repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
sequencelengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
sequencelengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
OzymandiasTheGreat/python-libinput
libinput/event.py
TabletPadEvent.strip_number
def strip_number(self): """The number of the strip that has changed state, with 0 being the first strip. On tablets with only one strip, this method always returns 0. For events not of type :attr:`~libinput.constant.EventType.TABLET_PAD_STRIP`, this property raises :exc:`AttributeError`. Returns: int: The index of the strip that changed state. Raises: AttributeError """ if self.type != EventType.TABLET_PAD_STRIP: raise AttributeError(_wrong_prop.format(self.type)) return self._libinput.libinput_event_tablet_pad_get_strip_number( self._handle)
python
def strip_number(self): """The number of the strip that has changed state, with 0 being the first strip. On tablets with only one strip, this method always returns 0. For events not of type :attr:`~libinput.constant.EventType.TABLET_PAD_STRIP`, this property raises :exc:`AttributeError`. Returns: int: The index of the strip that changed state. Raises: AttributeError """ if self.type != EventType.TABLET_PAD_STRIP: raise AttributeError(_wrong_prop.format(self.type)) return self._libinput.libinput_event_tablet_pad_get_strip_number( self._handle)
[ "def", "strip_number", "(", "self", ")", ":", "if", "self", ".", "type", "!=", "EventType", ".", "TABLET_PAD_STRIP", ":", "raise", "AttributeError", "(", "_wrong_prop", ".", "format", "(", "self", ".", "type", ")", ")", "return", "self", ".", "_libinput", ".", "libinput_event_tablet_pad_get_strip_number", "(", "self", ".", "_handle", ")" ]
The number of the strip that has changed state, with 0 being the first strip. On tablets with only one strip, this method always returns 0. For events not of type :attr:`~libinput.constant.EventType.TABLET_PAD_STRIP`, this property raises :exc:`AttributeError`. Returns: int: The index of the strip that changed state. Raises: AttributeError
[ "The", "number", "of", "the", "strip", "that", "has", "changed", "state", "with", "0", "being", "the", "first", "strip", "." ]
train
https://github.com/OzymandiasTheGreat/python-libinput/blob/1f477ee9f1d56b284b20e0317ea8967c64ef1218/libinput/event.py#L1548-L1567
OzymandiasTheGreat/python-libinput
libinput/event.py
TabletPadEvent.strip_source
def strip_source(self): """The source of the interaction with the strip. If the source is :attr:`~libinput.constant.TabletPadStripAxisSource.FINGER`, libinput sends a strip position value of -1 to terminate the current interaction. For events not of type :attr:`~libinput.constant.EventType.TABLET_PAD_STRIP`, this property raises :exc:`AttributeError`. Returns: ~libinput.constant.TabletPadStripAxisSource: The source of the strip interaction. Raises: AttributeError """ if self.type != EventType.TABLET_PAD_STRIP: raise AttributeError(_wrong_prop.format(self.type)) return self._libinput.libinput_event_tablet_pad_get_strip_source( self._handle)
python
def strip_source(self): """The source of the interaction with the strip. If the source is :attr:`~libinput.constant.TabletPadStripAxisSource.FINGER`, libinput sends a strip position value of -1 to terminate the current interaction. For events not of type :attr:`~libinput.constant.EventType.TABLET_PAD_STRIP`, this property raises :exc:`AttributeError`. Returns: ~libinput.constant.TabletPadStripAxisSource: The source of the strip interaction. Raises: AttributeError """ if self.type != EventType.TABLET_PAD_STRIP: raise AttributeError(_wrong_prop.format(self.type)) return self._libinput.libinput_event_tablet_pad_get_strip_source( self._handle)
[ "def", "strip_source", "(", "self", ")", ":", "if", "self", ".", "type", "!=", "EventType", ".", "TABLET_PAD_STRIP", ":", "raise", "AttributeError", "(", "_wrong_prop", ".", "format", "(", "self", ".", "type", ")", ")", "return", "self", ".", "_libinput", ".", "libinput_event_tablet_pad_get_strip_source", "(", "self", ".", "_handle", ")" ]
The source of the interaction with the strip. If the source is :attr:`~libinput.constant.TabletPadStripAxisSource.FINGER`, libinput sends a strip position value of -1 to terminate the current interaction. For events not of type :attr:`~libinput.constant.EventType.TABLET_PAD_STRIP`, this property raises :exc:`AttributeError`. Returns: ~libinput.constant.TabletPadStripAxisSource: The source of the strip interaction. Raises: AttributeError
[ "The", "source", "of", "the", "interaction", "with", "the", "strip", "." ]
train
https://github.com/OzymandiasTheGreat/python-libinput/blob/1f477ee9f1d56b284b20e0317ea8967c64ef1218/libinput/event.py#L1570-L1591
OzymandiasTheGreat/python-libinput
libinput/event.py
TabletPadEvent.button_number
def button_number(self): """The button number that triggered this event, starting at 0. For events that are not of type :attr:`~libinput.constant.Event.TABLET_PAD_BUTTON`, this property raises :exc:`AttributeError`. Note that the number returned is a generic sequential button number and not a semantic button code as defined in ``linux/input.h``. See `Tablet pad button numbers`_ for more details. Returns: int: The button triggering this event. Raises: AttributeError """ if self.type != EventType.TABLET_PAD_BUTTON: raise AttributeError(_wrong_prop.format(self.type)) return self._libinput.libinput_event_tablet_pad_get_button_number( self._handle)
python
def button_number(self): """The button number that triggered this event, starting at 0. For events that are not of type :attr:`~libinput.constant.Event.TABLET_PAD_BUTTON`, this property raises :exc:`AttributeError`. Note that the number returned is a generic sequential button number and not a semantic button code as defined in ``linux/input.h``. See `Tablet pad button numbers`_ for more details. Returns: int: The button triggering this event. Raises: AttributeError """ if self.type != EventType.TABLET_PAD_BUTTON: raise AttributeError(_wrong_prop.format(self.type)) return self._libinput.libinput_event_tablet_pad_get_button_number( self._handle)
[ "def", "button_number", "(", "self", ")", ":", "if", "self", ".", "type", "!=", "EventType", ".", "TABLET_PAD_BUTTON", ":", "raise", "AttributeError", "(", "_wrong_prop", ".", "format", "(", "self", ".", "type", ")", ")", "return", "self", ".", "_libinput", ".", "libinput_event_tablet_pad_get_button_number", "(", "self", ".", "_handle", ")" ]
The button number that triggered this event, starting at 0. For events that are not of type :attr:`~libinput.constant.Event.TABLET_PAD_BUTTON`, this property raises :exc:`AttributeError`. Note that the number returned is a generic sequential button number and not a semantic button code as defined in ``linux/input.h``. See `Tablet pad button numbers`_ for more details. Returns: int: The button triggering this event. Raises: AttributeError
[ "The", "button", "number", "that", "triggered", "this", "event", "starting", "at", "0", "." ]
train
https://github.com/OzymandiasTheGreat/python-libinput/blob/1f477ee9f1d56b284b20e0317ea8967c64ef1218/libinput/event.py#L1594-L1614
OzymandiasTheGreat/python-libinput
libinput/event.py
TabletPadEvent.button_state
def button_state(self): """The button state of the event. For events not of type :attr:`~libinput.constant.EventType.TABLET_PAD_BUTTON`, this property raises :exc:`AttributeError`. Returns: ~libinput.constant.ButtonState: The button state triggering this event. Raises: AttributeError """ if self.type != EventType.TABLET_PAD_BUTTON: raise AttributeError(_wrong_prop.format(self.type)) return self._libinput.libinput_event_tablet_pad_get_button_state( self._handle)
python
def button_state(self): """The button state of the event. For events not of type :attr:`~libinput.constant.EventType.TABLET_PAD_BUTTON`, this property raises :exc:`AttributeError`. Returns: ~libinput.constant.ButtonState: The button state triggering this event. Raises: AttributeError """ if self.type != EventType.TABLET_PAD_BUTTON: raise AttributeError(_wrong_prop.format(self.type)) return self._libinput.libinput_event_tablet_pad_get_button_state( self._handle)
[ "def", "button_state", "(", "self", ")", ":", "if", "self", ".", "type", "!=", "EventType", ".", "TABLET_PAD_BUTTON", ":", "raise", "AttributeError", "(", "_wrong_prop", ".", "format", "(", "self", ".", "type", ")", ")", "return", "self", ".", "_libinput", ".", "libinput_event_tablet_pad_get_button_state", "(", "self", ".", "_handle", ")" ]
The button state of the event. For events not of type :attr:`~libinput.constant.EventType.TABLET_PAD_BUTTON`, this property raises :exc:`AttributeError`. Returns: ~libinput.constant.ButtonState: The button state triggering this event. Raises: AttributeError
[ "The", "button", "state", "of", "the", "event", "." ]
train
https://github.com/OzymandiasTheGreat/python-libinput/blob/1f477ee9f1d56b284b20e0317ea8967c64ef1218/libinput/event.py#L1617-L1634
OzymandiasTheGreat/python-libinput
libinput/event.py
TabletPadEvent.mode_group
def mode_group(self): """The mode group that the button, ring, or strip that triggered this event is considered in. The mode is a virtual grouping of functionality, usually based on some visual feedback like LEDs on the pad. See `Tablet pad modes`_ for details. Returns: ~libinput.define.TabletPadModeGroup: The mode group of the button, ring or strip that caused this event. """ hmodegroup = self._libinput.libinput_event_tablet_pad_get_mode_group( self._handle) return TabletPadModeGroup(hmodegroup, self._libinput)
python
def mode_group(self): """The mode group that the button, ring, or strip that triggered this event is considered in. The mode is a virtual grouping of functionality, usually based on some visual feedback like LEDs on the pad. See `Tablet pad modes`_ for details. Returns: ~libinput.define.TabletPadModeGroup: The mode group of the button, ring or strip that caused this event. """ hmodegroup = self._libinput.libinput_event_tablet_pad_get_mode_group( self._handle) return TabletPadModeGroup(hmodegroup, self._libinput)
[ "def", "mode_group", "(", "self", ")", ":", "hmodegroup", "=", "self", ".", "_libinput", ".", "libinput_event_tablet_pad_get_mode_group", "(", "self", ".", "_handle", ")", "return", "TabletPadModeGroup", "(", "hmodegroup", ",", "self", ".", "_libinput", ")" ]
The mode group that the button, ring, or strip that triggered this event is considered in. The mode is a virtual grouping of functionality, usually based on some visual feedback like LEDs on the pad. See `Tablet pad modes`_ for details. Returns: ~libinput.define.TabletPadModeGroup: The mode group of the button, ring or strip that caused this event.
[ "The", "mode", "group", "that", "the", "button", "ring", "or", "strip", "that", "triggered", "this", "event", "is", "considered", "in", "." ]
train
https://github.com/OzymandiasTheGreat/python-libinput/blob/1f477ee9f1d56b284b20e0317ea8967c64ef1218/libinput/event.py#L1665-L1680
sci-bots/svg-model
svg_model/bin/detect_connections.py
parse_args
def parse_args(args=None): """Parses arguments, returns (options, args).""" from argparse import ArgumentParser if args is None: args = sys.argv parser = ArgumentParser(description=''' Attempt to automatically find "adjacent" shapes in a SVG layer, and on a second SVG layer, draw each detected connection between the center points of the corresponding shapes.'''.strip()) parser.add_argument('svg_input_file', type=path, default=None) parser.add_argument('svg_output_file', type=path, default="-", help='Output file path ("-" for stdout)', nargs='?') parser.add_argument('-f', '--overwrite', action='store_true') args = parser.parse_args() if not args.overwrite and (args.svg_input_file == args.svg_output_file): parser.error('Input and output file are the same. Use `-f` to force ' 'overwrite.') return args
python
def parse_args(args=None): """Parses arguments, returns (options, args).""" from argparse import ArgumentParser if args is None: args = sys.argv parser = ArgumentParser(description=''' Attempt to automatically find "adjacent" shapes in a SVG layer, and on a second SVG layer, draw each detected connection between the center points of the corresponding shapes.'''.strip()) parser.add_argument('svg_input_file', type=path, default=None) parser.add_argument('svg_output_file', type=path, default="-", help='Output file path ("-" for stdout)', nargs='?') parser.add_argument('-f', '--overwrite', action='store_true') args = parser.parse_args() if not args.overwrite and (args.svg_input_file == args.svg_output_file): parser.error('Input and output file are the same. Use `-f` to force ' 'overwrite.') return args
[ "def", "parse_args", "(", "args", "=", "None", ")", ":", "from", "argparse", "import", "ArgumentParser", "if", "args", "is", "None", ":", "args", "=", "sys", ".", "argv", "parser", "=", "ArgumentParser", "(", "description", "=", "'''\nAttempt to automatically find \"adjacent\" shapes in a SVG layer, and on a second\nSVG layer, draw each detected connection between the center points of the\ncorresponding shapes.'''", ".", "strip", "(", ")", ")", "parser", ".", "add_argument", "(", "'svg_input_file'", ",", "type", "=", "path", ",", "default", "=", "None", ")", "parser", ".", "add_argument", "(", "'svg_output_file'", ",", "type", "=", "path", ",", "default", "=", "\"-\"", ",", "help", "=", "'Output file path (\"-\" for stdout)'", ",", "nargs", "=", "'?'", ")", "parser", ".", "add_argument", "(", "'-f'", ",", "'--overwrite'", ",", "action", "=", "'store_true'", ")", "args", "=", "parser", ".", "parse_args", "(", ")", "if", "not", "args", ".", "overwrite", "and", "(", "args", ".", "svg_input_file", "==", "args", ".", "svg_output_file", ")", ":", "parser", ".", "error", "(", "'Input and output file are the same. Use `-f` to force '", "'overwrite.'", ")", "return", "args" ]
Parses arguments, returns (options, args).
[ "Parses", "arguments", "returns", "(", "options", "args", ")", "." ]
train
https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/bin/detect_connections.py#L13-L35
KelSolaar/Manager
setup.py
get_long_description
def get_long_description(): """ Returns the Package long description. :return: Package long description. :rtype: unicode """ description = [] with open("README.rst") as file: for line in file: if ".. code:: python" in line and len(description) >= 2: blockLine = description[-2] if re.search(r":$", blockLine) and not re.search(r"::$", blockLine): description[-2] = "::".join(blockLine.rsplit(":", 1)) continue description.append(line) return "".join(description)
python
def get_long_description(): """ Returns the Package long description. :return: Package long description. :rtype: unicode """ description = [] with open("README.rst") as file: for line in file: if ".. code:: python" in line and len(description) >= 2: blockLine = description[-2] if re.search(r":$", blockLine) and not re.search(r"::$", blockLine): description[-2] = "::".join(blockLine.rsplit(":", 1)) continue description.append(line) return "".join(description)
[ "def", "get_long_description", "(", ")", ":", "description", "=", "[", "]", "with", "open", "(", "\"README.rst\"", ")", "as", "file", ":", "for", "line", "in", "file", ":", "if", "\".. code:: python\"", "in", "line", "and", "len", "(", "description", ")", ">=", "2", ":", "blockLine", "=", "description", "[", "-", "2", "]", "if", "re", ".", "search", "(", "r\":$\"", ",", "blockLine", ")", "and", "not", "re", ".", "search", "(", "r\"::$\"", ",", "blockLine", ")", ":", "description", "[", "-", "2", "]", "=", "\"::\"", ".", "join", "(", "blockLine", ".", "rsplit", "(", "\":\"", ",", "1", ")", ")", "continue", "description", ".", "append", "(", "line", ")", "return", "\"\"", ".", "join", "(", "description", ")" ]
Returns the Package long description. :return: Package long description. :rtype: unicode
[ "Returns", "the", "Package", "long", "description", "." ]
train
https://github.com/KelSolaar/Manager/blob/39c8153fc021fc8a76e345a6e336ec2644f089d1/setup.py#L35-L53
portfoliome/foil
foil/ftp.py
ftp_listing_paths
def ftp_listing_paths(ftpconn: FTP, root: str) -> Iterable[str]: """Generate the full file paths from a root path.""" for current_path, dirs, files in ftp_walk(ftpconn, root): yield from (os.path.join(current_path, file) for file in files)
python
def ftp_listing_paths(ftpconn: FTP, root: str) -> Iterable[str]: """Generate the full file paths from a root path.""" for current_path, dirs, files in ftp_walk(ftpconn, root): yield from (os.path.join(current_path, file) for file in files)
[ "def", "ftp_listing_paths", "(", "ftpconn", ":", "FTP", ",", "root", ":", "str", ")", "->", "Iterable", "[", "str", "]", ":", "for", "current_path", ",", "dirs", ",", "files", "in", "ftp_walk", "(", "ftpconn", ",", "root", ")", ":", "yield", "from", "(", "os", ".", "path", ".", "join", "(", "current_path", ",", "file", ")", "for", "file", "in", "files", ")" ]
Generate the full file paths from a root path.
[ "Generate", "the", "full", "file", "paths", "from", "a", "root", "path", "." ]
train
https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/ftp.py#L35-L39
portfoliome/foil
foil/ftp.py
ftp_walk
def ftp_walk(ftpconn: FTP, rootpath=''): """Recursively traverse an ftp directory to discovery directory listing.""" current_directory = rootpath try: directories, files = directory_listing(ftpconn, current_directory) except ftplib.error_perm: return # Yield before recursion yield current_directory, directories, files # Recurse into sub-directories for name in directories: new_path = os.path.join(current_directory, name) for entry in ftp_walk(ftpconn, rootpath=new_path): yield entry else: return
python
def ftp_walk(ftpconn: FTP, rootpath=''): """Recursively traverse an ftp directory to discovery directory listing.""" current_directory = rootpath try: directories, files = directory_listing(ftpconn, current_directory) except ftplib.error_perm: return # Yield before recursion yield current_directory, directories, files # Recurse into sub-directories for name in directories: new_path = os.path.join(current_directory, name) for entry in ftp_walk(ftpconn, rootpath=new_path): yield entry else: return
[ "def", "ftp_walk", "(", "ftpconn", ":", "FTP", ",", "rootpath", "=", "''", ")", ":", "current_directory", "=", "rootpath", "try", ":", "directories", ",", "files", "=", "directory_listing", "(", "ftpconn", ",", "current_directory", ")", "except", "ftplib", ".", "error_perm", ":", "return", "# Yield before recursion", "yield", "current_directory", ",", "directories", ",", "files", "# Recurse into sub-directories", "for", "name", "in", "directories", ":", "new_path", "=", "os", ".", "path", ".", "join", "(", "current_directory", ",", "name", ")", "for", "entry", "in", "ftp_walk", "(", "ftpconn", ",", "rootpath", "=", "new_path", ")", ":", "yield", "entry", "else", ":", "return" ]
Recursively traverse an ftp directory to discovery directory listing.
[ "Recursively", "traverse", "an", "ftp", "directory", "to", "discovery", "directory", "listing", "." ]
train
https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/ftp.py#L42-L62
portfoliome/foil
foil/ftp.py
directory_listing
def directory_listing(conn: FTP, path: str) -> Tuple[List, List]: """Return the directories and files for single FTP listing.""" entries = deque() conn.dir(path, entries.append) entries = map(parse_line, entries) grouped_entries = defaultdict(list) for key, value in entries: grouped_entries[key].append(value) directories = grouped_entries[ListingType.directory] files = grouped_entries[ListingType.file] return directories, files
python
def directory_listing(conn: FTP, path: str) -> Tuple[List, List]: """Return the directories and files for single FTP listing.""" entries = deque() conn.dir(path, entries.append) entries = map(parse_line, entries) grouped_entries = defaultdict(list) for key, value in entries: grouped_entries[key].append(value) directories = grouped_entries[ListingType.directory] files = grouped_entries[ListingType.file] return directories, files
[ "def", "directory_listing", "(", "conn", ":", "FTP", ",", "path", ":", "str", ")", "->", "Tuple", "[", "List", ",", "List", "]", ":", "entries", "=", "deque", "(", ")", "conn", ".", "dir", "(", "path", ",", "entries", ".", "append", ")", "entries", "=", "map", "(", "parse_line", ",", "entries", ")", "grouped_entries", "=", "defaultdict", "(", "list", ")", "for", "key", ",", "value", "in", "entries", ":", "grouped_entries", "[", "key", "]", ".", "append", "(", "value", ")", "directories", "=", "grouped_entries", "[", "ListingType", ".", "directory", "]", "files", "=", "grouped_entries", "[", "ListingType", ".", "file", "]", "return", "directories", ",", "files" ]
Return the directories and files for single FTP listing.
[ "Return", "the", "directories", "and", "files", "for", "single", "FTP", "listing", "." ]
train
https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/ftp.py#L65-L79
portfoliome/foil
foil/ftp.py
parse_line
def parse_line(line: str, char_index=0) -> Tuple[ListingType, str]: """Parse FTP directory listing into (type, filename).""" entry_name = str.rpartition(line, ' ')[-1] entry_type = LISTING_FLAG_MAP.get(line[char_index], ListingType.other) return entry_type, entry_name
python
def parse_line(line: str, char_index=0) -> Tuple[ListingType, str]: """Parse FTP directory listing into (type, filename).""" entry_name = str.rpartition(line, ' ')[-1] entry_type = LISTING_FLAG_MAP.get(line[char_index], ListingType.other) return entry_type, entry_name
[ "def", "parse_line", "(", "line", ":", "str", ",", "char_index", "=", "0", ")", "->", "Tuple", "[", "ListingType", ",", "str", "]", ":", "entry_name", "=", "str", ".", "rpartition", "(", "line", ",", "' '", ")", "[", "-", "1", "]", "entry_type", "=", "LISTING_FLAG_MAP", ".", "get", "(", "line", "[", "char_index", "]", ",", "ListingType", ".", "other", ")", "return", "entry_type", ",", "entry_name" ]
Parse FTP directory listing into (type, filename).
[ "Parse", "FTP", "directory", "listing", "into", "(", "type", "filename", ")", "." ]
train
https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/ftp.py#L82-L87
portfoliome/foil
foil/ftp.py
download_ftp_url
def download_ftp_url(source_url, target_uri, buffer_size=8192): """Uses urllib. thread safe?""" ensure_file_directory(target_uri) with urllib.request.urlopen(source_url) as source_file: with open(target_uri, 'wb') as target_file: shutil.copyfileobj(source_file, target_file, buffer_size)
python
def download_ftp_url(source_url, target_uri, buffer_size=8192): """Uses urllib. thread safe?""" ensure_file_directory(target_uri) with urllib.request.urlopen(source_url) as source_file: with open(target_uri, 'wb') as target_file: shutil.copyfileobj(source_file, target_file, buffer_size)
[ "def", "download_ftp_url", "(", "source_url", ",", "target_uri", ",", "buffer_size", "=", "8192", ")", ":", "ensure_file_directory", "(", "target_uri", ")", "with", "urllib", ".", "request", ".", "urlopen", "(", "source_url", ")", "as", "source_file", ":", "with", "open", "(", "target_uri", ",", "'wb'", ")", "as", "target_file", ":", "shutil", ".", "copyfileobj", "(", "source_file", ",", "target_file", ",", "buffer_size", ")" ]
Uses urllib. thread safe?
[ "Uses", "urllib", ".", "thread", "safe?" ]
train
https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/ftp.py#L90-L97
BlueBrain/hpcbench
hpcbench/benchmark/babelstream.py
BabelStream.devices
def devices(self): """List of devices to test """ eax = self.attributes.get('devices') if eax is None: eax = self._all_devices if not isinstance(eax, list): eax = [eax] return [str(dev) for dev in eax]
python
def devices(self): """List of devices to test """ eax = self.attributes.get('devices') if eax is None: eax = self._all_devices if not isinstance(eax, list): eax = [eax] return [str(dev) for dev in eax]
[ "def", "devices", "(", "self", ")", ":", "eax", "=", "self", ".", "attributes", ".", "get", "(", "'devices'", ")", "if", "eax", "is", "None", ":", "eax", "=", "self", ".", "_all_devices", "if", "not", "isinstance", "(", "eax", ",", "list", ")", ":", "eax", "=", "[", "eax", "]", "return", "[", "str", "(", "dev", ")", "for", "dev", "in", "eax", "]" ]
List of devices to test
[ "List", "of", "devices", "to", "test" ]
train
https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/benchmark/babelstream.py#L69-L77
PolyJIT/benchbuild
benchbuild/utils/schema.py
exceptions
def exceptions(error_is_fatal=True, error_messages=None): """ Handle SQLAlchemy exceptions in a sane way. Args: func: An arbitrary function to wrap. error_is_fatal: Should we exit the program on exception? reraise: Should we reraise the exception, after logging? Only makes sense if error_is_fatal is False. error_messages: A dictionary that assigns an exception class to a customized error message. """ def exception_decorator(func): nonlocal error_messages @functools.wraps(func) def exc_wrapper(*args, **kwargs): nonlocal error_messages try: result = func(*args, **kwargs) except sa.exc.SQLAlchemyError as err: result = None details = None err_type = err.__class__ if error_messages and err_type in error_messages: details = error_messages[err_type] if details: LOG.error(details) LOG.error("For developers: (%s) %s", err.__class__, str(err)) if error_is_fatal: sys.exit("Abort, SQL operation failed.") if not ui.ask( "I can continue at your own risk, do you want that?"): raise err return result return exc_wrapper return exception_decorator
python
def exceptions(error_is_fatal=True, error_messages=None): """ Handle SQLAlchemy exceptions in a sane way. Args: func: An arbitrary function to wrap. error_is_fatal: Should we exit the program on exception? reraise: Should we reraise the exception, after logging? Only makes sense if error_is_fatal is False. error_messages: A dictionary that assigns an exception class to a customized error message. """ def exception_decorator(func): nonlocal error_messages @functools.wraps(func) def exc_wrapper(*args, **kwargs): nonlocal error_messages try: result = func(*args, **kwargs) except sa.exc.SQLAlchemyError as err: result = None details = None err_type = err.__class__ if error_messages and err_type in error_messages: details = error_messages[err_type] if details: LOG.error(details) LOG.error("For developers: (%s) %s", err.__class__, str(err)) if error_is_fatal: sys.exit("Abort, SQL operation failed.") if not ui.ask( "I can continue at your own risk, do you want that?"): raise err return result return exc_wrapper return exception_decorator
[ "def", "exceptions", "(", "error_is_fatal", "=", "True", ",", "error_messages", "=", "None", ")", ":", "def", "exception_decorator", "(", "func", ")", ":", "nonlocal", "error_messages", "@", "functools", ".", "wraps", "(", "func", ")", "def", "exc_wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "nonlocal", "error_messages", "try", ":", "result", "=", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "except", "sa", ".", "exc", ".", "SQLAlchemyError", "as", "err", ":", "result", "=", "None", "details", "=", "None", "err_type", "=", "err", ".", "__class__", "if", "error_messages", "and", "err_type", "in", "error_messages", ":", "details", "=", "error_messages", "[", "err_type", "]", "if", "details", ":", "LOG", ".", "error", "(", "details", ")", "LOG", ".", "error", "(", "\"For developers: (%s) %s\"", ",", "err", ".", "__class__", ",", "str", "(", "err", ")", ")", "if", "error_is_fatal", ":", "sys", ".", "exit", "(", "\"Abort, SQL operation failed.\"", ")", "if", "not", "ui", ".", "ask", "(", "\"I can continue at your own risk, do you want that?\"", ")", ":", "raise", "err", "return", "result", "return", "exc_wrapper", "return", "exception_decorator" ]
Handle SQLAlchemy exceptions in a sane way. Args: func: An arbitrary function to wrap. error_is_fatal: Should we exit the program on exception? reraise: Should we reraise the exception, after logging? Only makes sense if error_is_fatal is False. error_messages: A dictionary that assigns an exception class to a customized error message.
[ "Handle", "SQLAlchemy", "exceptions", "in", "a", "sane", "way", "." ]
train
https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/schema.py#L50-L89
PolyJIT/benchbuild
benchbuild/utils/schema.py
get_version_data
def get_version_data(): """Retreive migration information.""" connect_str = str(settings.CFG["db"]["connect_string"]) repo_url = path.template_path("../db/") return (connect_str, repo_url)
python
def get_version_data(): """Retreive migration information.""" connect_str = str(settings.CFG["db"]["connect_string"]) repo_url = path.template_path("../db/") return (connect_str, repo_url)
[ "def", "get_version_data", "(", ")", ":", "connect_str", "=", "str", "(", "settings", ".", "CFG", "[", "\"db\"", "]", "[", "\"connect_string\"", "]", ")", "repo_url", "=", "path", ".", "template_path", "(", "\"../db/\"", ")", "return", "(", "connect_str", ",", "repo_url", ")" ]
Retreive migration information.
[ "Retreive", "migration", "information", "." ]
train
https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/schema.py#L339-L343
PolyJIT/benchbuild
benchbuild/utils/schema.py
enforce_versioning
def enforce_versioning(force=False): """Install versioning on the db.""" connect_str, repo_url = get_version_data() LOG.warning("Your database uses an unversioned benchbuild schema.") if not force and not ui.ask( "Should I enforce version control on your schema?"): LOG.error("User declined schema versioning.") return None repo_version = migrate.version(repo_url, url=connect_str) migrate.version_control(connect_str, repo_url, version=repo_version) return repo_version
python
def enforce_versioning(force=False): """Install versioning on the db.""" connect_str, repo_url = get_version_data() LOG.warning("Your database uses an unversioned benchbuild schema.") if not force and not ui.ask( "Should I enforce version control on your schema?"): LOG.error("User declined schema versioning.") return None repo_version = migrate.version(repo_url, url=connect_str) migrate.version_control(connect_str, repo_url, version=repo_version) return repo_version
[ "def", "enforce_versioning", "(", "force", "=", "False", ")", ":", "connect_str", ",", "repo_url", "=", "get_version_data", "(", ")", "LOG", ".", "warning", "(", "\"Your database uses an unversioned benchbuild schema.\"", ")", "if", "not", "force", "and", "not", "ui", ".", "ask", "(", "\"Should I enforce version control on your schema?\"", ")", ":", "LOG", ".", "error", "(", "\"User declined schema versioning.\"", ")", "return", "None", "repo_version", "=", "migrate", ".", "version", "(", "repo_url", ",", "url", "=", "connect_str", ")", "migrate", ".", "version_control", "(", "connect_str", ",", "repo_url", ",", "version", "=", "repo_version", ")", "return", "repo_version" ]
Install versioning on the db.
[ "Install", "versioning", "on", "the", "db", "." ]
train
https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/schema.py#L351-L361
PolyJIT/benchbuild
benchbuild/utils/schema.py
init_functions
def init_functions(connection): """Initialize all SQL functions in the database.""" if settings.CFG["db"]["create_functions"]: print("Refreshing SQL functions...") for file in path.template_files("../sql/", exts=[".sql"]): func = sa.DDL(path.template_str(file)) LOG.info("Loading: '%s' into database", file) connection.execute(func) connection.commit()
python
def init_functions(connection): """Initialize all SQL functions in the database.""" if settings.CFG["db"]["create_functions"]: print("Refreshing SQL functions...") for file in path.template_files("../sql/", exts=[".sql"]): func = sa.DDL(path.template_str(file)) LOG.info("Loading: '%s' into database", file) connection.execute(func) connection.commit()
[ "def", "init_functions", "(", "connection", ")", ":", "if", "settings", ".", "CFG", "[", "\"db\"", "]", "[", "\"create_functions\"", "]", ":", "print", "(", "\"Refreshing SQL functions...\"", ")", "for", "file", "in", "path", ".", "template_files", "(", "\"../sql/\"", ",", "exts", "=", "[", "\".sql\"", "]", ")", ":", "func", "=", "sa", ".", "DDL", "(", "path", ".", "template_str", "(", "file", ")", ")", "LOG", ".", "info", "(", "\"Loading: '%s' into database\"", ",", "file", ")", "connection", ".", "execute", "(", "func", ")", "connection", ".", "commit", "(", ")" ]
Initialize all SQL functions in the database.
[ "Initialize", "all", "SQL", "functions", "in", "the", "database", "." ]
train
https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/schema.py#L494-L502
PolyJIT/benchbuild
benchbuild/utils/schema.py
SessionManager.connect_engine
def connect_engine(self): """ Establish a connection to the database. Provides simple error handling for fatal errors. Returns: True, if we could establish a connection, else False. """ try: self.connection = self.engine.connect() return True except sa.exc.OperationalError as opex: LOG.fatal("Could not connect to the database. The error was: '%s'", str(opex)) return False
python
def connect_engine(self): """ Establish a connection to the database. Provides simple error handling for fatal errors. Returns: True, if we could establish a connection, else False. """ try: self.connection = self.engine.connect() return True except sa.exc.OperationalError as opex: LOG.fatal("Could not connect to the database. The error was: '%s'", str(opex)) return False
[ "def", "connect_engine", "(", "self", ")", ":", "try", ":", "self", ".", "connection", "=", "self", ".", "engine", ".", "connect", "(", ")", "return", "True", "except", "sa", ".", "exc", ".", "OperationalError", "as", "opex", ":", "LOG", ".", "fatal", "(", "\"Could not connect to the database. The error was: '%s'\"", ",", "str", "(", "opex", ")", ")", "return", "False" ]
Establish a connection to the database. Provides simple error handling for fatal errors. Returns: True, if we could establish a connection, else False.
[ "Establish", "a", "connection", "to", "the", "database", "." ]
train
https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/schema.py#L410-L425
PolyJIT/benchbuild
benchbuild/utils/schema.py
SessionManager.configure_engine
def configure_engine(self): """ Configure the databse connection. Sets appropriate transaction isolation levels and handle errors. Returns: True, if we did not encounter any unrecoverable errors, else False. """ try: self.connection.execution_options(isolation_level="SERIALIZABLE") except sa.exc.ArgumentError: LOG.debug("Unable to set isolation level to SERIALIZABLE") return True
python
def configure_engine(self): """ Configure the databse connection. Sets appropriate transaction isolation levels and handle errors. Returns: True, if we did not encounter any unrecoverable errors, else False. """ try: self.connection.execution_options(isolation_level="SERIALIZABLE") except sa.exc.ArgumentError: LOG.debug("Unable to set isolation level to SERIALIZABLE") return True
[ "def", "configure_engine", "(", "self", ")", ":", "try", ":", "self", ".", "connection", ".", "execution_options", "(", "isolation_level", "=", "\"SERIALIZABLE\"", ")", "except", "sa", ".", "exc", ".", "ArgumentError", ":", "LOG", ".", "debug", "(", "\"Unable to set isolation level to SERIALIZABLE\"", ")", "return", "True" ]
Configure the databse connection. Sets appropriate transaction isolation levels and handle errors. Returns: True, if we did not encounter any unrecoverable errors, else False.
[ "Configure", "the", "databse", "connection", "." ]
train
https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/schema.py#L427-L440
portfoliome/foil
foil/dates.py
parse_date
def parse_date(date_str: str, pattern=_RE_DATE) -> dt.date: """Parse datetime.date from YYYY-MM-DD format.""" groups = re.match(pattern, date_str) return dt.date(*_date_to_tuple(groups.groupdict()))
python
def parse_date(date_str: str, pattern=_RE_DATE) -> dt.date: """Parse datetime.date from YYYY-MM-DD format.""" groups = re.match(pattern, date_str) return dt.date(*_date_to_tuple(groups.groupdict()))
[ "def", "parse_date", "(", "date_str", ":", "str", ",", "pattern", "=", "_RE_DATE", ")", "->", "dt", ".", "date", ":", "groups", "=", "re", ".", "match", "(", "pattern", ",", "date_str", ")", "return", "dt", ".", "date", "(", "*", "_date_to_tuple", "(", "groups", ".", "groupdict", "(", ")", ")", ")" ]
Parse datetime.date from YYYY-MM-DD format.
[ "Parse", "datetime", ".", "date", "from", "YYYY", "-", "MM", "-", "DD", "format", "." ]
train
https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/dates.py#L47-L52
portfoliome/foil
foil/dates.py
_datetime_to_tuple
def _datetime_to_tuple(dt_dict): """datetime.datetime components from dictionary to tuple. Example ------- dt_dict = {'year': '2014','month': '07','day': '23', 'hour': '13','minute': '12','second': '45','microsecond': '321'} _datetime_to_tuple(dt_dict) -> (2014, 7, 23, 13, 12, 45, 321) """ year, month, day = _date_to_tuple(dt_dict) hour, minute, second, microsecond = _time_to_tuple(dt_dict) return year, month, day, hour, minute, second, microsecond
python
def _datetime_to_tuple(dt_dict): """datetime.datetime components from dictionary to tuple. Example ------- dt_dict = {'year': '2014','month': '07','day': '23', 'hour': '13','minute': '12','second': '45','microsecond': '321'} _datetime_to_tuple(dt_dict) -> (2014, 7, 23, 13, 12, 45, 321) """ year, month, day = _date_to_tuple(dt_dict) hour, minute, second, microsecond = _time_to_tuple(dt_dict) return year, month, day, hour, minute, second, microsecond
[ "def", "_datetime_to_tuple", "(", "dt_dict", ")", ":", "year", ",", "month", ",", "day", "=", "_date_to_tuple", "(", "dt_dict", ")", "hour", ",", "minute", ",", "second", ",", "microsecond", "=", "_time_to_tuple", "(", "dt_dict", ")", "return", "year", ",", "month", ",", "day", ",", "hour", ",", "minute", ",", "second", ",", "microsecond" ]
datetime.datetime components from dictionary to tuple. Example ------- dt_dict = {'year': '2014','month': '07','day': '23', 'hour': '13','minute': '12','second': '45','microsecond': '321'} _datetime_to_tuple(dt_dict) -> (2014, 7, 23, 13, 12, 45, 321)
[ "datetime", ".", "datetime", "components", "from", "dictionary", "to", "tuple", "." ]
train
https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/dates.py#L81-L95
portfoliome/foil
foil/dates.py
DateTimeParser.convert_2_utc
def convert_2_utc(self, datetime_, timezone): """convert to datetime to UTC offset.""" datetime_ = self.tz_mapper[timezone].localize(datetime_) return datetime_.astimezone(pytz.UTC)
python
def convert_2_utc(self, datetime_, timezone): """convert to datetime to UTC offset.""" datetime_ = self.tz_mapper[timezone].localize(datetime_) return datetime_.astimezone(pytz.UTC)
[ "def", "convert_2_utc", "(", "self", ",", "datetime_", ",", "timezone", ")", ":", "datetime_", "=", "self", ".", "tz_mapper", "[", "timezone", "]", ".", "localize", "(", "datetime_", ")", "return", "datetime_", ".", "astimezone", "(", "pytz", ".", "UTC", ")" ]
convert to datetime to UTC offset.
[ "convert", "to", "datetime", "to", "UTC", "offset", "." ]
train
https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/dates.py#L74-L78
jfear/sramongo
sramongo/services/entrez.py
esearch
def esearch(database, query, userhistory=True, webenv=False, query_key=False, retstart=False, retmax=False, api_key=False, email=False, **kwargs) -> Optional[EsearchResult]: """Search for a query using the Entrez ESearch API. Parameters ---------- database : str Entez database to search. query : str Query string userhistory : bool Tells API to return a WebEnV and query_key. webenv : str An Entrez WebEnv to use saved history. query_key : str An Entrez query_key to use saved history. retstart : int Return values starting at this index. retmax : int Return at most this number of values. api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Returns ------- EsearchResult A named tuple with values [ids, count, webenv, query_key] """ cleaned_query = urllib.parse.quote_plus(query, safe='/+') url = BASE_URL + f'esearch.fcgi?db={database}&term={cleaned_query}&retmode=json' url = check_userhistory(userhistory, url) url = check_webenv(webenv, url) url = check_query_key(query_key, url) url = check_retstart(retstart, url) url = check_retmax(retmax, url) url = check_api_key(api_key, url) url = check_email(email, url) time.sleep(PAUSE) resp = requests.get(url) if resp.status_code != 200: print('There was a server error') return text = resp.json() time.sleep(.5) return EsearchResult( text['esearchresult'].get('idlist', []), make_number(text['esearchresult'].get('count', ''), int), text['esearchresult'].get('webenv', ''), text['esearchresult'].get('querykey', '') )
python
def esearch(database, query, userhistory=True, webenv=False, query_key=False, retstart=False, retmax=False, api_key=False, email=False, **kwargs) -> Optional[EsearchResult]: """Search for a query using the Entrez ESearch API. Parameters ---------- database : str Entez database to search. query : str Query string userhistory : bool Tells API to return a WebEnV and query_key. webenv : str An Entrez WebEnv to use saved history. query_key : str An Entrez query_key to use saved history. retstart : int Return values starting at this index. retmax : int Return at most this number of values. api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Returns ------- EsearchResult A named tuple with values [ids, count, webenv, query_key] """ cleaned_query = urllib.parse.quote_plus(query, safe='/+') url = BASE_URL + f'esearch.fcgi?db={database}&term={cleaned_query}&retmode=json' url = check_userhistory(userhistory, url) url = check_webenv(webenv, url) url = check_query_key(query_key, url) url = check_retstart(retstart, url) url = check_retmax(retmax, url) url = check_api_key(api_key, url) url = check_email(email, url) time.sleep(PAUSE) resp = requests.get(url) if resp.status_code != 200: print('There was a server error') return text = resp.json() time.sleep(.5) return EsearchResult( text['esearchresult'].get('idlist', []), make_number(text['esearchresult'].get('count', ''), int), text['esearchresult'].get('webenv', ''), text['esearchresult'].get('querykey', '') )
[ "def", "esearch", "(", "database", ",", "query", ",", "userhistory", "=", "True", ",", "webenv", "=", "False", ",", "query_key", "=", "False", ",", "retstart", "=", "False", ",", "retmax", "=", "False", ",", "api_key", "=", "False", ",", "email", "=", "False", ",", "*", "*", "kwargs", ")", "->", "Optional", "[", "EsearchResult", "]", ":", "cleaned_query", "=", "urllib", ".", "parse", ".", "quote_plus", "(", "query", ",", "safe", "=", "'/+'", ")", "url", "=", "BASE_URL", "+", "f'esearch.fcgi?db={database}&term={cleaned_query}&retmode=json'", "url", "=", "check_userhistory", "(", "userhistory", ",", "url", ")", "url", "=", "check_webenv", "(", "webenv", ",", "url", ")", "url", "=", "check_query_key", "(", "query_key", ",", "url", ")", "url", "=", "check_retstart", "(", "retstart", ",", "url", ")", "url", "=", "check_retmax", "(", "retmax", ",", "url", ")", "url", "=", "check_api_key", "(", "api_key", ",", "url", ")", "url", "=", "check_email", "(", "email", ",", "url", ")", "time", ".", "sleep", "(", "PAUSE", ")", "resp", "=", "requests", ".", "get", "(", "url", ")", "if", "resp", ".", "status_code", "!=", "200", ":", "print", "(", "'There was a server error'", ")", "return", "text", "=", "resp", ".", "json", "(", ")", "time", ".", "sleep", "(", ".5", ")", "return", "EsearchResult", "(", "text", "[", "'esearchresult'", "]", ".", "get", "(", "'idlist'", ",", "[", "]", ")", ",", "make_number", "(", "text", "[", "'esearchresult'", "]", ".", "get", "(", "'count'", ",", "''", ")", ",", "int", ")", ",", "text", "[", "'esearchresult'", "]", ".", "get", "(", "'webenv'", ",", "''", ")", ",", "text", "[", "'esearchresult'", "]", ".", "get", "(", "'querykey'", ",", "''", ")", ")" ]
Search for a query using the Entrez ESearch API. Parameters ---------- database : str Entez database to search. query : str Query string userhistory : bool Tells API to return a WebEnV and query_key. webenv : str An Entrez WebEnv to use saved history. query_key : str An Entrez query_key to use saved history. retstart : int Return values starting at this index. retmax : int Return at most this number of values. api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Returns ------- EsearchResult A named tuple with values [ids, count, webenv, query_key]
[ "Search", "for", "a", "query", "using", "the", "Entrez", "ESearch", "API", "." ]
train
https://github.com/jfear/sramongo/blob/82a9a157e44bda4100be385c644b3ac21be66038/sramongo/services/entrez.py#L28-L83
jfear/sramongo
sramongo/services/entrez.py
epost
def epost(database, ids: List[str], webenv=False, api_key=False, email=False, **kwargs) -> Optional[EpostResult]: """Post IDs using the Entrez ESearch API. Parameters ---------- database : str Entez database to search. ids : list List of IDs to submit to the server. webenv : str An Entrez WebEnv to post ids to. api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Returns ------- requests.Response """ url = BASE_URL + f'epost.fcgi' id = ','.join(ids) url_params = f'db={database}&id={id}' url_params = check_webenv(webenv, url_params) url_params = check_api_key(api_key, url_params) url_params = check_email(email, url_params) resp = entrez_try_put_multiple_times(url, url_params, num_tries=3) time.sleep(.5) return parse_epost(resp.text)
python
def epost(database, ids: List[str], webenv=False, api_key=False, email=False, **kwargs) -> Optional[EpostResult]: """Post IDs using the Entrez ESearch API. Parameters ---------- database : str Entez database to search. ids : list List of IDs to submit to the server. webenv : str An Entrez WebEnv to post ids to. api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Returns ------- requests.Response """ url = BASE_URL + f'epost.fcgi' id = ','.join(ids) url_params = f'db={database}&id={id}' url_params = check_webenv(webenv, url_params) url_params = check_api_key(api_key, url_params) url_params = check_email(email, url_params) resp = entrez_try_put_multiple_times(url, url_params, num_tries=3) time.sleep(.5) return parse_epost(resp.text)
[ "def", "epost", "(", "database", ",", "ids", ":", "List", "[", "str", "]", ",", "webenv", "=", "False", ",", "api_key", "=", "False", ",", "email", "=", "False", ",", "*", "*", "kwargs", ")", "->", "Optional", "[", "EpostResult", "]", ":", "url", "=", "BASE_URL", "+", "f'epost.fcgi'", "id", "=", "','", ".", "join", "(", "ids", ")", "url_params", "=", "f'db={database}&id={id}'", "url_params", "=", "check_webenv", "(", "webenv", ",", "url_params", ")", "url_params", "=", "check_api_key", "(", "api_key", ",", "url_params", ")", "url_params", "=", "check_email", "(", "email", ",", "url_params", ")", "resp", "=", "entrez_try_put_multiple_times", "(", "url", ",", "url_params", ",", "num_tries", "=", "3", ")", "time", ".", "sleep", "(", ".5", ")", "return", "parse_epost", "(", "resp", ".", "text", ")" ]
Post IDs using the Entrez ESearch API. Parameters ---------- database : str Entez database to search. ids : list List of IDs to submit to the server. webenv : str An Entrez WebEnv to post ids to. api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Returns ------- requests.Response
[ "Post", "IDs", "using", "the", "Entrez", "ESearch", "API", "." ]
train
https://github.com/jfear/sramongo/blob/82a9a157e44bda4100be385c644b3ac21be66038/sramongo/services/entrez.py#L86-L115
jfear/sramongo
sramongo/services/entrez.py
elink
def elink(db: str, dbfrom: str, ids=False, webenv=False, query_key=False, api_key=False, email=False, **kwargs) -> Optional[ElinkResult]: """Get document summaries using the Entrez ESearch API. Parameters ---------- db : str Entez database to get ids from. dbfrom : str Entez database the provided ids are from. ids : list or str List of IDs to submit to the server. webenv : str An Entrez WebEnv to use saved history. query_key : str An Entrez query_key to use saved history. api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Returns ------- list A list of ElinkResult with values [id, srx, create_date, update_date] """ url = BASE_URL + f'elink.fcgi?dbfrom={dbfrom}&db={db}&retmode=json&cmd=neighbor_history' url = check_webenv(webenv, url) url = check_query_key(query_key, url) url = check_api_key(api_key, url) url = check_email(email, url) if ids: if isinstance(ids, str): id = ids else: id = ','.join(ids) url += f'&id={id}' time.sleep(PAUSE) resp = requests.get(url) if resp.status_code != 200: print('There was a server error') return text = resp.json() time.sleep(.5) return ElinkResult( text['linksets'][0].get('dbfrom', ''), text['linksets'][0].get('linksetdbhistories', [{'dbto': ''}])[0].get('dbto', ''), text['linksets'][0].get('webenv', ''), text['linksets'][0].get('linksetdbhistories', [{'querykey': ''}])[0].get('querykey', ''), )
python
def elink(db: str, dbfrom: str, ids=False, webenv=False, query_key=False, api_key=False, email=False, **kwargs) -> Optional[ElinkResult]: """Get document summaries using the Entrez ESearch API. Parameters ---------- db : str Entez database to get ids from. dbfrom : str Entez database the provided ids are from. ids : list or str List of IDs to submit to the server. webenv : str An Entrez WebEnv to use saved history. query_key : str An Entrez query_key to use saved history. api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Returns ------- list A list of ElinkResult with values [id, srx, create_date, update_date] """ url = BASE_URL + f'elink.fcgi?dbfrom={dbfrom}&db={db}&retmode=json&cmd=neighbor_history' url = check_webenv(webenv, url) url = check_query_key(query_key, url) url = check_api_key(api_key, url) url = check_email(email, url) if ids: if isinstance(ids, str): id = ids else: id = ','.join(ids) url += f'&id={id}' time.sleep(PAUSE) resp = requests.get(url) if resp.status_code != 200: print('There was a server error') return text = resp.json() time.sleep(.5) return ElinkResult( text['linksets'][0].get('dbfrom', ''), text['linksets'][0].get('linksetdbhistories', [{'dbto': ''}])[0].get('dbto', ''), text['linksets'][0].get('webenv', ''), text['linksets'][0].get('linksetdbhistories', [{'querykey': ''}])[0].get('querykey', ''), )
[ "def", "elink", "(", "db", ":", "str", ",", "dbfrom", ":", "str", ",", "ids", "=", "False", ",", "webenv", "=", "False", ",", "query_key", "=", "False", ",", "api_key", "=", "False", ",", "email", "=", "False", ",", "*", "*", "kwargs", ")", "->", "Optional", "[", "ElinkResult", "]", ":", "url", "=", "BASE_URL", "+", "f'elink.fcgi?dbfrom={dbfrom}&db={db}&retmode=json&cmd=neighbor_history'", "url", "=", "check_webenv", "(", "webenv", ",", "url", ")", "url", "=", "check_query_key", "(", "query_key", ",", "url", ")", "url", "=", "check_api_key", "(", "api_key", ",", "url", ")", "url", "=", "check_email", "(", "email", ",", "url", ")", "if", "ids", ":", "if", "isinstance", "(", "ids", ",", "str", ")", ":", "id", "=", "ids", "else", ":", "id", "=", "','", ".", "join", "(", "ids", ")", "url", "+=", "f'&id={id}'", "time", ".", "sleep", "(", "PAUSE", ")", "resp", "=", "requests", ".", "get", "(", "url", ")", "if", "resp", ".", "status_code", "!=", "200", ":", "print", "(", "'There was a server error'", ")", "return", "text", "=", "resp", ".", "json", "(", ")", "time", ".", "sleep", "(", ".5", ")", "return", "ElinkResult", "(", "text", "[", "'linksets'", "]", "[", "0", "]", ".", "get", "(", "'dbfrom'", ",", "''", ")", ",", "text", "[", "'linksets'", "]", "[", "0", "]", ".", "get", "(", "'linksetdbhistories'", ",", "[", "{", "'dbto'", ":", "''", "}", "]", ")", "[", "0", "]", ".", "get", "(", "'dbto'", ",", "''", ")", ",", "text", "[", "'linksets'", "]", "[", "0", "]", ".", "get", "(", "'webenv'", ",", "''", ")", ",", "text", "[", "'linksets'", "]", "[", "0", "]", ".", "get", "(", "'linksetdbhistories'", ",", "[", "{", "'querykey'", ":", "''", "}", "]", ")", "[", "0", "]", ".", "get", "(", "'querykey'", ",", "''", ")", ",", ")" ]
Get document summaries using the Entrez ESearch API. Parameters ---------- db : str Entez database to get ids from. dbfrom : str Entez database the provided ids are from. ids : list or str List of IDs to submit to the server. webenv : str An Entrez WebEnv to use saved history. query_key : str An Entrez query_key to use saved history. api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Returns ------- list A list of ElinkResult with values [id, srx, create_date, update_date]
[ "Get", "document", "summaries", "using", "the", "Entrez", "ESearch", "API", "." ]
train
https://github.com/jfear/sramongo/blob/82a9a157e44bda4100be385c644b3ac21be66038/sramongo/services/entrez.py#L118-L171
jfear/sramongo
sramongo/services/entrez.py
esummary
def esummary(database: str, ids=False, webenv=False, query_key=False, count=False, retstart=False, retmax=False, api_key=False, email=False, **kwargs) -> Optional[List[EsummaryResult]]: """Get document summaries using the Entrez ESearch API. Parameters ---------- database : str Entez database to search. ids : list or str List of IDs to submit to the server. webenv : str An Entrez WebEnv to use saved history. query_key : str An Entrez query_key to use saved history. count : int Number of records in the webenv retstart : int Return values starting at this index. retmax : int Return at most this number of values. api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Returns ------- list A list of EsummaryResults with values [id, srx, create_date, update_date] """ url = BASE_URL + f'esummary.fcgi?db={database}' url = check_webenv(webenv, url) url = check_query_key(query_key, url) url = check_api_key(api_key, url) url = check_email(email, url) if ids: if isinstance(ids, str): id = ids else: id = ','.join(ids) url += f'&id={id}' count = len(id.split(',')) for resp in entrez_sets_of_results(url, retstart, retmax, count): yield resp.text
python
def esummary(database: str, ids=False, webenv=False, query_key=False, count=False, retstart=False, retmax=False, api_key=False, email=False, **kwargs) -> Optional[List[EsummaryResult]]: """Get document summaries using the Entrez ESearch API. Parameters ---------- database : str Entez database to search. ids : list or str List of IDs to submit to the server. webenv : str An Entrez WebEnv to use saved history. query_key : str An Entrez query_key to use saved history. count : int Number of records in the webenv retstart : int Return values starting at this index. retmax : int Return at most this number of values. api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Returns ------- list A list of EsummaryResults with values [id, srx, create_date, update_date] """ url = BASE_URL + f'esummary.fcgi?db={database}' url = check_webenv(webenv, url) url = check_query_key(query_key, url) url = check_api_key(api_key, url) url = check_email(email, url) if ids: if isinstance(ids, str): id = ids else: id = ','.join(ids) url += f'&id={id}' count = len(id.split(',')) for resp in entrez_sets_of_results(url, retstart, retmax, count): yield resp.text
[ "def", "esummary", "(", "database", ":", "str", ",", "ids", "=", "False", ",", "webenv", "=", "False", ",", "query_key", "=", "False", ",", "count", "=", "False", ",", "retstart", "=", "False", ",", "retmax", "=", "False", ",", "api_key", "=", "False", ",", "email", "=", "False", ",", "*", "*", "kwargs", ")", "->", "Optional", "[", "List", "[", "EsummaryResult", "]", "]", ":", "url", "=", "BASE_URL", "+", "f'esummary.fcgi?db={database}'", "url", "=", "check_webenv", "(", "webenv", ",", "url", ")", "url", "=", "check_query_key", "(", "query_key", ",", "url", ")", "url", "=", "check_api_key", "(", "api_key", ",", "url", ")", "url", "=", "check_email", "(", "email", ",", "url", ")", "if", "ids", ":", "if", "isinstance", "(", "ids", ",", "str", ")", ":", "id", "=", "ids", "else", ":", "id", "=", "','", ".", "join", "(", "ids", ")", "url", "+=", "f'&id={id}'", "count", "=", "len", "(", "id", ".", "split", "(", "','", ")", ")", "for", "resp", "in", "entrez_sets_of_results", "(", "url", ",", "retstart", ",", "retmax", ",", "count", ")", ":", "yield", "resp", ".", "text" ]
Get document summaries using the Entrez ESearch API. Parameters ---------- database : str Entez database to search. ids : list or str List of IDs to submit to the server. webenv : str An Entrez WebEnv to use saved history. query_key : str An Entrez query_key to use saved history. count : int Number of records in the webenv retstart : int Return values starting at this index. retmax : int Return at most this number of values. api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Returns ------- list A list of EsummaryResults with values [id, srx, create_date, update_date]
[ "Get", "document", "summaries", "using", "the", "Entrez", "ESearch", "API", "." ]
train
https://github.com/jfear/sramongo/blob/82a9a157e44bda4100be385c644b3ac21be66038/sramongo/services/entrez.py#L174-L220
jfear/sramongo
sramongo/services/entrez.py
efetch
def efetch(database, ids=False, webenv=False, query_key=False, count=False, retstart=False, retmax=False, rettype='full', retmode='xml', api_key=False, email=False, **kwargs) -> str: """Get documents using the Entrez ESearch API.gg Parameters ---------- database : str Entez database to search. ids : list or str List of IDs to submit to the server. webenv : str An Entrez WebEnv to use saved history. query_key : str An Entrez query_key to use saved history. count : int Number of records in the webenv retstart : int Return values starting at this index. retmax : int Return at most this number of values. rettype : str The type of document to return. Refer to link for valid return types for each database. https://www.ncbi.nlm.nih.gov/books/NBK25499/table/chapter4.T._valid_values_of__retmode_and/?report=objectonly retmode : str The format of document to return. Refer to link for valid formats for each database. https://www.ncbi.nlm.nih.gov/books/NBK25499/table/chapter4.T._valid_values_of__retmode_and/?report=objectonly api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Yields ------ str Text from effect results. Format depends on parameters passed to retmode """ url = BASE_URL + f'efetch.fcgi?db={database}&retmode={retmode}&rettype={rettype}' url = check_webenv(webenv, url) url = check_query_key(query_key, url) url = check_api_key(api_key, url) url = check_email(email, url) if ids: if isinstance(ids, str): id = ids else: id = ','.join(ids) url += f'&id={id}' count = len(id.split(',')) for resp in entrez_sets_of_results(url, retstart, retmax, count): yield resp.text
python
def efetch(database, ids=False, webenv=False, query_key=False, count=False, retstart=False, retmax=False, rettype='full', retmode='xml', api_key=False, email=False, **kwargs) -> str: """Get documents using the Entrez ESearch API.gg Parameters ---------- database : str Entez database to search. ids : list or str List of IDs to submit to the server. webenv : str An Entrez WebEnv to use saved history. query_key : str An Entrez query_key to use saved history. count : int Number of records in the webenv retstart : int Return values starting at this index. retmax : int Return at most this number of values. rettype : str The type of document to return. Refer to link for valid return types for each database. https://www.ncbi.nlm.nih.gov/books/NBK25499/table/chapter4.T._valid_values_of__retmode_and/?report=objectonly retmode : str The format of document to return. Refer to link for valid formats for each database. https://www.ncbi.nlm.nih.gov/books/NBK25499/table/chapter4.T._valid_values_of__retmode_and/?report=objectonly api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Yields ------ str Text from effect results. Format depends on parameters passed to retmode """ url = BASE_URL + f'efetch.fcgi?db={database}&retmode={retmode}&rettype={rettype}' url = check_webenv(webenv, url) url = check_query_key(query_key, url) url = check_api_key(api_key, url) url = check_email(email, url) if ids: if isinstance(ids, str): id = ids else: id = ','.join(ids) url += f'&id={id}' count = len(id.split(',')) for resp in entrez_sets_of_results(url, retstart, retmax, count): yield resp.text
[ "def", "efetch", "(", "database", ",", "ids", "=", "False", ",", "webenv", "=", "False", ",", "query_key", "=", "False", ",", "count", "=", "False", ",", "retstart", "=", "False", ",", "retmax", "=", "False", ",", "rettype", "=", "'full'", ",", "retmode", "=", "'xml'", ",", "api_key", "=", "False", ",", "email", "=", "False", ",", "*", "*", "kwargs", ")", "->", "str", ":", "url", "=", "BASE_URL", "+", "f'efetch.fcgi?db={database}&retmode={retmode}&rettype={rettype}'", "url", "=", "check_webenv", "(", "webenv", ",", "url", ")", "url", "=", "check_query_key", "(", "query_key", ",", "url", ")", "url", "=", "check_api_key", "(", "api_key", ",", "url", ")", "url", "=", "check_email", "(", "email", ",", "url", ")", "if", "ids", ":", "if", "isinstance", "(", "ids", ",", "str", ")", ":", "id", "=", "ids", "else", ":", "id", "=", "','", ".", "join", "(", "ids", ")", "url", "+=", "f'&id={id}'", "count", "=", "len", "(", "id", ".", "split", "(", "','", ")", ")", "for", "resp", "in", "entrez_sets_of_results", "(", "url", ",", "retstart", ",", "retmax", ",", "count", ")", ":", "yield", "resp", ".", "text" ]
Get documents using the Entrez ESearch API.gg Parameters ---------- database : str Entez database to search. ids : list or str List of IDs to submit to the server. webenv : str An Entrez WebEnv to use saved history. query_key : str An Entrez query_key to use saved history. count : int Number of records in the webenv retstart : int Return values starting at this index. retmax : int Return at most this number of values. rettype : str The type of document to return. Refer to link for valid return types for each database. https://www.ncbi.nlm.nih.gov/books/NBK25499/table/chapter4.T._valid_values_of__retmode_and/?report=objectonly retmode : str The format of document to return. Refer to link for valid formats for each database. https://www.ncbi.nlm.nih.gov/books/NBK25499/table/chapter4.T._valid_values_of__retmode_and/?report=objectonly api_key : str A users API key which allows more requests per second email : str A users email which is required if not using API. Yields ------ str Text from effect results. Format depends on parameters passed to retmode
[ "Get", "documents", "using", "the", "Entrez", "ESearch", "API", ".", "gg" ]
train
https://github.com/jfear/sramongo/blob/82a9a157e44bda4100be385c644b3ac21be66038/sramongo/services/entrez.py#L223-L275
jfear/sramongo
sramongo/services/entrez.py
entrez_sets_of_results
def entrez_sets_of_results(url, retstart=False, retmax=False, count=False) -> Optional[List[requests.Response]]: """Gets sets of results back from Entrez. Entrez can only return 500 results at a time. This creates a generator that gets results by incrementing retstart and retmax. Parameters ---------- url : str The Entrez API url to use. retstart : int Return values starting at this index. retmax : int Return at most this number of values. count : int The number of results returned by EQuery. Yields ------ requests.Response """ if not retstart: retstart = 0 if not retmax: retmax = 500 if not count: count = retmax retmax = 500 # Entrez can return a max of 500 while retstart < count: diff = count - retstart if diff < 500: retmax = diff _url = url + f'&retstart={retstart}&retmax={retmax}' resp = entrez_try_get_multiple_times(_url) if resp is None: return retstart += retmax yield resp
python
def entrez_sets_of_results(url, retstart=False, retmax=False, count=False) -> Optional[List[requests.Response]]: """Gets sets of results back from Entrez. Entrez can only return 500 results at a time. This creates a generator that gets results by incrementing retstart and retmax. Parameters ---------- url : str The Entrez API url to use. retstart : int Return values starting at this index. retmax : int Return at most this number of values. count : int The number of results returned by EQuery. Yields ------ requests.Response """ if not retstart: retstart = 0 if not retmax: retmax = 500 if not count: count = retmax retmax = 500 # Entrez can return a max of 500 while retstart < count: diff = count - retstart if diff < 500: retmax = diff _url = url + f'&retstart={retstart}&retmax={retmax}' resp = entrez_try_get_multiple_times(_url) if resp is None: return retstart += retmax yield resp
[ "def", "entrez_sets_of_results", "(", "url", ",", "retstart", "=", "False", ",", "retmax", "=", "False", ",", "count", "=", "False", ")", "->", "Optional", "[", "List", "[", "requests", ".", "Response", "]", "]", ":", "if", "not", "retstart", ":", "retstart", "=", "0", "if", "not", "retmax", ":", "retmax", "=", "500", "if", "not", "count", ":", "count", "=", "retmax", "retmax", "=", "500", "# Entrez can return a max of 500", "while", "retstart", "<", "count", ":", "diff", "=", "count", "-", "retstart", "if", "diff", "<", "500", ":", "retmax", "=", "diff", "_url", "=", "url", "+", "f'&retstart={retstart}&retmax={retmax}'", "resp", "=", "entrez_try_get_multiple_times", "(", "_url", ")", "if", "resp", "is", "None", ":", "return", "retstart", "+=", "retmax", "yield", "resp" ]
Gets sets of results back from Entrez. Entrez can only return 500 results at a time. This creates a generator that gets results by incrementing retstart and retmax. Parameters ---------- url : str The Entrez API url to use. retstart : int Return values starting at this index. retmax : int Return at most this number of values. count : int The number of results returned by EQuery. Yields ------ requests.Response
[ "Gets", "sets", "of", "results", "back", "from", "Entrez", "." ]
train
https://github.com/jfear/sramongo/blob/82a9a157e44bda4100be385c644b3ac21be66038/sramongo/services/entrez.py#L358-L401
PolyJIT/benchbuild
benchbuild/cli/log.py
print_runs
def print_runs(query): """ Print all rows in this result query. """ if query is None: return for tup in query: print(("{0} @ {1} - {2} id: {3} group: {4}".format( tup.end, tup.experiment_name, tup.project_name, tup.experiment_group, tup.run_group)))
python
def print_runs(query): """ Print all rows in this result query. """ if query is None: return for tup in query: print(("{0} @ {1} - {2} id: {3} group: {4}".format( tup.end, tup.experiment_name, tup.project_name, tup.experiment_group, tup.run_group)))
[ "def", "print_runs", "(", "query", ")", ":", "if", "query", "is", "None", ":", "return", "for", "tup", "in", "query", ":", "print", "(", "(", "\"{0} @ {1} - {2} id: {3} group: {4}\"", ".", "format", "(", "tup", ".", "end", ",", "tup", ".", "experiment_name", ",", "tup", ".", "project_name", ",", "tup", ".", "experiment_group", ",", "tup", ".", "run_group", ")", ")", ")" ]
Print all rows in this result query.
[ "Print", "all", "rows", "in", "this", "result", "query", "." ]
train
https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/cli/log.py#L9-L18
PolyJIT/benchbuild
benchbuild/cli/log.py
print_logs
def print_logs(query, types=None): """ Print status logs. """ if query is None: return for run, log in query: print(("{0} @ {1} - {2} id: {3} group: {4} status: {5}".format( run.end, run.experiment_name, run.project_name, run.experiment_group, run.run_group, log.status))) print(("command: {0}".format(run.command))) if "stderr" in types: print("StdErr:") print((log.stderr)) if "stdout" in types: print("StdOut:") print((log.stdout)) print()
python
def print_logs(query, types=None): """ Print status logs. """ if query is None: return for run, log in query: print(("{0} @ {1} - {2} id: {3} group: {4} status: {5}".format( run.end, run.experiment_name, run.project_name, run.experiment_group, run.run_group, log.status))) print(("command: {0}".format(run.command))) if "stderr" in types: print("StdErr:") print((log.stderr)) if "stdout" in types: print("StdOut:") print((log.stdout)) print()
[ "def", "print_logs", "(", "query", ",", "types", "=", "None", ")", ":", "if", "query", "is", "None", ":", "return", "for", "run", ",", "log", "in", "query", ":", "print", "(", "(", "\"{0} @ {1} - {2} id: {3} group: {4} status: {5}\"", ".", "format", "(", "run", ".", "end", ",", "run", ".", "experiment_name", ",", "run", ".", "project_name", ",", "run", ".", "experiment_group", ",", "run", ".", "run_group", ",", "log", ".", "status", ")", ")", ")", "print", "(", "(", "\"command: {0}\"", ".", "format", "(", "run", ".", "command", ")", ")", ")", "if", "\"stderr\"", "in", "types", ":", "print", "(", "\"StdErr:\"", ")", "print", "(", "(", "log", ".", "stderr", ")", ")", "if", "\"stdout\"", "in", "types", ":", "print", "(", "\"StdOut:\"", ")", "print", "(", "(", "log", ".", "stdout", ")", ")", "print", "(", ")" ]
Print status logs.
[ "Print", "status", "logs", "." ]
train
https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/cli/log.py#L21-L37
sci-bots/svg-model
svg_model/merge.py
get_svg_layers
def get_svg_layers(svg_sources): ''' Collect layers from input svg sources. Args: svg_sources (list) : A list of file-like objects, each containing one or more XML layers. Returns ------- (width, height), layers : (int, int), list The first item in the tuple is the shape of the largest layer, and the second item is a list of ``Element`` objects (from :mod:`lxml.etree` module), one per SVG layer. ''' layers = [] width, height = None, None def extract_length(attr): 'Extract length in pixels.' match = CRE_MM_LENGTH.match(attr) if match: # Length is specified in millimeters. return INKSCAPE_PPmm.magnitude * float(match.group('length')) else: return float(attr) for svg_source_i in svg_sources: # Parse input file. xml_root = etree.parse(svg_source_i) svg_root = xml_root.xpath('/svg:svg', namespaces=INKSCAPE_NSMAP)[0] width = max(extract_length(svg_root.attrib['width']), width) height = max(extract_length(svg_root.attrib['height']), height) layers += svg_root.xpath('//svg:g[@inkscape:groupmode="layer"]', namespaces=INKSCAPE_NSMAP) for i, layer_i in enumerate(layers): layer_i.attrib['id'] = 'layer%d' % (i + 1) return (width, height), layers
python
def get_svg_layers(svg_sources): ''' Collect layers from input svg sources. Args: svg_sources (list) : A list of file-like objects, each containing one or more XML layers. Returns ------- (width, height), layers : (int, int), list The first item in the tuple is the shape of the largest layer, and the second item is a list of ``Element`` objects (from :mod:`lxml.etree` module), one per SVG layer. ''' layers = [] width, height = None, None def extract_length(attr): 'Extract length in pixels.' match = CRE_MM_LENGTH.match(attr) if match: # Length is specified in millimeters. return INKSCAPE_PPmm.magnitude * float(match.group('length')) else: return float(attr) for svg_source_i in svg_sources: # Parse input file. xml_root = etree.parse(svg_source_i) svg_root = xml_root.xpath('/svg:svg', namespaces=INKSCAPE_NSMAP)[0] width = max(extract_length(svg_root.attrib['width']), width) height = max(extract_length(svg_root.attrib['height']), height) layers += svg_root.xpath('//svg:g[@inkscape:groupmode="layer"]', namespaces=INKSCAPE_NSMAP) for i, layer_i in enumerate(layers): layer_i.attrib['id'] = 'layer%d' % (i + 1) return (width, height), layers
[ "def", "get_svg_layers", "(", "svg_sources", ")", ":", "layers", "=", "[", "]", "width", ",", "height", "=", "None", ",", "None", "def", "extract_length", "(", "attr", ")", ":", "'Extract length in pixels.'", "match", "=", "CRE_MM_LENGTH", ".", "match", "(", "attr", ")", "if", "match", ":", "# Length is specified in millimeters.", "return", "INKSCAPE_PPmm", ".", "magnitude", "*", "float", "(", "match", ".", "group", "(", "'length'", ")", ")", "else", ":", "return", "float", "(", "attr", ")", "for", "svg_source_i", "in", "svg_sources", ":", "# Parse input file.", "xml_root", "=", "etree", ".", "parse", "(", "svg_source_i", ")", "svg_root", "=", "xml_root", ".", "xpath", "(", "'/svg:svg'", ",", "namespaces", "=", "INKSCAPE_NSMAP", ")", "[", "0", "]", "width", "=", "max", "(", "extract_length", "(", "svg_root", ".", "attrib", "[", "'width'", "]", ")", ",", "width", ")", "height", "=", "max", "(", "extract_length", "(", "svg_root", ".", "attrib", "[", "'height'", "]", ")", ",", "height", ")", "layers", "+=", "svg_root", ".", "xpath", "(", "'//svg:g[@inkscape:groupmode=\"layer\"]'", ",", "namespaces", "=", "INKSCAPE_NSMAP", ")", "for", "i", ",", "layer_i", "in", "enumerate", "(", "layers", ")", ":", "layer_i", ".", "attrib", "[", "'id'", "]", "=", "'layer%d'", "%", "(", "i", "+", "1", ")", "return", "(", "width", ",", "height", ")", ",", "layers" ]
Collect layers from input svg sources. Args: svg_sources (list) : A list of file-like objects, each containing one or more XML layers. Returns ------- (width, height), layers : (int, int), list The first item in the tuple is the shape of the largest layer, and the second item is a list of ``Element`` objects (from :mod:`lxml.etree` module), one per SVG layer.
[ "Collect", "layers", "from", "input", "svg", "sources", "." ]
train
https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/merge.py#L14-L53
sci-bots/svg-model
svg_model/merge.py
merge_svg_layers
def merge_svg_layers(svg_sources, share_transform=True): ''' Merge layers from input svg sources into a single XML document. Args: svg_sources (list) : A list of file-like objects, each containing one or more XML layers. share_transform (bool) : If exactly one layer has a transform, apply it to *all* other layers as well. Returns: StringIO.StringIO : File-like object containing merge XML document. ''' # Get list of XML layers. (width, height), layers = get_svg_layers(svg_sources) if share_transform: transforms = [layer_i.attrib['transform'] for layer_i in layers if 'transform' in layer_i.attrib] if len(transforms) > 1: raise ValueError('Transform can only be shared if *exactly one* ' 'layer has a transform ({} layers have ' '`transform` attributes)'.format(len(transforms))) elif transforms: # Apply single common transform to all layers. for layer_i in layers: layer_i.attrib['transform'] = transforms[0] # Create blank XML output document. dwg = svgwrite.Drawing(profile='tiny', debug=False, size=(width, height)) # Add append layers to output XML root element. output_svg_root = etree.fromstring(dwg.tostring()) output_svg_root.extend(layers) # Write merged XML document to output file-like object. output = StringIO.StringIO() output.write(etree.tostring(output_svg_root)) output.seek(0) return output
python
def merge_svg_layers(svg_sources, share_transform=True): ''' Merge layers from input svg sources into a single XML document. Args: svg_sources (list) : A list of file-like objects, each containing one or more XML layers. share_transform (bool) : If exactly one layer has a transform, apply it to *all* other layers as well. Returns: StringIO.StringIO : File-like object containing merge XML document. ''' # Get list of XML layers. (width, height), layers = get_svg_layers(svg_sources) if share_transform: transforms = [layer_i.attrib['transform'] for layer_i in layers if 'transform' in layer_i.attrib] if len(transforms) > 1: raise ValueError('Transform can only be shared if *exactly one* ' 'layer has a transform ({} layers have ' '`transform` attributes)'.format(len(transforms))) elif transforms: # Apply single common transform to all layers. for layer_i in layers: layer_i.attrib['transform'] = transforms[0] # Create blank XML output document. dwg = svgwrite.Drawing(profile='tiny', debug=False, size=(width, height)) # Add append layers to output XML root element. output_svg_root = etree.fromstring(dwg.tostring()) output_svg_root.extend(layers) # Write merged XML document to output file-like object. output = StringIO.StringIO() output.write(etree.tostring(output_svg_root)) output.seek(0) return output
[ "def", "merge_svg_layers", "(", "svg_sources", ",", "share_transform", "=", "True", ")", ":", "# Get list of XML layers.", "(", "width", ",", "height", ")", ",", "layers", "=", "get_svg_layers", "(", "svg_sources", ")", "if", "share_transform", ":", "transforms", "=", "[", "layer_i", ".", "attrib", "[", "'transform'", "]", "for", "layer_i", "in", "layers", "if", "'transform'", "in", "layer_i", ".", "attrib", "]", "if", "len", "(", "transforms", ")", ">", "1", ":", "raise", "ValueError", "(", "'Transform can only be shared if *exactly one* '", "'layer has a transform ({} layers have '", "'`transform` attributes)'", ".", "format", "(", "len", "(", "transforms", ")", ")", ")", "elif", "transforms", ":", "# Apply single common transform to all layers.", "for", "layer_i", "in", "layers", ":", "layer_i", ".", "attrib", "[", "'transform'", "]", "=", "transforms", "[", "0", "]", "# Create blank XML output document.", "dwg", "=", "svgwrite", ".", "Drawing", "(", "profile", "=", "'tiny'", ",", "debug", "=", "False", ",", "size", "=", "(", "width", ",", "height", ")", ")", "# Add append layers to output XML root element.", "output_svg_root", "=", "etree", ".", "fromstring", "(", "dwg", ".", "tostring", "(", ")", ")", "output_svg_root", ".", "extend", "(", "layers", ")", "# Write merged XML document to output file-like object.", "output", "=", "StringIO", ".", "StringIO", "(", ")", "output", ".", "write", "(", "etree", ".", "tostring", "(", "output_svg_root", ")", ")", "output", ".", "seek", "(", "0", ")", "return", "output" ]
Merge layers from input svg sources into a single XML document. Args: svg_sources (list) : A list of file-like objects, each containing one or more XML layers. share_transform (bool) : If exactly one layer has a transform, apply it to *all* other layers as well. Returns: StringIO.StringIO : File-like object containing merge XML document.
[ "Merge", "layers", "from", "input", "svg", "sources", "into", "a", "single", "XML", "document", "." ]
train
https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/merge.py#L56-L97
BlueBrain/hpcbench
hpcbench/cli/bensh.py
main
def main(argv=None): """ben-sh entry point""" arguments = cli_common(__doc__, argv=argv) campaign_file = arguments['CAMPAIGN_FILE'] if arguments['-g']: if osp.exists(campaign_file): raise Exception('Campaign file already exists') with open(campaign_file, 'w') as ostr: Generator().write(ostr) else: node = arguments.get('-n') output_dir = arguments.get('--output-dir') exclude_nodes = arguments.get('--exclude-nodes') srun_tag = arguments.get('--srun') driver = CampaignDriver( campaign_file, node=node, output_dir=output_dir, srun=srun_tag, exclude_nodes=exclude_nodes, ) driver() if argv is not None: return driver campaign_fd = int(arguments.get('--campaign-path-fd') or 1) message = (osp.abspath(driver.campaign_path) + '\n').encode() os.write(campaign_fd, message)
python
def main(argv=None): """ben-sh entry point""" arguments = cli_common(__doc__, argv=argv) campaign_file = arguments['CAMPAIGN_FILE'] if arguments['-g']: if osp.exists(campaign_file): raise Exception('Campaign file already exists') with open(campaign_file, 'w') as ostr: Generator().write(ostr) else: node = arguments.get('-n') output_dir = arguments.get('--output-dir') exclude_nodes = arguments.get('--exclude-nodes') srun_tag = arguments.get('--srun') driver = CampaignDriver( campaign_file, node=node, output_dir=output_dir, srun=srun_tag, exclude_nodes=exclude_nodes, ) driver() if argv is not None: return driver campaign_fd = int(arguments.get('--campaign-path-fd') or 1) message = (osp.abspath(driver.campaign_path) + '\n').encode() os.write(campaign_fd, message)
[ "def", "main", "(", "argv", "=", "None", ")", ":", "arguments", "=", "cli_common", "(", "__doc__", ",", "argv", "=", "argv", ")", "campaign_file", "=", "arguments", "[", "'CAMPAIGN_FILE'", "]", "if", "arguments", "[", "'-g'", "]", ":", "if", "osp", ".", "exists", "(", "campaign_file", ")", ":", "raise", "Exception", "(", "'Campaign file already exists'", ")", "with", "open", "(", "campaign_file", ",", "'w'", ")", "as", "ostr", ":", "Generator", "(", ")", ".", "write", "(", "ostr", ")", "else", ":", "node", "=", "arguments", ".", "get", "(", "'-n'", ")", "output_dir", "=", "arguments", ".", "get", "(", "'--output-dir'", ")", "exclude_nodes", "=", "arguments", ".", "get", "(", "'--exclude-nodes'", ")", "srun_tag", "=", "arguments", ".", "get", "(", "'--srun'", ")", "driver", "=", "CampaignDriver", "(", "campaign_file", ",", "node", "=", "node", ",", "output_dir", "=", "output_dir", ",", "srun", "=", "srun_tag", ",", "exclude_nodes", "=", "exclude_nodes", ",", ")", "driver", "(", ")", "if", "argv", "is", "not", "None", ":", "return", "driver", "campaign_fd", "=", "int", "(", "arguments", ".", "get", "(", "'--campaign-path-fd'", ")", "or", "1", ")", "message", "=", "(", "osp", ".", "abspath", "(", "driver", ".", "campaign_path", ")", "+", "'\\n'", ")", ".", "encode", "(", ")", "os", ".", "write", "(", "campaign_fd", ",", "message", ")" ]
ben-sh entry point
[ "ben", "-", "sh", "entry", "point" ]
train
https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/cli/bensh.py#L35-L61
BlueBrain/hpcbench
hpcbench/cli/benumb.py
main
def main(argv=None): """ben-umb entry point""" arguments = cli_common(__doc__, argv=argv) driver = CampaignDriver(arguments['CAMPAIGN-DIR'], expandcampvars=False) driver(no_exec=True) if argv is not None: return driver
python
def main(argv=None): """ben-umb entry point""" arguments = cli_common(__doc__, argv=argv) driver = CampaignDriver(arguments['CAMPAIGN-DIR'], expandcampvars=False) driver(no_exec=True) if argv is not None: return driver
[ "def", "main", "(", "argv", "=", "None", ")", ":", "arguments", "=", "cli_common", "(", "__doc__", ",", "argv", "=", "argv", ")", "driver", "=", "CampaignDriver", "(", "arguments", "[", "'CAMPAIGN-DIR'", "]", ",", "expandcampvars", "=", "False", ")", "driver", "(", "no_exec", "=", "True", ")", "if", "argv", "is", "not", "None", ":", "return", "driver" ]
ben-umb entry point
[ "ben", "-", "umb", "entry", "point" ]
train
https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/cli/benumb.py#L19-L25
portfoliome/foil
foil/counting.py
count_by
def count_by(records: Sequence[Dict], field_name: str) -> defaultdict: """ Frequency each value occurs in a record sequence for a given field name. """ counter = defaultdict(int) for record in records: name = record[field_name] counter[name] += 1 return counter
python
def count_by(records: Sequence[Dict], field_name: str) -> defaultdict: """ Frequency each value occurs in a record sequence for a given field name. """ counter = defaultdict(int) for record in records: name = record[field_name] counter[name] += 1 return counter
[ "def", "count_by", "(", "records", ":", "Sequence", "[", "Dict", "]", ",", "field_name", ":", "str", ")", "->", "defaultdict", ":", "counter", "=", "defaultdict", "(", "int", ")", "for", "record", "in", "records", ":", "name", "=", "record", "[", "field_name", "]", "counter", "[", "name", "]", "+=", "1", "return", "counter" ]
Frequency each value occurs in a record sequence for a given field name.
[ "Frequency", "each", "value", "occurs", "in", "a", "record", "sequence", "for", "a", "given", "field", "name", "." ]
train
https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/counting.py#L5-L16
PolyJIT/benchbuild
benchbuild/reports/status.py
FullDump.generate
def generate(self): """ Fetch all rows associated with this experiment. This will generate a huge .csv. """ exp_name = self.exp_name() fname = os.path.basename(self.out_path) fname = "{exp}_{prefix}_{name}{ending}".format( exp=exp_name, prefix=os.path.splitext(fname)[0], ending=os.path.splitext(fname)[-1], name="full") first = True for chunk in self.report(): print("Writing chunk to :'{0}'".format(fname)) chunk.to_csv(fname, header=first, mode='a') first = False
python
def generate(self): """ Fetch all rows associated with this experiment. This will generate a huge .csv. """ exp_name = self.exp_name() fname = os.path.basename(self.out_path) fname = "{exp}_{prefix}_{name}{ending}".format( exp=exp_name, prefix=os.path.splitext(fname)[0], ending=os.path.splitext(fname)[-1], name="full") first = True for chunk in self.report(): print("Writing chunk to :'{0}'".format(fname)) chunk.to_csv(fname, header=first, mode='a') first = False
[ "def", "generate", "(", "self", ")", ":", "exp_name", "=", "self", ".", "exp_name", "(", ")", "fname", "=", "os", ".", "path", ".", "basename", "(", "self", ".", "out_path", ")", "fname", "=", "\"{exp}_{prefix}_{name}{ending}\"", ".", "format", "(", "exp", "=", "exp_name", ",", "prefix", "=", "os", ".", "path", ".", "splitext", "(", "fname", ")", "[", "0", "]", ",", "ending", "=", "os", ".", "path", ".", "splitext", "(", "fname", ")", "[", "-", "1", "]", ",", "name", "=", "\"full\"", ")", "first", "=", "True", "for", "chunk", "in", "self", ".", "report", "(", ")", ":", "print", "(", "\"Writing chunk to :'{0}'\"", ".", "format", "(", "fname", ")", ")", "chunk", ".", "to_csv", "(", "fname", ",", "header", "=", "first", ",", "mode", "=", "'a'", ")", "first", "=", "False" ]
Fetch all rows associated with this experiment. This will generate a huge .csv.
[ "Fetch", "all", "rows", "associated", "with", "this", "experiment", "." ]
train
https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/reports/status.py#L82-L100
Metatab/metatab
metatab/appurl.py
MetatabUrl.doc
def doc(self): """Return the metatab document for the URL""" from metatab import MetatabDoc t = self.get_resource().get_target() return MetatabDoc(t.inner)
python
def doc(self): """Return the metatab document for the URL""" from metatab import MetatabDoc t = self.get_resource().get_target() return MetatabDoc(t.inner)
[ "def", "doc", "(", "self", ")", ":", "from", "metatab", "import", "MetatabDoc", "t", "=", "self", ".", "get_resource", "(", ")", ".", "get_target", "(", ")", "return", "MetatabDoc", "(", "t", ".", "inner", ")" ]
Return the metatab document for the URL
[ "Return", "the", "metatab", "document", "for", "the", "URL" ]
train
https://github.com/Metatab/metatab/blob/8336ec3e4bd8da84a9a5cb86de1c1086e14b8b22/metatab/appurl.py#L92-L96
BlueBrain/hpcbench
hpcbench/cli/bendoc.py
main
def main(argv=None): """ben-doc entry point""" arguments = cli_common(__doc__, argv=argv) campaign_path = arguments['CAMPAIGN-DIR'] driver = CampaignDriver(campaign_path, expandcampvars=False) with pushd(campaign_path): render( template=arguments['--template'], ostr=arguments['--output'], campaign=driver, ) if argv is not None: return driver
python
def main(argv=None): """ben-doc entry point""" arguments = cli_common(__doc__, argv=argv) campaign_path = arguments['CAMPAIGN-DIR'] driver = CampaignDriver(campaign_path, expandcampvars=False) with pushd(campaign_path): render( template=arguments['--template'], ostr=arguments['--output'], campaign=driver, ) if argv is not None: return driver
[ "def", "main", "(", "argv", "=", "None", ")", ":", "arguments", "=", "cli_common", "(", "__doc__", ",", "argv", "=", "argv", ")", "campaign_path", "=", "arguments", "[", "'CAMPAIGN-DIR'", "]", "driver", "=", "CampaignDriver", "(", "campaign_path", ",", "expandcampvars", "=", "False", ")", "with", "pushd", "(", "campaign_path", ")", ":", "render", "(", "template", "=", "arguments", "[", "'--template'", "]", ",", "ostr", "=", "arguments", "[", "'--output'", "]", ",", "campaign", "=", "driver", ",", ")", "if", "argv", "is", "not", "None", ":", "return", "driver" ]
ben-doc entry point
[ "ben", "-", "doc", "entry", "point" ]
train
https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/cli/bendoc.py#L24-L36
chrisjsewell/jsonextended
jsonextended/utils.py
class_to_str
def class_to_str(obj): """ get class string from object Examples -------- >>> class_to_str(list).split('.')[1] 'list' """ mod_str = obj.__module__ name_str = obj.__name__ if mod_str == '__main__': return name_str else: return '.'.join([mod_str, name_str])
python
def class_to_str(obj): """ get class string from object Examples -------- >>> class_to_str(list).split('.')[1] 'list' """ mod_str = obj.__module__ name_str = obj.__name__ if mod_str == '__main__': return name_str else: return '.'.join([mod_str, name_str])
[ "def", "class_to_str", "(", "obj", ")", ":", "mod_str", "=", "obj", ".", "__module__", "name_str", "=", "obj", ".", "__name__", "if", "mod_str", "==", "'__main__'", ":", "return", "name_str", "else", ":", "return", "'.'", ".", "join", "(", "[", "mod_str", ",", "name_str", "]", ")" ]
get class string from object Examples -------- >>> class_to_str(list).split('.')[1] 'list'
[ "get", "class", "string", "from", "object" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/utils.py#L22-L37
chrisjsewell/jsonextended
jsonextended/utils.py
get_module_path
def get_module_path(module): """return a directory path to a module""" return pathlib.Path( os.path.dirname(os.path.abspath(inspect.getfile(module))))
python
def get_module_path(module): """return a directory path to a module""" return pathlib.Path( os.path.dirname(os.path.abspath(inspect.getfile(module))))
[ "def", "get_module_path", "(", "module", ")", ":", "return", "pathlib", ".", "Path", "(", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "inspect", ".", "getfile", "(", "module", ")", ")", ")", ")" ]
return a directory path to a module
[ "return", "a", "directory", "path", "to", "a", "module" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/utils.py#L40-L43
chrisjsewell/jsonextended
jsonextended/utils.py
get_data_path
def get_data_path(data, module, check_exists=True): """return a directory path to data within a module Parameters ---------- data : str or list[str] file name or list of sub-directories and file name (e.g. ['lammps','data.txt']) """ basepath = os.path.dirname(os.path.abspath(inspect.getfile(module))) if isinstance(data, basestring): data = [data] dirpath = os.path.join(basepath, *data) if check_exists: assert os.path.exists(dirpath), '{0} does not exist'.format(dirpath) return pathlib.Path(dirpath)
python
def get_data_path(data, module, check_exists=True): """return a directory path to data within a module Parameters ---------- data : str or list[str] file name or list of sub-directories and file name (e.g. ['lammps','data.txt']) """ basepath = os.path.dirname(os.path.abspath(inspect.getfile(module))) if isinstance(data, basestring): data = [data] dirpath = os.path.join(basepath, *data) if check_exists: assert os.path.exists(dirpath), '{0} does not exist'.format(dirpath) return pathlib.Path(dirpath)
[ "def", "get_data_path", "(", "data", ",", "module", ",", "check_exists", "=", "True", ")", ":", "basepath", "=", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "inspect", ".", "getfile", "(", "module", ")", ")", ")", "if", "isinstance", "(", "data", ",", "basestring", ")", ":", "data", "=", "[", "data", "]", "dirpath", "=", "os", ".", "path", ".", "join", "(", "basepath", ",", "*", "data", ")", "if", "check_exists", ":", "assert", "os", ".", "path", ".", "exists", "(", "dirpath", ")", ",", "'{0} does not exist'", ".", "format", "(", "dirpath", ")", "return", "pathlib", ".", "Path", "(", "dirpath", ")" ]
return a directory path to data within a module Parameters ---------- data : str or list[str] file name or list of sub-directories and file name (e.g. ['lammps','data.txt'])
[ "return", "a", "directory", "path", "to", "data", "within", "a", "module" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/utils.py#L59-L79
chrisjsewell/jsonextended
jsonextended/utils.py
memory_usage
def memory_usage(): """return memory usage of python process in MB from http://fa.bianp.net/blog/2013/different-ways-to-get-memory-consumption-or-lessons-learned-from-memory_profiler/ psutil is quicker >>> isinstance(memory_usage(),float) True """ try: import psutil import os except ImportError: return _memory_usage_ps() process = psutil.Process(os.getpid()) mem = process.memory_info()[0] / float(2 ** 20) return mem
python
def memory_usage(): """return memory usage of python process in MB from http://fa.bianp.net/blog/2013/different-ways-to-get-memory-consumption-or-lessons-learned-from-memory_profiler/ psutil is quicker >>> isinstance(memory_usage(),float) True """ try: import psutil import os except ImportError: return _memory_usage_ps() process = psutil.Process(os.getpid()) mem = process.memory_info()[0] / float(2 ** 20) return mem
[ "def", "memory_usage", "(", ")", ":", "try", ":", "import", "psutil", "import", "os", "except", "ImportError", ":", "return", "_memory_usage_ps", "(", ")", "process", "=", "psutil", ".", "Process", "(", "os", ".", "getpid", "(", ")", ")", "mem", "=", "process", ".", "memory_info", "(", ")", "[", "0", "]", "/", "float", "(", "2", "**", "20", ")", "return", "mem" ]
return memory usage of python process in MB from http://fa.bianp.net/blog/2013/different-ways-to-get-memory-consumption-or-lessons-learned-from-memory_profiler/ psutil is quicker >>> isinstance(memory_usage(),float) True
[ "return", "memory", "usage", "of", "python", "process", "in", "MB" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/utils.py#L110-L129
chrisjsewell/jsonextended
jsonextended/utils.py
_memory_usage_ps
def _memory_usage_ps(): """return memory usage of python process in MB >>> isinstance(_memory_usage_ps(),float) True """ out = subprocess.Popen( ['ps', 'v', '-p', str(os.getpid())], stdout=subprocess.PIPE).communicate()[0].split(b'\n') vsz_index = out[0].split().index(b'RSS') mem = float(out[1].split()[vsz_index]) / 1024 return mem
python
def _memory_usage_ps(): """return memory usage of python process in MB >>> isinstance(_memory_usage_ps(),float) True """ out = subprocess.Popen( ['ps', 'v', '-p', str(os.getpid())], stdout=subprocess.PIPE).communicate()[0].split(b'\n') vsz_index = out[0].split().index(b'RSS') mem = float(out[1].split()[vsz_index]) / 1024 return mem
[ "def", "_memory_usage_ps", "(", ")", ":", "out", "=", "subprocess", ".", "Popen", "(", "[", "'ps'", ",", "'v'", ",", "'-p'", ",", "str", "(", "os", ".", "getpid", "(", ")", ")", "]", ",", "stdout", "=", "subprocess", ".", "PIPE", ")", ".", "communicate", "(", ")", "[", "0", "]", ".", "split", "(", "b'\\n'", ")", "vsz_index", "=", "out", "[", "0", "]", ".", "split", "(", ")", ".", "index", "(", "b'RSS'", ")", "mem", "=", "float", "(", "out", "[", "1", "]", ".", "split", "(", ")", "[", "vsz_index", "]", ")", "/", "1024", "return", "mem" ]
return memory usage of python process in MB >>> isinstance(_memory_usage_ps(),float) True
[ "return", "memory", "usage", "of", "python", "process", "in", "MB" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/utils.py#L132-L144
chrisjsewell/jsonextended
jsonextended/utils.py
load_memit
def load_memit(): """load memory usage ipython magic, require memory_profiler package to be installed to get usage: %memit? Author: Vlad Niculae <[email protected]> Makes use of memory_profiler from Fabian Pedregosa available at https://github.com/fabianp/memory_profiler """ from IPython.core.magic import Magics, line_magic, magics_class from memory_profiler import memory_usage as _mu try: ip = get_ipython() except NameError as err: raise Exception('not in ipython/jupyter kernel:\n {}'.format(err)) @magics_class class MemMagics(Magics): @line_magic def memit(self, line='', setup='pass'): """Measure memory usage of a Python statement Usage, in line mode: %memit [-ir<R>t<T>] statement Options: -r<R>: repeat the loop iteration <R> times and take the best result. Default: 3 -i: run the code in the current environment, without forking a new process. This is required on some MacOS versions of Accelerate if your line contains a call to `np.dot`. -t<T>: timeout after <T> seconds. Unused if `-i` is active. Default: None Examples -------- :: In [1]: import numpy as np In [2]: %memit np.zeros(1e7) maximum of 3: 76.402344 MB per loop In [3]: %memit np.ones(1e6) maximum of 3: 7.820312 MB per loop In [4]: %memit -r 10 np.empty(1e8) maximum of 10: 0.101562 MB per loop In [5]: memit -t 3 while True: pass; Subprocess timed out. Subprocess timed out. Subprocess timed out. ERROR: all subprocesses exited unsuccessfully. Try again with the `-i` option. maximum of 3: -inf MB per loop """ opts, stmt = self.parse_options(line, 'r:t:i', posix=False, strict=False) repeat = int(getattr(opts, 'r', 3)) if repeat < 1: repeat == 1 timeout = int(getattr(opts, 't', 0)) if timeout <= 0: timeout = None run_in_place = hasattr(opts, 'i') # Don't depend on multiprocessing: try: import multiprocessing as pr from multiprocessing.queues import SimpleQueue q = SimpleQueue() except ImportError: class ListWithPut(list): """Just a list, where the `append` method is aliased to `put`.""" def put(self, x): self.append(x) q = ListWithPut() print( 'WARNING: cannot import module `multiprocessing`. Forcing ' 'the `-i` option.') run_in_place = True ns = self.shell.user_ns def _get_usage(q, stmt, setup='pass', ns={}): try: exec(setup) in ns _mu0 = _mu()[0] exec(stmt) in ns _mu1 = _mu()[0] q.put(_mu1 - _mu0) except Exception as e: q.put(float('-inf')) raise e if run_in_place: for _ in range(repeat): _get_usage(q, stmt, ns=ns) else: # run in consecutive subprocesses at_least_one_worked = False for _ in range(repeat): p = pr.Process( target=_get_usage, args=(q, stmt, 'pass', ns)) p.start() p.join(timeout=timeout) if p.exitcode == 0: at_least_one_worked = True else: p.terminate() if p.exitcode is None: print('Subprocess timed out.') else: print( 'Subprocess exited with code %d.' % p.exitcode) q.put(float('-inf')) if not at_least_one_worked: print('ERROR: all subprocesses exited unsuccessfully. Try ' 'again with the `-i` option.') usages = [q.get() for _ in range(repeat)] usage = max(usages) print("maximum of %d: %f MB per loop" % (repeat, usage)) ip.register_magics(MemMagics)
python
def load_memit(): """load memory usage ipython magic, require memory_profiler package to be installed to get usage: %memit? Author: Vlad Niculae <[email protected]> Makes use of memory_profiler from Fabian Pedregosa available at https://github.com/fabianp/memory_profiler """ from IPython.core.magic import Magics, line_magic, magics_class from memory_profiler import memory_usage as _mu try: ip = get_ipython() except NameError as err: raise Exception('not in ipython/jupyter kernel:\n {}'.format(err)) @magics_class class MemMagics(Magics): @line_magic def memit(self, line='', setup='pass'): """Measure memory usage of a Python statement Usage, in line mode: %memit [-ir<R>t<T>] statement Options: -r<R>: repeat the loop iteration <R> times and take the best result. Default: 3 -i: run the code in the current environment, without forking a new process. This is required on some MacOS versions of Accelerate if your line contains a call to `np.dot`. -t<T>: timeout after <T> seconds. Unused if `-i` is active. Default: None Examples -------- :: In [1]: import numpy as np In [2]: %memit np.zeros(1e7) maximum of 3: 76.402344 MB per loop In [3]: %memit np.ones(1e6) maximum of 3: 7.820312 MB per loop In [4]: %memit -r 10 np.empty(1e8) maximum of 10: 0.101562 MB per loop In [5]: memit -t 3 while True: pass; Subprocess timed out. Subprocess timed out. Subprocess timed out. ERROR: all subprocesses exited unsuccessfully. Try again with the `-i` option. maximum of 3: -inf MB per loop """ opts, stmt = self.parse_options(line, 'r:t:i', posix=False, strict=False) repeat = int(getattr(opts, 'r', 3)) if repeat < 1: repeat == 1 timeout = int(getattr(opts, 't', 0)) if timeout <= 0: timeout = None run_in_place = hasattr(opts, 'i') # Don't depend on multiprocessing: try: import multiprocessing as pr from multiprocessing.queues import SimpleQueue q = SimpleQueue() except ImportError: class ListWithPut(list): """Just a list, where the `append` method is aliased to `put`.""" def put(self, x): self.append(x) q = ListWithPut() print( 'WARNING: cannot import module `multiprocessing`. Forcing ' 'the `-i` option.') run_in_place = True ns = self.shell.user_ns def _get_usage(q, stmt, setup='pass', ns={}): try: exec(setup) in ns _mu0 = _mu()[0] exec(stmt) in ns _mu1 = _mu()[0] q.put(_mu1 - _mu0) except Exception as e: q.put(float('-inf')) raise e if run_in_place: for _ in range(repeat): _get_usage(q, stmt, ns=ns) else: # run in consecutive subprocesses at_least_one_worked = False for _ in range(repeat): p = pr.Process( target=_get_usage, args=(q, stmt, 'pass', ns)) p.start() p.join(timeout=timeout) if p.exitcode == 0: at_least_one_worked = True else: p.terminate() if p.exitcode is None: print('Subprocess timed out.') else: print( 'Subprocess exited with code %d.' % p.exitcode) q.put(float('-inf')) if not at_least_one_worked: print('ERROR: all subprocesses exited unsuccessfully. Try ' 'again with the `-i` option.') usages = [q.get() for _ in range(repeat)] usage = max(usages) print("maximum of %d: %f MB per loop" % (repeat, usage)) ip.register_magics(MemMagics)
[ "def", "load_memit", "(", ")", ":", "from", "IPython", ".", "core", ".", "magic", "import", "Magics", ",", "line_magic", ",", "magics_class", "from", "memory_profiler", "import", "memory_usage", "as", "_mu", "try", ":", "ip", "=", "get_ipython", "(", ")", "except", "NameError", "as", "err", ":", "raise", "Exception", "(", "'not in ipython/jupyter kernel:\\n {}'", ".", "format", "(", "err", ")", ")", "@", "magics_class", "class", "MemMagics", "(", "Magics", ")", ":", "@", "line_magic", "def", "memit", "(", "self", ",", "line", "=", "''", ",", "setup", "=", "'pass'", ")", ":", "\"\"\"Measure memory usage of a Python statement\n\n Usage, in line mode:\n %memit [-ir<R>t<T>] statement\n\n Options:\n -r<R>: repeat the loop iteration <R> times\n and take the best result. Default: 3\n\n -i: run the code in the current environment, without forking a new\n process.\n This is required on some MacOS versions of Accelerate if your\n line contains a call to `np.dot`.\n\n -t<T>: timeout after <T> seconds. Unused if `-i` is active.\n Default: None\n\n Examples\n --------\n ::\n\n In [1]: import numpy as np\n\n In [2]: %memit np.zeros(1e7)\n maximum of 3: 76.402344 MB per loop\n\n In [3]: %memit np.ones(1e6)\n maximum of 3: 7.820312 MB per loop\n\n In [4]: %memit -r 10 np.empty(1e8)\n maximum of 10: 0.101562 MB per loop\n\n In [5]: memit -t 3 while True: pass;\n Subprocess timed out.\n Subprocess timed out.\n Subprocess timed out.\n ERROR: all subprocesses exited unsuccessfully. Try again with the\n `-i` option.\n maximum of 3: -inf MB per loop\n\n \"\"\"", "opts", ",", "stmt", "=", "self", ".", "parse_options", "(", "line", ",", "'r:t:i'", ",", "posix", "=", "False", ",", "strict", "=", "False", ")", "repeat", "=", "int", "(", "getattr", "(", "opts", ",", "'r'", ",", "3", ")", ")", "if", "repeat", "<", "1", ":", "repeat", "==", "1", "timeout", "=", "int", "(", "getattr", "(", "opts", ",", "'t'", ",", "0", ")", ")", "if", "timeout", "<=", "0", ":", "timeout", "=", "None", "run_in_place", "=", "hasattr", "(", "opts", ",", "'i'", ")", "# Don't depend on multiprocessing:", "try", ":", "import", "multiprocessing", "as", "pr", "from", "multiprocessing", ".", "queues", "import", "SimpleQueue", "q", "=", "SimpleQueue", "(", ")", "except", "ImportError", ":", "class", "ListWithPut", "(", "list", ")", ":", "\"\"\"Just a list,\n where the `append` method is aliased to `put`.\"\"\"", "def", "put", "(", "self", ",", "x", ")", ":", "self", ".", "append", "(", "x", ")", "q", "=", "ListWithPut", "(", ")", "print", "(", "'WARNING: cannot import module `multiprocessing`. Forcing '", "'the `-i` option.'", ")", "run_in_place", "=", "True", "ns", "=", "self", ".", "shell", ".", "user_ns", "def", "_get_usage", "(", "q", ",", "stmt", ",", "setup", "=", "'pass'", ",", "ns", "=", "{", "}", ")", ":", "try", ":", "exec", "(", "setup", ")", "in", "ns", "_mu0", "=", "_mu", "(", ")", "[", "0", "]", "exec", "(", "stmt", ")", "in", "ns", "_mu1", "=", "_mu", "(", ")", "[", "0", "]", "q", ".", "put", "(", "_mu1", "-", "_mu0", ")", "except", "Exception", "as", "e", ":", "q", ".", "put", "(", "float", "(", "'-inf'", ")", ")", "raise", "e", "if", "run_in_place", ":", "for", "_", "in", "range", "(", "repeat", ")", ":", "_get_usage", "(", "q", ",", "stmt", ",", "ns", "=", "ns", ")", "else", ":", "# run in consecutive subprocesses", "at_least_one_worked", "=", "False", "for", "_", "in", "range", "(", "repeat", ")", ":", "p", "=", "pr", ".", "Process", "(", "target", "=", "_get_usage", ",", "args", "=", "(", "q", ",", "stmt", ",", "'pass'", ",", "ns", ")", ")", "p", ".", "start", "(", ")", "p", ".", "join", "(", "timeout", "=", "timeout", ")", "if", "p", ".", "exitcode", "==", "0", ":", "at_least_one_worked", "=", "True", "else", ":", "p", ".", "terminate", "(", ")", "if", "p", ".", "exitcode", "is", "None", ":", "print", "(", "'Subprocess timed out.'", ")", "else", ":", "print", "(", "'Subprocess exited with code %d.'", "%", "p", ".", "exitcode", ")", "q", ".", "put", "(", "float", "(", "'-inf'", ")", ")", "if", "not", "at_least_one_worked", ":", "print", "(", "'ERROR: all subprocesses exited unsuccessfully. Try '", "'again with the `-i` option.'", ")", "usages", "=", "[", "q", ".", "get", "(", ")", "for", "_", "in", "range", "(", "repeat", ")", "]", "usage", "=", "max", "(", "usages", ")", "print", "(", "\"maximum of %d: %f MB per loop\"", "%", "(", "repeat", ",", "usage", ")", ")", "ip", ".", "register_magics", "(", "MemMagics", ")" ]
load memory usage ipython magic, require memory_profiler package to be installed to get usage: %memit? Author: Vlad Niculae <[email protected]> Makes use of memory_profiler from Fabian Pedregosa available at https://github.com/fabianp/memory_profiler
[ "load", "memory", "usage", "ipython", "magic", "require", "memory_profiler", "package", "to", "be", "installed" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/utils.py#L147-L282
jfear/sramongo
sramongo/xml_helpers.py
parse_tree_from_dict
def parse_tree_from_dict(node, locs): """Processes key locations. Parameters ---------- node: xml.etree.ElementTree.ElementTree.element Current node. locs: dict A dictionary mapping key to a tuple. The tuple can either be 2 or 3 elements long. The first element maps to the location in the current node. The second element given a processing hint. Possible values are: * 'text': assumes the text element of the path is wanted. * 'child': assumes that the child of the given path is wanted. * str: Any other string will be treated as an attribute lookup of the path. If 'child' is given, then a third element needs to be given indicating the type of processing. Possible values are: * 'text': assumes the text element of the path is wanted. * 'tag': assumes the class tag of the path is wanted. * str: Any other string will be treated as an attribute lookup of the path. """ d = dict() for n, l in locs.items(): try: if l[1] == 'text': d[n] = node.find(l[0]).text elif l[1] == 'child': child = node.find(l[0]).getchildren() if len(child) > 1: raise AmbiguousElementException( 'There are too many elements') elif l[2] == 'text': d[n] = child[0].text elif l[2] == 'tag': d[n] = child[0].tag else: d[n] = node.find(l[0]).get(l[1]) except: pass return d
python
def parse_tree_from_dict(node, locs): """Processes key locations. Parameters ---------- node: xml.etree.ElementTree.ElementTree.element Current node. locs: dict A dictionary mapping key to a tuple. The tuple can either be 2 or 3 elements long. The first element maps to the location in the current node. The second element given a processing hint. Possible values are: * 'text': assumes the text element of the path is wanted. * 'child': assumes that the child of the given path is wanted. * str: Any other string will be treated as an attribute lookup of the path. If 'child' is given, then a third element needs to be given indicating the type of processing. Possible values are: * 'text': assumes the text element of the path is wanted. * 'tag': assumes the class tag of the path is wanted. * str: Any other string will be treated as an attribute lookup of the path. """ d = dict() for n, l in locs.items(): try: if l[1] == 'text': d[n] = node.find(l[0]).text elif l[1] == 'child': child = node.find(l[0]).getchildren() if len(child) > 1: raise AmbiguousElementException( 'There are too many elements') elif l[2] == 'text': d[n] = child[0].text elif l[2] == 'tag': d[n] = child[0].tag else: d[n] = node.find(l[0]).get(l[1]) except: pass return d
[ "def", "parse_tree_from_dict", "(", "node", ",", "locs", ")", ":", "d", "=", "dict", "(", ")", "for", "n", ",", "l", "in", "locs", ".", "items", "(", ")", ":", "try", ":", "if", "l", "[", "1", "]", "==", "'text'", ":", "d", "[", "n", "]", "=", "node", ".", "find", "(", "l", "[", "0", "]", ")", ".", "text", "elif", "l", "[", "1", "]", "==", "'child'", ":", "child", "=", "node", ".", "find", "(", "l", "[", "0", "]", ")", ".", "getchildren", "(", ")", "if", "len", "(", "child", ")", ">", "1", ":", "raise", "AmbiguousElementException", "(", "'There are too many elements'", ")", "elif", "l", "[", "2", "]", "==", "'text'", ":", "d", "[", "n", "]", "=", "child", "[", "0", "]", ".", "text", "elif", "l", "[", "2", "]", "==", "'tag'", ":", "d", "[", "n", "]", "=", "child", "[", "0", "]", ".", "tag", "else", ":", "d", "[", "n", "]", "=", "node", ".", "find", "(", "l", "[", "0", "]", ")", ".", "get", "(", "l", "[", "1", "]", ")", "except", ":", "pass", "return", "d" ]
Processes key locations. Parameters ---------- node: xml.etree.ElementTree.ElementTree.element Current node. locs: dict A dictionary mapping key to a tuple. The tuple can either be 2 or 3 elements long. The first element maps to the location in the current node. The second element given a processing hint. Possible values are: * 'text': assumes the text element of the path is wanted. * 'child': assumes that the child of the given path is wanted. * str: Any other string will be treated as an attribute lookup of the path. If 'child' is given, then a third element needs to be given indicating the type of processing. Possible values are: * 'text': assumes the text element of the path is wanted. * 'tag': assumes the class tag of the path is wanted. * str: Any other string will be treated as an attribute lookup of the path.
[ "Processes", "key", "locations", "." ]
train
https://github.com/jfear/sramongo/blob/82a9a157e44bda4100be385c644b3ac21be66038/sramongo/xml_helpers.py#L26-L72
jfear/sramongo
sramongo/xml_helpers.py
xml_to_root
def xml_to_root(xml: Union[str, IO]) -> ElementTree.Element: """Parse XML into an ElemeTree object. Parameters ---------- xml : str or file-like object A filename, file object or string version of xml can be passed. Returns ------- Elementree.Element """ if isinstance(xml, str): if '<' in xml: return ElementTree.fromstring(xml) else: with open(xml) as fh: xml_to_root(fh) tree = ElementTree.parse(xml) return tree.getroot()
python
def xml_to_root(xml: Union[str, IO]) -> ElementTree.Element: """Parse XML into an ElemeTree object. Parameters ---------- xml : str or file-like object A filename, file object or string version of xml can be passed. Returns ------- Elementree.Element """ if isinstance(xml, str): if '<' in xml: return ElementTree.fromstring(xml) else: with open(xml) as fh: xml_to_root(fh) tree = ElementTree.parse(xml) return tree.getroot()
[ "def", "xml_to_root", "(", "xml", ":", "Union", "[", "str", ",", "IO", "]", ")", "->", "ElementTree", ".", "Element", ":", "if", "isinstance", "(", "xml", ",", "str", ")", ":", "if", "'<'", "in", "xml", ":", "return", "ElementTree", ".", "fromstring", "(", "xml", ")", "else", ":", "with", "open", "(", "xml", ")", "as", "fh", ":", "xml_to_root", "(", "fh", ")", "tree", "=", "ElementTree", ".", "parse", "(", "xml", ")", "return", "tree", ".", "getroot", "(", ")" ]
Parse XML into an ElemeTree object. Parameters ---------- xml : str or file-like object A filename, file object or string version of xml can be passed. Returns ------- Elementree.Element
[ "Parse", "XML", "into", "an", "ElemeTree", "object", "." ]
train
https://github.com/jfear/sramongo/blob/82a9a157e44bda4100be385c644b3ac21be66038/sramongo/xml_helpers.py#L75-L95
elkiwy/paynter
paynter/image.py
Image.newLayer
def newLayer(self, effect=''): """ Creates a new :py:class:`Layer` and set that as the active. :param effect: A string with the blend mode for that layer that will be used when during the rendering process. The accepted values are: :code:`'soft_light','lighten','screen','dodge','addition','darken','multiply','hard_light','difference','subtract','grain_extract','grain_merge','divide','overlay'`. :rtype: Nothing. """ self.layers.append(Layer(effect = effect)) self.activeLayer = len(self.layers)-1
python
def newLayer(self, effect=''): """ Creates a new :py:class:`Layer` and set that as the active. :param effect: A string with the blend mode for that layer that will be used when during the rendering process. The accepted values are: :code:`'soft_light','lighten','screen','dodge','addition','darken','multiply','hard_light','difference','subtract','grain_extract','grain_merge','divide','overlay'`. :rtype: Nothing. """ self.layers.append(Layer(effect = effect)) self.activeLayer = len(self.layers)-1
[ "def", "newLayer", "(", "self", ",", "effect", "=", "''", ")", ":", "self", ".", "layers", ".", "append", "(", "Layer", "(", "effect", "=", "effect", ")", ")", "self", ".", "activeLayer", "=", "len", "(", "self", ".", "layers", ")", "-", "1" ]
Creates a new :py:class:`Layer` and set that as the active. :param effect: A string with the blend mode for that layer that will be used when during the rendering process. The accepted values are: :code:`'soft_light','lighten','screen','dodge','addition','darken','multiply','hard_light','difference','subtract','grain_extract','grain_merge','divide','overlay'`. :rtype: Nothing.
[ "Creates", "a", "new", ":", "py", ":", "class", ":", "Layer", "and", "set", "that", "as", "the", "active", ".", ":", "param", "effect", ":", "A", "string", "with", "the", "blend", "mode", "for", "that", "layer", "that", "will", "be", "used", "when", "during", "the", "rendering", "process", ".", "The", "accepted", "values", "are", ":", ":", "code", ":", "soft_light", "lighten", "screen", "dodge", "addition", "darken", "multiply", "hard_light", "difference", "subtract", "grain_extract", "grain_merge", "divide", "overlay", ".", ":", "rtype", ":", "Nothing", "." ]
train
https://github.com/elkiwy/paynter/blob/f73cb5bb010a6b32ee41640a50396ed0bae8d496/paynter/image.py#L54-L62
elkiwy/paynter
paynter/image.py
Image.duplicateActiveLayer
def duplicateActiveLayer(self): """ Duplicates the current active :py:class:`Layer`. :rtype: Nothing. """ activeLayer = self.layers[self.activeLayer] newLayer = Layer(data=activeLayer.data, effect=activeLayer.effect) self.layers.append(newLayer) self.activeLayer = len(self.layers)-1
python
def duplicateActiveLayer(self): """ Duplicates the current active :py:class:`Layer`. :rtype: Nothing. """ activeLayer = self.layers[self.activeLayer] newLayer = Layer(data=activeLayer.data, effect=activeLayer.effect) self.layers.append(newLayer) self.activeLayer = len(self.layers)-1
[ "def", "duplicateActiveLayer", "(", "self", ")", ":", "activeLayer", "=", "self", ".", "layers", "[", "self", ".", "activeLayer", "]", "newLayer", "=", "Layer", "(", "data", "=", "activeLayer", ".", "data", ",", "effect", "=", "activeLayer", ".", "effect", ")", "self", ".", "layers", ".", "append", "(", "newLayer", ")", "self", ".", "activeLayer", "=", "len", "(", "self", ".", "layers", ")", "-", "1" ]
Duplicates the current active :py:class:`Layer`. :rtype: Nothing.
[ "Duplicates", "the", "current", "active", ":", "py", ":", "class", ":", "Layer", ".", ":", "rtype", ":", "Nothing", "." ]
train
https://github.com/elkiwy/paynter/blob/f73cb5bb010a6b32ee41640a50396ed0bae8d496/paynter/image.py#L65-L74
elkiwy/paynter
paynter/image.py
Image.mergeAllLayers
def mergeAllLayers(self): """ Merge all the layers together. :rtype: The result :py:class:`Layer` object. """ start = time.time() while(len(self.layers)>1): self.mergeBottomLayers() print('merge time:'+str(time.time()-start)) return self.layers[0]
python
def mergeAllLayers(self): """ Merge all the layers together. :rtype: The result :py:class:`Layer` object. """ start = time.time() while(len(self.layers)>1): self.mergeBottomLayers() print('merge time:'+str(time.time()-start)) return self.layers[0]
[ "def", "mergeAllLayers", "(", "self", ")", ":", "start", "=", "time", ".", "time", "(", ")", "while", "(", "len", "(", "self", ".", "layers", ")", ">", "1", ")", ":", "self", ".", "mergeBottomLayers", "(", ")", "print", "(", "'merge time:'", "+", "str", "(", "time", ".", "time", "(", ")", "-", "start", ")", ")", "return", "self", ".", "layers", "[", "0", "]" ]
Merge all the layers together. :rtype: The result :py:class:`Layer` object.
[ "Merge", "all", "the", "layers", "together", "." ]
train
https://github.com/elkiwy/paynter/blob/f73cb5bb010a6b32ee41640a50396ed0bae8d496/paynter/image.py#L77-L87
Metatab/metatab
metatab/parser.py
TermParser.synonyms
def synonyms(self): """Return a dict of term synonyms""" syns = {} for k, v in self._declared_terms.items(): k = k.strip() if v.get('synonym'): syns[k.lower()] = v['synonym'] if not '.' in k: syns[ROOT_TERM + '.' + k.lower()] = v['synonym'] return syns
python
def synonyms(self): """Return a dict of term synonyms""" syns = {} for k, v in self._declared_terms.items(): k = k.strip() if v.get('synonym'): syns[k.lower()] = v['synonym'] if not '.' in k: syns[ROOT_TERM + '.' + k.lower()] = v['synonym'] return syns
[ "def", "synonyms", "(", "self", ")", ":", "syns", "=", "{", "}", "for", "k", ",", "v", "in", "self", ".", "_declared_terms", ".", "items", "(", ")", ":", "k", "=", "k", ".", "strip", "(", ")", "if", "v", ".", "get", "(", "'synonym'", ")", ":", "syns", "[", "k", ".", "lower", "(", ")", "]", "=", "v", "[", "'synonym'", "]", "if", "not", "'.'", "in", "k", ":", "syns", "[", "ROOT_TERM", "+", "'.'", "+", "k", ".", "lower", "(", ")", "]", "=", "v", "[", "'synonym'", "]", "return", "syns" ]
Return a dict of term synonyms
[ "Return", "a", "dict", "of", "term", "synonyms" ]
train
https://github.com/Metatab/metatab/blob/8336ec3e4bd8da84a9a5cb86de1c1086e14b8b22/metatab/parser.py#L107-L119
Metatab/metatab
metatab/parser.py
TermParser.super_terms
def super_terms(self): """Return a dictionary mapping term names to their super terms""" # If the doc already has super terms, we've already parsed something, so # assume we parsed the declaration, and can use re-use the old decls. if self.doc and self.doc.super_terms: return self.doc.super_terms return {k.lower(): v['inheritsfrom'].lower() for k, v in self._declared_terms.items() if 'inheritsfrom' in v}
python
def super_terms(self): """Return a dictionary mapping term names to their super terms""" # If the doc already has super terms, we've already parsed something, so # assume we parsed the declaration, and can use re-use the old decls. if self.doc and self.doc.super_terms: return self.doc.super_terms return {k.lower(): v['inheritsfrom'].lower() for k, v in self._declared_terms.items() if 'inheritsfrom' in v}
[ "def", "super_terms", "(", "self", ")", ":", "# If the doc already has super terms, we've already parsed something, so", "# assume we parsed the declaration, and can use re-use the old decls.", "if", "self", ".", "doc", "and", "self", ".", "doc", ".", "super_terms", ":", "return", "self", ".", "doc", ".", "super_terms", "return", "{", "k", ".", "lower", "(", ")", ":", "v", "[", "'inheritsfrom'", "]", ".", "lower", "(", ")", "for", "k", ",", "v", "in", "self", ".", "_declared_terms", ".", "items", "(", ")", "if", "'inheritsfrom'", "in", "v", "}" ]
Return a dictionary mapping term names to their super terms
[ "Return", "a", "dictionary", "mapping", "term", "names", "to", "their", "super", "terms" ]
train
https://github.com/Metatab/metatab/blob/8336ec3e4bd8da84a9a5cb86de1c1086e14b8b22/metatab/parser.py#L123-L133
Metatab/metatab
metatab/parser.py
TermParser.declare_dict
def declare_dict(self): """Return declared sections, terms and synonyms as a dict""" # Run the parser, if it has not been run yet. if not self.root: for _ in self: pass return { 'sections': self._declared_sections, 'terms': self._declared_terms, 'synonyms': self.synonyms }
python
def declare_dict(self): """Return declared sections, terms and synonyms as a dict""" # Run the parser, if it has not been run yet. if not self.root: for _ in self: pass return { 'sections': self._declared_sections, 'terms': self._declared_terms, 'synonyms': self.synonyms }
[ "def", "declare_dict", "(", "self", ")", ":", "# Run the parser, if it has not been run yet.", "if", "not", "self", ".", "root", ":", "for", "_", "in", "self", ":", "pass", "return", "{", "'sections'", ":", "self", ".", "_declared_sections", ",", "'terms'", ":", "self", ".", "_declared_terms", ",", "'synonyms'", ":", "self", ".", "synonyms", "}" ]
Return declared sections, terms and synonyms as a dict
[ "Return", "declared", "sections", "terms", "and", "synonyms", "as", "a", "dict" ]
train
https://github.com/Metatab/metatab/blob/8336ec3e4bd8da84a9a5cb86de1c1086e14b8b22/metatab/parser.py#L136-L146
Metatab/metatab
metatab/parser.py
TermParser.substitute_synonym
def substitute_synonym(self, nt): """ Replace the record_term and parent_term with a synonym :param nt: :return: """ if nt.join_lc in self.synonyms: nt.parent_term, nt.record_term = Term.split_term_lower(self.synonyms[nt.join_lc]);
python
def substitute_synonym(self, nt): """ Replace the record_term and parent_term with a synonym :param nt: :return: """ if nt.join_lc in self.synonyms: nt.parent_term, nt.record_term = Term.split_term_lower(self.synonyms[nt.join_lc]);
[ "def", "substitute_synonym", "(", "self", ",", "nt", ")", ":", "if", "nt", ".", "join_lc", "in", "self", ".", "synonyms", ":", "nt", ".", "parent_term", ",", "nt", ".", "record_term", "=", "Term", ".", "split_term_lower", "(", "self", ".", "synonyms", "[", "nt", ".", "join_lc", "]", ")" ]
Replace the record_term and parent_term with a synonym :param nt: :return:
[ "Replace", "the", "record_term", "and", "parent_term", "with", "a", "synonym", ":", "param", "nt", ":", ":", "return", ":" ]
train
https://github.com/Metatab/metatab/blob/8336ec3e4bd8da84a9a5cb86de1c1086e14b8b22/metatab/parser.py#L167-L175
Metatab/metatab
metatab/parser.py
TermParser.errors_as_dict
def errors_as_dict(self): """Return parse errors as a dict""" errors = [] for e in self.errors: errors.append({ 'file': e.term.file_name, 'row': e.term.row if e.term else '<unknown>', 'col': e.term.col if e.term else '<unknown>', 'term': e.term.join if e.term else '<unknown>', 'error': str(e) }) return errors
python
def errors_as_dict(self): """Return parse errors as a dict""" errors = [] for e in self.errors: errors.append({ 'file': e.term.file_name, 'row': e.term.row if e.term else '<unknown>', 'col': e.term.col if e.term else '<unknown>', 'term': e.term.join if e.term else '<unknown>', 'error': str(e) }) return errors
[ "def", "errors_as_dict", "(", "self", ")", ":", "errors", "=", "[", "]", "for", "e", "in", "self", ".", "errors", ":", "errors", ".", "append", "(", "{", "'file'", ":", "e", ".", "term", ".", "file_name", ",", "'row'", ":", "e", ".", "term", ".", "row", "if", "e", ".", "term", "else", "'<unknown>'", ",", "'col'", ":", "e", ".", "term", ".", "col", "if", "e", ".", "term", "else", "'<unknown>'", ",", "'term'", ":", "e", ".", "term", ".", "join", "if", "e", ".", "term", "else", "'<unknown>'", ",", "'error'", ":", "str", "(", "e", ")", "}", ")", "return", "errors" ]
Return parse errors as a dict
[ "Return", "parse", "errors", "as", "a", "dict" ]
train
https://github.com/Metatab/metatab/blob/8336ec3e4bd8da84a9a5cb86de1c1086e14b8b22/metatab/parser.py#L220-L234
Metatab/metatab
metatab/parser.py
TermParser.find_declare_doc
def find_declare_doc(self, d, name): """Given a name, try to resolve the name to a path or URL to a declaration document. It will try: * The name as a filesystem path * The name as a file name in the directory d * The name + '.csv' as a name in the directory d * The name as a URL * The name as a key in the standard_declares dict * The name as a path in this module's metatab.declarations package """ path = None while True: if exists(name): path =name break try: # Look for a local document path = declaration_path(name) break except IncludeError: pass for fn in (join(d, name), join(d, name + '.csv')): if exists(fn): path = fn break if path: break if name.startswith('http'): path = name.strip('/') # Look for the file on the web break elif exists(name): path = name break else: path = self.resolver.find_decl_doc(name) break raise IncludeError("No local declaration file for '{}'".format(name)) return parse_app_url(path)
python
def find_declare_doc(self, d, name): """Given a name, try to resolve the name to a path or URL to a declaration document. It will try: * The name as a filesystem path * The name as a file name in the directory d * The name + '.csv' as a name in the directory d * The name as a URL * The name as a key in the standard_declares dict * The name as a path in this module's metatab.declarations package """ path = None while True: if exists(name): path =name break try: # Look for a local document path = declaration_path(name) break except IncludeError: pass for fn in (join(d, name), join(d, name + '.csv')): if exists(fn): path = fn break if path: break if name.startswith('http'): path = name.strip('/') # Look for the file on the web break elif exists(name): path = name break else: path = self.resolver.find_decl_doc(name) break raise IncludeError("No local declaration file for '{}'".format(name)) return parse_app_url(path)
[ "def", "find_declare_doc", "(", "self", ",", "d", ",", "name", ")", ":", "path", "=", "None", "while", "True", ":", "if", "exists", "(", "name", ")", ":", "path", "=", "name", "break", "try", ":", "# Look for a local document", "path", "=", "declaration_path", "(", "name", ")", "break", "except", "IncludeError", ":", "pass", "for", "fn", "in", "(", "join", "(", "d", ",", "name", ")", ",", "join", "(", "d", ",", "name", "+", "'.csv'", ")", ")", ":", "if", "exists", "(", "fn", ")", ":", "path", "=", "fn", "break", "if", "path", ":", "break", "if", "name", ".", "startswith", "(", "'http'", ")", ":", "path", "=", "name", ".", "strip", "(", "'/'", ")", "# Look for the file on the web", "break", "elif", "exists", "(", "name", ")", ":", "path", "=", "name", "break", "else", ":", "path", "=", "self", ".", "resolver", ".", "find_decl_doc", "(", "name", ")", "break", "raise", "IncludeError", "(", "\"No local declaration file for '{}'\"", ".", "format", "(", "name", ")", ")", "return", "parse_app_url", "(", "path", ")" ]
Given a name, try to resolve the name to a path or URL to a declaration document. It will try: * The name as a filesystem path * The name as a file name in the directory d * The name + '.csv' as a name in the directory d * The name as a URL * The name as a key in the standard_declares dict * The name as a path in this module's metatab.declarations package
[ "Given", "a", "name", "try", "to", "resolve", "the", "name", "to", "a", "path", "or", "URL", "to", "a", "declaration", "document", ".", "It", "will", "try", ":" ]
train
https://github.com/Metatab/metatab/blob/8336ec3e4bd8da84a9a5cb86de1c1086e14b8b22/metatab/parser.py#L236-L281
Metatab/metatab
metatab/parser.py
TermParser.find_include_doc
def find_include_doc(self, d, name): """Resolve a name or path for an include doc to a an absolute path or url :param name: """ from metatab import parse_app_url include_ref = name.strip('/') if include_ref.startswith('http'): path = include_ref else: if not d: raise IncludeError("Can't include '{}' because don't know current path " .format(name)) path = join(d, include_ref) return parse_app_url(path)
python
def find_include_doc(self, d, name): """Resolve a name or path for an include doc to a an absolute path or url :param name: """ from metatab import parse_app_url include_ref = name.strip('/') if include_ref.startswith('http'): path = include_ref else: if not d: raise IncludeError("Can't include '{}' because don't know current path " .format(name)) path = join(d, include_ref) return parse_app_url(path)
[ "def", "find_include_doc", "(", "self", ",", "d", ",", "name", ")", ":", "from", "metatab", "import", "parse_app_url", "include_ref", "=", "name", ".", "strip", "(", "'/'", ")", "if", "include_ref", ".", "startswith", "(", "'http'", ")", ":", "path", "=", "include_ref", "else", ":", "if", "not", "d", ":", "raise", "IncludeError", "(", "\"Can't include '{}' because don't know current path \"", ".", "format", "(", "name", ")", ")", "path", "=", "join", "(", "d", ",", "include_ref", ")", "return", "parse_app_url", "(", "path", ")" ]
Resolve a name or path for an include doc to a an absolute path or url :param name:
[ "Resolve", "a", "name", "or", "path", "for", "an", "include", "doc", "to", "a", "an", "absolute", "path", "or", "url", ":", "param", "name", ":" ]
train
https://github.com/Metatab/metatab/blob/8336ec3e4bd8da84a9a5cb86de1c1086e14b8b22/metatab/parser.py#L283-L300
Metatab/metatab
metatab/parser.py
TermParser.generate_terms
def generate_terms(self, ref, root, file_type=None): """An generator that yields term objects, handling includes and argument children. :param file_type: :param doc: :param root: :param ref: """ last_section = root t = None if isinstance(ref, Source): row_gen = ref ref_path = row_gen.__class__.__name__ else: row_gen = get_generator(ref) ref_path = ref.path try: for line_n, row in enumerate(row_gen, 1): if not row or not row[0] or not row[0].strip() or row[0].strip().startswith('#'): continue tt = Term(row[0], None) # Just to get the qualified name constructed property term_class = self.get_term_class(tt.join_lc) t = term_class(tt.join_lc, row[1] if len(row) > 1 else '', row[2:] if len(row) > 2 else [], row=line_n, col=1, file_name=ref_path, file_type=file_type, doc=self.doc) # Why did we remove comments from values? It strips out Markdown #if t.value and str(t.value).startswith('#'): # Comments are ignored # continue if t.term_is('include') or t.term_is('declare'): if t.term_is('include'): resolved = self.find_include_doc(dirname(ref_path), t.value.strip()) else: resolved = self.find_declare_doc(dirname(ref_path), t.value.strip()) if row_gen.ref == resolved: raise IncludeError("Include loop for '{}' ".format(resolved)) yield t try: sub_gen = get_generator(resolved.get_resource().get_target()) for t in self.generate_terms(sub_gen, root, file_type=t.record_term_lc): yield t if last_section: yield last_section # Re-assert the last section except IncludeError as e: e.term = t raise except (OSError, FileNotFoundError, GenerateError, DownloadError) as e: e = IncludeError("Failed to Include; {}".format(e)) e.term = t raise e continue # Already yielded the include/declare term, and includes can't have children elif t.term_is('section'): # If there is already a section in the document, emit the existing section, # rather than a new one. try: last_section = self.doc[t.name] t = last_section except (KeyError, TypeError): # TypeError -> self.doc is None last_section = t yield t # Yield any child terms, from the term row arguments if not t.term_is('section') and not t.term_is('header'): for col, value in enumerate(t.args, 0): if str(value).strip(): term_name = t.record_term_lc + '.' + str(col) term_class = self.get_term_class(term_name) yield term_class(term_name, str(value), [], row=line_n, col=col + 2, # The 0th argument starts in col 2 file_name=ref_path, file_type=file_type, parent=t) #, #doc=None, #section=last_section) except IncludeError as e: exc = IncludeError(str(e) + "; in '{}' ".format(ref_path)) exc.term = e.term if hasattr(e, 'term') else None raise exc
python
def generate_terms(self, ref, root, file_type=None): """An generator that yields term objects, handling includes and argument children. :param file_type: :param doc: :param root: :param ref: """ last_section = root t = None if isinstance(ref, Source): row_gen = ref ref_path = row_gen.__class__.__name__ else: row_gen = get_generator(ref) ref_path = ref.path try: for line_n, row in enumerate(row_gen, 1): if not row or not row[0] or not row[0].strip() or row[0].strip().startswith('#'): continue tt = Term(row[0], None) # Just to get the qualified name constructed property term_class = self.get_term_class(tt.join_lc) t = term_class(tt.join_lc, row[1] if len(row) > 1 else '', row[2:] if len(row) > 2 else [], row=line_n, col=1, file_name=ref_path, file_type=file_type, doc=self.doc) # Why did we remove comments from values? It strips out Markdown #if t.value and str(t.value).startswith('#'): # Comments are ignored # continue if t.term_is('include') or t.term_is('declare'): if t.term_is('include'): resolved = self.find_include_doc(dirname(ref_path), t.value.strip()) else: resolved = self.find_declare_doc(dirname(ref_path), t.value.strip()) if row_gen.ref == resolved: raise IncludeError("Include loop for '{}' ".format(resolved)) yield t try: sub_gen = get_generator(resolved.get_resource().get_target()) for t in self.generate_terms(sub_gen, root, file_type=t.record_term_lc): yield t if last_section: yield last_section # Re-assert the last section except IncludeError as e: e.term = t raise except (OSError, FileNotFoundError, GenerateError, DownloadError) as e: e = IncludeError("Failed to Include; {}".format(e)) e.term = t raise e continue # Already yielded the include/declare term, and includes can't have children elif t.term_is('section'): # If there is already a section in the document, emit the existing section, # rather than a new one. try: last_section = self.doc[t.name] t = last_section except (KeyError, TypeError): # TypeError -> self.doc is None last_section = t yield t # Yield any child terms, from the term row arguments if not t.term_is('section') and not t.term_is('header'): for col, value in enumerate(t.args, 0): if str(value).strip(): term_name = t.record_term_lc + '.' + str(col) term_class = self.get_term_class(term_name) yield term_class(term_name, str(value), [], row=line_n, col=col + 2, # The 0th argument starts in col 2 file_name=ref_path, file_type=file_type, parent=t) #, #doc=None, #section=last_section) except IncludeError as e: exc = IncludeError(str(e) + "; in '{}' ".format(ref_path)) exc.term = e.term if hasattr(e, 'term') else None raise exc
[ "def", "generate_terms", "(", "self", ",", "ref", ",", "root", ",", "file_type", "=", "None", ")", ":", "last_section", "=", "root", "t", "=", "None", "if", "isinstance", "(", "ref", ",", "Source", ")", ":", "row_gen", "=", "ref", "ref_path", "=", "row_gen", ".", "__class__", ".", "__name__", "else", ":", "row_gen", "=", "get_generator", "(", "ref", ")", "ref_path", "=", "ref", ".", "path", "try", ":", "for", "line_n", ",", "row", "in", "enumerate", "(", "row_gen", ",", "1", ")", ":", "if", "not", "row", "or", "not", "row", "[", "0", "]", "or", "not", "row", "[", "0", "]", ".", "strip", "(", ")", "or", "row", "[", "0", "]", ".", "strip", "(", ")", ".", "startswith", "(", "'#'", ")", ":", "continue", "tt", "=", "Term", "(", "row", "[", "0", "]", ",", "None", ")", "# Just to get the qualified name constructed property", "term_class", "=", "self", ".", "get_term_class", "(", "tt", ".", "join_lc", ")", "t", "=", "term_class", "(", "tt", ".", "join_lc", ",", "row", "[", "1", "]", "if", "len", "(", "row", ")", ">", "1", "else", "''", ",", "row", "[", "2", ":", "]", "if", "len", "(", "row", ")", ">", "2", "else", "[", "]", ",", "row", "=", "line_n", ",", "col", "=", "1", ",", "file_name", "=", "ref_path", ",", "file_type", "=", "file_type", ",", "doc", "=", "self", ".", "doc", ")", "# Why did we remove comments from values? It strips out Markdown", "#if t.value and str(t.value).startswith('#'): # Comments are ignored", "# continue", "if", "t", ".", "term_is", "(", "'include'", ")", "or", "t", ".", "term_is", "(", "'declare'", ")", ":", "if", "t", ".", "term_is", "(", "'include'", ")", ":", "resolved", "=", "self", ".", "find_include_doc", "(", "dirname", "(", "ref_path", ")", ",", "t", ".", "value", ".", "strip", "(", ")", ")", "else", ":", "resolved", "=", "self", ".", "find_declare_doc", "(", "dirname", "(", "ref_path", ")", ",", "t", ".", "value", ".", "strip", "(", ")", ")", "if", "row_gen", ".", "ref", "==", "resolved", ":", "raise", "IncludeError", "(", "\"Include loop for '{}' \"", ".", "format", "(", "resolved", ")", ")", "yield", "t", "try", ":", "sub_gen", "=", "get_generator", "(", "resolved", ".", "get_resource", "(", ")", ".", "get_target", "(", ")", ")", "for", "t", "in", "self", ".", "generate_terms", "(", "sub_gen", ",", "root", ",", "file_type", "=", "t", ".", "record_term_lc", ")", ":", "yield", "t", "if", "last_section", ":", "yield", "last_section", "# Re-assert the last section", "except", "IncludeError", "as", "e", ":", "e", ".", "term", "=", "t", "raise", "except", "(", "OSError", ",", "FileNotFoundError", ",", "GenerateError", ",", "DownloadError", ")", "as", "e", ":", "e", "=", "IncludeError", "(", "\"Failed to Include; {}\"", ".", "format", "(", "e", ")", ")", "e", ".", "term", "=", "t", "raise", "e", "continue", "# Already yielded the include/declare term, and includes can't have children", "elif", "t", ".", "term_is", "(", "'section'", ")", ":", "# If there is already a section in the document, emit the existing section,", "# rather than a new one.", "try", ":", "last_section", "=", "self", ".", "doc", "[", "t", ".", "name", "]", "t", "=", "last_section", "except", "(", "KeyError", ",", "TypeError", ")", ":", "# TypeError -> self.doc is None", "last_section", "=", "t", "yield", "t", "# Yield any child terms, from the term row arguments", "if", "not", "t", ".", "term_is", "(", "'section'", ")", "and", "not", "t", ".", "term_is", "(", "'header'", ")", ":", "for", "col", ",", "value", "in", "enumerate", "(", "t", ".", "args", ",", "0", ")", ":", "if", "str", "(", "value", ")", ".", "strip", "(", ")", ":", "term_name", "=", "t", ".", "record_term_lc", "+", "'.'", "+", "str", "(", "col", ")", "term_class", "=", "self", ".", "get_term_class", "(", "term_name", ")", "yield", "term_class", "(", "term_name", ",", "str", "(", "value", ")", ",", "[", "]", ",", "row", "=", "line_n", ",", "col", "=", "col", "+", "2", ",", "# The 0th argument starts in col 2", "file_name", "=", "ref_path", ",", "file_type", "=", "file_type", ",", "parent", "=", "t", ")", "#,", "#doc=None,", "#section=last_section)", "except", "IncludeError", "as", "e", ":", "exc", "=", "IncludeError", "(", "str", "(", "e", ")", "+", "\"; in '{}' \"", ".", "format", "(", "ref_path", ")", ")", "exc", ".", "term", "=", "e", ".", "term", "if", "hasattr", "(", "e", ",", "'term'", ")", "else", "None", "raise", "exc" ]
An generator that yields term objects, handling includes and argument children. :param file_type: :param doc: :param root: :param ref:
[ "An", "generator", "that", "yields", "term", "objects", "handling", "includes", "and", "argument", "children", ".", ":", "param", "file_type", ":", ":", "param", "doc", ":", ":", "param", "root", ":", ":", "param", "ref", ":" ]
train
https://github.com/Metatab/metatab/blob/8336ec3e4bd8da84a9a5cb86de1c1086e14b8b22/metatab/parser.py#L302-L410
Metatab/metatab
metatab/parser.py
TermParser.inherited_children
def inherited_children(self, t): """Generate inherited children based on a terms InhertsFrom property. The input term must have both an InheritsFrom property and a defined Section :param t: A subclassed terms -- has an InheritsFrom value """ if not t.get('inheritsfrom'): return if not 'section' in t: raise DeclarationError("DeclareTerm for '{}' must specify a section to use InheritsFrom" .format(t['term'])) t_p, t_r = Term.split_term(t['term']) ih_p, ih_r = Term.split_term(t['inheritsfrom']) # The inherited terms must come from the same section section_terms = self._declared_sections[t['section'].lower()]['terms'] # For each of the terms in the section, look for terms that are children # of the term that the input term inherits from. Then yield each of those terms # after chang the term name to be a child of the input term. for st_name in section_terms: if st_name.lower().startswith(ih_r.lower() + '.'): st_p, st_r = Term.split_term(st_name) # Yield the term, but replace the parent part subtype_name = t_r + '.' + st_r subtype_d = dict(self._declared_terms[st_name.lower()].items()) subtype_d['inheritsfrom'] = ''; subtype_d['term'] = subtype_name yield subtype_d
python
def inherited_children(self, t): """Generate inherited children based on a terms InhertsFrom property. The input term must have both an InheritsFrom property and a defined Section :param t: A subclassed terms -- has an InheritsFrom value """ if not t.get('inheritsfrom'): return if not 'section' in t: raise DeclarationError("DeclareTerm for '{}' must specify a section to use InheritsFrom" .format(t['term'])) t_p, t_r = Term.split_term(t['term']) ih_p, ih_r = Term.split_term(t['inheritsfrom']) # The inherited terms must come from the same section section_terms = self._declared_sections[t['section'].lower()]['terms'] # For each of the terms in the section, look for terms that are children # of the term that the input term inherits from. Then yield each of those terms # after chang the term name to be a child of the input term. for st_name in section_terms: if st_name.lower().startswith(ih_r.lower() + '.'): st_p, st_r = Term.split_term(st_name) # Yield the term, but replace the parent part subtype_name = t_r + '.' + st_r subtype_d = dict(self._declared_terms[st_name.lower()].items()) subtype_d['inheritsfrom'] = ''; subtype_d['term'] = subtype_name yield subtype_d
[ "def", "inherited_children", "(", "self", ",", "t", ")", ":", "if", "not", "t", ".", "get", "(", "'inheritsfrom'", ")", ":", "return", "if", "not", "'section'", "in", "t", ":", "raise", "DeclarationError", "(", "\"DeclareTerm for '{}' must specify a section to use InheritsFrom\"", ".", "format", "(", "t", "[", "'term'", "]", ")", ")", "t_p", ",", "t_r", "=", "Term", ".", "split_term", "(", "t", "[", "'term'", "]", ")", "ih_p", ",", "ih_r", "=", "Term", ".", "split_term", "(", "t", "[", "'inheritsfrom'", "]", ")", "# The inherited terms must come from the same section", "section_terms", "=", "self", ".", "_declared_sections", "[", "t", "[", "'section'", "]", ".", "lower", "(", ")", "]", "[", "'terms'", "]", "# For each of the terms in the section, look for terms that are children", "# of the term that the input term inherits from. Then yield each of those terms", "# after chang the term name to be a child of the input term.", "for", "st_name", "in", "section_terms", ":", "if", "st_name", ".", "lower", "(", ")", ".", "startswith", "(", "ih_r", ".", "lower", "(", ")", "+", "'.'", ")", ":", "st_p", ",", "st_r", "=", "Term", ".", "split_term", "(", "st_name", ")", "# Yield the term, but replace the parent part", "subtype_name", "=", "t_r", "+", "'.'", "+", "st_r", "subtype_d", "=", "dict", "(", "self", ".", "_declared_terms", "[", "st_name", ".", "lower", "(", ")", "]", ".", "items", "(", ")", ")", "subtype_d", "[", "'inheritsfrom'", "]", "=", "''", "subtype_d", "[", "'term'", "]", "=", "subtype_name", "yield", "subtype_d" ]
Generate inherited children based on a terms InhertsFrom property. The input term must have both an InheritsFrom property and a defined Section :param t: A subclassed terms -- has an InheritsFrom value
[ "Generate", "inherited", "children", "based", "on", "a", "terms", "InhertsFrom", "property", ".", "The", "input", "term", "must", "have", "both", "an", "InheritsFrom", "property", "and", "a", "defined", "Section" ]
train
https://github.com/Metatab/metatab/blob/8336ec3e4bd8da84a9a5cb86de1c1086e14b8b22/metatab/parser.py#L548-L581
lazygunner/xunleipy
xunleipy/remote.py
XunLeiRemote.get_remote_peer_list
def get_remote_peer_list(self): ''' listPeer 返回列表 { "rtn":0, "peerList": [{ "category": "", "status": 0, "name": "GUNNER_HOME", "vodPort": 43566, "company": "XUNLEI_MIPS_BE_MIPS32", "pid": "8498352EB4F5208X0001", "lastLoginTime": 1412053233, "accesscode": "", "localIP": "", "location": "\u6d59\u6c5f\u7701 \u8054\u901a", "online": 1, "path_list": "C:/", "type": 30, "deviceVersion": 22083310 }] } ''' params = { 'type': 0, 'v': DEFAULT_V, 'ct': 2 } res = self._get('listPeer', params=params) return res['peerList']
python
def get_remote_peer_list(self): ''' listPeer 返回列表 { "rtn":0, "peerList": [{ "category": "", "status": 0, "name": "GUNNER_HOME", "vodPort": 43566, "company": "XUNLEI_MIPS_BE_MIPS32", "pid": "8498352EB4F5208X0001", "lastLoginTime": 1412053233, "accesscode": "", "localIP": "", "location": "\u6d59\u6c5f\u7701 \u8054\u901a", "online": 1, "path_list": "C:/", "type": 30, "deviceVersion": 22083310 }] } ''' params = { 'type': 0, 'v': DEFAULT_V, 'ct': 2 } res = self._get('listPeer', params=params) return res['peerList']
[ "def", "get_remote_peer_list", "(", "self", ")", ":", "params", "=", "{", "'type'", ":", "0", ",", "'v'", ":", "DEFAULT_V", ",", "'ct'", ":", "2", "}", "res", "=", "self", ".", "_get", "(", "'listPeer'", ",", "params", "=", "params", ")", "return", "res", "[", "'peerList'", "]" ]
listPeer 返回列表 { "rtn":0, "peerList": [{ "category": "", "status": 0, "name": "GUNNER_HOME", "vodPort": 43566, "company": "XUNLEI_MIPS_BE_MIPS32", "pid": "8498352EB4F5208X0001", "lastLoginTime": 1412053233, "accesscode": "", "localIP": "", "location": "\u6d59\u6c5f\u7701 \u8054\u901a", "online": 1, "path_list": "C:/", "type": 30, "deviceVersion": 22083310 }] }
[ "listPeer", "返回列表", "{", "rtn", ":", "0", "peerList", ":", "[", "{", "category", ":", "status", ":", "0", "name", ":", "GUNNER_HOME", "vodPort", ":", "43566", "company", ":", "XUNLEI_MIPS_BE_MIPS32", "pid", ":", "8498352EB4F5208X0001", "lastLoginTime", ":", "1412053233", "accesscode", ":", "localIP", ":", "location", ":", "\\", "u6d59", "\\", "u6c5f", "\\", "u7701", "\\", "u8054", "\\", "u901a", "online", ":", "1", "path_list", ":", "C", ":", "/", "type", ":", "30", "deviceVersion", ":", "22083310", "}", "]", "}" ]
train
https://github.com/lazygunner/xunleipy/blob/cded7598a7bf04495156bae2d747883d1eacb3f4/xunleipy/remote.py#L78-L108
lazygunner/xunleipy
xunleipy/remote.py
XunLeiRemote.get_remote_task_list
def get_remote_task_list( self, peer_id, list_type=ListType.downloading, pos=0, number=10): ''' list 返回列表 { "recycleNum": 0, "serverFailNum": 0, "rtn": 0, "completeNum": 34, "sync": 0, "tasks": [{ "failCode": 15414, "vipChannel": { "available": 0, "failCode": 0, "opened": 0, "type": 0, "dlBytes": 0, "speed": 0 }, "name": "Blablaba", "url": "magnet:?xt=urn:btih:5DF6B321CCBDEBE1D52E8E15CBFC6F002", "speed": 0, "lixianChannel": { "failCode": 0, "serverProgress": 0, "dlBytes": 0, "state": 0, "serverSpeed": 0, "speed": 0 }, "downTime": 0, "subList": [], "createTime": 1412217010, "state": 8, "remainTime": 0, "progress": 0, "path": "/tmp/thunder/volumes/C:/TDDOWNLOAD/", "type": 2, "id": "39", "completeTime": 0, "size": 0 }, ... ] } ''' params = { 'pid': peer_id, 'type': list_type, 'pos': pos, 'number': number, 'needUrl': 1, 'v': DEFAULT_V, 'ct': DEFAULT_CT } res = self._get('list', params=params) return res['tasks']
python
def get_remote_task_list( self, peer_id, list_type=ListType.downloading, pos=0, number=10): ''' list 返回列表 { "recycleNum": 0, "serverFailNum": 0, "rtn": 0, "completeNum": 34, "sync": 0, "tasks": [{ "failCode": 15414, "vipChannel": { "available": 0, "failCode": 0, "opened": 0, "type": 0, "dlBytes": 0, "speed": 0 }, "name": "Blablaba", "url": "magnet:?xt=urn:btih:5DF6B321CCBDEBE1D52E8E15CBFC6F002", "speed": 0, "lixianChannel": { "failCode": 0, "serverProgress": 0, "dlBytes": 0, "state": 0, "serverSpeed": 0, "speed": 0 }, "downTime": 0, "subList": [], "createTime": 1412217010, "state": 8, "remainTime": 0, "progress": 0, "path": "/tmp/thunder/volumes/C:/TDDOWNLOAD/", "type": 2, "id": "39", "completeTime": 0, "size": 0 }, ... ] } ''' params = { 'pid': peer_id, 'type': list_type, 'pos': pos, 'number': number, 'needUrl': 1, 'v': DEFAULT_V, 'ct': DEFAULT_CT } res = self._get('list', params=params) return res['tasks']
[ "def", "get_remote_task_list", "(", "self", ",", "peer_id", ",", "list_type", "=", "ListType", ".", "downloading", ",", "pos", "=", "0", ",", "number", "=", "10", ")", ":", "params", "=", "{", "'pid'", ":", "peer_id", ",", "'type'", ":", "list_type", ",", "'pos'", ":", "pos", ",", "'number'", ":", "number", ",", "'needUrl'", ":", "1", ",", "'v'", ":", "DEFAULT_V", ",", "'ct'", ":", "DEFAULT_CT", "}", "res", "=", "self", ".", "_get", "(", "'list'", ",", "params", "=", "params", ")", "return", "res", "[", "'tasks'", "]" ]
list 返回列表 { "recycleNum": 0, "serverFailNum": 0, "rtn": 0, "completeNum": 34, "sync": 0, "tasks": [{ "failCode": 15414, "vipChannel": { "available": 0, "failCode": 0, "opened": 0, "type": 0, "dlBytes": 0, "speed": 0 }, "name": "Blablaba", "url": "magnet:?xt=urn:btih:5DF6B321CCBDEBE1D52E8E15CBFC6F002", "speed": 0, "lixianChannel": { "failCode": 0, "serverProgress": 0, "dlBytes": 0, "state": 0, "serverSpeed": 0, "speed": 0 }, "downTime": 0, "subList": [], "createTime": 1412217010, "state": 8, "remainTime": 0, "progress": 0, "path": "/tmp/thunder/volumes/C:/TDDOWNLOAD/", "type": 2, "id": "39", "completeTime": 0, "size": 0 }, ... ] }
[ "list", "返回列表", "{", "recycleNum", ":", "0", "serverFailNum", ":", "0", "rtn", ":", "0", "completeNum", ":", "34", "sync", ":", "0", "tasks", ":", "[", "{", "failCode", ":", "15414", "vipChannel", ":", "{", "available", ":", "0", "failCode", ":", "0", "opened", ":", "0", "type", ":", "0", "dlBytes", ":", "0", "speed", ":", "0", "}", "name", ":", "Blablaba", "url", ":", "magnet", ":", "?xt", "=", "urn", ":", "btih", ":", "5DF6B321CCBDEBE1D52E8E15CBFC6F002", "speed", ":", "0", "lixianChannel", ":", "{", "failCode", ":", "0", "serverProgress", ":", "0", "dlBytes", ":", "0", "state", ":", "0", "serverSpeed", ":", "0", "speed", ":", "0", "}", "downTime", ":", "0", "subList", ":", "[]", "createTime", ":", "1412217010", "state", ":", "8", "remainTime", ":", "0", "progress", ":", "0", "path", ":", "/", "tmp", "/", "thunder", "/", "volumes", "/", "C", ":", "/", "TDDOWNLOAD", "/", "type", ":", "2", "id", ":", "39", "completeTime", ":", "0", "size", ":", "0", "}", "...", "]", "}" ]
train
https://github.com/lazygunner/xunleipy/blob/cded7598a7bf04495156bae2d747883d1eacb3f4/xunleipy/remote.py#L118-L176
lazygunner/xunleipy
xunleipy/remote.py
XunLeiRemote.check_url
def check_url(self, pid, url_list): ''' urlCheck 返回数据 { "rtn": 0, "taskInfo": { "failCode": 0, "name": ".HDTVrip.1024X576.mkv", "url": "ed2k://|file|%E6%B0%", "type": 1, "id": "0", "size": 505005442 } } ''' task_list = [] for url in url_list: params = { 'pid': pid, 'url': url, 'type': 1, 'v': DEFAULT_V, 'ct': DEFAULT_CT } res = self._get('urlCheck', params=params) if res['rtn'] == 0: task_info = res['taskInfo'] task_list.append({ 'url': task_info['url'], 'name': task_info['name'], 'filesize': task_info['size'], 'gcid': '', 'cid': '' }) else: print( 'url [%s] check failed, code:%s.', url, task_info['failCode'] ) return task_list
python
def check_url(self, pid, url_list): ''' urlCheck 返回数据 { "rtn": 0, "taskInfo": { "failCode": 0, "name": ".HDTVrip.1024X576.mkv", "url": "ed2k://|file|%E6%B0%", "type": 1, "id": "0", "size": 505005442 } } ''' task_list = [] for url in url_list: params = { 'pid': pid, 'url': url, 'type': 1, 'v': DEFAULT_V, 'ct': DEFAULT_CT } res = self._get('urlCheck', params=params) if res['rtn'] == 0: task_info = res['taskInfo'] task_list.append({ 'url': task_info['url'], 'name': task_info['name'], 'filesize': task_info['size'], 'gcid': '', 'cid': '' }) else: print( 'url [%s] check failed, code:%s.', url, task_info['failCode'] ) return task_list
[ "def", "check_url", "(", "self", ",", "pid", ",", "url_list", ")", ":", "task_list", "=", "[", "]", "for", "url", "in", "url_list", ":", "params", "=", "{", "'pid'", ":", "pid", ",", "'url'", ":", "url", ",", "'type'", ":", "1", ",", "'v'", ":", "DEFAULT_V", ",", "'ct'", ":", "DEFAULT_CT", "}", "res", "=", "self", ".", "_get", "(", "'urlCheck'", ",", "params", "=", "params", ")", "if", "res", "[", "'rtn'", "]", "==", "0", ":", "task_info", "=", "res", "[", "'taskInfo'", "]", "task_list", ".", "append", "(", "{", "'url'", ":", "task_info", "[", "'url'", "]", ",", "'name'", ":", "task_info", "[", "'name'", "]", ",", "'filesize'", ":", "task_info", "[", "'size'", "]", ",", "'gcid'", ":", "''", ",", "'cid'", ":", "''", "}", ")", "else", ":", "print", "(", "'url [%s] check failed, code:%s.'", ",", "url", ",", "task_info", "[", "'failCode'", "]", ")", "return", "task_list" ]
urlCheck 返回数据 { "rtn": 0, "taskInfo": { "failCode": 0, "name": ".HDTVrip.1024X576.mkv", "url": "ed2k://|file|%E6%B0%", "type": 1, "id": "0", "size": 505005442 } }
[ "urlCheck", "返回数据", "{", "rtn", ":", "0", "taskInfo", ":", "{", "failCode", ":", "0", "name", ":", ".", "HDTVrip", ".", "1024X576", ".", "mkv", "url", ":", "ed2k", ":", "//", "|file|%E6%B0%", "type", ":", "1", "id", ":", "0", "size", ":", "505005442", "}", "}" ]
train
https://github.com/lazygunner/xunleipy/blob/cded7598a7bf04495156bae2d747883d1eacb3f4/xunleipy/remote.py#L178-L220
lazygunner/xunleipy
xunleipy/remote.py
XunLeiRemote.add_tasks_to_remote
def add_tasks_to_remote(self, pid, path='C:/TDDOWNLOAD/', task_list=[]): ''' post data: { "path":"C:/TDDOWNLOAD/", "tasks":[{ "url":"ed2k://|file|%E6%B0%B8%E6%81%92.Forever...", "name":"永恒.Forever.S01E02.中英字幕.WEB-HR.mkv", "gcid":"", "cid":"", "filesize":512807020 }] } return data: { "tasks": [{ "name": "\u6c38\u6052.Fore76.x264.mkv", "url": "ed2k://|file|%E6%B0%B8%E6%81%92", "result": 202, "taskid": "48", "msg": "repeate_taskid:48", "id": 1 }], "rtn": 0 } ''' if len(task_list) == 0: return [] params = { 'pid': pid, 'v': DEFAULT_V, 'ct': DEFAULT_CT, } data = { 'path': path, 'tasks': task_list } headers = { 'Content-Type': 'application/x-www-form-urlencoded' } data = json.dumps(data) data = quote(data) data = 'json=' + data res = self._post( 'createTask', params=params, data=data, headers=headers ) return res
python
def add_tasks_to_remote(self, pid, path='C:/TDDOWNLOAD/', task_list=[]): ''' post data: { "path":"C:/TDDOWNLOAD/", "tasks":[{ "url":"ed2k://|file|%E6%B0%B8%E6%81%92.Forever...", "name":"永恒.Forever.S01E02.中英字幕.WEB-HR.mkv", "gcid":"", "cid":"", "filesize":512807020 }] } return data: { "tasks": [{ "name": "\u6c38\u6052.Fore76.x264.mkv", "url": "ed2k://|file|%E6%B0%B8%E6%81%92", "result": 202, "taskid": "48", "msg": "repeate_taskid:48", "id": 1 }], "rtn": 0 } ''' if len(task_list) == 0: return [] params = { 'pid': pid, 'v': DEFAULT_V, 'ct': DEFAULT_CT, } data = { 'path': path, 'tasks': task_list } headers = { 'Content-Type': 'application/x-www-form-urlencoded' } data = json.dumps(data) data = quote(data) data = 'json=' + data res = self._post( 'createTask', params=params, data=data, headers=headers ) return res
[ "def", "add_tasks_to_remote", "(", "self", ",", "pid", ",", "path", "=", "'C:/TDDOWNLOAD/'", ",", "task_list", "=", "[", "]", ")", ":", "if", "len", "(", "task_list", ")", "==", "0", ":", "return", "[", "]", "params", "=", "{", "'pid'", ":", "pid", ",", "'v'", ":", "DEFAULT_V", ",", "'ct'", ":", "DEFAULT_CT", ",", "}", "data", "=", "{", "'path'", ":", "path", ",", "'tasks'", ":", "task_list", "}", "headers", "=", "{", "'Content-Type'", ":", "'application/x-www-form-urlencoded'", "}", "data", "=", "json", ".", "dumps", "(", "data", ")", "data", "=", "quote", "(", "data", ")", "data", "=", "'json='", "+", "data", "res", "=", "self", ".", "_post", "(", "'createTask'", ",", "params", "=", "params", ",", "data", "=", "data", ",", "headers", "=", "headers", ")", "return", "res" ]
post data: { "path":"C:/TDDOWNLOAD/", "tasks":[{ "url":"ed2k://|file|%E6%B0%B8%E6%81%92.Forever...", "name":"永恒.Forever.S01E02.中英字幕.WEB-HR.mkv", "gcid":"", "cid":"", "filesize":512807020 }] } return data: { "tasks": [{ "name": "\u6c38\u6052.Fore76.x264.mkv", "url": "ed2k://|file|%E6%B0%B8%E6%81%92", "result": 202, "taskid": "48", "msg": "repeate_taskid:48", "id": 1 }], "rtn": 0 }
[ "post", "data", ":", "{", "path", ":", "C", ":", "/", "TDDOWNLOAD", "/", "tasks", ":", "[", "{", "url", ":", "ed2k", ":", "//", "|file|%E6%B0%B8%E6%81%92", ".", "Forever", "...", "name", ":", "永恒", ".", "Forever", ".", "S01E02", ".", "中英字幕", ".", "WEB", "-", "HR", ".", "mkv", "gcid", ":", "cid", ":", "filesize", ":", "512807020", "}", "]", "}" ]
train
https://github.com/lazygunner/xunleipy/blob/cded7598a7bf04495156bae2d747883d1eacb3f4/xunleipy/remote.py#L233-L290
Capitains/Nautilus
capitains_nautilus/manager.py
read_levels
def read_levels(text): """ Read text and get there reffs :param text: Collection (Readable) :return: """ x = [] for i in range(0, len(NAUTILUSRESOLVER.getMetadata(text).citation)): x.append(NAUTILUSRESOLVER.getReffs(text, level=i)) return x
python
def read_levels(text): """ Read text and get there reffs :param text: Collection (Readable) :return: """ x = [] for i in range(0, len(NAUTILUSRESOLVER.getMetadata(text).citation)): x.append(NAUTILUSRESOLVER.getReffs(text, level=i)) return x
[ "def", "read_levels", "(", "text", ")", ":", "x", "=", "[", "]", "for", "i", "in", "range", "(", "0", ",", "len", "(", "NAUTILUSRESOLVER", ".", "getMetadata", "(", "text", ")", ".", "citation", ")", ")", ":", "x", ".", "append", "(", "NAUTILUSRESOLVER", ".", "getReffs", "(", "text", ",", "level", "=", "i", ")", ")", "return", "x" ]
Read text and get there reffs :param text: Collection (Readable) :return:
[ "Read", "text", "and", "get", "there", "reffs" ]
train
https://github.com/Capitains/Nautilus/blob/6be453fe0cc0e2c1b89ff06e5af1409165fc1411/capitains_nautilus/manager.py#L15-L24
Capitains/Nautilus
capitains_nautilus/manager.py
FlaskNautilusManager
def FlaskNautilusManager(resolver, flask_nautilus): """ Provides a manager for flask scripts to perform specific maintenance operations :param resolver: Nautilus Extension Instance :type resolver: NautilusCtsResolver :param flask_nautilus: Flask Application :type flask_nautilus: FlaskNautilus :return: CLI :rtype: click.group Import with .. code-block:: python :lineno: from capitains_nautilus.manager import FlaskNautilusManager manager = FlaskNautilusManager(resolver, flask_nautilus, app) # Where app is the name of your app if __name__ == "__main__": manager() """ global NAUTILUSRESOLVER NAUTILUSRESOLVER = resolver @click.group() @click.option('--verbose', default=False) def CLI(verbose): """ CLI for Flask Nautilus """ click.echo("Command Line Interface of Flask") resolver.logger.disabled = not verbose @CLI.command() def flush_resolver(): """ Flush the resolver cache system """ if resolver.clear() is True: click.echo("Caching of Resolver Cleared") @CLI.command() def flush_http_cache(): """ Flush the http cache Warning : Might flush other Flask Caching data ! """ flask_nautilus.flaskcache.clear() @CLI.command() def flush_both(): """ Flush all caches """ if resolver.cache.clear() is True: click.echo("Caching of Resolver Cleared") if flask_nautilus.flaskcache.clear() is True: click.echo("Caching of HTTP Cleared") @CLI.command() def parse(): """ Preprocess the inventory and cache it """ ret = resolver.parse() click.echo("Preprocessed %s texts" % len(ret.readableDescendants)) @CLI.command() @click.option('--threads', default=0, type=int) def process_reffs(threads): """ Preprocess the inventory and cache it """ if threads < 1: threads = THREADS texts = list(resolver.getMetadata().readableDescendants) click.echo("Using {} processes to parse references of {} texts".format(threads, len(texts))) with Pool(processes=threads) as executor: for future in executor.imap_unordered(read_levels, [t.id for t in texts]): del future click.echo("References parsed") return CLI
python
def FlaskNautilusManager(resolver, flask_nautilus): """ Provides a manager for flask scripts to perform specific maintenance operations :param resolver: Nautilus Extension Instance :type resolver: NautilusCtsResolver :param flask_nautilus: Flask Application :type flask_nautilus: FlaskNautilus :return: CLI :rtype: click.group Import with .. code-block:: python :lineno: from capitains_nautilus.manager import FlaskNautilusManager manager = FlaskNautilusManager(resolver, flask_nautilus, app) # Where app is the name of your app if __name__ == "__main__": manager() """ global NAUTILUSRESOLVER NAUTILUSRESOLVER = resolver @click.group() @click.option('--verbose', default=False) def CLI(verbose): """ CLI for Flask Nautilus """ click.echo("Command Line Interface of Flask") resolver.logger.disabled = not verbose @CLI.command() def flush_resolver(): """ Flush the resolver cache system """ if resolver.clear() is True: click.echo("Caching of Resolver Cleared") @CLI.command() def flush_http_cache(): """ Flush the http cache Warning : Might flush other Flask Caching data ! """ flask_nautilus.flaskcache.clear() @CLI.command() def flush_both(): """ Flush all caches """ if resolver.cache.clear() is True: click.echo("Caching of Resolver Cleared") if flask_nautilus.flaskcache.clear() is True: click.echo("Caching of HTTP Cleared") @CLI.command() def parse(): """ Preprocess the inventory and cache it """ ret = resolver.parse() click.echo("Preprocessed %s texts" % len(ret.readableDescendants)) @CLI.command() @click.option('--threads', default=0, type=int) def process_reffs(threads): """ Preprocess the inventory and cache it """ if threads < 1: threads = THREADS texts = list(resolver.getMetadata().readableDescendants) click.echo("Using {} processes to parse references of {} texts".format(threads, len(texts))) with Pool(processes=threads) as executor: for future in executor.imap_unordered(read_levels, [t.id for t in texts]): del future click.echo("References parsed") return CLI
[ "def", "FlaskNautilusManager", "(", "resolver", ",", "flask_nautilus", ")", ":", "global", "NAUTILUSRESOLVER", "NAUTILUSRESOLVER", "=", "resolver", "@", "click", ".", "group", "(", ")", "@", "click", ".", "option", "(", "'--verbose'", ",", "default", "=", "False", ")", "def", "CLI", "(", "verbose", ")", ":", "\"\"\" CLI for Flask Nautilus \"\"\"", "click", ".", "echo", "(", "\"Command Line Interface of Flask\"", ")", "resolver", ".", "logger", ".", "disabled", "=", "not", "verbose", "@", "CLI", ".", "command", "(", ")", "def", "flush_resolver", "(", ")", ":", "\"\"\" Flush the resolver cache system \"\"\"", "if", "resolver", ".", "clear", "(", ")", "is", "True", ":", "click", ".", "echo", "(", "\"Caching of Resolver Cleared\"", ")", "@", "CLI", ".", "command", "(", ")", "def", "flush_http_cache", "(", ")", ":", "\"\"\" Flush the http cache\n\n Warning : Might flush other Flask Caching data !\n \"\"\"", "flask_nautilus", ".", "flaskcache", ".", "clear", "(", ")", "@", "CLI", ".", "command", "(", ")", "def", "flush_both", "(", ")", ":", "\"\"\" Flush all caches\n\n \"\"\"", "if", "resolver", ".", "cache", ".", "clear", "(", ")", "is", "True", ":", "click", ".", "echo", "(", "\"Caching of Resolver Cleared\"", ")", "if", "flask_nautilus", ".", "flaskcache", ".", "clear", "(", ")", "is", "True", ":", "click", ".", "echo", "(", "\"Caching of HTTP Cleared\"", ")", "@", "CLI", ".", "command", "(", ")", "def", "parse", "(", ")", ":", "\"\"\" Preprocess the inventory and cache it \"\"\"", "ret", "=", "resolver", ".", "parse", "(", ")", "click", ".", "echo", "(", "\"Preprocessed %s texts\"", "%", "len", "(", "ret", ".", "readableDescendants", ")", ")", "@", "CLI", ".", "command", "(", ")", "@", "click", ".", "option", "(", "'--threads'", ",", "default", "=", "0", ",", "type", "=", "int", ")", "def", "process_reffs", "(", "threads", ")", ":", "\"\"\" Preprocess the inventory and cache it \"\"\"", "if", "threads", "<", "1", ":", "threads", "=", "THREADS", "texts", "=", "list", "(", "resolver", ".", "getMetadata", "(", ")", ".", "readableDescendants", ")", "click", ".", "echo", "(", "\"Using {} processes to parse references of {} texts\"", ".", "format", "(", "threads", ",", "len", "(", "texts", ")", ")", ")", "with", "Pool", "(", "processes", "=", "threads", ")", "as", "executor", ":", "for", "future", "in", "executor", ".", "imap_unordered", "(", "read_levels", ",", "[", "t", ".", "id", "for", "t", "in", "texts", "]", ")", ":", "del", "future", "click", ".", "echo", "(", "\"References parsed\"", ")", "return", "CLI" ]
Provides a manager for flask scripts to perform specific maintenance operations :param resolver: Nautilus Extension Instance :type resolver: NautilusCtsResolver :param flask_nautilus: Flask Application :type flask_nautilus: FlaskNautilus :return: CLI :rtype: click.group Import with .. code-block:: python :lineno: from capitains_nautilus.manager import FlaskNautilusManager manager = FlaskNautilusManager(resolver, flask_nautilus, app) # Where app is the name of your app if __name__ == "__main__": manager()
[ "Provides", "a", "manager", "for", "flask", "scripts", "to", "perform", "specific", "maintenance", "operations" ]
train
https://github.com/Capitains/Nautilus/blob/6be453fe0cc0e2c1b89ff06e5af1409165fc1411/capitains_nautilus/manager.py#L27-L102
chrisjsewell/jsonextended
jsonextended/edict.py
is_iter_non_string
def is_iter_non_string(obj): """test if object is a list or tuple""" if isinstance(obj, list) or isinstance(obj, tuple): return True return False
python
def is_iter_non_string(obj): """test if object is a list or tuple""" if isinstance(obj, list) or isinstance(obj, tuple): return True return False
[ "def", "is_iter_non_string", "(", "obj", ")", ":", "if", "isinstance", "(", "obj", ",", "list", ")", "or", "isinstance", "(", "obj", ",", "tuple", ")", ":", "return", "True", "return", "False" ]
test if object is a list or tuple
[ "test", "if", "object", "is", "a", "list", "or", "tuple" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L45-L49
chrisjsewell/jsonextended
jsonextended/edict.py
is_dict_like
def is_dict_like(obj, attr=('keys', 'items')): """test if object is dict like""" for a in attr: if not hasattr(obj, a): return False return True
python
def is_dict_like(obj, attr=('keys', 'items')): """test if object is dict like""" for a in attr: if not hasattr(obj, a): return False return True
[ "def", "is_dict_like", "(", "obj", ",", "attr", "=", "(", "'keys'", ",", "'items'", ")", ")", ":", "for", "a", "in", "attr", ":", "if", "not", "hasattr", "(", "obj", ",", "a", ")", ":", "return", "False", "return", "True" ]
test if object is dict like
[ "test", "if", "object", "is", "dict", "like" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L58-L63
chrisjsewell/jsonextended
jsonextended/edict.py
is_list_of_dict_like
def is_list_of_dict_like(obj, attr=('keys', 'items')): """test if object is a list only containing dict like items """ try: if len(obj) == 0: return False return all([is_dict_like(i, attr) for i in obj]) except Exception: return False
python
def is_list_of_dict_like(obj, attr=('keys', 'items')): """test if object is a list only containing dict like items """ try: if len(obj) == 0: return False return all([is_dict_like(i, attr) for i in obj]) except Exception: return False
[ "def", "is_list_of_dict_like", "(", "obj", ",", "attr", "=", "(", "'keys'", ",", "'items'", ")", ")", ":", "try", ":", "if", "len", "(", "obj", ")", "==", "0", ":", "return", "False", "return", "all", "(", "[", "is_dict_like", "(", "i", ",", "attr", ")", "for", "i", "in", "obj", "]", ")", "except", "Exception", ":", "return", "False" ]
test if object is a list only containing dict like items
[ "test", "if", "object", "is", "a", "list", "only", "containing", "dict", "like", "items" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L66-L73
chrisjsewell/jsonextended
jsonextended/edict.py
is_path_like
def is_path_like(obj, attr=('name', 'is_file', 'is_dir', 'iterdir')): """test if object is pathlib.Path like""" for a in attr: if not hasattr(obj, a): return False return True
python
def is_path_like(obj, attr=('name', 'is_file', 'is_dir', 'iterdir')): """test if object is pathlib.Path like""" for a in attr: if not hasattr(obj, a): return False return True
[ "def", "is_path_like", "(", "obj", ",", "attr", "=", "(", "'name'", ",", "'is_file'", ",", "'is_dir'", ",", "'iterdir'", ")", ")", ":", "for", "a", "in", "attr", ":", "if", "not", "hasattr", "(", "obj", ",", "a", ")", ":", "return", "False", "return", "True" ]
test if object is pathlib.Path like
[ "test", "if", "object", "is", "pathlib", ".", "Path", "like" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L76-L81
chrisjsewell/jsonextended
jsonextended/edict.py
convert_type
def convert_type(d, intype, outtype, convert_list=True, in_place=True): """ convert all values of one type to another Parameters ---------- d : dict intype : type_class outtype : type_class convert_list : bool whether to convert instances inside lists and tuples in_place : bool if True, applies conversions to original dict, else returns copy Examples -------- >>> from pprint import pprint >>> d = {'a':'1','b':'2'} >>> pprint(convert_type(d,str,float)) {'a': 1.0, 'b': 2.0} >>> d = {'a':['1','2']} >>> pprint(convert_type(d,str,float)) {'a': [1.0, 2.0]} >>> d = {'a':[('1','2'),[3,4]]} >>> pprint(convert_type(d,str,float)) {'a': [(1.0, 2.0), [3, 4]]} """ if not in_place: out_dict = copy.deepcopy(d) else: out_dict = d def _convert(obj): if isinstance(obj, intype): try: obj = outtype(obj) except Exception: pass elif isinstance(obj, list) and convert_list: obj = _traverse_iter(obj) elif isinstance(obj, tuple) and convert_list: obj = tuple(_traverse_iter(obj)) return obj def _traverse_dict(dic): for key in dic.keys(): if is_dict_like(dic[key]): _traverse_dict(dic[key]) else: dic[key] = _convert(dic[key]) def _traverse_iter(iter): new_iter = [] for key in iter: if is_dict_like(key): _traverse_dict(key) new_iter.append(key) else: new_iter.append(_convert(key)) return new_iter if is_dict_like(out_dict): _traverse_dict(out_dict) else: _convert(out_dict) return out_dict
python
def convert_type(d, intype, outtype, convert_list=True, in_place=True): """ convert all values of one type to another Parameters ---------- d : dict intype : type_class outtype : type_class convert_list : bool whether to convert instances inside lists and tuples in_place : bool if True, applies conversions to original dict, else returns copy Examples -------- >>> from pprint import pprint >>> d = {'a':'1','b':'2'} >>> pprint(convert_type(d,str,float)) {'a': 1.0, 'b': 2.0} >>> d = {'a':['1','2']} >>> pprint(convert_type(d,str,float)) {'a': [1.0, 2.0]} >>> d = {'a':[('1','2'),[3,4]]} >>> pprint(convert_type(d,str,float)) {'a': [(1.0, 2.0), [3, 4]]} """ if not in_place: out_dict = copy.deepcopy(d) else: out_dict = d def _convert(obj): if isinstance(obj, intype): try: obj = outtype(obj) except Exception: pass elif isinstance(obj, list) and convert_list: obj = _traverse_iter(obj) elif isinstance(obj, tuple) and convert_list: obj = tuple(_traverse_iter(obj)) return obj def _traverse_dict(dic): for key in dic.keys(): if is_dict_like(dic[key]): _traverse_dict(dic[key]) else: dic[key] = _convert(dic[key]) def _traverse_iter(iter): new_iter = [] for key in iter: if is_dict_like(key): _traverse_dict(key) new_iter.append(key) else: new_iter.append(_convert(key)) return new_iter if is_dict_like(out_dict): _traverse_dict(out_dict) else: _convert(out_dict) return out_dict
[ "def", "convert_type", "(", "d", ",", "intype", ",", "outtype", ",", "convert_list", "=", "True", ",", "in_place", "=", "True", ")", ":", "if", "not", "in_place", ":", "out_dict", "=", "copy", ".", "deepcopy", "(", "d", ")", "else", ":", "out_dict", "=", "d", "def", "_convert", "(", "obj", ")", ":", "if", "isinstance", "(", "obj", ",", "intype", ")", ":", "try", ":", "obj", "=", "outtype", "(", "obj", ")", "except", "Exception", ":", "pass", "elif", "isinstance", "(", "obj", ",", "list", ")", "and", "convert_list", ":", "obj", "=", "_traverse_iter", "(", "obj", ")", "elif", "isinstance", "(", "obj", ",", "tuple", ")", "and", "convert_list", ":", "obj", "=", "tuple", "(", "_traverse_iter", "(", "obj", ")", ")", "return", "obj", "def", "_traverse_dict", "(", "dic", ")", ":", "for", "key", "in", "dic", ".", "keys", "(", ")", ":", "if", "is_dict_like", "(", "dic", "[", "key", "]", ")", ":", "_traverse_dict", "(", "dic", "[", "key", "]", ")", "else", ":", "dic", "[", "key", "]", "=", "_convert", "(", "dic", "[", "key", "]", ")", "def", "_traverse_iter", "(", "iter", ")", ":", "new_iter", "=", "[", "]", "for", "key", "in", "iter", ":", "if", "is_dict_like", "(", "key", ")", ":", "_traverse_dict", "(", "key", ")", "new_iter", ".", "append", "(", "key", ")", "else", ":", "new_iter", ".", "append", "(", "_convert", "(", "key", ")", ")", "return", "new_iter", "if", "is_dict_like", "(", "out_dict", ")", ":", "_traverse_dict", "(", "out_dict", ")", "else", ":", "_convert", "(", "out_dict", ")", "return", "out_dict" ]
convert all values of one type to another Parameters ---------- d : dict intype : type_class outtype : type_class convert_list : bool whether to convert instances inside lists and tuples in_place : bool if True, applies conversions to original dict, else returns copy Examples -------- >>> from pprint import pprint >>> d = {'a':'1','b':'2'} >>> pprint(convert_type(d,str,float)) {'a': 1.0, 'b': 2.0} >>> d = {'a':['1','2']} >>> pprint(convert_type(d,str,float)) {'a': [1.0, 2.0]} >>> d = {'a':[('1','2'),[3,4]]} >>> pprint(convert_type(d,str,float)) {'a': [(1.0, 2.0), [3, 4]]}
[ "convert", "all", "values", "of", "one", "type", "to", "another" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L84-L156
chrisjsewell/jsonextended
jsonextended/edict.py
pprint
def pprint(d, lvlindent=2, initindent=0, delim=':', max_width=80, depth=3, no_values=False, align_vals=True, print_func=None, keycolor=None, compress_lists=None, round_floats=None, _dlist=False): """ print a nested dict in readable format (- denotes an element in a list of dictionaries) Parameters ---------- d : object lvlindent : int additional indentation spaces for each level initindent : int initial indentation spaces delim : str delimiter between key and value nodes max_width : int max character width of each line depth : int or None maximum levels to display no_values : bool whether to print values align_vals : bool whether to align values for each level print_func : callable or None function to print strings (print if None) keycolor : None or str if str, color keys by this color, allowed: red, green, yellow, blue, magenta, cyan, white compress_lists : int compress lists/tuples longer than this, e.g. [1,1,1,1,1,1] -> [1, 1,..., 1] round_floats : int significant figures for floats Examples -------- >>> d = {'a':{'b':{'c':'Å','de':[4,5,[7,'x'],9]}}} >>> pprint(d,depth=None) a: b: c: Å de: [4, 5, [7, x], 9] >>> pprint(d,max_width=17,depth=None) a: b: c: Å de: [4, 5, [7, x], 9] >>> pprint(d,no_values=True,depth=None) a: b: c: de: >>> pprint(d,depth=2) a: b: {...} >>> pprint({'a':[1,1,1,1,1,1,1,1]}, ... compress_lists=3) a: [1, 1, 1, ...(x5)] """ if print_func is None: print_func = _default_print_func if not is_dict_like(d): d = {'': d} # print_func('{}'.format(d)) # return extra = lvlindent if _dlist else 0 def decode_to_str(obj): val_string = obj if isinstance(obj, list): if compress_lists is not None: if len(obj) > compress_lists: diff = str(len(obj) - compress_lists) obj = obj[:compress_lists] + ['...(x{})'.format(diff)] val_string = '[' + ', '.join([decode_to_str(o) for o in obj]) + ']' elif isinstance(obj, tuple): if compress_lists is not None: if len(obj) > compress_lists: diff = str(len(obj) - compress_lists) obj = list( obj[:compress_lists]) + ['...(x{})'.format(diff)] val_string = '(' + ', '.join([decode_to_str(o) for o in obj]) + ')' elif isinstance(obj, float) and round_floats is not None: round_str = '{0:.' + str(round_floats - 1) + 'E}' val_string = str(float(round_str.format(obj))) else: try: val_string = encode(obj, outtype='str') except (TypeError, UnicodeError): pass # convert unicode to str (so no u'' prefix in python 2) try: return str(val_string) except Exception: return unicode(val_string) if align_vals: key_width = 0 for key, val in d.items(): if not is_dict_like(val): key_str = decode_to_str(key) key_width = max(key_width, len(key_str)) max_depth = depth for i, key in enumerate(natural_sort(d.keys())): value = d[key] if _dlist and i == 0: key_str = '- ' + decode_to_str(key) elif _dlist: key_str = ' ' + decode_to_str(key) else: key_str = decode_to_str(key) if keycolor is not None: key_str = colortxt(key_str, keycolor) if align_vals: key_str = '{0: <{1}} '.format( key_str + delim, key_width + len(delim)) else: key_str = '{0}{1} '.format(key_str, delim) depth = max_depth if max_depth is not None else 2 if keycolor is not None: key_length = len(_strip_ansi(key_str)) else: key_length = len(key_str) key_line = ' ' * initindent + key_str new_line = ' ' * initindent + ' ' * key_length if depth <= 0: continue if is_dict_like(value): if depth <= 1: print_func(' ' * initindent + key_str + '{...}') else: print_func(' ' * initindent + key_str) pprint(value, lvlindent, initindent + lvlindent + extra, delim, max_width, depth=max_depth - 1 if max_depth is not None else None, no_values=no_values, align_vals=align_vals, print_func=print_func, keycolor=keycolor, compress_lists=compress_lists, round_floats=round_floats) continue if isinstance(value, list): if all([is_dict_like(o) for o in value]) and value: if depth <= 1: print_func(key_line + '[...]') continue print_func(key_line) for obj in value: pprint( obj, lvlindent, initindent + lvlindent + extra, delim, max_width, depth=max_depth - 1 if max_depth is not None else None, no_values=no_values, align_vals=align_vals, print_func=print_func, keycolor=keycolor, compress_lists=compress_lists, round_floats=round_floats, _dlist=True) continue val_string_all = decode_to_str(value) if not no_values else '' for i, val_string in enumerate(val_string_all.split('\n')): if max_width is not None: if len(key_line) + 1 > max_width: raise Exception( 'cannot fit keys and data within set max_width') # divide into chuncks and join by same indentation val_indent = ' ' * (initindent + key_length) n = max_width - len(val_indent) val_string = val_indent.join( [s + '\n' for s in textwrap.wrap(val_string, n)])[:-1] if i == 0: print_func(key_line + val_string) else: print_func(new_line + val_string)
python
def pprint(d, lvlindent=2, initindent=0, delim=':', max_width=80, depth=3, no_values=False, align_vals=True, print_func=None, keycolor=None, compress_lists=None, round_floats=None, _dlist=False): """ print a nested dict in readable format (- denotes an element in a list of dictionaries) Parameters ---------- d : object lvlindent : int additional indentation spaces for each level initindent : int initial indentation spaces delim : str delimiter between key and value nodes max_width : int max character width of each line depth : int or None maximum levels to display no_values : bool whether to print values align_vals : bool whether to align values for each level print_func : callable or None function to print strings (print if None) keycolor : None or str if str, color keys by this color, allowed: red, green, yellow, blue, magenta, cyan, white compress_lists : int compress lists/tuples longer than this, e.g. [1,1,1,1,1,1] -> [1, 1,..., 1] round_floats : int significant figures for floats Examples -------- >>> d = {'a':{'b':{'c':'Å','de':[4,5,[7,'x'],9]}}} >>> pprint(d,depth=None) a: b: c: Å de: [4, 5, [7, x], 9] >>> pprint(d,max_width=17,depth=None) a: b: c: Å de: [4, 5, [7, x], 9] >>> pprint(d,no_values=True,depth=None) a: b: c: de: >>> pprint(d,depth=2) a: b: {...} >>> pprint({'a':[1,1,1,1,1,1,1,1]}, ... compress_lists=3) a: [1, 1, 1, ...(x5)] """ if print_func is None: print_func = _default_print_func if not is_dict_like(d): d = {'': d} # print_func('{}'.format(d)) # return extra = lvlindent if _dlist else 0 def decode_to_str(obj): val_string = obj if isinstance(obj, list): if compress_lists is not None: if len(obj) > compress_lists: diff = str(len(obj) - compress_lists) obj = obj[:compress_lists] + ['...(x{})'.format(diff)] val_string = '[' + ', '.join([decode_to_str(o) for o in obj]) + ']' elif isinstance(obj, tuple): if compress_lists is not None: if len(obj) > compress_lists: diff = str(len(obj) - compress_lists) obj = list( obj[:compress_lists]) + ['...(x{})'.format(diff)] val_string = '(' + ', '.join([decode_to_str(o) for o in obj]) + ')' elif isinstance(obj, float) and round_floats is not None: round_str = '{0:.' + str(round_floats - 1) + 'E}' val_string = str(float(round_str.format(obj))) else: try: val_string = encode(obj, outtype='str') except (TypeError, UnicodeError): pass # convert unicode to str (so no u'' prefix in python 2) try: return str(val_string) except Exception: return unicode(val_string) if align_vals: key_width = 0 for key, val in d.items(): if not is_dict_like(val): key_str = decode_to_str(key) key_width = max(key_width, len(key_str)) max_depth = depth for i, key in enumerate(natural_sort(d.keys())): value = d[key] if _dlist and i == 0: key_str = '- ' + decode_to_str(key) elif _dlist: key_str = ' ' + decode_to_str(key) else: key_str = decode_to_str(key) if keycolor is not None: key_str = colortxt(key_str, keycolor) if align_vals: key_str = '{0: <{1}} '.format( key_str + delim, key_width + len(delim)) else: key_str = '{0}{1} '.format(key_str, delim) depth = max_depth if max_depth is not None else 2 if keycolor is not None: key_length = len(_strip_ansi(key_str)) else: key_length = len(key_str) key_line = ' ' * initindent + key_str new_line = ' ' * initindent + ' ' * key_length if depth <= 0: continue if is_dict_like(value): if depth <= 1: print_func(' ' * initindent + key_str + '{...}') else: print_func(' ' * initindent + key_str) pprint(value, lvlindent, initindent + lvlindent + extra, delim, max_width, depth=max_depth - 1 if max_depth is not None else None, no_values=no_values, align_vals=align_vals, print_func=print_func, keycolor=keycolor, compress_lists=compress_lists, round_floats=round_floats) continue if isinstance(value, list): if all([is_dict_like(o) for o in value]) and value: if depth <= 1: print_func(key_line + '[...]') continue print_func(key_line) for obj in value: pprint( obj, lvlindent, initindent + lvlindent + extra, delim, max_width, depth=max_depth - 1 if max_depth is not None else None, no_values=no_values, align_vals=align_vals, print_func=print_func, keycolor=keycolor, compress_lists=compress_lists, round_floats=round_floats, _dlist=True) continue val_string_all = decode_to_str(value) if not no_values else '' for i, val_string in enumerate(val_string_all.split('\n')): if max_width is not None: if len(key_line) + 1 > max_width: raise Exception( 'cannot fit keys and data within set max_width') # divide into chuncks and join by same indentation val_indent = ' ' * (initindent + key_length) n = max_width - len(val_indent) val_string = val_indent.join( [s + '\n' for s in textwrap.wrap(val_string, n)])[:-1] if i == 0: print_func(key_line + val_string) else: print_func(new_line + val_string)
[ "def", "pprint", "(", "d", ",", "lvlindent", "=", "2", ",", "initindent", "=", "0", ",", "delim", "=", "':'", ",", "max_width", "=", "80", ",", "depth", "=", "3", ",", "no_values", "=", "False", ",", "align_vals", "=", "True", ",", "print_func", "=", "None", ",", "keycolor", "=", "None", ",", "compress_lists", "=", "None", ",", "round_floats", "=", "None", ",", "_dlist", "=", "False", ")", ":", "if", "print_func", "is", "None", ":", "print_func", "=", "_default_print_func", "if", "not", "is_dict_like", "(", "d", ")", ":", "d", "=", "{", "''", ":", "d", "}", "# print_func('{}'.format(d))", "# return", "extra", "=", "lvlindent", "if", "_dlist", "else", "0", "def", "decode_to_str", "(", "obj", ")", ":", "val_string", "=", "obj", "if", "isinstance", "(", "obj", ",", "list", ")", ":", "if", "compress_lists", "is", "not", "None", ":", "if", "len", "(", "obj", ")", ">", "compress_lists", ":", "diff", "=", "str", "(", "len", "(", "obj", ")", "-", "compress_lists", ")", "obj", "=", "obj", "[", ":", "compress_lists", "]", "+", "[", "'...(x{})'", ".", "format", "(", "diff", ")", "]", "val_string", "=", "'['", "+", "', '", ".", "join", "(", "[", "decode_to_str", "(", "o", ")", "for", "o", "in", "obj", "]", ")", "+", "']'", "elif", "isinstance", "(", "obj", ",", "tuple", ")", ":", "if", "compress_lists", "is", "not", "None", ":", "if", "len", "(", "obj", ")", ">", "compress_lists", ":", "diff", "=", "str", "(", "len", "(", "obj", ")", "-", "compress_lists", ")", "obj", "=", "list", "(", "obj", "[", ":", "compress_lists", "]", ")", "+", "[", "'...(x{})'", ".", "format", "(", "diff", ")", "]", "val_string", "=", "'('", "+", "', '", ".", "join", "(", "[", "decode_to_str", "(", "o", ")", "for", "o", "in", "obj", "]", ")", "+", "')'", "elif", "isinstance", "(", "obj", ",", "float", ")", "and", "round_floats", "is", "not", "None", ":", "round_str", "=", "'{0:.'", "+", "str", "(", "round_floats", "-", "1", ")", "+", "'E}'", "val_string", "=", "str", "(", "float", "(", "round_str", ".", "format", "(", "obj", ")", ")", ")", "else", ":", "try", ":", "val_string", "=", "encode", "(", "obj", ",", "outtype", "=", "'str'", ")", "except", "(", "TypeError", ",", "UnicodeError", ")", ":", "pass", "# convert unicode to str (so no u'' prefix in python 2)", "try", ":", "return", "str", "(", "val_string", ")", "except", "Exception", ":", "return", "unicode", "(", "val_string", ")", "if", "align_vals", ":", "key_width", "=", "0", "for", "key", ",", "val", "in", "d", ".", "items", "(", ")", ":", "if", "not", "is_dict_like", "(", "val", ")", ":", "key_str", "=", "decode_to_str", "(", "key", ")", "key_width", "=", "max", "(", "key_width", ",", "len", "(", "key_str", ")", ")", "max_depth", "=", "depth", "for", "i", ",", "key", "in", "enumerate", "(", "natural_sort", "(", "d", ".", "keys", "(", ")", ")", ")", ":", "value", "=", "d", "[", "key", "]", "if", "_dlist", "and", "i", "==", "0", ":", "key_str", "=", "'- '", "+", "decode_to_str", "(", "key", ")", "elif", "_dlist", ":", "key_str", "=", "' '", "+", "decode_to_str", "(", "key", ")", "else", ":", "key_str", "=", "decode_to_str", "(", "key", ")", "if", "keycolor", "is", "not", "None", ":", "key_str", "=", "colortxt", "(", "key_str", ",", "keycolor", ")", "if", "align_vals", ":", "key_str", "=", "'{0: <{1}} '", ".", "format", "(", "key_str", "+", "delim", ",", "key_width", "+", "len", "(", "delim", ")", ")", "else", ":", "key_str", "=", "'{0}{1} '", ".", "format", "(", "key_str", ",", "delim", ")", "depth", "=", "max_depth", "if", "max_depth", "is", "not", "None", "else", "2", "if", "keycolor", "is", "not", "None", ":", "key_length", "=", "len", "(", "_strip_ansi", "(", "key_str", ")", ")", "else", ":", "key_length", "=", "len", "(", "key_str", ")", "key_line", "=", "' '", "*", "initindent", "+", "key_str", "new_line", "=", "' '", "*", "initindent", "+", "' '", "*", "key_length", "if", "depth", "<=", "0", ":", "continue", "if", "is_dict_like", "(", "value", ")", ":", "if", "depth", "<=", "1", ":", "print_func", "(", "' '", "*", "initindent", "+", "key_str", "+", "'{...}'", ")", "else", ":", "print_func", "(", "' '", "*", "initindent", "+", "key_str", ")", "pprint", "(", "value", ",", "lvlindent", ",", "initindent", "+", "lvlindent", "+", "extra", ",", "delim", ",", "max_width", ",", "depth", "=", "max_depth", "-", "1", "if", "max_depth", "is", "not", "None", "else", "None", ",", "no_values", "=", "no_values", ",", "align_vals", "=", "align_vals", ",", "print_func", "=", "print_func", ",", "keycolor", "=", "keycolor", ",", "compress_lists", "=", "compress_lists", ",", "round_floats", "=", "round_floats", ")", "continue", "if", "isinstance", "(", "value", ",", "list", ")", ":", "if", "all", "(", "[", "is_dict_like", "(", "o", ")", "for", "o", "in", "value", "]", ")", "and", "value", ":", "if", "depth", "<=", "1", ":", "print_func", "(", "key_line", "+", "'[...]'", ")", "continue", "print_func", "(", "key_line", ")", "for", "obj", "in", "value", ":", "pprint", "(", "obj", ",", "lvlindent", ",", "initindent", "+", "lvlindent", "+", "extra", ",", "delim", ",", "max_width", ",", "depth", "=", "max_depth", "-", "1", "if", "max_depth", "is", "not", "None", "else", "None", ",", "no_values", "=", "no_values", ",", "align_vals", "=", "align_vals", ",", "print_func", "=", "print_func", ",", "keycolor", "=", "keycolor", ",", "compress_lists", "=", "compress_lists", ",", "round_floats", "=", "round_floats", ",", "_dlist", "=", "True", ")", "continue", "val_string_all", "=", "decode_to_str", "(", "value", ")", "if", "not", "no_values", "else", "''", "for", "i", ",", "val_string", "in", "enumerate", "(", "val_string_all", ".", "split", "(", "'\\n'", ")", ")", ":", "if", "max_width", "is", "not", "None", ":", "if", "len", "(", "key_line", ")", "+", "1", ">", "max_width", ":", "raise", "Exception", "(", "'cannot fit keys and data within set max_width'", ")", "# divide into chuncks and join by same indentation", "val_indent", "=", "' '", "*", "(", "initindent", "+", "key_length", ")", "n", "=", "max_width", "-", "len", "(", "val_indent", ")", "val_string", "=", "val_indent", ".", "join", "(", "[", "s", "+", "'\\n'", "for", "s", "in", "textwrap", ".", "wrap", "(", "val_string", ",", "n", ")", "]", ")", "[", ":", "-", "1", "]", "if", "i", "==", "0", ":", "print_func", "(", "key_line", "+", "val_string", ")", "else", ":", "print_func", "(", "new_line", "+", "val_string", ")" ]
print a nested dict in readable format (- denotes an element in a list of dictionaries) Parameters ---------- d : object lvlindent : int additional indentation spaces for each level initindent : int initial indentation spaces delim : str delimiter between key and value nodes max_width : int max character width of each line depth : int or None maximum levels to display no_values : bool whether to print values align_vals : bool whether to align values for each level print_func : callable or None function to print strings (print if None) keycolor : None or str if str, color keys by this color, allowed: red, green, yellow, blue, magenta, cyan, white compress_lists : int compress lists/tuples longer than this, e.g. [1,1,1,1,1,1] -> [1, 1,..., 1] round_floats : int significant figures for floats Examples -------- >>> d = {'a':{'b':{'c':'Å','de':[4,5,[7,'x'],9]}}} >>> pprint(d,depth=None) a: b: c: Å de: [4, 5, [7, x], 9] >>> pprint(d,max_width=17,depth=None) a: b: c: Å de: [4, 5, [7, x], 9] >>> pprint(d,no_values=True,depth=None) a: b: c: de: >>> pprint(d,depth=2) a: b: {...} >>> pprint({'a':[1,1,1,1,1,1,1,1]}, ... compress_lists=3) a: [1, 1, 1, ...(x5)]
[ "print", "a", "nested", "dict", "in", "readable", "format", "(", "-", "denotes", "an", "element", "in", "a", "list", "of", "dictionaries", ")" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L178-L364
chrisjsewell/jsonextended
jsonextended/edict.py
extract
def extract(d, path=None): """ extract section of dictionary Parameters ---------- d : dict path : list[str] keys to section Returns ------- new_dict : dict original, without extracted section extract_dict : dict extracted section Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"},2:{"b":"B",'c':'C'}} >>> pprint(extract(d,[2,'b'])) ({1: {'a': 'A'}, 2: {'c': 'C'}}, {'b': 'B'}) """ path = [] if path is None else path d_new = copy.deepcopy(d) d_sub = d_new for key in path[:-1]: d_sub = d_sub[key] key = path[-1] d_extract = {key: d_sub[key]} d_sub.pop(key) return d_new, d_extract
python
def extract(d, path=None): """ extract section of dictionary Parameters ---------- d : dict path : list[str] keys to section Returns ------- new_dict : dict original, without extracted section extract_dict : dict extracted section Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"},2:{"b":"B",'c':'C'}} >>> pprint(extract(d,[2,'b'])) ({1: {'a': 'A'}, 2: {'c': 'C'}}, {'b': 'B'}) """ path = [] if path is None else path d_new = copy.deepcopy(d) d_sub = d_new for key in path[:-1]: d_sub = d_sub[key] key = path[-1] d_extract = {key: d_sub[key]} d_sub.pop(key) return d_new, d_extract
[ "def", "extract", "(", "d", ",", "path", "=", "None", ")", ":", "path", "=", "[", "]", "if", "path", "is", "None", "else", "path", "d_new", "=", "copy", ".", "deepcopy", "(", "d", ")", "d_sub", "=", "d_new", "for", "key", "in", "path", "[", ":", "-", "1", "]", ":", "d_sub", "=", "d_sub", "[", "key", "]", "key", "=", "path", "[", "-", "1", "]", "d_extract", "=", "{", "key", ":", "d_sub", "[", "key", "]", "}", "d_sub", ".", "pop", "(", "key", ")", "return", "d_new", ",", "d_extract" ]
extract section of dictionary Parameters ---------- d : dict path : list[str] keys to section Returns ------- new_dict : dict original, without extracted section extract_dict : dict extracted section Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"},2:{"b":"B",'c':'C'}} >>> pprint(extract(d,[2,'b'])) ({1: {'a': 'A'}, 2: {'c': 'C'}}, {'b': 'B'})
[ "extract", "section", "of", "dictionary" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L367-L403
chrisjsewell/jsonextended
jsonextended/edict.py
indexes
def indexes(dic, keys=None): """ index dictionary by multiple keys Parameters ---------- dic : dict keys : list Examples -------- >>> d = {1:{"a":"A"},2:{"b":"B"}} >>> indexes(d,[1,'a']) 'A' """ keys = [] if keys is None else keys assert hasattr(dic, 'keys') new = dic.copy() old_key = None for key in keys: if not hasattr(new, 'keys'): raise KeyError('No indexes after: {}'.format(old_key)) old_key = key new = new[key] return new
python
def indexes(dic, keys=None): """ index dictionary by multiple keys Parameters ---------- dic : dict keys : list Examples -------- >>> d = {1:{"a":"A"},2:{"b":"B"}} >>> indexes(d,[1,'a']) 'A' """ keys = [] if keys is None else keys assert hasattr(dic, 'keys') new = dic.copy() old_key = None for key in keys: if not hasattr(new, 'keys'): raise KeyError('No indexes after: {}'.format(old_key)) old_key = key new = new[key] return new
[ "def", "indexes", "(", "dic", ",", "keys", "=", "None", ")", ":", "keys", "=", "[", "]", "if", "keys", "is", "None", "else", "keys", "assert", "hasattr", "(", "dic", ",", "'keys'", ")", "new", "=", "dic", ".", "copy", "(", ")", "old_key", "=", "None", "for", "key", "in", "keys", ":", "if", "not", "hasattr", "(", "new", ",", "'keys'", ")", ":", "raise", "KeyError", "(", "'No indexes after: {}'", ".", "format", "(", "old_key", ")", ")", "old_key", "=", "key", "new", "=", "new", "[", "key", "]", "return", "new" ]
index dictionary by multiple keys Parameters ---------- dic : dict keys : list Examples -------- >>> d = {1:{"a":"A"},2:{"b":"B"}} >>> indexes(d,[1,'a']) 'A'
[ "index", "dictionary", "by", "multiple", "keys" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L406-L432
chrisjsewell/jsonextended
jsonextended/edict.py
flatten
def flatten(d, key_as_tuple=True, sep='.', list_of_dicts=None, all_iters=None): """ get nested dict as flat {key:val,...}, where key is tuple/string of all nested keys Parameters ---------- d : object key_as_tuple : bool whether keys are list of nested keys or delimited string of nested keys sep : str if key_as_tuple=False, delimiter for keys list_of_dicts: str or None if not None, flatten lists of dicts using this prefix all_iters: str or None if not None, flatten all lists and tuples using this prefix Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"}, 2:{"b":"B"}} >>> pprint(flatten(d)) {(1, 'a'): 'A', (2, 'b'): 'B'} >>> d = {1:{"a":"A"},2:{"b":"B"}} >>> pprint(flatten(d,key_as_tuple=False)) {'1.a': 'A', '2.b': 'B'} >>> d = [{'a':1},{'b':[1, 2]}] >>> pprint(flatten(d,list_of_dicts='__list__')) {('__list__0', 'a'): 1, ('__list__1', 'b'): [1, 2]} >>> d = [{'a':1},{'b':[1, 2]}] >>> pprint(flatten(d,all_iters='__iter__')) {('__iter__0', 'a'): 1, ('__iter__1', 'b', '__iter__0'): 1, ('__iter__1', 'b', '__iter__1'): 2} """ def expand(key, value): if is_dict_like(value): flatten_dict = flatten(value, key_as_tuple, sep, list_of_dicts, all_iters) if key_as_tuple: return [(key + k, v) for k, v in flatten_dict.items()] else: return [(str(key) + sep + k, v) for k, v in flatten_dict.items()] elif is_iter_non_string(value) and all_iters is not None: value = {'{0}{1}'.format(all_iters, i): v for i, v in enumerate(value)} flatten_dict = flatten(value, key_as_tuple, sep, list_of_dicts, all_iters) if key_as_tuple: return [(key + k, v) for k, v in flatten_dict.items()] else: return [(str(key) + sep + k, v) for k, v in flatten_dict.items()] elif is_list_of_dict_like(value) and list_of_dicts is not None: value = {'{0}{1}'.format(list_of_dicts, i): v for i, v in enumerate(value)} flatten_dict = flatten(value, key_as_tuple, sep, list_of_dicts, all_iters) if key_as_tuple: return [(key + k, v) for k, v in flatten_dict.items()] else: return [(str(key) + sep + k, v) for k, v in flatten_dict.items()] else: return [(key, value)] if is_iter_non_string(d) and all_iters is not None: d = {'{0}{1}'.format(all_iters, i): v for i, v in enumerate(d)} elif is_list_of_dict_like(d) and list_of_dicts is not None: d = {'{0}{1}'.format(list_of_dicts, i): v for i, v in enumerate(d)} elif not is_dict_like(d): raise TypeError('d is not dict like: {}'.format(d)) if key_as_tuple: items = [item for k, v in d.items() for item in expand((k,), v)] else: items = [item for k, v in d.items() for item in expand(k, v)] return dict(items)
python
def flatten(d, key_as_tuple=True, sep='.', list_of_dicts=None, all_iters=None): """ get nested dict as flat {key:val,...}, where key is tuple/string of all nested keys Parameters ---------- d : object key_as_tuple : bool whether keys are list of nested keys or delimited string of nested keys sep : str if key_as_tuple=False, delimiter for keys list_of_dicts: str or None if not None, flatten lists of dicts using this prefix all_iters: str or None if not None, flatten all lists and tuples using this prefix Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"}, 2:{"b":"B"}} >>> pprint(flatten(d)) {(1, 'a'): 'A', (2, 'b'): 'B'} >>> d = {1:{"a":"A"},2:{"b":"B"}} >>> pprint(flatten(d,key_as_tuple=False)) {'1.a': 'A', '2.b': 'B'} >>> d = [{'a':1},{'b':[1, 2]}] >>> pprint(flatten(d,list_of_dicts='__list__')) {('__list__0', 'a'): 1, ('__list__1', 'b'): [1, 2]} >>> d = [{'a':1},{'b':[1, 2]}] >>> pprint(flatten(d,all_iters='__iter__')) {('__iter__0', 'a'): 1, ('__iter__1', 'b', '__iter__0'): 1, ('__iter__1', 'b', '__iter__1'): 2} """ def expand(key, value): if is_dict_like(value): flatten_dict = flatten(value, key_as_tuple, sep, list_of_dicts, all_iters) if key_as_tuple: return [(key + k, v) for k, v in flatten_dict.items()] else: return [(str(key) + sep + k, v) for k, v in flatten_dict.items()] elif is_iter_non_string(value) and all_iters is not None: value = {'{0}{1}'.format(all_iters, i): v for i, v in enumerate(value)} flatten_dict = flatten(value, key_as_tuple, sep, list_of_dicts, all_iters) if key_as_tuple: return [(key + k, v) for k, v in flatten_dict.items()] else: return [(str(key) + sep + k, v) for k, v in flatten_dict.items()] elif is_list_of_dict_like(value) and list_of_dicts is not None: value = {'{0}{1}'.format(list_of_dicts, i): v for i, v in enumerate(value)} flatten_dict = flatten(value, key_as_tuple, sep, list_of_dicts, all_iters) if key_as_tuple: return [(key + k, v) for k, v in flatten_dict.items()] else: return [(str(key) + sep + k, v) for k, v in flatten_dict.items()] else: return [(key, value)] if is_iter_non_string(d) and all_iters is not None: d = {'{0}{1}'.format(all_iters, i): v for i, v in enumerate(d)} elif is_list_of_dict_like(d) and list_of_dicts is not None: d = {'{0}{1}'.format(list_of_dicts, i): v for i, v in enumerate(d)} elif not is_dict_like(d): raise TypeError('d is not dict like: {}'.format(d)) if key_as_tuple: items = [item for k, v in d.items() for item in expand((k,), v)] else: items = [item for k, v in d.items() for item in expand(k, v)] return dict(items)
[ "def", "flatten", "(", "d", ",", "key_as_tuple", "=", "True", ",", "sep", "=", "'.'", ",", "list_of_dicts", "=", "None", ",", "all_iters", "=", "None", ")", ":", "def", "expand", "(", "key", ",", "value", ")", ":", "if", "is_dict_like", "(", "value", ")", ":", "flatten_dict", "=", "flatten", "(", "value", ",", "key_as_tuple", ",", "sep", ",", "list_of_dicts", ",", "all_iters", ")", "if", "key_as_tuple", ":", "return", "[", "(", "key", "+", "k", ",", "v", ")", "for", "k", ",", "v", "in", "flatten_dict", ".", "items", "(", ")", "]", "else", ":", "return", "[", "(", "str", "(", "key", ")", "+", "sep", "+", "k", ",", "v", ")", "for", "k", ",", "v", "in", "flatten_dict", ".", "items", "(", ")", "]", "elif", "is_iter_non_string", "(", "value", ")", "and", "all_iters", "is", "not", "None", ":", "value", "=", "{", "'{0}{1}'", ".", "format", "(", "all_iters", ",", "i", ")", ":", "v", "for", "i", ",", "v", "in", "enumerate", "(", "value", ")", "}", "flatten_dict", "=", "flatten", "(", "value", ",", "key_as_tuple", ",", "sep", ",", "list_of_dicts", ",", "all_iters", ")", "if", "key_as_tuple", ":", "return", "[", "(", "key", "+", "k", ",", "v", ")", "for", "k", ",", "v", "in", "flatten_dict", ".", "items", "(", ")", "]", "else", ":", "return", "[", "(", "str", "(", "key", ")", "+", "sep", "+", "k", ",", "v", ")", "for", "k", ",", "v", "in", "flatten_dict", ".", "items", "(", ")", "]", "elif", "is_list_of_dict_like", "(", "value", ")", "and", "list_of_dicts", "is", "not", "None", ":", "value", "=", "{", "'{0}{1}'", ".", "format", "(", "list_of_dicts", ",", "i", ")", ":", "v", "for", "i", ",", "v", "in", "enumerate", "(", "value", ")", "}", "flatten_dict", "=", "flatten", "(", "value", ",", "key_as_tuple", ",", "sep", ",", "list_of_dicts", ",", "all_iters", ")", "if", "key_as_tuple", ":", "return", "[", "(", "key", "+", "k", ",", "v", ")", "for", "k", ",", "v", "in", "flatten_dict", ".", "items", "(", ")", "]", "else", ":", "return", "[", "(", "str", "(", "key", ")", "+", "sep", "+", "k", ",", "v", ")", "for", "k", ",", "v", "in", "flatten_dict", ".", "items", "(", ")", "]", "else", ":", "return", "[", "(", "key", ",", "value", ")", "]", "if", "is_iter_non_string", "(", "d", ")", "and", "all_iters", "is", "not", "None", ":", "d", "=", "{", "'{0}{1}'", ".", "format", "(", "all_iters", ",", "i", ")", ":", "v", "for", "i", ",", "v", "in", "enumerate", "(", "d", ")", "}", "elif", "is_list_of_dict_like", "(", "d", ")", "and", "list_of_dicts", "is", "not", "None", ":", "d", "=", "{", "'{0}{1}'", ".", "format", "(", "list_of_dicts", ",", "i", ")", ":", "v", "for", "i", ",", "v", "in", "enumerate", "(", "d", ")", "}", "elif", "not", "is_dict_like", "(", "d", ")", ":", "raise", "TypeError", "(", "'d is not dict like: {}'", ".", "format", "(", "d", ")", ")", "if", "key_as_tuple", ":", "items", "=", "[", "item", "for", "k", ",", "v", "in", "d", ".", "items", "(", ")", "for", "item", "in", "expand", "(", "(", "k", ",", ")", ",", "v", ")", "]", "else", ":", "items", "=", "[", "item", "for", "k", ",", "v", "in", "d", ".", "items", "(", ")", "for", "item", "in", "expand", "(", "k", ",", "v", ")", "]", "return", "dict", "(", "items", ")" ]
get nested dict as flat {key:val,...}, where key is tuple/string of all nested keys Parameters ---------- d : object key_as_tuple : bool whether keys are list of nested keys or delimited string of nested keys sep : str if key_as_tuple=False, delimiter for keys list_of_dicts: str or None if not None, flatten lists of dicts using this prefix all_iters: str or None if not None, flatten all lists and tuples using this prefix Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"}, 2:{"b":"B"}} >>> pprint(flatten(d)) {(1, 'a'): 'A', (2, 'b'): 'B'} >>> d = {1:{"a":"A"},2:{"b":"B"}} >>> pprint(flatten(d,key_as_tuple=False)) {'1.a': 'A', '2.b': 'B'} >>> d = [{'a':1},{'b':[1, 2]}] >>> pprint(flatten(d,list_of_dicts='__list__')) {('__list__0', 'a'): 1, ('__list__1', 'b'): [1, 2]} >>> d = [{'a':1},{'b':[1, 2]}] >>> pprint(flatten(d,all_iters='__iter__')) {('__iter__0', 'a'): 1, ('__iter__1', 'b', '__iter__0'): 1, ('__iter__1', 'b', '__iter__1'): 2}
[ "get", "nested", "dict", "as", "flat", "{", "key", ":", "val", "...", "}", "where", "key", "is", "tuple", "/", "string", "of", "all", "nested", "keys" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L435-L520
chrisjsewell/jsonextended
jsonextended/edict.py
unflatten
def unflatten(d, key_as_tuple=True, delim='.', list_of_dicts=None, deepcopy=True): r""" unflatten dictionary with keys as tuples or delimited strings Parameters ---------- d : dict key_as_tuple : bool if true, keys are tuples, else, keys are delimited strings delim : str if keys are strings, then split by delim list_of_dicts: str or None if key starts with this treat as a list Examples -------- >>> from pprint import pprint >>> d = {('a','b'):1,('a','c'):2} >>> pprint(unflatten(d)) {'a': {'b': 1, 'c': 2}} >>> d2 = {'a.b':1,'a.c':2} >>> pprint(unflatten(d2,key_as_tuple=False)) {'a': {'b': 1, 'c': 2}} >>> d3 = {('a','__list__1', 'a'): 1, ('a','__list__0', 'b'): 2} >>> pprint(unflatten(d3,list_of_dicts='__list__')) {'a': [{'b': 2}, {'a': 1}]} >>> unflatten({('a','b','c'):1,('a','b'):2}) Traceback (most recent call last): ... KeyError: "child conflict for path: ('a', 'b'); 2 and {'c': 1}" """ if not d: return d if deepcopy: try: d = copy.deepcopy(d) except Exception: warnings.warn( 'error in deepcopy, so using references to input dict') if key_as_tuple: result = d.pop(()) if () in d else {} else: result = d.pop('') if '' in d else {} for key, value in d.items(): if not isinstance(key, tuple) and key_as_tuple: raise ValueError( 'key not tuple and key_as_tuple set to True: {}'.format(key)) elif not isinstance(key, basestring) and not key_as_tuple: raise ValueError( 'key not string and key_as_tuple set to False: {}'.format(key)) elif isinstance(key, basestring) and not key_as_tuple: parts = key.split(delim) else: parts = key d = result for part in parts[:-1]: if part not in d: d[part] = {} d = d[part] if not is_dict_like(d): v1, v2 = sorted([str(d), str({parts[-1]: value})]) raise KeyError("child conflict for path: " "{0}; {1} and {2}".format(parts[:-1], v1, v2)) elif parts[-1] in d: try: value = merge([d[parts[-1]], value]) except Exception: v1, v2 = sorted([str(value), str(d[parts[-1]])]) raise KeyError("child conflict for path: " "{0}; {1} and {2}".format(parts, v1, v2)) d[parts[-1]] = value if list_of_dicts is not None: result = _recreate_lists(result, list_of_dicts) # if is_dict_like(result): # if all([str(k).startswith(list_of_dicts) for k in result.keys()]): # result = [result[k] for k in sorted(list(result.keys()), # key=lambda x: int(x.replace(list_of_dicts, '')))] return result
python
def unflatten(d, key_as_tuple=True, delim='.', list_of_dicts=None, deepcopy=True): r""" unflatten dictionary with keys as tuples or delimited strings Parameters ---------- d : dict key_as_tuple : bool if true, keys are tuples, else, keys are delimited strings delim : str if keys are strings, then split by delim list_of_dicts: str or None if key starts with this treat as a list Examples -------- >>> from pprint import pprint >>> d = {('a','b'):1,('a','c'):2} >>> pprint(unflatten(d)) {'a': {'b': 1, 'c': 2}} >>> d2 = {'a.b':1,'a.c':2} >>> pprint(unflatten(d2,key_as_tuple=False)) {'a': {'b': 1, 'c': 2}} >>> d3 = {('a','__list__1', 'a'): 1, ('a','__list__0', 'b'): 2} >>> pprint(unflatten(d3,list_of_dicts='__list__')) {'a': [{'b': 2}, {'a': 1}]} >>> unflatten({('a','b','c'):1,('a','b'):2}) Traceback (most recent call last): ... KeyError: "child conflict for path: ('a', 'b'); 2 and {'c': 1}" """ if not d: return d if deepcopy: try: d = copy.deepcopy(d) except Exception: warnings.warn( 'error in deepcopy, so using references to input dict') if key_as_tuple: result = d.pop(()) if () in d else {} else: result = d.pop('') if '' in d else {} for key, value in d.items(): if not isinstance(key, tuple) and key_as_tuple: raise ValueError( 'key not tuple and key_as_tuple set to True: {}'.format(key)) elif not isinstance(key, basestring) and not key_as_tuple: raise ValueError( 'key not string and key_as_tuple set to False: {}'.format(key)) elif isinstance(key, basestring) and not key_as_tuple: parts = key.split(delim) else: parts = key d = result for part in parts[:-1]: if part not in d: d[part] = {} d = d[part] if not is_dict_like(d): v1, v2 = sorted([str(d), str({parts[-1]: value})]) raise KeyError("child conflict for path: " "{0}; {1} and {2}".format(parts[:-1], v1, v2)) elif parts[-1] in d: try: value = merge([d[parts[-1]], value]) except Exception: v1, v2 = sorted([str(value), str(d[parts[-1]])]) raise KeyError("child conflict for path: " "{0}; {1} and {2}".format(parts, v1, v2)) d[parts[-1]] = value if list_of_dicts is not None: result = _recreate_lists(result, list_of_dicts) # if is_dict_like(result): # if all([str(k).startswith(list_of_dicts) for k in result.keys()]): # result = [result[k] for k in sorted(list(result.keys()), # key=lambda x: int(x.replace(list_of_dicts, '')))] return result
[ "def", "unflatten", "(", "d", ",", "key_as_tuple", "=", "True", ",", "delim", "=", "'.'", ",", "list_of_dicts", "=", "None", ",", "deepcopy", "=", "True", ")", ":", "if", "not", "d", ":", "return", "d", "if", "deepcopy", ":", "try", ":", "d", "=", "copy", ".", "deepcopy", "(", "d", ")", "except", "Exception", ":", "warnings", ".", "warn", "(", "'error in deepcopy, so using references to input dict'", ")", "if", "key_as_tuple", ":", "result", "=", "d", ".", "pop", "(", "(", ")", ")", "if", "(", ")", "in", "d", "else", "{", "}", "else", ":", "result", "=", "d", ".", "pop", "(", "''", ")", "if", "''", "in", "d", "else", "{", "}", "for", "key", ",", "value", "in", "d", ".", "items", "(", ")", ":", "if", "not", "isinstance", "(", "key", ",", "tuple", ")", "and", "key_as_tuple", ":", "raise", "ValueError", "(", "'key not tuple and key_as_tuple set to True: {}'", ".", "format", "(", "key", ")", ")", "elif", "not", "isinstance", "(", "key", ",", "basestring", ")", "and", "not", "key_as_tuple", ":", "raise", "ValueError", "(", "'key not string and key_as_tuple set to False: {}'", ".", "format", "(", "key", ")", ")", "elif", "isinstance", "(", "key", ",", "basestring", ")", "and", "not", "key_as_tuple", ":", "parts", "=", "key", ".", "split", "(", "delim", ")", "else", ":", "parts", "=", "key", "d", "=", "result", "for", "part", "in", "parts", "[", ":", "-", "1", "]", ":", "if", "part", "not", "in", "d", ":", "d", "[", "part", "]", "=", "{", "}", "d", "=", "d", "[", "part", "]", "if", "not", "is_dict_like", "(", "d", ")", ":", "v1", ",", "v2", "=", "sorted", "(", "[", "str", "(", "d", ")", ",", "str", "(", "{", "parts", "[", "-", "1", "]", ":", "value", "}", ")", "]", ")", "raise", "KeyError", "(", "\"child conflict for path: \"", "\"{0}; {1} and {2}\"", ".", "format", "(", "parts", "[", ":", "-", "1", "]", ",", "v1", ",", "v2", ")", ")", "elif", "parts", "[", "-", "1", "]", "in", "d", ":", "try", ":", "value", "=", "merge", "(", "[", "d", "[", "parts", "[", "-", "1", "]", "]", ",", "value", "]", ")", "except", "Exception", ":", "v1", ",", "v2", "=", "sorted", "(", "[", "str", "(", "value", ")", ",", "str", "(", "d", "[", "parts", "[", "-", "1", "]", "]", ")", "]", ")", "raise", "KeyError", "(", "\"child conflict for path: \"", "\"{0}; {1} and {2}\"", ".", "format", "(", "parts", ",", "v1", ",", "v2", ")", ")", "d", "[", "parts", "[", "-", "1", "]", "]", "=", "value", "if", "list_of_dicts", "is", "not", "None", ":", "result", "=", "_recreate_lists", "(", "result", ",", "list_of_dicts", ")", "# if is_dict_like(result):", "# if all([str(k).startswith(list_of_dicts) for k in result.keys()]):", "# result = [result[k] for k in sorted(list(result.keys()),", "# key=lambda x: int(x.replace(list_of_dicts, '')))]", "return", "result" ]
r""" unflatten dictionary with keys as tuples or delimited strings Parameters ---------- d : dict key_as_tuple : bool if true, keys are tuples, else, keys are delimited strings delim : str if keys are strings, then split by delim list_of_dicts: str or None if key starts with this treat as a list Examples -------- >>> from pprint import pprint >>> d = {('a','b'):1,('a','c'):2} >>> pprint(unflatten(d)) {'a': {'b': 1, 'c': 2}} >>> d2 = {'a.b':1,'a.c':2} >>> pprint(unflatten(d2,key_as_tuple=False)) {'a': {'b': 1, 'c': 2}} >>> d3 = {('a','__list__1', 'a'): 1, ('a','__list__0', 'b'): 2} >>> pprint(unflatten(d3,list_of_dicts='__list__')) {'a': [{'b': 2}, {'a': 1}]} >>> unflatten({('a','b','c'):1,('a','b'):2}) Traceback (most recent call last): ... KeyError: "child conflict for path: ('a', 'b'); 2 and {'c': 1}"
[ "r", "unflatten", "dictionary", "with", "keys", "as", "tuples", "or", "delimited", "strings" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L543-L634
chrisjsewell/jsonextended
jsonextended/edict.py
_single_merge
def _single_merge(a, b, error_path=None, overwrite=False, append=False, list_of_dicts=False): """merges b into a """ if error_path is None: error_path = [] if list_of_dicts and is_list_of_dict_like(a) and is_list_of_dict_like(b): if len(a) != len(b): raise ValueError( 'list of dicts are of different lengths at ' '"{0}": old: {1}, new: {2}'.format('.'.join(error_path), a, b)) return [_single_merge(a_item, b_item, error_path + ["iter_{}".format(i)], overwrite, append, list_of_dicts) for i, (a_item, b_item) in enumerate(zip(a, b))] for key in b: if key in a: if is_dict_like(a[key]) and is_dict_like(b[key]): _single_merge(a[key], b[key], error_path + [str(key)], overwrite, append, list_of_dicts) elif (isinstance(a[key], list) and isinstance(b[key], list) and append): a[key] += b[key] elif (list_of_dicts and is_list_of_dict_like(a[key]) and is_list_of_dict_like(b[key])): if len(a[key]) != len(b[key]): raise ValueError( 'list of dicts are of different lengths at ' '"{0}": old: {1}, new: {2}'.format( '.'.join(error_path + [str(key)]), a[key], b[key])) for i, (a_item, b_item) in enumerate(zip(a[key], b[key])): _single_merge(a_item, b_item, error_path + [str(key), "iter_{}".format(i)], overwrite, append, list_of_dicts) elif a[key] == b[key]: pass # same leaf value elif overwrite: a[key] = b[key] else: raise ValueError( 'different data already exists at ' '"{0}": old: {1}, new: {2}'.format( '.'.join(error_path + [str(key)]), a[key], b[key])) else: a[key] = b[key] return a
python
def _single_merge(a, b, error_path=None, overwrite=False, append=False, list_of_dicts=False): """merges b into a """ if error_path is None: error_path = [] if list_of_dicts and is_list_of_dict_like(a) and is_list_of_dict_like(b): if len(a) != len(b): raise ValueError( 'list of dicts are of different lengths at ' '"{0}": old: {1}, new: {2}'.format('.'.join(error_path), a, b)) return [_single_merge(a_item, b_item, error_path + ["iter_{}".format(i)], overwrite, append, list_of_dicts) for i, (a_item, b_item) in enumerate(zip(a, b))] for key in b: if key in a: if is_dict_like(a[key]) and is_dict_like(b[key]): _single_merge(a[key], b[key], error_path + [str(key)], overwrite, append, list_of_dicts) elif (isinstance(a[key], list) and isinstance(b[key], list) and append): a[key] += b[key] elif (list_of_dicts and is_list_of_dict_like(a[key]) and is_list_of_dict_like(b[key])): if len(a[key]) != len(b[key]): raise ValueError( 'list of dicts are of different lengths at ' '"{0}": old: {1}, new: {2}'.format( '.'.join(error_path + [str(key)]), a[key], b[key])) for i, (a_item, b_item) in enumerate(zip(a[key], b[key])): _single_merge(a_item, b_item, error_path + [str(key), "iter_{}".format(i)], overwrite, append, list_of_dicts) elif a[key] == b[key]: pass # same leaf value elif overwrite: a[key] = b[key] else: raise ValueError( 'different data already exists at ' '"{0}": old: {1}, new: {2}'.format( '.'.join(error_path + [str(key)]), a[key], b[key])) else: a[key] = b[key] return a
[ "def", "_single_merge", "(", "a", ",", "b", ",", "error_path", "=", "None", ",", "overwrite", "=", "False", ",", "append", "=", "False", ",", "list_of_dicts", "=", "False", ")", ":", "if", "error_path", "is", "None", ":", "error_path", "=", "[", "]", "if", "list_of_dicts", "and", "is_list_of_dict_like", "(", "a", ")", "and", "is_list_of_dict_like", "(", "b", ")", ":", "if", "len", "(", "a", ")", "!=", "len", "(", "b", ")", ":", "raise", "ValueError", "(", "'list of dicts are of different lengths at '", "'\"{0}\": old: {1}, new: {2}'", ".", "format", "(", "'.'", ".", "join", "(", "error_path", ")", ",", "a", ",", "b", ")", ")", "return", "[", "_single_merge", "(", "a_item", ",", "b_item", ",", "error_path", "+", "[", "\"iter_{}\"", ".", "format", "(", "i", ")", "]", ",", "overwrite", ",", "append", ",", "list_of_dicts", ")", "for", "i", ",", "(", "a_item", ",", "b_item", ")", "in", "enumerate", "(", "zip", "(", "a", ",", "b", ")", ")", "]", "for", "key", "in", "b", ":", "if", "key", "in", "a", ":", "if", "is_dict_like", "(", "a", "[", "key", "]", ")", "and", "is_dict_like", "(", "b", "[", "key", "]", ")", ":", "_single_merge", "(", "a", "[", "key", "]", ",", "b", "[", "key", "]", ",", "error_path", "+", "[", "str", "(", "key", ")", "]", ",", "overwrite", ",", "append", ",", "list_of_dicts", ")", "elif", "(", "isinstance", "(", "a", "[", "key", "]", ",", "list", ")", "and", "isinstance", "(", "b", "[", "key", "]", ",", "list", ")", "and", "append", ")", ":", "a", "[", "key", "]", "+=", "b", "[", "key", "]", "elif", "(", "list_of_dicts", "and", "is_list_of_dict_like", "(", "a", "[", "key", "]", ")", "and", "is_list_of_dict_like", "(", "b", "[", "key", "]", ")", ")", ":", "if", "len", "(", "a", "[", "key", "]", ")", "!=", "len", "(", "b", "[", "key", "]", ")", ":", "raise", "ValueError", "(", "'list of dicts are of different lengths at '", "'\"{0}\": old: {1}, new: {2}'", ".", "format", "(", "'.'", ".", "join", "(", "error_path", "+", "[", "str", "(", "key", ")", "]", ")", ",", "a", "[", "key", "]", ",", "b", "[", "key", "]", ")", ")", "for", "i", ",", "(", "a_item", ",", "b_item", ")", "in", "enumerate", "(", "zip", "(", "a", "[", "key", "]", ",", "b", "[", "key", "]", ")", ")", ":", "_single_merge", "(", "a_item", ",", "b_item", ",", "error_path", "+", "[", "str", "(", "key", ")", ",", "\"iter_{}\"", ".", "format", "(", "i", ")", "]", ",", "overwrite", ",", "append", ",", "list_of_dicts", ")", "elif", "a", "[", "key", "]", "==", "b", "[", "key", "]", ":", "pass", "# same leaf value", "elif", "overwrite", ":", "a", "[", "key", "]", "=", "b", "[", "key", "]", "else", ":", "raise", "ValueError", "(", "'different data already exists at '", "'\"{0}\": old: {1}, new: {2}'", ".", "format", "(", "'.'", ".", "join", "(", "error_path", "+", "[", "str", "(", "key", ")", "]", ")", ",", "a", "[", "key", "]", ",", "b", "[", "key", "]", ")", ")", "else", ":", "a", "[", "key", "]", "=", "b", "[", "key", "]", "return", "a" ]
merges b into a
[ "merges", "b", "into", "a" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L637-L685
chrisjsewell/jsonextended
jsonextended/edict.py
merge
def merge(dicts, overwrite=False, append=False, list_of_dicts=False): """ merge dicts, starting with dicts[1] into dicts[0] Parameters ---------- dicts : list[dict] list of dictionaries overwrite : bool if true allow overwriting of current data append : bool if true and items are both lists, then add them list_of_dicts: bool treat list of dicts as additional branches Examples -------- >>> from pprint import pprint >>> d1 = {1:{"a":"A"},2:{"b":"B"}} >>> d2 = {1:{"a":"A"},2:{"c":"C"}} >>> pprint(merge([d1,d2])) {1: {'a': 'A'}, 2: {'b': 'B', 'c': 'C'}} >>> d1 = {1:{"a":["A"]}} >>> d2 = {1:{"a":["D"]}} >>> pprint(merge([d1,d2],append=True)) {1: {'a': ['A', 'D']}} >>> d1 = {1:{"a":"A"},2:{"b":"B"}} >>> d2 = {1:{"a":"X"},2:{"c":"C"}} >>> merge([d1,d2],overwrite=False) Traceback (most recent call last): ... ValueError: different data already exists at "1.a": old: A, new: X >>> merge([{},{}],overwrite=False) {} >>> merge([{},{'a':1}],overwrite=False) {'a': 1} >>> pprint(merge([{},{'a':1},{'a':1},{'b':2}])) {'a': 1, 'b': 2} >>> pprint(merge([{'a':[{"b": 1}, {"c": 2}]}, {'a':[{"d": 3}]}])) Traceback (most recent call last): ... ValueError: different data already exists at "a": old: [{'b': 1}, {'c': 2}], new: [{'d': 3}] >>> pprint(merge([{'a':[{"b": 1}, {"c": 2}]}, {'a':[{"d": 3}]}], list_of_dicts=True)) Traceback (most recent call last): ... ValueError: list of dicts are of different lengths at "a": old: [{'b': 1}, {'c': 2}], new: [{'d': 3}] >>> pprint(merge([{'a':[{"b": 1}, {"c": 2}]}, {'a':[{"d": 3}, {"e": 4}]}], list_of_dicts=True)) {'a': [{'b': 1, 'd': 3}, {'c': 2, 'e': 4}]} """ # noqa: E501 outdict = copy.deepcopy(dicts[0]) def single_merge(a, b): return _single_merge(a, b, overwrite=overwrite, append=append, list_of_dicts=list_of_dicts) reduce(single_merge, [outdict] + dicts[1:]) return outdict
python
def merge(dicts, overwrite=False, append=False, list_of_dicts=False): """ merge dicts, starting with dicts[1] into dicts[0] Parameters ---------- dicts : list[dict] list of dictionaries overwrite : bool if true allow overwriting of current data append : bool if true and items are both lists, then add them list_of_dicts: bool treat list of dicts as additional branches Examples -------- >>> from pprint import pprint >>> d1 = {1:{"a":"A"},2:{"b":"B"}} >>> d2 = {1:{"a":"A"},2:{"c":"C"}} >>> pprint(merge([d1,d2])) {1: {'a': 'A'}, 2: {'b': 'B', 'c': 'C'}} >>> d1 = {1:{"a":["A"]}} >>> d2 = {1:{"a":["D"]}} >>> pprint(merge([d1,d2],append=True)) {1: {'a': ['A', 'D']}} >>> d1 = {1:{"a":"A"},2:{"b":"B"}} >>> d2 = {1:{"a":"X"},2:{"c":"C"}} >>> merge([d1,d2],overwrite=False) Traceback (most recent call last): ... ValueError: different data already exists at "1.a": old: A, new: X >>> merge([{},{}],overwrite=False) {} >>> merge([{},{'a':1}],overwrite=False) {'a': 1} >>> pprint(merge([{},{'a':1},{'a':1},{'b':2}])) {'a': 1, 'b': 2} >>> pprint(merge([{'a':[{"b": 1}, {"c": 2}]}, {'a':[{"d": 3}]}])) Traceback (most recent call last): ... ValueError: different data already exists at "a": old: [{'b': 1}, {'c': 2}], new: [{'d': 3}] >>> pprint(merge([{'a':[{"b": 1}, {"c": 2}]}, {'a':[{"d": 3}]}], list_of_dicts=True)) Traceback (most recent call last): ... ValueError: list of dicts are of different lengths at "a": old: [{'b': 1}, {'c': 2}], new: [{'d': 3}] >>> pprint(merge([{'a':[{"b": 1}, {"c": 2}]}, {'a':[{"d": 3}, {"e": 4}]}], list_of_dicts=True)) {'a': [{'b': 1, 'd': 3}, {'c': 2, 'e': 4}]} """ # noqa: E501 outdict = copy.deepcopy(dicts[0]) def single_merge(a, b): return _single_merge(a, b, overwrite=overwrite, append=append, list_of_dicts=list_of_dicts) reduce(single_merge, [outdict] + dicts[1:]) return outdict
[ "def", "merge", "(", "dicts", ",", "overwrite", "=", "False", ",", "append", "=", "False", ",", "list_of_dicts", "=", "False", ")", ":", "# noqa: E501", "outdict", "=", "copy", ".", "deepcopy", "(", "dicts", "[", "0", "]", ")", "def", "single_merge", "(", "a", ",", "b", ")", ":", "return", "_single_merge", "(", "a", ",", "b", ",", "overwrite", "=", "overwrite", ",", "append", "=", "append", ",", "list_of_dicts", "=", "list_of_dicts", ")", "reduce", "(", "single_merge", ",", "[", "outdict", "]", "+", "dicts", "[", "1", ":", "]", ")", "return", "outdict" ]
merge dicts, starting with dicts[1] into dicts[0] Parameters ---------- dicts : list[dict] list of dictionaries overwrite : bool if true allow overwriting of current data append : bool if true and items are both lists, then add them list_of_dicts: bool treat list of dicts as additional branches Examples -------- >>> from pprint import pprint >>> d1 = {1:{"a":"A"},2:{"b":"B"}} >>> d2 = {1:{"a":"A"},2:{"c":"C"}} >>> pprint(merge([d1,d2])) {1: {'a': 'A'}, 2: {'b': 'B', 'c': 'C'}} >>> d1 = {1:{"a":["A"]}} >>> d2 = {1:{"a":["D"]}} >>> pprint(merge([d1,d2],append=True)) {1: {'a': ['A', 'D']}} >>> d1 = {1:{"a":"A"},2:{"b":"B"}} >>> d2 = {1:{"a":"X"},2:{"c":"C"}} >>> merge([d1,d2],overwrite=False) Traceback (most recent call last): ... ValueError: different data already exists at "1.a": old: A, new: X >>> merge([{},{}],overwrite=False) {} >>> merge([{},{'a':1}],overwrite=False) {'a': 1} >>> pprint(merge([{},{'a':1},{'a':1},{'b':2}])) {'a': 1, 'b': 2} >>> pprint(merge([{'a':[{"b": 1}, {"c": 2}]}, {'a':[{"d": 3}]}])) Traceback (most recent call last): ... ValueError: different data already exists at "a": old: [{'b': 1}, {'c': 2}], new: [{'d': 3}] >>> pprint(merge([{'a':[{"b": 1}, {"c": 2}]}, {'a':[{"d": 3}]}], list_of_dicts=True)) Traceback (most recent call last): ... ValueError: list of dicts are of different lengths at "a": old: [{'b': 1}, {'c': 2}], new: [{'d': 3}] >>> pprint(merge([{'a':[{"b": 1}, {"c": 2}]}, {'a':[{"d": 3}, {"e": 4}]}], list_of_dicts=True)) {'a': [{'b': 1, 'd': 3}, {'c': 2, 'e': 4}]}
[ "merge", "dicts", "starting", "with", "dicts", "[", "1", "]", "into", "dicts", "[", "0", "]" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L688-L751
chrisjsewell/jsonextended
jsonextended/edict.py
flattennd
def flattennd(d, levels=0, key_as_tuple=True, delim='.', list_of_dicts=None): """ get nested dict as {key:dict,...}, where key is tuple/string of all-n levels of nested keys Parameters ---------- d : dict levels : int the number of levels to leave unflattened key_as_tuple : bool whether keys are list of nested keys or delimited string of nested keys delim : str if key_as_tuple=False, delimiter for keys list_of_dicts: str or None if not None, flatten lists of dicts using this prefix Examples -------- >>> from pprint import pprint >>> d = {1:{2:{3:{'b':'B','c':'C'},4:'D'}}} >>> pprint(flattennd(d,0)) {(1, 2, 3, 'b'): 'B', (1, 2, 3, 'c'): 'C', (1, 2, 4): 'D'} >>> pprint(flattennd(d,1)) {(1, 2): {4: 'D'}, (1, 2, 3): {'b': 'B', 'c': 'C'}} >>> pprint(flattennd(d,2)) {(1,): {2: {4: 'D'}}, (1, 2): {3: {'b': 'B', 'c': 'C'}}} >>> pprint(flattennd(d,3)) {(): {1: {2: {4: 'D'}}}, (1,): {2: {3: {'b': 'B', 'c': 'C'}}}} >>> pprint(flattennd(d,4)) {(): {1: {2: {3: {'b': 'B', 'c': 'C'}, 4: 'D'}}}} >>> pprint(flattennd(d,5)) {(): {1: {2: {3: {'b': 'B', 'c': 'C'}, 4: 'D'}}}} >>> pprint(flattennd(d,1,key_as_tuple=False,delim='.')) {'1.2': {4: 'D'}, '1.2.3': {'b': 'B', 'c': 'C'}} >>> test_dict = {"a":[{"b":[{"c":1, "d": 2}, {"e":3, "f": 4}]}, {"b":[{"c":5, "d": 6}, {"e":7, "f": 8}]}]} >>> pprint(flattennd(test_dict, list_of_dicts="__list__", levels=2)) {('a', '__list__0', 'b'): [{'c': 1, 'd': 2}, {'e': 3, 'f': 4}], ('a', '__list__1', 'b'): [{'c': 5, 'd': 6}, {'e': 7, 'f': 8}]} >>> pprint(flattennd(test_dict, list_of_dicts="__list__", levels=3)) {('a', '__list__0'): {'b': [{'c': 1, 'd': 2}, {'e': 3, 'f': 4}]}, ('a', '__list__1'): {'b': [{'c': 5, 'd': 6}, {'e': 7, 'f': 8}]}} """ # noqa: E501 if levels < 0: raise ValueError('unflattened levels must be greater than 0') new_d = {} flattened = flatten(d, True, delim, list_of_dicts=list_of_dicts) if levels == 0: return flattened for key, value in flattened.items(): if key_as_tuple: new_key = key[: - (levels)] else: new_key = delim.join([str(k) for k in key[:-(levels)]]) new_levels = key[-(levels):] # val_dict = {new_levels: value} # val_dict = unflatten(val_dict, True, delim) if new_key not in new_d: new_d[new_key] = {new_levels: value} else: if new_levels in new_d[new_key]: raise ValueError( "key clash for: {0}; {1}".format(new_key, new_levels)) new_d[new_key][new_levels] = value for nkey, nvalue in new_d.items(): new_d[nkey] = unflatten( nvalue, list_of_dicts=list_of_dicts, deepcopy=False) return new_d
python
def flattennd(d, levels=0, key_as_tuple=True, delim='.', list_of_dicts=None): """ get nested dict as {key:dict,...}, where key is tuple/string of all-n levels of nested keys Parameters ---------- d : dict levels : int the number of levels to leave unflattened key_as_tuple : bool whether keys are list of nested keys or delimited string of nested keys delim : str if key_as_tuple=False, delimiter for keys list_of_dicts: str or None if not None, flatten lists of dicts using this prefix Examples -------- >>> from pprint import pprint >>> d = {1:{2:{3:{'b':'B','c':'C'},4:'D'}}} >>> pprint(flattennd(d,0)) {(1, 2, 3, 'b'): 'B', (1, 2, 3, 'c'): 'C', (1, 2, 4): 'D'} >>> pprint(flattennd(d,1)) {(1, 2): {4: 'D'}, (1, 2, 3): {'b': 'B', 'c': 'C'}} >>> pprint(flattennd(d,2)) {(1,): {2: {4: 'D'}}, (1, 2): {3: {'b': 'B', 'c': 'C'}}} >>> pprint(flattennd(d,3)) {(): {1: {2: {4: 'D'}}}, (1,): {2: {3: {'b': 'B', 'c': 'C'}}}} >>> pprint(flattennd(d,4)) {(): {1: {2: {3: {'b': 'B', 'c': 'C'}, 4: 'D'}}}} >>> pprint(flattennd(d,5)) {(): {1: {2: {3: {'b': 'B', 'c': 'C'}, 4: 'D'}}}} >>> pprint(flattennd(d,1,key_as_tuple=False,delim='.')) {'1.2': {4: 'D'}, '1.2.3': {'b': 'B', 'c': 'C'}} >>> test_dict = {"a":[{"b":[{"c":1, "d": 2}, {"e":3, "f": 4}]}, {"b":[{"c":5, "d": 6}, {"e":7, "f": 8}]}]} >>> pprint(flattennd(test_dict, list_of_dicts="__list__", levels=2)) {('a', '__list__0', 'b'): [{'c': 1, 'd': 2}, {'e': 3, 'f': 4}], ('a', '__list__1', 'b'): [{'c': 5, 'd': 6}, {'e': 7, 'f': 8}]} >>> pprint(flattennd(test_dict, list_of_dicts="__list__", levels=3)) {('a', '__list__0'): {'b': [{'c': 1, 'd': 2}, {'e': 3, 'f': 4}]}, ('a', '__list__1'): {'b': [{'c': 5, 'd': 6}, {'e': 7, 'f': 8}]}} """ # noqa: E501 if levels < 0: raise ValueError('unflattened levels must be greater than 0') new_d = {} flattened = flatten(d, True, delim, list_of_dicts=list_of_dicts) if levels == 0: return flattened for key, value in flattened.items(): if key_as_tuple: new_key = key[: - (levels)] else: new_key = delim.join([str(k) for k in key[:-(levels)]]) new_levels = key[-(levels):] # val_dict = {new_levels: value} # val_dict = unflatten(val_dict, True, delim) if new_key not in new_d: new_d[new_key] = {new_levels: value} else: if new_levels in new_d[new_key]: raise ValueError( "key clash for: {0}; {1}".format(new_key, new_levels)) new_d[new_key][new_levels] = value for nkey, nvalue in new_d.items(): new_d[nkey] = unflatten( nvalue, list_of_dicts=list_of_dicts, deepcopy=False) return new_d
[ "def", "flattennd", "(", "d", ",", "levels", "=", "0", ",", "key_as_tuple", "=", "True", ",", "delim", "=", "'.'", ",", "list_of_dicts", "=", "None", ")", ":", "# noqa: E501", "if", "levels", "<", "0", ":", "raise", "ValueError", "(", "'unflattened levels must be greater than 0'", ")", "new_d", "=", "{", "}", "flattened", "=", "flatten", "(", "d", ",", "True", ",", "delim", ",", "list_of_dicts", "=", "list_of_dicts", ")", "if", "levels", "==", "0", ":", "return", "flattened", "for", "key", ",", "value", "in", "flattened", ".", "items", "(", ")", ":", "if", "key_as_tuple", ":", "new_key", "=", "key", "[", ":", "-", "(", "levels", ")", "]", "else", ":", "new_key", "=", "delim", ".", "join", "(", "[", "str", "(", "k", ")", "for", "k", "in", "key", "[", ":", "-", "(", "levels", ")", "]", "]", ")", "new_levels", "=", "key", "[", "-", "(", "levels", ")", ":", "]", "# val_dict = {new_levels: value}", "# val_dict = unflatten(val_dict, True, delim)", "if", "new_key", "not", "in", "new_d", ":", "new_d", "[", "new_key", "]", "=", "{", "new_levels", ":", "value", "}", "else", ":", "if", "new_levels", "in", "new_d", "[", "new_key", "]", ":", "raise", "ValueError", "(", "\"key clash for: {0}; {1}\"", ".", "format", "(", "new_key", ",", "new_levels", ")", ")", "new_d", "[", "new_key", "]", "[", "new_levels", "]", "=", "value", "for", "nkey", ",", "nvalue", "in", "new_d", ".", "items", "(", ")", ":", "new_d", "[", "nkey", "]", "=", "unflatten", "(", "nvalue", ",", "list_of_dicts", "=", "list_of_dicts", ",", "deepcopy", "=", "False", ")", "return", "new_d" ]
get nested dict as {key:dict,...}, where key is tuple/string of all-n levels of nested keys Parameters ---------- d : dict levels : int the number of levels to leave unflattened key_as_tuple : bool whether keys are list of nested keys or delimited string of nested keys delim : str if key_as_tuple=False, delimiter for keys list_of_dicts: str or None if not None, flatten lists of dicts using this prefix Examples -------- >>> from pprint import pprint >>> d = {1:{2:{3:{'b':'B','c':'C'},4:'D'}}} >>> pprint(flattennd(d,0)) {(1, 2, 3, 'b'): 'B', (1, 2, 3, 'c'): 'C', (1, 2, 4): 'D'} >>> pprint(flattennd(d,1)) {(1, 2): {4: 'D'}, (1, 2, 3): {'b': 'B', 'c': 'C'}} >>> pprint(flattennd(d,2)) {(1,): {2: {4: 'D'}}, (1, 2): {3: {'b': 'B', 'c': 'C'}}} >>> pprint(flattennd(d,3)) {(): {1: {2: {4: 'D'}}}, (1,): {2: {3: {'b': 'B', 'c': 'C'}}}} >>> pprint(flattennd(d,4)) {(): {1: {2: {3: {'b': 'B', 'c': 'C'}, 4: 'D'}}}} >>> pprint(flattennd(d,5)) {(): {1: {2: {3: {'b': 'B', 'c': 'C'}, 4: 'D'}}}} >>> pprint(flattennd(d,1,key_as_tuple=False,delim='.')) {'1.2': {4: 'D'}, '1.2.3': {'b': 'B', 'c': 'C'}} >>> test_dict = {"a":[{"b":[{"c":1, "d": 2}, {"e":3, "f": 4}]}, {"b":[{"c":5, "d": 6}, {"e":7, "f": 8}]}]} >>> pprint(flattennd(test_dict, list_of_dicts="__list__", levels=2)) {('a', '__list__0', 'b'): [{'c': 1, 'd': 2}, {'e': 3, 'f': 4}], ('a', '__list__1', 'b'): [{'c': 5, 'd': 6}, {'e': 7, 'f': 8}]} >>> pprint(flattennd(test_dict, list_of_dicts="__list__", levels=3)) {('a', '__list__0'): {'b': [{'c': 1, 'd': 2}, {'e': 3, 'f': 4}]}, ('a', '__list__1'): {'b': [{'c': 5, 'd': 6}, {'e': 7, 'f': 8}]}}
[ "get", "nested", "dict", "as", "{", "key", ":", "dict", "...", "}", "where", "key", "is", "tuple", "/", "string", "of", "all", "-", "n", "levels", "of", "nested", "keys" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L754-L838
chrisjsewell/jsonextended
jsonextended/edict.py
flatten2d
def flatten2d(d, key_as_tuple=True, delim='.', list_of_dicts=None): """ get nested dict as {key:dict,...}, where key is tuple/string of all-1 nested keys NB: is same as flattennd(d,1,key_as_tuple,delim) Parameters ---------- d : dict key_as_tuple : bool whether keys are list of nested keys or delimited string of nested keys delim : str if key_as_tuple=False, delimiter for keys list_of_dicts: str or None if not None, flatten lists of dicts using this prefix Examples -------- >>> from pprint import pprint >>> d = {1:{2:{3:{'b':'B','c':'C'},4:'D'}}} >>> pprint(flatten2d(d)) {(1, 2): {4: 'D'}, (1, 2, 3): {'b': 'B', 'c': 'C'}} >>> pprint(flatten2d(d,key_as_tuple=False,delim=',')) {'1,2': {4: 'D'}, '1,2,3': {'b': 'B', 'c': 'C'}} """ return flattennd(d, 1, key_as_tuple, delim, list_of_dicts=list_of_dicts)
python
def flatten2d(d, key_as_tuple=True, delim='.', list_of_dicts=None): """ get nested dict as {key:dict,...}, where key is tuple/string of all-1 nested keys NB: is same as flattennd(d,1,key_as_tuple,delim) Parameters ---------- d : dict key_as_tuple : bool whether keys are list of nested keys or delimited string of nested keys delim : str if key_as_tuple=False, delimiter for keys list_of_dicts: str or None if not None, flatten lists of dicts using this prefix Examples -------- >>> from pprint import pprint >>> d = {1:{2:{3:{'b':'B','c':'C'},4:'D'}}} >>> pprint(flatten2d(d)) {(1, 2): {4: 'D'}, (1, 2, 3): {'b': 'B', 'c': 'C'}} >>> pprint(flatten2d(d,key_as_tuple=False,delim=',')) {'1,2': {4: 'D'}, '1,2,3': {'b': 'B', 'c': 'C'}} """ return flattennd(d, 1, key_as_tuple, delim, list_of_dicts=list_of_dicts)
[ "def", "flatten2d", "(", "d", ",", "key_as_tuple", "=", "True", ",", "delim", "=", "'.'", ",", "list_of_dicts", "=", "None", ")", ":", "return", "flattennd", "(", "d", ",", "1", ",", "key_as_tuple", ",", "delim", ",", "list_of_dicts", "=", "list_of_dicts", ")" ]
get nested dict as {key:dict,...}, where key is tuple/string of all-1 nested keys NB: is same as flattennd(d,1,key_as_tuple,delim) Parameters ---------- d : dict key_as_tuple : bool whether keys are list of nested keys or delimited string of nested keys delim : str if key_as_tuple=False, delimiter for keys list_of_dicts: str or None if not None, flatten lists of dicts using this prefix Examples -------- >>> from pprint import pprint >>> d = {1:{2:{3:{'b':'B','c':'C'},4:'D'}}} >>> pprint(flatten2d(d)) {(1, 2): {4: 'D'}, (1, 2, 3): {'b': 'B', 'c': 'C'}} >>> pprint(flatten2d(d,key_as_tuple=False,delim=',')) {'1,2': {4: 'D'}, '1,2,3': {'b': 'B', 'c': 'C'}}
[ "get", "nested", "dict", "as", "{", "key", ":", "dict", "...", "}", "where", "key", "is", "tuple", "/", "string", "of", "all", "-", "1", "nested", "keys" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L841-L871
chrisjsewell/jsonextended
jsonextended/edict.py
remove_keys
def remove_keys(d, keys=None, use_wildcards=True, list_of_dicts=False, deepcopy=True): """remove certain keys from nested dict, retaining preceeding paths Parameters ---------- keys: list use_wildcards : bool if true, can use * (matches everything) and ? (matches any single character) list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"},"a":{"b":"B"}} >>> pprint(remove_keys(d,['a'])) {1: 'A', 'b': 'B'} >>> pprint(remove_keys({'abc':1},['a*'],use_wildcards=False)) {'abc': 1} >>> pprint(remove_keys({'abc':1},['a*'],use_wildcards=True)) {} """ keys = [] if keys is None else keys list_of_dicts = '__list__' if list_of_dicts else None def is_in(a, bs): if use_wildcards: for b in bs: try: if a == b: return True if fnmatch(a, b): return True except Exception: pass return False else: try: return a in bs except Exception: return False if not hasattr(d, 'items'): return d else: dic = flatten(d, list_of_dicts=list_of_dicts) new_dic = {} for key, value in dic.items(): new_key = tuple([i for i in key if not is_in(i, keys)]) if not new_key: continue try: if new_key[-1].startswith(list_of_dicts): continue except Exception: pass new_dic[new_key] = value return unflatten( new_dic, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
python
def remove_keys(d, keys=None, use_wildcards=True, list_of_dicts=False, deepcopy=True): """remove certain keys from nested dict, retaining preceeding paths Parameters ---------- keys: list use_wildcards : bool if true, can use * (matches everything) and ? (matches any single character) list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"},"a":{"b":"B"}} >>> pprint(remove_keys(d,['a'])) {1: 'A', 'b': 'B'} >>> pprint(remove_keys({'abc':1},['a*'],use_wildcards=False)) {'abc': 1} >>> pprint(remove_keys({'abc':1},['a*'],use_wildcards=True)) {} """ keys = [] if keys is None else keys list_of_dicts = '__list__' if list_of_dicts else None def is_in(a, bs): if use_wildcards: for b in bs: try: if a == b: return True if fnmatch(a, b): return True except Exception: pass return False else: try: return a in bs except Exception: return False if not hasattr(d, 'items'): return d else: dic = flatten(d, list_of_dicts=list_of_dicts) new_dic = {} for key, value in dic.items(): new_key = tuple([i for i in key if not is_in(i, keys)]) if not new_key: continue try: if new_key[-1].startswith(list_of_dicts): continue except Exception: pass new_dic[new_key] = value return unflatten( new_dic, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
[ "def", "remove_keys", "(", "d", ",", "keys", "=", "None", ",", "use_wildcards", "=", "True", ",", "list_of_dicts", "=", "False", ",", "deepcopy", "=", "True", ")", ":", "keys", "=", "[", "]", "if", "keys", "is", "None", "else", "keys", "list_of_dicts", "=", "'__list__'", "if", "list_of_dicts", "else", "None", "def", "is_in", "(", "a", ",", "bs", ")", ":", "if", "use_wildcards", ":", "for", "b", "in", "bs", ":", "try", ":", "if", "a", "==", "b", ":", "return", "True", "if", "fnmatch", "(", "a", ",", "b", ")", ":", "return", "True", "except", "Exception", ":", "pass", "return", "False", "else", ":", "try", ":", "return", "a", "in", "bs", "except", "Exception", ":", "return", "False", "if", "not", "hasattr", "(", "d", ",", "'items'", ")", ":", "return", "d", "else", ":", "dic", "=", "flatten", "(", "d", ",", "list_of_dicts", "=", "list_of_dicts", ")", "new_dic", "=", "{", "}", "for", "key", ",", "value", "in", "dic", ".", "items", "(", ")", ":", "new_key", "=", "tuple", "(", "[", "i", "for", "i", "in", "key", "if", "not", "is_in", "(", "i", ",", "keys", ")", "]", ")", "if", "not", "new_key", ":", "continue", "try", ":", "if", "new_key", "[", "-", "1", "]", ".", "startswith", "(", "list_of_dicts", ")", ":", "continue", "except", "Exception", ":", "pass", "new_dic", "[", "new_key", "]", "=", "value", "return", "unflatten", "(", "new_dic", ",", "list_of_dicts", "=", "list_of_dicts", ",", "deepcopy", "=", "deepcopy", ")" ]
remove certain keys from nested dict, retaining preceeding paths Parameters ---------- keys: list use_wildcards : bool if true, can use * (matches everything) and ? (matches any single character) list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"},"a":{"b":"B"}} >>> pprint(remove_keys(d,['a'])) {1: 'A', 'b': 'B'} >>> pprint(remove_keys({'abc':1},['a*'],use_wildcards=False)) {'abc': 1} >>> pprint(remove_keys({'abc':1},['a*'],use_wildcards=True)) {}
[ "remove", "certain", "keys", "from", "nested", "dict", "retaining", "preceeding", "paths" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L874-L938
chrisjsewell/jsonextended
jsonextended/edict.py
remove_keyvals
def remove_keyvals(d, keyvals=None, list_of_dicts=False, deepcopy=True): """remove paths with at least one branch leading to certain (key,value) pairs from dict Parameters ---------- d : dict keyvals : dict or list[tuple] (key,value) pairs to remove list_of_dicts: bool treat list of dicts as additional branches Examples -------- >>> from pprint import pprint >>> d = {1:{"b":"A"},"a":{"b":"B","c":"D"},"b":{"a":"B"}} >>> pprint(remove_keyvals(d,[("b","B")])) {1: {'b': 'A'}, 'b': {'a': 'B'}} >>> d2 = {'a':[{'b':1,'c':1},{'b':1,'c':2}]} >>> pprint(remove_keyvals(d2,[("b",1)])) {'a': [{'b': 1, 'c': 1}, {'b': 1, 'c': 2}]} >>> pprint(remove_keyvals(d2,[("b",1)],list_of_dicts=True)) {} """ keyvals = [] if keyvals is None else keyvals list_of_dicts = '__list__' if list_of_dicts else None if hasattr(keyvals, 'items'): keyvals = [(k, v) for k, v in keyvals.items()] if not hasattr(d, 'items'): return d flatd = flatten(d, list_of_dicts=list_of_dicts) def is_in(a, b): try: return a in b except Exception: return False prune = [k[0] for k, v in flatd.items() if is_in((k[-1], v), keyvals)] flatd = {k: v for k, v in flatd.items() if not is_in(k[0], prune)} return unflatten(flatd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
python
def remove_keyvals(d, keyvals=None, list_of_dicts=False, deepcopy=True): """remove paths with at least one branch leading to certain (key,value) pairs from dict Parameters ---------- d : dict keyvals : dict or list[tuple] (key,value) pairs to remove list_of_dicts: bool treat list of dicts as additional branches Examples -------- >>> from pprint import pprint >>> d = {1:{"b":"A"},"a":{"b":"B","c":"D"},"b":{"a":"B"}} >>> pprint(remove_keyvals(d,[("b","B")])) {1: {'b': 'A'}, 'b': {'a': 'B'}} >>> d2 = {'a':[{'b':1,'c':1},{'b':1,'c':2}]} >>> pprint(remove_keyvals(d2,[("b",1)])) {'a': [{'b': 1, 'c': 1}, {'b': 1, 'c': 2}]} >>> pprint(remove_keyvals(d2,[("b",1)],list_of_dicts=True)) {} """ keyvals = [] if keyvals is None else keyvals list_of_dicts = '__list__' if list_of_dicts else None if hasattr(keyvals, 'items'): keyvals = [(k, v) for k, v in keyvals.items()] if not hasattr(d, 'items'): return d flatd = flatten(d, list_of_dicts=list_of_dicts) def is_in(a, b): try: return a in b except Exception: return False prune = [k[0] for k, v in flatd.items() if is_in((k[-1], v), keyvals)] flatd = {k: v for k, v in flatd.items() if not is_in(k[0], prune)} return unflatten(flatd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
[ "def", "remove_keyvals", "(", "d", ",", "keyvals", "=", "None", ",", "list_of_dicts", "=", "False", ",", "deepcopy", "=", "True", ")", ":", "keyvals", "=", "[", "]", "if", "keyvals", "is", "None", "else", "keyvals", "list_of_dicts", "=", "'__list__'", "if", "list_of_dicts", "else", "None", "if", "hasattr", "(", "keyvals", ",", "'items'", ")", ":", "keyvals", "=", "[", "(", "k", ",", "v", ")", "for", "k", ",", "v", "in", "keyvals", ".", "items", "(", ")", "]", "if", "not", "hasattr", "(", "d", ",", "'items'", ")", ":", "return", "d", "flatd", "=", "flatten", "(", "d", ",", "list_of_dicts", "=", "list_of_dicts", ")", "def", "is_in", "(", "a", ",", "b", ")", ":", "try", ":", "return", "a", "in", "b", "except", "Exception", ":", "return", "False", "prune", "=", "[", "k", "[", "0", "]", "for", "k", ",", "v", "in", "flatd", ".", "items", "(", ")", "if", "is_in", "(", "(", "k", "[", "-", "1", "]", ",", "v", ")", ",", "keyvals", ")", "]", "flatd", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "flatd", ".", "items", "(", ")", "if", "not", "is_in", "(", "k", "[", "0", "]", ",", "prune", ")", "}", "return", "unflatten", "(", "flatd", ",", "list_of_dicts", "=", "list_of_dicts", ",", "deepcopy", "=", "deepcopy", ")" ]
remove paths with at least one branch leading to certain (key,value) pairs from dict Parameters ---------- d : dict keyvals : dict or list[tuple] (key,value) pairs to remove list_of_dicts: bool treat list of dicts as additional branches Examples -------- >>> from pprint import pprint >>> d = {1:{"b":"A"},"a":{"b":"B","c":"D"},"b":{"a":"B"}} >>> pprint(remove_keyvals(d,[("b","B")])) {1: {'b': 'A'}, 'b': {'a': 'B'}} >>> d2 = {'a':[{'b':1,'c':1},{'b':1,'c':2}]} >>> pprint(remove_keyvals(d2,[("b",1)])) {'a': [{'b': 1, 'c': 1}, {'b': 1, 'c': 2}]} >>> pprint(remove_keyvals(d2,[("b",1)],list_of_dicts=True)) {}
[ "remove", "paths", "with", "at", "least", "one", "branch", "leading", "to", "certain", "(", "key", "value", ")", "pairs", "from", "dict" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L941-L989
chrisjsewell/jsonextended
jsonextended/edict.py
remove_paths
def remove_paths(d, keys, list_of_dicts=False, deepcopy=True): """ remove paths containing certain keys from dict Parameters ---------- d: dict keys : list list of keys to find and remove path list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"},2:{"b":"B"},4:{5:{6:'a',7:'b'}}} >>> pprint(remove_paths(d,[6,'a'])) {2: {'b': 'B'}, 4: {5: {7: 'b'}}} >>> d = {1:{2: 3}, 1:{4: 5}} >>> pprint(remove_paths(d,[(1, 2)])) {1: {4: 5}} >>> d2 = {'a':[{'b':1,'c':{'b':3}},{'b':1,'c':2}]} >>> pprint(remove_paths(d2,["b"],list_of_dicts=False)) {'a': [{'b': 1, 'c': {'b': 3}}, {'b': 1, 'c': 2}]} >>> pprint(remove_paths(d2,["b"],list_of_dicts=True)) {'a': [{'c': 2}]} """ keys = [(key,) if not isinstance(key, tuple) else key for key in keys] list_of_dicts = '__list__' if list_of_dicts else None def contains(path): for k in keys: if set(k).issubset(path): return True return False flatd = flatten(d, list_of_dicts=list_of_dicts) flatd = {path: v for path, v in flatd.items() if not contains(path)} return unflatten(flatd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
python
def remove_paths(d, keys, list_of_dicts=False, deepcopy=True): """ remove paths containing certain keys from dict Parameters ---------- d: dict keys : list list of keys to find and remove path list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"},2:{"b":"B"},4:{5:{6:'a',7:'b'}}} >>> pprint(remove_paths(d,[6,'a'])) {2: {'b': 'B'}, 4: {5: {7: 'b'}}} >>> d = {1:{2: 3}, 1:{4: 5}} >>> pprint(remove_paths(d,[(1, 2)])) {1: {4: 5}} >>> d2 = {'a':[{'b':1,'c':{'b':3}},{'b':1,'c':2}]} >>> pprint(remove_paths(d2,["b"],list_of_dicts=False)) {'a': [{'b': 1, 'c': {'b': 3}}, {'b': 1, 'c': 2}]} >>> pprint(remove_paths(d2,["b"],list_of_dicts=True)) {'a': [{'c': 2}]} """ keys = [(key,) if not isinstance(key, tuple) else key for key in keys] list_of_dicts = '__list__' if list_of_dicts else None def contains(path): for k in keys: if set(k).issubset(path): return True return False flatd = flatten(d, list_of_dicts=list_of_dicts) flatd = {path: v for path, v in flatd.items() if not contains(path)} return unflatten(flatd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
[ "def", "remove_paths", "(", "d", ",", "keys", ",", "list_of_dicts", "=", "False", ",", "deepcopy", "=", "True", ")", ":", "keys", "=", "[", "(", "key", ",", ")", "if", "not", "isinstance", "(", "key", ",", "tuple", ")", "else", "key", "for", "key", "in", "keys", "]", "list_of_dicts", "=", "'__list__'", "if", "list_of_dicts", "else", "None", "def", "contains", "(", "path", ")", ":", "for", "k", "in", "keys", ":", "if", "set", "(", "k", ")", ".", "issubset", "(", "path", ")", ":", "return", "True", "return", "False", "flatd", "=", "flatten", "(", "d", ",", "list_of_dicts", "=", "list_of_dicts", ")", "flatd", "=", "{", "path", ":", "v", "for", "path", ",", "v", "in", "flatd", ".", "items", "(", ")", "if", "not", "contains", "(", "path", ")", "}", "return", "unflatten", "(", "flatd", ",", "list_of_dicts", "=", "list_of_dicts", ",", "deepcopy", "=", "deepcopy", ")" ]
remove paths containing certain keys from dict Parameters ---------- d: dict keys : list list of keys to find and remove path list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"},2:{"b":"B"},4:{5:{6:'a',7:'b'}}} >>> pprint(remove_paths(d,[6,'a'])) {2: {'b': 'B'}, 4: {5: {7: 'b'}}} >>> d = {1:{2: 3}, 1:{4: 5}} >>> pprint(remove_paths(d,[(1, 2)])) {1: {4: 5}} >>> d2 = {'a':[{'b':1,'c':{'b':3}},{'b':1,'c':2}]} >>> pprint(remove_paths(d2,["b"],list_of_dicts=False)) {'a': [{'b': 1, 'c': {'b': 3}}, {'b': 1, 'c': 2}]} >>> pprint(remove_paths(d2,["b"],list_of_dicts=True)) {'a': [{'c': 2}]}
[ "remove", "paths", "containing", "certain", "keys", "from", "dict" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L992-L1039
chrisjsewell/jsonextended
jsonextended/edict.py
filter_values
def filter_values(d, vals=None, list_of_dicts=False, deepcopy=True): """ filters leaf nodes of nested dictionary Parameters ---------- d : dict vals : list values to filter by list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> d = {1:{"a":"A"},2:{"b":"B"},4:{5:{6:'a'}}} >>> filter_values(d,['a']) {4: {5: {6: 'a'}}} """ vals = [] if vals is None else vals list_of_dicts = '__list__' if list_of_dicts else None flatd = flatten(d, list_of_dicts=list_of_dicts) def is_in(a, b): try: return a in b except Exception: return False flatd = {k: v for k, v in flatd.items() if is_in(v, vals)} return unflatten(flatd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
python
def filter_values(d, vals=None, list_of_dicts=False, deepcopy=True): """ filters leaf nodes of nested dictionary Parameters ---------- d : dict vals : list values to filter by list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> d = {1:{"a":"A"},2:{"b":"B"},4:{5:{6:'a'}}} >>> filter_values(d,['a']) {4: {5: {6: 'a'}}} """ vals = [] if vals is None else vals list_of_dicts = '__list__' if list_of_dicts else None flatd = flatten(d, list_of_dicts=list_of_dicts) def is_in(a, b): try: return a in b except Exception: return False flatd = {k: v for k, v in flatd.items() if is_in(v, vals)} return unflatten(flatd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
[ "def", "filter_values", "(", "d", ",", "vals", "=", "None", ",", "list_of_dicts", "=", "False", ",", "deepcopy", "=", "True", ")", ":", "vals", "=", "[", "]", "if", "vals", "is", "None", "else", "vals", "list_of_dicts", "=", "'__list__'", "if", "list_of_dicts", "else", "None", "flatd", "=", "flatten", "(", "d", ",", "list_of_dicts", "=", "list_of_dicts", ")", "def", "is_in", "(", "a", ",", "b", ")", ":", "try", ":", "return", "a", "in", "b", "except", "Exception", ":", "return", "False", "flatd", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "flatd", ".", "items", "(", ")", "if", "is_in", "(", "v", ",", "vals", ")", "}", "return", "unflatten", "(", "flatd", ",", "list_of_dicts", "=", "list_of_dicts", ",", "deepcopy", "=", "deepcopy", ")" ]
filters leaf nodes of nested dictionary Parameters ---------- d : dict vals : list values to filter by list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> d = {1:{"a":"A"},2:{"b":"B"},4:{5:{6:'a'}}} >>> filter_values(d,['a']) {4: {5: {6: 'a'}}}
[ "filters", "leaf", "nodes", "of", "nested", "dictionary" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1044-L1077
chrisjsewell/jsonextended
jsonextended/edict.py
filter_keyvals
def filter_keyvals(d, keyvals, logic="OR", keep_siblings=False, list_of_dicts=False, deepcopy=True): """ filters leaf nodes key:value pairs of nested dictionary Parameters ---------- d : dict keyvals : dict or list[tuple] (key,value) pairs to filter by logic : str "OR" or "AND" for matching pairs keep_siblings : bool keep all sibling paths list_of_dicts : bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {1:{6:'a'},3:{7:'a'},2:{6:"b"},4:{5:{6:'a'}}} >>> pprint(filter_keyvals(d,[(6,'a')])) {1: {6: 'a'}, 4: {5: {6: 'a'}}} >>> d2 = {'a':{'b':1,'c':2,'d':3}, 'e':4} >>> pprint(filter_keyvals(d2, {'b': 1, 'e': 4}, logic="OR", keep_siblings=False)) {'a': {'b': 1}, 'e': 4} >>> pprint(filter_keyvals(d2,[('b',1)], logic="OR", keep_siblings=True)) {'a': {'b': 1, 'c': 2, 'd': 3}} >>> pprint(filter_keyvals(d2, {'b': 1, 'e': 4}, logic="AND", keep_siblings=False)) {} >>> pprint(filter_keyvals(d2, {'b': 1, 'c': 2}, logic="AND", keep_siblings=False)) {'a': {'b': 1, 'c': 2}} >>> pprint(filter_keyvals(d2,[('b',1), ('c',2)], logic="AND", keep_siblings=True)) {'a': {'b': 1, 'c': 2, 'd': 3}} >>> d3 = {"a": {"b": 1, "f": {"d": 3}}, "e": {"b": 1, "c": 2, "f": {"d": 3}}, "g": 5} >>> pprint(filter_keyvals(d3,[('b',1), ('c', 2)], logic="OR", keep_siblings=True)) {'a': {'b': 1, 'f': {'d': 3}}, 'e': {'b': 1, 'c': 2, 'f': {'d': 3}}} >>> pprint(filter_keyvals(d3,[('b',1), ('c', 2)], logic="AND", keep_siblings=True)) {'e': {'b': 1, 'c': 2, 'f': {'d': 3}}} """ # noqa: E501 if len(keyvals) != len(dict(keyvals)): raise ValueError("repeating keys in keyvals: {}".format(keyvals)) keyvals = dict(keyvals) list_of_dicts = '__list__' if list_of_dicts else None flattened = flatten(d, list_of_dicts=list_of_dicts) if logic == "OR": if keep_siblings: pruned = { tuple(k[:-1]) for k, v in flattened.items() if any(key == k[-1] and v == keyvals[key] for key in keyvals)} filtered = {k: v for k, v in flattened.items() if _in_pruned(k, pruned)} else: filtered = { k: v for k, v in flattened.items() if any(key == k[-1] and v == keyvals[key] for key in keyvals)} elif logic == "AND": pruned = {} for k, v in flattened.items(): if any(key == k[-1] and v == keyvals[key] for key in keyvals): pruned[tuple(k[:-1])] = pruned.get(tuple(k[:-1]), []) + [k[-1]] all_keys = set(keyvals.keys()) pruned = [k for k, v in pruned.items() if set(v) == all_keys] if keep_siblings: filtered = {k: v for k, v in flattened.items() if _in_pruned(k, pruned)} else: filtered = {k: v for k, v in flattened.items( ) if k[-1] in all_keys and _in_pruned(k, pruned)} else: raise ValueError("logic must be AND or OR: {}".format(logic)) return unflatten(filtered, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
python
def filter_keyvals(d, keyvals, logic="OR", keep_siblings=False, list_of_dicts=False, deepcopy=True): """ filters leaf nodes key:value pairs of nested dictionary Parameters ---------- d : dict keyvals : dict or list[tuple] (key,value) pairs to filter by logic : str "OR" or "AND" for matching pairs keep_siblings : bool keep all sibling paths list_of_dicts : bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {1:{6:'a'},3:{7:'a'},2:{6:"b"},4:{5:{6:'a'}}} >>> pprint(filter_keyvals(d,[(6,'a')])) {1: {6: 'a'}, 4: {5: {6: 'a'}}} >>> d2 = {'a':{'b':1,'c':2,'d':3}, 'e':4} >>> pprint(filter_keyvals(d2, {'b': 1, 'e': 4}, logic="OR", keep_siblings=False)) {'a': {'b': 1}, 'e': 4} >>> pprint(filter_keyvals(d2,[('b',1)], logic="OR", keep_siblings=True)) {'a': {'b': 1, 'c': 2, 'd': 3}} >>> pprint(filter_keyvals(d2, {'b': 1, 'e': 4}, logic="AND", keep_siblings=False)) {} >>> pprint(filter_keyvals(d2, {'b': 1, 'c': 2}, logic="AND", keep_siblings=False)) {'a': {'b': 1, 'c': 2}} >>> pprint(filter_keyvals(d2,[('b',1), ('c',2)], logic="AND", keep_siblings=True)) {'a': {'b': 1, 'c': 2, 'd': 3}} >>> d3 = {"a": {"b": 1, "f": {"d": 3}}, "e": {"b": 1, "c": 2, "f": {"d": 3}}, "g": 5} >>> pprint(filter_keyvals(d3,[('b',1), ('c', 2)], logic="OR", keep_siblings=True)) {'a': {'b': 1, 'f': {'d': 3}}, 'e': {'b': 1, 'c': 2, 'f': {'d': 3}}} >>> pprint(filter_keyvals(d3,[('b',1), ('c', 2)], logic="AND", keep_siblings=True)) {'e': {'b': 1, 'c': 2, 'f': {'d': 3}}} """ # noqa: E501 if len(keyvals) != len(dict(keyvals)): raise ValueError("repeating keys in keyvals: {}".format(keyvals)) keyvals = dict(keyvals) list_of_dicts = '__list__' if list_of_dicts else None flattened = flatten(d, list_of_dicts=list_of_dicts) if logic == "OR": if keep_siblings: pruned = { tuple(k[:-1]) for k, v in flattened.items() if any(key == k[-1] and v == keyvals[key] for key in keyvals)} filtered = {k: v for k, v in flattened.items() if _in_pruned(k, pruned)} else: filtered = { k: v for k, v in flattened.items() if any(key == k[-1] and v == keyvals[key] for key in keyvals)} elif logic == "AND": pruned = {} for k, v in flattened.items(): if any(key == k[-1] and v == keyvals[key] for key in keyvals): pruned[tuple(k[:-1])] = pruned.get(tuple(k[:-1]), []) + [k[-1]] all_keys = set(keyvals.keys()) pruned = [k for k, v in pruned.items() if set(v) == all_keys] if keep_siblings: filtered = {k: v for k, v in flattened.items() if _in_pruned(k, pruned)} else: filtered = {k: v for k, v in flattened.items( ) if k[-1] in all_keys and _in_pruned(k, pruned)} else: raise ValueError("logic must be AND or OR: {}".format(logic)) return unflatten(filtered, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
[ "def", "filter_keyvals", "(", "d", ",", "keyvals", ",", "logic", "=", "\"OR\"", ",", "keep_siblings", "=", "False", ",", "list_of_dicts", "=", "False", ",", "deepcopy", "=", "True", ")", ":", "# noqa: E501", "if", "len", "(", "keyvals", ")", "!=", "len", "(", "dict", "(", "keyvals", ")", ")", ":", "raise", "ValueError", "(", "\"repeating keys in keyvals: {}\"", ".", "format", "(", "keyvals", ")", ")", "keyvals", "=", "dict", "(", "keyvals", ")", "list_of_dicts", "=", "'__list__'", "if", "list_of_dicts", "else", "None", "flattened", "=", "flatten", "(", "d", ",", "list_of_dicts", "=", "list_of_dicts", ")", "if", "logic", "==", "\"OR\"", ":", "if", "keep_siblings", ":", "pruned", "=", "{", "tuple", "(", "k", "[", ":", "-", "1", "]", ")", "for", "k", ",", "v", "in", "flattened", ".", "items", "(", ")", "if", "any", "(", "key", "==", "k", "[", "-", "1", "]", "and", "v", "==", "keyvals", "[", "key", "]", "for", "key", "in", "keyvals", ")", "}", "filtered", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "flattened", ".", "items", "(", ")", "if", "_in_pruned", "(", "k", ",", "pruned", ")", "}", "else", ":", "filtered", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "flattened", ".", "items", "(", ")", "if", "any", "(", "key", "==", "k", "[", "-", "1", "]", "and", "v", "==", "keyvals", "[", "key", "]", "for", "key", "in", "keyvals", ")", "}", "elif", "logic", "==", "\"AND\"", ":", "pruned", "=", "{", "}", "for", "k", ",", "v", "in", "flattened", ".", "items", "(", ")", ":", "if", "any", "(", "key", "==", "k", "[", "-", "1", "]", "and", "v", "==", "keyvals", "[", "key", "]", "for", "key", "in", "keyvals", ")", ":", "pruned", "[", "tuple", "(", "k", "[", ":", "-", "1", "]", ")", "]", "=", "pruned", ".", "get", "(", "tuple", "(", "k", "[", ":", "-", "1", "]", ")", ",", "[", "]", ")", "+", "[", "k", "[", "-", "1", "]", "]", "all_keys", "=", "set", "(", "keyvals", ".", "keys", "(", ")", ")", "pruned", "=", "[", "k", "for", "k", ",", "v", "in", "pruned", ".", "items", "(", ")", "if", "set", "(", "v", ")", "==", "all_keys", "]", "if", "keep_siblings", ":", "filtered", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "flattened", ".", "items", "(", ")", "if", "_in_pruned", "(", "k", ",", "pruned", ")", "}", "else", ":", "filtered", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "flattened", ".", "items", "(", ")", "if", "k", "[", "-", "1", "]", "in", "all_keys", "and", "_in_pruned", "(", "k", ",", "pruned", ")", "}", "else", ":", "raise", "ValueError", "(", "\"logic must be AND or OR: {}\"", ".", "format", "(", "logic", ")", ")", "return", "unflatten", "(", "filtered", ",", "list_of_dicts", "=", "list_of_dicts", ",", "deepcopy", "=", "deepcopy", ")" ]
filters leaf nodes key:value pairs of nested dictionary Parameters ---------- d : dict keyvals : dict or list[tuple] (key,value) pairs to filter by logic : str "OR" or "AND" for matching pairs keep_siblings : bool keep all sibling paths list_of_dicts : bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {1:{6:'a'},3:{7:'a'},2:{6:"b"},4:{5:{6:'a'}}} >>> pprint(filter_keyvals(d,[(6,'a')])) {1: {6: 'a'}, 4: {5: {6: 'a'}}} >>> d2 = {'a':{'b':1,'c':2,'d':3}, 'e':4} >>> pprint(filter_keyvals(d2, {'b': 1, 'e': 4}, logic="OR", keep_siblings=False)) {'a': {'b': 1}, 'e': 4} >>> pprint(filter_keyvals(d2,[('b',1)], logic="OR", keep_siblings=True)) {'a': {'b': 1, 'c': 2, 'd': 3}} >>> pprint(filter_keyvals(d2, {'b': 1, 'e': 4}, logic="AND", keep_siblings=False)) {} >>> pprint(filter_keyvals(d2, {'b': 1, 'c': 2}, logic="AND", keep_siblings=False)) {'a': {'b': 1, 'c': 2}} >>> pprint(filter_keyvals(d2,[('b',1), ('c',2)], logic="AND", keep_siblings=True)) {'a': {'b': 1, 'c': 2, 'd': 3}} >>> d3 = {"a": {"b": 1, "f": {"d": 3}}, "e": {"b": 1, "c": 2, "f": {"d": 3}}, "g": 5} >>> pprint(filter_keyvals(d3,[('b',1), ('c', 2)], logic="OR", keep_siblings=True)) {'a': {'b': 1, 'f': {'d': 3}}, 'e': {'b': 1, 'c': 2, 'f': {'d': 3}}} >>> pprint(filter_keyvals(d3,[('b',1), ('c', 2)], logic="AND", keep_siblings=True)) {'e': {'b': 1, 'c': 2, 'f': {'d': 3}}}
[ "filters", "leaf", "nodes", "key", ":", "value", "pairs", "of", "nested", "dictionary" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1088-L1177
chrisjsewell/jsonextended
jsonextended/edict.py
filter_keys
def filter_keys(d, keys, use_wildcards=False, list_of_dicts=False, deepcopy=True): """ filter dict by certain keys Parameters ---------- d : dict keys: list use_wildcards : bool if true, can use * (matches everything) and ? (matches any single character) list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"},2:{"b":"B"},4:{5:{6:'a',7:'b'}}} >>> pprint(filter_keys(d,['a',6])) {1: {'a': 'A'}, 4: {5: {6: 'a'}}} >>> d = {1:{"axxxx":"A"},2:{"b":"B"}} >>> pprint(filter_keys(d,['a*'],use_wildcards=True)) {1: {'axxxx': 'A'}} """ list_of_dicts = '__list__' if list_of_dicts else None flatd = flatten(d, list_of_dicts=list_of_dicts) def is_in(a, bs): if use_wildcards: for b in bs: try: if a == b: return True if fnmatch(b, a): return True except Exception: pass return False else: try: return a in bs except Exception: return False flatd = {paths: v for paths, v in flatd.items() if any( [is_in(k, paths) for k in keys])} return unflatten(flatd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
python
def filter_keys(d, keys, use_wildcards=False, list_of_dicts=False, deepcopy=True): """ filter dict by certain keys Parameters ---------- d : dict keys: list use_wildcards : bool if true, can use * (matches everything) and ? (matches any single character) list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"},2:{"b":"B"},4:{5:{6:'a',7:'b'}}} >>> pprint(filter_keys(d,['a',6])) {1: {'a': 'A'}, 4: {5: {6: 'a'}}} >>> d = {1:{"axxxx":"A"},2:{"b":"B"}} >>> pprint(filter_keys(d,['a*'],use_wildcards=True)) {1: {'axxxx': 'A'}} """ list_of_dicts = '__list__' if list_of_dicts else None flatd = flatten(d, list_of_dicts=list_of_dicts) def is_in(a, bs): if use_wildcards: for b in bs: try: if a == b: return True if fnmatch(b, a): return True except Exception: pass return False else: try: return a in bs except Exception: return False flatd = {paths: v for paths, v in flatd.items() if any( [is_in(k, paths) for k in keys])} return unflatten(flatd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
[ "def", "filter_keys", "(", "d", ",", "keys", ",", "use_wildcards", "=", "False", ",", "list_of_dicts", "=", "False", ",", "deepcopy", "=", "True", ")", ":", "list_of_dicts", "=", "'__list__'", "if", "list_of_dicts", "else", "None", "flatd", "=", "flatten", "(", "d", ",", "list_of_dicts", "=", "list_of_dicts", ")", "def", "is_in", "(", "a", ",", "bs", ")", ":", "if", "use_wildcards", ":", "for", "b", "in", "bs", ":", "try", ":", "if", "a", "==", "b", ":", "return", "True", "if", "fnmatch", "(", "b", ",", "a", ")", ":", "return", "True", "except", "Exception", ":", "pass", "return", "False", "else", ":", "try", ":", "return", "a", "in", "bs", "except", "Exception", ":", "return", "False", "flatd", "=", "{", "paths", ":", "v", "for", "paths", ",", "v", "in", "flatd", ".", "items", "(", ")", "if", "any", "(", "[", "is_in", "(", "k", ",", "paths", ")", "for", "k", "in", "keys", "]", ")", "}", "return", "unflatten", "(", "flatd", ",", "list_of_dicts", "=", "list_of_dicts", ",", "deepcopy", "=", "deepcopy", ")" ]
filter dict by certain keys Parameters ---------- d : dict keys: list use_wildcards : bool if true, can use * (matches everything) and ? (matches any single character) list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {1:{"a":"A"},2:{"b":"B"},4:{5:{6:'a',7:'b'}}} >>> pprint(filter_keys(d,['a',6])) {1: {'a': 'A'}, 4: {5: {6: 'a'}}} >>> d = {1:{"axxxx":"A"},2:{"b":"B"}} >>> pprint(filter_keys(d,['a*'],use_wildcards=True)) {1: {'axxxx': 'A'}}
[ "filter", "dict", "by", "certain", "keys" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1264-L1316
chrisjsewell/jsonextended
jsonextended/edict.py
filter_paths
def filter_paths(d, paths, list_of_dicts=False, deepcopy=True): """ filter dict by certain paths containing key sets Parameters ---------- d : dict paths : list[str] or list[tuple] list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {'a':{'b':1,'c':{'d':2}},'e':{'c':3}} >>> filter_paths(d,[('c','d')]) {'a': {'c': {'d': 2}}} >>> d2 = {'a':[{'b':1,'c':3},{'b':1,'c':2}]} >>> pprint(filter_paths(d2,["b"],list_of_dicts=False)) {} >>> pprint(filter_paths(d2,["c"],list_of_dicts=True)) {'a': [{'c': 3}, {'c': 2}]} """ list_of_dicts = '__list__' if list_of_dicts else None all_keys = [x for y in paths if isinstance(y, tuple) for x in y] all_keys += [x for x in paths if not isinstance(x, tuple)] # faster to filter first I think new_d = filter_keys(d, all_keys, list_of_dicts=list_of_dicts) new_d = flatten(d, list_of_dicts=list_of_dicts) for key in list(new_d.keys()): if not any([ set(key).issuperset(path if isinstance(path, tuple) else[path]) for path in paths]): new_d.pop(key) return unflatten(new_d, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
python
def filter_paths(d, paths, list_of_dicts=False, deepcopy=True): """ filter dict by certain paths containing key sets Parameters ---------- d : dict paths : list[str] or list[tuple] list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {'a':{'b':1,'c':{'d':2}},'e':{'c':3}} >>> filter_paths(d,[('c','d')]) {'a': {'c': {'d': 2}}} >>> d2 = {'a':[{'b':1,'c':3},{'b':1,'c':2}]} >>> pprint(filter_paths(d2,["b"],list_of_dicts=False)) {} >>> pprint(filter_paths(d2,["c"],list_of_dicts=True)) {'a': [{'c': 3}, {'c': 2}]} """ list_of_dicts = '__list__' if list_of_dicts else None all_keys = [x for y in paths if isinstance(y, tuple) for x in y] all_keys += [x for x in paths if not isinstance(x, tuple)] # faster to filter first I think new_d = filter_keys(d, all_keys, list_of_dicts=list_of_dicts) new_d = flatten(d, list_of_dicts=list_of_dicts) for key in list(new_d.keys()): if not any([ set(key).issuperset(path if isinstance(path, tuple) else[path]) for path in paths]): new_d.pop(key) return unflatten(new_d, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
[ "def", "filter_paths", "(", "d", ",", "paths", ",", "list_of_dicts", "=", "False", ",", "deepcopy", "=", "True", ")", ":", "list_of_dicts", "=", "'__list__'", "if", "list_of_dicts", "else", "None", "all_keys", "=", "[", "x", "for", "y", "in", "paths", "if", "isinstance", "(", "y", ",", "tuple", ")", "for", "x", "in", "y", "]", "all_keys", "+=", "[", "x", "for", "x", "in", "paths", "if", "not", "isinstance", "(", "x", ",", "tuple", ")", "]", "# faster to filter first I think", "new_d", "=", "filter_keys", "(", "d", ",", "all_keys", ",", "list_of_dicts", "=", "list_of_dicts", ")", "new_d", "=", "flatten", "(", "d", ",", "list_of_dicts", "=", "list_of_dicts", ")", "for", "key", "in", "list", "(", "new_d", ".", "keys", "(", ")", ")", ":", "if", "not", "any", "(", "[", "set", "(", "key", ")", ".", "issuperset", "(", "path", "if", "isinstance", "(", "path", ",", "tuple", ")", "else", "[", "path", "]", ")", "for", "path", "in", "paths", "]", ")", ":", "new_d", ".", "pop", "(", "key", ")", "return", "unflatten", "(", "new_d", ",", "list_of_dicts", "=", "list_of_dicts", ",", "deepcopy", "=", "deepcopy", ")" ]
filter dict by certain paths containing key sets Parameters ---------- d : dict paths : list[str] or list[tuple] list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {'a':{'b':1,'c':{'d':2}},'e':{'c':3}} >>> filter_paths(d,[('c','d')]) {'a': {'c': {'d': 2}}} >>> d2 = {'a':[{'b':1,'c':3},{'b':1,'c':2}]} >>> pprint(filter_paths(d2,["b"],list_of_dicts=False)) {} >>> pprint(filter_paths(d2,["c"],list_of_dicts=True)) {'a': [{'c': 3}, {'c': 2}]}
[ "filter", "dict", "by", "certain", "paths", "containing", "key", "sets" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1319-L1359
chrisjsewell/jsonextended
jsonextended/edict.py
rename_keys
def rename_keys(d, keymap=None, list_of_dicts=False, deepcopy=True): """ rename keys in dict Parameters ---------- d : dict keymap : dict dictionary of key name mappings list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {'a':{'old_name':1}} >>> pprint(rename_keys(d,{'old_name':'new_name'})) {'a': {'new_name': 1}} """ list_of_dicts = '__list__' if list_of_dicts else None keymap = {} if keymap is None else keymap flatd = flatten(d, list_of_dicts=list_of_dicts) flatd = { tuple([keymap.get(k, k) for k in path]): v for path, v in flatd.items() } return unflatten(flatd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
python
def rename_keys(d, keymap=None, list_of_dicts=False, deepcopy=True): """ rename keys in dict Parameters ---------- d : dict keymap : dict dictionary of key name mappings list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {'a':{'old_name':1}} >>> pprint(rename_keys(d,{'old_name':'new_name'})) {'a': {'new_name': 1}} """ list_of_dicts = '__list__' if list_of_dicts else None keymap = {} if keymap is None else keymap flatd = flatten(d, list_of_dicts=list_of_dicts) flatd = { tuple([keymap.get(k, k) for k in path]): v for path, v in flatd.items() } return unflatten(flatd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
[ "def", "rename_keys", "(", "d", ",", "keymap", "=", "None", ",", "list_of_dicts", "=", "False", ",", "deepcopy", "=", "True", ")", ":", "list_of_dicts", "=", "'__list__'", "if", "list_of_dicts", "else", "None", "keymap", "=", "{", "}", "if", "keymap", "is", "None", "else", "keymap", "flatd", "=", "flatten", "(", "d", ",", "list_of_dicts", "=", "list_of_dicts", ")", "flatd", "=", "{", "tuple", "(", "[", "keymap", ".", "get", "(", "k", ",", "k", ")", "for", "k", "in", "path", "]", ")", ":", "v", "for", "path", ",", "v", "in", "flatd", ".", "items", "(", ")", "}", "return", "unflatten", "(", "flatd", ",", "list_of_dicts", "=", "list_of_dicts", ",", "deepcopy", "=", "deepcopy", ")" ]
rename keys in dict Parameters ---------- d : dict keymap : dict dictionary of key name mappings list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {'a':{'old_name':1}} >>> pprint(rename_keys(d,{'old_name':'new_name'})) {'a': {'new_name': 1}}
[ "rename", "keys", "in", "dict" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1362-L1393
chrisjsewell/jsonextended
jsonextended/edict.py
split_key
def split_key(d, key, new_keys, before=True, list_of_dicts=False, deepcopy=True): """ split an existing key(s) into multiple levels Parameters ---------- d : dict or dict like key: str existing key value new_keys: list[str] new levels to add before: bool add level before existing key (else after) list_of_dicts: bool treat list of dicts as additional branches Examples -------- >>> from pprint import pprint >>> d = {'a':1,'b':2} >>> pprint(split_key(d,'a',['c','d'])) {'b': 2, 'c': {'d': {'a': 1}}} >>> pprint(split_key(d,'a',['c','d'],before=False)) {'a': {'c': {'d': 1}}, 'b': 2} >>> d2 = [{'a':1},{'a':2},{'a':3}] >>> pprint(split_key(d2,'a',['b'],list_of_dicts=True)) [{'b': {'a': 1}}, {'b': {'a': 2}}, {'b': {'a': 3}}] """ list_of_dicts = '__list__' if list_of_dicts else None flatd = flatten(d, list_of_dicts=list_of_dicts) newd = {} for path, v in flatd.items(): if key in path: newk = [] for k in path: if k == key: if before: newk = newk + new_keys + [k] else: newk = newk + [k] + new_keys else: newk.append(k) newd[tuple(newk)] = v else: newd[path] = v return unflatten(newd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
python
def split_key(d, key, new_keys, before=True, list_of_dicts=False, deepcopy=True): """ split an existing key(s) into multiple levels Parameters ---------- d : dict or dict like key: str existing key value new_keys: list[str] new levels to add before: bool add level before existing key (else after) list_of_dicts: bool treat list of dicts as additional branches Examples -------- >>> from pprint import pprint >>> d = {'a':1,'b':2} >>> pprint(split_key(d,'a',['c','d'])) {'b': 2, 'c': {'d': {'a': 1}}} >>> pprint(split_key(d,'a',['c','d'],before=False)) {'a': {'c': {'d': 1}}, 'b': 2} >>> d2 = [{'a':1},{'a':2},{'a':3}] >>> pprint(split_key(d2,'a',['b'],list_of_dicts=True)) [{'b': {'a': 1}}, {'b': {'a': 2}}, {'b': {'a': 3}}] """ list_of_dicts = '__list__' if list_of_dicts else None flatd = flatten(d, list_of_dicts=list_of_dicts) newd = {} for path, v in flatd.items(): if key in path: newk = [] for k in path: if k == key: if before: newk = newk + new_keys + [k] else: newk = newk + [k] + new_keys else: newk.append(k) newd[tuple(newk)] = v else: newd[path] = v return unflatten(newd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
[ "def", "split_key", "(", "d", ",", "key", ",", "new_keys", ",", "before", "=", "True", ",", "list_of_dicts", "=", "False", ",", "deepcopy", "=", "True", ")", ":", "list_of_dicts", "=", "'__list__'", "if", "list_of_dicts", "else", "None", "flatd", "=", "flatten", "(", "d", ",", "list_of_dicts", "=", "list_of_dicts", ")", "newd", "=", "{", "}", "for", "path", ",", "v", "in", "flatd", ".", "items", "(", ")", ":", "if", "key", "in", "path", ":", "newk", "=", "[", "]", "for", "k", "in", "path", ":", "if", "k", "==", "key", ":", "if", "before", ":", "newk", "=", "newk", "+", "new_keys", "+", "[", "k", "]", "else", ":", "newk", "=", "newk", "+", "[", "k", "]", "+", "new_keys", "else", ":", "newk", ".", "append", "(", "k", ")", "newd", "[", "tuple", "(", "newk", ")", "]", "=", "v", "else", ":", "newd", "[", "path", "]", "=", "v", "return", "unflatten", "(", "newd", ",", "list_of_dicts", "=", "list_of_dicts", ",", "deepcopy", "=", "deepcopy", ")" ]
split an existing key(s) into multiple levels Parameters ---------- d : dict or dict like key: str existing key value new_keys: list[str] new levels to add before: bool add level before existing key (else after) list_of_dicts: bool treat list of dicts as additional branches Examples -------- >>> from pprint import pprint >>> d = {'a':1,'b':2} >>> pprint(split_key(d,'a',['c','d'])) {'b': 2, 'c': {'d': {'a': 1}}} >>> pprint(split_key(d,'a',['c','d'],before=False)) {'a': {'c': {'d': 1}}, 'b': 2} >>> d2 = [{'a':1},{'a':2},{'a':3}] >>> pprint(split_key(d2,'a',['b'],list_of_dicts=True)) [{'b': {'a': 1}}, {'b': {'a': 2}}, {'b': {'a': 3}}]
[ "split", "an", "existing", "key", "(", "s", ")", "into", "multiple", "levels" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1398-L1449
chrisjsewell/jsonextended
jsonextended/edict.py
apply
def apply(d, leaf_key, func, new_name=None, remove_lkey=True, list_of_dicts=False, unflatten_level=0, deepcopy=True, **kwargs): """ apply a function to all values with a certain leaf (terminal) key Parameters ---------- d : dict leaf_key : str name of leaf key func : callable function to apply new_name : str if not None, rename leaf_key remove_lkey: bool whether to remove original leaf_key (if new_name is not None) list_of_dicts: bool treat list of dicts as additional branches unflatten_level : int or None the number of levels to leave unflattened before combining, for instance if you need dicts as inputs deepcopy: bool deepcopy values kwargs : dict additional keywords to parse to function Examples -------- >>> from pprint import pprint >>> d = {'a':1,'b':1} >>> func = lambda x: x+1 >>> pprint(apply(d,'a',func)) {'a': 2, 'b': 1} >>> pprint(apply(d,'a',func,new_name='c')) {'b': 1, 'c': 2} >>> pprint(apply(d,'a',func,new_name='c', remove_lkey=False)) {'a': 1, 'b': 1, 'c': 2} >>> test_dict = {"a":[{"b":[{"c":1, "d": 2}, {"e":3, "f": 4}]}, {"b":[{"c":5, "d": 6}, {"e":7, "f": 8}]}]} >>> pprint(apply(test_dict, "b", lambda x: x[-1], list_of_dicts=True, unflatten_level=2)) {'a': [{'b': {'e': 3, 'f': 4}}, {'b': {'e': 7, 'f': 8}}]} """ # noqa: E501 list_of_dicts = '__list__' if list_of_dicts else None if unflatten_level == 0: flatd = flatten(d, list_of_dicts=list_of_dicts) else: flatd = flattennd(d, unflatten_level, list_of_dicts=list_of_dicts) newd = {k: (func(v, **kwargs) if k[-1] == leaf_key else v) for k, v in flatd.items()} if new_name is not None: newd = {(tuple(list(k[:-1]) + [new_name]) if k[-1] == leaf_key else k): v for k, v in newd.items()} if not remove_lkey: newd.update(flatd) return unflatten(newd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
python
def apply(d, leaf_key, func, new_name=None, remove_lkey=True, list_of_dicts=False, unflatten_level=0, deepcopy=True, **kwargs): """ apply a function to all values with a certain leaf (terminal) key Parameters ---------- d : dict leaf_key : str name of leaf key func : callable function to apply new_name : str if not None, rename leaf_key remove_lkey: bool whether to remove original leaf_key (if new_name is not None) list_of_dicts: bool treat list of dicts as additional branches unflatten_level : int or None the number of levels to leave unflattened before combining, for instance if you need dicts as inputs deepcopy: bool deepcopy values kwargs : dict additional keywords to parse to function Examples -------- >>> from pprint import pprint >>> d = {'a':1,'b':1} >>> func = lambda x: x+1 >>> pprint(apply(d,'a',func)) {'a': 2, 'b': 1} >>> pprint(apply(d,'a',func,new_name='c')) {'b': 1, 'c': 2} >>> pprint(apply(d,'a',func,new_name='c', remove_lkey=False)) {'a': 1, 'b': 1, 'c': 2} >>> test_dict = {"a":[{"b":[{"c":1, "d": 2}, {"e":3, "f": 4}]}, {"b":[{"c":5, "d": 6}, {"e":7, "f": 8}]}]} >>> pprint(apply(test_dict, "b", lambda x: x[-1], list_of_dicts=True, unflatten_level=2)) {'a': [{'b': {'e': 3, 'f': 4}}, {'b': {'e': 7, 'f': 8}}]} """ # noqa: E501 list_of_dicts = '__list__' if list_of_dicts else None if unflatten_level == 0: flatd = flatten(d, list_of_dicts=list_of_dicts) else: flatd = flattennd(d, unflatten_level, list_of_dicts=list_of_dicts) newd = {k: (func(v, **kwargs) if k[-1] == leaf_key else v) for k, v in flatd.items()} if new_name is not None: newd = {(tuple(list(k[:-1]) + [new_name]) if k[-1] == leaf_key else k): v for k, v in newd.items()} if not remove_lkey: newd.update(flatd) return unflatten(newd, list_of_dicts=list_of_dicts, deepcopy=deepcopy)
[ "def", "apply", "(", "d", ",", "leaf_key", ",", "func", ",", "new_name", "=", "None", ",", "remove_lkey", "=", "True", ",", "list_of_dicts", "=", "False", ",", "unflatten_level", "=", "0", ",", "deepcopy", "=", "True", ",", "*", "*", "kwargs", ")", ":", "# noqa: E501", "list_of_dicts", "=", "'__list__'", "if", "list_of_dicts", "else", "None", "if", "unflatten_level", "==", "0", ":", "flatd", "=", "flatten", "(", "d", ",", "list_of_dicts", "=", "list_of_dicts", ")", "else", ":", "flatd", "=", "flattennd", "(", "d", ",", "unflatten_level", ",", "list_of_dicts", "=", "list_of_dicts", ")", "newd", "=", "{", "k", ":", "(", "func", "(", "v", ",", "*", "*", "kwargs", ")", "if", "k", "[", "-", "1", "]", "==", "leaf_key", "else", "v", ")", "for", "k", ",", "v", "in", "flatd", ".", "items", "(", ")", "}", "if", "new_name", "is", "not", "None", ":", "newd", "=", "{", "(", "tuple", "(", "list", "(", "k", "[", ":", "-", "1", "]", ")", "+", "[", "new_name", "]", ")", "if", "k", "[", "-", "1", "]", "==", "leaf_key", "else", "k", ")", ":", "v", "for", "k", ",", "v", "in", "newd", ".", "items", "(", ")", "}", "if", "not", "remove_lkey", ":", "newd", ".", "update", "(", "flatd", ")", "return", "unflatten", "(", "newd", ",", "list_of_dicts", "=", "list_of_dicts", ",", "deepcopy", "=", "deepcopy", ")" ]
apply a function to all values with a certain leaf (terminal) key Parameters ---------- d : dict leaf_key : str name of leaf key func : callable function to apply new_name : str if not None, rename leaf_key remove_lkey: bool whether to remove original leaf_key (if new_name is not None) list_of_dicts: bool treat list of dicts as additional branches unflatten_level : int or None the number of levels to leave unflattened before combining, for instance if you need dicts as inputs deepcopy: bool deepcopy values kwargs : dict additional keywords to parse to function Examples -------- >>> from pprint import pprint >>> d = {'a':1,'b':1} >>> func = lambda x: x+1 >>> pprint(apply(d,'a',func)) {'a': 2, 'b': 1} >>> pprint(apply(d,'a',func,new_name='c')) {'b': 1, 'c': 2} >>> pprint(apply(d,'a',func,new_name='c', remove_lkey=False)) {'a': 1, 'b': 1, 'c': 2} >>> test_dict = {"a":[{"b":[{"c":1, "d": 2}, {"e":3, "f": 4}]}, {"b":[{"c":5, "d": 6}, {"e":7, "f": 8}]}]} >>> pprint(apply(test_dict, "b", lambda x: x[-1], list_of_dicts=True, unflatten_level=2)) {'a': [{'b': {'e': 3, 'f': 4}}, {'b': {'e': 7, 'f': 8}}]}
[ "apply", "a", "function", "to", "all", "values", "with", "a", "certain", "leaf", "(", "terminal", ")", "key" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1452-L1508
chrisjsewell/jsonextended
jsonextended/edict.py
combine_apply
def combine_apply(d, leaf_keys, func, new_name, unflatten_level=1, remove_lkeys=True, overwrite=False, list_of_dicts=False, deepcopy=True, **kwargs): """ combine values with certain leaf (terminal) keys by a function Parameters ---------- d : dict leaf_keys : list names of leaf keys func : callable function to apply, must take at least len(leaf_keys) arguments new_name : str new key name unflatten_level : int or None the number of levels to leave unflattened before combining, for instance if you need dicts as inputs (None means all) remove_lkeys: bool whether to remove original leaf_keys overwrite: bool whether to overwrite any existing new_name key list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values kwargs : dict additional keywords to parse to function Examples -------- >>> from pprint import pprint >>> d = {'a':1,'b':2} >>> func = lambda x,y: x+y >>> pprint(combine_apply(d,['a','b'],func,'c')) {'c': 3} >>> pprint(combine_apply(d,['a','b'],func,'c',remove_lkeys=False)) {'a': 1, 'b': 2, 'c': 3} >>> d = {1:{'a':1,'b':2},2:{'a':4,'b':5},3:{'a':1}} >>> pprint(combine_apply(d,['a','b'],func,'c')) {1: {'c': 3}, 2: {'c': 9}, 3: {'a': 1}} >>> func2 = lambda x: sorted(list(x.keys())) >>> d2 = {'d':{'a':{'b':1,'c':2}}} >>> pprint(combine_apply(d2,['a'],func2,'a',unflatten_level=2)) {'d': {'a': ['b', 'c']}} """ list_of_dicts = '__list__' if list_of_dicts else None if unflatten_level is not None: flatd = flattennd(d, levels=unflatten_level, list_of_dicts=list_of_dicts) else: # TODO could do this better? flatd = unflatten(d, key_as_tuple=False, delim='*@#$', deepcopy=deepcopy) for dic in flatd.values(): if not is_dict_like(dic): continue if all([k in list(dic.keys()) for k in leaf_keys]): if remove_lkeys: vals = [dic.pop(k) for k in leaf_keys] else: vals = [dic[k] for k in leaf_keys] if new_name in dic and not overwrite: raise ValueError('{} already in sub-dict'.format(new_name)) dic[new_name] = func(*vals, **kwargs) if unflatten_level is not None: return unflatten(flatd, list_of_dicts=list_of_dicts, deepcopy=deepcopy) else: return flatd
python
def combine_apply(d, leaf_keys, func, new_name, unflatten_level=1, remove_lkeys=True, overwrite=False, list_of_dicts=False, deepcopy=True, **kwargs): """ combine values with certain leaf (terminal) keys by a function Parameters ---------- d : dict leaf_keys : list names of leaf keys func : callable function to apply, must take at least len(leaf_keys) arguments new_name : str new key name unflatten_level : int or None the number of levels to leave unflattened before combining, for instance if you need dicts as inputs (None means all) remove_lkeys: bool whether to remove original leaf_keys overwrite: bool whether to overwrite any existing new_name key list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values kwargs : dict additional keywords to parse to function Examples -------- >>> from pprint import pprint >>> d = {'a':1,'b':2} >>> func = lambda x,y: x+y >>> pprint(combine_apply(d,['a','b'],func,'c')) {'c': 3} >>> pprint(combine_apply(d,['a','b'],func,'c',remove_lkeys=False)) {'a': 1, 'b': 2, 'c': 3} >>> d = {1:{'a':1,'b':2},2:{'a':4,'b':5},3:{'a':1}} >>> pprint(combine_apply(d,['a','b'],func,'c')) {1: {'c': 3}, 2: {'c': 9}, 3: {'a': 1}} >>> func2 = lambda x: sorted(list(x.keys())) >>> d2 = {'d':{'a':{'b':1,'c':2}}} >>> pprint(combine_apply(d2,['a'],func2,'a',unflatten_level=2)) {'d': {'a': ['b', 'c']}} """ list_of_dicts = '__list__' if list_of_dicts else None if unflatten_level is not None: flatd = flattennd(d, levels=unflatten_level, list_of_dicts=list_of_dicts) else: # TODO could do this better? flatd = unflatten(d, key_as_tuple=False, delim='*@#$', deepcopy=deepcopy) for dic in flatd.values(): if not is_dict_like(dic): continue if all([k in list(dic.keys()) for k in leaf_keys]): if remove_lkeys: vals = [dic.pop(k) for k in leaf_keys] else: vals = [dic[k] for k in leaf_keys] if new_name in dic and not overwrite: raise ValueError('{} already in sub-dict'.format(new_name)) dic[new_name] = func(*vals, **kwargs) if unflatten_level is not None: return unflatten(flatd, list_of_dicts=list_of_dicts, deepcopy=deepcopy) else: return flatd
[ "def", "combine_apply", "(", "d", ",", "leaf_keys", ",", "func", ",", "new_name", ",", "unflatten_level", "=", "1", ",", "remove_lkeys", "=", "True", ",", "overwrite", "=", "False", ",", "list_of_dicts", "=", "False", ",", "deepcopy", "=", "True", ",", "*", "*", "kwargs", ")", ":", "list_of_dicts", "=", "'__list__'", "if", "list_of_dicts", "else", "None", "if", "unflatten_level", "is", "not", "None", ":", "flatd", "=", "flattennd", "(", "d", ",", "levels", "=", "unflatten_level", ",", "list_of_dicts", "=", "list_of_dicts", ")", "else", ":", "# TODO could do this better?", "flatd", "=", "unflatten", "(", "d", ",", "key_as_tuple", "=", "False", ",", "delim", "=", "'*@#$'", ",", "deepcopy", "=", "deepcopy", ")", "for", "dic", "in", "flatd", ".", "values", "(", ")", ":", "if", "not", "is_dict_like", "(", "dic", ")", ":", "continue", "if", "all", "(", "[", "k", "in", "list", "(", "dic", ".", "keys", "(", ")", ")", "for", "k", "in", "leaf_keys", "]", ")", ":", "if", "remove_lkeys", ":", "vals", "=", "[", "dic", ".", "pop", "(", "k", ")", "for", "k", "in", "leaf_keys", "]", "else", ":", "vals", "=", "[", "dic", "[", "k", "]", "for", "k", "in", "leaf_keys", "]", "if", "new_name", "in", "dic", "and", "not", "overwrite", ":", "raise", "ValueError", "(", "'{} already in sub-dict'", ".", "format", "(", "new_name", ")", ")", "dic", "[", "new_name", "]", "=", "func", "(", "*", "vals", ",", "*", "*", "kwargs", ")", "if", "unflatten_level", "is", "not", "None", ":", "return", "unflatten", "(", "flatd", ",", "list_of_dicts", "=", "list_of_dicts", ",", "deepcopy", "=", "deepcopy", ")", "else", ":", "return", "flatd" ]
combine values with certain leaf (terminal) keys by a function Parameters ---------- d : dict leaf_keys : list names of leaf keys func : callable function to apply, must take at least len(leaf_keys) arguments new_name : str new key name unflatten_level : int or None the number of levels to leave unflattened before combining, for instance if you need dicts as inputs (None means all) remove_lkeys: bool whether to remove original leaf_keys overwrite: bool whether to overwrite any existing new_name key list_of_dicts: bool treat list of dicts as additional branches deepcopy: bool deepcopy values kwargs : dict additional keywords to parse to function Examples -------- >>> from pprint import pprint >>> d = {'a':1,'b':2} >>> func = lambda x,y: x+y >>> pprint(combine_apply(d,['a','b'],func,'c')) {'c': 3} >>> pprint(combine_apply(d,['a','b'],func,'c',remove_lkeys=False)) {'a': 1, 'b': 2, 'c': 3} >>> d = {1:{'a':1,'b':2},2:{'a':4,'b':5},3:{'a':1}} >>> pprint(combine_apply(d,['a','b'],func,'c')) {1: {'c': 3}, 2: {'c': 9}, 3: {'a': 1}} >>> func2 = lambda x: sorted(list(x.keys())) >>> d2 = {'d':{'a':{'b':1,'c':2}}} >>> pprint(combine_apply(d2,['a'],func2,'a',unflatten_level=2)) {'d': {'a': ['b', 'c']}}
[ "combine", "values", "with", "certain", "leaf", "(", "terminal", ")", "keys", "by", "a", "function" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1511-L1585
chrisjsewell/jsonextended
jsonextended/edict.py
split_lists
def split_lists(d, split_keys, new_name='split', check_length=True, deepcopy=True): """split_lists key:list pairs into dicts for each item in the lists NB: will only split if all split_keys are present Parameters ---------- d : dict split_keys : list keys to split new_name : str top level key for split items check_length : bool if true, raise error if any lists are of a different length deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {'path_key':{'x':[1,2],'y':[3,4],'a':1}} >>> new_d = split_lists(d,['x','y']) >>> pprint(new_d) {'path_key': {'a': 1, 'split': [{'x': 1, 'y': 3}, {'x': 2, 'y': 4}]}} >>> split_lists(d,['x','a']) Traceback (most recent call last): ... ValueError: "a" data at the following path is not a list ('path_key',) >>> d2 = {'path_key':{'x':[1,7],'y':[3,4,5]}} >>> split_lists(d2,['x','y']) Traceback (most recent call last): ... ValueError: lists at the following path do not have the same size ('path_key',) """ # noqa: E501 flattened = flatten2d(d) new_d = {} for key, value in flattened.items(): if set(split_keys).issubset(value.keys()): # combine_d = {} combine_d = [] sub_d = {} length = None for subkey, subvalue in value.items(): if subkey in split_keys: if not isinstance(subvalue, list): raise ValueError( '"{0}" data at the following path is not a list ' '{1}'.format(subkey, key)) if check_length and length is not None: if len(subvalue) != length: raise ValueError( 'lists at the following path ' 'do not have the same size {0}'.format(key)) if length is None: combine_d = [{subkey: v} for v in subvalue] else: for item, val in zip(combine_d, subvalue): item[subkey] = val length = len(subvalue) # new_combine = {k:{subkey:v} # for k,v in enumerate(subvalue)} # combine_d = merge([combine_d,new_combine]) else: sub_d[subkey] = subvalue try: new_d[key] = merge([sub_d, {new_name: combine_d}]) except ValueError: raise ValueError( 'split data key: {0}, already exists at ' 'this level for {1}'.format(new_name, key)) else: new_d[key] = value return unflatten(new_d, deepcopy=deepcopy)
python
def split_lists(d, split_keys, new_name='split', check_length=True, deepcopy=True): """split_lists key:list pairs into dicts for each item in the lists NB: will only split if all split_keys are present Parameters ---------- d : dict split_keys : list keys to split new_name : str top level key for split items check_length : bool if true, raise error if any lists are of a different length deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {'path_key':{'x':[1,2],'y':[3,4],'a':1}} >>> new_d = split_lists(d,['x','y']) >>> pprint(new_d) {'path_key': {'a': 1, 'split': [{'x': 1, 'y': 3}, {'x': 2, 'y': 4}]}} >>> split_lists(d,['x','a']) Traceback (most recent call last): ... ValueError: "a" data at the following path is not a list ('path_key',) >>> d2 = {'path_key':{'x':[1,7],'y':[3,4,5]}} >>> split_lists(d2,['x','y']) Traceback (most recent call last): ... ValueError: lists at the following path do not have the same size ('path_key',) """ # noqa: E501 flattened = flatten2d(d) new_d = {} for key, value in flattened.items(): if set(split_keys).issubset(value.keys()): # combine_d = {} combine_d = [] sub_d = {} length = None for subkey, subvalue in value.items(): if subkey in split_keys: if not isinstance(subvalue, list): raise ValueError( '"{0}" data at the following path is not a list ' '{1}'.format(subkey, key)) if check_length and length is not None: if len(subvalue) != length: raise ValueError( 'lists at the following path ' 'do not have the same size {0}'.format(key)) if length is None: combine_d = [{subkey: v} for v in subvalue] else: for item, val in zip(combine_d, subvalue): item[subkey] = val length = len(subvalue) # new_combine = {k:{subkey:v} # for k,v in enumerate(subvalue)} # combine_d = merge([combine_d,new_combine]) else: sub_d[subkey] = subvalue try: new_d[key] = merge([sub_d, {new_name: combine_d}]) except ValueError: raise ValueError( 'split data key: {0}, already exists at ' 'this level for {1}'.format(new_name, key)) else: new_d[key] = value return unflatten(new_d, deepcopy=deepcopy)
[ "def", "split_lists", "(", "d", ",", "split_keys", ",", "new_name", "=", "'split'", ",", "check_length", "=", "True", ",", "deepcopy", "=", "True", ")", ":", "# noqa: E501", "flattened", "=", "flatten2d", "(", "d", ")", "new_d", "=", "{", "}", "for", "key", ",", "value", "in", "flattened", ".", "items", "(", ")", ":", "if", "set", "(", "split_keys", ")", ".", "issubset", "(", "value", ".", "keys", "(", ")", ")", ":", "# combine_d = {}", "combine_d", "=", "[", "]", "sub_d", "=", "{", "}", "length", "=", "None", "for", "subkey", ",", "subvalue", "in", "value", ".", "items", "(", ")", ":", "if", "subkey", "in", "split_keys", ":", "if", "not", "isinstance", "(", "subvalue", ",", "list", ")", ":", "raise", "ValueError", "(", "'\"{0}\" data at the following path is not a list '", "'{1}'", ".", "format", "(", "subkey", ",", "key", ")", ")", "if", "check_length", "and", "length", "is", "not", "None", ":", "if", "len", "(", "subvalue", ")", "!=", "length", ":", "raise", "ValueError", "(", "'lists at the following path '", "'do not have the same size {0}'", ".", "format", "(", "key", ")", ")", "if", "length", "is", "None", ":", "combine_d", "=", "[", "{", "subkey", ":", "v", "}", "for", "v", "in", "subvalue", "]", "else", ":", "for", "item", ",", "val", "in", "zip", "(", "combine_d", ",", "subvalue", ")", ":", "item", "[", "subkey", "]", "=", "val", "length", "=", "len", "(", "subvalue", ")", "# new_combine = {k:{subkey:v}", "# for k,v in enumerate(subvalue)}", "# combine_d = merge([combine_d,new_combine])", "else", ":", "sub_d", "[", "subkey", "]", "=", "subvalue", "try", ":", "new_d", "[", "key", "]", "=", "merge", "(", "[", "sub_d", ",", "{", "new_name", ":", "combine_d", "}", "]", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'split data key: {0}, already exists at '", "'this level for {1}'", ".", "format", "(", "new_name", ",", "key", ")", ")", "else", ":", "new_d", "[", "key", "]", "=", "value", "return", "unflatten", "(", "new_d", ",", "deepcopy", "=", "deepcopy", ")" ]
split_lists key:list pairs into dicts for each item in the lists NB: will only split if all split_keys are present Parameters ---------- d : dict split_keys : list keys to split new_name : str top level key for split items check_length : bool if true, raise error if any lists are of a different length deepcopy: bool deepcopy values Examples -------- >>> from pprint import pprint >>> d = {'path_key':{'x':[1,2],'y':[3,4],'a':1}} >>> new_d = split_lists(d,['x','y']) >>> pprint(new_d) {'path_key': {'a': 1, 'split': [{'x': 1, 'y': 3}, {'x': 2, 'y': 4}]}} >>> split_lists(d,['x','a']) Traceback (most recent call last): ... ValueError: "a" data at the following path is not a list ('path_key',) >>> d2 = {'path_key':{'x':[1,7],'y':[3,4,5]}} >>> split_lists(d2,['x','y']) Traceback (most recent call last): ... ValueError: lists at the following path do not have the same size ('path_key',)
[ "split_lists", "key", ":", "list", "pairs", "into", "dicts", "for", "each", "item", "in", "the", "lists", "NB", ":", "will", "only", "split", "if", "all", "split_keys", "are", "present" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1588-L1670
chrisjsewell/jsonextended
jsonextended/edict.py
combine_lists
def combine_lists(d, keys=None, deepcopy=True): """combine lists of dicts Parameters ---------- d : dict or list[dict] keys : list keys to combine (all if None) deepcopy: bool deepcopy values Example ------- >>> from pprint import pprint >>> d = {'path_key': {'a': 1, 'split': [{'x': 1, 'y': 3}, {'x': 2, 'y': 4}]}} >>> pprint(combine_lists(d,['split'])) {'path_key': {'a': 1, 'split': {'x': [1, 2], 'y': [3, 4]}}} >>> combine_lists([{"a":2}, {"a":1}]) {'a': [2, 1]} """ # noqa: E501 if isinstance(d, list): init_list = True d = {'dummy_key843': d} else: init_list = False flattened = flatten(d, list_of_dicts=None) for key, value in list(flattened.items()): if keys is not None: try: if not key[-1] in keys: continue except Exception: continue if not isinstance(value, list): continue if not all([is_dict_like(d) for d in value]): continue newd = {} for subdic in value: for subk, subv in subdic.items(): if subk not in newd: newd[subk] = [] newd[subk].append(subv) flattened[key] = newd final = unflatten(flattened, list_of_dicts=None, deepcopy=deepcopy) if init_list: return list(final.values())[0] else: return final
python
def combine_lists(d, keys=None, deepcopy=True): """combine lists of dicts Parameters ---------- d : dict or list[dict] keys : list keys to combine (all if None) deepcopy: bool deepcopy values Example ------- >>> from pprint import pprint >>> d = {'path_key': {'a': 1, 'split': [{'x': 1, 'y': 3}, {'x': 2, 'y': 4}]}} >>> pprint(combine_lists(d,['split'])) {'path_key': {'a': 1, 'split': {'x': [1, 2], 'y': [3, 4]}}} >>> combine_lists([{"a":2}, {"a":1}]) {'a': [2, 1]} """ # noqa: E501 if isinstance(d, list): init_list = True d = {'dummy_key843': d} else: init_list = False flattened = flatten(d, list_of_dicts=None) for key, value in list(flattened.items()): if keys is not None: try: if not key[-1] in keys: continue except Exception: continue if not isinstance(value, list): continue if not all([is_dict_like(d) for d in value]): continue newd = {} for subdic in value: for subk, subv in subdic.items(): if subk not in newd: newd[subk] = [] newd[subk].append(subv) flattened[key] = newd final = unflatten(flattened, list_of_dicts=None, deepcopy=deepcopy) if init_list: return list(final.values())[0] else: return final
[ "def", "combine_lists", "(", "d", ",", "keys", "=", "None", ",", "deepcopy", "=", "True", ")", ":", "# noqa: E501", "if", "isinstance", "(", "d", ",", "list", ")", ":", "init_list", "=", "True", "d", "=", "{", "'dummy_key843'", ":", "d", "}", "else", ":", "init_list", "=", "False", "flattened", "=", "flatten", "(", "d", ",", "list_of_dicts", "=", "None", ")", "for", "key", ",", "value", "in", "list", "(", "flattened", ".", "items", "(", ")", ")", ":", "if", "keys", "is", "not", "None", ":", "try", ":", "if", "not", "key", "[", "-", "1", "]", "in", "keys", ":", "continue", "except", "Exception", ":", "continue", "if", "not", "isinstance", "(", "value", ",", "list", ")", ":", "continue", "if", "not", "all", "(", "[", "is_dict_like", "(", "d", ")", "for", "d", "in", "value", "]", ")", ":", "continue", "newd", "=", "{", "}", "for", "subdic", "in", "value", ":", "for", "subk", ",", "subv", "in", "subdic", ".", "items", "(", ")", ":", "if", "subk", "not", "in", "newd", ":", "newd", "[", "subk", "]", "=", "[", "]", "newd", "[", "subk", "]", ".", "append", "(", "subv", ")", "flattened", "[", "key", "]", "=", "newd", "final", "=", "unflatten", "(", "flattened", ",", "list_of_dicts", "=", "None", ",", "deepcopy", "=", "deepcopy", ")", "if", "init_list", ":", "return", "list", "(", "final", ".", "values", "(", ")", ")", "[", "0", "]", "else", ":", "return", "final" ]
combine lists of dicts Parameters ---------- d : dict or list[dict] keys : list keys to combine (all if None) deepcopy: bool deepcopy values Example ------- >>> from pprint import pprint >>> d = {'path_key': {'a': 1, 'split': [{'x': 1, 'y': 3}, {'x': 2, 'y': 4}]}} >>> pprint(combine_lists(d,['split'])) {'path_key': {'a': 1, 'split': {'x': [1, 2], 'y': [3, 4]}}} >>> combine_lists([{"a":2}, {"a":1}]) {'a': [2, 1]}
[ "combine", "lists", "of", "dicts" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1673-L1727
chrisjsewell/jsonextended
jsonextended/edict.py
list_to_dict
def list_to_dict(lst, key=None, remove_key=True): """ convert a list of dicts to a dict with root keys Parameters ---------- lst : list[dict] key : str or None a key contained by all of the dicts if None use index number string remove_key : bool remove key from dicts in list Examples -------- >>> from pprint import pprint >>> lst = [{'name':'f','b':1},{'name':'g','c':2}] >>> pprint(list_to_dict(lst)) {'0': {'b': 1, 'name': 'f'}, '1': {'c': 2, 'name': 'g'}} >>> pprint(list_to_dict(lst,'name')) {'f': {'b': 1}, 'g': {'c': 2}} """ assert all([is_dict_like(d) for d in lst]) if key is not None: assert all([key in d for d in lst]) new_dict = {} for i, d in enumerate(lst): d = unflatten(flatten(d)) if key is None: new_dict[str(i)] = d else: if remove_key: k = d.pop(key) else: k = d[key] new_dict[k] = d return new_dict
python
def list_to_dict(lst, key=None, remove_key=True): """ convert a list of dicts to a dict with root keys Parameters ---------- lst : list[dict] key : str or None a key contained by all of the dicts if None use index number string remove_key : bool remove key from dicts in list Examples -------- >>> from pprint import pprint >>> lst = [{'name':'f','b':1},{'name':'g','c':2}] >>> pprint(list_to_dict(lst)) {'0': {'b': 1, 'name': 'f'}, '1': {'c': 2, 'name': 'g'}} >>> pprint(list_to_dict(lst,'name')) {'f': {'b': 1}, 'g': {'c': 2}} """ assert all([is_dict_like(d) for d in lst]) if key is not None: assert all([key in d for d in lst]) new_dict = {} for i, d in enumerate(lst): d = unflatten(flatten(d)) if key is None: new_dict[str(i)] = d else: if remove_key: k = d.pop(key) else: k = d[key] new_dict[k] = d return new_dict
[ "def", "list_to_dict", "(", "lst", ",", "key", "=", "None", ",", "remove_key", "=", "True", ")", ":", "assert", "all", "(", "[", "is_dict_like", "(", "d", ")", "for", "d", "in", "lst", "]", ")", "if", "key", "is", "not", "None", ":", "assert", "all", "(", "[", "key", "in", "d", "for", "d", "in", "lst", "]", ")", "new_dict", "=", "{", "}", "for", "i", ",", "d", "in", "enumerate", "(", "lst", ")", ":", "d", "=", "unflatten", "(", "flatten", "(", "d", ")", ")", "if", "key", "is", "None", ":", "new_dict", "[", "str", "(", "i", ")", "]", "=", "d", "else", ":", "if", "remove_key", ":", "k", "=", "d", ".", "pop", "(", "key", ")", "else", ":", "k", "=", "d", "[", "key", "]", "new_dict", "[", "k", "]", "=", "d", "return", "new_dict" ]
convert a list of dicts to a dict with root keys Parameters ---------- lst : list[dict] key : str or None a key contained by all of the dicts if None use index number string remove_key : bool remove key from dicts in list Examples -------- >>> from pprint import pprint >>> lst = [{'name':'f','b':1},{'name':'g','c':2}] >>> pprint(list_to_dict(lst)) {'0': {'b': 1, 'name': 'f'}, '1': {'c': 2, 'name': 'g'}} >>> pprint(list_to_dict(lst,'name')) {'f': {'b': 1}, 'g': {'c': 2}}
[ "convert", "a", "list", "of", "dicts", "to", "a", "dict", "with", "root", "keys" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1730-L1769
chrisjsewell/jsonextended
jsonextended/edict.py
diff
def diff(new_dict, old_dict, iter_prefix='__iter__', np_allclose=False, **kwargs): """ return the difference between two dict_like objects Parameters ---------- new_dict: dict old_dict: dict iter_prefix: str prefix to use for list and tuple indexes np_allclose: bool if True, try using numpy.allclose to assess differences **kwargs: keyword arguments to parse to numpy.allclose Returns ------- outcome: dict Containing none or more of: - "insertions" : list of (path, val) - "deletions" : list of (path, val) - "changes" : list of (path, (val1, val2)) - "uncomparable" : list of (path, (val1, val2)) Examples -------- >>> from pprint import pprint >>> diff({'a':1},{'a':1}) {} >>> pprint(diff({'a': 1, 'b': 2, 'c': 5},{'b': 3, 'c': 4, 'd': 6})) {'changes': [(('b',), (2, 3)), (('c',), (5, 4))], 'deletions': [(('d',), 6)], 'insertions': [(('a',), 1)]} >>> pprint(diff({'a': [{"b":1}, {"c":2}, 1]},{'a': [{"b":1}, {"d":2}, 2]})) {'changes': [(('a', '__iter__2'), (1, 2))], 'deletions': [(('a', '__iter__1', 'd'), 2)], 'insertions': [(('a', '__iter__1', 'c'), 2)]} >>> diff({'a':1}, {'a':1+1e-10}) {'changes': [(('a',), (1, 1.0000000001))]} >>> diff({'a':1}, {'a':1+1e-10}, np_allclose=True) {} """ if np_allclose: try: import numpy except ImportError: raise ValueError("to use np_allclose, numpy must be installed") dct1_flat = flatten(new_dict, all_iters=iter_prefix) dct2_flat = flatten(old_dict, all_iters=iter_prefix) outcome = {'insertions': [], 'deletions': [], 'changes': [], 'uncomparable': []} for path, val in dct1_flat.items(): if path not in dct2_flat: outcome['insertions'].append((path, val)) continue other_val = dct2_flat.pop(path) if np_allclose: try: if numpy.allclose(val, other_val, **kwargs): continue except Exception: pass try: if val != other_val: outcome['changes'].append((path, (val, other_val))) except Exception: outcome['uncomparable'].append((path, (val, other_val))) for path2, val2 in dct2_flat.items(): outcome['deletions'].append((path2, val2)) # remove any empty lists and sort for key in list(outcome.keys()): if not outcome[key]: outcome.pop(key) try: outcome[key] = sorted(outcome[key]) except Exception: pass return outcome
python
def diff(new_dict, old_dict, iter_prefix='__iter__', np_allclose=False, **kwargs): """ return the difference between two dict_like objects Parameters ---------- new_dict: dict old_dict: dict iter_prefix: str prefix to use for list and tuple indexes np_allclose: bool if True, try using numpy.allclose to assess differences **kwargs: keyword arguments to parse to numpy.allclose Returns ------- outcome: dict Containing none or more of: - "insertions" : list of (path, val) - "deletions" : list of (path, val) - "changes" : list of (path, (val1, val2)) - "uncomparable" : list of (path, (val1, val2)) Examples -------- >>> from pprint import pprint >>> diff({'a':1},{'a':1}) {} >>> pprint(diff({'a': 1, 'b': 2, 'c': 5},{'b': 3, 'c': 4, 'd': 6})) {'changes': [(('b',), (2, 3)), (('c',), (5, 4))], 'deletions': [(('d',), 6)], 'insertions': [(('a',), 1)]} >>> pprint(diff({'a': [{"b":1}, {"c":2}, 1]},{'a': [{"b":1}, {"d":2}, 2]})) {'changes': [(('a', '__iter__2'), (1, 2))], 'deletions': [(('a', '__iter__1', 'd'), 2)], 'insertions': [(('a', '__iter__1', 'c'), 2)]} >>> diff({'a':1}, {'a':1+1e-10}) {'changes': [(('a',), (1, 1.0000000001))]} >>> diff({'a':1}, {'a':1+1e-10}, np_allclose=True) {} """ if np_allclose: try: import numpy except ImportError: raise ValueError("to use np_allclose, numpy must be installed") dct1_flat = flatten(new_dict, all_iters=iter_prefix) dct2_flat = flatten(old_dict, all_iters=iter_prefix) outcome = {'insertions': [], 'deletions': [], 'changes': [], 'uncomparable': []} for path, val in dct1_flat.items(): if path not in dct2_flat: outcome['insertions'].append((path, val)) continue other_val = dct2_flat.pop(path) if np_allclose: try: if numpy.allclose(val, other_val, **kwargs): continue except Exception: pass try: if val != other_val: outcome['changes'].append((path, (val, other_val))) except Exception: outcome['uncomparable'].append((path, (val, other_val))) for path2, val2 in dct2_flat.items(): outcome['deletions'].append((path2, val2)) # remove any empty lists and sort for key in list(outcome.keys()): if not outcome[key]: outcome.pop(key) try: outcome[key] = sorted(outcome[key]) except Exception: pass return outcome
[ "def", "diff", "(", "new_dict", ",", "old_dict", ",", "iter_prefix", "=", "'__iter__'", ",", "np_allclose", "=", "False", ",", "*", "*", "kwargs", ")", ":", "if", "np_allclose", ":", "try", ":", "import", "numpy", "except", "ImportError", ":", "raise", "ValueError", "(", "\"to use np_allclose, numpy must be installed\"", ")", "dct1_flat", "=", "flatten", "(", "new_dict", ",", "all_iters", "=", "iter_prefix", ")", "dct2_flat", "=", "flatten", "(", "old_dict", ",", "all_iters", "=", "iter_prefix", ")", "outcome", "=", "{", "'insertions'", ":", "[", "]", ",", "'deletions'", ":", "[", "]", ",", "'changes'", ":", "[", "]", ",", "'uncomparable'", ":", "[", "]", "}", "for", "path", ",", "val", "in", "dct1_flat", ".", "items", "(", ")", ":", "if", "path", "not", "in", "dct2_flat", ":", "outcome", "[", "'insertions'", "]", ".", "append", "(", "(", "path", ",", "val", ")", ")", "continue", "other_val", "=", "dct2_flat", ".", "pop", "(", "path", ")", "if", "np_allclose", ":", "try", ":", "if", "numpy", ".", "allclose", "(", "val", ",", "other_val", ",", "*", "*", "kwargs", ")", ":", "continue", "except", "Exception", ":", "pass", "try", ":", "if", "val", "!=", "other_val", ":", "outcome", "[", "'changes'", "]", ".", "append", "(", "(", "path", ",", "(", "val", ",", "other_val", ")", ")", ")", "except", "Exception", ":", "outcome", "[", "'uncomparable'", "]", ".", "append", "(", "(", "path", ",", "(", "val", ",", "other_val", ")", ")", ")", "for", "path2", ",", "val2", "in", "dct2_flat", ".", "items", "(", ")", ":", "outcome", "[", "'deletions'", "]", ".", "append", "(", "(", "path2", ",", "val2", ")", ")", "# remove any empty lists and sort", "for", "key", "in", "list", "(", "outcome", ".", "keys", "(", ")", ")", ":", "if", "not", "outcome", "[", "key", "]", ":", "outcome", ".", "pop", "(", "key", ")", "try", ":", "outcome", "[", "key", "]", "=", "sorted", "(", "outcome", "[", "key", "]", ")", "except", "Exception", ":", "pass", "return", "outcome" ]
return the difference between two dict_like objects Parameters ---------- new_dict: dict old_dict: dict iter_prefix: str prefix to use for list and tuple indexes np_allclose: bool if True, try using numpy.allclose to assess differences **kwargs: keyword arguments to parse to numpy.allclose Returns ------- outcome: dict Containing none or more of: - "insertions" : list of (path, val) - "deletions" : list of (path, val) - "changes" : list of (path, (val1, val2)) - "uncomparable" : list of (path, (val1, val2)) Examples -------- >>> from pprint import pprint >>> diff({'a':1},{'a':1}) {} >>> pprint(diff({'a': 1, 'b': 2, 'c': 5},{'b': 3, 'c': 4, 'd': 6})) {'changes': [(('b',), (2, 3)), (('c',), (5, 4))], 'deletions': [(('d',), 6)], 'insertions': [(('a',), 1)]} >>> pprint(diff({'a': [{"b":1}, {"c":2}, 1]},{'a': [{"b":1}, {"d":2}, 2]})) {'changes': [(('a', '__iter__2'), (1, 2))], 'deletions': [(('a', '__iter__1', 'd'), 2)], 'insertions': [(('a', '__iter__1', 'c'), 2)]} >>> diff({'a':1}, {'a':1+1e-10}) {'changes': [(('a',), (1, 1.0000000001))]} >>> diff({'a':1}, {'a':1+1e-10}, np_allclose=True) {}
[ "return", "the", "difference", "between", "two", "dict_like", "objects" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1772-L1862
chrisjsewell/jsonextended
jsonextended/edict.py
to_json
def to_json(dct, jfile, overwrite=False, dirlevel=0, sort_keys=True, indent=2, default_name='root.json', **kwargs): """ output dict to json Parameters ---------- dct : dict jfile : str or file_like if file_like, must have write method overwrite : bool whether to overwrite existing files dirlevel : int if jfile is path to folder, defines how many key levels to set as sub-folders sort_keys : bool if true then the output of dictionaries will be sorted by key indent : int if non-negative integer, then JSON array elements and object members will be pretty-printed on new lines with that indent level spacing. kwargs : dict keywords for json.dump Examples -------- >>> from jsonextended.utils import MockPath >>> file_obj = MockPath('test.json',is_file=True,exists=False) >>> dct = {'a':{'b':1}} >>> to_json(dct, file_obj) >>> print(file_obj.to_string()) File("test.json") Contents: { "a": { "b": 1 } } >>> from jsonextended.utils import MockPath >>> folder_obj = MockPath() >>> dct = {'x':{'a':{'b':1},'c':{'d':3}}} >>> to_json(dct, folder_obj, dirlevel=0,indent=None) >>> print(folder_obj.to_string(file_content=True)) Folder("root") File("x.json") Contents: {"a": {"b": 1}, "c": {"d": 3}} >>> folder_obj = MockPath() >>> to_json(dct, folder_obj, dirlevel=1,indent=None) >>> print(folder_obj.to_string(file_content=True)) Folder("root") Folder("x") File("a.json") Contents: {"b": 1} File("c.json") Contents: {"d": 3} """ if hasattr(jfile, 'write'): json.dump(dct, jfile, sort_keys=sort_keys, indent=indent, default=encode) return if isinstance(jfile, basestring): path = pathlib.Path(jfile) else: path = jfile file_attrs = ['exists', 'is_dir', 'is_file', 'touch', 'open'] if not all([hasattr(path, attr) for attr in file_attrs]): raise ValueError( 'jfile should be a str or file_like object: {}'.format(jfile)) if path.is_file() and path.exists() and not overwrite: raise IOError('jfile already exists and ' 'overwrite is set to false: {}'.format(jfile)) if not path.is_dir() and dirlevel <= 0: path.touch() # try to create file if doesn't already exist with path.open('w') as outfile: outfile.write(unicode(json.dumps( dct, sort_keys=sort_keys, indent=indent, default=encode, **kwargs))) return if not path.is_dir(): path.mkdir() dirlevel -= 1 # if one or more values if not a nested dict if not all([hasattr(v, 'items') for v in dct.values()]): newpath = path.joinpath(default_name) newpath.touch() with newpath.open('w') as outfile: outfile.write(unicode(json.dumps( dct, sort_keys=sort_keys, indent=indent, default=encode, **kwargs))) return for key, val in dct.items(): if dirlevel <= 0: newpath = path.joinpath('{}.json'.format(key)) newpath.touch() with newpath.open('w') as outfile: outfile.write(unicode(json.dumps( val, ensure_ascii=False, sort_keys=sort_keys, indent=indent, default=encode, **kwargs))) else: newpath = path.joinpath('{}'.format(key)) if not newpath.exists(): newpath.mkdir() to_json(val, newpath, overwrite=overwrite, dirlevel=dirlevel - 1, sort_keys=sort_keys, indent=indent, default_name='{}.json'.format(key), **kwargs)
python
def to_json(dct, jfile, overwrite=False, dirlevel=0, sort_keys=True, indent=2, default_name='root.json', **kwargs): """ output dict to json Parameters ---------- dct : dict jfile : str or file_like if file_like, must have write method overwrite : bool whether to overwrite existing files dirlevel : int if jfile is path to folder, defines how many key levels to set as sub-folders sort_keys : bool if true then the output of dictionaries will be sorted by key indent : int if non-negative integer, then JSON array elements and object members will be pretty-printed on new lines with that indent level spacing. kwargs : dict keywords for json.dump Examples -------- >>> from jsonextended.utils import MockPath >>> file_obj = MockPath('test.json',is_file=True,exists=False) >>> dct = {'a':{'b':1}} >>> to_json(dct, file_obj) >>> print(file_obj.to_string()) File("test.json") Contents: { "a": { "b": 1 } } >>> from jsonextended.utils import MockPath >>> folder_obj = MockPath() >>> dct = {'x':{'a':{'b':1},'c':{'d':3}}} >>> to_json(dct, folder_obj, dirlevel=0,indent=None) >>> print(folder_obj.to_string(file_content=True)) Folder("root") File("x.json") Contents: {"a": {"b": 1}, "c": {"d": 3}} >>> folder_obj = MockPath() >>> to_json(dct, folder_obj, dirlevel=1,indent=None) >>> print(folder_obj.to_string(file_content=True)) Folder("root") Folder("x") File("a.json") Contents: {"b": 1} File("c.json") Contents: {"d": 3} """ if hasattr(jfile, 'write'): json.dump(dct, jfile, sort_keys=sort_keys, indent=indent, default=encode) return if isinstance(jfile, basestring): path = pathlib.Path(jfile) else: path = jfile file_attrs = ['exists', 'is_dir', 'is_file', 'touch', 'open'] if not all([hasattr(path, attr) for attr in file_attrs]): raise ValueError( 'jfile should be a str or file_like object: {}'.format(jfile)) if path.is_file() and path.exists() and not overwrite: raise IOError('jfile already exists and ' 'overwrite is set to false: {}'.format(jfile)) if not path.is_dir() and dirlevel <= 0: path.touch() # try to create file if doesn't already exist with path.open('w') as outfile: outfile.write(unicode(json.dumps( dct, sort_keys=sort_keys, indent=indent, default=encode, **kwargs))) return if not path.is_dir(): path.mkdir() dirlevel -= 1 # if one or more values if not a nested dict if not all([hasattr(v, 'items') for v in dct.values()]): newpath = path.joinpath(default_name) newpath.touch() with newpath.open('w') as outfile: outfile.write(unicode(json.dumps( dct, sort_keys=sort_keys, indent=indent, default=encode, **kwargs))) return for key, val in dct.items(): if dirlevel <= 0: newpath = path.joinpath('{}.json'.format(key)) newpath.touch() with newpath.open('w') as outfile: outfile.write(unicode(json.dumps( val, ensure_ascii=False, sort_keys=sort_keys, indent=indent, default=encode, **kwargs))) else: newpath = path.joinpath('{}'.format(key)) if not newpath.exists(): newpath.mkdir() to_json(val, newpath, overwrite=overwrite, dirlevel=dirlevel - 1, sort_keys=sort_keys, indent=indent, default_name='{}.json'.format(key), **kwargs)
[ "def", "to_json", "(", "dct", ",", "jfile", ",", "overwrite", "=", "False", ",", "dirlevel", "=", "0", ",", "sort_keys", "=", "True", ",", "indent", "=", "2", ",", "default_name", "=", "'root.json'", ",", "*", "*", "kwargs", ")", ":", "if", "hasattr", "(", "jfile", ",", "'write'", ")", ":", "json", ".", "dump", "(", "dct", ",", "jfile", ",", "sort_keys", "=", "sort_keys", ",", "indent", "=", "indent", ",", "default", "=", "encode", ")", "return", "if", "isinstance", "(", "jfile", ",", "basestring", ")", ":", "path", "=", "pathlib", ".", "Path", "(", "jfile", ")", "else", ":", "path", "=", "jfile", "file_attrs", "=", "[", "'exists'", ",", "'is_dir'", ",", "'is_file'", ",", "'touch'", ",", "'open'", "]", "if", "not", "all", "(", "[", "hasattr", "(", "path", ",", "attr", ")", "for", "attr", "in", "file_attrs", "]", ")", ":", "raise", "ValueError", "(", "'jfile should be a str or file_like object: {}'", ".", "format", "(", "jfile", ")", ")", "if", "path", ".", "is_file", "(", ")", "and", "path", ".", "exists", "(", ")", "and", "not", "overwrite", ":", "raise", "IOError", "(", "'jfile already exists and '", "'overwrite is set to false: {}'", ".", "format", "(", "jfile", ")", ")", "if", "not", "path", ".", "is_dir", "(", ")", "and", "dirlevel", "<=", "0", ":", "path", ".", "touch", "(", ")", "# try to create file if doesn't already exist", "with", "path", ".", "open", "(", "'w'", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "unicode", "(", "json", ".", "dumps", "(", "dct", ",", "sort_keys", "=", "sort_keys", ",", "indent", "=", "indent", ",", "default", "=", "encode", ",", "*", "*", "kwargs", ")", ")", ")", "return", "if", "not", "path", ".", "is_dir", "(", ")", ":", "path", ".", "mkdir", "(", ")", "dirlevel", "-=", "1", "# if one or more values if not a nested dict", "if", "not", "all", "(", "[", "hasattr", "(", "v", ",", "'items'", ")", "for", "v", "in", "dct", ".", "values", "(", ")", "]", ")", ":", "newpath", "=", "path", ".", "joinpath", "(", "default_name", ")", "newpath", ".", "touch", "(", ")", "with", "newpath", ".", "open", "(", "'w'", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "unicode", "(", "json", ".", "dumps", "(", "dct", ",", "sort_keys", "=", "sort_keys", ",", "indent", "=", "indent", ",", "default", "=", "encode", ",", "*", "*", "kwargs", ")", ")", ")", "return", "for", "key", ",", "val", "in", "dct", ".", "items", "(", ")", ":", "if", "dirlevel", "<=", "0", ":", "newpath", "=", "path", ".", "joinpath", "(", "'{}.json'", ".", "format", "(", "key", ")", ")", "newpath", ".", "touch", "(", ")", "with", "newpath", ".", "open", "(", "'w'", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "unicode", "(", "json", ".", "dumps", "(", "val", ",", "ensure_ascii", "=", "False", ",", "sort_keys", "=", "sort_keys", ",", "indent", "=", "indent", ",", "default", "=", "encode", ",", "*", "*", "kwargs", ")", ")", ")", "else", ":", "newpath", "=", "path", ".", "joinpath", "(", "'{}'", ".", "format", "(", "key", ")", ")", "if", "not", "newpath", ".", "exists", "(", ")", ":", "newpath", ".", "mkdir", "(", ")", "to_json", "(", "val", ",", "newpath", ",", "overwrite", "=", "overwrite", ",", "dirlevel", "=", "dirlevel", "-", "1", ",", "sort_keys", "=", "sort_keys", ",", "indent", "=", "indent", ",", "default_name", "=", "'{}.json'", ".", "format", "(", "key", ")", ",", "*", "*", "kwargs", ")" ]
output dict to json Parameters ---------- dct : dict jfile : str or file_like if file_like, must have write method overwrite : bool whether to overwrite existing files dirlevel : int if jfile is path to folder, defines how many key levels to set as sub-folders sort_keys : bool if true then the output of dictionaries will be sorted by key indent : int if non-negative integer, then JSON array elements and object members will be pretty-printed on new lines with that indent level spacing. kwargs : dict keywords for json.dump Examples -------- >>> from jsonextended.utils import MockPath >>> file_obj = MockPath('test.json',is_file=True,exists=False) >>> dct = {'a':{'b':1}} >>> to_json(dct, file_obj) >>> print(file_obj.to_string()) File("test.json") Contents: { "a": { "b": 1 } } >>> from jsonextended.utils import MockPath >>> folder_obj = MockPath() >>> dct = {'x':{'a':{'b':1},'c':{'d':3}}} >>> to_json(dct, folder_obj, dirlevel=0,indent=None) >>> print(folder_obj.to_string(file_content=True)) Folder("root") File("x.json") Contents: {"a": {"b": 1}, "c": {"d": 3}} >>> folder_obj = MockPath() >>> to_json(dct, folder_obj, dirlevel=1,indent=None) >>> print(folder_obj.to_string(file_content=True)) Folder("root") Folder("x") File("a.json") Contents: {"b": 1} File("c.json") Contents: {"d": 3}
[ "output", "dict", "to", "json" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1865-L1978
chrisjsewell/jsonextended
jsonextended/edict.py
dump
def dump(dct, jfile, overwrite=False, dirlevel=0, sort_keys=True, indent=2, default_name='root.json', **kwargs): """ output dict to json Parameters ---------- dct : dict jfile : str or file_like if file_like, must have write method overwrite : bool whether to overwrite existing files dirlevel : int if jfile is path to folder, defines how many key levels to set as sub-folders sort_keys : bool if true then the output of dictionaries will be sorted by key indent : int if non-negative integer, then JSON array elements and object members will be pretty-printed on new lines with that indent level spacing. kwargs : dict keywords for json.dump """ to_json(dct, jfile, overwrite=overwrite, dirlevel=dirlevel, sort_keys=sort_keys, indent=indent, default_name=default_name, **kwargs)
python
def dump(dct, jfile, overwrite=False, dirlevel=0, sort_keys=True, indent=2, default_name='root.json', **kwargs): """ output dict to json Parameters ---------- dct : dict jfile : str or file_like if file_like, must have write method overwrite : bool whether to overwrite existing files dirlevel : int if jfile is path to folder, defines how many key levels to set as sub-folders sort_keys : bool if true then the output of dictionaries will be sorted by key indent : int if non-negative integer, then JSON array elements and object members will be pretty-printed on new lines with that indent level spacing. kwargs : dict keywords for json.dump """ to_json(dct, jfile, overwrite=overwrite, dirlevel=dirlevel, sort_keys=sort_keys, indent=indent, default_name=default_name, **kwargs)
[ "def", "dump", "(", "dct", ",", "jfile", ",", "overwrite", "=", "False", ",", "dirlevel", "=", "0", ",", "sort_keys", "=", "True", ",", "indent", "=", "2", ",", "default_name", "=", "'root.json'", ",", "*", "*", "kwargs", ")", ":", "to_json", "(", "dct", ",", "jfile", ",", "overwrite", "=", "overwrite", ",", "dirlevel", "=", "dirlevel", ",", "sort_keys", "=", "sort_keys", ",", "indent", "=", "indent", ",", "default_name", "=", "default_name", ",", "*", "*", "kwargs", ")" ]
output dict to json Parameters ---------- dct : dict jfile : str or file_like if file_like, must have write method overwrite : bool whether to overwrite existing files dirlevel : int if jfile is path to folder, defines how many key levels to set as sub-folders sort_keys : bool if true then the output of dictionaries will be sorted by key indent : int if non-negative integer, then JSON array elements and object members will be pretty-printed on new lines with that indent level spacing. kwargs : dict keywords for json.dump
[ "output", "dict", "to", "json" ]
train
https://github.com/chrisjsewell/jsonextended/blob/c3a7a880cc09789b3c61204265dcbb127be76c8a/jsonextended/edict.py#L1981-L2005
bjodah/pycompilation
pycompilation/util.py
expand_collection_in_dict
def expand_collection_in_dict(d, key, new_items, no_duplicates=True): """ Parameters d: dict dict in which a key will be inserted/expanded key: hashable key in d new_items: iterable d[key] will be extended with items in new_items no_duplicates: bool avoid inserting duplicates in d[key] (default: True) """ if key in d: if no_duplicates: new_items = filter(lambda x: x not in d[key], new_items) if isinstance(d[key], set): map(d[key].add, new_items) elif isinstance(d[key], list): map(d[key].append, new_items) else: d[key] = d[key] + new_items else: d[key] = new_items
python
def expand_collection_in_dict(d, key, new_items, no_duplicates=True): """ Parameters d: dict dict in which a key will be inserted/expanded key: hashable key in d new_items: iterable d[key] will be extended with items in new_items no_duplicates: bool avoid inserting duplicates in d[key] (default: True) """ if key in d: if no_duplicates: new_items = filter(lambda x: x not in d[key], new_items) if isinstance(d[key], set): map(d[key].add, new_items) elif isinstance(d[key], list): map(d[key].append, new_items) else: d[key] = d[key] + new_items else: d[key] = new_items
[ "def", "expand_collection_in_dict", "(", "d", ",", "key", ",", "new_items", ",", "no_duplicates", "=", "True", ")", ":", "if", "key", "in", "d", ":", "if", "no_duplicates", ":", "new_items", "=", "filter", "(", "lambda", "x", ":", "x", "not", "in", "d", "[", "key", "]", ",", "new_items", ")", "if", "isinstance", "(", "d", "[", "key", "]", ",", "set", ")", ":", "map", "(", "d", "[", "key", "]", ".", "add", ",", "new_items", ")", "elif", "isinstance", "(", "d", "[", "key", "]", ",", "list", ")", ":", "map", "(", "d", "[", "key", "]", ".", "append", ",", "new_items", ")", "else", ":", "d", "[", "key", "]", "=", "d", "[", "key", "]", "+", "new_items", "else", ":", "d", "[", "key", "]", "=", "new_items" ]
Parameters d: dict dict in which a key will be inserted/expanded key: hashable key in d new_items: iterable d[key] will be extended with items in new_items no_duplicates: bool avoid inserting duplicates in d[key] (default: True)
[ "Parameters", "d", ":", "dict", "dict", "in", "which", "a", "key", "will", "be", "inserted", "/", "expanded", "key", ":", "hashable", "key", "in", "d", "new_items", ":", "iterable", "d", "[", "key", "]", "will", "be", "extended", "with", "items", "in", "new_items", "no_duplicates", ":", "bool", "avoid", "inserting", "duplicates", "in", "d", "[", "key", "]", "(", "default", ":", "True", ")" ]
train
https://github.com/bjodah/pycompilation/blob/43eac8d82f8258d30d4df77fd2ad3f3e4f4dca18/pycompilation/util.py#L22-L44
bjodah/pycompilation
pycompilation/util.py
copy
def copy(src, dst, only_update=False, copystat=True, cwd=None, dest_is_dir=False, create_dest_dirs=False, logger=None): """ Augmented shutil.copy with extra options and slightly modified behaviour Parameters ========== src: string path to source file dst: string path to destingation only_update: bool only copy if source is newer than destination (returns None if it was newer), default: False copystat: bool See shutil.copystat. default: True cwd: string Path to working directory (root of relative paths) dest_is_dir: bool ensures that dst is treated as a directory. default: False create_dest_dirs: bool creates directories if needed. logger: logging.Looger debug level info emitted. Passed onto make_dirs. Returns ======= Path to the copied file. """ # Handle virtual working directory if cwd: if not os.path.isabs(src): src = os.path.join(cwd, src) if not os.path.isabs(dst): dst = os.path.join(cwd, dst) # Make sure source file extists if not os.path.exists(src): # Source needs to exist msg = "Source: `{}` does not exist".format(src) raise FileNotFoundError(msg) # We accept both (re)naming destination file _or_ # passing a (possible non-existant) destination directory if dest_is_dir: if not dst[-1] == '/': dst = dst+'/' else: if os.path.exists(dst) and os.path.isdir(dst): dest_is_dir = True if dest_is_dir: dest_dir = dst dest_fname = os.path.basename(src) dst = os.path.join(dest_dir, dest_fname) else: dest_dir = os.path.dirname(dst) dest_fname = os.path.basename(dst) if not os.path.exists(dest_dir): if create_dest_dirs: make_dirs(dest_dir, logger=logger) else: msg = "You must create directory first." raise FileNotFoundError(msg) if only_update: if not missing_or_other_newer(dst, src): if logger: logger.debug( "Did not copy {} to {} (source not newer)".format( src, dst)) return if os.path.islink(dst): if os.path.abspath(os.path.realpath(dst)) == \ os.path.abspath(dst): pass # destination is a symlic pointing to src else: if logger: logger.debug("Copying {} to {}".format(src, dst)) shutil.copy(src, dst) if copystat: shutil.copystat(src, dst) return dst
python
def copy(src, dst, only_update=False, copystat=True, cwd=None, dest_is_dir=False, create_dest_dirs=False, logger=None): """ Augmented shutil.copy with extra options and slightly modified behaviour Parameters ========== src: string path to source file dst: string path to destingation only_update: bool only copy if source is newer than destination (returns None if it was newer), default: False copystat: bool See shutil.copystat. default: True cwd: string Path to working directory (root of relative paths) dest_is_dir: bool ensures that dst is treated as a directory. default: False create_dest_dirs: bool creates directories if needed. logger: logging.Looger debug level info emitted. Passed onto make_dirs. Returns ======= Path to the copied file. """ # Handle virtual working directory if cwd: if not os.path.isabs(src): src = os.path.join(cwd, src) if not os.path.isabs(dst): dst = os.path.join(cwd, dst) # Make sure source file extists if not os.path.exists(src): # Source needs to exist msg = "Source: `{}` does not exist".format(src) raise FileNotFoundError(msg) # We accept both (re)naming destination file _or_ # passing a (possible non-existant) destination directory if dest_is_dir: if not dst[-1] == '/': dst = dst+'/' else: if os.path.exists(dst) and os.path.isdir(dst): dest_is_dir = True if dest_is_dir: dest_dir = dst dest_fname = os.path.basename(src) dst = os.path.join(dest_dir, dest_fname) else: dest_dir = os.path.dirname(dst) dest_fname = os.path.basename(dst) if not os.path.exists(dest_dir): if create_dest_dirs: make_dirs(dest_dir, logger=logger) else: msg = "You must create directory first." raise FileNotFoundError(msg) if only_update: if not missing_or_other_newer(dst, src): if logger: logger.debug( "Did not copy {} to {} (source not newer)".format( src, dst)) return if os.path.islink(dst): if os.path.abspath(os.path.realpath(dst)) == \ os.path.abspath(dst): pass # destination is a symlic pointing to src else: if logger: logger.debug("Copying {} to {}".format(src, dst)) shutil.copy(src, dst) if copystat: shutil.copystat(src, dst) return dst
[ "def", "copy", "(", "src", ",", "dst", ",", "only_update", "=", "False", ",", "copystat", "=", "True", ",", "cwd", "=", "None", ",", "dest_is_dir", "=", "False", ",", "create_dest_dirs", "=", "False", ",", "logger", "=", "None", ")", ":", "# Handle virtual working directory", "if", "cwd", ":", "if", "not", "os", ".", "path", ".", "isabs", "(", "src", ")", ":", "src", "=", "os", ".", "path", ".", "join", "(", "cwd", ",", "src", ")", "if", "not", "os", ".", "path", ".", "isabs", "(", "dst", ")", ":", "dst", "=", "os", ".", "path", ".", "join", "(", "cwd", ",", "dst", ")", "# Make sure source file extists", "if", "not", "os", ".", "path", ".", "exists", "(", "src", ")", ":", "# Source needs to exist", "msg", "=", "\"Source: `{}` does not exist\"", ".", "format", "(", "src", ")", "raise", "FileNotFoundError", "(", "msg", ")", "# We accept both (re)naming destination file _or_", "# passing a (possible non-existant) destination directory", "if", "dest_is_dir", ":", "if", "not", "dst", "[", "-", "1", "]", "==", "'/'", ":", "dst", "=", "dst", "+", "'/'", "else", ":", "if", "os", ".", "path", ".", "exists", "(", "dst", ")", "and", "os", ".", "path", ".", "isdir", "(", "dst", ")", ":", "dest_is_dir", "=", "True", "if", "dest_is_dir", ":", "dest_dir", "=", "dst", "dest_fname", "=", "os", ".", "path", ".", "basename", "(", "src", ")", "dst", "=", "os", ".", "path", ".", "join", "(", "dest_dir", ",", "dest_fname", ")", "else", ":", "dest_dir", "=", "os", ".", "path", ".", "dirname", "(", "dst", ")", "dest_fname", "=", "os", ".", "path", ".", "basename", "(", "dst", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "dest_dir", ")", ":", "if", "create_dest_dirs", ":", "make_dirs", "(", "dest_dir", ",", "logger", "=", "logger", ")", "else", ":", "msg", "=", "\"You must create directory first.\"", "raise", "FileNotFoundError", "(", "msg", ")", "if", "only_update", ":", "if", "not", "missing_or_other_newer", "(", "dst", ",", "src", ")", ":", "if", "logger", ":", "logger", ".", "debug", "(", "\"Did not copy {} to {} (source not newer)\"", ".", "format", "(", "src", ",", "dst", ")", ")", "return", "if", "os", ".", "path", ".", "islink", "(", "dst", ")", ":", "if", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "realpath", "(", "dst", ")", ")", "==", "os", ".", "path", ".", "abspath", "(", "dst", ")", ":", "pass", "# destination is a symlic pointing to src", "else", ":", "if", "logger", ":", "logger", ".", "debug", "(", "\"Copying {} to {}\"", ".", "format", "(", "src", ",", "dst", ")", ")", "shutil", ".", "copy", "(", "src", ",", "dst", ")", "if", "copystat", ":", "shutil", ".", "copystat", "(", "src", ",", "dst", ")", "return", "dst" ]
Augmented shutil.copy with extra options and slightly modified behaviour Parameters ========== src: string path to source file dst: string path to destingation only_update: bool only copy if source is newer than destination (returns None if it was newer), default: False copystat: bool See shutil.copystat. default: True cwd: string Path to working directory (root of relative paths) dest_is_dir: bool ensures that dst is treated as a directory. default: False create_dest_dirs: bool creates directories if needed. logger: logging.Looger debug level info emitted. Passed onto make_dirs. Returns ======= Path to the copied file.
[ "Augmented", "shutil", ".", "copy", "with", "extra", "options", "and", "slightly", "modified", "behaviour" ]
train
https://github.com/bjodah/pycompilation/blob/43eac8d82f8258d30d4df77fd2ad3f3e4f4dca18/pycompilation/util.py#L92-L178
bjodah/pycompilation
pycompilation/util.py
md5_of_file
def md5_of_file(path, nblocks=128): """ Computes the md5 hash of a file. Parameters ========== path: string path to file to compute hash of Returns ======= hashlib md5 hash object. Use .digest() or .hexdigest() on returned object to get binary or hex encoded string. """ md = md5() with open(path, 'rb') as f: for chunk in iter(lambda: f.read(nblocks*md.block_size), b''): md.update(chunk) return md
python
def md5_of_file(path, nblocks=128): """ Computes the md5 hash of a file. Parameters ========== path: string path to file to compute hash of Returns ======= hashlib md5 hash object. Use .digest() or .hexdigest() on returned object to get binary or hex encoded string. """ md = md5() with open(path, 'rb') as f: for chunk in iter(lambda: f.read(nblocks*md.block_size), b''): md.update(chunk) return md
[ "def", "md5_of_file", "(", "path", ",", "nblocks", "=", "128", ")", ":", "md", "=", "md5", "(", ")", "with", "open", "(", "path", ",", "'rb'", ")", "as", "f", ":", "for", "chunk", "in", "iter", "(", "lambda", ":", "f", ".", "read", "(", "nblocks", "*", "md", ".", "block_size", ")", ",", "b''", ")", ":", "md", ".", "update", "(", "chunk", ")", "return", "md" ]
Computes the md5 hash of a file. Parameters ========== path: string path to file to compute hash of Returns ======= hashlib md5 hash object. Use .digest() or .hexdigest() on returned object to get binary or hex encoded string.
[ "Computes", "the", "md5", "hash", "of", "a", "file", "." ]
train
https://github.com/bjodah/pycompilation/blob/43eac8d82f8258d30d4df77fd2ad3f3e4f4dca18/pycompilation/util.py#L181-L199
bjodah/pycompilation
pycompilation/util.py
missing_or_other_newer
def missing_or_other_newer(path, other_path, cwd=None): """ Investigate if path is non-existant or older than provided reference path. Parameters ========== path: string path to path which might be missing or too old other_path: string reference path cwd: string working directory (root of relative paths) Returns ======= True if path is older or missing. """ cwd = cwd or '.' path = get_abspath(path, cwd=cwd) other_path = get_abspath(other_path, cwd=cwd) if not os.path.exists(path): return True if os.path.getmtime(other_path) - 1e-6 >= os.path.getmtime(path): # 1e-6 is needed beacuse http://stackoverflow.com/questions/17086426/ return True return False
python
def missing_or_other_newer(path, other_path, cwd=None): """ Investigate if path is non-existant or older than provided reference path. Parameters ========== path: string path to path which might be missing or too old other_path: string reference path cwd: string working directory (root of relative paths) Returns ======= True if path is older or missing. """ cwd = cwd or '.' path = get_abspath(path, cwd=cwd) other_path = get_abspath(other_path, cwd=cwd) if not os.path.exists(path): return True if os.path.getmtime(other_path) - 1e-6 >= os.path.getmtime(path): # 1e-6 is needed beacuse http://stackoverflow.com/questions/17086426/ return True return False
[ "def", "missing_or_other_newer", "(", "path", ",", "other_path", ",", "cwd", "=", "None", ")", ":", "cwd", "=", "cwd", "or", "'.'", "path", "=", "get_abspath", "(", "path", ",", "cwd", "=", "cwd", ")", "other_path", "=", "get_abspath", "(", "other_path", ",", "cwd", "=", "cwd", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "return", "True", "if", "os", ".", "path", ".", "getmtime", "(", "other_path", ")", "-", "1e-6", ">=", "os", ".", "path", ".", "getmtime", "(", "path", ")", ":", "# 1e-6 is needed beacuse http://stackoverflow.com/questions/17086426/", "return", "True", "return", "False" ]
Investigate if path is non-existant or older than provided reference path. Parameters ========== path: string path to path which might be missing or too old other_path: string reference path cwd: string working directory (root of relative paths) Returns ======= True if path is older or missing.
[ "Investigate", "if", "path", "is", "non", "-", "existant", "or", "older", "than", "provided", "reference", "path", "." ]
train
https://github.com/bjodah/pycompilation/blob/43eac8d82f8258d30d4df77fd2ad3f3e4f4dca18/pycompilation/util.py#L208-L234
bjodah/pycompilation
pycompilation/util.py
import_module_from_file
def import_module_from_file(filename, only_if_newer_than=None): """ Imports (cython generated) shared object file (.so) Provide a list of paths in `only_if_newer_than` to check timestamps of dependencies. import_ raises an ImportError if any is newer. Word of warning: Python's caching or the OS caching (unclear to author) is horrible for reimporting same path of an .so file. It will not detect the new time stamp nor new checksum but will use old module. Use unique names for this reason. Parameters ========== filename: string path to shared object only_if_newer_than: iterable of strings paths to dependencies of the shared object Raises ====== ImportError if any of the files specified in only_if_newer_than are newer than the file given by filename. """ import imp path, name = os.path.split(filename) name, ext = os.path.splitext(name) name = name.split('.')[0] fobj, filename, data = imp.find_module(name, [path]) if only_if_newer_than: for dep in only_if_newer_than: if os.path.getmtime(filename) < os.path.getmtime(dep): raise ImportError("{} is newer than {}".format(dep, filename)) mod = imp.load_module(name, fobj, filename, data) return mod
python
def import_module_from_file(filename, only_if_newer_than=None): """ Imports (cython generated) shared object file (.so) Provide a list of paths in `only_if_newer_than` to check timestamps of dependencies. import_ raises an ImportError if any is newer. Word of warning: Python's caching or the OS caching (unclear to author) is horrible for reimporting same path of an .so file. It will not detect the new time stamp nor new checksum but will use old module. Use unique names for this reason. Parameters ========== filename: string path to shared object only_if_newer_than: iterable of strings paths to dependencies of the shared object Raises ====== ImportError if any of the files specified in only_if_newer_than are newer than the file given by filename. """ import imp path, name = os.path.split(filename) name, ext = os.path.splitext(name) name = name.split('.')[0] fobj, filename, data = imp.find_module(name, [path]) if only_if_newer_than: for dep in only_if_newer_than: if os.path.getmtime(filename) < os.path.getmtime(dep): raise ImportError("{} is newer than {}".format(dep, filename)) mod = imp.load_module(name, fobj, filename, data) return mod
[ "def", "import_module_from_file", "(", "filename", ",", "only_if_newer_than", "=", "None", ")", ":", "import", "imp", "path", ",", "name", "=", "os", ".", "path", ".", "split", "(", "filename", ")", "name", ",", "ext", "=", "os", ".", "path", ".", "splitext", "(", "name", ")", "name", "=", "name", ".", "split", "(", "'.'", ")", "[", "0", "]", "fobj", ",", "filename", ",", "data", "=", "imp", ".", "find_module", "(", "name", ",", "[", "path", "]", ")", "if", "only_if_newer_than", ":", "for", "dep", "in", "only_if_newer_than", ":", "if", "os", ".", "path", ".", "getmtime", "(", "filename", ")", "<", "os", ".", "path", ".", "getmtime", "(", "dep", ")", ":", "raise", "ImportError", "(", "\"{} is newer than {}\"", ".", "format", "(", "dep", ",", "filename", ")", ")", "mod", "=", "imp", ".", "load_module", "(", "name", ",", "fobj", ",", "filename", ",", "data", ")", "return", "mod" ]
Imports (cython generated) shared object file (.so) Provide a list of paths in `only_if_newer_than` to check timestamps of dependencies. import_ raises an ImportError if any is newer. Word of warning: Python's caching or the OS caching (unclear to author) is horrible for reimporting same path of an .so file. It will not detect the new time stamp nor new checksum but will use old module. Use unique names for this reason. Parameters ========== filename: string path to shared object only_if_newer_than: iterable of strings paths to dependencies of the shared object Raises ====== ImportError if any of the files specified in only_if_newer_than are newer than the file given by filename.
[ "Imports", "(", "cython", "generated", ")", "shared", "object", "file", "(", ".", "so", ")" ]
train
https://github.com/bjodah/pycompilation/blob/43eac8d82f8258d30d4df77fd2ad3f3e4f4dca18/pycompilation/util.py#L281-L318