max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
scivision_treecrown_plugin/__init__.py
ots22/scivision-treecrown-plugin
0
12789351
<gh_stars>0 from .model import DeepForest, DetectreeRGB
1.023438
1
Python/write_Points.py
joaonizer/sLLGS
0
12789352
<filename>Python/write_Points.py #!/usr/bin/env python3 import numpy as np def write_Points(w , l , dx , d_or , cortes_y , i): # Cria os vetores 'px', 'py' e 'd_or' a partir das entradas: # w - largura da partícula_i # l - comprimento da partícula_i # d - distância entre a partícula i e i-1 # d_or - vetor com centros de partículas # i - índice da partícula atual. ## px = np.zeros(4) py = np.zeros(4) # Descreve os pontos em X x1 = -w[i]/2 x2 = w[i]/2 x3 = x2 x4 = x1 # Descreve os pontos em Y, sem cortes. y1 = l[i]/2 y2 = l[i]/2 y3 = -l[i]/2 y4 = -l[i]/2 # Concatena os valores em 'px' e 'py' px = [x1 , x2 , x3 , x4] py = [y1 , y2 , y3 , y4] - cortes_y if i==1: d_or[i,:]=[0 , 0 , 0] # primeira partícula na origem else: d_or[i,:]=[w[i-1]/2 + w[i]/2 + d_or [i-1,0] + dx[i] , 0 , 0] # # soma w/2 da particula anterior # com w/2 da particula atual # a distancia em x da origem acumulada # mais a distancia entre as duas partículas 'd' # OBS: Atualmente somente em X return px , py , d_or
3.078125
3
whack_a_bug_api/__init__.py
timothyakinyelu/whack-a-bug-api
0
12789353
<gh_stars>0 from flask import Flask from whack_a_bug_api.helpers.load_config import loadConfig from flask_login import LoginManager login_manager = LoginManager() def createApp(): app = Flask(__name__, instance_relative_config=True) mode = app.env Config = loadConfig(mode) app.config.from_object(Config) from whack_a_bug_api.db import db db.init_app(app) login_manager.init_app(app) from whack_a_bug_api.models import bugs, projects with app.app_context(): #add route blueprints from whack_a_bug_api.routes.auth_routes import auth_routes app.register_blueprint(auth_routes.auth) db.create_all() return app
1.945313
2
setup.py
anonmyous-author/anonymous-code
0
12789354
from setuptools import find_packages, setup with open("README.md") as readme_file: readme = readme_file.read() with open("requirements.txt") as reqs_file: requirements = reqs_file.read().split("\n") setup( name="braincode", version="0.1.0", description="an investigation of computer program representations.", long_description=readme, author="anonymous1 anonymous1", author_email="<EMAIL>", license="MIT", packages=find_packages(where="braincode"), install_requires=requirements, python_requires=">=3.7", )
1.578125
2
doc/LectureNotes/_build/jupyter_execute/chapter7.py
Shield94/Physics321
0
12789355
#!/usr/bin/env python # coding: utf-8 # # Non-inertial Frames, Translation and Rotating Coordinate Systems # # # Let us quickly remind ourselves about the definition of a so-called **inertial frame of reference**. # # An inertial frame of reference in classical physics (and in special # relativity as well) possesses the property that in this frame of reference a # body with zero net force acting upon it does not accelerate; that is, # such a body is at rest or moving at a constant velocity. If we recall the definition of Newton's first law, this is essentially its description. # # An inertial frame of reference can be defined in analytical terms as a # frame of reference that describes time and space homogeneously, # isotropically, and in a time-independent manner. # # Conceptually, the physics of a system in an inertial frame has no # causes external to the system. An inertial frame of reference may also # be called an inertial reference frame, inertial frame, Galilean # reference frame, or inertial space. # # All inertial frames are in a state of constant, rectilinear motion # with respect to one another; an accelerometer moving with any of them # would detect zero acceleration. Measurements in one inertial frame can # be converted to measurements in another by a simple transformation # (the Galilean transformation in Newtonian physics and the Lorentz # transformation in special relativity). In general relativity, in any # region small enough for the curvature of spacetime and tidal forces to # be negligible, one can find a set of inertial frames that # approximately describe that region. # # In a non-inertial reference frame in classical physics and special # relativity, the physics of a system vary depending on the acceleration # of that frame with respect to an inertial frame, and the usual # physical forces must be supplemented by fictitious forces. In # contrast, systems in general relativity don't have external causes, # because of the principle of geodesic motion. # # In classical physics, for example, a ball dropped towards the ground # does not go exactly straight down because the Earth is rotating, which # means the frame of reference of an observer on Earth is not # inertial. The physics must account for the Coriolis effect—in this # case thought of as a force—to predict the horizontal motion. Another # example of such a fictitious force associated with rotating reference # frames is the centrifugal effect, or centrifugal force. We will here, # in addition to the abovementioned example of the Coriolis effect study # a classic case in classical mechanics, namely Focoault's pendulum. # # # ## Galilean Transformations # # In many of the examples studied till now we have restricted our # attention to the motion of a particle (or a system of particles) as # seen from an inertial frame of reference. An inertial reference frame # moves at constant velocity with respect to other reference frames. We # can formalize this relationship as a coordinate transformation (known # as a Galilean transformation) between say two given frames, one # labeled $S_0$ and the other one labeled $S$. In our discussions here we will refer to the frame $S_0$ as the reference frame. # # We could consider for example an object in a car, where the car moves with a # constant velocity with respect to the system $S_0$. We then throw this # object up in the air and study it's motion with respect to the two chosen frames. # We denote the position of this object in the # car relative to the car's frame as $\boldsymbol{r}_S(t)$. We have included an explicit # time dependence here. The position of the car relative to the # reference frame $S_0$ is $\boldsymbol{R}(t)$ and the position of the object in # the car relative to $S_0$ is $\boldsymbol{r}_{S_0}(t)$. # # The following relations between the positions # link the various variables that describe the object in the two frames # $$ # \boldsymbol{r}_{S_0}(t) = \boldsymbol{r}_{S}(t) + \boldsymbol{R}(t). # $$ # We will stay with Newtonian mechanics, meaning that we do not consider # relatistic effects. This means also that the time we measure in $S_0$ # is the same as the time we measure in $S$. This approximation is # reasonable as long as the two frames do not move very fast relative to # each other. # # We can then compute the time derivatives and obtain the corresponding velocities # $$ # \dot{\boldsymbol{r}}_{S_0}(t) = \boldsymbol{v}_{S_0}=\dot{\boldsymbol{r}}_{S} + \dot{\boldsymbol{R}}, # $$ # or # $$ # \boldsymbol{v}_{S_0}=\boldsymbol{v}_{S} + \boldsymbol{u}, # $$ # with $\boldsymbol{u}=\dot{\boldsymbol{R}}$. # # If our system $S$ moves at constant velocity, we have that the # accelerations in the two systems equal each other since # $\ddot{\boldsymbol{R}}=0$ and we have # $$ # \boldsymbol{a}_{S_0}=\boldsymbol{a}_{S}. # $$ # The above equations are examples of what we call a homogeneous # Galilean transformation. In an inertial frame, an object moves with # constant velocity (i.e., has zero acceleration) if there are no forces # acting on it. When we are not in an inertial frame, there will be # spurious (or fictitious) accelerations arising from the acceleration # of the reference frame. These effects can be seen in simple every-day # situations such as sitting in a vehicle that is accelerating or # rounding a corner. Or think of yourself sitting in a seat of an # aircraft that accelerates rapidly during takeoff. You feel a force # which pushes you back in the seat. Similarly, if you stand in a bus # which suddenly brakes (negative acceleration), you feel a force which # may make you fall forward unless you hold yourself. In these # situations, loose objects will appear to accelerate relative to the # observer or vehicle. # # # Our next step is thus to study an accelerating frame. Thereafter we # will study reference frames that are rotating. This will introduce # forces like the Coriolis force and the well-known centrifugal # force. We will use these to study again an object which falls towards # the Earth (the Earth rotates around its axis). This will lead to a # correction to the object's acceleration twoards the Earth. # # Finally, we bring together acceleration and rotation and end the # discussion here with a classic in classical mechanics, namely # Focault's pendulum. # # # ## Accelerating Frames (No Rotation) # # We consider first the effect of uniformly accelerating reference # frames. We will hereafter label this frame with a subscript # $S$. Assume now that this reference systems accelerates with an # acceleration $\boldsymbol{a}_{S_0}$ relative to an inertial reference frame, # which we will label with a subscript $S_0$. The accelerating frame # has a velocity $\boldsymbol{v}_{S_0}$ with respect to the inertial frame. # # The figure here # <!-- dom:FIGURE: [figslides/rotation.png, width=600 frac=0.6] --> # <!-- begin figure --> # <img src="figslides/rotation.png" width=600><p style="font-size: 0.9em"><i>Figure 1: </i></p><!-- end figure --> # # # shows the relation between the two # frames. The position of an object in frame $S$ relative to $S_0$ is # labeled as $\boldsymbol{r}_{S_0}$. Seen from this inertial frame, an object in # the accelerating frame obeys Newton's second law # <!-- Equation labels as ordinary links --> # <div id="_auto1"></div> # # $$ # \begin{equation} # m\frac{d^2\boldsymbol{r}_{S_0}}{dt^2}=\boldsymbol{F}. # \label{_auto1} \tag{1} # \end{equation} # $$ # Here $\boldsymbol{F}$ is the net force on an object in the accelerating frame # seen from the inertial frame. # # If we on the other hand wish to study the motion of this object (say a # ball in an accelerating car) relative to the accelerating frame, we # need to define its position relative to this frame. We label this # position as $\boldsymbol{r}_{S}$. # # Using the definition of velocity as the time derivative of position # and the standard vector addition of velocities, we can define the # velocity relative to $S_0$ as # $$ # \dot{\boldsymbol{r}}_{S_0}=\dot{\boldsymbol{r}}_{S}+\boldsymbol{v}_{S_0}. # $$ # The left hand side in the last equation defines the object's velocity # relative to the inertial frame. The right hand side says this is the # object's velocity relative to the accelerating frame plus the velocity # of the accelerating frame with respect to the inertial frame. If we # now take the second derivative of the above equation, # we have the corresponding accelerations # $$ # \ddot{\boldsymbol{r}}_{S_0}=\ddot{\boldsymbol{r}}_{S}+\boldsymbol{a}_{S_0}. # $$ # Multiplying with the mass of a given object, we can rewrite Newton's # law in the accelerating frame as # $$ # m\ddot{\boldsymbol{r}}_{S}=\boldsymbol{F}-\boldsymbol{a}_{S_0}. # $$ # We see that we have again Newton's second law except that we added a # correction which defines an effective acceleration compared to the # equation seen in the inertial frame. We can thus continue to use # Newton's law in the accelerating frame provided we correct the # equation of motion with what is often called a fictitious force. This # often also called an inertial force or an effective force. # # **Add example about pendulum in train car** # # ## Rotating Frames # # # If you are on Earth's surface and if your reference frame is fixed # with the surface, this is an example of an accelerating frame, where # the acceleration, as we will show below, is $\Omega^2 r$, where # $r\equiv\sqrt{x^2+y^2}$, and $\Omega$ is the angular velocity # of Earth's rotation. The acceleration is inward toward the axis of # rotation, so the additional contribution to the apparent acceleration # of gravity is outward in the $x-y$ plane. In contrast the usual # acceleration $\boldsymbol{g}$ is radially inward pointing toward the origin. # # We will now deal with motion in a rotating frame and relate this to an # inertial frame. The outcome of our derivations will be effective # forces (or inertial forces) like the abovementioned acceleration (from # the centrifugal force) and the Coriolis force term. # # For a reference frame that rotates with respect to an inertial frame, # **Euler's theorem** is central here. It states that the most general # displacement (motion) of a rigid body with a one point fixed (we # normally approximate a rigid body with a mass center) is a rotation # about some fixed axis. In different words, the most general motion of # any body relative to a fixed point $O$ is a rotation abotu some axis # through the same point $O$. This means that for a specific rotation # about a given point $O$ we only to specify the direction of the axis # about which the rotation occurs with the corresponding angle of # rotation. As we will see below, the direction of the angle of rotation # can be specified by a unit vector $\boldsymbol{e}$ in the rotating frame and # the rate of rotation per unit time. The latter defines the angular # velocity $\Omega$. We will define these quantities more rigorously below. # At the end of this section we will also prove Euler's theorem. # # What we will show here is that Newton's laws for an object in the rotating frame is given by # $$ # m\ddot{\boldsymbol{r}}_{S}=\boldsymbol{F}+m\boldsymbol{r}\times\dot{\boldsymbol{\Omega}}+2m\boldsymbol{v}_S\times\boldsymbol{\Omega}+m\left(\boldsymbol{\Omega}\times\boldsymbol{r}\right)\times\boldsymbol{\Omega}. # $$ # The first term to the right is the force we defined in the inertial # system, that is $m\ddot{\boldsymbol{r}}_{S_0}=\boldsymbol{F}$. The second term is the # angular acceleration of the rotating reference frame, a quantity which # in many cases is set to zero since we assume that the angular velocity # is constant as function of time. The third terms is the Coriolis force, that # is # $$ # \boldsymbol{F}_{\mathrm{Coriolis}}=2m\boldsymbol{v}_S\times\boldsymbol{\Omega}, # $$ # while the last term is going to give us the standard centrifugal force # $$ # \boldsymbol{F}_{\mathrm{Centrifugal}}=m\left(\boldsymbol{\Omega}\times\boldsymbol{r}\right)\times\boldsymbol{\Omega}. # $$ # Let us derive these terms, following much of the same procedure as we # did for an accelerating reference frame. The figure here (to come) # shows the two reference systems $S$ and $S_0$. # # # We define a general vector $\boldsymbol{A}$. It could represent the position, # a given force, the velocity and other quantities of interest for # studies of the equations of motion. # # We let this vector to be defined by three orthogonal (we assume motion # in three dimensions) unit vectors $\boldsymbol{e}_i$, that is we have # $$ # \boldsymbol{A}=A_1\boldsymbol{e}_1+A_2\boldsymbol{e}_2+A_3\boldsymbol{e}_3=\sum_iA_i\boldsymbol{e}_i. # $$ # These unit vectors are fixed in the rotating frame, that is their time # derivatives are zero. However, for an observer in the inertial frame # $S_0$, however these unit vectors are rotating and may thus have an # explicit time dependence. # # Since we want to find an expression for the equations of motion in the # inertial frame and the rotating frame, we need expressions for the # time derivative of a vector $\boldsymbol{A}$ in these two frames. Since the # unit vectors are assumed to be fixed in $S$, we have # $$ # \dot{\boldsymbol{A}}_S=\sum_i\frac{dA_i}{dt}\boldsymbol{e}_i=\sum_i\dot{dA_i}\boldsymbol{e}_i. # $$ # In the inertial frame $S_0$ we have # $$ # \dot{\boldsymbol{A}}_{S_0}=\sum_i\dot{dA_i}\boldsymbol{e}_i+\sum_i A_i\left(\dot{\boldsymbol{e}}_i\right)_{S_0}. # $$ # We will show below that # $$ # \left(\dot{\boldsymbol{e}}_i\right)_{S_0}=\Omega\times\boldsymbol{e}_i, # $$ # where $\Omega$ is the angular velocity (to be derived below). This # means we can write the derivative of an arbitrary vector $\boldsymbol{A}$ in # the inertial frame $S_0$ as (the vector is defined in the rotating # frame), # $$ # \dot{\boldsymbol{A}}_{S_0}=\sum_i\dot{dA_i}\boldsymbol{e}_i+\sum_i A_i\left(\dot{\boldsymbol{e}}_i\right)_{S_0}=\dot{\boldsymbol{A}}_S+\sum_i A_i(\Omega\times\boldsymbol{e}_i)=\dot{\boldsymbol{A}}_S+\boldsymbol{\Omega}\times\boldsymbol{A}. # $$ # This is a very useful relation which relates the derivative of any # vector $\boldsymbol{A}$ measured in the inertial frame $S_0$ to the # correspoding derivative in a rotating frame $S$. # # If we now let $\boldsymbol{A}$ be the position and the velocity vectors, we # can derive the equations of motion in the rotating frame in terms of # the same equations of motion in the inertial frame $S_0$. # # Let us start with the position $\boldsymbol{r}$. # # We have # $$ # \dot{\boldsymbol{r}}_{S_0}=\dot{\boldsymbol{r}}_S+\boldsymbol{\Omega}\times\boldsymbol{r}. # $$ # If we define the velocities in the two frames as # $$ # \boldsymbol{v}_{S_0}=\dot{\boldsymbol{r}}_{S_0}, # $$ # and # $$ # \boldsymbol{v}_{S}=\dot{\boldsymbol{r}}_{S}, # $$ # we have then # $$ # \dot{\boldsymbol{r}}_{S_0}=\boldsymbol{v}_{S_0}=\boldsymbol{v}_{S}+\boldsymbol{\Omega}\times\boldsymbol{r}. # $$ # In order to find the equations of motion, we need the acceleration and # thereby the time derivative of the last equation. The derivative of # the angular velocity $\Omega$ will turn in handy in these derivations # (repeated applications of the chain rule again). # The latter derivative is # $$ # \dot{\boldsymbol{\Omega}}_{S_0}=\dot{\boldsymbol{\Omega}}_S+\boldsymbol{\Omega}\times\boldsymbol{\Omega}, # $$ # which leads to (an expected result, why?) # $$ # \dot{\boldsymbol{\Omega}}_{S_0}=\dot{\boldsymbol{\Omega}}_S, # $$ # since $\boldsymbol{\Omega}\times\boldsymbol{\Omega}=0$. # # Let us now take the second derivative with respect to time. # # Using # $$ # \left[\frac{d^2\boldsymbol{r}}{dt^2}\right]_{S_0}=\ddot{\boldsymbol{r}}_{S_0}=\left[\frac{d}{dt}\right]_{S_0}\left[\frac{d\boldsymbol{r}}{dt}\right]_{S_0}, # $$ # we have # $$ # \ddot{\boldsymbol{r}}_{S_0}=\left[\frac{d}{dt}\right]_{S_0}\left[\boldsymbol{v}_{S}+\boldsymbol{\Omega}\times\boldsymbol{r}\right]=\left[\frac{d}{dt}\right]_{S_0}\boldsymbol{v}_{S_0}, # $$ # which gives # $$ # \ddot{\boldsymbol{r}}_{S_0}=\left[\frac{d\boldsymbol{v}_S}{dt}\right]_{S}+\dot{\boldsymbol{\Omega}}\times \boldsymbol{r}+2\boldsymbol{\Omega}\times\boldsymbol{v}_S+\boldsymbol{\Omega}\times(\boldsymbol{\Omega}\times\boldsymbol{r}). # $$ # Defining the accelerations $\boldsymbol{a}_{S_0}=\ddot{\boldsymbol{r}}_{S_0}=\dot{\boldsymbol{v}}_{S_0}$ and $\boldsymbol{a}_{S}=\dot{\boldsymbol{v}}_{S}$, we have # $$ # \boldsymbol{a}_{S_0}=\boldsymbol{a}_{S}+\dot{\boldsymbol{\Omega}}\times \boldsymbol{r}+2\boldsymbol{\Omega}\times\boldsymbol{v}_S+\boldsymbol{\Omega}\times(\boldsymbol{\Omega}\times\boldsymbol{r}). # $$ # If we now use Newton's law in the inertial frame $\boldsymbol{F}=m\boldsymbol{a}_{S_0}$, we get the effective force in the rotating frame (multiplying by the mass $m$) # $$ # m\boldsymbol{a}_{S}=\boldsymbol{F}+m\dot{\boldsymbol{r}\times\boldsymbol{\Omega}}+2m\boldsymbol{v}_S\times\boldsymbol{\Omega}+m(\boldsymbol{\Omega}\times\boldsymbol{r})\times\boldsymbol{\Omega}, # $$ # which is what we wanted to demostrate. We have the Coriolis force # $$ # \boldsymbol{F}_{\mathrm{Coriolis}}=2m\boldsymbol{v}_S\times\boldsymbol{\Omega}, # $$ # while the last term is the standard centrifugal force # $$ # \boldsymbol{F}_{\mathrm{Centrifugal}}=m\left(\boldsymbol{\Omega}\times\boldsymbol{r}\right)\times\boldsymbol{\Omega}. # $$ # In our discussions below we will assume that the angular acceleration of the rotating frame is zero and focus only on the Coriolis force and the centrifugal force. # # # # ### Effective potential and Centrifugal force # # Suppose we can ignore the Coriolis force. If we focus only on the # centrifugal force we have an additional force # $$ # \boldsymbol{F}_{\mathrm{Centrifugal}}=m\left(\boldsymbol{\Omega}\times\boldsymbol{r}\right)\times\boldsymbol{\Omega}, # $$ # where the term $\boldsymbol{\Omega}\times\boldsymbol{r}$ is the radial velocity. # # Consider now an object with position $\boldsymbol{r}$ according to an observer in a frame # rotating about the $z$ axis with angular velocity # $\boldsymbol{\Omega}=\Omega\hat{z}$. To an observer in the inertial frame # the vector will change even if the vector appears # fixed to the rotating observer. # # # If $\boldsymbol{\Omega}$ is in the $z$ direction, # the centrifugal force becomes # <!-- Equation labels as ordinary links --> # <div id="_auto2"></div> # # $$ # \begin{equation} # \boldsymbol{F}_{\mathrm{Centrifugal}}=m\Omega^2(x\hat{x}+y\hat{y}). # \label{_auto2} \tag{2} # \end{equation} # $$ # The centrifugal force points outward in the $x-y$ plane, and its # magnitude is $m\Omega^2r$, where # $r=\sqrt{x^2+y^2}$. # # Continuing along these lines, # if we define a rotating frame which makes an angle $\theta$ with the inertial frame and define the distance to an object in this frame from the origin as $\boldsymbol{r}$, then the centrifugal force (which points outward) has as magnitude $\Omega^2r\sin{\theta}$. Defining $\rho=r\sin{\theta}$ and the unit vector $\hat{\boldsymbol{\rho}}$ (see figure here) # <!-- dom:FIGURE: [figslides/centrifugal.png, width=600 frac=0.6] --> # <!-- begin figure --> # <img src="figslides/centrifugal.png" width=600><p style="font-size: 0.9em"><i>Figure 1: </i></p><!-- end figure --> # # we have the well-known expression for the centrifugal force # $$ # \boldsymbol{F}_{\mathrm{Centrifugal}}=m\Omega^2\rho\hat{\boldsymbol{\rho}}, # $$ # and with the velocity given by its magnitude $v=\Omega\rho$ we obtain the well-known expression for the centrifugal force # $$ # \boldsymbol{F}_{\mathrm{Centrifugal}}=m\frac{v^2}{\rho}{\boldsymbol{\rho}}. # $$ # If we now go back again to our falling object discussed in the # beginning of these lectures, we need to modify for the fact that the Earth # is rotating with respect to the falling object. # # Seen from a rotating coordinate system we have now that the forces acting on the falling object are # $$ # m\ddot{\boldsymbol{r}}=\boldsymbol{F}_{\mathrm{gravity}}+\boldsymbol{F}_{\mathrm{Centrifugal}}. # $$ # If we define the mass of Earth as $M$ and its radius as $R$ and assuming that the object is close to the Earth, the gravitational force takes then well-known expression # $$ # \boldsymbol{F}_{\mathrm{gravity}}=-\frac{GMm}{R^2}\hat{\boldsymbol{r}}=m\boldsymbol{g}_0. # $$ # Inserting the expression for the centrifugal force, we can then define an effective force # $$ # \boldsymbol{F}_{\mathrm{eff}}=\boldsymbol{F}_{\mathrm{gravity}}+\boldsymbol{F}_{\mathrm{Centrifugal}}=m\boldsymbol{g}_0-m\Omega^2R\sin{(\theta)}\hat{\boldsymbol{\rho}}, # $$ # and with # $$ # \boldsymbol{g}_{\mathrm{eff}}=\boldsymbol{g}_0-\Omega^2R\sin{(\theta)}\hat{\boldsymbol{\rho}}, # $$ # we have # $$ # \boldsymbol{F}_{\mathrm{eff}}=m\boldsymbol{g}_{\mathrm{eff}}. # $$ # In the rotating coordinate system (not an inertial frame), motion is # thus determined by an apparent force and one can define effective # potentials. In addition to the normal gravitational potential energy, # there is a contribution to the effective potential, # <!-- Equation labels as ordinary links --> # <div id="_auto3"></div> # # $$ # \begin{equation} # \delta V_{\rm eff}(r)=-\frac{m}{2}\Omega^2r^2=-\frac{m}{2}r^2\Omega^2\sin^2\theta, # \label{_auto3} \tag{3} # \end{equation} # $$ # where $\theta$ is the polar angle, measured from say the north # pole. If the true gravitational force can be considered as originating # from a point in Earth's center, the net effective potential for a mass # $m$ near Earth's surface could be (a distance $h$) # <!-- Equation labels as ordinary links --> # <div id="_auto4"></div> # # $$ # \begin{equation} # V_{\rm eff}=mgh-m\frac{1}{2}\Omega^2(R+h)^2\sin^2\theta. # \label{_auto4} \tag{4} # \end{equation} # $$ # As an example, let us ask ourselves how much wider is Earth at the # equator than the north-south distance between the poles assuming that # the gravitational field above the surface can be approximated by that # of a point mass at Earth's center. # # # The surface of the ocean must be at constant effective potential for a # sample mass $m$. This means that if $h$ now refers to the height of # the water # $$ # m g[h(\theta=\pi/2)-h(\theta=0)]=\frac{m}{2}\Omega^2(R+h)^2. # $$ # Because $R>>h$, one can approximate $R+h\rightarrow R$ on the right-hand side, thus # $$ # h(\theta=\pi)-h(\theta=0)=\frac{\Omega^2R^2}{2g}. # $$ # This come out a bit less than 11 km, or a difference of near 22 km for # the diameter of the Earth in the equatorial plane compared to a # diameter between the poles. In reality, the difference is # approximately 41 km. The discrepancy comes from the assumption that # the true gravitational force can be treated as if it came from a point # at Earth's center. This would be true if the distribution of mass was # radially symmetric. However, Earth's center is molten and the rotation # distorts the mass distribution. Remarkably this effect nearly doubles # the elliptic distortion of Earth's shape. Due to this distortion, the # top of Mount Everest is not the furthest point from the center of the # Earth. That belongs to the top of a volcano, Chimborazo, in Equador, # which is one degree in latitude below the Equator. Chimborazo is about # 8500 ft lower than Everest when measured relative to sea level, but is # 7700 feet further from the center of the Earth. # # # # # # ## Coriolis Force and Falling Objects # # The Coriolis force is given by # $$ # \boldsymbol{F}_{\mathrm{Coriolis}}=2m\boldsymbol{v}_S\times\boldsymbol{\Omega}, # $$ # It does not enter problems like the shape of the Earth # above because in that case the water was not moving relative to the # rotating frame. # # The Coriolis force is non-zero only if $\boldsymbol{v}_S\ne 0$ and is directed # perpendicular to both $\boldsymbol{v}_S$ and $\Omega$. Viewed along the # direction of $\boldsymbol{v}_S$, the Coriolis force associated with # counter-clockwise rotational motion produces a deflection to the # right. For clockwise rotational motion, it produces a deflection to # the left. # # The Coriolis force associated with Earth’s rotational motion is # responsible for the circulating or cyclonic weather patterns # associated with hurricanes and cyclones, as illustrated in the figure # here. Basically, a pressure gradient gives rise to air currents that # tend to flow from high pressure to low pressure regions. But as the # air flows toward the low pressure region, the Coriolis force deflects # the air currents away from their straight line paths. Since the # projection of $\Omega$ perpendicular to the local tangent plane # changes sign as one crosses the equator, the direction of the cyclonic # motion (either counter-clockwise or clockwise) is different in the # Northern and Southern hemispheres. # <!-- dom:FIGURE: [figslides/coriolis.png,width=600 frac=0.6] --> # <!-- begin figure --> # <img src="figslides/coriolis.png" width=600><p style="font-size: 0.9em"><i>Figure 1: </i></p><!-- end figure --> # # # # As an example, assume a ball is dropped from a height $h=500$m above Minneapolis. Due to the # Coriolis force, it is deflected by an amount $\delta x$ and $\delta # y$. We want to find the deflection due to the Coriolis force. Here we ignore the centrifugal terms. # # The equations of motion are: # $$ # \begin{eqnarray*} # \frac{dv_x}{dt}&=&-2(\Omega_yv_z-\Omega_zv_y),\\ # \frac{dv_y}{dt}&=&-2(\Omega_zv_x-\Omega_xv_z),\\ # \frac{dv_z}{dt}&=&-g-2(\Omega_xv_y-\Omega_yv_x),\\ # \Omega_z&=&\Omega\cos\theta,~~~\Omega_y=\Omega\sin\theta,~~~\Omega_x=0. # \end{eqnarray*} # $$ # Here the coordinate system is $\hat{x}$ and points east, $\hat{y}$ points # north and $\hat{z}$ points upward. # # One can now ignore all the Coriolis terms on the right-hand sides # except for those with $v_z$. The other terms will all be doubly # small. One can also throw out terms with $\Omega_x$. This gives # $$ # \begin{eqnarray*} # \frac{dv_x}{dt}&\approx& -2\Omega v_z\sin\theta,\\ # \frac{dv_y}{dt}&\approx& 0,\\ # \frac{dv_z}{dt}&\approx& -g. # \end{eqnarray*} # $$ # There will be no significant deflection in the $y$ direction, $\delta # y=0$, but in the $x$ direction one can substitute $v_z=-gt$ above, # $$ # \begin{eqnarray*} # v_x&\approx&\int_0^t dt'~2\Omega gt'\sin\theta=\Omega gt^2\sin\theta,\\ # \delta x&\approx& \int_0^t dt'~v_x(t')=\frac{g\Omega\sin\theta t^3}{3}. # \end{eqnarray*} # $$ # One can find the deflections by using $h=\frac{1}{2}gt^2$, to find the # time, and using the all-knowing internet to see that the latitude of # Minneapolis is $44.6^\circ$ or $\theta=45.4^\circ$. # $$ # \begin{eqnarray*} # t&=&\sqrt{2h/g}=10.1~{\rm s},\\ # \Omega&=&\frac{2\pi}{3600\cdot 24~{\rm s}}=7.27\times 10^{-5}~{\rm s}^{-1},\\ # \delta x&=&17.4~{\rm cm}~~{\rm(east)}. # \end{eqnarray*} # $$ # ## Accelerating and Rotating Frames # # It is now simple to bring together the equations for an accelerating and rotating frame. Using our results we have the equations of motion for an object in an accelerating and rotating frame with respect to an inertial frame # $$ # m\ddot{\boldsymbol{r}}_{S}=\boldsymbol{F}+m\boldsymbol{r}\times\dot{\boldsymbol{\Omega}}+2m\boldsymbol{v}_S\times\boldsymbol{\Omega}+m\left(\boldsymbol{\Omega}\times\boldsymbol{r}\right)\times\boldsymbol{\Omega}-\boldsymbol{a}_{S_0}, # $$ # where the last term is the acceleration of the accelerating frame seen from the inertial frame. # # # ## The Foucault Pendulum # # # # The [Foucault # Pendulum](https://en.wikipedia.org/wiki/Foucault_pendulum) is simply # a regular pendulum moving in both horizontal directions, and with the # Coriolis force included. It is explained at its simplest if we # consider a pendulum positioned at the North pole. Foucault's # experiment was actually the first laboratory demonstration that the # Earth is rotating. The experiment is rather simple and many physics # department worldwide have their own pendulum. # # In the original experiment done in Paris in 1851, Foucault used a # massive pendulum of 28kg and 67m long. # # If use an inertial frame with the North pole as its origin, the Earth # below the pendulum rotates with a period of 24h (actually 23h and # 56min). Seen with respect to the surface of the Earth, the plane of # the pendulum moves in the opposite direction of the rotation of the Earth. # # If we were to perform the experiment in other places, the setup is slightly more complicated since the pendulum will then rotate with the Earth. The net effect is a slower rotation compared to North pole. # # <!-- dom:FIGURE: [figslides/foucault.png,width=600 frac=0.6] --> # <!-- begin figure --> # <img src="figslides/foucault.png" width=600><p style="font-size: 0.9em"><i>Figure 1: </i></p><!-- end figure --> # # # Let us look at the equations we need to solve. # $$ # \begin{eqnarray*} # m\ddot{\boldsymbol{r}}&=&\boldsymbol{T}+m\boldsymbol{g}-2m\boldsymbol{\Omega}\times\boldsymbol{v}, # \end{eqnarray*} # $$ # as the centrifugal force term is absorbed into the definition of # $\boldsymbol{g}$. The magnitude of the tension, $\boldsymbol{T}$, is considered # constant because we consider only small oscillations. Then $T\approx mg$, and the components, using $\hat{x},\hat{y}$ to correspond to east # and north respectively, are # $$ # \begin{eqnarray*} # T_x=-mgx/L,~~~T_y=-mgy/L. # \end{eqnarray*} # $$ # If $\Omega$ is the rotation of the earth, and if $\theta$ is the polar angle, $\pi$-latitude, # $$ # \begin{eqnarray*} # \ddot{x}&=&-gx/L+2\dot{y}\Omega_z,\\ # \ddot{y}&=&-gy/L-2\dot{x}\Omega_z. # \end{eqnarray*} # $$ # Here we have used the fact that the oscillations are sufficiently # small so we can ignore $v_z$. Using $\Omega_0\equiv\sqrt{k/m}$, # $$ # \begin{eqnarray*} # \ddot{x}-2\Omega_z\dot{y}+\Omega_0^2x&=&0\\ # \ddot{y}+2\Omega_z\dot{x}+\Omega_0^2y&=&0, # \end{eqnarray*} # $$ # where $\Omega_z=|\boldsymbol{\Omega}|\cos\theta$, with $\theta$ being the # polar angle (zero at the north pole). The terms linear in time # derivatives are what make life difficult. This will be solved with a # trick. We will incorporate both differential equations into a single # complex equation where the first/second are the real/imaginary parts. # $$ # \begin{eqnarray*} # \eta\equiv x+iy,\\ # \ddot{\eta}+2i\Omega_z\dot{\eta}+\Omega_0^2\eta&=&0. # \end{eqnarray*} # $$ # Now, we guess at a form for the solutions, $\eta(t)=e^{-i\alpha t}$, # which turns the differential equation into # $$ # \begin{eqnarray*} # -\alpha^2+2\Omega_z\alpha+\Omega_0^2&=&0,\\ # \alpha&=&\Omega_z\pm \sqrt{\Omega_z^2+\Omega_0^2},\\ # &\approx&\Omega_z\pm \Omega_0. # \end{eqnarray*} # $$ # The solution with two arbitrary constants is then # $$ # \begin{eqnarray*} # \eta&=&e^{-i\Omega_zt}\left[C_1e^{i\Omega_0t}+C_2e^{-i\Omega_0t}\right]. # \end{eqnarray*} # $$ # Here, $C_1$ and $C_2$ are complex, so they actually represent four # arbitrary numbers. These four numbers should be fixed by the four # initial conditions, i.e. $x(t=0), \dot{x}(t=0), y(t=0)$ and # $\dot{y}(t=0)$. With some lengthy algebra, one can rewrite the # expression as # <!-- Equation labels as ordinary links --> # <div id="eq:precmess"></div> # # $$ # \begin{eqnarray*} # \label{eq:precmess} \tag{5} # \eta&=&e^{-i\Omega_zt}\left[A\cos(\Omega_0t+\phi_A)+iB\cos(\Omega_0t+\phi_B)\right]. # \end{eqnarray*} # $$ # Here, the four coefficients are represented by the two real arbitrary # real amplitudes, $A$ and $B$, and two arbitrary phases, $\phi_A$ and # $\phi_B$. For an initial condition where $y=0$ at $t=0$, one can see # that $B=0$. This then gives # $$ # \begin{eqnarray*} # \eta(t)&=&Ae^{-i\Omega_zt}\cos(\Omega_0t+\gamma)\\ # \nonumber # &=&A\cos\Omega_zt\cos(\Omega_0t+\gamma)+iA\sin\Omega_zt\cos(\Omega_0t+\gamma). # \end{eqnarray*} # $$ # Translating into $x$ and $y$, # $$ # \begin{eqnarray} # x&=&A\cos\Omega_zt\cos(\Omega_0t+\gamma),\\ # \nonumber # y&=&A\sin\Omega_zt\cos(\Omega_0t+\gamma). # \end{eqnarray} # $$ # Assuming the pendulum's frequency is much higher than Earth's # rotational frequency, $\Omega_0>>\Omega_z$, one can see that the plane # of the pendulum simply precesses with angular velocity # $\Omega_z$. This means that in this limit the pendulum oscillates only # in the $x$-direction with frequency many times before the phase # $\Omega_zt$ becomes noticeable. Eventually, when $\Omega_zt=\pi/2$, # the motion is along the $y$-direction. If you were at the north pole, # the motion would switch from the $x$-direction to the $y$ direction # every 6 hours. Away from the north pole, $\Omega_z\ne|\boldsymbol{\Omega}|$ # and the precession frequency is less. At the equator it does not # precess at all. If one were to repeat for the solutions where $A=0$ # and $B\ne 0$, one would look at motions # that started in the $y$-direction, then precessed toward the $-x$ # direction. Linear combinations of the two sets of solutions give # pendulum motions that resemble ellipses rather than simple # back-and-forth motion. # # ## Euler's Theorem from a Linear Algebra Perspective # # **this material will be added soon**
3.96875
4
apps/async_task/utils.py
goztrk/django-htk
206
12789356
<reponame>goztrk/django-htk # Python Standard Library Imports import base64 import json def build_async_task_result(content, content_type, filename): """Builds an Async Task result from JSON This is necessary if we want to return multiple values, as the result by default is just a plain string. """ payload = { 'content' : base64.b64encode(content), 'content_type' : content_type, 'filename' : filename, } result = json.dumps(payload) return result def extract_async_task_result_json_values(result_data): """Companion function to perform the inverse of `build_async_task_result()` """ payload = json.loads(result_data) content = base64.b64decode(payload['content']) content_type = payload['content_type'] filename = payload['filename'] return (content, content_type, filename,)
2.53125
3
row_analysis/row_analysis.py
guohaoqiang/gcn
0
12789357
<gh_stars>0 import csv import math import matplotlib.pyplot as plt import numpy as np import pandas as pd from math import ceil, floor, sqrt import glog as log def load(f): for i in f: return i def get_nnz(f): row_offset = load(f) ans = [] for i in range(1,len(row_offset)): ans.append(int(row_offset[i])-int(row_offset[i-1])) log.info(len(ans)) return ans; def get_xy(r): a = pd.Series(r) b = a.value_counts() yy = [] # Frequency for i in list(b.index): yy.append(b[i]) yy = np.array(yy) yy = yy/yy.sum() # Percentile xx = b.index # NNZs ind = np.lexsort((yy,xx)) x = [0] y = [0] for i in ind: x.append(xx[i]) y.append(yy[i]+y[-1]) return min(x),max(x),x,y f = open('cora.csv','r') f1 = csv.reader(f) cora = get_nnz(f1) f.close() f = open('polblogs.csv','r') f2 = csv.reader(f) polblogs = get_nnz(f2) f.close() f = open('citeseer.csv','r') f3 = csv.reader(f) citeseer = get_nnz(f3) f.close() f = open('pubmed.csv','r') f4 = csv.reader(f) pubmed = get_nnz(f4) f.close() f = open('ppi.csv','r') f5 = csv.reader(f) ppi = get_nnz(f5) f.close() f = open('flickr.csv','r') f6 = csv.reader(f) flickr = get_nnz(f6) f.close() f = open('reddit.csv','r') f7 = csv.reader(f) reddit = get_nnz(f7) f.close() f = open('yelp.csv','r') f8 = csv.reader(f) yelp = get_nnz(f8) f.close() f = open('amazon.csv','r') f9 = csv.reader(f) amazon = get_nnz(f9) f.close() fig = plt.gcf() fig.set_size_inches(12,11) cora_mn, cora_mx, cora_x, cora_y = get_xy(cora) polblogs_mn, polblogs_mx, polblogs_x, polblogs_y = get_xy(polblogs) citeseer_mn, citeseer_mx, citeseer_x, citeseer_y = get_xy(citeseer) pubmed_mn, pubmed_mx, pubmed_x, pubmed_y = get_xy(pubmed) ppi_mn, ppi_mx, ppi_x, ppi_y = get_xy(ppi) flickr_mn, flickr_mx, flickr_x, flickr_y = get_xy(flickr) reddit_mn, reddit_mx, reddit_x, reddit_y = get_xy(reddit) yelp_mn, yelp_mx, yelp_x, yelp_y = get_xy(yelp) amazon_mn, amazon_mx, amazon_x, amazon_y = get_xy(amazon) mn = min([cora_mn,polblogs_mn,citeseer_mn,pubmed_mn,ppi_mn,flickr_mn,reddit_mn,yelp_mn,amazon_mn]) mx = max([cora_mx,polblogs_mx,citeseer_mx,pubmed_mx,ppi_mx,flickr_mx,reddit_mx,yelp_mx,amazon_mx]) plt.step(cora_y, np.log10(cora_x), label='cora') log.info(cora_mn) log.info(cora_mx) plt.step(polblogs_y, np.log10(polblogs_x), label='polblogs') log.info(polblogs_mn) log.info(polblogs_mx) plt.step(citeseer_y, np.log10(citeseer_x), label='citeseer') log.info(citeseer_mn) log.info(citeseer_mx) plt.step(pubmed_y, np.log10(pubmed_x), label='pubmed') log.info(pubmed_mn) log.info(pubmed_mx) plt.step(ppi_y, np.log10(ppi_x), label='ppi') log.info(ppi_mn) log.info(ppi_mx) plt.step(flickr_y, np.log10(flickr_x), label='flickr') log.info(flickr_mn) log.info(flickr_mx) plt.step(reddit_y, np.log10(reddit_x), label='reddit') log.info(reddit_mn) log.info(reddit_mx) plt.step(yelp_y, np.log10(yelp_x), label='yelp') log.info(yelp_mn) log.info(yelp_mx) plt.step(amazon_y, np.log10(amazon_x), label='amazon') log.info(amazon_mn) log.info(amazon_mx) plt.title('Cumulative distribution function of NNZs in each row') plt.ylabel('NNZs in each row (log10)') plt.xlabel('Percentile of NNZ-row') plt.legend(loc='best') plt.xlim([-0.01,1.01]) plt.ylim([np.log10(1), np.log10(mx)+0.1]) plt.grid() plt.savefig("row.svg")
2.375
2
backend/tab_widget/item.py
JoyPang123/facial_identity_system
6
12789358
<gh_stars>1-10 import numpy as np import torch from model.triplet.loss import TripletLoss import torchvision.transforms as transforms from PyQt5 import QtWidgets class CustomItem(QtWidgets.QWidget): def __init__(self, parent=None): super().__init__(parent) self.pass_info = QtWidgets.QLabel() self.time_info = QtWidgets.QLabel() self.train_btn = QtWidgets.QPushButton() self.train_btn.setText("🔼") self.train_btn.clicked.connect(self.train_model) self.setStyleSheet( """ QLabel { margin: 0; padding: 0; } QPushButton { margin: 0; padding: 0; border: None } QPushButton::hover { font-size: 25px; } """ ) side_v_box = QtWidgets.QVBoxLayout() side_v_box.addWidget(self.pass_info) side_v_box.addWidget(self.time_info) main_h_box = QtWidgets.QHBoxLayout() main_h_box.addLayout(side_v_box, 1) main_h_box.addWidget(self.train_btn) self.setLayout(main_h_box) def set_pass_info(self, status, name=None): if status: self.pass_info.setText(f"🟢 {name}") self.train_btn.setToolTip("Select for training") else: self.pass_info.setText("🔴") self.train_btn.setDisabled(True) self.train_btn.setToolTip("Select for training (Disabled)") def set_time_info(self, time): self.time_info.setText(time) def train_model(self): windows = QtWidgets.QMessageBox() windows.setIcon(QtWidgets.QMessageBox.Information) windows.setText("Training...") windows.addButton(QtWidgets.QMessageBox.Ok) windows.button(QtWidgets.QMessageBox.Ok).hide() windows.show() QtWidgets.QApplication.processEvents() # Obtain the model from parent->parent .... # I know the code its weird, but this it how it works... model = self.parent().parent().parent().parent().parent().video_container.model transform = self.parent().parent().parent().parent().parent().video_container.transform optimizer = self.parent().parent().parent().optimizer image = self.pix_to_array(self.parent().parent().parent().monitor.pixmap()) if image is not None: model.train() image = transform(image[..., :3].copy()) # Create other positive features horizontal_flip_image = transforms.RandomHorizontalFlip(p=1.0)(image) # Create negative features vertical_flip_image = transforms.RandomVerticalFlip(p=1.0)(image) vertical_horizontal_image = transforms.RandomHorizontalFlip(p=1.0)(vertical_flip_image) model.train() anchor_features, pos_features, neg_features = model(image.unsqueeze(0), horizontal_flip_image.unsqueeze(0), vertical_flip_image.unsqueeze(0)) criterion = TripletLoss(0.4) loss = criterion(anchor_features, pos_features, neg_features) optimizer.zero_grad() loss.sum().backward() optimizer.step() # Change back to eval mode model.eval() torch.save(model.state_dict(), "weight/model.pt") bucket = self.parent().parent().parent().bucket model_weight_blob = bucket.blob("model.pt") model_weight_blob.upload_from_filename("weight/model.pt") msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Training success!") msg.exec_() else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText("The image is not available") msg.setWindowTitle("Error for doing training") msg.exec_() windows.done(0) @staticmethod def pix_to_array(pixmap): if pixmap is not None: h = pixmap.size().height() w = pixmap.size().width() q_image = pixmap.toImage() byte_str = q_image.bits().asstring(w * h * 4) img = np.frombuffer(byte_str, dtype=np.uint8).reshape((h, w, 4)) return img return None
2.21875
2
bootimgpack/ui/main.py
hchyhchyxh/tools
45
12789359
<gh_stars>10-100 #!/usr/bin/python # Filename main.py # Main UI of bootimgpack # __author__ = '<EMAIL>' import os from os import sys, path sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) from internal import bootimg from Tkinter import * import tkFileDialog class Main: def __init__(self): root = Tk() self.__layout(root) root.mainloop() def __layout(self, root): root.title("BootimgPack") root.geometry("500x220+400+400") root.resizable(width=False, height=False) self.__layoutBootImgFrame(root) self.__layoutPackBtnFrame(root) self.__layoutBootDirFrame(root) self.__layoutResultFrame(root) pass def __layoutBootImgFrame(self, root): frame = Frame(root) Label(frame, width=12, text="Boot Image: ", anchor=W).pack(side=LEFT) self.__bootImgText = StringVar() Entry(frame, width=40, textvariable=self.__bootImgText).pack(side=LEFT) self.__bootImgSelect = Button(frame, text="...") self.__bindButtonAction(self.__bootImgSelect, self.onClick) self.__bootImgSelect.pack(padx=5, side=LEFT) frame.pack(padx=5, pady=15) def __layoutPackBtnFrame(self, root): frame = Frame(root) self.__packBtn = Button(frame, text="PACK ^", width=7, height=1) self.__bindButtonAction(self.__packBtn, self.onClick) self.__packBtn.pack(padx=30, side=LEFT) self.__unpackBtn = Button(frame, text ="UNPACK v", width=7, height=1) self.__bindButtonAction(self.__unpackBtn, self.onClick) self.__unpackBtn.pack(side=LEFT) frame.pack(padx=5, pady=5) def __layoutBootDirFrame(self, root): frame = Frame(root) Label(frame, width=12, text="Files Directory: ", anchor=W).pack(side=LEFT) self.__bootDirText = StringVar() Entry(frame, width=40, textvariable=self.__bootDirText).pack(side=LEFT) self.__bootDirSelect = Button(frame, text="...") self.__bindButtonAction(self.__bootDirSelect, self.onClick) self.__bootDirSelect.pack(padx=5, side=LEFT) frame.pack(padx=5, pady=5) def __layoutResultFrame(self, root): frame = Frame(root, relief=SUNKEN, borderwidth=1) self.__resultText = StringVar() Label(frame, height=3, textvariable=self.__resultText, wraplength=400, anchor=NW).pack(padx=10, side=LEFT) self.__resultText.set("Result") frame.pack(padx=10, pady=20, fill=X, expand=1) def __bindButtonAction(self, btn, command): btn.bind("<Button-1>", command) btn.bind("<Return>", command) def onClick(self, event): if event.widget == self.__bootImgSelect: filename = tkFileDialog.askopenfilename(initialdir=os.path.expanduser("~")) if len(filename) > 0 : self.__bootImgText.set(filename) elif event.widget == self.__bootDirSelect: directory = tkFileDialog.askdirectory(initialdir=os.path.expanduser("~")) if len(directory) > 0 : self.__bootDirText.set(directory) elif event.widget == self.__unpackBtn: bootfile = self.__bootImgText.get() output = self.__bootDirText.get() if len(bootfile) > 0 : bootimg.unpack(bootfile, output) result = "Unpack " + bootfile + " --> " + output self.__resultText.set(result) elif event.widget == self.__packBtn: bootfile = self.__bootDirText.get() output = self.__bootImgText.get() if len(bootfile) > 0 : bootimg.pack(bootfile, output) result = "Pack " + bootfile + " --> " + output self.__resultText.set(result) # End of class Main ### Start if __name__ == '__main__': Main()
2.53125
3
Temperature/Temperature_Sites/Temperature_Sites/worker.py
listenzcc/GeoChina
0
12789360
# Data Worker # %% import os import pandas as pd import plotly.express as px from pypinyin import lazy_pinyin locations_url = 'https://blog.csdn.net/envbox/article/details/80290103' filename = 'locations.json' sync_folder = os.environ.get('Sync', '.') mapbox = dict( mapbox_accesstoken=open(os.path.join( os.environ['onedrive'], '.mapbox_token')).read(), mapbox_style='light' ) def fetch_locations(): locations = pd.read_html(locations_url)[0] locations.columns = ['Province', 'ID', 'Name', 'Latitude', 'Longitude', 'Height'] # Fix Known Issue, # use height - 10000 if height is greater than 10000 locations.Height = locations.Height.map(lambda e: e % 10000) def translate(s): return ''.join(lazy_pinyin(s)) locations['_province'] = locations['Province'].map(translate) locations['_name'] = locations['Name'].map(translate) locations = locations[['ID', 'Province', 'Name', 'Latitude', 'Longitude', 'Height', '_province', '_name']] return locations class DataWorker(object): def __init__(self): self.locations = fetch_locations() self.columns = self.locations.columns self.plot_mapbox(self.locations.copy()) def search_by_pinyin(self, py): found = dict() if py.strip() == '': found['_name'] = self.locations.copy() found['_province'] = pd.DataFrame() else: for col in ['_province', '_name']: found[col] = self.locations[self.locations[col].str.startswith( py)] output = pd.concat([found['_name'], found['_province']], axis=0) self.plot_mapbox(output.copy()) return output def plot_mapbox(self, df): print('Reploting') df['ID'] = df['ID'].map(str) df['Text'] = df[['Province', 'Name', 'ID']].apply(', '.join, axis=1) fig = px.scatter_mapbox( df, lon='Longitude', lat='Latitude', color='Province', # size=3, hover_name='Text', zoom=2, height=300 ) fig.update_layout(**mapbox) fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0}) self.canvas = fig.to_html() return self.canvas # %% # dw = DataWorker() # dw.locations # %% # dw.search_by_pinyin('bei')
2.875
3
src/advent/solutions/day17.py
khwilson/advent2021
0
12789361
<reponame>khwilson/advent2021 import itertools as its import re from collections import defaultdict from ..solution import Solution def run_sims(x1, x2, y1, y2): # Making assumption y1 and y2 are both negative max_vy = abs(y1) + 1 t_to_vy_in_range = defaultdict(list) for vy in range(-max_vy, max_vy + 1): cur_vy = vy t = 0 y = 0 while y >= y1: if y <= y2: t_to_vy_in_range[t].append(vy) t += 1 # Has to be integer so t must be even y += cur_vy cur_vy -= 1 # Making assumption x1 and x2 are both positive max_t = max(t_to_vy_in_range) max_vx = x2 + 1 t_to_vx_in_range = defaultdict(list) vx = 1 for vx in range(max_vx + 1): cur_vx = vx t = 0 x = 0 while t <= max_t: if x1 <= x <= x2: t_to_vx_in_range[t].append(vx) t += 1 x += cur_vx cur_vx = max(cur_vx - 1, 0) return t_to_vx_in_range, t_to_vy_in_range class Day17(Solution, day=17): def parse(self): with open(self.input_file, "rt") as infile: return tuple(map(int, re.findall(r"(-?\d+)", infile.read()))) def part1(self): x1, x2, y1, y2 = self.data t_to_vx_in_range, t_to_vy_in_range = run_sims(x1, x2, y1, y2) shared_ts = set(t_to_vy_in_range) & set(t_to_vx_in_range) correct_vy = max(max(t_to_vy_in_range[t]) for t in shared_ts) return (correct_vy * (correct_vy + 1)) // 2 def part2(self): x1, x2, y1, y2 = self.data t_to_vx_in_range, t_to_vy_in_range = run_sims(x1, x2, y1, y2) shared_ts = set(t_to_vy_in_range) & set(t_to_vx_in_range) return len( { (vx, vy) for t in shared_ts for vx, vy in its.product(t_to_vx_in_range[t], t_to_vy_in_range[t]) } )
2.828125
3
src/apodeixi/knowledge_base/shutil_kb_store.py
ChateauClaudia-Labs/apodeixi
0
12789362
<gh_stars>0 import os as _os from apodeixi.knowledge_base.isolation_kb_store import Isolation_KBStore_Impl from apodeixi.knowledge_base.manifest_utils import ManifestUtils from apodeixi.util.a6i_error import ApodeixiError from apodeixi.util.path_utils import PathUtils class Shutil_KBStore_Impl(Isolation_KBStore_Impl): ''' File-system-based implementation of the KnowledgeBaseStore where environment synchronization is done via the "shutil" module, i.e., via file system operations that copy entire folders across environments. The entire knowledge base is held under a two root folders (one for postings and one for all derived data, including manifests) and follows a structure based on filing schemes of the KB_ProcessingRules. Implements failover for reads by re-trying in parent environment, if one exists and if such failover policy is stipulated in the current environment's configuration. @param kb_rootdir A string, corresponding to the absolute path in the local machine corresponding to the KnowledgeBase. @param clientURL A string, corresponding to the absolute path to a root folder in a collaboration drive system (such as SharePoint) in which end-users will collaborate to create the Excel spreadsheets that will be eventually posted to the KnowledgeBase. This shared drive is also the location to which the KnowledgeBase will save generated forms or reports requested by end-users. This is a "root folder" in that the structure below will be assumed to follow the filing structure of the KnowledgeBase for postings. ''' def __init__(self, parent_trace, kb_rootdir, clientURL): super().__init__(parent_trace, kb_rootdir, clientURL) def beginTransaction(self, parent_trace): ''' Starts an isolation state in which all subsequent I/O is done in an isolation area dedicated to this transaction, and not applied back to the store's persistent area until the transaction is committed.. ''' return super().beginTransaction(parent_trace) def commitTransaction(self, parent_trace): ''' Finalizes a transaction previously started by beginTransaction, by cascading any I/O previously done in the transaction's isolation area to the store's persistent area. ''' env, parent_env = self._validate_transaction_end_of_life(parent_trace) src_postings_root = env.postingsURL(parent_trace) dst_postings_root = parent_env.postingsURL(parent_trace) src_manifests_root = env.manifestsURL(parent_trace) dst_manifests_root = parent_env.manifestsURL(parent_trace) src_clientURL_root = env.clientURL(parent_trace) dst_clientURL_root = parent_env.clientURL(parent_trace) # If the parent environment is also a transactional envinronment, we will have to record in it # the events so that when the parent is committed, those events are cascaded to the parent's parent. # But it may also be that the parent is not transactional, which is why the `parent_events` # variable may be None and why we need to be checking for that all the time. parent_name = parent_env.name(parent_trace) if parent_name in self._transaction_events_dict.keys(): parent_events = self._transaction_events_dict[parent_name] else: parent_events = None # **GOTCHA** # # Don't call pop()! We want to see the "last transaction's" environment, but not yet remove # the last transaction (so peek, not pop). The reason is that if any of the subsequent code in this commit() method # raises an exception, it will cause a subsequent problem for the abortTransaction method, # since abortTransaction will look for the "last transaction" and will not find it (or will) # find the wrong one) if we have poped. So use the [-1] notation to peek (not pop!) the last # transaction. Later, just before exiting this method, do the pop() ending_env = self._transactions_stack[-1] events = self._transaction_events_dict[ending_env.name(parent_trace)] for relative_path in events.posting_writes(): from_path = src_postings_root + "/" + relative_path to_path = dst_postings_root + "/" + relative_path to_dir = _os.path.dirname(to_path) PathUtils().create_path_if_needed(parent_trace, to_dir) PathUtils().copy_file(parent_trace, from_path, to_dir) if parent_events != None: parent_events.remember_posting_write(relative_path) for relative_path in events.manifest_writes(): from_path = src_manifests_root + "/" + relative_path to_path = dst_manifests_root + "/" + relative_path to_dir = _os.path.dirname(to_path) PathUtils().create_path_if_needed(parent_trace, to_dir) PathUtils().copy_file(parent_trace, from_path, to_dir) if parent_events != None: parent_events.remember_manifest_write(relative_path) for relative_path in events.clientURL_writes(): from_path = src_clientURL_root + "/" + relative_path to_path = dst_clientURL_root + "/" + relative_path # Normally clientURL is the same across environments (except mostly in test situations), # so to prevent the copy operation from raising an exception make sure we only attempt to copy # the file when the two paths are different if not _os.path.samefile(from_path, to_path): #if from_path != to_path: to_dir = _os.path.dirname(to_path) PathUtils().create_path_if_needed(parent_trace, to_dir) PathUtils().copy_file(parent_trace, from_path, to_dir) if parent_events != None: parent_events.remember_clientURL_write(relative_path) for relative_path in events.posting_deletes(): to_path = dst_postings_root + "/" + relative_path if 0 == PathUtils().remove_file_if_exists(parent_trace, to_path): if parent_events != None: parent_events.remember_posting_delete(relative_path) for relative_path in events.manifest_deletes(): to_path = dst_manifests_root + "/" + relative_path if 0 == PathUtils().remove_file_if_exists(parent_trace, to_path): if parent_events != None: parent_events.remember_manifest_deletes(relative_path) for relative_path in events.clientURL_deletes(): to_path = dst_clientURL_root + "/" + relative_path if 0 == PathUtils().remove_file_if_exists(parent_trace, to_path): if parent_events != None: parent_events.remember_clientURL_deletes(relative_path) # Last but not least: persist foreign key constraints and copy them to the # parent environment # self.persistForeignKeyConstraints(parent_trace) version = 1 FOREIGN_KEY_FILE = "foreign_key_contraints." + str(version) + ".yaml" from_path = src_manifests_root + "/system/" + FOREIGN_KEY_FILE to_dir = dst_manifests_root + "/system/" PathUtils().create_path_if_needed(parent_trace, to_dir) PathUtils().copy_file(parent_trace, from_path, to_dir) # Now remove the environment of the transaction we just committed self.removeEnvironment(parent_trace, env.name(parent_trace)) self.activate(parent_trace, parent_env.name(parent_trace)) # **GOTCHA** # # Now it is safe to pop() - it wasn't safe earlier because if any of the code in this method # raised an exception after having popped the last transaction in the stack, the abortTransaction #method woudld have failed since it wouldh't have found the last transaction to then abort it. ending_env = self._transactions_stack.pop() events = self._transaction_events_dict.pop(ending_env.name(parent_trace)) def abortTransaction(self, parent_trace): ''' Aborts a transaction previously started by beginTransaction, by deleting transaction's isolation area, effectively ignoring any I/O previously done during the transaction's lifetime, and leaving the KnowledgeBaseStore in a state such that any immediately following I/O operation would be done directly to the store's persistent area. ''' return super().abortTransaction(parent_trace) def activate(self, parent_trace, environment_name): ''' Switches the store's current environment to be the one identified by the `environment_name`, unless no such environment exists in which case it raises an ApodeixiError ''' super().activate(parent_trace, environment_name) def deactivate(self, parent_trace): ''' Switches the store's current environment to be the base environment. ''' super().deactivate(parent_trace) def copy_posting_across_environments(self, parent_trace, handle, from_environment, to_environment): ''' Copies the posting file denoted by the `handle` in the `from_environment` to the `to_environment` ''' from_path = from_environment.postingsURL(parent_trace) + "/" + handle.getRelativePath(parent_trace) to_path = to_environment.postingsURL(parent_trace) + "/" + handle.getRelativePath(parent_trace) to_dir = _os.path.dirname(to_path) my_trace = parent_trace.doing("Copying a posting file", data = {"src_path": from_path, "to_dir": to_dir}) if not _os.path.exists(to_dir): PathUtils().create_path_if_needed(parent_trace=my_trace, path=to_dir) PathUtils().copy_file(parent_trace, from_path, to_dir) def _file_not_found_error(self, ex): ''' Helper method. Returns true if `ex` is an ApodeixiError triggered by a file not found ''' if not type(ex) == ApodeixiError or not 'error' in ex.data.keys(): return False elif "No such file or directory" in ex.data['error']: return True else: return False def loadPostingLabel(self, parent_trace, posting_label_handle): ''' Loads and returns a DataFrame based on the `posting_label_handle` provided ''' try: label_df = super().loadPostingLabel(parent_trace, posting_label_handle) except ApodeixiError as ex: # Try again in parent environment if failover is configured and error is a missing file if self._file_not_found_error(ex) and self._failover_posting_reads_to_parent(parent_trace): my_trace = parent_trace.doing("Searching in parent environment") # Temporarily switch to the environment in which to search original_env = self.current_environment(my_trace) self.activate(my_trace, self.parent_environment(my_trace).name(my_trace)) label_df = self.loadPostingLabel( parent_trace = my_trace, posting_label_handle = posting_label_handle) # Now that search in parent environment is done, reset back to original environment self.activate(my_trace, original_env.name(my_trace)) # Before leaving, copy the parent's data into our environment, so next time # we don't have to failover again self.copy_posting_across_environments( parent_trace = my_trace, handle = posting_label_handle, from_environment = self.parent_environment(my_trace), to_environment = self.current_environment(my_trace)) else: raise ex return label_df def loadPostingData(self, parent_trace, data_handle, config): ''' Loads and returns a DataFrame based on the `posting_data_handle` provided @param config PostingConfig ''' try: df = super().loadPostingData(parent_trace, data_handle, config) except ApodeixiError as ex: # Try again in parent environment if failover is configured and error is a missing file if self._file_not_found_error(ex) and self._failover_posting_reads_to_parent(parent_trace): my_trace = parent_trace.doing("Searching in parent environment") # Temporarily switch to the environment in which to search original_env = self.current_environment(my_trace) self.activate(my_trace, self.parent_environment(my_trace).name(my_trace)) df = self.loadPostingData( parent_trace = my_trace, data_handle = data_handle, config = config) # Now that search in parent environment is done, reset back to original environment self.activate(my_trace, original_env.name(my_trace)) # Before leaving, copy the parent's data into our environment, so next time # we don't have to failover again self.copy_posting_across_environments( parent_trace = my_trace, handle = data_handle, from_environment = self.parent_environment(my_trace), to_environment = self.current_environment(my_trace)) else: raise ex return df def searchPostings(self, parent_trace, posting_api, filing_coordinates_filter=None): ''' Returns a list of PostingLabelHandle objects, one for each posting in the Knowledge Base that matches the given criteria: * They are all postings for the `posting_api` * They pass the given filters @param posting_api A string that identifies the type of posting represented by an Excel file. For example, 'milestone.modernization.a6i' is a recognized posting API and files that end with that suffix, such as 'opus_milestone.modernization.a6i.xlsx' will be located by this method. @param filing_coordinates_filter A function that takes a FilingCoordinates instance as a parameter and returns a boolean. Any FilingCoordinates instance for which this filter returns False will be excluded from the output. If set to None then no filtering is done. ''' ME = Shutil_KBStore_Impl if self._failover_posting_reads_to_parent(parent_trace): # Search in parent first, and copy anything found to the current environment my_trace = parent_trace.doing("Searching in parent environment") # Temporarily switch to the environment in which to search original_env = self.current_environment(my_trace) self.activate(my_trace, self.parent_environment(my_trace).name(my_trace)) parent_handles = self.searchPostings( parent_trace = my_trace, posting_api = posting_api, filing_coordinates_filter = filing_coordinates_filter) # Now that search in parent environment is done, reset back to original environment self.activate(my_trace, original_env.name(my_trace)) # Populate current environment with anything found in the parent environment, but only if it is not # already in current environment my_trace = parent_trace.doing("Copying postings from parent environment", data = {"parent environment name": self.parent_environment(my_trace).name(my_trace), "current environment name": self.current_environment(my_trace).name(my_trace)}) for handle in parent_handles: self.copy_posting_across_environments( parent_trace = my_trace, handle = handle, from_environment = self.parent_environment(my_trace), to_environment = self.current_environment(my_trace)) my_trace = parent_trace.doing("Searching in environment '" + str(self.current_environment(parent_trace).name(parent_trace)) + "'" ) scanned_handles = super().searchPostings( parent_trace = my_trace, posting_api = posting_api, filing_coordinates_filter = filing_coordinates_filter) return scanned_handles def persistManifest(self, parent_trace, manifest_dict): ''' Persists manifest_dict as a yaml object and returns a ManifestHandle that uniquely identifies it. Will raise an ApodeixiError if version consistency is violated, i.e., can only save manifest_dict with version N+1 if N is the highest version existing in the KnowledgeStore, if any. If no prior version of the manifests exists then the manifest_dict must have version number equal to 1. ''' my_trace = parent_trace.doing("Checking version consistency") if True: self.checkDuplicateManifest(my_trace, manifest_dict) prior_manifest = self.retrievePreviousManifest(my_trace, manifest_dict) new_handle = ManifestUtils().inferHandle(my_trace, manifest_dict) new_version = new_handle.version # Check that if we are doing an update a prior version does exist if new_version > 1 and prior_manifest == None: raise ApodeixiError(my_trace, "Can't persist manifest with version " + str(new_version) + " because no prior manifest exist with version " + str(new_version - 1), data = {"manifest handle": new_handle.display(my_trace)}) my_trace = parent_trace.doing("Persisting manifest") handle = super().persistManifest(parent_trace, manifest_dict) return handle def findLatestVersionManifest(self, parent_trace, manifest_api_name, namespace, name, kind): ''' For a given manifest API, a manifest is logically identified by its name and kind properties within a given namespace. However, there might be multiple versions of a logical manifest (versions are integers starting at 1, 2, 3, ..., with version increasing each time the manifest gets updated). This method returns a manifest (as a dict) and a string. The manifest is the most recent version of the manifest that is logically identified by the parameters. The 2nd returned value is the path to that manifest. If no such manifest exists in the KnowledgeBase store then the first returned object is None. Example: for file-based stores, a manifest may be stored in a filename like: $KB_STORE/manifests/my-corp.production/modernization.default.dec-2020.fusionopus/big-rock.2.yaml In this example, * the namespace is "my-corp.production" * the name is "modernization.default.dec-2020.fusionopus" * the kind is "big-rock" * the version is 2 (an int) * the manifest api is embedded within the YAML file. The YAML file has a field called "apiVersion" with a value like "delivery-planning.journeys.a6i.io/v1a", and the manifest api is the substring without the suffix: "delivery-planning.journeys.a6i.io" @param manifest_api_name A string representing the Apodeixi API defining the YAML schemas for the manifest kinds subsumed under such API. The search for manifests is filtered to those whose YAML representation declares itself as falling under this API. Example: 'delivery-planning.journeys.a6i.io' @param namespace A string. Represents the namespace in the KnowledgeBase store's manifests area where to look for the manifest. @param name A string representing the name of the manifest. Along with kind, this identifies a unique logical manifest (other than version number) @param kind A string representing the kind of the manifest. Along with kind, this identifies a unique logical manifest (other than version number) ''' manifest, manifest_path = super().findLatestVersionManifest(parent_trace, manifest_api_name, namespace, name, kind) if manifest == None: # Not found, so normally we should return None. But before giving up, look in parent environment # if we have been configured to fail over the parent environment whenver we can't find something if self._failover_manifest_reads_to_parent(parent_trace): # Search in parent first, and copy anything found to the current environment my_trace = parent_trace.doing("Searching in parent environment") # Temporarily switch to the parent environment, and try again original_env = self.current_environment(my_trace) self.activate(my_trace, self.parent_environment(my_trace).name(my_trace)) manifest, manifest_path = self.findLatestVersionManifest(my_trace, manifest_api_name, namespace, name, kind) # Now that search in parent environment is done, reset back to original environment self.activate(my_trace, original_env.name(my_trace)) # Populate current environment with anything found in the parent environment, but only if it is not # already in current environment if manifest != None: my_trace = parent_trace.doing("Copying manifest from parent environment", data = {"parent environment name": self.parent_environment(my_trace).name(my_trace), "current environment name": self.current_environment(my_trace).name(my_trace)}) from_path = manifest_path to_dir = self.current_environment(my_trace).postingsURL(parent_trace) if not _os.path.exists(to_dir): my_trace = parent_trace.doing("Copying a manifest file", data = {"src_path": from_path, "to_dir": to_dir}) PathUtils().create_path_if_needed(parent_trace=my_trace, path=to_dir) PathUtils().copy_file(parent_trace, from_path, to_dir) return manifest, manifest_path def retrievePreviousManifest(self, parent_trace, manifest_dict): ''' Given a manifest expressed as a dict with a certain version N, will retrieve the same manifest but with version N-1, and return is a dict. If no prior version exists, it returns None ''' new_handle = ManifestUtils().inferHandle(parent_trace, manifest_dict) new_version = new_handle.version if new_version < 1: # versions should be 1, 2, 3, .. etc, not 0 or below raise ApodeixiError(parent_trace, "Invalid manifest with a version below 1", data = {"version given": str(new_version), "manifest handle": new_handle.display(parent_trace)}) # Check that if we are doing an update a prior version does exist prior_handle = new_handle prior_handle.version = new_version - 1 prior_manifest, prior_manifest_path = self.retrieveManifest(parent_trace, prior_handle) return prior_manifest def checkDuplicateManifest(self, parent_trace, manifest_dict): ''' Given a manifest expressed as a dict with a certain version N, will confirm that the store does not already have a manifest with version N. If it does, this method raises an ApodeixiError ''' new_handle = ManifestUtils().inferHandle(parent_trace, manifest_dict) new_version = new_handle.version if new_version < 1: # versions should be 1, 2, 3, .. etc, not 0 or below raise ApodeixiError(parent_trace, "Invalid manifest with a version below 1", data = {"version given": str(new_version), "manifest handle": new_handle.display(parent_trace)}) # Check that no manifest exists with this version duplicate_manifest, duplicate_manifest_path = self.retrieveManifest(parent_trace, new_handle) if duplicate_manifest != None: raise ApodeixiError(parent_trace, "Invalid duplicate manifest: one already exists for the given version", data = {"version given": str(new_version), "manifest handle": new_handle.display(parent_trace)}) def retrieveManifest(self, parent_trace, manifest_handle): ''' Returns a dict and a string. The dict represents the unique manifest in the store that is identified by the `manifest handle`. The string represents the full pathname for the manifest. If none exists, it returns (None, None). That said, before giving up and returning (None, None), this method will attempt to find the manifest in the parent environment if that is what is stipulated in the current environment's configuration @param manifest_handle A ManifestHandle instance that uniquely identifies the manifest we seek to retrieve. ''' manifest, manifest_path = super().retrieveManifest(parent_trace, manifest_handle) if manifest == None: # Not found, so normally we should return None. But before giving up, look in parent environment # if we have been configured to fail over the parent environment whenver we can't find something if self._failover_manifest_reads_to_parent(parent_trace): # Search in parent first, and copy anything found to the current environment my_trace = parent_trace.doing("Searching in parent environment") # Temporarily switch to the parent environment, and try again original_env = self.current_environment(my_trace) self.activate(my_trace, self.parent_environment(my_trace).name(my_trace)) manifest, manifest_path = self.retrieveManifest(my_trace, manifest_handle) # Now that search in parent environment is done, reset back to original environment self.activate(my_trace, original_env.name(my_trace)) # Populate current environment with anything found in the parent environment, but only if it is not # already in current environment if manifest != None: my_trace = parent_trace.doing("Copying manifest from parent environment", data = {"parent environment name": self.parent_environment(my_trace).name(my_trace), "current environment name": self.current_environment(my_trace).name(my_trace)}) from_path = manifest_path to_dir = self.current_environment(my_trace).postingsURL(parent_trace) if not _os.path.exists(to_dir): my_trace = parent_trace.doing("Copying a manifest file", data = {"src_path": from_path, "to_dir": to_dir}) PathUtils().create_path_if_needed(parent_trace=my_trace, path=to_dir) PathUtils().copy_file(parent_trace, from_path, to_dir) return manifest, manifest_path def loadForeignKeyConstraints(self, parent_trace): ''' Loads this store's ForeignKeyConstraintsRegistry from the system area of the store Returns two things: * A ForeignKeyConstraintsRegistry object. If null, this signifies that there was none found in storage * A string, for the path in the file system where the ForeignKeyConstraintsRegistry was retrieved from ''' foreign_key_constraints, path = super().loadForeignKeyConstraints(parent_trace) if foreign_key_constraints == None: # Not found, so normally we should return None. But before giving up, look in parent environment # if we have been configured to fail over the parent environment whenver we can't find something if self._failover_manifest_reads_to_parent(parent_trace): # Search in parent first, and copy anything found to the current environment my_trace = parent_trace.doing("Searching in parent environment") # Temporarily switch to the parent environment, and try again original_env = self.current_environment(my_trace) self.activate(my_trace, self.parent_environment(my_trace).name(my_trace)) foreign_key_constraints, path = self.loadForeignKeyConstraints(my_trace) # Now that search in parent environment is done, reset back to original environment self.activate(my_trace, original_env.name(my_trace)) # Populate current environment with anything found in the parent environment, but only if it is not # already in current environment if foreign_key_constraints != None: my_trace = parent_trace.doing("Copying foreign key constraints from parent environment", data = {"parent environment name": self.parent_environment(my_trace).name(my_trace), "current environment name": self.current_environment(my_trace).name(my_trace)}) from_path = path to_dir = self.current_environment(my_trace).postingsURL(parent_trace) if not _os.path.exists(to_dir): my_trace = parent_trace.doing("Copying a manifest file", data = {"src_path": from_path, "to_dir": to_dir}) PathUtils().create_path_if_needed(parent_trace=my_trace, path=to_dir) PathUtils().copy_file(parent_trace, from_path, to_dir) return foreign_key_constraints, path def archivePosting(self, parent_trace, posting_label_handle, subnamespace): ''' Used after a posting Excel file has been processed. It moves the Excel file to a newly created folder dedicated to this posting event and returns a PostingLabelHandle to identify the Excel file in this newly created archival folder. ''' archival_handle = super().archivePosting(parent_trace, posting_label_handle, subnamespace) return archival_handle def logPostEvent(self, parent_trace, controller_response): ''' Used to record in the store information about a posting event that has been completed. ''' log_txt = super().logPostEvent(parent_trace, controller_response) return log_txt def logFormRequestEvent(self, parent_trace, form_request, controller_response): ''' Used to record in the store information about a request form event that has been completed. ''' log_txt = super().logFormRequestEvent(parent_trace, form_request, controller_response) return log_txt
1.757813
2
example/is_main_example.py
jamesabel/ismain
1
12789363
from ismain import is_main if is_main(): print("Hello from main.")
1.6875
2
Chapter 08/ch8_46.py
bpbpublications/TEST-YOUR-SKILLS-IN-PYTHON-LANGUAGE
0
12789364
<gh_stars>0 import collections q=collections.deque([10,20,30,40]) q.appendleft(0) print(q) #[0,10,20,30,40]
2.5
2
pybie2d/misc/interior_points.py
dbstein/pybie2d
11
12789365
import numpy as np import scipy as sp import scipy.spatial import matplotlib as mpl import matplotlib.path from ..kernels.high_level.cauchy import Cauchy_Layer_Apply from ..point_set import PointSet def find_interior_points(source, target, boundary_acceptable=False): """ quick finding of which points in target are outside vs. inside """ # first exclude things outside of bounding box xmin = source.x.min() xmax = source.x.max() ymin = source.y.min() ymax = source.y.max() in_bounding_box = np.logical_and.reduce([ target.x > xmin, target.x < xmax, target.y > ymin, target.y < ymax]) out_bounding_box = np.logical_not(in_bounding_box) small_targ = PointSet(c=target.c[in_bounding_box]) small_targ.compute_tree() wn = np.zeros(target.N, dtype=complex) wn[out_bounding_box] = 0.0 # compute winding number via cauchy sums wn[in_bounding_box] = Cauchy_Layer_Apply(source, small_targ, \ dipstr=np.ones(source.N)).real wn = np.abs(wn) bad = np.logical_or(np.isnan(wn), np.isinf(wn)) good = np.logical_not(bad) big = np.zeros_like(wn) big[good] = wn[good] > 1e5 bad = np.logical_or(big, bad) wn[bad] = 1.0 # get region where that sum was not accurate enough dist = source.tolerance_to_distance(1e-2) q = target.find_near_points(source, dist).ravel() # phys array, good except in near boundary region wn[q] = 0.0 phys = wn > 0.5 # brute force search poly = mpl.path.Path(source.get_stacked_boundary(T=False)) xq = target.x[q] yq = target.y[q] tq = np.column_stack([xq, yq]) interior = poly.contains_points(tq) phys[q] = interior phys[bad] = boundary_acceptable ext = np.logical_not(phys) return phys, ext
2.390625
2
{{cookiecutter.repo_name}}/python/{{cookiecutter.package_name}}/web/jinja_filters.py
havok2063/cookiecutter-marvin
0
12789366
# !usr/bin/env python2 # -*- coding: utf-8 -*- # # Licensed under a 3-clause BSD license. # from __future__ import print_function, division, absolute_import import flask import jinja2 jinjablue = flask.Blueprint('jinja_filters', __name__) @jinja2.contextfilter @jinjablue.app_template_filter() def split(context, value, delim=None): '''Split a string based on a delimiter''' if not delim: delim = ' ' return value.split(delim) if value else None
2.5
2
Run_MK.py
cduranalarcon/MRR_MK_processing
0
12789367
<filename>Run_MK.py import numpy as np from netCDF4 import Dataset import calendar, datetime, time, glob, os, sys, shutil sys.path.append("lib/") # adding lib path sys.path.append("lib/IMProToo/") # adding lib path from MRR_functions import raw2snow # Process raw data into Doppler moments using MK2012 import core3 as IMProToo np.warnings.filterwarnings('ignore')#to avoid the error messages df = open('default_parameters.txt','r') df_lines = df.readlines() df.close() Root_desc = df_lines[0].replace('\t','').replace('\n','').split('=')[0] TRES_desc = df_lines[1].replace('\t','').replace('\n','').split('=')[0] Short_name_station_desc = df_lines[2].replace('\t','').replace('\n','').split('=')[0] KtoX_desc = df_lines[3].replace('\t','').replace('\n','').split('=')[0] KtoX_a_desc = df_lines[4].replace('\t','').replace('\n','').split('=')[0] KtoX_b_desc = df_lines[5].replace('\t','').replace('\n','').split('=')[0] ZeToS_desc = df_lines[6].replace('\t','').replace('\n','').split('=')[0] ZeToS_A_desc = df_lines[7].replace('\t','').replace('\n','').split('=')[0] ZeToS_B_desc = df_lines[8].replace('\t','').replace('\n','').split('=')[0] Root = df_lines[0].replace('\t','').replace('\n','').split('=')[1] TRES = int(df_lines[1].replace('\t','').replace('\n','').replace(' ','').split('=')[1]) Short_name_station = df_lines[2].replace('\t','').replace('\n','').split('=')[1] KtoX = df_lines[3].replace('\t','').replace('\n','').replace(' ','').split('=')[1] KtoX_a = float(df_lines[4].replace('\t','').replace('\n','').replace(' ','').split('=')[1]) KtoX_b = float(df_lines[5].replace('\t','').replace('\n','').replace(' ','').split('=')[1]) ZeToS = df_lines[6].replace('\t','').replace('\n','').replace(' ','').split('=')[1] ZeToS_A = float(df_lines[7].replace('\t','').replace('\n','').replace(' ','').split('=')[1]) ZeToS_B = float(df_lines[8].replace('\t','').replace('\n','').replace(' ','').split('=')[1]) #Parameters print("Define parameters (data path, temporal resolution, etc.). YES (Y,y,yes): update parameters, or NOT (N,n,not,Enter): Use default parameters (already defined by the user).") answer = input() #input from the user if (answer == "Y") or (answer == "y") or (answer == "YES") or (answer == "yes"): print('Insert input Data path (Press Enter for default = ' + Root + '):') answer = input() if answer != '': Root=answer #input from the user print("Insert output temporal resolution in seconds (Press Enter for default = " + str(TRES) + "s):") answer = input() #input from the user if answer != '': TRES = int(answer) print('Insert short name of the station (Press Enter for default = ' + Short_name_station + '):') answer = input() if answer != '': Short_name_station = answer print('Perform Linear correction of radome attenuation (K to X band conversion)? (Press Enter for default = ' + KtoX + '):') answer = input() if answer != '': KtoX = answer if (KtoX == 'True') or (KtoX == 'T') or (KtoX == 'TRUE') or (KtoX == 'true') or (KtoX == 't'): print('Insert the slope parameter for the radome attenuation correction (Press Enter for default = ' + str(KtoX_a) + '):') answer = input() if answer != '': KtoX_a = float(answer) print('Insert the intercept parameter for the radome attenuation correction (Press Enter for default = ' + str(KtoX_b) + '):') answer = input() if answer != '': KtoX_b = float(answer) print('Convert Ze to Precipitation rate? (Press Enter for default = ' + ZeToS + '):') answer = input() if answer != '': ZeToS = answer if (ZeToS == 'True') or (ZeToS == 'T') or (ZeToS == 'TRUE') or (ZeToS == 'true') or (ZeToS == 't'): print('Insert the "A" parameter (constant in Ze-S relationship) (Press Enter for default = ' + str(ZeToS_A) + '):') answer = input() if answer != '': ZeToS_A = float(answer) print('Insert the "B" parameter (Exponent in Ze-S relationship) (Press Enter for default = ' + str(ZeToS_B) + '):') answer = input() if answer != '': ZeToS_B = float(answer) df = open('default_parameters.txt','w') df.write(Root_desc+"\t"+"="+'\t'+Root+"\n") df.write(TRES_desc+"\t"+"="+'\t'+str(TRES)+"\n") df.write(Short_name_station_desc+"\t"+"="+'\t'+Short_name_station+"\n") df.write(KtoX_desc+"\t"+"="+'\t'+KtoX+"\n") df.write(KtoX_a_desc+"\t"+"="+'\t'+str(KtoX_a)+"\n") df.write(KtoX_b_desc+"\t"+"="+'\t'+str(KtoX_b)+"\n") df.write(ZeToS_desc+"\t"+"="+'\t'+ZeToS+"\n") df.write(ZeToS_A_desc+"\t"+"="+'\t'+str(ZeToS_A)+"\n") df.write(ZeToS_B_desc+"\t"+"="+'\t'+str(ZeToS_B)+"\n") df.close() os.chdir(Root) name_station = '_'.join(Short_name_station.split(' ')) Descr = "MRR data at " + name_station + ", first MRR processed with MK12 method v.0.103." folder=Root dircf=glob.glob(Root+'*.raw') dircf=np.sort(dircf) if len(dircf) == 1: print('In this folder there is '+str(len(dircf))+' raw file') else: print('In this folder there are '+str(len(dircf))+' raw files') for name in dircf: NameFile=name count=0 NameFile_out = NameFile[:-4]+'-MK.nc' #create a new file raw2snow(NameFile,NameFile_out, TRES = TRES, Descr = Descr) # Convert Raw into Doppler Moments using MK2012 ##Including S estimates using Grazioli et al, 2017. if (KtoX == 'True') or (KtoX == 'T') or (KtoX == 'TRUE') or (KtoX == 'true') or (KtoX == 't'): print("Converting K to X band using Grazioli et al, 2017, TC.") ds = Dataset(NameFile_out,'a') Ze = ds.variables["Ze"][:] ZeX = ds.createVariable('ZeX', 'f', ('time', 'range',),fill_value=-9999.) #print(type(KtoX_a),type(KtoX_b)) ZeX[:] = KtoX_a*Ze+KtoX_b ZeX.description = "Ze converted into X-band to take into accound the radome attenuation (see Grazioli et al. 2017, TC)" ZeX.units = "dBZe" if (ZeToS == 'True') or (ZeToS == 'T') or (ZeToS == 'TRUE') or (ZeToS == 'true') or (ZeToS == 't'): print("Including S estimates using Grazioli et al, 2017.") S = ds.createVariable('SnowfallRate', 'f', ('time', 'range',),fill_value=-9999.) S[:] = ((10**(ZeX[:]/10.))/(1.*ZeToS_A))**(1./ZeToS_B) S.description = "Snowfall rate derived from S-Ze relationship in Grazioli et al. (2017, TC)" S.units = "mm h-1" ds.close() else: if (ZeToS == 'True') or (ZeToS == 'T') or (ZeToS == 'TRUE') or (ZeToS == 'true') or (ZeToS == 't'): #In case there is not a Radome only perform the Z-S conversion print("Including S estimates using Grazioli et al, 2017, TC.") ds = Dataset(NameFile_out,'a') Ze = ds.variables["Ze"][:] S = ds.createVariable('SnowfallRate', 'f', ('time', 'range',),fill_value=-9999.) S[:] = ((10**(Ze[:]/10.))/(1.*ZeToS_A))**(1./ZeToS_B) S.description = "Snowfall rate derived from S-Ze relationship in Grazioli et al. (2017, TC)" S.units = "mm h-1" ds.close() ##default Parameters #Input data path = /home/claudio/Projects/git/MRR_DDU/Data/DDU/RawSpectra/201702/ #output temporal resolution in seconds = 60 #Short name of the station = DDU #Radome attenuation correction (k to x band) (True or False) = True #Radome attenuation (k to x band), a slope (dBZ) = 0.99 #Radome attenuation (k to x band), b intercept (dBZ) = 6.14 #Snowfall rate conversion (Z-S) (True or False) = True #Z-S relationship, A parameter (constant) = 76 #Z-S relationship, B parameter (exponent) = 0.91
2.21875
2
scripts/fast_sparCC.py
shafferm/fast_sparCC
6
12789368
<reponame>shafferm/fast_sparCC #!/usr/local/bin/python2 import argparse from biom import load_table from sparcc_fast.sparcc_functions import sparcc from sparcc_fast import utils from sparcc_fast.bootstrap_correlations import bootstrap_correlations __author__ = 'shafferm' # TODO: implement sparse pandas dataframe def main(args): print "reading in table" table = load_table(args.input) df = utils.biom_to_pandas(table) # filter if args.min_samples is not None: df = utils.min_sample_filter(df, args.min_samples) print "Table filtered: " + str(table.shape[1]) + " observations" print "" elif args.sparcc_filter is True: df = utils.sparcc_paper_filter(df) print "Table filtered: " + str(table.shape[1]) + " observations" print "" print "calculating correlations" cor, cov = sparcc(df, procs=args.procs) correls = utils.df_to_correls(cor) if not args.corr_only: print "bootstrapping" correls['p_value'] = bootstrap_correlations(df, cor, args.boots, args.procs) # adjust p-value if desired if args.p_adjust == "FDR": correls['p_adjusted'] = utils.bh_adjust(correls['p_value']) elif args.p_adjust == "bonferroni": correls, header = utils.bonferroni_adjust(correls['p_value']) correls.to_csv(args.output, sep='\t', index=False) if __name__ == '__main__': """main, takes argparser""" parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", help="location of input biom file") parser.add_argument("-o", "--output", help="output file location", default="correls.txt") parser.add_argument("-p", "--procs", help="number of processors to use, only matters if calculating p-values", type=int) parser.add_argument("-b", "--boots", help="number of bootstraps", type=int, default=100) parser.add_argument("--corr_only", help="only calculate correlations, don't calculate p-values", action="store_true", default=False) parser.add_argument("--p_adjust", help="multiple testing corretion method: FDR, bonferroni or none", default="FDR") parser.add_argument("--sparcc_filter", help="filter input table according to parameters defined in Inferring" "Correlation Networks from Genomic Survey Data", default=False, action="store_true") parser.add_argument("--min_samples", help="minimum number of samples a observation must be present in to be kept" "in anaylsis", type=int) main(parser.parse_args())
2.53125
3
models/tss_capsnet/model.py
StephenTerror/TSSCapsNet
1
12789369
# Copyright 2021 <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import tensorflow as tf from tensorflow.python.keras.utils.multi_gpu_utils import multi_gpu_model from utils.get_resnet_layer import get_resnet_depth_from_name from . import dct_capsnet_e1_graph_mnist from . import dct_capsnet_h1_attention_mnist from . import dct_capsnet_h1_graph_mnist from . import dct_capsnet_h1_gumbel_gate_mnist from . import dwt_capsnet_e1_graph_mnist from . import dwt_capsnet_e1_graph_smallnorb from . import dwt_capsnet_fpn_graph_mnist from . import dwt_capsnet_fpn_graph_smallnorb from . import dwt_resnet_capsnet_fpn_graph_cifar from . import rfft_capsnet_e1_graph_mnist from . import wst_capsnet_e1_graph_mnist from .call_backs import get_callbacks from ..etc_model.call_backs import get_callbacks as etc_callback from ..layers.model_base import Model from utils.dataset import Dataset from utils.tools import marginLoss class TSSCapsNet(Model): def __init__(self, data_name, model_name='DCT_Efficient_CapsNet', mode='test', config_path='config.json', custom_path=None, verbose=True, gpu_number=None, optimizer='Adam', half_filter_in_resnet=True, use_tiny_block=True, heterogeneous=False, **kwargs): Model.__init__(self, data_name, mode, config_path, verbose) self.model_name = model_name if custom_path != None: self.model_path = custom_path else: self.model_path = os.path.join(self.config['saved_model_dir'], f"{self.model_name}", f"{self.model_name}_{self.data_name}.h5") os.makedirs(os.path.join(self.config['saved_model_dir'], f"{self.model_name}"), exist_ok=True) self.model_path_new_train = os.path.join(self.config['saved_model_dir'], f"{self.model_name}", f"{self.model_name}_{self.data_name}_{'{epoch:03d}'}.h5") self.tb_path = os.path.join(self.config['tb_log_save_dir'], f"{self.model_name}_{self.data_name}") self.half = half_filter_in_resnet self.tiny = use_tiny_block self.heterogeneous = heterogeneous self.load_graph() if gpu_number: self.model = multi_gpu_model(self.model, gpu_number) self.optimizer = optimizer def load_graph(self): if self.data_name in ['MNIST', 'MNIST_SHIFT', 'FASHION_MNIST', 'FASHION_MNIST_SHIFT']: input_shape = self.config['MNIST_INPUT_SHAPE'] num_classes = 10 elif self.data_name in ['CIFAR10', 'CIFAR10_SHIFT']: input_shape = self.config['CIFAR10_INPUT_SHAPE'] num_classes = 10 elif self.data_name == 'SMALLNORB_INPUT_SHAPE': num_classes = 5 input_shape = self.config['CIFAR10_INPUT_SHAPE'] elif self.data_name == 'MULTIMNIST': raise NotImplemented else: raise NotImplementedError if self.model_name == "DCT_E_MNIST": self.model = dct_capsnet_e1_graph_mnist.build_graph(input_shape, self.mode, self.model_name) elif self.model_name == "DCT_H_A_MNIST": self.model = dct_capsnet_h1_attention_mnist.build_graph(input_shape, self.mode, 3, self.model_name) elif self.model_name == "DCT_H_MNIST": self.model = dct_capsnet_h1_graph_mnist.build_graph(input_shape, self.mode, 3, self.model_name) elif self.model_name == "DCT_H_Gumbel_MNIST": self.model = dct_capsnet_h1_gumbel_gate_mnist.build_graph(input_shape, self.mode, 3, self.model_name) elif self.model_name == "DWT_E_MNIST": self.model = dwt_capsnet_e1_graph_mnist.build_graph(input_shape, self.mode, self.model_name) elif self.model_name == "DWT_E_SMALLNORB": self.model = dwt_capsnet_e1_graph_smallnorb.build_graph(input_shape, self.mode, self.model_name) elif self.model_name == "DWT_FPN_MNIST": self.model = dwt_capsnet_fpn_graph_mnist.build_graph(input_shape, self.mode, num_classes, ['FPN', 'FPN', 'FPN'], regularize=1e-4, name=self.model_name) elif self.model_name == "DWT_Tiny_FPN_MNIST": self.model = dwt_capsnet_fpn_graph_mnist.build_graph(input_shape, self.mode, num_classes, ['FPN', 'FPN', 'FPN'], regularize=1e-4, name=self.model_name) elif self.model_name == "DWT_Attention_FPN_MNIST": self.model = dwt_capsnet_fpn_graph_mnist.build_graph(input_shape, self.mode, num_classes, ['FPN', 'FPN', 'FPN'], regularize=1e-4, name=self.model_name) elif self.model_name == "DWT_FPN_SMALLNORB": self.model = dwt_capsnet_fpn_graph_smallnorb.build_graph(input_shape, self.mode, num_classes, ['FPN', 'FPN', 'FPN'], regularize=1e-4, name=self.model_name) elif self.model_name == "DWT_Tiny_FPN_SMALLNORB": self.model = dwt_capsnet_fpn_graph_smallnorb.build_graph(input_shape, self.mode, num_classes, ['FPN', 'FPN', 'FPN'], regularize=1e-4, name=self.model_name) elif self.model_name == "DWT_Attention_FPN_SMALLNORB": self.model = dwt_capsnet_fpn_graph_smallnorb.build_graph(input_shape, self.mode, num_classes, ['FPN', 'FPN', 'FPN'], regularize=1e-4, name=self.model_name) elif self.model_name == "RFFT_E_MNIST": self.model = rfft_capsnet_e1_graph_mnist.build_graph(input_shape, self.mode, self.model_name) elif self.model_name == "WST_E_MNIST": self.model = wst_capsnet_e1_graph_mnist.build_graph(input_shape, self.mode, self.model_name) elif self.model_name.startswith("DWT_") and self.model_name.endswith("_FPN_CIFAR"): # example: "DWT_Tiny_Half_R18_Tiny_FPN_CIFAR" half = True if "Half_R" in self.model_name else False tiny = True if "DWT_Tiny" in self.model_name else False if "Tiny_FPN_CIFAR" in self.model_name: routing_name_list = ["Tiny_FPN", "Tiny_FPN", "Tiny_FPN"] elif "Attention_FPN_CIFAR" in self.model_name: routing_name_list = ['Attention', 'Attention', 'Attention'] elif "FPN_CIFAR" in self.model_name: routing_name_list = ['FPN', 'FPN', 'FPN'] else: print("FPN type is not support!") raise NotImplementedError self.model = dwt_resnet_capsnet_fpn_graph_cifar.build_graph( input_shape, self.mode, num_classes=10, routing_name_list=routing_name_list, regularize=1e-4, depth=get_resnet_depth_from_name(self.model_name), tiny=tiny, half=half, name=self.model_name, heterogeneous=self.heterogeneous ) else: print(f"model name {self.model_name} is NotImplemented") raise NotImplemented def train(self, dataset=None, initial_epoch=0): callbacks = get_callbacks(self.model_name, self.tb_path, self.model_path_new_train, self.config['lr_dec'], self.config['lr'], optimizer=self.optimizer) if dataset is None: dataset = Dataset(self.data_name, self.config_path) dataset_train, dataset_val = dataset.get_tf_data() if self.optimizer == 'Adam': self.model.compile(optimizer=tf.keras.optimizers.Adam(lr=self.config['lr'], momentum=0.9), loss=[marginLoss, 'mse'], loss_weights=[1., self.config['lmd_gen']], metrics={self.model_name: 'accuracy'}) else: self.model.compile(optimizer=tf.keras.optimizers.SGD(lr=self.config['lr']), loss=[marginLoss, 'mse'], loss_weights=[1., self.config['lmd_gen']], metrics={self.model_name: 'accuracy'}) # self.model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=self.config['lr']), # loss=[marginLoss, 'mse'], # loss_weights=[1., self.config['lmd_gen']], # metrics={self.model_name: 'accuracy'}) steps = None print('-' * 30 + f'{self.data_name} train' + '-' * 30) history = self.model.fit(dataset_train, epochs=self.config[f'epochs'], steps_per_epoch=steps, validation_data=dataset_val, batch_size=self.config['batch_size'], initial_epoch=initial_epoch, callbacks=callbacks, workers=self.config['num_workers']) self.model.save_weights(os.path.join(self.config['saved_model_dir'], f"{self.model_name}", f"{self.model_name}_{self.data_name}.h5")) return history
1.570313
2
df_browse/chunk_search_utils.py
petergaultney/df-browse
0
12789370
# chunk search utils # from gui_debug import * def not_at_end(lengthable, position, down): return position < len(lengthable) if down else position > 0 def get_next_chunk(sliceable, start_position, chunk_size, down): """includes start_position, of size chunk_size""" if not down: chunk_beg = max(0, start_position - chunk_size + 1) # print('yielding chunk upwards from ', chunk_beg, 'to', start_position + 1) return sliceable[chunk_beg:start_position + 1], chunk_beg else: chunk_end = min(len(sliceable), start_position+chunk_size) # print('yielding chunk downwards from', start_position, 'to', chunk_end) return sliceable[start_position:chunk_end], start_position def search_chunk_yielder(sliceable, start_location, down=True, chunk_size=100): start_of_next_chunk = start_location while not_at_end(sliceable, start_of_next_chunk, down): yield get_next_chunk(sliceable, start_of_next_chunk, chunk_size, down) start_of_next_chunk = start_of_next_chunk + chunk_size if down else start_of_next_chunk - chunk_size raise StopIteration def search_list_for_str(lst, search_string, starting_item, down, case_insensitive): """returns index into list representing string found, or None if not found""" search_string = search_string.lower() if case_insensitive else search_string search_slice_end = len(lst) if down else 0 search_list = lst[starting_item:] if down else reversed(lst[:starting_item+1]) # print('searching list of size', len(lst), 'down' if down else 'up', 'from', starting_item, 'to', search_slice_end, 'for:', search_string) for idx, s in enumerate(search_list): s = s.lower() if case_insensitive else s if s.find(search_string) != -1: # print('found! ', s, 'at', idx, 'starting from', starting_item, 'in list of len', len(lst), 'down?', down) return starting_item + idx if down else starting_item - idx return None def search_sliceable_by_yielded_chunks_for_str(sliceable, search_string, starting_index, down, case_insensitive): """This is the main entry point for everything in this module.""" for chunk, chunk_start_idx in search_chunk_yielder(sliceable, starting_index, down): found_at_chunk_idx = search_list_for_str(chunk, search_string, 0 if down else len(chunk) - 1, down, case_insensitive) if found_at_chunk_idx is not None: return found_at_chunk_idx + chunk_start_idx return None
3.1875
3
foliant/preprocessors/base.py
foliant-docs/foliant
105
12789371
import re from logging import Logger from typing import Dict import yaml OptionValue = int or float or bool or str class BasePreprocessor(): '''Base preprocessor. All preprocessors must inherit from this one.''' # pylint: disable=too-many-instance-attributes defaults = {} tags = () @staticmethod def get_options(options_string: str) -> Dict[str, OptionValue]: '''Get a dictionary of typed options from a string with XML attributes. :param options_string: String of XML attributes :returns: Dictionary with options ''' if not options_string: return {} option_pattern = re.compile( r'(?P<key>[A-Za-z_:][0-9A-Za-z_:\-\.]*)=(\'|")(?P<value>.+?)\2', flags=re.DOTALL ) return { option.group('key'): yaml.load(option.group('value'), yaml.Loader) for option in option_pattern.finditer(options_string) } def __init__(self, context: dict, logger: Logger, quiet=False, debug=False, options={}): # pylint: disable=dangerous-default-value # pylint: disable=too-many-arguments self.project_path = context['project_path'] self.config = context['config'] self.context = context self.logger = logger self.quiet = quiet self.debug = debug self.options = {**self.defaults, **options} self.working_dir = self.project_path / self.config['tmp_dir'] if self.tags: self.pattern = re.compile( rf'(?<!\<)\<(?P<tag>{"|".join(self.tags)})' + r'(\s(?P<options>[^\<\>]*))?\>' + r'(?P<body>.*?)\<\/(?P=tag)\>', flags=re.DOTALL ) def apply(self): '''Run the preprocessor against the project directory. Must be implemented by every preprocessor. ''' raise NotImplementedError
2.5
2
Algorithms/010_SUBS.py
ChaoticMarauder/Project_Rosalind
0
12789372
<gh_stars>0 def dna_motif(dna, motif): m_len=len(motif) list_motifs=[] for i in range(len(dna)-m_len): if(dna[i:i+m_len]==motif): list_motifs.append(i+1) return list_motifs def main(): with open('datasets/rosalind_subs.txt') as input_data: dna,motif=input_data.read().strip().split('\n') # dna='GATATATGCATATACTT' # motif='ATAT' motifs=dna_motif(dna, motif) print(' '.join(map(str,(motifs)))) with open('solutions/rosalind_subs.txt', 'w') as output_data: output_data.write(' '.join(map(str,(motifs)))) if(__name__=='__main__'): main()
3.40625
3
tests/integration/test_integration_delivery_method.py
pwitab/visma
5
12789373
<gh_stars>1-10 import pytest from visma.models import DeliveryMethod class TestDeliveryMethod: @pytest.fixture() def method(self): yield DeliveryMethod.objects.all().first() def test_list_delivery_methods(self): methods = DeliveryMethod.objects.all() assert len(methods) is not 0 def test_get_delivery_method(self, method): delivery_method = DeliveryMethod.objects.get(method.id) assert delivery_method.id == method.id
2.25
2
app/models/comment.py
maricio41/homebase
2
12789374
from .db import db from sqlalchemy.sql import func class Comment(db.Model): __tablename__ = "comments" id = db.Column(db.Integer, nullable=False, primary_key=True) commentBody = db.Column(db.String(255), nullable=False) createdAt = db.Column(db.DateTime(timezone=True), nullable=False, server_default=func.now()) projectId = db.Column(db.Integer, db.ForeignKey("projects.id"), nullable = False) userId = db.Column(db.Integer, db.ForeignKey("users.id"), nullable = False) project = db.relationship("Project", back_populates="comments") user = db.relationship("User", back_populates="comments") def to_dict(self): return { "id": self.id, "commentBody": self.commentBody, "createdAt": self.createdAt, "projectId": self.projectId, "userId": self.userId }
2.75
3
tests/helpers/response_test.py
Impactstory/jump-api
15
12789375
import json import unittest from jsonschema import validate, ValidationError from views import app import os import urllib.parse from urllib.parse import urlencode def testget(url): client = app.test_client() client.testing = True return json.loads(client.get(url).get_data(as_text=True)) class ResponseTest(unittest.TestCase): def __init__(self): self.client = app.test_client() self.client.testing = True def json_response(self, url): return json.loads(self.client.get(url).get_data(as_text=True)) def assert_schema(obj, schema, test_name): try: validate(obj, schema) except ValidationError as e: raise AssertionError(u'error in {}: {}'.format(test_name, str(e))) def dev_request_url(path, params=None): params = params.copy() if params else {} params.update({ 'jwt': os.environ["UNSUB_USER1_JWT"] }) return urllib.parse.urlunparse([ '', '', path, '', urlencode(params), '', ])
2.84375
3
tests/test_updater.py
amjadsaadeh/dvc
0
12789376
<filename>tests/test_updater.py import os from tests.basic_env import TestDvc class TestUpdater(TestDvc): def test(self): # NOTE: only test on travis CRON to avoid generating too much logs travis = os.getenv('TRAVIS') == 'true' if not travis: return cron = os.getenv('TRAVIS_EVENT_TYPE') == 'cron' if not cron: return env = os.environ.copy() if os.getenv('CI'): del os.environ['CI'] self.dvc.updater.check() self.dvc.updater.check() self.dvc.updater.check() os.environ = env.copy()
2.234375
2
old/utils.py
NateThom/contrastive_learning
0
12789377
<filename>old/utils.py import argparse def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--image_path', default='/home/nthom/Documents/datasets/CelebA/Img/', # default='/home/nthom/Documents/datasets/CelebA/Img/partial_blackout/', #default='/home/nthom/Documents/datasets/lfwa/', # default='/home/nthom/Documents/datasets/UMD-AED/', help='Path to input data directory [/home/user/Documents/input_images/]') parser.add_argument('--image_dir', default='resized_images_178x218/', # default='img_celeba/', # default='resized_aligned_images_178x218', # default='resized_segment1', # default='lfw', # default='croppedImages', help='input_images') parser.add_argument('--attr_label_path', # default='/home/nthom/Documents/datasets/UNR_Facial_Attribute_Parsing_Dataset/list_attr_celeba_attparsenet.csv', default='/home/nthom/Documents/datasets/UNR_Facial_Attribute_Parsing_Dataset/list_attr_celeba_hair.csv', # default='/home/nthom/Documents/datasets/lfwa/lfwa_labels_full_paths.csv', # default='/home/nthom/Documents/datasets/UMD-AED/Files_attparsenet/list_attr_umdaed_reordered.csv', help='Path to mapping between input images and binary attribute labels [/home/user/Documents/list_attr_celeba_attparsenet.csv]') parser.add_argument('--simclr', # default=False, default=True, help='If true, use the simclr framework') parser.add_argument('--model', # default="resnet18", default="resnet50", # default="resnet152", help='Designates the model to be initialized [attparsenet]') parser.add_argument('--load', default=False, # default=True, help='True for loading a pretrained model, False otherwise [0]') parser.add_argument('--load_path', default='/home/nthom/Documents/contrastive_learning/checkpoints/', help='File path for the model to load [/home/user/Document/models/]') parser.add_argument('--load_file', default='epoch=24-Validation Loss=0.24166-resnet18Pretrain_resizedImages178x218_hair_randomResizedCrop_blur15_hFlip_0.01.ckpt', help='File name for the model to load [/model_to_load]') parser.add_argument('--save', default=True, # default=False, help='True for saving the model, False otherwise [True]') parser.add_argument('--save_path', default='/home/nthom/Documents/contrastive_learning/checkpoints', help='Dir for saving models [./saved_models/]') # Base Model, Dataset, labels, data augs, Learning Rate parser.add_argument('--save_name', default='SimClr_resizedImages178x218_hair_randomResizedCrop_SimClr_0.01', help='Dir for saving models [./saved_models/]') parser.add_argument('--train_epochs', default=25, help='Number of training epochs [22]') parser.add_argument('--train_size', #lfwa and umd # default=0, #celeba default=162771, help='Number of samples in training set [162770]') parser.add_argument('--val_size', #lfwa and umd # default=0, #celaba default=19867, help='Number of samples in validation set [19867]') parser.add_argument('--test_size', #lfwa # default=13088, # umd # default=2808, #celeba default=19961, help='Number of samples in test set [19963]') parser.add_argument('--all_size', #lfwa # default=13088, # umd # default=2808, #celeba default=202599, help='Total Number of samples in the dataset [202600]') parser.add_argument('--train', # default=False, default=True, help='Train the model on the training set and evaluate on the validation set') parser.add_argument('--val_only', default=False, # default=True, help='Evaluate the model on the validation set') parser.add_argument('--test', default=False, # default=True, help='Evaluate the model on the test set') parser.add_argument('--pretrain', # default=False, default=True, help='Download pretrained resnet weights') parser.add_argument('--n_labels', default=5, # default=40, help='Number of classes in task') parser.add_argument('--attr_to_use', # default=['Bald', 'Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Gray_Hair'], default=['Other', 'Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Gray_Hair'], # default=['5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', # 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', # 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', # 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', # 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', # 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', # 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', # 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'], help='List of attributes to predict') parser.add_argument('--attr_list', default=['5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'], help='List of all 40 attributes') parser.add_argument('--show_batch', default=False, # default=True, help='Show the batch input images and masks for debugging') parser.add_argument('--shuffle', # default=False, default=True, help='Shuffle the order of training samples. Validation and Testing sets will not be shuffled [True]') parser.add_argument('--random_seed', default=256, help='Seed for random number generators [64]') parser.add_argument('--batch_size', default=64, help='Batch size for images [32]') parser.add_argument('--lr', default=0.01, help='Learning rate [0.001]') parser.add_argument('--temperature', default=0.07, help='Temperature [0.07]') parser.add_argument('--patience', default=5, help='Learning Rate Scheduler Patience [5]') return parser.parse_args() # parser.add_argument('--save_feature_maps', # default=False, # # default=True, # help='Save all feature maps for data in either the test or val set')
2.296875
2
protostar/format/format1/exploit.py
RegaledSeer/netsecnoobie
0
12789378
import subprocess FILE = "/opt/protostar/bin/format1" #9 bytes ADDRESS = "BBBB\x38\x96\x04\x08B" def craft_payload(string): string += ADDRESS string += "%130$n" return string def main(): payload = craft_payload("", NUM_POINTERS) subprocess.call([FILE, payload]) if __name__ == "__main__": main()
2.578125
3
lab/doodle/test03/testcode01.py
JoHyukJun/RasberryPiLab
0
12789379
<reponame>JoHyukJun/RasberryPiLab import RPi.GPIO as GPIO import time REDLEDlist = [4, 17, 18, 27, 22, 23, 24, 25] KEYPADlist = [6, 12, 13, 16, 19, 28, 26, 21] def KeypadRead(): keypadnum = -1 for i in range(8): if (not GPIO.input(KEYPADlist[1])): keypadnum = i break return keypadnum def LEDControl(keypadnum): for i in range(8): if(i == keypadnum): GPIO.output(REDLEDlist[i], GPIO.HIGH) else: GPIO.output(REDLEDlist[i], GPIO.LOW) GPIO.setmode(GPIO.BCM) for i in REDLEDlist: GPIO.setup(i, GPIO.OUT, initial=GPIO.LOW) for i in KEYPADlist: GPIO.setup(i, GPIO.IN) time.sleep(0.5) while(1): try: keypadnum = KeypadRead() LEDControl(keypadnum) except KeyboardInterrupt: pass GPIO.cleanup()
3.296875
3
jokenpo.py
hlruffo/exercicios_Python
1
12789380
# coding: iso-8859-1 -*- import random from time import sleep jogar ='sim' print("_________________________") print("!!Bem-vindo ao Jokenpo!!") print("_________________________") resultado = ['Vitória do CPU!', 'Houve um empate!', 'O usuário venceu!'] jogadas = ['pedra', 'papel', 'tesoura'] pontos_user = 0 pontos_cpu = 0 while jogar == 'sim': user = input(f'Escolha uma jogada entre {jogadas}: ').lower() if user not in jogadas: user = input (f'As jogadas válidas são {jogadas}. Escolha uma entre elas: ').lower() print('Pronto?') cpu = random.choice(jogadas) sleep(3) print('Processando jogadas!') sleep(2) # 0 1 2 #jogadas = ['pedra', 'papel', 'tesoura'] #resultado = ['Vitória do CPU!', 'Houve um empate!', 'O usuário venceu!'] if user in jogadas[0] and cpu in jogadas[1] or user in jogadas[1] and cpu in jogadas[2] or user in jogadas[2] and cpu in jogadas[0]: result =0 elif user == cpu: result = 1 else: result =2 if result == 1: caso= resultado[1] elif result == 0: caso= resultado[0] pontos_cpu +=1 else: caso = resultado[2] pontos_user += 1 print(f'Usuário escolheu {user} e CPU {cpu}.{caso} Placar: Usuário {pontos_user} x CPU {pontos_cpu}.') jogar = input('Gostaria de jogar novamente? Digite sim ou não:').lower() while jogar != "sim" and jogar != "não": jogar = input('Opção inválida! Gostaria de jogar novamente? Digite sim ou não: \n').lower() if pontos_cpu > pontos_user: print(f'Placar final: Usuário {pontos_user}x CPU {pontos_cpu}. Vitória do CPU. Melhor sorte na próxima vez!') elif pontos_user > pontos_cpu: print(f'Placar final: Usuário {pontos_user}x CPU {pontos_cpu}. Parabéns!!!! Você venceu!! Até a próxima') else: print(f'Placar final: Usuário {pontos_user}x CPU {pontos_cpu}. Desta vez empatamos! Até a próxima!')
3.8125
4
dudu/2021-01-02.py
vollov/python-test
1
12789381
string_from_file = "aAu($requirementMet);g_pc.<strong>$233.45</strong>asdfdsaf<strong>$2.33</strong>op98795436jlkn lk;<strong>$15.22</strong>0989-0k;lkk0" str=string_from_file print(str) # this function finds the price and return to caller # - steps to do: aaaa, bbb # parameters: # # return: a float number def get_price(): start_index=str.find('<strong>$') end_index=str.find('</strong>') p =str[start_index + 9:end_index] # here we want convert string 'p' into a float number p=float(p) # '2.33'--> 2.33 save into p--> 2.33 return p discount=0.9 print("the discount price is: ") price=get_price() actual_price=price*discount print(actual_price)
3.640625
4
scripts/create_ec2.py
noahhai/autovpn
0
12789382
from __future__ import print_function import time import boto import boto.ec2 import sys import sys def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) keyname=sys.argv[1] instance_type=sys.argv[2] region=sys.argv[3] ami=sys.argv[4] port=sys.argv[5] if region: conn_region = boto.ec2.connect_to_region(region) else: conn_region = boto.connect_ec2() def auto_vpn(ami=ami, instance_type=instance_type, key_name=keyname, group_name="vpn_2", ssh_port="22", vpn_port=port, cidr="0.0.0.0/0", tag="auto_vpn", user_data=None): ec2 = conn_region try: group = ec2.get_all_security_groups(groupnames=[group_name])[0] except ec2.ResponseError, e: if e.code == 'InvalidGroup.NotFound': group = ec2.create_security_group(group_name, 'A group that allows VPN access') group.authorize('tcp',ssh_port,ssh_port,cidr) group.authorize('udp',vpn_port,vpn_port,cidr) else: raise if int(port) != int(1194): try: mgroup = ec2.get_all_security_groups(groupnames=[group_name])[0] mgroup.authorize('udp',vpn_port,vpn_port,cidr) except ec2.ResponseError, e: if e.code == 'InvalidPermission.Duplicate': '''fail here''' else: raise spot_request = ec2.request_spot_instances( price="0.005", count=1, image_id=ami, key_name=key_name, security_groups=[group_name], instance_type=instance_type, user_data=user_data, )[0] while True: eprint("Waiting. spot request status: '%s', state: '%s'" % (spot_request.state, spot_request.status.code)) if spot_request.state == 'active' and spot_request.status.code == 'fulfilled': break time.sleep(10) spot_request = ec2.get_all_spot_instance_requests(request_ids=[spot_request.id])[0] while True: instance = ec2.get_all_instances(instance_ids=[spot_request.instance_id])[0].instances[0] eprint("Waiting. spot instance state: '%s'" % instance.state) if instance.state == 'running': break time.sleep(10) ec2.create_tags([instance.id], {tag:""}) global host instance = ec2.get_all_instances(instance_ids=[spot_request.instance_id])[0].instances[0] host = instance.ip_address print("%s" % host) if __name__ == "__main__": auto_vpn()
2.25
2
workflow/assemble_page.py
ncsa/ng-notebook
0
12789383
import os # in a real project, this script probably wouldn't make so many assumptions # about the inputs and outputs NG_DIST_DIR_PATH = '/ng-notebook/angular/dist/' OUTFILE_PATH = '/hostmount/output/index.html' # ng build's index.html will be a small, single-line file with open(os.path.join(NG_DIST_DIR_PATH, 'index.html'), 'r') as infile: html = infile.read() # replace the favicon with inline data inline_data = "window['breedCounts'] = {" + \ "appenzeller: 6, briard: 9, cotondetulear: 5, dhole: 1, eskimo: 4};" html = html.replace(\ '<link rel="icon" type="image/x-icon" href="favicon.ico">', '<script type="text/javascript">' + inline_data + '</script>') # insert the css with open(os.path.join(NG_DIST_DIR_PATH, 'styles.bundle.css'), 'r') as infile: css = infile.read() html = html.replace(\ '<link href="styles.bundle.css" rel="stylesheet"/>', '<style>' + css + '</style>') # insert the js bundles (there are three) js_files = ['inline.bundle.js', 'polyfills.bundle.js', 'main.bundle.js'] for js_file in js_files: with open(os.path.join(NG_DIST_DIR_PATH, js_file), 'r') as infile: js = infile.read() html = html.replace(\ '<script type="text/javascript" src="' + js_file + '"></script>', '<script type="text/javascript">' + js + '</script>') # write the final html with open(OUTFILE_PATH, 'w') as outfile: outfile.write(html)
2.46875
2
timeseries/timeseries/models/__init__.py
takotab/timeseriesAI2
0
12789384
from .layers import * from .ResNet import * from .InceptionTime import *
0.976563
1
leetcode/290.py
zhaipro/acm
0
12789385
<gh_stars>0 class Solution: def wordPattern(self, pattern: str, s: str) -> bool: r1 = {} r2 = {} worlds = s.split() if len(worlds) != len(pattern): return False for c, w in zip(pattern, worlds): if c in r1 and r1[c] != w: return False if w in r2 and r2[w] != c: return False r1[c] = w r2[w] = c return True
3.1875
3
tests/test/test_feature_class.py
vb64/oeg.feature.class
0
12789386
<gh_stars>0 """ make test T=test_feature_class.py """ from . import TestBase class TestFeatureClass(TestBase): """ oeg_feature_class """ @staticmethod def test_class_gene(): """ FeatureClass.GENE """ from oeg_feature_class import FeatureClass, size_class, is_in_limits, MagnetType thick = 10 real = (100, 100, 5) calcked = (90, 90, 6) assert size_class(real[0], real[1], thick) == FeatureClass.GENE assert is_in_limits(calcked, real, thick, magnet_type=MagnetType.MFL) == (True, True, True) assert is_in_limits(calcked, real, thick, magnet_type=MagnetType.TFI) == (True, True, True) assert is_in_limits((90, 90, 1), real, 30, magnet_type=MagnetType.TFI) == (True, True, False) assert is_in_limits((90, 5, 1), real, 30, magnet_type=MagnetType.TFI) == (True, False, False) @staticmethod def test_class_pitt(): """ FeatureClass.PITT """ from oeg_feature_class import FeatureClass, size_class, is_in_limits, MagnetType thick = 10 real = (10, 10, 10) calcked = (9, 9, 6) assert size_class(real[0], real[1], thick) == FeatureClass.PITT assert is_in_limits(calcked, real, thick, magnet_type=MagnetType.MFL) == (True, True, False) assert is_in_limits(calcked, real, thick, magnet_type=MagnetType.TFI) == (True, True, False) assert is_in_limits((90, 90, 1), real, 30, magnet_type=MagnetType.TFI) == (False, False, False) def test_class_pinh(self): """ FeatureClass.PINH """ from oeg_feature_class import FeatureClass, size_class, is_in_limits, MagnetType thick = 10 real = (5, 5, 5) calcked = (9, 9, 6) self.assertEqual(size_class(real[0], real[1], thick), FeatureClass.PINH) self.assertEqual(is_in_limits(calcked, real, thick, magnet_type=MagnetType.MFL), (True, True, True)) self.assertEqual(is_in_limits(calcked, real, thick, magnet_type=MagnetType.TFI), (True, True, True)) self.assertEqual(is_in_limits((90, 90, 1), real, 30, magnet_type=MagnetType.TFI), (False, False, True)) def test_class_cisl(self): """ FeatureClass.CISL """ from oeg_feature_class import Error, FeatureClass, size_class, is_in_limits, MagnetType thick = 10 real = (5, 100, 10) calcked = (5, 100, 6) self.assertEqual(size_class(real[0], real[1], thick), FeatureClass.CISL) self.assertEqual(is_in_limits(calcked, real, thick, magnet_type=MagnetType.MFL), (True, True, False)) with self.assertRaises(Error) as context: is_in_limits(calcked, real, thick, magnet_type=MagnetType.TFI) self.assertIn("class 'CISL'. Not applicable for method 'TFI'", str(context.exception)) def test_class_axsl(self): """ FeatureClass.AXSL """ from oeg_feature_class import Error, FeatureClass, size_class, is_in_limits, MagnetType thick = 10 real = (100, 5, 10) calcked = (100, 5, 6) self.assertEqual(size_class(real[0], real[1], thick), FeatureClass.AXSL) self.assertEqual(is_in_limits(calcked, real, thick, magnet_type=MagnetType.TFI), (True, True, False)) self.assertEqual(is_in_limits((90, 90, 1), real, 30, magnet_type=MagnetType.TFI), (True, False, False)) with self.assertRaises(Error) as context: is_in_limits(calcked, real, thick, magnet_type=MagnetType.MFL) self.assertIn("class 'AXSL'. Not applicable for method 'MFL'", str(context.exception)) def test_class_axgr(self): """ FeatureClass.AXGR """ from oeg_feature_class import FeatureClass, size_class, is_in_limits, MagnetType thick = 10 real = (50, 10, 10) calcked = (50, 10, 6) self.assertEqual(size_class(real[0], real[1], thick), FeatureClass.AXGR) self.assertEqual(is_in_limits(calcked, real, thick, magnet_type=MagnetType.MFL), (True, True, False)) self.assertEqual(is_in_limits(calcked, real, thick, magnet_type=MagnetType.TFI), (True, True, False)) self.assertEqual(is_in_limits((90, 90, 1), real, 30, magnet_type=MagnetType.TFI), (False, False, False)) def test_class_cigr(self): """ FeatureClass.CIGR """ from oeg_feature_class import FeatureClass, size_class, is_in_limits, MagnetType thick = 10 real = (10, 50, 10) calcked = (10, 50, 6) self.assertEqual(size_class(real[0], real[1], thick), FeatureClass.CIGR) self.assertEqual(is_in_limits(calcked, real, thick, magnet_type=MagnetType.MFL), (True, True, False)) self.assertEqual(is_in_limits(calcked, real, thick, magnet_type=MagnetType.TFI), (True, True, False)) def test_size_class_wrong(self): """ wrong parameters for FeatureClass calculate """ from oeg_feature_class import Error, size_class with self.assertRaises(Error) as context: size_class(0, 10, 10) self.assertIn('Wrong FeatureClass params', str(context.exception)) with self.assertRaises(Error) as context: size_class(-1, 10, 10) self.assertIn('Wrong FeatureClass params', str(context.exception)) def test_is_in_limits(self): # pylint: disable=too-many-locals """ compare is_in_limits """ from oeg_feature_class import is_in_limits, size_class, FeatureClass, MagnetType thick = 16.6 length = 90 width = 12 depth = 4 real = (length, width, depth) real_class = size_class(length, width, thick) self.assertEqual(real_class, FeatureClass.AXSL) x_mm = 72 y_mm = 11 z_mm = 1 calcked = (x_mm, y_mm, z_mm) length_ok, width_ok, depth_ok = is_in_limits(calcked, real, thick, magnet_type=MagnetType.TFI) self.assertEqual(length_ok, True) self.assertEqual(width_ok, True) self.assertEqual(depth_ok, False) def test_small_thick(self): """ wall thick < 10 mm """ from oeg_feature_class import size_class, FeatureClass self.assertEqual(size_class(10, 10, 5), FeatureClass.PITT) def test_is_detectable(self): """ is_detectable """ from oeg_feature_class import is_detectable, MagnetType thick = 10 self.assertTrue(is_detectable((10, 10, 5), thick, magnet_type=MagnetType.MFL)) self.assertTrue(is_detectable((10, 10, -1), thick, magnet_type=MagnetType.MFL)) self.assertFalse(is_detectable((20, 1, -1), thick, magnet_type=MagnetType.MFL))
2.421875
2
back_office/helpers/diff.py
Envinorma/back-office
0
12789387
import string from typing import List from envinorma.models import ArreteMinisteriel, StructuredText from text_diff import TextDifferences, text_differences from unidecode import unidecode _SIMPLE_CHARS = set(string.ascii_letters + string.digits + string.whitespace) def _clean_line(line: str) -> str: res = str(unidecode(line)).strip() return ''.join(c for c in res if c in _SIMPLE_CHARS) def extract_am_lines(am: ArreteMinisteriel, normalize_text: bool) -> List[str]: lines = [line for section in am.sections for line in section.text_lines(1)] if normalize_text: return [_clean_line(line) for line in lines] return lines def compute_am_diff(am_before: ArreteMinisteriel, am_after: ArreteMinisteriel, normalize_text: bool) -> TextDifferences: lines_before = extract_am_lines(am_before, normalize_text) lines_after = extract_am_lines(am_after, normalize_text) return text_differences(lines_before, lines_after) def compute_text_diff(text_before: StructuredText, text_after: StructuredText) -> TextDifferences: lines_before = text_before.text_lines() lines_after = text_after.text_lines() return text_differences(lines_before, lines_after)
2.53125
3
src/train_model.py
tahaceritli/ptype-cat-experiments
0
12789388
<filename>src/train_model.py from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import RobustScaler from src import constants import joblib import numpy as np def reshape_pred_scores(pred_scores): y_probs = () for y_prob in pred_scores: n = int(len(y_prob) / 4) y_prob = np.array(y_prob).reshape(n, 4) y_probs += (y_prob,) y_probs = np.vstack(y_probs) return y_probs def get_pred_scores_combined(p, y_tests): y_tests_hat = [] pred_scores = [] for i in range(constants.FOLD): if i == 0: y_test_hat = p[: len(y_tests[i]), :] last_index = len(y_tests[i]) else: y_test_hat = p[last_index : last_index + len(y_tests[i]), :] last_index = last_index + len(y_tests[i]) pred_scores.append(list(y_test_hat.flatten())) y_test_hat = np.argmax(y_test_hat, axis=1) y_test_hat = [constants.CANONICAL_TYPES_SORTED[index] for index in y_test_hat] y_tests_hat.append(y_test_hat) return pred_scores, y_tests_hat robust_scaler = RobustScaler() # load inputs X = np.load("inputs/X.npy") y = np.load("inputs/y.npy") z = np.load("inputs/z.npy", allow_pickle=True) # scale features features = ["u_ratio", "u_ratio_clean", "U", "U_clean"] features_indices = [constants.ADDITIONAL_FEATURES[feat] for feat in features] # magic numbers below X_feats = X[:, list(range(4)) + features_indices] X_feats[:, [6, 7]] = robust_scaler.fit_transform(X_feats[:, [6, 7]]) # run classifier clf = LogisticRegression(multi_class="multinomial", max_iter=10000, penalty="l2").fit( X_feats, y ) y_hat = clf.predict(X_feats) # save the model and scaler joblib.dump(robust_scaler, "outputs/models/robust_scaler.pkl") joblib.dump(clf, "outputs/models/LR.sav")
2.390625
2
setup.py
zozzz/yapic.di
0
12789389
<reponame>zozzz/yapic.di<gh_stars>0 #!/usr/bin/env python3 import os import sys from glob import glob from os import path from pathlib import Path from setuptools import setup, Extension from setuptools.command.test import test as TestCommand from setuptools import Command VERSION = "2.0.3" define_macros = { "YAPIC_DI_VERSION_MAJOR": VERSION.split(".")[0], "YAPIC_DI_VERSION_MINOR": VERSION.split(".")[1], "YAPIC_DI_VERSION_PATCH": VERSION.split(".")[2] } undef_macros = [] extra_compile_args = [] # -flto subcommand_args = [] if "--" in sys.argv: subcommand_args = sys.argv[sys.argv.index("--") + 1:] del sys.argv[sys.argv.index("--"):] if sys.platform == "win32": define_macros["UNICODE"] = "1" DEVELOP = sys.executable.endswith("python_d.exe") if DEVELOP: define_macros["_DEBUG"] = "1" undef_macros.append("NDEBUG") extra_compile_args.append("/MTd") extra_compile_args.append("/Zi") else: undef_macros.append("_DEBUG") extra_compile_args.append("/Ox") extra_compile_args.append("/FAs") else: extra_compile_args.append("-std=c++11") extra_compile_args.append("-Wno-unknown-pragmas") extra_compile_args.append("-Wno-write-strings") DEVELOP = sys.executable.endswith("-dbg") if DEVELOP: define_macros["_DEBUG"] = 1 undef_macros.append("NDEBUG") else: extra_compile_args.append("-O3") def root(*p): return path.join(path.dirname(path.abspath(__file__)), *p) cpp_ext = Extension( name="yapic.di._di", sources=["src/di.cpp"], include_dirs=["./libs/yapic.core/src/yapic/core/include"], depends=glob("src/*.hpp") + glob("./libs/yapic.core/src/yapic/core/include/**/*.hpp"), extra_compile_args=extra_compile_args, define_macros=list(define_macros.items()), undef_macros=undef_macros, language="c++", ) def cmd_prerun(cmd, requirements): for r in requirements(cmd.distribution): if r: installed = cmd.distribution.fetch_build_eggs(r) if installed: for dp in map(lambda x: x.location, installed): if dp not in sys.path: sys.path.insert(0, dp) cmd.distribution.get_command_obj("build").force = True cmd.run_command("build") ext = cmd.get_finalized_command("build_ext") ep = str(Path(ext.build_lib).absolute()) if ep not in sys.path: sys.path.insert(0, ep) for e in ext.extensions: if e._needs_stub: ext.write_stub(ep, e, False) class PyTest(TestCommand): user_options = [ ("file=", "f", "File to run"), ] def initialize_options(self): super().initialize_options() self.file = "./tests/" def finalize_options(self): super().finalize_options() def run(self): def requirements(dist): yield dist.install_requires yield dist.tests_require cmd_prerun(self, requirements) self.run_tests() def run_tests(self): import pytest errno = pytest.main(subcommand_args) sys.exit(errno) class Benchmark(Command): user_options = [ ("file=", "f", "File to run"), ] def initialize_options(self): self.file = None self.pytest_args = "-x -s" def finalize_options(self): if self.file: self.pytest_args += " " + self.file.replace("\\", "/") def run(self): def requirements(dist): yield dist.extras_require["benchmark"] cmd_prerun(self, requirements) import shlex import pytest errno = pytest.main(shlex.split(self.pytest_args)) sys.exit(errno) # typing: https://github.com/python/typing/issues/84 setup( name="yapic.di", version=VERSION, url="https://github.com/zozzz/yapic.di", author="<NAME>", author_email="<EMAIL>", description="Very fast Dependency Injection library", long_description=(Path(__file__).parent / "README.rst").read_text(encoding="utf-8"), license="BSD", packages=["yapic.di"], package_dir={"yapic.di": "src"}, package_data={"yapic.di": ["_di.pyi"]}, ext_modules=[cpp_ext], tests_require=["pytest", "pytest-leaks"], python_requires=">=3.7", extras_require={"benchmark": ["pytest", "pytest-benchmark"]}, cmdclass={ "test": PyTest, "bench": Benchmark }, classifiers=[ "Development Status :: 4 - Beta", "License :: OSI Approved :: BSD License", "Operating System :: Microsoft :: Windows", "Operating System :: Unix", "Programming Language :: C++", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3 :: Only", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Utilities", "Typing :: Typed", ], )
1.929688
2
simplebot.py
dmarx/VideoLinkBot
7
12789390
<filename>simplebot.py """ Reddit bot that scrapes a post for videoo links and posts the collection in a table as a comment. This script is designed for scraping a single post. Run as follows: import simplebot as s s.login(_user=username, _pass=password) post_aggregate_links(submisison_id) To run the bot as a continuous scrape of /r/all/comments, use simplemonitor.py. """ import praw from praw.errors import APIException import re import urlparse as up from HTMLParser import HTMLParser from lxml import etree from urllib2 import Request, urlopen import time import pandas as pd from video_host_utilities import youtube_link_cleaner, supported_domains, \ link_cleaners, title_cleaners, get_host_code _ua = "YoutubeLinkBot reddit bot by /u/shaggorama" r = praw.Reddit(_ua) botCommentsMemo = {} scrapedCommentsMemo = {} scrapedLinksMemo = {} def login(_user=None, _pass=None, fname='loginCredentials.txt'): if _user is None and _pass is None: with open(fname,'r') as f: _user = f.readline().strip() _pass = f.readline().strip() print "Logging in as: {0} / {1}".format(_user, _pass) r.login(username=_user, password=_pass) def fix_html_entities(html, parser=HTMLParser()): return parser.unescape( parser.unescape(html)) def get_video_links_from_html(text): """ Strips video link from a string in html format by looking for the href attribute. """ # could also just use BeautifulSoup, but this regex works fine link_pat = re.compile('href="(.*?)"') links = link_pat.findall(text) video_links = [] for l in links: code = get_host_code(l) if code: clean = link_cleaners[code] if clean: link = clean(fix_html_entities(l)) if link: video_links.append(link) return video_links def get_title(url, default = None, hparser=etree.HTMLParser(encoding='utf-8')): """ returns the title of a webpage given a url (e.g. the title of a youtube video) """ def _get_title(_url): HEADER = {'Accept-Language':'en-US,en;q=0.5'} request = Request(_url, headers=HEADER) data = urlopen(request) htree=etree.parse(data, hparser) raw_title = htree.find(".//title").text code = get_host_code(_url) title = title_cleaners[code](raw_title) title = re.sub('[\|\*\[\]\(\)~\\\]','',title) return title try: title = _get_title(url) except Exception, e: print "Encountered some error getting title for video at", url print e time.sleep(2) try: title = _get_title(url) except: print 'OK then, let''s just call it "%s"' % default title = default if title is None: title = default return title def scrape(submission): """ Given a submission id, scrapes that submission and returns a list of comments associated with their links @submission: a """ ### Should add in some functionality for recognizing when we've already maxed-out the comment length on a post. ### OH SHIT! better yet, figure out a way to RESPOND TO MY OWN COMMENT WITH ADDITIONAL LINKS. # just for convenience if type(submission) == type(''): submission = r.get_submission(submission_id = submission) # for updating links and whatever. if scrapedLinksMemo.has_key(submission.id): collected_links = scrapedLinksMemo[submission.id] scrapedCommentIDs = scrapedCommentsMemo[submission.id] print "We have already collected %d video links on this submission." % len(collected_links) else: scrapedCommentIDs = set() scrapedCommentsMemo[submission.id] = scrapedCommentIDs print "got %d comments" % len(submission.all_comments_flat) for i, comment in enumerate(submission.all_comments_flat): try: if comment.author.name == r.user.name: # deleted comment handling doesn't seem to be working properly. # if we have already memoized a bot comment for this post, continue # otheriwse, confirm found bot comment contains links and if it does, # memoize it. if botCommentsMemo.has_key(submission.id): continue elif get_video_links_from_html(comment.body_html): botCommentsMemo[submission.id] = comment else: links = get_video_links_from_html(comment.body_html) for link in links: add_memo_entry(comment, link) except Exception, e: # ignore deleted comments and comments by deleted users. print "encountered some error in scrape()" print e continue # why do name attribute errors keep getting re-raised??? scrapedCommentIDs.add(comment.id) collected_links = scrapedLinksMemo[submission.id] print "Scraped {0} comments, found {1} links".format(i, len(collected_links) ) return collected_links # this isn't really even necessary since we could just call it down from the memo. def get_scraped_comments(link_id): """ to be retired in favor of call to memo""" print "building comments memo" if scrapedLinksMemo.has_key(link_id): collected_comments = scrapedCommentsMemo[link_id] scraped = set( [collected_comments[url]['id'] for url in collected_comments] ) else: "Populating scrapedCommentsMemo with", link_id scraped = set() scrapedCommentsMemo[link_id] = {} return scraped def add_memo_entry(comment, link): submission_id = comment.submission.id if not link: if not scrapedCommentsMemo.has_key(submission_id): scrapedCommentsMemo[submission_id] = set() # this might be redundant scrapedCommentsMemo[submission_id].add(comment.id) try: username = comment.author.name except: username = None link_entry = {'author':username ,'created_utc':comment.created_utc ,'permalink':comment_shortlink(comment) , 'id':comment.id ,'score':comment.score ,'title':None # This is lazy } if scrapedLinksMemo.has_key(submission_id): collected_links = scrapedLinksMemo[submission_id] try: if collected_links.ix[link, 'score'] < comment.score: # collected_links.ix[link, :] = link_entry ### I think this is causing the bug in issue # 25 # This is a shitty fix, but it should solve the problem. for k in link_entry.keys(): collected_links.ix[link, k] = link_entry[k] except KeyError, e: new_rec = pd.DataFrame(link_entry, index=[link]) collected_links = collected_links.append(new_rec) scrapedLinksMemo[submission_id] = collected_links else: scrapedLinksMemo[submission_id] = pd.DataFrame(link_entry, index=[link]) def comment_shortlink(c): return 'http://reddit.com/comments/'+ c.link_id[3:] + '/_/' + c.id def build_comment(collected_links, link_id=None): print "Building comment" head = '''Here is a list of video links collected from comments that redditors have made in response to this submission: |Source Comment|Score|Video Link| |:-------|:-------|:-------|\n''' tail ="""\n* [VideoLinkBot FAQ](http://www.reddit.com/r/VideoLinkBot/wiki/faq) * [Feedback](http://www.reddit.com/r/VideoLinkBot/submit)""" titles = [] print "Getting video titles" if link_id: # if we've been provided with a link_id, memoize the link titles. for url in collected_links.index: try: if not scrapedLinksMemo[link_id].ix[url,'title']: scrapedLinksMemo[link_id].ix[url,'title'] = get_title(url) print "got title for",url except Exception, e: print "some problem getting title for", url print e continue print "Got video titles. Formatting text for each link." text=u'' for _url, c in scrapedLinksMemo[link_id].sort(columns='score',ascending=False).iterrows(): if c['title']: _title = c['title'] else: _title = _url text += u'|[{author}]({permalink})|{score}|[{title}]({url})|\n'.format( author=c['author'] ,permalink = c['permalink'] ,title = c['title'] ,url = _url ,score= c['score'] ) len_playlist = 82 # I think... print "Trimming content as needed" text = trim_comment(text, 10000-len(head)-len(tail)-len_playlist) print "Comment built." return head+text+tail def post_comment(link_id, subm, text): try: if botCommentsMemo.has_key(link_id): bot_comment = botCommentsMemo[link_id] print "editing", bot_comment.id bot_comment.edit(text) # need to overwrite existing comment object, otherwise we'll add playlist # using the pre-scrape text. # Manually overwrite 'body' attribute. bot_comment.body = text print "successfully updated comment." else: print "Posting new comment" bot_comment = subm.add_comment(text) botCommentsMemo[link_id] = bot_comment print "Successfully posted new comment." result = True print bot_comment.id except APIException, e: # need to handle comments that are too long. # Really, this should probably be in build_comment() print e print "sleeping for 5 seconds, trimming comment" time.sleep(5) # maybe the API is annoyed with trim_comment(text) # maybe the comment is too long (this should have been handled already) result = False return result def trim_comment(text, targetsize=10000): """ If comment is longer than 10000 chars, reddit won't let us post it. This boils down to around 50 links (I think). """ # Removing permalink's to comments would significantly reduce the size of my comments. # could still post a link to the user's commenting history # Alternatively, could post a shortlink (?) print "Trimming comment down to %d chars." % targetsize while len(text)> targetsize: text = '\n'.join(text.split('\n')[:-1])#[2:] print "Processed comment length:",len(text) return text def add_playlist(c): """ Adds a radd.it playlist to an existing comment. """ playlist = "http://radd.it/comments/{0}/_/{1}?only=videos&start=1".format(c.link_id[3:], c.id) text = c.body + "\n* [Playlist of videos in this comment]({0})".format(playlist) c.edit(text) def post_aggregate_links(link_id='178ki0', max_num_comments = 1000, min_num_comments = 8, min_num_links=5): """Not sure which function to call? You probably want this one.""" subm = r.get_submission(submission_id = link_id) if not min_num_comments < subm.num_comments < max_num_comments: print "[NO POST] Submission has %d comments. Not worth scraping." % subm.num_comments return None try: print u'Scraping "{0}"'.format(subm.title) except: print u'Scraping "{0}"'.format(subm.id) links = scrape(subm) # Theoretically, we could just pull this down from the memo. n_links = len(links) if n_links >= min_num_links: authors = links.author.unique() if len(authors) >1: try: print u'[POST] Posting {nlinks} links to "{sub}" post "{post}"'.\ format(nlinks = n_links ,sub = subm.subreddit.display_name ,post = subm.title) except: print u'[POST] Posting {nlinks} links to "{sub}" post "{post}"'.\ format(nlinks = n_links ,sub = subm.subreddit.id ,post = subm.id) text = build_comment(links, subm.id) print "comment built, trying to post." posted = False while not posted: posted = post_comment(link_id, subm, text) print "Appending playlist..." add_playlist(botCommentsMemo[link_id]) print "Video links successfully posted." else: print "[NO POST] All links from same user. Need at least 2 different users to post." else: print "[NO POST] Only found %d links. Need %d to post." % (n_links, min_num_links) if __name__ == '__main__': login() post_aggregate_links()
3.359375
3
Modules/Scripted/Home/HomeLib/plots.py
ebrahimebrahim/lungair-desktop-application
0
12789391
<reponame>ebrahimebrahim/lungair-desktop-application import slicer, qt, vtk from .constants import * PLOT_TYPES = { "line" : slicer.vtkMRMLPlotSeriesNode.PlotTypeLine, "bar" : slicer.vtkMRMLPlotSeriesNode.PlotTypeBar, "scatter" : slicer.vtkMRMLPlotSeriesNode.PlotTypeScatter, "scatterbar" : slicer.vtkMRMLPlotSeriesNode.PlotTypeScatterBar, } def createPlotView(): """Create and return a qMRMLPlotView widget. It is associated to the main scene, and it also gets a button for fitToContent.""" plot_view = slicer.qMRMLPlotView() plot_view.setMRMLScene(slicer.mrmlScene) fit_plot_tool_button = qt.QToolButton() fit_plot_tool_button.clicked.connect(lambda: plot_view.fitToContent()) # Put the QToolButton in the top right corner of the plot assert(plot_view.layout() is None) # failure here indicates a slicer change in which plot views gained layouts, which we should take care not to replace plot_view.setLayout(qt.QHBoxLayout()) plot_view.layout().insertWidget(1,fit_plot_tool_button,0,qt.Qt.AlignTop) spacer = qt.QSpacerItem(20,20,qt.QSizePolicy.Expanding, qt.QSizePolicy.Expanding) plot_view.layout().insertItem(0,spacer) plot_view.layout().margin=0 # Give it a nice appearance fit_plot_tool_button.setIconSize(qt.QSize(10,10)) fit_plot_tool_button.setIcon(qt.QIcon(":Icons/SlicesFitToWindow.png")) fit_plot_tool_button.setStyleSheet(f"background-color:#{BAR_WIDGET_COLOR};") fit_plot_tool_button.setAutoRaise(True) fit_plot_tool_button.setToolTip("Reset zoom to fit entire plot") return plot_view class SlicerPlotData: """Container for and manager of the nodes associated to a slicer plot view.""" # A plot view node we will keep empty in order to have a way of displaying no plot empty_plot_view_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotViewNode", "SlicerPlotDataEmptyPlotViewNode") def __init__(self, name:str): """Create SlicerPlotData, making a qMRMLPlotView and a vtkMRMLPlotViewNode with the given name.""" self.name = name self.plot_view = createPlotView() self.plot_view_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLPlotViewNode", name+"PlotView") self.plot_view.setMRMLPlotViewNode(self.plot_view_node) self.plot_nodes = {} # chart, table, and series; see the parameter "nodes" in the doc of slicer.util.plot def set_plot_data(self, data, x_axis_label=None, y_axis_label=None, title=None, legend_label=None, plot_type="line", labels=None): """ Populate the plot with the data from the given numpy array. Args: data: a numpy array of shape (N,2) containing the data to plot x_axis_label: the title of the x-axis to display y_axis_label: the title of the y-axis to display title: plot title; also shows up in the names of helper nodes legend_label: the text to put in the legend plot_type: one of "line", "bar", "scatter", or "scatterbar" labels: a list of string labels-- this affects bar and scatterbar plot types """ if title is None: title = self.name if legend_label is None: legend_label = title if len(data.shape)!=2 or data.shape[1]!=2: raise ValueError(f"data was expected to be a numpy array of shape (N,2), got {tuple(data.shape)}") # Here we avoid changing plots while they are associated to a plot view. # This is to supress an error that otherwise shows up # (see e.g. https://github.com/KitwareMedical/lungair-desktop-application/issues/27). self.plot_view.setMRMLPlotViewNode(self.empty_plot_view_node) if x_axis_label is not None and y_axis_label is not None: columnNames = [x_axis_label, y_axis_label] else: columnNames = None plot_chart_node = slicer.util.plot( data, 0, show = False, title = title, columnNames = columnNames, nodes = self.plot_nodes ) plot_chart_node.SetXAxisTitle(x_axis_label) if y_axis_label is not None: plot_chart_node.SetYAxisTitle(y_axis_label) assert(len(self.plot_nodes["series"]) == 1) self.plot_nodes["series"][0].SetName(legend_label) # This text is displayed in the legend self.plot_nodes["series"][0].SetPlotType(PLOT_TYPES[plot_type]) self.plot_view_node.SetPlotChartNodeID(plot_chart_node.GetID()) if labels is not None: labels_array = vtk.vtkStringArray() for label in labels: labels_array.InsertNextValue(label) label_column_name = (x_axis_label if x_axis_label else "X-axis") + " Label" labels_array.SetName(label_column_name) self.plot_nodes['table'].AddColumn(labels_array) self.plot_nodes["series"][0].SetLabelColumnName(label_column_name) self.plot_view.setMRMLPlotViewNode(self.plot_view_node)
1.992188
2
GibbsSampling_3.py
srinirajaraman/Machine-Learning
0
12789392
''' Reference: Algorithm 10.1 from Gibbs sampling for a discrete undirected model Book : <NAME> Notation details: vector - vec matrix - mat Author:<NAME> Dept of EECE Computational Ocularscience Lab Date: 22/9/2016 ''' #Import packages import numpy as np import matplotlib.pyplot as plt import math as m import os as os def function_readimage(given_image): return plt.imread(given_image) def function_plot(given_image, color_option): plt.imshow(given_image, cmap = color_option, vmin = 0, vmax = 1, interpolation = 'none') plt.show() def function_get_right_coord(i, j): return i, j + 1 def function_get_left_coord(i, j): return i, j - 1 def function_get_top_coord(i, j): return i - 1, j def function_get_bottom_coord(i, j): return i + 1, j def function_get_current_coord(i, j): return i, j ''' If pixel values are same return theta_01 which has highest probability or if pixel values are different return theta_00 which has least probability ''' def binary_phi_calc(w1, w2, theta_00, theta_01): return theta_00 if w1 == w2 else theta_01 #if w1 == w2: # return theta_01 #else: # return theta_00 #Compute cliques based on the node index def compute_clique(node_index, row_size, col_size): # s_list = [] r = node_index[0] c = node_index[1] #Identify all valid cliques containing node_index if( r - 1 >= 0): s_list.append(function_get_top_coord(r, c)) if( r + 1 < row_size): s_list.append(function_get_bottom_coord(r, c)) if( c - 1 >= 0): s_list.append(function_get_left_coord(r, c)) if( c + 1 < col_size): s_list.append(function_get_right_coord(r, c)) return s_list #Helper function to get index with the value 'val' def function_get_index(num_array, val): # for ind in range(0, len(num_array)): if(num_array[ind] == val): break; return ind #Perform gibbs sampling for a binary image def gibbs_sampling_categorical_2d(x_mat_t0, sample_space_vec): #x_mat_t0: Current state of the undirected graph for Gibb's sampling; will return the next state x_mat_t1 #sample_space_vec: contains the values that each of the x_d variable in x_mat sample from. e.g. [0, 1] for binary sample space # #Dimension D in Algorithm 10.1 has been split into row and columns (i.e. into a 2D vector) row_size, col_size = np.shape(x_mat_t0); #Initialize the next state of the undirected graph with the previous state x_mat_t1 = x_mat_t0; #Potential function paramteres #Note: these are defined for binary MRF and should be updated when there is change in the potential function form or change from binary to categorical variable theta_00 = 0.1; theta_01 = 1.0; #For each dimension for row in range(0, row_size): for col in range(0, col_size): #Compute the values that a variable can take here {0, 1} lambda_vec = np.ones(np.shape(sample_space_vec)); #Initialize the lambda parameter of the categorical distribution for the d'th location (or [row, col] location) #Get the cliques corresponding to row and col indcies clique_list = compute_clique([row, col], row_size, col_size); for k in sample_space_vec: #Set the current location's state to k, i.e. now working with p(x_d = k | x_{1...D}\d at t0) x_mat_t1[row, col] = k #Compute the unnormalized marginal probability for c in range(0, len(clique_list), 1): lambda_vec[k] *= binary_phi_calc(x_mat_t1[row, col], x_mat_t1[clique_list[c]], theta_00, theta_01) #Normalize the probabilities lambda_vec = lambda_vec / np.sum(lambda_vec) #Sample from categorical distribution curr_no_of_samples = 1; sample_k_array = np.random.multinomial(curr_no_of_samples, lambda_vec) #returned value contains number of sample in each of the k categories #Assign the index associated with the value 1 to current row and column x_mat_t1[row, col] = function_get_index(sample_k_array, curr_no_of_samples) return x_mat_t1; #Compute gibbs sampling for a binary image def wrapper_gibbs_sampling_categorical_2d(no_of_time_samples, noisy_image, burn_in_count, sample_space_vec, row_size, col_size): # debug_flag = 0; #Plotting variables color_option = 'gray' # fig_no_of_rows = np.floor(np.sqrt(no_of_time_samples)); #Identifying subplot layout to show all samples simultaneously fig_no_of_cols = np.ceil(no_of_time_samples / fig_no_of_rows); #Initialize the state vector (containing the states of the nodes in the undirected graph) x_mat_all_samples = np.zeros([no_of_time_samples, row_size, col_size]) #Specify the initial state of the state vector to begin Gibb's sampling #x_mat_t0 = np.zeros([row_size, col_size]) x_mat_t0 = noisy_image mu = 0; sigma = 1 #Debugging if (debug_flag == 1): plt.imshow(x_mat_t0, cmap = color_option, interpolation = 'none'); plt.draw(); plt.pause(0.01); for t in range(1, no_of_time_samples + burn_in_count): print 'Sample #', t; x_mat_t1 = gibbs_sampling_categorical_2d(x_mat_t0, sample_space_vec) #Start capturing the samples after burn-in if t >= burn_in_count: x_mat_all_samples[t - burn_in_count, :, :] = x_mat_t1 #Debugging if (debug_flag == 1): plt.subplot(fig_no_of_rows, fig_no_of_cols, t - burn_in_count + 1); plt.imshow(x_mat_t1, cmap = color_option); plt.draw() plt.pause(0.01) #Current state becomes the initial state for the next Gibb's sampling x_mat_t0 = x_mat_t1; return x_mat_all_samples[no_of_time_samples - 1, :, :] if __name__ == '__main__': #Get the dataset from the path: currDir = os.getcwd() dataset_loc = '/Datasets/' dataset_name = 'test_binary_image_01.png' dataset_file_loc = currDir + dataset_loc + dataset_name #Time sample and no of variables on a subset Sc no_of_time_samples = 10 #Gibbs sampling parameter burn_in_count = 20; #Dimension d row_size = 100; col_size = 100; #In original notation, d -> (row_size x col_size); e.g. 100 x 100 matrix equivalent to D = 10,000 noisy_image = plt.imread(dataset_file_loc) #Parameters to generate prior row_size, col_size = noisy_image.shape #Sample space of x_d (where x_d is the d'th element of x_vec) sample_space_vec = np.array([0, 1]); #Generate x_mat_all_samples = wrapper_gibbs_sampling_categorical_2d(no_of_time_samples, noisy_image, burn_in_count, sample_space_vec, row_size, col_size)
2.6875
3
lists/linkedlist.py
santoshmano/pybricks
0
12789393
<reponame>santoshmano/pybricks class Node: def __init__(self, val, next=None): self.val = val self.next = next class LinkedList: def __init__(self): self.head = None self.tail = None def insertEnd(self, val): n = Node(val) if self.head == None: self.head = self.tail = n else: self.tail.next = n self.tail = n def __str__(self): temp = self.head s = "-" while temp: s = s + " " + str(temp.val) temp = temp.next return s n = Node(5) n.next = Node(6) n.next.next = Node(7) n.next.next.next = Node(8)
3.96875
4
code_icc/utils/__init__.py
ThmCuong/IIC-Python3
0
12789394
from . import cluster, segmentation, semisup
0.960938
1
docker/src/clawpack-5.3.1/pyclaw/src/petclaw/solution.py
ian-r-rose/visualization
11
12789395
from clawpack import pyclaw from clawpack.pyclaw.solution import Solution class Solution(Solution): """ Parallel Solution class. """ __doc__ += pyclaw.util.add_parent_doc(pyclaw.Solution) def get_read_func(self, file_format): from clawpack.petclaw import io if file_format == 'petsc': return io.petsc.read elif file_format == 'hdf5': return io.hdf5.read else: raise ValueError("File format %s not supported." % file_format) def get_write_func(self, file_format): from clawpack.petclaw import io if 'petsc' in file_format: return io.petsc.write elif 'hdf5' in file_format: return io.hdf5.write else: raise ValueError("File format %s not supported." % file_format)
2.53125
3
covid_cases/clients/sacoronavirus.py
praekeltfoundation/healthcheck
0
12789396
import re from dataclasses import dataclass from datetime import date, datetime from typing import Iterator import requests from bs4 import BeautifulSoup @dataclass class Counters: tests: int positive: int recoveries: int deaths: int vaccines: int @dataclass class CaseImage: url: str date: date class SACoronavirusClient: def __init__(self): self.session = requests.Session() def get_homepage(self) -> str: with self.session as session: response = session.get( "https://sacoronavirus.co.za/", headers={"User-Agent": "contactndoh-whatsapp"}, timeout=30, ) response.raise_for_status() return response.text def get_daily_cases_page(self) -> str: with self.session as session: response = session.get( "https://sacoronavirus.co.za/category/daily-cases", headers={"User-Agent": "contactndoh-whatsapp"}, timeout=30, ) response.raise_for_status() return response.text def get_homepage_counters(self) -> Counters: soup = BeautifulSoup(self.get_homepage(), "html.parser") counters = soup.find("div", class_="counters-box") for counter in counters.find_all("div", "counter-box-container"): name = counter.find("div", "counter-box-content").string if "test" in name.lower(): tests = int(counter.span["data-value"]) elif "case" in name.lower(): positive = int(counter.span["data-value"]) elif "recover" in name.lower(): recoveries = int(counter.span["data-value"]) elif "death" in name.lower(): deaths = int(counter.span["data-value"]) elif "vaccine" in name.lower(): vaccines = int(counter.span["data-value"]) return Counters( tests=tests, positive=positive, recoveries=recoveries, deaths=deaths, vaccines=vaccines, ) def get_daily_cases_image_urls(self) -> Iterator[CaseImage]: soup = BeautifulSoup(self.get_daily_cases_page(), "html.parser") for article in soup.main.find_all("article"): url = article.img["src"] d = article.select("h2.entry-title")[0].string d = re.search(".*\((.*)\).*", d).group(1) d = datetime.strptime(d, "%A %d %B %Y").date() yield CaseImage(url=url, date=d)
2.75
3
bert_sklearn/model/pytorch_pretrained/__init__.py
ezesalta/bert-sklearn
0
12789397
__version__ = "0.6.1" from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer from .modeling import (BertConfig, BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction, BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification, BertForQuestionAnswering, load_tf_weights_in_bert, BertPreTrainedModel, WEIGHTS_NAME, CONFIG_NAME) from .optimization import BertAdam, warmup_linear from .file_utils import PYTORCH_PRETRAINED_BERT_CACHE, cached_path
1.523438
2
scripts/argument_parser.py
k-nuth/kth
20
12789398
<reponame>k-nuth/kth #!/usr/bin/env python3 # Copyright (c) 2016-2020 Knuth Project developers. # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from argparse import ArgumentParser from os.path import expanduser def parse_args(): parser = ArgumentParser('kth Release Manager') parser.add_argument("-rp", "--root_path", dest="root_path", help="root path where the projects are", default=expanduser("~")) parser.add_argument('old_version', type=str, nargs=1, help='old version') parser.add_argument('new_version', type=str, nargs='?', help='new version') parser.add_argument("-t", "--token", dest="token", help="GitHub token", default='') args = parser.parse_args() old_version = args.old_version[0].split('.') if len(old_version) != 3: print('old_version has to be of the following format: xx.xx.xx') return False,'','','','' if args.new_version is None: new_version = [old_version[0], str(int(old_version[1]) + 1), old_version[2]] else: new_version = args.new_version.split('.') if len(new_version) != 3: print('new_version has to be of the following format: xx.xx.xx') return False,'','','','' print (new_version) print (old_version) return True, args.root_path, old_version, new_version, args.token
2.421875
2
tcex/resources/__init__.py
brikardtc/tcex
0
12789399
<gh_stars>0 # -*- coding: utf-8 -*- """Resources module for TcEx Framework""" # flake8: noqa from .resources import Resources
1.046875
1
pawpy/model_builder.py
robbie-manolache/kaggle-pawpular
0
12789400
# <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< # # Module for building transfer learning framework # # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> # import tensorflow as tf import tensorflow.keras.layers as kl import tensorflow.keras.regularizers as kreg import tensorflow.keras.initializers as kini def build_NN_model(config, model_map): """ """ # load config variables model_type = config["model_type"] img_dim = config["img_dim"] params = config["params"] # load pre-trained model pre_net = model_map[model_type]["model"]( weights='imagenet', input_shape=(img_dim, img_dim, 3), include_top=False ) pre_net.trainable = False # init input list for neural network all_inputs = [] # image input img_in = kl.Input(shape=(img_dim, img_dim, 3)) all_inputs.append(img_in) # pre-processing if model_map[model_type]["preproc"] is not None: img_x = model_map[model_type]["preproc"](img_in) img_x = pre_net(img_x, training=False) else: img_x = pre_net(img_in, training=False) # tabular metadata inputs x_in = kl.Input(shape=len(config["tab_feats"])) all_inputs.append(x_in) # image data processing if config["conv_proc"]: d = model_map[model_type]["final_shape"] all_x = kl.Reshape((d[0], d[1]*d[2], 1))(img_x) all_x = kl.Conv2D( filters=params["conv"]["nf"], kernel_size=d[:2], strides=d[:2], name="post_conv2D", kernel_regularizer=kreg.l2(params["conv"]["l2"]), kernel_initializer=kini.RandomUniform( minval=1/((d[0]+1)*(d[1]+1)), maxval=1/((d[0]-1)*(d[1]-1)) ) )(all_x) all_x = kl.Flatten()(all_x) else: all_x = kl.GlobalAvgPool2D()(img_x) # add tabular features and then dropout if config["batch_norm"]: all_x = kl.BatchNormalization()(all_x) all_x = kl.Concatenate()([all_x, x_in]) all_x = kl.Dropout(params["drop"])(all_x) # additional dense layer if config["extra_dense"]: all_x = kl.Dense( params["xtra"]["n"], activation="linear", kernel_regularizer=kreg.l1_l2(l1=params["xtra"]["l1"], l2=params["xtra"]["l2"]), name="extra_dense" )(all_x) if params["xtra"]["acti"] == "relu": all_x = kl.LeakyReLU(alpha=params["xtra"]["relu_alpha"])(all_x) elif params["xtra"]["acti"] == "elu": all_x = kl.ELU()(all_x) elif params["xtra"]["acti"] == "prelu": all_x = kl.PReLU()(all_x) else: # for sigmoid and tanh if params["xtra"]["acti"] != "linear": all_x = kl.Activation(params["xtra"]["acti"])(all_x) else: pass # final output layer all_x = kl.Dense( 1, activation="sigmoid", name="final_layer", kernel_regularizer=kreg.l2(params["outy"]["l2"]) )(all_x) out_y = kl.Lambda(lambda x: x * 100)(all_x) # compile model model = tf.keras.Model(inputs=all_inputs, outputs=out_y) return(model)
2.421875
2
global_trainer.py
youngwoon/DnC-RL-Tensorflow
9
12789401
import os.path as osp import os import time from collections import defaultdict import numpy as np import tensorflow as tf import moviepy.editor as mpy import tqdm from contextlib import contextmanager from mpi4py import MPI import imageio from baselines import logger import baselines.common.tf_util as U from baselines.common import colorize from baselines.common.mpi_adam import MpiAdam import dataset def flatten_lists(listoflists): return [el for list_ in listoflists for el in list_] class GlobalTrainer(object): def __init__(self, name, env, runner, policy, config): self._name = name self._env = env.unwrapped self._runner = runner self._config = config self._policy = policy self._is_chef = (MPI.COMM_WORLD.Get_rank() == 0) # global step self.global_step = tf.Variable(0, name='global_step', dtype=tf.int64, trainable=False) self._update_global_step = tf.assign(self.global_step, self.global_step + 1) # tensorboard summary self.summary_name = ['global/length', 'global/reward', 'global/success'] # build loss/optimizers self._build_distillation() def _build_distillation(self): config = self._config pi = self._policy self._global_norm = U.function( [], tf.global_norm([tf.cast(var, tf.float32) for var in pi.get_variables()])) # policy update ac = pi.pdtype.sample_placeholder([None]) pol_var_list = [v for v in pi.get_trainable_variables() if 'pol' in v.name] self._pol_adam = MpiAdam(pol_var_list) pol_loss = tf.reduce_mean(pi.pd.neglogp(ac)) #pol_loss = tf.reduce_mean(tf.square(pi.pd.sample() - ac)) fetch_dict = { 'loss': pol_loss, 'g': U.flatgrad(pol_loss, pol_var_list, clip_norm=config.global_max_grad_norm) } self._pol_loss = U.function([ac] + pi.ob, fetch_dict) self.summary_name += ['global/loss', 'global/grad_norm', 'global/global_norm'] # value update if config.global_vf: ret = tf.placeholder(dtype=tf.float32, shape=[None], name='return') vf_var_list = [v for v in pi.get_trainable_variables() if 'vf' in v.name] self._vf_adam = MpiAdam(vf_var_list) vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret)) fetch_dict = { 'vf_loss': vf_loss, 'vf_g': U.flatgrad(vf_loss, vf_var_list, clip_norm=config.global_max_grad_norm) } self._vf_loss = U.function([ret] + pi.ob, fetch_dict) self.summary_name += ['global/vf_loss', 'global/vf_grad_norm'] # initialize and sync U.initialize() self._pol_adam.sync() if config.global_vf: self._vf_adam.sync() if config.debug: logger.log("[worker: {} global] Init param sum".format(MPI.COMM_WORLD.Get_rank()), self._adam.getflat().sum()) @contextmanager def timed(self, msg): if self._is_chef: print(colorize(msg, color='magenta')) tstart = time.time() yield print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta')) else: yield def update(self, step, ob, ac, ret=None): info = defaultdict(list) config = self._config sess = U.get_session() global_step = sess.run(self.global_step) sess.run(self._update_global_step) pi = self._policy ob_dict = self._env.get_ob_dict(ob) if self._config.obs_norm == 'learn': for ob_name in pi.ob_type: pi.ob_rms[ob_name].update(ob_dict[ob_name]) with self.timed("update global network"): for _ in range(self._config.global_iters): # policy network for (mb_ob, mb_ac) in dataset.iterbatches( (ob, ac), include_final_partial_batch=False, batch_size=self._config.global_batch_size): ob_list = pi.get_ob_list(mb_ob) fetched = self._pol_loss(mb_ac, *ob_list) loss, g = fetched['loss'], fetched['g'] self._pol_adam.update(g, self._config.global_stepsize) info['global/loss'].append(np.mean(loss)) info['global/grad_norm'].append(np.linalg.norm(g)) if config.global_vf: # value network for (mb_ob, mb_ret) in dataset.iterbatches( (ob, ret), include_final_partial_batch=False, batch_size=self._config.global_batch_size): ob_list = pi.get_ob_list(mb_ob) fetched = self._vf_loss(mb_ret, *ob_list) vf_loss, vf_g = fetched['vf_loss'], fetched['vf_g'] self._vf_adam.update(vf_g, self._config.global_stepsize) info['global/vf_loss'].append(np.mean(vf_loss)) info['global/vf_grad_norm'].append(np.linalg.norm(vf_g)) for key, value in info.items(): info[key] = np.mean(value) info['global/global_norm'] = self._global_norm() return info def summary(self, it): info = self.evaluate(it, record=self._config.training_video_record) # save checkpoint if it % self._config.ckpt_save_step == 0: fname = osp.join(self._config.log_dir, '%.5d' % it) U.save_state(fname) return info def evaluate(self, ckpt_num=None, record=False): config = self._config ep_lens = [] ep_rets = [] ep_success = [] if record: record_dir = osp.join(config.log_dir, 'video') os.makedirs(record_dir, exist_ok=True) for _ in tqdm.trange(10): ep_traj = self._runner.rollout(True, True) ep_lens.append(ep_traj["ep_length"][0]) ep_rets.append(ep_traj["ep_reward"][0]) ep_success.append(ep_traj["ep_success"][0]) logger.log('[{}] Trial #{}: lengths {}, returns {}'.format( self._name, _, ep_traj["ep_length"][0], ep_traj["ep_reward"][0])) # Video recording if record: visual_obs = ep_traj["visual_ob"] video_name = '{}{}_{}{}.{}'.format(config.video_prefix or '', self._name, '' if ckpt_num is None else 'ckpt_{}_'.format(ckpt_num), _, config.video_format) video_path = osp.join(record_dir, video_name) if config.video_format == 'mp4': fps = 60. def f(t): frame_length = len(visual_obs) new_fps = 1./(1./fps + 1./frame_length) idx = min(int(t*new_fps), frame_length-1) return visual_obs[idx] video = mpy.VideoClip(f, duration=len(visual_obs)/fps+2) video.write_videofile(video_path, fps, verbose=False) elif config.video_format == 'gif': imageio.mimsave(video_path, visual_obs, fps=100) logger.log('[{}] Episode Length: {}'.format(self._name, np.mean(ep_lens))) logger.log('[{}] Episode Rewards: {}'.format(self._name, np.mean(ep_rets))) return {'global/length': np.mean(ep_lens), 'global/reward': np.mean(ep_rets), 'global/success': np.mean(ep_success)}
1.8125
2
Studabase/tkinterGrid.py
skhadka007/STUDABASE
0
12789402
# GUI Tkinter grid file. from tkinter import * from tkinter import ttk from tkinter import filedialog from PIL import Image, ImageTk # pip install pillow (<- in terminal if not already installed) import tkinter as tk import csv # OTHER PYTHON FILES (OURS) import menuFunctions import openData # import moreFunctions import pyodbc # pip install wheel, then pip install pandas import pandas as pd # Root needs to be created FIRST root = tk.Tk() searchText = "ERROR" def filterOptions(): global searchText # Label Frame filterOptionsFrame = tk.LabelFrame(root, text="Sort & Search", pady=5, padx=5) filterOptionsFrame.pack(side="top", padx=10, pady=10, fill="both", expand="no") # filterOptionsFrame.configure(bg="white") # Filter label and drop down menu # label filterLabel = tk.Label(filterOptionsFrame, text="Sort:") filterLabel.pack(side='left') # Option/Drop menu filters = [ 'Department', 'GPA', 'Graduation Year', 'First Name Start', 'Last Name Start' ] currentFilter = tk.StringVar() currentFilter.set(filters[0]) filterMenu = tk.OptionMenu(filterOptionsFrame, currentFilter, *filters) filterMenu.pack(side='left', padx=5) filterMenu.config(bg="white", fg="black", width=17) # filterMenu settings # Reset Filter button button_resetFilter = tk.Button(filterOptionsFrame, text="Reset Sort", bg="light sky blue") button_resetFilter.pack(side='left') # Search Text Box searchBox = Entry(filterOptionsFrame, borderwidth=2) # Search entry box deletion def deleteSearch(): searchBox.delete(0, END) # Clear Search Button button_clearSearch = tk.Button(filterOptionsFrame, text="CLEAR", bg="light sky blue", command=deleteSearch) button_clearSearch.pack(side='right', padx=2) # Search Button button_search = tk.Button(filterOptionsFrame, text="SEARCH", bg="khaki1", command=openResults) searchText = searchBox.get() button_search.pack(side='right', padx=2) # Search text box pack searchBox.pack(side='right', padx=5) # Search label searchLabel = tk.Label(filterOptionsFrame, text="Search:") searchLabel.pack(side='right') ####################################################################################################### ############### DATA TABLE & RELATED FUNCTIONS ####################################### ####################################################################################################### # Label Frame dataTableFrame = tk.LabelFrame(root, text="Student Data", pady=2, padx=5, width=1300, height=1000) dataScrollbarV = tk.Scrollbar(dataTableFrame, orient=VERTICAL) dataScrollbarH = tk.Scrollbar(dataTableFrame, orient=HORIZONTAL) dataListBox = Listbox(dataTableFrame, width=20, yscrollcommand=dataScrollbarV.set, selectmode=BROWSE, exportselection=0) dataListBoxID = Listbox(dataTableFrame, width=3, yscrollcommand=dataScrollbarV.set, selectmode=BROWSE, exportselection=0) dataListBoxEmail = Listbox(dataTableFrame, width=25, yscrollcommand=dataScrollbarV.set, selectmode=BROWSE, exportselection=0) dataListBoxDepartment = Listbox(dataTableFrame, width=8, yscrollcommand=dataScrollbarV.set, selectmode=BROWSE, exportselection=0) dataListBoxMajor = Listbox(dataTableFrame, width=15, yscrollcommand=dataScrollbarV.set, selectmode=BROWSE, exportselection=0) dataListBoxDate = Listbox(dataTableFrame, width=8, yscrollcommand=dataScrollbarV.set, selectmode=BROWSE, exportselection=0) def yview( *args): dataListBox.yview(*args) dataListBoxID.yview(*args) dataListBoxEmail.yview(*args) dataListBoxDepartment.yview(*args) dataListBoxMajor.yview(*args) dataListBoxDate.yview(*args) dataScrollbarV.config(command=yview) #dataScrollbarV.config(command=lambda:[dataListBox.yview(), dataListBoxID.yview(), dataListBoxEmail.yview(), dataListBoxDepartment.yview(), dataListBoxMajor.yview(), dataListBoxDate.yview()]) #dataScrollbarH.config(command=dataListBox.xview) ################################################################# ## VARIABLES ## filePathCurrent = "" studentList = [] # Display listbox onto GUI def dataTablePack(): dataTableFrame.pack(anchor="n", padx=10, pady=1, fill="both", expand="yes") dataListBox.pack(side=LEFT, pady=10, fill="both", expand="yes") dataListBoxID.pack(side=LEFT, pady=10, fill="both", expand="yes") dataListBoxEmail.pack(side=LEFT, pady=10, fill="both", expand="yes") dataListBoxDepartment.pack(side=LEFT, pady=10, fill="both", expand="yes") dataListBoxMajor.pack(side=LEFT, pady=10, fill="both", expand="yes") dataListBoxDate.pack(side=LEFT, pady=10, fill="both", expand="yes") dataScrollbarV.pack(side=RIGHT, fill='y') # Insert data from opened csv def insertData(): global filePathCurrent global studentList deleteAll() # Just so name is easier to use filePath = openData.getFilePath() filePathCurrent = filePath # Opens chosen file File = open(filePath) Reader = csv.reader(File) Data = list(Reader) # Removes first line of file - Row filled with the Column titles del(Data[0]) for x in list(range(0, len(Data))): studentList.append(Data[x]) #dataListBox.insert(END, Data[x]) name = studentList[x][1] + ", " + studentList[x][0] #formattedText = ('{:<20}{:>15}{:>50}'.format(name, studentList[x][2], studentList[x][4])) #formattedText = (name + " " + studentList[x][2] + " " + studentList[x][3] + " " + studentList[x][4] + " " + studentList[x][5] + " " + studentList[x][6]) dataListBox.insert(END, (name)) dataListBoxID.insert(END, (studentList[x][2])) dataListBoxEmail.insert(END, (studentList[x][3])) dataListBoxDepartment.insert(END, (studentList[x][4])) dataListBoxMajor.insert(END, (studentList[x][5])) dataListBoxDate.insert(END, (studentList[x][6])) # For refreshing current open file def insertDataRefresh(): global filePathCurrent global studentList deleteAll() # Opens chosen file File = open(filePathCurrent) Reader = csv.reader(File) Data = list(Reader) del(Data[0]) for x in list(range(0, len(Data))): studentList.append(Data[x]) name = studentList[x][1] + ", " + studentList[x][0] dataListBox.insert(END, (name)) dataListBoxID.insert(END, (studentList[x][2])) dataListBoxEmail.insert(END, (studentList[x][3])) dataListBoxDepartment.insert(END, (studentList[x][4])) dataListBoxMajor.insert(END, (studentList[x][5])) dataListBoxDate.insert(END, (studentList[x][6])) ## CREEATES DATATABLE AFTER PICKING FILE def dataTable(): dataTablePack() insertData() # Deletes ONE student def deleteOne(): global studentList index = dataListBox.curselection()[0] del studentList[index] dataListBox.delete(index) # ANCHOR dataListBoxID.delete(index) dataListBoxEmail.delete(index) dataListBoxDepartment.delete(index) dataListBoxMajor.delete(index) dataListBoxDate.delete(index) dataListBox.config(text='') # Clears Table def deleteAll(): dataListBox.delete(0, END) dataListBoxID.delete(0, END) dataListBoxEmail.delete(0, END) dataListBoxDepartment.delete(0, END) dataListBoxMajor.delete(0, END) dataListBoxDate.delete(0, END) def select(): dataListBox.config(text=dataListBox.get(ANCHOR)) def saveFile(): global studentList csvWrite = filedialog.asksaveasfile(mode='w', defaultextension=".csv", filetypes=(("CSV Files", "*.csv"), ("All Files", "*.*"))) if csvWrite is None: # When 'canceled' and no file saved return # with open(csvWrite, "wb") as f: # writer = csv.writer(f) # writer.writerows(a) text2save = str(dataListBox.get(0, END)) # starts from `1.0`, not `0.0` csvWrite.write(text2save) csvWrite.close() def refreshTable(): deleteAll() insertDataRefresh() def updateStudent(): global studentList ''' First_Name Last_Name Student_ID Email Department Major Grad_Date ''' # Gets location of current selection index = dataListBox.curselection()[0] newWindow = Toplevel(root) newWindow.title("Update Student") newWindow.geometry("315x230") newWindow.iconbitmap('hat.ico') newWindow.resizable(width=False, height=False) # Window size changeability #Create Text Boxes First_Name = Entry(newWindow, width = 30) First_Name.grid(row = 0, column = 1, padx = 20, pady = (10, 0)) First_Name.insert(0, studentList[index][0]) Last_Name = Entry(newWindow, width = 30) Last_Name.grid(row = 1, column = 1, padx = 20) Last_Name.insert(0, studentList[index][1]) Student_ID = Entry(newWindow, width = 30) Student_ID.grid(row = 2, column = 1, padx = 20) Student_ID.insert(0, studentList[index][2]) Email = Entry(newWindow, width = 30) Email.grid(row = 3, column = 1, padx = 20) Email.insert(0, studentList[index][3]) Department = Entry(newWindow, width = 30) Department.grid(row = 4, column = 1, padx = 20) Department.insert(0, studentList[index][4]) Major = Entry(newWindow, width = 30) Major.grid(row = 5, column = 1, padx = 20) Major.insert(0, studentList[index][5]) Grad_Date = Entry(newWindow, width = 30) Grad_Date.grid(row = 6, column = 1, padx = 20) Grad_Date.insert(0, studentList[index][6]) #Create Text Box Labels First_Name_Label = Label(newWindow, text = 'First Name') First_Name_Label.grid(row = 0, column = 0, pady = (10, 0)) Last_Name_Label = Label(newWindow, text = 'Last Name') Last_Name_Label.grid(row = 1, column = 0) Student_ID_Label = Label(newWindow, text = 'Student ID') Student_ID_Label.grid(row = 2, column = 0) Email_Label = Label(newWindow, text = 'Email') Email_Label.grid(row = 3, column = 0) Department_Label = Label(newWindow, text = 'Department') Department_Label.grid(row = 4, column = 0) Major_Label = Label(newWindow, text = 'Major') Major_Label.grid(row = 5, column = 0) Grad_Date_Label = Label(newWindow, text = 'Grad Date') Grad_Date_Label.grid(row = 6, column = 0) goodUpdate_Label = Label(newWindow, text="* * *") goodUpdate_Label.grid(row = 8, columnspan=2) def retrieve_input(entryBox): input = entryBox.get() return input def goodUpdate(): ## Update student # Get entered text studentList[index][0] = retrieve_input(First_Name) studentList[index][1] = retrieve_input(Last_Name) studentList[index][2] = retrieve_input(Student_ID) studentList[index][3] = retrieve_input(Email) studentList[index][4] = retrieve_input(Department) studentList[index][5] = retrieve_input(Major) studentList[index][6] = retrieve_input(Grad_Date) name = studentList[index][1] + ", " + studentList[index][0] dataListBox.insert(END, (name)) dataListBoxID.insert(END, (studentList[index][2])) dataListBoxEmail.insert(END, (studentList[index][3])) dataListBoxDepartment.insert(END, (studentList[index][4])) dataListBoxMajor.insert(END, (studentList[index][5])) dataListBoxDate.insert(END, (studentList[index][6])) #name = studentList[index][1] + ", " + studentList[index][0] #dataListBox.insert(END, Data[x]) #formattedText = str(name + " " + studentList[index][2] + " " + studentList[index][3] + " " + studentList[index][4] + " " + studentList[index][5] + " " + studentList[index][6]) #dataListBox.insert(index, (formattedText)) insertDataRefresh() goodUpdate_Label.config(text="Successfull Update!") #Create Update Button Update_button = Button(newWindow, text = 'Update Student', bg="goldenrod1", command=goodUpdate) Update_button.grid(row = 7, column = 0, columnspan = 2, pady = 10, padx = 10, ipadx = 100) # print(index) return None def openResults(): global studentList global searchText newWindow = Toplevel(root) newWindow.title("Search Results") newWindow.geometry("315x170") newWindow.iconbitmap('hat.ico') newWindow.resizable(width=False, height=False) # Window size changeability #Create Text Boxes First_Name = Entry(newWindow, width = 30) First_Name.grid(row = 0, column = 1, padx = 20, pady = (10, 0)) #First_Name.insert(0, studentList[x][0]) Last_Name = Entry(newWindow, width = 30) Last_Name.grid(row = 1, column = 1, padx = 20) #Last_Name.insert(0, studentList[x][1]) Student_ID = Entry(newWindow, width = 30) Student_ID.grid(row = 2, column = 1, padx = 20) #Student_ID.insert(0, studentList[x][2]) Email = Entry(newWindow, width = 30) Email.grid(row = 3, column = 1, padx = 20) #Email.insert(0, studentList[x][3]) Department = Entry(newWindow, width = 30) Department.grid(row = 4, column = 1, padx = 20) #Department.insert(0, studentList[x][4]) Major = Entry(newWindow, width = 30) Major.grid(row = 5, column = 1, padx = 20) #Major.insert(0, studentList[x][5]) Grad_Date = Entry(newWindow, width = 30) Grad_Date.grid(row = 6, column = 1, padx = 20) #Grad_Date.insert(0, studentList[x][6]) #Create Text Box Labels First_Name_Label = Label(newWindow, text = 'First Name') First_Name_Label.grid(row = 0, column = 0, pady = (10, 0)) Last_Name_Label = Label(newWindow, text = 'Last Name') Last_Name_Label.grid(row = 1, column = 0) Student_ID_Label = Label(newWindow, text = 'Student ID') Student_ID_Label.grid(row = 2, column = 0) Email_Label = Label(newWindow, text = 'Email') Email_Label.grid(row = 3, column = 0) Department_Label = Label(newWindow, text = 'Department') Department_Label.grid(row = 4, column = 0) Major_Label = Label(newWindow, text = 'Major') Major_Label.grid(row = 5, column = 0) Grad_Date_Label = Label(newWindow, text = 'Grad Date') Grad_Date_Label.grid(row = 6, column = 0) #index = dataListBox.get(0, END).index(searchText) #print(index) #if (index == "ERROR"): # filterOptions().searchBox.insert(0, "STRING NOT FOUND") # Gets location of current selection #index = dataListBox.curselection()[0] def addStudent(): global studentList ''' First_Name Last_Name Student_ID Email Department Major Grad_Date ''' newWindow = Toplevel(root) newWindow.title("Add Student") newWindow.geometry("365x230") newWindow.iconbitmap('hat.ico') newWindow.resizable(width=False, height=False) # Window size changeability #Create Text Boxes First_Name = Entry(newWindow, width = 30) First_Name.grid(row = 0, column = 1, padx = 20, pady = (10, 0)) First_Name.insert(0, "FIRSTNAME") Last_Name = Entry(newWindow, width = 30) Last_Name.grid(row = 1, column = 1, padx = 20) Last_Name.insert(0, "LASTNAME") Student_ID = Entry(newWindow, width = 30) Student_ID.grid(row = 2, column = 1, padx = 20) Student_ID.insert(0, "#####") Email = Entry(newWindow, width = 30) Email.grid(row = 3, column = 1, padx = 20) Email.insert(0, "<EMAIL>") Department = Entry(newWindow, width = 30) Department.grid(row = 4, column = 1, padx = 20) Department.insert(0, "Business") Major = Entry(newWindow, width = 30) Major.grid(row = 5, column = 1, padx = 20) Major.insert(0, "Finance") Grad_Date = Entry(newWindow, width = 30) Grad_Date.grid(row = 6, column = 1, padx = 20) Grad_Date.insert(0, "##/##/20##") #Create Text Box Labels First_Name_Label = Label(newWindow, text = 'First Name') First_Name_Label.grid(row = 0, column = 0, pady = (10, 0)) Last_Name_Label = Label(newWindow, text = 'Last Name') Last_Name_Label.grid(row = 1, column = 0) Student_ID_Label = Label(newWindow, text = 'Student ID') Student_ID_Label.grid(row = 2, column = 0) Email_Label = Label(newWindow, text = 'Email') Email_Label.grid(row = 3, column = 0) Department_Label = Label(newWindow, text = 'Department') Department_Label.grid(row = 4, column = 0) Major_Label = Label(newWindow, text = 'Major') Major_Label.grid(row = 5, column = 0) Grad_Date_Label = Label(newWindow, text = 'Grad Date') Grad_Date_Label.grid(row = 6, column = 0) goodAdd_Label = Label(newWindow, text="* * *") goodAdd_Label.grid(row = 8, columnspan=2) def retrieve_input(entryBox): input = entryBox.get() return input # Button disables after a successfull addition def goodAdd(): global filePathCurrent global studentList ## Add student # Get entered text firstName = retrieve_input(First_Name) lastName = retrieve_input(Last_Name) studentid = retrieve_input(Student_ID) email_ = retrieve_input(Email) department_ = retrieve_input(Department) major_ = retrieve_input(Major) gradDate = retrieve_input(Grad_Date) # Store into the table gatheredText = [firstName, lastName, studentid, email_, department_, major_, gradDate] studentList.append(gatheredText) name = lastName + ", " + firstName dataListBox.insert(END, (name)) dataListBoxID.insert(END, (studentid)) dataListBoxEmail.insert(END, (email_)) dataListBoxDepartment.insert(END, (department_)) dataListBoxMajor.insert(END, (major_)) dataListBoxDate.insert(END, (gradDate)) # formattedText = (lastName + ", " + firstName + " " + studentid + " " + email_ + " " + department_ + " " + major_ + " " + gradDate) # dataListBox.insert(END, (formattedText)) # Confirmation & disbale button goodAdd_Label.config(text="Successfull Add!") Add_button.config(state=DISABLED) # Create Add Button Add_button = Button(newWindow, text = 'Add Student to Database', bg="SeaGreen1", command=goodAdd) Add_button.grid(row = 7, column = 0, columnspan = 2, pady = 10, padx = 10, ipadx = 100) # print(index) return None """ # for r in range (rows): # for c in range (cols): canvas = tk.Canvas(dataTableFrame, bg="white", width=700, height=500) canvas.pack(fill="both", expand="yes") canvas2 = tk.Canvas(canvas, width=700, height=500) canvas2.pack(side="left") labelData = tk.Label(canvas2, text=(df.to_string()), bg="white") labelData.grid(row=rows, column=cols) scrollbar = tk.Scrollbar(canvas, command=canvas.yview) scrollbar.pack(side="right", fill="y") canvas.configure(yscrollcommand=scrollbar.set) """ ####################################################################################################### ####################################################################################################### def bottomButtons(): # Label Frame bottomButtonsFrame = tk.LabelFrame( root, text="Database Options", pady=5, padx=5) bottomButtonsFrame.pack(side="bottom", padx=10, pady=10, fill="x", expand="no") # Buttons button_refresh = tk.Button(bottomButtonsFrame, text="Refresh Table", bg="light sky blue", command=refreshTable) button_refresh.pack(side='left', padx=5) button_save = tk.Button(bottomButtonsFrame, text="Save Current Database", bg="pale green", command=saveFile) button_save.pack(side='left', padx=5) #button_emailStudent = tk.Button(bottomButtonsFrame, text="Email Student(s)", bg="CadetBlue1") #button_emailStudent.pack(side='left', padx=5) button_add = tk.Button(bottomButtonsFrame, text="Add Student", bg="SeaGreen1", command=addStudent) button_add.pack(side='right', padx=5) button_update = tk.Button(bottomButtonsFrame, text="Update Student", bg="goldenrod1", command=updateStudent) # DarkSeaGreen1 button_update.pack(side='right', padx=5) button_delete = tk.Button(bottomButtonsFrame, text="Delete Student", bg="IndianRed1", command=deleteOne) button_delete.pack(side='right', padx=5) button_clearTable = tk.Button(bottomButtonsFrame, text="CLEAR Table", bg="yellow2", command=deleteAll) button_clearTable.pack(side='right', padx=5) def userGuide(): newWindow = Toplevel(root) newWindow.title("About Studabase") newWindow.geometry("500x500") newWindow.iconbitmap('hat.ico') newWindow.resizable(width=True, height=True) # Window size changeability about_Label = Label(newWindow, text = "STUDABASE (stoo-da-base) is a GUI style student database organizational software that allows its users to:" + '\n' + "Take data from a MySQL database and translate it to a GUI system." + '\n' + "Sort data by fields such as student ID, first and last name, email, department, etc." + '\n' + "Add and remove students as well as search for specific ones." + '\n' + "Restrict displayed data through various filters.") about_Label.grid(row = 0, column = 0, pady = (10, 0)) def aboutStudabase(): newWindow = Toplevel(root) newWindow.title("About Studabase") newWindow.geometry("500x800") newWindow.iconbitmap('hat.ico') newWindow.resizable(width=True, height=True) # Window size changeability about_Label = Label(newWindow, text = "SRDG - STUDABASE: The Student Database (Stoo-da-base)" + '\n' + "<NAME> <EMAIL>" + '\n' + "<NAME> <EMAIL>" + '\n' + "<NAME> <EMAIL>" + '\n' + "<NAME> <EMAIL>") about_Label.grid(row = 0, column = 0, pady = (10, 0)) def mainWindow(): # Root Options root.title("STUDABASE: The Student Database ") # Icon - .ico file should be in the same directory as this file. root.iconbitmap('hat.ico') # Window Size: root.geometry('500x600') root.geometry('800x800') # Stops windows size from being changeable root.resizable(width=True, height=True) # root.configure(bg = 'gray24') # MENU BAR menubar = tk.Menu(root) # File - Menu Bar fileMenu = tk.Menu(menubar, tearoff=0) #fileMenu.add_command(label="New Database", command=menuFunctions.placeHolderFunc) fileMenu.add_command(label="Open Database", command=insertData) fileMenu.add_command(label="Save As...(Current Database)", command=saveFile) fileMenu.add_separator() #fileMenu.add_command(label="Properties...", command=menuFunctions.placeHolderFunc) #fileMenu.add_separator() fileMenu.add_command(label="Exit", command=root.quit) menubar.add_cascade(label="File", menu=fileMenu) # Edit - Menu Bar editMenu = tk.Menu(menubar, tearoff=0) editMenu.add_command(label="Refresh Database", command=refreshTable) editMenu.add_separator() #editMenu.add_command(label="Select All", command=menuFunctions.placeHolderFunc) editMenu.add_separator() editMenu.add_command(label="Add Student", command=addStudent) editMenu.add_command(label="Delete Student(s)", command=deleteOne) editMenu.add_separator() menubar.add_cascade(label="Edit", menu=editMenu) # View - Menu Bar #viewMenu = tk.Menu(menubar, tearoff=0) #viewMenu.add_command(label="Choice 1", command=menuFunctions.placeHolderFunc) #viewMenu.add_command(label="Choice 2", command=menuFunctions.placeHolderFunc) #viewMenu.add_separator() #viewMenu.add_command(label="Choice 3", command=menuFunctions.placeHolderFunc) #viewMenu.add_command(label="Choice 4", command=menuFunctions.placeHolderFunc) #menubar.add_cascade(label="View", menu=viewMenu) # Settings - Menu Bar #settingsMenu = tk.Menu(menubar, tearoff=0) # Change id & pass for current database #settingsMenu.add_command(label="Database Settings", command=menuFunctions.placeHolderFunc) # Change email platform/tool #settingsMenu.add_command(label="Email Platform", command=menuFunctions.placeHolderFunc) # Block changes - disables adding and deleting students (basically a read only mode) #settingsMenu.add_command( label="View Only Mode", command=menuFunctions.placeHolderFunc) # settingsMenu.add_separator() #menubar.add_cascade(label="Settings", menu=settingsMenu) # Help - Menu Bar helpmenu = tk.Menu(menubar, tearoff=0) # Display guide on how to use STUDABASE helpmenu.add_command(label="User Guide", command=userGuide) # Display info abut STUDABASE - Creators, when made, etc. helpmenu.add_command(label="About STUDABASE", command=aboutStudabase) # helpmenu.add_separator() menubar.add_cascade(label="Help", menu=helpmenu) filterOptions() dataTable() bottomButtons() # Needed for Menu bar root.config(menu=menubar) # GUI program is constantly looping to check for changes - Loop created root.mainloop() # THIS SHOULD BE THE LAST LINE
3.203125
3
2019/day15.py
dimkarakostas/advent-of-code
2
12789403
<filename>2019/day15.py class Program: def __init__(self, memory): self.memory = memory self.halted, self.outputs, self.idx, self.rel_base = False, [], 0, 0 def run(self, inputs): used_inputs = 0 while self.idx < len(self.memory): instruction = str(self.memory[self.idx]) opcode, modes = int(instruction[-2:]), instruction[:-2][::-1] + 3 * '0' self.idx += 1 if opcode in (1, 2, 5, 6, 7, 8): # Two params ins = [] for i in range(2): param = self.memory[self.idx + i] if modes[i] == '0': if param > len(self.memory) - 1: self.memory += [0 for _ in range(param)] ins.append(self.memory[param]) elif modes[i] == '1': ins.append(param) elif modes[i] == '2': if param + self.rel_base > len(self.memory) - 1: self.memory += [0 for _ in range(param + self.rel_base)] ins.append(self.memory[param + self.rel_base]) if opcode in (1, 2, 7, 8): # Two params, one output assert modes[2] in ('0', '2'), 'Invalid write' out = self.memory[self.idx + 2] if modes[2] == '2': out += self.rel_base if out > len(self.memory) - 1: self.memory += [0 for _ in range(out)] if opcode in (1, 2): self.memory[out] = ins[0] + ins[1] if opcode == 1 else ins[0] * ins[1] else: if opcode == 7: self.memory[out] = 1 if ins[0] < ins[1] else 0 else: self.memory[out] = 1 if ins[0] == ins[1] else 0 self.idx += 3 elif opcode in (5, 6): # Two params, no output if any([ opcode == 5 and ins[0] != 0, opcode == 6 and ins[0] == 0, ]): self.idx = ins[1] else: self.idx += 2 elif opcode in (3, 4, 9): # Single param param = self.memory[self.idx] if param + self.rel_base > len(self.memory) - 1: self.memory += [0 for _ in range(param + self.rel_base)] if opcode == 3: assert modes[0] in ('0', '2'), 'Invalid write' if used_inputs < len(inputs): inp = inputs[used_inputs] used_inputs += 1 if modes[0] == '0': self.memory[param] = inp elif modes[0] == '2': self.memory[param + self.rel_base] = inp else: self.idx -= 1 return used_inputs elif opcode == 4: # Single input, one output if modes[0] == '0': out = self.memory[param] elif modes[0] == '1': out = param elif modes[0] == '2': out = self.memory[param + self.rel_base] self.outputs.append(out) elif opcode == 9: if modes[0] == '0': self.rel_base += self.memory[param] elif modes[0] == '1': self.rel_base += param elif modes[0] == '2': self.rel_base += self.memory[param + self.rel_base] self.idx += 1 elif opcode in (99, ): # No param self.halted = True break else: assert False, 'Unknown opcode' assert self.halted, 'Exit without halting' class _Getch: def __call__(self): import sys import tty import termios fd = sys.stdin.fileno() old_settings = termios.tcgetattr(fd) try: tty.setraw(sys.stdin.fileno()) ch = sys.stdin.read(1) finally: termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) return ch getch = _Getch() program = [int(i) for i in open('input15').readlines()[0].split(',')] p = Program(program[:]) grid_size = 70 grid = [['.' for _ in range(grid_size)] for _ in range(grid_size)] d_x, d_y = grid_size / 2, grid_size / 2 init_x, init_y = d_x, d_y o_x, o_y, found = -1, -1, False # STEP 1: Explore grid moves = [] while True: grid[init_x][init_y] = 'o' grid[d_x][d_y] = '@' if found: grid[o_x][o_y] = '$' for ln in grid: print ''.join(ln) move = getch() moves.append(move) if move == 'a': s_x, s_y = d_x, d_y - 1 inp = 1 elif move == 'd': s_x, s_y = d_x, d_y + 1 inp = 2 elif move == 'w': s_x, s_y = d_x - 1, d_y inp = 3 elif move == 's': s_x, s_y = d_x + 1, d_y inp = 4 elif move == 'p': break p.run([inp]) if p.outputs[-1] == 0: grid[s_x][s_y] = '#' elif p.outputs[-1] in (1, 2): grid[d_x][d_y] = ' ' d_x, d_y = s_x, s_y if p.outputs[-1] == 2: found = True open('moves', 'w').write(''.join(moves)) # STEP 2: BFS to fill grid with oxygen and find shortest path empty_cells = set() for x, ln in enumerate(grid): for y, c in enumerate(ln): if c not in ('#', '.'): empty_cells.add((x, y)) visited, horizon = set(), set() horizon.add((o_x, o_y)) mins = 0 while len(visited) < len(empty_cells): if ((init_x, init_y)) in horizon: print 'Part 1:', mins mins += 1 new_horizon = set() for (c_x, c_y) in horizon: visited.add((c_x, c_y)) for i in (-1, 1): if grid[c_x + i][c_y] not in ('#', '.') and (c_x + i, c_y) not in visited.union(horizon): new_horizon.add((c_x + i, c_y)) if grid[c_x][c_y + i] not in ('#', '.') and (c_x, c_y + i) not in visited.union(horizon): new_horizon.add((c_x, c_y + i)) horizon = (horizon.union(new_horizon)).difference(visited) print 'Part 2:', mins - 1
3.328125
3
bin/downloadData/coingecko_download.py
albertodiazz/forecastingApp
0
12789404
''' Lo que hace este script es bajar la data de https://www.coingecko.com por medio de su API con ayuda del data.JSON, el cual funge como una lista de las crypto que acutlamente tradeo, esa lista es actualizada manualmente. En cuanto a los precios, no baja margenes de precio de entrada y cierre solo es data para una previzualisacion general de las graficas ''' from bin import pd,np,time,json,CoinGeckoAPI from bin import constant as c path = c.PATHCOINGECKO #esto no lo borre por que no me afecta save_file = open(path + '/cardano.txt','w') #aqui esta la lista de monedas que tradeo lista_cryptos = c.PATHJSON def get_lista_json(_path_): _lista_ = open(_path_,"r") _data_ = json.load(_lista_) api_call_crypto_name, save_name_file = [],[] for i in _data_['crypto_trade'][0]: save_name_file.append(i.lower()) api_call_crypto_name.append(_data_['crypto_trade'][0][i]) df = pd.DataFrame(columns=["name_file","crypto_api_name"]) df['name_file'] = save_name_file df['crypto_api_name'] = api_call_crypto_name return df def api_gecko(path_,output_file_,_id_,name_save_file): cg = CoinGeckoAPI() sb = cg.ping() status_gecko = False status_gecko = True resultado = cg.get_coin_market_chart_by_id(id=str(_id_),vs_currency='usd',days='365') fecha = [] tiempo = [] precios = [] for i in range(len(resultado['prices'])): fecha.append(time.strftime('%Y.%m.%d',time.localtime((resultado['prices'][i][0])/1000))) tiempo.append(time.strftime('%H:%M:%S',time.localtime((resultado['prices'][i][0])/1000))) precios.append(resultado['prices'][i][1]) data_f = np.array(fecha) data_t = np.array(tiempo) data_p = np.array(precios) data_ = {'FECHA':data_f,'HORA':data_t,'PRECIO':data_p} df = pd.DataFrame(data=data_) df.to_csv(path_ + '/' + str(name_save_file) + '.csv') return status_gecko def startDownload(): data = get_lista_json(lista_cryptos) try: for index in range(len(data)): name_file = data['name_file'].iloc[index] id = data['crypto_api_name'].iloc[index] print(str(id),str(name_file)) api_gecko(path,save_file,_id_=str(id),name_save_file=str(name_file)) print('<<<<<<< ' + str(id) + ' >>>>>>>>>') except Exception as error: print(error) #status_gecko = api_gecko(path,save_file)
3.4375
3
screenpy/actions/select.py
pjbarbatsis/screenpy
0
12789405
from typing import Union from selenium.webdriver.support.ui import Select as SelSelect from ..actor import Actor from ..pacing import beat, MINOR from ..target import Target class Select: """ Selects an option from a dropdown menu. This is a superclass that will create the correct specific Select action that will need to be used, depending on how the option needs to be selected. Some examples of invocations: Select.the_option_named("January").from_the(MONTH_DROPDOWN) Select.the_option_at_index(0).from_the(MONTH_DROPDOWN) Select.the_option_with_value("jan").from_the(MONTH_DROPDOWN) It can then be passed along to the |Actor| to perform the action. """ @staticmethod def the_option_named(text: str) -> "SelectByText": """ Instantiate a |SelectByText| class which will select the option with the given text. Args: text (str): The text of the option to select. Returns: |SelectByText| """ return SelectByText(text) @staticmethod def the_option_at_index(index: Union[int, str]) -> "SelectByIndex": """ Instantiate a |SelectByIndex| class which will select the option at the specified index. This index is 0-based. Args: index (Union[int, str]): The index (0-based) of the option to select. Returns: |SelectByIndex| """ return SelectByIndex(index) @staticmethod def the_option_with_value(value: str) -> "SelectByValue": """ Instantiate a |SelectByText| class which will select the option with the given text. Args: value (str): The text of the option to select. Returns: |SelectByText| """ return SelectByValue(value) class SelectByText: """ A specialized Select action that chooses the option by text. This class is meant to be accessed via the Select action's static |Select.the_option_named| method. A typical invocation might look like: Select.the_option_named("January").from_the(MONTH_DROPDOWN) It can then be passed along to the |Actor| to perform the action. """ def from_the(self, target: Target) -> "SelectByText": """ Provides the |Target| to select the option from. Args: target (Target): The |Target| describing the dropdown element to select from Returns: |SelectByText| """ self.target = target return self def from_(self, target: Target) -> "SelectByText": """Syntactic sugar for |SelectByText.from_the|.""" return self.from_the(target) @beat("{0} selects the option '{text}' from the {target}.", gravitas=MINOR) def perform_as(self, the_actor: Actor) -> None: """ Asks the actor to attempt to find the dropdown element described by the stored target, then performs the select action. Args: the_actor (Actor): The |Actor| who will perform the action. Raises: |UnableToPerformException|: if the actor does not have the ability to |BrowseTheWeb|. """ element = self.target.found_by(the_actor) select = SelSelect(element) select.select_by_visible_text(self.text) def __init__(self, text: str, target: Target = None) -> None: self.target = target self.text = text class SelectByIndex: """ A specialized |Select| action that chooses the option by its index. This class is meant to be accessed via the Select action's static |Select.the_option_at_index| method. A typical invocation might look like: Select.the_option_at_index(0).from_the(MONTH_DROPDOWN) It can then be passed along to the |Actor| to perform the action. """ def from_the(self, target: Target) -> "SelectByIndex": """ Provides the |Target| to select the option from. Args: target (Target): The |Target| describing the dropdown element to select from Returns: |SelectByIndex| """ self.target = target return self def from_(self, target: Target) -> "SelectByIndex": """Syntactic sugar for |SelectByIndex.from_the|.""" return self.from_the(target) @beat("{0} selects the option at index {index} from the {target}.", gravitas=MINOR) def perform_as(self, the_actor: Actor) -> None: """ Asks the actor to attempt to find the dropdown element described by the stored target, then performs the select action. Args: the_actor (Actor): The |Actor| who will perform the action. Raises: |UnableToPerformException|: if the actor does not have the ability to |BrowseTheWeb|. """ element = self.target.found_by(the_actor) select = SelSelect(element) select.select_by_index(self.index) def __init__(self, index: Union[int, str], target: Target = None) -> None: self.target = target self.index = str(index) class SelectByValue: """ A specialized Select action that chooses the option by its value. This class is meant to be accessed via the Select action's static |Select.the_option_with_value| method. A typical invocation might look like: Select.the_option_with_value("jan").from_the(MONTH_DROPDOWN) It can then be passed along to the |Actor| to perform the action. """ def from_the(self, target: Target) -> "SelectByValue": """ Provides the |Target| to select the option from. Args: target (Target): The |Target| describing the dropdown element to select from Returns: |SelectByValue| """ self.target = target return self def from_(self, target: Target) -> "SelectByValue": """Syntactic sugar for |SelectByValue.from_the|.""" return self.from_the(target) @beat( "{0} selects the option with value '{value}' from the {target}.", gravitas=MINOR ) def perform_as(self, the_actor: Actor) -> None: """ Asks the actor to attempt to find the dropdown element described by the stored target, then performs the select action. Args: the_actor (Actor): The |Actor| who will perform the action. Raises: |UnableToPerformException|: if the actor does not have the ability to |BrowseTheWeb|. """ element = self.target.found_by(the_actor) select = SelSelect(element) select.select_by_value(self.value) def __init__(self, value: Union[int, str], target: Target = None) -> None: self.target = target self.value = str(value)
3.5625
4
lec2-1.py
cutz-j/PyMC
0
12789406
import pymc as pm import matplotlib.pyplot as plt import numpy as np plt.rc('font', family='Malgun Gothic') lambda_ = pm.Exponential("poisson_param", 1) data_generator = pm.Poisson("data_generater", lambda_) data_plus_one = data_generator + 1 print(lambda_.children) print(data_generator.parents) # value print(lambda_.value) betas = pm.Uniform("betas", 0, 1, size=5) betas.value ## random ld1 = pm.Exponential("lambda_1", 1) # first 행동의 prior ld2 = pm.Exponential("lambda_2", 1) # second 행동의 prior tau = pm.DiscreteUniform("tau", lower=0, upper=10) # 행동 변화에 대한 prior print("init") print(ld1.value) print(ld2.value) print(tau.value) print(ld1.random(), ld2.random(), tau.random()) print("random call") print(ld1.value) print(ld2.value) print(tau.value) n_data_points = 5 @pm.deterministic def labmda_(tau=tau, lambda_1=ld1, lambda_2=ld2): out = np.zeros(n_data_points) out[:tau] = lambda_1 out[tau:] = lambda_2 return out #################################################### #### 모델에 관측 포함 #### figsize = (12.5, 4) plt.figure(figsize=figsize) plt.rcParams['savefig.dpi'] = 300 plt.rcParams['figure.dpi'] = 300 samples = [ld1.random() for i in range(20000)] plt.hist(samples, bins=70, normed=True, histtype="stepfilled") plt.xlim(0, 8) plt.show() # 고정 밸류 data = np.array([10, 25, 15, 20, 35]) obs = pm.Poisson("obs", lambda_, value=data, observed=True) obs.value ################## ##### 모델링 ##### tau = pm.rdiscrete_uniform(0, 80) alpha = 1./20. lambda_1, lambda_2 = pm.rexponential(alpha, 2) lambda_ = np.r_[lambda_1*np.ones(tau), lambda_2*np.ones(80-tau)] data = pm.rpoisson(lambda_) plt.bar(np.arange(80), data, color="#348ABD") plt.bar(tau-1, data[tau-1], color='r', label='행동변화') plt.xlable("time") plt.ylabel("message") plt.xlim(0, 80) plt.legend()
2.484375
2
dicom_review/conf/urls.py
chop-dbhi/django-dicom-review
6
12789407
import re from django.conf.urls import url, patterns, include from django.conf import settings from django.contrib import admin from django.views.generic import TemplateView from dicom_review.views import review admin.autodiscover() urlpatterns = patterns('', url(r'^$', review), url(r'^login/$', 'django.contrib.auth.views.login', name="login"), # Administrative components url(r'^admin/', include(admin.site.urls)), ) # In production, these two locations must be served up statically urlpatterns += patterns('django.views.static', url(r'^%s(?P<path>.*)$' % re.escape(settings.MEDIA_URL.lstrip('/')), 'serve', { 'document_root': settings.MEDIA_ROOT }), url(r'^%s(?P<path>.*)$' % re.escape(settings.STATIC_URL.lstrip('/')), 'serve', { 'document_root': settings.STATIC_ROOT }), )
1.875
2
tests/common/test_op/ascend/fake_quant_with_min_max_args.py
tianjiashuo/akg
286
12789408
<reponame>tianjiashuo/akg<gh_stars>100-1000 # Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """operator dsl function: fake_quant_with_min_max_args""" import akg from akg import tvm, topi from akg.utils.format_transform import get_shape import akg.utils as utils from akg.ops.math.ascend import Floor def nudge_min_max(min, max, num_bits, narrow_range): """ Calculate the maximum and minimum values of the quantization Args: min: scalar, input min max: input max num_bits: scalar Defaults to 8. num_bits is the bitwidth of the quantization, range [2,16] narrow_range: bool Returns: nudged_min, nudged_max, scale """ quant_max = (2**num_bits) - 1 if narrow_range is False: quant_min = 0.00 else: quant_min = 1.00 scale = (max - min) / (float(quant_max) - quant_min) zero_point_from_min = quant_min - min / scale # Calculate the maximum and minimum values of the quantization if zero_point_from_min < quant_min: nudged_zero_point = quant_min elif zero_point_from_min > quant_max: nudged_zero_point = quant_max else: nudged_zero_point = (zero_point_from_min + 0.5) // 1 nudged_min = (quant_min - nudged_zero_point) * scale nudged_max = (quant_max - nudged_zero_point) * scale return nudged_min, nudged_max, scale @utils.check_input_type(tvm.tensor.Tensor, (float, int, type(None)), (float, int, type(None)), (int, type(None)), (bool, type(None))) def fake_quant_with_min_max_args(input_data, min=-6, max=6, num_bits=8, narrow_range=False): """ Computes Fake-quantize the 'input_data' tensor, type float32 to 'output_data' tensor of same type output_data = (floor(clamped_shifted * inv_nudged_scale + 0.5f))) * scale + nudged_min scale = (max-min) / (quant_max-quant_min) Args: data_x1 (tvm.tensor.Tensor): Tensor of dtype "float32" min ([float, int]): scalar, defaults to -6 max ([float, int]): scalar, defaults to 6. [min; max] define the clamping range for the input_data data num_bits ([float, int]): Defaults to 8. num_bits is the bitwidth of the quantization,between 2 and 16 narrow_range ([bool]): True, quantized into the quantization range [1; 2^num_bits - 1] False,quantized into the quantization range [0; 2^num_bits - 1] Returns: tvm.tensor.Tensor """ shape = get_shape(input_data) utils.check_shape(shape) dtype = input_data.dtype utils.ops_dtype_check(dtype, utils.DtypeForDavinci.FLOAT32) nudged_min, nudged_max, scale = nudge_min_max(min, max, num_bits, narrow_range) zero_tensor = tvm.compute(input_data.shape, lambda *i: tvm.const(0, dtype="float32"), name="zero_tensor") nudged_max_tensor = topi.add(zero_tensor, nudged_max) nudged_min_tensor = topi.add(zero_tensor, nudged_min) inv_nudged_scale = 1.00 / scale # Transform the input between nudged_max and nudged_min clamped_vmin = topi.minimum(input_data, nudged_max_tensor) clamped = topi.maximum(clamped_vmin, nudged_min_tensor) # Calculate the quantized and dequantized results clamped_shifted = topi.subtract(clamped, nudged_min_tensor) vmul_shifted = topi.multiply(clamped_shifted, inv_nudged_scale) vadds_shifted = topi.add(vmul_shifted, 0.5) floor_vadds_shifted = Floor(vadds_shifted) floor_cast = akg.lang.ascend.cast_to(floor_vadds_shifted, dtype) res_scale = topi.multiply(floor_cast, scale) res = topi.add(res_scale, nudged_min_tensor) return res
2.515625
3
medial_axis/__init__.py
dipaco/cpma
2
12789409
<filename>medial_axis/__init__.py<gh_stars>1-10 from .cpma import cpma, cpma_3d
1.164063
1
setup.py
bijulette/ParallelFDTD
4
12789410
<filename>setup.py<gh_stars>1-10 import setuptools import os import shutil import subprocess from setuptools import Extension from setuptools.command.build_py import build_py from setuptools.command.build_ext import build_ext from setuptools.command.install_lib import install_lib PACKAGE_NAME = 'pyParallelFDTD' class CMakeExtension(Extension): def __init__(self, name, sources=[], libraries=[]): super().__init__(name, sources, libraries=libraries) self.sourcedir = os.path.abspath(".") class InstallCMakeLibs(install_lib): def run(self): self.distribution.data_files = [] # make sure the cmake command is run self.run_command('build_ext') self.run_command('build_py') library_dir = self.distribution.cmake_build_dir library_dir = os.path.join(library_dir, 'python') build_dir = os.path.join(self.build_dir, PACKAGE_NAME) print(build_dir) print(library_dir) # check files in the binary directory and copy any libraries # This is a bit more general than we need, but it solves the problem # of different file extensions in Unix and Windows for filename in os.listdir(library_dir): print(library_dir, filename) # check if the file is a library if (os.path.isfile(os.path.join(library_dir, filename)) and os.path.splitext(filename)[1] in [".dll", ".so"]): libname = os.path.join(library_dir, filename) # build_dir seems to be where the package folder goes dist_path = os.path.join(build_dir) dist_name = os.path.join(dist_path, filename) print(libname, dist_path, dist_name) shutil.copy(libname, dist_path) self.distribution.data_files.append(dist_name) super().run() def get_outputs(self): return self.distribution.data_files class CMakeBuild(build_ext): def run(self): # Check that Cmake is installed try: subprocess.check_output(["cmake", "--version"]) except (OSError, subprocess.SubprocessError): raise RuntimeError( "Cannot find Cmake. Please install Cmake before continuing." ) # Run the build command. The build_ext class contains a list # of buildable extentions. There should be only one, but # run through the whole list for compatiblity for ext in self.extensions: self.build_extension(ext) super().run() def build_extension(self, ext): cmake_config = ["-DBUILD_PYTHON=on"] self.distribution.cmake_build_dir = self.build_temp # Create the build directory if necessary if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) # Run the Cmake command subprocess.check_call( ["cmake", f"-H{ext.sourcedir}", f"-B{self.build_temp}"] + cmake_config ) # Build and install subprocess.check_call( ["cmake", "--build", self.build_temp, '-t', 'libPyFDTD', '--'] ) #subprocess.check_call( # ["cmake", "--install", self.build_temp] #) setuptools.setup( name=PACKAGE_NAME, version='0.0', description="Python bindings to ParallelFDTD", url="https://github.com/AaltoRSE/ParallelFDTD", license="MIT License", packages=[ PACKAGE_NAME, ], package_dir={ PACKAGE_NAME: 'dist/libPyFDTD', }, package_data={'pyParallelFDTD': ['liblibPyFDTD.so']}, ext_modules=[ CMakeExtension(PACKAGE_NAME+".liblibPyFDTD", libraries='liblibPyFDTD.so'), ], cmdclass={ 'build_ext': CMakeBuild, 'install_lib': InstallCMakeLibs, }, )
2.03125
2
PythonProjects/TinderLike/main.py
carlosmpr/CodePortafolio
0
12789411
from selenium import webdriver from selenium.webdriver.common.keys import Keys import time chrome_driver_location = "E:\Development\chromedriver.exe" driver = webdriver.Chrome(executable_path=chrome_driver_location) driver.get("https://tinder.com/app/recs") base_window = driver.window_handles[0] login = driver.find_element_by_xpath('//*[@id="content"]/div/div[1]/div/main/div[1]/div/div/div/div/header/div/div[2]/div[2]/button') login.click() time.sleep(5) google = driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div[1]/div/div[3]/span/div[1]/div/button') google.click() time.sleep(5) google_login_window = driver.window_handles[1] driver.switch_to.window(google_login_window) google_email = driver.find_element_by_xpath('/html/body/div[1]/div[1]/div[2]/div/div[2]/div/div/div[2]/div/div[1]/div/form/span/section/div/div/div[1]/div/div[1]/div/div[1]/input') google_email.send_keys("<EMAIL>") next_button_username = driver.find_element_by_xpath('//*[@id="identifierNext"]/div/button') next_button_username.click() time.sleep(5) google_password = driver.find_element_by_xpath('//*[@id="password"]/div[1]/div/div[1]/input') google_password.send_keys("<PASSWORD>") next_button_password = driver.find_element_by_xpath('//*[@id="passwordNext"]/div/button') next_button_password.click() time.sleep(5) driver.switch_to.window(base_window) allow_location_button = driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div/div/div[3]/button[1]') allow_location_button.click() not_interested = driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div/div/div[3]/button[2]') not_interested.click() cookies = driver.find_element_by_xpath('//*[@id="content"]/div/div[2]/div/div/div[1]/button') cookies.click() time.sleep(5) body = driver.find_element_by_xpath('//*[@id="Tinder"]/body') for i in range(0, 101): time.sleep(5) body.send_keys(Keys.ARROW_RIGHT)
2.765625
3
analytics/object/language.py
dpatel257/Smart-City-Sample
126
12789412
#!/usr/bin/python3 text={ "object-detection": "object-detection", "svcq-counting": "svcq-counting", }
1.046875
1
src/bot/core.py
mdcg/youtube-telegram-webhook
1
12789413
import sys from src.bot import logger from src.bot.messages import ( AVAILABLE_COMMANDS_MESSAGE, GREETINGS_MESSAGE, NON_INFORMED_CHANNEL_ID_MESSAGE, SUBSCRIPTION_ERROR_MESSAGE, SUBSCRIPTION_MESSAGE, UNKNOWN_MESSAGE, ) from src.bot.requester import subscribe_in_pubsubhubbub from src.database.utils import save_channel, save_user, subscribe_user from src.settings import TELEGRAM_TOKEN from telegram.ext import ( CommandHandler, Filters, MessageHandler, Updater, CallbackContext, ) from telegram import Update def start_command(update: Update, context: CallbackContext): """As soon as the bot is started, the first command that by default the user sends to it is '/start'. Here we define what will be answered, which in this case, is a customized message with the name of the user in question informing how he can interact with the bot. Parameters ---------- update : Update This object represents an incoming update. context : CallbackContext This is a context object passed to the callback called by telegram.ext.Handler. """ context.bot.send_message( chat_id=update.effective_chat.id, text=GREETINGS_MESSAGE.format(update.effective_chat.username), ) return None def help_command(update: Update, context: CallbackContext) -> None: """To assist the user in teaching how he will use the bot, we have specified this function that will give all the necessary instructions to him. Parameters ---------- update : Update This object represents an incoming update. context : CallbackContext This is a context object passed to the callback called by telegram.ext.Handler. """ context.bot.send_message( chat_id=update.effective_chat.id, text=AVAILABLE_COMMANDS_MESSAGE ) return None def unknown_command(update: Update, context: CallbackContext) -> None: """Some users can write commands that are not handled by the bot. In order not to make him anxious without knowing if something went right or not, any command that is not mapped by the service will be answered with a redirect to him using the command '/help' Parameters ---------- update : Update This object represents an incoming update. context : CallbackContext This is a context object passed to the callback called by telegram.ext.Handler. """ context.bot.send_message( chat_id=update.effective_chat.id, text=UNKNOWN_MESSAGE ) return None def subscribe_command(update: Update, context: CallbackContext) -> None: """This function is our "flagship". Basically this is where the user will be able to subscribe to a channel to receive notifications for new videos. Parameters ---------- update : Update This object represents an incoming update. context : CallbackContext This is a context object passed to the callback called by telegram.ext.Handler. """ try: channel_id = context.args[0] except IndexError: context.bot.send_message( chat_id=update.effective_chat.id, text=NON_INFORMED_CHANNEL_ID_MESSAGE, ) return None logger.info("Channel subscription requested. Initializing processing.") chat_id = update.effective_chat.id save_user(chat_id) status = subscribe_in_pubsubhubbub(channel_id) if status == 202: logger.info("Request sent successfully.") save_channel(channel_id) subscribe_user(channel_id, chat_id) context.bot.send_message( chat_id=update.effective_chat.id, text=SUBSCRIPTION_MESSAGE ) else: logger.warning( f"There was a problem sending your subscribe request. Status Code received: {status}" ) context.bot.send_message( chat_id=update.effective_chat.id, text=SUBSCRIPTION_ERROR_MESSAGE ) return None def main() -> None: """This is where the bot will actually start and handle requests with Telegram users. """ updater = Updater(token=TELEGRAM_TOKEN) dispatcher = updater.dispatcher dispatcher.add_handler(CommandHandler("start", start_command)) dispatcher.add_handler(CommandHandler("help", help_command)) dispatcher.add_handler(CommandHandler("subscribe", subscribe_command)) dispatcher.add_handler(MessageHandler(Filters.command, unknown_command)) updater.start_polling() updater.idle() return None if __name__ == "__main__": logger.info("Initializing bot...") try: main() except (KeyboardInterrupt, SystemExit): logger.info("Stopping bot...") sys.exit(0)
2.484375
2
benchmark/citation/patgcn.py
ecom-research/pytorch_geometric
1
12789414
<filename>benchmark/citation/patgcn.py<gh_stars>1-10 import argparse import torch from torch import nn import torch.nn.functional as F from torch_geometric.nn import GCNConv import torch_sparse import MinkowskiEngine as ME from datasets import get_planetoid_dataset from train_eval import run, random_planetoid_splits parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, default='cora') parser.add_argument('--random_splits', type=bool, default=False) parser.add_argument('--runs', type=int, default=100) parser.add_argument('--epochs', type=int, default=200) parser.add_argument('--lr', type=float, default=0.01) parser.add_argument('--weight_decay', type=float, default=0.0005) parser.add_argument('--early_stopping', type=int, default=10) parser.add_argument('--hidden', type=int, default=16) parser.add_argument('--dropout', type=float, default=0.5) parser.add_argument('--normalize_features', type=bool, default=True) args = parser.parse_args() class ConvAutoencoder(nn.Module): def __init__(self, in_channel, out_channel, D): super(ConvAutoencoder, self).__init__() self.conv1 = ME.MinkowskiConvolution(in_channel, 16, 3, dimension=D) self.conv2 = ME.MinkowskiConvolution(16, 4, 3, dimension=D) self.pool = ME.MinkowskiMaxPooling(2, 2, dimension=D) self.t_conv1 = ME.MinkowskiConvolutionTranspose(4, 16, 2, stride=2, dimension=D) self.t_conv2 = ME.MinkowskiConvolutionTranspose(16, out_channel, 2, stride=2, dimension=D) self.relu = ME.MinkowskiReLU() self.sigmoid = ME.MinkowskiSigmoid() def forward(self, x): x = self.relu(self.conv1(x)) x = self.pool(x) x = self.relu(self.conv2(x)) x = self.pool(x) x = self.relu(self.t_conv1(x)) x = self.sigmoid(self.t_conv2(x)) return x def reset_parameters(self): torch.nn.init.xavier_normal_(self.conv1.weight) torch.nn.init.xavier_normal_(self.conv2.weight) torch.nn.init.xavier_normal_(self.t_conv1.weight) torch.nn.init.xavier_normal_(self.t_conv2.weight) def forward(self, x): x = self.relu(self.conv1(x)) x = self.pool(x) x = self.relu(self.conv2(x)) x = self.pool(x) x = self.relu(self.t_conv1(x)) x = self.sigmoid(self.t_conv2(x)) return x def reset_parameters(self): torch.nn.init.xavier_normal_(self.conv1.weight) torch.nn.init.xavier_normal_(self.conv2.weight) torch.nn.init.xavier_normal_(self.t_conv1.weight) torch.nn.init.xavier_normal_(self.t_conv2.weight) class Net(torch.nn.Module): def __init__(self, dataset): super(Net, self).__init__() self.size = dataset.data.x.shape[0] self.att_block = ConvAutoencoder(2, 2, D=1) self.conv1 = GCNConv(dataset.num_features, args.hidden) self.conv2 = GCNConv(args.hidden, dataset.num_classes) def reset_parameters(self): self.att_block.reset_parameters() self.conv1.reset_parameters() self.conv2.reset_parameters() def path_transform(self, meta_path_edge_indicis, att_block): device = meta_path_edge_indicis[0].device coords = meta_path_edge_indicis[0].T feats = torch.ones((meta_path_edge_indicis[0].shape[1], 2), device=device) minkow_meta_path_sparse_mat = ME.SparseTensor(coords=coords, feats=feats) att = att_block(minkow_meta_path_sparse_mat) minkow_sparse_attended_adjs = minkow_meta_path_sparse_mat * att coords, feats = minkow_sparse_attended_adjs.coords, minkow_sparse_attended_adjs.feats sparse_attended_adjs = [] for feat_idx in range(feats.shape[1]): idx = feats[:, feat_idx] != 0 sparse_attended_adjs.append(torch_sparse.coalesce(coords[idx].long().T, feats[idx, feat_idx], m=3, n=2, op='mean')) sparse_adapted_adj = torch_sparse.eye(self.size, device=device) for sparse_attended_adj in sparse_attended_adjs: sparse_adapted_adj = torch_sparse.spspmm(*sparse_attended_adj, *sparse_attended_adj, m=3, k=3, n=2) index, val = sparse_adapted_adj return index, val / len(meta_path_edge_indicis) def forward(self, data): x, edge_index = data.x, data.edge_index meta_path = [data.edge_index, data.edge_index] meta_edge_index, edge_weight = self.path_transform(meta_path, self.att_block) sparse_meta_adj_mat = torch.sparse.FloatTensor( meta_edge_index, edge_weight, torch.Size([self.size, self.size]) ) sparse_adj_mat = torch.sparse.FloatTensor( edge_index, torch.ones(edge_index.shape[1], device=sparse_meta_adj_mat.device), torch.Size([x.shape[0], x.shape[0]]) ) sparse_mean_adj_mat = (sparse_meta_adj_mat + sparse_adj_mat) / 2 sparse_mean_adj_mat = sparse_mean_adj_mat.coalesce() adp_adj_edge_index, adp_adj_edge_weight = sparse_mean_adj_mat.indices(), sparse_mean_adj_mat.values() x = F.relu(self.conv1(x, adp_adj_edge_index, edge_weight=adp_adj_edge_weight)) x = F.dropout(x, p=args.dropout, training=self.training) x = self.conv2(x, adp_adj_edge_index, edge_weight=adp_adj_edge_weight) # x = F.relu(self.conv1(x, edge_index)) # x = F.dropout(x, p=args.dropout, training=self.training) # x = self.conv2(x, edge_index) return F.log_softmax(x, dim=1) dataset = get_planetoid_dataset(args.dataset, args.normalize_features) Net(dataset)(dataset.data) permute_masks = random_planetoid_splits if args.random_splits else None run(dataset, Net(dataset), args.runs, args.epochs, args.lr, args.weight_decay, args.early_stopping, permute_masks)
2.109375
2
common/HtmlUtils.py
loveflycforever/TypeY
0
12789415
import datetime import os import certifi import urllib3 from selenium import webdriver from selenium.webdriver.firefox.options import Options # 写入文件 def write_file(file_path, text_content): with open(file_path, 'w', encoding='utf-8') as f: f.write(datetime.datetime.now().strftime('<!-- [store time] %Y-%m-%d %H:%M:%S.%f -->\n')) f.write(text_content) # 读出文件 def read_file(file_path): with open(file_path, 'r', encoding='utf-8') as f: file_content = f.read() return file_content # 检查文件 def check_file(file_path, file_size=0): return os.path.exists(file_path) and os.path.isfile(file_path) and os.path.getsize(file_path) / 1024 > file_size # 组装文件名 def __make_up__(directory, name=None): if name: path = '%s%s.html' % (directory, name) else: path = '%s%s.html' % (directory, datetime.datetime.now().strftime('%Y-%m-%d-%H')) return path # 浏览器打开地址 def browser_html(html_uri, storage_directory=None, file_name=None): if storage_directory and file_name: file_path = __make_up__(storage_directory, file_name) if check_file(file_path): store_html = read_file(file_path) else: store_html = __browser__(html_uri) write_file(file_path, store_html) else: store_html = __browser__(html_uri) return store_html # 模拟浏览器访问 def __browser__(uri): options = Options() options.set_headless() browser = webdriver.Firefox(options=options) browser.maximize_window() browser.get(uri) html_content = browser.page_source browser.quit() return html_content # 请求打开地址 def request_html(html_uri, need_https=True, storage_directory=None, file_name=None): if storage_directory and file_name: file_path = __make_up__(storage_directory, file_name) if check_file(file_path): store_html = read_file(file_path) else: store_html = __request__(html_uri, need_https) write_file(file_path, store_html) else: store_html = __request__(html_uri, need_https) return store_html # 请求地址访问 def __request__(uri, need_https=True): if need_https: html_http = urllib3.PoolManager( cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) else: html_http = urllib3.PoolManager() html_response = html_http.request('GET', uri) html_content = html_response.data.decode() return html_content
2.796875
3
coursera.py
ChutianShen/pointnet_kitti
0
12789416
<filename>coursera.py import json db = [] query_content_dict_index = {} query_content_dict_index['id'] = 0 query_content_dict_index['last'] = 1 query_content_dict_index['first'] = 2 query_content_dict_index['location'] = 3 query_content_dict_index['active'] = 4 location_dict_index = {} location_dict_index['city'] = 0 location_dict_index['state'] = 1 location_dict_index['postalCode'] = 3 def jsonQuery(order, content): # order is add, get or delete; content is the query if order is 'add': store_json(content) elif order is 'get': return return_json(content) elif order is 'delete': delete_json(content) else: return 'Wrong order!!!' def store_json(content): db.append(content) def return_json(content): res = [] for entry in db: if match(entry, content): res.append(entry) return res def delete_json(content): for entry in db: if match(entry, content): db.remove(entry) def match(entry, content): for condition in content: key = condition.keys()[0] # .keys()[0] get its key if key is "location": #print key for location_condition in condition[key]: #print location_condition location_condition_key = location_condition.keys()[0] print location_condition_key print location_dict_index[location_condition_key] print entry[3]["location"][location_dict_index[location_condition_key]][location_condition_key] if entry[3]["location"][location_dict_index[location_condition_key]][location_condition_key] != location_condition[location_condition_key]: return False else: if entry[query_content_dict_index[key]][key] != condition[key]: return False return True entry1 = [ {"id": 1}, {"last": "Doe"}, {"first": "John"}, {"location": [{"city": "Oakland"}, {"state": "CA"}, {"postalCode": "94607"}]}, {"active": True} ] query1 = [{"id": 1}] query2 = [{"id": 2}] query3 = [{"location": [{"city": "Oakland"}]}] query4 = [{"location": [{"city": "LA"}]}] def run(): jsonQuery("add", entry1) for entry in db: print entry # print match(db[0], query1) # # print match(db[0], query3) # # print jsonQuery("get", query1) # # print jsonQuery("get", query2) print match(db[0], query3) print match(db[0], query4) run()
3.78125
4
pomito/plugins/task/trello.py
codito/pomito
1
12789417
# -*- coding: utf-8 -*- """Trello plugin for pomito.""" import logging from trello import TrelloClient from pomito.plugins import task from pomito.task import Task __all__ = ['TrelloTask'] logger = logging.getLogger('pomito.plugins.task.trello') def _create_trello_client(api_key, api_secret): """Create default TrelloClient instance.""" return TrelloClient(api_key=api_key, api_secret=api_secret) class TrelloTask(task.TaskPlugin): """Trello task plugin for pomito.""" def __init__(self, pomodoro_service, get_trello_api=_create_trello_client): """Create an instance of TrelloTask.""" if pomodoro_service is None: raise ValueError("pomodoro_service must not be None.") self._get_trello_client = get_trello_api self._pomodoro_service = pomodoro_service self.trello_api = None self.trello_board = None self.trello_list = None def initialize(self): """Initialize the trello task plugin.""" def _get_config(config): return self._pomodoro_service.get_config("task.trello", config) api_key = _get_config("api_key") api_secret = _get_config("api_secret") self.trello_board = _get_config("board") self.trello_list = _get_config("list") self.trello_api = self._get_trello_client(api_key, api_secret) if api_key is None or api_secret is None\ or self.trello_board is None or self.trello_list is None: logger.error("Error initializing plugin: invalid configuration") def get_tasks(self): """Get all incomplete tasks assigned to the user.""" # TODO support for dueDates try: def create_task(card): """Create a `Task` object from a trello dict.""" return Task(uid=card.id, estimate=0, actual=0, tags=card.labels, description=card.name) for b in self.trello_api.list_boards(): if self.trello_board is not None and b.name != self.trello_board: continue if self.trello_list is not None: lists = [lo for lo in b.list_lists() if lo.name == self.trello_list] else: lists = b.list_lists() for l in lists: yield from map(create_task, l.list_cards()) except AttributeError as attrib_error: logger.error("Error getting tasklist: {0}".format(attrib_error))
2.5
2
binding.gyp
royalpinto/node-cares
10
12789418
<reponame>royalpinto/node-cares { "targets": [{ "variables": { # Define `gcc_version` if it's not defined already # as it is getting used below. "gcc_version%": "unknown", }, "target_name": "cares_wrap", "include_dirs": [ "<!(node -e \"require('nan')\")", "deps/cares/include", "deps/cares/src", "deps/utils" ], "sources": [ "src/cares_wrap.cc" ], "dependencies": [ "deps/cares/cares.gyp:cares" ], # Exclude `-fno-tree-sink` by default as some older compiler versions # does not support this flag. # This flag is conditionally getting added again below. 'cflags!': [ '-fno-tree-sink' ], "conditions": [ ["OS!='win'", { "libraries": [ "-Wl,-rpath,<!(pwd)/build/Release/" ], } ], # Conditionally add `-fno-tree-sink` only for supported versions. ['clang == 0 and gcc_version <= 44', { 'cflags': [ '-fno-tree-sink' ], # Work around compiler bug. }], ] }] }
1.398438
1
Source/RenderPasses/TemporalDelayPass/Testing/testTemporalDelayPass.py
jeongsoopark/Falcor
2
12789419
<reponame>jeongsoopark/Falcor def test_temporal_delay(): imageLoader = RenderPass("ImageLoader", {'filename': 'smoke-puff.png', 'mips': False, 'srgb': True}) depthPass = RenderPass("DepthPass") forwardLightingPass = RenderPass("ForwardLightingPass") temporalDelayPass = RenderPass("TemporalDelayPass", {"delay": 16}) graph = RenderGraph("Temporal Delay Graph") graph.addPass(imageLoader, "ImageLoader") graph.addPass(depthPass, "DepthPass") graph.addPass(forwardLightingPass, "ForwardLightingPass") graph.addPass(temporalDelayPass, "TemporalDelayPass") graph.addEdge("ImageLoader.dst", "ForwardLightingPass.color") graph.addEdge("DepthPass.depth", "ForwardLightingPass.depth") graph.addEdge("ForwardLightingPass.color", "TemporalDelayPass.src") graph.markOutput("TemporalDelayPass.maxDelay") return graph temporal_delay_graph = test_temporal_delay() m.addGraph(temporal_delay_graph)
2.328125
2
Leetcode/Python/_1534.py
Xrenya/algorithms
1
12789420
class Solution: def countGoodTriplets(self, arr: List[int], a: int, b: int, c: int) -> int: # Brute force solution counter = 0 lenght = len(arr) for i in range(lenght-2): for j in range(lenght-1): for k in range(lenght): if i<j and j<k and k<lenght: if abs(arr[i]-arr[j])<=a and abs(arr[j]-arr[k])<=b and abs(arr[i]-arr[k])<=c: print(arr[i], arr[j], arr[k]) counter += 1 else: pass return counter class Solution: def countGoodTriplets(self, arr: List[int], a: int, b: int, c: int) -> int: size = len(arr) counter = 0 for i in range(size-2): for j in range(i+1, size-1): for k in range(j+1, size): ok_a = abs(arr[i] - arr[j]) <= a ok_b = abs(arr[j] - arr[k]) <= b ok_c = abs(arr[i] - arr[k]) <= c if all((ok_a, ok_b, ok_c)): counter += 1 return counter
3
3
nadl/core/tensor.py
heytanay/nadl
13
12789421
<filename>nadl/core/tensor.py import numpy as np from ..core.ops import HiddenOps from ..other.utils import Utils class Tensor: """ Core Tensor Class This class will be responsible for all the heavy lifting. """ def __init__(self, data: np.ndarray, requires_grad: bool=True, _children: tuple=(), _op: str=''): if not isinstance(data, np.ndarray): raise TypeError("Only Numpy arrays are supported for now.") self.data = data self.requires_grad = requires_grad self.grad = np.zeros_like(self.data) self._prev = set(_children) self._op = _op def experimental_set_data(self, new_data): """ Explicitly change the data of an already initialized Tensor. This will reset all the gradients back to 0 """ self.data = new_data self.grad = np.zeros_like(self.data) @property def shape(self): """ Returns the shape of the Tensor """ return self.data.shape @property def dtype(self): """ Returns the data of the Tensor """ return self.data.dtype @property def numpy(self): """ Returns the data of the tensor in a numpy array. Use this method to retrieve the data """ return np.array(self.data) @classmethod def ones_like(cls, tensor): """ Returns a Tensor full of Ones with the same shape as the provided tensor Just like np.ones_like(...) function """ return cls(data=np.ones(shape=tensor.shape, dtype=tensor.dtype)) @classmethod def zeros_like(cls, tensor): """ Returns a Tensor full of Zeros with the same shape as the provided tensor Just like np.zeros_like(...) function """ return cls(data=np.zeros(shape=tensor.shape, dtype=tensor.dtype)) @classmethod def random_like(cls, tensor): """ Returns a Tensor full of Random Numbers with the same shape as the provided tensor Just like np.ones_like(...) function but instead of ones, it generates random numbers """ return cls(data=np.random.rand(*tensor.shape)) def zero_grad(self): """ Zeros the currently gradients of the tensor. """ self.grad = np.zeros_like(self.data) def __repr__(self): """ Returns the string representation of a Tensor """ return f"Tensor<shape={self.shape}, dtype={self.dtype}>" def __add__(self, tensor): """ Overloaded function for "add" operator. Use na_ops.add() instead """ if not isinstance(tensor, Tensor): tensor = Tensor(data=tensor) output = Tensor(data=self.data+tensor.data, _children=(self, tensor), _op='+') def _backward(): __grad_check = Utils.checkGradDep(self, tensor) if not __grad_check: raise RuntimeError("Cannot perform backward propagation on a Static Tensor") self.grad += output.grad tensor.grad += output.grad output._backward = _backward return output def __mul__(self, scalar): """ Multiplication using the " * " operator is only supported for a Tensor and a scalar value To multiply a Tensor with a Tensor, use the "tensor1.dot(tensor2)" method. Use na_ops.smul() """ assert isinstance(scalar, (int, float, bool)), "Only multiplication with a scalar value is supported using '*' operator.\nFor Multiplication with a vector, use the '.dot()' function." output = Tensor(data=self.data * scalar, _children=(self,), _op='*') return output def __neg__(self): """ Multiplies every element in the Tensor with -1 More fancy term: "Inverts all values in a Tensor" """ return self * -1 def __div__(self, tensor): raise NotImplementedError("Division Operation is currently not implemented.") def __pow__(self, scalar): """ Only raise to scalar powers """ output = HiddenOps.power(tensor=self, power=scalar, TensorDataTypeWrapper=Tensor) return output def __sub__(self, tensor): """ Subtraction between 2 tensors """ output = HiddenOps.subtract(tensor1=self, tensor2=tensor, TensorDataTypeWrapper=Tensor) return output def relu(self): """ Upper-level abstraction for ReLU Use na_ops.activations.relu() instead """ output = HiddenOps.relu(tensor1=self, TensorDataTypeWrapper=Tensor) return output def matmul(self, tensor): """ Upper-level abstraction for the matrix multiplication function Use na_ops.matmul() instead """ output = HiddenOps.matmul(tensor1=self, tensor2=tensor, TensorDataTypeWrapper=Tensor) return output def sum(self): """ Upper-level abstraction for Tensor sum function """ output = HiddenOps.tensor_sum(tensor=self, TensorDataTypeWrapper=Tensor) return output def backward(self): """ This function will perform the backward propagation Recursively visit all the nodes in the graph and then call the backward function on the nodes. Topological Sort. """ topology = [] visited = set() def build_topo(v): if v not in visited: visited.add(v) for child in v._prev: build_topo(v) topology.append(v) build_topo(self) self.grad = np.ones_like(self.data) for v in reversed(topology): v._backward()
2.578125
3
041.py
joserc87/project-euler
0
12789422
<filename>041.py """ Project Euler Problem 41 ======================== We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What is the largest n-digit pandigital prime that exists? """ # THOUGHTS: # # There is no 9-digit pandigital prime, because 1+2+3+..+9 = 45 and 45%3 = 0, # so all the 9-digit pandigitals are also divisible by 3 # 1+2+..+8 = 36 and 36 % 3 = 0 # 1+2+..+7 from itertools import permutations from util import PrimeFactory def main(): factory = PrimeFactory() for num_digits in range(7, 1, -1): for num_list in permutations(range(num_digits, 0, -1)): num = int(''.join(map(str, num_list))) if factory.is_prime(num): return num return 'No pandigital prime found??' if __name__ == "__main__": print(main())
4.15625
4
src/main.py
Will2065/uestc-temperature
0
12789423
<reponame>Will2065/uestc-temperature import os import time from reporter import Reporter if __name__ == "__main__": print(f'[{time.strftime("%F %H:%M:%S")}]', end=" ") cookies = os.environ.get("COOKIES") if cookies == None: raise Exception("session id not provided") else: cookies = cookies.split("#") results = [] for index, cookie in enumerate(cookies): reporter = Reporter(cookie) result, message = reporter.run() results.append(result) print(f"Student {index+1}: {message}") if not all(results): exit(-1)
2.53125
3
rollbar/contrib/django/tests.py
arthurio/pyrollbar
177
12789424
""" Unit tests """ from django.test import TestCase from django.conf import settings class BasicTests(TestCase): def test_configuration(self): """ Test that the configuration is sane. """ self.assertTrue('ROLLBAR' in dir(settings), msg='The ROLLBAR setting is not present.') self.assertTrue(settings.ROLLBAR.get('access_token'), msg='The ROLLBAR["access_token"] setting is blank.')
2.6875
3
util.py
tamamiyasita/Roguelike-Tutorial-2020
0
12789425
<reponame>tamamiyasita/Roguelike-Tutorial-2020<filename>util.py import arcade from random import randint from constants import * # from data import IMAGE_ID from functools import wraps import time def exp_calc(x=58, max_level=50, ratio=1.2, constant=40): result = {} result[1] = 0 for i in range(2,max_level+1): result[i] = int(x) x = x * ratio + constant return result print(exp_calc()) def Bresenham(start, end): x1, y1 = start x2, y2 = end dx = x2 - x1 dy = y2 - y1 # Determine how steep the line is is_steep = abs(dy) > abs(dx) # Rotate line if is_steep: x1, y1 = y1, x1 x2, y2 = y2, x2 # Swap start and end points if necessary and store swap state swapped = False if x1 > x2: x1, x2 = x2, x1 y1, y2 = y2, y1 swapped = True # Recalculate differentials dx = x2 - x1 dy = y2 - y1 # Calculate error error = int(dx / 2.0) ystep = 1 if y1 < y2 else -1 # Iterate over bounding box generating points between start and end y = y1 points = [] for x in range(x1, x2 + 1): coord = (y, x) if is_steep else (x, y) # coord = grid_to_pixel(coord) points.append(coord) error -= abs(dy) if error < 0: y += ystep error += dx # Reverse the list if the coordinates were swapped if swapped: points.reverse() return points def grid_to_pixel(x, y): """tilepositionからsprite_sizeに変換する""" px = x * SPRITE_SIZE * SPRITE_SCALE + SPRITE_SIZE / 2 * SPRITE_SCALE py = (y * SPRITE_SIZE * SPRITE_SCALE + SPRITE_SIZE / 2 * SPRITE_SCALE) + STATES_PANEL_HEIGHT return px, py def pixel_to_grid(x, y): """sprite_sizeからtile_pixel_to_gridへの位置を指定する""" px = x - SPRITE_SIZE / 2 * SPRITE_SCALE px = round(px / GRID_SIZE) py = y - SPRITE_SIZE / 2 * SPRITE_SCALE - STATES_PANEL_HEIGHT py = round(py / GRID_SIZE) return px, py def dice(D, max_d, plus): return D * randint(1, int(max_d)) + plus def get_entity(x, y, sprite_lists): px, py = grid_to_pixel(x, y) get_sprite = arcade.SpriteList() for sprite_list in sprite_lists: s_list = arcade.get_sprites_at_exact_point((px, py), sprite_list) for sprite in s_list: if sprite.blocks: get_sprite.append(sprite) def get_blocking_entity(x, y, sprite_lists): px, py = grid_to_pixel(x, y) for sprite_list in sprite_lists: s_list = arcade.get_sprites_at_exact_point((px, py), sprite_list) for sprite in s_list: if sprite.blocks: return sprite return None def result_add(value=0): """関数やメソッドの出力に任意の値やリストの合計を加えるデコレータ プロパティに使用する場合の例 @property @result_add([i for i in range(10)]) def x(self): x = 5 return x """ def _result_add(func): def wrapper(*args, **kwargs): result = func(*args, **kwargs) if hasattr(value, "__iter__"): result += sum(value) return result else: result += value return result return wrapper return _result_add def stop_watch(func): @wraps(func) def wrapper(*args, **kwargs): start = time.time() result = func(*args, **kwargs) elapsed_time = time.time() - start print(f"{func.__name__}は{elapsed_time}秒かかりました") return result return wrapper def get_tile_set(img, tile_size): """ 読み込んだタイルセットイメージからtile_sizeに従って一つずつ画像オブジェクトに変換する null_tileがTrueならタイルセットイメージの空白部分を取り除くようにがんばる(?) """ tile_img = arcade.load_texture(img) # print(f"タイルセットの画像サイズ, {tile_img.width} x {tile_img.height}") tile_column = tile_img.width // tile_size # print("列のタイル数", tile_column) tile_count = (tile_img.height // tile_size) * tile_column # print("暫定タイルの数", tile_count) textures = arcade.load_spritesheet( img, tile_size, tile_size, tile_column, tile_count) # 空白タイルを取り除く textures = [i for i in textures if i.image.getbbox()] # print("タイル総数:", len(textures), type(textures[0]), textures[0].width) return textures class TileImageTest(arcade.Window): """ get_tile_setで作られる画像オブジェクトのテスト ついでに番号をつけた """ def __init__(self, width=1100, height=600, title="tile_test", textures=None, tile_size=32): super().__init__(width, height, title) self.tile_size = tile_size arcade.set_background_color(arcade.color.AERO_BLUE) self.textures = get_tile_set(textures, tile_size) def on_draw(self): arcade.start_render() I = 0 c = 25 for i, v in enumerate(self.textures): v.draw_scaled(center_x=I * self.tile_size + 25, center_y=c) arcade.draw_text(str(i), start_x=I * self.tile_size + 25, start_y=c+15, color=arcade.color.BLACK_BEAN, font_size=9, anchor_x="center") if i >= 0: I += 1 if i >= 2 and i % 50 == 0: c += 40 I = 0 def on_key_press(self, symbol, modifiers): if symbol == arcade.key.ESCAPE: arcade.close_window() def main(): t = r"image/bs_walls.png" tst = TileImageTest(textures=t) arcade.run() if __name__ == "__main__": main()
3.359375
3
main.py
JAkkerman/EvolutionaryComputing
1
12789426
<reponame>JAkkerman/EvolutionaryComputing import sys, os sys.path.insert(0, 'evoman') from environment import Environment # from demo_controller import player_controller # from controller import Controller from test_controller import test_controller import numpy as np def init(): """ Initialise game environment """ # create map for outputs experiment_name = 'testrun' if not os.path.exists(experiment_name): os.makedirs(experiment_name) n_hidden_neurons = 0 # init environment class # cont = Controller() env = Environment(experiment_name=experiment_name, speed='normal') env.player_controller = test_controller return env if __name__ == '__main__': env = init() # use first EA # TODO: # use second EA # TODO: env.play() yeet = env.player.sensors.get(env) print(yeet) print(env.logs)
2.71875
3
server/src/test/deployments/integration_tests/case01_direct/lab_config.py
zstars/weblabdeusto
0
12789427
<gh_stars>0 ################################## # Laboratory Server configuration # ################################## laboratory_assigned_experiments = { 'exp1:dummy1@Dummy experiments': { 'coord_address': 'experiment_dummy1:myprocess@myhost', 'checkers': () }, 'exp1:dummy2@Dummy experiments': { 'coord_address': 'experiment_dummy2:myprocess@myhost', 'checkers': () }, }
1.4375
1
tests/test_pydantic_config.py
Validus-Risk-Management/aws-appconfig-pydantic
1
12789428
import io import json import socket from typing import Dict, Tuple, Union import boto3 import pytest import yaml from botocore.client import BaseClient from botocore.response import StreamingBody from botocore.session import Session from botocore.stub import Stubber from pydantic import BaseModel, ValidationError from pytest_mock import MockerFixture from pydantic_appconfig import AppConfigHelper class TestConfig(BaseModel): """Test pydantic parsing.""" __test__ = False test_field_string: str test_field_int: int class Config: """The config, including title for the JSON schema.""" title = "TestConfig" def test_config_returned_as_model( appconfig_stub: Tuple[BaseClient, Stubber, Session], mocker: MockerFixture, ) -> None: """Tests the config gets updated.""" client, stub, _ = appconfig_stub stub.add_response( "get_configuration", _build_response( { "test_field_string": "testing_string", "test_field_int": 42, }, "1", "application/json", ), _build_request(), ) mocker.patch.object(boto3, "client", return_value=client) a: AppConfigHelper[TestConfig] = AppConfigHelper( "AppConfig-App", "AppConfig-Env", "AppConfig-Profile", 15, config_schema_model=TestConfig, ) result = a.update_config() assert result assert a.config.test_field_string == "testing_string" assert a.config.test_field_int == 42 assert a.config_version == "1" def test_yaml_config_returned_as_model( appconfig_stub: Tuple[BaseClient, Stubber, Session], mocker: MockerFixture, ) -> None: """Tests the config gets updated.""" client, stub, _ = appconfig_stub stub.add_response( "get_configuration", _build_response( { "test_field_string": "testing_string", "test_field_int": 42, }, "1", "application/x-yaml", ), _build_request(), ) mocker.patch.object(boto3, "client", return_value=client) a: AppConfigHelper[TestConfig] = AppConfigHelper( "AppConfig-App", "AppConfig-Env", "AppConfig-Profile", 15, config_schema_model=TestConfig, ) result = a.update_config() assert result assert a.config.test_field_string == "testing_string" assert a.config.test_field_int == 42 assert a.config_version == "1" def test_config_model_parse_error( appconfig_stub: Tuple[BaseClient, Stubber, Session], mocker: MockerFixture ) -> None: """Tests the config rejected.""" client, stub, _ = appconfig_stub stub.add_response( "get_configuration", _build_response( { "xxx": "testing_string", }, "1", "application/json", ), _build_request(), ) mocker.patch.object(boto3, "client", return_value=client) a: AppConfigHelper[TestConfig] = AppConfigHelper( "AppConfig-App", "AppConfig-Env", "AppConfig-Profile", 15, config_schema_model=TestConfig, ) result = a.update_config() assert result with pytest.raises(ValidationError): assert a.config.test_field_string def _build_request( app: str = "AppConfig-App", env: str = "AppConfig-Env", profile: str = "AppConfig-Profile", client_id: str = None, version: str = "null", ) -> Dict[str, str]: if client_id is None: client_id = socket.gethostname() return { "Application": app, "ClientConfigurationVersion": str(version), "ClientId": client_id, "Configuration": profile, "Environment": env, } def _build_response( content: Union[Dict, str], version: str, content_type: str ) -> Dict[str, Union[str, StreamingBody]]: if content_type == "application/json": content_text = json.dumps(content).encode("utf-8") elif content_type == "application/x-yaml": content_text = str(yaml.dump(content)).encode("utf-8") elif not isinstance(content, str): raise ValueError("Unrecognised content.") else: content_text = content.encode("utf-8") return { "Content": StreamingBody(io.BytesIO(bytes(content_text)), len(content_text)), "ConfigurationVersion": version, "ContentType": content_type, }
2.09375
2
pyramid_translogger/compat.py
podhmo/pyramid_translogger
0
12789429
<gh_stars>0 # -*- coding:utf-8 -*- import sys import types # True if we are running on Python 3. PY3 = sys.version_info[0] == 3 if PY3: # pragma: no cover string_types = str, integer_types = int, class_types = type, text_type = str binary_type = bytes long = int else: string_types = basestring, integer_types = (int, long) class_types = (type, types.ClassType) text_type = unicode binary_type = str long = long if PY3: from urllib.request import quote as url_quote else: from urllib import quote as url_quote
2.015625
2
matchsticks/game_types.py
nikihowe/matchsticks
0
12789430
<filename>matchsticks/game_types.py # (c) <NAME> 2021 from typing import Optional Point = tuple[float, float] Line = tuple[Point, Point] Move = Optional[tuple[int, int, int]]
2
2
Planning/Jpg2TFRecords.py
whong92/3D_DL
35
12789431
<filename>Planning/Jpg2TFRecords.py import time import tensorflow as tf from six.moves import cPickle as pickle import numpy as np import matplotlib.pyplot as plt import skimage.transform as skt import skimage.io as io import os import imageio root_folder = 'D:\\PycharmProjects\\product-image-dataset-v0.1' \ '\\5010171005204_2017-11-30_17.20.19' label = 5010171005204 folder = os.path.join(root_folder, str(label)) IMAGE_WIDTH =1280 IMAGE_HEIGHT =1024 IMAGE_DEPTH = 3 image_files = [] for (dirpath, dirnames, filenames) in os.walk(folder): image_files.extend(filenames) break image_data = np.ndarray(shape=(len(image_files), IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_DEPTH), dtype=np.uint8) n_image_read = 0 for file in image_files: image_file = os.path.join(folder, file) image_data[n_image_read,:,:,:] = imageio.imread(image_file) n_image_read += 1 print('Loaded all images into memory') tfrecords_filename = str(label) + '.tfrecords' '''writing into TFRecords format''' writer = tf.python_io.TFRecordWriter(tfrecords_filename) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) for n in range(n_image_read): img = image_data[n] img_raw = img.tostring() # label already in string format label_raw = np.int64(label) # tf.train.Example is the default format for storing in TFRecords # construct the Example proto object example = tf.train.Example(features=tf.train.Features(feature={ 'height': _int64_feature(IMAGE_WIDTH), 'width': _int64_feature(IMAGE_HEIGHT), 'image_raw': _bytes_feature(img_raw), 'label': _int64_feature(label_raw)})) writer.write(example.SerializeToString()) writer.close() """ '''assessing TF record format''' record_iterator = tf.python_io.tf_record_iterator(path=tfrecords_filename) n = 0 num_diff = 0 for string_record in record_iterator: example = tf.train.Example() example.ParseFromString(string_record) img_string = (example.features.feature['image_raw'] .bytes_list .value[0]) reconstructed_label = int(example.features.feature['label'] .int64_list .value[0]) img_1d = np.fromstring(img_string, dtype=np.uint8) reconstructed_img = img_1d.reshape((IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_DEPTH)) original_img = image_data[n] original_label = label if(not(np.allclose(original_img, reconstructed_img)) or not(np.allclose(original_label, reconstructed_label))): num_diff += 1 n += 1 print('Number of mismatches: ' + str(num_diff)) """
2.4375
2
ion/services/dm/utility/provenance.py
ooici/coi-services
3
12789432
#!/usr/bin/env python ''' @file ion/services/dm/utility/provenance.py Contains an assortment of utilities for determining provenance ''' from coverage_model import ParameterFunctionType ''' An example of using graph() Here's the output of the CTDMO data product's parameter dictionary ><> graph(pdict, 'seawater_density') --> {'cc_lat': {}, 'cc_lon': {}, 'sci_water_pracsal': {'seawater_conductivity': {'conductivity': {}}, 'seawater_pressure': {'cc_p_range': {}, 'pressure': {}}, 'seawater_temperature': {'temperature': {}}}, 'seawater_pressure': {'cc_p_range': {}, 'pressure': {}}, 'seawater_temperature': {'temperature': {}}} ''' def graph(pdict, param_name): ''' Essentially a depth-first-search of the dependency tree for a particular parameter. Returns a dictionary where the key is the named parameter and the nested values are the dependencies. If a named parameter does not contain a value, it is not a function. ''' # if param_name is an integer, then just return it if not isinstance(param_name, basestring): return {} # get the parameter context ctx = pdict[param_name] # we only care about parameter functions if not isinstance(ctx.param_type, ParameterFunctionType): return {} # the parameter map describes what the function needs pmap = ctx.param_type.function.param_map retval = {} deps = pmap.values() # Recursively determine the graph for each dependency for d in deps: retval[d] = graph(pdict, d) return retval
2.8125
3
classes/modules/multiframe/ctccnet2/ModelCTCCNet2.py
matteo-rizzo/cctcc
0
12789433
<reponame>matteo-rizzo/cctcc<gh_stars>0 from typing import Tuple, List import torch from auxiliary.settings import NUM_STAGES from classes.modules.common.BaseModel import BaseModel from classes.modules.multiframe.ctccnet2.CTCCNet2 import CTCCNet2 class ModelCTCCNet2(BaseModel): def __init__(self): super().__init__() self._network = CTCCNet2().float().to(self._device) def predict(self, seq_temp: torch.Tensor, seq_shot: torch.Tensor = None, return_preds: bool = False) -> List: return self._network(seq_temp, seq_shot, return_preds) @staticmethod def get_multiply_accumulated_loss(l1: torch.Tensor, l2: torch.Tensor, l3: torch.Tensor, a1: float = 0.33, a2: float = 0.33) -> torch.Tensor: return a1 * l1 + a2 * l2 + (1.0 - a1 - a2) * l3 def compute_loss(self, o: List, y: torch.Tensor) -> Tuple: self.reset_gradient() stages_loss, mal = self.get_loss(o, y) mal.backward() self.optimize() return stages_loss, mal def get_loss(self, o: List, y: torch.Tensor) -> Tuple: stage_out, stages_loss = None, [] for stage in range(NUM_STAGES): stage_out = torch.mul(stage_out, o[stage]) if stage - 1 > 0 else o[stage] stages_loss.append(self.get_angular_loss(stage_out, y)) mal = sum(stages_loss) return stages_loss, mal def compute_corr_loss(self, o: List, y: torch.Tensor) -> Tuple: self.reset_gradient() cas_loss, cas_mal, cor_loss, cor_mal = self.get_corr_loss(o, y) mal = cas_mal + cor_mal mal.backward() self.optimize() return cas_loss, cas_mal, cor_loss, cor_mal def get_corr_loss(self, o: List, y: torch.Tensor) -> Tuple: outputs, preds = zip(*o) cas_out, cor_out, cas_loss, cor_loss = None, None, [], [] for stage in range(NUM_STAGES): cas_out = torch.mul(cas_out, outputs[stage]) if stage - 1 > 0 else outputs[stage] cas_loss.append(self.get_angular_loss(cas_out, y[:, -1, :])) cor_out = torch.mul(cor_out, preds[stage]) if stage - 1 > 0 else preds[stage] cor_loss.append(self.get_angular_loss(cor_out.permute(1, 0, 2), y)) cas_mal, cor_mal = sum(cas_loss), sum(cor_loss) return cas_loss, cas_mal, cor_loss, cor_mal
2.328125
2
tests/test_dimensions.py
man-of-eel/dpgv4
3
12789434
<filename>tests/test_dimensions.py # pylint: disable=missing-docstring from dpgv4 import calculate_dimensions from .util import sample_filename def test_dimensions() -> None: input_filename = sample_filename("World - 2.mp4") assert calculate_dimensions(input_filename) == (256, 144)
2.109375
2
flight_booking_app/urls.py
Celoka/flight_booking_system
3
12789435
from django.urls import path, include from rest_framework.routers import DefaultRouter from .views import FlightViewSet,TicketViewSet router = DefaultRouter() router.register('ticket', TicketViewSet) router.register('flight', FlightViewSet) urlpatterns = [ path('', include(router.urls)) ]
1.84375
2
18Host/TMA4120/latex/PyplotTesting/Scripts/main.py
MarcusTL12/School
0
12789436
import numpy as np import matplotlib.pyplot as plt import matplotlib2tikz.save as tikz_save import math def derivative(y, h, n: int=1): if n == 1: return lambda x: (y(x + h) - y(x - h)) / (2 * h) else: return derivative(derivative(y, h, n - 1), h, 1) def integral(y, h, a, b): ret = 0 sgn = 1 if a > b: sgn = -1 a, b = b, a if abs(b - a) < h: h *= abs(b - a) for i in np.arange(a, b, h): ret += y(i) * h return ret * sgn def fourier(y, h, n, a, b): L = (b - a) / 2 a_0 = integral(y, h, a, b) / (2 * L) a_n = [0] * n b_n = [0] * n for i in range(1, n + 1): a_n[i - 1] = (1 / L) * integral(lambda x: y(x) * np.cos(i * np.pi * x / L), h, a, b) b_n[i - 1] = (1 / L) * integral(lambda x: y(x) * np.sin(i * np.pi * x / L), h, a, b) return lambda x: fouriereval(x, a_0, a_n, b_n, L) def fouriereval(x, a_0, a_n, b_n, l): ret = a_0 for i in range(1, len(a_n) + 1): ret += a_n[i - 1] * np.cos(i * np.pi * x / l) ret += b_n[i - 1] * np.sin(i * np.pi * x / l) return ret # def f(x): # if x > 2: # return f(x - 4) # if x < -2: # return f(x + 4) # return ((x**3) - 4 * x) / 4 # def f(x): # if x < -1: # return f(x + 2) # if x > 1: # return f(x - 2) # return -1 if x < 0 else 1 def fx(x, n): if n == 1: return np.sin(x) return fx(np.sin(x) * np.pi / 2, n - 1) # def f(x): # return np.cos(np.tan(np.sin(x))) def sirc(x): return np.sqrt(1 - x**2) def f(x): if x < -2: return f(x + 4) if x > 2: return f(x - 4) if x < 0: return -sirc(x + 1) else: return sirc(x - 1) h = 0.001 x = np.arange(-4, 4, 0.01) # kr = lambda x: derivative(f, h, 2)(x) / ((1 + derivative(f, h)(x)**2)**(3 / 2)) # dkr = derivative(kr, h) # dy = derivative(f, h) fr = fourier(f, h, 101, -2, 2) plt.plot(x, np.vectorize(f)(x)) # plt.plot(x, np.vectorize(kr)(x)) # plt.plot(x, np.vectorize(dkr)(x)) # plt.plot(x, np.vectorize(dy)(x)) plt.plot(x, np.vectorize(fr)(x)) plt.axis([-4, 4, -5, 5]) plt.title("$f(x)$") plt.grid(True) tikz_save("PyPlotTesting/Figurer/" + "f" + str(1) + ".tikz", figureheight='\\figureheight', figurewidth='\\figurewidth')
3.078125
3
magic_proxy/__init__.py
restran/magic-proxy
1
12789437
<filename>magic_proxy/__init__.py<gh_stars>1-10 # -*- coding: utf-8 -*- # Created by restran on 2017/9/15 from __future__ import unicode_literals, absolute_import __version__ = '0.1.0'
1.140625
1
jnpr/openclos/tests/unit/test_ztp.py
sysbot/OpenClos
1
12789438
<filename>jnpr/openclos/tests/unit/test_ztp.py<gh_stars>1-10 ''' Created on Sep 11, 2014 @author: moloyc ''' import unittest from flexmock import flexmock from jnpr.openclos.ztp import ZtpServer from test_model import createPod, createDevice, createPodDevice class TestZtp(unittest.TestCase): def setUp(self): '''Creates with in-memory DB''' self.conf = {} self.conf['dbUrl'] = 'sqlite:///' self.conf['httpServer'] = {'ipAddr': '127.0.0.1'} self.ztpServer = ZtpServer(self.conf) self.session = self.ztpServer.dao.Session() def tearDown(self): pass def testGenerateDhcpConfWithNoPodDevice(self): from jnpr.openclos.l3Clos import util flexmock(util, isPlatformUbuntu = True) dhcpConf = self.ztpServer.generateSingleDhcpConf() self.assertFalse('{{' in dhcpConf) self.assertFalse('}}' in dhcpConf) self.assertEquals(1, dhcpConf.count('host-name')) # 1 global + 0 device def testGenerateSingleDhcpConf(self): from jnpr.openclos.l3Clos import util flexmock(util, isPlatformUbuntu = True) createDevice(self.session, 'dev1') createDevice(self.session, 'dev2') dhcpConf = self.ztpServer.generateSingleDhcpConf() self.assertFalse('{{' in dhcpConf) self.assertFalse('}}' in dhcpConf) self.assertEquals(3, dhcpConf.count('host-name')) # 1 global + 2 device def testGeneratePodSpecificDhcpConf(self): from jnpr.openclos.l3Clos import util flexmock(util, isPlatformUbuntu = True) pod = createPod('pod1', self.session) pod.spineJunosImage = 'testSpineImage' pod.leafJunosImage = 'testLeafImage' createPodDevice(self.session, 'dev1', pod) dev2 = createPodDevice(self.session, 'dev2', pod) dev3 = createPodDevice(self.session, 'dev3', pod) dev3.role = 'leaf' dev4 = createPodDevice(self.session, 'dev4', pod) dev4.role = 'unknown' dhcpConf = self.ztpServer.generatePodSpecificDhcpConf('pod1') self.assertEquals(2, dhcpConf.count('testSpineImage')) self.assertEquals(1, dhcpConf.count('testLeafImage')) self.assertFalse('{{' in dhcpConf) self.assertFalse('}}' in dhcpConf) self.assertEquals(5, dhcpConf.count('host-name')) # 1 global + 4 device def testPopulateDhcpGlobalSettings(self): from jnpr.openclos.l3Clos import util globalZtpConf = {'ztp': {'dhcpSubnet': '10.20.30.0/25', 'dhcpOptionRoute': '10.20.30.254', 'dhcpOptionRangeStart': '10.20.30.15','dhcpOptionRangeEnd': '10.20.30.20'}} flexmock(util, loadClosDefinition = globalZtpConf) globalSetting = self.ztpServer.populateDhcpGlobalSettings() self.assertEquals('10.20.30.0', globalSetting['network']) self.assertEquals('255.255.255.128', globalSetting['netmask']) self.assertEquals('10.20.30.254', globalSetting['defaultRoute']) self.assertEquals('10.20.30.15', globalSetting['rangeStart']) self.assertEquals('10.20.30.20', globalSetting['rangeEnd']) globalZtpConf = {'ztp': {'dhcpSubnet': '10.20.30.0/25'}} flexmock(util, loadClosDefinition = globalZtpConf) globalSetting = self.ztpServer.populateDhcpGlobalSettings() self.assertEquals('10.20.30.1', globalSetting['defaultRoute']) self.assertEquals('10.20.30.2', globalSetting['rangeStart']) self.assertEquals('10.20.30.126', globalSetting['rangeEnd']) if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
2.09375
2
scripts/verify_items.py
ramalingam-cb/testrunner
0
12789439
#!/usr/bin/env python """Verify items exist, or were deleted from couchbase using an on disk kvstore""" import time import sys import getopt import pickle import re import mc_bin_client import exceptions import socket from memcached.helper.data_helper import VBucketAwareMemcached from membase.api.rest_client import RestConnection def usage(err=None): err_code = 0 if err: err_code = 1 print "Error:", err print print "./verify_.py -m <master> -f <file>" print "" print " master the master node rest interface" print " file file to write out the kvstore to" print "" print "./verify_items -m Administrator:[email protected]:8091 -f kvstore" sys.exit(err_code) class KVStore(object): """Simple key value store that handles sets and deletes, has the ability to read and write from a file""" def __init__(self, filename=None): if filename: with open(filename) as f: self.data = pickle.load(f) else: self.data = {} self.index = 0 def save(self, filename): """Write out the current kvstore to a pickle file""" with open(filename, 'w') as f: pickle.dump(self.data, f) def set(self, key, exp, flags, val): """Memcached set""" if exp and exp <= 2592000: exp += int(time.time()) self.data[key] = (exp, flags, val, True) def delete(self, key): """Delete an item, but don't remove it from the kvstore completely""" if key in self.data: self.data[key] = (0, 0, "", False) def __iter__(self): return self.data.__iter__() def iteritems(self): return self.data.iteritems() class Config(object): def __init__(self, argv): # defaults self.master = None self.filename = None self.bucket = 'default' try: (opts, args) = getopt.getopt(argv, 'hm:f:b:', ['help', 'master=', 'file=', 'bucket=']) except IndexError: usage() except getopt.GetoptError, err: usage(err) for o, a in opts: if o == "-h" or o == "--help": usage() if o == "-m" or o == "--master": master_list = re.split('[:@]', a) self.master = {} self.master["username"] = master_list[0] self.master["password"] = master_list[1] self.master["ip"] = master_list[2] self.master["port"] = master_list[3] if o == "-f" or o == "--file": self.filename = a if o == "-b" or o == "--bucket": self.bucket = a if not self.master: usage("missing master") if not self.filename: usage("missing file") def get_aware(awareness, rest, key): timeout = 60 + time.time() passed = False while time.time() < timeout and not passed: try: val = awareness.memcached(key).get(key) passed = True except mc_bin_client.MemcachedError as e: if e.status == 7: awareness.reset_vbuckets(rest, key) else: raise e except exceptions.EOFError: awareness.reset(rest) except socket.error: awareness.reset(rest) if not passed: raise Exception("failed get after 60 seconds") return val if __name__ == "__main__": config = Config(sys.argv[1:]) kv = KVStore(config.filename) rest = RestConnection(config.master) awareness = VBucketAwareMemcached(rest, config.bucket) undeleted = 0 missing = 0 badval = 0 for key, val_expected in kv.iteritems(): if val_expected[3]: try: val = get_aware(awareness, rest, key) if val[2] != val_expected[2]: badval += 1 except mc_bin_client.MemcachedError as e: if e.status == 1: missing += 1 else: raise e else: try: val = get_aware(awareness, rest, key) undeleted += 1 except mc_bin_client.MemcachedError as e: if e.status != 1: raise e awareness.done() print "undeleted:", undeleted print "missing:", missing print "badval:", badval
2.453125
2
components/collector/tests/source_collectors/trello/test_issues.py
kargaranamir/quality-time
33
12789440
"""Unit tests for the Trello issues collector.""" from datetime import datetime from .base import TrelloTestCase class TrelloIssuesTest(TrelloTestCase): """Unit tests for the Trello issues collector.""" METRIC_TYPE = "issues" async def test_issues(self): """Test that the number of issues and the individual issues are returned.""" response = await self.collect(get_request_json_side_effect=self.json) self.assert_measurement(response, value="2", entities=self.entities) async def test_issues_with_ignored_list(self): """Test that lists can be ignored when counting issues.""" self.set_source_parameter("lists_to_ignore", ["list1"]) response = await self.collect(get_request_json_side_effect=self.json) self.assert_measurement(response, value="1", entities=[self.entities[1]]) async def test_overdue_issues(self): """Test overdue issues.""" self.set_source_parameter("cards_to_count", ["overdue"]) response = await self.collect(get_request_json_side_effect=self.json) self.assert_measurement(response, value="1", entities=[self.entities[1]]) async def test_inactive_issues(self): """Test inactive issues.""" self.set_source_parameter("cards_to_count", ["inactive"]) self.cards["cards"][0]["dateLastActivity"] = datetime.now().isoformat() response = await self.collect(get_request_json_side_effect=self.json) self.assert_measurement(response, value="1", entities=[self.entities[1]])
2.953125
3
tests/cpfcnpj_tests.py
vindi/pycpfcnpj
0
12789441
<reponame>vindi/pycpfcnpj import unittest from pycpfcnpj import cpfcnpj class CPFCNPJTests(unittest.TestCase): """docstring for CPFCNPJTests""" def setUp(self): self.valid_cpf = '11144477735' self.invalid_cpf = '11144477736' self.invalid_cpf_size = '111444777' self.valid_cnpj = '11444777000161' self.invalid_cnpj = '11444777000162' self.invalid_cnpj_size = '114447770001' self.mascared_valid_cpf = '111.444.777-35' self.mascared_invalid_cpf = '111.444.777-36' self.mascared_invalid_cpf_size = '111.444.777' self.mascared_valid_cnpj = '11.444.777/0001-61' self.mascared_invalid_cnpj = '11.444.777/0001-62' self.mascared_invalid_cnpj_size = '114.447/7700-01' def test_validate_cpf_true(self): self.assertTrue(cpfcnpj.validate(self.valid_cpf)) def test_validate_cpf_false(self): self.assertFalse(cpfcnpj.validate(self.invalid_cpf)) def test_validate_cnpj_true(self): self.assertTrue(cpfcnpj.validate(self.valid_cnpj)) def test_validate_cnpj_false(self): self.assertFalse(cpfcnpj.validate(self.invalid_cnpj)) def test_wrong_cpf_size(self): self.assertFalse(cpfcnpj.validate(self.invalid_cpf_size)) def test_wrong_cnpj_size(self): self.assertFalse(cpfcnpj.validate(self.invalid_cnpj_size)) def mascared_test_validate_cpf_true(self): self.assertTrue(cpfcnpj.validate(self.mascared_valid_cpf)) def mascared_test_validate_cpf_false(self): self.assertFalse(cpfcnpj.validate(self.mascared_invalid_cpf)) def mascared_test_validate_cnpj_true(self): self.assertTrue(cpfcnpj.validate(self.mascared_valid_cnpj)) def mascared_test_validate_cnpj_false(self): self.assertFalse(cpfcnpj.validate(self.mascared_invalid_cnpj)) def mascared_test_wrong_cpf_size(self): self.assertFalse(cpfcnpj.validate(self.mascared_invalid_cpf_size)) def mascared_test_wrong_cnpj_size(self): self.assertFalse(cpfcnpj.validate(self.mascared_invalid_cnpj_size)) if __name__ == '__main__': unittest.main(verbosity=2)
2.578125
3
ml-agents/mlagents/trainers/bc_custom/trainer.py
icaro56/ml-agents
0
12789442
<reponame>icaro56/ml-agents # # Unity ML-Agents Toolkit # ## ML-Agent Learning (Imitation) # Contains an implementation of Behavioral Cloning Algorithm import logging import os import numpy as np import tensorflow as tf import time from collections import deque from mlagents.envs import AllBrainInfo, BrainInfo from mlagents.trainers.bc_custom.policy import BCCustomPolicy from mlagents.trainers.buffer import Buffer from mlagents.trainers.trainer import UnityTrainerException, Trainer logger = logging.getLogger("mlagents.envs") class BehavioralCloningCustomTrainer(Trainer): """The ImitationTrainer is an implementation of the imitation learning.""" def __init__(self, sess, brain, trainer_parameters, training, seed, run_id): """ Responsible for collecting experiences and training PPO model. :param sess: Tensorflow session. :param trainer_parameters: The parameters for the trainer (dictionary). :param training: Whether the trainer is set for training. """ super(BehavioralCloningCustomTrainer, self).__init__(sess, brain, trainer_parameters, training, run_id) self.param_keys = ['brain_to_imitate', 'batch_size', 'time_horizon', 'graph_scope', 'summary_freq', 'max_steps', 'batches_per_epoch', 'use_recurrent', 'hidden_units','learning_rate', 'num_layers', 'sequence_length', 'memory_size', 'epsilon', 'beta'] for k in self.param_keys: if k not in trainer_parameters: raise UnityTrainerException("The hyperparameter {0} could not be found for the Imitation trainer of " "brain {1}.".format(k, brain.brain_name)) self.step = 0 self.policy = BCCustomPolicy(seed, brain, trainer_parameters, sess) self.brain_name = brain.brain_name self.brain_to_imitate = trainer_parameters['brain_to_imitate'] self.batches_per_epoch = trainer_parameters['batches_per_epoch'] self.n_sequences = max(int(trainer_parameters['batch_size'] / self.policy.sequence_length), 1) self.cumulative_rewards = {} # usado no curriculo learning self._reward_buffer = deque(maxlen=1000) self.episode_steps = {} self.stats = {'losses': [], 'episode_length': [], 'cumulative_reward': [], 'value_estimate': [], 'entropy': [], 'value_loss': [], 'policy_loss': [], 'learning_rate': []} self.training_buffer = Buffer() self.training_buffer_ppo = Buffer() self.summary_path = trainer_parameters['summary_path'] if not os.path.exists(self.summary_path): os.makedirs(self.summary_path) self.summary_writer = tf.summary.FileWriter(self.summary_path) #criando arquivo self.actionProbList = [] self.trueActionList = [] self.use_curiosity = False def createTempFolder(self, foldername): try: if not os.path.exists(foldername): os.makedirs(foldername) except Exception: print("Arquivo temporario nao foi criado: " + foldername) def saveTemps(self): timestr = time.strftime("%Y%m%d-%H%M%S") folderName1 = './tmp/' + timestr + "/" self.createTempFolder(folderName1) arq = open(folderName1 + 'actionProb_' + self.brain_name + ".txt", 'w') arq.writelines(self.actionProbList) arq.close() arq = open(folderName1 + 'trueAction_' + self.brain_name + ".txt", 'w') arq.writelines(self.trueActionList) arq.close() def addStepInTempList(self, gStep): self.actionProbList.append("Step: " + str(gStep) + "\n"); self.trueActionList.append("Step: " + str(gStep) + "\n"); def __str__(self): return '''Hyperparameters for the Imitation Trainer of brain {0}: \n{1}'''.format( self.brain_name, '\n'.join(['\t{0}:\t{1}'.format(x, self.trainer_parameters[x]) for x in self.param_keys])) @property def parameters(self): """ Returns the trainer parameters of the trainer. """ return self.trainer_parameters @property def get_max_steps(self): """ Returns the maximum number of steps. Is used to know when the trainer should be stopped. :return: The maximum number of steps of the trainer """ return float(self.trainer_parameters['max_steps']) @property def get_step(self): """ Returns the number of steps the trainer has performed :return: the step count of the trainer """ # return self.policy.get_current_step() return self.step @property def reward_buffer(self): """ Returns the reward buffer. The reward buffer contains the cumulative rewards of the most recent episodes completed by agents using this trainer. :return: the reward buffer. """ return self._reward_buffer @property def get_last_reward(self): """ Returns the last reward the trainer has had :return: the new last reward """ if len(self.stats['cumulative_reward']) > 0: return np.mean(self.stats['cumulative_reward']) else: return 0 def increment_step_and_update_last_reward(self): """ Increment the step count of the trainer and Updates the last reward """ if len(self.stats['cumulative_reward']) > 0: mean_reward = np.mean(self.stats['cumulative_reward']) self.policy.update_reward(mean_reward) self.policy.increment_step() self.step = self.policy.get_current_step() def take_action(self, all_brain_info: AllBrainInfo): """ Decides actions using policy given current brain info. :param all_brain_info: AllBrainInfo from environment. :return: a tuple containing action, memories, values and an object to be passed to add experiences """ if len(all_brain_info[self.brain_name].agents) == 0: return [], [], [], None, None agent_brain = all_brain_info[self.brain_name] run_out = self.policy.evaluate(agent_brain) self.stats['value_estimate'].append(run_out['value'].mean()) self.stats['entropy'].append(run_out['entropy'].mean()) self.stats['learning_rate'].append(run_out['learning_rate']) if self.policy.use_recurrent: return run_out['action'], run_out['memory_out'], None, None, None else: return run_out['action'], None, None, run_out['value'], run_out def add_experiences(self, curr_info: AllBrainInfo, next_info: AllBrainInfo, take_action_outputs): """ Adds experiences to each agent's experience history. :param curr_info: Current AllBrainInfo (Dictionary of all current brains and corresponding BrainInfo). :param next_info: Next AllBrainInfo (Dictionary of all current brains and corresponding BrainInfo). :param take_action_outputs: The outputs of the take action method. """ # Used to collect teacher experience into training buffer info_teacher = curr_info[self.brain_to_imitate] next_info_teacher = next_info[self.brain_to_imitate] for agent_id in info_teacher.agents: self.training_buffer[agent_id].last_brain_info = info_teacher for agent_id in next_info_teacher.agents: stored_info_teacher = self.training_buffer[agent_id].last_brain_info if stored_info_teacher is None: continue else: idx = stored_info_teacher.agents.index(agent_id) next_idx = next_info_teacher.agents.index(agent_id) if stored_info_teacher.text_observations[idx] != "": info_teacher_record, info_teacher_reset = \ stored_info_teacher.text_observations[idx].lower().split(",") next_info_teacher_record, next_info_teacher_reset = next_info_teacher.text_observations[idx].\ lower().split(",") if next_info_teacher_reset == "true": self.training_buffer.reset_update_buffer() else: info_teacher_record, next_info_teacher_record = "true", "true" if info_teacher_record == "true" and next_info_teacher_record == "true": if not stored_info_teacher.local_done[idx]: for i in range(self.policy.vis_obs_size): self.training_buffer[agent_id]['visual_obs%d' % i]\ .append(stored_info_teacher.visual_observations[i][idx]) if self.policy.use_vec_obs: self.training_buffer[agent_id]['vector_obs']\ .append(stored_info_teacher.vector_observations[idx]) if self.policy.use_recurrent: if stored_info_teacher.memories.shape[1] == 0: stored_info_teacher.memories = np.zeros((len(stored_info_teacher.agents), self.policy.m_size)) self.training_buffer[agent_id]['memory'].append(stored_info_teacher.memories[idx]) self.training_buffer[agent_id]['actions'].append(next_info_teacher. previous_vector_actions[next_idx]) info_student = curr_info[self.brain_name] next_info_student = next_info[self.brain_name] for agent_id in info_student.agents: self.training_buffer_ppo[agent_id].last_brain_info = info_student self.training_buffer_ppo[agent_id].last_take_action_outputs = take_action_outputs # apenas modulo curiosity usa isso. Logo nao preciso adicionar isso aqui # if info_student.agents != next_info_student.agents: # curr_to_use = self.construct_curr_info(next_info_student) # else: # curr_to_use = info_student # intrinsic_rewards = self.policy.get_intrinsic_rewards(curr_to_use, next_info) for agent_id in next_info_student.agents: stored_info = self.training_buffer_ppo[agent_id].last_brain_info stored_take_action_outputs = self.training_buffer_ppo[agent_id].last_take_action_outputs if stored_info is not None: idx = stored_info.agents.index(agent_id) next_idx = next_info_student.agents.index(agent_id) if not stored_info.local_done[idx]: for i, _ in enumerate(stored_info.visual_observations): self.training_buffer_ppo[agent_id]['visual_obs%d' % i].append( stored_info.visual_observations[i][idx]) self.training_buffer_ppo[agent_id]['next_visual_obs%d' % i].append( next_info_student.visual_observations[i][next_idx]) if self.policy.use_vec_obs: self.training_buffer_ppo[agent_id]['vector_obs'].append(stored_info.vector_observations[idx]) self.training_buffer_ppo[agent_id]['next_vector_in'].append( next_info_student.vector_observations[next_idx]) if self.policy.use_recurrent: if stored_info.memories.shape[1] == 0: stored_info.memories = np.zeros((len(stored_info.agents), self.policy.m_size)) self.training_buffer_ppo[agent_id]['memory'].append(stored_info.memories[idx]) actions = stored_take_action_outputs['action'] # não trabalhamos com ação continua if not self.policy.use_continuous_act: self.training_buffer_ppo[agent_id]['action_mask'].append(stored_info.action_masks[idx]) a_dist = stored_take_action_outputs['log_probs'] value = stored_take_action_outputs['value'] self.training_buffer_ppo[agent_id]['actions'].append(actions[idx]) self.training_buffer_ppo[agent_id]['prev_action'].append(stored_info.previous_vector_actions[idx]) self.training_buffer_ppo[agent_id]['masks'].append(1.0) if not self.use_curiosity: self.training_buffer_ppo[agent_id]['rewards'].append(next_info_student.rewards[next_idx]) self.training_buffer_ppo[agent_id]['action_probs'].append(a_dist[idx]) self.training_buffer_ppo[agent_id]['value_estimates'].append(value[idx][0]) if agent_id not in self.cumulative_rewards: self.cumulative_rewards[agent_id] = 0 self.cumulative_rewards[agent_id] += next_info_student.rewards[next_idx] if not next_info_student.local_done[next_idx]: if agent_id not in self.episode_steps: self.episode_steps[agent_id] = 0 self.episode_steps[agent_id] += 1 def process_experiences(self, current_info: AllBrainInfo, next_info: AllBrainInfo): """ Checks agent histories for processing condition, and processes them as necessary. Processing involves calculating value and advantage targets for model updating step. :param current_info: Current AllBrainInfo :param next_info: Next AllBrainInfo """ info_teacher = next_info[self.brain_to_imitate] for l in range(len(info_teacher.agents)): teacher_action_list = len(self.training_buffer[info_teacher.agents[l]]['actions']) horizon_reached = teacher_action_list > self.trainer_parameters['time_horizon'] teacher_filled = len(self.training_buffer[info_teacher.agents[l]]['actions']) > 0 if ((info_teacher.local_done[l] or horizon_reached) and teacher_filled): agent_id = info_teacher.agents[l] self.training_buffer.append_update_buffer(agent_id, batch_size=None, training_length=self.policy.sequence_length) self.training_buffer[agent_id].reset_agent() info_student = next_info[self.brain_name] for l in range(len(info_student.agents)): agent_actions = self.training_buffer_ppo[info_student.agents[l]]['actions'] if ((info_student.local_done[l] or len(agent_actions) > self.trainer_parameters['time_horizon']) and len(agent_actions) > 0): agent_id = info_student.agents[l] if info_student.local_done[l] and not info_student.max_reached[l]: value_next = 0.0 else: if info_student.max_reached[l]: bootstrapping_info = self.training_buffer_ppo[agent_id].last_brain_info idx = bootstrapping_info.agents.index(agent_id) else: bootstrapping_info = info_student idx = l value_next = self.policy.get_value_estimate(bootstrapping_info, idx) self.training_buffer_ppo[agent_id]['advantages'].set( get_gae( rewards=self.training_buffer_ppo[agent_id]['rewards'].get_batch(), value_estimates=self.training_buffer_ppo[agent_id]['value_estimates'].get_batch(), value_next=value_next, gamma=self.trainer_parameters['gamma'], lambd=self.trainer_parameters['lambd'])) self.training_buffer_ppo[agent_id]['discounted_returns'].set( self.training_buffer_ppo[agent_id]['advantages'].get_batch() + self.training_buffer_ppo[agent_id]['value_estimates'].get_batch()) self.training_buffer_ppo.append_update_buffer(agent_id, batch_size=None, training_length=self.policy.sequence_length) self.training_buffer_ppo[agent_id].reset_agent() if info_student.local_done[l]: self.stats['cumulative_reward'].append( self.cumulative_rewards.get(agent_id, 0)) self.reward_buffer.appendleft(self.cumulative_rewards.get(agent_id, 0)) self.stats['episode_length'].append( self.episode_steps.get(agent_id, 0)) self.cumulative_rewards[agent_id] = 0 self.episode_steps[agent_id] = 0 def end_episode(self): """ A signal that the Episode has ended. The buffer must be reset. Get only called when the academy resets. """ self.training_buffer.reset_all() self.training_buffer_ppo.reset_all() for agent_id in self.cumulative_rewards: self.cumulative_rewards[agent_id] = 0 for agent_id in self.episode_steps: self.episode_steps[agent_id] = 0 def is_ready_update(self): """ Returns whether or not the trainer has enough elements to run update model :return: A boolean corresponding to whether or not update_model() can be run """ cond_1 = len(self.training_buffer.update_buffer['actions']) > self.n_sequences cond_2 = len(self.training_buffer_ppo.update_buffer['actions']) > self.n_sequences return cond_1 or cond_2 def is_ready_update_bc(self): """ Returns whether or not the trainer has enough elements to run update model :return: A boolean corresponding to whether or not update_model() can be run """ cond_1 = len(self.training_buffer.update_buffer['actions']) > self.n_sequences return cond_1 def is_ready_update_ppo(self): """ Returns whether or not the trainer has enough elements to run update model :return: A boolean corresponding to whether or not update_model() can be run """ cond_2 = len(self.training_buffer_ppo.update_buffer['actions']) > self.n_sequences return cond_2 def update_policy(self): """ Updates the policy. """ self.n_sequences = max(int(self.trainer_parameters['batch_size'] / self.policy.sequence_length), 1) num_epoch = self.trainer_parameters['num_epoch'] if self.is_ready_update_bc(): batch_losses = [] for k in range(num_epoch): self.training_buffer.update_buffer.shuffle() buffer = self.training_buffer.update_buffer num_batches = min(len(self.training_buffer.update_buffer['actions']) // self.n_sequences, self.batches_per_epoch) for i in range(num_batches): start = i * self.n_sequences end = (i + 1) * self.n_sequences mini_batch = buffer.make_mini_batch(start, end) run_out = self.policy.update(mini_batch, self.n_sequences) self.actionProbList.append( "epoca: " + str(i) + "\n" + np.array2string(run_out['action_probs'], precision=2) + "\n") self.trueActionList.append("epoca: " + str(i) + "\n" + str(run_out['action_oh']) + "\n") loss = run_out['loss'] batch_losses.append(loss) if len(batch_losses) > 0: self.stats['losses'].append(np.mean(batch_losses)) else: self.stats['losses'].append(0) if self.is_ready_update_ppo(): value_total, policy_total, forward_total, inverse_total = [], [], [], [] advantages = self.training_buffer_ppo.update_buffer['advantages'].get_batch() self.training_buffer_ppo.update_buffer['advantages'].set( (advantages - advantages.mean()) / (advantages.std() + 1e-10)) for k in range(num_epoch): self.training_buffer_ppo.update_buffer.shuffle() buffer_ppo = self.training_buffer_ppo.update_buffer num_batches_ppo = min(len(self.training_buffer_ppo.update_buffer['actions']) // self.n_sequences, self.batches_per_epoch) for i in range(num_batches_ppo): start = i * self.n_sequences end = (i + 1) * self.n_sequences mini_batch = buffer_ppo.make_mini_batch(start, end) run_out = self.policy.update_ppo(mini_batch, self.n_sequences) value_total.append(run_out['value_loss']) policy_total.append(np.abs(run_out['policy_loss'])) self.stats['value_loss'].append(np.mean(value_total)) self.stats['policy_loss'].append(np.mean(policy_total)) self.training_buffer_ppo.reset_update_buffer() def discount_rewards(r, gamma=0.99, value_next=0.0): """ Computes discounted sum of future rewards for use in updating value estimate. :param r: List of rewards. :param gamma: Discount factor. :param value_next: T+1 value estimate for returns calculation. :return: discounted sum of future rewards as list. """ discounted_r = np.zeros_like(r) running_add = value_next for t in reversed(range(0, r.size)): running_add = running_add * gamma + r[t] discounted_r[t] = running_add return discounted_r def get_gae(rewards, value_estimates, value_next=0.0, gamma=0.99, lambd=0.95): """ Computes generalized advantage estimate for use in updating policy. :param rewards: list of rewards for time-steps t to T. :param value_next: Value estimate for time-step T+1. :param value_estimates: list of value estimates for time-steps t to T. :param gamma: Discount factor. :param lambd: GAE weighing factor. :return: list of advantage estimates for time-steps t to T. """ value_estimates = np.asarray(value_estimates.tolist() + [value_next]) delta_t = rewards + gamma * value_estimates[1:] - value_estimates[:-1] advantage = discount_rewards(r=delta_t, gamma=gamma * lambd) return advantage
2.1875
2
backend/kesaseteli/common/tests/factories.py
jannetasa/yjdh
0
12789443
<gh_stars>0 import random from datetime import date, timedelta import factory from shared.common.tests.factories import UserFactory from applications.enums import ( ApplicationStatus, ATTACHMENT_CONTENT_TYPE_CHOICES, AttachmentType, HiredWithoutVoucherAssessment, SummerVoucherExceptionReason, ) from applications.models import Application, Attachment, SummerVoucher from companies.models import Company class CompanyFactory(factory.django.DjangoModelFactory): name = factory.Faker("company") business_id = factory.Faker("numerify", text="#######-#") company_form = "oy" industry = factory.Faker("job") street_address = factory.Faker("street_address") postcode = factory.Faker("postcode") city = factory.Faker("city") ytj_json = factory.Faker("json") class Meta: model = Company class AttachmentFactory(factory.django.DjangoModelFactory): attachment_type = factory.Faker("random_element", elements=AttachmentType.values) content_type = factory.Faker( "random_element", elements=[val[1] for val in ATTACHMENT_CONTENT_TYPE_CHOICES] ) attachment_file = factory.django.FileField(filename="file.pdf") class Meta: model = Attachment class SummerVoucherFactory(factory.django.DjangoModelFactory): summer_voucher_serial_number = factory.Faker("md5") summer_voucher_exception_reason = factory.Faker( "random_element", elements=SummerVoucherExceptionReason.values ) employee_name = factory.Faker("name") employee_school = factory.Faker("lexify", text="????? School") employee_ssn = factory.Faker("bothify", text="######-###?") employee_phone_number = factory.Faker("phone_number") employee_home_city = factory.Faker("city") employee_postcode = factory.Faker("postcode") employment_postcode = factory.Faker("postcode") employment_start_date = factory.Faker( "date_between_dates", date_start=date(date.today().year, 1, 1), date_end=date.today() + timedelta(days=100), ) employment_end_date = factory.LazyAttribute( lambda o: o.employment_start_date + timedelta(days=random.randint(31, 364)) ) employment_work_hours = factory.Faker( "pydecimal", left_digits=2, right_digits=1, min_value=1 ) employment_salary_paid = factory.Faker( "pydecimal", left_digits=4, right_digits=2, min_value=1 ) employment_description = factory.Faker("sentence") hired_without_voucher_assessment = factory.Faker( "random_element", elements=HiredWithoutVoucherAssessment.values ) class Meta: model = SummerVoucher class ApplicationFactory(factory.django.DjangoModelFactory): company = factory.SubFactory(CompanyFactory) user = factory.SubFactory(UserFactory) status = factory.Faker("random_element", elements=ApplicationStatus.values) street_address = factory.Faker("street_address") contact_person_name = factory.Faker("name") contact_person_email = factory.Faker("email") contact_person_phone_number = factory.Faker("phone_number") is_separate_invoicer = factory.Faker("boolean") invoicer_name = factory.Faker("name") invoicer_email = factory.Faker("email") invoicer_phone_number = factory.Faker("phone_number") class Meta: model = Application
2.140625
2
bench.py
deseretdigital/statsite-proxy
2
12789444
<gh_stars>1-10 import socket import time import random NUM = 1024 * 1024 KEYS = ["test", "foobar", "zipzap"] VALS = [32, 100, 82, 101, 5, 6, 42, 73] METS = [] for x in xrange(NUM): key = random.choice(KEYS) val = random.choice(VALS) METS.append("%s:%f|c|@123\n" % (key, val)) s = socket.socket() s.connect(("localhost", 8125)) start = time.time() current = 0 while current < len(METS): msg = "".join(METS[current:current + 1024]) current += 1024 s.sendall(msg) s.close() end = time.time() print NUM / (end - start), "ops/sec", (end - start), "sec"
2.375
2
backend/project_requests/apps.py
mnieber/taskboard
0
12789445
<reponame>mnieber/taskboard<filename>backend/project_requests/apps.py<gh_stars>0 from django.apps import AppConfig class ProjectRequestsConfig(AppConfig): name = "project_requests"
1.203125
1
ace/system/database/request_tracking.py
ace-ecosystem/ace2-core
0
12789446
<reponame>ace-ecosystem/ace2-core<gh_stars>0 # vim: ts=4:sw=4:et:cc=120 import json import datetime from operator import itemgetter from typing import Optional, Union import ace from ace.analysis import Observable, AnalysisModuleType from ace.system.base import AnalysisRequestTrackingBaseInterface from ace.system.database.schema import AnalysisRequestTracking, analysis_request_links from ace.constants import TRACKING_STATUS_ANALYZING, EVENT_AR_EXPIRED from ace.system.requests import AnalysisRequest from ace.system.caching import generate_cache_key from ace.exceptions import UnknownAnalysisModuleTypeError from sqlalchemy import and_, text from sqlalchemy.sql import delete, update, select from sqlalchemy.orm import selectinload class DatabaseAnalysisRequestTrackingInterface(AnalysisRequestTrackingBaseInterface): # if we switched to TRACKING_STATUS_ANALYZING then we start the expiration timer async def i_track_analysis_request(self, request: AnalysisRequest): # XXX we're using server-side time instead of database time expiration_date = None if request.status == TRACKING_STATUS_ANALYZING: expiration_date = datetime.datetime.now() + datetime.timedelta(request.type.timeout) db_request = AnalysisRequestTracking( id=request.id, expiration_date=expiration_date, analysis_module_type=request.type.name if request.type else None, cache_key=request.cache_key, root_uuid=request.root.uuid, json_data=request.to_json(), ) async with self.get_db() as db: await db.merge(db_request) await db.commit() async def i_link_analysis_requests(self, source: AnalysisRequest, dest: AnalysisRequest) -> bool: from sqlalchemy import select, bindparam, String, and_ # when we process an analysis request we "lock" it by setting the lock field # so if we try to link against an analysis request that is "locked" it fails # INSERT INTO analysis_request_links ( source_id, dest_id ) # SELECT :source.id, :dest.id FROM analysis_tracking_request # WHERE source.id = :source.id AND lock IS NULL sel = select( bindparam("s", type_=String).label("source_id"), bindparam("d", type_=String).label("dest_id"), ).where( and_(AnalysisRequestTracking.id == source.id, AnalysisRequestTracking.lock == None) ) # noqa:E711 update = analysis_request_links.insert().from_select(["source_id", "dest_id"], sel) async with self.get_db() as db: count = (await db.execute(update, {"s": source.id, "d": dest.id})).rowcount await db.commit() return count == 1 async def i_get_linked_analysis_requests(self, source: AnalysisRequest) -> list[AnalysisRequest]: async with self.get_db() as db: source_request = ( # NOTE you cannot do lazy loading with async in sqlalchemy 1.4 ( await db.execute( select(AnalysisRequestTracking) .options(selectinload(AnalysisRequestTracking.linked_requests)) .where(AnalysisRequestTracking.id == source.id) ) ).one_or_none() ) if source_request is None: return None # I think this is where you have to be careful with async return [AnalysisRequest.from_dict(json.loads(_.json_data), self) for _ in source_request[0].linked_requests] async def i_lock_analysis_request(self, request: AnalysisRequest) -> bool: async with self.get_db() as db: count = ( await db.execute( update(AnalysisRequestTracking) .where( and_(AnalysisRequestTracking.id == request.id, AnalysisRequestTracking.lock == None) ) # noqa:E711 .values(lock=text("CURRENT_TIMESTAMP")) ) ).rowcount await db.commit() return count == 1 async def i_unlock_analysis_request(self, request: AnalysisRequest) -> bool: async with self.get_db() as db: count = ( await db.execute( update(AnalysisRequestTracking) .where( and_(AnalysisRequestTracking.id == request.id, AnalysisRequestTracking.lock != None) ) # noqa:E711 .values(lock=None) ) ).rowcount await db.commit() return count == 1 async def i_delete_analysis_request(self, key: str) -> bool: async with self.get_db() as db: count = ( await db.execute(delete(AnalysisRequestTracking).where(AnalysisRequestTracking.id == key)) ).rowcount await db.commit() return count == 1 async def i_get_expired_analysis_requests(self) -> list[AnalysisRequest]: async with self.get_db() as db: result = ( await db.execute( select(AnalysisRequestTracking).where( datetime.datetime.now() > AnalysisRequestTracking.expiration_date ) ) ).all() return [AnalysisRequest.from_dict(json.loads(_[0].json_data), self) for _ in result] # this is called when an analysis module type is removed (or expired) async def i_clear_tracking_by_analysis_module_type(self, amt: AnalysisModuleType): async with self.get_db() as db: await db.execute( delete(AnalysisRequestTracking).where(AnalysisRequestTracking.analysis_module_type == amt.name) ) await db.commit() async def i_get_analysis_request_by_request_id(self, key: str) -> Union[AnalysisRequest, None]: async with self.get_db() as db: result = ( await db.execute(select(AnalysisRequestTracking).where(AnalysisRequestTracking.id == key)) ).one_or_none() if result is None: return None return AnalysisRequest.from_dict(json.loads(result[0].json_data), self) async def i_get_analysis_requests_by_root(self, key: str) -> list[AnalysisRequest]: async with self.get_db() as db: return [ AnalysisRequest.from_dict(json.loads(_[0].json_data), self) for _ in ( await db.execute(select(AnalysisRequestTracking).where(AnalysisRequestTracking.root_uuid == key)) ).all() ] async def i_get_analysis_request_by_cache_key(self, key: str) -> Union[AnalysisRequest, None]: assert isinstance(key, str) async with self.get_db() as db: result = ( await db.execute(select(AnalysisRequestTracking).where(AnalysisRequestTracking.cache_key == key)) ).one_or_none() if result is None: return None return AnalysisRequest.from_dict(json.loads(result[0].json_data), self) async def i_process_expired_analysis_requests(self, amt: AnalysisModuleType) -> int: assert isinstance(amt, AnalysisModuleType) async with self.get_db() as db: for db_request in await db.execute( select(AnalysisRequestTracking).where( and_( AnalysisRequestTracking.analysis_module_type == amt.name, datetime.datetime.now() > AnalysisRequestTracking.expiration_date, ) ) ): request = AnalysisRequest.from_json(db_request[0].json_data, self) await self.fire_event(EVENT_AR_EXPIRED, request) try: await self.queue_analysis_request(request) except UnknownAnalysisModuleTypeError: self.delete_analysis_request(request)
2.046875
2
src/selection/AttributeSelector.py
lyonva/Nue
0
12789447
<gh_stars>0 from utils import ps class AttributeSelector(ps): def __init__(self, name, as_class, parameters): self.name = name self.as_class = as_class self.parameters = parameters
2.328125
2
model/attack.py
Michaeltaoma/SecureCovid
1
12789448
<reponame>Michaeltaoma/SecureCovid<filename>model/attack.py import torch.nn as nn class AttackModel(nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(AttackModel, self).__init__() # Number of input features is 12. self.layer_1 = nn.Linear(n_feature, n_hidden) self.layer_2 = nn.Linear(n_hidden, n_hidden) self.layer_out = nn.Linear(n_hidden, 1) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=0.1) self.batchnorm1 = nn.BatchNorm1d(n_hidden) self.batchnorm2 = nn.BatchNorm1d(n_hidden) def forward(self, x): x = self.relu(self.layer_1(x)) x = self.batchnorm1(x) x = self.relu(self.layer_2(x)) x = self.batchnorm2(x) x = self.dropout(x) x = self.layer_out(x) return x
2.828125
3
third_party/buildbot_slave_8_4/buildslave/commands/git.py
bopopescu/build
0
12789449
<reponame>bopopescu/build<filename>third_party/buildbot_slave_8_4/buildslave/commands/git.py # This file is part of Buildbot. Buildbot is free software: you can # redistribute it and/or modify it under the terms of the GNU General Public # License as published by the Free Software Foundation, version 2. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Copyright Buildbot Team Members import os from twisted.internet import defer from buildslave.commands.base import SourceBaseCommand from buildslave import runprocess from buildslave.commands.base import AbandonChain class Git(SourceBaseCommand): """Git specific VC operation. In addition to the arguments handled by SourceBaseCommand, this command reads the following keys: ['repourl'] (required): the upstream GIT repository string ['branch'] (optional): which version (i.e. branch or tag) to retrieve. Default: "master". ['submodules'] (optional): whether to initialize and update submodules. Default: False. ['ignore_ignores'] (optional): ignore ignores when purging changes (default true) ['reference'] (optional): use this reference repository to fetch objects. ['gerrit_branch'] (optional): which virtual branch to retrieve. ['progress'] (optional): have git output progress markers, avoiding timeouts for long fetches; requires Git 1.7.2 or later. ['shallow'] (optional): if true, use shallow clones that do not also fetch history """ header = "git operation" def setup(self, args): SourceBaseCommand.setup(self, args) self.repourl = args['repourl'] self.branch = args.get('branch') if not self.branch: self.branch = "master" self.sourcedata = "%s %s\n" % (self.repourl, self.branch) self.submodules = args.get('submodules') self.ignore_ignores = args.get('ignore_ignores', True) self.reference = args.get('reference', None) self.gerrit_branch = args.get('gerrit_branch', None) def _fullSrcdir(self): return os.path.join(self.builder.basedir, self.srcdir) def sourcedirIsUpdateable(self): return os.path.isdir(os.path.join(self._fullSrcdir(), ".git")) def _dovccmd(self, command, cb=None, **kwargs): git = self.getCommand("git") c = runprocess.RunProcess(self.builder, [git] + command, self._fullSrcdir(), sendRC=False, timeout=self.timeout, maxTime=self.maxTime, usePTY=False, **kwargs) self.command = c d = c.start() if cb: d.addCallback(self._abandonOnFailure) d.addCallback(cb) return d def sourcedataMatches(self): # If the repourl matches the sourcedata file, then we can say that the # sourcedata matches. We can ignore branch changes, since Git can work # with many branches fetched, and we deal with it properly in # doVCUpdate. So, basically, as long as the file exists, consider it # to match try: self.readSourcedata() except IOError: return False return True def _cleanSubmodules(self, res): command = ['submodule', 'foreach', 'git', 'clean', '-f', '-d'] if self.ignore_ignores: command.append('-x') return self._dovccmd(command) def _updateSubmodules(self, res): return self._dovccmd(['submodule', 'update'], self._cleanSubmodules) def _initSubmodules(self, res): if self.submodules: return self._dovccmd(['submodule', 'init'], self._updateSubmodules) else: return defer.succeed(0) def _didHeadCheckout(self, res): # Rename branch, so that the repo will have the expected branch name # For further information about this, see the commit message command = ['branch', '-M', self.branch] return self._dovccmd(command, self._initSubmodules) def _didFetch(self, res): if self.revision: head = self.revision else: head = 'FETCH_HEAD' # That is not sufficient. git will leave unversioned files and empty # directories. Clean them up manually in _didReset. command = ['reset', '--hard', head] return self._dovccmd(command, self._didHeadCheckout) def maybeNotDoVCFallback(self, res): # If we were unable to find the branch/SHA on the remote, # clobbering the repo won't help any, so just abort the chain if hasattr(self.command, 'stderr'): if "Couldn't find remote ref" in self.command.stderr: raise AbandonChain(-1) # Update first runs "git clean", removing local changes, # if the branch to be checked out has changed. This, combined # with the later "git reset" equates clobbering the repo, # but it's much more efficient. def doVCUpdate(self): try: # Check to see if our branch has changed diffbranch = self.sourcedata != self.readSourcedata() except IOError: diffbranch = False if diffbranch: command = ['clean', '-f', '-d'] if self.ignore_ignores: command.append('-x') return self._dovccmd(command, self._didClean) return self._didClean(None) def _doFetch(self, dummy, branch): # The plus will make sure the repo is moved to the branch's # head even if it is not a simple "fast-forward" command = ['fetch', '-t', self.repourl, '+%s' % branch] # If the 'progress' option is set, tell git fetch to output # progress information to the log. This can solve issues with # long fetches killed due to lack of output, but only works # with Git 1.7.2 or later. if self.args.get('progress'): command.append('--progress') self.sendStatus({"header": "fetching branch %s from %s\n" % (branch, self.repourl)}) return self._dovccmd(command, self._didFetch, keepStderr=True) def _didClean(self, dummy): branch = self.gerrit_branch or self.branch # After a clean, try to use the given revision if we have one. if self.revision: # We know what revision we want. See if we have it. d = self._dovccmd(['reset', '--hard', self.revision], self._initSubmodules) # If we are unable to reset to the specified version, we # must do a fetch first and retry. d.addErrback(self._doFetch, branch) return d else: # No known revision, go grab the latest. return self._doFetch(None, branch) def _didInit(self, res): # If we have a reference repository specified, we need to also set that # up after the 'git init'. if self.reference: git_alts_path = os.path.join(self._fullSrcdir(), '.git', 'objects', 'info', 'alternates') git_alts_content = os.path.join(self.reference, 'objects') self.setFileContents(git_alts_path, git_alts_content) return self.doVCUpdate() def doVCFull(self): git = self.getCommand("git") # If they didn't ask for a specific revision, we can get away with a # shallow clone. if not self.args.get('revision') and self.args.get('shallow'): cmd = [git, 'clone', '--depth', '1'] # If we have a reference repository, pass it to the clone command if self.reference: cmd.extend(['--reference', self.reference]) cmd.extend([self.repourl, self._fullSrcdir()]) c = runprocess.RunProcess(self.builder, cmd, self.builder.basedir, sendRC=False, timeout=self.timeout, maxTime=self.maxTime, usePTY=False) self.command = c cmdexec = c.start() cmdexec.addCallback(self._didInit) return cmdexec else: os.makedirs(self._fullSrcdir()) return self._dovccmd(['init'], self._didInit) def parseGotRevision(self): command = ['rev-parse', 'HEAD'] def _parse(res): hash = self.command.stdout.strip() if len(hash) != 40: return None return hash return self._dovccmd(command, _parse, keepStdout=True)
1.84375
2
tests/test_backend_sql.py
savi-dev/keystone
0
12789450
<filename>tests/test_backend_sql.py # vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 OpenStack LLC # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid from keystone import catalog from keystone.catalog.backends import sql as catalog_sql from keystone.common.sql import util as sql_util from keystone import config from keystone import exception from keystone.identity.backends import sql as identity_sql from keystone import test from keystone.token.backends import sql as token_sql import default_fixtures import test_backend CONF = config.CONF class SqlIdentity(test.TestCase, test_backend.IdentityTests): def setUp(self): super(SqlIdentity, self).setUp() self.config([test.etcdir('keystone.conf.sample'), test.testsdir('test_overrides.conf'), test.testsdir('backend_sql.conf')]) sql_util.setup_test_database() self.identity_api = identity_sql.Identity() self.load_fixtures(default_fixtures) def test_delete_user_with_tenant_association(self): user = {'id': uuid.uuid4().hex, 'name': uuid.uuid4().hex, 'password': uuid.uuid4().hex} self.identity_api.create_user(user['id'], user) self.identity_api.add_user_to_tenant(self.tenant_bar['id'], user['id']) self.identity_api.delete_user(user['id']) self.assertRaises(exception.UserNotFound, self.identity_api.get_tenants_for_user, user['id']) def test_create_null_user_name(self): user = {'id': uuid.uuid4().hex, 'name': None, 'password': uuid.uuid4().hex} self.assertRaises(exception.ValidationError, self.identity_api.create_user, user['id'], user) self.assertRaises(exception.UserNotFound, self.identity_api.get_user, user['id']) self.assertRaises(exception.UserNotFound, self.identity_api.get_user_by_name, user['name']) def test_create_null_tenant_name(self): tenant = {'id': uuid.uuid4().hex, 'name': None} self.assertRaises(exception.ValidationError, self.identity_api.create_tenant, tenant['id'], tenant) self.assertRaises(exception.TenantNotFound, self.identity_api.get_tenant, tenant['id']) self.assertRaises(exception.TenantNotFound, self.identity_api.get_tenant_by_name, tenant['name']) def test_create_null_role_name(self): role = {'id': uuid.uuid4().hex, 'name': None} self.assertRaises(exception.Conflict, self.identity_api.create_role, role['id'], role) self.assertRaises(exception.RoleNotFound, self.identity_api.get_role, role['id']) def test_delete_tenant_with_user_association(self): user = {'id': 'fake', 'name': 'fakeuser', 'password': '<PASSWORD>'} self.identity_api.create_user('fake', user) self.identity_api.add_user_to_tenant(self.tenant_bar['id'], user['id']) self.identity_api.delete_tenant(self.tenant_bar['id']) tenants = self.identity_api.get_tenants_for_user(user['id']) self.assertEquals(tenants, []) def test_delete_user_with_metadata(self): user = {'id': 'fake', 'name': 'fakeuser', 'password': '<PASSWORD>'} self.identity_api.create_user('fake', user) self.identity_api.create_metadata(user['id'], self.tenant_bar['id'], {'extra': 'extra'}) self.identity_api.delete_user(user['id']) self.assertRaises(exception.MetadataNotFound, self.identity_api.get_metadata, user['id'], self.tenant_bar['id']) def test_delete_tenant_with_metadata(self): user = {'id': 'fake', 'name': 'fakeuser', 'password': '<PASSWORD>'} self.identity_api.create_user('fake', user) self.identity_api.create_metadata(user['id'], self.tenant_bar['id'], {'extra': 'extra'}) self.identity_api.delete_tenant(self.tenant_bar['id']) self.assertRaises(exception.MetadataNotFound, self.identity_api.get_metadata, user['id'], self.tenant_bar['id']) class SqlToken(test.TestCase, test_backend.TokenTests): def setUp(self): super(SqlToken, self).setUp() self.config([test.etcdir('keystone.conf.sample'), test.testsdir('test_overrides.conf'), test.testsdir('backend_sql.conf')]) sql_util.setup_test_database() self.token_api = token_sql.Token() class SqlCatalog(test.TestCase, test_backend.CatalogTests): def setUp(self): super(SqlCatalog, self).setUp() self.config([test.etcdir('keystone.conf.sample'), test.testsdir('test_overrides.conf'), test.testsdir('backend_sql.conf')]) sql_util.setup_test_database() self.catalog_api = catalog_sql.Catalog() self.catalog_man = catalog.Manager() self.load_fixtures(default_fixtures)
1.8125
2