max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
tangotest/__main__.py
tsoenen/tng-sdk-test
0
12797951
import argparse from tangotest.tangotools import create_vnv_test if __name__ == '__main__': parser = argparse.ArgumentParser(description='Prepare tests for uploading to the V&V platform.') parser.add_argument('tests_path', help='The path to the directory with test files') parser.add_argument('ns_package_path', help='The path to the network service package') parser.add_argument('-t', '--test_package_path', help='The path to generated output folder') parser.add_argument('-p', '--probe_name', help='Probe name') args = parser.parse_args() create_vnv_test(**vars(args))
2.359375
2
api/states/apiviews.py
Mastersam07/ncovid-19-api
17
12797952
<reponame>Mastersam07/ncovid-19-api<gh_stars>10-100 from rest_framework import generics, viewsets from rest_framework.generics import get_object_or_404 from rest_framework.views import APIView from rest_framework.response import Response from .models import Data from .serializers import StateSerializer # CaseSerializer class StateList(APIView): @staticmethod def get(request): states = Data.objects.all() data = StateSerializer(states, many=True).data return Response(data) class StateDetail(APIView): @staticmethod def get(request, id): state = get_object_or_404(Data, pk=id) data = StateSerializer(state).data return Response(data) class StateViewSet(viewsets.ModelViewSet): queryset = Data.objects.all() serializer_class = StateSerializer
2.09375
2
python_parikshith21/Day46.py
01coders/50-Days-Of-Code
0
12797953
<gh_stars>0 # -*- coding: utf-8 -*- """ Created on Wed Jun 25 14:33:03 2019 @author: Parikshith.H """ import numpy as np arr = np.array([[1, 5, 6], [4, 7, 2], [3, 1, 9]]) # maximum element of array print ("Largest element is:", arr.max()) print ("Row-wise maximum elements:", arr.max(axis = 1)) # minimum element of array print ("Column-wise minimum elements:", arr.min(axis = 0)) # ============================================================================= # #ouptut: # Largest element is: 9 # Row-wise maximum elements: [6 7 9] # Column-wise minimum elements: [1 1 2] # =============================================================================
4
4
simulators/fires/UrbanForest.py
rptamin/ddrl-firefighting
7
12797954
<gh_stars>1-10 from collections import defaultdict import itertools import numpy as np from simulators.fires.ForestElements import Tree, SimpleUrban from simulators.Simulator import Simulator class UrbanForest(Simulator): """ A simulator for a lattice-based forest with urban elements. Based on the LatticeForest simulator. """ def __init__(self, dimension, urban_width, rng=None, initial_fire=None, alpha=None, beta=None, tree_model='exponential'): # LatticeForest.__init__(self, dimension, rng=rng, initial_fire=initial_fire, # alpha=alpha, beta=beta, tree_model=tree_model) Simulator.__init__(self) self.dims = (dimension, dimension) if isinstance(dimension, int) else dimension if tree_model == 'exponential': self.alpha = defaultdict(lambda: 0.2763) if alpha is None else alpha elif tree_model == 'linear': self.alpha = defaultdict(lambda: 0.2) if alpha is None else alpha self.beta = defaultdict(lambda: np.exp(-1/10)) if beta is None else beta self.rng = rng self.random_state = np.random.RandomState(self.rng) self.urban = [] self.urban_width = urban_width # the forest is a group of Trees and SimpleUrban elements self.group = dict() for r in range(self.dims[0]): for c in range(self.dims[1]): # urban elements compose the right-most edge of the lattice if c >= self.dims[1]-self.urban_width: self.group[(r, c)] = SimpleUrban(self.alpha[(r, c)], self.beta[(r, c)], position=np.array([r, c]), numeric_id=r*self.dims[1]+c) self.urban.append((r, c)) # all other elements are trees else: self.group[(r, c)] = Tree(self.alpha[(r, c)], self.beta[(r, c)], position=np.array([r, c]), numeric_id=r*self.dims[1]+c, model=tree_model) if 0 <= r+1 < self.dims[0]: self.group[(r, c)].neighbors.append((r+1, c)) if 0 <= r-1 < self.dims[0]: self.group[(r, c)].neighbors.append((r-1, c)) if 0 <= c+1 < self.dims[1]: self.group[(r, c)].neighbors.append((r, c+1)) if 0 <= c-1 < self.dims[1]: self.group[(r, c)].neighbors.append((r, c-1)) self.stats_trees = np.zeros(3).astype(np.int) self.stats_trees[0] += self.dims[0]*self.dims[1] - len(self.urban) self.stats_urban = np.zeros(4).astype(np.int) self.stats_urban[0] += len(self.urban) # start initial fire self.iter = 0 self.fires = [] self.initial_fire = initial_fire self._start_fire() self.early_end = False self.end = False return def _start_fire(self): """ Helper method to specify initial fire locations in the forest. """ # apply initial condition if specified if self.initial_fire is not None: self.fires = self.initial_fire for p in self.initial_fire: self.group[p].set_on_fire() if isinstance(self.group[p], Tree): self.stats_trees[0] -= 1 self.stats_trees[1] += 1 elif isinstance(self.group[p], SimpleUrban): self.stats_urban[0] -= 1 self.stats_urban[1] += 1 return # start a 4x4 square of fires at center # if forest size is too small, start a single fire at the center r_center = np.floor((self.dims[0]-1)/2).astype(np.uint8) c_center = np.floor((self.dims[1]-1)/2).astype(np.uint8) delta_r = [0] if self.dims[0]<4 else [k for k in range(-1, 3)] delta_c = [0] if self.dims[1]<4 else [k for k in range(-1, 3)] deltas = itertools.product(delta_r, delta_c) for (dr, dc) in deltas: r, c = r_center+dr, c_center+dc self.fires.append((r, c)) self.group[(r, c)].set_on_fire() if isinstance(self.group[(r, c)], Tree): self.stats_trees[0] -= 1 self.stats_trees[1] += 1 elif isinstance(self.group[(r, c)], SimpleUrban): self.stats_urban[0] -= 1 self.stats_urban[1] += 1 return def reset(self): """ Reset the simulation object to its initial configuration. """ # reset statistics self.stats_trees = np.zeros(3).astype(np.int) self.stats_trees[0] += self.dims[0]*self.dims[1] - len(self.urban) self.stats_urban = np.zeros(4).astype(np.int) self.stats_urban[0] += len(self.urban) # reset elements for element in self.group.values(): element.reset() # reset to initial condition self.iter = 0 self.fires = [] self._start_fire() self.random_state = np.random.RandomState(self.rng) self.end = False self.early_end = False return def dense_state(self): """ Creates a representation of the state of each Tree. :return: 2D numpy array where each position (row, col) corresponds to a Tree state """ return np.array([[self.group[(r, c)].state for c in range(self.dims[1])] for r in range(self.dims[0])]) def update(self, control=None): """ Update the simulator one time step. :param control: collection to map (row, col) to control for each Element, which is a tuple of (delta_alpha, delta_beta) """ if self.end: print("fire extinguished") return if control is None: control = defaultdict(lambda: (0, 0)) # assume that the fire cannot spread further this step, # which occurs when no healthy Trees have a neighbor that is on fire self.early_end = True # list of (row, col) positions corresponding to elements caught on fire this time step add = [] # list of (row, col) positions corresponding to healthy elements that have been sampled to determine # if they will catch on fire checked = [] # calculate next state for urban elements not on fire, in case they are removed from the lattice do_not_check = [] for u in self.urban: if self.group[u].is_healthy(self.group[u].state): self.group[u].next(self.group, control[u], self.random_state) if self.group[u].is_removed(self.group[u].next_state): self.stats_urban[0] -= 1 self.stats_urban[3] += 1 do_not_check.append(u) # fire spreading check: # iterate over current fires, find their neighbors that are healthy, and sample # to determine if the healthy element catches on fire for f in self.fires: for fn in self.group[f].neighbors: if fn not in checked and self.group[fn].is_healthy(self.group[fn].state): if isinstance(self.group[fn], SimpleUrban) and fn in do_not_check: continue self.early_end = False # calculate next state self.group[fn].next(self.group, control[fn], self.random_state) if self.group[fn].is_on_fire(self.group[fn].next_state): add.append(fn) checked.append(fn) # determine if the current element on fire will extinguish this time step self.group[f].next(self.group, control[f], self.random_state) if self.group[f].is_burnt(self.group[f].next_state): if isinstance(self.group[f], Tree): self.stats_trees[1] -= 1 self.stats_trees[2] += 1 elif isinstance(self.group[f], SimpleUrban): self.stats_urban[1] -= 1 self.stats_urban[2] += 1 # apply next state to all elements for element in self.group.values(): element.update() # retain elements that are still on fire self.fires = [f for f in self.fires if self.group[f].is_on_fire(self.group[f].state)] # add elements that caught on fire self.fires.extend(add) for a in add: if isinstance(self.group[a], Tree): self.stats_trees[0] -= 1 self.stats_trees[1] += 1 elif isinstance(self.group[a], SimpleUrban): self.stats_urban[0] -= 1 self.stats_urban[1] += 1 self.iter += 1 if not self.fires: self.early_end = True self.end = True return return
2.8125
3
scrabbler/__init__.py
astralcai/scrabble-solver
3
12797955
<reponame>astralcai/scrabble-solver from scrabbler.scrabbler import Game
0.953125
1
bin/ColorBoard.py
hfally/mysql-autorestore
0
12797956
colors = { 'HEADER' : '\033[95m', 'OKBLUE' : '\033[94m', 'OKGREEN' : '\033[0;32m', 'YELLOW' : '\033[0;33m', 'FAIL' : '\033[31m', 'ENDC' : '\033[0m', 'BOLD' : '\033[1m', 'UNDERLINE' : '\033[4m', 'BGRED' : '\033[41;37m' } # Handle coloration def colorize(string, color): return colors[color.upper()] + string + colors['ENDC']
3.03125
3
code-lab/blender/active_object_bbox_loc_rot_dimension.py
kant/AI-Resources
0
12797957
<gh_stars>0 """Get the location, rotation(radian) and dimension of selected object bounding box. References - https://blender.stackexchange.com/questions/14070/create-and-export-bounding-boxes-for-objects """ import bpy selected = bpy.context.selected_objects for obj in selected: #ensure origin is centered on bounding box center bpy.ops.object.origin_set(type='ORIGIN_GEOMETRY', center='BOUNDS') #create a cube for the bounding box bpy.ops.mesh.primitive_cube_add() #our new cube is now the active object, so we can keep track of it in a variable: bound_box = bpy.context.active_object bpy.context.active_object.display_type = 'WIRE' #copy transforms bound_box.dimensions = obj.dimensions bound_box.location = obj.location bound_box.rotation_euler = obj.rotation_euler print(obj.dimensions) print(obj.location) print(obj.rotation_euler)
2.890625
3
example/docs/conf.py
zenitysec/sphinx-rego
13
12797958
project = 'sphinx-rego example' copyright = '2021, sphinx-rego' author = 'sphinx-rego' release = '1' extensions = ["sphinxrego.ext"] exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] html_theme = 'alabaster'
0.9375
1
python-libs/histogram.py
bilbopingouin/simple-stats-tools
0
12797959
# This create an array to plot an histogram as # ^ # | +-+ # | +-+ | +-+ # | | | +-+ | # | +-+ | | | +-+ # | | | | | | | +-+ # +---+-+-+-+-+-+-+-+-------> # Vm Vmax class histogram: def __init__(self, vmin, vmax, nbins): self.init_values(vmin, vmax, nbins) def init_values(self, vmin, vmax, nbins): self.array = [0] * nbins self.min = vmin self.max = vmax self.step = float(vmax-vmin)/float(nbins) def add_value(self, v): if v > self.min and v < self.max: bin_idx = int(((v-self.min)-(v-self.min) % self.step)/(self.step)) self.array[bin_idx] += 1 def print_array(self): print(self.array) def print(self): for i in range(len(self.array)): print(i*self.step+0.5*self.step+self.min, self.array[i])
3.84375
4
app.py
manojvirat457/Resume-Matching
0
12797960
# from scripts import tabledef # from scripts import forms # from scripts import helpers from flask import Flask, redirect, url_for, render_template, request, session import json import sys import os # import stripe import pandas as pd from werkzeug.utils import secure_filename from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import Ridge from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import CountVectorizer from tkinter import Tk from tkinter.filedialog import askopenfilename import numpy as np import pandas as pd import jieba import jieba.analyse import csv import ast import sys from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.pdfpage import PDFPage from pdfminer.converter import XMLConverter, HTMLConverter, TextConverter from pdfminer.layout import LAParams import io app = Flask(__name__) # app.secret_key = os.urandom(12) # Generic key for dev purposes only # stripe_keys = { # 'secret_key': os.environ['secret_key'], # 'publishable_key': os.environ['publishable_key'] # } # stripe.api_key = stripe_keys['secret_key'] # Heroku #from flask_heroku import Heroku #heroku = Heroku(app) # ======== Routing =========================================================== # # -------- Login ------------------------------------------------------------- # @app.route('/', methods=['GET', 'POST']) def login(): # creating a pdf file object basepath = os.path.dirname(__file__) file_path = os.path.join(basepath, 'uploads', 'sample.pdf') fp = open(file_path, 'rb') rsrcmgr = PDFResourceManager() retstr = io.StringIO() laparams = LAParams() device = TextConverter(rsrcmgr, retstr, laparams=laparams) # Create a PDF interpreter object. interpreter = PDFPageInterpreter(rsrcmgr, device) # Process each page contained in the document. for page in PDFPage.get_pages(fp): interpreter.process_page(page) data = retstr.getvalue() print(data) return render_template('home.html', user="manoj") # return text def getFile(): Tk().withdraw() filename = askopenfilename() Tk.close() return filename @app.route("/logout") def logout(): session['logged_in'] = False return redirect(url_for('login')) @app.route('/predict', methods=['GET', 'POST']) def upload(): if request.method == 'GET': # f = request.files['file'] basepath = os.path.dirname(__file__) # file_path = os.path.join( # basepath, 'uploads', secure_filename(f.filename)) # f.save(file_path) file_path = os.path.join(basepath, 'uploads', 'test-upload.csv') df = pd.read_csv(file_path) seg_list01 = df['job-description'] seg_list02 = df['your-resume'] item01_list = seg_list01 item01 = ','.join(item01_list) item02_list = seg_list02 item02 = ','.join(item02_list) documents = [item01, item02] count_vectorizer = CountVectorizer() sparse_matrix = count_vectorizer.fit_transform(documents) doc_term_matrix = sparse_matrix.todense() df = pd.DataFrame(doc_term_matrix, columns=count_vectorizer.get_feature_names(), index=['item01', 'item02']) df.to_csv(os.path.join(basepath, 'uploads', 'result.csv')) read_file = pd.read_csv(os.path.join(basepath, 'uploads', 'result.csv')) read_file.to_excel(os.path.join(basepath, 'uploads', 'result.xlsx'), index=None, header=True) answer = cosine_similarity(df, df) print("CSV Created Successfully") answer = pd.DataFrame(answer) answer = answer.iloc[[1], [0]].values[0] answer = round(float(answer), 4) * 100 return "Your resume matched " + str( answer) + " %" + " of the job-description!" return None # ======== Main ============================================================== # if __name__ == "__main__": app.run(debug=True, use_reloader=True)
1.875
2
strategist/tests/factories.py
OpenMatchmaking/microservice-strategist
0
12797961
from uuid import uuid4 def generate_player_data(event_name, rating): return { "id": str(uuid4()), "response-queue": "{}-response-queue".format(str(uuid4())), "event-name": event_name, "detail": { "rating": rating, "content": {} } }
2.625
3
tests/test_mt2_tombs.py
tpgillam/mt2
3
12797962
"""Tests for the variant of MT2 by <NAME>.""" from typing import Optional, Union import numpy import pytest from .common import mt2_lester, mt2_tombs def test_simple_example(): computed_val = mt2_tombs(100, 410, 20, 150, -210, -300, -200, 280, 100, 100) assert computed_val == pytest.approx(412.628) def test_near_massless(): # This test is based on Fig 5 of https://arxiv.org/pdf/1411.4312.pdf m_vis_a = 0 px_a = -42.017340486 py_a = -146.365340528 m_vis_b = 0.087252259 px_b = -9.625614206 py_b = 145.757295514 px_miss = -16.692279406 py_miss = -14.730240471 chi_a = 0 chi_b = 0 computed_val = mt2_tombs( m_vis_a, px_a, py_a, m_vis_b, px_b, py_b, px_miss, py_miss, chi_a, chi_b ) assert computed_val == pytest.approx(0.09719971) def test_fuzz(): batch_size = 100 num_tests = 1000 numpy.random.seed(42) def _random_batch(min_, max_): return numpy.random.uniform(min_, max_, (batch_size,)) for _ in range(num_tests): m_vis_1 = _random_batch(0, 100) px_vis_1 = _random_batch(-100, 100) py_vis_1 = _random_batch(-100, 100) m_vis_2 = _random_batch(0, 100) px_vis_2 = _random_batch(-100, 100) py_vis_2 = _random_batch(-100, 100) px_miss = _random_batch(-100, 100) py_miss = _random_batch(-100, 100) m_invis_1 = _random_batch(0, 100) m_invis_2 = _random_batch(0, 100) args = ( m_vis_1, px_vis_1, py_vis_1, m_vis_2, px_vis_2, py_vis_2, px_miss, py_miss, m_invis_1, m_invis_2, ) result_lester = mt2_lester(*args) result_tombs = mt2_tombs(*args) numpy.testing.assert_allclose(result_lester, result_tombs, rtol=1e-12) def test_scale_invariance(): example_args = numpy.array((100, 410, 20, 150, -210, -300, -200, 280, 100, 100)) example_val = mt2_tombs(*example_args) # mt2 scales with its arguments; check over some orders of magnitude. for i in range(-100, 100, 10): scale = 10.0 ** i with numpy.errstate(over="ignore"): # Suppress overflow warnings when performing the evaluation; we're happy # so long as we match approximately in the test below. computed_val = mt2_tombs(*(example_args * scale)) assert computed_val == pytest.approx(example_val * scale) def test_negative_masses(): # Any negative mass is unphysical. # These arguments use negative masses to make both initial bounds negative. # Check that the result is neither positive nor an infinite loop. computed_val = mt2_tombs(1, 2, 3, 4, 5, 6, 7, 8, -90, -100) assert not (computed_val > 0)
2.515625
3
ex092.py
raphael-abrantes/exercises-python
0
12797963
from datetime import datetime pessoa = dict() anohoje = datetime.now().year pessoa['nome'] = str(input('Informe o nome: ')).strip().title() nasc = int(input('Informe o ano de nascimento: ')) pessoa['idade'] = anohoje - nasc pessoa['ctps'] = int(input('Informe a CTPS (0 se não tiver): ')) if pessoa['ctps'] != 0: pessoa['contratacao'] = int(input('Informe o ano de contratação: ')) pessoa['salario'] = float(input('Informe o salário: ')) faltam = 35 - (anohoje - pessoa['contratacao']) pessoa['aposentar'] = pessoa['idade'] + faltam print('-='*15) for k, v in pessoa.items(): print(f' - {k} tem o valor {v}')
3.671875
4
multithread/mtfacfib.py
hero0926/PythonPlayground
0
12797964
# 싱글 스레드랑 멀티 스레드 비교하기 from myThread import MyThread from time import ctime, sleep # 피보나치, 팩토리얼, 합계를 싱글스레드랑 멀티스레드에서 실행시켜 보았다. def fib(x) : sleep(0.005) if x<2 : return 1 return (fib(x-2)+fib(x-1)) def fac(x) : sleep(0.1) if x<2 : return 1 refutn (x*(fac(x-1)) def sum(x) : sleep(0.1) if x<2 : return 1 return (x+sum(x-1)) funcs = (fib, fac, sum) n = 12 def main() : nfuncs = range(len(funcs)) print' 싱글스레드' for i in nfuncs : print ' starting', funcs[i].__name__, 'at : ', ctime() print funcs[i](n) print funcs[i].__name__, 'finished at :', ctime() print '멀티스레드 ' threads = [] for i in nfuncs : t = MyThread(funcs[i], (n,), funcs[i].__name__) threads.append(t) for i in nfuncs : threads[i].start() for i in nfuncs : threads[i].join() print threads[i].getResult() print 'all DONE' if __name__ == '__main__' : main()
3.84375
4
pyDcmConverter/dicomgui.py
ChenglongWang/pythonDicomConverter
4
12797965
#!/usr/bin/env python # -*- coding: utf-8 -*- # dicomgui.py """Main app file that convert DICOM data via a wxPython GUI dialog.""" # Copyright (c) 2018-2020 <NAME> # Copyright (c) 2009-2017 <NAME> # Copyright (c) 2009 <NAME> # This file is part of dicompyler, released under a BSD license. # See the file license.txt included with this distribution, also # available at https://github.com/bastula/dicompyler/ # # It's assumed that the reference (prescription) dose is in cGy. import hashlib, os, threading, functools, json, warnings from logging import getLogger, DEBUG, INFO logger = getLogger('DcmConverter') import wx warnings.filterwarnings("ignore", category=wx.wxPyDeprecationWarning) from wx.xrc import * import numpy as np from dicompylercore import dicomparser from pyDcmConverter import guiutil, util class DcmConverterApp(wx.App): """Prepare to show the dialog that will Import DICOM and DICOM RT files.""" def OnInit(self): wx.GetApp().SetAppName("DicomConverter") # Load the XRC file for our gui resources self.res = XmlResource(util.GetResourcePath('dicomgui.xrc')) dlgDicomImporter = self.res.LoadDialog(None, "DicomImporterDialog") dlgDicomImporter.Init(self.res) # Show the dialog and return the result ret = dlgDicomImporter.ShowModal() # Save configure conf = {} with open('.dcmconverter.conf', 'w') as f: conf['path'] = dlgDicomImporter.path conf['only_export_voldata'] = dlgDicomImporter.only_export_voldata conf['min_slice_num'] = dlgDicomImporter.min_slice_num conf['offset'] = dlgDicomImporter.offset conf['export_mori_format'] = dlgDicomImporter.export_mori_format conf['export_nii_format'] = dlgDicomImporter.export_nii_format conf['output_dir'] = dlgDicomImporter.output_dir conf['output_name'] = dlgDicomImporter.output_name json.dump(conf, f, indent=2, sort_keys=True) # Block until the thread is done before destroying the dialog if dlgDicomImporter: if hasattr(dlgDicomImporter, 't'): dlgDicomImporter.t.join() dlgDicomImporter.Destroy() os.sys.exit(0) return 1 class DicomImporterDialog(wx.Dialog): """Import DICOM RT files and return a dictionary of data.""" def __init__(self): wx.Dialog.__init__(self) def Init(self, res): """Method called after the panel has been initialized.""" # Set window icon if not guiutil.IsMac(): self.SetIcon(guiutil.get_icon()) # Initialize controls self.txtDicomImport = XRCCTRL(self, 'txtDicomImport') self.btnDicomImport = XRCCTRL(self, 'btnDicomImport') self.btnPause = XRCCTRL(self, 'btn_pause') self.checkSearchSubfolders = XRCCTRL(self, 'checkSearchSubfolders') self.lblProgressLabel = XRCCTRL(self, 'lblProgressLabel') self.lblProgress = XRCCTRL(self, 'lblProgress') self.gaugeProgress = XRCCTRL(self, 'gaugeProgress') self.lblProgressPercent = XRCCTRL(self, 'lblProgressPercent') self.lblProgressPercentSym = XRCCTRL(self, 'lblProgressPercentSym') self.tcPatients = XRCCTRL(self, 'tcPatients') self.bmpRxDose = XRCCTRL(self, 'bmpRxDose') self.lblRxDose = XRCCTRL(self, 'lblRxDose') self.txtRxDose = XRCCTRL(self, 'txtRxDose') self.lblRxDoseUnits = XRCCTRL(self, 'lblRxDoseUnits') # Bind interface events to the proper methods self.Bind(wx.EVT_BUTTON, self.OnBrowseDicomImport, id=XRCID('btnDicomImport')) self.Bind(wx.EVT_CHECKBOX, self.OnCheckSearchSubfolders, id=XRCID('checkSearchSubfolders')) self.Bind(wx.EVT_TREE_SEL_CHANGED, self.OnSelectTreeItem, id=XRCID('tcPatients')) #self.Bind(wx.EVT_TREE_ITEM_ACTIVATED, self.OnOK, id=XRCID('tcPatients')) #added by CL.Wang self.Bind(wx.EVT_CHECKBOX, self.OnCheckVolFlag, id=XRCID('check_volume')) self.Bind(wx.EVT_SPINCTRL, self.OnSpinSliceNum, id=XRCID('spin_minslices')) self.Bind(wx.EVT_SPINCTRL, self.OnSpinOffset, id=XRCID('spin_offset')) self.Bind(wx.EVT_CHECKBOX, self.OnCheckMoriFormat, id=XRCID('check_mori')) self.Bind(wx.EVT_CHECKBOX, self.OnCheckNiftiFormat, id=XRCID('check_nifti')) self.Bind(wx.EVT_DIRPICKER_CHANGED, self.OnPickOutdir, id=XRCID('picker_output')) self.Bind(wx.EVT_TEXT, self.OnInputName, id=XRCID('text_output_name')) self.Bind(wx.EVT_BUTTON, self.OnConvert, id=XRCID('btn_convert')) self.Bind(wx.EVT_BUTTON, self.OnPause, id=XRCID('btn_pause')) self.Bind(wx.EVT_BUTTON, self.OnRescan, id=XRCID('btn_rescan')) # Init variables if os.path.isfile('.dcmconverter.conf'): logger.info('Loading previous configuration...') with open('.dcmconverter.conf', 'r') as f: conf = json.load(f) self.path = conf['path'] self.txtDicomImport.SetValue(self.path) self.only_export_voldata = conf['only_export_voldata'] XRCCTRL(self, 'check_mori').SetValue(self.only_export_voldata) self.min_slice_num = conf['min_slice_num'] XRCCTRL(self, 'spin_minslices').SetValue(self.min_slice_num) self.offset = conf['offset'] XRCCTRL(self, 'spin_offset').SetValue(self.offset) self.export_mori_format = conf['export_mori_format'] XRCCTRL(self, 'check_mori').SetValue(self.export_mori_format) self.export_nii_format = conf['export_nii_format'] XRCCTRL(self, 'check_nifti').SetValue(self.export_nii_format) self.output_dir = conf['output_dir'] XRCCTRL(self, 'picker_output').SetPath(self.output_dir) self.output_name = conf['output_name'] XRCCTRL(self, 'text_output_name').SetValue(self.output_name) else: self.path = os.path.expanduser('~') self.only_export_voldata = XRCCTRL(self, 'check_volume').IsChecked() self.min_slice_num = int(XRCCTRL(self, 'spin_minslices').GetValue()) self.offset = int(XRCCTRL(self, 'spin_offset').GetValue()) self.export_mori_format = XRCCTRL(self, 'check_mori').IsChecked() self.export_nii_format = XRCCTRL(self, 'check_nifti').IsChecked() self.output_dir = '' self.output_name = '' # Set the dialog font and bold the font of the directions label font = wx.SystemSettings.GetFont(wx.SYS_DEFAULT_GUI_FONT) if guiutil.IsMac(): self.txtDicomImport.SetFont(font) self.btnDicomImport.SetFont(font) self.checkSearchSubfolders.SetFont(font) self.lblProgressLabel.SetFont(font) self.lblProgress.SetFont(font) self.lblProgressPercent.SetFont(font) self.lblProgressPercentSym.SetFont(font) self.tcPatients.SetFont(font) self.txtRxDose.SetFont(font) self.lblRxDoseUnits.SetFont(font) font.SetWeight(wx.FONTWEIGHT_BOLD) self.lblRxDose.SetFont(font) # Initialize the patients tree control self.root = self.InitTree() # Initialize the patients dictionary self.patients = {} # Search subfolders by default self.import_search_subfolders = True # Set the threading termination status to false intially self.terminate = False # Hide the progress bar until it needs to be shown self.gaugeProgress.Show(False) self.lblProgressPercent.Show(False) self.lblProgressPercentSym.Show(False) # Start the directory search as soon as the panel loads #self.OnDirectorySearch() def OnRescan(self, evt): self.OnDirectorySearch() def OnPause(self, evt): self.terminate = True def OnSpinOffset(self, evt): self.offset = evt.GetPosition() def OnCheckVolFlag(self, evt): self.only_export_voldata = evt.IsChecked() try: self.Check_Export_Files() except: logger.info('Adjusted parameters befor the tree generated.') def OnSpinSliceNum(self, evt): self.min_slice_num = evt.GetPosition() try: self.Check_Export_Files() except: logger.info('Adjusted parameters befor the tree generated.') def OnCheckMoriFormat(self, evt): self.export_mori_format = evt.IsChecked() def OnCheckNiftiFormat(self, evt): self.export_nii_format = evt.IsChecked() def OnPickOutdir(self, evt): self.output_dir = evt.GetPath() def OnInputName(self, evt): self.output_name = evt.GetString() def AlertDialog(self, msg): dialog = wx.MessageDialog(self, msg, 'Error', style=wx.OK) dialog.ShowModal() dialog.Destroy() def ChoiceDialog(self, msg): dialog = wx.MessageDialog(self, msg, 'Warning', style=wx.OK_DEFAULT|wx.CANCEL) self.contiune_export = dialog.ShowModal() dialog.Destroy() def __GetNiftiAffineMatrix__(self, dp): di = float(dp.ds.PixelSpacing[0]) dj = float(dp.ds.PixelSpacing[1]) orientation = dp.ds.ImageOrientationPatient dk = float(dp.ds.SliceThickness) m = np.array( [[float(orientation[0])*di, float(orientation[3])*dj, 0, 0], [float(orientation[1])*di, float(orientation[4])*dj, 0, 0], [float(orientation[2])*di, float(orientation[5])*dj, dk, 0], [0, 0, 0, 1]], dtype=np.float) return m def ExportFunc(self, out_basepath, patient_data, progressFunc=None): if patient_data is None: return # Existence check if self.export_mori_format: out_dir = os.path.join(os.path.dirname(out_basepath), 'LabFormat') if not os.path.isdir(out_dir): os.makedirs(out_dir) mori_fname = os.path.join(out_dir, os.path.basename(out_basepath)) if os.path.isfile(mori_fname+'.raw.gz'): self.ChoiceDialog('File existed! Continue?') if self.contiune_export != wx.ID_OK: return if self.export_nii_format: out_dir = os.path.join(os.path.dirname(out_basepath), 'NiftiFormat') if not os.path.isdir(out_dir): os.makedirs(out_dir) nii_fname = os.path.join(out_dir, os.path.basename(out_basepath)+'.nii.gz') if os.path.isfile(nii_fname): self.ChoiceDialog('File existed! Continue?') if self.contiune_export != wx.ID_OK: return dp = dicomparser.DicomParser(patient_data['images'][0]) reso = [ float(dp.ds.PixelSpacing[0]), float(dp.ds.PixelSpacing[1]), float(dp.ds.SliceThickness)] affine = self.__GetNiftiAffineMatrix__(dp) conv_kernel, hospital, kvp, model_name = dp.ds.ConvolutionKernel, dp.ds.InstitutionName, dp.ds.KVP, dp.ds.ManufacturerModelName img_ori, pat_ori, pat_pos = np.array(dp.ds.ImageOrientationPatient), dp.ds.PatientOrientation, dp.ds.PatientPosition study_date, serise_date, acq_date = dp.ds.StudyDate, dp.ds.SeriesDate, dp.ds.AcquisitionDate if (dp.ds.SamplesPerPixel > 1) or (dp.ds.PhotometricInterpretation == 'RGB'): logger.info('Cannot handle color image!') return if dp.ds.BitsAllocated == 16: image_array = np.zeros([dp.ds.Rows, dp.ds.Columns, len(patient_data['images'])]).astype(np.int16) elif dp.ds.BitsAllocated == 32: image_array = np.zeros([dp.ds.Rows, dp.ds.Columns, len(patient_data['images'])]).astype(np.int32) elif dp.ds.BitsAllocated == 8: image_array = np.zeros([dp.ds.Rows, dp.ds.Columns, len(patient_data['images'])]).astype(np.int8) else: image_array = np.zeros([dp.ds.Rows, dp.ds.Columns, len(patient_data['images'])]) pos = [] for i, img in enumerate(patient_data['images']): dp = dicomparser.DicomParser(img) intercept, slope = dp.GetRescaleInterceptSlope() pos.append(dp.ds.ImagePositionPatient[2]) pixel_array = dp.ds.pixel_array rescaled_image = pixel_array * slope + intercept + self.offset image_array[:,:,i] = rescaled_image wx.CallAfter(progressFunc, (i+image_array.shape[-1])//2, image_array.shape[-1]+1, 'Creating image array...') image_array = np.transpose(image_array, (1,0,2)) if self.export_mori_format: from utils_cw import write_mori, get_mori_header_fields logger.info('Exporting image to %s', mori_fname) header_name = write_mori(image_array, reso, mori_fname, True) with open(header_name, 'r') as f: origin_header_lines = f.read().splitlines() with open(header_name, 'w') as f: for field in origin_header_lines: # \r\n if 'Thickness' in field: f.write('{} {:.6f}\r'.format(field,reso[2])) elif 'ImagePositionBegin' in field: f.write('{} {:.6f}\r'.format(field,np.min(pos))) elif 'ImagePositionEnd' in field: f.write('{} {:.6f}\r'.format(field,np.max(pos))) elif 'Hospital' in field: f.write('{} {}\r'.format(field,hospital)) elif 'KVP' in field: f.write('{} {}\r'.format(field,kvp)) elif 'KernelFunction' in field: f.write('{} {}\r'.format(field,conv_kernel)) elif 'ModelName' in field: f.write('{} {}\r'.format(field,model_name)) elif 'PatientPosition' in field: f.write('{} {}\r'.format(field,pat_pos)) elif 'PatientOrientation' in field: f.write('{} {}\r'.format(field,pat_ori)) elif 'ImageOrientation' in field: f.write('{} {}\r'.format(field,img_ori.tolist())) elif 'StudyDate' in field: f.write('{} {}\r'.format(field,study_date)) elif 'SeriesDate' in field: f.write('{} {}\r'.format(field,serise_date)) elif 'AcquisitionDate' in field: f.write('{} {}\r'.format(field,acq_date)) elif 'Orientation' in field: f.write('{} {}\r'.format(field,'LPF')) elif '' == field: pass else: f.write('{} \r'.format(field)) wx.CallAfter(progressFunc, 97, 100, 'Export RAW image completed') if self.export_nii_format: import nibabel as nib logger.info('Exporting image to %s', nii_fname) nib.save(nib.Nifti1Image(image_array, affine=affine), nii_fname) wx.CallAfter(progressFunc, 98, 100, 'Export Nifti image completed') def OnConvert(self, evt): if not self.selected_exports: self.AlertDialog('No Dicom series have been selected!') return if not self.output_dir: self.AlertDialog('Please enter valid output dir!') return if not self.output_name: self.AlertDialog('Please enter valid output file name!') return if not os.path.isdir(self.output_dir): logger.info("Output dir not exists! Create new dir [%s]", self.output_dir) os.makedirs(self.output_dir) all_export_threads = [] for export in self.selected_exports: info = self.tcPatients.GetItemData(export) filearray, series_no = info['filearray'], info['info']['series_number'] basename = os.path.join(self.output_dir, self.output_name+'-'+str(series_no)+'.512') all_export_threads.append(threading.Thread(target=self.ExportPatientData, args=(self.path, filearray, self.txtRxDose.GetValue(), self.SetThreadStatus, self.OnUpdateProgress, functools.partial(self.ExportFunc, out_basepath=basename)))) [th.start() for th in all_export_threads] #[th.join() for th in all_export_threads] # wait all threads #self.AlertDialog('All exports finished!') def OnCheckSearchSubfolders(self, evt): """Determine whether to search subfolders for DICOM data.""" self.import_search_subfolders = evt.IsChecked() self.terminate = True self.OnDirectorySearch() def OnBrowseDicomImport(self, evt): """Get the directory selected by the user.""" self.terminate = True dlg = wx.DirDialog( self, defaultPath = self.path, message="Choose a directory containing DICOM RT files...") if dlg.ShowModal() == wx.ID_OK: self.path = dlg.GetPath() self.txtDicomImport.SetValue(self.path) dlg.Destroy() #self.OnDirectorySearch() def OnDirectorySearch(self): """Begin directory search.""" self.patients = {} self.tcPatients.DeleteChildren(self.root) self.terminate = False self.gaugeProgress.Show(True) self.lblProgressPercent.Show(True) self.lblProgressPercentSym.Show(True) #self.btnSelect.Enable(False) # Disable Rx dose controls except on GTK due to control placement oddities if not guiutil.IsGtk(): self.EnableRxDose(False) # If a previous search thread exists, block until it is done before # starting a new thread if (hasattr(self, 't')): self.t.join() del self.t self.t=threading.Thread(target=self.DirectorySearchThread, args=(self, self.path, self.import_search_subfolders, self.SetThreadStatus, self.OnUpdateProgress, self.AddPatientTree, self.AddPatientDataTree)) self.t.start() def SetThreadStatus(self): """Tell the directory search thread whether to terminate or not.""" return self.terminate def DirectorySearchThread(self, parent, path, subfolders, terminate, progressFunc, foundFunc, resultFunc): """Thread to start the directory search.""" # Call the progress function to update the gui wx.CallAfter(progressFunc, 0, 0, 'Searching for patients...') patients = {} # Check if the path is valid if os.path.isdir(path): files = [] for root, dirs, filenames in os.walk(path): files += map(lambda f:os.path.join(root, f), filenames) if (self.import_search_subfolders == False): break for n in range(len(files)): # terminate the thread if the value has changed # during the loop duration if terminate(): wx.CallAfter(progressFunc, 0, 0, 'Search terminated.') return if (os.path.isfile(files[n])): try: logger.debug("Reading: %s", files[n]) dp = dicomparser.DicomParser(files[n]) except (AttributeError, EOFError, IOError, KeyError): pass logger.info("%s is not a valid DICOM file.", files[n]) else: patient = dp.GetDemographics() h = hashlib.sha1(patient['id'].encode('utf-8')).hexdigest() if not h in patients: patients[h] = {} patients[h]['demographics'] = patient if not 'studies' in patients[h]: patients[h]['studies'] = {} patients[h]['series'] = {} wx.CallAfter(foundFunc, patient) # Create each Study but don't create one for RT Dose # since some vendors use incorrect StudyInstanceUIDs if not (dp.GetSOPClassUID() == 'rtdose'): stinfo = dp.GetStudyInfo() if not stinfo['id'] in patients[h]['studies']: patients[h]['studies'][stinfo['id']] = stinfo # Create each Series of images if (('ImageOrientationPatient' in dp.ds) and \ not (dp.GetSOPClassUID() == 'rtdose')): seinfo = dp.GetSeriesInfo() try: seinfo['series_number'] = dp.ds.SeriesNumber #added by CL.Wang seinfo['KVP'] = dp.ds.KVP seinfo['PatientPosition'] = dp.ds.PatientPosition seinfo['ModelName'] = dp.ds.ManufacturerModelName seinfo['PixelSpacing'] = dp.ds.PixelSpacing seinfo['Orientation'] = dp.ds.ImageOrientationPatient except: logger.error('Get dcm info error!') seinfo['numimages'] = 0 seinfo['modality'] = dp.ds.SOPClassUID.name if not seinfo['id'] in patients[h]['series']: patients[h]['series'][seinfo['id']] = seinfo if not 'images' in patients[h]: patients[h]['images'] = {} image = {} image['id'] = dp.GetSOPInstanceUID() image['filename'] = files[n] image['series'] = seinfo['id'] image['referenceframe'] = dp.GetFrameOfReferenceUID() patients[h]['series'][seinfo['id']]['numimages'] = \ patients[h]['series'][seinfo['id']]['numimages'] + 1 patients[h]['images'][image['id']] = image # Create each RT Structure Set elif dp.ds.Modality in ['RTSTRUCT']: if not 'structures' in patients[h]: patients[h]['structures'] = {} structure = dp.GetStructureInfo() structure['id'] = dp.GetSOPInstanceUID() structure['filename'] = files[n] structure['series'] = dp.GetReferencedSeries() structure['referenceframe'] = dp.GetFrameOfReferenceUID() patients[h]['structures'][structure['id']] = structure # Create each RT Plan elif dp.ds.Modality in ['RTPLAN']: if not 'plans' in patients[h]: patients[h]['plans'] = {} plan = dp.GetPlan() plan['id'] = dp.GetSOPInstanceUID() plan['filename'] = files[n] plan['series'] = dp.ds.SeriesInstanceUID plan['referenceframe'] = dp.GetFrameOfReferenceUID() plan['beams'] = dp.GetReferencedBeamsInFraction() plan['rtss'] = dp.GetReferencedStructureSet() patients[h]['plans'][plan['id']] = plan # Create each RT Dose elif dp.ds.Modality in ['RTDOSE']: if not 'doses' in patients[h]: patients[h]['doses'] = {} dose = {} dose['id'] = dp.GetSOPInstanceUID() dose['filename'] = files[n] dose['referenceframe'] = dp.GetFrameOfReferenceUID() dose['hasdvh'] = dp.HasDVHs() dose['hasgrid'] = "PixelData" in dp.ds dose['summationtype'] = dp.ds.DoseSummationType dose['beam'] = dp.GetReferencedBeamNumber() dose['rtss'] = dp.GetReferencedStructureSet() dose['rtplan'] = dp.GetReferencedRTPlan() patients[h]['doses'][dose['id']] = dose # Otherwise it is a currently unsupported file else: logger.info("%s is a %s file and is not " + \ "currently supported.", files[n], dp.ds.SOPClassUID.name) # Call the progress function to update the gui wx.CallAfter(progressFunc, n, len(files), 'Searching for patients...') if (len(patients) == 0): progressStr = 'Found 0 patients.' elif (len(patients) == 1): progressStr = 'Found 1 patient. Reading DICOM data...' elif (len(patients) > 1): progressStr = 'Found ' + str(len(patients)) + ' patients. Reading DICOM data...' wx.CallAfter(progressFunc, 0, 1, progressStr) wx.CallAfter(resultFunc, patients) # if the path is not valid, display an error message else: wx.CallAfter(progressFunc, 0, 0, 'Select a valid location.') dlg = wx.MessageDialog( parent, "The DICOM import location does not exist. Please select a valid location.", "Invalid DICOM Import Location", wx.OK|wx.ICON_ERROR) dlg.ShowModal() def OnUpdateProgress(self, num, length, message): """Update the DICOM Import process interface elements.""" if not length: percentDone = 0 else: percentDone = int(100 * (num+1) / length) self.gaugeProgress.SetValue(percentDone) self.lblProgressPercent.SetLabel(str(percentDone)) self.lblProgress.SetLabel(message) if not (percentDone == 100): self.gaugeProgress.Show(True) self.lblProgressPercent.Show(True) self.lblProgressPercentSym.Show(True) else: self.gaugeProgress.Show(False) self.lblProgressPercent.Show(False) self.lblProgressPercentSym.Show(False) # End the dialog since we are done with the import process if (message == 'Importing patient complete.'): self.EndModal(wx.ID_OK) elif (message == 'Importing patient cancelled.'): self.EndModal(wx.ID_CANCEL) def InitTree(self): """Initialize the tree control for use.""" iSize = (16,16) iList = wx.ImageList(iSize[0], iSize[1]) iList.Add( wx.Bitmap( util.GetResourcePath('group.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('user.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('book.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('table_multiple.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('pencil.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('chart_bar.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('chart_curve.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('pencil_error.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('chart_bar_error.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('chart_curve_error.png'), wx.BITMAP_TYPE_PNG)) iList.Add( wx.Bitmap( util.GetResourcePath('table_selected.png'), wx.BITMAP_TYPE_PNG)) self.tcPatients.AssignImageList(iList) root = self.tcPatients.AddRoot('Patients', image=0) return root def AddPatientTree(self, patient): """Add a new patient to the tree control.""" # Create a hash for each patient h = hashlib.sha1(patient['id'].encode('utf-8')).hexdigest() # Add the patient to the tree if they don't already exist if not h in self.patients: self.patients[h] = {} self.patients[h]['demographics'] = patient name = str(patient['name']) + ' (' + patient['id'] + ')' self.patients[h]['treeid'] = \ self.tcPatients.AppendItem(self.root, name, 1) self.tcPatients.SortChildren(self.root) self.tcPatients.ExpandAll() def AddPatientDataTree(self, patients): """Add the patient data to the tree control.""" # Now add the specific item to the tree for key, patient in self.patients.items(): patient.update(patients[key]) if 'studies' in patient: for studyid, study in patient['studies'].items(): name = 'Study: ' + study['description'] study['treeid'] = self.tcPatients.AppendItem(patient['treeid'], name, 2) # Search for series and images if 'series' in patient: for seriesid, series in patient['series'].items(): if 'studies' in patient: for studyid, study in patient['studies'].items(): if (studyid == series['study']): modality = series['modality'].partition(' Image Storage')[0] name = 'Series {}: {}. ({}, {} {})'.format(series['series_number'], series['description'], modality, series['numimages'], 'image' if series['numimages']==1 else 'images') #name = 'Series: ' + series['description'] + ' (' + modality + ', ' #numimages = str(series['numimages']) + ' image)' if (series['numimages'] == 1) else str(series['numimages']) + ' images)' #name = name + numimages series['treeid'] = self.tcPatients.AppendItem(study['treeid'], name, 3) self.EnableItemSelection(patient, series, []) # Search for RT Structure Sets if 'structures' in patient: for structureid, structure in patient['structures'].items(): if 'series' in patient: foundseries = False name = 'RT Structure Set: ' + structure['label'] for seriesid, series in patient['series'].items(): foundseries = False if (seriesid == structure['series']): structure['treeid'] = self.tcPatients.AppendItem(series['treeid'], name, 4) foundseries = True # If no series were found, add the rtss to the study if not foundseries: structure['treeid'] = self.tcPatients.AppendItem(study['treeid'], name, 4) filearray = [structure['filename']] self.EnableItemSelection(patient, structure, filearray) # Search for RT Plans if 'plans' in patient: for planid, plan in patient['plans'].items(): foundstructure = False planname = ' (' + plan['name'] + ')' if len(plan['name']) else "" rxdose = plan['rxdose'] if plan['rxdose'] > 0 else "Unknown" name = 'RT Plan: ' + plan['label'] + planname + \ ' - Dose: ' + str(rxdose) + ' cGy' if 'structures' in patient: for structureid, structure in patient['structures'].items(): foundstructure = False if (structureid == plan['rtss']): plan['treeid'] = self.tcPatients.AppendItem(structure['treeid'], name, 5) foundstructure = True # If no structures were found, add the plan to the study/series instead if not foundstructure: # If there is an image series, add a fake rtss to it foundseries = False for seriesid, series in patient['series'].items(): foundseries = False if (series['referenceframe'] == plan['referenceframe']): badstructure = self.tcPatients.AppendItem( series['treeid'], "RT Structure Set not found", 7) foundseries = True # If no series were found, add the rtss to the study if not foundseries: badstructure = self.tcPatients.AppendItem( patient['treeid'], "RT Structure Set not found", 7) plan['treeid'] = self.tcPatients.AppendItem(badstructure, name, 5) self.tcPatients.SetItemTextColour(badstructure, wx.RED) filearray = [plan['filename']] self.EnableItemSelection(patient, plan, filearray, plan['rxdose']) # Search for RT Doses if 'doses' in patient: for doseid, dose in patient['doses'].items(): foundplan = False if 'plans' in patient: for planid, plan in patient['plans'].items(): foundplan = False if (planid == dose['rtplan']): foundplan = True rxdose = None if dose['hasgrid']: if dose['hasdvh']: name = 'RT Dose with DVH' else: name = 'RT Dose without DVH' else: if dose['hasdvh']: name = 'RT Dose without Dose Grid (DVH only)' else: name = 'RT Dose without Dose Grid or DVH' if (dose['summationtype'] == "BEAM"): name += " (Beam " + str(dose['beam']) + ": " if dose['beam'] in plan['beams']: b = plan['beams'][dose['beam']] name += b['name'] if len(b['description']): name += " - " + b['description'] name += ")" if "dose" in b: name += " - Dose: " + str(int(b['dose'])) + " cGy" rxdose = int(b['dose']) dose['treeid'] = self.tcPatients.AppendItem(plan['treeid'], name, 6) filearray = [dose['filename']] self.EnableItemSelection(patient, dose, filearray, rxdose) # If no plans were found, add the dose to the structure/study instead if not foundplan: if dose['hasgrid']: if dose['hasdvh']: name = 'RT Dose with DVH' else: name = 'RT Dose without DVH' else: if dose['hasdvh']: name = 'RT Dose without Dose Grid (DVH only)' else: name = 'RT Dose without Dose Grid or DVH' foundstructure = False if 'structures' in patient: for structureid, structure in patient['structures'].items(): foundstructure = False if 'rtss' in dose: if (structureid == dose['rtss']): foundstructure = True if (structure['referenceframe'] == dose['referenceframe']): foundstructure = True if foundstructure: badplan = self.tcPatients.AppendItem( structure['treeid'], "RT Plan not found", 8) dose['treeid'] = self.tcPatients.AppendItem(badplan, name, 6) self.tcPatients.SetItemTextColour(badplan, wx.RED) filearray = [dose['filename']] self.EnableItemSelection(patient, dose, filearray) if not foundstructure: # If there is an image series, add a fake rtss to it foundseries = False for seriesid, series in patient['series'].items(): foundseries = False if (series['referenceframe'] == dose['referenceframe']): badstructure = self.tcPatients.AppendItem( series['treeid'], "RT Structure Set not found", 7) foundseries = True # If no series were found, add the rtss to the study if not foundseries: badstructure = self.tcPatients.AppendItem( patient['treeid'], "RT Structure Set not found", 7) self.tcPatients.SetItemTextColour(badstructure, wx.RED) badplan = self.tcPatients.AppendItem( badstructure, "RT Plan not found", 8) dose['treeid'] = self.tcPatients.AppendItem(badplan, name, 5) self.tcPatients.SetItemTextColour(badplan, wx.RED) filearray = [dose['filename']] self.EnableItemSelection(patient, dose, filearray) # No RT Dose files were found else: if 'structures' in patient: for structureid, structure in patient['structures'].items(): if 'plans' in patient: for planid, plan in patient['plans'].items(): name = 'RT Dose not found' baddose = self.tcPatients.AppendItem(plan['treeid'], name, 9) self.tcPatients.SetItemTextColour(baddose, wx.RED) # No RT Plan nor RT Dose files were found else: name = 'RT Plan not found' badplan = self.tcPatients.AppendItem(structure['treeid'], name, 8) self.tcPatients.SetItemTextColour(badplan, wx.RED) name = 'RT Dose not found' baddose = self.tcPatients.AppendItem(badplan, name, 9) self.tcPatients.SetItemTextColour(baddose, wx.RED) #self.btnSelect.SetFocus() self.tcPatients.ExpandAll() self.lblProgress.SetLabel( str(self.lblProgress.GetLabel()).replace(' Reading DICOM data...', '')) #Added by CL.Wang self.Check_Export_Files() def Check_Export_Files(self): def select(child, flag): if flag: self.tcPatients.SetItemImage(child, 10) self.selected_exports.append(child) else: self.tcPatients.SetItemImage(child, 3) def minslice_check(child): info = self.tcPatients.GetItemData(child)['info'] return int(info['numimages'])>self.min_slice_num self.selected_exports = [] first_patient = self.tcPatients.GetFirstChild(self.tcPatients.RootItem)[0] first_study = self.tcPatients.GetFirstChild(first_patient)[0] child, cookie = self.tcPatients.GetFirstChild(first_study) while child.IsOk(): if self.only_export_voldata: title = self.tcPatients.GetItemText(child) flag = 'vol' in title.lower() and minslice_check(child) select(child, flag) else: select(child, minslice_check(child)) child, cookie = self.tcPatients.GetNextChild(child, cookie) logger.info('%d files selected!', len(self.selected_exports)) def EnableItemSelection(self, patient, item, filearray = [], rxdose = None): """Enable an item to be selected in the tree control.""" # Add the respective images to the filearray if they exist if 'images' in patient: for imageid, image in patient['images'].items(): appendImage = False # used for image series if 'id' in item: if (item['id'] == image['series']): appendImage = True # used for RT structure set if 'series' in item: if (item['series'] == image['series']): appendImage = True # used for RT plan / dose if 'referenceframe' in item: if (item['referenceframe'] == image['referenceframe']): if not 'numimages' in item: appendImage = True if appendImage: filearray.append(image['filename']) # Add the respective rtss files to the filearray if they exist if 'structures' in patient: for structureid, structure in patient['structures'].items(): if 'rtss' in item: if (structureid == item['rtss']): filearray.append(structure['filename']) break elif (structure['referenceframe'] == item['referenceframe']): filearray.append(structure['filename']) break # If no referenced rtss, but ref'd rtplan, check rtplan->rtss if 'rtplan' in item: if 'plans' in patient: for planid, plan in patient['plans'].items(): if (planid == item['rtplan']): if 'rtss' in plan: if (structureid == plan['rtss']): filearray.append(structure['filename']) # Add the respective rtplan files to the filearray if they exist if 'plans' in patient: for planid, plan in patient['plans'].items(): if 'rtplan' in item: if (planid == item['rtplan']): filearray.append(plan['filename']) if not rxdose: self.tcPatients.SetItemData(item['treeid'], {'filearray':filearray, 'info':item}) else: self.tcPatients.SetItemData(item['treeid'], {'filearray':filearray, 'info':item, 'rxdose':rxdose}) self.tcPatients.SetItemBold(item['treeid'], True) self.tcPatients.SelectItem(item['treeid']) def OnSelectTreeItem(self, evt): """Update the interface when the selected item has changed.""" item = evt.GetItem() # Disable the rx dose message and select button by default self.EnableRxDose(False) #self.btnSelect.Enable(False) # If the item has data, check to see whether there is an rxdose if not (self.tcPatients.GetItemData(item) == None): data = self.tcPatients.GetItemData(item) #self.btnSelect.Enable() rxdose = 0 parent = self.tcPatients.GetItemParent(item) if 'rxdose' in data: rxdose = data['rxdose'] else: parentdata = self.tcPatients.GetItemData(parent) if not (parentdata == None): if 'rxdose' in parentdata: rxdose = parentdata['rxdose'] # Show the rxdose text box if no rxdose was found # and if it is an RT plan or RT dose file self.txtRxDose.SetValue(rxdose) if (self.tcPatients.GetItemText(item).startswith('RT Plan') or self.tcPatients.GetItemText(parent).startswith('RT Plan')): self.EnableRxDose(True) def EnableRxDose(self, value): """Show or hide the prescription dose message.""" self.bmpRxDose.Show(value) self.lblRxDose.Show(value) self.txtRxDose.Show(value) self.lblRxDoseUnits.Show(value) # if set to hide, reset the rx dose if not value: self.txtRxDose.SetValue(1) def ExportPatientData(self, path, filearray, RxDose, terminate, progressFunc, exportFunc): """Get the data of the selected patient from the DICOM importer dialog.""" msgs = ['Scanning patient. Please wait...','Exporting patient cancelled.','Exporting patient...'] wx.CallAfter(progressFunc, -1, 100, msgs[0]) for n in range(0, len(filearray)): if terminate(): wx.CallAfter(progressFunc, 98, 100, msgs[1]) return dcmfile = str(os.path.join(self.path, filearray[n])) dp = dicomparser.DicomParser(dcmfile) if (n == 0): patient = {} patient['rxdose'] = RxDose if (('ImageOrientationPatient' in dp.ds) and \ not (dp.GetSOPClassUID() == 'rtdose')): if not 'images' in patient: patient['images'] = [] patient['images'].append(dp.ds) elif (dp.ds.Modality in ['RTSTRUCT']): patient['rtss'] = dp.ds elif (dp.ds.Modality in ['RTPLAN']): patient['rtplan'] = dp.ds elif (dp.ds.Modality in ['RTDOSE']): patient['rtdose'] = dp.ds wx.CallAfter(progressFunc, n//2, len(filearray), msgs[0]) # Sort the images based on a sort descriptor: # (ImagePositionPatient, InstanceNumber or AcquisitionNumber) if 'images' in patient: sortedimages = [] unsortednums = [] sortednums = [] images = patient['images'] sort = 'IPP' # Determine if all images in the series are parallel # by testing for differences in ImageOrientationPatient parallel = True for i, item in enumerate(images): if (i > 0): iop0 = np.array(item.ImageOrientationPatient) iop1 = np.array(images[i-1].ImageOrientationPatient) if (np.any(np.array(np.round(iop0 - iop1), dtype=np.int32))): parallel = False break # Also test ImagePositionPatient, as some series # use the same patient position for every slice ipp0 = np.array(item.ImagePositionPatient) ipp1 = np.array(images[i-1].ImagePositionPatient) if not (np.any(np.array(np.round(ipp0 - ipp1), dtype=np.int32))): parallel = False break # If the images are parallel, sort by ImagePositionPatient if parallel: sort = 'IPP' else: # Otherwise sort by Instance Number if not (images[0].InstanceNumber == \ images[1].InstanceNumber): sort = 'InstanceNumber' # Otherwise sort by Acquisition Number elif not (images[0].AcquisitionNumber == \ images[1].AcquisitionNumber): sort = 'AcquisitionNumber' # Add the sort descriptor to a list to be sorted for i, image in enumerate(images): if (sort == 'IPP'): unsortednums.append(image.ImagePositionPatient[2]) else: unsortednums.append(image.data_element(sort).value) # Sort in LPI order! Modified by CL.Wang # Sort image numbers in descending order for head first patients if ('hf' in image.PatientPosition.lower()) and (sort == 'IPP'): sortednums = sorted(unsortednums, reverse=True) # Otherwise sort image numbers in ascending order else: sortednums = sorted(unsortednums, reverse=False) # Add the images to the array based on the sorted order for s, slice in enumerate(sortednums): for i, image in enumerate(images): if (sort == 'IPP'): if (slice == image.ImagePositionPatient[2]): sortedimages.append(image) elif (slice == image.data_element(sort).value): sortedimages.append(image) # Save the images back to the patient dictionary logger.debug('Slices num: %d', len(sortedimages)) patient['images'] = sortedimages wx.CallAfter(progressFunc, 49, 100, msgs[2]) if exportFunc: exportFunc(patient_data=patient, progressFunc=progressFunc) wx.CallAfter(progressFunc, 99, 100, '') def GetPatient(self): """Return the patient data from the DICOM importer dialog.""" return self.patient def OnCancel(self, evt): """Stop the directory search and close the dialog.""" self.terminate = True super().OnCancel(evt) def main(): app = DcmConverterApp(0) app.MainLoop() if __name__ == '__main__': main()
2.390625
2
datasets/davis.py
sallymmx/TransVOS
20
12797966
<reponame>sallymmx/TransVOS import os import numpy as np from glob import glob import random import torch from torch.utils import data import torchvision.transforms as TF import datasets.transform as mytrans from utils.system import load_image_in_PIL, gct import matplotlib.pyplot as plt from PIL import Image from datasets.data_utils import multibatch_collate_fn, convert_one_hot class DAVIS_Train(data.Dataset): r''' - root: data root path, str - output_size: output size of image and mask, tuple - imset - clip_n: number of video clip for training, int - max_obj_n: maximum number of objects in a image for training, int ''' MAX_TRAINING_SKIP = 100 def __init__(self, root, output_size, imset='2017/train.txt', clip_n=3, max_obj_n=7, max_skip=5, increment=5, samples=2, choice='order', crop=False): self.root = root self.clip_n = clip_n self.output_size = output_size self.max_obj_n = max_obj_n self.max_skip = max_skip self.increment = increment self.smaples = samples self.sample_choice = choice self.crop = crop dataset_path = os.path.join(root, 'ImageSets', imset) self.dataset_list = list() with open(os.path.join(dataset_path), 'r') as lines: for line in lines: dataset_name = line.strip() if len(dataset_name) > 0: self.dataset_list.append(dataset_name) print(f'\t"DAVIS17": {len(self.dataset_list)} videos.') self.random_horizontal_flip = mytrans.RandomHorizontalFlip(0.3) self.color_jitter = TF.ColorJitter(0.1, 0.1, 0.1, 0.02) self.random_affine = mytrans.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.95, 1.05), shear=10) if self.crop: self.random_resize_crop = mytrans.RandomResizedCrop(400, (0.8, 1), (0.95, 1.05)) else: self.resize = mytrans.Resize(output_size) self.to_tensor = TF.ToTensor() self.normalize = TF.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.to_onehot = mytrans.ToOnehot(max_obj_n, shuffle=True) def increase_max_skip(self): self.max_skip = min(self.max_skip + self.increment, self.MAX_TRAINING_SKIP) def set_max_skip(self, max_skip): self.max_skip = max_skip def __len__(self): return len(self.dataset_list) * self.smaples def __getitem__(self, idx): video_name = self.dataset_list[idx//self.smaples] img_dir = os.path.join(self.root, 'JPEGImages', '480p', video_name) mask_dir = os.path.join(self.root, 'Annotations', '480p', video_name) img_list = sorted(glob(os.path.join(img_dir, '*.jpg'))) mask_list = sorted(glob(os.path.join(mask_dir, '*.png'))) img_n = len(img_list) obj_n = 1 while obj_n == 1: if self.sample_choice == 'order': idx_list = list() last_sample = -1 sample_n = min(self.clip_n, img_n) for i in range(sample_n): if i == 0: last_sample = random.choice(range(0, img_n-sample_n+1)) else: last_sample = random.choice( range(last_sample+1, min(last_sample+self.max_skip+1, img_n-sample_n+i+1))) idx_list.append(last_sample) elif self.sample_choice == 'random': idx_list = list(range(img_n)) random.shuffle(idx_list) sample_n = min(self.clip_n, img_n) idx_list = idx_list[:sample_n] else: raise NotImplementedError() while len(idx_list) < self.clip_n: # short video idx_list.append(idx_list[-1]) if not self.crop: frames = torch.zeros((self.clip_n, 3, *self.output_size), dtype=torch.float) masks = torch.zeros((self.clip_n, self.max_obj_n, *self.output_size), dtype=torch.float) else: frames = torch.zeros((self.clip_n, 3, 400, 400), dtype=torch.float) masks = torch.zeros((self.clip_n, self.max_obj_n, 400, 400), dtype=torch.float) for i, frame_idx in enumerate(idx_list): img = load_image_in_PIL(img_list[frame_idx], 'RGB') mask = load_image_in_PIL(mask_list[frame_idx], 'P') if i > 0: img = self.color_jitter(img) img, mask = self.random_affine(img, mask) if self.crop: img, mask = self.random_resize_crop(img, mask) else: img, mask = self.resize(img, mask) mask = np.array(mask, np.uint8) if i == 0: mask, obj_list = self.to_onehot(mask) obj_n = len(obj_list) + 1 else: mask, _ = self.to_onehot(mask, obj_list) frames[i] = self.normalize(self.to_tensor(img)) masks[i] = mask info = { 'name': video_name, 'idx_list': idx_list } return frames, masks, obj_n, info class DAVIS_Test(data.Dataset): r''' - root: data root path, str - output_size: output size of image and mask, tuple - imset - max_obj_n: maximum number of objects in a image for training, int ''' def __init__(self, root, output_size=None, img_set='2017/val.txt', max_obj_n=11, single_obj=False): self.root = root self.single_obj = single_obj dataset_path = os.path.join(root, 'ImageSets', img_set) self.dataset_list = list() self.output_size = output_size with open(os.path.join(dataset_path), 'r') as lines: for line in lines: dataset_name = line.strip() if len(dataset_name) > 0: self.dataset_list.append(dataset_name) self.to_tensor = TF.ToTensor() self.normalize = TF.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.to_onehot = mytrans.ToOnehot(max_obj_n, shuffle=False) def __len__(self): return len(self.dataset_list) def __getitem__(self, idx): video_name = self.dataset_list[idx] img_dir = os.path.join(self.root, 'JPEGImages', '480p', video_name) mask_dir = os.path.join(self.root, 'Annotations', '480p', video_name) img_list = sorted(glob(os.path.join(img_dir, '*.jpg'))) mask_list = sorted(glob(os.path.join(mask_dir, '*.png'))) first_mask = load_image_in_PIL(mask_list[0], 'P') original_w, original_h = first_mask.size if self.output_size: out_h, out_w = self.output_size if original_h < out_h: h, w = original_h, original_w else: h = out_h w = int(original_w / original_h * out_h) # h = self.out_h # w = self.out_w else: h, w = original_h, original_w first_mask = first_mask.resize((w, h), Image.NEAREST) first_mask_np = np.array(first_mask, np.uint8) if self.single_obj: first_mask_np[first_mask_np > 1] = 1 obj_n = first_mask_np.max() + 1 video_len = len(img_list) frames = torch.zeros((video_len, 3, h, w), dtype=torch.float) masks = torch.zeros((1, obj_n, h, w), dtype=torch.float) mask, _ = self.to_onehot(first_mask_np) masks[0] = mask[:obj_n] for i in range(video_len): img = load_image_in_PIL(img_list[i], 'RGB') img = img.resize((w, h), Image.BILINEAR) frames[i] = self.normalize(self.to_tensor(img)) info = { 'name': video_name, 'num_frames': video_len, 'original_size': (original_h, original_w) } return frames, masks, obj_n, info def build_davis(cfg, train=True): if train: return DAVIS_Train( root=cfg.DATA.DAVIS_ROOT, output_size=cfg.DATA.SIZE, clip_n=cfg.DATA.TRAIN.FRAMES_PER_CLIP, max_obj_n=cfg.DATA.TRAIN.MAX_OBJECTS, max_skip=cfg.DATA.TRAIN.DAVIS_SKIP_INCREMENT[0], increment=cfg.DATA.TRAIN.DAVIS_SKIP_INCREMENT[1], samples=cfg.DATA.TRAIN.SAMPLES_PER_VIDEO, choice=cfg.DATA.TRAIN.SAMPLE_CHOICE, crop=cfg.DATA.TRAIN.CROP ) else: single_obj = (cfg.DATA.VAL.DATASET_NAME == 'DAVIS16') return DAVIS_Test( root=cfg.DATA.DAVIS_ROOT, single_obj=single_obj ) if __name__ == '__main__': ds = DAVIS_Train('/public/datasets/DAVIS', output_size=(240, 427), max_obj_n=6) trainloader = data.DataLoader(ds, batch_size=1, shuffle=True, num_workers=1, collate_fn=multibatch_collate_fn, drop_last=True) i, data = next(enumerate(trainloader)) print(data[0].shape, data[1].shape, data[2], data[3][0]) frame, mask, num_obj = data[0][0], data[1][0], data[2][0] frame, mask = frame[:3], mask[:3] print(torch.max(mask), torch.min(mask)) fig = plt.figure() for j in range(frame.shape[0]): ax = fig.add_subplot(2, 3, i*6+j+1) ax.axis('off') ax.imshow(frame[j].numpy().transpose(1, 2, 0)) plt.pause(0.01) for k in range(mask.shape[0]): ax = fig.add_subplot(2, 3, i*6+4+k) ax.axis('off') # ax.imshow(np.array(mask[k, 0], dtype=np.uint8)) ax.imshow(convert_one_hot(np.array(mask[k],dtype=np.uint8).transpose(1, 2, 0), num_obj.item())) plt.pause(0.01) # plt.imsave('test{}.png'.format(k), convert_one_hot(np.array(mask[k],dtype=np.uint8).transpose(1, 2, 0), num_obj.item())) fig.savefig("test.png")
2.21875
2
code/ch17/17.1.1.majorityElement.py
leetcode-pp/leetcode-pp1
22
12797967
<gh_stars>10-100 class Solution: def majorityElement(self, nums: List[int]) -> List[int]: n = len(nums) res = [] cnt1 = 0 cnt2 = 0 n1 = None n2 = None # 筛选出现次数最多的前两个 for num in nums: if num == n1: cnt1 += 1 elif num == n2: cnt2 += 1 elif cnt1 == 0: n1 = num cnt1 += 1 elif cnt2 == 0: n2 = num cnt2 += 1 else: cnt1 -= 1 cnt2 -= 1 # 筛选出现次数超过三分之一的 # 这里的cnt1和cnt2的含义已经变了 # 这里的cnt1和cnt2表示的是出现次数, 而上面的则不是 cnt1 = 0 cnt2 = 0 for num in nums: if num == n1: cnt1 += 1 if num == n2: cnt2 += 1 if cnt1 > n // 3: res.append(n1) if cnt2 > n // 3: res.append(n2) return res
2.984375
3
common/code/snippets/txt/ssh.py
nevesnunes/env
4
12797968
<filename>common/code/snippets/txt/ssh.py import paramiko import datetime import subprocess # run it locally if you want, use this for Bash commands def run_netflow_cmd(command): rwflow_server_ip = "192.168.3.11" # SiLK box user_name="netflow" keyfile="/home/marius/.ssh/id_rsa" ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect(rwflow_server_ip, username=user_name, key_filename=keyfile) stdin, stdout, stderr = ssh.exec_command(command + "&& echo 'done'") for line in stderr.readlines(): print line for line in stdout.readlines(): # print line exit_status = stdout.channel.recv_exit_status() # Blocking call if exit_status == 0: print str(datetime.datetime.today()) + ": Command finished successfully." else: print("Error", exit_status) ssh.close()
2.59375
3
models/inclusive_gateway.py
THM-MA/XSDATA-waypoint
0
12797969
from dataclasses import dataclass from .t_inclusive_gateway import TInclusiveGateway __NAMESPACE__ = "http://www.omg.org/spec/BPMN/20100524/MODEL" @dataclass class InclusiveGateway(TInclusiveGateway): class Meta: name = "inclusiveGateway" namespace = "http://www.omg.org/spec/BPMN/20100524/MODEL"
1.921875
2
tests/testArUco.py
snavas/PyMote
3
12797970
<reponame>snavas/PyMote import numpy as np import cv2 from cv2 import aruco # https://mecaruco2.readthedocs.io/en/latest/notebooks_rst/Aruco/Aruco.html aruco_dict = aruco.Dictionary_get(aruco.DICT_6X6_250) image = cv2.imread("../tests/aruco.jpg") gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) aruco_dict = aruco.Dictionary_get(aruco.DICT_6X6_250) parameters = aruco.DetectorParameters_create() corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, aruco_dict, parameters=parameters) frame_markers = aruco.drawDetectedMarkers(image.copy(), corners, ids) for i in range(len(ids)): c = corners[i][0] #lt.plot([c[:, 0].mean()], [c[:, 1].mean()], "o", label="id={0}".format(ids[i])) print(c) images_H1 = np.hstack((image, frame_markers)) images_H2 = np.hstack((image, frame_markers)) images = np.vstack((images_H1, images_H2)) cv2.imshow('ARUCO', images_H1) cv2.waitKey(0) cv2.destroyAllWindows()
2.546875
3
ls-tree/python/main.py
danielo515/explore-new-languages
0
12797971
import os from os import listdir from argparse import ArgumentParser from os.path import isdir,join middle = '├' pipe = '│' last = '└' scale = 2 def traverse(path, parents='', depth=0, isLast=True): tree = [(path, parents, depth, isLast)] realPath = join(parents,path) files = listdir(realPath) maxFiles = len(files) for idx,file in enumerate(files): curPath = join(realPath,file) isLast = idx == maxFiles -1 if isdir(curPath): tree = tree + (traverse(file,realPath, depth+1, isLast)) else: tree.append((file, parents, depth+1, isLast)) return tree def addDepth(depth,connections,spacer=" "): return "".join([pipe if x in connections else spacer for x in range(0, depth)]) def findConnections(depth, below): depths = [] for (_,_,curDepth,_) in below: if curDepth < depth: depths.append(curDepth) depth=curDepth return depths def prettyPrint(treeInfo): for idx,node in enumerate(treeInfo): (name, parents, depth, isLast) = node prefix = last if isLast else middle connections = [x*scale for x in findConnections(depth,treeInfo[idx:])] print("%s%s %s"%(addDepth(depth*scale,connections), prefix, name)) parser = ArgumentParser(description="list a folder as a tree") parser.add_argument("folder",default="./", type=str) args = parser.parse_args() folderInfo = traverse(args.folder) print(prettyPrint(folderInfo))
3.203125
3
keystone/config.py
savi-dev/keystone
0
12797972
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 OpenStack LLC # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import gettext import os import sys from keystone.common import logging from keystone.openstack.common import cfg gettext.install('keystone', unicode=1) CONF = cfg.CONF def setup_logging(conf): """ Sets up the logging options for a log with supplied name :param conf: a cfg.ConfOpts object """ if conf.log_config: # Use a logging configuration file for all settings... if os.path.exists(conf.log_config): logging.config.fileConfig(conf.log_config) return else: raise RuntimeError('Unable to locate specified logging ' 'config file: %s' % conf.log_config) root_logger = logging.root if conf.debug: root_logger.setLevel(logging.DEBUG) elif conf.verbose: root_logger.setLevel(logging.INFO) else: root_logger.setLevel(logging.WARNING) formatter = logging.Formatter(conf.log_format, conf.log_date_format) if conf.use_syslog: try: facility = getattr(logging.SysLogHandler, conf.syslog_log_facility) except AttributeError: raise ValueError(_('Invalid syslog facility')) handler = logging.SysLogHandler(address='/dev/log', facility=facility) elif conf.log_file: logfile = conf.log_file if conf.log_dir: logfile = os.path.join(conf.log_dir, logfile) handler = logging.WatchedFileHandler(logfile) else: handler = logging.StreamHandler(sys.stdout) handler.setFormatter(formatter) root_logger.addHandler(handler) def register_str(*args, **kw): conf = kw.pop('conf', CONF) group = kw.pop('group', None) return conf.register_opt(cfg.StrOpt(*args, **kw), group=group) def register_cli_str(*args, **kw): conf = kw.pop('conf', CONF) group = kw.pop('group', None) return conf.register_cli_opt(cfg.StrOpt(*args, **kw), group=group) def register_bool(*args, **kw): conf = kw.pop('conf', CONF) group = kw.pop('group', None) return conf.register_opt(cfg.BoolOpt(*args, **kw), group=group) def register_cli_bool(*args, **kw): conf = kw.pop('conf', CONF) group = kw.pop('group', None) return conf.register_cli_opt(cfg.BoolOpt(*args, **kw), group=group) def register_int(*args, **kw): conf = kw.pop('conf', CONF) group = kw.pop('group', None) return conf.register_opt(cfg.IntOpt(*args, **kw), group=group) def register_cli_int(*args, **kw): conf = kw.pop('conf', CONF) group = kw.pop('group', None) return conf.register_cli_opt(cfg.IntOpt(*args, **kw), group=group) register_str('admin_token', default='ADMIN') register_str('bind_host', default='0.0.0.0') register_str('compute_port', default=8774) register_str('admin_port', default=35357) register_str('public_port', default=5000) register_str('onready') register_str('auth_admin_prefix', default='') #ssl options register_bool('enable', group='ssl', default=False) register_str('certfile', group='ssl', default=None) register_str('keyfile', group='ssl', default=None) register_str('ca_certs', group='ssl', default=None) register_bool('cert_required', group='ssl', default=False) #signing options register_str('token_format', group='signing', default="UUID") register_str('certfile', group='signing', default="/etc/keystone/ssl/certs/signing_cert.pem") register_str('keyfile', group='signing', default="/etc/keystone/ssl/private/signing_key.pem") register_str('ca_certs', group='signing', default="/etc/keystone/ssl/certs/ca.pem") register_int('key_size', group='signing', default=1024) register_int('valid_days', group='signing', default=3650) register_str('ca_password', group='signing', default=None) # sql options register_str('connection', group='sql', default='sqlite:///keystone.db') register_int('idle_timeout', group='sql', default=200) register_str('driver', group='catalog', default='keystone.catalog.backends.sql.Catalog') register_str('driver', group='identity', default='keystone.identity.backends.sql.Identity') register_str('driver', group='policy', default='keystone.policy.backends.rules.Policy') register_str('driver', group='token', default='keystone.token.backends.kvs.Token') register_str('driver', group='ec2', default='keystone.contrib.ec2.backends.kvs.Ec2') register_str('driver', group='stats', default='keystone.contrib.stats.backends.kvs.Stats') #ldap register_str('url', group='ldap', default='ldap://localhost') register_str('user', group='ldap', default='dc=Manager,dc=example,dc=com') register_str('password', group='ldap', default='<PASSWORD>') register_str('suffix', group='ldap', default='cn=example,cn=com') register_bool('use_dumb_member', group='ldap', default=False) register_str('user_name_attribute', group='ldap', default='sn') register_str('user_tree_dn', group='ldap', default=None) register_str('user_objectclass', group='ldap', default='inetOrgPerson') register_str('user_id_attribute', group='ldap', default='cn') register_str('tenant_tree_dn', group='ldap', default=None) register_str('tenant_objectclass', group='ldap', default='groupOfNames') register_str('tenant_id_attribute', group='ldap', default='cn') register_str('tenant_member_attribute', group='ldap', default='member') register_str('tenant_name_attribute', group='ldap', default='ou') register_str('role_tree_dn', group='ldap', default=None) register_str('role_objectclass', group='ldap', default='organizationalRole') register_str('role_id_attribute', group='ldap', default='cn') register_str('role_member_attribute', group='ldap', default='roleOccupant') #pam register_str('url', group='pam', default=None) register_str('userid', group='pam', default=None) register_str('password', group='pam', default=None)
1.976563
2
backend/tests/session/test_session_login_user.py
fjacob21/mididecweb
0
12797973
from datetime import datetime, timedelta import pytz from bcrypt_hash import BcryptHash import pytest from src.users import Users from src.events import Events from src.stores import MemoryStore from src.session import Session def test_login_user(): store = MemoryStore() users = Users(store) params = {} params['password'] = 'password' session = Session(params, store, '') password = BcryptHash('password').encrypt() user = users.add('email', 'name', 'alias', password, 'phone', True, True, user_id='test') user.validated = True with pytest.raises(Exception): session.login('') loging_dict = session.login('test') assert loging_dict assert 'user' in loging_dict def test_login_user_bad_password(): store = MemoryStore() users = Users(store) params = {} params['password'] = '<PASSWORD>' session = Session(params, store, '') password = BcryptHash('password').encrypt() user = users.add('email', 'name', 'alias', password, 'phone', True, True, user_id='test') user.validated = True with pytest.raises(Exception): session.login('test') def test_login_user_register(): store = MemoryStore() users = Users(store) events = Events(store) start = datetime.now(pytz.timezone("America/New_York")) dur = timedelta(hours=1) params = {} params['password'] = 'password' password = BcryptHash('password').encrypt() user = users.add('email', 'name', 'alias', password, 'phone', True, True, user_id='test') events.add('test', 'test', 30, start, dur, 'test', 'test', '<EMAIL>', 'test', user) user.validated = True params['register'] = 'test' session = Session(params, store, '') loging_dict = session.login('test') assert loging_dict assert 'user' in loging_dict assert 'register' in loging_dict assert loging_dict['register'] == 'test' def test_login_user_register_bad_event(): store = MemoryStore() users = Users(store) events = Events(store) start = datetime.now(pytz.timezone("America/New_York")) dur = timedelta(hours=1) params = {} params['password'] = 'password' password = BcryptHash('password').encrypt() user = users.add('email', 'name', 'alias', password, 'phone', True, True, user_id='test') events.add('test', 'test', 30, start, dur, 'test', 'test', '<EMAIL>', 'test', user) user.validated = True params['register'] = '' session = Session(params, store, '') with pytest.raises(Exception): session.login('test')
2.265625
2
tests/unit/test_sessions.py
irvansemestanya/vault-cli
52
12797974
<reponame>irvansemestanya/vault-cli<filename>tests/unit/test_sessions.py<gh_stars>10-100 import os import pytest from vault_cli import sessions @pytest.fixture def reset_requests_ca_bundle(): requests_ca_bundle = os.environ.get("REQUESTS_CA_BUNDLE") os.environ.pop("REQUESTS_CA_BUNDLE", None) yield if requests_ca_bundle is not None: os.environ["REQUESTS_CA_BUNDLE"] = requests_ca_bundle else: os.environ.pop("REQUESTS_CA_BUNDLE", None) @pytest.mark.parametrize( "verify, envvar, expected, expected_with_requests", [ (None, None, True, True), (True, None, True, True), (False, None, False, False), ("blu", None, "blu", "blu"), (None, "bla", "bla", "bla"), (True, "bla", "bla", "bla"), (False, "bla", False, "bla"), # This is the case we're supposedly fixing ( "blu", "bla", "bla", "bla", ), # This might be surprising but it's not important. ], ) def test_session( reset_requests_ca_bundle, requests_mock, verify, envvar, expected, expected_with_requests, ): requests_mock.get("https://bla") import requests vault_cli_session = sessions.Session() requests_session = requests.Session() if envvar is not None: os.environ["REQUESTS_CA_BUNDLE"] = envvar if verify is not None: vault_cli_session.verify = verify requests_session.verify = verify vault_cli_session.get("https://bla") # If this tests fails here, it means the Session workaround doesn't # work anymore assert requests_mock.last_request.verify == expected requests_session.get("https://bla") # If this tests fails here, it means requests have solved the bug # and we don't need a workaround anymore assert requests_mock.last_request.verify == expected_with_requests
2.046875
2
tensorflow/contrib/distributions/python/kernel_tests/estimator_test.py
tianyapiaozi/tensorflow
848
12797975
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for estimator.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import six from tensorflow.contrib.distributions.python.ops import estimator as estimator_lib from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators.head_test import _assert_metrics from tensorflow.contrib.learn.python.learn.estimators.head_test import _assert_no_variables from tensorflow.contrib.learn.python.learn.estimators.head_test import _assert_summary_tags from tensorflow.python.client import session from tensorflow.python.framework import ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.platform import test class EstimatorHeadDistributionRegressionTest(test.TestCase): def _assert_output_alternatives(self, model_fn_ops): self.assertEquals({ None: constants.ProblemType.LINEAR_REGRESSION }, { k: v[0] for k, v in six.iteritems(model_fn_ops.output_alternatives) }) def testNormalLocScaleLogits(self): # We will bias logits[..., 1] so that: logits[..., 1]=0 implies scale=1. scale_bias = np.log(np.expm1(1.)) def softplus(x): return np.log1p(np.exp(x)) def actual_loss(logits, labels): mu = actual_mean(logits) sigma = actual_stddev(logits) labels = np.squeeze(labels, -1) z = (labels - mu) / sigma loss = 0.5 * (z**2. + np.log(2. * np.pi)) + np.log(sigma) return loss.mean() def actual_mean(logits): return logits[..., 0] def actual_stddev(logits): return softplus(logits[..., 1] + scale_bias) def make_distribution_fn(logits): return normal_lib.Normal( loc=logits[..., 0], scale=nn_ops.softplus(logits[..., 1] + scale_bias)) head = estimator_lib.estimator_head_distribution_regression( make_distribution_fn, logits_dimension=2) labels = np.float32([[-1.], [0.], [1.]]) logits = np.float32([[0., -1], [1, 0.5], [-1, 1]]) with ops.Graph().as_default(), session.Session(): # Convert to tensor so we can index into head.distributions. tflogits = ops.convert_to_tensor(logits, name="logits") model_fn_ops = head.create_model_fn_ops( {}, labels=labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=tflogits) self._assert_output_alternatives(model_fn_ops) _assert_summary_tags(self, ["loss"]) _assert_no_variables(self) loss = actual_loss(logits, labels) _assert_metrics(self, loss, {"loss": loss}, model_fn_ops) # Now we verify the underlying distribution was correctly constructed. expected_mean = logits[..., 0] self.assertAllClose( expected_mean, head.distribution(tflogits).mean().eval(), rtol=1e-6, atol=0.) expected_stddev = softplus(logits[..., 1] + scale_bias) self.assertAllClose( expected_stddev, head.distribution(tflogits).stddev().eval(), rtol=1e-6, atol=0.) # Should have created only one distribution. self.assertEqual(1, len(head.distributions)) if __name__ == "__main__": test.main()
1.789063
2
seahub/organizations/api/users.py
samuelduann/seahub
420
12797976
# Copyright (c) 2012-2016 Seafile Ltd. import logging from rest_framework import status from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.authentication import SessionAuthentication from seaserv import ccnet_api from seahub.api2.permissions import IsProVersion from seahub.api2.throttling import UserRateThrottle from seahub.api2.authentication import TokenAuthentication from seahub.api2.utils import api_error from seahub.api2.endpoints.utils import is_org_user from seahub.utils import is_valid_email from seahub.base.accounts import User from seahub.base.templatetags.seahub_tags import email2nickname from seahub.profile.models import Profile logger = logging.getLogger(__name__) def get_user_info(email): profile = Profile.objects.get_profile_by_user(email) info = {} info['email'] = email info['name'] = email2nickname(email) info['contact_email'] = profile.contact_email if profile and profile.contact_email else '' return info class OrgAdminUser(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) throttle_classes = (UserRateThrottle,) permission_classes = (IsProVersion,) def put(self, request, org_id, email): """ update name of an org user. Permission checking: 1. only admin can perform this action. """ # resource check org_id = int(org_id) if not ccnet_api.get_org_by_id(org_id): error_msg = 'Organization %s not found.' % org_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) try: user = User.objects.get(email=email) except User.DoesNotExist: error_msg = 'User %s not found.' % email return api_error(status.HTTP_404_NOT_FOUND, error_msg) # permission check if not request.user.org.is_staff: error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) if request.user.org.org_id != org_id: error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) if not is_org_user(email, org_id): error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) # update user's name name = request.data.get("name", None) if name is not None: name = name.strip() if len(name) > 64: error_msg = 'Name is too long (maximum is 64 characters).' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) if "/" in name: error_msg = "Name should not include '/'." return api_error(status.HTTP_400_BAD_REQUEST, error_msg) try: Profile.objects.add_or_update(email, nickname=name) except Exception as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) # update user's contact email contact_email = request.data.get("contact_email", None) if contact_email is not None: contact_email = contact_email.strip() if contact_email != '' and not is_valid_email(contact_email): error_msg = 'contact_email invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) try: Profile.objects.add_or_update(email, contact_email=contact_email) except Exception as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) info = get_user_info(email) info['is_active'] = user.is_active return Response(info)
1.9375
2
perfect.py
CrownCrafter/School
0
12797977
<filename>perfect.py #!/usr/bin/env python3 x = int(input("Enter number ")) p = x i = 1 sum = 0 while(True): if(x // (10 ** i) == 0): dig = i break i += 1 i = 1 factors=[] while(i < x): if(x % i == 0): factors.append(i) i += 1 for i in range(0, len(factors)): sum += factors[i] if(sum == x): print("It is perfect number") else: print("It is not a perfect number")
3.875
4
app/recommendation/migrations/0003_auto_20181115_2259.py
A2ed/affective-recommendation
0
12797978
<gh_stars>0 # Generated by Django 2.1.3 on 2018-11-15 22:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('recommendation', '0002_auto_20181115_2204'), ] operations = [ migrations.RemoveField( model_name='state', name='user_id', ), migrations.AlterField( model_name='state', name='name', field=models.CharField(blank=True, max_length=50), ), ]
1.40625
1
helpers/move_detection.py
playingwithai/rock_paper_scissors_part3
0
12797979
import logging import os from enum import Enum from imageai.Prediction.Custom import CustomImagePrediction # Show only errors in console logging.getLogger("tensorflow").setLevel(logging.ERROR) class MovesEnum(int, Enum): ROCK = 0 PAPER = 1 SCISSORS = 2 class ModelTypeEnum(Enum): """ An helper enum to help for model type choice """ RESNET = 0 SQEEZENET = 1 INCEPTIONV3 = 2 DENSENET = 3 class RockPaperScissorsPredictor: """ This class contains the required code for model training and move prediction using a webcam """ MODEL_TYPE_SET_LOOKUP = { ModelTypeEnum.RESNET: lambda x: x.setModelTypeAsResNet(), ModelTypeEnum.SQEEZENET: lambda x: x.setModelTypeAsSqueezeNet(), ModelTypeEnum.INCEPTIONV3: lambda x: x.setModelTypeAsInceptionV3(), ModelTypeEnum.DENSENET: lambda x: x.setModelTypeAsDenseNet(), } MOVES_LOOKUP = { "rock": MovesEnum.ROCK, "paper": MovesEnum.PAPER, "scissors": MovesEnum.SCISSORS, } def __init__( self, model_type=ModelTypeEnum.RESNET, class_number=3, # We have 3 different objects: "rock", "paper", "scissors" ): self.model_type = model_type self.class_number = class_number self.base_path = os.getcwd() # Instantiate the CustomImagePrediction object that will predict our moves self.predictor = CustomImagePrediction() # Set the model type of the neural network (it must be the same of the training) self._set_proper_model_type(self.model_type) # Set path to the trained model file self.predictor.setModelPath( os.path.join(self.base_path, "data", "move_detector", "model.h5") ) # Set path to the json file that contains our classes and their labels self.predictor.setJsonPath( os.path.join(self.base_path, "data", "move_detector", "model_class.json") ) # Load the trained model and set it to use "class_number" classes self.predictor.loadModel(num_objects=self.class_number) def _set_proper_model_type(self, model_type): self.MODEL_TYPE_SET_LOOKUP[model_type](self.predictor) def detect_move_from_picture(self, picture, sensibility=90): predictions, probabilities = self.predictor.predictImage( picture, result_count=3, input_type="array" ) # Get a tuple (class_predicted, probability) that contains the best # prediction best_prediction = max( zip(predictions, probabilities), key=lambda x: x[1] ) if best_prediction[1] < sensibility: return return self.MOVES_LOOKUP[best_prediction[0]]
2.890625
3
fuzzy_modeling/tests/models/test_system_model.py
arruda/cloudfuzzy
2
12797980
<gh_stars>1-10 # -*- coding: utf-8 -*- import inspect import mock from django.test import TestCase from fuzzy_modeling.tests.utils import ResetMock from fuzzy_modeling.models.systems import SystemModel from fuzzy.System import System class SystemModelTest(TestCase, ResetMock): def setUp(self): # self.aluno = mommy.make_one(Aluno) # from fuzzy_modeling.models.systems import SystemModel as SystemModelOriginal # import pdb; pdb.set_trace() # reset_mock(SystemModel,'inputvariablemodel_set') # reset_mock(SystemModel,'outputvariablemodel_set') # reset_mock(SystemModel,'rulemodel_set') pass def tearDown(self): """And kill it when done""" self.reset_all_pre_mocks(SystemModel) def _named_and_pyfuzzymixin_mock(self, name): """ mock a variable or to be an object that has attr name and a get_pyfuzzy that returns this name """ var = mock.Mock() var.name = name var.get_pyfuzzy = lambda systme=None: name return var def _mock_systemModel(self): self.system_description = "System description" self.system = SystemModel(description=self.system_description) self.input_variable_mock = [ self._named_and_pyfuzzymixin_mock("iv%d" % i) for i in xrange(1,2) ] self.output_variable_mock = [ self._named_and_pyfuzzymixin_mock("ov%d" % i) for i in xrange(1,2) ] self.rules_mock = [ self._named_and_pyfuzzymixin_mock("r%d" % i) for i in xrange(1,2) ] # mocking inputvariablemodel_set # inputvariablemodel_set = lambda : None inputvariablemodel_set = mock.Mock() inputvariablemodel_set.all = lambda : self.input_variable_mock self.set_pre_mock(SystemModel,'inputvariablemodel_set') SystemModel.inputvariablemodel_set = inputvariablemodel_set # mocking outputvariablemodel_set outputvariablemodel_set = mock.Mock() outputvariablemodel_set.all = lambda : self.output_variable_mock self.set_pre_mock(SystemModel,'outputvariablemodel_set') SystemModel.outputvariablemodel_set = outputvariablemodel_set # mocking rulemodel_set rulemodel_set = mock.Mock() rulemodel_set.all = lambda : self.rules_mock self.set_pre_mock(SystemModel,'rulemodel_set') SystemModel.rulemodel_set = rulemodel_set return self.system def test_system_get_pyfuzzy(self): " shoud return the correct corresponding pyfuzzy object " new_system = self._mock_systemModel() new_pyfuzzy_system = new_system.get_pyfuzzy() # the expected pyfuzzy system pyfuzzy_system_expected = System(self.system_description) variable_dict = { var.name : var.get_pyfuzzy() for var in self.input_variable_mock + self.output_variable_mock } pyfuzzy_system_expected.variables = variable_dict rules_dict = { rule.name : rule.get_pyfuzzy() for rule in self.rules_mock } pyfuzzy_system_expected.rules = rules_dict self.assertEquals(pyfuzzy_system_expected.description, new_pyfuzzy_system.description) self.assertDictEqual(pyfuzzy_system_expected.variables, new_pyfuzzy_system.variables) self.assertDictEqual(pyfuzzy_system_expected.rules, new_pyfuzzy_system.rules) @classmethod def _createSystem(cls): import fuzzy.System system = fuzzy.System.System(description= """This fuzzy system is to control the inverted pendulum into an upright position as well as at the position X=0. It also is used to demonstrate some features of pyfuzzy. This is the reason, it uses different fuzzy norm in normally symmetrical rules.""") from fuzzy.norm.AlgebraicProduct import AlgebraicProduct from fuzzy.norm.AlgebraicSum import AlgebraicSum from fuzzy.fuzzify.Plain import Plain from fuzzy.defuzzify.COG import COG # set defuzzification method and default norms INF = AlgebraicProduct() ACC = AlgebraicSum() COM = AlgebraicSum() CER = AlgebraicProduct() COG = COG(INF=INF,ACC=ACC,failsafe = 0., segment_size=0.5) from fuzzy.InputVariable import InputVariable from fuzzy.OutputVariable import OutputVariable from fuzzy.Adjective import Adjective from fuzzy.set.Polygon import Polygon angle = InputVariable(fuzzify=Plain(),description='angle',min=0.,max=360.,unit='degrees') system.variables['Phi'] = angle angle.adjectives['up_more_right'] = Adjective(Polygon([(0.,0.),(30.,1.),(60.,0.)])) angle.adjectives['up_right'] = Adjective(Polygon([(30.,0.),(60.,1.),(90.,0.)])) angle.adjectives['up'] = Adjective(Polygon([(60.,0.),(90.,1.),(120.,0.)])) angle.adjectives['up_left'] = Adjective(Polygon([(90.,0.),(120.,1.),(150.,0.)])) angle.adjectives['up_more_left'] = Adjective(Polygon([(120.,0.),(150.,1.),(180.,0.)])) angle.adjectives['down_more_left'] = Adjective(Polygon([(180.,0.),(210.,1.),(240.,0.)])) angle.adjectives['down_left'] = Adjective(Polygon([(210.,0.),(240.,1.),(270.,0.)])) angle.adjectives['down'] = Adjective(Polygon([(240.,0.),(270.,1.),(300.,0.)])) angle.adjectives['down_right'] = Adjective(Polygon([(270.,0.),(300.,1.),(330.,0.)])) angle.adjectives['down_more_right'] = Adjective(Polygon([(300.,0.),(330.,1.),(360.,0.)])) angle_velocity = InputVariable(fuzzify=Plain(),description='angle velocity',min=-600.,max=600.,unit='degrees per second') system.variables['dPhi_dT'] = angle_velocity angle_velocity.adjectives['cw_fast'] = Adjective(Polygon([(-600.,1.),(-300.,0.)])) angle_velocity.adjectives['cw_slow'] = Adjective(Polygon([(-600.,0.),(-300.,1.),(0.,0.)])) angle_velocity.adjectives['stop'] = Adjective(Polygon([(-300.,0.),(0.,1.),(300.,0.)])) angle_velocity.adjectives['ccw_slow'] = Adjective(Polygon([(0.,0.),(300.,1.),(600.,0.)])) angle_velocity.adjectives['ccw_fast'] = Adjective(Polygon([(300.,0.),(600.,1.)])) position = InputVariable(fuzzify=Plain(),description='position',min=-20.,max=20.,unit='meter') system.variables['X'] = position position.adjectives['left_far'] = Adjective(Polygon([(-20.,1.),(-10.,0.)])) position.adjectives['left_near'] = Adjective(Polygon([(-20.,0.),(-5.,1.),(0.,0.)])) position.adjectives['stop'] = Adjective(Polygon([(-5.,0.),(0.,1.),(5.,0.)])) position.adjectives['right_near'] = Adjective(Polygon([(0.,0.),(5.,1.),(20.,0.)])) position.adjectives['right_far'] = Adjective(Polygon([(10.,0.),(20.,1.)])) velocity = InputVariable(fuzzify=Plain(),description='velocity',min=-10.,max=10.,unit='meter per second') system.variables['dX_dT'] = velocity velocity.adjectives['left_fast'] = Adjective(Polygon([(-10.,1.),(-5.,0.)])) velocity.adjectives['left_slow'] = Adjective(Polygon([(-10.,0.),(-2.,1.),(0.,0.)])) velocity.adjectives['stop'] = Adjective(Polygon([(-2.,0.),(0.,1.),(2.,0.)])) velocity.adjectives['right_slow'] = Adjective(Polygon([(0.,0.),(2.,1.),(10.,0.)])) velocity.adjectives['right_fast'] = Adjective(Polygon([(5.,0.),(10.,1.)])) acceleration = OutputVariable(defuzzify=COG,description='acceleration',min=-50.,max=50.,unit='meter per second^2') system.variables['a'] = acceleration acceleration.adjectives['left_fast'] = a_left_fast = Adjective(Polygon([(-50.,0.),(-20.,1.),(-10.,0.)]),COM=COM) acceleration.adjectives['left_slow'] = a_left_slow = Adjective(Polygon([(-20.,0.),(-10.,1.),(0.,0.)]),COM=COM) acceleration.adjectives['stop'] = a_stop = Adjective(Polygon([(-10.,0.),(0.,1.),(10.,0.)]),COM=COM) acceleration.adjectives['right_slow'] = a_right_slow = Adjective(Polygon([(0.,0.),(10.,1.),(20.,0.)]),COM=COM) acceleration.adjectives['right_fast'] = a_right_fast = Adjective(Polygon([(10.,0.),(20.,1.),(50.,0.)]),COM=COM) from fuzzy.Rule import Rule from fuzzy.norm.Max import Max #from fuzzy.norm.Min import Min #from fuzzy.norm.BoundedDifference import BoundedDifference #from fuzzy.norm.DrasticSum import DrasticSum from fuzzy.norm.EinsteinSum import EinsteinSum from fuzzy.norm.DombiUnion import DombiUnion from fuzzy.operator.Compound import Compound from fuzzy.operator.Input import Input from fuzzy.operator.Not import Not system.rules['stop'] = Rule( adjective=a_stop, # it gets its value from here operator=Compound( Max(), Compound( AlgebraicProduct(), Input(system.variables["Phi"].adjectives["up"]), Input(system.variables["dPhi_dT"].adjectives["stop"]) ), Compound( AlgebraicProduct(), Input(system.variables["Phi"].adjectives["up_right"]), Input(system.variables["dPhi_dT"].adjectives["ccw_slow"]) ), Compound( AlgebraicProduct(), Input(system.variables["Phi"].adjectives["up_left"]), Input(system.variables["dPhi_dT"].adjectives["cw_slow"]) ) ), CER=CER ) system.rules['tilts right'] = Rule( adjective=a_right_slow, # it gets its value from here operator=Compound( AlgebraicProduct(), Not( Compound( AlgebraicProduct(), Compound( AlgebraicSum(), Input(system.variables["X"].adjectives["left_near"]), Input(system.variables["X"].adjectives["left_far"]) ), Compound( EinsteinSum(), Input(system.variables["dX_dT"].adjectives["left_slow"]), Input(system.variables["dX_dT"].adjectives["left_fast"]) ) ), ), Input(system.variables["Phi"].adjectives["up_right"]) ), CER=CER ) system.rules['tilts left'] = Rule( adjective=a_left_slow, # it gets its value from here operator=Compound( AlgebraicProduct(), Not( Compound( AlgebraicProduct(), Compound( AlgebraicSum(), Input(system.variables["X"].adjectives["right_near"]), Input(system.variables["X"].adjectives["right_far"]) ), Compound( DombiUnion(0.25), Input(system.variables["dX_dT"].adjectives["right_slow"]), Input(system.variables["dX_dT"].adjectives["right_fast"]) ) ), ), Input(system.variables["Phi"].adjectives["up_left"]) ), CER=CER ) system.rules['far right'] = Rule( adjective=a_right_fast, # it gets its value from here operator=Input(system.variables["Phi"].adjectives["up_more_right"]), CER=CER ) system.rules['far left'] = Rule( adjective=a_left_fast, # it gets its value from here operator=Input(system.variables["Phi"].adjectives["up_more_left"]), CER=CER ) system.rules['accelerate cw if down'] = Rule( adjective=a_right_slow, # it gets its value from here operator=Compound( AlgebraicProduct(), Input(system.variables["Phi"].adjectives["down"]), Compound( AlgebraicProduct(), Input(system.variables["dPhi_dT"].adjectives["cw_slow"]), Input(system.variables["dPhi_dT"].adjectives["cw_slow"]), ) ), CER=CER ) system.rules['accelerate ccw if down'] = Rule( adjective=a_left_slow, # it gets its value from here operator=Compound( AlgebraicProduct(), Input(system.variables["Phi"].adjectives["down"]), Compound( AlgebraicProduct(), Input(system.variables["dPhi_dT"].adjectives["ccw_slow"]), Input(system.variables["dPhi_dT"].adjectives["ccw_slow"]), ) ), CER=CER ) return system def test_system_from_pyfuzzy(self): " shoud return the correct corresponding Model for the pyfuzzy object " pyfuzzy_system_expected = self._createSystem() new_pyfuzzy_system = SystemModel.from_pyfuzzy(pyfuzzy_system_expected).get_pyfuzzy() self._test_new_vs_expected_fuzzy_sysem(new_pyfuzzy_system, pyfuzzy_system_expected) def _test_new_vs_expected_fuzzy_sysem(self, new_pyfuzzy_system, pyfuzzy_system_expected): import math input_dict = {} input_dict["X"] = 0.0 #: position [m] input_dict["dX_dT"] = 0.0 #: velocity [m/s] input_dict["Phi"] = math.radians(45.0) #: angle [rad] input_dict["dPhi_dT"] = math.radians(0.0) #: angle velocity [rad/s] i_dict1 = input_dict.copy() i_dict2 = input_dict.copy() output_dict1 = { 'a' : 0.0 #: acceleration [m/s²] } output_dict2 = { 'a' : 0.0 #: acceleration [m/s²] } pyfuzzy_system_expected.fuzzify(i_dict1) pyfuzzy_system_expected.inference() pyfuzzy_system_expected.defuzzify(output_dict1) new_pyfuzzy_system.fuzzify(i_dict2) new_pyfuzzy_system.inference() new_pyfuzzy_system.defuzzify(output_dict2) for var_name, var in pyfuzzy_system_expected.variables.items(): new_var = new_pyfuzzy_system.variables[var_name] self.assertIsInstance(new_var, var.__class__) self.assertEquals(new_var.description, var.description) self.assertEquals(new_var.min, var.min) self.assertEquals(new_var.max, var.max) self.assertEquals(new_var.unit, var.unit) for adj_name, adj in var.adjectives.items(): new_adj = var.adjectives[adj_name] self._test_adj(adj, new_adj) #: is input if hasattr(var, 'fuzzify'): self._test_fuzzify(var.fuzzify, new_var.fuzzify) #: output else: self._test_defuzzify(var.defuzzify, new_var.defuzzify) # import pdb; pdb.set_trace() var_value = var.getValue() new_var_value = new_var.getValue() # if var_value != new_var_value: self.assertEquals(new_var_value, var_value) for rule_name, rule in pyfuzzy_system_expected.rules.items(): new_rule = new_pyfuzzy_system.rules[rule_name] self._test_rule(rule, new_rule) pyfuzzy_system_expected.calculate(i_dict1, output_dict1) new_pyfuzzy_system.calculate(i_dict2, output_dict2) self.assertEquals(output_dict1['a'], output_dict2['a']) def _test_rules_adj_in_out_adjs(self, system): "test if all the rules's adj are the same instance of an output adj" outputs_adjs = [] for var_name, var in system.variables.items(): #: is output if not hasattr(var, 'fuzzify'): for adj_name, adj in var.adjectives.items(): outputs_adjs.append(adj) for rule_name, rule in system.rules.items(): self.assertIn(rule.adjective, outputs_adjs) def _test_adj(self, adj, new_adj): " test only a given adjective " self.assertIsInstance(new_adj, adj.__class__) self._test_set(adj.set, new_adj.set) if adj.COM is not None and new_adj.COM is not None: self._test_norm(adj.COM, new_adj.COM) membership = adj.getMembership() new_membership = new_adj.getMembership() # if membership != new_membership: # import pdb; pdb.set_trace() self.assertEquals( membership, new_membership, msg="%s != %s in %s" % (membership, new_membership, adj) ) def _test_set(self, set, new_set): " test only a given set " self.assertIsInstance(new_set, set.__class__) params = [] try: for arg in inspect.getargspec(set.__init__).args: if arg != 'self': params.append(arg) # will raise this exception when the given type don't implement a __init__ function # (never overrided the object.__init__) except TypeError: pass for param_name in params: arg = getattr(set, param_name) new_arg = getattr(new_set, param_name) self.assertEquals(new_arg, arg) cog = None new_cog = None try: cog = set.getCOG() except Exception, e: # self.assertRaises(Exception, new_set.getCOG) self.assertRaisesMessage(Exception, e.message, new_set.getCOG) else: new_cog = new_set.getCOG() self.assertEquals(new_cog, cog) self.assertEquals(new_set.points, set.points) def _test_norm(self, norm, new_norm): " test only a given norm " self.assertIsInstance(new_norm, norm.__class__) params = [] try: for arg in inspect.getargspec(norm.__init__).args: if arg != 'self': params.append(arg) # will raise this exception when the given type don't implement a __init__ function # (never overrided the object.__init__) except TypeError: pass for param_name in params: arg = getattr(norm, param_name) new_arg = getattr(new_norm, param_name) self.assertEquals(new_arg, arg) self.assertEquals(new_norm.UNKNOWN, norm.UNKNOWN) self.assertEquals(new_norm.T_NORM, norm.T_NORM) self.assertEquals(new_norm.S_NORM, norm.S_NORM) def _test_fuzzify(self, fuzzify, new_fuzzify): " test only a given fuzzify " self.assertIsInstance(new_fuzzify, fuzzify.__class__) def _test_defuzzify(self, defuzzify, new_defuzzify): " test only a given fuzzify " self.assertIsInstance(new_defuzzify, defuzzify.__class__) params = [] try: for arg in inspect.getargspec(defuzzify.__init__).args: if arg != 'self' and arg != 'INF' and arg != 'ACC': params.append(arg) # will raise this exception when the given type don't implement a __init__ function # (never overrided the object.__init__) except TypeError: pass for param_name in params: arg = getattr(defuzzify, param_name) new_arg = getattr(new_defuzzify, param_name) self.assertEquals(new_arg, arg) self._test_norm(defuzzify.INF, new_defuzzify.INF) self._test_norm(defuzzify._INF, new_defuzzify._INF) self._test_norm(defuzzify.ACC, new_defuzzify.ACC) self._test_norm(defuzzify._ACC, new_defuzzify._ACC) def _test_rule(self, rule, new_rule): "test only a given rule" self.assertIsInstance(new_rule, rule.__class__) self.assertEquals(rule.certainty, new_rule.certainty) self._test_adj(rule.adjective, new_rule.adjective) self._test_norm(rule.CER, new_rule.CER) self._test_norm(rule.CER, new_rule.CER) self._test_operator(rule.operator, new_rule.operator) def _test_operator(self, operator, new_operator): "test only a given rule" self.assertIsInstance(new_operator, operator.__class__) if operator.__class__.__name__ == 'Compound': self._test_norm(operator.norm, new_operator.norm) for i_inputs in xrange(0, len(operator.inputs)): inp = operator.inputs[i_inputs] new_inp = new_operator.inputs[i_inputs] self._test_operator(inp, new_inp) elif operator.__class__.__name__ == 'Const': self.assertEquals(new_operator.value, operator.value) elif operator.__class__.__name__ == 'Input': self._test_adj(operator.adjective, new_operator.adjective) elif operator.__class__.__name__ == 'Not': self._test_operator(operator.input, new_operator.input) op_call = operator() new_op_call = new_operator() self.assertEquals( op_call, new_op_call, msg="%s != %s in %s" % (op_call, new_op_call, operator) ) def test_set_only(self): " should return the correct outout when only changing the set to a SetModel in th System " from fuzzy_modeling.models import AdjectiveModel pyfuzzy_system_expected = self._createSystem() new_pyfuzzy_system = self._createSystem() SystemModel.from_pyfuzzy(pyfuzzy_system_expected).get_pyfuzzy() from fuzzy.norm.AlgebraicSum import AlgebraicSum from fuzzy.Adjective import Adjective from fuzzy.set.Polygon import Polygon COM = AlgebraicSum() a_stop = Adjective(Polygon([(-10., 0.), (0., 1.), (10., 0.)]), COM=COM) a_stop.name = 'stop' new_a_stop = AdjectiveModel.from_pyfuzzy(a_stop).get_pyfuzzy() new_pyfuzzy_system.variables['a'].adjectives['stop'] = new_a_stop self._test_new_vs_expected_fuzzy_sysem(new_pyfuzzy_system, pyfuzzy_system_expected) def test_output_variable_only(self): " should return the correct outout when only changing the outputvar to a OutputVariableModel in th System " from fuzzy_modeling.models import OutputVariableModel from fuzzy.norm.AlgebraicSum import AlgebraicSum from fuzzy.norm.AlgebraicProduct import AlgebraicProduct from fuzzy.Adjective import Adjective from fuzzy.set.Polygon import Polygon from fuzzy.defuzzify.COG import COG from fuzzy.OutputVariable import OutputVariable pyfuzzy_system_expected = self._createSystem() new_pyfuzzy_system = self._createSystem() INF = AlgebraicProduct() ACC = AlgebraicSum() COM = AlgebraicSum() COG = COG(INF=INF, ACC=ACC, failsafe=0., segment_size=0.5) acceleration = OutputVariable( defuzzify=COG, description='acceleration', min=-50., max=50., unit='meter per second^2') acceleration.adjectives['left_fast'] = a_left_fast = Adjective(Polygon([(-50.,0.),(-20.,1.),(-10.,0.)]),COM=COM) acceleration.adjectives['left_slow'] = a_left_slow = Adjective(Polygon([(-20.,0.),(-10.,1.),(0.,0.)]),COM=COM) acceleration.adjectives['stop'] = a_stop = Adjective(Polygon([(-10.,0.),(0.,1.),(10.,0.)]),COM=COM) acceleration.adjectives['right_slow'] = a_right_slow = Adjective(Polygon([(0.,0.),(10.,1.),(20.,0.)]),COM=COM) acceleration.adjectives['right_fast'] = a_right_fast = Adjective(Polygon([(10.,0.),(20.,1.),(50.,0.)]),COM=COM) acceleration.name = 'a' new_acceleration = OutputVariableModel.from_pyfuzzy(acceleration).get_pyfuzzy() new_pyfuzzy_system.variables['a'] = acceleration import math input_dict = {} input_dict["X"] = 0.0 #: position [m] input_dict["dX_dT"] = 0.0 #: velocity [m/s] input_dict["Phi"] = math.radians(45.0) #: angle [rad] input_dict["dPhi_dT"] = math.radians(0.0) #: angle velocity [rad/s] i_dict1 = input_dict.copy() i_dict2 = input_dict.copy() output_dict1 = { 'a' : 0.0 #: acceleration [m/s²] } output_dict2 = { 'a' : 0.0 #: acceleration [m/s²] } pyfuzzy_system_expected.fuzzify(i_dict1) pyfuzzy_system_expected.inference() pyfuzzy_system_expected.defuzzify(output_dict1) new_pyfuzzy_system.fuzzify(i_dict2) new_pyfuzzy_system.inference() new_pyfuzzy_system.defuzzify(output_dict2) pyfuzzy_system_expected.calculate(i_dict1, output_dict1) new_pyfuzzy_system.calculate(i_dict2, output_dict2) self.assertNotEquals(output_dict1['a'], output_dict2['a']) def test_output_variable_changing_one_sets_only(self): " should return the correct output when changing all the sets to the new instance of same value " from fuzzy.norm.AlgebraicSum import AlgebraicSum from fuzzy.norm.AlgebraicProduct import AlgebraicProduct from fuzzy.Adjective import Adjective from fuzzy.set.Polygon import Polygon from fuzzy.defuzzify.COG import COG pyfuzzy_system_expected = self._createSystem() new_pyfuzzy_system = self._createSystem() INF = AlgebraicProduct() ACC = AlgebraicSum() COM = AlgebraicSum() COG = COG(INF=INF, ACC=ACC, failsafe=0., segment_size=0.5) acceleration = new_pyfuzzy_system.variables['a'] acceleration.adjectives['right_fast'] = a_right_fast = Adjective(Polygon([(10.,0.),(20.,1.),(50.,0.)]),COM=COM) new_pyfuzzy_system.variables['a'] = acceleration import math input_dict = {} input_dict["X"] = 0.0 #: position [m] input_dict["dX_dT"] = 0.0 #: velocity [m/s] input_dict["Phi"] = math.radians(45.0) #: angle [rad] input_dict["dPhi_dT"] = math.radians(0.0) #: angle velocity [rad/s] i_dict1 = input_dict.copy() i_dict2 = input_dict.copy() output_dict1 = { 'a' : 0.0 #: acceleration [m/s²] } output_dict2 = { 'a' : 0.0 #: acceleration [m/s²] } pyfuzzy_system_expected.fuzzify(i_dict1) pyfuzzy_system_expected.inference() pyfuzzy_system_expected.defuzzify(output_dict1) new_pyfuzzy_system.fuzzify(i_dict2) new_pyfuzzy_system.inference() new_pyfuzzy_system.defuzzify(output_dict2) pyfuzzy_system_expected.calculate(i_dict1, output_dict1) new_pyfuzzy_system.calculate(i_dict2, output_dict2) self.assertNotEquals(output_dict1['a'], output_dict2['a']) def test_output_variable_changing_one_set_and_rule(self): " should return the correct output when changing all the sets to the new instance of same value, and changing the corresponding rule " from fuzzy_modeling.models import OutputVariableModel from fuzzy.norm.AlgebraicSum import AlgebraicSum from fuzzy.norm.AlgebraicProduct import AlgebraicProduct from fuzzy.Adjective import Adjective from fuzzy.set.Polygon import Polygon from fuzzy.defuzzify.COG import COG pyfuzzy_system_expected = self._createSystem() new_pyfuzzy_system = self._createSystem() INF = AlgebraicProduct() ACC = AlgebraicSum() COM = AlgebraicSum() COG = COG(INF=INF, ACC=ACC, failsafe=0., segment_size=0.5) acceleration = new_pyfuzzy_system.variables['a'] acceleration.adjectives['right_fast'] = a_right_fast = Adjective(Polygon([(10.,0.),(20.,1.),(50.,0.)]),COM=COM) new_pyfuzzy_system.rules['far right'].adjective = a_right_fast import math input_dict = {} input_dict["X"] = 0.0 #: position [m] input_dict["dX_dT"] = 0.0 #: velocity [m/s] input_dict["Phi"] = math.radians(45.0) #: angle [rad] input_dict["dPhi_dT"] = math.radians(0.0) #: angle velocity [rad/s] i_dict1 = input_dict.copy() i_dict2 = input_dict.copy() output_dict1 = { 'a' : 0.0 #: acceleration [m/s²] } output_dict2 = { 'a' : 0.0 #: acceleration [m/s²] } pyfuzzy_system_expected.fuzzify(i_dict1) pyfuzzy_system_expected.inference() pyfuzzy_system_expected.defuzzify(output_dict1) new_pyfuzzy_system.fuzzify(i_dict2) new_pyfuzzy_system.inference() new_pyfuzzy_system.defuzzify(output_dict2) pyfuzzy_system_expected.calculate(i_dict1, output_dict1) new_pyfuzzy_system.calculate(i_dict2, output_dict2) self.assertEquals(output_dict1['a'], output_dict2['a']) self._test_rules_adj_in_out_adjs(new_pyfuzzy_system) def test_rule_has_same_adjs_as_output_only(self): " check if a rule has the same adjectives as the output" pyfuzzy_system_expected = self._createSystem() new_pyfuzzy_system = SystemModel.from_pyfuzzy(pyfuzzy_system_expected).get_pyfuzzy() self._test_rules_adj_in_out_adjs(pyfuzzy_system_expected) self._test_rules_adj_in_out_adjs(new_pyfuzzy_system) def test_system_from_pyfuzzy_changing_a_single_rule(self): "test if work changing a single rule" from fuzzy.Rule import Rule from fuzzy.operator.Input import Input from fuzzy.norm.AlgebraicProduct import AlgebraicProduct CER = AlgebraicProduct() pyfuzzy_system_expected = self._createSystem() new_pyfuzzy_system = self._createSystem() a_right_fast = new_pyfuzzy_system.variables["a"].adjectives["right_fast"] far_right = Rule( adjective=a_right_fast, # it gets its value from here operator=Input(new_pyfuzzy_system.variables["Phi"].adjectives["up_more_right"]), CER=CER ) new_pyfuzzy_system.rules['far right'] = far_right self._test_rules_adj_in_out_adjs(new_pyfuzzy_system) import math input_dict = {} input_dict["X"] = 0.0 #: position [m] input_dict["dX_dT"] = 0.0 #: velocity [m/s] input_dict["Phi"] = math.radians(45.0) #: angle [rad] input_dict["dPhi_dT"] = math.radians(0.0) #: angle velocity [rad/s] i_dict1 = input_dict.copy() i_dict2 = input_dict.copy() output_dict1 = { 'a' : 0.0 #: acceleration [m/s²] } output_dict2 = { 'a' : 0.0 #: acceleration [m/s²] } pyfuzzy_system_expected.calculate(i_dict1, output_dict1) new_pyfuzzy_system.calculate(i_dict2, output_dict2) self.assertEquals(output_dict1['a'], output_dict2['a']) def test_system_from_pyfuzzy_changing_a_single_rule_from_model(self): "test if work changing a single rule, but from model" from fuzzy_modeling.models import RuleModel from fuzzy.Rule import Rule from fuzzy.operator.Input import Input from fuzzy.norm.AlgebraicProduct import AlgebraicProduct CER = AlgebraicProduct() pyfuzzy_system_expected = self._createSystem() new_pyfuzzy_system = self._createSystem() system_model = SystemModel.from_pyfuzzy(self._createSystem()) output_a = new_pyfuzzy_system.variables["a"] output_a.name = 'a' a_right_fast = output_a.adjectives["right_fast"] a_right_fast.name = 'right_fast' far_right = Rule( adjective=a_right_fast, # it gets its value from here operator=Input(new_pyfuzzy_system.variables["Phi"].adjectives["up_more_right"]), CER=CER ) far_right.name = 'far right' rule_model = RuleModel.from_pyfuzzy(far_right, new_pyfuzzy_system, system_model) new_rule = rule_model.get_pyfuzzy(new_pyfuzzy_system) # new_rule.operator = Input(new_pyfuzzy_system.variables["Phi"].adjectives["up_more_right"]) new_pyfuzzy_system.rules['far right'] = new_rule self._test_rules_adj_in_out_adjs(new_pyfuzzy_system) import math input_dict = {} input_dict["X"] = 0.0 #: position [m] input_dict["dX_dT"] = 0.0 #: velocity [m/s] input_dict["Phi"] = math.radians(45.0) #: angle [rad] input_dict["dPhi_dT"] = math.radians(0.0) #: angle velocity [rad/s] i_dict1 = input_dict.copy() i_dict2 = input_dict.copy() output_dict1 = { 'a' : 0.0 #: acceleration [m/s²] } output_dict2 = { 'a' : 0.0 #: acceleration [m/s²] } pyfuzzy_system_expected.calculate(i_dict1, output_dict1) new_pyfuzzy_system.calculate(i_dict2, output_dict2) self.assertEquals(output_dict1['a'], output_dict2['a']) def test_system_from_pyfuzzy_with_other_input(self): " shoud return the correct corresponding Model for the pyfuzzy object with another input" pyfuzzy_system_expected = self._createSystem() new_pyfuzzy_system = SystemModel.from_pyfuzzy(pyfuzzy_system_expected).get_pyfuzzy() import math input_dict = {} input_dict["X"] = 190.0 #: position [m] input_dict["dX_dT"] = 500.0 #: velocity [m/s] input_dict["Phi"] = math.radians(270.0) #: angle [rad] input_dict["dPhi_dT"] = math.radians(90.0) #: angle velocity [rad/s] i_dict1 = input_dict.copy() i_dict2 = input_dict.copy() output_dict1 = { 'a' : 0.0 #: acceleration [m/s²] } output_dict2 = { 'a' : 0.0 #: acceleration [m/s²] } pyfuzzy_system_expected.calculate(i_dict1, output_dict1) new_pyfuzzy_system.calculate(i_dict2, output_dict2) self.assertEquals(output_dict1['a'], output_dict2['a'])
2.703125
3
markovdwp/priors/vamp.py
ivannz/MarkovDWP
0
12797981
<gh_stars>0 import math import torch class VAMP(torch.nn.Module): """Varational Mixture of Posteriors prior by <NAME> Welling (2017). URL --- https://arxiv.org/abs/1705.07120 """ def __init__(self, encoder, n_sample=50): super().__init__() self.encoder = encoder # pseudoinputs self.pseudoinputs = torch.nn.Parameter( torch.Tensor(n_sample, *encoder.input_shape) ) self.reset_pseudoinputs() def reset_pseudoinputs(self): self.pseudoinputs.data.normal_(mean=0., std=0.01) @property def event_shape(self): return self.encoder.event_shape def rsample_from_index(self, index): """Draw diffenretiable variates from VAMP modes specified by `index`. """ q = self.encoder(self.pseudoinputs[index.flatten()]) return q.rsample().reshape(*index.shape, *self.event_shape) def rsample(self, sample_shape): r"""Draw diffenretiable variates from VAMP. Details ------- Since VAMP is $\pi(z) = \frac1K \sum_k q(z\mid u_k)$, i.e. the mixture proibabilities are uniform and fixed, there is no need for REINFORCE. """ if not isinstance(sample_shape, torch.Size): sample_shape = torch.Size(sample_shape) # index is uniformly random, and not learnable, thus no need to backprop # through it and hence no need for reinforce gradients index = torch.randint(len(self.pseudoinputs), size=(sample_shape.numel(),)) return self.rsample_from_index(index.reshape(*sample_shape)) @torch.no_grad() def sample(self, sample_shape): """Generate a `sample_shape` shaped sample from VAMP.""" return self.rsample(sample_shape) def log_prob(self, value): r"""Differentiable log-probability of the VAMP prior. Details ------- VAMP prior (Varational Mixture of Posteriors) is variant of emprirical Bayes prior learnt long with the VAE from the data. It the following mixture $ \pi(z) = \tfrac1K \sum_k q(z \mid u_k) $ where $q(z|x)$ is the approximate posterior represented by the encoder network (with some distribution on output) and $u_k$ are learnable `pseudoinputs`, that detrmine the modes of the prior. The log-probability is log-sum-exp of log-probs of the VAE's encoder at each pseudoinput: $$ \log \pi(z) = \log \Bigl( \sum_k \exp{ \{ \log q(z\mid u_k) \} } \Bigr) - \log K \,. $$ """ n_dim = len(self.event_shape) assert value.shape[-n_dim:] == self.event_shape # q has batch_shape `n_sample` (q_k(z) = q(z \mid u_k)) q = self.encoder(self.pseudoinputs) # broadcast value so that `log_q` has shape `*batch_shape x n_sample`, # where `batch_shape` is the leading dimensions of `value` log_q = q.log_prob(value.unsqueeze(-n_dim-1)) # vamp is \tfrac1K \sum_k q(z \mid u_k) # log-sum-exp-average along the pseudoinput dimension return log_q.logsumexp(dim=-1) - math.log(len(self.pseudoinputs))
2.71875
3
09-revisao/practice_python/cows_and_bulls.py
lcnodc/codes
1
12797982
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Exercise 18: Cows And Bulls Create a program that will play the “cows and bulls” game with the user. The game works like this: Randomly generate a 4-digit number. Ask the user to guess a 4-digit number. For every digit that the user guessed correctly in the correct place, they have a “cow”. For every digit the user guessed correctly in the wrong place is a “bull.” Every time the user makes a guess, tell them how many “cows” and “bulls” they have. Once the user guesses the correct number, the game is over. Keep track of the number of guesses the user makes throughout teh game and tell the user at the end. Say the number generated by the computer is 1038. An example interaction could look like this: Welcome to the Cows and Bulls Game! Enter a number: >>> 1234 2 cows, 0 bulls >>> 1256 1 cow, 1 bull Until the user guesses the number. """ import random def get_secret_number(): """ Define the secret number and write it to a file. """ secret_number = str(random.randint(1000, 9999)) with open("secret_number.txt", "w") as file: print(secret_number, file=file) return secret_number def get_cows_and_bulls(secret, user): """Calculate the amount of cows and bulls. """ cows = bulls = 0 secret_chars = secret for i in range(len(secret)): if user[i] == secret[i]: cows += 1 if user[i] in secret_chars: bulls += 1 secret_chars = remove_char(secret_chars, user[i]) return cows, bulls def remove_char(s, c): """Remove a char of the string. When a user character exist in a secret_chars, add 1 to bulls and remove it of secret_chars to don't duplicate the count """ list_chars = list(s) list_chars.remove(c) return "".join(list_chars) if __name__ == "__main__": guessed = False attempts = 0 secret = get_secret_number() while not guessed: user = input("Guess a 4-digit number: ") attempts += 1 if user == secret: guessed = True print("%i cows, %i bulls" % (get_cows_and_bulls(secret, user))) print( "Congrats! The number is %s. You did %s attempts." % (secret, attempts))
4.375
4
finliveapp/migrations/0028_gasmeasurement_unique gas measurement.py
FinLiveRI/FinLiveApp
0
12797983
<reponame>FinLiveRI/FinLiveApp<filename>finliveapp/migrations/0028_gasmeasurement_unique gas measurement.py # Generated by Django 3.2.4 on 2021-12-14 11:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('finliveapp', '0027_gassystem_wind_direction'), ] operations = [ migrations.AddConstraint( model_name='gasmeasurement', constraint=models.UniqueConstraint(fields=('equipment', 'start_time'), name='unique gas measurement'), ), ]
1.554688
2
models.py
DSRnD/UMLs
0
12797984
<reponame>DSRnD/UMLs import torch import torch.nn as nn import torch.nn.functional as F import random import numpy as np import torch.autograd as autograd class NegativeSampling(nn.Module): """Negative sampling loss as proposed by <NAME> al. in Distributed Representations of Words and Phrases and their Compositionality. """ def __init__(self): super(NegativeSampling, self).__init__() self._log_sigmoid = nn.LogSigmoid() def forward(self, scores): """Computes the value of the loss function. Parameters ---------- scores: autograd.Variable of size (batch_size, num_noise_words + 1) Sparse unnormalized log probabilities. The first element in each row is the ground truth score (i.e. the target), other elements are scores of samples from the noise distribution. """ try: k = scores.size()[1] - 1 return -torch.sum( self._log_sigmoid(scores[:, 0]) + torch.sum(self._log_sigmoid(-scores[:, 1:]), dim=1) / k ) / scores.size()[0] except: k = 1 return -torch.sum(torch.sum(self._log_sigmoid(scores))) class marginLoss(nn.Module): def __init__(self): super(marginLoss, self).__init__() def forward(self, pos, neg, margin): val = pos - neg + margin return torch.sum(torch.max(val, torch.zeros_like(val))) def projection_transH(original, norm): return original - torch.sum(original * norm, dim=1, keepdim=True) * norm def projection_DistMult(original, norm1, norm2): return torch.sum(original * norm1, dim=1, keepdim=True) * norm2 def projection_transD(original, norm): return original + torch.sum(original * norm, dim=1, keepdim=True) * norm class Link_Model(nn.Module): """Link prediction model""" def __init__(self, kg_model): self.vec_dim = vec_dinm self.out_dim = out_dim self.kg_model = kg_model #self.linear1 = nn.Linear(self.vec_dim, self.out_dim) self.linear = nn.Linear(1, 1, bias=True, requires_grad=True) def forward(self, hi, ti, ri): with torch.no_grad(): _, _, _, _, pos, _ = self.kg_model(_, _, _, hi, ti, ri, _) out = self.linear(pos) return out class D2V_KG(nn.Module): """Doc2vec model with transh loss """ def __init__(self, vec_dim, num_docs, num_words, n_rel, d2v_model_ver, kg_model_ver, margin, delta): super(D2V_KG, self).__init__() self.num_docs = num_docs self.margin = margin self.delta = delta self.kg_model_ver = kg_model_ver self.d2v_model_ver = d2v_model_ver if d2v_model_ver == 'dm': self.d2v = DM(vec_dim, num_docs, num_words) else: self.d2v = DBOW(vec_dim, num_docs, num_words) self.cost_func = NegativeSampling() self.kg_loss_fn = marginLoss() self.W_R = nn.Parameter( torch.randn(n_rel, vec_dim), requires_grad=True) self.D_R = nn.Parameter( torch.randn(n_rel, vec_dim), requires_grad=True) self.M_R = nn.Parameter( torch.randn(n_rel, vec_dim, vec_dim), requires_grad=True) normalize_entity_emb = F.normalize(self.d2v._D.data, p=2, dim=1) normalize_relation_emb = F.normalize(self.W_R.data, p=2, dim=1) normalize_norm_emb = F.normalize(self.D_R.data, p=2, dim=1) self.d2v._D.data = normalize_entity_emb self.W_R.data = normalize_relation_emb self.D_R.data = normalize_norm_emb def forward(self, context_ids, doc_ids, target_noise_ids, hi, ti, ri, tj): """Sparse computation of scores (unnormalized log probabilities) that should be passed to the negative sampling loss. Parameters ---------- context_ids: torch.Tensor of size (batch_size, num_context_words) Vocabulary indices of context words. doc_ids: torch.Tensor of size (batch_size,) Document indices of paragraphs. target_noise_ids: torch.Tensor of size (batch_size, num_noise_words + 1) Vocabulary indices of target and noise words. The first element in each row is the ground truth index (i.e. the target), other elements are indices of samples from the noise distribution. hi: torch.Tensor of size (batch_size,) Heads from golden triplets from relational graph ti: torch.Tensor of size (batch_size,) Tails from golden triplets from relational graph ri: torch.Tensor of size (batch_size,) Relations from golden triplets from relational graph tj: torch.Tensor of size (batch_size,) Tails from noisy triplets from relational graph Returns ------- autograd.Variable of size (batch_size, num_noise_words + 1) """ hi_emb = self.d2v._D[hi,:] ti_emb = self.d2v._D[ti,:] w_ri_emb = self.W_R[ri,:] d_ri_emb = self.D_R[ri,:] #tj = random.sample(np.arange(0,self.num_docs).tolist(), hi_emb.shape[0]) #if torch.cuda.is_available(): # tj = torch.LongTensor(np.asarray(tj)).to(torch.device('cuda')) tj_emb = self.d2v._D[tj,:] pos = None neg = None if self.kg_model_ver == 'transh': pos_h_e = projection_transH(hi_emb, d_ri_emb) pos_t_e = projection_transH(ti_emb, d_ri_emb) neg_h_e = projection_transH(hi_emb, d_ri_emb) neg_t_e = projection_transH(tj_emb, d_ri_emb) pos = torch.sum((pos_h_e + w_ri_emb - pos_t_e) ** 2, 1) neg = torch.sum((neg_h_e + w_ri_emb - neg_t_e) ** 2, 1) elif self.kg_model_ver == 'transe': pos = torch.sum((hi_emb + w_ri_emb - ti_emb) ** 2, 1) neg = torch.sum((hi_emb + w_ri_emb - tj_emb) ** 2, 1) elif self.kg_model_ver == 'distmult': pos = torch.sum(projection_DistMult(w_ri_emb, hi_emb, ti_emb), 1) neg = torch.sum(projection_DistMult(w_ri_emb, hi_emb, tj_emb), 1) elif self.kg_model_ver == 'transr': M_R = self.M_R[ri,:] hi_emb = torch.einsum('ij, ijk -> ik', hi_emb, M_R) ti_emb = torch.einsum('ij, ijk -> ik', ti_emb, M_R) tj_emb = torch.einsum('ij, ijk -> ik', tj_emb, M_R) hi_emb = F.normalize(hi_emb, p=2, dim=1) ti_emb = F.normalize(ti_emb, p=2, dim=1) tj_emb = F.normalize(tj_emb, p=2, dim=1) pos = torch.sum((hi_emb + w_ri_emb - ti_emb) ** 2, 1) neg = torch.sum((hi_emb + w_ri_emb - tj_emb) ** 2, 1) elif self.kg_model_ver == 'transd': hi_emb = projection_transD(hi_emb, w_ri_emb) ti_emb = projection_transD(ti_emb, w_ri_emb) tj_emb = projection_transD(tj_emb, w_ri_emb) pos = torch.sum((hi_emb + w_ri_emb - ti_emb) ** 2, 1) neg = torch.sum((hi_emb + w_ri_emb - tj_emb) ** 2, 1) if self.d2v_model_ver != 'none': d2v_output = self.d2v.forward(context_ids, doc_ids, target_noise_ids) d2v_loss = self.cost_func.forward(d2v_output) else: d2v_output = torch.FloatTensor([0]) d2v_loss = torch.FloatTensor([0]) if self.kg_model_ver != 'none': #print (pos.shape, neg.shape) kg_loss = self.kg_loss_fn(pos, neg, self.margin) else: kg_loss = torch.FloatTensor([0]) if self.d2v_model_ver != 'none' and self.kg_model_ver != 'none': total_loss = (1-self.delta)*d2v_loss + self.delta*kg_loss elif self.d2v_model_ver != 'none': total_loss = d2v_loss elif self.kg_model_ver != 'none': total_loss = kg_loss else: raise ValueError("Both D2V and KG model can not be none") return total_loss, d2v_loss, kg_loss, d2v_output, pos, neg def get_paragraph_vector(self, index): return self.d2v._D[index, :].data.tolist() class DM(nn.Module): """Distributed Memory version of Paragraph Vectors. Parameters ---------- vec_dim: int Dimensionality of vectors to be learned (for paragraphs and words). num_docs: int Number of documents in a dataset. num_words: int Number of distinct words in a daset (i.e. vocabulary size). """ def __init__(self, vec_dim, num_docs, num_words): super(DM, self).__init__() # paragraph matrix self._D = nn.Parameter( torch.randn(num_docs, vec_dim), requires_grad=True) # word matrix self._W = nn.Parameter( torch.randn(num_words, vec_dim), requires_grad=True) # output layer parameters self._O = nn.Parameter( torch.FloatTensor(vec_dim, num_words).zero_(), requires_grad=True) def forward(self, context_ids, doc_ids, target_noise_ids): """Sparse computation of scores (unnormalized log probabilities) that should be passed to the negative sampling loss. Parameters ---------- context_ids: torch.Tensor of size (batch_size, num_context_words) Vocabulary indices of context words. doc_ids: torch.Tensor of size (batch_size,) Document indices of paragraphs. target_noise_ids: torch.Tensor of size (batch_size, num_noise_words + 1) Vocabulary indices of target and noise words. The first element in each row is the ground truth index (i.e. the target), other elements are indices of samples from the noise distribution. Returns ------- autograd.Variable of size (batch_size, num_noise_words + 1) """ # combine a paragraph vector with word vectors of # input (context) words x = torch.add( self._D[doc_ids, :], torch.sum(self._W[context_ids, :], dim=1)) # sparse computation of scores (unnormalized log probabilities) # for negative sampling return torch.bmm( x.unsqueeze(1), self._O[:, target_noise_ids].permute(1, 0, 2)).squeeze() def get_paragraph_vector(self, index): return self._D[index, :].data.tolist() class DBOW(nn.Module): """Distributed Bag of Words version of Paragraph Vectors. Parameters ---------- vec_dim: int Dimensionality of vectors to be learned (for paragraphs and words). num_docs: int Number of documents in a dataset. num_words: int Number of distinct words in a daset (i.e. vocabulary size). """ def __init__(self, vec_dim, num_docs, num_words): super(DBOW, self).__init__() # paragraph matrix self._D = nn.Parameter( torch.randn(num_docs, vec_dim), requires_grad=True) # output layer parameters self._O = nn.Parameter( torch.FloatTensor(vec_dim, num_words).zero_(), requires_grad=True) def forward(self, context_ids, doc_ids, target_noise_ids): """Sparse computation of scores (unnormalized log probabilities) that should be passed to the negative sampling loss. Parameters ---------- doc_ids: torch.Tensor of size (batch_size,) Document indices of paragraphs. target_noise_ids: torch.Tensor of size (batch_size, num_noise_words + 1) Vocabulary indices of target and noise words. The first element in each row is the ground truth index (i.e. the target), other elements are indices of samples from the noise distribution. Returns ------- autograd.Variable of size (batch_size, num_noise_words + 1) """ # sparse computation of scores (unnormalized log probabilities) # for negative sampling return torch.bmm( self._D[doc_ids, :].unsqueeze(1), self._O[:, target_noise_ids].permute(1, 0, 2)).squeeze() def get_paragraph_vector(self, index): return self._D[index, :].data.tolist()
2.96875
3
src/screensketch/screenspec/reader/xml.py
perfidia/screensketch
1
12797985
''' Created on Apr 12, 2013 @author: <NAME> ''' from lxml import etree from StringIO import StringIO from screensketch.screenspec import model class XMLReader(object): def __init__(self, input_data): self.input_data = input_data self.retval = None; def __parseComponent(self, node, parent): items = node.items() if len(items) > 1: raise ValueError('Incorrect data in component node') name = None if len(items) == 1: name = items[0][1] clazz = { 'EDIT_BOX': model.EditBox, 'BUTTON': model.Button, 'CHECK_BOX': model.CheckBox, 'CHECK_BOXES': model.CheckBoxes, 'COMBO_BOX': model.ComboBox, 'DYNAMIC_TEXT': model.DynamicText, 'EDIT_BOX': model.EditBox, 'IMAGE': model.Image, 'LINK': model.Link, 'LIST': model.List, 'LIST_BOX': model.ListBox, 'PASSWORD': model.Password, 'RADIO_BUTTON': model.RadioButton, 'RADIO_BUTTONS': model.RadioButtons, 'SIMPLE': model.Simple, 'STATIC_TEXT': model.StaticText, 'TABLE': model.Table, 'TEXT_AREA': model.TextArea, }.get(name, model.Entity) if clazz is None: raise ValueError('%s is an unsupported type of component' % name) children = [] values = [] for n in node.getchildren(): if n.tag == 'identifier': identifier = n.text elif n.tag == 'children': children = self.__parseChildren(n, parent) elif n.tag == 'values': values = self.__parseValues(n, parent) else: raise ValueError('%s is an unsupported node in component tag' % n.tag) component = clazz(identifier) for child in children: component.append(child) if values: component._set_static_values(values) return component def __parseValues(self, node, parent): # tag name checked in __parseComponent children = [] for n in node.getchildren(): if n.tag == 'value': selected = False items = n.items() if len(items) == 1 and len(items[0]) == 2: selected = items[0][1] children.append(model.StaticValue(n.text, selected)) else: raise ValueError('%s is an unsupported node in values tag' % n.tag) return children def __parseChildren(self, node, parent): # tag name checked in __parseScreen children = [] for n in node.getchildren(): children.append(self.__parseComponent(n, parent)) return children def __parseScreen(self, node, parent): if node.tag != 'screen': raise ValueError('Tag screen-spec not found') children = [] for n in node.getchildren(): if n.tag == 'name': name = n.text elif n.tag == 'children': children = self.__parseChildren(n, parent) else: raise ValueError('Unknown node in screen tag found') parent.append(model.Screen(name, children)) def __parseScreenSpec(self, node): if node.tag != 'screen-spec': raise ValueError('Tag screen-spec not found') self.retval = model.ScreenSpec() for n in node.getchildren(): self.__parseScreen(n, self.retval) def execute(self): root = etree.fromstring(self.input_data) self.__parseScreenSpec(root) return self.retval
2.421875
2
Leetcode/0652. Find Duplicate Subtrees/0652.py
Next-Gen-UI/Code-Dynamics
0
12797986
<reponame>Next-Gen-UI/Code-Dynamics class Solution: def findDuplicateSubtrees(self, root: Optional[TreeNode]) -> List[Optional[TreeNode]]: ans = [] count = Counter() def encode(root: Optional[TreeNode]) -> str: if not root: return '' left = encode(root.left) right = encode(root.right) encoding = str(root.val) + '#' + left + '#' + right if count[encoding] == 1: ans.append(root) count[encoding] += 1 return encoding encode(root) return ans
2.9375
3
events/on_error.py
DangVietH/DangVietBot
2
12797987
from discord.ext import commands import discord import datetime class OnError(commands.Cog): def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_command_error(self, ctx, error): ignore = (commands.CommandNotFound, discord.NotFound, discord.Forbidden) if isinstance(error, ignore): return embed = discord.Embed(color=self.bot.embed_color) if isinstance(error, commands.BotMissingPermissions): perms = ", ".join([f"{x.replace('_', ' ').replace('guild', 'server').title()}" for x in error.missing_permissions]) embed.title = "Bot Missing Permissions" embed.description = f"I am missing the following permissions: {perms}!" await ctx.send(embed=embed) return if isinstance(error, commands.MissingPermissions): perms = ", ".join([f"{x.replace('_', ' ').replace('guild', 'server').title()}" for x in error.missing_permissions]) embed.title = "Missing Permissions" embed.description = f"You are missing the following permissions: {perms}!" await ctx.send(embed=embed) return if isinstance(error, commands.NotOwner): embed.title = "Not Owner" embed.description = f"You're not the owner of this bot!" await ctx.send(embed=embed) return if isinstance(error, commands.MissingRequiredArgument): embed.title = "Missing Argument" embed.description = f"You are missing a required argument for this command to work: `{error.param.name}`!" await ctx.send(embed=embed) return if isinstance(error, commands.CommandOnCooldown): seconds = int(error.retry_after) wait_until_finish = datetime.datetime.now() + datetime.timedelta(seconds=seconds) await ctx.send(f'⏱️ This command is on a cooldown. Use it after <t:{int(datetime.datetime.timestamp(wait_until_finish))}:R>') return if isinstance(error, commands.DisabledCommand): embed.title = "Disabled" embed.description = "This command is disabled by the bot's owner!" await ctx.send(embed=embed) return if isinstance(error, commands.BadArgument): if isinstance(error, commands.MessageNotFound): embed.title = "Message Not Found" embed.description = "The message id/link you provided is invalid or deleted!" await ctx.send(embed=embed) return if isinstance(error, commands.MemberNotFound): embed.title = "Member Not Found" embed.description = "The member id/mention/name you provided is invalid or didn't exist in this server!" await ctx.send(embed=embed) return if isinstance(error, commands.UserNotFound): embed.title = "User Not Found" embed.description = "The user id/mention/name you provided is invalid or I cannot see that User!" await ctx.send(embed=embed) return if isinstance(error, commands.ChannelNotFound): embed.title = "Channel Not Found" embed.description = "The channel id/mention/name you provided is invalid or I access it!" await ctx.send(embed=embed) return if isinstance(error, commands.RoleNotFound): embed.title = "Role Not Found" embed.description = "The role id/mention/name you provided is invalid or I cannot see that role!" await ctx.send(embed=embed) return if isinstance(error, commands.EmojiNotFound): embed.title = "Emoji Not Found" embed.description = "The emoji id/name you provided is invalid or I cannot see that emoji!" await ctx.send(embed=embed) return embed.title = "Unexpected Error" embed.description = error await ctx.send(embed=embed) async def setup(bot): await bot.add_cog(OnError(bot))
2.640625
3
scripts/addons/context_browser/preferences.py
Tilapiatsu/blender-custom_conf
2
12797988
<reponame>Tilapiatsu/blender-custom_conf<filename>scripts/addons/context_browser/preferences.py import bpy from .addon import ADDON_ID, temp_prefs, prefs, ic from .utils.collection_utils import sort_collection from .ops.context_browser import CB_OT_browser class BookmarkItem(bpy.types.PropertyGroup): path = bpy.props.StringProperty() class CB_Preferences(bpy.types.AddonPreferences): bl_idname = ADDON_ID bookmarks = bpy.props.CollectionProperty(type=BookmarkItem) def update_lists(self, context): tpr = temp_prefs() tpr.cd.update_lists(tpr.path, False) show_bool_props = bpy.props.BoolProperty( name="Show Bool Properties", description="Show bool properties", default=True, update=update_lists) show_int_props = bpy.props.BoolProperty( name="Show Int Properties", description="Show int properties", default=True, update=update_lists) show_float_props = bpy.props.BoolProperty( name="Show Float Properties", description="Show float properties", default=True, update=update_lists) show_str_props = bpy.props.BoolProperty( name="Show String Properties", description="Show string properties", default=True, update=update_lists) show_enum_props = bpy.props.BoolProperty( name="Show Enum Properties", description="Show enum properties", default=True, update=update_lists) show_vector_props = bpy.props.BoolProperty( name="Show Vector Properties", description="Show vector properties", default=True, update=update_lists) group_none = bpy.props.BoolProperty( name="Group None Objects", description="Group None objects", default=False, update=update_lists) show_prop_ids = bpy.props.BoolProperty( name="Show Property Identifiers", description="Show property identifiers", default=True) def show_header_btn_update(self, context): prefs().register_header_btn(self.show_header_btn) show_header_btn = bpy.props.BoolProperty( name="Show Header Button", description="Show header button", update=show_header_btn_update, default=True) obj_list_width = bpy.props.IntProperty( name="Width", description="Width of the list", subtype='PERCENTAGE', default=40, min=20, max=80) list_height = bpy.props.IntProperty( name="Number of Rows", description="Number of rows in lists", default=10, min=5, max=100) popup_width = bpy.props.IntProperty( name="Width", description="Popup width", subtype='PIXEL', default=640, min=300, max=3000) def draw(self, context): layout = self.layout row = layout.row() row.scale_y = 1.5 row.operator(CB_OT_browser.bl_idname) row = layout.split() col = row.column(align=True) col.label(text="Popup:") col.prop(self, "popup_width") col.prop(self, "list_height") col = row.column(align=True) col.label(text="Header:") col.prop(self, "show_header_btn") def add_bookmark(self, bookmark, name=None): if bookmark in self.bookmarks: return item = self.bookmarks.add() item.name = name or bookmark item.path = bookmark sort_collection(self.bookmarks, key=lambda item: item.name) def remove_bookmark(self, bookmark): for i, b in enumerate(self.bookmarks): if b.path == bookmark: self.bookmarks.remove(i) break def rename_bookmark(self, bookmark, name): for b in self.bookmarks: if b.path == bookmark: b.name = name break sort_collection(self.bookmarks, key=lambda item: item.name) def register_header_btn(self, value): for tp_name in ( 'CLIP_HT_header', 'CONSOLE_HT_header', 'DOPESHEET_HT_header', 'FILEBROWSER_HT_header', 'GRAPH_HT_header', 'IMAGE_HT_header', 'INFO_HT_header', 'LOGIC_HT_header', 'NLA_HT_header', 'NODE_HT_header', 'OUTLINER_HT_header', 'PROPERTIES_HT_header', 'SEQUENCER_HT_header', 'TEXT_HT_header', 'TIME_HT_header', 'USERPREF_HT_header', 'VIEW3D_HT_header'): tp = getattr(bpy.types, tp_name, None) if not tp: continue if value: tp.prepend(self.header_menu) else: tp.remove(self.header_menu) @staticmethod def context_menu(menu, context): layout = menu.layout layout.operator("cb.browser", icon=ic('BLENDER')) @staticmethod def header_menu(menu, context): layout = menu.layout layout.operator("cb.browser", text="", icon=ic('BLENDER'), emboss=False) def register(): pr = prefs() if pr.show_header_btn: pr.register_header_btn(True) def unregister(): pr = prefs() if pr.show_header_btn: pr.register_header_btn(False)
1.953125
2
net/lstm.py
workofart/brawlstars-ai
12
12797989
<filename>net/lstm.py<gh_stars>10-100 import numpy as np import tensorflow as tf import tflearn import os def get_movement_model(steps): # Network building net = tflearn.input_data(shape=[None, steps, 128], name='net1_layer1') net = tflearn.lstm(net, n_units=256, return_seq=True, name='net1_layer2') net = tflearn.dropout(net, 0.8, name='net1_layer3') net = tflearn.lstm(net, n_units=256, return_seq=False, name='net1_layer4') net = tflearn.dropout(net, 0.8, name='net1_layer5') net = tflearn.fully_connected(net, 5, activation='softmax', name='net1_layer6') net = tflearn.regression(net, optimizer='rmsprop', loss='categorical_crossentropy', learning_rate=0.0001, name='net1_layer7') return tflearn.DNN(net, clip_gradients=5.0, tensorboard_dir='logs', tensorboard_verbose=0) def get_action_model(steps): # Network building net = tflearn.input_data(shape=[None, steps, 128], name='net2_layer1') net = tflearn.lstm(net, n_units=256, return_seq=True, name='net2_layer2') net = tflearn.dropout(net, 0.8, name='net2_layer3') net = tflearn.lstm(net, n_units=256, return_seq=False, name='net2_layer4') net = tflearn.dropout(net, 0.8, name='net2_layer5') net = tflearn.fully_connected(net, 3, activation='softmax', name='net2_layer6') net = tflearn.regression(net, optimizer='rmsprop', loss='categorical_crossentropy', learning_rate=1e-5, name='net2_layer7') return tflearn.DNN(net, clip_gradients=5.0, tensorboard_dir='logs', tensorboard_verbose=0) def reshape_for_lstm(data, steps_of_history=10): trainX = [] trainY_movement = [] trainY_action = [] for i in range(0, len(data) - steps_of_history): window = data[i:i + steps_of_history] sampleX = [] for row in window: sampleX.append(row[0]) sampleY_movement = np.array(window[-1][1]).reshape(-1) sampleY_action = np.array(window[-1][2]).reshape(-1) trainX.append(np.array(sampleX).reshape(steps_of_history, -1)) trainY_movement.append(sampleY_movement) trainY_action.append(sampleY_action) print(np.array(trainX).shape) print(np.array(trainY_movement).shape) print(np.array(trainY_action).shape) return trainX, list(trainY_movement), list(trainY_action)
2.671875
3
basics/deque_example.py
examplehub/Python
9
12797990
def main() -> None: """ >>> from collections import deque >>> queue = deque(["Python", "Java", "C"]) >>> len(queue) 3 >>> queue deque(['Python', 'Java', 'C']) >>> queue.popleft() 'Python' >>> queue.popleft() 'Java' >>> queue.clear() >>> len(queue) 0 >>> queue deque([]) >>> queue.popleft() Traceback (most recent call last): ... IndexError: pop from an empty deque """ if __name__ == "__main__": from doctest import testmod testmod()
3.078125
3
downstream/tinypersons/configs2/TinyPerson/base/retinanet_r50_fpns4_1x_TinyPerson640_clipg.py
bwconrad/solo-learn
37
12797991
<gh_stars>10-100 _base_ = [ './retinanet_r50_fpn_1x_TinyPerson640.py' ] optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) # 4 gpu optimizer_config = dict(_delete_=True, grad_clip=dict(max_norm=1, norm_type=2)) # add grad clip # model settings model = dict( neck=dict( start_level=0, # start_level=1, # add_extra_convs='on_input', # note num_outs=5), bbox_head=dict( type='RetinaHead', num_classes=1, # 80 anchor_generator=dict( type='AnchorGenerator', octave_base_scale=2, # 4 ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64] # [8, 16, 32, 64, 128] ) ) )
1.492188
1
tests/modules/transformer/bimodal_attention_test.py
MSLars/allennlp
11,433
12797992
<gh_stars>1000+ import torch import pytest from allennlp.common import Params from allennlp.modules.transformer import BiModalAttention @pytest.fixture def params_dict(): return { "hidden_size1": 6, "hidden_size2": 4, "combined_hidden_size": 16, "num_attention_heads": 2, "dropout1": 0.1, "dropout2": 0.2, } @pytest.fixture def params(params_dict): return Params(params_dict) @pytest.fixture def biattention(params): return BiModalAttention.from_params(params.duplicate()) def test_can_construct_from_params(biattention, params_dict): assert biattention.num_attention_heads == params_dict["num_attention_heads"] assert biattention.attention_head_size == int( params_dict["combined_hidden_size"] / params_dict["num_attention_heads"] ) assert ( biattention.all_head_size == params_dict["num_attention_heads"] * biattention.attention_head_size ) assert biattention.query1.in_features == params_dict["hidden_size1"] assert biattention.key1.in_features == params_dict["hidden_size1"] assert biattention.value1.in_features == params_dict["hidden_size1"] assert biattention.dropout1.p == params_dict["dropout1"] assert biattention.query2.in_features == params_dict["hidden_size2"] assert biattention.key2.in_features == params_dict["hidden_size2"] assert biattention.value2.in_features == params_dict["hidden_size2"] assert biattention.dropout2.p == params_dict["dropout2"] def test_forward_runs(biattention): biattention( torch.randn(2, 3, 6), torch.randn(2, 3, 4), torch.randint(0, 2, (2, 2, 3, 3)) == 1, # creating boolean tensors torch.randint(0, 2, (2, 2, 3, 3)) == 1, )
2.25
2
People/Juan/Week 2/Calendar.py
rmorgan10/ExpertPythonProgramming
2
12797993
#!/usr/bin/env python3 from typing import List, Dict from datetime import date, datetime from calendar import monthrange import os from typing import TypeVar, Tuple from benedict import benedict from Events import Event from CalendarErrors import BreakoutError, MainError from Prompt import prompt_user_date, parse_user_date, prompt_user_time """ Should print a calendar to the terminal/console output and prompt the user to input some number of possible commands to: * scroll from month to month * make, read, and modify events on certain days """ DateTypes = TypeVar("DateTypes", date, datetime) class Calendar: """ Calendar class to hold info on all events in our calendar """ WEEKDAYS = ["Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"] # calendar commands ============================================================================ # scroll --------------------------------------------------------------------------------------- SCROLL = "S" FORWARD = "F" BACKWARD = "B" SCROLLING = [SCROLL, FORWARD, BACKWARD] # Event ---------------------------------------------------------------------------------------- NEW = "N" MODIFY = "C" READ = "R" EVENTS = [NEW, MODIFY, READ] VERB = { NEW: "Made", MODIFY: "Modified", READ: "Read" } # utility -------------------------------------------------------------------------------------- QUIT = "Q" HELP = "H" ALL = "A" UTIL = [QUIT, HELP, ALL] COMMANDS = SCROLLING + EVENTS + UTIL # indicators ----------------------------------------------------------------------------------- DAY = "D" MONTH = "M" YEAR = "Y" EVENT = "E" INDICATORS = [DAY, MONTH, YEAR, EVENT] MONTHS = { 1: "January", 2: "February", 3: "March", 4: "April", 5: "May", 6: "June", 7: "July", 8: "August", 9: "September", 10: "October", 11: "November", 12: "December" } MENU_STRING = f""" Here's how to use the calendar! To scroll to the next day enter : {FORWARD}{DAY} TO scroll to the previous day enter : {BACKWARD}{DAY} To scroll to the the next month enter : {FORWARD}{MONTH} To scroll to the previous month enter : {BACKWARD}{MONTH} To scroll to the next year enter : {FORWARD}{YEAR} To scroll to the previous year enter : {BACKWARD}{YEAR} To scroll to a date enter : {SCROLL} <date in yyyy/mm/dd format> To create an event enter : {NEW} <date in yyyy/mm/dd format> - <name> To modify an event enter : {MODIFY} <date in yyyy/mm/dd format> - <name> To read an event enter : {READ} <date in yyyy/mm/dd format> - <name> To print all events enter : {ALL} (To continue Press enter) """ def __init__(self): """ Constructor for the Calendar Stores events as a nested dictionary with dates as keys, lastly with a names dict. Structure: self.events = { year(str) : { month(str) : { day(str) : { name(str) : (Event) } } } } """ self.events = benedict() self.today = date.today() def command_loop(self): """ Main loop of the calendar. Prompts the user to input commands to modify the calendar or scroll around in time """ command_ms = "Welcome to the calendar, what would you like to do? \n" command_ms += "(Q to quit, H for help) : " ignores = [" ", "\n"] while True: self.print_calendar() user_input = input(command_ms) for ignore in ignores: user_input = user_input.replace(ignore, "") try: cmd = user_input[0].upper() except IndexError: continue try: if cmd == self.QUIT: break elif cmd == self.HELP: input(self.MENU_STRING) elif cmd == self.ALL: self.print_all_events() elif cmd in self.SCROLLING: self.scroll(user_input) elif cmd in self.EVENTS: self.eventing(user_input) else: input(f"{cmd} is not a valid command, please input a valid command\ {self.MENU_STRING}") # MainError is just an indicator that user wants to try and input again except MainError: continue def scroll(self, usr_input: str): """ parse scroll commands from the user and make the correct call to print_calendar() Args: usr_input : string input by the user. Should be led by a valid scroll based command """ cmd = usr_input[0] if len(usr_input) > 1: usr_args = usr_input[1:] else: usr_args = None if cmd == self.SCROLL: calendar_date = parse_user_date(usr_args) self.today = calendar_date elif cmd == self.FORWARD or cmd == self.BACKWARD: # Move forward of backward if cmd == self.FORWARD: sgn = 1 else: sgn = -1 if usr_args is not None: usr_ind = usr_args[0].upper() else: usr_ind = usr_args if usr_ind == self.YEAR: self.today = date(self.today.year+sgn, self.today.month, self.today.day) elif usr_ind == self.DAY: self.today = date(self.today.year, self.today.month, self.today.day+sgn) else: # Scroll by month is default self.today = date(self.today.year, self.today.month+sgn, self.today.day) def eventing(self, usr_input: str): """ parse event commands from the user and edit self.events dict Args: usr_input : string input by the user. Should be led by a valid event based command """ cmd = usr_input[0] if len(usr_input) > 1: usr_args = usr_input[1:] else: usr_args = None if usr_args is None: calendar_date = prompt_user_date("Lets get a date for the event") name = input("Give us a name for the event : ") else: usr_args = usr_args.split("-")[:2] calendar_date = parse_user_date(usr_args[0]) if len(usr_args) >= 2: name = usr_args[1] else: name = input(f"What is the name of the event to be {Calendar.VERB[cmd]}") if cmd == self.NEW: self.add_event(calendar_date, name) input(f"new event created {self.get_event(calendar_date, name)}") if cmd == self.MODIFY or cmd == self.READ: if name in self.find_events(calendar_date).keys(): if cmd == self.MODIFY: mod_event = self.get_event(calendar_date, name) mod_event.modify() self.update_event(mod_event, calendar_date, name) input(f"Modified event : {mod_event}") else: input(self.get_event(calendar_date, name)) else: input("The event you described does not exist. Back to main menu ") def update_event(self, modified_event: Event, old_date: DateTypes, old_name: str): """ Checks event after it's been modified and rewrites it to the dict with updated indeces """ input("Hello There") new_ev = self.get_event(modified_event.date_of_event, modified_event.name) old_ev = self.get_event(old_date, old_name) if new_ev != old_ev: input("General Kenobi") pop_str = f"{old_date.year}.{old_date.month}.{old_date.day}.{old_name}" self.events.pop(pop_str) Calendar.clean_nested_dict(self.events) self.events[ self.ind_from_date(modified_event.date_of_event, modified_event.name) ] = modified_event def print_all_events(self): prnt = "{\n" for year, months in self.events.items(): prnt += f"\t{year} : " + "{\n" for month, days in months.items(): prnt += f"\t\t{month} : " + "{\n" for day, names in days.items(): prnt += f"\t\t\t{day} : " + "{\n" for name, ev in names.items(): ev_str = repr(ev).replace("\n", "\n\t\t\t\t\t") prnt += f"\t\t\t\t{name}\t{ev_str}\n" prnt += "\t\t\t},\n" prnt += "\t\t},\n" prnt += "\t},\n" prnt += "}" input(prnt) @staticmethod def clean_nested_dict(nested_dict): """ Recursively cleans nested_dict to remove empty dicts and subdicts Believe it or not this works. Checkout the Calendar testing ipython notebook. """ # if lowest level item is not an empty dict, don't pop this, or parents if not isinstance(nested_dict, dict): return False # if lowest level item is an empty dict, pop this from the parent and clean up recursively if nested_dict == {}: return True # indicates whether this dict/sub_dict should be "popped" (cleaned up) pop_this = True for key, sub_dict in list(nested_dict.items()): pop_that = Calendar.clean_nested_dict(sub_dict) if pop_that: nested_dict.pop(key) pop_this *= pop_that return pop_this @staticmethod def ind_from_date(calendar_date: DateTypes, name: str = None): """ Args: calendar_date : date to be used for indexing name : optional. Tacked on to return if included Returns: year (int), month (int), day (int), name (str) """ if name is not None: return str(calendar_date.year), str(calendar_date.month), str(calendar_date.day), name else: return str(calendar_date.year), str(calendar_date.month), str(calendar_date.day) def get_event(self, calendar_date: DateTypes, name: str) -> Event: """ Gets an event from a name and a date Args: calendar_date : date of the event name : name of the event: Returns: The event found. Or None if none are found """ try: ev = self.events[self.ind_from_date(calendar_date, name)] except KeyError: ev = None return ev def find_events(self, calendar_date: DateTypes) -> Dict: """ finds all events that occur on calendar_date and returns them Args: calendar_date : date or datetime object where we're looking for events Returns: daily events : dictionary of events occurring on that day, empty dict if there are none """ try: daily_events = self.events[self.ind_from_date(calendar_date)] except KeyError: daily_events = {} return daily_events def add_event(self, calendar_date: DateTypes, name: str): """ Adds an event to the calendar Args: calendar_date : date of the new event name : name of that event """ while name in self.find_events(calendar_date).keys(): overwrite = input( f"Another event is named {name} on that date. Do you wish to overwrite it? (Y/n) : " f"Other event : {self.get_event(calendar_date, name)}\n" ) overwrite = overwrite.upper() != "N" if not overwrite: name = input(f"Please enter a new name for the event : ") else: break description = input("Give us a brief description of the event : \n") if input("Do you wish to specify a time? (y/N)").upper() != "Y": self.events[self.ind_from_date(calendar_date, name)] = Event( calendar_date, name, description, ) else: self.events[self.ind_from_date(calendar_date, name)] = Event( calendar_date, name, description, prompt_user_time("What time do you want to set?") ) def print_calendar(self): """ Prints a calendar to the terminal or command for the month which contains day. """ def color_entry(message: str, txt: str = "normal", bg: str = "normal") -> str: """ turns message into a colorful version of itself Args: message : message to be beautified txt : string indicating color of text bg : string indicating color of background Returns: beautified message """ txt_colors = { "black": "30", "red": "31", "green": "32", "yellow": "33", "blue": "34", "purple": "35", "cyan": "36", "white": "37", "normal": 1 } bg_colors = { "black": f"{37+10}", "red": f"{31 + 10}", "green": f"{32 + 10}", "yellow": f"{33 + 10}", "blue": f"{34 + 10}", "purple": f"{35 + 10}", "cyan": f"{36 + 10}", "white": f"{30 + 10}", "normal": 1 } return f"\033[1;{txt_colors[txt]};{bg_colors[bg]}m{message}\033[0m" os.system('cls') # Find which day of the week the month started on first_day = date(self.today.year, self.today.month, 1).weekday() # Find number of days in month num_days = monthrange(self.today.year, self.today.month)[1] try: monthly_events = list(self.events[str(self.today.year), str(self.today.month)].keys()) monthly_events = [int(dy) for dy in monthly_events] except KeyError: monthly_events = [] cal_string = "" # Print month and year cal_string += color_entry( f"{self.MONTHS[self.today.month]} : {self.today.year}\n", txt="cyan" ) # Print the days of the week for day in self.WEEKDAYS: cal_string += f"{day} " cal_string += "\n" days = 0 while days < num_days: for i, day in enumerate(self.WEEKDAYS): if days == 0 and i < first_day: entry = " " else: days += 1 entry = f"{days:2} " if days in monthly_events and not days == self.today.day: entry = color_entry(entry, txt="green") if days == self.today.day and days not in monthly_events: entry = color_entry(entry, bg="red") if days == self.today.day and days in monthly_events: entry = color_entry(entry, txt="green", bg="red") if days > num_days: entry = " " cal_string += entry cal_string += "\n" print(cal_string) if __name__ == '__main__': cal = Calendar() cal.command_loop()
3.96875
4
setup.py
axel-sirota/IEEE-CICD
0
12797994
<filename>setup.py from setuptools import setup setup(name='funniest_ieee', version='0.5', description='The funniest_ieee joke in the world', url='https://github.com/axel-sirota/IEEE-CICD', author='<NAME>', author_email='<EMAIL>', license='MIT', KEYWORDS = ["class", "attribute", "boilerplate"], CLASSIFIERS = [ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Natural Language :: English", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Software Development :: Libraries :: Python Modules", ], packages=['funniest_ieee'], install_requires=[ 'nose', 'pylint', 'coverage', 'nosexcover', 'flake8', 'twine' ], test_suite='nose.collector', tests_require=['nose'] )
1.226563
1
Python/sum.py
AbdalrohmanGitHub/Logik
13
12797995
<gh_stars>10-100 # This program reads a number n and computes the sum 1 + 2 + ... + n. n = input('Type a natural number and press return: ') n = int(n) s = { i for i in range(1, n+1) } s = sum(s) print('The sum 1 + 2 + ... + ', n, ' is equal to ', s, '.', sep= '')
3.875
4
enrollment/views/__init__.py
Siikakala/kompassi
0
12797996
<reponame>Siikakala/kompassi # encoding: utf-8 from .enrollment_event_box_context import enrollment_event_box_context from .enrollment_enroll_view import enrollment_enroll_view from .enrollment_admin_view import enrollment_admin_view from .enrollment_admin_special_diets_view import enrollment_admin_special_diets_view from .enrollment_admin_menu_items import enrollment_admin_menu_items
0.847656
1
environments/metaworld/reach_ml1.py
bryanoliveira/varibad
0
12797997
import numpy as np import gym from random import randint from metaworld.benchmarks import ML1 class ReachML1Env(gym.Env): def __init__(self, max_episode_steps=150,out_of_distribution=False, n_train_tasks=50, n_test_tasks=10, **kwargs): super(ReachML1Env, self).__init__() self.train_env = ML1.get_train_tasks('reach-v1', out_of_distribution=out_of_distribution) self.test_env = ML1.get_test_tasks('reach-v1', out_of_distribution=out_of_distribution) self.train_tasks = self.train_env.sample_tasks(n_train_tasks) self.test_tasks = self.test_env.sample_tasks(n_test_tasks) self.tasks = self.train_tasks + self.test_tasks self.env = self.train_env #this env will change depending on the idx self.observation_space = self.env.observation_space self.action_space = self.env.action_space self.goal_space_origin = np.array([0, 0.85, 0.175]) self.current_task_idx = 0 self.episode_steps = 0 self._max_episode_steps = max_episode_steps # self.get_tasks_goals() # self.reset_task() def step(self, action): self.episode_steps += 1 obs, reward, done, info = self.env.step(action) if self.episode_steps >= self._max_episode_steps: done = True return obs, reward, done, info def reset(self): self.episode_steps = 0 return self.env.reset() def seed(self, seed): self.train_env.seed(seed) self.test_env.seed(seed) def get_all_task_idx(self): return range(len(self.tasks)) def set_task(self, idx): self.current_task_idx = idx self.env = self.train_env if idx < len(self.train_tasks) else self.test_env self.env.set_task(self.tasks[idx]) self._goal = self.tasks[idx]['goal'] def get_task(self): return self.tasks[self.current_task_idx]['goal'] # goal_pos def reset_task(self, task=None, test=False): # aparently this is called only without idx, so tasks are always scrambled # we have to set anything only at test time if task is None: if test: task = randint(len(self.train_tasks), len(self.tasks) - 1) else: task = randint(0, len(self.train_tasks) - 1) self.set_task(task) def render(self): self.env.render() def get_tasks_goals(self): for idx in range(len(self.tasks)): self.reset_task(idx) _, _, _, info = self.step(self.action_space.sample()) self.tasks[idx]['goal_pos'] = info['goal']
2.46875
2
day20.py
hubbardgary/AdventOfCode
0
12797998
# --- Day 20: Infinite Elves and Infinite Houses --- # # To keep the Elves busy, Santa has them deliver some presents by hand, door-to-door. He sends them down a street with # infinite houses numbered sequentially: 1, 2, 3, 4, 5, and so on. # # Each Elf is assigned a number, too, and delivers presents to houses based on that number: # # The first Elf (number 1) delivers presents to every house: 1, 2, 3, 4, 5, .... # The second Elf (number 2) delivers presents to every second house: 2, 4, 6, 8, 10, .... # Elf number 3 delivers presents to every third house: 3, 6, 9, 12, 15, .... # # There are infinitely many Elves, numbered starting with 1. Each Elf delivers presents equal to ten times his or her # number at each house. # # So, the first nine houses on the street end up like this: # # House 1 got 10 presents. # House 2 got 30 presents. # House 3 got 40 presents. # House 4 got 70 presents. # House 5 got 60 presents. # House 6 got 120 presents. # House 7 got 80 presents. # House 8 got 150 presents. # House 9 got 130 presents. # # The first house gets 10 presents: it is visited only by Elf 1, which delivers 1 * 10 = 10 presents. The fourth house # gets 70 presents, because it is visited by Elves 1, 2, and 4, for a total of 10 + 20 + 40 = 70 presents. # # What is the lowest house number of the house to get at least as many presents as the number in your puzzle input? # # --- Part Two --- # # The Elves decide they don't want to visit an infinite number of houses. Instead, each Elf will stop after delivering # presents to 50 houses. To make up for it, they decide to deliver presents equal to eleven times their number at each # house. # # With these changes, what is the new lowest house number of the house to get at least as many presents as the number # in your puzzle input? from math import sqrt def get_part1_factors(n): factors = set() for x in range(1, int(sqrt(n)) + 1): if n % x == 0: factors.add(x) factors.add(n // x) return factors def get_part2_factors(n): factors = set() for x in range(1, int(sqrt(n)) + 1): if n % x == 0: if x * 50 >= n: factors.add(x) if (n // x) * 50 >= n: factors.add(n // x) return factors data = 33100000 # Part 1 house_no = 1 while True: presents = sum(map(lambda i: i*10, get_part1_factors(house_no))) if presents >= data: print("House no: {0}".format(house_no)) break house_no += 1 # Part 2 house_no = 1 while True: presents = sum(map(lambda i: i*11, get_part2_factors(house_no))) if presents >= data: print("House no: {0}".format(house_no)) break house_no += 1
3.875
4
default.py
aerth/plugin.audio.partymoder
0
12797999
# partymoder xbmc add-on # Copyright 2017 aerth <<EMAIL>> # Released under the terms of the MIT License import xbmc xbmc.executebuiltin('xbmc.PlayerControl(Partymode(music)', True) xbmc.executebuiltin('xbmc.PlayerControl(repeatall)', True) xbmc.executebuiltin("Action(Fullscreen)", True)
1.734375
2
src/third_party/angle/third_party/glmark2/src/waflib/Tools/dmd.py
goochen/naiveproxy
2,151
12798000
<reponame>goochen/naiveproxy #! /usr/bin/env python # encoding: utf-8 # WARNING! Do not edit! https://waf.io/book/index.html#_obtaining_the_waf_file import sys from waflib.Tools import ar,d from waflib.Configure import conf @conf def find_dmd(conf): conf.find_program(['dmd','dmd2','ldc'],var='D') out=conf.cmd_and_log(conf.env.D+['--help']) if out.find("D Compiler v")==-1: out=conf.cmd_and_log(conf.env.D+['-version']) if out.find("based on DMD v1.")==-1: conf.fatal("detected compiler is not dmd/ldc") @conf def common_flags_ldc(conf): v=conf.env v.DFLAGS=['-d-version=Posix'] v.LINKFLAGS=[] v.DFLAGS_dshlib=['-relocation-model=pic'] @conf def common_flags_dmd(conf): v=conf.env v.D_SRC_F=['-c'] v.D_TGT_F='-of%s' v.D_LINKER=v.D v.DLNK_SRC_F='' v.DLNK_TGT_F='-of%s' v.DINC_ST='-I%s' v.DSHLIB_MARKER=v.DSTLIB_MARKER='' v.DSTLIB_ST=v.DSHLIB_ST='-L-l%s' v.DSTLIBPATH_ST=v.DLIBPATH_ST='-L-L%s' v.LINKFLAGS_dprogram=['-quiet'] v.DFLAGS_dshlib=['-fPIC'] v.LINKFLAGS_dshlib=['-L-shared'] v.DHEADER_ext='.di' v.DFLAGS_d_with_header=['-H','-Hf'] v.D_HDR_F='%s' def configure(conf): conf.find_dmd() if sys.platform=='win32': out=conf.cmd_and_log(conf.env.D+['--help']) if out.find('D Compiler v2.')>-1: conf.fatal('dmd2 on Windows is not supported, use gdc or ldc2 instead') conf.load('ar') conf.load('d') conf.common_flags_dmd() conf.d_platform_flags() if str(conf.env.D).find('ldc')>-1: conf.common_flags_ldc()
1.757813
2
blog/admin.py
sandipsandal/Just-A-Thought
0
12798001
from django.contrib import admin from blog.models import Post, BlogComment, Category # Register your models here. admin.site.register((BlogComment,)) # it must be in tupple formate admin.site.register(Category) @admin.register(Post) class PostAdmin(admin.ModelAdmin): class Media: js = ("tinyInject.js",)
1.765625
2
backend/appengine/routes/subjects/edit.py
MarcosVn/turinginformatica
0
12798002
<filename>backend/appengine/routes/subjects/edit.py # -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from google.appengine.ext import ndb from course.course_model import Subject, Course from config.template_middleware import TemplateResponse from gaecookie.decorator import no_csrf from gaepermission.decorator import login_not_required from routes import subjects from tekton.gae.middleware.redirect import RedirectResponse from tekton.router import to_path __author__ = 'marcos' @no_csrf @login_not_required def index(subject_id): subject = Subject.get_by_id(int(subject_id)) ctx={'subject': subject, 'salvar_path': to_path(atualizar) } ctx["courses"] = Course.query_ordenada_por_nome().fetch() return TemplateResponse(ctx, 'subjects/subject_form.html') @login_not_required def atualizar(subject_id, name, activities, course): subject = Subject.get_by_id(int(subject_id)) subject.name = name subject.activities = activities subject.course = ndb.Key(Course, int(course)) subject.put() return RedirectResponse(subjects)
2.234375
2
code/Algorithms/RandomChoice.py
BogyMitutoyoCTL/Snake-AI-2021.1
0
12798003
<filename>code/Algorithms/RandomChoice.py from random import random from Algorithms.Algorithms import Algorithm from GameData import GameData class RandomChoice(Algorithm): def __init__(self): super().__init__() """ A stupid algorithm that returns a random value. This can be used for comparisons with other algorithms. Best result: length 4 on a 10x20 field in 1000 epochs """ def decide(self, info: GameData) -> str: r = int(random() * 3) if r == 0: return "turn left" elif r == 1: return "turn right" else: return "straight"
3.71875
4
network/revsh/revsrv.py
dogoncouch/dogoncouch-misc
3
12798004
#!/usr/bin/env python3 # MIT License # # Copyright (c) 2018 <NAME> (<EMAIL>) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from argparse import ArgumentParser import socket from sys import exit, stdout from time import sleep __version__ = '0.1' class RSSrvCore: def __init__(self): """Initialize a shell server""" self.args = None self.arg_parser = ArgumentParser() def get_args(self): """Set argument options""" self.arg_parser.add_argument('--version', action = 'version', version = '%(prog)s ' + str(__version__)) self.arg_parser.add_argument('-f', action = 'store_true', dest = 'force', help = ('bind to sockets that are already in use')) self.arg_parser.add_argument('port', action = 'store', type=int, help = ('set the local port')) self.args = self.arg_parser.parse_args() def main_event(self, force=False): """Connect to an incoming shell""" s = socket.socket() if force: print('Enabling socket address reuse.') s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) print('Binding to port ' + str(self.args.port)) s.bind(('0.0.0.0', self.args.port)) s.listen(1) conn, host = s.accept() print('Received connection from ' + str(host[0]) + \ ':' + str(host[1]) + '.') remotehost, remotepyversion = str( conn.recv(1024))[2:-1].split(':') print('Remote hostname: ' + remotehost + '.\n' + \ 'Remote Python major version: ' + remotepyversion + \ '.\nEnter h for help.') remotepyversion = int(remotepyversion) if remotehost.split('@')[0] == 'root': promptsuffix = ' # ' else: promptsuffix = ' $ ' print('Type exit or enter EOF (ctrl-d) to exit.') while True: try: cmd = input(remotehost + promptsuffix) if cmd == '!': cmd = lastcmd elif cmd == '': cmd = '\n' if cmd == 'exit': conn.send(bytes(cmd, 'utf8')) conn.close() s.close() exit(0) elif cmd == 'drop': conn.send(bytes('exit', 'utf8')) conn.close() s.close() return 0 elif cmd == 'detach': conn.send(bytes(cmd, 'utf8')) conn.close() s.close() exit(0) elif cmd == 'h': self.show_help() else: conn.send(bytes(cmd, 'utf8')) recdata = conn.recv(16834) if remotepyversion == 2: if recdata and recdata != ':': stdout.buffer.write(recdata) else: if recdata and recdata != bytes('\n', 'utf8'): stdout.buffer.write(recdata) lastcmd = cmd except EOFError: conn.send(bytes('exit', 'utf8')) print('exit') conn.close() s.close() exit(0) def show_help(self): """Show help for shell options""" h = [] h.append('\nCommand Description') h.append('-----------------------------') h.append('h show this help menu') h.append('exit close program (local and remote)') h.append('drop close shell, keep server running') h.append('detach close shell, keep client running') h.append('cd DIR change directory') h.append('') print('\n'.join(h)) def run_script(self): """Run the shell server program""" try: self.get_args() self.main_event(force=self.args.force) while True: self.main_event(force=True) except KeyboardInterrupt: print('\nExiting on KeyboardInterrupt') def main(): thing = RSSrvCore() thing.run_script() if __name__ == "__main__": main()
1.953125
2
testing/test_GitWrapper_committing.py
jkpubsrc/python-module-jk-git
0
12798005
<filename>testing/test_GitWrapper_committing.py #!/usr/bin/python3 import os import typing import tempfile import jk_json import jk_logging import jk_typing import jk_git from TestHelper import TestHelper with jk_logging.wrapMain() as log: with TestHelper(log) as th: th.createRepository(log) th.createSingleFileAndCommitIt("foo1.txt", "mycommitmsg1", log) th.createSingleFileAndCommitIt("foo2.txt", "mycommitmsg2", log) """ with log.descend("Creating another file and committing it ...") as log2: filePath = os.path.join(tempDirPath, "foo2.txt") with open(filePath, "w") as fout: fout.write("") ret = git.add(tempDirPath, filePath, log=log2) _dumpOutput(ret, log2) ret = git.commit(tempDirPath, "mycommitmsg2", log=log2) _dumpOutput(ret, log2) """ with log.descend("Creating a branch ...") as log2: ret = th.git.createBranch(th.tempDirPath, "mybranch", log=log2) th._dumpOutput(ret, log2) with log.descend("Listing branches ...") as log2: ret = th.git.listBranches(th.tempDirPath, log=log2) th._dumpOutput(ret, log2) assert isinstance(ret, list) assert len(ret) == 2 assert ret[0] == " master" assert ret[1] == "* mybranch" """ with log.descend("Creating even another file and committing it ...") as log2: filePath = os.path.join(th.tempDirPath, "foo3.txt") with open(filePath, "w") as fout: fout.write("") ret = th.git.add(th.tempDirPath, filePath, log=log2) th._dumpOutput(ret, log2) ret = th.git.commit(th.tempDirPath, "mycommitmsg3", log=log2) th._dumpOutput(ret, log2) """ th.createSingleFileAndCommitIt("foo3.txt", "mycommitmsg3", log) with log.descend("Show log ...") as log2: ret = th.git.showLog(th.tempDirPath, log=log2) th._dumpOutput(ret, log2) #
2.609375
3
src/urh/ui/ui_analysis_frame.py
awesome-archive/urh
1
12798006
<filename>src/urh/ui/ui_analysis_frame.py # -*- coding: utf-8 -*- # # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_FAnalysis(object): def setupUi(self, FAnalysis): FAnalysis.setObjectName("FAnalysis") FAnalysis.resize(1372, 907) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(FAnalysis.sizePolicy().hasHeightForWidth()) FAnalysis.setSizePolicy(sizePolicy) FAnalysis.setFocusPolicy(QtCore.Qt.ClickFocus) FAnalysis.setAcceptDrops(True) FAnalysis.setFrameShape(QtWidgets.QFrame.StyledPanel) FAnalysis.setFrameShadow(QtWidgets.QFrame.Raised) FAnalysis.setLineWidth(1) FAnalysis.setMidLineWidth(0) self.verticalLayout_2 = QtWidgets.QVBoxLayout(FAnalysis) self.verticalLayout_2.setObjectName("verticalLayout_2") self.splitter = QtWidgets.QSplitter(FAnalysis) self.splitter.setOrientation(QtCore.Qt.Vertical) self.splitter.setObjectName("splitter") self.frame_2 = QtWidgets.QFrame(self.splitter) self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_2.setObjectName("frame_2") self.verticalLayout_4 = QtWidgets.QVBoxLayout(self.frame_2) self.verticalLayout_4.setObjectName("verticalLayout_4") self.splitter_2 = QtWidgets.QSplitter(self.frame_2) self.splitter_2.setOrientation(QtCore.Qt.Horizontal) self.splitter_2.setObjectName("splitter_2") self.frame_4 = QtWidgets.QFrame(self.splitter_2) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.frame_4.sizePolicy().hasHeightForWidth()) self.frame_4.setSizePolicy(sizePolicy) self.frame_4.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_4.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_4.setObjectName("frame_4") self.verticalLayout_8 = QtWidgets.QVBoxLayout(self.frame_4) self.verticalLayout_8.setObjectName("verticalLayout_8") self.scrollArea = QtWidgets.QScrollArea(self.frame_4) self.scrollArea.setWidgetResizable(True) self.scrollArea.setObjectName("scrollArea") self.scrollAreaWidgetContents = QtWidgets.QWidget() self.scrollAreaWidgetContents.setGeometry(QtCore.QRect(0, 0, 320, 514)) self.scrollAreaWidgetContents.setObjectName("scrollAreaWidgetContents") self.verticalLayout = QtWidgets.QVBoxLayout(self.scrollAreaWidgetContents) self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.verticalLayout.setObjectName("verticalLayout") self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.label_5 = QtWidgets.QLabel(self.scrollAreaWidgetContents) self.label_5.setObjectName("label_5") self.horizontalLayout_2.addWidget(self.label_5) self.btnSaveProto = QtWidgets.QToolButton(self.scrollAreaWidgetContents) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btnSaveProto.sizePolicy().hasHeightForWidth()) self.btnSaveProto.setSizePolicy(sizePolicy) self.btnSaveProto.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.btnSaveProto.setBaseSize(QtCore.QSize(0, 0)) icon = QtGui.QIcon.fromTheme("document-save") self.btnSaveProto.setIcon(icon) self.btnSaveProto.setToolButtonStyle(QtCore.Qt.ToolButtonIconOnly) self.btnSaveProto.setObjectName("btnSaveProto") self.horizontalLayout_2.addWidget(self.btnSaveProto) self.verticalLayout.addLayout(self.horizontalLayout_2) self.treeViewProtocols = ProtocolTreeView(self.scrollAreaWidgetContents) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.treeViewProtocols.sizePolicy().hasHeightForWidth()) self.treeViewProtocols.setSizePolicy(sizePolicy) self.treeViewProtocols.setAcceptDrops(True) self.treeViewProtocols.setDragEnabled(True) self.treeViewProtocols.setDragDropOverwriteMode(False) self.treeViewProtocols.setDragDropMode(QtWidgets.QAbstractItemView.DragDrop) self.treeViewProtocols.setDefaultDropAction(QtCore.Qt.IgnoreAction) self.treeViewProtocols.setObjectName("treeViewProtocols") self.treeViewProtocols.header().setVisible(False) self.verticalLayout.addWidget(self.treeViewProtocols) self.label_4 = QtWidgets.QLabel(self.scrollAreaWidgetContents) self.label_4.setObjectName("label_4") self.verticalLayout.addWidget(self.label_4) self.listViewParticipants = QtWidgets.QListView(self.scrollAreaWidgetContents) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.listViewParticipants.sizePolicy().hasHeightForWidth()) self.listViewParticipants.setSizePolicy(sizePolicy) self.listViewParticipants.setObjectName("listViewParticipants") self.verticalLayout.addWidget(self.listViewParticipants) self.cbProtoView = QtWidgets.QComboBox(self.scrollAreaWidgetContents) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.cbProtoView.sizePolicy().hasHeightForWidth()) self.cbProtoView.setSizePolicy(sizePolicy) self.cbProtoView.setObjectName("cbProtoView") self.cbProtoView.addItem("") self.cbProtoView.addItem("") self.cbProtoView.addItem("") self.verticalLayout.addWidget(self.cbProtoView) self.cbDecoding = QtWidgets.QComboBox(self.scrollAreaWidgetContents) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.cbDecoding.sizePolicy().hasHeightForWidth()) self.cbDecoding.setSizePolicy(sizePolicy) self.cbDecoding.setSizeAdjustPolicy(QtWidgets.QComboBox.AdjustToContents) self.cbDecoding.setObjectName("cbDecoding") self.cbDecoding.addItem("") self.cbDecoding.addItem("") self.cbDecoding.addItem("") self.cbDecoding.addItem("") self.cbDecoding.addItem("") self.verticalLayout.addWidget(self.cbDecoding) self.lEncodingErrors = QtWidgets.QLabel(self.scrollAreaWidgetContents) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lEncodingErrors.sizePolicy().hasHeightForWidth()) self.lEncodingErrors.setSizePolicy(sizePolicy) self.lEncodingErrors.setObjectName("lEncodingErrors") self.verticalLayout.addWidget(self.lEncodingErrors) self.lDecodingErrorsValue = QtWidgets.QLabel(self.scrollAreaWidgetContents) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lDecodingErrorsValue.sizePolicy().hasHeightForWidth()) self.lDecodingErrorsValue.setSizePolicy(sizePolicy) self.lDecodingErrorsValue.setObjectName("lDecodingErrorsValue") self.verticalLayout.addWidget(self.lDecodingErrorsValue) self.labelDecodingState = QtWidgets.QLabel(self.scrollAreaWidgetContents) self.labelDecodingState.setObjectName("labelDecodingState") self.verticalLayout.addWidget(self.labelDecodingState) self.cbShowDiffs = QtWidgets.QCheckBox(self.scrollAreaWidgetContents) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.cbShowDiffs.sizePolicy().hasHeightForWidth()) self.cbShowDiffs.setSizePolicy(sizePolicy) self.cbShowDiffs.setObjectName("cbShowDiffs") self.verticalLayout.addWidget(self.cbShowDiffs) self.chkBoxShowOnlyDiffs = QtWidgets.QCheckBox(self.scrollAreaWidgetContents) self.chkBoxShowOnlyDiffs.setObjectName("chkBoxShowOnlyDiffs") self.verticalLayout.addWidget(self.chkBoxShowOnlyDiffs) self.chkBoxOnlyShowLabelsInProtocol = QtWidgets.QCheckBox(self.scrollAreaWidgetContents) self.chkBoxOnlyShowLabelsInProtocol.setObjectName("chkBoxOnlyShowLabelsInProtocol") self.verticalLayout.addWidget(self.chkBoxOnlyShowLabelsInProtocol) self.btnAnalyze = QtWidgets.QToolButton(self.scrollAreaWidgetContents) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btnAnalyze.sizePolicy().hasHeightForWidth()) self.btnAnalyze.setSizePolicy(sizePolicy) self.btnAnalyze.setPopupMode(QtWidgets.QToolButton.MenuButtonPopup) self.btnAnalyze.setToolButtonStyle(QtCore.Qt.ToolButtonTextOnly) self.btnAnalyze.setObjectName("btnAnalyze") self.verticalLayout.addWidget(self.btnAnalyze) self.stackedWidgetLogicAnalysis = QtWidgets.QStackedWidget(self.scrollAreaWidgetContents) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.stackedWidgetLogicAnalysis.sizePolicy().hasHeightForWidth()) self.stackedWidgetLogicAnalysis.setSizePolicy(sizePolicy) self.stackedWidgetLogicAnalysis.setObjectName("stackedWidgetLogicAnalysis") self.pageButtonAnalyzer = QtWidgets.QWidget() self.pageButtonAnalyzer.setObjectName("pageButtonAnalyzer") self.verticalLayout_5 = QtWidgets.QVBoxLayout(self.pageButtonAnalyzer) self.verticalLayout_5.setContentsMargins(0, 0, 0, 0) self.verticalLayout_5.setObjectName("verticalLayout_5") self.stackedWidgetLogicAnalysis.addWidget(self.pageButtonAnalyzer) self.pageProgressBar = QtWidgets.QWidget() self.pageProgressBar.setObjectName("pageProgressBar") self.verticalLayout_6 = QtWidgets.QVBoxLayout(self.pageProgressBar) self.verticalLayout_6.setContentsMargins(0, 0, 0, 0) self.verticalLayout_6.setObjectName("verticalLayout_6") self.progressBarLogicAnalyzer = QtWidgets.QProgressBar(self.pageProgressBar) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.progressBarLogicAnalyzer.sizePolicy().hasHeightForWidth()) self.progressBarLogicAnalyzer.setSizePolicy(sizePolicy) self.progressBarLogicAnalyzer.setProperty("value", 24) self.progressBarLogicAnalyzer.setObjectName("progressBarLogicAnalyzer") self.verticalLayout_6.addWidget(self.progressBarLogicAnalyzer) self.stackedWidgetLogicAnalysis.addWidget(self.pageProgressBar) self.verticalLayout.addWidget(self.stackedWidgetLogicAnalysis) self.scrollArea.setWidget(self.scrollAreaWidgetContents) self.verticalLayout_8.addWidget(self.scrollArea) self.frame_3 = QtWidgets.QFrame(self.splitter_2) self.frame_3.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_3.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_3.setObjectName("frame_3") self.verticalLayout_3 = QtWidgets.QVBoxLayout(self.frame_3) self.verticalLayout_3.setObjectName("verticalLayout_3") self.gridLayout_2 = QtWidgets.QGridLayout() self.gridLayout_2.setObjectName("gridLayout_2") self.lineEditSearch = QtWidgets.QLineEdit(self.frame_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lineEditSearch.sizePolicy().hasHeightForWidth()) self.lineEditSearch.setSizePolicy(sizePolicy) self.lineEditSearch.setAcceptDrops(False) self.lineEditSearch.setClearButtonEnabled(True) self.lineEditSearch.setObjectName("lineEditSearch") self.gridLayout_2.addWidget(self.lineEditSearch, 0, 0, 1, 1) self.btnSearchSelectFilter = QtWidgets.QToolButton(self.frame_3) self.btnSearchSelectFilter.setPopupMode(QtWidgets.QToolButton.MenuButtonPopup) self.btnSearchSelectFilter.setToolButtonStyle(QtCore.Qt.ToolButtonTextOnly) self.btnSearchSelectFilter.setObjectName("btnSearchSelectFilter") self.gridLayout_2.addWidget(self.btnSearchSelectFilter, 0, 1, 1, 1) self.lFilterShown = QtWidgets.QLabel(self.frame_3) self.lFilterShown.setObjectName("lFilterShown") self.gridLayout_2.addWidget(self.lFilterShown, 0, 2, 1, 1) self.btnPrevSearch = QtWidgets.QToolButton(self.frame_3) self.btnPrevSearch.setEnabled(False) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btnPrevSearch.sizePolicy().hasHeightForWidth()) self.btnPrevSearch.setSizePolicy(sizePolicy) self.btnPrevSearch.setMaximumSize(QtCore.QSize(20, 16777215)) icon = QtGui.QIcon.fromTheme("go-previous") self.btnPrevSearch.setIcon(icon) self.btnPrevSearch.setObjectName("btnPrevSearch") self.gridLayout_2.addWidget(self.btnPrevSearch, 0, 3, 1, 1) self.lSearchCurrent = QtWidgets.QLabel(self.frame_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lSearchCurrent.sizePolicy().hasHeightForWidth()) self.lSearchCurrent.setSizePolicy(sizePolicy) self.lSearchCurrent.setStyleSheet("QLabel\n" "{\n" " qproperty-alignment: AlignCenter;\n" "}") self.lSearchCurrent.setObjectName("lSearchCurrent") self.gridLayout_2.addWidget(self.lSearchCurrent, 0, 4, 1, 1) self.lSlash = QtWidgets.QLabel(self.frame_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lSlash.sizePolicy().hasHeightForWidth()) self.lSlash.setSizePolicy(sizePolicy) self.lSlash.setAlignment(QtCore.Qt.AlignCenter) self.lSlash.setObjectName("lSlash") self.gridLayout_2.addWidget(self.lSlash, 0, 5, 1, 1) self.lSearchTotal = QtWidgets.QLabel(self.frame_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lSearchTotal.sizePolicy().hasHeightForWidth()) self.lSearchTotal.setSizePolicy(sizePolicy) self.lSearchTotal.setStyleSheet("QLabel\n" "{\n" " qproperty-alignment: AlignCenter;\n" "}") self.lSearchTotal.setObjectName("lSearchTotal") self.gridLayout_2.addWidget(self.lSearchTotal, 0, 6, 1, 1) self.btnNextSearch = QtWidgets.QToolButton(self.frame_3) self.btnNextSearch.setEnabled(False) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btnNextSearch.sizePolicy().hasHeightForWidth()) self.btnNextSearch.setSizePolicy(sizePolicy) self.btnNextSearch.setMaximumSize(QtCore.QSize(20, 16777215)) icon = QtGui.QIcon.fromTheme("go-next") self.btnNextSearch.setIcon(icon) self.btnNextSearch.setObjectName("btnNextSearch") self.gridLayout_2.addWidget(self.btnNextSearch, 0, 7, 1, 1) spacerItem = QtWidgets.QSpacerItem(60, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout_2.addItem(spacerItem, 0, 8, 1, 1) self.line = QtWidgets.QFrame(self.frame_3) self.line.setFrameShape(QtWidgets.QFrame.VLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.gridLayout_2.addWidget(self.line, 0, 9, 1, 1) self.label_2 = QtWidgets.QLabel(self.frame_3) self.label_2.setObjectName("label_2") self.gridLayout_2.addWidget(self.label_2, 0, 10, 1, 1) self.lblRSSI = QtWidgets.QLabel(self.frame_3) self.lblRSSI.setObjectName("lblRSSI") self.gridLayout_2.addWidget(self.lblRSSI, 0, 11, 1, 1) self.line_2 = QtWidgets.QFrame(self.frame_3) self.line_2.setFrameShape(QtWidgets.QFrame.VLine) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setObjectName("line_2") self.gridLayout_2.addWidget(self.line_2, 0, 12, 1, 1) self.label_3 = QtWidgets.QLabel(self.frame_3) self.label_3.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_3.setObjectName("label_3") self.gridLayout_2.addWidget(self.label_3, 0, 13, 1, 1) self.lTime = QtWidgets.QLabel(self.frame_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lTime.sizePolicy().hasHeightForWidth()) self.lTime.setSizePolicy(sizePolicy) self.lTime.setTextFormat(QtCore.Qt.PlainText) self.lTime.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.lTime.setObjectName("lTime") self.gridLayout_2.addWidget(self.lTime, 0, 14, 1, 1) self.verticalLayout_3.addLayout(self.gridLayout_2) self.tblViewProtocol = ProtocolTableView(self.frame_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.tblViewProtocol.sizePolicy().hasHeightForWidth()) self.tblViewProtocol.setSizePolicy(sizePolicy) self.tblViewProtocol.setAcceptDrops(True) self.tblViewProtocol.setAutoFillBackground(True) self.tblViewProtocol.setFrameShape(QtWidgets.QFrame.NoFrame) self.tblViewProtocol.setFrameShadow(QtWidgets.QFrame.Sunken) self.tblViewProtocol.setLineWidth(1) self.tblViewProtocol.setAutoScroll(True) self.tblViewProtocol.setDragDropMode(QtWidgets.QAbstractItemView.DropOnly) self.tblViewProtocol.setAlternatingRowColors(True) self.tblViewProtocol.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) self.tblViewProtocol.setTextElideMode(QtCore.Qt.ElideNone) self.tblViewProtocol.setVerticalScrollMode(QtWidgets.QAbstractItemView.ScrollPerPixel) self.tblViewProtocol.setHorizontalScrollMode(QtWidgets.QAbstractItemView.ScrollPerPixel) self.tblViewProtocol.setShowGrid(False) self.tblViewProtocol.setGridStyle(QtCore.Qt.NoPen) self.tblViewProtocol.setSortingEnabled(False) self.tblViewProtocol.setWordWrap(False) self.tblViewProtocol.setCornerButtonEnabled(False) self.tblViewProtocol.setObjectName("tblViewProtocol") self.tblViewProtocol.horizontalHeader().setDefaultSectionSize(40) self.verticalLayout_3.addWidget(self.tblViewProtocol) self.horizontalLayout_3 = QtWidgets.QHBoxLayout() self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.lBits = QtWidgets.QLabel(self.frame_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lBits.sizePolicy().hasHeightForWidth()) self.lBits.setSizePolicy(sizePolicy) self.lBits.setMaximumSize(QtCore.QSize(16777215, 15)) self.lBits.setObjectName("lBits") self.horizontalLayout_3.addWidget(self.lBits) self.lBitsSelection = QtWidgets.QLineEdit(self.frame_3) self.lBitsSelection.setMaximumSize(QtCore.QSize(16777215, 20)) self.lBitsSelection.setAcceptDrops(False) self.lBitsSelection.setReadOnly(True) self.lBitsSelection.setObjectName("lBitsSelection") self.horizontalLayout_3.addWidget(self.lBitsSelection) self.lHex = QtWidgets.QLabel(self.frame_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lHex.sizePolicy().hasHeightForWidth()) self.lHex.setSizePolicy(sizePolicy) self.lHex.setMaximumSize(QtCore.QSize(16777215, 15)) self.lHex.setObjectName("lHex") self.horizontalLayout_3.addWidget(self.lHex) self.lHexSelection = QtWidgets.QLineEdit(self.frame_3) self.lHexSelection.setMaximumSize(QtCore.QSize(16777215, 20)) self.lHexSelection.setAcceptDrops(False) self.lHexSelection.setReadOnly(True) self.lHexSelection.setObjectName("lHexSelection") self.horizontalLayout_3.addWidget(self.lHexSelection) self.lDecimal = QtWidgets.QLabel(self.frame_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lDecimal.sizePolicy().hasHeightForWidth()) self.lDecimal.setSizePolicy(sizePolicy) self.lDecimal.setMaximumSize(QtCore.QSize(16777215, 15)) self.lDecimal.setObjectName("lDecimal") self.horizontalLayout_3.addWidget(self.lDecimal) self.lDecimalSelection = QtWidgets.QLineEdit(self.frame_3) self.lDecimalSelection.setMaximumSize(QtCore.QSize(16777215, 20)) self.lDecimalSelection.setAcceptDrops(False) self.lDecimalSelection.setReadOnly(True) self.lDecimalSelection.setObjectName("lDecimalSelection") self.horizontalLayout_3.addWidget(self.lDecimalSelection) spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_3.addItem(spacerItem1) self.lNumSelectedColumns = QtWidgets.QLabel(self.frame_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lNumSelectedColumns.sizePolicy().hasHeightForWidth()) self.lNumSelectedColumns.setSizePolicy(sizePolicy) self.lNumSelectedColumns.setObjectName("lNumSelectedColumns") self.horizontalLayout_3.addWidget(self.lNumSelectedColumns) self.lColumnsSelectedText = QtWidgets.QLabel(self.frame_3) self.lColumnsSelectedText.setObjectName("lColumnsSelectedText") self.horizontalLayout_3.addWidget(self.lColumnsSelectedText) self.verticalLayout_3.addLayout(self.horizontalLayout_3) self.verticalLayout_4.addWidget(self.splitter_2) self.frame = QtWidgets.QFrame(self.splitter) self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame.setFrameShadow(QtWidgets.QFrame.Raised) self.frame.setObjectName("frame") self.gridLayout = QtWidgets.QGridLayout(self.frame) self.gridLayout.setObjectName("gridLayout") self.label = QtWidgets.QLabel(self.frame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label.sizePolicy().hasHeightForWidth()) self.label.setSizePolicy(sizePolicy) self.label.setObjectName("label") self.gridLayout.addWidget(self.label, 0, 0, 1, 1) self.tblLabelValues = LabelValueTableView(self.frame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.tblLabelValues.sizePolicy().hasHeightForWidth()) self.tblLabelValues.setSizePolicy(sizePolicy) self.tblLabelValues.setAlternatingRowColors(True) self.tblLabelValues.setShowGrid(False) self.tblLabelValues.setObjectName("tblLabelValues") self.tblLabelValues.horizontalHeader().setVisible(True) self.tblLabelValues.horizontalHeader().setCascadingSectionResizes(False) self.tblLabelValues.horizontalHeader().setDefaultSectionSize(150) self.tblLabelValues.horizontalHeader().setStretchLastSection(True) self.tblLabelValues.verticalHeader().setVisible(False) self.gridLayout.addWidget(self.tblLabelValues, 1, 1, 2, 1) self.listViewLabelNames = ProtocolLabelListView(self.frame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.listViewLabelNames.sizePolicy().hasHeightForWidth()) self.listViewLabelNames.setSizePolicy(sizePolicy) self.listViewLabelNames.setAcceptDrops(False) self.listViewLabelNames.setObjectName("listViewLabelNames") self.gridLayout.addWidget(self.listViewLabelNames, 2, 0, 1, 1) self.lblLabelValues = QtWidgets.QLabel(self.frame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lblLabelValues.sizePolicy().hasHeightForWidth()) self.lblLabelValues.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.lblLabelValues.setFont(font) self.lblLabelValues.setAlignment(QtCore.Qt.AlignCenter) self.lblLabelValues.setObjectName("lblLabelValues") self.gridLayout.addWidget(self.lblLabelValues, 0, 1, 1, 1) self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") self.cbMessagetypes = QtWidgets.QComboBox(self.frame) self.cbMessagetypes.setEditable(True) self.cbMessagetypes.setInsertPolicy(QtWidgets.QComboBox.NoInsert) self.cbMessagetypes.setObjectName("cbMessagetypes") self.horizontalLayout.addWidget(self.cbMessagetypes) self.btnMessagetypeSettings = QtWidgets.QToolButton(self.frame) icon = QtGui.QIcon.fromTheme("preferences-other") self.btnMessagetypeSettings.setIcon(icon) self.btnMessagetypeSettings.setObjectName("btnMessagetypeSettings") self.horizontalLayout.addWidget(self.btnMessagetypeSettings) self.btnAddMessagetype = QtWidgets.QToolButton(self.frame) icon = QtGui.QIcon.fromTheme("list-add") self.btnAddMessagetype.setIcon(icon) self.btnAddMessagetype.setObjectName("btnAddMessagetype") self.horizontalLayout.addWidget(self.btnAddMessagetype) self.btnRemoveMessagetype = QtWidgets.QToolButton(self.frame) icon = QtGui.QIcon.fromTheme("list-remove") self.btnRemoveMessagetype.setIcon(icon) self.btnRemoveMessagetype.setObjectName("btnRemoveMessagetype") self.horizontalLayout.addWidget(self.btnRemoveMessagetype) self.gridLayout.addLayout(self.horizontalLayout, 1, 0, 1, 1) self.verticalLayout_2.addWidget(self.splitter) self.retranslateUi(FAnalysis) self.stackedWidgetLogicAnalysis.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(FAnalysis) def retranslateUi(self, FAnalysis): _translate = QtCore.QCoreApplication.translate FAnalysis.setWindowTitle(_translate("FAnalysis", "Frame")) self.label_5.setText(_translate("FAnalysis", "Protocols:")) self.btnSaveProto.setText(_translate("FAnalysis", "Save current protocol..")) self.label_4.setText(_translate("FAnalysis", "Participants:")) self.cbProtoView.setToolTip(_translate("FAnalysis", "<html><head/><body><p>Set the desired view here.</p></body></html>")) self.cbProtoView.setItemText(0, _translate("FAnalysis", "Bits")) self.cbProtoView.setItemText(1, _translate("FAnalysis", "Hex")) self.cbProtoView.setItemText(2, _translate("FAnalysis", "ASCII")) self.cbDecoding.setItemText(0, _translate("FAnalysis", "NRZ")) self.cbDecoding.setItemText(1, _translate("FAnalysis", "Manchester")) self.cbDecoding.setItemText(2, _translate("FAnalysis", "Manchester II")) self.cbDecoding.setItemText(3, _translate("FAnalysis", "Differential Manchester")) self.cbDecoding.setItemText(4, _translate("FAnalysis", "...")) self.lEncodingErrors.setText(_translate("FAnalysis", "Decoding errors for message:")) self.lDecodingErrorsValue.setText(_translate("FAnalysis", "0 (0.00%) ")) self.labelDecodingState.setText(_translate("FAnalysis", "SUCCESS")) self.cbShowDiffs.setText(_translate("FAnalysis", "Mark diffs in protocol")) self.chkBoxShowOnlyDiffs.setText(_translate("FAnalysis", "Show only diffs in protocol")) self.chkBoxOnlyShowLabelsInProtocol.setText(_translate("FAnalysis", "Show only labels in protocol")) self.btnAnalyze.setText(_translate("FAnalysis", "Analyze")) self.lineEditSearch.setPlaceholderText(_translate("FAnalysis", "Search Pattern")) self.btnSearchSelectFilter.setText(_translate("FAnalysis", "Search")) self.lFilterShown.setText(_translate("FAnalysis", "shown: 42/108")) self.btnPrevSearch.setText(_translate("FAnalysis", "<")) self.lSearchCurrent.setText(_translate("FAnalysis", "-")) self.lSlash.setText(_translate("FAnalysis", "/")) self.lSearchTotal.setText(_translate("FAnalysis", "-")) self.btnNextSearch.setText(_translate("FAnalysis", ">")) self.label_2.setToolTip(_translate("FAnalysis", "<html><head/><body><p>The <span style=\" font-weight:600;\">Received Signal Strength Indicator</span> indicates the average signal power of the current message.</p></body></html>")) self.label_2.setText(_translate("FAnalysis", "RSSI:")) self.lblRSSI.setToolTip(_translate("FAnalysis", "<html><head/><body><p>The <span style=\" font-weight:600;\">Received Signal Strength Indicator</span> indicates the average signal power of the current message.</p></body></html>")) self.lblRSSI.setText(_translate("FAnalysis", "1.04")) self.label_3.setToolTip(_translate("FAnalysis", "<html><head/><body><p>The <span style=\" font-weight:600;\">Message Start</span> is the point in time when a protocol message begins. Additionally the relative time (+ ...) from the previous message is shown.</p></body></html>")) self.label_3.setText(_translate("FAnalysis", "Timestamp:")) self.lTime.setToolTip(_translate("FAnalysis", "<html><head/><body><p>The <span style=\" font-weight:600;\">Message</span><span style=\" font-weight:600;\">Start</span> is the point in time when a protocol message begins. Additionally the relative time (+ ...) from the previous message is shown.</p></body></html>")) self.lTime.setText(_translate("FAnalysis", "0 (+0)")) self.lBits.setText(_translate("FAnalysis", "Bit:")) self.lHex.setText(_translate("FAnalysis", "Hex:")) self.lDecimal.setText(_translate("FAnalysis", "Decimal:")) self.lNumSelectedColumns.setText(_translate("FAnalysis", "0")) self.lColumnsSelectedText.setText(_translate("FAnalysis", "Column(s) selected")) self.label.setText(_translate("FAnalysis", "Message type:")) self.listViewLabelNames.setToolTip(_translate("FAnalysis", "Manage your estimations for protocol fields here. To add custom field types use Rightclick -> Edit.")) self.lblLabelValues.setText(_translate("FAnalysis", "Label values for message")) self.btnMessagetypeSettings.setToolTip(_translate("FAnalysis", "Settings for message type")) self.btnMessagetypeSettings.setText(_translate("FAnalysis", "...")) self.btnAddMessagetype.setToolTip(_translate("FAnalysis", "Add a new message type")) self.btnAddMessagetype.setText(_translate("FAnalysis", "...")) self.btnRemoveMessagetype.setToolTip(_translate("FAnalysis", "Delete current message type")) self.btnRemoveMessagetype.setText(_translate("FAnalysis", "...")) from urh.ui.views.LabelValueTableView import LabelValueTableView from urh.ui.views.ProtocolLabelListView import ProtocolLabelListView from urh.ui.views.ProtocolTableView import ProtocolTableView from urh.ui.views.ProtocolTreeView import ProtocolTreeView from . import urh_rc
2.015625
2
view_all_videos.py
ethall/LED-Timeline
1
12798007
<filename>view_all_videos.py import os import cv2 as cv from _util import Scrubber, get_frames from p01_extract_valid_frames import extract_valid_frames from p02_denoise import denoise from p03_gray import to_grayscale from p04_diff import to_intensity_difference if not os.path.exists("target_p01_valid.mp4"): extract_valid_frames("target.mp4", "target_p01_valid.mp4") color_movie_viewer = Scrubber( get_frames(cv.VideoCapture("target_p01_valid.mp4")), window_title="color" ) color_movie_viewer.create() color_movie_viewer.wait() if not os.path.exists("target_p02_denoised.mp4"): denoise("target_p01_valid.mp4", "target_p02_denoised.mp4") denoised_color_movie_viewer = Scrubber( get_frames(cv.VideoCapture("target_p02_denoised.mp4")), window_title="denoised color" ) denoised_color_movie_viewer.create() denoised_color_movie_viewer.wait() if not os.path.exists("target_p03_gray.mp4"): to_grayscale("target_p02_denoised.mp4", "target_p03_gray.mp4") gray_movie_viewer = Scrubber( get_frames(cv.VideoCapture("target_p03_gray.mp4")), window_title="gray" ) gray_movie_viewer.create() gray_movie_viewer.wait() if not os.path.exists("target_p04_diff.mp4"): to_intensity_difference("target_p03_gray.mp4", "target_p04_diff.mp4") scaled_diff_viewer = Scrubber( get_frames(cv.VideoCapture("target_p04_diff.mp4")), window_title="scaled diff" ) scaled_diff_viewer.create() scaled_diff_viewer.wait() if not os.path.exists("target_p05_detect.mp4"): print("Skipping part 5: video does not exist") print("It can be created by running the 'p05_detect.py' script") else: gray_movie_viewer = Scrubber( get_frames(cv.VideoCapture("target_p05_detect.mp4")), window_title="detect" ) gray_movie_viewer.create() gray_movie_viewer.wait()
2.765625
3
slash/core/runnable_test_factory.py
omergertel/slash
0
12798008
from .metadata import Metadata class RunnableTestFactory(object): def __init__(self, file_path='', module_name='', factory_name=''): super(RunnableTestFactory, self).__init__() self.file_path = file_path self.module_name = module_name self.factory_name = factory_name def generate_tests(self, fixture_store): """ Generates :class:`.RunnableTest` instances to run Do not override this method directly. Use :func:`.RunnableTestFactory._generate_tests` instead. """ for address_in_factory, test in self._generate_tests(fixture_store): assert test.__slash__ is None test.__slash__ = Metadata(self, test, address_in_factory) yield test def _generate_tests(self, fixture_store): raise NotImplementedError() # pragma: no cover
2.4375
2
shardingpy/parsing/parser/context/condition.py
hongfuli/sharding-py
1
12798009
# -*- coding: utf-8 -*- from collections import OrderedDict, defaultdict from shardingpy.api.algorithm.sharding.values import ListShardingValue, RangeShardingValue from shardingpy.constant import ShardingOperator from shardingpy.exception import UnsupportedOperationException from shardingpy.parsing.parser.expressionparser import SQLPlaceholderExpression, SQLTextExpression, SQLNumberExpression from shardingpy.util.extype import RangeType, Range from shardingpy.util.strutil import equals_ignore_case class Column: def __init__(self, name, table_name): self.name = name self.table_name = table_name def __eq__(self, other): return other and isinstance(other, Column) and equals_ignore_case(self.name, other.name) and equals_ignore_case( self.table_name, other.table_name) def __hash__(self): return hash(self.name) + 17 * hash(self.table_name) if self.table_name else 0 class Condition: def __init__(self, column, operator, *sql_expressions): if column: assert isinstance(column, Column) if operator: assert isinstance(operator, ShardingOperator) self.column = column self.operator = operator self._position_index_map = OrderedDict() self._values = list() position = 0 for expr in sql_expressions: if isinstance(expr, SQLPlaceholderExpression): self._position_index_map[position] = expr.index elif isinstance(expr, SQLTextExpression): self._values.append(expr.text) elif isinstance(expr, SQLNumberExpression): self._values.append(expr.number) position += 1 # Deprecated def get_sharding_value(self, parameters): condition_values = self.get_condition_values(parameters) if self.operator in [ShardingOperator.EQUAL, ShardingOperator.IN]: return ListShardingValue(self.column.table_name, self.column.name, condition_values) elif self.operator == ShardingOperator.BETWEEN: return RangeShardingValue(self.column.table_name, self.column.name, Range(condition_values[0], RangeType.CLOSED, condition_values[1], RangeType)) else: raise UnsupportedOperationException("sharding condition not support :" + self.operator.value) def get_condition_values(self, parameters): result = self._values[:] for position, param_index in self._position_index_map.items(): parameter = parameters[param_index] if position < len(result): result.insert(position, parameter) else: result.append(parameter) return result class AndCondition(object): def __init__(self): self.conditions = list() def get_conditions_map(self): result = defaultdict(list) for each in self.conditions: result[each.column].append(each) return result def optimize(self): result = AndCondition() result.conditions = [each for each in self.conditions if type(each) == Condition] if not result.conditions: result.conditions.append(NullCondition()) return result class OrCondition(object): def __init__(self, condition=None): self.and_conditions = list() if condition: self.add(condition) def add(self, condition): assert isinstance(condition, Condition) if len(self.and_conditions) == 0: self.and_conditions.append(AndCondition()) self.and_conditions[0].conditions.append(condition) def find(self, column, index): pass class Conditions: def __init__(self, conditions=None): self.or_condition = OrCondition() if conditions: self.or_condition.and_conditions.extend(conditions.or_condition.and_conditions) def add(self, condition, sharding_rule): if sharding_rule.is_sharding_column(condition.column): self.or_condition.add(condition) class NullCondition(Condition): def __init__(self): super().__init__(None, None) class GeneratedKeyCondition(Condition): def __init__(self, column, index, value): super().__init__(column, ShardingOperator.EQUAL, SQLNumberExpression(value)) self.index = index self.value = value def get_condition_values(self, parameters): return [self.value] if self.value is not None else [parameters[self.index]]
2.265625
2
predict.py
Muxxs/SocialModel
0
12798010
<filename>predict.py # coding=utf-8 import tensorflow as tf import random def get_data(nums): import os x_train = [] # 4*1 y_train = [] # 1*1 for i in range(nums): NewList = [] for m in list([0, 1, 2, 3]): NewList.append(random.random() // 0.1) x_train.append(NewList) return x_train x_train = get_data(10) x_train.append([1, 1, 1, 1]) x_train.append([2, 2, 2, 2]) model = tf.keras.models.load_model('my_model') r = model.predict(x_train) for i in range(len(r)): print(x_train[i][0] + x_train[i][1] + x_train[i][2] + x_train[i][3], int(x_train[i][0] + x_train[i][1] + x_train[i][2] + x_train[i][3] > 20), int(r[i][0] < r[i][1]), r[i][0], r[i][1])
2.828125
3
wowheadquesttracker/helix.py
LairdStreak/MyPyPlayGround
0
12798011
<gh_stars>0 # Python program to draw # Spiral Helix Pattern # using Turtle Programming import turtle loadWindow = turtle.Screen() turtle.speed(2) for i in range(100): turtle.circle(5*i) turtle.circle(-5*i) turtle.left(i) turtle.exitonclick()
3.90625
4
test/test_huffman.py
fat-crocodile/comression
1
12798012
import sys sys.path.insert(0, '../src') from prefix_code import Encoder, Decoder from huffman import make_code_symbols as make_code from bounded_huffman import make_code_symbols as make_ll_code # ll for lenght-limited class DummyInputStream(object): def __init__(self, data): self.data = iter(data) def get_be(self, n): res = 0 for _ in xrange(n): b = self.data.next() res *= 2 if b == '1': res += 1 elif b == '0': pass else: raise Exception('Wrong input format') return res class DummyOutputStream(object): def __init__(self): self.buffer = [] def put_be(self, v, n): res = [] for _ in xrange(n): res.append('1' if v % 2 else '0') v /= 2 res.reverse() self.buffer.extend(res) def display_char(c): code = ord(c) if c == '\n': return '\\n' if c == '\t': return '\\t' if c == '\r': return '\\r' if c == ' ': return "' '" if code > 32 and code < 128: return c return '0x%02x' % code def display_list(l): columns = 4 items = ['%s --> %3s' % (display_char(c), i) for c,i in l if i > 0] rows = [[] for _ in range((len(items) + columns - 1) / columns)] try: ii = iter(items) while True: for r in rows: r.append(ii.next()) except StopIteration: pass res = ['\t'.join(r) for r in rows] return '\n'.join(res) def test_coder(name, data, code): encoder = Encoder(code) dos = DummyOutputStream() for x in data: encoder.put(dos, x) print name print ''.join(dos.buffer) print len(dos.buffer) dis = DummyInputStream(dos.buffer) decoder = Decoder(code) res = [] try: while True: res.append(decoder.get(dis)) except StopIteration: pass if ''.join(res) == data: print 'Decoded' else: print 'Error!' data = sys.stdin.read() counts = dict.fromkeys([chr(i) for i in range(256)], 0) for x in data: counts[x] += 1 counts = sorted(counts.iteritems()) print 'Counts:\n%s' % display_list(counts) symbols = sum((c for _,c in counts), 0) weights = [c * 1.0 / symbols for _,c in counts] codeu = make_code(counts) code16 = make_ll_code(counts, 16) code10 = make_ll_code(counts, 10) code8 = make_ll_code(counts, 8) code6 = make_ll_code(counts, 6) print 'Unlimited code (weighted lenght %s):\n%s' % (sum((w * l for w,(_,l) in zip(weights, codeu)), 0), display_list(codeu)) print 'code-16 (weighted lenght %s):\n%s' % (sum((w * l for w,(_,l) in zip(weights, code16)), 0), display_list(code16)) print 'code-10 (weighted lenght %s):\n%s' % (sum((w * l for w,(_,l) in zip(weights, code10)), 0), display_list(code10)) print 'code-8 (weighted lenght %s):\n%s' % (sum((w * l for w,(_,l) in zip(weights, code8)), 0), display_list(code8)) print 'code-6 (weighted lenght %s):\n%s' % (sum((w * l for w,(_,l) in zip(weights, code6)), 0), display_list(code6)) test_coder('unlimited', data, codeu) test_coder('code-16', data, code16) test_coder('code-10', data, code10) test_coder('code-8', data, code8) test_coder('code-6', data, code6)
2.796875
3
robotice/utils/extensions/comparators/fuzzy/base.py
robotice/robotice
2
12798013
import re import logging from time import time from datetime import datetime from celery.task import task from celery.execute import send_task from celery.signals import celeryd_after_setup from robotice.reactor.tasks import commit_action from robotice.reasoner.comparators import BaseComparator logger = logging.getLogger(__name__) R_FCL_PATH = "/srv/robotice/config/fuzzy" FCL_VAR = "fcl" class FuzzyComparator(BaseComparator): """Object for handling fuzzy reasoning """ def compare(self): for actuator in self.config.actuators: system = actuator.get('system_name').replace(".", "_") plan_name = actuator["plan_name"] fcl_file = actuator.get(FCL_VAR, None) if not fcl_file: logger.info("Actuator has not specified FCL set, will be ignored.") continue model_value, real_value = self.get_values(actuator) logger.info("key: {0} model_value: {1} | real_value: {2}".format( ('%s.%s.%s' % (system, 'sensors', plan_name)), model_value, real_value)) """ if real_value == None: logger.info('NO REAL DATA to COMPARE') missing_data += 1 continue """ # try load pyfuzzy try: import fuzzy.storage.fcl.Reader except Exception, e: logger.error("Missing pyfuzzy library. Maybe pip install pyfuzzy fix this issue. Original exception: {0}".format(e)) raise e # cannot continue # load FCL file fcl_file = ".".join([fcl_file, "fcl"]) fcl_path = "/".join([R_FCL_PATH, fcl_file]) try: fuzy_system = fuzzy.storage.fcl.Reader.Reader().load_from_file(fcl_path) except Exception, e: logger.warning("Cannot load FCL file {0} in {1} path.".format(fcl_file, fcl_path)) # process FCL and get action logger.info("Ready to FCL calculate") try: inputs = { "input": real_value, } output = { "action": 0.0 } action = fuzy_system.calculate(inputs, output)["action"] logger.info(action) except Exception, e: raise e """ actuator_device = self.config.get_actuator_device(actuator) logger.info(actuator_device) actuator.update(actuator_device) logger.info(actuator) """ return "Fuzzy comparator emit 0 actions."
2.1875
2
src/model/ca_mtl.py
Daupler/CA-MTL
0
12798014
import re import logging from dataclasses import dataclass, field from typing import List, Optional import torch import torch.nn as nn from transformers import BertPreTrainedModel from src.model.decoder import Decoder from src.model.encoders.bert import _BertEncoder from src.model.encoders.ca_mtl_base import CaMtlBaseEncoder from src.model.encoders.ca_mtl_large import CaMtlLargeEncoder logger = logging.getLogger(__name__) @dataclass class CaMtlArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={ "help": "Path to pretrained model or model identifier from: CA-MTL-base, CA-MTL-large, bert-base-cased " "bert-base-uncased, bert-large-cased, bert-large-uncased" } ) encoder_type: str = field( default=None, metadata={ "help": "Identifier of encoder-type to use: CA-MTL-base, CA-MTL-large, bert-base-cased " "bert-base-uncased, bert-large-cased, bert-large-uncased" } ) class CaMtl(BertPreTrainedModel): def __init__( self, config, model_args, data_args, ): super().__init__(config) self.data_args = data_args self.bert = self._create_encoder(model_args.encoder_type) self.decoders = nn.ModuleList() for task in data_args.tasks: self.decoders.append(Decoder(config.hidden_size, task)) self.init_weights() def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, task_id=None, span_locs=None, sample_id=None, ): outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, task_id=task_id, ) sequence_output, pooled_output = outputs[:2] loss_list = [] unique_task_ids = torch.unique(task_id) unique_task_ids_list = ( unique_task_ids.cpu().numpy() if unique_task_ids.is_cuda else unique_task_ids.numpy() ) loss_grouped_per_task = ( torch.zeros_like(task_id[0]).repeat(len(self.data_args.tasks)).float() ) batch_entropy_per_task = torch.zeros(input_ids.shape[0]) batch_entropy_mean_per_task = torch.zeros(input_ids.shape[0]) max_mean_batch_entropy = None logits = None for unique_task_id in unique_task_ids_list: task_id_filter = task_id == unique_task_id decoder_id = unique_task_id logits, current_loss, batch_entropy = self.decoders[decoder_id].forward( sequence_output[task_id_filter], pooled_output[task_id_filter], labels=None if labels is None else labels[task_id_filter], attention_mask=attention_mask[task_id_filter], ) batch_entropy_mean = batch_entropy.mean().item() batch_entropy_per_task[task_id_filter] = batch_entropy batch_entropy_mean_per_task[task_id_filter] = torch.full_like( batch_entropy, batch_entropy_mean ) if ( max_mean_batch_entropy is None or batch_entropy_mean > max_mean_batch_entropy ): max_mean_batch_entropy = batch_entropy_mean if labels is not None: loss_grouped_per_task[unique_task_id] = current_loss loss_list.append(current_loss) outputs = ( (logits,) + outputs[2:] + ( batch_entropy_per_task, batch_entropy_mean_per_task, max_mean_batch_entropy, ) ) if loss_list: loss = torch.stack(loss_list) outputs = (loss.mean(),) + outputs + (loss_grouped_per_task.view(1, -1),) return outputs def _create_encoder(self, encoder_type): if encoder_type == "CA-MTL-large": return CaMtlLargeEncoder(self.config, data_args=self.data_args) elif encoder_type == "CA-MTL-base": return CaMtlBaseEncoder(self.config, data_args=self.data_args) elif encoder_type == "CA-MTL-base-uncased": return CaMtlBaseEncoder(self.config, data_args=self.data_args) elif encoder_type == "CA-MTL-tiny": return CaMtlBaseEncoder(self.config, data_args=self.data_args) else: return _BertEncoder(self.config) @staticmethod def get_base_model(model_name_or_path): if model_name_or_path == "CA-MTL-large": return "bert-large-cased" elif model_name_or_path == "CA-MTL-base": return "bert-base-cased" elif model_name_or_path == "CA-MTL-base-uncased": return "bert-base-uncased" elif model_name_or_path == "CA-MTL-tiny": return 'huawei-noah/TinyBERT_General_6L_768D' else: return model_name_or_path
2.296875
2
src/server.py
dashaomai/wx_social_server
0
12798015
<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- import os from flask import Flask, request, redirect, url_for from writer import parse_sns UPLOAD_FOLDER = 'uploads' ALLOWED_EXTENSIONS = set(['json']) app = Flask(__name__) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS @app.route('/social/moment', methods=['GET', 'POST']) def update_file(): if request.method == 'POST': if 'file' not in request.files: print('No file part') return redirect(request.url) file = request.files['file'] if file.filename == '': print('No selected file') return redirect(request.url) if file and allowed_file(file.filename): path = os.path.join(app.config['UPLOAD_FOLDER'], 'exported_sns.json') file.save(os.path.join(path)) parse_sns(path) return '<!doctype html><title>File uploaded</title><h1>File uploaded</h1>' else: return ''' <!doctype html> <title>Upload new File</title> <h1>Upload new File</h1> ''' app.run(host="0.0.0.0")
2.578125
3
src/setting.py
willyii/CarND-Advanced-Lane-Lines
0
12798016
<reponame>willyii/CarND-Advanced-Lane-Lines<gh_stars>0 CALIBRATION_PATH = "./param/calibration_param.npz"
1.1875
1
modules/configure/call_server.py
Forcepoint/fp-bd-secure-xmas
0
12798017
import os from colorama import Fore, init # Current file directory details file = os.path.realpath(__file__) filedir = os.path.dirname(file) parentdir = os.path.dirname(filedir) # Initialise colors for terminal init() # Print out header print(Fore.CYAN + '-' * 13 + Fore.RESET) print('Call Server') print(Fore.CYAN + '-' * 13 + Fore.RESET) # Get variables print() print(Fore.CYAN + 'What is the root FQDN for this machine: ' + Fore.RESET, end='') root_url = input() print(Fore.CYAN + 'On which port should the call server run: ' + Fore.RESET, end='') port = input() # Write out configuration file print() print(Fore.CYAN + 'Writing Call Server configuration...' + Fore.RESET) with open(parentdir + '\\settings.py', 'a+') as f: f.write('# CALL SERVER SETTINGS\n') f.write('ROOT_URL=\'%s\'\n' % root_url.rstrip('/').lstrip('http://').lstrip('https://')) f.write('PORT=%s\n\n' % port) print() print(Fore.GREEN + 'Call Server configuration successfully written!' + Fore.RESET) print()
2.5
2
core/app/notification/out/free_carrier_messaging.py
EmixMaxime/mx-home-security
2
12798018
<reponame>EmixMaxime/mx-home-security from urllib import parse import requests from notification.models import UserFreeCarrier class FreeCarrierMessaging: def send_message(self, credential: UserFreeCarrier, message, *args): if message is None: return data = { 'user': credential.free_user, 'pass': credential.free_password, 'msg': message } query = parse.urlencode(data) url = f'https://smsapi.free-mobile.fr/sendmsg?{query}' res = requests.get(url) res.raise_for_status() # free api # errorcodes = {400: 'Missing Parameter', # 402: 'Spammer!', # 403: 'Access Denied', # 500: 'Server Down'}
2.453125
2
openstates/openstates-master/openstates/in/utils.py
Jgorsick/Advocacy_Angular
0
12798019
import requests def get_with_increasing_timeout(scraper,link,fail=False,kwargs={}): #if fail is true, we want to throw an error if we can't #access the page we need #if it's false, throw a warning and keep going timeout_length = 2 html = None while timeout_length < 65 and html is None: try: html = scraper.get(link,timeout=timeout_length,**kwargs) except (requests.exceptions.ConnectTimeout, requests.exceptions.ReadTimeout): old_length = timeout_length timeout_length **= 2 #this squares the result. awesome. scraper.logger.debug("Timed out after {now} seconds, increasing to {next} and trying again".format(now=old_length,next=timeout_length)) else: return html if fail: raise AssertionError("Link failed after waiting over a minute, giving up and failing.") else: scraper.logger.warning("Link failed after waiting over a minute, giving up and moving on.")
3.328125
3
src/guess_combinator_test.py
RasPat1/wordle-world-whirl
0
12798020
import unittest from filter import Filter from differ import Differ from guess_combinator import GuessCombinator class TestGuessCombinator(unittest.TestCase): def test_it_exists(self): self.assertNotEqual(GuessCombinator(), None) def test_it_returns_a_best_guess(self): # solution_unknown corpus = ["abcde", "abcdf", "abcdg", "abcdh", "abcdi", "efghi"] expected_best_guess_pair = ["abcde", "efghi"] # I can't construct good examples. self.assertNotEqual(GuessCombinator.process( corpus, corpus), None) if __name__ == '__main__': unittest.main()
3.078125
3
tapqir/models/hmm.py
gelles-brandeis/tapqir
2
12798021
# Copyright Contributors to the Tapqir project. # SPDX-License-Identifier: Apache-2.0 """ hmm ^^^ """ import math from typing import Union import torch import torch.distributions.constraints as constraints from pyro.distributions.hmm import _logmatmulexp from pyro.ops.indexing import Vindex from pyroapi import distributions as dist from pyroapi import handlers, infer, pyro from torch.nn.functional import one_hot from tapqir.distributions import KSMOGN, AffineBeta from tapqir.distributions.util import expand_offtarget, probs_m, probs_theta from tapqir.models.cosmos import Cosmos class HMM(Cosmos): r""" **Single-Color Hidden Markov Colocalization Model** .. note:: This model is used for kinetic simulations. Efficient fitting is not yet supported. **Reference**: 1. <NAME>, <NAME>, <NAME>, Theobald DL. Bayesian machine learning analysis of single-molecule fluorescence colocalization images. bioRxiv. 2021 Oct. doi: `10.1101/2021.09.30.462536 <https://doi.org/10.1101/2021.09.30.462536>`_. :param S: Number of distinct molecular states for the binder molecules. :param K: Maximum number of spots that can be present in a single image. :param channels: Number of color channels. :param device: Computation device (cpu or gpu). :param dtype: Floating point precision. :param use_pykeops: Use pykeops as backend to marginalize out offset. :param vectorized: Vectorize time-dimension. """ name = "hmm" def __init__( self, S: int = 1, K: int = 2, channels: Union[tuple, list] = (0,), device: str = "cpu", dtype: str = "double", use_pykeops: bool = True, vectorized: bool = False, ): self.vectorized = vectorized super().__init__(S, K, channels, device, dtype, use_pykeops) self.conv_params = ["-ELBO", "proximity_loc", "gain_loc", "lamda_loc"] self._global_params = ["gain", "proximity", "lamda", "trans"] def model(self): """ **Generative Model** """ # global parameters gain = pyro.sample("gain", dist.HalfNormal(50)) init = pyro.sample( "init", dist.Dirichlet(torch.ones(self.S + 1) / (self.S + 1)) ) init = expand_offtarget(init) trans = pyro.sample( "trans", dist.Dirichlet(torch.ones(self.S + 1, self.S + 1) / (self.S + 1)).to_event( 1 ), ) trans = expand_offtarget(trans) lamda = pyro.sample("lamda", dist.Exponential(1)) proximity = pyro.sample("proximity", dist.Exponential(1)) size = torch.stack( ( torch.full_like(proximity, 2.0), (((self.data.P + 1) / (2 * proximity)) ** 2 - 1), ), dim=-1, ) # spots spots = pyro.plate("spots", self.K) # aoi sites aois = pyro.plate( "aois", self.data.Nt, subsample=self.n, subsample_size=self.nbatch_size, dim=-2, ) # time frames frames = ( pyro.vectorized_markov(name="frames", size=self.data.F, dim=-1) if self.vectorized else pyro.markov(range(self.data.F)) ) with aois as ndx: ndx = ndx[:, None] # background mean and std background_mean = pyro.sample("background_mean", dist.HalfNormal(1000)) background_std = pyro.sample("background_std", dist.HalfNormal(100)) z_prev = None for fdx in frames: if self.vectorized: fsx, fdx = fdx else: fsx = fdx # fetch data obs, target_locs, is_ontarget = self.data.fetch(ndx, fdx, self.cdx) # sample background intensity background = pyro.sample( f"background_{fdx}", dist.Gamma( (background_mean / background_std) ** 2, background_mean / background_std ** 2, ), ) # sample hidden model state (1+S,) z_probs = ( Vindex(init)[..., :, is_ontarget.long()] if isinstance(fdx, int) and fdx < 1 else Vindex(trans)[..., z_prev, :, is_ontarget.long()] ) z_curr = pyro.sample(f"z_{fsx}", dist.Categorical(z_probs)) theta = pyro.sample( f"theta_{fdx}", dist.Categorical( Vindex(probs_theta(self.K, self.device))[ torch.clamp(z_curr, min=0, max=1) ] ), infer={"enumerate": "parallel"}, ) onehot_theta = one_hot(theta, num_classes=1 + self.K) ms, heights, widths, xs, ys = [], [], [], [], [] for kdx in spots: specific = onehot_theta[..., 1 + kdx] # spot presence m = pyro.sample( f"m_{kdx}_{fsx}", dist.Bernoulli(Vindex(probs_m(lamda, self.K))[..., theta, kdx]), ) with handlers.mask(mask=m > 0): # sample spot variables height = pyro.sample( f"height_{kdx}_{fsx}", dist.HalfNormal(10000), ) width = pyro.sample( f"width_{kdx}_{fsx}", AffineBeta( 1.5, 2, 0.75, 2.25, ), ) x = pyro.sample( f"x_{kdx}_{fsx}", AffineBeta( 0, Vindex(size)[..., specific], -(self.data.P + 1) / 2, (self.data.P + 1) / 2, ), ) y = pyro.sample( f"y_{kdx}_{fsx}", AffineBeta( 0, Vindex(size)[..., specific], -(self.data.P + 1) / 2, (self.data.P + 1) / 2, ), ) # append ms.append(m) heights.append(height) widths.append(width) xs.append(x) ys.append(y) # observed data pyro.sample( f"data_{fsx}", KSMOGN( torch.stack(heights, -1), torch.stack(widths, -1), torch.stack(xs, -1), torch.stack(ys, -1), target_locs, background, gain, self.data.offset.samples, self.data.offset.logits.to(self.dtype), self.data.P, torch.stack(torch.broadcast_tensors(*ms), -1), self.use_pykeops, ), obs=obs, ) z_prev = z_curr def guide(self): """ **Variational Distribution** """ # global parameters pyro.sample( "gain", dist.Gamma( pyro.param("gain_loc") * pyro.param("gain_beta"), pyro.param("gain_beta"), ), ) pyro.sample( "init", dist.Dirichlet(pyro.param("init_mean") * pyro.param("init_size")) ) pyro.sample( "trans", dist.Dirichlet( pyro.param("trans_mean") * pyro.param("trans_size") ).to_event(1), ) pyro.sample( "lamda", dist.Gamma( pyro.param("lamda_loc") * pyro.param("lamda_beta"), pyro.param("lamda_beta"), ), ) pyro.sample( "proximity", AffineBeta( pyro.param("proximity_loc"), pyro.param("proximity_size"), 0, (self.data.P + 1) / math.sqrt(12), ), ) # spots spots = pyro.plate("spots", self.K) # aoi sites aois = pyro.plate( "aois", self.data.Nt, subsample=self.n, subsample_size=self.nbatch_size, dim=-2, ) # time frames frames = ( pyro.vectorized_markov(name="frames", size=self.data.F, dim=-1) if self.vectorized else pyro.markov(range(self.data.F)) ) with aois as ndx: ndx = ndx[:, None] pyro.sample( "background_mean", dist.Delta(Vindex(pyro.param("background_mean_loc"))[ndx, 0]), ) pyro.sample( "background_std", dist.Delta(Vindex(pyro.param("background_std_loc"))[ndx, 0]), ) z_prev = None for fdx in frames: if self.vectorized: fsx, fdx = fdx else: fsx = fdx # sample background intensity pyro.sample( f"background_{fsx}", dist.Gamma( Vindex(pyro.param("b_loc"))[ndx, fdx] * Vindex(pyro.param("b_beta"))[ndx, fdx], Vindex(pyro.param("b_beta"))[ndx, fdx], ), ) # sample hidden model state (3,1,1,1) z_probs = ( Vindex(pyro.param("z_trans"))[ndx, fdx, 0] if isinstance(fdx, int) and fdx < 1 else Vindex(pyro.param("z_trans"))[ndx, fdx, z_prev] ) z_curr = pyro.sample( f"z_{fsx}", dist.Categorical(z_probs), infer={"enumerate": "parallel"}, ) for kdx in spots: # spot presence m_probs = Vindex(pyro.param("m_probs"))[z_curr, kdx, ndx, fdx] m = pyro.sample( f"m_{kdx}_{fsx}", dist.Categorical(m_probs), infer={"enumerate": "parallel"}, ) with handlers.mask(mask=m > 0): # sample spot variables pyro.sample( f"height_{kdx}_{fsx}", dist.Gamma( Vindex(pyro.param("h_loc"))[kdx, ndx, fdx] * Vindex(pyro.param("h_beta"))[kdx, ndx, fdx], Vindex(pyro.param("h_beta"))[kdx, ndx, fdx], ), ) pyro.sample( f"width_{kdx}_{fsx}", AffineBeta( Vindex(pyro.param("w_mean"))[kdx, ndx, fdx], Vindex(pyro.param("w_size"))[kdx, ndx, fdx], 0.75, 2.25, ), ) pyro.sample( f"x_{kdx}_{fsx}", AffineBeta( Vindex(pyro.param("x_mean"))[kdx, ndx, fdx], Vindex(pyro.param("size"))[kdx, ndx, fdx], -(self.data.P + 1) / 2, (self.data.P + 1) / 2, ), ) pyro.sample( f"y_{kdx}_{fsx}", AffineBeta( Vindex(pyro.param("y_mean"))[kdx, ndx, fdx], Vindex(pyro.param("size"))[kdx, ndx, fdx], -(self.data.P + 1) / 2, (self.data.P + 1) / 2, ), ) z_prev = z_curr def init_parameters(self): """ Initialize variational parameters. """ device = self.device data = self.data pyro.param( "proximity_loc", lambda: torch.tensor(0.5, device=device), constraint=constraints.interval( 0, (self.data.P + 1) / math.sqrt(12) - torch.finfo(self.dtype).eps, ), ) pyro.param( "proximity_size", lambda: torch.tensor(100, device=device), constraint=constraints.greater_than(2.0), ) pyro.param( "lamda_loc", lambda: torch.tensor(0.5, device=device), constraint=constraints.positive, ) pyro.param( "lamda_beta", lambda: torch.tensor(100, device=device), constraint=constraints.positive, ) pyro.param( "init_mean", lambda: torch.ones(self.S + 1, device=device), constraint=constraints.simplex, ) pyro.param( "init_size", lambda: torch.tensor(2, device=device), constraint=constraints.positive, ) pyro.param( "trans_mean", lambda: torch.ones(self.S + 1, self.S + 1, device=device), constraint=constraints.simplex, ) pyro.param( "trans_size", lambda: torch.full((self.S + 1, 1), 2, device=device), constraint=constraints.positive, ) pyro.param( "gain_loc", lambda: torch.tensor(5, device=device), constraint=constraints.positive, ) pyro.param( "gain_beta", lambda: torch.tensor(100, device=device), constraint=constraints.positive, ) pyro.param( "background_mean_loc", lambda: torch.full( (data.Nt, 1), data.median - self.data.offset.mean, device=device, ), constraint=constraints.positive, ) pyro.param( "background_std_loc", lambda: torch.ones(data.Nt, 1, device=device), constraint=constraints.positive, ) pyro.param( "b_loc", lambda: torch.full( (data.Nt, data.F), data.median - self.data.offset.mean, device=device, ), constraint=constraints.positive, ) pyro.param( "b_beta", lambda: torch.ones(data.Nt, data.F, device=device), constraint=constraints.positive, ) pyro.param( "h_loc", lambda: torch.full((self.K, data.Nt, data.F), 2000, device=device), constraint=constraints.positive, ) pyro.param( "h_beta", lambda: torch.full((self.K, data.Nt, data.F), 0.001, device=device), constraint=constraints.positive, ) pyro.param( "w_mean", lambda: torch.full((self.K, data.Nt, data.F), 1.5, device=device), constraint=constraints.interval( 0.75 + torch.finfo(self.dtype).eps, 2.25 - torch.finfo(self.dtype).eps, ), ) pyro.param( "w_size", lambda: torch.full((self.K, data.Nt, data.F), 100, device=device), constraint=constraints.greater_than(2.0), ) pyro.param( "x_mean", lambda: torch.zeros(self.K, data.Nt, data.F, device=device), constraint=constraints.interval( -(data.P + 1) / 2 + torch.finfo(self.dtype).eps, (data.P + 1) / 2 - torch.finfo(self.dtype).eps, ), ) pyro.param( "y_mean", lambda: torch.zeros(self.K, data.Nt, data.F, device=device), constraint=constraints.interval( -(data.P + 1) / 2 + torch.finfo(self.dtype).eps, (data.P + 1) / 2 - torch.finfo(self.dtype).eps, ), ) pyro.param( "size", lambda: torch.full((self.K, data.Nt, data.F), 200, device=device), constraint=constraints.greater_than(2.0), ) # classification pyro.param( "z_trans", lambda: torch.ones( data.Nt, data.F, 1 + self.S, 1 + self.S, device=device, ), constraint=constraints.simplex, ) pyro.param( "m_probs", lambda: torch.full( (1 + self.S, self.K, self.data.Nt, self.data.F), 0.5, device=device, ), constraint=constraints.unit_interval, ) def TraceELBO(self, jit=False): """ A trace implementation of ELBO-based SVI that supports - exhaustive enumeration over discrete sample sites, and - local parallel sampling over any sample site in the guide. """ if self.vectorized: return ( infer.JitTraceMarkovEnum_ELBO if jit else infer.TraceMarkovEnum_ELBO )(max_plate_nesting=2, ignore_jit_warnings=True) return (infer.JitTraceEnum_ELBO if jit else infer.TraceEnum_ELBO)( max_plate_nesting=2, ignore_jit_warnings=True ) @staticmethod def _sequential_logmatmulexp(logits: torch.Tensor) -> torch.Tensor: """ For a tensor ``x`` whose time dimension is -3, computes:: x[..., 0, :, :] @ x[..., 1, :, :] @ ... @ x[..., T-1, :, :] but does so numerically stably in log space. """ batch_shape = logits.shape[:-3] state_dim = logits.size(-1) sum_terms = [] # up sweep while logits.size(-3) > 1: time = logits.size(-3) even_time = time // 2 * 2 even_part = logits[..., :even_time, :, :] x_y = even_part.reshape( batch_shape + (even_time // 2, 2, state_dim, state_dim) ) x, y = x_y.unbind(-3) contracted = _logmatmulexp(x, y) if time > even_time: contracted = torch.cat((contracted, logits[..., -1:, :, :]), dim=-3) sum_terms.append(logits) logits = contracted else: sum_terms.append(logits) # handle root case sum_term = sum_terms.pop() left_term = HMM._contraction_identity(sum_term) # down sweep while sum_terms: sum_term = sum_terms.pop() new_left_term = HMM._contraction_identity(sum_term) time = sum_term.size(-3) even_time = time // 2 * 2 if time > even_time: new_left_term[..., time - 1 : time, :, :] = left_term[ ..., even_time // 2 : even_time // 2 + 1, :, : ] left_term = left_term[..., : even_time // 2, :, :] left_sum = sum_term[..., :even_time:2, :, :] left_sum_and_term = _logmatmulexp(left_term, left_sum) new_left_term[..., :even_time:2, :, :] = left_term new_left_term[..., 1:even_time:2, :, :] = left_sum_and_term left_term = new_left_term else: alphas = _logmatmulexp(left_term, sum_term) return alphas @staticmethod def _contraction_identity(logits: torch.Tensor) -> torch.Tensor: batch_shape = logits.shape[:-2] state_dim = logits.size(-1) result = torch.eye(state_dim).log() result = result.reshape((1,) * len(batch_shape) + (state_dim, state_dim)) result = result.repeat(batch_shape + (1, 1)) return result @property def z_probs(self) -> torch.Tensor: r""" Probability of there being a target-specific spot :math:`p(z=1)` """ result = self._sequential_logmatmulexp(pyro.param("z_trans").data.log()) return result[..., 0, 1].exp() @property def pspecific(self) -> torch.Tensor: r""" Probability of there being a target-specific spot :math:`p(\mathsf{specific})` """ return self.z_probs @property def m_probs(self) -> torch.Tensor: r""" Posterior spot presence probability :math:`q(m=1)`. """ return torch.einsum( "knf,nf->knf", pyro.param("m_probs").data[1], self.pspecific, )
1.78125
2
ude_gym_bridge/gym_env_remote_runner.py
aws-deepracer/ude-gym-bridge
1
12798022
<reponame>aws-deepracer/ude-gym-bridge ################################################################################# # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Apache License, Version 2.0 (the "License"). # # You may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # ################################################################################# """A class for Gym Environment.""" from typing import Optional, List, Tuple, Union, Any, Iterable from ude import ( UDEEnvironment, UDEServer, UDEStepInvokeType, Compression, ServerCredentials ) from ude_gym_bridge.gym_environment_adapter import GymEnvironmentAdapter class GymEnvRemoteRunner(object): """ Gym Environment """ def __init__(self, env_name: str = "CartPole-v0", agent_name: str = "agent0", render: bool = True, step_invoke_type: UDEStepInvokeType = UDEStepInvokeType.WAIT_FOREVER, step_invoke_period: Union[int, float] = 120.0, port: Optional[int] = None, options: Optional[List[Tuple[str, Any]]] = None, compression: Compression = Compression.NoCompression, credentials: Optional[Union[ServerCredentials, Iterable[str], Iterable[bytes]]] = None, auth_key: Optional[str] = None, timeout_wait: Union[int, float] = 60.0, **kwargs): """ Args: env_name (str): OpenAI Gym Environment name. agent_name (str): Name of agent to use. render (bool): the flag to render OpenAI Gym environment or not. step_invoke_type (const.UDEStepInvokeType): step invoke type (WAIT_FOREVER vs PERIODIC) step_invoke_period (Union[int, float]): step invoke period (used only with PERIODIC step_invoke_type) port (Optional[int]): Port to use for UDE Server (default: 3003) options (Optional[List[Tuple[str, Any]]]): An optional list of key-value pairs (:term:`channel_arguments` in gRPC runtime) to configure the channel. compression (Compression) = channel compression type (default: NoCompression) credentials (Optional[Union[ServerCredentials, Iterable[str], Iterable[bytes]]]): grpc.ServerCredentials, the path to certificate private key and body/chain file, or bytes of the certificate private key and body/chain to use with an SSL-enabled Channel. auth_key (Optional[str]): channel authentication key (only applied when credentials are provided). timeout_wait (Union[int, float]): the maximum wait time to respond step request to UDE clients. kwargs: Arbitrary keyword arguments for grpc.server """ self._adapter = GymEnvironmentAdapter(env_name=env_name, agent_name=agent_name, render=render) self._ude_env = UDEEnvironment(ude_env_adapter=self._adapter) self._ude_server = UDEServer(ude_env=self._ude_env, step_invoke_type=step_invoke_type, step_invoke_period=step_invoke_period, port=port, options=options, compression=compression, credentials=credentials, auth_key=auth_key, timeout_wait=timeout_wait, **kwargs) def start(self) -> None: """ Start UDE Server. """ self._ude_server.start() def stop(self) -> None: """ Stop UDE Server. """ self._ude_server.close() def spin(self) -> None: """ Spin till UDE Server terminates. """ self._ude_server.spin() def main(): gym_env = GymEnvRemoteRunner() gym_env.start() gym_env.spin() if __name__ == '__main__': main()
2.015625
2
my_credentials/config.py
eurodatacube/edc-my-credentials
0
12798023
# no config for now
1.109375
1
flask_occam/converters.py
bprinty/Flask-Occam
2
12798024
# imports # ------- import re from werkzeug.routing import BaseConverter from werkzeug.exceptions import NotFound # helpers # ------- MODELS = dict() def class_registry(cls): """ Function for dynamically getting class registry dictionary from specified model. """ try: return dict(cls._sa_registry._class_registry) except: return dict(cls._decl_class_registry) return def gather_models(): """ Inspect sqlalchemy models from current context and set global dictionary to be used in url conversion. """ global MODELS from flask import current_app, has_app_context if not has_app_context(): return if 'sqlalchemy' not in current_app.extensions: return # inspect current models and add to map db = current_app.extensions['sqlalchemy'].db registry = class_registry(db.Model) for cls in registry.values(): if isinstance(cls, type) and issubclass(cls, db.Model): # class name MODELS[cls.__name__] = cls # lowercase name MODELS[cls.__name__.lower()] = cls # snake_case name words = re.findall(r'([A-Z][0-9a-z]+)', cls.__name__) if len(words) > 1: alias = '_'.join(map(lambda x: x.lower(), words)) MODELS[alias] = cls return # converters # ---------- class ModelConverter(BaseConverter): """ For url inputs containing a model identifier, look up the model and return the object. This method simplifies a lot of the boilerplate needed to do model look ups in REST apis. Examples: .. code-block:: python @app.route('/users/<id(User):user>') def get_user(user): return jsonify(user.json()) In addition, this class can be inherited and used for other custom parameter url converters. For instance, here is how you might use it to create a name converter: .. code-block:: python class NameConverter(ModelConverter): __param__ = 'name' app.url_map.converters['name'] = NameConverter # ... handlers ... @app.route('/users/<name(User):user>') def get_user(user): return jsonify(user.json()) """ __param__ = 'id' def __init__(self, map, model): self.map = map self.model = model return @property def models(self): global MODELS if not MODELS: gather_models() return MODELS def to_python(self, value): mapper = self.models # make sure model exists if self.model not in mapper: raise AssertionError( 'Specified model `{}` in url converter ' 'not part of application models.'.format(self.model)) # set up class for conversion cls = mapper[self.model] # search for the object model = cls.get(**{self.__param__: value}) if model is None: raise NotFound return model def to_url(self, value): return super(ModelConverter, self).to_url(getattr(value, self.__param__))
2.375
2
baselines/tm_generation/h_test_model.py
lhf-labs/tm-dataset
4
12798025
import os import json import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, GPT2Config PATH = './models' OUTPUT_PATH = './output/' if __name__ == '__main__': #tokenizer = AutoTokenizer.from_pretrained("./models") # add the EOS token as PAD token to avoid warnings #tokenizer = GPT2Tokenizer(config=GPT2Config(**json.load(open(os.path.join(PATH, 'config.json'))))) model = GPT2LMHeadModel(config=GPT2Config(**json.load(open(os.path.join(PATH, 'config.json'))))) #input_ids = tokenizer.encode('', return_tensors='tf') greedy_output = model.generate(torch.zeros((10, 1), dtype=torch.int), max_length=1024+1, min_length=1024+1) print(list(greedy_output.data[0].numpy())) for file in ('train', 'valid', 'test'): with open(os.path.join(OUTPUT_PATH, f'{file}.txt'), 'w') as fout: data = greedy_output.data for i in range(len(data)): elements = list(data[i].numpy())[1:] for idx, element in enumerate(elements): fout.write(str(int(element))) if idx < len(elements): fout.write(" ") fout.write('\n')
2.5
2
Dependencies/pykeyboard/mac.py
CamelBackNotation/hackdfw
1
12798026
#Copyright 2013 <NAME> # #This program is free software: you can redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software Foundation, either version 3 of the License, or #(at your option) any later version. # #This program is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. # #You should have received a copy of the GNU General Public License #along with this program. If not, see <http://www.gnu.org/licenses/>. import time import Quartz from AppKit import NSEvent from .base import PyKeyboardMeta, PyKeyboardEventMeta # Taken from events.h # /System/Library/Frameworks/Carbon.framework/Versions/A/Frameworks/HIToolbox.framework/Versions/A/Headers/Events.h character_translate_table = { 'a': 0x00, 's': 0x01, 'd': 0x02, 'f': 0x03, 'h': 0x04, 'g': 0x05, 'z': 0x06, 'x': 0x07, 'c': 0x08, 'v': 0x09, 'b': 0x0b, 'q': 0x0c, 'w': 0x0d, 'e': 0x0e, 'r': 0x0f, 'y': 0x10, 't': 0x11, '1': 0x12, '2': 0x13, '3': 0x14, '4': 0x15, '6': 0x16, '5': 0x17, '=': 0x18, '9': 0x19, '7': 0x1a, '-': 0x1b, '8': 0x1c, '0': 0x1d, ']': 0x1e, 'o': 0x1f, 'u': 0x20, '[': 0x21, 'i': 0x22, 'p': 0x23, 'l': 0x25, 'j': 0x26, '\'': 0x27, 'k': 0x28, ';': 0x29, '\\': 0x2a, ',': 0x2b, '/': 0x2c, 'n': 0x2d, 'm': 0x2e, '.': 0x2f, '`': 0x32, ' ': 0x31, '\r': 0x24, '\t': 0x30, '\n': 0x24, 'return' : 0x24, 'tab' : 0x30, 'space' : 0x31, 'delete' : 0x33, 'escape' : 0x35, 'command' : 0x37, 'shift' : 0x38, 'capslock' : 0x39, 'option' : 0x3A, 'alternate' : 0x3A, 'control' : 0x3B, 'rightshift' : 0x3C, 'rightoption' : 0x3D, 'rightcontrol' : 0x3E, 'function' : 0x3F, } # Taken from ev_keymap.h # http://www.opensource.apple.com/source/IOHIDFamily/IOHIDFamily-86.1/IOHIDSystem/IOKit/hidsystem/ev_keymap.h special_key_translate_table = { 'KEYTYPE_SOUND_UP': 0, 'KEYTYPE_SOUND_DOWN': 1, 'KEYTYPE_BRIGHTNESS_UP': 2, 'KEYTYPE_BRIGHTNESS_DOWN': 3, 'KEYTYPE_CAPS_LOCK': 4, 'KEYTYPE_HELP': 5, 'POWER_KEY': 6, 'KEYTYPE_MUTE': 7, 'UP_ARROW_KEY': 8, 'DOWN_ARROW_KEY': 9, 'KEYTYPE_NUM_LOCK': 10, 'KEYTYPE_CONTRAST_UP': 11, 'KEYTYPE_CONTRAST_DOWN': 12, 'KEYTYPE_LAUNCH_PANEL': 13, 'KEYTYPE_EJECT': 14, 'KEYTYPE_VIDMIRROR': 15, 'KEYTYPE_PLAY': 16, 'KEYTYPE_NEXT': 17, 'KEYTYPE_PREVIOUS': 18, 'KEYTYPE_FAST': 19, 'KEYTYPE_REWIND': 20, 'KEYTYPE_ILLUMINATION_UP': 21, 'KEYTYPE_ILLUMINATION_DOWN': 22, 'KEYTYPE_ILLUMINATION_TOGGLE': 23 } class PyKeyboard(PyKeyboardMeta): def __init__(self): self.shift_key = 'shift' self.modifier_table = {'Shift':False,'Command':False,'Control':False,'Alternate':False} def press_key(self, key): if key.title() in self.modifier_table: self.modifier_table.update({key.title():True}) if key in special_key_translate_table: self._press_special_key(key, True) else: self._press_normal_key(key, True) def release_key(self, key): # remove the key if key.title() in self.modifier_table: self.modifier_table.update({key.title():False}) if key in special_key_translate_table: self._press_special_key(key, False) else: self._press_normal_key(key, False) def special_key_assignment(self): self.volume_mute_key = 'KEYTYPE_MUTE' self.volume_down_key = 'KEYTYPE_SOUND_DOWN' self.volume_up_key = 'KEYTYPE_SOUND_UP' self.media_play_pause_key = 'KEYTYPE_PLAY' # Doesn't work :( # self.media_next_track_key = 'KEYTYPE_NEXT' # self.media_prev_track_key = 'KEYTYPE_PREVIOUS' def _press_normal_key(self, key, down): try: key_code = character_translate_table[key.lower()] # kCGEventFlagMaskAlternate | kCGEventFlagMaskCommand | kCGEventFlagMaskControl | kCGEventFlagMaskShift event = Quartz.CGEventCreateKeyboardEvent(None, key_code, down) mkeyStr = '' for mkey in self.modifier_table: if self.modifier_table[mkey]: if len(mkeyStr)>1: mkeyStr = mkeyStr+' ^ ' mkeyStr = mkeyStr+'Quartz.kCGEventFlagMask'+mkey if len(mkeyStr)>1: eval('Quartz.CGEventSetFlags(event, '+mkeyStr+')') Quartz.CGEventPost(Quartz.kCGHIDEventTap, event) if key.lower() == "shift": time.sleep(.1) except KeyError: raise RuntimeError("Key {} not implemented.".format(key)) def _press_special_key(self, key, down): """ Helper method for special keys. Source: http://stackoverflow.com/questions/11045814/emulate-media-key-press-on-mac """ key_code = special_key_translate_table[key] ev = NSEvent.otherEventWithType_location_modifierFlags_timestamp_windowNumber_context_subtype_data1_data2_( NSSystemDefined, # type (0,0), # location 0xa00 if down else 0xb00, # flags 0, # timestamp 0, # window 0, # ctx 8, # subtype (key_code << 16) | ((0xa if down else 0xb) << 8), # data1 -1 # data2 ) Quartz.CGEventPost(0, ev.Quartz.CGEvent()) class PyKeyboardEvent(PyKeyboardEventMeta): def run(self): tap = Quartz.CGEventTapCreate( Quartz.kCGSessionEventTap, Quartz.kCGHeadInsertEventTap, Quartz.kCGEventTapOptionDefault, Quartz.CGEventMaskBit(Quartz.kCGEventKeyDown) | Quartz.CGEventMaskBit(Quartz.kCGEventKeyUp), self.handler, None) loopsource = Quartz.CFMachPortCreateRunLoopSource(None, tap, 0) loop = Quartz.CFRunLoopGetCurrent() Quartz.CFRunLoopAddSource(loop, loopsource, Quartz.kCFRunLoopDefaultMode) Quartz.CGEventTapEnable(tap, True) while self.state: Quartz.CFRunLoopRunInMode(Quartz.kCFRunLoopDefaultMode, 5, False) def handler(self, proxy, type, event, refcon): key = Quartz.CGEventGetIntegerValueField(event, Quartz.kCGKeyboardEventKeycode) if type == Quartz.kCGEventKeyDown: self.key_press(key) elif type == Quartz.kCGEventKeyUp: self.key_release(key) if self.capture: Quartz.CGEventSetType(event, Quartz.kCGEventNull) return event
1.65625
2
python/features/tfeat.py
albutko/vlb
1
12798027
<gh_stars>1-10 """ TFeat Implementation Author: <NAME> """ import sys import os import torch from torch import nn import torch.nn.functional as F import numpy as np import cv2 from features.DetectorDescriptorTemplate import DetectorAndDescriptor import features.feature_utils as utils dirname = os.path.dirname(__file__) class tfeat(DetectorAndDescriptor): def __init__(self, pretrained_model='tfeat_misc/tfeat-liberty.params'): super( tfeat, self).__init__( name='tfeat', is_detector=False, is_descriptor=True, is_both=False, patch_input=True, can_batch=True) self.model = TNet() pretrained_model = os.path.join(dirname, pretrained_model) self.model.load_state_dict(torch.load(pretrained_model, map_location='cpu')) self.model.eval() def extract_descriptors_from_patch_batch(self, batch): nb_patches = batch.shape[0] batch_resized = list() for i, patch in enumerate(batch): batch_resized.append(cv2.resize(batch[i], (32, 32), interpolation=cv2.INTER_AREA)) batch_resized = torch.tensor(batch_resized) batch_resized = batch_resized.view(nb_patches,1,32,32) desc = self.model(batch_resized.float()) return desc.detach().numpy() def extract_descriptors_from_patch(self, patch): patch = cv2.resize(patch, (32, 32), interpolation=cv2.INTER_AREA) patch = torch.tensor(patch) patch = patch.view(1,1,32,32) desc = self.model(patch.float()) return desc.detach().numpy() def extract_descriptor(self, image, feature): gray_image = utils.all_to_gray(image) patches = [] for f in feature: patch = utils.extract_patch(gray_image, f, patch_sz=32) patches.append(patch) patches = np.array(patches) desc = self.extract_descriptors_from_patch_batch(patches) return desc class TNet(nn.Module): """TFeat model definition """ def __init__(self, pretrained_model=None): super(TNet, self).__init__() self.features = nn.Sequential( nn.InstanceNorm2d(1, affine=False), nn.Conv2d(1, 32, kernel_size=7), nn.Tanh(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(32, 64, kernel_size=6), nn.Tanh() ) self.descr = nn.Sequential( nn.Linear(64 * 8 * 8, 128), nn.Tanh() ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.descr(x) return x
1.921875
2
tests/integration/test_mzml_input.py
Linington-Lab/metabolate-
1
12798028
<gh_stars>1-10 import os import tempfile from pathlib import Path from zipfile import ZipFile import shutil import pandas as pd import numpy as np import time from npanalyst import configuration, cli from pandas._testing import assert_series_equal # # Helper functions def dataframe_assertion(reference_path, test_path): """This function reads the respective dataframe and compares the two files.""" result_table = pd.read_csv(reference_path) # # This resorting is just a safe-guard to assure that rows are ordered properly and error messages are # # due to wrong values, not due to interchanged rows result_table.sort_values( by=["UniqueFiles", "PrecMz", "RetTime"], ignore_index=True, inplace=True ) test_table = pd.read_csv(Path(test_path)) test_table.sort_values( by=["UniqueFiles", "PrecMz", "RetTime"], ignore_index=True, inplace=True ) assert_series_equal(result_table["UniqueFiles"], test_table["UniqueFiles"]) assert np.sum(result_table["PrecMz"] - test_table["PrecMz"]) < 0.1 assert np.sum(result_table["RetTime"] - test_table["RetTime"]) < 0.1 # # Define relative path to input files HERE = Path(__file__).parent # mzML files INPUT_MZML_FILES = HERE / "data/BioMAP_mzml_input.zip" # Replicate compared basketed CSVs OUTPUT_FILE_REPLICATED = HERE / "data/replicated_mzml_result.zip" # Basketed CSV file output OUTPUT_FILE_BASKETED = HERE / "data/basketed_mzml.csv" # # Test config settings (ms parameter and AS and CS threshold) def test_config_parameter(): """This test shall guarantee that the loaded settings are identical to those, used to obtain the reference/ground truth results.""" configd = configuration.load_config(config_path=None) print(configd) assert configd["ACTIVITYTHRESHOLD"] == 2 assert configd["CLUSTERTHRESHOLD"] == 0.3 assert configd["MINREPSREPLICATES"] == 2 assert configd["MINREPSBASKETS"] == 1 assert configd["ERRORINFO"]["PrecMz"] == ("ppm", 30.0) assert configd["ERRORINFO"]["RetTime"] == ("window", 0.03) assert configd["MININTENSITY"] == 2e3 def test_mzml_replicate_comparison(): """Test for the replicate comparison step. The BioMAP mzML dataset is used to generate the replicate-compared csv files. A full dataframe by dataframe comparison is performed to ensure identical csv files.""" # # Create temporary folder for result and test files tmpdir = tempfile.mkdtemp() # # Open and extract zip file that contains the 2775 mzML files with ZipFile(Path(INPUT_MZML_FILES), "r") as zip: zip.extractall(Path(tmpdir, "mzml_files")) # # Perform replicate comparison cli.run_replicate( input_path=Path(tmpdir, "mzml_files"), output_path=Path(tmpdir), workers=-2, verbose=False, config=None, ) # # Test length of generated replicated files (=925) length = len(os.listdir(Path(tmpdir, "replicated"))) assert length == 925 # # Get replicated zip output file with expected output files and extract them with ZipFile(Path(OUTPUT_FILE_REPLICATED), "r") as zip: zip.extractall(Path(tmpdir, "expected_replicated_results")) # # Catch all csv files from the expected results replicate_file_names = os.listdir(Path(tmpdir, "expected_replicated_results")) # # Compare the expected replicated files with the produced files for rep in replicate_file_names: dataframe_assertion( reference_path=Path(tmpdir, "expected_replicated_results", rep), test_path=Path(tmpdir, "replicated", rep), ) # # Remove temporary folder. Windows would not delete all files. # # Python 3.11 seems to enable the ignore_errors function also for tempfile.TemporaryDirectory() which # # is the nicer context manager option. # shutil.rmtree(tmpdir, ignore_errors=True) def test_mzml_basket_building(): """Test for basket building step. A folder with expected replicate-compared output CSVs is used as the input. The resulting basket.csv file is compared to an expected output file. A full dataframe by dataframe comparison is performed to ensure identical csv files.""" # # Create temporary folder for result and test files tmpdir = tempfile.mkdtemp() # # Get replicated zip output file with expected output files and extract them with ZipFile(Path(OUTPUT_FILE_REPLICATED), "r") as zip: zip.extractall(Path(tmpdir)) cli.run_basketing( input_path=Path(tmpdir), output_path=Path(tmpdir), verbose=False, config=None ) # # Compare the expected basketed file with the produced file dataframe_assertion( reference_path=Path(OUTPUT_FILE_BASKETED), test_path=Path(tmpdir, "basketed.csv"), ) # # Remove the temp folder shutil.rmtree(tmpdir, ignore_errors=True) # if __name__ == "__main__": # # start = time.time() # # test_mzml_basket_building() # # test_mzml_replicate_comparison() # # test_mzml_basket_building() # # print(f"This testing took: {(time.time() - start) / 60:.2f} minutes.")
2.296875
2
axiom/test/strategies.py
opacam/axiom
23
12798029
""" Hypothesis strategies for generating Axiom-related data. """ from epsilon.extime import Time from hypothesis import strategies as st from hypothesis.extra.datetime import datetimes from axiom.attributes import LARGEST_NEGATIVE, LARGEST_POSITIVE def axiomText(*a, **kw): """ Strategy for generating Axiom-compatible text values. """ return st.text( alphabet=st.characters( blacklist_categories={'Cs'}, blacklist_characters={u'\x00'}), *a, **kw) def textlists(): """ Strategy for generating lists storable with L{axiom.attributes.textlist}. """ return st.lists(st.text( alphabet=st.characters( blacklist_categories={'Cs'}, blacklist_characters={u'\x00', u'\x02', u'\x1f'}))) def axiomIntegers(minValue=LARGEST_NEGATIVE, maxValue=LARGEST_POSITIVE): """ Strategy for generating Axiom-compatible integers. @type minValue: L{int} @param minValue: Minimum value to generate; default is the least value that can be stored in an L{axiom.attributes.integer} attribute. @type manValue: L{int} @param manValue: Maximum value to generate; default is the greatest value that can be stored in an L{axiom.attributes.integer} attribute. """ return st.integers(min_value=minValue, max_value=maxValue) def timestamps(*a, **kw): """ Strategy for generating L{epsilon.extime.Time} objects. """ return st.builds(Time.fromDatetime, datetimes(timezones=[], *a, **kw)) def fixedDecimals(precision, minValue=None, maxValue=None): """ Strategy for generating L{decimal.Decimal} values of a fixed precision. @type precision: L{decimal.Decimal} @param precision: The precision to use; for example, C{Decimal('0.01')} for a L{axiom.attributes.point2decimal} attribute. @type minValue: L{decimal.Decimal} @param minValue: The minimum value to generate, or C{None} for the least possible. @type minValue: L{decimal.Decimal} @param minValue: The maximum value to generate, or C{None} for the greatest possible. """ if minValue is None: minValue = LARGEST_NEGATIVE else: minValue = int(minValue / precision) if maxValue is None: maxValue = LARGEST_POSITIVE else: maxValue = int(maxValue / precision) return st.integers(min_value=minValue, max_value=maxValue).map( lambda v: v * precision) __all__ = [ 'axiomText', 'axiomIntegers', 'fixedDecimals', 'timestamps', 'textlists']
2.84375
3
nets/VGG16.py
SekiroRong/YOLOP
1
12798030
<reponame>SekiroRong/YOLOP<gh_stars>1-10 # -*- coding = utf-8 -*- # @Time : 2022/1/8 15:41 # @Author : 戎昱 # @File : VGG16.py # @Software : PyCharm # @Contact : <EMAIL> # @github : https://github.com/SekiroRong import math from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F #-------------------------------------------------# # MISH激活函数 #-------------------------------------------------# class Mish(nn.Module): def __init__(self): super(Mish, self).__init__() def forward(self, x): return x * torch.tanh(F.softplus(x)) #---------------------------------------------------# # 卷积块 -> 卷积 + 标准化 + 激活函数 # Conv2d + BatchNormalization + Mish #---------------------------------------------------# class BasicConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1): super(BasicConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, kernel_size//2, bias=False) self.bn = nn.BatchNorm2d(out_channels) self.activation = Mish() def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.activation(x) return x class VGG16(nn.Module): def __init__(self): super(VGG16, self).__init__() self.layer1 = BasicConv(3, 32, 3) self.layer2 = BasicConv(32, 64, 3) self.layer3 = BasicConv(64, 128, 3) self.layer4 = BasicConv(128, 256, 3) self.maxpool = nn.MaxPool2d(2) def forward(self,x): x = self.maxpool(self.layer1(x)) x = self.maxpool(self.layer2(x)) x = self.maxpool(self.layer3(x)) x = self.layer4(x) return x # import torch # from torchsummary import summary # # if __name__ == "__main__": # # 需要使用device来指定网络在GPU还是CPU运行 # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # m = VGG16().to(device) # summary(m, input_size=(1, 640, 480))
2.3125
2
Message Bomber/Message Bomber using File.py
SaiAshish-Konchada/Python-Projects-for-Beginners
5
12798031
# importing the required libraries import pyautogui, time # delay to switch windows time.sleep(10) # content you want to spam with f = open("idoc.pub_green-lantern-movie-script.txt", 'r') # loop to spam for word in f: # fetch and type each word from the file pyautogui.write(word) # press enter to send the message pyautogui.press('enter')
3.09375
3
kgcnn/ops/scatter.py
thegodone/gcnn_keras
47
12798032
import tensorflow as tf @tf.function def tensor_scatter_nd_ops_by_name(segment_name, tensor, indices, updates, name=None): """Scatter operation chosen by name that pick tensor_scatter_nd functions. Args: segment_name (str): Operation to update scattered updates. Either 'sum' or 'min' etc. tensor (tf.Tensor): Tensor to scatter updates into. indices (tf.Tensor): Indices to for updates. updates (tf.Tensor): Updates of new entries for tensor. name (str): Name of the tensor. Returns: tf.Tensor: Updates scattered into tensor with different update rules. """ if segment_name in ["segment_sum", "sum", "reduce_sum", "add"]: pool = tf.tensor_scatter_nd_add(tensor, indices, updates, name=name) elif segment_name in ["segment_max", "max", "reduce_max"]: pool = tf.tensor_scatter_nd_max(tensor, indices, updates, name=name) elif segment_name in ["segment_min", "min", "reduce_min"]: pool = tf.tensor_scatter_nd_min(tensor, indices, updates, name=name) else: raise TypeError("Unknown pooling, choose: 'mean', 'sum', ...") return pool
3.015625
3
Latest/venv/Lib/site-packages/pyface/wx/shell.py
adamcvj/SatelliteTracker
1
12798033
<reponame>adamcvj/SatelliteTracker<filename>Latest/venv/Lib/site-packages/pyface/wx/shell.py #------------------------------------------------------------------------------ # Copyright (c) 2005, Enthought, Inc. # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in enthought/LICENSE.txt and may be redistributed only # under the conditions described in the aforementioned license. The license # is also available online at http://www.enthought.com/licenses/BSD.txt # Thanks for using Enthought open source! # # Author: Enthought, Inc. # Description: <Enthought util package component> #------------------------------------------------------------------------------ """The PyCrust Shell is an interactive text control in which a user types in commands to be sent to the interpreter. This particular shell is based on wxPython's wxStyledTextCtrl. The latest files are always available at the SourceForge project page at http://sourceforge.net/projects/pycrust/. Sponsored by Orbtech - Your source for Python programming expertise.""" from __future__ import print_function __author__ = "<NAME> <<EMAIL>>" __cvsid__ = "$Id: shell.py,v 1.2 2003/06/13 17:59:34 dmorrill Exp $" __revision__ = "$Revision: 1.2 $"[11:-2] from wx.wx import * from wx.stc import * import keyword import os import sys from wx.py.pseudo import PseudoFileIn, PseudoFileOut, PseudoFileErr from wx.py.version import VERSION # local imports from .drag_and_drop import PythonObject from .drag_and_drop import clipboard as enClipboard sys.ps3 = '<-- ' # Input prompt. NAVKEYS = (WXK_END, WXK_LEFT, WXK_RIGHT, WXK_UP, WXK_DOWN, WXK_PRIOR, WXK_NEXT) if wxPlatform == '__WXMSW__': faces = { 'times' : 'Times New Roman', 'mono' : 'Courier New', 'helv' : 'Lucida Console', 'lucida' : 'Lucida Console', 'other' : 'Comic Sans MS', 'size' : 10, 'lnsize' : 9, 'backcol': '#FFFFFF', } # Versions of wxPython prior to 2.3.2 had a sizing bug on Win platform. # The font was 2 points too large. So we need to reduce the font size. if (wxMAJOR_VERSION, wxMINOR_VERSION, wxRELEASE_NUMBER) < (2, 3, 2): faces['size'] -= 2 faces['lnsize'] -= 2 else: # GTK faces = { 'times' : 'Times', 'mono' : 'Courier', 'helv' : 'Helvetica', 'other' : 'new century schoolbook', 'size' : 12, 'lnsize' : 10, 'backcol': '#FFFFFF', } class ShellFacade: """Simplified interface to all shell-related functionality. This is a semi-transparent facade, in that all attributes of other are still accessible, even though only some are visible to the user.""" name = 'PyCrust Shell Interface' revision = __revision__ def __init__(self, other): """Create a ShellFacade instance.""" methods = ['ask', 'clear', 'pause', 'prompt', 'quit', 'redirectStderr', 'redirectStdin', 'redirectStdout', 'run', 'runfile', 'wrap', 'zoom', ] for method in methods: self.__dict__[method] = getattr(other, method) d = self.__dict__ d['other'] = other d['helpText'] = \ """ * Key bindings: Home Go to the beginning of the command or line. Shift+Home Select to the beginning of the command or line. Shift+End Select to the end of the line. End Go to the end of the line. Ctrl+C Copy selected text, removing prompts. Ctrl+Shift+C Copy selected text, retaining prompts. Ctrl+X Cut selected text. Ctrl+V Paste from clipboard. Ctrl+Shift+V Paste and run multiple commands from clipboard. Ctrl+Up Arrow Retrieve Previous History item. Alt+P Retrieve Previous History item. Ctrl+Down Arrow Retrieve Next History item. Alt+N Retrieve Next History item. Shift+Up Arrow Insert Previous History item. Shift+Down Arrow Insert Next History item. F8 Command-completion of History item. (Type a few characters of a previous command and then press F8.) F9 Pop-up window of matching History items. (Type a few characters of a previous command and then press F9.) """ def help(self): """Display some useful information about how to use the shell.""" self.write(self.helpText) def __getattr__(self, name): if hasattr(self.other, name): return getattr(self.other, name) else: raise AttributeError(name) def __setattr__(self, name, value): if name in self.__dict__: self.__dict__[name] = value elif hasattr(self.other, name): return setattr(self.other, name, value) else: raise AttributeError(name) def _getAttributeNames(self): """Return list of magic attributes to extend introspection.""" list = ['autoCallTip', 'autoComplete', 'autoCompleteCaseInsensitive', 'autoCompleteIncludeDouble', 'autoCompleteIncludeMagic', 'autoCompleteIncludeSingle', ] list.sort() return list class Shell(wxStyledTextCtrl): """PyCrust Shell based on wxStyledTextCtrl.""" name = 'PyCrust Shell' revision = __revision__ def __init__(self, parent, id=-1, pos=wxDefaultPosition, \ size=wxDefaultSize, style=wxCLIP_CHILDREN, introText='', \ locals=None, InterpClass=None, *args, **kwds): """Create a PyCrust Shell instance.""" wxStyledTextCtrl.__init__(self, parent, id, pos, size, style) # Grab these so they can be restored by self.redirect* methods. self.stdin = sys.stdin self.stdout = sys.stdout self.stderr = sys.stderr self.handlers = [] self.python_obj_paste_handler = None # Add the current working directory "." to the search path. sys.path.insert(0, os.curdir) # Import a default interpreter class if one isn't provided. if InterpClass == None: from PyCrust.interpreter import Interpreter else: Interpreter = InterpClass # Create default locals so we have something interesting. shellLocals = {'__name__': 'PyCrust-Shell', '__doc__': 'PyCrust-Shell, The PyCrust Python Shell.', '__version__': VERSION, } # Add the dictionary that was passed in. if locals: shellLocals.update(locals) # Create a replacement for stdin. self.reader = PseudoFileIn(self.readline) self.reader.input = '' self.reader.isreading = 0 # Set up the interpreter. self.interp = Interpreter(locals=shellLocals, \ rawin=self.raw_input, \ stdin=self.reader, \ stdout=PseudoFileOut(self.writeOut), \ stderr=PseudoFileErr(self.writeErr), \ *args, **kwds) # Find out for which keycodes the interpreter will autocomplete. self.autoCompleteKeys = self.interp.getAutoCompleteKeys() # Keep track of the last non-continuation prompt positions. self.promptPosStart = 0 self.promptPosEnd = 0 # Keep track of multi-line commands. self.more = 0 # Create the command history. Commands are added into the front of # the list (ie. at index 0) as they are entered. self.historyIndex # is the current position in the history; it gets incremented as you # retrieve the previous command, decremented as you retrieve the # next, and reset when you hit Enter. self.historyIndex == -1 means # you're on the current command, not in the history. self.history = [] self.historyIndex = -1 self.historyPrefix = 0 # Assign handlers for keyboard events. EVT_KEY_DOWN(self, self.OnKeyDown) EVT_CHAR(self, self.OnChar) # Assign handlers for wxSTC events. EVT_STC_UPDATEUI(self, id, self.OnUpdateUI) EVT_STC_USERLISTSELECTION(self, id, self.OnHistorySelected) # Configure various defaults and user preferences. self.config() # Display the introductory banner information. try: self.showIntro(introText) except: pass # Assign some pseudo keywords to the interpreter's namespace. try: self.setBuiltinKeywords() except: pass # Add 'shell' to the interpreter's local namespace. try: self.setLocalShell() except: pass # Do this last so the user has complete control over their # environment. They can override anything they want. try: self.execStartupScript(self.interp.startupScript) except: pass def destroy(self): # del self.interp pass def config(self): """Configure shell based on user preferences.""" self.SetMarginType(1, wxSTC_MARGIN_NUMBER) self.SetMarginWidth(1, 40) self.SetLexer(wxSTC_LEX_PYTHON) self.SetKeyWords(0, ' '.join(keyword.kwlist)) self.setStyles(faces) self.SetViewWhiteSpace(0) self.SetTabWidth(4) self.SetUseTabs(0) # Do we want to automatically pop up command completion options? self.autoComplete = 1 self.autoCompleteIncludeMagic = 1 self.autoCompleteIncludeSingle = 1 self.autoCompleteIncludeDouble = 1 self.autoCompleteCaseInsensitive = 1 self.AutoCompSetIgnoreCase(self.autoCompleteCaseInsensitive) self.AutoCompSetSeparator(ord('\n')) # Do we want to automatically pop up command argument help? self.autoCallTip = 1 self.CallTipSetBackground(wxColour(255, 255, 232)) self.wrap() try: self.SetEndAtLastLine(false) except AttributeError: pass def showIntro(self, text=''): """Display introductory text in the shell.""" if text: if not text.endswith(os.linesep): text += os.linesep self.write(text) try: self.write(self.interp.introText) except AttributeError: pass wxCallAfter(self.ScrollToLine, 0) def setBuiltinKeywords(self): """Create pseudo keywords as part of builtins. This simply sets "close", "exit" and "quit" to a helpful string. """ import six.moves.builtins six.moves.builtins.close = six.moves.builtins.exit = six.moves.builtins.quit = \ 'Click on the close button to leave the application.' def quit(self): """Quit the application.""" # XXX Good enough for now but later we want to send a close event. # In the close event handler we can make sure they want to quit. # Other applications, like PythonCard, may choose to hide rather than # quit so we should just post the event and let the surrounding app # decide what it wants to do. self.write('Click on the close button to leave the application.') def setLocalShell(self): """Add 'shell' to locals as reference to ShellFacade instance.""" self.interp.locals['shell'] = ShellFacade(other=self) def execStartupScript(self, startupScript): """Execute the user's PYTHONSTARTUP script if they have one.""" if startupScript and os.path.isfile(startupScript): startupText = 'Startup script executed: ' + startupScript self.push('print %s;execfile(%s)' % \ ('startupText', 'startupScript')) else: self.push('') def setStyles(self, faces): """Configure font size, typeface and color for lexer.""" # Default style self.StyleSetSpec(wxSTC_STYLE_DEFAULT, "face:%(mono)s,size:%(size)d,back:%(backcol)s" % faces) self.StyleClearAll() # Built in styles self.StyleSetSpec(wxSTC_STYLE_LINENUMBER, "back:#C0C0C0,face:%(mono)s,size:%(lnsize)d" % faces) self.StyleSetSpec(wxSTC_STYLE_CONTROLCHAR, "face:%(mono)s" % faces) self.StyleSetSpec(wxSTC_STYLE_BRACELIGHT, "fore:#0000FF,back:#FFFF88") self.StyleSetSpec(wxSTC_STYLE_BRACEBAD, "fore:#FF0000,back:#FFFF88") # Python styles self.StyleSetSpec(wxSTC_P_DEFAULT, "face:%(mono)s" % faces) self.StyleSetSpec(wxSTC_P_COMMENTLINE, "fore:#007F00,face:%(mono)s" % faces) self.StyleSetSpec(wxSTC_P_NUMBER, "") self.StyleSetSpec(wxSTC_P_STRING, "fore:#7F007F,face:%(mono)s" % faces) self.StyleSetSpec(wxSTC_P_CHARACTER, "fore:#7F007F,face:%(mono)s" % faces) self.StyleSetSpec(wxSTC_P_WORD, "fore:#00007F,bold") self.StyleSetSpec(wxSTC_P_TRIPLE, "fore:#7F0000") self.StyleSetSpec(wxSTC_P_TRIPLEDOUBLE, "fore:#000033,back:#FFFFE8") self.StyleSetSpec(wxSTC_P_CLASSNAME, "fore:#0000FF,bold") self.StyleSetSpec(wxSTC_P_DEFNAME, "fore:#007F7F,bold") self.StyleSetSpec(wxSTC_P_OPERATOR, "") self.StyleSetSpec(wxSTC_P_IDENTIFIER, "") self.StyleSetSpec(wxSTC_P_COMMENTBLOCK, "fore:#7F7F7F") self.StyleSetSpec(wxSTC_P_STRINGEOL, "fore:#000000,face:%(mono)s,back:#E0C0E0,eolfilled" % faces) def OnUpdateUI(self, evt): """Check for matching braces.""" braceAtCaret = -1 braceOpposite = -1 charBefore = None caretPos = self.GetCurrentPos() if caretPos > 0: charBefore = self.GetCharAt(caretPos - 1) #*** Patch to fix bug in wxSTC for wxPython < 2.3.3. if charBefore < 0: charBefore = 32 # Mimic a space. #*** styleBefore = self.GetStyleAt(caretPos - 1) # Check before. if charBefore and chr(charBefore) in '[]{}()' \ and styleBefore == wxSTC_P_OPERATOR: braceAtCaret = caretPos - 1 # Check after. if braceAtCaret < 0: charAfter = self.GetCharAt(caretPos) #*** Patch to fix bug in wxSTC for wxPython < 2.3.3. if charAfter < 0: charAfter = 32 # Mimic a space. #*** styleAfter = self.GetStyleAt(caretPos) if charAfter and chr(charAfter) in '[]{}()' \ and styleAfter == wxSTC_P_OPERATOR: braceAtCaret = caretPos if braceAtCaret >= 0: braceOpposite = self.BraceMatch(braceAtCaret) if braceAtCaret != -1 and braceOpposite == -1: self.BraceBadLight(braceAtCaret) else: self.BraceHighlight(braceAtCaret, braceOpposite) def OnChar(self, event): """Keypress event handler. Only receives an event if OnKeyDown calls event.Skip() for the corresponding event.""" # Prevent modification of previously submitted commands/responses. if not self.CanEdit(): return key = event.KeyCode() currpos = self.GetCurrentPos() stoppos = self.promptPosEnd # Return (Enter) needs to be ignored in this handler. if key == WXK_RETURN: pass elif key in self.autoCompleteKeys: # Usually the dot (period) key activates auto completion. # Get the command between the prompt and the cursor. # Add the autocomplete character to the end of the command. command = self.GetTextRange(stoppos, currpos) if command == '': self.historyShow() else: command += chr(key) self.write(chr(key)) if self.autoComplete: self.autoCompleteShow(command) elif key == ord('('): # The left paren activates a call tip and cancels # an active auto completion. if self.AutoCompActive(): self.AutoCompCancel() # Get the command between the prompt and the cursor. # Add the '(' to the end of the command. self.ReplaceSelection('') command = self.GetTextRange(stoppos, currpos) + '(' self.write('(') if self.autoCallTip: self.autoCallTipShow(command) else: # Allow the normal event handling to take place. event.Skip() def OnKeyDown(self, event): """Key down event handler.""" # Prevent modification of previously submitted commands/responses. key = event.KeyCode() controlDown = event.ControlDown() altDown = event.AltDown() shiftDown = event.ShiftDown() currpos = self.GetCurrentPos() endpos = self.GetTextLength() selecting = self.GetSelectionStart() != self.GetSelectionEnd() # Return (Enter) is used to submit a command to the interpreter. if not controlDown and key == WXK_RETURN: if self.AutoCompActive(): event.Skip() return if self.CallTipActive(): self.CallTipCancel() self.processLine() # Ctrl+Return (Cntrl+Enter) is used to insert a line break. elif controlDown and key == WXK_RETURN: if self.AutoCompActive(): self.AutoCompCancel() if self.CallTipActive(): self.CallTipCancel() if (not self.more and (self.GetTextRange(self.promptPosEnd, self.GetCurrentPos()) == '')): self.historyShow() else: self.insertLineBreak() # If the auto-complete window is up let it do its thing. elif self.AutoCompActive(): event.Skip() # Let Ctrl-Alt-* get handled normally. elif controlDown and altDown: event.Skip() # Clear the current, unexecuted command. elif key == WXK_ESCAPE: if self.CallTipActive(): event.Skip() else: self.clearCommand() # Cut to the clipboard. elif (controlDown and key in (ord('X'), ord('x'))) \ or (shiftDown and key == WXK_DELETE): self.Cut() # Copy to the clipboard. elif controlDown and not shiftDown \ and key in (ord('C'), ord('c'), WXK_INSERT): self.Copy() # Copy to the clipboard, including prompts. elif controlDown and shiftDown \ and key in (ord('C'), ord('c'), WXK_INSERT): self.CopyWithPrompts() # Home needs to be aware of the prompt. elif key == WXK_HOME: home = self.promptPosEnd if currpos > home: self.SetCurrentPos(home) if not selecting and not shiftDown: self.SetAnchor(home) self.EnsureCaretVisible() else: event.Skip() # # The following handlers modify text, so we need to see if there # is a selection that includes text prior to the prompt. # # Don't modify a selection with text prior to the prompt. elif selecting and key not in NAVKEYS and not self.CanEdit(): pass # Paste from the clipboard. elif (controlDown and not shiftDown \ and key in (ord('V'), ord('v'))) \ or (shiftDown and not controlDown and key == WXK_INSERT): self.Paste() # Paste from the clipboard, run commands. elif controlDown and shiftDown \ and key in (ord('V'), ord('v')): self.PasteAndRun() # Replace with the previous command from the history buffer. elif (controlDown and key == WXK_UP) \ or (altDown and key in (ord('P'), ord('p'))): self.OnHistoryReplace(step=+1) # Replace with the next command from the history buffer. elif (controlDown and key == WXK_DOWN) \ or (altDown and key in (ord('N'), ord('n'))): self.OnHistoryReplace(step=-1) # Insert the previous command from the history buffer. elif (shiftDown and key == WXK_UP) and self.CanEdit(): self.OnHistoryInsert(step=+1) # Insert the next command from the history buffer. elif (shiftDown and key == WXK_DOWN) and self.CanEdit(): self.OnHistoryInsert(step=-1) # Search up the history for the text in front of the cursor. elif key == WXK_F8: self.OnHistorySearch() # Show all history entries that match the command typed so far: elif key == WXK_F9: self.historyShow(self.getCommand(rstrip=0)) # Don't backspace over the latest non-continuation prompt. elif key == WXK_BACK: if selecting and self.CanEdit(): event.Skip() elif currpos > self.promptPosEnd: event.Skip() # Only allow these keys after the latest prompt. elif key == WXK_DELETE: if self.CanEdit(): event.Skip() elif key == WXK_TAB: if self.CanEdit() and not self.topLevelComplete(): event.Skip() # Don't toggle between insert mode and overwrite mode. elif key == WXK_INSERT: pass # Don't allow line deletion. elif controlDown and key in (ord('L'), ord('l')): pass # Don't allow line transposition. elif controlDown and key in (ord('T'), ord('t')): pass # Basic navigation keys should work anywhere. elif key in NAVKEYS: event.Skip() # Protect the readonly portion of the shell. elif not self.CanEdit(): pass else: event.Skip() def clearCommand(self): """Delete the current, unexecuted command.""" startpos = self.promptPosEnd endpos = self.GetTextLength() self.SetSelection(startpos, endpos) self.ReplaceSelection('') self.more = 0 def OnHistoryReplace(self, step): """Replace with the previous/next command from the history buffer.""" if not self.historyPrefix: self.historyPrefix = 1 self.historyMatches = None prefix = self.getCommand(rstrip=0) n = len(prefix) if n > 0: self.historyMatches = matches = [] for command in self.history: if command[:n] == prefix and command not in matches: matches.append(command) self.clearCommand() self.replaceFromHistory(step, self.historyMatches) def replaceFromHistory(self, step, history=None): """Replace selection with command from the history buffer.""" self.ReplaceSelection('') if history is None: history = self.history newindex = self.historyIndex + step if -1 <= newindex <= len(history): self.historyIndex = newindex if 0 <= newindex <= len(history)-1: command = history[self.historyIndex] command = command.replace('\n', os.linesep + sys.ps2) self.ReplaceSelection(command) def OnHistoryInsert(self, step): """Insert the previous/next command from the history buffer.""" if not self.CanEdit(): return startpos = self.GetCurrentPos() self.replaceFromHistory(step) endpos = self.GetCurrentPos() self.SetSelection(endpos, startpos) def OnHistorySearch(self): """Search up the history buffer for the text in front of the cursor.""" if not self.CanEdit(): return startpos = self.GetCurrentPos() # The text up to the cursor is what we search for. numCharsAfterCursor = self.GetTextLength() - startpos searchText = self.getCommand(rstrip=0) if numCharsAfterCursor > 0: searchText = searchText[:-numCharsAfterCursor] if not searchText: return # Search upwards from the current history position and loop back # to the beginning if we don't find anything. if (self.historyIndex <= -1) \ or (self.historyIndex >= len(self.history)-2): searchOrder = list(range(len(self.history))) else: searchOrder = list(range(self.historyIndex+1, len(self.history))) + \ list(range(self.historyIndex)) for i in searchOrder: command = self.history[i] if command[:len(searchText)] == searchText: # Replace the current selection with the one we've found. self.ReplaceSelection(command[len(searchText):]) endpos = self.GetCurrentPos() self.SetSelection(endpos, startpos) # We've now warped into middle of the history. self.historyIndex = i break def setStatusText(self, text): """Display status information.""" # This method will most likely be replaced by the enclosing app # to do something more interesting, like write to a status bar. print(text) def insertLineBreak(self): """Insert a new line break.""" if self.CanEdit(): self.write(os.linesep) self.more = 1 self.prompt() def processLine(self): """Process the line of text at which the user hit Enter.""" # The user hit ENTER and we need to decide what to do. They could be # sitting on any line in the shell. thepos = self.GetCurrentPos() startpos = self.promptPosEnd endpos = self.GetTextLength() # If they hit RETURN inside the current command, execute the command. if self.CanEdit(): self.SetCurrentPos(endpos) self.interp.more = 0 command = self.GetTextRange(startpos, endpos) lines = command.split(os.linesep + sys.ps2) lines = [line.rstrip() for line in lines] command = '\n'.join(lines) if self.reader.isreading: if not command: # Match the behavior of the standard Python shell when # the user hits return without entering a value. command = '\n' self.reader.input = command self.write(os.linesep) else: self.push(command) # Or replace the current command with the other command. else: # If the line contains a command (even an invalid one). if self.getCommand(rstrip=0): command = self.getMultilineCommand() self.clearCommand() self.write(command) # Otherwise, put the cursor back where we started. else: self.SetCurrentPos(thepos) self.SetAnchor(thepos) def getMultilineCommand(self, rstrip=1): """Extract a multi-line command from the editor. The command may not necessarily be valid Python syntax.""" # XXX Need to extract real prompts here. Need to keep track of the # prompt every time a command is issued. ps1 = str(sys.ps1) ps1size = len(ps1) ps2 = str(sys.ps2) ps2size = len(ps2) # This is a total hack job, but it works. text = self.GetCurLine()[0] line = self.GetCurrentLine() while text[:ps2size] == ps2 and line > 0: line -= 1 self.GotoLine(line) text = self.GetCurLine()[0] if text[:ps1size] == ps1: line = self.GetCurrentLine() self.GotoLine(line) startpos = self.GetCurrentPos() + ps1size line += 1 self.GotoLine(line) while self.GetCurLine()[0][:ps2size] == ps2: line += 1 self.GotoLine(line) stoppos = self.GetCurrentPos() command = self.GetTextRange(startpos, stoppos) command = command.replace(os.linesep + sys.ps2, '\n') command = command.rstrip() command = command.replace('\n', os.linesep + sys.ps2) else: command = '' if rstrip: command = command.rstrip() return command def getCommand(self, text=None, rstrip=1): """Extract a command from text which may include a shell prompt. The command may not necessarily be valid Python syntax.""" if not text: text = self.GetCurLine()[0] # Strip the prompt off the front of text leaving just the command. command = self.lstripPrompt(text) if command == text: command = '' # Real commands have prompts. if rstrip: command = command.rstrip() return command def lstripPrompt(self, text): """Return text without a leading prompt.""" ps1 = str(sys.ps1) ps1size = len(ps1) ps2 = str(sys.ps2) ps2size = len(ps2) # Strip the prompt off the front of text. if text[:ps1size] == ps1: text = text[ps1size:] elif text[:ps2size] == ps2: text = text[ps2size:] return text def push(self, command): """Send command to the interpreter for execution.""" self.write(os.linesep) busy = wxBusyCursor() self.more = self.interp.push(command) del busy if not self.more: self.addHistory(command.rstrip()) for handler in self.handlers: handler() self.prompt() def addHistory(self, command): """Add command to the command history.""" # Reset the history position. self.historyIndex = -1 self.historyPrefix = 0 # Insert this command into the history, unless it's a blank # line or the same as the last command. if command != '' \ and (len(self.history) == 0 or command != self.history[0]): self.history.insert(0, command) def write(self, text): """Display text in the shell. Replace line endings with OS-specific endings.""" text = self.fixLineEndings(text) self.AddText(text) self.EnsureCaretVisible() def fixLineEndings(self, text): """Return text with line endings replaced by OS-specific endings.""" lines = text.split('\r\n') for l in range(len(lines)): chunks = lines[l].split('\r') for c in range(len(chunks)): chunks[c] = os.linesep.join(chunks[c].split('\n')) lines[l] = os.linesep.join(chunks) text = os.linesep.join(lines) return text def prompt(self): """Display appropriate prompt for the context, either ps1, ps2 or ps3. If this is a continuation line, autoindent as necessary.""" isreading = self.reader.isreading skip = 0 if isreading: prompt = str(sys.ps3) elif self.more: prompt = str(sys.ps2) else: prompt = str(sys.ps1) pos = self.GetCurLine()[1] if pos > 0: if isreading: skip = 1 else: self.write(os.linesep) if not self.more: self.promptPosStart = self.GetCurrentPos() if not skip: self.write(prompt) if not self.more: self.promptPosEnd = self.GetCurrentPos() # Keep the undo feature from undoing previous responses. self.EmptyUndoBuffer() # XXX Add some autoindent magic here if more. if self.more: self.write(' '*4) # Temporary hack indentation. self.EnsureCaretVisible() self.ScrollToColumn(0) def readline(self): """Replacement for stdin.readline().""" input = '' reader = self.reader reader.isreading = 1 self.prompt() try: while not reader.input: wxYield() input = reader.input finally: reader.input = '' reader.isreading = 0 return input def raw_input(self, prompt=''): """Return string based on user input.""" if prompt: self.write(prompt) return self.readline() def ask(self, prompt='Please enter your response:'): """Get response from the user using a dialog box.""" dialog = wxTextEntryDialog(None, prompt, \ 'Input Dialog (Raw)', '') try: if dialog.ShowModal() == wxID_OK: text = dialog.GetValue() return text finally: dialog.Destroy() return '' def pause(self): """Halt execution pending a response from the user.""" self.ask('Press enter to continue:') def clear(self): """Delete all text from the shell.""" self.ClearAll() def run(self, command, prompt=1, verbose=1): """Execute command within the shell as if it was typed in directly. >>> shell.run('print "this"') >>> print "this" this >>> """ # Go to the very bottom of the text. endpos = self.GetTextLength() self.SetCurrentPos(endpos) command = command.rstrip() if prompt: self.prompt() if verbose: self.write(command) self.push(command) def runfile(self, filename): """Execute all commands in file as if they were typed into the shell.""" file = open(filename) try: self.prompt() for command in file.readlines(): if command[:6] == 'shell.': # Run shell methods silently. self.run(command, prompt=0, verbose=0) else: self.run(command, prompt=0, verbose=1) finally: file.close() def autoCompleteShow(self, command): """Display auto-completion popup list.""" list = self.interp.getAutoCompleteList(command, includeMagic=self.autoCompleteIncludeMagic, includeSingle=self.autoCompleteIncludeSingle, includeDouble=self.autoCompleteIncludeDouble) if list: options = '\n'.join(list) offset = 0 self.AutoCompShow(offset, options) def autoCallTipShow(self, command): """Display argument spec and docstring in a popup bubble thingie.""" if self.CallTipActive: self.CallTipCancel() (name, argspec, tip) = self.interp.getCallTip(command) if argspec: startpos = self.GetCurrentPos() self.write(argspec + ')') endpos = self.GetCurrentPos() self.SetSelection(endpos, startpos) if tip: curpos = self.GetCurrentPos() tippos = curpos - (len(name) + 1) fallback = curpos - self.GetColumn(curpos) # In case there isn't enough room, only go back to the fallback. tippos = max(tippos, fallback) self.CallTipShow(tippos, tip) def historyShow(self, prefix=''): items = [] for item in self.history: item = item.replace( '\n', '\\n' ) if (prefix == item[:len(prefix)]) and item not in items: items.append(item) self.UserListShow(1, '\n'.join(items)) def OnHistorySelected(self, event): command = event.GetText() if command.find('\\n') >= 0: command += '\\n' command = command.replace( '\\n', os.linesep + sys.ps2) self.clearCommand() self.write(command) # Process the command if the 'Enter' key was pressed: key = event.GetKey() if key == 28 or key == 1241712: # Is there a 'name' for the Enter key? self.processLine() def topLevelComplete(self): command = self.getCommand(rstrip=0) completions = self.interp.getTopLevelCompletions(command) if len(completions) == 0: return 0 if len(completions) == 1: self.write(completions[0][len(command):]) else: self.AutoCompShow(len(command), '\n'.join(completions)) return 1 def writeOut(self, text): """Replacement for stdout.""" self.write(text) def writeErr(self, text): """Replacement for stderr.""" self.write(text) def redirectStdin(self, redirect=1): """If redirect is true then sys.stdin will come from the shell.""" if redirect: sys.stdin = self.reader else: sys.stdin = self.stdin def redirectStdout(self, redirect=1): """If redirect is true then sys.stdout will go to the shell.""" if redirect: sys.stdout = PseudoFileOut(self.writeOut) else: sys.stdout = self.stdout def redirectStderr(self, redirect=1): """If redirect is true then sys.stderr will go to the shell.""" if redirect: sys.stderr = PseudoFileErr(self.writeErr) else: sys.stderr = self.stderr def CanCut(self): """Return true if text is selected and can be cut.""" if self.GetSelectionStart() != self.GetSelectionEnd() \ and self.GetSelectionStart() >= self.promptPosEnd \ and self.GetSelectionEnd() >= self.promptPosEnd: return 1 else: return 0 def CanCopy(self): """Return true if text is selected and can be copied.""" return self.GetSelectionStart() != self.GetSelectionEnd() def CanPaste(self): """Return true if a paste should succeed.""" if self.CanEdit() and \ (wxStyledTextCtrl.CanPaste(self) or \ wxTheClipboard.IsSupported(PythonObject)): return 1 else: return 0 def CanEdit(self): """Return true if editing should succeed.""" if self.GetSelectionStart() != self.GetSelectionEnd(): if self.GetSelectionStart() >= self.promptPosEnd \ and self.GetSelectionEnd() >= self.promptPosEnd: return 1 else: return 0 else: return self.GetCurrentPos() >= self.promptPosEnd def Cut(self): """Remove selection and place it on the clipboard.""" if self.CanCut() and self.CanCopy(): if self.AutoCompActive(): self.AutoCompCancel() if self.CallTipActive: self.CallTipCancel() self.Copy() self.ReplaceSelection('') def Copy(self): """Copy selection and place it on the clipboard.""" if self.CanCopy(): command = self.GetSelectedText() command = command.replace(os.linesep + sys.ps2, os.linesep) command = command.replace(os.linesep + sys.ps1, os.linesep) command = self.lstripPrompt(text=command) data = wxTextDataObject(command) if wxTheClipboard.Open(): wxTheClipboard.SetData(data) wxTheClipboard.Close() def CopyWithPrompts(self): """Copy selection, including prompts, and place it on the clipboard.""" if self.CanCopy(): command = self.GetSelectedText() data = wxTextDataObject(command) if wxTheClipboard.Open(): wxTheClipboard.SetData(data) wxTheClipboard.Close() def Paste(self): """Replace selection with clipboard contents.""" if self.CanPaste() and wxTheClipboard.Open(): try: if wxTheClipboard.IsSupported(wxDataFormat(wxDF_TEXT)): data = wxTextDataObject() if wxTheClipboard.GetData(data): self.ReplaceSelection('') command = data.GetText() command = command.rstrip() command = self.fixLineEndings(command) command = self.lstripPrompt(text=command) command = command.replace(os.linesep + sys.ps2, '\n') command = command.replace(os.linesep, '\n') command = command.replace('\n', os.linesep + sys.ps2) self.write(command) if wxTheClipboard.IsSupported(PythonObject) and \ self.python_obj_paste_handler is not None: # note that the presence of a PythonObject on the # clipboard is really just a signal to grab the data # from our singleton clipboard instance data = enClipboard.data self.python_obj_paste_handler(data) finally: wxTheClipboard.Close() return def PasteAndRun(self): """Replace selection with clipboard contents, run commands.""" if wxTheClipboard.Open(): if wxTheClipboard.IsSupported(wxDataFormat(wxDF_TEXT)): data = wxTextDataObject() if wxTheClipboard.GetData(data): endpos = self.GetTextLength() self.SetCurrentPos(endpos) startpos = self.promptPosEnd self.SetSelection(startpos, endpos) self.ReplaceSelection('') text = data.GetText() text = text.strip() text = self.fixLineEndings(text) text = self.lstripPrompt(text=text) text = text.replace(os.linesep + sys.ps1, '\n') text = text.replace(os.linesep + sys.ps2, '\n') text = text.replace(os.linesep, '\n') lines = text.split('\n') commands = [] command = '' for line in lines: if line.strip() != '' and line.lstrip() == line: # New command. if command: # Add the previous command to the list. commands.append(command) # Start a new command, which may be multiline. command = line else: # Multiline command. Add to the command. command += '\n' command += line commands.append(command) for command in commands: command = command.replace('\n', os.linesep + sys.ps2) self.write(command) self.processLine() wxTheClipboard.Close() def wrap(self, wrap=1): """Sets whether text is word wrapped.""" try: self.SetWrapMode(wrap) except AttributeError: return 'Wrapping is not available in this version of PyCrust.' def zoom(self, points=0): """Set the zoom level. This number of points is added to the size of all fonts. It may be positive to magnify or negative to reduce.""" self.SetZoom(points) wxID_SELECTALL = wxNewId() ID_AUTOCOMP = wxNewId() ID_AUTOCOMP_SHOW = wxNewId() ID_AUTOCOMP_INCLUDE_MAGIC = wxNewId() ID_AUTOCOMP_INCLUDE_SINGLE = wxNewId() ID_AUTOCOMP_INCLUDE_DOUBLE = wxNewId() ID_CALLTIPS = wxNewId() ID_CALLTIPS_SHOW = wxNewId() ID_FILLING = wxNewId() ID_FILLING_AUTO_UPDATE = wxNewId() ID_FILLING_SHOW_METHODS = wxNewId() ID_FILLING_SHOW_CLASS = wxNewId() ID_FILLING_SHOW_DICT = wxNewId() ID_FILLING_SHOW_DOC = wxNewId() ID_FILLING_SHOW_MODULE = wxNewId() class ShellMenu: """Mixin class to add standard menu items.""" def createMenus(self): m = self.fileMenu = wxMenu() m.AppendSeparator() m.Append(wxID_EXIT, 'E&xit', 'Exit PyCrust') m = self.editMenu = wxMenu() m.Append(wxID_UNDO, '&Undo \tCtrl+Z', 'Undo the last action') m.Append(wxID_REDO, '&Redo \tCtrl+Y', 'Redo the last undone action') m.AppendSeparator() m.Append(wxID_CUT, 'Cu&t \tCtrl+X', 'Cut the selection') m.Append(wxID_COPY, '&Copy \tCtrl+C', 'Copy the selection') m.Append(wxID_PASTE, '&Paste \tCtrl+V', 'Paste') m.AppendSeparator() m.Append(wxID_CLEAR, 'Cle&ar', 'Delete the selection') m.Append(wxID_SELECTALL, 'Select A&ll', 'Select all text') m = self.autocompMenu = wxMenu() m.Append(ID_AUTOCOMP_SHOW, 'Show Auto Completion', \ 'Show auto completion during dot syntax', 1) m.Append(ID_AUTOCOMP_INCLUDE_MAGIC, 'Include Magic Attributes', \ 'Include attributes visible to __getattr__ and __setattr__', 1) m.Append(ID_AUTOCOMP_INCLUDE_SINGLE, 'Include Single Underscores', \ 'Include attibutes prefixed by a single underscore', 1) m.Append(ID_AUTOCOMP_INCLUDE_DOUBLE, 'Include Double Underscores', \ 'Include attibutes prefixed by a double underscore', 1) m = self.calltipsMenu = wxMenu() m.Append(ID_CALLTIPS_SHOW, 'Show Call Tips', \ 'Show call tips with argument specifications', 1) m = self.optionsMenu = wxMenu() m.AppendMenu(ID_AUTOCOMP, '&Auto Completion', self.autocompMenu, \ 'Auto Completion Options') m.AppendMenu(ID_CALLTIPS, '&Call Tips', self.calltipsMenu, \ 'Call Tip Options') if hasattr( self, 'crust' ): fm = self.fillingMenu = wxMenu() fm.Append(ID_FILLING_AUTO_UPDATE, 'Automatic Update', 'Automatically update tree view after each command', 1) fm.Append(ID_FILLING_SHOW_METHODS, 'Show Methods', 'Show methods and functions in the tree view', 1) fm.Append(ID_FILLING_SHOW_CLASS, 'Show __class__', 'Show __class__ entries in the tree view', 1) fm.Append(ID_FILLING_SHOW_DICT, 'Show __dict__', 'Show __dict__ entries in the tree view', 1) fm.Append(ID_FILLING_SHOW_DOC, 'Show __doc__', 'Show __doc__ entries in the tree view', 1) fm.Append(ID_FILLING_SHOW_MODULE, 'Show __module__', 'Show __module__ entries in the tree view', 1) m.AppendMenu(ID_FILLING, '&Filling', fm, 'Filling Options') m = self.helpMenu = wxMenu() m.AppendSeparator() m.Append(wxID_ABOUT, '&About...', 'About PyCrust') b = self.menuBar = wxMenuBar() b.Append(self.fileMenu, '&File') b.Append(self.editMenu, '&Edit') b.Append(self.optionsMenu, '&Options') b.Append(self.helpMenu, '&Help') self.SetMenuBar(b) EVT_MENU(self, wxID_EXIT, self.OnExit) EVT_MENU(self, wxID_UNDO, self.OnUndo) EVT_MENU(self, wxID_REDO, self.OnRedo) EVT_MENU(self, wxID_CUT, self.OnCut) EVT_MENU(self, wxID_COPY, self.OnCopy) EVT_MENU(self, wxID_PASTE, self.OnPaste) EVT_MENU(self, wxID_CLEAR, self.OnClear) EVT_MENU(self, wxID_SELECTALL, self.OnSelectAll) EVT_MENU(self, wxID_ABOUT, self.OnAbout) EVT_MENU(self, ID_AUTOCOMP_SHOW, \ self.OnAutoCompleteShow) EVT_MENU(self, ID_AUTOCOMP_INCLUDE_MAGIC, \ self.OnAutoCompleteIncludeMagic) EVT_MENU(self, ID_AUTOCOMP_INCLUDE_SINGLE, \ self.OnAutoCompleteIncludeSingle) EVT_MENU(self, ID_AUTOCOMP_INCLUDE_DOUBLE, \ self.OnAutoCompleteIncludeDouble) EVT_MENU(self, ID_CALLTIPS_SHOW, \ self.OnCallTipsShow) EVT_UPDATE_UI(self, wxID_UNDO, self.OnUpdateMenu) EVT_UPDATE_UI(self, wxID_REDO, self.OnUpdateMenu) EVT_UPDATE_UI(self, wxID_CUT, self.OnUpdateMenu) EVT_UPDATE_UI(self, wxID_COPY, self.OnUpdateMenu) EVT_UPDATE_UI(self, wxID_PASTE, self.OnUpdateMenu) EVT_UPDATE_UI(self, wxID_CLEAR, self.OnUpdateMenu) EVT_UPDATE_UI(self, ID_AUTOCOMP_SHOW, self.OnUpdateMenu) EVT_UPDATE_UI(self, ID_AUTOCOMP_INCLUDE_MAGIC, self.OnUpdateMenu) EVT_UPDATE_UI(self, ID_AUTOCOMP_INCLUDE_SINGLE, self.OnUpdateMenu) EVT_UPDATE_UI(self, ID_AUTOCOMP_INCLUDE_DOUBLE, self.OnUpdateMenu) EVT_UPDATE_UI(self, ID_CALLTIPS_SHOW, self.OnUpdateMenu) if hasattr( self, 'crust' ): EVT_MENU(self, ID_FILLING_AUTO_UPDATE, self.OnFillingAutoUpdate) EVT_MENU(self, ID_FILLING_SHOW_METHODS, self.OnFillingShowMethods) EVT_MENU(self, ID_FILLING_SHOW_CLASS, self.OnFillingShowClass) EVT_MENU(self, ID_FILLING_SHOW_DICT, self.OnFillingShowDict) EVT_MENU(self, ID_FILLING_SHOW_DOC, self.OnFillingShowDoc) EVT_MENU(self, ID_FILLING_SHOW_MODULE, self.OnFillingShowModule) EVT_UPDATE_UI(self, ID_FILLING_AUTO_UPDATE, self.OnUpdateMenu) EVT_UPDATE_UI(self, ID_FILLING_SHOW_METHODS, self.OnUpdateMenu) EVT_UPDATE_UI(self, ID_FILLING_SHOW_CLASS, self.OnUpdateMenu) EVT_UPDATE_UI(self, ID_FILLING_SHOW_DICT, self.OnUpdateMenu) EVT_UPDATE_UI(self, ID_FILLING_SHOW_DOC, self.OnUpdateMenu) EVT_UPDATE_UI(self, ID_FILLING_SHOW_MODULE, self.OnUpdateMenu) def OnExit(self, event): self.Close(True) def OnUndo(self, event): self.shell.Undo() def OnRedo(self, event): self.shell.Redo() def OnCut(self, event): self.shell.Cut() def OnCopy(self, event): self.shell.Copy() def OnPaste(self, event): self.shell.Paste() def OnClear(self, event): self.shell.Clear() def OnSelectAll(self, event): self.shell.SelectAll() def OnAbout(self, event): """Display an About PyCrust window.""" import sys title = 'About PyCrust' text = 'PyCrust %s\n\n' % VERSION + \ 'Yet another Python shell, only flakier.\n\n' + \ 'Half-baked by <NAME>,\n' + \ 'the other half is still in the oven.\n\n' + \ 'Shell Revision: %s\n' % self.shell.revision + \ 'Interpreter Revision: %s\n\n' % self.shell.interp.revision + \ 'Python Version: %s\n' % sys.version.split()[0] + \ 'wxPython Version: %s\n' % wx.__version__ + \ 'Platform: %s\n' % sys.platform dialog = wxMessageDialog(self, text, title, wxOK | wxICON_INFORMATION) dialog.ShowModal() dialog.Destroy() def OnAutoCompleteShow(self, event): self.shell.autoComplete = event.IsChecked() def OnAutoCompleteIncludeMagic(self, event): self.shell.autoCompleteIncludeMagic = event.IsChecked() def OnAutoCompleteIncludeSingle(self, event): self.shell.autoCompleteIncludeSingle = event.IsChecked() def OnAutoCompleteIncludeDouble(self, event): self.shell.autoCompleteIncludeDouble = event.IsChecked() def OnCallTipsShow(self, event): self.shell.autoCallTip = event.IsChecked() def OnFillingAutoUpdate(self, event): tree = self.crust.filling.fillingTree tree.autoUpdate = event.IsChecked() tree.if_autoUpdate() def OnFillingShowMethods(self, event): tree = self.crust.filling.fillingTree tree.showMethods = event.IsChecked() tree.update() def OnFillingShowClass(self, event): tree = self.crust.filling.fillingTree tree.showClass = event.IsChecked() tree.update() def OnFillingShowDict(self, event): tree = self.crust.filling.fillingTree tree.showDict = event.IsChecked() tree.update() def OnFillingShowDoc(self, event): tree = self.crust.filling.fillingTree tree.showDoc = event.IsChecked() tree.update() def OnFillingShowModule(self, event): tree = self.crust.filling.fillingTree tree.showModule = event.IsChecked() tree.update() def OnUpdateMenu(self, event): """Update menu items based on current status.""" id = event.GetId() if id == wxID_UNDO: event.Enable(self.shell.CanUndo()) elif id == wxID_REDO: event.Enable(self.shell.CanRedo()) elif id == wxID_CUT: event.Enable(self.shell.CanCut()) elif id == wxID_COPY: event.Enable(self.shell.CanCopy()) elif id == wxID_PASTE: event.Enable(self.shell.CanPaste()) elif id == wxID_CLEAR: event.Enable(self.shell.CanCut()) elif id == ID_AUTOCOMP_SHOW: event.Check(self.shell.autoComplete) elif id == ID_AUTOCOMP_INCLUDE_MAGIC: event.Check(self.shell.autoCompleteIncludeMagic) elif id == ID_AUTOCOMP_INCLUDE_SINGLE: event.Check(self.shell.autoCompleteIncludeSingle) elif id == ID_AUTOCOMP_INCLUDE_DOUBLE: event.Check(self.shell.autoCompleteIncludeDouble) elif id == ID_CALLTIPS_SHOW: event.Check(self.shell.autoCallTip) elif id == ID_FILLING_AUTO_UPDATE: event.Check(self.crust.filling.fillingTree.autoUpdate) elif id == ID_FILLING_SHOW_METHODS: event.Check(self.crust.filling.fillingTree.showMethods) elif id == ID_FILLING_SHOW_CLASS: event.Check(self.crust.filling.fillingTree.showClass) elif id == ID_FILLING_SHOW_DICT: event.Check(self.crust.filling.fillingTree.showDict) elif id == ID_FILLING_SHOW_DOC: event.Check(self.crust.filling.fillingTree.showDoc) elif id == ID_FILLING_SHOW_MODULE: event.Check(self.crust.filling.fillingTree.showModule)
1.703125
2
redteamvillage2021/pie/exploit.py
nhtri2003gmail/ctf-write-ups
101
12798034
<gh_stars>100-1000 #!/usr/bin/env python3 from pwn import * binary = context.binary = ELF('./pie') if args.REMOTE: p = remote('pwnremote.threatsims.com', 9002) else: p = process(binary.path) p.sendlineafter('?\n','%11$10p%15$10p') p.recvuntil('command: ') canary = int(p.recv(10),16) log.info('canary: ' + hex(canary)) main = int(p.recv(10),16) - 95 log.info('main: ' + hex(main)) binary.address = main - binary.sym.main log.info('binary.address: ' + hex(binary.address)) payload = b'' payload += (0x21 - 0x10) * b'A' payload += p32(canary) payload += (0x21 - len(payload)) * b'B' payload += p32(binary.sym.helperfunc) p.sendlineafter('?',payload) p.interactive()
1.859375
2
src/data/azure_storage_utils.py
lukk60/RETrends
0
12798035
# Utility functions to access azure data storage import json, os from azure.storage.blob import BlockBlobService, PublicAccess def load_text_file(containerName, blobName, accountName, accountKey): ''' load the file specified from azure block blob storage. if the file is not found return an empty dictionary Parameters ---------- containerName: str container in storage account to open blobName: str name of blob in container to open accountName: str name of storage account accountKey access key for storage account Returns ------- dictionary ''' # Create BlockBlockService block_blob_service = BlockBlobService( account_name=accountName, account_key=accountKey ) # try loading data from blob store. if blob is not found return empty dict try: res = block_blob_service.get_blob_to_text(containerName, blobName) blobData = json.loads(res.content) except: blobData = {} return blobData def save_text_file(data, containerName, blobName, accountName, accountKey): ''' save a textfile to azure block blob storage. Parameters ---------- data: str (text)data to upload containerName: str container in storage account blobName: str name of blob in container accountName: str name of storage account accountKey access key for storage account Returns ------- ''' # Create BlockBlockService block_blob_service = BlockBlobService( account_name=accountName, account_key=accountKey ) block_blob_service.create_blob_from_text(containerName, blobName, data)
3.203125
3
run_tests.py
wsmith323/constantmodel
2
12798036
<filename>run_tests.py #!/usr/bin/env python import os import subprocess import sys def install_dependencies(): print("\nInstalling test dependencies...\n") try: subprocess.check_output("pip install -r test_requirements.txt", shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as exc: print("ERROR: Test dependency installation failed.\n{}\n".format(exc.output.decode())) return False else: print("Test dependency installation successful.\n") return True def run_django_tests(): os.environ.setdefault("DJANGO_SETTINGS_MODULE", "django_test_app.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv + ['test']) if __name__ == '__main__': if install_dependencies(): run_django_tests()
2.0625
2
booksite/booksite/book/schema.py
LoyalWilliams/bookspider
39
12798037
<reponame>LoyalWilliams/bookspider<filename>booksite/booksite/book/schema.py # -*- coding: utf-8 -*- from graphene import relay, ObjectType, AbstractType from graphene_django import DjangoObjectType from graphene_django.filter import DjangoFilterConnectionField from .models import Book, BookPage class BookPageNode(DjangoObjectType): class Meta: model = BookPage filter_fields = { 'book_number': ['exact'], 'page_number': ['exact'], } interfaces = (relay.Node, ) class BookNode(DjangoObjectType): class Meta: model = Book filter_fields = { 'title': ['exact', 'icontains', 'istartswith'], 'author': ['exact', 'icontains', 'istartswith'], 'category': ['exact'], } interfaces = (relay.Node, ) class Query(AbstractType): book = relay.Node.Field(BookNode) book_page = relay.Node.Field(BookPageNode) all_books = DjangoFilterConnectionField(BookNode) all_pages = DjangoFilterConnectionField(BookPageNode)
2.15625
2
_unittests/ut_special/test_tsp_bresenham.py
Jerome-maker/ensae_teaching_cs
73
12798038
<reponame>Jerome-maker/ensae_teaching_cs<gh_stars>10-100 """ @brief test log(time=10s) """ import unittest import random from ensae_teaching_cs.special.tsp_bresenham import draw_line, draw_ellipse class TestTspBresenham(unittest.TestCase): def test_bresenham(self): x, y = 500, 500 for n in range(0, 10): x1 = random.randint(0, x - 1) y1 = random.randint(0, y - 1) x2 = random.randint(0, x - 1) y2 = random.randint(0, y - 1) ligne1 = draw_line(x1, y1, x2, y2) ligne2 = draw_line(x2, y2, x1, y1) ligne2.reverse() self.assertEqual(len(ligne1), len(ligne2)) draw_line(x2, y1, x1, y2) draw_line(x1, y2, x2, y1) def test_bresenham_ellipses(self): x, y = 500, 500 for n in range(0, 10): x1 = random.randint(0, x - 1) y1 = random.randint(0, y - 1) xa = random.randint(50, 100) xb = random.randint(50, 100) draw_ellipse(x1, y1, xa, xb) if __name__ == "__main__": unittest.main()
2.875
3
architecture/editor_manager.py
hkdeman/termineditor
0
12798039
from curses.textpad import rectangle import curses ORIGIN_Y, ORIGIN_X = 5,2 class EditorManager: def __init__(self,std_scr): self.std_scr = std_scr self.height, self.width = self.std_scr.getmaxyx() self.origin_y, self.origin_x = 5, 2 self.canvas_height, self.canvas_width = self.height//4-1, self.width//4-4 self.all_editors = {} self.is_global_state = False self.navigator = None curses.init_pair(2, curses.COLOR_GREEN, curses.COLOR_BLACK) def left(self): pass def right(self): pass def up(self): pass def down(self): pass def run(self): pass def clear_content(self): for i in range(self.origin_y+2,self.canvas_height): self.std_scr.addstr(i, self.origin_x," "*(self.canvas_width-2)) def show_title(self): self.std_scr.addstr(self.origin_y, self.origin_x+1, "Open Editors") self.std_scr.addstr(self.origin_y, self.canvas_width-3, "▼") rectangle(self.std_scr, self.origin_y - 1, self.origin_x - 1, self.origin_y + 1, self.width // 4 - 4) def show_content(self): self.clear_content() self.all_editors = {} index, editors = self.navigator.context["Manager"].get_all_editor_names() for i, editor in enumerate(editors): self.all_editors[i] = editor rectangle(self.std_scr, self.origin_y+1,self.origin_x-1,self.canvas_height, self.canvas_width) for i, editor in self.all_editors.items(): if i == index: self.std_scr.addstr(self.origin_y + i + 2, self.origin_x + 1, editor, curses.color_pair(2)) else: self.std_scr.addstr(self.origin_y+i+2, self.origin_x+1, editor) self.std_scr.refresh() def display(self): self.show_title() self.show_content() def update_global_status(self,status): self.is_global_state = status def set_navigator(self, navigator): self.navigator = navigator
2.703125
3
pybpodapi/com/messaging/debug.py
ckarageorgkaneen/pybpod-api
1
12798040
# !/usr/bin/python3 # -*- coding: utf-8 -*- from pybpodapi.com.messaging.base_message import BaseMessage class DebugMessage(BaseMessage): """ Information line for things like experiment name , task name, board id, etc. """ MESSAGE_TYPE_ALIAS = "debug" MESSAGE_COLOR = (200, 200, 200)
1.9375
2
metaphor/tableau/__main__.py
MetaphorData/connectors
5
12798041
from metaphor.common.cli import cli_main from .extractor import TableauExtractor if __name__ == "__main__": cli_main("Tableau metadata extractor", TableauExtractor)
1.140625
1
generate/generate/tests/__init__.py
flamencist/browser-extensions
102
12798042
def dummy_config(): return { 'uuid': 'TEST-UUID', 'main': { 'server': 'https://test.forge.io/api/' } }
1.4375
1
opentutorials_python2/opentutorials_python2/20_Object_and_Module/1_Object_and_Module.py
dongrami0425/Python_OpenCV-Study
0
12798043
<filename>opentutorials_python2/opentutorials_python2/20_Object_and_Module/1_Object_and_Module.py # < 객체와 모듈 > import lib # 모듈을 가져올 때 import 모듈_명 obj = lib.A() # lib라는 모듈의 A클래스에 대한 인스턴스화 print(obj.a())
1.914063
2
mt940_v2.py
bvermeulen/mt940---simple
0
12798044
#!/usr/bin/env python import re import sys import decimal from mt940m_v2 import ParseMT940 D = decimal.Decimal # read and concatenate entire MT940 contents and add '-ABN' to make sure the last record is captured if len(sys.argv)== 2: argf = sys.argv[1] else: print('please provide a valid MT940 file') exit() text = open(argf).read().splitlines() text = ''.join(text) +'-ABN' payee = '' memo = '' total_amount = D('0') bank_account = '' fn = '' # record: pattern to determine a MT940 record group, note more than one transaction # is possible within a record record_pat = re.compile(r'(?P<record>:\d\d.??:.*?(?=-ABN))') # field_pat: pattern to seperate the fields in the MT940 file :num :field field_pat = re.compile(r':(?P<num>\d\d).??:(?P<field>.*?(?=:\d\d.??:))') # val61_pat: pattern to seperate the values in field 61 #:valuta (date) :date (transaction date and used for date) :sign :amount :code :reference val61_pat = re.compile(r'(?P<valuta>\d{6})(?P<date>\d{4})(?P<sign>\D)' r'(?P<amount>\d+[,.]\d*)(?P<code>\w{4})(?P<reference>\w+$)') for match in re.finditer(record_pat, text): # add token ':99:' to the end of the record to make sure the last field is also captured record = match.group('record') +':99:' # parse the string in a field number 'num' and its corresponding 'field' for match in re.finditer(field_pat,record): num = match.group('num') field = match.group('field') # in case field number is equal to '25' check if it is a new bank_account. If new make new qif file using # the name of the bank account found in field '25'. Field 25 is assumed to be before field 61. if num == '25': # close the qif file if this is not the first instance if field != bank_account and bank_account != '': qif_file.close() end_balance = start_balance + total_amount print ('{}: start balance: {:.2f} / transfers: {:.2f} / end balance: {:.2f}' \ .format(fn, start_balance, total_amount, end_balance)) total_amount = D('0') fn = '' # open a new qif file if a new bank account is encountered if field != bank_account: bank_account = field new_bank_flag = True fn = argf.rsplit('.',1)[0] # make the file name the same as the 1st argument + some changes fn = fn + '_' + bank_account +'.qif' qif_file = open(fn,'w') qif_file.write('!Type:Bank\n') #find the start_balance for a new bank account in field 60 if num == '60' and new_bank_flag: m=re.search(r'(\D)\d{6}.*?(?=[\d])(.*$)',field) start_balance=D(ParseMT940.conv_amount_str(m.group(1),m.group(2))) new_bank_flag = False # in case field number is '61' handle the transaction using the information in field 61 and subsequent 86 if num == '61': f61 = re.match(val61_pat, field) f61_dict = f61.groupdict() # in case field number is '86' handle to payee and memo and write the transaction to QIF if num == '86': date = ParseMT940.transaction_date_conversion(f61_dict['valuta'], f61_dict['date']) amount = ParseMT940.conv_amount_str(f61_dict['sign'], f61_dict['amount']) payee, memo = ParseMT940.code86(field, bank_account, date, amount) total_amount += D(amount) ParseMT940.write_qif_record (qif_file, date, amount, payee, memo) # on finishing the program close the last qif_file if fn !='': qif_file.close() end_balance = start_balance + total_amount print ('{}: start balance: {:.2f} / transfers: {:.2f} / end balance: {:.2f}'.format(fn, start_balance, total_amount, end_balance)) else: print('this is not a valid MT940 file')
2.96875
3
PokeBot/Load.py
danrneal/PokeBot
0
12798045
<filename>PokeBot/Load.py import logging import json import sys from collections import OrderedDict from .Utilities.GenUtils import get_path log = logging.getLogger('LoadConfig') def parse_rules_file(manager, filename): if str(filename).lower() == 'none': return filepath = get_path(filename) rules = OrderedDict() try: log.info("Loading Rules from file at {}".format(filepath)) with open(filepath, 'r') as f: rules = json.load(f, object_pairs_hook=OrderedDict) if type(rules) is not OrderedDict: log.critical( "Rules files must be a JSON object: { \"monsters\":[...],... }" ) raise ValueError("Rules file did not contain a dict.") except ValueError as e: log.error("Encountered error while loading Rules: {}: {}".format( type(e).__name__, e)) log.error( "PokeAlarm has encountered a 'ValueError' while loading the " + "Rules file. This typically means the file isn't in the " + "correct json format. Try loading the file contents into a " + "json validator." ) sys.exit(1) try: load_rules_section(manager.add_monster_rule, rules.pop('monsters', {})) load_rules_section(manager.add_egg_rule, rules.pop('eggs', {})) load_rules_section(manager.add_raid_rule, rules.pop('raids', {})) for key in rules: raise ValueError(( "Unknown Event type '{}'. Rules must be defined under the " + "correct event type. See example in rules.json.example." ).format(key)) except Exception as e: log.error( "Encountered error while parsing Rules. This is because of a " + "mistake in your Rules file." ) log.error("{}: {}".format(type(e).__name__, e)) sys.exit(1) def load_rules_section(set_rule, rules): for name, settings in rules.items(): if 'filters' not in settings: raise ValueError("{} rule is missing a `filters` section.".format( name)) if 'alarms' not in settings: raise ValueError("{} rule is missing an `alarms` section.".format( name)) filters = settings.pop('filters') alarms = settings.pop('alarms') set_rule(name, filters, alarms) if len(settings) > 0: raise ValueError("Rule {} has unknown parameters: {}".format( name, settings))
2.6875
3
Labyrint/Agent.py
flikkes/intelligente_agenten
0
12798046
import sys import os import Labyrinth import time import threading class Agent: num = 0 x = 0 y = 0 labyrinth = None callback = None def __init__(self, x, y, labyrinth, callback): self.num = time.time()*1000 self.x = x self.y = y self.labyrinth = labyrinth self.callback = callback print(str(self.num)+': Created new agent. Exploring...') t = threading.Thread(target=self.explore) t.start() def explore(self): self.callback() if self.labyrinth.finished or self.labyrinth.isVisited(self.x, self.y): sys.exit() walkableSpots = [] if (self.labyrinth.isFinish(self.x, self.y)): print(str(self.num)+': Agent found the exit at x: '+str(self.x)+', y: '+str(self.y)) self.labyrinth.finished = True sys.exit() self.labyrinth.visit(self.x, self.y) print('{}: Visiting {} {}'.format(str(self.num), self.x, self.y)) if (self.labyrinth.isWalkable(self.x-1, self.y)): walkableSpots.append({'x': self.x-1, 'y': self.y}) if (self.labyrinth.isWalkable(self.x, self.y-1)): walkableSpots.append({'x': self.x, 'y': self.y-1}) if (self.labyrinth.isWalkable(self.x+1, self.y)): walkableSpots.append({'x': self.x+1, 'y': self.y}) if (self.labyrinth.isWalkable(self.x, self.y+1)): walkableSpots.append({'x': self.x, 'y': self.y+1}) if (len(walkableSpots)==1): self.x = walkableSpots[0]['x'] self.y = walkableSpots[0]['y'] t = threading.Thread(target=self.explore) t.start() if (len(walkableSpots)>1): for num, spot in enumerate(walkableSpots, start = 1): agent = Agent(spot['x'], spot['y'], self.labyrinth, self.callback) self.x = walkableSpots[0]['x'] self.y = walkableSpots[0]['y'] t = threading.Thread(target=self.explore) t.start() if (len(walkableSpots) == 0): print(str(self.num)+': Dead end reached, dying...') sys.exit()
3.421875
3
adaptive_subgraph_collection/find_chains_in_full_KB.py
rajarshd/CBR-SUBG
7
12798047
<filename>adaptive_subgraph_collection/find_chains_in_full_KB.py<gh_stars>1-10 import os from collections import defaultdict from tqdm import tqdm import pickle from numpy.random import default_rng import numpy as np import argparse import wandb rng = default_rng() from adaptive_subgraph_collection.adaptive_utils import get_query_entities_and_answers, \ get_query_entities_and_answers_cwq, execute_kb_query_for_hops, get_query_entities_and_answers_freebaseqa, \ get_query_entities_and_answers_metaqa, read_metaqa_kb, find_paths if __name__ == '__main__': parser = argparse.ArgumentParser(description="Collect subgraphs around entities using CBR") parser.add_argument("--train_file", type=str, default='/mnt/nfs/scratch1/rajarshi/cbr-weak-supervision/data_with_mentions/webqsp_data_with_mentions/train.json') parser.add_argument("--dataset_name", type=str, default='webqsp') parser.add_argument("--output_dir", type=str, default='/mnt/nfs/scratch1/rajarshi/cbr-weak-supervision/subgraphs/webqsp_gold_entities') parser.add_argument("--use_gold_entities", action='store_true') parser.add_argument("--metaqa_kb_file", type=str, default="/mnt/nfs/scratch1/rajarshi/cbr-weak-supervision/MetaQA-synthetic/3-hop/kb.txt") parser.add_argument("--job_id", type=int, default=0) parser.add_argument("--total_jobs", type=int, default=1) parser.add_argument("--use_wandb", type=int, default=1) args = parser.parse_args() args.use_wandb = (args.use_wandb == 1) if args.use_wandb: wandb.init("adaptive-subgraph-collection") if args.dataset_name.lower() == 'webqsp': qid2qents, qid2answers, qid2gold_chains, qid2q_str = get_query_entities_and_answers(args.train_file, return_gold_entities=args.use_gold_entities) elif args.dataset_name.lower() == 'cwq': qid2qents, qid2answers, qid2gold_spqls, qid2q_str = get_query_entities_and_answers_cwq(args.train_file, return_gold_entities=args.use_gold_entities) elif args.dataset_name.lower() == 'freebaseqa': qid2qents, qid2answers, qid2gold_spqls, qid2q_str = get_query_entities_and_answers_freebaseqa(args.train_file) elif args.dataset_name.lower() == 'metaqa': qid2qents, qid2answers, qid2gold_spqls, qid2q_str = get_query_entities_and_answers_metaqa(args.train_file, return_gold_entities=args.use_gold_entities) if args.dataset_name.lower() == 'metaqa': # metaqa has its own KB and not full Freebase, hence do not need SPARQL # read metaqa KB # find 1, 2, 3 hop paths between question entities and answers all_subgraphs = defaultdict(list) e1_map = read_metaqa_kb(args.metaqa_kb_file) qid2qents = [(qid, q_ents) for (qid, q_ents) in sorted(qid2qents.items(), key=lambda item: item[0])] job_size = len(qid2qents) / args.total_jobs st = args.job_id * job_size en = (1 + args.job_id) * job_size print("St: {}, En: {}".format(st, en)) empty_ctr = 0 all_len = [] for ctr, (qid, q_ents) in tqdm(enumerate(qid2qents)): if st <= ctr < en: ans_ents = qid2answers[qid] len_q = 0 for q_ent in q_ents: for ans_ent in ans_ents: paths = find_paths(e1_map, q_ent, ans_ent) all_subgraphs[qid].append({'st': q_ent, 'en': ans_ent, 'chains': paths}) len_q += len(paths) if len_q == 0: empty_ctr += 1 all_len.append(len_q) print("Empty_ctr: {} out of {} queries".format(empty_ctr, (en - st))) out_file = os.path.join(args.output_dir, "{}_train_chains_{}.pkl".format(args.dataset_name.lower(), str(args.job_id))) print("Writing file at {}".format(out_file)) with open(out_file, "wb") as fout: pickle.dump(all_subgraphs, fout) else: all_subgraphs = defaultdict(list) all_len = [] for ctr, (qid, q_ents) in tqdm(enumerate(qid2qents.items())): ans_ents = qid2answers[qid] for q_ent in q_ents: for ans_ent in ans_ents: spql_2_hop = "select distinct ?r1 ?r2 where { " + "ns:" + q_ent + " ?r1 ?e1 . ?e1 ?r2 ns:" + ans_ent + ". }" ret = execute_kb_query_for_hops(spql_2_hop, hop=2) is_exception = ret[1] if not is_exception: all_subgraphs[qid].append({'st': q_ent, 'en': ans_ent, 'chains': ret[0]}) all_len.append(len(ret[0])) else: print(spql_2_hop) spql_1_hop = "select distinct ?r1 where { " + "ns:" + q_ent + " ?r1 ns:" + ans_ent + ". }" ret = execute_kb_query_for_hops(spql_1_hop, hop=1) if not is_exception: all_subgraphs[qid].append({'st': q_ent, 'en': ans_ent, 'chains': ret[0]}) all_len.append(len(ret[0])) else: print(spql_1_hop) # there are some qids for which the (above) query didnt execute because # the entities are string literals and the queries above dont work # To handle them, issue a special query that look for those strings in the # immediate neighborhood. Unfortunately we can only look in the one-hop neighborhood. # Doing more that takes way too much per query. Worth asking some SPARQL expert, how # to handle such cases. print("Number of queries: {}".format(len(all_subgraphs))) empty_qids = set() for qid, _ in qid2qents.items(): if qid not in all_subgraphs: empty_qids.add(qid) for empty_qid in tqdm(empty_qids): q_ents = qid2qents[empty_qid] answers = qid2answers[empty_qid] for q_ent in q_ents: for ans_ent in answers: spql_1_hop_literal = "select distinct ?r1 where { " + "ns:" + q_ent + " ?r1 ?e1. FILTER(STR(?e1) = '" + ans_ent + "') }" ret = execute_kb_query_for_hops(spql_1_hop_literal, hop=1) is_exception = ret[1] if not is_exception: all_subgraphs[empty_qid].append({'st': q_ent, 'en': ans_ent, 'chains': ret[0]}) all_len.append(len(ret[0])) else: print(spql_1_hop_literal) print("Number of queries after executing query for literals: {}".format(len(all_subgraphs))) out_file = os.path.join(args.output_dir, "{}_2_hop_train_chains.pkl".format(args.dataset_name.lower())) with open(out_file, "wb") as fout: pickle.dump(all_subgraphs, fout) print("Min: {}, Mean: {}, Median: {}, Max:{}".format(np.min(all_len), np.mean(all_len), np.median(all_len), np.max(all_len)))
2.21875
2
instance_data/problem_printer.py
LuddeWessen/assembly-robot-manager-minizinc
3
12798048
# MIT License # # Copyright (c) 2021 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: from problem_instance import Problem class ProblemPrinter: def __init__(self, fixture_order_raw, duration_rnd_seed, **kwargs): self.p = Problem(fixture_order_raw = fixture_order_raw, **kwargs) self.fixture_order_raw = fixture_order_raw self.no_grip = None self.no_suction = None self.duration_rnd_seed = duration_rnd_seed def GetFixtureOrderString(self): s = "" current = "" for i in range(len(self.fixture_order_raw)): if self.fixture_order_raw[i] == 0: current = "G" elif self.fixture_order_raw[i] == 1: current = "S" elif self.fixture_order_raw[i] == -1: current = "_" else: current = "ERROR" s = s + current return s def GetNoComp(self): return self.p.no_grip + self.p.no_suction def FilePrint(self, file_name_prefix): """ Printing File Header """ setup_file_name = file_name_prefix + str(self.GetNoComp()) + "_" + self.GetFixtureOrderString() + ".dzn" file1 = open(setup_file_name,"w") file1.write("%-----------------------------------------------------------------------------%\n") file1.write("% Dual Arm Multi Capacity Multi Tool Scheduling / Routing\n") file1.write("% Assembly Configuration\n") file1.write("% Auto Generated by python script, authored by <NAME> \n") file1.write("%-----------------------------------------------------------------------------%\n\n\n") """ Printing durations """ self.p.RandomizeTaskDurations(self.duration_rnd_seed) file1.write("task_durations = ") file1.write(self.p.GetDurationsOfTasksString(str_offset=len("task_durations = ")+1)) file1.write('\n\n\n') """ Printing task sets """ file1.write("TRAY_TASKS = " + self.p.TrayTasksToString() + ";\n") file1.write("CAMERA_TASKS = " + self.p.CameraTasksToString() + ";\n") file1.write("OUTPUT_TASKS = " + self.p.OutputTasksToString() + ";\n") file1.write('\n\n') file1.write("empty_gripper_tasks = " + self.p.PressTasksToString() + ";\n") file1.write('\n\n') """ Printing Tool Pick and Place- orders """ # TODO: last row does not seem to have press - which it does no, since it is output # However, we assume it does! # Fix! file1.write("gripper_pick_tasks_orders = " + self.p.GetPickTaskOrderString(0) + ";\n\n") file1.write("suction_pick_tasks_orders = " + self.p.GetPickTaskOrderString(1) + ";\n\n") file1.write("fixture_task_orders = " + self.p.GetFixtureTaskOrderString() + ";\n\n") file1.close() return setup_file_name
2.296875
2
src/settings.py
weskleydamasceno/Sorveteria_backend
0
12798049
# # Configurações da aplicação # import os from os.path import abspath DEBUG = True SECRET_KEY = 'a secret key' # diretório base basedir = os.path.abspath(os.path.dirname(__name__)) # diretório base da aplicação BASE_DIR = basedir # connection string: mysql://usuario:senha@host/nomedobanco SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://root:root@localhost/dbdevweb' # SQLAlchemy monitorará modificações de objetos SQLALCHEMY_TRACK_MODIFICATIONS = True
2.03125
2
ds/beis_indicators/utils/geo_utils.py
nestauk/beis-indicators
4
12798050
<filename>ds/beis_indicators/utils/geo_utils.py import geopandas as gpd import os from urllib.request import urlretrieve from zipfile import ZipFile from beis_indicators.utils.nuts_utils import NUTS_INTRODUCED, NUTS_ENFORCED def get_shape(file_name, path): ''' Utility function to extract and the shapefile Arguments: url: url for the shapefile zip file_name: name of the file where we want to extract the data ''' #Do we need to get the data or is it already there? shape_names = os.listdir(f'{project_dir}/data/raw/shapefiles') if file_name not in shape_names: #Get the data print(f'getting {file_name}...') #Get url url = shape_lookup[file_name] #Request data req = requests.get(url) #Parse the content z = ZipFile(BytesIO(req.content)) #Save print(f'saving {file_name}...') z.extractall(f'{path}{file_name}') else: print(f'{file_name} already collected')
3.34375
3