entry",
"for",
"them",
"."
] | train | https://github.com/praekeltfoundation/seed-stage-based-messaging/blob/6f0cacf0727ac2ed19877de214d58009c685b8fa/subscriptions/tasks.py#L626-L635 |
praekeltfoundation/seed-stage-based-messaging | contentstore/views.py | ScheduleViewSet.send | def send(self, request, pk=None):
"""
Sends all the subscriptions for the specified schedule
"""
schedule = self.get_object()
queue_subscription_send.delay(str(schedule.id))
return Response({}, status=status.HTTP_202_ACCEPTED) | python | def send(self, request, pk=None):
"""
Sends all the subscriptions for the specified schedule
"""
schedule = self.get_object()
queue_subscription_send.delay(str(schedule.id))
return Response({}, status=status.HTTP_202_ACCEPTED) | [
"def",
"send",
"(",
"self",
",",
"request",
",",
"pk",
"=",
"None",
")",
":",
"schedule",
"=",
"self",
".",
"get_object",
"(",
")",
"queue_subscription_send",
".",
"delay",
"(",
"str",
"(",
"schedule",
".",
"id",
")",
")",
"return",
"Response",
"(",
"{",
"}",
",",
"status",
"=",
"status",
".",
"HTTP_202_ACCEPTED",
")"
] | Sends all the subscriptions for the specified schedule | [
"Sends",
"all",
"the",
"subscriptions",
"for",
"the",
"specified",
"schedule"
] | train | https://github.com/praekeltfoundation/seed-stage-based-messaging/blob/6f0cacf0727ac2ed19877de214d58009c685b8fa/contentstore/views.py#L37-L44 |
jreese/tasky | tasky/config.py | Config.get | def get(self, key: Any, default: Any=None) -> Any:
'''Return the configured value for the given key name, or `default` if
no value is available or key is invalid.'''
return self.data.get(key, default) | python | def get(self, key: Any, default: Any=None) -> Any:
'''Return the configured value for the given key name, or `default` if
no value is available or key is invalid.'''
return self.data.get(key, default) | [
"def",
"get",
"(",
"self",
",",
"key",
":",
"Any",
",",
"default",
":",
"Any",
"=",
"None",
")",
"->",
"Any",
":",
"return",
"self",
".",
"data",
".",
"get",
"(",
"key",
",",
"default",
")"
] | Return the configured value for the given key name, or `default` if
no value is available or key is invalid. | [
"Return",
"the",
"configured",
"value",
"for",
"the",
"given",
"key",
"name",
"or",
"default",
"if",
"no",
"value",
"is",
"available",
"or",
"key",
"is",
"invalid",
"."
] | train | https://github.com/jreese/tasky/blob/681f4e5a9a60a0eb838b89f320309cfb45a56242/tasky/config.py#L28-L32 |
jreese/tasky | tasky/config.py | Config.task_config | def task_config(self, task: Task) -> Any:
'''Return the task-specific configuration.'''
return self.get(task.__class__.__name__) | python | def task_config(self, task: Task) -> Any:
'''Return the task-specific configuration.'''
return self.get(task.__class__.__name__) | [
"def",
"task_config",
"(",
"self",
",",
"task",
":",
"Task",
")",
"->",
"Any",
":",
"return",
"self",
".",
"get",
"(",
"task",
".",
"__class__",
".",
"__name__",
")"
] | Return the task-specific configuration. | [
"Return",
"the",
"task",
"-",
"specific",
"configuration",
"."
] | train | https://github.com/jreese/tasky/blob/681f4e5a9a60a0eb838b89f320309cfb45a56242/tasky/config.py#L39-L42 |
jreese/tasky | tasky/config.py | JsonConfig.init | async def init(self) -> None:
'''Load configuration in JSON format from either a file or
a raw data string.'''
if self.data:
return
if self.json_data:
try:
self.data = json.loads(self.json_data)
except Exception:
Log.exception('Falied to load raw configuration')
else:
try:
with open(self.json_path, 'r') as f:
self.data = json.load(f)
except Exception:
Log.exception('Failed to load configuration from %s',
self.json_path)
self.data = {} | python | async def init(self) -> None:
'''Load configuration in JSON format from either a file or
a raw data string.'''
if self.data:
return
if self.json_data:
try:
self.data = json.loads(self.json_data)
except Exception:
Log.exception('Falied to load raw configuration')
else:
try:
with open(self.json_path, 'r') as f:
self.data = json.load(f)
except Exception:
Log.exception('Failed to load configuration from %s',
self.json_path)
self.data = {} | [
"async",
"def",
"init",
"(",
"self",
")",
"->",
"None",
":",
"if",
"self",
".",
"data",
":",
"return",
"if",
"self",
".",
"json_data",
":",
"try",
":",
"self",
".",
"data",
"=",
"json",
".",
"loads",
"(",
"self",
".",
"json_data",
")",
"except",
"Exception",
":",
"Log",
".",
"exception",
"(",
"'Falied to load raw configuration'",
")",
"else",
":",
"try",
":",
"with",
"open",
"(",
"self",
".",
"json_path",
",",
"'r'",
")",
"as",
"f",
":",
"self",
".",
"data",
"=",
"json",
".",
"load",
"(",
"f",
")",
"except",
"Exception",
":",
"Log",
".",
"exception",
"(",
"'Failed to load configuration from %s'",
",",
"self",
".",
"json_path",
")",
"self",
".",
"data",
"=",
"{",
"}"
] | Load configuration in JSON format from either a file or
a raw data string. | [
"Load",
"configuration",
"in",
"JSON",
"format",
"from",
"either",
"a",
"file",
"or",
"a",
"raw",
"data",
"string",
"."
] | train | https://github.com/jreese/tasky/blob/681f4e5a9a60a0eb838b89f320309cfb45a56242/tasky/config.py#L72-L94 |
jreese/tasky | tasky/tasks/timer.py | TimerTask.run_task | async def run_task(self) -> None:
'''Execute the task inside the asyncio event loop after `DELAY`
seconds. Track the time it takes to run, and log when it starts/stops.
If/when `reset()` is called, reset the wait time to `DELAY` seconds.'''
self.last_run = 0.0
self.target = self.time() + self.DELAY
while self.running:
try:
now = self.time()
if now < self.target:
sleep = self.target - now
await self.sleep(sleep)
elif self.last_run < self.target:
Log.debug('executing timer task %s', self.name)
self.last_run = self.time()
await self.run()
total = self.time() - self.last_run
Log.debug('finished timer task %s in %.1f seconds',
self.name, total)
else:
sleep = min(5.0, self.DELAY)
await self.sleep(sleep)
except CancelledError:
Log.debug('cancelled timer task %s', self.name)
raise
except Exception:
Log.exception('exception in timer task %s', self.name) | python | async def run_task(self) -> None:
'''Execute the task inside the asyncio event loop after `DELAY`
seconds. Track the time it takes to run, and log when it starts/stops.
If/when `reset()` is called, reset the wait time to `DELAY` seconds.'''
self.last_run = 0.0
self.target = self.time() + self.DELAY
while self.running:
try:
now = self.time()
if now < self.target:
sleep = self.target - now
await self.sleep(sleep)
elif self.last_run < self.target:
Log.debug('executing timer task %s', self.name)
self.last_run = self.time()
await self.run()
total = self.time() - self.last_run
Log.debug('finished timer task %s in %.1f seconds',
self.name, total)
else:
sleep = min(5.0, self.DELAY)
await self.sleep(sleep)
except CancelledError:
Log.debug('cancelled timer task %s', self.name)
raise
except Exception:
Log.exception('exception in timer task %s', self.name) | [
"async",
"def",
"run_task",
"(",
"self",
")",
"->",
"None",
":",
"self",
".",
"last_run",
"=",
"0.0",
"self",
".",
"target",
"=",
"self",
".",
"time",
"(",
")",
"+",
"self",
".",
"DELAY",
"while",
"self",
".",
"running",
":",
"try",
":",
"now",
"=",
"self",
".",
"time",
"(",
")",
"if",
"now",
"<",
"self",
".",
"target",
":",
"sleep",
"=",
"self",
".",
"target",
"-",
"now",
"await",
"self",
".",
"sleep",
"(",
"sleep",
")",
"elif",
"self",
".",
"last_run",
"<",
"self",
".",
"target",
":",
"Log",
".",
"debug",
"(",
"'executing timer task %s'",
",",
"self",
".",
"name",
")",
"self",
".",
"last_run",
"=",
"self",
".",
"time",
"(",
")",
"await",
"self",
".",
"run",
"(",
")",
"total",
"=",
"self",
".",
"time",
"(",
")",
"-",
"self",
".",
"last_run",
"Log",
".",
"debug",
"(",
"'finished timer task %s in %.1f seconds'",
",",
"self",
".",
"name",
",",
"total",
")",
"else",
":",
"sleep",
"=",
"min",
"(",
"5.0",
",",
"self",
".",
"DELAY",
")",
"await",
"self",
".",
"sleep",
"(",
"sleep",
")",
"except",
"CancelledError",
":",
"Log",
".",
"debug",
"(",
"'cancelled timer task %s'",
",",
"self",
".",
"name",
")",
"raise",
"except",
"Exception",
":",
"Log",
".",
"exception",
"(",
"'exception in timer task %s'",
",",
"self",
".",
"name",
")"
] | Execute the task inside the asyncio event loop after `DELAY`
seconds. Track the time it takes to run, and log when it starts/stops.
If/when `reset()` is called, reset the wait time to `DELAY` seconds. | [
"Execute",
"the",
"task",
"inside",
"the",
"asyncio",
"event",
"loop",
"after",
"DELAY",
"seconds",
".",
"Track",
"the",
"time",
"it",
"takes",
"to",
"run",
"and",
"log",
"when",
"it",
"starts",
"/",
"stops",
".",
"If",
"/",
"when",
"reset",
"()",
"is",
"called",
"reset",
"the",
"wait",
"time",
"to",
"DELAY",
"seconds",
"."
] | train | https://github.com/jreese/tasky/blob/681f4e5a9a60a0eb838b89f320309cfb45a56242/tasky/tasks/timer.py#L20-L53 |
jreese/tasky | tasky/tasks/timer.py | TimerTask.reset | def reset(self) -> None:
'''Reset task execution to `DELAY` seconds from now.'''
Log.debug('resetting timer task %s')
self.target = self.time() + self.DELAY | python | def reset(self) -> None:
'''Reset task execution to `DELAY` seconds from now.'''
Log.debug('resetting timer task %s')
self.target = self.time() + self.DELAY | [
"def",
"reset",
"(",
"self",
")",
"->",
"None",
":",
"Log",
".",
"debug",
"(",
"'resetting timer task %s'",
")",
"self",
".",
"target",
"=",
"self",
".",
"time",
"(",
")",
"+",
"self",
".",
"DELAY"
] | Reset task execution to `DELAY` seconds from now. | [
"Reset",
"task",
"execution",
"to",
"DELAY",
"seconds",
"from",
"now",
"."
] | train | https://github.com/jreese/tasky/blob/681f4e5a9a60a0eb838b89f320309cfb45a56242/tasky/tasks/timer.py#L55-L59 |
praekeltfoundation/seed-stage-based-messaging | seed_stage_based_messaging/decorators.py | internal_only | def internal_only(view_func):
"""
A view decorator which blocks access for requests coming through the load balancer.
"""
@functools.wraps(view_func)
def wrapper(request, *args, **kwargs):
forwards = request.META.get("HTTP_X_FORWARDED_FOR", "").split(",")
# The nginx in the docker container adds the loadbalancer IP to the list inside
# X-Forwarded-For, so if the list contains more than a single item, we know
# that it went through our loadbalancer
if len(forwards) > 1:
raise PermissionDenied()
return view_func(request, *args, **kwargs)
return wrapper | python | def internal_only(view_func):
"""
A view decorator which blocks access for requests coming through the load balancer.
"""
@functools.wraps(view_func)
def wrapper(request, *args, **kwargs):
forwards = request.META.get("HTTP_X_FORWARDED_FOR", "").split(",")
# The nginx in the docker container adds the loadbalancer IP to the list inside
# X-Forwarded-For, so if the list contains more than a single item, we know
# that it went through our loadbalancer
if len(forwards) > 1:
raise PermissionDenied()
return view_func(request, *args, **kwargs)
return wrapper | [
"def",
"internal_only",
"(",
"view_func",
")",
":",
"@",
"functools",
".",
"wraps",
"(",
"view_func",
")",
"def",
"wrapper",
"(",
"request",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"forwards",
"=",
"request",
".",
"META",
".",
"get",
"(",
"\"HTTP_X_FORWARDED_FOR\"",
",",
"\"\"",
")",
".",
"split",
"(",
"\",\"",
")",
"# The nginx in the docker container adds the loadbalancer IP to the list inside",
"# X-Forwarded-For, so if the list contains more than a single item, we know",
"# that it went through our loadbalancer",
"if",
"len",
"(",
"forwards",
")",
">",
"1",
":",
"raise",
"PermissionDenied",
"(",
")",
"return",
"view_func",
"(",
"request",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"wrapper"
] | A view decorator which blocks access for requests coming through the load balancer. | [
"A",
"view",
"decorator",
"which",
"blocks",
"access",
"for",
"requests",
"coming",
"through",
"the",
"load",
"balancer",
"."
] | train | https://github.com/praekeltfoundation/seed-stage-based-messaging/blob/6f0cacf0727ac2ed19877de214d58009c685b8fa/seed_stage_based_messaging/decorators.py#L6-L21 |
praekeltfoundation/seed-stage-based-messaging | subscriptions/views.py | SubscriptionSend.post | def post(self, request, *args, **kwargs):
""" Validates subscription data before creating Outbound message
"""
schedule_disable.delay(kwargs["subscription_id"])
return Response({"accepted": True}, status=201) | python | def post(self, request, *args, **kwargs):
""" Validates subscription data before creating Outbound message
"""
schedule_disable.delay(kwargs["subscription_id"])
return Response({"accepted": True}, status=201) | [
"def",
"post",
"(",
"self",
",",
"request",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"schedule_disable",
".",
"delay",
"(",
"kwargs",
"[",
"\"subscription_id\"",
"]",
")",
"return",
"Response",
"(",
"{",
"\"accepted\"",
":",
"True",
"}",
",",
"status",
"=",
"201",
")"
] | Validates subscription data before creating Outbound message | [
"Validates",
"subscription",
"data",
"before",
"creating",
"Outbound",
"message"
] | train | https://github.com/praekeltfoundation/seed-stage-based-messaging/blob/6f0cacf0727ac2ed19877de214d58009c685b8fa/subscriptions/views.py#L86-L90 |
praekeltfoundation/seed-stage-based-messaging | subscriptions/views.py | SubscriptionResend.post | def post(self, request, *args, **kwargs):
""" Validates subscription data before creating Outbound message
"""
# Look up subscriber
subscription_id = kwargs["subscription_id"]
if Subscription.objects.filter(id=subscription_id).exists():
status = 202
accepted = {"accepted": True}
store_resend_request.apply_async(args=[subscription_id])
else:
status = 400
accepted = {
"accepted": False,
"reason": "Cannot find subscription with ID {}".format(subscription_id),
}
return Response(accepted, status=status) | python | def post(self, request, *args, **kwargs):
""" Validates subscription data before creating Outbound message
"""
# Look up subscriber
subscription_id = kwargs["subscription_id"]
if Subscription.objects.filter(id=subscription_id).exists():
status = 202
accepted = {"accepted": True}
store_resend_request.apply_async(args=[subscription_id])
else:
status = 400
accepted = {
"accepted": False,
"reason": "Cannot find subscription with ID {}".format(subscription_id),
}
return Response(accepted, status=status) | [
"def",
"post",
"(",
"self",
",",
"request",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"# Look up subscriber",
"subscription_id",
"=",
"kwargs",
"[",
"\"subscription_id\"",
"]",
"if",
"Subscription",
".",
"objects",
".",
"filter",
"(",
"id",
"=",
"subscription_id",
")",
".",
"exists",
"(",
")",
":",
"status",
"=",
"202",
"accepted",
"=",
"{",
"\"accepted\"",
":",
"True",
"}",
"store_resend_request",
".",
"apply_async",
"(",
"args",
"=",
"[",
"subscription_id",
"]",
")",
"else",
":",
"status",
"=",
"400",
"accepted",
"=",
"{",
"\"accepted\"",
":",
"False",
",",
"\"reason\"",
":",
"\"Cannot find subscription with ID {}\"",
".",
"format",
"(",
"subscription_id",
")",
",",
"}",
"return",
"Response",
"(",
"accepted",
",",
"status",
"=",
"status",
")"
] | Validates subscription data before creating Outbound message | [
"Validates",
"subscription",
"data",
"before",
"creating",
"Outbound",
"message"
] | train | https://github.com/praekeltfoundation/seed-stage-based-messaging/blob/6f0cacf0727ac2ed19877de214d58009c685b8fa/subscriptions/views.py#L100-L115 |
praekeltfoundation/seed-stage-based-messaging | subscriptions/views.py | SubscriptionRequest.post | def post(self, request, *args, **kwargs):
""" Validates subscription data before creating Subscription message
"""
# Ensure that we check for the 'data' key in the request object before
# attempting to reference it
if "data" in request.data:
# This is a workaround for JSONField not liking blank/null refs
if "metadata" not in request.data["data"]:
request.data["data"]["metadata"] = {}
if "initial_sequence_number" not in request.data["data"]:
request.data["data"]["initial_sequence_number"] = request.data[
"data"
].get("next_sequence_number")
subscription = SubscriptionSerializer(data=request.data["data"])
if subscription.is_valid():
subscription.save()
# Return
status = 201
accepted = {"accepted": True}
return Response(accepted, status=status)
else:
status = 400
return Response(subscription.errors, status=status)
else:
status = 400
message = {"data": ["This field is required."]}
return Response(message, status=status) | python | def post(self, request, *args, **kwargs):
""" Validates subscription data before creating Subscription message
"""
# Ensure that we check for the 'data' key in the request object before
# attempting to reference it
if "data" in request.data:
# This is a workaround for JSONField not liking blank/null refs
if "metadata" not in request.data["data"]:
request.data["data"]["metadata"] = {}
if "initial_sequence_number" not in request.data["data"]:
request.data["data"]["initial_sequence_number"] = request.data[
"data"
].get("next_sequence_number")
subscription = SubscriptionSerializer(data=request.data["data"])
if subscription.is_valid():
subscription.save()
# Return
status = 201
accepted = {"accepted": True}
return Response(accepted, status=status)
else:
status = 400
return Response(subscription.errors, status=status)
else:
status = 400
message = {"data": ["This field is required."]}
return Response(message, status=status) | [
"def",
"post",
"(",
"self",
",",
"request",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"# Ensure that we check for the 'data' key in the request object before",
"# attempting to reference it",
"if",
"\"data\"",
"in",
"request",
".",
"data",
":",
"# This is a workaround for JSONField not liking blank/null refs",
"if",
"\"metadata\"",
"not",
"in",
"request",
".",
"data",
"[",
"\"data\"",
"]",
":",
"request",
".",
"data",
"[",
"\"data\"",
"]",
"[",
"\"metadata\"",
"]",
"=",
"{",
"}",
"if",
"\"initial_sequence_number\"",
"not",
"in",
"request",
".",
"data",
"[",
"\"data\"",
"]",
":",
"request",
".",
"data",
"[",
"\"data\"",
"]",
"[",
"\"initial_sequence_number\"",
"]",
"=",
"request",
".",
"data",
"[",
"\"data\"",
"]",
".",
"get",
"(",
"\"next_sequence_number\"",
")",
"subscription",
"=",
"SubscriptionSerializer",
"(",
"data",
"=",
"request",
".",
"data",
"[",
"\"data\"",
"]",
")",
"if",
"subscription",
".",
"is_valid",
"(",
")",
":",
"subscription",
".",
"save",
"(",
")",
"# Return",
"status",
"=",
"201",
"accepted",
"=",
"{",
"\"accepted\"",
":",
"True",
"}",
"return",
"Response",
"(",
"accepted",
",",
"status",
"=",
"status",
")",
"else",
":",
"status",
"=",
"400",
"return",
"Response",
"(",
"subscription",
".",
"errors",
",",
"status",
"=",
"status",
")",
"else",
":",
"status",
"=",
"400",
"message",
"=",
"{",
"\"data\"",
":",
"[",
"\"This field is required.\"",
"]",
"}",
"return",
"Response",
"(",
"message",
",",
"status",
"=",
"status",
")"
] | Validates subscription data before creating Subscription message | [
"Validates",
"subscription",
"data",
"before",
"creating",
"Subscription",
"message"
] | train | https://github.com/praekeltfoundation/seed-stage-based-messaging/blob/6f0cacf0727ac2ed19877de214d58009c685b8fa/subscriptions/views.py#L125-L153 |
praekeltfoundation/seed-stage-based-messaging | subscriptions/views.py | BehindSubscriptionViewSet.find_behind_subscriptions | def find_behind_subscriptions(self, request):
"""
Starts a celery task that looks through active subscriptions to find
and subscriptions that are behind where they should be, and adds a
BehindSubscription for them.
"""
task_id = find_behind_subscriptions.delay()
return Response(
{"accepted": True, "task_id": str(task_id)}, status=status.HTTP_202_ACCEPTED
) | python | def find_behind_subscriptions(self, request):
"""
Starts a celery task that looks through active subscriptions to find
and subscriptions that are behind where they should be, and adds a
BehindSubscription for them.
"""
task_id = find_behind_subscriptions.delay()
return Response(
{"accepted": True, "task_id": str(task_id)}, status=status.HTTP_202_ACCEPTED
) | [
"def",
"find_behind_subscriptions",
"(",
"self",
",",
"request",
")",
":",
"task_id",
"=",
"find_behind_subscriptions",
".",
"delay",
"(",
")",
"return",
"Response",
"(",
"{",
"\"accepted\"",
":",
"True",
",",
"\"task_id\"",
":",
"str",
"(",
"task_id",
")",
"}",
",",
"status",
"=",
"status",
".",
"HTTP_202_ACCEPTED",
")"
] | Starts a celery task that looks through active subscriptions to find
and subscriptions that are behind where they should be, and adds a
BehindSubscription for them. | [
"Starts",
"a",
"celery",
"task",
"that",
"looks",
"through",
"active",
"subscriptions",
"to",
"find",
"and",
"subscriptions",
"that",
"are",
"behind",
"where",
"they",
"should",
"be",
"and",
"adds",
"a",
"BehindSubscription",
"for",
"them",
"."
] | train | https://github.com/praekeltfoundation/seed-stage-based-messaging/blob/6f0cacf0727ac2ed19877de214d58009c685b8fa/subscriptions/views.py#L290-L300 |
inspirehep/inspire-query-parser | examples/demo_parser.py | repl | def repl():
"""Read-Eval-Print-Loop for reading the query, printing it and its parse tree.
Exit the loop either with an interrupt or "quit".
"""
while True:
try:
sys.stdout.write("Type in next query: \n> ")
import locale
query_str = raw_input().decode(sys.stdin.encoding or locale.getpreferredencoding(True))
except KeyboardInterrupt:
break
if u'quit' in query_str:
break
print_query_and_parse_tree(query_str) | python | def repl():
"""Read-Eval-Print-Loop for reading the query, printing it and its parse tree.
Exit the loop either with an interrupt or "quit".
"""
while True:
try:
sys.stdout.write("Type in next query: \n> ")
import locale
query_str = raw_input().decode(sys.stdin.encoding or locale.getpreferredencoding(True))
except KeyboardInterrupt:
break
if u'quit' in query_str:
break
print_query_and_parse_tree(query_str) | [
"def",
"repl",
"(",
")",
":",
"while",
"True",
":",
"try",
":",
"sys",
".",
"stdout",
".",
"write",
"(",
"\"Type in next query: \\n> \"",
")",
"import",
"locale",
"query_str",
"=",
"raw_input",
"(",
")",
".",
"decode",
"(",
"sys",
".",
"stdin",
".",
"encoding",
"or",
"locale",
".",
"getpreferredencoding",
"(",
"True",
")",
")",
"except",
"KeyboardInterrupt",
":",
"break",
"if",
"u'quit'",
"in",
"query_str",
":",
"break",
"print_query_and_parse_tree",
"(",
"query_str",
")"
] | Read-Eval-Print-Loop for reading the query, printing it and its parse tree.
Exit the loop either with an interrupt or "quit". | [
"Read",
"-",
"Eval",
"-",
"Print",
"-",
"Loop",
"for",
"reading",
"the",
"query",
"printing",
"it",
"and",
"its",
"parse",
"tree",
"."
] | train | https://github.com/inspirehep/inspire-query-parser/blob/9dde20d7caef89a48bb419b866f4535c88cfc00d/examples/demo_parser.py#L33-L49 |
jreese/tasky | tasky/tasks/queue.py | QueueTask.run_task | async def run_task(self) -> None:
'''Initialize the queue and spawn extra worker tasks if this if the
first task. Then wait for work items to enter the task queue, and
execute the `run()` method with the current work item.'''
while self.running:
try:
item = self.QUEUE.get_nowait()
Log.debug('%s processing work item', self.name)
await self.run(item)
Log.debug('%s completed work item', self.name)
self.QUEUE.task_done()
except asyncio.QueueEmpty:
if self.OPEN:
await self.sleep(0.05)
else:
Log.debug('%s queue closed and empty, stopping', self.name)
return
except CancelledError:
Log.debug('%s cancelled, dropping work item')
self.QUEUE.task_done()
raise
except Exception:
Log.exception('%s failed work item', self.name)
self.QUEUE.task_done() | python | async def run_task(self) -> None:
'''Initialize the queue and spawn extra worker tasks if this if the
first task. Then wait for work items to enter the task queue, and
execute the `run()` method with the current work item.'''
while self.running:
try:
item = self.QUEUE.get_nowait()
Log.debug('%s processing work item', self.name)
await self.run(item)
Log.debug('%s completed work item', self.name)
self.QUEUE.task_done()
except asyncio.QueueEmpty:
if self.OPEN:
await self.sleep(0.05)
else:
Log.debug('%s queue closed and empty, stopping', self.name)
return
except CancelledError:
Log.debug('%s cancelled, dropping work item')
self.QUEUE.task_done()
raise
except Exception:
Log.exception('%s failed work item', self.name)
self.QUEUE.task_done() | [
"async",
"def",
"run_task",
"(",
"self",
")",
"->",
"None",
":",
"while",
"self",
".",
"running",
":",
"try",
":",
"item",
"=",
"self",
".",
"QUEUE",
".",
"get_nowait",
"(",
")",
"Log",
".",
"debug",
"(",
"'%s processing work item'",
",",
"self",
".",
"name",
")",
"await",
"self",
".",
"run",
"(",
"item",
")",
"Log",
".",
"debug",
"(",
"'%s completed work item'",
",",
"self",
".",
"name",
")",
"self",
".",
"QUEUE",
".",
"task_done",
"(",
")",
"except",
"asyncio",
".",
"QueueEmpty",
":",
"if",
"self",
".",
"OPEN",
":",
"await",
"self",
".",
"sleep",
"(",
"0.05",
")",
"else",
":",
"Log",
".",
"debug",
"(",
"'%s queue closed and empty, stopping'",
",",
"self",
".",
"name",
")",
"return",
"except",
"CancelledError",
":",
"Log",
".",
"debug",
"(",
"'%s cancelled, dropping work item'",
")",
"self",
".",
"QUEUE",
".",
"task_done",
"(",
")",
"raise",
"except",
"Exception",
":",
"Log",
".",
"exception",
"(",
"'%s failed work item'",
",",
"self",
".",
"name",
")",
"self",
".",
"QUEUE",
".",
"task_done",
"(",
")"
] | Initialize the queue and spawn extra worker tasks if this if the
first task. Then wait for work items to enter the task queue, and
execute the `run()` method with the current work item. | [
"Initialize",
"the",
"queue",
"and",
"spawn",
"extra",
"worker",
"tasks",
"if",
"this",
"if",
"the",
"first",
"task",
".",
"Then",
"wait",
"for",
"work",
"items",
"to",
"enter",
"the",
"task",
"queue",
"and",
"execute",
"the",
"run",
"()",
"method",
"with",
"the",
"current",
"work",
"item",
"."
] | train | https://github.com/jreese/tasky/blob/681f4e5a9a60a0eb838b89f320309cfb45a56242/tasky/tasks/queue.py#L62-L92 |
praekeltfoundation/seed-stage-based-messaging | contentstore/signals.py | schedule_saved | def schedule_saved(sender, instance, **kwargs):
"""
Fires off the celery task to ensure that this schedule is in the scheduler
Arguments:
sender {class} -- The model class, always Schedule
instance {Schedule} --
The instance of the Schedule that we want to sync
"""
from contentstore.tasks import sync_schedule
sync_schedule.delay(str(instance.id)) | python | def schedule_saved(sender, instance, **kwargs):
"""
Fires off the celery task to ensure that this schedule is in the scheduler
Arguments:
sender {class} -- The model class, always Schedule
instance {Schedule} --
The instance of the Schedule that we want to sync
"""
from contentstore.tasks import sync_schedule
sync_schedule.delay(str(instance.id)) | [
"def",
"schedule_saved",
"(",
"sender",
",",
"instance",
",",
"*",
"*",
"kwargs",
")",
":",
"from",
"contentstore",
".",
"tasks",
"import",
"sync_schedule",
"sync_schedule",
".",
"delay",
"(",
"str",
"(",
"instance",
".",
"id",
")",
")"
] | Fires off the celery task to ensure that this schedule is in the scheduler
Arguments:
sender {class} -- The model class, always Schedule
instance {Schedule} --
The instance of the Schedule that we want to sync | [
"Fires",
"off",
"the",
"celery",
"task",
"to",
"ensure",
"that",
"this",
"schedule",
"is",
"in",
"the",
"scheduler"
] | train | https://github.com/praekeltfoundation/seed-stage-based-messaging/blob/6f0cacf0727ac2ed19877de214d58009c685b8fa/contentstore/signals.py#L12-L23 |
praekeltfoundation/seed-stage-based-messaging | contentstore/signals.py | schedule_deleted | def schedule_deleted(sender, instance, **kwargs):
"""
Fires off the celery task to ensure that this schedule is deactivated
Arguments:
sender {class} -- The model class, always Schedule
instance {Schedule} --
The instance of the schedule that we want to deactivate
"""
from contentstore.tasks import deactivate_schedule
deactivate_schedule.delay(str(instance.scheduler_schedule_id)) | python | def schedule_deleted(sender, instance, **kwargs):
"""
Fires off the celery task to ensure that this schedule is deactivated
Arguments:
sender {class} -- The model class, always Schedule
instance {Schedule} --
The instance of the schedule that we want to deactivate
"""
from contentstore.tasks import deactivate_schedule
deactivate_schedule.delay(str(instance.scheduler_schedule_id)) | [
"def",
"schedule_deleted",
"(",
"sender",
",",
"instance",
",",
"*",
"*",
"kwargs",
")",
":",
"from",
"contentstore",
".",
"tasks",
"import",
"deactivate_schedule",
"deactivate_schedule",
".",
"delay",
"(",
"str",
"(",
"instance",
".",
"scheduler_schedule_id",
")",
")"
] | Fires off the celery task to ensure that this schedule is deactivated
Arguments:
sender {class} -- The model class, always Schedule
instance {Schedule} --
The instance of the schedule that we want to deactivate | [
"Fires",
"off",
"the",
"celery",
"task",
"to",
"ensure",
"that",
"this",
"schedule",
"is",
"deactivated"
] | train | https://github.com/praekeltfoundation/seed-stage-based-messaging/blob/6f0cacf0727ac2ed19877de214d58009c685b8fa/contentstore/signals.py#L27-L38 |
jreese/tasky | tasky/tasks/periodic.py | PeriodicTask.run_task | async def run_task(self) -> None:
'''Execute the task inside the asyncio event loop. Track the time it
takes to run, and log when it starts/stops. After `INTERVAL` seconds,
if/once the task has finished running, run it again until `stop()`
is called.'''
while self.running:
try:
Log.debug('executing periodic task %s', self.name)
before = self.time()
await self.run()
total = self.time() - before
Log.debug('finished periodic task %s in %.1f seconds',
self.name, total)
sleep = self.INTERVAL - total
if sleep > 0:
await self.sleep(sleep)
except CancelledError:
Log.debug('cancelled periodic task %s', self.name)
raise
except Exception:
Log.exception('exception in periodic task %s', self.name) | python | async def run_task(self) -> None:
'''Execute the task inside the asyncio event loop. Track the time it
takes to run, and log when it starts/stops. After `INTERVAL` seconds,
if/once the task has finished running, run it again until `stop()`
is called.'''
while self.running:
try:
Log.debug('executing periodic task %s', self.name)
before = self.time()
await self.run()
total = self.time() - before
Log.debug('finished periodic task %s in %.1f seconds',
self.name, total)
sleep = self.INTERVAL - total
if sleep > 0:
await self.sleep(sleep)
except CancelledError:
Log.debug('cancelled periodic task %s', self.name)
raise
except Exception:
Log.exception('exception in periodic task %s', self.name) | [
"async",
"def",
"run_task",
"(",
"self",
")",
"->",
"None",
":",
"while",
"self",
".",
"running",
":",
"try",
":",
"Log",
".",
"debug",
"(",
"'executing periodic task %s'",
",",
"self",
".",
"name",
")",
"before",
"=",
"self",
".",
"time",
"(",
")",
"await",
"self",
".",
"run",
"(",
")",
"total",
"=",
"self",
".",
"time",
"(",
")",
"-",
"before",
"Log",
".",
"debug",
"(",
"'finished periodic task %s in %.1f seconds'",
",",
"self",
".",
"name",
",",
"total",
")",
"sleep",
"=",
"self",
".",
"INTERVAL",
"-",
"total",
"if",
"sleep",
">",
"0",
":",
"await",
"self",
".",
"sleep",
"(",
"sleep",
")",
"except",
"CancelledError",
":",
"Log",
".",
"debug",
"(",
"'cancelled periodic task %s'",
",",
"self",
".",
"name",
")",
"raise",
"except",
"Exception",
":",
"Log",
".",
"exception",
"(",
"'exception in periodic task %s'",
",",
"self",
".",
"name",
")"
] | Execute the task inside the asyncio event loop. Track the time it
takes to run, and log when it starts/stops. After `INTERVAL` seconds,
if/once the task has finished running, run it again until `stop()`
is called. | [
"Execute",
"the",
"task",
"inside",
"the",
"asyncio",
"event",
"loop",
".",
"Track",
"the",
"time",
"it",
"takes",
"to",
"run",
"and",
"log",
"when",
"it",
"starts",
"/",
"stops",
".",
"After",
"INTERVAL",
"seconds",
"if",
"/",
"once",
"the",
"task",
"has",
"finished",
"running",
"run",
"it",
"again",
"until",
"stop",
"()",
"is",
"called",
"."
] | train | https://github.com/jreese/tasky/blob/681f4e5a9a60a0eb838b89f320309cfb45a56242/tasky/tasks/periodic.py#L18-L42 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | group_by | def group_by(keys, values=None, reduction=None, axis=0):
"""construct a grouping object on the given keys, optionally performing the given reduction on the given values
Parameters
----------
keys : indexable object
keys to group by
values : array_like, optional
sequence of values, of the same length as keys
if a reduction function is provided, the given values are reduced by key
if no reduction is provided, the given values are grouped and split by key
reduction : lambda, optional
reduction function to apply to the values in each group
axis : int, optional
axis to regard as the key-sequence, in case keys is multi-dimensional
Returns
-------
iterable
if values is None, a GroupBy object of the given keys object
if reduction is None, an tuple of a sequence of unique keys and a sequence of grouped values
else, a sequence of tuples of unique keys and reductions of values over that key-group
See Also
--------
numpy_indexed.as_index : for information regarding the casting rules to a valid Index object
"""
g = GroupBy(keys, axis)
if values is None:
return g
groups = g.split(values)
if reduction is None:
return g.unique, groups
return [(key, reduction(group)) for key, group in zip(g.unique, groups)] | python | def group_by(keys, values=None, reduction=None, axis=0):
"""construct a grouping object on the given keys, optionally performing the given reduction on the given values
Parameters
----------
keys : indexable object
keys to group by
values : array_like, optional
sequence of values, of the same length as keys
if a reduction function is provided, the given values are reduced by key
if no reduction is provided, the given values are grouped and split by key
reduction : lambda, optional
reduction function to apply to the values in each group
axis : int, optional
axis to regard as the key-sequence, in case keys is multi-dimensional
Returns
-------
iterable
if values is None, a GroupBy object of the given keys object
if reduction is None, an tuple of a sequence of unique keys and a sequence of grouped values
else, a sequence of tuples of unique keys and reductions of values over that key-group
See Also
--------
numpy_indexed.as_index : for information regarding the casting rules to a valid Index object
"""
g = GroupBy(keys, axis)
if values is None:
return g
groups = g.split(values)
if reduction is None:
return g.unique, groups
return [(key, reduction(group)) for key, group in zip(g.unique, groups)] | [
"def",
"group_by",
"(",
"keys",
",",
"values",
"=",
"None",
",",
"reduction",
"=",
"None",
",",
"axis",
"=",
"0",
")",
":",
"g",
"=",
"GroupBy",
"(",
"keys",
",",
"axis",
")",
"if",
"values",
"is",
"None",
":",
"return",
"g",
"groups",
"=",
"g",
".",
"split",
"(",
"values",
")",
"if",
"reduction",
"is",
"None",
":",
"return",
"g",
".",
"unique",
",",
"groups",
"return",
"[",
"(",
"key",
",",
"reduction",
"(",
"group",
")",
")",
"for",
"key",
",",
"group",
"in",
"zip",
"(",
"g",
".",
"unique",
",",
"groups",
")",
"]"
] | construct a grouping object on the given keys, optionally performing the given reduction on the given values
Parameters
----------
keys : indexable object
keys to group by
values : array_like, optional
sequence of values, of the same length as keys
if a reduction function is provided, the given values are reduced by key
if no reduction is provided, the given values are grouped and split by key
reduction : lambda, optional
reduction function to apply to the values in each group
axis : int, optional
axis to regard as the key-sequence, in case keys is multi-dimensional
Returns
-------
iterable
if values is None, a GroupBy object of the given keys object
if reduction is None, an tuple of a sequence of unique keys and a sequence of grouped values
else, a sequence of tuples of unique keys and reductions of values over that key-group
See Also
--------
numpy_indexed.as_index : for information regarding the casting rules to a valid Index object | [
"construct",
"a",
"grouping",
"object",
"on",
"the",
"given",
"keys",
"optionally",
"performing",
"the",
"given",
"reduction",
"on",
"the",
"given",
"values"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L576-L609 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.split_iterable_as_iterable | def split_iterable_as_iterable(self, values):
"""Group iterable into iterables, in the order of the keys
Parameters
----------
values : iterable of length equal to keys
iterable of values to be grouped
Yields
------
iterable of items in values
Notes
-----
Memory consumption depends on the amount of sorting required
Worst case, if index.sorter[-1] = 0, we need to consume the entire value iterable,
before we can start yielding any output
But to the extent that the keys are already sorted, the grouping is lazy
"""
values = iter(enumerate(values))
cache = dict()
def get_value(ti):
try:
return cache.pop(ti)
except:
while True:
i, v = next(values)
if i==ti:
return v
cache[i] = v
s = iter(self.index.sorter)
for c in self.count:
yield (get_value(i) for i in itertools.islice(s, int(c))) | python | def split_iterable_as_iterable(self, values):
"""Group iterable into iterables, in the order of the keys
Parameters
----------
values : iterable of length equal to keys
iterable of values to be grouped
Yields
------
iterable of items in values
Notes
-----
Memory consumption depends on the amount of sorting required
Worst case, if index.sorter[-1] = 0, we need to consume the entire value iterable,
before we can start yielding any output
But to the extent that the keys are already sorted, the grouping is lazy
"""
values = iter(enumerate(values))
cache = dict()
def get_value(ti):
try:
return cache.pop(ti)
except:
while True:
i, v = next(values)
if i==ti:
return v
cache[i] = v
s = iter(self.index.sorter)
for c in self.count:
yield (get_value(i) for i in itertools.islice(s, int(c))) | [
"def",
"split_iterable_as_iterable",
"(",
"self",
",",
"values",
")",
":",
"values",
"=",
"iter",
"(",
"enumerate",
"(",
"values",
")",
")",
"cache",
"=",
"dict",
"(",
")",
"def",
"get_value",
"(",
"ti",
")",
":",
"try",
":",
"return",
"cache",
".",
"pop",
"(",
"ti",
")",
"except",
":",
"while",
"True",
":",
"i",
",",
"v",
"=",
"next",
"(",
"values",
")",
"if",
"i",
"==",
"ti",
":",
"return",
"v",
"cache",
"[",
"i",
"]",
"=",
"v",
"s",
"=",
"iter",
"(",
"self",
".",
"index",
".",
"sorter",
")",
"for",
"c",
"in",
"self",
".",
"count",
":",
"yield",
"(",
"get_value",
"(",
"i",
")",
"for",
"i",
"in",
"itertools",
".",
"islice",
"(",
"s",
",",
"int",
"(",
"c",
")",
")",
")"
] | Group iterable into iterables, in the order of the keys
Parameters
----------
values : iterable of length equal to keys
iterable of values to be grouped
Yields
------
iterable of items in values
Notes
-----
Memory consumption depends on the amount of sorting required
Worst case, if index.sorter[-1] = 0, we need to consume the entire value iterable,
before we can start yielding any output
But to the extent that the keys are already sorted, the grouping is lazy | [
"Group",
"iterable",
"into",
"iterables",
"in",
"the",
"order",
"of",
"the",
"keys"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L57-L89 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.split_iterable_as_unordered_iterable | def split_iterable_as_unordered_iterable(self, values):
"""Group iterable into iterables, without regard for the ordering of self.index.unique
key-group tuples are yielded as soon as they are complete
Parameters
----------
values : iterable of length equal to keys
iterable of values to be grouped
Yields
------
tuple of key, and a list of corresponding items in values
Notes
-----
This approach is lazy, insofar as grouped values are close in their iterable
"""
from collections import defaultdict
cache = defaultdict(list)
count = self.count
unique = self.unique
key = (lambda i: unique[i]) if isinstance(unique, np.ndarray) else (lambda i: tuple(c[i] for c in unique))
for i,v in zip(self.inverse, values):
cache[i].append(v)
if len(cache[i]) == count[i]:
yield key(i), cache.pop(i) | python | def split_iterable_as_unordered_iterable(self, values):
"""Group iterable into iterables, without regard for the ordering of self.index.unique
key-group tuples are yielded as soon as they are complete
Parameters
----------
values : iterable of length equal to keys
iterable of values to be grouped
Yields
------
tuple of key, and a list of corresponding items in values
Notes
-----
This approach is lazy, insofar as grouped values are close in their iterable
"""
from collections import defaultdict
cache = defaultdict(list)
count = self.count
unique = self.unique
key = (lambda i: unique[i]) if isinstance(unique, np.ndarray) else (lambda i: tuple(c[i] for c in unique))
for i,v in zip(self.inverse, values):
cache[i].append(v)
if len(cache[i]) == count[i]:
yield key(i), cache.pop(i) | [
"def",
"split_iterable_as_unordered_iterable",
"(",
"self",
",",
"values",
")",
":",
"from",
"collections",
"import",
"defaultdict",
"cache",
"=",
"defaultdict",
"(",
"list",
")",
"count",
"=",
"self",
".",
"count",
"unique",
"=",
"self",
".",
"unique",
"key",
"=",
"(",
"lambda",
"i",
":",
"unique",
"[",
"i",
"]",
")",
"if",
"isinstance",
"(",
"unique",
",",
"np",
".",
"ndarray",
")",
"else",
"(",
"lambda",
"i",
":",
"tuple",
"(",
"c",
"[",
"i",
"]",
"for",
"c",
"in",
"unique",
")",
")",
"for",
"i",
",",
"v",
"in",
"zip",
"(",
"self",
".",
"inverse",
",",
"values",
")",
":",
"cache",
"[",
"i",
"]",
".",
"append",
"(",
"v",
")",
"if",
"len",
"(",
"cache",
"[",
"i",
"]",
")",
"==",
"count",
"[",
"i",
"]",
":",
"yield",
"key",
"(",
"i",
")",
",",
"cache",
".",
"pop",
"(",
"i",
")"
] | Group iterable into iterables, without regard for the ordering of self.index.unique
key-group tuples are yielded as soon as they are complete
Parameters
----------
values : iterable of length equal to keys
iterable of values to be grouped
Yields
------
tuple of key, and a list of corresponding items in values
Notes
-----
This approach is lazy, insofar as grouped values are close in their iterable | [
"Group",
"iterable",
"into",
"iterables",
"without",
"regard",
"for",
"the",
"ordering",
"of",
"self",
".",
"index",
".",
"unique",
"key",
"-",
"group",
"tuples",
"are",
"yielded",
"as",
"soon",
"as",
"they",
"are",
"complete"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L91-L116 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.split_sequence_as_iterable | def split_sequence_as_iterable(self, values):
"""Group sequence into iterables
Parameters
----------
values : iterable of length equal to keys
iterable of values to be grouped
Yields
------
iterable of items in values
Notes
-----
This is the preferred method if values has random access, but we dont want it completely in memory.
Like a big memory mapped file, for instance
"""
print(self.count)
s = iter(self.index.sorter)
for c in self.count:
yield (values[i] for i in itertools.islice(s, int(c))) | python | def split_sequence_as_iterable(self, values):
"""Group sequence into iterables
Parameters
----------
values : iterable of length equal to keys
iterable of values to be grouped
Yields
------
iterable of items in values
Notes
-----
This is the preferred method if values has random access, but we dont want it completely in memory.
Like a big memory mapped file, for instance
"""
print(self.count)
s = iter(self.index.sorter)
for c in self.count:
yield (values[i] for i in itertools.islice(s, int(c))) | [
"def",
"split_sequence_as_iterable",
"(",
"self",
",",
"values",
")",
":",
"print",
"(",
"self",
".",
"count",
")",
"s",
"=",
"iter",
"(",
"self",
".",
"index",
".",
"sorter",
")",
"for",
"c",
"in",
"self",
".",
"count",
":",
"yield",
"(",
"values",
"[",
"i",
"]",
"for",
"i",
"in",
"itertools",
".",
"islice",
"(",
"s",
",",
"int",
"(",
"c",
")",
")",
")"
] | Group sequence into iterables
Parameters
----------
values : iterable of length equal to keys
iterable of values to be grouped
Yields
------
iterable of items in values
Notes
-----
This is the preferred method if values has random access, but we dont want it completely in memory.
Like a big memory mapped file, for instance | [
"Group",
"sequence",
"into",
"iterables"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L118-L138 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.split_array_as_array | def split_array_as_array(self, values):
"""Group ndarray into ndarray by means of reshaping
Parameters
----------
values : ndarray_like, [index.size, ...]
Returns
-------
ndarray, [groups, group_size, ...]
values grouped by key
Raises
------
AssertionError
This operation is only possible if index.uniform==True
"""
if not self.index.uniform:
raise ValueError("Array can only be split as array if all groups have the same size")
values = np.asarray(values)
values = values[self.index.sorter]
return values.reshape(self.groups, -1, *values.shape[1:]) | python | def split_array_as_array(self, values):
"""Group ndarray into ndarray by means of reshaping
Parameters
----------
values : ndarray_like, [index.size, ...]
Returns
-------
ndarray, [groups, group_size, ...]
values grouped by key
Raises
------
AssertionError
This operation is only possible if index.uniform==True
"""
if not self.index.uniform:
raise ValueError("Array can only be split as array if all groups have the same size")
values = np.asarray(values)
values = values[self.index.sorter]
return values.reshape(self.groups, -1, *values.shape[1:]) | [
"def",
"split_array_as_array",
"(",
"self",
",",
"values",
")",
":",
"if",
"not",
"self",
".",
"index",
".",
"uniform",
":",
"raise",
"ValueError",
"(",
"\"Array can only be split as array if all groups have the same size\"",
")",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"values",
"=",
"values",
"[",
"self",
".",
"index",
".",
"sorter",
"]",
"return",
"values",
".",
"reshape",
"(",
"self",
".",
"groups",
",",
"-",
"1",
",",
"*",
"values",
".",
"shape",
"[",
"1",
":",
"]",
")"
] | Group ndarray into ndarray by means of reshaping
Parameters
----------
values : ndarray_like, [index.size, ...]
Returns
-------
ndarray, [groups, group_size, ...]
values grouped by key
Raises
------
AssertionError
This operation is only possible if index.uniform==True | [
"Group",
"ndarray",
"into",
"ndarray",
"by",
"means",
"of",
"reshaping"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L140-L161 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.split_array_as_list | def split_array_as_list(self, values):
"""Group values as a list of arrays, or a jagged-array
Parameters
----------
values : ndarray, [keys, ...]
Returns
-------
list of length self.groups of ndarray, [key_count, ...]
"""
values = np.asarray(values)
values = values[self.index.sorter]
return np.split(values, self.index.slices[1:-1], axis=0) | python | def split_array_as_list(self, values):
"""Group values as a list of arrays, or a jagged-array
Parameters
----------
values : ndarray, [keys, ...]
Returns
-------
list of length self.groups of ndarray, [key_count, ...]
"""
values = np.asarray(values)
values = values[self.index.sorter]
return np.split(values, self.index.slices[1:-1], axis=0) | [
"def",
"split_array_as_list",
"(",
"self",
",",
"values",
")",
":",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"values",
"=",
"values",
"[",
"self",
".",
"index",
".",
"sorter",
"]",
"return",
"np",
".",
"split",
"(",
"values",
",",
"self",
".",
"index",
".",
"slices",
"[",
"1",
":",
"-",
"1",
"]",
",",
"axis",
"=",
"0",
")"
] | Group values as a list of arrays, or a jagged-array
Parameters
----------
values : ndarray, [keys, ...]
Returns
-------
list of length self.groups of ndarray, [key_count, ...] | [
"Group",
"values",
"as",
"a",
"list",
"of",
"arrays",
"or",
"a",
"jagged",
"-",
"array"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L163-L176 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.reduce | def reduce(self, values, operator=np.add, axis=0, dtype=None):
"""Reduce the values over identical key groups, using the given ufunc
reduction is over the first axis, which should have elements corresponding to the keys
all other axes are treated indepenently for the sake of this reduction
Parameters
----------
values : ndarray, [keys, ...]
values to perform reduction over
operator : numpy.ufunc
a numpy ufunc, such as np.add or np.sum
axis : int, optional
the axis to reduce over
dtype : output dtype
Returns
-------
ndarray, [groups, ...]
values reduced by operator over the key-groups
"""
values = np.take(values, self.index.sorter, axis=axis)
return operator.reduceat(values, self.index.start, axis=axis, dtype=dtype) | python | def reduce(self, values, operator=np.add, axis=0, dtype=None):
"""Reduce the values over identical key groups, using the given ufunc
reduction is over the first axis, which should have elements corresponding to the keys
all other axes are treated indepenently for the sake of this reduction
Parameters
----------
values : ndarray, [keys, ...]
values to perform reduction over
operator : numpy.ufunc
a numpy ufunc, such as np.add or np.sum
axis : int, optional
the axis to reduce over
dtype : output dtype
Returns
-------
ndarray, [groups, ...]
values reduced by operator over the key-groups
"""
values = np.take(values, self.index.sorter, axis=axis)
return operator.reduceat(values, self.index.start, axis=axis, dtype=dtype) | [
"def",
"reduce",
"(",
"self",
",",
"values",
",",
"operator",
"=",
"np",
".",
"add",
",",
"axis",
"=",
"0",
",",
"dtype",
"=",
"None",
")",
":",
"values",
"=",
"np",
".",
"take",
"(",
"values",
",",
"self",
".",
"index",
".",
"sorter",
",",
"axis",
"=",
"axis",
")",
"return",
"operator",
".",
"reduceat",
"(",
"values",
",",
"self",
".",
"index",
".",
"start",
",",
"axis",
"=",
"axis",
",",
"dtype",
"=",
"dtype",
")"
] | Reduce the values over identical key groups, using the given ufunc
reduction is over the first axis, which should have elements corresponding to the keys
all other axes are treated indepenently for the sake of this reduction
Parameters
----------
values : ndarray, [keys, ...]
values to perform reduction over
operator : numpy.ufunc
a numpy ufunc, such as np.add or np.sum
axis : int, optional
the axis to reduce over
dtype : output dtype
Returns
-------
ndarray, [groups, ...]
values reduced by operator over the key-groups | [
"Reduce",
"the",
"values",
"over",
"identical",
"key",
"groups",
"using",
"the",
"given",
"ufunc",
"reduction",
"is",
"over",
"the",
"first",
"axis",
"which",
"should",
"have",
"elements",
"corresponding",
"to",
"the",
"keys",
"all",
"other",
"axes",
"are",
"treated",
"indepenently",
"for",
"the",
"sake",
"of",
"this",
"reduction"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L192-L213 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.sum | def sum(self, values, axis=0, dtype=None):
"""compute the sum over each group
Parameters
----------
values : array_like, [keys, ...]
values to sum per group
axis : int, optional
alternative reduction axis for values
dtype : output dtype
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, self.reduce(values, axis=axis, dtype=dtype) | python | def sum(self, values, axis=0, dtype=None):
"""compute the sum over each group
Parameters
----------
values : array_like, [keys, ...]
values to sum per group
axis : int, optional
alternative reduction axis for values
dtype : output dtype
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, self.reduce(values, axis=axis, dtype=dtype) | [
"def",
"sum",
"(",
"self",
",",
"values",
",",
"axis",
"=",
"0",
",",
"dtype",
"=",
"None",
")",
":",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"return",
"self",
".",
"unique",
",",
"self",
".",
"reduce",
"(",
"values",
",",
"axis",
"=",
"axis",
",",
"dtype",
"=",
"dtype",
")"
] | compute the sum over each group
Parameters
----------
values : array_like, [keys, ...]
values to sum per group
axis : int, optional
alternative reduction axis for values
dtype : output dtype
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups | [
"compute",
"the",
"sum",
"over",
"each",
"group"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L216-L235 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.prod | def prod(self, values, axis=0, dtype=None):
"""compute the product over each group
Parameters
----------
values : array_like, [keys, ...]
values to multiply per group
axis : int, optional
alternative reduction axis for values
dtype : output dtype
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, self.reduce(values, axis=axis, dtype=dtype, operator=np.multiply) | python | def prod(self, values, axis=0, dtype=None):
"""compute the product over each group
Parameters
----------
values : array_like, [keys, ...]
values to multiply per group
axis : int, optional
alternative reduction axis for values
dtype : output dtype
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, self.reduce(values, axis=axis, dtype=dtype, operator=np.multiply) | [
"def",
"prod",
"(",
"self",
",",
"values",
",",
"axis",
"=",
"0",
",",
"dtype",
"=",
"None",
")",
":",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"return",
"self",
".",
"unique",
",",
"self",
".",
"reduce",
"(",
"values",
",",
"axis",
"=",
"axis",
",",
"dtype",
"=",
"dtype",
",",
"operator",
"=",
"np",
".",
"multiply",
")"
] | compute the product over each group
Parameters
----------
values : array_like, [keys, ...]
values to multiply per group
axis : int, optional
alternative reduction axis for values
dtype : output dtype
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups | [
"compute",
"the",
"product",
"over",
"each",
"group"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L237-L256 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.mean | def mean(self, values, axis=0, weights=None, dtype=None):
"""compute the mean over each group
Parameters
----------
values : array_like, [keys, ...]
values to take average of per group
axis : int, optional
alternative reduction axis for values
weights : ndarray, [keys, ...], optional
weight to use for each value
dtype : output dtype
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
if weights is None:
result = self.reduce(values, axis=axis, dtype=dtype)
shape = [1] * values.ndim
shape[axis] = self.groups
weights = self.count.reshape(shape)
else:
weights = np.asarray(weights)
result = self.reduce(values * weights, axis=axis, dtype=dtype)
weights = self.reduce(weights, axis=axis, dtype=dtype)
return self.unique, result / weights | python | def mean(self, values, axis=0, weights=None, dtype=None):
"""compute the mean over each group
Parameters
----------
values : array_like, [keys, ...]
values to take average of per group
axis : int, optional
alternative reduction axis for values
weights : ndarray, [keys, ...], optional
weight to use for each value
dtype : output dtype
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
if weights is None:
result = self.reduce(values, axis=axis, dtype=dtype)
shape = [1] * values.ndim
shape[axis] = self.groups
weights = self.count.reshape(shape)
else:
weights = np.asarray(weights)
result = self.reduce(values * weights, axis=axis, dtype=dtype)
weights = self.reduce(weights, axis=axis, dtype=dtype)
return self.unique, result / weights | [
"def",
"mean",
"(",
"self",
",",
"values",
",",
"axis",
"=",
"0",
",",
"weights",
"=",
"None",
",",
"dtype",
"=",
"None",
")",
":",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"if",
"weights",
"is",
"None",
":",
"result",
"=",
"self",
".",
"reduce",
"(",
"values",
",",
"axis",
"=",
"axis",
",",
"dtype",
"=",
"dtype",
")",
"shape",
"=",
"[",
"1",
"]",
"*",
"values",
".",
"ndim",
"shape",
"[",
"axis",
"]",
"=",
"self",
".",
"groups",
"weights",
"=",
"self",
".",
"count",
".",
"reshape",
"(",
"shape",
")",
"else",
":",
"weights",
"=",
"np",
".",
"asarray",
"(",
"weights",
")",
"result",
"=",
"self",
".",
"reduce",
"(",
"values",
"*",
"weights",
",",
"axis",
"=",
"axis",
",",
"dtype",
"=",
"dtype",
")",
"weights",
"=",
"self",
".",
"reduce",
"(",
"weights",
",",
"axis",
"=",
"axis",
",",
"dtype",
"=",
"dtype",
")",
"return",
"self",
".",
"unique",
",",
"result",
"/",
"weights"
] | compute the mean over each group
Parameters
----------
values : array_like, [keys, ...]
values to take average of per group
axis : int, optional
alternative reduction axis for values
weights : ndarray, [keys, ...], optional
weight to use for each value
dtype : output dtype
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups | [
"compute",
"the",
"mean",
"over",
"each",
"group"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L258-L288 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.var | def var(self, values, axis=0, weights=None, dtype=None):
"""compute the variance over each group
Parameters
----------
values : array_like, [keys, ...]
values to take variance of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
unique, mean = self.mean(values, axis, weights, dtype)
err = values - mean.take(self.inverse, axis)
if weights is None:
shape = [1] * values.ndim
shape[axis] = self.groups
group_weights = self.count.reshape(shape)
var = self.reduce(err ** 2, axis=axis, dtype=dtype)
else:
weights = np.asarray(weights)
group_weights = self.reduce(weights, axis=axis, dtype=dtype)
var = self.reduce(weights * err ** 2, axis=axis, dtype=dtype)
return unique, var / group_weights | python | def var(self, values, axis=0, weights=None, dtype=None):
"""compute the variance over each group
Parameters
----------
values : array_like, [keys, ...]
values to take variance of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
unique, mean = self.mean(values, axis, weights, dtype)
err = values - mean.take(self.inverse, axis)
if weights is None:
shape = [1] * values.ndim
shape[axis] = self.groups
group_weights = self.count.reshape(shape)
var = self.reduce(err ** 2, axis=axis, dtype=dtype)
else:
weights = np.asarray(weights)
group_weights = self.reduce(weights, axis=axis, dtype=dtype)
var = self.reduce(weights * err ** 2, axis=axis, dtype=dtype)
return unique, var / group_weights | [
"def",
"var",
"(",
"self",
",",
"values",
",",
"axis",
"=",
"0",
",",
"weights",
"=",
"None",
",",
"dtype",
"=",
"None",
")",
":",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"unique",
",",
"mean",
"=",
"self",
".",
"mean",
"(",
"values",
",",
"axis",
",",
"weights",
",",
"dtype",
")",
"err",
"=",
"values",
"-",
"mean",
".",
"take",
"(",
"self",
".",
"inverse",
",",
"axis",
")",
"if",
"weights",
"is",
"None",
":",
"shape",
"=",
"[",
"1",
"]",
"*",
"values",
".",
"ndim",
"shape",
"[",
"axis",
"]",
"=",
"self",
".",
"groups",
"group_weights",
"=",
"self",
".",
"count",
".",
"reshape",
"(",
"shape",
")",
"var",
"=",
"self",
".",
"reduce",
"(",
"err",
"**",
"2",
",",
"axis",
"=",
"axis",
",",
"dtype",
"=",
"dtype",
")",
"else",
":",
"weights",
"=",
"np",
".",
"asarray",
"(",
"weights",
")",
"group_weights",
"=",
"self",
".",
"reduce",
"(",
"weights",
",",
"axis",
"=",
"axis",
",",
"dtype",
"=",
"dtype",
")",
"var",
"=",
"self",
".",
"reduce",
"(",
"weights",
"*",
"err",
"**",
"2",
",",
"axis",
"=",
"axis",
",",
"dtype",
"=",
"dtype",
")",
"return",
"unique",
",",
"var",
"/",
"group_weights"
] | compute the variance over each group
Parameters
----------
values : array_like, [keys, ...]
values to take variance of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups | [
"compute",
"the",
"variance",
"over",
"each",
"group"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L290-L321 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.std | def std(self, values, axis=0, weights=None, dtype=None):
"""standard deviation over each group
Parameters
----------
values : array_like, [keys, ...]
values to take standard deviation of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
unique, var = self.var(values, axis, weights, dtype)
return unique, np.sqrt(var) | python | def std(self, values, axis=0, weights=None, dtype=None):
"""standard deviation over each group
Parameters
----------
values : array_like, [keys, ...]
values to take standard deviation of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
unique, var = self.var(values, axis, weights, dtype)
return unique, np.sqrt(var) | [
"def",
"std",
"(",
"self",
",",
"values",
",",
"axis",
"=",
"0",
",",
"weights",
"=",
"None",
",",
"dtype",
"=",
"None",
")",
":",
"unique",
",",
"var",
"=",
"self",
".",
"var",
"(",
"values",
",",
"axis",
",",
"weights",
",",
"dtype",
")",
"return",
"unique",
",",
"np",
".",
"sqrt",
"(",
"var",
")"
] | standard deviation over each group
Parameters
----------
values : array_like, [keys, ...]
values to take standard deviation of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups | [
"standard",
"deviation",
"over",
"each",
"group"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L323-L341 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.median | def median(self, values, axis=0, average=True):
"""compute the median value over each group.
Parameters
----------
values : array_like, [keys, ...]
values to compute the median of per group
axis : int, optional
alternative reduction axis for values
average : bool, optional
when average is true, the average of the two central values is taken for groups with an even key-count
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
mid_2 = self.index.start + self.index.stop
hi = (mid_2 ) // 2
lo = (mid_2 - 1) // 2
#need this indirection for lex-index compatibility
sorted_group_rank_per_key = self.index.sorted_group_rank_per_key
def median1d(slc):
#place values at correct keys; preconditions the upcoming lexsort
slc = slc[self.index.sorter]
#refine value sorting within each keygroup
sorter = np.lexsort((slc, sorted_group_rank_per_key))
slc = slc[sorter]
return (slc[lo]+slc[hi]) / 2 if average else slc[hi]
values = np.asarray(values)
if values.ndim>1: #is trying to skip apply_along_axis somewhat premature optimization?
values = np.apply_along_axis(median1d, axis, values)
else:
values = median1d(values)
return self.unique, values | python | def median(self, values, axis=0, average=True):
"""compute the median value over each group.
Parameters
----------
values : array_like, [keys, ...]
values to compute the median of per group
axis : int, optional
alternative reduction axis for values
average : bool, optional
when average is true, the average of the two central values is taken for groups with an even key-count
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
mid_2 = self.index.start + self.index.stop
hi = (mid_2 ) // 2
lo = (mid_2 - 1) // 2
#need this indirection for lex-index compatibility
sorted_group_rank_per_key = self.index.sorted_group_rank_per_key
def median1d(slc):
#place values at correct keys; preconditions the upcoming lexsort
slc = slc[self.index.sorter]
#refine value sorting within each keygroup
sorter = np.lexsort((slc, sorted_group_rank_per_key))
slc = slc[sorter]
return (slc[lo]+slc[hi]) / 2 if average else slc[hi]
values = np.asarray(values)
if values.ndim>1: #is trying to skip apply_along_axis somewhat premature optimization?
values = np.apply_along_axis(median1d, axis, values)
else:
values = median1d(values)
return self.unique, values | [
"def",
"median",
"(",
"self",
",",
"values",
",",
"axis",
"=",
"0",
",",
"average",
"=",
"True",
")",
":",
"mid_2",
"=",
"self",
".",
"index",
".",
"start",
"+",
"self",
".",
"index",
".",
"stop",
"hi",
"=",
"(",
"mid_2",
")",
"//",
"2",
"lo",
"=",
"(",
"mid_2",
"-",
"1",
")",
"//",
"2",
"#need this indirection for lex-index compatibility",
"sorted_group_rank_per_key",
"=",
"self",
".",
"index",
".",
"sorted_group_rank_per_key",
"def",
"median1d",
"(",
"slc",
")",
":",
"#place values at correct keys; preconditions the upcoming lexsort",
"slc",
"=",
"slc",
"[",
"self",
".",
"index",
".",
"sorter",
"]",
"#refine value sorting within each keygroup",
"sorter",
"=",
"np",
".",
"lexsort",
"(",
"(",
"slc",
",",
"sorted_group_rank_per_key",
")",
")",
"slc",
"=",
"slc",
"[",
"sorter",
"]",
"return",
"(",
"slc",
"[",
"lo",
"]",
"+",
"slc",
"[",
"hi",
"]",
")",
"/",
"2",
"if",
"average",
"else",
"slc",
"[",
"hi",
"]",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"if",
"values",
".",
"ndim",
">",
"1",
":",
"#is trying to skip apply_along_axis somewhat premature optimization?",
"values",
"=",
"np",
".",
"apply_along_axis",
"(",
"median1d",
",",
"axis",
",",
"values",
")",
"else",
":",
"values",
"=",
"median1d",
"(",
"values",
")",
"return",
"self",
".",
"unique",
",",
"values"
] | compute the median value over each group.
Parameters
----------
values : array_like, [keys, ...]
values to compute the median of per group
axis : int, optional
alternative reduction axis for values
average : bool, optional
when average is true, the average of the two central values is taken for groups with an even key-count
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups | [
"compute",
"the",
"median",
"value",
"over",
"each",
"group",
"."
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L343-L382 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.mode | def mode(self, values, weights=None):
"""compute the mode within each group.
Parameters
----------
values : array_like, [keys, ...]
values to compute the mode of per group
weights : array_like, [keys], float, optional
optional weight associated with each entry in values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
if weights is None:
unique, weights = npi.count((self.index.sorted_group_rank_per_key, values))
else:
unique, weights = npi.group_by((self.index.sorted_group_rank_per_key, values)).sum(weights)
x, bin = npi.group_by(unique[0]).argmax(weights)
return x, unique[1][bin] | python | def mode(self, values, weights=None):
"""compute the mode within each group.
Parameters
----------
values : array_like, [keys, ...]
values to compute the mode of per group
weights : array_like, [keys], float, optional
optional weight associated with each entry in values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
if weights is None:
unique, weights = npi.count((self.index.sorted_group_rank_per_key, values))
else:
unique, weights = npi.group_by((self.index.sorted_group_rank_per_key, values)).sum(weights)
x, bin = npi.group_by(unique[0]).argmax(weights)
return x, unique[1][bin] | [
"def",
"mode",
"(",
"self",
",",
"values",
",",
"weights",
"=",
"None",
")",
":",
"if",
"weights",
"is",
"None",
":",
"unique",
",",
"weights",
"=",
"npi",
".",
"count",
"(",
"(",
"self",
".",
"index",
".",
"sorted_group_rank_per_key",
",",
"values",
")",
")",
"else",
":",
"unique",
",",
"weights",
"=",
"npi",
".",
"group_by",
"(",
"(",
"self",
".",
"index",
".",
"sorted_group_rank_per_key",
",",
"values",
")",
")",
".",
"sum",
"(",
"weights",
")",
"x",
",",
"bin",
"=",
"npi",
".",
"group_by",
"(",
"unique",
"[",
"0",
"]",
")",
".",
"argmax",
"(",
"weights",
")",
"return",
"x",
",",
"unique",
"[",
"1",
"]",
"[",
"bin",
"]"
] | compute the mode within each group.
Parameters
----------
values : array_like, [keys, ...]
values to compute the mode of per group
weights : array_like, [keys], float, optional
optional weight associated with each entry in values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups | [
"compute",
"the",
"mode",
"within",
"each",
"group",
"."
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L384-L407 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.min | def min(self, values, axis=0):
"""return the minimum within each group
Parameters
----------
values : array_like, [keys, ...]
values to take minimum of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, self.reduce(values, np.minimum, axis) | python | def min(self, values, axis=0):
"""return the minimum within each group
Parameters
----------
values : array_like, [keys, ...]
values to take minimum of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, self.reduce(values, np.minimum, axis) | [
"def",
"min",
"(",
"self",
",",
"values",
",",
"axis",
"=",
"0",
")",
":",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"return",
"self",
".",
"unique",
",",
"self",
".",
"reduce",
"(",
"values",
",",
"np",
".",
"minimum",
",",
"axis",
")"
] | return the minimum within each group
Parameters
----------
values : array_like, [keys, ...]
values to take minimum of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups | [
"return",
"the",
"minimum",
"within",
"each",
"group"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L409-L427 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.max | def max(self, values, axis=0):
"""return the maximum within each group
Parameters
----------
values : array_like, [keys, ...]
values to take maximum of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, self.reduce(values, np.maximum, axis) | python | def max(self, values, axis=0):
"""return the maximum within each group
Parameters
----------
values : array_like, [keys, ...]
values to take maximum of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, self.reduce(values, np.maximum, axis) | [
"def",
"max",
"(",
"self",
",",
"values",
",",
"axis",
"=",
"0",
")",
":",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"return",
"self",
".",
"unique",
",",
"self",
".",
"reduce",
"(",
"values",
",",
"np",
".",
"maximum",
",",
"axis",
")"
] | return the maximum within each group
Parameters
----------
values : array_like, [keys, ...]
values to take maximum of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups | [
"return",
"the",
"maximum",
"within",
"each",
"group"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L429-L447 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.first | def first(self, values, axis=0):
"""return values at first occurance of its associated key
Parameters
----------
values : array_like, [keys, ...]
values to pick the first value of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, np.take(values, self.index.sorter[self.index.start], axis) | python | def first(self, values, axis=0):
"""return values at first occurance of its associated key
Parameters
----------
values : array_like, [keys, ...]
values to pick the first value of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, np.take(values, self.index.sorter[self.index.start], axis) | [
"def",
"first",
"(",
"self",
",",
"values",
",",
"axis",
"=",
"0",
")",
":",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"return",
"self",
".",
"unique",
",",
"np",
".",
"take",
"(",
"values",
",",
"self",
".",
"index",
".",
"sorter",
"[",
"self",
".",
"index",
".",
"start",
"]",
",",
"axis",
")"
] | return values at first occurance of its associated key
Parameters
----------
values : array_like, [keys, ...]
values to pick the first value of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups | [
"return",
"values",
"at",
"first",
"occurance",
"of",
"its",
"associated",
"key"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L449-L467 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.last | def last(self, values, axis=0):
"""return values at last occurance of its associated key
Parameters
----------
values : array_like, [keys, ...]
values to pick the last value of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, np.take(values, self.index.sorter[self.index.stop-1], axis) | python | def last(self, values, axis=0):
"""return values at last occurance of its associated key
Parameters
----------
values : array_like, [keys, ...]
values to pick the last value of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, np.take(values, self.index.sorter[self.index.stop-1], axis) | [
"def",
"last",
"(",
"self",
",",
"values",
",",
"axis",
"=",
"0",
")",
":",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"return",
"self",
".",
"unique",
",",
"np",
".",
"take",
"(",
"values",
",",
"self",
".",
"index",
".",
"sorter",
"[",
"self",
".",
"index",
".",
"stop",
"-",
"1",
"]",
",",
"axis",
")"
] | return values at last occurance of its associated key
Parameters
----------
values : array_like, [keys, ...]
values to pick the last value of per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...]
value array, reduced over groups | [
"return",
"values",
"at",
"last",
"occurance",
"of",
"its",
"associated",
"key"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L469-L487 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.any | def any(self, values, axis=0):
"""compute if any item evaluates to true in each group
Parameters
----------
values : array_like, [keys, ...]
values to take boolean predicate over per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...], np.bool
value array, reduced over groups
"""
values = np.asarray(values)
if not values.dtype == np.bool:
values = values != 0
return self.unique, self.reduce(values, axis=axis) > 0 | python | def any(self, values, axis=0):
"""compute if any item evaluates to true in each group
Parameters
----------
values : array_like, [keys, ...]
values to take boolean predicate over per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...], np.bool
value array, reduced over groups
"""
values = np.asarray(values)
if not values.dtype == np.bool:
values = values != 0
return self.unique, self.reduce(values, axis=axis) > 0 | [
"def",
"any",
"(",
"self",
",",
"values",
",",
"axis",
"=",
"0",
")",
":",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"if",
"not",
"values",
".",
"dtype",
"==",
"np",
".",
"bool",
":",
"values",
"=",
"values",
"!=",
"0",
"return",
"self",
".",
"unique",
",",
"self",
".",
"reduce",
"(",
"values",
",",
"axis",
"=",
"axis",
")",
">",
"0"
] | compute if any item evaluates to true in each group
Parameters
----------
values : array_like, [keys, ...]
values to take boolean predicate over per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...], np.bool
value array, reduced over groups | [
"compute",
"if",
"any",
"item",
"evaluates",
"to",
"true",
"in",
"each",
"group"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L489-L509 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.all | def all(self, values, axis=0):
"""compute if all items evaluates to true in each group
Parameters
----------
values : array_like, [keys, ...]
values to take boolean predicate over per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...], np.bool
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, self.reduce(values, axis=axis, operator=np.multiply) != 0 | python | def all(self, values, axis=0):
"""compute if all items evaluates to true in each group
Parameters
----------
values : array_like, [keys, ...]
values to take boolean predicate over per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...], np.bool
value array, reduced over groups
"""
values = np.asarray(values)
return self.unique, self.reduce(values, axis=axis, operator=np.multiply) != 0 | [
"def",
"all",
"(",
"self",
",",
"values",
",",
"axis",
"=",
"0",
")",
":",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"return",
"self",
".",
"unique",
",",
"self",
".",
"reduce",
"(",
"values",
",",
"axis",
"=",
"axis",
",",
"operator",
"=",
"np",
".",
"multiply",
")",
"!=",
"0"
] | compute if all items evaluates to true in each group
Parameters
----------
values : array_like, [keys, ...]
values to take boolean predicate over per group
axis : int, optional
alternative reduction axis for values
Returns
-------
unique: ndarray, [groups]
unique keys
reduced : ndarray, [groups, ...], np.bool
value array, reduced over groups | [
"compute",
"if",
"all",
"items",
"evaluates",
"to",
"true",
"in",
"each",
"group"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L511-L529 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.argmin | def argmin(self, values):
"""return the index into values corresponding to the minimum value of the group
Parameters
----------
values : array_like, [keys]
values to pick the argmin of per group
Returns
-------
unique: ndarray, [groups]
unique keys
argmin : ndarray, [groups]
index into value array, representing the argmin per group
"""
keys, minima = self.min(values)
minima = minima[self.inverse]
# select the first occurence of the minimum in each group
index = as_index((self.inverse, values == minima))
return keys, index.sorter[index.start[-self.groups:]] | python | def argmin(self, values):
"""return the index into values corresponding to the minimum value of the group
Parameters
----------
values : array_like, [keys]
values to pick the argmin of per group
Returns
-------
unique: ndarray, [groups]
unique keys
argmin : ndarray, [groups]
index into value array, representing the argmin per group
"""
keys, minima = self.min(values)
minima = minima[self.inverse]
# select the first occurence of the minimum in each group
index = as_index((self.inverse, values == minima))
return keys, index.sorter[index.start[-self.groups:]] | [
"def",
"argmin",
"(",
"self",
",",
"values",
")",
":",
"keys",
",",
"minima",
"=",
"self",
".",
"min",
"(",
"values",
")",
"minima",
"=",
"minima",
"[",
"self",
".",
"inverse",
"]",
"# select the first occurence of the minimum in each group",
"index",
"=",
"as_index",
"(",
"(",
"self",
".",
"inverse",
",",
"values",
"==",
"minima",
")",
")",
"return",
"keys",
",",
"index",
".",
"sorter",
"[",
"index",
".",
"start",
"[",
"-",
"self",
".",
"groups",
":",
"]",
"]"
] | return the index into values corresponding to the minimum value of the group
Parameters
----------
values : array_like, [keys]
values to pick the argmin of per group
Returns
-------
unique: ndarray, [groups]
unique keys
argmin : ndarray, [groups]
index into value array, representing the argmin per group | [
"return",
"the",
"index",
"into",
"values",
"corresponding",
"to",
"the",
"minimum",
"value",
"of",
"the",
"group"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L531-L550 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/grouping.py | GroupBy.argmax | def argmax(self, values):
"""return the index into values corresponding to the maximum value of the group
Parameters
----------
values : array_like, [keys]
values to pick the argmax of per group
Returns
-------
unique: ndarray, [groups]
unique keys
argmax : ndarray, [groups]
index into value array, representing the argmax per group
"""
keys, maxima = self.max(values)
maxima = maxima[self.inverse]
# select the first occurence of the maximum in each group
index = as_index((self.inverse, values == maxima))
return keys, index.sorter[index.start[-self.groups:]] | python | def argmax(self, values):
"""return the index into values corresponding to the maximum value of the group
Parameters
----------
values : array_like, [keys]
values to pick the argmax of per group
Returns
-------
unique: ndarray, [groups]
unique keys
argmax : ndarray, [groups]
index into value array, representing the argmax per group
"""
keys, maxima = self.max(values)
maxima = maxima[self.inverse]
# select the first occurence of the maximum in each group
index = as_index((self.inverse, values == maxima))
return keys, index.sorter[index.start[-self.groups:]] | [
"def",
"argmax",
"(",
"self",
",",
"values",
")",
":",
"keys",
",",
"maxima",
"=",
"self",
".",
"max",
"(",
"values",
")",
"maxima",
"=",
"maxima",
"[",
"self",
".",
"inverse",
"]",
"# select the first occurence of the maximum in each group",
"index",
"=",
"as_index",
"(",
"(",
"self",
".",
"inverse",
",",
"values",
"==",
"maxima",
")",
")",
"return",
"keys",
",",
"index",
".",
"sorter",
"[",
"index",
".",
"start",
"[",
"-",
"self",
".",
"groups",
":",
"]",
"]"
] | return the index into values corresponding to the maximum value of the group
Parameters
----------
values : array_like, [keys]
values to pick the argmax of per group
Returns
-------
unique: ndarray, [groups]
unique keys
argmax : ndarray, [groups]
index into value array, representing the argmax per group | [
"return",
"the",
"index",
"into",
"values",
"corresponding",
"to",
"the",
"maximum",
"value",
"of",
"the",
"group"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L552-L571 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/index.py | as_index | def as_index(keys, axis=semantics.axis_default, base=False, stable=True, lex_as_struct=False):
"""
casting rules for a keys object to an index object
the preferred semantics is that keys is a sequence of key objects,
except when keys is an instance of tuple,
in which case the zipped elements of the tuple are the key objects
the axis keyword specifies the axis which enumerates the keys
if axis is None, the keys array is flattened
if axis is 0, the first axis enumerates the keys
which of these two is the default depends on whether backwards_compatible == True
if base==True, the most basic index possible is constructed.
this avoids an indirect sort; if it isnt required, this has better performance
"""
if isinstance(keys, Index):
if type(keys) is BaseIndex and base==False:
keys = keys.keys #need to upcast to an indirectly sorted index type
else:
return keys #already done here
if isinstance(keys, tuple):
if lex_as_struct:
keys = as_struct_array(*keys)
else:
return LexIndex(keys, stable)
try:
keys = np.asarray(keys)
except:
raise TypeError('Given object does not form a valid set of keys')
if axis is None:
keys = keys.flatten()
if keys.ndim==1:
if base:
return BaseIndex(keys)
else:
return Index(keys, stable=stable)
else:
return ObjectIndex(keys, axis, stable=stable) | python | def as_index(keys, axis=semantics.axis_default, base=False, stable=True, lex_as_struct=False):
"""
casting rules for a keys object to an index object
the preferred semantics is that keys is a sequence of key objects,
except when keys is an instance of tuple,
in which case the zipped elements of the tuple are the key objects
the axis keyword specifies the axis which enumerates the keys
if axis is None, the keys array is flattened
if axis is 0, the first axis enumerates the keys
which of these two is the default depends on whether backwards_compatible == True
if base==True, the most basic index possible is constructed.
this avoids an indirect sort; if it isnt required, this has better performance
"""
if isinstance(keys, Index):
if type(keys) is BaseIndex and base==False:
keys = keys.keys #need to upcast to an indirectly sorted index type
else:
return keys #already done here
if isinstance(keys, tuple):
if lex_as_struct:
keys = as_struct_array(*keys)
else:
return LexIndex(keys, stable)
try:
keys = np.asarray(keys)
except:
raise TypeError('Given object does not form a valid set of keys')
if axis is None:
keys = keys.flatten()
if keys.ndim==1:
if base:
return BaseIndex(keys)
else:
return Index(keys, stable=stable)
else:
return ObjectIndex(keys, axis, stable=stable) | [
"def",
"as_index",
"(",
"keys",
",",
"axis",
"=",
"semantics",
".",
"axis_default",
",",
"base",
"=",
"False",
",",
"stable",
"=",
"True",
",",
"lex_as_struct",
"=",
"False",
")",
":",
"if",
"isinstance",
"(",
"keys",
",",
"Index",
")",
":",
"if",
"type",
"(",
"keys",
")",
"is",
"BaseIndex",
"and",
"base",
"==",
"False",
":",
"keys",
"=",
"keys",
".",
"keys",
"#need to upcast to an indirectly sorted index type",
"else",
":",
"return",
"keys",
"#already done here",
"if",
"isinstance",
"(",
"keys",
",",
"tuple",
")",
":",
"if",
"lex_as_struct",
":",
"keys",
"=",
"as_struct_array",
"(",
"*",
"keys",
")",
"else",
":",
"return",
"LexIndex",
"(",
"keys",
",",
"stable",
")",
"try",
":",
"keys",
"=",
"np",
".",
"asarray",
"(",
"keys",
")",
"except",
":",
"raise",
"TypeError",
"(",
"'Given object does not form a valid set of keys'",
")",
"if",
"axis",
"is",
"None",
":",
"keys",
"=",
"keys",
".",
"flatten",
"(",
")",
"if",
"keys",
".",
"ndim",
"==",
"1",
":",
"if",
"base",
":",
"return",
"BaseIndex",
"(",
"keys",
")",
"else",
":",
"return",
"Index",
"(",
"keys",
",",
"stable",
"=",
"stable",
")",
"else",
":",
"return",
"ObjectIndex",
"(",
"keys",
",",
"axis",
",",
"stable",
"=",
"stable",
")"
] | casting rules for a keys object to an index object
the preferred semantics is that keys is a sequence of key objects,
except when keys is an instance of tuple,
in which case the zipped elements of the tuple are the key objects
the axis keyword specifies the axis which enumerates the keys
if axis is None, the keys array is flattened
if axis is 0, the first axis enumerates the keys
which of these two is the default depends on whether backwards_compatible == True
if base==True, the most basic index possible is constructed.
this avoids an indirect sort; if it isnt required, this has better performance | [
"casting",
"rules",
"for",
"a",
"keys",
"object",
"to",
"an",
"index",
"object"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/index.py#L288-L327 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/index.py | Index.inverse | def inverse(self):
"""return index array that maps unique values back to original space. unique[inverse]==keys"""
inv = np.empty(self.size, np.int)
inv[self.sorter] = self.sorted_group_rank_per_key
return inv | python | def inverse(self):
"""return index array that maps unique values back to original space. unique[inverse]==keys"""
inv = np.empty(self.size, np.int)
inv[self.sorter] = self.sorted_group_rank_per_key
return inv | [
"def",
"inverse",
"(",
"self",
")",
":",
"inv",
"=",
"np",
".",
"empty",
"(",
"self",
".",
"size",
",",
"np",
".",
"int",
")",
"inv",
"[",
"self",
".",
"sorter",
"]",
"=",
"self",
".",
"sorted_group_rank_per_key",
"return",
"inv"
] | return index array that maps unique values back to original space. unique[inverse]==keys | [
"return",
"index",
"array",
"that",
"maps",
"unique",
"values",
"back",
"to",
"original",
"space",
".",
"unique",
"[",
"inverse",
"]",
"==",
"keys"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/index.py#L142-L146 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/index.py | Index.rank | def rank(self):
"""how high in sorted list each key is. inverse permutation of sorter, such that sorted[rank]==keys"""
r = np.empty(self.size, np.int)
r[self.sorter] = np.arange(self.size)
return r | python | def rank(self):
"""how high in sorted list each key is. inverse permutation of sorter, such that sorted[rank]==keys"""
r = np.empty(self.size, np.int)
r[self.sorter] = np.arange(self.size)
return r | [
"def",
"rank",
"(",
"self",
")",
":",
"r",
"=",
"np",
".",
"empty",
"(",
"self",
".",
"size",
",",
"np",
".",
"int",
")",
"r",
"[",
"self",
".",
"sorter",
"]",
"=",
"np",
".",
"arange",
"(",
"self",
".",
"size",
")",
"return",
"r"
] | how high in sorted list each key is. inverse permutation of sorter, such that sorted[rank]==keys | [
"how",
"high",
"in",
"sorted",
"list",
"each",
"key",
"is",
".",
"inverse",
"permutation",
"of",
"sorter",
"such",
"that",
"sorted",
"[",
"rank",
"]",
"==",
"keys"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/index.py#L149-L153 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/index.py | LexIndex.unique | def unique(self):
"""returns a tuple of unique key columns"""
return tuple(
(array_as_typed(s, k.dtype, k.shape) if k.ndim>1 else s)[self.start]
for s, k in zip(self.sorted, self._keys)) | python | def unique(self):
"""returns a tuple of unique key columns"""
return tuple(
(array_as_typed(s, k.dtype, k.shape) if k.ndim>1 else s)[self.start]
for s, k in zip(self.sorted, self._keys)) | [
"def",
"unique",
"(",
"self",
")",
":",
"return",
"tuple",
"(",
"(",
"array_as_typed",
"(",
"s",
",",
"k",
".",
"dtype",
",",
"k",
".",
"shape",
")",
"if",
"k",
".",
"ndim",
">",
"1",
"else",
"s",
")",
"[",
"self",
".",
"start",
"]",
"for",
"s",
",",
"k",
"in",
"zip",
"(",
"self",
".",
"sorted",
",",
"self",
".",
"_keys",
")",
")"
] | returns a tuple of unique key columns | [
"returns",
"a",
"tuple",
"of",
"unique",
"key",
"columns"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/index.py#L236-L240 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/utility.py | as_struct_array | def as_struct_array(*columns):
"""pack a sequence of columns into a recarray
Parameters
----------
columns : sequence of key objects
Returns
-------
data : recarray
recarray containing the input columns as struct fields
"""
columns = [np.asarray(c) for c in columns]
rows = len(columns[0])
names = ['f'+str(i) for i in range(len(columns))]
dtype = [(names[i], c.dtype, c.shape[1:]) for i, c in enumerate(columns)]
data = np.empty(rows, dtype)
for i, c in enumerate(columns):
data[names[i]] = c
return data | python | def as_struct_array(*columns):
"""pack a sequence of columns into a recarray
Parameters
----------
columns : sequence of key objects
Returns
-------
data : recarray
recarray containing the input columns as struct fields
"""
columns = [np.asarray(c) for c in columns]
rows = len(columns[0])
names = ['f'+str(i) for i in range(len(columns))]
dtype = [(names[i], c.dtype, c.shape[1:]) for i, c in enumerate(columns)]
data = np.empty(rows, dtype)
for i, c in enumerate(columns):
data[names[i]] = c
return data | [
"def",
"as_struct_array",
"(",
"*",
"columns",
")",
":",
"columns",
"=",
"[",
"np",
".",
"asarray",
"(",
"c",
")",
"for",
"c",
"in",
"columns",
"]",
"rows",
"=",
"len",
"(",
"columns",
"[",
"0",
"]",
")",
"names",
"=",
"[",
"'f'",
"+",
"str",
"(",
"i",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"columns",
")",
")",
"]",
"dtype",
"=",
"[",
"(",
"names",
"[",
"i",
"]",
",",
"c",
".",
"dtype",
",",
"c",
".",
"shape",
"[",
"1",
":",
"]",
")",
"for",
"i",
",",
"c",
"in",
"enumerate",
"(",
"columns",
")",
"]",
"data",
"=",
"np",
".",
"empty",
"(",
"rows",
",",
"dtype",
")",
"for",
"i",
",",
"c",
"in",
"enumerate",
"(",
"columns",
")",
":",
"data",
"[",
"names",
"[",
"i",
"]",
"]",
"=",
"c",
"return",
"data"
] | pack a sequence of columns into a recarray
Parameters
----------
columns : sequence of key objects
Returns
-------
data : recarray
recarray containing the input columns as struct fields | [
"pack",
"a",
"sequence",
"of",
"columns",
"into",
"a",
"recarray"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/utility.py#L11-L31 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/utility.py | axis_as_object | def axis_as_object(arr, axis=-1):
"""cast the given axis of an array to a void object
if the axis to be cast is contiguous, a view is returned, otherwise a copy is made
this is useful for efficiently sorting by the content of an axis, for instance
Parameters
----------
arr : ndarray
array to view as void object type
axis : int
axis to view as a void object type
Returns
-------
ndarray
array with the given axis viewed as a void object
"""
shape = arr.shape
# make axis to be viewed as a void object as contiguous items
arr = np.ascontiguousarray(np.rollaxis(arr, axis, arr.ndim))
# number of bytes in each void object
nbytes = arr.dtype.itemsize * shape[axis]
# void type with the correct number of bytes
voidtype = np.dtype((np.void, nbytes))
# return the view as such, with the reduced shape
return arr.view(voidtype).reshape(np.delete(shape, axis)) | python | def axis_as_object(arr, axis=-1):
"""cast the given axis of an array to a void object
if the axis to be cast is contiguous, a view is returned, otherwise a copy is made
this is useful for efficiently sorting by the content of an axis, for instance
Parameters
----------
arr : ndarray
array to view as void object type
axis : int
axis to view as a void object type
Returns
-------
ndarray
array with the given axis viewed as a void object
"""
shape = arr.shape
# make axis to be viewed as a void object as contiguous items
arr = np.ascontiguousarray(np.rollaxis(arr, axis, arr.ndim))
# number of bytes in each void object
nbytes = arr.dtype.itemsize * shape[axis]
# void type with the correct number of bytes
voidtype = np.dtype((np.void, nbytes))
# return the view as such, with the reduced shape
return arr.view(voidtype).reshape(np.delete(shape, axis)) | [
"def",
"axis_as_object",
"(",
"arr",
",",
"axis",
"=",
"-",
"1",
")",
":",
"shape",
"=",
"arr",
".",
"shape",
"# make axis to be viewed as a void object as contiguous items",
"arr",
"=",
"np",
".",
"ascontiguousarray",
"(",
"np",
".",
"rollaxis",
"(",
"arr",
",",
"axis",
",",
"arr",
".",
"ndim",
")",
")",
"# number of bytes in each void object",
"nbytes",
"=",
"arr",
".",
"dtype",
".",
"itemsize",
"*",
"shape",
"[",
"axis",
"]",
"# void type with the correct number of bytes",
"voidtype",
"=",
"np",
".",
"dtype",
"(",
"(",
"np",
".",
"void",
",",
"nbytes",
")",
")",
"# return the view as such, with the reduced shape",
"return",
"arr",
".",
"view",
"(",
"voidtype",
")",
".",
"reshape",
"(",
"np",
".",
"delete",
"(",
"shape",
",",
"axis",
")",
")"
] | cast the given axis of an array to a void object
if the axis to be cast is contiguous, a view is returned, otherwise a copy is made
this is useful for efficiently sorting by the content of an axis, for instance
Parameters
----------
arr : ndarray
array to view as void object type
axis : int
axis to view as a void object type
Returns
-------
ndarray
array with the given axis viewed as a void object | [
"cast",
"the",
"given",
"axis",
"of",
"an",
"array",
"to",
"a",
"void",
"object",
"if",
"the",
"axis",
"to",
"be",
"cast",
"is",
"contiguous",
"a",
"view",
"is",
"returned",
"otherwise",
"a",
"copy",
"is",
"made",
"this",
"is",
"useful",
"for",
"efficiently",
"sorting",
"by",
"the",
"content",
"of",
"an",
"axis",
"for",
"instance"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/utility.py#L34-L59 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/utility.py | object_as_axis | def object_as_axis(arr, dtype, axis=-1):
"""
cast an array of void objects to a typed axis
Parameters
----------
arr : ndarray, [ndim], void
array of type np.void
dtype : numpy dtype object
the output dtype to cast the input array to
axis : int
position to insert the newly formed axis into
Returns
-------
ndarray, [ndim+1], dtype
output array cast to given dtype
"""
# view the void objects as typed elements
arr = arr.view(dtype).reshape(arr.shape + (-1,))
# put the axis in the specified location
return np.rollaxis(arr, -1, axis) | python | def object_as_axis(arr, dtype, axis=-1):
"""
cast an array of void objects to a typed axis
Parameters
----------
arr : ndarray, [ndim], void
array of type np.void
dtype : numpy dtype object
the output dtype to cast the input array to
axis : int
position to insert the newly formed axis into
Returns
-------
ndarray, [ndim+1], dtype
output array cast to given dtype
"""
# view the void objects as typed elements
arr = arr.view(dtype).reshape(arr.shape + (-1,))
# put the axis in the specified location
return np.rollaxis(arr, -1, axis) | [
"def",
"object_as_axis",
"(",
"arr",
",",
"dtype",
",",
"axis",
"=",
"-",
"1",
")",
":",
"# view the void objects as typed elements",
"arr",
"=",
"arr",
".",
"view",
"(",
"dtype",
")",
".",
"reshape",
"(",
"arr",
".",
"shape",
"+",
"(",
"-",
"1",
",",
")",
")",
"# put the axis in the specified location",
"return",
"np",
".",
"rollaxis",
"(",
"arr",
",",
"-",
"1",
",",
"axis",
")"
] | cast an array of void objects to a typed axis
Parameters
----------
arr : ndarray, [ndim], void
array of type np.void
dtype : numpy dtype object
the output dtype to cast the input array to
axis : int
position to insert the newly formed axis into
Returns
-------
ndarray, [ndim+1], dtype
output array cast to given dtype | [
"cast",
"an",
"array",
"of",
"void",
"objects",
"to",
"a",
"typed",
"axis"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/utility.py#L62-L83 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/funcs.py | count | def count(keys, axis=semantics.axis_default):
"""count the number of times each key occurs in the input set
Arguments
---------
keys : indexable object
Returns
-------
unique : ndarray, [groups, ...]
unique keys
count : ndarray, [groups], int
the number of times each key occurs in the input set
Notes
-----
Can be seen as numpy work-alike of collections.Counter
Alternatively, as sparse equivalent of count_table
"""
index = as_index(keys, axis, base=True)
return index.unique, index.count | python | def count(keys, axis=semantics.axis_default):
"""count the number of times each key occurs in the input set
Arguments
---------
keys : indexable object
Returns
-------
unique : ndarray, [groups, ...]
unique keys
count : ndarray, [groups], int
the number of times each key occurs in the input set
Notes
-----
Can be seen as numpy work-alike of collections.Counter
Alternatively, as sparse equivalent of count_table
"""
index = as_index(keys, axis, base=True)
return index.unique, index.count | [
"def",
"count",
"(",
"keys",
",",
"axis",
"=",
"semantics",
".",
"axis_default",
")",
":",
"index",
"=",
"as_index",
"(",
"keys",
",",
"axis",
",",
"base",
"=",
"True",
")",
"return",
"index",
".",
"unique",
",",
"index",
".",
"count"
] | count the number of times each key occurs in the input set
Arguments
---------
keys : indexable object
Returns
-------
unique : ndarray, [groups, ...]
unique keys
count : ndarray, [groups], int
the number of times each key occurs in the input set
Notes
-----
Can be seen as numpy work-alike of collections.Counter
Alternatively, as sparse equivalent of count_table | [
"count",
"the",
"number",
"of",
"times",
"each",
"key",
"occurs",
"in",
"the",
"input",
"set"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L19-L39 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/funcs.py | count_table | def count_table(*keys):
"""count the number of times each key occurs in the input set
Arguments
---------
keys : tuple of indexable objects, each having the same number of items
Returns
-------
unique : tuple of ndarray, [groups, ...]
unique keys for each input item
they form the axes labels of the table
table : ndarray, [keys[0].groups, ... keys[n].groups], int
the number of times each key-combination occurs in the input set
Notes
-----
Equivalent to R's pivot table or pandas 'crosstab'
Alternatively, dense equivalent of the count function
Should we add weights option?
Or better yet; what about general reductions over key-grids?
"""
indices = [as_index(k, axis=0) for k in keys]
uniques = [i.unique for i in indices]
inverses = [i.inverse for i in indices]
shape = [i.groups for i in indices]
table = np.zeros(shape, np.int)
np.add.at(table, inverses, 1)
return tuple(uniques), table | python | def count_table(*keys):
"""count the number of times each key occurs in the input set
Arguments
---------
keys : tuple of indexable objects, each having the same number of items
Returns
-------
unique : tuple of ndarray, [groups, ...]
unique keys for each input item
they form the axes labels of the table
table : ndarray, [keys[0].groups, ... keys[n].groups], int
the number of times each key-combination occurs in the input set
Notes
-----
Equivalent to R's pivot table or pandas 'crosstab'
Alternatively, dense equivalent of the count function
Should we add weights option?
Or better yet; what about general reductions over key-grids?
"""
indices = [as_index(k, axis=0) for k in keys]
uniques = [i.unique for i in indices]
inverses = [i.inverse for i in indices]
shape = [i.groups for i in indices]
table = np.zeros(shape, np.int)
np.add.at(table, inverses, 1)
return tuple(uniques), table | [
"def",
"count_table",
"(",
"*",
"keys",
")",
":",
"indices",
"=",
"[",
"as_index",
"(",
"k",
",",
"axis",
"=",
"0",
")",
"for",
"k",
"in",
"keys",
"]",
"uniques",
"=",
"[",
"i",
".",
"unique",
"for",
"i",
"in",
"indices",
"]",
"inverses",
"=",
"[",
"i",
".",
"inverse",
"for",
"i",
"in",
"indices",
"]",
"shape",
"=",
"[",
"i",
".",
"groups",
"for",
"i",
"in",
"indices",
"]",
"table",
"=",
"np",
".",
"zeros",
"(",
"shape",
",",
"np",
".",
"int",
")",
"np",
".",
"add",
".",
"at",
"(",
"table",
",",
"inverses",
",",
"1",
")",
"return",
"tuple",
"(",
"uniques",
")",
",",
"table"
] | count the number of times each key occurs in the input set
Arguments
---------
keys : tuple of indexable objects, each having the same number of items
Returns
-------
unique : tuple of ndarray, [groups, ...]
unique keys for each input item
they form the axes labels of the table
table : ndarray, [keys[0].groups, ... keys[n].groups], int
the number of times each key-combination occurs in the input set
Notes
-----
Equivalent to R's pivot table or pandas 'crosstab'
Alternatively, dense equivalent of the count function
Should we add weights option?
Or better yet; what about general reductions over key-grids? | [
"count",
"the",
"number",
"of",
"times",
"each",
"key",
"occurs",
"in",
"the",
"input",
"set"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L42-L70 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/funcs.py | binning | def binning(keys, start, end, count, axes=None):
"""Perform binning over the given axes of the keys
Parameters
----------
keys : indexable or tuple of indexable
Examples
--------
binning(np.random.rand(100), 0, 1, 10)
"""
if isinstance(keys, tuple):
n_keys = len(keys)
else:
n_keys = 1
bins = np.linspace(start, end, count+1, endpoint=True)
idx = np.searchsorted(bins, keys)
if axes is None:
axes = [-1] | python | def binning(keys, start, end, count, axes=None):
"""Perform binning over the given axes of the keys
Parameters
----------
keys : indexable or tuple of indexable
Examples
--------
binning(np.random.rand(100), 0, 1, 10)
"""
if isinstance(keys, tuple):
n_keys = len(keys)
else:
n_keys = 1
bins = np.linspace(start, end, count+1, endpoint=True)
idx = np.searchsorted(bins, keys)
if axes is None:
axes = [-1] | [
"def",
"binning",
"(",
"keys",
",",
"start",
",",
"end",
",",
"count",
",",
"axes",
"=",
"None",
")",
":",
"if",
"isinstance",
"(",
"keys",
",",
"tuple",
")",
":",
"n_keys",
"=",
"len",
"(",
"keys",
")",
"else",
":",
"n_keys",
"=",
"1",
"bins",
"=",
"np",
".",
"linspace",
"(",
"start",
",",
"end",
",",
"count",
"+",
"1",
",",
"endpoint",
"=",
"True",
")",
"idx",
"=",
"np",
".",
"searchsorted",
"(",
"bins",
",",
"keys",
")",
"if",
"axes",
"is",
"None",
":",
"axes",
"=",
"[",
"-",
"1",
"]"
] | Perform binning over the given axes of the keys
Parameters
----------
keys : indexable or tuple of indexable
Examples
--------
binning(np.random.rand(100), 0, 1, 10) | [
"Perform",
"binning",
"over",
"the",
"given",
"axes",
"of",
"the",
"keys"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L73-L92 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/funcs.py | multiplicity | def multiplicity(keys, axis=semantics.axis_default):
"""return the multiplicity of each key, or how often it occurs in the set
Parameters
----------
keys : indexable object
Returns
-------
ndarray, [keys.size], int
the number of times each input item occurs in the set
"""
index = as_index(keys, axis)
return index.count[index.inverse] | python | def multiplicity(keys, axis=semantics.axis_default):
"""return the multiplicity of each key, or how often it occurs in the set
Parameters
----------
keys : indexable object
Returns
-------
ndarray, [keys.size], int
the number of times each input item occurs in the set
"""
index = as_index(keys, axis)
return index.count[index.inverse] | [
"def",
"multiplicity",
"(",
"keys",
",",
"axis",
"=",
"semantics",
".",
"axis_default",
")",
":",
"index",
"=",
"as_index",
"(",
"keys",
",",
"axis",
")",
"return",
"index",
".",
"count",
"[",
"index",
".",
"inverse",
"]"
] | return the multiplicity of each key, or how often it occurs in the set
Parameters
----------
keys : indexable object
Returns
-------
ndarray, [keys.size], int
the number of times each input item occurs in the set | [
"return",
"the",
"multiplicity",
"of",
"each",
"key",
"or",
"how",
"often",
"it",
"occurs",
"in",
"the",
"set"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L183-L196 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/funcs.py | rank | def rank(keys, axis=semantics.axis_default):
"""where each item is in the pecking order.
Parameters
----------
keys : indexable object
Returns
-------
ndarray, [keys.size], int
unique integers, ranking the sorting order
Notes
-----
we should have that index.sorted[index.rank] == keys
"""
index = as_index(keys, axis)
return index.rank | python | def rank(keys, axis=semantics.axis_default):
"""where each item is in the pecking order.
Parameters
----------
keys : indexable object
Returns
-------
ndarray, [keys.size], int
unique integers, ranking the sorting order
Notes
-----
we should have that index.sorted[index.rank] == keys
"""
index = as_index(keys, axis)
return index.rank | [
"def",
"rank",
"(",
"keys",
",",
"axis",
"=",
"semantics",
".",
"axis_default",
")",
":",
"index",
"=",
"as_index",
"(",
"keys",
",",
"axis",
")",
"return",
"index",
".",
"rank"
] | where each item is in the pecking order.
Parameters
----------
keys : indexable object
Returns
-------
ndarray, [keys.size], int
unique integers, ranking the sorting order
Notes
-----
we should have that index.sorted[index.rank] == keys | [
"where",
"each",
"item",
"is",
"in",
"the",
"pecking",
"order",
"."
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L199-L216 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/funcs.py | mode | def mode(keys, axis=semantics.axis_default, weights=None, return_indices=False):
"""compute the mode, or most frequent occuring key in a set
Parameters
----------
keys : ndarray, [n_keys, ...]
input array. elements of 'keys' can have arbitrary shape or dtype
weights : ndarray, [n_keys], optional
if given, the contribution of each key to the mode is weighted by the given weights
return_indices : bool
if True, return all indices such that keys[indices]==mode holds
Returns
-------
mode : ndarray, [...]
the most frequently occuring key in the key sequence
indices : ndarray, [mode_multiplicity], int, optional
if return_indices is True, all indices such that points[indices]==mode holds
"""
index = as_index(keys, axis)
if weights is None:
unique, weights = count(index)
else:
unique, weights = group_by(index).sum(weights)
bin = np.argmax(weights)
_mode = unique[bin] # FIXME: replace with index.take for lexindex compatibility?
if return_indices:
indices = index.sorter[index.start[bin]: index.stop[bin]]
return _mode, indices
else:
return _mode | python | def mode(keys, axis=semantics.axis_default, weights=None, return_indices=False):
"""compute the mode, or most frequent occuring key in a set
Parameters
----------
keys : ndarray, [n_keys, ...]
input array. elements of 'keys' can have arbitrary shape or dtype
weights : ndarray, [n_keys], optional
if given, the contribution of each key to the mode is weighted by the given weights
return_indices : bool
if True, return all indices such that keys[indices]==mode holds
Returns
-------
mode : ndarray, [...]
the most frequently occuring key in the key sequence
indices : ndarray, [mode_multiplicity], int, optional
if return_indices is True, all indices such that points[indices]==mode holds
"""
index = as_index(keys, axis)
if weights is None:
unique, weights = count(index)
else:
unique, weights = group_by(index).sum(weights)
bin = np.argmax(weights)
_mode = unique[bin] # FIXME: replace with index.take for lexindex compatibility?
if return_indices:
indices = index.sorter[index.start[bin]: index.stop[bin]]
return _mode, indices
else:
return _mode | [
"def",
"mode",
"(",
"keys",
",",
"axis",
"=",
"semantics",
".",
"axis_default",
",",
"weights",
"=",
"None",
",",
"return_indices",
"=",
"False",
")",
":",
"index",
"=",
"as_index",
"(",
"keys",
",",
"axis",
")",
"if",
"weights",
"is",
"None",
":",
"unique",
",",
"weights",
"=",
"count",
"(",
"index",
")",
"else",
":",
"unique",
",",
"weights",
"=",
"group_by",
"(",
"index",
")",
".",
"sum",
"(",
"weights",
")",
"bin",
"=",
"np",
".",
"argmax",
"(",
"weights",
")",
"_mode",
"=",
"unique",
"[",
"bin",
"]",
"# FIXME: replace with index.take for lexindex compatibility?",
"if",
"return_indices",
":",
"indices",
"=",
"index",
".",
"sorter",
"[",
"index",
".",
"start",
"[",
"bin",
"]",
":",
"index",
".",
"stop",
"[",
"bin",
"]",
"]",
"return",
"_mode",
",",
"indices",
"else",
":",
"return",
"_mode"
] | compute the mode, or most frequent occuring key in a set
Parameters
----------
keys : ndarray, [n_keys, ...]
input array. elements of 'keys' can have arbitrary shape or dtype
weights : ndarray, [n_keys], optional
if given, the contribution of each key to the mode is weighted by the given weights
return_indices : bool
if True, return all indices such that keys[indices]==mode holds
Returns
-------
mode : ndarray, [...]
the most frequently occuring key in the key sequence
indices : ndarray, [mode_multiplicity], int, optional
if return_indices is True, all indices such that points[indices]==mode holds | [
"compute",
"the",
"mode",
"or",
"most",
"frequent",
"occuring",
"key",
"in",
"a",
"set"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L219-L249 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/funcs.py | incidence | def incidence(boundary):
"""
given an Nxm matrix containing boundary info between simplices,
compute indidence info matrix
not very reusable; should probably not be in this lib
"""
return GroupBy(boundary).split(np.arange(boundary.size) // boundary.shape[1]) | python | def incidence(boundary):
"""
given an Nxm matrix containing boundary info between simplices,
compute indidence info matrix
not very reusable; should probably not be in this lib
"""
return GroupBy(boundary).split(np.arange(boundary.size) // boundary.shape[1]) | [
"def",
"incidence",
"(",
"boundary",
")",
":",
"return",
"GroupBy",
"(",
"boundary",
")",
".",
"split",
"(",
"np",
".",
"arange",
"(",
"boundary",
".",
"size",
")",
"//",
"boundary",
".",
"shape",
"[",
"1",
"]",
")"
] | given an Nxm matrix containing boundary info between simplices,
compute indidence info matrix
not very reusable; should probably not be in this lib | [
"given",
"an",
"Nxm",
"matrix",
"containing",
"boundary",
"info",
"between",
"simplices",
"compute",
"indidence",
"info",
"matrix",
"not",
"very",
"reusable",
";",
"should",
"probably",
"not",
"be",
"in",
"this",
"lib"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L267-L273 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/funcs.py | all_unique | def all_unique(keys, axis=semantics.axis_default):
"""Returns true if all keys are unique"""
index = as_index(keys, axis)
return index.groups == index.size | python | def all_unique(keys, axis=semantics.axis_default):
"""Returns true if all keys are unique"""
index = as_index(keys, axis)
return index.groups == index.size | [
"def",
"all_unique",
"(",
"keys",
",",
"axis",
"=",
"semantics",
".",
"axis_default",
")",
":",
"index",
"=",
"as_index",
"(",
"keys",
",",
"axis",
")",
"return",
"index",
".",
"groups",
"==",
"index",
".",
"size"
] | Returns true if all keys are unique | [
"Returns",
"true",
"if",
"all",
"keys",
"are",
"unique"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L276-L279 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/funcs.py | any_unique | def any_unique(keys, axis=semantics.axis_default):
"""returns true if any of the keys is unique"""
index = as_index(keys, axis)
return np.any(index.count == 1) | python | def any_unique(keys, axis=semantics.axis_default):
"""returns true if any of the keys is unique"""
index = as_index(keys, axis)
return np.any(index.count == 1) | [
"def",
"any_unique",
"(",
"keys",
",",
"axis",
"=",
"semantics",
".",
"axis_default",
")",
":",
"index",
"=",
"as_index",
"(",
"keys",
",",
"axis",
")",
"return",
"np",
".",
"any",
"(",
"index",
".",
"count",
"==",
"1",
")"
] | returns true if any of the keys is unique | [
"returns",
"true",
"if",
"any",
"of",
"the",
"keys",
"is",
"unique"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L282-L285 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/funcs.py | all_equal | def all_equal(keys, axis=semantics.axis_default):
"""returns true of all keys are equal"""
index = as_index(keys, axis)
return index.groups == 1 | python | def all_equal(keys, axis=semantics.axis_default):
"""returns true of all keys are equal"""
index = as_index(keys, axis)
return index.groups == 1 | [
"def",
"all_equal",
"(",
"keys",
",",
"axis",
"=",
"semantics",
".",
"axis_default",
")",
":",
"index",
"=",
"as_index",
"(",
"keys",
",",
"axis",
")",
"return",
"index",
".",
"groups",
"==",
"1"
] | returns true of all keys are equal | [
"returns",
"true",
"of",
"all",
"keys",
"are",
"equal"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L293-L296 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/funcs.py | is_uniform | def is_uniform(keys, axis=semantics.axis_default):
"""returns true if all keys have equal multiplicity"""
index = as_index(keys, axis)
return index.uniform | python | def is_uniform(keys, axis=semantics.axis_default):
"""returns true if all keys have equal multiplicity"""
index = as_index(keys, axis)
return index.uniform | [
"def",
"is_uniform",
"(",
"keys",
",",
"axis",
"=",
"semantics",
".",
"axis_default",
")",
":",
"index",
"=",
"as_index",
"(",
"keys",
",",
"axis",
")",
"return",
"index",
".",
"uniform"
] | returns true if all keys have equal multiplicity | [
"returns",
"true",
"if",
"all",
"keys",
"have",
"equal",
"multiplicity"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L299-L302 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/funcs.py | Table.get_inverses | def get_inverses(self, keys):
"""
Returns
-------
Tuple of inverse indices
"""
return tuple([as_index(k, axis=0).inverse for k in keys]) | python | def get_inverses(self, keys):
"""
Returns
-------
Tuple of inverse indices
"""
return tuple([as_index(k, axis=0).inverse for k in keys]) | [
"def",
"get_inverses",
"(",
"self",
",",
"keys",
")",
":",
"return",
"tuple",
"(",
"[",
"as_index",
"(",
"k",
",",
"axis",
"=",
"0",
")",
".",
"inverse",
"for",
"k",
"in",
"keys",
"]",
")"
] | Returns
-------
Tuple of inverse indices | [
"Returns",
"-------",
"Tuple",
"of",
"inverse",
"indices"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L109-L115 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/funcs.py | Table.unique | def unique(self, values):
"""Place each entry in a table, while asserting that each entry occurs once"""
_, count = self.count()
if not np.array_equiv(count, 1):
raise ValueError("Not every entry in the table is assigned a unique value")
return self.sum(values) | python | def unique(self, values):
"""Place each entry in a table, while asserting that each entry occurs once"""
_, count = self.count()
if not np.array_equiv(count, 1):
raise ValueError("Not every entry in the table is assigned a unique value")
return self.sum(values) | [
"def",
"unique",
"(",
"self",
",",
"values",
")",
":",
"_",
",",
"count",
"=",
"self",
".",
"count",
"(",
")",
"if",
"not",
"np",
".",
"array_equiv",
"(",
"count",
",",
"1",
")",
":",
"raise",
"ValueError",
"(",
"\"Not every entry in the table is assigned a unique value\"",
")",
"return",
"self",
".",
"sum",
"(",
"values",
")"
] | Place each entry in a table, while asserting that each entry occurs once | [
"Place",
"each",
"entry",
"in",
"a",
"table",
"while",
"asserting",
"that",
"each",
"entry",
"occurs",
"once"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L175-L180 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/arraysetops.py | unique | def unique(keys, axis=semantics.axis_default, return_index=False, return_inverse=False, return_count=False):
"""compute the set of unique keys
Parameters
----------
keys : indexable key object
keys object to find unique keys within
axis : int
if keys is a multi-dimensional array, the axis to regard as the sequence of key objects
return_index : bool
if True, return indexes such that keys[index] == unique
return_inverse : bool
if True, return the indices such that unique[inverse] == keys
return_count : bool
if True, return the number of times each unique key occurs in the input
Notes
-----
The kwargs are there to provide a backwards compatible interface to numpy.unique, but arguably,
it is cleaner to call index and its properties directly, should more than unique values be desired as output
"""
stable = return_index or return_inverse
index = as_index(keys, axis, base = not stable, stable = stable)
ret = index.unique,
if return_index:
ret = ret + (index.index,)
if return_inverse:
ret = ret + (index.inverse,)
if return_count:
ret = ret + (index.count,)
return ret[0] if len(ret) == 1 else ret | python | def unique(keys, axis=semantics.axis_default, return_index=False, return_inverse=False, return_count=False):
"""compute the set of unique keys
Parameters
----------
keys : indexable key object
keys object to find unique keys within
axis : int
if keys is a multi-dimensional array, the axis to regard as the sequence of key objects
return_index : bool
if True, return indexes such that keys[index] == unique
return_inverse : bool
if True, return the indices such that unique[inverse] == keys
return_count : bool
if True, return the number of times each unique key occurs in the input
Notes
-----
The kwargs are there to provide a backwards compatible interface to numpy.unique, but arguably,
it is cleaner to call index and its properties directly, should more than unique values be desired as output
"""
stable = return_index or return_inverse
index = as_index(keys, axis, base = not stable, stable = stable)
ret = index.unique,
if return_index:
ret = ret + (index.index,)
if return_inverse:
ret = ret + (index.inverse,)
if return_count:
ret = ret + (index.count,)
return ret[0] if len(ret) == 1 else ret | [
"def",
"unique",
"(",
"keys",
",",
"axis",
"=",
"semantics",
".",
"axis_default",
",",
"return_index",
"=",
"False",
",",
"return_inverse",
"=",
"False",
",",
"return_count",
"=",
"False",
")",
":",
"stable",
"=",
"return_index",
"or",
"return_inverse",
"index",
"=",
"as_index",
"(",
"keys",
",",
"axis",
",",
"base",
"=",
"not",
"stable",
",",
"stable",
"=",
"stable",
")",
"ret",
"=",
"index",
".",
"unique",
",",
"if",
"return_index",
":",
"ret",
"=",
"ret",
"+",
"(",
"index",
".",
"index",
",",
")",
"if",
"return_inverse",
":",
"ret",
"=",
"ret",
"+",
"(",
"index",
".",
"inverse",
",",
")",
"if",
"return_count",
":",
"ret",
"=",
"ret",
"+",
"(",
"index",
".",
"count",
",",
")",
"return",
"ret",
"[",
"0",
"]",
"if",
"len",
"(",
"ret",
")",
"==",
"1",
"else",
"ret"
] | compute the set of unique keys
Parameters
----------
keys : indexable key object
keys object to find unique keys within
axis : int
if keys is a multi-dimensional array, the axis to regard as the sequence of key objects
return_index : bool
if True, return indexes such that keys[index] == unique
return_inverse : bool
if True, return the indices such that unique[inverse] == keys
return_count : bool
if True, return the number of times each unique key occurs in the input
Notes
-----
The kwargs are there to provide a backwards compatible interface to numpy.unique, but arguably,
it is cleaner to call index and its properties directly, should more than unique values be desired as output | [
"compute",
"the",
"set",
"of",
"unique",
"keys"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/arraysetops.py#L19-L50 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/arraysetops.py | contains | def contains(this, that, axis=semantics.axis_default):
"""Returns bool for each element of `that`, indicating if it is contained in `this`
Parameters
----------
this : indexable key sequence
sequence of items to test against
that : indexable key sequence
sequence of items to test for
Returns
-------
ndarray, [that.size], bool
returns a bool for each element in `that`, indicating if it is contained in `this`
Notes
-----
Reads as 'this contains that'
Similar to 'that in this', but with different performance characteristics
"""
this = as_index(this, axis=axis, lex_as_struct=True, base=True)
that = as_index(that, axis=axis, lex_as_struct=True)
left = np.searchsorted(that._keys, this._keys, sorter=that.sorter, side='left')
right = np.searchsorted(that._keys, this._keys, sorter=that.sorter, side='right')
flags = np.zeros(that.size + 1, dtype=np.int)
np.add.at(flags, left, 1)
np.add.at(flags, right, -1)
return np.cumsum(flags)[:-1].astype(np.bool)[that.rank] | python | def contains(this, that, axis=semantics.axis_default):
"""Returns bool for each element of `that`, indicating if it is contained in `this`
Parameters
----------
this : indexable key sequence
sequence of items to test against
that : indexable key sequence
sequence of items to test for
Returns
-------
ndarray, [that.size], bool
returns a bool for each element in `that`, indicating if it is contained in `this`
Notes
-----
Reads as 'this contains that'
Similar to 'that in this', but with different performance characteristics
"""
this = as_index(this, axis=axis, lex_as_struct=True, base=True)
that = as_index(that, axis=axis, lex_as_struct=True)
left = np.searchsorted(that._keys, this._keys, sorter=that.sorter, side='left')
right = np.searchsorted(that._keys, this._keys, sorter=that.sorter, side='right')
flags = np.zeros(that.size + 1, dtype=np.int)
np.add.at(flags, left, 1)
np.add.at(flags, right, -1)
return np.cumsum(flags)[:-1].astype(np.bool)[that.rank] | [
"def",
"contains",
"(",
"this",
",",
"that",
",",
"axis",
"=",
"semantics",
".",
"axis_default",
")",
":",
"this",
"=",
"as_index",
"(",
"this",
",",
"axis",
"=",
"axis",
",",
"lex_as_struct",
"=",
"True",
",",
"base",
"=",
"True",
")",
"that",
"=",
"as_index",
"(",
"that",
",",
"axis",
"=",
"axis",
",",
"lex_as_struct",
"=",
"True",
")",
"left",
"=",
"np",
".",
"searchsorted",
"(",
"that",
".",
"_keys",
",",
"this",
".",
"_keys",
",",
"sorter",
"=",
"that",
".",
"sorter",
",",
"side",
"=",
"'left'",
")",
"right",
"=",
"np",
".",
"searchsorted",
"(",
"that",
".",
"_keys",
",",
"this",
".",
"_keys",
",",
"sorter",
"=",
"that",
".",
"sorter",
",",
"side",
"=",
"'right'",
")",
"flags",
"=",
"np",
".",
"zeros",
"(",
"that",
".",
"size",
"+",
"1",
",",
"dtype",
"=",
"np",
".",
"int",
")",
"np",
".",
"add",
".",
"at",
"(",
"flags",
",",
"left",
",",
"1",
")",
"np",
".",
"add",
".",
"at",
"(",
"flags",
",",
"right",
",",
"-",
"1",
")",
"return",
"np",
".",
"cumsum",
"(",
"flags",
")",
"[",
":",
"-",
"1",
"]",
".",
"astype",
"(",
"np",
".",
"bool",
")",
"[",
"that",
".",
"rank",
"]"
] | Returns bool for each element of `that`, indicating if it is contained in `this`
Parameters
----------
this : indexable key sequence
sequence of items to test against
that : indexable key sequence
sequence of items to test for
Returns
-------
ndarray, [that.size], bool
returns a bool for each element in `that`, indicating if it is contained in `this`
Notes
-----
Reads as 'this contains that'
Similar to 'that in this', but with different performance characteristics | [
"Returns",
"bool",
"for",
"each",
"element",
"of",
"that",
"indicating",
"if",
"it",
"is",
"contained",
"in",
"this"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/arraysetops.py#L53-L83 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/arraysetops.py | in_ | def in_(this, that, axis=semantics.axis_default):
"""Returns bool for each element of `this`, indicating if it is present in `that`
Parameters
----------
this : indexable key sequence
sequence of items to test for
that : indexable key sequence
sequence of items to test against
Returns
-------
ndarray, [that.size], bool
returns a bool for each element in `this`, indicating if it is present in `that`
Notes
-----
Reads as 'this in that'
Similar to 'that contains this', but with different performance characteristics
"""
this = as_index(this, axis=axis, lex_as_struct=True, base=True)
that = as_index(that, axis=axis, lex_as_struct=True)
left = np.searchsorted(that._keys, this._keys, sorter=that.sorter, side='left')
right = np.searchsorted(that._keys, this._keys, sorter=that.sorter, side='right')
return left != right | python | def in_(this, that, axis=semantics.axis_default):
"""Returns bool for each element of `this`, indicating if it is present in `that`
Parameters
----------
this : indexable key sequence
sequence of items to test for
that : indexable key sequence
sequence of items to test against
Returns
-------
ndarray, [that.size], bool
returns a bool for each element in `this`, indicating if it is present in `that`
Notes
-----
Reads as 'this in that'
Similar to 'that contains this', but with different performance characteristics
"""
this = as_index(this, axis=axis, lex_as_struct=True, base=True)
that = as_index(that, axis=axis, lex_as_struct=True)
left = np.searchsorted(that._keys, this._keys, sorter=that.sorter, side='left')
right = np.searchsorted(that._keys, this._keys, sorter=that.sorter, side='right')
return left != right | [
"def",
"in_",
"(",
"this",
",",
"that",
",",
"axis",
"=",
"semantics",
".",
"axis_default",
")",
":",
"this",
"=",
"as_index",
"(",
"this",
",",
"axis",
"=",
"axis",
",",
"lex_as_struct",
"=",
"True",
",",
"base",
"=",
"True",
")",
"that",
"=",
"as_index",
"(",
"that",
",",
"axis",
"=",
"axis",
",",
"lex_as_struct",
"=",
"True",
")",
"left",
"=",
"np",
".",
"searchsorted",
"(",
"that",
".",
"_keys",
",",
"this",
".",
"_keys",
",",
"sorter",
"=",
"that",
".",
"sorter",
",",
"side",
"=",
"'left'",
")",
"right",
"=",
"np",
".",
"searchsorted",
"(",
"that",
".",
"_keys",
",",
"this",
".",
"_keys",
",",
"sorter",
"=",
"that",
".",
"sorter",
",",
"side",
"=",
"'right'",
")",
"return",
"left",
"!=",
"right"
] | Returns bool for each element of `this`, indicating if it is present in `that`
Parameters
----------
this : indexable key sequence
sequence of items to test for
that : indexable key sequence
sequence of items to test against
Returns
-------
ndarray, [that.size], bool
returns a bool for each element in `this`, indicating if it is present in `that`
Notes
-----
Reads as 'this in that'
Similar to 'that contains this', but with different performance characteristics | [
"Returns",
"bool",
"for",
"each",
"element",
"of",
"this",
"indicating",
"if",
"it",
"is",
"present",
"in",
"that"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/arraysetops.py#L86-L112 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/arraysetops.py | indices | def indices(this, that, axis=semantics.axis_default, missing='raise'):
"""Find indices such that this[indices] == that
If multiple indices satisfy this condition, the first index found is returned
Parameters
----------
this : indexable object
items to search in
that : indexable object
items to search for
axis : int, optional
axis to operate on
missing : {'raise', 'ignore', 'mask' or int}
if `missing` is 'raise', a KeyError is raised if not all elements of `that` are present in `this`
if `missing` is 'mask', a masked array is returned,
where items of `that` not present in `this` are masked out
if `missing` is 'ignore', all elements of `that` are assumed to be present in `this`,
and output is undefined otherwise
if missing is an integer, this is used as a fill-value
Returns
-------
indices : ndarray, [that.size], int
indices such that this[indices] == that
Notes
-----
May be regarded as a vectorized numpy equivalent of list.index
"""
this = as_index(this, axis=axis, lex_as_struct=True)
# use this for getting this.keys and that.keys organized the same way;
# sorting is superfluous though. make sorting a cached property?
# should we be working with cached properties generally?
# or we should use sorted values, if searchsorted can exploit this knowledge?
that = as_index(that, axis=axis, base=True, lex_as_struct=True)
# use raw private keys here, rather than public unpacked keys
insertion = np.searchsorted(this._keys, that._keys, sorter=this.sorter, side='left')
indices = np.take(this.sorter, insertion, mode='clip')
if missing != 'ignore':
invalid = this._keys[indices] != that._keys
if missing == 'raise':
if np.any(invalid):
raise KeyError('Not all keys in `that` are present in `this`')
elif missing == 'mask':
indices = np.ma.masked_array(indices, invalid)
else:
indices[invalid] = missing
return indices | python | def indices(this, that, axis=semantics.axis_default, missing='raise'):
"""Find indices such that this[indices] == that
If multiple indices satisfy this condition, the first index found is returned
Parameters
----------
this : indexable object
items to search in
that : indexable object
items to search for
axis : int, optional
axis to operate on
missing : {'raise', 'ignore', 'mask' or int}
if `missing` is 'raise', a KeyError is raised if not all elements of `that` are present in `this`
if `missing` is 'mask', a masked array is returned,
where items of `that` not present in `this` are masked out
if `missing` is 'ignore', all elements of `that` are assumed to be present in `this`,
and output is undefined otherwise
if missing is an integer, this is used as a fill-value
Returns
-------
indices : ndarray, [that.size], int
indices such that this[indices] == that
Notes
-----
May be regarded as a vectorized numpy equivalent of list.index
"""
this = as_index(this, axis=axis, lex_as_struct=True)
# use this for getting this.keys and that.keys organized the same way;
# sorting is superfluous though. make sorting a cached property?
# should we be working with cached properties generally?
# or we should use sorted values, if searchsorted can exploit this knowledge?
that = as_index(that, axis=axis, base=True, lex_as_struct=True)
# use raw private keys here, rather than public unpacked keys
insertion = np.searchsorted(this._keys, that._keys, sorter=this.sorter, side='left')
indices = np.take(this.sorter, insertion, mode='clip')
if missing != 'ignore':
invalid = this._keys[indices] != that._keys
if missing == 'raise':
if np.any(invalid):
raise KeyError('Not all keys in `that` are present in `this`')
elif missing == 'mask':
indices = np.ma.masked_array(indices, invalid)
else:
indices[invalid] = missing
return indices | [
"def",
"indices",
"(",
"this",
",",
"that",
",",
"axis",
"=",
"semantics",
".",
"axis_default",
",",
"missing",
"=",
"'raise'",
")",
":",
"this",
"=",
"as_index",
"(",
"this",
",",
"axis",
"=",
"axis",
",",
"lex_as_struct",
"=",
"True",
")",
"# use this for getting this.keys and that.keys organized the same way;",
"# sorting is superfluous though. make sorting a cached property?",
"# should we be working with cached properties generally?",
"# or we should use sorted values, if searchsorted can exploit this knowledge?",
"that",
"=",
"as_index",
"(",
"that",
",",
"axis",
"=",
"axis",
",",
"base",
"=",
"True",
",",
"lex_as_struct",
"=",
"True",
")",
"# use raw private keys here, rather than public unpacked keys",
"insertion",
"=",
"np",
".",
"searchsorted",
"(",
"this",
".",
"_keys",
",",
"that",
".",
"_keys",
",",
"sorter",
"=",
"this",
".",
"sorter",
",",
"side",
"=",
"'left'",
")",
"indices",
"=",
"np",
".",
"take",
"(",
"this",
".",
"sorter",
",",
"insertion",
",",
"mode",
"=",
"'clip'",
")",
"if",
"missing",
"!=",
"'ignore'",
":",
"invalid",
"=",
"this",
".",
"_keys",
"[",
"indices",
"]",
"!=",
"that",
".",
"_keys",
"if",
"missing",
"==",
"'raise'",
":",
"if",
"np",
".",
"any",
"(",
"invalid",
")",
":",
"raise",
"KeyError",
"(",
"'Not all keys in `that` are present in `this`'",
")",
"elif",
"missing",
"==",
"'mask'",
":",
"indices",
"=",
"np",
".",
"ma",
".",
"masked_array",
"(",
"indices",
",",
"invalid",
")",
"else",
":",
"indices",
"[",
"invalid",
"]",
"=",
"missing",
"return",
"indices"
] | Find indices such that this[indices] == that
If multiple indices satisfy this condition, the first index found is returned
Parameters
----------
this : indexable object
items to search in
that : indexable object
items to search for
axis : int, optional
axis to operate on
missing : {'raise', 'ignore', 'mask' or int}
if `missing` is 'raise', a KeyError is raised if not all elements of `that` are present in `this`
if `missing` is 'mask', a masked array is returned,
where items of `that` not present in `this` are masked out
if `missing` is 'ignore', all elements of `that` are assumed to be present in `this`,
and output is undefined otherwise
if missing is an integer, this is used as a fill-value
Returns
-------
indices : ndarray, [that.size], int
indices such that this[indices] == that
Notes
-----
May be regarded as a vectorized numpy equivalent of list.index | [
"Find",
"indices",
"such",
"that",
"this",
"[",
"indices",
"]",
"==",
"that",
"If",
"multiple",
"indices",
"satisfy",
"this",
"condition",
"the",
"first",
"index",
"found",
"is",
"returned"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/arraysetops.py#L115-L164 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/arraysetops.py | remap | def remap(input, keys, values, missing='ignore', inplace=False):
"""Given an input array, remap its entries corresponding to 'keys' to 'values'
equivalent of output = [map.get(i, default=i) for i in input],
if map were a dictionary of corresponding keys and values
Parameters
----------
input : ndarray, [...]
values to perform replacements in
keys : ndarray, [...]
values to perform replacements in
values : ndarray, [...]
values to perform replacements in
missing : {'raise', 'ignore'}
if `missing` is 'raise', a KeyError is raised if 'values' contains elements not present in 'keys'
if `missing` is 'ignore', only elements of 'values' persent in 'keys' are remapped
inplace : bool, optional
if True, input array is remapped in place
if false, a copy is returned
Returns
-------
output : ndarray, [...]
like 'input', but with elements remapped according to the mapping defined by 'keys' and 'values'
"""
input = np.asarray(input) # FIXME: currently instances of Index are not allowed
values = np.asarray(values)
if missing == 'ignore':
idx = indices(keys, input, missing='mask')
mask = np.logical_not(idx.mask)
idx = idx.data
elif missing == 'raise':
idx = indices(keys, input, missing='raise')
mask = Ellipsis
else:
raise ValueError("'missing' should be either 'ignore' or 'raise'")
output = input if inplace else input.copy()
output[mask] = values[idx[mask]]
return output | python | def remap(input, keys, values, missing='ignore', inplace=False):
"""Given an input array, remap its entries corresponding to 'keys' to 'values'
equivalent of output = [map.get(i, default=i) for i in input],
if map were a dictionary of corresponding keys and values
Parameters
----------
input : ndarray, [...]
values to perform replacements in
keys : ndarray, [...]
values to perform replacements in
values : ndarray, [...]
values to perform replacements in
missing : {'raise', 'ignore'}
if `missing` is 'raise', a KeyError is raised if 'values' contains elements not present in 'keys'
if `missing` is 'ignore', only elements of 'values' persent in 'keys' are remapped
inplace : bool, optional
if True, input array is remapped in place
if false, a copy is returned
Returns
-------
output : ndarray, [...]
like 'input', but with elements remapped according to the mapping defined by 'keys' and 'values'
"""
input = np.asarray(input) # FIXME: currently instances of Index are not allowed
values = np.asarray(values)
if missing == 'ignore':
idx = indices(keys, input, missing='mask')
mask = np.logical_not(idx.mask)
idx = idx.data
elif missing == 'raise':
idx = indices(keys, input, missing='raise')
mask = Ellipsis
else:
raise ValueError("'missing' should be either 'ignore' or 'raise'")
output = input if inplace else input.copy()
output[mask] = values[idx[mask]]
return output | [
"def",
"remap",
"(",
"input",
",",
"keys",
",",
"values",
",",
"missing",
"=",
"'ignore'",
",",
"inplace",
"=",
"False",
")",
":",
"input",
"=",
"np",
".",
"asarray",
"(",
"input",
")",
"# FIXME: currently instances of Index are not allowed",
"values",
"=",
"np",
".",
"asarray",
"(",
"values",
")",
"if",
"missing",
"==",
"'ignore'",
":",
"idx",
"=",
"indices",
"(",
"keys",
",",
"input",
",",
"missing",
"=",
"'mask'",
")",
"mask",
"=",
"np",
".",
"logical_not",
"(",
"idx",
".",
"mask",
")",
"idx",
"=",
"idx",
".",
"data",
"elif",
"missing",
"==",
"'raise'",
":",
"idx",
"=",
"indices",
"(",
"keys",
",",
"input",
",",
"missing",
"=",
"'raise'",
")",
"mask",
"=",
"Ellipsis",
"else",
":",
"raise",
"ValueError",
"(",
"\"'missing' should be either 'ignore' or 'raise'\"",
")",
"output",
"=",
"input",
"if",
"inplace",
"else",
"input",
".",
"copy",
"(",
")",
"output",
"[",
"mask",
"]",
"=",
"values",
"[",
"idx",
"[",
"mask",
"]",
"]",
"return",
"output"
] | Given an input array, remap its entries corresponding to 'keys' to 'values'
equivalent of output = [map.get(i, default=i) for i in input],
if map were a dictionary of corresponding keys and values
Parameters
----------
input : ndarray, [...]
values to perform replacements in
keys : ndarray, [...]
values to perform replacements in
values : ndarray, [...]
values to perform replacements in
missing : {'raise', 'ignore'}
if `missing` is 'raise', a KeyError is raised if 'values' contains elements not present in 'keys'
if `missing` is 'ignore', only elements of 'values' persent in 'keys' are remapped
inplace : bool, optional
if True, input array is remapped in place
if false, a copy is returned
Returns
-------
output : ndarray, [...]
like 'input', but with elements remapped according to the mapping defined by 'keys' and 'values' | [
"Given",
"an",
"input",
"array",
"remap",
"its",
"entries",
"corresponding",
"to",
"keys",
"to",
"values",
"equivalent",
"of",
"output",
"=",
"[",
"map",
".",
"get",
"(",
"i",
"default",
"=",
"i",
")",
"for",
"i",
"in",
"input",
"]",
"if",
"map",
"were",
"a",
"dictionary",
"of",
"corresponding",
"keys",
"and",
"values"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/arraysetops.py#L167-L205 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/arraysetops.py | _set_preprocess | def _set_preprocess(sets, **kwargs):
"""upcasts a sequence of indexable objects to Index objets according to the given kwargs
Parameters
----------
sets : iterable of indexable objects
axis : int, optional
axis to view as item sequence
assume_unique : bool, optional
if we should assume the items sequence does not contain duplicates
Returns
-------
list of Index objects
Notes
-----
common preprocessing for all set operations
"""
axis = kwargs.get('axis', semantics.axis_default)
assume_unique = kwargs.get('assume_unique', False)
if assume_unique:
sets = [as_index(s, axis=axis).unique for s in sets]
else:
sets = [as_index(s, axis=axis).unique for s in sets]
return sets | python | def _set_preprocess(sets, **kwargs):
"""upcasts a sequence of indexable objects to Index objets according to the given kwargs
Parameters
----------
sets : iterable of indexable objects
axis : int, optional
axis to view as item sequence
assume_unique : bool, optional
if we should assume the items sequence does not contain duplicates
Returns
-------
list of Index objects
Notes
-----
common preprocessing for all set operations
"""
axis = kwargs.get('axis', semantics.axis_default)
assume_unique = kwargs.get('assume_unique', False)
if assume_unique:
sets = [as_index(s, axis=axis).unique for s in sets]
else:
sets = [as_index(s, axis=axis).unique for s in sets]
return sets | [
"def",
"_set_preprocess",
"(",
"sets",
",",
"*",
"*",
"kwargs",
")",
":",
"axis",
"=",
"kwargs",
".",
"get",
"(",
"'axis'",
",",
"semantics",
".",
"axis_default",
")",
"assume_unique",
"=",
"kwargs",
".",
"get",
"(",
"'assume_unique'",
",",
"False",
")",
"if",
"assume_unique",
":",
"sets",
"=",
"[",
"as_index",
"(",
"s",
",",
"axis",
"=",
"axis",
")",
".",
"unique",
"for",
"s",
"in",
"sets",
"]",
"else",
":",
"sets",
"=",
"[",
"as_index",
"(",
"s",
",",
"axis",
"=",
"axis",
")",
".",
"unique",
"for",
"s",
"in",
"sets",
"]",
"return",
"sets"
] | upcasts a sequence of indexable objects to Index objets according to the given kwargs
Parameters
----------
sets : iterable of indexable objects
axis : int, optional
axis to view as item sequence
assume_unique : bool, optional
if we should assume the items sequence does not contain duplicates
Returns
-------
list of Index objects
Notes
-----
common preprocessing for all set operations | [
"upcasts",
"a",
"sequence",
"of",
"indexable",
"objects",
"to",
"Index",
"objets",
"according",
"to",
"the",
"given",
"kwargs"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/arraysetops.py#L208-L234 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/arraysetops.py | _set_concatenate | def _set_concatenate(sets):
"""concatenate indexable objects.
Parameters
----------
sets : iterable of indexable objects
Returns
-------
indexable object
handles both arrays and tuples of arrays
"""
def con(set):
# if not all():
# raise ValueError('concatenated keys must have the same dtype')
try:
return np.concatenate([s for s in sets if len(s)])
except ValueError:
return set[0]
if any(not isinstance(s, tuple) for s in sets):
#assume all arrays
return con(sets)
else:
#assume all tuples
return tuple(con(s) for s in zip(*sets)) | python | def _set_concatenate(sets):
"""concatenate indexable objects.
Parameters
----------
sets : iterable of indexable objects
Returns
-------
indexable object
handles both arrays and tuples of arrays
"""
def con(set):
# if not all():
# raise ValueError('concatenated keys must have the same dtype')
try:
return np.concatenate([s for s in sets if len(s)])
except ValueError:
return set[0]
if any(not isinstance(s, tuple) for s in sets):
#assume all arrays
return con(sets)
else:
#assume all tuples
return tuple(con(s) for s in zip(*sets)) | [
"def",
"_set_concatenate",
"(",
"sets",
")",
":",
"def",
"con",
"(",
"set",
")",
":",
"# if not all():",
"# raise ValueError('concatenated keys must have the same dtype')",
"try",
":",
"return",
"np",
".",
"concatenate",
"(",
"[",
"s",
"for",
"s",
"in",
"sets",
"if",
"len",
"(",
"s",
")",
"]",
")",
"except",
"ValueError",
":",
"return",
"set",
"[",
"0",
"]",
"if",
"any",
"(",
"not",
"isinstance",
"(",
"s",
",",
"tuple",
")",
"for",
"s",
"in",
"sets",
")",
":",
"#assume all arrays",
"return",
"con",
"(",
"sets",
")",
"else",
":",
"#assume all tuples",
"return",
"tuple",
"(",
"con",
"(",
"s",
")",
"for",
"s",
"in",
"zip",
"(",
"*",
"sets",
")",
")"
] | concatenate indexable objects.
Parameters
----------
sets : iterable of indexable objects
Returns
-------
indexable object
handles both arrays and tuples of arrays | [
"concatenate",
"indexable",
"objects",
"."
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/arraysetops.py#L237-L263 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/arraysetops.py | _set_count | def _set_count(sets, n, **kwargs):
"""return the elements which occur n times over the sequence of sets
Parameters
----------
sets : iterable of indexable objects
n : int
number of sets the element should occur in
Returns
-------
indexable
indexable with all elements that occured in n of the sets
Notes
-----
used by both exclusive and intersection
"""
sets = _set_preprocess(sets, **kwargs)
i = as_index(_set_concatenate(sets), axis=0, base=True)
# FIXME : this does not work for lex-keys
return i.unique[i.count == n] | python | def _set_count(sets, n, **kwargs):
"""return the elements which occur n times over the sequence of sets
Parameters
----------
sets : iterable of indexable objects
n : int
number of sets the element should occur in
Returns
-------
indexable
indexable with all elements that occured in n of the sets
Notes
-----
used by both exclusive and intersection
"""
sets = _set_preprocess(sets, **kwargs)
i = as_index(_set_concatenate(sets), axis=0, base=True)
# FIXME : this does not work for lex-keys
return i.unique[i.count == n] | [
"def",
"_set_count",
"(",
"sets",
",",
"n",
",",
"*",
"*",
"kwargs",
")",
":",
"sets",
"=",
"_set_preprocess",
"(",
"sets",
",",
"*",
"*",
"kwargs",
")",
"i",
"=",
"as_index",
"(",
"_set_concatenate",
"(",
"sets",
")",
",",
"axis",
"=",
"0",
",",
"base",
"=",
"True",
")",
"# FIXME : this does not work for lex-keys",
"return",
"i",
".",
"unique",
"[",
"i",
".",
"count",
"==",
"n",
"]"
] | return the elements which occur n times over the sequence of sets
Parameters
----------
sets : iterable of indexable objects
n : int
number of sets the element should occur in
Returns
-------
indexable
indexable with all elements that occured in n of the sets
Notes
-----
used by both exclusive and intersection | [
"return",
"the",
"elements",
"which",
"occur",
"n",
"times",
"over",
"the",
"sequence",
"of",
"sets"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/arraysetops.py#L266-L287 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/arraysetops.py | union | def union(*sets, **kwargs):
"""all unique items which occur in any one of the sets
Parameters
----------
sets : tuple of indexable objects
Returns
-------
union of all items in all sets
"""
sets = _set_preprocess(sets, **kwargs)
return as_index( _set_concatenate(sets), axis=0, base=True).unique | python | def union(*sets, **kwargs):
"""all unique items which occur in any one of the sets
Parameters
----------
sets : tuple of indexable objects
Returns
-------
union of all items in all sets
"""
sets = _set_preprocess(sets, **kwargs)
return as_index( _set_concatenate(sets), axis=0, base=True).unique | [
"def",
"union",
"(",
"*",
"sets",
",",
"*",
"*",
"kwargs",
")",
":",
"sets",
"=",
"_set_preprocess",
"(",
"sets",
",",
"*",
"*",
"kwargs",
")",
"return",
"as_index",
"(",
"_set_concatenate",
"(",
"sets",
")",
",",
"axis",
"=",
"0",
",",
"base",
"=",
"True",
")",
".",
"unique"
] | all unique items which occur in any one of the sets
Parameters
----------
sets : tuple of indexable objects
Returns
-------
union of all items in all sets | [
"all",
"unique",
"items",
"which",
"occur",
"in",
"any",
"one",
"of",
"the",
"sets"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/arraysetops.py#L290-L302 |
EelcoHoogendoorn/Numpy_arraysetops_EP | numpy_indexed/arraysetops.py | difference | def difference(*sets, **kwargs):
"""subtracts all tail sets from the head set
Parameters
----------
sets : tuple of indexable objects
first set is the head, from which we subtract
other items form the tail, which are subtracted from head
Returns
-------
items which are in the head but not in any of the tail sets
Notes
-----
alt implementation: compute union of tail, then union with head, then use set_count(1)
"""
head, tail = sets[0], sets[1:]
idx = as_index(head, **kwargs)
lhs = idx.unique
rhs = [intersection(idx, s, **kwargs) for s in tail]
return exclusive(lhs, *rhs, axis=0, assume_unique=True) | python | def difference(*sets, **kwargs):
"""subtracts all tail sets from the head set
Parameters
----------
sets : tuple of indexable objects
first set is the head, from which we subtract
other items form the tail, which are subtracted from head
Returns
-------
items which are in the head but not in any of the tail sets
Notes
-----
alt implementation: compute union of tail, then union with head, then use set_count(1)
"""
head, tail = sets[0], sets[1:]
idx = as_index(head, **kwargs)
lhs = idx.unique
rhs = [intersection(idx, s, **kwargs) for s in tail]
return exclusive(lhs, *rhs, axis=0, assume_unique=True) | [
"def",
"difference",
"(",
"*",
"sets",
",",
"*",
"*",
"kwargs",
")",
":",
"head",
",",
"tail",
"=",
"sets",
"[",
"0",
"]",
",",
"sets",
"[",
"1",
":",
"]",
"idx",
"=",
"as_index",
"(",
"head",
",",
"*",
"*",
"kwargs",
")",
"lhs",
"=",
"idx",
".",
"unique",
"rhs",
"=",
"[",
"intersection",
"(",
"idx",
",",
"s",
",",
"*",
"*",
"kwargs",
")",
"for",
"s",
"in",
"tail",
"]",
"return",
"exclusive",
"(",
"lhs",
",",
"*",
"rhs",
",",
"axis",
"=",
"0",
",",
"assume_unique",
"=",
"True",
")"
] | subtracts all tail sets from the head set
Parameters
----------
sets : tuple of indexable objects
first set is the head, from which we subtract
other items form the tail, which are subtracted from head
Returns
-------
items which are in the head but not in any of the tail sets
Notes
-----
alt implementation: compute union of tail, then union with head, then use set_count(1) | [
"subtracts",
"all",
"tail",
"sets",
"from",
"the",
"head",
"set"
] | train | https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/arraysetops.py#L339-L360 |
gtnx/pandas-highcharts | pandas_highcharts/display.py | _generate_div_id_chart | def _generate_div_id_chart(prefix="chart_id", digits=8):
"""Generate a random id for div chart.
"""
choices = (random.randrange(0, 52) for _ in range(digits))
return prefix + "".join((string.ascii_letters[x] for x in choices)) | python | def _generate_div_id_chart(prefix="chart_id", digits=8):
"""Generate a random id for div chart.
"""
choices = (random.randrange(0, 52) for _ in range(digits))
return prefix + "".join((string.ascii_letters[x] for x in choices)) | [
"def",
"_generate_div_id_chart",
"(",
"prefix",
"=",
"\"chart_id\"",
",",
"digits",
"=",
"8",
")",
":",
"choices",
"=",
"(",
"random",
".",
"randrange",
"(",
"0",
",",
"52",
")",
"for",
"_",
"in",
"range",
"(",
"digits",
")",
")",
"return",
"prefix",
"+",
"\"\"",
".",
"join",
"(",
"(",
"string",
".",
"ascii_letters",
"[",
"x",
"]",
"for",
"x",
"in",
"choices",
")",
")"
] | Generate a random id for div chart. | [
"Generate",
"a",
"random",
"id",
"for",
"div",
"chart",
"."
] | train | https://github.com/gtnx/pandas-highcharts/blob/bf449b7db8b6966bcf95a0280bf2e4518f3e2419/pandas_highcharts/display.py#L36-L40 |
gtnx/pandas-highcharts | pandas_highcharts/display.py | display_charts | def display_charts(df, chart_type="default", render_to=None, **kwargs):
"""Display you DataFrame with Highcharts.
df: DataFrame
chart_type: str
'default' or 'stock'
render_to: str
div id for plotting your data
"""
if chart_type not in ("default", "stock"):
raise ValueError("Wrong chart_type: accept 'default' or 'stock'.")
chart_id = render_to if render_to is not None else _generate_div_id_chart()
json_data = serialize(df, render_to=chart_id, chart_type=chart_type,
**kwargs)
content = """<div id="{chart_id}"</div>
<script type="text/javascript">{data}</script>"""
return display(HTML(content.format(chart_id=chart_id,
data=json_data))) | python | def display_charts(df, chart_type="default", render_to=None, **kwargs):
"""Display you DataFrame with Highcharts.
df: DataFrame
chart_type: str
'default' or 'stock'
render_to: str
div id for plotting your data
"""
if chart_type not in ("default", "stock"):
raise ValueError("Wrong chart_type: accept 'default' or 'stock'.")
chart_id = render_to if render_to is not None else _generate_div_id_chart()
json_data = serialize(df, render_to=chart_id, chart_type=chart_type,
**kwargs)
content = """<div id="{chart_id}"</div>
<script type="text/javascript">{data}</script>"""
return display(HTML(content.format(chart_id=chart_id,
data=json_data))) | [
"def",
"display_charts",
"(",
"df",
",",
"chart_type",
"=",
"\"default\"",
",",
"render_to",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"chart_type",
"not",
"in",
"(",
"\"default\"",
",",
"\"stock\"",
")",
":",
"raise",
"ValueError",
"(",
"\"Wrong chart_type: accept 'default' or 'stock'.\"",
")",
"chart_id",
"=",
"render_to",
"if",
"render_to",
"is",
"not",
"None",
"else",
"_generate_div_id_chart",
"(",
")",
"json_data",
"=",
"serialize",
"(",
"df",
",",
"render_to",
"=",
"chart_id",
",",
"chart_type",
"=",
"chart_type",
",",
"*",
"*",
"kwargs",
")",
"content",
"=",
"\"\"\"<div id=\"{chart_id}\"</div>\n <script type=\"text/javascript\">{data}</script>\"\"\"",
"return",
"display",
"(",
"HTML",
"(",
"content",
".",
"format",
"(",
"chart_id",
"=",
"chart_id",
",",
"data",
"=",
"json_data",
")",
")",
")"
] | Display you DataFrame with Highcharts.
df: DataFrame
chart_type: str
'default' or 'stock'
render_to: str
div id for plotting your data | [
"Display",
"you",
"DataFrame",
"with",
"Highcharts",
"."
] | train | https://github.com/gtnx/pandas-highcharts/blob/bf449b7db8b6966bcf95a0280bf2e4518f3e2419/pandas_highcharts/display.py#L43-L60 |
gtnx/pandas-highcharts | pandas_highcharts/display.py | _series_data_filter | def _series_data_filter(data):
"""Replace each 'data' key in the list stored under 'series' by "[...]".
Use to not store and display the series data when you just want display and
modify the Highcharts parameters.
data: dict
Serialized DataFrame in a dict for Highcharts
Returns: a dict with filtered values
See also `core.serialize`
"""
data = copy.deepcopy(data)
if "series" in data:
for series in data["series"]:
series["data"] = "[...]"
return data | python | def _series_data_filter(data):
"""Replace each 'data' key in the list stored under 'series' by "[...]".
Use to not store and display the series data when you just want display and
modify the Highcharts parameters.
data: dict
Serialized DataFrame in a dict for Highcharts
Returns: a dict with filtered values
See also `core.serialize`
"""
data = copy.deepcopy(data)
if "series" in data:
for series in data["series"]:
series["data"] = "[...]"
return data | [
"def",
"_series_data_filter",
"(",
"data",
")",
":",
"data",
"=",
"copy",
".",
"deepcopy",
"(",
"data",
")",
"if",
"\"series\"",
"in",
"data",
":",
"for",
"series",
"in",
"data",
"[",
"\"series\"",
"]",
":",
"series",
"[",
"\"data\"",
"]",
"=",
"\"[...]\"",
"return",
"data"
] | Replace each 'data' key in the list stored under 'series' by "[...]".
Use to not store and display the series data when you just want display and
modify the Highcharts parameters.
data: dict
Serialized DataFrame in a dict for Highcharts
Returns: a dict with filtered values
See also `core.serialize` | [
"Replace",
"each",
"data",
"key",
"in",
"the",
"list",
"stored",
"under",
"series",
"by",
"[",
"...",
"]",
"."
] | train | https://github.com/gtnx/pandas-highcharts/blob/bf449b7db8b6966bcf95a0280bf2e4518f3e2419/pandas_highcharts/display.py#L63-L80 |
gtnx/pandas-highcharts | pandas_highcharts/display.py | pretty_params | def pretty_params(data, indent=2):
"""Pretty print your Highcharts params (into a JSON).
data: dict
Serialized DataFrame in a dict for Highcharts
"""
data_to_print = _series_data_filter(data)
print(json.dumps(data_to_print, indent=indent)) | python | def pretty_params(data, indent=2):
"""Pretty print your Highcharts params (into a JSON).
data: dict
Serialized DataFrame in a dict for Highcharts
"""
data_to_print = _series_data_filter(data)
print(json.dumps(data_to_print, indent=indent)) | [
"def",
"pretty_params",
"(",
"data",
",",
"indent",
"=",
"2",
")",
":",
"data_to_print",
"=",
"_series_data_filter",
"(",
"data",
")",
"print",
"(",
"json",
".",
"dumps",
"(",
"data_to_print",
",",
"indent",
"=",
"indent",
")",
")"
] | Pretty print your Highcharts params (into a JSON).
data: dict
Serialized DataFrame in a dict for Highcharts | [
"Pretty",
"print",
"your",
"Highcharts",
"params",
"(",
"into",
"a",
"JSON",
")",
"."
] | train | https://github.com/gtnx/pandas-highcharts/blob/bf449b7db8b6966bcf95a0280bf2e4518f3e2419/pandas_highcharts/display.py#L83-L90 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | Transport.get_additional_params | def get_additional_params(self, **params):
"""
Filter to get the additional params needed for polling
"""
# TODO: Move these params to their own vertical if needed.
polling_params = [
'locationschema',
'carrierschema',
'sorttype',
'sortorder',
'originairports',
'destinationairports',
'stops',
'outbounddeparttime',
'outbounddepartstarttime',
'outbounddepartendtime',
'inbounddeparttime',
'inbounddepartstarttime',
'inbounddepartendtime',
'duration',
'includecarriers',
'excludecarriers'
]
additional_params = dict(
(key, value) for key, value in params.items()
if key in polling_params
)
return additional_params | python | def get_additional_params(self, **params):
"""
Filter to get the additional params needed for polling
"""
# TODO: Move these params to their own vertical if needed.
polling_params = [
'locationschema',
'carrierschema',
'sorttype',
'sortorder',
'originairports',
'destinationairports',
'stops',
'outbounddeparttime',
'outbounddepartstarttime',
'outbounddepartendtime',
'inbounddeparttime',
'inbounddepartstarttime',
'inbounddepartendtime',
'duration',
'includecarriers',
'excludecarriers'
]
additional_params = dict(
(key, value) for key, value in params.items()
if key in polling_params
)
return additional_params | [
"def",
"get_additional_params",
"(",
"self",
",",
"*",
"*",
"params",
")",
":",
"# TODO: Move these params to their own vertical if needed.",
"polling_params",
"=",
"[",
"'locationschema'",
",",
"'carrierschema'",
",",
"'sorttype'",
",",
"'sortorder'",
",",
"'originairports'",
",",
"'destinationairports'",
",",
"'stops'",
",",
"'outbounddeparttime'",
",",
"'outbounddepartstarttime'",
",",
"'outbounddepartendtime'",
",",
"'inbounddeparttime'",
",",
"'inbounddepartstarttime'",
",",
"'inbounddepartendtime'",
",",
"'duration'",
",",
"'includecarriers'",
",",
"'excludecarriers'",
"]",
"additional_params",
"=",
"dict",
"(",
"(",
"key",
",",
"value",
")",
"for",
"key",
",",
"value",
"in",
"params",
".",
"items",
"(",
")",
"if",
"key",
"in",
"polling_params",
")",
"return",
"additional_params"
] | Filter to get the additional params needed for polling | [
"Filter",
"to",
"get",
"the",
"additional",
"params",
"needed",
"for",
"polling"
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L102-L132 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | Transport.get_result | def get_result(self, errors=GRACEFUL, **params):
"""
Get all results, no filtering, etc. by creating and polling the
session.
"""
additional_params = self.get_additional_params(**params)
return self.poll_session(
self.create_session(**params),
errors=errors,
**additional_params
) | python | def get_result(self, errors=GRACEFUL, **params):
"""
Get all results, no filtering, etc. by creating and polling the
session.
"""
additional_params = self.get_additional_params(**params)
return self.poll_session(
self.create_session(**params),
errors=errors,
**additional_params
) | [
"def",
"get_result",
"(",
"self",
",",
"errors",
"=",
"GRACEFUL",
",",
"*",
"*",
"params",
")",
":",
"additional_params",
"=",
"self",
".",
"get_additional_params",
"(",
"*",
"*",
"params",
")",
"return",
"self",
".",
"poll_session",
"(",
"self",
".",
"create_session",
"(",
"*",
"*",
"params",
")",
",",
"errors",
"=",
"errors",
",",
"*",
"*",
"additional_params",
")"
] | Get all results, no filtering, etc. by creating and polling the
session. | [
"Get",
"all",
"results",
"no",
"filtering",
"etc",
".",
"by",
"creating",
"and",
"polling",
"the",
"session",
"."
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L134-L144 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | Transport.make_request | def make_request(self, service_url, method='get', headers=None, data=None,
callback=None, errors=GRACEFUL, **params):
"""
Reusable method for performing requests.
:param service_url - URL to request
:param method - request method, default is 'get'
:param headers - request headers
:param data - post data
:param callback - callback to be applied to response,
default callback will parse response as json object.
:param errors - specifies communication errors handling mode,
possible values are:
* strict (default) - throw an error as soon as one
occurred
* graceful - ignore certain errors, e.g. EmptyResponse
* ignore - ignore all errors and return a result in
any case.
NOTE that it DOES NOT mean that
no exceptions can be raised from
this method, it mostly ignores
communication related errors.
* None or empty string equals to default
:param params - additional query parameters for request
"""
error_modes = (STRICT, GRACEFUL, IGNORE)
error_mode = errors or GRACEFUL
if error_mode.lower() not in error_modes:
raise ValueError(
'Possible values for errors argument are: %s' %
', '.join(error_modes)
)
if callback is None:
callback = self._default_resp_callback
if 'apikey' not in service_url.lower():
params.update({
'apiKey': self.api_key
})
request = getattr(requests, method.lower())
log.debug('* Request URL: %s' % service_url)
log.debug('* Request method: %s' % method)
log.debug('* Request query params: %s' % params)
log.debug('* Request headers: %s' % headers)
r = request(service_url, headers=headers, data=data, params=params)
try:
r.raise_for_status()
return callback(r)
except Exception as e:
return self._with_error_handling(r, e, error_mode,
self.response_format) | python | def make_request(self, service_url, method='get', headers=None, data=None,
callback=None, errors=GRACEFUL, **params):
"""
Reusable method for performing requests.
:param service_url - URL to request
:param method - request method, default is 'get'
:param headers - request headers
:param data - post data
:param callback - callback to be applied to response,
default callback will parse response as json object.
:param errors - specifies communication errors handling mode,
possible values are:
* strict (default) - throw an error as soon as one
occurred
* graceful - ignore certain errors, e.g. EmptyResponse
* ignore - ignore all errors and return a result in
any case.
NOTE that it DOES NOT mean that
no exceptions can be raised from
this method, it mostly ignores
communication related errors.
* None or empty string equals to default
:param params - additional query parameters for request
"""
error_modes = (STRICT, GRACEFUL, IGNORE)
error_mode = errors or GRACEFUL
if error_mode.lower() not in error_modes:
raise ValueError(
'Possible values for errors argument are: %s' %
', '.join(error_modes)
)
if callback is None:
callback = self._default_resp_callback
if 'apikey' not in service_url.lower():
params.update({
'apiKey': self.api_key
})
request = getattr(requests, method.lower())
log.debug('* Request URL: %s' % service_url)
log.debug('* Request method: %s' % method)
log.debug('* Request query params: %s' % params)
log.debug('* Request headers: %s' % headers)
r = request(service_url, headers=headers, data=data, params=params)
try:
r.raise_for_status()
return callback(r)
except Exception as e:
return self._with_error_handling(r, e, error_mode,
self.response_format) | [
"def",
"make_request",
"(",
"self",
",",
"service_url",
",",
"method",
"=",
"'get'",
",",
"headers",
"=",
"None",
",",
"data",
"=",
"None",
",",
"callback",
"=",
"None",
",",
"errors",
"=",
"GRACEFUL",
",",
"*",
"*",
"params",
")",
":",
"error_modes",
"=",
"(",
"STRICT",
",",
"GRACEFUL",
",",
"IGNORE",
")",
"error_mode",
"=",
"errors",
"or",
"GRACEFUL",
"if",
"error_mode",
".",
"lower",
"(",
")",
"not",
"in",
"error_modes",
":",
"raise",
"ValueError",
"(",
"'Possible values for errors argument are: %s'",
"%",
"', '",
".",
"join",
"(",
"error_modes",
")",
")",
"if",
"callback",
"is",
"None",
":",
"callback",
"=",
"self",
".",
"_default_resp_callback",
"if",
"'apikey'",
"not",
"in",
"service_url",
".",
"lower",
"(",
")",
":",
"params",
".",
"update",
"(",
"{",
"'apiKey'",
":",
"self",
".",
"api_key",
"}",
")",
"request",
"=",
"getattr",
"(",
"requests",
",",
"method",
".",
"lower",
"(",
")",
")",
"log",
".",
"debug",
"(",
"'* Request URL: %s'",
"%",
"service_url",
")",
"log",
".",
"debug",
"(",
"'* Request method: %s'",
"%",
"method",
")",
"log",
".",
"debug",
"(",
"'* Request query params: %s'",
"%",
"params",
")",
"log",
".",
"debug",
"(",
"'* Request headers: %s'",
"%",
"headers",
")",
"r",
"=",
"request",
"(",
"service_url",
",",
"headers",
"=",
"headers",
",",
"data",
"=",
"data",
",",
"params",
"=",
"params",
")",
"try",
":",
"r",
".",
"raise_for_status",
"(",
")",
"return",
"callback",
"(",
"r",
")",
"except",
"Exception",
"as",
"e",
":",
"return",
"self",
".",
"_with_error_handling",
"(",
"r",
",",
"e",
",",
"error_mode",
",",
"self",
".",
"response_format",
")"
] | Reusable method for performing requests.
:param service_url - URL to request
:param method - request method, default is 'get'
:param headers - request headers
:param data - post data
:param callback - callback to be applied to response,
default callback will parse response as json object.
:param errors - specifies communication errors handling mode,
possible values are:
* strict (default) - throw an error as soon as one
occurred
* graceful - ignore certain errors, e.g. EmptyResponse
* ignore - ignore all errors and return a result in
any case.
NOTE that it DOES NOT mean that
no exceptions can be raised from
this method, it mostly ignores
communication related errors.
* None or empty string equals to default
:param params - additional query parameters for request | [
"Reusable",
"method",
"for",
"performing",
"requests",
"."
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L146-L200 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | Transport.get_markets | def get_markets(self, market):
"""
Get the list of markets
http://business.skyscanner.net/portal/en-GB/Documentation/Markets
"""
url = "{url}/{market}".format(url=self.MARKET_SERVICE_URL,
market=market)
return self.make_request(url, headers=self._headers()) | python | def get_markets(self, market):
"""
Get the list of markets
http://business.skyscanner.net/portal/en-GB/Documentation/Markets
"""
url = "{url}/{market}".format(url=self.MARKET_SERVICE_URL,
market=market)
return self.make_request(url, headers=self._headers()) | [
"def",
"get_markets",
"(",
"self",
",",
"market",
")",
":",
"url",
"=",
"\"{url}/{market}\"",
".",
"format",
"(",
"url",
"=",
"self",
".",
"MARKET_SERVICE_URL",
",",
"market",
"=",
"market",
")",
"return",
"self",
".",
"make_request",
"(",
"url",
",",
"headers",
"=",
"self",
".",
"_headers",
"(",
")",
")"
] | Get the list of markets
http://business.skyscanner.net/portal/en-GB/Documentation/Markets | [
"Get",
"the",
"list",
"of",
"markets",
"http",
":",
"//",
"business",
".",
"skyscanner",
".",
"net",
"/",
"portal",
"/",
"en",
"-",
"GB",
"/",
"Documentation",
"/",
"Markets"
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L202-L209 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | Transport.location_autosuggest | def location_autosuggest(self, **params):
"""
Location Autosuggest Services
Doc URLs:
http://business.skyscanner.net/portal/en-GB/
Documentation/Autosuggest
http://business.skyscanner.net/portal/en-GB/
Documentation/CarHireAutoSuggest
http://business.skyscanner.net/portal/en-GB/
Documentation/HotelsAutoSuggest
Format:
Generic - {LOCATION_AUTOSUGGEST_URL}/{market}/
{currency}/{locale}/?query={query}&apiKey={apiKey}
CarHire/Hotels - {LOCATION_AUTOSUGGEST_URL}/{market}/
{currency}/{locale}/{query}?apiKey={apiKey}
"""
service_url = "{url}/{params_path}".format(
url=self.LOCATION_AUTOSUGGEST_URL,
params_path=self._construct_params(
params, self.LOCATION_AUTOSUGGEST_PARAMS)
)
return self.make_request(
service_url,
headers=self._headers(),
**params
) | python | def location_autosuggest(self, **params):
"""
Location Autosuggest Services
Doc URLs:
http://business.skyscanner.net/portal/en-GB/
Documentation/Autosuggest
http://business.skyscanner.net/portal/en-GB/
Documentation/CarHireAutoSuggest
http://business.skyscanner.net/portal/en-GB/
Documentation/HotelsAutoSuggest
Format:
Generic - {LOCATION_AUTOSUGGEST_URL}/{market}/
{currency}/{locale}/?query={query}&apiKey={apiKey}
CarHire/Hotels - {LOCATION_AUTOSUGGEST_URL}/{market}/
{currency}/{locale}/{query}?apiKey={apiKey}
"""
service_url = "{url}/{params_path}".format(
url=self.LOCATION_AUTOSUGGEST_URL,
params_path=self._construct_params(
params, self.LOCATION_AUTOSUGGEST_PARAMS)
)
return self.make_request(
service_url,
headers=self._headers(),
**params
) | [
"def",
"location_autosuggest",
"(",
"self",
",",
"*",
"*",
"params",
")",
":",
"service_url",
"=",
"\"{url}/{params_path}\"",
".",
"format",
"(",
"url",
"=",
"self",
".",
"LOCATION_AUTOSUGGEST_URL",
",",
"params_path",
"=",
"self",
".",
"_construct_params",
"(",
"params",
",",
"self",
".",
"LOCATION_AUTOSUGGEST_PARAMS",
")",
")",
"return",
"self",
".",
"make_request",
"(",
"service_url",
",",
"headers",
"=",
"self",
".",
"_headers",
"(",
")",
",",
"*",
"*",
"params",
")"
] | Location Autosuggest Services
Doc URLs:
http://business.skyscanner.net/portal/en-GB/
Documentation/Autosuggest
http://business.skyscanner.net/portal/en-GB/
Documentation/CarHireAutoSuggest
http://business.skyscanner.net/portal/en-GB/
Documentation/HotelsAutoSuggest
Format:
Generic - {LOCATION_AUTOSUGGEST_URL}/{market}/
{currency}/{locale}/?query={query}&apiKey={apiKey}
CarHire/Hotels - {LOCATION_AUTOSUGGEST_URL}/{market}/
{currency}/{locale}/{query}?apiKey={apiKey} | [
"Location",
"Autosuggest",
"Services",
"Doc",
"URLs",
":"
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L211-L241 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | Transport.poll_session | def poll_session(self, poll_url, initial_delay=2, delay=1, tries=20,
errors=GRACEFUL, **params):
"""
Poll the URL
:param poll_url - URL to poll,
should be returned by 'create_session' call
:param initial_delay - specifies how many seconds to wait before
the first poll
:param delay - specifies how many seconds to wait between the polls
:param tries - number of polls to perform
:param errors - errors handling mode,
see corresponding parameter in 'make_request' method
:param params - additional query params for each poll request
"""
time.sleep(initial_delay)
poll_response = None
for n in range(tries):
poll_response = self.make_request(
poll_url,
headers=self._headers(),
errors=errors, **params
)
if self.is_poll_complete(poll_response):
return poll_response
else:
time.sleep(delay)
if STRICT == errors:
raise ExceededRetries(
"Failed to poll within {0} tries.".format(tries))
else:
return poll_response | python | def poll_session(self, poll_url, initial_delay=2, delay=1, tries=20,
errors=GRACEFUL, **params):
"""
Poll the URL
:param poll_url - URL to poll,
should be returned by 'create_session' call
:param initial_delay - specifies how many seconds to wait before
the first poll
:param delay - specifies how many seconds to wait between the polls
:param tries - number of polls to perform
:param errors - errors handling mode,
see corresponding parameter in 'make_request' method
:param params - additional query params for each poll request
"""
time.sleep(initial_delay)
poll_response = None
for n in range(tries):
poll_response = self.make_request(
poll_url,
headers=self._headers(),
errors=errors, **params
)
if self.is_poll_complete(poll_response):
return poll_response
else:
time.sleep(delay)
if STRICT == errors:
raise ExceededRetries(
"Failed to poll within {0} tries.".format(tries))
else:
return poll_response | [
"def",
"poll_session",
"(",
"self",
",",
"poll_url",
",",
"initial_delay",
"=",
"2",
",",
"delay",
"=",
"1",
",",
"tries",
"=",
"20",
",",
"errors",
"=",
"GRACEFUL",
",",
"*",
"*",
"params",
")",
":",
"time",
".",
"sleep",
"(",
"initial_delay",
")",
"poll_response",
"=",
"None",
"for",
"n",
"in",
"range",
"(",
"tries",
")",
":",
"poll_response",
"=",
"self",
".",
"make_request",
"(",
"poll_url",
",",
"headers",
"=",
"self",
".",
"_headers",
"(",
")",
",",
"errors",
"=",
"errors",
",",
"*",
"*",
"params",
")",
"if",
"self",
".",
"is_poll_complete",
"(",
"poll_response",
")",
":",
"return",
"poll_response",
"else",
":",
"time",
".",
"sleep",
"(",
"delay",
")",
"if",
"STRICT",
"==",
"errors",
":",
"raise",
"ExceededRetries",
"(",
"\"Failed to poll within {0} tries.\"",
".",
"format",
"(",
"tries",
")",
")",
"else",
":",
"return",
"poll_response"
] | Poll the URL
:param poll_url - URL to poll,
should be returned by 'create_session' call
:param initial_delay - specifies how many seconds to wait before
the first poll
:param delay - specifies how many seconds to wait between the polls
:param tries - number of polls to perform
:param errors - errors handling mode,
see corresponding parameter in 'make_request' method
:param params - additional query params for each poll request | [
"Poll",
"the",
"URL",
":",
"param",
"poll_url",
"-",
"URL",
"to",
"poll",
"should",
"be",
"returned",
"by",
"create_session",
"call",
":",
"param",
"initial_delay",
"-",
"specifies",
"how",
"many",
"seconds",
"to",
"wait",
"before",
"the",
"first",
"poll",
":",
"param",
"delay",
"-",
"specifies",
"how",
"many",
"seconds",
"to",
"wait",
"between",
"the",
"polls",
":",
"param",
"tries",
"-",
"number",
"of",
"polls",
"to",
"perform",
":",
"param",
"errors",
"-",
"errors",
"handling",
"mode",
"see",
"corresponding",
"parameter",
"in",
"make_request",
"method",
":",
"param",
"params",
"-",
"additional",
"query",
"params",
"for",
"each",
"poll",
"request"
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L249-L281 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | Transport._construct_params | def _construct_params(params, required_keys, opt_keys=None):
"""
Construct params list in order of given keys.
"""
try:
params_list = [params.pop(key) for key in required_keys]
except KeyError as e:
raise MissingParameter(
'Missing expected request parameter: %s' % e)
if opt_keys:
params_list.extend([params.pop(key)
for key in opt_keys if key in params])
return '/'.join(str(p) for p in params_list) | python | def _construct_params(params, required_keys, opt_keys=None):
"""
Construct params list in order of given keys.
"""
try:
params_list = [params.pop(key) for key in required_keys]
except KeyError as e:
raise MissingParameter(
'Missing expected request parameter: %s' % e)
if opt_keys:
params_list.extend([params.pop(key)
for key in opt_keys if key in params])
return '/'.join(str(p) for p in params_list) | [
"def",
"_construct_params",
"(",
"params",
",",
"required_keys",
",",
"opt_keys",
"=",
"None",
")",
":",
"try",
":",
"params_list",
"=",
"[",
"params",
".",
"pop",
"(",
"key",
")",
"for",
"key",
"in",
"required_keys",
"]",
"except",
"KeyError",
"as",
"e",
":",
"raise",
"MissingParameter",
"(",
"'Missing expected request parameter: %s'",
"%",
"e",
")",
"if",
"opt_keys",
":",
"params_list",
".",
"extend",
"(",
"[",
"params",
".",
"pop",
"(",
"key",
")",
"for",
"key",
"in",
"opt_keys",
"if",
"key",
"in",
"params",
"]",
")",
"return",
"'/'",
".",
"join",
"(",
"str",
"(",
"p",
")",
"for",
"p",
"in",
"params_list",
")"
] | Construct params list in order of given keys. | [
"Construct",
"params",
"list",
"in",
"order",
"of",
"given",
"keys",
"."
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L400-L412 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | Flights.create_session | def create_session(self, **params):
"""
Create the session
date format: YYYY-mm-dd
location: ISO code
"""
return self.make_request(self.PRICING_SESSION_URL,
method='post',
headers=self._session_headers(),
callback=lambda resp: resp.headers[
'location'],
data=params) | python | def create_session(self, **params):
"""
Create the session
date format: YYYY-mm-dd
location: ISO code
"""
return self.make_request(self.PRICING_SESSION_URL,
method='post',
headers=self._session_headers(),
callback=lambda resp: resp.headers[
'location'],
data=params) | [
"def",
"create_session",
"(",
"self",
",",
"*",
"*",
"params",
")",
":",
"return",
"self",
".",
"make_request",
"(",
"self",
".",
"PRICING_SESSION_URL",
",",
"method",
"=",
"'post'",
",",
"headers",
"=",
"self",
".",
"_session_headers",
"(",
")",
",",
"callback",
"=",
"lambda",
"resp",
":",
"resp",
".",
"headers",
"[",
"'location'",
"]",
",",
"data",
"=",
"params",
")"
] | Create the session
date format: YYYY-mm-dd
location: ISO code | [
"Create",
"the",
"session",
"date",
"format",
":",
"YYYY",
"-",
"mm",
"-",
"dd",
"location",
":",
"ISO",
"code"
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L434-L445 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | Flights.request_booking_details | def request_booking_details(self, poll_url, **params):
"""
Request for booking details
URL Format:
{API_HOST}/apiservices/pricing/v1.0/{session key}/booking
?apiKey={apiKey}
"""
return self.make_request("%s/booking" % poll_url,
method='put',
headers=self._headers(),
callback=lambda resp: resp.headers[
'location'],
**params) | python | def request_booking_details(self, poll_url, **params):
"""
Request for booking details
URL Format:
{API_HOST}/apiservices/pricing/v1.0/{session key}/booking
?apiKey={apiKey}
"""
return self.make_request("%s/booking" % poll_url,
method='put',
headers=self._headers(),
callback=lambda resp: resp.headers[
'location'],
**params) | [
"def",
"request_booking_details",
"(",
"self",
",",
"poll_url",
",",
"*",
"*",
"params",
")",
":",
"return",
"self",
".",
"make_request",
"(",
"\"%s/booking\"",
"%",
"poll_url",
",",
"method",
"=",
"'put'",
",",
"headers",
"=",
"self",
".",
"_headers",
"(",
")",
",",
"callback",
"=",
"lambda",
"resp",
":",
"resp",
".",
"headers",
"[",
"'location'",
"]",
",",
"*",
"*",
"params",
")"
] | Request for booking details
URL Format:
{API_HOST}/apiservices/pricing/v1.0/{session key}/booking
?apiKey={apiKey} | [
"Request",
"for",
"booking",
"details",
"URL",
"Format",
":",
"{",
"API_HOST",
"}",
"/",
"apiservices",
"/",
"pricing",
"/",
"v1",
".",
"0",
"/",
"{",
"session",
"key",
"}",
"/",
"booking",
"?apiKey",
"=",
"{",
"apiKey",
"}"
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L447-L459 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | FlightsCache.get_cheapest_price_by_date | def get_cheapest_price_by_date(self, **params):
"""
{API_HOST}/apiservices/browsedates/v1.0/{market}/{currency}/{locale}/
{originPlace}/{destinationPlace}/
{outboundPartialDate}/{inboundPartialDate}
?apiKey={apiKey}
"""
service_url = "{url}/{params_path}".format(
url=self.BROWSE_DATES_SERVICE_URL,
params_path=self._construct_params(
params, self._REQ_PARAMS, self._OPT_PARAMS)
)
return self.make_request(
service_url,
headers=self._headers(),
**params
) | python | def get_cheapest_price_by_date(self, **params):
"""
{API_HOST}/apiservices/browsedates/v1.0/{market}/{currency}/{locale}/
{originPlace}/{destinationPlace}/
{outboundPartialDate}/{inboundPartialDate}
?apiKey={apiKey}
"""
service_url = "{url}/{params_path}".format(
url=self.BROWSE_DATES_SERVICE_URL,
params_path=self._construct_params(
params, self._REQ_PARAMS, self._OPT_PARAMS)
)
return self.make_request(
service_url,
headers=self._headers(),
**params
) | [
"def",
"get_cheapest_price_by_date",
"(",
"self",
",",
"*",
"*",
"params",
")",
":",
"service_url",
"=",
"\"{url}/{params_path}\"",
".",
"format",
"(",
"url",
"=",
"self",
".",
"BROWSE_DATES_SERVICE_URL",
",",
"params_path",
"=",
"self",
".",
"_construct_params",
"(",
"params",
",",
"self",
".",
"_REQ_PARAMS",
",",
"self",
".",
"_OPT_PARAMS",
")",
")",
"return",
"self",
".",
"make_request",
"(",
"service_url",
",",
"headers",
"=",
"self",
".",
"_headers",
"(",
")",
",",
"*",
"*",
"params",
")"
] | {API_HOST}/apiservices/browsedates/v1.0/{market}/{currency}/{locale}/
{originPlace}/{destinationPlace}/
{outboundPartialDate}/{inboundPartialDate}
?apiKey={apiKey} | [
"{",
"API_HOST",
"}",
"/",
"apiservices",
"/",
"browsedates",
"/",
"v1",
".",
"0",
"/",
"{",
"market",
"}",
"/",
"{",
"currency",
"}",
"/",
"{",
"locale",
"}",
"/",
"{",
"originPlace",
"}",
"/",
"{",
"destinationPlace",
"}",
"/",
"{",
"outboundPartialDate",
"}",
"/",
"{",
"inboundPartialDate",
"}",
"?apiKey",
"=",
"{",
"apiKey",
"}"
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L484-L501 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | FlightsCache.get_cheapest_price_by_route | def get_cheapest_price_by_route(self, **params):
"""
{API_HOST}/apiservices/browseroutes/v1.0/{market}/{currency}/{locale}/
{originPlace}/{destinationPlace}/
{outboundPartialDate}/{inboundPartialDate}
?apiKey={apiKey}
"""
service_url = "{url}/{params_path}".format(
url=self.BROWSE_ROUTES_SERVICE_URL,
params_path=self._construct_params(
params, self._REQ_PARAMS, self._OPT_PARAMS)
)
return self.make_request(
service_url,
headers=self._headers(),
**params
) | python | def get_cheapest_price_by_route(self, **params):
"""
{API_HOST}/apiservices/browseroutes/v1.0/{market}/{currency}/{locale}/
{originPlace}/{destinationPlace}/
{outboundPartialDate}/{inboundPartialDate}
?apiKey={apiKey}
"""
service_url = "{url}/{params_path}".format(
url=self.BROWSE_ROUTES_SERVICE_URL,
params_path=self._construct_params(
params, self._REQ_PARAMS, self._OPT_PARAMS)
)
return self.make_request(
service_url,
headers=self._headers(),
**params
) | [
"def",
"get_cheapest_price_by_route",
"(",
"self",
",",
"*",
"*",
"params",
")",
":",
"service_url",
"=",
"\"{url}/{params_path}\"",
".",
"format",
"(",
"url",
"=",
"self",
".",
"BROWSE_ROUTES_SERVICE_URL",
",",
"params_path",
"=",
"self",
".",
"_construct_params",
"(",
"params",
",",
"self",
".",
"_REQ_PARAMS",
",",
"self",
".",
"_OPT_PARAMS",
")",
")",
"return",
"self",
".",
"make_request",
"(",
"service_url",
",",
"headers",
"=",
"self",
".",
"_headers",
"(",
")",
",",
"*",
"*",
"params",
")"
] | {API_HOST}/apiservices/browseroutes/v1.0/{market}/{currency}/{locale}/
{originPlace}/{destinationPlace}/
{outboundPartialDate}/{inboundPartialDate}
?apiKey={apiKey} | [
"{",
"API_HOST",
"}",
"/",
"apiservices",
"/",
"browseroutes",
"/",
"v1",
".",
"0",
"/",
"{",
"market",
"}",
"/",
"{",
"currency",
"}",
"/",
"{",
"locale",
"}",
"/",
"{",
"originPlace",
"}",
"/",
"{",
"destinationPlace",
"}",
"/",
"{",
"outboundPartialDate",
"}",
"/",
"{",
"inboundPartialDate",
"}",
"?apiKey",
"=",
"{",
"apiKey",
"}"
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L503-L520 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | FlightsCache.get_cheapest_quotes | def get_cheapest_quotes(self, **params):
"""
{API_HOST}/apiservices/browsequotes/v1.0/{market}/{currency}/{locale}/
{originPlace}/{destinationPlace}/
{outboundPartialDate}/{inboundPartialDate}
?apiKey={apiKey}
"""
service_url = "{url}/{params_path}".format(
url=self.BROWSE_QUOTES_SERVICE_URL,
params_path=self._construct_params(
params, self._REQ_PARAMS, self._OPT_PARAMS)
)
return self.make_request(
service_url,
headers=self._headers(),
**params
) | python | def get_cheapest_quotes(self, **params):
"""
{API_HOST}/apiservices/browsequotes/v1.0/{market}/{currency}/{locale}/
{originPlace}/{destinationPlace}/
{outboundPartialDate}/{inboundPartialDate}
?apiKey={apiKey}
"""
service_url = "{url}/{params_path}".format(
url=self.BROWSE_QUOTES_SERVICE_URL,
params_path=self._construct_params(
params, self._REQ_PARAMS, self._OPT_PARAMS)
)
return self.make_request(
service_url,
headers=self._headers(),
**params
) | [
"def",
"get_cheapest_quotes",
"(",
"self",
",",
"*",
"*",
"params",
")",
":",
"service_url",
"=",
"\"{url}/{params_path}\"",
".",
"format",
"(",
"url",
"=",
"self",
".",
"BROWSE_QUOTES_SERVICE_URL",
",",
"params_path",
"=",
"self",
".",
"_construct_params",
"(",
"params",
",",
"self",
".",
"_REQ_PARAMS",
",",
"self",
".",
"_OPT_PARAMS",
")",
")",
"return",
"self",
".",
"make_request",
"(",
"service_url",
",",
"headers",
"=",
"self",
".",
"_headers",
"(",
")",
",",
"*",
"*",
"params",
")"
] | {API_HOST}/apiservices/browsequotes/v1.0/{market}/{currency}/{locale}/
{originPlace}/{destinationPlace}/
{outboundPartialDate}/{inboundPartialDate}
?apiKey={apiKey} | [
"{",
"API_HOST",
"}",
"/",
"apiservices",
"/",
"browsequotes",
"/",
"v1",
".",
"0",
"/",
"{",
"market",
"}",
"/",
"{",
"currency",
"}",
"/",
"{",
"locale",
"}",
"/",
"{",
"originPlace",
"}",
"/",
"{",
"destinationPlace",
"}",
"/",
"{",
"outboundPartialDate",
"}",
"/",
"{",
"inboundPartialDate",
"}",
"?apiKey",
"=",
"{",
"apiKey",
"}"
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L522-L538 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | FlightsCache.get_grid_prices_by_date | def get_grid_prices_by_date(self, **params):
"""
{API_HOST}/apiservices/browsegrid/v1.0/{market}/{currency}/{locale}/
{originPlace}/{destinationPlace}/
{outboundPartialDate}/{inboundPartialDate}
?apiKey={apiKey}
"""
service_url = "{url}/{params_path}".format(
url=self.BROWSE_GRID_SERVICE_URL,
params_path=self._construct_params(
params, self._REQ_PARAMS, self._OPT_PARAMS)
)
return self.make_request(
service_url,
headers=self._headers(),
**params
) | python | def get_grid_prices_by_date(self, **params):
"""
{API_HOST}/apiservices/browsegrid/v1.0/{market}/{currency}/{locale}/
{originPlace}/{destinationPlace}/
{outboundPartialDate}/{inboundPartialDate}
?apiKey={apiKey}
"""
service_url = "{url}/{params_path}".format(
url=self.BROWSE_GRID_SERVICE_URL,
params_path=self._construct_params(
params, self._REQ_PARAMS, self._OPT_PARAMS)
)
return self.make_request(
service_url,
headers=self._headers(),
**params
) | [
"def",
"get_grid_prices_by_date",
"(",
"self",
",",
"*",
"*",
"params",
")",
":",
"service_url",
"=",
"\"{url}/{params_path}\"",
".",
"format",
"(",
"url",
"=",
"self",
".",
"BROWSE_GRID_SERVICE_URL",
",",
"params_path",
"=",
"self",
".",
"_construct_params",
"(",
"params",
",",
"self",
".",
"_REQ_PARAMS",
",",
"self",
".",
"_OPT_PARAMS",
")",
")",
"return",
"self",
".",
"make_request",
"(",
"service_url",
",",
"headers",
"=",
"self",
".",
"_headers",
"(",
")",
",",
"*",
"*",
"params",
")"
] | {API_HOST}/apiservices/browsegrid/v1.0/{market}/{currency}/{locale}/
{originPlace}/{destinationPlace}/
{outboundPartialDate}/{inboundPartialDate}
?apiKey={apiKey} | [
"{",
"API_HOST",
"}",
"/",
"apiservices",
"/",
"browsegrid",
"/",
"v1",
".",
"0",
"/",
"{",
"market",
"}",
"/",
"{",
"currency",
"}",
"/",
"{",
"locale",
"}",
"/",
"{",
"originPlace",
"}",
"/",
"{",
"destinationPlace",
"}",
"/",
"{",
"outboundPartialDate",
"}",
"/",
"{",
"inboundPartialDate",
"}",
"?apiKey",
"=",
"{",
"apiKey",
"}"
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L540-L556 |
Skyscanner/skyscanner-python-sdk | skyscanner/skyscanner.py | CarHire.create_session | def create_session(self, **params):
"""
Create the session
date format: YYYY-MM-DDThh:mm
location: ISO code
"""
required_keys = ('market', 'currency', 'locale', 'pickupplace',
'dropoffplace', 'pickupdatetime', 'dropoffdatetime',
'driverage')
service_url = "{url}/{params_path}".format(
url=self.PRICING_SESSION_URL,
params_path=self._construct_params(params, required_keys)
)
poll_path = self.make_request(service_url,
headers=self._session_headers(),
callback=lambda resp: resp.headers[
'location'],
userip=params['userip'])
return "{url}{path}".format(url=self.API_HOST, path=poll_path) | python | def create_session(self, **params):
"""
Create the session
date format: YYYY-MM-DDThh:mm
location: ISO code
"""
required_keys = ('market', 'currency', 'locale', 'pickupplace',
'dropoffplace', 'pickupdatetime', 'dropoffdatetime',
'driverage')
service_url = "{url}/{params_path}".format(
url=self.PRICING_SESSION_URL,
params_path=self._construct_params(params, required_keys)
)
poll_path = self.make_request(service_url,
headers=self._session_headers(),
callback=lambda resp: resp.headers[
'location'],
userip=params['userip'])
return "{url}{path}".format(url=self.API_HOST, path=poll_path) | [
"def",
"create_session",
"(",
"self",
",",
"*",
"*",
"params",
")",
":",
"required_keys",
"=",
"(",
"'market'",
",",
"'currency'",
",",
"'locale'",
",",
"'pickupplace'",
",",
"'dropoffplace'",
",",
"'pickupdatetime'",
",",
"'dropoffdatetime'",
",",
"'driverage'",
")",
"service_url",
"=",
"\"{url}/{params_path}\"",
".",
"format",
"(",
"url",
"=",
"self",
".",
"PRICING_SESSION_URL",
",",
"params_path",
"=",
"self",
".",
"_construct_params",
"(",
"params",
",",
"required_keys",
")",
")",
"poll_path",
"=",
"self",
".",
"make_request",
"(",
"service_url",
",",
"headers",
"=",
"self",
".",
"_session_headers",
"(",
")",
",",
"callback",
"=",
"lambda",
"resp",
":",
"resp",
".",
"headers",
"[",
"'location'",
"]",
",",
"userip",
"=",
"params",
"[",
"'userip'",
"]",
")",
"return",
"\"{url}{path}\"",
".",
"format",
"(",
"url",
"=",
"self",
".",
"API_HOST",
",",
"path",
"=",
"poll_path",
")"
] | Create the session
date format: YYYY-MM-DDThh:mm
location: ISO code | [
"Create",
"the",
"session",
"date",
"format",
":",
"YYYY",
"-",
"MM",
"-",
"DDThh",
":",
"mm",
"location",
":",
"ISO",
"code"
] | train | https://github.com/Skyscanner/skyscanner-python-sdk/blob/26ce4a563f538a689f2a29063f3604731703ddac/skyscanner/skyscanner.py#L574-L596 |
jlmadurga/django-telegram-bot | telegrambot/templatetags/telegrambot_filters.py | keyboard_field | def keyboard_field(value, args=None):
"""
Format keyboard /command field.
"""
qs = QueryDict(args)
per_line = qs.get('per_line', 1)
field = qs.get("field", "slug")
command = qs.get("command")
convert = lambda element: "/" + command + " " + str(getattr(element, field))
group = lambda flat, size: [flat[i:i+size] for i in range(0, len(flat), size)]
grouped = group(value, int(per_line))
new_list = []
for line in grouped:
new_list.append([convert(e) for e in line])
return str(new_list).encode('utf-8') | python | def keyboard_field(value, args=None):
"""
Format keyboard /command field.
"""
qs = QueryDict(args)
per_line = qs.get('per_line', 1)
field = qs.get("field", "slug")
command = qs.get("command")
convert = lambda element: "/" + command + " " + str(getattr(element, field))
group = lambda flat, size: [flat[i:i+size] for i in range(0, len(flat), size)]
grouped = group(value, int(per_line))
new_list = []
for line in grouped:
new_list.append([convert(e) for e in line])
return str(new_list).encode('utf-8') | [
"def",
"keyboard_field",
"(",
"value",
",",
"args",
"=",
"None",
")",
":",
"qs",
"=",
"QueryDict",
"(",
"args",
")",
"per_line",
"=",
"qs",
".",
"get",
"(",
"'per_line'",
",",
"1",
")",
"field",
"=",
"qs",
".",
"get",
"(",
"\"field\"",
",",
"\"slug\"",
")",
"command",
"=",
"qs",
".",
"get",
"(",
"\"command\"",
")",
"convert",
"=",
"lambda",
"element",
":",
"\"/\"",
"+",
"command",
"+",
"\" \"",
"+",
"str",
"(",
"getattr",
"(",
"element",
",",
"field",
")",
")",
"group",
"=",
"lambda",
"flat",
",",
"size",
":",
"[",
"flat",
"[",
"i",
":",
"i",
"+",
"size",
"]",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"flat",
")",
",",
"size",
")",
"]",
"grouped",
"=",
"group",
"(",
"value",
",",
"int",
"(",
"per_line",
")",
")",
"new_list",
"=",
"[",
"]",
"for",
"line",
"in",
"grouped",
":",
"new_list",
".",
"append",
"(",
"[",
"convert",
"(",
"e",
")",
"for",
"e",
"in",
"line",
"]",
")",
"return",
"str",
"(",
"new_list",
")",
".",
"encode",
"(",
"'utf-8'",
")"
] | Format keyboard /command field. | [
"Format",
"keyboard",
"/",
"command",
"field",
"."
] | train | https://github.com/jlmadurga/django-telegram-bot/blob/becbc86a9735c794828eb5da39bd59647104ba34/telegrambot/templatetags/telegrambot_filters.py#L6-L20 |
jlmadurga/django-telegram-bot | telegrambot/bot_views/generic/detail.py | DetailCommandView.get_queryset | def get_queryset(self):
"""
Return the `QuerySet` that will be used to look up the object.
Note that this method is called by the default implementation of
`get_object` and may not be called if `get_object` is overridden.
"""
if self.queryset is None:
if self.model:
return self.model._default_manager.all()
else:
raise ImproperlyConfigured(
"%(cls)s is missing a QuerySet. Define "
"%(cls)s.model, %(cls)s.queryset, or override "
"%(cls)s.get_queryset()." % {
'cls': self.__class__.__name__
}
)
return self.queryset.all() | python | def get_queryset(self):
"""
Return the `QuerySet` that will be used to look up the object.
Note that this method is called by the default implementation of
`get_object` and may not be called if `get_object` is overridden.
"""
if self.queryset is None:
if self.model:
return self.model._default_manager.all()
else:
raise ImproperlyConfigured(
"%(cls)s is missing a QuerySet. Define "
"%(cls)s.model, %(cls)s.queryset, or override "
"%(cls)s.get_queryset()." % {
'cls': self.__class__.__name__
}
)
return self.queryset.all() | [
"def",
"get_queryset",
"(",
"self",
")",
":",
"if",
"self",
".",
"queryset",
"is",
"None",
":",
"if",
"self",
".",
"model",
":",
"return",
"self",
".",
"model",
".",
"_default_manager",
".",
"all",
"(",
")",
"else",
":",
"raise",
"ImproperlyConfigured",
"(",
"\"%(cls)s is missing a QuerySet. Define \"",
"\"%(cls)s.model, %(cls)s.queryset, or override \"",
"\"%(cls)s.get_queryset().\"",
"%",
"{",
"'cls'",
":",
"self",
".",
"__class__",
".",
"__name__",
"}",
")",
"return",
"self",
".",
"queryset",
".",
"all",
"(",
")"
] | Return the `QuerySet` that will be used to look up the object.
Note that this method is called by the default implementation of
`get_object` and may not be called if `get_object` is overridden. | [
"Return",
"the",
"QuerySet",
"that",
"will",
"be",
"used",
"to",
"look",
"up",
"the",
"object",
".",
"Note",
"that",
"this",
"method",
"is",
"called",
"by",
"the",
"default",
"implementation",
"of",
"get_object",
"and",
"may",
"not",
"be",
"called",
"if",
"get_object",
"is",
"overridden",
"."
] | train | https://github.com/jlmadurga/django-telegram-bot/blob/becbc86a9735c794828eb5da39bd59647104ba34/telegrambot/bot_views/generic/detail.py#L20-L37 |
jlmadurga/django-telegram-bot | telegrambot/bot_views/decorators.py | login_required | def login_required(view_func):
"""
Decorator for command views that checks that the chat is authenticated,
sends message with link for authenticated if necessary.
"""
@wraps(view_func)
def wrapper(bot, update, **kwargs):
chat = Chat.objects.get(id=update.message.chat.id)
if chat.is_authenticated():
return view_func(bot, update, **kwargs)
from telegrambot.bot_views.login import LoginBotView
login_command_view = LoginBotView.as_command_view()
bot_model = Bot.objects.get(token=bot.token)
kwargs['link'] = reverse('telegrambot:auth', kwargs={'bot': bot_model.user_api.username})
return login_command_view(bot, update, **kwargs)
return wrapper | python | def login_required(view_func):
"""
Decorator for command views that checks that the chat is authenticated,
sends message with link for authenticated if necessary.
"""
@wraps(view_func)
def wrapper(bot, update, **kwargs):
chat = Chat.objects.get(id=update.message.chat.id)
if chat.is_authenticated():
return view_func(bot, update, **kwargs)
from telegrambot.bot_views.login import LoginBotView
login_command_view = LoginBotView.as_command_view()
bot_model = Bot.objects.get(token=bot.token)
kwargs['link'] = reverse('telegrambot:auth', kwargs={'bot': bot_model.user_api.username})
return login_command_view(bot, update, **kwargs)
return wrapper | [
"def",
"login_required",
"(",
"view_func",
")",
":",
"@",
"wraps",
"(",
"view_func",
")",
"def",
"wrapper",
"(",
"bot",
",",
"update",
",",
"*",
"*",
"kwargs",
")",
":",
"chat",
"=",
"Chat",
".",
"objects",
".",
"get",
"(",
"id",
"=",
"update",
".",
"message",
".",
"chat",
".",
"id",
")",
"if",
"chat",
".",
"is_authenticated",
"(",
")",
":",
"return",
"view_func",
"(",
"bot",
",",
"update",
",",
"*",
"*",
"kwargs",
")",
"from",
"telegrambot",
".",
"bot_views",
".",
"login",
"import",
"LoginBotView",
"login_command_view",
"=",
"LoginBotView",
".",
"as_command_view",
"(",
")",
"bot_model",
"=",
"Bot",
".",
"objects",
".",
"get",
"(",
"token",
"=",
"bot",
".",
"token",
")",
"kwargs",
"[",
"'link'",
"]",
"=",
"reverse",
"(",
"'telegrambot:auth'",
",",
"kwargs",
"=",
"{",
"'bot'",
":",
"bot_model",
".",
"user_api",
".",
"username",
"}",
")",
"return",
"login_command_view",
"(",
"bot",
",",
"update",
",",
"*",
"*",
"kwargs",
")",
"return",
"wrapper"
] | Decorator for command views that checks that the chat is authenticated,
sends message with link for authenticated if necessary. | [
"Decorator",
"for",
"command",
"views",
"that",
"checks",
"that",
"the",
"chat",
"is",
"authenticated",
"sends",
"message",
"with",
"link",
"for",
"authenticated",
"if",
"necessary",
"."
] | train | https://github.com/jlmadurga/django-telegram-bot/blob/becbc86a9735c794828eb5da39bd59647104ba34/telegrambot/bot_views/decorators.py#L6-L21 |
0101/pipetools | pipetools/decorators.py | pipe_util | def pipe_util(func):
"""
Decorator that handles X objects and partial application for pipe-utils.
"""
@wraps(func)
def pipe_util_wrapper(function, *args, **kwargs):
if isinstance(function, XObject):
function = ~function
original_function = function
if args or kwargs:
function = xpartial(function, *args, **kwargs)
name = lambda: '%s(%s)' % (get_name(func), ', '.join(
filter(None, (get_name(original_function), repr_args(*args, **kwargs)))))
f = func(function)
result = pipe | set_name(name, f)
# if the util defines an 'attrs' mapping, copy it as attributes
# to the result
attrs = getattr(f, 'attrs', {})
for k, v in dict_items(attrs):
setattr(result, k, v)
return result
return pipe_util_wrapper | python | def pipe_util(func):
"""
Decorator that handles X objects and partial application for pipe-utils.
"""
@wraps(func)
def pipe_util_wrapper(function, *args, **kwargs):
if isinstance(function, XObject):
function = ~function
original_function = function
if args or kwargs:
function = xpartial(function, *args, **kwargs)
name = lambda: '%s(%s)' % (get_name(func), ', '.join(
filter(None, (get_name(original_function), repr_args(*args, **kwargs)))))
f = func(function)
result = pipe | set_name(name, f)
# if the util defines an 'attrs' mapping, copy it as attributes
# to the result
attrs = getattr(f, 'attrs', {})
for k, v in dict_items(attrs):
setattr(result, k, v)
return result
return pipe_util_wrapper | [
"def",
"pipe_util",
"(",
"func",
")",
":",
"@",
"wraps",
"(",
"func",
")",
"def",
"pipe_util_wrapper",
"(",
"function",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"isinstance",
"(",
"function",
",",
"XObject",
")",
":",
"function",
"=",
"~",
"function",
"original_function",
"=",
"function",
"if",
"args",
"or",
"kwargs",
":",
"function",
"=",
"xpartial",
"(",
"function",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"name",
"=",
"lambda",
":",
"'%s(%s)'",
"%",
"(",
"get_name",
"(",
"func",
")",
",",
"', '",
".",
"join",
"(",
"filter",
"(",
"None",
",",
"(",
"get_name",
"(",
"original_function",
")",
",",
"repr_args",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
")",
")",
")",
")",
"f",
"=",
"func",
"(",
"function",
")",
"result",
"=",
"pipe",
"|",
"set_name",
"(",
"name",
",",
"f",
")",
"# if the util defines an 'attrs' mapping, copy it as attributes",
"# to the result",
"attrs",
"=",
"getattr",
"(",
"f",
",",
"'attrs'",
",",
"{",
"}",
")",
"for",
"k",
",",
"v",
"in",
"dict_items",
"(",
"attrs",
")",
":",
"setattr",
"(",
"result",
",",
"k",
",",
"v",
")",
"return",
"result",
"return",
"pipe_util_wrapper"
] | Decorator that handles X objects and partial application for pipe-utils. | [
"Decorator",
"that",
"handles",
"X",
"objects",
"and",
"partial",
"application",
"for",
"pipe",
"-",
"utils",
"."
] | train | https://github.com/0101/pipetools/blob/42f71af0ecaeacee0f3d64c8706ddb1caacf8bc1/pipetools/decorators.py#L10-L39 |
0101/pipetools | pipetools/decorators.py | auto_string_formatter | def auto_string_formatter(func):
"""
Decorator that handles automatic string formatting.
By converting a string argument to a function that does formatting on said
string.
"""
@wraps(func)
def auto_string_formatter_wrapper(function, *args, **kwargs):
if isinstance(function, string_types):
function = StringFormatter(function)
return func(function, *args, **kwargs)
return auto_string_formatter_wrapper | python | def auto_string_formatter(func):
"""
Decorator that handles automatic string formatting.
By converting a string argument to a function that does formatting on said
string.
"""
@wraps(func)
def auto_string_formatter_wrapper(function, *args, **kwargs):
if isinstance(function, string_types):
function = StringFormatter(function)
return func(function, *args, **kwargs)
return auto_string_formatter_wrapper | [
"def",
"auto_string_formatter",
"(",
"func",
")",
":",
"@",
"wraps",
"(",
"func",
")",
"def",
"auto_string_formatter_wrapper",
"(",
"function",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"isinstance",
"(",
"function",
",",
"string_types",
")",
":",
"function",
"=",
"StringFormatter",
"(",
"function",
")",
"return",
"func",
"(",
"function",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"auto_string_formatter_wrapper"
] | Decorator that handles automatic string formatting.
By converting a string argument to a function that does formatting on said
string. | [
"Decorator",
"that",
"handles",
"automatic",
"string",
"formatting",
"."
] | train | https://github.com/0101/pipetools/blob/42f71af0ecaeacee0f3d64c8706ddb1caacf8bc1/pipetools/decorators.py#L42-L56 |
0101/pipetools | pipetools/decorators.py | data_structure_builder | def data_structure_builder(func):
"""
Decorator to handle automatic data structure creation for pipe-utils.
"""
@wraps(func)
def ds_builder_wrapper(function, *args, **kwargs):
try:
function = DSBuilder(function)
except NoBuilder:
pass
return func(function, *args, **kwargs)
return ds_builder_wrapper | python | def data_structure_builder(func):
"""
Decorator to handle automatic data structure creation for pipe-utils.
"""
@wraps(func)
def ds_builder_wrapper(function, *args, **kwargs):
try:
function = DSBuilder(function)
except NoBuilder:
pass
return func(function, *args, **kwargs)
return ds_builder_wrapper | [
"def",
"data_structure_builder",
"(",
"func",
")",
":",
"@",
"wraps",
"(",
"func",
")",
"def",
"ds_builder_wrapper",
"(",
"function",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"try",
":",
"function",
"=",
"DSBuilder",
"(",
"function",
")",
"except",
"NoBuilder",
":",
"pass",
"return",
"func",
"(",
"function",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"ds_builder_wrapper"
] | Decorator to handle automatic data structure creation for pipe-utils. | [
"Decorator",
"to",
"handle",
"automatic",
"data",
"structure",
"creation",
"for",
"pipe",
"-",
"utils",
"."
] | train | https://github.com/0101/pipetools/blob/42f71af0ecaeacee0f3d64c8706ddb1caacf8bc1/pipetools/decorators.py#L59-L71 |
0101/pipetools | pipetools/decorators.py | regex_condition | def regex_condition(func):
"""
If a condition is given as string instead of a function, it is turned
into a regex-matching function.
"""
@wraps(func)
def regex_condition_wrapper(condition, *args, **kwargs):
if isinstance(condition, string_types):
condition = maybe | partial(re.match, condition)
return func(condition, *args, **kwargs)
return regex_condition_wrapper | python | def regex_condition(func):
"""
If a condition is given as string instead of a function, it is turned
into a regex-matching function.
"""
@wraps(func)
def regex_condition_wrapper(condition, *args, **kwargs):
if isinstance(condition, string_types):
condition = maybe | partial(re.match, condition)
return func(condition, *args, **kwargs)
return regex_condition_wrapper | [
"def",
"regex_condition",
"(",
"func",
")",
":",
"@",
"wraps",
"(",
"func",
")",
"def",
"regex_condition_wrapper",
"(",
"condition",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"isinstance",
"(",
"condition",
",",
"string_types",
")",
":",
"condition",
"=",
"maybe",
"|",
"partial",
"(",
"re",
".",
"match",
",",
"condition",
")",
"return",
"func",
"(",
"condition",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"regex_condition_wrapper"
] | If a condition is given as string instead of a function, it is turned
into a regex-matching function. | [
"If",
"a",
"condition",
"is",
"given",
"as",
"string",
"instead",
"of",
"a",
"function",
"it",
"is",
"turned",
"into",
"a",
"regex",
"-",
"matching",
"function",
"."
] | train | https://github.com/0101/pipetools/blob/42f71af0ecaeacee0f3d64c8706ddb1caacf8bc1/pipetools/decorators.py#L74-L84 |
0101/pipetools | pipetools/utils.py | sort_by | def sort_by(function):
"""
Sorts an incoming sequence by using the given `function` as key.
>>> range(10) > sort_by(-X)
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
Supports automatic data-structure creation::
users > sort_by([X.last_name, X.first_name])
There is also a shortcut for ``sort_by(X)`` called ``sort``:
>>> [4, 5, 8, -3, 0] > sort
[-3, 0, 4, 5, 8]
And (as of ``0.2.3``) a shortcut for reversing the sort:
>>> 'asdfaSfa' > sort_by(X.lower()).descending
['s', 'S', 'f', 'f', 'd', 'a', 'a', 'a']
"""
f = partial(sorted, key=function)
f.attrs = {'descending': _descending_sort_by(function)}
return f | python | def sort_by(function):
"""
Sorts an incoming sequence by using the given `function` as key.
>>> range(10) > sort_by(-X)
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
Supports automatic data-structure creation::
users > sort_by([X.last_name, X.first_name])
There is also a shortcut for ``sort_by(X)`` called ``sort``:
>>> [4, 5, 8, -3, 0] > sort
[-3, 0, 4, 5, 8]
And (as of ``0.2.3``) a shortcut for reversing the sort:
>>> 'asdfaSfa' > sort_by(X.lower()).descending
['s', 'S', 'f', 'f', 'd', 'a', 'a', 'a']
"""
f = partial(sorted, key=function)
f.attrs = {'descending': _descending_sort_by(function)}
return f | [
"def",
"sort_by",
"(",
"function",
")",
":",
"f",
"=",
"partial",
"(",
"sorted",
",",
"key",
"=",
"function",
")",
"f",
".",
"attrs",
"=",
"{",
"'descending'",
":",
"_descending_sort_by",
"(",
"function",
")",
"}",
"return",
"f"
] | Sorts an incoming sequence by using the given `function` as key.
>>> range(10) > sort_by(-X)
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
Supports automatic data-structure creation::
users > sort_by([X.last_name, X.first_name])
There is also a shortcut for ``sort_by(X)`` called ``sort``:
>>> [4, 5, 8, -3, 0] > sort
[-3, 0, 4, 5, 8]
And (as of ``0.2.3``) a shortcut for reversing the sort:
>>> 'asdfaSfa' > sort_by(X.lower()).descending
['s', 'S', 'f', 'f', 'd', 'a', 'a', 'a'] | [
"Sorts",
"an",
"incoming",
"sequence",
"by",
"using",
"the",
"given",
"function",
"as",
"key",
"."
] | train | https://github.com/0101/pipetools/blob/42f71af0ecaeacee0f3d64c8706ddb1caacf8bc1/pipetools/utils.py#L76-L99 |
0101/pipetools | pipetools/utils.py | take_first | def take_first(count):
"""
Assumes an iterable on the input, returns an iterable with first `count`
items from the input (or possibly less, if there isn't that many).
>>> range(9000) > where(X % 100 == 0) | take_first(5) | tuple
(0, 100, 200, 300, 400)
"""
def _take_first(iterable):
return islice(iterable, count)
return pipe | set_name('take_first(%s)' % count, _take_first) | python | def take_first(count):
"""
Assumes an iterable on the input, returns an iterable with first `count`
items from the input (or possibly less, if there isn't that many).
>>> range(9000) > where(X % 100 == 0) | take_first(5) | tuple
(0, 100, 200, 300, 400)
"""
def _take_first(iterable):
return islice(iterable, count)
return pipe | set_name('take_first(%s)' % count, _take_first) | [
"def",
"take_first",
"(",
"count",
")",
":",
"def",
"_take_first",
"(",
"iterable",
")",
":",
"return",
"islice",
"(",
"iterable",
",",
"count",
")",
"return",
"pipe",
"|",
"set_name",
"(",
"'take_first(%s)'",
"%",
"count",
",",
"_take_first",
")"
] | Assumes an iterable on the input, returns an iterable with first `count`
items from the input (or possibly less, if there isn't that many).
>>> range(9000) > where(X % 100 == 0) | take_first(5) | tuple
(0, 100, 200, 300, 400) | [
"Assumes",
"an",
"iterable",
"on",
"the",
"input",
"returns",
"an",
"iterable",
"with",
"first",
"count",
"items",
"from",
"the",
"input",
"(",
"or",
"possibly",
"less",
"if",
"there",
"isn",
"t",
"that",
"many",
")",
"."
] | train | https://github.com/0101/pipetools/blob/42f71af0ecaeacee0f3d64c8706ddb1caacf8bc1/pipetools/utils.py#L163-L174 |
0101/pipetools | pipetools/utils.py | drop_first | def drop_first(count):
"""
Assumes an iterable on the input, returns an iterable with identical items
except for the first `count`.
>>> range(10) > drop_first(5) | tuple
(5, 6, 7, 8, 9)
"""
def _drop_first(iterable):
g = (x for x in range(1, count + 1))
return dropwhile(
lambda i: unless(StopIteration, lambda: next(g))(), iterable)
return pipe | set_name('drop_first(%s)' % count, _drop_first) | python | def drop_first(count):
"""
Assumes an iterable on the input, returns an iterable with identical items
except for the first `count`.
>>> range(10) > drop_first(5) | tuple
(5, 6, 7, 8, 9)
"""
def _drop_first(iterable):
g = (x for x in range(1, count + 1))
return dropwhile(
lambda i: unless(StopIteration, lambda: next(g))(), iterable)
return pipe | set_name('drop_first(%s)' % count, _drop_first) | [
"def",
"drop_first",
"(",
"count",
")",
":",
"def",
"_drop_first",
"(",
"iterable",
")",
":",
"g",
"=",
"(",
"x",
"for",
"x",
"in",
"range",
"(",
"1",
",",
"count",
"+",
"1",
")",
")",
"return",
"dropwhile",
"(",
"lambda",
"i",
":",
"unless",
"(",
"StopIteration",
",",
"lambda",
":",
"next",
"(",
"g",
")",
")",
"(",
")",
",",
"iterable",
")",
"return",
"pipe",
"|",
"set_name",
"(",
"'drop_first(%s)'",
"%",
"count",
",",
"_drop_first",
")"
] | Assumes an iterable on the input, returns an iterable with identical items
except for the first `count`.
>>> range(10) > drop_first(5) | tuple
(5, 6, 7, 8, 9) | [
"Assumes",
"an",
"iterable",
"on",
"the",
"input",
"returns",
"an",
"iterable",
"with",
"identical",
"items",
"except",
"for",
"the",
"first",
"count",
"."
] | train | https://github.com/0101/pipetools/blob/42f71af0ecaeacee0f3d64c8706ddb1caacf8bc1/pipetools/utils.py#L177-L189 |
0101/pipetools | pipetools/utils.py | unless | def unless(exception_class_or_tuple, func, *args, **kwargs):
"""
When `exception_class_or_tuple` occurs while executing `func`, it will
be caught and ``None`` will be returned.
>>> f = where(X > 10) | list | unless(IndexError, X[0])
>>> f([5, 8, 12, 4])
12
>>> f([1, 2, 3])
None
"""
@pipe_util
@auto_string_formatter
@data_structure_builder
def construct_unless(function):
# a wrapper so we can re-use the decorators
def _unless(*args, **kwargs):
try:
return function(*args, **kwargs)
except exception_class_or_tuple:
pass
return _unless
name = lambda: 'unless(%s, %s)' % (exception_class_or_tuple, ', '.join(
filter(None, (get_name(func), repr_args(*args, **kwargs)))))
return set_name(name, construct_unless(func, *args, **kwargs)) | python | def unless(exception_class_or_tuple, func, *args, **kwargs):
"""
When `exception_class_or_tuple` occurs while executing `func`, it will
be caught and ``None`` will be returned.
>>> f = where(X > 10) | list | unless(IndexError, X[0])
>>> f([5, 8, 12, 4])
12
>>> f([1, 2, 3])
None
"""
@pipe_util
@auto_string_formatter
@data_structure_builder
def construct_unless(function):
# a wrapper so we can re-use the decorators
def _unless(*args, **kwargs):
try:
return function(*args, **kwargs)
except exception_class_or_tuple:
pass
return _unless
name = lambda: 'unless(%s, %s)' % (exception_class_or_tuple, ', '.join(
filter(None, (get_name(func), repr_args(*args, **kwargs)))))
return set_name(name, construct_unless(func, *args, **kwargs)) | [
"def",
"unless",
"(",
"exception_class_or_tuple",
",",
"func",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"@",
"pipe_util",
"@",
"auto_string_formatter",
"@",
"data_structure_builder",
"def",
"construct_unless",
"(",
"function",
")",
":",
"# a wrapper so we can re-use the decorators",
"def",
"_unless",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"try",
":",
"return",
"function",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"except",
"exception_class_or_tuple",
":",
"pass",
"return",
"_unless",
"name",
"=",
"lambda",
":",
"'unless(%s, %s)'",
"%",
"(",
"exception_class_or_tuple",
",",
"', '",
".",
"join",
"(",
"filter",
"(",
"None",
",",
"(",
"get_name",
"(",
"func",
")",
",",
"repr_args",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
")",
")",
")",
")",
"return",
"set_name",
"(",
"name",
",",
"construct_unless",
"(",
"func",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
")"
] | When `exception_class_or_tuple` occurs while executing `func`, it will
be caught and ``None`` will be returned.
>>> f = where(X > 10) | list | unless(IndexError, X[0])
>>> f([5, 8, 12, 4])
12
>>> f([1, 2, 3])
None | [
"When",
"exception_class_or_tuple",
"occurs",
"while",
"executing",
"func",
"it",
"will",
"be",
"caught",
"and",
"None",
"will",
"be",
"returned",
"."
] | train | https://github.com/0101/pipetools/blob/42f71af0ecaeacee0f3d64c8706ddb1caacf8bc1/pipetools/utils.py#L192-L218 |
0101/pipetools | pipetools/utils.py | group_by | def group_by(function):
"""
Groups input sequence by `function`.
Returns an iterator over a sequence of tuples where the first item is a
result of `function` and the second one a list of items matching this
result.
Ordering of the resulting iterator is undefined, but ordering of the items
in the groups is preserved.
>>> [1, 2, 3, 4, 5, 6] > group_by(X % 2) | list
[(0, [2, 4, 6]), (1, [1, 3, 5])]
"""
def _group_by(seq):
result = {}
for item in seq:
result.setdefault(function(item), []).append(item)
return dict_items(result)
return _group_by | python | def group_by(function):
"""
Groups input sequence by `function`.
Returns an iterator over a sequence of tuples where the first item is a
result of `function` and the second one a list of items matching this
result.
Ordering of the resulting iterator is undefined, but ordering of the items
in the groups is preserved.
>>> [1, 2, 3, 4, 5, 6] > group_by(X % 2) | list
[(0, [2, 4, 6]), (1, [1, 3, 5])]
"""
def _group_by(seq):
result = {}
for item in seq:
result.setdefault(function(item), []).append(item)
return dict_items(result)
return _group_by | [
"def",
"group_by",
"(",
"function",
")",
":",
"def",
"_group_by",
"(",
"seq",
")",
":",
"result",
"=",
"{",
"}",
"for",
"item",
"in",
"seq",
":",
"result",
".",
"setdefault",
"(",
"function",
"(",
"item",
")",
",",
"[",
"]",
")",
".",
"append",
"(",
"item",
")",
"return",
"dict_items",
"(",
"result",
")",
"return",
"_group_by"
] | Groups input sequence by `function`.
Returns an iterator over a sequence of tuples where the first item is a
result of `function` and the second one a list of items matching this
result.
Ordering of the resulting iterator is undefined, but ordering of the items
in the groups is preserved.
>>> [1, 2, 3, 4, 5, 6] > group_by(X % 2) | list
[(0, [2, 4, 6]), (1, [1, 3, 5])] | [
"Groups",
"input",
"sequence",
"by",
"function",
"."
] | train | https://github.com/0101/pipetools/blob/42f71af0ecaeacee0f3d64c8706ddb1caacf8bc1/pipetools/utils.py#L254-L274 |
Subsets and Splits