repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
sequencelengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
sequencelengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
lalinsky/python-phoenixdb
phoenixdb/avatica/client.py
AvaticaClient.prepare
def prepare(self, connection_id, sql, max_rows_total=None): """Prepares a statement. :param connection_id: ID of the current connection. :param sql: SQL query. :param max_rows_total: The maximum number of rows that will be allowed for this query. :returns: Signature of the prepared statement. """ request = requests_pb2.PrepareRequest() request.connection_id = connection_id request.sql = sql if max_rows_total is not None: request.max_rows_total = max_rows_total response_data = self._apply(request) response = responses_pb2.PrepareResponse() response.ParseFromString(response_data) return response.statement
python
def prepare(self, connection_id, sql, max_rows_total=None): """Prepares a statement. :param connection_id: ID of the current connection. :param sql: SQL query. :param max_rows_total: The maximum number of rows that will be allowed for this query. :returns: Signature of the prepared statement. """ request = requests_pb2.PrepareRequest() request.connection_id = connection_id request.sql = sql if max_rows_total is not None: request.max_rows_total = max_rows_total response_data = self._apply(request) response = responses_pb2.PrepareResponse() response.ParseFromString(response_data) return response.statement
[ "def", "prepare", "(", "self", ",", "connection_id", ",", "sql", ",", "max_rows_total", "=", "None", ")", ":", "request", "=", "requests_pb2", ".", "PrepareRequest", "(", ")", "request", ".", "connection_id", "=", "connection_id", "request", ".", "sql", "=", "sql", "if", "max_rows_total", "is", "not", "None", ":", "request", ".", "max_rows_total", "=", "max_rows_total", "response_data", "=", "self", ".", "_apply", "(", "request", ")", "response", "=", "responses_pb2", ".", "PrepareResponse", "(", ")", "response", ".", "ParseFromString", "(", "response_data", ")", "return", "response", ".", "statement" ]
Prepares a statement. :param connection_id: ID of the current connection. :param sql: SQL query. :param max_rows_total: The maximum number of rows that will be allowed for this query. :returns: Signature of the prepared statement.
[ "Prepares", "a", "statement", "." ]
train
https://github.com/lalinsky/python-phoenixdb/blob/1bb34488dd530ca65f91b29ef16aa7b71f26b806/phoenixdb/avatica/client.py#L410-L434
lalinsky/python-phoenixdb
phoenixdb/avatica/client.py
AvaticaClient.execute
def execute(self, connection_id, statement_id, signature, parameter_values=None, first_frame_max_size=None): """Returns a frame of rows. The frame describes whether there may be another frame. If there is not another frame, the current iteration is done when we have finished the rows in the this frame. :param connection_id: ID of the current connection. :param statement_id: ID of the statement to fetch rows from. :param signature: common_pb2.Signature object :param parameter_values: A list of parameter values, if statement is to be executed; otherwise ``None``. :param first_frame_max_size: The maximum number of rows that will be returned in the first Frame returned for this query. :returns: Frame data, or ``None`` if there are no more. """ request = requests_pb2.ExecuteRequest() request.statementHandle.id = statement_id request.statementHandle.connection_id = connection_id request.statementHandle.signature.CopyFrom(signature) if parameter_values is not None: request.parameter_values.extend(parameter_values) request.has_parameter_values = True if first_frame_max_size is not None: request.deprecated_first_frame_max_size = first_frame_max_size request.first_frame_max_size = first_frame_max_size response_data = self._apply(request) response = responses_pb2.ExecuteResponse() response.ParseFromString(response_data) return response.results
python
def execute(self, connection_id, statement_id, signature, parameter_values=None, first_frame_max_size=None): """Returns a frame of rows. The frame describes whether there may be another frame. If there is not another frame, the current iteration is done when we have finished the rows in the this frame. :param connection_id: ID of the current connection. :param statement_id: ID of the statement to fetch rows from. :param signature: common_pb2.Signature object :param parameter_values: A list of parameter values, if statement is to be executed; otherwise ``None``. :param first_frame_max_size: The maximum number of rows that will be returned in the first Frame returned for this query. :returns: Frame data, or ``None`` if there are no more. """ request = requests_pb2.ExecuteRequest() request.statementHandle.id = statement_id request.statementHandle.connection_id = connection_id request.statementHandle.signature.CopyFrom(signature) if parameter_values is not None: request.parameter_values.extend(parameter_values) request.has_parameter_values = True if first_frame_max_size is not None: request.deprecated_first_frame_max_size = first_frame_max_size request.first_frame_max_size = first_frame_max_size response_data = self._apply(request) response = responses_pb2.ExecuteResponse() response.ParseFromString(response_data) return response.results
[ "def", "execute", "(", "self", ",", "connection_id", ",", "statement_id", ",", "signature", ",", "parameter_values", "=", "None", ",", "first_frame_max_size", "=", "None", ")", ":", "request", "=", "requests_pb2", ".", "ExecuteRequest", "(", ")", "request", ".", "statementHandle", ".", "id", "=", "statement_id", "request", ".", "statementHandle", ".", "connection_id", "=", "connection_id", "request", ".", "statementHandle", ".", "signature", ".", "CopyFrom", "(", "signature", ")", "if", "parameter_values", "is", "not", "None", ":", "request", ".", "parameter_values", ".", "extend", "(", "parameter_values", ")", "request", ".", "has_parameter_values", "=", "True", "if", "first_frame_max_size", "is", "not", "None", ":", "request", ".", "deprecated_first_frame_max_size", "=", "first_frame_max_size", "request", ".", "first_frame_max_size", "=", "first_frame_max_size", "response_data", "=", "self", ".", "_apply", "(", "request", ")", "response", "=", "responses_pb2", ".", "ExecuteResponse", "(", ")", "response", ".", "ParseFromString", "(", "response_data", ")", "return", "response", ".", "results" ]
Returns a frame of rows. The frame describes whether there may be another frame. If there is not another frame, the current iteration is done when we have finished the rows in the this frame. :param connection_id: ID of the current connection. :param statement_id: ID of the statement to fetch rows from. :param signature: common_pb2.Signature object :param parameter_values: A list of parameter values, if statement is to be executed; otherwise ``None``. :param first_frame_max_size: The maximum number of rows that will be returned in the first Frame returned for this query. :returns: Frame data, or ``None`` if there are no more.
[ "Returns", "a", "frame", "of", "rows", "." ]
train
https://github.com/lalinsky/python-phoenixdb/blob/1bb34488dd530ca65f91b29ef16aa7b71f26b806/phoenixdb/avatica/client.py#L436-L475
lalinsky/python-phoenixdb
phoenixdb/avatica/client.py
AvaticaClient.fetch
def fetch(self, connection_id, statement_id, offset=0, frame_max_size=None): """Returns a frame of rows. The frame describes whether there may be another frame. If there is not another frame, the current iteration is done when we have finished the rows in the this frame. :param connection_id: ID of the current connection. :param statement_id: ID of the statement to fetch rows from. :param offset: Zero-based offset of first row in the requested frame. :param frame_max_size: Maximum number of rows to return; negative means no limit. :returns: Frame data, or ``None`` if there are no more. """ request = requests_pb2.FetchRequest() request.connection_id = connection_id request.statement_id = statement_id request.offset = offset if frame_max_size is not None: request.frame_max_size = frame_max_size response_data = self._apply(request) response = responses_pb2.FetchResponse() response.ParseFromString(response_data) return response.frame
python
def fetch(self, connection_id, statement_id, offset=0, frame_max_size=None): """Returns a frame of rows. The frame describes whether there may be another frame. If there is not another frame, the current iteration is done when we have finished the rows in the this frame. :param connection_id: ID of the current connection. :param statement_id: ID of the statement to fetch rows from. :param offset: Zero-based offset of first row in the requested frame. :param frame_max_size: Maximum number of rows to return; negative means no limit. :returns: Frame data, or ``None`` if there are no more. """ request = requests_pb2.FetchRequest() request.connection_id = connection_id request.statement_id = statement_id request.offset = offset if frame_max_size is not None: request.frame_max_size = frame_max_size response_data = self._apply(request) response = responses_pb2.FetchResponse() response.ParseFromString(response_data) return response.frame
[ "def", "fetch", "(", "self", ",", "connection_id", ",", "statement_id", ",", "offset", "=", "0", ",", "frame_max_size", "=", "None", ")", ":", "request", "=", "requests_pb2", ".", "FetchRequest", "(", ")", "request", ".", "connection_id", "=", "connection_id", "request", ".", "statement_id", "=", "statement_id", "request", ".", "offset", "=", "offset", "if", "frame_max_size", "is", "not", "None", ":", "request", ".", "frame_max_size", "=", "frame_max_size", "response_data", "=", "self", ".", "_apply", "(", "request", ")", "response", "=", "responses_pb2", ".", "FetchResponse", "(", ")", "response", ".", "ParseFromString", "(", "response_data", ")", "return", "response", ".", "frame" ]
Returns a frame of rows. The frame describes whether there may be another frame. If there is not another frame, the current iteration is done when we have finished the rows in the this frame. :param connection_id: ID of the current connection. :param statement_id: ID of the statement to fetch rows from. :param offset: Zero-based offset of first row in the requested frame. :param frame_max_size: Maximum number of rows to return; negative means no limit. :returns: Frame data, or ``None`` if there are no more.
[ "Returns", "a", "frame", "of", "rows", "." ]
train
https://github.com/lalinsky/python-phoenixdb/blob/1bb34488dd530ca65f91b29ef16aa7b71f26b806/phoenixdb/avatica/client.py#L477-L509
lalinsky/python-phoenixdb
phoenixdb/cursor.py
Cursor.close
def close(self): """Closes the cursor. No further operations are allowed once the cursor is closed. If the cursor is used in a ``with`` statement, this method will be automatically called at the end of the ``with`` block. """ if self._closed: raise ProgrammingError('the cursor is already closed') if self._id is not None: self._connection._client.close_statement(self._connection._id, self._id) self._id = None self._signature = None self._column_data_types = [] self._frame = None self._pos = None self._closed = True
python
def close(self): """Closes the cursor. No further operations are allowed once the cursor is closed. If the cursor is used in a ``with`` statement, this method will be automatically called at the end of the ``with`` block. """ if self._closed: raise ProgrammingError('the cursor is already closed') if self._id is not None: self._connection._client.close_statement(self._connection._id, self._id) self._id = None self._signature = None self._column_data_types = [] self._frame = None self._pos = None self._closed = True
[ "def", "close", "(", "self", ")", ":", "if", "self", ".", "_closed", ":", "raise", "ProgrammingError", "(", "'the cursor is already closed'", ")", "if", "self", ".", "_id", "is", "not", "None", ":", "self", ".", "_connection", ".", "_client", ".", "close_statement", "(", "self", ".", "_connection", ".", "_id", ",", "self", ".", "_id", ")", "self", ".", "_id", "=", "None", "self", ".", "_signature", "=", "None", "self", ".", "_column_data_types", "=", "[", "]", "self", ".", "_frame", "=", "None", "self", ".", "_pos", "=", "None", "self", ".", "_closed", "=", "True" ]
Closes the cursor. No further operations are allowed once the cursor is closed. If the cursor is used in a ``with`` statement, this method will be automatically called at the end of the ``with`` block.
[ "Closes", "the", "cursor", ".", "No", "further", "operations", "are", "allowed", "once", "the", "cursor", "is", "closed", "." ]
train
https://github.com/lalinsky/python-phoenixdb/blob/1bb34488dd530ca65f91b29ef16aa7b71f26b806/phoenixdb/cursor.py#L86-L102
lalinsky/python-phoenixdb
phoenixdb/cursor.py
Cursor._transform_row
def _transform_row(self, row): """Transforms a Row into Python values. :param row: A ``common_pb2.Row`` object. :returns: A list of values casted into the correct Python types. :raises: NotImplementedError """ tmp_row = [] for i, column in enumerate(row.value): if column.has_array_value: raise NotImplementedError('array types are not supported') elif column.scalar_value.null: tmp_row.append(None) else: field_name, rep, mutate_to, cast_from = self._column_data_types[i] # get the value from the field_name value = getattr(column.scalar_value, field_name) # cast the value if cast_from is not None: value = cast_from(value) tmp_row.append(value) return tmp_row
python
def _transform_row(self, row): """Transforms a Row into Python values. :param row: A ``common_pb2.Row`` object. :returns: A list of values casted into the correct Python types. :raises: NotImplementedError """ tmp_row = [] for i, column in enumerate(row.value): if column.has_array_value: raise NotImplementedError('array types are not supported') elif column.scalar_value.null: tmp_row.append(None) else: field_name, rep, mutate_to, cast_from = self._column_data_types[i] # get the value from the field_name value = getattr(column.scalar_value, field_name) # cast the value if cast_from is not None: value = cast_from(value) tmp_row.append(value) return tmp_row
[ "def", "_transform_row", "(", "self", ",", "row", ")", ":", "tmp_row", "=", "[", "]", "for", "i", ",", "column", "in", "enumerate", "(", "row", ".", "value", ")", ":", "if", "column", ".", "has_array_value", ":", "raise", "NotImplementedError", "(", "'array types are not supported'", ")", "elif", "column", ".", "scalar_value", ".", "null", ":", "tmp_row", ".", "append", "(", "None", ")", "else", ":", "field_name", ",", "rep", ",", "mutate_to", ",", "cast_from", "=", "self", ".", "_column_data_types", "[", "i", "]", "# get the value from the field_name", "value", "=", "getattr", "(", "column", ".", "scalar_value", ",", "field_name", ")", "# cast the value", "if", "cast_from", "is", "not", "None", ":", "value", "=", "cast_from", "(", "value", ")", "tmp_row", ".", "append", "(", "value", ")", "return", "tmp_row" ]
Transforms a Row into Python values. :param row: A ``common_pb2.Row`` object. :returns: A list of values casted into the correct Python types. :raises: NotImplementedError
[ "Transforms", "a", "Row", "into", "Python", "values", "." ]
train
https://github.com/lalinsky/python-phoenixdb/blob/1bb34488dd530ca65f91b29ef16aa7b71f26b806/phoenixdb/cursor.py#L233-L263
lalinsky/python-phoenixdb
phoenixdb/cursor.py
Cursor.rownumber
def rownumber(self): """Read-only attribute providing the current 0-based index of the cursor in the result set or ``None`` if the index cannot be determined. The index can be seen as index of the cursor in a sequence (the result set). The next fetch operation will fetch the row indexed by :attr:`rownumber` in that sequence. """ if self._frame is not None and self._pos is not None: return self._frame.offset + self._pos return self._pos
python
def rownumber(self): """Read-only attribute providing the current 0-based index of the cursor in the result set or ``None`` if the index cannot be determined. The index can be seen as index of the cursor in a sequence (the result set). The next fetch operation will fetch the row indexed by :attr:`rownumber` in that sequence. """ if self._frame is not None and self._pos is not None: return self._frame.offset + self._pos return self._pos
[ "def", "rownumber", "(", "self", ")", ":", "if", "self", ".", "_frame", "is", "not", "None", "and", "self", ".", "_pos", "is", "not", "None", ":", "return", "self", ".", "_frame", ".", "offset", "+", "self", ".", "_pos", "return", "self", ".", "_pos" ]
Read-only attribute providing the current 0-based index of the cursor in the result set or ``None`` if the index cannot be determined. The index can be seen as index of the cursor in a sequence (the result set). The next fetch operation will fetch the row indexed by :attr:`rownumber` in that sequence.
[ "Read", "-", "only", "attribute", "providing", "the", "current", "0", "-", "based", "index", "of", "the", "cursor", "in", "the", "result", "set", "or", "None", "if", "the", "index", "cannot", "be", "determined", "." ]
train
https://github.com/lalinsky/python-phoenixdb/blob/1bb34488dd530ca65f91b29ef16aa7b71f26b806/phoenixdb/cursor.py#L324-L335
lalinsky/python-phoenixdb
phoenixdb/types.py
Timestamp
def Timestamp(year, month, day, hour, minute, second): """Constructs an object holding a datetime/timestamp value.""" return datetime.datetime(year, month, day, hour, minute, second)
python
def Timestamp(year, month, day, hour, minute, second): """Constructs an object holding a datetime/timestamp value.""" return datetime.datetime(year, month, day, hour, minute, second)
[ "def", "Timestamp", "(", "year", ",", "month", ",", "day", ",", "hour", ",", "minute", ",", "second", ")", ":", "return", "datetime", ".", "datetime", "(", "year", ",", "month", ",", "day", ",", "hour", ",", "minute", ",", "second", ")" ]
Constructs an object holding a datetime/timestamp value.
[ "Constructs", "an", "object", "holding", "a", "datetime", "/", "timestamp", "value", "." ]
train
https://github.com/lalinsky/python-phoenixdb/blob/1bb34488dd530ca65f91b29ef16aa7b71f26b806/phoenixdb/types.py#L38-L40
lalinsky/python-phoenixdb
phoenixdb/connection.py
Connection.open
def open(self): """Opens the connection.""" self._id = str(uuid.uuid4()) self._client.open_connection(self._id, info=self._connection_args)
python
def open(self): """Opens the connection.""" self._id = str(uuid.uuid4()) self._client.open_connection(self._id, info=self._connection_args)
[ "def", "open", "(", "self", ")", ":", "self", ".", "_id", "=", "str", "(", "uuid", ".", "uuid4", "(", ")", ")", "self", ".", "_client", ".", "open_connection", "(", "self", ".", "_id", ",", "info", "=", "self", ".", "_connection_args", ")" ]
Opens the connection.
[ "Opens", "the", "connection", "." ]
train
https://github.com/lalinsky/python-phoenixdb/blob/1bb34488dd530ca65f91b29ef16aa7b71f26b806/phoenixdb/connection.py#L70-L73
lalinsky/python-phoenixdb
phoenixdb/connection.py
Connection.close
def close(self): """Closes the connection. No further operations are allowed, either on the connection or any of its cursors, once the connection is closed. If the connection is used in a ``with`` statement, this method will be automatically called at the end of the ``with`` block. """ if self._closed: raise ProgrammingError('the connection is already closed') for cursor_ref in self._cursors: cursor = cursor_ref() if cursor is not None and not cursor._closed: cursor.close() self._client.close_connection(self._id) self._client.close() self._closed = True
python
def close(self): """Closes the connection. No further operations are allowed, either on the connection or any of its cursors, once the connection is closed. If the connection is used in a ``with`` statement, this method will be automatically called at the end of the ``with`` block. """ if self._closed: raise ProgrammingError('the connection is already closed') for cursor_ref in self._cursors: cursor = cursor_ref() if cursor is not None and not cursor._closed: cursor.close() self._client.close_connection(self._id) self._client.close() self._closed = True
[ "def", "close", "(", "self", ")", ":", "if", "self", ".", "_closed", ":", "raise", "ProgrammingError", "(", "'the connection is already closed'", ")", "for", "cursor_ref", "in", "self", ".", "_cursors", ":", "cursor", "=", "cursor_ref", "(", ")", "if", "cursor", "is", "not", "None", "and", "not", "cursor", ".", "_closed", ":", "cursor", ".", "close", "(", ")", "self", ".", "_client", ".", "close_connection", "(", "self", ".", "_id", ")", "self", ".", "_client", ".", "close", "(", ")", "self", ".", "_closed", "=", "True" ]
Closes the connection. No further operations are allowed, either on the connection or any of its cursors, once the connection is closed. If the connection is used in a ``with`` statement, this method will be automatically called at the end of the ``with`` block.
[ "Closes", "the", "connection", ".", "No", "further", "operations", "are", "allowed", "either", "on", "the", "connection", "or", "any", "of", "its", "cursors", "once", "the", "connection", "is", "closed", "." ]
train
https://github.com/lalinsky/python-phoenixdb/blob/1bb34488dd530ca65f91b29ef16aa7b71f26b806/phoenixdb/connection.py#L75-L91
lalinsky/python-phoenixdb
phoenixdb/connection.py
Connection.cursor
def cursor(self, cursor_factory=None): """Creates a new cursor. :param cursor_factory: This argument can be used to create non-standard cursors. The class returned must be a subclass of :class:`~phoenixdb.cursor.Cursor` (for example :class:`~phoenixdb.cursor.DictCursor`). A default factory for the connection can also be specified using the :attr:`cursor_factory` attribute. :returns: A :class:`~phoenixdb.cursor.Cursor` object. """ if self._closed: raise ProgrammingError('the connection is already closed') cursor = (cursor_factory or self.cursor_factory)(self) self._cursors.append(weakref.ref(cursor, self._cursors.remove)) return cursor
python
def cursor(self, cursor_factory=None): """Creates a new cursor. :param cursor_factory: This argument can be used to create non-standard cursors. The class returned must be a subclass of :class:`~phoenixdb.cursor.Cursor` (for example :class:`~phoenixdb.cursor.DictCursor`). A default factory for the connection can also be specified using the :attr:`cursor_factory` attribute. :returns: A :class:`~phoenixdb.cursor.Cursor` object. """ if self._closed: raise ProgrammingError('the connection is already closed') cursor = (cursor_factory or self.cursor_factory)(self) self._cursors.append(weakref.ref(cursor, self._cursors.remove)) return cursor
[ "def", "cursor", "(", "self", ",", "cursor_factory", "=", "None", ")", ":", "if", "self", ".", "_closed", ":", "raise", "ProgrammingError", "(", "'the connection is already closed'", ")", "cursor", "=", "(", "cursor_factory", "or", "self", ".", "cursor_factory", ")", "(", "self", ")", "self", ".", "_cursors", ".", "append", "(", "weakref", ".", "ref", "(", "cursor", ",", "self", ".", "_cursors", ".", "remove", ")", ")", "return", "cursor" ]
Creates a new cursor. :param cursor_factory: This argument can be used to create non-standard cursors. The class returned must be a subclass of :class:`~phoenixdb.cursor.Cursor` (for example :class:`~phoenixdb.cursor.DictCursor`). A default factory for the connection can also be specified using the :attr:`cursor_factory` attribute. :returns: A :class:`~phoenixdb.cursor.Cursor` object.
[ "Creates", "a", "new", "cursor", "." ]
train
https://github.com/lalinsky/python-phoenixdb/blob/1bb34488dd530ca65f91b29ef16aa7b71f26b806/phoenixdb/connection.py#L109-L126
lalinsky/python-phoenixdb
phoenixdb/connection.py
Connection.set_session
def set_session(self, autocommit=None, readonly=None): """Sets one or more parameters in the current connection. :param autocommit: Switch the connection to autocommit mode. With the current version, you need to always enable this, because :meth:`commit` is not implemented. :param readonly: Switch the connection to read-only mode. """ props = {} if autocommit is not None: props['autoCommit'] = bool(autocommit) if readonly is not None: props['readOnly'] = bool(readonly) props = self._client.connection_sync(self._id, props) self._autocommit = props.auto_commit self._readonly = props.read_only self._transactionisolation = props.transaction_isolation
python
def set_session(self, autocommit=None, readonly=None): """Sets one or more parameters in the current connection. :param autocommit: Switch the connection to autocommit mode. With the current version, you need to always enable this, because :meth:`commit` is not implemented. :param readonly: Switch the connection to read-only mode. """ props = {} if autocommit is not None: props['autoCommit'] = bool(autocommit) if readonly is not None: props['readOnly'] = bool(readonly) props = self._client.connection_sync(self._id, props) self._autocommit = props.auto_commit self._readonly = props.read_only self._transactionisolation = props.transaction_isolation
[ "def", "set_session", "(", "self", ",", "autocommit", "=", "None", ",", "readonly", "=", "None", ")", ":", "props", "=", "{", "}", "if", "autocommit", "is", "not", "None", ":", "props", "[", "'autoCommit'", "]", "=", "bool", "(", "autocommit", ")", "if", "readonly", "is", "not", "None", ":", "props", "[", "'readOnly'", "]", "=", "bool", "(", "readonly", ")", "props", "=", "self", ".", "_client", ".", "connection_sync", "(", "self", ".", "_id", ",", "props", ")", "self", ".", "_autocommit", "=", "props", ".", "auto_commit", "self", ".", "_readonly", "=", "props", ".", "read_only", "self", ".", "_transactionisolation", "=", "props", ".", "transaction_isolation" ]
Sets one or more parameters in the current connection. :param autocommit: Switch the connection to autocommit mode. With the current version, you need to always enable this, because :meth:`commit` is not implemented. :param readonly: Switch the connection to read-only mode.
[ "Sets", "one", "or", "more", "parameters", "in", "the", "current", "connection", "." ]
train
https://github.com/lalinsky/python-phoenixdb/blob/1bb34488dd530ca65f91b29ef16aa7b71f26b806/phoenixdb/connection.py#L128-L147
wdm0006/sklearn-extensions
sklearn_extensions/kernel_regression/kr.py
KernelRegression.fit
def fit(self, X, y): """Fit the model Parameters ---------- X : array-like of shape = [n_samples, n_features] The training input samples. y : array-like, shape = [n_samples] The target values Returns ------- self : object Returns self. """ self.X = X self.y = y if hasattr(self.gamma, "__iter__"): self.gamma = self._optimize_gamma(self.gamma) return self
python
def fit(self, X, y): """Fit the model Parameters ---------- X : array-like of shape = [n_samples, n_features] The training input samples. y : array-like, shape = [n_samples] The target values Returns ------- self : object Returns self. """ self.X = X self.y = y if hasattr(self.gamma, "__iter__"): self.gamma = self._optimize_gamma(self.gamma) return self
[ "def", "fit", "(", "self", ",", "X", ",", "y", ")", ":", "self", ".", "X", "=", "X", "self", ".", "y", "=", "y", "if", "hasattr", "(", "self", ".", "gamma", ",", "\"__iter__\"", ")", ":", "self", ".", "gamma", "=", "self", ".", "_optimize_gamma", "(", "self", ".", "gamma", ")", "return", "self" ]
Fit the model Parameters ---------- X : array-like of shape = [n_samples, n_features] The training input samples. y : array-like, shape = [n_samples] The target values Returns ------- self : object Returns self.
[ "Fit", "the", "model" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/kernel_regression/kr.py#L46-L68
wdm0006/sklearn-extensions
sklearn_extensions/kernel_regression/kr.py
KernelRegression.predict
def predict(self, X): """Predict target values for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : array of shape = [n_samples] The predicted target value. """ K = pairwise_kernels(self.X, X, metric=self.kernel, gamma=self.gamma) return (K * self.y[:, None]).sum(axis=0) / K.sum(axis=0)
python
def predict(self, X): """Predict target values for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : array of shape = [n_samples] The predicted target value. """ K = pairwise_kernels(self.X, X, metric=self.kernel, gamma=self.gamma) return (K * self.y[:, None]).sum(axis=0) / K.sum(axis=0)
[ "def", "predict", "(", "self", ",", "X", ")", ":", "K", "=", "pairwise_kernels", "(", "self", ".", "X", ",", "X", ",", "metric", "=", "self", ".", "kernel", ",", "gamma", "=", "self", ".", "gamma", ")", "return", "(", "K", "*", "self", ".", "y", "[", ":", ",", "None", "]", ")", ".", "sum", "(", "axis", "=", "0", ")", "/", "K", ".", "sum", "(", "axis", "=", "0", ")" ]
Predict target values for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : array of shape = [n_samples] The predicted target value.
[ "Predict", "target", "values", "for", "X", "." ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/kernel_regression/kr.py#L70-L84
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/random_layer.py
BaseRandomLayer._compute_hidden_activations
def _compute_hidden_activations(self, X): """Compute hidden activations given X""" self._compute_input_activations(X) acts = self.input_activations_ if (callable(self.activation_func)): args_dict = self.activation_args if (self.activation_args) else {} X_new = self.activation_func(acts, **args_dict) else: func_name = self.activation_func func = self._internal_activation_funcs[func_name] X_new = func(acts, **self._extra_args) return X_new
python
def _compute_hidden_activations(self, X): """Compute hidden activations given X""" self._compute_input_activations(X) acts = self.input_activations_ if (callable(self.activation_func)): args_dict = self.activation_args if (self.activation_args) else {} X_new = self.activation_func(acts, **args_dict) else: func_name = self.activation_func func = self._internal_activation_funcs[func_name] X_new = func(acts, **self._extra_args) return X_new
[ "def", "_compute_hidden_activations", "(", "self", ",", "X", ")", ":", "self", ".", "_compute_input_activations", "(", "X", ")", "acts", "=", "self", ".", "input_activations_", "if", "(", "callable", "(", "self", ".", "activation_func", ")", ")", ":", "args_dict", "=", "self", ".", "activation_args", "if", "(", "self", ".", "activation_args", ")", "else", "{", "}", "X_new", "=", "self", ".", "activation_func", "(", "acts", ",", "*", "*", "args_dict", ")", "else", ":", "func_name", "=", "self", ".", "activation_func", "func", "=", "self", ".", "_internal_activation_funcs", "[", "func_name", "]", "X_new", "=", "func", "(", "acts", ",", "*", "*", "self", ".", "_extra_args", ")", "return", "X_new" ]
Compute hidden activations given X
[ "Compute", "hidden", "activations", "given", "X" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/random_layer.py#L72-L88
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/random_layer.py
BaseRandomLayer.transform
def transform(self, X, y=None): """Generate the random hidden layer's activations given X as input. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] Data to transform y : is not used: placeholder to allow for usage in a Pipeline. Returns ------- X_new : numpy array of shape [n_samples, n_components] """ if (self.components_ is None): raise ValueError('No components initialized') return self._compute_hidden_activations(X)
python
def transform(self, X, y=None): """Generate the random hidden layer's activations given X as input. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] Data to transform y : is not used: placeholder to allow for usage in a Pipeline. Returns ------- X_new : numpy array of shape [n_samples, n_components] """ if (self.components_ is None): raise ValueError('No components initialized') return self._compute_hidden_activations(X)
[ "def", "transform", "(", "self", ",", "X", ",", "y", "=", "None", ")", ":", "if", "(", "self", ".", "components_", "is", "None", ")", ":", "raise", "ValueError", "(", "'No components initialized'", ")", "return", "self", ".", "_compute_hidden_activations", "(", "X", ")" ]
Generate the random hidden layer's activations given X as input. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] Data to transform y : is not used: placeholder to allow for usage in a Pipeline. Returns ------- X_new : numpy array of shape [n_samples, n_components]
[ "Generate", "the", "random", "hidden", "layer", "s", "activations", "given", "X", "as", "input", "." ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/random_layer.py#L114-L132
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/random_layer.py
RandomLayer._compute_radii
def _compute_radii(self): """Generate RBF radii""" # use supplied radii if present radii = self._get_user_components('radii') # compute radii if (radii is None): centers = self.components_['centers'] n_centers = centers.shape[0] max_dist = np.max(pairwise_distances(centers)) radii = np.ones(n_centers) * max_dist/sqrt(2.0 * n_centers) self.components_['radii'] = radii
python
def _compute_radii(self): """Generate RBF radii""" # use supplied radii if present radii = self._get_user_components('radii') # compute radii if (radii is None): centers = self.components_['centers'] n_centers = centers.shape[0] max_dist = np.max(pairwise_distances(centers)) radii = np.ones(n_centers) * max_dist/sqrt(2.0 * n_centers) self.components_['radii'] = radii
[ "def", "_compute_radii", "(", "self", ")", ":", "# use supplied radii if present", "radii", "=", "self", ".", "_get_user_components", "(", "'radii'", ")", "# compute radii", "if", "(", "radii", "is", "None", ")", ":", "centers", "=", "self", ".", "components_", "[", "'centers'", "]", "n_centers", "=", "centers", ".", "shape", "[", "0", "]", "max_dist", "=", "np", ".", "max", "(", "pairwise_distances", "(", "centers", ")", ")", "radii", "=", "np", ".", "ones", "(", "n_centers", ")", "*", "max_dist", "/", "sqrt", "(", "2.0", "*", "n_centers", ")", "self", ".", "components_", "[", "'radii'", "]", "=", "radii" ]
Generate RBF radii
[ "Generate", "RBF", "radii" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/random_layer.py#L280-L294
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/random_layer.py
RandomLayer._compute_centers
def _compute_centers(self, X, sparse, rs): """Generate RBF centers""" # use supplied centers if present centers = self._get_user_components('centers') # use points taken uniformly from the bounding # hyperrectangle if (centers is None): n_features = X.shape[1] if (sparse): fxr = range(n_features) cols = [X.getcol(i) for i in fxr] min_dtype = X.dtype.type(1.0e10) sp_min = lambda col: np.minimum(min_dtype, np.min(col.data)) min_Xs = np.array(map(sp_min, cols)) max_dtype = X.dtype.type(-1.0e10) sp_max = lambda col: np.maximum(max_dtype, np.max(col.data)) max_Xs = np.array(map(sp_max, cols)) else: min_Xs = X.min(axis=0) max_Xs = X.max(axis=0) spans = max_Xs - min_Xs ctrs_size = (self.n_hidden, n_features) centers = min_Xs + spans * rs.uniform(0.0, 1.0, ctrs_size) self.components_['centers'] = centers
python
def _compute_centers(self, X, sparse, rs): """Generate RBF centers""" # use supplied centers if present centers = self._get_user_components('centers') # use points taken uniformly from the bounding # hyperrectangle if (centers is None): n_features = X.shape[1] if (sparse): fxr = range(n_features) cols = [X.getcol(i) for i in fxr] min_dtype = X.dtype.type(1.0e10) sp_min = lambda col: np.minimum(min_dtype, np.min(col.data)) min_Xs = np.array(map(sp_min, cols)) max_dtype = X.dtype.type(-1.0e10) sp_max = lambda col: np.maximum(max_dtype, np.max(col.data)) max_Xs = np.array(map(sp_max, cols)) else: min_Xs = X.min(axis=0) max_Xs = X.max(axis=0) spans = max_Xs - min_Xs ctrs_size = (self.n_hidden, n_features) centers = min_Xs + spans * rs.uniform(0.0, 1.0, ctrs_size) self.components_['centers'] = centers
[ "def", "_compute_centers", "(", "self", ",", "X", ",", "sparse", ",", "rs", ")", ":", "# use supplied centers if present", "centers", "=", "self", ".", "_get_user_components", "(", "'centers'", ")", "# use points taken uniformly from the bounding", "# hyperrectangle", "if", "(", "centers", "is", "None", ")", ":", "n_features", "=", "X", ".", "shape", "[", "1", "]", "if", "(", "sparse", ")", ":", "fxr", "=", "range", "(", "n_features", ")", "cols", "=", "[", "X", ".", "getcol", "(", "i", ")", "for", "i", "in", "fxr", "]", "min_dtype", "=", "X", ".", "dtype", ".", "type", "(", "1.0e10", ")", "sp_min", "=", "lambda", "col", ":", "np", ".", "minimum", "(", "min_dtype", ",", "np", ".", "min", "(", "col", ".", "data", ")", ")", "min_Xs", "=", "np", ".", "array", "(", "map", "(", "sp_min", ",", "cols", ")", ")", "max_dtype", "=", "X", ".", "dtype", ".", "type", "(", "-", "1.0e10", ")", "sp_max", "=", "lambda", "col", ":", "np", ".", "maximum", "(", "max_dtype", ",", "np", ".", "max", "(", "col", ".", "data", ")", ")", "max_Xs", "=", "np", ".", "array", "(", "map", "(", "sp_max", ",", "cols", ")", ")", "else", ":", "min_Xs", "=", "X", ".", "min", "(", "axis", "=", "0", ")", "max_Xs", "=", "X", ".", "max", "(", "axis", "=", "0", ")", "spans", "=", "max_Xs", "-", "min_Xs", "ctrs_size", "=", "(", "self", ".", "n_hidden", ",", "n_features", ")", "centers", "=", "min_Xs", "+", "spans", "*", "rs", ".", "uniform", "(", "0.0", ",", "1.0", ",", "ctrs_size", ")", "self", ".", "components_", "[", "'centers'", "]", "=", "centers" ]
Generate RBF centers
[ "Generate", "RBF", "centers" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/random_layer.py#L296-L326
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/random_layer.py
RandomLayer._compute_biases
def _compute_biases(self, rs): """Generate MLP biases""" # use supplied biases if present biases = self._get_user_components('biases') if (biases is None): b_size = self.n_hidden biases = rs.normal(size=b_size) self.components_['biases'] = biases
python
def _compute_biases(self, rs): """Generate MLP biases""" # use supplied biases if present biases = self._get_user_components('biases') if (biases is None): b_size = self.n_hidden biases = rs.normal(size=b_size) self.components_['biases'] = biases
[ "def", "_compute_biases", "(", "self", ",", "rs", ")", ":", "# use supplied biases if present", "biases", "=", "self", ".", "_get_user_components", "(", "'biases'", ")", "if", "(", "biases", "is", "None", ")", ":", "b_size", "=", "self", ".", "n_hidden", "biases", "=", "rs", ".", "normal", "(", "size", "=", "b_size", ")", "self", ".", "components_", "[", "'biases'", "]", "=", "biases" ]
Generate MLP biases
[ "Generate", "MLP", "biases" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/random_layer.py#L328-L337
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/random_layer.py
RandomLayer._compute_weights
def _compute_weights(self, X, rs): """Generate MLP weights""" # use supplied weights if present weights = self._get_user_components('weights') if (weights is None): n_features = X.shape[1] hw_size = (n_features, self.n_hidden) weights = rs.normal(size=hw_size) self.components_['weights'] = weights
python
def _compute_weights(self, X, rs): """Generate MLP weights""" # use supplied weights if present weights = self._get_user_components('weights') if (weights is None): n_features = X.shape[1] hw_size = (n_features, self.n_hidden) weights = rs.normal(size=hw_size) self.components_['weights'] = weights
[ "def", "_compute_weights", "(", "self", ",", "X", ",", "rs", ")", ":", "# use supplied weights if present", "weights", "=", "self", ".", "_get_user_components", "(", "'weights'", ")", "if", "(", "weights", "is", "None", ")", ":", "n_features", "=", "X", ".", "shape", "[", "1", "]", "hw_size", "=", "(", "n_features", ",", "self", ".", "n_hidden", ")", "weights", "=", "rs", ".", "normal", "(", "size", "=", "hw_size", ")", "self", ".", "components_", "[", "'weights'", "]", "=", "weights" ]
Generate MLP weights
[ "Generate", "MLP", "weights" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/random_layer.py#L339-L349
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/random_layer.py
RandomLayer._generate_components
def _generate_components(self, X): """Generate components of hidden layer given X""" rs = check_random_state(self.random_state) if (self._use_mlp_input): self._compute_biases(rs) self._compute_weights(X, rs) if (self._use_rbf_input): self._compute_centers(X, sp.issparse(X), rs) self._compute_radii()
python
def _generate_components(self, X): """Generate components of hidden layer given X""" rs = check_random_state(self.random_state) if (self._use_mlp_input): self._compute_biases(rs) self._compute_weights(X, rs) if (self._use_rbf_input): self._compute_centers(X, sp.issparse(X), rs) self._compute_radii()
[ "def", "_generate_components", "(", "self", ",", "X", ")", ":", "rs", "=", "check_random_state", "(", "self", ".", "random_state", ")", "if", "(", "self", ".", "_use_mlp_input", ")", ":", "self", ".", "_compute_biases", "(", "rs", ")", "self", ".", "_compute_weights", "(", "X", ",", "rs", ")", "if", "(", "self", ".", "_use_rbf_input", ")", ":", "self", ".", "_compute_centers", "(", "X", ",", "sp", ".", "issparse", "(", "X", ")", ",", "rs", ")", "self", ".", "_compute_radii", "(", ")" ]
Generate components of hidden layer given X
[ "Generate", "components", "of", "hidden", "layer", "given", "X" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/random_layer.py#L351-L361
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/random_layer.py
RandomLayer._compute_input_activations
def _compute_input_activations(self, X): """Compute input activations given X""" n_samples = X.shape[0] mlp_acts = np.zeros((n_samples, self.n_hidden)) if (self._use_mlp_input): b = self.components_['biases'] w = self.components_['weights'] mlp_acts = self.alpha * (safe_sparse_dot(X, w) + b) rbf_acts = np.zeros((n_samples, self.n_hidden)) if (self._use_rbf_input): radii = self.components_['radii'] centers = self.components_['centers'] scale = self.rbf_width * (1.0 - self.alpha) rbf_acts = scale * cdist(X, centers)/radii self.input_activations_ = mlp_acts + rbf_acts
python
def _compute_input_activations(self, X): """Compute input activations given X""" n_samples = X.shape[0] mlp_acts = np.zeros((n_samples, self.n_hidden)) if (self._use_mlp_input): b = self.components_['biases'] w = self.components_['weights'] mlp_acts = self.alpha * (safe_sparse_dot(X, w) + b) rbf_acts = np.zeros((n_samples, self.n_hidden)) if (self._use_rbf_input): radii = self.components_['radii'] centers = self.components_['centers'] scale = self.rbf_width * (1.0 - self.alpha) rbf_acts = scale * cdist(X, centers)/radii self.input_activations_ = mlp_acts + rbf_acts
[ "def", "_compute_input_activations", "(", "self", ",", "X", ")", ":", "n_samples", "=", "X", ".", "shape", "[", "0", "]", "mlp_acts", "=", "np", ".", "zeros", "(", "(", "n_samples", ",", "self", ".", "n_hidden", ")", ")", "if", "(", "self", ".", "_use_mlp_input", ")", ":", "b", "=", "self", ".", "components_", "[", "'biases'", "]", "w", "=", "self", ".", "components_", "[", "'weights'", "]", "mlp_acts", "=", "self", ".", "alpha", "*", "(", "safe_sparse_dot", "(", "X", ",", "w", ")", "+", "b", ")", "rbf_acts", "=", "np", ".", "zeros", "(", "(", "n_samples", ",", "self", ".", "n_hidden", ")", ")", "if", "(", "self", ".", "_use_rbf_input", ")", ":", "radii", "=", "self", ".", "components_", "[", "'radii'", "]", "centers", "=", "self", ".", "components_", "[", "'centers'", "]", "scale", "=", "self", ".", "rbf_width", "*", "(", "1.0", "-", "self", ".", "alpha", ")", "rbf_acts", "=", "scale", "*", "cdist", "(", "X", ",", "centers", ")", "/", "radii", "self", ".", "input_activations_", "=", "mlp_acts", "+", "rbf_acts" ]
Compute input activations given X
[ "Compute", "input", "activations", "given", "X" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/random_layer.py#L363-L381
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/random_layer.py
GRBFRandomLayer._compute_centers
def _compute_centers(self, X, sparse, rs): """Generate centers, then compute tau, dF and dN vals""" super(GRBFRandomLayer, self)._compute_centers(X, sparse, rs) centers = self.components_['centers'] sorted_distances = np.sort(squareform(pdist(centers))) self.dF_vals = sorted_distances[:, -1] self.dN_vals = sorted_distances[:, 1]/100.0 #self.dN_vals = 0.0002 * np.ones(self.dF_vals.shape) tauNum = np.log(np.log(self.grbf_lambda) / np.log(1.0 - self.grbf_lambda)) tauDenom = np.log(self.dF_vals/self.dN_vals) self.tau_vals = tauNum/tauDenom self._extra_args['taus'] = self.tau_vals
python
def _compute_centers(self, X, sparse, rs): """Generate centers, then compute tau, dF and dN vals""" super(GRBFRandomLayer, self)._compute_centers(X, sparse, rs) centers = self.components_['centers'] sorted_distances = np.sort(squareform(pdist(centers))) self.dF_vals = sorted_distances[:, -1] self.dN_vals = sorted_distances[:, 1]/100.0 #self.dN_vals = 0.0002 * np.ones(self.dF_vals.shape) tauNum = np.log(np.log(self.grbf_lambda) / np.log(1.0 - self.grbf_lambda)) tauDenom = np.log(self.dF_vals/self.dN_vals) self.tau_vals = tauNum/tauDenom self._extra_args['taus'] = self.tau_vals
[ "def", "_compute_centers", "(", "self", ",", "X", ",", "sparse", ",", "rs", ")", ":", "super", "(", "GRBFRandomLayer", ",", "self", ")", ".", "_compute_centers", "(", "X", ",", "sparse", ",", "rs", ")", "centers", "=", "self", ".", "components_", "[", "'centers'", "]", "sorted_distances", "=", "np", ".", "sort", "(", "squareform", "(", "pdist", "(", "centers", ")", ")", ")", "self", ".", "dF_vals", "=", "sorted_distances", "[", ":", ",", "-", "1", "]", "self", ".", "dN_vals", "=", "sorted_distances", "[", ":", ",", "1", "]", "/", "100.0", "#self.dN_vals = 0.0002 * np.ones(self.dF_vals.shape)", "tauNum", "=", "np", ".", "log", "(", "np", ".", "log", "(", "self", ".", "grbf_lambda", ")", "/", "np", ".", "log", "(", "1.0", "-", "self", ".", "grbf_lambda", ")", ")", "tauDenom", "=", "np", ".", "log", "(", "self", ".", "dF_vals", "/", "self", ".", "dN_vals", ")", "self", ".", "tau_vals", "=", "tauNum", "/", "tauDenom", "self", ".", "_extra_args", "[", "'taus'", "]", "=", "self", ".", "tau_vals" ]
Generate centers, then compute tau, dF and dN vals
[ "Generate", "centers", "then", "compute", "tau", "dF", "and", "dN", "vals" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/random_layer.py#L500-L518
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/random_layer.py
GRBFRandomLayer._compute_radii
def _compute_radii(self): """Generate radii""" denom = pow(-np.log(self.grbf_lambda), 1.0/self.tau_vals) self.components_['radii'] = self.dF_vals/denom
python
def _compute_radii(self): """Generate radii""" denom = pow(-np.log(self.grbf_lambda), 1.0/self.tau_vals) self.components_['radii'] = self.dF_vals/denom
[ "def", "_compute_radii", "(", "self", ")", ":", "denom", "=", "pow", "(", "-", "np", ".", "log", "(", "self", ".", "grbf_lambda", ")", ",", "1.0", "/", "self", ".", "tau_vals", ")", "self", ".", "components_", "[", "'radii'", "]", "=", "self", ".", "dF_vals", "/", "denom" ]
Generate radii
[ "Generate", "radii" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/random_layer.py#L521-L525
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/elm.py
GenELMRegressor._fit_regression
def _fit_regression(self, y): """ fit regression using pseudo-inverse or supplied regressor """ if self.regressor is None: self.coefs_ = safe_sparse_dot(pinv2(self.hidden_activations_), y) else: self.regressor.fit(self.hidden_activations_, y) self.fitted_ = True
python
def _fit_regression(self, y): """ fit regression using pseudo-inverse or supplied regressor """ if self.regressor is None: self.coefs_ = safe_sparse_dot(pinv2(self.hidden_activations_), y) else: self.regressor.fit(self.hidden_activations_, y) self.fitted_ = True
[ "def", "_fit_regression", "(", "self", ",", "y", ")", ":", "if", "self", ".", "regressor", "is", "None", ":", "self", ".", "coefs_", "=", "safe_sparse_dot", "(", "pinv2", "(", "self", ".", "hidden_activations_", ")", ",", "y", ")", "else", ":", "self", ".", "regressor", ".", "fit", "(", "self", ".", "hidden_activations_", ",", "y", ")", "self", ".", "fitted_", "=", "True" ]
fit regression using pseudo-inverse or supplied regressor
[ "fit", "regression", "using", "pseudo", "-", "inverse", "or", "supplied", "regressor" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/elm.py#L149-L160
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/elm.py
GenELMRegressor.fit
def fit(self, X, y): """ Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self. """ # fit random hidden layer and compute the hidden layer activations self.hidden_activations_ = self.hidden_layer.fit_transform(X) # solve the regression from hidden activations to outputs self._fit_regression(as_float_array(y, copy=True)) return self
python
def fit(self, X, y): """ Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self. """ # fit random hidden layer and compute the hidden layer activations self.hidden_activations_ = self.hidden_layer.fit_transform(X) # solve the regression from hidden activations to outputs self._fit_regression(as_float_array(y, copy=True)) return self
[ "def", "fit", "(", "self", ",", "X", ",", "y", ")", ":", "# fit random hidden layer and compute the hidden layer activations", "self", ".", "hidden_activations_", "=", "self", ".", "hidden_layer", ".", "fit_transform", "(", "X", ")", "# solve the regression from hidden activations to outputs", "self", ".", "_fit_regression", "(", "as_float_array", "(", "y", ",", "copy", "=", "True", ")", ")", "return", "self" ]
Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self.
[ "Fit", "the", "model", "using", "X", "y", "as", "training", "data", "." ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/elm.py#L162-L188
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/elm.py
GenELMRegressor._get_predictions
def _get_predictions(self): """ get predictions using internal least squares/supplied regressor """ if self.regressor is None: preds = safe_sparse_dot(self.hidden_activations_, self.coefs_) else: preds = self.regressor.predict(self.hidden_activations_) return preds
python
def _get_predictions(self): """ get predictions using internal least squares/supplied regressor """ if self.regressor is None: preds = safe_sparse_dot(self.hidden_activations_, self.coefs_) else: preds = self.regressor.predict(self.hidden_activations_) return preds
[ "def", "_get_predictions", "(", "self", ")", ":", "if", "self", ".", "regressor", "is", "None", ":", "preds", "=", "safe_sparse_dot", "(", "self", ".", "hidden_activations_", ",", "self", ".", "coefs_", ")", "else", ":", "preds", "=", "self", ".", "regressor", ".", "predict", "(", "self", ".", "hidden_activations_", ")", "return", "preds" ]
get predictions using internal least squares/supplied regressor
[ "get", "predictions", "using", "internal", "least", "squares", "/", "supplied", "regressor" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/elm.py#L190-L199
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/elm.py
GenELMRegressor.predict
def predict(self, X): """ Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values. """ if not self.fitted_: raise ValueError("ELMRegressor not fitted") # compute hidden layer activations self.hidden_activations_ = self.hidden_layer.transform(X) # compute output predictions for new hidden activations predictions = self._get_predictions() return predictions
python
def predict(self, X): """ Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values. """ if not self.fitted_: raise ValueError("ELMRegressor not fitted") # compute hidden layer activations self.hidden_activations_ = self.hidden_layer.transform(X) # compute output predictions for new hidden activations predictions = self._get_predictions() return predictions
[ "def", "predict", "(", "self", ",", "X", ")", ":", "if", "not", "self", ".", "fitted_", ":", "raise", "ValueError", "(", "\"ELMRegressor not fitted\"", ")", "# compute hidden layer activations", "self", ".", "hidden_activations_", "=", "self", ".", "hidden_layer", ".", "transform", "(", "X", ")", "# compute output predictions for new hidden activations", "predictions", "=", "self", ".", "_get_predictions", "(", ")", "return", "predictions" ]
Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values.
[ "Predict", "values", "using", "the", "model" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/elm.py#L201-L223
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/elm.py
GenELMClassifier.fit
def fit(self, X, y): """ Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self. """ self.classes_ = np.unique(y) y_bin = self.binarizer.fit_transform(y) self.genelm_regressor_.fit(X, y_bin) return self
python
def fit(self, X, y): """ Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self. """ self.classes_ = np.unique(y) y_bin = self.binarizer.fit_transform(y) self.genelm_regressor_.fit(X, y_bin) return self
[ "def", "fit", "(", "self", ",", "X", ",", "y", ")", ":", "self", ".", "classes_", "=", "np", ".", "unique", "(", "y", ")", "y_bin", "=", "self", ".", "binarizer", ".", "fit_transform", "(", "y", ")", "self", ".", "genelm_regressor_", ".", "fit", "(", "X", ",", "y_bin", ")", "return", "self" ]
Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self.
[ "Fit", "the", "model", "using", "X", "y", "as", "training", "data", "." ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/elm.py#L299-L324
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/elm.py
GenELMClassifier.predict
def predict(self, X): """Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values. """ raw_predictions = self.decision_function(X) class_predictions = self.binarizer.inverse_transform(raw_predictions) return class_predictions
python
def predict(self, X): """Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values. """ raw_predictions = self.decision_function(X) class_predictions = self.binarizer.inverse_transform(raw_predictions) return class_predictions
[ "def", "predict", "(", "self", ",", "X", ")", ":", "raw_predictions", "=", "self", ".", "decision_function", "(", "X", ")", "class_predictions", "=", "self", ".", "binarizer", ".", "inverse_transform", "(", "raw_predictions", ")", "return", "class_predictions" ]
Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values.
[ "Predict", "values", "using", "the", "model" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/elm.py#L326-L341
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/elm.py
ELMRegressor._create_random_layer
def _create_random_layer(self): """Pass init params to RandomLayer""" return RandomLayer(n_hidden=self.n_hidden, alpha=self.alpha, random_state=self.random_state, activation_func=self.activation_func, activation_args=self.activation_args, user_components=self.user_components, rbf_width=self.rbf_width)
python
def _create_random_layer(self): """Pass init params to RandomLayer""" return RandomLayer(n_hidden=self.n_hidden, alpha=self.alpha, random_state=self.random_state, activation_func=self.activation_func, activation_args=self.activation_args, user_components=self.user_components, rbf_width=self.rbf_width)
[ "def", "_create_random_layer", "(", "self", ")", ":", "return", "RandomLayer", "(", "n_hidden", "=", "self", ".", "n_hidden", ",", "alpha", "=", "self", ".", "alpha", ",", "random_state", "=", "self", ".", "random_state", ",", "activation_func", "=", "self", ".", "activation_func", ",", "activation_args", "=", "self", ".", "activation_args", ",", "user_components", "=", "self", ".", "user_components", ",", "rbf_width", "=", "self", ".", "rbf_width", ")" ]
Pass init params to RandomLayer
[ "Pass", "init", "params", "to", "RandomLayer" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/elm.py#L430-L439
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/elm.py
ELMRegressor.fit
def fit(self, X, y): """ Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self. """ rhl = self._create_random_layer() self._genelm_regressor = GenELMRegressor(hidden_layer=rhl, regressor=self.regressor) self._genelm_regressor.fit(X, y) return self
python
def fit(self, X, y): """ Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self. """ rhl = self._create_random_layer() self._genelm_regressor = GenELMRegressor(hidden_layer=rhl, regressor=self.regressor) self._genelm_regressor.fit(X, y) return self
[ "def", "fit", "(", "self", ",", "X", ",", "y", ")", ":", "rhl", "=", "self", ".", "_create_random_layer", "(", ")", "self", ".", "_genelm_regressor", "=", "GenELMRegressor", "(", "hidden_layer", "=", "rhl", ",", "regressor", "=", "self", ".", "regressor", ")", "self", ".", "_genelm_regressor", ".", "fit", "(", "X", ",", "y", ")", "return", "self" ]
Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self.
[ "Fit", "the", "model", "using", "X", "y", "as", "training", "data", "." ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/elm.py#L441-L465
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/elm.py
ELMRegressor.predict
def predict(self, X): """ Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values. """ if self._genelm_regressor is None: raise ValueError("SimpleELMRegressor not fitted") return self._genelm_regressor.predict(X)
python
def predict(self, X): """ Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values. """ if self._genelm_regressor is None: raise ValueError("SimpleELMRegressor not fitted") return self._genelm_regressor.predict(X)
[ "def", "predict", "(", "self", ",", "X", ")", ":", "if", "self", ".", "_genelm_regressor", "is", "None", ":", "raise", "ValueError", "(", "\"SimpleELMRegressor not fitted\"", ")", "return", "self", ".", "_genelm_regressor", ".", "predict", "(", "X", ")" ]
Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values.
[ "Predict", "values", "using", "the", "model" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/elm.py#L467-L483
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/elm.py
ELMClassifier.fit
def fit(self, X, y): """ Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self. """ self.classes_ = np.unique(y) y_bin = self.binarizer.fit_transform(y) super(ELMClassifier, self).fit(X, y_bin) return self
python
def fit(self, X, y): """ Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self. """ self.classes_ = np.unique(y) y_bin = self.binarizer.fit_transform(y) super(ELMClassifier, self).fit(X, y_bin) return self
[ "def", "fit", "(", "self", ",", "X", ",", "y", ")", ":", "self", ".", "classes_", "=", "np", ".", "unique", "(", "y", ")", "y_bin", "=", "self", ".", "binarizer", ".", "fit_transform", "(", "y", ")", "super", "(", "ELMClassifier", ",", "self", ")", ".", "fit", "(", "X", ",", "y_bin", ")", "return", "self" ]
Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self.
[ "Fit", "the", "model", "using", "X", "y", "as", "training", "data", "." ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/elm.py#L572-L598
wdm0006/sklearn-extensions
sklearn_extensions/extreme_learning_machines/elm.py
ELMClassifier.score
def score(self, X, y): """Force use of accuracy score since we don't inherit from ClassifierMixin""" from sklearn.metrics import accuracy_score return accuracy_score(y, self.predict(X))
python
def score(self, X, y): """Force use of accuracy score since we don't inherit from ClassifierMixin""" from sklearn.metrics import accuracy_score return accuracy_score(y, self.predict(X))
[ "def", "score", "(", "self", ",", "X", ",", "y", ")", ":", "from", "sklearn", ".", "metrics", "import", "accuracy_score", "return", "accuracy_score", "(", "y", ",", "self", ".", "predict", "(", "X", ")", ")" ]
Force use of accuracy score since we don't inherit from ClassifierMixin
[ "Force", "use", "of", "accuracy", "score", "since", "we", "don", "t", "inherit", "from", "ClassifierMixin" ]
train
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/elm.py#L618-L623
raphaelgyory/django-rest-messaging
rest_messaging/compat.py
compat_serializer_check_is_valid
def compat_serializer_check_is_valid(serializer): """ http://www.django-rest-framework.org/topics/3.0-announcement/#using-is_validraise_exceptiontrue """ if DRFVLIST[0] >= 3: serializer.is_valid(raise_exception=True) else: if not serializer.is_valid(): serializers.ValidationError('The serializer raises a validation error')
python
def compat_serializer_check_is_valid(serializer): """ http://www.django-rest-framework.org/topics/3.0-announcement/#using-is_validraise_exceptiontrue """ if DRFVLIST[0] >= 3: serializer.is_valid(raise_exception=True) else: if not serializer.is_valid(): serializers.ValidationError('The serializer raises a validation error')
[ "def", "compat_serializer_check_is_valid", "(", "serializer", ")", ":", "if", "DRFVLIST", "[", "0", "]", ">=", "3", ":", "serializer", ".", "is_valid", "(", "raise_exception", "=", "True", ")", "else", ":", "if", "not", "serializer", ".", "is_valid", "(", ")", ":", "serializers", ".", "ValidationError", "(", "'The serializer raises a validation error'", ")" ]
http://www.django-rest-framework.org/topics/3.0-announcement/#using-is_validraise_exceptiontrue
[ "http", ":", "//", "www", ".", "django", "-", "rest", "-", "framework", ".", "org", "/", "topics", "/", "3", ".", "0", "-", "announcement", "/", "#using", "-", "is_validraise_exceptiontrue" ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/compat.py#L23-L29
raphaelgyory/django-rest-messaging
rest_messaging/compat.py
compat_serializer_attr
def compat_serializer_attr(serializer, obj): """ Required only for DRF 3.1, which does not make dynamically added attribute available in obj in serializer. This is a quick solution but works without breajing anything. """ if DRFVLIST[0] == 3 and DRFVLIST[1] == 1: for i in serializer.instance: if i.id == obj.id: return i else: return obj
python
def compat_serializer_attr(serializer, obj): """ Required only for DRF 3.1, which does not make dynamically added attribute available in obj in serializer. This is a quick solution but works without breajing anything. """ if DRFVLIST[0] == 3 and DRFVLIST[1] == 1: for i in serializer.instance: if i.id == obj.id: return i else: return obj
[ "def", "compat_serializer_attr", "(", "serializer", ",", "obj", ")", ":", "if", "DRFVLIST", "[", "0", "]", "==", "3", "and", "DRFVLIST", "[", "1", "]", "==", "1", ":", "for", "i", "in", "serializer", ".", "instance", ":", "if", "i", ".", "id", "==", "obj", ".", "id", ":", "return", "i", "else", ":", "return", "obj" ]
Required only for DRF 3.1, which does not make dynamically added attribute available in obj in serializer. This is a quick solution but works without breajing anything.
[ "Required", "only", "for", "DRF", "3", ".", "1", "which", "does", "not", "make", "dynamically", "added", "attribute", "available", "in", "obj", "in", "serializer", ".", "This", "is", "a", "quick", "solution", "but", "works", "without", "breajing", "anything", "." ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/compat.py#L40-L50
raphaelgyory/django-rest-messaging
rest_messaging/compat.py
compat_get_paginated_response
def compat_get_paginated_response(view, page): """ get_paginated_response is unknown to DRF 3.0 """ if DRFVLIST[0] == 3 and DRFVLIST[1] >= 1: from rest_messaging.serializers import ComplexMessageSerializer # circular import serializer = ComplexMessageSerializer(page, many=True) return view.get_paginated_response(serializer.data) else: serializer = view.get_pagination_serializer(page) return Response(serializer.data)
python
def compat_get_paginated_response(view, page): """ get_paginated_response is unknown to DRF 3.0 """ if DRFVLIST[0] == 3 and DRFVLIST[1] >= 1: from rest_messaging.serializers import ComplexMessageSerializer # circular import serializer = ComplexMessageSerializer(page, many=True) return view.get_paginated_response(serializer.data) else: serializer = view.get_pagination_serializer(page) return Response(serializer.data)
[ "def", "compat_get_paginated_response", "(", "view", ",", "page", ")", ":", "if", "DRFVLIST", "[", "0", "]", "==", "3", "and", "DRFVLIST", "[", "1", "]", ">=", "1", ":", "from", "rest_messaging", ".", "serializers", "import", "ComplexMessageSerializer", "# circular import", "serializer", "=", "ComplexMessageSerializer", "(", "page", ",", "many", "=", "True", ")", "return", "view", ".", "get_paginated_response", "(", "serializer", ".", "data", ")", "else", ":", "serializer", "=", "view", ".", "get_pagination_serializer", "(", "page", ")", "return", "Response", "(", "serializer", ".", "data", ")" ]
get_paginated_response is unknown to DRF 3.0
[ "get_paginated_response", "is", "unknown", "to", "DRF", "3", ".", "0" ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/compat.py#L67-L75
raphaelgyory/django-rest-messaging
rest_messaging/compat.py
compat_pagination_messages
def compat_pagination_messages(cls): """ For DRF 3.1 and higher, pagination is defined at the paginator level (see http://www.django-rest-framework.org/topics/3.2-announcement/). For DRF 3.0 and lower, it can be handled at the view level. """ if DRFVLIST[0] == 3 and DRFVLIST[1] >= 1: setattr(cls, "pagination_class", MessagePagination) return cls else: # DRF 2 pagination setattr(cls, "paginate_by", getattr(settings, "DJANGO_REST_MESSAGING_MESSAGES_PAGE_SIZE", 30)) return cls
python
def compat_pagination_messages(cls): """ For DRF 3.1 and higher, pagination is defined at the paginator level (see http://www.django-rest-framework.org/topics/3.2-announcement/). For DRF 3.0 and lower, it can be handled at the view level. """ if DRFVLIST[0] == 3 and DRFVLIST[1] >= 1: setattr(cls, "pagination_class", MessagePagination) return cls else: # DRF 2 pagination setattr(cls, "paginate_by", getattr(settings, "DJANGO_REST_MESSAGING_MESSAGES_PAGE_SIZE", 30)) return cls
[ "def", "compat_pagination_messages", "(", "cls", ")", ":", "if", "DRFVLIST", "[", "0", "]", "==", "3", "and", "DRFVLIST", "[", "1", "]", ">=", "1", ":", "setattr", "(", "cls", ",", "\"pagination_class\"", ",", "MessagePagination", ")", "return", "cls", "else", ":", "# DRF 2 pagination", "setattr", "(", "cls", ",", "\"paginate_by\"", ",", "getattr", "(", "settings", ",", "\"DJANGO_REST_MESSAGING_MESSAGES_PAGE_SIZE\"", ",", "30", ")", ")", "return", "cls" ]
For DRF 3.1 and higher, pagination is defined at the paginator level (see http://www.django-rest-framework.org/topics/3.2-announcement/). For DRF 3.0 and lower, it can be handled at the view level.
[ "For", "DRF", "3", ".", "1", "and", "higher", "pagination", "is", "defined", "at", "the", "paginator", "level", "(", "see", "http", ":", "//", "www", ".", "django", "-", "rest", "-", "framework", ".", "org", "/", "topics", "/", "3", ".", "2", "-", "announcement", "/", ")", ".", "For", "DRF", "3", ".", "0", "and", "lower", "it", "can", "be", "handled", "at", "the", "view", "level", "." ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/compat.py#L78-L89
raphaelgyory/django-rest-messaging
rest_messaging/serializers.py
ThreadSerializer.get_participants
def get_participants(self, obj): """ Allows to define a callback for serializing information about the user. """ # we set the many to many serialization to False, because we only want it with retrieve requests if self.callback is None: return [participant.id for participant in obj.participants.all()] else: # we do not want user information return self.callback(obj)
python
def get_participants(self, obj): """ Allows to define a callback for serializing information about the user. """ # we set the many to many serialization to False, because we only want it with retrieve requests if self.callback is None: return [participant.id for participant in obj.participants.all()] else: # we do not want user information return self.callback(obj)
[ "def", "get_participants", "(", "self", ",", "obj", ")", ":", "# we set the many to many serialization to False, because we only want it with retrieve requests", "if", "self", ".", "callback", "is", "None", ":", "return", "[", "participant", ".", "id", "for", "participant", "in", "obj", ".", "participants", ".", "all", "(", ")", "]", "else", ":", "# we do not want user information", "return", "self", ".", "callback", "(", "obj", ")" ]
Allows to define a callback for serializing information about the user.
[ "Allows", "to", "define", "a", "callback", "for", "serializing", "information", "about", "the", "user", "." ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/serializers.py#L26-L33
raphaelgyory/django-rest-messaging
rest_messaging/serializers.py
ComplexMessageSerializer.get_is_notification
def get_is_notification(self, obj): """ We say if the message should trigger a notification """ try: o = compat_serializer_attr(self, obj) return o.is_notification except Exception: return False
python
def get_is_notification(self, obj): """ We say if the message should trigger a notification """ try: o = compat_serializer_attr(self, obj) return o.is_notification except Exception: return False
[ "def", "get_is_notification", "(", "self", ",", "obj", ")", ":", "try", ":", "o", "=", "compat_serializer_attr", "(", "self", ",", "obj", ")", "return", "o", ".", "is_notification", "except", "Exception", ":", "return", "False" ]
We say if the message should trigger a notification
[ "We", "say", "if", "the", "message", "should", "trigger", "a", "notification" ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/serializers.py#L57-L63
raphaelgyory/django-rest-messaging
rest_messaging/serializers.py
ComplexMessageSerializer.get_readers
def get_readers(self, obj): """ Return the ids of the people who read the message instance. """ try: o = compat_serializer_attr(self, obj) return o.readers except Exception: return []
python
def get_readers(self, obj): """ Return the ids of the people who read the message instance. """ try: o = compat_serializer_attr(self, obj) return o.readers except Exception: return []
[ "def", "get_readers", "(", "self", ",", "obj", ")", ":", "try", ":", "o", "=", "compat_serializer_attr", "(", "self", ",", "obj", ")", "return", "o", ".", "readers", "except", "Exception", ":", "return", "[", "]" ]
Return the ids of the people who read the message instance.
[ "Return", "the", "ids", "of", "the", "people", "who", "read", "the", "message", "instance", "." ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/serializers.py#L65-L71
raphaelgyory/django-rest-messaging
rest_messaging/models.py
ThreadManager.get_threads_where_participant_is_active
def get_threads_where_participant_is_active(self, participant_id): """ Gets all the threads in which the current participant is involved. The method excludes threads where the participant has left. """ participations = Participation.objects.\ filter(participant__id=participant_id).\ exclude(date_left__lte=now()).\ distinct().\ select_related('thread') return Thread.objects.\ filter(id__in=[p.thread.id for p in participations]).\ distinct()
python
def get_threads_where_participant_is_active(self, participant_id): """ Gets all the threads in which the current participant is involved. The method excludes threads where the participant has left. """ participations = Participation.objects.\ filter(participant__id=participant_id).\ exclude(date_left__lte=now()).\ distinct().\ select_related('thread') return Thread.objects.\ filter(id__in=[p.thread.id for p in participations]).\ distinct()
[ "def", "get_threads_where_participant_is_active", "(", "self", ",", "participant_id", ")", ":", "participations", "=", "Participation", ".", "objects", ".", "filter", "(", "participant__id", "=", "participant_id", ")", ".", "exclude", "(", "date_left__lte", "=", "now", "(", ")", ")", ".", "distinct", "(", ")", ".", "select_related", "(", "'thread'", ")", "return", "Thread", ".", "objects", ".", "filter", "(", "id__in", "=", "[", "p", ".", "thread", ".", "id", "for", "p", "in", "participations", "]", ")", ".", "distinct", "(", ")" ]
Gets all the threads in which the current participant is involved. The method excludes threads where the participant has left.
[ "Gets", "all", "the", "threads", "in", "which", "the", "current", "participant", "is", "involved", ".", "The", "method", "excludes", "threads", "where", "the", "participant", "has", "left", "." ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/models.py#L34-L44
raphaelgyory/django-rest-messaging
rest_messaging/models.py
ThreadManager.get_active_threads_involving_all_participants
def get_active_threads_involving_all_participants(self, *participant_ids): """ Gets the threads where the specified participants are active and no one has left. """ query = Thread.objects.\ exclude(participation__date_left__lte=now()).\ annotate(count_participants=Count('participants')).\ filter(count_participants=len(participant_ids)) for participant_id in participant_ids: query = query.filter(participants__id=participant_id) return query.distinct()
python
def get_active_threads_involving_all_participants(self, *participant_ids): """ Gets the threads where the specified participants are active and no one has left. """ query = Thread.objects.\ exclude(participation__date_left__lte=now()).\ annotate(count_participants=Count('participants')).\ filter(count_participants=len(participant_ids)) for participant_id in participant_ids: query = query.filter(participants__id=participant_id) return query.distinct()
[ "def", "get_active_threads_involving_all_participants", "(", "self", ",", "*", "participant_ids", ")", ":", "query", "=", "Thread", ".", "objects", ".", "exclude", "(", "participation__date_left__lte", "=", "now", "(", ")", ")", ".", "annotate", "(", "count_participants", "=", "Count", "(", "'participants'", ")", ")", ".", "filter", "(", "count_participants", "=", "len", "(", "participant_ids", ")", ")", "for", "participant_id", "in", "participant_ids", ":", "query", "=", "query", ".", "filter", "(", "participants__id", "=", "participant_id", ")", "return", "query", ".", "distinct", "(", ")" ]
Gets the threads where the specified participants are active and no one has left.
[ "Gets", "the", "threads", "where", "the", "specified", "participants", "are", "active", "and", "no", "one", "has", "left", "." ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/models.py#L46-L57
raphaelgyory/django-rest-messaging
rest_messaging/models.py
ThreadManager.get_or_create_thread
def get_or_create_thread(self, request, name=None, *participant_ids): """ When a Participant posts a message to other participants without specifying an existing Thread, we must 1. Create a new Thread if they have not yet opened the discussion. 2. If they have already opened the discussion and multiple Threads are not allowed for the same users, we must re-attach this message to the existing thread. 3. If they have already opened the discussion and multiple Threads are allowed, we simply create a new one. """ # we get the current participant # or create him if he does not exit participant_ids = list(participant_ids) if request.rest_messaging_participant.id not in participant_ids: participant_ids.append(request.rest_messaging_participant.id) # we need at least one other participant if len(participant_ids) < 2: raise Exception('At least two participants are required.') if getattr(settings, "REST_MESSAGING_THREAD_UNIQUE_FOR_ACTIVE_RECIPIENTS", True) is True: # if we limit the number of threads by active participants # we ensure a thread is not already running existing_threads = self.get_active_threads_involving_all_participants(*participant_ids) if len(list(existing_threads)) > 0: return existing_threads[0] # we have no existing Thread or multiple Thread instances are allowed thread = Thread.objects.create(name=name) # we add the participants thread.add_participants(request, *participant_ids) # we send a signal to say the thread with participants is created post_save.send(Thread, instance=thread, created=True, created_and_add_participants=True, request_participant_id=request.rest_messaging_participant.id) return thread
python
def get_or_create_thread(self, request, name=None, *participant_ids): """ When a Participant posts a message to other participants without specifying an existing Thread, we must 1. Create a new Thread if they have not yet opened the discussion. 2. If they have already opened the discussion and multiple Threads are not allowed for the same users, we must re-attach this message to the existing thread. 3. If they have already opened the discussion and multiple Threads are allowed, we simply create a new one. """ # we get the current participant # or create him if he does not exit participant_ids = list(participant_ids) if request.rest_messaging_participant.id not in participant_ids: participant_ids.append(request.rest_messaging_participant.id) # we need at least one other participant if len(participant_ids) < 2: raise Exception('At least two participants are required.') if getattr(settings, "REST_MESSAGING_THREAD_UNIQUE_FOR_ACTIVE_RECIPIENTS", True) is True: # if we limit the number of threads by active participants # we ensure a thread is not already running existing_threads = self.get_active_threads_involving_all_participants(*participant_ids) if len(list(existing_threads)) > 0: return existing_threads[0] # we have no existing Thread or multiple Thread instances are allowed thread = Thread.objects.create(name=name) # we add the participants thread.add_participants(request, *participant_ids) # we send a signal to say the thread with participants is created post_save.send(Thread, instance=thread, created=True, created_and_add_participants=True, request_participant_id=request.rest_messaging_participant.id) return thread
[ "def", "get_or_create_thread", "(", "self", ",", "request", ",", "name", "=", "None", ",", "*", "participant_ids", ")", ":", "# we get the current participant", "# or create him if he does not exit", "participant_ids", "=", "list", "(", "participant_ids", ")", "if", "request", ".", "rest_messaging_participant", ".", "id", "not", "in", "participant_ids", ":", "participant_ids", ".", "append", "(", "request", ".", "rest_messaging_participant", ".", "id", ")", "# we need at least one other participant", "if", "len", "(", "participant_ids", ")", "<", "2", ":", "raise", "Exception", "(", "'At least two participants are required.'", ")", "if", "getattr", "(", "settings", ",", "\"REST_MESSAGING_THREAD_UNIQUE_FOR_ACTIVE_RECIPIENTS\"", ",", "True", ")", "is", "True", ":", "# if we limit the number of threads by active participants", "# we ensure a thread is not already running", "existing_threads", "=", "self", ".", "get_active_threads_involving_all_participants", "(", "*", "participant_ids", ")", "if", "len", "(", "list", "(", "existing_threads", ")", ")", ">", "0", ":", "return", "existing_threads", "[", "0", "]", "# we have no existing Thread or multiple Thread instances are allowed", "thread", "=", "Thread", ".", "objects", ".", "create", "(", "name", "=", "name", ")", "# we add the participants", "thread", ".", "add_participants", "(", "request", ",", "*", "participant_ids", ")", "# we send a signal to say the thread with participants is created", "post_save", ".", "send", "(", "Thread", ",", "instance", "=", "thread", ",", "created", "=", "True", ",", "created_and_add_participants", "=", "True", ",", "request_participant_id", "=", "request", ".", "rest_messaging_participant", ".", "id", ")", "return", "thread" ]
When a Participant posts a message to other participants without specifying an existing Thread, we must 1. Create a new Thread if they have not yet opened the discussion. 2. If they have already opened the discussion and multiple Threads are not allowed for the same users, we must re-attach this message to the existing thread. 3. If they have already opened the discussion and multiple Threads are allowed, we simply create a new one.
[ "When", "a", "Participant", "posts", "a", "message", "to", "other", "participants", "without", "specifying", "an", "existing", "Thread", "we", "must", "1", ".", "Create", "a", "new", "Thread", "if", "they", "have", "not", "yet", "opened", "the", "discussion", ".", "2", ".", "If", "they", "have", "already", "opened", "the", "discussion", "and", "multiple", "Threads", "are", "not", "allowed", "for", "the", "same", "users", "we", "must", "re", "-", "attach", "this", "message", "to", "the", "existing", "thread", ".", "3", ".", "If", "they", "have", "already", "opened", "the", "discussion", "and", "multiple", "Threads", "are", "allowed", "we", "simply", "create", "a", "new", "one", "." ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/models.py#L59-L96
raphaelgyory/django-rest-messaging
rest_messaging/models.py
MessageManager.return_daily_messages_count
def return_daily_messages_count(self, sender): """ Returns the number of messages sent in the last 24 hours so we can ensure the user does not exceed his messaging limits """ h24 = now() - timedelta(days=1) return Message.objects.filter(sender=sender, sent_at__gte=h24).count()
python
def return_daily_messages_count(self, sender): """ Returns the number of messages sent in the last 24 hours so we can ensure the user does not exceed his messaging limits """ h24 = now() - timedelta(days=1) return Message.objects.filter(sender=sender, sent_at__gte=h24).count()
[ "def", "return_daily_messages_count", "(", "self", ",", "sender", ")", ":", "h24", "=", "now", "(", ")", "-", "timedelta", "(", "days", "=", "1", ")", "return", "Message", ".", "objects", ".", "filter", "(", "sender", "=", "sender", ",", "sent_at__gte", "=", "h24", ")", ".", "count", "(", ")" ]
Returns the number of messages sent in the last 24 hours so we can ensure the user does not exceed his messaging limits
[ "Returns", "the", "number", "of", "messages", "sent", "in", "the", "last", "24", "hours", "so", "we", "can", "ensure", "the", "user", "does", "not", "exceed", "his", "messaging", "limits" ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/models.py#L191-L194
raphaelgyory/django-rest-messaging
rest_messaging/models.py
MessageManager.check_who_read
def check_who_read(self, messages): """ Check who read each message. """ # we get the corresponding Participation objects for m in messages: readers = [] for p in m.thread.participation_set.all(): if p.date_last_check is None: pass elif p.date_last_check > m.sent_at: # the message has been read readers.append(p.participant.id) setattr(m, "readers", readers) return messages
python
def check_who_read(self, messages): """ Check who read each message. """ # we get the corresponding Participation objects for m in messages: readers = [] for p in m.thread.participation_set.all(): if p.date_last_check is None: pass elif p.date_last_check > m.sent_at: # the message has been read readers.append(p.participant.id) setattr(m, "readers", readers) return messages
[ "def", "check_who_read", "(", "self", ",", "messages", ")", ":", "# we get the corresponding Participation objects", "for", "m", "in", "messages", ":", "readers", "=", "[", "]", "for", "p", "in", "m", ".", "thread", ".", "participation_set", ".", "all", "(", ")", ":", "if", "p", ".", "date_last_check", "is", "None", ":", "pass", "elif", "p", ".", "date_last_check", ">", "m", ".", "sent_at", ":", "# the message has been read", "readers", ".", "append", "(", "p", ".", "participant", ".", "id", ")", "setattr", "(", "m", ",", "\"readers\"", ",", "readers", ")", "return", "messages" ]
Check who read each message.
[ "Check", "who", "read", "each", "message", "." ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/models.py#L196-L209
raphaelgyory/django-rest-messaging
rest_messaging/models.py
MessageManager.check_is_notification
def check_is_notification(self, participant_id, messages): """ Check if each message requires a notification for the specified participant. """ try: # we get the last check last_check = NotificationCheck.objects.filter(participant__id=participant_id).latest('id').date_check except Exception: # we have no notification check # all the messages are considered as new for m in messages: m.is_notification = True return messages for m in messages: if m.sent_at > last_check and m.sender.id != participant_id: setattr(m, "is_notification", True) else: setattr(m, "is_notification", False) return messages
python
def check_is_notification(self, participant_id, messages): """ Check if each message requires a notification for the specified participant. """ try: # we get the last check last_check = NotificationCheck.objects.filter(participant__id=participant_id).latest('id').date_check except Exception: # we have no notification check # all the messages are considered as new for m in messages: m.is_notification = True return messages for m in messages: if m.sent_at > last_check and m.sender.id != participant_id: setattr(m, "is_notification", True) else: setattr(m, "is_notification", False) return messages
[ "def", "check_is_notification", "(", "self", ",", "participant_id", ",", "messages", ")", ":", "try", ":", "# we get the last check", "last_check", "=", "NotificationCheck", ".", "objects", ".", "filter", "(", "participant__id", "=", "participant_id", ")", ".", "latest", "(", "'id'", ")", ".", "date_check", "except", "Exception", ":", "# we have no notification check", "# all the messages are considered as new", "for", "m", "in", "messages", ":", "m", ".", "is_notification", "=", "True", "return", "messages", "for", "m", "in", "messages", ":", "if", "m", ".", "sent_at", ">", "last_check", "and", "m", ".", "sender", ".", "id", "!=", "participant_id", ":", "setattr", "(", "m", ",", "\"is_notification\"", ",", "True", ")", "else", ":", "setattr", "(", "m", ",", "\"is_notification\"", ",", "False", ")", "return", "messages" ]
Check if each message requires a notification for the specified participant.
[ "Check", "if", "each", "message", "requires", "a", "notification", "for", "the", "specified", "participant", "." ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/models.py#L211-L228
raphaelgyory/django-rest-messaging
rest_messaging/models.py
MessageManager.get_lasts_messages_of_threads
def get_lasts_messages_of_threads(self, participant_id, check_who_read=True, check_is_notification=True): """ Returns the last message in each thread """ # we get the last message for each thread # we must query the messages using two queries because only Postgres supports .order_by('thread', '-sent_at').distinct('thread') threads = Thread.managers.\ get_threads_where_participant_is_active(participant_id).\ annotate(last_message_id=Max('message__id')) messages = Message.objects.filter(id__in=[thread.last_message_id for thread in threads]).\ order_by('-id').\ distinct().\ select_related('thread', 'sender') if check_who_read is True: messages = messages.prefetch_related('thread__participation_set', 'thread__participation_set__participant') messages = self.check_who_read(messages) else: messages = messages.prefetch_related('thread__participants') if check_is_notification is True: messages = self.check_is_notification(participant_id, messages) return messages
python
def get_lasts_messages_of_threads(self, participant_id, check_who_read=True, check_is_notification=True): """ Returns the last message in each thread """ # we get the last message for each thread # we must query the messages using two queries because only Postgres supports .order_by('thread', '-sent_at').distinct('thread') threads = Thread.managers.\ get_threads_where_participant_is_active(participant_id).\ annotate(last_message_id=Max('message__id')) messages = Message.objects.filter(id__in=[thread.last_message_id for thread in threads]).\ order_by('-id').\ distinct().\ select_related('thread', 'sender') if check_who_read is True: messages = messages.prefetch_related('thread__participation_set', 'thread__participation_set__participant') messages = self.check_who_read(messages) else: messages = messages.prefetch_related('thread__participants') if check_is_notification is True: messages = self.check_is_notification(participant_id, messages) return messages
[ "def", "get_lasts_messages_of_threads", "(", "self", ",", "participant_id", ",", "check_who_read", "=", "True", ",", "check_is_notification", "=", "True", ")", ":", "# we get the last message for each thread", "# we must query the messages using two queries because only Postgres supports .order_by('thread', '-sent_at').distinct('thread')", "threads", "=", "Thread", ".", "managers", ".", "get_threads_where_participant_is_active", "(", "participant_id", ")", ".", "annotate", "(", "last_message_id", "=", "Max", "(", "'message__id'", ")", ")", "messages", "=", "Message", ".", "objects", ".", "filter", "(", "id__in", "=", "[", "thread", ".", "last_message_id", "for", "thread", "in", "threads", "]", ")", ".", "order_by", "(", "'-id'", ")", ".", "distinct", "(", ")", ".", "select_related", "(", "'thread'", ",", "'sender'", ")", "if", "check_who_read", "is", "True", ":", "messages", "=", "messages", ".", "prefetch_related", "(", "'thread__participation_set'", ",", "'thread__participation_set__participant'", ")", "messages", "=", "self", ".", "check_who_read", "(", "messages", ")", "else", ":", "messages", "=", "messages", ".", "prefetch_related", "(", "'thread__participants'", ")", "if", "check_is_notification", "is", "True", ":", "messages", "=", "self", ".", "check_is_notification", "(", "participant_id", ",", "messages", ")", "return", "messages" ]
Returns the last message in each thread
[ "Returns", "the", "last", "message", "in", "each", "thread" ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/models.py#L230-L250
raphaelgyory/django-rest-messaging
rest_messaging/models.py
MessageManager.get_all_messages_in_thread
def get_all_messages_in_thread(self, participant_id, thread_id, check_who_read=True): """ Returns all the messages in a thread. """ try: messages = Message.objects.filter(thread__id=thread_id).\ order_by('-id').\ select_related('thread').\ prefetch_related('thread__participation_set', 'thread__participation_set__participant') except Exception: return Message.objects.none() messages = self.check_who_read(messages) return messages
python
def get_all_messages_in_thread(self, participant_id, thread_id, check_who_read=True): """ Returns all the messages in a thread. """ try: messages = Message.objects.filter(thread__id=thread_id).\ order_by('-id').\ select_related('thread').\ prefetch_related('thread__participation_set', 'thread__participation_set__participant') except Exception: return Message.objects.none() messages = self.check_who_read(messages) return messages
[ "def", "get_all_messages_in_thread", "(", "self", ",", "participant_id", ",", "thread_id", ",", "check_who_read", "=", "True", ")", ":", "try", ":", "messages", "=", "Message", ".", "objects", ".", "filter", "(", "thread__id", "=", "thread_id", ")", ".", "order_by", "(", "'-id'", ")", ".", "select_related", "(", "'thread'", ")", ".", "prefetch_related", "(", "'thread__participation_set'", ",", "'thread__participation_set__participant'", ")", "except", "Exception", ":", "return", "Message", ".", "objects", ".", "none", "(", ")", "messages", "=", "self", ".", "check_who_read", "(", "messages", ")", "return", "messages" ]
Returns all the messages in a thread.
[ "Returns", "all", "the", "messages", "in", "a", "thread", "." ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/models.py#L252-L263
raphaelgyory/django-rest-messaging
rest_messaging/views.py
ThreadView.create
def create(self, request, *args, **kwargs): """ We ensure the Thread only involves eligible participants. """ serializer = self.get_serializer(data=compat_get_request_data(request)) compat_serializer_check_is_valid(serializer) self.perform_create(request, serializer) headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=status.HTTP_201_CREATED, headers=headers)
python
def create(self, request, *args, **kwargs): """ We ensure the Thread only involves eligible participants. """ serializer = self.get_serializer(data=compat_get_request_data(request)) compat_serializer_check_is_valid(serializer) self.perform_create(request, serializer) headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=status.HTTP_201_CREATED, headers=headers)
[ "def", "create", "(", "self", ",", "request", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "serializer", "=", "self", ".", "get_serializer", "(", "data", "=", "compat_get_request_data", "(", "request", ")", ")", "compat_serializer_check_is_valid", "(", "serializer", ")", "self", ".", "perform_create", "(", "request", ",", "serializer", ")", "headers", "=", "self", ".", "get_success_headers", "(", "serializer", ".", "data", ")", "return", "Response", "(", "serializer", ".", "data", ",", "status", "=", "status", ".", "HTTP_201_CREATED", ",", "headers", "=", "headers", ")" ]
We ensure the Thread only involves eligible participants.
[ "We", "ensure", "the", "Thread", "only", "involves", "eligible", "participants", "." ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/views.py#L36-L42
raphaelgyory/django-rest-messaging
rest_messaging/views.py
ThreadView.mark_thread_as_read
def mark_thread_as_read(self, request, pk=None): """ Pk is the pk of the Thread to which the messages belong. """ # we get the thread and check for permission thread = Thread.objects.get(id=pk) self.check_object_permissions(request, thread) # we save the date try: participation = Participation.objects.get(thread=thread, participant=request.rest_messaging_participant) participation.date_last_check = now() participation.save() # we return the thread serializer = self.get_serializer(thread) return Response(serializer.data) except Exception: return Response(status=status.HTTP_400_BAD_REQUEST)
python
def mark_thread_as_read(self, request, pk=None): """ Pk is the pk of the Thread to which the messages belong. """ # we get the thread and check for permission thread = Thread.objects.get(id=pk) self.check_object_permissions(request, thread) # we save the date try: participation = Participation.objects.get(thread=thread, participant=request.rest_messaging_participant) participation.date_last_check = now() participation.save() # we return the thread serializer = self.get_serializer(thread) return Response(serializer.data) except Exception: return Response(status=status.HTTP_400_BAD_REQUEST)
[ "def", "mark_thread_as_read", "(", "self", ",", "request", ",", "pk", "=", "None", ")", ":", "# we get the thread and check for permission", "thread", "=", "Thread", ".", "objects", ".", "get", "(", "id", "=", "pk", ")", "self", ".", "check_object_permissions", "(", "request", ",", "thread", ")", "# we save the date", "try", ":", "participation", "=", "Participation", ".", "objects", ".", "get", "(", "thread", "=", "thread", ",", "participant", "=", "request", ".", "rest_messaging_participant", ")", "participation", ".", "date_last_check", "=", "now", "(", ")", "participation", ".", "save", "(", ")", "# we return the thread", "serializer", "=", "self", ".", "get_serializer", "(", "thread", ")", "return", "Response", "(", "serializer", ".", "data", ")", "except", "Exception", ":", "return", "Response", "(", "status", "=", "status", ".", "HTTP_400_BAD_REQUEST", ")" ]
Pk is the pk of the Thread to which the messages belong.
[ "Pk", "is", "the", "pk", "of", "the", "Thread", "to", "which", "the", "messages", "belong", "." ]
train
https://github.com/raphaelgyory/django-rest-messaging/blob/c9d5405fed7db2d79ec5c93c721a8fe42ea86958/rest_messaging/views.py#L107-L121
letuananh/chirptext
chirptext/chirpnet.py
SmartURL.process
def process(self, quoted=False): ''' Parse an URL ''' self.p = urlparse(self.raw) self.scheme = self.p.scheme self.netloc = self.p.netloc self.opath = self.p.path if not quoted else quote(self.p.path) self.path = [x for x in self.opath.split('/') if x] self.params = self.p.params self.query = parse_qs(self.p.query, keep_blank_values=True) self.fragment = self.p.fragment
python
def process(self, quoted=False): ''' Parse an URL ''' self.p = urlparse(self.raw) self.scheme = self.p.scheme self.netloc = self.p.netloc self.opath = self.p.path if not quoted else quote(self.p.path) self.path = [x for x in self.opath.split('/') if x] self.params = self.p.params self.query = parse_qs(self.p.query, keep_blank_values=True) self.fragment = self.p.fragment
[ "def", "process", "(", "self", ",", "quoted", "=", "False", ")", ":", "self", ".", "p", "=", "urlparse", "(", "self", ".", "raw", ")", "self", ".", "scheme", "=", "self", ".", "p", ".", "scheme", "self", ".", "netloc", "=", "self", ".", "p", ".", "netloc", "self", ".", "opath", "=", "self", ".", "p", ".", "path", "if", "not", "quoted", "else", "quote", "(", "self", ".", "p", ".", "path", ")", "self", ".", "path", "=", "[", "x", "for", "x", "in", "self", ".", "opath", ".", "split", "(", "'/'", ")", "if", "x", "]", "self", ".", "params", "=", "self", ".", "p", ".", "params", "self", ".", "query", "=", "parse_qs", "(", "self", ".", "p", ".", "query", ",", "keep_blank_values", "=", "True", ")", "self", ".", "fragment", "=", "self", ".", "p", ".", "fragment" ]
Parse an URL
[ "Parse", "an", "URL" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/chirpnet.py#L61-L70
letuananh/chirptext
chirptext/chirpnet.py
WebHelper.fetch
def fetch(self, url, encoding=None, force_refetch=False, nocache=False, quiet=True): ''' Fetch a HTML file as binary''' try: if not force_refetch and self.cache is not None and url in self.cache: # try to look for content in cache logging.debug('Retrieving content from cache for {}'.format(url)) return self.cache.retrieve_blob(url, encoding) encoded_url = WebHelper.encode_url(url) req = Request(encoded_url, headers={'User-Agent': 'Mozilla/5.0'}) # support gzip req.add_header('Accept-encoding', 'gzip, deflate') # Open URL getLogger().info("Fetching: {url} |".format(url=url)) response = urlopen(req) content = response.read() # unzip if required if 'Content-Encoding' in response.info() and response.info().get('Content-Encoding') == 'gzip': # unzip with gzip.open(BytesIO(content)) as gzfile: content = gzfile.read() # update cache if required if self.cache is not None and not nocache: if url not in self.cache: self.cache.insert_blob(url, content) return content.decode(encoding) if content and encoding else content except URLError as e: if hasattr(e, 'reason'): getLogger().exception('We failed to reach {}. Reason: {}'.format(url, e.reason)) elif hasattr(e, 'code'): getLogger().exception('The server couldn\'t fulfill the request. Error code: {}'.format(e.code)) else: # Other exception ... getLogger().exception("Fetching error") if not quiet: raise return None
python
def fetch(self, url, encoding=None, force_refetch=False, nocache=False, quiet=True): ''' Fetch a HTML file as binary''' try: if not force_refetch and self.cache is not None and url in self.cache: # try to look for content in cache logging.debug('Retrieving content from cache for {}'.format(url)) return self.cache.retrieve_blob(url, encoding) encoded_url = WebHelper.encode_url(url) req = Request(encoded_url, headers={'User-Agent': 'Mozilla/5.0'}) # support gzip req.add_header('Accept-encoding', 'gzip, deflate') # Open URL getLogger().info("Fetching: {url} |".format(url=url)) response = urlopen(req) content = response.read() # unzip if required if 'Content-Encoding' in response.info() and response.info().get('Content-Encoding') == 'gzip': # unzip with gzip.open(BytesIO(content)) as gzfile: content = gzfile.read() # update cache if required if self.cache is not None and not nocache: if url not in self.cache: self.cache.insert_blob(url, content) return content.decode(encoding) if content and encoding else content except URLError as e: if hasattr(e, 'reason'): getLogger().exception('We failed to reach {}. Reason: {}'.format(url, e.reason)) elif hasattr(e, 'code'): getLogger().exception('The server couldn\'t fulfill the request. Error code: {}'.format(e.code)) else: # Other exception ... getLogger().exception("Fetching error") if not quiet: raise return None
[ "def", "fetch", "(", "self", ",", "url", ",", "encoding", "=", "None", ",", "force_refetch", "=", "False", ",", "nocache", "=", "False", ",", "quiet", "=", "True", ")", ":", "try", ":", "if", "not", "force_refetch", "and", "self", ".", "cache", "is", "not", "None", "and", "url", "in", "self", ".", "cache", ":", "# try to look for content in cache", "logging", ".", "debug", "(", "'Retrieving content from cache for {}'", ".", "format", "(", "url", ")", ")", "return", "self", ".", "cache", ".", "retrieve_blob", "(", "url", ",", "encoding", ")", "encoded_url", "=", "WebHelper", ".", "encode_url", "(", "url", ")", "req", "=", "Request", "(", "encoded_url", ",", "headers", "=", "{", "'User-Agent'", ":", "'Mozilla/5.0'", "}", ")", "# support gzip", "req", ".", "add_header", "(", "'Accept-encoding'", ",", "'gzip, deflate'", ")", "# Open URL", "getLogger", "(", ")", ".", "info", "(", "\"Fetching: {url} |\"", ".", "format", "(", "url", "=", "url", ")", ")", "response", "=", "urlopen", "(", "req", ")", "content", "=", "response", ".", "read", "(", ")", "# unzip if required", "if", "'Content-Encoding'", "in", "response", ".", "info", "(", ")", "and", "response", ".", "info", "(", ")", ".", "get", "(", "'Content-Encoding'", ")", "==", "'gzip'", ":", "# unzip", "with", "gzip", ".", "open", "(", "BytesIO", "(", "content", ")", ")", "as", "gzfile", ":", "content", "=", "gzfile", ".", "read", "(", ")", "# update cache if required", "if", "self", ".", "cache", "is", "not", "None", "and", "not", "nocache", ":", "if", "url", "not", "in", "self", ".", "cache", ":", "self", ".", "cache", ".", "insert_blob", "(", "url", ",", "content", ")", "return", "content", ".", "decode", "(", "encoding", ")", "if", "content", "and", "encoding", "else", "content", "except", "URLError", "as", "e", ":", "if", "hasattr", "(", "e", ",", "'reason'", ")", ":", "getLogger", "(", ")", ".", "exception", "(", "'We failed to reach {}. Reason: {}'", ".", "format", "(", "url", ",", "e", ".", "reason", ")", ")", "elif", "hasattr", "(", "e", ",", "'code'", ")", ":", "getLogger", "(", ")", ".", "exception", "(", "'The server couldn\\'t fulfill the request. Error code: {}'", ".", "format", "(", "e", ".", "code", ")", ")", "else", ":", "# Other exception ...", "getLogger", "(", ")", ".", "exception", "(", "\"Fetching error\"", ")", "if", "not", "quiet", ":", "raise", "return", "None" ]
Fetch a HTML file as binary
[ "Fetch", "a", "HTML", "file", "as", "binary" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/chirpnet.py#L90-L125
letuananh/chirptext
chirptext/chirpnet.py
WebHelper.download
def download(self, url, path, force_refetch=False, nocache=False): ''' Download a file at $url and save it to $path ''' # Enable cache if os.path.isfile(path): getLogger().info("File exists, download task skipped -> {path}".format(path=path)) return True try: # Open URL getLogger().info("Downloading: {url} -> {path}".format(url=url, path=path)) response = self.fetch(url, force_refetch=force_refetch, nocache=nocache) if response is not None: # Download file local_file = open(path, "wb") local_file.write(response) local_file.close() # Finished return True else: return False except Exception as e: if hasattr(e, 'reason'): getLogger().exception('We failed to reach a server. Reason: %s' % (e.reason,)) elif hasattr(e, 'code'): getLogger().exception("The server couldn't fulfill the request. Error code: {code}".format(code=e.code)) else: # everything is fine getLogger().exception("Unknown error: %s" % (e,)) return False
python
def download(self, url, path, force_refetch=False, nocache=False): ''' Download a file at $url and save it to $path ''' # Enable cache if os.path.isfile(path): getLogger().info("File exists, download task skipped -> {path}".format(path=path)) return True try: # Open URL getLogger().info("Downloading: {url} -> {path}".format(url=url, path=path)) response = self.fetch(url, force_refetch=force_refetch, nocache=nocache) if response is not None: # Download file local_file = open(path, "wb") local_file.write(response) local_file.close() # Finished return True else: return False except Exception as e: if hasattr(e, 'reason'): getLogger().exception('We failed to reach a server. Reason: %s' % (e.reason,)) elif hasattr(e, 'code'): getLogger().exception("The server couldn't fulfill the request. Error code: {code}".format(code=e.code)) else: # everything is fine getLogger().exception("Unknown error: %s" % (e,)) return False
[ "def", "download", "(", "self", ",", "url", ",", "path", ",", "force_refetch", "=", "False", ",", "nocache", "=", "False", ")", ":", "# Enable cache", "if", "os", ".", "path", ".", "isfile", "(", "path", ")", ":", "getLogger", "(", ")", ".", "info", "(", "\"File exists, download task skipped -> {path}\"", ".", "format", "(", "path", "=", "path", ")", ")", "return", "True", "try", ":", "# Open URL", "getLogger", "(", ")", ".", "info", "(", "\"Downloading: {url} -> {path}\"", ".", "format", "(", "url", "=", "url", ",", "path", "=", "path", ")", ")", "response", "=", "self", ".", "fetch", "(", "url", ",", "force_refetch", "=", "force_refetch", ",", "nocache", "=", "nocache", ")", "if", "response", "is", "not", "None", ":", "# Download file", "local_file", "=", "open", "(", "path", ",", "\"wb\"", ")", "local_file", ".", "write", "(", "response", ")", "local_file", ".", "close", "(", ")", "# Finished", "return", "True", "else", ":", "return", "False", "except", "Exception", "as", "e", ":", "if", "hasattr", "(", "e", ",", "'reason'", ")", ":", "getLogger", "(", ")", ".", "exception", "(", "'We failed to reach a server. Reason: %s'", "%", "(", "e", ".", "reason", ",", ")", ")", "elif", "hasattr", "(", "e", ",", "'code'", ")", ":", "getLogger", "(", ")", ".", "exception", "(", "\"The server couldn't fulfill the request. Error code: {code}\"", ".", "format", "(", "code", "=", "e", ".", "code", ")", ")", "else", ":", "# everything is fine", "getLogger", "(", ")", ".", "exception", "(", "\"Unknown error: %s\"", "%", "(", "e", ",", ")", ")", "return", "False" ]
Download a file at $url and save it to $path
[ "Download", "a", "file", "at", "$url", "and", "save", "it", "to", "$path" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/chirpnet.py#L134-L162
cgtobi/PyRMVtransport
RMVtransport/rmvjourney.py
RMVJourney._platform
def _platform(self) -> Optional[str]: """Extract platform.""" try: return str(self.journey.MainStop.BasicStop.Dep.Platform.text) except AttributeError: return None
python
def _platform(self) -> Optional[str]: """Extract platform.""" try: return str(self.journey.MainStop.BasicStop.Dep.Platform.text) except AttributeError: return None
[ "def", "_platform", "(", "self", ")", "->", "Optional", "[", "str", "]", ":", "try", ":", "return", "str", "(", "self", ".", "journey", ".", "MainStop", ".", "BasicStop", ".", "Dep", ".", "Platform", ".", "text", ")", "except", "AttributeError", ":", "return", "None" ]
Extract platform.
[ "Extract", "platform", "." ]
train
https://github.com/cgtobi/PyRMVtransport/blob/20a0d68ecfdedceb32e8ca96c381fdec7e2069c7/RMVtransport/rmvjourney.py#L35-L40
cgtobi/PyRMVtransport
RMVtransport/rmvjourney.py
RMVJourney._delay
def _delay(self) -> int: """Extract departure delay.""" try: return int(self.journey.MainStop.BasicStop.Dep.Delay.text) except AttributeError: return 0
python
def _delay(self) -> int: """Extract departure delay.""" try: return int(self.journey.MainStop.BasicStop.Dep.Delay.text) except AttributeError: return 0
[ "def", "_delay", "(", "self", ")", "->", "int", ":", "try", ":", "return", "int", "(", "self", ".", "journey", ".", "MainStop", ".", "BasicStop", ".", "Dep", ".", "Delay", ".", "text", ")", "except", "AttributeError", ":", "return", "0" ]
Extract departure delay.
[ "Extract", "departure", "delay", "." ]
train
https://github.com/cgtobi/PyRMVtransport/blob/20a0d68ecfdedceb32e8ca96c381fdec7e2069c7/RMVtransport/rmvjourney.py#L42-L47
cgtobi/PyRMVtransport
RMVtransport/rmvjourney.py
RMVJourney._departure
def _departure(self) -> datetime: """Extract departure time.""" departure_time = datetime.strptime( self.journey.MainStop.BasicStop.Dep.Time.text, "%H:%M" ).time() if departure_time > (self.now - timedelta(hours=1)).time(): return datetime.combine(self.now.date(), departure_time) return datetime.combine(self.now.date() + timedelta(days=1), departure_time)
python
def _departure(self) -> datetime: """Extract departure time.""" departure_time = datetime.strptime( self.journey.MainStop.BasicStop.Dep.Time.text, "%H:%M" ).time() if departure_time > (self.now - timedelta(hours=1)).time(): return datetime.combine(self.now.date(), departure_time) return datetime.combine(self.now.date() + timedelta(days=1), departure_time)
[ "def", "_departure", "(", "self", ")", "->", "datetime", ":", "departure_time", "=", "datetime", ".", "strptime", "(", "self", ".", "journey", ".", "MainStop", ".", "BasicStop", ".", "Dep", ".", "Time", ".", "text", ",", "\"%H:%M\"", ")", ".", "time", "(", ")", "if", "departure_time", ">", "(", "self", ".", "now", "-", "timedelta", "(", "hours", "=", "1", ")", ")", ".", "time", "(", ")", ":", "return", "datetime", ".", "combine", "(", "self", ".", "now", ".", "date", "(", ")", ",", "departure_time", ")", "return", "datetime", ".", "combine", "(", "self", ".", "now", ".", "date", "(", ")", "+", "timedelta", "(", "days", "=", "1", ")", ",", "departure_time", ")" ]
Extract departure time.
[ "Extract", "departure", "time", "." ]
train
https://github.com/cgtobi/PyRMVtransport/blob/20a0d68ecfdedceb32e8ca96c381fdec7e2069c7/RMVtransport/rmvjourney.py#L49-L56
cgtobi/PyRMVtransport
RMVtransport/rmvjourney.py
RMVJourney._extract
def _extract(self, attribute) -> str: """Extract train information.""" attr_data = self.journey.JourneyAttributeList.JourneyAttribute[ self.attr_types.index(attribute) ].Attribute attr_variants = attr_data.xpath("AttributeVariant/@type") data = attr_data.AttributeVariant[attr_variants.index("NORMAL")].Text.pyval return str(data)
python
def _extract(self, attribute) -> str: """Extract train information.""" attr_data = self.journey.JourneyAttributeList.JourneyAttribute[ self.attr_types.index(attribute) ].Attribute attr_variants = attr_data.xpath("AttributeVariant/@type") data = attr_data.AttributeVariant[attr_variants.index("NORMAL")].Text.pyval return str(data)
[ "def", "_extract", "(", "self", ",", "attribute", ")", "->", "str", ":", "attr_data", "=", "self", ".", "journey", ".", "JourneyAttributeList", ".", "JourneyAttribute", "[", "self", ".", "attr_types", ".", "index", "(", "attribute", ")", "]", ".", "Attribute", "attr_variants", "=", "attr_data", ".", "xpath", "(", "\"AttributeVariant/@type\"", ")", "data", "=", "attr_data", ".", "AttributeVariant", "[", "attr_variants", ".", "index", "(", "\"NORMAL\"", ")", "]", ".", "Text", ".", "pyval", "return", "str", "(", "data", ")" ]
Extract train information.
[ "Extract", "train", "information", "." ]
train
https://github.com/cgtobi/PyRMVtransport/blob/20a0d68ecfdedceb32e8ca96c381fdec7e2069c7/RMVtransport/rmvjourney.py#L66-L73
cgtobi/PyRMVtransport
RMVtransport/rmvjourney.py
RMVJourney._info
def _info(self) -> Optional[str]: """Extract journey information.""" try: return str(html.unescape(self.journey.InfoTextList.InfoText.get("text"))) except AttributeError: return None
python
def _info(self) -> Optional[str]: """Extract journey information.""" try: return str(html.unescape(self.journey.InfoTextList.InfoText.get("text"))) except AttributeError: return None
[ "def", "_info", "(", "self", ")", "->", "Optional", "[", "str", "]", ":", "try", ":", "return", "str", "(", "html", ".", "unescape", "(", "self", ".", "journey", ".", "InfoTextList", ".", "InfoText", ".", "get", "(", "\"text\"", ")", ")", ")", "except", "AttributeError", ":", "return", "None" ]
Extract journey information.
[ "Extract", "journey", "information", "." ]
train
https://github.com/cgtobi/PyRMVtransport/blob/20a0d68ecfdedceb32e8ca96c381fdec7e2069c7/RMVtransport/rmvjourney.py#L75-L80
cgtobi/PyRMVtransport
RMVtransport/rmvjourney.py
RMVJourney._info_long
def _info_long(self) -> Optional[str]: """Extract journey information.""" try: return str( html.unescape(self.journey.InfoTextList.InfoText.get("textL")).replace( "<br />", "\n" ) ) except AttributeError: return None
python
def _info_long(self) -> Optional[str]: """Extract journey information.""" try: return str( html.unescape(self.journey.InfoTextList.InfoText.get("textL")).replace( "<br />", "\n" ) ) except AttributeError: return None
[ "def", "_info_long", "(", "self", ")", "->", "Optional", "[", "str", "]", ":", "try", ":", "return", "str", "(", "html", ".", "unescape", "(", "self", ".", "journey", ".", "InfoTextList", ".", "InfoText", ".", "get", "(", "\"textL\"", ")", ")", ".", "replace", "(", "\"<br />\"", ",", "\"\\n\"", ")", ")", "except", "AttributeError", ":", "return", "None" ]
Extract journey information.
[ "Extract", "journey", "information", "." ]
train
https://github.com/cgtobi/PyRMVtransport/blob/20a0d68ecfdedceb32e8ca96c381fdec7e2069c7/RMVtransport/rmvjourney.py#L82-L91
cgtobi/PyRMVtransport
RMVtransport/rmvjourney.py
RMVJourney._pass_list
def _pass_list(self) -> List[Dict[str, Any]]: """Extract next stops along the journey.""" stops: List[Dict[str, Any]] = [] for stop in self.journey.PassList.BasicStop: index = stop.get("index") station = stop.Location.Station.HafasName.Text.text station_id = stop.Location.Station.ExternalId.text stops.append({"index": index, "stationId": station_id, "station": station}) return stops
python
def _pass_list(self) -> List[Dict[str, Any]]: """Extract next stops along the journey.""" stops: List[Dict[str, Any]] = [] for stop in self.journey.PassList.BasicStop: index = stop.get("index") station = stop.Location.Station.HafasName.Text.text station_id = stop.Location.Station.ExternalId.text stops.append({"index": index, "stationId": station_id, "station": station}) return stops
[ "def", "_pass_list", "(", "self", ")", "->", "List", "[", "Dict", "[", "str", ",", "Any", "]", "]", ":", "stops", ":", "List", "[", "Dict", "[", "str", ",", "Any", "]", "]", "=", "[", "]", "for", "stop", "in", "self", ".", "journey", ".", "PassList", ".", "BasicStop", ":", "index", "=", "stop", ".", "get", "(", "\"index\"", ")", "station", "=", "stop", ".", "Location", ".", "Station", ".", "HafasName", ".", "Text", ".", "text", "station_id", "=", "stop", ".", "Location", ".", "Station", ".", "ExternalId", ".", "text", "stops", ".", "append", "(", "{", "\"index\"", ":", "index", ",", "\"stationId\"", ":", "station_id", ",", "\"station\"", ":", "station", "}", ")", "return", "stops" ]
Extract next stops along the journey.
[ "Extract", "next", "stops", "along", "the", "journey", "." ]
train
https://github.com/cgtobi/PyRMVtransport/blob/20a0d68ecfdedceb32e8ca96c381fdec7e2069c7/RMVtransport/rmvjourney.py#L93-L101
pyout/pyout
pyout/elements.py
validate
def validate(style): """Check `style` against pyout.styling.schema. Parameters ---------- style : dict Style object to validate. Raises ------ StyleValidationError if `style` is not valid. """ try: import jsonschema except ImportError: return try: jsonschema.validate(style, schema) except jsonschema.ValidationError as exc: new_exc = StyleValidationError(exc) # Don't dump the original jsonschema exception because it is already # included in the StyleValidationError's message. new_exc.__cause__ = None raise new_exc
python
def validate(style): """Check `style` against pyout.styling.schema. Parameters ---------- style : dict Style object to validate. Raises ------ StyleValidationError if `style` is not valid. """ try: import jsonschema except ImportError: return try: jsonschema.validate(style, schema) except jsonschema.ValidationError as exc: new_exc = StyleValidationError(exc) # Don't dump the original jsonschema exception because it is already # included in the StyleValidationError's message. new_exc.__cause__ = None raise new_exc
[ "def", "validate", "(", "style", ")", ":", "try", ":", "import", "jsonschema", "except", "ImportError", ":", "return", "try", ":", "jsonschema", ".", "validate", "(", "style", ",", "schema", ")", "except", "jsonschema", ".", "ValidationError", "as", "exc", ":", "new_exc", "=", "StyleValidationError", "(", "exc", ")", "# Don't dump the original jsonschema exception because it is already", "# included in the StyleValidationError's message.", "new_exc", ".", "__cause__", "=", "None", "raise", "new_exc" ]
Check `style` against pyout.styling.schema. Parameters ---------- style : dict Style object to validate. Raises ------ StyleValidationError if `style` is not valid.
[ "Check", "style", "against", "pyout", ".", "styling", ".", "schema", "." ]
train
https://github.com/pyout/pyout/blob/d9ff954bdedb6fc70f21f4fe77ad4bf926b201b0/pyout/elements.py#L241-L265
pyout/pyout
pyout/elements.py
value_type
def value_type(value): """Classify `value` of bold, color, and underline keys. Parameters ---------- value : style value Returns ------- str, {"simple", "lookup", "re_lookup", "interval"} """ try: keys = list(value.keys()) except AttributeError: return "simple" if keys in [["lookup"], ["re_lookup"], ["interval"]]: return keys[0] raise ValueError("Type of `value` could not be determined")
python
def value_type(value): """Classify `value` of bold, color, and underline keys. Parameters ---------- value : style value Returns ------- str, {"simple", "lookup", "re_lookup", "interval"} """ try: keys = list(value.keys()) except AttributeError: return "simple" if keys in [["lookup"], ["re_lookup"], ["interval"]]: return keys[0] raise ValueError("Type of `value` could not be determined")
[ "def", "value_type", "(", "value", ")", ":", "try", ":", "keys", "=", "list", "(", "value", ".", "keys", "(", ")", ")", "except", "AttributeError", ":", "return", "\"simple\"", "if", "keys", "in", "[", "[", "\"lookup\"", "]", ",", "[", "\"re_lookup\"", "]", ",", "[", "\"interval\"", "]", "]", ":", "return", "keys", "[", "0", "]", "raise", "ValueError", "(", "\"Type of `value` could not be determined\"", ")" ]
Classify `value` of bold, color, and underline keys. Parameters ---------- value : style value Returns ------- str, {"simple", "lookup", "re_lookup", "interval"}
[ "Classify", "value", "of", "bold", "color", "and", "underline", "keys", "." ]
train
https://github.com/pyout/pyout/blob/d9ff954bdedb6fc70f21f4fe77ad4bf926b201b0/pyout/elements.py#L268-L285
letuananh/chirptext
chirptext/dekomecab.py
_register_mecab_loc
def _register_mecab_loc(location): ''' Set MeCab binary location ''' global MECAB_LOC if not os.path.isfile(location): logging.getLogger(__name__).warning("Provided mecab binary location does not exist {}".format(location)) logging.getLogger(__name__).info("Mecab binary is switched to: {}".format(location)) MECAB_LOC = location
python
def _register_mecab_loc(location): ''' Set MeCab binary location ''' global MECAB_LOC if not os.path.isfile(location): logging.getLogger(__name__).warning("Provided mecab binary location does not exist {}".format(location)) logging.getLogger(__name__).info("Mecab binary is switched to: {}".format(location)) MECAB_LOC = location
[ "def", "_register_mecab_loc", "(", "location", ")", ":", "global", "MECAB_LOC", "if", "not", "os", ".", "path", ".", "isfile", "(", "location", ")", ":", "logging", ".", "getLogger", "(", "__name__", ")", ".", "warning", "(", "\"Provided mecab binary location does not exist {}\"", ".", "format", "(", "location", ")", ")", "logging", ".", "getLogger", "(", "__name__", ")", ".", "info", "(", "\"Mecab binary is switched to: {}\"", ".", "format", "(", "location", ")", ")", "MECAB_LOC", "=", "location" ]
Set MeCab binary location
[ "Set", "MeCab", "binary", "location" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/dekomecab.py#L43-L49
letuananh/chirptext
chirptext/dekomecab.py
run_mecab_process
def run_mecab_process(content, *args, **kwargs): ''' Use subprocess to run mecab ''' encoding = 'utf-8' if 'encoding' not in kwargs else kwargs['encoding'] mecab_loc = kwargs['mecab_loc'] if 'mecab_loc' in kwargs else None if mecab_loc is None: mecab_loc = MECAB_LOC proc_args = [mecab_loc] if args: proc_args.extend(args) output = subprocess.run(proc_args, input=content.encode(encoding), stdout=subprocess.PIPE) output_string = os.linesep.join(output.stdout.decode(encoding).splitlines()) return output_string
python
def run_mecab_process(content, *args, **kwargs): ''' Use subprocess to run mecab ''' encoding = 'utf-8' if 'encoding' not in kwargs else kwargs['encoding'] mecab_loc = kwargs['mecab_loc'] if 'mecab_loc' in kwargs else None if mecab_loc is None: mecab_loc = MECAB_LOC proc_args = [mecab_loc] if args: proc_args.extend(args) output = subprocess.run(proc_args, input=content.encode(encoding), stdout=subprocess.PIPE) output_string = os.linesep.join(output.stdout.decode(encoding).splitlines()) return output_string
[ "def", "run_mecab_process", "(", "content", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "encoding", "=", "'utf-8'", "if", "'encoding'", "not", "in", "kwargs", "else", "kwargs", "[", "'encoding'", "]", "mecab_loc", "=", "kwargs", "[", "'mecab_loc'", "]", "if", "'mecab_loc'", "in", "kwargs", "else", "None", "if", "mecab_loc", "is", "None", ":", "mecab_loc", "=", "MECAB_LOC", "proc_args", "=", "[", "mecab_loc", "]", "if", "args", ":", "proc_args", ".", "extend", "(", "args", ")", "output", "=", "subprocess", ".", "run", "(", "proc_args", ",", "input", "=", "content", ".", "encode", "(", "encoding", ")", ",", "stdout", "=", "subprocess", ".", "PIPE", ")", "output_string", "=", "os", ".", "linesep", ".", "join", "(", "output", ".", "stdout", ".", "decode", "(", "encoding", ")", ".", "splitlines", "(", ")", ")", "return", "output_string" ]
Use subprocess to run mecab
[ "Use", "subprocess", "to", "run", "mecab" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/dekomecab.py#L57-L70
letuananh/chirptext
chirptext/dekomecab.py
parse
def parse(content, *args, **kwargs): ''' Use mecab-python3 by default to parse JP text. Fall back to mecab binary app if needed ''' global MECAB_PYTHON3 if 'mecab_loc' not in kwargs and MECAB_PYTHON3 and 'MeCab' in globals(): return MeCab.Tagger(*args).parse(content) else: return run_mecab_process(content, *args, **kwargs)
python
def parse(content, *args, **kwargs): ''' Use mecab-python3 by default to parse JP text. Fall back to mecab binary app if needed ''' global MECAB_PYTHON3 if 'mecab_loc' not in kwargs and MECAB_PYTHON3 and 'MeCab' in globals(): return MeCab.Tagger(*args).parse(content) else: return run_mecab_process(content, *args, **kwargs)
[ "def", "parse", "(", "content", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "global", "MECAB_PYTHON3", "if", "'mecab_loc'", "not", "in", "kwargs", "and", "MECAB_PYTHON3", "and", "'MeCab'", "in", "globals", "(", ")", ":", "return", "MeCab", ".", "Tagger", "(", "*", "args", ")", ".", "parse", "(", "content", ")", "else", ":", "return", "run_mecab_process", "(", "content", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Use mecab-python3 by default to parse JP text. Fall back to mecab binary app if needed
[ "Use", "mecab", "-", "python3", "by", "default", "to", "parse", "JP", "text", ".", "Fall", "back", "to", "mecab", "binary", "app", "if", "needed" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/dekomecab.py#L73-L79
meng89/ipodshuffle
ipodshuffle/shuffle.py
Shuffle.create_track
def create_track(self, path_in_ipod=None, checksum=None): """ :param path_in_ipod: the path of audio file in the iPod base :param checksum: CHECKSUM of the audio file in member audiodb :return: a new Track, you may want append it to the playlist.tracks """ if bool(path_in_ipod) == bool(checksum): raise Exception if not path_in_ipod: path_in_ipod = self.audiodb.get_voice(checksum) track = Track(self, path_in_ipod=path_in_ipod) return track
python
def create_track(self, path_in_ipod=None, checksum=None): """ :param path_in_ipod: the path of audio file in the iPod base :param checksum: CHECKSUM of the audio file in member audiodb :return: a new Track, you may want append it to the playlist.tracks """ if bool(path_in_ipod) == bool(checksum): raise Exception if not path_in_ipod: path_in_ipod = self.audiodb.get_voice(checksum) track = Track(self, path_in_ipod=path_in_ipod) return track
[ "def", "create_track", "(", "self", ",", "path_in_ipod", "=", "None", ",", "checksum", "=", "None", ")", ":", "if", "bool", "(", "path_in_ipod", ")", "==", "bool", "(", "checksum", ")", ":", "raise", "Exception", "if", "not", "path_in_ipod", ":", "path_in_ipod", "=", "self", ".", "audiodb", ".", "get_voice", "(", "checksum", ")", "track", "=", "Track", "(", "self", ",", "path_in_ipod", "=", "path_in_ipod", ")", "return", "track" ]
:param path_in_ipod: the path of audio file in the iPod base :param checksum: CHECKSUM of the audio file in member audiodb :return: a new Track, you may want append it to the playlist.tracks
[ ":", "param", "path_in_ipod", ":", "the", "path", "of", "audio", "file", "in", "the", "iPod", "base", ":", "param", "checksum", ":", "CHECKSUM", "of", "the", "audio", "file", "in", "member", "audiodb", ":", "return", ":", "a", "new", "Track", "you", "may", "want", "append", "it", "to", "the", "playlist", ".", "tracks" ]
train
https://github.com/meng89/ipodshuffle/blob/c9093dbb5cdac609376ebd3b4ef1b0fc58107d96/ipodshuffle/shuffle.py#L180-L194
meng89/ipodshuffle
ipodshuffle/shuffle.py
_Voice.voice
def voice(self): """tuple. contain text and lang code """ dbid = self.lldb.dbid text, lang = self._voiceoverdb.get_text_lang(dbid) return text, lang
python
def voice(self): """tuple. contain text and lang code """ dbid = self.lldb.dbid text, lang = self._voiceoverdb.get_text_lang(dbid) return text, lang
[ "def", "voice", "(", "self", ")", ":", "dbid", "=", "self", ".", "lldb", ".", "dbid", "text", ",", "lang", "=", "self", ".", "_voiceoverdb", ".", "get_text_lang", "(", "dbid", ")", "return", "text", ",", "lang" ]
tuple. contain text and lang code
[ "tuple", ".", "contain", "text", "and", "lang", "code" ]
train
https://github.com/meng89/ipodshuffle/blob/c9093dbb5cdac609376ebd3b4ef1b0fc58107d96/ipodshuffle/shuffle.py#L229-L234
meng89/ipodshuffle
ipodshuffle/shuffle.py
AudioDB.add
def add(self, src): """ store an audio file to storage dir :param src: audio file path :return: checksum value """ if not audio.get_type(src): raise TypeError('The type of this file is not supported.') return super().add(src)
python
def add(self, src): """ store an audio file to storage dir :param src: audio file path :return: checksum value """ if not audio.get_type(src): raise TypeError('The type of this file is not supported.') return super().add(src)
[ "def", "add", "(", "self", ",", "src", ")", ":", "if", "not", "audio", ".", "get_type", "(", "src", ")", ":", "raise", "TypeError", "(", "'The type of this file is not supported.'", ")", "return", "super", "(", ")", ".", "add", "(", "src", ")" ]
store an audio file to storage dir :param src: audio file path :return: checksum value
[ "store", "an", "audio", "file", "to", "storage", "dir" ]
train
https://github.com/meng89/ipodshuffle/blob/c9093dbb5cdac609376ebd3b4ef1b0fc58107d96/ipodshuffle/shuffle.py#L390-L399
alefnula/tea
tea/process/posix_process.py
_get_cmd
def _get_cmd(command, arguments): """Merge command with arguments.""" if arguments is None: arguments = [] if command.endswith(".py") or command.endswith(".pyw"): return [sys.executable, command] + list(arguments) else: return [command] + list(arguments)
python
def _get_cmd(command, arguments): """Merge command with arguments.""" if arguments is None: arguments = [] if command.endswith(".py") or command.endswith(".pyw"): return [sys.executable, command] + list(arguments) else: return [command] + list(arguments)
[ "def", "_get_cmd", "(", "command", ",", "arguments", ")", ":", "if", "arguments", "is", "None", ":", "arguments", "=", "[", "]", "if", "command", ".", "endswith", "(", "\".py\"", ")", "or", "command", ".", "endswith", "(", "\".pyw\"", ")", ":", "return", "[", "sys", ".", "executable", ",", "command", "]", "+", "list", "(", "arguments", ")", "else", ":", "return", "[", "command", "]", "+", "list", "(", "arguments", ")" ]
Merge command with arguments.
[ "Merge", "command", "with", "arguments", "." ]
train
https://github.com/alefnula/tea/blob/f5a0a724a425ec4f9dd2c7fe966ef06faf3a15a3/tea/process/posix_process.py#L42-L49
MainRo/cyclotron-std
cyclotron_std/argparse.py
argparse
def argparse(argv, parser, arguments): """ A command line argument parser. Parses arguments coming from the argv Observable and outputs them as Argument items in the output observable. Parameters ----------- argv : Observable An Observable of strings. parser : Observable An Observable containing one Parser item. arguments : Observable An Observable containing ArgumentDef items. Returns ------- Observable An Observable of Argument items. """ def add_arg(parser, arg_spec): parser.add_argument(arg_spec.name, help=arg_spec.help) return parser parse_request = parser \ .map(lambda i: ArgumentParser(description=i.description)) \ .combine_latest(arguments, lambda parser, arg_def: add_arg(parser,arg_def)) \ .last() \ .combine_latest(argv.to_list(), lambda parser, args: (parser,args)) def subscribe(observer): def on_next(value): parser, args = value try: args = parser.parse_args(args) for key,value in vars(args).items(): observer.on_next(Argument(key=key, value=value)) except NameError as exc: observer.on_error("{}\n{}".format(exc, parser.format_help())) return parse_request.subscribe(on_next, observer.on_error, observer.on_completed) return AnonymousObservable(subscribe)
python
def argparse(argv, parser, arguments): """ A command line argument parser. Parses arguments coming from the argv Observable and outputs them as Argument items in the output observable. Parameters ----------- argv : Observable An Observable of strings. parser : Observable An Observable containing one Parser item. arguments : Observable An Observable containing ArgumentDef items. Returns ------- Observable An Observable of Argument items. """ def add_arg(parser, arg_spec): parser.add_argument(arg_spec.name, help=arg_spec.help) return parser parse_request = parser \ .map(lambda i: ArgumentParser(description=i.description)) \ .combine_latest(arguments, lambda parser, arg_def: add_arg(parser,arg_def)) \ .last() \ .combine_latest(argv.to_list(), lambda parser, args: (parser,args)) def subscribe(observer): def on_next(value): parser, args = value try: args = parser.parse_args(args) for key,value in vars(args).items(): observer.on_next(Argument(key=key, value=value)) except NameError as exc: observer.on_error("{}\n{}".format(exc, parser.format_help())) return parse_request.subscribe(on_next, observer.on_error, observer.on_completed) return AnonymousObservable(subscribe)
[ "def", "argparse", "(", "argv", ",", "parser", ",", "arguments", ")", ":", "def", "add_arg", "(", "parser", ",", "arg_spec", ")", ":", "parser", ".", "add_argument", "(", "arg_spec", ".", "name", ",", "help", "=", "arg_spec", ".", "help", ")", "return", "parser", "parse_request", "=", "parser", ".", "map", "(", "lambda", "i", ":", "ArgumentParser", "(", "description", "=", "i", ".", "description", ")", ")", ".", "combine_latest", "(", "arguments", ",", "lambda", "parser", ",", "arg_def", ":", "add_arg", "(", "parser", ",", "arg_def", ")", ")", ".", "last", "(", ")", ".", "combine_latest", "(", "argv", ".", "to_list", "(", ")", ",", "lambda", "parser", ",", "args", ":", "(", "parser", ",", "args", ")", ")", "def", "subscribe", "(", "observer", ")", ":", "def", "on_next", "(", "value", ")", ":", "parser", ",", "args", "=", "value", "try", ":", "args", "=", "parser", ".", "parse_args", "(", "args", ")", "for", "key", ",", "value", "in", "vars", "(", "args", ")", ".", "items", "(", ")", ":", "observer", ".", "on_next", "(", "Argument", "(", "key", "=", "key", ",", "value", "=", "value", ")", ")", "except", "NameError", "as", "exc", ":", "observer", ".", "on_error", "(", "\"{}\\n{}\"", ".", "format", "(", "exc", ",", "parser", ".", "format_help", "(", ")", ")", ")", "return", "parse_request", ".", "subscribe", "(", "on_next", ",", "observer", ".", "on_error", ",", "observer", ".", "on_completed", ")", "return", "AnonymousObservable", "(", "subscribe", ")" ]
A command line argument parser. Parses arguments coming from the argv Observable and outputs them as Argument items in the output observable. Parameters ----------- argv : Observable An Observable of strings. parser : Observable An Observable containing one Parser item. arguments : Observable An Observable containing ArgumentDef items. Returns ------- Observable An Observable of Argument items.
[ "A", "command", "line", "argument", "parser", ".", "Parses", "arguments", "coming", "from", "the", "argv", "Observable", "and", "outputs", "them", "as", "Argument", "items", "in", "the", "output", "observable", "." ]
train
https://github.com/MainRo/cyclotron-std/blob/da4188f1c99aafc3a491803c23e01b44b52a15b1/cyclotron_std/argparse.py#L22-L65
lingfeiwang/findr-python
findr/pij.py
gassists_pv
def gassists_pv(self,dg,dt,dt2,na=None,memlimit=-1): """Calculates p-values of gene i regulating gene j with genotype data assisted method with multiple tests. dg: numpy.ndarray(nt,ns,dtype=gtype(='u1' by default)) Genotype data. Entry dg[i,j] is genotype i's value for sample j. Each value must be among 0,1,...,na. Genotype i must be best (and significant) eQTL of gene i (in dt). dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. Genotype i (in dg) must be best (and significant) eQTL of gene i. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. na: Number of alleles the species have. It determintes the maximum number of values each genotype can take. When unspecified, it is automatically determined as the maximum of dg. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p1: numpy.ndarray(nt,dtype=ftype(='f4' by default)). P-values for LLR of test 1. Test 1 calculates E(A)->A v.s. E(A) A. p2: numpy.ndarray((nt,nt2),dtype=ftype(='f4' by default)). P-values for LLR of test 2. Test 2 calculates E(A)->A--B with E(A)->B v.s. E(A)->A<-B. p3: numpy.ndarray((nt,nt2),dtype=ftype(='f4' by default)). P-values for LLR of test 3. Test 3 calculates E(A)->A--B with E(A)->B v.s. E(A)->A->B. p4: numpy.ndarray((nt,nt2),dtype=ftype(='f4' by default)). P-values for LLR of test 4. Test 4 calculates E(A)->A--B with E(A)->B v.s. E(A)->A B. p5: numpy.ndarray((nt,nt2),dtype=ftype(='f4' by default)). P-values for LLR of test 5. Test 5 calculates E(A)->A--B with E(A)->B v.s. B<-E(A)->A. For more information on tests, see paper. ftype and gtype can be found in auto.py. Example: see findr.examples.geuvadis6 """ if self.lib is None: raise ValueError("Not initialized.") import numpy as np from .auto import ftype_np,gtype_np from .types import isint if dg.dtype.char!=gtype_np: raise ValueError('Wrong input dtype for genotype data: dg.dtype.char is '+dg.dtype.char+'!='+gtype_np) if dt.dtype.char!=ftype_np or dt2.dtype.char!=ftype_np: raise ValueError('Wrong input dtype for gene expression data') if len(dg.shape)!=2 or len(dt.shape)!=2 or len(dt2.shape)!=2: raise ValueError('Wrong input shape') if not isint(memlimit): raise ValueError('Wrong memlimit type') if not (na is None or isint(na)): raise ValueError('Wrong na type') if na is not None and na<=0: raise ValueError('Input requires na>0.') ng=dg.shape[0] nt=dt2.shape[0] ns=dg.shape[1] nvx=na+1 if na else dg.max()+1 if nvx<2: raise ValueError('Invalid genotype values') if dt.shape!=dg.shape or dt2.shape[1]!=ns: raise ValueError('Wrong input shape') if np.isnan(dt).sum()+np.isnan(dt2).sum()>0: raise ValueError('NaN found.') arglist=['const MATRIXG*','const MATRIXF*','const MATRIXF*','VECTORF*','MATRIXF*','MATRIXF*','MATRIXF*','MATRIXF*','size_t','size_t'] dgr=np.require(dg,requirements=['A','C','O','W']) dtr=np.require(dt,requirements=['A','C','O','W']) dt2r=np.require(dt2,requirements=['A','C','O','W']) d1=np.require(np.zeros(ng,dtype=dt.dtype),requirements=['A','C','O','W']) d2=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) d3=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) d4=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) d5=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) args=[dgr,dtr,dt2r,d1,d2,d3,d4,d5,nvx,memlimit] func=self.cfunc('pijs_gassist_pv',rettype='int',argtypes=arglist) ret=func(*args) ans={'ret':ret,'p1':d1,'p2':d2,'p3':d3,'p4':d4,'p5':d5} return ans
python
def gassists_pv(self,dg,dt,dt2,na=None,memlimit=-1): """Calculates p-values of gene i regulating gene j with genotype data assisted method with multiple tests. dg: numpy.ndarray(nt,ns,dtype=gtype(='u1' by default)) Genotype data. Entry dg[i,j] is genotype i's value for sample j. Each value must be among 0,1,...,na. Genotype i must be best (and significant) eQTL of gene i (in dt). dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. Genotype i (in dg) must be best (and significant) eQTL of gene i. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. na: Number of alleles the species have. It determintes the maximum number of values each genotype can take. When unspecified, it is automatically determined as the maximum of dg. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p1: numpy.ndarray(nt,dtype=ftype(='f4' by default)). P-values for LLR of test 1. Test 1 calculates E(A)->A v.s. E(A) A. p2: numpy.ndarray((nt,nt2),dtype=ftype(='f4' by default)). P-values for LLR of test 2. Test 2 calculates E(A)->A--B with E(A)->B v.s. E(A)->A<-B. p3: numpy.ndarray((nt,nt2),dtype=ftype(='f4' by default)). P-values for LLR of test 3. Test 3 calculates E(A)->A--B with E(A)->B v.s. E(A)->A->B. p4: numpy.ndarray((nt,nt2),dtype=ftype(='f4' by default)). P-values for LLR of test 4. Test 4 calculates E(A)->A--B with E(A)->B v.s. E(A)->A B. p5: numpy.ndarray((nt,nt2),dtype=ftype(='f4' by default)). P-values for LLR of test 5. Test 5 calculates E(A)->A--B with E(A)->B v.s. B<-E(A)->A. For more information on tests, see paper. ftype and gtype can be found in auto.py. Example: see findr.examples.geuvadis6 """ if self.lib is None: raise ValueError("Not initialized.") import numpy as np from .auto import ftype_np,gtype_np from .types import isint if dg.dtype.char!=gtype_np: raise ValueError('Wrong input dtype for genotype data: dg.dtype.char is '+dg.dtype.char+'!='+gtype_np) if dt.dtype.char!=ftype_np or dt2.dtype.char!=ftype_np: raise ValueError('Wrong input dtype for gene expression data') if len(dg.shape)!=2 or len(dt.shape)!=2 or len(dt2.shape)!=2: raise ValueError('Wrong input shape') if not isint(memlimit): raise ValueError('Wrong memlimit type') if not (na is None or isint(na)): raise ValueError('Wrong na type') if na is not None and na<=0: raise ValueError('Input requires na>0.') ng=dg.shape[0] nt=dt2.shape[0] ns=dg.shape[1] nvx=na+1 if na else dg.max()+1 if nvx<2: raise ValueError('Invalid genotype values') if dt.shape!=dg.shape or dt2.shape[1]!=ns: raise ValueError('Wrong input shape') if np.isnan(dt).sum()+np.isnan(dt2).sum()>0: raise ValueError('NaN found.') arglist=['const MATRIXG*','const MATRIXF*','const MATRIXF*','VECTORF*','MATRIXF*','MATRIXF*','MATRIXF*','MATRIXF*','size_t','size_t'] dgr=np.require(dg,requirements=['A','C','O','W']) dtr=np.require(dt,requirements=['A','C','O','W']) dt2r=np.require(dt2,requirements=['A','C','O','W']) d1=np.require(np.zeros(ng,dtype=dt.dtype),requirements=['A','C','O','W']) d2=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) d3=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) d4=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) d5=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) args=[dgr,dtr,dt2r,d1,d2,d3,d4,d5,nvx,memlimit] func=self.cfunc('pijs_gassist_pv',rettype='int',argtypes=arglist) ret=func(*args) ans={'ret':ret,'p1':d1,'p2':d2,'p3':d3,'p4':d4,'p5':d5} return ans
[ "def", "gassists_pv", "(", "self", ",", "dg", ",", "dt", ",", "dt2", ",", "na", "=", "None", ",", "memlimit", "=", "-", "1", ")", ":", "if", "self", ".", "lib", "is", "None", ":", "raise", "ValueError", "(", "\"Not initialized.\"", ")", "import", "numpy", "as", "np", "from", ".", "auto", "import", "ftype_np", ",", "gtype_np", "from", ".", "types", "import", "isint", "if", "dg", ".", "dtype", ".", "char", "!=", "gtype_np", ":", "raise", "ValueError", "(", "'Wrong input dtype for genotype data: dg.dtype.char is '", "+", "dg", ".", "dtype", ".", "char", "+", "'!='", "+", "gtype_np", ")", "if", "dt", ".", "dtype", ".", "char", "!=", "ftype_np", "or", "dt2", ".", "dtype", ".", "char", "!=", "ftype_np", ":", "raise", "ValueError", "(", "'Wrong input dtype for gene expression data'", ")", "if", "len", "(", "dg", ".", "shape", ")", "!=", "2", "or", "len", "(", "dt", ".", "shape", ")", "!=", "2", "or", "len", "(", "dt2", ".", "shape", ")", "!=", "2", ":", "raise", "ValueError", "(", "'Wrong input shape'", ")", "if", "not", "isint", "(", "memlimit", ")", ":", "raise", "ValueError", "(", "'Wrong memlimit type'", ")", "if", "not", "(", "na", "is", "None", "or", "isint", "(", "na", ")", ")", ":", "raise", "ValueError", "(", "'Wrong na type'", ")", "if", "na", "is", "not", "None", "and", "na", "<=", "0", ":", "raise", "ValueError", "(", "'Input requires na>0.'", ")", "ng", "=", "dg", ".", "shape", "[", "0", "]", "nt", "=", "dt2", ".", "shape", "[", "0", "]", "ns", "=", "dg", ".", "shape", "[", "1", "]", "nvx", "=", "na", "+", "1", "if", "na", "else", "dg", ".", "max", "(", ")", "+", "1", "if", "nvx", "<", "2", ":", "raise", "ValueError", "(", "'Invalid genotype values'", ")", "if", "dt", ".", "shape", "!=", "dg", ".", "shape", "or", "dt2", ".", "shape", "[", "1", "]", "!=", "ns", ":", "raise", "ValueError", "(", "'Wrong input shape'", ")", "if", "np", ".", "isnan", "(", "dt", ")", ".", "sum", "(", ")", "+", "np", ".", "isnan", "(", "dt2", ")", ".", "sum", "(", ")", ">", "0", ":", "raise", "ValueError", "(", "'NaN found.'", ")", "arglist", "=", "[", "'const MATRIXG*'", ",", "'const MATRIXF*'", ",", "'const MATRIXF*'", ",", "'VECTORF*'", ",", "'MATRIXF*'", ",", "'MATRIXF*'", ",", "'MATRIXF*'", ",", "'MATRIXF*'", ",", "'size_t'", ",", "'size_t'", "]", "dgr", "=", "np", ".", "require", "(", "dg", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "dtr", "=", "np", ".", "require", "(", "dt", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "dt2r", "=", "np", ".", "require", "(", "dt2", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "d1", "=", "np", ".", "require", "(", "np", ".", "zeros", "(", "ng", ",", "dtype", "=", "dt", ".", "dtype", ")", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "d2", "=", "np", ".", "require", "(", "np", ".", "zeros", "(", "(", "ng", ",", "nt", ")", ",", "dtype", "=", "dt", ".", "dtype", ")", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "d3", "=", "np", ".", "require", "(", "np", ".", "zeros", "(", "(", "ng", ",", "nt", ")", ",", "dtype", "=", "dt", ".", "dtype", ")", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "d4", "=", "np", ".", "require", "(", "np", ".", "zeros", "(", "(", "ng", ",", "nt", ")", ",", "dtype", "=", "dt", ".", "dtype", ")", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "d5", "=", "np", ".", "require", "(", "np", ".", "zeros", "(", "(", "ng", ",", "nt", ")", ",", "dtype", "=", "dt", ".", "dtype", ")", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "args", "=", "[", "dgr", ",", "dtr", ",", "dt2r", ",", "d1", ",", "d2", ",", "d3", ",", "d4", ",", "d5", ",", "nvx", ",", "memlimit", "]", "func", "=", "self", ".", "cfunc", "(", "'pijs_gassist_pv'", ",", "rettype", "=", "'int'", ",", "argtypes", "=", "arglist", ")", "ret", "=", "func", "(", "*", "args", ")", "ans", "=", "{", "'ret'", ":", "ret", ",", "'p1'", ":", "d1", ",", "'p2'", ":", "d2", ",", "'p3'", ":", "d3", ",", "'p4'", ":", "d4", ",", "'p5'", ":", "d5", "}", "return", "ans" ]
Calculates p-values of gene i regulating gene j with genotype data assisted method with multiple tests. dg: numpy.ndarray(nt,ns,dtype=gtype(='u1' by default)) Genotype data. Entry dg[i,j] is genotype i's value for sample j. Each value must be among 0,1,...,na. Genotype i must be best (and significant) eQTL of gene i (in dt). dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. Genotype i (in dg) must be best (and significant) eQTL of gene i. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. na: Number of alleles the species have. It determintes the maximum number of values each genotype can take. When unspecified, it is automatically determined as the maximum of dg. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p1: numpy.ndarray(nt,dtype=ftype(='f4' by default)). P-values for LLR of test 1. Test 1 calculates E(A)->A v.s. E(A) A. p2: numpy.ndarray((nt,nt2),dtype=ftype(='f4' by default)). P-values for LLR of test 2. Test 2 calculates E(A)->A--B with E(A)->B v.s. E(A)->A<-B. p3: numpy.ndarray((nt,nt2),dtype=ftype(='f4' by default)). P-values for LLR of test 3. Test 3 calculates E(A)->A--B with E(A)->B v.s. E(A)->A->B. p4: numpy.ndarray((nt,nt2),dtype=ftype(='f4' by default)). P-values for LLR of test 4. Test 4 calculates E(A)->A--B with E(A)->B v.s. E(A)->A B. p5: numpy.ndarray((nt,nt2),dtype=ftype(='f4' by default)). P-values for LLR of test 5. Test 5 calculates E(A)->A--B with E(A)->B v.s. B<-E(A)->A. For more information on tests, see paper. ftype and gtype can be found in auto.py. Example: see findr.examples.geuvadis6
[ "Calculates", "p", "-", "values", "of", "gene", "i", "regulating", "gene", "j", "with", "genotype", "data", "assisted", "method", "with", "multiple", "tests", ".", "dg", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "gtype", "(", "=", "u1", "by", "default", "))", "Genotype", "data", ".", "Entry", "dg", "[", "i", "j", "]", "is", "genotype", "i", "s", "value", "for", "sample", "j", ".", "Each", "value", "must", "be", "among", "0", "1", "...", "na", ".", "Genotype", "i", "must", "be", "best", "(", "and", "significant", ")", "eQTL", "of", "gene", "i", "(", "in", "dt", ")", ".", "dt", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "A", "Entry", "dt", "[", "i", "j", "]", "is", "gene", "i", "s", "expression", "level", "for", "sample", "j", ".", "Genotype", "i", "(", "in", "dg", ")", "must", "be", "best", "(", "and", "significant", ")", "eQTL", "of", "gene", "i", ".", "dt2", ":", "numpy", ".", "ndarray", "(", "nt2", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "B", ".", "dt2", "has", "the", "same", "format", "as", "dt", "and", "can", "be", "identical", "with", "different", "from", "or", "a", "superset", "of", "dt", ".", "na", ":", "Number", "of", "alleles", "the", "species", "have", ".", "It", "determintes", "the", "maximum", "number", "of", "values", "each", "genotype", "can", "take", ".", "When", "unspecified", "it", "is", "automatically", "determined", "as", "the", "maximum", "of", "dg", ".", "memlimit", ":", "The", "approximate", "memory", "usage", "limit", "in", "bytes", "for", "the", "library", ".", "For", "datasets", "require", "a", "larger", "memory", "calculation", "will", "be", "split", "into", "smaller", "chunks", ".", "If", "the", "memory", "limit", "is", "smaller", "than", "minimum", "required", "calculation", "can", "fail", "with", "an", "error", "message", ".", "memlimit", "=", "0", "defaults", "to", "unlimited", "memory", "usage", ".", "Return", ":", "dictionary", "with", "following", "keys", ":", "ret", ":", "0", "iff", "execution", "succeeded", ".", "p1", ":", "numpy", ".", "ndarray", "(", "nt", "dtype", "=", "ftype", "(", "=", "f4", "by", "default", "))", ".", "P", "-", "values", "for", "LLR", "of", "test", "1", ".", "Test", "1", "calculates", "E", "(", "A", ")", "-", ">", "A", "v", ".", "s", ".", "E", "(", "A", ")", "A", ".", "p2", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "f4", "by", "default", "))", ".", "P", "-", "values", "for", "LLR", "of", "test", "2", ".", "Test", "2", "calculates", "E", "(", "A", ")", "-", ">", "A", "--", "B", "with", "E", "(", "A", ")", "-", ">", "B", "v", ".", "s", ".", "E", "(", "A", ")", "-", ">", "A<", "-", "B", ".", "p3", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "f4", "by", "default", "))", ".", "P", "-", "values", "for", "LLR", "of", "test", "3", ".", "Test", "3", "calculates", "E", "(", "A", ")", "-", ">", "A", "--", "B", "with", "E", "(", "A", ")", "-", ">", "B", "v", ".", "s", ".", "E", "(", "A", ")", "-", ">", "A", "-", ">", "B", ".", "p4", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "f4", "by", "default", "))", ".", "P", "-", "values", "for", "LLR", "of", "test", "4", ".", "Test", "4", "calculates", "E", "(", "A", ")", "-", ">", "A", "--", "B", "with", "E", "(", "A", ")", "-", ">", "B", "v", ".", "s", ".", "E", "(", "A", ")", "-", ">", "A", "B", ".", "p5", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "f4", "by", "default", "))", ".", "P", "-", "values", "for", "LLR", "of", "test", "5", ".", "Test", "5", "calculates", "E", "(", "A", ")", "-", ">", "A", "--", "B", "with", "E", "(", "A", ")", "-", ">", "B", "v", ".", "s", ".", "B<", "-", "E", "(", "A", ")", "-", ">", "A", ".", "For", "more", "information", "on", "tests", "see", "paper", ".", "ftype", "and", "gtype", "can", "be", "found", "in", "auto", ".", "py", ".", "Example", ":", "see", "findr", ".", "examples", ".", "geuvadis6" ]
train
https://github.com/lingfeiwang/findr-python/blob/417f163e658fee6ef311571f7048f96069a0cf1f/findr/pij.py#L23-L96
lingfeiwang/findr-python
findr/pij.py
_gassist_any
def _gassist_any(self,dg,dt,dt2,name,na=None,nodiag=False,memlimit=-1): """Calculates probability of gene i regulating gene j with genotype data assisted method, with the recommended combination of multiple tests. dg: numpy.ndarray(nt,ns,dtype=gtype(='u1' by default)) Genotype data. Entry dg[i,j] is genotype i's value for sample j. Each value must be among 0,1,...,na. Genotype i must be best (and significant) eQTL of gene i (in dt). dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. Genotype i (in dg) must be best (and significant) eQTL of gene i. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. name: actual C function name to call na: Number of alleles the species have. It determintes the maximum number of values each genotype can take. When unspecified, it is automatically determined as the maximum of dg. nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability function from for recommended combination of multiple tests. For more information on tests, see paper. ftype and gtype can be found in auto.py. """ if self.lib is None: raise ValueError("Not initialized.") import numpy as np from .auto import ftype_np,gtype_np from .types import isint if dg.dtype.char!=gtype_np: raise ValueError('Wrong input dtype for genotype data: dg.dtype.char is '+dg.dtype.char+'!='+gtype_np) if dt.dtype.char!=ftype_np or dt2.dtype.char!=ftype_np: raise ValueError('Wrong input dtype for gene expression data') if len(dg.shape)!=2 or len(dt.shape)!=2 or len(dt2.shape)!=2: raise ValueError('Wrong input shape') if type(nodiag) is not bool: raise ValueError('Wrong nodiag type') if not isint(memlimit): raise ValueError('Wrong memlimit type') if not (na is None or isint(na)): raise ValueError('Wrong na type') if na is not None and na<=0: raise ValueError('Input requires na>0.') ng=dg.shape[0] nt=dt2.shape[0] ns=dg.shape[1] nvx=na+1 if na else dg.max()+1 nd=1 if nodiag else 0 if nvx<2: raise ValueError('Invalid genotype values') if dt.shape!=dg.shape or dt2.shape[1]!=ns: raise ValueError('Wrong input shape') if np.isnan(dt).sum()+np.isnan(dt2).sum()>0: raise ValueError('NaN found.') func=self.cfunc(name,rettype='int',argtypes=['const MATRIXG*','const MATRIXF*','const MATRIXF*','MATRIXF*','size_t','byte','size_t']) d=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) dgr=np.require(dg,requirements=['A','C','O','W']) dtr=np.require(dt,requirements=['A','C','O','W']) dt2r=np.require(dt2,requirements=['A','C','O','W']) ret=func(dgr,dtr,dt2r,d,nvx,nd,memlimit) ans={'ret':ret,'p':d} return ans
python
def _gassist_any(self,dg,dt,dt2,name,na=None,nodiag=False,memlimit=-1): """Calculates probability of gene i regulating gene j with genotype data assisted method, with the recommended combination of multiple tests. dg: numpy.ndarray(nt,ns,dtype=gtype(='u1' by default)) Genotype data. Entry dg[i,j] is genotype i's value for sample j. Each value must be among 0,1,...,na. Genotype i must be best (and significant) eQTL of gene i (in dt). dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. Genotype i (in dg) must be best (and significant) eQTL of gene i. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. name: actual C function name to call na: Number of alleles the species have. It determintes the maximum number of values each genotype can take. When unspecified, it is automatically determined as the maximum of dg. nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability function from for recommended combination of multiple tests. For more information on tests, see paper. ftype and gtype can be found in auto.py. """ if self.lib is None: raise ValueError("Not initialized.") import numpy as np from .auto import ftype_np,gtype_np from .types import isint if dg.dtype.char!=gtype_np: raise ValueError('Wrong input dtype for genotype data: dg.dtype.char is '+dg.dtype.char+'!='+gtype_np) if dt.dtype.char!=ftype_np or dt2.dtype.char!=ftype_np: raise ValueError('Wrong input dtype for gene expression data') if len(dg.shape)!=2 or len(dt.shape)!=2 or len(dt2.shape)!=2: raise ValueError('Wrong input shape') if type(nodiag) is not bool: raise ValueError('Wrong nodiag type') if not isint(memlimit): raise ValueError('Wrong memlimit type') if not (na is None or isint(na)): raise ValueError('Wrong na type') if na is not None and na<=0: raise ValueError('Input requires na>0.') ng=dg.shape[0] nt=dt2.shape[0] ns=dg.shape[1] nvx=na+1 if na else dg.max()+1 nd=1 if nodiag else 0 if nvx<2: raise ValueError('Invalid genotype values') if dt.shape!=dg.shape or dt2.shape[1]!=ns: raise ValueError('Wrong input shape') if np.isnan(dt).sum()+np.isnan(dt2).sum()>0: raise ValueError('NaN found.') func=self.cfunc(name,rettype='int',argtypes=['const MATRIXG*','const MATRIXF*','const MATRIXF*','MATRIXF*','size_t','byte','size_t']) d=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) dgr=np.require(dg,requirements=['A','C','O','W']) dtr=np.require(dt,requirements=['A','C','O','W']) dt2r=np.require(dt2,requirements=['A','C','O','W']) ret=func(dgr,dtr,dt2r,d,nvx,nd,memlimit) ans={'ret':ret,'p':d} return ans
[ "def", "_gassist_any", "(", "self", ",", "dg", ",", "dt", ",", "dt2", ",", "name", ",", "na", "=", "None", ",", "nodiag", "=", "False", ",", "memlimit", "=", "-", "1", ")", ":", "if", "self", ".", "lib", "is", "None", ":", "raise", "ValueError", "(", "\"Not initialized.\"", ")", "import", "numpy", "as", "np", "from", ".", "auto", "import", "ftype_np", ",", "gtype_np", "from", ".", "types", "import", "isint", "if", "dg", ".", "dtype", ".", "char", "!=", "gtype_np", ":", "raise", "ValueError", "(", "'Wrong input dtype for genotype data: dg.dtype.char is '", "+", "dg", ".", "dtype", ".", "char", "+", "'!='", "+", "gtype_np", ")", "if", "dt", ".", "dtype", ".", "char", "!=", "ftype_np", "or", "dt2", ".", "dtype", ".", "char", "!=", "ftype_np", ":", "raise", "ValueError", "(", "'Wrong input dtype for gene expression data'", ")", "if", "len", "(", "dg", ".", "shape", ")", "!=", "2", "or", "len", "(", "dt", ".", "shape", ")", "!=", "2", "or", "len", "(", "dt2", ".", "shape", ")", "!=", "2", ":", "raise", "ValueError", "(", "'Wrong input shape'", ")", "if", "type", "(", "nodiag", ")", "is", "not", "bool", ":", "raise", "ValueError", "(", "'Wrong nodiag type'", ")", "if", "not", "isint", "(", "memlimit", ")", ":", "raise", "ValueError", "(", "'Wrong memlimit type'", ")", "if", "not", "(", "na", "is", "None", "or", "isint", "(", "na", ")", ")", ":", "raise", "ValueError", "(", "'Wrong na type'", ")", "if", "na", "is", "not", "None", "and", "na", "<=", "0", ":", "raise", "ValueError", "(", "'Input requires na>0.'", ")", "ng", "=", "dg", ".", "shape", "[", "0", "]", "nt", "=", "dt2", ".", "shape", "[", "0", "]", "ns", "=", "dg", ".", "shape", "[", "1", "]", "nvx", "=", "na", "+", "1", "if", "na", "else", "dg", ".", "max", "(", ")", "+", "1", "nd", "=", "1", "if", "nodiag", "else", "0", "if", "nvx", "<", "2", ":", "raise", "ValueError", "(", "'Invalid genotype values'", ")", "if", "dt", ".", "shape", "!=", "dg", ".", "shape", "or", "dt2", ".", "shape", "[", "1", "]", "!=", "ns", ":", "raise", "ValueError", "(", "'Wrong input shape'", ")", "if", "np", ".", "isnan", "(", "dt", ")", ".", "sum", "(", ")", "+", "np", ".", "isnan", "(", "dt2", ")", ".", "sum", "(", ")", ">", "0", ":", "raise", "ValueError", "(", "'NaN found.'", ")", "func", "=", "self", ".", "cfunc", "(", "name", ",", "rettype", "=", "'int'", ",", "argtypes", "=", "[", "'const MATRIXG*'", ",", "'const MATRIXF*'", ",", "'const MATRIXF*'", ",", "'MATRIXF*'", ",", "'size_t'", ",", "'byte'", ",", "'size_t'", "]", ")", "d", "=", "np", ".", "require", "(", "np", ".", "zeros", "(", "(", "ng", ",", "nt", ")", ",", "dtype", "=", "dt", ".", "dtype", ")", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "dgr", "=", "np", ".", "require", "(", "dg", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "dtr", "=", "np", ".", "require", "(", "dt", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "dt2r", "=", "np", ".", "require", "(", "dt2", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "ret", "=", "func", "(", "dgr", ",", "dtr", ",", "dt2r", ",", "d", ",", "nvx", ",", "nd", ",", "memlimit", ")", "ans", "=", "{", "'ret'", ":", "ret", ",", "'p'", ":", "d", "}", "return", "ans" ]
Calculates probability of gene i regulating gene j with genotype data assisted method, with the recommended combination of multiple tests. dg: numpy.ndarray(nt,ns,dtype=gtype(='u1' by default)) Genotype data. Entry dg[i,j] is genotype i's value for sample j. Each value must be among 0,1,...,na. Genotype i must be best (and significant) eQTL of gene i (in dt). dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. Genotype i (in dg) must be best (and significant) eQTL of gene i. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. name: actual C function name to call na: Number of alleles the species have. It determintes the maximum number of values each genotype can take. When unspecified, it is automatically determined as the maximum of dg. nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability function from for recommended combination of multiple tests. For more information on tests, see paper. ftype and gtype can be found in auto.py.
[ "Calculates", "probability", "of", "gene", "i", "regulating", "gene", "j", "with", "genotype", "data", "assisted", "method", "with", "the", "recommended", "combination", "of", "multiple", "tests", ".", "dg", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "gtype", "(", "=", "u1", "by", "default", "))", "Genotype", "data", ".", "Entry", "dg", "[", "i", "j", "]", "is", "genotype", "i", "s", "value", "for", "sample", "j", ".", "Each", "value", "must", "be", "among", "0", "1", "...", "na", ".", "Genotype", "i", "must", "be", "best", "(", "and", "significant", ")", "eQTL", "of", "gene", "i", "(", "in", "dt", ")", ".", "dt", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "A", "Entry", "dt", "[", "i", "j", "]", "is", "gene", "i", "s", "expression", "level", "for", "sample", "j", ".", "Genotype", "i", "(", "in", "dg", ")", "must", "be", "best", "(", "and", "significant", ")", "eQTL", "of", "gene", "i", ".", "dt2", ":", "numpy", ".", "ndarray", "(", "nt2", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "B", ".", "dt2", "has", "the", "same", "format", "as", "dt", "and", "can", "be", "identical", "with", "different", "from", "or", "a", "superset", "of", "dt", ".", "When", "dt2", "is", "a", "superset", "of", "(", "or", "identical", "with", ")", "dt", "dt2", "must", "be", "arranged", "to", "be", "identical", "with", "dt", "at", "its", "upper", "submatrix", "i", ".", "e", ".", "dt2", "[", ":", "nt", ":", "]", "=", "dt", "and", "set", "parameter", "nodiag", "=", "1", ".", "name", ":", "actual", "C", "function", "name", "to", "call", "na", ":", "Number", "of", "alleles", "the", "species", "have", ".", "It", "determintes", "the", "maximum", "number", "of", "values", "each", "genotype", "can", "take", ".", "When", "unspecified", "it", "is", "automatically", "determined", "as", "the", "maximum", "of", "dg", ".", "nodiag", ":", "skip", "diagonal", "regulations", "i", ".", "e", ".", "regulation", "A", "-", ">", "B", "for", "A", "=", "B", ".", "This", "should", "be", "set", "to", "True", "when", "A", "is", "a", "subset", "of", "B", "and", "aligned", "correspondingly", ".", "memlimit", ":", "The", "approximate", "memory", "usage", "limit", "in", "bytes", "for", "the", "library", ".", "For", "datasets", "require", "a", "larger", "memory", "calculation", "will", "be", "split", "into", "smaller", "chunks", ".", "If", "the", "memory", "limit", "is", "smaller", "than", "minimum", "required", "calculation", "can", "fail", "with", "an", "error", "message", ".", "memlimit", "=", "0", "defaults", "to", "unlimited", "memory", "usage", ".", "Return", ":", "dictionary", "with", "following", "keys", ":", "ret", ":", "0", "iff", "execution", "succeeded", ".", "p", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "function", "from", "for", "recommended", "combination", "of", "multiple", "tests", ".", "For", "more", "information", "on", "tests", "see", "paper", ".", "ftype", "and", "gtype", "can", "be", "found", "in", "auto", ".", "py", "." ]
train
https://github.com/lingfeiwang/findr-python/blob/417f163e658fee6ef311571f7048f96069a0cf1f/findr/pij.py#L187-L254
lingfeiwang/findr-python
findr/pij.py
gassist
def gassist(self,dg,dt,dt2,na=None,nodiag=False,memlimit=-1): """Calculates probability of gene i regulating gene j with genotype data assisted method, with the recommended combination of multiple tests. Probabilities are converted from likelihood ratios separately for each A. This gives better predictions when the number of secondary targets (dt2) is large. (Check program warnings.) dg: numpy.ndarray(nt,ns,dtype=gtype(='u1' by default)) Genotype data. Entry dg[i,j] is genotype i's value for sample j. Each value must be among 0,1,...,na. Genotype i must be best (and significant) eQTL of gene i (in dt). dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. Genotype i (in dg) must be best (and significant) eQTL of gene i. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. na: Number of alleles the species have. It determintes the maximum number of values each genotype can take. When unspecified, it is automatically determined as the maximum of dg. nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability function from for recommended combination of multiple tests. For more information on tests, see paper. ftype and gtype can be found in auto.py. Example: see findr.examples.geuvadis2, findr.examples.geuvadis3 """ return _gassist_any(self,dg,dt,dt2,"pij_gassist",na=na,nodiag=nodiag,memlimit=memlimit)
python
def gassist(self,dg,dt,dt2,na=None,nodiag=False,memlimit=-1): """Calculates probability of gene i regulating gene j with genotype data assisted method, with the recommended combination of multiple tests. Probabilities are converted from likelihood ratios separately for each A. This gives better predictions when the number of secondary targets (dt2) is large. (Check program warnings.) dg: numpy.ndarray(nt,ns,dtype=gtype(='u1' by default)) Genotype data. Entry dg[i,j] is genotype i's value for sample j. Each value must be among 0,1,...,na. Genotype i must be best (and significant) eQTL of gene i (in dt). dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. Genotype i (in dg) must be best (and significant) eQTL of gene i. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. na: Number of alleles the species have. It determintes the maximum number of values each genotype can take. When unspecified, it is automatically determined as the maximum of dg. nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability function from for recommended combination of multiple tests. For more information on tests, see paper. ftype and gtype can be found in auto.py. Example: see findr.examples.geuvadis2, findr.examples.geuvadis3 """ return _gassist_any(self,dg,dt,dt2,"pij_gassist",na=na,nodiag=nodiag,memlimit=memlimit)
[ "def", "gassist", "(", "self", ",", "dg", ",", "dt", ",", "dt2", ",", "na", "=", "None", ",", "nodiag", "=", "False", ",", "memlimit", "=", "-", "1", ")", ":", "return", "_gassist_any", "(", "self", ",", "dg", ",", "dt", ",", "dt2", ",", "\"pij_gassist\"", ",", "na", "=", "na", ",", "nodiag", "=", "nodiag", ",", "memlimit", "=", "memlimit", ")" ]
Calculates probability of gene i regulating gene j with genotype data assisted method, with the recommended combination of multiple tests. Probabilities are converted from likelihood ratios separately for each A. This gives better predictions when the number of secondary targets (dt2) is large. (Check program warnings.) dg: numpy.ndarray(nt,ns,dtype=gtype(='u1' by default)) Genotype data. Entry dg[i,j] is genotype i's value for sample j. Each value must be among 0,1,...,na. Genotype i must be best (and significant) eQTL of gene i (in dt). dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. Genotype i (in dg) must be best (and significant) eQTL of gene i. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. na: Number of alleles the species have. It determintes the maximum number of values each genotype can take. When unspecified, it is automatically determined as the maximum of dg. nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability function from for recommended combination of multiple tests. For more information on tests, see paper. ftype and gtype can be found in auto.py. Example: see findr.examples.geuvadis2, findr.examples.geuvadis3
[ "Calculates", "probability", "of", "gene", "i", "regulating", "gene", "j", "with", "genotype", "data", "assisted", "method", "with", "the", "recommended", "combination", "of", "multiple", "tests", ".", "Probabilities", "are", "converted", "from", "likelihood", "ratios", "separately", "for", "each", "A", ".", "This", "gives", "better", "predictions", "when", "the", "number", "of", "secondary", "targets", "(", "dt2", ")", "is", "large", ".", "(", "Check", "program", "warnings", ".", ")", "dg", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "gtype", "(", "=", "u1", "by", "default", "))", "Genotype", "data", ".", "Entry", "dg", "[", "i", "j", "]", "is", "genotype", "i", "s", "value", "for", "sample", "j", ".", "Each", "value", "must", "be", "among", "0", "1", "...", "na", ".", "Genotype", "i", "must", "be", "best", "(", "and", "significant", ")", "eQTL", "of", "gene", "i", "(", "in", "dt", ")", ".", "dt", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "A", "Entry", "dt", "[", "i", "j", "]", "is", "gene", "i", "s", "expression", "level", "for", "sample", "j", ".", "Genotype", "i", "(", "in", "dg", ")", "must", "be", "best", "(", "and", "significant", ")", "eQTL", "of", "gene", "i", ".", "dt2", ":", "numpy", ".", "ndarray", "(", "nt2", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "B", ".", "dt2", "has", "the", "same", "format", "as", "dt", "and", "can", "be", "identical", "with", "different", "from", "or", "a", "superset", "of", "dt", ".", "When", "dt2", "is", "a", "superset", "of", "(", "or", "identical", "with", ")", "dt", "dt2", "must", "be", "arranged", "to", "be", "identical", "with", "dt", "at", "its", "upper", "submatrix", "i", ".", "e", ".", "dt2", "[", ":", "nt", ":", "]", "=", "dt", "and", "set", "parameter", "nodiag", "=", "1", ".", "na", ":", "Number", "of", "alleles", "the", "species", "have", ".", "It", "determintes", "the", "maximum", "number", "of", "values", "each", "genotype", "can", "take", ".", "When", "unspecified", "it", "is", "automatically", "determined", "as", "the", "maximum", "of", "dg", ".", "nodiag", ":", "skip", "diagonal", "regulations", "i", ".", "e", ".", "regulation", "A", "-", ">", "B", "for", "A", "=", "B", ".", "This", "should", "be", "set", "to", "True", "when", "A", "is", "a", "subset", "of", "B", "and", "aligned", "correspondingly", ".", "memlimit", ":", "The", "approximate", "memory", "usage", "limit", "in", "bytes", "for", "the", "library", ".", "For", "datasets", "require", "a", "larger", "memory", "calculation", "will", "be", "split", "into", "smaller", "chunks", ".", "If", "the", "memory", "limit", "is", "smaller", "than", "minimum", "required", "calculation", "can", "fail", "with", "an", "error", "message", ".", "memlimit", "=", "0", "defaults", "to", "unlimited", "memory", "usage", ".", "Return", ":", "dictionary", "with", "following", "keys", ":", "ret", ":", "0", "iff", "execution", "succeeded", ".", "p", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "function", "from", "for", "recommended", "combination", "of", "multiple", "tests", ".", "For", "more", "information", "on", "tests", "see", "paper", ".", "ftype", "and", "gtype", "can", "be", "found", "in", "auto", ".", "py", ".", "Example", ":", "see", "findr", ".", "examples", ".", "geuvadis2", "findr", ".", "examples", ".", "geuvadis3" ]
train
https://github.com/lingfeiwang/findr-python/blob/417f163e658fee6ef311571f7048f96069a0cf1f/findr/pij.py#L256-L287
lingfeiwang/findr-python
findr/pij.py
_cassists_any
def _cassists_any(self,dc,dt,dt2,name,nodiag=False,memlimit=-1): """Calculates probability of gene i regulating gene j with continuous anchor data assisted method, with multiple tests, by converting log likelihoods into probabilities per A for all B. dc: numpy.ndarray(nt,ns,dtype=ftype(='f4' by default)) Continuous anchor data. Entry dc[i,j] is anchor i's value for sample j. Anchor i is used to infer the probability of gene i -> any other gene. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. name: actual C function name to call nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p1: numpy.ndarray(nt,dtype=ftype(='=f4' by default)). Probability for test 1. Test 1 calculates E(A)->A v.s. E(A) A. The earlier one is preferred. For nodiag=False, because the function expects significant anchors, p1 always return 1. For nodiag=True, uses diagonal elements of p2. p2: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 2. Test 2 calculates E(A)->A--B with E(A)->B v.s. E(A)->A<-B. The earlier one is preferred. p3: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 3. Test 3 calculates E(A)->A--B with E(A)->B v.s. E(A)->A->B. The latter one is preferred. p4: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 4. Test 4 calculates E(A)->A--B with E(A)->B v.s. E(A)->A B. The earlier one is preferred. p5: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 5. Test 5 calculates E(A)->A--B with E(A)->B v.s. B<-E(A)->A. The earlier one is preferred. For more information on tests, see paper. ftype can be found in auto.py. """ if self.lib is None: raise ValueError("Not initialized.") import numpy as np from .auto import ftype_np from .types import isint if dc.dtype.char!=ftype_np or dt.dtype.char!=ftype_np or dt2.dtype.char!=ftype_np: raise ValueError('Wrong input dtype for gene expression data') if len(dc.shape)!=2 or len(dt.shape)!=2 or len(dt2.shape)!=2: raise ValueError('Wrong input shape') if type(nodiag) is not bool: raise ValueError('Wrong nodiag type') if not isint(memlimit): raise ValueError('Wrong memlimit type') ng=dc.shape[0] nt=dt2.shape[0] ns=dc.shape[1] nd=1 if nodiag else 0 if dt.shape!=dc.shape or dt2.shape[1]!=ns: raise ValueError('Wrong input shape') if np.isnan(dc).sum()+np.isnan(dt).sum()+np.isnan(dt2).sum()>0: raise ValueError('NaN found.') arglist=['const MATRIXF*','const MATRIXF*','const MATRIXF*','VECTORF*','MATRIXF*','MATRIXF*','MATRIXF*','MATRIXF*','byte','size_t'] names=name dcr=np.require(dc,requirements=['A','C','O','W']) dtr=np.require(dt,requirements=['A','C','O','W']) dt2r=np.require(dt2,requirements=['A','C','O','W']) d1=np.require(np.zeros(ng,dtype=dt.dtype),requirements=['A','C','O','W']) d2=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) d3=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) d4=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) d5=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) args=[dcr,dtr,dt2r,d1,d2,d3,d4,d5,nd,memlimit] func=self.cfunc(names,rettype='int',argtypes=arglist) ret=func(*args) ans={'ret':ret,'p1':d1,'p2':d2,'p3':d3,'p4':d4,'p5':d5} return ans
python
def _cassists_any(self,dc,dt,dt2,name,nodiag=False,memlimit=-1): """Calculates probability of gene i regulating gene j with continuous anchor data assisted method, with multiple tests, by converting log likelihoods into probabilities per A for all B. dc: numpy.ndarray(nt,ns,dtype=ftype(='f4' by default)) Continuous anchor data. Entry dc[i,j] is anchor i's value for sample j. Anchor i is used to infer the probability of gene i -> any other gene. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. name: actual C function name to call nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p1: numpy.ndarray(nt,dtype=ftype(='=f4' by default)). Probability for test 1. Test 1 calculates E(A)->A v.s. E(A) A. The earlier one is preferred. For nodiag=False, because the function expects significant anchors, p1 always return 1. For nodiag=True, uses diagonal elements of p2. p2: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 2. Test 2 calculates E(A)->A--B with E(A)->B v.s. E(A)->A<-B. The earlier one is preferred. p3: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 3. Test 3 calculates E(A)->A--B with E(A)->B v.s. E(A)->A->B. The latter one is preferred. p4: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 4. Test 4 calculates E(A)->A--B with E(A)->B v.s. E(A)->A B. The earlier one is preferred. p5: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 5. Test 5 calculates E(A)->A--B with E(A)->B v.s. B<-E(A)->A. The earlier one is preferred. For more information on tests, see paper. ftype can be found in auto.py. """ if self.lib is None: raise ValueError("Not initialized.") import numpy as np from .auto import ftype_np from .types import isint if dc.dtype.char!=ftype_np or dt.dtype.char!=ftype_np or dt2.dtype.char!=ftype_np: raise ValueError('Wrong input dtype for gene expression data') if len(dc.shape)!=2 or len(dt.shape)!=2 or len(dt2.shape)!=2: raise ValueError('Wrong input shape') if type(nodiag) is not bool: raise ValueError('Wrong nodiag type') if not isint(memlimit): raise ValueError('Wrong memlimit type') ng=dc.shape[0] nt=dt2.shape[0] ns=dc.shape[1] nd=1 if nodiag else 0 if dt.shape!=dc.shape or dt2.shape[1]!=ns: raise ValueError('Wrong input shape') if np.isnan(dc).sum()+np.isnan(dt).sum()+np.isnan(dt2).sum()>0: raise ValueError('NaN found.') arglist=['const MATRIXF*','const MATRIXF*','const MATRIXF*','VECTORF*','MATRIXF*','MATRIXF*','MATRIXF*','MATRIXF*','byte','size_t'] names=name dcr=np.require(dc,requirements=['A','C','O','W']) dtr=np.require(dt,requirements=['A','C','O','W']) dt2r=np.require(dt2,requirements=['A','C','O','W']) d1=np.require(np.zeros(ng,dtype=dt.dtype),requirements=['A','C','O','W']) d2=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) d3=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) d4=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) d5=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) args=[dcr,dtr,dt2r,d1,d2,d3,d4,d5,nd,memlimit] func=self.cfunc(names,rettype='int',argtypes=arglist) ret=func(*args) ans={'ret':ret,'p1':d1,'p2':d2,'p3':d3,'p4':d4,'p5':d5} return ans
[ "def", "_cassists_any", "(", "self", ",", "dc", ",", "dt", ",", "dt2", ",", "name", ",", "nodiag", "=", "False", ",", "memlimit", "=", "-", "1", ")", ":", "if", "self", ".", "lib", "is", "None", ":", "raise", "ValueError", "(", "\"Not initialized.\"", ")", "import", "numpy", "as", "np", "from", ".", "auto", "import", "ftype_np", "from", ".", "types", "import", "isint", "if", "dc", ".", "dtype", ".", "char", "!=", "ftype_np", "or", "dt", ".", "dtype", ".", "char", "!=", "ftype_np", "or", "dt2", ".", "dtype", ".", "char", "!=", "ftype_np", ":", "raise", "ValueError", "(", "'Wrong input dtype for gene expression data'", ")", "if", "len", "(", "dc", ".", "shape", ")", "!=", "2", "or", "len", "(", "dt", ".", "shape", ")", "!=", "2", "or", "len", "(", "dt2", ".", "shape", ")", "!=", "2", ":", "raise", "ValueError", "(", "'Wrong input shape'", ")", "if", "type", "(", "nodiag", ")", "is", "not", "bool", ":", "raise", "ValueError", "(", "'Wrong nodiag type'", ")", "if", "not", "isint", "(", "memlimit", ")", ":", "raise", "ValueError", "(", "'Wrong memlimit type'", ")", "ng", "=", "dc", ".", "shape", "[", "0", "]", "nt", "=", "dt2", ".", "shape", "[", "0", "]", "ns", "=", "dc", ".", "shape", "[", "1", "]", "nd", "=", "1", "if", "nodiag", "else", "0", "if", "dt", ".", "shape", "!=", "dc", ".", "shape", "or", "dt2", ".", "shape", "[", "1", "]", "!=", "ns", ":", "raise", "ValueError", "(", "'Wrong input shape'", ")", "if", "np", ".", "isnan", "(", "dc", ")", ".", "sum", "(", ")", "+", "np", ".", "isnan", "(", "dt", ")", ".", "sum", "(", ")", "+", "np", ".", "isnan", "(", "dt2", ")", ".", "sum", "(", ")", ">", "0", ":", "raise", "ValueError", "(", "'NaN found.'", ")", "arglist", "=", "[", "'const MATRIXF*'", ",", "'const MATRIXF*'", ",", "'const MATRIXF*'", ",", "'VECTORF*'", ",", "'MATRIXF*'", ",", "'MATRIXF*'", ",", "'MATRIXF*'", ",", "'MATRIXF*'", ",", "'byte'", ",", "'size_t'", "]", "names", "=", "name", "dcr", "=", "np", ".", "require", "(", "dc", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "dtr", "=", "np", ".", "require", "(", "dt", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "dt2r", "=", "np", ".", "require", "(", "dt2", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "d1", "=", "np", ".", "require", "(", "np", ".", "zeros", "(", "ng", ",", "dtype", "=", "dt", ".", "dtype", ")", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "d2", "=", "np", ".", "require", "(", "np", ".", "zeros", "(", "(", "ng", ",", "nt", ")", ",", "dtype", "=", "dt", ".", "dtype", ")", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "d3", "=", "np", ".", "require", "(", "np", ".", "zeros", "(", "(", "ng", ",", "nt", ")", ",", "dtype", "=", "dt", ".", "dtype", ")", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "d4", "=", "np", ".", "require", "(", "np", ".", "zeros", "(", "(", "ng", ",", "nt", ")", ",", "dtype", "=", "dt", ".", "dtype", ")", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "d5", "=", "np", ".", "require", "(", "np", ".", "zeros", "(", "(", "ng", ",", "nt", ")", ",", "dtype", "=", "dt", ".", "dtype", ")", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "args", "=", "[", "dcr", ",", "dtr", ",", "dt2r", ",", "d1", ",", "d2", ",", "d3", ",", "d4", ",", "d5", ",", "nd", ",", "memlimit", "]", "func", "=", "self", ".", "cfunc", "(", "names", ",", "rettype", "=", "'int'", ",", "argtypes", "=", "arglist", ")", "ret", "=", "func", "(", "*", "args", ")", "ans", "=", "{", "'ret'", ":", "ret", ",", "'p1'", ":", "d1", ",", "'p2'", ":", "d2", ",", "'p3'", ":", "d3", ",", "'p4'", ":", "d4", ",", "'p5'", ":", "d5", "}", "return", "ans" ]
Calculates probability of gene i regulating gene j with continuous anchor data assisted method, with multiple tests, by converting log likelihoods into probabilities per A for all B. dc: numpy.ndarray(nt,ns,dtype=ftype(='f4' by default)) Continuous anchor data. Entry dc[i,j] is anchor i's value for sample j. Anchor i is used to infer the probability of gene i -> any other gene. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. name: actual C function name to call nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p1: numpy.ndarray(nt,dtype=ftype(='=f4' by default)). Probability for test 1. Test 1 calculates E(A)->A v.s. E(A) A. The earlier one is preferred. For nodiag=False, because the function expects significant anchors, p1 always return 1. For nodiag=True, uses diagonal elements of p2. p2: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 2. Test 2 calculates E(A)->A--B with E(A)->B v.s. E(A)->A<-B. The earlier one is preferred. p3: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 3. Test 3 calculates E(A)->A--B with E(A)->B v.s. E(A)->A->B. The latter one is preferred. p4: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 4. Test 4 calculates E(A)->A--B with E(A)->B v.s. E(A)->A B. The earlier one is preferred. p5: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 5. Test 5 calculates E(A)->A--B with E(A)->B v.s. B<-E(A)->A. The earlier one is preferred. For more information on tests, see paper. ftype can be found in auto.py.
[ "Calculates", "probability", "of", "gene", "i", "regulating", "gene", "j", "with", "continuous", "anchor", "data", "assisted", "method", "with", "multiple", "tests", "by", "converting", "log", "likelihoods", "into", "probabilities", "per", "A", "for", "all", "B", ".", "dc", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "ftype", "(", "=", "f4", "by", "default", "))", "Continuous", "anchor", "data", ".", "Entry", "dc", "[", "i", "j", "]", "is", "anchor", "i", "s", "value", "for", "sample", "j", ".", "Anchor", "i", "is", "used", "to", "infer", "the", "probability", "of", "gene", "i", "-", ">", "any", "other", "gene", ".", "dt", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "A", "Entry", "dt", "[", "i", "j", "]", "is", "gene", "i", "s", "expression", "level", "for", "sample", "j", ".", "dt2", ":", "numpy", ".", "ndarray", "(", "nt2", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "B", ".", "dt2", "has", "the", "same", "format", "as", "dt", "and", "can", "be", "identical", "with", "different", "from", "or", "a", "superset", "of", "dt", ".", "When", "dt2", "is", "a", "superset", "of", "(", "or", "identical", "with", ")", "dt", "dt2", "must", "be", "arranged", "to", "be", "identical", "with", "dt", "at", "its", "upper", "submatrix", "i", ".", "e", ".", "dt2", "[", ":", "nt", ":", "]", "=", "dt", "and", "set", "parameter", "nodiag", "=", "1", ".", "name", ":", "actual", "C", "function", "name", "to", "call", "nodiag", ":", "skip", "diagonal", "regulations", "i", ".", "e", ".", "regulation", "A", "-", ">", "B", "for", "A", "=", "B", ".", "This", "should", "be", "set", "to", "True", "when", "A", "is", "a", "subset", "of", "B", "and", "aligned", "correspondingly", ".", "memlimit", ":", "The", "approximate", "memory", "usage", "limit", "in", "bytes", "for", "the", "library", ".", "For", "datasets", "require", "a", "larger", "memory", "calculation", "will", "be", "split", "into", "smaller", "chunks", ".", "If", "the", "memory", "limit", "is", "smaller", "than", "minimum", "required", "calculation", "can", "fail", "with", "an", "error", "message", ".", "memlimit", "=", "0", "defaults", "to", "unlimited", "memory", "usage", ".", "Return", ":", "dictionary", "with", "following", "keys", ":", "ret", ":", "0", "iff", "execution", "succeeded", ".", "p1", ":", "numpy", ".", "ndarray", "(", "nt", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "for", "test", "1", ".", "Test", "1", "calculates", "E", "(", "A", ")", "-", ">", "A", "v", ".", "s", ".", "E", "(", "A", ")", "A", ".", "The", "earlier", "one", "is", "preferred", ".", "For", "nodiag", "=", "False", "because", "the", "function", "expects", "significant", "anchors", "p1", "always", "return", "1", ".", "For", "nodiag", "=", "True", "uses", "diagonal", "elements", "of", "p2", ".", "p2", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "for", "test", "2", ".", "Test", "2", "calculates", "E", "(", "A", ")", "-", ">", "A", "--", "B", "with", "E", "(", "A", ")", "-", ">", "B", "v", ".", "s", ".", "E", "(", "A", ")", "-", ">", "A<", "-", "B", ".", "The", "earlier", "one", "is", "preferred", ".", "p3", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "for", "test", "3", ".", "Test", "3", "calculates", "E", "(", "A", ")", "-", ">", "A", "--", "B", "with", "E", "(", "A", ")", "-", ">", "B", "v", ".", "s", ".", "E", "(", "A", ")", "-", ">", "A", "-", ">", "B", ".", "The", "latter", "one", "is", "preferred", ".", "p4", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "for", "test", "4", ".", "Test", "4", "calculates", "E", "(", "A", ")", "-", ">", "A", "--", "B", "with", "E", "(", "A", ")", "-", ">", "B", "v", ".", "s", ".", "E", "(", "A", ")", "-", ">", "A", "B", ".", "The", "earlier", "one", "is", "preferred", ".", "p5", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "for", "test", "5", ".", "Test", "5", "calculates", "E", "(", "A", ")", "-", ">", "A", "--", "B", "with", "E", "(", "A", ")", "-", ">", "B", "v", ".", "s", ".", "B<", "-", "E", "(", "A", ")", "-", ">", "A", ".", "The", "earlier", "one", "is", "preferred", ".", "For", "more", "information", "on", "tests", "see", "paper", ".", "ftype", "can", "be", "found", "in", "auto", ".", "py", "." ]
train
https://github.com/lingfeiwang/findr-python/blob/417f163e658fee6ef311571f7048f96069a0cf1f/findr/pij.py#L383-L454
lingfeiwang/findr-python
findr/pij.py
cassists
def cassists(self,dc,dt,dt2,nodiag=False,memlimit=-1): """Calculates probability of gene i regulating gene j with continuous data assisted method, with multiple tests, by converting log likelihoods into probabilities per A for all B. Probabilities are converted from likelihood ratios separately for each A. This gives better predictions when the number of secondary targets (dt2) is large. (Check program warnings.) dc: numpy.ndarray(nt,ns,dtype=ftype(='f4' by default)) Continuous anchor data. Entry dc[i,j] is anchor i's value for sample j. Anchor i is used to infer the probability of gene i -> any other gene. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p1: numpy.ndarray(nt,dtype=ftype(='=f4' by default)). Probability for test 1. Test 1 calculates E(A)->A v.s. E(A) A. The earlier one is preferred. For nodiag=False, because the function expects significant anchors, p1 always return 1. For nodiag=True, uses diagonal elements of p2. p2: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 2. Test 2 calculates E(A)->A--B with E(A)->B v.s. E(A)->A<-B. The earlier one is preferred. p3: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 3. Test 3 calculates E(A)->A--B with E(A)->B v.s. E(A)->A->B. The latter one is preferred. p4: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 4. Test 4 calculates E(A)->A--B with E(A)->B v.s. E(A)->A B. The earlier one is preferred. p5: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 5. Test 5 calculates E(A)->A--B with E(A)->B v.s. B<-E(A)->A. The earlier one is preferred. For more information on tests, see paper. ftype can be found in auto.py. Example: see findr.examples.geuvadis4 (similar format) """ return _cassists_any(self,dc,dt,dt2,"pijs_cassist",nodiag=nodiag,memlimit=memlimit)
python
def cassists(self,dc,dt,dt2,nodiag=False,memlimit=-1): """Calculates probability of gene i regulating gene j with continuous data assisted method, with multiple tests, by converting log likelihoods into probabilities per A for all B. Probabilities are converted from likelihood ratios separately for each A. This gives better predictions when the number of secondary targets (dt2) is large. (Check program warnings.) dc: numpy.ndarray(nt,ns,dtype=ftype(='f4' by default)) Continuous anchor data. Entry dc[i,j] is anchor i's value for sample j. Anchor i is used to infer the probability of gene i -> any other gene. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p1: numpy.ndarray(nt,dtype=ftype(='=f4' by default)). Probability for test 1. Test 1 calculates E(A)->A v.s. E(A) A. The earlier one is preferred. For nodiag=False, because the function expects significant anchors, p1 always return 1. For nodiag=True, uses diagonal elements of p2. p2: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 2. Test 2 calculates E(A)->A--B with E(A)->B v.s. E(A)->A<-B. The earlier one is preferred. p3: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 3. Test 3 calculates E(A)->A--B with E(A)->B v.s. E(A)->A->B. The latter one is preferred. p4: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 4. Test 4 calculates E(A)->A--B with E(A)->B v.s. E(A)->A B. The earlier one is preferred. p5: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 5. Test 5 calculates E(A)->A--B with E(A)->B v.s. B<-E(A)->A. The earlier one is preferred. For more information on tests, see paper. ftype can be found in auto.py. Example: see findr.examples.geuvadis4 (similar format) """ return _cassists_any(self,dc,dt,dt2,"pijs_cassist",nodiag=nodiag,memlimit=memlimit)
[ "def", "cassists", "(", "self", ",", "dc", ",", "dt", ",", "dt2", ",", "nodiag", "=", "False", ",", "memlimit", "=", "-", "1", ")", ":", "return", "_cassists_any", "(", "self", ",", "dc", ",", "dt", ",", "dt2", ",", "\"pijs_cassist\"", ",", "nodiag", "=", "nodiag", ",", "memlimit", "=", "memlimit", ")" ]
Calculates probability of gene i regulating gene j with continuous data assisted method, with multiple tests, by converting log likelihoods into probabilities per A for all B. Probabilities are converted from likelihood ratios separately for each A. This gives better predictions when the number of secondary targets (dt2) is large. (Check program warnings.) dc: numpy.ndarray(nt,ns,dtype=ftype(='f4' by default)) Continuous anchor data. Entry dc[i,j] is anchor i's value for sample j. Anchor i is used to infer the probability of gene i -> any other gene. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p1: numpy.ndarray(nt,dtype=ftype(='=f4' by default)). Probability for test 1. Test 1 calculates E(A)->A v.s. E(A) A. The earlier one is preferred. For nodiag=False, because the function expects significant anchors, p1 always return 1. For nodiag=True, uses diagonal elements of p2. p2: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 2. Test 2 calculates E(A)->A--B with E(A)->B v.s. E(A)->A<-B. The earlier one is preferred. p3: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 3. Test 3 calculates E(A)->A--B with E(A)->B v.s. E(A)->A->B. The latter one is preferred. p4: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 4. Test 4 calculates E(A)->A--B with E(A)->B v.s. E(A)->A B. The earlier one is preferred. p5: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability for test 5. Test 5 calculates E(A)->A--B with E(A)->B v.s. B<-E(A)->A. The earlier one is preferred. For more information on tests, see paper. ftype can be found in auto.py. Example: see findr.examples.geuvadis4 (similar format)
[ "Calculates", "probability", "of", "gene", "i", "regulating", "gene", "j", "with", "continuous", "data", "assisted", "method", "with", "multiple", "tests", "by", "converting", "log", "likelihoods", "into", "probabilities", "per", "A", "for", "all", "B", ".", "Probabilities", "are", "converted", "from", "likelihood", "ratios", "separately", "for", "each", "A", ".", "This", "gives", "better", "predictions", "when", "the", "number", "of", "secondary", "targets", "(", "dt2", ")", "is", "large", ".", "(", "Check", "program", "warnings", ".", ")", "dc", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "ftype", "(", "=", "f4", "by", "default", "))", "Continuous", "anchor", "data", ".", "Entry", "dc", "[", "i", "j", "]", "is", "anchor", "i", "s", "value", "for", "sample", "j", ".", "Anchor", "i", "is", "used", "to", "infer", "the", "probability", "of", "gene", "i", "-", ">", "any", "other", "gene", ".", "dt", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "A", "Entry", "dt", "[", "i", "j", "]", "is", "gene", "i", "s", "expression", "level", "for", "sample", "j", ".", "dt2", ":", "numpy", ".", "ndarray", "(", "nt2", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "B", ".", "dt2", "has", "the", "same", "format", "as", "dt", "and", "can", "be", "identical", "with", "different", "from", "or", "a", "superset", "of", "dt", ".", "When", "dt2", "is", "a", "superset", "of", "(", "or", "identical", "with", ")", "dt", "dt2", "must", "be", "arranged", "to", "be", "identical", "with", "dt", "at", "its", "upper", "submatrix", "i", ".", "e", ".", "dt2", "[", ":", "nt", ":", "]", "=", "dt", "and", "set", "parameter", "nodiag", "=", "1", ".", "nodiag", ":", "skip", "diagonal", "regulations", "i", ".", "e", ".", "regulation", "A", "-", ">", "B", "for", "A", "=", "B", ".", "This", "should", "be", "set", "to", "True", "when", "A", "is", "a", "subset", "of", "B", "and", "aligned", "correspondingly", ".", "memlimit", ":", "The", "approximate", "memory", "usage", "limit", "in", "bytes", "for", "the", "library", ".", "For", "datasets", "require", "a", "larger", "memory", "calculation", "will", "be", "split", "into", "smaller", "chunks", ".", "If", "the", "memory", "limit", "is", "smaller", "than", "minimum", "required", "calculation", "can", "fail", "with", "an", "error", "message", ".", "memlimit", "=", "0", "defaults", "to", "unlimited", "memory", "usage", ".", "Return", ":", "dictionary", "with", "following", "keys", ":", "ret", ":", "0", "iff", "execution", "succeeded", ".", "p1", ":", "numpy", ".", "ndarray", "(", "nt", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "for", "test", "1", ".", "Test", "1", "calculates", "E", "(", "A", ")", "-", ">", "A", "v", ".", "s", ".", "E", "(", "A", ")", "A", ".", "The", "earlier", "one", "is", "preferred", ".", "For", "nodiag", "=", "False", "because", "the", "function", "expects", "significant", "anchors", "p1", "always", "return", "1", ".", "For", "nodiag", "=", "True", "uses", "diagonal", "elements", "of", "p2", ".", "p2", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "for", "test", "2", ".", "Test", "2", "calculates", "E", "(", "A", ")", "-", ">", "A", "--", "B", "with", "E", "(", "A", ")", "-", ">", "B", "v", ".", "s", ".", "E", "(", "A", ")", "-", ">", "A<", "-", "B", ".", "The", "earlier", "one", "is", "preferred", ".", "p3", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "for", "test", "3", ".", "Test", "3", "calculates", "E", "(", "A", ")", "-", ">", "A", "--", "B", "with", "E", "(", "A", ")", "-", ">", "B", "v", ".", "s", ".", "E", "(", "A", ")", "-", ">", "A", "-", ">", "B", ".", "The", "latter", "one", "is", "preferred", ".", "p4", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "for", "test", "4", ".", "Test", "4", "calculates", "E", "(", "A", ")", "-", ">", "A", "--", "B", "with", "E", "(", "A", ")", "-", ">", "B", "v", ".", "s", ".", "E", "(", "A", ")", "-", ">", "A", "B", ".", "The", "earlier", "one", "is", "preferred", ".", "p5", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "for", "test", "5", ".", "Test", "5", "calculates", "E", "(", "A", ")", "-", ">", "A", "--", "B", "with", "E", "(", "A", ")", "-", ">", "B", "v", ".", "s", ".", "B<", "-", "E", "(", "A", ")", "-", ">", "A", ".", "The", "earlier", "one", "is", "preferred", ".", "For", "more", "information", "on", "tests", "see", "paper", ".", "ftype", "can", "be", "found", "in", "auto", ".", "py", ".", "Example", ":", "see", "findr", ".", "examples", ".", "geuvadis4", "(", "similar", "format", ")" ]
train
https://github.com/lingfeiwang/findr-python/blob/417f163e658fee6ef311571f7048f96069a0cf1f/findr/pij.py#L456-L493
lingfeiwang/findr-python
findr/pij.py
_cassist_any
def _cassist_any(self,dc,dt,dt2,name,nodiag=False,memlimit=-1): """Calculates probability of gene i regulating gene j with continuous data assisted method, with the recommended combination of multiple tests. dc: numpy.ndarray(nt,ns,dtype=ftype(='f4' by default)) Continuous anchor data. Entry dc[i,j] is anchor i's value for sample j. Anchor i is used to infer the probability of gene i -> any other gene. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. name: actual C function name to call nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability function from for recommended combination of multiple tests. For more information on tests, see paper. ftype can be found in auto.py. """ if self.lib is None: raise ValueError("Not initialized.") import numpy as np from .auto import ftype_np from .types import isint if dc.dtype.char!=ftype_np or dt.dtype.char!=ftype_np or dt2.dtype.char!=ftype_np: raise ValueError('Wrong input dtype for gene expression data') if len(dc.shape)!=2 or len(dt.shape)!=2 or len(dt2.shape)!=2: raise ValueError('Wrong input shape') if type(nodiag) is not bool: raise ValueError('Wrong nodiag type') if not isint(memlimit): raise ValueError('Wrong memlimit type') ng=dc.shape[0] nt=dt2.shape[0] ns=dc.shape[1] nd=1 if nodiag else 0 if dt.shape!=dc.shape or dt2.shape[1]!=ns: raise ValueError('Wrong input shape') if np.isnan(dc).sum()+np.isnan(dt).sum()+np.isnan(dt2).sum()>0: raise ValueError('NaN found.') func=self.cfunc(name,rettype='int',argtypes=['const MATRIXF*','const MATRIXF*','const MATRIXF*','MATRIXF*','byte','size_t']) d=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) dcr=np.require(dc,requirements=['A','C','O','W']) dtr=np.require(dt,requirements=['A','C','O','W']) dt2r=np.require(dt2,requirements=['A','C','O','W']) ret=func(dcr,dtr,dt2r,d,nd,memlimit) ans={'ret':ret,'p':d} return ans
python
def _cassist_any(self,dc,dt,dt2,name,nodiag=False,memlimit=-1): """Calculates probability of gene i regulating gene j with continuous data assisted method, with the recommended combination of multiple tests. dc: numpy.ndarray(nt,ns,dtype=ftype(='f4' by default)) Continuous anchor data. Entry dc[i,j] is anchor i's value for sample j. Anchor i is used to infer the probability of gene i -> any other gene. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. name: actual C function name to call nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability function from for recommended combination of multiple tests. For more information on tests, see paper. ftype can be found in auto.py. """ if self.lib is None: raise ValueError("Not initialized.") import numpy as np from .auto import ftype_np from .types import isint if dc.dtype.char!=ftype_np or dt.dtype.char!=ftype_np or dt2.dtype.char!=ftype_np: raise ValueError('Wrong input dtype for gene expression data') if len(dc.shape)!=2 or len(dt.shape)!=2 or len(dt2.shape)!=2: raise ValueError('Wrong input shape') if type(nodiag) is not bool: raise ValueError('Wrong nodiag type') if not isint(memlimit): raise ValueError('Wrong memlimit type') ng=dc.shape[0] nt=dt2.shape[0] ns=dc.shape[1] nd=1 if nodiag else 0 if dt.shape!=dc.shape or dt2.shape[1]!=ns: raise ValueError('Wrong input shape') if np.isnan(dc).sum()+np.isnan(dt).sum()+np.isnan(dt2).sum()>0: raise ValueError('NaN found.') func=self.cfunc(name,rettype='int',argtypes=['const MATRIXF*','const MATRIXF*','const MATRIXF*','MATRIXF*','byte','size_t']) d=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) dcr=np.require(dc,requirements=['A','C','O','W']) dtr=np.require(dt,requirements=['A','C','O','W']) dt2r=np.require(dt2,requirements=['A','C','O','W']) ret=func(dcr,dtr,dt2r,d,nd,memlimit) ans={'ret':ret,'p':d} return ans
[ "def", "_cassist_any", "(", "self", ",", "dc", ",", "dt", ",", "dt2", ",", "name", ",", "nodiag", "=", "False", ",", "memlimit", "=", "-", "1", ")", ":", "if", "self", ".", "lib", "is", "None", ":", "raise", "ValueError", "(", "\"Not initialized.\"", ")", "import", "numpy", "as", "np", "from", ".", "auto", "import", "ftype_np", "from", ".", "types", "import", "isint", "if", "dc", ".", "dtype", ".", "char", "!=", "ftype_np", "or", "dt", ".", "dtype", ".", "char", "!=", "ftype_np", "or", "dt2", ".", "dtype", ".", "char", "!=", "ftype_np", ":", "raise", "ValueError", "(", "'Wrong input dtype for gene expression data'", ")", "if", "len", "(", "dc", ".", "shape", ")", "!=", "2", "or", "len", "(", "dt", ".", "shape", ")", "!=", "2", "or", "len", "(", "dt2", ".", "shape", ")", "!=", "2", ":", "raise", "ValueError", "(", "'Wrong input shape'", ")", "if", "type", "(", "nodiag", ")", "is", "not", "bool", ":", "raise", "ValueError", "(", "'Wrong nodiag type'", ")", "if", "not", "isint", "(", "memlimit", ")", ":", "raise", "ValueError", "(", "'Wrong memlimit type'", ")", "ng", "=", "dc", ".", "shape", "[", "0", "]", "nt", "=", "dt2", ".", "shape", "[", "0", "]", "ns", "=", "dc", ".", "shape", "[", "1", "]", "nd", "=", "1", "if", "nodiag", "else", "0", "if", "dt", ".", "shape", "!=", "dc", ".", "shape", "or", "dt2", ".", "shape", "[", "1", "]", "!=", "ns", ":", "raise", "ValueError", "(", "'Wrong input shape'", ")", "if", "np", ".", "isnan", "(", "dc", ")", ".", "sum", "(", ")", "+", "np", ".", "isnan", "(", "dt", ")", ".", "sum", "(", ")", "+", "np", ".", "isnan", "(", "dt2", ")", ".", "sum", "(", ")", ">", "0", ":", "raise", "ValueError", "(", "'NaN found.'", ")", "func", "=", "self", ".", "cfunc", "(", "name", ",", "rettype", "=", "'int'", ",", "argtypes", "=", "[", "'const MATRIXF*'", ",", "'const MATRIXF*'", ",", "'const MATRIXF*'", ",", "'MATRIXF*'", ",", "'byte'", ",", "'size_t'", "]", ")", "d", "=", "np", ".", "require", "(", "np", ".", "zeros", "(", "(", "ng", ",", "nt", ")", ",", "dtype", "=", "dt", ".", "dtype", ")", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "dcr", "=", "np", ".", "require", "(", "dc", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "dtr", "=", "np", ".", "require", "(", "dt", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "dt2r", "=", "np", ".", "require", "(", "dt2", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "ret", "=", "func", "(", "dcr", ",", "dtr", ",", "dt2r", ",", "d", ",", "nd", ",", "memlimit", ")", "ans", "=", "{", "'ret'", ":", "ret", ",", "'p'", ":", "d", "}", "return", "ans" ]
Calculates probability of gene i regulating gene j with continuous data assisted method, with the recommended combination of multiple tests. dc: numpy.ndarray(nt,ns,dtype=ftype(='f4' by default)) Continuous anchor data. Entry dc[i,j] is anchor i's value for sample j. Anchor i is used to infer the probability of gene i -> any other gene. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. name: actual C function name to call nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability function from for recommended combination of multiple tests. For more information on tests, see paper. ftype can be found in auto.py.
[ "Calculates", "probability", "of", "gene", "i", "regulating", "gene", "j", "with", "continuous", "data", "assisted", "method", "with", "the", "recommended", "combination", "of", "multiple", "tests", ".", "dc", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "ftype", "(", "=", "f4", "by", "default", "))", "Continuous", "anchor", "data", ".", "Entry", "dc", "[", "i", "j", "]", "is", "anchor", "i", "s", "value", "for", "sample", "j", ".", "Anchor", "i", "is", "used", "to", "infer", "the", "probability", "of", "gene", "i", "-", ">", "any", "other", "gene", ".", "dt", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "A", "Entry", "dt", "[", "i", "j", "]", "is", "gene", "i", "s", "expression", "level", "for", "sample", "j", ".", "dt2", ":", "numpy", ".", "ndarray", "(", "nt2", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "B", ".", "dt2", "has", "the", "same", "format", "as", "dt", "and", "can", "be", "identical", "with", "different", "from", "or", "a", "superset", "of", "dt", ".", "When", "dt2", "is", "a", "superset", "of", "(", "or", "identical", "with", ")", "dt", "dt2", "must", "be", "arranged", "to", "be", "identical", "with", "dt", "at", "its", "upper", "submatrix", "i", ".", "e", ".", "dt2", "[", ":", "nt", ":", "]", "=", "dt", "and", "set", "parameter", "nodiag", "=", "1", ".", "name", ":", "actual", "C", "function", "name", "to", "call", "nodiag", ":", "skip", "diagonal", "regulations", "i", ".", "e", ".", "regulation", "A", "-", ">", "B", "for", "A", "=", "B", ".", "This", "should", "be", "set", "to", "True", "when", "A", "is", "a", "subset", "of", "B", "and", "aligned", "correspondingly", ".", "memlimit", ":", "The", "approximate", "memory", "usage", "limit", "in", "bytes", "for", "the", "library", ".", "For", "datasets", "require", "a", "larger", "memory", "calculation", "will", "be", "split", "into", "smaller", "chunks", ".", "If", "the", "memory", "limit", "is", "smaller", "than", "minimum", "required", "calculation", "can", "fail", "with", "an", "error", "message", ".", "memlimit", "=", "0", "defaults", "to", "unlimited", "memory", "usage", ".", "Return", ":", "dictionary", "with", "following", "keys", ":", "ret", ":", "0", "iff", "execution", "succeeded", ".", "p", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "function", "from", "for", "recommended", "combination", "of", "multiple", "tests", ".", "For", "more", "information", "on", "tests", "see", "paper", ".", "ftype", "can", "be", "found", "in", "auto", ".", "py", "." ]
train
https://github.com/lingfeiwang/findr-python/blob/417f163e658fee6ef311571f7048f96069a0cf1f/findr/pij.py#L495-L549
lingfeiwang/findr-python
findr/pij.py
cassist
def cassist(self,dc,dt,dt2,nodiag=False,memlimit=-1): """Calculates probability of gene i regulating gene j with continuous data assisted method, with the recommended combination of multiple tests. Probabilities are converted from likelihood ratios separately for each A. This gives better predictions when the number of secondary targets (dt2) is large. (Check program warnings.) dc: numpy.ndarray(nt,ns,dtype=ftype(='f4' by default)) Continuous anchor data. Entry dc[i,j] is anchor i's value for sample j. Anchor i is used to infer the probability of gene i -> any other gene. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability function from for recommended combination of multiple tests. For more information on tests, see paper. ftype can be found in auto.py. Example: see findr.examples.geuvadis5 """ return _cassist_any(self,dc,dt,dt2,"pij_cassist",nodiag=nodiag,memlimit=memlimit)
python
def cassist(self,dc,dt,dt2,nodiag=False,memlimit=-1): """Calculates probability of gene i regulating gene j with continuous data assisted method, with the recommended combination of multiple tests. Probabilities are converted from likelihood ratios separately for each A. This gives better predictions when the number of secondary targets (dt2) is large. (Check program warnings.) dc: numpy.ndarray(nt,ns,dtype=ftype(='f4' by default)) Continuous anchor data. Entry dc[i,j] is anchor i's value for sample j. Anchor i is used to infer the probability of gene i -> any other gene. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability function from for recommended combination of multiple tests. For more information on tests, see paper. ftype can be found in auto.py. Example: see findr.examples.geuvadis5 """ return _cassist_any(self,dc,dt,dt2,"pij_cassist",nodiag=nodiag,memlimit=memlimit)
[ "def", "cassist", "(", "self", ",", "dc", ",", "dt", ",", "dt2", ",", "nodiag", "=", "False", ",", "memlimit", "=", "-", "1", ")", ":", "return", "_cassist_any", "(", "self", ",", "dc", ",", "dt", ",", "dt2", ",", "\"pij_cassist\"", ",", "nodiag", "=", "nodiag", ",", "memlimit", "=", "memlimit", ")" ]
Calculates probability of gene i regulating gene j with continuous data assisted method, with the recommended combination of multiple tests. Probabilities are converted from likelihood ratios separately for each A. This gives better predictions when the number of secondary targets (dt2) is large. (Check program warnings.) dc: numpy.ndarray(nt,ns,dtype=ftype(='f4' by default)) Continuous anchor data. Entry dc[i,j] is anchor i's value for sample j. Anchor i is used to infer the probability of gene i -> any other gene. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, or a superset of dt. When dt2 is a superset of (or identical with) dt, dt2 must be arranged to be identical with dt at its upper submatrix, i.e. dt2[:nt,:]=dt, and set parameter nodiag = 1. nodiag: skip diagonal regulations, i.e. regulation A->B for A=B. This should be set to True when A is a subset of B and aligned correspondingly. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will be split into smaller chunks. If the memory limit is smaller than minimum required, calculation can fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). Probability function from for recommended combination of multiple tests. For more information on tests, see paper. ftype can be found in auto.py. Example: see findr.examples.geuvadis5
[ "Calculates", "probability", "of", "gene", "i", "regulating", "gene", "j", "with", "continuous", "data", "assisted", "method", "with", "the", "recommended", "combination", "of", "multiple", "tests", ".", "Probabilities", "are", "converted", "from", "likelihood", "ratios", "separately", "for", "each", "A", ".", "This", "gives", "better", "predictions", "when", "the", "number", "of", "secondary", "targets", "(", "dt2", ")", "is", "large", ".", "(", "Check", "program", "warnings", ".", ")", "dc", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "ftype", "(", "=", "f4", "by", "default", "))", "Continuous", "anchor", "data", ".", "Entry", "dc", "[", "i", "j", "]", "is", "anchor", "i", "s", "value", "for", "sample", "j", ".", "Anchor", "i", "is", "used", "to", "infer", "the", "probability", "of", "gene", "i", "-", ">", "any", "other", "gene", ".", "dt", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "A", "Entry", "dt", "[", "i", "j", "]", "is", "gene", "i", "s", "expression", "level", "for", "sample", "j", ".", "dt2", ":", "numpy", ".", "ndarray", "(", "nt2", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "B", ".", "dt2", "has", "the", "same", "format", "as", "dt", "and", "can", "be", "identical", "with", "different", "from", "or", "a", "superset", "of", "dt", ".", "When", "dt2", "is", "a", "superset", "of", "(", "or", "identical", "with", ")", "dt", "dt2", "must", "be", "arranged", "to", "be", "identical", "with", "dt", "at", "its", "upper", "submatrix", "i", ".", "e", ".", "dt2", "[", ":", "nt", ":", "]", "=", "dt", "and", "set", "parameter", "nodiag", "=", "1", ".", "nodiag", ":", "skip", "diagonal", "regulations", "i", ".", "e", ".", "regulation", "A", "-", ">", "B", "for", "A", "=", "B", ".", "This", "should", "be", "set", "to", "True", "when", "A", "is", "a", "subset", "of", "B", "and", "aligned", "correspondingly", ".", "memlimit", ":", "The", "approximate", "memory", "usage", "limit", "in", "bytes", "for", "the", "library", ".", "For", "datasets", "require", "a", "larger", "memory", "calculation", "will", "be", "split", "into", "smaller", "chunks", ".", "If", "the", "memory", "limit", "is", "smaller", "than", "minimum", "required", "calculation", "can", "fail", "with", "an", "error", "message", ".", "memlimit", "=", "0", "defaults", "to", "unlimited", "memory", "usage", ".", "Return", ":", "dictionary", "with", "following", "keys", ":", "ret", ":", "0", "iff", "execution", "succeeded", ".", "p", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "Probability", "function", "from", "for", "recommended", "combination", "of", "multiple", "tests", ".", "For", "more", "information", "on", "tests", "see", "paper", ".", "ftype", "can", "be", "found", "in", "auto", ".", "py", ".", "Example", ":", "see", "findr", ".", "examples", ".", "geuvadis5" ]
train
https://github.com/lingfeiwang/findr-python/blob/417f163e658fee6ef311571f7048f96069a0cf1f/findr/pij.py#L551-L578
lingfeiwang/findr-python
findr/pij.py
rank_pv
def rank_pv(self,dt,dt2,memlimit=-1): """Calculates p-values of gene i correlating with gene j by converting log likelihoods into probabilities per A for all B. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, a subset of, or a superset of dt. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). P-values for A--B. ftype and gtype can be found in auto.py. Example: see findr.examples.geuvadis1 (similar format) """ if self.lib is None: raise ValueError("Not initialized.") import numpy as np from .auto import ftype_np,gtype_np from .types import isint if dt.dtype.char!=ftype_np or dt2.dtype.char!=ftype_np: raise ValueError('Wrong input dtype for gene expression data') if len(dt.shape)!=2 or len(dt2.shape)!=2: raise ValueError('Wrong input shape') if not isint(memlimit): raise ValueError('Wrong memlimit type') ng=dt.shape[0] nt=dt2.shape[0] ns=dt.shape[1] if dt2.shape[1]!=ns: raise ValueError('Wrong input shape') if np.isnan(dt).sum()+np.isnan(dt2).sum()>0: raise ValueError('NaN found.') dp=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) dtr=np.require(dt,requirements=['A','C','O','W']) dt2r=np.require(dt2,requirements=['A','C','O','W']) arglist=['const MATRIXF*','const MATRIXF*','MATRIXF*','size_t'] args=[dtr,dt2r,dp,memlimit] func=self.cfunc('pij_rank_pv',rettype='int',argtypes=arglist) ret=func(*args) ans={'ret':ret,'p':dp} return ans
python
def rank_pv(self,dt,dt2,memlimit=-1): """Calculates p-values of gene i correlating with gene j by converting log likelihoods into probabilities per A for all B. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, a subset of, or a superset of dt. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). P-values for A--B. ftype and gtype can be found in auto.py. Example: see findr.examples.geuvadis1 (similar format) """ if self.lib is None: raise ValueError("Not initialized.") import numpy as np from .auto import ftype_np,gtype_np from .types import isint if dt.dtype.char!=ftype_np or dt2.dtype.char!=ftype_np: raise ValueError('Wrong input dtype for gene expression data') if len(dt.shape)!=2 or len(dt2.shape)!=2: raise ValueError('Wrong input shape') if not isint(memlimit): raise ValueError('Wrong memlimit type') ng=dt.shape[0] nt=dt2.shape[0] ns=dt.shape[1] if dt2.shape[1]!=ns: raise ValueError('Wrong input shape') if np.isnan(dt).sum()+np.isnan(dt2).sum()>0: raise ValueError('NaN found.') dp=np.require(np.zeros((ng,nt),dtype=dt.dtype),requirements=['A','C','O','W']) dtr=np.require(dt,requirements=['A','C','O','W']) dt2r=np.require(dt2,requirements=['A','C','O','W']) arglist=['const MATRIXF*','const MATRIXF*','MATRIXF*','size_t'] args=[dtr,dt2r,dp,memlimit] func=self.cfunc('pij_rank_pv',rettype='int',argtypes=arglist) ret=func(*args) ans={'ret':ret,'p':dp} return ans
[ "def", "rank_pv", "(", "self", ",", "dt", ",", "dt2", ",", "memlimit", "=", "-", "1", ")", ":", "if", "self", ".", "lib", "is", "None", ":", "raise", "ValueError", "(", "\"Not initialized.\"", ")", "import", "numpy", "as", "np", "from", ".", "auto", "import", "ftype_np", ",", "gtype_np", "from", ".", "types", "import", "isint", "if", "dt", ".", "dtype", ".", "char", "!=", "ftype_np", "or", "dt2", ".", "dtype", ".", "char", "!=", "ftype_np", ":", "raise", "ValueError", "(", "'Wrong input dtype for gene expression data'", ")", "if", "len", "(", "dt", ".", "shape", ")", "!=", "2", "or", "len", "(", "dt2", ".", "shape", ")", "!=", "2", ":", "raise", "ValueError", "(", "'Wrong input shape'", ")", "if", "not", "isint", "(", "memlimit", ")", ":", "raise", "ValueError", "(", "'Wrong memlimit type'", ")", "ng", "=", "dt", ".", "shape", "[", "0", "]", "nt", "=", "dt2", ".", "shape", "[", "0", "]", "ns", "=", "dt", ".", "shape", "[", "1", "]", "if", "dt2", ".", "shape", "[", "1", "]", "!=", "ns", ":", "raise", "ValueError", "(", "'Wrong input shape'", ")", "if", "np", ".", "isnan", "(", "dt", ")", ".", "sum", "(", ")", "+", "np", ".", "isnan", "(", "dt2", ")", ".", "sum", "(", ")", ">", "0", ":", "raise", "ValueError", "(", "'NaN found.'", ")", "dp", "=", "np", ".", "require", "(", "np", ".", "zeros", "(", "(", "ng", ",", "nt", ")", ",", "dtype", "=", "dt", ".", "dtype", ")", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "dtr", "=", "np", ".", "require", "(", "dt", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "dt2r", "=", "np", ".", "require", "(", "dt2", ",", "requirements", "=", "[", "'A'", ",", "'C'", ",", "'O'", ",", "'W'", "]", ")", "arglist", "=", "[", "'const MATRIXF*'", ",", "'const MATRIXF*'", ",", "'MATRIXF*'", ",", "'size_t'", "]", "args", "=", "[", "dtr", ",", "dt2r", ",", "dp", ",", "memlimit", "]", "func", "=", "self", ".", "cfunc", "(", "'pij_rank_pv'", ",", "rettype", "=", "'int'", ",", "argtypes", "=", "arglist", ")", "ret", "=", "func", "(", "*", "args", ")", "ans", "=", "{", "'ret'", ":", "ret", ",", "'p'", ":", "dp", "}", "return", "ans" ]
Calculates p-values of gene i correlating with gene j by converting log likelihoods into probabilities per A for all B. dt: numpy.ndarray(nt,ns,dtype=ftype(='=f4' by default)) Gene expression data for A Entry dt[i,j] is gene i's expression level for sample j. dt2:numpy.ndarray(nt2,ns,dtype=ftype(='=f4' by default)) Gene expression data for B. dt2 has the same format as dt, and can be identical with, different from, a subset of, or a superset of dt. memlimit: The approximate memory usage limit in bytes for the library. For datasets require a larger memory, calculation will fail with an error message. memlimit=0 defaults to unlimited memory usage. Return: dictionary with following keys: ret:0 iff execution succeeded. p: numpy.ndarray((nt,nt2),dtype=ftype(='=f4' by default)). P-values for A--B. ftype and gtype can be found in auto.py. Example: see findr.examples.geuvadis1 (similar format)
[ "Calculates", "p", "-", "values", "of", "gene", "i", "correlating", "with", "gene", "j", "by", "converting", "log", "likelihoods", "into", "probabilities", "per", "A", "for", "all", "B", ".", "dt", ":", "numpy", ".", "ndarray", "(", "nt", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "A", "Entry", "dt", "[", "i", "j", "]", "is", "gene", "i", "s", "expression", "level", "for", "sample", "j", ".", "dt2", ":", "numpy", ".", "ndarray", "(", "nt2", "ns", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", "Gene", "expression", "data", "for", "B", ".", "dt2", "has", "the", "same", "format", "as", "dt", "and", "can", "be", "identical", "with", "different", "from", "a", "subset", "of", "or", "a", "superset", "of", "dt", ".", "memlimit", ":", "The", "approximate", "memory", "usage", "limit", "in", "bytes", "for", "the", "library", ".", "For", "datasets", "require", "a", "larger", "memory", "calculation", "will", "fail", "with", "an", "error", "message", ".", "memlimit", "=", "0", "defaults", "to", "unlimited", "memory", "usage", ".", "Return", ":", "dictionary", "with", "following", "keys", ":", "ret", ":", "0", "iff", "execution", "succeeded", ".", "p", ":", "numpy", ".", "ndarray", "((", "nt", "nt2", ")", "dtype", "=", "ftype", "(", "=", "=", "f4", "by", "default", "))", ".", "P", "-", "values", "for", "A", "--", "B", ".", "ftype", "and", "gtype", "can", "be", "found", "in", "auto", ".", "py", ".", "Example", ":", "see", "findr", ".", "examples", ".", "geuvadis1", "(", "similar", "format", ")" ]
train
https://github.com/lingfeiwang/findr-python/blob/417f163e658fee6ef311571f7048f96069a0cf1f/findr/pij.py#L606-L648
Duke-QCD/hic
hic/flow.py
qn
def qn(phi, *n): """ Calculate the complex flow vector `Q_n`. :param array-like phi: Azimuthal angles. :param int n: One or more harmonics to calculate. :returns: A single complex number if only one ``n`` was given or a complex array for multiple ``n``. """ phi = np.ravel(phi) n = np.asarray(n) i_n_phi = np.zeros((n.size, phi.size), dtype=complex) np.outer(n, phi, out=i_n_phi.imag) qn = np.exp(i_n_phi, out=i_n_phi).sum(axis=1) if qn.size == 1: qn = qn[0] return qn
python
def qn(phi, *n): """ Calculate the complex flow vector `Q_n`. :param array-like phi: Azimuthal angles. :param int n: One or more harmonics to calculate. :returns: A single complex number if only one ``n`` was given or a complex array for multiple ``n``. """ phi = np.ravel(phi) n = np.asarray(n) i_n_phi = np.zeros((n.size, phi.size), dtype=complex) np.outer(n, phi, out=i_n_phi.imag) qn = np.exp(i_n_phi, out=i_n_phi).sum(axis=1) if qn.size == 1: qn = qn[0] return qn
[ "def", "qn", "(", "phi", ",", "*", "n", ")", ":", "phi", "=", "np", ".", "ravel", "(", "phi", ")", "n", "=", "np", ".", "asarray", "(", "n", ")", "i_n_phi", "=", "np", ".", "zeros", "(", "(", "n", ".", "size", ",", "phi", ".", "size", ")", ",", "dtype", "=", "complex", ")", "np", ".", "outer", "(", "n", ",", "phi", ",", "out", "=", "i_n_phi", ".", "imag", ")", "qn", "=", "np", ".", "exp", "(", "i_n_phi", ",", "out", "=", "i_n_phi", ")", ".", "sum", "(", "axis", "=", "1", ")", "if", "qn", ".", "size", "==", "1", ":", "qn", "=", "qn", "[", "0", "]", "return", "qn" ]
Calculate the complex flow vector `Q_n`. :param array-like phi: Azimuthal angles. :param int n: One or more harmonics to calculate. :returns: A single complex number if only one ``n`` was given or a complex array for multiple ``n``.
[ "Calculate", "the", "complex", "flow", "vector", "Q_n", "." ]
train
https://github.com/Duke-QCD/hic/blob/9afb141735b1ac228d296a2349225d2bdcdb68f0/hic/flow.py#L13-L36
Duke-QCD/hic
hic/flow.py
Cumulant.correlation
def correlation(self, n, k, error=False): r""" Calculate `\langle k \rangle_n`, the `k`-particle correlation function for `n`\ th-order anisotropy. :param int n: Anisotropy order. :param int k: Correlation order. :param bool error: Whether to calculate statistical error (for `\langle 2 \rangle` only). If true, return a tuple ``(corr, corr_error)``. """ self._calculate_corr(n, k) corr_nk = self._corr[n][k] if error: self._calculate_corr_err(n, k) return corr_nk, self._corr_err[n][k] else: return corr_nk
python
def correlation(self, n, k, error=False): r""" Calculate `\langle k \rangle_n`, the `k`-particle correlation function for `n`\ th-order anisotropy. :param int n: Anisotropy order. :param int k: Correlation order. :param bool error: Whether to calculate statistical error (for `\langle 2 \rangle` only). If true, return a tuple ``(corr, corr_error)``. """ self._calculate_corr(n, k) corr_nk = self._corr[n][k] if error: self._calculate_corr_err(n, k) return corr_nk, self._corr_err[n][k] else: return corr_nk
[ "def", "correlation", "(", "self", ",", "n", ",", "k", ",", "error", "=", "False", ")", ":", "self", ".", "_calculate_corr", "(", "n", ",", "k", ")", "corr_nk", "=", "self", ".", "_corr", "[", "n", "]", "[", "k", "]", "if", "error", ":", "self", ".", "_calculate_corr_err", "(", "n", ",", "k", ")", "return", "corr_nk", ",", "self", ".", "_corr_err", "[", "n", "]", "[", "k", "]", "else", ":", "return", "corr_nk" ]
r""" Calculate `\langle k \rangle_n`, the `k`-particle correlation function for `n`\ th-order anisotropy. :param int n: Anisotropy order. :param int k: Correlation order. :param bool error: Whether to calculate statistical error (for `\langle 2 \rangle` only). If true, return a tuple ``(corr, corr_error)``.
[ "r", "Calculate", "\\", "langle", "k", "\\", "rangle_n", "the", "k", "-", "particle", "correlation", "function", "for", "n", "\\", "th", "-", "order", "anisotropy", "." ]
train
https://github.com/Duke-QCD/hic/blob/9afb141735b1ac228d296a2349225d2bdcdb68f0/hic/flow.py#L154-L175
Duke-QCD/hic
hic/flow.py
Cumulant.cumulant
def cumulant(self, n, k, error=False): r""" Calculate `c_n\{k\}`, the `k`-particle cumulant for `n`\ th-order anisotropy. :param int n: Anisotropy order. :param int k: Correlation order. :param bool error: Whether to calculate statistical error (for `c_n\{2\}` only). If true, return a tuple ``(cn2, cn2_error)``. """ corr_nk = self.correlation(n, k, error=error) if k == 2: return corr_nk elif k == 4: corr_n2 = self.correlation(n, 2) return corr_nk - 2*corr_n2*corr_n2
python
def cumulant(self, n, k, error=False): r""" Calculate `c_n\{k\}`, the `k`-particle cumulant for `n`\ th-order anisotropy. :param int n: Anisotropy order. :param int k: Correlation order. :param bool error: Whether to calculate statistical error (for `c_n\{2\}` only). If true, return a tuple ``(cn2, cn2_error)``. """ corr_nk = self.correlation(n, k, error=error) if k == 2: return corr_nk elif k == 4: corr_n2 = self.correlation(n, 2) return corr_nk - 2*corr_n2*corr_n2
[ "def", "cumulant", "(", "self", ",", "n", ",", "k", ",", "error", "=", "False", ")", ":", "corr_nk", "=", "self", ".", "correlation", "(", "n", ",", "k", ",", "error", "=", "error", ")", "if", "k", "==", "2", ":", "return", "corr_nk", "elif", "k", "==", "4", ":", "corr_n2", "=", "self", ".", "correlation", "(", "n", ",", "2", ")", "return", "corr_nk", "-", "2", "*", "corr_n2", "*", "corr_n2" ]
r""" Calculate `c_n\{k\}`, the `k`-particle cumulant for `n`\ th-order anisotropy. :param int n: Anisotropy order. :param int k: Correlation order. :param bool error: Whether to calculate statistical error (for `c_n\{2\}` only). If true, return a tuple ``(cn2, cn2_error)``.
[ "r", "Calculate", "c_n", "\\", "{", "k", "\\", "}", "the", "k", "-", "particle", "cumulant", "for", "n", "\\", "th", "-", "order", "anisotropy", "." ]
train
https://github.com/Duke-QCD/hic/blob/9afb141735b1ac228d296a2349225d2bdcdb68f0/hic/flow.py#L177-L196
Duke-QCD/hic
hic/flow.py
Cumulant.flow
def flow(self, n, k, error=False, imaginary='nan'): r""" Calculate `v_n\{k\}`, the estimate of flow coefficient `v_n` from the `k`-particle cumulant. :param int n: Anisotropy order. :param int k: Correlation order. :param bool error: Whether to calculate statistical error (for `v_n\{2\}` only). If true, return a tuple ``(vn2, vn2_error)``. :param str imaginary: (optional) Determines behavior when the computed flow is imaginary: - ``'nan'`` (default) -- Return NaN and raise a ``RuntimeWarning``. - ``'negative'`` -- Return the negative absolute value. - ``'zero'`` -- Return ``0.0``. """ cnk = self.cumulant(n, k, error=error) if error: cnk, cnk_err = cnk vnk_to_k = self._cnk_prefactor[k] * cnk kinv = 1/k if vnk_to_k >= 0: vnk = vnk_to_k**kinv else: if imaginary == 'negative': vnk = -1*(-vnk_to_k)**kinv elif imaginary == 'zero': vnk = 0. else: warnings.warn('Imaginary flow: returning NaN.', RuntimeWarning) vnk = float('nan') if k == 2 and error: return vnk, .5/np.sqrt(abs(cnk)) * cnk_err else: return vnk
python
def flow(self, n, k, error=False, imaginary='nan'): r""" Calculate `v_n\{k\}`, the estimate of flow coefficient `v_n` from the `k`-particle cumulant. :param int n: Anisotropy order. :param int k: Correlation order. :param bool error: Whether to calculate statistical error (for `v_n\{2\}` only). If true, return a tuple ``(vn2, vn2_error)``. :param str imaginary: (optional) Determines behavior when the computed flow is imaginary: - ``'nan'`` (default) -- Return NaN and raise a ``RuntimeWarning``. - ``'negative'`` -- Return the negative absolute value. - ``'zero'`` -- Return ``0.0``. """ cnk = self.cumulant(n, k, error=error) if error: cnk, cnk_err = cnk vnk_to_k = self._cnk_prefactor[k] * cnk kinv = 1/k if vnk_to_k >= 0: vnk = vnk_to_k**kinv else: if imaginary == 'negative': vnk = -1*(-vnk_to_k)**kinv elif imaginary == 'zero': vnk = 0. else: warnings.warn('Imaginary flow: returning NaN.', RuntimeWarning) vnk = float('nan') if k == 2 and error: return vnk, .5/np.sqrt(abs(cnk)) * cnk_err else: return vnk
[ "def", "flow", "(", "self", ",", "n", ",", "k", ",", "error", "=", "False", ",", "imaginary", "=", "'nan'", ")", ":", "cnk", "=", "self", ".", "cumulant", "(", "n", ",", "k", ",", "error", "=", "error", ")", "if", "error", ":", "cnk", ",", "cnk_err", "=", "cnk", "vnk_to_k", "=", "self", ".", "_cnk_prefactor", "[", "k", "]", "*", "cnk", "kinv", "=", "1", "/", "k", "if", "vnk_to_k", ">=", "0", ":", "vnk", "=", "vnk_to_k", "**", "kinv", "else", ":", "if", "imaginary", "==", "'negative'", ":", "vnk", "=", "-", "1", "*", "(", "-", "vnk_to_k", ")", "**", "kinv", "elif", "imaginary", "==", "'zero'", ":", "vnk", "=", "0.", "else", ":", "warnings", ".", "warn", "(", "'Imaginary flow: returning NaN.'", ",", "RuntimeWarning", ")", "vnk", "=", "float", "(", "'nan'", ")", "if", "k", "==", "2", "and", "error", ":", "return", "vnk", ",", ".5", "/", "np", ".", "sqrt", "(", "abs", "(", "cnk", ")", ")", "*", "cnk_err", "else", ":", "return", "vnk" ]
r""" Calculate `v_n\{k\}`, the estimate of flow coefficient `v_n` from the `k`-particle cumulant. :param int n: Anisotropy order. :param int k: Correlation order. :param bool error: Whether to calculate statistical error (for `v_n\{2\}` only). If true, return a tuple ``(vn2, vn2_error)``. :param str imaginary: (optional) Determines behavior when the computed flow is imaginary: - ``'nan'`` (default) -- Return NaN and raise a ``RuntimeWarning``. - ``'negative'`` -- Return the negative absolute value. - ``'zero'`` -- Return ``0.0``.
[ "r", "Calculate", "v_n", "\\", "{", "k", "\\", "}", "the", "estimate", "of", "flow", "coefficient", "v_n", "from", "the", "k", "-", "particle", "cumulant", "." ]
train
https://github.com/Duke-QCD/hic/blob/9afb141735b1ac228d296a2349225d2bdcdb68f0/hic/flow.py#L200-L242
Duke-QCD/hic
hic/flow.py
Sampler._pdf
def _pdf(self, phi): """ Evaluate the _unnormalized_ flow PDF. """ pdf = np.inner(self._vn, np.cos(np.outer(phi, self._n))) pdf *= 2. pdf += 1. return pdf
python
def _pdf(self, phi): """ Evaluate the _unnormalized_ flow PDF. """ pdf = np.inner(self._vn, np.cos(np.outer(phi, self._n))) pdf *= 2. pdf += 1. return pdf
[ "def", "_pdf", "(", "self", ",", "phi", ")", ":", "pdf", "=", "np", ".", "inner", "(", "self", ".", "_vn", ",", "np", ".", "cos", "(", "np", ".", "outer", "(", "phi", ",", "self", ".", "_n", ")", ")", ")", "pdf", "*=", "2.", "pdf", "+=", "1.", "return", "pdf" ]
Evaluate the _unnormalized_ flow PDF.
[ "Evaluate", "the", "_unnormalized_", "flow", "PDF", "." ]
train
https://github.com/Duke-QCD/hic/blob/9afb141735b1ac228d296a2349225d2bdcdb68f0/hic/flow.py#L279-L288
Duke-QCD/hic
hic/flow.py
Sampler._uniform_phi
def _uniform_phi(M): """ Generate M random numbers in [-pi, pi). """ return np.random.uniform(-np.pi, np.pi, M)
python
def _uniform_phi(M): """ Generate M random numbers in [-pi, pi). """ return np.random.uniform(-np.pi, np.pi, M)
[ "def", "_uniform_phi", "(", "M", ")", ":", "return", "np", ".", "random", ".", "uniform", "(", "-", "np", ".", "pi", ",", "np", ".", "pi", ",", "M", ")" ]
Generate M random numbers in [-pi, pi).
[ "Generate", "M", "random", "numbers", "in", "[", "-", "pi", "pi", ")", "." ]
train
https://github.com/Duke-QCD/hic/blob/9afb141735b1ac228d296a2349225d2bdcdb68f0/hic/flow.py#L291-L296
Duke-QCD/hic
hic/flow.py
Sampler.pdf
def pdf(self, phi): r""" Evaluate the flow PDF `dN/d\phi`. :param array-like phi: Azimuthal angles. :returns: The flow PDF evaluated at ``phi``. """ if self._n is None: pdf = np.empty_like(phi) pdf.fill(.5/np.pi) return pdf phi = np.asarray(phi) pdf = self._pdf(phi) pdf /= 2.*np.pi return pdf
python
def pdf(self, phi): r""" Evaluate the flow PDF `dN/d\phi`. :param array-like phi: Azimuthal angles. :returns: The flow PDF evaluated at ``phi``. """ if self._n is None: pdf = np.empty_like(phi) pdf.fill(.5/np.pi) return pdf phi = np.asarray(phi) pdf = self._pdf(phi) pdf /= 2.*np.pi return pdf
[ "def", "pdf", "(", "self", ",", "phi", ")", ":", "if", "self", ".", "_n", "is", "None", ":", "pdf", "=", "np", ".", "empty_like", "(", "phi", ")", "pdf", ".", "fill", "(", ".5", "/", "np", ".", "pi", ")", "return", "pdf", "phi", "=", "np", ".", "asarray", "(", "phi", ")", "pdf", "=", "self", ".", "_pdf", "(", "phi", ")", "pdf", "/=", "2.", "*", "np", ".", "pi", "return", "pdf" ]
r""" Evaluate the flow PDF `dN/d\phi`. :param array-like phi: Azimuthal angles. :returns: The flow PDF evaluated at ``phi``.
[ "r", "Evaluate", "the", "flow", "PDF", "dN", "/", "d", "\\", "phi", "." ]
train
https://github.com/Duke-QCD/hic/blob/9afb141735b1ac228d296a2349225d2bdcdb68f0/hic/flow.py#L298-L317
Duke-QCD/hic
hic/flow.py
Sampler.sample
def sample(self, multiplicity): r""" Randomly sample azimuthal angles `\phi`. :param int multiplicity: Number to sample. :returns: Array of sampled angles. """ if self._n is None: return self._uniform_phi(multiplicity) # Since the flow PDF does not have an analytic inverse CDF, I use a # simple accept-reject sampling algorithm. This is reasonably # efficient since for normal-sized vn, the PDF is close to flat. Now # due to the overhead of Python functions, it's desirable to minimize # the number of calls to the random number generator. Therefore I # sample numbers in chunks; most of the time only one or two chunks # should be needed. Eventually, I might rewrite this with Cython, but # it's fast enough for now. N = 0 # number of phi that have been sampled phi = np.empty(multiplicity) # allocate array for phi pdf_max = 1 + 2*self._vn.sum() # sampling efficiency ~ 1/pdf_max while N < multiplicity: n_remaining = multiplicity - N n_to_sample = int(1.03*pdf_max*n_remaining) phi_chunk = self._uniform_phi(n_to_sample) phi_chunk = phi_chunk[self._pdf(phi_chunk) > np.random.uniform(0, pdf_max, n_to_sample)] K = min(phi_chunk.size, n_remaining) # number of phi to take phi[N:N+K] = phi_chunk[:K] N += K return phi
python
def sample(self, multiplicity): r""" Randomly sample azimuthal angles `\phi`. :param int multiplicity: Number to sample. :returns: Array of sampled angles. """ if self._n is None: return self._uniform_phi(multiplicity) # Since the flow PDF does not have an analytic inverse CDF, I use a # simple accept-reject sampling algorithm. This is reasonably # efficient since for normal-sized vn, the PDF is close to flat. Now # due to the overhead of Python functions, it's desirable to minimize # the number of calls to the random number generator. Therefore I # sample numbers in chunks; most of the time only one or two chunks # should be needed. Eventually, I might rewrite this with Cython, but # it's fast enough for now. N = 0 # number of phi that have been sampled phi = np.empty(multiplicity) # allocate array for phi pdf_max = 1 + 2*self._vn.sum() # sampling efficiency ~ 1/pdf_max while N < multiplicity: n_remaining = multiplicity - N n_to_sample = int(1.03*pdf_max*n_remaining) phi_chunk = self._uniform_phi(n_to_sample) phi_chunk = phi_chunk[self._pdf(phi_chunk) > np.random.uniform(0, pdf_max, n_to_sample)] K = min(phi_chunk.size, n_remaining) # number of phi to take phi[N:N+K] = phi_chunk[:K] N += K return phi
[ "def", "sample", "(", "self", ",", "multiplicity", ")", ":", "if", "self", ".", "_n", "is", "None", ":", "return", "self", ".", "_uniform_phi", "(", "multiplicity", ")", "# Since the flow PDF does not have an analytic inverse CDF, I use a", "# simple accept-reject sampling algorithm. This is reasonably", "# efficient since for normal-sized vn, the PDF is close to flat. Now", "# due to the overhead of Python functions, it's desirable to minimize", "# the number of calls to the random number generator. Therefore I", "# sample numbers in chunks; most of the time only one or two chunks", "# should be needed. Eventually, I might rewrite this with Cython, but", "# it's fast enough for now.", "N", "=", "0", "# number of phi that have been sampled", "phi", "=", "np", ".", "empty", "(", "multiplicity", ")", "# allocate array for phi", "pdf_max", "=", "1", "+", "2", "*", "self", ".", "_vn", ".", "sum", "(", ")", "# sampling efficiency ~ 1/pdf_max", "while", "N", "<", "multiplicity", ":", "n_remaining", "=", "multiplicity", "-", "N", "n_to_sample", "=", "int", "(", "1.03", "*", "pdf_max", "*", "n_remaining", ")", "phi_chunk", "=", "self", ".", "_uniform_phi", "(", "n_to_sample", ")", "phi_chunk", "=", "phi_chunk", "[", "self", ".", "_pdf", "(", "phi_chunk", ")", ">", "np", ".", "random", ".", "uniform", "(", "0", ",", "pdf_max", ",", "n_to_sample", ")", "]", "K", "=", "min", "(", "phi_chunk", ".", "size", ",", "n_remaining", ")", "# number of phi to take", "phi", "[", "N", ":", "N", "+", "K", "]", "=", "phi_chunk", "[", ":", "K", "]", "N", "+=", "K", "return", "phi" ]
r""" Randomly sample azimuthal angles `\phi`. :param int multiplicity: Number to sample. :returns: Array of sampled angles.
[ "r", "Randomly", "sample", "azimuthal", "angles", "\\", "phi", "." ]
train
https://github.com/Duke-QCD/hic/blob/9afb141735b1ac228d296a2349225d2bdcdb68f0/hic/flow.py#L319-L354
letuananh/chirptext
chirptext/anhxa.py
dumps
def dumps(obj, *args, **kwargs): ''' Typeless dump an object to json string ''' return json.dumps(obj, *args, cls=TypelessSONEncoder, ensure_ascii=False, **kwargs)
python
def dumps(obj, *args, **kwargs): ''' Typeless dump an object to json string ''' return json.dumps(obj, *args, cls=TypelessSONEncoder, ensure_ascii=False, **kwargs)
[ "def", "dumps", "(", "obj", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "json", ".", "dumps", "(", "obj", ",", "*", "args", ",", "cls", "=", "TypelessSONEncoder", ",", "ensure_ascii", "=", "False", ",", "*", "*", "kwargs", ")" ]
Typeless dump an object to json string
[ "Typeless", "dump", "an", "object", "to", "json", "string" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/anhxa.py#L81-L83
letuananh/chirptext
chirptext/anhxa.py
flex_update_obj
def flex_update_obj(source, target, __silent, *fields, **field_map): ''' Pull data from source to target. Target's __dict__ (object data) will be used by default. Otherwise, it'll be treated as a dictionary ''' source_dict = source.__dict__ if hasattr(source, '__dict__') else source if not fields: fields = source_dict.keys() for f in fields: if f not in source_dict and __silent: continue target_f = f if f not in field_map else field_map[f] setattr(target, target_f, source_dict[f])
python
def flex_update_obj(source, target, __silent, *fields, **field_map): ''' Pull data from source to target. Target's __dict__ (object data) will be used by default. Otherwise, it'll be treated as a dictionary ''' source_dict = source.__dict__ if hasattr(source, '__dict__') else source if not fields: fields = source_dict.keys() for f in fields: if f not in source_dict and __silent: continue target_f = f if f not in field_map else field_map[f] setattr(target, target_f, source_dict[f])
[ "def", "flex_update_obj", "(", "source", ",", "target", ",", "__silent", ",", "*", "fields", ",", "*", "*", "field_map", ")", ":", "source_dict", "=", "source", ".", "__dict__", "if", "hasattr", "(", "source", ",", "'__dict__'", ")", "else", "source", "if", "not", "fields", ":", "fields", "=", "source_dict", ".", "keys", "(", ")", "for", "f", "in", "fields", ":", "if", "f", "not", "in", "source_dict", "and", "__silent", ":", "continue", "target_f", "=", "f", "if", "f", "not", "in", "field_map", "else", "field_map", "[", "f", "]", "setattr", "(", "target", ",", "target_f", ",", "source_dict", "[", "f", "]", ")" ]
Pull data from source to target. Target's __dict__ (object data) will be used by default. Otherwise, it'll be treated as a dictionary
[ "Pull", "data", "from", "source", "to", "target", ".", "Target", "s", "__dict__", "(", "object", "data", ")", "will", "be", "used", "by", "default", ".", "Otherwise", "it", "ll", "be", "treated", "as", "a", "dictionary" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/anhxa.py#L90-L100
letuananh/chirptext
chirptext/anhxa.py
to_obj
def to_obj(cls, obj_data=None, *fields, **field_map): ''' Use obj_data (dict-like) to construct an object of type cls prioritize obj_dict when there are conficts ''' if not fields: fields = obj_data.keys() try: kwargs = {field(f, field_map): obj_data[f] for f in fields if f in obj_data} obj = cls(**kwargs) except: getLogger().exception("Couldn't use kwargs to construct object") # use default constructor obj = cls() update_obj(obj_data, obj, *fields, **field_map) return obj
python
def to_obj(cls, obj_data=None, *fields, **field_map): ''' Use obj_data (dict-like) to construct an object of type cls prioritize obj_dict when there are conficts ''' if not fields: fields = obj_data.keys() try: kwargs = {field(f, field_map): obj_data[f] for f in fields if f in obj_data} obj = cls(**kwargs) except: getLogger().exception("Couldn't use kwargs to construct object") # use default constructor obj = cls() update_obj(obj_data, obj, *fields, **field_map) return obj
[ "def", "to_obj", "(", "cls", ",", "obj_data", "=", "None", ",", "*", "fields", ",", "*", "*", "field_map", ")", ":", "if", "not", "fields", ":", "fields", "=", "obj_data", ".", "keys", "(", ")", "try", ":", "kwargs", "=", "{", "field", "(", "f", ",", "field_map", ")", ":", "obj_data", "[", "f", "]", "for", "f", "in", "fields", "if", "f", "in", "obj_data", "}", "obj", "=", "cls", "(", "*", "*", "kwargs", ")", "except", ":", "getLogger", "(", ")", ".", "exception", "(", "\"Couldn't use kwargs to construct object\"", ")", "# use default constructor", "obj", "=", "cls", "(", ")", "update_obj", "(", "obj_data", ",", "obj", ",", "*", "fields", ",", "*", "*", "field_map", ")", "return", "obj" ]
Use obj_data (dict-like) to construct an object of type cls prioritize obj_dict when there are conficts
[ "Use", "obj_data", "(", "dict", "-", "like", ")", "to", "construct", "an", "object", "of", "type", "cls", "prioritize", "obj_dict", "when", "there", "are", "conficts" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/anhxa.py#L113-L126
letuananh/chirptext
chirptext/deko.py
is_kana
def is_kana(text): ''' Check if a text if written in kana only (hiragana & katakana) if text is empty then return True ''' if text is None: raise ValueError("text cannot be None") for c in text: if c not in HIRAGANA and c not in KATAKANA: return False return True
python
def is_kana(text): ''' Check if a text if written in kana only (hiragana & katakana) if text is empty then return True ''' if text is None: raise ValueError("text cannot be None") for c in text: if c not in HIRAGANA and c not in KATAKANA: return False return True
[ "def", "is_kana", "(", "text", ")", ":", "if", "text", "is", "None", ":", "raise", "ValueError", "(", "\"text cannot be None\"", ")", "for", "c", "in", "text", ":", "if", "c", "not", "in", "HIRAGANA", "and", "c", "not", "in", "KATAKANA", ":", "return", "False", "return", "True" ]
Check if a text if written in kana only (hiragana & katakana) if text is empty then return True
[ "Check", "if", "a", "text", "if", "written", "in", "kana", "only", "(", "hiragana", "&", "katakana", ")", "if", "text", "is", "empty", "then", "return", "True" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/deko.py#L62-L71
letuananh/chirptext
chirptext/deko.py
txt2mecab
def txt2mecab(text, **kwargs): ''' Use mecab to parse one sentence ''' mecab_out = _internal_mecab_parse(text, **kwargs).splitlines() tokens = [MeCabToken.parse(x) for x in mecab_out] return MeCabSent(text, tokens)
python
def txt2mecab(text, **kwargs): ''' Use mecab to parse one sentence ''' mecab_out = _internal_mecab_parse(text, **kwargs).splitlines() tokens = [MeCabToken.parse(x) for x in mecab_out] return MeCabSent(text, tokens)
[ "def", "txt2mecab", "(", "text", ",", "*", "*", "kwargs", ")", ":", "mecab_out", "=", "_internal_mecab_parse", "(", "text", ",", "*", "*", "kwargs", ")", ".", "splitlines", "(", ")", "tokens", "=", "[", "MeCabToken", ".", "parse", "(", "x", ")", "for", "x", "in", "mecab_out", "]", "return", "MeCabSent", "(", "text", ",", "tokens", ")" ]
Use mecab to parse one sentence
[ "Use", "mecab", "to", "parse", "one", "sentence" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/deko.py#L250-L254
letuananh/chirptext
chirptext/deko.py
lines2mecab
def lines2mecab(lines, **kwargs): ''' Use mecab to parse many lines ''' sents = [] for line in lines: sent = txt2mecab(line, **kwargs) sents.append(sent) return sents
python
def lines2mecab(lines, **kwargs): ''' Use mecab to parse many lines ''' sents = [] for line in lines: sent = txt2mecab(line, **kwargs) sents.append(sent) return sents
[ "def", "lines2mecab", "(", "lines", ",", "*", "*", "kwargs", ")", ":", "sents", "=", "[", "]", "for", "line", "in", "lines", ":", "sent", "=", "txt2mecab", "(", "line", ",", "*", "*", "kwargs", ")", "sents", ".", "append", "(", "sent", ")", "return", "sents" ]
Use mecab to parse many lines
[ "Use", "mecab", "to", "parse", "many", "lines" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/deko.py#L257-L263
letuananh/chirptext
chirptext/deko.py
tokenize_sent
def tokenize_sent(mtokens, raw='', auto_strip=True): ''' Tokenize a text to multiple sentences ''' sents = [] bucket = [] cfrom = 0 cto = 0 token_cfrom = 0 logger = getLogger() logger.debug("raw text: {}".format(raw)) logger.debug("tokens: {}".format(mtokens)) for t in mtokens: if t.is_eos: continue token_cfrom = raw.find(t.surface, cto) cto = token_cfrom + len(t.surface) # also token_cto logger.debug("processing token {} <{}:{}>".format(t, token_cfrom, cto)) bucket.append(t) # sentence ending if t.pos == '記号' and t.sc1 == '句点': sent_text = raw[cfrom:cto] getLogger().debug("sent_text = {} | <{}:{}>".format(sent_text, cfrom, cto)) if auto_strip: sent_text = sent_text.strip() sents.append(MeCabSent(sent_text, bucket)) logger.debug("Found a sentence: {}".format(sent_text)) cfrom = cto bucket = [] if bucket: logger.debug("Bucket is not empty: {}".format(bucket)) sent_text = raw[cfrom:cto] logger.debug("remaining text: {} [{}:{}]".format(sent_text, cfrom, cto)) if auto_strip: sent_text = sent_text.strip() sents.append(MeCabSent(sent_text, bucket)) return sents
python
def tokenize_sent(mtokens, raw='', auto_strip=True): ''' Tokenize a text to multiple sentences ''' sents = [] bucket = [] cfrom = 0 cto = 0 token_cfrom = 0 logger = getLogger() logger.debug("raw text: {}".format(raw)) logger.debug("tokens: {}".format(mtokens)) for t in mtokens: if t.is_eos: continue token_cfrom = raw.find(t.surface, cto) cto = token_cfrom + len(t.surface) # also token_cto logger.debug("processing token {} <{}:{}>".format(t, token_cfrom, cto)) bucket.append(t) # sentence ending if t.pos == '記号' and t.sc1 == '句点': sent_text = raw[cfrom:cto] getLogger().debug("sent_text = {} | <{}:{}>".format(sent_text, cfrom, cto)) if auto_strip: sent_text = sent_text.strip() sents.append(MeCabSent(sent_text, bucket)) logger.debug("Found a sentence: {}".format(sent_text)) cfrom = cto bucket = [] if bucket: logger.debug("Bucket is not empty: {}".format(bucket)) sent_text = raw[cfrom:cto] logger.debug("remaining text: {} [{}:{}]".format(sent_text, cfrom, cto)) if auto_strip: sent_text = sent_text.strip() sents.append(MeCabSent(sent_text, bucket)) return sents
[ "def", "tokenize_sent", "(", "mtokens", ",", "raw", "=", "''", ",", "auto_strip", "=", "True", ")", ":", "sents", "=", "[", "]", "bucket", "=", "[", "]", "cfrom", "=", "0", "cto", "=", "0", "token_cfrom", "=", "0", "logger", "=", "getLogger", "(", ")", "logger", ".", "debug", "(", "\"raw text: {}\"", ".", "format", "(", "raw", ")", ")", "logger", ".", "debug", "(", "\"tokens: {}\"", ".", "format", "(", "mtokens", ")", ")", "for", "t", "in", "mtokens", ":", "if", "t", ".", "is_eos", ":", "continue", "token_cfrom", "=", "raw", ".", "find", "(", "t", ".", "surface", ",", "cto", ")", "cto", "=", "token_cfrom", "+", "len", "(", "t", ".", "surface", ")", "# also token_cto", "logger", ".", "debug", "(", "\"processing token {} <{}:{}>\"", ".", "format", "(", "t", ",", "token_cfrom", ",", "cto", ")", ")", "bucket", ".", "append", "(", "t", ")", "# sentence ending", "if", "t", ".", "pos", "==", "'記号' and", "t.s", "1", " ", "== ", "句点", ":", "", "sent_text", "=", "raw", "[", "cfrom", ":", "cto", "]", "getLogger", "(", ")", ".", "debug", "(", "\"sent_text = {} | <{}:{}>\"", ".", "format", "(", "sent_text", ",", "cfrom", ",", "cto", ")", ")", "if", "auto_strip", ":", "sent_text", "=", "sent_text", ".", "strip", "(", ")", "sents", ".", "append", "(", "MeCabSent", "(", "sent_text", ",", "bucket", ")", ")", "logger", ".", "debug", "(", "\"Found a sentence: {}\"", ".", "format", "(", "sent_text", ")", ")", "cfrom", "=", "cto", "bucket", "=", "[", "]", "if", "bucket", ":", "logger", ".", "debug", "(", "\"Bucket is not empty: {}\"", ".", "format", "(", "bucket", ")", ")", "sent_text", "=", "raw", "[", "cfrom", ":", "cto", "]", "logger", ".", "debug", "(", "\"remaining text: {} [{}:{}]\"", ".", "format", "(", "sent_text", ",", "cfrom", ",", "cto", ")", ")", "if", "auto_strip", ":", "sent_text", "=", "sent_text", ".", "strip", "(", ")", "sents", ".", "append", "(", "MeCabSent", "(", "sent_text", ",", "bucket", ")", ")", "return", "sents" ]
Tokenize a text to multiple sentences
[ "Tokenize", "a", "text", "to", "multiple", "sentences" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/deko.py#L274-L308
letuananh/chirptext
chirptext/deko.py
analyse
def analyse(content, splitlines=True, format=None, **kwargs): ''' Japanese text > tokenize/txt/html ''' sents = DekoText.parse(content, splitlines=splitlines, **kwargs) doc = [] final = sents # Generate output if format == 'html': for sent in sents: doc.append(sent.to_ruby()) final = '<br/>\n'.join(doc) elif format == 'csv': for sent in sents: doc.append('\n'.join([x.to_csv() for x in sent]) + '\n') final = '\n'.join(doc) elif format == 'txt': final = '\n'.join([str(x) for x in sents]) return final
python
def analyse(content, splitlines=True, format=None, **kwargs): ''' Japanese text > tokenize/txt/html ''' sents = DekoText.parse(content, splitlines=splitlines, **kwargs) doc = [] final = sents # Generate output if format == 'html': for sent in sents: doc.append(sent.to_ruby()) final = '<br/>\n'.join(doc) elif format == 'csv': for sent in sents: doc.append('\n'.join([x.to_csv() for x in sent]) + '\n') final = '\n'.join(doc) elif format == 'txt': final = '\n'.join([str(x) for x in sents]) return final
[ "def", "analyse", "(", "content", ",", "splitlines", "=", "True", ",", "format", "=", "None", ",", "*", "*", "kwargs", ")", ":", "sents", "=", "DekoText", ".", "parse", "(", "content", ",", "splitlines", "=", "splitlines", ",", "*", "*", "kwargs", ")", "doc", "=", "[", "]", "final", "=", "sents", "# Generate output", "if", "format", "==", "'html'", ":", "for", "sent", "in", "sents", ":", "doc", ".", "append", "(", "sent", ".", "to_ruby", "(", ")", ")", "final", "=", "'<br/>\\n'", ".", "join", "(", "doc", ")", "elif", "format", "==", "'csv'", ":", "for", "sent", "in", "sents", ":", "doc", ".", "append", "(", "'\\n'", ".", "join", "(", "[", "x", ".", "to_csv", "(", ")", "for", "x", "in", "sent", "]", ")", "+", "'\\n'", ")", "final", "=", "'\\n'", ".", "join", "(", "doc", ")", "elif", "format", "==", "'txt'", ":", "final", "=", "'\\n'", ".", "join", "(", "[", "str", "(", "x", ")", "for", "x", "in", "sents", "]", ")", "return", "final" ]
Japanese text > tokenize/txt/html
[ "Japanese", "text", ">", "tokenize", "/", "txt", "/", "html" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/deko.py#L311-L327
letuananh/chirptext
chirptext/deko.py
MeCabToken.pos3
def pos3(self): ''' Use pos-sc1-sc2 as POS ''' parts = [self.pos] if self.sc1 and self.sc1 != '*': parts.append(self.sc1) if self.sc2 and self.sc2 != '*': parts.append(self.sc2) return '-'.join(parts)
python
def pos3(self): ''' Use pos-sc1-sc2 as POS ''' parts = [self.pos] if self.sc1 and self.sc1 != '*': parts.append(self.sc1) if self.sc2 and self.sc2 != '*': parts.append(self.sc2) return '-'.join(parts)
[ "def", "pos3", "(", "self", ")", ":", "parts", "=", "[", "self", ".", "pos", "]", "if", "self", ".", "sc1", "and", "self", ".", "sc1", "!=", "'*'", ":", "parts", ".", "append", "(", "self", ".", "sc1", ")", "if", "self", ".", "sc2", "and", "self", ".", "sc2", "!=", "'*'", ":", "parts", ".", "append", "(", "self", ".", "sc2", ")", "return", "'-'", ".", "join", "(", "parts", ")" ]
Use pos-sc1-sc2 as POS
[ "Use", "pos", "-", "sc1", "-", "sc2", "as", "POS" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/deko.py#L113-L120
letuananh/chirptext
chirptext/deko.py
MeCabToken.to_ruby
def to_ruby(self): ''' Convert one MeCabToken into HTML ''' if self.need_ruby(): surface = self.surface reading = self.reading_hira() return '<ruby><rb>{sur}</rb><rt>{read}</rt></ruby>'.format(sur=surface, read=reading) elif self.is_eos: return '' else: return self.surface
python
def to_ruby(self): ''' Convert one MeCabToken into HTML ''' if self.need_ruby(): surface = self.surface reading = self.reading_hira() return '<ruby><rb>{sur}</rb><rt>{read}</rt></ruby>'.format(sur=surface, read=reading) elif self.is_eos: return '' else: return self.surface
[ "def", "to_ruby", "(", "self", ")", ":", "if", "self", ".", "need_ruby", "(", ")", ":", "surface", "=", "self", ".", "surface", "reading", "=", "self", ".", "reading_hira", "(", ")", "return", "'<ruby><rb>{sur}</rb><rt>{read}</rt></ruby>'", ".", "format", "(", "sur", "=", "surface", ",", "read", "=", "reading", ")", "elif", "self", ".", "is_eos", ":", "return", "''", "else", ":", "return", "self", ".", "surface" ]
Convert one MeCabToken into HTML
[ "Convert", "one", "MeCabToken", "into", "HTML" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/deko.py#L122-L131
letuananh/chirptext
chirptext/deko.py
DekoText.add
def add(self, sentence_text, **kwargs): ''' Parse a text string and add it to this doc ''' sent = MeCabSent.parse(sentence_text, **kwargs) self.sents.append(sent) return sent
python
def add(self, sentence_text, **kwargs): ''' Parse a text string and add it to this doc ''' sent = MeCabSent.parse(sentence_text, **kwargs) self.sents.append(sent) return sent
[ "def", "add", "(", "self", ",", "sentence_text", ",", "*", "*", "kwargs", ")", ":", "sent", "=", "MeCabSent", ".", "parse", "(", "sentence_text", ",", "*", "*", "kwargs", ")", "self", ".", "sents", ".", "append", "(", "sent", ")", "return", "sent" ]
Parse a text string and add it to this doc
[ "Parse", "a", "text", "string", "and", "add", "it", "to", "this", "doc" ]
train
https://github.com/letuananh/chirptext/blob/ce60b47257b272a587c8703ea1f86cd1a45553a7/chirptext/deko.py#L214-L218
alefnula/tea
tea/utils/encoding.py
smart_text
def smart_text(s, encoding="utf-8", strings_only=False, errors="strict"): """Return a unicode object representing 's'. Treats bytes using the 'encoding' codec. If strings_only is True, don't convert (some) non-string-like objects. """ if isinstance(s, six.text_type): return s if strings_only and not isinstance(s, six.string_types): return s if not isinstance(s, six.string_types): if hasattr(s, "__unicode__"): s = s.__unicode__() else: if six.PY3: if isinstance(s, six.binary_type): s = six.text_type(s, encoding, errors) else: s = six.text_type(s) else: s = six.text_type(six.binary_type(s), encoding, errors) else: # Note: We use .decode() here, instead of six.text_type(s, encoding, # errors), so that if s is a SafeBytes, it ends up being a # SafeText at the end. s = s.decode(encoding, errors) return s
python
def smart_text(s, encoding="utf-8", strings_only=False, errors="strict"): """Return a unicode object representing 's'. Treats bytes using the 'encoding' codec. If strings_only is True, don't convert (some) non-string-like objects. """ if isinstance(s, six.text_type): return s if strings_only and not isinstance(s, six.string_types): return s if not isinstance(s, six.string_types): if hasattr(s, "__unicode__"): s = s.__unicode__() else: if six.PY3: if isinstance(s, six.binary_type): s = six.text_type(s, encoding, errors) else: s = six.text_type(s) else: s = six.text_type(six.binary_type(s), encoding, errors) else: # Note: We use .decode() here, instead of six.text_type(s, encoding, # errors), so that if s is a SafeBytes, it ends up being a # SafeText at the end. s = s.decode(encoding, errors) return s
[ "def", "smart_text", "(", "s", ",", "encoding", "=", "\"utf-8\"", ",", "strings_only", "=", "False", ",", "errors", "=", "\"strict\"", ")", ":", "if", "isinstance", "(", "s", ",", "six", ".", "text_type", ")", ":", "return", "s", "if", "strings_only", "and", "not", "isinstance", "(", "s", ",", "six", ".", "string_types", ")", ":", "return", "s", "if", "not", "isinstance", "(", "s", ",", "six", ".", "string_types", ")", ":", "if", "hasattr", "(", "s", ",", "\"__unicode__\"", ")", ":", "s", "=", "s", ".", "__unicode__", "(", ")", "else", ":", "if", "six", ".", "PY3", ":", "if", "isinstance", "(", "s", ",", "six", ".", "binary_type", ")", ":", "s", "=", "six", ".", "text_type", "(", "s", ",", "encoding", ",", "errors", ")", "else", ":", "s", "=", "six", ".", "text_type", "(", "s", ")", "else", ":", "s", "=", "six", ".", "text_type", "(", "six", ".", "binary_type", "(", "s", ")", ",", "encoding", ",", "errors", ")", "else", ":", "# Note: We use .decode() here, instead of six.text_type(s, encoding,\r", "# errors), so that if s is a SafeBytes, it ends up being a\r", "# SafeText at the end.\r", "s", "=", "s", ".", "decode", "(", "encoding", ",", "errors", ")", "return", "s" ]
Return a unicode object representing 's'. Treats bytes using the 'encoding' codec. If strings_only is True, don't convert (some) non-string-like objects.
[ "Return", "a", "unicode", "object", "representing", "s", ".", "Treats", "bytes", "using", "the", "encoding", "codec", ".", "If", "strings_only", "is", "True", "don", "t", "convert", "(", "some", ")", "non", "-", "string", "-", "like", "objects", "." ]
train
https://github.com/alefnula/tea/blob/f5a0a724a425ec4f9dd2c7fe966ef06faf3a15a3/tea/utils/encoding.py#L8-L35
alefnula/tea
tea/utils/encoding.py
smart_bytes
def smart_bytes(s, encoding="utf-8", strings_only=False, errors="strict"): """Return a bytes version of 's' encoded as specified in 'encoding'. If strings_only is True, don't convert (some) non-string-like objects. """ if isinstance(s, six.binary_type): if encoding == "utf-8": return s else: return s.decode("utf-8", errors).encode(encoding, errors) if strings_only and not isinstance(s, six.text_type): return s if not isinstance(s, six.string_types): try: if six.PY3: return six.text_type(s).encode(encoding) else: return six.binary_type(s) except UnicodeEncodeError: return six.text_type(s).encode(encoding, errors) else: return s.encode(encoding, errors)
python
def smart_bytes(s, encoding="utf-8", strings_only=False, errors="strict"): """Return a bytes version of 's' encoded as specified in 'encoding'. If strings_only is True, don't convert (some) non-string-like objects. """ if isinstance(s, six.binary_type): if encoding == "utf-8": return s else: return s.decode("utf-8", errors).encode(encoding, errors) if strings_only and not isinstance(s, six.text_type): return s if not isinstance(s, six.string_types): try: if six.PY3: return six.text_type(s).encode(encoding) else: return six.binary_type(s) except UnicodeEncodeError: return six.text_type(s).encode(encoding, errors) else: return s.encode(encoding, errors)
[ "def", "smart_bytes", "(", "s", ",", "encoding", "=", "\"utf-8\"", ",", "strings_only", "=", "False", ",", "errors", "=", "\"strict\"", ")", ":", "if", "isinstance", "(", "s", ",", "six", ".", "binary_type", ")", ":", "if", "encoding", "==", "\"utf-8\"", ":", "return", "s", "else", ":", "return", "s", ".", "decode", "(", "\"utf-8\"", ",", "errors", ")", ".", "encode", "(", "encoding", ",", "errors", ")", "if", "strings_only", "and", "not", "isinstance", "(", "s", ",", "six", ".", "text_type", ")", ":", "return", "s", "if", "not", "isinstance", "(", "s", ",", "six", ".", "string_types", ")", ":", "try", ":", "if", "six", ".", "PY3", ":", "return", "six", ".", "text_type", "(", "s", ")", ".", "encode", "(", "encoding", ")", "else", ":", "return", "six", ".", "binary_type", "(", "s", ")", "except", "UnicodeEncodeError", ":", "return", "six", ".", "text_type", "(", "s", ")", ".", "encode", "(", "encoding", ",", "errors", ")", "else", ":", "return", "s", ".", "encode", "(", "encoding", ",", "errors", ")" ]
Return a bytes version of 's' encoded as specified in 'encoding'. If strings_only is True, don't convert (some) non-string-like objects.
[ "Return", "a", "bytes", "version", "of", "s", "encoded", "as", "specified", "in", "encoding", ".", "If", "strings_only", "is", "True", "don", "t", "convert", "(", "some", ")", "non", "-", "string", "-", "like", "objects", "." ]
train
https://github.com/alefnula/tea/blob/f5a0a724a425ec4f9dd2c7fe966ef06faf3a15a3/tea/utils/encoding.py#L38-L59