max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
python_for_everybody/bs_regex_parse.py
timothyyu/p4e-prac
0
12788151
from bs4 import BeautifulSoup as Soup import re string = '<p>Please click <a href="http://www.dr-chuck.com">here</a></p>' match = re.findall('https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+', string) html = Soup(string, 'html.parser') bsm= [a['href'] for a in html.find_all('a')] match2 = re.findall('"(http.*.*)"',string) print(match) print(match2) print(bsm)
3.359375
3
contacts/urls.py
pedrohd21/Agenda-Django
1
12788152
<reponame>pedrohd21/Agenda-Django from django.urls import path, include from . import views urlpatterns = [ path('', views.contactsList, name='contacts-list'), path('contact/<int:id>', views.contactsViews, name='contacts-views'), path('newcontact/', views.newContact, name='new-contact'), path('edit/<int:id>', views.editContact, name='edit-contact'), path('delete/<int:id>', views.deleteContact, name='delete-contact'), path('accounts/', include('django.contrib.auth.urls')), path('accounts/', include('accounts.urls')), ]
1.960938
2
postcipes/unstructured_channel_flow.py
timofeymukha/postcipes
0
12788153
<filename>postcipes/unstructured_channel_flow.py # This file is part of postcipes # (c) <NAME> # The code is released under the MIT Licence. # See LICENCE.txt and the Legal section in the README for more information from __future__ import absolute_import from __future__ import division from __future__ import print_function from .postcipe import Postcipe import numpy as np from os.path import join from scipy.integrate import simps from collections import OrderedDict from scipy.interpolate import LinearNDInterpolator from scipy.spatial import Delaunay import h5py import os import turbulucid as tbl from vtkmodules.numpy_interface import dataset_adapter as dsa from vtkmodules.util.numpy_support import * __all__ = ["UnstructuredChannelFlow"] class UnstructuredChannelFlow(Postcipe): def __init__(self, path, nu, n, time, wallModel=False): Postcipe.__init__(self) self.case = path self.readPath = join(self.case) self.nu = nu self.n = n self.wallModel = wallModel self.time = time def read(self, time, debug=False): """Read the case from a given path to .foam file. Parameters ---------- time : float The time step to load, default to latest time Returns ------- The reader updated with the read case. Raises ------ ValueError If the path is not valid. """ # Check that paths are valid from vtkmodules.vtkIOGeometry import vtkOpenFOAMReader from vtkmodules.vtkCommonExecutionModel import vtkStreamingDemandDrivenPipeline if not os.path.exists(self.case): raise ValueError("Provided path to .foam file invalid!") if debug: print(" Opening the case") # Case reader reader = vtkOpenFOAMReader() reader.SetFileName(self.case) reader.Update() if debug: print(" Changing reader parameters") reader.CreateCellToPointOff() reader.DisableAllPointArrays() reader.EnableAllPatchArrays() reader.DecomposePolyhedraOn() reader.Update() reader.UpdateInformation() info = reader.GetExecutive().GetOutputInformation(0) if debug: print("The available timesteps are", vtk_to_numpy(reader.GetTimeValues())) if time is None: print("Selecting the latest available time step") info.Set(vtkStreamingDemandDrivenPipeline.UPDATE_TIME_STEP(), vtk_to_numpy(reader.GetTimeValues())[-1]) else: print("Selecting the time step", time) info.Set(vtkStreamingDemandDrivenPipeline.UPDATE_TIME_STEP(), time) reader.Update() reader.UpdateInformation() return reader def compute(self, debug=False): from vtkmodules.vtkFiltersCore import vtkCellDataToPointData from vtkmodules.vtkFiltersSources import vtkPlaneSource from vtkmodules.vtkFiltersPoints import vtkVoronoiKernel, vtkPointInterpolator from vtkmodules.vtkFiltersVerdict import vtkCellSizeFilter d = 1/self.n y = np.linspace(d/2, 2 - d/2, 2*self.n) reader = self.read(self.time, debug=debug) caseData = reader.GetOutput() internalBlock = caseData.GetBlock(0) patchBlocks = caseData.GetBlock(1) bounds = internalBlock.GetBounds() if debug: print(bounds) fieldNames = dsa.WrapDataObject(internalBlock).GetCellData().keys() averaged = {} for i, field in enumerate(fieldNames): averaged[field] = [] pointData = vtkCellDataToPointData() pointData.SetInputData(internalBlock) pointData.Update() plane = vtkPlaneSource() plane.SetResolution(int(bounds[1]/d), int(bounds[5]/d)) kernel = vtkVoronoiKernel() interpolator = vtkPointInterpolator() interpolator.SetSourceData(pointData.GetOutput()) interpolator.SetKernel(kernel) # Internal field, go layer by layer for i in range(y.size): plane.SetOrigin(0.55*(bounds[0] + bounds[1]), y[i], 0.15*(bounds[4] + bounds[5])) plane.SetPoint1(bounds[0], y[i], bounds[4]) plane.SetPoint2(bounds[1], y[i], bounds[5]) plane.Update() interpolator.SetInputConnection(plane.GetOutputPort()) interpolator.Update() interpolatedData = dsa.WrapDataObject(interpolator.GetOutput()).GetPointData() for field in fieldNames: averaged[field].append(np.mean(interpolatedData[field], axis=0)) # Patch data for wall in ["bottomWall", "topWall"]: wallBlock = patchBlocks.GetBlock(self.get_block_index(patchBlocks, wall)) cellSizeFilter = vtkCellSizeFilter() cellSizeFilter.SetInputData(wallBlock) cellSizeFilter.Update() area = dsa.WrapDataObject(cellSizeFilter.GetOutput()).CellData['Area'] wallData = dsa.WrapDataObject(wallBlock).CellData for field in fieldNames: # area weighted average avrg = np.sum(wallData[field]*area, axis=0)/np.sum(area) if wall == "bottomWall": averaged[field].insert(0, avrg) else: averaged[field].append(avrg) for field in fieldNames: averaged[field] = np.array(averaged[field]) self.y = np.append(np.append(0, y), 2) self.avrgFields = averaged self.u = self.avrgFields['UMean'][:, 0] self.uu = self.avrgFields['UPrime2Mean'][:, 0] self.vv = self.avrgFields['UPrime2Mean'][:, 1] self.ww = self.avrgFields['UPrime2Mean'][:, 2] self.uv = self.avrgFields['UPrime2Mean'][:, 3] self.k = 0.5*(self.uu + self.vv + self.ww) self.nut = self.avrgFields['nutMean'] self.tau = 0 if self.wallModel: self.wss = self.avrgFields['wallShearStressMean'][:, 0] self.tau = 0.5*(self.wss[0] + self.wss[-1]) else: self.tau = self.nu*0.5*(self.u[1] + self.u[-2])/self.y[1] self.uTau = np.sqrt(self.tau) self.delta = 0.5*(self.y[-1] - self.y[0]) self.uB = simps(self.u, self.y)/(2*self.delta) self.uC = 0.5*(self.u[int(self.y.size/2)] + self.u[int(self.y.size/2) - 1]) self.yPlus = self.y*self.uTau/self.nu self.uPlus = self.u/self.uTau self.uuPlus = self.uu/self.uTau**2 self.vvPlus = self.vv/self.uTau**2 self.wwPlus = self.ww/self.uTau**2 self.uvPlus = self.uv/self.uTau**2 self.kPlus = self.k/self.uTau**2 self.uRms = np.sqrt(self.uu)/self.uTau self.vRms = np.sqrt(self.vv)/self.uTau self.wRms = np.sqrt(self.ww)/self.uTau self.reTau = self.uTau*self.delta/self.nu self.reB = self.uB*self.delta/self.nu self.reC = self.uC*self.delta/self.nu self.theta = tbl.momentum_thickness(self.y[:int(self.y.size/2)], self.u[:int(self.u.size/2)], interpolate=True) self.delta99 = tbl.delta_99(self.y[:int(self.y.size/2)], self.u[:int(self.u.size/2)], interpolate=True) # self.deltaStar = tbl.delta_star(self.y[:int(self.y.size/2)], self.u[:int(self.u.size/2)], interpolate=True) # self.reTheta = self.theta*self.uC/self.nu self.reDelta99 = self.delta99*self.uC/self.nu self.reDeltaStar = self.deltaStar*self.uC/self.nu def save(self, name): f = h5py.File(name, 'w') f.attrs["nu"] = self.nu f.attrs["uTau"] = self.uTau f.attrs["uB"] = self.uB f.attrs["uC"] = self.uC f.attrs["delta"] = self.delta f.attrs["delta99"] = self.delta99 f.attrs["deltaStar"] = self.deltaStar f.attrs["theta"] = self.reTheta f.attrs["reDelta99"] = self.reDelta99 f.attrs["reDeltaStar"] = self.reDeltaStar f.attrs["reTheta"] = self.reTheta f.attrs["reTau"] = self.reTau f.attrs["reB"] = self.reB f.attrs["reC"] = self.reC f.create_dataset("y", data=self.y) f.create_dataset("u", data=self.u) f.create_dataset("uu", data=self.uu) f.create_dataset("vv", data=self.vv) f.create_dataset("ww", data=self.ww) f.create_dataset("k", data=self.k) f.create_dataset("uv", data=self.uv) f.create_dataset("nut", data=self.nut) f.create_dataset("yPlus", data=self.yPlus) f.create_dataset("uPlus", data=self.uPlus) f.create_dataset("uuPlus", data=self.uuPlus) f.create_dataset("vvPlus", data=self.vvPlus) f.create_dataset("wwPlus", data=self.wwPlus) f.create_dataset("uvPlus", data=self.uvPlus) f.create_dataset("kPlus", data=self.kPlus) f.create_dataset("uRms", data=self.uRms) f.create_dataset("vRms", data=self.vRms) f.create_dataset("wRms", data=self.wRms) f.close() def load(self, name): f = h5py.File(name, 'r') self.nu = f.attrs["nu"] self.uTau = f.attrs["uTau"] self.uB = f.attrs["uB"] self.uC = f.attrs["uC"] self.delta = f.attrs["delta"] self.delta99 = f.attrs["delta99"] self.deltaStar = f.attrs["deltaStar"] self.reTheta = f.attrs["theta"] self.reDelta99 = f.attrs["reDelta99"] self.reDeltaStar = f.attrs["reDeltaStar"] self.reTheta = f.attrs["reTheta"] self.reTau = f.attrs["reTau"] self.reB = f.attrs["reB"] self.reC = f.attrs["reC"] self.y = f["y"][:] self.u = f["u"][:] self.uu = f["uu"][:] self.vv = f["vv"][:] self.ww = f["ww"][:] self.k = f["k"][:] self.uv = f["uv"][:] self.nut = f["nut"][:] self.yPlus = f["yPlus"][:] self.uPlus = f["uPlus"][:] self.uuPlus = f["uuPlus"][:] self.vvPlus = f["vvPlus"][:] self.wwPlus = f["wwPlus"][:] self.uvPlus = f["uvPlus"][:] self.uvPlus = f["kPlus"][:] self.uRms = f["uRms"][:] self.vRms = f["vRms"][:] self.vRms = f["wRms"][:] self.kPlus = f["kPlus"][:] f.close() def utau_relative_error(self, bench, procent=True, abs=False): error = (self.uTau - bench)/bench if procent: error *= 100 if abs: error = np.abs(error) return error def get_block_index(self, blocks, name): """Get the index of the block by name. Parameters ---------- blocks : vtkMultiBlockDataSet The dataset with the blocks. name : str The name of the block that is sought. Returns ------- int The index of the sought block. """ number = -1 for i in range(blocks.GetNumberOfBlocks()): if (blocks.GetMetaData(i).Get(vtk.vtkCompositeDataSet.NAME()) == name): number = i break if number == -1: raise NameError("No block named " + name + " found") return number
2.375
2
bootstrap.py
Borgotto/Parsecbot
2
12788154
import subprocess import sys def start(): # 0x78 == 01111000 == x, eXit return subprocess.call((sys.executable, "main.py")) == 0x78 if __name__ == "__main__": print("Executing Bot initialisation.") while True: # Start the bot print("Starting Bot;") code = start() if not code == 0x78: print(f'\nRe-executing Bot initialisation. Exit code {code}') continue else: # Exit if bot script returns special shutdown code 0x78 print(f'\nShutting down. Exit code {code}') break
2.859375
3
src/SimilarNeuron/exception.py
guanquanchen/similar-neuron
1
12788155
class SimilarNeuronException(Exception): def __init__(self, name: str, reason: str) -> None: self.name = name self.reason = reason def __str__(self) -> str: return f"{self.name}: {self.reason}" class AnnotationEmpty(SimilarNeuronException): def __init__( self, name: str = 'AnnotationEmpty', reason: str = 'The function signature has no comments.' ) -> None: super().__init__(name, reason) class TransformError(SimilarNeuronException): def __init__( self, name: str = 'TransformError', reason: str = 'Type conversion error, look up `transform` object.' ) -> None: super().__init__(name, reason) class SwitchEmptyError(SimilarNeuronException): def __init__( self, name: str = 'SwitchEmptyError', reason: str = 'This `Switch` object not in Agreement.' ) -> None: super().__init__(name, reason) class AssignmentError(SimilarNeuronException): def __init__( self, name: str = 'AssignmentError', reason: str = 'Relationship assignment error.' ) -> None: super().__init__(name, reason)
3.03125
3
View/GUI.py
esteban-mendoza/ProyectoFinal
0
12788156
from tkinter import * from tkinter import ttk from View.Datepicker import Datepicker from Controller.Controller import Controller from tkinter.filedialog import askopenfilename """ Autor: <NAME> (418002863) Email: <EMAIL> """ class GUI(ttk.Frame): fields_current_query = dict() def __init__(self, master): self.control = Controller() # Main frame super().__init__(master) super().grid(row=0, column=0, sticky=(N, W, E, S)) # Master settings master.title("Pólizas") master.columnconfigure(0, weight=1) master.rowconfigure(0, weight=1) # Notebook self.notebook = ttk.Notebook(self, padding=10) self.notebook.grid(row=0, column=0, sticky=(N, W, E, S)) # Consultas frame self.fr_consultas = ttk.Frame(self.notebook) self.notebook.add(self.fr_consultas, text="Consultas", padding=10) # Agregar registros / importar frame self.fr_agregar = ttk.Frame(self.notebook) self.notebook.add(self.fr_agregar, text="Agregar / Importar", padding=10) # Ayuda frame self.fr_ayuda = ttk.Frame(self.notebook) self.notebook.add(self.fr_ayuda, text="Ayuda", padding=10) # Cliente self.lf_cliente = ttk.Labelframe(self.fr_consultas, text="Cliente") self.lf_cliente.grid(row=0, column=0, rowspan=3, columnspan=6) self.val_id_cliente = BooleanVar() self.ch_id_cliente = ttk.Checkbutton(self.lf_cliente, variable=self.val_id_cliente) self.ch_id_cliente.grid(row=1, column=0) self.la_id_cliente = ttk.Label(self.lf_cliente, text="id_cliente") self.la_id_cliente.grid(row=1, column=1) self.id_cliente = StringVar() self.en_id_cliente = ttk.Entry(self.lf_cliente, textvariable=self.id_cliente) self.en_id_cliente.grid(row=1, column=2) self.val_nombre = BooleanVar() self.ch_nombre = ttk.Checkbutton(self.lf_cliente, variable=self.val_nombre) self.ch_nombre.grid(row=1, column=3) self.la_nombre = ttk.Label(self.lf_cliente, text="Nombre") self.la_nombre.grid(row=1, column=4) self.nombre = StringVar() self.en_nombre = ttk.Entry(self.lf_cliente, width=34, textvariable=self.nombre) self.en_nombre.grid(row=1, column=5) self.val_direccion = BooleanVar() self.ch_direccion = ttk.Checkbutton(self.lf_cliente, variable=self.val_direccion) self.ch_direccion.grid(row=2, column=0) self.la_direccion = ttk.Label(self.lf_cliente, text="Dirección") self.la_direccion.grid(row=2, column=1) self.direccion = StringVar() self.en_direccion = ttk.Entry(self.lf_cliente, width=72, textvariable=self.direccion) self.en_direccion.grid(row=2, column=2, columnspan=4) for child in self.lf_cliente.winfo_children(): child.grid_configure(padx=5, pady=5) # Factura self.lf_factura = ttk.LabelFrame(self.fr_consultas, text="Factura") self.lf_factura.grid(row=0, column=6, rowspan=3, columnspan=3) self.val_id_factura = BooleanVar() self.ch_id_factura = ttk.Checkbutton(self.lf_factura, variable=self.val_id_factura) self.ch_id_factura.grid(row=1, column=6) self.la_id_factura = ttk.Label(self.lf_factura, text="id_factura") self.la_id_factura.grid(row=1, column=7) self.id_factura = StringVar() self.en_id_factura = ttk.Entry(self.lf_factura, textvariable=self.id_factura) self.en_id_factura.grid(row=1, column=8) self.val_costo_vehiculo = BooleanVar() self.ch_costo_vehiculo = ttk.Checkbutton(self.lf_factura, variable=self.val_costo_vehiculo) self.ch_costo_vehiculo.grid(row=2, column=6) self.la_costo_vehiculo = ttk.Label(self.lf_factura, text="Costo del\nautomóvil") self.la_costo_vehiculo.grid(row=2, column=7) self.costo_vehiculo = StringVar() self.en_costo_vehiculo = ttk.Entry(self.lf_factura, textvariable=self.costo_vehiculo) self.en_costo_vehiculo.grid(row=2, column=8) for child in self.lf_factura.winfo_children(): child.grid_configure(padx=5, pady=5) # Vehículo self.lf_vehiculo = ttk.LabelFrame(self.fr_consultas, text="Vehículo") self.lf_vehiculo.grid(row=3, column=6, rowspan=4, columnspan=3) self.val_placas = BooleanVar() self.ch_placas = ttk.Checkbutton(self.lf_vehiculo, variable=self.val_placas) self.ch_placas.grid(row=4, column=0) self.la_placas = ttk.Label(self.lf_vehiculo, text="Placas") self.la_placas.grid(row=4, column=1) self.placas = StringVar() self.en_placas = ttk.Entry(self.lf_vehiculo, textvariable=self.placas) self.en_placas.grid(row=4, column=2) self.val_marca = BooleanVar() self.ch_marca = ttk.Checkbutton(self.lf_vehiculo, variable=self.val_marca) self.ch_marca.grid(row=5, column=0) self.la_marca = ttk.Label(self.lf_vehiculo, text="Marca") self.la_marca.grid(row=5, column=1) self.marca = StringVar() self.en_marca = ttk.Entry(self.lf_vehiculo, textvariable=self.marca) self.en_marca.grid(row=5, column=2) self.val_modelo = BooleanVar() self.ch_modelo = ttk.Checkbutton(self.lf_vehiculo, variable=self.val_modelo) self.ch_modelo.grid(row=6, column=0) self.la_modelo = ttk.Label(self.lf_vehiculo, text="Modelo") self.la_modelo.grid(row=6, column=1) self.modelo = StringVar() self.en_modelo = ttk.Entry(self.lf_vehiculo, textvariable=self.modelo) self.en_modelo.grid(row=6, column=2) for child in self.lf_vehiculo.winfo_children(): child.grid_configure(padx=5, pady=5) # Póliza self.lf_poliza = ttk.LabelFrame(self.fr_consultas, text="Póliza") self.lf_poliza.grid(row=3, column=0, rowspan=3, columnspan=6) self.val_costo_seguro = BooleanVar() self.ch_costo_seguro = ttk.Checkbutton(self.lf_poliza, variable=self.val_costo_seguro) self.ch_costo_seguro.grid(row=4, column=3) self.la_costo_seguro = ttk.Label(self.lf_poliza, text="Costo del\nseguro") self.la_costo_seguro.grid(row=4, column=4) self.costo_seguro = StringVar() self.en_costo_seguro = ttk.Entry(self.lf_poliza, textvariable=self.costo_seguro) self.en_costo_seguro.grid(row=4, column=5) self.val_prima_asegurada = BooleanVar() self.ch_prima_asegurada = ttk.Checkbutton(self.lf_poliza, variable=self.val_prima_asegurada) self.ch_prima_asegurada.grid(row=5, column=3) self.la_prima_asegurada = ttk.Label(self.lf_poliza, text="Prima asegurada") self.la_prima_asegurada.grid(row=5, column=4) self.prima_asegurada = StringVar() self.en_prima_asegurada = ttk.Entry(self.lf_poliza, textvariable=self.prima_asegurada) self.en_prima_asegurada.grid(row=5, column=5) self.val_fecha_apertura = BooleanVar() self.ch_fecha_apertura = ttk.Checkbutton(self.lf_poliza, variable=self.val_fecha_apertura) self.ch_fecha_apertura.grid(row=4, column=6) self.la_fecha_apertura = ttk.Label(self.lf_poliza, text="Fecha de\napertura") self.la_fecha_apertura.grid(row=4, column=7) self.fecha_apertura = StringVar() self.en_fecha_apertura = Datepicker(self.lf_poliza, datevar=self.fecha_apertura) self.en_fecha_apertura.grid(row=4, column=8) self.val_fecha_vencimiento = BooleanVar() self.ch_fecha_vencimiento = ttk.Checkbutton(self.lf_poliza, variable=self.val_fecha_vencimiento) self.ch_fecha_vencimiento.grid(row=5, column=6) self.la_fecha_vencimiento = ttk.Label(self.lf_poliza, text="Fecha de\nvencimiento") self.la_fecha_vencimiento.grid(row=5, column=7) self.fecha_vencimiento = StringVar() self.en_fecha_vencimiento = Datepicker(self.lf_poliza, datevar=self.fecha_vencimiento) self.en_fecha_vencimiento.grid(row=5, column=8) for child in self.lf_poliza.winfo_children(): child.grid_configure(padx=5, pady=5) # Table self.fr_tabla = ttk.Frame(self.fr_consultas, width=900, height=180) self.fr_tabla.grid(row=7, column=0, rowspan=8, columnspan=10) self.fr_tabla.grid_propagate(0) self.tabla = ttk.Treeview(self.fr_tabla, height=12, selectmode=BROWSE) self.tabla.grid(row=7, column=0, sticky=N+S+W+E) self.tabla.bind("<<TreeviewSelect>>", self.populate_fields) # Scroll bars self.vscroll = ttk.Scrollbar(self.fr_tabla, orient=VERTICAL) self.vscroll.grid(row=7, column=9, rowspan=7, sticky=W+N+S) self.hscroll = ttk.Scrollbar(self.fr_tabla, orient=HORIZONTAL) self.hscroll.grid(row=14, column=0, columnspan=9, sticky=W+E+N) # Scroll bars binding self.vscroll.configure(command=self.tabla.yview) self.hscroll.configure(command=self.tabla.xview) self.tabla.configure(yscrollcommand=self.vscroll.set) self.tabla.configure(xscrollcommand=self.hscroll.set) # Buttons self.bo_mostrar = ttk.Button(self.fr_consultas, text="Mostrar todo", width=16, command=self.show_all) self.bo_mostrar.grid(row=1, column=9, sticky=W) self.bo_limpiar = ttk.Button(self.fr_consultas, text="Limpiar campos", width=16, command=self.limpiar_campos) self.bo_limpiar.grid(row=2, column=9, sticky=W) self.bo_buscar = ttk.Button(self.fr_consultas, text="Buscar", width=16) self.bo_buscar.grid(row=3, column=9, sticky=W) self.bo_actualizar = ttk.Button(self.fr_consultas, text="Actualizar", width=16) self.bo_actualizar.grid(row=4, column=9, sticky=W) self.bo_eliminar = ttk.Button(self.fr_consultas, text="Eliminar", width=16) self.bo_eliminar.grid(row=5, column=9, sticky=W) # Padding of elements in consultas frame for child in self.fr_consultas.winfo_children(): child.grid_configure(padx=5, pady=5) # Ayuda frame widgets self.la_ayuda = ttk.Label(self.fr_ayuda, text="Licenciatura en Matemáticas Aplicadas\n\n" "Proyecto final para la materia de Manejo de Datos.\n" "Profesor: <NAME>\n\n" "Autor: <NAME> (418002863)\n") self.la_ayuda.grid(row=0, column=0) # Padding of elements in ayuda frame for child in self.fr_ayuda.winfo_children(): child.grid_configure(padx=5, pady=5) # Agregar / importar frame widgets self.la_instruccion = ttk.Label(self.fr_agregar, text="NOTA: \n" "Los campos marcados con * no pueden estar vacíos.\n" "Los campos marcados con + pueden dejarse en blanco y se generan " "automáticamente.") self.la_instruccion.grid(row=0, column=0, pady=20) self.lf_ag_cliente = ttk.Labelframe(self.fr_agregar, text="Cliente") self.lf_ag_cliente.grid(row=4, column=0, rowspan=3, columnspan=8, sticky=(E, W)) self.la_ag_id_cliente = ttk.Label(self.lf_ag_cliente, text="id_cliente+") self.la_ag_id_cliente.grid(row=1, column=1) self.ag_id_cliente = StringVar() self.en_ag_id_cliente = ttk.Entry(self.lf_ag_cliente, textvariable=self.ag_id_cliente) self.en_ag_id_cliente.grid(row=1, column=2) self.la_ag_nombre = ttk.Label(self.lf_ag_cliente, text="Nombre") self.la_ag_nombre.grid(row=1, column=4) self.ag_nombre = StringVar() self.en_ag_nombre = ttk.Entry(self.lf_ag_cliente, width=35, textvariable=self.ag_nombre) self.en_ag_nombre.grid(row=1, column=5) self.la_ag_direccion = ttk.Label(self.lf_ag_cliente, text="Dirección") self.la_ag_direccion.grid(row=2, column=1) self.ag_direccion = StringVar() self.en_ag_direccion = ttk.Entry(self.lf_ag_cliente, width=68, textvariable=self.ag_direccion) self.en_ag_direccion.grid(row=2, column=2, columnspan=4) self.bo_ag_cliente = ttk.Button(self.lf_ag_cliente, width=18, text="Agregar cliente", command=self.insert_cliente) self.bo_ag_cliente.grid(row=1, column=6) self.bo_importar_clientes = ttk.Button(self.lf_ag_cliente, width=18, text="Importar clientes", command=self.importar_clientes) self.bo_importar_clientes.grid(row=2, column=6) for child in self.lf_ag_cliente.winfo_children(): child.grid_configure(padx=5, pady=5) self.lf_ag_vehiculo = ttk.Labelframe(self.fr_agregar, text="Vehículo") self.lf_ag_vehiculo.grid(row=7, column=0, rowspan=3, columnspan=8, sticky=(E, W)) self.la_ag_placas = ttk.Label(self.lf_ag_vehiculo, text="Placas*") self.la_ag_placas.grid(row=1, column=1) self.ag_placas = StringVar() self.en_ag_placas = ttk.Entry(self.lf_ag_vehiculo, textvariable=self.ag_placas) self.en_ag_placas.grid(row=1, column=2) # self.la_ag_id_factura = ttk.Label(self.lf_ag_vehiculo, text="id_factura") # self.la_ag_id_factura.grid(row=2, column=1) # # self.ag_id_factura = StringVar() # self.en_ag_id_factura = ttk.Entry(self.lf_ag_vehiculo, textvariable=self.ag_id_factura) # self.en_ag_id_factura.grid(row=2, column=2) self.la_ag_marca = ttk.Label(self.lf_ag_vehiculo, text="Marca") self.la_ag_marca.grid(row=1, column=3) self.ag_marca = StringVar() self.en_ag_marca = ttk.Entry(self.lf_ag_vehiculo, textvariable=self.ag_marca) self.en_ag_marca.grid(row=1, column=4) self.la_ag_modelo = ttk.Label(self.lf_ag_vehiculo, text="Modelo") self.la_ag_modelo.grid(row=2, column=3) self.ag_modelo = StringVar() self.en_ag_modelo = ttk.Entry(self.lf_ag_vehiculo, textvariable=self.ag_modelo) self.en_ag_modelo.grid(row=2, column=4) self.bo_ag_vehiculo = ttk.Button(self.lf_ag_vehiculo, width=18, text="Agregar vehículo", command=self.insert_vehiculo) self.bo_ag_vehiculo.grid(row=1, column=6) self.bo_importar_vehiculo = ttk.Button(self.lf_ag_vehiculo, width=18, text="Importar vehículos") self.bo_importar_vehiculo.grid(row=2, column=6) for child in self.lf_ag_vehiculo.winfo_children(): child.grid_configure(padx=5, pady=5) self.lf_ag_factura = ttk.Labelframe(self.fr_agregar, text="Factura") self.lf_ag_factura.grid(row=10, column=0, rowspan=3, columnspan=8, sticky=(E, W)) self.la_ag_id_factura2 = ttk.Label(self.lf_ag_factura, text="id_factura+") self.la_ag_id_factura2.grid(row=1, column=1) self.ag_id_factura2 = StringVar() self.en_ag_id_factura2 = ttk.Entry(self.lf_ag_factura, textvariable=self.ag_id_factura2) self.en_ag_id_factura2.grid(row=1, column=2) self.la_ag_placas2 = ttk.Label(self.lf_ag_factura, text="Placas*") self.la_ag_placas2.grid(row=2, column=1) self.ag_placas2 = StringVar() self.en_ag_placas2 = ttk.Entry(self.lf_ag_factura, textvariable=self.ag_placas2) self.en_ag_placas2.grid(row=2, column=2) self.la_ag_costo = ttk.Label(self.lf_ag_factura, text="Costo del vehículo*") self.la_ag_costo.grid(row=1, column=3) self.ag_costo = StringVar() self.en_ag_costo = ttk.Entry(self.lf_ag_factura, textvariable=self.ag_costo) self.en_ag_costo.grid(row=1, column=4) self.bo_ag_factura = ttk.Button(self.lf_ag_factura, width=18, text="Agregar factura", command=self.insert_factura) self.bo_ag_factura.grid(row=1, column=5) self.bo_importar_facturas = ttk.Button(self.lf_ag_factura, width=18, text="Importar facturas") self.bo_importar_facturas.grid(row=2, column=5) for child in self.lf_ag_factura.winfo_children(): child.grid_configure(padx=5, pady=5) self.lf_ag_poliza = ttk.Labelframe(self.fr_agregar, text="Póliza") self.lf_ag_poliza.grid(row=1, column=0, rowspan=3, columnspan=8, sticky=(E, W)) self.la_ag_id_cliente2 = ttk.Label(self.lf_ag_poliza, text="id_cliente*") self.la_ag_id_cliente2.grid(row=1, column=1) self.ag_id_cliente2 = StringVar() self.en_ag_id_cliente2 = ttk.Entry(self.lf_ag_poliza, textvariable=self.ag_id_cliente2) self.en_ag_id_cliente2.grid(row=1, column=2) self.la_ag_id_factura3 = ttk.Label(self.lf_ag_poliza, text="id_factura*") self.la_ag_id_factura3.grid(row=2, column=1) self.ag_id_factura3 = StringVar() self.en_ag_id_factura3 = ttk.Entry(self.lf_ag_poliza, textvariable=self.ag_id_factura3) self.en_ag_id_factura3.grid(row=2, column=2) self.la_ag_costo_seguro = ttk.Label(self.lf_ag_poliza, text="Costo del seguro+") self.la_ag_costo_seguro.grid(row=1, column=3) self.ag_costo_seguro = StringVar() self.en_ag_costo_seguro = ttk.Entry(self.lf_ag_poliza, textvariable=self.ag_costo_seguro) self.en_ag_costo_seguro.grid(row=1, column=4) self.la_ag_prima = ttk.Label(self.lf_ag_poliza, text="Prima asegurada+") self.la_ag_prima.grid(row=2, column=3) self.ag_prima = StringVar() self.en_ag_prima = ttk.Entry(self.lf_ag_poliza, textvariable=self.ag_prima) self.en_ag_prima.grid(row=2, column=4) self.la_ag_apertura = ttk.Label(self.lf_ag_poliza, text="Fecha de apertura+") self.la_ag_apertura.grid(row=1, column=5) self.ag_apertura = StringVar() self.en_ag_apertura = Datepicker(self.lf_ag_poliza, datevar=self.ag_apertura) self.en_ag_apertura.grid(row=1, column=6) self.la_ag_vencimiento = ttk.Label(self.lf_ag_poliza, text="Fecha de vencimiento+") self.la_ag_vencimiento.grid(row=2, column=5) self.ag_vencimiento = StringVar() self.en_ag_vencimiento = Datepicker(self.lf_ag_poliza, datevar=self.ag_vencimiento) self.en_ag_vencimiento .grid(row=2, column=6) self.bo_gen_poliza = ttk.Button(self.lf_ag_poliza, width=18, text="Generar póliza", command=self.gen_poliza) self.bo_gen_poliza.grid(row=1, column=7) for child in self.lf_ag_poliza.winfo_children(): child.grid_configure(padx=5, pady=5) # Padding of elements in agregar / importar frame for child in self.fr_agregar.winfo_children(): child.grid_configure(padx=5, pady=5) def insert_cliente(self): data = dict() if self.ag_id_cliente.get(): data['id_cliente'] = int(self.ag_id_cliente.get()) if self.ag_nombre.get(): data['nombre'] = self.ag_nombre.get() if self.ag_direccion.get(): data['direccion'] = self.ag_direccion.get() self.control.insert_cliente(**data) self.show_new_cliente(**data) def show_new_cliente(self, **data): new_cliente = self.control.last_cliente(**data) self.ag_id_cliente.set(new_cliente['id_cliente']) self.ag_nombre.set(new_cliente['nombre']) self.ag_direccion.set(new_cliente['direccion']) def insert_vehiculo(self): data = dict() if self.ag_placas.get(): data['placas'] = self.ag_placas.get() # if self.ag_id_factura.get(): # data['id_factura'] = int(self.ag_id_factura.get()) if self.ag_marca.get(): data['marca'] = self.ag_marca.get() if self.ag_modelo.get(): data['modelo'] = self.ag_modelo.get() self.control.insert_vehiculo(**data) self.show_new_vehiculo(**data) def show_new_vehiculo(self, **data): new_vehiculo = self.control.last_vehiculo(**data) self.ag_placas.set(new_vehiculo['placas']) self.ag_marca.set(new_vehiculo['marca']) self.ag_modelo.set(new_vehiculo['modelo']) def insert_factura(self): data = dict() if self.ag_id_factura2.get(): data['id_factura'] = int(self.ag_id_factura2.get()) if self.ag_placas2.get(): data['placas'] = self.ag_placas2.get() if self.ag_costo.get(): data['costo_vehiculo'] = float(self.ag_costo.get()) self.control.insert_factura(**data) self.show_new_factura(**data) def show_new_factura(self, **data): new_factura = self.control.last_factura(**data) self.ag_id_factura2.set(new_factura['id_factura']) self.ag_placas2.set(new_factura['placas']) self.ag_costo.set(new_factura['costo_vehiculo']) def gen_poliza(self): data = dict() if self.ag_id_cliente2.get(): data['id_cliente'] = int(self.ag_id_cliente2.get()) if self.ag_id_factura3.get(): data['id_factura'] = int(self.ag_id_factura3.get()) if self.ag_prima.get(): data['prima_asegurada'] = float(self.ag_prima.get()) if self.ag_costo_seguro.get(): data['costo_seguro'] = float(self.ag_costo_seguro.get()) if self.ag_apertura.get(): data['fecha_apertura'] = self.ag_apertura.get() if self.ag_vencimiento.get(): data['fecha_vencimiento'] = self.ag_vencimiento.get() self.control.gen_poliza(**data) self.show_new_poliza(**data) def show_new_poliza(self, **data): new_poliza = self.control.last_poliza(**data) self.ag_id_cliente2.set(new_poliza['id_cliente']) self.ag_id_factura3.set(new_poliza['id_factura']) self.ag_prima.set(new_poliza['prima_asegurada']) self.ag_costo_seguro.set(new_poliza['costo_seguro']) self.ag_apertura.set(new_poliza['fecha_apertura']) self.ag_vencimiento.set(new_poliza['fecha_vencimiento']) def importar_clientes(self): path = askopenfilename() self.control.insert_clientes(path) def importar_vehiculos(self): path = askopenfilename() self.control.insert_vehiculos(path) def importar_facturas(self): path = askopenfilename() self.control.insert_facturas(path) def get_active_fields(self): active_fields = dict() active_fields["id_cliente"] = self.val_id_cliente.get() active_fields["nombre"] = self.val_nombre.get() active_fields["direccion"] = self.val_direccion.get() active_fields["placas"] = self.val_placas.get() active_fields["marca"] = self.val_marca.get() active_fields["modelo"] = self.val_modelo.get() active_fields["id_factura"] = self.val_id_factura.get() active_fields["costo_vehiculo"] = self.val_costo_vehiculo.get() active_fields["prima_asegurada"] = self.val_prima_asegurada.get() active_fields["costo_seguro"] = self.val_costo_seguro.get() active_fields["fecha_apertura"] = self.val_fecha_apertura.get() active_fields["fecha_vencimiento"] = self.val_fecha_vencimiento.get() return active_fields def show_all(self): self.clear_results() # Set columnas all_fields = { # Clientes "id_cliente": True, "nombre": True, "direccion": True, # Facturas "id_factura": True, "costo_vehiculo": True, # Pólizas "costo_seguro": True, "prima_asegurada": True, "fecha_apertura": True, "fecha_vencimiento": True, # Vehículos "placas": True, "marca": True, "modelo": True } self.set_columnas(all_fields) self.fields_current_query = all_fields # Query rows = self.control.query_all(all_fields) # Agregar filas for i, row in enumerate(rows): self.tabla.insert("", END, text=str(i+1), values=row) def set_columnas(self, fields): # Set columns self.tabla.configure(columns=tuple(fields)) for column in fields.keys(): self.tabla.column(column, width=15) # Set headings self.tabla.heading("#0", text="No.") if fields.get("id_cliente", False): self.tabla.heading("id_cliente", text="id_cliente") if fields.get("nombre", False): self.tabla.heading("nombre", text="Nombre") if fields.get("direccion", False): self.tabla.heading("direccion", text="Dirección") if fields.get("placas", False): self.tabla.heading("placas", text="Placas") if fields.get("modelo", False): self.tabla.heading("modelo", text="Modelo") if fields.get("marca", False): self.tabla.heading("marca", text="Marca") if fields.get("id_factura", False): self.tabla.heading("id_factura", text="id_factura") if fields.get("costo_vehiculo", False): self.tabla.heading("costo_vehiculo", text="Costo del vehículo") if fields.get("prima_asegurada", False): self.tabla.heading("prima_asegurada", text="Prima asegurada") if fields.get("costo_seguro", False): self.tabla.heading("costo_seguro", text="Costo del seguro") if fields.get("fecha_apertura", False): self.tabla.heading("fecha_apertura", text="Fecha de apertura") if fields.get("fecha_vencimiento", False): self.tabla.heading("fecha_vencimiento", text="Fecha de vencimiento") def clear_results(self): for child in self.tabla.get_children(): self.tabla.delete(child) def limpiar_campos(self): # Limpiar cliente self.val_id_cliente.set(False) self.id_cliente.set("") self.val_nombre.set(False) self.nombre.set("") self.val_direccion.set(False) self.direccion.set("") # Limpiar vehiculo self.val_placas.set(False) self.placas.set("") self.val_marca.set(False) self.marca.set("") self.val_modelo.set(False) self.modelo.set("") # Limpiar factura self.val_id_factura.set(False) self.id_factura.set("") self.val_costo_vehiculo.set(False) self.costo_vehiculo.set("") # Limpiar póliza self.val_costo_seguro.set(False) self.costo_seguro.set("") self.val_prima_asegurada.set(False) self.prima_asegurada.set("") self.val_fecha_apertura.set(False) self.fecha_apertura.set("") self.val_fecha_vencimiento.set(False) self.fecha_vencimiento.set("") def populate_fields(self, event): row_id = self.tabla.selection()[0] if self.fields_current_query["id_cliente"]: self.id_cliente.set(str(self.tabla.set(row_id, "id_cliente"))) if self.fields_current_query["nombre"]: self.nombre.set(str(self.tabla.set(row_id, "nombre"))) if self.fields_current_query["direccion"]: self.direccion.set(str(self.tabla.set(row_id, "direccion"))) if self.fields_current_query["placas"]: self.placas.set(str(self.tabla.set(row_id, "placas"))) if self.fields_current_query["marca"]: self.marca.set(str(self.tabla.set(row_id, "marca"))) if self.fields_current_query["modelo"]: self.modelo.set(str(self.tabla.set(row_id, "modelo"))) if self.fields_current_query["id_factura"]: self.id_factura.set(str(self.tabla.set(row_id, "id_factura"))) if self.fields_current_query["costo_vehiculo"]: self.costo_vehiculo.set(str(self.tabla.set(row_id, "costo_vehiculo"))) if self.fields_current_query["prima_asegurada"]: self.prima_asegurada.set(str(self.tabla.set(row_id, "prima_asegurada"))) if self.fields_current_query["costo_seguro"]: self.costo_seguro.set(str(self.tabla.set(row_id, "costo_seguro"))) if self.fields_current_query["fecha_apertura"]: self.fecha_apertura.set(str(self.tabla.set(row_id, "fecha_apertura"))) if self.fields_current_query["fecha_vencimiento"]: self.fecha_vencimiento.set(str(self.tabla.set(row_id, "fecha_vencimiento"))) if __name__ == '__main__': root = Tk() GUI(root) root.mainloop()
2.9375
3
454 4Sum II.py
krishna13052001/LeetCode
872
12788157
#!/usr/bin/python3 """ Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l) there are such that A[i] + B[j] + C[k] + D[l] is zero. To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -2^28 to 2^28 - 1 and the result is guaranteed to be at most 2^31 - 1. Example: Input: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] Output: 2 Explanation: The two tuples are: 1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0 2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0 """ from collections import defaultdict class Solution: def fourSumCount(self, A, B, C, D): """ Brute force with map: O(N^3) O(N^3) is pretty large, O(N^2) or O(N log N)? O(N^2) to sum cartesian product (A, B) to construct index similar to C, D. Then index loop up :type A: List[int] :type B: List[int] :type C: List[int] :type D: List[int] :rtype: int """ N = len(A) AB = defaultdict(int) CD = defaultdict(int) for i in range(N): for j in range(N): AB[A[i] + B[j]] += 1 CD[C[i] + D[j]] += 1 ret = 0 # O(N^2) for gross, count in AB.items(): target = 0 - gross ret += count * CD[target] return ret if __name__ == "__main__": A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] assert Solution().fourSumCount(A, B, C, D) == 2
3.140625
3
MoviesForm/moviesapp/views.py
KiralyTamas/Django
0
12788158
from django.shortcuts import render from moviesapp.models import Movies from moviesapp.forms import MoviesForm def index(request): return render(request, 'moviesapp/index.html') def moviesList(request): moviesList=Movies.objects.all() movies_dict={'movies':moviesList} return render(request, 'moviesapp/moviesList.html',movies_dict) def addMovies(request): success=str("Successfuly Movie Registration") moviesForm=MoviesForm() movies_dict={'movies':moviesForm} if request.method=='POST': moviesForm=MoviesForm(request.POST) movies_dict={'movies':moviesForm,'success':success} if moviesForm.is_valid(): moviesForm.save() return render(request, 'moviesapp/addMovies.html',movies_dict) return render(request, 'moviesapp/addMovies.html',movies_dict)
2.171875
2
scripts/hello_kitty.py
zodiacfireworks/introduction-to-programming-in-python
0
12788159
<reponame>zodiacfireworks/introduction-to-programming-in-python # -*- encoding: utf-8 -*- print("hello kitty!")
2.109375
2
src/animo.py
MimansaSharma15/Animo
2
12788160
import streamlit as st from help import health_analysis from load_chatmodel import load from data import main_data from get_medical import get_links import torch from tensorflow.keras.preprocessing.sequence import pad_sequences encoder_net, decoder_net = load() data = main_data() max, vocab_enc, vocab_dec = data.len_all() tok_enc = data.tok_enc tok_dec = data.tok_dec st.title("Animo") st.write("A Guide To Mental Heath") html_temp1 = """ <div style="background-color:#000000 ;padding:10px; background:rgba(255,255,255,0.2); box-shadow: 0 5px 15px rgba(0,0,0,0.5)"> <h2 style="color:black;text-align:center;font-family: "Lucida Console", Courier, monospace;">“Anything that’s human is mentionable, and anything that is mentionable can be more manageable. When we can talk about our feelings, they become less overwhelming, less upsetting, and less scary.” <NAME></h2> </div>""" st.markdown(html_temp1, unsafe_allow_html=True) st.write("") html_temp2 = """ <div style="background-color:#000000 ;padding:10px; background:rgba(255,255,255,0.2); box-shadow: 0 5px 15px rgba(0,0,0,0.5)"> <h2 style="color:black;text-align:center;font-family: "Lucida Console", Courier, monospace;">Animo is the latin translation of mind and noticing the sync where mental health is the well being of one's mind .We bring you a one stop guide to answer all your questions regarding mental health. We aim to provide and connect every individual with the vast expanse of mental health .Enter your queries in the space provided below and we'll be there at your service!!</h2> </div>""" st.markdown(html_temp2, unsafe_allow_html=True) page_bg_img = ''' <style> body { background-image: url("https://www.homemaidsimple.com/wp-content/uploads/2018/04/Mental-health-stigma-1.jpg"); background-size: cover; height: 100vh; background-position: center; } </style> ''' st.markdown(page_bg_img, unsafe_allow_html=True) html_temp3 = """ <div style="background-color:#000000 ;padding:10px; background:rgba(255,255,255,0.2); box-shadow: 0 5px 15px rgba(0,0,0,0.5) "> <h2 style="color:black;text-align:center;font-family: "Lucida Console", Courier, monospace;">Let's Talk</h2> </div>""" st.markdown(html_temp3, unsafe_allow_html=True) st.write("") st.write("Ask as many questions as you want and without the fear of judgement. We are hear for you clear any doubts you have about your health.") st.write("Note: Enter your question in brief!!") st.write("") question = st.text_input("Question") if question: question = tok_enc.texts_to_sequences(question) seq = torch.tensor(pad_sequences(question, padding='pre',maxlen=100), dtype=torch.long) with torch.no_grad(): hidden, cell = encoder_net(seq) outputs = [1] for _ in range(100): previous_word = torch.LongTensor([outputs[-1]]).to("cpu") with torch.no_grad(): output, hidden, cell = decoder_net(previous_word, hidden, cell) best_guess = output.argmax(1).item() outputs.append(best_guess) # Model predicts it's the end of the sentence if output.argmax(1).item() == 2: break if question: question = question.lower() sent = [question] health_model = health_analysis(sent) if health_model.recommend(): html_temp4 = """ <div style="background-color:#000000 ;padding:10px; background:rgba(255,255,255,0.2); box-shadow: 0 5px 15px rgba(0,0,0,0.5)"> <h2 style="color:black;text-align:center;font-family: "Lucida Console", Courier, monospace;">From our conversation we would like to recommend for you whats best for your health. We also provide a service which recommends trained mental health experts,counsellors and psychiatrists in your area.") </h2> </div>""" st.markdown(html_temp4, unsafe_allow_html=True) html_temp5 = """ <div style="background-color:#000000 ;padding:10px; background:rgba(255,255,255,0.2); box-shadow: 0 5px 15px rgba(0,0,0,0.5)"> <h2 style="color:black;text-align:center;font-family: "Lucida Console", Courier, monospace;">Please enter your pincode in the box below!!</h2> </div>""" st.markdown(html_temp5, unsafe_allow_html=True) pin = st.text_input("Pin") st.write("""Mental Health : is a loaded term. It can trigger a dizzying array of reactions when we hear it. In a country like India where Mental health is probably the next pandemic but the awareness is still very low. Our main objective is to educate the population still oblivious to the issues regarding mental health.""") if pin: for i in get_links(pin): st.write(i)
3.046875
3
tests/test_log.py
InfluxGraph/influxgraph
97
12788161
import uuid import unittest import influxgraph from influxdb import InfluxDBClient class InfluxGraphLogFileTestCase(unittest.TestCase): def setUp(self): self.db_name = 'fakey' self.client = InfluxDBClient(database=self.db_name) self.client.create_database(self.db_name) _logger = influxgraph.classes.finder.logger _logger.handlers = [] def tearDown(self): self.client.drop_database(self.db_name) def test_create_log_file_should_succeed(self): config = { 'influxdb' : { 'host' : 'localhost', 'port' : 8086, 'user' : 'root', 'pass' : '<PASSWORD>', 'db' : self.db_name, 'log_file' : '/tmp/fakey', 'log_level' : 'debug', }, } finder = influxgraph.InfluxDBFinder(config) self.assertTrue(finder) def test_create_root_log_file_should_fail(self): _config = { 'influxdb' : { 'host' : 'localhost', 'port' : 8086, 'user' : 'root', 'pass' : '<PASSWORD>', 'db' : self.db_name, 'log_file' : '/' + str(uuid.uuid4()), 'log_level' : 'debug', }, } finder = influxgraph.InfluxDBFinder(_config) self.assertTrue(finder) if __name__ == '__main__': unittest.main()
2.546875
3
memory.py
hiroki-kyoto/memory-association-recognition
0
12788162
# read_dataset.py # Author : Hiroki # Modified: 2018-1-10 import cPickle import matplotlib.pyplot as pl import numpy as np def unpickle(file): with open(file, 'rb') as fo: dict = cPickle.load(fo) return dict def load_dataset(): data = unpickle('cifar-10/data_batch_1') images = [data['data'][i].reshape(3, 32, 32) for i in range(data['data'].shape[0])] pl.figure(figsize=[1.0, 1.0]) pl.imshow(np.transpose(images[5], [1, 2, 0])) pl.show() return images ######## can we build a network to detect if the pixel belongs ######## to a edge according to its neighbors # Each of the pixel in the RGB image will be turned into # a vector of Edge-element{boolean: True means edge otherwise # in-area pixel}: class SparseMatrix(object): '''SparseMatrix: A vector of elements (v,[i,j,...]) in which {v} is required to be nonzero and {[i,j,...]} is the coordination of this element in matrix. ''' def __init__(self, elements=None, coords=None, dims=None): if elements!=None: assert type(elements)==np.ndarray self.elements = elements.astype(np.float32) if coords!=None: assert type(coords)==np.ndarray self.coords = coords.astype(np.int32) if dims!=None: self.dims = dims def __from_dense_matrix__(self, dense_matrix): '''dense_matrix required to be a numpy array''' assert (type(dense_matrix) == np.ndarray) self.elements = [] self.coords = [] # One dimension vector if len(dense_matrix.shape)==1: for i in range(dense_matrix.shape[0]): if dense_matrix[i]: self.elements.append(dense_matrix[i]) self.coords.append(i) self.elements = np.array(self.elements) self.coords = np.array(self.coords) self.dims = dense_matrix.shape elif len(dense_matrix.shape)==2: for i in range(dense_matrix.shape[0]): for j in range(dense_matrix.shape[1]): if dense_matrix[i,j]: self.elements.append(dense_matrix[i,j]) self.coords.append([i,j]) self.elements = np.array(self.elements) self.coords = np.array(self.coords) self.dims = dense_matrix.shape elif len(dense_matrix.shape)==3: for i in range(dense_matrix.shape[0]): for j in range(dense_matrix.shape[1]): for k in range(dense_matrix.shape[2]): if dense_matrix[i,j,k]: self.elements.append(dense_matrix[i,j,k]) self.coords.append([i,j,k]) self.elements = np.array(self.elements) self.coords = np.array(self.coords) self.dims = dense_matrix.shape else: raise ValueError("Matrix to convert is not supported!") def __multiply__(self, sparse_matrix): assert type(sparse_matrix)==SparseMatrix if len(sparse_matrix.dims)==1: if sparse_matrix.dims[0]==1: self.elements *= sparse_matrix.elements[0] elif ... def conv(x, w): '''Conv: A plain convolution operation input [x] should be sparse matrix. param [w] is a kernel ''' def Test_Class_SparseMatrix(): sm = SparseMatrix() x = np.random.uniform(0,1,[32,32]) x[x < 0.99] = 0 sm.__from_dense_matrix__(x) print(sm.elements) print(sm.coords) def main(): print('============================') Test_Class_SparseMatrix() if __name__ == '__main__': main()
3.015625
3
lightning/admin.py
git-men/bsm-django
90
12788163
from api_basebone.core.admin import BSMAdmin Admin = BSMAdmin
1.125
1
realtime_csv_to_graph_and_limit_check.py
contengee/realtime_csv_to_graph_and_limit_check
1
12788164
<gh_stars>1-10 import pandas as pd import matplotlib.pyplot as plt from pathlib import Path import datetime as dt import tkinter as tk from tkinter import messagebox import tkinter.simpledialog as simpledialog MAX_SET_NUM = 10000 LIMIT_SET_NUM = MAX_SET_NUM * 0.9 UPDATE_TIME = 5 def readyCsv(): server_path = Path(str(Path.home()) + r"\Desktop") date = dt.datetime.today().strftime("%Y%m%d") csv_list = list(server_path.glob("aaa_"+ date + ".csv")) df = pd.read_csv(csv_list.pop(), index_col=0) df = df.loc[:, ['SET']] df.index = pd.to_datetime(df.index, format='%Y%m%d_%H:%M:%S') return df def makeFigure(df): fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111) ax.grid() ax.axhline(LIMIT_SET_NUM, ls='dashed', color = "red") tday = dt.date.today().strftime('%Y-%m-%d') sxmin = tday + ' 00:00' sxmax = tday + ' 23:59' xmin = dt.datetime.strptime(sxmin, '%Y-%m-%d %H:%M') xmax = dt.datetime.strptime(sxmax, '%Y-%m-%d %H:%M') plt.xlim([xmin,xmax]) plt.ylim([0,MAX_SET_NUM]) plt.xticks(rotation=45) plt.title("Realtime limit check SET_number") # plt.legend('SET',bbox_to_anchor=(1, 0), loc='lower right', borderaxespad=1, fontsize=10) plt.plot(df,"b") # plt.plot(df.index,df.loc[:,'SET'],"b", label="SET") def upper_limit_check_setnum(now_set_number): if now_set_number > LIMIT_SET_NUM: root = tk.Tk() root.withdraw() res = messagebox.showwarning("alert", "SET number is over 90%") print("showwarning", res) return True return False if __name__ == '__main__': limit_check_flg = False df = readyCsv() makeFigure(df) while True: df = readyCsv() if limit_check_flg == False: now_set_number = df.iloc[-1]['SET'] limit_check_flg = upper_limit_check_setnum(now_set_number) # plt.plot(df.index,df.loc[:,'SET'],"b", label="SET") plt.plot(df,"b") plt.pause(UPDATE_TIME)
2.609375
3
categories/customcommand.py
MikeJollie2707/MichaelBot
0
12788165
import discord from discord.ext import commands import datetime as dt import utilities.db as DB import utilities.facility as Facility from bot import MichaelBot class CustomCommand(commands.Cog, name = "Custom Commands", command_attrs = {"cooldown_after_parsing": True}): """Commands that support adding custom commands.""" def __init__(self, bot): self.bot : MichaelBot = bot self.emoji = '✨' self.__flags__ = [ "--description", "--message", "--channel", "--reply", "--addroles", "--rmvroles" ] @commands.Cog.listener("on_message") async def _message(self, message : discord.Message): # This is kind of oofy, but whatever conditions within `events.py`, you'll need to filter them out here. if message.author == self.bot.user or isinstance(message.channel, discord.DMChannel): return guild_prefix = self.bot._prefixes[message.guild.id] if self.bot.user.id != 649822097492803584 else '!' if message.content.startswith(guild_prefix): import utilities.db as DB async with self.bot.pool.acquire() as conn: # The message have the format of <prefix>command some_random_bs # To get the command, split the content, and get the first, which will be # <prefix>command only. # To remove prefix, trim the string view based on the length of prefix. existed = await DB.CustomCommand.get_command(conn, message.guild.id, message.content.split()[0][len(guild_prefix):]) if existed is not None: if existed["channel"] is not None: channel = message.guild.get_channel(existed["channel"]) else: channel = message.channel # Can only reply to the same channel reference = None if existed["is_reply"] and existed["channel"] == message.channel.id: reference = message else: reference = None try: await channel.send(existed["message"], reference = reference) except discord.Forbidden: # For now, we're just silently ignore this. # Might change to raising a command error though. pass if len(existed["addroles"]) > 0: addroles_list = [message.guild.get_role(role) for role in existed["addroles"]] try: await message.author.add_roles(*addroles_list) except discord.Forbidden: await channel.send("Failed to add roles.") if len(existed["rmvroles"]) > 0: rmvroles_list = [message.guild.get_role(role) for role in existed["rmvroles"]] try: await message.author.remove_roles(*rmvroles_list) except discord.Forbidden: await channel.send("Failed to remove roles.") @commands.group(aliases = ['ccmd', 'customcmd'], invoke_without_command = True) @commands.cooldown(rate = 1, per = 5.0, type = commands.BucketType.guild) @commands.bot_has_permissions(add_reactions = True, read_message_history = True, send_messages = True) async def ccommand(self, ctx): ''' View custom commands for this guild. **Usage:** {usage} **Cooldown:** 5 seconds per 1 use (guild) **Example:** {prefix}{command_name} **You need:** None. **I need:** `Add Reactions`, `Read Message History`, `Send Messages`. ''' async with self.bot.pool.acquire() as conn: custom_commands = await DB.CustomCommand.get_commands(conn, ctx.guild.id) if custom_commands == [None] * len(custom_commands): return await ctx.reply("*Cricket noises*", mention_author = False) from templates.navigate import listpage_generator def title_formatter(command): embed = Facility.get_default_embed( title = "Custom Commands", timestamp = dt.datetime.utcnow() ).set_author( name = ctx.guild.name, icon_url = ctx.guild.icon_url ) return embed def item_formatter(embed, command): embed.add_field( name = command["name"], value = f"*{command['description']}*" if command["description"] != "" else "*None*", inline = False ) page = listpage_generator(3, custom_commands, title_formatter, item_formatter) await page.start(ctx) @ccommand.command() @commands.cooldown(rate = 1, per = 5.0, type = commands.BucketType.guild) @commands.has_guild_permissions(manage_guild = True) @commands.bot_has_permissions(read_message_history = True, send_messages = True) async def add(self, ctx : commands.Context, name, *, input): ''' Add a custom command to the guild. The `input` is in the form of arguments commonly used within terminals. There are 5 arguments, one of which is required: - `--description`: The command's description. - **`--message`: This is required. The command's response.** - `--channel`: The channel the command will send the response to. Must be ID. - `--reply`: A flag indicating whether the message will be a reply. - `--addroles`: The roles the bot will add to the command invoker. Must be IDs. - `--rmvroles`: The roles the bot will remove to the command invoker. Must be IDs. Order is not important. **Usage:** {usage} **Cooldown:** 5 seconds per 1 use (guild) **Example 1:** {prefix}{command_name} test --message Hello **Example 2:** {prefix}{command_name} test2 --description Give some cool roles --message Enjoy :D --reply --addroles 704527865173114900 644339804141518848 **You need:** `Manage Server`. **I need:** `Read Message History`, `Send Messages`. ''' builtin_existed = ctx.bot.get_command(name) if builtin_existed is not None: return await ctx.reply("This command's name already existed within the bot. Please choose a different one.") async with self.bot.pool.acquire() as conn: existed = await DB.CustomCommand.get_command(conn, ctx.guild.id, name) if existed is not None: return await ctx.reply(f"This guild already has a command with the name `{name}`. Please choose a different one.") arguments = Facility.flag_parse(input, self.__flags__) description = arguments["--description"] message = arguments["--message"] channel = arguments["--channel"] is_reply = arguments["--reply"] addroles = arguments["--addroles"] rmvroles = arguments["--rmvroles"] addroles_list = [] rmvroles_list = [] if isinstance(description, bool): return await ctx.reply("`--description` is not a flag but rather an argument.") if message is None: return await ctx.reply("`--message` is a required argument.") if isinstance(message, bool): return await ctx.reply("`--message` is not a flag but rather an argument.") if isinstance(channel, bool): return await ctx.reply("`--channel` must be an existed channel's ID.") elif channel is not None: try: channel = int(channel) except ValueError: return await ctx.reply("`--channel` must be an existed channel's ID.") dchannel = ctx.guild.get_channel(channel) if dchannel is None: return await ctx.reply("`--channel` must be an existed channel's ID.") # I decide to make `--reply` both a flag and argument (although there will be no info in argument). if is_reply is not None: is_reply = True else: is_reply = False if isinstance(addroles, bool) or isinstance(rmvroles, bool): return await ctx.reply("`--addroles`/`--rmvroles` is not a flag but rather an argument.") if isinstance(addroles, str): addroles_list = [] for role in addroles.split(): try: drole = ctx.guild.get_role(int(role)) except ValueError: return await ctx.reply("`--addroles` must contain existed roles' ID.") if drole is not None and drole < ctx.guild.get_member(self.bot.user.id).top_role: addroles_list.append(int(role)) if isinstance(rmvroles, str): rmvroles_list = [] for role in rmvroles.split(): try: drole = ctx.guild.get_role(int(role)) except ValueError: return await ctx.reply("`--rmvroles` must contain existed roles' ID.") if drole is not None and drole < ctx.guild.get_member(self.bot.user.id).top_role: rmvroles_list.append(int(role)) async with conn.transaction(): await DB.CustomCommand.add(conn, ctx.guild.id, name, { "description": description, "message": message, "channel": channel, "is_reply": is_reply, "addroles": addroles_list, "rmvroles": rmvroles_list }) await ctx.reply(f"Added command `{name}`.", mention_author = False) @ccommand.command() @commands.cooldown(rate = 1, per = 5.0, type = commands.BucketType.guild) @commands.has_guild_permissions(manage_guild = True) @commands.bot_has_permissions(read_message_history = True, send_messages = True) async def remove(self, ctx, name): ''' Remove a custom command from the guild. **Usage:** {usage} **Cooldown:** 5 seconds per 1 use (guild) **Example:** {prefix}{command_name} test **You need:** `Manage Server`. **I need:** `Read Message History`, `Send Messages`. ''' builtin_existed = ctx.bot.get_command(name) if builtin_existed is not None: return await ctx.reply("This command's name somehow matches the bot's default commands. Contact the developer.") async with self.bot.pool.acquire() as conn: existed = await DB.CustomCommand.get_command(conn, ctx.guild.id, name) if existed is None: return await ctx.reply(f"There is no such command in this guild.") async with conn.transaction(): await DB.CustomCommand.remove(conn, ctx.guild.id, name) await ctx.reply(f"Removed command `{name}`.", mention_author = False) @ccommand.command() async def edit(self, ctx): # Make edit the same as creation with a few catch: # - name is not changeable; it'll be ignored if provided. # - if any arguments is not provided, it'll retain the old behavior. # - to clear an optional argument (say --addroles), you need to provide the string "clear" (case-insensitive). # - to toggle, simply provide the argument again. pass def setup(bot : MichaelBot): bot.add_cog(CustomCommand(bot))
2.578125
3
demo/host_game.py
hilearn/ai-game
0
12788166
<gh_stars>0 import socket from game import Game, RemotePlayer, _3X5Map, PlayerStats, Stats def main(host, port): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind((host, port)) s.listen() players = [RemotePlayer(s, stats=PlayerStats(8, 3, 1), weapon_stats=Stats(12, 1), image='Blue.png'), RemotePlayer(s, stats=PlayerStats(8, 3, 1), weapon_stats=Stats(12, 1), image='Red.png')] game = Game(_3X5Map, players) game.run() if __name__ == '__main__': main('127.0.0.1', 3000)
2.578125
3
construct_call_graph.py
cancer525/pythontest
0
12788167
#!/usr/bin/env python ''' generates call graph of given python code file in dot format input for graphviz. limitations: * statically tried to figure out functions calls * does not understand classes * algorithm is naive and may not statically find all cases ''' import sys import parser import symbol, token import pprint import optparse try: s = set() except: import sets; set = sets.Set def annotate_ast_list(ast_list): code = ast_list[0] if code in symbol.sym_name: code = symbol.sym_name[code] else: code = token.tok_name[code] ast_list[0] = code for index, item in enumerate(ast_list): if index == 0: continue if isinstance(item, list): ast_list[index] = annotate_ast_list(item) return ast_list def get_atom_name(atom): first_child = atom[1] first_child_code = first_child[0] if first_child_code != token.NAME: return None return first_child[1] def get_fn_call_data(ast_list): if len(ast_list) < 3: return None first_child, second_child = ast_list[1:3] first_child_code = first_child[0] if first_child_code != symbol.atom: return None fn_name = get_atom_name(first_child) second_child_code = second_child[0] if second_child_code != symbol.trailer: return None if len(second_child) < 3: return None if second_child[1][0] == token.LPAR and second_child[-1][0] == token.RPAR: return fn_name else: return None def find_fn_call(ast_list, calls): code = ast_list[0] if code == symbol.power: fn_name = get_fn_call_data(ast_list) if fn_name != None and getattr(__builtins__, fn_name, None) == None: calls.add(fn_name) for item in ast_list[1:]: if isinstance(item, list): find_fn_call(item, calls) def process_fn(fn_ast_list, call_graph): dummy, dummy, func_name = fn_ast_list[:3] dummy, func_name = func_name calls = set() find_fn_call(fn_ast_list, calls) call_graph[func_name] = list(calls) def construct_call_graph(ast_list, call_graph): code = ast_list[0] if code == symbol.funcdef: process_fn(ast_list, call_graph) for item in ast_list[1:]: if isinstance(item, list): construct_call_graph(item, call_graph) return call_graph def generate_dot_code(python_code): ast = parser.suite(python_code) ast_list = parser.ast2list(ast) #annotated_ast_list = annotate_ast_list(ast_list) #pprint.pprint(annotated_ast_list) call_graph = {} construct_call_graph(ast_list, call_graph) #pprint.pprint(call_graph) dot = [] dot.append("digraph G {") dot.append("rankdir=LR") for from_fn, to_fns in call_graph.iteritems(): if not to_fns: dot.append('%s;' % from_fn) for to_fn in to_fns: if to_fn not in call_graph: continue dot.append('%s -> %s;' % (from_fn, to_fn)) dot.append("}") return '\n'.join(dot) if __name__ == '__main__': oparser = optparse.OptionParser() oparser.add_option('-i', '--input-file', default=None, metavar='FILE', help='python code file to process') options, args = oparser.parse_args() if options.input_file: python_code = open(options.input_file).read() else: python_code = sys.stdin.read() dot_code = generate_dot_code(python_code) print dot_code
2.75
3
etl_nested/tests/unit/test_factories.py
CloverHealth/pycon2017
6
12788168
import datetime import os import sqlalchemy.orm as sa_orm from app import factories from app.etl import transformers from app.util.json import load_json_file def test_make_response_from_nested_schema(session: sa_orm.Session, data_dir): schema = load_json_file(os.path.join(data_dir, 'nested_schema.json')) form = factories.FormFactory(schema=schema) user = factories.UserFactory() session.add_all([form, user]) session.flush() get_node_path_map = transformers.get_node_path_map_cache(session) result = factories.make_response(get_node_path_map, form.id) assert result assert type(result) == dict # test a selection of the nested values assert result['root'] assert type(result['root']) == dict assert result['root']['primary_care_doctor_phone'] is not None assert type(result['root']['primary_care_doctor_phone']) == str assert result['root']['emergency_visits'] is not None assert type(result['root']['emergency_visits']) == int assert result['root']['medical_conditions']['mobility_help']['walker'] is not None assert type(result['root']['medical_conditions']['mobility_help']['walker']) == bool assert result['root']['date_of_birth'] is not None assert type(result['root']['date_of_birth']) == str parsed_date = datetime.datetime.strptime(result['root']['date_of_birth'], '%Y-%m-%d') assert parsed_date
2.546875
3
userAgentRandomizer/__init__.py
MattWaller/userAgentRandomizer
0
12788169
from glob import glob import os, random class userAgents(object): def __init__(self): files_ = glob(f'{os.path.dirname(os.path.realpath(__file__))}/assets/*.txt') self.uas,self.Chrome,self.Edge,self.Firefox,self.Opera,self.Safari = [],[],[],[],[],[] for file_ in files_: with open(file_,'r') as f: records_ = f.read().split('\n') f.close() for rec in records_: self.uas.append(rec) if 'Chrome' in file_: self.Chrome.append(rec) elif 'Edge' in file_: self.Edge.append(rec) elif 'Firefox' in file_: self.Firefox.append(rec) elif 'Opera' in file_: self.Opera.append(rec) elif 'Safari' in file_: self.Safari.append(rec) def random(self,engine=None): if engine == 'Chrome': return random.choice(self.Chrome) elif engine == 'Edge': return random.choice(self.Edge) elif engine == 'Firefox': return random.choice(self.Firefox) elif engine == 'Opera': return random.choice(self.Opera) elif engine == 'Safari': return random.choice(self.Safari) else: return random.choice(self.uas) def count(self): return len(self.uas) if __name__ == "__main__": ua = userAgents() print(ua.random('Firefox')) print(ua.count())
2.8125
3
investments/contrib/tags/models.py
gatsinski/investments
0
12788170
import uuid from django.contrib.auth import get_user_model from django.db import models from django.utils.translation import gettext_lazy as _ from investments.models import TimestampedModel UserModel = get_user_model() class Tag(TimestampedModel): uuid = models.UUIDField(default=uuid.uuid4, primary_key=True) name = models.CharField(_("Name"), max_length=254) author = models.ForeignKey(UserModel, related_name="tags", on_delete=models.CASCADE) class Meta: verbose_name = _("Tag") verbose_name_plural = _("Tags") def __str__(self): return f"{self.name} - {self.author}"
2.375
2
server/authentication/utils.py
Arun89-crypto/codechefsrm
0
12788171
from typing import Any, Dict from .errors import NoTokenFound, InvalidToken from . import tokens def get_token(header: Dict[str, Any]): if "Authorization" in header: return header["Authorization"] raise NoTokenFound() def validate_token_type(token: str, token_type: str = "Bearer"): _token_type, token = token.split() assert _token_type == token_type, "Invalid token type" return token def generate_token(payload: Dict[str, Any], **kwargs): return tokens.generate_key(payload=payload, **kwargs) async def refresh_to_access(token: str): payload = tokens.verify_key(token) if payload.get("refresh"): payload.pop("refresh") return tokens.generate_key(payload, get_refresh=True) raise InvalidToken("Invalid refresh token")
2.703125
3
test/unit/test_yaml_spec.py
izakp/hokusai
85
12788172
<filename>test/unit/test_yaml_spec.py<gh_stars>10-100 import os import httpretty from test import HokusaiUnitTestCase from hokusai import CWD from hokusai.lib.exceptions import HokusaiError from hokusai.services.yaml_spec import YamlSpec httpretty.enable() httpretty.HTTPretty.allow_net_connect = False class TestYamlSpec(HokusaiUnitTestCase): def setUp(self): self.kubernetes_yml = os.path.join(CWD, 'test/fixtures/kubernetes-config.yml') @httpretty.activate def test_yaml_spec(self): httpretty.register_uri(httpretty.POST, "https://sts.amazonaws.com/", body=self.fixture('sts-get-caller-identity-response.xml'), content_type="application/xml") httpretty.register_uri(httpretty.POST, "https://api.ecr.us-east-1.amazonaws.com/", body=self.fixture('ecr-repositories-response.json'), content_type="application/x-amz-json-1.1") yaml_spec = YamlSpec(self.kubernetes_yml).to_list() self.assertEqual(yaml_spec[0]['metadata']['name'], 'hello') self.assertEqual(yaml_spec[0]['spec']['template']['spec']['containers'][0]['name'], 'web') self.assertEqual(yaml_spec[0]['spec']['template']['spec']['containers'][0]['image'], 'eggs') self.assertEqual(yaml_spec[0]['spec']['template']['spec']['containers'][1]['name'], 'worker') self.assertEqual(yaml_spec[0]['spec']['template']['spec']['containers'][1]['image'], 'eggs')
2.234375
2
mbserializer/fields/attribute_fields.py
gomafutofu/mbserializer
0
12788173
__author__ = '<NAME>' from .declarations import ( StringAttribute as Str, IntegerAttribute as Int, FloatAttribute as Float, DecimalAttribute as Decimal, BooleanAttribute as Bool, DatetimeAttribute as Datetime, DateAttribute as Date, EnumAttribute as Enum, )
1.695313
2
lecture-2/loops.py
wendelsilva/CS50-Web-Programming-with-Python-and-JavaScript
0
12788174
<filename>lecture-2/loops.py for i in range(6): print(i) names = ["Harry", "Ron", "Hermione", "Ginny"] for name in names: print(name) name = "Harry" for character in name: print(character)
4.28125
4
fewsum/data_pipelines/assemblers/tuning_pipeline.py
mancunian1792/FewSum
28
12788175
from mltoolkit.mldp.utils.constants.vocabulary import PAD, START, END, UNK from mltoolkit.mldp import PyTorchPipeline from mltoolkit.mldp.steps.readers import CsvReader from mltoolkit.mldp.steps.transformers.nlp import TokenProcessor, VocabMapper, \ SeqLenComputer, Padder, SeqWrapper from mltoolkit.mldp.steps.general import ChunkAccumulator from mltoolkit.mldp.steps.transformers.general import Shuffler from mltoolkit.mldp.steps.transformers.field import FieldRenamer from fewsum.data_pipelines.steps import RevMapper, AmazonTransformer,\ SummMapper, GoldSummRevIndxsCreator, NumpyFormatter from fewsum.utils.fields import ModelF, GoldDataF from csv import QUOTE_NONE from fewsum.data_pipelines.steps.props import SummRougeProp, DummyProp, SummLenProp,\ POVProp def assemble_tuning_pipeline(word_vocab, max_groups_per_batch=1, tok_func=None, lowercase=False): """ The pipeline yields tokenized reviews and summaries that can be used for training (fine-tuning of the model). """ assert START in word_vocab and END in word_vocab reader = CsvReader(sep='\t', encoding='utf-8', engine='python', chunk_size=None, use_lists=True, quating=QUOTE_NONE) chunk_accum = ChunkAccumulator(new_size=max_groups_per_batch) ama_spec_trans = AmazonTransformer(fnames_to_copy=[GoldDataF.PROD_ID, GoldDataF.CAT, ]) summ_mapper = SummMapper(fname=ModelF.SUMMS, new_indx_fname=ModelF.SUMM_GROUP_INDX) token_processor = TokenProcessor(fnames=[ModelF.REV, ModelF.SUMM], tok_func=tok_func, lowercase=lowercase) vocab_mapper = VocabMapper({ModelF.REV: word_vocab, ModelF.SUMM: word_vocab}) fname_renamer = FieldRenamer({GoldDataF.PROD_ID: ModelF.GROUP_ID, GoldDataF.CAT: ModelF.CAT, ModelF.SUMMS: ModelF.SUMM}) seq_wrapper = SeqWrapper(fname=[ModelF.REV, ModelF.SUMM], start_el=word_vocab[START].id, end_el=word_vocab[END].id) padder = Padder(fname=[ModelF.REV, ModelF.SUMM], new_mask_fname=[ModelF.REV_MASK, ModelF.SUMM_MASK], pad_symbol=word_vocab[PAD].id, padding_mode='right') indxs_creator = GoldSummRevIndxsCreator() # rev_mapper = RevMapper(group_rev_indxs_fname=ModelF.GROUP_REV_INDXS, # group_rev_mask_fname=ModelF.GROUP_REV_INDXS_MASK, # rev_mask_fname=ModelF.REV_MASK) # props len_prop = SummLenProp(summ_fname=ModelF.SUMM, rev_fname=ModelF.REV, group_rev_indxs_fname=ModelF.GROUP_REV_INDXS, summ_group_indx_fname=ModelF.SUMM_GROUP_INDX, new_fname=ModelF.LEN_PROP) pov_prop = POVProp(text_fname=ModelF.SUMM, new_fname=ModelF.POV_PROP) rouge_prop = SummRougeProp(summ_fname=ModelF.SUMM, rev_fname=ModelF.REV, group_rev_indxs_fname=ModelF.GROUP_REV_INDXS, summ_group_indx_fname=ModelF.SUMM_GROUP_INDX, new_fname=ModelF.ROUGE_PROP) rating_prop = DummyProp(fname=ModelF.SUMM, new_fname=ModelF.RATING_PROP, fval=0.) np_formatter = NumpyFormatter([ModelF.LEN_PROP, ModelF.RATING_PROP, ModelF.POV_PROP, ModelF.ROUGE_PROP]) pipeline = PyTorchPipeline(reader=reader, error_on_invalid_chunk=False) # pipeline.add_step(shuffler) pipeline.add_step(chunk_accum) pipeline.add_step(ama_spec_trans) pipeline.add_step(summ_mapper) pipeline.add_step(fname_renamer) pipeline.add_step(indxs_creator) # props pipeline.add_step(rating_prop) pipeline.add_step(rouge_prop) pipeline.add_step(token_processor) # the props below require tokenization pipeline.add_step(len_prop) pipeline.add_step(pov_prop) pipeline.add_step(vocab_mapper) pipeline.add_step(seq_wrapper) pipeline.add_step(padder) pipeline.add_step(np_formatter) return pipeline
2.46875
2
bindings/python/fdb/tenant_management.py
sfc-gh-bvr/foundationdb
1
12788176
<filename>bindings/python/fdb/tenant_management.py # # tenant_management.py # # This source file is part of the FoundationDB open source project # # Copyright 2013-2022 Apple Inc. and the FoundationDB project authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # FoundationDB Python API """Documentation for this API can be found at https://apple.github.io/foundationdb/api-python.html""" from fdb import impl as _impl _tenant_map_prefix = b'\xff\xff/management/tenant_map/' # If the existence_check_marker is an empty list, then check whether the tenant exists. # After the check, append an item to the existence_check_marker list so that subsequent # calls to this function will not perform the existence check. # # If the existence_check_marker is a non-empty list, return None. def _check_tenant_existence(tr, key, existence_check_marker, force_maybe_commited): if not existence_check_marker: existing_tenant = tr[key].wait() existence_check_marker.append(None) if force_maybe_commited: raise _impl.FDBError(1021) # maybe_committed return existing_tenant != None return None # Attempt to create a tenant in the cluster. If existence_check_marker is an empty # list, then this function will check if the tenant already exists and fail if it does. # Once the existence check is completed, it will not be done again if this function # retries. As a result, this function may return successfully if the tenant is created # by someone else concurrently. This behavior allows the operation to be idempotent with # respect to retries. # # If the existence_check_marker is a non-empty list, then the existence check is skipped. @_impl.transactional def _create_tenant_impl(tr, tenant_name, existence_check_marker, force_existence_check_maybe_committed=False): tr.options.set_special_key_space_enable_writes() key = b'%s%s' % (_tenant_map_prefix, tenant_name) if _check_tenant_existence(tr, key, existence_check_marker, force_existence_check_maybe_committed) is True: raise _impl.FDBError(2132) # tenant_already_exists tr[key] = b'' # Attempt to delete a tenant from the cluster. If existence_check_marker is an empty # list, then this function will check if the tenant already exists and fail if it does # not. Once the existence check is completed, it will not be done again if this function # retries. As a result, this function may return successfully if the tenant is deleted # by someone else concurrently. This behavior allows the operation to be idempotent with # respect to retries. # # If the existence_check_marker is a non-empty list, then the existence check is skipped. @_impl.transactional def _delete_tenant_impl(tr, tenant_name, existence_check_marker, force_existence_check_maybe_committed=False): tr.options.set_special_key_space_enable_writes() key = b'%s%s' % (_tenant_map_prefix, tenant_name) if _check_tenant_existence(tr, key, existence_check_marker, force_existence_check_maybe_committed) is False: raise _impl.FDBError(2131) # tenant_not_found del tr[key] class FDBTenantList(object): """Iterates over the results of list_tenants query. Returns KeyValue objects. """ def __init__(self, rangeresult): self._range = rangeresult self._iter = iter(self._range) def to_list(self): return list(self.__iter__()) def __iter__(self): for next_item in self._iter: tenant_name = _impl.remove_prefix(next_item.key, _tenant_map_prefix) yield _impl.KeyValue(tenant_name, next_item.value) # Lists the tenants created in the cluster, specified by the begin and end range. # Also limited in number of results by the limit parameter. # Returns an iterable object that yields KeyValue objects # where the keys are the tenant names and the values are the unprocessed # JSON strings of the tenant metadata @_impl.transactional def _list_tenants_impl(tr, begin, end, limit): tr.options.set_read_system_keys() begin_key = b'%s%s' % (_tenant_map_prefix, begin) end_key = b'%s%s' % (_tenant_map_prefix, end) rangeresult = tr.get_range(begin_key, end_key, limit) return FDBTenantList(rangeresult) def create_tenant(db_or_tr, tenant_name): tenant_name = _impl.process_tenant_name(tenant_name) # Only perform the existence check when run using a database # Callers using a transaction are expected to check existence themselves if required existence_check_marker = [] if not isinstance(db_or_tr, _impl.TransactionRead) else [None] _create_tenant_impl(db_or_tr, tenant_name, existence_check_marker) def delete_tenant(db_or_tr, tenant_name): tenant_name = _impl.process_tenant_name(tenant_name) # Only perform the existence check when run using a database # Callers using a transaction are expected to check existence themselves if required existence_check_marker = [] if not isinstance(db_or_tr, _impl.TransactionRead) else [None] _delete_tenant_impl(db_or_tr, tenant_name, existence_check_marker) def list_tenants(db_or_tr, begin, end, limit): begin = _impl.process_tenant_name(begin) end = _impl.process_tenant_name(end) return _list_tenants_impl(db_or_tr, begin, end, limit)
1.875
2
ofcourse/tests/test_yaml.py
liam-middlebrook/ofCourse
0
12788177
<reponame>liam-middlebrook/ofCourse import os import yaml import unittest from validator import Required, validate, InstanceOf class TestAllYaml(unittest.TestCase): def test_recursive_yaml(self): yaml_files = [] for root, _, fnames in os.walk(os.getcwd()): for fname in fnames: if (fname.endswith('.yaml') or fname.endswith('.yml')): yaml_files.append(os.path.join(root, fname)) for fullname in yaml_files: with open(fullname, 'r') as yfile: try: yaml.safe_load(yfile) except Exception as e: msg = "File {name} is broken: {exc}" self.fail(msg.format(name=fullname, exc=str(e))) def test_student_yaml(self): is_str = InstanceOf(type("")) spec = { 'blog': [Required, is_str], 'feed': [Required, is_str], 'forges': [Required, InstanceOf(list)], 'hw': [Required, InstanceOf(dict)], 'irc': [Required, is_str], 'name': [Required, is_str], 'rit_dce': [Required, is_str], # optional fields 'bio': [is_str], 'twitter': [is_str], 'coderwall': [is_str], } student_files = [] for root, _, fnames in os.walk( os.path.join(os.getcwd(), "people")): for fname in fnames: if (fname.endswith('.yaml') or fname.endswith('.yml')): student_files.append(os.path.join(root, fname)) for fullname in student_files: with open(fullname, 'r') as student: content = yaml.safe_load(student) validity = validate(spec, content) if not validity[0]: out = "" for k, v in validity[1].items(): out += ("File: {f} Key: {key} " "{check}\n\n".format(key=k, check=v, f=fullname) ) self.fail(out)
2.71875
3
themis/model/emr_model.py
igor-lema-ifood/themis
54
12788178
import themis.monitoring.emr_monitoring import themis.scaling.emr_scaling from themis.util import aws_common from themis import config from themis.model.aws_model import * class EmrCluster(Scalable, Monitorable): def __init__(self, id=None): super(EmrCluster, self).__init__(id) self.type = None self.ip = None self.ip_public = None self.monitoring_data = {} def fetch_data(self): if self.needs_scaling(): self.monitoring_data = themis.monitoring.emr_monitoring.collect_info(self) return self.monitoring_data def needs_scaling(self, params=None): app_config = config.get_config() cluster_ids = app_config.general.get_autoscaling_clusters() return self.id in cluster_ids def perform_scaling(self, params=None): themis.scaling.emr_scaling.perform_scaling(self) class EmrClusterType(object): PRESTO = aws_common.CLUSTER_TYPE_PRESTO HIVE = aws_common.CLUSTER_TYPE_HIVE
2.078125
2
kmodes/__init__.py
sdkugelmass/kmodes
0
12788179
__version__ = 'nb 0.11.2'
1.023438
1
homeserver/__init__.py
miikama/home-server
0
12788180
import sys import os import logging from flask import Flask HOME_SERVER_DIR = os.path.dirname(os.path.abspath(__file__)) #the absolute path of this script app_path = os.path.dirname(os.path.realpath(__file__)) #config for the project from homeserver.server_config import load_config, setup_logging config = load_config(os.path.join(app_path, 'server.ini')) # update logger settings logger =setup_logging(config, logging.DEBUG) #load devices and connect them from homeserver.device_handler import DeviceHandler device_handler = DeviceHandler( os.path.join( app_path, 'device_configs') ) def create_app(config): #init the app app = Flask(__name__) #add the config parameters to the app config app.config.update(config._values) #load the webpage routes from homeserver.server import api_routes app.register_blueprint(api_routes) #start voice control # from homeserver.voice_control.voice_controller import VoiceController # app.voice_controller = VoiceController(start=True) # app.device_handler.add_interface(app.voice_controller) return app app = create_app(config)
2.28125
2
tests/gen_test_clips.py
sevagh/chord-detection
55
12788181
#!/usr/bin/env python3.7 import unittest import numpy import os import librosa import soundfile import sys from tempfile import TemporaryDirectory def main(): dest = "tests/test_1_note_Csharp3.wav" tone = librosa.tone(138.59, sr=22050, length=44100) soundfile.write(dest, tone, 22050) print("Created {0} with note C#3".format(dest)) dest = "tests/test_1_note_E4.wav" tone = librosa.tone(329.63, sr=22050, length=44100) soundfile.write(dest, tone, 22050) print("Created {0} with note E4".format(dest)) dest = "tests/test_2_notes_E2_F3.wav" tone = numpy.zeros(44100) tone += librosa.tone(82.41, sr=22050, length=44100) tone += librosa.tone(174.61, sr=22050, length=44100) soundfile.write(dest, tone, 22050) print("Created {0} with notes E2, F3".format(dest)) dest = "tests/test_2_notes_G3_Asharp4.wav" tone = numpy.zeros(44100) tone += librosa.tone(196, sr=22050, length=44100) tone += librosa.tone(466.16, sr=22050, length=44100) soundfile.write(dest, tone, 22050) print("Created {0} with notes G3, A#4".format(dest)) dest = "tests/test_3_notes_G2_B2_G#3.wav" tone = numpy.zeros(44100) tone += librosa.tone(98, sr=22050, length=44100) tone += librosa.tone(123.47, sr=22050, length=44100) tone += librosa.tone(207.65, sr=22050, length=44100) soundfile.write(dest, tone, 22050) print("Created {0} with notes G2, B2, G#3".format(dest)) return 0 if __name__ == "__main__": sys.exit(main())
2.515625
3
src/forum/migrations/0018_auto_20170629_2130.py
shashankmohabia/gymkhana-master
1
12788182
<gh_stars>1-10 # -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-06-29 16:00 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('forum', '0017_reply'), ] operations = [ migrations.AlterModelOptions( name='reply', options={'verbose_name_plural': 'replies'}, ), ]
1.53125
2
examples/example_application.py
samson0v/python_tb_rest_client
30
12788183
# Copyright 2020. ThingsBoard # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging # Importing models and REST client class from Community Edition version from tb_rest_client.rest_client_ce import * from tb_rest_client.rest import ApiException logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(module)s - %(lineno)d - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') # ThingsBoard REST API URL url = "http://localhost:8080" # Default Tenant Administrator credentials username = "<EMAIL>" password = "<PASSWORD>" # Creating the REST client object with context manager to get auto token refresh with RestClientCE(base_url=url) as rest_client: try: # Auth with credentials rest_client.login(username=username, password=password) # Creating an Asset asset = Asset(name="Building 1", type="building") asset = rest_client.save_asset(asset) logging.info("Asset was created:\n%r\n", asset) # creating a Device device = Device(name="Thermometer 1", type="thermometer") device = rest_client.save_device(device) logging.info(" Device was created:\n%r\n", device) # Creating relations from device to asset relation = EntityRelation(_from=asset.id, to=device.id, type="Contains") relation = rest_client.save_relation(relation) logging.info(" Relation was created:\n%r\n", relation) except ApiException as e: logging.exception(e)
1.726563
2
alembic/versions/16c2d576e01e_add_schools_with_description_2020.py
AlonMaor14/anyway
69
12788184
<reponame>AlonMaor14/anyway """add_schools_with_description_2020 Revision ID: 16c2d576e01e Revises: <PASSWORD> Create Date: 2020-08-16 10:30:23.748793 """ # revision identifiers, used by Alembic. revision = '16c2d576e01e' down_revision = '7c472e4582de' branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql import geoalchemy2 def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('schools_with_description2020', sa.Column('id', sa.BigInteger(), autoincrement=True, nullable=False), sa.Column('school_id', sa.Integer(), nullable=True), sa.Column('school_name', sa.Text(), nullable=True), sa.Column('municipality_name', sa.Text(), nullable=True), sa.Column('yishuv_name', sa.Text(), nullable=True), sa.Column('institution_type', sa.Text(), nullable=True), sa.Column('lowest_grade', sa.Text(), nullable=True), sa.Column('highest_grade', sa.Text(), nullable=True), sa.Column('location_accuracy', sa.Text(), nullable=True), sa.Column('geom', geoalchemy2.types.Geometry(geometry_type='POINT', srid=4326, from_text='ST_GeomFromEWKT', name='geometry'), nullable=True), sa.Column('x', sa.Float(), nullable=True), sa.Column('y', sa.Float(), nullable=True), sa.Column('longitude', sa.Float(), nullable=True), sa.Column('latitude', sa.Float(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_schools_with_description2020_geom'), 'schools_with_description2020', ['geom'], unique=False) op.create_index(op.f('ix_schools_with_description2020_id'), 'schools_with_description2020', ['id'], unique=False) op.create_index(op.f('ix_schools_with_description2020_municipality_name'), 'schools_with_description2020', ['municipality_name'], unique=False) op.create_index(op.f('ix_schools_with_description2020_school_id'), 'schools_with_description2020', ['school_id'], unique=False) op.create_index(op.f('ix_schools_with_description2020_yishuv_name'), 'schools_with_description2020', ['yishuv_name'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_schools_with_description2020_yishuv_name'), table_name='schools_with_description2020') op.drop_index(op.f('ix_schools_with_description2020_school_id'), table_name='schools_with_description2020') op.drop_index(op.f('ix_schools_with_description2020_municipality_name'), table_name='schools_with_description2020') op.drop_index(op.f('ix_schools_with_description2020_id'), table_name='schools_with_description2020') op.drop_index(op.f('ix_schools_with_description2020_geom'), table_name='schools_with_description2020') op.drop_table('schools_with_description2020') # ### end Alembic commands ###
1.671875
2
data/simple_analysis.py
tonitick/CacheZoom
13
12788185
<reponame>tonitick/CacheZoom #!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np import operator, sys MAX_MEASUREMENT = 50000 def get_set(addr): return (addr >> 6) & 0b111111 def calc_threshold(set_stat): # print '[+] Calculating eviction thresholds...' threshold = [] for k in set_stat: k_sorted = sorted(k.items(), key=operator.itemgetter(1), reverse=True) select = 0 for tu in k_sorted: if tu[0] > select and tu[1] > 400: select = tu[0] if select >= 80: threshold.append(255) else: threshold.append(select) return threshold def unpack_plot_binary(data): # print '[+] Unpacking measurement binary...' f_raw = open(data, 'rb') samples = [] set_stat = [] for i in xrange(MAX_MEASUREMENT): lst = map(ord, list(f_raw.read(64))) samples.append(lst) for j in xrange(64): if j >=len(set_stat): set_stat.append({}) if lst[j] != 0: if set_stat[j].has_key(lst[j]): set_stat[j][lst[j]] += 1 else: set_stat[j].update({lst[j]: 1}) return samples, calc_threshold(set_stat) def compress_data(samples, thresholds): # print '[+] Filter measurments...' compressed = [] l = 0 r = MAX_MEASUREMENT if len(sys.argv) > 2: l = int(sys.argv[1]) r = int(sys.argv[2]) for i in xrange(l, r): c = 0 for j in xrange(64): if samples[i][j] > thresholds[j]: c += 1 if c < 30 and c > 0: compressed.append((i, samples[i])) return compressed def calc_eviction_percentage(samples, thresholds, i): l = int(sys.argv[1]) r = int(sys.argv[2]) c = 0 for j in xrange(l, r): if samples[j][i] > thresholds[i]: c += 1 return (c * 1.0) / (r - l) * 100 def auto_tweak_thresholds(samples, thresholds, per_limit): # print '[+] Tweaking tresholds for the range in (%s, %s)...'%(sys.argv[1], sys.argv[2]) for i in xrange(64): if thresholds[i] == 255: continue per = calc_eviction_percentage(samples, thresholds, i) while(per < per_limit): thresholds[i] -= 2 per = calc_eviction_percentage(samples, thresholds, i) if per > per_limit: thresholds[i] += 2 break while(per > per_limit): thresholds[i] += 2 per = calc_eviction_percentage(samples, thresholds, i) return thresholds samples, thresholds = unpack_plot_binary('samples.data') if len(sys.argv) > 2: thresholds = auto_tweak_thresholds(samples, thresholds, int(sys.argv[3])) compressed = compress_data(samples, thresholds) l = 1 r = 0 if len(sys.argv) > 2: l = int(sys.argv[1]) r = int(sys.argv[2]) evict = {} plot_x = [] plot_y = [] for i in xrange(len(compressed)): for j in xrange(64): if list(compressed[i])[1][j] > thresholds[j]: plot_x.append(list(compressed[i])[0]) plot_y.append(j) distance = float(list(compressed[i])[0] - l) / (r - l) if evict.has_key(j): evict[j].append(distance) else: evict[j] = [distance] for k in evict: _sum = 0 for v in evict[k]: _sum += v evict[k] = _sum / len(evict[k]) evict = sorted(evict.items(), key=operator.itemgetter(1), reverse=False) print evict fig, ax = plt.subplots() ax.grid(True) ax.set_yticks(range(64)) ax.set_xlabel('Measuerment') ax.set_ylabel('Set number') ax.plot(plot_x, plot_y, 'o') plt.show()
2.359375
2
payplug/test/test_init/test_dao_payment.py
SOGEXIS/payplug-python
0
12788186
<filename>payplug/test/test_init/test_dao_payment.py # -*- coding: utf-8 -*- import pytest from mock import patch import payplug from payplug import resources from payplug.test import TestBase @patch('payplug.config.secret_key', 'a_secret_key') @patch.object(payplug.HttpClient, 'post', lambda *args, **kwargs: ({'id': 'pay_payment_id'}, 201)) @patch.object(payplug.HttpClient, 'patch', lambda *args, **kwargs: ({'id': 'pay_payment_id'}, 200)) @patch.object(payplug.HttpClient, 'get', lambda *args, **kwargs: ({'id': 'pay_payment_id'}, 200)) class TestPaymentCreateRetrieveAbort(TestBase): def test_retrieve(self): payment = payplug.Payment.retrieve('pay_payment_id') assert isinstance(payment, resources.Payment) assert payment.id == 'pay_payment_id' def test_abort(self): payment = payplug.Payment.abort('pay_payment_id') assert isinstance(payment, resources.Payment) assert payment.id == 'pay_payment_id' def test_abort_with_payment_object(self): payment = payplug.Payment.retrieve('pay_payment_id') payment = payplug.Payment.abort(payment) assert isinstance(payment, resources.Payment) assert payment.id == 'pay_payment_id' def test_create(self): payment = payplug.Payment.create(some='payment', da='ta') assert isinstance(payment, resources.Payment) assert payment.id == 'pay_payment_id' def get_payments_fixture(): return { "type": "list", "page": 0, "per_page": 10, "count": 2, "data": [ { "id": "pay_5iHMDxy4ABR4YBVW4UscIn", "object": "payment", }, ] } @patch('payplug.config.secret_key', 'a_secret_key') @patch.object(payplug.HttpClient, 'get', lambda *args, **kwargs: (get_payments_fixture(), 200)) class TestPaymentList(TestBase): @patch('payplug.routes.url') def test_list_pagination_no_arguments(self, url_mock): payplug.Payment.list() assert url_mock.call_args[1]['pagination'] == {} @patch('payplug.routes.url') def test_list_pagination_page_argument(self, url_mock): payplug.Payment.list(page=1) assert url_mock.call_args[1]['pagination'] == {'page': 1} @patch('payplug.routes.url') def test_list_pagination_per_page_argument(self, url_mock): payplug.Payment.list(per_page=1) assert url_mock.call_args[1]['pagination'] == {'per_page': 1} @patch('payplug.routes.url') def test_list_pagination_page_and_per_page_arguments(self, url_mock): payplug.Payment.list(page=42, per_page=1) assert url_mock.call_args[1]['pagination'] == {'page': 42, 'per_page': 1} def test_list(self): payments = payplug.Payment.list() assert isinstance(payments, resources.APIResourceCollection) assert next(payments).id == 'pay_5iHMDxy4ABR4YBVW4UscIn'
2.15625
2
oil_lang/grammar_gen.py
msingle/oil
0
12788187
#!/usr/bin/env python2 """ grammar_gen.py - Use pgen2 to generate tables from Oil's grammar. """ from __future__ import print_function import os import sys from _devbuild.gen.id_kind_asdl import Id, Kind from _devbuild.gen.syntax_asdl import source from core import alloc from core import meta from core.util import log from frontend import lexer, match, reader from pgen2 import parse, pgen # Used at grammar BUILD time. OPS = { '(': Id.Op_LParen, ')': Id.Op_RParen, '[': Id.Op_LBracket, ']': Id.Op_RBracket, # Problem: in OilOuter, this is OP_RBracket. # OK I think the metalanguage needs to be # extended to take something other than ']' # It needs proper token names! '{': Id.Op_LBrace, '}': Id.Op_RBrace, '$[': Id.Left_DollarBracket, '${': Id.Left_DollarBrace, '$(': Id.Left_DollarParen, '$/': Id.Left_DollarSlash, '@[': Id.Left_AtBracket, '.': Id.Expr_Dot, '->': Id.Expr_RArrow, # TODO: Add Ellipsis. '...': Id.Expr_Dot, # TODO: do we need div= and xor= ? } # TODO: We should be able to remove all these. TERMINALS = { 'NAME': Id.Expr_Name, 'NUMBER': Id.Expr_Digits, # The grammar seems something like 'for' or '>=' # These need to be looked up at "_Classify" time? #'STRING': Id.Expr_Name, 'NEWLINE': Id.Op_Newline, 'ENDMARKER': Id.Eof_Real, } if 0: # unused because the grammar compile keeps track of keywords! KEYWORDS = { 'div': Id.Expr_Div, 'xor': Id.Expr_Xor, 'and': Id.Expr_And, 'or': Id.Expr_Or, 'not': Id.Expr_Not, 'for': Id.Expr_For, 'is': Id.Expr_Is, 'in': Id.Expr_In, 'if': Id.Expr_If, 'else': Id.Expr_Else, 'match': Id.Expr_Match, 'func': Id.Expr_Func, } class OilTokenDef(object): def __init__(self, arith_ops): self.arith_ops = arith_ops def GetTerminalNum(self, label): """ e.g. translate Expr_Name in the grammar to 178 """ id_ = TERMINALS.get(label) or getattr(Id, label) #log('Id %s = %d', id_, id_.enum_id) assert id_.enum_id < 256, id_ return id_.enum_id def GetOpNum(self, value): id_ = OPS.get(value) or self.arith_ops[value] assert id_.enum_id < 256, id_ return id_.enum_id def MakeOilLexer(code_str, arena): arena.PushSource(source.MainFile('pgen2_main')) line_reader = reader.StringLineReader(code_str, arena) line_lexer = lexer.LineLexer(match.MATCHER, '', arena) lex = lexer.Lexer(line_lexer, line_reader) return lex def main(argv): action = argv[1] argv = argv[2:] # Common initialization arith_ops = {} for _, token_str, id_ in meta.ID_SPEC.LexerPairs(Kind.Arith): arith_ops[token_str] = id_ if 0: from pprint import pprint pprint(arith_ops) tok_def = OilTokenDef(arith_ops) if action == 'marshal': # generate the grammar and parse it grammar_path = argv[0] out_dir = argv[1] basename, _ = os.path.splitext(os.path.basename(grammar_path)) # HACK for find: if basename == 'find': from tools.find import parse as find_parse tok_def = find_parse.TokenDef() with open(grammar_path) as f: gr = pgen.MakeGrammar(f, tok_def=tok_def) marshal_path = os.path.join(out_dir, basename + '.marshal') with open(marshal_path, 'wb') as out_f: gr.dump(out_f) nonterm_path = os.path.join(out_dir, basename + '_nt.py') with open(nonterm_path, 'w') as out_f: gr.dump_nonterminals(out_f) log('Compiled %s -> %s and %s', grammar_path, marshal_path, nonterm_path) #gr.report() elif action == 'parse': # generate the grammar and parse it # Remove build dependency from oil_lang import expr_parse grammar_path = argv[0] start_symbol = argv[1] code_str = argv[2] # For choosing lexer and semantic actions grammar_name, _ = os.path.splitext(os.path.basename(grammar_path)) with open(grammar_path) as f: gr = pgen.MakeGrammar(f, tok_def=tok_def) arena = alloc.Arena() lex = MakeOilLexer(code_str, arena) is_expr = grammar_name in ('calc', 'grammar') p = expr_parse.ExprParser(gr) try: pnode, _ = p.Parse(lex, gr.symbol2number[start_symbol]) except parse.ParseError as e: log('Parse Error: %s', e) return 1 from frontend import parse_lib names = parse_lib.MakeGrammarNames(gr) p_printer = expr_parse.ParseTreePrinter(names) # print raw nodes p_printer.Print(pnode) if is_expr: from oil_lang import expr_to_ast tr = expr_to_ast.Transformer(gr) if start_symbol == 'eval_input': ast_node = tr.Expr(pnode) else: ast_node = tr.OilAssign(pnode) ast_node.PrettyPrint() print() elif action == 'stdlib-test': # This shows how deep Python's parse tree is. It doesn't use semantic # actions to prune on the fly! import parser # builtin module t = parser.expr('1+2') print(t) t2 = parser.st2tuple(t) print(t2) else: raise RuntimeError('Invalid action %r' % action) if __name__ == '__main__': try: sys.exit(main(sys.argv)) except RuntimeError as e: print('FATAL: %s' % e, file=sys.stderr) sys.exit(1)
2.234375
2
unittest_flow/uf04_testsuite_for_module_uf01.py
RagnorLixiaomeng/apiAssurance
0
12788188
<reponame>RagnorLixiaomeng/apiAssurance # -*- coding: utf-8 -*- # @Time : 2021/5/29 2:28 PM # @Author: lixiaomeng_someday # @Email : <EMAIL> # @File : uf04_testsuite_for_module_uf01.py import unittest from apiAssurance.unittest_flow.uf02_test_mathmethod_cases import TestMathMethod from apiAssurance.unittest_flow.uf03_test_multi_method_cases import TestMultiMethod """test suite 1: for module uf02:optional cases""" suite_for_MathMethodModule = unittest.TestSuite() suite_for_MathMethodModule.addTests([ TestMathMethod("test_two_positive_plus"), TestMathMethod("test_two_negative_plus"), TestMathMethod("test_two_zero_plus") ]) """test suite 2: for module uf03""" suite_for_MultiMethodModule = unittest.TestSuite() suite_for_MultiMethodModule.addTest(unittest.TestLoader().loadTestsFromModule(TestMultiMethod))
2.078125
2
tasks/utils.py
RossBrunton/RThing
0
12788189
<gh_stars>0 """Utility functions for the tasks app""" from django.template.loader import render_to_string from django.template import RequestContext from django.core.cache import cache from tasks.templatetags import fragments from courses.models import get_iface import random # This is used to seperate the user output from the hidden output; it is inserted via a generic_print after code, and # all output after it will be hidden from the user # This really isn't the best way of doing this, but I can't think up any other way _SPLIT_TOKEN = "<KEY>SPLIT_TOKEN_QPZMWOXN" def perform_execute(code, task, user): """Executes provided code (a string) and the model answer and returns (output, media, is_error, is_correct) It compares it to the model answer, that's what is_correct means. is_correct will always be false if the task has automark set to false. This will try to do as little work as possible by storing the model answer in a cache, and by trying is_equivilant on the interface. """ # Encode it to ascii to get rid of unicode chars code = code.encode("ascii", "ignore").decode("ascii") # Strip whitespace from both ends code = code.strip() iface = task.iface # Ensure the code ends with ";" or whatever if not code.endswith(iface.LINE_END): code += iface.LINE_END # First, check to see if they are equivalent and the answer exists # if the task cannot be automarked, equiv is always false equiv = iface.is_equivalent(task.model_answer, code) and task.automark # Look up prior prior = "" if task.takes_prior and task.previous(): prior = task.previous().as_prior() + iface.generic_print(_SPLIT_TOKEN) # Generate a seed if needed seed = 0 if task.random_poison(): seed = random.randint(0, 1 << 30) if task.takes_prior and task.previous(): seed = task.previous().prior_seed(user) # Run the user's code, only if the lines of code are not equivalent if not equiv: user_code = "".join(filter(lambda x: bool(x), [ prior, task.hidden_pre_code, task.visible_pre_code, code, iface.generic_print(_SPLIT_TOKEN), task.validate_answer, task.post_code ])).strip() user_input = { "commands":user_code, "namespace":task.lesson.pk, "uses_random":task.random_poison(), "uses_image":task.uses_image, "automark":task.automark, "seed":seed, "user":user.pk, "timeout":task.course.timeout } user_output = iface.run(user_input) if user_output["is_error"]: # If the output has an error, assume it's wrong return ( user_output["err"], None, True, False ) # Run the model answer, but only if an answer exists if task.automark: # Check the cache for a model answer cache_value = None if not task.random_poison(): cache_value = cache.get("task_model_{}".format(task.pk)) if not cache_value: # Miss model_code = "".join(filter(lambda x: bool(x), [ prior, task.hidden_pre_code, task.visible_pre_code, task.model_answer, iface.generic_print(_SPLIT_TOKEN), task.validate_answer, task.post_code ])).strip() model_input = { "commands":model_code, "namespace":task.lesson.pk, "uses_random":task.random_poison(), "uses_image":task.uses_image, "automark":task.automark, "seed":seed, "user":user.pk, "model":True, "timeout":task.course.timeout } model_output = iface.run(model_input) if not task.random_poison(): cache.set("task_model_{}".format(task.pk), model_output) else: # Hit model_output = cache_value # If the answers are equivalent, then set the users output to the models output if equiv: user_output = model_output # Strip all lines after the split token displayed_output = "" range_end = 0 range_start = 0 lines = user_output["out"].split("\n") for l in range(len(lines)-1, -1, -1): # Loop backwards until we find the token, to see what range of lines we should output # This is for takes_prior (takes_prior injects another split token before the command) for the start of range if range_end and _SPLIT_TOKEN in lines[l]: range_start = -len(lines)+l+1 break # And this is for the end of the range, to delete post_code and validate_answer if _SPLIT_TOKEN in lines[l]: range_end = -len(lines)+l if not task.takes_prior: break displayed_output = "\n".join(lines[range_start:range_end]) # Store the seed if seed: uot = task.get_uot(user) uot.seed = seed uot.save() # And return return ( displayed_output, user_output.get("media", None), False, equiv or ( task.automark and user_output["out"] == model_output["out"] and user_output.get("media", None) == model_output.get("media", None) ) ) def validate_execute(task, instance): """Executes the model answer treating the task as if it were a dict and returns (is_error, error) This is used when validating the contents of the model when saving it. """ # If prior is true this method doesn't seem to work if task["takes_prior"]: return (False, "") # Look up prior prior = "" if task["takes_prior"] and instance.previous(): prior = instance.previous().as_prior() + get_iface(task["language"]).generic_print(_SPLIT_TOKEN) # Generate a seed seed = random.randint(0, 1 << 30) # Run the model answer model_code = "".join(filter(lambda x: bool(x), [ prior, task["hidden_pre_code"], task["visible_pre_code"], task["model_answer"], task["validate_answer"], task["post_code"] ])).strip() model_input = { "commands":model_code, "namespace":task["section"].lesson.pk, "uses_random":True, "uses_image":task["uses_image"], "automark":task["automark"], "seed":seed, "user":0 } model_output = get_iface(task["language"]).run(model_input) if model_output["is_error"]: return (True, model_output["err"]) # And return return (False, "") def fragmentate(type, obj, request, content_select=None, content_value=None): """Generates a fragment for the given type and returns it as a python dict See doc/task_submit_interface.md for details. """ frag = {"type":type} if type == "task": frag["id"] = obj.pk frag["order"] = "{}-{}".format(obj.section.order, obj.order) frag["html"] = render_to_string("tasks/task.html", fragments.task(obj)) return frag if type == "task-content": frag["id"] = obj.pk frag["select"] = content_select frag["html"] = content_value return frag if type == "lesson-start": frag["html"] = render_to_string("tasks/lesson_start.html", fragments.lesson_start(obj)) return frag if type == "lesson-end": frag["html"] = render_to_string("tasks/lesson_end.html", fragments.lesson_end(obj)) return frag if type == "section-start": frag["order"] = obj.order frag["html"] = render_to_string("tasks/section_start.html", fragments.section_start(obj, request.user.is_staff)) return frag if type == "section-end": frag["order"] = obj.order frag["html"] = render_to_string("tasks/section_end.html", fragments.section_end(obj)) return frag if type == "prompt-entry": frag["id"] = obj.pk frag["html"] = render_to_string("tasks/prompt_entry.html", fragments.prompt_entry(obj)) return frag raise RuntimeError("{} is not a fragment type".format(type))
2.6875
3
examples/algorithms/algorithms.py
rorodata/lambdapool
0
12788190
def fibonacci(n): '''A naive implementation of computing n'th fibonacci number ''' if n==0: return 0 if n==1: return 1 return fibonacci(n-1) + fibonacci(n-2) def factorial(n): '''Returns factorial of a number ''' if n<0: raise ValueError('Factorial of a negative number does not exist') if n==0: return 1 return n*factorial(n-1)
4.25
4
V-generalization/examples/stereo_neural_inference/face_detector_v2.py
Ikomia-dev/ikomia-oakd
0
12788191
<reponame>Ikomia-dev/ikomia-oakd<gh_stars>0 from pathlib import Path import depthai as dai import cv2 import sys # Importing from parent folder sys.path.insert(0, str(Path(__file__).parent.parent.parent)) # move to parent path from utils.draw import drawROI, displayFPS from utils.OakRunner import OakRunner frame_width, frame_height = 300, 300 # Function called before entering inside the process loop, useful to set few arguments def init(runner, device): runner.custom_arguments["required_confidence"] = 0.2 # Function called inside the process loop, useful to apply any treatment def process(runner): for side in ["left", "right"]: frame = runner.output_queues[side+"_cam"].get().getCvFrame() faces_data = runner.output_queues["nn_"+side+"_faces"].get().getFirstLayerFp16() if(faces_data[2] > runner.custom_arguments["required_confidence"]): drawROI(frame, (faces_data[3],faces_data[4]), (faces_data[5],faces_data[6]), color=(0,200,230)) displayFPS(frame, runner.getFPS()) cv2.imshow(side, frame) runner = OakRunner() for side in ["left", "right"]: if(side == "left"): runner.setLeftCamera(frame_width, frame_height) face_manip = runner.getLeftCameraManip() else: runner.setRightCamera(frame_width, frame_height) face_manip = runner.getRightCameraManip() face_manip.initialConfig.setFrameType(dai.RawImgFrame.Type.BGR888p) # Switch to BGR (but still grayscaled) runner.addNeuralNetworkModel(stream_name="nn_"+side+"_faces", path=str(Path(__file__).parent) + "/../../../_models/face_detection.blob", handle_mono_depth=False) face_manip.out.link(runner.neural_networks["nn_"+side+"_faces"].input) # link transformed video stream to neural network entry runner.run(process=process, init=init)
2.03125
2
alert_bot.py
nacitar/proxitar
0
12788192
#!/usr/bin/env python3 # TODO: how will commands handle incorrectly cased names? will need to be able to do that, preferably without losing original case in messages. # TODO: initial 'all clear'? here, or in main? # TODO: save 'seen' persistently upon changes? # TODO: commands, reporting/unique players (later), saving 'seen' to disk # figure out clearing of state after a disconnect (or is that a 'main' thing?) # TODO: inverted warnings, for population info import news_reel_monitor import bisect import datetime from enum import Enum, auto UNCLANNED_PLACEHOLDER = 'unclanned' class DataSetCategory(Enum): ADMINISTRATOR = 'admin' ALLY_CLAN = 'allyclan' ALLY_PLAYER = 'allyplayer' IGNORE_CLAN = 'ignoreclan' IGNORE_PLAYER = 'ignoreplayer' IGNORE_HOLDING = 'ignoreholding' class DataMappingCategory(Enum): FILTER_PLAYER = 'filterplayer' FILTER_CLAN = 'filterclan' FILTER_HOLDING = 'filterholding' def oxford_comma_delimited_string(entries): count = len(entries) if count: if count == 1: return entries[0] return f"{', '.join(entries[:-1])}, and {entries[-1]}" return '' class AlertBot(object): def __init__(self, monitor): self.holding_alert = {} self.monitor = monitor self.seen_players = {} # TODO: the 'unique' stuff self._data_sets = {} self._data_mappings = {} def data_set(self, category): data = self._data_sets.get(category) if data is None: self._data_sets[category] = data = set() return data def data_mapping(self, category): data = self._data_mappings.get(category) if data is None: self._data_mappings[category] = data = {} return data def is_friendly(self, name, clan): name = name.lower() clan = clan.lower() return ( name in self.data_set(DataSetCategory.ALLY_PLAYER) or clan in self.data_set(DataSetCategory.ALLY_CLAN) or name in self.data_set(DataSetCategory.IGNORE_PLAYER) or clan in self.data_set(DataSetCategory.IGNORE_CLAN) ) def filter_player(self, name): # TODO: offensive/stupid player names filtered_name = self.data_mapping(DataMappingCategory.FILTER_PLAYER).get(name.lower()) if filtered_name is not None: return filtered_name return name def filter_clan(self, clan): if clan is None: global UNCLANNED_PLACEHOLDER return UNCLANNED_PLACEHOLDER # TODO: offensive/stupid clan names filtered_clan = self.data_mapping(DataMappingCategory.FILTER_CLAN).get(clan.lower()) if filtered_clan is not None: return filtered_clan return clan def filter_holding(self, holding): # TODO: change it to change how TTS pronounces it? to fix the capitalization of certain cities? filtered_holding = self.data_mapping(DataMappingCategory.FILTER_HOLDING).get(holding.lower()) if filtered_holding is not None: return filtered_holding return holding def _get_alerts(self, full_status, all_warnings_on_change=False): any_alert_changed = False prioritized_warnings = [] notices = [] total_enemies = 0 if full_status: all_warnings_on_change = True # for simplicity, just always check all holdings... we only report new events anyway, # and this is necessary for 'all clear' messages anyway for holding in self.monitor.holdings(): holding_string = self.filter_holding(holding) if holding_string == holding: # unfiltered, fix the case instead holding_string = self.monitor.cased_holding_name.get(holding) # Get the full holding message last_alert = self.holding_alert.get(holding) if last_alert is None: self.holding_alert[holding] = last_alert = f'{holding_string} is clear' holding_state = self.monitor.holding_state(holding) enemies_by_clan = {} enemy_count = 0 most_numerous_clan_enemy_count = 0 most_numerous_clan = None for name in holding_state.players: clan, rank = self.monitor.get_player_clan_info(name) if self.is_friendly(name, clan): continue enemies = enemies_by_clan.get(clan) if enemies is None: enemies_by_clan[clan] = enemies = set() enemies.add(name) # if it's a new highest total or the same but with a clan alphabetically earlier (prioritizing clans over unclanned None entries) clan_enemy_count = len(enemies) enemy_count += clan_enemy_count if clan_enemy_count > most_numerous_clan_enemy_count or (clan_enemy_count == most_numerous_clan_enemy_count and ( # most numerous is unclanned, or it is a clan and this clan is one alphabetically earlier # (prioritizing clans over unclanned 'None' entries) not most_numerous_clan or (clan and clan < most_numerous_clan))): most_numerous_clan_enemy_count = clan_enemy_count most_numerous_clan = clan if enemy_count: total_enemies += enemy_count if len(enemies_by_clan) == 1: clan, enemies = next(iter(enemies_by_clan.items())) clan_string = self.filter_clan(clan) if clan_string == clan: # unfiltered, fix the case instead clan_string = self.monitor.cased_clan_name.get(clan) if len(enemies) == 1: name = next(iter(enemies)) name_string = self.filter_player(name) if name_string == name: # unfiltered, fix the case instead name_string = self.monitor.cased_player_name.get(name) alert = f'{holding_string} has enemy {name_string} from {clan_string}' else: alert = f'{holding_string} has {enemy_count} enemies from {clan_string}' else: clan_string = self.filter_clan(most_numerous_clan) if clan_string == most_numerous_clan: # unfiltered, fix the case instead clan_string = self.monitor.cased_clan_name.get(most_numerous_clan) alert = f'{holding_string} has {enemy_count} enemies, mostly from {clan_string}' is_warning = True else: alert = f'{holding_string} is clear' is_warning = False this_alert_changed = (last_alert != alert) if this_alert_changed or (is_warning and all_warnings_on_change): if this_alert_changed: any_alert_changed = True # this is a new alert, add it to the list to be output if is_warning: # just for sorting the messages by enemy count and holding name bisect.insort(prioritized_warnings, (-enemy_count, holding, alert)) else: # for sorting by holding name bisect.insort(notices, (holding, alert)) #print(f'CHANGED! "{last_alert}" != {alert}') self.holding_alert[holding] = alert alerts = [] if any_alert_changed or full_status: warnings = [entry[2] for entry in prioritized_warnings] notices = [entry[1] for entry in notices] #print(f'ALERT CHANGED: {warnings} ____ {notices}') if warnings: alerts.append(f'WARNING: {oxford_comma_delimited_string(warnings)}') # if everything is clear, and either we want a status # update or this is indeed new (because a new notice exists) if not total_enemies and (full_status or notices): alerts.append('NOTICE: all clear') elif notices: alerts.append(f'NOTICE: {oxford_comma_delimited_string(notices)}') # TODO: remove debug divider #print('----------------') return alerts def check_for_changes(self, full_status=False, all_warnings_on_change=False): now = datetime.datetime.now() changed_proximity, changed_resources = self.monitor.check_for_changes() if changed_proximity: for holding, player_state in changed_proximity.items(): # check the new events for 'seen' functionality for name, state in player_state.items(): present, is_current = state if is_current: # by checking if it's current, we're sure that this is the latest # location, for situations where the player has left multiple holdings # within the contents of a single update. self.seen_players[name] = (now, holding) return (now, self._get_alerts(full_status=full_status, all_warnings_on_change=all_warnings_on_change)) # get the status without checking def status(self): now = datetime.datetime.now() return (now, self._get_alerts(full_status=True))
2.515625
3
horus_media_examples/list_recordings.py
horus-view-and-explore/horus-media-client
3
12788193
# Copyright(C) 2020 Horus View and Explore B.V. import psycopg2 from horus_db import Frames, Recordings, Frame, Recording # This example shows how to iterate over all the recordings def get_connection(): return psycopg2.connect( "dbname=HorusWebMoviePlayer user=postgres password=<PASSWORD>") connection = get_connection() recordings = Recordings(connection) cursor = recordings.all() recording = Recording(cursor) while recording is not None: print(" ", recording.id, " ", recording.directory) recording = Recording(cursor)
2.9375
3
INTEST.py
ankitpipalia/codechef-solutions
1
12788194
<reponame>ankitpipalia/codechef-solutions<filename>INTEST.py n, divider = input().split(" ") n = int(n) divider = int(divider) counter = 0 while(n > 0): n -= 1 value = int(input()) if value % divider == 0: counter += 1 print(counter)
3.40625
3
python/hopsworks/git_provider.py
robzor92/hopsworks-api
0
12788195
<reponame>robzor92/hopsworks-api # # Copyright 2022 Logical Clocks AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import humps import json from hopsworks.core import git_provider_api from hopsworks import util class GitProvider: def __init__( self, username=None, token=None, git_provider=None, url=None, name=None, type=None, href=None, expand=None, items=None, count=None, project_id=None, project_name=None, ): self._username = username self._git_provider = git_provider self._git_provider_api = git_provider_api.GitProviderApi( project_id, project_name ) @classmethod def from_response_json(cls, json_dict, project_id, project_name): # Count is not set by the backend so parse based on items array json_decamelized = humps.decamelize(json_dict) if len(json_decamelized["items"]) == 0: return [] else: return [ cls(**provider, project_id=project_id, project_name=project_name) for provider in json_decamelized["items"] ] @property def username(self): """Username set for the provider""" return self._username @property def git_provider(self): """Name of the provider, can be GitHub, GitLab or BitBucket""" return self._git_provider def delete(self): """Remove the git provider configuration. # Raises `RestAPIError`. """ self._git_provider_api._delete_provider(self.git_provider) def json(self): return json.dumps(self, cls=util.Encoder) def __str__(self): return self.json() def __repr__(self): return f"GitProvider({self._username!r}, {self._git_provider!r})"
2.09375
2
alerta/checker/client.py
MailOnline/alerta
0
12788196
<reponame>MailOnline/alerta import os import sys import subprocess import shlex from alerta.common import log as logging from alerta.common import config from alerta.common.alert import Alert from alerta.common.heartbeat import Heartbeat from alerta.common import severity_code from alerta.common.api import ApiClient Version = '2.0.3' LOG = logging.getLogger(__name__) CONF = config.CONF class CheckerClient(object): nagios_opts = { 'nagios_plugins': '/usr/lib64/nagios/plugins', } def __init__(self): config.register_opts(CheckerClient.nagios_opts) def main(self): if CONF.heartbeat: msg = Heartbeat(version=Version) else: # Run Nagios plugin check args = shlex.split(os.path.join(CONF.nagios_plugins, CONF.nagios_cmd)) LOG.info('Running %s', ' '.join(args)) try: check = subprocess.Popen(args, stdout=subprocess.PIPE) except Exception, e: LOG.error('Nagios check did not execute: %s', e) sys.exit(1) stdout = check.communicate()[0] rc = check.returncode LOG.debug('Nagios plugin %s => %s (rc=%d)', CONF.nagios_cmd, stdout, rc) if rc == 0: severity = severity_code.NORMAL elif rc == 1: severity = severity_code.WARNING elif rc == 2: severity = severity_code.CRITICAL elif rc == 3: severity = severity_code.UNKNOWN else: rc = -1 severity = severity_code.INDETERMINATE # Parse Nagios plugin check output text = '' long_text = '' perf_data = '' extra_perf_data = False for num, line in enumerate(stdout.split('\n'), start=1): if num == 1: if '|' in line: text = line.split('|')[0].rstrip(' ') perf_data = line.split('|')[1] value = perf_data.split(';')[0].lstrip(' ') else: text = line value = 'rc=%s' % rc else: if '|' in line: long_text += line.split('|')[0] perf_data += line.split('|')[1] extra_perf_data = True elif extra_perf_data is False: long_text += line else: perf_data += line LOG.debug('Short Output: %s', text) LOG.debug('Long Output: %s', long_text) LOG.debug('Perf Data: %s', perf_data) graph_urls = None msg = Alert( resource=CONF.resource, event=CONF.event, correlate=CONF.correlate, group=CONF.group, value=value, severity=severity, environment=CONF.environment, service=CONF.service, text=text + ' ' + long_text, event_type='nagiosAlert', tags=CONF.tags, threshold_info=CONF.nagios_cmd, timeout=CONF.timeout, raw_data=stdout, more_info=perf_data, graph_urls=graph_urls, ) if CONF.dry_run: print msg else: LOG.debug('Message => %s', repr(msg)) api = ApiClient() api.send(msg) return msg.get_id()
2.03125
2
ros/src/twist_controller/twist_controller.py
hssavage/CarND-Capstone
0
12788197
''' ############################################################################### # twist_controller.py # # --------------------------------------------------------------------------- # # # # Description: # # ------------ # # This module contains the source for the command controller for the throttle # # brakes and steering for the Self-Driving Car System. # # # # Change Log: # # ----------- # # +--------------------+---------------+------------------------------------+ # # | Date | Author | Description | # # +--------------------+---------------+------------------------------------+ # # | 2/24/2018 | <NAME> | Initial pass on the code | # # +--------------------+---------------+------------------------------------+ # # | 2/27/2018 | <NAME> | Integrated a velocity controller | # # | | | that works better than a PID | # # +--------------------+---------------+------------------------------------+ # # | 2/28/2018 | <NAME> | Remove a few irrelevant lines of | # # | | | code and added comments | # # +--------------------+---------------+------------------------------------+ # # | 3/13/2018 | <NAME> | Changed twist cmd update interface | # # | | | to "set_target_*" for clarity | # # +--------------------+---------------+------------------------------------+ # # | 3/29/2018 | <NAME> | Updated the velocity_controller | # # +--------------------+---------------+------------------------------------+ # # | 4/12/2018 | <NAME> | Reverted some changes to carry max | # # | | | accel values for thresholding in | # # | | | the velocity controller | # # +--------------------+---------------+------------------------------------+ # ############################################################################### ''' # Debug prints - to be removed import rospy # For steering control from yaw_controller import YawController # For throttle/brake control from velocity_controller import VelocityController class Controller(object): def __init__(self, wheel_base=0.0, steer_ratio=0.0, min_speed=0.0, max_lat_accel=0.0, max_steer_angle=0.0, vehicle_mass=1e-6, max_accel=0.0, max_decel=0.0, max_input_accel=0.0, max_input_decel=0.0, deadband=0.0, fuel_capacity=0.0, wheel_radius=0.0): ''' Initializes the controller object ''' # Steering controller self.steering_controller = YawController(wheel_base=wheel_base, steer_ratio=steer_ratio, min_speed=min_speed, max_lat_accel=max_lat_accel, max_steer_angle=max_steer_angle) # Throttle/Brake Controller self.throttle_controller = VelocityController( vehicle_mass=vehicle_mass, max_accel=max_accel, max_decel=max_decel, max_input_accel=max_input_accel, max_input_decel=max_input_decel, wheel_radius=wheel_radius, deadband=deadband, fuel_capacity=fuel_capacity) # Vehicle Status variables self.cur_linear_velocity = 0 self.cur_angular_velocity = 0 # Desired state variables self.target_linear_velocity = 0 self.target_angular_velocity = 0 def set_current_linear_velocity(self, vel=0): ''' Sets the current linear velocity of the vehicle for the controller to use Returns: float: vel - the current linear velocity (m/s) Complexity: O(1) ''' self.cur_linear_velocity = vel def set_current_angular_velocity(self, vel=0): ''' Sets the current angular velocity of the vehicle for the controller to use Returns: float: vel - the current angular velocity (m/s) Complexity: O(1) ''' self.cur_angular_velocity = vel def set_target_linear_velocity(self, vel=0): ''' Sets the target linear velocity of the vehicle for the controller to use Returns: float: vel - the target linear velocity (m/s) Complexity: O(1) ''' self.target_linear_velocity = vel def set_target_angular_velocity(self, vel=0): ''' Sets the target angular velocity of the vehicle for the controller to use Returns: float: vel - the target angular velocity (m/s) Complexity: O(1) ''' self.target_angular_velocity = vel def control(self): ''' Returns a list of the desired throttle, brake and steering values Returns: list<float>: [throttle, brake, steering] Complexity: O(1) ''' # Values to return throttle = 0.0 brake = 0.0 steer = 0.0 # Run steering controller steer = self.steering_controller.get_steering( self.target_linear_velocity, self.target_angular_velocity, self.cur_linear_velocity ) # Run throttle controller throttle, brake = self.throttle_controller.get_throttle_brake( self.target_linear_velocity, self.target_angular_velocity, self.cur_linear_velocity ) # Hand back values return throttle, brake, steer
2.359375
2
manage.py
zagaran/instant-census
1
12788198
#!/usr/bin/python """ DO NOT IMPORT ANYTHING HIGHER UP THAN UTILS IN THE GLOBAL SCOPE. DOING SO WILL BREAK SERVER SETUP """ import sys import unittest2 as unittest from IPython import start_ipython from utils.local import untracked_file_check, delete_pyc_files from utils.server import TEST_RUN COMMANDS = {"shell": "runs an ipython shell to interact with the database", "import_check": "ensures that code is good to commit", "test": "runs the regular test suite", "full_tests": "runs a lengthy test suite", "ping": "checks if the database is up or down", "setup": "args: customer_name [admin_emalis]; needs sudo", "deploy_check": "checks if the system is safe to deploy", "make_customer": ""} def project_import_check(): import app # @UnusedImport to ensure no syntax errors in the codebase import cron # @UnusedImport to ensure no syntax errors in the codebase import utils.database # @UnusedImport to ensure database connection def regular_test_suite(): global TEST_RUN TEST_RUN = True project_import_check() test_loader = unittest.TestLoader() test_suite = test_loader.discover(".") #to run individual tests, comment out the line above (test_loader.discoverer) and use the following: #from tests.test_cohort_dashboard import TestCohortsDashboard #from tests.test_integration import TestIntegration #from tests.test_status_change_messages import TestStatusChangeMessages #test_suite = unittest.TestSuite() #test_suite.addTest(TestIntegration("test_copied_schedule")) test_runner = unittest.TextTestRunner(buffer=True) test_runner.run(test_suite) def full_test_suite(): from tests.test_locking import full_lock_drill full_lock_drill() regular_test_suite() if __name__ == "__main__": delete_pyc_files() if len(sys.argv) <= 1 or sys.argv[1] not in COMMANDS: print "Usage: python manage.py COMMAND" print "\nCOMMAND takes one of the following options:\n" for k, v in COMMANDS.items(): print "%s: %s" % (k, v) print elif sys.argv[1] == "shell": start_ipython(argv=["-i", "supertools/terminal.py"]) elif sys.argv[1] == "ping": from utils.database import mongo_ping mongo_ping(output=True) elif sys.argv[1] == "import_check": untracked_file_check() project_import_check() elif sys.argv[1] == "test": print "\nWarning: Settings in settings_override.py should be disabled prior to running tests.\n" regular_test_suite() elif sys.argv[1] == "full_tests": print "\nWarning: Settings in settings_override.py should be disabled prior to running tests.\n" full_test_suite() elif sys.argv[1] == "deploy_check": from supertools.cron_status import safe_to_deploy if not safe_to_deploy(): raise Exception("Error: hourly cron may be running; it is not currently safe to deploy") print "Deploy check passed" elif sys.argv[1] == "setup": if len(sys.argv) <= 2: print "Usage: setup customer_name [admin_emalis]" exit(1) from supertools.setup import do_setup do_setup(sys.argv[2], sys.argv[3:]) else: raise Exception("Not Implemented")
2.203125
2
SimpleMaze.py
MarcusRainbow/Maze
0
12788199
from typing import List, Set, Optional, Tuple from random import randrange, shuffle, random from RatInterface import Rat, MazeInfo from SimpleRats import AlwaysLeftRat, RandomRat from Localizer import Localizer, NonLocalLocalizer, OneDimensionalLocalizer, TwoDimensionalOneStepLocalizer from graphviz import Graph class SimpleMaze: """ A simple maze is a vector of vectors of edges. It supports one rat at a time. It has one start and one end. WLOG, the start is always the first element and the end is one after the last. There is no concept of compass directions in this maze, and there is no policing to prevent crossing paths. """ def __init__(self, edges: List[List[int]], fill_back_steps: bool): """ Initialise with a set of edges. If fill_back_steps is true, we generate backward edges to make it an undirected graph. """ validate_edges(edges, fill_back_steps) self.all_edges = edges def __str__(self): return "SimpleMaze(%s)" % self.all_edges def maze(self) -> List[List[int]]: return self.all_edges def solve(self, rat: Rat, max_iterations: int, info: Optional[MazeInfo] = None) -> bool: """ Tries to solve the maze. Returns the number of iterations used. If it exceeds max_iterations, returns max_iterations + 1. If it fails for any other reason, returns 0. """ # always start from the beginning pos = 0 iterations = 0 # set the last_pos such that the back path is the last in the first list last_pos = self.all_edges[pos][-1] #print("pos=%i last_pos=%i" % (pos, last_pos)) # keep going until the end end = len(self.all_edges) while (pos < end) and (iterations <= max_iterations): # find the edges from the current node edges = self.all_edges[pos] # one of these edges should point back to where we came from if edges.count(last_pos) != 1: print("Problem: no edge from %i to %i" % (pos, last_pos)) back = edges.index(last_pos) # supply maze info for rats that need it. There is only one rat, # so supply rat number zero num_edges = len(edges) if info: info.set_pos(pos, back, num_edges, rat) # get the rat to choose a direction turn = rat.turn(num_edges, info) if (turn >= num_edges) or (turn < 0): return 0 # give up # going in some direction direction = (turn + back) % num_edges last_pos = pos pos = edges[direction] iterations = iterations + 1 #print("pos=%i last_pos=%i" % (pos, last_pos)) # hit the end, or failed with an iteration count that is too high # (technically we should worry about the case where we hit max # iterations with a valid exit, but this is unlikely and does not # matter much). return iterations def validate_edges(edges: List[List[int]], fill_back_steps: bool): """ validate and optionally fill back steps """ end = len(edges) if end < 1: raise Exception("Must be at least one node") has_end = False edge_from = 0 for node in edges: if len(set(node)) != len(node): raise Exception("Must not have duplicate edges") for edge_to in node: if edge_to == end: has_end = True # OK to have multiple routes to end elif edge_to > end: raise Exception("Edge out of range") elif edge_to == edge_from: raise Exception("Not allowed to have edges to self") elif fill_back_steps: # make sure we have a return edge matching this ensure_edge(edges, edge_to, edge_from) # next node edge_from = edge_from + 1 # We validate that at least one node has an edge leading to the # exit. However, we do not currently check that there is a clear # path to any such node. if not has_end: raise Exception("No edge to the end node") def ensure_edge(maze: List[List[int]], edge_from: int, edge_to: int): """ Validates that we have an edge (and if necessary inserts one) """ node = maze[edge_from] count = node.count(edge_to) if count == 1: return # already have this edge. Nothing more to do elif count > 1: raise Exception("Edges must be unique") # We need this edge. Append it (no attempt to avoid crossing paths) node.append(edge_to) def random_maze(allow_loops: float, local: Localizer) -> List[List[int]]: """ Creates a random maze with the specified number of nodes. """ # Do NOT write maze = [[]] * node_count as this makes all list elements the same memory! node_count = local.node_count() maze = [[] for y in range(node_count)] # Remember all the nodes that connect to the origin. So far, just # contains the origin, which is zero by definition. accessible = { 0 } # First do a random walk until we hit the end. There may be loops, # but we don't worry about that. Just make sure there are no duplicate # edges. Also, create bidirectional edges as we go. edge_from = 0 while edge_from != node_count: edge_to = local.random_step(edge_from, True) add_bidirectional_edges(maze, accessible, edge_from, edge_to, allow_loops) edge_from = edge_to # We now have a working maze, but not a very interesting one, in that it # just has one random path from start to end. Add some blind alleys and # ensure that every node has at least one edge, which somehow connects to # the original random walk, hence the start (and the end) for i in range(node_count): if not (i in accessible): # random walk from i until we hit the accessible set new_path = { i } edge_from = i while not (edge_from in accessible): edge_to = local.random_step(edge_from, False) # avoid the exit add_bidirectional_edges(maze, new_path, edge_from, edge_to, allow_loops) edge_from = edge_to # all these nodes are now accessible accessible.update(new_path) # We now have a maze with some blind alleys and all nodes are accessible. # Shuffle the edges in each node (we do not want the first edge to always # be the one that leads to the exit) and return it. for node in maze: shuffle(node) return maze def add_bidirectional_edges( maze: List[List[int]], accessible: Set[int], edge_from: int, edge_to: int, allow_loops: float): """ Adds (or at least ensures the existence of) bidirectional edges, and adds the end node to a set of accessible nodes. If allow_loops is zero, we prevent loops (avoid adding an edge that leads to an accessible node). If it is one, we allow them. If between zero and one, we randomly allow them or not. """ if edge_to != edge_from and allow_edge(allow_loops, edge_to, accessible): ensure_edge(maze, edge_from, edge_to) if edge_to != len(maze): # do not need back path from the exit ensure_edge(maze, edge_to, edge_from) accessible.add(edge_to) def allow_edge(allow_loops: float, edge_to: int, accessible: Set[int]) -> bool: EPSILON = 1e-10 if allow_loops > 1.0 - EPSILON: return True elif not (edge_to in accessible): return True elif allow_loops < EPSILON: return False elif random() < allow_loops: return True else: return False def render_graph(maze: List[List[int]], file_name): """ Generate a PDF file showing the maze as an undirected graph. Uses GraphViz, which must be installed and on the PATH. Note that the resulting graph shows only the nodes and their connections. The ordering of edges around each node is determined by GraphViz itself. You therefore cannot rely on this rendering to tell you whether to turn left or right at each node. """ if len(maze) > 26: raise Exception("render_graph can only handle up to 26 nodes") dot = Graph() this = 0 edges = [] unknowns = 0 A = ord('A') a = ord('a') for node in maze: id = str(chr(A + this)) if this == 0: dot.node(id, "Start (A)") else: dot.node(id, id) for edge in node: # avoid duplicating edges by only showing to > from if edge > this: edge_str = id + str(chr(A + edge)) edges.append(edge_str) elif edge < 0: unknown_id = str(chr(a + unknowns)) unknowns = unknowns + 1 edge_str = id + unknown_id edges.append(edge_str) dot.node(unknown_id, "Unknown") this = this + 1 # The final node is not in the list, as it exists only as the destination # of one or more edge id = str(chr(A + len(maze))) dot.node(id, "End (%s)" % id) #print(edges) dot.edges(edges) #print(dot.source) dot.render(file_name, view=True) def are_equal_mazes(left: List[List[int]], right: List[List[int]], left_start: int = 0, right_start: int = 0) -> bool: """ Test whether two mazes are the same. The nodes may not be in the same order, and the edges may be rotated, but the topology should be the same. Handle negative nodes as a wildcard, matching anything. """ return are_nodes_equal(left, right, left_start, right_start, -1, -1, set()) def are_nodes_equal( left: List[List[int]], right: List[List[int]], left_node: int, right_node: int, left_back: int, right_back: int, already_checked: Set[Tuple[int, int]]) -> bool: #print("are_nodes_equal(%i, %i, %i, %i)" # % (left_node, right_node, left_back, right_back)) # Treat negative nodes as wildcards, matching anything if left_node < 0 or right_node < 0: return True # Only match nodes that are out of range if both are left_ended = left_node >= len(left) right_ended = right_node >= len(right) if left_ended != right_ended: #print("not equal: one of %i and %i is the end" % (left_node, right_node)) return False elif left_ended: return True # Avoid recursing for ever if there are loops in the mazes if (left_node, right_node) in already_checked: return True already_checked.add((left_node, right_node)) # Got two real nodes. Make sure they have the same number of edges left_edges = left[left_node] right_edges = right[right_node] edge_count = len(left_edges) if edge_count != len(right_edges): #print("not equal: %i has %i edges and %i has %i" % (left_node, len(left_edges), right_node, len(right_edges))) return False # May both be empty (unlikely, as this would make a very trivial maze) if not left_edges: return True # We rely on the back pointer to tell us the relative rotation. if left_back >= 0 and left_back in left_edges and right_back >= 0 and right_back in right_edges: left_index = left_edges.index(left_back) right_index = right_edges.index(right_back) rotation = right_index - left_index return are_edges_equal(left_edges, right_edges, right, left, left_node, right_node, rotation, already_checked) # if no back-pointer defined, just try all the possibilities else: for r in range(edge_count): if are_edges_equal(left_edges, right_edges, right, left, left_node, right_node, r, already_checked): return True #print("not equal: no possible rotation of %i and %i works" % (left_node, right_node)) return False def are_edges_equal( left_edges: List[int], right_edges: List[int], left: List[List[int]], right: List[List[int]], left_node: int, right_node: int, rotation: int, already_checked: Set[Tuple[int, int]]) -> bool: #print("are_edges_equal(%s, %s, %i, %i, %i)" # % (left_edges, right_edges, left_node, right_node, rotation)) edge_count = len(left_edges) assert(edge_count == len(right_edges)) for i, left_edge in enumerate(left_edges): right_edge = right_edges[(i + rotation) % edge_count] if not are_nodes_equal(right, left, left_edge, right_edge, left_node, right_node, already_checked): return False return True def test_fill_back_steps(): maze = SimpleMaze([[1, 3], [2], [3, 0]], True) print("test_fill_back_steps: %s" % maze) assert(maze.maze() == [[1, 3, 2], [2, 0], [3, 0, 1]]) def test_equal_mazes(): maze1 = SimpleMaze([[1, 3], [2], [0, 3]], True) maze2 = SimpleMaze([[2, 3], [0, 3], [1]], True) #print(maze1.maze()) #print(maze2.maze()) assert(are_equal_mazes(maze1.maze(), maze2.maze())) print("test_equal_mazes succeeded") def test_unequal_mazes(): maze1 = SimpleMaze([[1, 3, 2], [2, 0], [0, 3, 1]], False) maze2 = SimpleMaze([[2, 3, 1], [3, 0, 2], [1, 0]], False) #print(maze1.maze()) #print(maze2.maze()) assert(not are_equal_mazes(maze1.maze(), maze2.maze())) print("test_unequal_mazes succeeded") def test_left_rat(): rat = AlwaysLeftRat() maze = SimpleMaze([[1, 3], [2], [3, 0]], True) MAX_ITER = 10 iter = maze.solve(rat, MAX_ITER) print("test_left_rat solved in %i iterations" % iter) assert(iter > 0 and iter <= MAX_ITER) def test_left_rat_fail(): rat = AlwaysLeftRat() # this maze has a loop in it (0 -> 1 -> 2 -> 0) maze = SimpleMaze([[1, 3], [2], [0, 3]], True) MAX_ITER = 10 iter = maze.solve(rat, MAX_ITER) print("test_left_rat_fail timed out as desired after %i iterations" % iter) assert(iter > MAX_ITER) def test_random_rat(): rat = RandomRat() maze = SimpleMaze([[1, 3], [2], [3, 0]], True) MAX_ITER = 1000 iter = maze.solve(rat, MAX_ITER) print("test_random_rat solved in %i iterations" % iter) assert(iter > 0 and iter < MAX_ITER) def test_big_maze(): rat = RandomRat() maze = SimpleMaze([[5, 3], [6], [5, 3, 17, 14, 13, 20], [2, 0, 4, 14, 13, 5, 17, 12], [7, 3], [0, 14, 9, 2, 6, 3], [5, 13, 1], [8, 4, 19, 10], [14, 7], [14, 5, 17], [7, 13], [15, 16], [3, 15], [6, 17, 10, 3, 16, 2], [5, 9, 2, 8, 3, 19], [12, 11, 18], [11, 13], [13, 2, 9, 3], [15], [14, 7]], False) MAX_ITER = 1000 iter = maze.solve(rat, MAX_ITER) print("test_big_maze solved in %i iterations" % iter) assert(iter > 0 and iter < MAX_ITER) def test_random_maze(): maze = SimpleMaze(random_maze(0.5, NonLocalLocalizer(25)), False) #print(maze) render_graph(maze.maze(), "temp/random_maze") rat = RandomRat() MAX_ITER = 1000 iter = maze.solve(rat, MAX_ITER) print("test_random_maze solved in %i iterations" % iter) assert(iter > 0 and iter < MAX_ITER) def test_random_noloop_maze(): maze = SimpleMaze(random_maze(0.0, NonLocalLocalizer(25)), False) #print(maze) render_graph(maze.maze(), "temp/random_noloop_maze") rat = AlwaysLeftRat() MAX_ITER = 1000 iter = maze.solve(rat, MAX_ITER) print("test_random_noloop_maze solved in %i iterations" % iter) assert(iter > 0 and iter < MAX_ITER) def test_random_1d_maze(): maze = SimpleMaze(random_maze(0.5, OneDimensionalLocalizer(25, 5)), False) #print(maze) render_graph(maze.maze(), "temp/random_1d_maze") rat = RandomRat() MAX_ITER = 1000 iter = maze.solve(rat, MAX_ITER) print("test_random_1d_maze solved in %i iterations" % iter) assert(iter > 0 and iter < MAX_ITER) def test_random_2d_maze(): maze = SimpleMaze(random_maze(0.1, TwoDimensionalOneStepLocalizer(25, 5)), False) #print(maze) render_graph(maze.maze(), "temp/random_2d_maze") rat = RandomRat() MAX_ITER = 1000 iter = maze.solve(rat, MAX_ITER) print("test_random_2d_maze solved in %i iterations" % iter) assert(iter > 0 and iter < MAX_ITER) if __name__ == "__main__": test_fill_back_steps() test_equal_mazes() test_unequal_mazes() test_left_rat() test_left_rat_fail() test_random_rat() test_big_maze() test_random_maze() test_random_noloop_maze() test_random_1d_maze() test_random_2d_maze()
3.484375
3
vgg16/17flowers/extractor.py
Rumiachang/keras-examples
0
12788200
import os #from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.applications.inception_v3 import InceptionV3 from tensorflow.keras.preprocessing.image import ImageDataGenerator #from tensorflow.keras.models import Sequential #from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense #from tensorflow.keras import optimizers #from tensorflow.keras.utils import np_utils from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, GlobalAveragePooling2D,Input import tensorflow.keras.callbacks from tensorflow.keras.optimizers import SGD import numpy as np #from smallcnn import save_history """ classes = ['Tulip', 'Snowdrop', 'LilyValley', 'Bluebell', 'Crocus', 'Iris', 'Tigerlily', 'Daffodil', 'Fritillary', 'Sunflower', 'Daisy', 'ColtsFoot', 'Dandelion', 'Cowslip', 'Buttercup', 'Windflower', 'Pansy'] """ classes = ['Dog', 'Cat', 'Raccoon', 'Macaque'] #IMAGE_SIZE = 150 BATCH_SIZE = 32 #1バッチの画像数 NUM_TRAINING_SAMPLES = 4000 #トレーニング画像の総枚数 NUM_VALIDATION_SAMPLES = 1000 #テストデータ画像の総枚数 EPOCHS = 50 #エポック数 N_CLASSES = len(classes) #クラス数 IMG_ROWS, IMG_COLS = 150, 150 #画像の大きさ CHANNELS = 3 #画像のチャンネル数(RGBなので3) train_data_dir = 'data/train' #トレーニングデータのディレクトリ validation_data_dir = 'data/validation' #テストデータのディレクトリ result_dir = 'results' #リザルトのディレクトリ if not os.path.exists(result_dir): os.mkdir(result_dir) def save_history(history, result_file): loss = history.history['loss'] acc = history.history['acc'] val_loss = history.history['val_loss'] val_acc = history.history['val_acc'] nb_epoch = len(acc) with open(result_file, "w") as fp: fp.write("epoch\tloss\tacc\tval_loss\tval_acc\n") for i in range(nb_epoch): fp.write("%d\t%f\t%f\t%f\t%f\n" % (i, loss[i], acc[i], val_loss[i], val_acc[i])) def train_top_model(): #InceptionV3のボトルネック特徴量を入力とし、正解クラスを出力とするFCNNを作成する input_tensor = Input(shape=(IMG_ROWS, IMG_COLS, CHANNELS)) #入力テンソル(画像の縦横ピクセルとRGBチャンネルによる3階テンソル) base_model = InceptionV3(weights='imagenet', include_top=False,input_tensor=input_tensor) x = base_model.output x = GlobalAveragePooling2D()(x) #出力テンソルをflatten x = Dense(1024, activation='relu')(x) #全結合,ノード数1024,活性化関数relu predictions = Dense(N_CLASSES, activation='softmax')(x) model = Model(inputs=base_model.input, outputs=predictions) for layer in base_model.layers: layer.trainable = False model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy',metrics=['accuracy']) model.summary() train_datagen = ImageDataGenerator(rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, rotation_range=10 ) test_datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen.flow_from_directory(directory=train_data_dir, target_size=(IMG_ROWS, IMG_COLS), batch_size=BATCH_SIZE, class_mode='categorical', shuffle=True ) validation_generator = test_datagen.flow_from_directory(directory=validation_data_dir, target_size=(IMG_ROWS, IMG_COLS), batch_size=BATCH_SIZE, class_mode='categorical', shuffle=True ) hist = model.fit_generator(generator=train_generator, steps_per_epoch=NUM_TRAINING_SAMPLES//BATCH_SIZE, epochs=EPOCHS, verbose=1, validation_data=validation_generator, validation_steps=NUM_VALIDATION_SAMPLES//BATCH_SIZE, ) #model.save('vermins_fc_model.hdf5') model.save(os.path.join(result_dir, 'vermins_fc_model.h5')) save_history(hist, os.path.join(result_dir, 'history_extractor.txt')) if __name__ == '__main__': #save_bottleneck_features() train_top_model()
2.1875
2
eb_butterflies_to_CSV.py
acic2017/Butterfly-SDM
1
12788201
<reponame>acic2017/Butterfly-SDM<filename>eb_butterflies_to_CSV.py #!/usr/bin/env python #latin_name, english_name, year, month, latitude, longitude import pandas as pd from sqlalchemy import create_engine query = """ WITH Location AS (SELECT * FROM eb_butterflies.observations o JOIN eb_central.checklists c on c.checklist_id=o.checklist_id JOIN eb_central.sites s ON s.site_id=c.site_id) Select o.observation_id, s.english_name, s.latin_name, Extract(Year from o.created) as "year_created" , Extract(month from o.created) as "month_created", l.latitude, l.longitude FROM eb_butterflies.observations o Join eb_butterflies.species s on o.species_id=s.species_id JOIN Location l on l.observation_id=o.observation_id ; """ e = create_engine(\ 'postgresql://postgres:postgres@localhost:5432/ebutterfly') c = e.connect() pd.read_sql_query(query,c).to_csv('eb_butterflies.csv', index = False)
2.5625
3
pyatv/protocols/mrp/protobuf/AudioFadeResponseMessage_pb2.py
crxporter/pyatv
0
12788202
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: pyatv/protocols/mrp/protobuf/AudioFadeResponseMessage.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from pyatv.protocols.mrp.protobuf import ProtocolMessage_pb2 as pyatv_dot_protocols_dot_mrp_dot_protobuf_dot_ProtocolMessage__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n;pyatv/protocols/mrp/protobuf/AudioFadeResponseMessage.proto\x1a\x32pyatv/protocols/mrp/protobuf/ProtocolMessage.proto\"0\n\x18\x41udioFadeResponseMessage\x12\x14\n\x0c\x66\x61\x64\x65\x44uration\x18\x01 \x01(\x03:M\n\x18\x61udioFadeResponseMessage\x12\x10.ProtocolMessage\x18Y \x01(\x0b\x32\x19.AudioFadeResponseMessage') AUDIOFADERESPONSEMESSAGE_FIELD_NUMBER = 89 audioFadeResponseMessage = DESCRIPTOR.extensions_by_name['audioFadeResponseMessage'] _AUDIOFADERESPONSEMESSAGE = DESCRIPTOR.message_types_by_name['AudioFadeResponseMessage'] AudioFadeResponseMessage = _reflection.GeneratedProtocolMessageType('AudioFadeResponseMessage', (_message.Message,), { 'DESCRIPTOR' : _AUDIOFADERESPONSEMESSAGE, '__module__' : 'pyatv.protocols.mrp.protobuf.AudioFadeResponseMessage_pb2' # @@protoc_insertion_point(class_scope:AudioFadeResponseMessage) }) _sym_db.RegisterMessage(AudioFadeResponseMessage) if _descriptor._USE_C_DESCRIPTORS == False: pyatv_dot_protocols_dot_mrp_dot_protobuf_dot_ProtocolMessage__pb2.ProtocolMessage.RegisterExtension(audioFadeResponseMessage) DESCRIPTOR._options = None _AUDIOFADERESPONSEMESSAGE._serialized_start=115 _AUDIOFADERESPONSEMESSAGE._serialized_end=163 # @@protoc_insertion_point(module_scope)
1.421875
1
iv/Leetcode/easy/e021_merge_sorted_list.py
iamsuman/iv
2
12788203
# Definition for singly-linked list. class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next def make_list(A): if len(A) == 0: return None head = ListNode(A[0]) ptr = head for i in A[1:]: ptr.next = ListNode(i) ptr = ptr.next return head def display(head): if not head: return [] L = [] while head.next: L.append(head.val) head = head.next L.append(head.val) print(L) class Solution: def mergeTwoLists(self, l1: ListNode, l2: ListNode) -> ListNode: res = l1 prev = None while l1 and l2: if l1.val <= l2.val: if prev: prev.next = l1 temp1 = l1.next l1 = temp1 prev = prev.next prev.next = l1 else: prev = l1 l1 = l1.next else: if prev: prev.next = l2 temp2 = l2.next l2 = temp2 prev = prev.next prev.next = l1 else: prev = l2 res = l2 l2 = l2.next if l2: if prev: prev.next = l2 else: res = l2 if l1: if prev: prev.next = l1 else: res = l1 return res l1 = [1,3,5]; l2 = [2,4,6] # l1 = [1,2,4]; l2 = [1,3,4] # l1 = []; l2 = [] # l1 = []; l2 = [0] # l1 = [0]; l2 = [] # l1 = [2]; l2 = [1] # l1 = [-9,-7,-6,-1,0,1,2,4,7]; l2 = [-10,-6,4,6,8] ll1 = make_list(l1) ll2 = make_list(l2) s = Solution() head = s.mergeTwoLists(ll1, ll2) display(head)
3.828125
4
Living_SDK/board/tg7100cevb/ucube.py
AL-Answer/HF-270-1.6.6
12
12788204
<reponame>AL-Answer/HF-270-1.6.6 linux_only_targets="smart_outlet smart_led_bulb"
1.257813
1
scripts/repo.py
mjfwest/OpenMDAO-Framework
69
12788205
<reponame>mjfwest/OpenMDAO-Framework<gh_stars>10-100 #!/usr/bin/env python """ Repository maintenance. Can record lock/unlock state of a repository. Useful to keep multiple developers from stepping on each other, but requires some discipline :-( """ import glob import optparse import os.path import platform import shutil import stat import subprocess import sys import time if sys.platform != 'win32': import pwd LOCKFILE = 'repo_lock' def main(): """ Repository maintenance. """ usage = """\ %prog OP [options] repository, where OP may be: check -- check for lock lock -- lock repository unlock -- unlock repository set -- set this as current repository (sets OPENMDAO_REPO environment variable and starts a new shell) fix -- fix permissions and remove generated directories rmpyc -- remove 'orphan' .pyc files""" parser = optparse.OptionParser(usage) parser.add_option('-f', '--force', action='store_true', default=False, help='forced unlock') parser.add_option('-v', '--verbose', action='store_true', default=False, help='print info messages') try: operation = sys.argv.pop(1) except IndexError: parser.print_help() sys.exit(1) options, arguments = parser.parse_args() repository = '' if len(arguments) > 0: if len(arguments) == 1: repository = arguments[0] else: parser.print_help() sys.exit(1) if not repository: try: repository = os.environ['OPENMDAO_REPO'] except KeyError: pass this_user = get_username() path = find_repository(repository, this_user) if not path: print 'Cannot find repository!' sys.exit(2) if options.verbose: print 'Repository root:', path if operation == 'check': do_check(path) elif operation == 'lock': do_lock(path) elif operation == 'unlock': do_unlock(path, options) elif operation == 'set': do_set(path, this_user) elif operation == 'fix': do_fix(path, options) do_rmpyc(path) elif operation == 'rmpyc': do_rmpyc(path) else: parser.print_help() sys.exit(1) def do_check(path): """ Perform 'check' operation. """ (user, mtime) = check_lockfile(path) if user is not None: print 'Repository locked by', user, 'at', mtime else: print 'Repository unlocked' sys.exit(0) def do_lock(path): """ Perform 'lock' operation. """ (user, mtime) = check_lockfile(path) if user is None: create_lockfile(path) sys.exit(0) else: print 'Repository already locked by', user, 'at', mtime sys.exit(1) def do_unlock(path, options): """ Perform 'unlock' operation. """ (user, mtime) = check_lockfile(path) if user is None: print 'Repository is not locked' sys.exit(1) elif user == get_username() or options.force: remove_lockfile(path) sys.exit(0) else: print 'Repository locked by', user, 'at', mtime sys.exit(1) def do_set(path, user): """ Perform 'set' operation. """ if find_repository(os.getcwd(), user) != path: print 'Moving to', path os.chdir(path) os.environ['OPENMDAO_REPO'] = path os.environ['PATH'] = os.path.join(path, 'buildout', 'bin') \ + os.pathsep + os.path.join(path, 'scripts') \ + os.pathsep + os.environ['PATH'] if sys.platform == 'win32': sys.exit(subprocess.call(os.environ['ComSpec'])) else: sys.exit(subprocess.call(os.environ['SHELL'])) def do_fix(repo_path, options): """ Check/fix permissions and remove generated directories. """ directories = ( 'buildout/bin', 'buildout/develop-eggs', 'buildout/eggs', 'buildout/html', 'buildout/parts', 'docs/_build', ) files = ( 'examples/openmdao.examples.bar3simulation/openmdao/examples/bar3simulation/bar3-f2pywrappers.f', 'examples/openmdao.examples.bar3simulation/openmdao/examples/bar3simulation/bar3module.c' ) for relpath in directories: if sys.platform == 'win32': relpath.replace('/', '\\') directory = os.path.join(repo_path, relpath) if os.path.exists(directory): shutil.rmtree(directory) for relpath in files: if sys.platform == 'win32': relpath.replace('/', '\\') filename = os.path.join(repo_path, relpath) if os.path.exists(filename): os.remove(filename) for dirpath, dirnames, filenames in os.walk(repo_path): if options.verbose: print dirpath[len(repo_path):] names = dirnames names.extend(filenames) for name in names: path = os.path.join(dirpath, name) info = os.stat(path) mode = info.st_mode fixup = mode if (mode & stat.S_IRUSR) and not (mode & stat.S_IRGRP): fixup |= stat.S_IRGRP if (mode & stat.S_IWUSR) and not (mode & stat.S_IWGRP): fixup |= stat.S_IWGRP if (mode & stat.S_IXUSR) and not (mode & stat.S_IXGRP): fixup |= stat.S_IXGRP if options.verbose: if fixup != mode: print ' fixing %s %s' % (permission_bits(mode), name) else: print ' %s %s' % (permission_bits(mode), name) elif fixup != mode: print 'fixing %s %s' % (permission_bits(mode), path) if fixup != mode: try: os.chmod(path, fixup) except OSError, exc: print ' %s' % exc print ' (owner %s)' % get_username(info.st_uid) def do_rmpyc(repo_path): """ Remove 'orphan' .pyc files. """ for dirpath, dirnames, filenames in os.walk(repo_path): for name in filenames: if not name.endswith('.pyc'): continue path = os.path.join(dirpath, name) if not os.path.exists(path[:-1]): print 'removing', path os.remove(path) def permission_bits(mode): """ Format permission bits in UNIX 'ls' style. """ bits = '' if mode & stat.S_IRUSR: bits += 'r' else: bits += '-' if mode & stat.S_IWUSR: bits += 'w' else: bits += '-' if mode & stat.S_IXUSR: bits += 'x' else: bits += '-' if mode & stat.S_IRGRP: bits += 'r' else: bits += '-' if mode & stat.S_IWGRP: bits += 'w' else: bits += '-' if mode & stat.S_IXGRP: bits += 'x' else: bits += '-' if mode & stat.S_IROTH: bits += 'r' else: bits += '-' if mode & stat.S_IWOTH: bits += 'w' else: bits += '-' if mode & stat.S_IXOTH: bits += 'x' else: bits += '-' return bits def find_repository(repository, user): """ Return repository's root directory path, or None. """ user_base = os.path.join(os.sep, 'OpenMDAO', 'dev', user) shared_base = os.path.join(os.sep, 'OpenMDAO', 'dev', 'shared') if not repository: path = find_bzr() if path and platform.node() == 'torpedo.grc.nasa.gov' and \ not path.startswith('/OpenMDAO'): # On OpenMDAO home use default search if not an OpenMDAO repository. path = '' if not path: # Use default if this user only has one. paths = glob.glob(os.path.join(user_base, '*')) if len(paths) == 1: repository = paths[0] elif len(paths) == 0: repository = 'working_main' # Default shared if no user repo. else: print 'Default repository is ambiguous:' for path in paths: print ' ', path sys.exit(1) path = find_bzr(repository) if not path: path = os.path.join(user_base, repository) path = find_bzr(path) if not path: path = os.path.join(shared_base, repository) path = find_bzr(path) return path def find_bzr(path=None): """ Return bzr root directory path, or None. """ if not path: path = os.getcwd() if not os.path.exists(path): return None while path: if os.path.exists(os.path.join(path, '.bzr')) or \ os.path.exists(os.path.join(path, '.bzrignore')): return os.path.abspath(path) else: pth = path path = os.path.dirname(path) if path == pth: return None return None def check_lockfile(path): """ Return (user, modification time) of lockfile, or (None, None). """ path = os.path.join(path, LOCKFILE) if os.path.exists(path): try: info = os.stat(path) except OSError, exc: print 'Cannot access lockfile:', exc sys.exit(1) else: user = get_username(info.st_uid) mtime = time.asctime(time.localtime(info.st_mtime)) return (user, mtime) else: return (None, None) def create_lockfile(path): """ Create lockfile. """ path = os.path.join(path, LOCKFILE) try: os.open(path, os.O_CREAT|os.O_EXCL|os.O_WRONLY, 0660) except OSError, exc: print 'Cannot create lockfile:', exc sys.exit(1) def remove_lockfile(path): """ Remove lockfile. """ path = os.path.join(path, LOCKFILE) try: os.unlink(path) except OSError, exc: print 'Cannot remove lockfile:', exc sys.exit(1) def get_username(uid=None): """ Return username for `uid`, or current username if `uid` is None. """ if uid: if sys.platform == 'win32': return 'unknown-%s' % uid else: return pwd.getpwuid(uid).pw_name else: if sys.platform == 'win32': return os.environ['USERNAME'] else: return pwd.getpwuid(os.getuid()).pw_name if __name__ == '__main__': main()
2.25
2
tests/test_plugin_scroll.py
thecarebot/carebot
50
12788206
<gh_stars>10-100 #!/usr/bin/env python import app_config app_config.DATABASE_NAME = 'carebot_test.db' app_config.DEFAULT_CONFIG_PATH = 'tests/config_test.yml' try: import unittest2 as unittest except ImportError: import unittest import datetime from plugins.npr.scrolldepth import NPRScrollDepth from util.config import Config class TestNPRSCrollDepth(unittest.TestCase): def test_fill_in_max(self): test_data = [[1, 100, 3], [1, 200, 3], [1, 500, 3], [1, 200, 3]] results = NPRScrollDepth.fill_in_max(test_data) self.assertEqual(results[0][1], 500) self.assertEqual(results[1][1], 500) self.assertEqual(results[2][1], 500) self.assertEqual(results[3][1], 200)
2.328125
2
bots_detector/models/base_model.py
cloutavista/bot-detector
0
12788207
<gh_stars>0 ### This script will be responsible for building a model, optionally leveraging a training set ### from abc import ABC class Model(ABC): def train(self): return NotImplemented def predict(self, profile): return NotImplemented
2.375
2
src/python3/dsv/commands/find_node_id.py
MikeAT/visualizer
6
12788208
#!/usr/bin/env python3 # # Copyright 2018-2020 Internet Corporation for Assigned Names and Numbers. # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, you can obtain one at https://mozilla.org/MPL/2.0/. # # Developed by Sinodun IT (sinodun.com) # # Find the node ID given server and node names. # # Usage: dsv-find-node-id <server-name> <node-name> # import psycopg2 description = 'find node ID from Postgres.' def add_args(parser): parser.add_argument('servername', help='the server name', metavar='SERVERNAME') parser.add_argument('nodename', help='the node name', metavar='NODENAME') def main(args, cfg): conn = None try: pgcfg = cfg['postgres'] conn = psycopg2.connect(host=pgcfg['host'], dbname=pgcfg['database'], user=pgcfg['user'], password=pgcfg['password']) with conn.cursor() as cur: cur.execute('SELECT node.id FROM node ' 'INNER JOIN node_server ON node_server.id = node.server_id ' 'WHERE (node_server.name=%(server)s OR ' ' node_server.altname=%(server)s) ' 'AND (node.name=%(node)s OR node.altname=%(node)s)', {'server': args.servername, 'node': args.nodename}) res = cur.fetchone() conn.close() if res: print(res[0]) return 0 return 1 except Exception: if conn is not None: conn.rollback() conn.close() raise
2.375
2
getpw/__init__.py
N0x1s/getpw
2
12788209
<reponame>N0x1s/getpw from .main import getpw
1.046875
1
haven/haven_jobs/slurm_manager.py
liuzheyu1998/haven-ai
0
12788210
<filename>haven/haven_jobs/slurm_manager.py from .. import haven_utils as hu from .. import haven_chk as hc import os import time import copy import pandas as pd import numpy as np import getpass import pprint import requests # Job submission # ============== def submit_job(api, account_id, command, job_config, workdir, savedir_logs=None): job_spec = get_job_spec(job_config, command, savedir_logs, workdir=workdir) job = api.v1_account_job_post(account_id=account_id, human=1, job_spec=job_spec) job_id = job.id return job_id def get_job_spec(job_config, command, savedir_logs, workdir): _job_config = copy.deepcopy(job_config) _job_config['workdir'] = workdir if savedir_logs is not None: path_log = os.path.join(savedir_logs, "logs.txt") path_err = os.path.join(savedir_logs, "err.txt") command_with_logs = '%s 1>%s 2>%s' % (command, path_log, path_err) else: command_with_logs = command _job_config['command'] = ['/bin/bash', '-c', command_with_logs] _job_config['resources'] = eai_toolkit_client.JobSpecResources(**_job_config['resources']) job_spec = eai_toolkit_client.JobSpec(**_job_config) # Return the Job command in Byte format return job_spec # Job status # =========== def get_job(api, job_id): """Get job information.""" try: return api.v1_job_get_by_id(job_id) except ApiException as e: raise ValueError("job id %s not found." % job_id) def get_jobs(api, account_id): # account_id = hu.subprocess_call('eai account get').split('\n')[-2].split(' ')[0] return api.v1_account_job_get(account_id=account_id, limit=1000, order='-created', q="alive_recently=True").items # return api.v1_me_job_get(limit=1000, # order='-created', # q="alive_recently=True").items # Job kill # =========== def kill_job(api, job_id): """Kill a job job until it is dead.""" job = get_job(api, job_id) if not job.alive: print('%s is already dead' % job_id) else: # toolkit api.v1_job_delete_by_id(job_id) print('%s CANCELLING...' % job_id) job = get_job(api, job_id) while job.state == "CANCELLING": time.sleep(2.0) job = get_job(api, job_id) print('%s now is dead.' % job_id)
2.015625
2
Python/gksdudaovld/MapperTest.py
ForestHouse2316/gksdudaovld
0
12788211
from gksdudaovld import KoEngMapper as Mapper from SimpleTester import SimpleTester tester = SimpleTester("./test_en2ko.txt", Mapper.conv_en2ko) print(tester.start().log) # tester = SimpleTester("./test_ko2en.txt", Mapper.conv_ko2en) # print(tester.start().log)
2
2
sudoku.py
pkmatador/simple_sudoku_solver
0
12788212
<gh_stars>0 # coding: utf-8 import numpy as np from collections import defaultdict sudoku = np.array( [[5, 1, 7, 6, 0, 0, 0, 3, 4], [2, 8, 9, 0, 0, 4, 0, 0, 0], [3, 4, 6, 2, 0, 5, 0, 9, 0], [6, 0, 2, 0, 0, 0, 0, 1, 0], [0, 3, 8, 0, 0, 6, 0, 4, 7], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 9, 0, 0, 0, 0, 0, 7, 8], [7, 0, 3, 4, 0, 0, 5, 6, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]]).reshape((9,9)) def solve_sudoku(sudoku, solve_multisolution: bool = False): '''Takes sudoku 9x9 array and solves zeros to numbers from 1 to 9. *Only works for 01 solution sudokus.''' sudoku = np.array(sudoku, dtype = np.int).reshape((9, 9)) def subgrid(i, j) -> np.ndarray: ''' Take cell's coordinates and then slices respective subgrid.''' i, j = np.floor(np.divide((i, j), 3)).astype(int) return sudoku[i*3:(i+1)*3,j*3:(j+1)*3] iteration_count = 0 print("Solving sudoku... (0 to 8 x 0 to 8) = 9x9", "\n", sudoku) while(True): notes = defaultdict(set) #all possible solutions for one given cell if iteration_count == 0: cells = zip(*np.where(sudoku!=-1)) #check all cells else: cells = zip(*np.where(sudoku==0)) #refresh to check only the zeros to decrease needed computations for (i, j) in cells: iunique, icounts = np.unique(sudoku[ i, :], return_counts=True) junique, jcounts = np.unique(sudoku[ :, j], return_counts=True) gunique, gcounts = np.unique(subgrid(i, j), return_counts=True) #g=grid if iteration_count == 0: if (np.any(icounts[1:]>1) or np.any(jcounts[1:]>1) or np.any(gcounts[1:]>1)): #[1:] excludes the zero(0) count print("Invalid sudoku! Repeating value found near ({}, {})...".format(i, j)) return {'solved': False, 'result': sudoku, 'notes': notes} if sudoku[i,j] == 0: valids = set(range(1, 9+1)) - set().union(iunique).union(junique).union(gunique) if len(valids) == 0: print("Invalid sudoku! Unsolvable cell found ({}, {})...".format(i, j)) return {'solved': False, 'result': sudoku, 'notes': notes} elif len(valids) > 0: for valid in valids: notes[(i, j)].add(valid) solved_count = 0 for (i, j) in list(t for t in notes.keys() if len(notes[t]) == 1): sudoku[(i, j)] = list(notes.pop((i, j)))[0] solved_count += 1 iteration_count += 1 if notes != {} or np.any(sudoku == 0): if solved_count == 0: print("Unsolvable/multisolution sudoku!") print(sudoku, "\n", "Notes: {}".format(notes)) if solve_multisolution == False: return {'solved': False, 'result': sudoku, 'notes': notes} else: print("Making up a solution...") raise Exception("Oh... There's no code to solve it here :(") print("Iteration no. {} completed. (Solved {} cells!)".format(iteration_count, solved_count)) else: print("Solved!") print(sudoku) return {'solved': True, 'result': sudoku, 'notes': notes}
3.609375
4
tests/test_treeview.py
vhn0912/pygubu
0
12788213
<gh_stars>0 # encoding: utf8 import os import sys import unittest import tkinter as tk import tkinter.ttk as ttk pygubu_basedir = os.path.abspath(os.path.dirname( os.path.dirname(os.path.realpath(sys.argv[0])))) if pygubu_basedir not in sys.path: sys.path.insert(0, pygubu_basedir) import pygubu import support class TestTreeview(unittest.TestCase): def setUp(self): support.root_deiconify() xmldata = """<?xml version="1.0" ?> <interface> <object class="ttk.Frame" id="mainwindow"> <property name="height">250</property> <property name="width">250</property> <layout> <property name="sticky">nesw</property> <property name="row">0</property> <property name="column">0</property> <property name="propagate">True</property> </layout> <child> <object class="ttk.Treeview" id="treeview"> <property name="selectmode">browse</property> <layout> <property name="column">0</property> <property name="row">0</property> <property name="propagate">True</property> </layout> <child> <object class="ttk.Treeview.Column" id="treecolumn"> <property name="tree_column">True</property> <property name="visible">True</property> <property name="text">Tree</property> <property name="command">on_treecolumn_click</property> <property name="heading_anchor">w</property> <property name="column_anchor">w</property> <property name="minwidth">200</property> <property name="stretch">True</property> <property name="width">200</property> </object> </child> <child> <object class="ttk.Treeview.Column" id="column1"> <property name="tree_column">False</property> <property name="visible">True</property> <property name="text">Column 1</property> <property name="heading_anchor">center</property> <property name="column_anchor">w</property> <property name="minwidth">200</property> <property name="stretch">False</property> <property name="width">200</property> </object> </child> <child> <object class="ttk.Treeview.Column" id="hidden_column"> <property name="tree_column">False</property> <property name="visible">False</property> <property name="text">hidden</property> <property name="heading_anchor">w</property> <property name="column_anchor">w</property> <property name="minwidth">20</property> <property name="stretch">True</property> <property name="width">200</property> </object> </child> </object> </child> </object> </interface> """ self.builder = builder = pygubu.Builder() builder.add_from_string(xmldata) self.widget = builder.get_object('treeview') self.widget.wait_visibility() def tearDown(self): support.root_withdraw() def test_class(self): self.assertIsInstance(self.widget, ttk.Treeview) self.widget.destroy() def test_selectmode(self): expected = 'browse' value = str(self.widget.cget('selectmode')) self.assertEqual(expected, value) self.widget.destroy() def test_columns(self): columns = ('column1', 'hidden_column') wcolumns = self.widget.cget('columns') self.assertEqual(columns, wcolumns) dcolumns = ('column1',) wdcolumns = self.widget.cget('displaycolumns') self.assertEqual(dcolumns, wdcolumns) self.widget.destroy() def test_tree_heading(self): wh = self.widget.heading('#0') heading = { 'text': 'Tree', 'anchor': 'w', } for k, v in heading.items(): self.assertEqual(v, wh[k]) self.widget.destroy() def test_tree_column(self): wc = self.widget.column('#0') column = { 'anchor': 'w', 'stretch': 1, 'width': 200, 'minwidth': 200, } for k, v in column.items(): self.assertEqual(v, wc[k]) self.widget.destroy() def test_command_dict(self): success = [] def on_treecolumn_click(): success.append(1) cbdic = {'on_treecolumn_click': on_treecolumn_click} self.builder.connect_callbacks(cbdic) x, y = self.widget.winfo_x(), self.widget.winfo_y() self.widget.event_generate('<ButtonPress-1>', x=x + 5, y=y + 5) self.widget.event_generate('<ButtonRelease-1>', x=x + 5, y=y + 5) self.widget.update() self.assertTrue(success) self.widget.destroy() def test_command_self(self): success = [] class AnObject: def on_treecolumn_click(self): success.append(1) cbobj = AnObject() self.builder.connect_callbacks(cbobj) x, y = self.widget.winfo_x(), self.widget.winfo_y() self.widget.event_generate('<ButtonPress-1>', x=x + 5, y=y + 5) self.widget.event_generate('<ButtonRelease-1>', x=x + 5, y=y + 5) self.widget.update() self.assertTrue(success) self.widget.destroy() if __name__ == '__main__': unittest.main()
2.34375
2
hubblestack/__init__.py
instructure/hubble
2
12788214
<filename>hubblestack/__init__.py __version__ = '4.0.0' __buildinfo__ = {'branch': 'BRANCH_NOT_SET', 'last_commit': 'COMMIT_NOT_SET'}
1.3125
1
nestingnote/test_nestedlist.py
woodsonmiles/nested-notes
0
12788215
<reponame>woodsonmiles/nested-notes #!/usr/bin/python3 import unittest from nestingnote.nestedlist import NestedList, NullNestedList from typing import List class TestNestedList(unittest.TestCase): def test_instantiation(self): root = NestedList() self.assertTrue(isinstance(root, NestedList)) child = root.insert_child() self.assertTrue(isinstance(child, NestedList)) sibling = root.insert_sibling() self.assertTrue(isinstance(sibling, NestedList)) def test_row_iter(self): root = NestedList(["1", "2", "3"]) result = '' for field in root.row_iter: result += field target = "1 2 3" self.assertEqual(result, target) def test_delete_simple(self): root = NestedList(["root"]) root.insert_sibling(["sib"]) del root.sibling target = NestedList(["root"]) self.assertEqual(root, target) root.insert_child(["child"]) del root.child self.assertEqual(root, target) root.insert_sibling(["sib1"]) root.insert_sibling(["sib2"]) del root.sibling target.insert_sibling(["sib1"]) self.assertEqual(root, target) def test_delete_sibling(self): one = NestedList(["one"]) two = one.insert_sibling(["two"]) three = two.insert_child(["three"]) four = three.insert_sibling(["four"]) five = two.insert_sibling(["five"]) target = "one\n" \ + "two\n" \ + " three\n" \ + " four\n" \ + "five\n" actual = str(one) self.assertEqual(target, actual) del one.sibling target = "one\n" \ + " three\n" \ + " four\n" \ + "five\n" actual = str(one) self.assertEqual(target, actual) def test_str(self): root = NestedList(["123", "1"]) target = "123 1\n" self.assertEqual(str(root), target) root.insert_child(["1234"]) target += " 1234\n" self.assertEqual(str(root), target) root.insert_sibling(["12"]) target += "12\n" def test_str_complex(self): root = NestedList(fields=["root"]) child = root.insert_child(texts=["child"]) child2 = child.insert_sibling(["child2"]) grandchild = child2.insert_child(["grandchild"]) child3 = child2.insert_sibling(["child3"]) child3.insert_child(["grandchild2"]) target = "root" \ + "\n child" \ + "\n child2" \ + "\n grandchild" \ + "\n child3" \ + "\n grandchild2" \ + "\n" self.__comp_str_to_node(root, target) def test_columns(self): root = NestedList(["123", "1"]) target = "123 1\n" self.__comp_str_to_node(root, target) root.insert_sibling(["1234"]) target = "123 1\n" target += "1234\n" self.__comp_str_to_node(root, target) del root.sibling target = "123 1\n" self.__comp_str_to_node(root, target) def __comp_str_to_node(self, root: NestedList, target: str): actual = str(root) self.assertEqual(actual, target) def test_get_count(self): root = NestedList() self.assertEqual(root.count(), 1) sibling = root.insert_sibling() self.assertEqual(root.count(), 2) child = sibling.insert_child() self.assertEqual(sibling.count(), 2) self.assertEqual(root.count(), 3) grandchild = child.insert_child() self.assertEqual(root.count(), 4) grandchild2 = grandchild.insert_sibling() self.assertEqual(root.count(), 5) grandchild.insert_sibling() self.assertEqual(root.count(), 6) child.insert_sibling() self.assertEqual(root.count(), 7) def test_new_node(self): root = NestedList() child = root.insert_child() grandchild = child.insert_child() child2 = child.insert_sibling() self.assertIs(root.child, child) self.assertIs(child.sibling, child2) self.assertIs(root.child.child, grandchild) def test_get_node(self): root = NestedList() child = root.insert_child() grandchild = child.insert_child() child2 = child.insert_sibling() """ root child grandchild child2 """ self.assertIs(root.get_node(0), root) self.assertIs(root.get_node(1), child) self.assertIs(root.get_node(2), grandchild) self.assertIs(root.get_node(3), child2) grandchild2 = grandchild.insert_sibling() child3 = child2.insert_sibling() greatgrandchild = grandchild.insert_child() """ root child grandchild greatgrandchild grandchild2 child2 child3 """ self.assertIs(root.get_node(0), root) self.assertIs(root.get_node(1), child) self.assertIs(root.get_node(2), grandchild) self.assertIs(root.get_node(3), greatgrandchild) self.assertIs(root.get_node(4), grandchild2) self.assertIs(root.get_node(5), child2) self.assertIs(root.get_node(6), child3) def __test_iter_helper(self, root: NestedList, targets: List[NestedList]): for index, actual in enumerate(root): self.assertIs(actual, targets[index]) def test_iter(self): root = NestedList() # breakpoint() self.__test_iter_helper(root, [root]) child = root.insert_child() self.__test_iter_helper(root, [root, child]) child2 = child.insert_sibling() self.__test_iter_helper(root, [root, child, child2]) grandchild = child2.insert_child() self.__test_iter_helper(root, [root, child, child2, grandchild]) child3 = child2.insert_sibling() self.__test_iter_helper(root, [root, child, child2, grandchild, child3]) greatgrandchild = grandchild.insert_child() self.__test_iter_helper(root, [root, child, child2, grandchild, greatgrandchild, child3]) greatgreatgrandchild = greatgrandchild.insert_child() self.__test_iter_helper(root, [root, child, child2, grandchild, greatgrandchild, greatgreatgrandchild, child3]) sibling2 = root.insert_sibling() sibling = root.insert_sibling() self.__test_iter_helper(root, [root, child, child2, grandchild, greatgrandchild, greatgreatgrandchild, child3, sibling, sibling2]) def test_eq_simple(self): root = NestedList(fields=["01234"]) self.assertEqual(root, root) other = NestedList(fields=["01234"]) self.assertEqual(root, other) def test_eq(self): root = NestedList(fields=["01234"]) child = root.insert_child(texts=["012", "0", "0"]) child.insert_child(["012"]) child.insert_sibling(["0", "0", "0123", ""]) root_copy = NestedList(fields=["01234"]) child_copy = root_copy.insert_child(texts=["012", "0", "0"]) child_copy.insert_child(["012"]) child_copy.insert_sibling(["0", "0", "0123", ""]) self.assertEqual(root, root_copy) root_dif = NestedList(fields=["01234"]) child_dif = root_dif.insert_child(texts=["012", "0", "0"]) child_dif.insert_child(["012"]) child_dif.insert_sibling(["0", "0", "0123", "9"]) self.assertNotEqual(root, root_dif) def test_unindent_simple(self): root = NestedList(["root"]) child = root.insert_child(["child"]) child.unindent(root) target = NestedList(["root"]) target.insert_sibling(["child"]) self.assertEqual(root, target) def test_unindent(self): root = NestedList(["root"]) child = root.insert_child(["child"]) child.insert_child(["grandchild"]) child.unindent(root) target = NestedList(["root"]) sibling = target.insert_sibling(["child"]) sibling.insert_child(["grandchild"]) self.assertEqual(root, target) def test_unindent_complex(self): one = NestedList(fields=["one"]) two = one.insert_child(texts=["two"]) three = two.insert_sibling(["three"]) three.insert_child(["four"]) five = three.insert_sibling(["five"]) five.insert_child(["six"]) target = "one" \ + "\n two" \ + "\n three" \ + "\n four" \ + "\n five" \ + "\n six" \ + "\n" self.__comp_str_to_node(one, target) two.unindent(parent=one) target = "one" \ + "\ntwo" \ + "\n three" \ + "\n four" \ + "\n five" \ + "\n six" \ + "\n" self.__comp_str_to_node(one, target) # cleanup old references del two del three del five two = one.sibling three = two.child three.unindent(parent=two) target = "one" \ + "\ntwo" \ + "\nthree" \ + "\n four" \ + "\n five" \ + "\n six" \ + "\n" self.__comp_str_to_node(one, target) # cleanup del two del three three = one.sibling.sibling five = three.child.sibling five.unindent(parent=three) target = "one" \ + "\ntwo" \ + "\nthree" \ + "\n four" \ + "\nfive" \ + "\n six" \ + "\n" self.__comp_str_to_node(one, target) def test_serialization_simple(self): one = NestedList(["one", "two", "three"]) pickle = one.serialize() copy = NestedList.deserialize(pickle) self.assertEqual(str(one), str(copy)) self.assertEqual(one, copy) def test_serialization_complex(self): root = NestedList(["one", "two", "three"]) child = root.insert_child(["child1", "child2"]) grandchild = child.insert_child(["gc1"]) grandchild.insert_sibling(["gc2", "gc2"]) sibling = root.insert_sibling() sibling.insert_sibling(["sib2", "sib2"]) pickle = root.serialize() copy = NestedList.deserialize(pickle) self.assertEqual(str(root), str(copy)) self.assertEqual(root, copy) if __name__ == '__main__': unittest.main()
3.46875
3
tests/unit/test_sitri.py
Egnod/sitri
11
12788216
<gh_stars>10-100 import pytest from sitri import Sitri def test_sitri_init(): with pytest.raises(TypeError): Sitri() def test_sitri_get_config(test_sitri, monkeypatch): monkeypatch.setenv("TEST_KEY1", "1") monkeypatch.setenv("TEST_KEY2", "2") assert test_sitri.get("key1") == "1" assert test_sitri.get("key2") == "2" assert not test_sitri.get("key3") monkeypatch.undo()
2.234375
2
easymunk/pygame/draw_options.py
fabiommendes/easymunk
1
12788217
<filename>easymunk/pygame/draw_options.py from typing import Sequence, Tuple import pygame from ..drawing import DrawOptions as DrawOptionsBase, Color from ..linalg import Vec2d class DrawOptions(DrawOptionsBase): _COLOR = DrawOptionsBase._COLOR surface: pygame.surface.Surface def __init__(self, surface=None, flip_y=False) -> None: """Draw a easymunk.Space on a pygame.Surface object. Typical usage:: >>> import easymunk >>> surface = pygame.Surface((10,10)) >>> space = easymunk.Space() >>> options = easymunk.pygame.DrawOptions(surface) >>> space.debug_draw(options) You can control the color of a shape by setting shape.color to the color you want it drawn in:: >>> c = easymunk.Circle(10, color=pygame.Color("pink")) See pygame_util.demo.py for a full example Since pygame uses a coordiante system where y points down (in contrast to many other cases), you either have to make the physics simulation with Pymunk also behave in that way, or flip everything when you draw. The easiest is probably to just make the simulation behave the same way as Pygame does. In that way all coordinates used are in the same orientation and easy to reason about:: >>> space = mk.Space() >>> space.gravity = (0, -1000) >>> body = space.Body() >>> body.position = (0, 0) # will be positioned in the top left corner >>> space.debug_draw(options) To flip the drawing its possible to set the module property :py:data:`positive_y_is_up` to True. Then the pygame drawing will flip the simulation upside down before drawing:: >>> body = mk.Body() >>> body.position = (0, 0) >>> # Body will be position in bottom left corner :Parameters: surface : pygame.Surface Surface that the objects will be drawn on """ if surface is None and pygame.display.get_init(): self.surface = pygame.display.get_surface() elif surface is None: self.surface = pygame.display.set_mode((800, 600)) else: self.surface = surface self.flip_y: bool = flip_y super(DrawOptions, self).__init__() def draw_circle( self, pos: Vec2d, radius: float, angle: float = 0.0, outline_color: Color = _COLOR, fill_color: Color = _COLOR, ) -> None: p = self.to_pygame(pos) pygame.draw.circle(self.surface, fill_color, p, round(radius), 0) circle_edge = pos + Vec2d(radius, 0).rotated(angle) p2 = self.to_pygame(circle_edge) line_r = 2 if radius > 20 else 1 pygame.draw.lines(self.surface, outline_color, False, [p, p2], line_r) def draw_segment(self, a: Vec2d, b: Vec2d, color: Color = _COLOR) -> None: p1 = self.to_pygame(a) p2 = self.to_pygame(b) pygame.draw.aalines(self.surface, color, False, [p1, p2]) def draw_fat_segment( self, a: Tuple[float, float], b: Tuple[float, float], radius: float = 0.0, outline_color: Color = _COLOR, fill_color: Color = _COLOR, ) -> None: p1 = self.to_pygame(a) p2 = self.to_pygame(b) r = round(max(1, radius * 2)) pygame.draw.lines(self.surface, fill_color, False, [p1, p2], r) if r > 2: orthog = [abs(p2[1] - p1[1]), abs(p2[0] - p1[0])] if orthog[0] == 0 and orthog[1] == 0: return scale = radius / (orthog[0] * orthog[0] + orthog[1] * orthog[1]) ** 0.5 orthog[0] = round(orthog[0] * scale) orthog[1] = round(orthog[1] * scale) points = [ (p1[0] - orthog[0], p1[1] - orthog[1]), (p1[0] + orthog[0], p1[1] + orthog[1]), (p2[0] + orthog[0], p2[1] + orthog[1]), (p2[0] - orthog[0], p2[1] - orthog[1]), ] pygame.draw.polygon(self.surface, fill_color, points) pygame.draw.circle( self.surface, fill_color, (round(p1[0]), round(p1[1])), round(radius), ) pygame.draw.circle( self.surface, fill_color, (round(p2[0]), round(p2[1])), round(radius), ) def draw_polygon( self, verts: Sequence[Tuple[float, float]], radius: float = 0.0, outline_color: Color = _COLOR, fill_color: Color = _COLOR, ) -> None: ps = [self.to_pygame(v) for v in verts] ps += [ps[0]] pygame.draw.polygon(self.surface, fill_color, ps) if radius > 0: for i in range(len(verts)): a = verts[i] b = verts[(i + 1) % len(verts)] self.draw_fat_segment(a, b, radius, outline_color, outline_color) def draw_dot(self, size: float, pos: Tuple[float, float], color: Color) -> None: p = self.to_pygame(pos) pygame.draw.circle(self.surface, color, p, round(size), 0) def mouse_pos(self) -> Vec2d: """Get position of the mouse pointer in pymunk coordinates.""" p = pygame.mouse.get_pos() return self.from_pygame(p) def to_pygame(self, p: Tuple[float, float], surface=None) -> Vec2d: """Convenience method to convert pymunk coordinates to pygame surface local coordinates. Note that in case positive_y_is_up is False, this function wont actually do anything except converting the point to integers. """ if self.flip_y: surface = surface or self.surface return Vec2d(round(p[0]), surface.get_height() - round(p[1])) else: return Vec2d(round(p[0]), round(p[1])) def from_pygame(self, p: Tuple[float, float]) -> Vec2d: """Convenience method to convert pygame surface local coordinates to pymunk coordinates """ return self.to_pygame(p)
4.34375
4
macstats/cpu.py
cloverstd/macstats-python
1
12788218
<filename>macstats/cpu.py<gh_stars>1-10 #!/usr/bin/env python # encoding: utf-8 from . import _smc class CPU(object): @property def temp(self, F=False): _temp = _smc.temp() return (_temp * (9.0 / 5.0)) + 32.0 if F else _temp cpu = CPU()
2.71875
3
src/call.py
Ewpratten/dirobium
0
12788219
<reponame>Ewpratten/dirobium import os import sys import registers as registers sys.path.append(os.getcwd() + "/devices") def call(callid): if str(callid) == "0": exit(0) if str(callid) == "11": print(registers.stack[registers.read_only[0] - 1]) else: calls[str(callid)].call(registers.general, registers.extended) try: from a.src import __main__ as m1 except: m1 = "" try: from b.src import __main__ as m2 except: m2 = "" try: from c.src import __main__ as m3 except: m3 = "" try: from d.src import __main__ as m4 except: m4 = "" try: from e.src import __main__ as m5 except: m5 = "" try: from f.src import __main__ as m6 except: m6 = "" try: from g.src import __main__ as m7 except: m7 = "" try: from h.src import __main__ as m8 except: m8 = "" try: from i.src import __main__ as m9 except: m9 = "" try: from j.src import __main__ as m10 except: m10 = "" calls = { "1":m1, "2":m2, "3":m3, "4":m4, "5":m5, "6":m6, "7":m7, "8":m8, "9":m9, "10":m10 }
2.140625
2
book_figures/chapter1/fig_NASA_atlas.py
autocorr/astroML
3
12788220
<reponame>autocorr/astroML """ NASA Atlas dataset example -------------------------- """ # Author: <NAME> # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from astroML.datasets import fetch_nasa_atlas from astroML.plotting.tools import devectorize_axes #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) data = fetch_nasa_atlas() RA = data['RA'] DEC = data['DEC'] # convert coordinates to degrees RA -= 180 RA *= np.pi / 180 DEC *= np.pi / 180 fig = plt.figure(figsize=(5, 3.75)) ax = plt.axes(projection='mollweide') plt.scatter(RA, DEC, s=1, lw=0, c=data['Z'], cmap=plt.cm.copper) plt.grid(True) # devectorize: otherwise the resulting pdf figure becomes very large #devectorize_axes(ax, dpi=400) plt.title('NASA Atlas Galaxy Locations') cb = plt.colorbar(cax=plt.axes([0.05, 0.1, 0.9, 0.05]), orientation='horizontal', ticks=np.linspace(0, 0.05, 6)) cb.set_label('redshift') plt.show()
2.859375
3
tests/components/nanoleaf/test_config_flow.py
hnrkp/core
1
12788221
"""Test the Nanoleaf config flow.""" from unittest.mock import patch from pynanoleaf import InvalidToken, NotAuthorizingNewTokens, Unavailable from homeassistant import config_entries from homeassistant.components.nanoleaf.const import DOMAIN from homeassistant.const import CONF_HOST, CONF_TOKEN from homeassistant.core import HomeAssistant TEST_NAME = "Canvas ADF9" TEST_HOST = "192.168.0.100" TEST_TOKEN = "<KEY>" TEST_OTHER_TOKEN = "<KEY>" TEST_DEVICE_ID = "5E:2E:EA:XX:XX:XX" TEST_OTHER_DEVICE_ID = "5E:2E:EA:YY:YY:YY" async def test_user_unavailable_user_step(hass: HomeAssistant) -> None: """Test we handle Unavailable errors when host is not available in user step.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch( "homeassistant.components.nanoleaf.config_flow.Nanoleaf.authorize", side_effect=Unavailable("message"), ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], { CONF_HOST: TEST_HOST, }, ) assert result2["type"] == "form" assert result2["step_id"] == "user" assert result2["errors"] == {"base": "cannot_connect"} assert not result2["last_step"] async def test_user_unavailable_link_step(hass: HomeAssistant) -> None: """Test we abort if the device becomes unavailable in the link step.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch( "homeassistant.components.nanoleaf.config_flow.Nanoleaf.authorize", return_value=None, ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], { CONF_HOST: TEST_HOST, }, ) assert result2["type"] == "form" assert result2["step_id"] == "link" with patch( "homeassistant.components.nanoleaf.config_flow.Nanoleaf.authorize", side_effect=Unavailable("message"), ): result3 = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) assert result3["type"] == "abort" assert result3["reason"] == "cannot_connect" async def test_user_unavailable_setup_finish(hass: HomeAssistant) -> None: """Test we abort if the device becomes unavailable during setup_finish.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch( "homeassistant.components.nanoleaf.config_flow.Nanoleaf.authorize", return_value=None, ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], { CONF_HOST: TEST_HOST, }, ) assert result2["type"] == "form" assert result2["step_id"] == "link" with patch( "homeassistant.components.nanoleaf.config_flow.Nanoleaf.authorize", return_value=None, ), patch( "homeassistant.components.nanoleaf.config_flow.pynanoleaf_get_info", side_effect=Unavailable("message"), ): result3 = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) assert result3["type"] == "abort" assert result3["reason"] == "cannot_connect" async def test_user_not_authorizing_new_tokens(hass: HomeAssistant) -> None: """Test we handle NotAuthorizingNewTokens errors.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["errors"] is None assert not result["last_step"] assert result["step_id"] == "user" with patch( "homeassistant.components.nanoleaf.config_flow.Nanoleaf.authorize", side_effect=NotAuthorizingNewTokens("message"), ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], { CONF_HOST: TEST_HOST, }, ) assert result2["type"] == "form" assert result2["errors"] is None assert result2["step_id"] == "link" result3 = await hass.config_entries.flow.async_configure( result["flow_id"], ) assert result3["type"] == "form" assert result3["errors"] is None assert result3["step_id"] == "link" with patch( "homeassistant.components.nanoleaf.config_flow.Nanoleaf.authorize", side_effect=NotAuthorizingNewTokens("message"), ): result4 = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) assert result4["type"] == "form" assert result4["step_id"] == "link" assert result4["errors"] == {"base": "not_allowing_new_tokens"} async def test_user_exception(hass: HomeAssistant) -> None: """Test we handle Exception errors.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch( "homeassistant.components.nanoleaf.config_flow.Nanoleaf.authorize", side_effect=Exception, ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], { CONF_HOST: TEST_HOST, }, ) assert result2["type"] == "form" assert result2["step_id"] == "user" assert result2["errors"] == {"base": "unknown"} assert not result2["last_step"] with patch( "homeassistant.components.nanoleaf.config_flow.Nanoleaf.authorize", return_value=None, ): result3 = await hass.config_entries.flow.async_configure( result["flow_id"], { CONF_HOST: TEST_HOST, }, ) assert result3["step_id"] == "link" with patch( "homeassistant.components.nanoleaf.config_flow.Nanoleaf.authorize", side_effect=Exception, ): result4 = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) assert result4["type"] == "form" assert result4["step_id"] == "link" assert result4["errors"] == {"base": "unknown"} with patch( "homeassistant.components.nanoleaf.config_flow.Nanoleaf.authorize", return_value=None, ), patch( "homeassistant.components.nanoleaf.config_flow.pynanoleaf_get_info", side_effect=Exception, ): result5 = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) assert result5["type"] == "abort" assert result5["reason"] == "unknown" async def test_zeroconf_discovery(hass: HomeAssistant) -> None: """Test zeroconfig discovery flow init.""" zeroconf = "_nanoleafms._tcp.local" with patch( "homeassistant.components.nanoleaf.config_flow.pynanoleaf_get_info", return_value={"name": TEST_NAME}, ), patch( "homeassistant.components.nanoleaf.config_flow.load_json", return_value={}, ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data={ "host": TEST_HOST, "name": f"{TEST_NAME}.{zeroconf}", "type": zeroconf, "properties": {"id": TEST_DEVICE_ID}, }, ) assert result["type"] == "form" assert result["step_id"] == "link" async def test_homekit_discovery_link_unavailable( hass: HomeAssistant, ) -> None: """Test homekit discovery and abort if device is unavailable.""" homekit = "_hap._tcp.local" with patch( "homeassistant.components.nanoleaf.config_flow.pynanoleaf_get_info", return_value={"name": TEST_NAME}, ), patch( "homeassistant.components.nanoleaf.config_flow.load_json", return_value={}, ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_HOMEKIT}, data={ "host": TEST_HOST, "name": f"{TEST_NAME}.{homekit}", "type": homekit, "properties": {"id": TEST_DEVICE_ID}, }, ) assert result["type"] == "form" assert result["step_id"] == "link" context = next( flow["context"] for flow in hass.config_entries.flow.async_progress() if flow["flow_id"] == result["flow_id"] ) assert context["title_placeholders"] == {"name": TEST_NAME} assert context["unique_id"] == TEST_NAME with patch( "homeassistant.components.nanoleaf.config_flow.Nanoleaf.authorize", side_effect=Unavailable("message"), ): result = await hass.config_entries.flow.async_configure(result["flow_id"], {}) assert result["type"] == "abort" assert result["reason"] == "cannot_connect" async def test_import_config(hass: HomeAssistant) -> None: """Test configuration import.""" with patch( "homeassistant.components.nanoleaf.config_flow.pynanoleaf_get_info", return_value={"name": TEST_NAME}, ), patch( "homeassistant.components.nanoleaf.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data={CONF_HOST: TEST_HOST, CONF_TOKEN: TEST_TOKEN}, ) assert result["type"] == "create_entry" assert result["title"] == TEST_NAME assert result["data"] == { CONF_HOST: TEST_HOST, CONF_TOKEN: TEST_TOKEN, } await hass.async_block_till_done() assert len(mock_setup_entry.mock_calls) == 1 async def test_import_config_invalid_token(hass: HomeAssistant) -> None: """Test configuration import with invalid token.""" with patch( "homeassistant.components.nanoleaf.config_flow.pynanoleaf_get_info", side_effect=InvalidToken("message"), ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data={CONF_HOST: TEST_HOST, CONF_TOKEN: TEST_TOKEN}, ) assert result["type"] == "abort" assert result["reason"] == "invalid_token" async def test_import_last_discovery_integration_host_zeroconf( hass: HomeAssistant, ) -> None: """ Test discovery integration import from < 2021.4 (host) with zeroconf. Device is last in Nanoleaf config file. """ zeroconf = "_nanoleafapi._tcp.local" with patch( "homeassistant.components.nanoleaf.config_flow.load_json", return_value={TEST_HOST: {"token": TEST_TOKEN}}, ), patch( "homeassistant.components.nanoleaf.config_flow.pynanoleaf_get_info", return_value={"name": TEST_NAME}, ), patch( "homeassistant.components.nanoleaf.config_flow.os.remove", return_value=None, ) as mock_remove, patch( "homeassistant.components.nanoleaf.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data={ "host": TEST_HOST, "name": f"{TEST_NAME}.{zeroconf}", "type": zeroconf, "properties": {"id": TEST_DEVICE_ID}, }, ) assert result["type"] == "create_entry" assert result["title"] == TEST_NAME assert result["data"] == { CONF_HOST: TEST_HOST, CONF_TOKEN: TEST_TOKEN, } mock_remove.assert_called_once() await hass.async_block_till_done() assert len(mock_setup_entry.mock_calls) == 1 async def test_import_not_last_discovery_integration_device_id_homekit( hass: HomeAssistant, ) -> None: """ Test discovery integration import from >= 2021.4 (device_id) with homekit. Device is not the only one in the Nanoleaf config file. """ homekit = "_hap._tcp.local" with patch( "homeassistant.components.nanoleaf.config_flow.load_json", return_value={ TEST_DEVICE_ID: {"token": TEST_TOKEN}, TEST_OTHER_DEVICE_ID: {"token": TEST_OTHER_TOKEN}, }, ), patch( "homeassistant.components.nanoleaf.config_flow.pynanoleaf_get_info", return_value={"name": TEST_NAME}, ), patch( "homeassistant.components.nanoleaf.config_flow.save_json", return_value=None, ) as mock_save_json, patch( "homeassistant.components.nanoleaf.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_HOMEKIT}, data={ "host": TEST_HOST, "name": f"{TEST_NAME}.{homekit}", "type": homekit, "properties": {"id": TEST_DEVICE_ID}, }, ) assert result["type"] == "create_entry" assert result["title"] == TEST_NAME assert result["data"] == { CONF_HOST: TEST_HOST, CONF_TOKEN: TEST_TOKEN, } mock_save_json.assert_called_once() await hass.async_block_till_done() assert len(mock_setup_entry.mock_calls) == 1
2.21875
2
w3resource/BeautifulSoup/BeautifulSoup08.py
DanielPascualSenties/pythonw3
0
12788222
import urllib from bs4 import BeautifulSoup from urllib import request page = urllib.request.urlopen('https://www.python.org') st = page.read() soup = BeautifulSoup(st, 'html.parser') print("Text in the first a tag:") li = soup.find_all("li") for i in li: a = i.find('a') print(a.attrs['href'])
3.421875
3
app/models/commons.py
medsci-tech/mime_analysis_flask_2017
0
12788223
<reponame>medsci-tech/mime_analysis_flask_2017 from . import db class Disease(db.Model): __tablename__ = 'disease' id = db.Column(db.Integer(), primary_key=True) name_ch = db.Column('name_ch', db.String(30), nullable=False) class Region(db.Model): __tablename__ = 'region' id = db.Column(db.Integer(), primary_key=True) province = db.Column('province', db.String(30), nullable=False) city = db.Column('city', db.String(30), nullable=False) longitude = db.Column('longitude', db.Numeric(12, 6), nullable=True) latitude = db.Column('latitude', db.Numeric(12, 6), nullable=True) province_id = db.Column(db.Integer(), db.ForeignKey('province.id')) class Province(db.Model): __tablename__ = 'province' id = db.Column(db.Integer(), primary_key=True) province = db.Column('province', db.String(30), nullable=False) class AgeGroup(db.Model): __tablename__ = 'age_group' id = db.Column(db.Integer(), primary_key=True) range = db.Column('range', db.String(30), nullable=False) range_description = db.Column('range_description', db.String(30), nullable=False) age_index = db.Column('age_index', db.Integer(), nullable=False) class HospitalLevel(db.Model): __tablename__ = 'hospital_level' id = db.Column(db.Integer(), primary_key=True) level = db.Column('level', db.String(30), nullable=False) level_description = db.Column('level_description', db.String(30), nullable=False) class HospitalOffice(db.Model): __tablename__ = 'hospital_office' id = db.Column(db.Integer(), primary_key=True) office = db.Column('office', db.String(30), nullable=False) office_description = db.Column('office_description', db.String(30), nullable=False) class DoctorTitle(db.Model): __tablename__ = 'doctor_title' id = db.Column(db.Integer(), primary_key=True) title = db.Column('title', db.String(30), nullable=False) title_description = db.Column('title_description', db.String(30), nullable=False) class Hospital(db.Model): __tablename__ = 'hospital' id = db.Column(db.Integer(), primary_key=True) title = db.Column('hospital_name', db.String(50), nullable=False) region_id = db.Column(db.Integer(), db.ForeignKey('region.id')) hospital_level_id = db.Column(db.Integer(), db.ForeignKey('hospital_level.id'))
2.375
2
ietf/test/mirror-test.py
lafrenierejm/ietf-cli
0
12788224
#!/usr/bin/env python3 import os import sys import unittest from ietf.cmd.mirror import assemble_rsync class TestAssembleRsync(unittest.TestCase): boilerplate = ['rsync', '-az', '--delete-during'] rsync_no_path = (('charter', boilerplate + ['ietf.org::everything-ftp/ietf/']), ('conflict', boilerplate + ['rsync.ietf.org::everything-ftp/conflict-reviews/']), ('draft', boilerplate + ["--exclude='*.xml'", "--exclude='*.pdf'", 'rsync.ietf.org::internet-drafts']), ('iana', boilerplate + ['rsync.ietf.org::everything-ftp/iana/']), ('iesg', boilerplate + ['rsync.ietf.org::iesg-minutes/']), ('rfc', boilerplate + ["--exclude='tar*'", "--exclude='search*'", "--exclude='PDF-RFC*'", "--exclude='tst/'", "--exclude='pdfrfc/'", "--exclude='internet-drafts/'", "--exclude='ien/'", 'ftp.rfc-editor.org::everything-ftp/in-notes/']), ('status', boilerplate + ['rsync.ietf.org::everything-ftp/status-changes/'])) def test_assemble_rsync(self): test_path = '/sample/path' for doc_type, cmd_array in self.rsync_no_path: expected_path = test_path + '/' + doc_type expected_cmd = cmd_array + [expected_path] returned_cmd, returned_path = assemble_rsync(doc_type, test_path, False) self.assertEqual(expected_cmd, returned_cmd) self.assertEqual(expected_path, returned_path) def test_assemble_rsync_flat(self): expected_path = '/sample/path' for doc_type, cmd_array in self.rsync_no_path: expected_cmd = cmd_array + [expected_path] returned_cmd, returned_path = assemble_rsync(doc_type, expected_path, True) self.assertEqual(expected_cmd, returned_cmd) self.assertEqual(expected_path, returned_path) if __name__ == '__main__': unittest.main()
2.1875
2
v3/serializer.py
bwisgood/FRF
3
12788225
<reponame>bwisgood/FRF<filename>v3/serializer.py from inspect import ismethod from datetime import datetime from .exceptions import ArgumentException class Serializer(object): model_class = None fields = "__all__" extend_fields = None logical_delete = {"is_delete": 0} data_time_format = "%Y/%m/%d %H:%M:%S" _map = { "integer": int, "small_integer": int, "boolean": bool, "string": str, # "datetime": datetime, # "date": date, "float": float # "time" } def __init__(self): """ self.relations: 所有relations self.model_class: 序列化的类对象 self.table: sqlalchemy的table对象 self.foreign_keys: 所有外键 self.extra_func:额外的方法 self.all_fields:所有字段 """ assert self.model_class is not None, "serializer_obj can not be None" self.relations = [] self.table = self.model_class.__dict__.get('__table__') self.foreign_keys = self.get_all_foreign_keys() self.extra_func = [ismethod(getattr(self.model_class, attr[0], None)) for attr in self.model_class.__dict__.items()] self.all_fields = self.get_all_fields() @classmethod def get_all_fields(cls): """ 获取所有字段 :return: """ all_attr_str_list = list(cls.model_class.__dict__.get("__table__").c) all_fields = [str(c).split(".")[1] for c in all_attr_str_list] return all_fields def get_all_foreign_keys(self): """ 获取所有字段 :return: """ tmp = [] fks = self.table.foreign_keys for fk in fks: tmp.append(fk.parent.name) return tmp def add_extend_fields(self, return_data): if self.extend_fields is None: return return_data for item in self.extend_fields.items(): # 查询值 data = return_data.get(item[0]) if data is not None: return_data.pop(item[0]) else: continue extra_data = item[1].query.filter_by(**{"id": data}).first() extend_fields_in = getattr(self, "extend_fields_" + item[0], None) if extend_fields_in: return_data1 = dict( map(self.mapping_func, dict(filter(lambda x: x[0] in extend_fields_in, extra_data.__dict__.items())).items())) else: return_data1 = dict( map(self.mapping_func, dict(filter(lambda x: not x[0].startswith("_"), extra_data.__dict__.items())).items())) return_data.update(**{item[0]: return_data1}) return return_data def mapping_func(self, y): if isinstance(y[1], datetime): temp = y[1].strftime(self.data_time_format) return y[0], temp else: return y def serialize(self, instance): """ 序列化返回值 :param instance: 实例 :return: 参数data """ data = self.to_serializer_able(instance) if self.fields == '__all__': return_data = dict(map(self.mapping_func, data.items())) else: assert isinstance(self.fields, list) return_data = dict( map(self.mapping_func, dict(filter(lambda x: x[0] in self.fields, data.items())).items())) return_data = self.add_extend_fields(return_data) return return_data def to_serializer_able(self, instance): data_ = {} for field in self.all_fields: data_[field] = getattr(instance, field, None) return data_ def create(self, data, qs): # 先做排除无用数据 data = self.filter_table_data(data) # 再拿去做校验和类型转换 data = self.validate(data) # 创建实例 instance = self.model_class() # 将data的值传递给实例赋值 # print(data) for k, v in data.items(): setattr(instance, k, v) # 保存instance instance = qs.save(instance) # 返回序列化之后的数据 return self.serialize(instance) def validate(self, data): # 校验参数 for field in self.all_fields: # 先非空校验 _column = getattr(self.model_class, field, None) match_data = data.get(_column) self.check_field_not_none(_column, match_data) # 再做类型校验 self.check_field_type(_column, match_data, data) return data @staticmethod def check_field_not_none(_column, match_data): if _column.nullable is False and match_data is None and not _column.primary_key: raise ArgumentException def check_field_type(self, _column, match_data, data): if match_data is not None: column_type = _column.type.__visit_name__ if column_type in self._map: incident_type = self._map.get(column_type) try: # 用转换过的类型做一次匹配 data[_column] = incident_type(match_data) except Exception: raise ArgumentException def filter_table_data(self, data): # 过滤一遍data,将不属于table的属性排除 assert isinstance(data, dict) data = dict(filter(lambda x: x[0] in self.all_fields, data.items())) return data def modify(self, instance, data, qs): # 先过滤一遍data,将不属于table的属性排除 data = self.filter_table_data(data) # 在做一次参数校验 data = self.validate(data) for k, v in data.items(): setattr(instance, k, v) qs.commit() return self.serialize(instance) def delete(self, instance, qs): # 判断是否需要逻辑删除 data = self.serialize(instance) if not self.logical_delete: qs.delete(instance) else: for k, v in self.logical_delete: setattr(instance, k, v) qs.commit() return data
2.40625
2
examples/extension.py
TuXiaokang/karas
3
12788226
<reponame>TuXiaokang/karas<gh_stars>1-10 import torch from karas.training import extension class Eval(extension.Extension): def initialize(self, trainer): pass def __call__(self, trainer): updater = trainer.updater reporter = trainer.reporter loader = trainer.get_loader('test') correct = 0 updater.model.eval() torch.set_grad_enabled(False) for batch in loader: input, target = updater.converter(batch) output = updater.model(input) pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() accuracy = correct / len(loader.dataset) with reporter.scope('scalar'): reporter.report({'accuracy': accuracy}) updater.model.train() torch.set_grad_enabled(True) def finalize(self): pass
2.125
2
hanoi/subscriber.py
emmanueltech1/edgex-go
0
12788227
# Subscribers are created with ZMQ.SUB socket types. # A zmq subscriber can connect to many publishers. import sys import zmq import base64 import simplejson as json port = "5563" if len(sys.argv) > 1: port = sys.argv[1] int(port) # Socket to talk to server context = zmq.Context() socket = context.socket(zmq.SUB) print("Collecting updates from server...") #socket.connect("tcp://localhost:%s" % port) socket.connect("tcp://127.0.0.1:%s" % port) # Subscribes to all topics you can selectively create multiple workers # that would be responsible for reading from one or more predefined topics # if you have used AWS SNS this is a simliar concept socket.subscribe("") while True: # Receives a string format message print(socket.recv()) #data = socket.recv() #dumps the json object into an element #json_str = json.dumps(data) #load the json to a string #resp = json.loads(json_str) #print the resp #print (resp) #print(resp["payload"]) #extract an element in the response #print(resp['payload']) #dataEncoded = base64.b64decode(socket.recv()) #print(dataEncoded) # extract an element in the response #print (dataEncoded['name']) #print (dataEncoded['value'])
2.953125
3
tests/test_log.py
elifesciences/elife-bot
17
12788228
<reponame>elifesciences/elife-bot import logging import log import unittest class TestLog(unittest.TestCase): def test_logger_creation_and_usage(self): logger = log.logger("worker.log", "INFO", "worker_123") self.assertIsInstance(logger, logging.Logger) logger.info("Test info message") logger.error("Test error message") def test_identity_generation(self): self.assertRegex(log.identity("worker"), r"^worker_[0-9]+$")
2.6875
3
auraliser/realtime.py
FRidh/auraliser
2
12788229
import numpy as np import itertools from scintillations.stream import modulate as apply_turbulence from scintillations.stream import transverse_speed from streaming.stream import Stream, BlockStream from streaming.signal import * import streaming.signal import logging from acoustics.signal import impulse_response_real_even import auraliser.tools logger = auraliser.tools.create_logger(__name__) def apply_atmospheric_attenuation(signal, fs, distance, nhop, atmosphere, ntaps, inverse=False, distance_reducer=np.mean): """Apply atmospheric attenuation to signal. :param distance: Iterable with distances. :param fs: Sample frequency. :param atmosphere: Atmosphere. :param ntaps: Amount of filter taps. :param sign: Sign. :rtype: :class:`streaming.Stream` Compute and apply the attenuation due to atmospheric absorption. The attenuation can change with distance. The attenuation is a magnitude-only filter. We design a linear-phase filter .. note:: The filter delay is compensated by dropping the first `ntaps//2` samples. """ # Partition `distance` into blocks, and reduce with `distance_reducer`. distance = distance.blocks(nhop).map(distance_reducer) ir = Stream(atmosphere.impulse_response(d, fs, ntaps=ntaps, inverse=inverse) for d in distance) signal = convolve_overlap_save(signal, ir, nhop, ntaps) signal = signal.samples().drop(int(ntaps//2)) # Linear phase, correct for group delay caused by FIR filter. return signal def apply_reflection_strength(emission, nhop, spectra, effective, ntaps, force_hard): """Apply mirror source strength. :param signal: Signal. :param nblock: Amount of samples per block. :param spectra: Spectrum per block. :param effective: Whether the source is effective or not. :param ntaps: Amount of filter taps. :param force_hard: Whether to force a hard ground. :returns: Signal with correct strength. .. warning:: This operation will cause a delay that may vary over time. """ if effective is not None: # We have an effectiveness value for each hop (which is a block of samples) emission = BlockStream(map(lambda x,y: x *y, emission.blocks(nhop), effective), nblock=nhop) if force_hard: logger.info("apply_reflection_strength: Hard ground.") else: logger.info("apply_reflection_strength: Soft ground.") impulse_responses = Stream(impulse_response_real_even(s, ntaps) for s in spectra) emission = convolve_overlap_save(emission, impulse_responses, nhop, ntaps) # Filter has a delay we need to correct for. emission = emission.samples().drop(int(ntaps//2)) return emission #def apply_ground_reflection(signal, ir, nblock): #"""Apply ground reflection strength. #:param signal: Signal before ground reflection strength is applied. #:param ir: Impulse response per block. #:param nblock: Amount of samples per block. #:returns: Signal after reflection strength is applied. #:type: :class:`streaming.BlockStream` #""" #signal = convolve(signal=signal, impulse_responses=ir, nblock=nblock) def apply_doppler(signal, delay, fs, initial_value=0.0, inverse=False): """Apply Doppler shift. :param signal: Signal before Doppler shift. :param delay: Propagation delay. :param fs: Constant sample frequency. :returns: Doppler-shifted signal. :rtype: :class:`streaming.Stream` """ if inverse: delay = delay * -1 # Unary operators are not yet implemented in Stream return vdl(signal, times(1./fs), delay, initial_value=initial_value) def apply_spherical_spreading(signal, distance, inverse=False):#, nblock): """Apply spherical spreading. :param signal. Signal. Iterable. :param distance: Distance. Iterable. :param nblock: Amount of samples in block. """ if inverse: return signal * distance else: return signal / distance #def undo_reflection(signal, nhop, impedance, angle, ntaps, force_hard): #"""Undo reflection #:param signal: Signal. #:param nhop: Hop size. #:param impedance: Fixed impedance. #:param angle: Angle per hop. #:param ntaps: Taps. #:param force_hard: Whether to assume infinite impedance. #""" #if force_hard: #tf = #strength = Stream(reflection_factor_plane_wave(impedance, a) for a in angles.samples()) #tf = 1. / (1. + strength) #impulse_responses = Stream(atmosphere.impulse_response(d, fs, ntaps=ntaps, inverse=inverse) for d in distance) #signal = convolve_overlap_save(signal, impulse_responses, nhop, ntaps) def nextpow2(x): return int(2**np.ceil(np.log2(x)))
2.5
2
exam_reader/cli.py
9kin/exam-reader
1
12788230
import subprocess import sys import time from pathlib import Path import click from .database import Job, db from .lint import lint from .pdf_reader import pdf_workers from .utils import add_files dir = Path(__file__).resolve().parent.parent @click.group(invoke_without_command=True) @click.pass_context def cli(ctx): if ctx.invoked_subcommand is None: click.echo("I was invoked without subcommand") @cli.command() @click.option("-c", "--count", default=3, help="Number of workers.") @click.option("-d", "--debug", default=False, is_flag=True, help="Debug.") @click.option("-f", "--files", default=0, help="Number of files for debug.") def worker(count, debug, files): if files != 0: add_files([dir.joinpath("files", "ege2016rus.pdf")] * files) pdf_workers(workers_count=count, debug=debug, files=files) @cli.command() @click.argument("files", nargs=-1, type=click.Path()) def add(files): all_files = [] for file_path in files: full_file_path = dir.joinpath(file_path) if not full_file_path.is_file() or not full_file_path.exists(): continue all_files.append(full_file_path) add_files(all_files) PROMPT = "❯" CHAR_SLEEP = 0.05 def slowprint(command): for char in command + "\n": sys.stdout.write(char) sys.stdout.flush() time.sleep(CHAR_SLEEP) def show(command, execute=True): slowprint(command) if execute: start = time.time() subprocess.call(["python3", "-m", *command.split()]) print(f"took {int(time.time() - start)}s", end="") @cli.command() def debug_worker_speed(): db.drop_tables([Job]) db.create_tables([Job]) show("exam_reader worker -c 2 -d -f 2") @cli.command() def debug_worker(): db.drop_tables([Job]) db.create_tables([Job]) show("exam_reader worker -c 2 -d") @cli.command("lint") def lint_command(): lint() """ termtosvg docs/source/static/debug_worker_speed.svg \ --command='python3 -m exam_reader debug-worker-speed' \ --screen-geometry=80x3 """
2.21875
2
setup.py
1313e/viscm
1
12788231
from setuptools import setup, find_packages import sys import os.path # Must be one line or PyPI will cut it off DESC = ("A colormap tool") LONG_DESC = open("README.rst").read() setup( name="viscm", version="0.10.0", description=DESC, long_description=LONG_DESC, author="<NAME>, <NAME>, <NAME>", author_email="<EMAIL>, <EMAIL>, <EMAIL>", url="https://github.com/1313e/viscm", license="MIT", classifiers = [ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", ], packages=find_packages(), install_requires=["colorspacious>=1.1.0", "matplotlib>=3.2.0", "numpy>=1.8", "pyqt5==5.12.*", "scipy>=1.0.0", "cmasher>=1.5.0", "guipy>=0.0.2", "qtpy>=1.9.0"], python_requires='>=3.5, <4', package_data={'viscm': ['examples/*']}, entry_points={ 'console_scripts': [ "viscm = viscm.gui:main"]}, )
1.445313
1
src/modules/snowflake/sync-connector/sync-connector-lambda/snowflake_export.py
aws-samples/aws-iot-twinmaker-samples-snowflake
1
12788232
<reponame>aws-samples/aws-iot-twinmaker-samples-snowflake #!/usr/bin/env python import argparse import json import os import snowflake.connector from snowflake.connector import DictCursor import time from library import * ''' Read the model meta-data (queried from snowflake) and convert it into a Iottwinmaker entities (json) input: -b --bucket The bucket to exported snowflake artifacts to. -p --prefix The prefix under which snowflake data will be exported to. -s --secrets-name Name of the secret in secret manager that stores snowflake credentials -f --query-file File containing the query that will be executed against the snowflake data #-r --iottwinmaker-role-arn ARN of the role assumed by Iottwinmaker -w --workspace-id Workspace id passed to import, optional for export output: Spits out Iottwinmaker entity json for all records ''' ## -w Workspace ID def parse_arguments(): parser = argparse.ArgumentParser( description='Convert OSI PI (SQL Records) to Iottwinmaker Entities (JSON)') parser.add_argument('-b', '--bucket', help='S3 bucket to store the exported files to.', required=True) parser.add_argument('-p', '--prefix', help='prefix path within the S3 bucket', required=True) parser.add_argument('-s', '--secrets-name', help='Name of the secret in secret manager that stores snowflake credentials', required=True) parser.add_argument('-f', '--query-file', help='File containing the query that will be executed against the snowflake database', required=True) #parser.add_argument('-r', '--iottwinmaker-role-arn', # help='ARN of the role assumed by Iottwinmaker', # default=False, # required=True) parser.add_argument('-w', '--workspace-id', help='Workspace id passed to import, optional for export', required=False) return parser ## upsert the entities in the workspace with that from the snowflake records def process_records(sf_records): jrec = {"entities":[]} entities = jrec["entities"] for row_tuple in sf_records: attributes = json.loads(row_tuple['ATTR_NAME']) values = json.loads(row_tuple['ATTR_PI_PT']) properties = {} for i, attr in enumerate(attributes): ## Temporary if condition, remove it once snowflake query is fixed. if i < len(values): value = underscored(values[i]) if i < len(values) else "" properties[underscored(attr)] = { 'definition': { 'dataType': {'type':'STRING'} }, 'value' : {'stringValue': value} } entity = { "entity_name": underscored(row_tuple['ELEM_NAME']), "entity_id": underscored(row_tuple['ELEM_ID']), "parent_name": underscored(row_tuple.get('PARENT_NAME')), "parent_entity_id": underscored(row_tuple.get('ELEM_PARENT_ID')), "component_type": row_tuple.get('COMP_TYPE'), "description": row_tuple.get('EPATH'), "properties": properties } entities.append(entity) return jrec def query_records(secret, qry_file): records = [] sf_creds = get_snowflake_credentials(secret) ctx = snowflake.connector.connect( user=sf_creds['USER'], password=sf_creds['PASSWORD'], account=sf_creds['ACCOUNT'], ROLE=sf_creds['ROLE'], WAREHOUSE=sf_creds['WAREHOUSE'], DATABASE=sf_creds['DATABASE'], SCHEMA=sf_creds['SCHEMA'] ) cs = ctx.cursor(DictCursor) try: with open(qry_file, 'r') as sql: qry = sql.read().replace('\n', '') cs.execute('use warehouse ' + sf_creds['WAREHOUSE']) cs.execute(qry) records = cs.fetchall() finally: cs.close() ctx.close() return records def lambda_handler(event, context): #load_env() secrets_name = event.get('secretsName') query_file = event.get('queryFile') records = query_records(secrets_name, query_file) SERVICE_ENDPOINT= os.environ.get('AWS_ENDPOINT') s3 = boto3_session().resource('s3') ws_bucket = event.get('bucket') filename = '{}/{}.json'.format(event.get('prefix'),str(time.time())) s3object = s3.Object(ws_bucket, filename) json_data = process_records(records) s3object.put( Body=(bytes(json.dumps(json_data).encode('UTF-8'))) ) return { 'statusCode': 200, 'body': { 'outputBucket': ws_bucket, 'outputPath':filename, 'componentTypeId':'com.snowflake.connector:1', 'workspaceId':event.get('workspaceId')}, #'iottwinmakerRoleArn':event.get('iottwinmakerRoleArn')}, 'status' : "SUCCEEDED" } def main(): if __name__ != '__main__': return parser = parse_arguments() args = parser.parse_args() r = lambda_handler( { 'secretsName': args.secrets_name, 'queryFile': args.query_file, 'bucket':args.bucket, 'prefix':args.prefix, 'workspaceId':args.workspace_id},None) #'iottwinmakerRoleArn':args.iottwinmaker_role_arn},None) print(r) main()
2.25
2
PeterMaar-NetLrnChatBot/Client/ClientTerminal.py
alset333/NetworkedLearningChatbot
3
12788233
<reponame>alset333/NetworkedLearningChatbot #!/usr/bin/env python3 # ClientTerminal.py import time import socket __author__ = '<NAME>' __version__ = '0.1.0' def send(ip, port, message): udp_ip = ip udp_port = port sock = socket.socket(socket.AF_INET, # Internet socket.SOCK_DGRAM) # UDP sock.sendto(bytes(message, "utf-8"), (udp_ip, udp_port)) sock.close() def receive(port): udp_ip = '' udp_port = port sock = socket.socket(socket.AF_INET, # Internet socket.SOCK_DGRAM) # UDP sock.bind((udp_ip, udp_port)) data, addr = sock.recvfrom(268435456) # buffer size is 1/4 GB recievedMessage = data.decode("utf-8") sock.close() return recievedMessage srvrIp = input("Enter the IP address or hostname of the server:\n") srvrPort = int(input("Enter the port number of the server:\n")) msg = '' lastReceive = '' while msg.lower() != 'q': msg = input("Enter message to send, or 'q' to quit:\n") if msg.lower() == 'q': time.sleep(1) print("Bye!") break send(srvrIp, srvrPort, lastReceive + "\n\n\n:::\n\n\n" + msg) lastReceive = receive(srvrPort) time.sleep(len(lastReceive)/10) # Wait to make it seem like the bot is 'typing' print(lastReceive)
3.28125
3
DocTAG_Dockerized/DocTAG_App/utils_configuration_and_update.py
DocTAG/doctag-core
4
12788234
<filename>DocTAG_Dockerized/DocTAG_App/utils_configuration_and_update.py<gh_stars>1-10 from DocTAG_App.utils import * from psycopg2.extensions import register_adapter, AsIs def addapt_numpy_float64(numpy_float64): return AsIs(numpy_float64) def addapt_numpy_int64(numpy_int64): return AsIs(numpy_int64) register_adapter(numpy.float64, addapt_numpy_float64) register_adapter(numpy.int64, addapt_numpy_int64) from collections import defaultdict from DocTAG_App.utils_pubmed import * import os.path from DocTAG_App.utils_doctag import * """This .py file includes the methods needed to configure MedTAG and update its configuration""" LANGUAGES_NLTK = [ "arabic","danish","dutch","english","finnish","french","german","hungarian","italian","norwegian","porter","portuguese","romanian","russian","spanish","swedish" ] def check_file(reports,pubmedfiles, labels, concepts, jsonDisp, jsonAnn, username, password,topics,runs,tf_idf): """This method checks whether the inserted files complies with the requirements""" json_resp = {} json_keys = [] usecases_list = [] docs = [] tops = [] topics_ids = [] documents_ids = [] languages = [] json_resp['general_message'] = '' json_resp['username_message'] = '' json_resp['report_message'] = '' json_resp['pubmed_message'] = '' json_resp['concept_message'] = '' json_resp['label_message'] = '' json_resp['topic_message'] = '' json_resp['tfidf_message'] = '' json_resp['runs_message'] = '' json_resp['fields_message'] = '' json_resp['keys'] = json_keys #added 2/11 if (len(labels) == 0 and len(concepts) == 0) and len(topics) == 0 and (len(reports) == 0 and len(pubmedfiles) == 0) and len(runs) == 0: json_resp[ 'general_message'] = 'ERROR - You must provide at least four files: the lables (or concepts), the topics, the runs and the reports.' # if len(jsonAnn) == 0: # json_resp[ # 'general_message'] = 'ERROR - You must provide at least one field to annotate.' elif len(reports) == 0 and len(pubmedfiles) == 0: json_resp['general_message'] = 'ERROR - You must provide a file with one or more reports or one or more pubmed files.' elif len(pubmedfiles) > 0 and len(concepts) == 0 and len(labels) == 0: json_resp['general_message'] = 'PUBMED - only mentions allowed.' try: try: cursor = connection.cursor() cursor.execute('SELECT * FROM public.user WHERE username = %s', (str(username),)) ans = cursor.fetchall() # Error on username and password: duplicated username or missing if len(ans) > 0 or username == 'Test': json_resp['username_message'] = 'USERNAME - The username you selected is already taken. Choose another one.' if (username == ''): json_resp['username_message'] = 'USERNAME - Please, provide a username.' if password == '' and username == '': json_resp['username_message'] = 'USERNAME - Please, provide a username and a password.' except (Exception, psycopg2.Error) as e: print(e) json_resp[ 'username_message'] = 'An error occurred handling the username and the password. Please, insert them again.' pass else: if json_resp['username_message'] == '': json_resp['username_message'] = 'Ok' # This is necessary to collect the fields to annotate and display fields = [] fields_to_ann = [] jsondisp = ''.join(jsonDisp) jsonann = ''.join(jsonAnn) jsondisp = jsondisp.split(',') jsonann = jsonann.split(',') for el in jsondisp: if len(el) > 0: fields.append(el) for el in jsonann: if len(el) > 0: fields_to_ann.append(el) if not tf_idf.isdigit(): json_resp['tfidf_message'] = 'TF-IDF - the value must include only digits' if json_resp['tfidf_message'] == '': json_resp['tfidf_message'] = 'Ok' # Error if 0 report files are added if len(reports) == 0 and len(pubmedfiles) == 0: json_resp['report_message'] = 'REPORTS FILES - You must provide at least one file containing reports or at least one file containing PubMED IDs before checking' json_resp['pubmed_message'] = 'PUBMED FILES - You must provide at least one file containing reports or at least one file containing PubMED IDs before checking' if len(topics) == 0: json_resp['topic_message'] = 'TOPIC FILES - You must provide at least one file containing topics' if len(runs) == 0: json_resp['runs_message'] = 'RUNS FILES - You must provide at least one file containing runs' # docs_tot = [] for j in range(len(reports)): r = decompress_files([reports[j]]) for i in range(len(r)): if isinstance(r[i], str): rep_name = r[i] workpath = os.path.dirname(os.path.abspath(__file__)) # Returns the Path your .py file is in r[i] = os.path.join(workpath, 'static/tmp/' + r[i]) else: rep_name = r[i].name if not rep_name.endswith('csv') and not rep_name.endswith('json'): json_resp['report_message'] = 'DOCUMENTS FILE - ' + rep_name + ' - The file must be .csv and .json and .txt and .Z and .zip' break if rep_name.endswith('.csv'): try: df = pd.read_csv(r[i]) df = df.where(pd.notnull(df), None) df = df.reset_index(drop=True) # Useful if the csv includes only commas except Exception as e: print(e) json_resp['report_message'] = 'DOCUMENTS FILE - ' + rep_name + ' - An error occurred while parsing the csv. Check if it is well formatted. Check if it contains as many columns as they are declared in the header.' pass else: # check if colunns are allowed and without duplicates cols = list(df.columns) list_db_col = ['document_id','language'] list_not_db_col = [] missing = False for el in list_db_col: if el not in cols and el == 'document_id': json_resp['report_message'] = 'DOCUMENTS FILE - ' + rep_name + ' - The column: ' + el + ' is missing, please add it.' missing = True break if missing: break for id in list(df.document_id.unique()): if not str(id) in documents_ids: # json_resp['report_message'] = 'WARNING DOCUMENTS FILE - ' + rep_name + ' - The id: ' + str(id) + ' is duplicated. The duplicates are ignored.' # else: documents_ids.append(str(id)) for el in cols: if el not in list_db_col: list_not_db_col.append(el) for el in df.document_id: if el.lower().startswith('pubmed_'): json_resp['report_message'] = 'DOCUMENTS FILE - ' + rep_name + ' - reports\' ids can not start with "PUBMED_", please, change the name' # if 0 optional columns are added if len(list_not_db_col) == 0: json_resp['report_message'] = 'DOCUMENTS FILE - ' + rep_name + ' - You must provide at least one column other than the documents\' ids' break # Check if the csv is empty with 0 rows if df.shape[0] == 0: json_resp['report_message'] = 'DOCUMENTS FILE - ' + rep_name + ' - You must provide at least a report.' break else: # check if columns id_report and language have no duplicates df_dup = df[df.duplicated(subset=['document_id'], keep=False)] if 'language' in df: df_dup = df[df.duplicated(subset=['document_id','language'], keep=False)] if df_dup.shape[0] > 0: json_resp['report_message'] = 'WARNING DOCUMENTS FILE - ' + rep_name + ' - The rows: ' + str( df_dup.index.to_list()) + ' are duplicated. The duplicates are ignored.' # Check if the optional rows are empty for one or more reports. exit = False # docs_tot.extend(list(df.document_id.unique())) for ind in range(df.shape[0]): count_both = 0 not_none_cols = [] isnone = True for el in list_not_db_col: if df.loc[ind, el] is not None: isnone = False not_none_cols.append(el) for el in not_none_cols: if el not in jsonann and el not in jsondisp: count_both = count_both + 1 if count_both == len(not_none_cols): json_resp['fields_message'] = 'WARNING REPORT FIELDS TO DISPLAY AND ANNOTATE - ' + rep_name + ' - With this configuration the report at the row: ' + str( ind) + ' would not be displayed since the columns to display are all empty for that report.' if isnone: exit = True json_resp['report_message'] = 'DOCUMENTS FILE - ' + rep_name + ' - The report at row ' + str(ind) + ' has the columns: ' + ', '.join( list_not_db_col) + ' empty. Provide a value for at least one of these columns.' break if exit: break # check if there are None in mandatory columns el = '' if None in df['document_id'].tolist(): el = 'document_id' if el != '': lista = df[el].tolist() ind = lista.index(None) json_resp['report_message'] = 'DOCUMENTS FILE - ' + rep_name + ' - The column ' + el + ' is empty at the row: ' + str(ind) + '.' break elif rep_name.endswith('.json'): if isinstance(r[i], str): r[i] = open(r[i], 'r') d = json.load(r[i]) if 'collection' not in d.keys(): json_resp['reports_message'] = 'DOCUMENTS FILE - ' + rep_name + ' - The json is not well formatted.' break exit = False keys_list = [] if len(d['collection']) == 0: json_resp['report_message'] = 'DOCUMENTS FILE - ' + rep_name + ' - You must provide at least a report.' break for document in d['collection']: ind = d['collection'].index(document) if 'document_id' not in list(document.keys()) or document['document_id'] is None: json_resp['reports_message'] = 'DOCUMENTS FILE - ' + rep_name + ' - The ' + str( ind) + ' document does not contain the "document_id" key which is mandatory.' exit = True break doc_keys = list(document.keys()) # docs_tot.append(str(document['document_id'])) if 'language' in document.keys(): doc_keys.remove('language') doc_keys.remove('document_id') is_none = True for key in doc_keys: if key != 'document_id' and key != 'language': if document[key] is not None: is_none = False break if (('document_id' in doc_keys and len(doc_keys) == 1) or ('document_id' in doc_keys and 'language' in doc_keys and len(doc_keys) == 2)) or is_none: json_resp['reports_message'] = 'DOCUMENTS FILE - ' + rep_name + ' - The ' + str(ind) + ' document does not contain the document\' s text.' keys_list.extend(doc_keys) if str(document['document_id']) in documents_ids: json_resp['report_message'] = 'WARNING DOCUMENTS FILE - ' + rep_name + ' - The id ' + str(document['document_id']) + ' is duplicated.' else: documents_ids.append(str(document['document_id'])) count_both = 0 for el in doc_keys: if el not in jsonann and el not in jsondisp: count_both += 1 if count_both == len(doc_keys): json_resp['fields_message'] = 'WARNING REPORT FIELDS TO DISPLAY AND ANNOTATE - ' + rep_name + ' - With this configuration the report at the row: ' + str( ind) + ' would not be displayed since the columns to display are all empty for that report.' if exit == True: break if isinstance(r[i], str): r[i].close() if len(reports) > 0: if json_resp['report_message'] == '': json_resp['report_message'] = 'Ok' for i in range(len(pubmedfiles)): # Error if the file is not csv if not pubmedfiles[i].name.endswith('csv') and not pubmedfiles[i].name.endswith('json') and not pubmedfiles[i].name.endswith( 'txt'): json_resp['pubmed_message'] = 'PUBMED FILE - ' + pubmedfiles[i].name + ' - The file must be .csv or .json or .txt' break if pubmedfiles[i].name.endswith('csv'): try: df = pd.read_csv(pubmedfiles[i]) df = df.where(pd.notnull(df), None) df = df.reset_index(drop=True) # Useful if the csv includes only commas except Exception as e: print(e) json_resp['pubmed_message'] = 'PUBMED FILE - ' + pubmedfiles[ i].name + ' - An error occurred while parsing the csv. Check if it is well formatted. Check if it contains as many columns as they are declared in the header.' pass else: # check if colunns are allowed and without duplicates cols = list(df.columns) list_db_col = ['document_id'] missing = False for el in list_db_col: if el not in cols and el == 'document_id': json_resp['pubmed_message'] = 'PUBMED FILE - ' + pubmedfiles[i].name + ' - The column: ' + el + ' is missing, please add it.' missing = True break if missing: break for column in cols: null_val = df[df[column].isnull()].index.tolist() if len(null_val) > 0: json_resp['pubmed_message'] = 'PUBMED FILE - ' + pubmedfiles[i].name + ' - You did not inserted the '+column +' for rows: '+null_val.split(', ') # Check if the csv is empty with 0 rows if df.shape[0] == 0: json_resp['pubmed_message'] = 'PUBMED FILE - ' + pubmedfiles[i].name + ' - You must provide at least a report.' break else: # check if columns id_report and language have no duplicates if 'language' in df: df_dup = df[df.duplicated(subset=['document_id','language'], keep=False)] else: df_dup = df[df.duplicated(subset=['document_id'], keep=False)] if df_dup.shape[0] > 0: json_resp['pubmed_message'] = 'WARNING PUBMED FILE - ' + pubmedfiles[i].name + ' - The rows: ' + str(df_dup.index.to_list()) + ' are duplicated. The duplicates are ignored.' ids = ['PUBMED_'+str(id) for id in list(df.document_id.unique())] documents_ids.extend(ids) elif pubmedfiles[i].name.endswith('json'): d = json.load(pubmedfiles[i]) if 'pubmed_ids' not in d.keys(): json_resp['pubmed_message'] = 'PUBMED FILE - ' + pubmedfiles[ i].name + ' - json is not well formatted.' break if d['pubmed_ids'] == []: json_resp['pubmed_message'] = 'PUBMED FILE - ' + pubmedfiles[ i].name + ' - you must provide at least an article id.' break if not isinstance(d['pubmed_ids'],list): json_resp['pubmed_message'] = 'PUBMED FILE - ' + pubmedfiles[ i].name + ' - you must provide at least an article id.' break if len(d['pubmed_ids']) != len(list(set(d['pubmed_ids']))): json_resp['pubmed_message'] = 'WARNING PUBMED FILE - ' + runs[ i].name + ' - some ids seem to be duplicated. They will be ignored.' break ids = ['PUBMED_'+str(id) for id in d['pubmed_ids']] documents_ids.extend(ids) elif pubmedfiles[i].name.endswith('txt'): lines = pubmedfiles[i].readlines() ids = ['PUBMED_'+str(line) for line in lines] if len(lines) == 0 : json_resp['pubmed_message'] = 'PUBMED FILE - ' + runs[ i].name + ' - the file is empty.' break if len(lines) != len(list(set(lines))): json_resp['pubmed_message'] = 'WARNING PUBMED FILE - ' + runs[ i].name + ' - the file contain some duplicates: they will be ignored.' documents_ids.extend(ids) if len(pubmedfiles)>0: if json_resp['pubmed_message'] == '': json_resp['pubmed_message'] = 'Ok' if len(topics) > 0: for i in range(len(topics)): if not topics[i].name.endswith('csv') and not topics[i].name.endswith('json') and not topics[i].name.endswith('txt'): json_resp['topic_message'] = 'TOPIC FILE - ' + topics[i].name + ' - The file must be .csv or .json or .txt' break if topics[i].name.endswith('csv'): # if not labels[i].name.endswith('csv'): # json_resp['label_message'] = 'LABELS FILE - ' + labels[i].name + ' - The file must be .csv' try: df = pd.read_csv(topics[i]) df = df.where(pd.notnull(df), None) df = df.reset_index(drop=True) except Exception as e: json_resp['topic_message'] = 'TOPIC FILE - ' + topics[ i].name + ' - An error occurred while parsing the csv. Check if is well formatted.' pass else: cols = list(df.columns) list_db_col = ['topic_id','title','description','narrative'] # if 'usecase' in cols: # df['usecase'] = df['usecase'].str.lower() # esco = False for el in list_db_col: if el not in cols and el == 'topic_id': esco = True json_resp['topic_message'] = 'TOPIC FILE - ' + topics[ i].name + ' - The column: ' + el + ' is not present and it is mandatory.' break for el in cols: if el not in list_db_col: json_resp['topic_message'] = 'WARNING TOPIC FILE - ' + topics[ i].name + ' - The column: ' + el + ' is not present.' if esco == True: break for el in cols: if el not in list_db_col: json_resp['topic_message'] = 'TOPIC FILE - ' + topics[ i].name + ' - The column ' + el + ' is not allowed.' break for id in list(df.topic_id.unique()): if str(id) in topics_ids: json_resp['topic_message'] = 'WARNING TOPIC FILE - ' + topics[ i].name + ' - The topic: ' + str(id) + ' is duplicated. The duplicates are ignored.' else: topics_ids.append(str(id)) if df.shape[0] == 0: json_resp['topic_message'] = 'TOPIC FILE - ' + topics[ i].name + ' - You must provide at least a row.' break else: # check if columns annotation_label and name have no duplicates df_dup = df[df.duplicated(subset=['topic_id'], keep=False)] if df_dup.shape[0] > 0: json_resp['topic_message'] = 'WARNING TOPIC FILE - ' + topics[ i].name + ' - The rows: ' + str( df_dup.index.to_list()) + ' are duplicated. The duplicates will be ignored.' el = '' # if None in df['usecase'].tolist(): # el = 'usecase' if None in df['topic_id'].tolist(): el = 'topic_id' if el != '': lista = df[el].tolist() ind = lista.index(None) json_resp['topic_message'] = 'TOPIC FILE - ' + topics[ i].name + ' - The column ' + el + ' is empty at the row: ' + str(ind) + ' .' break elif topics[i].name.endswith('.json'): # with open(topics[i], 'r') as f: d = json.load(topics[i]) doc_top = [] if 'topics' not in d.keys(): json_resp['topic_message'] = 'TOPIC FILE - ' + topics[ i].name + ' - json is not well formatted.' break if d['topics'] == []: json_resp['topic_message'] = 'TOPIC FILE - ' + labels[ i].name + ' - you must provide at least a label.' break for topic in d['topics']: ind = d['topics'].index(topic) if 'topic_id' not in list(topic.keys()): json_resp['topic_message'] = 'TOPIC FILE - ' + topics[ i].name + ' - you must provide a topic number in the '+str(ind)+' th topic.' break doc_top.append(str(topic['topic_id'])) if str(topic['topic_id']) in topics_ids: json_resp['topic_message'] = 'WARNING TOPIC FILE - ' + topics[ i].name + ' - the list of topics contains duplicates. They will be ignored.' else: topics_ids.append(str(topic['topic_id'])) if len(doc_top) > len(set(doc_top)): json_resp['topic_message'] = 'WARNING TOPIC FILE - ' + topics[ i].name + ' - the list of topics contains duplicates. They will be ignored.' elif topics[i].name.endswith('.txt'): arr_to_ret = elaborate_runs(runs) topics_ids = elaborate_TREC_topic_files([],topics[i],'check') topics_ids = [str(i) for i in topics_ids] if isinstance(topics_ids,list) == False: json_resp['topic_message'] = 'TOPIC FILE - ' + topics[i].name + ' - topics are not well formatted.' break if json_resp['topic_message'] == '': json_resp['topic_message'] = 'Ok' if len(runs) > 0: for i in range(len(runs)): if not runs[i].name.endswith('csv') and not runs[i].name.endswith('json') and not runs[i].name.endswith('txt'): json_resp['runs_message'] = 'RUNS FILE - ' + runs[i].name + ' - The file must be .csv or .json or .txt' break if runs[i].name.endswith('csv'): print(runs[i]) # if not labels[i].name.endswith('csv'): # json_resp['label_message'] = 'LABELS FILE - ' + labels[i].name + ' - The file must be .csv' try: df = pd.read_csv(runs[i]) df = df.where(pd.notnull(df), None) df = df.reset_index(drop=True) except Exception as e: print(e) json_resp['runs_message'] = 'RUNS FILE - ' + runs[ i].name + ' - An error occurred while parsing the csv. Check if is well formatted.' pass else: cols = list(df.columns) list_db_col = ['topic_id', 'document_id','language'] esco = False for el in list_db_col: if el not in cols and el != 'language': esco = True json_resp['runs_message'] = 'RUNS FILE - ' + runs[ i].name + ' - The column: ' + el + ' is not present and it is mandatory.' break if esco == True: break for el in cols: if el not in list_db_col: json_resp['runs_message'] = 'RUNS FILE - ' + runs[ i].name + ' - The column ' + el + ' is not allowed.' break if df.shape[0] == 0: json_resp['runs_message'] = 'RUNS FILE - ' + runs[ i].name + ' - You must provide at least a row.' break else: # check if columns annotation_label and name have no duplicates if 'language' in df: df_dup = df[df.duplicated(subset=['topic_id','document_id','language'], keep=False)] else: df_dup = df[df.duplicated(subset=['topic_id','document_id'], keep=False)] if df_dup.shape[0] > 0: json_resp['runs_message'] = 'WARNING RUNS FILE - ' + runs[ i].name + ' - The rows: ' + str( df_dup.index.to_list()) + ' are duplicated. The duplicates will be ignored.' el = '' # if None in df['usecase'].tolist(): # el = 'usecase' if None in df['topic_id'].tolist(): el = 'topic_id' if None in df['document_id'].tolist(): el = 'document_id' if 'language' in df: el = 'language' if el != '': lista = df[el].tolist() ind = lista.index(None) json_resp['runs_message'] = 'RUNS FILE - ' + runs[ i].name + ' - The column ' + el + ' is empty at the row: ' + str(ind) + ' .' break tops.extend(df.topic_id.unique()) for el in tops: if str(el) not in topics_ids: json_resp['runs_message'] = 'RUNS FILE - ' + runs[ i].name + ' - The topic: ' + str(el) + ' is not in the provided list of topics.' break docs.extend(df.document_id.unique()) for el in docs: if str(el) not in documents_ids: json_resp['runs_message'] = 'RUNS FILE - ' + runs[ i].name + ' - The document: ' + str(el) + ' is not in the provided list of documents.' break elif runs[i].name.endswith('.json'): # with open(runs[i], 'r') as f: d = json.load(runs[i]) if 'run' not in d.keys(): json_resp['runs_message'] = 'RUNS FILE - ' + runs[ i].name + ' - json is not well formatted.' break if d['run'] == []: json_resp['runs_message'] = 'RUNS FILE - ' + runs[ i].name + ' - you must provide at least a topic and one or more documents associated.' break for r in d['run']: ind = d['run'].index(r) if 'topic_id' not in r.keys(): json_resp['runs_message'] = 'RUNS FILE - ' + topics[ i].name + ' - you must provide a topic number in the ' + str(ind) + ' th element.' break if 'documents' not in r.keys(): json_resp['runs_message'] = 'RUNS FILE - ' + topics[ i].name + ' - you must provide a topic\'s list for the topic: ' + str(r['num']) + '.' break if isinstance(r['documents'][0],dict): doc1 = [el['document_id'] for el in r['documents']] else: doc1 = r['documents'] for el in r['documents']: if isinstance(el,dict): if 'document_id' not in el.keys() and 'language' not in el.keys(): json_resp['runs_message'] = 'RUNS FILE - ' + topics[ i].name + ' - you must provide a document_id and a language' break tops.append(r['topic_id']) docs.extend(doc1) for el in tops: if el not in topics_ids: json_resp['runs_message'] = 'RUNS FILE - ' + runs[ i].name + ' - The topic: ' + str(el) + ' is not in the provided list of topics.' break for el in docs: if str(el) not in documents_ids: json_resp['runs_message'] = 'RUNS FILE - ' + runs[ i].name + ' - The document: ' + str(el) + ' is not in the provided list of documents.' break elif runs[i].name.endswith('.txt'): # with open(runs[i], 'r') as f: lines = runs[i].readlines() tups = [] for line in lines: line = line.decode('utf-8') if len(line.split()) == 2 or len(line.split() == 3): topic = line.split()[0] tops.append(topic) doc = line.split()[1] docs.append(doc) tups.append((topic,doc)) elif len(line.split()) > 2: #TREC topic = line.split()[0] tops.append(topic) doc = line.split()[2] tups.append((topic, doc)) docs.append(doc) else: json_resp['run_message'] = 'RUNS FILE - ' + runs[i].name + ' - txt file is not well formatted.' break for el in tops: if str(el) not in topics_ids: json_resp['runs_message'] = 'RUNS FILE - ' + runs[ i].name + ' - The topic: ' + str(el) + ' is not in the provided list of topics.' break for el in docs: if str(el) not in documents_ids: json_resp['runs_message'] = 'RUNS FILE - ' + runs[ i].name + ' - The document: ' + str(el) + ' is not in the provided list of documents.' break if json_resp['runs_message'] == '': json_resp['runs_message'] = 'Ok' if len(concepts) > 0: for i in range(len(concepts)): # Check if it is a csv if concepts[i].name.endswith('csv'): # json_resp['concept_message'] = 'CONCEPTS FILE - ' + concepts[i].name + ' - The file must be .csv' try: df = pd.read_csv(concepts[i]) df = df.where(pd.notnull(df), None) df = df.reset_index(drop=True) except Exception as e: json_resp['concept_message'] = 'CONCEPTS FILE - ' + concepts[i].name + ' - An error occurred while parsing the csv. Check if it is well formatted. ' pass # print(df) else: cols = list(df.columns) columns_wrong = False list_db_col = ['concept_url', 'concept_name'] # if 'usecase' in cols: # df['usecase'] = df['usecase'].str.lower() # Check if all the mandatory cols are present for el in list_db_col: if el not in cols: columns_wrong = True json_resp['concept_message'] = 'CONCEPTS FILE - ' + concepts[i].name + ' - The column ' + el + ' is not present. The only columns allowed are: concept_utl, concept_name, usecase, area' break if columns_wrong == True: break # if load_concepts is not None: # for el in load_concepts: # if el in df.usecase.unique(): # json_resp['concept_message'] = 'CONCEPTS FILE - ' + concepts[i].name + ' - You can not insert concepts files for the use case ' + el + ' after having decide to use EXAMODE concepts.' # break # header length must be the same, no extra columns if len(list_db_col) != len(cols): json_resp['concept_message'] = 'CONCEPTS FILE - ' + concepts[i].name + ' - The columns allowed are: concept_url, concept_name. If you inserted more (less) columns please, remove (add) them.' break # Check if the df has no rows if df.shape[0] == 0: json_resp['concept_message'] = 'CONCEPTS FILE - ' + concepts[i].name + ' - You must provide at least a concept.' break else: # check if column concept_url has no duplicates df_dup = df[df.duplicated(subset=['concept_url'], keep=False)] if df_dup.shape[0] > 0: json_resp['concept_message'] = 'WARNING CONCEPTS FILE - ' + concepts[i].name + ' - The rows: ' + str(df_dup.index.to_list()) + ' are duplicated. The duplicates will be ignored.' # Check if there are None in mandatory cols el = '' if None in df['concept_url'].tolist(): el = 'concept_url' elif None in df['concept_name'].tolist(): el = 'concept_name' if el != '': lista = df[el].tolist() ind = lista.index(None) json_resp['concept_message'] = 'CONCEPTS FILE - ' + concepts[i].name + ' - The column ' + el + ' is empty at the row: ' + str(ind) + ' .' break if concepts[i].name.endswith('json'): # json_resp['concept_message'] = 'CONCEPTS FILE - ' + concepts[i].name + ' - The file must be .csv' d = json.load(concepts[i]) if 'concepts_list' not in d.keys(): json_resp['concept_message'] = 'CONCEPTS FILE - ' + concepts[ i].name + ' - json is not well formatted' break if not isinstance(d['concepts_list'],list): json_resp['concept_message'] = 'CONCEPTS FILE - ' + concepts[ i].name + ' - json is not well formatted' break if len(d['concepts_list']) == 0: json_resp['concept_message'] = 'CONCEPTS FILE - ' + concepts[ i].name + ' - the list is empty' break dup_list = [] for element in d['concepts_list']: if 'concept_url' not in element.keys() and 'concept_name' not in element.keys(): json_resp['concept_message'] = 'CONCEPTS FILE - ' + concepts[ i].name + ' - each element in the list of concepts must contains concept_url and concept_name' break for element in d['concepts_list']: if element['concept_url'] in dup_list: json_resp['concept_message'] = 'WARNING CONCEPTS FILE - ' + concepts[ i].name + ' - Some concepts are duplicated, these will be ignored' if json_resp['concept_message'] == '': json_resp['concept_message'] = 'Ok' if len(labels) > 0: for i in range(len(labels)): if labels[i].name.endswith('csv'): # if not labels[i].name.endswith('csv'): # json_resp['label_message'] = 'LABELS FILE - ' + labels[i].name + ' - The file must be .csv' try: df = pd.read_csv(labels[i]) df = df.where(pd.notnull(df), None) df = df.reset_index(drop=True) except Exception as e: json_resp['label_message'] = 'LABELS FILE - ' + labels[i].name + ' - An error occurred while parsing the csv. Check if is well formatted.' pass else: cols = list(df.columns) list_db_col = ['label'] # if 'usecase' in cols: # df['usecase'] = df['usecase'].str.lower() # esco = False for el in list_db_col: if el not in cols: esco = True json_resp['label_message'] = 'LABELS FILE - ' + labels[i].name + ' - The columns: ' + el + ' is not present. The columns allowed are: labels, usecase.' if esco == True: break if len(cols) != len(list_db_col): json_resp['label_message'] = 'LABELS FILE - ' + labels[i].name + ' - The columns allowed are: label, usecase. If you inserted more (less) columns please, remove (add) them.' break if df.shape[0] == 0: json_resp['label_message'] = 'LABELS FILE - ' + labels[i].name + ' - You must provide at least a row.' break else: # check if columns annotation_label and name have no duplicates df_dup = df[df.duplicated(subset=['label'], keep=False)] if df_dup.shape[0] > 0: json_resp['label_message'] = 'WARNING LABELS FILE - ' + labels[i].name + ' - The rows: ' + str(df_dup.index.to_list()) + ' are duplicated. The duplicates will be ignored.' el = '' # if None in df['usecase'].tolist(): # el = 'usecase' if None in df['label'].tolist(): el = 'label' if el != '': lista = df[el].tolist() ind = lista.index(None) json_resp['label_message'] = 'LABELS FILE - ' + labels[i].name + ' - The column ' + el + ' is empty at the row: ' + str(ind) + ' .' break elif labels[i].name.endswith('.json'): # with open(labels[i],'r') as f: d = json.load(labels[i]) if 'labels' not in d.keys(): json_resp['label_message'] = 'LABELS FILE - ' + labels[i].name + ' - json is not well formatted.' break if d['labels'] == []: json_resp['label_message'] = 'LABELS FILE - ' + labels[ i].name + ' - you must provide at least a label.' break labels = d['labels'] if len(labels) > len(set(labels)): json_resp['label_message'] = 'WARNING LABELS FILE - ' + labels[ i].name + ' - the list of labels contains duplicates. They will be ignored.' elif labels[i].name.endswith('.txt'): # with open(labels[i], 'r') as f: lines = labels[i].readlines() labels_list = [] if len(lines) == 0: json_resp['label_message'] = 'LABELS FILE - ' + labels[i].name + ' - you must provide at least a label.' break for line in lines: line = line.decode('utf-8') if line not in labels_list: labels_list.append(line) else: json_resp['label_message'] = 'WARNING LABELS FILE - ' + labels[ i].name + ' - the list of labels contains duplicates. They will be ignored.' if json_resp['label_message'] == '': json_resp['label_message'] = 'Ok' if len(jsonAnn) == 0 and len(jsonDisp) == 0 and len(reports)>0: json_resp['fields_message'] = 'REPORT FIELDS TO DISPLAY AND ANNOTATE - Please provide at least one field to be displayed and/or at least one field to be annotated.' elif len(jsonAnn) == 0 and len(reports)>0: if json_resp['fields_message'] == '': json_resp['fields_message'] = 'WARNING REPORT FIELDS TO ANNOTATE - ok but with this configuration you will not be able to perform mention annotation and linking. Please, select also at least a field to annotate if you want to find some mentions and link them.' if len(reports) > 0: if json_resp['fields_message'] == '': json_resp['fields_message'] = 'Ok' except Exception as e: print(e) json_resp['general_message'] = 'An error occurred. Please check if it is similar to the example we provided.' return json_resp else: if json_resp['general_message'] == '': json_resp['general_message'] = 'Ok' return json_resp import time from datetime import date def configure_data(pubmedfiles,reports, labels, concepts, jsondisp, jsonann, jsonall, username, password, topics,runs,tfidf): """This method is run after having checked the files inserted by the user""" filename = '' language = 'english' error_location = 'database' report_usecases = [] created_file = False today = str(date.today()) try: with transaction.atomic(): cursor = connection.cursor() cursor.execute("DELETE FROM annotate;") cursor.execute("DELETE FROM linked;") cursor.execute("DELETE FROM associate;") cursor.execute("DELETE FROM contains;") cursor.execute("DELETE FROM mention;") cursor.execute("DELETE FROM belong_to;") cursor.execute("DELETE FROM annotation_label;") cursor.execute("DELETE FROM concept;") cursor.execute("DELETE FROM ground_truth_log_file;") cursor.execute("DELETE FROM topic_has_document;") cursor.execute("DELETE FROM report;") cursor.execute("DELETE FROM use_case;") cursor.execute("DELETE FROM semantic_area;") # connection.commit() cursor.execute("DELETE FROM public.user WHERE username = 'Test'") cursor.execute("INSERT INTO semantic_area VALUES (%s)",('default_area',)) if username is not None and password is not None: cursor.execute("INSERT INTO public.user (username,password,profile,ns_id) VALUES(%s,%s,%s,%s);", (str(username), hashlib.md5(str(password).encode()).hexdigest(), 'Admin', 'Human')) # cursor.execute("INSERT INTO public.user (username,password,profile,ns_id) VALUES(%s,%s,%s,%s);", # (str(username), hashlib.md5(str(password).encode()).hexdigest(), 'Admin', 'Robot')) fields = [] all_fields = [] fields_to_ann = [] jsonall = ''.join(jsonall) jsondisp = ''.join(jsondisp) jsonann = ''.join(jsonann) jsonall = jsonall.split(',') jsondisp = jsondisp.split(',') jsonann = jsonann.split(',') for el in jsonall: if len(el) > 0: all_fields.append(el) for el in jsondisp: if len(el) > 0: fields.append(el) if el not in all_fields: all_fields.append(el) for el in jsonann: if len(el) > 0: fields_to_ann.append(el) if el not in all_fields: all_fields.append(el) language = 'english' arr_to_ret = elaborate_runs(runs) error_location = 'Topic' for topic in topics: if topic.name.endswith('txt'): elaborate_TREC_topic_files(arr_to_ret,topic) elif topic.name.endswith('json'): process_topic_json_file(arr_to_ret,topic) elif topic.name.endswith('csv'): process_topic_csv_file(arr_to_ret,topic) error_location = 'Collection' for file in reports: reps = decompress_files([file]) for f in reps: if isinstance(f, str): file_name = f workpath = os.path.dirname(os.path.abspath(__file__)) # Returns the Path your .py file is in f = os.path.join(workpath, 'static\\tmp\\' + f) else: file_name = f.name if file_name.endswith('json'): find_docs_in_json_collection(arr_to_ret,f) elif file_name.endswith('csv'): find_docs_in_csv_collection(arr_to_ret,f) for file in pubmedfiles: # if file.name.endswith('json'): find_docs_in_json_pubmed_collection(arr_to_ret,file) error_location = 'Runs' for el in arr_to_ret: if len(el) == 3: language = el[2] topic = UseCase.objects.get(name = el[0]) doc = Report.objects.get(id_report =str(el[1]),language = 'english') TopicHasDocument.objects.get_or_create(name = topic,language = doc.language,id_report =doc) if len(labels) > 0: labs = [] error_location = 'Labels' for label_file in labels: if label_file.name.endswith('csv'): df_labels = pd.read_csv(label_file) df_labels = df_labels.where(pd.notnull(df_labels), None) df_labels = df_labels.reset_index(drop=True) # df_labels['usecase'] = df_labels['usecase'].str.lower() count_lab_rows = df_labels.shape[0] for i in range(count_lab_rows): label = str(df_labels.loc[i, 'label']) labs.append(label.rstrip()) elif label_file.name.endswith('json'): d = json.load(label_file) labels = d['labels'] for label in labels: labs.append(label.rstrip()) elif label_file.name.endswith('txt'): lines = label_file.readlines() for line in lines: line = line.decode('utf-8') labs.append(line.replace('\n','')) for label in labs: cursor.execute('SELECT * FROM annotation_label') ans = cursor.fetchall() if len(ans) == 0: seq_number = 1 else: cursor.execute('SELECT seq_number FROM annotation_label ORDER BY seq_number DESC;') ans = cursor.fetchall() seq_number = int(ans[0][0]) + 1 cursor.execute("SELECT * FROM annotation_label WHERE label = %s;", (str(label),)) ans = cursor.fetchall() if len(ans) == 0: cursor.execute("INSERT INTO annotation_label (label,seq_number) VALUES (%s,%s);", (str(label), int(seq_number))) # Popolate the concepts table error_location = 'Concepts' # if load_concepts is not None and load_concepts != '' and load_concepts !=[] and len(concepts) == 0: # configure_concepts(cursor,load_concepts,'admin') for concept_file in concepts: if concept_file.name.endswith('csv'): df_concept = pd.read_csv(concept_file) df_concept = df_concept.where(pd.notnull(df_concept), None) df_concept = df_concept.reset_index(drop=True) # df_concept['usecase'] = df_concept['usecase'].str.lower() # print(df_concept) count_conc_rows = df_concept.shape[0] for i in range(count_conc_rows): df_concept = df_concept.where(pd.notnull(df_concept), None) concept_url = str(df_concept.loc[i, 'concept_url']) concept_name = str(df_concept.loc[i, 'concept_name']) # usecase = str(df_concept.loc[i, 'usecase']) # semantic_area = str(df_concept.loc[i, 'area']) cursor.execute("SELECT concept_url,json_concept FROM concept WHERE concept_url = %s;", (str(concept_url),)) ans = cursor.fetchall() if len(ans) == 0: # json_concept = json.dumps({'provenance': 'admin', 'insertion_author': 'admin'}) cursor.execute("INSERT INTO concept (concept_url,name) VALUES (%s,%s);", (str(concept_url), str(concept_name))) cursor.execute("SELECT * FROM belong_to WHERE concept_url = %s AND name=%s;", (str(concept_url), 'default_area')) ans = cursor.fetchall() if len(ans) == 0: cursor.execute("INSERT INTO belong_to (concept_url,name) VALUES (%s,%s);", (str(concept_url), 'default_area')) elif concept_file.name.endswith('json'): d = json.load(concept_file) count_conc_rows = len(d['concepts_list']) for i in range(count_conc_rows): concept_url = str(d['concepts_list'][i]['concept_url']) concept_name = str(d['concepts_list'][i]['concept_name']) # usecase = str(df_concept.loc[i, 'usecase']) # semantic_area = str(df_concept.loc[i, 'area']) cursor.execute("SELECT concept_url,json_concept FROM concept WHERE concept_url = %s;", (str(concept_url),)) ans = cursor.fetchall() if len(ans) == 0: # json_concept = json.dumps({'provenance': 'admin', 'insertion_author': 'admin'}) cursor.execute("INSERT INTO concept (concept_url,name) VALUES (%s,%s);", (str(concept_url), str(concept_name))) cursor.execute("SELECT * FROM belong_to WHERE concept_url = %s AND name=%s;", (str(concept_url), 'default_area')) ans = cursor.fetchall() if len(ans) == 0: cursor.execute("INSERT INTO belong_to (concept_url,name) VALUES (%s,%s);", (str(concept_url), 'default_area')) data = {} data['fields'] = fields data['fields_to_ann'] = fields_to_ann data['all_fields'] = all_fields version = get_version() workpath = os.path.dirname(os.path.abspath(__file__)) # Returns the Path your .py file is in version_new = int(version) + 1 filename = 'fields' + str(version_new) created_file = False with open(os.path.join(workpath, './config_files/data/' + filename + '.json'), 'w') as outfile: json.dump(data, outfile) created_file = True except (Exception, psycopg2.Error) as e: print(e) print('rollback') # connection.rollback() if created_file == True: workpath = os.path.dirname(os.path.abspath(__file__)) # Returns the Path your .py file is in if filename != '' and filename != 'fields0': path = os.path.join(workpath, './config_files/data/' + filename + '.json') os.remove(path) json_resp = {'error': 'an error occurred in: ' + error_location + '.'} return json_resp else: # connection.commit() if created_file == True: for filen in os.listdir(os.path.join(workpath, './config_files/data')): if filen.endswith('json'): if filen != '' and filen != 'fields0.json' and filen != filename+'.json': path = os.path.join(workpath, './config_files/data/' + filen ) os.remove(path) outfile.close() if tfidf is not None or (len(runs) > 0 and len(topics) > 0 and (len(reports) > 0) or len(pubmedfiles) > 0): print(str(tfidf)) cursor = connection.cursor() cursor.execute('SELECT DISTINCT language FROM report') ans = cursor.fetchall() languages = [] for el in ans: languages.append(el[0]) st = time.time() if int(tfidf) > 0: workpath = os.path.dirname(os.path.abspath(__file__)) # Returns the Path your .py file is in path1 = os.path.join(workpath, './config_files/config.json') g = open(path1,'r') data = json.load(g) data['TF-IDF_k'] = tfidf with open(path1, 'w') as f: json.dump(data, f) t = UseCase.objects.all() cursor = connection.cursor() json_to_write = {} for top in t: print('topic:'+str(top)) json_to_write[top.name] = {} topic = {} corpus = [] cursor.execute( "SELECT r.id_report,r.language,r.report_json FROM report as r inner join topic_has_document as t on t.id_report = r.id_report and r.language = t.language where t.name = %s", [str(top.name)]) ans = cursor.fetchall() for el in ans: e = json.loads(el[2]) r_j1 = {} r_j1['document_id'] = str(el[0]) r_j1['text'] = '' for k in e.keys(): if k != 'document_id' or (str(el[0]).startswith('PUBMED_') and (k == 'abstract' or k == 'title')): r_j1['text'] = r_j1['text'] + ' ' + str(e[k]) if el[1].lower() in LANGUAGES_NLTK: corpus.append(r_j1) topic['title'] = top.title topic['description'] = top.description # df_tfidf = gen_tfidf_map(corpus,language) for el in ans: if el[1].lower() in LANGUAGES_NLTK: language = el[1].lower() start = time.time() print('working on ', str(el[0])) e = json.loads(el[2]) r_j1 = {} r_j1['document_id'] = str(el[0]) r_j1['text'] = '' for k in e.keys(): # print(k) # print(e[k]) if isinstance(e[k],list): e[k] = ', '.join(e[k]) if k != 'document_id' and k != 'language' and e[k] is not None: r_j1['text'] = r_j1['text'] + ' ' + e[k] tfidf_matcher = QueryDocMatcher(topic=topic,doc= r_j1, corpus=corpus,language=language) top_k_matching_words = tfidf_matcher.get_words_to_highlight() # print(top_k_matching_words) # json_val = {} # json_val[str(el[0])] = top_k_matching_words # json_val['words'] = top_k_matching_words json_to_write[top.name][str(el[0])] = top_k_matching_words # print(json_to_write) end = time.time() print('elaborated in '+str(end-start)+' seconds') else: json_to_write = {} end = time.time() print('time',end-st) path2 = os.path.join(workpath, './config_files/tf_idf_map.json') with open(path2, 'w') as f: json.dump(json_to_write, f) json_resp = {'message': 'Ok'} return json_resp #-------------------UPDATE---------------------------- def check_for_update(type_req, pubmedfiles, reports, labels, concepts, jsonDisp, jsonAnn, jsonDispUp, jsonAnnUp,topics,runs,tf_idf): """This method checks the files inserted by the user to update the db""" keys = get_fields_from_json() ann = keys['fields_to_ann'] disp = keys['fields'] tops = [] docs = [] if jsonDispUp is not None and jsonAnnUp is not None: jsonDispUp = ''.join(jsonDispUp) jsonAnnUp = ''.join(jsonAnnUp) jsonDispUp = jsonDispUp.split(',') jsonAnnUp = jsonAnnUp.split(',') try: cursor = connection.cursor() message = '' if tf_idf is not None: message = 'TF-IDF - the value must include only digits' return message if len(concepts) > 0: message = '' for i in range(len(concepts)): if not concepts[i].name.endswith('csv') and not concepts[i].name.endswith('json'): message = 'CONCEPTS FILE - ' + labels[i].name + ' - The file must be .csv, .json' return message if concepts[i].name.endswith('csv'): try: df = pd.read_csv(concepts[i]) df = df.where(pd.notnull(df), None) df = df.reset_index(drop=True) except Exception as e: message = 'CONCEPTS FILE - ' + concepts[ i].name + ' - An error occurred while parsing the csv. Check if it is well formatted.' return message else: list_db_col = ['concept_url', 'concept_name'] cols = list(df.columns) for el in list_db_col: if el not in cols: message = 'CONCEPTS FILE - ' + concepts[i].name + ' - The columns: ' + el + ' is missing. Please, add it.' return message if len(list_db_col) != len(cols): message = 'CONCEPTS FILE - ' + concepts[i].name + ' - The columns allowed are: concept_url, concept_name. If you inserted more (less) columns please, remove (add) them.' return message if df.shape[0] == 0: message = 'CONCEPTS FILE - ' + concepts[i].name + ' - You must provide at least a concept.' return message else: # duplicates in file df_dup = df[df.duplicated(subset=['concept_url'], keep=False)] if df_dup.shape[0] > 0: message = 'WARNING CONCEPTS FILE - ' + concepts[i].name + ' - The rows: ' + str( df_dup.index.to_list()) + ' are duplicated. The duplicates will be ignored.' el = '' if None in df['concept_url'].tolist(): el = 'concept_url' elif None in df['concept_name'].tolist(): el = 'concept_name' if el != '': lista = df[el].tolist() ind = lista.index(None) message = 'CONCEPTS FILE - ' + concepts[i].name + ' - The column ' + el + ' is empty at the row: ' + str(ind) + '.' return message # Check for duplicates in db for ind in range(df.shape[0]): cursor.execute('SELECT COUNT(*) FROM concept WHERE concept_url = %s', [str(df.loc[ind, 'concept_url'])]) num = cursor.fetchone() cursor.execute('SELECT COUNT(*) FROM belong_to WHERE concept_url = %s and name = %s', [str(df.loc[ind, 'concept_url']),str(df.loc[ind, 'area'])]) num_b = cursor.fetchone() if num[0] > 0 and num_b[0] > 0: message = 'WARNING CONCEPTS FILE - ' + concepts[i].name + ' - The concept: ' + str( df.loc[ind, 'concept_url']) + ' is already present in the database. It will be ignored.' if concepts[i].name.endswith('json'): # json_resp['concept_message'] = 'CONCEPTS FILE - ' + concepts[i].name + ' - The file must be .csv' d = json.load(concepts[i]) if 'concepts_list' in d.keys(): message = 'CONCEPTS FILE - ' + concepts[ i].name + ' - json is not well formatted' return message if not isinstance(d['concepts_list'], list): message = 'CONCEPTS FILE - ' + concepts[ i].name + ' - json is not well formatted' return message if len(d['concepts_list']) == 0: message = 'CONCEPTS FILE - ' + concepts[ i].name + ' - the list is empty' return message dup_list = [] for element in d['concepts_list']: if 'concept_url' not in element.keys() and 'concept_name' not in element.keys(): message = 'CONCEPTS FILE - ' + concepts[ i].name + ' - each element in the list of concepts must contains concept_url and concept_name fields' return message for element in d['concepts_list']: if element['concept_url'] in dup_list: message = 'WARNING CONCEPTS FILE - ' + concepts[ i].name + ' - Some concepts are duplicated, these will be ignored' return message elif len(labels) > 0: message = '' for i in range(len(labels)): if not labels[i].name.endswith('csv') and not labels[i].name.endswith('json') and not labels[i].name.endswith('txt'): message = 'LABELS FILE - ' + labels[i].name + ' - The file must be .csv, .json, .txt' return message if labels[i].name.endswith('csv'): try: df = pd.read_csv(labels[i]) df = df.where(pd.notnull(df), None) df = df.reset_index(drop=True) except Exception as e: message = 'LABELS FILE - ' + labels[i].name + ' - An error occurred while parsing the csv. Check if is well formatted.' return message else: cols = list(df.columns) list_db_col = ['label'] # if 'usecase' in cols: # df['usecase'] = df['usecase'].str.lower() # esco = False for el in list_db_col: if el not in cols: esco = True message = 'LABELS FILE - ' + labels[i].name + ' - The columns: ' + el + ' is not present. The columns allowed are: labels, usecase.' return message if esco == True: break if len(cols) != len(list_db_col): message = 'LABELS FILE - ' + labels[i].name + ' - The columns allowed are: label, usecase. If you inserted more (less) columns please, remove (add) them.' return message if df.shape[0] == 0: message = 'LABELS FILE - ' + labels[i].name + ' - You must provide at least a row.' return message else: # check if columns annotation_label and name have no duplicates df_dup = df[df.duplicated(subset=['label'], keep=False)] if df_dup.shape[0] > 0: message = 'WARNING LABELS FILE - ' + labels[i].name + ' - The rows: ' + str(df_dup.index.to_list()) + ' are duplicated. The duplicates will be ignored.' return message el = '' # if None in df['usecase'].tolist(): # el = 'usecase' if None in df['label'].tolist(): el = 'label' if el != '': lista = df[el].tolist() ind = lista.index(None) message = 'LABELS FILE - ' + labels[i].name + ' - The column ' + el + ' is empty at the row: ' + str(ind) + ' .' return message for ind in range(df.shape[0]): cursor.execute('SELECT COUNT(*) FROM annotation_label WHERE label = %s', [str(df.loc[ind, 'label'])]) num = cursor.fetchone() if num[0] > 0: message = 'WARNING LABELS FILE - ' + labels[i].name + ' - The label: ' + str(df.loc[ind, 'label']) + ' is already present in the database. It will be ignored.' elif labels[i].name.endswith('.json'): # with open(labels[i],'r') as f: d = json.load(labels[i]) if 'labels' not in d.keys(): message = 'LABELS FILE - ' + labels[i].name + ' - json is not well formatted.' return message if d['labels'] == []: message = 'LABELS FILE - ' + labels[ i].name + ' - you must provide at least a label.' return message l = d['labels'] if len(l) > len(set(l)): message = 'WARNING LABELS FILE - ' + labels[ i].name + ' - the list of labels contains duplicates. They will be ignored.' for ind in range(len(l)): cursor.execute('SELECT COUNT(*) FROM annotation_label WHERE label = %s', [str(l[ind])]) num = cursor.fetchone() if num[0] > 0: message = 'WARNING LABELS FILE - ' + labels[i].name + ' - The label: ' + str(l[ind]) + ' is already present in the database. It will be ignored.' elif labels[i].name.endswith('.txt'): # with open(labels[i], 'r') as f: lines = labels[i].readlines() labels_list = [] if len(lines) == 0: message = 'LABELS FILE - ' + labels[i].name + ' - you must provide at least a label.' return message for line in lines: line = line.decode('utf-8') if line not in labels_list: labels_list.append(line) else: message = 'WARNING LABELS FILE - ' + labels[ i].name + ' - the list of labels contains duplicates. They will be ignored.' for ind in range(len(labels_list)): cursor.execute('SELECT COUNT(*) FROM annotation_label WHERE label = %s', [str(labels_list[ind])]) num = cursor.fetchone() if num[0] > 0: message = 'WARNING LABELS FILE - ' + labels[i].name + ' - The label: ' + str(labels_list[ind]) + ' is already present in the database. It will be ignored.' return message elif (len(pubmedfiles) > 0 or len(reports) > 0) and len(topics) > 0 and len(runs) > 0: message = '' documents_ids = [] topics_ids = [] to = UseCase.objects.all().values('name') for el in to: topics_ids.append(el['name']) ids = Report.objects.all().values('id_report') for el in ids: documents_ids.append(str(el['id_report'])) for i in range(len(pubmedfiles)): # Error if the file is not csv if not pubmedfiles[i].name.endswith('csv') and not pubmedfiles[i].name.endswith('json') and not \ pubmedfiles[i].name.endswith( 'txt'): message = 'PUBMED FILE - ' + pubmedfiles[ i].name + ' - The file must be .csv or .json or .txt' return message if pubmedfiles[i].name.endswith('csv'): try: df = pd.read_csv(pubmedfiles[i]) df = df.where(pd.notnull(df), None) df = df.reset_index(drop=True) # Useful if the csv includes only commas except Exception as e: print(e) message = 'PUBMED FILE - ' + pubmedfiles[ i].name + ' - An error occurred while parsing the csv. Check if it is well formatted. Check if it contains as many columns as they are declared in the header.' return message else: # check if colunns are allowed and without duplicates cols = list(df.columns) list_db_col = ['document_id'] for el in list_db_col: if el not in cols and el == 'document_id': message = 'PUBMED FILE - ' + pubmedfiles[ i].name + ' - The column: ' + el + ' is missing, please add it.' return message for column in cols: null_val = df[df[column].isnull()].index.tolist() if len(null_val) > 0: message = 'PUBMED FILE - ' + pubmedfiles[ i].name + ' - You did not inserted the ' + column + ' for rows: ' + null_val.split( ', ') # Check if the csv is empty with 0 rows if df.shape[0] == 0: message = 'PUBMED FILE - ' + pubmedfiles[ i].name + ' - You must provide at least a report.' return message else: # check if columns id_report and language have no duplicates # if 'language' in df: # df_dup = df[df.duplicated(subset=['document_id', 'language'], keep=False)] # else: df_dup = df[df.duplicated(subset=['document_id'], keep=False)] if df_dup.shape[0] > 0: message = 'WARNING PUBMED FILE - ' + pubmedfiles[ i].name + ' - The rows: ' + str( df_dup.index.to_list()) + ' are duplicated. The duplicates are ignored.' for ind in range(df.shape[0]): found = False id_report = 'PUBMED_' + str(df.loc[ind, 'document_id']) cursor.execute('SELECT COUNT(*) FROM report WHERE id_report = %s AND institute = %s', [str(id_report), 'PUBMED']) num = cursor.fetchone() if num[0] > 0: message = 'WARNING PUBMED FILE - ' + pubmedfiles[i].name + ' - The report: ' + str( id_report) + ' is already present in the database. It will be ignored.' for el in list_db_col: if df.loc[ind, el] is not None: found = True break if found == False: message = 'PUBMED FILE - ' + pubmedfiles[i].name + ' - The report at row ' + str( ind) + ' has the columns: ' + ', '.join( list_db_col) + ' empty. Provide a value for at least one of these columns.' return message el = '' if None in df['document_id'].tolist(): el = 'institute' if el != '': lista = df[el].tolist() ind = lista.index(None) message = 'PUBMED FILE - ' + pubmedfiles[ i].name + ' - The column ' + el + ' is empty at the row: ' + str(ind) + '.' return message elif pubmedfiles[i].name.endswith('json'): d = json.load(runs[i]) if 'pubmed_ids' not in d.keys(): message = 'PUBMED FILE - ' + runs[ i].name + ' - json is not well formatted.' return message if d['pubmed_ids'] == []: message = 'PUBMED FILE - ' + runs[ i].name + ' - you must provide at least an article id.' break if not isinstance(d['pubmed_ids'], list): message = 'PUBMED FILE - ' + runs[ i].name + ' - you must provide at least an article id.' return message if len(d['pubmed_ids']) != len(list(set(d['pubmed_ids']))): message = 'WARNING PUBMED FILE - ' + runs[ i].name + ' - some ids seem to be duplicated. They will be ignored.' return message for el in d['pubmed_ids']: id_report = 'PUBMED_' + str(str(el)) cursor.execute('SELECT COUNT(*) FROM report WHERE id_report = %s AND institute = %s', [str(id_report), 'PUBMED']) num = cursor.fetchone() if num[0] > 0: message = 'WARNING PUBMED FILE - ' + pubmedfiles[i].name + ' - The report: ' + str( id_report) + ' is already present in the database. It will be ignored.' elif pubmedfiles[i].name.endswith('txt'): lines = pubmedfiles[i].readlines() if len(lines) == 0: message = 'PUBMED FILE - ' + runs[ i].name + ' - the file is empty.' return message if len(lines) != len(list(set(lines))): message = 'WARNING PUBMED FILE - ' + runs[ i].name + ' - the file contain some duplicates: they will be ignored.' for line in lines: id_report = 'PUBMED_' + str(line.split()[0]) cursor.execute('SELECT COUNT(*) FROM report WHERE id_report = %s AND institute = %s', [str(id_report), 'PUBMED']) num = cursor.fetchone() if num[0] > 0: message = 'WARNING PUBMED FILE - ' + pubmedfiles[i].name + ' - The report: ' + str( id_report) + ' is already present in the database. It will be ignored.' # elif len(reports) > 0 and len(runs) > 0 and len(topics) > 0: # message = '' for i in range(len(reports)): reps = decompress_files([reports[i]]) for rep in reps: if isinstance(rep, str): rep_name = rep workpath = os.path.dirname(os.path.abspath(__file__)) # Returns the Path your .py file is in rep = os.path.join(workpath, 'static/tmp/' + rep_name) else: rep_name = rep.name if not rep.name.endswith('csv') and not rep_name.endswith('txt') and not rep.name.endswith('json'): message = 'DOCUMENTS FILE - ' + rep_name + ' - The file must be .csv, .json, .txt' return message if rep_name.endswith('csv'): try: df = pd.read_csv(rep) df = df.where(pd.notnull(df), None) df = df.reset_index(drop=True) except Exception as e: message = 'DOCUMENTS FILE - ' + rep_name + ' - An error occurred while parsing the csv. Check if it is well formatted. ' return message else: cols = list(df.columns) count = 0 list_db_col = ['document_id','language'] list_not_db_col = [] for el in list_db_col: if el not in cols and el == 'document_id': message = 'DOCUMENTS FILE - ' + rep_name + ' - The column: ' + str(el) + ' must be present.' return message for id in list(df.document_id.unique()): # if str(id) in documents_ids: # json_resp['report_message'] = 'WARNING DOCUMENTS FILE - ' + rep_name + ' - The id: ' + str(id) + ' is duplicated. The duplicates are ignored.' # else: documents_ids.append(str(id)) for el in cols: if el not in list_db_col: list_not_db_col.append(el) if jsonDispUp is not None and jsonAnnUp is not None: if len(disp) > 0 or len(ann) > 0: ann_intersect = list(set(ann) & set(list_not_db_col)) for el in list_not_db_col: if (el not in disp and el not in ann) and (el not in jsonDispUp and el not in jsonAnnUp): count = count + 1 if count == len(list_not_db_col): message = 'DOCUMENTS FIELDS - Please, provide at least one field to display in file: ' + \ rep_name + '. Be careful that if you do not provide one field to annotate you will not be able to perform mention annotation and linking.' return message elif len(ann_intersect) == 0 and (jsonAnnUp[0]) == '': message = 'WARNING DOCUMENTS FIELDS - file: ' + rep_name + ' Please, provide at least one field to annotate if you want to find mentions and perform linking.' if len(list_not_db_col) == 0: message = 'DOCUMENTS FILE - ' + rep_name + ' - You must provide at least one column other than document_id' return message if df.shape[0] == 0: message = 'DOCUMENTS FILE - ' + rep_name + ' - You must provide at least a report.' return message else: df_dup = df[df.duplicated(subset=['document_id'], keep=False)] if 'language' in df: df_dup = df[df.duplicated(subset=['document_id','language'], keep=False)] if df_dup.shape[0] > 0: message = 'WARNING DOCUMENTS FILE - ' + rep_name + ' - The rows: ' + str( df_dup.index.to_list()) + ' are duplicated. The duplicates are ignored.' for id in list(df.document_id.unique()): if str(id) in documents_ids: message = 'WARNING DOCUMENTS FILE - ' + rep_name + ' - The id: ' + str( id) + ' is duplicated. The duplicates are ignored.' else: documents_ids.append(str(id)) for ind in range(df.shape[0]): found = False if 'language' in df: language = str(df.loc[ind, 'language']) else: language = 'english' cursor.execute('SELECT COUNT(*) FROM report WHERE id_report = %s AND language = %s', [str(df.loc[ind, 'document_id']),language]) num = cursor.fetchone() if num[0] > 0: message = 'WARNING DOCUMENTS FILE - ' + rep_name + ' - The report: ' + str( df.loc[ind, 'document_id']) + ' is already present in the database. It will be ignored.' for el in list_db_col: if df.loc[ind, el] is not None: found = True break if found == False: message = 'DOCUMENTS FILE - ' + rep_name + ' - The report at row ' + str( ind) + ' has the column: ' + ', '.join( list_db_col) + ' empty. ' return message found = False count_both = 0 not_none_cols = [] for el in list_not_db_col: if df.loc[ind, el] is not None: found = True not_none_cols.append(el) if found == False: message = 'DOCUMENTS FILE - ' + rep_name + ' - The report at row ' + str( ind) + ' has the columns: ' + ', '.join( list_not_db_col) + ' empty. Provide a value for at least one of these columns, or delete this report from the csv file.' return message for el in not_none_cols: if jsonAnnUp is not None and jsonDispUp is not None: if el not in disp and el not in jsonDispUp and el not in ann and el not in jsonAnnUp: count_both = count_both + 1 else: if el not in disp and el not in ann: count_both = count_both + 1 if count_both == len(not_none_cols): message = 'WARNING DOCUMENTS FIELDS TO DISPLAY AND ANNOTATE - ' + rep_name + ' - With the current configuration the report at the row: ' + str( ind) + ' would not be displayed since the columns to display are all empty for that report.' # for el in df.institute.unique(): # if el.lower() == 'pubmed': # message = 'REPORTS FILE - ' + reports[ # i].name + ' - calling an institute "PUBMED" is forbidden, please, change the name' # for el in df.document_id: if el.lower().startswith('pubmed_'): message = 'DOCUMENTS FILE - ' + rep_name + ' - reports\' ids can not start with "PUBMED_", please, change the name' el = '' if None in df['document_id'].tolist(): el = 'document_id' if 'language' in df: el = 'language' if el != '': lista = df[el].tolist() ind = lista.index(None) message = 'DOCUMENTS FILE - ' + rep_name + ' - The column ' + el + ' is empty at the row: ' + str(ind) + '.' return message elif rep_name.endswith('json'): # with open(rep, 'r') as f: d = json.load(rep) if 'collection' not in d.keys(): message = 'DOCUMENTS FILE - ' + rep_name + ' - The json is not well formatted.' break exit = False keys_list = [] if len(d['collection']) == 0: message = 'DOCUMENTS FILE - ' + rep_name + ' - You must provide at least a report.' break for document in d['collection']: if 'language' in document.keys(): language = document['language'] else: language = 'english' cursor.execute('SELECT COUNT(*) FROM report WHERE id_report = %s AND language = %s', [document['document_id'], language]) num = cursor.fetchone() if num[0] > 0: message = 'WARNING REPORT FILE - ' +rep_name + ' - The report: ' + str( document['document_id']) + ' is already present in the database. It will be ignored.' ind = d['collection'].index(document) if 'document_id' not in document.keys() or document['document_id'] is None: message = 'DOCUMENTS FILE - ' + rep_name + ' - The ' + str(ind) + ' document does not contain the "document_id" key which is mandatory.' exit = True break doc_keys = list(document.keys()) if 'language' in list(document.keys()): doc_keys.remove('language') doc_keys.remove('document_id') is_none = True for key in list(document.keys()): if key != 'document_id' and key != 'language': if document[key] is not None: is_none = False break if ('document_id' in list(document.keys()) and len(list(document.keys())) == 1) or ('language' in list(document.keys()) and len(list(document.keys())) == 2) or is_none: message = 'DOCUMENTS FILE - ' + rep_name + ' - The ' + str(ind) + ' document does not contain the document\' s text.' keys_list.extend(list(document.keys())) if str(document['document_id']) in documents_ids: message = 'WARNING DOCUMENTS FILE - ' + rep_name + ' - The id ' + str(document['document_id']) + ' is duplicated.' else: documents_ids.append(str(document['document_id'])) count_both = 0 for el in doc_keys: if jsonAnnUp is not None and jsonDispUp is not None: if el not in disp and el not in jsonDispUp and el not in ann and el not in jsonAnnUp: count_both = count_both + 1 else: if el not in disp and el not in ann: count_both = count_both + 1 if count_both == len(doc_keys): message = 'WARNING DOCUMENTS FIELDS TO DISPLAY AND ANNOTATE - ' + reports[ i].name + ' - With the current configuration the report at the row: ' + str( ind) + ' would not be displayed since the columns to display are all empty for that report.' if exit == True: break if len(topics) > 0: for i in range(len(topics)): if not topics[i].name.endswith('csv') and not topics[i].name.endswith('json') and not topics[ i].name.endswith('txt'): message = 'TOPIC FILE - ' + topics[i].name + ' - The file must be .csv or .json or .txt' return message if topics[i].name.endswith('csv'): try: df = pd.read_csv(labels[i]) df = df.where(pd.notnull(df), None) df = df.reset_index(drop=True) except Exception as e: message = 'TOPIC FILE - ' + topics[ i].name + ' - An error occurred while parsing the csv. Check if is well formatted.' pass else: cols = list(df.columns) list_db_col = ['topic_id', 'title', 'description', 'narrative'] for el in list_db_col: if el not in cols and el == 'topic_id': message = 'TOPIC FILE - ' + topics[ i].name + ' - The column: ' + el + ' is not present and it is mandatory.' return message elif el not in cols: message = 'WARNING TOPIC FILE - ' + topics[ i].name + ' - The column: ' + el + ' is not present.' for el in cols: if el not in list_db_col: message = 'TOPIC FILE - ' + topics[ i].name + ' - The column ' + el + ' is not allowed.' return message for id in list(df.topic_id.unique()): if id in topics_ids: message = 'WARNING TOPIC FILE - ' + topics[i].name + ' - The topic: ' + str(id) + ' is duplicated. The duplicates are ignored.' else: topics_ids.append(id) if df.shape[0] == 0: message = 'TOPIC FILE - ' + topics[ i].name + ' - You must provide at least a row.' return message else: # check if columns annotation_label and name have no duplicates df_dup = df[df.duplicated(subset=['topic_id'], keep=False)] if df_dup.shape[0] > 0: message = 'WARNING TOPIC FILE - ' + topics[ i].name + ' - The rows: ' + str( df_dup.index.to_list()) + ' are duplicated. The duplicates will be ignored.' el = '' if None in df['topic_id'].tolist(): el = 'topic_id' if el != '': lista = df[el].tolist() ind = lista.index(None) message = 'TOPIC FILE - ' + topics[ i].name + ' - The column ' + el + ' is empty at the row: ' + str(ind) + ' .' return message elif topics[i].name.endswith('.txt'): arr_to_ret = elaborate_runs(runs) topics_ids = elaborate_TREC_topic_files([], topics[i], 'check') topics_ids = [str(i) for i in topics_ids] if isinstance(topics_ids, list) == False: message = 'TOPIC FILE - ' + topics[ i].name + ' - topics are not well formatted.' elif topics[i].name.endswith('.json'): # with open(topics[i], 'r') as f: d = json.load(topics[i]) doc_top = [] if 'topics' not in d.keys(): message = 'TOPIC FILE - ' + topics[ i].name + ' - json is not well formatted.' return message if d['topics'] == []: message = 'TOPIC FILE - ' + labels[ i].name + ' - you must provide at least a label.' return message for topic in d['topics']: ind = d['topics'].index(topic) if 'topic_id' not in topic.keys(): message = 'TOPIC FILE - ' + topics[ i].name + ' - you must provide a topic number in the ' + str(ind) + ' th topic.' return message doc_top.append(topic['topic_id']) if str(topic['topic_id']) in topics_ids: message = 'WARNING TOPIC FILE - ' + topics[ i].name + ' - the list of topics contains duplicates. They will be ignored.' else: topics_ids.append(str(topic['topic_id'])) if len(doc_top) > len(set(doc_top)): message = 'WARNING TOPIC FILE - ' + topics[ i].name + ' - the list of topics contains duplicates. They will be ignored.' if len(runs) > 0: language = 'english' for i in range(len(runs)): if not runs[i].name.endswith('csv') and not runs[i].name.endswith('json') and not runs[i].name.endswith('txt'): message = 'RUNS FILE - ' + runs[i].name + ' - The file must be .csv or .json or .txt' break if runs[i].name.endswith('csv'): try: df = pd.read_csv(runs[i]) df = df.where(pd.notnull(df), None) df = df.reset_index(drop=True) except Exception as e: message = 'RUNS FILE - ' + runs[ i].name + ' - An error occurred while parsing the csv. Check if is well formatted.' return message else: cols = list(df.columns) list_db_col = ['topic_id', 'document_id', 'language'] for el in list_db_col: if el not in cols and el != 'language': message = 'RUNS FILE - ' + runs[ i].name + ' - The column: ' + el + ' is not present and it is mandatory.' return message for el in cols: if el not in list_db_col: message = 'RUNS FILE - ' + runs[ i].name + ' - The column ' + el + ' is not allowed.' return message if df.shape[0] == 0: message = 'RUNS FILE - ' + runs[ i].name + ' - You must provide at least a row.' return message else: # check if columns annotation_label and name have no duplicates df_dup = df[df.duplicated(subset=['topic_id', 'document_id'], keep=False)] if 'language' in df: df_dup = df[df.duplicated(subset=['topic_id', 'document_id','language'], keep=False)] if df_dup.shape[0] > 0: message = 'WARNING RUNS FILE - ' + runs[ i].name + ' - The rows: ' + str( df_dup.index.to_list()) + ' are duplicated. The duplicates will be ignored.' for i in range(df.shape[0]): doc = str(df.loc[i,'document_id']) top = str(df.loc[i,'topic_id']) if 'language' in df: language = str(df.loc[i,'language']) report = Report.objects.get(id_report = str(doc),language = language) topic = UseCase.objects.get(name = str(top)) v = TopicHasDocument.objects.filter(name = topic,id_report = report,language =language) if v.count() > 0: message = 'WARNING RUNS FILE - ' + runs[i].name + ' - The topic: ' + str(topic) +' is already associated to the document: ' + str(doc)+ ' it will be ignored.' el = '' # if None in df['usecase'].tolist(): # el = 'usecase' if None in df['topic_id'].tolist(): el = 'topic_id' if None in df['document_id'].tolist(): el = 'document_id' if 'language' in df: if None in df['language'].tolist(): el = 'language' if el != '': lista = df[el].tolist() ind = lista.index(None) message = 'RUNS FILE - ' + topics[ i].name + ' - The column ' + el + ' is empty at the row: ' + str(ind) + ' .' return message tops.extend(df.topic_id.unique()) for el in df.topic_id.unique(): if el not in topics_ids: message = 'RUNS FILE - ' + runs[ i].name + ' - The topic: ' + str(el) + ' is not in the provided list of topics.' return message docs.extend(list(df.document_id.unique())) for el in (df.document_id.unique()): if str(el) not in documents_ids: message = 'RUNS FILE - ' + runs[ i].name + ' - The document: ' + str( el) + ' is not in the provided list of documents.' return message elif runs[i].name.endswith('.json'): # with open(runs[i], 'r') as f: d = json.load(runs[i]) if 'run' not in d.keys(): message = 'RUNS FILE - ' + runs[ i].name + ' - json is not well formatted.' return message if d['run'] == []: message = 'RUNS FILE - ' + runs[ i].name + ' - you must provide at least a topic and one or more documents associated.' return message for r in d['run']: ind = d['run'].index(r) tops.append(r['topic_id']) docs.extend(r['documents']) if 'topic_id' not in r.keys(): message = 'RUNS FILE - ' + topics[ i].name + ' - you must provide a topic number in the ' + str( ind) + ' th element.' return message if 'documents' not in r.keys(): message = 'RUNS FILE - ' + topics[ i].name + ' - you must provide a topic\'s list for the topic: ' + str( r['topic_id']) + '.' return message for el in r['documents']: if isinstance(el,str) or isinstance(el,int): if Report.objects.filter(id_report=str(el)).exists(): report = Report.objects.get(id_report=str(el), language='english') topic = UseCase.objects.get(name=str(r['topic_id'])) v = TopicHasDocument.objects.filter(name=topic, id_report=report, language='english') if v.count() > 0: message = 'WARNING RUNS FILE - ' + runs[i].name + ' - The topic: ' + str( topic) + ' is already associated to the document: ' + str( el) + ' it will be ignored.' elif isinstance(el,dict): if Report.objects.filter(id_report=str(el['document_id'])).exists(): report = Report.objects.get(id_report=str(el['document_id']), language=el['language']) topic = UseCase.objects.get(name=str(r['topic_id'])) v = TopicHasDocument.objects.filter(name=topic, id_report=report, language=el['language']) if v.count() > 0: message = 'WARNING RUNS FILE - ' + runs[i].name + ' - The topic: ' + str( topic) + ' is already associated to the document: ' + str( el['document_id']) + ' it will be ignored.' for el in tops: if str(el) not in topics_ids: message = 'RUNS FILE - ' + runs[i].name + ' - The topic: ' + str(el) + ' is not in the provided list of topics.' return message for el in docs: if isinstance(el,dict): el = el['document_id'] if str(el) not in documents_ids: message = 'RUNS FILE - ' + runs[ i].name + ' - The document: ' + str( el) + ' is not in the provided list of documents.' return message elif runs[i].name.endswith('.txt'): # with open(runs[i], 'r') as f: lines = runs[i].readlines() tups = [] for line in lines: if len(line.split()) == 2: topic = line.split()[0] tops.append(topic) doc = line.split()[1] docs.append(doc) tups.append((topic, doc)) report = Report.objects.get(id_report=str(doc), language='english') topic = UseCase.objects.get(name=str(topic)) v = TopicHasDocument.objects.filter(name=topic, id_report=report, language='english') if v.count() > 0: message = 'WARNING RUNS FILE - ' + runs[i].name + ' - The topic: ' + str( topic) + ' is already associated to the document: ' + str( doc) + ' it will be ignored.' elif len(line.split()) > 2: # TREC topic = line.split()[0] tops.append(topic) doc = line.split()[2] tups.append((topic, doc)) docs.append(doc) report = Report.objects.get(id_report=str(doc), language='english') topic = UseCase.objects.get(name=str(topic)) v = TopicHasDocument.objects.filter(name=topic, id_report=report, language='english') if v.count() > 0: message = 'WARNING RUNS FILE - ' + runs[i].name + ' - The topic: ' + str( topic) + ' is already associated to the document: ' + str( doc) + ' it will be ignored.' else: message = 'RUNS FILE - ' + runs[ i].name + ' - txt file is not well formatted.' return message for el in tops: if el not in topics_ids: message = 'RUNS FILE - ' + runs[ i].name + ' - The topic: ' + str(el) + ' is not in the provided list of topics.' return message for el in docs: if str(el) not in documents_ids: message = 'RUNS FILE - ' + runs[ i].name + ' - The document: ' + str( el) + ' is not in the provided list of documents.' return message if jsonAnn is not None and jsonDisp is not None: if type_req == 'json_fields' and len(jsonAnn) == 0 and len(jsonDisp) == 0 and len(ann) == 0: message = 'REPORT FIELDS TO ANNOTATE - You must provide at least one field to display and/or one field to display and annotate.' return message elif type_req == 'json_fields' and len(jsonAnn) == 0: message = 'WARNING REPORT FIELDS TO ANNOTATE - ok, but with this configuration you will not be able to perform mention annotation and linking. Please, select also at least a field to annotate if you want to find some mentions and to link them' return message if type_req == 'labels' and len(labels) == 0: message = 'LABELS - Please insert a labels file.' return message if type_req == 'concepts' and len(concepts) == 0: message = 'CONCEPTS - Please insert a concepts file.' return message if type_req == 'reports' and len(reports) == 0: message = 'REPORTS - Please insert a reports file.' return message if type_req == 'pubmed' and len(pubmedfiles) == 0: message = 'PUBMED - Please insert a reports file.' return message return message except (Exception, psycopg2.Error) as e: print(e) message = 'An error occurred in ' + type_req + ' file(s). Please check if it is similar to the example we provided.' return message def update_db_util(reports,pubmedfiles,labels,concepts,jsondisp,jsonann,jsondispup,jsonannup,jsonall,topics,runs,batch,tf_idf): """This method is run after having checked the files inserted for the update. It updates the db.""" filename = '' today = str(date.today()) error_location = 'database' usecases = [] sem_areas = [] created_file = False cursor = connection.cursor() try: with transaction.atomic(): all_fields = [] fields = [] fields_to_ann = [] version = get_version() if int(version) != 0: json_resp = get_fields_from_json() all_fields = json_resp['all_fields'] fields = json_resp['fields'] fields_to_ann = json_resp['fields_to_ann'] if jsonannup != '' or jsondispup != '' or jsonall != '': data = {} all_fields = [] fields = [] fields_to_ann = [] version = get_version() if int(version) != 0: json_resp = get_fields_from_json() all_fields = json_resp['all_fields'] fields = json_resp['fields'] fields_to_ann = json_resp['fields_to_ann'] jsondispup = ''.join(jsondispup) jsonannup = ''.join(jsonannup) jsonall = ''.join(jsonall) jsondispup = jsondispup.split(',') jsonannup = jsonannup.split(',') jsonall = jsonall.split(',') for el in jsondispup: if len(el) > 0: if el not in all_fields: all_fields.append(el) if el not in fields: fields.append(el) for el in jsonannup: if len(el) > 0: if el not in fields_to_ann: fields_to_ann.append(el) if el not in all_fields: all_fields.append(el) for el in jsonall: if el not in all_fields and el: all_fields.append(el) data['fields'] = fields data['fields_to_ann'] = fields_to_ann data['all_fields'] = all_fields version = get_version() version_new = int(version) + 1 filename = 'fields' + str(version_new) workpath = os.path.dirname(os.path.abspath(__file__)) # Returns the Path your .py file is in with open(os.path.join(workpath, '.config_files/data/' + filename + '.json'), 'w') as outfile: json.dump(data, outfile) created_file = True if (len(reports) > 0 or len(pubmedfiles) > 0) or len(runs) > 0 or len(topics) > 0: language = 'english' arr_to_ret = elaborate_runs(runs) error_location = 'Topic' for topic in topics: if topic.name.endswith('txt'): elaborate_TREC_topic_files(arr_to_ret, topic) elif topic.name.endswith('json'): process_topic_json_file(arr_to_ret, topic) elif topic.name.endswith('csv'): process_topic_csv_file(arr_to_ret, topic) error_location = 'Collection' for file in reports: reps = decompress_files([file]) for f in reps: if isinstance(f, str): file_name = f workpath = os.path.dirname( os.path.abspath(__file__)) # Returns the Path your .py file is in f = os.path.join(workpath, 'static\\tmp\\' + f) else: file_name = f.name if file_name.endswith('json'): find_docs_in_json_collection(arr_to_ret, f) elif file_name.endswith('csv'): find_docs_in_csv_collection(arr_to_ret, f) for file in pubmedfiles: find_docs_in_json_pubmed_collection(arr_to_ret, file) error_location = 'Runs' for el in arr_to_ret: if len(el) == 3: language = el[2] topic = UseCase.objects.get(name=el[0]) doc = Report.objects.get(id_report=el[1], language=language) TopicHasDocument.objects.get_or_create(name=topic, language=doc.language, id_report=doc) # Popolate the labels table if len(labels) > 0: labs = [] error_location = 'Labels' for label_file in labels: if label_file.name.endswith('csv'): df_labels = pd.read_csv(label_file) df_labels = df_labels.where(pd.notnull(df_labels), None) df_labels = df_labels.reset_index(drop=True) # df_labels['usecase'] = df_labels['usecase'].str.lower() count_lab_rows = df_labels.shape[0] for i in range(count_lab_rows): label = str(df_labels.loc[i, 'label']) labs.append(label.rstrip()) elif label_file.name.endswith('json'): d = json.load(label_file) labels = d['labels'] for label in labels: labs.append(label.rstrip()) elif label_file.name.endswith('txt'): lines = label_file.readlines() for line in lines: line = line.decode('utf-8') labs.append(line.replace('\n', '')) for label in labs: cursor.execute('SELECT * FROM annotation_label') ans = cursor.fetchall() if len(ans) == 0: seq_number = 1 else: cursor.execute('SELECT seq_number FROM annotation_label ORDER BY seq_number DESC;') ans = cursor.fetchall() seq_number = int(ans[0][0]) + 1 cursor.execute("SELECT * FROM annotation_label WHERE label = %s;", (str(label),)) ans = cursor.fetchall() if len(ans) == 0: cursor.execute("INSERT INTO annotation_label (label,seq_number) VALUES (%s,%s);", (str(label), int(seq_number))) # Popolate the concepts table if len(concepts) > 0: error_location = 'Concepts' for concept_file in concepts: if concept_file.name.endswith('csv'): df_concept = pd.read_csv(concept_file) df_concept = df_concept.where(pd.notnull(df_concept), None) df_concept = df_concept.reset_index(drop=True) # df_concept['usecase'] = df_concept['usecase'].str.lower() # print(df_concept) count_conc_rows = df_concept.shape[0] for i in range(count_conc_rows): df_concept = df_concept.where(pd.notnull(df_concept), None) concept_url = str(df_concept.loc[i, 'concept_url']) concept_name = str(df_concept.loc[i, 'concept_name']) # usecase = str(df_concept.loc[i, 'usecase']) # semantic_area = str(df_concept.loc[i, 'area']) cursor.execute("SELECT concept_url,json_concept FROM concept WHERE concept_url = %s;", (str(concept_url),)) ans = cursor.fetchall() if len(ans) == 0: # json_concept = json.dumps({'provenance': 'admin', 'insertion_author': 'admin'}) cursor.execute("INSERT INTO concept (concept_url,name) VALUES (%s,%s);", (str(concept_url), str(concept_name))) cursor.execute("SELECT * FROM belong_to WHERE concept_url = %s AND name=%s;", (str(concept_url), 'default_area')) ans = cursor.fetchall() if len(ans) == 0: cursor.execute("INSERT INTO belong_to (concept_url,name) VALUES (%s,%s);", (str(concept_url), 'default_area')) elif concept_file.name.endswith('json'): d = json.load(concept_file) count_conc_rows = len(d['concepts_list']) for i in range(count_conc_rows): concept_url = str(d['concepts_list'][i]['concept_url']) concept_name = str(d['concepts_list'][i]['concept_name']) # usecase = str(df_concept.loc[i, 'usecase']) # semantic_area = str(df_concept.loc[i, 'area']) cursor.execute("SELECT concept_url,json_concept FROM concept WHERE concept_url = %s;", (str(concept_url),)) ans = cursor.fetchall() if len(ans) == 0: # json_concept = json.dumps({'provenance': 'admin', 'insertion_author': 'admin'}) cursor.execute("INSERT INTO concept (concept_url,name) VALUES (%s,%s);", (str(concept_url), str(concept_name))) cursor.execute("SELECT * FROM belong_to WHERE concept_url = %s AND name=%s;", (str(concept_url), 'default_area')) ans = cursor.fetchall() if len(ans) == 0: cursor.execute("INSERT INTO belong_to (concept_url,name) VALUES (%s,%s);", (str(concept_url), 'default_area')) if ((jsonann is not None) and (jsonann != '')) or ((jsondisp is not None) and jsondisp != ''): data = {} jsondisp = ''.join(jsondisp) jsonann = ''.join(jsonann) jsondisp = jsondisp.split(',') jsonann = jsonann.split(',') for el in jsondisp: if len(el) > 0: if el not in fields: fields.append(el) if el not in all_fields: all_fields.append(el) for el in jsonann: if len(el) > 0: if el not in fields_to_ann: fields_to_ann.append(el) if el not in all_fields: all_fields.append(el) data['fields'] = fields data['all_fields'] = all_fields data['fields_to_ann'] = fields_to_ann version = get_version() workpath = os.path.dirname(os.path.abspath(__file__)) # Returns the Path your .py file is in version_new = int(version) + 1 filename = 'fields' + str(version_new) with open(os.path.join(workpath, '.config_files/data/' + filename + '.json'), 'w') as outfile: json.dump(data, outfile) created_file = True except (Exception,psycopg2.IntegrityError) as e: print(e) # connection.rollback() print('rolledback') if created_file == True: workpath = os.path.dirname(os.path.abspath(__file__)) # Returns the Path your .py file is in if filename != '' and filename != 'fields0': path = os.path.join(workpath, '.config_files/data/'+filename+'.json') os.remove(path) json_resp = {'error': 'an error occurred in: ' + error_location + '. The configuration failed.'} return json_resp else: # connection.commit() if created_file == True: for filen in os.listdir(os.path.join(workpath, 'config_files/data')): if filen.endswith('json'): print(filen) if filen != '' and filen != 'fields0.json' and filen != filename + '.json': path = os.path.join(workpath, '.config_files/data/' + filen) os.remove(path) if ((jsonann is not None) and (jsonann != '')) or ((jsondisp is not None) and jsondisp != ''): outfile.close() if tf_idf is not None : print(str(tf_idf)) data = {} cursor = connection.cursor() cursor.execute('SELECT DISTINCT language FROM report') ans = cursor.fetchall() languages = [] for el in ans: languages.append(el[0]) st = time.time() if int(tf_idf) > 0: workpath = os.path.dirname(os.path.abspath(__file__)) # Returns the Path your .py file is in path1 = os.path.join(workpath, './config_files/config.json') g = open(path1, 'r') data = json.load(g) data['TF-IDF_k'] = tf_idf with open(path1, 'w') as f: json.dump(data, f) t = UseCase.objects.all() cursor = connection.cursor() json_to_write = {} for top in t: print('topic:' + str(top)) json_to_write[top.name] = {} topic = {} corpus = [] cursor.execute( "SELECT r.id_report,r.language,r.report_json FROM report as r inner join topic_has_document as t on t.id_report = r.id_report and r.language = t.language where t.name = %s", [str(top.name)]) ans = cursor.fetchall() for el in ans: e = json.loads(el[2]) r_j1 = {} r_j1['document_id'] = str(el[0]) r_j1['text'] = '' for k in e.keys(): if k != 'document_id' or ( str(el[0]).startswith('PUBMED_') and (k == 'abstract' or k == 'title')): r_j1['text'] = r_j1['text'] + ' ' + str(e[k]) if el[1].lower() in LANGUAGES_NLTK: corpus.append(r_j1) topic['title'] = top.title topic['description'] = top.description # df_tfidf = gen_tfidf_map(corpus,language) for el in ans: if el[1].lower() in LANGUAGES_NLTK: language = el[1].lower() start = time.time() print('working on ', str(el[0])) e = json.loads(el[2]) r_j1 = {} r_j1['document_id'] = str(el[0]) r_j1['text'] = '' for k in e.keys(): # print(k) # print(e[k]) if isinstance(e[k], list): e[k] = ', '.join(e[k]) if k != 'document_id' and k != 'language' and e[k] is not None: r_j1['text'] = r_j1['text'] + ' ' + e[k] tfidf_matcher = QueryDocMatcher(topic=topic, doc=r_j1, corpus=corpus, language=language) top_k_matching_words = tfidf_matcher.get_words_to_highlight() # print(top_k_matching_words) # json_val = {} # json_val[str(el[0])] = top_k_matching_words # json_val['words'] = top_k_matching_words json_to_write[top.name][str(el[0])] = top_k_matching_words # print(json_to_write) end = time.time() print('elaborated in ' + str(end - start) + ' seconds') else: json_to_write = {} end = time.time() print('time', end - st) path2 = os.path.join(workpath, './config_files/tf_idf_map.json') with open(path2, 'w') as f: json.dump(json_to_write, f) json_resp = {'message': 'Ok'} return json_resp
2.203125
2
tests/test_context_processors.py
uktrade/directory-header-footer
1
12788235
from unittest.mock import Mock import pytest from directory_header_footer import context_processors from directory_constants.constants import urls as default_urls @pytest.fixture def sso_user(): return Mock( id=1, email='<EMAIL>' ) @pytest.fixture def request_logged_in(rf, sso_user): request = rf.get('/') request.sso_user = sso_user return request @pytest.fixture def request_logged_out(rf): request = rf.get('/') request.sso_user = None return request def test_sso_logged_in(request_logged_in): context = context_processors.sso_processor(request_logged_in) assert context['sso_is_logged_in'] is True def test_sso_profile_url(request_logged_in, settings): settings.SSO_PROFILE_URL = 'http://www.example.com/profile/' context = context_processors.sso_processor(request_logged_in) assert context['sso_profile_url'] == settings.SSO_PROFILE_URL def test_sso_register_url_url(request_logged_in, settings): settings.SSO_PROXY_SIGNUP_URL = 'http://www.example.com/signup/' context = context_processors.sso_processor(request_logged_in) assert context['sso_register_url'] == ( 'http://www.example.com/signup/?next=http://testserver/' ) def test_sso_logged_out(request_logged_out): context = context_processors.sso_processor(request_logged_out) assert context['sso_is_logged_in'] is False def test_sso_login_url(request_logged_in, settings): settings.SSO_PROXY_LOGIN_URL = 'http://www.example.com/login/' expected = 'http://www.example.com/login/?next=http://testserver/' context = context_processors.sso_processor(request_logged_in) assert context['sso_login_url'] == expected def test_sso_logout_url(request_logged_in, settings): settings.SSO_PROXY_LOGOUT_URL = 'http://www.example.com/logout/' context = context_processors.sso_processor(request_logged_in) assert context['sso_logout_url'] == ( 'http://www.example.com/logout/?next=http://testserver/' ) def test_sso_user(request_logged_in, sso_user): context = context_processors.sso_processor(request_logged_in) assert context['sso_user'] == sso_user def test_header_footer_context_processor(settings): settings.HEADER_FOOTER_CONTACT_US_URL = 'http://bones.com' settings.HEADER_FOOTER_CSS_ACTIVE_CLASSES = {'fab': True} context = context_processors.header_footer_context_processor(None) assert context == { 'header_footer_contact_us_url': 'http://bones.com', 'header_footer_css_active_classes': {'fab': True}, } def test_urls_processor(rf, settings): settings.GREAT_HOME = 'http://home.com' settings.GREAT_EXPORT_HOME = 'http://export.com' settings.EXPORTING_NEW = 'http://export.com/new' settings.EXPORTING_OCCASIONAL = 'http://export.com/occasional' settings.EXPORTING_REGULAR = 'http://export.com/regular' settings.GUIDANCE_MARKET_RESEARCH = 'http://market-research.com' settings.GUIDANCE_CUSTOMER_INSIGHT = 'http://customer-insight.com' settings.GUIDANCE_FINANCE = 'http://finance.com' settings.GUIDANCE_BUSINESS_PLANNING = 'http://business-planning.com' settings.GUIDANCE_GETTING_PAID = 'http://getting-paid.com' settings.GUIDANCE_OPERATIONS_AND_COMPLIANCE = 'http://compliance.com' settings.SERVICES_FAB = 'http://export.com/fab' settings.SERVICES_SOO = 'http://export.com/soo' settings.SERVICES_EXOPPS = 'http://export.com/exopps' settings.SERVICES_GET_FINANCE = 'http://export.com/get-finance' settings.SERVICES_EVENTS = 'http://export.com/events' settings.INFO_ABOUT = 'http://about.com' settings.INFO_CONTACT_US_DIRECTORY = 'http://contact.com' settings.INFO_PRIVACY_AND_COOKIES = 'http://privacy-and-cookies.com' settings.INFO_TERMS_AND_CONDITIONS = 'http://terms-and-conditions.com' settings.INFO_DIT = 'http://dit.com' settings.CUSTOM_PAGE = 'http://custom.com' actual = context_processors.urls_processor(None) expected_urls = { 'great_home': 'http://home.com', 'great_export_home': 'http://export.com', 'new_to_exporting': 'http://export.com/new', 'occasional_exporter': 'http://export.com/occasional', 'regular_exporter': 'http://export.com/regular', 'guidance_market_research': 'http://market-research.com', 'guidance_customer_insight': 'http://customer-insight.com', 'guidance_finance': 'http://finance.com', 'guidance_business_planning': 'http://business-planning.com', 'guidance_getting_paid': 'http://getting-paid.com', 'guidance_operations_and_compliance': 'http://compliance.com', 'services_fab': 'http://export.com/fab', 'services_soo': 'http://export.com/soo', 'services_exopps': 'http://export.com/exopps', 'services_get_finance': 'http://export.com/get-finance', 'services_events': 'http://export.com/events', 'info_about': 'http://about.com', 'info_contact_us': 'http://contact.com', 'info_privacy_and_cookies': 'http://privacy-and-cookies.com', 'info_terms_and_conditions': 'http://terms-and-conditions.com', 'info_dit': 'http://dit.com', 'custom_page': 'http://custom.com', } assert actual == { 'header_footer_urls': expected_urls } def test_urls_processor_defaults(rf, settings): actual = context_processors.urls_processor(None) expected_urls = { 'great_home': default_urls.GREAT_HOME, 'great_export_home': default_urls.GREAT_EXPORT_HOME, 'new_to_exporting': default_urls.EXPORTING_NEW, 'occasional_exporter': default_urls.EXPORTING_OCCASIONAL, 'regular_exporter': default_urls.EXPORTING_REGULAR, 'guidance_market_research': default_urls.GUIDANCE_MARKET_RESEARCH, 'guidance_customer_insight': default_urls.GUIDANCE_CUSTOMER_INSIGHT, 'guidance_finance': default_urls.GUIDANCE_FINANCE, 'guidance_business_planning': default_urls.GUIDANCE_BUSINESS_PLANNING, 'guidance_getting_paid': default_urls.GUIDANCE_GETTING_PAID, 'guidance_operations_and_compliance': ( default_urls.GUIDANCE_OPERATIONS_AND_COMPLIANCE), 'services_fab': default_urls.SERVICES_FAB, 'services_soo': default_urls.SERVICES_SOO, 'services_exopps': default_urls.SERVICES_EXOPPS, 'services_get_finance': default_urls.SERVICES_GET_FINANCE, 'services_events': default_urls.SERVICES_EVENTS, 'info_about': default_urls.INFO_ABOUT, 'info_contact_us': default_urls.INFO_CONTACT_US_DIRECTORY, 'info_privacy_and_cookies': default_urls.INFO_PRIVACY_AND_COOKIES, 'info_terms_and_conditions': default_urls.INFO_TERMS_AND_CONDITIONS, 'info_dit': default_urls.INFO_DIT, 'custom_page': default_urls.CUSTOM_PAGE, } assert actual == {'header_footer_urls': expected_urls} def test_urls_processor_defaults_explicitly_none(rf, settings): settings.GREAT_HOME = None settings.GREAT_EXPORT_HOME = None settings.EXPORTING_NEW = None settings.EXPORTING_OCCASIONAL = None settings.EXPORTING_REGULAR = None settings.GUIDANCE_MARKET_RESEARCH = None settings.GUIDANCE_CUSTOMER_INSIGHT = None settings.GUIDANCE_BUSINESS_PLANNING = None settings.GUIDANCE_GETTING_PAID = None settings.GUIDANCE_OPERATIONS_AND_COMPLIANCE = None settings.SERVICES_FAB = None settings.SERVICES_SOO = None settings.SERVICES_EXOPPS = None settings.SERVICES_GET_FINANCE = None settings.SERVICES_EVENTS = None settings.INFO_ABOUT = None settings.INFO_CONTACT_US_DIRECTORY = None settings.INFO_PRIVACY_AND_COOKIES = None settings.INFO_TERMS_AND_CONDITIONS = None settings.INFO_DIT = None settings.CUSTOM_PAGE = None actual = context_processors.urls_processor(None) expected_urls = { 'great_home': default_urls.GREAT_HOME, 'great_export_home': default_urls.GREAT_EXPORT_HOME, 'new_to_exporting': default_urls.EXPORTING_NEW, 'occasional_exporter': default_urls.EXPORTING_OCCASIONAL, 'regular_exporter': default_urls.EXPORTING_REGULAR, 'guidance_market_research': default_urls.GUIDANCE_MARKET_RESEARCH, 'guidance_customer_insight': default_urls.GUIDANCE_CUSTOMER_INSIGHT, 'guidance_finance': default_urls.GUIDANCE_FINANCE, 'guidance_business_planning': default_urls.GUIDANCE_BUSINESS_PLANNING, 'guidance_getting_paid': default_urls.GUIDANCE_GETTING_PAID, 'guidance_operations_and_compliance': ( default_urls.GUIDANCE_OPERATIONS_AND_COMPLIANCE ), 'services_fab': default_urls.SERVICES_FAB, 'services_soo': default_urls.SERVICES_SOO, 'services_exopps': default_urls.SERVICES_EXOPPS, 'services_get_finance': default_urls.SERVICES_GET_FINANCE, 'services_events': default_urls.SERVICES_EVENTS, 'info_about': default_urls.INFO_ABOUT, 'info_contact_us': default_urls.INFO_CONTACT_US_DIRECTORY, 'info_privacy_and_cookies': default_urls.INFO_PRIVACY_AND_COOKIES, 'info_terms_and_conditions': default_urls.INFO_TERMS_AND_CONDITIONS, 'info_dit': default_urls.INFO_DIT, 'custom_page': default_urls.CUSTOM_PAGE, } assert actual == {'header_footer_urls': expected_urls}
2.171875
2
nova_powervm/tests/virt/powervm/nvram/fake_api.py
openstack/nova-powervm
24
12788236
<filename>nova_powervm/tests/virt/powervm/nvram/fake_api.py<gh_stars>10-100 # Copyright 2016, 2017 IBM Corp. # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from nova_powervm.virt.powervm.nvram import api class NoopNvramStore(api.NvramStore): def store(self, instance, data, force=True): """Store the NVRAM into the storage service. :param instance: The nova instance object OR instance UUID. :param data: the NVRAM data base64 encoded string :param force: boolean whether an update should always be saved, otherwise, check to see if it's changed. """ pass def fetch(self, instance): """Fetch the NVRAM from the storage service. :param instance: The nova instance object OR instance UUID. :returns: the NVRAM data base64 encoded string """ return None def delete(self, instance): """Delete the NVRAM from the storage service. :param instance: The nova instance object OR instance UUID. """ pass class ExpNvramStore(NoopNvramStore): def fetch(self, instance): """Fetch the NVRAM from the storage service. :param instance: The nova instance object OR instance UUID. :returns: the NVRAM data base64 encoded string """ # Raise exception. This is to ensure fetch causes a failure # when an exception is raised raise Exception('Error') def delete(self, instance): """Delete the NVRAM from the storage service. :param instance: The nova instance object OR instance UUID. """ # Raise exception. This is to ensure delete does not fail # despite an exception being raised raise Exception('Error')
2.46875
2
csp/admin.py
jsocol/django-csp
2
12788237
<gh_stars>1-10 from django.contrib import admin from csp.models import Group, Report class GroupAdmin(admin.ModelAdmin): fields = ('name', 'identifier',) list_display = ('name', 'identifier', 'count',) readonly_fields = ('identifier',) def has_add_permission(*a, **kw): return False class ReportAdmin(admin.ModelAdmin): date_hierarchy = 'reported' list_display = ('get_identifier', 'document_uri', 'blocked_uri', 'violated_directive', 'referrer', 'reported') readonly_fields = ('group', 'document_uri', 'blocked_uri', 'referrer', 'violated_directive', 'original_policy', 'reported') def has_add_permission(*a, **kw): return False admin.site.register(Group, GroupAdmin) admin.site.register(Report, ReportAdmin)
2.125
2
examples/mocsar_pl_human.py
cogitoergoread/muszi-macrohard.hu
1
12788238
""" A toy example of playing against random bot on Mocsár Using env "mocsar" and 'human_mode'. It implies using random agent. """ import rlcard3 # Make environment and enable human mode env = rlcard3.make(env_id='mocsar', config={'human_mode': True}) # Reset environment state = env.reset() while not env.is_over(): legal_actions = state['legal_actions'] legal_actions.insert(0, 0) action = input('>> You choose action (integer): ') if action == '-1': print('Break the game...') break while not action.isdigit() \ or int(action) not in legal_actions: print('Action illegal...') action = input('>> Re-choose action (integer): ') state, reward, done = env.step(int(action))
3.140625
3
tests/test_env.py
timgates42/flask-assets
0
12788239
<reponame>timgates42/flask-assets import os from nose.tools import assert_raises from flask import Flask from flask_assets import Environment, Bundle class TestEnv: def setup(self): self.app = Flask(__name__) self.env = Environment(self.app) self.env.debug = True self.env.register('test', 'file1', 'file2') def test_tag_available(self): """Jinja tag has been made available. """ t = self.app.jinja_env.from_string('{% assets "test" %}{{ASSET_URL}};{% endassets %}') assert t.render() == '/static/file1;/static/file2;' def test_from_yaml(self): """YAML configuration gets loaded """ f = open('test.yaml', 'w') f.write(""" yamltest: contents: - yamlfile1 - yamlfile2 """) f.close() self.env.from_yaml('test.yaml') t = self.app.jinja_env.from_string('{% assets "yamltest" %}{{ASSET_URL}};{% endassets %}') assert t.render() == '/static/yamlfile1;/static/yamlfile2;' os.remove('test.yaml') def test_from_python_module(self): """Python configuration module gets loaded """ import types module = types.ModuleType('test') module.pytest = Bundle('pyfile1', 'pyfile2') self.env.from_module(module) t = self.app.jinja_env.from_string('{% assets "pytest" %}{{ASSET_URL}};{% endassets %}') assert t.render() == '/static/pyfile1;/static/pyfile2;'
2.296875
2
tests/gbe/test_coordinator_performer_autocomplete.py
bethlakshmi/gbe-divio-djangocms-python2.7
1
12788240
<reponame>bethlakshmi/gbe-divio-djangocms-python2.7<filename>tests/gbe/test_coordinator_performer_autocomplete.py from django.test import TestCase from django.test import Client from django.urls import reverse from tests.factories.gbe_factories import ( PersonaFactory, ProfileFactory, TroupeFactory, ) from tests.functions.gbe_functions import ( grant_privilege, login_as, ) from gbe.functions import validate_profile class TestLimitedPerformerAutoComplete(TestCase): url = reverse('coordinator-performer-autocomplete') def setUp(self): self.client = Client() self.privileged_user = ProfileFactory.create().user_object grant_privilege(self.privileged_user, 'Act Coordinator', 'view_performer') login_as(self.privileged_user, self) self.persona = PersonaFactory() self.troupe = TroupeFactory() def test_list_performer(self): response = self.client.get(self.url) self.assertContains(response, self.persona.name) self.assertContains(response, self.persona.pk) self.assertContains(response, self.troupe.name) self.assertContains(response, self.troupe.pk) def test_list_personae_w_search_by_persona_name(self): response = self.client.get("%s?q=%s" % (self.url, self.persona.name)) self.assertContains(response, self.persona.name) self.assertContains(response, self.persona.pk) self.assertNotContains(response, self.troupe.name)
2.234375
2
tests/test_core.py
mbannick/CorrelatedCounts
3
12788241
<gh_stars>1-10 # -*- coding: utf-8 -*- """ test_core ~~~~~~~~~ Test the core module """ import numpy as np import pytest import ccount.core as core import ccount.utils as utils # test problem m = 5 n = 3 l = 1 d = np.array([[2]*n]*l) Y = np.random.randn(m, n) X = [[np.random.randn(m, d[k, j]) for j in range(n)] for k in range(l)] @pytest.mark.parametrize("group_id", [None, np.array([1, 1, 2, 2, 3])]) def test_correlated_model(group_id): cm = core.CorrelatedModel(m, n, l, d, Y, X, [lambda x: x] * l, lambda y, p: 0.5*(y - p[0])**2, group_id=group_id) assert all([np.linalg.norm(cm.beta[k][j]) < 1e-10 for k in range(l) for j in range(n)]) assert np.linalg.norm(cm.U) < 1e-10 assert all([np.linalg.norm(cm.D[k] - np.identity(n)) < 1e-10 for k in range(l)]) assert np.linalg.norm(cm.P) < 1e-10 if group_id is not None: assert cm.U.shape == (cm.l, 3, cm.n) @pytest.mark.parametrize("group_id", [None, np.array([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("offset", [np.ones((5, 1))]) @pytest.mark.parametrize("beta", [None, [[np.ones(d[k, j]) for j in range(n)] for k in range(l)]]) @pytest.mark.parametrize("U", [None, 1]) def test_correlated_model_compute_P(group_id, beta, U, offset): cm = core.CorrelatedModel(m, n, l, d, Y, X, [lambda x: x] * l, lambda y, p: 0.5 * (y - p[0]) ** 2, group_id=group_id) if U is not None: U = np.ones((cm.m, cm.num_groups, cm.n)) P = cm.compute_P(beta=beta, U=U, X=cm.X, m=cm.m, group_sizes=cm.group_sizes, offset=offset) if beta is None: beta = cm.beta if U is None: U = cm.U true_P = np.array([cm.X[k][j].dot(beta[k][j]) for k in range(l) for j in range(n)]) if group_id is not None: U = np.repeat(U, cm.group_sizes, axis=1) true_P = true_P.reshape((l, n, m)).transpose(0, 2, 1) + U assert np.linalg.norm(P - true_P) < 1e-10 @pytest.mark.parametrize("beta", [None, [[np.ones(d[k, j]) for j in range(n)] for k in range(l)]]) @pytest.mark.parametrize("U", [None, np.zeros((l, m, n))]) @pytest.mark.parametrize("D", [None, np.array([np.identity(n) for i in range(l)])]) @pytest.mark.parametrize("P", [None, np.random.randn(l, m, n)]) def test_correlated_model_update_params(beta, U, D, P): cm = core.CorrelatedModel(m, n, l, d, Y, X, [lambda x: x] * l, lambda y, p: 0.5*(y - p[0])**2) cm.update_params(beta=beta, U=U, D=D, P=P) if beta is None: beta = cm.beta assert np.linalg.norm(utils.beta_to_vec(beta) - utils.beta_to_vec(cm.beta)) < 1e-10 if U is None: U = cm.U assert np.linalg.norm(U - cm.U) < 1e-10 if D is None: D = cm.D assert np.linalg.norm(D - cm.D) < 1e-10 if P is None: P = cm.P assert np.linalg.norm(P - cm.P) < 1e-10 @pytest.mark.parametrize("group_id", [None, np.array([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("beta", [None, [[np.ones(d[k, j]) for j in range(n)] for k in range(l)]]) @pytest.mark.parametrize("U", [None, 0]) @pytest.mark.parametrize("D", [None, np.array([np.identity(n)]*l)]) def test_correlated_model_neg_log_likelihood(group_id, beta, U, D): cm = core.CorrelatedModel(m, n, l, d, Y, X, [lambda x: x] * l, lambda y, p: 0.5*(y - p[0])**2, group_id=group_id) if U is not None: U = np.zeros((cm.m, cm.num_groups, cm.n)) cm.update_params(beta=beta, U=U, D=D) assert np.abs(cm.neg_log_likelihood() - 0.5*np.mean(np.sum((cm.Y - cm.P[0])**2, axis=1)) - 0.5*np.sum(cm.U[0]*cm.U[0])/cm.m) < 1e-10
2.046875
2
scripts/analyzeSignals.py
simras/CAP
1
12788242
<filename>scripts/analyzeSignals.py #!/usr/bin/python # agrep.py # Example cat seqs.fa | agrep.py -p gcttcatagccccttcccaat -m 3 # By <NAME> # Bioinformatics Centre # University of Copenhagen # gcttcatagccccttcccaat from types import * def analyzeSignals(fn): import os import sys from operator import itemgetter cwd = os.getcwd() if fn != "": file1 = open(cwd + "/" + fn,'r') lines = file1.readlines() else: lines = sys.stdin.readlines() i = 0 j = 0 start = -1 lst = [] first = True for l in lines: if l[0] == ">": i = i + 1 if not first: print ID,start if pred == 0: j = j + 1 ID = l[1:].rstrip() pred = 0 first = False firstSig = True elif l[0:4] == "%GFF": if firstSig: tmp_pred = float(l.split()[6]) + .15 else: tmp_pred = float(l.split()[6]) if tmp_pred > pred: pred = tmp_pred start = int(l.split()[4]) firstSig = False print >> sys.stderr, "analyzeSignals.py: Number of predictions with no Signal: ", j, i#, lst[0] # print sorted(lst, key=itemgetter(1))[0:10] # print sorted(lst, reverse=True,key=itemgetter(1))[0:10] def analyzeSignals_viterbi(fn,prime): import os import sys from operator import itemgetter cwd = os.getcwd() if fn != "": file1 = open(cwd + "/" + fn,'r') sin = False # lines = file1.readlines() else: sin = True i = 0 j = 0 start = -1 #lst = [] first = True l = '#' ID = "" printID = True ldist = {} while True: # print "#1" + l + "#2" if sin: l = sys.stdin.readline() else: l = file1.readline() if l == '': break if first and l.strip() == "": printID = False if l[0] == ">": printID = True i = i + 1 if not first: print ID,start if ldist.has_key(lseq - start + 1): ldist[lseq - start + 1] = ldist[lseq - start + 1] + 1 else: ldist[lseq - start + 1] = 1 ID = l[1:].split()[0].rstrip() first = False elif l[0:4] == "%len": lseq = int(l.split("len ")[1]) #print lseq elif l[0:7] == "%pred V": try: if not prime: start = int(l.split("s")[1].split()[0]) else: # start is actually the end of the adapter start = lseq - int(l.split("b")[-1].split()[0]) except: if not prime: start = int(l.split("b")[-1].split()[-1]) + 1 else: start = 0 j = j + 1 printID = True if start != -1 and printID: print ID,start for k,v in sorted(ldist.items(),key=itemgetter(0)): if k == 0: print >> sys.stderr, "analyzeSignals.py: Sequences with no adaptor:",v else: print >> sys.stderr, "analyzeSignals.py: Adaptor length",k,"number",v print >> sys.stderr, "analyzeSignals.py: Sequences with adapter", i-j, "all sequences",i # print sorted(lst, key=itemgetter(1))[0:10] # print sorted(lst, reverse=True,key=itemgetter(1))[0:10] if __name__ == "__main__": from optparse import OptionParser parser = OptionParser() parser.add_option("-p", action="store", type="string", dest="predF",default="", help="input pred file") parser.add_option("-5", action="store_true", dest="prime", default=False, help="5prime adapter?") (options, args) = parser.parse_args() analyzeSignals_viterbi(options.predF,options.prime)
2.65625
3
skype.py
divyanshupandey/face-recognize-ml
0
12788243
# -*- coding: utf-8 -*- """ Created on Fri Jul 14 13:04:49 2017 @author: acer """ from skpy import Skype from getpass import getpass Skype("pandey.divyanshu34", getpass(), ".tokens-pandey.divyanshu34") sk = Skype(connect=False) print(sk.contacts)
1.789063
2
21爬虫入门/day01/note.py
HaoZhang95/PythonAndMachineLearning
937
12788244
""" 爬虫的用途:12306抢票,短信轰炸,数据获取 分类:通用爬虫:是搜索引擎抓取系统的重要部分,主要是把互联网上的页面下载到本地作为一个镜像备份 聚焦爬虫:对特定需求进行数据获取,会对页面的内容进行筛选,保证只抓取和需求相关的网页信息 Http:端口号80 Https: 端口号443 使用第三方的requests进行请求:支持python2和3,在urllib中2和3的语法有些不一样 """ import requests kw = {'wd': '长城'} # headers伪装成一个浏览器进行的请求 # 不加这个的话,网页会识别出请求来自一个python而不是浏览器的正常请求 headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36"} response = requests.get("https://www.baidu.com/s?", params=kw, headers=headers) # 返回的是unicode格式解码的str的数据 print(response.text) # 返回字节流的二进制数据,并根据unicode进行解码 print(response.content) print(response.content.decode()) # 返回完整的url地址 print(response.url) # 返回字符编码 print(response.encoding) # 返回状态吗 print(response.status_code) # 保存响应结果 with open('baidu.html', 'wb') as f: f.write(response.content)
3.34375
3
summarize.py
grajekf/wae-2018
0
12788245
<gh_stars>0 #!/usr/bin/env python3 import argparse import numpy as np import pandas as pd def args(): parser = argparse.ArgumentParser() parser.add_argument('output', metavar="OUTPUT", help="Output file", type=str) parser.add_argument('files', nargs="+", metavar="FILES", help="Files to summarize (extract the last line)", type=str) ret = parser.parse_args() return ret.output, ret.files def main(): output, files = args() dfs = [pd.read_csv(path).tail(1) for path in files] summary = pd.concat(dfs, ignore_index=True) summary.to_csv(output) if __name__ == '__main__': main()
3.21875
3
rasa/graph_components/converters/nlu_message_converter.py
praneethgb/rasa
8
12788246
<reponame>praneethgb/rasa from __future__ import annotations from typing import Dict, Text, Any, Optional, List from rasa.core.channels.channel import UserMessage from rasa.engine.graph import GraphComponent, ExecutionContext from rasa.engine.storage.resource import Resource from rasa.engine.storage.storage import ModelStorage from rasa.shared.nlu.constants import TEXT from rasa.shared.nlu.training_data.message import Message class NLUMessageConverter(GraphComponent): """Converts the user message into a NLU Message object.""" @classmethod def create( cls, config: Dict[Text, Any], model_storage: ModelStorage, resource: Resource, execution_context: ExecutionContext, ) -> NLUMessageConverter: """Creates component (see parent class for full docstring).""" return cls() @staticmethod def convert_user_message(message: Optional[UserMessage]) -> List[Message]: """Converts user message into Message object. Returns: List containing only one instance of Message. Else empty list if user message is None. """ if message: data = { TEXT: message.text, "message_id": message.message_id, "metadata": message.metadata, } return [Message(data=data)] return []
2.28125
2
tronn/preprocess/variants.py
kundajelab/tronn
5
12788247
<gh_stars>1-10 # description code for working with variants import os import gzip import logging # basically generate two fasta files, and then # run a version of setup_h5_dataset that takes in two fasta files # to generate two one hot encoded sets def generate_new_fasta(vcf_file, fasta_file, out_fasta_file, ref=True): """given a variant file and choice of ref or alt, adjust the fasta at those positions """ logging.info("WARNING: when processing the VCF, grabs the first base pair given") # set up the tmp snp file if ref: tmp_snp_file = "{}/{}.ref.snp".format( os.path.dirname(out_fasta_file), os.path.basename(vcf_file).split(".gz")[0]) else: tmp_snp_file = "{}/{}.alt.snp".format( os.path.dirname(out_fasta_file), os.path.basename(vcf_file).split(".gz")[0]) with open(tmp_snp_file, "w") as out: with open(vcf_file, "r") as fp: for line in fp: if line.startswith("#"): continue fields = line.strip().split() chrom, pos, snp_id = fields[0], int(fields[1]), fields[2] if ref: basepair = fields[3][0] else: basepair = fields[4][0] out.write("chr{}\t{}\t{}\t{}\n".format(chrom, pos, snp_id, basepair)) # adjust the fasta mutate = "seqtk mutfa {} {} > {}".format(fasta_file, tmp_snp_file, out_fasta_file) print mutate os.system(mutate) return out_fasta_file def generate_bed_file_from_variant_file(vcf_file, out_bed_file, bin_size): """given a variant file and params for dataset generation, create a bed file that will correctly tile the snp region when dataset is generated """ with gzip.open(out_bed_file, "w") as out: with open(vcf_file, "r") as fp: for line in fp: if line.startswith("#"): continue fields = line.strip().split() chrom, snp_pos, snp_id = fields[0], int(fields[1]), fields[2] start = snp_pos - bin_size stop = snp_pos metadata = "snp_id={};snp_pos={}:{}".format(snp_id, chrom, snp_pos) out.write("{}\t{}\t{}\t{}\n".format(chrom, start, stop, metadata)) return None
2.515625
3
Python/Learning/Libraries/TerminalTables.py
prynix/learning-programming
2
12788248
<gh_stars>1-10 """ Happy now? """ from terminaltables import AsciiTable, SingleTable table_data_large = [ ['', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'], ['8:00 - 8:45', 'Mathematics', 'PE', '', '', ''], ['8:55 - 9:40', 'History', 'Advisory', 'Business', 'French', 'Mathematics'], ['9:50 - 10:35', 'Civics', 'Business', 'Polish', 'Biology', 'English'], ['10:55 - 11:40', 'Safety E', 'Polish', 'Mathematics', 'History', 'PE'], ['11:50 - 12:35', 'Religion', 'English', 'Physics', 'Mathematics', 'Chemistry'], ['12:55 - 13:40', 'Polish', 'Geography', 'Religion', 'Culture', 'IT'], ['13:50 - 14:35', 'Polish', 'French', 'PE', 'English', 'IT'] ] table_data_small = [ ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'], ['Mathematics', 'PE', '', '', ''], ['History', 'Advisory', 'Business', 'French', 'Mathematics'], ['Civics', 'Business', 'Polish', 'Biology', 'English'], ['Safety E', 'Polish', 'Mathematics', 'History', 'PE'], ['Religion', 'English', 'Physics', 'Mathematics', 'Chemistry'], ['Polish', 'Geography', 'Religion', 'Culture', 'IT'], ['Polish', 'French', 'PE', 'English', 'IT'] ] tableAsci = AsciiTable(table_data_large) tableSingle = SingleTable(table_data_large) if not (tableSingle.ok): tableSingle = SingleTable(table_data_small) if not (tableAsci.ok): tableAsci = AsciiTable(table_data_small) tableSingle.justify_columns[0] = 'center' tableSingle.justify_columns[1] = 'center' tableSingle.justify_columns[2] = 'center' tableSingle.justify_columns[3] = 'center' tableSingle.justify_columns[4] = 'center' tableSingle.justify_columns[5] = 'center' print(tableSingle.table) print(tableAsci.table)
2.21875
2
songs-generator2.py
Antoniii/Generator-of-songs-without-neural-network-and-SMS
0
12788249
import markovify # with open("esenin.txt", 'r', encoding='utf-8') as f0, \ # open("kish.txt", 'r', encoding='utf-8') as f1, \ # open("kino.txt", 'r', encoding='utf-8') as f2, \ # open("kukr.txt", 'r', encoding='utf-8') as f3, \ # open("dataset.txt", 'a', encoding='utf-8') as f: # f.write(f0.read()) # f.write(f1.read()) # f.write(f2.read()) # f.write(f3.read()) with open("dataset.txt", 'r', encoding='utf-8') as f: text = f.read() text_model = markovify.Text(text) my_file = open("result.txt", 'a', encoding='utf-8') for i in range(10): my_file.write(text_model.make_short_sentence(280)) my_file.close()
2.984375
3
select.py
misterpah/ldtp_adapter
0
12788250
<gh_stars>0 def selectitem(windowTitle, object, value, handle=None): log("{} :not implemented yet".format(sys._getframe().f_code.co_name)) options = pyacc.comboboxListOptions(reverse_ldtp_me(windowTitle),reverse_ldtp_me(object),handle) # get position of the wanted item for each in range(0,len(options)): if options[each] == value: break # get position of the selected item selected = pyacc.comboboxGetSelected(reverse_ldtp_me(windowTitle),reverse_ldtp_me(object),handle) selected_index = options.index(selected) # calculate how many keypress needed diff = each - selected_index key = "" if diff == 0: # no need to move anything return 1 elif diff > 0: #positive. move down key = "<down>" else: #negative. move up key = "<up>" diff *= -1 # apply changes ldtp_extend_mouse_click_here() for each in range(0,diff): keypress(key) keyrelease(key) time.sleep(0.1) keypress("<enter>") keyrelease("<enter>")
2.921875
3