max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
Forms/index.py
vgeorgo/courses-python-udemy-create-websites-using-flask
1
12787251
from flask import Flask, render_template,request,session,redirect,url_for,flash from flask_wtf import FlaskForm from wtforms import (StringField,SubmitField,BooleanField,DateTimeField, RadioField,SelectField,TextField,TextAreaField) from wtforms.validators import DataRequired app = Flask(__name__) # TODO improve secret_key app.config['SECRET_KEY'] = 'MY_SECRET_KEY' # TODO move to separate file class InfoForm(FlaskForm): breed = StringField('What breed are you?', validators=[DataRequired()]) neutered = BooleanField('Have you been neutered?') mood = RadioField('Choose a mood:', choices=[('mood_one', 'Happy'), ('mood_two', 'Excited')]) food_choice = SelectField(u'Favorite food:', choices=[('chi', 'Chicken'), ('bf', 'Beef'), ('fish', 'Fish')]) feedback = TextAreaField('Feedback') submit = SubmitField('Submit') @app.route('/', methods=['GET', 'POST']) def index(): form = InfoForm() if form.validate_on_submit(): # using session only because we still havent learned database session['breed'] = form.breed.data session['neutered'] = form.neutered.data session['mood'] = form.mood.data session['food'] = form.food_choice.data session['feedback'] = form.feedback.data flash('Thanks for answering the form.') return redirect(url_for('thank_you')) return render_template('home.html', form = form) @app.route('/thank_you') def thank_you(): return render_template('thankyou.html') @app.errorhandler(404) def page_not_found(e): return render_template('404.html'), 404 if __name__ == '__main__': app.run(debug=True)
2.796875
3
src/core.py
DrAtomic/ECE_Team9_Capstone
0
12787252
<gh_stars>0 # Project: An Algorithmic Teaching Practices and Classroom Activities Tool to Improve Education # # Authors: <NAME>, <NAME>, <NAME>, and <NAME> # # Sponsor: <NAME> and teuscher-lab.com # # Ownership: See https://github.com/jb-codemaker/ECE_Team9_Capstone for license details # # # This file: Takes in arguments and splits, models, analyses, visualizes, email. import os import sys import ray import split_video # Splits .mp4 file import audio_model # Diarizes and counts import utils import face_analyzer import slide_analyzer from visualize_data import visualize import truncate_data def main(file_name_1, file_name_2): ray.init() @ray.remote def split_student(file_path1): """this is just for concurrency Args: file_path1: file_path for students Returns: the split function for students """ return split_video.split(file_path1, "students") @ray.remote def split_teacher(file_path2): """this is just for concurrency Args: file_path2: file_path for teachers Returns: the split function for teachers """ return split_video.split(file_path2, "teacher") # start the process split_funcs = [split_student.remote(file_name_1), split_teacher.remote(file_name_2)] # block before next section [ray.get(x) for x in split_funcs] @ray.remote(num_gpus=1) def student_call(): """this is just for concurrency Returns: the student attentiveness function """ return face_analyzer.student_attentiveness() @ray.remote def slide_call(): """this is just for concurrency Returns: the slide analyzer function """ return slide_analyzer.analyze_lecture() @ray.remote def audio_call(): """this is just for concurrency Returns: the audio analyzer function """ return audio_model.audio_analyze() # start the process call_funcs = [student_call.remote(), slide_call.remote(), audio_call.remote()] # block before next section [ray.get(x) for x in call_funcs] ray.shutdown() # TODO(#23): Clone https://github.com/tyiannak/pyAudioAnalysis.git # Audio analysis tool # TODO: Clone https://github.com/tyiannak/pyAudioAnalysis.git # Audio analysis tool if __name__ == '__main__': # Take args and split video/audio into seperate files import time start_time = time.time() try: file_path1 = sys.argv[1] file_path2 = sys.argv[2] except: raise Exception("needs files for students: file_name_1, and teacher: file_name_2 \n python core.py \"path/to/student_lecture.mov\" \"path/to/teacher_lecture.mov\"") main(file_path1, file_path2) print("ALL DONE") print((time.time() - start_time) / 60) truncate_data.truncate() data_dir = utils.get_data_dir() delimiter = utils.get_delimiter() file_name = data_dir + delimiter + "all_data.csv" visualize(file_name)
2.6875
3
synthraw/__init__.py
crowsonkb/synthraw
1
12787253
<filename>synthraw/__init__.py from .synthraw import DNG, DNGError
1.195313
1
fill_and_upscale.py
erinxi/chika
0
12787254
import cv2 import glob import os # Fill in the output with upscaled frames. # Make sure to match scale and interpolation mode. SCALE = 2 if __name__ == "__main__": frames = sorted(glob.glob("frames/*.jpg")) for frame_index, frame in enumerate(frames): output_frame = "output/{:05d}.png".format(frame_index) if os.path.exists(output_frame): continue img = cv2.imread(frame, cv2.IMREAD_COLOR) simg = cv2.resize(img, (img.shape[1] * SCALE, img.shape[0] * SCALE), interpolation=cv2.INTER_LANCZOS4) cv2.imwrite(output_frame, simg)
3
3
analyze/routes.py
GustavoBoaz/aganalyze
0
12787255
import flask from flask import Flask, session, render_template,redirect, url_for from run import server @server.route('/') def index(): return render_template("tbases/t_index.html", startpage=True) #@server.route('/dashboard/') #def dashboard(): # return render_template("tbases/t_index.html", startpage=True)
2.546875
3
label_studio/data_export/urls.py
cdpath/label-studio
3
12787256
<filename>label_studio/data_export/urls.py """This file and its contents are licensed under the Apache License 2.0. Please see the included NOTICE for copyright information and LICENSE for a copy of the license. """ from django.urls import path, include from . import api from . import views app_name = 'data_export' _api_urlpatterns = [ # export api path('<int:pk>/export', api.ExportAPI.as_view(), name='project-export'), path('<int:pk>/export/formats', api.ExportFormatsListAPI.as_view(), name='project-export-formats'), # Previously exported results path('<int:pk>/export/files', api.ProjectExportFiles.as_view(), name='project-export-files'), ] urlpatterns = [ path('api/projects/', include((_api_urlpatterns, app_name), namespace='api-projects')), path('api/auth/export/', api.ProjectExportFilesAuthCheck.as_view(), name='project-export-files-auth-check'), ]
1.921875
2
client.py
RaghuA06/ChatBox-Application
1
12787257
<reponame>RaghuA06/ChatBox-Application #<NAME> #May 2021 import socket import sys import time socket_server = socket.socket() server_host = socket.gethostname() ip = socket.gethostbyname(server_host) sport = 8000 print("This is your IP address:{}".format(ip)) server_host = input("Enter server's IP address:") name = input("Enter your name:") socket_server.connect((server_host, sport)) socket_server.send(name.encode()) server_name = socket_server.recv(1024) server_name = server_name.decode() print('\n{} has joined...'.format(server_name)) while True: message = (socket_server.recv(1024)).decode() print("\n{}:{}".format(server_name, message)) message = str(input("\nMe:")) socket_server.send(message.encode())
3.4375
3
175 _labs/lab4_q1.py
lzeeorno/Python-practice175
0
12787258
<filename>175 _labs/lab4_q1.py from lab4_input_Stack import Stack # assign forwardStack = Stack() backwardStack = Stack() current_page = "www.cs.ualberta.ca" print(current_page) while(True): user_command = input() if(user_command == '>'): # forward if (forwardStack.is_empty()): print("Error command") continue backwardStack.push(current_page) current_page = forwardStack.pop() elif(user_command=='<'): # backward if (backwardStack.is_empty()): print("Error command") continue forwardStack.push(current_page) current_page = backwardStack.pop() elif(user_command=='='): #enter anywebsaide if (backwardStack.is_empty()): print("the current page is ", current_page) continue else: # visit new website backwardStack.push(current_page) current_page = user_command forwardStack = Stack() print(forwardStack) print(backwardStack) print("The current page is: ", current_page)
3.421875
3
utils/communication_benchmark.py
beomyeol/baechi
4
12787259
# Copyright 2020 University of Illinois Board of Trustees. All Rights Reserved. # Author: <NAME>, DPRG (https://dprg.cs.uiuc.edu) # This file is part of Baechi, which is released under specific terms. See file License.txt file for full license details. # ============================================================================== import argparse import json import time import numpy as np import tensorflow as tf from sklearn.linear_model import LinearRegression from tensorflow.python.client import timeline from utils import logger _LOGGER = logger.get_logger(__file__) def run_benchmark(tensor_size, from_gpu_id, to_gpu_id, warmup_count=5, num_measurements=20): with tf.Graph().as_default(): with tf.device('/device:GPU:%d' % from_gpu_id): x1 = tf.get_variable("var1a", [tensor_size, 1]) x2 = tf.get_variable("var1b", [1, 1]) from_op = tf.matmul(x1, x2, name='from_op') with tf.device('/device:GPU:%d' % to_gpu_id): y = tf.get_variable("var2", [1, 1]) out = tf.matmul(from_op, y, name='to_op') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # warm up for _ in range(warmup_count): sess.run(out) run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata_list = [] for _ in range(num_measurements): run_metadata = tf.RunMetadata() sess.run(out, options=run_options, run_metadata=run_metadata) run_metadata_list.append(run_metadata) return run_metadata_list def get_transfer_time(timeline_json, from_op_name='from_op', to_op_name='to_op'): data = timeline_json['traceEvents'] end_ts = start_ts = None for dic in data: for key, value in dic.items(): if key == 'cat' and value == 'Op': for key, value in dic.items(): if key == "args" and value['name'] == from_op_name: new_end_ts = dic['ts'] + dic['dur'] end_ts = max(end_ts or new_end_ts, new_end_ts) if key == "args" and value['name'] == to_op_name: new_start_ts = dic['ts'] start_ts = min(start_ts or new_start_ts, new_start_ts) transfer_time = start_ts - end_ts assert transfer_time > 0 return transfer_time def generate_dataset(results): transfer_times_by_size = [] for tensor_size, run_metadata_list in results: transfer_times = [] for run_metadata in run_metadata_list: chrome_trace_str = timeline.Timeline( run_metadata.step_stats).generate_chrome_trace_format() timeline_json = json.loads(chrome_trace_str) transfer_times.append(get_transfer_time(timeline_json)) transfer_times_by_size.append((tensor_size, transfer_times)) X = [] Y = [] for x, ys in transfer_times_by_size: for y in ys: X.append(x * 4) Y.append(y) return X, Y def main(): parser = argparse.ArgumentParser() parser.add_argument('--from_gpu_id', type=int, default=0, help='From GPU ID') parser.add_argument('--to_gpu_id', type=int, default=1, help='To GPU ID') parser.add_argument('--exponent', type=int, default=30, help='Max tensor size. 2^(exponent).') args = parser.parse_args() tensor_sizes = [2 ** i for i in range(0, args.exponent)] _LOGGER.info('Running benchmark to measure communication costs') results = [] for tensor_size in tensor_sizes: run_metadata_list = run_benchmark( tensor_size, args.from_gpu_id, args.to_gpu_id) results.append((tensor_size, run_metadata_list)) X, Y = generate_dataset(results) reg = LinearRegression().fit([[x] for x in X], [[y] for y in Y]) print('Communication cost function: {} x + {}'.format( reg.coef_[0][0], reg.intercept_[0])) if __name__ == "__main__": main()
2.078125
2
bourbaki/application/paths.py
bourbaki-py/application
0
12787260
# coding:utf-8 import os from pathlib import Path from io import StringIO, BytesIO, IOBase from typing import Union FileTypes = (IOBase,) FileType = Union[FileTypes] DEFAULT_FILENAME_DATE_FMT = ( "%Y-%m-%d_%H:%M:%S" ) # Format for dates appended to files or dirs. # This will lexsort in temporal order. DEFAULT_FILENAME_N_DIGITS = 6 def ensure_dir(dir_): try: if not os.path.exists(dir_): os.mkdir(dir_) return dir_ except FileExistsError: if os.path.isfile(dir_): raise NotADirectoryError("{} exists but is not a directory".format(dir_)) return None def get_file(file_or_path, mode=None, allow_dir=False): """if a file object is passed, return it unaltered, with a flag indicating that the file should not be closed by the caller (the opener may have other uses for it). In this case, if mode is also passed, it is checked against the existing file's mode and a ValueError is thrown if they disagree. If a string is passed, it is treated as a path and a file at that location is opened and returned with a flag indicating that the file should be closed by the caller. """ if not isinstance(file_or_path, FileTypes): if isinstance(file_or_path, (str, Path)) and os.path.isdir(file_or_path): if not allow_dir: raise IsADirectoryError( "allow_dir=False but {} is a directory".format(file_or_path) ) else: close = False file = Path(file_or_path) else: close = True if mode: file = open(file_or_path, mode) else: file = open(file_or_path) else: close = False file = file_or_path if mode is not None: if hasattr(file, "mode") and mode != file.mode: raise ValueError( "mode {} was requested, but the given file has mode {}".format( mode, file.mode ) ) elif isinstance(file, StringIO) and "b" in mode: raise ValueError( "mode {} was requested, but the given file is a {}, which supports only text IO".format( mode, type(file) ) ) elif isinstance(file, BytesIO) and "b" not in mode: raise ValueError( "mode {} was requested, but the given file is a {}, which supports only binary IO".format( mode, type(file) ) ) return file, close def is_newer(file1, file2): if file2 is None: return True mtime1 = os.stat(file1).st_mtime if isinstance(file2, (str, bytes, Path)): mtime2 = os.stat(file2).st_mtime elif isinstance(file2, (float, int)): mtime2 = file2 else: raise TypeError( "file2 must be str, pathlib.Path, None, float, or int; got {}".format( type(file2) ) ) return mtime1 > mtime2 def dir_prefix_and_ext(prefix, ext=None): dir_ = os.path.dirname(prefix) if ext is None: prefix, ext = os.path.splitext(os.path.basename(prefix)) if prefix.startswith(".") and ext == "": prefix, ext = ext, prefix else: prefix = os.path.basename(prefix) return dir_, prefix, ext def path_with_ext(file_path, ext=None, disambiguate=False): file_path, ext_ = _path_with_ext(file_path, ext) if not ext_ and not ext: if disambiguate: file_path, ext_ = _path_with_ext(disambiguate_path(file_path), ext) else: raise ValueError( "no extension specified for file path {}; try passing one manually via the " "`ext` arg or specify `disambiguate=True`".format(file_path) ) else: ext_ = ext or ext_ return file_path, ext_ def _path_with_ext(path, ext=None): name, ext_ = os.path.splitext(path) if ext_: if ext is not None and ext_ != ext: raise ValueError( "ambiguous extension; config_file has extension {} while ext is {}".format( ext_, ext ) ) ext_ = ext or ext_ p, e = name + ext_, ext_ return p, e def disambiguate_path(file_path): """Find the unique file with path `file_path`, excluding extensions. If there is no such file, raise FileNotFoundError""" dir_, name, ext = dir_prefix_and_ext(file_path) dir_ = dir_ or None # don't allow empty string for dir paths = [path for path in os.listdir(dir_) if os.path.splitext(path)[0] == name] if len(paths) == 0: raise FileNotFoundError( "No file with any extension found at {}".format(file_path) ) elif len(paths) != 1: raise FileNotFoundError( "Amiguous config path {}; multiple matches found: {}".format( file_path, paths ) ) p = os.path.join(dir_ or "", paths[0]) return p
3.1875
3
roengine/net/cUDP.py
ROTARTSI82/RoEngine
1
12787261
<gh_stars>1-10 # -*- coding: UTF-8 -*- from __future__ import print_function import rencode import logging import socket from twisted.internet import reactor from twisted.internet.protocol import DatagramProtocol from roengine.config import LOG_NO_HANDLERS, LOG_GETS, LOG_SENDS __all__ = ['ServerUDP', 'EnqueUDPClient', 'UDPServerFactory', 'adopt_udp_port'] load = rencode.loads dump = rencode.dumps cUDPServerLogger = logging.getLogger('cUDP.ServFac') cUDPClientLogger = logging.getLogger('cUDP.CliFac') cUDPServProtLogger = logging.getLogger('cUDP.ServProt') def adopt_udp_port(cls, addr=('127.0.0.1', 3000), args=(), kwargs={}): """ From https://twistedmatrix.com/documents/15.1.0/core/howto/udp.html :param cls: :param addr: :return: None """ portSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Make the port non-blocking and start it listening. portSocket.setblocking(False) portSocket.bind(addr) # Now pass the port file descriptor to the reactor port = reactor.adoptDatagramPort(portSocket.fileno(), socket.AF_INET, cls(*args, **kwargs)) # The portSocket should be cleaned up by the process that creates it. return portSocket, port class ServerUDP(object): factory = None address = None def __init__(self): self.send_que = [] def enque(self, msg): self.send_que.append(msg) def network_ping(self, msg): print ("PING from UDPServerProtocol") def empty_que(self): try: if self.send_que and self.factory is not None: self.factory.transport.write(dump(self.send_que), self.address) if LOG_SENDS: cUDPServProtLogger.debug("%s SEND %s --> %s", self.address, self.send_que, self.address) self.send_que = [] except: cUDPServProtLogger.exception("%s empty_que() failed.", self.address) class UDPServerFactory(DatagramProtocol): protocol = ServerUDP def __init__(self, host, port, maxClients=1): self.max_clients = maxClients self.clients = [] self.client_protocols = {} self.arrivals_confirmed = {} self.host, self.port = host, port self.address = host, port def _send(self, msg, addr): try: self.transport.write(dump([msg, ]), addr) if LOG_SENDS: cUDPServerLogger.debug("%s SEND %s --> %s", self.address, msg, addr) except: cUDPServerLogger.exception("%s _send() failed.", self.address) def empty_all(self): for cp in self.client_protocols.values(): cp.empty_que() def load(self): reactor.listenUDP(self.port, self, interface=self.host) cUDPServerLogger.info("Loading UDPServerFactory%s", self.address) def datagramReceived(self, message, address): if address not in self.clients: cUDPServerLogger.critical("%s Got packet from unknown Client%s.", self.address, address) cUDPServerLogger.critical("%s Attempting to build...", self.address) self.build_protocol(address) try: message = load(message) for packet in message: try: if hasattr(self.client_protocols[address], "network_" + packet["action"]): getattr(self.client_protocols[address], "network_" + packet["action"])(packet) elif LOG_NO_HANDLERS: cUDPServerLogger.critical('%s Got packet without handler: %s', self.address, packet) except Exception as e: cUDPServerLogger.exception("%s Protocol's network_ failed on: %s", self.address, packet) try: if hasattr(self, "network_" + packet["action"]): getattr(self, "network_" + packet["action"])(packet, address) elif LOG_NO_HANDLERS: cUDPServerLogger.critical('%s Got packet without handler: %s', self.address, packet) except Exception as e: cUDPServerLogger.exception("%s Self's network_ failed on: %s", self.address, packet) except Exception as e: cUDPServerLogger.exception("%s Invalid packet from %s: %s", self.address, address, message) if LOG_GETS: cUDPServerLogger.debug("%s GET %s <-- %s", self.address, message, address) def send_to_all(self, message): [self.send_to_addr(message, addr) for addr in self.clients] def verify_send_to_all(self, message): [self.verify_send(message, addr) for addr in self.clients] def send_to_addr(self, message, addr): if self.transport is not None: if addr in self.client_protocols: self.client_protocols[addr].enque(message) else: cUDPServerLogger.critical('%s send_to_addr%s failed. Trying _send()', self.address, (message, addr)) self._send(message, addr) # self.transport.write(dump(message), addr) else: cUDPServerLogger.critical('%s send_to_addr%s failed due to null transport. Trying _send()', self.address, (message, addr)) self._send(message, addr) def network_connect_notify(self, message, address): if address not in self.clients: cUDPServerLogger.info("%s Got new Client%s", self.address, address) self.build_protocol(address) def network_ping(self, msg, addr): print ("PING! from UDPServerFactory") def build_protocol(self, addr): if addr not in self.clients: np = self.protocol() np.factory = self np.address = addr if len(self.clients) < self.max_clients: self.clients.append(addr) self.client_protocols[addr] = np cUDPServerLogger.info('%s Successfully built Client%s', self.address, addr) return True else: cUDPServerLogger.info('%s Kicking Client%s: Game already full', self.address, addr) np.enque({'action': 'kick', 'reason': 'Game already full'}) np.empty_que() else: cUDPServerLogger.critical('%s Client%s is already built!', self.address, addr) return False def network_verify_send(self, message, address): message['action'] = 'confirm_arrival' self.send_to_addr(message, address) cUDPServerLogger.info("%s verify_send%s", self.address, (message, address)) ''' if message['id'] in self.handled_ids: cUDPServerLogger.critical("%s Got repeat verify_send! Ignoring...", self.address) return self.handled_ids.append(message['id']) ''' try: if hasattr(self.client_protocols[address], "network_" + message['data']["action"]): getattr(self.client_protocols[address], "network_" + message['data']["action"])(message['data']) elif LOG_NO_HANDLERS: cUDPServerLogger.critical('%s Got packet without handler: %s', self.address, message) except Exception as e: cUDPServerLogger.exception("%s Protocol's network_%s(%s) failed:", self.address, "?" if 'action' not in message else message['data']['action'], message) try: if hasattr(self, "network_" + message['data']["action"]): getattr(self, "network_" + message['data']["action"])(message['data'], address) elif LOG_NO_HANDLERS: cUDPServerLogger.critical('%s Got packet without handler: %s', self.address, message) except Exception as e: cUDPServerLogger.exception("%s Self's network_%s(%s) failed:", self.address, "?" if 'action' not in message else message['data']['action'], message) def confirm_arrivals(self, message, address, retry): if not self.arrivals_confirmed[message['id']]: cUDPServerLogger.critical("%s Cannot confirm packet: %s Retrying in %s", self.address, message, retry) self.send_to_addr(message, address) reactor.callLater(retry, self.confirm_arrivals, message, address, retry) else: cUDPServerLogger.info("%s Packet was confirmed: %s", self.address, message) def verify_send(self, message, address, retry=1): keys = sorted(self.arrivals_confirmed.keys()) pid = keys[len(keys)-1] if keys else 0 message = {"action": "verify_send", "id": pid, "data": message} self.send_to_addr(message, address) self.arrivals_confirmed[pid] = False reactor.callLater(retry, self.confirm_arrivals, message, address, retry) def network_confirm_arrival(self, message, address): if self.arrivals_confirmed[message['id']]: cUDPServerLogger.critical("%s Got repeat confirm_arrival! Ignoring...", self.address) return self.arrivals_confirmed[message['id']] = True try: if hasattr(self, "verified_" + message["data"]["action"]): getattr(self, "verified_" + message["data"]["action"])(message['data'], address) elif LOG_NO_HANDLERS: cUDPServerLogger.critical('%s Got packet without verified_ handler: %s', self.address, message) except Exception as e: cUDPServerLogger.exception("%s Self's verified_ failed on: ", self.address, message) try: if hasattr(self.client_protocols[address], "verified_" + message["data"]["action"]): getattr(self.client_protocols[address], "verified_" + message["data"]["action"])(message['data'], address) elif LOG_NO_HANDLERS: cUDPServerLogger.critical('%s Got packet without verified_ handler: %s', self.address, message) except Exception as e: cUDPServerLogger.exception("%s Protocol's verified_ failed on: %s", self.address, message) class EnqueUDPClient(DatagramProtocol): def __init__(self, host, port): self.host, self.port = host, port self.address = host, port self.connection_success = False self.send_que = [] self.handled_ids = [] self.arrivals_confirmed = {} def load(self): reactor.listenUDP(0, self, interface=self.host) cUDPClientLogger.info("Loading EnqueUDPClient%s", self.address) def startProtocol(self): self.transport.connect(self.host, self.port) self.verify_send({"action": "connect_notify"}) def datagramReceived(self, message, address): try: message = load(message) for packet in message: try: if hasattr(self, "network_" + packet["action"]): getattr(self, "network_" + packet["action"])(packet, address) elif LOG_NO_HANDLERS: cUDPClientLogger.critical('%s Got packet without handler: %s', self.address, message) except Exception as e: cUDPClientLogger.exception("%s network_ failed on: %s", self.address, message) except Exception as e: cUDPClientLogger.exception("%s Invalid packet from %s: %s", self.address, address, message) if LOG_GETS: cUDPClientLogger.debug("%s GET %s <-- %s", self.address, message, address) def enque(self, message): self.send_que.append(message) def network_ping(self, msg, addr): print ("PING! from Client") def empty_que(self): try: if self.send_que: self.transport.write(dump(self.send_que)) if LOG_SENDS: cUDPClientLogger.debug("%s SEND %s --> %s", self.address, self.send_que, self.address) self.send_que = [] except: cUDPClientLogger.exception("%s empty_que() failed.", self.address) # reactor.callLater(retry, self.empty_que, retry) def _send(self, message): if self.transport is not None: self.transport.write(dump([message, ])) if LOG_SENDS: cUDPClientLogger.debug("%s SEND %s --> %s", self.address, message, self.address) else: cUDPClientLogger.critical("%s _send() failed due to null transport", self.address) def confirm_arrivals(self, message, retry=1): if not self.arrivals_confirmed[message['id']]: cUDPClientLogger.critical("%s Cannot confirm packet: %s Retrying in %s", self.address, message, retry) self.enque(message) reactor.callLater(retry, self.confirm_arrivals, message, retry) else: cUDPClientLogger.info("%s Packet was confirmed: %s", self.address, message) def verify_send(self, message, retry=1): keys = sorted(self.arrivals_confirmed.keys()) pid = keys[len(keys)-1] if keys else 0 message = {"action": "verify_send", "id": pid, "data": message} self.enque(message) self.arrivals_confirmed[pid] = False reactor.callLater(retry, self.confirm_arrivals, message, retry) def network_kick(self, message, address): cUDPClientLogger.info("%s Was kicked: '%s'.", self.address, message['reason'] if 'reason' in message else '?') reactor.stop() def network_confirm_arrival(self, message, address): if self.arrivals_confirmed[message['id']]: cUDPClientLogger.critical("%s Got repeat confirm_arrival! Ignoring...", self.address) return self.arrivals_confirmed[message['id']] = True try: if hasattr(self, "verified_" + message["data"]["action"]): getattr(self, "verified_" + message["data"]["action"])(message['data'], address) elif LOG_NO_HANDLERS: cUDPClientLogger.critical('%s Got packet without handler: %s', self.address, message) except Exception as e: cUDPClientLogger.exception("%s verify_ failed on: %s", self.address, message) def network_verify_send(self, message, address): message['action'] = 'confirm_arrival' self.enque(message) ''' if message['id'] in self.handled_ids: cUDPClientLogger.critical("%s Got repeat verify_send! Ignoring...", self.address) return self.handled_ids.append(message['id']) ''' try: if hasattr(self, "network_" + message['data']["action"]): getattr(self, "network_" + message['data']["action"])(message['data'], address) elif LOG_NO_HANDLERS: cUDPClientLogger.critical('%s Got packet without handler: %s', self.address, message) except Exception as e: cUDPClientLogger.exception("%s network_ failed on: %s", self.address, message)
2.40625
2
arcade_solutions/the_core/timed_reading.py
nickaigi/automatic-dollop
0
12787262
<filename>arcade_solutions/the_core/timed_reading.py import string def timed_reading(max_length, text): count = 0 text = text.translate(str.maketrans('', '', string.punctuation)) for w in text.split(' '): if w and len(w) <= max_length: count += 1 return count if __name__ == '__main__': max_length = 4 text = "The Fox asked the stork, 'How is the soup?'" print(timed_reading(max_length, text))
3.3125
3
PythonVSCode/DP_GFG/LongestPalindromicSubsequence.py
porcelainruler/InterviewPrep
0
12787263
<filename>PythonVSCode/DP_GFG/LongestPalindromicSubsequence.py<gh_stars>0 from sys import stdin ''' import java.util.*; import java.lang.*; import java.io.*; class GFG { public static int dp(String str1, String str2, int n) { int[][] dp = new int[n+1][n+1]; for(int i=0 ; i<n+1 ; i++) { for(int j=0 ; j<n+1 ; j++) { if(i == 0 || j == 0) { dp[i][j] = 0; } else if(str1.charAt(i-1) == str2.charAt(j-1)) { dp[i][j] = dp[i-1][j-1] + 1; } else { dp[i][j] = Integer.max(dp[i-1][j], dp[i][j-1]); } } } return dp[n][n]; } public static void main (String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); sc.nextLine(); for(int i=0 ; i<t ; i++) { String str1 = sc.nextLine(); StringBuilder st = new StringBuilder(str1); st = st.reverse(); String str2 = st.toString(); int ans = dp(str1, str2, str1.length()); System.out.println(ans); } } } ''' def dp(sarr1: str, sarr2: str, n: int): dp = [[0]*(n+1) for i in range(n+1)] for i in range(n+1): for j in range(n+1): if i==0 or j==0: dp[i][j] = 0 elif sarr1[i-1] == sarr2[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) # for i in range(n+1): # for j in range(n+1): # print(dp[i][j], end = ' ') # print() # print() return dp[n][n] def main(): t = int(input()) for i in range(t): sarr1 = list(map(str, stdin.readline().split()))[0] ans = dp(sarr1, sarr1[::-1], len(sarr1)) print(ans) if __name__ == '__main__': main()
2.546875
3
Web/field/api/views.py
Pancras-Zheng/Graduation-Project
37
12787264
import json from django.shortcuts import render from django.http import HttpResponse import config.config as config import user.models as database from django.views.decorators.csrf import csrf_exempt from django.views.decorators.csrf import requires_csrf_token from django.views.decorators.csrf import ensure_csrf_cookie # Create your views here. HTTP_RESULT_SUCCESS = 1 HTTP_RESULT_PERMISSION_DENIED = 0 HTTP_RESULT_NO_SUCH_API = -1 HTTP_RESULT_PARAMS_ERROR = -2 HTTP_RESULT_LOGIN_REQUIRE = -3 HTTP_RESULT_UNKNOWN_ERROR = -4 JSON_PERMISSION_DENIED = '{"result":0}' JSON_NO_SUCH_API = '{"result":-1}' JSON_PARAMS_INCORRENCT = '{"result":-2}' JSON_LOGIN_REQUIRE = '{"result":-3}' JSON_UNKNOWN_ERROR = '{"result":-4}' DICT_RESULT_CODE = { HTTP_RESULT_PARAMS_ERROR: JSON_PERMISSION_DENIED, HTTP_RESULT_NO_SUCH_API: JSON_NO_SUCH_API, HTTP_RESULT_PARAMS_ERROR: JSON_PARAMS_INCORRENCT, HTTP_RESULT_LOGIN_REQUIRE: JSON_LOGIN_REQUIRE, HTTP_RESULT_UNKNOWN_ERROR: JSON_UNKNOWN_ERROR, } KEY_RESULT = 'result' KEY_TYPE = 'type' KEY_OPERATION_RESULT = 'operation_result' TYPE_DEVICE = 1 TYPE_LIGHT = 2 TYPE_TEMPERATURE = 3 TYPE_HUMIDITY = 4 TYPE_DIRT_HUMIDITY = 5 TYPE_FERTILIZATION = 6 TYPE_WATER = 7 TYPE_USER = 8 # 处理函数 def __checkUser(request): if request.user.is_authenticated: return HTTP_RESULT_SUCCESS return HTTP_RESULT_LOGIN_REQUIRE @csrf_exempt def device(request): request_result = __checkUser(request) if request_result == HTTP_RESULT_SUCCESS: custom_device_config = config.get_device_config() if request.method == 'POST': # 如果是POST请求 if config.KEY_DEVICE_STATE_1 in request.POST: custom_device_config.device1State = int(request.POST.get(config.KEY_DEVICE_STATE_1, config.STATE_OFF)) print('自定义设备1被设置为 ', custom_device_config.device1State) if config.KEY_DEVICE_STATE_2 in request.POST: custom_device_config.device2State = int(request.POST.get(config.KEY_DEVICE_STATE_2, config.STATE_OFF)) print('自定义设备2被设置为 ', custom_device_config.device2State) if config.KEY_DEVICE_STATE_3 in request.POST: custom_device_config.device3State = int(request.POST.get(config.KEY_DEVICE_STATE_3, config.STATE_OFF)) print('自定义设备3被设置为 ', custom_device_config.device3State) if config.KEY_DEVICE_STATE_4 in request.POST: custom_device_config.device4State = int(request.POST.get(config.KEY_DEVICE_STATE_4, config.STATE_OFF)) print('自定义设备4被设置为 ', custom_device_config.device4State) config.set_device_config_obj(custom_device_config) json_obj = { KEY_RESULT: HTTP_RESULT_SUCCESS, config.KEY_DEVICE_STATE_1: int(custom_device_config.device1State), config.KEY_DEVICE_STATE_2: int(custom_device_config.device2State), config.KEY_DEVICE_STATE_3: int(custom_device_config.device3State), config.KEY_DEVICE_STATE_4: int(custom_device_config.device4State), } return HttpResponse(json.dumps(json_obj)) else: return HttpResponse(DICT_RESULT_CODE.get(request_result, JSON_UNKNOWN_ERROR)) @csrf_exempt def light(request): request_result = __checkUser(request) if request_result == HTTP_RESULT_SUCCESS: light_config = config.get_light_config() if request.method == 'POST': if config.KEY_IS_LIGHT_ON in request.POST: light_config.isLightOn = request.POST.get(config.KEY_IS_LIGHT_ON, config.STATE_OFF) print('环境光设置为', light_config.isLightOn) if config.KEY_LIGHT_COLOR in request.POST: light_config.lightColor = request.POST.get(config.KEY_LIGHT_COLOR, config.STATE_OFF) print('环境光颜色设置为', light_config.lightColor) if config.KEY_LIGHT_LEVEL in request.POST: light_config.lightLevel = request.POST.get(config.KEY_LIGHT_LEVEL, config.STATE_OFF) print('环境光亮度设置为', light_config.lightLevel) config.set_light_config_obj(light_config) json_obj = { KEY_RESULT: HTTP_RESULT_SUCCESS, config.KEY_IS_LIGHT_ON: light_config.isLightOn, config.KEY_LIGHT_COLOR: light_config.lightColor, config.KEY_LIGHT_LEVEL: light_config.lightLevel, } return HttpResponse(json.dumps(json_obj)) else: return HttpResponse(DICT_RESULT_CODE.get(request_result, JSON_UNKNOWN_ERROR)) @csrf_exempt def temperature(request): request_result = __checkUser(request) if request_result == HTTP_RESULT_SUCCESS: temperature_config = config.get_temperature_config() if request.method == 'POST': if config.KEY_IS_AUTO_CONTROL in request.POST: temperature_config.isAutoControl = request.POST.get(config.KEY_IS_AUTO_CONTROL, config.STATE_OFF) print('自动温度控制被设置为 ' + temperature_config.isAutoControl) if config.KEY_UPPER_LIMIT in request.POST: temperature_config.upperLimit = request.POST.get(config.KEY_UPPER_LIMIT, 30) print('自动温度控制温度上限被设置为 ' + temperature_config.upperLimit) if config.KEY_LOWER_LIMIT in request.POST: temperature_config.lowerLimit = request.POST.get(config.KEY_LOWER_LIMIT, 0) print('自动温度控制温度下限被设置为 ' + temperature_config.lowerLimit) if config.KEY_UPPER_ACTION in request.POST: temperature_config.upperActions = request.POST.get(config.KEY_UPPER_ACTION, config.EMPTY_ACTION) print('自动温度控制温度上限执行动作被设置为 ' + temperature_config.upperActions) if config.KEY_LOWER_ACTION in request.POST: temperature_config.lowerActions = request.POST.get(config.KEY_LOWER_ACTION, config.EMPTY_ACTION) print('自动温度控制温度下限执行动作被设置为 ' + temperature_config.lowerActions) config.set_temperature_config_obj(temperature_config) json_obj = { KEY_RESULT: HTTP_RESULT_SUCCESS, KEY_TYPE: TYPE_TEMPERATURE, config.KEY_IS_AUTO_CONTROL: temperature_config.isAutoControl, config.KEY_UPPER_LIMIT: temperature_config.upperLimit, config.KEY_LOWER_LIMIT: temperature_config.lowerLimit, config.KEY_UPPER_ACTION: temperature_config.upperActions, config.KEY_LOWER_ACTION: temperature_config.lowerActions, } return HttpResponse(json.dumps(json_obj)) else: return HttpResponse(DICT_RESULT_CODE.get(request_result, JSON_UNKNOWN_ERROR)) @csrf_exempt def humidity(request): request_result = __checkUser(request) if request_result == HTTP_RESULT_SUCCESS: humidity_config = config.get_humidity_config() if request.method == 'POST': if config.KEY_IS_AUTO_CONTROL in request.POST: humidity_config.isAutoControl = request.POST.get(config.KEY_IS_AUTO_CONTROL, config.STATE_OFF) print('自动湿度控制被设置为 ' + humidity_config.isAutoControl) if config.KEY_UPPER_LIMIT in request.POST: humidity_config.upperLimit = request.POST.get(config.KEY_UPPER_LIMIT, config.DEFAULT_HUMIDITY_UPPER_LIMIT) print('自动湿度控制温度上限被设置为 ' + humidity_config.upperLimit) if config.KEY_LOWER_LIMIT in request.POST: humidity_config.lowerLimit = request.POST.get(config.KEY_LOWER_LIMIT, config.DEFAULT_HUMIDITY_LOWER_LIMIT) print('自动湿度控制湿度下限被设置为 ' + humidity_config.lowerLimit) if config.KEY_UPPER_ACTION in request.POST: humidity_config.upperActions = request.POST.get(config.KEY_UPPER_ACTION, config.DEFAULT_ACTIONS) print('自动湿度动作上限被设置为 ', humidity_config.upperActions) if config.KEY_LOWER_ACTION in request.POST: humidity_config.lowerActions = request.POST.get(config.KEY_LOWER_ACTION, config.DEFAULT_ACTIONS) print('自动湿度动作下限被设置为 ', humidity_config.upperActions) config.set_dumidity_config_obj(humidity_config) json_obj = { KEY_RESULT: HTTP_RESULT_SUCCESS, KEY_TYPE: TYPE_HUMIDITY, config.KEY_IS_AUTO_CONTROL: humidity_config.isAutoControl, config.KEY_UPPER_LIMIT: humidity_config.upperLimit, config.KEY_LOWER_LIMIT: humidity_config.lowerLimit, config.KEY_UPPER_ACTION: humidity_config.upperActions, config.KEY_LOWER_ACTION: humidity_config.lowerActions, } return HttpResponse(json.dumps(json_obj)) else: return HttpResponse(DICT_RESULT_CODE.get(request_result, JSON_UNKNOWN_ERROR)) @csrf_exempt def dirt_humidity(request): request_result = __checkUser(request) if request_result == HTTP_RESULT_SUCCESS: dirt_humidity_config = config.get_dirt_humidity_config() if request.method == 'POST': if config.KEY_IS_AUTO_CONTROL in request.POST: dirt_humidity_config.isAutoControl = request.POST.get(config.KEY_IS_AUTO_CONTROL, config.STATE_OFF) print('自动土壤湿度控制被设置为 ' + dirt_humidity_config.isAutoControl) if config.KEY_UPPER_LIMIT in request.POST: dirt_humidity_config.upperLimit = request.POST.get(config.KEY_UPPER_LIMIT, config.DEFAULT_HUMIDITY_UPPER_LIMIT) print('自动土壤湿度控制温度上限被设置为 ' + dirt_humidity_config.upperLimit) if config.KEY_LOWER_LIMIT in request.POST: dirt_humidity_config.lowerLimit = request.POST.get(config.KEY_LOWER_LIMIT, config.DEFAULT_HUMIDITY_LOWER_LIMIT) print('自动土壤湿度控制湿度下限被设置为 ' + dirt_humidity_config.lowerLimit) if config.KEY_UPPER_ACTION in request.POST: dirt_humidity_config.upperActions = request.POST.get(config.KEY_UPPER_ACTION, config.DEFAULT_ACTIONS) print('自动土壤湿度动作上限被设置为 ', dirt_humidity_config.upperActions) if config.KEY_LOWER_ACTION in request.POST: dirt_humidity_config.lowerActions = request.POST.get(config.KEY_LOWER_ACTION, config.DEFAULT_ACTIONS) print('自动土壤湿度动作下限被设置为 ', dirt_humidity_config.upperActions) config.set_dirt_humidity_config_obj(dirt_humidity_config) json_obj = { KEY_RESULT: HTTP_RESULT_SUCCESS, KEY_TYPE: TYPE_DIRT_HUMIDITY, config.KEY_IS_AUTO_CONTROL: dirt_humidity_config.isAutoControl, config.KEY_UPPER_LIMIT: dirt_humidity_config.upperLimit, config.KEY_LOWER_LIMIT: dirt_humidity_config.lowerLimit, config.KEY_UPPER_ACTION: dirt_humidity_config.upperActions, config.KEY_LOWER_ACTION: dirt_humidity_config.lowerActions, } return HttpResponse(json.dumps(json_obj)) else: return HttpResponse(DICT_RESULT_CODE.get(request_result, JSON_UNKNOWN_ERROR)) @csrf_exempt def fertilization(request): request_result = __checkUser(request) if request_result == HTTP_RESULT_SUCCESS: fertilization_config = config.get_fertilization_config() if request.method == 'POST': if config.KEY_IS_AUTO_CONTROL in request.POST: fertilization_config.isAutoControl = request.POST.get(config.KEY_IS_AUTO_CONTROL, config.DEFAULT_AUTO_CONTROL) print('自动施肥被设置为', fertilization_config.isAutoControl) if config.KEY_REPEAT_TYPE in request.POST: fertilization_config.repeatType = request.POST.get(config.KEY_REPEAT_TYPE, config.DEFAULT_REPEAT_TYPE) print('自动施肥重复类型被设置为', fertilization_config.repeatType) if config.KEY_REPEAT_CIRCLE in request.POST: fertilization_config.repeatCircle = request.POST.get(config.KEY_REPEAT_CIRCLE, config.DEFAULT_REPEAT_CIRCLE) print('自动施肥周期被设置为', fertilization_config.repeatCircle) if config.KEY_HOUR in request.POST: fertilization_config.hour = request.POST.get(config.KEY_HOUR, config.DEFAULT_REPEAT_HOUR) print('自动施肥周期小时被设置为', fertilization_config.hour) if config.KEY_MINUTE in request.POST: fertilization_config.minute = request.POST.get(config.KEY_MINUTE, config.DEFAULT_REPEAT_MINUTE) print('自动施肥周期分钟被设置为', fertilization_config.minute) config.set_fertilization_config_obj(fertilization_config) json_obj = { KEY_RESULT: HTTP_RESULT_SUCCESS, KEY_TYPE: TYPE_FERTILIZATION, config.KEY_IS_AUTO_CONTROL: fertilization_config.isAutoControl, config.KEY_REPEAT_TYPE: fertilization_config.repeatType, config.KEY_REPEAT_CIRCLE: fertilization_config.repeatCircle, config.KEY_HOUR: fertilization_config.hour, config.KEY_MINUTE: fertilization_config.minute } return HttpResponse(json.dumps(json_obj)) else: return HttpResponse(DICT_RESULT_CODE.get(request_result, JSON_UNKNOWN_ERROR)) @csrf_exempt def water(request): request_result = __checkUser(request) if request_result == HTTP_RESULT_SUCCESS: water_config = config.get_water_config() if request.method == 'POST': if config.KEY_IS_AUTO_CONTROL in request.POST: water_config.isAutoControl = request.POST.get(config.KEY_IS_AUTO_CONTROL, config.DEFAULT_AUTO_CONTROL) print('自动浇水被设置为', water_config.isAutoControl) if config.KEY_REPEAT_TYPE in request.POST: water_config.repeatType = request.POST.get(config.KEY_REPEAT_TYPE, config.DEFAULT_REPEAT_TYPE) print('自动浇水重复类型被设置为', water_config.repeatType) if config.KEY_REPEAT_CIRCLE in request.POST: water_config.repeatCircle = request.POST.get(config.KEY_REPEAT_CIRCLE, config.DEFAULT_REPEAT_CIRCLE) print('自动浇水周期被设置为', water_config.repeatCircle) if config.KEY_HOUR in request.POST: water_config.hour = request.POST.get(config.KEY_HOUR, config.DEFAULT_REPEAT_HOUR) print('自动浇水周期小时被设置为', water_config.hour) if config.KEY_MINUTE in request.POST: water_config.minute = request.POST.get(config.KEY_MINUTE, config.DEFAULT_REPEAT_MINUTE) print('自动浇水周期分钟被设置为', water_config.minute) config.set_water_config_obj(water_config) json_obj = { KEY_RESULT: HTTP_RESULT_SUCCESS, KEY_TYPE: TYPE_WATER, config.KEY_IS_AUTO_CONTROL: water_config.isAutoControl, config.KEY_REPEAT_TYPE: water_config.repeatType, config.KEY_REPEAT_CIRCLE: water_config.repeatCircle, config.KEY_HOUR: water_config.hour, config.KEY_MINUTE: water_config.minute } return HttpResponse(json.dumps(json_obj)) else: return HttpResponse(DICT_RESULT_CODE.get(request_result, JSON_UNKNOWN_ERROR)) TYPE_USER_NO = -1 TYPE_USER_CREATE = 0 TYPE_USER_EDIT = 1 TYPE_USER_DELETE = 2 JSON_NO_SUCH_USER = '{"result":-5}' JSON_USER_EXIST = '{"result":-6}' ACTION_TYPE_NONE = -1 ACTION_TYPE_USER_CREATE = 0 ACTION_TYPE_USER_EDIT = 1 ACTION_TYPE_USER_DEL = 2 VALUE_OPERATION_RESULT_FAIL = 'fail' VALUE_OPERATION_RESULT_SUCCESS = 'success' VALUE_OPERATION_RESULT_USER_EXIST = 'user_exist' VALUE_OPERATION_RESULT_USER_NOT_EXIST = 'user_not_exist' VALUE_BOOL_TRUE = 1 VALUE_BOOL_FALSE = 0 @csrf_exempt def user(request): request_result = __checkUser(request) if request_result == HTTP_RESULT_SUCCESS: # 如果请求成功 if request.method == 'GET': # 如果是Get获取数据 print('Get请求') if {config.KEY_PAGE_NUM, config.KEY_PAGE_COUNT}.intersection(request.GET): # 制定页码 print('请求参数符合条件') user_list = database.User.objects.all() return HttpResponse(user_list) # 未完成 elif request.method == 'POST': print('收到的API的关于用户的POST的请求\n'+str(request.POST)) if {config.KEY_USER_ACTION_TYPE, config.KEY_USERNAME, config.KEY_PASSWORD, config.KEY_IS_STUFF, config.KEY_IS_ACTIVE, config.KEY_NICKNAME, config.KEY_INFO}.intersection(request.POST): print('用户的参数校验正确') user_username = request.POST[config.KEY_USERNAME] user_password = request.POST[config.KEY_PASSWORD] user_is_stuff = int(request.POST[config.KEY_IS_STUFF]) == VALUE_BOOL_TRUE user_is_active = int(request.POST[config.KEY_IS_ACTIVE]) == VALUE_BOOL_TRUE user_action_type = int(request.POST[config.KEY_USER_ACTION_TYPE]) user_info = request.POST[config.KEY_INFO] user_nickname = request.POST[config.KEY_NICKNAME] if user_nickname == '': user_nickname = user_username if user_info == '': user_info = '暂无简介' user_operation_result = VALUE_OPERATION_RESULT_FAIL if user_action_type == ACTION_TYPE_USER_CREATE: # 如果是创建用户 print('创建用户 是否工作人员 '+str(user_is_stuff)+' 是否活动 '+str(user_is_active)) if database.User.objects.filter(username=user_username): # 如果用户名已被注册 user_operation_result = VALUE_OPERATION_RESULT_USER_EXIST print("同户名 %s 已被注册"%user_username) else: # 如果用户名可用 temp_user = database.User() temp_user.username = user_username temp_user.nickname = user_nickname temp_user.set_password(<PASSWORD>) temp_user.is_staff = user_is_stuff temp_user.is_active = user_is_active temp_user.info = user_info temp_user.save() print("同户名 %s 创建成功"%user_username) elif user_action_type == ACTION_TYPE_USER_EDIT: # 如果是编辑用户,不会改变密码 print('编辑用户') if database.User.objects.filter(username=user_username): # 如果用户的确存在 temp_user = database.User().objects.get(username=user_username) temp_user.username = user_username temp_user.nickname = user_nickname temp_user.is_staff = user_is_stuff temp_user.is_active = user_is_active temp_user.info = user_info temp_user.save() print("同户 %s 编辑成功"%user_username) else: # 如果用户不存在 user_operation_result = VALUE_OPERATION_RESULT_USER_EXIST print("同户 %s 不存在,不能编辑"%user_username) elif user_action_type == ACTION_TYPE_USER_DEL: # 如果是删除账户 print('删除用户') if database.User.objects.filter(username=user_username): # 如果用户的确存在 temp_user = database.User.objects.get(username=user_username) print("同户 %s 删除成功"%user_username) temp_user.delete() else: # 如果用户不存在 user_operation_result = VALUE_OPERATION_RESULT_USER_EXIST print("同户 %s 不存在,不能删除"%user_username) else: print('传递的用户操作类型不正确') user_action_type = ACTION_TYPE_NONE json_obj = { KEY_RESULT: HTTP_RESULT_SUCCESS, KEY_TYPE: TYPE_USER, KEY_OPERATION_RESULT: user_operation_result, config.KEY_USERNAME: user_username, config.KEY_NICKNAME: user_nickname, config.KEY_IS_STUFF: user_is_stuff, config.KEY_IS_ACTIVE: user_is_active, config.KEY_INFO: user_info, config.KEY_USER_ACTION_TYPE: user_action_type } return HttpResponse(json.dumps(json_obj)) return HttpResponse(JSON_PARAMS_INCORRENCT) else: return HttpResponse(DICT_RESULT_CODE.get(request_result, JSON_UNKNOWN_ERROR)) @csrf_exempt def schedule(request): return HttpResponse(JSON_LOGIN_REQUIRE) @csrf_exempt def noSuchApi(request): return HttpResponse(JSON_NO_SUCH_API)
2.0625
2
tests/test_which_cam.py
waider/gopro-py-api
1
12787265
import http from socket import timeout from goprocam import GoProCamera from .conftest import GoProCameraTest class WhichCamTest(GoProCameraTest): def setUp(self): super().setUp() # disable this so we can test it separately self.monkeypatch.setattr(GoProCamera.GoPro, '_prepare_gpcontrol', lambda self: self) def test_already_deetected(self): assert self.goprocam.whichCam() == 'gpcontrol' def test_detection_exceptions(self): # this would, of course, be better as a parametrised test for firmware_version in ['HX', 'FS', 'HD3.02', 'H18', 'HD3.22.01.50']: self.goprocam._camera = '' self.responses['/gp/gpControl']['info']['firmware_version'] = \ firmware_version assert self.goprocam.whichCam() == 'gpcontrol' def test_auth_detection(self): self.goprocam._camera = '' self.responses['/camera/cv'] = 'Hero3' for firmware_version in ['HD2', '4', 'HD3.1']: self.responses['/gp/gpControl']['info']['firmware_version'] = \ firmware_version assert self.goprocam.whichCam() == 'auth' def test_auth_detection_not_hero3(self): self.goprocam._camera = '' self.responses['/camera/cv'] = 'Hero2' for firmware_version in ['HD2', '4', 'HD3.1']: self.responses['/gp/gpControl']['info']['firmware_version'] = \ firmware_version assert self.goprocam.whichCam() == '' def test_auth_detection_without_gpcontrol(self): self.goprocam._camera = '' self.responses = {'/camera/cv': 'Hero3'} assert self.goprocam.whichCam() == 'auth' def test_gpcontrol_detection_without_gpcontrol_not_hero3(self): self.goprocam._camera = '' del(self.responses['/gp/gpControl']) self.responses['/camera/cv'] = 'Hero2' assert self.goprocam.whichCam() == '' def test_gpcontrol_detection_without_gpcontrol(self): # this will attempt to power on the camera - which we have intercepted self.goprocam._camera = '' self.responses = {} assert self.goprocam.whichCam() == '' def test_cv_timeout_while_detecting(self): self.goprocam._camera = '' self.responses = {'/camera/cv': timeout()} assert self.goprocam.whichCam() == '' def test_gpcontrol_timeout_while_detecting_hero3(self): self.goprocam._camera = '' self.responses['/gp/gpControl'] = timeout() # this copes poorly with errors, so help it along self.responses['/camera/cv'] = 'Hero3' assert self.goprocam.whichCam() == 'auth' def test_gpcontrol_timeout_while_detecting_hero2(self): self.goprocam._camera = '' self.responses['/gp/gpControl'] = timeout() # this copes poorly with errors, so help it along self.responses['/camera/cv'] = 'Hero2' assert self.goprocam.whichCam() == '' def test_gpcontrol_exception_while_detecting(self): self.goprocam._camera = '' self.responses['/gp/gpControl'] = http.client.HTTPException() # this copes poorly with errors, so help it along self.responses['/camera/cv'] = 'Hero3' # different power-on! with self.monkeypatch.context() as m: def print_verify(args): assert isinstance(args, http.client.HTTPException) or \ args == 'HERO3/3+' m.setattr('builtins.print', print_verify) m.setattr(GoProCamera.GoPro, 'power_on_auth', lambda self: self) assert self.goprocam.whichCam() == 'auth' def test_gpcontrol_exception_while_detecting_not_hero3(self): self.goprocam._camera = '' self.responses['/gp/gpControl'] = http.client.HTTPException() # this copes poorly with errors, so help it along self.responses['/camera/cv'] = 'Hero2' # different power-on! with self.monkeypatch.context() as m: def print_verify(args): assert isinstance(args, http.client.HTTPException) m.setattr('builtins.print', print_verify) m.setattr(GoProCamera.GoPro, 'power_on_auth', lambda self: self) assert self.goprocam.whichCam() == 'auth'
2.546875
3
sendbird/api_endpoints/channel.py
jpbullalayao/sendbird-python
4
12787266
<reponame>jpbullalayao/sendbird-python # All endpoint constants that both the OpenChannel and GroupChannel # resources share CHANNEL_BAN_USER = "/ban" CHANNEL_FREEZE = "/freeze" CHANNEL_LIST_BANNED_USERS = "/ban" CHANNEL_LIST_MUTED_USERS = "/mute" CHANNEL_MUTE_USER = "/mute" CHANNEL_UNBAN_USER = "/ban/{banned_user_id}" CHANNEL_UNMUTE_USER = "/mute/{muted_user_id}" CHANNEL_UPDATE_BAN = "/ban/{banned_user_id}" CHANNEL_VIEW_BAN = "/ban/{banned_user_id}" CHANNEL_VIEW_MUTE = "/mute/{muted_user_id}" CHANNEL_DELETE_MESSAGE = "/messages/{message_id}" CHANNEL_LIST_MESSAGES = "/messages" CHANNEL_MARK_AS_READ = "/messages/mark_as_read" CHANNEL_SEND_MESSAGE = "/messages" CHANNEL_UPDATE_MESSAGE = "/messages/{message_id}" CHANNEL_VIEW_MEMBER_UNNREAD_COUNT = "/messages/unread_count" CHANNEL_VIEW_MESSAGE = "/messages/{message_id}" CHANNEL_VIEW_MESSAGE_COUNT = "/messages/total_count" CHANNEL_CREATE_METADATA = "/metadata" CHANNEL_DELETE_METADATA = "/metadata" CHANNEL_UPDATE_METADATA = "/metadata" CHANNEL_VIEW_METADATA = "/metadata" CHANNEL_CREATE_METACOUNTER = "/metacounter" CHANNEL_DELETE_METACOUNTER = "/metacounter" CHANNEL_UPDATE_METACOUNTER = "/metacounter" CHANNEL_VIEW_METACOUNTER = "/metacounter"
1.273438
1
genart/torch/train_gan.py
dyf/genart
0
12787267
<reponame>dyf/genart<gh_stars>0 import torch import os import numpy as np import skimage.io from data import GenartDataSet from model import GenartGenerator, GenartDiscriminator from torch.autograd import Variable from torchvision.utils import save_image Tensor = torch.FloatTensor latent_size = 10 n_epochs = 100 img_shape = (256, 256, 3) save_interval = 5 lr = 0.0002 save_path = "./out" ds = GenartDataSet('./circles.h5') loader = torch.utils.data.DataLoader(ds, batch_size=10, shuffle=True, num_workers=0) generator = GenartGenerator(latent_size, img_shape) discriminator = GenartDiscriminator(img_shape) optimizer_g = torch.optim.Adam(generator.parameters(), lr=lr, betas=(0.5,0.999)) optimizer_d = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(0.5,0.999)) adversarial_loss = torch.nn.BCELoss() for ni, epoch in enumerate(range(n_epochs)): for bi, (imgs,_) in enumerate(loader): # ground truths valid = Variable(Tensor(imgs.size(0),1).fill_(1.0), requires_grad=False) fake = Variable(Tensor(imgs.size(0),1).fill_(0.0), requires_grad=False) real_imgs = Variable(imgs.type(Tensor)) # train generator # --------------- optimizer_g.zero_grad() # noise input z = Variable(Tensor(np.random.normal(0, 1, (real_imgs.shape[0], latent_size)))) fake_imgs = generator(z) gen_loss = adversarial_loss(discriminator(fake_imgs), valid) gen_loss.backward() optimizer_g.step() # train discriminator # ------------------- real_vals = discriminator(real_imgs) real_loss = adversarial_loss(real_vals, valid) fake_vals = discriminator(fake_imgs.detach()) fake_loss = adversarial_loss(fake_vals, fake) d_loss = (real_loss + fake_loss) * 0.5 d_loss.backward() optimizer_d.step() if bi % save_interval == 0: print(f'Epoch {ni}, Batch {bi} - saving') save_image(fake_imgs.data[:9], os.path.join(save_path, f'images_{ni:04d}_{bi:04d}.png'), nrow=3, range=[0,1]) save_image(real_imgs.data[:9], os.path.join(save_path, f'real_images_{ni:04d}_{bi:04d}.png'), nrow=3, range=[0,1]) print("done")
2.1875
2
Unsupervised Machine Learning/Unsupervised Learning/02 - Image clustering K-means.py
Piraato/Learn-Python
0
12787268
<filename>Unsupervised Machine Learning/Unsupervised Learning/02 - Image clustering K-means.py<gh_stars>0 # Clustering is not actually good for image recognition, # but this is a good way of showing how clustering works import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # Just turning off the annoying messages in the console tf.logging.set_verbosity(tf.logging.ERROR) import matplotlib import matplotlib.pyplot as plt mnist = input_data.read_data_sets("mnist_data/") training_digits, training_labels = mnist.train.next_batch(2000) test_digits, test_labels = mnist.test.next_batch(5) def display_digit(digit): plt.imshow(digit.reshape(28, 28), cmap="Greys", interpolation='nearest') display_digit(training_digits[0]) plt.show() from tensorflow.contrib.learn.python.learn.estimators import kmeans def input_fn(digits): input_t = tf.convert_to_tensor(digits, dtype=tf.float32) return (input_t, None) k_means_estimator = kmeans.KMeansClustering(num_clusters=10) # 100 steps results in 0% for me. I don't dare to try more steps because my computer might explode then... fit = k_means_estimator.fit(input_fn=lambda: input_fn(training_digits), steps=100) clusters = k_means_estimator.clusters() for i in range(10): plt.subplot(2, 5, i + 1) display_digit(clusters[i]) cluster_labels = [9, 1, 6, 8, 0, 3, 0, 6, 1, 9] for i in range(5): plt.subplot(1, 5, i + 1) display_digit(test_digits[i]) predict = k_means_estimator.predict(input_fn=lambda: input_fn(test_digits), as_iterable=False) print([cluster_labels[i] for i in predict['cluster_idx']]) for i in range(5): plt.subplot(1, 5, i + 1) display_digit(test_digits[i]) predict_train = k_means_estimator.predict(input_fn=lambda: input_fn(test_digits), as_iterable=False) def display_accuracy(cluster_labels, cluster_idx, actual_labels): predict_labels = [cluster_labels[i] for i in cluster_idx] num_accurate_predictions = (list(predict_labels == actual_labels)).count(True) print("Number of accurate predictions: ", num_accurate_predictions) pctAccuracy = float(num_accurate_predictions) / float(len(actual_labels)) print("% accurate predictions: ", pctAccuracy) display_accuracy(cluster_labels, predict_train['cluster_idx'], test_labels) plt.show()
3.640625
4
aiobook/core/facebook/types/__init__.py
Valenookua/aiobook
4
12787269
from .buttons import \ UrlButton, CallButton, LogOutButton, LogInButton, PostbackButton, GamePlayButton from .elements import Element, MediaElement, OpenGraphElement from .quick_replies import QuickReply from .templates import\ ButtonTemplate, MediaTemplate, GenericTemplate, OpenGraphTemplate, ListTemplate
0.808594
1
source/data_preparation/vim_label.py
jackie930/yolov3
0
12787270
# -*- coding: utf-8 -*- """ @File : yolo_label.py @Author : Jackie @Description : """ import json import os from shutil import copyfile from sys import exit sets = ['train', 'valid'] classes = ["nie es8","maybach s650","toyota gt8","tesla modelx"] # def load_vim_label(labelfile): with open(labelfile, "r") as f: annotations = json.load(f, encoding='unicode-escape') image_list = annotations['_via_image_id_list'] print ("<<<image ls: ", image_list) print (annotations) def preprocess(imgfolder,targetfolder): image_list = os.listdir(imgfolder) print ('total number:', len(image_list)) if not os.path.isdir(targetfolder): os.makedirs(targetfolder) for i in range(len(image_list)): #print(image_list[i]) # 遍历所有文件 source = os.path.join(imgfolder, image_list[i]) target = os.path.join(targetfolder, str(i)+'.jpg') # adding exception handling try: copyfile(source, target) except IOError as e: print("Unable to copy file. %s" % e) exit(1) except: print("Unexpected error:", sys.exc_info()) exit(1) print ("<<<< finish rename imgs!") if __name__ == "__main__": # first make sure your images is preprocessed before labeling! imgfolder = '/Users/liujunyi/Desktop/spottag/summit-training/道路/pics/imgs' preprocess(imgfolder,'../data/custom/images') #load_vim_label('../data/custom/labels/car-type.json') ''' # sets generation image_list = os.listdir('../data/custom/images') label_list = os.listdir('../data/custom/labels') images = [i[:-4] for i in image_list] print ("<<<<< length before", len(images)) xml_images = [i[:-4] for i in label_list] print ("<<< images: ", images) print ("<<< xml_images: ", xml_images) images = [val for val in images if val in xml_images] print ("<<<<< length after", len(images)) image_len = len(images) num_train = image_len - int(image_len * 0.2) num_test = int(image_len * 0.2) print ("<<<< NUM TRAIN: ", num_train) print ("<<<< NUM TEST: ", num_test) print ("<<<< check if exisits") if not os.path.exists('./data/custom'): os.makedirs('./data/custom') train_file = open('../data/custom/train.txt', 'w') test_file = open('../data/custom/valid.txt', 'w') i = 0 for image_id in image_list: if i < num_train: # print (">>> images for train: ",image_id) train_file.write('%s\n' % ('data/custom/images/' + image_id)) else: # print (">>> images for valid: ",image_id) test_file.write('%s\n' % ('data/custom/images/' + image_id)) i = i + 1 train_file.close() test_file.close() '''
2.5
2
boxmetrics/core/info/sensors.py
Laurent-PANEK/boxmetrics-cli
0
12787271
<gh_stars>0 import psutil from .base import Info class Sensors(Info): def __init__(self, *args): super(Sensors, self).__init__(*args) def temp(self): if psutil.WINDOWS: return dict() temp = psutil.sensors_temperatures() for key, data in temp.items(): temp[key] = data._asdict() return temp def fans(self): if psutil.WINDOWS: return dict() fans = psutil.sensors_fans() for key, data in fans.items(): fans[key] = data._asdict() return fans def battery(self): battery = psutil.sensors_battery() battery = battery._asdict() battery["secsleft"] = self.__convert_remaining_time(battery["secsleft"]) return battery def __convert_remaining_time(self, secs): value = { psutil.POWER_TIME_UNKNOWN: "?", psutil.POWER_TIME_UNLIMITED: "unlimited", } if secs in value.keys(): return value[secs] mm, ss = divmod(secs, 60) hh, mm = divmod(mm, 60) return "%dh%02dm%02ds" % (hh, mm, ss) def all(self): temp = self.temp() fans = self.fans() battery = self.battery() return dict(temperature=temp, fans=fans, battery=battery) SensorsInst = Sensors()
2.8125
3
web/app/models.py
henryjr1/DelterAirlinesTeam3
0
12787272
# models.py from app import db class Passenger(db.Model): __tablename__ = "passengers" id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(30), nullable=False) dob = db.Column(db.Date, nullable=False) email = db.Column(db.String(30), unique=True, nullable=False) address = db.Column(db.Text, nullable=False) def __repr__(self): return '<name {}>'.format(self.name) class Plane(db.Model): __tablename__ = "planes" id = db.Column(db.Integer, primary_key=True) model = db.Column(db.String(30), unique=True, nullable=False) capacity = db.Column(db.Integer, nullable=False) flight_number = db.Column(db.String(30), unique=True, nullable=False) def __repr__(self): return '<model = {} --- capacity = {} --- flight number = {}>'.format(self.model, self.capacity, self.flight_number) class Flight(db.Model): __tablename__ = 'flights' id = db.Column(db.Integer, primary_key=True) source = db.Column(db.String(200), nullable=False) destination = db.Column(db.String(200), nullable=False) plane_id = db.Column(db.Integer, db.ForeignKey('planes.id')) plane = db.relationship("Plane", backref=db.backref('flights', lazy=True)) departure_time = db.Column(db.DateTime, nullable=False) departure_zip_code = db.Column(db.Integer, nullable=False) arrival_time = db.Column(db.DateTime, nullable=False) arrival_zip_code = db.Column(db.Integer, nullable=False) locale = db.Column(db.String(50), nullable=False) tickets = db.relationship("Ticket", backref="flights", lazy="dynamic", order_by='Ticket.id') class Ticket(db.Model): __tablename__ = 'tickets' id = db.Column(db.Integer, primary_key=True) seat_number = db.Column(db.String(4), nullable=False) price = db.Column(db.Float, nullable=False) available = db.Column(db.Boolean, nullable=False) flight_id = db.Column(db.Integer, db.ForeignKey('flights.id'), nullable=False) flight = db.relationship("Flight") def __repr__(self): return '<seat_number = {} --- available = {} ----'.format(self.seat_number, self.available) class AirFare(db.Model): __tablename__ = 'airfares' id = db.Column(db.Integer, primary_key=True) amount = db.Column(db.Numeric, nullable=False) description = db.Column(db.String(100), nullable=True) class Transaction(db.Model): __tablename__ = 'transactions' id = db.Column(db.Integer, primary_key=True) # booking_date_time = db.Column(db.DateTime, nullable=False) passenger_id = db.Column(db.Integer, db.ForeignKey('passengers.id')) passenger = db.relationship('Passenger', backref='transactions', cascade='save-update') ticket_id = db.Column(db.Integer, db.ForeignKey('tickets.id')) ticket = db.relationship('Ticket', backref='transactions', cascade='save-update') # airfare_id = db.Column(db.Integer, db.ForeignKey('airfares.id')) # airfare = db.relationship('AirFare', backref='transactions')
2.65625
3
utils.py
Fork-for-Modify/MetaSCI-CVPR2021
0
12787273
<reponame>Fork-for-Modify/MetaSCI-CVPR2021<filename>utils.py """ @author : <NAME>, <NAME> @Email : <EMAIL> <EMAIL> Description: Citation: The code prepares for ECCV 2020 Contact: <NAME> <EMAIL> Xidian University, Xi'an, China <NAME> <EMAIL> Xidian University, Xi'an, China LICENSE ======================================================================= The code is for research purpose only. All rights reserved. The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. Copyright (c), 2020, <NAME> <EMAIL> """ import scipy.io as scio import numpy as np def generate_masks(mask_path): mask = scio.loadmat(mask_path + '/mask.mat') mask = mask['mask'] mask_s = np.sum(mask, axis=2) index = np.where(mask_s == 0) mask_s[index] = 1 return mask.astype(np.float32), mask_s.astype(np.float32) # def generate_masks_metaTest(mask_path): # mask = scio.loadmat(mask_path + '/Mask.mat') # mask = mask['mask'] # mask_s = np.sum(mask, axis=2) # index = np.where(mask_s == 0) # mask_s[index] = 1 # mask = np.transpose(mask, [3, 0, 1, 2]) # mask_s = np.transpose(mask_s, [2, 0, 1]) # mask = mask[3] # mask_s = mask_s[3] # return mask.astype(np.float32), mask_s.astype(np.float32) # def generate_masks_metaTest_v2(mask_path): # mask = scio.loadmat(mask_path + '/Mask.mat') # mask = mask['mask'] # mask_s = np.sum(mask, axis=2) # index = np.where(mask_s == 0) # mask_s[index] = 1 # mask = np.transpose(mask, [3, 0, 1, 2]) # mask_s = np.transpose(mask_s, [2, 0, 1]) # return mask.astype(np.float32), mask_s.astype(np.float32) # def generate_masks_metaTest_v3(mask_path): # mask = scio.loadmat(mask_path) # mask = mask['mask'] # mask_s = np.sum(mask, axis=2) # index = np.where(mask_s == 0) # mask_s[index] = 1 # return mask.astype(np.float32), mask_s.astype(np.float32) def generate_masks_MAML(mask_path, picked_task): # generate mask and mask_sum form given picked task index # input data: # mask_path->mask: [H,W,Cr,num_task] # picked_task: list # output data: # mask: [num_task,H,W,Cr] # mask_s: [num_task,H,W], mask sum mask = scio.loadmat(mask_path) mask = mask['mask'] if mask.ndim==3: mask = np.expand_dims(mask,-1) mask_s = np.sum(mask, axis=2) index = np.where(mask_s == 0) mask_s[index] = 1 mask = np.transpose(mask, [3, 0, 1, 2]) mask_s = np.transpose(mask_s, [2, 0, 1]) assert max(picked_task)<=mask.shape[0], 'ERROR: picked task index exceed maximum limit' mask = mask[picked_task] mask_s = mask_s[picked_task] return mask.astype(np.float32), mask_s.astype(np.float32) def generate_meas(gt, mask): """ generate_meas [generate coded measurement from mask and orig] from mask and orig (extra orig frames with be throwed out) Args: gt [H,W,num_frame]: orig frames mask [H,W,Cr]: masks Returns: meas [num_batch,H,W]: coded measurement, each meas is a batch here used_gt [num_batch,H,W,Cr]: used orig frames """ # data type convert mask = mask.astype(np.float32) gt = gt.astype(np.float32) # rescale to 0-1 mask_maxv = np.max(mask) if mask_maxv > 1: mask = mask/mask_maxv # calculate meas # meas = np.sum(mask*gt,2) Cr = mask.shape[2] # num of masks used_gt = np.zeros([gt.shape[2] // Cr, gt.shape[0], gt.shape[1], Cr]) for jj in range(gt.shape[2] // Cr*Cr): if jj % Cr == 0: meas_t = np.zeros(gt.shape[0:2]) n = 0 pic_t = gt[:, :, jj] mask_t = mask[:, :, n] used_gt[jj // Cr, :, :, n] = pic_t n += 1 meas_t = meas_t + np.multiply(mask_t, pic_t) if jj == Cr-1: meas_t = np.expand_dims(meas_t, 0) meas = meas_t elif (jj + 1) % Cr == 0: #zzh meas_t = np.expand_dims(meas_t, 0) meas = np.concatenate((meas, meas_t), axis=0) return meas, used_gt
1.882813
2
mqtt_performance_tester/analyze.py
lucasimone/mqtt-performance-tester
0
12787274
import json import traceback import sys from mqtt_performance_tester.mqtt_utils import * logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) ### CLASS FOR STORE AN MQTT MESSAGE class packet(): counter = 0 def __init__(self): self.protocol = None self.frame_id = None self.type = None self.size = -1 self.payload_size = 0 self.delta_time = -1 self.epoc_time = -1 self.mid = -1 def __repr__(self): return "--- mid:%s \t%s \tType:%s \tSize:%s \tTime:%s \tEpoc:%s" \ %(self.mid, self.protocol, self.type, self.size, self.delta_time, self.epoc_time) ### CLASS FOR COMPUTE ALL THE PERFORMANCE PARAMS class mqtt_performance(): def __init__(self, data, num_request, qos=1): self.num_request = num_request self.qos = qos self.data = data self.packets = [] self.size_tcp = 0 self.size_mqtt = 0 self.size_udp = 0 self.size_others = 0 self.counter = 0 self.num_mqtt = 0 self.num_tcp = 0 self.num_upd = 0 self.num_others = 0 self.mqtt_types = [] self.mqtt_ids = [] self._parse_json() def _parse_json(self): self.counter = 0 index = 0 # start_counter msg = None for pkt in self.data: msg = packet() try: msg.frame_id = extract_field(pkt, 'frame_id') msg.size = int(extract_field(pkt, "frame_size")) # Read TIME msg.delta_time = extract_field(pkt, "time_delta") msg.epoc_time = extract_field(pkt, "time_epoch") for layer in pkt["_source"]['layers']: if layer == 'mqtt': logger.debug ("---- Packet: {0}".format(pkt["_source"]['layers'][layer])) if 'mqtt' in pkt["_source"]['layers']: self.counter += 1 msg.type = extract_field(pkt, "mqtt_type") msg.payload_size = extract_field(pkt, "mqtt_size", msg.type) msg.mid = extract_field(pkt, "mqtt_id", msg.type) msg.protocol = "mqtt" logger.debug("MQTT Message Type {0} - ID:{1}".format(msg.type, msg.mid)) logger.debug("Numero di messaggi MQTT: {0}".format(len(pkt["_source"]['layers']['mqtt']))) if msg.type not in self.mqtt_types: self.mqtt_types.append(msg.type) if msg.mid not in self.mqtt_ids or msg.mid == 'NA': if msg.mid != 'NA': self.mqtt_ids.append(msg.mid) self.mqtt_ids.append(msg.mid) else: logger.debug("DUP packet %s" %repr(msg)) self.num_mqtt += 1 self.size_mqtt += msg.size self.packets.append(msg) elif 'udp' in pkt["_source"]['layers']: msg.protocol = "udp" msg.size = extract_field(pkt, "udp_size") self.payload_size += msg.size self.num_upd += 1 elif 'tcp' in pkt["_source"]['layers']: msg.protocol = "tcp" self.payload_size = int(extract_field(pkt, "tcp_size")) self.size_tcp += msg.size self.num_tcp += 1 else: msg.protocol = extract_field(pkt, "protocols") self.size_others += msg.size self.num_others += 1 except Exception as error: logger.debug(" >>>>> ERROR PARSING Packets %s " %pkt, error) traceback.print_exc(file=sys.stdout) ## PRINT RESUL total = 0 logger.debug("Detected %d MQTT packets" %len(self.packets)) for t in self.mqtt_types: num = len(self.filter_by(t)) logger.debug("--- %d %s " % (num, t)) total += num logger.debug("--- TOTAL %d" % (total)) logger.debug('#######################################') logger.debug('--- Total Message: %d' % self.counter) logger.debug("--- TCP Message: %s " % self.num_tcp) logger.debug('--- MQTT Message: %d' % self.num_mqtt) logger.debug('--- UDP Message: %d' % self.num_upd) logger.debug('--- OTHER Message: %d' % self.num_others) logger.debug('#######################################') logger.debug('--- TCP packets size: %d' % self.size_tcp) logger.debug('--- MQTT packets size: %d' % self.size_mqtt) logger.debug('--- UPD packets size: %d' % self.size_udp) logger.debug('--- OTHERS packets size: %d' % self.size_others) logger.debug('--- TOTAL packets size: %d' % (self.size_mqtt + self.size_tcp+ self.size_udp + self.size_others)) logger.debug('#######################################') def get_num(self, msg_type): return len(self.filter_by(msg_type)) def filter_by(self, filter): output = [] for pkt in self.packets: if pkt.type == filter: output.append(pkt) return output def find_msg_with_id(self, mid, msg_type): data = self.filter_by(msg_type) for msg in data: if msg.mid == mid: return msg return -1 def get_e2e(self): min = 100000 max = -1 msg_type = MQTT_PUB_ACK if self.qos == 2: msg_type = MQTT_PUB_COM avg_time = 0 counter = 0 data = self.filter_by(msg_type) for msg in data: msg_pub = self.find_msg_with_id(msg.mid, MQTT_PUB) mqtt_time = (float(msg.epoc_time) - float(msg_pub.epoc_time)) if mqtt_time > max: max = mqtt_time if mqtt_time < min: min = mqtt_time avg_time += mqtt_time # logger.debug ("%s -- %s " % (repr(msg), repr(msg_pub))) counter += 1 logger.debug("[E2E] TOTAL TIME: %s " % avg_time) if counter == 0: avg_time = 0 else: avg_time /= counter logger.debug("[E2E] MIN TIME: %s - MAX TIME: %s" % (min, max)) logger.debug("[E2E] The E2E delay for %s is :%f [N. Pkt=%d]" %(msg_type, avg_time, counter)) return avg_time def get_pdr(self, num): filter = MQTT_PUB_ACK if self.qos == 2: filter = MQTT_PUB_COM data = self.filter_by(filter) counter = len(data) pdr = (counter *1.0 / self.num_request) * 100 logger.debug("[PDR] The PDR for is %f [n. %d %s Pkt / Pkt sent %d] - REQUEST: %d" % (pdr, counter, filter, self.num_request, num)) return pdr def get_size(self, protocol): if protocol == TCP: return self.size_tcp elif protocol == MQTT: return self.size_mqtt else: return 0 def get_packet_drop(self, paylod_size): if self.qos == 1: num_ack = self.get_num(MQTT_PUB_ACK) ack_type = MQTT_PUB_ACK else: num_ack = self.get_num(MQTT_PUB_COM) ack_type = MQTT_PUB_COM size = self.size_tcp + self.size_mqtt if float(size) == 0: return 0 pdrop = (num_ack * paylod_size * 1.0) / float(size) logger.debug("[PDROP] The Packet Drop is %f [n. %s: %d dim: %d] " % (pdrop, ack_type, num_ack, size)) return pdrop def get_tcp_overhead(self): size = self.size_tcp + self.size_mqtt if float(size) == 0: return 0 overhead = (self.size_tcp*1.0)/size logger.debug("[TCP_OVERHEAD] TCP[%d] /TOTAL[%d] = %f " % (self.size_tcp, size, overhead)) return overhead def computeTime(json_file, num_test, qos): with open(json_file) as file: pkts = json.load(file) file.close() return mqtt_performance(pkts, num_test, qos) if __name__ == '__main__': logger.debug('#######################################################') logger.debug("#") logger.debug("# Analyze Wireshark data for MQTT Performance analysis") logger.debug("#") logger.debug('#######################################################') sh = logging.StreamHandler() sh.setLevel(logging.DEBUG) LOG_FORMAT = '%(levelname)-7s | %(asctime)s | %(name)40s:%(lineno)-3d| %(message)s' formatter = logging.Formatter(LOG_FORMAT) sh.setFormatter(formatter) logger.addHandler(sh) json_file = "backup/data_1507099161.54/mqtt_qos_1_payload_128_num_req_500.json" with open(json_file) as file: pkts = json.load(file) file.close() demo = mqtt_performance(pkts, 500, 1) demo.get_e2e() demo.get_pdr(500) demo.get_packet_drop(256) demo.get_tcp_overhead()
2.546875
3
ephios/core/models/users.py
ephios-dev/ephios
14
12787275
import datetime import functools import secrets import uuid from datetime import date from itertools import chain import guardian.mixins from django.contrib.auth import get_user_model from django.contrib.auth.base_user import AbstractBaseUser, BaseUserManager from django.contrib.auth.models import Group, PermissionsMixin from django.db import models, transaction from django.db.models import ( BooleanField, CharField, DateField, EmailField, ExpressionWrapper, F, ForeignKey, Max, Model, Q, Sum, ) from django.db.models.functions import TruncDate from django.utils import timezone from django.utils.translation import gettext_lazy as _ from ephios.extra.fields import EndOfDayDateTimeField from ephios.extra.json import CustomJSONDecoder, CustomJSONEncoder from ephios.extra.widgets import CustomDateInput from ephios.modellogging.log import ( ModelFieldsLogConfig, add_log_recorder, register_model_for_logging, ) from ephios.modellogging.recorders import FixedMessageLogRecorder, M2MLogRecorder class UserProfileManager(BaseUserManager): def create_user( self, email, first_name, last_name, date_of_birth, password=<PASSWORD>, ): # pylint: disable=unexpected-keyword-arg,no-value-for-parameter user = self.model( email=email, first_name=first_name, last_name=last_name, date_of_birth=date_of_birth, ) user.set_password(password) user.save() return user def create_superuser( self, email, first_name, last_name, date_of_birth, password=None, ): user = self.create_user( email=email, password=password, first_name=first_name, last_name=last_name, date_of_birth=date_of_birth, ) user.is_superuser = True user.is_staff = True user.save() return user class UserProfile(guardian.mixins.GuardianUserMixin, PermissionsMixin, AbstractBaseUser): email = EmailField(_("email address"), unique=True) is_active = BooleanField(default=True, verbose_name=_("Active")) is_staff = BooleanField(default=False, verbose_name=_("Staff user")) first_name = CharField(_("first name"), max_length=254) last_name = CharField(_("last name"), max_length=254) date_of_birth = DateField(_("date of birth")) phone = CharField(_("phone number"), max_length=254, blank=True) calendar_token = CharField(_("calendar token"), max_length=254, default=secrets.token_urlsafe) USERNAME_FIELD = "email" REQUIRED_FIELDS = [ "first_name", "last_name", "date_of_birth", ] objects = UserProfileManager() class Meta: verbose_name = _("user profile") verbose_name_plural = _("user profiles") db_table = "userprofile" def get_full_name(self): return self.first_name + " " + self.last_name def __str__(self): return self.get_full_name() def get_short_name(self): return self.first_name @property def age(self): today, born = date.today(), self.date_of_birth return today.year - born.year - ((today.month, today.day) < (born.month, born.day)) @property def is_minor(self): return self.age < 18 def as_participant(self): from ephios.core.signup import LocalUserParticipant return LocalUserParticipant( first_name=self.first_name, last_name=self.last_name, qualifications=self.qualifications, date_of_birth=self.date_of_birth, email=self.email if self.is_active else None, user=self, ) @property def qualifications(self): return Qualification.objects.filter( pk__in=self.qualification_grants.unexpired().values_list("qualification_id", flat=True) ).annotate( expires=Max(F("grants__expires"), filter=Q(grants__user=self)), ) def get_shifts(self, with_participation_state_in): from ephios.core.models import Shift shift_ids = self.localparticipation_set.filter( state__in=with_participation_state_in ).values_list("shift", flat=True) return Shift.objects.filter(pk__in=shift_ids).select_related("event") def get_workhour_items(self): from ephios.core.models import AbstractParticipation participations = ( self.localparticipation_set.filter(state=AbstractParticipation.States.CONFIRMED) .annotate( duration=ExpressionWrapper( (F("shift__end_time") - F("shift__start_time")), output_field=models.DurationField(), ), date=ExpressionWrapper(TruncDate(F("shift__start_time")), output_field=DateField()), reason=F("shift__event__title"), ) .values("duration", "date", "reason") ) workinghours = self.workinghours_set.annotate(duration=F("hours")).values( "duration", "date", "reason" ) hour_sum = ( participations.aggregate(Sum("duration"))["duration__sum"] or datetime.timedelta() ) + datetime.timedelta( hours=float(workinghours.aggregate(Sum("duration"))["duration__sum"] or 0) ) return hour_sum, list(sorted(chain(participations, workinghours), key=lambda k: k["date"])) register_model_for_logging( UserProfile, ModelFieldsLogConfig( unlogged_fields={"id", "password", "calendar_token", "last_login"}, ), ) register_model_for_logging( Group, ModelFieldsLogConfig( unlogged_fields={"id", "permissions"}, initial_recorders_func=lambda group: [ M2MLogRecorder(UserProfile.groups.field, reverse=True, verbose_name=_("Users")), ], ), ) class QualificationCategoryManager(models.Manager): def get_by_natural_key(self, category_uuid, *args): return self.get(uuid=category_uuid) class QualificationCategory(Model): uuid = models.UUIDField("UUID", unique=True, default=uuid.uuid4) title = CharField(_("title"), max_length=254) objects = QualificationCategoryManager() class Meta: verbose_name = _("qualification track") verbose_name_plural = _("qualification tracks") db_table = "qualificationcategory" def __str__(self): return str(self.title) def natural_key(self): return (self.uuid, self.title) class QualificationManager(models.Manager): def get_by_natural_key(self, qualification_uuid, *args): return self.get(uuid=qualification_uuid) class Qualification(Model): uuid = models.UUIDField(unique=True, default=uuid.uuid4, verbose_name="UUID") title = CharField(_("title"), max_length=254) abbreviation = CharField(max_length=254) category = ForeignKey( QualificationCategory, on_delete=models.CASCADE, related_name="qualifications", verbose_name=_("category"), ) includes = models.ManyToManyField( "self", related_name="included_by", symmetrical=False, blank=True ) is_imported = models.BooleanField(verbose_name=_("imported"), default=True) objects = QualificationManager() def __eq__(self, other): return self.uuid == other.uuid if other else False def __hash__(self): return hash(self.uuid) class Meta: verbose_name = _("qualification") verbose_name_plural = _("qualifications") db_table = "qualification" def __str__(self): return str(self.title) def natural_key(self): return (self.uuid, self.title) natural_key.dependencies = ["core.QualificationCategory"] @classmethod def collect_all_included_qualifications(cls, given_qualifications) -> set: """We collect using breadth first search with one query for every layer of inclusion.""" all_qualifications = set(given_qualifications) current = set(given_qualifications) while current: new = ( Qualification.objects.filter(included_by__in=current) .exclude(id__in=(q.id for q in all_qualifications)) .distinct() ) all_qualifications |= set(new) current = new return all_qualifications class CustomQualificationGrantQuerySet(models.QuerySet): # Available on both Manager and QuerySet. def unexpired(self): return self.exclude(expires__isnull=False, expires__lt=timezone.now()) class ExpirationDateField(models.DateTimeField): """ A model datetime field whose formfield is an EndOfDayDateTimeField """ def formfield(self, **kwargs): return super().formfield( **{ "widget": CustomDateInput, "form_class": EndOfDayDateTimeField, **kwargs, } ) class QualificationGrant(Model): qualification = ForeignKey( Qualification, on_delete=models.CASCADE, verbose_name=_("qualification"), related_name="grants", ) user = ForeignKey( get_user_model(), related_name="qualification_grants", on_delete=models.CASCADE, verbose_name=_("user profile"), ) expires = ExpirationDateField(_("expiration date"), blank=True, null=True) objects = CustomQualificationGrantQuerySet.as_manager() def __str__(self): return f"{self.qualification!s} {_('for')} {self.user!s}" class Meta: unique_together = [["qualification", "user"]] # issue #218 db_table = "qualificationgrant" verbose_name = _("Qualification grant") register_model_for_logging( QualificationGrant, ModelFieldsLogConfig(attach_to_func=lambda grant: (UserProfile, grant.user_id)), ) class Consequence(Model): slug = models.CharField(max_length=255) data = models.JSONField(default=dict, encoder=CustomJSONEncoder, decoder=CustomJSONDecoder) user = models.ForeignKey( get_user_model(), on_delete=models.CASCADE, verbose_name=_("affected user"), null=True, related_name="affecting_consequences", ) class States(models.TextChoices): NEEDS_CONFIRMATION = "needs_confirmation", _("needs confirmation") EXECUTED = "executed", _("executed") FAILED = "failed", _("failed") DENIED = "denied", _("denied") state = models.TextField( max_length=31, choices=States.choices, default=States.NEEDS_CONFIRMATION, verbose_name=_("State"), ) class Meta: db_table = "consequence" verbose_name = _("Consequence") @property def handler(self): from ephios.core import consequences return consequences.consequence_handler_from_slug(self.slug) def confirm(self, user): from ephios.core.consequences import ConsequenceError if self.state not in { self.States.NEEDS_CONFIRMATION, self.States.DENIED, self.States.FAILED, }: raise ConsequenceError(_("Consequence was executed already.")) try: with transaction.atomic(): self.handler.execute(self) from ephios.core.services.notifications.types import ConsequenceApprovedNotification if user != self.user: ConsequenceApprovedNotification.send(self) except Exception as e: # pylint: disable=broad-except self.state = self.States.FAILED add_log_recorder( self, FixedMessageLogRecorder( label=_("Reason"), message=str(e), ), ) raise ConsequenceError(str(e)) from e else: self.state = self.States.EXECUTED finally: self.save() def deny(self, user): from ephios.core.consequences import ConsequenceError if self.state not in {self.States.NEEDS_CONFIRMATION, self.States.FAILED}: raise ConsequenceError(_("Consequence was executed or denied already.")) self.state = self.States.DENIED self.save() from ephios.core.services.notifications.types import ConsequenceDeniedNotification if user != self.user: ConsequenceDeniedNotification.send(self) def render(self): return self.handler.render(self) def __str__(self): return self.render() def attach_log_to_object(self): if self.user_id: return UserProfile, self.user_id return Consequence, self.id register_model_for_logging( Consequence, ModelFieldsLogConfig( unlogged_fields=["id", "slug", "user", "data"], attach_to_func=lambda consequence: consequence.attach_log_to_object(), ), ) class WorkingHours(Model): user = models.ForeignKey(get_user_model(), on_delete=models.CASCADE) hours = models.DecimalField(decimal_places=2, max_digits=7) reason = models.CharField(max_length=1024, default="") date = models.DateField() class Meta: db_table = "workinghours" class Notification(Model): slug = models.SlugField(max_length=255) user = models.ForeignKey( get_user_model(), on_delete=models.CASCADE, verbose_name=_("affected user"), null=True, ) failed = models.BooleanField(default=False) data = models.JSONField( blank=True, default=dict, encoder=CustomJSONEncoder, decoder=CustomJSONDecoder ) @functools.cached_property def notification_type(self): from ephios.core.services.notifications.types import notification_type_from_slug return notification_type_from_slug(self.slug) @property def subject(self): return self.notification_type.get_subject(self) def as_plaintext(self): return self.notification_type.as_plaintext(self) def as_html(self): return self.notification_type.as_html(self) def get_url(self): return self.notification_type.get_url(self)
1.921875
2
model/xgboost_model.py
theBraindonor/chicago-crime-arrests
1
12787276
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Build an XGBoost model of arrests in the Chicago crime data. """ __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2019, <NAME>" __license__ = "Creative Commons Attribution-ShareAlike 4.0 International License" __version__ = "1.0" import xgboost as xgb from skopt.space import Integer, Real from sklearn.externals import joblib from sklearn.pipeline import Pipeline from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn_pandas import DataFrameMapper from utility import HyperParameters, Runner from model import load_clean_data_frame, ordinal_data_mapper sample = None iterations = 24 hyper_parameters = HyperParameters(search_space={ 'xgb__n_estimators': Integer(100, 500), 'xgb__learning_rate': Real(0.1, 0.3), 'xgb__gamma': Real(0.0001, 100.0, prior='log-uniform'), 'xgb__max_depth': Integer(3, 7), 'xgb__colsample_bytree': Real(0.4, 0.8), 'xgb__colsample_bylevel': Real(0.4, 0.8), 'xgb__colsample_bynode': Real(0.4, 0.8) }) # Features were selected based on feature importance from experiments. data_mapper = DataFrameMapper([ (['iucr'], [MinMaxScaler()]), (['location'], [MinMaxScaler()]), (['latitude'], [StandardScaler()]), (['hour'], [MinMaxScaler()]), (['longitude'], [StandardScaler()]), (['type'], [MinMaxScaler()]), (['month'], [MinMaxScaler()]), (['fbi_code'], [MinMaxScaler()]) ]) xgboost_pipeline = Pipeline([ ('mapper', ordinal_data_mapper), ('xgb', xgb.XGBClassifier(tree_method='hist')) ]) xgboost_pipeline_fs = Pipeline([ ('mapper', data_mapper), ('xgb', xgb.XGBClassifier(tree_method='hist')) ]) def build_xgboost_model(): runner = Runner( 'model/output/xgboost_basic', load_clean_data_frame(), 'arrest', xgboost_pipeline, hyper_parameters ) runner.run_classification_search_experiment( 'roc_auc', sample=sample, n_iter=iterations, record_predict_proba=True ) joblib.dump( runner.trained_estimator, 'model/output/xgboost_basic.joblib' ) runner = Runner( 'model/output/xgboost_basic_fs', load_clean_data_frame(), 'arrest', xgboost_pipeline_fs, hyper_parameters ) runner.run_classification_search_experiment( 'roc_auc', sample=sample, n_iter=iterations, record_predict_proba=True ) joblib.dump( runner.trained_estimator, 'model/output/xgboost_basic_fs.joblib' ) if __name__ == '__main__': build_xgboost_model()
2.640625
3
rlintro/bandit.py
adam-page/rlintro
0
12787277
<reponame>adam-page/rlintro from abc import ABC import matplotlib.pyplot as plt import numpy as np class Bandit: """A simple k-armed bandit.""" def __init__( self, arms: int = 10, qs: np.ndarray = None, walk: float = None, ): """Create the simple k-armed bandit. Args: arms (int, optional): Number of arms. Defaults to 10. qs (np.ndarray, optional): Initial q values-random if not set. Must be equal in length to arms. Defaults to None. walk (float, optional): Standard deviation for walk. No walking behavior if None. Defaults to None. Raises: IndexError: Raised when qs is specified but its length != arms. """ if qs is None: self._qs: np.ndarray = np.random.normal(size=(arms, 1)) elif len(qs) == arms: self._qs = qs else: raise IndexError self._walk = walk def step(self, arm: int) -> int: """Run a step by pulling one of the arms and getting a reward. Args: arm (int): Which arm to pull. Raises: IndexError: Raised when the arm value is greater than the number of arms for this bandit. Returns: int: The reward for this step. """ if arm > len(self._qs): raise IndexError reward = np.random.normal(loc=self._qs[arm]) if self._walk is not None: self._qs += np.random.normal(scale=self._walk, size=self._qs.shape) return reward class BanditAgent(ABC): """Base class for all bandit agents.""" def action(self, prev_reward: int = None) -> int: pass class BanditExperiment: """Handles a bandit experiment with an agent and reward averaging.""" def __init__( self, bandit: Bandit, agent: BanditAgent, steps: int, reward_over: int = None ): """Create the experiment. Args: bandit (Bandit): The bandit for this experiment. agent (BanditAgent): The agent for this experiment. steps (int): The total number of steps. reward_over (int, optional): The number of steps (from the end) to average reward over. Defaults to None. """ self._bandit = bandit self._agent = agent self._steps = steps self._r_over = self._steps - reward_over if reward_over else 0 self._avg_r = 0.0 self._nr = 0 self._current_step = 0 def run(self) -> float: """Run the experiment over all steps. Returns: float: The average reward over the last reward_over steps or all steps if reward_over is not set. """ reward = None for i in range(self._steps): r = self._bandit.step(self._agent.action(reward)) if i >= self._r_over: self._avg_r = (r + (self._nr * self._avg_r)) / float(self._nr + 1) self._nr += 1 return self._avg_r class RandomLeverAgent(BanditAgent): """A simple BanditAgent which just randomly chooses always.""" def action(self, prev_reward: int) -> int: """Get the next action based on previous reward. Args: prev_reward (int, optional): The previous reward. Defaults to None. Returns: int: The action selected by the agent. """ return np.random.randint(10) experiment_parameters = [ float(1 / 128), float(1 / 64), float(1 / 32), float(1 / 16), float(1 / 8), float(1 / 4), float(1 / 2), 1, 2, 4, ] if __name__ == "__main__": print(experiment_parameters) exp = BanditExperiment(Bandit(), RandomLeverAgent(), 2000, reward_over=1000) print(exp.run())
3.640625
4
Poker.py
guptaronav/python-projects
0
12787278
import random import time from collections import Counter done = 'false' #here is the animation def animate(): Count=0 global done print('loading… |',end="") while done == 'false': time.sleep(0.1) print('/',end="") time.sleep(0.1) print('-',end="") time.sleep(0.1) print('\\',end="") time.sleep(0.1) Count+=1 if Count==10: done='true' print() print('Done!') animate() done = 'false' Card_Deck=[2,3,4,5,6,7,8,9,10,'J','Q','K','A'] Suits=['♠','♣︎','♥︎','♦'] Deck=['2 ♠','3 ♠','4 ♠','5 ♠','6 ♠','7 ♠','8 ♠','9 ♠','10 ♠','J ♠','Q ♠','K ♠','A ♠', '2 ♣︎','3 ♣︎','4 ♣︎','5 ♣︎','6 ♣︎','7 ♣︎','8 ♣︎','9 ♣︎','10 ♣︎','J ♣︎','Q ♣︎','K ♣︎','A ♣︎', '2 ♥︎','3 ♥︎','4 ♥︎︎','5 ♥︎','6 ♥︎','7 ♥︎︎','8 ︎♥︎','9 ♥︎︎','10 ♥︎','J ♥︎','Q ♥︎','K ♥︎','A ♥︎', '2 ♦︎','3 ♦︎','4 ♦︎︎','5 ♦︎','6 ♦︎','7 ♦︎︎','8 ︎♦','9 ♦','10 ♦︎','J ♦︎','Q ♦','K ♦','A ♦'] Deck_Value=[1,2,3,4,5,6,7,8,9,10,11,12,13, 1,2,3,4,5,6,7,8,9,10,11,12,13, 1,2,3,4,5,6,7,8,9,10,11,12,13, 1,2,3,4,5,6,7,8,9,10,11,12,13] Spades=[0,1,2,3,4,5,6,7,8,9,10,11,12] Clubs=[13,14,15,16,17,18,19,20,21,22,23,24,25] Hearts=[26,27,28,29,30,31,32,33,34,35,36,37,38] Diamonds=[39,40,41,42,43,44,45,46,47,48,49,50,51] Aces=[12,25,38,51] Used_Cards=[] Stats={} def deal(): A=random.randint(0,51) if A not in Used_Cards: Used_Cards.append(A) return A else: return deal() def Draw_Five(): A=deal() B=deal() C=deal() D=deal() E=deal() Cards_in_Hand=[A,B,C,D,E] return Cards_in_Hand def Compare(A,B): if Deck_Value[A]>Deck_Value[B]: return 1 elif Deck_Value[A]<Deck_Value[B]: return -1 else: return 0 def Is_Straight(Cards): Card_Value=[] for i in Cards: Card_Value.append(Deck_Value[i]) Card_Value.sort() if Card_Value[0]+1==Card_Value[1] and Card_Value[1]+1==Card_Value[2] and Card_Value[2]+1==Card_Value[3] and Card_Value[3]+1==Card_Value[4]: return True elif Card_Value[4] in Aces: if Card_Value[4]-12==Card_Value[0] and Card_Value[0]+1==Card_Value[1] and Card_Value[1]+1==Card_Value[2] and Card_Value[2]+1==Card_Value[3]: return True else: return False else: return False def Print_Cards(Cards): Card_Value=[] for i in Cards: Card_Value.append(Deck[i]) print(Card_Value) def Is_Flush(Cards): return all(item in Spades for item in Cards) or all(item in Clubs for item in Cards) or all(item in Hearts for item in Cards) or all(item in Diamonds for item in Cards) def Is_Straight_Flush(Cards): return Is_Straight(Cards) and Is_Flush(Cards) def Is_Royal_Flush(Cards): Cards.sort(reverse=1) return Cards[0] in Aces and Is_Straight_Flush(Cards) def OAK(Cards): Card_Value=[] for i in Cards: Card_Value.append(Deck_Value[i]) return max(Counter(Card_Value).values()) def Get_MRC(Cards): Card_Value=[] for i in Cards: Card_Value.append(Deck_Value[i]) Values=list(Counter(Card_Value).values()) Keys=list(Counter(Card_Value).keys()) Max_Value_Index=Values.index(max(Values)) return Keys[Max_Value_Index] #GET Top Two Repeat Cards def Get_TTRC(Cards): Card_Value=[] for i in Cards: Card_Value.append(Deck_Value[i]) Values=list(Counter(Card_Value).values()) Keys=list(Counter(Card_Value).keys()) if 1 in Values: Min_Value_Index=Values.index(1) Keys.pop(Min_Value_Index) return Keys def Is_Four_of_a_Kind(Cards): return OAK(Cards)==4 def Is_Three_of_a_Kind(Cards): return OAK(Cards)==3 def Is_One_Pair(Cards): return OAK(Cards)==2 def Is_Two_Pair(Cards): Card_Value=[] for i in Cards: Card_Value.append(Deck_Value[i]) return not Is_Three_of_a_Kind(Cards) and len(Counter(Card_Value).keys())==3 def Is_Full_House(Cards): Card_Value=[] for i in Cards: Card_Value.append(Deck_Value[i]) return len(Counter(Card_Value).keys())==2 and Is_Three_of_a_Kind(Cards) def Get_High_Card(Cards): Card_Value=[] for i in Cards: Card_Value.append(Deck_Value[i]) Card_Value.sort(reverse=1) return Card_Value[0] def Get_2nd_High_Card(Cards): Card_Value=[] for i in Cards: Card_Value.append(Deck_Value[i]) Card_Value.sort(reverse=1) return Card_Value[1] def Get_3rd_High_Card(Cards): Card_Value=[] for i in Cards: Card_Value.append(Deck_Value[i]) Card_Value.sort(reverse=1) return Card_Value[2] def Get_4th_High_Card(Cards): Card_Value=[] for i in Cards: Card_Value.append(Deck_Value[i]) Card_Value.sort(reverse=1) return Card_Value[3] def Get_5th_High_Card(Cards): Card_Value=[] for i in Cards: Card_Value.append(Deck_Value[i]) Card_Value.sort(reverse=1) return Card_Value[4] def Play(Name): Result=10 Cards=Draw_Five() #Cards=[0,13,2,15,25] print("Drawing Cards for",Name+"…") time.sleep(2.5) Print_Cards(Cards) if Is_Royal_Flush(Cards): Result=1 print("You got a Royal Flush and your Highest Card is",Card_Deck[Get_High_Card(Cards)-1]) elif Is_Straight_Flush(Cards): Result=2 print("You got a Straight Flush and your Highest Card is",Card_Deck[Get_High_Card(Cards)-1]) elif Is_Four_of_a_Kind(Cards): Result=3 print("You got a Four of a Kind of",Card_Deck[Get_MRC(Cards)-1],"and your Highest Card is",Card_Deck[Get_High_Card(Cards)-1]) elif Is_Full_House(Cards): Result=4 RepeatCards=[] for dv in Get_TTRC(Cards): RepeatCards.append(Card_Deck[dv-1]) print("You got a Full House",RepeatCards,"and your Highest Card is",Card_Deck[Get_High_Card(Cards)-1]) elif Is_Flush(Cards): Result=5 print("You got a Flush and your Highest Card is",Card_Deck[Get_High_Card(Cards)-1]) elif Is_Straight(Cards): Result=6 print("You got a Straight and your Highest Card is",Card_Deck[Get_High_Card(Cards)-1]) elif Is_Three_of_a_Kind(Cards): Result=7 print("You got a Three of a Kind of",Card_Deck[Get_MRC(Cards)-1],"and your Highest Card is",Card_Deck[Get_High_Card(Cards)-1]) elif Is_Two_Pair(Cards): Result=8 RepeatCards=[] for dv in Get_TTRC(Cards): RepeatCards.append(Card_Deck[dv-1]) print("You got Two Pairs",RepeatCards,"and your Highest Card is",Card_Deck[Get_High_Card(Cards)-1]) elif Is_One_Pair(Cards): Result=9 print("You got a Pair of",Card_Deck[Get_MRC(Cards)-1],"and your Highest Card is",Card_Deck[Get_High_Card(Cards)-1]) else: print("You got a High Card!", Card_Deck[Get_High_Card(Cards)-1]) #print("Your Highest Card is",Card_Deck[Get_High_Card(Cards)-1]) Result_Array=[Get_High_Card(Cards),Get_2nd_High_Card(Cards),Get_3rd_High_Card(Cards),Get_4th_High_Card(Cards),Get_5th_High_Card(Cards)] return Cards,Result,Result_Array,Get_MRC(Cards) def declare_winner(P1_Name,P1_Score,P2_Name,P2_Score): if P1_Score>P2_Score: Stats[P1_Name]+=1 print(P1_Name,"Wins!") elif P1_Score<P2_Score: Stats[P2_Name]+=1 print(P2_Name,"Wins!") def breaktie(P1_Name,P1_Result_Array,P2_Name,P2_Result_Array,idx): if P1_Result_Array[idx]==P2_Result_Array[idx]: if idx==4: Stats[P2]+=0.5 Stats[P1]+=0.5 print(P1_Name,"and",P2_Name,"have tied. It's a draw!") else: breaktie(P1_Name,P1_Result_Array,P2_Name,P2_Result_Array,idx+1) else: declare_winner(P1_Name,P1_Result_Array[idx],P2_Name,P2_Result_Array[idx]) def Check_High_Card(P1,P1_Result_Array,P2,P2_Result_Array): if P1_Result_Array[0]==P2_Result_Array[0]: breaktie(P1,P1_Result_Array,P2,P2_Result_Array,1) else: declare_winner(P1,P1_Result_Array[0],P2,P2_Result_Array[0]) def Start_Game(P1,P2,Game_Number): print("______________________________________________") input(P1 + ", Hit Enter when Ready ") (P1_Cards,P1_Result,P1_Result_Array,P1_MRC)=Play(P1) for i in range(1,3,1): print() input(P2 + ", Hit Enter when Ready ") (P2_Cards,P2_Result,P2_Result_Array,P2_MRC)=Play(P2) for i in range(1,3,1): print() #comparing results to find a winner if P1_Result==P2_Result: if P1_Result in [3,4,7,9]: if P1_MRC>P2_MRC: Stats[P1]+=1 print(P1,"Wins!") elif P1_MRC<P2_MRC: Stats[P2]+=1 print(P2,"Wins!") else: Check_High_Card(P1,P1_Result_Array,P2,P2_Result_Array) elif P1_Result==8: #both players have 2 pairs P1_TTRC=Get_TTRC(P1_Cards) P2_TTRC=Get_TTRC(P2_Cards) if P1_TTRC[0]>P2_TTRC[0] and P1_TTRC[0]>P2_TTRC[1]: Stats[P1]+=1 print(P1,"Wins!") elif P1_TTRC[1]>P2_TTRC[0] and P1_TTRC[0]>P2_TTRC[1]: Stats[P1]+=1 print(P1,"Wins!") elif P2_TTRC[0]>P1_TTRC[0] and P2_TTRC[0]>P1_TTRC[1]: Stats[P2]+=1 print(P2,"Wins!") elif P2_TTRC[1]>P1_TTRC[0] and P2_TTRC[0]>P1_TTRC[1]: Stats[P2]+=1 print(P2,"Wins!") else: Check_High_Card(P1,P1_Result_Array,P2,P2_Result_Array) else: Check_High_Card(P1,P1_Result_Array,P2,P2_Result_Array) elif P1_Result>P2_Result: Stats[P2]+=1 print(P2,"Wins!") elif P1_Result<P2_Result: Stats[P1]+=1 print(P1,"Wins!") print("Current Stats:",Stats) print("______________________________________________") Continue=input("Would You Like to Play Again? ") if "n" not in Continue and "N" not in Continue: print("Ok, Starting Game",Game_Number+1) if len(Used_Cards)>42: print("Our Virtual Deck has ran out of cards. Shuffling…") time.sleep(1.5) print("Deck Incoming!") Used_Cards.clear() Start_Game(P1,P2,Game_Number+1) else: print("Thank You for Playing Poker Online: Multiplayer (Single Deck Edition)!") print("Welcome To Poker Online: Multiplayer (Single Deck Edition)!") print() P1=input("Player 1, Please Enter Your Name: ") P2=input("Player 2, Please Enter Your Name: ") Stats[P1]=0 Stats[P2]=0 Start_Game(P1,P2,1)
3.609375
4
products/migrations/0009_alter_product_image.py
susovangarai/SRshoper
0
12787279
<reponame>susovangarai/SRshoper # Generated by Django 3.2 on 2021-04-16 05:40 from django.db import migrations, models import products.models class Migration(migrations.Migration): dependencies = [ ('products', '0008_alter_shippingaddress_order'), ] operations = [ migrations.AlterField( model_name='product', name='image', field=models.ImageField(blank=True, default=None, null=True, upload_to=products.models.image_upload_path), ), ]
1.585938
2
pinball/workflow/job.py
DotModus/pinball
1,143
12787280
<reponame>DotModus/pinball # Copyright 2015, Pinterest, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Definition of job metadata included in job tokens. Job object describes job inputs, outputs, and all information required to execute a job (e.g., a command line of a shell job or class name of a data job).""" import abc from pinball.config.utils import get_log from pinball.persistence.token_data import TokenData from pinball.workflow.name import Name __author__ = '<NAME>' __copyright__ = 'Copyright 2015, Pinterest, Inc.' __credits__ = [__author__] __license__ = 'Apache' __version__ = '2.0' LOG = get_log('pinball.workflow.worker') class Job(TokenData): """Parent class for specialized job types.""" __metaclass__ = abc.ABCMeta IS_CONDITION = False def __init__(self, name=None, inputs=None, outputs=None, emails=None, max_attempts=1, retry_delay_sec=0, warn_timeout_sec=None, abort_timeout_sec=None): self.name = name self.inputs = inputs if inputs is not None else [] self.outputs = outputs if outputs is not None else [] self.emails = emails if emails is not None else [] self.max_attempts = max_attempts self.retry_delay_sec = retry_delay_sec self.warn_timeout_sec = warn_timeout_sec self.abort_timeout_sec = abort_timeout_sec assert self.max_attempts > 0 self.disabled = False self.history = [] self.events = [] @property def _COMPATIBILITY_ATTRIBUTES(self): return { 'emails': [], 'disabled': False, 'max_attempts': 1, 'events': [], 'warn_timeout_sec': None, 'abort_timeout_sec': None, 'retry_delay_sec': 0, } @abc.abstractmethod def info(self): return def retry(self): """Decide if the job should be retried. Returns: True if the job should be retried, otherwise False. """ if not self.history: return False last_record = self.history[-1] current_instance = last_record.instance assert last_record.exit_code != 0 failed_runs = 0 for record in reversed(self.history): if record.instance != current_instance: break if record.exit_code != 0: # There may have been successful runs in the past if we are # re-doing an execution. failed_runs += 1 if failed_runs >= self.max_attempts: return False return True def truncate_history(self): if self.IS_CONDITION and len(self.history) > self.max_attempts: self.history = self.history[-self.max_attempts:] def reload(self, new_job): """Reload job config from a new config. Configuration elements defining the workflow topology (inputs and outputs), execution history, or run-time values (events) are not modified. Args: new_job: The new job configuration to update from. """ assert self.__class__ == new_job.__class__ self.emails = new_job.emails self.max_attempts = new_job.max_attempts class ShellJob(Job): """Shell job runs a command when executed.""" def __init__(self, name=None, inputs=None, outputs=None, emails=None, max_attempts=1, retry_delay_sec=0, warn_timeout_sec=None, abort_timeout_sec=None, command=None, cleanup_template=None): super(ShellJob, self).__init__(name, inputs, outputs, emails, max_attempts, retry_delay_sec, warn_timeout_sec, abort_timeout_sec) self.command = command self.cleanup_template = cleanup_template @property def _COMPATIBILITY_ATTRIBUTES(self): result = super(ShellJob, self)._COMPATIBILITY_ATTRIBUTES result['cleanup_template'] = None return result def __str__(self): return ('ShellJob(name=%s, inputs=%s, outputs=%s, emails=%s, ' 'max_attempts=%d, retry_delay_sec=%d, warn_timeout_sec=%s, ' 'abort_timeout_sec=%s, disabled=%s, command=%s, ' 'cleanup_template=%s, events=%s, history=%s)' % ( self.name, self.inputs, self.outputs, self.emails, self.max_attempts, self.retry_delay_sec, self.warn_timeout_sec, self.abort_timeout_sec, self.disabled, self.command, self.cleanup_template, self.events, self.history)) def __repr__(self): return self.__str__() def info(self): return 'command=%s' % self.command def reload(self, new_job): super(ShellJob, self).reload(new_job) self.command = new_job.command self.cleanup_template = new_job.cleanup_template @staticmethod def _get_command_attributes(template): """Extract attributes from a command string template. E.g., for template 'ls %(dir1)s %(dir2)s' the result is ['dir1', 'dir2']. Args: template: The template to extract attributes from. Returns: The list of named attributes extracted from the template. """ class Extractor: """Helper class extracting attributes from a string template. """ def __init__(self): self.attributes = set() def __getitem__(self, attribute): self.attributes.add(attribute) return 0 extractor = Extractor() try: template % extractor except ValueError: LOG.exception('failed to customize template %s', template) return list(extractor.attributes) def _consolidate_event_attributes(self): """Consolidate attributes in triggering events. Iterate over events in the most recent execution record and combine them into one dictionary mapping attribute names to their values. If multiple events contain the same attribute, the return value will be a comma separated string of values from all those events. Returns: Dictionary of consolidated event attribute key-values. """ assert self.history last_execution_record = self.history[-1] result = {} for event in last_execution_record.events: for key, value in event.attributes.items(): new_value = result.get(key) if new_value: new_value += ',%s' % value else: new_value = value result[key] = new_value return result def customize_command(self): """Specialize the command with attribute values extracted from events. Returns: Job command with parameter values replaced by attributes extracted from the triggering events. If a parameter is not present in the event attribute set, it is replaced with an empty string. """ attributes = {} command_attributes = ShellJob._get_command_attributes(self.command) for attribute in command_attributes: attributes[attribute] = '' event_attributes = self._consolidate_event_attributes() attributes.update(event_attributes) try: return self.command % attributes except ValueError: LOG.exception('failed to customize command %s', self.command) return self.command class ShellConditionJob(ShellJob): IS_CONDITION = True def __init__(self, name=None, outputs=None, emails=None, max_attempts=10, retry_delay_sec=5 * 60, warn_timeout_sec=None, abort_timeout_sec=None, command=None, cleanup_template=None): super(ShellConditionJob, self).__init__( name=name, inputs=[Name.WORKFLOW_START_INPUT], outputs=outputs, emails=emails, max_attempts=max_attempts, retry_delay_sec=retry_delay_sec, warn_timeout_sec=warn_timeout_sec, abort_timeout_sec=abort_timeout_sec, command=command, cleanup_template=cleanup_template)
2.046875
2
python/qicycling/trend.py
zimult/web_md
0
12787281
#! /usr/bin/python # encoding:utf-8 import requests import json import time import config import db import os import datetime import sys import traceback from fn import log, db_app, db_wp from urllib import quote from urllib import unquote reload(sys) sys.setdefaultencoding('utf8') ''' Google Trend 热词 热词的访问次数是有限制的,现在暂时不知道限制有多少,建议每天更新一次,因为数据的分辨率是以day来记录的,所以每天更新一次不会对结果造成多大影响 https://bikeridejoy.herokuapp.com/api/trend/index/<symbol>/<months> 返回json格式,key为timestamp,以毫秒记,先除以1000后再转化datetime,value为热词指数 <months>为1-3,由于google trend api限制只能搜3个月以内的 <symbol>为自行车品牌.docx 中的任一自行车品牌,全小写 其中三个只有中文没有英文的品牌对应英文如下 ‘feige’:’飞鸽’, ‘phoenix’:’凤凰’, ‘forever’:’永久’, ''' brand_list = [ ['Giant', '捷安特'], ['Merida', '美利达'], ['TREK', '崔克'], ['Specialized', '闪电'], ['BMC'], ['LOOK', '路克'], ['SRAM', '速联'], ['shimano', '禧玛诺'], ['cannondale', '佳能戴尔'], ['Pinarello', '皮纳瑞罗'], ['Kuota'], ['SCOTT', '斯科特'], ['Cervelo'], ['UCC'], ['KUNG', '攻队'], ['FOCUS'], ['missile', '米赛尔'], ['ORBEA', '欧贝亚'], ['JAVA', '佳沃'], ['De Rosa'], ['Colnago', '梅花'], ['Kona'], ['Schwinn', '施文'], ['Bianchi', '比安奇'], ['Gusto', '高士特'], ['Cinelli'], ['Fuji', '富士'], ['BH'], ['WILIER', '威廉'], ['飞鸽'], ['凤凰自行车'], ['Cube'], ['永久'], ['ZGL'], ['XDS', '喜德盛'], ['TIME', '自行车'], ['Canyon'], ['LAPIERRE', '拉皮尔'], ['凯路仕'], ['3T'], ['Factor'], ['Argon18'], ['Ridley'], ['pardus', '瑞豹'], ['Campagnolo'], ['Power2Max'], ['SRM'], ['Rotor'], ['Moots'], ['Olympia'], ['ENVE'], ['OYAMA', '欧亚马'], ['YETI'], ['LiteSpeed'], ['Lightweight'], ['FSA'], ['QUICK'], ['Taokas', '道卡斯'], ['KTM'], ['Author'], ['NeilPryde'], ['Ceepo', '袭豹'], ['CAMP', '坎普'], ['TRINX', '千里达'], ['Triace', '骓驰'], ['intense'], ['Tropix', '烈风'], ['GALAXY', '格莱仕'], ['Santa Cruz'], ['NORCO', '诺客'] ] def import_brand(cursor): t = time.time() ts = int(round(t * 1000)) for i in xrange(len(brand_list)): brand_name = brand_list[i][0] brand_name_cn = '' if len(brand_list[i]) > 1: brand_name_cn = brand_list[i][1] print brand_name, brand_name_cn cursor.execute("INSERT INTO brand (status,`name`,name_cn,`TIMESTAMP`) values (1,'%s','%s',%d)" % (brand_name, brand_name_cn, ts)) def get_brand_list(cursor): list = [] cursor.execute("SELECT id, `name`, name_cn FROM brand where status=1 and type=0") result = cursor.fetchall() for row in result: list.append(row) return list def get_google_trend(cursor, list): for row in list: brand_id, brand_name, brand_name_cn = row check_name = brand_name.lower() get_google_trend_brand(cursor, check_name, brand_id) def get_google_trend_brand(cursor, check_name, brand_id): # print brand_id, brand_name, brand_name_cn if check_name == '飞鸽': check_name = 'feige' elif check_name == '凤凰': check_name = 'phoenix' elif check_name == '永久': check_name = 'forever' # url = "https://bikeridejoy.herokuapp.com/api/trend/index/"+check_name+"/3" url1 = "https://bikeridejoy.herokuapp.com/api/trend/index/" + check_name url2 = "https://bikeridejoy.herokuapp.com/api/trend/qicycling/" + check_name print url1 t = time.time() ts = int(round(t * 1000)) try: res1 = requests.get(url1) res2 = requests.get(url2) print res1.text js1 = json.loads(res1.text) js2 = json.loads(res2.text) sts = "2018-06-10 08:00:00" date_s = datetime.datetime.strptime(sts, '%Y-%m-%d %H:%M:%S') stk = 736856 hs1 = {} hs2 = {} for ror in js1: for k, v in ror.items(): # print k, v days = int(k) - stk delta = datetime.timedelta(days) n_days = date_s + delta n_str = n_days.strftime('%Y-%m-%d %H:%M:%S') hs1[n_str] = v for ror in js2: for k, v in ror.items(): # print k, v days = int(k) - stk delta = datetime.timedelta(days) n_days = date_s + delta n_str = n_days.strftime('%Y-%m-%d %H:%M:%S') hs2[n_str] = v print hs1 print hs2 for k, v in hs1.items(): if hs2.has_key(k): v2 = hs2[k] else: v2 = 1 insert_brand_opinion(cursor, brand_id, v, v2, k, ts) except Exception, e: print(e.message) print(traceback.format_exc()) # 写入当日数据 n_str = datetime.datetime.now().strftime('%Y-%m-%d') + ' 08:00:00' insert_brand_opinion(cursor, brand_id, 1, 1, n_str, ts) return def insert_brand_opinion(cursor, brand_id, value1, value2, str_time, ts): cursor.execute("SELECT id FROM brand_opinion where `day`='%s' and brand_id=%d" % (str_time, brand_id)) result = cursor.fetchone() if result is None: sql = "INSERT INTO brand_opinion (`day`,full_num,num,brand_id,`timestamp`)" \ " VALUES ('%s',%d,%d,%d,%d)" % (str_time, value1, value2, brand_id, ts) # print sql cursor.execute(sql) else: id = result[0] # print id #cursor.execute("UPDATE brand_opinion set full_num=%d, num=%d, `timestamp`=%d where id=%d and `day`='%s'" % ( # value1, value2, ts, id, str_time)) if __name__ == '__main__': # s = '' # html, img_list, author, video_list = sync.get_href('http://www.qicycling.cn/2927.html') # print html # print time.time() # cursor_wp = db_wp.get_cursor() #print datetime.datetime.now().strftime('%Y-%m-%d') cursor_app = db_app.get_cursor() # import_brand(cursor_app) # db_app.commit() b_l = get_brand_list(cursor_app) print b_l get_google_trend(cursor_app, b_l) # # get_google_trend_brand(cursor_app, '3T') db_app.commit()
1.773438
2
hw4/hw4_2/mitm.py
dedeswim/com-402-hw
9
12787282
from netfilterqueue import NetfilterQueue from scapy.all import * import socket import re def print_and_accept(pkt): ip = IP(pkt.get_payload()) if ip.haslayer("Raw"): print("IP packet received") payload = ip["Raw"].load if payload[0] == 0x16 and payload[5] == 0x01: new_payload = [x for x in payload] new_payload[112] == 0x00 new_payload[113] == 0x2f print("Downgraded AES") pkt.set_payload(bytes(new_payload)) pkt.accept() nfqueue = NetfilterQueue() nfqueue.bind(1, print_and_accept) s = socket.fromfd(nfqueue.get_fd(), socket.AF_UNIX, socket.SOCK_STREAM) try: nfqueue.run_socket(s) except KeyboardInterrupt: print('') s.close() nfqueue.unbind()
2.40625
2
core/iotools.py
pvthinker/pyRSW
8
12787283
from netCDF4 import Dataset from dataclasses import dataclass, field import os import pickle import sys import shutil import numpy as np from variables import modelvar @dataclass class VariableInfo(): nickname: str = "" dimensions: tuple = field(default_factory=lambda: ()) name: str = "" units: str = "" dtype: str = "d" class NetCDF_tools(): """ Basic class to create and write NetCDF files Parameters ---------- filename : str The file name to be created. attrs : dict The global attributes. dimensions : list[(name, size), ...] The list of dimensions. size==None -> unlimited variables : list[VariableInfo, ...] The name of variable.dimensions should match one of dimensions. """ def __init__(self, filename, attrs, dimensions, variables): self.filename = filename self.attrs = attrs self.dimensions = {dim[0]: dim[1] for dim in dimensions} self.variables = {var.nickname: var for var in variables} def create(self): """ Create the empty NetCDF file with - attributes - dimensions - variables """ with Dataset(self.filename, "w", format='NETCDF4') as nc: nc.setncatts(self.attrs) for dim, size in self.dimensions.items(): nc.createDimension(dim, size) for infos in self.variables.values(): assert isinstance(infos.dimensions, tuple) v = nc.createVariable(infos.nickname, infos.dtype, infos.dimensions) v.standard_name = infos.name v.units = infos.units def write(self, variables, nc_start={}, data_start={}): """ Write variables Parameters ---------- variables : list[(nickname, data), ...] where data is an ndarray nc_start : dict{name: (offset, size)} name : the dimension name offset : the offset of that dimension in the NetCDF file size : the size of data in that dimension If a dimension is not in nc_start it is assumed that the data has a size that matches the size defined in the NetCDF. data_start : dict{name: (offset, size)} same that nc_start but for the data in variables """ with Dataset(self.filename, "r+") as nc: for nickname, data in variables.items(): ncidx = self._get_idx(nickname, nc_start) if isinstance(data, np.ndarray): dataidx = self._get_idx(nickname, data_start) nc.variables[nickname][ncidx] = data[dataidx] else: nc.variables[nickname][ncidx] = data def _get_idx(self, nickname, nc_start): """ Return the tuple of slices to either slice through nc.variables or through data """ infos = self.variables[nickname] ncidx = [] for dim in infos.dimensions: if dim in nc_start: istart, size = nc_start[dim] else: istart, size = 0, self.dimensions[dim] if size is not None: ncidx += [slice(istart, istart+size)] return tuple(ncidx) class Ncio(): """ Class that handles all the IO for pyRSW which includes - creating and writing model snapshots in the history.nc - creating and writing model bulk diagnostics in the diags.nc - saving the param.pkl file - saving the Python experiment script """ def __init__(self, param, grid, batchindex=0): self.param = param self.grid = grid self.batchindex = batchindex self.nprocs = np.prod(grid.procs) if self.nprocs > 1: from mpi4py import MPI self.MPI = MPI self._create_output_directory() self.backup_config() hist_infos = get_hist_infos(param, grid) self.hist = NetCDF_tools(self.history_file, *hist_infos) if not self.singlefile or self.master: self.hist.create() self.hist_index = 0 self.write_grid() diag_infos = get_diag_infos(param, grid) self.diag = NetCDF_tools(self.diag_file, *diag_infos) self.diag_index = 0 if self.master: self.diag.create() def _create_output_directory(self): if self.master and not os.path.isdir(self.output_directory): os.makedirs(self.output_directory) @property def myrank(self): return self.grid.myrank @property def master(self): return self.myrank == 0 @property def expname(self): return self.param["expname"] @property def singlefile(self): return self.param["singlefile"] @property def output_directory(self): datadir = os.path.expanduser(self.param["datadir"]) return os.path.join(datadir, self.expname) @property def history_file(self): """ Full path to the NetCDF history file """ his = self._add_batchindex("history") basicname = f"{his}.nc" mpiname = f"{his}_{self.myrank:02}.nc" hisname = basicname if self.singlefile else mpiname return os.path.join(self.output_directory, hisname) @property def diag_file(self): """ Full path to the NetCDF diagnostic file """ diag = self._add_batchindex("diag") diagname = f"{diag}.nc" return os.path.join(self.output_directory, diagname) def _add_batchindex(self, filename): if self.param.restart: return filename + f"_{self.batchindex:02}" else: return filename def backup_config(self): """ Backup the experiment configuration into the output directory - save param in the param.pkl - save the experiment Python script """ if self.master and self.batchindex == 0: dest = f"{self.output_directory}/param.pkl" with open(dest, "wb") as fid: pickle.dump(self.param, fid) python_launch_script = sys.argv[0] dest = os.path.join(self.output_directory, f"{self.expname}.py") shutil.copyfile(python_launch_script, dest) def write_grid(self): """ Write the model grid arrays into the NetCDF file (just once) """ xc = self.grid.coord.x(0, self.grid.ic)[0] yc = self.grid.coord.y(self.grid.jc, 0)[:, 0] xe = self.grid.coord.x(0, self.grid.ie)[0] ye = self.grid.coord.y(self.grid.je, 0)[:, 0] layer = np.arange(self.grid.nz) msk = self.grid.arrays.msk.view("i") datagrid = { "x": xc, "y": yc, "xe": xe, "ye": ye, "layer": layer, "msk": msk } self._history_write_halo_mpi(datagrid) def write_hist(self, state, time, kt): """ Write a model snapshot into the NetCDF file """ datahist = { "time": time, "iteration": kt, } for name in self.param["var_to_save"]: vartype = modelvar[name]["type"] if vartype == "vector": for axis in "xy": compname = name+axis var = state.get(compname) datahist[compname] = var.getproperunits(self.grid) else: var = state.get(name) datahist[name] = var.getproperunits(self.grid) nc_start = {"time": (self.hist_index, 1)} self._history_write_halo_mpi(datahist, nc_start=nc_start) self.hist_index += 1 def _history_write_halo_mpi(self, data, nc_start={}): """ Generic function to write data into the history NetCDF file handle the following special cases - write the arrays without the halo - write in a single history file, even if several MPI ranks """ data_start = {} if not self.param.halo_included: j0, j1, i0, i1 = self.grid.arrays.hb.domainindices nx = self.param.nx ny = self.param.ny data_start["x"] = (i0, nx) data_start["y"] = (j0, ny) data_start["xe"] = (i0, nx+1) data_start["ye"] = (j0, ny+1) if self.singlefile: i0 = self.grid.loc[2]*self.param.nx j0 = self.grid.loc[1]*self.param.ny nc_start["x"] = (i0, nx) nc_start["y"] = (j0, ny) nc_start["xe"] = (i0, nx+1) nc_start["ye"] = (j0, ny+1) if self.singlefile and (self.nprocs > 1): # all MPI ranks write in the same file for rank in range(self.nprocs): if rank == self.myrank: self.hist.write(data, nc_start=nc_start, data_start=data_start) self.MPI.COMM_WORLD.Barrier() else: # each rank writes in its own history file self.hist.write(data, nc_start=nc_start, data_start=data_start) def write_diags(self, diags, time, kt): """ Write the domain integrated diagnostics into the NetCDF file """ datadiag = { "time": time, "iteration": kt, "ke": diags["ke"], "pe": diags["pe"], "me": diags["me"], "enstrophy": diags["potenstrophy"], } start = {"time": (self.diag_index, 1)} if self.master: self.diag.write(datadiag, nc_start=start) self.diag_index += 1 def get_hist_infos(param, grid): attrs = {"model": "pyrsw", "author": "someone"} if param.halo_included: ny, nx = grid.xc.shape else: ny, nx = param.ny, param.nx if param.singlefile: nx *= param.npx ny *= param.npy nz = param.nz dims = [("time", None), ("layer", nz), ("x", nx), ("y", ny), ("xe", nx+1), ("ye", ny+1)] infos = [ ("time", ("time",), "time", "s"), ("iteration", ("time",), "model iteration", "", "i4"), ("x", ("x",), "x coord at center", "m"), ("y", ("y",), "y coord at center", "m"), ("xe", ("xe",), "x coord at edge", "m"), ("ye", ("ye",), "y coord at edge", "m"), ("layer", ("layer",), "layer index", "", "i1"), ("msk", ("y", "x"), "mask at cell centers", "", "i1"), ] vardims = { "scalar": ("time", "layer", "y", "x"), "u": ("time", "layer", "y", "xe"), "v": ("time", "layer", "ye", "x"), "vorticity": ("time", "layer", "ye", "xe") } for name in param["var_to_save"]: longname = modelvar[name]["name"] units = modelvar[name]["unit"] vartype = modelvar[name]["type"] if vartype == "vector": infos += [(name+"x", vardims["u"], longname+" x-component", units)] infos += [(name+"y", vardims["v"], longname+" y-component", units)] else: infos += [(name, vardims[vartype], longname, units)] varinfos = [VariableInfo(*info) for info in infos] hist_infos = (attrs, dims, varinfos) return hist_infos def get_diag_infos(param, grid): attrs = {"model": "pyrsw", "author": "someone"} dims = [("time", None)] infos = [ ("time", ("time",), "time", "s"), ("iteration", ("time",), "model iteration", "", "i4"), ("ke", ("time",), "kinetic energy", "m^2 s^-2"), ("pe", ("time",), "mean available potential energy", "m^2 s^-2"), ("me", ("time",), "kinetic + potential energy", "m^2 s^-2"), ("enstrophy", ("time",), "mean enstrophy", "s^-2 m^-2"), ] varinfos = [VariableInfo(*info) for info in infos] diag_infos = (attrs, dims, varinfos) return diag_infos
2.65625
3
task0/test_task0.py
18harsh/Nirikshak-Bot-NB--eyantra
2
12787284
<gh_stars>1-10 try: import task0_cardinal except ImportError: print("\n\t[ERROR] It seems that task0_cardinal.pyc is not found in current directory! OR") print("\n\tAlso, it might be that you are running test_task0.py from outside the Conda environment!\n") exit() # Main function if __name__ == '__main__': task0_cardinal.test_setup()
1.953125
2
apigateway/apps/store_point_password_handle.py
cnds/wxdemo
0
12787285
import requests from flask import jsonify, request from .base import BaseHandler from .json_validate import SCHEMA class StorePointPassword(BaseHandler): def get(self, store_id): api_resp = requests.get( '{0}/accounts/stores/{1}/point-password'.format( self.endpoint['accounts'], store_id)) resp_status = api_resp.status_code if resp_status != 200 and resp_status != 400: self.logger.error('request account service failed') return '', 500 return jsonify(api_resp.json()), resp_status def post(self, store_id): is_valid, data = self.get_params_from_request( request, SCHEMA['store_point_password_post']) if not is_valid: return self.error_msg(self.ERR['invalid_body_content'], data) api_resp = requests.post( '{0}/accounts/stores/{1}/point-password'.format( self.endpoint['accounts'], store_id), json=data) resp_status = api_resp.status_code if resp_status != 201 and resp_status != 400: self.logger.error('request accounts service failed') return '', 500 return jsonify(api_resp.json()), resp_status def put(self, store_id): is_valid, data = self.get_params_from_request( request, SCHEMA['store_point_password_put']) if not is_valid: return self.error_msg(self.ERR['invalid_body_content'], data) api_resp = requests.put( '{0}/accounts/stores/{1}/point-password'.format( self.endpoint['accounts'], store_id), json=data) resp_status = api_resp.status_code if resp_status != 200 and resp_status != 400: self.logger.error('request accounts service failed') return '', 500 return jsonify(api_resp.json()), resp_status
2.734375
3
ML_CW1/assgn_1_part_1/3_regularized_linear_regression/hypothesis_to_vector.py
ShellySrivastava/Machine-Learning
0
12787286
from calculate_hypothesis import * def hypothesis_to_vector(X, theta): hypothesis_vec = np.array([], dtype=np.float32) for i in range(X.shape[0]): hypothesis_vec = np.append(hypothesis_vec, calculate_hypothesis(X, theta, i)) return hypothesis_vec
2.953125
3
pqb/queries.py
josegomezr/pyqb
0
12787287
<filename>pqb/queries.py #encoding=utf-8 from . import statements from . import grouping from . import expressions import json class Select: """SELECT Query Builder""" def __init__(self, *fields): """ Inicializa la consulta SELECT opcionalmente los argumentos pasados serna considerados campos para la proyección. """ super(self.__class__, self).__init__() self.raw_fields = fields self.raw_fields = [] self.raw_fields_group = [] self.fields = [] self.group_fields = [] self.raw_tables = [] self.raw_order_by = [] self.order_by_fields = [] self.tables = [] self.where_criteria = grouping.BaseGrouper() def __prepareData__(self): """ Helper para preparar los datos para la produccion del SQL final. """ if isinstance(self.raw_fields, str): self.raw_fields = self.raw_fields.split(',') for x in self.raw_fields: self.fields.append(expressions.AliasExpression(x).result()) if len(self.fields) == 0: self.fields.append('*') for x in self.raw_tables: self.tables.append(expressions.AliasExpression(x).result()) if isinstance(self.raw_fields_group, str): self.raw_fields_group = self.raw_fields_group.split(',') for x in self.raw_fields_group: self.group_fields.append(expressions.AliasExpression(x).result()) if isinstance(self.raw_order_by, str): self.raw_order_by = self.raw_order_by.split(',') for x in self.raw_order_by: self.order_by_fields.append(expressions.OrderByExpression(*x).result()) def from_(self, table, alias=None): """ Establece el origen de datos (y un alias opcionalmente). """ if isinstance(table, str): table = [[table, alias]] self.raw_tables = table return self def where(self, field, value = None, operator = '='): """ Establece condiciones para la consulta unidas por AND """ if field is None: return self conjunction = None if value is None and isinstance(field, dict): for field, value in field.items(): operator, value = value if isinstance(value, tuple) else ('=', value) self.where(field, value, operator) else: if self.where_criteria.size() > 0: conjunction = 'AND' self.where_criteria.append(expressions.ConditionExpression(field, value, operator=operator, conjunction=conjunction)) return self def where_or(self, field, value = None, operator = '='): """ Establece condiciones para la consulta unidas por OR """ if field is None: return self conjunction = None if value is None and isinstance(field, dict): for field, value in field.items(): operator, value = value if isinstance(value, tuple) else ('=', value) self.where_or(field, value, operator) else: if self.where_criteria.size() > 0: conjunction = 'OR' self.where_criteria.append(expressions.ConditionExpression(field, value, operator=operator, conjunction=conjunction)) return self def group_by(self, *args): """ Indica los campos para agrupación """ if len(args) == 1: self.raw_fields_group = args[0].split(',') else: self.raw_fields_group = list(args) return self def order_by(self, field, orientation='ASC'): """ Indica los campos y el criterio de ordenamiento """ if isinstance(field, list): self.raw_order_by.append(field) else: self.raw_order_by.append([field, orientation]) return self def result(self, *args, **kwargs): """ Construye la consulta SQL """ prettify = kwargs.get('pretty', False) self.__prepareData__() sql = 'SELECT ' sql += ', '.join(self.fields) if len(self.tables) > 0: if prettify: sql += '\n' else: sql += ' ' sql += 'FROM ' sql += ', '.join(self.tables) if self.where_criteria.size() > 0: if prettify: sql += '\n' else: sql += ' ' sql += 'WHERE ' sql += self.where_criteria.result() if len(self.group_fields) > 0: if prettify: sql += '\n' else: sql += ' ' sql += 'GROUP BY ' sql += ', '.join(self.group_fields) if len(self.order_by_fields) > 0: if prettify: sql += '\n' else: sql += ' ' sql += 'ORDER BY ' sql += ', '.join(self.order_by_fields) if prettify: sql += '\n' else: sql += ' ' return sql class Delete(object): """ DELETE Query Builder """ def __init__(self, type): """ Inicializa la consulta, type = recurso (Vertex|Edge) """ super(Delete, self).__init__() self._class = None self._cluster = None self._type = None self.data = {} self.where_criteria = grouping.BaseGrouper() self._type = type def class_(self, _class): """ Especifica la clase para eliminar """ self._class = _class return self def where(self, field, value = None, operator = None): """ Establece condiciones para la consulta unidas por AND """ if field is None: return self conjunction = None if value is None and isinstance(field, dict): for f,v in field.items(): if self.where_criteria.size() > 0: conjunction = 'AND' self.where_criteria.append(expressions.ConditionExpression(f, v, operator=operator, conjunction=conjunction)) else: if self.where_criteria.size() > 0: conjunction = 'AND' self.where_criteria.append(expressions.ConditionExpression(field, value, operator=operator, conjunction=conjunction)) return self def where_or(self, field, value = None, operator = None): """ Establece condiciones para la consulta unidas por OR """ if field is None: return self conjunction = None if value is None and isinstance(field, dict): for f,v in field.items(): if self.where_criteria.size() > 0: conjunction = 'OR' self.where_criteria.append(expressions.ConditionExpression(f, v, operator=operator, conjunction=conjunction)) else: if self.where_criteria.size() > 0: conjunction = 'OR' self.where_criteria.append(expressions.ConditionExpression(field, value, operator=operator, conjunction=conjunction)) return self def result(self, *args, **kwargs): """ Construye la consulta SQL """ prettify = kwargs.get('pretty', False) sql = 'DELETE %s %s' % (self._type, self._class) if prettify: sql += '\n' else: sql += ' ' if self.where_criteria.size() > 0: sql += 'WHERE ' sql += self.where_criteria.result() if prettify: sql += '\n' else: sql += ' ' return sql class Create(object): "CREATE query builder" def __init__(self, type): """ Inicializa la consulta, type = recurso (Vertex|Edge) """ super(Create, self).__init__() self._class = None self._cluster = None self._type = None self._from = None self._to = None self.data = {} self._type = type def class_(self, _class): """ Especifica la clase para crear """ self._class = _class return self def cluster(self, cluster): """ Especifica el cluster donde se almacenara el nuevo recurso """ self._cluster = cluster return self def from_(self, From): """ [Edge-only] especifica el origen del lado """ if self._type.lower() != 'edge': raise ValueError('Cannot set From/To to non-edge objects') self._from = From return self def to(self, to): """ [Edge-only] especifica el destino del lado """ if self._type.lower() != 'edge': raise ValueError('Cannot set From/To to non-edge objects') self._to = to return self def set(self, field, value = None): """ [Edge|Vertex] establece datos del recurso """ if value is None and isinstance(field, dict): self.content(field) if field and value: self.data[field] = value return self def content(self, obj): """ [Edge|Vertex] establece datos del recurso """ self.data.update(obj) return self def result(self, *args, **kwargs): """ Construye la consulta SQL """ prettify = kwargs.get('pretty', False) sql = 'CREATE %s %s' % (self._type, self._class) if prettify: sql += '\n' else: sql += ' ' if self._type.lower() == 'edge': sql += " FROM %s TO %s " % (self._from, self._to) if self._cluster: sql += 'CLUSTER %s' % self._cluster if prettify: sql += '\n' else: sql += ' ' if self.data: sql += 'CONTENT ' + json.dumps(self.data) return sql class Update(object): """ UPDATE Query Builder """ def __init__(self, _class): """ Inicializa la clase, _class = origen donde actualizar """ super(Update, self).__init__() self._class = None self._cluster = None self.data = {} self.where_criteria = grouping.BaseGrouper() self._class = _class def set(self, field, value = None): """ [Edge|Vertex] establece datos del recurso """ if value is None and isinstance(field, dict): self.content(field) if field and value: self.data[field] = value return self def content(self, obj): """ [Edge|Vertex] establece datos del recurso """ self.data.update(obj) return self def where(self, field, value = None, operator = None): """ Establece condiciones para la consulta unidas por AND """ if field is None: return self conjunction = None if value is None and isinstance(field, dict): for f,v in field.items(): if self.where_criteria.size() > 0: conjunction = 'AND' self.where_criteria.append(expressions.ConditionExpression(f, v, operator=operator, conjunction=conjunction)) else: if self.where_criteria.size() > 0: conjunction = 'AND' self.where_criteria.append(expressions.ConditionExpression(field, value, operator=operator, conjunction=conjunction)) return self def where_or(self, field, value = None, operator = None): """ Establece condiciones para la consulta unidas por OR """ if field is None: return self conjunction = None if value is None and isinstance(field, dict): for f,v in field.items(): if self.where_criteria.size() > 0: conjunction = 'OR' self.where_criteria.append(expressions.ConditionExpression(f, v, operator=operator, conjunction=conjunction)) else: if self.where_criteria.size() > 0: conjunction = 'OR' self.where_criteria.append(expressions.ConditionExpression(field, value, operator=operator, conjunction=conjunction)) return self def result(self, *args, **kwargs): """ Construye la consulta SQL """ prettify = kwargs.get('pretty', False) sql = 'UPDATE %s' % self._class if prettify: sql += '\n' else: sql += ' ' if self.data: sql += 'MERGE ' + json.dumps(self.data) if prettify: sql += '\n' else: sql += ' ' if self.where_criteria.size() > 0: sql += 'WHERE ' sql += self.where_criteria.result() if prettify: sql += '\n' else: sql += ' ' return sql
2.515625
3
baekjoon/python/why_the_cow_landing_on_information_islands_17128.py
yskang/AlgorithmPractice
0
12787288
# Title: 소가 정보섬에 올라온 이유 # Link: https://www.acmicpc.net/problem/17128 import sys sys.setrecursionlimit(10 ** 6) read_list_int = lambda: list(map(int, sys.stdin.readline().strip().split(' '))) def solution(n: int, q: int, cows: list, qs: list): cows = cows + cows parts = [] for start in range(n): parts.append(cows[start]*cows[start+1]*cows[start+2]*cows[start+3]) s = sum(parts) for q in qs: s -= 2*(parts[q-1]+parts[q-2]+parts[q-3]+parts[q-4]) parts[q-1] *= -1 parts[q-2] *= -1 parts[q-3] *= -1 parts[q-4] *= -1 print(s) def main(): n, q = read_list_int() cows = read_list_int() qs = read_list_int() solution(n, q, cows, qs) if __name__ == '__main__': main()
3.03125
3
oletools/thirdparty/xglob/__init__.py
maniVix/oletools
2,059
12787289
<gh_stars>1000+ from .xglob import *
1.101563
1
dlapp/dlquery.py
Geeks-Trident-LLC/dlquery
0
12787290
"""Module containing the logic for querying dictionary or list object.""" import re import operator from dlapp import utils from dlapp.argumenthelper import validate_argument_type from dlapp.argumenthelper import validate_argument_is_not_empty from dlapp.collection import Element class DLQueryError(Exception): """Use to capture error for DLQuery instance""" class DLQueryDataTypeError(DLQueryError): """Use to capture error of unsupported query data type.""" class DLQuery: """This is a class for querying dictionary or list object. Attributes __________ data (list, tuple, or dict): list or dictionary instance. Properties ---------- is_dict -> bool is_list -> bool Methods ------- keys() -> dict_keys or odict_keys values() -> dict_values or odict_values items() -> dict_items or odict_items get(index, default=None) -> Any find(node=None, lookup='', select='') -> List Raise ----- TypeError: if failed to invoke ``iter`` built-in function. """ def __init__(self, data): validate_argument_type(list, tuple, dict, data=data) self.data = data self._is_dict = None self._is_list = None ############################################################################ # Special methods ############################################################################ def __len__(self): return len(self.data) def __getitem__(self, item): return self.data[item] def __iter__(self): if self.is_dict: return iter(self.data.keys()) elif self.is_list: return iter(self.data) else: fmt = '{!r} object is not iterable.' msg = fmt.format(type(self).__name__) raise TypeError(msg) def __bool__(self): return bool(self.data) def __eq__(self, other): if isinstance(other, self.__class__): result = operator.eq(self.data, other.data) else: result = operator.eq(self.data, other) return result def __ne__(self, other): if isinstance(other, self.__class__): result = operator.ne(self.data, other.data) else: result = operator.ne(self.data, other) return result ############################################################################ # properties ############################################################################ @property def is_dict(self): """Check if data of DLQuery is a dictionary data.""" if self._is_dict is None: self._is_dict = isinstance(self.data, dict) return self._is_dict @property def is_list(self): """Check if data of DLQuery is a list or tuple data.""" if self._is_list is None: self._is_list = isinstance(self.data, (list, tuple)) return self._is_list ############################################################################ # public methods ############################################################################ def keys(self): """a set-like object providing a view on D's keys""" result = utils.foreach(self.data, choice='keys') return result def values(self): """a set-like object providing a view on D's values""" result = utils.foreach(self.data, choice='values') return result def items(self): """a set-like object providing a view on D's items""" result = utils.foreach(self.data, choice='items') return result def get(self, index, default=None, on_exception=False): """if DLQuery is a list, then return the value for index if index is in the list, else default. if DLQuery is a dictionary, then return the value for key (i.e index) if key is in the dictionary, else default. Parameters ---------- index (int, str): a index of list or a key of dictionary. default (Any): a default value if no element in list or in dictionary is found. on_exception (bool): raise Exception if it is True. Default is False. Returns ------- Any: any value from DLQuery.data """ try: if self.is_list: if isinstance(index, int): return self.data[index] elif isinstance(index, str): pattern = r'-?[0-9]+$' if re.match(pattern, index.strip()): return self.data[int(index)] else: count = index.count(':') if count == 1: i, j = [x.strip() for x in index.split(':')] chks = [ re.match(pattern, i.strip()) or i == '', re.match(pattern, j.strip()) or j == '' ] if any(chks): i = int(i) if i else None j = int(j) if j else None slice_obj = slice(i, j) return self.data[slice_obj] else: if on_exception: return self.data[index] else: return default elif count == 2: i, j, k = [x.strip() for x in index.split(':')] chks = [ re.match(pattern, i.strip()) or i == '', re.match(pattern, j.strip()) or j == '', re.match(pattern, k.strip()) or k == '' ] if any(chks): i = int(i) if i else None j = int(j) if j else None k = int(k) if k else None slice_obj = slice(i, j, k) return self.data[slice_obj] else: if on_exception: return self.data[index] else: return default else: if on_exception: return self.data[index] else: return default else: return default else: key = index return self.data.get(key, default) except Exception as ex: # noqa if on_exception: raise ex else: return default def find(self, node=None, lookup='', select='', on_exception=False): """recursively search a lookup. Parameters ---------- node (dict, list): a dict, dict-like, list, or list-like instance. lookup (str): a search pattern. select (str): a select statement. on_exception (bool): raise `Exception` if set True, otherwise, return False. Returns ------- List: list of Any. """ node = node or self.data lookup = str(lookup).strip() if lookup == '' and select == '': return node validate_argument_is_not_empty(lookup=lookup) validate_argument_type(list, tuple, dict, node=node) elm_obj = Element(node, on_exception=on_exception) records = elm_obj.find(lookup, select=select) return records
2.921875
3
src/worker/streamable.py
christopher-dG/osr2mp4-bot
2
12787291
<gh_stars>1-10 import logging import os from datetime import timedelta from pathlib import Path import boto3 import requests from requests import Response from . import ReplyWith from ..common import enqueue def upload(video: Path, title: str) -> str: """Upload `video` to Streamable.""" # This technique comes from: https://github.com/adrielcafe/AndroidStreamable # We're not actually uploading the file ourselves, # just supplying a URL where it can find the video file. # It's assumed that `video` is available at $SERVER_ADDR. # Docker Compose handles this, provided that $SERVER_ADDR is publically accessible. # If $SERVER_ADDR cannot be accessed, setting $USE_S3_URLS to `true` will upload # the video to the S3 bucket $S3_BUCKET, and its public URL will be used. # BEWARE: S3 IS EXPENSIVE AND SHOULD ONLY BE USED WHEN ABSOLUTELY NECESSARY. auth = os.environ["STREAMABLE_USERNAME"], os.environ["STREAMABLE_PASSWORD"] s3 = os.getenv("USE_S3_URLS") == "true" if s3: source_url = _s3_upload(video) else: source_url = f"{os.environ['SERVER_ADDR']}/{video.name}" params = {"url": source_url, "title": title} resp = requests.get("https://api.streamable.com/import", auth=auth, params=params) _check_response(resp) shortcode = resp.json()["shortcode"] # Because the response comes before the upload is actually finished, # we can't delete the video file yet, although we need to eventually. # Create a new job that handles that at some point in the future. enqueue(_wait, shortcode, video, s3=s3) return f"https://streamable.com/{shortcode}" def _s3_upload(video: Path) -> str: """Upload `video` to S3 and return a public URL.""" # It's assumed that credentials are set via environment variables. s3 = boto3.client("s3") bucket = os.environ["S3_BUCKET"] key = video.name with video.open("rb") as f: s3.put_object(ACL="public-read", Body=f, Bucket=bucket, Key=key) return f"https://{bucket}.s3.amazonaws.com/{key}" def _check_response(resp: Response) -> None: """Verify that the `resp` to an upload request indicates success.""" ex = ReplyWith("Sorry, uploading to Streamable failed.") if resp.headers["Content-Type"] != "application/json": logging.error("Streamable did not return JSON") raise ex if not resp.ok: logging.error(f"Streamable upload failed ({resp.status_code})") logging.info(resp.text) raise ex if not isinstance(resp.json().get("shortcode"), str): logging.error("Streamable did not return shortcode") logging.info(resp.text) raise ex def _wait(shortcode: str, video: Path, s3: bool = False) -> None: """Wait for the video with `shortcode` to be uploaded, then delete `video`.""" resp = requests.get(f"https://api.streamable.com/videos/{shortcode}") if not resp.ok: logging.warning("Retrieving video failed") return status = resp.json()["status"] if status in [0, 1]: # Still in progress, so run this function again in a while. # In the meantime, exit so that the worker gets freed up. enqueue(_wait, shortcode, video, s3=s3, wait=timedelta(seconds=5)) elif status == 2: # Upload is finished, we can delete the local file now. video.unlink() if s3: _s3_delete(video.name) else: # If this happens too much, then we'll run out of disk space. logging.warning(f"Status {status} from Streamable ({shortcode} {video})") def _s3_delete(key: str) -> None: """Delete an object with `key` from the S3 bucket.""" s3 = boto3.client("s3") s3.delete_object(Bucket=os.environ["S3_BUCKET"], Key=key)
2.59375
3
app/SellerReviews.py
leahokamura/RetailTherapy
0
12787292
# from __future__ import print_function # In python 2.7 from flask import render_template from flask_login import current_user import datetime #import forms from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField, IntegerField from wtforms.validators import ValidationError, DataRequired, Email, EqualTo, NumberRange #import models from .models.sellerreview import SellerReview from .models.seller import Seller from flask import current_app as app from flask import Blueprint bp = Blueprint('sellerreviews', __name__) #routes to reviews page for certain seller @bp.route('/sellerreviews/<int:seller_id>/<int:number>', methods=['GET', 'POST']) def SellerReviews(seller_id, number): s_reviews = SellerReview.get_all_seller_reviews_for_seller(seller_id, number) seller_review_stats = SellerReview.get_stats(seller_id) seller_name = Seller.get_seller_info(seller_id) SR_check = True if current_user.is_authenticated: SR_check = SellerReview.review_check(seller_id, current_user.uid) total_reviews = SellerReview.get_total_number_seller_reviews_for_seller(seller_id) return render_template('sellerreviews.html', sellerreviews = s_reviews, sellerreviewstats = seller_review_stats, SRcheck = SR_check, sellername = seller_name, number = number, total = total_reviews)
2.40625
2
robosuite/models/grippers/gripper_factory.py
StanfordVL/Lasersuite
5
12787293
""" Defines a string based method of initializing grippers """ from .panda_gripper import PandaGripper from .wiping_gripper import WipingGripper from .pr2_gripper import PR2Gripper from .rethink_gripper import RethinkGripper from .robotiq_gripper import RobotiqGripper from .robotiq_three_finger_gripper import RobotiqThreeFingerGripper def gripper_factory(name, idn=0): """ Generator for grippers Creates a GripperModel instance with the provided name. Args: name: the name of the gripper class idn: idn (int or str): Number or some other unique identification string for this gripper instance Returns: gripper: GripperModel instance Raises: XMLError: [description] """ if name == "RethinkGripper": return RethinkGripper(idn=idn) if name == "PR2Gripper": return PR2Gripper(idn=idn) if name == "RobotiqGripper": return RobotiqGripper(idn=idn) if name == "RobotiqThreeFingerGripper": return RobotiqThreeFingerGripper(idn=idn) if name == "PandaGripper": return PandaGripper(idn=idn) if name == "WipingGripper": return WipingGripper(idn=idn) raise ValueError("Unknown gripper name: {}".format(name))
3.453125
3
crawl/views.py
mannyhappenings/WebCrawler
0
12787294
from django.shortcuts import render from crawler import Crawler from django.http import HttpResponse crawlers = {} def index(request, params=''): post_data = dict(request.POST) post_data['urls'] = post_data['url[]'] for link in post_data['urls']: crawlers[link] = Crawler() crawlers[link].setUrl(link) crawlers[link].start() return render(request, 'crawl/index.html', {'urls': post_data['urls']}) def status(request): response_text = "Total documents collected: <span class='count'>" + str(Crawler.crawledUrls['size']) + "</span>" return HttpResponse(str(response_text)) def stop(request): for key in crawlers.keys(): crawlers[key].stop() response_text = "Stopped" return HttpResponse(response_text)
2.375
2
lib_bgpstream_website_collector/old_tests/test_data_classes.py
jfuruness/lib_bgpstream_website_collector
16
12787295
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """This file contains tests for the data_classes.py file. For specifics on each test, see the docstrings under each function. """ __authors__ = ["<NAME>, <NAME>"] __credits__ = ["<NAME>, <NAME>"] __Lisence__ = "BSD" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" import pytest from unittest.mock import patch from bs4 import BeautifulSoup as Soup from ..data_classes import Data, Hijack, Leak, Outage from ..tables import Hijacks_Table, Leaks_Table, Outages_Table from ..event_types import BGPStream_Website_Event_Types from itertools import combinations from .create_HTML import HTML_Creator # Importing actually runs the tests #from .test_tables import Test_Hijacks_Table, Test_Leaks_Table, Test_Outages_Table class Test_Data: """Tests all functions within the Data class. NOTE: You may want to make this not a test class and simply have all other classes inherit it.""" @staticmethod def init(event): type_ = event['event_type'] if type_ == BGPStream_Website_Event_Types.HIJACK.value: return Hijack('/tmp/') if type_ == BGPStream_Website_Event_Types.LEAK.value: return Leak('/tmp/') if type_ == BGPStream_Website_Event_Types.OUTAGE.value: return Outage('/tmp/') @staticmethod def uncommon_info(event): type_ = event['event_type'] if type_ == BGPStream_Website_Event_Types.HIJACK.value: return ['expected_origin_name', 'expected_origin_number', 'detected_origin_name', 'detected_origin_number', 'expected_prefix', 'more_specific_prefix', 'detected_as_path', 'detected_by_bgpmon_peers'] if type_ == BGPStream_Website_Event_Types.LEAK.value: return ['origin_as_name', 'origin_as_number', 'leaker_as_name', 'leaker_as_number', 'leaked_prefix', 'leaked_to_number', 'leaked_to_name', 'example_as_path', 'detected_by_bgpmon_peers'] if type_ == BGPStream_Website_Event_Types.OUTAGE.value: return ['as_name', 'as_number', 'number_prefixes_affected', 'percent_prefixes_affected'] def test_append(self, setup): """Tests the append function Should have input for every combo of: -hijack, leak, outage -country info vs non country info And check expected output. """ for event in setup.events: data = Test_Data.init(event) with patch('lib_bgp_data.utils.utils.get_tags') as mock: mock.side_effect = setup.open_custom_HTML data.append(event['row']) # Columns are retrieved from the Postgres table columns # which has an 'id' column used as the primary key. # Not part of row data, so must be removed cols = data._columns cols.remove('id') for i, c in enumerate(cols): assert data.data[0][i] == event[c] def test_db_insert(self, setup): """Tests the db_insert function Should have input with the powerset of all the combinations of: -hijack, leak, outage -country info vs non country info And check expected output. """ for event in setup.events: data = Test_Data.init(event) # need something to insert with patch('lib_bgp_data.utils.utils.get_tags') as mock: mock.side_effect = setup.open_custom_HTML data.append(event['row']) with data.table() as t: for IPV4, IPV6 in combinations([True, False], 2): data.db_insert(IPV4, IPV6) # db_insert creates indexes sql = f"""SELECT * FROM pg_indexes WHERE indexname = '{t.name}_index'""" assert len(t.execute(sql)) == 1 # db_insert deletes duplicates sql = f"SELECT DISTINCT * FROM {t.name}" assert t.get_all() == t.execute(sql) # check IPV filtering was successful for IPV, num in zip([IPV4, IPV6], [4, 6]): if not IPV and event['event_type'] != BGPStream_Website_Event_Types.OUTAGE.value: sql = f"""SELECT COUNT({t.prefix_column}) FROM {t.name} WHERE family({t.prefix_column}) = {num}""" assert t.get_count(sql) == 0 def test_parse_common_elements(self, setup): """Tests the parse_common_elements function Should have input for every combo of: -hijack, leak, outage -country info vs non country info And check expected output. """ for event in setup.events: data = Test_Data.init(event) with patch('lib_bgp_data.utils.utils.get_tags') as mock: mock.side_effect = setup.open_custom_HTML as_info, extended_children = data._parse_common_elements(event['row']) assert event['as_info'] == as_info assert event['extended_children'] == extended_children def test_parse_as_info(self, setup): """Tests the parse_as_info function Should have input for every combo of: -hijack, leak, outage -country info vs non country info -every possible combo if as info formatting And check expected output. """ for event in setup.events: d = Test_Data.init(event) as_info = event['as_info'] # the AS info for outages will be a a single string if isinstance(as_info, str): assert event['parsed_as_info1'] == d._parse_as_info(as_info) # for hijacks and leaks, there are 2 pieces of AS info in a list elif isinstance(as_info, list): assert event['parsed_as_info1'] == d._parse_as_info(as_info[1]) assert event['parsed_as_info2'] == d._parse_as_info(as_info[3]) def test_format_temp_row(self, setup): """Tests the format temp row func function Make sure list exists with all columns but ID. """ # test by putting the same string for every column except ID # what should returned is just the a list of the same string # the string that's put for ID should not be found for event in setup.events: data = Test_Data.init(event) # usually initialized in append data._temp_row = {} for col in data._columns: # id columns is ignored if col == 'id': data._temp_row[col] = 'should not be here' # quotes should be removed else: data._temp_row[col] = 'no quotes"' expected = ['no quotes' for i in range(len(data._columns)-1)] assert data._format_temp_row() == expected def test_parse_uncommon_info(self, setup): """Tests the parse_uncommon_elements function input all kinds of rows and check expected output. """ for event in setup.events: data = Test_Data.init(event) # initialize temp row. it's usually initialized in append() data._temp_row = {} data._parse_uncommon_info(event['as_info'], event['extended_children']) for info in Test_Data.uncommon_info(event): assert data._temp_row[info] == event[info]
2.375
2
Tuples and Sets/04. Parking Lot.py
milenpenev/Python_Advanced
0
12787296
n = int(input()) cars = set() for _ in range(n): command, number = input().split(", ") if command == "IN": cars.add(number) else: if number in cars: cars.remove(number) if not cars : print("Parking Lot is Empty") else: [print(n) for n in cars]
3.65625
4
wally/suits/io/fio.py
Mirantis/rally-results-processor
41
12787297
<filename>wally/suits/io/fio.py<gh_stars>10-100 import os.path import logging from typing import cast, Any, List, Union import numpy from cephlib.units import ssize2b, b2ssize from cephlib.node import IRPCNode, get_os import wally from ...utils import StopTestError from ..itest import ThreadedTest from ...result_classes import TimeSeries, DataSource from ..job import JobConfig from .fio_task_parser import execution_time, fio_cfg_compile, FioJobConfig, FioParams, get_log_files from . import rpc_plugin from .fio_hist import get_lat_vals logger = logging.getLogger("wally") class FioTest(ThreadedTest): soft_runcycle = 5 * 60 retry_time = 30 configs_dir = os.path.dirname(__file__) # type: str name = 'fio' job_config_cls = FioJobConfig def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) get = self.suite.params.get self.remote_task_file = self.join_remote("task.fio") self.remote_output_file = self.join_remote("fio_result.json") self.use_system_fio = get('use_system_fio', False) # type: bool self.use_sudo = get("use_sudo", True) # type: bool self.force_prefill = get('force_prefill', False) # type: bool self.skip_prefill = get('skip_prefill', False) # type: bool self.load_profile_name = self.suite.params['load'] # type: str if os.path.isfile(self.load_profile_name): self.load_profile_path = self.load_profile_name # type: str else: self.load_profile_path = os.path.join(self.configs_dir, self.load_profile_name+ '.cfg') self.load_profile = open(self.load_profile_path, 'rt').read() # type: str if self.use_system_fio: self.fio_path = "fio" # type: str else: self.fio_path = os.path.join(self.suite.remote_dir, "fio") self.load_params = self.suite.params['params'] self.file_name = self.load_params['FILENAME'] if 'FILESIZE' not in self.load_params: logger.debug("Getting test file sizes on all nodes") try: sizes = {node.conn.fs.file_stat(self.file_name)[b'size'] for node in self.suite.nodes} except Exception: logger.exception("FILESIZE is not set in config file and fail to detect it." + "Set FILESIZE or fix error and rerun test") raise StopTestError() if len(sizes) != 1: logger.error("IO target file %r has different sizes on test nodes - %r", self.file_name, sizes) raise StopTestError() self.file_size = list(sizes)[0] logger.info("Detected test file size is %sB", b2ssize(self.file_size)) if self.file_size % (4 * 1024 ** 2) != 0: tail = self.file_size % (4 * 1024 ** 2) logger.warning("File size is not proportional to 4M, %sb at the end will not be used for test", str(tail // 1024) + "Kb" if tail > 1024 else str(tail) + "b") self.file_size -= self.file_size % (4 * 1024 ** 2) self.load_params['FILESIZE'] = self.file_size else: self.file_size = ssize2b(self.load_params['FILESIZE']) self.job_configs = list(fio_cfg_compile(self.load_profile, self.load_profile_path, cast(FioParams, self.load_params))) if len(self.job_configs) == 0: logger.error("Empty fio config provided") raise StopTestError() self.exec_folder = self.suite.remote_dir def config_node(self, node: IRPCNode) -> None: plugin_code = open(rpc_plugin.__file__.rsplit(".", 1)[0] + ".py", "rb").read() # type: bytes node.upload_plugin("fio", plugin_code) try: node.conn.fs.rmtree(self.suite.remote_dir) except Exception: pass try: node.conn.fs.makedirs(self.suite.remote_dir) except Exception: msg = "Failed to recreate folder {} on remote {}.".format(self.suite.remote_dir, node) logger.exception(msg) raise StopTestError() # TODO: check this during config validation if self.file_size % (4 * (1024 ** 2)) != 0: logger.error("Test file size must be proportional to 4MiB") raise StopTestError() self.install_utils(node) if self.skip_prefill: logger.info("Prefill is skipped due to 'skip_prefill' set to true") else: mb = int(self.file_size / 1024 ** 2) logger.info("Filling test file %s on node %s with %sMiB of random data", self.file_name, node.info, mb) is_prefilled, fill_bw = node.conn.fio.fill_file(self.file_name, mb, force=self.force_prefill, fio_path=self.fio_path) if not is_prefilled: logger.info("Test file on node %s is already prefilled", node.info) elif fill_bw is not None: logger.info("Initial fio fill bw is %s MiBps for %s", fill_bw, node.info) def install_utils(self, node: IRPCNode) -> None: os_info = get_os(node) if self.use_system_fio: if os_info.distro != 'ubuntu': logger.error("Only ubuntu supported on test VM") raise StopTestError() node.conn.fio.install('fio', binary='fio') else: node.conn.fio.install('bzip2', binary='bzip2') fio_dir = os.path.dirname(os.path.dirname(wally.__file__)) # type: str fio_dir = os.path.join(os.getcwd(), fio_dir) fio_dir = os.path.join(fio_dir, 'fio_binaries') fname = 'fio_{0.release}_{0.arch}.bz2'.format(os_info) fio_path = os.path.join(fio_dir, fname) # type: str if not os.path.exists(fio_path): logger.error("No prebuild fio binary available for {0}".format(os_info)) raise StopTestError() bz_dest = self.join_remote('fio.bz2') # type: str node.copy_file(fio_path, bz_dest, compress=False) node.run("bzip2 --decompress {} ; chmod a+x {}".format(bz_dest, self.join_remote("fio"))) def get_expected_runtime(self, job_config: JobConfig) -> int: return execution_time(cast(FioJobConfig, job_config)) def prepare_iteration(self, node: IRPCNode, job: JobConfig) -> None: node.put_to_file(self.remote_task_file, str(job).encode("utf8")) # TODO: get a link to substorage as a parameter def run_iteration(self, node: IRPCNode, job: JobConfig) -> List[TimeSeries]: exec_time = execution_time(cast(FioJobConfig, job)) fio_cmd_templ = "cd {exec_folder}; " + \ "{fio_path} --output-format=json --output={out_file} --alloc-size=262144 {job_file}" cmd = fio_cmd_templ.format(exec_folder=self.exec_folder, fio_path=self.fio_path, out_file=self.remote_output_file, job_file=self.remote_task_file) must_be_empty = node.run(cmd, timeout=exec_time + max(300, exec_time), check_timeout=1).strip() for line in must_be_empty.split("\n"): if line.strip(): if 'only root may flush block devices' in line: continue logger.error("Unexpected fio output: %r", must_be_empty) break # put fio output into storage fio_out = node.get_file_content(self.remote_output_file) path = DataSource(suite_id=self.suite.storage_id, job_id=job.storage_id, node_id=node.node_id, sensor='fio', dev=None, metric='stdout', tag='json') self.storage.put_extra(fio_out, path) node.conn.fs.unlink(self.remote_output_file) files = [name for name in node.conn.fs.listdir(self.exec_folder)] result = [] # type: List[TimeSeries] for name, file_path, units in get_log_files(cast(FioJobConfig, job)): log_files = [fname for fname in files if fname.startswith(file_path)] if len(log_files) != 1: logger.error("Found %s files, match log pattern %s(%s) - %s", len(log_files), file_path, name, ",".join(log_files[10:])) raise StopTestError() fname = os.path.join(self.exec_folder, log_files[0]) raw_result = node.get_file_content(fname) # type: bytes node.conn.fs.unlink(fname) try: log_data = raw_result.decode("utf8").split("\n") except UnicodeEncodeError: logger.exception("Error during parse %s fio log file - can't decode usint UTF8", name) raise StopTestError() # TODO: fix units, need to get array type from stream open("/tmp/tt", 'wb').write(raw_result) parsed = [] # type: List[Union[List[int], int]] times = [] for idx, line in enumerate(log_data): line = line.strip() if line: try: time_ms_s, val_s, _, *rest = line.split(",") times.append(int(time_ms_s.strip())) if name == 'lat': vals = [int(i.strip()) for i in rest] # if len(vals) != expected_lat_bins: # msg = f"Expect {expected_lat_bins} bins in latency histogram, " + \ # f"but found {len(vals)} at time {time_ms_s}" # logger.error(msg) # raise StopTestError(msg) parsed.append(vals) else: parsed.append(int(val_s.strip())) except ValueError: logger.exception("Error during parse %s fio log file in line %s: %r", name, idx, line) raise StopTestError() assert not self.suite.keep_raw_files, "keep_raw_files is not supported" histo_bins = None if name != 'lat' else numpy.array(get_lat_vals(len(parsed[0]))) ts = TimeSeries(data=numpy.array(parsed, dtype='uint64'), units=units, times=numpy.array(times, dtype='uint64'), time_units='ms', source=path(metric=name, tag='csv'), histo_bins=histo_bins) result.append(ts) return result def format_for_console(self, data: Any) -> str: raise NotImplementedError()
1.757813
2
slayer/io/screenshot.py
ajduberstein/slayer
2
12787298
""" The goal of this module is to ease the creation of static maps from this package. Ideally, this is done headlessly (i.e., no running browser) and quickly. Given that deck.gl requires WebGL, there aren't lot of alternatives to using a browser. Not yet implemented. """ from selenium import webdriver # from selenium.webdriver.chrome.options import Options # TODO this should be determined programmatically CHROME_PATH = '/Applications/Google Chrome.app/Contents/MacOS/Google Chrome' CHROMEDRIVER_PATH = '/usr/local/bin/chromedriver' WINDOW_SIZE = "1920,1080" def make_screenshot(url, output): # options = webdriver.ChromeOptions() driver = webdriver.Chrome( executable_path=CHROMEDRIVER_PATH ) driver.get(url) driver.save_screenshot(output) driver.close() # This may be of interest # https://github.com/stackgl/headless-gl raise NotImplementedError( 'This part of the library is not complete')
2.5
2
paprika/io.py
wwilla7/pAPRika
3
12787299
import logging as log import os import base64 import json import numpy as np from paprika.restraints import DAT_restraint from parmed.amber import AmberParm from parmed import Structure # https://stackoverflow.com/questions/27909658/json-encoder-and-decoder-for-complex-numpy-arrays # https://stackoverflow.com/a/24375113/901925 # https://stackoverflow.com/questions/3488934/simplejson-and-numpy-array/24375113#24375113 class NumpyEncoder(json.JSONEncoder): """Save DAT_restraints as JSON by re-encoding `numpy` arrays.""" def default(self, obj): """If input object is an ndarray it will be converted into a dict holding dtype, shape and the data, base64 encoded. """ if isinstance(obj, AmberParm): log.info("Encountered AmberParm, returning name.") return obj.name if isinstance(obj, Structure): log.warning("Encountered Structure, which does not store filename.") return "" if isinstance(obj, np.ndarray): if obj.flags["C_CONTIGUOUS"]: obj_data = obj.data else: cont_obj = np.ascontiguousarray(obj) assert cont_obj.flags["C_CONTIGUOUS"] obj_data = cont_obj.data data_b64 = base64.b64encode(obj_data) # obj_data = obj.tolist() return dict( __ndarray__=data_b64.decode("utf-8"), dtype=str(obj.dtype), shape=obj.shape, ) elif isinstance( obj, ( np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, ), ): return int(obj) elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)): return float(obj) elif isinstance(obj, (np.ndarray,)): return obj.tolist() # Let the base class default method raise the TypeError # return json.JSONEncoder(self, obj) return super(NumpyEncoder, self).default(obj) def json_numpy_obj_hook(dct): """Decodes a previously encoded numpy ndarray with proper shape and dtype. :param dct: (dict) json encoded ndarray :return: (ndarray) if input was an encoded ndarray """ if isinstance(dct, dict) and "__ndarray__" in dct: data = base64.b64decode(dct["__ndarray__"]) return np.frombuffer(data, dct["dtype"]).reshape(dct["shape"]) # return dct['__ndarray__'] return dct def save_restraints(restraint_list, filepath="restraints.json"): log.debug("Saving restraint information as JSON.") with open(os.path.join(filepath), "w") as f: for restraint in restraint_list: dumped = json.dumps(restraint.__dict__, cls=NumpyEncoder) f.write(dumped) f.write("\n") def load_restraints(filepath="restraints.json"): log.debug("Loading restraint information from JSON.") with open(os.path.join(filepath), "r") as f: json_data = f.read() restraint_json = json_data.split("\n") restraints = [] for restraint in restraint_json: if restraint == "": continue loaded = json.loads(restraint, object_hook=json_numpy_obj_hook) tmp = DAT_restraint() tmp.__dict__ = loaded properties = ["mask1", "mask2", "mask3", "mask4", "topology", "instances", "custom_restraint_values", "auto_apr", "continuous_apr", "attach", "pull", "release", "amber_index"] for class_property in properties: if f"_{class_property}" in tmp.__dict__.keys(): tmp.__dict__[class_property] = tmp.__dict__[f"_{class_property}"] restraints.append(tmp) return restraints
2.421875
2
PINN_Survey/architecture/tf_v1/domain_transformer.py
roman-amici/PINN_Survey
0
12787300
import PINN_Base.base_v1 as base_v1 import tensorflow as tf ''' This is an implementation of the (unnamed) "Improved fully-connected neural architecture" from UNDERSTANDING AND MITIGATING GRADIENT PATHOLOGIES IN PHYSICS-INFORMED NEURAL NETWORKS (Wang, 2020). I have taken the liberty of naming it based on the authors likening it to the Transformer. Unlike the transformer, it doesn't transform the outputs, Z, but rather the inputs, X. ''' class Domain_Transformer(base_v1.PINN_Base): def __init__(self, lower_bound, upper_bound, input_dim, output_dim, width, depth, **kwargs): self.input_dim = input_dim self.output_dim = output_dim self.width = width self.depth = depth layers = [self.input_dim] + [self.width] * depth + [self.output_dim] super().__init__(lower_bound, upper_bound, layers, **kwargs) def _init_params(self): # Two layer neural network transformer_shape = [self.input_dim, self.width, self.width] # The first encoder network self.weights_T1, self.biases_T1 = self._init_NN(transformer_shape) # The second encoder network self.weights_T2, self.biases_T2 = self._init_NN(transformer_shape) # The normal "forward" network is initialized by parent super()._init_params() def _domain_transformer_forward(self, X, T1, T2, weights, biases): activations = [] H = 2.0 * (X - self.lower_bound) / \ (self.upper_bound - self.lower_bound) - 1.0 activations.append(H) for l in range(len(weights) - 1): W = weights[l] b = biases[l] Z = tf.tanh(tf.add(tf.matmul(H, W), b)) H = (1 - Z) * T1 + Z * T2 activations.append(H) W = weights[-1] b = biases[-1] Y = tf.add(tf.matmul(H, W), b) return Y, activations def _forward(self, X): T1, activations_T1 = self._NN(X, self.weights_T1, self.biases_T2) T2, activations_T2 = self._NN(X, self.weights_T2, self.biases_T2) U, activations = self._domain_transformer_forward( X, T1, T2, self.weights, self.biases) if X == self.X: self.T1 = T1 self.T2 = T2 self.activations = activations self.Activations_T1 = activations_T1 self.Activations_T2 = activations_T2 return U def get_T1(self, X): return self.sess.run(self.T1, {self.X: X}) def get_T2(self, X): return self.sess.run(self.T2, {self.X: X}) def get_all_weights(self): return self.sess.run(self.get_all_weight_variables()) def get_all_weight_variables(self): return [ self.weights, self.biases, self.weights_T1, self.biases_T1, self.weights_T2, self.biases_T2 ] def _count_params(self): params_main = super()._count_params() params_T1_weights = self._size_of_variable_list(self.weights_T1) params_T1_biases = self._size_of_variable_list(self.biases_T1) params_T2_weights = self._size_of_variable_list(self.weights_T2) params_T2_biases = self._size_of_variable_list(self.biases_T2) return params_main + params_T1_weights + params_T1_biases + params_T2_weights + params_T2_biases def get_architecture_description(self): params = self._count_params() return { "arch_name": "domain_transformer", "n_params": params, "shape_main": self.layers[:], "shape_T1": [self.input_dim, self.width, self.output_dim], "shape_T2": [self.input_dim, self.width, self.output_dim], "dtype": "float32" if self.dtype == tf.float32 else "float64" }
3.171875
3
code/recon/recon-bias.py
modichirag/21cm_cleaning
1
12787301
import numpy from scipy.interpolate import InterpolatedUnivariateSpline as interpolate from scipy.interpolate import interp1d from cosmo4d.lab import (UseComplexSpaceOptimizer, NBodyModel, LPTModel, ZAModel, LBFGS, ParticleMesh) #from cosmo4d.lab import mapbias as map from cosmo4d import lab from cosmo4d.lab import report, dg, objectives from abopt.algs.lbfgs import scalar as scalar_diag from nbodykit.cosmology import Planck15, EHPower, Cosmology from nbodykit.algorithms.fof import FOF from nbodykit.lab import KDDensity, BigFileMesh, BigFileCatalog, ArrayCatalog import sys, os, json, yaml from solve import solve from getbiasparams import getbias, eval_bfit sys.path.append('../') sys.path.append('../utils/') import HImodels ######################################### #Set parameters here ## cfname = sys.argv[1] with open(cfname, 'r') as ymlfile: cfg = yaml.load(ymlfile) for i in cfg['basep'].keys(): locals()[i] = cfg['basep'][i] h1model = HImodels.ModelA(aa) truth_pm = ParticleMesh(BoxSize=bs, Nmesh=(nc, nc, nc), dtype='f4') comm = truth_pm.comm rank = comm.rank if numd <= 0: num = -1 else: num = int(bs**3 * numd) if rank == 0: print('Number of objects : ', num) objfunc = getattr(objectives, cfg['mods']['objective']) map = getattr(lab, cfg['mods']['map']) # proj = '/project/projectdirs/cosmosim/lbl/chmodi/cosmo4d/' dfolder = '/global/cscratch1/sd/chmodi/m3127/cm_lowres/%dstepT-B%d/%d-%d-9100-fixed/'%(nsteps, B, bs, nc) #ofolder = '/global/cscratch1/sd/chmodi/m3127/21cm_cleaning/recon/bias/L%04d-N%04d-T%02d-B%01d/'%(bs, nc, nsteps, B) ofolder = '/global/cscratch1/sd/chmodi/m3127/21cm_cleaning/recon/L%04d-N%04d/'%(bs, nc) if pmdisp: ofolder += 'T%02d-B%01d'%(nsteps, B) else: ofolder += 'ZA/' prefix = '_fourier' if rsdpos: prefix += "_rsdpos" if masswt: if h1masswt : fname = 's999_h1massA%s'%prefix else: fname = 's999_mass%s'%prefix else: fname = 's999_pos%s'%prefix optfolder = ofolder + 'opt_%s/'%fname if truth_pm.comm.rank == 0: print('Output Folder is %s'%optfolder) for folder in [ofolder, optfolder]: try: os.makedirs(folder) except:pass ######################################### #initiate klin, plin = numpy.loadtxt('../../data/pklin_1.0000.txt', unpack = True) ipk = interpolate(klin, plin) #cosmo = Planck15.clone(Omega_cdm = 0.2685, h = 0.6711, Omega_b = 0.049) cosmodef = {'omegam':0.309167, 'h':0.677, 'omegab':0.048} cosmo = Cosmology.from_dict(cosmodef) data = BigFileCatalog('/global/cscratch1/sd/chmodi/m3127/H1mass/highres/2560-9100-fixed/fastpm_%0.4f/LL-0.200/'%aa) data = data.gslice(start = 0, stop = num) data['Mass'] = data['Length']*data.attrs['M0']*1e10 if masswt : masswt = data['Mass'].copy() if h1masswt : masswt = h1model.assignhalo(masswt) else: masswt = data['Mass'].copy()*0 + 1. hpos, hmass = data['Position'], masswt rsdfac = 0 if rsdpos: with open('/global/cscratch1/sd/chmodi/m3127/H1mass/highres/2560-9100-fixed/fastpm_%0.4f/Header/attr-v2'%aa) as ff: for line in ff.readlines(): if 'RSDFactor' in line: rsdfac = float(line.split()[-2]) hpos = data['Position'] + rsdfac*data['Velocity']*numpy.array([0, 0, 1]).reshape(1, -1) hlayout = truth_pm.decompose(hpos) hmesh = truth_pm.paint(hpos, layout=hlayout, mass=hmass) hmesh /= hmesh.cmean() hmesh -= 1. rankweight = sum(masswt.compute()) totweight = comm.allreduce(rankweight) rankweight = sum((masswt**2).compute()) totweight2 = comm.allreduce(rankweight) noise = bs**3 / (totweight**2/totweight2) if rank == 0 : print('Noise : ', noise) ######################################### #dynamics stages = numpy.linspace(0.1, aa, nsteps, endpoint=True) if pmdisp: dynamic_model = NBodyModel(cosmo, truth_pm, B=B, steps=stages) else: dynamic_model = ZAModel(cosmo, truth_pm, B=B, steps=stages) if rank == 0: print(dynamic_model) #noise #Artifically low noise since the data is constructed from the model truth_noise_model = map.NoiseModel(truth_pm, None, noisevar*(truth_pm.BoxSize/truth_pm.Nmesh).prod(), 1234) truth_noise_model = None #Create and save data if not found dyn = BigFileCatalog(dfolder + 'fastpm_%0.4f/1'%aa) s_truth = BigFileMesh(dfolder + 'linear', 'LinearDensityK').paint() mock_model_setup = map.MockModel(dynamic_model, rsdpos=rsdpos, rsdfac=rsdfac) fpos, linear, linearsq, shear = mock_model_setup.get_code().compute(['x', 'linear', 'linearsq', 'shear'], init={'parameters': s_truth}) grid = truth_pm.generate_uniform_particle_grid(shift=0.0, dtype='f4') params, bmod = getbias(truth_pm, hmesh, [linear, linearsq, shear], fpos, grid) title = ['%0.3f'%i for i in params] kerror, perror = eval_bfit(hmesh, bmod, optfolder, noise=noise, title=title, fsize=15) ipkerror = interp1d(kerror, perror, bounds_error=False, fill_value=(perror[0], perror[-1])) mock_model = map.MockModel(dynamic_model, params=params, rsdpos=rsdpos, rsdfac=rsdfac) data_p = mock_model.make_observable(s_truth) data_p.mapp = hmesh.copy() data_p.save(optfolder+'datap/') if rank == 0: print('datap saved') #data_n = truth_noise_model.add_noise(data_p) #data_n.save(optfolder+'datan/') #if rank == 0: print('datan saved') fit_p = mock_model.make_observable(s_truth) fit_p.save(optfolder+'fitp/') if rank == 0: print('fitp saved') ## if rank == 0: print('data_p, data_n created') ################################################ #Optimizer if cfg['init']['sinit'] is None: s_init = truth_pm.generate_whitenoise(777, mode='complex')\ .apply(lambda k, v: v * (ipk(sum(ki **2 for ki in k) **0.5) / v.BoxSize.prod()) ** 0.5)\ .c2r()*0.001 sms = [4.0, 2.0, 1.0, 0.5, 0.0] else: s_init = BigFileMesh(cfg['init']['sinit'], 's').paint() sms = cfg['init']['sms'] if sms is None: [4.0, 2.0, 1.0, 0.5, 0.0] x0 = s_init N0 = nc C = x0.BoxSize[0] / x0.Nmesh[0] for Ns in sms: if truth_pm.comm.rank == 0: print('\nDo for cell smoothing of %0.2f\n'%(Ns)) sml = C * Ns rtol = 0.005 run = '%d-%0.2f'%(N0, Ns) if Ns == sms[0]: if cfg['init']['sinit'] is not None: run += '-nit_%d-sm_%.2f'%(cfg['init']['nit'], cfg['init']['sml']) obj = objfunc(mock_model, truth_noise_model, data_p, prior_ps=ipk, error_ps=ipkerror, sml=sml) x0 = solve(N0, x0, rtol, run, Ns, prefix, mock_model, obj, data_p, truth_pm, optfolder, saveit=20, showit=5, title=None) ######################################### ##def gaussian_smoothing(sm): ## def kernel(k, v): ## return numpy.exp(- 0.5 * sm ** 2 * sum(ki ** 2 for ki in k)) * v ## return kernel ## ######################################### #optimizer ## ##def solve(Nmesh, x0, rtol, run, Nsm): ## ## pm = truth_pm.resize(Nmesh=(Nmesh, Nmesh, Nmesh)) ## atol = pm.Nmesh.prod() * rtol ## x0 = pm.upsample(x0, keep_mean=True) ## #data = data_n.downsample(pm) ## #IDEAL no noise limit ## data = data_p.downsample(pm) ## ## # smooth the data. This breaks the noise model but we don't need it ## # for lower resolution anyways. ## sml = pm.BoxSize[0] / Nmesh * Nsm ## ## #dynamic_model = ZAModel(cosmo, truth_pm, B=B, steps=stages) ## #mock_model = map.MockModel(dynamic_model) ## ## # an approximate noise model, due to smoothing this is correct only at large scale. ## noise_model = truth_noise_model #.downsample(pm) ## ## obj = map.SmoothedObjective(mock_model, noise_model, data, prior_ps=pk, sml=sml)#, noised=noised) ## ## prior, chi2 = obj.get_code().compute(['prior', 'chi2'], init={'parameters': data.s}) ## if pm.comm.rank == 0: print('Prior, chi2 : ', prior, chi2) # for 2d chi2 is close to total pixels. ## ## fit_p = mock_model.make_observable(data.s) ## #r = obj.evaluate(fit_p, data) ## r = dg.evaluate(fit_p, data) ## ## try: ## os.makedirs(optfolder + '%s' % run) ## except: ## pass ## try: ## os.makedirs(optfolder + '%s/2pt' % run) ## except: ## pass ## dg.save_report(r, optfolder + "%s/truth.png" % run, pm) ## dg.save_2ptreport(r, optfolder + "%s/2pt/truth.png" % run, pm) ## ## ## optimizer = LBFGS(m=10, diag_update=scalar_diag) ## ## prob = obj.get_problem(atol=atol, precond=UseComplexSpaceOptimizer) ## ## def monitor(state): ## if pm.comm.rank == 0: ## print(state) ## if state.nit % 5 == 0: ## fit_p = mock_model.make_observable(state['x']) ## if state.nit % 20 == 0: ## fit_p.save(optfolder + '%s/%04d/fit_p' % (run, state['nit'])) ## r = obj.evaluate(fit_p, data) ## #obj.save_report(r, optfolder + "%s/%s%02d-%04d.png"% (run, prefix, int(Nsm*10), state['nit'])) ## dg.save_report(r, optfolder + "%s/%s_N%02d-%04d.png"% (run, prefix, int(Nsm*10), state['nit']), pm) ## dg.save_2ptreport(r, optfolder + "%s/2pt/%s_N%02d-%04d.png"% (run, prefix, int(Nsm*10), state['nit']), pm) ## if pm.comm.rank == 0: ## print('saved') ## ## state = optimizer.minimize(prob, x0=x0, monitor=monitor) ## fit_p = mock_model.make_observable(state['x']) ## fit_p.save(optfolder + '%s/best-fit' % run) ## r = dg.evaluate(fit_p, data) ## dg.save_report(r, optfolder + "%s/%s%02d-best-fit.png" % (run, prefix, int(Nsm*10)), pm) ## dg.save_2ptreport(r, optfolder + "%s/2pt/%s_N%02d-best-fit.png" % (run, prefix, int(Nsm*10)), pm) ## return state.x ##
1.6875
2
tests/integration/examples/abstract/workflows/foo.py
stucox/gadk
1
12787302
<gh_stars>1-10 from .lib import Service class FooService(Service): def __init__(self) -> None: super().__init__("foo") def service_name(self) -> str: return "foo"
2.53125
3
simALModulesWrappers/ALPosture.py
Snoke13/NaoqibulletWrapper
1
12787303
#!/usr/bin/env python __author__ = '<NAME>' __copyright__ = """ Copyright 2019, CPE Lyon, <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.""" __license__ = 'Apache 2.0' __maintainer__ = '<NAME>' class ALPostureProxy: def __init__(self, qiSession, sim_pepper): print("__init__ in ALPostureProxy") self.sim_pepper = sim_pepper def goToPosture(self, posture_name, percentage_speed): self.sim_pepper.goToPosture(posture_name, percentage_speed)
2.109375
2
processor/rotary.py
Princeton-Penn-Vents/princeton-penn-flowmeter
3
12787304
#!/usr/bin/env python3 from __future__ import annotations from typing import List, Dict, Any, ValuesView, TypeVar, Iterable, ItemsView from processor.setting import Setting import threading T = TypeVar("T", bound="LocalRotary") class LocalRotary: def __init__(self, config: Dict[str, Setting]): self.config = config self._alarms: Dict[str, Any] = {} # Will be set by changing a value, unset by access (to_dict) self._changed = threading.Event() # Cached for simplicity (dicts are ordered) self._items: List[str] = list(self.config.keys()) def changed(self): """ This should always be called when an item in the rotary is changed """ self._changed.set() def to_dict(self) -> Dict[str, Any]: "Convert config to dict" return { k: v.to_dict() for k, v in self.config.items() if k not in ["C02 Setting", "Current Setting", "Reset Setting"] } @property def alarms(self) -> Dict[str, Dict[str, float]]: return self._alarms @alarms.setter def alarms(self, item: Dict[str, Dict[str, float]]): self._alarms = item def __getitem__(self, item: str): return self.config[item] def values(self) -> ValuesView[Setting]: return self.config.values() def items(self) -> ItemsView[str, Setting]: return self.config.items() def __repr__(self) -> str: out = f"{self.__class__.__name__}(\n" for key, value in self.config.items(): out += f" {key} : {value}\n" return out + "\n)" def __enter__(self: T) -> T: return self def __exit__(self, *args) -> None: return None def __contains__(self, key: str): return key in self.config def __iter__(self) -> Iterable[str]: return iter(self.config) def external_update(self) -> None: "Update the display after a live setting (CurrentSetting) is changed externally" pass def time_left(self) -> float: "Amount of time left on timer" raise NotImplementedError() def last_interaction(self) -> float: "Timestamp of last interaction" raise NotImplementedError()
2.609375
3
DataStructures/queue.py
nabiharaza/LabLearnings
2
12787305
<reponame>nabiharaza/LabLearnings from node import LinkedNode class Queue: __slots__ = "front", "back" def __init__(self): """ Create a new empty queue. """ self.front = None self.back = None def __str__(self): """ Return a string representation of the contents of this queue, oldest value first. """ result = "Str Queue[" n = self.front while n != None: result += " " + str(n.value) n = n.link result += " ]" return result def is_empty(self): return self.front == None def enqueue(self, newValue): newNode = LinkedNode(newValue) if self.front == None: self.front = newNode else: self.back.link = newNode self.back = newNode def dequeue(self): assert not self.is_empty(), "Dequeue from empty queue" self.front = self.front.link if self.front == None: self.back = None def peek(self): assert not self.is_empty(), "peek on empty stack" return self.front.value # insert = enqueue # remove = dequeue def test(): s = Queue() print(s) for value in 1, 2, 3: s.enqueue(value) print(s) print("Dequeueing:", s.peek()) s.dequeue() print(s) for value in 15, 16: s.enqueue(value) print(s) print("Removing:", s.peek()) s.dequeue() print(s) while not s.is_empty(): print("Dequeueing:", s.peek()) s.dequeue() print(s) print("Trying one too many dequeues... ") try: s.dequeue() print("Problem: it succeeded!") except Exception as e: print("Exception was '" + str(e) + "'") if __name__ == "__main__": test()
4.09375
4
habitat_sim/utils/__init__.py
shacklettbp/habitat-sim
1
12787306
<reponame>shacklettbp/habitat-sim #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # quat_from_angle_axis and quat_rotate_vector imports # added for backward compatibility with Habitat-API # TODO @maksymets: remove after habitat-api/examples/new_actions.py will be # fixed from habitat_sim.utils import common from habitat_sim.utils.common import quat_from_angle_axis, quat_rotate_vector __all__ = ["quat_from_angle_axis", "quat_rotate_vector", "common"]
1.21875
1
src/ds_algs/sorting_algs/bubble_sort.py
E1mir/PySandbox
0
12787307
<reponame>E1mir/PySandbox<gh_stars>0 def bubble_sort(arr): for n in range(len(arr) - 1, 0, -1): for k in range(n): if arr[k] > arr[k + 1]: arr[k], arr[k + 1] = arr[k + 1], arr[k] if __name__ == '__main__': array = [2, 6, 7, 4, 1, 8, 5, 9, 3, 10, 15, 12, 13, 11, 14] bubble_sort(array) print(array)
3.875
4
api/models.py
DarkbordermanTemplate/fastapi-sqlalchemy
3
12787308
<gh_stars>1-10 from db import SESSION from sqlalchemy import INT, VARCHAR, Column from sqlalchemy.ext.declarative import declarative_base BASE = declarative_base() class Fruit(BASE): __tablename__ = "fruit" name = Column(VARCHAR, primary_key=True) count = Column(INT, nullable=False) def dumps(self): return {"name": self.name, "count": self.count} def init_db(): SESSION.merge(Fruit(**{"name": "apple", "count": 1})) SESSION.commit()
2.734375
3
montagne/collector/event.py
warcy/montagne
0
12787309
from montagne.common.event import BaseEvent, BaseRequest, BaseReply dst_to_neutron_collector = 'montagne.collector.neutron_collector' dst_to_nova_collector = 'montagne.collector.nova_collector' class GetOVSAgentRequest(BaseRequest): def __init__(self, msg): super(GetOVSAgentRequest, self).__init__() self.dst = dst_to_neutron_collector self.msg = msg class GetOVSAgentReply(BaseReply): def __init__(self, msg): super(GetOVSAgentReply, self).__init__() self.msg = msg class GetHypervisorRequest(BaseRequest): def __init__(self, msg): super(GetHypervisorRequest, self).__init__() self.dst = dst_to_nova_collector self.msg = msg class GetHypervisorReply(BaseReply): def __init__(self, msg): super(GetHypervisorReply, self).__init__() self.msg = msg class GetLBMemberRequest(BaseRequest): def __init__(self, msg): super(GetLBMemberRequest, self).__init__() self.dst = dst_to_neutron_collector self.msg = msg class GetLBMemberReply(BaseReply): def __init__(self, msg): super(GetLBMemberReply, self).__init__() self.msg = msg
2.21875
2
backend/chat/loggers.py
dmitriyvek/chat_app
1
12787310
<gh_stars>1-10 import logging from django.conf import settings def get_main_logger(): '''Return file logger for info and errors''' log_formatter = logging.Formatter( "%(asctime)s — %(name)s — %(levelname)s — %(message)s") error_formatter = logging.Formatter( "%(asctime)s — %(name)s — %(message)s") info_handler = logging.FileHandler(settings.INFO_LOG_FILE_LOCATION) info_handler.setLevel(logging.INFO) info_handler.setFormatter(log_formatter) error_handler = logging.FileHandler(settings.ERROR_LOG_FILE_LOCATION) error_handler.setLevel(logging.ERROR) error_handler.setFormatter(error_formatter) main_logger = logging.getLogger(__name__) main_logger.addHandler(info_handler) main_logger.addHandler(error_handler) return main_logger
2.25
2
Desafios/Desafio 90.py
blopah/python3-curso-em-video-gustavo-guanabara-exercicios
2
12787311
print('''Faça um programa que leia nome e média de um aluno, guardando também a situação em um dicionário. No final, mostre o conteúdo da estrutura na tela.''') aluno = dict() aluno['nome'] = str(input('Insira o nome: ')) aluno['nota'] = float(input('Insira a nota: ')) if aluno['nota'] < 7: aluno['nota'] = 'reprovado' else: aluno['situacao'] = 'aprovado' print(f'''O aluno {aluno['nome']} teve a nota {aluno['nota']} e foi {aluno['situacao']}.''')
3.84375
4
Ex044.py
raphaeltertuliano/Python
1
12787312
#Elabore um programa que calcule o valor a ser pago por um produto, #considerando o o seu preço normal e condição de pagamento: #- Á vista dinheiro/cheque: 10% de desconto #- À vista no cartão: 5% de desconto #- Em até 2x no cartão: preço normal #- 3x ou mais no cartão: 20% de juros valor = float(input('Valor do produto: R$')) print('''Condições de pagamento: [ 1 ] - Á vista dinheiro/cheque 10% de desconto [ 2 ] - À vista no cartão de crédito: 5% de desconto [ 3 ] - 2x no cartão [ 4 ] - 3x no cartão ou mais (juros 20%)''') cond = int(input('Forma de pagamento: ')) if cond == 1: novo_valor = valor-(valor*10)/100 print(f'O produto custará: R${novo_valor:.2f}') elif cond == 2: novo_valor = valor-(valor*5)/100 print(f'O produto custará: R${novo_valor:.2f}') elif cond == 3: print(f'O produto custará: R${valor:.2f}') elif cond == 4: novo_valor = valor+(valor*20)/100 print(f'O produto custará: R${novo_valor:.2f}') else: print('\033[31mOPÇÃO INVÁLIDA. TENTE NOVAMENTE')
3.796875
4
src/microq_admin/utils.py
Odin-SMR/qqjobs
0
12787313
from sys import stderr CONFIG_PATH = '/odin.cfg' CONFIG_FILE_DOCS = """The configuration file should contain these settings: ODIN_API_ROOT=https://example.com/odin_api ODIN_SECRET=<secret encryption key> JOB_API_ROOT=https://example.com/job_api JOB_API_USERNAME=<username> JOB_API_PASSWORD=<password> It may contain: JOB_API_VERSION=v4 """ def validate_config(config): """Return True if ok, else False""" def error(msg): stderr.write(msg + '\n') error.ok = False error.ok = True required = ['ODIN_API_ROOT', 'ODIN_SECRET', 'JOB_API_ROOT', 'JOB_API_USERNAME', 'JOB_API_PASSWORD'] for key in required: if key not in config or not config[key]: error('Missing in config: %s' % key) if not error.ok: return False for api_root in ('ODIN_API_ROOT', 'JOB_API_ROOT'): url = config[api_root] if not url.startswith('http'): error('%s does not look like an url: %s' % (api_root, url)) if url.endswith('/'): error('%s must not end with /' % api_root) optional = ['JOB_API_VERSION'] if not set(config.keys()).issubset(required + optional): error("Config contains too invalid settings: {}".format( set(config.keys()).difference(required + optional) )) return error.ok def load_config(config_file=None): if config_file is None: config_file = CONFIG_PATH with open(config_file) as inp: conf = dict(row.strip().split('=', 1) for row in inp if row.strip()) for k, v in conf.items(): conf[k] = v.strip('"') return conf def validate_project_name(project_name): """Must be ascii alnum and start with letter""" if not project_name or not isinstance(project_name, str): return False if not project_name[0].isalpha(): return False if not project_name.isalnum(): return False return True
2.328125
2
egs/chime4/wer.py
wbengine/SPMILM
25
12787314
<reponame>wbengine/SPMILM import os import sys import numpy as np sys.path.insert(0, os.getcwd() + '/../../tools/') import wb def nbest_rmUNK(read_nbest, write_nbest): f = open(read_nbest, 'rt') fo = open(write_nbest, 'wt') for line in f: fo.write(line.replace('<UNK>', '')) f.close() fo.close() # such as # lmpaths = {'KN5': nbestdir + '<tsk>/lmwt.lmonly', # 'RNN': nbestdir +'<tsk>/lmwt.rnn', # 'LSTM': workdir + '<tsk>/lmwt.lstm'} # lmtypes = ['KN5', 'RNN', 'RNN+KN5'] def wer_all(workdir, nbestdir, lmpaths, lmtypes): wb.mkdir(workdir) # calculate the wer for each task, each lmscale, each combination for tsk in ['nbestlist_{}_{}'.format(a, b) for a in ['dt05', 'et05'] for b in ['real', 'simu']]: print(tsk) wb.mkdir(workdir + tsk) fwer = open(workdir + tsk + '/wer.txt', 'wt') read_nbest_txt = nbestdir + tsk + '/words_text' read_transcript = nbestdir + tsk + '/text' read_acscore = nbestdir + tsk + '/acwt' read_gfscore = nbestdir + tsk + '/lmwt.nolm' # remove the <UNK> in nbest read_nbest_rmunk = workdir + tsk + '/words_text_rmunk' nbest_rmUNK(read_nbest_txt, read_nbest_rmunk) # load score acscore = np.array(wb.LoadScore(read_acscore)) gfscore = np.array(wb.LoadScore(read_gfscore)) # load label score_label = wb.LoadLabel(read_acscore) # lm config for lmtype in lmtypes: a = lmtype.split('+') if len(a) == 1: lmscore = np.array(wb.LoadScore(lmpaths[a[0]].replace('<tsk>', tsk))) elif len(a) == 2: s1 = wb.LoadScore(lmpaths[a[0]].replace('<tsk>', tsk)) s2 = wb.LoadScore(lmpaths[a[1]].replace('<tsk>', tsk)) lmscore = 0.5 * np.array(s1) + 0.5 * np.array(s2) # write lmscore wb.WriteScore(workdir + tsk + '/' + lmtype + '.lmscore', lmscore, score_label) for lmscale in np.linspace(9, 15, 7): write_best = workdir + tsk + '/{}_lmscale={}.best'.format(lmtype, lmscale) wb.GetBest(read_nbest_rmunk, (acscore + lmscale * (lmscore + gfscore)).tolist(), write_best) [err, num, wer] = wb.CmpWER(write_best, read_transcript) os.remove(write_best) s = '{} wer={:.2f} err={} num={} lmscale={}'.format(lmtype, wer, err, num, lmscale) print(' ' + s) fwer.write(s + '\n') fwer.flush() fwer.close() def wer_tune(workdir): config = {} nLine = 0 with open(workdir + 'nbestlist_dt05_real/wer.txt') as f1, open(workdir + 'nbestlist_dt05_simu/wer.txt') as f2, open( workdir + 'dt05_real_simu_wer.txt', 'wt') as f3: for linea, lineb in zip(f1, f2): a = linea.split() b = lineb.split() if (a[0] != b[0] or a[4:] != b[4:]): print('[ERROR] wer_tune : two files are not match') print(linea) print(lineb) return weight = float(a[4].split('=')[1]) totale = int(a[2].split('=')[1]) + int(b[2].split('=')[1]) totalw = int(a[3].split('=')[1]) + int(b[3].split('=')[1]) wer = 100.0 * totale / totalw f3.write('{} wer={:.2f} err={} num={} lmscale={}\n'.format(a[0], wer, totale, totalw, weight)) x = config.setdefault(a[0], dict()) oldwer = x.setdefault('wer', 100) if wer < oldwer: x['wer'] = wer x['line'] = nLine nLine += 1 return config def ExactVaue(s, label): a = s.split() l = len(label) for w in a: if w[0:l] == label: return w[l + 1:] return s def wer_print(workdir, config): fresult = open(workdir + 'wer_result.txt', 'wt') keylist = [] for tsk in ['nbestlist_{}_{}'.format(a, b) for b in ['real', 'simu'] for a in ['dt05', 'et05']]: print(tsk) fresult.write(tsk + '\n') keylist.append(tsk) fwer = open(workdir + tsk + '/wer.txt') a = fwer.readlines() for key in config.keys(): x = config[key] n = x['line'] line = a[n][0:-1] # remove '\n' x[tsk] = float(ExactVaue(line, 'wer')) x['lmscale'] = float(ExactVaue(line, 'lmscale')) print(' ' + a[n][0:-1]) fresult.write(a[n]) # print s = 'model\tlmscale\t' + '\t'.join([i[10:] for i in keylist]) print(s) fresult.write(s + '\n') for key in sorted(config.keys()): x = config[key] s = '{}\t{}\t{}\t{}\t{}\t{}'.format(key, x['lmscale'], x[keylist[0]], x[keylist[1]], x[keylist[2]], x[keylist[3]]) print(s) fresult.write(s + '\n') fresult.close() # main if __name__ == '__main__': absdir = os.getcwd() + '/' nbestdir = absdir + 'data/NBEST_HEQ/' lmpaths = {'KN5': nbestdir + '<tsk>/lmwt.lmonly', 'RNN': nbestdir + '<tsk>/lmwt.rnn'} lmtypes = ['KN5', 'RNN', 'RNN+KN5'] wer_workdir = absdir + 'wer/' # compute the wer for all the dataset wer_all(wer_workdir, nbestdir, lmpaths, lmtypes) # using dt_real and dt_simu to tune the lmscale config = wer_tune(wer_workdir) # using the tuned lmscale to get the result WER wer_print(wer_workdir, config)
1.945313
2
environment/custom/resource_v3/env.py
AndreMaz/transformer-pointer-critic
5
12787315
from re import L import sys from typing import List from tensorflow.python.ops.gen_array_ops import gather sys.path.append('.') import json import numpy as np import tensorflow as tf import tensorflow_probability as tfp from random import randint, randrange from environment.base.base import BaseEnvironment from environment.custom.resource_v3.reward import RewardFactory, ReducedNodeUsage from environment.custom.resource_v3.misc.utils import compute_remaining_resources, round_half_up from environment.custom.resource_v3.node import Node as History from environment.custom.resource_v3.resource import Resource as Request class ResourceEnvironmentV3(BaseEnvironment): def __init__(self, name: str, opts: dict): super(ResourceEnvironmentV3, self).__init__(name) ########################################### ##### PROBLEM CONFIGS FROM JSON FILE ###### ########################################### self.gather_stats: bool = False self.generate_request_on_the_fly: bool = opts['generate_request_on_the_fly'] self.mask_nodes_in_mha: bool = opts['mask_nodes_in_mha'] self.seed_value: int = opts['seed_value'] self.normalization_factor: int = opts['normalization_factor'] self.decimal_precision: int = opts['decimal_precision'] self.batch_size: int = opts['batch_size'] self.num_features: int = opts['num_features'] self.num_profiles: int = opts['num_profiles'] self.profiles_sample_size: int = opts['profiles_sample_size'] assert self.num_profiles >= self.profiles_sample_size, 'Resource sample size should be less than total number of resources' self.EOS_CODE: int = opts['EOS_CODE'] self.EOS_BIN = np.full((1, self.num_features), self.EOS_CODE, dtype='float32') self.node_sample_size: int = opts['node_sample_size'] + 1 # + 1 because of the EOS bin self.req_min_val: int = opts['req_min_val'] self.req_max_val: int = opts['req_max_val'] self.node_min_val: int = opts['node_min_val'] self.node_max_val: int = opts['node_max_val'] ################################################ ##### MATERIALIZED VARIABLES FROM CONFIGS ###### ################################################ self.decoding_step = self.node_sample_size self.rewarder = RewardFactory( opts['reward'], self.EOS_BIN ) if isinstance(self.rewarder, ReducedNodeUsage): self.is_empty = np.zeros((self.batch_size, self.node_sample_size + self.profiles_sample_size, 1), dtype='float32') # First position is EOS self.is_empty[:, 0, 0] = self.EOS_BIN[0][0] else: self.is_empty = None # Generate req profiles self.total_profiles = self.generate_dataset() # Problem batch self.batch, self.history = self.generate_batch() # Default masks # Will be updated during at each step() call self.bin_net_mask,\ self.resource_net_mask,\ self.mha_used_mask = self.generate_masks() def reset(self): # Reset decoding step self.decoding_step = self.node_sample_size if isinstance(self.rewarder, ReducedNodeUsage): self.is_empty = np.zeros( (self.batch_size, self.node_sample_size + self.profiles_sample_size, 1), dtype='float32') # First position is EOS self.is_empty[:, 0, 0] = self.EOS_BIN[0][0] self.batch, self.history = self.generate_batch() self.bin_net_mask,\ self.resource_net_mask,\ self.mha_used_mask = self.generate_masks() return self.state() def state(self): decoder_input = self.batch[:, self.decoding_step] decoder_input = np.expand_dims(decoder_input, axis=1) batch = self.batch.copy() if isinstance(self.rewarder, ReducedNodeUsage): batch = self.add_is_empty_dim(batch, self.is_empty) return batch,\ decoder_input,\ self.bin_net_mask.copy(),\ self.mha_used_mask.copy() def step(self, bin_ids: List[int], feasible_bin_mask): # Default is not done isDone = False req_ids = tf.fill(self.batch_size, self.decoding_step) batch_size = self.batch.shape[0] num_elems = self.batch.shape[1] batch_indices = tf.range(batch_size, dtype='int32') # Copy the state before updating the values copy_batch = self.batch.copy() # Grab the selected nodes and resources nodes: np.ndarray = self.batch[batch_indices, bin_ids] reqs: np.ndarray = self.batch[batch_indices, req_ids] # Compute remaining resources after placing reqs at nodes remaining_resources = compute_remaining_resources( nodes, reqs, self.decimal_precision) # Update the batch state self.batch[batch_indices, bin_ids] = remaining_resources # Keep EOS node intact self.batch[batch_indices, 0] = self.EOS_BIN # Item taken mask it self.resource_net_mask[batch_indices, req_ids] = 1 # Update node masks dominant_resource = tf.reduce_min(remaining_resources, axis=-1) is_full = tf.cast(tf.equal(dominant_resource, 0), dtype='float32') # Mask full nodes/bins self.bin_net_mask[batch_indices, bin_ids] = is_full self.bin_net_mask[:, 0] = 0 # EOS is always available # Update the MHA masks self.mha_used_mask[batch_indices, :, :, req_ids] = 1 if self.mask_nodes_in_mha: self.mha_used_mask[batch_indices, :, :, bin_ids] = tf.reshape( is_full, (self.batch_size, 1, 1) ) # EOS is always available self.mha_used_mask[batch_indices, :, :, 0] = 0 if np.all(self.resource_net_mask == 1): isDone = True # Compute rewards rewards = self.rewarder.compute_reward( self.batch, # Already updated values of nodes, i.e., after insertion copy_batch, # Original values of nodes, i.e., before insertion self.node_sample_size, nodes, reqs, feasible_bin_mask, bin_ids, self.is_empty ) rewards = tf.reshape(rewards, (batch_size, 1)) #else: # rewards = tf.zeros((batch_size, 1), dtype='float32') info = { 'bin_net_mask': self.bin_net_mask.copy(), 'resource_net_mask': self.resource_net_mask.copy(), 'mha_used_mask': self.mha_used_mask.copy(), # 'num_resource_to_place': self.num_profiles } if self.gather_stats: self.place_reqs(bin_ids, req_ids, reqs) # Pick next decoder_input self.decoding_step += 1 if self.decoding_step < self.node_sample_size + self.profiles_sample_size: decoder_input = self.batch[:, self.decoding_step] decoder_input = np.expand_dims(decoder_input, axis=1) else: # We are done. No need to generate decoder input decoder_input = np.array([None]) batch = self.batch.copy() if isinstance(self.rewarder, ReducedNodeUsage): batch = self.add_is_empty_dim(batch, self.is_empty) return batch, decoder_input, rewards, isDone, info def generate_dataset(self): profiles = tf.random.uniform( (self.num_profiles, self.num_features), minval=self.req_min_val, maxval=self.req_max_val, dtype='int32', seed=self.seed_value ) / self.normalization_factor return tf.cast(profiles, dtype="float32") def generate_batch(self): history = [] elem_size = self.node_sample_size + self.profiles_sample_size batch: np.ndarray = np.zeros( (self.batch_size, elem_size, self.num_features), dtype="float32" ) # Generate nodes states nodes = tf.random.uniform( (self.batch_size, self.node_sample_size, self.num_features), minval=self.node_min_val, maxval=self.node_max_val, dtype="int32", seed=self.seed_value ) / self.normalization_factor batch[:, :self.node_sample_size, :] = tf.cast(nodes, dtype="float32") # Replace first position with EOS node batch[:, 0, :] = self.EOS_BIN if self.generate_request_on_the_fly: # Generate reqs reqs = tf.random.uniform( (self.batch_size, self.profiles_sample_size, self.num_features), minval=self.req_min_val, maxval=self.req_max_val, dtype="int32", seed=self.seed_value ) / self.normalization_factor batch[:, self.node_sample_size:, :] = tf.cast(reqs, dtype="float32") else: # Sample profiles and add them to batch instances for index in range(self.batch_size): shuffled_profiles = tf.random.shuffle(self.total_profiles) batch[index, self.node_sample_size:, :] = shuffled_profiles[:self.profiles_sample_size] # Create node instances that will gather stats if self.gather_stats: history = self.build_history(batch) return batch, history def generate_masks(self): elem_size = self.node_sample_size + self.profiles_sample_size # Represents positions marked as "0" where resource Ptr Net can point profiles_net_mask = np.zeros((self.batch_size, elem_size), dtype='float32') # Represents positions marked as "0" where bin Ptr Net can point nodes_net_mask = np.ones( (self.batch_size, elem_size), dtype='float32') # Default mask for resources #for batch_id in range(self.batch_size): # for i in range(self.node_sample_size): # profiles_net_mask[batch_id, i] = 1 profiles_net_mask[:, :self.node_sample_size] = 1 # Default mask for bin nodes_net_mask = nodes_net_mask - profiles_net_mask # For Transformer's multi head attention mha_used_mask = np.zeros_like(profiles_net_mask) mha_used_mask = mha_used_mask[:, np.newaxis, np.newaxis, :] return nodes_net_mask, profiles_net_mask, mha_used_mask def sample_action(self): batch_indices = tf.range(self.batch.shape[0], dtype='int32') resource_ids = tf.fill(self.batch_size, self.decoding_step) # Decode the resources decoded_resources = self.batch[batch_indices, resource_ids] decoded_resources = np.expand_dims(decoded_resources, axis=1) bins_mask = self.build_feasible_mask(self.batch, decoded_resources, self.bin_net_mask ) bins_probs = np.random.uniform(size=self.bin_net_mask.shape) bins_probs = tf.nn.softmax(bins_probs - (bins_mask*10e6), axis=-1) dist_bin = tfp.distributions.Categorical(probs = bins_probs) bin_ids = dist_bin.sample() return bin_ids, bins_mask def add_stats_to_agent_config(self, agent_config: dict): agent_config['num_resources'] = self.profiles_sample_size agent_config['num_bins'] = self.node_sample_size agent_config['tensor_size'] = self.node_sample_size + self.profiles_sample_size agent_config['batch_size'] = self.batch_size # Init the object agent_config["encoder_embedding"] = {} if isinstance(self.rewarder, ReducedNodeUsage): agent_config["encoder_embedding"]["common"] = False agent_config["encoder_embedding"]["num_bin_features"] = 4 agent_config["encoder_embedding"]["num_resource_features"] = 3 else: agent_config["encoder_embedding"]["common"] = True # If using the same embedding layer these vars are unused agent_config["encoder_embedding"]["num_bin_features"] = None agent_config["encoder_embedding"]["num_resource_features"] = None return agent_config def set_testing_mode(self, batch_size, node_sample_size, profiles_sample_size, node_min_val, node_max_val ) -> None: self.gather_stats = True self.batch_size = batch_size self.node_min_val = node_min_val self.node_max_val = node_max_val self.node_sample_size = node_sample_size + 1 # +1 For EOS node self.profiles_sample_size = profiles_sample_size def build_history(self, batch): history = [] for batch_id, instance in enumerate(batch): nodes = [] for id, bin in enumerate(instance[:self.node_sample_size]): nodes.append( History( batch_id, id, bin ) ) history.append(nodes) return history def place_reqs(self, bin_ids: List[int], req_ids: List[int], reqs: np.ndarray): for batch_index, bin_id in enumerate(bin_ids): node: History = self.history[batch_index][bin_id] req_id = req_ids[batch_index] req = Request( batch_index, req_id, reqs[batch_index] ) node.insert_req(req) def build_feasible_mask(self, state, resources, bin_net_mask): if isinstance(self.rewarder, ReducedNodeUsage): state = self.remove_is_empty_dim(state) batch = state.shape[0] num_elems = state.shape[1] # Add batch dim to resources # resource_demands = np.reshape(resources, (batch, 1, self.num_features)) # Tile to match the num elems resource_demands = tf.tile(resources, [1, num_elems, 1]) # Compute remaining resources after placement # remaining_resources = state - resource_demands remaining_resources = compute_remaining_resources( state, resource_demands, self.decimal_precision ) dominant_resource = tf.reduce_min(remaining_resources, axis=-1) # Ensure that it's greater that 0 # i.e., that node is not overloaded after_place = tf.less(dominant_resource, 0) after_place = tf.cast(after_place, dtype='float32') # Can't point to resources positions feasible_mask = tf.maximum(after_place, bin_net_mask) feasible_mask = feasible_mask.numpy() assert np.all(dominant_resource*(1-feasible_mask) >= 0), 'Masking Scheme Is Wrong!' # EOS is always available for pointing feasible_mask[:, 0] = 0 # Return as is. At this moment node can be overloaded return feasible_mask def add_is_empty_dim(self, batch, is_empty): batch = np.concatenate([batch, is_empty], axis=-1) return round_half_up(batch, 2) def remove_is_empty_dim(self, batch): batch = batch[:, :, :self.num_features] return round_half_up(batch, 2) def print_history(self, print_details = False) -> None: # pragma: no cover for batch_id in range(self.batch_size): print('_________________________________') node: History for node in self.history[batch_id]: node.print(print_details) print('_________________________________') return def store_dataset(self, location) -> None: np.savetxt(location, self.total_profiles) def load_dataset(self, location): self.total_profiles = np.loadtxt(location) if __name__ == "__main__": # pragma: no cover env_name = 'ResourceEnvironmentV3' with open(f"configs/ResourceV3.json") as json_file: params = json.load(json_file) env_configs = params['env_config'] env_configs['batch_size'] = 2 env = ResourceEnvironmentV3(env_name, env_configs) state, dec, bin_net_mask, mha_mask = env.state() # env.print_history() feasible_net_mask = env.build_feasible_mask(state, dec, bin_net_mask) bin_ids = [0,1] resource_ids = None next, decoder_input, rewards, isDone, info = env.step(bin_ids, feasible_net_mask) next, decoder_input, rewards, isDone, info = env.step(bin_ids, feasible_net_mask) env.reset() next, decoder_input, rewards, isDone, info = env.step(bin_ids, feasible_net_mask) next, decoder_input, rewards, isDone, info = env.step(bin_ids, feasible_net_mask) a = 1
1.789063
2
Tools/C2EA/c2eaPfinder.py
sme23/OneHourBlitz
6
12787316
<reponame>sme23/OneHourBlitz<filename>Tools/C2EA/c2eaPfinder.py import struct caches = {} def getOrSetNew(dicToCheck, key, newFunc): if key not in dicToCheck: dicToCheck[key] = newFunc() return dicToCheck[key] def memoize(name = None): def decorator(f): global caches # If we are given a valid name for the function, associate it with that entry in the cache. if name is not None: cache = getOrSetNew(caches, name, lambda: {}) else: cache = {} def g(*args): return getOrSetNew(cache, args, lambda: f(*args)) # Set the cache as a function attribute so we can access it later (say for serialization) g.cache = cache return g return decorator def hash(obj): if type(obj) is dict: sortedDict = sorted(obj) return tuple(map( lambda elem: (elem, hash(obj[elem])), sortedDict)).__hash__() # Use sorted so we get the same order for dicts whose # keys may have been added in other orders if type(obj) is list: return tuple(map(hash, obj)).__hash__() else: return obj.__hash__() cachesLoaded = False initialHash = None def loadCache(): global cachesLoaded global initialHash global caches if not cachesLoaded: import os, pickle if os.path.exists("./.cache"): try: with open("./.cache", 'rb') as f: caches = pickle.load(f) if type(caches) != dict: raise Exception except Exception: caches = {} initialHash = hash(caches) cachesLoaded = True loadCache() def writeCache(): if initialHash != hash(caches): import pickle with open("./.cache", 'wb') as f: pickle.dump(caches, f, pickle.HIGHEST_PROTOCOL) def deleteCache(): global caches for name in caches: caches[name] = {} writeCache() @memoize() def readRom(romFileName): words = [] with open(romFileName, 'rb') as rom: while True: word = rom.read(4) if word == b'': break words.append(struct.unpack('<I', word)[0]) #Use the raw data; # <I is little-endian 32 bit unsigned integer return words @memoize(name = 'pointerOffsets') def pointerOffsets(romFileName, value): return tuple(pointerIter(romFileName, value)) def pointerIter(romFileName, value): words = readRom(romFileName) return (i<<2 for i,x in enumerate(words) if x==value)
2.390625
2
src/Ot2Rec/motioncorr.py
MichaelStubbings/Ot2Rec
0
12787317
# Copyright 2021 Rosalind Franklin Institute # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific # language governing permissions and limitations under the License. import os import subprocess import itertools import pandas as pd import yaml from tqdm import tqdm from icecream import ic # for debugging from . import metadata as mdMod class Motioncorr: """ Class encapsulating a Motioncorr object """ def __init__(self, project_name, mc2_params, md_in, logger): """ Initialise Motioncorr object ARGS: project_name (str) :: Name of current project mc2_params (Params) :: Parameters read in from yaml file md_in (Metadata) :: Metadata containing information of images logger (Logger) :: Logger for recording events """ self.proj_name = project_name self.logObj = logger self.log = [] self.prmObj = mc2_params self.params = self.prmObj.params self._process_list = self.params['System']['process_list'] self.meta = pd.DataFrame(md_in.metadata) self.meta = self.meta[self.meta['ts'].isin(self._process_list)] self._set_output_path() # Get index of available GPU self.use_gpu = self._get_gpu_nvidia_smi() # Set GPU index as new column in metadata self.meta = self.meta.assign(gpu=self.use_gpu[0]) self.no_processes = False self._check_processed_images() # Check if output folder exists, create if not if not os.path.isdir(self.params['System']['output_path']): subprocess.run(['mkdir', self.params['System']['output_path']], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='ascii') def _check_processed_images(self): """ Method to check images which have already been processed before """ # Create new empty internal output metadata if no record exists if not os.path.isfile(self.proj_name + '_mc2_mdout.yaml'): self.meta_out = pd.DataFrame(columns=self.meta.columns) # Read in serialised metadata and turn into DataFrame if record exists else: _meta_record = mdMod.read_md_yaml(project_name=self.proj_name, job_type='motioncorr', filename=self.proj_name + '_mc2_mdout.yaml') self.meta_out = pd.DataFrame(_meta_record.metadata) # Compare output metadata and output folder # If a file (in specified TS) is in record but missing, remove from record if len(self.meta_out) > 0: self._missing = self.meta_out.loc[~self.meta_out['output'].apply(lambda x: os.path.isfile(x))] self._missing_specified = pd.DataFrame(columns=self.meta.columns) for curr_ts in self.params['System']['process_list']: self._missing_specified = self._missing_specified.append(self._missing[self._missing['ts']==curr_ts], ignore_index=True, ) self._merged = self.meta_out.merge(self._missing_specified, how='left', indicator=True) self.meta_out = self.meta_out[self._merged['_merge']=='left_only'] if len(self._missing_specified) > 0: self.logObj(f"Info: {len(self._missing_specified)} images in record missing in folder. Will be added back for processing.") # Drop the items in input metadata if they are in the output record _ignored = self.meta[self.meta.output.isin(self.meta_out.output)] if len(_ignored) > 0 and len(_ignored) < len(self.meta): self.logObj(f"Info: {len(_ignored)} images had been processed and will be omitted.") elif len(_ignored) == len(self.meta): self.logObj(f"Info: All specified images had been processed. Nothing will be done.") self.no_processes = True self.meta = self.meta[~self.meta.output.isin(self.meta_out.output)] @staticmethod def _get_gpu_nvidia_smi(): """ Subroutine to get visible GPU ID(s) from nvidia-smi """ nv_uuid = subprocess.run(['nvidia-smi', '--list-gpus'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='ascii') nv_processes = subprocess.run(['nvidia-smi', '--query-compute-apps=gpu_uuid', '--format=csv'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='ascii') # catch the visible GPUs if nv_uuid.returncode != 0 or nv_processes.returncode != 0: raise AssertionError(f"Error in Ot2Rec.Motioncorr._get_gpu_from_nvidia_smi: " f"nvidia-smi returned an error: {nv_uuid.stderr}") else: nv_uuid = nv_uuid.stdout.strip('\n').split('\n') nv_processes = subprocess.run(['nvidia-smi', '--query-compute-apps=gpu_uuid', '--format=csv'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='ascii') visible_gpu = [] for gpu in nv_uuid: id_idx = gpu.find('GPU ') uuid_idx = gpu.find('UUID') gpu_id = gpu[id_idx + 4:id_idx + 6].strip(' ').strip(':') gpu_uuid = gpu[uuid_idx + 5:-1].strip(' ') # discard the GPU hosting a process if gpu_uuid not in nv_processes.stdout.split('\n'): visible_gpu.append(gpu_id) if visible_gpu: return visible_gpu else: raise ValueError(f'Error in metadata._get_gpu_from_nvidia_smi: {len(nv_uuid)} GPU detected, but none of them is free.') def _set_output_path(self): """ Subroutine to set output path for motioncorr'd images """ self.meta['output'] = self.meta.apply( lambda row: f"{self.params['System']['output_path']}" f"{self.params['System']['output_prefix']}_{row['ts']:03}_{row['angles']}.mrc", axis=1) def _get_command(self, image): """ Subroutine to get commands for running MotionCor2 ARGS: image (tuple): metadata for current image (in_path, out_path, #GPU) RETURNS: list """ in_path, out_path, gpu_number = image if self.params['System']['source_TIFF']: image_type = 'InTiff' else: image_type = 'InMrc' # Set FtBin parameter for MC2 ftbin = self.params['MC2']['desired_pixel_size'] / self.params['MC2']['pixel_size'] return [self.params['MC2']['MC2_path'], f'-{image_type}', in_path, '-OutMrc', out_path, '-Gpu', gpu_number, '-GpuMemUsage', str(self.params['System']['gpu_memory_usage']), '-Gain', self.params['MC2']['gain_reference'], '-Tol', str(self.params['MC2']['tolerance']), '-Patch', ','.join(str(i) for i in self.params['MC2']['patch_size']), '-Iter', str(self.params['MC2']['max_iterations']), '-Group', '1' if self.params['MC2']['use_subgroups'] else '0', '-FtBin', str(ftbin), '-PixSize', str(self.params['MC2']['pixel_size']), '-Throw', str(self.params['MC2']['discard_frames_top']), '-Trunc', str(self.params['MC2']['discard_frames_bottom']), ] @staticmethod def _yield_chunks(iterable, size): """ Subroutine to get chunks for GPU processing """ iterator = iter(iterable) for first in iterator: yield itertools.chain([first], itertools.islice(iterator, size - 1)) def run_mc2(self): """ Subroutine to run MotionCor2 """ # Process tilt-series one at a time ts_list = self.params['System']['process_list'] tqdm_iter = tqdm(ts_list, ncols=100) for curr_ts in tqdm_iter: tqdm_iter.set_description(f"Processing TS {curr_ts}...") self._curr_meta = self.meta.loc[self.meta.ts==curr_ts] while len(self._curr_meta) > 0: # Get commands to run MC2 mc_commands = [self._get_command((_in, _out, _gpu)) for _in, _out, _gpu in zip(self._curr_meta.file_paths, self._curr_meta.output, self._curr_meta.gpu)] jobs = (subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) for cmd in mc_commands) # run subprocess by chunks of GPU chunks = self._yield_chunks(jobs, len(self.use_gpu) * self.params['System']['jobs_per_gpu']) for job in chunks: # from the moment the next line is read, every process in job are spawned for process in [i for i in job]: self.log.append(process.communicate()[0].decode('UTF-8')) self.update_mc2_metadata() self.export_metadata() def update_mc2_metadata(self): """ Subroutine to update metadata after one set of runs """ # Search for files with output paths specified in the metadata # If the files don't exist, keep the line in the input metadata # If they do, move them to the output metadata self.meta_out = self.meta_out.append(self.meta.loc[self.meta['output'].apply(lambda x: os.path.isfile(x))], ignore_index=True) self.meta = self.meta.loc[~self.meta['output'].apply(lambda x: os.path.isfile(x))] self._curr_meta = self._curr_meta.loc[~self._curr_meta['output'].apply(lambda x: os.path.isfile(x))] def export_metadata(self): """ Method to serialise output metadata, export as yaml """ yaml_file = self.proj_name + '_mc2_mdout.yaml' with open(yaml_file, 'w') as f: yaml.dump(self.meta_out.to_dict(), f, indent=4, sort_keys=False)
2.03125
2
api/tests/integration/tests/substructure/tau_enumeration.py
f1nzer/Indigo
0
12787318
<filename>api/tests/integration/tests/substructure/tau_enumeration.py<gh_stars>0 import os import sys sys.path.append( os.path.normpath( os.path.join(os.path.abspath(__file__), "..", "..", "..", "common") ) ) from env_indigo import * indigo = Indigo() # indigo_inchi = IndigoInchi(indigo); def testEnumTautomersForMolecule(molecule): iter = indigo.iterateTautomers(molecule, "INCHI") lst = list() for mol in iter: prod = mol.clone() lst.append(prod.canonicalSmiles()) lst.sort() print( " " + "\n ".join( map(lambda x, y: str(x) + ") " + y, range(1, len(lst) + 1), lst) ) + "\n" ) def testEnumTautomersForSDF(sdf_file): for idx, molecule in enumerate(indigo.iterateSDFile(sdf_file)): try: print("%d. %s" % (idx + 1, molecule.smiles())) molecule.dearomatize() testEnumTautomersForMolecule(molecule) molecule.aromatize() testEnumTautomersForMolecule(molecule) except IndigoException as e: print(getIndigoExceptionText(e)) print( "This is the case when not all tautomers are found for the first time and the algorithm requires the second attempt:" ) testEnumTautomersForMolecule( indigo.loadMolecule("OC1N=C2C(=NC(N)=NC(=O)2)NC(O)=1") ) print("Test tautomers1-small.sdf") testEnumTautomersForSDF(joinPathPy("molecules/tautomers1-small.sdf", __file__)) print("Test tautomers2-small.sdf") testEnumTautomersForSDF(joinPathPy("molecules/tautomers2-small.sdf", __file__)) print("Test tautomers1-large.sdf") testEnumTautomersForSDF( joinPathPy("molecules/tautomers1-large.sdf.gz", __file__) ) print("Test tautomers2-large.sdf") testEnumTautomersForSDF( joinPathPy("molecules/tautomers2-large.sdf.gz", __file__) )
2.296875
2
MNIST/ram2/GlimpseNet.py
mimikaan/Attention-Model
48
12787319
import tensorflow as tf from Globals import * from BaseNet import * class GlimpseNet(BaseNet): def __init__(self): self.imageSize = constants['imageSize'] self.imageChannel = constants['imageChannel'] self.numGlimpseResolution = constants['numGlimpseResolution'] self.glimpseOutputSize = constants['glimpseOutputSize'] self.glimpseDim = self.imageChannel * self.glimpseOutputSize * \ self.glimpseOutputSize * self.numGlimpseResolution # linear layer processing retina encoding with tf.variable_scope('g0') as scope: self.wg0 = self.variableWithWeightDecay( 'weights', [self.glimpseDim, 128], 1e-4, 0.0) self.bg0 = self.variableOnGpu( 'biases', [128], tf.constant_initializer(0.0)) # linear layer processing location with tf.variable_scope('g1') as scope: self.wg1 = self.variableWithWeightDecay( 'weights', [2, 128], 1e-4, 0.0) self.bg1 = self.variableOnGpu( 'biases', [128], tf.constant_initializer(0.0)) # linear layer processing previouse two linear layers with tf.variable_scope('g2') as scope: self.wg2 = self.variableWithWeightDecay( 'weights', [256, 256], 1e-4, 0.0) self.bg2 = self.variableOnGpu( 'biases', [256], tf.constant_initializer(0.0)) def forward(self, glimpses, locations): glimpses = tf.reshape(glimpses, [-1, self.glimpseDim]) out = tf.matmul(glimpses, self.wg0) bias = tf.nn.bias_add(out, self.bg0) self.g0 = tf.nn.relu(bias) # self.activationSummary(self.g0) out = tf.matmul(locations, self.wg1) bias = tf.nn.bias_add(out, self.bg1) self.g1 = tf.nn.relu(bias) # self.activationSummary(self.g1) combined = tf.concat([self.g0, self.g1], axis=1) out = tf.matmul(combined, self.wg2) bias = tf.nn.bias_add(out, self.bg2) self.g2 = tf.nn.relu(bias) # self.activationSummary(self.g2) return self.g2
2.390625
2
test/analysis/classification/test_classifier_summary_builder.py
marta18a/sleep_classifiers
97
12787320
<gh_stars>10-100 from unittest import TestCase, mock from unittest.mock import call from sklearn.linear_model import LogisticRegression from source.analysis.classification.classifier_summary_builder import SleepWakeClassifierSummaryBuilder from source.analysis.performance.raw_performance import RawPerformance from source.analysis.setup.attributed_classifier import AttributedClassifier from source.analysis.setup.data_split import DataSplit from source.analysis.setup.feature_type import FeatureType import numpy as np class TestClassifierSummaryBuilder(TestCase): @mock.patch('source.analysis.classification.classifier_summary_builder.SubjectBuilder') @mock.patch('source.analysis.classification.classifier_summary_builder.ClassifierService') @mock.patch('source.analysis.classification.classifier_summary_builder.TrainTestSplitter') def test_build_summary_by_fraction(self, mock_train_test_splitter, mock_classifier_service, mock_subject_builder): attributed_classifier = AttributedClassifier(name="Logistic Regression", classifier=LogisticRegression()) feature_sets = [[FeatureType.cosine, FeatureType.circadian_model], [FeatureType.count]] number_of_splits = 5 test_fraction = 0.3 mock_subject_builder.get_all_subject_ids.return_value = subject_ids = ["subjectA", "subjectB"] mock_subject_builder.get_subject_dictionary.return_value = subject_dictionary = {"subjectA": [], "subjectB": []} mock_train_test_splitter.by_fraction.return_value = expected_data_splits = [ DataSplit(training_set="subjectA", testing_set="subjectB")] mock_classifier_service.run_sw.side_effect = raw_performance_arrays = [ [RawPerformance(true_labels=np.array([1, 2]), class_probabilities=np.array([3, 4])), RawPerformance(true_labels=np.array([0, 1]), class_probabilities=np.array([2, 3])) ], [RawPerformance(true_labels=np.array([1, 1]), class_probabilities=np.array([4, 4])), RawPerformance(true_labels=np.array([0, 0]), class_probabilities=np.array([2, 2])) ] ] returned_summary = SleepWakeClassifierSummaryBuilder.build_monte_carlo(attributed_classifier, feature_sets, number_of_splits) mock_subject_builder.get_all_subject_ids.assert_called_once_with() mock_subject_builder.get_subject_dictionary.assert_called_once_with() mock_train_test_splitter.by_fraction.assert_called_once_with(subject_ids, test_fraction=test_fraction, number_of_splits=number_of_splits) mock_classifier_service.run_sw.assert_has_calls([call(expected_data_splits, attributed_classifier, subject_dictionary, feature_sets[0] ), call(expected_data_splits, attributed_classifier, subject_dictionary, feature_sets[1] )]) self.assertEqual(returned_summary.attributed_classifier, attributed_classifier) self.assertEqual(returned_summary.performance_dictionary[tuple(feature_sets[0])], raw_performance_arrays[0]) self.assertEqual(returned_summary.performance_dictionary[tuple(feature_sets[1])], raw_performance_arrays[1]) @mock.patch('source.analysis.classification.classifier_summary_builder.SubjectBuilder') @mock.patch('source.analysis.classification.classifier_summary_builder.ClassifierService') @mock.patch('source.analysis.classification.classifier_summary_builder.TrainTestSplitter') def test_leave_one_out(self, mock_train_test_splitter, mock_classifier_service, mock_subject_builder): attributed_classifier = AttributedClassifier(name="Logistic Regression", classifier=LogisticRegression()) feature_sets = [[FeatureType.cosine, FeatureType.circadian_model], [FeatureType.count]] mock_subject_builder.get_all_subject_ids.return_value = subject_ids = ["subjectA", "subjectB"] mock_subject_builder.get_subject_dictionary.return_value = subject_dictionary = {"subjectA": [], "subjectB": []} mock_train_test_splitter.leave_one_out.return_value = expected_data_splits = [ DataSplit(training_set="subjectA", testing_set="subjectB")] mock_classifier_service.run_sw.side_effect = raw_performance_arrays = [ [RawPerformance(true_labels=np.array([1, 2]), class_probabilities=np.array([3, 4])), RawPerformance(true_labels=np.array([0, 1]), class_probabilities=np.array([2, 3])) ], [RawPerformance(true_labels=np.array([1, 1]), class_probabilities=np.array([4, 4])), RawPerformance(true_labels=np.array([0, 0]), class_probabilities=np.array([2, 2])) ] ] returned_summary = SleepWakeClassifierSummaryBuilder.build_leave_one_out(attributed_classifier, feature_sets) mock_subject_builder.get_all_subject_ids.assert_called_once_with() mock_subject_builder.get_subject_dictionary.assert_called_once_with() mock_train_test_splitter.leave_one_out.assert_called_once_with(subject_ids) mock_classifier_service.run_sw.assert_has_calls([call(expected_data_splits, attributed_classifier, subject_dictionary, feature_sets[0] ), call(expected_data_splits, attributed_classifier, subject_dictionary, feature_sets[1] )]) self.assertEqual(returned_summary.attributed_classifier, attributed_classifier) self.assertEqual(returned_summary.performance_dictionary[tuple(feature_sets[0])], raw_performance_arrays[0]) self.assertEqual(returned_summary.performance_dictionary[tuple(feature_sets[1])], raw_performance_arrays[1])
2.46875
2
app/migrations/0005_alter_business_options_alter_neighbourhood_options_and_more.py
james-muriithi/neighbourhood
0
12787321
# Generated by Django 4.0.3 on 2022-03-20 10:33 import cloudinary.models from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('app', '0004_post_slug'), ] operations = [ migrations.AlterModelOptions( name='business', options={'ordering': ['-created_at']}, ), migrations.AlterModelOptions( name='neighbourhood', options={'ordering': ['-created_at']}, ), migrations.AlterModelOptions( name='post', options={'ordering': ['-created_at']}, ), migrations.AddField( model_name='business', name='image', field=cloudinary.models.CloudinaryField(blank=True, max_length=255, null=True, verbose_name='image'), ), migrations.AlterField( model_name='business', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='businesses', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='post', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='posts', to=settings.AUTH_USER_MODEL), ), ]
1.828125
2
riverrunner/static/arima_exploration.py
lukeWaninger/RiverRunner
1
12787322
""" Module for data exploration for ARIMA modeling. This module contains the back-end exploration of river run flow rate data and exogenous predictors to determine the best way to create a time-series model of the data. Note that since this module was only used once (i.e. is not called in order to create ongoing predictions), it is not accompanied by any unit testing. Functions: daily_avg: takes time series with measurements on different timeframes and creates a dataframe with daily averages for flow rate and exogenous predictors test_stationarity: implements Dickey-Fuller test and rolling average plots to check for stationarity of the time series plot_autocorrs: creates plots of autocorrelation function and partial autocorrelation function to help determine p and q parameters for ARIMA model test_model: runs stationarity tests and acf/pcf tests and then creates ARIMA model for one run and plots results """ import datetime import matplotlib.pyplot as plt import numpy as np import pandas as pd from statsmodels.tsa.arima_model import ARIMA from statsmodels.tsa.stattools import acf, pacf from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.stattools import arma_order_select_ic from riverrunner.repository import Repository REPO = Repository() def daily_avg(time_series): """Creates dataframe needed for modelling Takes time series with measurements on different timeframes and creates a dataframe with daily averages for flow rate and exogenous predictors. Args: time_series: dataframe with metrics for one run_id, assumes output from get_measurements function Returns: DataFrame: containing daily measurements """ precip = time_series[time_series.metric_id == '00003'] precip['date_time'] = pd.to_datetime(precip['date_time'], utc=True) precip.index = precip['date_time'] precip_daily = precip.resample('D').sum() flow = time_series[time_series.metric_id == '00060'] flow['date_time'] = pd.to_datetime(flow['date_time'], utc=True) flow.index = flow['date_time'] flow_daily = flow.resample('D').mean() temp = time_series[time_series.metric_id == '00001'] temp['date_time'] = pd.to_datetime(temp['date_time'], utc=True) temp.index = temp['date_time'] temp_daily = temp.resample('D').mean() time_series_daily = temp_daily.merge(flow_daily, how='inner', left_index=True, right_index=True)\ .merge(precip_daily, how='inner', left_index=True, right_index=True) time_series_daily.columns = ['temp', 'flow', 'precip'] return time_series_daily def test_stationarity(time_series): """Visual and statistical tests to test for stationarity of flow rate. Performs Dickey-Fuller statistical test for stationarity at 0.05 level of significance and plots 12-month rolling mean and standard deviation against raw data for visual review of stationarity. Args: time_series: dataframe containing flow rate and exogneous predictor data for one river run (assumes output of daily_avg function). Returns: bool: True if data is stationary according to Dickey-Fuller test at 0.05 level of significance, False otherwise. plot: containing rolling mean and standard deviation against raw data time series. """ # Determine rolling statistics rollmean = time_series.rolling(window=365, center=False).mean() rollstd = time_series.rolling(window=365, center=False).std() # Plot rolling statistics plt.plot(time_series, color='blue', label='Raw Data') plt.plot(rollmean, color='red', label='Rolling Mean') plt.plot(rollstd, color='orange', label='Rolling Standard Deviation') plt.title('Rolling Statistics') plt.legend() plt.show() # Dickey-Fuller test dftest = adfuller(time_series, autolag='BIC') return bool(dftest[0] < dftest[4]['1%']) def plot_autocorrs(time_series): """ Creates plots of auto-correlation function (acf) and partial auto-correlation function(pacf) to help determine p and q parameters for ARIMA model. Args: time_series: dataframe containing flow rate and exogneous predictor data for one river run (assumes output of daily_avg function). Returns: plots: containing acf and pacf of flow rate against number of lags. """ lag_acf = acf(time_series['flow'], nlags=400) lag_pacf = pacf(time_series['flow'], method='ols') plt.subplot(121) plt.plot(lag_acf) plt.axhline(y=0, linestyle='--', color='gray') plt.axhline(y=-1.96 / np.sqrt(len(time_series)), linestyle='--', color='gray') plt.axhline(y=1.96 / np.sqrt(len(time_series)), linestyle='--', color='gray') plt.title('ACF') plt.subplot(122) plt.plot(lag_pacf) plt.axhline(y=0, linestyle='--', color='gray') plt.axhline(y=-1.96 / np.sqrt(len(time_series)), linestyle='--', color='gray') plt.axhline(y=1.96 / np.sqrt(len(time_series)), linestyle='--', color='gray') plt.title('PACF') plt.tight_layout() def test_model(run_id): """Function to test model for one run Args: run_id: run for which to test model Returns: plots showing model results """ # Retrieve data for one run to model start = datetime.datetime(2014, 5, 18) end = datetime.datetime(2018, 5, 17) test_measures = REPO.get_measurements(run_id=run_id, start_date=start, end_date=end) # Average data and create train/test split measures_daily = daily_avg(test_measures) train_measures_daily = measures_daily[:-6] test_measures_daily = measures_daily[-7:] train_measures_daily = train_measures_daily.dropna() # Check if data is stationary test_stationarity(train_measures_daily['flow']) # Determine p and q parameters for ARIMA model params = arma_order_select_ic(train_measures_daily['flow'], ic='aic') # Build and fit model mod = ARIMA(train_measures_daily['flow'], order=(params.aic_min_order[0], 0, params.aic_min_order[1]), exog=train_measures_daily[['temp', 'precip']]).fit() test_measures_daily.loc[:, 'prediction'] = \ mod.forecast(steps=7, exog=test_measures_daily[['temp', 'precip']])[0] train_measures_daily.loc[:, 'model'] = mod.predict() # Plot results plt.plot(test_measures_daily[['flow', 'prediction']]) plt.plot(train_measures_daily[['flow', 'model']]['2015-07':]) plt.legend(['Test values', 'Prediction', 'Train values', 'Model'])
3.046875
3
tests/http/test_todo.py
fumiya-kubota/sanic-gino-boilerplate
2
12787323
import pytest import json @pytest.mark.usefixtures('cleanup_db') async def test_todo_api(app, test_cli): """ testing todo api """ # GET resp = await test_cli.get('/api/todo') assert resp.status == 200 resp_json = await resp.json() assert len(resp_json['todo_list']) == 0 # POST resp = await test_cli.post( '/api/todo', data=json.dumps({ 'name': 'new_todo', }), headers={'Content-Type': 'application/json'} ) assert resp.status == 201 # GET resp = await test_cli.get('/api/todo') assert resp.status == 200 resp_json = await resp.json() assert len(resp_json['todo_list']) == 1 assert resp_json['todo_list'][0]['name'] == 'new_todo' # DELETE resp = await test_cli.delete( '/api/todo/1', ) assert resp.status == 200 # GET resp = await test_cli.get('/api/todo') assert resp.status == 200 resp_json = await resp.json() assert len(resp_json['todo_list']) == 0
2.1875
2
python_scripts/nalu/nrel_5mw_scaling.py
lawsonro3/python_scripts
0
12787324
import os import numpy as np import matplotlib.pyplot as plt try: import python_scripts.nalu.io as nalu except ImportError: raise ImportError('Download https://github.com/lawsonro3/python_scripts/blob/master/python_scripts/nalu/nalu_functions.py') if __name__ == '__main__': root_dir = '/Users/mlawson/GoogleDrive/Work/NREL/Projects/HFM-ECP/nrel_5mw/results/cori_data/' if os.path.isdir(root_dir) is False: raise Exception('root_dir does not exist') #################################### # Load gC data #################################### file_gC_13 = root_dir+'gCoarse.13/nrel_5mw_gCoarse.log' th_gC_13,t_gC_13 = nalu.read_log(file_gC_13) t_gC_13_avg = np.mean(t_gC_13[375:425,:],axis=0) file_gC_26 = root_dir+'gCoarse.26/nrel_5mw_gCoarse.log' th_gC_26,t_gC_26 = nalu.read_log(file_gC_26) t_gC_26_avg = np.mean(t_gC_26[300:350,:],axis=0) file_gC_52 = root_dir+'gCoarse.52/nrel_5mw_gCoarse.log' th_gC_52,t_gC_52 = nalu.read_log(file_gC_52) t_gC_52_avg = np.mean(t_gC_52[500:550,:],axis=0) file_gC_104 = root_dir+'gCoarse.104/nrel_5mw_gCoarse.log' th_gC_104,t_gC_104 = nalu.read_log(file_gC_104) t_gC_104_avg = np.mean(t_gC_104[200:250,:],axis=0) dofs_gC = 24846302 # num_nodes_gC nodes_gC = np.array([[13],[26],[52],[104]]) cores_gC = nodes_gC*32 dof_per_core_gC = dofs_gC/cores_gC t_avg_gC = np.array([t_gC_13_avg,t_gC_26_avg,t_gC_52_avg,t_gC_104_avg]) t_avg_gC = np.append(nodes_gC,t_avg_gC,axis=1) t_avg_gC = np.append(cores_gC,t_avg_gC,axis=1) t_avg_gC = np.append(dof_per_core_gC,t_avg_gC,axis=1) t_avg_headers_gC = ['dof_per_core_gC','cores_gC','nodes_gC'] t_avg_headers_gC = t_avg_headers_gC + th_gC_13 linear_time_gC = t_avg_gC[0,-1]*(cores_gC[0]/cores_gC) # linear scaling ####################################` # Load g1 data #################################### file_g1_512 = root_dir+'g1.512/nrel_5mw_g1.log' th_g1_512,t_g1_512 = nalu.read_log(file_g1_512) t_g1_512_avg = np.mean(t_g1_512[-50:,:],axis=0) file_g1_1024 = root_dir+'g1.1024/nrel_5mw_g1.log' th_g1_1024,t_g1_1024 = nalu.read_log(file_g1_1024) t_g1_1024_avg = np.mean(t_g1_1024[-50:,:],axis=0) # file_g1_1536 = root_dir+'g1oarse.52/nrel_5mw_g1oarse.log' # th_g1_1536,t_g1_1536 = nalu.read_log(file_g1_1536) # t_g1_1536_avg = np.mean(t_g1_1536[500:550,:],axis=0) dofs_g1 = 761112205 # num_nodes_g1 nodes_g1 = np.array([[512],[1024]])#,[1536]]) cores_g1 = nodes_g1*32 dof_per_core_g1 = dofs_g1/cores_g1 t_avg_g1 = np.array([t_g1_512_avg,t_g1_1024_avg])#,t_g1_1536_avg]) t_avg_g1 = np.append(nodes_g1,t_avg_g1,axis=1) t_avg_g1 = np.append(cores_g1,t_avg_g1,axis=1) t_avg_g1 = np.append(dof_per_core_g1,t_avg_g1,axis=1) t_avg_headers_g1 = ['dof_per_core_g1','cores_g1','nodes_g1'] t_avg_headers_g1 = t_avg_headers_g1 + th_g1_512 linear_time_g1 = t_avg_g1[0,-1]*(cores_g1[0]/cores_g1) # linear scaling #################################### ## Plots #################################### fig1 = '24.8 M Nodes (gCoarse) Timing' fig2 = '761.1 M Nodes (g1) Timing' fig3 = 'Nalu Scaling on Cori - Cores' fig4 = 'Nalu Scaling on Cori - DOFs per Core' #################################### # gC plotting #################################### caption_text_gC = '* NREL 5 MW on Cori Haswell noodes\n* 32 MPI ranks/node 1 OMP thread\n* Muelu solver stack with the v27.xml settings\n * 24.8 M DOF' plt.figure(fig1,figsize=[10,10]) plt.title(fig1) for i in np.arange(1,5,1): plt.plot(t_gC_13[:,i],label=th_gC_13[i]+' 416 cores_gC') plt.plot(t_gC_26[:,i],label=th_gC_26[i]+' 832 cores_gC') plt.plot(t_gC_52[:,i],label=th_gC_52[i]+' 1664 cores_gC') plt.plot(t_gC_104[:,i],label=th_gC_104[i]+'3328 cores_gC') plt.legend() plt.xlabel('Timestep') plt.ylabel('Time (s)') plt.text(0, 100,caption_text_gC, fontsize=12) label = '24.8 M DOF, 32 MPI/node, 1 OMP thread, muelu v27.xml' plt.figure(fig3,figsize=[10,10]) plt.title(fig3) plt.loglog(t_avg_gC[:,1],t_avg_gC[:,-1],'ks-',label=label) plt.loglog(cores_gC,linear_time_gC,'k--',label='Linear') plt.xlabel('Cores') plt.ylabel('Mean Time per Timestep (s)') plt.legend() plt.figure(fig4,figsize=[10,10]) plt.title(fig4) plt.loglog(t_avg_gC[:,0],t_avg_gC[:,-1],'ks-',label=label) plt.loglog(dof_per_core_gC,linear_time_gC,'k--',label='linear') plt.xlabel('DOFs per Core') plt.ylabel('Mean Time per Timestep (s)') plt.legend() #################################### # g1 plotting #################################### caption_text_g1 = '* NREL 5 MW on Cori Haswell noodes\n* 32 MPI ranks/node 1 OMP thread\n* Muelu solver stack with the v27.xml settings\n 761.1 M DOF' color = 'tab:red' plt.figure(fig2,figsize=[10,10]) plt.title(fig2) for i in np.arange(1,5,1): plt.plot(t_g1_512[:,i],label=th_g1_512[i]+' 16,384 cores_g1') plt.plot(t_g1_1024[:,i],label=th_g1_1024[i]+' 32,768 cores_g1') #plt.plot(t_g1_1536[:,i],label=th_g1_1536[i]+'49,152 cores_g1') plt.legend() plt.xlabel('Timestep') plt.ylabel('Time (s)') plt.text(0, 100,caption_text_g1, fontsize=12) label = '761.1 M DOFs, 32 MPI/node, 1 OMP thread, muelu v27.xml' plt.figure(fig3,figsize=[10,10]) plt.loglog(t_avg_g1[:,1],t_avg_g1[:,-1],'s-',label=label,color=color) plt.loglog(cores_g1,linear_time_g1,'--',label='Linear',color=color) plt.xlabel('Cores') plt.ylabel('Mean Time per Timestep (s)') plt.legend() plt.figure(fig4,figsize=[10,10]) plt.loglog(t_avg_g1[:,0],t_avg_g1[:,-1],'s-',label=label,color=color) plt.loglog(dof_per_core_g1,linear_time_g1,'--',label='linear',color=color) plt.xlabel('DOFs per Core') plt.ylabel('Mean Time per Timestep (s)') plt.legend() #################################### # Save plots #################################### plt.figure(fig1); plt.savefig(root_dir+fig1+'.png',dpi=400) plt.figure(fig2); plt.savefig(root_dir+fig2+'.png',dpi=400) plt.figure(fig3); plt.savefig(root_dir+fig3+'.png',dpi=400) plt.figure(fig4); plt.savefig(root_dir+fig4+'.png',dpi=400)
2.421875
2
code/src/plan2scene/crop_select/util.py
madhawav/plan2scene
305
12787325
<gh_stars>100-1000 from plan2scene.common.image_description import ImageDescription, ImageSource from plan2scene.common.residence import Room, House from plan2scene.config_manager import ConfigManager from plan2scene.texture_gen.predictor import TextureGenPredictor from plan2scene.texture_gen.utils.io import load_conf_eval import logging import os.path as osp from plan2scene.utils.io import load_image def fill_texture_embeddings(conf: ConfigManager, house: House, predictor: TextureGenPredictor) -> None: """ Compute surface texture embeddings of a house :param conf: Config Manager :param house: House processed :param predictor: Predictor with loaded checkpoint """ for room_index, room in house.rooms.items(): assert isinstance(room, Room) for photo in room.photos: for surface in conf.surfaces: surface_instances = [i for i in range(conf.texture_gen.masks_per_surface[surface])] for surface_instance in surface_instances: for crop_instance in range(conf.texture_gen.crops_per_mask): candidate_key = <KEY> (photo, surface_instance, crop_instance) if osp.exists(osp.join(conf.data_paths.rectified_crops_path, surface, candidate_key + ".png")): image = load_image( osp.join(conf.data_paths.rectified_crops_path, surface, candidate_key + ".png")) emb, loss = predictor.predict_embs([image]) room.surface_textures[surface][candidate_key] = ImageDescription(image, ImageSource.NEURAL_SYNTH) room.surface_embeddings[surface][candidate_key] = emb room.surface_losses[surface][candidate_key] = loss def fill_house_textures(conf: ConfigManager, house: House, image_source: ImageSource, skip_existing_textures: bool, key="prop", predictor: TextureGenPredictor = None) -> None: """ Synthesize textures for a house using the assigned texture embeddings. :param conf: Config Manager :param house: House to populate textures :param key: Key of candidate texture embeddings. :param image_source: Generator of the images :param predictor: Predictor used to synthesize textures :param skip_existing_textures: Do no synthesize if a texture already exist """ if predictor is None: predictor = TextureGenPredictor( conf=load_conf_eval(config_path=conf.texture_gen.texture_synth_conf), rgb_median_emb=conf.texture_gen.rgb_median_emb) predictor.load_checkpoint(checkpoint_path=conf.texture_gen.checkpoint_path) for room_index, room in house.rooms.items(): assert isinstance(room, Room) for surface in room.surface_embeddings: if key in room.surface_embeddings[surface]: if skip_existing_textures and key in room.surface_textures[surface]: continue generated_crops, substance_names, extra = predictor.predict_textures( combined_embs=[room.surface_embeddings[surface][key]], multiplier=conf.texture_gen.output_multiplier) room.surface_textures[surface][key] = ImageDescription(generated_crops[0], image_source) def fill_textures(conf: ConfigManager, houses: dict, image_source: ImageSource, skip_existing_textures: bool, key: str = "prop", log: bool = True, predictor: TextureGenPredictor = None) -> None: """ Synthesize textures for houses using the assigned texture embeddings. :param conf: Config manager :param houses: Dictionary of houses. :param image_source: Image source specified to the synthesized textures :param skip_existing_textures: Specify true to keep existing textures. Specify false to replace existing textures with new textures. :param key: Key of embeddings used to synthesize textures. :param log: Set true to enable logging. :param predictor: Predictor used to synthesize textures. """ if predictor is None: predictor = TextureGenPredictor( conf=load_conf_eval(config_path=conf.texture_gen.texture_synth_conf), rgb_median_emb=conf.texture_gen.rgb_median_emb) predictor.load_checkpoint(checkpoint_path=conf.texture_gen.checkpoint_path) for i, (house_key, house) in enumerate(houses.items()): if log: logging.info("[%d/%d] Generating Textures %s" % (i, len(houses), house_key)) fill_house_textures(conf, house, skip_existing_textures=skip_existing_textures, key=key, predictor=predictor, image_source=image_source) def get_least_key(kv): """ Given a dictionary, returns the key with minimum value. :param kv: Dictionary considered. :return: Key with the minimum value. """ min_k = None min_v = None for k, v in kv.items(): if min_v is None or v.item() < min_v: min_k = k min_v = v.item() return min_k def vgg_crop_select(conf: ConfigManager, house: House, predictor: TextureGenPredictor) -> None: """ Assigns the least VGG loss crop for each surface of the house. :param conf: ConfigManager :param house: House to update :param predictor: Predictor used to synthesize textures """ for room_index, room in house.rooms.items(): assert isinstance(room, Room) # Calculate the least VGG loss embeddings for surface in room.surface_embeddings: least_key = get_least_key(room.surface_losses[surface]) if least_key is not None: room.surface_embeddings[surface] = {"prop": room.surface_embeddings[surface][least_key]} room.surface_losses[surface] = {"prop": room.surface_losses[surface][least_key]} else: room.surface_embeddings[surface] = {} room.surface_losses[surface] = {} fill_textures(conf, {house.house_key: house}, predictor=predictor, log=False, image_source=ImageSource.VGG_CROP_SELECT, skip_existing_textures=False)
2.109375
2
barbante/recommendation/tests/TestRecommenderHRChunks.py
hypermindr/barbante
10
12787326
""" Test module for barbante.recommendation.RecommenderHRChunks class. """ import nose.tools import barbante.tests as tests from barbante.recommendation.tests.fixtures.HybridRecommenderFixture import HybridRecommenderFixture class TestRecommenderHRChunks(HybridRecommenderFixture): """ Class for testing barbante.recommendation.RecommenderHRChunks. """ def __init__(self): super().__init__() self.set_algorithm('HRChunks') def test_merge_algorithm_contributions(self): """ Tests the merge based on fixed slices. """ recommendations = {"UBCF": [[[50], "UBCF_1"], [[30], "UBCF_2"], [[10], "UBCF_3"], [[5], "UBCF_4"], [[2], "UBCF_5"]], "PBCF": [[[50], "PBCF_1"], [[30], "PBCF_2"], [[10], "PBCF_3"], [[5], "PBCF_4"]], "CB": [[[50], "CB_1"], [[40], "CB_2"], [[30], "CB_3"], [[20], "CB_4"], [[10], "CB_5"], [[9], "CB_6"], [[8], "CB_7"], [[7], "CB_8"], [[4], "CB_9"]], "POP": [[[50], "POP_1"], [[30], "POP_2"], [[10], "POP_3"], [[5], "POP_4"], [[4], "POP_5"], [[3], "POP_6"], [[4], "POP_7"]]} session = tests.init_session(user_id="u_eco_1", algorithm=self.algorithm) recommender = session.get_recommender() merged_recommendations = recommender.merge_algorithm_contributions(recommendations, 20) products_rank = [rec[1] for rec in merged_recommendations] nose.tools.eq_(products_rank, ['UBCF_1', 'PBCF_1', 'CB_1', 'CB_2', 'UBCF_2', 'PBCF_2', 'CB_3', 'CB_4', 'UBCF_3', 'PBCF_3', 'CB_5', 'CB_6', 'UBCF_4', 'PBCF_4', 'CB_7', 'CB_8', 'UBCF_5', 'CB_9'], "Wrong rank after merge")
2.015625
2
TicTak.py
serglit72/Python_exercises
0
12787327
from random import randint from IPython.display import clear_output def display(grid,player_a,player_b): print("_1_"+'|'+"_2_"+'|'+"_3_") print("_4_"+'|'+"_5_"+'|'+"_6_"+" Player A ("+player_a+") uses key "+marker+" !! ") print(" 7 "+'|'+" 8 "+'|'+" 9 "+" Player B ("+player_b+") uses key "+ marker_b ) print("________________________________") print("LETS PLAY on {}x{} !!!".format(grid,grid)) print("Use digit keys for input your step!") def marker(): marker = "" marker_b = "" while marker !='X' or marker !=int("0"): marker = input("Player A should choose a marker X or 0 : ") if marker == "X": marker_b = "0" break elif marker == "0": marker_b = "X" break return marker, marker_b # def who_start(player_a ,player_b): # dice = {"n1":0, # "n2":0} # for i in range(1,3): # if dice["n1"] == dice["n2"]: # if i == 1: # print("{} should click 'Whitespace' button".format(player_a)) # if input(" "): # dice["n1"] = randint(1,6) # continue # elif i == 2: # print("{} should click 'Whitespace' button".format(player_b)) # if input(" "): # dice["n2"] = randint(1,6) # if dice["n1"] > dice["n2"]: # result = 1 # print("{} is going to start".format(player_a)) # return result # elif int(dice[0]) < int(dice[1]): # result = 2 # print("{} is going to start".format(player_b)) # return result # else: # print("Start again") # else: # return result def game(player_a,player_b, marker, marker_b): i = 1 j = 1 positions = [] steps = list(range(11,20)) # while j<10: while (steps[0]!=steps[3]!=steps[6] or \ steps[1]!=steps[4]!=steps[7] or \ steps[2]!=steps[5]!=steps[8] or \ steps[0]!=steps[1]!=steps[2] or \ steps[3]!=steps[4]!=steps[5] or \ steps[6]!=steps[7]!=steps[8] or \ steps[0]!=steps[4]!=steps[8] or \ steps[2]!=steps[4]!=steps[6]) or j<10 : if i%2==0: s = input("Player {} with {} turn : ".format(player_b,marker_b)) if s not in positions: steps[int(s)-1] = marker_b positions.append(s) i+=1 j+=1 elif s in positions: print("Warning!!!!") continue else: s = input("Player {} with {} turn : ".format(player_a,marker)) if s not in positions: steps[int(s)-1] = marker positions.append(s) i+=1 j+=1 elif s in positions: print("Warning!!!!") continue else: print("nobody won- try again",net(steps)) # steps[0]==steps[3]==steps[6] or \ # steps[1]==steps[4]==steps[7] or \ # steps[2]==steps[5]==steps[8] or \ # steps[0]==steps[1]==steps[2] or \ # steps[3]==steps[4]==steps[5] or \ # steps[6]==steps[7]==steps[8] or \ # steps[0]==steps[4]==steps[8] or \ # steps[2]==steps[4]==steps[6] # print("i won",net(steps)) print(player_a+" won",net(steps)) return(steps) def net(steps): print("_"+str(steps[0])+"_|_"+str(steps[1])+"_|_"+str(steps[2])+"_") print("_"+str(steps[3])+"_|_"+str(steps[4])+"_|_"+str(steps[5])+"_") print(" "+str(steps[6])+" | "+str(steps[7])+" | "+str(steps[8])+" ") #Here are instruction for the DEFs player_a = input("Give me a Player A name? : ") player_b = input("Give me a Player B name? : ") marker,marker_b = marker() # who_start(player_a,player_b) # print(display(3,player_a,player_b)) game(player_a,player_b, marker, marker_b)
3.859375
4
common/OpTestQemu.py
vaibhav92/op-test-framework
0
12787328
<reponame>vaibhav92/op-test-framework #!/usr/bin/env python2 # # OpenPOWER Automated Test Project # # Contributors Listed Below - COPYRIGHT 2015,2017 # [+] International Business Machines Corp. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. """ Support testing against Qemu simulator """ import atexit import sys import time import pexpect import subprocess import tempfile from common.Exceptions import CommandFailed from common import OPexpect class ConsoleState(): DISCONNECTED = 0 CONNECTED = 1 class QemuConsole(): """ A 'connection' to the Qemu Console involves *launching* qemu. Terminating a connection will *terminate* the qemu process. """ def __init__(self, qemu_binary=None, skiboot=None, kernel=None, initramfs=None, logfile=sys.stdout, hda=None, cdrom=None): self.qemu_binary = qemu_binary self.skiboot = skiboot self.kernel = kernel self.initramfs = initramfs self.hda = hda self.state = ConsoleState.DISCONNECTED self.logfile = logfile self.cdrom = cdrom def terminate(self): if self.state == ConsoleState.CONNECTED: print "#Qemu TERMINATE" self.sol.terminate() self.state = ConsoleState.DISCONNECTED def close(self): if self.state == ConsoleState.DISCONNECTED: return print "Qemu close -> TERMINATE" self.sol.terminate() self.state = ConsoleState.DISCONNECTED def connect(self): if self.state == ConsoleState.CONNECTED: self.sol.terminate() self.state = ConsoleState.DISCONNECTED print "#Qemu Console CONNECT" cmd = ("%s" % (self.qemu_binary) + " -M powernv -m 4G" + " -nographic" + " -bios %s" % (self.skiboot) + " -kernel %s" % (self.kernel) ) if self.initramfs is not None: cmd = cmd + " -initrd %s" % (self.initramfs) if self.hda is not None: cmd = cmd + " -hda %s" % (self.hda) if self.cdrom is not None: cmd = cmd + " -cdrom %s" % (self.cdrom) cmd = cmd + " -netdev user,id=u1 -device e1000,netdev=u1" cmd = cmd + " -device ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10" print cmd solChild = OPexpect.spawn(cmd,logfile=self.logfile) self.state = ConsoleState.CONNECTED self.sol = solChild return solChild def get_console(self): if self.state == ConsoleState.DISCONNECTED: self.connect() count = 0 while (not self.sol.isalive()): print '# Reconnecting' if (count > 0): time.sleep(1) self.connect() count += 1 if count > 120: raise "IPMI: not able to get sol console" return self.sol def run_command(self, command, timeout=60): console = self.get_console() console.sendline(command) console.expect("\n") # from us rc = console.expect(["\[console-pexpect\]#$",pexpect.TIMEOUT], timeout) output = console.before console.sendline("echo $?") console.expect("\n") # from us rc = console.expect(["\[console-pexpect\]#$",pexpect.TIMEOUT], timeout) exitcode = int(console.before) if rc == 0: res = output.replace("\r\r\n", "\n") res = res.splitlines() if exitcode != 0: raise CommandFailed(command, res, exitcode) return res else: res = console.before res = res.split(command) return res[-1].splitlines() # This command just runs and returns the ouput & ignores the failure def run_command_ignore_fail(self, command, timeout=60): try: output = self.run_command(command, timeout) except CommandFailed as cf: output = cf.output return output class QemuIPMI(): """ Qemu has fairly limited IPMI capability, and we probably need to extend the capability checks so that more of the IPMI test suite gets skipped. """ def __init__(self, console): self.console = console def ipmi_power_off(self): """For Qemu, this just kills the simulator""" self.console.terminate() def ipmi_wait_for_standby_state(self, i_timeout=10): """For Qemu, we just kill the simulator""" self.console.terminate() def ipmi_set_boot_to_petitboot(self): return 0 def ipmi_sel_check(self, i_string="Transition to Non-recoverable"): pass def sys_set_bootdev_no_override(self): pass class OpTestQemu(): def __init__(self, qemu_binary=None, skiboot=None, kernel=None, initramfs=None, cdrom=None, logfile=sys.stdout, hda=None): if hda is not None: self.qemu_hda_file = tempfile.NamedTemporaryFile(delete=True) atexit.register(self.__del__) else: self.qemu_hda_file = hda create_hda = subprocess.check_call(["qemu-img", "create", "-fqcow2", self.qemu_hda_file.name, "10G"]) self.console = QemuConsole(qemu_binary, skiboot, kernel, initramfs, logfile=logfile, hda=self.qemu_hda_file.name, cdrom=cdrom) self.ipmi = QemuIPMI(self.console) def __del__(self): self.qemu_hda_file.close() def get_host_console(self): return self.console def get_ipmi(self): return self.ipmi def power_off(self): self.console.terminate() def power_on(self): self.console.connect() def get_rest_api(self): return None def has_os_boot_sensor(self): return False def has_occ_active_sensor(self): return False def has_host_status_sensor(self): return False
2.5
2
day10/script.py
SemicolonAndV/AoC2020
0
12787329
from collections import defaultdict with open('day10/input.txt', 'r') as file: data = sorted([int(x.strip()) for x in file.readlines()]) data = [0] + data data.append(data[-1] + 3) jolt_1, jolt_3 = 0, 0 for i in range(len(data)): current = data[i - 1] if (data[i] - current) == 1: jolt_1 += 1 elif (data[i] - current) == 3: jolt_3 += 1 jumps = [1, 2, 3] routes = defaultdict(int) # default value is 0 routes[0] = 1 for i in data[1:]: routes[i] = sum([routes[i - j] for j in jumps]) print(f"Result 1: {jolt_1 * jolt_3}\nResult 2: {routes[data[-1]]}")
3.40625
3
LMM/association/networkGWAS_snpSet.py
BorgwardtLab/networkGWAS
1
12787330
<reponame>BorgwardtLab/networkGWAS ''' Compared to the original implementation at https://github.com/fastlmm/FaST-LMM/ this file has been modified by <NAME> ''' from pysnptools.util.mapreduce1.runner import * import time import argparse import pandas as pd from IPython import embed from association import FastLmmSet from association.FastLmmSet import FastLmmSet def networkGWAS_snpSet(test_snps, set_list, phenotype, covariate = None, output_file = None, test_type = "lrt", kernel = None, standardize_data = None): """ Function performing GWAS on sets of snps Input ---------------------------------------------------------------------------------------------- test_snps: The base name of the file containing the SNPs for alternative kernel. The file must be in PLINK Bed format (string) set_list: The name of a tab-delimited file defining the sets. The file should contain two-columns 'snp' and 'set' (string) pheno: The name of a file containing the phenotype. The file must be in PLINK phenotype format (string) covariate: covariate information, optional: The name of a file in PLINK phenotype format (string) output_file: Name of file to write results to, optional. If not given, no output file will be created (string) test_type: 'lrt' (default) (string) Output -------------------------------------------------------------------------------------------------- results: Pandas dataframe with one row per set. """ if(kernel == "lin"): print('LINEAR KERNEL') KERNEL = {'type':'linear'} elif(kernel == 'poly'): print('POLYNOMIAL KERNEL') KERNEL = {'type':'polynomial'} nullModel = {'effect':'fixed', 'link':'linear'} altModel = {'effect':'mixed', 'link':'linear'} fastlmm_set = FastLmmSet(outfile = output_file, phenofile = phenotype, alt_snpreader = test_snps, altset_list = set_list, covarfile = covariate, test = test_type, autoselect = False, nullModel = nullModel, altModel = altModel, kernel = KERNEL, standardize_data = standardize_data ) # Running through all the sets and permutations sequence = fastlmm_set.work_sequence() # the following few lines of code permit to run # the actual analysis. In fact, sequence is a generator # which return a function. With next(generator), the # function is run. flag = True result_list = [] while(flag): try: result = next(sequence) result_list.append(result[0]) except StopIteration: flag = False observed_statistics, null_distribution = fastlmm_set.reduce(result_list) return observed_statistics, null_distribution
2.328125
2
examples/horse2zebra.py
tmabraham/unpaired-img2img-translation
0
12787331
from fastai.vision.all import * from fastai.basics import * from upit.models.cyclegan import * from upit.train.cyclegan import * from upit.data.unpaired import * import argparse if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--experiment_name', type=str, default='horse2zebra') parser.add_argument('--model_name', type=str, default='cyclegan', choices=['cyclegan', 'dualgan','ganilla']) parser.add_argument('--batch_size', type=int, default=1, help='Batch size') parser.add_argument('--epochs_flat', type=int, default=100, help='Number of epochs with flat LR') parser.add_argument('--epochs_decay', type=int, default=100, help='Number of epochs with linear decay of LR') parser.add_argument('--lr', type=float, default=0.0002, help='Learning rate') parser.add_argument('--gpu', type=int, default=0, help='GPU ID') args = parser.parse_args() torch.cuda.set_device(args.gpu) dls = get_dls_from_hf("huggan/horse2zebra", load_size=286, bs=args.batch_size) if args.model_name == 'cyclegan': cycle_gan = CycleGAN() learn = cycle_learner(dls, cycle_gan, opt_func=partial(Adam,mom=0.5,sqr_mom=0.999)) elif args.model_name == 'dualgan': dual_gan = DualGAN() learn = dual_learner(dls, dual_gan, opt_func=partial(Adam,mom=0.5,sqr_mom=0.999)) elif args.model_name == 'ganilla': ganilla = GANILLA() learn = cycle_learner(dls, ganilla, opt_func=partial(Adam,mom=0.5,sqr_mom=0.999)) learn.fit_flat_lin(args.epochs_flat, args.epochs_decay, args.lr) learn.save(args.experiment_name+'_'+args.model_name+'_'+str(args.batch_size)+'_'+str(args.epochs_flat)+'_'+str(args.epochs_decay)+'_'+str(args.lr)) learn.model.push_to_hub(args.experiment_name+'_'+args.model_name)
2.25
2
String Functions/palindrome1.py
adrikagupta/Must-Know-Programming-Codes
13
12787332
<filename>String Functions/palindrome1.py # to check string is a palindrome ro not #for easy understanding for the logic of palindrome def palindrome(word): #reverse of the string reverse = rev_string(word) if (word == reverse): print('Palindrome') else: print('Not a palindrome') def rev_string(word): new_word = '' for index in range(len(word),0,-1): new_word += word[index-1] return new_word palindrome('madam')
4.34375
4
src/cefpython3.wx/__init__.py
donalm/cefpython
1
12787333
<filename>src/cefpython3.wx/__init__.py<gh_stars>1-10 # This dummy file is overwritten by "__init__.py.template", see: # cefpython/windows/installer/ # cefpython/linux/installer/
1.351563
1
lib/python/modules/dxxtools/setup.py
tetsuzawa/spatial-research
0
12787334
<filename>lib/python/modules/dxxtools/setup.py from setuptools import setup setup( name="dxxtools", version="0.1.4", description="dxxtools is a package of useful tools for .DXX", packages=["dxxtools"], install_requires=["dxx", "numpy", "matplotlib"], entry_points={ "console_scripts": [ "vs_plot_dxx = dxxtools.vs_plot:main", "upsampling_dxx = dxxtools.upsampling:main" ] }, author="<NAME>", author_email="<EMAIL>", url="https://github.com/tetsuzawa/spatial-research/tree/master/modules/dxxtools" )
1.414063
1
estore_project/users/migrations/0003_auto_20210504_1555.py
Jawayria/estore_project
0
12787335
# Generated by Django 3.1.8 on 2021-05-04 15:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0002_auto_20210504_1433'), ] operations = [ migrations.RemoveField( model_name='user', name='first_name', ), migrations.RemoveField( model_name='user', name='last_name', ), migrations.AddField( model_name='user', name='name', field=models.CharField(blank=True, max_length=255, verbose_name='Name of User'), ), ]
1.664063
2
practice_problems/trees_graphs/bst_sequence.py
YazzyYaz/codinginterviews
0
12787336
<filename>practice_problems/trees_graphs/bst_sequence.py import pprint def bst_sequences(bst): return bst_sequences_partial([], [bst]) def bst_sequences_partial(partial, subtrees): if not len(subtrees): return [partial] sequences = [] for index, subtree in enumerate(subtrees): next_partial = partial + [subtree.value] next_subtrees = subtrees[:index] + subtrees[index+1:] if subtree.left: next_subtrees.append(subtree.left) if subtree.right: next_subtrees.append(subtree.right) sequences += bst_sequences_partial(next_partial, next_subtrees) return sequences class Node(): def __init__(self, value=None, left=None, right=None): self.value, self.left, self.right = value, left, right tree = Node(7,Node(4,Node(5)),Node(9)) pprint.pprint(bst_sequences(tree))
3.625
4
PythonTest/clock.py
linux-flower/Python-Clock
0
12787337
from tkinter import * from datetime import datetime # Colors black: str = "#3d3d3d" # Preto white: str = "#fafcff" # Branco green: str = "#21c25c" # Verde red: str = "#eb463b" # Vermelho grey: str = "#dedcdc" # Cinza blue: str = "#3080f0" # Azul wallpeper: str = white color = black window = Tk() window.title("Digital Clock") window.geometry("380x150") window.resizable(width=FALSE, height=FALSE) window.configure(bg=white) bt = Button(window, width=20, text='OK') bt.place(x=100, y=150) def clock(): time = datetime.now() hour = time.strftime("%H:%M:%S") week_day = time.strftime("%A") day = time.day mont = time.strftime("%B") year = time.strftime("%Y") text.config(text=hour) text.after(1000, clock) text1.config(text=week_day + " " + str(day) + "/" + str(mont) + "/" + str(year)) text = Label(window, text="", font='Arial 70 ', bg=wallpeper, fg=color) text.grid(row=0, column=0, stick=NW, padx=5) text1 = Label(window, text="", font="Arial 20 italic", bg=wallpeper, fg=color) text1.grid(row=1, column=0, stick=NW, padx=5) clock() window.mainloop()
3.59375
4
mi-oj/NC30.py
wisesky/LeetCode-Practice
0
12787338
# # return the min number # @param arr int整型一维数组 the array # @return int整型 # class Solution: def minNumberdisappered(self , arr ): # write code here # idx = float('inf') for i, num in enumerate(arr): if num == 1: break else: return 1 st = 2 pos = i+1 while pos in range(len(arr)) and arr[pos] == st: st += 1 pos += 1 return st l = [-1,2,3,4,] l = [1,2,3,5] so = Solution() res = so.minNumberdisappered(l) print(res)
3.1875
3
ninjia/preprocess/align_garbbed_csv.py
taohu88/ninjia
0
12787339
<gh_stars>0 import sys import re from dateutil.parser import parse EMAIL_REGEX = re.compile(r"[^@]+@[^@]+\.[^@]+") def is_email_address(txt): return EMAIL_REGEX.match(txt) def is_tax_flags(txt): return txt.endswith("NNNNNNN") def is_date(txt): try: parse(txt) return True except ValueError: return False def is_large_number(txt): try: f = float(txt) if f > 1.0e7: return True except ValueError: pass return False COLUMNS_FOR_OFFSET = { 'TaxFlags': is_tax_flags, } COL_IDX = {} COLUMNS_TO_CHECK = { 'Email': is_email_address, 'DateOpened': is_date, 'LastUpdate' : is_date, 'ValidFrom': is_date, 'ValidUntil': is_date, } def find_offset(items, cols_for_offset, col_idx, max_offset=5): for c, fun in cols_for_offset.items(): idea_idx = col_idx[c] start = max(idea_idx - max_offset, 0) end = min(idea_idx+max_offset, len(items)) for i in range(start, end): if fun(items[i]): return i - idea_idx raise Exception(f"Can't find valid item in {items}") def is_valid_row(items, offset, cols_to_check, col_idx): for c, fun in cols_to_check.items(): idea_idx = col_idx[c] true_idx = idea_idx + offset if not fun(items[true_idx]): raise Exception(f"Invalid item {items[true_idx]} at {true_idx} = {idx} - {offset}") return True EXCLUDE_COLS = range(2, 13) def process_header(line, sep=","): cols = line.split(sep=sep) new_cols = [] for i, col in enumerate(cols): if i in EXCLUDE_COLS: continue COL_IDX[col] = i new_cols.append(col) print('BBB', COL_IDX) return new_cols def process_line(line, sep=",", safe_cols=2): items = line.split(sep=sep) offset = find_offset(items, COLUMNS_FOR_OFFSET, COL_IDX) new_items = [] for col, pos in COL_IDX.items(): if pos < safe_cols: true_idx = pos else: true_idx = pos + offset item = items[true_idx] new_items.append(item) if col in COLUMNS_TO_CHECK: fun = COLUMNS_TO_CHECK[col] if not fun(item): raise Exception(f"Failed to pass validation at {true_idx} {offset} for {line}") return new_items def process_file(ifile, ofile, num_line_print, out_sep='\t'): print('loading input data from file %s' % ifile) print('writing output to file %s' % ofile) with open(ofile, 'w', encoding='utf-8') as out, open(ifile, 'r', ) as f: for i, line in enumerate(f): try: line = line.rstrip() if i == 0: items = process_header(line) else: items = process_line(line) if i % num_line_print == 0: print(f'Processing line {i}') out.write("%s\n" % out_sep.join(items)) except Exception as e: print(f"Caught error at {i} {e}") if __name__ == "__main__": ifile = sys.argv[1] ofile = sys.argv[2] num_line_print = 1000 process_file(ifile, ofile, num_line_print)
2.8125
3
panaxea/core/Model.py
DarioPanada/panaxea
1
12787340
<reponame>DarioPanada/panaxea import os import sys import time from collections import defaultdict from panaxea.core.Schedule import Schedule class Model(object): """ Initializes a model object. The model object is the primary component of each simulation, holding the schedule, the environments, model properties, and the current progress in the simulation. Essentially, the model holds a snapshot of the simulation world at any point in progress. Attributes ---------- epochs : int The number of epochs the simulation should run for. verbose : bool, optional If set to true, output is sent to standard output. If set to false, output (Ie: print statements) is disabled. Defaults to true. properties: dict, optional Specifies a dictionary of property values. This can follow any format he developers need and should be adapted to the simulation's needs. Defaults to an empty dictionary. """ def __init__(self, epochs, verbose=True, properties=dict()): self.epochs = epochs self.schedule = Schedule() self.environments = dict() self.verbose = verbose self.current_epoch = 0 self.properties = properties self.exit = False self.output = defaultdict(dict) # Changing sys.stdout messes with unittests, so we will not do it # running from a test if not self.verbose and "unittest" not in sys.modules: sys.stdout = os.devnull def run(self): """ Runs the simulation for the number of epochs configured or until an the exit flag is set to true. Note that the state of the schedule, environments etc. will result altered after the model runs. If you wish to run the same model multiple times, you should first copy the original instance to a backup variable. """ epochs_time = [] for i in range(0, self.epochs): if self.exit: print("Exit flag set to true, finishing at epoch %s" % str( self.current_epoch)) break self.current_epoch = i start_time = time.time() print("Epoch %s" % i) self.schedule.step_schedule(self) time_taken = time.time() - start_time print("Epoch took %s seconds" % time_taken) epochs_time.append(time_taken) print("Total time %s" % str(sum(epochs_time))) if "unittest" not in sys.modules: sys.stdout = sys.__stdout__
3.453125
3
services/real-time-voice-cloning/test_service.py
arturgontijo/dnn-model-services
26
12787341
<gh_stars>10-100 import sys import grpc # import the generated classes import service.service_spec.voice_cloning_pb2_grpc as grpc_bt_grpc import service.service_spec.voice_cloning_pb2 as grpc_bt_pb2 from service import registry TEST_URL = "https://raw.githubusercontent.com/singnet/dnn-model-services/master/" \ "docs/assets/users_guide/ben_websumit19.mp3" TEST_SNT = "Given that most of the innovation in the AI algorithm and product worlds come from students, " \ "startups or independent developers." if __name__ == "__main__": try: test_flag = False if len(sys.argv) == 2: if sys.argv[1] == "auto": test_flag = True endpoint = input("Endpoint (localhost:{}): ".format( registry["voice_cloning_service"]["grpc"])) if not test_flag else "" if endpoint == "": endpoint = "localhost:{}".format(registry["voice_cloning_service"]["grpc"]) # open a gRPC channel channel = grpc.insecure_channel("{}".format(endpoint)) audio_url = input("Audio (link): ") if not test_flag else TEST_URL sentence = input("Sentence (~20 words): ") if not test_flag else TEST_SNT stub = grpc_bt_grpc.RealTimeVoiceCloningStub(channel) grpc_input = grpc_bt_pb2.Input(audio_url=audio_url, sentence=sentence) response = stub.clone(grpc_input) if response.audio == b"Fail": print("Fail!") exit(1) print("Audio file length:", len(response.audio)) except Exception as e: print(e) exit(1)
2.515625
3
screenshot.py
lizadaly/a-physical-book
78
12787342
<filename>screenshot.py import selenium.webdriver as webdriver from selenium.webdriver.support.ui import WebDriverWait import contextlib import time CHAPTERS = 590 @contextlib.contextmanager def quitting(thing): yield thing thing.quit() with quitting(webdriver.Firefox()) as driver: driver.set_window_size(500, 600) for i in range(0, CHAPTERS): driver.get('http://localhost/github/the-physical-book/?chapter={}'.format(i)) time.sleep(2) print("Snapping chapter {}".format(i)) driver.get_screenshot_as_file('images/{}.png'.format(i))
3.1875
3
notebooks/classic/solution/matplotlib-subplots.py
kmunve/ml-workshop
3
12787343
fig, ax = plt.subplots(2, sharex='all', figsize=(10, 5)) ax[0].plot(t, s) ax[0].set_ylabel('voltage (mV)') ax[0].set_title('Linear') ax[0].grid(True) ax[0].set_yscale('linear') ax[1].plot(t, s) ax[1].set_xlabel('time (s)') ax[1].set_ylabel('voltage (mV)') ax[1].set_title('Log') ax[1].grid(True) ax[1].set_yscale('log') fig.savefig("two-subplots.png")
2.421875
2
ton_metrics_push.py
certusone/ton_exporter
0
12787344
<gh_stars>0 #!/usr/bin/env python3.6 # Quick and dirty metrics exporter for the TON C++ node. import subprocess import argparse import tempfile import os import sys import json import base64 import binascii import re import pathlib parser = argparse.ArgumentParser() parser.add_argument('--output', help="node_exporter collector directory", required=True) parser.add_argument('--engine-console-binary', help="Binary path for validator-engine-console", required=True) parser.add_argument('--lite-client-binary', help="Binary path for lite-client", required=True) parser.add_argument('--validator-client-key', help="Validator client key", required=True) parser.add_argument('--validator-server-pub', help="Validator server pubkey", required=True) parser.add_argument('--wallet-address', help="Validator wallet address (0x...)", required=True) parser.add_argument('--liteserver-pub', help="Lite server pubkey", required=True) parser.add_argument('--election-dir', help="Election data directory generated by validator_msig.sh", required=True) parser.add_argument('--validator-config', help="Path to validator config.json", required=True) args = parser.parse_args() LITE_CLIENT = [ args.lite_client_binary, '-a', '127.0.0.1:3031', '-p', args.liteserver_pub ] # Request validator stats (local and chain time and height) output = subprocess.check_output([ args.engine_console_binary, '-a', '127.0.0.1:3030', '-k', args.validator_client_key, '-p', args.validator_server_pub, '-c', 'getstats', '-c', 'quit'], # https://github.com/ton-blockchain/ton/issues/292 stdin=subprocess.PIPE ) want = [ # Timestamp of local node. b'unixtime', # Timestamp of latest masterchain block seen. b'masterchainblocktime', # Block heights of masterchain. b'stateserializermasterchainseqno', b'shardclientmasterchainseqno', ] values = {} for line in output.split(b'\n'): parts = line.split(b'\t') if parts[0] in want: values[parts[0]] = parts[-1] elif parts[0] == b'masterchainblock': # TODO: Parse and collect *masterchainblock metrics masterchainblock = parts[-1] for k in want: # Assert that all metrics are present. The script needs to either return *all* metrics, # or fail completely. Otherwise, we could silently miss error states. values[k] # Get election ID (i.e. timestamp). RE_INT_RESULT = re.compile(rb'result: \[ (.*) \]') output = subprocess.check_output(LITE_CLIENT + ['-rc', 'runmethod -1:3333333333333333333333333333333333333333333333333333333333333333 active_election_id'], stdin=subprocess.PIPE) active_election_id = int(RE_INT_RESULT.findall(output)[0]) # Fetch amount of returned stake during election output = subprocess.check_output(LITE_CLIENT + [ '-rc', 'runmethod -1:3333333333333333333333333333333333333333333333333333333333333333 compute_returned_stake ' + args.wallet_address], stdin=subprocess.PIPE) returned_stake_amount = int(RE_INT_RESULT.findall(output)[0]) # Get block heights of individual shards. # Returns a list of [(shard_id, height)] tuples. output = subprocess.check_output(LITE_CLIENT + ['-rc', 'allshards'], stdin = subprocess.PIPE) allshards = re.findall(rb'^shard #(\d+) : \(\d,\d+,(\d+)\)', output, re.M) # Get list of active validators. # Returns a list of [(hex pubkey, stake weight, hex adnl_addr)] tuples. RE_VAL_CONFIG = re.compile(rb'value:\(validator_addr\n\s+public_key:\(ed25519_pubkey pubkey:x([A-Z0-9]+)\) weight:(\d+) adnl_addr:x([A-Z0-9]+)\)\)') output = subprocess.check_output(LITE_CLIENT + ['-rc', 'getconfig 34'], stdin = subprocess.PIPE) active_validators = RE_VAL_CONFIG.findall(output) # Get list of next validators (elected and soon-to-be active). output = subprocess.check_output(LITE_CLIENT + ['-rc', 'getconfig 36'], stdin = subprocess.PIPE) next_validators = RE_VAL_CONFIG.findall(output) # Get list of validators participating in the current election. # Returns a list of [(pubkey as big endian int, stake weight)] tuples. output = subprocess.check_output(LITE_CLIENT + ['-rc', 'runmethod -1:3333333333333333333333333333333333333333333333333333333333333333 participant_list'], stdin = subprocess.PIPE) for line in output.split(b'\n'): if b'result:' in line: election_participants = re.findall(rb'\[(\d+) (\d+)\]', line) break else: election_participants = [] # Get block creation stats # For performance reason, the regex will be evaluated later once we know which validator is active on the chain. RE_BLOCK_CREATION_STATS = re.compile( rb'(?:[A-Z0-9]+) mc_cnt:\(counter ' rb'last_updated:(?P<mc_last_updated>\d+) ' rb'total:(?P<mc_total>\d+) ' rb'cnt2048: (?P<mc_cnt2048>[0-9\.]+) ' rb'cnt65536: (?P<mc_cnt65536>[0-9\.]+)\) ' rb'shard_cnt:\(counter ' rb'last_updated:(?P<shard_last_updated>\d+) ' rb'total:(?P<shard_total>\d+) ' rb'cnt2048: (?P<shard_cnt2048>[0-9\.]+) ' rb'cnt65536: (?P<shard_cnt65536>[0-9\.]+)\)' ) creatorstats = subprocess.check_output( LITE_CLIENT + ['-rc', 'creatorstats ' + masterchainblock.decode()], stdin = subprocess.PIPE) # Read local validator config (same as running "getconfig" in the validator console). with open(args.validator_config, 'r') as f: cfg = json.load(f) # Each validator has three individual keys: # # - Validator public key. # - Node ID / temporary key (SHA256([0xc6, 0xb4, 0x13, 0x48] + pubkey)) # - ADNL address. # # Node ID and ADNL address are set in the validator config file, however, # the public key generated during an election isn't and we have to pull # it out of a log message. Once the validator elected, it's easy because # we can just look at the validator set, but we haven't found an easier way # to acquire the key during an election (I suppose we could look up the # election transaction, but that would be a lot more effort). # # Figure out last/current election's validator pubkey: # election_dir = pathlib.Path(args.election_dir) files = list(election_dir.glob("*-request-dump2")) if len(files) == 1: election_pubkey = re.findall( rb'Provided a valid Ed25519 signature .+? with validator public key ([A-Z0-9]+)', files[0].read_bytes())[0] elif len(files) > 1: print("Error: found multiple election state files: %r", files) sys.exit(1) else: election_pubkey = None # Write metrics and atomically replace metrics file. with tempfile.NamedTemporaryFile(delete=False, dir=args.output) as fp: # Validator stats (metric names are used verbatim). for k, v in values.items(): fp.write(b'ton_%s %s\n' % (k, v)) # If the config contains no validators, we won't return any validator metrics! for n, validator in enumerate(cfg['validators']): adnl_b64 = next(filter( lambda x: x['@type'] == 'engine.validatorAdnlAddress', validator['adnl_addrs']))['id'] adnl_addr = binascii.hexlify(base64.b64decode(adnl_b64)) node_id = binascii.hexlify(base64.b64decode(validator['id'])) fp.write(b'ton_validator_election_date{index="%d", adnl_addr="%s"} %d\n' % (n, adnl_addr, validator['election_date'])) fp.write(b'ton_validator_expire_at{index="%d", adnl_addr="%s"} %d\n' % (n, adnl_addr, validator['expire_at'])) for pubkey, weight, adnl_addr_ in next_validators: if adnl_addr_.lower() == adnl_addr: print("Next validator:", pubkey.lower(), weight, adnl_addr) fp.write(b'ton_validator_next_weight{adnl_addr="%s"} %s\n' % (adnl_addr, weight)) is_next = 1 break else: is_next = 0 for pubkey, weight, adnl_addr_ in active_validators: if adnl_addr_.lower() == adnl_addr: print("Active validator:", pubkey.lower(), weight, adnl_addr) fp.write(b'ton_validator_active_weight{adnl_addr="%s"} %s\n' % (adnl_addr, weight)) is_active = 1 # Parse creator stats for active validator for line in creatorstats.split(b'\n'): if line.startswith(pubkey.upper()): for k, v in RE_BLOCK_CREATION_STATS.match(line).groupdict().items(): fp.write(b'ton_validator_stats_%s{adnl_addr="%s"} %s\n' % (k.encode(), adnl_addr, v)) break else: is_active = 0 fp.write(b'ton_validator_is_active{adnl_addr="%s"} %d\n' % (adnl_addr, is_active)) fp.write(b'ton_validator_is_next{adnl_addr="%s"} %d\n' % (adnl_addr, is_next)) # Check whether the current election's newly generated validator pubkey shows up in participant_list for num_pubkey, stake in election_participants: if binascii.hexlify(int(num_pubkey).to_bytes(32, 'big')) == election_pubkey.lower(): election_participated = 1 break else: election_participated = 0 fp.write(b'ton_election_participated %d\n' % election_participated) fp.write(b'ton_election_active_id %d\n' % active_election_id) fp.write(b'ton_election_returned_stake_amount %d\n' % returned_stake_amount) for id_, height in allshards: fp.write(b'ton_shard_height{shard_id="%s"} %s\n' % (id_, height)) fp.write(b'\n') fp.flush() os.fchmod(fp.fileno(), 0o644) fp.close() os.rename(fp.name, os.path.join(args.output, 'ton.prom'))
1.992188
2
recipe_scrapers/cookingcircle.py
gloriousDan/recipe-scrapers
0
12787345
import re from ._abstract import AbstractScraper from ._utils import get_minutes class CookingCircle(AbstractScraper): @classmethod def host(cls): return "cookingcircle.com" def author(self): return ( self.soup.find("div", {"class": "recipe-author"}) .findChild("span", {"class": "text-uppercase"}) .get_text() ) def title(self): return self.schema.title() def category(self): return self.schema.category() def total_time(self): ul = self.soup.find("ul", {"class": "single-method-overview__times"}) totalTime = None for li in ul.find_all("li"): if li.span.get_text().lower() == "total time:": totalTime = li.span.find_next().get_text() if totalTime is not None: totalTime = re.findall("[0-9]+", totalTime)[0] return get_minutes(totalTime) def yields(self): return self.schema.yields() def image(self): return self.schema.image() def ingredients(self): ulList = ( self.soup.find( "div", {"class": "single-ingredients__group", "data-unit": "metric"} ) .findChild("ul", {"class": "single-ingredients__list"}) .findChildren("li") ) ingredients = [] for li in ulList: ingredients.append( li.get_text().replace("\t", "").replace("\n\n", " ").replace("\n", "") ) return ingredients def instructions(self): ulList = self.soup.find("ul", {"class": "single-method__method"}).findChildren( "li" ) instructions = [] for li in ulList: instructions.append(li.get_text().strip().replace("\n", " ")) return "\n".join(instructions)
2.421875
2
coro/dns/stub_resolver.py
mkushnir/shrapnel
1
12787346
<filename>coro/dns/stub_resolver.py # -*- Mode: Python -*- import coro import coro.dns import coro.dns.packet as packet import random class QueryFailed (Exception): pass class stub_resolver: def __init__ (self, nameservers, inflight=200): self.nameservers = nameservers self.inflight = coro.semaphore (inflight) self.inflight_ids = set() def lookup (self, qname, qtype, timeout=10, retries=3): m = packet.Packer() h = packet.Header() while 1: qid = random.randrange (65536) # avoid collisions if qid not in self.inflight_ids: break h.id = qid h.opcode = packet.OPCODE.QUERY h.rd = 1 h.qdcount = 1 m.addHeader (h) m.addQuestion (qname, qtype, packet.CLASS.IN) p = m.getbuf() for addr in self.nameservers: for i in range (retries): self.inflight.acquire (1) self.inflight_ids.add (qid) try: s = coro.udp_sock() s.connect ((addr, 53)) s.send (p) try: reply = coro.with_timeout (timeout, s.recv, 1000) u = packet.Unpacker (reply) result = u.unpack() rh = result[0] if rh.id != qid: raise QueryFailed ("bad id in reply") else: return result except coro.TimeoutError: pass finally: self.inflight.release (1) self.inflight_ids.remove (qid) raise QueryFailed ("no reply from nameservers") def gethostbyname (self, name, qtype): header, qdl, anl, nsl, arl = self.lookup (name, qtype) for answer in anl: name, rtype, _, ttl, addr = answer if getattr (packet.TYPE, rtype) == qtype: return addr else: raise QueryFailed ("no answer in nameserver reply") def resolve_ipv4 (self, name): return self.gethostbyname (name, packet.TYPE.A) def resolve_ipv6 (self, name): return self.gethostbyname (name, packet.TYPE.AAAA) def install (nameserver_ips): "install a stub resolver into the coro socket layer" coro.set_resolver ( stub_resolver (nameserver_ips) )
2.28125
2
validator/utils.py
digital-land/validator
0
12787347
import codecs import collections import sys import csv import os from os.path import basename, dirname import pandas as pd import magic import mimetypes from cchardet import UniversalDetector from validator.logger import get_logger tmp_dir = None logger = get_logger(__name__) def extract_data(path, standard): if looks_like_csv(path): media_type = 'text/csv' else: path, media_type = convert_to_csv(path) return csv_to_dict(path, media_type, standard) def convert_to_csv(path): media_type = magic.from_file(path, mime=True) tmp_path = csv_path(tmp_dir, path) try: excel = pd.read_excel(path) except: excel = None if excel is not None: excel.to_csv(tmp_path, index=None, header=True) return tmp_path, media_type logger.info(f"Unable to convert {path} from {media_type} to CSV") with open(tmp_path, 'w') as out: pass return tmp_path, media_type def csv_to_dict(csv_file, media_type, standard): result = { 'meta_data': { 'headers_found': [], 'additional_headers': [], 'missing_headers': [], 'media_type': media_type, 'suffix': suffix_for_media_type(media_type), }, 'rows': [], 'data': [], } encoding = detect_encoding(csv_file) with codecs.open(csv_file, encoding=encoding['encoding']) as f: reader = csv.DictReader(f) if reader.fieldnames: result['meta_data']['headers_found'] = reader.fieldnames result['meta_data']['additional_headers'] = list(set(result['meta_data']['headers_found']) - set(standard.current_standard_headers())) result['meta_data']['missing_headers'] = list(set(standard.current_standard_headers()) - set(result['meta_data']['headers_found'])) for row in reader: to_check = collections.OrderedDict() for column in standard.current_standard_headers(): value = row.get(column, None) if value is not None: to_check[column] = row.get(column) result['rows'].append(to_check) result['data'].append(row) return result def detect_encoding(file): detector = UniversalDetector() detector.reset() with open(file, 'rb') as f: for row in f: detector.feed(row) if detector.done: break detector.close() return detector.result def suffix_for_media_type(media_type): suffix = { 'application/vnd.ms-excel': '.xls', 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet': '.xlsx', } return suffix.get(media_type, mimetypes.guess_extension(media_type)) def get_markdown_for_field(field_name): from pathlib import Path current_directory = Path(__file__).parent.resolve() markdown_file = Path(current_directory, 'markdown', f'{field_name}.md') with open(markdown_file) as f: content = f.read() return content def looks_like_csv(file): try: encoding = detect_encoding(file) with open(file, encoding=encoding['encoding']) as f: content = f.read() if content.lower().startswith('<!doctype html'): return False csv.Sniffer().sniff(content) return True except Exception as e: # noqa return False def csv_path(_dir, path): path = os.path.join(_dir, basename(path)) if _dir else path return path + ".csv" def save_csv(data, file): if data: fieldnames = data[0].keys() if fieldnames: writer = csv.DictWriter(file, fieldnames=fieldnames) writer.writeheader() for row in data: writer.writerow(row)
2.859375
3
fix-links.py
jounile/jounileino.com
0
12787348
<filename>fix-links.py #!/usr/bin/python from bs4 import BeautifulSoup """ Before using this script run the following command: $ npm run build Hosting a static website in AWS S3 requires that names of the accessed object is exactly the one that a link points to. Astro creates a /dist directory with all the HTML pages. Astro creates also routes that have no .html extension. For example a link in Astro site points to /contact and the /dist directory contains a file named contact.html. In order to access that HTML page in a S3 bucket the link needs to point to a path with the .html extension. This script loops through the specified HTML files and adds the .html extension to links. for example this <a href="/contact">Link</a> becomes this <a href="/contact.html">Link</a> This script will update the links and write the prettified html content into each HTML file. After this script has executed you can sync the /dist directory content to S3 bucket. See the project README """ files = ["dist/index.html", "dist/contact.html"] for file in files: # Read html file f = open(file, 'r') html = f.read() soup = BeautifulSoup(html, "html.parser") for a_tag in soup.find_all('a'): old_href = a_tag['href'] if not str(old_href).startswith("https://"): new_href = old_href + ".html" a_tag['href'] = a_tag['href'].replace(old_href, new_href) soup = soup.prettify() print(soup) # Write modified html to file f = open(file, 'w') f.write(soup)
3.3125
3
tf_quat2rot/tests/test_quat2rot_graph_mode.py
risteon/tf_quat2rot
1
12787349
# -*- coding: utf-8 -*- __author__ = """<NAME>""" __email__ = "<EMAIL>" import tensorflow as tf import tf_quat2rot class TestGraphMode(tf.test.TestCase): @tf.function def _run_in_graph(self, batch_shape=(2, 1, 3)): self.assertTrue(not tf.executing_eagerly()) random_quats = tf_quat2rot.random_uniform_quaternion(batch_dim=batch_shape) random_rotations = tf_quat2rot.quaternion_to_rotation_matrix(random_quats) random_quats_restored = tf_quat2rot.rotation_matrix_to_quaternion( random_rotations ) return random_quats, random_quats_restored def test_graph_mode(self): with self.session(use_gpu=False): # single random quaternion batch_shape = (2, 1, 3) random_quats, random_quats_restored = self._run_in_graph(batch_shape) self.assertEqual(batch_shape + (4,), random_quats_restored.shape) self.assertAllClose(random_quats, random_quats_restored)
2.296875
2
00_Original/42_Insiderwissen/Generatoren_als_Konsumenten/konsumierender_generator_pipeline.py
felixdittrich92/Python3_book
0
12787350
<filename>00_Original/42_Insiderwissen/Generatoren_als_Konsumenten/konsumierender_generator_pipeline.py #!/usr/bin/env python # -*- coding: utf-8 -*- def konsument(f): def h_f(*args, **kwargs): gen = f(*args, **kwargs) next(gen) return gen return h_f @konsument def filter_hebe(stufe, ziel): while True: ziel.send(stufe + (yield)) @konsument def filter_mittelwert(fenster, ziel): werte = [] while True: werte.append((yield)) if len(werte) >= fenster: ziel.send(sum(werte)/fenster) werte.pop(0) @konsument def ausgabe(): while True: print((yield)) p = ausgabe() f = filter_hebe(10, p) f = filter_mittelwert(2, f) for d in [1, 3, 2, 4, 2, 1]: f.send(d)
2.578125
3