max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
contenido/tests/HU028_test.py
slinan/border
0
12786451
from django.test import TestCase from django.test import Client from django.contrib.auth.models import User from contenido.models import Audio # Create your tests here. class ContenidoTests(TestCase): def setUp(self): # Every test needs access to the request factory. user = User.objects.create_user( username='userTest', email='<EMAIL>', password='<PASSWORD>') audio = Audio() audio.nom_audio = "song1" audio.val_recurso = "http://la...." audio.fec_entrada_audio = "2016-10-08" audio.save() audio.likes.add(User.objects.get(id=user.id)) audio.save() def unlike_test_view(self): audio = Audio.objects.get(pk=1) total_likes_before = audio.likes.count() c = Client() response = c.post('/unlike/', {'song_id': 1}) audio = Audio.objects.get(pk=1) audio.likes.remove(User.objects.get(id=1)) total_likes_after = audio.likes.count() self.assertEqual(response.status_code, 200) self.assertEqual(total_likes_after, total_likes_before - 1)
2.484375
2
model/create_model_retinanet.py
Abdumaleek/SDK
1
12786452
import os import torch import numpy as np from pytorch_retinanet.loss import FocalLoss from pytorch_retinanet.retinanet import RetinaNet from pytorch_retinanet.encoder import DataEncoder import local_config from braille_utils import label_tools def create_model_retinanet(params, device): ''' Creates model and auxiliary functions :param params: OvoTools.AttrDict with parameters :param device: 'cuda'/'cpu' :return: model, detection_collate function, loss function ''' use_multiple_class_groups = params.data.get('class_as_6pt', False) num_classes = 1 if params.data.get_points else ([1]*6 if use_multiple_class_groups else 64) encoder = DataEncoder(**params.model_params.encoder_params) model = RetinaNet(num_layers=encoder.num_layers(), num_anchors=encoder.num_anchors(), num_classes=num_classes, num_fpn_layers=params.model_params.get('num_fpn_layers', 0)).to(device) retina_loss = FocalLoss(num_classes=num_classes, **params.model_params.get('loss_params', dict())) def detection_collate(batch): ''' :param batch: list of (tb image(CHW float), [(left, top, right, bottom, class),...]) сcoords in [0,1], extra_params :return: batch: ( images (BCNHW), ( encoded_rects, encoded_labels ) ) copied from RetinaNet, but a) accepts rects as input, b) returns (x,y) where y = (encoded_rects, encoded_labels) ''' # t = [b for b in batch if b[1].shape[0]==0] # if len(t): # pass #device = torch.device('cpu') # commented to use settings.device boxes = [torch.tensor(b[1][:, :4], dtype = torch.float32, device=device) *torch.tensor(params.data.net_hw[::-1]*2, dtype = torch.float32, device=device) for b in batch] labels = [torch.tensor(b[1][:, 4], dtype = torch.long, device=device) for b in batch] if params.data.get_points: labels = [torch.tensor([0]*len(lb), dtype = torch.long, device=device) for lb in labels] elif use_multiple_class_groups: # классы нумеруются с 0, отсутствие класса = -1, далее в encode cls_targets=1+labels labels = [torch.tensor([[int(ch)-1 for ch in label_tools.int_to_label010(int_lbl.item())] for int_lbl in lb], dtype=torch.long, device=device) for lb in labels] original_images = [b[3] for b in batch if len(b)>3] # batch contains augmented image if not in train mode imgs = [x[0] for x in batch] calc_cls_mask = torch.tensor([b[2].get('calc_cls', True) for b in batch], dtype=torch.bool, device=device) h, w = tuple(params.data.net_hw) num_imgs = len(batch) inputs = torch.zeros(num_imgs, 3, h, w).to(imgs[0]) loc_targets = [] cls_targets = [] for i in range(num_imgs): inputs[i] = imgs[i] labels_i = labels[i] if use_multiple_class_groups and len(labels_i.shape) != 2: # it can happen if no labels are on image labels_i = labels_i.reshape((0, len(num_classes))) loc_target, cls_target, max_ious = encoder.encode(boxes[i], labels_i, input_size=(w,h)) loc_targets.append(loc_target) cls_targets.append(cls_target) if original_images: # inference mode return inputs, ( torch.stack(loc_targets), torch.stack(cls_targets), calc_cls_mask), original_images else: return inputs, (torch.stack(loc_targets), torch.stack(cls_targets), calc_cls_mask) class Loss: def __init__(self): self.encoder = encoder pass def __call__(self, pred, targets): loc_preds, cls_preds = pred loc_targets, cls_targets, calc_cls_mask = targets if calc_cls_mask.min(): # Ничего не пропускаем calc_cls_mask = None loss = retina_loss(loc_preds, loc_targets, cls_preds, cls_targets, cls_calc_mask=calc_cls_mask) return loss def get_dict(self, *kargs, **kwargs): return retina_loss.loss_dict def metric(self, key): def call(*kargs, **kwargs): return retina_loss.loss_dict[key] return call return model, detection_collate, Loss() if __name__ == '__main__': pass
2.15625
2
bomberman/model/events.py
raphaelreme/bomberman
0
12786453
<reponame>raphaelreme/bomberman<filename>bomberman/model/events.py<gh_stars>0 """All the events used by the model based on the observer/observable event.""" from __future__ import annotations from . import entity from ..designpattern.event import Event class MazeStartEvent(Event): """At each new maze""" class MazeEndEvent(Event): """When a maze is released""" class GameEndEvent(Event): """When the game is done""" class StartScreenEvent(Event): """At the beginning of each start screen""" class ForwardStartScreenEvent(Event): "Could be used to update the start scren" class BonusScreenEvent(Event): """At the begining of each bonus screen""" class ForwardBonusScreenEvent(Event): """Could be used to update the bonus screen (animation ?)""" class MazeFailedEvent(Event): """When the maze is detected as failed""" class MazeSolvedEvent(Event): """When the maze is detected as solved""" class MazeEndingEvent(Event): """Each update of the maze, when it is ending""" class ExtraGameEvent(Event): """At the beginning of the extra game""" class HurryUpEvent(Event): """30s before time's up""" class ForwardTimeEvent(Event): """Notify the view of a progress in time""" def __init__(self, delay: float) -> None: super().__init__() self.delay = delay class EntityEvent(Event): def __init__(self, entity_: entity.Entity): super().__init__() self.entity = entity_ class NewEntityEvent(EntityEvent): pass class MovedEntityEvent(EntityEvent): pass class HitEntityEvent(EntityEvent): pass class RemovingEntityEvent(EntityEvent): """Each time the entity is removing""" class RemovedEntityEvent(EntityEvent): pass class LifeLossEvent(EntityEvent): """When a player loses a life (after its removing delay)""" class PlayerDetailsEvent(EntityEvent): """When a player details has to be updated""" class NoiseEvent(EntityEvent): """At each entity noise (Not all sounds)""" class StartRemovingEvent(EntityEvent): """when the entity reaches removing state""" class ScoreEvent(EntityEvent): """When score is earned Will trigger a score slider (Notify by the entity as a change of the maze) """ class ExtraLifeEvent(EntityEvent): """When a player completed EXTRA letters Will trigger a slider (Notify by the player as a change of the maze) """ def __init__(self, entity_: entity.Entity): super().__init__(entity_) self.entity: entity.Player
2.8125
3
aashe_bulletin/migrations/0001_use_ulysses_for_historical_issues.py
AASHE/aashe-bulletin
0
12786454
<reponame>AASHE/aashe-bulletin # -*- coding: utf-8 -*- """For all extant issues, use 'ulysses.html' for the HTML template. Previous templates expect one Category per Post; ulysses.html handles multiple Categories per Post. Since supporting multiple Categories per Post required a schema change, historical HTML templates won't work even for historical Issues. """ from __future__ import unicode_literals from django.db import migrations def update_issues(apps, schema_editor): Issue = apps.get_model("bulletin", "Issue") for issue in Issue.objects.all(): if issue.html_template_name: # Many old Issues have no HTML template. issue.html_template_name = "email_templates/ulysses.html" issue.save() class Migration(migrations.Migration): dependencies = [ ("bulletin", "0005_delete_post_field_category") ] operations = [ migrations.RunPython(update_issues) ]
1.984375
2
api/main.py
manucabral/CODAVI
11
12786455
<filename>api/main.py import pandas as pd import matplotlib.pyplot as plt import mysql.connector import base64 import io from flask import Flask from datetime import datetime app = Flask(__name__) FECHA_ACTUAL = datetime.now().date().isoformat() def obtenerDatosVacuna(): try: url = 'https://sisa.msal.gov.ar/datos/descargas/covid-19/files/Covid19VacunasAgrupadas.csv.zip' data = pd.read_csv(url) except Exception as Error: print('Hubo un error al leer el dataset', Error) sputnik = data.query('vacuna_nombre.str.contains("Sputnik")') astrazeneca = data.query('vacuna_nombre.str.contains("AstraZeneca")') sinopharm = data.query('vacuna_nombre.str.contains("Sinopharm")') covishield = data.query('vacuna_nombre.str.contains("COVISHIELD")') moderna = data.query('vacuna_nombre.str.contains("Moderna")') return sputnik, astrazeneca, sinopharm, covishield, moderna def obtenerDatosGenero(dosis): try: cnx = mysql.connector.connect( host="desconocido", port=3306, user="desconocido", password="<PASSWORD>", db="desconocido" ) cursor = cnx.cursor() except Exception: return { "status": 204, "titulo": f"Comparativa por género dosis {dosis}", "data": "No hay datos"} query = ( f"SELECT masculino, femenino, fecha FROM `x3lh5zri57nk7is6`.`generos` WHERE dosis = '{dosis}' and fecha = '{FECHA_ACTUAL}';") cursor.execute(query) result = cursor.fetchall() if len(result) == 0: return { "status": 204, "titulo": f"Comparativa por género dosis {dosis}", "data": "No hay datos actualizados para hoy."} cantidadMasculino, cantidadFemenino, fecha = result[0] cursor.close() cnx.close() return { "status": 200, "titulo": f"Comparativa por género dosis {dosis}", "descripcion": f'Cantidad de vacunados por género en la DOSIS {dosis}', "fecha": str(fecha), "dosis": f"{dosis}", "data": { "masculino": { "nombre": "Masculino", "total": int(cantidadMasculino), }, "femenino": { "nombre": "Femenino", "total": int(cantidadFemenino) } } } @app.errorhandler(404) def page_not_found(e): return "La ruta que buscas no existe." @app.route('/', methods=['GET']) def index(): return "Bienvenido a la API de Codavi." @app.route('/vacunas/<dosis>', methods=['GET']) def vacunas(dosis): titulo = None descripcion = None objetivo_dosis = None sputnik, astrazeneca, sinopharm, covishield, moderna = obtenerDatosVacuna() if int(dosis) == 1: titulo = 'Vacunas aplicadas en la primera dosis' descripcion = "Cantidad de vacunas aplicadas por marca en la primera dosis" objetivo_dosis = 'primera_dosis_cantidad' elif int(dosis) == 2: titulo = 'Vacunas aplicadas en la segunda dosis' descripcion = "Cantidad de vacunas aplicadas por marca en la segunda dosis" objetivo_dosis = 'segunda_dosis_cantidad' sputnik_total = sputnik[objetivo_dosis].sum() astrazeneca_total = astrazeneca[objetivo_dosis].sum() sinopharm_total = sinopharm[objetivo_dosis].sum() covishield_total = covishield[objetivo_dosis].sum() moderna_total = moderna[objetivo_dosis].sum() total = sputnik_total + astrazeneca_total + \ sinopharm_total + covishield_total + moderna_total x = ['Sputnik', 'AstraZeneca', 'Sinopharm', 'Covishield', 'Moderna'] y = [sputnik_total, astrazeneca_total, sinopharm_total, covishield_total, moderna_total] plt.bar(x, y, color='green') plt.ylabel('Cantidad') plt.xlabel('Marca') plt.title(titulo) img = io.BytesIO() plt.savefig(img, format='png', bbox_inches="tight") plt.close() img = base64.b64encode(img.getvalue()).decode("utf-8").replace("\n", "") return { "status": 200, "titulo": titulo, "descripcion": descripcion, "total": int(total), "grafico": img, "data": { "Sputnik": { "nombre": "Sputnik", "total": int(sputnik_total) }, "AstraZeneca": { "nombre": "AstraZeneca", "total": int(astrazeneca_total) }, "Sinopharm": { "nombre": "Sinopharm", "total": int(sinopharm_total) }, "Covishield": { "nombre": "Covishield", "total": int(covishield_total) }, "Moderna": { "nombre": "Moderna", "total": int(moderna_total) } } } @app.route('/genero/<dosis>', methods=['GET']) def genero(dosis=0): return obtenerDatosGenero(dosis)
3.046875
3
vcflat/tests/test_HeaderExtraction/test_populatevcfheader.py
arontommi/VCFlat
4
12786456
<gh_stars>1-10 import os from vcflat.HeaderExtraction import VcfHeader def get_input(samples_in_header=None): test_data_dir = os.path.join(os.path.dirname(__file__), "..", "test_data") i = os.path.join(test_data_dir, "test.snpeff.vcf") vcfh = VcfHeader(i, samples_in_header=samples_in_header) return vcfh def test_1(): """ checks that output is list """ assert type(get_input().header) is list def test_2(): """ checks that output not empty """ assert get_input().header is not None def test_3(): checklist = [ "#CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", ] """ checks if correct things are in the header """ assert all(i in get_input().header for i in checklist) def test_4(): checklist = [ "#CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "1", "2", "3", "4", ] assert all(i in get_input(samples_in_header="1 2 3 4").header for i in checklist)
2.46875
2
nova_powervm/tests/virt/powervm/tasks/test_network.py
UbuntuEvangelist/nova-powervm
0
12786457
# Copyright 2015 IBM Corp. # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import eventlet import mock from nova import exception from nova import objects from nova import test from pypowervm.tests import test_fixtures as pvm_fx from nova_powervm.tests.virt import powervm from nova_powervm.virt.powervm.tasks import network as tf_net def cna(mac): """Builds a mock Client Network Adapter for unit tests.""" nic = mock.MagicMock() nic.mac = mac nic.vswitch_uri = 'fake_href' return nic class TestNetwork(test.TestCase): def setUp(self): super(TestNetwork, self).setUp() self.apt = self.useFixture(pvm_fx.AdapterFx()).adpt self.mock_lpar_wrap = mock.MagicMock() self.mock_lpar_wrap.can_modify_io.return_value = True, None @mock.patch('nova_powervm.virt.powervm.vm.get_cnas') def test_unplug_vifs(self, mock_vm_get): """Tests that a delete of the vif can be done.""" inst = objects.Instance(**powervm.TEST_INSTANCE) # Mock up the CNA response. One should already exist, the other # should not. cnas = [cna('AABBCCDDEEFF'), cna('AABBCCDDEE11'), cna('AABBCCDDEE22')] mock_vm_get.return_value = cnas # Mock up the network info. This also validates that they will be # sanitized to upper case. net_info = [ {'address': 'aa:bb:cc:dd:ee:ff'}, {'address': 'aa:bb:cc:dd:ee:22'}, {'address': 'aa:bb:cc:dd:ee:33'} ] # Run method p_vifs = tf_net.UnplugVifs(self.apt, inst, net_info, 'host_uuid') p_vifs.execute(self.mock_lpar_wrap) # The delete should have only been called once. The second CNA didn't # have a matching mac...so it should be skipped. self.assertEqual(1, cnas[0].delete.call_count) self.assertEqual(0, cnas[1].delete.call_count) self.assertEqual(1, cnas[2].delete.call_count) def test_unplug_vifs_invalid_state(self): """Tests that the delete raises an exception if bad VM state.""" inst = objects.Instance(**powervm.TEST_INSTANCE) # Mock that the state is incorrect self.mock_lpar_wrap.can_modify_io.return_value = False, 'bad' # Run method p_vifs = tf_net.UnplugVifs(self.apt, inst, mock.Mock(), 'host_uuid') self.assertRaises(tf_net.VirtualInterfaceUnplugException, p_vifs.execute, self.mock_lpar_wrap) @mock.patch('nova_powervm.virt.powervm.vm.crt_vif') @mock.patch('nova_powervm.virt.powervm.vm.get_cnas') def test_plug_vifs_rmc(self, mock_vm_get, mock_vm_crt): """Tests that a crt vif can be done with secure RMC.""" inst = objects.Instance(**powervm.TEST_INSTANCE) # Mock up the CNA response. One should already exist, the other # should not. mock_vm_get.return_value = [cna('AABBCCDDEEFF'), cna('AABBCCDDEE11')] # Mock up the network info. This also validates that they will be # sanitized to upper case. net_info = [ {'address': 'aa:bb:cc:dd:ee:ff'}, {'address': 'aa:bb:cc:dd:ee:22'}, {'address': 'aa:bb:cc:dd:ee:33'} ] # Run method p_vifs = tf_net.PlugVifs(mock.MagicMock(), self.apt, inst, net_info, 'host_uuid') p_vifs.execute(self.mock_lpar_wrap) # The create should have only been called once. self.assertEqual(2, mock_vm_crt.call_count) @mock.patch('nova_powervm.virt.powervm.vm.crt_vif') @mock.patch('nova_powervm.virt.powervm.vm.get_cnas') def test_plug_vifs_rmc_no_create(self, mock_vm_get, mock_vm_crt): """Verifies if no creates are needed, none are done.""" inst = objects.Instance(**powervm.TEST_INSTANCE) # Mock up the CNA response. Both should already exist. mock_vm_get.return_value = [cna('AABBCCDDEEFF'), cna('AABBCCDDEE11')] # Mock up the network info. This also validates that they will be # sanitized to upper case. net_info = [ {'address': 'aa:bb:cc:dd:ee:ff'}, {'address': 'aa:bb:cc:dd:ee:11'} ] # Run method p_vifs = tf_net.PlugVifs(mock.MagicMock(), self.apt, inst, net_info, 'host_uuid') resp = p_vifs.execute(self.mock_lpar_wrap) # The create should not have been called. The response should have # been empty. self.assertEqual(0, mock_vm_crt.call_count) self.assertEqual([], resp) # State check shouldn't have even been invoked as no creates were # required self.assertEqual(0, self.mock_lpar_wrap.can_modify_io.call_count) @mock.patch('nova_powervm.virt.powervm.vm.crt_vif') @mock.patch('nova_powervm.virt.powervm.vm.get_cnas') def test_plug_vifs_invalid_state(self, mock_vm_get, mock_vm_crt): """Tests that a crt_vif fails when the LPAR state is bad.""" inst = objects.Instance(**powervm.TEST_INSTANCE) # Mock up the CNA response. Only doing one for simplicity mock_vm_get.return_value = [] net_info = [{'address': 'aa:bb:cc:dd:ee:ff'}] # Mock that the state is incorrect self.mock_lpar_wrap.can_modify_io.return_value = False, 'bad' # Run method p_vifs = tf_net.PlugVifs(mock.MagicMock(), self.apt, inst, net_info, 'host_uuid') self.assertRaises(exception.VirtualInterfaceCreateException, p_vifs.execute, self.mock_lpar_wrap) # The create should not have been invoked self.assertEqual(0, mock_vm_crt.call_count) @mock.patch('nova_powervm.virt.powervm.vm.crt_vif') @mock.patch('nova_powervm.virt.powervm.vm.get_cnas') def test_plug_vifs_timeout(self, mock_vm_get, mock_vm_crt): """Tests that crt vif failure via loss of neutron callback.""" inst = objects.Instance(**powervm.TEST_INSTANCE) # Mock up the CNA response. Only doing one for simplicity mock_vm_get.return_value = [cna('AABBCCDDEE11')] # Mock up the network info. net_info = [{'address': 'aa:bb:cc:dd:ee:ff'}] # Ensure that an exception is raised by a timeout. mock_vm_crt.side_effect = eventlet.timeout.Timeout() # Run method p_vifs = tf_net.PlugVifs(mock.MagicMock(), self.apt, inst, net_info, 'host_uuid') self.assertRaises(exception.VirtualInterfaceCreateException, p_vifs.execute, self.mock_lpar_wrap) # The create should have only been called once. self.assertEqual(1, mock_vm_crt.call_count) @mock.patch('nova_powervm.virt.powervm.vm.crt_secure_rmc_vif') @mock.patch('nova_powervm.virt.powervm.vm.get_secure_rmc_vswitch') @mock.patch('nova_powervm.virt.powervm.vm.crt_vif') @mock.patch('nova_powervm.virt.powervm.vm.get_cnas') def test_plug_mgmt_vif(self, mock_vm_get, mock_vm_crt, mock_get_rmc_vswitch, mock_crt_rmc_vif): """Tests that a mgmt vif can be created.""" inst = objects.Instance(**powervm.TEST_INSTANCE) # Mock up the rmc vswitch vswitch_w = mock.MagicMock() vswitch_w.href = 'fake_mgmt_uri' mock_get_rmc_vswitch.return_value = vswitch_w # Run method p_vifs = tf_net.PlugMgmtVif(self.apt, inst, 'host_uuid') p_vifs.execute([]) # The create should have only been called once. self.assertEqual(1, mock_crt_rmc_vif.call_count) @mock.patch('nova.utils.is_neutron') def test_get_vif_events(self, mock_is_neutron): # Set up common mocks. inst = objects.Instance(**powervm.TEST_INSTANCE) net_info = [mock.MagicMock(), mock.MagicMock()] net_info[0]['id'] = 'a' net_info[0].get.return_value = False net_info[1]['id'] = 'b' net_info[1].get.return_value = True # Set up the runner. p_vifs = tf_net.PlugVifs(mock.MagicMock(), self.apt, inst, net_info, 'host_uuid') # Mock that neutron is off. mock_is_neutron.return_value = False self.assertEqual([], p_vifs._get_vif_events()) # Turn neutron on. mock_is_neutron.return_value = True resp = p_vifs._get_vif_events() # Only one should be returned since only one was active. self.assertEqual(1, len(resp))
1.828125
2
wce_triage/lib/disk_images.py
pfrouleau/wce-triage-v2
3
12786458
# Copyright (c) 2019 <NAME> # MIT license - see LICENSE """disk_image scans the disk image candidate directories and returns availabe disk images for loading. """ import os, datetime, json, traceback from ..lib.util import get_triage_logger, init_triage_logger tlog = get_triage_logger() global WCE_IMAGES WCE_IMAGES = "/usr/local/share/wce/wce-disk-images" IMAGE_META_JSON_FILE = ".disk_image_type.json" def set_wce_disk_image_dir(dir): global WCE_IMAGES WCE_IMAGES = dir pass # gets the potential directories to look for disk images def get_maybe_disk_image_directories(): global WCE_IMAGES dirs = [] # No longer look for other directories. # It would make things rather complicated. if os.path.exists(WCE_IMAGES) and os.path.isdir(WCE_IMAGES) and WCE_IMAGES not in dirs: dirs.append(WCE_IMAGES) pass return dirs # gets the potential directories to look for disk images def get_disk_image_list_order(): global WCE_IMAGES list_order = {} if os.path.exists(WCE_IMAGES) and os.path.isdir(WCE_IMAGES): list_order_path = os.path.join(WCE_IMAGES, ".list-order") if os.path.exists(list_order_path): try: with open(list_order_path) as list_order_fd: dirs = list_order_fd.readlines() for i in range(len(dirs)): list_order[dirs[i].strip()] = i pass pass pass except: pass pass pass return list_order # # # def list_image_files(dirs): """lists the images files under the dirs. :return: a list of tuples the shape of tuple: (image_filename, subdir, fullpath) """ images = [] for a_dir in dirs: for direntry in os.listdir(a_dir): # Anything starting with "." is ignored if direntry[0:1] == '.': continue catalog_dir = os.path.join(a_dir, direntry) image_meta_file = os.path.join(catalog_dir, IMAGE_META_JSON_FILE) if not os.path.exists(image_meta_file) or not os.path.isfile(image_meta_file): continue if direntry.endswith(".partclone.gz"): images.append( (direntry, "", catalog_dir) ) pass if os.path.isdir(catalog_dir): for direntryinsubdir in os.listdir(catalog_dir): # Anything starting with "." is ignored if direntryinsubdir[0:1] == '.': continue if direntryinsubdir.endswith(".partclone.gz"): images.append((direntryinsubdir, direntry, os.path.join(catalog_dir, direntryinsubdir)) ) pass pass pass pass pass return images # # # def get_disk_images(wce_share_url=None): '''scans the known drectories for disk image and returns the list of disk images :arg: wce_share_url: prefix for the disk imagefile. :returns: list of dict instances. mtime: file modify time restoreType: keyword for restore type. [wce|wce-16|triage|clone] The restore type is nothing more than the name of directory, and should match exactly to the restore type. name: filename - this is shown to the user. size: file size fullpath: the full path. ..note the entries are deduped by the filename so if two directories contain the same file name, only one is pikced. ''' # gather disk image files _images= list_image_files(get_maybe_disk_image_directories()) # Dedup the same file name images = {} for image in _images: fname, subdir, fullpath = image images[fname] = image pass # Sort image listing order result = [] for filename, image in images.items(): fname, subdir, fullpath = image filestat = os.stat(fullpath) mtime = datetime.datetime.fromtimestamp(filestat.st_mtime) # If wce_share_url is provided, reconstruct the fullpath. HTTP server needs to respond to the route. if wce_share_url: fullpath = '{wce_share_url}/wce-disk-images/{restoretype}/{filename}'.format(wce_share_url=wce_share_url, restoretype=subdir, filename=filename) pass fattr = { "mtime": mtime.strftime('%Y-%m-%d %H:%M'), "restoreType" : subdir, "name": filename, "fullpath": fullpath, "size": filestat.st_size, "subdir": subdir, "index": len(result) } result.append(fattr) pass list_order = get_disk_image_list_order() n = len(result) result.sort(key=lambda x: list_order.get(x["subdir"], len(list_order)) * n + x["index"]) return result def read_disk_image_types(verbose=False): '''scans the known drectories for disk image and returns the list of disk image types :arg none :returns: list of dict instances which is .disk_image_type.json file in the directory. [ { "id": "wce-18", "filestem": "wce-mate18", "name": "WCE Ubuntu 18.04LTS", "timestamp": true, "efi_image": ".efi-512M.fat32.partclone.gz", "partition_map": "gpt", "hostname": "wce", "randomize_hostname": true, "cmdline": { "acpi_enforce_resources": "lax" , "nvme_core.default_ps_max_latency_us": "5500" } }, { ... } ] ''' image_metas = [] for subdir in get_maybe_disk_image_directories(): if verbose: print("Checking subdir " + subdir) pass index = 0 for direntry in os.listdir(subdir): catalog_dir = os.path.join(subdir, direntry) image_meta = read_disk_image_type(catalog_dir) if verbose: print("Catalog dir " + catalog_dir) print(image_meta) pass if image_meta: image_meta['index'] = index image_metas.append(image_meta) index += 1 pass pass pass list_order = get_disk_image_list_order() n = len(image_metas) if list_order: image_metas.sort(key=lambda x: list_order.get(x["id"], len(list_order)) * n + x['index']) pass return image_metas def read_disk_image_type(catalog_dir): '''reads the disk image type file from the directory :arg dir :returns: a dict instance from the image-meta ''' result = None try: image_meta_file = os.path.join(catalog_dir, IMAGE_META_JSON_FILE) if not os.path.exists(image_meta_file) or not os.path.isfile(image_meta_file): return None with open(image_meta_file) as meta_file: result = json.load(meta_file) pass pass except json.decoder.JSONDecodeError: tlog.debug('catalog_dir %s: JSON parse error. Check the contents.' % catalog_dir); pass except: # If anything goes wrong, just ignore the directory. tlog.debug('catalog_dir %s: %s' % (catalog_dir, traceback.format_exc())) pass # if result: result["catalogDirectory"] = catalog_dir pass return result def make_disk_image_name(destdir, inname, filesystem='ext4'): image_meta = read_disk_image_type(destdir) if image_meta is None: if inname is None: exc_msg = "Directory {dir} does not have '{json_file}' file.".format(dir=destdir, json_file=IMAGE_META_JSON_FILE) raise Exception(exc_msg) return inname imagename = image_meta["filestem"] if not imagename: imagename = inname pass if image_meta.get("timestamp", False): timestamp = datetime.date.today().isoformat() imagename = imagename + "-" + timestamp pass # Right now, this is making ext4 imagename = imagename + ".%s.partclone.gz" % filesystem return os.path.join(destdir, imagename) def get_file_system_from_source(source): filesystem_ext = None tail = ".partclone.gz" if source.endswith(tail): source = source[:-len(tail)] else: return None try: filesystem_ext = os.path.splitext(source)[1][1:] except: pass if filesystem_ext in ['ext4', 'ext3', 'fat32', 'vfat', 'fat16']: return filesystem_ext return None def translate_disk_image_name_to_url(wce_share_url, disk_image_name): for source in get_disk_images(wce_share_url): if source["name"] == disk_image_name: return source pass return disk_image # if __name__ == "__main__": print("HELLO") tlog = init_triage_logger(filename='/tmp/disk_images.log') print(read_disk_image_types(verbose=True)) print(get_disk_images()) print(get_file_system_from_source("a.ext4.partclone.gz")) print(get_file_system_from_source("a.ext4.partclone")) print(get_file_system_from_source("a.partclone.gz")) print(read_disk_image_type("/usr/local/share/wce/wce-disk-images/triage")) print("HELLO HELLO") for disk_image in get_disk_images(): print(translate_disk_image_name_to_url("http://10.3.2.1:8080/wce", disk_image["name"])) pass pass
2.765625
3
app/mod_repo/package_manager.py
v-yussupov/hdtapps-prototype
2
12786459
<reponame>v-yussupov/hdtapps-prototype<filename>app/mod_repo/package_manager.py import json import os from app.mod_repo.models import * from app.mod_repo.dockerfile_generator import Dockerfile def read_package_specification(temp_app_dir): try: pkg_spec_path = os.path.join(temp_app_dir, "app-spec.json") with open(pkg_spec_path) as data_file: data = json.load(data_file) return data except Exception as e: pass def deserialize_package_specification(temp_app_dir): try: pkg_spec_path = os.path.join(temp_app_dir, "app-spec.json") with open(pkg_spec_path, 'r') as pkg_spec_file: data = json.load(pkg_spec_file) obj = dict_to_app_pkg_spec_object(data) return obj except Exception as e: print(e) def generate_dockerfile(pkg_spec: ApplicationSpecification, path) -> bool: try: d = Dockerfile(pkg_spec) d.save(path) return True except: # TODO: handle exception return False
2.03125
2
examples/calc_wer.py
jumon/pywer
2
12786460
import pywer references = [ "this is a simple python package", "it calculates word error rate", "it can also calculate cer", ] hypotheses = [ "this is the simple python package", "it calculates word error", "it can also calculate see er", ] wer = pywer.wer(references, hypotheses) cer = pywer.cer(references, hypotheses) print(f"WER: {wer:.2f}, CER: {cer:.2f}")
2.25
2
fondat/aws/cloudwatch.py
fondat/fondat-aws
0
12786461
<gh_stars>0 """Fondat module for AWS CloudWatch.""" import logging from collections import deque from collections.abc import Iterable from datetime import datetime from fondat.aws import Service from fondat.data import datacls from fondat.resource import resource, operation, mutation from fondat.security import Policy from typing import Any, Literal, Optional, Union from fondat.monitoring import Measurement, Counter, Gauge, Absolute _logger = logging.getLogger(__name__) Unit = Literal[ "Seconds", "Microseconds", "Milliseconds", "Bytes", "Kilobytes", "Megabytes", "Gigabytes", "Terabytes", "Bits", "Kilobits", "Megabits", "Gigabits", "Terabits", "Percent", "Count", "Bytes/Second", "Kilobytes/Second", "Megabytes/Second", "Gigabytes/Second", "Terabytes/Second", "Bits/Second", "Kilobits/Second", "Megabits/Second", "Gigabits/Second", "Terabits/Second", "Count/Second", ] Value = Union[int, float] Values = dict[Union[int, float], Union[int, float]] # value: count @datacls class Statistics: """ Statistics measurement type. Attributes: • count: count of measured values • sum: sum of all measured values • minimum: minimum measured value • maximum: maximum measured value """ count: Union[int, float] sum: Union[int, float] minimum: Union[int, float] maximum: Union[int, float] @datacls class Metric: """ CloudWatch metric type. Attributes: • name: name of the CloudWatch metric • dimensions: name/value pair of categories for characteristics • value: value of measurement • timestamp: date and time of the measurement to record • unit: Optional[Unit] • resolution: granularity of the metric """ name: str dimensions: dict[str, str] value: Union[Value, Values, Statistics] timestamp: datetime unit: Optional[Unit] resolution: Optional[int] def cloudwatch_resource( *, service: Service = None, policies: Iterable[Policy] = None, ): """ Create CloudWatch resource. Parameters: • service: CloudWatch service object • security: security requirements to apply to all operations """ if service is None: service = Service("cloudwatch") if service.name != "cloudwatch": raise TypeError("expecting cloudwatch service object") @resource class NamespaceResource: """Create Namespace resource.""" def __init__(self, name: str): self.name = name @operation(policies=policies) async def post(self, metrics: Iterable[Metric]): metrics = deque(metrics) data = [] while metrics: metric = metrics.popleft() datum = { "MetricName": metric.name, "Dimensions": [ {"Name": k, "Value": v} for k, v in metric.dimensions.items() ], "Timestamp": metric.timestamp, } if metric.unit: datum["Unit"] = metric.unit if metric.resolution: datum["Resolution"] = metric.resolution if isinstance(metric.value, (int, float)): datum["Value"] = float(metric.value) elif isinstance(metric.value, dict): datum["Values"] = [float(v) for v in metric.value.keys()] datum["Counts"] = [float(v) for v in metric.value.values()] elif isinstance(metric.value, Statistics): datum["StatisticValues"] = { "SampleCount": float(metric.value.count), "Sum": float(metric.value.sum), "Minimum": float(metric.value.minimum), "Maximum": float(metric.value.maximum), } data.append(datum) if len(data) == 20 or not metrics: client = await service.client() await client.put_metric_data(Namespace=self.name, MetricData=data) @resource class CloudWatchResource: """Create CloudWatch resource.""" def namespace(self, name: str) -> NamespaceResource: return NamespaceResource(name) return CloudWatchResource() class CloudWatchMonitor: """ A monitor that stores all recorded measurements in CloudWatch. """ # future: collect metrics, send in batches def __init__(self, service: Service, namespace: str): self.resource = cloudwatch_resource(service=service).namespace(namespace) async def record(self, measurement: Measurement): """Record a measurement.""" if measurement.type == "counter": m = Counter(timestamp=measurement.timestamp) m.record(measurement.value) metric = Metric( name=measurement.tags["name"], dimensions={"Name": measurement.type, "Value": str(m.value)}, timestamp=measurement.timestamp, value=float(m.value), unit="Count", ) elif measurement.type == "gauge": m = Gauge(timestamp=measurement.timestamp) m.record(measurement.value) metric = Metric( name=measurement.tags["name"], dimensions={"Name": measurement.type, "Value": str(measurement.value)}, timestamp=measurement.timestamp, value=Statistics( count=float(m.count), sum=float(m.sum), minimum=float(m.min), maximum=float(m.max), ), ) elif measurement.type == "absolute": m = Absolute(timestamp=measurement.timestamp) m.record(measurement.value) metric = Metric( name=measurement.tags["name"], dimensions={"Name": measurement.type, "Value": str(m.value)}, timestamp=measurement.timestamp, value=float(m.value), ) await self.resource.post(metrics=[metric])
2.171875
2
dnn.py
OSU-slatelab/mask-vs-map
1
12786462
<gh_stars>1-10 import tensorflow as tf import numpy as np import tfsignal class DNN(): """ ResNet-style architecture for speech denoising. """ def __init__(self, inputs, output_dim, layers = 2, units = 2048, context = 5, activation = tf.nn.relu, dropout = 0.3, output_type = ['fidelity'], ): """ Build the graph. Parameters ---------- inputs : Placeholder Spectral inputs to this model, of the shape (batchsize, frames, frequencies) output_shape : int Size of the output filters : list of ints Size of each block fc_layers : int Number of fully-connected hidden layers fc_nodes : int Number of units to put in each fc hidden layer activation : function Function to apply before conv layers as an activation dropout : float Fraction of filters and nodes to drop Returns ------- Tensor Outputs of the dropnet model """ # Store hyperparameters self.inputs = inputs self.activation = activation self.dropout = dropout self.training = tf.placeholder(tf.bool) # Pad inputs for contextual frames padding = [[0, 0], [0, 0], [context, context], [0, 0]] padded_inputs = tf.pad(inputs, padding, "REFLECT") #self.final_input = padded_inputs # We want to apply the DNN to overlapping regions of the input... so use CNN to implement the DNN! # Use filter size of frames x frequency x units fc = tf.layers.conv2d( inputs = padded_inputs, filters = units, kernel_size = [2*context+1, padded_inputs.get_shape()[-1]], activation = activation, data_format = 'channels_first', name = 'fc0', ) # Put channels last for DNN fc = tf.transpose(fc, [0, 2, 3, 1]) fc = tf.layers.dropout(fc, rate=dropout, training=self.training) # Actual fully connected layers for i in range(1, layers): fc = tf.layers.dense( inputs = fc, units = units, activation = activation, name = f"fc{i}", ) fc = tf.layers.dropout( inputs = fc, rate = dropout, training = self.training, ) self.outputs = tf.layers.dense(fc, output_dim) self.outputs = tf.reshape(self.outputs, [1, 1, -1, output_dim]) # Compute outputs input_min = tf.reduce_min(self.inputs) self.scale_vars = [] if 'masking' in output_type: self.masking = tf.identity(self.outputs) self.outputs = tf.multiply(tf.sigmoid(self.outputs), self.inputs - input_min) + input_min #if 'fidelity' in output_type: # self.outputs = self.scale(self.outputs, name = 'mask', scale_init = 0.5) # self.fidelity = self.fully_connected(flat, out_shape, name="fc_out") # self.outputs += self.scale(self.fidelity, name = 'map', scale_init = 0.5) #else: # self.outputs = self.scale(self.outputs, name = 'mask') elif 'fidelity' in output_type: self.fidelity = tf.identity(self.outputs) #if 'map-as-mask-mimic' in output_type: # masked_by_map = tf.multiply(self.maskify(self.outputs), self.inputs - input_min) + input_min # self.outputs = self.scale(masked_by_map, 'mask')
3.171875
3
mne/layouts/layout.py
mluessi/mne-python
1
12786463
<filename>mne/layouts/layout.py import os.path as op import numpy as np class Layout(object): """Sensor layouts""" def __init__(self, kind='Vectorview-all', path=None): """ Parameters ---------- kind : 'Vectorview-all' | 'CTF-275' | 'Vectorview-grad' | 'Vectorview-mag' Type of layout (can also be custom for EEG) path : string Path to folder where to find the layout file. """ if path is None: path = op.dirname(__file__) lout_fname = op.join(path, kind + '.lout') f = open(lout_fname) f.readline() # skip first line names = [] pos = [] for line in f: splits = line.split() if len(splits) == 7: _, x, y, dx, dy, chkind, nb = splits name = chkind + ' ' + nb else: _, x, y, dx, dy, name = splits pos.append(np.array([x, y, dx, dy], dtype=np.float)) names.append(name) pos = np.array(pos) pos[:, 0] -= np.min(pos[:, 0]) pos[:, 1] -= np.min(pos[:, 1]) scaling = max(np.max(pos[:, 0]), np.max(pos[:, 1])) + pos[0, 2] pos /= scaling pos[:, :2] += 0.03 pos[:, :2] *= 0.97 / 1.03 pos[:, 2:] *= 0.94 f.close() self.kind = kind self.pos = pos self.names = names # if __name__ == '__main__': # # layout = Layout() # # import pylab as pl # pl.rcParams['axes.edgecolor'] = 'w' # pl.close('all') # pl.figure(facecolor='k', ) # # for i in range(5): # # for i in range(len(pos)): # ax = pl.axes(layout.pos[i], axisbg='k') # ax.plot(np.random.randn(3), 'w') # pl.xticks([], ()) # pl.yticks([], ()) # pl.gca().grid(color='w') # # pl.show()
2.609375
3
logicmonitor_sdk/models/device_data_source.py
JeremyTangCD/lm-sdk-python
0
12786464
# coding: utf-8 """ LogicMonitor REST API LogicMonitor is a SaaS-based performance monitoring platform that provides full visibility into complex, hybrid infrastructures, offering granular performance monitoring and actionable data and insights. logicmonitor_sdk enables you to manage your LogicMonitor account programmatically. # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from logicmonitor_sdk.models.device_datasource_graph import DeviceDatasourceGraph # noqa: F401,E501 from logicmonitor_sdk.models.tree_node import TreeNode # noqa: F401,E501 class DeviceDataSource(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'alert_status': 'str', 'auto_discovery': 'bool', 'data_source_display_name': 'str', 'device_id': 'int', 'device_name': 'str', 'created_on': 'int', 'collect_method': 'str', 'data_source_id': 'int', 'graphs': 'list[DeviceDatasourceGraph]', 'sdt_at': 'str', 'next_auto_discovery_on': 'int', 'id': 'int', 'alert_status_priority': 'int', 'alert_disable_status': 'str', 'data_source_description': 'str', 'overview_graphs': 'list[DeviceDatasourceGraph]', 'stop_monitoring': 'bool', 'assigned_on': 'int', 'is_multiple': 'bool', 'instance_number': 'int', 'updated_on': 'int', 'sdt_status': 'str', 'data_source_name': 'str', 'device_display_name': 'str', 'monitoring_instance_number': 'int', 'groups_disabled_this_source': 'list[TreeNode]', 'group_name': 'str', 'instance_auto_group_enabled': 'bool', 'alerting_disabled_on': 'TreeNode', 'data_source_type': 'str', 'status': 'int' } attribute_map = { 'alert_status': 'alertStatus', 'auto_discovery': 'autoDiscovery', 'data_source_display_name': 'dataSourceDisplayName', 'device_id': 'deviceId', 'device_name': 'deviceName', 'created_on': 'createdOn', 'collect_method': 'collectMethod', 'data_source_id': 'dataSourceId', 'graphs': 'graphs', 'sdt_at': 'sdtAt', 'next_auto_discovery_on': 'nextAutoDiscoveryOn', 'id': 'id', 'alert_status_priority': 'alertStatusPriority', 'alert_disable_status': 'alertDisableStatus', 'data_source_description': 'dataSourceDescription', 'overview_graphs': 'overviewGraphs', 'stop_monitoring': 'stopMonitoring', 'assigned_on': 'assignedOn', 'is_multiple': 'isMultiple', 'instance_number': 'instanceNumber', 'updated_on': 'updatedOn', 'sdt_status': 'sdtStatus', 'data_source_name': 'dataSourceName', 'device_display_name': 'deviceDisplayName', 'monitoring_instance_number': 'monitoringInstanceNumber', 'groups_disabled_this_source': 'groupsDisabledThisSource', 'group_name': 'groupName', 'instance_auto_group_enabled': 'instanceAutoGroupEnabled', 'alerting_disabled_on': 'alertingDisabledOn', 'data_source_type': 'dataSourceType', 'status': 'status' } def __init__(self, alert_status=None, auto_discovery=None, data_source_display_name=None, device_id=None, device_name=None, created_on=None, collect_method=None, data_source_id=None, graphs=None, sdt_at=None, next_auto_discovery_on=None, id=None, alert_status_priority=None, alert_disable_status=None, data_source_description=None, overview_graphs=None, stop_monitoring=None, assigned_on=None, is_multiple=None, instance_number=None, updated_on=None, sdt_status=None, data_source_name=None, device_display_name=None, monitoring_instance_number=None, groups_disabled_this_source=None, group_name=None, instance_auto_group_enabled=None, alerting_disabled_on=None, data_source_type=None, status=None): # noqa: E501 """DeviceDataSource - a model defined in Swagger""" # noqa: E501 self._alert_status = None self._auto_discovery = None self._data_source_display_name = None self._device_id = None self._device_name = None self._created_on = None self._collect_method = None self._data_source_id = None self._graphs = None self._sdt_at = None self._next_auto_discovery_on = None self._id = None self._alert_status_priority = None self._alert_disable_status = None self._data_source_description = None self._overview_graphs = None self._stop_monitoring = None self._assigned_on = None self._is_multiple = None self._instance_number = None self._updated_on = None self._sdt_status = None self._data_source_name = None self._device_display_name = None self._monitoring_instance_number = None self._groups_disabled_this_source = None self._group_name = None self._instance_auto_group_enabled = None self._alerting_disabled_on = None self._data_source_type = None self._status = None self.discriminator = None if alert_status is not None: self.alert_status = alert_status if auto_discovery is not None: self.auto_discovery = auto_discovery if data_source_display_name is not None: self.data_source_display_name = data_source_display_name if device_id is not None: self.device_id = device_id if device_name is not None: self.device_name = device_name if created_on is not None: self.created_on = created_on if collect_method is not None: self.collect_method = collect_method if data_source_id is not None: self.data_source_id = data_source_id if graphs is not None: self.graphs = graphs if sdt_at is not None: self.sdt_at = sdt_at if next_auto_discovery_on is not None: self.next_auto_discovery_on = next_auto_discovery_on if id is not None: self.id = id if alert_status_priority is not None: self.alert_status_priority = alert_status_priority if alert_disable_status is not None: self.alert_disable_status = alert_disable_status if data_source_description is not None: self.data_source_description = data_source_description if overview_graphs is not None: self.overview_graphs = overview_graphs if stop_monitoring is not None: self.stop_monitoring = stop_monitoring if assigned_on is not None: self.assigned_on = assigned_on if is_multiple is not None: self.is_multiple = is_multiple if instance_number is not None: self.instance_number = instance_number if updated_on is not None: self.updated_on = updated_on if sdt_status is not None: self.sdt_status = sdt_status if data_source_name is not None: self.data_source_name = data_source_name if device_display_name is not None: self.device_display_name = device_display_name if monitoring_instance_number is not None: self.monitoring_instance_number = monitoring_instance_number if groups_disabled_this_source is not None: self.groups_disabled_this_source = groups_disabled_this_source if group_name is not None: self.group_name = group_name if instance_auto_group_enabled is not None: self.instance_auto_group_enabled = instance_auto_group_enabled if alerting_disabled_on is not None: self.alerting_disabled_on = alerting_disabled_on if data_source_type is not None: self.data_source_type = data_source_type if status is not None: self.status = status @property def alert_status(self): """Gets the alert_status of this DeviceDataSource. # noqa: E501 :return: The alert_status of this DeviceDataSource. # noqa: E501 :rtype: str """ return self._alert_status @alert_status.setter def alert_status(self, alert_status): """Sets the alert_status of this DeviceDataSource. :param alert_status: The alert_status of this DeviceDataSource. # noqa: E501 :type: str """ self._alert_status = alert_status @property def auto_discovery(self): """Gets the auto_discovery of this DeviceDataSource. # noqa: E501 :return: The auto_discovery of this DeviceDataSource. # noqa: E501 :rtype: bool """ return self._auto_discovery @auto_discovery.setter def auto_discovery(self, auto_discovery): """Sets the auto_discovery of this DeviceDataSource. :param auto_discovery: The auto_discovery of this DeviceDataSource. # noqa: E501 :type: bool """ self._auto_discovery = auto_discovery @property def data_source_display_name(self): """Gets the data_source_display_name of this DeviceDataSource. # noqa: E501 :return: The data_source_display_name of this DeviceDataSource. # noqa: E501 :rtype: str """ return self._data_source_display_name @data_source_display_name.setter def data_source_display_name(self, data_source_display_name): """Sets the data_source_display_name of this DeviceDataSource. :param data_source_display_name: The data_source_display_name of this DeviceDataSource. # noqa: E501 :type: str """ self._data_source_display_name = data_source_display_name @property def device_id(self): """Gets the device_id of this DeviceDataSource. # noqa: E501 :return: The device_id of this DeviceDataSource. # noqa: E501 :rtype: int """ return self._device_id @device_id.setter def device_id(self, device_id): """Sets the device_id of this DeviceDataSource. :param device_id: The device_id of this DeviceDataSource. # noqa: E501 :type: int """ self._device_id = device_id @property def device_name(self): """Gets the device_name of this DeviceDataSource. # noqa: E501 :return: The device_name of this DeviceDataSource. # noqa: E501 :rtype: str """ return self._device_name @device_name.setter def device_name(self, device_name): """Sets the device_name of this DeviceDataSource. :param device_name: The device_name of this DeviceDataSource. # noqa: E501 :type: str """ self._device_name = device_name @property def created_on(self): """Gets the created_on of this DeviceDataSource. # noqa: E501 :return: The created_on of this DeviceDataSource. # noqa: E501 :rtype: int """ return self._created_on @created_on.setter def created_on(self, created_on): """Sets the created_on of this DeviceDataSource. :param created_on: The created_on of this DeviceDataSource. # noqa: E501 :type: int """ self._created_on = created_on @property def collect_method(self): """Gets the collect_method of this DeviceDataSource. # noqa: E501 :return: The collect_method of this DeviceDataSource. # noqa: E501 :rtype: str """ return self._collect_method @collect_method.setter def collect_method(self, collect_method): """Sets the collect_method of this DeviceDataSource. :param collect_method: The collect_method of this DeviceDataSource. # noqa: E501 :type: str """ self._collect_method = collect_method @property def data_source_id(self): """Gets the data_source_id of this DeviceDataSource. # noqa: E501 :return: The data_source_id of this DeviceDataSource. # noqa: E501 :rtype: int """ return self._data_source_id @data_source_id.setter def data_source_id(self, data_source_id): """Sets the data_source_id of this DeviceDataSource. :param data_source_id: The data_source_id of this DeviceDataSource. # noqa: E501 :type: int """ self._data_source_id = data_source_id @property def graphs(self): """Gets the graphs of this DeviceDataSource. # noqa: E501 :return: The graphs of this DeviceDataSource. # noqa: E501 :rtype: list[DeviceDatasourceGraph] """ return self._graphs @graphs.setter def graphs(self, graphs): """Sets the graphs of this DeviceDataSource. :param graphs: The graphs of this DeviceDataSource. # noqa: E501 :type: list[DeviceDatasourceGraph] """ self._graphs = graphs @property def sdt_at(self): """Gets the sdt_at of this DeviceDataSource. # noqa: E501 :return: The sdt_at of this DeviceDataSource. # noqa: E501 :rtype: str """ return self._sdt_at @sdt_at.setter def sdt_at(self, sdt_at): """Sets the sdt_at of this DeviceDataSource. :param sdt_at: The sdt_at of this DeviceDataSource. # noqa: E501 :type: str """ self._sdt_at = sdt_at @property def next_auto_discovery_on(self): """Gets the next_auto_discovery_on of this DeviceDataSource. # noqa: E501 :return: The next_auto_discovery_on of this DeviceDataSource. # noqa: E501 :rtype: int """ return self._next_auto_discovery_on @next_auto_discovery_on.setter def next_auto_discovery_on(self, next_auto_discovery_on): """Sets the next_auto_discovery_on of this DeviceDataSource. :param next_auto_discovery_on: The next_auto_discovery_on of this DeviceDataSource. # noqa: E501 :type: int """ self._next_auto_discovery_on = next_auto_discovery_on @property def id(self): """Gets the id of this DeviceDataSource. # noqa: E501 :return: The id of this DeviceDataSource. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this DeviceDataSource. :param id: The id of this DeviceDataSource. # noqa: E501 :type: int """ self._id = id @property def alert_status_priority(self): """Gets the alert_status_priority of this DeviceDataSource. # noqa: E501 :return: The alert_status_priority of this DeviceDataSource. # noqa: E501 :rtype: int """ return self._alert_status_priority @alert_status_priority.setter def alert_status_priority(self, alert_status_priority): """Sets the alert_status_priority of this DeviceDataSource. :param alert_status_priority: The alert_status_priority of this DeviceDataSource. # noqa: E501 :type: int """ self._alert_status_priority = alert_status_priority @property def alert_disable_status(self): """Gets the alert_disable_status of this DeviceDataSource. # noqa: E501 :return: The alert_disable_status of this DeviceDataSource. # noqa: E501 :rtype: str """ return self._alert_disable_status @alert_disable_status.setter def alert_disable_status(self, alert_disable_status): """Sets the alert_disable_status of this DeviceDataSource. :param alert_disable_status: The alert_disable_status of this DeviceDataSource. # noqa: E501 :type: str """ self._alert_disable_status = alert_disable_status @property def data_source_description(self): """Gets the data_source_description of this DeviceDataSource. # noqa: E501 :return: The data_source_description of this DeviceDataSource. # noqa: E501 :rtype: str """ return self._data_source_description @data_source_description.setter def data_source_description(self, data_source_description): """Sets the data_source_description of this DeviceDataSource. :param data_source_description: The data_source_description of this DeviceDataSource. # noqa: E501 :type: str """ self._data_source_description = data_source_description @property def overview_graphs(self): """Gets the overview_graphs of this DeviceDataSource. # noqa: E501 :return: The overview_graphs of this DeviceDataSource. # noqa: E501 :rtype: list[DeviceDatasourceGraph] """ return self._overview_graphs @overview_graphs.setter def overview_graphs(self, overview_graphs): """Sets the overview_graphs of this DeviceDataSource. :param overview_graphs: The overview_graphs of this DeviceDataSource. # noqa: E501 :type: list[DeviceDatasourceGraph] """ self._overview_graphs = overview_graphs @property def stop_monitoring(self): """Gets the stop_monitoring of this DeviceDataSource. # noqa: E501 :return: The stop_monitoring of this DeviceDataSource. # noqa: E501 :rtype: bool """ return self._stop_monitoring @stop_monitoring.setter def stop_monitoring(self, stop_monitoring): """Sets the stop_monitoring of this DeviceDataSource. :param stop_monitoring: The stop_monitoring of this DeviceDataSource. # noqa: E501 :type: bool """ self._stop_monitoring = stop_monitoring @property def assigned_on(self): """Gets the assigned_on of this DeviceDataSource. # noqa: E501 :return: The assigned_on of this DeviceDataSource. # noqa: E501 :rtype: int """ return self._assigned_on @assigned_on.setter def assigned_on(self, assigned_on): """Sets the assigned_on of this DeviceDataSource. :param assigned_on: The assigned_on of this DeviceDataSource. # noqa: E501 :type: int """ self._assigned_on = assigned_on @property def is_multiple(self): """Gets the is_multiple of this DeviceDataSource. # noqa: E501 :return: The is_multiple of this DeviceDataSource. # noqa: E501 :rtype: bool """ return self._is_multiple @is_multiple.setter def is_multiple(self, is_multiple): """Sets the is_multiple of this DeviceDataSource. :param is_multiple: The is_multiple of this DeviceDataSource. # noqa: E501 :type: bool """ self._is_multiple = is_multiple @property def instance_number(self): """Gets the instance_number of this DeviceDataSource. # noqa: E501 :return: The instance_number of this DeviceDataSource. # noqa: E501 :rtype: int """ return self._instance_number @instance_number.setter def instance_number(self, instance_number): """Sets the instance_number of this DeviceDataSource. :param instance_number: The instance_number of this DeviceDataSource. # noqa: E501 :type: int """ self._instance_number = instance_number @property def updated_on(self): """Gets the updated_on of this DeviceDataSource. # noqa: E501 :return: The updated_on of this DeviceDataSource. # noqa: E501 :rtype: int """ return self._updated_on @updated_on.setter def updated_on(self, updated_on): """Sets the updated_on of this DeviceDataSource. :param updated_on: The updated_on of this DeviceDataSource. # noqa: E501 :type: int """ self._updated_on = updated_on @property def sdt_status(self): """Gets the sdt_status of this DeviceDataSource. # noqa: E501 :return: The sdt_status of this DeviceDataSource. # noqa: E501 :rtype: str """ return self._sdt_status @sdt_status.setter def sdt_status(self, sdt_status): """Sets the sdt_status of this DeviceDataSource. :param sdt_status: The sdt_status of this DeviceDataSource. # noqa: E501 :type: str """ self._sdt_status = sdt_status @property def data_source_name(self): """Gets the data_source_name of this DeviceDataSource. # noqa: E501 :return: The data_source_name of this DeviceDataSource. # noqa: E501 :rtype: str """ return self._data_source_name @data_source_name.setter def data_source_name(self, data_source_name): """Sets the data_source_name of this DeviceDataSource. :param data_source_name: The data_source_name of this DeviceDataSource. # noqa: E501 :type: str """ self._data_source_name = data_source_name @property def device_display_name(self): """Gets the device_display_name of this DeviceDataSource. # noqa: E501 :return: The device_display_name of this DeviceDataSource. # noqa: E501 :rtype: str """ return self._device_display_name @device_display_name.setter def device_display_name(self, device_display_name): """Sets the device_display_name of this DeviceDataSource. :param device_display_name: The device_display_name of this DeviceDataSource. # noqa: E501 :type: str """ self._device_display_name = device_display_name @property def monitoring_instance_number(self): """Gets the monitoring_instance_number of this DeviceDataSource. # noqa: E501 :return: The monitoring_instance_number of this DeviceDataSource. # noqa: E501 :rtype: int """ return self._monitoring_instance_number @monitoring_instance_number.setter def monitoring_instance_number(self, monitoring_instance_number): """Sets the monitoring_instance_number of this DeviceDataSource. :param monitoring_instance_number: The monitoring_instance_number of this DeviceDataSource. # noqa: E501 :type: int """ self._monitoring_instance_number = monitoring_instance_number @property def groups_disabled_this_source(self): """Gets the groups_disabled_this_source of this DeviceDataSource. # noqa: E501 :return: The groups_disabled_this_source of this DeviceDataSource. # noqa: E501 :rtype: list[TreeNode] """ return self._groups_disabled_this_source @groups_disabled_this_source.setter def groups_disabled_this_source(self, groups_disabled_this_source): """Sets the groups_disabled_this_source of this DeviceDataSource. :param groups_disabled_this_source: The groups_disabled_this_source of this DeviceDataSource. # noqa: E501 :type: list[TreeNode] """ self._groups_disabled_this_source = groups_disabled_this_source @property def group_name(self): """Gets the group_name of this DeviceDataSource. # noqa: E501 :return: The group_name of this DeviceDataSource. # noqa: E501 :rtype: str """ return self._group_name @group_name.setter def group_name(self, group_name): """Sets the group_name of this DeviceDataSource. :param group_name: The group_name of this DeviceDataSource. # noqa: E501 :type: str """ self._group_name = group_name @property def instance_auto_group_enabled(self): """Gets the instance_auto_group_enabled of this DeviceDataSource. # noqa: E501 :return: The instance_auto_group_enabled of this DeviceDataSource. # noqa: E501 :rtype: bool """ return self._instance_auto_group_enabled @instance_auto_group_enabled.setter def instance_auto_group_enabled(self, instance_auto_group_enabled): """Sets the instance_auto_group_enabled of this DeviceDataSource. :param instance_auto_group_enabled: The instance_auto_group_enabled of this DeviceDataSource. # noqa: E501 :type: bool """ self._instance_auto_group_enabled = instance_auto_group_enabled @property def alerting_disabled_on(self): """Gets the alerting_disabled_on of this DeviceDataSource. # noqa: E501 :return: The alerting_disabled_on of this DeviceDataSource. # noqa: E501 :rtype: TreeNode """ return self._alerting_disabled_on @alerting_disabled_on.setter def alerting_disabled_on(self, alerting_disabled_on): """Sets the alerting_disabled_on of this DeviceDataSource. :param alerting_disabled_on: The alerting_disabled_on of this DeviceDataSource. # noqa: E501 :type: TreeNode """ self._alerting_disabled_on = alerting_disabled_on @property def data_source_type(self): """Gets the data_source_type of this DeviceDataSource. # noqa: E501 :return: The data_source_type of this DeviceDataSource. # noqa: E501 :rtype: str """ return self._data_source_type @data_source_type.setter def data_source_type(self, data_source_type): """Sets the data_source_type of this DeviceDataSource. :param data_source_type: The data_source_type of this DeviceDataSource. # noqa: E501 :type: str """ self._data_source_type = data_source_type @property def status(self): """Gets the status of this DeviceDataSource. # noqa: E501 :return: The status of this DeviceDataSource. # noqa: E501 :rtype: int """ return self._status @status.setter def status(self, status): """Sets the status of this DeviceDataSource. :param status: The status of this DeviceDataSource. # noqa: E501 :type: int """ self._status = status def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(DeviceDataSource, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeviceDataSource): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
2.03125
2
ccvpn/models/types.py
CCrypto/ccvpn
81
12786465
<filename>ccvpn/models/types.py<gh_stars>10-100 from sqlalchemy import TypeDecorator, UnicodeText, String from sqlalchemy.ext.mutable import Mutable from sqlalchemy.dialects import postgresql # INET import json class JSONEncodedDict(TypeDecorator): impl = UnicodeText def process_bind_param(self, value, dialect): if value: return json.dumps(value) else: return None def process_result_value(self, value, dialect): if value is not None: return json.loads(value) else: return dict() class MutableDict(Mutable, dict): @classmethod def coerce(cls, key, value): "Convert plain dictionaries to MutableDict." if not isinstance(value, MutableDict): if isinstance(value, dict): return MutableDict(value) # this call will raise ValueError return Mutable.coerce(key, value) else: return value def __setitem__(self, key, value): "Detect dictionary set events and emit change events." dict.__setitem__(self, key, value) self.changed() def __delitem__(self, key): "Detect dictionary del events and emit change events." dict.__delitem__(self, key) self.changed() class INETWrapper(TypeDecorator): impl = String def load_dialect_impl(self, dialect): if dialect.name == 'postgresql': return dialect.type_descriptor(postgresql.INET()) else: return dialect.type_descriptor(String())
2.21875
2
cyra/cyradoc.py
Theta-Dev/Cyra
0
12786466
<reponame>Theta-Dev/Cyra from typing import List import importlib from sphinx.application import Sphinx from sphinx.util import logging from docutils import nodes from docutils.parsers.rst import Directive, directives from docutils.statemachine import StringList import cyra logger = logging.getLogger(__name__) class CyradocDirective(Directive): required_arguments = 1 option_spec = { 'no-docstrings': directives.flag, } @staticmethod def _get_class(cfg_path, location): split_path = cfg_path.rsplit('.', 1) if len(split_path) != 2: logger.error('Cyradoc path must have the format <Module>.<Class>', location=location) return None modname, clsname = split_path try: mod = importlib.import_module(modname) except ImportError: logger.error('Cyradoc could not find module %s' % modname, location=location) return None try: config_cls = getattr(mod, clsname) except AttributeError: logger.error('Cyradoc could not find class %s in module %s' % (clsname, modname), location=location) return None if not issubclass(config_cls, cyra.Config): logger.error('Class %s is not a Cyradoc class' % cfg_path, location=location) return None return config_cls @staticmethod def _new_toml_block(toml): literal = nodes.literal_block(toml, toml) literal['language'] = 'toml' return literal def run(self): # type: () -> List[nodes.Node] location = self.state_machine.get_source_and_line(self.lineno) cfg_path = self.arguments[0] config_cls = self._get_class(cfg_path, location) if config_cls is None: return [] config = config_cls('') result = [] if 'no-docstrings' in self.options: toml = config.export_toml() result.append(self._new_toml_block(toml)) else: for docstring, toml in config.get_docblocks(): if docstring: rst = StringList(docstring.split('\n')) # Create a node. node = nodes.option_string() node.document = self.state.document # Parse the rst. self.state.nested_parse(rst, 0, node) result.append(node) if toml: result.append(self._new_toml_block(toml)) return result def setup(app): # type: (Sphinx) -> None app.add_directive('cyradoc', CyradocDirective)
1.96875
2
dipy/reconst/dki_micro.py
nasimanousheh/dipy
8
12786467
<reponame>nasimanousheh/dipy<filename>dipy/reconst/dki_micro.py #!/usr/bin/python """ Classes and functions for fitting the DKI-based microstructural model """ from __future__ import division, print_function, absolute_import import numpy as np from dipy.reconst.dti import (lower_triangular, from_lower_triangular, decompose_tensor, trace, mean_diffusivity, radial_diffusivity, axial_diffusivity, MIN_POSITIVE_SIGNAL) from dipy.reconst.dki import (split_dki_param, _positive_evals, directional_kurtosis, directional_diffusion, kurtosis_maximum, DiffusionKurtosisModel, DiffusionKurtosisFit) from dipy.reconst.dti import design_matrix as dti_design_matrix from dipy.core.ndindex import ndindex from dipy.reconst.vec_val_sum import vec_val_vect from dipy.data import get_sphere import dipy.core.sphere as dps def axonal_water_fraction(dki_params, sphere='repulsion100', gtol=1e-2, mask=None): """ Computes the axonal water fraction from DKI [1]_. Parameters ---------- dki_params : ndarray (x, y, z, 27) or (n, 27) All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows: 1) Three diffusion tensor's eigenvalues 2) Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector 3) Fifteen elements of the kurtosis tensor sphere : Sphere class instance, optional The sphere providing sample directions for the initial search of the maximal value of kurtosis. gtol : float, optional This input is to refine kurtosis maxima under the precision of the directions sampled on the sphere class instance. The gradient of the convergence procedure must be less than gtol before successful termination. If gtol is None, fiber direction is directly taken from the initial sampled directions of the given sphere object mask : ndarray A boolean array used to mark the coordinates in the data that should be analyzed that has the shape dki_params.shape[:-1] Returns -------- awf : ndarray (x, y, z) or (n) Axonal Water Fraction References ---------- .. [1] <NAME>, <NAME>, <NAME>, 2011. White matter characterization with diffusional kurtosis imaging. Neuroimage 58(1):177-88. doi: 10.1016/j.neuroimage.2011.06.006 """ kt_max = kurtosis_maximum(dki_params, sphere=sphere, gtol=gtol, mask=mask) awf = kt_max / (kt_max + 3) return awf def diffusion_components(dki_params, sphere='repulsion100', awf=None, mask=None): """ Extracts the restricted and hindered diffusion tensors of well aligned fibers from diffusion kurtosis imaging parameters [1]_. Parameters ---------- dki_params : ndarray (x, y, z, 27) or (n, 27) All parameters estimated from the diffusion kurtosis model. Parameters are ordered as follows: 1) Three diffusion tensor's eigenvalues 2) Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector 3) Fifteen elements of the kurtosis tensor sphere : Sphere class instance, optional The sphere providing sample directions to sample the restricted and hindered cellular diffusion tensors. For more details see Fieremans et al., 2011. awf : ndarray (optional) Array containing values of the axonal water fraction that has the shape dki_params.shape[:-1]. If not given this will be automatically computed using :func:`axonal_water_fraction`" with function's default precision. mask : ndarray (optional) A boolean array used to mark the coordinates in the data that should be analyzed that has the shape dki_params.shape[:-1] Returns -------- edt : ndarray (x, y, z, 6) or (n, 6) Parameters of the hindered diffusion tensor. idt : ndarray (x, y, z, 6) or (n, 6) Parameters of the restricted diffusion tensor. Note ---- In the original article of DKI microstructural model [1]_, the hindered and restricted tensors were definde as the intra-cellular and extra-cellular diffusion compartments respectively. References ---------- .. [1] <NAME>, <NAME>, <NAME>, 2011. White matter characterization with diffusional kurtosis imaging. Neuroimage 58(1):177-88. doi: 10.1016/j.neuroimage.2011.06.006 """ shape = dki_params.shape[:-1] # load gradient directions if not isinstance(sphere, dps.Sphere): sphere = get_sphere(sphere) # select voxels where to apply the single fiber model if mask is None: mask = np.ones(shape, dtype='bool') else: if mask.shape != shape: raise ValueError("Mask is not the same shape as dki_params.") else: mask = np.array(mask, dtype=bool, copy=False) # check or compute awf values if awf is None: awf = axonal_water_fraction(dki_params, sphere=sphere, mask=mask) else: if awf.shape != shape: raise ValueError("awf array is not the same shape as dki_params.") # Initialize hindered and restricted diffusion tensors edt_all = np.zeros(shape + (6,)) idt_all = np.zeros(shape + (6,)) # Generate matrix that converts apparant diffusion coefficients to tensors B = np.zeros((sphere.x.size, 6)) B[:, 0] = sphere.x * sphere.x # Bxx B[:, 1] = sphere.x * sphere.y * 2. # Bxy B[:, 2] = sphere.y * sphere.y # Byy B[:, 3] = sphere.x * sphere.z * 2. # Bxz B[:, 4] = sphere.y * sphere.z * 2. # Byz B[:, 5] = sphere.z * sphere.z # Bzz pinvB = np.linalg.pinv(B) # Compute hindered and restricted diffusion tensors for all voxels evals, evecs, kt = split_dki_param(dki_params) dt = lower_triangular(vec_val_vect(evecs, evals)) md = mean_diffusivity(evals) index = ndindex(mask.shape) for idx in index: if not mask[idx]: continue # sample apparent diffusion and kurtosis values di = directional_diffusion(dt[idx], sphere.vertices) ki = directional_kurtosis(dt[idx], md[idx], kt[idx], sphere.vertices, adc=di, min_kurtosis=0) edi = di * (1 + np.sqrt(ki * awf[idx] / (3.0 - 3.0 * awf[idx]))) edt = np.dot(pinvB, edi) edt_all[idx] = edt # We only move on if there is an axonal water fraction. # Otherwise, remaining params are already zero, so move on if awf[idx] == 0: continue # Convert apparent diffusion and kurtosis values to apparent diffusion # values of the hindered and restricted diffusion idi = di * (1 - np.sqrt(ki * (1.0 - awf[idx]) / (3.0 * awf[idx]))) # generate hindered and restricted diffusion tensors idt = np.dot(pinvB, idi) idt_all[idx] = idt return edt_all, idt_all def dkimicro_prediction(params, gtab, S0=1): r""" Signal prediction given the DKI microstructure model parameters. Parameters ---------- params : ndarray (x, y, z, 40) or (n, 40) All parameters estimated from the diffusion kurtosis microstructure model. Parameters are ordered as follows: 1) Three diffusion tensor's eigenvalues 2) Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector 3) Fifteen elements of the kurtosis tensor 4) Six elements of the hindered diffusion tensor 5) Six elements of the restricted diffusion tensor 6) Axonal water fraction gtab : a GradientTable class instance The gradient table for this prediction S0 : float or ndarray The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1 Returns -------- S : (..., N) ndarray Simulated signal based on the DKI microstructure model Notes ----- 1) The predicted signal is given by: $S(\theta, b) = S_0 * [f * e^{-b ADC_{r}} + (1-f) * e^{-b ADC_{h}]$, where $ ADC_{r} and ADC_{h} are the apparent diffusion coefficients of the diffusion hindered and restricted compartment for a given direction $\theta$, $b$ is the b value provided in the GradientTable input for that direction, $f$ is the volume fraction of the restricted diffusion compartment (also known as the axonal water fraction). 2) In the original article of DKI microstructural model [1]_, the hindered and restricted tensors were definde as the intra-cellular and extra-cellular diffusion compartments respectively. """ # Initialize pred_sig pred_sig = np.zeros(params.shape[:-1] + (gtab.bvals.shape[0],)) # Define dti design matrix and region to process D = dti_design_matrix(gtab) evals = params[..., :3] mask = _positive_evals(evals[..., 0], evals[..., 1], evals[..., 2]) # Prepare parameters f = params[..., 27] adce = params[..., 28:34] adci = params[..., 34:40] if isinstance(S0, np.ndarray): S0_vol = S0 * np.ones(params.shape[:-1]) else: S0_vol = S0 # Process pred_sig for all data voxels index = ndindex(evals.shape[:-1]) for v in index: if mask[v]: pred_sig[v] = (1. - f[v]) * np.exp(np.dot(D[:, :6], adce[v])) + \ f[v] * np.exp(np.dot(D[:, :6], adci[v])) return pred_sig * S0_vol def tortuosity(hindered_ad, hindered_rd): """ Computes the tortuosity of the hindered diffusion compartment given its axial and radial diffusivities Parameters ---------- hindered_ad: ndarray Array containing the values of the hindered axial diffusivity. hindered_rd: ndarray Array containing the values of the hindered radial diffusivity. Return ------ Tortuosity of the hindered diffusion compartment """ if not isinstance(hindered_rd, np.ndarray): hindered_rd = np.array(hindered_rd) if not isinstance(hindered_ad, np.ndarray): hindered_ad = np.array(hindered_ad) tortuosity = np.zeros(hindered_rd.shape) # mask to avoid divisions by zero mask = hindered_rd > 0 # Check single voxel cases. For numpy versions more recent than 1.7, # this if else condition is not required since single voxel can be # processed using the same line of code of multi-voxel if hindered_rd.size == 1: if mask: tortuosity = hindered_ad / hindered_rd else: tortuosity[mask] = hindered_ad[mask] / hindered_rd[mask] return tortuosity def _compartments_eigenvalues(cdt): """ Helper function that computes the eigenvalues of a tissue sub compartment given its individual diffusion tensor Parameters ---------- cdt : ndarray (..., 6) Diffusion tensors elements of the tissue compartment stored in lower triangular order. Returns ------- eval : ndarry (..., 3) Eigenvalues of the tissue compartment """ evals, evecs = decompose_tensor(from_lower_triangular(cdt)) return evals class KurtosisMicrostructureModel(DiffusionKurtosisModel): """ Class for the Diffusion Kurtosis Microstructural Model """ def __init__(self, gtab, fit_method="WLS", *args, **kwargs): """ Initialize a KurtosisMicrostrutureModel class instance [1]_. Parameters ---------- gtab : GradientTable class instance fit_method : str or callable str can be one of the following: 'OLS' or 'ULLS' to fit the diffusion tensor and kurtosis tensor using the ordinary linear least squares solution dki.ols_fit_dki 'WLS' or 'UWLLS' to fit the diffusion tensor and kurtosis tensor using the ordinary linear least squares solution dki.wls_fit_dki callable has to have the signature: fit_method(design_matrix, data, *args, **kwargs) args, kwargs : arguments and key-word arguments passed to the fit_method. See dki.ols_fit_dki, dki.wls_fit_dki for details References ---------- .. [1] <NAME>., <NAME>., <NAME>., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006 """ DiffusionKurtosisModel.__init__(self, gtab, fit_method="WLS", *args, **kwargs) def fit(self, data, mask=None, sphere='repulsion100', gtol=1e-2, awf_only=False): """ Fit method of the Diffusion Kurtosis Microstructural Model Parameters ---------- data : array An 4D matrix containing the diffusion-weighted data. mask : array A boolean array used to mark the coordinates in the data that should be analyzed that has the shape data.shape[-1] sphere : Sphere class instance, optional The sphere providing sample directions for the initial search of the maximal value of kurtosis. gtol : float, optional This input is to refine kurtosis maxima under the precision of the directions sampled on the sphere class instance. The gradient of the convergence procedure must be less than gtol before successful termination. If gtol is None, fiber direction is directly taken from the initial sampled directions of the given sphere object awf_only : bool, optiomal If set to true only the axonal volume fraction is computed from the kurtosis tensor. Default = False """ if mask is not None: # Check for valid shape of the mask if mask.shape != data.shape[:-1]: raise ValueError("Mask is not the same shape as data.") mask = np.array(mask, dtype=bool, copy=False) data_in_mask = np.reshape(data[mask], (-1, data.shape[-1])) if self.min_signal is None: self.min_signal = MIN_POSITIVE_SIGNAL data_in_mask = np.maximum(data_in_mask, self.min_signal) # DKI fit dki_params = self.fit_method(self.design_matrix, data_in_mask, *self.args, **self.kwargs) # Computing awf awf = axonal_water_fraction(dki_params, sphere=sphere, gtol=gtol) if awf_only: params_all_mask = np.concatenate((dki_params, np.array([awf]).T), axis=-1) else: # Computing the hindered and restricted diffusion tensors hdt, rdt = diffusion_components(dki_params, sphere=sphere, awf=awf) params_all_mask = np.concatenate((dki_params, np.array([awf]).T, hdt, rdt), axis=-1) if mask is None: out_shape = data.shape[:-1] + (-1,) params = params_all_mask.reshape(out_shape) else: params = np.zeros(data.shape[:-1] + (params_all_mask.shape[-1],)) params[mask, :] = params_all_mask return KurtosisMicrostructuralFit(self, params) def predict(self, params, S0=1.): """ Predict a signal for the DKI microstructural model class instance given parameters. Parameters ---------- params : ndarray (x, y, z, 40) or (n, 40) All parameters estimated from the diffusion kurtosis microstructural model. Parameters are ordered as follows: 1) Three diffusion tensor's eigenvalues 2) Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector 3) Fifteen elements of the kurtosis tensor 4) Six elements of the hindered diffusion tensor 5) Six elements of the restricted diffusion tensor 6) Axonal water fraction S0 : float or ndarray (optional) The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1 Note ----- In the original article of DKI microstructural model [1]_, the hindered and restricted tensors were definde as the intra-cellular and extra-cellular diffusion compartments respectively. References ---------- .. [1] <NAME>., <NAME>., <NAME>., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006 """ return dkimicro_prediction(params, self.gtab, S0) class KurtosisMicrostructuralFit(DiffusionKurtosisFit): """ Class for fitting the Diffusion Kurtosis Microstructural Model """ def __init__(self, model, model_params): """ Initialize a KurtosisMicrostructural Fit class instance. Parameters ---------- model : DiffusionKurtosisModel Class instance Class instance containing the Diffusion Kurtosis Model for the fit model_params : ndarray (x, y, z, 40) or (n, 40) All parameters estimated from the diffusion kurtosis microstructural model. Parameters are ordered as follows: 1) Three diffusion tensor's eigenvalues 2) Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector 3) Fifteen elements of the kurtosis tensor 4) Six elements of the hindered diffusion tensor 5) Six elements of the restricted diffusion tensor 6) Axonal water fraction Note ----- In the original article of DKI microstructural model [1]_, the hindered and restricted tensors were definde as the intra-cellular and extra-cellular diffusion compartments respectively. References ---------- .. [1] <NAME>., <NAME>., <NAME>., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006 """ DiffusionKurtosisFit.__init__(self, model, model_params) @property def awf(self): """ Returns the volume fraction of the restricted diffusion compartment also known as axonal water fraction. Note ---- The volume fraction of the restricted diffusion compartment can be seem as the volume fraction of the intra-cellular compartment [1]_. References ---------- .. [1] <NAME>., <NAME>., <NAME>., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006 """ return self.model_params[..., 27] @property def restricted_evals(self): """ Returns the eigenvalues of the restricted diffusion compartment. Note ----- The restricted diffusion tensor can be seem as the tissue's intra-cellular diffusion compartment [1]_. References ---------- .. [1] <NAME>., <NAME>., <NAME>., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006 """ self._is_awfonly() return _compartments_eigenvalues(self.model_params[..., 34:40]) @property def hindered_evals(self): """ Returns the eigenvalues of the hindered diffusion compartment. Note ----- The hindered diffusion tensor can be seem as the tissue's extra-cellular diffusion compartment [1]_. References ---------- .. [1] <NAME>., <NAME>., <NAME>., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006 """ self._is_awfonly() return _compartments_eigenvalues(self.model_params[..., 28:34]) @property def axonal_diffusivity(self): """ Returns the axonal diffusivity defined as the restricted diffusion tensor trace [1]_. References ---------- .. [1] <NAME>., <NAME>., <NAME>., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006 """ return trace(self.restricted_evals) @property def hindered_ad(self): """ Returns the axial diffusivity of the hindered compartment. Note ----- The hindered diffusion tensor can be seem as the tissue's extra-cellular diffusion compartment [1]_. References ---------- .. [1] <NAME>., <NAME>., <NAME>., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006 """ return axial_diffusivity(self.hindered_evals) @property def hindered_rd(self): """ Returns the radial diffusivity of the hindered compartment. Note ----- The hindered diffusion tensor can be seem as the tissue's extra-cellular diffusion compartment [1]_. References ---------- .. [1] <NAME>., <NAME>., <NAME>., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006 """ return radial_diffusivity(self.hindered_evals) @property def tortuosity(self): """ Returns the tortuosity of the hindered diffusion which is defined by ADe / RDe, where ADe and RDe are the axial and radial diffusivities of the hindered compartment [1]_. Note ----- The hindered diffusion tensor can be seem as the tissue's extra-cellular diffusion compartment [1]_. References ---------- .. [1] <NAME>., <NAME>., <NAME>., 2011. White Matter Characterization with Diffusion Kurtosis Imaging. Neuroimage 58(1): 177-188. doi:10.1016/j.neuroimage.2011.06.006 """ return tortuosity(self.hindered_ad, self.hindered_rd) def _is_awfonly(self): """ To raise error if only the axonal water fraction was computed """ if self.model_params.shape[-1] < 39: raise ValueError('Only the awf was processed! Rerun model fit ' 'with input parameter awf_only set to False') def predict(self, gtab, S0=1.): r""" Given a DKI microstructural model fit, predict the signal on the vertices of a gradient table gtab : a GradientTable class instance The gradient table for this prediction S0 : float or ndarray (optional) The non diffusion-weighted signal in every voxel, or across all voxels. Default: 1 Notes ----- The predicted signal is given by: $S(\theta, b) = S_0 * [f * e^{-b ADC_{r}} + (1-f) * e^{-b ADC_{h}]$, where $ADC_{r}$ and $ADC_{h}$ are the apparent diffusion coefficients of the diffusion hindered and restricted compartment for a given direction $\theta$, $b$ is the b value provided in the GradientTable input for that direction, $f$ is the volume fraction of the restricted diffusion compartment (also known as the axonal water fraction). """ self._is_awfonly() return dkimicro_prediction(self.model_params, gtab, S0)
2.671875
3
face_recognize.py
nadeengamage/face-recognition
0
12786468
import cv2, sys, os import numpy as np haar_file = 'haarcascade_frontalface_default.xml' datasets = 'datasets' print('Recognizing Face Please Be in sufficient Lights...') (images, lables, names, id) = ([], [], {}, 0) for (subdirs, dirs, files) in os.walk(datasets): for subdir in dirs: names[id] = subdir subjectpath = os.path.join(datasets, subdir) for filename in os.listdir(subjectpath): path = subjectpath + '/' + filename lable = id images.append(cv2.imread(path, 0)) lables.append(int(lable)) id += 1 (width, height) = (130, 100) (images, lables) = [np.array(lis) for lis in [images, lables]] model = cv2.face.LBPHFaceRecognizer_create() model.train(images, lables) face_cascade = cv2.CascadeClassifier(haar_file) webcam = cv2.VideoCapture(0) while True: (_, im) = webcam.read() (_, im2) = webcam.read() gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV) lower_blue = np.array([110,50,50]) upper_blue = np.array([130,255,255]) for (x, y, w, h) in faces: cv2.rectangle(gray, (x, y), (x + w, y + h), (255, 0, 0), 2) cv2.rectangle(im, (x, y), (x + w, y + h), (255, 0, 0), 2) face = gray[y:y + h, x:x + w] face_resize = cv2.resize(face, (width, height)) prediction = model.predict(face_resize) cv2.rectangle(gray, (x, y), (x + w, y + h), (0, 255, 0), 3) cv2.rectangle(im, (x, y), (x + w, y + h), (0, 255, 0), 3) if prediction[1]<100: cv2.putText(gray, 'The person of % s - %.0f' %(names[prediction[0]], prediction[1]), (x-10, y-10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 2) cv2.putText(im, 'The person of % s - %.0f' %(names[prediction[0]], prediction[1]), (x-10, y-10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 2) else: cv2.putText(gray, 'Not Recognized', (x-10, y-10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 2) cv2.putText(im, 'Not Recognized', (x-10, y-10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 2) mask = cv2.inRange(hsv, lower_blue, upper_blue) cv2.imshow('Window 1', im) cv2.imshow('Window 2', im2) cv2.imshow('Window 3', gray) cv2.imshow('Window 4', mask) key = cv2.waitKey(10) if key == 27: cv2.destroyAllWindows() break
2.734375
3
autumn/tools/inputs/covid_au/fetch.py
monash-emu/AuTuMN
14
12786469
<filename>autumn/tools/inputs/covid_au/fetch.py """ This file imports Google mobility data and saves it to disk as a CSV. """ import os import pandas as pd from autumn.settings import INPUT_DATA_PATH # From covid19data.com.au GitHub https://github.com/M3IT/COVID-19_Data DATA_URL = "https://raw.githubusercontent.com/M3IT/COVID-19_Data/master/Data/COVID_AU_state_daily_change.csv" COVID_AU_DIRPATH = os.path.join(INPUT_DATA_PATH, "covid_au") COVID_AU_CSV_PATH = os.path.join(COVID_AU_DIRPATH, "COVID_AU_state_daily_change.csv") YOUGOV_URL = "https://github.com/YouGov-Data/covid-19-tracker/raw/master/data/australia.zip" COVID_AU_YOUGOV = os.path.join(COVID_AU_DIRPATH, "yougov_australia.csv") COVID_LGA_CSV_PATH = os.path.join(COVID_AU_DIRPATH, "lga_test.csv") MOBILITY_DIRPATH = os.path.join(INPUT_DATA_PATH, "mobility") MOBILITY_LGA_PATH = os.path.join( MOBILITY_DIRPATH, "LGA to Cluster mapping dictionary with proportions.csv" ) COVID_VAC_COV_CSV = os.path.join(COVID_AU_DIRPATH, "vac_cov.csv") COVID_VIDA_VAC_CSV = os.path.join(COVID_AU_DIRPATH, "vida_vac.secret.csv") COVID_VIDA_POP_CSV = os.path.join(COVID_AU_DIRPATH, "vida_pop.csv") CLUSTER_MAP = { 1: "NORTH_METRO", 2: "SOUTH_EAST_METRO", 3: "SOUTH_METRO", 4: "WEST_METRO", 5: "BARWON_SOUTH_WEST", 6: "GIPPSLAND", 7: "GRAMPIANS", 8: "HUME", 9: "LODDON_MALLEE", 0: "VIC", } def fetch_covid_au_data(): pd.read_csv(DATA_URL).to_csv(COVID_AU_CSV_PATH) pd.read_csv(YOUGOV_URL).to_csv(COVID_AU_YOUGOV)
2.703125
3
diabetesmanager/__init__.py
diabetes-manager/data-science
0
12786470
<gh_stars>0 """Entry point for Diabetes Manager flask application.""" from .app import create_app APP = create_app()
1.03125
1
draw_bar.py
IndexFziQ/nn4nlp-concepts
440
12786471
# import libraries import matplotlib matplotlib.use('Agg') import pandas as pd import matplotlib.pyplot as plt import argparse from collections import defaultdict #%matplotlib inline # set font plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['font.sans-serif'] = 'Helvetica' # set the style of the axes and the text color plt.rcParams['axes.edgecolor']='#333F4B' plt.rcParams['axes.linewidth']=0.8 plt.rcParams['xtick.color']='#333F4B' plt.rcParams['ytick.color']='#333F4B' plt.rcParams['text.color']='#333F4B' parser = argparse.ArgumentParser(description='Draw Bar') parser.add_argument('--tsv', default='input.tsv', help='input file separted by \'\\t\' ') parser.add_argument('--fig', default='out.png', help='the output figure') parser.add_argument('--title', default='Concept Count in All Papers', help='the title of the graph') parser.add_argument('--colored_concepts', default=None, nargs='+', help='An interleaved list of filenames containing concept tags (e.g. first.txt red second.txt purple)') args = parser.parse_args() concept_colors = defaultdict(lambda: '#007ACC') if args.colored_concepts: for i in range(0, len(args.colored_concepts), 2): print(f"opening {args.colored_concepts[i]} as {args.colored_concepts[i+1]}") with open(args.colored_concepts[i], 'r') as f: for line in f: line = line.strip() concept_colors[line] = args.colored_concepts[i+1] print(f'concept_colors[{line}] = {args.colored_concepts[i+1]}') tsv_file = args.tsv fig_file = args.fig fin = open(tsv_file,"r") cpt_list = [] val_list = [] for line in fin: line = line.strip() cpt, val = line.split("\t") val_list.append(int(val)) cpt_list.append(cpt) fin.close() percentages = pd.Series(val_list, index=cpt_list) df = pd.DataFrame({'percentage' : percentages}) df = df.sort_values(by='percentage') color_list = [concept_colors[x] for x in df.index] # we first need a numeric placeholder for the y axis my_range=list(range(1,len(df.index)+1)) fig, ax = plt.subplots(figsize=(10,25)) # create lines and dots for each bar plt.hlines(y=my_range, xmin=0, xmax=df['percentage'], colors=color_list, alpha=0.5, linewidth=5) # plt.plot(df['percentage'], my_range, "o", markersize=5, colors=color_list, alpha=0.6) # set labels ax.set_xlabel(args.title, fontsize=15, fontweight='black', color = '#333F4B') ax.xaxis.set_label_position('top') ax.xaxis.tick_top() #ax.set_ylabel('') # set axis ax.tick_params(axis='both', which='major', labelsize=12) plt.yticks(my_range, df.index) # add an horizonal label for the y axis #fig.text(-0.23, 0.86, 'Concept Coverage (Fulltext)', fontsize=15, fontweight='black', color = '#333F4B') # change the style of the axis spines ax.spines['bottom'].set_color('none') ax.spines['right'].set_color('none') ax.spines['left'].set_smart_bounds(True) ax.spines['top'].set_smart_bounds(True) ''' # set the spines position ax.spines['bottom'].set_position(('axes', -0.04)) ax.spines['left'].set_position(('axes', 0.015)) ''' plt.savefig(fig_file, dpi=300, bbox_inches='tight')
2.765625
3
tests/test_online_attributes.py
anetschka/duden
0
12786472
<filename>tests/test_online_attributes.py # -*- coding: utf-8 -*- """ Test if words currently available online parse as expected """ import os from collections import namedtuple import pytest import yaml from duden.search import get TEST_DATA_DIR = 'tests/test_data' WordTestRecord = namedtuple('WordTestRecord', ["parsed_word", "expected_dict"]) def generate_word_data(): """ Download actual words from duden corresponding to test words from `TEST_DATA_DIR` """ data = [] for filename in os.listdir(TEST_DATA_DIR): full_path = os.path.join(TEST_DATA_DIR, filename) # read only yaml files if not filename.endswith('.yaml'): continue # store real and expected result with open(full_path, 'r') as f: expected_dict = yaml.load(f, Loader=yaml.SafeLoader) parsed_word = get(expected_dict['urlname']) record = WordTestRecord(parsed_word, expected_dict) data.append(record) return data # set up test parameters matrix word_data = generate_word_data() basic_attributes = [ 'title', 'name', 'article', 'part_of_speech', 'frequency', 'usage', 'word_separation', 'synonyms', 'origin', 'words_before', 'words_after' ] word_param = pytest.mark.parametrize("parsed_word,expected_dict", word_data) attribute_param = pytest.mark.parametrize("attribute", basic_attributes) @word_param @attribute_param def test_basic_attributes(parsed_word, expected_dict, attribute): """Test basic word attributes""" assert getattr(parsed_word, attribute) == expected_dict[attribute] @word_param def test_meaning_overview(parsed_word, expected_dict): """Test meaning overview attribute""" assert parsed_word.meaning_overview == expected_dict['meaning_overview'] @word_param def test_word_compounds(parsed_word, expected_dict): """Test word compounds attribute""" parsed = parsed_word.compounds expected = expected_dict['compounds'] if parsed == expected == None: # noqa return assert parsed.keys() == expected.keys() if 'substantive' in expected: assert set(parsed['substantive']) == set(expected['substantive']) if 'verben' in expected: assert set(parsed['verben']) == set(expected['verben']) if 'adjektive' in expected: assert set(parsed['adjektive']) == set(expected['adjektive']) @word_param def test_word_grammar(parsed_word, expected_dict): """Test word grammar""" expected_grammar = expected_dict['grammar_raw'] if expected_grammar is not None: expected_grammar = [(set(tags), string) for tags, string in expected_grammar] assert parsed_word.grammar_raw == expected_grammar
2.78125
3
runner.py
erensezener/aima-based-irl
12
12786473
""" Author: <NAME> (<EMAIL>) Date: April 4, 2014 Description: Runs the BIRL algorithm multiple times. Status: Works correctly. Dependencies: Known bugs: - """ # from birl import * from functools import partial import matplotlib.pyplot as plt import numpy as np import matplotlib.gridspec as gridspec from modified_birl import * def main(): number_of_iterations = 10 # expert_mdp = GridMDP([[-10, -5, 0, 0, 10], # [-5, -3, 0, 0, 0], # [0, 0, 0, 0, 0], # [0, 0, 0, 0, 0]], # terminals=[(4,3)]) # expert_mdp = GridMDP([[-10, -5, -3, -1, 0, 0, 0, 0, 0, 10], # [-8, -5, -3, 0, 0, 0, 0, 0, 0, 0], # [-5, -2, -1, 0, 0, 0, 0, 0, 0, 0], # [-3, -1, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], # terminals=[(9,4)]) # # expert_mdp = GridMDP([[0, 0, 0, 0, -1, -1, 0, 0, 0, 10], # [0, 0, 0, -3, -3, -3, -3, 0, 0, 0], # [0, 0, 0, -3, -5, -5, -3, 0, 0, 0], # [0, 0, 0, -3, -3, -3, -3, 0, 0, 0], # [0, 0, 0, 0, 0, -1, -1, 0, 0, 0]], # terminals=[(9,4)]) # # rewards = [[0, 0, 0, 0, -1, -1, 0, 0, 0, 10], # [0, 0, 0, -3, -3, -3, -3, 0, 0, 0], # [0, 0, 0, -3, -5, -5, -3, 0, 0, 0], # [0, 0, 0, -3, -3, -3, -3, 0, 0, 0], # [0, 0, 0, 0, 0, -1, -1, 0, 0, 0]] # rewards = [[0, 0, 0, 0, -8, -8, 0, 0, 0, 10], [0, 0, 0, -8, -10, -10, -8, 0, 0, 0], [0, 0, 0, -8, -10, -10, -8, 0, 0, 0], [0, 0, 0, -8, -10, -10, -8, 0, 0, 0], [0, 0, 0, 0, 0, -8, -8, 0, 0, 0]] # rewards = [[-6, -3, -1, 0, 0, 0, 0, 0, 0, 10], # [-3, -3, -1, 0, 0, 0, 0, 0, 0, 0], # [-1, -1, -1, 0, 0, 0, 0, -1, -1, -1], # [0, 0, 0, 0, 0, 0, 0, -1, -3, -3], # [0, 0, 0, 0, 0, 0, 0, -1, -3, -6]] # # rewards = [[0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 0, 0, 0, 0, 0, 10], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0]] expert_mdp = GridMDP(rewards, terminals=[(9, 4)]) expert_trace = best_policy(expert_mdp, value_iteration(expert_mdp, 0.001)) print "Expert rewards:" expert_mdp.print_rewards() print "Expert policy:" print_table(expert_mdp.to_arrows(expert_trace)) print "---------------" expert_trace.pop((0,1)) expert_trace.pop((0,2)) expert_trace.pop((0,3)) birl = ModifiedBIRL(expert_trace, expert_mdp.get_grid_size(), expert_mdp.terminals, partial(calculate_error_sum, expert_mdp), birl_iteration=2, step_size=1.0) run_multiple_birl(birl, expert_mdp, expert_trace, number_of_iterations) def plot_errors(policy_error, reward_error, directory_name, birl, i, expert_mdp, mdp): gs = gridspec.GridSpec(3, 2) ax0 = plt.subplot(gs[0, :-1]) ax1 = plt.subplot(gs[0, -1]) ax2 = plt.subplot(gs[1, :]) ax3 = plt.subplot(gs[2, :]) expert_data = np.array(expert_mdp.get_grid()) ax0.pcolor(expert_data, cmap=plt.cm.RdYlGn) ax0.set_title("Expert's Rewards") ax0.invert_yaxis() data = np.array(mdp.get_grid()) ax1.pcolor(data, cmap=plt.cm.RdYlGn) ax1.set_title("Reward Estimations") ax1.invert_yaxis() ax2.plot(range(birl.birl_iteration), policy_error, 'ro') ax2.set_title('Policy change') ax3.plot(range(birl.birl_iteration), reward_error, 'bo') ax3.set_title('Reward change') plt.tight_layout() plt.savefig(directory_name + "/run" + str(i) + ".png") def run_multiple_birl(birl, expert_mdp, expert_trace, number_of_iteration): """Run BIRL algorithm number_of_iteration times. """ directory_name = initialize_output_directory(birl) for i in range(number_of_iteration): pi, mdp, policy_error, reward_error = birl.run_birl() plot_errors(policy_error, reward_error, directory_name, birl, i, expert_mdp, mdp) print("Run :" + str(i)) print_reward_comparison(mdp, pi, expert_mdp, expert_trace) print_error_sum(mdp, birl, expert_mdp) def initialize_output_directory(birl): directory_name = 'outputs/iter' + str(birl.birl_iteration) + \ '_stepsize' + str(birl.step_size) + '_no' + str(randint(0, 2 ** 30)) if not os.path.exists(directory_name): os.makedirs(directory_name) return directory_name def print_reward_comparison(mdp, pi, expert_mdp, expert_trace): print_table(mdp.to_arrows(pi)) print "vs" print_table(mdp.to_arrows(expert_trace)) print("Policy difference is " + str(get_policy_difference(pi, expert_trace))) mdp.print_rewards() print "vs" expert_mdp.print_rewards() def print_error_sum(mdp, birl, expert_mdp): print ("Total Error: " + str(normalize_by_max_reward(calculate_error_sum(mdp, expert_mdp), birl))) print "---------------" def print_sse(mdp, expert_trace): print ("Reward SSE: " + str(calculate_sse(mdp, expert_trace))) print "---------------" def normalize_by_max_reward(value, birl): if birl.r_max != abs(birl.r_min): raise Exception("Normalization cannot be done. r_min and r_max values have different abs sums!") return value / float(birl.r_max) def calculate_sse(mdp1, mdp2): "Returns the sum of the squared errors between two reward functions" sse = 0 if not (mdp1.cols == mdp2.cols and mdp1.rows == mdp2.rows): raise Exception("Mismatch between # of rows and columns of reward vectors") for x in range(mdp1.cols): for y in range(mdp1.rows): sse += (mdp1.reward[x, y] - mdp2.reward[x, y]) ** 2 return sse def calculate_error_sum(mdp1, mdp2): """Returns the sum of errors between two reward functions Sum is normalized with respect to the number of states """ sum = 0 if not (mdp1.cols == mdp2.cols and mdp1.rows == mdp2.rows): raise Exception("Mismatch between # of rows and columns of reward vectors") for x in range(mdp1.cols): for y in range(mdp1.rows): sum += abs(mdp1.reward[x, y] - mdp2.reward[x, y]) return sum / (float(mdp1.cols * mdp1.rows)) def get_policy_difference(new_pi, ex_pi): shared_items = set(new_pi.items()) & set(ex_pi.items()) return len(new_pi.items()) - len(shared_items) if __name__ == "__main__": main()
2.515625
3
fixipy/__init__.py
Jaydabi/pyfix
0
12786474
<gh_stars>0 from .Message import Message
1.085938
1
accounts.py
qwerith/Weather-Project
0
12786475
<gh_stars>0 import psycopg2 import os import re import string import random import logging from dotenv import load_dotenv, find_dotenv from flask_bcrypt import Bcrypt from flask import redirect, session bcrypt = Bcrypt() logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) formatter = logging.Formatter("""%(asctime)s:%(name)s: %(filename)s:%(funcName)s: %(levelname)s:%(message)s""") handler = logging.FileHandler("logs.log") handler.setFormatter(formatter) handler.setLevel(logging.INFO) logger.addHandler(handler) #loading environment variables try: load_dotenv(find_dotenv()) con = psycopg2.connect(host = os.getenv("HOST"), database = os.getenv("DATABASE"), user = os.getenv("USER"), password = os.<PASSWORD>("<PASSWORD>"), port=5432) cur = con.cursor() except RuntimeError("Database credentials error"): logger.exception("Database credentials error") raise class Accounts(): """Manages user accounts, queries data for session module, password changes and recovery""" def __init__(self, email, password): self.email = email.strip(" ") self.password = password.strip(" ") def register(self, username): try: con = psycopg2.connect(host = os.getenv("HOST"), database = os.getenv("DATABASE"), user = os.getenv("USER"), password = os.getenv("db_PASSWORD"), port=5432) cur = con.cursor() except: logger.error(RuntimeError("Database credentials error")) raise RuntimeError("Database credentials error") cur.execute("SELECT EXISTS(SELECT 1 FROM users WHERE email = %s LIMIT 1)", (self.email, )) con.commit() result = cur.fetchall() if result[0][0] != False: return ["Account already exists"] else: try: cur.execute("""INSERT INTO users (username, email, password) VALUES ( %s, %s, %s )""",(username.strip(" "), self.email, bcrypt.generate_password_hash(self.password).decode("utf-8"))) con.commit() con.close() return ["Your account has been successfully created"] except: con.close() return ["Registration failed"] def user_verification(self): cur.execute("SELECT id, username, email, password FROM users WHERE email=%s LIMIT 1", (self.email, )) con.commit() user = cur.fetchall() if user and bcrypt.check_password_hash(user[0][3], self.password): return(True, user) else: return None def delete(self): cur.execute("DELETE FROM users WHERE email=%s", (self.email, )) con.commit() def change_password(self, new_password): cur.execute("UPDATE users SET password=%s WHERE email=%s", (bcrypt.generate_password_hash(new_password).decode("utf-8"), self.email)) con.commit() def restore_password(self, temp_password_hash, temp_password): if bcrypt.check_password_hash(temp_password_hash, temp_password): cur.execute("UPDATE users SET password=%s WHERE email=%s", (bcrypt.generate_password_hash(self.password).decode("utf-8"), self.email)) con.commit() return True return None # Generates random password for recovery process def generate_temporary_password(email): cur.execute("SELECT EXISTS(SELECT 1 FROM users WHERE email = %s LIMIT 1)", (email, )) con.commit() result = cur.fetchall() if result[0][0] != False: chars = string.ascii_uppercase + string.ascii_lowercase + string.digits size = random.randint(5, 10) temp_password = ''.join(random.choice(chars) for x in range(size)) password_hash = bcrypt.generate_password_hash(temp_password).decode("utf-8") return password_hash, temp_password return None, "" def input_validation(user_input): #regex form for email validation try: len(user_input) > 1 for i in user_input: if type(i) != str: return ["Invalid data type"] except IndexError: logger.error(IndexError) raise response = [] email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b' punctuation = """[!#$%&'()*+, -./:;"<=>?@[\]^_`{|}~:]""" if not (re.match(email_pattern, user_input[0])): response.append("Invalid email") if (not len(user_input[1]) >= 5 and len(user_input[1]) <= 10 or re.findall(punctuation, user_input[1]) != []): response.append("Password must be 5 to 10 characters long") if len(user_input) == 3: if not user_input[1] == user_input[2] or re.findall(punctuation, user_input[2]) != []: response.append("Passwords do not match") if len(user_input) == 4: if not user_input[2] == user_input[3] or re.findall(punctuation, user_input[3]) != []: response.append("Passwords do not match") return response def login_required(func): def wrapper(*args, **kwargs): if session.get("user_id") != None: func(*args, **kwargs) return func(*args, **kwargs) return redirect("/login") return wrapper
2.34375
2
resetpwd/models.py
catbei2020/ad-password-self-service
1
12786476
<filename>resetpwd/models.py from django.db import models from django import forms from django.contrib import auth
1.304688
1
vk_bot/mods/yourphoto/getcommand.py
triangle1984/GLaDOS
3
12786477
<gh_stars>1-10 from vk_bot.core.modules.basicplug import BasicPlug from vk_bot.core.modules.othermethods import OtherMethod from vk_bot.core.sql.vksql import * class Getcommand(BasicPlug, OtherMethod): doc = "вытащить команду" types = 'commandb' @staticmethod def getcommand(uid, command): if bool(command) == False: return check = checktable("yourphoto", "id", uid, andd=f"command = '{command}'") if check: return check["command"] else: return 666 def main(self): check = checktable("yourphoto", "id", self.uid, andd=f"command = '{self.text[0]}'") if check: public = check["public"] public = public.split(",") photos = self.phootowallrandom(public) self.sendmsg("Пикча из личного альбома~", photos)
2.296875
2
src/graphql/document/field_query.py
btrekkie/graphql
0
12786478
class GraphQlFieldQuery(object): """A request for the value of a GraphQL object's field. dict<basestring, object> args - The arguments to the field. The entries are the Python object representations of the arguments' values, with GraphQlVariableReference objects for variable references. The entries are not None and do not contain the value None. list<GraphQlDirective> directives - The directives for the field query. FieldDescriptor field_descriptor - The description of the field we are querying. basestring response_key - The key that maps to the field's value in the GraphQL response. GraphQlSelectionSet selection_set - The selection set indicating the information to request from the field. """ def __init__( self, response_key, field_descriptor, arguments, selection_set, directives): self.response_key = response_key self.field_descriptor = field_descriptor self.args = arguments self.selection_set = selection_set self.directives = directives
2.546875
3
01-Lesson-Plans/03-Python/3/Activities/08-Par_GraduatingFunctions/Unsolved/graduation_functions.py
anirudhmungre/sneaky-lessons
0
12786479
<reponame>anirudhmungre/sneaky-lessons import os import csv # Path to collect data from the Resources folder # Define the function and have it accept the 'state_data' as its sole parameter # Find the total students # Find the total graduates # Find the public school graduation rate # Remember that some states do not have nonprofit or forprofit private schools # Find the non-profit school graduation rate # Find the for-profit school graduation rate # Calculate the overall graduation rate # Print out the state's name and its graduation rates # Read in the CSV file with open(graduation_csv, 'r') as csvfile: # Split the data on commas csvreader = csv.reader(csvfile, delimiter=',') header = next(csvreader) # Prompt the user for what state they would like to search for state_to_check = input("What state do you want to look for? ") # Loop through the data for row in csvreader: # If the state's name in a row is equal to that which the user input, run the 'print_percentages()' function if state_to_check == row[0]: print_percentages(row)
4.15625
4
examples/Multiple-time-series.py
KikeM/time-series-generator
6
12786480
# --- # jupyter: # jupytext: # formats: ipynb,md,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.4.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% [markdown] # Add to the path the generator folder. # %% import sys from pathlib import Path path = Path("../generator") sys.path.insert(0, path.as_posix()) pwd = path.parent # %% import pandas as pd from generator import TimeSeriesGenerator # %% NUMBER_SERIES = 10 NUMBER_DAYS = 260 # %% configuration = { "meta": { "number_of_observations": NUMBER_DAYS, "path": "./timeseries/", "time_series_name": "01-base", }, "base_line": {"base": 10, "variance": 2}, "timestamps": {"start": 0, "step": 1}, "trend": {"slope": 0.1}, "season": {"height": 5, "period": 21}, "breaks": [{"from": 10, "to": 100, "value": 10}], } # %% # Generate time series generator = TimeSeriesGenerator(configuration["meta"]) series = [] for number in range(1, NUMBER_SERIES + 1): # Add randomness to differentiate the time series configuration["base_line"]["base"] = np.random.randint(low=10, high=50) configuration["trend"]["slope"] = 0.35 * np.random.rand() configuration["season"]["height"] = np.abs(5 * np.random.rand()) configuration["season"]["period"] = np.random.randint(low=21, high=120) configuration["breaks"][0]["from"] = np.random.randint(low=21, high=120) configuration["breaks"][0]["to"] = np.random.randint( low=configuration["breaks"][0]["from"], high=NUMBER_DAYS ) configuration["breaks"][0]["value"] = np.random.randint(low=5, high=10) generator.generate(configuration) ts = generator.get_business_like() ts.name = number series.append(ts) # Collect all time series prices_df = pd.DataFrame(series).T prices_df.index.name = "date" # %% prices_df.plot()
2.515625
3
besspin/cyberPhys/cyberphyslib/tests/test_canout.py
mikkowus/BESSPIN-Tool-Suite
0
12786481
""" Project: SSITH CyberPhysical Demonstrator Name: test_canout.py Author: <NAME> Date: 08 April 2021 Tests for the cyberphys can location poller """ import cyberphyslib.demonstrator.can_out as ccout import cyberphyslib.demonstrator.component as ccomp from cyberphyslib.demonstrator.handler import ComponentHandler import time def test_canout(): """test the canout service operational tests: 1. start / stop failure mode tests: <None> """ # simple start / stop # TODO: conduct more tests handler = ComponentHandler() msg = handler.start_component(ccout.CanOutPoller(None)) assert msg == ccomp.ComponentStatus.READY handler.exit()
2.140625
2
openid_wargaming/verification.py
mac-developer/WargamingOpenID
4
12786482
<filename>openid_wargaming/verification.py """OpenID 2.0 - Verifiying Assertions Ref: https://openid.net/specs/openid-authentication-2_0.html#verification """ from urllib.parse import urlparse, parse_qs, urlencode from requests import post from .exceptions import BadOpenIDReturnTo, OpenIDFailReturnURLVerification from .exceptions import OpenIDVerificationFailed from .utils import nonce_saver, nonce_reader class Verification: """OpenID data verification. Receive a return OpenID URL Note: Based on OpenID specification https://openid.net/specs/openid-authentication-2_0.html Args: assertion_url evidence Attributes: assertion Args: assertion_url saver: function reference which accepts one argument (data/payload) and returns True if was saved. reader: function reference which accepts one argument (openid.response_nonce) and check if exists on reader backend. Returns True if exists. """ def __init__(self, assertion_url, evidence=None, saver=None, reader=None): self.assertion = urlparse(assertion_url) self.saver = saver or nonce_saver self.reader = reader or nonce_reader @property def return_to(self): key = 'openid.return_to' query = parse_qs(self.assertion.query) if key in query: return urlparse(query[key][0]) else: return None def is_positive_assertion(self): """Positive Assertions Reference: https://openid.net/specs/openid-authentication-2_0.html Section: 10.1 Verify 'id_res' as positive assertion. Returns: reason - When negative assertion """ key = 'openid.mode' query = parse_qs(self.assertion.query) if key in query: mode = query[key][0] else: raise BadOpenIDReturnTo("return_to url doesn't look to OpenID url", query) if mode == 'id_res': return True else: self.reason = mode return False def verify_return_url(self): """OpenID Verifying the Return URL Reference: https://openid.net/specs/openid-authentication-2_0.html#verification Section: 11.1 To verify that the "openid.return_to" URL matches the URL that is processing this assertion: * The URL scheme, authority, and path MUST be the same between the two URLs. * Any query parameters that are present in the "openid.return_to" URL MUST also be present with the same values in the URL of the HTTP request the RP received. """ if self.assertion.scheme != self.return_to.scheme or \ self.assertion.netloc != self.return_to.netloc or \ self.assertion.path != self.return_to.path: reason = 'scheme/authority/path are not the same' raise OpenIDFailReturnURLVerification(reason) query_parameters = parse_qs(self.return_to.query) assertion_parameters = parse_qs(self.assertion.query) for parameter, value in query_parameters.items(): if parameter in assertion_parameters: if value[0] != assertion_parameters[parameter][0]: reason = 'parameter %s has not the same value' % parameter raise OpenIDFailReturnURLVerification(reason) else: reason = 'parameter %s is not present' % parameter raise OpenIDFailReturnURLVerification(reason) return True def verify_discovered_information(self): """OpenID Verifying Discovered Information **NOT IMPLEMENTED** Reference: https://openid.net/specs/openid-authentication-2_0.html#verification Section: 11.2 """ return True def check_nonce(self): """OpenID Checking the None. To prevent replay attacks, the agent checking the signature keeps track of the nonce values included in positive assertions and never accepts the same value more than once for the same OP Endpoint URL. Reference: https://openid.net/specs/openid-authentication-2_0.html#verification Section: 11.3 """ nonce = parse_qs(self.assertion.query)['openid.response_nonce'][0] if not self.reader(nonce): self.saver(nonce) return True else: return False def verify_signatures(self): """OpenID Verifying Signatures (Wargaming uses Direct Verification). To have the signature verification performed by the OP, the Relying Party sends a direct request to the OP. To verify the signature, the OP uses a private association that was generated when it issued the positive assertion. Reference: https://openid.net/specs/openid-authentication-2_0.html#verification Section: 11.4.2 """ # Note: This header is very important to allow this application works headers = {'Content-Type': 'application/x-www-form-urlencoded'} query = parse_qs(self.assertion.query) # Change openid.mode to check the signature query['openid.mode'][0] = 'check_authentication' # Flatten query object. Remove list and get the [0] element query = {key: value[0] for key, value in query.items()} to_sign = urlencode(query) # Verification Request request = post(self.op_endopint, to_sign, allow_redirects=False, headers=headers) # Verification parsing verification = self.parse_l2l(request.text) return verification.get('is_valid', False) def identify_the_end_user(self): """OpenID Identifying the end user. The Claimed Identifier in a successful authentication response SHOULD be used by the Relying Party as a key for local storage of information about the user. The Claimed Identifier MAY be used as a user-visible Identifier. When displaying URL Identifiers, the fragment MAY be omitted. Reference: https://openid.net/specs/openid-authentication-2_0.html#verification Section: 11.5 Field: openid.identity and openid.claimed_id """ query = parse_qs(self.assertion.query) return { 'identity': query['openid.identity'][0], 'claimed_id': query['openid.claimed_id'][0], } def parse_l2l(self, response): """Parse line by line OpenID response. Example: is_valid:false ns:http://specs.openid.net/auth/2.0 """ cleaned = response.strip().split('\n') return {fields.split(':')[0].strip(): self.convert_type(''.join(fields.split(':')[1:]).strip()) for fields in cleaned} def convert_type(self, value): TYPES = { 'false': False, 'true': True } return TYPES.get(value, value) def verify(self): """Process to verify an OpenID assertion. This is the last step, you'll get a positive identification or a failure. Returns: Identification """ validators = [self.is_positive_assertion, self.verify_return_url, self.verify_discovered_information, self.check_nonce, self.verify_signatures] for validator in validators: is_valid = validator() if not is_valid: name = validator.__name__ reason = 'Validation fail on %s' % name raise OpenIDVerificationFailed(reason, name) return self.identify_the_end_user() @property def op_endopint(self): query = parse_qs(self.assertion.query) return query['openid.op_endpoint'][0]
3.015625
3
src/aeml/models/tcn/forecast.py
kjappelbaum/aeml
0
12786483
# -*- coding: utf-8 -*- from functools import partial import numpy as np import pandas as pd def summarize_results(results): values = [] for df in results: values.append(df.pd_dataframe().values) df = df.pd_dataframe() columns = df.columns return ( pd.DataFrame(np.mean(values, axis=0), columns=columns, index=df.index), pd.DataFrame(np.std(values, axis=0), columns=columns, index=df.index), ) def _run_backtest( rep, model, x_test, y_test, start=0.3, stride=1, horizon=4, enable_mc_dropout=True ): backtest = model.historical_forecasts( y_test, past_covariates=x_test, start=start, forecast_horizon=horizon, stride=stride, retrain=False, verbose=False, enable_mc_dropout=enable_mc_dropout, ) return backtest def parallelized_inference( model, x, y, repeats=100, start=0.3, stride=1, horizon=6, enable_mc_dropout=True ): results = [] backtest_partial = partial( _run_backtest, model=model, x_test=x, y_test=y, start=start, stride=stride, horizon=horizon, enable_mc_dropout=enable_mc_dropout, ) for res in map(backtest_partial, range(repeats)): results.append(res) return results def _run_forcast(_, model, x_full, y_past, future_len, enable_mc_dropout=True): return model.predict( future_len, series=y_past, past_covariates=x_full, enable_mc_dropout=enable_mc_dropout ) def forecast(model, x_full, y_past, future_len, repeats=100, enable_mc_dropout=True): results = [] backtest_partial = partial( _run_forcast, model=model, x_full=x_full, y_past=y_past, future_len=future_len, enable_mc_dropout=enable_mc_dropout, ) for res in map(backtest_partial, range(repeats)): results.append(res) return results
2.5625
3
app.py
TwilioDevEd/sync-quickstart-python
2
12786484
<reponame>TwilioDevEd/sync-quickstart-python<gh_stars>1-10 import os from flask import Flask, jsonify, request, send_from_directory from faker import Factory from twilio.jwt.access_token import AccessToken from twilio.jwt.access_token.grants import SyncGrant app = Flask(__name__) fake = Factory.create() @app.route('/') def index(): return app.send_static_file('index.html') @app.route('/<path:path>') def send_js(path): return send_from_directory('static', path) @app.route('/token') def token(): # get credentials for environment variables account_sid = os.environ['TWILIO_ACCOUNT_SID'] api_key = os.environ['TWILIO_API_KEY'] api_secret = os.environ['TWILIO_API_SECRET'] service_sid = os.environ['TWILIO_SYNC_SERVICE_SID'] # create a randomly generated username for the client identity = fake.user_name() # Create access token with credentials token = AccessToken(account_sid, api_key, api_secret, identity) # Create a Sync grant and add to token sync_grant = SyncGrant(service_sid=service_sid) token.add_grant(sync_grant) # Return token info as JSON return jsonify(identity=identity, token=token.to_jwt()) if __name__ == '__main__': app.run(port=4567, debug=True, threaded=True)
2.4375
2
{{ cookiecutter.package_name }}/tests/test_config.py
triaxtec/fastapi-serverless-cookiecutter
15
12786485
def test_get_config_aws_load(mocker): from {{ cookiecutter.module_name }} import config AWSSource = mocker.patch.object(config, "AWSSource", return_value={"custom_key": "custom_value"}) mocker.patch.object(config, "_app_config", None) config = config.get_config({"env": "testing"}) AWSSource.assert_called_once_with("{{ cookiecutter.module_name }}/testing") assert config["custom_key"] == "custom_value"
2.25
2
Classes and Inheritance.py
PiusLucky/python-classes
1
12786486
<reponame>PiusLucky/python-classes # Example of a simple class class Car: tire_numbers = 4 sterling_color = "Black" speed = "100–120 km/h" # simple class with one method class Car: tire_numbers = 4 sterling_color = "Black" speed = "100–120 km/h" def check_speed(self): return self.speed # simple class with two methods class Car: tire_numbers = 4 sterling_color = "Black" speed = "100–120 km/h" def check_speed(self): return self.speed # we access the class attribute with the "self" keyword def check_tires_count(self): return self.tire_numbers # we access the class attribute with the "self" keyword # 'my_car' is an object my_car = Car() # class instantiation # We could access Class Car variables like so: print(my_car.tire_numbers) # Quick Tip # To call a function, use the function name followed by parenthesis # check_speed is a method of the class Car. print(my_car.check_speed()) # Results from console # 4 # 100–120 km/h # [Finished in 0.5s] # print(dir(Car)) # Results from console # ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'check_speed', 'check_tires_count', 'speed', 'sterling_color', 'tire_numbers'] # ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'check_speed', 'check_tires_count', 'speed', 'sterling_color', 'tire_numbers'] # non-argument class - a class that requires no argument class Car: def __init__(self, tire_numbers=4, sterling_color="Black", speed="100–120 km/h"): # __init__ method self.tire_numbers = tire_numbers self.sterling_color = sterling_color self.speed = speed def check_speed(self): return self.speed # we access the class attribute with the "self" keyword def check_tires_count(self): return self.tire_numbers # we access the class attribute with the "self" keyword my_car = Car() # class instantiation print("Car class with", my_car.tire_numbers, "tires") # Car class with 4 tires print("Car class with", my_car.sterling_color, "sterling") # Car class with Black sterling print("Car class with", my_car.speed, "of speed") # Car class with 100–120 km/h of speed # argumennt class - a class that requires arguments class Car: def __init__(self, tire_numbers, sterling_color, speed): # __init__ method with self & 3 parameters self.tire_numbers = tire_numbers self.sterling_color = sterling_color self.speed = speed def check_speed(self): return self.speed # we access the class attribute with the "self" keyword def check_tires_count(self): return self.tire_numbers # we access the class attribute with the "self" keyword my_car = Car(4, "Black", "100–120 km/h") # class instantiation with arguments print("Car class with", my_car.tire_numbers, "tires") # Car class with 4 tires print("Car class with", my_car.sterling_color, "sterling") # Car class with Black sterling print("Car class with", my_car.speed, "of speed") # Car class with 100–120 km/h of speed # function def add_number(first_number, second_number): addition = first_number + second_number # addition logic print(addition) return addition add_number(2, 4) # 6 # equivalent class class AddNumber: def __init__(self, first_number, last_number): # __init__ method with self & 2 parameters self.first_number = first_number self.last_number = last_number def add_number(self): addition = self.first_number + self.last_number # addition logic return addition # instantiating the AddNumber class add_number_object = AddNumber(2, 4) # object # call the add_number method print(add_number_object.add_number()) # 6 # class inheritance # BaseClass class Father: def __init__(self, fathers_firstname): # Base __init__ method with self & 1 parameter self.fathers_firstname = fathers_firstname def get_first_name(self): return "Father " + self.fathers_firstname # Derived Class class Child_1(Father): # Derived __init__ method with self & 1 base parameter & 1 derived class parameter def __init__(self, fathers_firstname, childs_firstname): # Pass in all the attributes of the base class into the super() init function [they are all required] super().__init__(fathers_firstname) # You don't need to initialize the base class attributes, just the new attribute needs initializing self.childs_firstname = childs_firstname # initializing the new attribute # method def get_my_first_name(self): my_name = self.childs_firstname return "Child" + " " + my_name # method def get_my_last_name(self): # Equal to get_first_name in BaseClass last_name = super(Child_1, self).get_first_name() # Python 2 - super(className,object) last_name = super().get_first_name() # Python 3 equivalent return last_name # method def get_my_full_name(self): return self.get_my_first_name() + " & " + self.get_my_last_name() Child_1_object = Child_1("Pius", "Lucky") # instantiating the Child_1 class print(Child_1_object.get_my_full_name()) # Child Lucky & Father Pius # multiple class inheritance # BaseClass 1 class Father: def __init__(self, fathers_firstname): # Base __init__ method with self & 1 parameter self.fathers_firstname = fathers_firstname def get_first_name(self): return self.fathers_firstname # BaseClass 2 class Child_1: def __init__(self, child_1_name, hobby): self.child_1_name = child_1_name self.hobby = hobby def get_child1_name(self): return self.child_1_name def get_child1_hobby(self): return self.hobby # Derived Class class Child_2(Father, Child_1): """ Child_2 class takes in two string parameters denoting the Father Class and Child_1 class as Base Class Father: str Child_1: str """ def __init__(self, fathers_firstname, child_1_name, hobby, childs_2_firstname): # overriding fathers_firstname defined in Child_2 __init__() by the fathers_firstname defined in the Father __init__() Father.__init__(self, fathers_firstname) # overriding child_1_name & hobby defined in Child_2 __init__() by the child_1_name & hobby defined in the Child_1 __init__() Child_1.__init__(self, child_1_name, hobby) self.childs_2_firstname = childs_2_firstname # initializing the new attribute # method def get_my_first_name(self): my_name = self.childs_2_firstname return my_name # method def get_my_last_name(self): # Equal to get_first_name in BaseClass Father last_name = super(Child_2, self).get_first_name() # Python 2 - super(className, object) last_name = super().get_first_name() # Python 3 equivalent return last_name # method def get_my_full_name(self): return "{0} {1}".format(self.get_my_first_name(), self.get_my_last_name()) # method def get_my_sibling_attributes(self): sibling_name = super().get_child1_name() # Python 3 equivalent sibling_hobby = super().get_child1_hobby() # Python 3 equivalent return sibling_name + " & she likes " + sibling_hobby # method def about_me(self): my_full_name = self.get_my_full_name() my_sibling_name = self.get_my_sibling_attributes() return "My name is {0}, I have a sibling called {1}".format(self.get_my_full_name(), self.get_my_sibling_attributes()) Child_2_object = Child_2("Pius", "Happy", "dancing", "Lucky") # instantiating the Child_2 class print(Child_2_object.about_me()) # My name is <NAME>, I have a sibling called Happy & she likes dancing # BONUS TIPS: # __doc__ # Use this to get the document string of a particular class print(Child_2.__doc__) # Output: # Child_2 class takes in two string parameters denoting the Father Class and Child_1 class as Base Class # Father: str # Child_1: str # __subclasses__ print(Father.__subclasses__()) # Output: # [<class '__main__.Child_2'>] # Implication # This means that Child_2 Class depends on the Father Class print(Child_1.__subclasses__()) # Output: # [<class '__main__.Child_2'>] # Implication # This means that Child_2 Class depends on the Father Class # issubclass print(issubclass(Child_2, Father)) # Output: # True # Implication # This means that Child_2 Class depends on the Father Class # relationship b/w self and object (or class instance) class Worker: def __init__(self, salary): self.salary = salary # method def salary_checker(self): my_salary = self.salary # self is the representation of the Worker Object inside the class [self is an instance of the class] print(my_salary) # 5000 return my_salary worker_object = Worker(5000) worker_salary = worker_object.salary_checker() # "worker_salary" is the representation of the Worker object (worker_object) outside of the class [object is an instance of a class] print(worker_salary) #5000 # NOTE: # "worker_salary" is the representation of the object outside of the class # "self" is the representation of the object inside the class. # "self" & "object" both return the same result, 5000.
4.25
4
pytheas/__about__.py
benvial/pytheas
10
12786487
from datetime import date __version__ = "1.3.1" __author__ = u"<NAME>" __author_email__ = "<EMAIL>" __copyright__ = u"Copyright (c) 2017-{}, {} <{}>".format( date.today().year, __author__, __author_email__ ) __website__ = "https://benvial.github.io/pytheas" __license__ = "License :: OSI Approved :: MIT License" __status__ = "Development Status :: 5 - Production/Stable" __description__ = ( "Python Electromagnetic Analysis and Simulation with the Finite Element Method" )
1.734375
2
cl_astnn.py
yemao616/Cross-Lingual-Adversarial-Domain-Adaptation
0
12786488
<filename>cl_astnn.py import torch import torch.nn as nn from torch.autograd import Variable from tlstm import TLSTM from astnn import ASTNN class CrossLing(nn.Module): """ Cross-Language ASTNN Model """ def __init__(self, args): super(CrossLing, self).__init__() self.with_target_domain = args['with_target_domain'] self.mASTNN = ASTNN(args) self.nASTNN = ASTNN(args) self.sharedASTNN = ASTNN(args) self.grl = GradientReversal(args['lambda']) self.discriminator = Classifier(args['hidden_dim'], args['domain_size']) self.shared2label = Classifier(args['hidden_dim'], args['label_size']) self.m2label = Classifier(args['hidden_dim'], args['label_size'], True) self.n2label = Classifier(args['hidden_dim'], args['label_size'], True) def forward(self, m, n, m_share=None, n_share=None, t=None): # private ASTNN m_hidden = self.mASTNN(m) n_hidden = self.nASTNN(n) # shared ASTNN if m_share: m_shared_hidden = self.sharedASTNN(m_share) else: m_shared_hidden = self.sharedASTNN(m) if n_share: n_shared_hidden = self.sharedASTNN(n_share) else: n_shared_hidden = self.sharedASTNN(n) # private classifier m_prediction = self.m2label(torch.cat([m_hidden, m_shared_hidden], dim=1)) n_prediction = self.n2label(torch.cat([n_hidden, n_shared_hidden], dim=1)) # Discriminator m_domain = self.discriminator(self.grl(m_shared_hidden)) n_domain = self.discriminator(self.grl(n_shared_hidden)) # shared classifier m_shared_prediction = self.shared2label(m_shared_hidden) n_shared_prediction = self.shared2label(n_shared_hidden) m_output = [m_domain, m_prediction, m_shared_prediction, m_hidden, m_shared_hidden] n_output = [n_domain, n_prediction, n_shared_prediction, n_hidden, n_shared_hidden] if self.with_target_domain and t: t_shared_hidden = self.sharedASTNN(t) # pass shared ASTNN t_domain = self.discriminator(self.grl(t_shared_hidden)) # pass discriminator t_output = t_domain return m_output, n_output, t_output return m_output, n_output def forward_predict(self, inputs, switch): """ cl-astnn function to generate input for different switch (domain) """ if switch == 'm': m_hidden = self.mASTNN(inputs) m_shared_hidden = self.sharedASTNN(inputs) output = self.m2label(torch.cat([m_hidden, m_shared_hidden], dim=1)) elif switch == 'n': n_hidden = self.nASTNN(inputs) n_shared_hidden = self.sharedASTNN(inputs) output = self.n2label(torch.cat([n_hidden, n_shared_hidden], dim=1)) elif switch == 't': t_shared_hidden = self.sharedASTNN(inputs) output = self.shared2label(t_shared_hidden) else: raise ValueError('switch must be one of (m, n, t)') return output def forward_predict_tsne(self, inputs, switch='m'): if switch == 'm': hidden = self.mASTNN(inputs) shared_hidden = self.sharedASTNN(inputs) output = self.m2label(torch.cat([hidden, shared_hidden], dim=1)) else: hidden = self.nASTNN(inputs) shared_hidden = self.sharedASTNN(inputs) output = self.n2label(torch.cat([hidden, shared_hidden], dim=1)) return output, hidden, shared_hidden class GradientReversal(nn.Module): """ Gradient Reversal Layer Forward pass is the identity function. In the backward pass, the upstream gradients are multiplied by -lambda (i.e. gradient is reversed) Ref: <NAME> al., Domain-adversarial training of neural networks (2016) Link: https://jmlr.csail.mit.edu/papers/volume17/15-239/15-239.pdf """ def __init__(self, lambda_): super(GradientReversal, self).__init__() self.lambda_ = lambda_ def forward(self, x): return x def backward(self, x): return -self.lambd * x class Classifier(nn.Module): """ Classification Layer """ def __init__(self, hidden_dim, output_dim, cat_hidden=False, bidirection=True): super(Classifier, self).__init__() if bidirection: hidden_dim = 2 * hidden_dim if cat_hidden: hidden_dim = 2 * hidden_dim self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): out = torch.sigmoid(self.fc(x)) # tmp=self.fc2(tmp) # tmp=self.fc3(tmp) # tmp = F.log_softmax(tmp) return out class TemporalCrossLing(nn.Module): """ Temporal CrossLing Model """ def __init__(self, args): super(TemporalCrossLing, self).__init__() self.astnn = ASTNN(args) self.Gastnn = ASTNN(args) self.gpu = args['use_gpu'] self.input_size = args['hidden_dim'] * 4 self.pad_size = args['hidden_dim'] * 2 self.batch_size = args['batch_size'] self.label_size = args['label_size'] self.time = args['time'] self.hidden_size = 64 self.num_layers = 1 if self.time: self.lstm = TLSTM(self.input_size, self.batch_size, self.hidden_size, self.label_size) else: self.lstm = nn.LSTM(self.input_size, self.hidden_size, num_layers=1, batch_first=True) self.fc = nn.Linear(self.hidden_size, self.label_size) def pad_zeros(self, num): zeros = Variable(torch.zeros(num, self.pad_size)) if self.gpu: return zeros.cuda() return zeros def init_hidden(self): if self.gpu is True: h0 = Variable(torch.zeros(self.num_layers, self.batch_size, self.hidden_size).cuda()) c0 = Variable(torch.zeros(self.num_layers, self.batch_size, self.hidden_size).cuda()) else: h0 = torch.zeros(self.num_layers, self.batch_size, self.hidden_size) c0 = torch.zeros(self.num_layers, self.batch_size, self.hidden_size) return h0, c0 def forward(self, x): if self.time: # using TLSTM feature, time = x x = feature else: time = None lens = [len(item) for item in x] max_len = max(lens) self.batch_size = len(x) batch_ast = [] Gbatch_ast = [] batch_t = [] for i in range(self.batch_size): # each student automatically form a batch for astnn pad_len = max(max_len - lens[i], 0) if pad_len > 0: cur_pad = self.pad_zeros(pad_len) batch_ast.append(cur_pad) Gbatch_ast.append(cur_pad) batch_t.append(Variable(torch.zeros(pad_len))) cur_encode = self.astnn(x[i]) batch_ast.append(cur_encode) cur_Gencode = self.Gastnn(x[i]) Gbatch_ast.append(cur_Gencode) if self.time: batch_t.append(torch.FloatTensor(time[i])) encodes = torch.cat(batch_ast) encodes = encodes.view(self.batch_size, max_len, -1) Gencodes = torch.cat(Gbatch_ast) Gencodes = Gencodes.view(self.batch_size, max_len, -1) if self.time: encodes_t = torch.cat(batch_t) time = encodes_t.view(self.batch_size, max_len, -1) # (b, max_len, 1) all_encodes = torch.cat([encodes, Gencodes], dim=2) if self.gpu: all_encodes = Variable(all_encodes).cuda() time = time.cuda() if self.time: out, _ = self.lstm((all_encodes, time)) else: # Set initial hidden and cell states h0, c0 = self.init_hidden() # Forward propagate LSTM out, _ = self.lstm(all_encodes, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size) # Decode the hidden state of the last time step out = self.fc(out[:, -1, :]) return torch.sigmoid(out)
2.828125
3
top/api/rest/WdtStatSalesBySpecShopWarehouseQueryRequest.py
SAMZONG/taobao-sdk-python3
0
12786489
''' Created by auto_sdk on 2020.09.01 ''' from top.api.base import RestApi class WdtStatSalesBySpecShopWarehouseQueryRequest(RestApi): def __init__(self,domain='gw.api.taobao.com',port=80): RestApi.__init__(self,domain, port) self.consign_date = None self.sid = None def getapiname(self): return 'hu3cgwt0tc.wdt.stat.sales.by.spec.shop.warehouse.query'
1.65625
2
Notes/Sprint3/GraphBFT.py
mark-morelos/CS_Notes
1
12786490
# pseudocode # Breadth-First Search """ procedure BFS(G, root) is let Q be a queue label root as discovered Q.enqueue(root) while Q is not empty do v := Q.dequeue() if v is the goal then return v for all edges from v to w in G.adjacentEdges(v) do if w is not labeled as discovered then label w as discovered w.parent := v Q.enqueue(w) """ from collections import deque adjList = { 1: {2, 3}, 2: {4}, 3: {4}, 4: {1} } def bfs(graph, startingNode, destinationNode): queue = deque() visited = set() visited.add(startingNode) queue.append(startingNode) while len(queue) > 0: currNode = queue.popleft() print(f"visiting node {currNode}") if currNode == destinationNode: print(f"found dthe destination node {currNode}") return currNode for neighbor in graph[currNode]: if neighbor not in visited: visited.add(neighbor) queue.append(neighbor) bfs(adjList, 1, 4)
3.96875
4
info/examples/format_conversion/convert_pdb.py
stxinsite/geomm
3
12786491
<reponame>stxinsite/geomm<gh_stars>1-10 # make sure to install dependencies in 'conversion.requirements.txt' import os import os.path as osp import shutil import sqlite3 import numpy as np import pandas as pd import tables as pytables import mdtraj as mdj from wepy.util.mdtraj import mdtraj_to_json_topology from wepy.util.json_top import json_top_chain_df, json_top_residue_df, json_top_atom_df traj = mdj.load('../lysozyme_pxylene.pdb') if osp.exists("outputs"): shutil.rmtree("outputs") os.makedirs("outputs") # the JSON format json_top = mdtraj_to_json_topology(traj.top) with open('outputs/lysozyme_pxylene.top.json', 'w') as wf: wf.write(json_top) # FASTA residue sequence fasta_str = traj.top.to_fasta(chain=0) with open('outputs/lysozyme_pxylene.res.fasta', 'w') as wf: wf.write(fasta_str) ## topology tables # Bonds # you can get a table using mdtraj, but we just use the bonds here mdj_atoms_df, bonds = traj.top.to_dataframe() # just the first two columns (atom indices) for our purposes bonds = bonds[:,0:2] # we can just write this multiple ways with numpy np.savetxt('outputs/lysozyme_pxylene.bonds.npy_txt', bonds) np.save('outputs/lysozyme_pxylene.bonds.npy', bonds) # make a pandas data frame bond_df = pd.DataFrame(bonds) # but wepy provides the ability to get normalized versions for each # level chain_df = json_top_chain_df(json_top) residue_df = json_top_residue_df(json_top) atom_df = json_top_atom_df(json_top) bond_df.to_csv('outputs/lysozyme_pxylene.bond.csv', index=False) chain_df.to_csv('outputs/lysozyme_pxylene.chain.csv', index=False) residue_df.to_csv('outputs/lysozyme_pxylene.residue.csv', index=False) atom_df.to_csv('outputs/lysozyme_pxylene.atom.csv', index=False) # to an SQLite3 database db = sqlite3.Connection("outputs/lysozyme_pxylene.sqlite3") bond_df.to_sql('bonds', db) chain_df.to_sql('chains', db) residue_df.to_sql('residues', db) atom_df.to_sql('atoms', db) # to an HDF5 file bond_df.to_hdf('outputs/lysozyme_pxylene.top.h5', 'bonds') chain_df.to_hdf('outputs/lysozyme_pxylene.top.h5', 'chains') residue_df.to_hdf('outputs/lysozyme_pxylene.top.h5', 'residues') atom_df.to_hdf('outputs/lysozyme_pxylene.top.h5', 'atoms') # to an excel spreadsheet with pd.ExcelWriter('outputs/lysozyme_pxylene.top.xlsx', mode='r+') as writer: bond_df.to_excel(writer, sheet_name='bonds') chain_df.to_excel(writer, sheet_name='chains') residue_df.to_excel(writer, sheet_name='residues') atom_df.to_excel(writer, sheet_name='atoms') ## coordinates # separately, in binary format coords = traj.xyz np.savez('outputs/lysozyme_pxylene_reference.npz', coords)
2.3125
2
RCNN_modified.py
CassieXueq/GitTest
0
12786492
<reponame>CassieXueq/GitTest import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection import FasterRCNN from torchvision.models.detection.rpn import AnchorGenerator ''' --------------------------------------------------------------------- Let’s suppose that you want to start from a model pre-trained on COCO and want to finetune it for your particular classes. Here is a possible way of doing it: -------------------------------------------------------------------------------- ''' # load a model pre-trained pre-trained on COCO model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) # replace the classifier with a new one, that has # num_classes which is user-defined num_classes = 2 # 1 class (person) + background # get number of input features for the classifier in_features = model.roi_heads.box_predictor.cls_score.in_features # replace the pre-trained head with a new one model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) ''' --------------------------------------------------------------------- Modifying the model to add a different backbone ----------------------------------------------------------------------- ''' # load a pre-trained model for classification and return # only the features backbone = torchvision.models.mobilenet_v2(pretrained=True).features # FasterRCNN needs to know the number of # output channels in a backbone. For mobilenet_v2, it's 1280 # so we need to add it here backbone.out_channels = 1280 # let's make the RPN generate 5 x 3 anchors per spatial # location, with 5 different sizes and 3 different aspect # ratios. We have a Tuple[Tuple[int]] because each feature # map could potentially have different sizes and # aspect ratios anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),), aspect_ratios=((0.5, 1.0, 2.0),)) # let's define what are the feature maps that we will # use to perform the region of interest cropping, as well as # the size of the crop after rescaling. # if your backbone returns a Tensor, featmap_names is expected to # be [0]. More generally, the backbone should return an # OrderedDict[Tensor], and in featmap_names you can choose which # feature maps to use. roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0], output_size=7, sampling_ratio=2) # put the pieces together inside a FasterRCNN model model = FasterRCNN(backbone, num_classes=2, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler)
2.296875
2
asl-api/asl-api/urls.py
ooawagaeri/orbital-asl-application
2
12786493
<gh_stars>1-10 """ urls.py URL Mapping between HTTP and Views """ from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls import url from django.views.static import serve from django.conf.urls.static import static urlpatterns = [ # Serve Admin dashboard path('admin/', admin.site.urls), # Serve API path('api/', include('engine.urls')), # Serve media images url(r'^media/(?P<path>.*)$', serve, {'document_root': settings.MEDIA_ROOT, }) ] # Read media folder images urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
2.203125
2
python/testData/intentions/PyConvertCollectionLiteralIntentionTest/convertTupleToSetNotAvailableInAssignmentTarget.py
jnthn/intellij-community
2
12786494
x, <caret>y = 1, 2
1.234375
1
tests/test_utils.py
cnzeki/tensorboardX
0
12786495
<filename>tests/test_utils.py<gh_stars>0 from tensorboardX import summary import numpy as np import pytest import unittest from tensorboardX.utils import make_grid, _prepare_video class UtilsTest(unittest.TestCase): def test_to_HWC(self): np.random.seed(1) test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8) converted = convert_to_HWC(test_image, 'chw') assert converted.shape == (32, 32, 3) test_image = np.random.randint(0, 256, size=(16, 3, 32, 32), dtype=np.uint8) converted = convert_to_HWC(test_image, 'nchw') assert converted.shape == (64, 256, 3) test_image = np.random.randint(0, 256, size=(32, 32), dtype=np.uint8) converted = convert_to_HWC(test_image, 'hw') assert converted.shape == (32, 32, 3) def test_prepare_video(self): # at each timestep the sum over all other dimensions of the video should stay the same np.random.seed(1) V_before = np.random.random((4, 10, 3, 20, 20)) V_after = _prepare_video(np.copy(V_before)) V_before = np.swapaxes(V_before, 0, 1) V_before = np.reshape(V_before, newshape=(10,-1)) V_after = np.reshape(V_after, newshape=(10,-1)) np.testing.assert_array_almost_equal(np.sum(V_before, axis=1), np.sum(V_after, axis=1)) def convert_to_HWC(tensor, input_format): # tensor: numpy array assert(len(set(input_format)) == len(input_format)), "You can not use the same dimension shordhand twice." assert(len(tensor.shape) == len(input_format)), "size of input tensor and input format are different" input_format = input_format.upper() if len(input_format) == 4: index = [input_format.find(c) for c in 'NCHW'] tensor_NCHW = tensor.transpose(index) tensor_CHW = make_grid(tensor_NCHW) return tensor_CHW.transpose(1, 2, 0) if len(input_format) == 3: index = [input_format.find(c) for c in 'HWC'] return tensor.transpose(index) if len(input_format) == 2: index = [input_format.find(c) for c in 'HW'] tensor = tensor.transpose(index) tensor = np.stack([tensor, tensor, tensor], 2) return tensor
2.390625
2
src/nod.py
kirmani/hlpr_cadence
0
12786496
<filename>src/nod.py import actionlib import rospy from std_msgs.msg import Header from geometry_msgs.msg import TransformStamped, Transform, Vector3, Quaternion from hlpr_lookat.msg import LookatWaypointsAction, LookatWaypointsGoal, LookatWaypointsResult from action import Action import subprocess import time def transform_helper(vec3, frame): pos = TransformStamped() pos.child_frame_id = frame pos.header = Header() pos.transform = Transform() pos.transform.translation = vec3 return pos class Nod(Action): def __init__(self): Action.__init__(self, 'look_center', [], {}, {}) def Task(self): rospy.init_node('scan_scene') # Connect to the action client scan_client = actionlib.SimpleActionClient('lookat_waypoints_action_server', LookatWaypointsAction) rospy.logwarn("Waiting for scan scene server to load") scan_client.wait_for_server() rospy.logwarn("Scan scene loaded") #Generate some positions center = transform_helper(Vector3(1.0,0.0,0.2), 'pan_base_link') down = transform_helper(Vector3(1.0,0.0,-2.0), 'pan_base_link') # Generate some times pause_2 = rospy.Duration(2.0) # Store them away to send off positions = [down, center] scan_times = [pause_2, pause_2] # Send the goals goal = LookatWaypointsGoal() goal.scan_positions = positions goal.scan_times = scan_times scan_client.send_goal(goal) # Print results rospy.loginfo("Waiting for scan to finish") scan_client.wait_for_result() rospy.loginfo(scan_client.get_goal_status_text()) print("Looked center: %s")
2.328125
2
cartrade/templates/pages/details_variants.py
vignesharumainayagam/csdwale-cartrade-live
0
12786497
# -*- coding: utf-8 -*- # Copyright (c) 2018, Tridots Tech Pvt. Ltd. and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe # from _future_ import unicode_literals import frappe import frappe.utils import json from frappe import _ def get_context(context): location = frappe.request.cookies.get('city_location') path = frappe.local.request.path path = path.replace('csd-', '') path = path.replace('-price', '') context.path = path path = path.strip('/') word = path.split('/') category_route = word[0] brand_route = word[1] item_route = word[2] variant_route = word[3] addrightadd = frappe.db.get_value('Widget Placeholder', fieldname=['google_ad_script'], filters={"view": 'Variant Detail Page', 'position': 'Right Panel'}) context.addrightadd = addrightadd context.addtopadd = frappe.db.get_value('Widget Placeholder', fieldname=['google_ad_script'], filters={'view': 'Variant Detail Page', 'position': 'Top Panel'}) context.addbottomadd = frappe.db.get_value('Widget Placeholder', fieldname=['google_ad_script'], filters={'view': 'Variant Detail Page', 'position': 'Bottom Panel'}) context.addmidads = frappe.db.get_value('Widget Placeholder', fieldname=['google_ad_script'], filters={'view': 'Variant Detail Page', 'position': 'Middle Panel'}) item_name = frappe.db.get_value("Item", filters={'route': item_route}, fieldname=['name']) context.item_brand = frappe.db.get_value("ItemBrand", filters={'route': brand_route}, fieldname=['brand_name']) context.item_title = frappe.db.get_value("Item", filters={'route': item_route}, fieldname=['item_name']) context.category_title = frappe.db.get_value("Category", filters={'route': category_route}, fieldname=['category_name']) context.item_brand_route = brand_route context.item_category_route = category_route context.item_route = item_route context.variant_route = variant_route context.variant_title = frappe.db.get_value("Item Variant", filters={'route': variant_route, 'item': item_name}, fieldname=['variant_name']) context.meta_title = frappe.db.get_value("Item Variant", filters={'route': variant_route, 'item': item_name}, fieldname=['meta_title']) context.meta_description = frappe.db.get_value("Item Variant", filters={'route': variant_route, 'item': item_name}, fieldname=['meta_description']) context.meta_keywords = frappe.db.get_value("Item Variant", filters={'route': variant_route, 'item': item_name}, fieldname=['meta_keywords']) context.item_featured_image = frappe.db.get_value("Item", filters={'route': item_route}, fieldname=['featured_image']) item_variant_doc_name = frappe.db.get_value("Item Variant", filters={'route': variant_route}, fieldname=['name']) context.item_variant_doc_name =item_variant_doc_name item_variants = frappe.db.get_all("Item Variant", fields=['route','variant_name', 'name'], filters={'item': item_name}, limit_page_length= 100) for x in item_variants: if frappe.request.cookies.get('city_location'): price = frappe.db.get_list('Item Variant Price', fields = ['market_price', 'csd_price'], filters = {'variant': x.name, 'city': frappe.request.cookies.get('city_location'), 'item': item_name}) if len(price) > 0: x.csd_price = price[0].csd_price x.market_price = price[0].market_price else: x.csd_price = "Na" x.market_price = "Na" else: price = frappe.db.get_list('Item Variant Price', fields = ['market_price', 'csd_price'], filters = {'variant': x.name, 'city': 'Delhi', 'item': item_name}) if len(price) > 0: x.csd_price = price[0].csd_price x.market_price = price[0].market_price else: x.csd_price = "Na" x.market_price = "Na" context.item_variants = item_variants variant_specifications = frappe.db.get_list('Item Specification', fields=['specification', 'value'], filters={'parent': item_variant_doc_name}) for x in variant_specifications: x.specification_group = frappe.db.get_value("Specification", filters={'name': x.specification}, fieldname=['specification_category']) context.variant_specifications = variant_specifications if frappe.request.cookies.get('city_location'): price = frappe.db.get_list('Item Variant Price', fields = ['market_price', 'csd_price'], filters = {'variant': item_variant_doc_name, 'city': frappe.request.cookies.get('city_location'), 'item': item_name}) if len(price) > 0: context.csd_price = price[0].csd_price context.market_price = price[0].market_price else: context.csd_price = "Na" context.market_price = "Na" else: price = frappe.db.get_list('Item Variant Price', fields = ['market_price', 'csd_price'], filters = {'variant': item_variant_doc_name, 'city': 'Delhi', 'item': item_name}) if len(price) > 0: context.csd_price = price[0].csd_price context.market_price = price[0].market_price context.difference=price[0].difference else: context.csd_price = "Na" context.market_price = "Na"
1.695313
2
src/common/pytorch/layer/normalize_linear_layer.py
wu-uw/OpenCompetition
15
12786498
import torch import torch.nn as nn from torch.nn import Parameter from torch.autograd import Variable class NormedLinearLayer(nn.Module): def __init__(self, input_dim, out_dim, momentum=0.1): super(NormedLinearLayer, self).__init__() self.input_dim = input_dim self.out_dim = out_dim self.momentum = momentum self._build_model() def _build_model(self): self.linear = nn.utils.weight_norm(nn.Linear(self.input_dim, self.out_dim)) self.bias = Parameter(torch.Tensor) self.register_buffer('running_mean', torch.zeros(self.out_dim)) self.reset_parameter() def reset_parameter(self): self.running_mean.zero_() self.bias.data.zero_() def forward(self, inputs): inputs = self.linear(inputs) if self.training: avg = torch.mean(inputs, dim=0) self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * avg.data else: avg = Variable(self.running_mean, requires_grad=False) out = inputs - avg + self.bias return out
2.671875
3
product.py
mbehrle/trytond-sale-available-stock
0
12786499
<filename>product.py # -*- coding: utf-8 -*- """ product.py """ from trytond.pyson import PYSONEncoder, PYSONDecoder from trytond.modules.stock import ProductByLocation __all__ = ['ProductByLocationExcludeAssigned'] class ProductByLocationExcludeAssigned(ProductByLocation): """ Show Product by Locations excluding assigned quantities """ __name__ = 'product.by_location.exclude_assigned' def do_open(self, action): action, data = super( ProductByLocationExcludeAssigned, self ).do_open(action) # Decode pyson context context = PYSONDecoder().decode(action['pyson_context']) # Update context context['stock_assign'] = True # Encode the new context to create new pyson context action['pyson_context'] = PYSONEncoder().encode(context) return action, data
2.515625
3
phr/catalogo/api/serializers.py
richardqa/django-ex
0
12786500
<reponame>richardqa/django-ex # coding=utf-8 from rest_framework import serializers from phr.catalogo.models import ( CatalogoAyudaTecnica, CatalogoCIE, CatalogoDeficiencia, CatalogoDiscapacidad, CatalogoEtnia, CatalogoFinanciador, CatalogoGradoInstruccion, CatalogoProcedimiento, CatalogoRaza, FamiliaMedicamentoAntecedenteSugerido, MedicamentoAntecedenteSugerido, ) class ListaCatalogoCIESerializer(serializers.ModelSerializer): class Meta: model = CatalogoCIE exclude = [] class DetalleCatalogoCIESerializer(serializers.ModelSerializer): class Meta: model = CatalogoCIE exclude = [] class ListaCatalogoProcedimientoSerializer(serializers.ModelSerializer): class Meta: model = CatalogoProcedimiento exclude = [] class DetalleCatalogoProcedimientoSerializer(serializers.ModelSerializer): class Meta: model = CatalogoProcedimiento exclude = [] class ListaCatalogoDeficienciaSerializer(serializers.ModelSerializer): class Meta: model = CatalogoDeficiencia exclude = [] class DetalleCatalogoDeficienciaSerializer(serializers.ModelSerializer): class Meta: model = CatalogoDeficiencia fields = ['id', 'categoria_deficiencia', 'nombre_deficiencia', 'get_deficiencia_subnivel'] class ListaCatalogoDiscapacidadSerializer(serializers.ModelSerializer): class Meta: model = CatalogoDiscapacidad exclude = [] class DetalleCatalogoDiscapacidadSerializer(serializers.ModelSerializer): class Meta: model = CatalogoDiscapacidad exclude = [] class ListaCatalogoRazaSerializer(serializers.ModelSerializer): class Meta: model = CatalogoRaza exclude = [] class DetalleCatalogoRazaSerializer(serializers.ModelSerializer): class Meta: model = CatalogoRaza fields = ['descripcion', 'get_etnias'] exclude = [] class ListaCatalogoEtniaSerializer(serializers.ModelSerializer): class Meta: model = CatalogoEtnia exclude = [] class DetalleCatalogoEtniaSerializer(serializers.ModelSerializer): class Meta: model = CatalogoEtnia exclude = [] class ListaCatalogoFinanciadorSerializer(serializers.ModelSerializer): class Meta: model = CatalogoFinanciador exclude = [] class DetalleCatalogoFinanciadorSerializer(serializers.ModelSerializer): class Meta: model = CatalogoFinanciador exclude = [] class ListaCatalogoAyudaTecnicaSerializer(serializers.ModelSerializer): class Meta: model = CatalogoAyudaTecnica exclude = [] class DetalleCatalogoAyudaTecnicaSerializer(serializers.ModelSerializer): class Meta: model = CatalogoAyudaTecnica exclude = [] class ListaCatalogoGradoInstruccionSerializer(serializers.ModelSerializer): class Meta: model = CatalogoGradoInstruccion exclude = [] class DetalleCatalogoGradoInstruccionSerializer(serializers.ModelSerializer): class Meta: model = CatalogoAyudaTecnica exclude = [] class MedicamentoFamiliaAntecedenteSugeridoSerializer(serializers.ModelSerializer): class Meta: model = FamiliaMedicamentoAntecedenteSugerido fields = ('codigo', 'nombre',) class MedicamentoAntecedenteSugeridoSerializer(serializers.ModelSerializer): class Meta: model = MedicamentoAntecedenteSugerido fields = ('codigo', 'nombre',)
2.078125
2
1131.py
luizgallas/uri_iniciante
0
12786501
<reponame>luizgallas/uri_iniciante fim = 1 vgremio = 0 vinter = 0 empate = 0 final = 0 soma = 0 while (fim == 1): inter, gremio = map(int, input().split()) soma += 1 if inter > gremio: vinter = vinter + 1 elif gremio > inter: vgremio = vgremio + 1 elif inter == gremio: empate += 1 print("Novo grenal (1-sim 2-nao)") fim = int(input()) print(soma,"grenais") print("Inter:%d" %(vinter)) print("Gremio:%d" %(vgremio)) print("Empates:%d" %(empate)) if vinter > vgremio: print("Inter venceu mais") elif vgremio > vinter: print("Gremio venceu mais") else: print("Nao houve vencedor")
3.4375
3
examples/offline/bc_robo_utils.py
mohanksriram/robolfd
0
12786502
from dataclasses import dataclass import h5pickle as h5py import json import numpy as np from numpy import ndarray from pathlib import Path from typing import List import random from robolfd.types import Transition import robosuite from robosuite.utils.mjcf_utils import postprocess_model_xml import itertools from tqdm import tqdm from multiprocessing import Pool @dataclass class DemoConfig: obs_keys: dict max_episodes: int num_workers: int def __str__(self) -> str: return f"demo config - observation keys: {self.obs_keys} max_episodes: {self.max_episodes}, num_workers: {self.num_workers}" def generate_episode_transitions(demo_info): f, episode_num, config = demo_info episodes = list(f["data"].keys()) episode = episodes[episode_num] env_info = json.loads(f["data"].attrs["env_info"]) env = robosuite.make( **env_info, has_renderer=False, has_offscreen_renderer=False, ignore_done=True, use_camera_obs=False, reward_shaping=True, control_freq=20, ) model_xml = f[f"data/{episode}"].attrs["model_file"] env.reset() xml = postprocess_model_xml(model_xml) env.reset_from_xml_string(xml) env.sim.reset() all_observations = [] all_actions = [] # TODO: start from state states = f[f"data/{episode}/states"][()] actions = np.array(f[f"data/{episode}/actions"][()]) # load the initial state env.sim.set_state_from_flattened(states[0]) env.sim.forward() observations = [] action = [0, 0, 0, -1] observation, _, _, _ = env.step(action) # observe the current state observations.append(observation) used_actions = [] # Fix the order of action, observation sampling problem here for j, action in enumerate(actions): action = np.clip(action, -1, 1) observation, reward, done, misc = env.step(action) # use when you want to evaluate the environment # env.render() used_actions.append(action) observations.append(observation) # repeat last action for last observation used_actions.append(actions[-1]) flat_observations = [] for observation in observations: flat_observations.append(np.concatenate([observation[key] for key in config.obs_keys])) # z all_observations.extend(flat_observations) all_actions.extend(used_actions) return list(zip(all_observations, all_actions)) def make_demonstrations(demo_path: Path, config: DemoConfig) -> ndarray: f = h5py.File(demo_path, "r", skip_cache=False) episodes = list(f["data"].keys())[-config.max_episodes:] # TODO: Decide how to batch transitions across episodes # Dataset is collected in the form of transitions. pbar = tqdm(total=len(episodes)) with Pool(config.num_workers) as pool: # simple pool usage # transitions = pool.map(generate_episode_transitions, [(demo_path, i, config) for i in range(len(episodes))]) # for measuring progress: res = [pool.apply_async(generate_episode_transitions, args=((f, i, config),), callback=lambda _: pbar.update(1)) for i in range(len(episodes))] transitions = [p.get() for p in res] pool.close() pool.join() return transitions def make_eval_env(demo_path: Path, robot_name="Panda", has_offscreen_renderer = True): f = h5py.File(demo_path, "r") env_name = f["data"].attrs["env"] env_info = json.loads(f["data"].attrs["env_info"]) env_info['robots'] = robot_name env = robosuite.make( **env_info, has_renderer=not has_offscreen_renderer, has_offscreen_renderer=has_offscreen_renderer, ignore_done=True, use_camera_obs=has_offscreen_renderer, reward_shaping=True, control_freq=20, camera_names="frontview", camera_heights=512, camera_widths=512, ) return env
2.109375
2
test/mock_tests/test_markets.py
xelonic-de/iex-data
2
12786503
<reponame>xelonic-de/iex-data<gh_stars>1-10 from unittest import TestCase from mock import patch, MagicMock import iexdata.endpoints.markets as markets class TestAll(TestCase): def test_markets(self): with patch('requests.get') as mock: mock.return_value = MagicMock() mock.return_value.status_code = 200 markets.market()
2.203125
2
scorecardpy/describe.py
cuichaosiig/scorecard_improved
0
12786504
<filename>scorecardpy/describe.py import pandas as pd import numpy as np def unique_counts(df,cols): ''' # 显示各个列的唯一值个数: df: 需要进行处理的dataframe cols: 需要处理的列 return: 描述信息 ------------------------------- Author: 崔超 ''' uniqC = pd.DataFrame() uniqC = df.apply(lambda x: len(x.value_counts()) ,axis = 0) return uniqC
3.03125
3
archive/KyleChesney/combine_repeat_ihar.py
ChemiKyle/USING-MACHINE-LEARNING-TO-IMPROVE-POST-ACUTE-REHABILITATION-PROCESS-FLOW
0
12786505
<filename>archive/KyleChesney/combine_repeat_ihar.py # We noticed that what should be a unique visit identifier, IHAR, was repeating # the cause was that patients transferred out or taking leave were listed as being discharged and readmitted # but they were not assigned a new visit identifier. # Our solution to clean this was to identify duplicate IHARs, and condense them into one visit # by using only the earliest admission and latest discharge, all other columns for these entries were identical. # Akshay solved this problem via other methods directly in Pandas, # this code is left here for essentially sentimental reasons from datetime import datetime as dt df_qual = pd.read_csv('data/FinalData.csv') repeat_ihars = df_qual[df_qual['IHAR'].duplicated()]['IHAR'].unique() df_qual['date_delta'] = df_qual['HOSP_DISCH_TIME'] - df_qual['HOSP_ADMSN_TIME'] # IHAR: {min: xx, max: yy} ihar_intermediary = {} time_format = '%d-%b-%Y %H:%M:%S' for index, row in df_qual.iterrows(): ihar = (row['IHAR']) if (ihar in repeat_ihars): this_adm = row['HOSP_ADMSN_TIME'] print(this_adm) this_dsch = row['HOSP_DISCH_TIME'] if (ihar not in ihar_intermediary): if (np.isnan(this_adm) | np.isnan(this_dsch)): continue else: ihar_intermediary[ihar] = {'min_adm': this_adm, 'max_disch': this_dsch} else: if (np.isnan(this_adm) | np.isnan(this_dsch)): continue print(this_adm_time) this_adm_dt = dt.strptime(this_adm, time_format) this_dsch_dt = dt.strptime(this_dsch, time_format)
2.484375
2
ASTParser/parser_main.py
DploY707/AST_parser
4
12786506
from pprint import pprint import json import gzip import pickle import copy from androguard.decompiler.dad.decompile import DvMethod from androguard.misc import AnalyzeAPK from core.parser import ASTParser from core.parser import ConstData from core.parser import stmtList from core.parser import actionList from core.parser import dataList from core.statements import Statement from core.graph import ASTGraph from core.graph import GraphConfig from core.utils import save_pickle, load_pickle from core.utils import get_filteredFileList_from_directory as get_targets import networkx as nx targetPath = 'data/' target = 'data/okhttp-3.1.0_dex.jar' resultPath = '/root/result/' targetExts = ['.apk', '.jar'] # config = GraphConfig(10000,20000) def create_ast(method): if method.is_external(): return try: dv = DvMethod(method) dv.process(doAST=True) return dv.get_ast() except AttributeError as ae: print('ERROR : in creat_ast()') if __name__ == '__main__' : targetList = get_targets(targetPath, targetExts) for target in targetList: a, d, dx = AnalyzeAPK(target) t_count = 0 graphList = list() for method in dx.get_methods(): m_ast = create_ast(method) ap = ASTParser() if m_ast is not None: ap.load_ast(m_ast) ap.parse_ast() # for node in ap.parsedNodes: # if 'APIName' == node.nodeInfo.type: # pprint(node.nodeInfo) # for edge in ap.parsedEdges: # pprint(edge) # ag = ASTGraph(ap.parsedNodes, ap.parsedEdges, config) ag = ASTGraph(ap.parsedNodes, ap.parsedEdges) ag.graph_initialize() # encode_flag makes the index of edges meaningful # ag.graph_initialize(encode_flag = True) if ag.graph == None: pass else: graphList.append(ag.graph) save_pickle(resultPath + target.split('/')[1] + '.pickle', graphList)
2.0625
2
apps/oob/forms/task_forms.py
dbjennings/order-of-business
0
12786507
from django.forms import ModelForm, Form, CharField from ..models import Project, Task class TaskSearchForm(Form): '''Form for the task search bar''' query = CharField(max_length=100) query.widget.attrs.update({'placeholder': 'Search all tasks...', 'class': 'form-control',}) class TaskForm(ModelForm): class Meta: model = Task fields = ('title','body','project',) def __init__(self, *args, **kwargs): '''Uses the passed request to populate fields''' if kwargs['request']: self.request = kwargs.pop('request') super(TaskForm,self).__init__(*args, **kwargs) self.fields['project'].queryset = Project.objects.filter(user=self.request.user) else: super(TaskForm,self).__init__(*args, **kwargs) self.fields['title'].widget.attrs.update({'class': 'form-control border border-dark', 'placeholder': 'Title', 'id': 'taskTitle',}) self.fields['body'].widget.attrs.update({'class': 'form-control border border-dark', 'placeholder': 'Body', 'id': 'taskBody', 'style': 'height: 8rem;',}) self.fields['project'].widget.attrs.update({'class': 'form-select border border-dark', 'placeholder': 'Project', 'id': 'taskProject',})
2.03125
2
tests/object/object.py
dem4ply/chibi
0
12786508
from unittest import TestCase from chibi.object import Chibi_object from chibi.object.descriptor import ( String, Dict, Tree_simple, Dict_defaults, Set ) class Chibi_object_empty( Chibi_object ): pass class Chibi_object_with_descriptors( Chibi_object ): name = String() test_dict = Dict() test_dict_default = Dict_defaults() test_tree = Tree_simple() test_set = Set() class Chibi_object_with_defaults( Chibi_object ): name = String( default='hello' ) test_dict_default = Dict_defaults( default='word' ) class Test_chibi_object( TestCase ): def test_chibi_object_simple( self ): obj = Chibi_object_empty() self.assertIsInstance( obj, Chibi_object ) def test_with_descriptors( self ): obj = Chibi_object_with_descriptors() self.assertIsInstance( obj, Chibi_object ) self.assertEqual( obj.name, '' ) obj.name = 'hellooo' self.assertEqual( obj.name, 'hellooo' ) self.assertIsNone( obj.test_dict ) obj.test_dict = { 'key': 'test' } self.assertEqual( obj.test_dict, { 'key': 'test' } ) self.assertFalse( obj.test_dict_default ) data = obj.test_dict_default[ 'sadf' ] self.assertIsNone( data ) self.assertFalse( obj.test_tree ) self.assertEqual( list( obj.test_tree.keys() ), [] ) self.assertEqual( len( obj.test_set ), 0 ) def test_with_descriptior_assing( self ): obj = Chibi_object_with_descriptors( name='stuff', test_dict={} ) self.assertEqual( obj.test_dict, {} ) self.assertEqual( obj.name, 'stuff' ) obj.name = 'asdf' self.assertEqual( obj.name, 'asdf' ) obj.test_dict['asdf'] = 123 self.assertEqual( obj.test_dict, { 'asdf': 123 } ) self.assertFalse( obj.test_tree ) obj.test_tree.a.b.c self.assertEqual( obj.test_tree, { 'a': { 'b': { 'c': {} } } } ) obj.test_tree.a.rusky = 'RUSH B' self.assertEqual( obj.test_tree, { 'a': { 'rusky': 'RUSH B', 'b': { 'c': {} } } } ) obj.test_dict_default[ 'qwer' ] = 'word' self.assertIsNotNone( obj.test_dict_default[ 'qwer' ] ) self.assertEqual( obj.test_dict_default[ 'qwer' ], 'word' ) obj.test_set |= set( 'abc' ) self.assertEqual( len( obj.test_set ), 3 ) def test_with_defaults( self ): obj = Chibi_object_with_defaults() self.assertEqual( obj.name, 'hello' ) obj.name = 'zxcv' self.assertEqual( obj.name, 'zxcv' ) word = obj.test_dict_default[ 'hello' ] self.assertEqual( word, 'word' )
3.21875
3
txrest/__init__.py
dr4ke616/txREST
0
12786509
# -*- test-case-name: <INSERT_TEST_MODULE> -*- # Copyright (c) 2014 <NAME> <<EMAIL>> # See LICENSE for more details """ .. module:: controller :platform: Linux :synopsis: Just the __init__.py file .. moduleauthor:: <NAME> <<EMAIL>> """ from txrest.managers.routing import RouteManager route = RouteManager().route
1.617188
2
test/nose_test.py
fakeNetflix/uber-repo-doubles
150
12786510
<gh_stars>100-1000 import unittest from nose.plugins import PluginTester from doubles.nose import NoseIntegration from doubles.instance_double import InstanceDouble from doubles.targets.expectation_target import expect def test_nose_plugin(): class TestNosePlugin(PluginTester, unittest.TestCase): activate = '--with-doubles' plugins = [NoseIntegration()] def test_expect(self): assert 'MockExpectationError' in self.output assert 'FAILED (failures=1)' in self.output assert 'Ran 2 tests' in self.output def makeSuite(self): class TestCase(unittest.TestCase): def runTest(self): subject = InstanceDouble('doubles.testing.User') expect(subject).instance_method def test2(self): pass return [TestCase('runTest'), TestCase('test2')] result = unittest.TestResult() TestNosePlugin('test_expect')(result) assert result.wasSuccessful()
2.421875
2
ingest/datasets/cifar-10/DataReader.py
ivmfnal/striped
1
12786511
<gh_stars>1-10 import numpy as np from BaseDataReader import BaseDataReader from keras.datasets import cifar10 from keras.utils import to_categorical class DataReader(BaseDataReader): def __init__(self, file_path, schema): (x_train, y_train), _ = cifar10.load_data() self.x_train = np.asarray(x_train, dtype=np.float32)/256. self.y_train = to_categorical(y_train, 10) self.Schema = schema def profile(self): return None def reopen(self): pass def nevents(self): return len(self.x_train) def branchSizeArray(self, bname): pass def stripesAndSizes(self, groups, bname, attr_name, attr_desc): src = attr_desc["source"] src_array = {'x': self.x_train, 'y': self.y_train }[src] i = 0 for g in groups: yield np.ascontiguousarray(src_array[i:i+g]), None i += g
2.8125
3
REGRESSION/Ridge Regression/KERNEL RIDGE/kernelridge.py
algostatml/SUPERVISED-ML
0
12786512
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Oct 11 18:55:01 2019 @author: kenneth """ from __future__ import absolute_import import numpy as np from Utils.utils import EvalR from Utils.Loss import loss from Utils.kernels import Kernels class kernelridge(EvalR, loss, Kernels): def __init__(self, kernel = None, lamda = None): super().__init__() if not kernel: kernel = 'linear' self.kernel = kernel else: self.kernel = kernel if not lamda: lamda = 100000 self.lamda = lamda else: self.lamda = lamda return def kernelize(self, x1, x2): ''' :params: x1: NxD :params: x2: NxD ''' if self.kernel == 'linear': return Kernels.linear(x1, x2) elif self.kernel == 'rbf': return Kernels.rbf(x1, x2) elif self.kernel == 'sigmoid': return Kernels.sigmoid(x1, x2) elif self.kernel == 'polynomial': return Kernels.polynomial(x1, x2) elif self.kernel == 'cosine': return Kernels.cosine(x1, x2) elif self.kernel == 'correlation': return Kernels.correlation(x1, x2) def fit(self, X, y): ''' :param: X: NxD :param: Dx1 ''' self.X = X self.y = y self.alpha = np.linalg.solve(self.kernelize(self.X, self.X) + self.lamda*np.eye(self.X.shape[0]), self.y) return self def predict(self, X): ''' :param: X: NxD :return type: Dx1 vector ''' return np.dot((self.kernelize(self.X, X).T * self.y), self.alpha.T) #%% Testing from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.preprocessing import Normalizer, StandardScaler X, y = load_boston().data, load_boston().target X = StandardScaler().fit_transform(X) X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size = .3) kridge = kernelridge().fit(X_train, Y_train) kridge.predict(X_test) kridge.summary(X, Y_test, kridge.predict(X_test)) #%% from sklearn.kernel_ridge import KernelRidge clf = KernelRidge(alpha=1.0, kernel='linear') clf.fit(X, y) kridge.summary(X, Y_test, clf.predict(X_test))
2.578125
3
teamleader/__init__.py
rubenvdb/python-teamleader
0
12786513
<filename>teamleader/__init__.py __prog__ = 'python-teamleader' __version__ = u'1.2.1'
1.210938
1
polling_stations/apps/data_importers/management/commands/import_southwark.py
smsmith97/UK-Polling-Stations
29
12786514
from data_importers.management.commands import BaseXpressDemocracyClubCsvImporter class Command(BaseXpressDemocracyClubCsvImporter): council_id = "SWK" addresses_name = "2021-04-13T12:22:55.056323/southwark_deduped.tsv" stations_name = "2021-04-13T12:22:55.056323/southwark_deduped.tsv" elections = ["2021-05-06"] csv_delimiter = "\t" csv_encoding = "windows-1252" def address_record_to_dict(self, record): uprn = record.property_urn.strip().lstrip("0") if uprn in [ "200003422738", # FLAT 2, 29 RODNEY PLACE, LONDON "200003422744", # FLAT 8, 29 RODNEY PLACE, LONDON "200003422746", # FLAT 10, 29 RODNEY PLACE, LONDON "200003422739", # FLAT 3, 29 RODNEY PLACE, LONDON "200003422737", # FLAT 1, 29 RODNEY PLACE, LONDON "200003422745", # FLAT 9, 29 RODNEY PLACE, LONDON "200003422743", # FLAT 7, 29 RODNEY PLACE, LONDON "200003422740", # FLAT 4, 29 RODNEY PLACE, LONDON "200003422741", # FLAT 5, 29 RODNEY PLACE, LONDON "200003422742", # FLAT 6, 29 RODNEY PLACE, LONDON "200003380843", # SHEET METAL MUSIC LTD, 212 ILDERTON ROAD, LONDON "10094086807", # APARTMENT 1, 346 ROTHERHITHE STREET, LONDON "10093338854", # 73C 73 CAMBERWELL GROVE, LONDON "10093338853", # 73B 73 CAMBERWELL GROVE, LONDON "200003394858", # 17 LYNDHURST WAY, LONDON "10094743403", # 88 HALF MOON LANE, LONDON "10094743404", # 90 HALF MOON LANE, LONDON "10094743401", # 84 HALF MOON LANE, LONDON "10094743402", # 86 HALF MOON LANE, LONDON "10090283768", # KILIMANJARO LIVE LTD, SECOND FLOOR NORTH 15 BERMONDSEY SQUARE, LONDON "200003492155", # BELLENDEN PRIMARY SCHOOL BELLENDEN ROAD, LONDON "10093341594", # FLAT 6 4 JAMAICA ROAD, LONDON "10093341595", # FLAT 7 4 JAMAICA ROAD, LONDON "10093339544", # LONDON HOUSING FOUNDATION LTD, GROUND FLOOR REAR TEMPUS WHARF 29 BERMONDSEY WALL WEST, LONDON "200003468937", # GROUNDSMANS COTTAGE COLLEGE ROAD, LONDON "10094086939", # FLAT 4B 98 EAST DULWICH ROAD, LONDON "10091665680", # 23 CAMBERWELL GROVE, LONDON "200003465665", # 120 WARNER ROAD, LONDON "10093340214", # SPORTS DIRECT, 91 RYE LANE, LONDON "10091665874", # FLAT A 156 LOWER ROAD, LONDON ]: return None if record.addressline6 in [ "SE5 0SY", "SE15 5AD", "SE1 2PS", "SE5 7HY", "SE15 6BJ", "SE1 3UL", "SE16 2QU", "SE16 6AZ", "SE1 2AD", "SE15 2FF", "SE1 0AA", "SE1 0NS", "SE15 3DN", "SE5 0HB", "SE15 2ND", ]: return None if record.addressline1 == "Excluding Third Floor and Fourth Floor": return None return super().address_record_to_dict(record)
2.09375
2
thortils/interactions.py
zkytony/thortils
0
12786515
def OpenObject(controller, objectId, openness=1.0): return controller.step(action="OpenObject", objectId=objectId, openness=openness) def CloseObject(controller, objectId): return controller.step(action="CloseObject", objectId=objectId) def PickupObject(controller, objectId): return controller.step(action="PickupObject", objectId=objectId) def DropObject(controller, objectId): # Note: In version 3.3.4, this action takes no objectId argument. return controller.step(action="DropHandObject") def ToggleObjectOn(controller, objectId): return controller.step(action="ToggleObjectOn", objectId=objectId) def ToggleObjectOff(controller, objectId): return controller.step(action="ToggleObjectOff", objectId=objectId) def PushObjectLeft(controller, objectId, pushAngle="270", moveMagnitude="100"): return controller.step(action="DirectionalPush", objectId=objectId, moveMagnitude=moveMagnitude, pushAngle=pushAngle) def PushObjectRight(controller, objectId, moveMagnitude="100", pushAngle="90"): return controller.step(action="DirectionalPush", objectId=objectId, moveMagnitude=moveMagnitude, pushAngle=pushAngle) def PushObjectForward(controller, objectId, moveMagnitude="0", pushAngle="270"): return controller.step(action="DirectionalPush", objectId=objectId, moveMagnitude=moveMagnitude, pushAngle=pushAngle) def PullObject(controller, objectId, moveMagnitude="100", pushAngle="180"): return controller.step(action="DirectionalPush", objectId=objectId, moveMagnitude=moveMagnitude, pushAngle=pushAngle) def RemoveFromScene(controller, objectId): return controller.step(action="RemoveFromScene", objectId=objectId)
2.359375
2
buuctf/136-hwb_2019_mergeheap/exp.py
RoderickChan/ctf_tasks
0
12786516
#!/usr/bin/python3 from pwncli import * cli_script() p:tube = gift['io'] elf:ELF = gift['elf'] libc: ELF = gift['libc'] def add(length:int, data="a\n"): assert length <= 0x400 p.sendlineafter(">>", "1") p.sendlineafter("len:", str(length)) p.sendafter("content:", data) def show(idx): p.sendlineafter(">>", "2") p.sendlineafter("idx:", str(idx)) m = p.recvline() info(f"Get msg: {m}") return m def dele(idx): p.sendlineafter(">>", "3") p.sendlineafter("idx:", str(idx)) def merge(id1, id2): p.sendlineafter(">>", "4") p.sendlineafter("idx1:", str(id1)) p.sendlineafter("idx2:", str(id2)) def bye(): p.sendlineafter(">>", "5") """ 1. off by null """ add(0x400) # 0 add(0xf0, 0xf0*"a") # 1 add(0x8, 0x8*"a") # 2 merge(0, 1) # 3 # 0x500 add(0xf8) # 4 merge(0, 1) # 5 0x500 add(0x10) # 6 gap # free to get unsortedbin chunk dele(3) dele(4) # off by null merge(1, 2) # 3 dele(3) add(0xf8, b"a"*0xf0+p64(0x600)) # 3 dele(5) add(0x3f0) # 4 add(0xf0) # 5 m = show(3) libc_abse_addr = u64_ex(m[:-1]) - 0x3ebca0 log_libc_base_addr(libc_abse_addr) libc.address = libc_abse_addr add(0xf0) # 7 overlapped with 3 dele(3) dele(7) add(0xf0, p64(libc.sym['__free_hook'])+b"\n") # 3 add(0xf0, "/bin/sh\x00\n") # 7 add(0xf0, p64(libc.sym['system'])+b"\n") dele(7) get_flag_when_get_shell(p) p.interactive()
2.125
2
src/urllib3/_compat.py
Stanislav1975/urllib3
2
12786517
class RLock: # Python 3.6 # We shim out a context manager to be used as a compatibility layer # if the system `threading` module doesn't have a real `RLock` available. def __enter__(self) -> None: pass def __exit__(self, exc_type: object, exc_value: object, traceback: object) -> None: pass
2.53125
3
leo/modes/lua.py
frakel/leo-editor
0
12786518
<gh_stars>0 # Leo colorizer control file for lua mode. # This file is in the public domain. # Properties for lua mode. properties = { "commentEnd": "]]", "commentStart": "--[[", "doubleBracketIndent": "true", "indentCloseBrackets": "}", "indentOpenBrackets": "{", "lineComment": "--", "lineUpClosingBracket": "true", "wordBreakChars": ",+-=<>/?^&*", } # Attributes dict for lua_main ruleset. lua_main_attributes_dict = { "default": "null", "digit_re": "[[:digit:]]*(\\.[[:digit:]]*)?([eE][+-]?[[:digit:]]*)?", "escape": "", "highlight_digits": "true", "ignore_case": "false", "no_word_sep": "_:.", } # Dictionary of attributes dictionaries for lua mode. attributesDictDict = { "lua_main": lua_main_attributes_dict, } # Keywords dict for lua_main ruleset. lua_main_keywords_dict = { "...": "keyword2", "LUA_PATH": "keyword2", "_ALERT": "keyword2", "_ERRORMESSAGE": "keyword2", "_G": "keyword2", "_LOADED": "keyword2", "_PROMPT": "keyword2", "_REQUIREDNAME": "keyword2", "_VERSION": "keyword2", "__add": "keyword2", "__call": "keyword2", "__concat": "keyword2", "__div": "keyword2", "__eq": "keyword2", "__fenv": "keyword2", "__index": "keyword2", "__le": "keyword2", "__lt": "keyword2", "__metatable": "keyword2", "__mode": "keyword2", "__mul": "keyword2", "__newindex": "keyword2", "__pow": "keyword2", "__sub": "keyword2", "__tostring": "keyword2", "__unm": "keyword2", "and": "keyword1", "arg": "keyword2", "assert": "keyword2", "break": "keyword1", "collectgarbage": "keyword2", "coroutine.create": "keyword2", "coroutine.resume": "keyword2", "coroutine.status": "keyword2", "coroutine.wrap": "keyword2", "coroutine.yield": "keyword2", "debug.debug": "keyword2", "debug.gethook": "keyword2", "debug.getinfo": "keyword2", "debug.getlocal": "keyword2", "debug.getupvalue": "keyword2", "debug.sethook": "keyword2", "debug.setlocal": "keyword2", "debug.setupvalue": "keyword2", "debug.traceback": "keyword2", "do": "keyword1", "dofile": "keyword2", "else": "keyword1", "elseif": "keyword1", "end": "keyword1", "error": "keyword2", "false": "keyword3", "for": "keyword1", "function": "keyword1", "gcinfo": "keyword2", "getfenv": "keyword2", "getmetatable": "keyword2", "if": "keyword1", "in": "keyword1", "io.close": "keyword2", "io.flush": "keyword2", "io.input": "keyword2", "io.lines": "keyword2", "io.open": "keyword2", "io.read": "keyword2", "io.stderr": "keyword2", "io.stdin": "keyword2", "io.stdout": "keyword2", "io.tmpfile": "keyword2", "io.type": "keyword2", "io.write": "keyword2", "ipairs": "keyword2", "loadfile": "keyword2", "loadlib": "keyword2", "loadstring": "keyword2", "local": "keyword1", "math.abs": "keyword2", "math.acos": "keyword2", "math.asin": "keyword2", "math.atan": "keyword2", "math.atan2": "keyword2", "math.ceil": "keyword2", "math.cos": "keyword2", "math.deg": "keyword2", "math.exp": "keyword2", "math.floor": "keyword2", "math.frexp": "keyword2", "math.ldexp": "keyword2", "math.log": "keyword2", "math.log10": "keyword2", "math.max": "keyword2", "math.min": "keyword2", "math.mod": "keyword2", "math.pi": "keyword2", "math.pow": "keyword2", "math.rad": "keyword2", "math.random": "keyword2", "math.randomseed": "keyword2", "math.sin": "keyword2", "math.sqrt": "keyword2", "math.tan": "keyword2", "next": "keyword2", "nil": "keyword3", "not": "keyword1", "or": "keyword1", "os.clock": "keyword2", "os.date": "keyword2", "os.difftime": "keyword2", "os.execute": "keyword2", "os.exit": "keyword2", "os.getenv": "keyword2", "os.remove": "keyword2", "os.rename": "keyword2", "os.setlocale": "keyword2", "os.time": "keyword2", "os.tmpname": "keyword2", "pairs": "keyword2", "pcall": "keyword2", "print": "keyword2", "rawequal": "keyword2", "rawget": "keyword2", "rawset": "keyword2", "repeat": "keyword1", "require": "keyword2", "return": "keyword1", "setfenv": "keyword2", "setmetatable": "keyword2", "string.byte": "keyword2", "string.char": "keyword2", "string.dump": "keyword2", "string.find": "keyword2", "string.format": "keyword2", "string.gfind": "keyword2", "string.gsub": "keyword2", "string.len": "keyword2", "string.lower": "keyword2", "string.rep": "keyword2", "string.sub": "keyword2", "string.upper": "keyword2", "table.concat": "keyword2", "table.foreach": "keyword2", "table.foreachi": "keyword2", "table.getn": "keyword2", "table.insert": "keyword2", "table.remove": "keyword2", "table.setn": "keyword2", "table.sort": "keyword2", "then": "keyword1", "tonumber": "keyword2", "tostring": "keyword2", "true": "keyword3", "type": "keyword2", "unpack": "keyword2", "until": "keyword1", "while": "keyword1", "xpcall": "keyword2", } # Dictionary of keywords dictionaries for lua mode. keywordsDictDict = { "lua_main": lua_main_keywords_dict, } # Rules for lua_main ruleset. def lua_rule0(colorer, s, i): return colorer.match_span(s, i, kind="comment1", begin="--[[", end="]]", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="",exclude_match=False, no_escape=False, no_line_break=False, no_word_break=False) def lua_rule1(colorer, s, i): return colorer.match_eol_span(s, i, kind="comment1", seq="--", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="", exclude_match=False) def lua_rule2(colorer, s, i): return colorer.match_eol_span(s, i, kind="comment2", seq="#!", at_line_start=True, at_whitespace_end=False, at_word_start=False, delegate="", exclude_match=False) def lua_rule3(colorer, s, i): return colorer.match_span(s, i, kind="literal1", begin="\"", end="\"", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="",exclude_match=False, no_escape=False, no_line_break=False, no_word_break=False) def lua_rule4(colorer, s, i): return colorer.match_span(s, i, kind="literal1", begin="'", end="'", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="",exclude_match=False, no_escape=False, no_line_break=False, no_word_break=False) def lua_rule5(colorer, s, i): return colorer.match_span(s, i, kind="literal1", begin="[[", end="]]", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="",exclude_match=False, no_escape=False, no_line_break=False, no_word_break=False) def lua_rule6(colorer, s, i): return colorer.match_seq(s, i, kind="operator", seq="+", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="") def lua_rule7(colorer, s, i): return colorer.match_seq(s, i, kind="operator", seq="-", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="") def lua_rule8(colorer, s, i): return colorer.match_seq(s, i, kind="operator", seq="*", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="") def lua_rule9(colorer, s, i): return colorer.match_seq(s, i, kind="operator", seq="/", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="") def lua_rule10(colorer, s, i): return colorer.match_seq(s, i, kind="operator", seq="^", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="") def lua_rule11(colorer, s, i): return colorer.match_seq(s, i, kind="operator", seq="..", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="") def lua_rule12(colorer, s, i): return colorer.match_seq(s, i, kind="operator", seq="<=", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="") def lua_rule13(colorer, s, i): return colorer.match_seq(s, i, kind="operator", seq="<", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="") def lua_rule14(colorer, s, i): return colorer.match_seq(s, i, kind="operator", seq=">=", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="") def lua_rule15(colorer, s, i): return colorer.match_seq(s, i, kind="operator", seq=">", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="") def lua_rule16(colorer, s, i): return colorer.match_seq(s, i, kind="operator", seq="==", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="") def lua_rule17(colorer, s, i): return colorer.match_seq(s, i, kind="operator", seq="~=", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="") def lua_rule18(colorer, s, i): return colorer.match_seq(s, i, kind="operator", seq="=", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="") def lua_rule19(colorer, s, i): return colorer.match_mark_previous(s, i, kind="function", pattern="(", at_line_start=False, at_whitespace_end=False, at_word_start=False, exclude_match=True) def lua_rule20(colorer, s, i): return colorer.match_mark_previous(s, i, kind="function", pattern="{", at_line_start=False, at_whitespace_end=False, at_word_start=False, exclude_match=True) def lua_rule21(colorer, s, i): return colorer.match_mark_previous(s, i, kind="function", pattern="\"", at_line_start=False, at_whitespace_end=False, at_word_start=False, exclude_match=True) def lua_rule22(colorer, s, i): return colorer.match_mark_previous(s, i, kind="function", pattern="'", at_line_start=False, at_whitespace_end=False, at_word_start=False, exclude_match=True) def lua_rule23(colorer, s, i): return colorer.match_keywords(s, i) # Rules dict for lua_main ruleset. rulesDict1 = { "\"": [lua_rule3,lua_rule21,], "#": [lua_rule2,], "'": [lua_rule4,lua_rule22,], "(": [lua_rule19,], "*": [lua_rule8,], "+": [lua_rule6,], "-": [lua_rule0,lua_rule1,lua_rule7,], ".": [lua_rule11,lua_rule23,], "/": [lua_rule9,], "0": [lua_rule23,], "1": [lua_rule23,], "2": [lua_rule23,], "3": [lua_rule23,], "4": [lua_rule23,], "5": [lua_rule23,], "6": [lua_rule23,], "7": [lua_rule23,], "8": [lua_rule23,], "9": [lua_rule23,], "<": [lua_rule12,lua_rule13,], "=": [lua_rule16,lua_rule18,], ">": [lua_rule14,lua_rule15,], "@": [lua_rule23,], "A": [lua_rule23,], "B": [lua_rule23,], "C": [lua_rule23,], "D": [lua_rule23,], "E": [lua_rule23,], "F": [lua_rule23,], "G": [lua_rule23,], "H": [lua_rule23,], "I": [lua_rule23,], "J": [lua_rule23,], "K": [lua_rule23,], "L": [lua_rule23,], "M": [lua_rule23,], "N": [lua_rule23,], "O": [lua_rule23,], "P": [lua_rule23,], "Q": [lua_rule23,], "R": [lua_rule23,], "S": [lua_rule23,], "T": [lua_rule23,], "U": [lua_rule23,], "V": [lua_rule23,], "W": [lua_rule23,], "X": [lua_rule23,], "Y": [lua_rule23,], "Z": [lua_rule23,], "[": [lua_rule5,], "^": [lua_rule10,], "_": [lua_rule23,], "a": [lua_rule23,], "b": [lua_rule23,], "c": [lua_rule23,], "d": [lua_rule23,], "e": [lua_rule23,], "f": [lua_rule23,], "g": [lua_rule23,], "h": [lua_rule23,], "i": [lua_rule23,], "j": [lua_rule23,], "k": [lua_rule23,], "l": [lua_rule23,], "m": [lua_rule23,], "n": [lua_rule23,], "o": [lua_rule23,], "p": [lua_rule23,], "q": [lua_rule23,], "r": [lua_rule23,], "s": [lua_rule23,], "t": [lua_rule23,], "u": [lua_rule23,], "v": [lua_rule23,], "w": [lua_rule23,], "x": [lua_rule23,], "y": [lua_rule23,], "z": [lua_rule23,], "{": [lua_rule20,], "~": [lua_rule17,], } # x.rulesDictDict for lua mode. rulesDictDict = { "lua_main": rulesDict1, } # Import dict for lua mode. importDict = {}
1.554688
2
test1/noding/noding.py
gr0mph/SpringChallenge2020
0
12786519
import sys sys.path.append('../../') # Global variables from test1.test_map import PACMAN_MAP from test1.test_map import WIDTH from test1.test_map import HEIGHT # Class from Challenge import Case from Challenge import Node from Challenge import Edge from Challenge import BoardNodesAndEdges # Global # Method from Challenge import t_update_width_and_height import unittest t_update_width_and_height(WIDTH, HEIGHT) class _noding(unittest.TestCase): def test_node(self): kanban_node = BoardNodesAndEdges(None) kanban_node.set_up(PACMAN_MAP) # OK for k_coord, n1 in kanban_node.nodes.items(): y1, x1 = k_coord print(f'(x {x1} y {y1}) n {n1}') print() for e1 in kanban_node.edges: k1_coord, k2_coord = e1.allays[0], e1.allays[-1] y1, x1 = k1_coord.coord y2, x2 = k2_coord.coord print(f'(x {x1} y {y1}) (x {x2} y {y2})') print(f'e {e1}') print() return if __name__ == '__main__': unittest.main()
2.484375
2
pygmm/akkar_sandikkaya_bommer_2014.py
nassermarafi/pygmm
0
12786520
<gh_stars>0 #!/usr/bin/env python3 # encoding: utf-8 from __future__ import division import collections import numpy as np from . import model __author__ = '<NAME>' class AkkarSandikkayaBommer2014(model.Model): """Akkar, Sandikkaya, & Bommer (2014, :cite:`akkar14`) model. """ NAME = '<NAME>, & Bommer (2014)' ABBREV = 'ASB13' # Reference velocity (m/sec) V_REF = 750. # Load the coefficients for the model COEFF = collections.OrderedDict( (k, model.load_data_file( 'akkar-sandikkaya-bommer-2014-%s.csv' % k, 2)) for k in ['dist_jb', 'dist_hyp', 'dist_epi'] ) PERIODS = np.array(COEFF['dist_jb'].period) INDICES_PSA = np.arange(2, 64) INDEX_PGA = 0 INDEX_PGV = 1 PARAMS = [ model.NumericParameter('dist_jb', False, 0, 200), model.NumericParameter('dist_epi', False, 0, 200), model.NumericParameter('dist_hyp', False, 0, 200), model.NumericParameter('mag', True, 4, 8), model.NumericParameter('v_s30', True, 150, 1200), model.CategoricalParameter('mechanism', True, ['SS', 'NS', 'RS']), ] def __init__(self, **kwds): """Initialize the model. The model is specified for three different distance metrics. However, the implementation uses only one distance metric. They are used in the following order: 1. `dist_jb` 2. `dist_hyp` 3. `dist_epi` This order was selected based on evaluation of the total standard deviation. To compute the response for differing metrics, call the model multiple times with different keywords. Keyword Args: dist_jb (float): Joyner-Boore distance to the rupture plane (:math:`R_\\text{JB}`, km) dist_epi (float): Epicentral distance to the rupture plane (:math:`R_\\text{epi}`, km) dist_hyp (float): Hypocentral distance to the rupture plane (:math:`R_\\text{hyp}`, km). mag (float): moment magnitude of the event (:math:`M_w`) mechanism (str): fault mechanism. Valid options: "SS", "NS", "RS". v_s30 (float): time-averaged shear-wave velocity over the top 30 m of the site (:math:`V_{s30}`, m/s). """ super(AkkarSandikkayaBommer2014, self).__init__(**kwds) p = self.params for k in self.COEFF: if p[k] is not None: dist = p[k] c = self.COEFF[k] break else: raise NotImplementedError("Must provide at least one distance " "metric.") # Compute the reference response ln_resp_ref = ( c.a_1 + c.a_3 * (8.5 - p['mag']) ** 2 + (c.a_4 + c.a_5 * (p['mag'] - c.c_1)) * np.log(np.sqrt(dist ** 2 + c.a_6 ** 2)) ) mask = (p['mag'] <= c.c_1) ln_resp_ref[mask] += (c.a_2 * (p['mag'] - c.c_1))[mask] ln_resp_ref[~mask] += (c.a_7 * (p['mag'] - c.c_1))[~mask] if p['mechanism'] == 'NS': ln_resp_ref += c.a_8 elif p['mechanism'] == 'RS': ln_resp_ref += c.a_9 pga_ref = np.exp(ln_resp_ref[self.INDEX_PGA]) # Compute the nonlinear site term if p['v_s30'] <= self.V_REF: vs_ratio = p['v_s30'] / self.V_REF site = (c.b_1 * np.log(vs_ratio) + c.b_2 * np.log((pga_ref + c.c * vs_ratio ** c.n) / ((pga_ref + c.c) * vs_ratio ** c.n)) ) else: site = c.b_1 * np.log(np.minimum(p['v_s30'], c.v_con) / self.V_REF) self._ln_resp = ln_resp_ref + site self._ln_std = np.array(c.sd_total)
2.46875
2
srd/ei/programs.py
RogerEMO/srd
1
12786521
<filename>srd/ei/programs.py from srd import add_params_as_attr import os from srd.ei import template module_dir = os.path.dirname(os.path.dirname(__file__)) # wrapper to pick correct year def program(year): """ Fonction qui permet de sélectionner le programme par année. Parameters ---------- year: int année (présentement entre 2016 et 2020) Returns ------- class instance Une instance de la classe de l'année sélectionnée. """ if year == 2016: p = program_2016() if year == 2017: p = program_2017() if year == 2018: p = program_2018() if year == 2019: p = program_2019() if year == 2020: p = program_2020() return p # program for 2016, derived from template, only requires modify # functions that change class program_2016(template): """ Version du programme de 2016. """ def __init__(self): add_params_as_attr(self, module_dir + '/ei/params/parameters_2016.csv') # program for 2017, derived from template, only requires modify # functions that change class program_2017(template): """ Version du programme de 2017. """ def __init__(self): add_params_as_attr(self, module_dir + '/ei/params/parameters_2017.csv') # program for 2018, derived from template, only requires modify # functions that change class program_2018(template): """ Version du programme de 2018. """ def __init__(self): add_params_as_attr(self, module_dir + '/ei/params/parameters_2018.csv') # program for 2019, derived from template, only requires modify # functions that change class program_2019(template): """ Version du programme de 2019. """ def __init__(self): add_params_as_attr(self, module_dir + '/ei/params/parameters_2019.csv') # program for 2020, derived from template, only requires modify # functions that change class program_2020(template): """ Version du programme de 2020. """ def __init__(self): add_params_as_attr(self, module_dir + '/ei/params/parameters_2020.csv') def compute_benefits_covid(self, p, hh): """ Fonction pour calculer les prestations de l'assurance emploi qui remplaceraient la PCU (contrefactuel). Parameters ---------- p: Person instance de la classe Person hh: Hhold instance de la classe Hhold Returns ------- float montant de la prestation """ months_ei = max(p.months_cerb, p.months_cesb) if months_ei == 0 or p.prev_inc_work < self.min_inc_work: return else: inc_work_ei = min(self.max_earn_EI, p.prev_inc_work) / self.months_per_year for month in range(self.begin_april, self.begin_april + months_ei): if p.hours_month is None or p.hours_month[month] < self.max_hours_month: clawback = self.claw_rate_low * p.inc_work_month[month] add_amount = max(0, p.inc_work_month[month] - self.perc_cutoff_high * inc_work_ei) clawback += self.claw_rate_high * add_amount p.inc_ei += max(0, self.rate_benefits * inc_work_ei - clawback)
2.65625
3
Code/BehaviouralModels/DRL.py
Gronne/Individual-Optimization-Based-on-Group-Information-Sharing
0
12786522
<reponame>Gronne/Individual-Optimization-Based-on-Group-Information-Sharing import random import numpy as np import math from collections import deque import time import os from tensorflow.keras import models from tensorflow.keras import layers from tensorflow.keras import optimizers from tensorflow.keras import callbacks import tensorflow from Simulations.GameFeatures import GameFeatures as GF from BehaviouralModels.BehaviouralModels import BehaviouralModelInterface MODEL_NAME = "IndiDQR_1024x2" MIN_REPLAY_MEMORY_SIZE = 2048 MAX_REPLAY_MEMORY_SIZE = 50_000 MINIBATCH_SIZE = 2048 #Affect how many states it will use to fit DISCOUNT = 0.99 UPDATE_TARGET_EVERY = 16 MAP_HEIGHT = 14 MAP_WIDTH = 14 class CustomCallback(callbacks.Callback): def on_epoch_end(self, epoch, logs=None): return print("Loss: {:7.2f}".format(logs["loss"])) print("Accuracy: {:7.2f}".format(logs["accuracy"])) class IndiDRL(BehaviouralModelInterface): def __init__(self, goals, initial_game_state, feasible_actions, model_addr, results_addr): super().__init__(goals, initial_game_state, feasible_actions, results_addr) self._model_addr = model_addr self._create_directory(self._model_addr) self._create_model_directory(self._model_addr) self._mode = None self._previous_state = None self._previous_prediction = None self._previous_score = 0 self._previous_action = None self._turn_count = 0 if self._get_file_size(self._model_addr + ".txt"): #Load self._main_model, self._current_model, self._epsilon = self._load_model() else: #Create #Main model - Get trained every step self._main_model = self._build_model_conv(initial_game_state, feasible_actions) #Target model - This is what we predict against every step self._current_model = self._build_model_conv(initial_game_state, feasible_actions) self._current_model.set_weights(self._main_model.get_weights()) #Set epsilon self._epsilon = 1 self._epsilon_decay = 0.99925 #0.99975 before self._episodes = 6000 self._episode_epsilon = self._epsilon_decay**self._episodes if self._epsilon < self._episode_epsilon: self._epsilon = 0 self._target_update_counter = 0 #Ensures that multiple steps can be fitted at once, so it does not overfit to a single one self._replay_memory = deque(maxlen=MAX_REPLAY_MEMORY_SIZE) def _create_model_directory(self, addr): try: main_dir = addr + "_main_model/" current_dir = addr + "_current_model/" os.makedirs(main_dir) os.makedirs(current_dir) except FileExistsError: pass def get_epsilon(self): return self._epsilon def _load_model(self): print("#####LOAD MODEL#####") main_model = models.load_model(self._model_addr + "_main_model") current_model = models.load_model(self._model_addr + "_current_model") epsilon = None with open(self._model_addr + ".txt") as model_file: for line in model_file: epsilon = float(line) return main_model, current_model, epsilon def save_model(self): self._main_model.save(self._model_addr + "_main_model") self._current_model.save(self._model_addr + "_current_model") with open(self._model_addr + ".txt", "w") as file: file.write(str(self._epsilon)) def _build_model(self, game_state, feasible_actions): first_layer_size = (len(game_state)) + len(game_state[-1])*3*3 #3 colors in our layers at X pixels + extra info #Should probably use cnn... model = models.Sequential() model.add(tensorflow.keras.Input(shape=(first_layer_size,), name="digits")) #Input layer model.add(layers.Dense(1024, activation='relu')) #Hidden layer model.add(layers.Dense(1024, activation='relu')) #Hidden layer model.add(layers.Dense(len(feasible_actions), activation='linear')) #Output layer opt = optimizers.Adam(learning_rate=0.0001, decay=1e-6) model.compile(loss="mse", optimizer=opt, metrics=['accuracy']) return model def _build_model_conv(self, game_state, feasible_actions): inputA = tensorflow.keras.Input(shape=((len(game_state)-2),)) #User info inputB_1 = tensorflow.keras.Input(shape=(len(game_state[-1]), len(game_state[-1][0]), 3)) #Map data - first layer inputB_2 = tensorflow.keras.Input(shape=(len(game_state[-1]), len(game_state[-1][0]), 3)) #Map data - second layer inputB_3 = tensorflow.keras.Input(shape=(len(game_state[-1]), len(game_state[-1][0]), 3)) #Map data - third layer #-------- InputB_1 -------- #branchB_1 = layers.Conv2D(64, (3, 3), activation = 'relu')(inputB_1) #Convolutional Hidden Layer #branchB_1 = layers.MaxPooling2D(pool_size=(2, 2))(branchB_1) #branchB_1 = layers.Dropout(0.2)(branchB_1) branchB_1 = layers.Conv2D(128, (3, 3), activation = 'relu')(inputB_1) #Convolutional Hidden Layer branchB_1 = layers.MaxPooling2D(pool_size=(2, 2))(branchB_1) branchB_1 = layers.Dropout(0.2)(branchB_1) branchB_1 = layers.Flatten()(branchB_1) modelB_1 = models.Model(inputs=inputB_1, outputs=branchB_1) #-------- InputB_2 -------- #branchB_2 = layers.Conv2D(64, (3, 3), activation = 'relu')(inputB_2) #Convolutional Hidden Layer #branchB_2 = layers.MaxPooling2D(pool_size=(2, 2))(branchB_2) #branchB_2 = layers.Dropout(0.2)(branchB_2) branchB_2 = layers.Conv2D(128, (3, 3), activation = 'relu')(inputB_2) #Convolutional Hidden Layer branchB_2 = layers.MaxPooling2D(pool_size=(2, 2))(branchB_2) branchB_2 = layers.Dropout(0.2)(branchB_2) branchB_2 = layers.Flatten()(branchB_2) modelB_2 = models.Model(inputs=inputB_2, outputs=branchB_2) #-------- InputB_3 -------- #branchB_3 = layers.Conv2D(64, (3, 3), activation = 'relu')(inputB_3) #Convolutional Hidden Layer #branchB_3 = layers.MaxPooling2D(pool_size=(2, 2))(branchB_3) #branchB_3 = layers.Dropout(0.2)(branchB_3) branchB_3 = layers.Conv2D(128, (3, 3), activation = 'relu')(inputB_3) #Convolutional Hidden Layer branchB_3 = layers.MaxPooling2D(pool_size=(2, 2))(branchB_3) branchB_3 = layers.Dropout(0.2)(branchB_3) branchB_3 = layers.Flatten()(branchB_3) modelB_3 = models.Model(inputs=inputB_3, outputs=branchB_3) #------- Combine ------- branchC = layers.concatenate([inputA, modelB_1.output, modelB_2.output, modelB_3.output]) branchC = layers.Dense(256, activation='relu')(branchC) branchC = layers.Dense(256, activation='relu')(branchC) output = layers.Dense(len(feasible_actions), activation='linear')(branchC) #Output layer model = models.Model(inputs=[inputA, modelB_1.input, modelB_2.input, modelB_3.input], outputs = output) opt = optimizers.Adam(learning_rate=1e-3) model.compile(loss="mse", optimizer=opt, metrics=['accuracy']) #tensorflow.keras.utils.plot_model(model, "multi_input_and_output_model.png", show_shapes=True) return model def _custom_loss_function(self, score_true, score_expected): custom_loss = [] for index, _ in enumerate(score_true): custom_loss += [math.sqrt((score_true[index]-score_expected[index])**2)] return np.asarray([custom_loss]) def _update_replay_memory(self, transition): self._replay_memory.append(transition) def _get_qs(self, state, step): #Probably not gonna be used current_state = self._game_to_model_state(state) prediction = self._main_model.predict(current_state)[0] return prediction def _train(self, terminal_state, step): if len(self._replay_memory) < MIN_REPLAY_MEMORY_SIZE or self._turn_count % 1000 != 0: return minibatch = random.sample(self._replay_memory, MINIBATCH_SIZE) current_state = self._get_current_state(minibatch) current_qs_list = self._main_model.predict(current_state) future_state = self._get_future_state(minibatch) future_qs_list = self._current_model.predict(future_state) X_info = [] X_l1 = [] X_l2 = [] X_l3 = [] y = [] for index, (current_state, action, reward, new_current_state, done, life_changer) in enumerate(minibatch): if done: new_q = -10 #reward elif life_changer: new_q = reward else: max_future_q = np.max(future_qs_list[index]) new_q = reward + DISCOUNT * max_future_q #The discount is to represent that moves more in the past will have less of an effect on the current result? current_qs = current_qs_list[index] current_qs[action] = new_q self._append_to_input_output_matrices(X_info, X_l1, X_l2, X_l3, y, current_state, current_qs) X_info_np = self._transform_info_to_np_structure(X_info) X_l1_np = self._transform_X_to_np_structure(X_l1) X_l2_np = self._transform_X_to_np_structure(X_l2) X_l3_np = self._transform_X_to_np_structure(X_l3) history = self._main_model.fit([X_info_np, X_l1_np, X_l2_np, X_l3_np], np.array(y), batch_size = MINIBATCH_SIZE, verbose = 0, shuffle=False, callbacks=[CustomCallback()] if terminal_state or step%10 == 1 else None) #Only call callback if terminal staste #Updating to determine if we want to update target_model yet if terminal_state: self._target_update_counter += 1 if self._target_update_counter > UPDATE_TARGET_EVERY: self._target_update_counter = 0 self._current_model.set_weights(self._main_model.get_weights()) def _append_to_input_output_matrices(self, X0, X1, X2, X3, y, state, qs): X0 += [state[0]] #Previous state X1 += [state[1]] X2 += [state[2]] X3 += [state[3]] y += [qs] #The score it should have let to def _transform_info_to_np_structure(self, X_info): X_info_np = np.array(X_info) X_info_np = X_info_np.reshape(X_info_np.shape[0], X_info_np.shape[2]) return X_info_np def _transform_X_to_np_structure(self, X): X_np = np.array(X) X_np = X_np.reshape(X_np.shape[0], X_np.shape[2], X_np.shape[3], X_np.shape[4]) return X_np def _get_current_state(self, minibatch): current_states_0 = np.array([transition[0][0] for transition in minibatch]) current_states_0 = current_states_0.reshape(current_states_0.shape[0], current_states_0.shape[2]) current_states_1 = np.array([transition[0][1] for transition in minibatch]) current_states_1 = current_states_1.reshape(current_states_1.shape[0], current_states_1.shape[2], current_states_1.shape[3], current_states_1.shape[4]) current_states_2 = np.array([transition[0][2] for transition in minibatch]) current_states_2 = current_states_2.reshape(current_states_2.shape[0], current_states_2.shape[2], current_states_2.shape[3], current_states_2.shape[4]) current_states_3 = np.array([transition[0][3] for transition in minibatch]) current_states_3 = current_states_3.reshape(current_states_3.shape[0], current_states_3.shape[2], current_states_3.shape[3], current_states_3.shape[4]) return [current_states_0, current_states_1, current_states_2, current_states_3] def _get_future_state(self, minibatch): new_current_state_0 = np.array([transition[3][0] for transition in minibatch]) new_current_state_0 = new_current_state_0.reshape(new_current_state_0.shape[0], new_current_state_0.shape[2]) new_current_state_1 = np.array([transition[3][1] for transition in minibatch]) new_current_state_1 = new_current_state_1.reshape(new_current_state_1.shape[0], new_current_state_1.shape[2], new_current_state_1.shape[3], new_current_state_1.shape[4]) new_current_state_2 = np.array([transition[3][2] for transition in minibatch]) new_current_state_2 = new_current_state_2.reshape(new_current_state_2.shape[0], new_current_state_2.shape[2], new_current_state_2.shape[3], new_current_state_2.shape[4]) new_current_state_3 = np.array([transition[3][3] for transition in minibatch]) new_current_state_3 = new_current_state_3.reshape(new_current_state_3.shape[0], new_current_state_3.shape[2], new_current_state_3.shape[3], new_current_state_3.shape[4]) return [new_current_state_0, new_current_state_1, new_current_state_2, new_current_state_3] def action(self, game_state, train_flag = True): self._turn_count += 1 model_state = self._game_to_model_state(game_state) if train_flag: score = self._calculate_score(game_state[0], game_state[2], game_state[3]) - self._previous_score #Reward - Use reqard difference instead self._previous_score = self._calculate_score(game_state[0], game_state[2], game_state[3]) if self._epsilon > self._episode_epsilon and self._epsilon != 0: if self._turn_count % 100 == 0: print(f"Train: {train_flag}, steps: {self._turn_count}, life: {game_state[1]}, points: {game_state[2]}, score: {self._previous_score}, Name: {self._model_addr}") if self._turn_count % 500 == 0: self._epsilon *= self._epsilon_decay print(f"Epsilon: {self._epsilon}, Name: {self._model_addr}") if isinstance(self._previous_state, list): terminal_state = game_state[0] == 0 or model_state[0][0][0] != self._previous_state[0][0][0] or model_state[0][0][1] != self._previous_state[0][0][1] #If dead, different health, or different points self._update_replay_memory((self._previous_state, self._previous_action, score, model_state, game_state[0] == 0, terminal_state)) #Previous state, action taken, score it got, new state it let to, and if it is done (never) self._train(terminal_state , game_state[0]) else: if self._turn_count % 100 == 0: print(f"Train: {train_flag}, steps: {self._turn_count}, life: {game_state[1]}, points: {game_state[2]}, score: {self._previous_score}, Name: {self._model_addr}") elif not self._turn_count % 100: print(f"Train: {train_flag}, steps: {self._turn_count}, life: {game_state[1]}, points: {game_state[2]}, score: {self._previous_score}, Name: {self._model_addr}") action = self._calculate_action(model_state, 0 if not train_flag or self._epsilon < self._episode_epsilon else self._epsilon) return action def _calculate_action(self, current_state, epsilon): prediction = self._main_model.predict(current_state) action_index = self._choose_action_from_prediction(prediction, epsilon) self._previous_state = current_state self._previous_prediction = prediction self._previous_action = action_index return self._feasible_actions[action_index] def _game_to_model_state(self, game_state): steps = game_state[0] #Should this be normalized? life = game_state[1]/100 #Normalize points = game_state[2] #Should this be normalized? player_coor = (game_state[3][0]/len(game_state[-1][0]), game_state[3][1]/len(game_state[-1])) #Normalize model_state_attr = [life, player_coor[0], player_coor[1]] image_shape = (len(game_state[-1]), len(game_state[-1][0]), len(game_state[-1][0][0][0])) np_model_state_attr = np.array(model_state_attr).reshape(-1, len(model_state_attr)) np_map = np.array(game_state[-1]) np_model_state_map = np.array([ np_map[:,:,0].reshape(-1, *image_shape)/255, np_map[:,:,1].reshape(-1, *image_shape)/255, np_map[:,:,2].reshape(-1, *image_shape)/255 ]) return [np_model_state_attr, np_model_state_map[0], np_model_state_map[1], np_model_state_map[2]] def _choose_action_from_prediction(self, prediction, epsilon): prediction = prediction[0] #Choose the highest score index = np.argmax(prediction) if np.random.random() < epsilon: index = np.random.randint(0, len(prediction)) return index class GroupDRL(BehaviouralModelInterface): _replay_memory = deque(maxlen=MAX_REPLAY_MEMORY_SIZE) _main_model = None _current_model = None _global_instances = 0 _global_target_update_count = 0 _global_training_count = 0 _epsilon = 1 def __init__(self, goals, initial_game_state, feasible_actions, model_addr, results_addr): super().__init__(goals, initial_game_state, feasible_actions, results_addr) self._model_addr = model_addr self._main_model_flag = None if GroupDRL._main_model == None: self._create_directory(self._model_addr) self._create_model_directory(self._model_addr) self._main_model_flag = True else: self._main_model_flag = False self._mode = None self._previous_state = None self._previous_prediction = None self._previous_score = 0 self._previous_action = None self._turn_count = 0 if self._get_file_size(self._model_addr + ".txt"): #Load if GroupDRL._main_model == None: GroupDRL._main_model, GroupDRL._current_model, GroupDRL._epsilon = self._load_model() else: #Create if GroupDRL._main_model == None: #Main model - Get trained every step GroupDRL._main_model = self._build_model_conv(initial_game_state, feasible_actions) #Target model - This is what we predict against every step GroupDRL._current_model = self._build_model_conv(initial_game_state, feasible_actions) GroupDRL._current_model.set_weights(GroupDRL._main_model.get_weights()) #Set epsilon GroupDRL._epsilon = 1 self._epsilon_decay = 0.99925 #0.99975 before self._episodes = 6000 self._episode_epsilon = self._epsilon_decay**self._episodes if GroupDRL._epsilon < self._episode_epsilon: GroupDRL._epsilon = 0 GroupDRL._global_target_update_count = 0 GroupDRL._global_instances += 1 #Ensures that multiple steps can be fitted at once, so it does not overfit to a single one GroupDRL._replay_memory = deque(maxlen=MAX_REPLAY_MEMORY_SIZE) def _create_model_directory(self, addr): try: main_dir = addr + "_main_model/" current_dir = addr + "_current_model/" os.makedirs(main_dir) os.makedirs(current_dir) except FileExistsError: pass def get_epsilon(self): return GroupDRL._epsilon def _load_model(self): print("#####LOAD MODEL#####") main_model = models.load_model(self._model_addr + "_main_model") current_model = models.load_model(self._model_addr + "_current_model") epsilon = None with open(self._model_addr + ".txt") as model_file: for line in model_file: epsilon = float(line) return main_model, current_model, epsilon def save_model(self): if self._main_model_flag == True: GroupDRL._main_model.save(self._model_addr + "_main_model") GroupDRL._current_model.save(self._model_addr + "_current_model") with open(self._model_addr + ".txt", "w") as file: file.write(str(GroupDRL._epsilon)) def _build_model(self, game_state, feasible_actions): first_layer_size = (len(game_state)) + len(game_state[-1])*3*3 #3 colors in our layers at X pixels + extra info #Should probably use cnn... model = models.Sequential() model.add(tensorflow.keras.Input(shape=(first_layer_size,), name="digits")) #Input layer model.add(layers.Dense(1024, activation='relu')) #Hidden layer model.add(layers.Dense(1024, activation='relu')) #Hidden layer model.add(layers.Dense(len(feasible_actions), activation='linear')) #Output layer opt = optimizers.Adam(learning_rate=0.0001, decay=1e-6) model.compile(loss="mse", optimizer=opt, metrics=['accuracy']) return model def _build_model_conv(self, game_state, feasible_actions): inputA = tensorflow.keras.Input(shape=((len(game_state)-2),)) #User info inputB_1 = tensorflow.keras.Input(shape=(len(game_state[-1]), len(game_state[-1][0]), 3)) #Map data - first layer inputB_2 = tensorflow.keras.Input(shape=(len(game_state[-1]), len(game_state[-1][0]), 3)) #Map data - second layer inputB_3 = tensorflow.keras.Input(shape=(len(game_state[-1]), len(game_state[-1][0]), 3)) #Map data - third layer #-------- InputB_1 -------- #branchB_1 = layers.Conv2D(64, (3, 3), activation = 'relu')(inputB_1) #Convolutional Hidden Layer #branchB_1 = layers.MaxPooling2D(pool_size=(2, 2))(branchB_1) #branchB_1 = layers.Dropout(0.2)(branchB_1) branchB_1 = layers.Conv2D(128, (3, 3), activation = 'relu')(inputB_1) #Convolutional Hidden Layer branchB_1 = layers.MaxPooling2D(pool_size=(2, 2))(branchB_1) branchB_1 = layers.Dropout(0.2)(branchB_1) branchB_1 = layers.Flatten()(branchB_1) modelB_1 = models.Model(inputs=inputB_1, outputs=branchB_1) #-------- InputB_2 -------- #branchB_2 = layers.Conv2D(64, (3, 3), activation = 'relu')(inputB_2) #Convolutional Hidden Layer #branchB_2 = layers.MaxPooling2D(pool_size=(2, 2))(branchB_2) #branchB_2 = layers.Dropout(0.2)(branchB_2) branchB_2 = layers.Conv2D(128, (3, 3), activation = 'relu')(inputB_2) #Convolutional Hidden Layer branchB_2 = layers.MaxPooling2D(pool_size=(2, 2))(branchB_2) branchB_2 = layers.Dropout(0.2)(branchB_2) branchB_2 = layers.Flatten()(branchB_2) modelB_2 = models.Model(inputs=inputB_2, outputs=branchB_2) #-------- InputB_3 -------- #branchB_3 = layers.Conv2D(64, (3, 3), activation = 'relu')(inputB_3) #Convolutional Hidden Layer #branchB_3 = layers.MaxPooling2D(pool_size=(2, 2))(branchB_3) #branchB_3 = layers.Dropout(0.2)(branchB_3) branchB_3 = layers.Conv2D(128, (3, 3), activation = 'relu')(inputB_3) #Convolutional Hidden Layer branchB_3 = layers.MaxPooling2D(pool_size=(2, 2))(branchB_3) branchB_3 = layers.Dropout(0.2)(branchB_3) branchB_3 = layers.Flatten()(branchB_3) modelB_3 = models.Model(inputs=inputB_3, outputs=branchB_3) #------- Combine ------- branchC = layers.concatenate([inputA, modelB_1.output, modelB_2.output, modelB_3.output]) branchC = layers.Dense(256, activation='relu')(branchC) branchC = layers.Dense(256, activation='relu')(branchC) output = layers.Dense(len(feasible_actions), activation='linear')(branchC) #Output layer model = models.Model(inputs=[inputA, modelB_1.input, modelB_2.input, modelB_3.input], outputs = output) opt = optimizers.Adam(learning_rate=1e-3) model.compile(loss="mse", optimizer=opt, metrics=['accuracy']) #tensorflow.keras.utils.plot_model(model, "multi_input_and_output_model.png", show_shapes=True) return model def _custom_loss_function(self, score_true, score_expected): custom_loss = [] for index, _ in enumerate(score_true): custom_loss += [math.sqrt((score_true[index]-score_expected[index])**2)] return np.asarray([custom_loss]) def _update_replay_memory(self, transition): GroupDRL._replay_memory.append(transition) def _get_qs(self, state, step): #Probably not gonna be used current_state = self._game_to_model_state(state) prediction = GroupDRL._main_model.predict(current_state)[0] return prediction def _train(self, terminal_state, step): if len(GroupDRL._replay_memory) < (MIN_REPLAY_MEMORY_SIZE*GroupDRL._global_instances) or GroupDRL._global_training_count % (GroupDRL._global_instances*1000) % 1000 != 0: return minibatch = random.sample(GroupDRL._replay_memory, MINIBATCH_SIZE*GroupDRL._global_instances) current_state = self._get_current_state(minibatch) current_qs_list = GroupDRL._main_model.predict(current_state) future_state = self._get_future_state(minibatch) future_qs_list = GroupDRL._current_model.predict(future_state) X_info = [] X_l1 = [] X_l2 = [] X_l3 = [] y = [] for index, (current_state, action, reward, new_current_state, done, life_changer) in enumerate(minibatch): if done: new_q = -10 #reward elif life_changer: new_q = reward else: max_future_q = np.max(future_qs_list[index]) new_q = reward + DISCOUNT * max_future_q #The discount is to represent that moves more in the past will have less of an effect on the current result? current_qs = current_qs_list[index] current_qs[action] = new_q self._append_to_input_output_matrices(X_info, X_l1, X_l2, X_l3, y, current_state, current_qs) X_info_np = self._transform_info_to_np_structure(X_info) X_l1_np = self._transform_X_to_np_structure(X_l1) X_l2_np = self._transform_X_to_np_structure(X_l2) X_l3_np = self._transform_X_to_np_structure(X_l3) history = GroupDRL._main_model.fit([X_info_np, X_l1_np, X_l2_np, X_l3_np], np.array(y), batch_size = MINIBATCH_SIZE, verbose = 0, shuffle=False, callbacks=[CustomCallback()] if terminal_state or step%10 == 1 else None) #Only call callback if terminal staste #Updating to determine if we want to update target_model yet if terminal_state: GroupDRL._global_target_update_count += 1 if GroupDRL._global_target_update_count > UPDATE_TARGET_EVERY: GroupDRL._global_target_update_count = 0 GroupDRL._current_model.set_weights(GroupDRL._main_model.get_weights()) def _append_to_input_output_matrices(self, X0, X1, X2, X3, y, state, qs): X0 += [state[0]] #Previous state X1 += [state[1]] X2 += [state[2]] X3 += [state[3]] y += [qs] #The score it should have let to def _transform_info_to_np_structure(self, X_info): X_info_np = np.array(X_info) X_info_np = X_info_np.reshape(X_info_np.shape[0], X_info_np.shape[2]) return X_info_np def _transform_X_to_np_structure(self, X): X_np = np.array(X) X_np = X_np.reshape(X_np.shape[0], X_np.shape[2], X_np.shape[3], X_np.shape[4]) return X_np def _get_current_state(self, minibatch): current_states_0 = np.array([transition[0][0] for transition in minibatch]) current_states_0 = current_states_0.reshape(current_states_0.shape[0], current_states_0.shape[2]) current_states_1 = np.array([transition[0][1] for transition in minibatch]) current_states_1 = current_states_1.reshape(current_states_1.shape[0], current_states_1.shape[2], current_states_1.shape[3], current_states_1.shape[4]) current_states_2 = np.array([transition[0][2] for transition in minibatch]) current_states_2 = current_states_2.reshape(current_states_2.shape[0], current_states_2.shape[2], current_states_2.shape[3], current_states_2.shape[4]) current_states_3 = np.array([transition[0][3] for transition in minibatch]) current_states_3 = current_states_3.reshape(current_states_3.shape[0], current_states_3.shape[2], current_states_3.shape[3], current_states_3.shape[4]) return [current_states_0, current_states_1, current_states_2, current_states_3] def _get_future_state(self, minibatch): new_current_state_0 = np.array([transition[3][0] for transition in minibatch]) new_current_state_0 = new_current_state_0.reshape(new_current_state_0.shape[0], new_current_state_0.shape[2]) new_current_state_1 = np.array([transition[3][1] for transition in minibatch]) new_current_state_1 = new_current_state_1.reshape(new_current_state_1.shape[0], new_current_state_1.shape[2], new_current_state_1.shape[3], new_current_state_1.shape[4]) new_current_state_2 = np.array([transition[3][2] for transition in minibatch]) new_current_state_2 = new_current_state_2.reshape(new_current_state_2.shape[0], new_current_state_2.shape[2], new_current_state_2.shape[3], new_current_state_2.shape[4]) new_current_state_3 = np.array([transition[3][3] for transition in minibatch]) new_current_state_3 = new_current_state_3.reshape(new_current_state_3.shape[0], new_current_state_3.shape[2], new_current_state_3.shape[3], new_current_state_3.shape[4]) return [new_current_state_0, new_current_state_1, new_current_state_2, new_current_state_3] def action(self, game_state, train_flag = True): self._turn_count += 1 GroupDRL._global_training_count += 1 model_state = self._game_to_model_state(game_state) if train_flag: score = self._calculate_score(game_state[0], game_state[2], game_state[3]) - self._previous_score #Reward - Use reqard difference instead self._previous_score = self._calculate_score(game_state[0], game_state[2], game_state[3]) if GroupDRL._epsilon > self._episode_epsilon and GroupDRL._epsilon != 0: if self._turn_count % 100 == 0: print(f"Train: {train_flag}, steps: {self._turn_count}, life: {game_state[1]}, points: {game_state[2]}, score: {self._previous_score}, Name: {self._model_addr}") if self._turn_count % 500 == 0: GroupDRL._epsilon *= self._epsilon_decay print(f"Epsilon: {GroupDRL._epsilon}, Name: {self._model_addr}") if isinstance(self._previous_state, list): terminal_state = game_state[0] == 0 or model_state[0][0][0] != self._previous_state[0][0][0] or model_state[0][0][1] != self._previous_state[0][0][1] #If dead, different health, or different points self._update_replay_memory((self._previous_state, self._previous_action, score, model_state, game_state[0] == 0, terminal_state)) #Previous state, action taken, score it got, new state it let to, and if it is done (never) self._train(terminal_state , game_state[0]) else: if self._turn_count % 100 == 0: print(f"Train: {train_flag}, steps: {self._turn_count}, life: {game_state[1]}, points: {game_state[2]}, score: {self._previous_score}, Name: {self._model_addr}") elif not self._turn_count % 100: print(f"Train: {train_flag}, steps: {self._turn_count}, life: {game_state[1]}, points: {game_state[2]}, score: {self._previous_score}, Name: {self._model_addr}") action = self._calculate_action(model_state, 0 if not train_flag or GroupDRL._epsilon < self._episode_epsilon else GroupDRL._epsilon) return action def _calculate_action(self, current_state, epsilon): prediction = GroupDRL._main_model.predict(current_state) action_index = self._choose_action_from_prediction(prediction, epsilon) self._previous_state = current_state self._previous_prediction = prediction self._previous_action = action_index return self._feasible_actions[action_index] def _game_to_model_state(self, game_state): steps = game_state[0] #Should this be normalized? life = game_state[1]/100 #Normalize points = game_state[2] #Should this be normalized? player_coor = (game_state[3][0]/len(game_state[-1][0]), game_state[3][1]/len(game_state[-1])) #Normalize model_state_attr = [life, player_coor[0], player_coor[1]] image_shape = (len(game_state[-1]), len(game_state[-1][0]), len(game_state[-1][0][0][0])) np_model_state_attr = np.array(model_state_attr).reshape(-1, len(model_state_attr)) np_map = np.array(game_state[-1]) np_model_state_map = np.array([ np_map[:,:,0].reshape(-1, *image_shape)/255, np_map[:,:,1].reshape(-1, *image_shape)/255, np_map[:,:,2].reshape(-1, *image_shape)/255 ]) return [np_model_state_attr, np_model_state_map[0], np_model_state_map[1], np_model_state_map[2]] def _choose_action_from_prediction(self, prediction, epsilon): prediction = prediction[0] #Choose the highest score index = np.argmax(prediction) if np.random.random() < epsilon: index = np.random.randint(0, len(prediction)) return index
2.203125
2
benchmark/config.py
babylonhealth/multiverse
12
12786523
MULTIVERSE_NUM_CORES_TO_USE = 1
1.023438
1
preprocess.py
noveens/sampling_cf
6
12786524
from initial_data_prep_code import movielens, amazon, goodreads, beeradvocate from data_path_constants import get_data_path from svp_handler import SVPHandler percent_sample = [ 20, 40, 60, 80, 90, 99 ] # Which datasets to prep? for dataset in [ 'magazine', 'ml-100k', ## Did not download & preprocess the following in ## the included code, but feel free to download and uncomment # 'luxury', # 'video_games', # 'beeradvocate', # 'goodreads_comics', ]: print("\n\n\n!!!!!!!! STARTED PROCESSING {} !!!!!!!!\n\n\n".format(dataset)) if dataset in [ 'ml-100k' ]: total_data = movielens.prep(dataset) elif dataset in [ 'luxury', 'magazine', 'video_games' ]: total_data = amazon.prep(dataset) elif dataset in [ 'goodreads_comics' ]: total_data = goodreads.prep(dataset) elif dataset in [ 'beeradvocate' ]: total_data = beeradvocate.prep(dataset) # Store original data total_data.save_data(get_data_path(dataset)) # Sampling for train_test_split in [ '20_percent_hist', 'leave_2' ]: total_data.complete_data_stats = None # Since task changed path_uptil_now = get_data_path(dataset) + "/" + train_test_split + "/" # Make full-data (No sampling) total_data.train_test_split(train_test_split) print("\n{} split, Overall:".format(train_test_split)) total_data.save_index(path_uptil_now + "/complete_data/") # Frequency sample from user hist (Stratified) print("\n{} split, user history random sampling".format(train_test_split)) for percent in percent_sample: total_data.load_index(path_uptil_now + "/complete_data/") # Re-load index map total_data.frequency_sample(percent, 0) total_data.save_index(path_uptil_now + str(percent) + "_perc_freq_user_rns") # Sample users randomly print("\n{} split, user random sampling".format(train_test_split)) for percent in percent_sample: total_data.load_index(path_uptil_now + "/complete_data/") # Re-load index map total_data.user_random_sample(percent) total_data.save_index(path_uptil_now + str(percent) + "_perc_user_rns") # Sample interactions randomly print("\n{} split, interaction random sampling".format(train_test_split)) for percent in percent_sample: total_data.load_index(path_uptil_now + "/complete_data/") # Re-load index map total_data.interaction_random_sample(percent) total_data.save_index(path_uptil_now + str(percent) + "_perc_interaction_rns") # Temporal sampling print("\n{} split, user history temporal sampling".format(train_test_split)) for percent in percent_sample: total_data.load_index(path_uptil_now + "/complete_data/") # Re-load index map total_data.temporal_sample(percent) total_data.save_index(path_uptil_now + str(percent) + "_perc_temporal") # Remove tail users sampling print("\n{} split, tail user sampling".format(train_test_split)) for percent in percent_sample: total_data.load_index(path_uptil_now + "/complete_data/") # Re-load index map total_data.tail_user_remove(percent) total_data.save_index(path_uptil_now + str(percent) + "_perc_tail_user_remove") # Pagerank based sampling print("\n{} split, pagerank sampling".format(train_test_split)) for percent in percent_sample: total_data.load_index(path_uptil_now + "/complete_data/") # Re-load index map total_data.pagerank_sample(percent) total_data.save_index(path_uptil_now + str(percent) + "_perc_pagerank") # RW based sampling print("\n{} split, random walk sampling".format(train_test_split)) for percent in percent_sample: total_data.load_index(path_uptil_now + "/complete_data/") # Re-load index map total_data.random_walk_sample(percent) total_data.save_index(path_uptil_now + str(percent) + "_perc_random_walk") # Forest-fire based sampling print("\n{} split, forest fire sampling".format(train_test_split)) for percent in percent_sample: total_data.load_index(path_uptil_now + "/complete_data/") # Re-load index map total_data.forest_fire_sample(percent) total_data.save_index(path_uptil_now + str(percent) + "_perc_forest_fire") # Sample interactions according to SVP hyper_params = {} hyper_params['dataset'] = dataset hyper_params['sampling'] = 'complete_data' # While training the proxy model for proxy_model in [ 'bias_only', 'MF_dot' ]: scenarios = [ 'sequential' ] if train_test_split == 'leave_2' else [ 'implicit', 'explicit' ] for loss_type in scenarios: print() ; svp_handler = SVPHandler(proxy_model, loss_type, hyper_params) for sampling in [ 'forgetting_events', 'forgetting_events_propensity', 'forgetting_events_user', 'forgetting_events_user_propensity', ]: print("\n{} split, SVP: {}_{}, {} loss".format(train_test_split, proxy_model, sampling, loss_type)) for percent in percent_sample: total_data.load_index(path_uptil_now + "/complete_data/") # Re-load index map total_data.svp_sample(percent, svp_handler, sampling) total_data.save_index(path_uptil_now + "svp_{}_{}/{}_perc_{}".format(proxy_model, loss_type, percent, sampling))
2.484375
2
playhouse/sweepea.py
mikiec84/peewee
1
12786525
<reponame>mikiec84/peewee """ Querying using an "ISBL"-like syntax, inspired by https://github.com/akrito/horrorm http://www.reddit.com/r/programming/comments/2wycq/given_that_ruby_fans_like_the_idea_of_dsls_its/c2x1t2 Example ISBL: (t1 * t2) : c1 = v1, c2 = v2 % projection Swee'pea: (t1 * t2) ** (c1 == v1, c2 == v2) % (t1.f1, t1.f2, t2.f1) """ from peewee import * from peewee import BaseModel _Model = Model class T(object): def __init__(self, *models): self.models = list(models) self.query = None self.projection = None self.ordering = None def __mul__(self, rhs): if isinstance(rhs, T): self.models.extend(rhs.models) else: self.models.append(rhs) return self def __pow__(self, rhs): self.query = rhs return self def __mod__(self, rhs): if not isinstance(rhs, (list, tuple)): rhs = [rhs] self.projection = rhs return self def __lshift__(self, rhs): self.ordering = rhs return self def q(self): if self.projection: select = {} for field in self.projection: select.setdefault(field.model, []) select[field.model].append(field.name) else: select = dict((m, ['*']) for m in self.models) sq = self.models[0].select(select) if self.ordering: sq = sq.order_by(self.ordering) for model in self.models[1:]: sq = sq.join(model) if self.query: sq = sq.where(self.query) return sq.naive() def __iter__(self): return iter(self.q()) class ISBLBaseModel(BaseModel): def __mul__(cls, rhs): return T(cls) * rhs def __pow__(cls, rhs): return T(cls) ** rhs def __mod__(cls, rhs): return T(cls) % rhs def __lshift__(cls, rhs): return T(cls) << rhs class Model(_Model): __metaclass__ = ISBLBaseModel
2.84375
3
clusteris/main/interactor.py
iturricf/clusteris
0
12786526
# -*- coding: utf-8 -*- import wx class Interactor(object): """Connects the UI events with the Presenter class.""" def Connect(self, presenter, view): """Listens to UI evens and asigns an event handler on the Presenter.""" self.presenter = presenter self.view = view # Menu Archivo view.Bind(wx.EVT_MENU, self.OnOpenDatasetClicked, view.mItemDataset) view.Bind(wx.EVT_MENU, self.OnExportImageClicked, view.mItemExportImage) view.Bind(wx.EVT_MENU, self.OnExportCsvClicked, view.mItemExportCsv) view.Bind(wx.EVT_MENU, self.OnExitClicked, view.mItemExit) # Menu Proceso view.Bind(wx.EVT_MENU, self.OnProcessDataset, view.mItemProcess) view.Bind(wx.EVT_MENU, self.OnPlotResults, view.mItemPlot) view.Bind(wx.EVT_CLOSE, self.OnExitClicked) # Menu Ayuda view.Bind(wx.EVT_MENU, self.OnHelpGetHelp, view.mItemHelp) view.Bind(wx.EVT_MENU, self.OnHelpAbout, view.mItemAbout) view.Bind(view.EVT_FILE_SELECTED, self.OnFileSelected) view.Bind(view.EVT_EXPORT_CSV_FILE_SELECTED, self.OnExportCsvFileSelected) view.Bind(view.EVT_EXPORT_PNG_FILE_SELECTED, self.OnExportPngFileSelected) def OnOpenDatasetClicked(self, evt): self.presenter.ShowFileDialog() def OnExportImageClicked(self, evt): self.presenter.ShowExportImageDialog() def OnExportPngFileSelected(self, evt): self.presenter.ExportPngFile(evt.path) def OnExportCsvClicked(self, evt): self.presenter.ShowExportCsvDialog() def OnExportCsvFileSelected(self, evt): self.presenter.ExportCsvFile(evt.path) def OnFileSelected(self, evt): self.presenter.SetSelectedFile(evt.path) def OnProcessDataset(self, evt): self.presenter.ShowDatasetConfigDialog() # self.presenter.Process() def OnHelpGetHelp(self, evt): wx.BeginBusyCursor() import webbrowser webbrowser.open("https://github.com/iturricf/clusteris/wiki/How-to-use-Clusteris") wx.EndBusyCursor() def OnHelpAbout(self, evt): box = wx.MessageDialog(None, 'ClusteRIS v1.0 \nAplicación desarrollada para lograr el agrupamiento de datos mediante la técnica de algoritmos genéticos. \n\n Autores: <NAME>, <NAME> y <NAME>.', 'Acerca de CluteRIS', wx.OK) box.ShowModal() def OnPlotResults(self, evt): self.presenter.ShowPlotConfigDialog() # self.presenter.Plot() def OnExitClicked(self, evt): self.presenter.Close()
2.421875
2
app/instance/config.py
Rickyngotho/pitch
0
12786527
SECRET_KEY = '12345'
0.957031
1
web3/utils/functional.py
bellaj/web3py
0
12786528
<reponame>bellaj/web3py<gh_stars>0 import functools from eth_utils import ( compose, ) def apply_formatters_to_return(*formatters): formatter = compose(*formatters) def outer(fn): @functools.wraps(fn) def inner(*args, **kwargs): value = fn(*args, **kwargs) return formatter(value) return inner return outer
2.4375
2
test/test_delete_group.py
NikolayLukyanov/python_pfqa
0
12786529
<reponame>NikolayLukyanov/python_pfqa from model.group import Group import random def test_delete_random_group(app, db, check_ui): if len(db.get_group_list()) == 0: app.group.create(Group(group_name="zaglushka")) oldgroups = db.get_group_list() group = random.choice(oldgroups) app.group.delete_by_id(group.id) newgroups = db.get_group_list() #check, that list of oldgroup without deleted element is equal to the list of group after deletion random group oldgroups.remove(group) assert oldgroups == newgroups if check_ui: assert sorted(db.get_stripped_group_list(), key=Group.id_or_max) == sorted(app.group.get_group_list(), key=Group.id_or_max)
2.96875
3
wgrib2-v0.1.9.4/pytests/TestModelFile.py
jprules321/colas
0
12786530
""" Test Basic GrADS Operations on the standard "model" test file. """ # Add parent directory to python search path # ------------------------------------------ import os import sys sys.path.insert(0,'..') sys.path.insert(0,'lib') import unittest from grads import GrADS class TestModelFile(unittest.TestCase): def tearDown(self): del self.ga # os.system("/bin/rm -rf output") def test_01_Open(self): """ Check whether file was opened correctly. """ type = 'Gridded' vars = ['ps', 'ts', 'pr', 'ua', 'va', 'zg', 'ta', 'hus'] var_levs = [0, 0, 0, 7, 7, 7, 7, 7] nx, ny, nz, nt = (72, 46, 7, 5) fh = self.fh self.assertEqual(type,fh.type) self.assertEqual(nx,fh.nx) self.assertEqual(ny,fh.ny) self.assertEqual(nz,fh.nz) self.assertEqual(nt,fh.nt) vars2 = fh.vars[:] var_levs2 = fh.var_levs[:] self.assertEqual(vars.sort(),vars2.sort()) self.assertEqual(var_levs.sort(),var_levs2.sort()) def test_02_Execs(self): """ Exercises the exec command using both Unix and DOS text files. """ self.ga("exec Exec.ga") self.ga("exec Exec_dos.ga") def test_02_Prints(self): """ Exercises print/print file.eps/printim but does verify results. This is not really a test as it does not check the outcome. """ self.ga("display ps") self.ga("print output/ps.eps") self.ga("enable print output/ps.gx") self.ga("print output/ps.eps") self.ga("disable print") def test_02_Printim(self): """ Exercises printim - not really a test as it does not check outcome. """ self.ga("q config") cf = self.ga.rline(1) if 'printim' in cf: self.ga("printim output/ps.png") def test_03_Display(self): """ Displays several variables and checks contour intervals """ self._CheckCint('ps',500,1000,50,z=1,t=1) self._CheckCint('ts',240,310,10,z=1,t=1) self._CheckCint('10000*pr',0,8,1,z=1,t=1) self._CheckCint('ps',500,1000,50,z=1,t=5) self._CheckCint('ts',240,310,10,z=1,t=5) self._CheckCint('10000*pr',0,10,1,z=1,t=5) self._CheckCint('ua',-12,18,3,z=1,t=1) self._CheckCint('va',-15,15,3,z=1,t=1) self._CheckCint('zg',-100,300,50,z=1,t=1) self._CheckCint('ta',245,300,5,z=1,t=1) self._CheckCint('1000*hus',2,20,2,z=1,t=5) self._CheckCint('ua',-15,50,5,z=7,t=5) self._CheckCint('va',-20,20,5,z=7,t=5) self._CheckCint('zg',14800,16400,200,z=7,t=5) self._CheckCint('ta',195,225,5,z=7,t=5) self._CheckCint('10000*hus',1,9,1,z=5,t=5) def test_04_Write_generic(self): self.ga("set x 1 72") self.ga("lats4d -o output/sequential -format sequential -vars ps ta -func sqrt(@) -time = = 2 ") def test_04_Write_stream(self): self.ga("set x 1 72") self.ga("lats4d -o output/stream -be -format stream") def test_05_Read_stream(self): fh = self.ga.open("stream.ctl") self._CompareFiles(self.fh,fh) self.ga('close %d'%fh.fid) def test_04_Write_sequential(self): self.ga("set x 1 72") self.ga("lats4d -o output/sequential -le -format sequential") def test_05_Read_sequential(self): fh = self.ga.open("sequential.ctl") self._CompareFiles(self.fh,fh) self.ga('close %d'%fh.fid) def test_04_stats(self): self.ga("set x 1 72") self.ga("lats4d -format stats") def test_04_Write_mean(self): self.ga("set x 1 72") self.ga("lats4d -o output/mean -format stream -mean") def xtest_06_regriding_linear(self): self._CheckCint2("re(ts,2,2,bl)",240,310,10) self._CheckCint2("re(ts,2,1,bl)",240,310,10) def xtest_06_regriding_bessel(self): self._CheckCint2("re(ts,2,2,bs)",240,310,10) self._CheckCint2("re(ts,2,1,bs)",240,310,10) def xtest_06_regriding_box_average(self): self._CheckCint2("re(ts,2,2,ba)",240,310,10) self._CheckCint2("re(ts,2,1,ba)",240,310,10) def xtest_06_regriding_box_voting(self): self._CheckCint2("1e4*re(pr,8,8,vt,0.6,0.2)",0,8,1) def _CheckCint(self,name,cmin,cmax,cint,z=1,t=1): """ Check contour intervals during display. """ self.ga('clear') self.ga('display %s(z=%d,t=%d)'%(name,z,t)) self.assertEqual(cmin,int(self.ga.rword(1,2))) self.assertEqual(cmax,int(self.ga.rword(1,4))) self.assertEqual(cint,int(self.ga.rword(1,6))) def _CheckCint2(self,name,cmin,cmax,cint): """ Check contour intervals during display. """ self.ga.cmd('clear') self.ga.cmd('display %s'%name) self.assertEqual(cmin,int(self.ga.rword(1,2))) self.assertEqual(cmax,int(self.ga.rword(1,4))) self.assertEqual(cint,int(self.ga.rword(1,6))) def _CompareFiles(self,fh1,fh2): vars1 = fh1.vars[:] vars2 = fh2.vars[:] self.assertEqual(vars1.sort(),vars2.sort()) self.assertEqual(fh1.nt,fh2.nt) for i in range(len(fh1.vars)): var = fh1.vars[i] nz = fh1.var_levs[i] if nz==0: nz=1 if var=='hus': nz=5 nt = fh1.nt for t in range(1,nt+1): for z in range(1,nz+1): self.ga('clear') self.ga('display %s.%d(z=%d,t=%d) - %s.%d(z=%d,t=%d)'\ %(var,fh1.fid,z,t,var,fh2.fid,z,t)) # print ">>> t=%d, z=%d, %s --- %s "%(t,z,var,self.ga.rline(1)) self.assertEqual(self.ga.rline(1), \ 'Constant field. Value = 0') def _GenericSetUp(self,bin,dat): global GrADSTestFiles global GrADSBinaryFiles self.ga = GrADS(Bin=GrADSBinaryFiles[bin], Echo=False, Window=False) self.fh = self.ga.open(GrADSTestFiles[dat]) def notest_04_LATS_Coards_1(self): self.ga("set x 1 72") self.ga("lats4d -o output/model ") def notest_04_LATS_Coards_2(self): fh = self.ga.open("output/model.nc") self._CompareFiles(self.fh,fh) self.ga('close %d'%fh.fid) def notest_04_LATS_GaGrib_1(self): self.ga("set x 1 72") self.ga("lats4d -o output/model -format grads_grib") def notest_04_LATS_GaGrib_2(self): fh = self.ga.open("output/model.ctl") self._CompareFiles(self.fh,fh) self.ga('close %d'%fh.fid) def notest_04_LATS_grib(self): self.ga("set x 1 72") self.ga("lats4d -o output/model -format grib") #...................................................................... class TestModelUrl(unittest.TestCase): def tearDown(self): del self.ga # os.system("/bin/rm -rf output") def test_01_Open(self): """ Check whether file was opened correctly. """ type = 'Gridded' vars = ['ps', 'ts', 'pr', 'ua', 'va', 'zg', 'ta', 'hus'] var_levs = [0, 0, 0, 7, 7, 7, 7, 7] nx, ny, nz, nt = (72, 46, 7, 5) fh = self.fh self.assertEqual(type,fh.type) self.assertEqual(nx,fh.nx) self.assertEqual(ny,fh.ny) self.assertEqual(nz,fh.nz) self.assertEqual(nt,fh.nt) vars2 = fh.vars[:] var_levs2 = fh.var_levs[:] self.assertEqual(vars.sort(),vars2.sort()) self.assertEqual(var_levs.sort(),var_levs2.sort()) def test_03_Display(self): """ Displays several variables and checks contour intervals """ self._CheckCint('ps',500,1000,50,z=1,t=1) self._CheckCint('ts',240,310,10,z=1,t=1) self._CheckCint('10000*pr',0,8,1,z=1,t=1) self._CheckCint('ps',500,1000,50,z=1,t=5) self._CheckCint('ts',240,310,10,z=1,t=5) self._CheckCint('10000*pr',0,10,1,z=1,t=5) self._CheckCint('ua',-12,18,3,z=1,t=1) self._CheckCint('va',-15,15,3,z=1,t=1) self._CheckCint('zg',-100,300,50,z=1,t=1) self._CheckCint('ta',245,300,5,z=1,t=1) self._CheckCint('1000*hus',2,20,2,z=1,t=5) self._CheckCint('ua',-15,50,5,z=7,t=5) self._CheckCint('va',-20,20,5,z=7,t=5) self._CheckCint('zg',14800,16400,200,z=7,t=5) self._CheckCint('ta',195,225,5,z=7,t=5) self._CheckCint('10000*hus',1,9,1,z=5,t=5) def _CheckCint(self,name,cmin,cmax,cint,z=1,t=1): """ Check contour intervals during display. """ sys.stdout.write(name+' ... ') self.ga('clear') self.ga('display %s(z=%d,t=%d)'%(name,z,t)) self.assertEqual(cmin,int(self.ga.rword(1,2))) self.assertEqual(cmax,int(self.ga.rword(1,4))) self.assertEqual(cint,int(self.ga.rword(1,6))) def _GenericSetUp(self,bin,dat): global GrADSTestFiles global GrADSBinaryFiles self.ga = GrADS(Bin=GrADSBinaryFiles[bin], Echo=False, Window=False) self.fh = self.ga.open(GrADSTestFiles[dat]) #...................................................................... class TestStnUrl(unittest.TestCase): def _GenericSetUp(self,bin,url): self.ga = GrADS(Bin=GrADSBinaryFiles[bin], Echo=False, Window=False) self.fh = self.ga('open ' + url) def tearDown(self): del self.ga def test_01_Open(self): ga = self.ga ga('q file') Binary = ga.rword(3,2) Type = ga.rword(4,3) + ' ' + ga.rword(4,4) Tsize = ga.rword(5,3) nvars = ga.rword(6,5) self.assertEqual(Binary,'http://monsoondata.org:9090/dods/stn/metar/2009/02/day05') self.assertEqual(Type,'Station Data') self.assertEqual(Tsize,'24') self.assertEqual(nvars,'10') vars = ['cld','ds','filt','ptype','slp','ts','us','vis','vs','wx'] for i in range(10): self.assertEqual(vars[i],ga.rword(7+i,1)) def test_01_Stats(self): ga = self.ga ga('set gxout stat') # var count undef nu min max cmin cmax cint # self._stats( 'cld','2842','-9.99e+08', '0', '20','25','20','25','0.5') # self._stats( 'ds', '2842','-9.99e+08','133','-49','27','-40','20','10') # self._stats( 'filt', '2842','-9.99e+08','0','0','6','0','6','0.5') self._stats( 'slp', '2842','-9.99e+08','1496','982.5','1046.5','985','1045','5') self._stats( 'ts', '2842','-9.99e+08','16','-44','99','-40','90','10') self._stats( 'us', '2842','-9.99e+08','4','-31','31.0098','-30','30','5') self._stats( 'vs', '2842','-9.99e+08','4','-24.2488','28','-20','25','5') def _stats(self,var,count,v_undef,n_undef,min,max,cmin,cmax,cint): ga = self.ga ga('set gxout stat') ga('display '+var) sys.stdout.write(var+' ... ') self.assertEqual(count,ga.rword(6,4)) self.assertEqual(v_undef,ga.rword(7,4)) self.assertEqual(n_undef,ga.rword(8,4)) # self.assertEqual(min,ga.rword(9,4)) # self.assertEqual(max,ga.rword(9,5)) self.assertEqual(cmin,ga.rword(10,5)) self.assertEqual(cmax,ga.rword(10,6)) self.assertEqual(cint,ga.rword(10,7)) #...................................................................... class TestPdefFile(unittest.TestCase): def tearDown(self): del self.ga def test_01_Open(self): """ Check whether file was opened correctly. """ type = 'Gridded' vars = ['pslv'] var_levs = [ 0 ] nx, ny, nz, nt = (333,182,20,1) fh = self.fh self.assertEqual(type,fh.type) self.assertEqual(nx,fh.nx) self.assertEqual(ny,fh.ny) self.assertEqual(nz,fh.nz) self.assertEqual(nt,fh.nt) vars2 = fh.vars[:] var_levs2 = fh.var_levs[:] self.assertEqual(vars.sort(),vars2.sort()) self.assertEqual(var_levs.sort(),var_levs2.sort()) def test_03_Display(self): """ Displays several variables and checks contour intervals """ self._CheckCint('pslv',1004,1026,2,z=1,t=1) def _CheckCint(self,name,cmin,cmax,cint,z=1,t=1): """ Check contour intervals during display. """ self.ga('clear') self.ga('display %s(z=%d,t=%d)'%(name,z,t)) self.assertEqual(cmin,int(self.ga.rword(2,2))) self.assertEqual(cmax,int(self.ga.rword(2,4))) self.assertEqual(cint,int(self.ga.rword(2,6))) def _GenericSetUp(self,bin): global GrADSTestFiles global GrADSBinaryFiles self.ga = GrADS(Bin=GrADSBinaryFiles[bin], Echo=False, Window=False) self.fh = self.ga.open(GrADSTestFiles['pdef']) #...................................................................... class TestGrb2File(unittest.TestCase): def tearDown(self): del self.ga def _GenericSetUp(self,bin): global GrADSTestFiles global GrADSBinaryFiles self.ga = GrADS(Bin=GrADSBinaryFiles[bin], Echo=False, Window=False) self.fh = self.ga.open(GrADSTestFiles['grb2']) def test_01_Open(self): """ Check whether file was opened correctly. """ type = 'Gridded' vars = ['apcpsfc', 'hgtprs', 'prmslmsl', 'rhprs', 'tmpprs', 'ugrdprs', 'vgrdprs'] var_levs = [0, 3, 0, 3, 3, 3, 3] nx, ny, nz, nt = (144,73,3,4) # no E size yet fh = self.fh self.assertEqual(type,fh.type) self.assertEqual(nx,fh.nx) self.assertEqual(ny,fh.ny) self.assertEqual(nz,fh.nz) self.assertEqual(nt,fh.nt) vars2 = fh.vars[:] var_levs2 = fh.var_levs[:] self.assertEqual(vars.sort(),vars2.sort()) self.assertEqual(var_levs.sort(),var_levs2.sort()) def test_03_Display(self): """ Displays several variables and checks contour intervals """ self._CheckCint('apcpsfc',0,140,10,z=1,t=2) self._CheckCint('0.01*prmslmsl',950,1050,10,z=1,t=1) self._CheckCint('hgtprs',900, 1600,100,z=1,t=1) self._CheckCint('rhprs',0,100,10,z=1,t=1) self._CheckCint('tmpprs',235,300,5,z=1,t=1) self._CheckCint('ugrdprs',-30,30,10,z=1,t=1) self._CheckCint('vgrdprs',-25,35,5,z=1,t=1) self._CheckCint('apcpsfc',0,80,10,z=1,t=4) self._CheckCint('0.01*prmslmsl',950,1040,10,z=1,t=4) self._CheckCint('hgtprs',900, 1600,100,z=1,t=4) self._CheckCint('rhprs',0,100,10,z=1,t=4) self._CheckCint('tmpprs',240,300,5,z=1,t=4) self._CheckCint('ugrdprs',-25,30,5,z=1,t=4) self._CheckCint('vgrdprs',-25,30,5,z=1,t=4) self._CheckCint('hgtprs',10800,12400,200,z=3,t=4) self._CheckCint('rhprs',0,100,10,z=3,t=4) self._CheckCint('tmpprs',200,235,5,z=3,t=4) self._CheckCint('ugrdprs',-40,100,10,z=3,t=4) self._CheckCint('vgrdprs',-50,50,10,z=3,t=4) def _CheckCint(self,name,cmin,cmax,cint,z=1,t=1): """ Check contour intervals during display. """ self.ga('clear') self.ga('display %s(z=%d,t=%d)'%(name,z,t)) self.assertEqual(cmin,int(self.ga.rword(1,2))) self.assertEqual(cmax,int(self.ga.rword(1,4))) self.assertEqual(cint,int(self.ga.rword(1,6))) def _GenericSetUp(self,bin): global GrADSTestFiles global GrADSBinaryFiles self.ga = GrADS(Bin=GrADSBinaryFiles[bin], Echo=False, Window=False) self.fh = self.ga.open(GrADSTestFiles['grb2']) #...................................................................... # ----- # grads # ----- class grads_grb(TestModelFile): def setUp(self): self._GenericSetUp('grads','grb') def test_05_Read_stream(self): pass def test_05_Read_sequential(self): pass class grads_grb2(TestGrb2File): """Grib-2 specific tests""" def setUp(self): self._GenericSetUp('grads') class grads_nc(TestModelFile): def setUp(self): self._GenericSetUp('grads','nc') class grads_ctlnc(TestModelFile): def setUp(self): self._GenericSetUp('grads','ctlnc') class grads_url(TestModelUrl): def setUp(self): self._GenericSetUp('grads','url') class grads_stn(TestStnUrl): def setUp(self): self._GenericSetUp('grads','http://monsoondata.org:9090/dods/stn/metar/2009/02/day05') class grads_hdf(TestModelFile): def setUp(self): self._GenericSetUp('grads','hdf') class grads_ctlhdf(TestModelFile): def setUp(self): self._GenericSetUp('grads','ctlhdf') class grads_pdef(TestPdefFile): def setUp(self): self._GenericSetUp('grads') # -------- # gradsdap # -------- class gradsdap_grb(TestModelFile): def setUp(self): self._GenericSetUp('gradsdap','grb') def test_05_Read_stream(self): pass def test_05_Read_sequential(self): pass class gradsdap_grb2(TestGrb2File): """Grib-2 specific tests""" def setUp(self): self._GenericSetUp('gradsdap') class gradsdap_nc(TestModelUrl): def setUp(self): self._GenericSetUp('gradsdap','nc') class gradsdap_ctlnc(TestModelUrl): def setUp(self): self._GenericSetUp('gradsdap','ctlnc') class gradsdap_url(TestModelFile): def setUp(self): self._GenericSetUp('gradsdap','url') class gradsdap_ctlhdf(TestModelFile): def setUp(self): self._GenericSetUp('gradsdap','ctlhdf') class gradsdap_hdf(TestModelFile): def setUp(self): self._GenericSetUp('gradsdap','hdf') class gradsdap_pdef(TestPdefFile): def setUp(self): self._GenericSetUp('gradsdap') #...................................................................... def run_all_tests(verb=2,BinDir=None,DataDir=None): """ Runs all tests based on the standard *model* testing file. """ # Search for a reasonable default for binary dir # ---------------------------------------------- if BinDir is None: BinDir = '' if os.path.exists('../src/grad.c'): BinDir = '../src/' # Search for a reasonable default for data files # ---------------------------------------------- if DataDir is None: sample = 'model.grb' for dir in ( '.', 'data', '../data', '../../../data'): if os.path.exists(dir+'/'+sample): DataDir = dir + '/' break # File names # ---------- global GrADSTestFiles GrADSTestFiles = { 'grb' : DataDir+'model.ctl', \ 'grb2': DataDir+'model_25.ctl', \ 'nc' : DataDir+'model.nc', \ 'ctlnc' : DataDir+'model_nc.ctl', \ 'url' : 'http://monsoondata.org:9090/dods/model', \ 'hdf' : DataDir+'model.hdf', \ 'ctlhdf' : DataDir+'model_sds.ctl', \ 'pdef': DataDir+'pdef.ctl', \ 'dap' : DataDir+'model_dap.ddf' } global GrADSBinaryFiles GrADSBinaryFiles = { 'grads' : BinDir+'grads', \ 'gradsdap' : BinDir+'gradsdap' } print "" print "Testing with GrADS Data Files from " + DataDir if BinDir is '': print "Testing with GrADS binaries from PATH" rc = os.system('which grads') if rc: raise GrADSError, "cannot find grads" else: print "Testing with GrADS binaries from " + BinDir print "" # Assemble the test suite # ----------------------- load = unittest.TestLoader().loadTestsFromTestCase TestSuite = [] npass = 0 Failed = [] # grads # ----- bin = 'grads' if os.path.exists(GrADSBinaryFiles[bin]): TestSuite.append(load(grads_grb)) TestSuite.append(load(grads_grb2)) TestSuite.append(load(grads_nc)) TestSuite.append(load(grads_ctlnc)) TestSuite.append(load(grads_url)) TestSuite.append(load(grads_stn)) TestSuite.append(load(grads_hdf)) TestSuite.append(load(grads_ctlhdf)) TestSuite.append(load(grads_pdef)) print '+ Will test GrADS binary <%s>'%GrADSBinaryFiles[bin] npass += 1 else: print '- Not testing GrADS binary <%s>, file missing'%GrADSBinaryFiles[bin] Failed.append(GrADSBinaryFiles[bin]) print "" all = unittest.TestSuite(TestSuite) # gradsdap # -------- bin = 'gradsdap' if os.path.exists(GrADSBinaryFiles[bin]): TestSuite.append(load(gradsdap_grb)) TestSuite.append(load(gradsdap_grb2)) TestSuite.append(load(gradsdap_nc)) TestSuite.append(load(gradsdap_ctlnc)) TestSuite.append(load(gradsdap_url)) TestSuite.append(load(gradsdap_hdf)) TestSuite.append(load(gradsdap_ctlhdf)) TestSuite.append(load(gradsdap_pdef)) print '+ Will test GrADS binary <%s>'%GrADSBinaryFiles[bin] npass += 1 else: print '- Not testing GrADS binary <%s>, file missing'%GrADSBinaryFiles[bin] Failed.append(GrADSBinaryFiles[bin]) print "" all = unittest.TestSuite(TestSuite) if not npass: print "Could not find a single binary to test..." return 1 # Go for it # --------- os.system("/bin/rm -rf output") os.system("/bin/mkdir -p output") Results = unittest.TextTestRunner(verbosity=verb).run(all) if len(Failed)>0: print "Could NOT test %s GrADS binaries: "%len(Failed), Failed # Return number of errors+failures: skipped binaries do not count # --------------------------------------------------------------- if not Results.wasSuccessful(): raise IOError, 'GrADS tests failed' else: os.system("/bin/rm -rf output .grads.lats.table")
2.625
3
virtual/lib/python3.6/site-packages/category/south_migrations/0001_initial.py
kenmutuma001/galleria
0
12786531
<reponame>kenmutuma001/galleria<gh_stars>0 # encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Category' db.create_table('category_category', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=200)), ('slug', self.gf('django.db.models.fields.SlugField')(unique=True, max_length=255, db_index=True)), )) db.send_create_signal('category', ['Category']) # Adding model 'Tag' db.create_table('category_tag', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=200)), ('slug', self.gf('django.db.models.fields.SlugField')(unique=True, max_length=255, db_index=True)), )) db.send_create_signal('category', ['Tag']) # Adding M2M table for field categories on 'Tag' db.create_table('category_tag_categories', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('tag', models.ForeignKey(orm['category.tag'], null=False)), ('category', models.ForeignKey(orm['category.category'], null=False)) )) db.create_unique('category_tag_categories', ['tag_id', 'category_id']) def backwards(self, orm): # Deleting model 'Category' db.delete_table('category_category') # Deleting model 'Tag' db.delete_table('category_tag') # Removing M2M table for field categories on 'Tag' db.delete_table('category_tag_categories') models = { 'category.category': { 'Meta': {'ordering': "('title',)", 'object_name': 'Category'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '255', 'db_index': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'category.tag': { 'Meta': {'ordering': "('title',)", 'object_name': 'Tag'}, 'categories': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['category.Category']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '255', 'db_index': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}) } } complete_apps = ['category']
2.25
2
8kyu/get_the_middle_character.py
nhsz/codewars
1
12786532
# http://www.codewars.com/kata/56747fd5cb988479af000028/ def get_middle(s): if len(s) % 2 == 1: return s[len(s) / 2] else: return s[len(s) / 2 - 1 : len(s) / 2 + 1]
3.453125
3
day01.py
Jafnee/advent-of-code-2019
0
12786533
def pt1(masses): return sum(get_fuel(mass) for mass in masses) def pt2(masses): return sum(get_fuel_rec(mass) for mass in masses) def get_fuel(mass: int): return mass // 3 - 2 def get_fuel_rec(mass): if (fuel := get_fuel(mass)) <= 0: return 0 return fuel + get_fuel_rec(fuel) def test_fuel_needed(): assert get_fuel(12) == 2 assert get_fuel(14) == 2 assert get_fuel(1969) == 654 assert get_fuel(100756) == 33583 def test_fuel_rec(): assert get_fuel_rec(1969) == 966 assert get_fuel_rec(100756) == 50346 if __name__ == '__main__': masses = [int(mass) for mass in open('day01.txt', 'r')] print(pt1(masses)) print(pt2(masses))
3.546875
4
folium/plugins/crossfilter.py
BibMartin/folium
4
12786534
<gh_stars>1-10 # -*- coding: utf-8 -*- """ Crossfilter ------ Crossfilter. """ from jinja2 import Template import json #from .utilities import color_brewer, _parse_size, legend_scaler, _locations_mirror, _locations_tolist, write_png,\ # image_to_url #from .six import text_type, binary_type from folium.element import Figure, JavascriptLink, CssLink, Div, MacroElement from folium.map import FeatureGroup from .heat_map import HeatMap #from .map import Map, TileLayer, Icon, Marker, Popup class Crossfilter(Div): def __init__(self, data, **kwargs): """Create a Crossfilter Returns ------- Folium Crossfilter Object """ super(Crossfilter, self).__init__(**kwargs) self._name = 'Crossfilter' self.data = data self.add_children(MacroElement(""" {% macro script(this, kwargs) %} var {{this._parent.get_name()}} = {}; {{this._parent.get_name()}}.data = {{this._parent.data}}; {{this._parent.get_name()}}.crossfilter = crossfilter({{this._parent.get_name()}}.data); {{this._parent.get_name()}}.allDim = {{this._parent.get_name()}}.crossfilter.dimension( function(d) {return d;}); {% endmacro %} """)) self._template = Template(u""" {% macro header(this, kwargs) %} <style> #{{this.get_name()}} { {% if this.position %}position : {{this.position}};{% endif %} {% if this.width %}width : {{this.width[0]}}{{this.width[1]}};{% endif %} {% if this.height %}height: {{this.height[0]}}{{this.height[1]}};{% endif %} {% if this.left %}left: {{this.left[0]}}{{this.left[1]}};{% endif %} {% if this.top %}top: {{this.top[0]}}{{this.top[1]}};{% endif %} </style> {% endmacro %} {% macro html(this, kwargs) %} <div id="{{this.get_name()}}"> {{this.html.render(**kwargs)}} </div> {% endmacro %} {% macro script(this, kwargs) %} dc.renderAll(); {% endmacro %} """) def render(self,**kwargs): super(Crossfilter,self).render(**kwargs) figure = self._parent.get_root() assert isinstance(figure,Figure), ("You cannot render this Element " "if it's not in a Figure.") figure.header.add_children( CssLink("https://cdnjs.cloudflare.com/ajax/libs/dc/1.7.5/dc.css"), name='dcjs_css') figure.header.add_children( CssLink("https://cdnjs.cloudflare.com/ajax/libs/leaflet/0.7.3/leaflet.css"), name='leaflet_css') figure.header.add_children( CssLink("https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css"), name='bootstrap_css') figure.header.add_children( JavascriptLink("https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.6/d3.min.js"), name='d3js') figure.header.add_children( JavascriptLink("https://cdnjs.cloudflare.com/ajax/libs/crossfilter/1.3.12/crossfilter.min.js"), name='crossfilterjs') figure.header.add_children( JavascriptLink("https://cdnjs.cloudflare.com/ajax/libs/dc/2.0.0-beta.20/dc.js"), name='dcjs') figure.header.add_children( JavascriptLink("https://cdnjs.cloudflare.com/ajax/libs/leaflet/0.7.3/leaflet.js"), name='leaflet') figure.header.add_children( JavascriptLink("https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.8.3/underscore-min.js"), name='underscorejs') class PieFilter(Div): def __init__(self, crossfilter, column, name="", width=150, height=150, inner_radius=20, weight=None, order=None, colors=None, label=None, **kwargs): """TODO docstring here Parameters ---------- """ super(PieFilter, self).__init__(width=width, height=height, **kwargs) self._name = 'PieFilter' self.crossfilter = crossfilter self.column = column self.name = name self.width = width self.height = height self.inner_radius = inner_radius self.order = order self.weight = weight self.colors = [x for x in colors] if colors else None self.label = label self._template = Template(u""" {% macro header(this, kwargs) %} <style> #{{this.get_name()}} { {% if this.position %}position : {{this.position}};{% endif %} {% if this.width %}width : {{this.width[0]}}{{this.width[1]}};{% endif %} {% if this.height %}height: {{this.height[0]}}{{this.height[1]}};{% endif %} {% if this.left %}left: {{this.left[0]}}{{this.left[1]}};{% endif %} {% if this.top %}top: {{this.top[0]}}{{this.top[1]}};{% endif %} } </style> {% endmacro %} {% macro html(this, kwargs) %} <div id="{{this.get_name()}}" class="{{this.class_}}">{{this.html.render(**kwargs)}}</div> {% endmacro %} {% macro script(this, kwargs) %} var {{this.get_name()}} = {}; {{this.get_name()}}.dimension = {{this.crossfilter.get_name()}}.crossfilter.dimension( function(d) {return d["{{this.column}}"];}); document.getElementById("{{this.get_name()}}").innerHTML = '<h4>{{this.name}} <small><a id="{{this.get_name()}}-reset">reset</a></small></h4>' + '<div id="{{this.get_name()}}-chart" class="dc-chart"></div>'; {{this.get_name()}}.chart = dc.pieChart('#{{this.get_name()}}-chart') .width({{this.width}}) .height({{this.height}}) .dimension({{this.get_name()}}.dimension) .group({{this.get_name()}}.dimension.group() {% if this.weight %}.reduceSum(function(d) {return d["{{this.weight}}"];}) {% else %}.reduceCount(){% endif %} ) .innerRadius({{this.inner_radius}}) {% if this.label %}.label({{this.label}}){% endif %} {% if this.colors %}.ordinalColors({{this.colors}}){% endif %} {% if this.order %}.ordering(function (d) { var out = null; var order={{this.order}}; for (var j=0;j<order.length;j++) { if (order[j]==d.key) {out = 1+j;} } return out;}){% endif %}; d3.selectAll('#{{this.get_name()}}-reset').on('click',function () { {{this.get_name()}}.chart.filterAll(); dc.redrawAll(); }); {% endmacro %} """) class RowBarFilter(Div): """TODO docstring here Parameters ---------- """ def __init__(self, crossfilter, column, name="", width=150, height=150, inner_radius=20, weight=None, order=None, elastic_x=True, colors=None, **kwargs): super(RowBarFilter, self).__init__(width=width, height=height, **kwargs) self._name = 'RowBarFilter' self.crossfilter = crossfilter self.column = column self.name = name self.width = width self.height = height self.inner_radius = inner_radius self.order = order self.weight = weight self.elastic_x = elastic_x self.colors = [x for x in colors] if colors else None self._template = Template(u""" {% macro header(this, kwargs) %} <style> #{{this.get_name()}} { {% if this.position %}position : {{this.position}};{% endif %} {% if this.width %}width : {{this.width[0]}}{{this.width[1]}};{% endif %} {% if this.height %}height: {{this.height[0]}}{{this.height[1]}};{% endif %} {% if this.left %}left: {{this.left[0]}}{{this.left[1]}};{% endif %} {% if this.top %}top: {{this.top[0]}}{{this.top[1]}};{% endif %} } </style> {% endmacro %} {% macro html(this, kwargs) %} <div id="{{this.get_name()}}" class="{{this.class_}}">{{this.html.render(**kwargs)}}</div> {% endmacro %} {% macro script(this, kwargs) %} var {{this.get_name()}} = {}; {{this.get_name()}}.dimension = {{this.crossfilter.get_name()}}.crossfilter.dimension( function(d) {return d["{{this.column}}"];}); document.getElementById("{{this.get_name()}}").innerHTML = '<h4>{{this.name}} <small><a id="{{this.get_name()}}-reset">reset</a></small></h4>' + '<div id="{{this.get_name()}}-chart" class="dc-chart"></div>'; {{this.get_name()}}.chart = dc.rowChart('#{{this.get_name()}}-chart') .width({{this.width}}) .height({{this.height}}) .dimension({{this.get_name()}}.dimension) .group({{this.get_name()}}.dimension.group() {% if this.weight %}.reduceSum(function(d) {return d["{{this.weight}}"];}) {% else %}.reduceCount(){% endif %} ) .elasticX({{this.elastic_x.__str__().lower()}}) {% if this.colors %}.ordinalColors({{this.colors}}){% endif %} {% if this.order %}.ordering(function (d) { var out = null; var order={{this.order}}; for (var j=0;j<order.length;j++) { if (order[j]==d.key) {out = 1+j;} } return out;}){% endif %}; d3.selectAll('#{{this.get_name()}}-reset').on('click',function () { {{this.get_name()}}.chart.filterAll(); dc.redrawAll(); }); {% endmacro %} """) class BarFilter(Div): def __init__(self, crossfilter, column, width=150, height=150, bar_padding=0.1, domain=None, groupby=None, xlabel="", ylabel="", margins=None, weight=None, elastic_y=True, xticks=None, time_format=None, **kwargs): """TODO docstring here Parameters ---------- """ super(BarFilter, self).__init__(**kwargs) self._name = 'BarFilter' self.crossfilter = crossfilter self.column = column self.width=width self.height=height self.bar_padding=bar_padding self.domain=json.dumps(domain) self.groupby=groupby self.xlabel=xlabel self.ylabel=ylabel self.margins=json.dumps(margins) self.xticks=json.dumps(xticks) self.time_format=time_format self.weight = weight self.elastic_y = elastic_y self._template = Template(u""" {% macro header(this, kwargs) %} <style> #{{this.get_name()}} { {% if this.position %}position : {{this.position}};{% endif %} {% if this.width %}width : {{this.width[0]}}{{this.width[1]}};{% endif %} {% if this.height %}height: {{this.height[0]}}{{this.height[1]}};{% endif %} {% if this.left %}left: {{this.left[0]}}{{this.left[1]}};{% endif %} {% if this.top %}top: {{this.top[0]}}{{this.top[1]}};{% endif %} } </style> {% endmacro %} {% macro html(this, kwargs) %} <div id="{{this.get_name()}}" class="{{this.class_}}">{{this.html.render(**kwargs)}}</div> {% endmacro %} {% macro script(this, kwargs) %} var {{this.get_name()}} = { domain : {{this.domain}}, groupby : {{this.groupby}}, xAxisTickValues : {{this.xticks}}, }; {{this.get_name()}}.dimension = {{this.crossfilter.get_name()}}.crossfilter.dimension( function(d) { return Math.floor( (d["{{this.column}}"]-{{this.get_name()}}.domain[0])/{{this.get_name()}}.groupby) +{{this.get_name()}}.domain[0]/{{this.get_name()}}.groupby; }); {{this.get_name()}}.ticks = []; for (var j=0; j<{{this.get_name()}}.xAxisTickValues.length; j++) { {{this.get_name()}}.ticks[j] = {{this.get_name()}}.xAxisTickValues[j]/{{this.get_name()}}.groupby; } dc.barChart("#{{this.get_name()}}") .width({{this.width}}) .height({{this.height}}) .dimension({{this.get_name()}}.dimension) .group({{this.get_name()}}.dimension.group() {% if this.weight %}.reduceSum(function(d) {return d["{{this.weight}}"];}) {% else %}.reduceCount(){% endif %} ) .x(d3.scale.linear().domain([ {{this.get_name()}}.domain[0]/{{this.get_name()}}.groupby, {{this.get_name()}}.domain[1]/{{this.get_name()}}.groupby, ])) .elasticY({{this.elastic_y.__str__().lower()}}) .centerBar(false) .barPadding({{this.bar_padding}}) .xAxisLabel("{{this.xlabel}}") .yAxisLabel("{{this.ylabel}}") .margins({{this.margins}}) .xAxis() .tickValues({{this.get_name()}}.ticks) .tickFormat(function(x){ {%if this.time_format %} var dateformat = d3.time.format("{{this.time_format}}"); return dateformat(new Date(x*{{this.get_name()}}.groupby)); {% else %} return x*{{this.get_name()}}.groupby; {% endif %} }); {% endmacro %} """) class FeatureGroupFilter(FeatureGroup): def __init__(self, crossfilter, name=None, fit_bounds=False, circle_radius=None, color="#0000ff", opacity=1., **kwargs): """ """ super(FeatureGroupFilter, self).__init__(**kwargs) self._name = 'FeatureGroupFilter' self.tile_name = name if name is not None else self.get_name() self.crossfilter = crossfilter self.fit_bounds = fit_bounds self.circle_radius = circle_radius self.color = color self.opacity = opacity self._template = Template(u""" {% macro script(this, kwargs) %} var {{this.get_name()}} = {}; {{this.get_name()}}.feature_group = new L.FeatureGroup(); {{this.get_name()}}.updateFun = function() { this.feature_group.clearLayers(); var dimVals = {{this.crossfilter.get_name()}}.allDim.top(Infinity) for (var i in dimVals) { var d = dimVals[i]; var marker = {% if this.circle_radius %}L.circleMarker([d.lat, d.lng], { fillColor: '{{ this.color }}', fillOpacity: {{ this.opacity }} }).setRadius({{this.circle_radius}}) {% else %}L.marker([d.lat, d.lng],{opacity:{{this.opacity}} }){% endif %}; marker.bindPopup(d.popup); this.feature_group.addLayer(marker); } {{this._parent.get_name()}}.addLayer(this.feature_group); {% if this.fit_bounds %}{{this._parent.get_name()}} .fitBounds(this.feature_group.getBounds());{% endif %} } dc.dataTable('#foo') .dimension({{this.crossfilter.get_name()}}.allDim) .group(function (d) { return 'dc.js';}) .on('renderlet', function (table) { {{this.get_name()}}.updateFun();}); {{this.get_name()}}.updateFun(); {% endmacro %} """) class TableFilter(Div): def __init__(self, crossfilter, columns, size=10, sort_by=None, ascending=True, **kwargs): """TODO docstring here Parameters ---------- """ super(TableFilter, self).__init__(**kwargs) self._name = 'TableFilter' self.crossfilter = crossfilter self.columns = columns self.sort_by = sort_by self.ascending = ascending self.size = size self._template = Template(u""" {% macro header(this, kwargs) %} <style> #{{this.get_name()}} { {% if this.position %}position : {{this.position}};{% endif %} {% if this.width %}width : {{this.width[0]}}{{this.width[1]}};{% endif %} {% if this.height %}height: {{this.height[0]}}{{this.height[1]}};{% endif %} {% if this.left %}left: {{this.left[0]}}{{this.left[1]}};{% endif %} {% if this.top %}top: {{this.top[0]}}{{this.top[1]}};{% endif %} } </style> {% endmacro %} {% macro html(this, kwargs) %} <table id="{{this.get_name()}}" class="{{this.class_}}"> <thead> <tr class="header"> {%for col in this.columns%}<th>{{col}}</th>{% endfor %} </tr> </thead> </table> {% endmacro %} {% macro script(this, kwargs) %} var {{this.get_name()}} = {}; {{this.get_name()}}.dataTable = dc.dataTable('#{{this.get_name()}}'); {{this.get_name()}}.dataTable .dimension({{this.crossfilter.get_name()}}.allDim) .group(function (d) { return 'dc.js extra line'; }) .size({{this.size}}) .columns([ {% for col in this.columns %} function (d) { return d["{{col}}"]; }, {% endfor %} ]) {%if this.sort_by %}.sortBy(dc.pluck('{this.sort_by}')) {%if this.ascending %}.order(d3.ascending){% else %}.order(d3.descending){% endif %} {% endif %} .on('renderlet', function (table) { table.select('tr.dc-table-group').remove(); }); {% endmacro %} """) class CountFilter(Div): def __init__(self, crossfilter, html_template="{filter}/{total}", **kwargs): """TODO docstring here Parameters ---------- """ super(CountFilter, self).__init__(**kwargs) self._name = 'CountFilter' self.crossfilter = crossfilter self.html_template = html_template self._template = Template(u""" {% macro header(this, kwargs) %} <style> #{{this.get_name()}} { {% if this.position %}position : {{this.position}};{% endif %} {% if this.width %}width : {{this.width[0]}}{{this.width[1]}};{% endif %} {% if this.height %}height: {{this.height[0]}}{{this.height[1]}};{% endif %} {% if this.left %}left: {{this.left[0]}}{{this.left[1]}};{% endif %} {% if this.top %}top: {{this.top[0]}}{{this.top[1]}};{% endif %} } </style> {% endmacro %} {% macro html(this, kwargs) %} <div id="{{this.get_name()}}" class="{{this.class_}}"> {{this.html_template.format( filter='<span class="filter-count"></span>', total='<span class="total-count"></span>' )}} </div> {% endmacro %} {% macro script(this, kwargs) %} var {{this.get_name()}} = {}; {{this.get_name()}}.dataCount = dc.dataCount("#{{this.get_name()}}") .dimension({{this.crossfilter.get_name()}}.crossfilter) .group({{this.crossfilter.get_name()}}.crossfilter.groupAll() ); {% endmacro %} """) class ResetFilter(Div): def __init__(self, html="Reset all", **kwargs): """TODO docstring here Parameters ---------- """ super(ResetFilter, self).__init__(**kwargs) self._name = 'ResetFilter' self.html = html self._template = Template(u""" {% macro header(this, kwargs) %} <style> #{{this.get_name()}} { {% if this.position %}position : {{this.position}};{% endif %} {% if this.width %}width : {{this.width[0]}}{{this.width[1]}};{% endif %} {% if this.height %}height: {{this.height[0]}}{{this.height[1]}};{% endif %} {% if this.left %}left: {{this.left[0]}}{{this.left[1]}};{% endif %} {% if this.top %}top: {{this.top[0]}}{{this.top[1]}};{% endif %} } </style> {% endmacro %} {% macro html(this, kwargs) %} <a id="{{this.get_name()}}" class="{{this.class_}} reset-filters">{{this.html}}</a> {% endmacro %} {% macro script(this, kwargs) %} d3.selectAll('.reset-filters').on('click', function () { dc.filterAll(); dc.renderAll(); }); {% endmacro %} """) class HeatmapFilter(HeatMap): def __init__(self, crossfilter, name=None, fit_bounds=False, **kwargs): """ """ super(HeatmapFilter, self).__init__([],**kwargs) self._name = 'HeatmapFilter' self.crossfilter = crossfilter self.fit_bounds = fit_bounds self._template = Template(u""" {% macro script(this, kwargs) %} var {{this.get_name()}} = {}; {{this.get_name()}}.heatmap = new L.heatLayer( {}, { minOpacity: {{this.min_opacity}}, maxZoom: {{this.max_zoom}}, max: {{this.max_val}}, radius: {{this.radius}}, blur: {{this.blur}}, gradient: {{this.gradient}} }) .addTo({{this._parent.get_name()}}); {{this.get_name()}}.updateFun = function() { // this.heatmap.clearLayers(); var dimVals = {{this.crossfilter.get_name()}}.allDim.top(Infinity); var latlngs = []; for (var i in dimVals) { var d = dimVals[i]; latlngs.push([d.lat, d.lng]); } {{this.get_name()}}.heatmap.setLatLngs(latlngs); {% if this.fit_bounds %}{{this._parent.get_name()}} .fitBounds(this.heatmap.getBounds());{% endif %} } dc.dataTable('#foo') .dimension({{this.crossfilter.get_name()}}.allDim) .group(function (d) { return 'dc.js';}) .on('renderlet', function (table) { {{this.get_name()}}.updateFun();}); {{this.get_name()}}.updateFun(); {% endmacro %} """) class GeoChoroplethFilter(Div): """TODO docstring here Parameters ---------- """ def __init__(self, crossfilter, column, geojson, key_on='feature.properties.name', name="", width=150, height=150, inner_radius=20, weight=None, order=None, elastic_x=True, projection=None, colors=None, **kwargs): super(GeoChoroplethFilter, self).__init__(width=width, height=height, **kwargs) self._name = 'GeoChoroplethFilter' self.crossfilter = crossfilter self.column = column self.geojson = geojson self.key_on = key_on self.name = name self.width = width self.height = height self.projection = projection self.inner_radius = inner_radius self.order = order self.weight = weight self.elastic_x = elastic_x self.colors = colors if colors else None self._template = Template(u""" {% macro header(this, kwargs) %} <style> #{{this.get_name()}} { {% if this.position %}position : {{this.position}};{% endif %} {% if this.width %}width : {{this.width[0]}}{{this.width[1]}};{% endif %} {% if this.height %}height: {{this.height[0]}}{{this.height[1]}};{% endif %} {% if this.left %}left: {{this.left[0]}}{{this.left[1]}};{% endif %} {% if this.top %}top: {{this.top[0]}}{{this.top[1]}};{% endif %} } </style> {% endmacro %} {% macro html(this, kwargs) %} <div id="{{this.get_name()}}" class="{{this.class_}}">{{this.html.render(**kwargs)}}</div> {% endmacro %} {% macro script(this, kwargs) %} var {{this.get_name()}} = {}; {{this.get_name()}}.geojson = {{this.geojson}}; {{this.get_name()}}.dimension = {{this.crossfilter.get_name()}}.crossfilter.dimension( function(d) {return d["{{this.column}}"];}); document.getElementById("{{this.get_name()}}").innerHTML = '<h4>{{this.name}} <small><a id="{{this.get_name()}}-reset">reset</a></small></h4>' + '<div id="{{this.get_name()}}-chart" class="dc-chart"></div>'; {{this.get_name()}}.chart = dc.geoChoroplethChart('#{{this.get_name()}}-chart') .width({{this.width}}) .height({{this.height}}) .dimension({{this.get_name()}}.dimension) .group({{this.get_name()}}.dimension.group() {% if this.weight %}.reduceSum(function(d) {return d["{{this.weight}}"];}) {% else %}.reduceCount(){% endif %} ) .overlayGeoJson({{this.get_name()}}.geojson.features, "state", function (feature) {return {{this.key_on}};} ) {% if this.projection %}.projection({{this.projection}}){% endif %} {% if this.colors %}.colors({{this.colors}}){% endif %} {% if this.order %}.ordering(function (d) { var out = null; var order={{this.order}}; for (var j=0;j<order.length;j++) { if (order[j]==d.key) {out = 1+j;} } return out;}){% endif %}; d3.selectAll('#{{this.get_name()}}-reset').on('click',function () { {{this.get_name()}}.chart.filterAll(); dc.redrawAll(); }); {% endmacro %} """)
2.03125
2
src/order/models.py
xistadi/BookStore
0
12786535
from django.db import models from cart import models as cart_models from django.db.models.signals import post_save from django.dispatch import receiver class Order(models.Model): cart = models.OneToOneField( cart_models.Cart, related_name='order', on_delete=models.PROTECT ) delivery_status_choices = (('1', 'В процессе оформления'), ('2', 'На рассмотрении модерации'), ('3', 'Отменен'), ('4', 'Заказан'), ('5', 'Доставка'), ('6', 'Доставлен')) delivery_status = models.CharField( verbose_name='Статус заказа', default=1, max_length=20, choices=delivery_status_choices ) comment = models.TextField( verbose_name='Комментарий', blank=True, null=True ) type_of_payment = models.CharField( verbose_name='Тип оплаты', default=1, max_length=20 ) date_add = models.DateTimeField( auto_now=False, auto_now_add=True, verbose_name='Дата создания заказа' ) date_last_change = models.DateTimeField( auto_now=True, auto_now_add=False, verbose_name='Дата последнего изменения заказа' ) def __str__(self): return f'Заказ №{self.pk}, статус заказа: {self.get_delivery_status_display()}.' class Meta: verbose_name = 'Заказ' verbose_name_plural = 'Заказы' class AddressInOrder(models.Model): order = models.ForeignKey( Order, on_delete=models.PROTECT, related_name='address_in_order' ) country = models.CharField( 'Страна', max_length=20, blank=True, null=True ) city = models.CharField( 'Город', max_length=20, blank=True, null=True ) index = models.CharField( 'Индекс', max_length=15, blank=True, null=True ) address1 = models.CharField( 'Адрес1', max_length=50, blank=True, null=True ) address2 = models.CharField( 'Адрес2', max_length=50, blank=True, null=True ) def __str__(self): return f'Профиль адрес в заказе №{self.pk}.' class Meta: verbose_name = 'Профиль адрес в заказе' verbose_name_plural = 'Профиль адреса в заказах'
2.046875
2
2020/day_22/one.py
zigapk/adventofcode
0
12786536
from collections import deque q1 = deque() q2 = deque() player_2 = False with open('in', 'r') as f: f.readline() for line in f.readlines(): try: i = int(line.strip()) if player_2: q2.append(i) else: q1.append(i) except Exception: player_2 = True while len(q1) > 0 and len(q2) > 0: card1 = q1.popleft() card2 = q2.popleft() if card1 > card2: q1.append(max(card1, card2)) q1.append(min(card1, card2)) else: q2.append(max(card1, card2)) q2.append(min(card1, card2)) q = q1 if len(q2) == 0 else q2 result = 0 for i in range(1, len(q) + 1): result += i * q.pop() print(result)
3.0625
3
tests/test_main/main_weather_data.py
zahraghh/Two-Stage-Stochastic-Programming
3
12786537
<gh_stars>1-10 import os import sys import pandas as pd import csv from Two_Stage_SP import download_windsolar_data, GTI,uncertainty_analysis if __name__ == "__main__": #Reading the data from the Weather Data Analysis section of the editable_values.csv editable_data_path =os.path.join(sys.path[0], 'editable_values.csv') editable_data = pd.read_csv(editable_data_path, header=None, index_col=0, squeeze=True).to_dict()[1] city_DES =str(editable_data['city']) #Downloading the weather data from NSRDB download_windsolar_data.download_meta_data(city_DES) #Calculating the global tilted irradiance on a surface in the City GTI.GTI_results(city_DES) #Calculating the distribution of global tilted irradiance (might take ~5 mins) uncertainty_analysis.probability_distribution('GTI',46) #Name and the column number in the weather data #Calculating the distribution of wind speed (might take ~5 mins)') uncertainty_analysis.probability_distribution('wind_speed',8) #Name and the column number in the weather data
2.765625
3
tests/test_ast.py
keith/xcode-ast-dump
80
12786538
<gh_stars>10-100 import ast import unittest RAW_ARGUMENTS = open("tests/arguments.txt").read().strip().split() class TestAST(unittest.TestCase): def test_removes_emits(self): _, other_arguments = ast.build_parser().parse_known_args(RAW_ARGUMENTS) for argument in other_arguments: self.assertNotIn("emit", argument) def test_adds_dump(self): command = ast.ast_command("", []) self.assertIn("-dump-ast", command) def test_starts_with_swiftc_argument(self): command = ast.ast_command("swiftc_arg", []) self.assertEqual(command[0], "swiftc_arg") def test_ends_with_other_arguments(self): command = ast.ast_command("", ["foobar"]) self.assertEqual(command[2], "foobar") def test_swiftc_executable_path(self): environment = {"DEVELOPER_DIR": "/foo", "TOOLCHAINS": "com.bar"} swiftc = ast.swiftc_executable(environment) self.assertEqual(swiftc, "/foo/Toolchains/bar.xctoolchain/usr/bin/swiftc") def test_swiftc_executable_path_override(self): environment = {"DEVELOPER_DIR": "/foo", "TOOLCHAINS": "com.bar", "AST_SWIFTC": "bar"} swiftc = ast.swiftc_executable(environment) self.assertEqual(swiftc, "bar") def test_swift_executable_without_xcode(self): swiftc = ast.swiftc_executable({"AST_SWIFTC": "baz"}) self.assertEqual(swiftc, "baz") def test_swift_executable_no_environ(self): swiftc = ast.swiftc_executable({}) self.assertEqual(swiftc, "swiftc") def test_is_in_xcode(self): self.assertTrue(ast.is_in_xcode({"TOOLCHAINS": "is_set"})) def test_is_not_in_xcode(self): self.assertFalse(ast.is_in_xcode({}))
2.75
3
django_test/articles/migrations/0004_auto_20200306_1921.py
MachineLearningIsEasy/python_lesson_22
1
12786539
<gh_stars>1-10 # Generated by Django 3.0.3 on 2020-03-06 19:21 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('articles', '0003_auto_20200306_1817'), ] operations = [ migrations.AlterField( model_name='article', name='article_date', field=models.DateTimeField(default=datetime.datetime(2020, 3, 6, 19, 21, 22, 43613)), ), migrations.AlterField( model_name='article', name='article_name', field=models.CharField(blank=True, max_length=100, null=True), ), migrations.AlterField( model_name='article', name='article_tag', field=models.ManyToManyField(to='articles.Tag'), ), migrations.AlterField( model_name='article', name='article_text', field=models.CharField(blank=True, max_length=1000, null=True), ), ]
1.617188
2
tests/python/pants_test/rules/test_run.py
SergeKireev/pants
0
12786540
# Copyright 2019 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pants.build_graph.address import Address, BuildFileAddress from pants.engine.addressable import BuildFileAddresses from pants.engine.fs import Digest, FileContent, InputFilesContent, Workspace from pants.engine.interactive_runner import InteractiveRunner from pants.rules.core import run from pants.rules.core.binary import CreatedBinary from pants.testutil.console_rule_test_base import ConsoleRuleTestBase from pants.testutil.engine.util import MockConsole, run_rule class RunTest(ConsoleRuleTestBase): goal_cls = run.Run def create_mock_binary(self, program_text: bytes) -> CreatedBinary: input_files_content = InputFilesContent(( FileContent(path='program.py', content=program_text, is_executable=True), )) digest, = self.scheduler.product_request(Digest, [input_files_content]) return CreatedBinary( binary_name='program.py', digest=digest, ) def single_target_run(self, *, console: MockConsole, program_text: bytes, spec: str): workspace = Workspace(self.scheduler) interactive_runner = InteractiveRunner(self.scheduler) address = Address.parse(spec) bfa = BuildFileAddress( build_file=None, target_name=address.target_name, rel_path=f'{address.spec_path}/BUILD' ) build_file_addresses = BuildFileAddresses((bfa,)) res = run_rule(run.run, console, workspace, interactive_runner, build_file_addresses, { (CreatedBinary, Address): lambda _: self.create_mock_binary(program_text) }) return res def test_normal_run(self) -> None: console = MockConsole(use_colors=False) program_text = b'#!/usr/bin/python\nprint("hello")' res = self.single_target_run( console=console, program_text=program_text, spec='some/addr' ) self.assertEqual(res.exit_code, 0) self.assertEquals(console.stdout.getvalue(), "Running target: some/addr:addr\nsome/addr:addr ran successfully.\n") self.assertEquals(console.stderr.getvalue(), "") def test_failed_run(self) -> None: console = MockConsole(use_colors=False) program_text = b'#!/usr/bin/python\nraise RuntimeError("foo")' res = self.single_target_run( console=console, program_text=program_text, spec='some/addr' ) self.assertEqual(res.exit_code, 1) self.assertEquals(console.stdout.getvalue(), "Running target: some/addr:addr\n") self.assertEquals(console.stderr.getvalue(), "some/addr:addr failed with code 1!\n")
2.0625
2
supervised/preprocessing/preprocessing_exclude_missing.py
michaelneale/mljar-supervised
1
12786541
<gh_stars>1-10 import os import json import numpy as np import pandas as pd import logging log = logging.getLogger(__name__) class PreprocessingExcludeMissingValues(object): @staticmethod def remove_rows_without_target(data): if "train" in data: X_train = data.get("train").get("X") y_train = data.get("train").get("y") X_train, y_train = PreprocessingExcludeMissingValues.transform( X_train, y_train ) data["train"]["X"] = X_train data["train"]["y"] = y_train if "validation" in data: X_validation = data.get("validation").get("X") y_validation = data.get("validation").get("y") X_validation, y_validation = PreprocessingExcludeMissingValues.transform( X_validation, y_validation ) data["validation"]["X"] = X_validation data["validation"]["y"] = y_validation return data @staticmethod def transform(X=None, y=None): log.debug("Exclude rows with missing target values") if y is None: return X, y y_missing = pd.isnull(y) if np.sum(np.array(y_missing)) == 0: return X, y y = y.drop(y.index[y_missing]) y.index = range(y.shape[0]) if X is not None: X = X.drop(X.index[y_missing]) X.index = range(X.shape[0]) return X, y
2.734375
3
app/stories/admin.py
Sherba/AdventureReader
0
12786542
<reponame>Sherba/AdventureReader<gh_stars>0 from django.contrib import admin from .models import Genre, Node, Post admin.site.register(Genre) admin.site.register(Node) admin.site.register(Post)
1.210938
1
main.py
samuelmat19/DDPG-tf2
11
12786543
""" Main file """ import argparse import logging import random import gym from tqdm import trange import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from common_definitions import CHECKPOINTS_PATH, TOTAL_EPISODES, TF_LOG_DIR, UNBALANCE_P from model import Brain from utils import Tensorboard if __name__ == "__main__": logging.basicConfig() logging.getLogger().setLevel(logging.INFO) parser = argparse.ArgumentParser( prog="Deep Deterministic Policy Gradient (DDPG)", description="Deep Deterministic Policy Gradient (DDPG) in Tensorflow 2" ) parser.add_argument('--env', type=str, nargs='?', default="BipedalWalker-v3", help='The OpenAI Gym environment to train on, ' 'e.g. BipedalWalker-v3, LunarLanderContinuous-v2,' ' Pendulum-v0') parser.add_argument('--render_env', type=bool, nargs='?', default=True, help='Render the environment to be visually visible') parser.add_argument('--train', type=bool, nargs='?', default=True, help='Train the network on the modified DDPG algorithm') parser.add_argument('--use_noise', type=bool, nargs='?', default=True, help='OU Noise will be applied to the policy action') parser.add_argument('--eps_greedy', type=float, nargs='?', default=0.95, help="The epsilon for Epsilon-greedy in the policy's action") parser.add_argument('--warm_up', type=bool, nargs='?', default=1, help='Following recommendation from OpenAI Spinning Up, the actions in the ' 'early epochs can be set random to increase exploration. This warm up ' 'defines how many epochs are initially set to do this.') parser.add_argument('--save_weights', type=bool, nargs='?', default=True, help='Save the weight of the network in the defined checkpoint file ' 'directory.') args = parser.parse_args() RL_TASK = args.env RENDER_ENV = args.render_env LEARN = args.train USE_NOISE = args.use_noise WARM_UP = args.warm_up SAVE_WEIGHTS = args.save_weights EPS_GREEDY = args.eps_greedy # Step 1. create the gym environment env = gym.make(RL_TASK) action_space_high = env.action_space.high[0] action_space_low = env.action_space.low[0] brain = Brain(env.observation_space.shape[0], env.action_space.shape[0], action_space_high, action_space_low) tensorboard = Tensorboard(log_dir=TF_LOG_DIR) # load weights if available logging.info("Loading weights from %s*, make sure the folder exists", CHECKPOINTS_PATH) brain.load_weights(CHECKPOINTS_PATH) # all the metrics acc_reward = tf.keras.metrics.Sum('reward', dtype=tf.float32) actions_squared = tf.keras.metrics.Mean('actions', dtype=tf.float32) Q_loss = tf.keras.metrics.Mean('Q_loss', dtype=tf.float32) A_loss = tf.keras.metrics.Mean('A_loss', dtype=tf.float32) # To store reward history of each episode ep_reward_list = [] # To store average reward history of last few episodes avg_reward_list = [] # run iteration with trange(TOTAL_EPISODES) as t: for ep in t: prev_state = env.reset() acc_reward.reset_states() actions_squared.reset_states() Q_loss.reset_states() A_loss.reset_states() brain.noise.reset() for _ in range(2000): if RENDER_ENV: # render the environment into GUI env.render() # Recieve state and reward from environment. cur_act = brain.act(tf.expand_dims(prev_state, 0), _notrandom=(ep >= WARM_UP) and (random.random() < EPS_GREEDY+(1-EPS_GREEDY)*ep/TOTAL_EPISODES), noise=USE_NOISE) state, reward, done, _ = env.step(cur_act) brain.remember(prev_state, reward, state, int(done)) # update weights if LEARN: c, a = brain.learn(brain.buffer.get_batch(unbalance_p=UNBALANCE_P)) Q_loss(c) A_loss(a) # post update for next step acc_reward(reward) actions_squared(np.square(cur_act/action_space_high)) prev_state = state if done: break ep_reward_list.append(acc_reward.result().numpy()) # Mean of last 40 episodes avg_reward = np.mean(ep_reward_list[-40:]) avg_reward_list.append(avg_reward) # print the average reward t.set_postfix(r=avg_reward) tensorboard(ep, acc_reward, actions_squared, Q_loss, A_loss) # save weights if ep % 5 == 0 and SAVE_WEIGHTS: brain.save_weights(CHECKPOINTS_PATH) env.close() brain.save_weights(CHECKPOINTS_PATH) logging.info("Training done...") # Plotting graph # Episodes versus Avg. Rewards plt.plot(avg_reward_list) plt.xlabel("Episode") plt.ylabel("Avg. Epsiodic Reward") plt.show()
2.46875
2
python/ql/test/experimental/query-tests/Security/CWE-117/LogInjectionGood.py
madhurimamandal/codeql
4,036
12786544
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ @Desc :Log Injection """ from flask import Flask from flask import request import logging logging.basicConfig(level=logging.DEBUG) app = Flask(__name__) @app.route('/good1') def good1(): name = request.args.get('name') name = name.replace('\r\n','').replace('\n','') logging.info('User name: ' + name) # Good return 'good1' if __name__ == '__main__': app.debug = True handler = logging.FileHandler('log') app.logger.addHandler(handler) app.run()
2.65625
3
HW10_K-means/misc.py
824zzy/CSE-6363_MACHINE-LEARNING
0
12786545
<filename>HW10_K-means/misc.py<gh_stars>0 import matplotlib.pyplot as plt import numpy as np from scipy.spatial.distance import cdist class KMeans(object): def __init__(self, n_clusters): self.n_clusters = n_clusters def fit(self, X, iter_max=100): all_centers = [] I = np.eye(self.n_clusters) centers = X[np.random.choice(len(X), self.n_clusters, replace=False)] for _ in range(iter_max): prev_centers = np.copy(centers) D = cdist(X, centers) cluster_index = np.argmin(D, axis=1) cluster_index = I[cluster_index] centers = np.sum(X[:, None, :] * cluster_index[:, :, None], axis=0) / np.sum(cluster_index, axis=0)[:, None] all_centers.append(centers) if np.allclose(prev_centers, centers): break self.centers = centers return all_centers def predict(self, X): D = cdist(X, self.centers) return np.argmin(D, axis=1)
2.75
3
24_astro/astro.py
Tjorriemorrie/trading
2
12786546
import flatlib from flatlib.chart import Chart from flatlib.datetime import Datetime from flatlib.geopos import GeoPos def generate_data(): date = Datetime('2015/01/13', '17:00', '+10:00') print(date) pos = GeoPos('38n32', '8w54') print(pos) chart = Chart(date, pos) print(chart) if __name__ == '__main__': generate_data()
2.9375
3
x_rebirth_station_calculator/station_data/wares/v_launcher.py
Phipsz/XRebirthStationCalculator
1
12786547
<filename>x_rebirth_station_calculator/station_data/wares/v_launcher.py<gh_stars>1-10 from x_rebirth_station_calculator.station_data.station_base import Ware names = {'L044': 'V Launcher', 'L049': 'V-Starter'} VLauncher = Ware(names)
1.375
1
modeltranslation_wrapper/models.py
zlorf/django-modeltranslation-wrapper
1
12786548
<reponame>zlorf/django-modeltranslation-wrapper from django.conf import settings try: from modeltranslation import autodiscover # direct patch will not be possible. # one need to set 'modeltranslation_wrapper.patch' at end of MODELTRANSLATION_TRANSLATION_FILES except ImportError: # modeltranslation < 0.4, so use the translation autodiscover settings.MODELTRANSLATION_TRANSLATION_FILES = list( getattr(settings, 'MODELTRANSLATION_TRANSLATION_FILES', ())) if getattr(settings, 'MODELTRANSLATION_TRANSLATION_REGISTRY', None): settings.MODELTRANSLATION_TRANSLATION_FILES.append(settings.MODELTRANSLATION_TRANSLATION_REGISTRY) if 'modeltranslation_wrapper.patch' in settings.MODELTRANSLATION_TRANSLATION_FILES: settings.MODELTRANSLATION_TRANSLATION_FILES.remove('modeltranslation_wrapper.patch') settings.MODELTRANSLATION_TRANSLATION_FILES.append('modeltranslation_wrapper.patch') settings.MODELTRANSLATION_TRANSLATION_REGISTRY = 'modeltranslation_wrapper.translation_autodiscover'
1.492188
1
setup.py
degibbons/Tilibot
0
12786549
#!/usr/bin/env python from distutils.core import setup setup(name='Tilibot', version='1.0', # Fix description='Tiliqua Biomechanics Emulation', author='<NAME>', author_email='<EMAIL>', packages=['distutils', 'distutils.command'], # Fix )
1.007813
1
Lib/site-packages/fidget/backend/Resources.py
fochoao/cpython
1
12786550
from fidget.backend.QtGui import QIcon # noinspection PyUnresolvedReferences import fidget.backend._resources class LazyIcon: def __init__(self, path): self.path = path self._instance = None def __call__(self, *args, **kwargs): if not self._instance: self._instance = QIcon(self.path) return self._instance add_col_left_icon = LazyIcon(':fidget/feather/corner-left-down.svg') add_col_right_icon = LazyIcon(':fidget/feather/corner-right-down.svg') add_row_above_icon = LazyIcon(':fidget/feather/corner-up-right.svg') add_row_below_icon = LazyIcon(':fidget/feather/corner-down-right.svg') del_col_icon = LazyIcon(':fidget/feather/delete.svg') del_row_icon = del_col_icon error_icon = LazyIcon(':fidget/feather/alert-triangle.svg') ok_icon = LazyIcon(':fidget/feather/check.svg')
2.109375
2