max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
test/dialect/mssql/test_compiler.py
gujun4990/sqlalchemy
1
1000
# -*- encoding: utf-8 from sqlalchemy.testing import eq_, is_ from sqlalchemy import schema from sqlalchemy.sql import table, column, quoted_name from sqlalchemy.dialects import mssql from sqlalchemy.dialects.mssql import mxodbc from sqlalchemy.testing import fixtures, AssertsCompiledSQL from sqlalchemy import sql from sqlalchemy import Integer, String, Table, Column, select, MetaData,\ update, delete, insert, extract, union, func, PrimaryKeyConstraint, \ UniqueConstraint, Index, Sequence, literal from sqlalchemy import testing from sqlalchemy.dialects.mssql import base class CompileTest(fixtures.TestBase, AssertsCompiledSQL): __dialect__ = mssql.dialect() def test_true_false(self): self.assert_compile( sql.false(), "0" ) self.assert_compile( sql.true(), "1" ) def test_select(self): t = table('sometable', column('somecolumn')) self.assert_compile(t.select(), 'SELECT sometable.somecolumn FROM sometable') def test_select_with_nolock(self): t = table('sometable', column('somecolumn')) self.assert_compile( t.select().with_hint(t, 'WITH (NOLOCK)'), 'SELECT sometable.somecolumn FROM sometable WITH (NOLOCK)') def test_select_with_nolock_schema(self): m = MetaData() t = Table('sometable', m, Column('somecolumn', Integer), schema='test_schema') self.assert_compile( t.select().with_hint(t, 'WITH (NOLOCK)'), 'SELECT test_schema.sometable.somecolumn ' 'FROM test_schema.sometable WITH (NOLOCK)') def test_select_w_order_by_collate(self): m = MetaData() t = Table('sometable', m, Column('somecolumn', String)) self.assert_compile( select([t]). order_by( t.c.somecolumn.collate("Latin1_General_CS_AS_KS_WS_CI").asc()), "SELECT sometable.somecolumn FROM sometable " "ORDER BY sometable.somecolumn COLLATE " "Latin1_General_CS_AS_KS_WS_CI ASC" ) def test_join_with_hint(self): t1 = table('t1', column('a', Integer), column('b', String), column('c', String), ) t2 = table('t2', column("a", Integer), column("b", Integer), column("c", Integer), ) join = t1.join(t2, t1.c.a == t2.c.a).\ select().with_hint(t1, 'WITH (NOLOCK)') self.assert_compile( join, 'SELECT t1.a, t1.b, t1.c, t2.a, t2.b, t2.c ' 'FROM t1 WITH (NOLOCK) JOIN t2 ON t1.a = t2.a' ) def test_insert(self): t = table('sometable', column('somecolumn')) self.assert_compile(t.insert(), 'INSERT INTO sometable (somecolumn) VALUES ' '(:somecolumn)') def test_update(self): t = table('sometable', column('somecolumn')) self.assert_compile(t.update(t.c.somecolumn == 7), 'UPDATE sometable SET somecolumn=:somecolum' 'n WHERE sometable.somecolumn = ' ':somecolumn_1', dict(somecolumn=10)) def test_insert_hint(self): t = table('sometable', column('somecolumn')) for targ in (None, t): for darg in ("*", "mssql"): self.assert_compile( t.insert(). values(somecolumn="x"). with_hint("WITH (PAGLOCK)", selectable=targ, dialect_name=darg), "INSERT INTO sometable WITH (PAGLOCK) " "(somecolumn) VALUES (:somecolumn)" ) def test_update_hint(self): t = table('sometable', column('somecolumn')) for targ in (None, t): for darg in ("*", "mssql"): self.assert_compile( t.update().where(t.c.somecolumn == "q"). values(somecolumn="x"). with_hint("WITH (PAGLOCK)", selectable=targ, dialect_name=darg), "UPDATE sometable WITH (PAGLOCK) " "SET somecolumn=:somecolumn " "WHERE sometable.somecolumn = :somecolumn_1" ) def test_update_exclude_hint(self): t = table('sometable', column('somecolumn')) self.assert_compile( t.update().where(t.c.somecolumn == "q"). values(somecolumn="x"). with_hint("XYZ", "mysql"), "UPDATE sometable SET somecolumn=:somecolumn " "WHERE sometable.somecolumn = :somecolumn_1" ) def test_delete_hint(self): t = table('sometable', column('somecolumn')) for targ in (None, t): for darg in ("*", "mssql"): self.assert_compile( t.delete().where(t.c.somecolumn == "q"). with_hint("WITH (PAGLOCK)", selectable=targ, dialect_name=darg), "DELETE FROM sometable WITH (PAGLOCK) " "WHERE sometable.somecolumn = :somecolumn_1" ) def test_delete_exclude_hint(self): t = table('sometable', column('somecolumn')) self.assert_compile( t.delete(). where(t.c.somecolumn == "q"). with_hint("XYZ", dialect_name="mysql"), "DELETE FROM sometable WHERE " "sometable.somecolumn = :somecolumn_1" ) def test_delete_extra_froms(self): t1 = table('t1', column('c1')) t2 = table('t2', column('c1')) q = sql.delete(t1).where(t1.c.c1 == t2.c.c1) self.assert_compile( q, "DELETE FROM t1 FROM t1, t2 WHERE t1.c1 = t2.c1" ) def test_delete_extra_froms_alias(self): a1 = table('t1', column('c1')).alias('a1') t2 = table('t2', column('c1')) q = sql.delete(a1).where(a1.c.c1 == t2.c.c1) self.assert_compile( q, "DELETE FROM a1 FROM t1 AS a1, t2 WHERE a1.c1 = t2.c1" ) self.assert_compile(sql.delete(a1), "DELETE FROM t1 AS a1") def test_update_from_hint(self): t = table('sometable', column('somecolumn')) t2 = table('othertable', column('somecolumn')) for darg in ("*", "mssql"): self.assert_compile( t.update().where(t.c.somecolumn == t2.c.somecolumn). values(somecolumn="x"). with_hint("WITH (PAGLOCK)", selectable=t2, dialect_name=darg), "UPDATE sometable SET somecolumn=:somecolumn " "FROM sometable, othertable WITH (PAGLOCK) " "WHERE sometable.somecolumn = othertable.somecolumn" ) def test_update_to_select_schema(self): meta = MetaData() table = Table( "sometable", meta, Column("sym", String), Column("val", Integer), schema="schema" ) other = Table( "#other", meta, Column("sym", String), Column("newval", Integer) ) stmt = table.update().values( val=select([other.c.newval]). where(table.c.sym == other.c.sym).as_scalar()) self.assert_compile( stmt, "UPDATE [schema].sometable SET val=" "(SELECT [#other].newval FROM [#other] " "WHERE [schema].sometable.sym = [#other].sym)", ) stmt = table.update().values(val=other.c.newval).\ where(table.c.sym == other.c.sym) self.assert_compile( stmt, "UPDATE [schema].sometable SET val=" "[#other].newval FROM [schema].sometable, " "[#other] WHERE [schema].sometable.sym = [#other].sym", ) # TODO: not supported yet. # def test_delete_from_hint(self): # t = table('sometable', column('somecolumn')) # t2 = table('othertable', column('somecolumn')) # for darg in ("*", "mssql"): # self.assert_compile( # t.delete().where(t.c.somecolumn==t2.c.somecolumn). # with_hint("WITH (PAGLOCK)", # selectable=t2, # dialect_name=darg), # "" # ) def test_strict_binds(self): """test the 'strict' compiler binds.""" from sqlalchemy.dialects.mssql.base import MSSQLStrictCompiler mxodbc_dialect = mxodbc.dialect() mxodbc_dialect.statement_compiler = MSSQLStrictCompiler t = table('sometable', column('foo')) for expr, compile in [ ( select([literal("x"), literal("y")]), "SELECT 'x' AS anon_1, 'y' AS anon_2", ), ( select([t]).where(t.c.foo.in_(['x', 'y', 'z'])), "SELECT sometable.foo FROM sometable WHERE sometable.foo " "IN ('x', 'y', 'z')", ), ( t.c.foo.in_([None]), "sometable.foo IN (NULL)" ) ]: self.assert_compile(expr, compile, dialect=mxodbc_dialect) def test_in_with_subqueries(self): """Test removal of legacy behavior that converted "x==subquery" to use IN. """ t = table('sometable', column('somecolumn')) self.assert_compile(t.select().where(t.c.somecolumn == t.select()), 'SELECT sometable.somecolumn FROM ' 'sometable WHERE sometable.somecolumn = ' '(SELECT sometable.somecolumn FROM ' 'sometable)') self.assert_compile(t.select().where(t.c.somecolumn != t.select()), 'SELECT sometable.somecolumn FROM ' 'sometable WHERE sometable.somecolumn != ' '(SELECT sometable.somecolumn FROM ' 'sometable)') @testing.uses_deprecated def test_count(self): t = table('sometable', column('somecolumn')) self.assert_compile(t.count(), 'SELECT count(sometable.somecolumn) AS ' 'tbl_row_count FROM sometable') def test_noorderby_insubquery(self): """test that the ms-sql dialect removes ORDER BY clauses from subqueries""" table1 = table('mytable', column('myid', Integer), column('name', String), column('description', String), ) q = select([table1.c.myid], order_by=[table1.c.myid]).alias('foo') crit = q.c.myid == table1.c.myid self.assert_compile(select(['*'], crit), "SELECT * FROM (SELECT mytable.myid AS " "myid FROM mytable) AS foo, mytable WHERE " "foo.myid = mytable.myid") def test_force_schema_quoted_name_w_dot_case_insensitive(self): metadata = MetaData() tbl = Table( 'test', metadata, Column('id', Integer, primary_key=True), schema=quoted_name("foo.dbo", True) ) self.assert_compile( select([tbl]), "SELECT [foo.dbo].test.id FROM [foo.dbo].test" ) def test_force_schema_quoted_w_dot_case_insensitive(self): metadata = MetaData() tbl = Table( 'test', metadata, Column('id', Integer, primary_key=True), schema=quoted_name("foo.dbo", True) ) self.assert_compile( select([tbl]), "SELECT [foo.dbo].test.id FROM [foo.dbo].test" ) def test_force_schema_quoted_name_w_dot_case_sensitive(self): metadata = MetaData() tbl = Table( 'test', metadata, Column('id', Integer, primary_key=True), schema=quoted_name("Foo.dbo", True) ) self.assert_compile( select([tbl]), "SELECT [Foo.dbo].test.id FROM [Foo.dbo].test" ) def test_force_schema_quoted_w_dot_case_sensitive(self): metadata = MetaData() tbl = Table( 'test', metadata, Column('id', Integer, primary_key=True), schema="[Foo.dbo]" ) self.assert_compile( select([tbl]), "SELECT [Foo.dbo].test.id FROM [Foo.dbo].test" ) def test_schema_autosplit_w_dot_case_insensitive(self): metadata = MetaData() tbl = Table( 'test', metadata, Column('id', Integer, primary_key=True), schema="foo.dbo" ) self.assert_compile( select([tbl]), "SELECT foo.dbo.test.id FROM foo.dbo.test" ) def test_schema_autosplit_w_dot_case_sensitive(self): metadata = MetaData() tbl = Table( 'test', metadata, Column('id', Integer, primary_key=True), schema="Foo.dbo" ) self.assert_compile( select([tbl]), "SELECT [Foo].dbo.test.id FROM [Foo].dbo.test" ) def test_owner_database_pairs(self): dialect = mssql.dialect() for identifier, expected_schema, expected_owner in [ ("foo", None, "foo"), ("foo.bar", "foo", "bar"), ("Foo.Bar", "Foo", "Bar"), ("[Foo.Bar]", None, "Foo.Bar"), ("[Foo.Bar].[bat]", "Foo.Bar", "bat"), ]: schema, owner = base._owner_plus_db(dialect, identifier) eq_(owner, expected_owner) eq_(schema, expected_schema) def test_delete_schema(self): metadata = MetaData() tbl = Table('test', metadata, Column('id', Integer, primary_key=True), schema='paj') self.assert_compile(tbl.delete(tbl.c.id == 1), 'DELETE FROM paj.test WHERE paj.test.id = ' ':id_1') s = select([tbl.c.id]).where(tbl.c.id == 1) self.assert_compile(tbl.delete().where(tbl.c.id.in_(s)), 'DELETE FROM paj.test WHERE paj.test.id IN ' '(SELECT paj.test.id FROM paj.test ' 'WHERE paj.test.id = :id_1)') def test_delete_schema_multipart(self): metadata = MetaData() tbl = Table( 'test', metadata, Column('id', Integer, primary_key=True), schema='banana.paj') self.assert_compile(tbl.delete(tbl.c.id == 1), 'DELETE FROM banana.paj.test WHERE ' 'banana.paj.test.id = :id_1') s = select([tbl.c.id]).where(tbl.c.id == 1) self.assert_compile(tbl.delete().where(tbl.c.id.in_(s)), 'DELETE FROM banana.paj.test WHERE ' 'banana.paj.test.id IN (SELECT banana.paj.test.id ' 'FROM banana.paj.test WHERE ' 'banana.paj.test.id = :id_1)') def test_delete_schema_multipart_needs_quoting(self): metadata = MetaData() tbl = Table( 'test', metadata, Column('id', Integer, primary_key=True), schema='banana split.paj') self.assert_compile(tbl.delete(tbl.c.id == 1), 'DELETE FROM [banana split].paj.test WHERE ' '[banana split].paj.test.id = :id_1') s = select([tbl.c.id]).where(tbl.c.id == 1) self.assert_compile(tbl.delete().where(tbl.c.id.in_(s)), 'DELETE FROM [banana split].paj.test WHERE ' '[banana split].paj.test.id IN (' 'SELECT [banana split].paj.test.id FROM ' '[banana split].paj.test WHERE ' '[banana split].paj.test.id = :id_1)') def test_delete_schema_multipart_both_need_quoting(self): metadata = MetaData() tbl = Table('test', metadata, Column('id', Integer, primary_key=True), schema='banana split.paj with a space') self.assert_compile(tbl.delete(tbl.c.id == 1), 'DELETE FROM [banana split].[paj with a ' 'space].test WHERE [banana split].[paj ' 'with a space].test.id = :id_1') s = select([tbl.c.id]).where(tbl.c.id == 1) self.assert_compile( tbl.delete().where(tbl.c.id.in_(s)), "DELETE FROM [banana split].[paj with a space].test " "WHERE [banana split].[paj with a space].test.id IN " "(SELECT [banana split].[paj with a space].test.id " "FROM [banana split].[paj with a space].test " "WHERE [banana split].[paj with a space].test.id = :id_1)" ) def test_union(self): t1 = table( 't1', column('col1'), column('col2'), column('col3'), column('col4')) t2 = table( 't2', column('col1'), column('col2'), column('col3'), column('col4')) s1, s2 = select( [t1.c.col3.label('col3'), t1.c.col4.label('col4')], t1.c.col2.in_(['t1col2r1', 't1col2r2'])), \ select([t2.c.col3.label('col3'), t2.c.col4.label('col4')], t2.c.col2.in_(['t2col2r2', 't2col2r3'])) u = union(s1, s2, order_by=['col3', 'col4']) self.assert_compile(u, 'SELECT t1.col3 AS col3, t1.col4 AS col4 ' 'FROM t1 WHERE t1.col2 IN (:col2_1, ' ':col2_2) UNION SELECT t2.col3 AS col3, ' 't2.col4 AS col4 FROM t2 WHERE t2.col2 IN ' '(:col2_3, :col2_4) ORDER BY col3, col4') self.assert_compile(u.alias('bar').select(), 'SELECT bar.col3, bar.col4 FROM (SELECT ' 't1.col3 AS col3, t1.col4 AS col4 FROM t1 ' 'WHERE t1.col2 IN (:col2_1, :col2_2) UNION ' 'SELECT t2.col3 AS col3, t2.col4 AS col4 ' 'FROM t2 WHERE t2.col2 IN (:col2_3, ' ':col2_4)) AS bar') def test_function(self): self.assert_compile(func.foo(1, 2), 'foo(:foo_1, :foo_2)') self.assert_compile(func.current_time(), 'CURRENT_TIME') self.assert_compile(func.foo(), 'foo()') m = MetaData() t = Table( 'sometable', m, Column('col1', Integer), Column('col2', Integer)) self.assert_compile(select([func.max(t.c.col1)]), 'SELECT max(sometable.col1) AS max_1 FROM ' 'sometable') def test_function_overrides(self): self.assert_compile(func.current_date(), "GETDATE()") self.assert_compile(func.length(3), "LEN(:length_1)") def test_extract(self): t = table('t', column('col1')) for field in 'day', 'month', 'year': self.assert_compile( select([extract(field, t.c.col1)]), 'SELECT DATEPART(%s, t.col1) AS anon_1 FROM t' % field) def test_update_returning(self): table1 = table( 'mytable', column('myid', Integer), column('name', String(128)), column('description', String(128))) u = update( table1, values=dict(name='foo')).returning(table1.c.myid, table1.c.name) self.assert_compile(u, 'UPDATE mytable SET name=:name OUTPUT ' 'inserted.myid, inserted.name') u = update(table1, values=dict(name='foo')).returning(table1) self.assert_compile(u, 'UPDATE mytable SET name=:name OUTPUT ' 'inserted.myid, inserted.name, ' 'inserted.description') u = update( table1, values=dict( name='foo')).returning(table1).where(table1.c.name == 'bar') self.assert_compile(u, 'UPDATE mytable SET name=:name OUTPUT ' 'inserted.myid, inserted.name, ' 'inserted.description WHERE mytable.name = ' ':name_1') u = update(table1, values=dict(name='foo' )).returning(func.length(table1.c.name)) self.assert_compile(u, 'UPDATE mytable SET name=:name OUTPUT ' 'LEN(inserted.name) AS length_1') def test_delete_returning(self): table1 = table( 'mytable', column('myid', Integer), column('name', String(128)), column('description', String(128))) d = delete(table1).returning(table1.c.myid, table1.c.name) self.assert_compile(d, 'DELETE FROM mytable OUTPUT deleted.myid, ' 'deleted.name') d = delete(table1).where(table1.c.name == 'bar' ).returning(table1.c.myid, table1.c.name) self.assert_compile(d, 'DELETE FROM mytable OUTPUT deleted.myid, ' 'deleted.name WHERE mytable.name = :name_1') def test_insert_returning(self): table1 = table( 'mytable', column('myid', Integer), column('name', String(128)), column('description', String(128))) i = insert( table1, values=dict(name='foo')).returning(table1.c.myid, table1.c.name) self.assert_compile(i, 'INSERT INTO mytable (name) OUTPUT ' 'inserted.myid, inserted.name VALUES ' '(:name)') i = insert(table1, values=dict(name='foo')).returning(table1) self.assert_compile(i, 'INSERT INTO mytable (name) OUTPUT ' 'inserted.myid, inserted.name, ' 'inserted.description VALUES (:name)') i = insert(table1, values=dict(name='foo' )).returning(func.length(table1.c.name)) self.assert_compile(i, 'INSERT INTO mytable (name) OUTPUT ' 'LEN(inserted.name) AS length_1 VALUES ' '(:name)') def test_limit_using_top(self): t = table('t', column('x', Integer), column('y', Integer)) s = select([t]).where(t.c.x == 5).order_by(t.c.y).limit(10) self.assert_compile( s, "SELECT TOP 10 t.x, t.y FROM t WHERE t.x = :x_1 ORDER BY t.y", checkparams={'x_1': 5} ) def test_limit_zero_using_top(self): t = table('t', column('x', Integer), column('y', Integer)) s = select([t]).where(t.c.x == 5).order_by(t.c.y).limit(0) self.assert_compile( s, "SELECT TOP 0 t.x, t.y FROM t WHERE t.x = :x_1 ORDER BY t.y", checkparams={'x_1': 5} ) c = s.compile(dialect=mssql.dialect()) eq_(len(c._result_columns), 2) assert t.c.x in set(c._create_result_map()['x'][1]) def test_offset_using_window(self): t = table('t', column('x', Integer), column('y', Integer)) s = select([t]).where(t.c.x == 5).order_by(t.c.y).offset(20) # test that the select is not altered with subsequent compile # calls for i in range(2): self.assert_compile( s, "SELECT anon_1.x, anon_1.y FROM (SELECT t.x AS x, t.y " "AS y, ROW_NUMBER() OVER (ORDER BY t.y) AS " "mssql_rn FROM t WHERE t.x = :x_1) AS " "anon_1 WHERE mssql_rn > :param_1", checkparams={'param_1': 20, 'x_1': 5} ) c = s.compile(dialect=mssql.dialect()) eq_(len(c._result_columns), 2) assert t.c.x in set(c._create_result_map()['x'][1]) def test_limit_offset_using_window(self): t = table('t', column('x', Integer), column('y', Integer)) s = select([t]).where(t.c.x == 5).order_by(t.c.y).limit(10).offset(20) self.assert_compile( s, "SELECT anon_1.x, anon_1.y " "FROM (SELECT t.x AS x, t.y AS y, " "ROW_NUMBER() OVER (ORDER BY t.y) AS mssql_rn " "FROM t " "WHERE t.x = :x_1) AS anon_1 " "WHERE mssql_rn > :param_1 AND mssql_rn <= :param_2 + :param_1", checkparams={'param_1': 20, 'param_2': 10, 'x_1': 5} ) c = s.compile(dialect=mssql.dialect()) eq_(len(c._result_columns), 2) assert t.c.x in set(c._create_result_map()['x'][1]) assert t.c.y in set(c._create_result_map()['y'][1]) def test_limit_offset_w_ambiguous_cols(self): t = table('t', column('x', Integer), column('y', Integer)) cols = [t.c.x, t.c.x.label('q'), t.c.x.label('p'), t.c.y] s = select(cols).where(t.c.x == 5).order_by(t.c.y).limit(10).offset(20) self.assert_compile( s, "SELECT anon_1.x, anon_1.q, anon_1.p, anon_1.y " "FROM (SELECT t.x AS x, t.x AS q, t.x AS p, t.y AS y, " "ROW_NUMBER() OVER (ORDER BY t.y) AS mssql_rn " "FROM t " "WHERE t.x = :x_1) AS anon_1 " "WHERE mssql_rn > :param_1 AND mssql_rn <= :param_2 + :param_1", checkparams={'param_1': 20, 'param_2': 10, 'x_1': 5} ) c = s.compile(dialect=mssql.dialect()) eq_(len(c._result_columns), 4) result_map = c._create_result_map() for col in cols: is_(result_map[col.key][1][0], col) def test_limit_offset_with_correlated_order_by(self): t1 = table('t1', column('x', Integer), column('y', Integer)) t2 = table('t2', column('x', Integer), column('y', Integer)) order_by = select([t2.c.y]).where(t1.c.x == t2.c.x).as_scalar() s = select([t1]).where(t1.c.x == 5).order_by(order_by) \ .limit(10).offset(20) self.assert_compile( s, "SELECT anon_1.x, anon_1.y " "FROM (SELECT t1.x AS x, t1.y AS y, " "ROW_NUMBER() OVER (ORDER BY " "(SELECT t2.y FROM t2 WHERE t1.x = t2.x)" ") AS mssql_rn " "FROM t1 " "WHERE t1.x = :x_1) AS anon_1 " "WHERE mssql_rn > :param_1 AND mssql_rn <= :param_2 + :param_1", checkparams={'param_1': 20, 'param_2': 10, 'x_1': 5} ) c = s.compile(dialect=mssql.dialect()) eq_(len(c._result_columns), 2) assert t1.c.x in set(c._create_result_map()['x'][1]) assert t1.c.y in set(c._create_result_map()['y'][1]) def test_offset_dont_misapply_labelreference(self): m = MetaData() t = Table('t', m, Column('x', Integer)) expr1 = func.foo(t.c.x).label('x') expr2 = func.foo(t.c.x).label('y') stmt1 = select([expr1]).order_by(expr1.desc()).offset(1) stmt2 = select([expr2]).order_by(expr2.desc()).offset(1) self.assert_compile( stmt1, "SELECT anon_1.x FROM (SELECT foo(t.x) AS x, " "ROW_NUMBER() OVER (ORDER BY foo(t.x) DESC) AS mssql_rn FROM t) " "AS anon_1 WHERE mssql_rn > :param_1" ) self.assert_compile( stmt2, "SELECT anon_1.y FROM (SELECT foo(t.x) AS y, " "ROW_NUMBER() OVER (ORDER BY foo(t.x) DESC) AS mssql_rn FROM t) " "AS anon_1 WHERE mssql_rn > :param_1" ) def test_limit_zero_offset_using_window(self): t = table('t', column('x', Integer), column('y', Integer)) s = select([t]).where(t.c.x == 5).order_by(t.c.y).limit(0).offset(0) # render the LIMIT of zero, but not the OFFSET # of zero, so produces TOP 0 self.assert_compile( s, "SELECT TOP 0 t.x, t.y FROM t " "WHERE t.x = :x_1 ORDER BY t.y", checkparams={'x_1': 5} ) def test_primary_key_no_identity(self): metadata = MetaData() tbl = Table('test', metadata, Column('id', Integer, autoincrement=False, primary_key=True)) self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (id INTEGER NOT NULL, " "PRIMARY KEY (id))" ) def test_primary_key_defaults_to_identity(self): metadata = MetaData() tbl = Table('test', metadata, Column('id', Integer, primary_key=True)) self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (id INTEGER NOT NULL IDENTITY(1,1), " "PRIMARY KEY (id))" ) def test_identity_no_primary_key(self): metadata = MetaData() tbl = Table('test', metadata, Column('id', Integer, autoincrement=True)) self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (id INTEGER NOT NULL IDENTITY(1,1)" ")" ) def test_identity_separate_from_primary_key(self): metadata = MetaData() tbl = Table('test', metadata, Column('id', Integer, autoincrement=False, primary_key=True), Column('x', Integer, autoincrement=True) ) self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (id INTEGER NOT NULL, " "x INTEGER NOT NULL IDENTITY(1,1), " "PRIMARY KEY (id))" ) def test_identity_illegal_two_autoincrements(self): metadata = MetaData() tbl = Table('test', metadata, Column('id', Integer, autoincrement=True), Column('id2', Integer, autoincrement=True), ) # this will be rejected by the database, just asserting this is what # the two autoincrements will do right now self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (id INTEGER NOT NULL IDENTITY(1,1), " "id2 INTEGER NOT NULL IDENTITY(1,1))" ) def test_identity_start_0(self): metadata = MetaData() tbl = Table('test', metadata, Column('id', Integer, mssql_identity_start=0, primary_key=True)) self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (id INTEGER NOT NULL IDENTITY(0,1), " "PRIMARY KEY (id))" ) def test_identity_increment_5(self): metadata = MetaData() tbl = Table('test', metadata, Column('id', Integer, mssql_identity_increment=5, primary_key=True)) self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (id INTEGER NOT NULL IDENTITY(1,5), " "PRIMARY KEY (id))" ) def test_sequence_start_0(self): metadata = MetaData() tbl = Table('test', metadata, Column('id', Integer, Sequence('', 0), primary_key=True)) with testing.expect_deprecated( "Use of Sequence with SQL Server in order to affect "): self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (id INTEGER NOT NULL IDENTITY(0,1), " "PRIMARY KEY (id))" ) def test_sequence_non_primary_key(self): metadata = MetaData() tbl = Table('test', metadata, Column('id', Integer, Sequence('', start=5), primary_key=False)) with testing.expect_deprecated( "Use of Sequence with SQL Server in order to affect "): self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (id INTEGER NOT NULL IDENTITY(5,1))" ) def test_sequence_ignore_nullability(self): metadata = MetaData() tbl = Table('test', metadata, Column('id', Integer, Sequence('', start=5), nullable=True)) with testing.expect_deprecated( "Use of Sequence with SQL Server in order to affect "): self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (id INTEGER NOT NULL IDENTITY(5,1))" ) def test_table_pkc_clustering(self): metadata = MetaData() tbl = Table('test', metadata, Column('x', Integer, autoincrement=False), Column('y', Integer, autoincrement=False), PrimaryKeyConstraint("x", "y", mssql_clustered=True)) self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (x INTEGER NOT NULL, y INTEGER NOT NULL, " "PRIMARY KEY CLUSTERED (x, y))" ) def test_table_pkc_explicit_nonclustered(self): metadata = MetaData() tbl = Table('test', metadata, Column('x', Integer, autoincrement=False), Column('y', Integer, autoincrement=False), PrimaryKeyConstraint("x", "y", mssql_clustered=False)) self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (x INTEGER NOT NULL, y INTEGER NOT NULL, " "PRIMARY KEY NONCLUSTERED (x, y))" ) def test_table_idx_explicit_nonclustered(self): metadata = MetaData() tbl = Table( 'test', metadata, Column('x', Integer, autoincrement=False), Column('y', Integer, autoincrement=False) ) idx = Index("myidx", tbl.c.x, tbl.c.y, mssql_clustered=False) self.assert_compile( schema.CreateIndex(idx), "CREATE NONCLUSTERED INDEX myidx ON test (x, y)" ) def test_table_uc_explicit_nonclustered(self): metadata = MetaData() tbl = Table('test', metadata, Column('x', Integer, autoincrement=False), Column('y', Integer, autoincrement=False), UniqueConstraint("x", "y", mssql_clustered=False)) self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (x INTEGER NULL, y INTEGER NULL, " "UNIQUE NONCLUSTERED (x, y))" ) def test_table_uc_clustering(self): metadata = MetaData() tbl = Table('test', metadata, Column('x', Integer, autoincrement=False), Column('y', Integer, autoincrement=False), PrimaryKeyConstraint("x"), UniqueConstraint("y", mssql_clustered=True)) self.assert_compile( schema.CreateTable(tbl), "CREATE TABLE test (x INTEGER NOT NULL, y INTEGER NULL, " "PRIMARY KEY (x), UNIQUE CLUSTERED (y))" ) def test_index_clustering(self): metadata = MetaData() tbl = Table('test', metadata, Column('id', Integer)) idx = Index("foo", tbl.c.id, mssql_clustered=True) self.assert_compile(schema.CreateIndex(idx), "CREATE CLUSTERED INDEX foo ON test (id)" ) def test_index_ordering(self): metadata = MetaData() tbl = Table( 'test', metadata, Column('x', Integer), Column('y', Integer), Column('z', Integer)) idx = Index("foo", tbl.c.x.desc(), "y") self.assert_compile(schema.CreateIndex(idx), "CREATE INDEX foo ON test (x DESC, y)" ) def test_create_index_expr(self): m = MetaData() t1 = Table('foo', m, Column('x', Integer) ) self.assert_compile( schema.CreateIndex(Index("bar", t1.c.x > 5)), "CREATE INDEX bar ON foo (x > 5)" ) def test_drop_index_w_schema(self): m = MetaData() t1 = Table('foo', m, Column('x', Integer), schema='bar' ) self.assert_compile( schema.DropIndex(Index("idx_foo", t1.c.x)), "DROP INDEX idx_foo ON bar.foo" ) def test_index_extra_include_1(self): metadata = MetaData() tbl = Table( 'test', metadata, Column('x', Integer), Column('y', Integer), Column('z', Integer)) idx = Index("foo", tbl.c.x, mssql_include=['y']) self.assert_compile(schema.CreateIndex(idx), "CREATE INDEX foo ON test (x) INCLUDE (y)" ) def test_index_extra_include_2(self): metadata = MetaData() tbl = Table( 'test', metadata, Column('x', Integer), Column('y', Integer), Column('z', Integer)) idx = Index("foo", tbl.c.x, mssql_include=[tbl.c.y]) self.assert_compile(schema.CreateIndex(idx), "CREATE INDEX foo ON test (x) INCLUDE (y)" ) class SchemaTest(fixtures.TestBase): def setup(self): t = Table('sometable', MetaData(), Column('pk_column', Integer), Column('test_column', String) ) self.column = t.c.test_column dialect = mssql.dialect() self.ddl_compiler = dialect.ddl_compiler(dialect, schema.CreateTable(t)) def _column_spec(self): return self.ddl_compiler.get_column_specification(self.column) def test_that_mssql_default_nullability_emits_null(self): eq_("test_column VARCHAR(max) NULL", self._column_spec()) def test_that_mssql_none_nullability_does_not_emit_nullability(self): self.column.nullable = None eq_("test_column VARCHAR(max)", self._column_spec()) def test_that_mssql_specified_nullable_emits_null(self): self.column.nullable = True eq_("test_column VARCHAR(max) NULL", self._column_spec()) def test_that_mssql_specified_not_nullable_emits_not_null(self): self.column.nullable = False eq_("test_column VARCHAR(max) NOT NULL", self._column_spec())
2.296875
2
sdk/python/pulumi_kubernetes/coordination/v1/_inputs.py
polivbr/pulumi-kubernetes
277
1001
<reponame>polivbr/pulumi-kubernetes # coding=utf-8 # *** WARNING: this file was generated by pulumigen. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from ... import meta as _meta __all__ = [ 'LeaseSpecArgs', 'LeaseArgs', ] @pulumi.input_type class LeaseSpecArgs: def __init__(__self__, *, acquire_time: Optional[pulumi.Input[str]] = None, holder_identity: Optional[pulumi.Input[str]] = None, lease_duration_seconds: Optional[pulumi.Input[int]] = None, lease_transitions: Optional[pulumi.Input[int]] = None, renew_time: Optional[pulumi.Input[str]] = None): """ LeaseSpec is a specification of a Lease. :param pulumi.Input[str] acquire_time: acquireTime is a time when the current lease was acquired. :param pulumi.Input[str] holder_identity: holderIdentity contains the identity of the holder of a current lease. :param pulumi.Input[int] lease_duration_seconds: leaseDurationSeconds is a duration that candidates for a lease need to wait to force acquire it. This is measure against time of last observed RenewTime. :param pulumi.Input[int] lease_transitions: leaseTransitions is the number of transitions of a lease between holders. :param pulumi.Input[str] renew_time: renewTime is a time when the current holder of a lease has last updated the lease. """ if acquire_time is not None: pulumi.set(__self__, "acquire_time", acquire_time) if holder_identity is not None: pulumi.set(__self__, "holder_identity", holder_identity) if lease_duration_seconds is not None: pulumi.set(__self__, "lease_duration_seconds", lease_duration_seconds) if lease_transitions is not None: pulumi.set(__self__, "lease_transitions", lease_transitions) if renew_time is not None: pulumi.set(__self__, "renew_time", renew_time) @property @pulumi.getter(name="acquireTime") def acquire_time(self) -> Optional[pulumi.Input[str]]: """ acquireTime is a time when the current lease was acquired. """ return pulumi.get(self, "acquire_time") @acquire_time.setter def acquire_time(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "acquire_time", value) @property @pulumi.getter(name="holderIdentity") def holder_identity(self) -> Optional[pulumi.Input[str]]: """ holderIdentity contains the identity of the holder of a current lease. """ return pulumi.get(self, "holder_identity") @holder_identity.setter def holder_identity(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "holder_identity", value) @property @pulumi.getter(name="leaseDurationSeconds") def lease_duration_seconds(self) -> Optional[pulumi.Input[int]]: """ leaseDurationSeconds is a duration that candidates for a lease need to wait to force acquire it. This is measure against time of last observed RenewTime. """ return pulumi.get(self, "lease_duration_seconds") @lease_duration_seconds.setter def lease_duration_seconds(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "lease_duration_seconds", value) @property @pulumi.getter(name="leaseTransitions") def lease_transitions(self) -> Optional[pulumi.Input[int]]: """ leaseTransitions is the number of transitions of a lease between holders. """ return pulumi.get(self, "lease_transitions") @lease_transitions.setter def lease_transitions(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "lease_transitions", value) @property @pulumi.getter(name="renewTime") def renew_time(self) -> Optional[pulumi.Input[str]]: """ renewTime is a time when the current holder of a lease has last updated the lease. """ return pulumi.get(self, "renew_time") @renew_time.setter def renew_time(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "renew_time", value) @pulumi.input_type class LeaseArgs: def __init__(__self__, *, api_version: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, metadata: Optional[pulumi.Input['_meta.v1.ObjectMetaArgs']] = None, spec: Optional[pulumi.Input['LeaseSpecArgs']] = None): """ Lease defines a lease concept. :param pulumi.Input[str] api_version: APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources :param pulumi.Input[str] kind: Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds :param pulumi.Input['_meta.v1.ObjectMetaArgs'] metadata: More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata :param pulumi.Input['LeaseSpecArgs'] spec: Specification of the Lease. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status """ if api_version is not None: pulumi.set(__self__, "api_version", 'coordination.k8s.io/v1') if kind is not None: pulumi.set(__self__, "kind", 'Lease') if metadata is not None: pulumi.set(__self__, "metadata", metadata) if spec is not None: pulumi.set(__self__, "spec", spec) @property @pulumi.getter(name="apiVersion") def api_version(self) -> Optional[pulumi.Input[str]]: """ APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources """ return pulumi.get(self, "api_version") @api_version.setter def api_version(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "api_version", value) @property @pulumi.getter def kind(self) -> Optional[pulumi.Input[str]]: """ Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds """ return pulumi.get(self, "kind") @kind.setter def kind(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "kind", value) @property @pulumi.getter def metadata(self) -> Optional[pulumi.Input['_meta.v1.ObjectMetaArgs']]: """ More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata """ return pulumi.get(self, "metadata") @metadata.setter def metadata(self, value: Optional[pulumi.Input['_meta.v1.ObjectMetaArgs']]): pulumi.set(self, "metadata", value) @property @pulumi.getter def spec(self) -> Optional[pulumi.Input['LeaseSpecArgs']]: """ Specification of the Lease. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status """ return pulumi.get(self, "spec") @spec.setter def spec(self, value: Optional[pulumi.Input['LeaseSpecArgs']]): pulumi.set(self, "spec", value)
2.125
2
Components/Align All Components.py
davidtahim/Glyphs-Scripts
1
1002
<reponame>davidtahim/Glyphs-Scripts<filename>Components/Align All Components.py #MenuTitle: Align All Components # -*- coding: utf-8 -*- __doc__=""" Fakes auto-alignment in glyphs that cannot be auto-aligned. """ import GlyphsApp thisFont = Glyphs.font # frontmost font thisFontMaster = thisFont.selectedFontMaster # active master thisFontMasterID = thisFont.selectedFontMaster.id # active master listOfSelectedLayers = thisFont.selectedLayers # active layers of selected glyphs def process( thisLayer ): advance = 0.0 for thisComponent in thisLayer.components: thisComponent.position = NSPoint( advance, 0.0 ) advance += thisComponent.component.layers[thisFontMasterID].width thisLayer.width = advance thisFont.disableUpdateInterface() # suppresses UI updates in Font View for thisLayer in listOfSelectedLayers: thisGlyph = thisLayer.parent print "Aligning components in:", thisGlyph.name thisGlyph.beginUndo() # begin undo grouping process( thisLayer ) thisGlyph.endUndo() # end undo grouping thisFont.enableUpdateInterface() # re-enables UI updates in Font View
2.328125
2
SC101Lecture_code/SC101_week4/draw_basic.py
Jewel-Hong/SC-projects
0
1003
<gh_stars>0 #!/usr/bin/env python3 """ Stanford CS106AP TK Drawing Lecture Exercises Courtesy of <NAME> """ import tkinter as tk # provided function, this code is complete def make_canvas(width, height): """ Creates and returns a drawing canvas of the given int size, ready for drawing. """ top = tk.Tk() top.minsize(width=width + 10, height=height + 10) canvas = tk.Canvas(top, width=width, height=height) canvas.pack() canvas.xview_scroll(6, "units") # hack so (0, 0) works correctly canvas.yview_scroll(6, "units") return canvas def main(): w = make_canvas(1000, 500) w.create_line(0, 0, 1000, 500, width=5, fill='red') w.create_text(0, 0, text='SC101', anchor=tk.NW, font='times 80') tk.mainloop() #告訴電腦不要關掉視窗 if __name__ == '__main__': main()
4.03125
4
audio/audio_server.py
artigianitecnologici/marrtino_apps
0
1004
<reponame>artigianitecnologici/marrtino_apps<gh_stars>0 # Only PCM 16 bit wav 44100 Hz - Use audacity or sox to convert audio files. # WAV generation # Synth # sox -n --no-show-progress -G --channels 1 -r 44100 -b 16 -t wav bip.wav synth 0.25 sine 800 # sox -n --no-show-progress -G --channels 1 -r 44100 -b 16 -t wav bop.wav synth 0.25 sine 400 # Voices # pico2wave -l "it-IT" -w start.wav "Bene! Si Parte!" # Then convert wav files to to 44100 Hz # Note: some initial sound may not be played. # alsaaudio examples # https://larsimmisch.github.io/pyalsaaudio/libalsaaudio.html import threading import time import socket import sys, os, platform import re import wave import argparse import rospy use_sound_play = False use_alsaaudio = True try: from sound_play.msg import SoundRequest from sound_play.libsoundplay import SoundClient except: print('ROS package sound_play required.') print('Install with: sudo apt-get install ros-kinetic-audio-common libasound2') use_sound_play = False #sys.exit(0) try: import sox except: print('sox required. Install with: pip install --user sox') sys.exit(0) try: import alsaaudio except: print('alsaaudio required. Install with: pip install --user pyalsaaudio') use_alsaaudio = False #sys.exit(0) from asr_server import ASRServer SOUNDS_DIR = "sounds/" # dir with sounds soundfile = None # sound file tts_server = None asr_server = None def TTS_callback(in_data, frame_count, time_info, status): global soundfile if (soundfile==None): return (None, True) else: data = soundfile.readframes(frame_count) return (data, pyaudio.paContinue) class TTSServer(threading.Thread): def __init__(self, port, output_device): global use_alsaaudio, use_sound_play threading.Thread.__init__(self) # Initialize audio player self.streaming = False self.output_device = output_device self.soundhandle = None m = platform.machine() print "Machine type:" , m if (m[0:3]=='arm'): use_sound_play = False if (use_sound_play): os.system('roslaunch sound_play.launch &') time.sleep(5) rospy.init_node('sound_client', disable_signals=True) use_alsaaudio = False elif (use_alsaaudio): self.init_alsaaudio() else: print('Cannot initializa audio interface') # Create a TCP/IP socket self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.sock.settimeout(3) # Bind the socket to the port server_address = ('', port) self.sock.bind(server_address) self.sock.listen(1) print "TTS Server running on port ", port, " ..." self.dorun = True self.connection = None # Dictionary of sounds self.Sounds = {} self.Sounds['bip'] = wave.open(SOUNDS_DIR+'bip.wav', 'rb') self.idcache = 0 def init_alsaaudio(self): print("Audio devices available") pp = alsaaudio.pcms() if (self.output_device=='sysdefault'): # select proper sysdefault name for l in pp: print(' %s' %l) if (l[0:10]=='sysdefault'): print "choose ",l self.output_device = l # choose default device break print("Audio device used: %s" %self.output_device) self.aa_stream = None retry = 3 while retry>0: try: self.aa_stream = alsaaudio.PCM(alsaaudio.PCM_PLAYBACK, alsaaudio.PCM_NORMAL, self.output_device) retry = 0 except Exception as e: print(e) retry -= 1 time.sleep(2) if self.aa_stream == None: retry = 3 while retry>0: try: self.output_device='default' print("Audio device used: %s" %self.output_device) self.aa_stream = alsaaudio.PCM(alsaaudio.PCM_PLAYBACK, alsaaudio.PCM_NORMAL, self.output_device) retry = 0 except Exception as e: print(e) retry -= 1 time.sleep(2) self.audio_rate = 44100 self.periodsize = self.audio_rate / 8 if self.aa_stream != None: self.aa_stream.setformat(alsaaudio.PCM_FORMAT_S16_LE) self.aa_stream.setchannels(1) self.aa_stream.setrate(self.audio_rate) self.aa_stream.setperiodsize(self.periodsize) def stop(self): self.dorun = False def connect(self): connected = False while (self.dorun and not connected): try: # print 'Waiting for a connection ...' # Wait for a connection self.connection, client_address = self.sock.accept() self.connection.settimeout(3) # timeout when listening (exit with CTRL+C) connected = True print 'TTS Server Connection from ', client_address except: pass #print "Listen again ..." def reply(self,mstr): if (self.connection != None): try: mstr = mstr.encode('utf-8') self.connection.send(mstr+'\n\r') except: print('Connection closed') def setVolume(self,volperc): # volume in percentag [0-100] cmdstr = 'amixer set PCM %d%%' %volperc os.system(cmdstr) def run(self): global asr_server if (use_sound_play and self.soundhandle == None): self.soundhandle = SoundClient() time.sleep(3) self.setVolume(99) # set volume (99% = +3 dB) #print('bip') #self.play('bip') #time.sleep(3) self.say('Hello!', 'en') self.say('Audio server is running.', 'en') time.sleep(3) while (self.dorun): self.connect() try: # Receive the data in small chunks while (self.dorun): try: data = self.connection.recv(320) data = data.strip() except socket.timeout: data = "***" except: data = None if (data!=None and data !="" and data!="***"): if data!="ASR": print 'TTS Received [%s]' % data if (data.startswith('TTS')): lang = 'en-US' # default language strsay = data[4:] if (data[3]=='['): vd = re.split('\[|\]',data) lang = vd[1] strsay = vd[2] self.say(strsay,lang) self.reply('OK') elif (data=="ASR"): #print('asr request') bh = asr_server.get_asr() self.reply(bh) if bh!='': print('ASR sent [%s]' %bh) elif (data.startswith('SOUND')): self.play(data[6:]) # play this sound self.reply('OK') #print 'sending data back to the client' #self.connection.sendall("OK") else: print('Message not understood: %s' %data) self.reply('ERR') elif (data == None or data==""): break finally: print 'TTS Server Connection closed.' # Clean up the connection if (self.connection != None): self.connection.close() self.connection = None self.say('Audio server has been closed.', 'en') time.sleep(2) self.aa_stream = None def say(self, data, lang): print 'Say ',data if (use_sound_play): voice = 'voice_kal_diphone' volume = 1.0 print 'Saying: %s' % data print 'Voice: %s' % voice print 'Volume: %s' % volume self.soundhandle.say(data, voice, volume) rospy.sleep(3) elif (use_alsaaudio): cachefile = 'cache'+str(self.idcache) self.idcache = (self.idcache+1)%10 tmpfile = "/tmp/cache.wav" ofile = "%s%s.wav" %(SOUNDS_DIR, cachefile) cmd = 'rm %s %s' %(tmpfile, ofile) os.system(cmd) if (lang=='en'): lang = 'en-US' elif (len(lang)==2): lang = lang+'-'+lang.upper() time.sleep(0.2) cmd = 'pico2wave -l "%s" -w %s " , %s"' %(lang,tmpfile, data) print cmd os.system(cmd) time.sleep(0.2) # convert samplerate tfm = sox.Transformer() tfm.rate(samplerate=self.audio_rate) tfm.build(tmpfile, ofile) time.sleep(0.2) self.play(cachefile) else: print('Cannot play audio. No infrastructure available.') def play(self, name): if (use_alsaaudio): print('Playing %s ...' %name) soundfile = None i = 0 while (i<3): #((not name in self.Sounds) and (i<3)): try: soundfile = wave.open(SOUNDS_DIR+name+".wav", 'rb') #self.Sounds[name] = soundfile except: print "File %s%s.wav not found." %(SOUNDS_DIR,name) time.sleep(1) i += 1 if (soundfile != None and use_alsaaudio): #(name in self.Sounds): self.playwav_aa(soundfile) print('Play completed.') def playwav_aa(self, soundfile): soundfile.setpos(0) data = soundfile.readframes(self.periodsize) while (len(data)>0): # print('stream data %d' %(len(data))) if self.aa_stream != None: self.aa_stream.write(data) data = soundfile.readframes(self.periodsize) # def playwav_pa(self, sfile): # global soundfile # self.streaming = True # self.stream = self.pa.open(format = 8, #self.pa.get_format_from_width(f.getsampwidth#()), # channels = 1, #f.getnchannels(), # rate = 44100, #f.getframerate(), # output = True, # stream_callback = TTS_callback, # output_device_index = self.output_device) # soundfile = sfile # soundfile.setpos(0) # self.stream.start_stream() # while self.stream.is_active(): # time.sleep(1.0) # self.stream.stop_stream() # self.stream.close() # self.streaming = False if __name__ == "__main__": parser = argparse.ArgumentParser(description='audio_server') parser.add_argument('-ttsport', type=int, help='TTS server port [default: 9001]', default=9001) parser.add_argument('-asrport', type=int, help='ASR server port [default: 9002]', default=9002) parser.add_argument('-device', type=str, help='audio device [default: \'sysdefault\']', default='sysdefault') args = parser.parse_args() tts_server = TTSServer(args.ttsport,args.device) asr_server = ASRServer(args.asrport) tts_server.start() time.sleep(1) asr_server.start() run = True while (run): try: time.sleep(3) #if (not tts_server.streaming): # cmd = 'play -n --no-show-progress -r 44100 -c1 synth 0.1 sine 50 vol 0.01' # keep sound alive # os.system(cmd) except KeyboardInterrupt: print "Exit" run = False tts_server.stop() asr_server.stop() sys.exit(0)
2.359375
2
torchvision/datasets/kinetics.py
sh1doy/vision
0
1005
from .video_utils import VideoClips from .utils import list_dir from .folder import make_dataset from .vision import VisionDataset class Kinetics400(VisionDataset): """ `Kinetics-400 <https://deepmind.com/research/open-source/open-source-datasets/kinetics/>`_ dataset. Kinetics-400 is an action recognition video dataset. This dataset consider every video as a collection of video clips of fixed size, specified by ``frames_per_clip``, where the step in frames between each clip is given by ``step_between_clips``. To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5`` and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two elements will come from video 1, and the next three elements from video 2. Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all frames in a video might be present. Internally, it uses a VideoClips object to handle clip creation. Args: root (string): Root directory of the Kinetics-400 Dataset. frames_per_clip (int): number of frames in a clip step_between_clips (int): number of frames between each clip transform (callable, optional): A function/transform that takes in a TxHxWxC video and returns a transformed version. Returns: video (Tensor[T, H, W, C]): the `T` video frames audio(Tensor[K, L]): the audio frames, where `K` is the number of channels and `L` is the number of points label (int): class of the video clip """ def __init__(self, root, frames_per_clip, step_between_clips=1, frame_rate=None, extensions=('avi',), transform=None, _precomputed_metadata=None): super(Kinetics400, self).__init__(root) extensions = ('avi',) classes = list(sorted(list_dir(root))) class_to_idx = {classes[i]: i for i in range(len(classes))} self.samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file=None) self.classes = classes video_list = [x[0] for x in self.samples] self.video_clips = VideoClips( video_list, frames_per_clip, step_between_clips, frame_rate, _precomputed_metadata, ) self.transform = transform def __len__(self): return self.video_clips.num_clips() def __getitem__(self, idx): video, audio, info, video_idx = self.video_clips.get_clip(idx) label = self.samples[video_idx][1] if self.transform is not None: video = self.transform(video) return video, audio, label
3.015625
3
venv/lib/python2.7/site-packages/sphinx/builders/qthelp.py
CharleyFarley/ovvio
0
1006
<reponame>CharleyFarley/ovvio<gh_stars>0 # -*- coding: utf-8 -*- """ sphinx.builders.qthelp ~~~~~~~~~~~~~~~~~~~~~~ Build input files for the Qt collection generator. :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ import os import re import codecs import posixpath from os import path from six import text_type from docutils import nodes from sphinx import addnodes from sphinx.builders.html import StandaloneHTMLBuilder from sphinx.util import force_decode from sphinx.util.pycompat import htmlescape _idpattern = re.compile( r'(?P<title>.+) (\((class in )?(?P<id>[\w\.]+)( (?P<descr>\w+))?\))$') # Qt Help Collection Project (.qhcp). # Is the input file for the help collection generator. # It contains references to compressed help files which should be # included in the collection. # It may contain various other information for customizing Qt Assistant. collection_template = u'''\ <?xml version="1.0" encoding="utf-8" ?> <QHelpCollectionProject version="1.0"> <assistant> <title>%(title)s</title> <homePage>%(homepage)s</homePage> <startPage>%(startpage)s</startPage> </assistant> <docFiles> <generate> <file> <input>%(outname)s.qhp</input> <output>%(outname)s.qch</output> </file> </generate> <register> <file>%(outname)s.qch</file> </register> </docFiles> </QHelpCollectionProject> ''' # Qt Help Project (.qhp) # This is the input file for the help generator. # It contains the table of contents, indices and references to the # actual documentation files (*.html). # In addition it defines a unique namespace for the documentation. project_template = u'''\ <?xml version="1.0" encoding="utf-8" ?> <QtHelpProject version="1.0"> <namespace>%(namespace)s</namespace> <virtualFolder>doc</virtualFolder> <customFilter name="%(project)s %(version)s"> <filterAttribute>%(outname)s</filterAttribute> <filterAttribute>%(version)s</filterAttribute> </customFilter> <filterSection> <filterAttribute>%(outname)s</filterAttribute> <filterAttribute>%(version)s</filterAttribute> <toc> <section title="%(title)s" ref="%(masterdoc)s.html"> %(sections)s </section> </toc> <keywords> %(keywords)s </keywords> <files> %(files)s </files> </filterSection> </QtHelpProject> ''' section_template = '<section title="%(title)s" ref="%(ref)s"/>' file_template = ' '*12 + '<file>%(filename)s</file>' class QtHelpBuilder(StandaloneHTMLBuilder): """ Builder that also outputs Qt help project, contents and index files. """ name = 'qthelp' # don't copy the reST source copysource = False supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg'] # don't add links add_permalinks = False # don't add sidebar etc. embedded = True def init(self): StandaloneHTMLBuilder.init(self) # the output files for HTML help must be .html only self.out_suffix = '.html' # self.config.html_style = 'traditional.css' def handle_finish(self): self.build_qhp(self.outdir, self.config.qthelp_basename) def build_qhp(self, outdir, outname): self.info('writing project file...') # sections tocdoc = self.env.get_and_resolve_doctree(self.config.master_doc, self, prune_toctrees=False) def istoctree(node): return isinstance(node, addnodes.compact_paragraph) and \ 'toctree' in node sections = [] for node in tocdoc.traverse(istoctree): sections.extend(self.write_toc(node)) for indexname, indexcls, content, collapse in self.domain_indices: item = section_template % {'title': indexcls.localname, 'ref': '%s.html' % indexname} sections.append(' ' * 4 * 4 + item) # sections may be unicode strings or byte strings, we have to make sure # they are all unicode strings before joining them new_sections = [] for section in sections: if not isinstance(section, text_type): new_sections.append(force_decode(section, None)) else: new_sections.append(section) sections = u'\n'.join(new_sections) # keywords keywords = [] index = self.env.create_index(self, group_entries=False) for (key, group) in index: for title, (refs, subitems, key_) in group: keywords.extend(self.build_keywords(title, refs, subitems)) keywords = u'\n'.join(keywords) # files if not outdir.endswith(os.sep): outdir += os.sep olen = len(outdir) projectfiles = [] staticdir = path.join(outdir, '_static') imagesdir = path.join(outdir, self.imagedir) for root, dirs, files in os.walk(outdir): resourcedir = root.startswith(staticdir) or \ root.startswith(imagesdir) for fn in files: if (resourcedir and not fn.endswith('.js')) or \ fn.endswith('.html'): filename = path.join(root, fn)[olen:] projectfiles.append(file_template % {'filename': htmlescape(filename)}) projectfiles = '\n'.join(projectfiles) # it seems that the "namespace" may not contain non-alphanumeric # characters, and more than one successive dot, or leading/trailing # dots, are also forbidden nspace = 'org.sphinx.%s.%s' % (outname, self.config.version) nspace = re.sub('[^a-zA-Z0-9.]', '', nspace) nspace = re.sub(r'\.+', '.', nspace).strip('.') nspace = nspace.lower() # write the project file f = codecs.open(path.join(outdir, outname+'.qhp'), 'w', 'utf-8') try: f.write(project_template % { 'outname': htmlescape(outname), 'title': htmlescape(self.config.html_title), 'version': htmlescape(self.config.version), 'project': htmlescape(self.config.project), 'namespace': htmlescape(nspace), 'masterdoc': htmlescape(self.config.master_doc), 'sections': sections, 'keywords': keywords, 'files': projectfiles}) finally: f.close() homepage = 'qthelp://' + posixpath.join( nspace, 'doc', self.get_target_uri(self.config.master_doc)) startpage = 'qthelp://' + posixpath.join(nspace, 'doc', 'index.html') self.info('writing collection project file...') f = codecs.open(path.join(outdir, outname+'.qhcp'), 'w', 'utf-8') try: f.write(collection_template % { 'outname': htmlescape(outname), 'title': htmlescape(self.config.html_short_title), 'homepage': htmlescape(homepage), 'startpage': htmlescape(startpage)}) finally: f.close() def isdocnode(self, node): if not isinstance(node, nodes.list_item): return False if len(node.children) != 2: return False if not isinstance(node.children[0], addnodes.compact_paragraph): return False if not isinstance(node.children[0][0], nodes.reference): return False if not isinstance(node.children[1], nodes.bullet_list): return False return True def write_toc(self, node, indentlevel=4): # XXX this should return a Unicode string, not a bytestring parts = [] if self.isdocnode(node): refnode = node.children[0][0] link = refnode['refuri'] title = htmlescape(refnode.astext()).replace('"', '&quot;') item = '<section title="%(title)s" ref="%(ref)s">' % \ {'title': title, 'ref': link} parts.append(' '*4*indentlevel + item) for subnode in node.children[1]: parts.extend(self.write_toc(subnode, indentlevel+1)) parts.append(' '*4*indentlevel + '</section>') elif isinstance(node, nodes.list_item): for subnode in node: parts.extend(self.write_toc(subnode, indentlevel)) elif isinstance(node, nodes.reference): link = node['refuri'] title = htmlescape(node.astext()).replace('"', '&quot;') item = section_template % {'title': title, 'ref': link} item = u' ' * 4 * indentlevel + item parts.append(item.encode('ascii', 'xmlcharrefreplace')) elif isinstance(node, nodes.bullet_list): for subnode in node: parts.extend(self.write_toc(subnode, indentlevel)) elif isinstance(node, addnodes.compact_paragraph): for subnode in node: parts.extend(self.write_toc(subnode, indentlevel)) return parts def keyword_item(self, name, ref): matchobj = _idpattern.match(name) if matchobj: groupdict = matchobj.groupdict() shortname = groupdict['title'] id = groupdict.get('id') # descr = groupdict.get('descr') if shortname.endswith('()'): shortname = shortname[:-2] id = '%s.%s' % (id, shortname) else: id = None if id: item = ' '*12 + '<keyword name="%s" id="%s" ref="%s"/>' % ( name, id, ref[1]) else: item = ' '*12 + '<keyword name="%s" ref="%s"/>' % (name, ref[1]) item.encode('ascii', 'xmlcharrefreplace') return item def build_keywords(self, title, refs, subitems): keywords = [] title = htmlescape(title) # if len(refs) == 0: # XXX # write_param('See Also', title) if len(refs) == 1: keywords.append(self.keyword_item(title, refs[0])) elif len(refs) > 1: for i, ref in enumerate(refs): # XXX # item = (' '*12 + # '<keyword name="%s [%d]" ref="%s"/>' % ( # title, i, ref)) # item.encode('ascii', 'xmlcharrefreplace') # keywords.append(item) keywords.append(self.keyword_item(title, ref)) if subitems: for subitem in subitems: keywords.extend(self.build_keywords(subitem[0], subitem[1], [])) return keywords
1.59375
2
scripts/scrape_sciencedirect_urls.py
UWPRG/BETO2020
4
1007
""" This code is used to scrape ScienceDirect of publication urls and write them to a text file in the current directory for later use. """ import selenium from selenium import webdriver import numpy as np import pandas as pd import bs4 from bs4 import BeautifulSoup import time from sklearn.utils import shuffle def scrape_page(driver): """ This method finds all the publication result web elements on the webpage. Parameters ---------- driver (Selenium webdriver object) : Instance of the webdriver class e.g. webdriver.Chrome() Returns ------- elems (list) : A list of all scraped hrefs from the page """ elems = driver.find_elements_by_class_name('ResultItem') return elems def clean(elems): """ This method takes a list of scraped selenium web elements and filters/ returns only the hrefs leading to publications. Filtering includes removing all urls with keywords that are indicative of non-html links. Parameters ---------- elems (list) : The list of hrefs to be filtered Returns ------- urls (list) : The new list of hrefs, which should be the same as the list displayed on gui ScienceDirect """ titles = [] urls = [] for elem in elems: href_child = elem.find_element_by_css_selector('a[href]') url = href_child.get_attribute('href') title = href_child.text titles.append(title) urls.append(url) return urls, titles def build_url_list(gui_prefix,search_terms,journal_list): """ This method takes the list of journals and creates a tiple nested dictionary containing all accessible urls to each page, in each year, for each journal, for a given search on sciencedirect. """ dict1 = {} years = np.arange(1995,2020) for journal in journal_list: dict2 = {} for year in years: dict3 = {} for i in range(60): url = gui_prefix + search_terms + '&show=100'+ '&articleTypes=FLA%2CREV' + '&years='+ str(year) if i != 0: url = url + '&offset=' + str(i) +'00' url = url + '&pub=' + journal dict3[i] = url dict2[year] = dict3 dict1[journal] = dict2 return dict1 def proxify(scraped_urls,uw_prefix): """ This method takes a list of scraped urls and turns them into urls that go through the UW Library proxy so that all of them are full access. Parameters ---------- scraped_urls (list) : The list of URLs to be converted uw_prefix (str) : The string that all URLs which go through the UW Library Proxy start with. Returns ------- proxy_urls (list) : The list of converted URLs which go through UW Library proxy """ proxy_urls = [] for url in scraped_urls: sd_id = url[-17:] newlink = uw_prefix + sd_id if sd_id.startswith('S'): proxy_urls.append(newlink) return proxy_urls def write_urls(urls,titles,file,journal,year): """ This method takes a list of urls and writes them to a desired text file. Parameters ---------- urls (list) : The list of URLs to be saved. file (file object) : The opened .txt file which will be written to. year (str or int) : The year associated with the publication date. Returns ------- Does not return anything """ for link,title in zip(urls,titles): line = link + ',' + title + ',' + journal + ',' + str(year) file.write(line) file.write('\n') def find_pubTitle(driver,journal): """ This method finds the identifying number for a specific journal. This identifying number is added to the gui query URL to ensure only publciations from the desired journal are being found. """ pub_elems = driver.find_elements_by_css_selector('input[id*=publicationTitles]') pub_names = [] for elem in pub_elems: pub_name = elem.get_attribute("name") if pub_name == journal: return elem.get_attribute('id')[-6:] #returns the identifying number #for that journal df = pd.read_excel('elsevier_journals.xls') df.Full_Category = df.Full_Category.str.lower() # lowercase topics for searching df = df.drop_duplicates(subset = 'Journal_Title') # drop any duplicate journals df = shuffle(df,random_state = 42) # The set of default strings that will be used to sort which journals we want journal_strings = ['chemistry','energy','molecular','atomic','chemical','biochem' ,'organic','polymer','chemical engineering','biotech','coloid'] name = df.Full_Category.str.contains # making this an easier command to type # new dataframe full of only journals who's topic description contained the # desired keywords df2 = df[name('polymer') | name('chemistry') | name('energy') | name('molecular') | name('colloid') | name('biochem') | name('organic') | name('biotech') | name('chemical')] journal_list = df2.Journal_Title # Series of only the journals to be searched gui_prefix = 'https://www.sciencedirect.com/search/advanced?qs=' search_terms = 'chemistry%20OR%20molecule%20OR%20polymer%20OR%20organic' url_dict = build_url_list(gui_prefix,search_terms,journal_list) driver = webdriver.Chrome() uw_prefix = 'https://www-sciencedirect-com.offcampus.lib.washington.edu/science/article/pii/' filename = input("Input filename with .txt extension for URL storage: ") url_counter = 0 master_list = [] file = open(filename,'a+') for journal in journal_list: for year in np.arange(1995,2020): for offset in np.arange(60): page = url_dict[journal][year][offset] print("journal, year, offset = ",journal,year,offset) driver.get(page) time.sleep(2) # need sleep to load the page properly if offset == 0: # if on page 1, we need to grab the publisher number try: # we may be at a page which won't have the item we are looking for pubTitles = find_pubTitle(driver,journal_list[journal_counter]) for url in url_dict[journal]: url = url + '&pubTitles=' + pubTitles # update every url in the list driver.get(url_dict[journal][year][0]) # reload the first page with the new url except: pass # if there is an exception, it means we are on the right page scraped_elems = scrape_page(driver) # scrape the page scraped_urls, titles = clean(scraped_elems) proxy_urls = proxify(scraped_urls,uw_prefix) # not even sure this is needed write_urls(proxy_urls,titles,file,journal,year) url_counter += len(proxy_urls) print('Total URLs saved is: ',url_counter) if len(scraped_elems) < 100: # after content is saved, go to the next year break # because we know this is the last page of urls for this year file.close() driver.quit()
3.515625
4
superset/typing.py
GodelTech/superset
7
1008
<filename>superset/typing.py<gh_stars>1-10 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from datetime import datetime from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union from flask import Flask from flask_caching import Cache from werkzeug.wrappers import Response CacheConfig = Union[Callable[[Flask], Cache], Dict[str, Any]] DbapiDescriptionRow = Tuple[ str, str, Optional[str], Optional[str], Optional[int], Optional[int], bool ] DbapiDescription = Union[List[DbapiDescriptionRow], Tuple[DbapiDescriptionRow, ...]] DbapiResult = Sequence[Union[List[Any], Tuple[Any, ...]]] FilterValue = Union[datetime, float, int, str] FilterValues = Union[FilterValue, List[FilterValue], Tuple[FilterValue]] FormData = Dict[str, Any] Granularity = Union[str, Dict[str, Union[str, float]]] AdhocMetric = Dict[str, Any] Metric = Union[AdhocMetric, str] OrderBy = Tuple[Metric, bool] QueryObjectDict = Dict[str, Any] VizData = Optional[Union[List[Any], Dict[Any, Any]]] VizPayload = Dict[str, Any] # Flask response. Base = Union[bytes, str] Status = Union[int, str] Headers = Dict[str, Any] FlaskResponse = Union[ Response, Base, Tuple[Base, Status], Tuple[Base, Status, Headers], ]
1.835938
2
log_system_information.py
ibaiGorordo/depthai
476
1009
#!/usr/bin/env python3 import json import platform def make_sys_report(anonymous=False, skipUsb=False, skipPackages=False): def get_usb(): try: import usb.core except ImportError: yield "NoLib" return speeds = ["Unknown", "Low", "Full", "High", "Super", "SuperPlus"] format_hex = lambda val: f"{val:#0{6}x}" try: for dev in usb.core.find(find_all=True): yield { "port": dev.port_number, "vendor_id": format_hex(dev.idVendor), "product_id": format_hex(dev.idProduct), "speed": speeds[dev.speed] if dev.speed < len(speeds) else dev.speed } except usb.core.NoBackendError: yield "No USB backend found" result = { "architecture": ' '.join(platform.architecture()).strip(), "machine": platform.machine(), "platform": platform.platform(), "processor": platform.processor(), "python_build": ' '.join(platform.python_build()).strip(), "python_compiler": platform.python_compiler(), "python_implementation": platform.python_implementation(), "python_version": platform.python_version(), "release": platform.release(), "system": platform.system(), "version": platform.version(), "win32_ver": ' '.join(platform.win32_ver()).strip(), } if not skipPackages: from pip._internal.operations.freeze import freeze result["packages"] = list(freeze(local_only=True)) if not skipUsb: result["usb"] = list(get_usb()) if not anonymous: result["uname"] = ' '.join(platform.uname()).strip(), return result if __name__ == "__main__": data = make_sys_report() with open("log_system_information.json", "w") as f: json.dump(data, f, indent=4) print(json.dumps(data, indent=4)) print("System info gathered successfully - saved as \"log_system_information.json\"")
2.375
2
patch.py
silverhikari/romtools
5
1010
""" Utils for creating xdelta patches. """ import logging from subprocess import check_output, CalledProcessError from shutil import copyfile from os import remove, path class PatchChecksumError(Exception): def __init__(self, message, errors): super(PatchChecksumError, self).__init__(message) class Patch: # TODO: Abstract out the need for "edited" by just copying the original # file. def __init__(self, original, filename, edited=None, xdelta_dir='.'): self.original = original self.edited = edited self.filename = filename # Need to have this absolute path for xdelta3 to be found. self.xdelta_path = path.join(xdelta_dir, 'xdelta3') # self.xdelta_path = 'xdelta3' def create(self): if self.edited is None: raise Exception cmd = [ self.xdelta_path, '-f', '-s', self.original, self.edited, self.filename, ] print(cmd) logging.info(cmd) try: check_output(cmd) except CalledProcessError as e: raise Exception(e.output) def apply(self): if not self.edited: copyfile(self.original, self.original + "_temp") self.edited = self.original self.original = self.original + "_temp" cmd = [ self.xdelta_path, '-f', '-d', '-s', self.original, self.filename, self.edited, ] logging.info(cmd) try: check_output(cmd) except CalledProcessError: raise PatchChecksumError('Target file had incorrect checksum', []) finally: if self.original.endswith('_temp'): remove(self.original)
2.71875
3
enigma.py
fewieden/Enigma-Machine
1
1011
from rotor import Rotor import sys import getopt class Enigma: def __init__(self, key, rotors): self.key = list(key) self.rotors = [] for i in range(0, len(rotors)): self.rotors.append(Rotor(self.key[i], rotors[i])) def encrypt(self, word): cipher = '' for i, char in enumerate(word.upper()): distance = self.rotors[i % 2].get_distance(char) cipher += self.rotors[2].rotate((i + 1) % 2, distance) return cipher def decrypt(self, cipher): word = '' for i, char in enumerate(cipher.upper()): distance = self.rotors[2].get_distance(char) word += self.rotors[i % 2].rotate((i + 1) % 2, distance) return word def print_help(): print("\ncommand line arguments:\n" + "-h/--help: all possible options\n" + "-k/--key KEY: rotor starting key\n" + "-p/--phrase Phrase: phrase to encrypt/decrypt\n" + "-d/--decrypt: enables decrypt default is encrypt\n" + "--r1 ROTOR: sets rotor 1\n" + "--r2 ROTOR: sets rotor 2\n" + "--r3 ROTOR: sets rotor 3\n" + "possible rotors are 50, 51, 60, 61, 70 and 71\n") def main(argv): try: opts, args = getopt.getopt(argv, "hk:p:d", ["help", "key=", "phrase", "decrypt", "r1=", "r2=", "r3="]) except getopt.GetoptError: print_help() sys.exit(2) key = '' phrase = '' encrypt = True rotors = ['', '', ''] for opt, arg in opts: if opt in ("-h", "--help"): print_help() sys.exit() elif opt in ("-k", "--key"): key = arg elif opt in ("-p", "--phrase"): phrase = arg elif opt in ("-d", "--decrypt"): encrypt = False elif opt == "--r1": rotors[0] = arg elif opt == "--r2": rotors[1] = arg elif opt == "--r3": rotors[2] = arg if not key == '' and not phrase == '' and not rotors[0] == ''\ and not rotors[1] == '' and not rotors[2] == '': machine = Enigma(key, rotors) if encrypt: print(machine.encrypt(phrase)) else: print(machine.decrypt(phrase)) else: print_help() if __name__ == '__main__': main(sys.argv[1:])
3.328125
3
andersoncd/group.py
idc9/andersoncd
0
1012
<gh_stars>0 import time import numpy as np from scipy import sparse from numba import njit from numpy.linalg import norm from scipy.sparse.linalg import svds from andersoncd.lasso import dual_lasso def primal_grp(R, w, alpha, grp_size): return (0.5 * norm(R) ** 2 + alpha * norm(w.reshape(-1, grp_size), axis=1).sum()) @njit def BST(x, u): """Block soft-thresholding of vector x at level u.""" norm_x = norm(x) if norm_x < u: return np.zeros_like(x) else: return (1 - u / norm_x) * x def BST_vec(x, u, grp_size): norm_grp = norm(x.reshape(-1, grp_size), axis=1) scaling = np.maximum(1 - u / norm_grp, 0) return (x.reshape(-1, grp_size) * scaling[:, None]).reshape(x.shape[0]) @njit def _bcd(X, w, R, alpha, lc, groups): grp_size = w.shape[0] // lc.shape[0] for g in groups: grp = slice(g * grp_size, (g + 1) * grp_size) Xg = X[:, grp] old_w_g = w[grp].copy() w[grp] = BST(old_w_g + Xg.T @ R / lc[g], alpha / lc[g]) if norm(w[grp] - old_w_g) != 0: R += np.sum((old_w_g - w[grp]) * Xg, axis=1) @njit def _bcd_sparse( X_data, X_indices, X_indptr, w, R, alpha, lc): grp_size = w.shape[0] // lc.shape[0] grad = np.zeros(grp_size) for g in range(lc.shape[0]): grad.fill(0) grp = slice(g * grp_size, (g + 1) * grp_size) for j in range(grp_size * g, grp_size * (g + 1)): for ix in range(X_indptr[j], X_indptr[j + 1]): grad[j % g] += X_data[ix] * R[X_indices[ix]] old_w_g = w[grp].copy() w[grp] = BST(old_w_g + grad / lc[g], alpha / lc[g]) if norm(w[grp] - old_w_g) != 0: for j in range(g * grp_size, (g + 1) * grp_size): for ix in range(X_indptr[j], X_indptr[j + 1]): R[X_indices[ix]] += (old_w_g[j % grp_size] - w[j % grp_size]) * X_data[ix] def solver_group( X, y, alpha, grp_size, max_iter=10000, tol=1e-4, f_gap=10, K=5, use_acc=False, algo='bcd', compute_time=False, tmax=np.infty, verbose=True): """Solve the GroupLasso with BCD/ISTA/FISTA, eventually with extrapolation. Groups are contiguous, of size grp_size. Objective: norm(y - Xw, ord=2)**2 / 2 + alpha * sum_g ||w_{[g]}||_2 TODO: filled docstring Parameters: algo: string 'bcd', 'pgd', 'fista' compute_time : bool, default=False If you want to compute timings or not tmax : float, default=1000 Maximum time (in seconds) the algorithm is allowed to run alpha: strength of the group penalty """ is_sparse = sparse.issparse(X) n_features = X.shape[1] if n_features % grp_size != 0: raise ValueError("n_features is not a multiple of group size") n_groups = n_features // grp_size _range = np.arange(n_groups) groups = dict( bcd=lambda: _range, bcdshuf=lambda: np.random.choice(n_groups, n_groups, replace=False), rbcd=lambda: np.random.choice(n_groups, n_groups, replace=True)) if not is_sparse and not np.isfortran(X): X = np.asfortranarray(X) last_K_w = np.zeros([K + 1, n_features]) U = np.zeros([K, n_features]) if algo in ('pgd', 'fista'): if is_sparse: L = svds(X, k=1)[1][0] ** 2 else: L = norm(X, ord=2) ** 2 lc = np.zeros(n_groups) for g in range(n_groups): X_g = X[:, g * grp_size: (g + 1) * grp_size] if is_sparse: gram = (X_g.T @ X_g).todense() lc[g] = norm(gram, ord=2) else: lc[g] = norm(X_g, ord=2) ** 2 w = np.zeros(n_features) if algo == 'fista': z = np.zeros(n_features) t_new = 1 R = y.copy() E = [] gaps = np.zeros(max_iter // f_gap) if compute_time: times = [] t_start = time.time() for it in range(max_iter): if it % f_gap == 0: if algo == 'fista': R = y - X @ w p_obj = primal_grp(R, w, alpha, grp_size) E.append(p_obj) theta = R / alpha if compute_time: elapsed_times = time.time() - t_start times.append(elapsed_times) if verbose: print("elapsed time: %f " % elapsed_times) if elapsed_times > tmax: break d_norm_theta = np.max( norm((X.T @ theta).reshape(-1, grp_size), axis=1)) if d_norm_theta > 1.: theta /= d_norm_theta d_obj = dual_lasso(y, theta, alpha) gap = p_obj - d_obj if verbose: print("Iteration %d, p_obj::%.5f, d_obj::%.5f, gap::%.2e" % (it, p_obj, d_obj, gap)) gaps[it // f_gap] = gap if gap < tol: print("Early exit") break if algo.endswith('bcd'): if is_sparse: _bcd_sparse( X.data, X.indices, X.indptr, w, R, alpha, lc) else: _bcd(X, w, R, alpha, lc, groups[algo]()) elif algo == 'pgd': w[:] = BST_vec(w + X.T @ R / L, alpha / L, grp_size) R[:] = y - X @ w elif algo == 'fista': w_old = w.copy() w[:] = BST_vec(z - X.T @ (X @ z - y) / L, alpha / L, grp_size) t_old = t_new t_new = (1. + np.sqrt(1 + 4 * t_old ** 2)) / 2. z[:] = w + (t_old - 1.) / t_new * (w - w_old) else: raise ValueError("Unknown algo %s" % algo) if use_acc: if it < K + 1: last_K_w[it] = w else: for k in range(K): last_K_w[k] = last_K_w[k + 1] last_K_w[K - 1] = w for k in range(K): U[k] = last_K_w[k + 1] - last_K_w[k] C = np.dot(U, U.T) try: z = np.linalg.solve(C, np.ones(K)) c = z / z.sum() w_acc = np.sum(last_K_w[:-1] * c[:, None], axis=0) p_obj = primal_grp(R, w, alpha, grp_size) R_acc = y - X @ w_acc p_obj_acc = primal_grp(R_acc, w_acc, alpha, grp_size) if p_obj_acc < p_obj: w = w_acc R = R_acc except np.linalg.LinAlgError: if verbose: print("----------Linalg error") if compute_time: return w, np.array(E), gaps[:it // f_gap + 1], times return w, np.array(E), gaps[:it // f_gap + 1]
2.296875
2
textattack/search_methods/greedy_word_swap_wir.py
dheerajrav/TextAttack
0
1013
""" Greedy Word Swap with Word Importance Ranking =================================================== When WIR method is set to ``unk``, this is a reimplementation of the search method from the paper: Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment by Jin et. al, 2019. See https://arxiv.org/abs/1907.11932 and https://github.com/jind11/TextFooler. """ import numpy as np import torch from torch.nn.functional import softmax from textattack.goal_function_results import GoalFunctionResultStatus from textattack.search_methods import SearchMethod from textattack.shared.validators import ( transformation_consists_of_word_swaps_and_deletions, ) class GreedyWordSwapWIR(SearchMethod): """An attack that greedily chooses from a list of possible perturbations in order of index, after ranking indices by importance. Args: wir_method: method for ranking most important words """ def __init__(self, wir_method="unk"): self.wir_method = wir_method def _get_index_order(self, initial_text): """Returns word indices of ``initial_text`` in descending order of importance.""" len_text = len(initial_text.words) if self.wir_method == "unk": leave_one_texts = [ initial_text.replace_word_at_index(i, "[UNK]") for i in range(len_text) ] leave_one_results, search_over = self.get_goal_results(leave_one_texts) index_scores = np.array([result.score for result in leave_one_results]) elif self.wir_method == "weighted-saliency": # first, compute word saliency leave_one_texts = [ initial_text.replace_word_at_index(i, "[UNK]") for i in range(len_text) ] leave_one_results, search_over = self.get_goal_results(leave_one_texts) saliency_scores = np.array([result.score for result in leave_one_results]) softmax_saliency_scores = softmax( torch.Tensor(saliency_scores), dim=0 ).numpy() # compute the largest change in score we can find by swapping each word delta_ps = [] for idx in range(len_text): transformed_text_candidates = self.get_transformations( initial_text, original_text=initial_text, indices_to_modify=[idx], ) if not transformed_text_candidates: # no valid synonym substitutions for this word delta_ps.append(0.0) continue swap_results, _ = self.get_goal_results(transformed_text_candidates) score_change = [result.score for result in swap_results] max_score_change = np.max(score_change) delta_ps.append(max_score_change) index_scores = softmax_saliency_scores * np.array(delta_ps) elif self.wir_method == "delete": leave_one_texts = [ initial_text.delete_word_at_index(i) for i in range(len_text) ] leave_one_results, search_over = self.get_goal_results(leave_one_texts) index_scores = np.array([result.score for result in leave_one_results]) elif self.wir_method == "random": index_order = np.arange(len_text) np.random.shuffle(index_order) search_over = False else: raise ValueError(f"Unsupported WIR method {self.wir_method}") if self.wir_method != "random": index_order = (-index_scores).argsort() return index_order, search_over def _perform_search(self, initial_result): attacked_text = initial_result.attacked_text # Sort words by order of importance index_order, search_over = self._get_index_order(attacked_text) i = 0 cur_result = initial_result results = None while i < len(index_order) and not search_over: transformed_text_candidates = self.get_transformations( cur_result.attacked_text, original_text=initial_result.attacked_text, indices_to_modify=[index_order[i]], ) i += 1 if len(transformed_text_candidates) == 0: continue results, search_over = self.get_goal_results(transformed_text_candidates) results = sorted(results, key=lambda x: -x.score) # Skip swaps which don't improve the score if results[0].score > cur_result.score: cur_result = results[0] else: continue # If we succeeded, return the index with best similarity. if cur_result.goal_status == GoalFunctionResultStatus.SUCCEEDED: best_result = cur_result # @TODO: Use vectorwise operations max_similarity = -float("inf") for result in results: if result.goal_status != GoalFunctionResultStatus.SUCCEEDED: break candidate = result.attacked_text try: similarity_score = candidate.attack_attrs["similarity_score"] except KeyError: # If the attack was run without any similarity metrics, # candidates won't have a similarity score. In this # case, break and return the candidate that changed # the original score the most. break if similarity_score > max_similarity: max_similarity = similarity_score best_result = result return best_result return cur_result def check_transformation_compatibility(self, transformation): """Since it ranks words by their importance, GreedyWordSwapWIR is limited to word swap and deletion transformations.""" return transformation_consists_of_word_swaps_and_deletions(transformation) def extra_repr_keys(self): return ["wir_method"]
3.484375
3
lemur/deployment/service.py
rajatsharma94/lemur
1,656
1014
from lemur import database def rotate_certificate(endpoint, new_cert): """ Rotates a certificate on a given endpoint. :param endpoint: :param new_cert: :return: """ # ensure that certificate is available for rotation endpoint.source.plugin.update_endpoint(endpoint, new_cert) endpoint.certificate = new_cert database.update(endpoint)
2.65625
3
pype/celery.py
h2020-westlife-eu/VRE
1
1015
# coding: utf-8 # Copyright Luna Technology 2015 # <NAME> <<EMAIL>> from __future__ import absolute_import import os from celery import Celery # Set the default Django settings module for the 'celery' program os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'pype.settings') from django.conf import settings from celery.signals import setup_logging @setup_logging.connect def configure_logging(sender=None, **kwargs): import logging import logging.config logging.config.dictConfig(settings.LOGGING) app = Celery('pype') app.config_from_object('django.conf:settings') app.autodiscover_tasks(lambda: settings.INSTALLED_APPS) @app.task(bind=True) def debug_task(self): print('Request: {0!r}'.format(self.request))
1.953125
2
train/general_train_example/1_parse.py
ss433s/sosweety
0
1016
<reponame>ss433s/sosweety<gh_stars>0 import os, sys import json # 获取当前路径, 通过anchor文件获取项目root路径 this_file_path = os.path.split(os.path.realpath(__file__))[0] this_path = this_file_path root_path = this_file_path while this_path: if os.path.exists(os.path.join(this_path, 'sosweety_root_anchor.py')): root_path = this_path break par_path = os.path.dirname(this_path) # print(par_path) if par_path == this_path: break else: this_path = par_path sys.path.append(root_path) from modules.sParser.sParser import sParser from modules.knowledgebase.kb import KnowledgeBase train_dir = 'data/train_zh_wiki' train_dir = os.path.join(root_path, train_dir) if not os.path.exists(train_dir): os.makedirs(train_dir) # 解析出parse result file parse_result_dir = 'parse_result' parse_result_dir = os.path.join(train_dir, parse_result_dir) if not os.path.exists(parse_result_dir): os.makedirs(parse_result_dir) pos_tags_file_name = 'pos_tags_file' pos_tags_file_path = os.path.join(parse_result_dir, pos_tags_file_name) KB = KnowledgeBase() parser = sParser(KB) with open(pos_tags_file_path, 'w') as pos_tags_file: # 打开语料文件 file_path = 'data/corpus/zh_wiki/wiki_test' file_path = os.path.join(root_path, file_path) file = open(file_path) line = file.readline() count = 0 while line: count += 1 if count % 5000 == 0: print('parsed %s sentence' % count) text = line.strip() try: ss_pos_tags = parser.text2ss_pos_tags(text) for pos_tags in ss_pos_tags: pos_tags_file.write(json.dumps(pos_tags, ensure_ascii=False) + '\n') except Exception: print('line %s decode error' % count) line = file.readline() file.close()
2.359375
2
ruleex/hypinv/model.py
rohancode/ruleex_modified
18
1017
from gtrain import Model import numpy as np import tensorflow as tf class NetForHypinv(Model): """ Implementaion of the crutial function for the HypINV algorithm. Warning: Do not use this class but implement its subclass, for example see FCNetForHypinv """ def __init__(self, weights): self.eval_session = None self.grad_session = None self.initial_x = None self.center = None self.weights = weights self.out_for_eval = None #(going to be filled in build_for_eval method) self.boundary_out_for_eval = None self.trained_x = None self.training_class_index = None self.x = None # tf variable for inversion (going to be filled in build method) self.x_for_eval = None self.out = None self.boundary_out = None # list of tf tensorf for each class of softmax class vs others output self.loss = None self.boundary_loss = None self.t = None #target self.boundary_t = None self.x1 = None # this attribute is used of purposes of modified loss function def __del__(self): # close arr sessions if self.eval_session: self.eval_session.close() if self.grad_session: self.grad_session.close() def set_initial_x(self, initial_x): # sets starting point for the search of the closest point self.initial_x = initial_x def set_center(self, center): # sets center point self.center = center / np.linalg.norm(center) def set_x1(self, x1): # sets x1 to which we want to found the cosest point x0 self.x1 = x1 def has_modified_loss(self): pass # if uses modified loss then it returns true def set_initial_x_in_session(self, x, session=None): # sets initial x in certain session if session is None: self.set_initial_x(x) else: pass # overide this method def eval(self, x): if len(x.shape) == 1: x = x.reshape((1,len(x))) if not self.eval_session: self.eval_session = tf.Session() with self.eval_session.as_default(): self.build_for_eval() self.eval_session.run(tf.global_variables_initializer()) return self.eval_session.run(self.out_for_eval, {self.x_for_eval: x}) def boundary_eval(self, x, class_index): # evaluates binary classificaitons class_index and other classes if not self.eval_session: self.eval_session = tf.Session() with self.eval_session.as_default(): self.build_for_eval() self.eval_session.run(tf.global_variables_initializer()) return self.eval_session.run(self.boundary_out_for_eval[class_index], {self.x_for_eval: x}) def get_boundary_gradient(self, x, class_index): # computes gradient of the boundary for specified class_index if not self.grad_session: self.grad_session = tf.Session() with self.grad_session.as_default(): self.build_for_eval() self.grad = list() for i in range(len(self.weights[0][-1][0])): self.grad.append(tf.gradients(self.boundary_out_for_eval[i], [self.x_for_eval])[0]) self.grad_x = self.x_for_eval return self.grad_session.run(self.grad[class_index], {self.grad_x: x}) def build_for_eval(self): # build model for evaluation pass #override this method (fill self.out_for_eval) def train_ended(self, session): self.trained_x = session.run(self.x) def build(self): # build model for training pass #override this method (fill self.x, self.out) def set_train_class(self, class_index): # sets class of the x1 self.training_class_index = class_index # overided methods from gtrain.Model def get_loss(self): if self.training_class_index is None: return self.loss else: return self.boundary_loss[self.training_class_index] def get_hits(self): return self.get_loss() def get_count(self): return self.get_loss() def get_train_summaries(self): return [] def get_dev_summaries(self): return [] def get_placeholders(self): if self.training_class_index is None: return [self.t] else: return [self.boundary_t] #________________________________________EXAMPLES_OF_NetForHypinv_CLASS_____________________________________________ class FCNetForHypinv(NetForHypinv): """ Implementation of multi layer perceptron to by used in HypINV rule extraction algorithm """ def __init__(self, weights, function=tf.sigmoid, use_modified_loss=False, mu = 0.01): """ :param weights: saved as [list of weights for layers][0 weight, 1 bias] :param function: tf function for propagation. For example tf.nn.sigmoid, tf.atan :param use_modified_loss: weather the modified loss should be used :param mu: factor of the penalty terms that specified the distance between x0 and x1 and the distance x1 from the boundary """ super(FCNetForHypinv, self).__init__(weights) self.function = function self.layer_sizes = [len(self.weights[0][0])] for bias in weights[1]: self.layer_sizes.append(len(bias)) self.num_classes = self.layer_sizes[-1] self.initial_x = np.zeros([1, self.layer_sizes[0]]) self.use_modified_loss = use_modified_loss self.mu = mu def build(self): with tf.name_scope("Input"): if self.center is not None: self.point_weights = tf.Variable(self.center.reshape((1, len(self.center))), dtype=tf.float64, trainable=False, name="Boundary_point") init_factor = self.center init_factor[init_factor!=0] = self.initial_x[init_factor!=0] / self.center[init_factor!=0] self.factor = tf.Variable(init_factor.reshape((1, len(self.center))), dtype=tf.float64, name="factor") else: self.point_weights = tf.Variable(self.initial_x.reshape((1, len(self.initial_x))), dtype=tf.float64, trainable=False, name="Boundary_point") self.factor = tf.Variable(np.ones((1, len(self.center))), dtype=tf.float64, name="factor") self.x = self.point_weights * self.factor with tf.name_scope("Target"): if self.use_modified_loss: x1_constant = tf.constant(self.x1.reshape((1, len(self.x1))), dtype=tf.float64) self.t = tf.placeholder(tf.float64, shape=[None, self.num_classes], name="Target_output") self.boundary_t = tf.placeholder(tf.float64, shape=[None, 2], name="Target_boundary_output") with tf.name_scope("FC_net"): flowing_x = self.x for i, _ in enumerate(self.weights[0]): with tf.name_scope("layer_{}".format(i)): W = tf.constant(self.weights[0][i], name="Weight_{}".format(i), dtype=tf.float64) b = tf.constant(self.weights[1][i], name="Bias_{}".format(i), dtype=tf.float64) flowing_x = self.function(tf.nn.xw_plus_b(flowing_x, W, b)) y = flowing_x self.out = tf.nn.softmax(y) with tf.name_scope("Binary_class_output"): self.boundary_out = list() for i in range(self.num_classes): mask = True+np.zeros(self.num_classes, dtype=np.bool) mask[i] = False x0 = self.out[:,i] x1 = tf.reduce_max(tf.boolean_mask(self.out, mask, axis=1), axis=1) s = x0+x1 out = tf.stack([x0/s, x1/s], axis=1) self.boundary_out.append(out) with tf.name_scope("Loss_functions"): self.loss = tf.reduce_mean( tf.nn.l2_loss(self.out-self.t), name="loss") with tf.name_scope("Binary_class_loss"): self.boundary_loss = list() if self.use_modified_loss: for i in range(self.num_classes): self.boundary_loss.append( tf.reduce_mean(tf.nn.l2_loss(self.boundary_out[i]-self.boundary_t)) + self.mu * tf.reduce_mean(tf.nn.l2_loss(self.x - x1_constant)) ) else: for i in range(self.num_classes): self.boundary_loss.append( tf.reduce_mean(tf.nn.l2_loss(self.boundary_out[i] - self.boundary_t)) ) def set_initial_x_in_session(self, x, session=None): if session is None: self.set_initial_x(x) else: if self.center is None: session.run([ self.point_weights.assign(x.reshape((1, len(x)))), self.factor.assign(np.ones((1, len(x)))) ]) else: init_factor = self.center init_factor[init_factor!=0] = x[init_factor!=0] / self.center[init_factor!=0] session.run(self.factor.assign(init_factor.reshape((1,len(init_factor))))) def build_for_eval(self): with tf.name_scope("eInput"): self.x_for_eval = tf.placeholder(tf.float32, shape=[None, len(self.weights[0][0])])#tf.Variable(tf.constant(self.initial_x), name="Boundary_point") with tf.name_scope("eFC_net"): flowing_x = self.x_for_eval for i, _ in enumerate(self.weights[0]): W = tf.constant(self.weights[0][i], name="eWeight_{}".format(i)) b = tf.constant(self.weights[1][i], name="eBias_{}".format(i)) flowing_x = self.function(tf.nn.xw_plus_b(flowing_x, W, b), name="elayer_{}".format(i)) y = flowing_x self.out_for_eval = tf.nn.softmax(y) with tf.name_scope("Binary_class_output"): self.boundary_out_for_eval = list() for i in range(self.num_classes): mask = True+np.zeros(self.num_classes, dtype=np.bool) mask[i] = False x0 = self.out_for_eval[:, i] x1 = tf.reduce_max(tf.boolean_mask(self.out_for_eval, mask, axis=1), axis=1) s = x0+x1 out = tf.stack([x0/s, x1/s], axis=1) self.boundary_out_for_eval.append(out) def has_modified_loss(self): return self.use_modified_loss def name(self): return "Hypinv_FC_net_{}".format("-".join([str(ls) for ls in self.layer_sizes])) class FCNetForHypinvBinary(FCNetForHypinv): """ Implementation of multi layer perceptron to by used in HypINV rule extraction algorithm The task is simplified to the binary classificaiton base_class_index against the other classes """ def __init__(self, weights, base_class_index, function=tf.sigmoid, use_modified_loss=False, mu = 0.01): """ :param weights: saved as [list of weights for layers][0 weight, 1 bias] :param base_class_index: an index of the class which is used as the base class :param function: tf function for propagation. For example tf.nn.sigmoid, tf.atan :param use_modified_loss: weather the modified loss should be used :param mu: factor of the penalty terms that specified the distance between x0 and x1 and the distance x1 from the boundary """ super(FCNetForHypinvBinary, self).__init__(weights) self.base_class_index = base_class_index self.function = function self.layer_sizes = [len(self.weights[0][0])] for bias in weights[1]: self.layer_sizes.append(len(bias)) self.num_classes = self.layer_sizes[-1] self.initial_x = np.zeros([1, self.layer_sizes[0]]) self.use_modified_loss = use_modified_loss self.mu = mu def build(self): with tf.name_scope("Input"): self.init_point = tf.Variable(self.initial_x.reshape((1, len(self.initial_x))), dtype=tf.float64, trainable=False, name="Boundary_point") self.factor = tf.Variable(np.ones((1, len(self.initial_x))), dtype=tf.float64, name="factor") self.x = self.init_point * self.factor with tf.name_scope("Target"): if self.use_modified_loss: x1_constant = tf.constant(self.x1.reshape((1, len(self.x1))), dtype=tf.float64) self.t = tf.placeholder(tf.float64, shape=[None, 2], name="Target_output") self.boundary_t = tf.placeholder(tf.float64, shape=[None, 2], name="Target_boundary_output") with tf.name_scope("FC_net"): flowing_x = self.x for i, _ in enumerate(self.weights[0]): with tf.name_scope("layer_{}".format(i)): W = tf.constant(self.weights[0][i], name="Weight_{}".format(i), dtype=tf.float64) b = tf.constant(self.weights[1][i], name="Bias_{}".format(i), dtype=tf.float64) flowing_x = self.function(tf.nn.xw_plus_b(flowing_x, W, b)) y = flowing_x full_out = tf.nn.softmax(y) with tf.name_scope("Binary_class_output"): self.boundary_out = list() mask = True+np.zeros(self.num_classes, dtype=np.bool) mask[self.base_class_index] = False x0 = full_out[:,self.base_class_index] x1 = tf.reduce_max(tf.boolean_mask(full_out, mask, axis=1), axis=1) s = x0+x1 self.out = tf.stack([x0/s, x1/s], axis=1) self.boundary_out.append(self.out) self.boundary_out.append(tf.stack([x1/s, x0/s], axis=1)) with tf.name_scope("Loss_functions"): self.loss = tf.reduce_mean( tf.nn.l2_loss(self.out-self.t), name="loss") with tf.name_scope("Binary_class_loss"): self.boundary_loss = list() if self.use_modified_loss: for i in range(2): self.boundary_loss.append( tf.reduce_mean(tf.nn.l2_loss(self.boundary_out[i]-self.boundary_t)) + self.mu * tf.reduce_mean(tf.nn.l2_loss(self.x - x1_constant)) ) else: for i in range(2): self.boundary_loss.append( tf.reduce_mean(tf.nn.l2_loss(self.boundary_out[i] - self.boundary_t)) ) def build_for_eval(self): with tf.name_scope("eInput"): self.x_for_eval = tf.placeholder(tf.float32, shape=[None, len(self.weights[0][0])])#tf.Variable(tf.constant(self.initial_x), name="Boundary_point") with tf.name_scope("eFC_net"): flowing_x = self.x_for_eval for i, _ in enumerate(self.weights[0]): W = tf.constant(self.weights[0][i], name="eWeight_{}".format(i)) b = tf.constant(self.weights[1][i], name="eBias_{}".format(i)) flowing_x = self.function(tf.nn.xw_plus_b(flowing_x, W, b), name="elayer_{}".format(i)) y = flowing_x full_out = tf.nn.softmax(y) with tf.name_scope("Binary_class_output"): self.boundary_out_for_eval = list() mask = True+np.zeros(self.num_classes, dtype=np.bool) mask[self.base_class_index] = False x0 = full_out[:, self.base_class_index] x1 = tf.reduce_max(tf.boolean_mask(full_out, mask, axis=1), axis=1) s = x0+x1 self.out_for_eval = tf.stack([x0/s, x1/s], axis=1) self.boundary_out_for_eval.append(self.out_for_eval) self.boundary_out_for_eval.append(tf.stack([x1/s, x0/s], axis=1)) def get_boundary_gradient(self, x, class_index): if not self.grad_session: self.grad_session = tf.Session() with self.grad_session.as_default(): self.build_for_eval() self.grad = list() for i in range(2): self.grad.append(tf.gradients(self.boundary_out_for_eval[i], [self.x_for_eval])[0]) self.grad_x = self.x_for_eval return self.grad_session.run(self.grad[class_index], {self.grad_x: x}) def has_modified_loss(self): return self.use_modified_loss def name(self): return "Hypinv_FC_net_{}".format("-".join([str(ls) for ls in self.layer_sizes]))
2.671875
3
py_tdlib/constructors/get_chat_member.py
Mr-TelegramBot/python-tdlib
24
1018
from ..factory import Method class getChatMember(Method): chat_id = None # type: "int53" user_id = None # type: "int32"
1.796875
2
src/phrase_manager/phrase_manager.py
Franco7Scala/GeneratingNaturalLanguageAdversarialExamplesThroughParticleFiltering
0
1019
import numpy from keras.preprocessing import sequence from keras.preprocessing.text import Tokenizer from src.support import support class PhraseManager: def __init__(self, configuration): self.train_phrases, self.train_labels = self._read_train_phrases() self.test_phrases, self.test_labels = self._read_test_phrases() self.configuration = configuration self.tokenizer = None def get_phrases_train(self): return self.train_phrases, self.train_labels def get_phrases_test(self): return self.test_phrases, self.test_labels def get_dataset(self, level = None): if level == support.WORD_LEVEL: return self._word_process(self.configuration[support.WORD_MAX_LENGTH]) elif level == support.CHAR_LEVEL: return self._char_process(self.configuration[support.CHAR_MAX_LENGTH]) else: return self.train_phrases, self.train_labels, self.test_phrases, self.test_labels def _word_process(self, word_max_length): tokenizer = Tokenizer(num_words=self.configuration[support.QUANTITY_WORDS]) tokenizer.fit_on_texts(self.train_phrases) x_train_sequence = tokenizer.texts_to_sequences(self.train_phrases) x_test_sequence = tokenizer.texts_to_sequences(self.test_phrases) x_train = sequence.pad_sequences(x_train_sequence, maxlen=word_max_length, padding='post', truncating='post') x_test = sequence.pad_sequences(x_test_sequence, maxlen=word_max_length, padding='post', truncating='post') y_train = numpy.array(self.train_labels) y_test = numpy.array(self.test_labels) return x_train, y_train, x_test, y_test def _char_process(self, max_length): embedding_w, embedding_dic = self._onehot_dic_build() x_train = [] for i in range(len(self.train_phrases)): doc_vec = self._doc_process(self.train_phrases[i].lower(), embedding_dic, max_length) x_train.append(doc_vec) x_train = numpy.asarray(x_train, dtype='int64') y_train = numpy.array(self.train_labels, dtype='float32') x_test = [] for i in range(len( self.test_phrases)): doc_vec = self._doc_process( self.test_phrases[i].lower(), embedding_dic, max_length) x_test.append(doc_vec) x_test = numpy.asarray(x_test, dtype='int64') y_test = numpy.array(self.test_labels, dtype='float32') del embedding_w, embedding_dic return x_train, y_train, x_test, y_test def _doc_process(self, doc, embedding_dic, max_length): min_length = min(max_length, len(doc)) doc_vec = numpy.zeros(max_length, dtype='int64') for j in range(min_length): if doc[j] in embedding_dic: doc_vec[j] = embedding_dic[doc[j]] else: doc_vec[j] = embedding_dic['UNK'] return doc_vec def _onehot_dic_build(self): alphabet = "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{}" embedding_dic = {} embedding_w = [] embedding_dic["UNK"] = 0 embedding_w.append(numpy.zeros(len(alphabet), dtype='float32')) for i, alpha in enumerate(alphabet): onehot = numpy.zeros(len(alphabet), dtype='float32') embedding_dic[alpha] = i + 1 onehot[i] = 1 embedding_w.append(onehot) embedding_w = numpy.array(embedding_w, dtype='float32') return embedding_w, embedding_dic def get_tokenizer(self): if self.tokenizer is None: self.tokenizer = Tokenizer(num_words=self.configuration[support.QUANTITY_WORDS]) self.tokenizer.fit_on_texts(self.train_phrases) return self.tokenizer def text_to_vector_word(self, text): vector_sequence = self.get_tokenizer().texts_to_sequences([text]) result = sequence.pad_sequences(vector_sequence, maxlen=self.configuration[support.WORD_MAX_LENGTH], padding='post', truncating='post') return result def text_to_vector_word_all(self, texts): vector_sequence = self.get_tokenizer().texts_to_sequences(texts) result = sequence.pad_sequences(vector_sequence, maxlen=self.configuration[support.WORD_MAX_LENGTH], padding='post', truncating='post') return result def text_to_vector_char(self, text): embedding_dictionary = self._get_embedding_dictionary() max_length = self.configuration[support.CHAR_MAX_LENGTH] min_length = min(max_length, len(text)) text_vector = numpy.zeros(max_length, dtype="int64") for j in range(min_length): if text[j] in embedding_dictionary: text_vector[j] = embedding_dictionary[text[j]] else: text_vector[j] = embedding_dictionary["UNK"] return text_vector def text_to_vector_char_all(self, texts): embedding_w, embedding_dic = self._onehot_dic_build() result = [] for i in range(len(texts)): doc_vec = self.text_to_vector_char(texts[i].lower()) result.append(doc_vec) result = numpy.asarray(result, dtype="int64") del embedding_w, embedding_dic return result def _get_embedding_dictionary(self): return {'UNK': 0, 'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f': 6, 'g': 7, 'h': 8, 'i': 9, 'j': 10, 'k': 11, 'l': 12, 'm': 13, 'n': 14, 'o': 15, 'p': 16, 'q': 17, 'r': 18, 's': 19, 't': 20, 'u': 21, 'v': 22, 'w': 23, 'x': 24, 'y': 25, 'z': 26, '0': 27, '1': 28, '2': 29, '3': 30, '4': 31, '5': 32, '6': 33, '7': 34, '8': 35, '9': 36, '-': 60, ',': 38, ';': 39, '.': 40, '!': 41, '?': 42, ':': 43, "'": 44, '"': 45, '/': 46, '\\': 47, '|': 48, '_': 49, '@': 50, '#': 51, '$': 52, '%': 53, '^': 54, '&': 55, '*': 56, '~': 57, '`': 58, '+': 59, '=': 61, '<': 62, '>': 63, '(': 64, ')': 65, '[': 66, ']': 67, '{': 68, '}': 69} def get_classes(self): pass def _read_train_phrases(self): pass def _read_test_phrases(self): pass class Phrase: def __init__(self, text, classification): self.text = text self.classification = classification def __str__(self): return "Classification: " + str(self.classification) + "\nText: " + self.text
2.796875
3
setup.py
fonar/paypalhttp_python
0
1020
from setuptools import setup version = "1.0.0" long_description = """ PayPalHttp is a generic http client designed to be used with code-generated projects. """ setup( name="paypalhttp", long_description=long_description, version=version, author="PayPal", packages=["paypalhttp", "paypalhttp/testutils", "paypalhttp/serializers"], install_requires=['requests>=2.0.0', 'six>=1.0.0', 'pyopenssl>=0.15'], license="MIT", classifiers=[ 'Intended Audience :: Developers', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Software Development :: Libraries :: Python Modules' ], )
1.4375
1
ooobuild/csslo/xml/__init__.py
Amourspirit/ooo_uno_tmpl
0
1021
<reponame>Amourspirit/ooo_uno_tmpl<filename>ooobuild/csslo/xml/__init__.py # coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from ...lo.xml.attribute import Attribute as Attribute from ...lo.xml.attribute_container import AttributeContainer as AttributeContainer from ...lo.xml.attribute_data import AttributeData as AttributeData from ...lo.xml.export_filter import ExportFilter as ExportFilter from ...lo.xml.fast_attribute import FastAttribute as FastAttribute from ...lo.xml.import_filter import ImportFilter as ImportFilter from ...lo.xml.namespace_container import NamespaceContainer as NamespaceContainer from ...lo.xml.para_user_defined_attributes_supplier import ParaUserDefinedAttributesSupplier as ParaUserDefinedAttributesSupplier from ...lo.xml.text_user_defined_attributes_supplier import TextUserDefinedAttributesSupplier as TextUserDefinedAttributesSupplier from ...lo.xml.user_defined_attributes_supplier import UserDefinedAttributesSupplier as UserDefinedAttributesSupplier from ...lo.xml.x_export_filter import XExportFilter as XExportFilter from ...lo.xml.x_import_filter import XImportFilter as XImportFilter from ...lo.xml.x_import_filter2 import XImportFilter2 as XImportFilter2 from ...lo.xml.xml_export_filter import XMLExportFilter as XMLExportFilter from ...lo.xml.xml_import_filter import XMLImportFilter as XMLImportFilter
1.054688
1
bluebottle/tasks/migrations/0012_merge.py
terrameijar/bluebottle
10
1022
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-09-27 15:35 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('tasks', '0011_auto_20160919_1508'), ('tasks', '0011_auto_20160920_1019'), ] operations = [ ]
1.359375
1
bat_train/evaluate.py
bgotthold-usgs/batdetect
59
1023
import numpy as np from sklearn.metrics import roc_curve, auc def compute_error_auc(op_str, gt, pred, prob): # classification error pred_int = (pred > prob).astype(np.int) class_acc = (pred_int == gt).mean() * 100.0 # ROC - area under curve fpr, tpr, thresholds = roc_curve(gt, pred) roc_auc = auc(fpr, tpr) print op_str, ', class acc = %.3f, ROC AUC = %.3f' % (class_acc, roc_auc) #return class_acc, roc_auc def calc_average_precision(recall, precision): precision[np.isnan(precision)] = 0 recall[np.isnan(recall)] = 0 # pascal'12 way mprec = np.hstack((0, precision, 0)) mrec = np.hstack((0, recall, 1)) for ii in range(mprec.shape[0]-2, -1,-1): mprec[ii] = np.maximum(mprec[ii], mprec[ii+1]) inds = np.where(np.not_equal(mrec[1:], mrec[:-1]))[0]+1 ave_prec = ((mrec[inds] - mrec[inds-1])*mprec[inds]).sum() return ave_prec def remove_end_preds(nms_pos_o, nms_prob_o, gt_pos_o, durations, win_size): # this filters out predictions and gt that are close to the end # this is a bit messy because of the shapes of gt_pos_o nms_pos = [] nms_prob = [] gt_pos = [] for ii in range(len(nms_pos_o)): valid_time = durations[ii] - win_size gt_cur = gt_pos_o[ii] if gt_cur.shape[0] > 0: gt_pos.append(gt_cur[:, 0][gt_cur[:, 0] < valid_time][..., np.newaxis]) else: gt_pos.append(gt_cur) valid_preds = nms_pos_o[ii] < valid_time nms_pos.append(nms_pos_o[ii][valid_preds]) nms_prob.append(nms_prob_o[ii][valid_preds, 0][..., np.newaxis]) return nms_pos, nms_prob, gt_pos def prec_recall_1d(nms_pos_o, nms_prob_o, gt_pos_o, durations, detection_overlap, win_size, remove_eof=True): """ nms_pos, nms_prob, and gt_pos are lists of numpy arrays specifying detection position, detection probability and GT position. Each list entry is a different file. Each entry in nms_pos is an array of length num_entries. For nms_prob and gt_pos its an array of size (num_entries, 1). durations is a array of the length of the number of files with each entry containing that file length in seconds. detection_overlap determines if a prediction is counted as correct or not. win_size is used to ignore predictions and ground truth at the end of an audio file. returns precision: fraction of retrieved instances that are relevant. recall: fraction of relevant instances that are retrieved. """ if remove_eof: # filter out the detections in both ground truth and predictions that are too # close to the end of the file - dont count them during eval nms_pos, nms_prob, gt_pos = remove_end_preds(nms_pos_o, nms_prob_o, gt_pos_o, durations, win_size) else: nms_pos = nms_pos_o nms_prob = nms_prob_o gt_pos = gt_pos_o # loop through each file true_pos = [] # correctly predicts the ground truth false_pos = [] # says there is a detection but isn't for ii in range(len(nms_pos)): num_preds = nms_pos[ii].shape[0] if num_preds > 0: # check to make sure it contains something num_gt = gt_pos[ii].shape[0] # for each set of predictions label them as true positive or false positive (i.e. 1-tp) tp = np.zeros(num_preds) distance_to_gt = np.abs(gt_pos[ii].ravel()-nms_pos[ii].ravel()[:, np.newaxis]) within_overlap = (distance_to_gt <= detection_overlap) # remove duplicate detections - assign to valid detection with highest prob for jj in range(num_gt): inds = np.where(within_overlap[:, jj])[0] # get the indices of all valid predictions if inds.shape[0] > 0: max_prob = np.argmax(nms_prob[ii][inds]) selected_pred = inds[max_prob] within_overlap[selected_pred, :] = False tp[selected_pred] = 1 # set as true positives true_pos.append(tp) false_pos.append(1 - tp) # calc precision and recall - sort confidence in descending order # PASCAL style conf = np.concatenate(nms_prob)[:, 0] num_gt = np.concatenate(gt_pos).shape[0] inds = np.argsort(conf)[::-1] true_pos_cat = np.concatenate(true_pos)[inds].astype(float) false_pos_cat = np.concatenate(false_pos)[inds].astype(float) # i.e. 1-true_pos_cat if (conf == conf[0]).sum() == conf.shape[0]: # all the probability values are the same therefore we will not sweep # the curve and instead will return a single value true_pos_sum = true_pos_cat.sum() false_pos_sum = false_pos_cat.sum() recall = np.asarray([true_pos_sum / float(num_gt)]) precision = np.asarray([(true_pos_sum / (false_pos_sum + true_pos_sum))]) elif inds.shape[0] > 0: # otherwise produce a list of values true_pos_cum = np.cumsum(true_pos_cat) false_pos_cum = np.cumsum(false_pos_cat) recall = true_pos_cum / float(num_gt) precision = (true_pos_cum / (false_pos_cum + true_pos_cum)) return precision, recall
2.296875
2
azure-mgmt/tests/test_mgmt_network.py
SUSE/azure-sdk-for-python
2
1024
# coding: utf-8 #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- import unittest import azure.mgmt.network.models from testutils.common_recordingtestcase import record from tests.mgmt_testcase import HttpStatusCode, AzureMgmtTestCase class MgmtNetworkTest(AzureMgmtTestCase): def setUp(self): super(MgmtNetworkTest, self).setUp() self.network_client = self.create_mgmt_client( azure.mgmt.network.NetworkManagementClient ) if not self.is_playback(): self.create_resource_group() @record def test_network_interface_card(self): vnet_name = self.get_resource_name('pyvnet') subnet_name = self.get_resource_name('pysubnet') nic_name = self.get_resource_name('pynic') # Create VNet async_vnet_creation = self.network_client.virtual_networks.create_or_update( self.group_name, vnet_name, { 'location': self.region, 'address_space': { 'address_prefixes': ['10.0.0.0/16'] } } ) async_vnet_creation.wait() # Create Subnet async_subnet_creation = self.network_client.subnets.create_or_update( self.group_name, vnet_name, subnet_name, {'address_prefix': '10.0.0.0/24'} ) subnet_info = async_subnet_creation.result() # Create NIC async_nic_creation = self.network_client.network_interfaces.create_or_update( self.group_name, nic_name, { 'location': self.region, 'ip_configurations': [{ 'name': 'MyIpConfig', 'subnet': { 'id': subnet_info.id } }] } ) nic_info = async_nic_creation.result() nic_info = self.network_client.network_interfaces.get( self.group_name, nic_info.name ) nics = list(self.network_client.network_interfaces.list( self.group_name )) self.assertEqual(len(nics), 1) nics = list(self.network_client.network_interfaces.list_all()) self.assertGreater(len(nics), 0) async_delete = self.network_client.network_interfaces.delete( self.group_name, nic_info.name ) async_delete.wait() @record def test_load_balancers(self): public_ip_name = self.get_resource_name('pyipname') frontend_ip_name = self.get_resource_name('pyfipname') addr_pool_name = self.get_resource_name('pyapname') probe_name = self.get_resource_name('pyprobename') lb_name = self.get_resource_name('pylbname') front_end_id = ('/subscriptions/{}' '/resourceGroups/{}' '/providers/Microsoft.Network' '/loadBalancers/{}' '/frontendIPConfigurations/{}').format( self.settings.SUBSCRIPTION_ID, self.group_name, lb_name, frontend_ip_name ) back_end_id = ('/subscriptions/{}' '/resourceGroups/{}' '/providers/Microsoft.Network' '/loadBalancers/{}' '/backendAddressPools/{}').format( self.settings.SUBSCRIPTION_ID, self.group_name, lb_name, addr_pool_name ) probe_id = ('/subscriptions/{}' '/resourceGroups/{}' '/providers/Microsoft.Network' '/loadBalancers/{}' '/probes/{}').format( self.settings.SUBSCRIPTION_ID, self.group_name, lb_name, probe_name ) # Create PublicIP public_ip_parameters = { 'location': self.region, 'public_ip_allocation_method': 'static', 'idle_timeout_in_minutes': 4 } async_publicip_creation = self.network_client.public_ip_addresses.create_or_update( self.group_name, public_ip_name, public_ip_parameters ) public_ip_info = async_publicip_creation.result() # Building a FrontEndIpPool frontend_ip_configurations = [{ 'name': frontend_ip_name, 'private_ip_allocation_method': 'Dynamic', 'public_ip_address': { 'id': public_ip_info.id } }] # Building a BackEnd adress pool backend_address_pools = [{ 'name': addr_pool_name }] # Building a HealthProbe probes = [{ 'name': probe_name, 'protocol': 'Http', 'port': 80, 'interval_in_seconds': 15, 'number_of_probes': 4, 'request_path': 'healthprobe.aspx' }] # Building a LoadBalancer rule load_balancing_rules = [{ 'name': 'azure-sample-lb-rule', 'protocol': 'tcp', 'frontend_port': 80, 'backend_port': 80, 'idle_timeout_in_minutes': 4, 'enable_floating_ip': False, 'load_distribution': 'Default', 'frontend_ip_configuration': { 'id': front_end_id }, 'backend_address_pool': { 'id': back_end_id }, 'probe': { 'id': probe_id } }] # Building InboundNATRule1 inbound_nat_rules = [{ 'name': 'azure-sample-netrule1', 'protocol': 'tcp', 'frontend_port': 21, 'backend_port': 22, 'enable_floating_ip': False, 'idle_timeout_in_minutes': 4, 'frontend_ip_configuration': { 'id': front_end_id } }] # Building InboundNATRule2 inbound_nat_rules.append({ 'name': 'azure-sample-netrule2', 'protocol': 'tcp', 'frontend_port': 23, 'backend_port': 22, 'enable_floating_ip': False, 'idle_timeout_in_minutes': 4, 'frontend_ip_configuration': { 'id': front_end_id } }) # Creating Load Balancer lb_async_creation = self.network_client.load_balancers.create_or_update( self.group_name, lb_name, { 'location': self.region, 'frontend_ip_configurations': frontend_ip_configurations, 'backend_address_pools': backend_address_pools, 'probes': probes, 'load_balancing_rules': load_balancing_rules, 'inbound_nat_rules' :inbound_nat_rules } ) lb_info = lb_async_creation.result() # Get it lb_info = self.network_client.load_balancers.get( self.group_name, lb_name ) # List all lbs = self.network_client.load_balancers.list_all() lbs = list(lbs) self.assertGreater(len(lbs), 0) # List RG lbs = self.network_client.load_balancers.list(self.group_name) lbs = list(lbs) self.assertGreater(len(lbs), 0) # Delete async_lb_delete = self.network_client.load_balancers.delete( self.group_name, lb_name ) async_lb_delete.wait() @record def test_public_ip_addresses(self): public_ip_name = self.get_resource_name('pyipname') params_create = azure.mgmt.network.models.PublicIPAddress( location=self.region, public_ip_allocation_method=azure.mgmt.network.models.IPAllocationMethod.dynamic, tags={ 'key': 'value', }, ) result_create = self.network_client.public_ip_addresses.create_or_update( self.group_name, public_ip_name, params_create, ) result_create.wait() # AzureOperationPoller #self.assertEqual(result_create.status_code, HttpStatusCode.OK) result_get = self.network_client.public_ip_addresses.get( self.group_name, public_ip_name, ) #self.assertEqual(result_get.status_code, HttpStatusCode.OK) self.assertEqual(result_get.location, self.region) self.assertEqual(result_get.tags['key'], 'value') result_list = self.network_client.public_ip_addresses.list(self.group_name) #self.assertEqual(result_list.status_code, HttpStatusCode.OK) result_list = list(result_list) self.assertEqual(len(result_list), 1) result_list_all = self.network_client.public_ip_addresses.list_all() #self.assertEqual(result_list_all.status_code, HttpStatusCode.OK) result_list_all = list(result_list_all) self.assertGreater(len(result_list_all), 0) result_delete = self.network_client.public_ip_addresses.delete( self.group_name, public_ip_name, ) result_delete.wait() # AzureOperationPoller #self.assertEqual(result_delete.status_code, HttpStatusCode.OK) result_list = self.network_client.public_ip_addresses.list(self.group_name) #self.assertEqual(result_list.status_code, HttpStatusCode.OK) result_list = list(result_list) self.assertEqual(len(result_list), 0) @record def test_virtual_networks(self): network_name = self.get_resource_name('pyvnet') subnet1_name = self.get_resource_name('pyvnetsubnetone') subnet2_name = self.get_resource_name('pyvnetsubnettwo') params_create = azure.mgmt.network.models.VirtualNetwork( location=self.region, address_space=azure.mgmt.network.models.AddressSpace( address_prefixes=[ '10.0.0.0/16', ], ), dhcp_options=azure.mgmt.network.models.DhcpOptions( dns_servers=[ '10.1.1.1', '10.1.2.4', ], ), subnets=[ azure.mgmt.network.models.Subnet( name=subnet1_name, address_prefix='10.0.1.0/24', ), azure.mgmt.network.models.Subnet( name=subnet2_name, address_prefix='10.0.2.0/24', ), ], ) result_create = self.network_client.virtual_networks.create_or_update( self.group_name, network_name, params_create, ) vnet = result_create.result() vnet = self.network_client.virtual_networks.get( self.group_name, vnet.name, ) ip_availability = self.network_client.virtual_networks.check_ip_address_availability( self.group_name, vnet.name, '10.0.1.35' # Should be available since new VNet sor Subnet 1 ) self.assertTrue(ip_availability.available) result_list = list(self.network_client.virtual_networks.list( self.group_name, )) self.assertEqual(len(result_list), 1) result_list_all = list(self.network_client.virtual_networks.list_all()) async_delete = self.network_client.virtual_networks.delete( self.group_name, network_name, ) async_delete.wait() @record def test_dns_availability(self): result_check = self.network_client.check_dns_name_availability( self.region, 'pydomain', ) #self.assertEqual(result_check.status_code, HttpStatusCode.OK) self.assertTrue(result_check) @record def test_subnets(self): network_name = self.get_resource_name('pysubnet') subnet1_name = self.get_resource_name('pysubnetone') subnet2_name = self.get_resource_name('pysubnettwo') params_create = azure.mgmt.network.models.VirtualNetwork( location=self.region, address_space=azure.mgmt.network.models.AddressSpace( address_prefixes=[ '10.0.0.0/16', ], ), dhcp_options=azure.mgmt.network.models.DhcpOptions( dns_servers=[ '10.1.1.1', '10.1.2.4', ], ), subnets=[ azure.mgmt.network.models.Subnet( name=subnet1_name, address_prefix='10.0.1.0/24', ), ], ) result_create = self.network_client.virtual_networks.create_or_update( self.group_name, network_name, params_create, ) result_create.wait() # AzureOperationPoller params_create = azure.mgmt.network.models.Subnet( name=subnet2_name, address_prefix='10.0.2.0/24', ) result_create = self.network_client.subnets.create_or_update( self.group_name, network_name, subnet2_name, params_create, ) result_create.wait() # AzureOperationPoller result_get = self.network_client.virtual_networks.get( self.group_name, network_name, ) self.assertEqual(len(result_get.subnets), 2) result_get = self.network_client.subnets.get( self.group_name, network_name, subnet2_name, ) result_list = self.network_client.subnets.list( self.group_name, network_name, ) subnets = list(result_list) result_delete = self.network_client.subnets.delete( self.group_name, network_name, subnet2_name, ) result_delete.wait() @record def test_network_security_groups(self): security_group_name = self.get_resource_name('pysecgroup') security_rule_name = self.get_resource_name('pysecgrouprule') params_create = azure.mgmt.network.models.NetworkSecurityGroup( location=self.region, security_rules=[ azure.mgmt.network.models.SecurityRule( name=security_rule_name, access=azure.mgmt.network.models.SecurityRuleAccess.allow, description='Test security rule', destination_address_prefix='*', destination_port_range='123-3500', direction=azure.mgmt.network.models.SecurityRuleDirection.inbound, priority=500, protocol=azure.mgmt.network.models.SecurityRuleProtocol.tcp, source_address_prefix='*', source_port_range='655', ), ], ) result_create = self.network_client.network_security_groups.create_or_update( self.group_name, security_group_name, params_create, ) result_create.wait() # AzureOperationPoller result_get = self.network_client.network_security_groups.get( self.group_name, security_group_name, ) result_list = list(self.network_client.network_security_groups.list( self.group_name, )) self.assertEqual(len(result_list), 1) result_list_all = list(self.network_client.network_security_groups.list_all()) # Security Rules new_security_rule_name = self.get_resource_name('pynewrule') async_security_rule = self.network_client.security_rules.create_or_update( self.group_name, security_group_name, new_security_rule_name, { 'access':azure.mgmt.network.models.SecurityRuleAccess.allow, 'description':'New Test security rule', 'destination_address_prefix':'*', 'destination_port_range':'123-3500', 'direction':azure.mgmt.network.models.SecurityRuleDirection.outbound, 'priority':400, 'protocol':azure.mgmt.network.models.SecurityRuleProtocol.tcp, 'source_address_prefix':'*', 'source_port_range':'655', } ) security_rule = async_security_rule.result() security_rule = self.network_client.security_rules.get( self.group_name, security_group_name, security_rule.name ) self.assertEqual(security_rule.name, new_security_rule_name) new_security_rules = list(self.network_client.security_rules.list( self.group_name, security_group_name )) self.assertEqual(len(new_security_rules), 2) result_delete = self.network_client.security_rules.delete( self.group_name, security_group_name, new_security_rule_name ) result_delete.wait() # Delete NSG result_delete = self.network_client.network_security_groups.delete( self.group_name, security_group_name, ) result_delete.wait() @record def test_routes(self): route_table_name = self.get_resource_name('pyroutetable') route_name = self.get_resource_name('pyroute') async_route_table = self.network_client.route_tables.create_or_update( self.group_name, route_table_name, {'location': self.region} ) route_table = async_route_table.result() route_table = self.network_client.route_tables.get( self.group_name, route_table.name ) self.assertEqual(route_table.name, route_table_name) route_tables = list(self.network_client.route_tables.list( self.group_name )) self.assertEqual(len(route_tables), 1) route_tables = list(self.network_client.route_tables.list_all()) self.assertGreater(len(route_tables), 0) async_route = self.network_client.routes.create_or_update( self.group_name, route_table.name, route_name, { 'address_prefix': '10.1.0.0/16', 'next_hop_type': 'None' } ) route = async_route.result() route = self.network_client.routes.get( self.group_name, route_table.name, route.name ) self.assertEqual(route.name, route_name) routes = list(self.network_client.routes.list( self.group_name, route_table.name )) self.assertEqual(len(routes), 1) async_route_delete = self.network_client.routes.delete( self.group_name, route_table.name, route.name ) async_route_delete.wait() async_route_table_delete = self.network_client.route_tables.delete( self.group_name, route_table_name ) async_route_table_delete.wait() @record def test_usages(self): usages = list(self.network_client.usages.list(self.region)) self.assertGreater(len(usages), 1) self.assertTrue(all(hasattr(u, 'name') for u in usages)) @record def test_express_route_service_providers(self): ersp = list(self.network_client.express_route_service_providers.list()) self.assertGreater(len(ersp), 0) self.assertTrue(all(hasattr(u, 'bandwidths_offered') for u in ersp)) @record def test_express_route_circuit(self): express_route_name = self.get_resource_name('pyexpressroute') async_express_route = self.network_client.express_route_circuits.create_or_update( self.group_name, express_route_name, { "location": self.region, "sku": { "name": "Standard_MeteredData", "tier": "Standard", "family": "MeteredData" }, "service_provider_properties": { "service_provider_name": "Comcast", "peering_location": "Chicago", "bandwidth_in_mbps": 100 } } ) express_route = async_express_route.result() express_route = self.network_client.express_route_circuits.get( self.group_name, express_route_name ) routes = list(self.network_client.express_route_circuits.list( self.group_name )) self.assertEqual(len(routes), 1) routes = list(self.network_client.express_route_circuits.list_all()) self.assertGreater(len(routes), 0) stats = self.network_client.express_route_circuits.get_stats( self.group_name, express_route_name ) self.assertIsNotNone(stats) async_peering = self.network_client.express_route_circuit_peerings.create_or_update( self.group_name, express_route_name, 'AzurePublicPeering', { "peering_type": "AzurePublicPeering", "peer_asn": 100, "primary_peer_address_prefix": "192.168.1.0/30", "secondary_peer_address_prefix": "192.168.2.0/30", "vlan_id": 200, } ) peering = async_peering.result() peering = self.network_client.express_route_circuit_peerings.get( self.group_name, express_route_name, 'AzurePublicPeering' ) peerings = list(self.network_client.express_route_circuit_peerings.list( self.group_name, express_route_name )) self.assertEqual(len(peerings), 1) stats = self.network_client.express_route_circuits.get_peering_stats( self.group_name, express_route_name, 'AzurePublicPeering' ) self.assertIsNotNone(stats) auth_name = self.get_resource_name('pyauth') async_auth = self.network_client.express_route_circuit_authorizations.create_or_update( self.group_name, express_route_name, auth_name, {} ) auth = async_auth.result() auth = self.network_client.express_route_circuit_authorizations.get( self.group_name, express_route_name, auth_name ) auths = list(self.network_client.express_route_circuit_authorizations.list( self.group_name, express_route_name )) self.assertEqual(len(auths), 1) async_auth = self.network_client.express_route_circuit_authorizations.delete( self.group_name, express_route_name, auth_name ) async_auth.wait() async_peering = self.network_client.express_route_circuit_peerings.delete( self.group_name, express_route_name, 'AzurePublicPeering' ) async_peering.wait() async_express_route = self.network_client.express_route_circuits.delete( self.group_name, express_route_name ) async_express_route.wait() @record def test_virtual_network_gateway_operations(self): # https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-howto-site-to-site-resource-manager-portal vnet_name = self.get_resource_name('pyvirtnet') fe_name = self.get_resource_name('pysubnetfe') be_name = self.get_resource_name('pysubnetbe') gateway_name = self.get_resource_name('pysubnetga') # Create VNet async_vnet_creation = self.network_client.virtual_networks.create_or_update( self.group_name, vnet_name, { 'location': self.region, 'address_space': { 'address_prefixes': [ '10.11.0.0/16', '10.12.0.0/16' ] } } ) async_vnet_creation.wait() # Create Front End Subnet async_subnet_creation = self.network_client.subnets.create_or_update( self.group_name, vnet_name, fe_name, {'address_prefix': '10.11.0.0/24'} ) fe_subnet_info = async_subnet_creation.result() # Create Back End Subnet async_subnet_creation = self.network_client.subnets.create_or_update( self.group_name, vnet_name, be_name, {'address_prefix': '10.12.0.0/24'} ) be_subnet_info = async_subnet_creation.result() # Create Gateway Subnet async_subnet_creation = self.network_client.subnets.create_or_update( self.group_name, vnet_name, 'GatewaySubnet', {'address_prefix': '10.12.255.0/27'} ) gateway_subnet_info = async_subnet_creation.result() # Public IP Address public_ip_name = self.get_resource_name('pyipname') params_create = azure.mgmt.network.models.PublicIPAddress( location=self.region, public_ip_allocation_method=azure.mgmt.network.models.IPAllocationMethod.dynamic, tags={ 'key': 'value', }, ) result_create = self.network_client.public_ip_addresses.create_or_update( self.group_name, public_ip_name, params_create, ) public_ip_address = result_create.result() # Gateway itself vng_name = self.get_resource_name('pyvng') gw_params = { 'location': self.region, 'gateway_type': 'VPN', 'vpn_type': 'RouteBased', 'enable_bgp': False, 'sku': { 'tier': 'Standard', 'capacity': 2, 'name': 'Standard'}, 'ip_configurations':[{ 'name': 'default', 'private_ip_allocation_method': 'Dynamic', 'subnet': { 'id': gateway_subnet_info.id }, 'public_ip_address': { 'id': public_ip_address.id } }], } async_create = self.network_client.virtual_network_gateways.create_or_update( self.group_name, vng_name, gw_params ) vng = async_create.result() self.assertEquals(vng.name, vng_name) #------------------------------------------------------------------------------ if __name__ == '__main__': unittest.main()
2
2
Networks/Threading/server.py
polbebe/PinkPanther
0
1025
import gym import gym.spaces as spaces import sys import socket from _thread import * import os import numpy as np import pandas as pd import math as m import time import random class NetEnv(gym.Env): def __init__(self): # Robot State values that will be bounced with client self.robot_state = None self.pos = None self.message = np.array(12345, dtype=np.float32) # Socket Conneciton # MAC find WiFi IP - ipconfig getifaddr en0 HOST = '192.168.1.29' # Port to listen on (non-privileged ports are > 1023) PORT = 65432 self.ThreadCount = 0 print('Connected') # Set up Socket self.s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: self.s.bind((HOST, PORT)) except socket.error as e: print(str(e)) print('Waiting for connection[s]...') self.s.listen() self.start = 0 # Wait for client[s] to join socket self.conn1, addr1 = self.s.accept() print('Connected by: ', addr1) start_new_thread(self.main_client_thread, (self.conn1, )) self.conn2, addr2 = self.s.accept() print('Connected by: ', addr2) start_new_thread(self.cam_client_thread, (self.conn2, )) def main_client_thread(self, conn): data = conn.recv(1024) print('Main client says: {}'.format(data.decode('utf-8'))) conn.sendall(str.encode('Hi')) def cam_client_thread(self, conn): data = conn.recv(1024) print('Cam client says: {}'.format(data.decode('utf-8'))) conn.sendall(str.encode('Hi')) def step(self): self.main_client_thread(self.conn1) self.cam_client_thread(self.conn2) if __name__ == '__main__': # Construct MAIN SERVER object env = NetEnv() # WALK for i in range(100000): env.step() print('Done')
2.71875
3
backend/app/app/db/session.py
zhkuo24/full-stack-fastapi-demo
7
1026
<reponame>zhkuo24/full-stack-fastapi-demo<gh_stars>1-10 # -*- coding: utf-8 -*- # @File : session.py # @Author : zhkuo # @Time : 2021/1/3 9:12 下午 # @Desc : from sqlalchemy import create_engine # from sqlalchemy.orm import scoped_session from sqlalchemy.orm import sessionmaker from app.core.config import settings """ 参考: https://www.osgeo.cn/sqlalchemy/orm/session_basics.html https://landybird.github.io/python/2020/03/02/fastapi%E4%B8%8Easgi(5)/ 处理session的不同方法 https://github.com/tiangolo/fastapi/issues/726 处理数据库session的方法 1. sqlalchemy.orm 自带的 scoped_session 2. 采用中间件的方法,每个请求建立一个 db 连接 3. dependency 依赖的方法(官方文档推荐方法) """ # 创建连接数据库的 engine engine = create_engine(settings.SQLALCHEMY_DATABASE_URI, connect_args={"check_same_thread": False}) # 为了保证线程安全,需使用scoped_session方法 # db_session = scoped_session( # sessionmaker(autocommit=False, autoflush=False, bind=engine) # ) SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
2.09375
2
src/tkdialog/dialog.py
KosukeMizuno/tkdialog
0
1027
<reponame>KosukeMizuno/tkdialog from pathlib import Path import pickle import tkinter as tk import tkinter.filedialog def open_dialog(**opt): """Parameters ---------- Options will be passed to `tkinter.filedialog.askopenfilename`. See also tkinter's document. Followings are example of frequently used options. - filetypes=[(label, ext), ...] - label: str - ext: str, semicolon separated extentions - initialdir: str, default Path.cwd() - multiple: bool, default False Returns -------- filename, str """ root = tk.Tk() root.withdraw() root.wm_attributes("-topmost", True) opt_default = dict(initialdir=Path.cwd()) _opt = dict(opt_default, **opt) return tk.filedialog.askopenfilename(**_opt) def saveas_dialog(**opt): """Parameters ---------- Options will be passed to `tkinter.filedialog.asksaveasfilename`. See also tkinter's document. Followings are example of frequently used options. - filetypes=[(label, ext), ...] - label: str - ext: str, semicolon separated extentions - initialdir: str, default Path.cwd() - initialfile: str, default isn't set Returns -------- filename, str """ root = tk.Tk() root.withdraw() root.wm_attributes("-topmost", True) opt_default = dict(initialdir=Path.cwd()) _opt = dict(opt_default, **opt) return tk.filedialog.asksaveasfilename(**_opt) def load_pickle_with_dialog(mode='rb', **opt): """Load a pickled object with a filename assigned by tkinter's open dialog. kwargs will be passed to saveas_dialog. """ opt_default = dict(filetypes=[('pickled data', '*.pkl'), ('all', '*')]) _opt = dict(opt_default, **opt) fn = open_dialog(**_opt) if fn == '': # canceled return None with Path(fn).open(mode) as f: data = pickle.load(f) return data def dump_pickle_with_dialog(obj, mode='wb', **opt): """Pickle an object with a filename assigned by tkinter's saveas dialog. kwargs will be passed to saveas_dialog. Returns -------- filename: str """ opt_default = dict(filetypes=[('pickled data', '*.pkl'), ('all', '*')]) _opt = dict(opt_default, **opt) fn = saveas_dialog(**_opt) if fn == '': # canceled return '' # note: 上書き確認はtkinterがやってくれるのでここではチェックしない with Path(fn).open(mode) as f: pickle.dump(obj, f) return fn
3.484375
3
cinder/tests/unit/fake_group_snapshot.py
lightsey/cinder
571
1028
<filename>cinder/tests/unit/fake_group_snapshot.py # Copyright 2016 EMC Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_versionedobjects import fields from cinder import objects from cinder.tests.unit import fake_constants as fake def fake_db_group_snapshot(**updates): db_group_snapshot = { 'id': fake.GROUP_SNAPSHOT_ID, 'name': 'group-1', 'status': 'available', 'user_id': fake.USER_ID, 'project_id': fake.PROJECT_ID, 'group_type_id': fake.GROUP_TYPE_ID, 'group_id': fake.GROUP_ID, } for name, field in objects.GroupSnapshot.fields.items(): if name in db_group_snapshot: continue if field.nullable: db_group_snapshot[name] = None elif field.default != fields.UnspecifiedDefault: db_group_snapshot[name] = field.default else: raise Exception('fake_db_group_snapshot needs help with %s.' % name) if updates: db_group_snapshot.update(updates) return db_group_snapshot def fake_group_snapshot_obj(context, **updates): return objects.GroupSnapshot._from_db_object( context, objects.GroupSnapshot(), fake_db_group_snapshot(**updates))
1.992188
2
src/tree_visualizer.py
szymanskir/msi
0
1029
<gh_stars>0 import matplotlib.pyplot as plt import networkx as nx from networkx.drawing.nx_agraph import graphviz_layout def display_resolution_tree(resolution_tree: nx.classes.DiGraph): _draw_resolution_tree_(resolution_tree) plt.show() def _draw_resolution_tree_(tree: nx.classes.DiGraph, enable_edge_labels: bool = True, rotate_edge_labels: bool = False): plt.figure() # graph nodes_pos = graphviz_layout(tree, prog='dot') nx.draw(tree, nodes_pos, node_size=150, edge_color='#7d7d7d') # nodes labels pos_attrs = {} for node, coords in nodes_pos.items(): pos_attrs[node] = (coords[0], coords[1] - 10) custom_node_attrs = {} for node, attr in tree.nodes.items(): custom_node_attrs[node] = str(node) nodes_bbox = dict(facecolor="w", edgecolor="#d3d3d3", pad=6, lw=0.1) nx.draw_networkx_labels( tree, pos_attrs, labels=custom_node_attrs, font_size=13, bbox=nodes_bbox) # edge labels if enable_edge_labels: edges_pos = graphviz_layout(tree, prog='dot') edge_labels = nx.get_edge_attributes(tree, 'transformation') nx.draw_networkx_edge_labels( tree, pos=edges_pos, edge_labels=edge_labels, font_size=13, rotate=rotate_edge_labels)
2.5625
3
setup.py
SilicalNZ/canvas
7
1030
<filename>setup.py import setuptools setuptools.setup( name = 'sili-canvas', version = '0.0.1', license = 'MIT', url = 'https://github.com/SilicalNZ/canvas', description = 'A series of easy to use classes to perform complex 2D array transformations', long_description = '', author = 'SilicalNZ', packages = ['canvas', 'canvas.common', 'canvas.tools'] )
1.101563
1
tests/viz_tests.py
theoretical-olive/incubator-superset
2
1031
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # isort:skip_file import uuid from datetime import datetime import logging from math import nan from unittest.mock import Mock, patch import numpy as np import pandas as pd import tests.test_app import superset.viz as viz from superset import app from superset.constants import NULL_STRING from superset.exceptions import SpatialException from superset.utils.core import DTTM_ALIAS from .base_tests import SupersetTestCase from .utils import load_fixture logger = logging.getLogger(__name__) class BaseVizTestCase(SupersetTestCase): def test_constructor_exception_no_datasource(self): form_data = {} datasource = None with self.assertRaises(Exception): viz.BaseViz(datasource, form_data) def test_process_metrics(self): # test TableViz metrics in correct order form_data = { "url_params": {}, "row_limit": 500, "metric": "sum__SP_POP_TOTL", "entity": "country_code", "secondary_metric": "sum__SP_POP_TOTL", "granularity_sqla": "year", "page_length": 0, "all_columns": [], "viz_type": "table", "since": "2014-01-01", "until": "2014-01-02", "metrics": ["sum__SP_POP_TOTL", "SUM(SE_PRM_NENR_MA)", "SUM(SP_URB_TOTL)"], "country_fieldtype": "cca3", "percent_metrics": ["count"], "slice_id": 74, "time_grain_sqla": None, "order_by_cols": [], "groupby": ["country_name"], "compare_lag": "10", "limit": "25", "datasource": "2__table", "table_timestamp_format": "%Y-%m-%d %H:%M:%S", "markup_type": "markdown", "where": "", "compare_suffix": "o10Y", } datasource = Mock() datasource.type = "table" test_viz = viz.BaseViz(datasource, form_data) expect_metric_labels = [ u"sum__SP_POP_TOTL", u"SUM(SE_PRM_NENR_MA)", u"SUM(SP_URB_TOTL)", u"count", ] self.assertEqual(test_viz.metric_labels, expect_metric_labels) self.assertEqual(test_viz.all_metrics, expect_metric_labels) def test_get_df_returns_empty_df(self): form_data = {"dummy": 123} query_obj = {"granularity": "day"} datasource = self.get_datasource_mock() test_viz = viz.BaseViz(datasource, form_data) result = test_viz.get_df(query_obj) self.assertEqual(type(result), pd.DataFrame) self.assertTrue(result.empty) def test_get_df_handles_dttm_col(self): form_data = {"dummy": 123} query_obj = {"granularity": "day"} results = Mock() results.query = Mock() results.status = Mock() results.error_message = Mock() datasource = Mock() datasource.type = "table" datasource.query = Mock(return_value=results) mock_dttm_col = Mock() datasource.get_column = Mock(return_value=mock_dttm_col) test_viz = viz.BaseViz(datasource, form_data) test_viz.df_metrics_to_num = Mock() test_viz.get_fillna_for_columns = Mock(return_value=0) results.df = pd.DataFrame(data={DTTM_ALIAS: ["1960-01-01 05:00:00"]}) datasource.offset = 0 mock_dttm_col = Mock() datasource.get_column = Mock(return_value=mock_dttm_col) mock_dttm_col.python_date_format = "epoch_ms" result = test_viz.get_df(query_obj) import logging logger.info(result) pd.testing.assert_series_equal( result[DTTM_ALIAS], pd.Series([datetime(1960, 1, 1, 5, 0)], name=DTTM_ALIAS) ) mock_dttm_col.python_date_format = None result = test_viz.get_df(query_obj) pd.testing.assert_series_equal( result[DTTM_ALIAS], pd.Series([datetime(1960, 1, 1, 5, 0)], name=DTTM_ALIAS) ) datasource.offset = 1 result = test_viz.get_df(query_obj) pd.testing.assert_series_equal( result[DTTM_ALIAS], pd.Series([datetime(1960, 1, 1, 6, 0)], name=DTTM_ALIAS) ) datasource.offset = 0 results.df = pd.DataFrame(data={DTTM_ALIAS: ["1960-01-01"]}) mock_dttm_col.python_date_format = "%Y-%m-%d" result = test_viz.get_df(query_obj) pd.testing.assert_series_equal( result[DTTM_ALIAS], pd.Series([datetime(1960, 1, 1, 0, 0)], name=DTTM_ALIAS) ) def test_cache_timeout(self): datasource = self.get_datasource_mock() datasource.cache_timeout = 0 test_viz = viz.BaseViz(datasource, form_data={}) self.assertEqual(0, test_viz.cache_timeout) datasource.cache_timeout = 156 test_viz = viz.BaseViz(datasource, form_data={}) self.assertEqual(156, test_viz.cache_timeout) datasource.cache_timeout = None datasource.database.cache_timeout = 0 self.assertEqual(0, test_viz.cache_timeout) datasource.database.cache_timeout = 1666 self.assertEqual(1666, test_viz.cache_timeout) datasource.database.cache_timeout = None test_viz = viz.BaseViz(datasource, form_data={}) self.assertEqual(app.config["CACHE_DEFAULT_TIMEOUT"], test_viz.cache_timeout) class TableVizTestCase(SupersetTestCase): def test_get_data_applies_percentage(self): form_data = { "groupby": ["groupA", "groupB"], "metrics": [ { "expressionType": "SIMPLE", "aggregate": "SUM", "label": "SUM(value1)", "column": {"column_name": "value1", "type": "DOUBLE"}, }, "count", "avg__C", ], "percent_metrics": [ { "expressionType": "SIMPLE", "aggregate": "SUM", "label": "SUM(value1)", "column": {"column_name": "value1", "type": "DOUBLE"}, }, "avg__B", ], } datasource = self.get_datasource_mock() df = pd.DataFrame( { "SUM(value1)": [15, 20, 25, 40], "avg__B": [10, 20, 5, 15], "avg__C": [11, 22, 33, 44], "count": [6, 7, 8, 9], "groupA": ["A", "B", "C", "C"], "groupB": ["x", "x", "y", "z"], } ) test_viz = viz.TableViz(datasource, form_data) data = test_viz.get_data(df) # Check method correctly transforms data and computes percents self.assertEqual( [ "groupA", "groupB", "SUM(value1)", "count", "avg__C", "%SUM(value1)", "%avg__B", ], list(data["columns"]), ) expected = [ { "groupA": "A", "groupB": "x", "SUM(value1)": 15, "count": 6, "avg__C": 11, "%SUM(value1)": 0.15, "%avg__B": 0.2, }, { "groupA": "B", "groupB": "x", "SUM(value1)": 20, "count": 7, "avg__C": 22, "%SUM(value1)": 0.2, "%avg__B": 0.4, }, { "groupA": "C", "groupB": "y", "SUM(value1)": 25, "count": 8, "avg__C": 33, "%SUM(value1)": 0.25, "%avg__B": 0.1, }, { "groupA": "C", "groupB": "z", "SUM(value1)": 40, "count": 9, "avg__C": 44, "%SUM(value1)": 0.4, "%avg__B": 0.3, }, ] self.assertEqual(expected, data["records"]) def test_parse_adhoc_filters(self): form_data = { "metrics": [ { "expressionType": "SIMPLE", "aggregate": "SUM", "label": "SUM(value1)", "column": {"column_name": "value1", "type": "DOUBLE"}, } ], "adhoc_filters": [ { "expressionType": "SIMPLE", "clause": "WHERE", "subject": "value2", "operator": ">", "comparator": "100", }, { "expressionType": "SIMPLE", "clause": "HAVING", "subject": "SUM(value1)", "operator": "<", "comparator": "10", }, { "expressionType": "SQL", "clause": "HAVING", "sqlExpression": "SUM(value1) > 5", }, { "expressionType": "SQL", "clause": "WHERE", "sqlExpression": "value3 in ('North America')", }, ], } datasource = self.get_datasource_mock() test_viz = viz.TableViz(datasource, form_data) query_obj = test_viz.query_obj() self.assertEqual( [{"col": "value2", "val": "100", "op": ">"}], query_obj["filter"] ) self.assertEqual( [{"op": "<", "val": "10", "col": "SUM(value1)"}], query_obj["extras"]["having_druid"], ) self.assertEqual("(value3 in ('North America'))", query_obj["extras"]["where"]) self.assertEqual("(SUM(value1) > 5)", query_obj["extras"]["having"]) def test_adhoc_filters_overwrite_legacy_filters(self): form_data = { "metrics": [ { "expressionType": "SIMPLE", "aggregate": "SUM", "label": "SUM(value1)", "column": {"column_name": "value1", "type": "DOUBLE"}, } ], "adhoc_filters": [ { "expressionType": "SIMPLE", "clause": "WHERE", "subject": "value2", "operator": ">", "comparator": "100", }, { "expressionType": "SQL", "clause": "WHERE", "sqlExpression": "value3 in ('North America')", }, ], "having": "SUM(value1) > 5", } datasource = self.get_datasource_mock() test_viz = viz.TableViz(datasource, form_data) query_obj = test_viz.query_obj() self.assertEqual( [{"col": "value2", "val": "100", "op": ">"}], query_obj["filter"] ) self.assertEqual([], query_obj["extras"]["having_druid"]) self.assertEqual("(value3 in ('North America'))", query_obj["extras"]["where"]) self.assertEqual("", query_obj["extras"]["having"]) def test_query_obj_merges_percent_metrics(self): datasource = self.get_datasource_mock() form_data = { "metrics": ["sum__A", "count", "avg__C"], "percent_metrics": ["sum__A", "avg__B", "max__Y"], } test_viz = viz.TableViz(datasource, form_data) query_obj = test_viz.query_obj() self.assertEqual( ["sum__A", "count", "avg__C", "avg__B", "max__Y"], query_obj["metrics"] ) def test_query_obj_throws_columns_and_metrics(self): datasource = self.get_datasource_mock() form_data = {"all_columns": ["A", "B"], "metrics": ["x", "y"]} with self.assertRaises(Exception): test_viz = viz.TableViz(datasource, form_data) test_viz.query_obj() del form_data["metrics"] form_data["groupby"] = ["B", "C"] with self.assertRaises(Exception): test_viz = viz.TableViz(datasource, form_data) test_viz.query_obj() @patch("superset.viz.BaseViz.query_obj") def test_query_obj_merges_all_columns(self, super_query_obj): datasource = self.get_datasource_mock() form_data = { "all_columns": ["colA", "colB", "colC"], "order_by_cols": ['["colA", "colB"]', '["colC"]'], } super_query_obj.return_value = { "columns": ["colD", "colC"], "groupby": ["colA", "colB"], } test_viz = viz.TableViz(datasource, form_data) query_obj = test_viz.query_obj() self.assertEqual(form_data["all_columns"], query_obj["columns"]) self.assertEqual([], query_obj["groupby"]) self.assertEqual([["colA", "colB"], ["colC"]], query_obj["orderby"]) def test_query_obj_uses_sortby(self): datasource = self.get_datasource_mock() form_data = { "metrics": ["colA", "colB"], "order_desc": False, } def run_test(metric): form_data["timeseries_limit_metric"] = metric test_viz = viz.TableViz(datasource, form_data) query_obj = test_viz.query_obj() self.assertEqual(["colA", "colB", metric], query_obj["metrics"]) self.assertEqual([(metric, True)], query_obj["orderby"]) run_test("simple_metric") run_test( { "label": "adhoc_metric", "expressionType": "SIMPLE", "aggregate": "SUM", "column": {"column_name": "sort_column",}, } ) def test_should_be_timeseries_raises_when_no_granularity(self): datasource = self.get_datasource_mock() form_data = {"include_time": True} with self.assertRaises(Exception): test_viz = viz.TableViz(datasource, form_data) test_viz.should_be_timeseries() def test_adhoc_metric_with_sortby(self): metrics = [ { "expressionType": "SIMPLE", "aggregate": "SUM", "label": "sum_value", "column": {"column_name": "value1", "type": "DOUBLE"}, } ] form_data = { "metrics": metrics, "timeseries_limit_metric": { "expressionType": "SIMPLE", "aggregate": "SUM", "label": "SUM(value1)", "column": {"column_name": "value1", "type": "DOUBLE"}, }, "order_desc": False, } df = pd.DataFrame({"SUM(value1)": [15], "sum_value": [15]}) datasource = self.get_datasource_mock() test_viz = viz.TableViz(datasource, form_data) data = test_viz.get_data(df) self.assertEqual(["sum_value"], data["columns"]) class DistBarVizTestCase(SupersetTestCase): def test_groupby_nulls(self): form_data = { "metrics": ["votes"], "adhoc_filters": [], "groupby": ["toppings"], "columns": [], } datasource = self.get_datasource_mock() df = pd.DataFrame( { "toppings": ["cheese", "pepperoni", "anchovies", None], "votes": [3, 5, 1, 2], } ) test_viz = viz.DistributionBarViz(datasource, form_data) data = test_viz.get_data(df)[0] self.assertEqual("votes", data["key"]) expected_values = [ {"x": "pepperoni", "y": 5}, {"x": "cheese", "y": 3}, {"x": NULL_STRING, "y": 2}, {"x": "anchovies", "y": 1}, ] self.assertEqual(expected_values, data["values"]) def test_groupby_nans(self): form_data = { "metrics": ["count"], "adhoc_filters": [], "groupby": ["beds"], "columns": [], } datasource = self.get_datasource_mock() df = pd.DataFrame({"beds": [0, 1, nan, 2], "count": [30, 42, 3, 29]}) test_viz = viz.DistributionBarViz(datasource, form_data) data = test_viz.get_data(df)[0] self.assertEqual("count", data["key"]) expected_values = [ {"x": "1.0", "y": 42}, {"x": "0.0", "y": 30}, {"x": "2.0", "y": 29}, {"x": NULL_STRING, "y": 3}, ] self.assertEqual(expected_values, data["values"]) def test_column_nulls(self): form_data = { "metrics": ["votes"], "adhoc_filters": [], "groupby": ["toppings"], "columns": ["role"], } datasource = self.get_datasource_mock() df = pd.DataFrame( { "toppings": ["cheese", "pepperoni", "cheese", "pepperoni"], "role": ["engineer", "engineer", None, None], "votes": [3, 5, 1, 2], } ) test_viz = viz.DistributionBarViz(datasource, form_data) data = test_viz.get_data(df) expected = [ { "key": NULL_STRING, "values": [{"x": "pepperoni", "y": 2}, {"x": "cheese", "y": 1}], }, { "key": "engineer", "values": [{"x": "pepperoni", "y": 5}, {"x": "cheese", "y": 3}], }, ] self.assertEqual(expected, data) class PairedTTestTestCase(SupersetTestCase): def test_get_data_transforms_dataframe(self): form_data = { "groupby": ["groupA", "groupB", "groupC"], "metrics": ["metric1", "metric2", "metric3"], } datasource = self.get_datasource_mock() # Test data raw = {} raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300] raw["groupA"] = ["a1", "a1", "a1", "b1", "b1", "b1", "c1", "c1", "c1"] raw["groupB"] = ["a2", "a2", "a2", "b2", "b2", "b2", "c2", "c2", "c2"] raw["groupC"] = ["a3", "a3", "a3", "b3", "b3", "b3", "c3", "c3", "c3"] raw["metric1"] = [1, 2, 3, 4, 5, 6, 7, 8, 9] raw["metric2"] = [10, 20, 30, 40, 50, 60, 70, 80, 90] raw["metric3"] = [100, 200, 300, 400, 500, 600, 700, 800, 900] df = pd.DataFrame(raw) pairedTTestViz = viz.viz_types["paired_ttest"](datasource, form_data) data = pairedTTestViz.get_data(df) # Check method correctly transforms data expected = { "metric1": [ { "values": [ {"x": 100, "y": 1}, {"x": 200, "y": 2}, {"x": 300, "y": 3}, ], "group": ("a1", "a2", "a3"), }, { "values": [ {"x": 100, "y": 4}, {"x": 200, "y": 5}, {"x": 300, "y": 6}, ], "group": ("b1", "b2", "b3"), }, { "values": [ {"x": 100, "y": 7}, {"x": 200, "y": 8}, {"x": 300, "y": 9}, ], "group": ("c1", "c2", "c3"), }, ], "metric2": [ { "values": [ {"x": 100, "y": 10}, {"x": 200, "y": 20}, {"x": 300, "y": 30}, ], "group": ("a1", "a2", "a3"), }, { "values": [ {"x": 100, "y": 40}, {"x": 200, "y": 50}, {"x": 300, "y": 60}, ], "group": ("b1", "b2", "b3"), }, { "values": [ {"x": 100, "y": 70}, {"x": 200, "y": 80}, {"x": 300, "y": 90}, ], "group": ("c1", "c2", "c3"), }, ], "metric3": [ { "values": [ {"x": 100, "y": 100}, {"x": 200, "y": 200}, {"x": 300, "y": 300}, ], "group": ("a1", "a2", "a3"), }, { "values": [ {"x": 100, "y": 400}, {"x": 200, "y": 500}, {"x": 300, "y": 600}, ], "group": ("b1", "b2", "b3"), }, { "values": [ {"x": 100, "y": 700}, {"x": 200, "y": 800}, {"x": 300, "y": 900}, ], "group": ("c1", "c2", "c3"), }, ], } self.assertEqual(data, expected) def test_get_data_empty_null_keys(self): form_data = {"groupby": [], "metrics": ["", None]} datasource = self.get_datasource_mock() # Test data raw = {} raw[DTTM_ALIAS] = [100, 200, 300] raw[""] = [1, 2, 3] raw[None] = [10, 20, 30] df = pd.DataFrame(raw) pairedTTestViz = viz.viz_types["paired_ttest"](datasource, form_data) data = pairedTTestViz.get_data(df) # Check method correctly transforms data expected = { "N/A": [ { "values": [ {"x": 100, "y": 1}, {"x": 200, "y": 2}, {"x": 300, "y": 3}, ], "group": "All", } ], "NULL": [ { "values": [ {"x": 100, "y": 10}, {"x": 200, "y": 20}, {"x": 300, "y": 30}, ], "group": "All", } ], } self.assertEqual(data, expected) class PartitionVizTestCase(SupersetTestCase): @patch("superset.viz.BaseViz.query_obj") def test_query_obj_time_series_option(self, super_query_obj): datasource = self.get_datasource_mock() form_data = {} test_viz = viz.PartitionViz(datasource, form_data) super_query_obj.return_value = {} query_obj = test_viz.query_obj() self.assertFalse(query_obj["is_timeseries"]) test_viz.form_data["time_series_option"] = "agg_sum" query_obj = test_viz.query_obj() self.assertTrue(query_obj["is_timeseries"]) def test_levels_for_computes_levels(self): raw = {} raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300] raw["groupA"] = ["a1", "a1", "a1", "b1", "b1", "b1", "c1", "c1", "c1"] raw["groupB"] = ["a2", "a2", "a2", "b2", "b2", "b2", "c2", "c2", "c2"] raw["groupC"] = ["a3", "a3", "a3", "b3", "b3", "b3", "c3", "c3", "c3"] raw["metric1"] = [1, 2, 3, 4, 5, 6, 7, 8, 9] raw["metric2"] = [10, 20, 30, 40, 50, 60, 70, 80, 90] raw["metric3"] = [100, 200, 300, 400, 500, 600, 700, 800, 900] df = pd.DataFrame(raw) groups = ["groupA", "groupB", "groupC"] time_op = "agg_sum" test_viz = viz.PartitionViz(Mock(), {}) levels = test_viz.levels_for(time_op, groups, df) self.assertEqual(4, len(levels)) expected = {DTTM_ALIAS: 1800, "metric1": 45, "metric2": 450, "metric3": 4500} self.assertEqual(expected, levels[0].to_dict()) expected = { DTTM_ALIAS: {"a1": 600, "b1": 600, "c1": 600}, "metric1": {"a1": 6, "b1": 15, "c1": 24}, "metric2": {"a1": 60, "b1": 150, "c1": 240}, "metric3": {"a1": 600, "b1": 1500, "c1": 2400}, } self.assertEqual(expected, levels[1].to_dict()) self.assertEqual(["groupA", "groupB"], levels[2].index.names) self.assertEqual(["groupA", "groupB", "groupC"], levels[3].index.names) time_op = "agg_mean" levels = test_viz.levels_for(time_op, groups, df) self.assertEqual(4, len(levels)) expected = { DTTM_ALIAS: 200.0, "metric1": 5.0, "metric2": 50.0, "metric3": 500.0, } self.assertEqual(expected, levels[0].to_dict()) expected = { DTTM_ALIAS: {"a1": 200, "c1": 200, "b1": 200}, "metric1": {"a1": 2, "b1": 5, "c1": 8}, "metric2": {"a1": 20, "b1": 50, "c1": 80}, "metric3": {"a1": 200, "b1": 500, "c1": 800}, } self.assertEqual(expected, levels[1].to_dict()) self.assertEqual(["groupA", "groupB"], levels[2].index.names) self.assertEqual(["groupA", "groupB", "groupC"], levels[3].index.names) def test_levels_for_diff_computes_difference(self): raw = {} raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300] raw["groupA"] = ["a1", "a1", "a1", "b1", "b1", "b1", "c1", "c1", "c1"] raw["groupB"] = ["a2", "a2", "a2", "b2", "b2", "b2", "c2", "c2", "c2"] raw["groupC"] = ["a3", "a3", "a3", "b3", "b3", "b3", "c3", "c3", "c3"] raw["metric1"] = [1, 2, 3, 4, 5, 6, 7, 8, 9] raw["metric2"] = [10, 20, 30, 40, 50, 60, 70, 80, 90] raw["metric3"] = [100, 200, 300, 400, 500, 600, 700, 800, 900] df = pd.DataFrame(raw) groups = ["groupA", "groupB", "groupC"] test_viz = viz.PartitionViz(Mock(), {}) time_op = "point_diff" levels = test_viz.levels_for_diff(time_op, groups, df) expected = {"metric1": 6, "metric2": 60, "metric3": 600} self.assertEqual(expected, levels[0].to_dict()) expected = { "metric1": {"a1": 2, "b1": 2, "c1": 2}, "metric2": {"a1": 20, "b1": 20, "c1": 20}, "metric3": {"a1": 200, "b1": 200, "c1": 200}, } self.assertEqual(expected, levels[1].to_dict()) self.assertEqual(4, len(levels)) self.assertEqual(["groupA", "groupB", "groupC"], levels[3].index.names) def test_levels_for_time_calls_process_data_and_drops_cols(self): raw = {} raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300] raw["groupA"] = ["a1", "a1", "a1", "b1", "b1", "b1", "c1", "c1", "c1"] raw["groupB"] = ["a2", "a2", "a2", "b2", "b2", "b2", "c2", "c2", "c2"] raw["groupC"] = ["a3", "a3", "a3", "b3", "b3", "b3", "c3", "c3", "c3"] raw["metric1"] = [1, 2, 3, 4, 5, 6, 7, 8, 9] raw["metric2"] = [10, 20, 30, 40, 50, 60, 70, 80, 90] raw["metric3"] = [100, 200, 300, 400, 500, 600, 700, 800, 900] df = pd.DataFrame(raw) groups = ["groupA", "groupB", "groupC"] test_viz = viz.PartitionViz(Mock(), {"groupby": groups}) def return_args(df_drop, aggregate): return df_drop test_viz.process_data = Mock(side_effect=return_args) levels = test_viz.levels_for_time(groups, df) self.assertEqual(4, len(levels)) cols = [DTTM_ALIAS, "metric1", "metric2", "metric3"] self.assertEqual(sorted(cols), sorted(levels[0].columns.tolist())) cols += ["groupA"] self.assertEqual(sorted(cols), sorted(levels[1].columns.tolist())) cols += ["groupB"] self.assertEqual(sorted(cols), sorted(levels[2].columns.tolist())) cols += ["groupC"] self.assertEqual(sorted(cols), sorted(levels[3].columns.tolist())) self.assertEqual(4, len(test_viz.process_data.mock_calls)) def test_nest_values_returns_hierarchy(self): raw = {} raw["groupA"] = ["a1", "a1", "a1", "b1", "b1", "b1", "c1", "c1", "c1"] raw["groupB"] = ["a2", "a2", "a2", "b2", "b2", "b2", "c2", "c2", "c2"] raw["groupC"] = ["a3", "a3", "a3", "b3", "b3", "b3", "c3", "c3", "c3"] raw["metric1"] = [1, 2, 3, 4, 5, 6, 7, 8, 9] raw["metric2"] = [10, 20, 30, 40, 50, 60, 70, 80, 90] raw["metric3"] = [100, 200, 300, 400, 500, 600, 700, 800, 900] df = pd.DataFrame(raw) test_viz = viz.PartitionViz(Mock(), {}) groups = ["groupA", "groupB", "groupC"] levels = test_viz.levels_for("agg_sum", groups, df) nest = test_viz.nest_values(levels) self.assertEqual(3, len(nest)) for i in range(0, 3): self.assertEqual("metric" + str(i + 1), nest[i]["name"]) self.assertEqual(3, len(nest[0]["children"])) self.assertEqual(1, len(nest[0]["children"][0]["children"])) self.assertEqual(1, len(nest[0]["children"][0]["children"][0]["children"])) def test_nest_procs_returns_hierarchy(self): raw = {} raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300] raw["groupA"] = ["a1", "a1", "a1", "b1", "b1", "b1", "c1", "c1", "c1"] raw["groupB"] = ["a2", "a2", "a2", "b2", "b2", "b2", "c2", "c2", "c2"] raw["groupC"] = ["a3", "a3", "a3", "b3", "b3", "b3", "c3", "c3", "c3"] raw["metric1"] = [1, 2, 3, 4, 5, 6, 7, 8, 9] raw["metric2"] = [10, 20, 30, 40, 50, 60, 70, 80, 90] raw["metric3"] = [100, 200, 300, 400, 500, 600, 700, 800, 900] df = pd.DataFrame(raw) test_viz = viz.PartitionViz(Mock(), {}) groups = ["groupA", "groupB", "groupC"] metrics = ["metric1", "metric2", "metric3"] procs = {} for i in range(0, 4): df_drop = df.drop(groups[i:], 1) pivot = df_drop.pivot_table( index=DTTM_ALIAS, columns=groups[:i], values=metrics ) procs[i] = pivot nest = test_viz.nest_procs(procs) self.assertEqual(3, len(nest)) for i in range(0, 3): self.assertEqual("metric" + str(i + 1), nest[i]["name"]) self.assertEqual(None, nest[i].get("val")) self.assertEqual(3, len(nest[0]["children"])) self.assertEqual(3, len(nest[0]["children"][0]["children"])) self.assertEqual(1, len(nest[0]["children"][0]["children"][0]["children"])) self.assertEqual( 1, len(nest[0]["children"][0]["children"][0]["children"][0]["children"]) ) def test_get_data_calls_correct_method(self): test_viz = viz.PartitionViz(Mock(), {}) df = Mock() with self.assertRaises(ValueError): test_viz.get_data(df) test_viz.levels_for = Mock(return_value=1) test_viz.nest_values = Mock(return_value=1) test_viz.form_data["groupby"] = ["groups"] test_viz.form_data["time_series_option"] = "not_time" test_viz.get_data(df) self.assertEqual("agg_sum", test_viz.levels_for.mock_calls[0][1][0]) test_viz.form_data["time_series_option"] = "agg_sum" test_viz.get_data(df) self.assertEqual("agg_sum", test_viz.levels_for.mock_calls[1][1][0]) test_viz.form_data["time_series_option"] = "agg_mean" test_viz.get_data(df) self.assertEqual("agg_mean", test_viz.levels_for.mock_calls[2][1][0]) test_viz.form_data["time_series_option"] = "point_diff" test_viz.levels_for_diff = Mock(return_value=1) test_viz.get_data(df) self.assertEqual("point_diff", test_viz.levels_for_diff.mock_calls[0][1][0]) test_viz.form_data["time_series_option"] = "point_percent" test_viz.get_data(df) self.assertEqual("point_percent", test_viz.levels_for_diff.mock_calls[1][1][0]) test_viz.form_data["time_series_option"] = "point_factor" test_viz.get_data(df) self.assertEqual("point_factor", test_viz.levels_for_diff.mock_calls[2][1][0]) test_viz.levels_for_time = Mock(return_value=1) test_viz.nest_procs = Mock(return_value=1) test_viz.form_data["time_series_option"] = "adv_anal" test_viz.get_data(df) self.assertEqual(1, len(test_viz.levels_for_time.mock_calls)) self.assertEqual(1, len(test_viz.nest_procs.mock_calls)) test_viz.form_data["time_series_option"] = "time_series" test_viz.get_data(df) self.assertEqual("agg_sum", test_viz.levels_for.mock_calls[3][1][0]) self.assertEqual(7, len(test_viz.nest_values.mock_calls)) class RoseVisTestCase(SupersetTestCase): def test_rose_vis_get_data(self): raw = {} t1 = pd.Timestamp("2000") t2 = pd.Timestamp("2002") t3 = pd.Timestamp("2004") raw[DTTM_ALIAS] = [t1, t2, t3, t1, t2, t3, t1, t2, t3] raw["groupA"] = ["a1", "a1", "a1", "b1", "b1", "b1", "c1", "c1", "c1"] raw["groupB"] = ["a2", "a2", "a2", "b2", "b2", "b2", "c2", "c2", "c2"] raw["groupC"] = ["a3", "a3", "a3", "b3", "b3", "b3", "c3", "c3", "c3"] raw["metric1"] = [1, 2, 3, 4, 5, 6, 7, 8, 9] df = pd.DataFrame(raw) fd = {"metrics": ["metric1"], "groupby": ["groupA"]} test_viz = viz.RoseViz(Mock(), fd) test_viz.metrics = fd["metrics"] res = test_viz.get_data(df) expected = { 946684800000000000: [ {"time": t1, "value": 1, "key": ("a1",), "name": ("a1",)}, {"time": t1, "value": 4, "key": ("b1",), "name": ("b1",)}, {"time": t1, "value": 7, "key": ("c1",), "name": ("c1",)}, ], 1009843200000000000: [ {"time": t2, "value": 2, "key": ("a1",), "name": ("a1",)}, {"time": t2, "value": 5, "key": ("b1",), "name": ("b1",)}, {"time": t2, "value": 8, "key": ("c1",), "name": ("c1",)}, ], 1072915200000000000: [ {"time": t3, "value": 3, "key": ("a1",), "name": ("a1",)}, {"time": t3, "value": 6, "key": ("b1",), "name": ("b1",)}, {"time": t3, "value": 9, "key": ("c1",), "name": ("c1",)}, ], } self.assertEqual(expected, res) class TimeSeriesTableVizTestCase(SupersetTestCase): def test_get_data_metrics(self): form_data = {"metrics": ["sum__A", "count"], "groupby": []} datasource = self.get_datasource_mock() raw = {} t1 = pd.Timestamp("2000") t2 = pd.Timestamp("2002") raw[DTTM_ALIAS] = [t1, t2] raw["sum__A"] = [15, 20] raw["count"] = [6, 7] df = pd.DataFrame(raw) test_viz = viz.TimeTableViz(datasource, form_data) data = test_viz.get_data(df) # Check method correctly transforms data self.assertEqual(set(["count", "sum__A"]), set(data["columns"])) time_format = "%Y-%m-%d %H:%M:%S" expected = { t1.strftime(time_format): {"sum__A": 15, "count": 6}, t2.strftime(time_format): {"sum__A": 20, "count": 7}, } self.assertEqual(expected, data["records"]) def test_get_data_group_by(self): form_data = {"metrics": ["sum__A"], "groupby": ["groupby1"]} datasource = self.get_datasource_mock() raw = {} t1 = pd.Timestamp("2000") t2 = pd.Timestamp("2002") raw[DTTM_ALIAS] = [t1, t1, t1, t2, t2, t2] raw["sum__A"] = [15, 20, 25, 30, 35, 40] raw["groupby1"] = ["a1", "a2", "a3", "a1", "a2", "a3"] df = pd.DataFrame(raw) test_viz = viz.TimeTableViz(datasource, form_data) data = test_viz.get_data(df) # Check method correctly transforms data self.assertEqual(set(["a1", "a2", "a3"]), set(data["columns"])) time_format = "%Y-%m-%d %H:%M:%S" expected = { t1.strftime(time_format): {"a1": 15, "a2": 20, "a3": 25}, t2.strftime(time_format): {"a1": 30, "a2": 35, "a3": 40}, } self.assertEqual(expected, data["records"]) @patch("superset.viz.BaseViz.query_obj") def test_query_obj_throws_metrics_and_groupby(self, super_query_obj): datasource = self.get_datasource_mock() form_data = {"groupby": ["a"]} super_query_obj.return_value = {} test_viz = viz.TimeTableViz(datasource, form_data) with self.assertRaises(Exception): test_viz.query_obj() form_data["metrics"] = ["x", "y"] test_viz = viz.TimeTableViz(datasource, form_data) with self.assertRaises(Exception): test_viz.query_obj() class BaseDeckGLVizTestCase(SupersetTestCase): def test_get_metrics(self): form_data = load_fixture("deck_path_form_data.json") datasource = self.get_datasource_mock() test_viz_deckgl = viz.BaseDeckGLViz(datasource, form_data) result = test_viz_deckgl.get_metrics() assert result == [form_data.get("size")] form_data = {} test_viz_deckgl = viz.BaseDeckGLViz(datasource, form_data) result = test_viz_deckgl.get_metrics() assert result == [] def test_scatterviz_get_metrics(self): form_data = load_fixture("deck_path_form_data.json") datasource = self.get_datasource_mock() form_data = {} test_viz_deckgl = viz.DeckScatterViz(datasource, form_data) test_viz_deckgl.point_radius_fixed = {"type": "metric", "value": "int"} result = test_viz_deckgl.get_metrics() assert result == ["int"] form_data = {} test_viz_deckgl = viz.DeckScatterViz(datasource, form_data) test_viz_deckgl.point_radius_fixed = {} result = test_viz_deckgl.get_metrics() assert result == [] def test_get_js_columns(self): form_data = load_fixture("deck_path_form_data.json") datasource = self.get_datasource_mock() mock_d = {"a": "dummy1", "b": "dummy2", "c": "dummy3"} test_viz_deckgl = viz.BaseDeckGLViz(datasource, form_data) result = test_viz_deckgl.get_js_columns(mock_d) assert result == {"color": None} def test_get_properties(self): mock_d = {} form_data = load_fixture("deck_path_form_data.json") datasource = self.get_datasource_mock() test_viz_deckgl = viz.BaseDeckGLViz(datasource, form_data) with self.assertRaises(NotImplementedError) as context: test_viz_deckgl.get_properties(mock_d) self.assertTrue("" in str(context.exception)) def test_process_spatial_query_obj(self): form_data = load_fixture("deck_path_form_data.json") datasource = self.get_datasource_mock() mock_key = "spatial_key" mock_gb = [] test_viz_deckgl = viz.BaseDeckGLViz(datasource, form_data) with self.assertRaises(ValueError) as context: test_viz_deckgl.process_spatial_query_obj(mock_key, mock_gb) self.assertTrue("Bad spatial key" in str(context.exception)) test_form_data = { "latlong_key": {"type": "latlong", "lonCol": "lon", "latCol": "lat"}, "delimited_key": {"type": "delimited", "lonlatCol": "lonlat"}, "geohash_key": {"type": "geohash", "geohashCol": "geo"}, } datasource = self.get_datasource_mock() expected_results = { "latlong_key": ["lon", "lat"], "delimited_key": ["lonlat"], "geohash_key": ["geo"], } for mock_key in ["latlong_key", "delimited_key", "geohash_key"]: mock_gb = [] test_viz_deckgl = viz.BaseDeckGLViz(datasource, test_form_data) test_viz_deckgl.process_spatial_query_obj(mock_key, mock_gb) assert expected_results.get(mock_key) == mock_gb def test_geojson_query_obj(self): form_data = load_fixture("deck_geojson_form_data.json") datasource = self.get_datasource_mock() test_viz_deckgl = viz.DeckGeoJson(datasource, form_data) results = test_viz_deckgl.query_obj() assert results["metrics"] == [] assert results["groupby"] == [] assert results["columns"] == ["test_col"] def test_parse_coordinates(self): form_data = load_fixture("deck_path_form_data.json") datasource = self.get_datasource_mock() viz_instance = viz.BaseDeckGLViz(datasource, form_data) coord = viz_instance.parse_coordinates("1.23, 3.21") self.assertEqual(coord, (1.23, 3.21)) coord = viz_instance.parse_coordinates("1.23 3.21") self.assertEqual(coord, (1.23, 3.21)) self.assertEqual(viz_instance.parse_coordinates(None), None) self.assertEqual(viz_instance.parse_coordinates(""), None) def test_parse_coordinates_raises(self): form_data = load_fixture("deck_path_form_data.json") datasource = self.get_datasource_mock() test_viz_deckgl = viz.BaseDeckGLViz(datasource, form_data) with self.assertRaises(SpatialException): test_viz_deckgl.parse_coordinates("NULL") with self.assertRaises(SpatialException): test_viz_deckgl.parse_coordinates("fldkjsalkj,fdlaskjfjadlksj") @patch("superset.utils.core.uuid.uuid4") def test_filter_nulls(self, mock_uuid4): mock_uuid4.return_value = uuid.UUID("12345678123456781234567812345678") test_form_data = { "latlong_key": {"type": "latlong", "lonCol": "lon", "latCol": "lat"}, "delimited_key": {"type": "delimited", "lonlatCol": "lonlat"}, "geohash_key": {"type": "geohash", "geohashCol": "geo"}, } datasource = self.get_datasource_mock() expected_results = { "latlong_key": [ { "clause": "WHERE", "expressionType": "SIMPLE", "filterOptionName": "12345678-1234-5678-1234-567812345678", "comparator": "", "operator": "IS NOT NULL", "subject": "lat", "isExtra": False, }, { "clause": "WHERE", "expressionType": "SIMPLE", "filterOptionName": "12345678-1234-5678-1234-567812345678", "comparator": "", "operator": "IS NOT NULL", "subject": "lon", "isExtra": False, }, ], "delimited_key": [ { "clause": "WHERE", "expressionType": "SIMPLE", "filterOptionName": "12345678-1234-5678-1234-567812345678", "comparator": "", "operator": "IS NOT NULL", "subject": "lonlat", "isExtra": False, } ], "geohash_key": [ { "clause": "WHERE", "expressionType": "SIMPLE", "filterOptionName": "12345678-1234-5678-1234-567812345678", "comparator": "", "operator": "IS NOT NULL", "subject": "geo", "isExtra": False, } ], } for mock_key in ["latlong_key", "delimited_key", "geohash_key"]: test_viz_deckgl = viz.BaseDeckGLViz(datasource, test_form_data.copy()) test_viz_deckgl.spatial_control_keys = [mock_key] test_viz_deckgl.add_null_filters() adhoc_filters = test_viz_deckgl.form_data["adhoc_filters"] assert expected_results.get(mock_key) == adhoc_filters class TimeSeriesVizTestCase(SupersetTestCase): def test_timeseries_unicode_data(self): datasource = self.get_datasource_mock() form_data = {"groupby": ["name"], "metrics": ["sum__payout"]} raw = {} raw["name"] = [ "Real Madrid C.F.🇺🇸🇬🇧", "Real Madrid C.F.🇺🇸🇬🇧", "Real Madrid Basket", "Real Madrid Basket", ] raw["__timestamp"] = [ "2018-02-20T00:00:00", "2018-03-09T00:00:00", "2018-02-20T00:00:00", "2018-03-09T00:00:00", ] raw["sum__payout"] = [2, 2, 4, 4] df = pd.DataFrame(raw) test_viz = viz.NVD3TimeSeriesViz(datasource, form_data) viz_data = {} viz_data = test_viz.get_data(df) expected = [ { u"values": [ {u"y": 4, u"x": u"2018-02-20T00:00:00"}, {u"y": 4, u"x": u"2018-03-09T00:00:00"}, ], u"key": (u"Real Madrid Basket",), }, { u"values": [ {u"y": 2, u"x": u"2018-02-20T00:00:00"}, {u"y": 2, u"x": u"2018-03-09T00:00:00"}, ], u"key": (u"Real Madrid C.F.\U0001f1fa\U0001f1f8\U0001f1ec\U0001f1e7",), }, ] self.assertEqual(expected, viz_data) def test_process_data_resample(self): datasource = self.get_datasource_mock() df = pd.DataFrame( { "__timestamp": pd.to_datetime( ["2019-01-01", "2019-01-02", "2019-01-05", "2019-01-07"] ), "y": [1.0, 2.0, 5.0, 7.0], } ) self.assertEqual( viz.NVD3TimeSeriesViz( datasource, {"metrics": ["y"], "resample_method": "sum", "resample_rule": "1D"}, ) .process_data(df)["y"] .tolist(), [1.0, 2.0, 0.0, 0.0, 5.0, 0.0, 7.0], ) np.testing.assert_equal( viz.NVD3TimeSeriesViz( datasource, {"metrics": ["y"], "resample_method": "asfreq", "resample_rule": "1D"}, ) .process_data(df)["y"] .tolist(), [1.0, 2.0, np.nan, np.nan, 5.0, np.nan, 7.0], ) def test_apply_rolling(self): datasource = self.get_datasource_mock() df = pd.DataFrame( index=pd.to_datetime( ["2019-01-01", "2019-01-02", "2019-01-05", "2019-01-07"] ), data={"y": [1.0, 2.0, 3.0, 4.0]}, ) self.assertEqual( viz.BigNumberViz( datasource, { "metrics": ["y"], "rolling_type": "cumsum", "rolling_periods": 0, "min_periods": 0, }, ) .apply_rolling(df)["y"] .tolist(), [1.0, 3.0, 6.0, 10.0], ) self.assertEqual( viz.BigNumberViz( datasource, { "metrics": ["y"], "rolling_type": "sum", "rolling_periods": 2, "min_periods": 0, }, ) .apply_rolling(df)["y"] .tolist(), [1.0, 3.0, 5.0, 7.0], ) self.assertEqual( viz.BigNumberViz( datasource, { "metrics": ["y"], "rolling_type": "mean", "rolling_periods": 10, "min_periods": 0, }, ) .apply_rolling(df)["y"] .tolist(), [1.0, 1.5, 2.0, 2.5], ) class BigNumberVizTestCase(SupersetTestCase): def test_get_data(self): datasource = self.get_datasource_mock() df = pd.DataFrame( data={ DTTM_ALIAS: pd.to_datetime( ["2019-01-01", "2019-01-02", "2019-01-05", "2019-01-07"] ), "y": [1.0, 2.0, 3.0, 4.0], } ) data = viz.BigNumberViz(datasource, {"metrics": ["y"]}).get_data(df) self.assertEqual(data[2], {DTTM_ALIAS: pd.Timestamp("2019-01-05"), "y": 3}) def test_get_data_with_none(self): datasource = self.get_datasource_mock() df = pd.DataFrame( data={ DTTM_ALIAS: pd.to_datetime( ["2019-01-01", "2019-01-02", "2019-01-05", "2019-01-07"] ), "y": [1.0, 2.0, None, 4.0], } ) data = viz.BigNumberViz(datasource, {"metrics": ["y"]}).get_data(df) assert np.isnan(data[2]["y"])
1.617188
2
chord_sim/modules/taskqueue.py
ryogrid/FunnelKVS
8
1032
# coding:utf-8 from typing import Dict, List, Optional, cast, TYPE_CHECKING from .chord_util import ChordUtil, InternalControlFlowException, NodeIsDownedExceptiopn if TYPE_CHECKING: from .chord_node import ChordNode class TaskQueue: JOIN_PARTIAL = "join_partial" def __init__(self, existing_node : 'ChordNode'): self.tqueue : List[str] = [] self.existing_node = existing_node def append_task(self, task_code : str): self.tqueue.append(task_code) # キュー内の最初のタスクを実行する # 処理が失敗した場合は先頭に戻す def exec_first(self): if len(self.tqueue) > 0: ChordUtil.dprint("exec_first_0," + ChordUtil.gen_debug_str_of_node(self.existing_node.node_info) + "," + str(self.tqueue)) task_code : str = self.tqueue.pop() if task_code == TaskQueue.JOIN_PARTIAL: # try: #self.existing_node.stabilizer.partial_join_op() ret = self.existing_node.stabilizer.partial_join_op() if (ret.is_ok): pass else: # ret.err_code == ErrorCode.InternalControlFlowException_CODE # 実行に失敗したため再実行すべく先頭に戻す self.tqueue.insert(0, task_code) ChordUtil.dprint( "exec_first_1," + ChordUtil.gen_debug_str_of_node(self.existing_node.node_info) + "," + "INTERNAL_CONTROL_FLOW_EXCEPTION_OCCURED") # except (InternalControlFlowException, NodeIsDownedExceptiopn): # # 実行に失敗したため再実行すべく先頭に戻す # self.tqueue.insert(0, task_code) # ChordUtil.dprint("exec_first_1," + ChordUtil.gen_debug_str_of_node(self.existing_node.node_info) + "," # + "INTERNAL_CONTROL_FLOW_EXCEPTION_OCCURED")
2.5
2
surname_rnn/surname/containers.py
sudarshan85/nlpbook
0
1033
#!/usr/bin/env python import pandas as pd from pathlib import Path from torch.utils.data import DataLoader class ModelContainer(object): def __init__(self, model, optimizer, loss_fn, scheduler=None): self.model = model self.optimizer = optimizer self.loss_fn = loss_fn self.scheduler = scheduler class DataContainer(object): def __init__(self, df_with_split: pd.DataFrame, dataset_class, vectorizer_file: Path, batch_size: int, with_test=True, is_load: bool=True) -> None: self.train_df = df_with_split.loc[df_with_split['split'] == 'train'] self.val_df = df_with_split.loc[df_with_split['split'] == 'val'] self._bs = batch_size self.with_test = with_test self.is_load = is_load self._lengths = {'train_size': len(self.train_df), 'val_size': len(self.val_df)} self._n_batches = [self._lengths['train_size'] // self._bs, self._lengths['val_size'] // self._bs] if not self.is_load: print("Creating and saving vectorizer") train_ds = dataset_class.load_data_and_create_vectorizer(self.train_df) train_ds.save_vectorizer(vectorizer_file) self.train_ds = dataset_class.load_data_and_vectorizer_from_file(self.train_df, vectorizer_file) self.vectorizer = self.train_ds.vectorizer self.surname_vocab = self.vectorizer.surname_vocab self.nationality_vocab = self.vectorizer.nationality_vocab self.train_dl = DataLoader(self.train_ds, self._bs, shuffle=True, drop_last=True) self.val_ds = dataset_class.load_data_and_vectorizer(self.val_df, self.vectorizer) self.val_dl = DataLoader(self.val_ds, self._bs, shuffle=True, drop_last=True) if self.with_test: self.test_df = df_with_split.loc[df_with_split['split'] == 'test'] self._lengths['test_size'] = len(self.test_df) self._n_batches.append(self._lengths['test_size'] // self._bs) self.test_ds = dataset_class.load_data_and_vectorizer(self.test_df, self.vectorizer) self.test_dl = DataLoader(self.test_ds, self._bs, shuffle=True, drop_last=True) def get_loaders(self): return self.train_dl, self.val_dl, self.test_dl @property def train_batches(self): return self._n_batches[0] @property def val_batches(self): return self._n_batches[1] @property def test_batches(self): if not self.with_test: raise NameError("No test dataset was provided") return self._n_batches[2] @property def vocab_size(self): return len(self.surname_vocab) @property def n_classes(self): return len(self.nationality_vocab) @property def sizes(self): return self._lengths
2.515625
3
AudioLib/__init__.py
yNeshy/voice-change
11
1034
<reponame>yNeshy/voice-change from AudioLib.AudioEffect import AudioEffect
0.96875
1
programs/buck_logging.py
lakshmi2005/buck
1
1035
#!/usr/bin/env python from __future__ import print_function import logging import os def setup_logging(): # Set log level of the messages to show. level_name = os.environ.get('BUCK_WRAPPER_LOG_LEVEL', 'INFO') level_name_to_level = { 'CRITICAL': logging.CRITICAL, 'ERROR': logging.ERROR, 'WARNING': logging.WARNING, 'INFO': logging.INFO, 'DEBUG': logging.DEBUG, 'NOTSET': logging.NOTSET, } level = level_name_to_level.get(level_name.upper(), logging.INFO) logging.basicConfig( level=level, format=( '%(asctime)s [%(levelname)s][%(filename)s:%(lineno)d] %(message)s' ))
2.484375
2
CONTENT/DS-n-Algos/ALGO/__PYTHON/celeb.py
Web-Dev-Collaborative/DS-ALGO-OFFICIAL
11
1036
<reponame>Web-Dev-Collaborative/DS-ALGO-OFFICIAL<gh_stars>10-100 def orangesRotting(elemnts): if not elemnts or len(elemnts) == 0: return 0 n = len(elemnts) m = len(elemnts[0]) rotten = [] for i in range(n): for j in range(m): if elemnts[i][j] == 2: rotten.append((i, j)) mins = 0 def dfs(rotten): count = [] for i, j in rotten: if i > 0 and rotten[i - 1][j] == 1: count.append((i - 1, j)) elemnts[i - 1][j] = 2 if j > 0 and rotten[i][j - 1] == 1: count.append((i, j - 1)) elemnts[i][j - 1] = 2 if i < n - 1 and rotten[i][j] == 1: count.append((i, j)) elemnts[i][j] = 2 if j < m - 1 and rotten[i][j] == 1: count.append((i, j)) elemnts[i][j] = 2 return count while rotten: rotten = dfs(rotten) if not rotten: break mins += 1 for i in range(n): for j in range(m): if elemnts[i][j] == 1: return -1 return mins
3.109375
3
official/cv/c3d/src/c3d_model.py
leelige/mindspore
77
1037
<gh_stars>10-100 # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import math import mindspore.nn as nn import mindspore.ops as P from mindspore.common import initializer as init from src.utils import default_recurisive_init, KaimingNormal class C3D(nn.Cell): """ C3D network definition. Args: num_classes (int): Class numbers. Default: 1000. Returns: Tensor, infer output tensor. Examples: >>> C3D(num_classes=1000) """ def __init__(self, num_classes=1000): super(C3D, self).__init__() self.conv1 = nn.Conv3d(in_channels=3, out_channels=64, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.pool1 = P.MaxPool3D(kernel_size=(1, 2, 2), strides=(1, 2, 2), pad_mode='same') self.conv2 = nn.Conv3d(in_channels=64, out_channels=128, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.pool2 = P.MaxPool3D(kernel_size=(2, 2, 2), strides=(2, 2, 2), pad_mode='same') self.conv3a = nn.Conv3d(in_channels=128, out_channels=256, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.conv3b = nn.Conv3d(in_channels=256, out_channels=256, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.pool3 = P.MaxPool3D(kernel_size=(2, 2, 2), strides=(2, 2, 2), pad_mode='same') self.conv4a = nn.Conv3d(in_channels=256, out_channels=512, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.conv4b = nn.Conv3d(in_channels=512, out_channels=512, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.pool4 = P.MaxPool3D(kernel_size=(2, 2, 2), strides=(2, 2, 2), pad_mode='same') self.conv5a = nn.Conv3d(in_channels=512, out_channels=512, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.conv5b = nn.Conv3d(in_channels=512, out_channels=512, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.pool5 = P.MaxPool3D(kernel_size=(2, 2, 2), strides=(2, 2, 2), pad_mode='same') self.fc6 = nn.Dense(in_channels=8192, out_channels=4096) self.fc7 = nn.Dense(in_channels=4096, out_channels=4096) self.fc8 = nn.Dense(in_channels=4096, out_channels=num_classes, bias_init=init.Normal(0.02)) self.dropout = nn.Dropout(keep_prob=0.5) self.relu = nn.ReLU() self.pad = nn.Pad(paddings=((0, 0), (0, 0), (1, 0), (1, 0)), mode="CONSTANT") self.__init_weight() def __init_weight(self): default_recurisive_init(self) self.custom_init_weight() def construct(self, x): x = self.relu(self.conv1(x)) x = self.pool1(x) x = self.relu(self.conv2(x)) x = self.pool2(x) x = self.relu(self.conv3a(x)) x = self.relu(self.conv3b(x)) x = self.pool3(x) x = self.relu(self.conv4a(x)) x = self.relu(self.conv4b(x)) x = self.pool4(x) x = self.relu(self.conv5a(x)) x = self.relu(self.conv5b(x)) x = x.view(-1, 512 * 2, 7, 7) x = self.pad(x) x = x.view(-1, 512, 2, 8, 8) x = self.pool5(x) x = x.view(-1, 8192) x = self.relu(self.fc6(x)) x = self.dropout(x) x = self.relu(self.fc7(x)) x = self.dropout(x) logits = self.fc8(x) return logits def custom_init_weight(self): """ Init the weight of Conv3d and Dense in the net. """ for _, cell in self.cells_and_names(): if isinstance(cell, nn.Conv3d): cell.weight.set_data(init.initializer( KaimingNormal(a=math.sqrt(5), mode='fan_out', nonlinearity='relu'), cell.weight.shape, cell.weight.dtype)) if cell.bias is not None: cell.bias.set_data(init.initializer( 'zeros', cell.bias.shape, cell.bias.dtype)) elif isinstance(cell, nn.Dense): cell.weight.set_data(init.initializer( init.Normal(0.01), cell.weight.shape, cell.weight.dtype)) if cell.bias is not None: cell.bias.set_data(init.initializer( 'zeros', cell.bias.shape, cell.bias.dtype))
1.953125
2
blmath/geometry/apex.py
metabolize/blmath
6
1038
<filename>blmath/geometry/apex.py import numpy as np from blmath.numerics import vx def apex(points, axis): ''' Find the most extreme point in the direction of the axis provided. axis: A vector, which is an 3x1 np.array. ''' coords_on_axis = points.dot(axis) return points[np.argmax(coords_on_axis)] def inflection_points(points, axis, span): ''' Find the list of vertices that preceed inflection points in a curve. The curve is differentiated with respect to the coordinate system defined by axis and span. axis: A vector representing the vertical axis of the coordinate system. span: A vector representing the the horiztonal axis of the coordinate system. returns: a list of points in space corresponding to the vertices that immediately preceed inflection points in the curve ''' coords_on_span = points.dot(span) dx = np.gradient(coords_on_span) coords_on_axis = points.dot(axis) # Take the second order finite difference of the curve with respect to the # defined coordinate system finite_difference_2 = np.gradient(np.gradient(coords_on_axis, dx), dx) # Compare the product of all neighboring pairs of points in the second derivative # If a pair of points has a negative product, then the second derivative changes sign # at one of those points, signalling an inflection point is_inflection_point = [finite_difference_2[i] * finite_difference_2[i + 1] <= 0 for i in range(len(finite_difference_2) - 1)] inflection_point_indices = [i for i, b in enumerate(is_inflection_point) if b] if len(inflection_point_indices) == 0: # pylint: disable=len-as-condition return [] return points[inflection_point_indices] def farthest(from_point, to_points): ''' Find the farthest point among the inputs, to the given point. Return a tuple: farthest_point, index_of_farthest_point. ''' absolute_distances = vx.magnitude(to_points - from_point) index_of_farthest_point = np.argmax(absolute_distances) farthest_point = to_points[index_of_farthest_point] return farthest_point, index_of_farthest_point
3.34375
3
examples/client/main.py
TheFarGG/Discode
3
1039
<filename>examples/client/main.py<gh_stars>1-10 import os import discode TOKEN = os.environ.get("TOKEN") # The token from the developer portal. client = discode.Client(token=TOKEN, intents=discode.Intents.default()) @client.on_event("ready") async def on_ready(): print(client.user, "is ready!") # The ready listener gets fired when the bot/client is completely ready for use. @client.on_event("message_create") async def on_message(message: discode.Message): msg: str = msg.content if msg.startswith("?hi"): await message.channel.send("Hi!!!") # The message_create listener is fired whenever a message is sent to any channel that the bot has access to.
2.890625
3
timm/models/layers/__init__.py
kkahatapitiya/pytorch-image-models
0
1040
<reponame>kkahatapitiya/pytorch-image-models<filename>timm/models/layers/__init__.py from .activations import * from .adaptive_avgmax_pool import \ adaptive_avgmax_pool2d, select_adaptive_pool2d, AdaptiveAvgMaxPool2d, SelectAdaptivePool2d from .blur_pool import BlurPool2d from .classifier import ClassifierHead, create_classifier from .cond_conv2d import CondConv2d, get_condconv_initializer from .config import is_exportable, is_scriptable, is_no_jit, set_exportable, set_scriptable, set_no_jit,\ set_layer_config from .conv2d_same import Conv2dSame, conv2d_same from .conv_bn_act import ConvBnAct from .create_act import create_act_layer, get_act_layer, get_act_fn from .create_attn import get_attn, create_attn from .create_conv2d import create_conv2d from .create_norm_act import get_norm_act_layer, create_norm_act, convert_norm_act from .drop import DropBlock2d, DropPath, drop_block_2d, drop_path from .eca import EcaModule, CecaModule, EfficientChannelAttn, CircularEfficientChannelAttn from .evo_norm import EvoNormBatch2d, EvoNormSample2d from .gather_excite import GatherExcite from .global_context import GlobalContext from .helpers import to_ntuple, to_2tuple, to_3tuple, to_4tuple, make_divisible from .inplace_abn import InplaceAbn from .involution import Involution from .linear import Linear from .mixed_conv2d import MixedConv2d from .mlp import Mlp, GluMlp, GatedMlp, ConvMlpGeneral, ConvMlpGeneralv2 from .non_local_attn import NonLocalAttn, BatNonLocalAttn from .norm import GroupNorm, LayerNorm2d from .norm_act import BatchNormAct2d, GroupNormAct from .padding import get_padding, get_same_padding, pad_same from .patch_embed import PatchEmbed from .pool2d_same import AvgPool2dSame, create_pool2d from .squeeze_excite import SEModule, SqueezeExcite, EffectiveSEModule, EffectiveSqueezeExcite from .selective_kernel import SelectiveKernel from .separable_conv import SeparableConv2d, SeparableConvBnAct from .space_to_depth import SpaceToDepthModule from .split_attn import SplitAttn from .split_batchnorm import SplitBatchNorm2d, convert_splitbn_model from .std_conv import StdConv2d, StdConv2dSame, ScaledStdConv2d, ScaledStdConv2dSame from .test_time_pool import TestTimePoolHead, apply_test_time_pool from .weight_init import trunc_normal_, variance_scaling_, lecun_normal_
1.460938
1
riccipy/metrics/bondi_2.py
cjayross/riccipy
4
1041
""" Name: Bondi References: Bondi, Proc. Roy. Soc. Lond. A, v282, p303, (1964) Coordinates: Spherical Symmetry: Spherical Notes: Outgoing Coordinates """ from sympy import Function, diag, sin, symbols coords = symbols("r v theta phi", real=True) variables = () functions = symbols("C M", cls=Function) r, v, th, ph = coords C, M = functions metric = diag(0, -C(r, v) ** 2 * (1 - 2 * M(r, v) / r), r ** 2, r ** 2 * sin(th) ** 2) metric[0, 1] = metric[1, 0] = -C(r, v)
2.5625
3
cfgov/ask_cfpb/tests/test_views.py
atuggle/cfgov-refresh
0
1042
from __future__ import unicode_literals import json from django.apps import apps from django.core.urlresolvers import NoReverseMatch, reverse from django.http import Http404, HttpRequest, QueryDict from django.test import TestCase, override_settings from django.utils import timezone from wagtail.wagtailcore.models import Site from wagtailsharing.models import SharingSite import mock from model_mommy import mommy from ask_cfpb.models import ENGLISH_PARENT_SLUG, SPANISH_PARENT_SLUG from ask_cfpb.views import annotate_links, ask_search, redirect_ask_search from v1.util.migrations import get_or_create_page now = timezone.now() class AnswerPagePreviewCase(TestCase): def setUp(self): from v1.models import HomePage from ask_cfpb.models import Answer self.ROOT_PAGE = HomePage.objects.get(slug='cfgov') self.english_parent_page = get_or_create_page( apps, 'ask_cfpb', 'AnswerLandingPage', 'Ask CFPB', ENGLISH_PARENT_SLUG, self.ROOT_PAGE, language='en', live=True) self.spanish_parent_page = get_or_create_page( apps, 'ask_cfpb', 'AnswerLandingPage', 'Obtener respuestas', SPANISH_PARENT_SLUG, self.ROOT_PAGE, language='es', live=True) self.test_answer = mommy.make( Answer, answer="Test answer.", question="Test question.", slug='test-question', update_english_page=True, update_spanish_page=False) self.site = mommy.make( Site, root_page=self.ROOT_PAGE, hostname='localhost', port=8000, is_default_site=True) self.sharing_site = mommy.make( SharingSite, site=self.site, hostname='preview.localhost', port=8000) @mock.patch('ask_cfpb.views.ServeView.serve_latest_revision') def test_preview_page(self, mock_serve): from ask_cfpb.views import view_answer page = self.test_answer.english_page revision = page.save_revision() revision.publish() test_request = HttpRequest() test_request.META['SERVER_NAME'] = 'preview.localhost' test_request.META['SERVER_PORT'] = 8000 view_answer( test_request, 'test-question', 'en', self.test_answer.pk) self.assertEqual(mock_serve.call_count, 1) def test_answer_page_not_live(self): from ask_cfpb.views import view_answer page = self.test_answer.english_page page.live = False page.save() test_request = HttpRequest() with self.assertRaises(Http404): view_answer( test_request, 'test-question', 'en', self.test_answer.pk) class AnswerViewTestCase(TestCase): def setUp(self): from v1.models import HomePage self.ROOT_PAGE = HomePage.objects.get(slug='cfgov') self.english_parent_page = get_or_create_page( apps, 'ask_cfpb', 'AnswerLandingPage', 'Ask CFPB', ENGLISH_PARENT_SLUG, self.ROOT_PAGE, language='en', live=True) self.spanish_parent_page = get_or_create_page( apps, 'ask_cfpb', 'AnswerLandingPage', 'Obtener respuestas', SPANISH_PARENT_SLUG, self.ROOT_PAGE, language='es', live=True) def test_annotate_links(self): mock_answer = ( '<p>Answer with a <a href="http://fake.com">fake link.</a></p>') (annotated_answer, links) = annotate_links(mock_answer) self.assertEqual( annotated_answer, '<html><body><p>Answer with a <a href="http://fake.com">fake ' 'link.</a><sup>1</sup></p></body></html>') self.assertEqual(links, [(1, str('http://fake.com'))]) def test_annotate_links_no_href(self): mock_answer = ( '<p>Answer with a <a>fake link.</a></p>') (annotated_answer, links) = annotate_links(mock_answer) self.assertEqual(links, []) def test_annotate_links_no_site(self): site = Site.objects.get(is_default_site=True) site.is_default_site = False site.save() with self.assertRaises(RuntimeError) as context: annotate_links('answer') self.assertIn('no default wagtail site', str(context.exception)) def test_bad_language_search(self): with self.assertRaises(NoReverseMatch): self.client.get(reverse( 'ask-search-en', kwargs={'language': 'zz'}), {'q': 'payday'}) @mock.patch('ask_cfpb.views.SearchQuerySet.filter') def test_en_search_results_page_not_created(self, mock_filter): mock_queryset = mock.Mock() mock_queryset.count.return_value = 0 mock_filter.return_value = [mock_queryset] response = self.client.get(reverse( 'ask-search-en'), {'q': 'payday'}) self.assertEqual(mock_filter.call_count, 1) self.assertTrue(mock_filter.called_with(language='en', q='payday')) self.assertEqual(response.status_code, 404) @mock.patch('ask_cfpb.views.SearchQuerySet') def test_en_search(self, mock_sqs): from v1.util.migrations import get_or_create_page mock_page = get_or_create_page( apps, 'ask_cfpb', 'AnswerResultsPage', 'Mock results page', 'ask-cfpb-search-results', self.ROOT_PAGE, language='en') mock_return = mock.Mock() mock_return.url = 'mockcfpb.gov' mock_return.autocomplete = 'A mock question' mock_return.text = 'Mock answer text.' mock_queryset = mock.Mock() mock_queryset.__iter__ = mock.Mock(return_value=iter([mock_return])) mock_queryset.count.return_value = 1 mock_sqs_instance = mock_sqs.return_value.models.return_value mock_sqs_instance.filter.return_value = mock_queryset mock_sqs_instance.spelling_suggestion.return_value = 'payday' response = self.client.get(reverse( 'ask-search-en'), {'q': 'payday'}) self.assertEqual(response.status_code, 200) self.assertEqual( response.context_data['page'], mock_page) self.assertEqual( response.context_data['page'].suggestion, None) self.assertEqual(mock_sqs_instance.filter.call_count, 1) self.assertTrue(mock_sqs_instance.filter.called_with( language='en', q='payday')) @mock.patch('ask_cfpb.views.SearchQuerySet') def test_en_search_no_term(self, mock_sqs): from v1.util.migrations import get_or_create_page mock_page = get_or_create_page( apps, 'ask_cfpb', 'AnswerResultsPage', 'Mock results page', 'ask-cfpb-search-results', self.ROOT_PAGE, language='en') response = self.client.get(reverse( 'ask-search-en'), {'q': ''}) self.assertEqual(response.status_code, 200) self.assertEqual( response.context_data['page'], mock_page) self.assertEqual( response.context_data['page'].query, '') self.assertEqual( response.context_data['page'].result_query, '') @override_settings(FLAGS={'ASK_SEARCH_TYPOS': {'boolean': True}}) @mock.patch('ask_cfpb.views.SearchQuerySet') def test_en_search_suggestion(self, mock_sqs): from v1.util.migrations import get_or_create_page mock_page = get_or_create_page( apps, 'ask_cfpb', 'AnswerResultsPage', 'Mock results page', 'ask-cfpb-search-results', self.english_parent_page, language='en', live=True) mock_return = mock.Mock() mock_return.url = 'mockcfpb.gov' mock_return.autocomplete = 'A mock question' mock_return.text = 'Mock answer text.' mock_queryset = mock.Mock() mock_queryset.__iter__ = mock.Mock(return_value=iter([mock_return])) mock_queryset.count.return_value = 0 mock_sqs_instance = mock_sqs.return_value.models.return_value mock_sqs_instance.filter.return_value = mock_queryset mock_sqs_instance.spelling_suggestion.return_value = 'payday' response = self.client.get(reverse( 'ask-search-en'), {'q': 'paydya'}) self.assertEqual(response.status_code, 200) response_page = response.context_data['page'] self.assertEqual(response_page, mock_page) self.assertEqual(response_page.suggestion, 'paydya') self.assertEqual(response_page.result_query, 'payday') self.assertEqual(response_page.query, 'paydya') @mock.patch('ask_cfpb.views.redirect_ask_search') def test_ask_search_encounters_facets(self, mock_redirect): request = HttpRequest() request.GET['selected_facets'] = 'category_exact:my_category' ask_search(request) self.assertEqual(mock_redirect.call_count, 1) @mock.patch('ask_cfpb.views.redirect') def test_redirect_ask_search_passes_query_string(self, mock_redirect): request = HttpRequest() request.GET['q'] = 'hoodoo' redirect_ask_search(request) self.assertEqual(mock_redirect.call_count, 1) @mock.patch('ask_cfpb.views.redirect') def test_spanish_redirect_ask_search_passes_query_string( self, mock_redirect): request = HttpRequest() request.GET['selected_facets'] = 'category_exact:my_categoria' redirect_ask_search(request, language='es') self.assertEqual(mock_redirect.call_count, 1) @mock.patch('ask_cfpb.views.SearchQuerySet.filter') def test_es_search(self, mock_filter): get_or_create_page( apps, 'ask_cfpb', 'AnswerResultsPage', 'Mock Spanish results page', 'respuestas', self.spanish_parent_page, language='es', live=True) mock_return = mock.Mock() mock_return.url = 'mockcfpb.gov' mock_return.autocomplete = 'A mock question' mock_return.text = 'Mock answer text.' mock_queryset = mock.Mock() mock_queryset.__iter__ = mock.Mock(return_value=iter([mock_return])) mock_queryset.count.return_value = 1 mock_filter.return_value = mock_queryset self.client.get(reverse( 'ask-search-es', kwargs={'language': 'es'}), {'q': 'payday'}) self.assertEqual(mock_filter.call_count, 1) self.assertTrue(mock_filter.called_with(language='es', q='payday')) @mock.patch('ask_cfpb.views.SearchQuerySet.filter') def test_search_page_en_selection(self, mock_filter): page = get_or_create_page( apps, 'ask_cfpb', 'AnswerResultsPage', 'Mock results page', 'ask-cfpb-search-results', self.english_parent_page, language='en', live=True) mock_return = mock.Mock() mock_return.url = 'url' mock_return.autocomplete = 'question text' mock_queryset = mock.Mock() mock_queryset.__iter__ = mock.Mock(return_value=iter([mock_return])) mock_queryset.count.return_value = 1 mock_filter.return_value = mock_queryset self.client.get(reverse( 'ask-search-en'), {'q': 'tuition'}) self.assertEqual(mock_filter.call_count, 1) self.assertEqual(page.language, 'en') self.assertEqual(page.answers, []) self.assertEqual( page.get_template(HttpRequest()), 'ask-cfpb/answer-search-results.html') @mock.patch('ask_cfpb.views.SearchQuerySet.filter') def test_search_page_es_selection(self, mock_filter): page = get_or_create_page( apps, 'ask_cfpb', 'AnswerResultsPage', 'Mock Spanish results page', 'respuestas', self.spanish_parent_page, language='es', live=True) mock_return = mock.Mock() mock_return.url = 'url' mock_return.autocomplete = 'question text' mock_queryset = mock.Mock() mock_queryset.__iter__ = mock.Mock(return_value=iter([mock_return])) mock_queryset.count.return_value = 1 mock_filter.return_value = mock_queryset self.client.get(reverse( 'ask-search-es', kwargs={'language': 'es'}), {'q': 'hipotecas'}) self.assertEqual(mock_filter.call_count, 1) self.assertEqual(page.language, 'es') self.assertEqual(page.answers, []) self.assertEqual( page.get_template(HttpRequest()), 'ask-cfpb/answer-search-spanish-results.html') @mock.patch('ask_cfpb.views.SearchQuerySet.filter') def test_json_response(self, mock_filter): get_or_create_page( apps, 'ask_cfpb', 'AnswerResultsPage', 'Mock results page', 'ask-cfpb-search-results', self.english_parent_page, language='en', live=True) mock_return = mock.Mock() mock_return.url = "inscisive_url.com" mock_return.autocomplete = "inscisive question" mock_return.text = "inscisive text" mock_queryset = mock.Mock() mock_queryset.__iter__ = mock.Mock(return_value=iter([mock_return])) mock_queryset.count.return_value = 1 mock_filter.return_value = mock_queryset response = self.client.get(reverse( 'ask-search-en-json', kwargs={'as_json': 'json'}), {'q': 'tuition'}) self.assertEqual(response.status_code, 200) self.assertEqual(mock_filter.call_count, 1) self.assertEqual(json.loads(response.content)['query'], 'tuition') def test_autocomplete_en_blank_term(self): result = self.client.get(reverse( 'ask-autocomplete-en'), {'term': ''}) output = json.loads(result.content) self.assertEqual(output, []) def test_autocomplete_es_blank_term(self): result = self.client.get(reverse( 'ask-autocomplete-es', kwargs={'language': 'es'}), {'term': ''}) output = json.loads(result.content) self.assertEqual(output, []) @mock.patch('ask_cfpb.views.SearchQuerySet.autocomplete') def test_autocomplete_en(self, mock_autocomplete): mock_search_result = mock.Mock() mock_search_result.autocomplete = 'question' mock_search_result.url = 'url' mock_autocomplete.return_value = [mock_search_result] result = self.client.get(reverse( 'ask-autocomplete-en'), {'term': 'question'}) self.assertEqual(mock_autocomplete.call_count, 1) output = json.loads(result.content) self.assertEqual( sorted(output[0].keys()), ['question', 'url']) @mock.patch('ask_cfpb.views.SearchQuerySet.autocomplete') def test_autocomplete_es(self, mock_autocomplete): mock_search_result = mock.Mock() mock_search_result.autocomplete = 'question' mock_search_result.url = 'url' mock_autocomplete.return_value = [mock_search_result] result = self.client.get(reverse( 'ask-autocomplete-es', kwargs={'language': 'es'}), {'term': 'question'}) self.assertEqual(mock_autocomplete.call_count, 1) output = json.loads(result.content) self.assertEqual( sorted(output[0].keys()), ['question', 'url']) class RedirectAskSearchTestCase(TestCase): def test_redirect_search_no_facets(self): request = HttpRequest() with self.assertRaises(Http404): redirect_ask_search(request) def test_redirect_search_blank_facets(self): request = HttpRequest() request.GET['selected_facets'] = '' with self.assertRaises(Http404): redirect_ask_search(request) def test_redirect_search_no_query(self): request = HttpRequest() request.GET['q'] = ' ' with self.assertRaises(Http404): redirect_ask_search(request) def test_redirect_search_with_category(self): category_querystring = ( 'selected_facets=category_exact:my_category' '&selected_facets=category_exact:my_category2' '&selected_facets=audience_exact:Older+Americans' '&selected_facets=audience_exact:my_audience2' '&selected_facets=tag_exact:mytag1' '&selected_facets=tag_exact:mytag2') request = HttpRequest() request.GET = QueryDict(category_querystring) result = redirect_ask_search(request) self.assertEqual(result.get('location'), '/ask-cfpb/category-my_category/') def test_redirect_search_with_audience(self): audience_querystring = ( 'selected_facets=audience_exact:Older+Americans' '&selected_facets=audience_exact:my_audience2') request = HttpRequest() request.GET = QueryDict(audience_querystring) result = redirect_ask_search(request) self.assertEqual( result.get('location'), '/ask-cfpb/audience-older-americans/') def test_spanish_redirect_search_with_tag(self): target_tag = 'spanishtag1' tag_querystring = ( 'selected_facets=tag_exact:{}' '&selected_facets=tag_exact:spanishtag2'.format(target_tag)) request = HttpRequest() request.GET = QueryDict(tag_querystring) result = redirect_ask_search(request, language='es') self.assertEqual( result.get('location'), '/es/obtener-respuestas/buscar-por-etiqueta/{}/'.format( target_tag)) def test_english_redirect_search_with_tag(self): target_tag = 'englishtag1' tag_querystring = ( 'selected_facets=tag_exact:{}' '&selected_facets=tag_exact:englishtag2'.format(target_tag)) request = HttpRequest() request.GET = QueryDict(tag_querystring) result = redirect_ask_search(request, language='en') self.assertEqual( result.get('location'), '/ask-cfpb/search-by-tag/{}/'.format( target_tag)) def test_redirect_search_with_unrecognized_facet_raises_404(self): querystring = \ 'sort=-updated_at&selected_facets=imtkfidycqszgfdb&page=60' request = HttpRequest() request.GET = QueryDict(querystring) with self.assertRaises(Http404): redirect_ask_search(request)
1.835938
2
setup.py
bcongdon/instapaper-to-sqlite
1
1043
import os from setuptools import setup VERSION = "0.2" def get_long_description(): with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), "README.md"), encoding="utf8", ) as fp: return fp.read() setup( name="instapaper-to-sqlite", description="Save data from Instapaper to a SQLite database", long_description=get_long_description(), long_description_content_type="text/markdown", author="<NAME>", author_email="<EMAIL>", url="https://github.com/bcongdon/instapaper-to-sqlite", project_urls={ "Source": "https://github.com/bcongdon/instapaper-to-sqlite", "Issues": "https://github.com/bcongdon/instapaper-to-sqlite/issues", }, classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Console", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Database", ], keywords="instapaper sqlite export dogsheep", version=VERSION, packages=["instapaper_to_sqlite"], entry_points=""" [console_scripts] instapaper-to-sqlite=instapaper_to_sqlite.cli:cli """, install_requires=[ "click", "requests", "sqlite-utils~=3.17", "pyinstapaper @ git+https://github.com/bcongdon/pyinstapaper#egg=pyinstapaper", ], extras_require={"test": ["pytest"]}, tests_require=["instapaper-to-sqlite[test]"], )
1.820313
2
pybm/commands/compare.py
nicholasjng/pybm
12
1044
from typing import List from pybm import PybmConfig from pybm.command import CLICommand from pybm.config import get_reporter_class from pybm.exceptions import PybmError from pybm.reporters import BaseReporter from pybm.status_codes import ERROR, SUCCESS from pybm.util.path import get_subdirs class CompareCommand(CLICommand): """ Report benchmark results from specified sources. """ usage = "pybm compare <run> <anchor-ref> <compare-refs> [<options>]\n" def __init__(self): super(CompareCommand, self).__init__(name="compare") self.config = PybmConfig.load() def add_arguments(self): self.parser.add_argument( "run", type=str, metavar="<run>", help="Benchmark run to report results for. " "To report the preceding run, use the " '"latest" keyword. To report results ' "of the n-th preceding run " "(i.e., n runs ago), " 'use the "latest^{n}" syntax.', ) self.parser.add_argument( "refs", nargs="+", metavar="<refs>", help="Benchmarked refs to compare. The first " "given ref will be treated as the " "anchor ref, relative to which all " "differences are reported. An error is " "raised if any of the given " "refs are not present in the run.", ) reporter: BaseReporter = get_reporter_class(config=self.config) reporter_args = reporter.additional_arguments() if reporter_args: reporter_name = self.config.get_value("reporter.name") reporter_group_desc = ( f"Additional options from configured reporter class {reporter_name!r}" ) reporter_group = self.parser.add_argument_group(reporter_group_desc) # add builder-specific options into the group for arg in reporter_args: reporter_group.add_argument(arg.pop("flags"), **arg) def run(self, args: List[str]) -> int: if not args: self.parser.print_help() return ERROR self.add_arguments() options = self.parser.parse_args(args) reporter: BaseReporter = get_reporter_class(config=self.config) # TODO: Parse run to fit schema run = options.run refs: List[str] = options.refs result_dir = reporter.result_dir # TODO: Make this dynamic to support other run identifiers result = sorted(get_subdirs(result_dir))[-1] result_path = result_dir / result if result_path.exists(): reporter.compare( *refs, result=result, target_filter=options.target_filter, benchmark_filter=options.benchmark_filter, context_filter=options.context_filter, ) else: raise PybmError( f"No benchmark results found for the requested run {run!r}." ) return SUCCESS
2.28125
2
dddm/recoil_rates/halo.py
JoranAngevaare/dddm
0
1045
""" For a given detector get a WIMPrate for a given detector (not taking into account any detector effects """ import numericalunits as nu import wimprates as wr import dddm export, __all__ = dddm.exporter() @export class SHM: """ class used to pass a halo model to the rate computation must contain: :param v_esc -- escape velocity (multiplied by units) :param rho_dm -- density in mass/volume of dark matter at the Earth (multiplied by units) The standard halo model also allows variation of v_0 :param v_0 -- v0 of the velocity distribution (multiplied by units) :function velocity_dist -- function taking v,t giving normalised velocity distribution in earth rest-frame. """ def __init__(self, v_0=None, v_esc=None, rho_dm=None): self.v_0 = 230 * nu.km / nu.s if v_0 is None else v_0 self.v_esc = 544 * nu.km / nu.s if v_esc is None else v_esc self.rho_dm = (0.3 * nu.GeV / nu.c0 ** 2 / nu.cm ** 3 if rho_dm is None else rho_dm) def __str__(self): # Standard Halo Model (shm) return 'shm' def velocity_dist(self, v, t): """ Get the velocity distribution in units of per velocity, :param v: v is in units of velocity :return: observed velocity distribution at earth """ return wr.observed_speed_dist(v, t, self.v_0, self.v_esc) def parameter_dict(self): """Return a dict of readable parameters of the current settings""" return dict( v_0=self.v_0 / (nu.km / nu.s), v_esc=self.v_esc / (nu.km / nu.s), rho_dm=self.rho_dm / (nu.GeV / nu.c0 ** 2 / nu.cm ** 3), )
3.046875
3
picket/rvae/train_eval_models.py
rekords-uw/Picket
10
1046
<filename>picket/rvae/train_eval_models.py<gh_stars>1-10 #!/usr/bin/env python3 import torch from torch import optim import torch.nn.functional as F import argparse from sklearn.metrics import mean_squared_error import numpy as np import json from . import utils from .model_utils import get_pi_exact_vec, rnn_vae_forward_one_stage, rnn_vae_forward_two_stage def training_phase(model, optimizer, train_loader, args, epoch, mute=True): model.train() train_loss_vae, train_nll_vae, train_z_kld_vae, train_w_kld_vae = 4*[0] train_loss_seq, train_nll_seq, train_z_kld_seq, train_w_kld_seq = 4*[0] train_total_loss_seq_vae, train_loss_seq_vae, train_nll_seq_vae, train_z_kld_seq_vae, train_w_kld_seq_vae = 5*[0] for batch_idx, unpack in enumerate(train_loader): data_input = unpack[0] if args.cuda_on: data_input = data_input.cuda() optimizer.zero_grad() ## first foward-pass p_params, q_params, q_samples = model(data_input, n_epoch=epoch-1) if not args.AVI: get_pi_exact_vec(model, data_input, p_params, q_params, args, logit_ret=True) # get pi, saves to q_params (with no_grad) vae_loss, vae_nll, vae_z_kld, vae_w_kld = model.loss_function(data_input, p_params, q_params, q_samples) train_loss_vae += vae_loss.item() train_nll_vae += vae_nll.item() train_z_kld_vae += vae_z_kld.item() train_w_kld_vae += vae_w_kld.item() if args.inference_type == 'vae': vae_loss.backward() elif args.inference_type == 'seqvae': if args.seqvae_bprop: # NOTE: rolls out iterations through time and bprops params_in = (p_params, q_params, q_samples) seq_loss_pack, _, _ = rnn_vae_forward_one_stage(params_in, data_input, model, vae_loss, args, number_steps=args.seqvae_steps, loss_per_iter=True, epoch_id=epoch) seq_total_loss, seq_final_loss, seq_final_nll, seq_final_z_kld, seq_final_w_kld = seq_loss_pack train_total_loss_seq_vae += seq_total_loss.item() train_loss_seq_vae += seq_final_loss.item() train_nll_seq_vae += seq_final_nll.item() train_z_kld_seq_vae += seq_final_z_kld.item() train_w_kld_seq_vae += seq_final_w_kld.item() else: vae_loss.backward() train_total_loss_seq_vae += vae_loss.item() train_loss_seq_vae += vae_loss.item() train_nll_seq_vae += vae_nll.item() train_z_kld_seq_vae += vae_z_kld.item() train_w_kld_seq_vae += vae_w_kld.item() seq_total_loss = torch.tensor(0.0) seq_final_loss = torch.tensor(0.0) seq_final_nll = torch.tensor(0.0) seq_final_z_kld = torch.tensor(0.0) seq_final_w_kld = torch.tensor(0.0) optimizer.step() if batch_idx % args.log_interval == 0 and not mute: print('\n\nTrain Epoch: {} [{}/{} ({:.0f}%)]\tVAE Loss: {:.3f}\tVAE NLL: {:.3f}\tVAE KLD_Z: {:.3f}\tVAE KLD_W: {:.3f}'.format( epoch, batch_idx * len(data_input), len(train_loader.dataset), 100. * batch_idx / len(train_loader), vae_loss.item()/len(data_input), vae_nll.item()/len(data_input), vae_z_kld.item()/len(data_input), vae_w_kld.item()/len(data_input))) if args.inference_type == 'seqvae': print('\n') print('\n\nAdditional Info:\tTotal Seq Loss: {:.3f}\tFinal Seq Loss: {:.3f}\tFinal Sep NLL: {:.3f}\tFinal Sep KLD_Z: {:.3f}\tFinal Sep KLD_W: {:.3f}\n'.format( seq_total_loss.item()/len(data_input), seq_final_loss.item()/len(data_input), seq_final_nll.item()/len(data_input), seq_final_z_kld.item()/len(data_input), seq_final_w_kld.item()/len(data_input))) dataset_len = float(len(train_loader.dataset)) ret = {'train_loss_vae': train_loss_vae/dataset_len, 'train_nll_vae': train_nll_vae/dataset_len, 'train_z_kld_vae': train_z_kld_vae/dataset_len, 'train_w_kld_vae': train_w_kld_vae/dataset_len} if args.inference_type == "seqvae": ret_seq = {'train_loss_seq': train_loss_seq_vae/dataset_len, 'train_nll_seq': train_nll_seq_vae/dataset_len, 'train_z_kld_seq': train_z_kld_seq_vae/dataset_len,'train_w_kld_seq': train_w_kld_seq_vae/dataset_len, 'train_total_loss_seq':train_total_loss_seq_vae/dataset_len} ret = {**ret, **ret_seq} return ret def evaluation_phase(model, data_eval, dataset_obj, args, epoch, clean_comp_show=False, data_eval_clean=False, logit_pi_prev=torch.tensor([]), w_conv=False, mask_err=None): # if args.cuda_on: # model.cpu() if type(mask_err) != type(None): mask_err = mask_err.bool() model.eval() p_params, q_params, q_samples = model(data_eval) if not args.AVI: get_pi_exact_vec(model, data_eval, p_params, q_params, args, logit_ret=True) # get pi vae_loss, vae_nll, vae_z_kld, vae_w_kld = model.loss_function(data_eval, p_params, q_params, q_samples) eval_data_len = data_eval.shape[0] losses = {'eval_loss_vae': vae_loss.item()/eval_data_len, 'eval_nll_vae':vae_nll.item()/eval_data_len, 'eval_z_kld_vae': vae_z_kld.item()/eval_data_len, 'eval_w_kld_vae':vae_w_kld.item()/eval_data_len} # SEQ-VAE if args.inference_type == 'seqvae': #with torch.no_grad(): params_in = (p_params, q_params, q_samples) if args.seqvae_two_stage: seq_loss_pack, _, seq_param_pack = rnn_vae_forward_two_stage(params_in, data_eval, model, vae_loss, args, number_steps=args.seqvae_steps, number_steps_second_stage=args.steps_2stage, loss_per_iter=True, mask_err=mask_err, epoch_id=epoch) else: seq_loss_pack, _, seq_param_pack = rnn_vae_forward_one_stage(params_in, data_eval, model, vae_loss, args, number_steps=args.seqvae_steps, loss_per_iter=True, mask_err=mask_err, epoch_id=epoch) seq_total_loss, seq_final_loss, seq_final_nll, seq_final_z_kld, seq_final_w_kld = seq_loss_pack p_params_final, q_params_final, q_samples_final = seq_param_pack losses_seq_vae = {'eval_loss_seq': seq_final_loss.item()/eval_data_len, 'eval_nll_seq': seq_final_nll.item()/eval_data_len, 'eval_z_kld_seq': seq_final_z_kld.item()/eval_data_len, 'eval_w_kld_seq': seq_final_w_kld.item()/eval_data_len, 'eval_total_loss_seq': seq_total_loss.item()/eval_data_len} losses = {**losses, **losses_seq_vae} if args.inference_type == 'seqvae': p_params_metric, q_params_metric, q_samples_metric = p_params_final, q_params_final, q_samples_final else: p_params_metric, q_params_metric, q_samples_metric = p_params, q_params, q_samples #Getting scores and clean component if neededin_aux_samples with torch.no_grad(): if args.outlier_model == "VAE": # VAE models only (no w's or pi's) # generative model only p(x|z, ...) nll_score_mat = utils.generate_score_outlier_matrix(p_params_metric, data_eval, dataset_obj) pi_score_mat = -10 converg_norm_w = -10 else: if clean_comp_show: loss_clean, nll_clean, z_kld_clean, w_kld_clean = model.loss_function(data_eval, p_params_metric, q_params_metric, q_samples_metric, clean_comp_only=True, data_eval_clean=data_eval_clean) losses_add = {'eval_loss_final_clean': loss_clean.item()/eval_data_len, 'eval_nll_final_clean': nll_clean.item()/eval_data_len, 'eval_z_kld_final_clean': z_kld_clean.item()/eval_data_len, 'eval_w_kld_final_clean': w_kld_clean.item()/eval_data_len } losses = {**losses, **losses_add} # q(w|x, ...) param (pi), used in outlier score pi_score_mat = torch.sigmoid(q_params_metric['w']['logit_pi']).clamp(1e-6, 1-1e-6) # -log p(x|z, ...) used as outlier score nll_score_mat = utils.generate_score_outlier_matrix(p_params_metric, data_eval, dataset_obj) # check convergence of weights (pi's) if w_conv: if logit_pi_prev.nelement() == 0: logit_pi_prev = torch.zeros_like(q_params_metric['w']['logit_pi']) converg_norm_w = (q_params_metric['w']['logit_pi'] - logit_pi_prev).norm().item() logit_pi_prev = q_params_metric['w']['logit_pi'].clone().detach() else: converg_norm_w = -10 # insert here measurement of calibration of pi's using MSE or cross-entropy if isinstance(mask_err, torch.Tensor): pi_mtx = pi_score_mat pi_mtx_true = (~mask_err).float() err_pi = ((pi_mtx - pi_mtx_true)**2).mean() ce_pi = F.binary_cross_entropy(pi_mtx, pi_mtx_true) print('MSE on pi pred: {}'.format(err_pi)) print('CE on pi pred: {}'.format(ce_pi)) print('dirt pi median: {} std: {}'.format(torch.sigmoid(q_params_metric['w']['logit_pi'][mask_err]).median(), torch.sigmoid(q_params_metric['w']['logit_pi'][mask_err]).std())) print('clean pi median: {} std: {}'.format(torch.sigmoid(q_params_metric['w']['logit_pi'][~mask_err]).median(), torch.sigmoid(q_params_metric['w']['logit_pi'][~mask_err]).std())) metrics = {'nll_score': nll_score_mat, 'pi_score': pi_score_mat, 'converg_norm_w': converg_norm_w} return losses, metrics def repair_phase(model, data_dirty, data_clean, dataset_obj, args, mask, mode, epoch): model.eval() # model params with input: dirty data if args.inference_type == 'seqvae': p_params_xd, q_params_xd, q_samples_xd = model(data_dirty) if not args.AVI: get_pi_exact_vec(model, data_dirty, p_params_xd, q_params_xd, args, logit_ret=True) params_xd_in = (p_params_xd, q_params_xd, q_samples_xd) if args.seqvae_two_stage: _, _, (p_params_xd, q_params_xd, q_samples_xd) = rnn_vae_forward_two_stage(params_xd_in, data_dirty, model, torch.tensor(0.0, device=data_dirty.device), args, number_steps=args.seqvae_steps, number_steps_second_stage=args.steps_2stage, loss_per_iter=True, epoch_id=epoch) else: _, _, (p_params_xd, q_params_xd, q_samples_xd) = rnn_vae_forward_one_stage(params_xd_in, data_dirty, model, torch.tensor(0.0, device=data_dirty.device), args, number_steps=args.seqvae_steps, loss_per_iter=True, epoch_id=epoch) else: # standard 'vae' type inference p_params_xd, q_params_xd, q_samples_xd = model(data_dirty) if not args.AVI: get_pi_exact_vec(model, data_dirty, p_params_xd, q_params_xd, args, logit_ret=True) # get pi # model params with input: underlying clean data if args.inference_type == 'seqvae': p_params_xc, q_params_xc, q_samples_xc = model(data_clean) if not args.AVI: get_pi_exact_vec(model, data_dirty, p_params_xc, q_params_xc, args, logit_ret=True) params_xc_in = (p_params_xc, q_params_xc, q_samples_xc) if args.seqvae_two_stage: _, _, (p_params_xc, q_params_xc, q_samples_xc) = rnn_vae_forward_two_stage(params_xc_in, data_clean, model, torch.tensor(0.0, device=data_clean.device), args, number_steps=args.seqvae_steps, number_steps_second_stage=args.steps_2stage, loss_per_iter=True, epoch_id=epoch) else: _, _, (p_params_xc, q_params_xc, q_samples_xc) = rnn_vae_forward_one_stage(params_xc_in, data_clean, model, torch.tensor(0.0, device=data_clean.device), args, number_steps=args.seqvae_steps, loss_per_iter=True, epoch_id=epoch) else: # 'vae' type inference p_params_xc, q_params_xc, q_samples_xc = model(data_clean) # no need to get pi, not used after # error (MSE) lower bound, on dirty cell positions only error_lb_dc, error_lb_dc_per_feat = utils.error_computation(model, data_clean, p_params_xc['x'], mask) # x_truth - f_vae(x_clean) # error repair, on dirty cell positions only error_repair_dc, error_repair_dc_per_feat = utils.error_computation(model, data_clean, p_params_xd['x'], mask) # x_truth - f_vae(x_dirty) print("\n\n {} REPAIR ERROR (DIRTY POS):{}".format(mode, error_repair_dc)) # error upper bound, on dirty cell positions only error_up_dc, error_up_dc_per_feat = utils.error_computation(model, data_clean, data_dirty, mask, x_input_size=True) # x_truth - x_dirty # error on clean cell positions only (to test impact on dirty cells on clean cells under model) error_repair_cc, error_repair_cc_per_feat = utils.error_computation(model, data_clean, p_params_xd['x'], 1-mask) print("\n\n {} REPAIR ERROR (CLEAN POS):{}".format(mode, error_repair_cc)) # Get NLL (predict. posterior approx) under dirty data dict_slice = lambda dict_op, row_pos: {key:(value[row_pos,:] \ if value.shape[0]==data_dirty.shape[0] else value) for key, value in dict_op.items()} dirty_row_pos = mask.any(dim=1).bool() n_dirty_rows = dirty_row_pos.sum().item() p_params_xd_sliced = dict_slice(p_params_xd, dirty_row_pos) q_params_xd_sliced = dict() if args.outlier_model == 'RVAE': q_params_xd_sliced['w'] = dict_slice(q_params_xd['w'], dirty_row_pos) q_params_xd_sliced['z'] = dict_slice(q_params_xd['z'], dirty_row_pos) q_samples_xd_sliced = dict_slice(q_samples_xd, dirty_row_pos) vae_loss_dc, vae_nll_dc, vae_z_kld_dc, vae_w_kld_dc = model.loss_function(data_clean[dirty_row_pos,:], p_params_xd_sliced, q_params_xd_sliced, q_samples_xd_sliced, clean_comp_only=True, data_eval_clean=True) clean_row_pos = ~dirty_row_pos n_clean_rows = clean_row_pos.sum().item() p_params_xd_sliced = dict_slice(p_params_xd, clean_row_pos) q_params_xd_sliced = dict() if args.outlier_model == 'RVAE': q_params_xd_sliced['w'] = dict_slice(q_params_xd['w'], clean_row_pos) q_params_xd_sliced['z'] = dict_slice(q_params_xd['z'], clean_row_pos) q_samples_xd_sliced = dict_slice(q_samples_xd, clean_row_pos) vae_loss_cc, vae_nll_cc, vae_z_kld_cc, vae_w_kld_cc = model.loss_function(data_clean[clean_row_pos,:], p_params_xd_sliced, q_params_xd_sliced, q_samples_xd_sliced, clean_comp_only=True, data_eval_clean=True) eval_data_len = data_dirty.shape[0] losses = {'eval_loss_final_clean_dc': vae_loss_dc.item()/n_dirty_rows, 'eval_nll_final_clean_dc':vae_nll_dc.item()/n_dirty_rows, 'eval_z_kld_final_clean_dc': vae_z_kld_dc.item()/n_dirty_rows, 'eval_w_kld_final_clean_dc':vae_w_kld_dc.item()/n_dirty_rows, 'eval_loss_final_clean_cc': vae_loss_cc.item()/n_clean_rows, 'eval_nll_final_clean_cc':vae_nll_cc.item()/n_clean_rows, 'eval_z_kld_final_clean_cc': vae_z_kld_cc.item()/n_clean_rows, 'eval_w_kld_final_clean_cc':vae_w_kld_cc.item()/n_clean_rows, 'eval_loss_final_clean_all': (vae_loss_cc+vae_loss_dc).item()/eval_data_len, 'eval_nll_final_clean_all':(vae_nll_cc+vae_nll_dc).item()/eval_data_len, 'eval_z_kld_final_clean_all': (vae_z_kld_cc+vae_z_kld_dc).item()/eval_data_len, 'eval_w_kld_final_clean_all':(vae_w_kld_cc+vae_w_kld_dc).item()/eval_data_len, 'mse_lower_bd_dirtycells': error_lb_dc.item(), 'mse_upper_bd_dirtycells': error_up_dc.item() , 'mse_repair_dirtycells': error_repair_dc.item(), 'mse_repair_cleancells': error_repair_cc.item(), 'errors_per_feature': [error_lb_dc_per_feat, error_repair_dc_per_feat, error_up_dc_per_feat, error_repair_cc_per_feat]} return losses
1.992188
2
setup.py
nopipifish/bert4keras
1
1047
<gh_stars>1-10 #! -*- coding: utf-8 -*- from setuptools import setup, find_packages setup( name='bert4keras', version='0.8.4', description='an elegant bert4keras', long_description='bert4keras: https://github.com/bojone/bert4keras', license='Apache License 2.0', url='https://github.com/bojone/bert4keras', author='bojone', author_email='<EMAIL>', install_requires=['keras<=2.3.1'], packages=find_packages() )
1.171875
1
sztuczna_inteligencja/3-lab/backtrackingSolve.py
Magikis/Uniwersity
12
1048
<reponame>Magikis/Uniwersity # import cProfile # import pstats # import io from picture import * # pr = cProfile.Profile() # pr.enable() def out(p): for i in range(2): print([len(x) for x in p.perms[i]]) if __name__ == '__main__': p = Picture() p.genPerms() p.detuctAll() p.backtrackLoop() p.saveOtput() # pr.disable() # s = io.StringIO() # sortby = 'cumulative' # ps = pstats.Stats(pr, stream=s).sort_stats(sortby) # ps.print_stats() # print(s.getvalue())
2.328125
2
benchmark/generate_examples_strprose.py
HALOCORE/SynGuar
1
1049
# imports import os import json import subprocess abs_join = lambda p1, p2 : os.path.abspath(os.path.join(p1, p2)) # constants SCRIPT_DIR = os.path.abspath(os.path.dirname(__file__)) SEED_RELPATH = "./strprose/example_files/_seeds.json" SEED_FULLPATH = abs_join(SCRIPT_DIR, SEED_RELPATH) SEED_INFO = None with open(SEED_FULLPATH, 'r') as f: SEED_INFO = json.load(f) TOOL_RELPATH = "../StrPROSE-synthesizer/StrPROSE/bin/Debug/netcoreapp3.1/StrPROSE.dll" TOOL_FULLPATH = abs_join(SCRIPT_DIR, TOOL_RELPATH) TARGET_RELDIR = "./strprose/targets" TARGET_FULLDIR = abs_join(SCRIPT_DIR, TARGET_RELDIR) MAX_SAMPLE_SIZE = 2000 EXAMPLE_RELDIR = "./strprose/example_files" EXAMPLE_FULLDIR = abs_join(SCRIPT_DIR, EXAMPLE_RELDIR) TIME_OUT = 120 # methods def generate_examples(bench_id, seed): command_line_args = [ "dotnet", TOOL_FULLPATH, "--samplegen", TARGET_FULLDIR, str(bench_id), str(seed), str(MAX_SAMPLE_SIZE), EXAMPLE_FULLDIR ] try: print(f"# -------- Start Process ({bench_id}, {seed}) --------") done_result = subprocess.run(command_line_args, timeout=TIME_OUT) print(f"# ^^^^^^^^ Done: {done_result.returncode} ({bench_id}, {seed}) ^^^^^^^^") except subprocess.TimeoutExpired: print('# Error: subprocess TIMEOUT !!!') if __name__ == "__main__": for bench_id in SEED_INFO["bench_seeds"]: for seed in SEED_INFO["bench_seeds"][bench_id]: generate_examples(bench_id, seed)
2.0625
2
mmtbx/regression/tls/tst_u_tls_vs_u_ens_03.py
rimmartin/cctbx_project
0
1050
from __future__ import division from mmtbx.tls import tools import math import time pdb_str_1 = """ CRYST1 10.000 10.000 10.000 90.00 90.00 90.00 P1 ATOM 1 CA THR A 6 0.000 0.000 0.000 1.00 0.00 C ATOM 1 CA THR B 6 3.000 0.000 0.000 1.00 0.00 C """ pdb_str_2 = """ CRYST1 10.000 10.000 10.000 90.00 90.00 90.00 P1 ATOM 1 CA THR A 6 0.000 0.000 0.000 1.00 0.00 C ATOM 1 CA THR B 6 0.000 3.000 0.000 1.00 0.00 C """ pdb_str_3 = """ CRYST1 10.000 10.000 10.000 90.00 90.00 90.00 P1 ATOM 1 CA THR A 6 0.000 0.000 0.000 1.00 0.00 C ATOM 1 CA THR B 6 0.000 0.000 3.000 1.00 0.00 C """ pdb_str_4 = """ CRYST1 10.000 10.000 10.000 90.00 90.00 90.00 P1 ATOM 1 CA THR A 6 0.000 0.000 0.000 1.00 0.00 C ATOM 1 CA THR B 6 1.000 2.000 3.000 1.00 0.00 C """ def exercise_03(): sqrt = math.sqrt vs = [] vs.append( [(sqrt(2)/2, sqrt(2)/2, 0), (-sqrt(2)/2, sqrt(2)/2, 0), (0,0,1)] ) vs.append( [(1,0,0), (0, sqrt(2)/2, sqrt(2)/2), (0, -sqrt(2)/2, sqrt(2)/2)] ) vs.append( [(sqrt(3)/2, 1/2, 0), (-1/2, sqrt(3)/2, 0), (0,0,1)] ) vs.append( [(1,0,0), (0, sqrt(3)/2, 1/2), (0, -1/2, sqrt(3)/2)] ) for pdb_str in [pdb_str_1, pdb_str_2, pdb_str_3, pdb_str_4]: for vs_ in vs: vx,vy,vz = vs_ print vx,vy,vz tools.u_tls_vs_u_ens(pdb_str=pdb_str, tx=0.05,ty=0.07,tz=0.09, vx=vx, vy=vy, vz=vz, n_models=1000) if (__name__ == "__main__"): t0 = time.time() exercise_03() print "Time: %6.4f"%(time.time()-t0) print "OK"
2.203125
2
elliesite/context_processors.py
davidkartuzinski/ellieplatformsite
1
1051
import sys from django.urls import resolve def global_vars(request): return { 'GLOBAL_TWITTER_ACCOUNT': '@open_apprentice', 'ORGANIZATION_NAME': 'Open Apprentice Foundation', 'ORGANIZATION_WEBSITE': 'https://openapprentice.org', 'ORGANIZATION_LOGO': '/static/img/ellie/open-apprentice-logo-full.png', # relative URL with pre /, 'SITE_LOGO_URL': '/static/img/ellie/ellie-platform-logo.png', # relative URL with pre / 'APPNAME': sys.modules[resolve(request.path_info).func.__module__].__package__, }
1.914063
2
tools/train_net_step.py
va1shn9v/Detectron.pytorch
0
1052
""" Training script for steps_with_decay policy""" import argparse import os import sys import pickle import resource import traceback import logging from collections import defaultdict import numpy as np import yaml import torch from torch.autograd import Variable import torch.nn as nn import cv2 cv2.setNumThreads(0) # pytorch issue 1355: possible deadlock in dataloader import _init_paths # pylint: disable=unused-import import nn as mynn import utils.net as net_utils import utils.misc as misc_utils from core.config import cfg, cfg_from_file, cfg_from_list, assert_and_infer_cfg from datasets.roidb import combined_roidb_for_training from roi_data.loader import RoiDataLoader, MinibatchSampler, BatchSampler, collate_minibatch from modeling.model_builder import Generalized_RCNN from utils.detectron_weight_helper import load_detectron_weight from utils.logging import setup_logging from utils.timer import Timer from utils.training_stats import TrainingStats # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('roi_data.loader').setLevel(logging.INFO) # RuntimeError: received 0 items of ancdata. Issue: pytorch/pytorch#973 rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1])) def parse_args(): """Parse input arguments""" parser = argparse.ArgumentParser(description='Train a X-RCNN network') parser.add_argument( '--dataset', dest='dataset', required=True, help='Dataset to use') parser.add_argument( '--num_classes', dest='num_classes', help='Number of classes in your custom dataset', default=None, type=int) parser.add_argument( '--cfg', dest='cfg_file', required=True, help='Config file for training (and optionally testing)') parser.add_argument( '--set', dest='set_cfgs', help='Set config keys. Key value sequence seperate by whitespace.' 'e.g. [key] [value] [key] [value]', default=[], nargs='+') parser.add_argument( '--disp_interval', help='Display training info every N iterations', default=20, type=int) parser.add_argument( '--no_cuda', dest='cuda', help='Do not use CUDA device', action='store_false') # Optimization # These options has the highest prioity and can overwrite the values in config file # or values set by set_cfgs. `None` means do not overwrite. parser.add_argument( '--bs', dest='batch_size', help='Explicitly specify to overwrite the value comed from cfg_file.', type=int) parser.add_argument( '--nw', dest='num_workers', help='Explicitly specify to overwrite number of workers to load data. Defaults to 4', type=int) parser.add_argument( '--iter_size', help='Update once every iter_size steps, as in Caffe.', default=1, type=int) parser.add_argument( '--o', dest='optimizer', help='Training optimizer.', default=None) parser.add_argument( '--lr', help='Base learning rate.', default=None, type=float) parser.add_argument( '--lr_decay_gamma', help='Learning rate decay rate.', default=None, type=float) # Epoch parser.add_argument( '--start_step', help='Starting step count for training epoch. 0-indexed.', default=0, type=int) # Resume training: requires same iterations per epoch parser.add_argument( '--resume', help='resume to training on a checkpoint', action='store_true') parser.add_argument( '--no_save', help='do not save anything', action='store_true') parser.add_argument( '--load_ckpt', help='checkpoint path to load') parser.add_argument( '--load_detectron', help='path to the detectron weight pickle file') parser.add_argument( '--use_tfboard', help='Use tensorflow tensorboard to log training info', action='store_true') return parser.parse_args() def save_ckpt(output_dir, args, step, train_size, model, optimizer): """Save checkpoint""" if args.no_save: return ckpt_dir = os.path.join(output_dir, 'ckpt') if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) save_name = os.path.join(ckpt_dir, 'model_step{}.pth'.format(step)) if isinstance(model, mynn.DataParallel): model = model.module model_state_dict = model.state_dict() torch.save({ 'step': step, 'train_size': train_size, 'batch_size': args.batch_size, 'model': model.state_dict(), 'optimizer': optimizer.state_dict()}, save_name) logger.info('save model: %s', save_name) def main(): """Main function""" args = parse_args() print('Called with args:') print(args) if not torch.cuda.is_available(): sys.exit("Need a CUDA device to run the code.") if args.cuda or cfg.NUM_GPUS > 0: cfg.CUDA = True else: raise ValueError("Need Cuda device to run !") if args.dataset == "custom_dataset" and args.num_classes is None: raise ValueError("Need number of classes in your custom dataset to run!") if args.dataset == "coco2017": cfg.TRAIN.DATASETS = ('coco_2014_train',) cfg.MODEL.NUM_CLASSES = 4 elif args.dataset == "keypoints_coco2017": cfg.TRAIN.DATASETS = ('keypoints_coco_2017_train',) cfg.MODEL.NUM_CLASSES = 2 elif args.dataset == "voc2007": cfg.TRAIN.DATASETS = ('voc_2007_train',) cfg.MODEL.NUM_CLASSES = 21 elif args.dataset == "voc2012": cfg.TRAIN.DATASETS = ('voc_2012_train',) cfg.MODEL.NUM_CLASSES = 21 elif args.dataset == "custom_dataset": cfg.TRAIN.DATASETS = ('custom_data_train',) cfg.MODEL.NUM_CLASSES = args.num_classes else: raise ValueError("Unexpected args.dataset: {}".format(args.dataset)) cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) ### Adaptively adjust some configs ### original_batch_size = cfg.NUM_GPUS * cfg.TRAIN.IMS_PER_BATCH original_ims_per_batch = cfg.TRAIN.IMS_PER_BATCH original_num_gpus = cfg.NUM_GPUS if args.batch_size is None: args.batch_size = original_batch_size cfg.NUM_GPUS = torch.cuda.device_count() assert (args.batch_size % cfg.NUM_GPUS) == 0, \ 'batch_size: %d, NUM_GPUS: %d' % (args.batch_size, cfg.NUM_GPUS) cfg.TRAIN.IMS_PER_BATCH = args.batch_size // cfg.NUM_GPUS effective_batch_size = args.iter_size * args.batch_size print('effective_batch_size = batch_size * iter_size = %d * %d' % (args.batch_size, args.iter_size)) print('Adaptive config changes:') print(' effective_batch_size: %d --> %d' % (original_batch_size, effective_batch_size)) print(' NUM_GPUS: %d --> %d' % (original_num_gpus, cfg.NUM_GPUS)) print(' IMS_PER_BATCH: %d --> %d' % (original_ims_per_batch, cfg.TRAIN.IMS_PER_BATCH)) ### Adjust learning based on batch size change linearly # For iter_size > 1, gradients are `accumulated`, so lr is scaled based # on batch_size instead of effective_batch_size old_base_lr = cfg.SOLVER.BASE_LR cfg.SOLVER.BASE_LR *= args.batch_size / original_batch_size print('Adjust BASE_LR linearly according to batch_size change:\n' ' BASE_LR: {} --> {}'.format(old_base_lr, cfg.SOLVER.BASE_LR)) ### Adjust solver steps step_scale = original_batch_size / effective_batch_size old_solver_steps = cfg.SOLVER.STEPS old_max_iter = cfg.SOLVER.MAX_ITER cfg.SOLVER.STEPS = list(map(lambda x: int(x * step_scale + 0.5), cfg.SOLVER.STEPS)) cfg.SOLVER.MAX_ITER = int(cfg.SOLVER.MAX_ITER * step_scale + 0.5) print('Adjust SOLVER.STEPS and SOLVER.MAX_ITER linearly based on effective_batch_size change:\n' ' SOLVER.STEPS: {} --> {}\n' ' SOLVER.MAX_ITER: {} --> {}'.format(old_solver_steps, cfg.SOLVER.STEPS, old_max_iter, cfg.SOLVER.MAX_ITER)) # Scale FPN rpn_proposals collect size (post_nms_topN) in `collect` function # of `collect_and_distribute_fpn_rpn_proposals.py` # # post_nms_topN = int(cfg[cfg_key].RPN_POST_NMS_TOP_N * cfg.FPN.RPN_COLLECT_SCALE + 0.5) if cfg.FPN.FPN_ON and cfg.MODEL.FASTER_RCNN: cfg.FPN.RPN_COLLECT_SCALE = cfg.TRAIN.IMS_PER_BATCH / original_ims_per_batch print('Scale FPN rpn_proposals collect size directly propotional to the change of IMS_PER_BATCH:\n' ' cfg.FPN.RPN_COLLECT_SCALE: {}'.format(cfg.FPN.RPN_COLLECT_SCALE)) if args.num_workers is not None: cfg.DATA_LOADER.NUM_THREADS = args.num_workers print('Number of data loading threads: %d' % cfg.DATA_LOADER.NUM_THREADS) ### Overwrite some solver settings from command line arguments if args.optimizer is not None: cfg.SOLVER.TYPE = args.optimizer if args.lr is not None: cfg.SOLVER.BASE_LR = args.lr if args.lr_decay_gamma is not None: cfg.SOLVER.GAMMA = args.lr_decay_gamma assert_and_infer_cfg() timers = defaultdict(Timer) ### Dataset ### timers['roidb'].tic() roidb, ratio_list, ratio_index = combined_roidb_for_training( cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES) timers['roidb'].toc() roidb_size = len(roidb) logger.info('{:d} roidb entries'.format(roidb_size)) logger.info('Takes %.2f sec(s) to construct roidb', timers['roidb'].average_time) # Effective training sample size for one epoch train_size = roidb_size // args.batch_size * args.batch_size batchSampler = BatchSampler( sampler=MinibatchSampler(ratio_list, ratio_index), batch_size=args.batch_size, drop_last=True ) dataset = RoiDataLoader( roidb, cfg.MODEL.NUM_CLASSES, training=True) dataloader = torch.utils.data.DataLoader( dataset, batch_sampler=batchSampler, num_workers=cfg.DATA_LOADER.NUM_THREADS, collate_fn=collate_minibatch) dataiterator = iter(dataloader) ### Model ### maskRCNN = Generalized_RCNN() if cfg.CUDA: maskRCNN.cuda() ### Optimizer ### gn_param_nameset = set() for name, module in maskRCNN.named_modules(): if isinstance(module, nn.GroupNorm): gn_param_nameset.add(name+'.weight') gn_param_nameset.add(name+'.bias') gn_params = [] gn_param_names = [] bias_params = [] bias_param_names = [] nonbias_params = [] nonbias_param_names = [] nograd_param_names = [] for key, value in maskRCNN.named_parameters(): if value.requires_grad: if 'bias' in key: bias_params.append(value) bias_param_names.append(key) elif key in gn_param_nameset: gn_params.append(value) gn_param_names.append(key) else: nonbias_params.append(value) nonbias_param_names.append(key) else: nograd_param_names.append(key) assert (gn_param_nameset - set(nograd_param_names) - set(bias_param_names)) == set(gn_param_names) # Learning rate of 0 is a dummy value to be set properly at the start of training params = [ {'params': nonbias_params, 'lr': 0, 'weight_decay': cfg.SOLVER.WEIGHT_DECAY}, {'params': bias_params, 'lr': 0 * (cfg.SOLVER.BIAS_DOUBLE_LR + 1), 'weight_decay': cfg.SOLVER.WEIGHT_DECAY if cfg.SOLVER.BIAS_WEIGHT_DECAY else 0}, {'params': gn_params, 'lr': 0, 'weight_decay': cfg.SOLVER.WEIGHT_DECAY_GN} ] # names of paramerters for each paramter param_names = [nonbias_param_names, bias_param_names, gn_param_names] if cfg.SOLVER.TYPE == "SGD": optimizer = torch.optim.SGD(params, momentum=cfg.SOLVER.MOMENTUM) elif cfg.SOLVER.TYPE == "Adam": optimizer = torch.optim.Adam(params) ### Load checkpoint if args.load_ckpt: load_name = args.load_ckpt logging.info("loading checkpoint %s", load_name) checkpoint = torch.load(load_name, map_location=lambda storage, loc: storage) net_utils.load_ckpt(maskRCNN, checkpoint['model']) if args.resume: args.start_step = checkpoint['step'] + 1 if 'train_size' in checkpoint: # For backward compatibility if checkpoint['train_size'] != train_size: print('train_size value: %d different from the one in checkpoint: %d' % (train_size, checkpoint['train_size'])) # reorder the params in optimizer checkpoint's params_groups if needed # misc_utils.ensure_optimizer_ckpt_params_order(param_names, checkpoint) # There is a bug in optimizer.load_state_dict on Pytorch 0.3.1. # However it's fixed on master. optimizer.load_state_dict(checkpoint['optimizer']) # misc_utils.load_optimizer_state_dict(optimizer, checkpoint['optimizer']) del checkpoint torch.cuda.empty_cache() if args.load_detectron: #TODO resume for detectron weights (load sgd momentum values) logging.info("loading Detectron weights %s", args.load_detectron) load_detectron_weight(maskRCNN, args.load_detectron) lr = optimizer.param_groups[0]['lr'] # lr of non-bias parameters, for commmand line outputs. maskRCNN = mynn.DataParallel(maskRCNN, cpu_keywords=['im_info', 'roidb'], minibatch=True) ### Training Setups ### args.run_name = misc_utils.get_run_name() + '_step' output_dir = misc_utils.get_output_dir(args, args.run_name) args.cfg_filename = os.path.basename(args.cfg_file) if not args.no_save: if not os.path.exists(output_dir): os.makedirs(output_dir) blob = {'cfg': yaml.dump(cfg), 'args': args} with open(os.path.join(output_dir, 'config_and_args.pkl'), 'wb') as f: pickle.dump(blob, f, pickle.HIGHEST_PROTOCOL) if args.use_tfboard: from tensorboardX import SummaryWriter # Set the Tensorboard logger tblogger = SummaryWriter(output_dir) ### Training Loop ### maskRCNN.train() CHECKPOINT_PERIOD = int(cfg.TRAIN.SNAPSHOT_ITERS / cfg.NUM_GPUS) # Set index for decay steps decay_steps_ind = None for i in range(1, len(cfg.SOLVER.STEPS)): if cfg.SOLVER.STEPS[i] >= args.start_step: decay_steps_ind = i break if decay_steps_ind is None: decay_steps_ind = len(cfg.SOLVER.STEPS) training_stats = TrainingStats( args, args.disp_interval, tblogger if args.use_tfboard and not args.no_save else None) try: logger.info('Training starts !') step = args.start_step for step in range(args.start_step, cfg.SOLVER.MAX_ITER): # Warm up if step < cfg.SOLVER.WARM_UP_ITERS: method = cfg.SOLVER.WARM_UP_METHOD if method == 'constant': warmup_factor = cfg.SOLVER.WARM_UP_FACTOR elif method == 'linear': alpha = step / cfg.SOLVER.WARM_UP_ITERS warmup_factor = cfg.SOLVER.WARM_UP_FACTOR * (1 - alpha) + alpha else: raise KeyError('Unknown SOLVER.WARM_UP_METHOD: {}'.format(method)) lr_new = cfg.SOLVER.BASE_LR * warmup_factor net_utils.update_learning_rate(optimizer, lr, lr_new) lr = optimizer.param_groups[0]['lr'] assert lr == lr_new elif step == cfg.SOLVER.WARM_UP_ITERS: net_utils.update_learning_rate(optimizer, lr, cfg.SOLVER.BASE_LR) lr = optimizer.param_groups[0]['lr'] assert lr == cfg.SOLVER.BASE_LR # Learning rate decay if decay_steps_ind < len(cfg.SOLVER.STEPS) and \ step == cfg.SOLVER.STEPS[decay_steps_ind]: logger.info('Decay the learning on step %d', step) lr_new = lr * cfg.SOLVER.GAMMA net_utils.update_learning_rate(optimizer, lr, lr_new) lr = optimizer.param_groups[0]['lr'] assert lr == lr_new decay_steps_ind += 1 training_stats.IterTic() optimizer.zero_grad() for inner_iter in range(args.iter_size): try: input_data = next(dataiterator) except StopIteration: dataiterator = iter(dataloader) input_data = next(dataiterator) for key in input_data: if key != 'roidb': # roidb is a list of ndarrays with inconsistent length input_data[key] = list(map(Variable, input_data[key])) try: net_outputs = maskRCNN(**input_data) except: continue training_stats.UpdateIterStats(net_outputs, inner_iter) loss = net_outputs['total_loss'] loss.backward() optimizer.step() training_stats.IterToc() training_stats.LogIterStats(step, lr) if (step+1) % CHECKPOINT_PERIOD == 0: save_ckpt(output_dir, args, step, train_size, maskRCNN, optimizer) # ---- Training ends ---- # Save last checkpoint save_ckpt(output_dir, args, step, train_size, maskRCNN, optimizer) except (RuntimeError, KeyboardInterrupt): del dataiterator logger.info('Save ckpt on exception ...') save_ckpt(output_dir, args, step, train_size, maskRCNN, optimizer) logger.info('Save ckpt done.') stack_trace = traceback.format_exc() print(stack_trace) finally: if args.use_tfboard and not args.no_save: tblogger.close() if __name__ == '__main__': main()
2.046875
2
Lib/site-packages/astroid/brain/brain_numpy_core_multiarray.py
punithmadaiahkumar/try-django
4
1053
# Copyright (c) 2019-2020 hippo91 <<EMAIL>> # Copyright (c) 2020 <NAME> <<EMAIL>> # Copyright (c) 2021 <NAME> <<EMAIL>> # Copyright (c) 2021 <NAME> <<EMAIL>> # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/main/LICENSE """Astroid hooks for numpy.core.multiarray module.""" import functools from astroid.brain.brain_numpy_utils import infer_numpy_member, looks_like_numpy_member from astroid.brain.helpers import register_module_extender from astroid.builder import parse from astroid.inference_tip import inference_tip from astroid.manager import AstroidManager from astroid.nodes.node_classes import Attribute, Name def numpy_core_multiarray_transform(): return parse( """ # different functions defined in multiarray.py def inner(a, b): return numpy.ndarray([0, 0]) def vdot(a, b): return numpy.ndarray([0, 0]) """ ) register_module_extender( AstroidManager(), "numpy.core.multiarray", numpy_core_multiarray_transform ) METHODS_TO_BE_INFERRED = { "array": """def array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0): return numpy.ndarray([0, 0])""", "dot": """def dot(a, b, out=None): return numpy.ndarray([0, 0])""", "empty_like": """def empty_like(a, dtype=None, order='K', subok=True): return numpy.ndarray((0, 0))""", "concatenate": """def concatenate(arrays, axis=None, out=None): return numpy.ndarray((0, 0))""", "where": """def where(condition, x=None, y=None): return numpy.ndarray([0, 0])""", "empty": """def empty(shape, dtype=float, order='C'): return numpy.ndarray([0, 0])""", "bincount": """def bincount(x, weights=None, minlength=0): return numpy.ndarray([0, 0])""", "busday_count": """def busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None): return numpy.ndarray([0, 0])""", "busday_offset": """def busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None): return numpy.ndarray([0, 0])""", "can_cast": """def can_cast(from_, to, casting='safe'): return True""", "copyto": """def copyto(dst, src, casting='same_kind', where=True): return None""", "datetime_as_string": """def datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind'): return numpy.ndarray([0, 0])""", "is_busday": """def is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None): return numpy.ndarray([0, 0])""", "lexsort": """def lexsort(keys, axis=-1): return numpy.ndarray([0, 0])""", "may_share_memory": """def may_share_memory(a, b, max_work=None): return True""", # Not yet available because dtype is not yet present in those brains # "min_scalar_type": """def min_scalar_type(a): # return numpy.dtype('int16')""", "packbits": """def packbits(a, axis=None, bitorder='big'): return numpy.ndarray([0, 0])""", # Not yet available because dtype is not yet present in those brains # "result_type": """def result_type(*arrays_and_dtypes): # return numpy.dtype('int16')""", "shares_memory": """def shares_memory(a, b, max_work=None): return True""", "unpackbits": """def unpackbits(a, axis=None, count=None, bitorder='big'): return numpy.ndarray([0, 0])""", "unravel_index": """def unravel_index(indices, shape, order='C'): return (numpy.ndarray([0, 0]),)""", "zeros": """def zeros(shape, dtype=float, order='C'): return numpy.ndarray([0, 0])""", } for method_name, function_src in METHODS_TO_BE_INFERRED.items(): inference_function = functools.partial(infer_numpy_member, function_src) AstroidManager().register_transform( Attribute, inference_tip(inference_function), functools.partial(looks_like_numpy_member, method_name), ) AstroidManager().register_transform( Name, inference_tip(inference_function), functools.partial(looks_like_numpy_member, method_name), )
2.046875
2
tests/asp/weakConstraints/testcase13.bug.weakconstraints.gringo.test.py
bernardocuteri/wasp
19
1054
<filename>tests/asp/weakConstraints/testcase13.bug.weakconstraints.gringo.test.py input = """ 2 18 3 0 3 19 20 21 1 1 1 0 18 2 23 3 0 3 19 24 25 1 1 2 1 21 23 3 5 21 19 20 24 25 0 0 6 0 5 5 21 19 20 24 25 1 1 1 1 1 0 21 a 19 b 20 c 24 d 25 e 28 f 0 B+ 0 B- 1 0 1 """ output = """ COST 1@1 """
1.484375
1
whoPay.py
susurigirl/susuri
0
1055
<reponame>susurigirl/susuri import random names_string = input("내기를 할 친구들의 이름을 적습니다. 콤마(,)로 분리해서 적습니다.\n") names = names_string.split(",") print(names) n = random.randint(0, len(names)) print(f"오늘 커피는 {names[n]}가 쏩니다!")
3.328125
3
jp.atcoder/abc056/arc070_b/26725094.py
kagemeka/atcoder-submissions
1
1056
import sys import typing import numpy as np def solve(a: np.ndarray, k: int) -> typing.NoReturn: n = len(a) def compute_dp(a: np.ndarray) -> np.ndarray: dp = np.zeros((n + 1, k), np.bool8) dp[0, 0] = True for i in range(n): dp[i + 1] = dp[i].copy() dp[i + 1, a[i] :] |= dp[i, : -a[i]] return dp dp_l = compute_dp(a) dp_r = compute_dp(a[::-1])[::-1] dp_r = dp_r.astype(np.int64).cumsum(axis=1) cnt = 0 for p in range(n): l, r = dp_l[p], dp_r[n - p] x = a[p] for i in np.flatnonzero(l).tolist(): if ( not r[k - i - 1] - (0 if k - x - i - 1 < 0 else r[k - x - i - 1]) >= 1 ): continue cnt += 1 break print(n - cnt) def main() -> typing.NoReturn: n, k = map(int, input().split()) a = np.array(sys.stdin.readline().split(), dtype=np.int64) solve(a, k) main()
2.578125
3
MicroPython_BUILD/components/micropython/esp32/modules_examples/mqtt_example.py
FlorianPoot/MicroPython_ESP32_psRAM_LoBo
838
1057
import network def conncb(task): print("[{}] Connected".format(task)) def disconncb(task): print("[{}] Disconnected".format(task)) def subscb(task): print("[{}] Subscribed".format(task)) def pubcb(pub): print("[{}] Published: {}".format(pub[0], pub[1])) def datacb(msg): print("[{}] Data arrived from topic: {}, Message:\n".format(msg[0], msg[1]), msg[2]) mqtt = network.mqtt("loboris", "mqtt://loboris.eu", user="wifimcu", password="<PASSWORD>", cleansession=True, connected_cb=conncb, disconnected_cb=disconncb, subscribed_cb=subscb, published_cb=pubcb, data_cb=datacb) # secure connection requires more memory and may not work # mqtts = network.mqtt("eclipse", "mqtts//iot.eclipse.org", cleansession=True, connected_cb=conncb, disconnected_cb=disconncb, subscribed_cb=subscb, published_cb=pubcb, data_cb=datacb) # wsmqtt = network.mqtt("eclipse", "ws://iot.eclipse.org:80/ws", cleansession=True, data_cb=datacb) mqtt.start() #mqtt.config(lwt_topic='status', lwt_msg='Disconected') ''' # Wait until status is: (1, 'Connected') mqtt.subscribe('test') mqtt.publish('test', 'Hi from Micropython') mqtt.stop() ''' # ================== # ThingSpeak example # ================== import network def datacb(msg): print("[{}] Data arrived from topic: {}, Message:\n".format(msg[0], msg[1]), msg[2]) thing = network.mqtt("thingspeak", "mqtt://mqtt.thingspeak.com", user="anyName", password="<PASSWORD>", cleansession=True, data_cb=datacb) # or secure connection #thing = network.mqtt("thingspeak", "mqtts://mqtt.thingspeak.com", user="anyName", password="<PASSWORD>", cleansession=True, data_cb=datacb) thingspeakChannelId = "123456" # enter Thingspeak Channel ID thingspeakChannelWriteApiKey = "ThingspeakWriteAPIKey" # EDIT - enter Thingspeak Write API Key thingspeakFieldNo = 1 thingSpeakChanelFormat = "json" pubchan = "channels/{:s}/publish/{:s}".format(thingspeakChannelId, thingspeakChannelWriteApiKey) pubfield = "channels/{:s}/publish/fields/field{}/{:s}".format(thingspeakChannelId, thingspeakFieldNo, thingspeakChannelWriteApiKey) subchan = "channels/{:s}/subscribe/{:s}/{:s}".format(thingspeakChannelId, thingSpeakChanelFormat, thingspeakChannelWriteApiKey) subfield = "channels/{:s}/subscribe/fields/field{}/{:s}".format(thingspeakChannelId, thingspeakFieldNo, thingspeakChannelWriteApiKey) thing.start() tmo = 0 while thing.status()[0] != 2: utime.sleep_ms(100) tmo += 1 if tmo > 80: print("Not connected") break # subscribe to channel thing.subscribe(subchan) # subscribe to field thing.subscribe(subfield) # publish to channel # Payload can include any of those fields separated b< ';': # "field1=value;field2=value;...;field8=value;latitude=value;longitude=value;elevation=value;status=value" thing.publish(pubchan, "field1=25.2;status=On line") # Publish to field thing.publish(pubfield, "24.5")
2.625
3
mlb/game/migrations/0009_game_game_type.py
atadams/mlb
0
1058
<filename>mlb/game/migrations/0009_game_game_type.py # Generated by Django 2.2.8 on 2019-12-14 19:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('game', '0008_auto_20191214_1019'), ] operations = [ migrations.AddField( model_name='game', name='game_type', field=models.CharField(choices=[('E', 'Exhibition'), ('S', 'Spring Training'), ('R', 'Regular Season'), ('F', 'Wild Card'), ('D', 'Divisional Series'), ('L', 'League Championship Series'), ('W', 'World Series')], default='R', max_length=30), ), ]
1.929688
2
backend/main/chapters/c06_lists.py
Vman45/futurecoder
0
1059
# flake8: NOQA E501 import ast import random from textwrap import dedent from typing import List from main.exercises import generate_list, generate_string from main.text import ExerciseStep, MessageStep, Page, Step, VerbatimStep, search_ast from main.utils import returns_stdout class IntroducingLists(Page): class first_list(VerbatimStep): """ It's time to learn about a powerful new type of value called lists. Here's an example: __program_indented__ """ def program(self): words = ['This', 'is', 'a', 'list'] for word in words: print(word) class can_contain_anything(VerbatimStep): """ A list is a *sequence* (an ordered collection/container) of any number of values. The values are often referred to as *elements*. They can be anything: numbers, strings, booleans, even lists! They can also be a mixture of types. To create a list directly, like above: 1. Write some square brackets: `[]` 2. If you don't want an empty list, write some expressions inside to be the elements. 3. Put commas (`,`) between elements to separate them. Here's another example of making a list: __program_indented__ """ def program(self): x = 1 things = ['Hello', x, x + 3] print(things) class numbers_sum(VerbatimStep): """ As you saw above, lists are *iterable*, meaning you can iterate over them with a `for loop`. Here's a program that adds up all the numbers in a list: __program_indented__ """ def program(self): numbers = [3, 1, 4, 1, 5, 9] total = 0 for number in numbers: total += number print(total) class strings_sum(ExerciseStep): """ Now modify the program so that it can add up a list of strings instead of numbers. For example, given: words = ['This', 'is', 'a', 'list'] it should print: Thisisalist """ hints = """ This is very similar to the exercises you've done building up strings character by character. The solution is very similar to the program that adds numbers. In fact, what happens if you try running that program with a list of strings? The problem is that 0. You can't add 0 to a string because numbers and strings are incompatible. Is there a similar concept among strings to 0? A blank initial value? """ @returns_stdout def solution(self, words: List[str]): total = '' for word in words: total += word print(total) tests = [ (['This', 'is', 'a', 'list'], 'Thisisalist'), (['The', 'quick', 'brown', 'fox', 'jumps'], 'Thequickbrownfoxjumps'), ] class double_numbers(ExerciseStep): """ Optional bonus challenge: extend the program to insert a separator string *between* each word. For example, given words = ['This', 'is', 'a', 'list'] separator = ' - ' it would output: This - is - a - list Lists and strings have a lot in common. For example, you can add two lists to combine them together into a new list. You can also create an empty list that has no elements. Check for yourself: numbers = [1, 2] + [3, 4] print(numbers) new_numbers = [] new_numbers += numbers new_numbers += [5] print(new_numbers) With that knowledge, write a program which takes a list of numbers and prints a list where each number has been doubled. For example, given: numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5] it would print: [6, 2, 8, 2, 10, 18, 4, 12, 10] """ hints = """ Remember that you can multiply numbers using `*`. This program is structurally very similar to the programs you've written to build up strings character by character. Make a new list, and then build it up element by element in a for loop. Start with an empty list. You can make a list with one element `x` by just writing `[x]`. You can add an element to a list by adding a list containing one element. """ @returns_stdout def solution(self, numbers: List[int]): double = [] for number in numbers: double += [number * 2] print(double) tests = [ ([3, 1, 4, 1, 5, 9, 2, 6, 5], [6, 2, 8, 2, 10, 18, 4, 12, 10]), ([0, 1, 2, 3], [0, 2, 4, 6]), ] class filter_numbers(ExerciseStep): """ Great! When you want to add a single element to the end of a list, instead of: some_list += [element] it's actually more common to write: some_list.append(element) There isn't really a big difference between these, but `.append` will be more familiar and readable to most people. Now use `.append` to write a program which prints a list containing only the numbers bigger than 5. For example, given: numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5] it would print: [9, 6] """ hints = """ This is very similar to the previous exercise. The difference is that sometimes you should skip appending to the new list. Use an `if` statement. Use a comparison operator to test if a number is big enough to add. """ # TODO enforce not using += @returns_stdout def solution(self, numbers: List[int]): big_numbers = [] for number in numbers: if number > 5: big_numbers.append(number) print(big_numbers) tests = [ ([3, 1, 4, 1, 5, 9, 2, 6, 5], [9, 6]), ([0, 2, 4, 6, 8, 10], [6, 8, 10]), ] final_text = """ Fantastic! We're making great progress. """ class UsingBreak(Page): title = "Using `break` to end a loop early" class list_contains_exercise(ExerciseStep): """ Exercise: write a program which takes a list and a value and checks if the list contains the value. For example, given: things = ['This', 'is', 'a', 'list'] thing_to_find = 'is' it should print `True`, but for thing_to_find = 'other' it should print `False`. """ hints = """ You will need a loop. You will need an `if` statement. You will need a comparison operator. Specifically `==`. You need a boolean variable that you print at the end. If you find the element in the list you should set that variable to `True`. Once you've found the element, you can't unfind it. That means that once you set the variable to `True`, it should never be set to anything else after that. Don't use an `else`. There is no reason to ever set the variable to `False` inside the loop. """ @returns_stdout def solution(self, things, thing_to_find): found = False for thing in things: if thing == thing_to_find: found = True print(found) tests = [ ((['This', 'is', 'a', 'list'], 'is'), True), ((['This', 'is', 'a', 'list'], 'other'), False), (([1, 2, 3, 4], 1), True), (([1, 2, 3, 4], 0), False), ] @classmethod def generate_inputs(cls): contained = random.choice([True, False]) things = generate_list(int) if contained: thing_to_find = random.choice(things) else: thing_to_find = random.choice([ min(things) - 1, max(things) + 1, ]) return dict( things=things, thing_to_find=thing_to_find, ) final_text = """ Nice! A typical solution looks something like this: found = False for thing in things: if thing == thing_to_find: found = True print(found) Your solution is probably similar. It's fine, but it's a bit inefficient. That's because it'll loop over the entire list even if it finds the element at the beginning. You can stop any loop using a `break` statement, like so: for thing in things: if thing == thing_to_find: found = True break This is just as correct but skips unnecessary iterations and checks once it finds the element. You can use snoop to see the difference. """ class GettingElementsAtPosition(Page): title = "Getting Elements at a Position" class introducing_subscripting(VerbatimStep): """ Looping is great, but often you just want to retrieve a single element from the list at a known position. Here's how: __program_indented__ """ def program(self): words = ['This', 'is', 'a', 'list'] print(words[0]) print(words[1]) print(words[2]) print(words[3]) class index_error(Step): """ In general, you can get the element at the position `i` with `words[i]`. The operation is called *subscripting* or *indexing*, and the position is called the *index*. You've probably noticed that the first index is 0, not 1. In programming, counting starts at 0. It seems weird, but that's how most programming languages do it, and it's generally agreed to be better. This also means that the last index in this list of 4 elements is 3. What happens if you try getting an index greater than that? """ program = "words[4]" def check(self): return "IndexError" in self.result class introducing_len_and_range(VerbatimStep): """ There you go. `words[4]` and beyond don't exist, so trying that will give you an error. By the way, you can get the number of elements in a list (commonly called the *length*) using `len(words)`. That means that the last valid index of the list is `len(words) - 1`, so the last element is `words[len(words) - 1]`. Try these for yourself. So in general, the valid indices are: [0, 1, 2, ..., len(words) - 2, len(words) - 1] There's a handy built in function to give you these values, called `range`: __program_indented__ """ def program(self): for i in range(10): print(i) class range_len(VerbatimStep): """ `range(n)` is similar to the list `[0, 1, 2, ..., n - 2, n - 1]`. This gives us an alternative way to loop over a list: __program_indented__ """ def program(self): words = ['This', 'is', 'a', 'list'] for index in range(len(words)): print(index) print(words[index]) class index_exercise(ExerciseStep): """ Let's get some exercise! Given a list `things` and a value `to_find`, print the first index of `to_find` in the list, i.e. the lowest number `i` such that `things[i]` is `to_find`. For example, for things = ['on', 'the', 'way', 'to', 'the', 'store'] to_find = 'the' your program should print `1`. You can assume that `to_find` appears at least once. """ hints = """ You will need to look at all the possible indices of `things` and check which one is the answer. To look at all possible indices, you will need a loop over `range(len(things))`. To check if an index is the answer, you will need to use: - `if` - the index in a subscript - `==` Since you're looking for the first index, you need to stop the loop once you find one. You learned how to stop a loop in the middle recently. You need to use `break`. """ class all_indices(MessageStep, ExerciseStep): """ You're almost there! However, this prints all the indices, not just the first one. """ @returns_stdout def solution(self, things, to_find): for i in range(len(things)): if to_find == things[i]: print(i) tests = [ ((['on', 'the', 'way', 'to', 'the', 'store'], 'the'), "1\n4"), (([0, 1, 2, 3, 4, 5, 6, 6], 6), "6\n7"), ] class last_index(MessageStep, ExerciseStep): """ You're almost there! However, this prints the *last* index, not the first one. """ @returns_stdout def solution(self, things, to_find): answer = None for i in range(len(things)): if to_find == things[i]: answer = i print(answer) tests = [ ((['on', 'the', 'way', 'to', 'the', 'store'], 'the'), 4), (([0, 1, 2, 3, 4, 5, 6, 6], 6), 7), ] @returns_stdout def solution(self, things, to_find): for i in range(len(things)): if to_find == things[i]: print(i) break tests = [ ((['on', 'the', 'way', 'to', 'the', 'store'], 'the'), 1), (([0, 1, 2, 3, 4, 5, 6, 6], 6), 6), ] @classmethod def generate_inputs(cls): things = generate_list(str) to_find = generate_string() things += [to_find] * random.randint(1, 3) random.shuffle(things) return dict( things=things, to_find=to_find, ) class zip_exercise(ExerciseStep): """ Nice! By the way, indexing and `len()` also work on strings. Try them out in the shell. Here's another exercise. Given two strings of equal length, e.g: string1 = "Hello" string2 = "World" print them vertically side by side, with a space between each character: H W e o l r l l o d """ hints = """ Did you experiment with indexing and `len()` with strings in the shell? Forget loops for a moment. How would you print just the first line, which has the first character of each of the two strings? In the second line you want to print the second character of each string, and so on. You will need a `for` loop. You will need indexing (subscripting). You will need `range`. You will need `len`. You will need `+`. You will need to index both strings. You will need to pass the same index to both strings each time to retrieve matching characters. """ @returns_stdout def solution(self, string1, string2): for i in range(len(string1)): char1 = string1[i] char2 = string2[i] print(char1 + ' ' + char2) tests = { ("Hello", "World"): dedent("""\ H W e o l r l l o d """), ("Having", "ablast"): dedent("""\ H a a b v l i a n s g t """), } @classmethod def generate_inputs(cls): length = random.randrange(5, 11) return dict( string1=generate_string(length), string2=generate_string(length), ) class zip_longest_exercise(ExerciseStep): """ Incredible! Your solution probably looks something like this: for i in range(len(string1)): char1 = string1[i] char2 = string2[i] print(char1 + ' ' + char2) This doesn't work so well if the strings have different lengths. In fact, it goes wrong in different ways depending on whether `string1` or `string2` is longer. Your next challenge is to fix this problem by filling in 'missing' characters with spaces. For example, for: string1 = "Goodbye" string2 = "World" output: G W o o o r d l b d y e and for: string1 = "Hello" string2 = "Elizabeth" output: H E e l l i l z o a b e t h """ hints = [ "The solution has the same overall structure and " "essential elements of the previous solution, " "but it's significantly longer and will require " "a few additional ideas and pieces.", dedent(""" In particular, it should still contain something like: for i in range(...): ... print(char1 + ' ' + char2) """), "What should go inside `range()`? Neither `len(string1)` nor `len(string2)` is good enough.", "You want a loop iteration for every character in the longer string.", "That means you need `range(<length of the longest string>)`", "In other words you need to find the biggest of the two values " "`len(string1)` and `len(string2)`. You've already done an exercise like that.", "Once you've sorted out `for i in range(...)`, `i` will sometimes be too big " "to be a valid index for both strings. You will need to check if it's too big before indexing.", "Remember, the biggest valid index for `string1` is `len(string1) - 1`. " "`len(string)` is too big.", "You will need two `if` statements, one for each string.", "You will need to set e.g. `char1 = ' '` when `string1[i]` is not valid.", ] # TODO catch user writing string1 < string2 @returns_stdout def solution(self, string1, string2): length1 = len(string1) length2 = len(string2) if length1 > length2: length = length1 else: length = length2 for i in range(length): if i < len(string1): char1 = string1[i] else: char1 = ' ' if i < len(string2): char2 = string2[i] else: char2 = ' ' print(char1 + ' ' + char2) tests = { ("Goodbye", "World"): dedent("""\ G W o o o r d l b d y e """), ("Hello", "Elizabeth"): dedent("""\ H E e l l i l z o a b e t h """), } @classmethod def generate_inputs(cls): length1 = random.randrange(5, 11) length2 = random.randrange(12, 20) if random.choice([True, False]): length1, length2 = length2, length1 return dict( string1=generate_string(length1), string2=generate_string(length2), ) final_text = """ Magnificent! Take a break, you've earned it! """ class CallingFunctionsTerminology(Page): title = "Terminology: Calling functions and methods" class print_functions(VerbatimStep): """ It's time to expand your vocabulary some more. `print` and `len` are ***functions***. See for yourself: __program_indented__ """ def program(self): print(len) print(print) class introducing_callable(VerbatimStep): """ An expression like `len(things)` or `print(things)` is a function ***call*** - when you write that, you are ***calling*** the function `len` or `print`. The fact that this is possible means that functions are ***callable***: __program_indented__ """ def program(self): print(callable(len)) class not_callable(VerbatimStep): """ Most things are not callable, so trying to call them will give you an error: __program_indented__ """ # noinspection PyCallingNonCallable def program(self): f = 'a string' print(callable(f)) f() class print_returns_none(VerbatimStep): """ In the call `len(things)`, `things` is an ***argument***. Sometimes you will also see the word ***parameter***, which means basically the same thing as argument. It's a bit like you're giving the argument to the function - specifically we say that the argument `things` is *passed* to `len`, and `len` *accepts* or *receives* the argument. `len(things)` will evaluate to a number such as 3, in which case we say that `len` ***returned*** 3. All calls have to return something...even if it's nothing. For example, `print`'s job is to display something on screen, not to return a useful value. So it returns something useless instead: __program_indented__ """ # noinspection PyNoneFunctionAssignment def program(self): things = [1, 2, 3] length = len(things) printed = print(length) print(printed) class len_of_none(VerbatimStep): """ `None` is a special 'null' value which can't do anything interesting. It's a common placeholder that represents the lack of a real useful value. Functions that don't want to return anything return `None` by default. If you see an error message about `None` or `NoneType`, it often means you assigned the wrong thing to a variable: __program_indented__ """ # noinspection PyNoneFunctionAssignment,PyUnusedLocal,PyTypeChecker def program(self): things = print([1, 2, 3]) length = len(things) class methods_of_str(VerbatimStep): """ A ***method*** is a function which belongs to a type, and can be called on all values of that type using `.`. For example, `upper` and `lower` are methods of strings, which are called with e.g. `word.upper()`: __program_indented__ """ def program(self): word = 'Hello' print(word.upper) print(word.upper()) class no_append_for_str(VerbatimStep): """ Another example is that `append` is a method of lists. But you can't use `.upper` on a list or `.append` on a string: __program_indented__ """ # noinspection PyUnresolvedReferences def program(self): word = 'Hello' word.append('!') final_text = """ The word 'attribute' in the error message refers to the use of `.` - the error actually comes just from `word.append`, without even a call. """ class FunctionsAndMethodsForLists(Page): # TODO this is quite the information dump and I'd like it to be a little more interactive, # but users don't need to know these functions off by heart. class sum_list(Step): """ Let's review how to work with lists. Suppose we have a list `nums = [1, 2, 3]`. You can use: - **`append`**: Add an element to the end of the list. `nums.append(4)` changes the list to `[1, 2, 3, 4]`. - **`len`**: Returns the number of elements. `len(nums)` is `3`. - **`range`**: `range(n)` is an object similar to the list of numbers from 0 to `n - 1`. In particular, `range(len(nums))` is like `[0, 1, 2]`. - **`subscripting`**: Get a value at an index. `nums[0]` is 1, `nums[1]` is 2, `nums[2]` is 3. - **`+`**: Concatenates lists. `nums + [4, 5]` is `[1, 2, 3, 4, 5]`. Here's some new things. Try them out in the shell. - **`subscript assignment`**: Set a value at an index. `nums[0] = 9` changes the list to `[9, 2, 3]`. - **`join`**: Add a list of strings with a separator in between. This is a method of strings (the separator) which takes an iterable of strings as an argument. `'--'.join(['apples', 'oranges', 'bananas'])` returns `'apples--oranges--bananas'`. You can also use an empty string if you don't want a separator, e.g. `''.join(['apples', 'oranges', 'bananas'])` returns `'applesorangesbananas'`. - **`sum`**: Add a list of numbers. `sum(nums)` is 6. - **`in`**: A comparison operator that checks if a value is in a list. `2 in nums` is `True`, but `4 in nums` is `False`. - **`index`**: Returns the first index of a value in a list. `[7, 8, 9, 8].index(8)` is 1. Raises an error if the value isn't there. You may recognise some of these from your exercises. I assure you that those exercises were not pointless, as you've now learned valuable fundamental skills. For example, you can use `in` to check if a list contains 5, but there's no similarly easy way to check for a number bigger than 5. It's useful to know these functions, but it's not easy to learn them all, and there's many more. A more important skill is being able to look things up. For example, here are some typical ways you might Google the above functions if you forgot their names: - `append` - python add element to list - python add item at end of list - `len` - python size of list - python number of elements in list - python how many characters in string - `join` - python combine list of strings with separator - python add together list of strings with string in between - `sum` - python add list of numbers - python total of numbers - `in` - python check if list contains value - python test if list has element - `index` - python get position of element - python get index of value Let's practice this skill now. Find a function/method that returns the value in a list which is bigger than any other value. For example, given the list `[21, 55, 4, 91, 62, 49]`, it will return `91`. You should write the answer in the shell as a single small expression. For example, if you were looking for the function `sum`, you could write `sum([21, 55, 4, 91, 62, 49])`. Don't solve this manually with a loop. """ hints = """ Use the words 'python' and 'list' in your search query. In one word, what's special about `91` in the list `[21, 55, 4, 91, 62, 49]`? 'biggest' or 'largest' 'python biggest value in list' """ program = "max([21, 55, 4, 91, 62, 49])" def check(self): return search_ast( self.stmt, ast.Call(func=ast.Name(id='max')), ) class list_insert(Step): """ Good find! Let's do one more. If you have a list: nums = [1, 2, 3, 4, 5] You could write `nums.append(9)` and `nums` would change to: [1, 2, 3, 4, 5, 9] But suppose you don't want the 9 to be at the end, you want it to go between the second and third elements: [1, 2, 9, 3, 4, 5] Call the right function/method in the shell to do that. """ hints = """ Use the words 'python' and 'list' in your search query. Instead of putting the value at the beginning or end, we want to put it ____________? 'in the middle' or 'at an index' or 'at a particular position' 'python add value at index' """ program = "nums.insert(2, 9)" def check(self): return search_ast( self.stmt, ast.Call(func=ast.Attribute(attr='insert'), args=[ast.Constant(value=2), ast.Constant(value=9)]), ) class dir_list(VerbatimStep): """ Perfect! It can also be useful to Google things like "python list tutorial", e.g. if: - Googling a specific method has failed so you want to find it manually. - You're still confused about lists after this course. - It's been a while since you learned about lists and you need a reminder. - You're struggling to solve a problem with lists and you need to go back to basics and strengthen your foundations. There are also ways to find information without any googling. Try `__program__` in the shell. """ program = "dir([])" final_text = """ `dir()` returns a list of the argument's attributes, which are mostly methods. Many will start with `__` which you can ignore for now - scroll to the end of the list and you'll see some familiar methods. Here are a few more useful functions/methods. Suppose `nums = [28, 99, 10, 81, 59, 64]` - **`sorted`**: Takes an iterable and returns a list of the elements in order. `sorted(nums)` returns `[10, 28, 59, 64, 81, 99]`. - **`pop`**: Removes and returns an element at a given index. `nums.pop(3)` removes `nums[3]` (`81`) from the list and returns it. Without an argument, i.e. just `nums.pop()`, it will remove and return the last element. - **`remove`**: Removes the first occurrence of the given element. `nums.remove(10)` will leave `nums` as `[28, 99, 81, 59, 64]`. Raises an error if the value doesn't exist. Equivalent to `nums.pop(nums.index(10))`. - **`count`**: Returns the number of times the argument appears in the list. `[1, 2, 3, 2, 7, 2, 5].count(2)` is 3. You've already seen that `len` and subscripting work with strings, a bit as if strings are lists of characters. Strings also support some of the new methods we've learned, not just for characters but for any substring. For example: - `'the' in 'feed the dog and the cat'` is `True` - `'feed the dog and the cat'.count('the')` is 2 - `'feed the dog and the cat'.index('the')` is 5 Note that in most cases, methods which modify a list in place (`append`, `insert`, `remove`) merely return `None`, while the remaining functions/methods return a new useful value without changing the original argument. The only exception is the `pop` method. Modifying a value directly is called *mutation* - types of values which can be mutated are *mutable*, while those that can't are *immutable*. Strings are immutable - they don't have any methods like `append` or even subscript assignment. You simply can't change a string - you can only create new strings and use those instead. That means that this is a useless statement on its own: word.upper() The string referred to by `word` isn't modified, instead `word.upper()` returned a new string which was immediately discarded. If you want to change the value that `word` refers to, you have to assign a new value to the variable: word = word.upper() Or you can use `word.upper()` immediately in a larger expression, e.g. if word.lower() == 'yes': """ class UnderstandingProgramsWithPythonTutor(Page): final_text = """ It's time to learn about another tool to explore programs. Put some code in the editor and then click the new "Python Tutor" button. Here's some example code if you want: all_numbers = [2, 4, 8, 1, 9, 7] small_numbers = [] big_numbers = [] for number in all_numbers: if number <= 5: small_numbers.append(number) else: big_numbers.append(number) print(small_numbers) print(big_numbers) The button will open a new tab with a visualisation from [pythontutor.com](http://pythontutor.com). There you can navigate through the program step by step with the "Prev" or "Next" buttons, or drag the slider left or right. You can also see the values of variables on the right. """ class EqualsVsIs(Page): title = "`==` vs `is`" class two_separate_lists(VerbatimStep): """ It's time to learn some technical details that are often misunderstood and lead to errors. Run this program: __program_indented__ """ def program(self): list1 = [1, 2, 3] list2 = [1, 2, 3] print(list1) print(list2) print(list1 == list2) print(list1 is list2) list1.append(4) print(list1) print(list2) class same_list(VerbatimStep): """ This program is quite straightforward and mostly consists of things you're familiar with. We create two variables which refer to lists. The lists have the same elements, so they are equal: `list1 == list2` is `True`. But then there's a new comparison operator: `is`. Here `list1 is list2` is `False`. That means that regardless of the two lists being equal, they are still two separate, distinct, individual lists. As a result, when you append 4 to `list1`, only `list1` changes. Now change `list2 = [1, 2, 3]` to `list2 = list1` and see what difference it makes. """ program_in_text = False def program(self): list1 = [1, 2, 3] list2 = list1 print(list1) print(list2) print(list1 == list2) print(list1 is list2) list1.append(4) print(list1) print(list2) final_text = """ Now `list1 is list2` is `True`, because *there is only one list*, and the two variables `list1` and `list2` both refer to that same list. `list1.append(4)` appends to the one list and the result can be seen in both `print(list1)` and `print(list2)` because both lines are now just different ways of printing the same list. I recommend running both versions with Python Tutor to see how it visualises the difference. In the second case, the two variables both have arrows pointing to a single list object. `list2 = list1` doesn't create an eternal link between the variables. If you assign a new value to *either* of the variables, e.g. `list1 = [7, 8, 9]`, the other variable will be unaffected and will still point to the original list. Basically, an assignment like: list2 = <expression> means 'make the variable `list2` refer to whatever `<expression>` evaluates to'. It doesn't make a copy of that value, which is how both variables can end up pointing to the same list. But as we've learned before, `list2` doesn't remember `<expression>`, only the value. It doesn't know about other variables. You can copy a list with the `copy` method: list2 = list1.copy() This will make the program behave like the first version again. If you come across this kind of problem and you're still having trouble understanding this stuff, read the essay [Facts and myths about Python names and values](https://nedbatchelder.com/text/names.html). """ class ModifyingWhileIterating(Page): final_text = """ Consider this program. It loops through a numbers and removes the ones smaller than 10. Or at least, it tries to. I recommend running it with Python Tutor. numbers = [10, 7, 8, 3, 12, 15] for i in range(len(numbers)): number = numbers[i] if number <= 10: numbers.pop(i) print(numbers) (remember that `numbers.pop(i)` removes the element from `numbers` at index `i`) As it runs, it clearly skips even looking at 7 or 3 and doesn't remove them, and at the end it fails when it tries to access an index that's too high. Can you see why this happens? The index variable `i` runs through the usual values 0, 1, 2, ... as it's supposed to, but as the list changes those are no longer the positions we want. For example in the first iteration `i` is 0 and `number` is 10, which gets removed. This shifts the rest of the numbers left one position, so now 7 is in position 0. But then in the next iteration `i` is 1, and `numbers[i]` is 8. 7 got skipped. We could try writing the program to use `remove` instead of `pop` so we don't have to use indices. It even looks nicer this way. numbers = [10, 7, 8, 3, 12, 15] for number in numbers: if number <= 10: numbers.remove(number) print(numbers) But it turns out this does the same thing, for the same reason. Iterating over a list still goes through the indices under the hood. The lesson here is to ***never modify something while you iterate over it***. Keep mutation and looping separate. The good news is that there are many ways to solve this. You can instead just loop over a copy, as in: for number in numbers.copy(): Now the list being modified and the list being itererated over are separate objects, even if they start out with equal contents. Similarly, you could loop over the original and modify a copy: numbers = [10, 7, 8, 3, 12, 15] big_numbers = numbers.copy() for number in numbers: if number <= 10: big_numbers.remove(number) print(big_numbers) Or you could build up a new list from scratch. In this case, we've already done a similar thing in an exercise: numbers = [10, 7, 8, 3, 12, 15] big_numbers = [] for number in numbers: if number > 10: big_numbers.append(number) print(big_numbers) """
4.375
4
redisSeed.py
bigmacd/miscPython
0
1060
<filename>redisSeed.py import time import redis import json import argparse """ Follows the StackExchange best practice for creating a work queue. Basically push a task and publish a message that a task is there.""" def PushTask(client, queue, task, topic): client.lpush(queue, task) client.publish(topic, queue) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-q", "--queue", help="The queue from which workers will grab tasks") parser.add_argument("-t", "--task", help="The task data") parser.add_argument("-o", "--topic", help="The topic to which workers are subscribed") parser.add_argument("-s", "--server", help="redis server host or IP") parser.add_argument("-p", "--port", help="redis server port (default is 6379)", type=int, default=6379) args = parser.parse_args() if args.queue is None or args.task is None or args.topic is None or args.server is None: parser.print_help() else: client=redis.StrictRedis(host=args.server, args.port) PushTask(client, args.queue, args.task, args.topic)
3.09375
3
app/celery.py
TIHLDE/Lepton
7
1061
<reponame>TIHLDE/Lepton<filename>app/celery.py from __future__ import absolute_import, unicode_literals import os from celery import Celery # set the default Django settings module for the 'celery' program. os.environ.setdefault("DJANGO_SETTINGS_MODULE", "app.settings") app = Celery("app") # Using a string here means the worker doesn't have to serialize # the configuration object to child processes. # - namespace='CELERY' means all celery-related configuration keys # should have a `CELERY_` prefix. app.config_from_object("django.conf:settings", namespace="CELERY") # Load task modules from all registered Django app configs. app.autodiscover_tasks() app.conf.update( task_serializer="json", accept_content=["json"], # Ignore other content result_serializer="json", timezone="Europe/Oslo", enable_utc=True, ) @app.task(bind=True) def debug_task(self): print("Request: {0!r}".format(self.request))
2.03125
2
src/garage/core/__init__.py
researchai/unsupervised_meta_rl
1
1062
<reponame>researchai/unsupervised_meta_rl<filename>src/garage/core/__init__.py from garage.core.serializable import Serializable from garage.core.parameterized import Parameterized # noqa: I100 __all__ = ['Serializable', 'Parameterized']
1.164063
1
formidable/forms/boundfield.py
jayvdb/django-formidable
0
1063
<reponame>jayvdb/django-formidable from django.forms import forms class FormatBoundField(forms.BoundField): """ The format field skips the rendering with the label attribute in the form level (i.e => form.as_p() doesn't have to generate any label for format field). This boundfield has this main goal. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # This attribute is used to generate (or not) the final label # with html tags. We force the label to None to avoid the label # generation: self.label = None class HelpTextBoundField(FormatBoundField): def value(self): return self.field.text class TitleBoundField(FormatBoundField): def value(self): return self.field.label class SeparatorBoundField(FormatBoundField): def value(self): return None
2.890625
3
algorithm_training/abc87.py
hirotosuzuki/algorithm_training
0
1064
<filename>algorithm_training/abc87.py class TaskA: def run(self): V, A, B, C = map(int, input().split()) pass class TaskB: def run(self): A = int(input()) B = int(input()) C = int(input()) X = int(input()) counter = 0 for a in range(A+1): for b in range(B+1): for c in range(C+1): total = 500 * a + 100 * b + 50 * c if total == X: counter += 1 print(counter) class TaskC: def run(self): pass if __name__ == "__main__": task = TaskB() task.run()
3.53125
4
serveur/serveurDroit.py
PL4typus/SysNetProject17
0
1065
<gh_stars>0 #!/usr/bin/python import socket,sys,os TCP_IP = '127.0.0.1' TCP_PORT = 6262 BUFFER_SIZE = 1024 s= socket.socket(socket.AF_INET,socket.SOCK_STREAM) s.bind((TCP_IP,TCP_PORT)) s.listen(5) conn, addr = s.accept() print('Connection entrante :', addr) data = conn.recv(BUFFER_SIZE) if data == "m" : os.popen("chmod +w $PWD") else : os.popen("chmod -w $PWD") while 1 : data = conn.recv(BUFFER_SIZE) print data if data == "1": break rep = os.popen(data+" 2>&1") conn.send("reponse : \n"+rep.read()) conn.close()
2.78125
3
BE/common/helpers.py
kosior/ngLearn-1
1
1066
<gh_stars>1-10 from rest_framework_jwt.utils import jwt_decode_handler from users.models import User from users.serializers import UserSerializer def jwt_response_payload_handler(token, user=None, request=None): return { 'token': token, 'user': UserSerializer(user, context={'request': request}).data } def get_token_from_request(request): auth = request.META.get('HTTP_AUTHORIZATION', '').split() if len(auth) == 2: return auth[1] return None def get_user_from_token(token): data = jwt_decode_handler(token) user_id = data.get('user_id') if user_id: try: return User.objects.get(id=user_id) except User.DoesNotExist: return None return None def get_user_from_request(request): token = get_token_from_request(request) if token: return get_user_from_token(token) return None
2.4375
2
src/finn/util/basic.py
quetric/finn-base-1
0
1067
<reponame>quetric/finn-base-1 # Copyright (c) 2020 Xilinx, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of Xilinx nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import os import random import string import subprocess import tempfile import warnings from finn.core.datatype import DataType # mapping from PYNQ board names to FPGA part names pynq_part_map = dict() pynq_part_map["Ultra96"] = "xczu3eg-sbva484-1-e" pynq_part_map["Pynq-Z1"] = "xc7z020clg400-1" pynq_part_map["Pynq-Z2"] = "xc7z020clg400-1" pynq_part_map["ZCU102"] = "xczu9eg-ffvb1156-2-e" pynq_part_map["ZCU104"] = "xczu7ev-ffvc1156-2-e" # native AXI HP port width (in bits) for PYNQ boards pynq_native_port_width = dict() pynq_native_port_width["Pynq-Z1"] = 64 pynq_native_port_width["Pynq-Z2"] = 64 pynq_native_port_width["Ultra96"] = 128 pynq_native_port_width["ZCU102"] = 128 pynq_native_port_width["ZCU104"] = 128 # Alveo device and platform mappings alveo_part_map = dict() alveo_part_map["U50"] = "xcu50-fsvh2104-2L-e" alveo_part_map["U200"] = "xcu200-fsgd2104-2-e" alveo_part_map["U250"] = "xcu250-figd2104-2L-e" alveo_part_map["U280"] = "xcu280-fsvh2892-2L-e" alveo_default_platform = dict() alveo_default_platform["U50"] = "xilinx_u50_gen3x16_xdma_201920_3" alveo_default_platform["U200"] = "xilinx_u200_xdma_201830_2" alveo_default_platform["U250"] = "xilinx_u250_xdma_201830_2" alveo_default_platform["U280"] = "xilinx_u280_xdma_201920_3" def get_rtlsim_trace_depth(): """Return the trace depth for rtlsim via PyVerilator. Controllable via the RTLSIM_TRACE_DEPTH environment variable. If the env.var. is undefined, the default value of 1 is returned. A trace depth of 1 will only show top-level signals and yield smaller .vcd files. The following depth values are of interest for whole-network stitched IP rtlsim: - level 1 shows top-level input/output streams - level 2 shows per-layer input/output streams - level 3 shows per full-layer I/O including FIFO count signals """ try: return int(os.environ["RTLSIM_TRACE_DEPTH"]) except KeyError: return 1 def get_remote_vivado(): """Return the address of the remote Vivado synthesis server as set by the, REMOTE_VIVADO environment variable, otherwise return None""" try: return os.environ["REMOTE_VIVADO"] except KeyError: return None def get_num_default_workers(): """Return the number of workers for parallel transformations. Controllable via the NUM_DEFAULT_WORKERS environment variable. If the env.var. is undefined, the default value of 1 is returned. """ try: return int(os.environ["NUM_DEFAULT_WORKERS"]) except KeyError: return 1 def get_finn_root(): "Return the root directory that FINN is cloned into." try: return os.environ["FINN_ROOT"] except KeyError: raise Exception( """Environment variable FINN_ROOT must be set correctly. Please ensure you have launched the Docker contaier correctly. """ ) def get_execution_error_thresh(): "Return the max error that is allowed for rounding in FINN execution." try: return float(os.environ["ERROR_THRESH"]) except KeyError: return 1e-2 def get_sanitize_quant_tensors(): """Return whether tensors with quantization annotations should be sanitized. Enabled by default, disabling will yield faster ONNX execution but may give incorrect results. Use with caution.""" try: return int(os.environ["SANITIZE_QUANT_TENSORS"]) except KeyError: # enabled by default return 1 def make_build_dir(prefix=""): """Creates a temporary folder with given prefix to be used as a build dir. Use this function instead of tempfile.mkdtemp to ensure any generated files will survive on the host after the FINN Docker container exits.""" try: inst_prefix = os.environ["FINN_INST_NAME"] + "/" return tempfile.mkdtemp(prefix=inst_prefix + prefix) except KeyError: raise Exception( """Environment variable FINN_INST_NAME must be set correctly. Please ensure you have launched the Docker contaier correctly. """ ) def get_by_name(container, name, name_field="name"): """Return item from container by .name field if it exists, None otherwise. Will throw an Exception if multiple items are found, since this violates the ONNX standard.""" names = [getattr(x, name_field) for x in container] inds = [i for i, e in enumerate(names) if e == name] if len(inds) > 1: raise Exception("Found multiple get_by_name matches, undefined behavior") elif len(inds) == 0: return None else: ind = inds[0] return container[ind] def remove_by_name(container, name, name_field="name"): """Remove item from container by .name field if it exists.""" item = get_by_name(container, name, name_field) if item is not None: container.remove(item) def random_string(stringLength=6): """Randomly generate a string of letters and digits.""" lettersAndDigits = string.ascii_letters + string.digits return "".join(random.choice(lettersAndDigits) for i in range(stringLength)) def interleave_matrix_outer_dim_from_partitions(matrix, n_partitions): """Interleave the outermost dimension of a matrix from given partitions (n_partitions).""" if type(matrix) != np.ndarray or matrix.dtype != np.float32: # try to convert to a float numpy array (container dtype is float) matrix = np.asarray(matrix, dtype=np.float32) shp = matrix.shape ndim = matrix.ndim # ensure # partitions evenly divide the outermost dimension assert ( shp[0] % n_partitions == 0 ), """The outermost dimension is not divisable by the number of partitions.""" # only tested for matrices assert ( ndim == 2 ), """The dimension of the matrix is not 2. Currently this function only works for matrices.""" # interleave rows between PEs using reshape + transpose matrix_r = matrix.reshape(-1, n_partitions, shp[1]).transpose((1, 0, 2)) matrix_r = matrix_r.reshape(n_partitions, -1, shp[1]) return matrix_r def roundup_to_integer_multiple(x, factor): """Round up integer x to the nearest integer multiple of integer factor. Returns x if factor is set to -1. Both x and factor must otherwise be positive.""" # ensure integers assert int(x) == x, "The input x is not an integer." assert int(factor) == factor, "The input factor is not an integer." # use -1 to indicate no padding needed if factor == -1: return x # ensure positive values assert factor > 0 and x > 0, "Factor and x are <= 0." if x < factor: return factor else: if x % factor == 0: return x else: return x + (factor - (x % factor)) def pad_tensor_to_multiple_of(ndarray, pad_to_dims, val=0, distr_pad=False): """Pad each dimension of given NumPy ndarray using val, so that each dimension is a multiple of the respective value in pad_to_dims. -1 means do not pad that particular dimension. If distr_pad is False, all padding will be inserted after the existing values; otherwise it will be split evenly between before and after the existing values, with one extra value inserted after if the padding amount is not divisible by two.""" if type(ndarray) != np.ndarray or ndarray.dtype != np.float32: # try to convert to a float numpy array (container dtype is float) ndarray = np.asarray(ndarray, dtype=np.float32) assert ndarray.ndim == len( pad_to_dims ), """The dimensions of the input array don't match the length of the pad_to_dims value.""" # compute the desired shape desired = zip(list(ndarray.shape), list(pad_to_dims)) desired = map(lambda x: roundup_to_integer_multiple(x[0], x[1]), desired) desired = np.asarray(list(desired), dtype=np.int32) current = np.asarray(ndarray.shape, dtype=np.int32) pad_amt = desired - current # add padding to get to the desired shape if distr_pad: pad_before = (pad_amt // 2).astype(np.int32) pad_after = pad_amt - pad_before pad_amt = list(zip(pad_before, pad_after)) else: # all padding is added after the existing values pad_amt = list(map(lambda x: (0, x), pad_amt)) ret = np.pad(ndarray, pad_amt, mode="constant", constant_values=val) assert ( np.asarray(ret.shape, dtype=np.int32) == desired ).all(), """The calculated output array doesn't match the desired/expected one.""" return ret def calculate_matvec_accumulator_range(matrix, vec_dt): """Calculate the minimum and maximum possible result (accumulator) values for a dot product x * A, given matrix A of dims (MW, MH), and vector (1, MW) with datatype vec_dt. Returns (acc_min, acc_max). """ min_weight = matrix.min() max_weight = matrix.max() perceptive_field_elems = matrix.shape[0] min_input = vec_dt.min() max_input = vec_dt.max() # calculate minimum and maximum values of accumulator # assume inputs span the whole range of the input datatype acc_min = perceptive_field_elems * min( min_weight * max_input, min_weight * min_input, max_weight * max_input, max_weight * min_input, ) acc_max = perceptive_field_elems * max( min_weight * max_input, min_weight * min_input, max_weight * max_input, max_weight * min_input, ) return (acc_min, acc_max) def gen_finn_dt_tensor(finn_dt, tensor_shape): """Generates random tensor in given shape and with given FINN DataType.""" if type(tensor_shape) == list: tensor_shape = tuple(tensor_shape) if finn_dt == DataType.BIPOLAR: tensor_values = np.random.randint(2, size=tensor_shape) tensor_values = 2 * tensor_values - 1 elif finn_dt == DataType.BINARY: tensor_values = np.random.randint(2, size=tensor_shape) elif "INT" in finn_dt.name or finn_dt == DataType.TERNARY: tensor_values = np.random.randint( finn_dt.min(), high=finn_dt.max() + 1, size=tensor_shape ) else: raise ValueError( "Datatype {} is not supported, no tensor could be generated".format(finn_dt) ) # always use float type as container return tensor_values.astype(np.float32) def calculate_signed_dot_prod_range(dt_a, dt_b, len): """Returns the (min,max) values a dot product between two signed vectors of types dt_a and dt_b of len elements can take.""" assert ( dt_a.signed() and dt_b.signed() ), """The input values are not both signed vectors.""" min_prod = 2 ** 30 max_prod = -(2 ** 30) for a_val in [dt_a.min(), dt_a.max()]: for b_val in [dt_b.min(), dt_b.max()]: prod = a_val * b_val * len if prod < min_prod: min_prod = prod if prod > max_prod: max_prod = prod return (min_prod, max_prod) def sanitize_quant_values(model, node_tensors, execution_context, check_values=False): """Sanitize given list of tensors in execution_context by rounding values that are supposed to be integers (as indicated by their quantization annotation). Will raise an assertion if the amount of rounding is too large. Returns the sanitized execution context. If check_values is specified, an extra DataType.allowed() check will be performed on any rounded tensors. Background: FINN uses floating point tensors as a carrier data type to represent integers. Floating point arithmetic can introduce rounding errors, e.g. (int_num * float_scale) / float_scale is not always equal to int_num. We use this function to ensure that the values that are supposed to be integers are indeed integers. """ for tensor in node_tensors: dtype = model.get_tensor_datatype(tensor) # floats don't need sanitization, skip to next # introduces less quicker runtime if dtype == DataType.FLOAT32: continue current_values = execution_context[tensor] updated_values = current_values has_to_be_rounded = False # TODO: vectorize with numpy for value in np.nditer(current_values): if not dtype.allowed(value): has_to_be_rounded = True break if has_to_be_rounded: updated_values = np.round(current_values) warnings.warn( "The values of tensor {} can't be represented " "with the set FINN datatype ({}), they will be rounded to match the " "FINN datatype.".format(tensor, dtype) ) # check if rounded values are not too far from original values max_error = max(np.abs(current_values - updated_values).flatten()) if max_error <= get_execution_error_thresh(): if check_values is True: # check again if values can now be represented with set finn datatype # TODO: vectorize with numpy for value in np.nditer(updated_values): if not dtype.allowed(value): raise Exception( """Values can't be represented with set finn datatype ({}) for input {}""".format( dtype, tensor ) ) execution_context[tensor] = updated_values else: raise Exception( """Rounding error is too high to match set FINN datatype ({}) for input {}""".format( dtype, tensor ) ) return execution_context class CppBuilder: """Builds the g++ compiler command to produces the executable of the c++ code in code_gen_dir which is passed to the function build() of this class.""" def __init__(self): self.include_paths = [] self.cpp_files = [] self.executable_path = "" self.code_gen_dir = "" self.compile_components = [] self.compile_script = "" def append_includes(self, library_path): """Adds given library path to include_paths list.""" self.include_paths.append(library_path) def append_sources(self, cpp_file): """Adds given c++ file to cpp_files list.""" self.cpp_files.append(cpp_file) def set_executable_path(self, path): """Sets member variable "executable_path" to given path.""" self.executable_path = path def build(self, code_gen_dir): """Builds the g++ compiler command according to entries in include_paths and cpp_files lists. Saves it in bash script in given folder and executes it.""" # raise error if includes are empty self.code_gen_dir = code_gen_dir self.compile_components.append("g++ -o " + str(self.executable_path)) for cpp_file in self.cpp_files: self.compile_components.append(cpp_file) for lib in self.include_paths: self.compile_components.append(lib) bash_compile = "" for component in self.compile_components: bash_compile += str(component) + " " self.compile_script = str(self.code_gen_dir) + "/compile.sh" with open(self.compile_script, "w") as f: f.write("#!/bin/bash \n") f.write(bash_compile + "\n") bash_command = ["bash", self.compile_script] process_compile = subprocess.Popen(bash_command, stdout=subprocess.PIPE) process_compile.communicate()
0.960938
1
mainmenu.py
jeffrypaul37/Hospital-Management-System
0
1068
<reponame>jeffrypaul37/Hospital-Management-System from tkinter import * from tkcalendar import Calendar from datetime import datetime from datetime import date import tkinter as tk from tkinter import ttk from tkinter.messagebox import askyesno import re import sqlite3 import tkinter.messagebox import pandas as pd import pandas as pd import datetime from dateutil import rrule, parser today = date.today() date1 = '05-10-2021' date2 = '12-31-2050' datesx = pd.date_range(today, date2).tolist() conn = sqlite3.connect('database copy.db') c = conn.cursor() ids = [] class Application: def __init__(self, master): self.master = master self.left = Frame(master, width=1000, height=800, bg='sea green') self.left.pack(side=LEFT) self.right = Frame(master, width=1000, height=800, bg='steelblue') self.right.pack(side=RIGHT) self.heading = Label(self.left, text="Appointments", font=('arial 40 bold'), fg='black', bg='sea green') self.heading.place(x=0, y=0) self.name = Label(self.left, text="Patient's Name", font=('arial 18 bold'), fg='black', bg='sea green') self.name.place(x=0, y=100) self.age = Label(self.left, text="Age", font=('arial 18 bold'), fg='black', bg='sea green') self.age.place(x=0, y=140) self.gender = Label(self.left, text="Gender", font=('arial 18 bold'), fg='black', bg='sea green') self.gender.place(x=0, y=180) self.location = Label(self.left, text="Location", font=('arial 18 bold'), fg='black', bg='sea green') self.location.place(x=0, y=220) self.date = Label(self.left, text="Appointment Date", font=('arial 18 bold'), fg='black', bg='sea green') self.date.place(x=0, y=260) self.time = Label(self.left, text="Appointment Time", font=('arial 18 bold'), fg='black', bg='sea green') self.time.place(x=0, y=300) self.phone = Label(self.left, text="Phone Number", font=('arial 18 bold'), fg='black', bg='sea green') self.phone.place(x=0, y=340) self.allergies = Label(self.left, text="Allergies", font=('arial 18 bold'), fg='black', bg='sea green') self.allergies.place(x=0, y=380) self.all_ent = Entry(self.left, width=30) self.all_ent.place(x=250, y=380) self.all_ent.insert(0, 'NONE') self.chronic = Label(self.left, text="Chronic Conditions", font=('arial 18 bold'), fg='black', bg='sea green') self.chronic.place(x=0, y=420) self.chr_ent = Entry(self.left, width=30) self.chr_ent.place(x=250, y=420) self.chr_ent.insert(0, 'NONE') self.bg = Label(self.left, text="Blood Group", font=('arial 18 bold'), fg='black', bg='sea green') self.bg.place(x=0, y=460) self.clicked3=StringVar() self.clicked3.set("Select Blood Group") self.bg_ent = OptionMenu(self.left,self.clicked3,*options3) self.bg_ent.pack() self.bg_ent.place(x=250, y=460) self.name_ent = Entry(self.left, width=30) self.name_ent.place(x=250, y=100) self.age_ent = Entry(self.left, width=30) self.age_ent.place(x=250, y=140) self.clicked=StringVar() self.clicked.set("Male") self.gender_ent = OptionMenu(self.left,self.clicked,*options) self.gender_ent.pack() self.gender_ent.place(x=250, y=180) self.location_ent=Entry(self.left,width=30) self.location_ent.place(x=250, y=220) self.clicked1=StringVar() self.clicked1.set("Select Date") self.date_ent = OptionMenu(self.left,self.clicked1,*options1) self.date_ent.pack() self.date_ent.place(x=250, y=260) self.clicked2=StringVar() self.clicked2.set("Select Time") self.time_ent = OptionMenu(self.left,self.clicked2,*options2) self.time_ent.pack() self.time_ent.place(x=250, y=300) self.phone_ent = Entry(self.left, width=30) self.phone_ent.place(x=250, y=340) self.submit = Button(self.left, text="Add Appointment", width=20, height=2, bg='steelblue', command=self.add_appointment) self.submit.place(x=270, y=500) self.submit = Button(self.left, text="View Appointments", width=20, height=2, bg='steelblue', command=self.view) self.submit.place(x=600, y=100) self.submit = Button(self.left, text="View/Update Patient Details", width=20, height=2, bg='steelblue', command=self.update) self.submit.place(x=600, y=200) self.submit = Button(self.left, text="Read Names", width=20, height=2, bg='steelblue', command=self.read) self.submit.place(x=600, y=300) self.submit = Button(self.left, text="Exit", width=20, height=2, bg='steelblue', command=self.quit) self.submit.place(x=600, y=400) sql2 = "SELECT ID FROM appointments" self.result = c.execute(sql2) for self.row in self.result: self.id = self.row[0] ids.append(self.id) self.new = sorted(ids) self.final_id = self.new[len(ids)-1] self.logs = Label(self.right, text="Logs", font=('arial 28 bold'), fg='white', bg='steelblue') self.logs.place(x=0, y=0) self.box = Text(self.right, width=62, height=45) self.box.place(x=20, y=60) def add_appointment(self): self.val1 = self.name_ent.get() self.val2 = self.age_ent.get() self.val3 = self.clicked.get() self.val4 = self.location_ent.get() self.val5 = self.clicked1.get() self.val6 = self.clicked2.get() self.val7 = self.phone_ent.get() self.val8 = self.all_ent.get() self.val9 = self.chr_ent.get() self.val10 = self.clicked3.get() pattern=re.compile("[7-9][0-9]{9}") pattern=re.compile("[7-9][0-9]{9}") pattern2=re.compile("[1-9]([0-9])*") pattern1=re.compile(r'([A-Z])(\s*[A-Z])*$') pattern.match(self.val7) if self.val1 == '' or self.val2 == '' or self.val3 == '' or self.val4 == '' or self.val5 == '' or self.val6=='' or self.val7=='' or self.val10=='Select Blood Group' or self.val5=='Select Date' or self.val6=='Select Time': print("ty",self.val3) tkinter.messagebox.showinfo("Warning", "Please Fill Up All Boxes") print(self.val3) elif not(pattern1.match(self.val1)) or len(self.val1)<2: tkinter.messagebox.showinfo("Warning","INVALID Name") elif not(pattern2.match(self.val2)) or len(self.val2)>=3: tkinter.messagebox.showinfo("Warning","INVALID Age") elif not(pattern.match(self.val7)) or len(self.val7)>10: tkinter.messagebox.showinfo("Warning", "INVALID Phone Number") else: sql = "INSERT INTO 'appointments' (name, age, gender, location, scheduled_time, phone,date,Allergies,Chronic_Conditions,Blood_Group) VALUES(?, ?, ?, ?, ?, ?,?,?,?,?)" c.execute(sql, (self.val1, self.val2, self.val3, self.val4, self.val6, self.val7,self.val5,self.val8,self.val9,self.val10)) conn.commit() tkinter.messagebox.showinfo("Success", "Appointment for " + str(self.val1) + " has been created" ) self.box.insert(END, '\n Appointment fixed for ' + str(self.val1) + '\n at ' + str(self.val5)+','+str(self.val6)) self.name_ent.delete(0,END) self.age_ent.delete(0,END) self.location_ent.delete(0,END) self.phone_ent.delete(0,END) self.clicked1.set("Select Date") self.clicked2.set("Select Time") self.clicked3.set("Select Blood Group") self.chr_ent.delete(0,END) self.all_ent.delete(0,END) self.all_ent.insert(0, 'NONE') self.chr_ent.insert(0, 'NONE') def view(self): import view view.call() def update(self): import update update.buildupdate() def read(self): import read read.buildread() def quit(self): answer = askyesno(title='Confirm Exit', message='Are you sure you want to exit?') if answer: root.destroy() root = Tk() root.title("Shalom Clinic") #root.geometry("1200x720+0+0") root.attributes('-fullscreen', True) root.resizable(0, 0) Top = Frame(root, bd=1, relief=RIDGE) Top.pack(side=TOP, fill=X) Form = Frame(root, height=1) Form.pack(side=TOP, pady=1) lbl_title = Label(Top, text = "Shalom Clinic", font=('arial', 15)) lbl_title.pack(fill=X) options=["Male","Female"] options1=datesx options2=["10:00:00","11:00:00","13:00:00"] options3=["O+","O-","A+","A-","B+","B-","AB+","AB-"] b = Application(root) root.resizable(False, False) root.mainloop()
3.359375
3
chia_tea/discord/commands/test_wallets.py
Tea-n-Tech/chia-tea
6
1069
<gh_stars>1-10 import os import tempfile import unittest from datetime import datetime from google.protobuf.json_format import ParseDict from ...monitoring.MonitoringDatabase import MonitoringDatabase from ...protobuf.generated.computer_info_pb2 import ADD, UpdateEvent from ...protobuf.generated.monitoring_service_pb2 import DataUpdateRequest from ...utils.testing import async_test from .wallets import wallets_cmd class TestWalletsCmd(unittest.TestCase): @async_test async def test_no_wallets_case(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: db_filepath = os.path.join(tmpdir, "temp.db") with MonitoringDatabase(db_filepath): messages = await wallets_cmd(db_filepath) self.assertEqual(len(messages), 1) self.assertTrue(messages[0].startswith("No wallets")) @async_test async def test_not_running_wallet_not_displayed(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: db_filepath = os.path.join(tmpdir, "temp.db") now_timestamp = datetime.now().timestamp() with MonitoringDatabase(db_filepath) as db: event = ParseDict( js_dict=dict( event_type=ADD, wallet=dict( is_running=False, is_synced=True, ), ), message=UpdateEvent(), ) request = DataUpdateRequest( machine_id=1, machine_name="machine A", timestamp=now_timestamp, events=[event], ) db.store_data_update_request(request) messages = await wallets_cmd(db_filepath) self.assertEqual(len(messages), 1) self.assertTrue(messages[0].startswith("No wallets")) @async_test async def test_display_running_wallet(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: db_filepath = os.path.join(tmpdir, "tmp.db") now_timestamp = datetime.now().timestamp() with MonitoringDatabase(db_filepath) as db: update_events = [ ParseDict( js_dict=dict( event_type=ADD, wallet=dict( is_running=True, is_synced=True, ), ), message=UpdateEvent(), ), ] request = DataUpdateRequest( machine_id=1, machine_name="machine A", timestamp=now_timestamp, events=update_events, ) db.store_data_update_request(request) messages = await wallets_cmd(db_filepath) print(messages) # no failure self.assertEqual(len(messages), 1) msg = messages[0] self.assertFalse(msg.startswith("Traceback")) # display online harvester self.assertTrue("machine A" in msg) self.assertIn("synchronized", msg)
2.125
2
render/PC_Normalisation.py
sun-pyo/OcCo
158
1070
<reponame>sun-pyo/OcCo<gh_stars>100-1000 # Copyright (c) 2020. <NAME>, <EMAIL> import os, open3d, numpy as np File_ = open('ModelNet_flist_short.txt', 'w') if __name__ == "__main__": root_dir = "../data/ModelNet_subset/" for root, dirs, files in os.walk(root_dir, topdown=False): for file in files: if '.ply' in file: amesh = open3d.io.read_triangle_mesh(os.path.join(root, file)) out_file_name = os.path.join(root, file).replace('.ply', '_normalised.obj') center = amesh.get_center() amesh.translate(-center) maxR = (np.asarray(amesh.vertices)**2).sum(axis=1).max()**(1/2) # we found divided by (2*maxR) has best rendered visualisation results amesh.scale(1/(2*maxR)) open3d.io.write_triangle_mesh(out_file_name, amesh) File_.writelines(out_file_name.replace('.obj', '').replace(root_dir, '') + '\n') print(out_file_name)
2.109375
2
pymatgen/apps/battery/insertion_battery.py
adozier/pymatgen
18
1071
<filename>pymatgen/apps/battery/insertion_battery.py # coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals """ This module is used for analysis of materials with potential application as intercalation batteries. """ __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __date__ = "Jan 13, 2012" __status__ = "Beta" import itertools from pymatgen.core.composition import Composition from pymatgen.core.units import Charge, Time from pymatgen.phasediagram.maker import PhaseDiagram from pymatgen.phasediagram.entries import PDEntry from pymatgen.apps.battery.battery_abc import AbstractElectrode, \ AbstractVoltagePair from pymatgen.core.periodic_table import Element from scipy.constants import N_A class InsertionElectrode(AbstractElectrode): """ A set of topotactically related compounds, with different amounts of a single element, e.g. TiO2 and LiTiO2, that can be used to define an insertion battery electrode. """ def __init__(self, entries, working_ion_entry): """ Create a new InsertionElectrode. Args: entries: A list of ComputedStructureEntries (or subclasses) representing the different topotactic states of the battery, e.g. TiO2 and LiTiO2. working_ion_entry: A single ComputedEntry or PDEntry representing the element that carries charge across the battery, e.g. Li. """ self._entries = entries self._working_ion = working_ion_entry.composition.elements[0] self._working_ion_entry = working_ion_entry #Prepare to make phase diagram: determine elements and set their energy #to be very high elements = set() for entry in entries: elements.update(entry.composition.elements) #Set an artificial energy for each element for convex hull generation element_energy = max([entry.energy_per_atom for entry in entries]) + 10 pdentries = [] pdentries.extend(entries) pdentries.extend([PDEntry(Composition({el:1}), element_energy) for el in elements]) #Make phase diagram to determine which entries are stable vs. unstable pd = PhaseDiagram(pdentries) lifrac = lambda e: e.composition.get_atomic_fraction(self._working_ion) #stable entries ordered by amount of Li asc self._stable_entries = tuple(sorted([e for e in pd.stable_entries if e in entries], key=lifrac)) #unstable entries ordered by amount of Li asc self._unstable_entries = tuple(sorted([e for e in pd.unstable_entries if e in entries], key=lifrac)) #create voltage pairs self._vpairs = tuple([InsertionVoltagePair(self._stable_entries[i], self._stable_entries[i + 1], working_ion_entry) for i in range(len(self._stable_entries) - 1)]) @property def working_ion(self): """ The working ion as an Element object """ return self._working_ion @property def working_ion_entry(self): return self._working_ion_entry @property def voltage_pairs(self): return self._vpairs def get_stable_entries(self, charge_to_discharge=True): """ Get the stable entries. Args: charge_to_discharge: order from most charge to most discharged state? Default to True. Returns: A list of stable entries in the electrode, ordered by amount of the working ion. """ list_copy = list(self._stable_entries) return list_copy if charge_to_discharge else list_copy.reverse() def get_unstable_entries(self, charge_to_discharge=True): """ Returns the unstable entries for the electrode. Args: charge_to_discharge: Order from most charge to most discharged state? Defaults to True. Returns: A list of unstable entries in the electrode, ordered by amount of the working ion. """ list_copy = list(self._unstable_entries) return list_copy if charge_to_discharge else list_copy.reverse() def get_all_entries(self, charge_to_discharge=True): """ Return all entries input for the electrode. Args: charge_to_discharge: order from most charge to most discharged state? Defaults to True. Returns: A list of all entries in the electrode (both stable and unstable), ordered by amount of the working ion. """ all_entries = list(self.get_stable_entries()) all_entries.extend(self.get_unstable_entries()) #sort all entries by amount of working ion ASC fsrt = lambda e: e.composition.get_atomic_fraction(self.working_ion) all_entries = sorted([e for e in all_entries], key=fsrt) return all_entries if charge_to_discharge else all_entries.reverse() @property def fully_charged_entry(self): """ The most charged entry along the topotactic path. """ return self._stable_entries[0] @property def fully_discharged_entry(self): """ The most discharged entry along the topotactic path. """ return self._stable_entries[-1] def get_max_instability(self, min_voltage=None, max_voltage=None): """ The maximum instability along a path for a specific voltage range. Args: min_voltage: The minimum allowable voltage. max_voltage: The maximum allowable voltage. Returns: Maximum decomposition energy of all compounds along the insertion path (a subset of the path can be chosen by the optional arguments) """ data = [] for pair in self._select_in_voltage_range(min_voltage, max_voltage): if pair.decomp_e_charge is not None: data.append(pair.decomp_e_charge) if pair.decomp_e_discharge is not None: data.append(pair.decomp_e_discharge) return max(data) if len(data) > 0 else None def get_min_instability(self, min_voltage=None, max_voltage=None): """ The minimum instability along a path for a specific voltage range. Args: min_voltage: The minimum allowable voltage. max_voltage: The maximum allowable voltage. Returns: Minimum decomposition energy of all compounds along the insertion path (a subset of the path can be chosen by the optional arguments) """ data = [] for pair in self._select_in_voltage_range(min_voltage, max_voltage): if pair.decomp_e_charge is not None: data.append(pair.decomp_e_charge) if pair.decomp_e_discharge is not None: data.append(pair.decomp_e_discharge) return min(data) if len(data) > 0 else None def get_max_muO2(self, min_voltage=None, max_voltage=None): """ Maximum critical oxygen chemical potential along path. Args: min_voltage: The minimum allowable voltage. max_voltage: The maximum allowable voltage. Returns: Maximum critical oxygen chemical of all compounds along the insertion path (a subset of the path can be chosen by the optional arguments). """ data = [] for pair in self._select_in_voltage_range(min_voltage, max_voltage): if pair.muO2_discharge is not None: data.append(pair.pair.muO2_discharge) if pair.muO2_charge is not None: data.append(pair.muO2_charge) return max(data) if len(data) > 0 else None def get_min_muO2(self, min_voltage=None, max_voltage=None): """ Minimum critical oxygen chemical potential along path. Args: min_voltage: The minimum allowable voltage for a given step max_voltage: The maximum allowable voltage allowable for a given step Returns: Minimum critical oxygen chemical of all compounds along the insertion path (a subset of the path can be chosen by the optional arguments). """ data = [] for pair in self._select_in_voltage_range(min_voltage, max_voltage): if pair.pair.muO2_discharge is not None: data.append(pair.pair.muO2_discharge) if pair.muO2_charge is not None: data.append(pair.muO2_charge) return min(data) if len(data) > 0 else None def get_sub_electrodes(self, adjacent_only=True, include_myself=True): """ If this electrode contains multiple voltage steps, then it is possible to use only a subset of the voltage steps to define other electrodes. For example, an LiTiO2 electrode might contain three subelectrodes: [LiTiO2 --> TiO2, LiTiO2 --> Li0.5TiO2, Li0.5TiO2 --> TiO2] This method can be used to return all the subelectrodes with some options Args: adjacent_only: Only return electrodes from compounds that are adjacent on the convex hull, i.e. no electrodes returned will have multiple voltage steps if this is set True. include_myself: Include this identical electrode in the list of results. Returns: A list of InsertionElectrode objects """ battery_list = [] pair_it = self._vpairs if adjacent_only \ else itertools.combinations_with_replacement(self._vpairs, 2) ion = self._working_ion for pair in pair_it: entry_charge = pair.entry_charge if adjacent_only \ else pair[0].entry_charge entry_discharge = pair.entry_discharge if adjacent_only \ else pair[1].entry_discharge chg_frac = entry_charge.composition.get_atomic_fraction(ion) dischg_frac = entry_discharge.composition.get_atomic_fraction(ion) def in_range(entry): frac = entry.composition.get_atomic_fraction(ion) return chg_frac <= frac <= dischg_frac if include_myself or entry_charge != self.fully_charged_entry \ or entry_discharge != self.fully_discharged_entry: unstable_entries = filter(in_range, self.get_unstable_entries()) stable_entries = filter(in_range, self.get_stable_entries()) all_entries = list(stable_entries) all_entries.extend(unstable_entries) battery_list.append(self.__class__(all_entries, self.working_ion_entry)) return battery_list def as_dict_summary(self, print_subelectrodes=True): """ Generate a summary dict. Args: print_subelectrodes: Also print data on all the possible subelectrodes. Returns: A summary of this electrode"s properties in dict format. """ chg_comp = self.fully_charged_entry.composition dischg_comp = self.fully_discharged_entry.composition ion = self.working_ion d = {"average_voltage": self.get_average_voltage(), "max_voltage": self.max_voltage, "min_voltage": self.min_voltage, "max_delta_volume": self.max_delta_volume, "max_voltage_step": self.max_voltage_step, "capacity_grav": self.get_capacity_grav(), "capacity_vol": self.get_capacity_vol(), "energy_grav": self.get_specific_energy(), "energy_vol": self.get_energy_density(), "working_ion": self._working_ion.symbol, "nsteps": self.num_steps, "framework": self._vpairs[0].framework.to_data_dict, "formula_charge": chg_comp.reduced_formula, "formula_discharge": dischg_comp.reduced_formula, "fracA_charge": chg_comp.get_atomic_fraction(ion), "fracA_discharge": dischg_comp.get_atomic_fraction(ion), "max_instability": self.get_max_instability(), "min_instability": self.get_min_instability()} if print_subelectrodes: f_dict = lambda c: c.as_dict_summary(print_subelectrodes=False) d["adj_pairs"] = map(f_dict, self.get_sub_electrodes(adjacent_only=True)) d["all_pairs"] = map(f_dict, self.get_sub_electrodes(adjacent_only=False)) return d def __str__(self): return self.__repr__() def __repr__(self): output = [] chg_form = self.fully_charged_entry.composition.reduced_formula dischg_form = self.fully_discharged_entry.composition.reduced_formula output.append("InsertionElectrode with endpoints at {} and {}".format( chg_form, dischg_form)) output.append("Avg. volt. = {} V".format(self.get_average_voltage())) output.append("Grav. cap. = {} mAh/g".format(self.get_capacity_grav())) output.append("Vol. cap. = {}".format(self.get_capacity_vol())) return "\n".join(output) @classmethod def from_dict(cls, d): from monty.json import MontyDecoder dec = MontyDecoder() return cls(dec.process_decoded(d["entries"]), dec.process_decoded(d["working_ion_entry"])) def as_dict(self): return {"@module": self.__class__.__module__, "@class": self.__class__.__name__, "entries": [entry.as_dict() for entry in self._entries], "working_ion_entry": self.working_ion_entry.as_dict()} class InsertionVoltagePair(AbstractVoltagePair): """ Defines an Insertion Voltage Pair. Args: entry1: Entry corresponding to one of the entries in the voltage step. entry2: Entry corresponding to the other entry in the voltage step. working_ion_entry: A single ComputedEntry or PDEntry representing the element that carries charge across the battery, e.g. Li. """ def __init__(self, entry1, entry2, working_ion_entry): #initialize some internal variables working_element = working_ion_entry.composition.elements[0] entry_charge = entry1 entry_discharge = entry2 if entry_charge.composition.get_atomic_fraction(working_element) \ > entry2.composition.get_atomic_fraction(working_element): (entry_charge, entry_discharge) = (entry_discharge, entry_charge) comp_charge = entry_charge.composition comp_discharge = entry_discharge.composition ion_sym = working_element.symbol frame_charge_comp = Composition({el: comp_charge[el] for el in comp_charge if el.symbol != ion_sym}) frame_discharge_comp = Composition({el: comp_discharge[el] for el in comp_discharge if el.symbol != ion_sym}) #Data validation #check that the ion is just a single element if not working_ion_entry.composition.is_element: raise ValueError("VoltagePair: The working ion specified must be " "an element") #check that at least one of the entries contains the working element if not comp_charge.get_atomic_fraction(working_element) > 0 and \ not comp_discharge.get_atomic_fraction(working_element) > 0: raise ValueError("VoltagePair: The working ion must be present in " "one of the entries") #check that the entries do not contain the same amount of the workin #element if comp_charge.get_atomic_fraction(working_element) == \ comp_discharge.get_atomic_fraction(working_element): raise ValueError("VoltagePair: The working ion atomic percentage " "cannot be the same in both the entries") #check that the frameworks of the entries are equivalent if not frame_charge_comp.reduced_formula == \ frame_discharge_comp.reduced_formula: raise ValueError("VoltagePair: the specified entries must have the" " same compositional framework") #Initialize normalization factors, charged and discharged entries valence_list = Element(ion_sym).oxidation_states working_ion_valence = max(valence_list) (self.framework, norm_charge) = frame_charge_comp.get_reduced_composition_and_factor() norm_discharge = \ frame_discharge_comp.get_reduced_composition_and_factor()[1] self._working_ion_entry = working_ion_entry #Initialize normalized properties self._vol_charge = entry_charge.structure.volume / norm_charge self._vol_discharge = entry_discharge.structure.volume / norm_discharge comp_charge = entry_charge.composition comp_discharge = entry_discharge.composition self._mass_charge = comp_charge.weight / norm_charge self._mass_discharge = comp_discharge.weight / norm_discharge self._num_ions_transferred = \ (comp_discharge[working_element] / norm_discharge) \ - (comp_charge[working_element] / norm_charge) self._voltage = \ (((entry_charge.energy / norm_charge) - (entry_discharge.energy / norm_discharge)) / \ self._num_ions_transferred + working_ion_entry.energy_per_atom) / working_ion_valence self._mAh = self._num_ions_transferred * Charge(1, "e").to("C") * \ Time(1, "s").to("h") * N_A * 1000 * working_ion_valence #Step 4: add (optional) hull and muO2 data self.decomp_e_charge = \ entry_charge.data.get("decomposition_energy", None) self.decomp_e_discharge = \ entry_discharge.data.get("decomposition_energy", None) self.muO2_charge = entry_charge.data.get("muO2", None) self.muO2_discharge = entry_discharge.data.get("muO2", None) self.entry_charge = entry_charge self.entry_discharge = entry_discharge self.normalization_charge = norm_charge self.normalization_discharge = norm_discharge self._frac_charge = comp_charge.get_atomic_fraction(working_element) self._frac_discharge = \ comp_discharge.get_atomic_fraction(working_element) @property def frac_charge(self): return self._frac_charge @property def frac_discharge(self): return self._frac_discharge @property def voltage(self): return self._voltage @property def mAh(self): return self._mAh @property def mass_charge(self): return self._mass_charge @property def mass_discharge(self): return self._mass_discharge @property def vol_charge(self): return self._vol_charge @property def vol_discharge(self): return self._vol_discharge @property def working_ion_entry(self): return self._working_ion_entry def __repr__(self): output = ["Insertion voltage pair with working ion {}" .format(self._working_ion_entry.composition.reduced_formula), "V = {}, mAh = {}".format(self.voltage, self.mAh), "mass_charge = {}, mass_discharge = {}" .format(self.mass_charge, self.mass_discharge), "vol_charge = {}, vol_discharge = {}" .format(self.vol_charge, self.vol_discharge), "frac_charge = {}, frac_discharge = {}" .format(self.frac_charge, self.frac_discharge)] return "\n".join(output) def __str__(self): return self.__repr__()
2.75
3
python/GafferUI/ColorSwatchPlugValueWidget.py
ddesmond/gaffer
561
1072
########################################################################## # # Copyright (c) 2013, <NAME>. All rights reserved. # Copyright (c) 2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of <NAME> nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import weakref import imath import Gaffer import GafferUI class ColorSwatchPlugValueWidget( GafferUI.PlugValueWidget ) : def __init__( self, plugs, **kw ) : self.__swatch = GafferUI.ColorSwatch() GafferUI.PlugValueWidget.__init__( self, self.__swatch, plugs, **kw ) ## \todo How do set maximum height with a public API? self.__swatch._qtWidget().setMaximumHeight( 20 ) self._addPopupMenu( self.__swatch ) self.__swatch.buttonPressSignal().connect( Gaffer.WeakMethod( self.__buttonPress ), scoped = False ) self.__swatch.dragBeginSignal().connect( Gaffer.WeakMethod( self.__dragBegin ), scoped = False ) self.__swatch.dragEndSignal().connect( Gaffer.WeakMethod( self.__dragEnd ), scoped = False ) self.__swatch.buttonReleaseSignal().connect( Gaffer.WeakMethod( self.__buttonRelease ), scoped = False ) self._updateFromPlugs() def setHighlighted( self, highlighted ) : GafferUI.PlugValueWidget.setHighlighted( self, highlighted ) self.__swatch.setHighlighted( highlighted ) def _updateFromPlugs( self ) : with self.getContext() : value = _colorFromPlugs( self.getPlugs() ) self.__swatch.setColor( value ) def __buttonPress( self, widget, event ) : if event.buttons == event.Buttons.Left : return True return False def __dragBegin( self, widget, event ) : GafferUI.Pointer.setCurrent( "rgba" ) return self.__swatch.getColor() def __dragEnd( self, widget, event ) : GafferUI.Pointer.setCurrent( None ) def __buttonRelease( self, widget, event ) : if event.button != event.Buttons.Left : return False if not self._editable() : return False _ColorPlugValueDialogue.acquire( self.getPlugs() ) return True def _colorFromPlugs( plugs ) : if not len( plugs ) : return imath.Color4f( 0 ) # ColorSwatch only supports one colour, and doesn't have # an "indeterminate" state, so when we have multiple plugs # the best we can do is take an average. return sum( p.getValue() for p in plugs ) / len( plugs ) ## \todo Perhaps we could make this a part of the public API? Perhaps we could also make a # PlugValueDialogue base class to share some of the work with the dialogue made by the # SplinePlugValueWidget. Or perhaps the `acquire()` here and `NodeSetEditor.acquire()` should # actually be functionality of CompoundEditor? class _ColorPlugValueDialogue( GafferUI.ColorChooserDialogue ) : def __init__( self, plugs, parentWindow ) : GafferUI.ColorChooserDialogue.__init__( self, color = _colorFromPlugs( plugs ) ) # we use these to decide which actions to merge into a single undo self.__lastChangedReason = None self.__mergeGroupId = 0 self.__colorChangedConnection = self.colorChooser().colorChangedSignal().connect( Gaffer.WeakMethod( self.__colorChanged ), scoped = False ) self.confirmButton.clickedSignal().connect( Gaffer.WeakMethod( self.__buttonClicked ), scoped = False ) self.cancelButton.clickedSignal().connect( Gaffer.WeakMethod( self.__buttonClicked ), scoped = False ) self.__plugs = plugs self.__initialValues = { p : p.getValue() for p in self.__plugs } nodes = { p.node() for p in self.__plugs } self.__plugSetConnections = [ n.plugSetSignal().connect( Gaffer.WeakMethod( self.__plugSet ), scoped = False ) for n in nodes ] for node in nodes : node.parentChangedSignal().connect( Gaffer.WeakMethod( self.__destroy ), scoped = False ) plug = next( iter( self.__plugs ) ) if len( self.__plugs ) == 1 : self.setTitle( plug.relativeName( plug.ancestor( Gaffer.ScriptNode ) ) ) else : self.setTitle( "{} plugs".format( len( self.__plugs ) ) ) self.__plugSet( plug ) parentWindow.addChildWindow( self, removeOnClose = True ) @classmethod def acquire( cls, plugs ) : plug = next( iter( plugs ) ) script = plug.node().scriptNode() scriptWindow = GafferUI.ScriptWindow.acquire( script ) for window in scriptWindow.childWindows() : if isinstance( window, cls ) and window.__plugs == plugs : window.setVisible( True ) return window window = _ColorPlugValueDialogue( plugs, scriptWindow ) window.setVisible( True ) return False def __plugSet( self, plug ) : if plug in self.__plugs : with Gaffer.BlockedConnection( self.__colorChangedConnection ) : self.colorChooser().setColor( _colorFromPlugs( self.__plugs ) ) def __colorChanged( self, colorChooser, reason ) : if not GafferUI.ColorChooser.changesShouldBeMerged( self.__lastChangedReason, reason ) : self.__mergeGroupId += 1 self.__lastChangedReason = reason with Gaffer.UndoScope( next( iter( self.__plugs ) ).ancestor( Gaffer.ScriptNode ), mergeGroup = "ColorPlugValueDialogue%d%d" % ( id( self, ), self.__mergeGroupId ) ) : with Gaffer.BlockedConnection( self.__plugSetConnections ) : for plug in self.__plugs : plug.setValue( self.colorChooser().getColor() ) def __buttonClicked( self, button ) : if button is self.cancelButton : with Gaffer.UndoScope( next( iter( self.__plugs ) ).ancestor( Gaffer.ScriptNode ) ) : for p, v in self.__initialValues.items() : p.setValue( v ) self.parent().removeChild( self ) # Workaround for https://bugreports.qt-project.org/browse/QTBUG-26761. assert( not self.visible() ) GafferUI.WidgetAlgo.keepUntilIdle( self ) def __destroy( self, *unused ) : self.parent().removeChild( self )
0.933594
1
NewsPaperD7(final)/NewsPaper/News/migrations/0001_initial.py
GregTMJ/django-files
1
1073
<reponame>GregTMJ/django-files<gh_stars>1-10 # Generated by Django 3.2 on 2021-04-15 18:05 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Author', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('author', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Category', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('category', models.CharField(default='select category', max_length=255, unique=True)), ('subscriber', models.ManyToManyField(related_name='subscriber', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Post', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('choosing', models.BooleanField(default=False)), ('time_in', models.DateTimeField(auto_now_add=True)), ('title', models.CharField(max_length=255, unique=True)), ('text', models.TextField(max_length=255)), ('rating', models.FloatField(default=0.0)), ('author', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='News.author', verbose_name='User')), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='News.category')), ], ), ]
1.867188
2
osh/cmd_exec_test.py
rhencke/oil
1
1074
#!/usr/bin/env python # Copyright 2016 <NAME>. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 """ cmd_exec_test.py: Tests for cmd_exec.py """ import unittest from core import test_lib from core.meta import syntax_asdl, Id from osh import state suffix_op = syntax_asdl.suffix_op osh_word = syntax_asdl.word word_part = syntax_asdl.word_part def InitEvaluator(): word_ev = test_lib.MakeTestEvaluator() state.SetLocalString(word_ev.mem, 'x', 'xxx') state.SetLocalString(word_ev.mem, 'y', 'yyy') return word_ev class ExpansionTest(unittest.TestCase): def testBraceExpand(self): arena = test_lib.MakeArena('<cmd_exec_test.py>') c_parser = test_lib.InitCommandParser('echo _{a,b}_', arena=arena) node = c_parser._ParseCommandLine() print(node) ex = test_lib.InitExecutor(arena=arena) #print(ex.Execute(node)) #print(ex._ExpandWords(node.words)) class VarOpTest(unittest.TestCase): def testVarOps(self): ev = InitEvaluator() # initializes x=xxx and y=yyy unset_sub = word_part.BracedVarSub(syntax_asdl.token(Id.VSub_Name, 'unset')) part_vals = [] ev._EvalWordPart(unset_sub, part_vals) print(part_vals) set_sub = word_part.BracedVarSub(syntax_asdl.token(Id.VSub_Name, 'x')) part_vals = [] ev._EvalWordPart(set_sub, part_vals) print(part_vals) # Now add some ops part = word_part.LiteralPart(syntax_asdl.token(Id.Lit_Chars, 'default')) arg_word = osh_word.CompoundWord([part]) test_op = suffix_op.StringUnary(Id.VTest_ColonHyphen, arg_word) unset_sub.suffix_op = test_op set_sub.suffix_op = test_op part_vals = [] ev._EvalWordPart(unset_sub, part_vals) print(part_vals) part_vals = [] ev._EvalWordPart(set_sub, part_vals) print(part_vals) if __name__ == '__main__': unittest.main()
2.34375
2
blitz_api/migrations/0020_auto_20190529_1200.py
MelanieFJNR/Blitz-API
3
1075
# Generated by Django 2.0.8 on 2019-05-29 16:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blitz_api', '0019_merge_20190524_1719'), ] operations = [ migrations.AlterField( model_name='exportmedia', name='file', field=models.FileField(upload_to='export/%Y/%m/', verbose_name='file'), ), ]
1.375
1
archiveis/__init__.py
palewire/archiveis
6
1076
#!/usr/bin/env python from .api import capture __version__ = "0.0.7" __all__ = ("capture",)
0.976563
1
temp/discrete_a2c_agent.py
linklab/link_rl
0
1077
<filename>temp/discrete_a2c_agent.py import numpy as np import torch import torch.nn.functional as F from codes.d_agents.a0_base_agent import float32_preprocessor from codes.d_agents.on_policy.on_policy_agent import OnPolicyAgent from codes.e_utils import rl_utils, replay_buffer from codes.d_agents.actions import ProbabilityActionSelector from codes.e_utils.names import DeepLearningModelName, AgentMode class AgentDiscreteA2C(OnPolicyAgent): """ """ def __init__( self, worker_id, input_shape, num_outputs, train_action_selector, test_and_play_action_selector, params, device ): assert isinstance(train_action_selector, ProbabilityActionSelector) assert isinstance(test_and_play_action_selector, ProbabilityActionSelector) assert params.DEEP_LEARNING_MODEL in [ DeepLearningModelName.DISCRETE_STOCHASTIC_ACTOR_CRITIC_MLP, DeepLearningModelName.DISCRETE_STOCHASTIC_ACTOR_CRITIC_CNN ] super(AgentDiscreteA2C, self).__init__(train_action_selector, test_and_play_action_selector, params, device) self.__name__ = "AgentDiscreteA2C" self.worker_id = worker_id self.model = rl_utils.get_rl_model( worker_id=worker_id, input_shape=input_shape, num_outputs=num_outputs, params=params, device=self.device ) if self.params.DEEP_LEARNING_MODEL == DeepLearningModelName.DISCRETE_STOCHASTIC_ACTOR_CRITIC_MLP: self.actor_optimizer = rl_utils.get_optimizer( parameters=self.model.base.actor.parameters(), learning_rate=self.params.ACTOR_LEARNING_RATE, params=params ) self.critic_optimizer = rl_utils.get_optimizer( parameters=self.model.base.critic.parameters(), learning_rate=self.params.LEARNING_RATE, params=params ) elif self.params.DEEP_LEARNING_MODEL == DeepLearningModelName.DISCRETE_STOCHASTIC_ACTOR_CRITIC_CNN: self.optimizer = rl_utils.get_optimizer( parameters=list(self.model.base.common_conv.parameters()) + list(self.model.base.critic_fc.parameters()), learning_rate=self.params.LEARNING_RATE, params=params ) else: raise ValueError() self.buffer = replay_buffer.ExperienceReplayBuffer( experience_source=None, buffer_size=self.params.BATCH_SIZE ) def __call__(self, states, critics=None): if not isinstance(states, torch.FloatTensor): states = float32_preprocessor(states).to(self.device) logits_v = self.model.base.forward_actor(states) probs_v = F.softmax(logits_v, dim=1) probs = probs_v.data.cpu().numpy() if self.agent_mode == AgentMode.TRAIN: actions = np.array(self.train_action_selector(probs)) else: actions = np.array(self.test_and_play_action_selector(probs)) critics = torch.zeros(size=probs_v.size()) return actions, critics def train(self, step_idx): # Lucky Episode에서 얻어낸 batch를 통해 학습할 때와, Unlucky Episode에서 얻어낸 batch를 통해 학습할 때마다 NN의 파라미터들이 # 서로 다른 방향으로 반복적으로 휩쓸려가듯이 학습이 됨 --> Gradients의 Variance가 매우 큼 batch = self.buffer.sample(batch_size=None) # states_v.shape: (32, 3) # actions_v.shape: (32, 1) # target_action_values_v.shape: (32,) states_v, actions_v, target_action_values_v = self.unpack_batch_for_actor_critic( batch=batch, target_model=self.model, params=self.params ) logits_v, value_v = self.model(states_v) # Critic Optimization self.critic_optimizer.zero_grad() loss_critic_v = F.mse_loss(input=value_v.squeeze(-1), target=target_action_values_v) loss_critic_v.backward(retain_graph=True) #nn_utils.clip_grad_norm_(self.model.base.critic.parameters(), self.params.CLIP_GRAD) self.critic_optimizer.step() # Actor Optimization self.actor_optimizer.zero_grad() # advantage_v.shape: (32,) advantage_v = target_action_values_v - value_v.squeeze(-1).detach() log_pi_v = F.log_softmax(logits_v, dim=1) log_pi_action_v = log_pi_v.gather(dim=1, index=actions_v.unsqueeze(-1)).squeeze(-1) reinforced_log_pi_action_v = advantage_v * log_pi_action_v #print(actions_v.size(), advantage_v.size(), log_pi_v.size(), log_pi_action_v.size(), reinforced_log_pi_action_v.size()) loss_actor_v = -1.0 * reinforced_log_pi_action_v.mean() prob_v = F.softmax(logits_v, dim=1) entropy_v = -1.0 * (prob_v * log_pi_v).sum(dim=1).mean() loss_entropy_v = -1.0 * self.params.ENTROPY_LOSS_WEIGHT * entropy_v # loss_actor_v를 작아지도록 만듦 --> log_pi_v.mean()가 커지도록 만듦 # loss_entropy_v를 작아지도록 만듦 --> entropy_v가 커지도록 만듦 loss_actor_and_entropy_v = loss_actor_v + loss_entropy_v loss_actor_and_entropy_v.backward() #nn_utils.clip_grad_norm_(self.model.base.actor.parameters(), self.params.CLIP_GRAD) self.actor_optimizer.step() gradients = self.model.get_gradients_for_current_parameters() return gradients, loss_critic_v.item(), loss_actor_v.item() * -1.0
2.28125
2
edmundbotadder/cogs/webhook.py
thebeanogamer/edmund-botadder
0
1078
<filename>edmundbotadder/cogs/webhook.py from discord.ext.commands import Bot, Cog class Webhook(Cog): """ Webhook functionality """ def __init__(self, bot: Bot): self.bot = bot def setup(bot): bot.add_cog(Webhook(bot))
2.3125
2
apps/core/forms.py
allexvissoci/djangoecommerce
0
1079
<reponame>allexvissoci/djangoecommerce from django import forms from django.core.mail import send_mail from django.conf import settings class ContactForm(forms.Form): name = forms.CharField(label='Nome', required=True) email = forms.EmailField(label='E-mail') message = forms.CharField(label='Mensagem', widget=forms.Textarea(), required=True) def send_mail(self): name = self.cleaned_data['name'] email = self.cleaned_data['email'] message = self.cleaned_data['message'] message = 'Nome: {0}\nE-mail:{1}\n{2}'.format(name, email, message) send_mail( 'Contato Django E-commerce', message, settings.DEFAULT_FROM_EMAIL, [settings.DEFAULT_FROM_EMAIL] )
1.9375
2
Fchat/Gui/AddFriendWidget.py
jamesaxl/FreeSnake
2
1080
import gi gi.require_version('Gtk', '3.0') from gi.repository import Gio, Gtk, Gdk class AddFriendWidget(Gtk.Box): def __init__(self, main_window, fchat_prv, friend_list): Gtk.Box.__init__(self, spacing=7, orientation = Gtk.Orientation.VERTICAL) self.fchat_prv = fchat_prv self.main_window = main_window self.friend_list = friend_list self.fchat_prv.add_friend_gui = self self.generate_keys_bt = Gtk.Button('Generate Key') self.generate_keys_bt.connect('clicked', self.on_generate_keys) self.save_bt = Gtk.Button('Save') self.save_bt.connect('clicked', self.on_save) self.cancel_bt = Gtk.Button('Cancel') self.cancel_bt.connect('clicked', self.on_cancel) self.close_bt = Gtk.Button('Close') self.close_bt.connect('clicked', self.on_close) self.owner_info = Gtk.Entry() self.owner_info.set_sensitive(False) self.copy_clipboard_bt = Gtk.Button(label='Copy to clipboard') self.clipboard = Gtk.Clipboard.get(Gdk.SELECTION_CLIPBOARD) self.copy_clipboard_bt.connect('clicked', self.on_copy_clipboard) h_owner = Gtk.Box(spacing=5) h_owner.pack_start(self.owner_info, True, True, 1) h_owner.pack_start(self.copy_clipboard_bt, False, False, 1) self.friend_info = Gtk.Entry() self.friend_info.set_placeholder_text('Key of your friend') self.spinner = Gtk.Spinner() self.pack_start(h_owner, True, False, 7) self.pack_start(self.friend_info, True, False, 7) self.pack_start(self.spinner, True, False, 7) h_bt = Gtk.Box() h_bt.pack_start(self.generate_keys_bt, True, False, 7) h_bt.pack_start(self.save_bt, True, False, 7) h_bt.pack_start(self.cancel_bt, True, False, 7) h_bt.pack_start(self.close_bt, True, False, 7) self.pack_start(h_bt, True, False, 7) self.job = None def on_generate_keys(self, button): self.pub, self.prv, self.pub_info_key, self.job = self.fchat_prv.generate_key_for_friend() self.owner_info.set_text(self.pub_info_key) self.on_generate_keys_start() def on_generate_keys_start(self): self.spinner.show() self.spinner.start() self.friend_info.set_sensitive(False) self.save_bt.set_sensitive(False) self.close_bt.set_sensitive(False) self.generate_keys_bt.set_sensitive(False) self.copy_clipboard_bt.set_sensitive(False) def on_generate_keys_ok(self): self.spinner.hide() self.spinner.stop() self.friend_info.set_sensitive(True) self.save_bt.set_sensitive(True) self.close_bt.set_sensitive(True) self.generate_keys_bt.set_sensitive(True) self.copy_clipboard_bt.set_sensitive(True) def on_generate_keys_faild(self, text): self.spinner.hide() self.spinner.stop() self.friend_info.set_sensitive(True) self.save_bt.set_sensitive(True) self.close_bt.set_sensitive(True) self.generate_keys_bt.set_sensitive(True) self.copy_clipboard_bt.set_sensitive(True) def on_cancel(self, button): if self.job: self.job.remove_from_queue_when_finish() def on_close(self, button): self.main_window.application.back_main_window_or_friend_list() def on_save(self, button): if self.owner_info.get_text() == '': self.msg_info('You should generate a key that contains your info') return if self.friend_info.get_text() == '': self.msg_info('Friend info is required') return self.fchat_prv.add_friend(self.pub, self.prv, self.friend_info.get_text()) self.on_save_start() def on_save_start(self): self.spinner.show() self.spinner.start() self.friend_info.set_sensitive(False) self.save_bt.set_sensitive(False) self.close_bt.set_sensitive(False) self.generate_keys_bt.set_sensitive(False) self.copy_clipboard_bt.set_sensitive(False) def on_save_start_ok(self): self.spinner.hide() self.spinner.stop() self.friend_info.set_sensitive(True) self.save_bt.set_sensitive(True) self.close_bt.set_sensitive(True) self.generate_keys_bt.set_sensitive(True) self.copy_clipboard_bt.set_sensitive(True) self.friend_list.sync_friends_list() def on_save_start_duplicate(self, text): self.msg_info(text) def on_save_start_faild(self): dialog = Gtk.MessageDialog(self.main_window, 0, Gtk.MessageType.ERROR, Gtk.ButtonsType.OK, "ERROR") dialog.format_secondary_text("Error adding friend please try later") dialog.run() dialog.destroy() self.spinner.hide() self.spinner.stop() self.friend_info.set_sensitive(True) self.save_bt.set_sensitive(True) self.close_bt.set_sensitive(True) self.generate_keys_bt.set_sensitive(True) self.copy_clipboard_bt.set_sensitive(True) def on_copy_clipboard(self, button): self.clipboard.set_text(self.owner_info.get_text(), -1) def msg_info(self, text): dialog = Gtk.MessageDialog(self.main_window, 0, Gtk.MessageType.INFO, Gtk.ButtonsType.OK, "Info") dialog.format_secondary_text(text) dialog.run() dialog.destroy()
2.34375
2
python01/game.py
liyan2013/hogwarts
0
1081
<filename>python01/game.py import random def game(): # 我的血量 my_hp = 1000 # 敌人的血量 enemy_hp = 1000 while True: # 我受到随机的攻击,减少血量 my_hp = my_hp - random.randint(0, 50) # 敌人收到随机的攻击,减少血量 enemy_hp = enemy_hp - random.randint(0, 50) if my_hp <= 0: # 如果我此时的血量<=0,则敌人赢了 print("敌人赢了") # 退出循环 break elif enemy_hp <= 0: # 如果敌人此时的血量<=0,则我赢了 print("我赢了") # 跳出循环 break if __name__ == '__main__': game()
3.65625
4
petstore/api/api_response.py
andrii-grytsenko/io.swagger.petstore3.testing
0
1082
from enum import Enum class ApiResponseType(Enum): error = "Error" warning = "Warning" info = "Info" ok = "OK" too_busy = "Too busy" class ApiResponse: def __init__(self, code: int, response_type: ApiResponseType, message): self.code = code self.type = response_type self.message = message class ApiResponseError(Exception): def __init__(self, response: ApiResponse, message="Api exception"): self.response = response self.message = message super().__init__(self.message) def __str__(self): return f"{self.message}\n{self.response.code}: [{self.response.type}] {self.response.message}"
3.359375
3
test/integration/component/test_browse_templates2.py
ycyun/ablestack-cloud
1,131
1083
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Import Local Modules import marvin from nose.plugins.attrib import attr from marvin.cloudstackTestCase import cloudstackTestCase import unittest from marvin.cloudstackAPI import * from marvin.lib.utils import * from marvin.lib.base import * from marvin.lib.common import * from marvin.codes import PASS, FAILED, SUCCESS, XEN_SERVER from marvin.sshClient import SshClient import requests requests.packages.urllib3.disable_warnings() import random import string import telnetlib import os import urllib.request, urllib.parse, urllib.error import time import tempfile _multiprocess_shared_ = True class TestBrowseUploadTemplate(cloudstackTestCase): """ Tests for browser based upload template feature. Once all issues in test_browse_templates.py are fixed, this should be merged back """ @classmethod def setUpClass(cls): cls.testClient = super(TestBrowseUploadTemplate, cls).getClsTestClient() cls.testdata = cls.testClient.getParsedTestDataConfig() cls.apiclient = cls.testClient.getApiClient() cls.hypervisor = cls.testClient.getHypervisorInfo() cls._cleanup = [] cls.cleanup = [] hosts = list_hosts( cls.apiclient, type="Routing" ) if hosts is None: cls.SkipTest( "There are no hypervisor's available. Check list hosts response") cls.uploadtemplateformat = "VHD" cls.templatename = "test" cls.templatehypervisor = "XenServer" cls.templateostypeid = 142 cls.zone = get_zone(cls.apiclient, cls.testClient.getZoneForTests()) cls.domain = get_domain(cls.apiclient) cls.pod = get_pod(cls.apiclient, cls.zone.id) cls.account = Account.create( cls.apiclient, cls.testdata["account"], domainid=cls.domain.id ) cls._cleanup = [ cls.account ] def waitForSystemVMAgent(self, vmname): timeout = self.testdata["timeout"] while True: list_host_response = list_hosts( self.apiclient, name=vmname ) if list_host_response and list_host_response[0].state == 'Up': break if timeout == 0: raise Exception("Timed out waiting for SSVM agent to be Up") time.sleep(self.testdata["sleep"]) timeout = timeout - 1 def destroy_ssvm(self): list_ssvm_response = list_ssvms( self.apiclient, systemvmtype='secondarystoragevm', state='Running', zoneid=self.zone.id ) self.assertEqual( isinstance(list_ssvm_response, list), True, "Check list response returns a valid list" ) ssvm_response = list_ssvm_response[0] old_name = ssvm_response.name self.debug("Destroying SSVM: %s" % ssvm_response.id) cmd = destroySystemVm.destroySystemVmCmd() cmd.id = ssvm_response.id self.apiclient.destroySystemVm(cmd) timeout = self.testdata["timeout"] while True: list_ssvm_response = list_ssvms( self.apiclient, zoneid=self.zone.id, systemvmtype='secondarystoragevm' ) if isinstance(list_ssvm_response, list): if list_ssvm_response[0].state == 'Running': break if timeout == 0: raise Exception("List SSVM call failed!") time.sleep(self.testdata["sleep"]) timeout = timeout - 1 ssvm_response = list_ssvm_response[0] # Verify Name, Public IP, Private IP and Link local IP # for newly created SSVM self.assertNotEqual( ssvm_response.name, old_name, "Check SSVM new name with name of destroyed SSVM" ) self.assertEqual( hasattr(ssvm_response, 'privateip'), True, "Check whether SSVM has private IP field" ) self.assertEqual( hasattr(ssvm_response, 'linklocalip'), True, "Check whether SSVM has link local IP field" ) self.assertEqual( hasattr(ssvm_response, 'publicip'), True, "Check whether SSVM has public IP field" ) # Wait for the agent to be up self.waitForSystemVMAgent(ssvm_response.name) return @attr(tags = ["advanced", "advancedns", "smoke", "basic"], required_hardware="false") def test_browser_upload_template_incomplete(self): """ Test browser based incomplete template upload, followed by SSVM destroy. Template should go to UploadAbandoned state and get cleaned up. """ try: self.debug("========================= Test browser based incomplete template upload ========================") #Only register template, without uploading cmd = getUploadParamsForTemplate.getUploadParamsForTemplateCmd() cmd.zoneid = self.zone.id cmd.format = self.uploadtemplateformat cmd.name=self.templatename+self.account.name+(random.choice(string.ascii_uppercase)) cmd.account=self.account.name cmd.domainid=self.domain.id cmd.displaytext=cmd.name cmd.hypervisor=self.templatehypervisor cmd.ostypeid=self.templateostypeid template_response=self.apiclient.getUploadParamsForTemplate(cmd) #Destroy SSVM, and wait for new one to start self.destroy_ssvm() wait_for_cleanup(self.apiclient, ["expunge.delay", "expunge.interval"]) #Verify that the template is cleaned up as part of sync-up during new SSVM start list_template_response=Template.list( self.apiclient, id=template_response.id, templatefilter="all", zoneid=self.zone.id) self.assertEqual(list_template_response, None, "Template is not cleaned up, some issue with template sync-up") except Exception as e: self.fail("Exception occurred : %s" % e) return @classmethod def tearDownClass(self): try: self.apiclient = super(TestBrowseUploadTemplate, self).getClsTestClient().getApiClient() cleanup_resources(self.apiclient, self._cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return
1.648438
2
tests/components/ozw/test_websocket_api.py
pcaston/core
1
1084
"""Test OpenZWave Websocket API.""" from unittest.mock import patch from openzwavemqtt.const import ( ATTR_CODE_SLOT, ATTR_LABEL, ATTR_OPTIONS, ATTR_POSITION, ATTR_VALUE, ValueType, ) from openpeerpower.components.ozw.const import ATTR_CONFIG_PARAMETER from openpeerpower.components.ozw.lock import ATTR_USERCODE from openpeerpower.components.ozw.websocket_api import ( ATTR_IS_AWAKE, ATTR_IS_BEAMING, ATTR_IS_FAILED, ATTR_IS_FLIRS, ATTR_IS_ROUTING, ATTR_IS_SECURITYV1, ATTR_IS_ZWAVE_PLUS, ATTR_NEIGHBORS, ATTR_NODE_BASIC_STRING, ATTR_NODE_BAUD_RATE, ATTR_NODE_GENERIC_STRING, ATTR_NODE_QUERY_STAGE, ATTR_NODE_SPECIFIC_STRING, ID, NODE_ID, OZW_INSTANCE, PARAMETER, SCHEMA, TYPE, VALUE, ) from openpeerpower.components.websocket_api.const import ( ERR_INVALID_FORMAT, ERR_NOT_FOUND, ERR_NOT_SUPPORTED, ) from .common import MQTTMessage, setup_ozw async def test_websocket_api(opp, generic_data, opp_ws_client): """Test the ozw websocket api.""" await setup_ozw(opp, fixture=generic_data) client = await opp_ws_client(opp) # Test instance list await client.send_json({ID: 4, TYPE: "ozw/get_instances"}) msg = await client.receive_json() assert len(msg["result"]) == 1 result = msg["result"][0] assert result[OZW_INSTANCE] == 1 assert result["Status"] == "driverAllNodesQueried" assert result["OpenZWave_Version"] == "1.6.1008" # Test network status await client.send_json({ID: 5, TYPE: "ozw/network_status"}) msg = await client.receive_json() result = msg["result"] assert result["Status"] == "driverAllNodesQueried" assert result[OZW_INSTANCE] == 1 # Test node status await client.send_json({ID: 6, TYPE: "ozw/node_status", NODE_ID: 32}) msg = await client.receive_json() result = msg["result"] assert result[OZW_INSTANCE] == 1 assert result[NODE_ID] == 32 assert result[ATTR_NODE_QUERY_STAGE] == "Complete" assert result[ATTR_IS_ZWAVE_PLUS] assert result[ATTR_IS_AWAKE] assert not result[ATTR_IS_FAILED] assert result[ATTR_NODE_BAUD_RATE] == 100000 assert result[ATTR_IS_BEAMING] assert not result[ATTR_IS_FLIRS] assert result[ATTR_IS_ROUTING] assert not result[ATTR_IS_SECURITYV1] assert result[ATTR_NODE_BASIC_STRING] == "Routing Slave" assert result[ATTR_NODE_GENERIC_STRING] == "Binary Switch" assert result[ATTR_NODE_SPECIFIC_STRING] == "Binary Power Switch" assert result[ATTR_NEIGHBORS] == [1, 33, 36, 37, 39] await client.send_json({ID: 7, TYPE: "ozw/node_status", NODE_ID: 999}) msg = await client.receive_json() result = msg["error"] assert result["code"] == ERR_NOT_FOUND # Test node statistics await client.send_json({ID: 8, TYPE: "ozw/node_statistics", NODE_ID: 39}) msg = await client.receive_json() result = msg["result"] assert result[OZW_INSTANCE] == 1 assert result[NODE_ID] == 39 assert result["send_count"] == 57 assert result["sent_failed"] == 0 assert result["retries"] == 1 assert result["last_request_rtt"] == 26 assert result["last_response_rtt"] == 38 assert result["average_request_rtt"] == 29 assert result["average_response_rtt"] == 37 assert result["received_packets"] == 3594 assert result["received_dup_packets"] == 12 assert result["received_unsolicited"] == 3546 # Test node metadata await client.send_json({ID: 9, TYPE: "ozw/node_metadata", NODE_ID: 39}) msg = await client.receive_json() result = msg["result"] assert result["metadata"]["ProductPic"] == "images/aeotec/zwa002.png" await client.send_json({ID: 10, TYPE: "ozw/node_metadata", NODE_ID: 999}) msg = await client.receive_json() result = msg["error"] assert result["code"] == ERR_NOT_FOUND # Test network statistics await client.send_json({ID: 11, TYPE: "ozw/network_statistics"}) msg = await client.receive_json() result = msg["result"] assert result["readCnt"] == 92220 assert result[OZW_INSTANCE] == 1 assert result["node_count"] == 5 # Test get nodes await client.send_json({ID: 12, TYPE: "ozw/get_nodes"}) msg = await client.receive_json() result = msg["result"] assert len(result) == 5 assert result[2][ATTR_IS_AWAKE] assert not result[1][ATTR_IS_FAILED] # Test get config parameters await client.send_json({ID: 13, TYPE: "ozw/get_config_parameters", NODE_ID: 39}) msg = await client.receive_json() result = msg["result"] assert len(result) == 8 for config_param in result: assert config_param["type"] in ( ValueType.LIST.value, ValueType.BOOL.value, ValueType.INT.value, ValueType.BYTE.value, ValueType.SHORT.value, ValueType.BITSET.value, ) # Test set config parameter config_param = result[0] current_val = config_param[ATTR_VALUE] new_val = next( option[0] for option in config_param[SCHEMA][0][ATTR_OPTIONS] if option[0] != current_val ) new_label = next( option[1] for option in config_param[SCHEMA][0][ATTR_OPTIONS] if option[1] != current_val and option[0] != new_val ) await client.send_json( { ID: 14, TYPE: "ozw/set_config_parameter", NODE_ID: 39, PARAMETER: config_param[ATTR_CONFIG_PARAMETER], VALUE: new_val, } ) msg = await client.receive_json() assert msg["success"] await client.send_json( { ID: 15, TYPE: "ozw/set_config_parameter", NODE_ID: 39, PARAMETER: config_param[ATTR_CONFIG_PARAMETER], VALUE: new_label, } ) msg = await client.receive_json() assert msg["success"] # Test OZW Instance not found error await client.send_json( {ID: 16, TYPE: "ozw/get_config_parameters", OZW_INSTANCE: 999, NODE_ID: 1} ) msg = await client.receive_json() result = msg["error"] assert result["code"] == ERR_NOT_FOUND # Test OZW Node not found error await client.send_json( { ID: 18, TYPE: "ozw/set_config_parameter", NODE_ID: 999, PARAMETER: 0, VALUE: "test", } ) msg = await client.receive_json() result = msg["error"] assert result["code"] == ERR_NOT_FOUND # Test parameter not found await client.send_json( { ID: 19, TYPE: "ozw/set_config_parameter", NODE_ID: 39, PARAMETER: 45, VALUE: "test", } ) msg = await client.receive_json() result = msg["error"] assert result["code"] == ERR_NOT_FOUND # Test list value not found await client.send_json( { ID: 20, TYPE: "ozw/set_config_parameter", NODE_ID: 39, PARAMETER: config_param[ATTR_CONFIG_PARAMETER], VALUE: "test", } ) msg = await client.receive_json() result = msg["error"] assert result["code"] == ERR_NOT_FOUND # Test value type invalid await client.send_json( { ID: 21, TYPE: "ozw/set_config_parameter", NODE_ID: 39, PARAMETER: 3, VALUE: 0, } ) msg = await client.receive_json() result = msg["error"] assert result["code"] == ERR_NOT_SUPPORTED # Test invalid bitset format await client.send_json( { ID: 22, TYPE: "ozw/set_config_parameter", NODE_ID: 39, PARAMETER: 3, VALUE: {ATTR_POSITION: 1, ATTR_VALUE: True, ATTR_LABEL: "test"}, } ) msg = await client.receive_json() result = msg["error"] assert result["code"] == ERR_INVALID_FORMAT # Test valid bitset format passes validation await client.send_json( { ID: 23, TYPE: "ozw/set_config_parameter", NODE_ID: 39, PARAMETER: 10000, VALUE: {ATTR_POSITION: 1, ATTR_VALUE: True}, } ) msg = await client.receive_json() result = msg["error"] assert result["code"] == ERR_NOT_FOUND async def test_ws_locks(opp, lock_data, opp_ws_client): """Test lock websocket apis.""" await setup_ozw(opp, fixture=lock_data) client = await opp_ws_client(opp) await client.send_json( { ID: 1, TYPE: "ozw/get_code_slots", NODE_ID: 10, } ) msg = await client.receive_json() assert msg["success"] await client.send_json( { ID: 2, TYPE: "ozw/set_usercode", NODE_ID: 10, ATTR_CODE_SLOT: 1, ATTR_USERCODE: "1234", } ) msg = await client.receive_json() assert msg["success"] await client.send_json( { ID: 3, TYPE: "ozw/clear_usercode", NODE_ID: 10, ATTR_CODE_SLOT: 1, } ) msg = await client.receive_json() assert msg["success"] async def test_refresh_node(opp, generic_data, sent_messages, opp_ws_client): """Test the ozw refresh node api.""" receive_message = await setup_ozw(opp, fixture=generic_data) client = await opp_ws_client(opp) # Send the refresh_node_info command await client.send_json({ID: 9, TYPE: "ozw/refresh_node_info", NODE_ID: 39}) msg = await client.receive_json() assert len(sent_messages) == 1 assert msg["success"] # Receive a mock status update from OZW message = MQTTMessage( topic="OpenZWave/1/node/39/", payload={"NodeID": 39, "NodeQueryStage": "initializing"}, ) message.encode() receive_message(message) # Verify we got expected data on the websocket msg = await client.receive_json() result = msg["event"] assert result["type"] == "node_updated" assert result["node_query_stage"] == "initializing" # Send another mock status update from OZW message = MQTTMessage( topic="OpenZWave/1/node/39/", payload={"NodeID": 39, "NodeQueryStage": "versions"}, ) message.encode() receive_message(message) # Send a mock status update for a different node message = MQTTMessage( topic="OpenZWave/1/node/35/", payload={"NodeID": 35, "NodeQueryStage": "fake_shouldnt_be_received"}, ) message.encode() receive_message(message) # Verify we received the message for node 39 but not for node 35 msg = await client.receive_json() result = msg["event"] assert result["type"] == "node_updated" assert result["node_query_stage"] == "versions" async def test_refresh_node_unsubscribe(opp, generic_data, opp_ws_client): """Test unsubscribing the ozw refresh node api.""" await setup_ozw(opp, fixture=generic_data) client = await opp_ws_client(opp) with patch("openzwavemqtt.OZWOptions.listen") as mock_listen: # Send the refresh_node_info command await client.send_json({ID: 9, TYPE: "ozw/refresh_node_info", NODE_ID: 39}) await client.receive_json() # Send the unsubscribe command await client.send_json({ID: 10, TYPE: "unsubscribe_events", "subscription": 9}) await client.receive_json() assert mock_listen.return_value.called
2.015625
2
tests/test_formatters.py
samueljacques-qc/notification-utils
0
1085
<filename>tests/test_formatters.py import pytest from flask import Markup from notifications_utils.formatters import ( unlink_govuk_escaped, notify_email_markdown, notify_letter_preview_markdown, notify_plain_text_email_markdown, sms_encode, formatted_list, strip_dvla_markup, strip_pipes, escape_html, remove_whitespace_before_punctuation, make_quotes_smart, replace_hyphens_with_en_dashes, tweak_dvla_list_markup, nl2li, strip_whitespace, strip_and_remove_obscure_whitespace, remove_smart_quotes_from_email_addresses, strip_unsupported_characters, normalise_whitespace ) from notifications_utils.template import ( HTMLEmailTemplate, PlainTextEmailTemplate, SMSMessageTemplate, SMSPreviewTemplate ) @pytest.mark.parametrize( "url", [ "http://example.com", "http://www.gov.uk/", "https://www.gov.uk/", "http://service.gov.uk", "http://service.gov.uk/blah.ext?q=a%20b%20c&order=desc#fragment", pytest.param("http://service.gov.uk/blah.ext?q=one two three", marks=pytest.mark.xfail), ] ) def test_makes_links_out_of_URLs(url): link = '<a style="word-wrap: break-word; color: #005ea5;" href="{}">{}</a>'.format(url, url) assert (notify_email_markdown(url) == ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">' '{}' '</p>' ).format(link)) @pytest.mark.parametrize('input, output', [ ( ( 'this is some text with a link http://example.com in the middle' ), ( 'this is some text with a link ' '<a style="word-wrap: break-word; color: #005ea5;" href="http://example.com">http://example.com</a>' ' in the middle' ), ), ( ( 'this link is in brackets (http://example.com)' ), ( 'this link is in brackets ' '(<a style="word-wrap: break-word; color: #005ea5;" href="http://example.com">http://example.com</a>)' ), ) ]) def test_makes_links_out_of_URLs_in_context(input, output): assert notify_email_markdown(input) == ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">' '{}' '</p>' ).format(output) @pytest.mark.parametrize( "url", [ "example.com", "www.example.com", "ftp://example.com", "<EMAIL>", "mailto:<EMAIL>", "<a href=\"https://example.com\">Example</a>", ] ) def test_doesnt_make_links_out_of_invalid_urls(url): assert notify_email_markdown(url) == ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">' '{}' '</p>' ).format(url) def test_handles_placeholders_in_urls(): assert notify_email_markdown( "http://example.com/?token=<span class='placeholder'>((token))</span>&key=1" ) == ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">' '<a style="word-wrap: break-word; color: #005ea5;" href="http://example.com/?token=">' 'http://example.com/?token=' '</a>' '<span class=\'placeholder\'>((token))</span>&amp;key=1' '</p>' ) @pytest.mark.parametrize( "url, expected_html, expected_html_in_template", [ ( """https://example.com"onclick="alert('hi')""", """<a style="word-wrap: break-word; color: #005ea5;" href="https://example.com%22onclick=%22alert%28%27hi">https://example.com"onclick="alert('hi</a>')""", # noqa """<a style="word-wrap: break-word; color: #005ea5;" href="https://example.com%22onclick=%22alert%28%27hi">https://example.com"onclick="alert('hi</a>‘)""", # noqa ), ( """https://example.com"style='text-decoration:blink'""", """<a style="word-wrap: break-word; color: #005ea5;" href="https://example.com%22style=%27text-decoration:blink">https://example.com"style='text-decoration:blink</a>'""", # noqa """<a style="word-wrap: break-word; color: #005ea5;" href="https://example.com%22style=%27text-decoration:blink">https://example.com"style='text-decoration:blink</a>’""", # noqa ), ] ) def test_URLs_get_escaped(url, expected_html, expected_html_in_template): assert notify_email_markdown(url) == ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">' '{}' '</p>' ).format(expected_html) assert expected_html_in_template in str(HTMLEmailTemplate({'content': url, 'subject': ''})) def test_HTML_template_has_URLs_replaced_with_links(): assert ( '<a style="word-wrap: break-word; color: #005ea5;" href="https://service.example.com/accept_invite/a1b2c3d4">' 'https://service.example.com/accept_invite/a1b2c3d4' '</a>' ) in str(HTMLEmailTemplate({'content': ( 'You’ve been invited to a service. Click this link:\n' 'https://service.example.com/accept_invite/a1b2c3d4\n' '\n' 'Thanks\n' ), 'subject': ''})) @pytest.mark.parametrize('markdown_function, expected_output', [ (notify_email_markdown, ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">' '<a style="word-wrap: break-word; color: #005ea5;" href="https://example.com">' 'https://example.com' '</a>' '</p>' '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">' 'Next paragraph' '</p>' )), (notify_plain_text_email_markdown, ( '\n' '\nhttps://example.com' '\n' '\nNext paragraph' )), ]) def test_preserves_whitespace_when_making_links( markdown_function, expected_output ): assert markdown_function( 'https://example.com\n' '\n' 'Next paragraph' ) == expected_output @pytest.mark.parametrize( "template_content,expected", [ ("gov.uk", u"gov.\u200Buk"), ("GOV.UK", u"GOV.\u200BUK"), ("Gov.uk", u"Gov.\u200Buk"), ("https://gov.uk", "https://gov.uk"), ("https://www.gov.uk", "https://www.gov.uk"), ("www.gov.uk", "www.gov.uk"), ("gov.uk/register-to-vote", "gov.uk/register-to-vote"), ("gov.uk?q=", "gov.uk?q=") ] ) def test_escaping_govuk_in_email_templates(template_content, expected): assert unlink_govuk_escaped(template_content) == expected assert expected in str(PlainTextEmailTemplate({'content': template_content, 'subject': ''})) assert expected in str(HTMLEmailTemplate({'content': template_content, 'subject': ''})) @pytest.mark.parametrize( "subject,expected", [ ("bonjour | hi", "bonjour | hi"), ("bonjour .", "bonjour."), ('double -- dash', 'double \u2013 dash'), ] ) def test_subject_is_cleaned_up(subject, expected): assert expected == HTMLEmailTemplate({'content': '', 'subject': subject}).subject @pytest.mark.parametrize( "prefix, body, expected", [ ("a", "b", "a: b"), (None, "b", "b"), ] ) def test_sms_message_adds_prefix(prefix, body, expected): template = SMSMessageTemplate({'content': body}) template.prefix = prefix template.sender = None assert str(template) == expected def test_sms_preview_adds_newlines(): template = SMSPreviewTemplate({'content': """ the quick brown fox """}) template.prefix = None template.sender = None assert '<br>' in str(template) @pytest.mark.parametrize( 'markdown_function, expected', ( [ notify_letter_preview_markdown, 'print("hello")' ], [ notify_email_markdown, 'print("hello")' ], [ notify_plain_text_email_markdown, 'print("hello")' ], ) ) def test_block_code(markdown_function, expected): assert markdown_function('```\nprint("hello")\n```') == expected @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, ( '<p>inset text</p>' ) ], [ notify_email_markdown, ( '<blockquote ' 'style="Margin: 0 0 20px 0; border-left: 10px solid #BFC1C3;' 'padding: 15px 0 0.1px 15px; font-size: 19px; line-height: 25px;' '">' '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">inset text</p>' '</blockquote>' ) ], [ notify_plain_text_email_markdown, ( '\n' '\ninset text' ), ], )) def test_block_quote(markdown_function, expected): assert markdown_function('^ inset text') == expected @pytest.mark.parametrize('heading', ( '# heading', '#heading', )) @pytest.mark.parametrize( 'markdown_function, expected', ( [ notify_letter_preview_markdown, '<h2>heading</h2>\n' ], [ notify_email_markdown, ( '<h2 style="Margin: 0 0 20px 0; padding: 0; font-size: 27px; ' 'line-height: 35px; font-weight: bold; color: #0B0C0C;">' 'heading' '</h2>' ) ], [ notify_plain_text_email_markdown, ( '\n' '\n' '\nheading' '\n-----------------------------------------------------------------' ), ], ) ) def test_level_1_header(markdown_function, heading, expected): assert markdown_function(heading) == expected @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, '<p>inset text</p>' ], [ notify_email_markdown, '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">inset text</p>' ], [ notify_plain_text_email_markdown, ( '\n' '\ninset text' ), ], )) def test_level_2_header(markdown_function, expected): assert markdown_function('## inset text') == (expected) @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, ( '<p>a</p>' '<div class="page-break">&nbsp;</div>' '<p>b</p>' ) ], [ notify_email_markdown, ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">a</p>' '<hr style="border: 0; height: 1px; background: #BFC1C3; Margin: 30px 0 30px 0;">' '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">b</p>' ) ], [ notify_plain_text_email_markdown, ( '\n' '\na' '\n' '\n=================================================================' '\n' '\nb' ), ], )) def test_hrule(markdown_function, expected): assert markdown_function('a\n\n***\n\nb') == expected assert markdown_function('a\n\n---\n\nb') == expected @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, ( '<ol>\n' '<li>one</li>\n' '<li>two</li>\n' '<li>three</li>\n' '</ol>\n' ) ], [ notify_email_markdown, ( '<table role="presentation" style="padding: 0 0 20px 0;">' '<tr>' '<td style="font-family: Helvetica, Arial, sans-serif;">' '<ol style="Margin: 0 0 0 20px; padding: 0; list-style-type: decimal;">' '<li style="Margin: 5px 0 5px; padding: 0 0 0 5px; font-size: 19px;' 'line-height: 25px; color: #0B0C0C;">one</li>' '<li style="Margin: 5px 0 5px; padding: 0 0 0 5px; font-size: 19px;' 'line-height: 25px; color: #0B0C0C;">two</li>' '<li style="Margin: 5px 0 5px; padding: 0 0 0 5px; font-size: 19px;' 'line-height: 25px; color: #0B0C0C;">three</li>' '</ol>' '</td>' '</tr>' '</table>' ) ], [ notify_plain_text_email_markdown, ( '\n' '\n1. one' '\n2. two' '\n3. three' ), ], )) def test_ordered_list(markdown_function, expected): assert markdown_function( '1. one\n' '2. two\n' '3. three\n' ) == expected assert markdown_function( '1.one\n' '2.two\n' '3.three\n' ) == expected @pytest.mark.parametrize('markdown', ( ( # no space '*one\n' '*two\n' '*three\n' ), ( # single space '* one\n' '* two\n' '* three\n' ), ( # two spaces '* one\n' '* two\n' '* three\n' ), ( # tab '* one\n' '* two\n' '* three\n' ), ( # dash as bullet '- one\n' '- two\n' '- three\n' ), pytest.param(( # plus as bullet '+ one\n' '+ two\n' '+ three\n' ), marks=pytest.mark.xfail(raises=AssertionError)), ( # bullet as bullet '• one\n' '• two\n' '• three\n' ), )) @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, ( '<ul>\n' '<li>one</li>\n' '<li>two</li>\n' '<li>three</li>\n' '</ul>\n' ) ], [ notify_email_markdown, ( '<table role="presentation" style="padding: 0 0 20px 0;">' '<tr>' '<td style="font-family: Helvetica, Arial, sans-serif;">' '<ul style="Margin: 0 0 0 20px; padding: 0; list-style-type: disc;">' '<li style="Margin: 5px 0 5px; padding: 0 0 0 5px; font-size: 19px;' 'line-height: 25px; color: #0B0C0C;">one</li>' '<li style="Margin: 5px 0 5px; padding: 0 0 0 5px; font-size: 19px;' 'line-height: 25px; color: #0B0C0C;">two</li>' '<li style="Margin: 5px 0 5px; padding: 0 0 0 5px; font-size: 19px;' 'line-height: 25px; color: #0B0C0C;">three</li>' '</ul>' '</td>' '</tr>' '</table>' ) ], [ notify_plain_text_email_markdown, ( '\n' '\n• one' '\n• two' '\n• three' ), ], )) def test_unordered_list(markdown, markdown_function, expected): assert markdown_function(markdown) == expected @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, '<p>+ one</p><p>+ two</p><p>+ three</p>', ], [ notify_email_markdown, ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">+ one</p>' '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">+ two</p>' '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">+ three</p>' ), ], [ notify_plain_text_email_markdown, ( '\n\n+ one' '\n\n+ two' '\n\n+ three' ), ], )) def test_pluses_dont_render_as_lists(markdown_function, expected): assert markdown_function( '+ one\n' '+ two\n' '+ three\n' ) == expected @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, ( '<p>' 'line one<br>' 'line two' '</p>' '<p>' 'new paragraph' '</p>' ) ], [ notify_email_markdown, ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">line one<br />' 'line two</p>' '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">new paragraph</p>' ) ], [ notify_plain_text_email_markdown, ( '\n' '\nline one' '\nline two' '\n' '\nnew paragraph' ), ], )) def test_paragraphs(markdown_function, expected): assert markdown_function( 'line one\n' 'line two\n' '\n' 'new paragraph' ) == expected @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, ( '<p>before</p>' '<p>after</p>' ) ], [ notify_email_markdown, ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">before</p>' '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">after</p>' ) ], [ notify_plain_text_email_markdown, ( '\n' '\nbefore' '\n' '\nafter' ), ], )) def test_multiple_newlines_get_truncated(markdown_function, expected): assert markdown_function( 'before\n\n\n\n\n\nafter' ) == expected @pytest.mark.parametrize('markdown_function', ( notify_letter_preview_markdown, notify_email_markdown, notify_plain_text_email_markdown )) def test_table(markdown_function): assert markdown_function( 'col | col\n' '----|----\n' 'val | val\n' ) == ( '' ) @pytest.mark.parametrize('markdown_function, link, expected', ( [ notify_letter_preview_markdown, 'http://example.com', '<p><strong>example.com</strong></p>' ], [ notify_email_markdown, 'http://example.com', ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">' '<a style="word-wrap: break-word; color: #005ea5;" href="http://example.com">http://example.com</a>' '</p>' ) ], [ notify_email_markdown, """https://example.com"onclick="alert('hi')""", ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">' '<a style="word-wrap: break-word; color: #005ea5;" href="https://example.com%22onclick=%22alert%28%27hi">' 'https://example.com"onclick="alert(\'hi' '</a>\')' '</p>' ) ], [ notify_plain_text_email_markdown, 'http://example.com', ( '\n' '\nhttp://example.com' ), ], )) def test_autolink(markdown_function, link, expected): assert markdown_function(link) == expected @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, '<p>variable called thing</p>' ], [ notify_email_markdown, '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">variable called thing</p>' ], [ notify_plain_text_email_markdown, '\n\nvariable called thing', ], )) def test_codespan(markdown_function, expected): assert markdown_function( 'variable called `thing`' ) == expected @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, '<p>something important</p>' ], [ notify_email_markdown, '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">something **important**</p>' ], [ notify_plain_text_email_markdown, '\n\nsomething **important**', ], )) def test_double_emphasis(markdown_function, expected): assert markdown_function( 'something **important**' ) == expected @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, '<p>something important</p>' ], [ notify_email_markdown, '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">something *important*</p>' ], [ notify_plain_text_email_markdown, '\n\nsomething *important*', ], )) def test_emphasis(markdown_function, expected): assert markdown_function( 'something *important*' ) == expected @pytest.mark.parametrize('markdown_function, expected', ( [ notify_email_markdown, '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">foo ****** bar</p>' ], [ notify_plain_text_email_markdown, '\n\nfoo ****** bar', ], )) def test_nested_emphasis(markdown_function, expected): assert markdown_function( 'foo ****** bar' ) == expected @pytest.mark.parametrize('markdown_function', ( notify_letter_preview_markdown, notify_email_markdown, notify_plain_text_email_markdown )) def test_image(markdown_function): assert markdown_function( '![alt text](http://example.com/image.png)' ) == ( '' ) @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, ( '<p>Example: <strong>example.com</strong></p>' ) ], [ notify_email_markdown, ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; ' 'color: #0B0C0C;">' '<a style="word-wrap: break-word; color: #005ea5;" href="http://example.com">Example</a>' '</p>' ) ], [ notify_plain_text_email_markdown, ( '\n' '\nExample: http://example.com' ), ], )) def test_link(markdown_function, expected): assert markdown_function( '[Example](http://example.com)' ) == expected @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, ( '<p>Example: <strong>example.com</strong></p>' ) ], [ notify_email_markdown, ( '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; ' 'color: #0B0C0C;">' '<a style="word-wrap: break-word; color: #005ea5;" href="http://example.com" title="An example URL">' 'Example' '</a>' '</p>' ) ], [ notify_plain_text_email_markdown, ( '\n' '\nExample (An example URL): http://example.com' ), ], )) def test_link_with_title(markdown_function, expected): assert markdown_function( '[Example](http://example.com "An example URL")' ) == expected @pytest.mark.parametrize('markdown_function, expected', ( [ notify_letter_preview_markdown, '<p>Strike</p>' ], [ notify_email_markdown, '<p style="Margin: 0 0 20px 0; font-size: 11pt; line-height: 25px; color: #0B0C0C;">Strike</p>' ], [ notify_plain_text_email_markdown, '\n\nStrike' ], )) def test_strikethrough(markdown_function, expected): assert markdown_function('~~Strike~~') == expected def test_footnotes(): # Can’t work out how to test this pass def test_sms_encode(): assert sms_encode('aàá…') == 'aàa...' @pytest.mark.parametrize('items, kwargs, expected_output', [ ([1], {}, '‘1’'), ([1, 2], {}, '‘1’ and ‘2’'), ([1, 2, 3], {}, '‘1’, ‘2’ and ‘3’'), ([1, 2, 3], {'prefix': 'foo', 'prefix_plural': 'bar'}, 'bar ‘1’, ‘2’ and ‘3’'), ([1], {'prefix': 'foo', 'prefix_plural': 'bar'}, 'foo ‘1’'), ([1, 2, 3], {'before_each': 'a', 'after_each': 'b'}, 'a1b, a2b and a3b'), ([1, 2, 3], {'conjunction': 'foo'}, '‘1’, ‘2’ foo ‘3’'), (['&'], {'before_each': '<i>', 'after_each': '</i>'}, '<i>&amp;</i>'), ([1, 2, 3], {'before_each': '<i>', 'after_each': '</i>'}, '<i>1</i>, <i>2</i> and <i>3</i>'), ]) def test_formatted_list(items, kwargs, expected_output): assert formatted_list(items, **kwargs) == expected_output def test_formatted_list_returns_markup(): assert isinstance(formatted_list([0]), Markup) def test_removing_dvla_markup(): assert strip_dvla_markup( ( 'some words & some more <words>' '<cr><h1><h2><p><normal><op><np><bul><tab>' '<CR><H1><H2><P><NORMAL><OP><NP><BUL><TAB>' '<tAb>' ) ) == 'some words & some more <words>' def test_removing_pipes(): assert strip_pipes('|a|b|c') == 'abc' def test_bleach_doesnt_try_to_make_valid_html_before_cleaning(): assert escape_html( "<to cancel daily cat facts reply 'cancel'>" ) == ( "&lt;to cancel daily cat facts reply 'cancel'&gt;" ) @pytest.mark.parametrize('dirty, clean', [ ( 'Hello ((name)) ,\n\nThis is a message', 'Hello ((name)),\n\nThis is a message' ), ( 'Hello Jo ,\n\nThis is a message', 'Hello Jo,\n\nThis is a message' ), ( '\n \t , word', '\n, word', ), ( 'bonjour | hi', 'bonjour | hi', ), ]) def test_removing_whitespace_before_punctuation(dirty, clean): assert remove_whitespace_before_punctuation(dirty) == clean @pytest.mark.parametrize('dirty, clean', [ ( 'Hello ((name)) .\n\nThis is a message', 'Hello ((name)).\n\nThis is a message' ), ( 'Hello Jo .\n\nThis is a message', 'Hello Jo.\n\nThis is a message' ), ( '\n \t . word', '\n. word', ), ]) def test_removing_whitespace_before_full_stops(dirty, clean): assert remove_whitespace_before_punctuation(dirty) == clean @pytest.mark.parametrize('dumb, smart', [ ( """And I said, "what about breakfast at Tiffany's"?""", """And I said, “what about breakfast at Tiffany’s”?""", ), ( """ <a href="http://example.com?q='foo'">http://example.com?q='foo'</a> """, """ <a href="http://example.com?q='foo'">http://example.com?q='foo'</a> """, ), ]) def test_smart_quotes(dumb, smart): assert make_quotes_smart(dumb) == smart @pytest.mark.parametrize('nasty, nice', [ ( ( 'The en dash - always with spaces in running text when, as ' 'discussed in this section, indicating a parenthesis or ' 'pause - and the spaced em dash both have a certain ' 'technical advantage over the unspaced em dash. ' ), ( 'The en dash \u2013 always with spaces in running text when, as ' 'discussed in this section, indicating a parenthesis or ' 'pause \u2013 and the spaced em dash both have a certain ' 'technical advantage over the unspaced em dash. ' ), ), ( 'double -- dash', 'double \u2013 dash', ), ( 'triple --- dash', 'triple \u2013 dash', ), ( 'quadruple ---- dash', 'quadruple ---- dash', ), ( 'em — dash', 'em – dash', ), ( 'already\u0020–\u0020correct', # \u0020 is a normal space character 'already\u0020–\u0020correct', ), ( '2004-2008', '2004-2008', # no replacement ), ( 'bonjour | hi', 'bonjour | hi', ), ]) def test_en_dashes(nasty, nice): assert replace_hyphens_with_en_dashes(nasty) == nice def test_unicode_dash_lookup(): en_dash_replacement_sequence = '\u0020\u2013' hyphen = '-' en_dash = '–' space = ' ' non_breaking_space = ' ' assert en_dash_replacement_sequence == space + en_dash assert non_breaking_space not in en_dash_replacement_sequence assert hyphen not in en_dash_replacement_sequence @pytest.mark.parametrize('markup, expected_fixed', [ ( 'a', 'a', ), ( 'before<p><cr><p><cr>after', 'before<p><cr>after', ), ( 'before<cr><cr><np>after', 'before<cr><np>after', ), ( 'before{}<np>after'.format('<cr>' * 4), 'before{}<np>after'.format('<cr>' * 3), ), ]) def test_tweaking_dvla_list_markup(markup, expected_fixed): assert tweak_dvla_list_markup(markup) == expected_fixed def test_make_list_from_linebreaks(): assert nl2li( 'a\n' 'b\n' 'c\n' ) == ( '<ul>' '<li>a</li>' '<li>b</li>' '<li>c</li>' '</ul>' ) @pytest.mark.parametrize('value', [ 'bar', ' bar ', """ \t bar """, ' \u180E\u200B \u200C bar \u200D \u2060\uFEFF ', ]) def test_strip_whitespace(value): assert strip_whitespace(value) == 'bar' @pytest.mark.parametrize('value', [ 'notifications-email', ' \tnotifications-email \x0c ', '\rn\u200Coti\u200Dfi\u200Bcati\u2060ons-\u180Eemai\uFEFFl\uFEFF', ]) def test_strip_and_remove_obscure_whitespace(value): assert strip_and_remove_obscure_whitespace(value) == 'notifications-email' def test_strip_and_remove_obscure_whitespace_only_removes_normal_whitespace_from_ends(): sentence = ' words \n over multiple lines with \ttabs\t ' assert strip_and_remove_obscure_whitespace(sentence) == 'words \n over multiple lines with \ttabs' def test_remove_smart_quotes_from_email_addresses(): assert remove_smart_quotes_from_email_addresses(""" line one’s quote first.o’<EMAIL> is someone’s email address line ‘three’ """) == (""" line one’s quote first.o'<EMAIL> is someone’s email address line ‘three’ """) def test_strip_unsupported_characters(): assert strip_unsupported_characters("line one\u2028line two") == ("line oneline two") def test_normalise_whitespace(): assert normalise_whitespace('\u200C Your tax is\ndue\n\n') == 'Your tax is due'
2.453125
2
ProgramFlow/functions/banner.py
kumarvgit/python3
0
1086
<reponame>kumarvgit/python3 def banner_text(text): screen_width = 80 if len(text) > screen_width - 4: print("EEK!!") print("THE TEXT IS TOO LONG TO FIT IN THE SPECIFIED WIDTH") if text == "*": print("*" * screen_width) else: centred_text = text.center(screen_width - 4) output_string = "**{0}**".format(centred_text) print(output_string) banner_text("*") banner_text("Always look on the bright side of life...") banner_text("If life seems jolly rotten,") banner_text("There's something you've forgotten!") banner_text("And that's to laugh and smile and dance and sing,") banner_text(" ") banner_text("When you're feeling in the dumps,") banner_text("Don't be silly chumps,") banner_text("Just purse your lips and whistle - that's the thing!") banner_text("And... always look on the bright side of life...") banner_text("*") result = banner_text("Nothing is returned") print(result) numbers = [4, 2, 7, 5, 8, 3, 9, 6, 1] print(numbers.sort())
3.6875
4
Adafruit_BluefruitLE/interfaces/__init__.py
acoomans/Adafruit_Python_BluefruitLE
415
1087
<reponame>acoomans/Adafruit_Python_BluefruitLE from .provider import Provider from .adapter import Adapter from .device import Device from .gatt import GattService, GattCharacteristic, GattDescriptor
1.234375
1
axju/generic/__init__.py
axju/axju
0
1088
from axju.generic.basic import BasicWorker from axju.generic.execution import ExecutionWorker from axju.generic.template import TemplateWorker
1.132813
1
objectstoreSiteMover.py
nikmagini/pilot
13
1089
<filename>objectstoreSiteMover.py<gh_stars>10-100 #!/usr/bin/env python # Copyright European Organization for Nuclear Research (CERN) # # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Authors: # - <NAME>, <<EMAIL>>, 2014 # objectstoreSiteMover.py import os from configSiteMover import config_sm import SiteMover from xrootdObjectstoreSiteMover import xrootdObjectstoreSiteMover from S3ObjectstoreSiteMover import S3ObjectstoreSiteMover class objectstoreSiteMover(SiteMover.SiteMover): """ ObjectstoreSiteMover It uses the url to decide which ObjectstoreSiteMover implementation to be used. """ copyCommand = "objectstore" checksum_command = "adler32" def __init__(self, setup_path='', useTimerCommand=True, *args, **kwrds): self._setup = setup_path self._useTimerCommand = useTimerCommand def get_data(self, gpfn, lfn, path, fsize=0, fchecksum=0, guid=0, **pdict): gpfn = gpfn.replace("s3+rucio", "s3") if gpfn.startswith("root:"): sitemover = xrootdObjectstoreSiteMover(self.getSetup()) return sitemover.get_data(gpfn, lfn, path, fsize, fchecksum, guid, **pdict) if gpfn.startswith("s3:"): sitemover = S3ObjectstoreSiteMover(self.getSetup(), self._useTimerCommand) return sitemover.get_data(gpfn, lfn, path, fsize, fchecksum, guid, **pdict) return -1, "No objectstore sitemover found for this scheme(%s)" % gpfn def put_data(self, source, destination, fsize=0, fchecksum=0, **pdict): # Get input parameters from pdict lfn = pdict.get('lfn', '') logPath = pdict.get('logPath', '') if logPath != "": surl = logPath else: surl = os.path.join(destination, lfn) surl = surl.replace("s3+rucio", "s3") if surl.startswith("root:"): sitemover = xrootdObjectstoreSiteMover(self.getSetup()) return sitemover. put_data(source, destination, fsize, fchecksum, **pdict) if surl.startswith("s3:"): sitemover = S3ObjectstoreSiteMover(self.getSetup(), self._useTimerCommand) return sitemover. put_data(source, surl, fsize, fchecksum, **pdict) return -1, "No objectstore sitemover found for this scheme(%s)" % destination, destination, fsize, fchecksum, config_sm.ARCH_DEFAULT if __name__ == '__main__': os.environ['PilotHomeDir'] = os.getcwd() from SiteInformation import SiteInformation s1 = SiteInformation() #s1.getObjectstoresField("os_access_key", "eventservice", queuename='BNL_EC2W2_MCORE') f = objectstoreSiteMover() gpfn = "nonsens_gpfn" lfn = "AOD.310713._000004.pool.root.1" path = os.getcwd() fsize = "4261010441" fchecksum = "9145af38" dsname = "data11_7TeV.00177986.physics_Egamma.merge.AOD.r2276_p516_p523_tid310713_00" report = {} #print f.getGlobalFilePaths(dsname) #print f.findGlobalFilePath(lfn, dsname) #print f.getLocalROOTSetup() #path = "root://atlas-objectstore.cern.ch//atlas/eventservice/2181626927" # + your .root filename" """ source = "/bin/hostname" dest = "root://eosatlas.cern.ch//eos/atlas/unpledged/group-wisc/users/wguan/" lfn = "NTUP_PHOTON.01255150._000001.root.1" localSize = 17848 localChecksum = "89b93830" print f.put_data(source, dest, fsize=localSize, fchecksum=localChecksum, prodSourceLabel='ptest', experiment='ATLAS', report =report, lfn=lfn, guid='aa8ee1ae-54a5-468b-a0a0-41cf17477ffc') gpfn = "root://eosatlas.cern.ch//eos/atlas/unpledged/group-wisc/users/wguan/NTUP_PHOTON.01255150._000001.root.1" lfn = "NTUP_PHOTON.01255150._000001.root.1" tmpDir = "/tmp/" localSize = 17848 localChecksum = "89b93830" print f.get_data(gpfn, lfn, tmpDir, fsize=localSize, fchecksum=localChecksum, experiment='ATLAS', report =report, guid='aa8ee1ae-54a5-468b-a0a0-41cf17477ffc') """ # test S3 object store source = "/bin/hostname" #dest = "s3://ceph003.usatlas.bnl.gov:8443//wguan_bucket/dir1/dir2/NTUP_PHOTON.01255150._000001.root.1" dest = "s3://s3-us-west-2.amazonaws.com:80//s3-atlasdatadisk-west2-racf/dir1/" lfn = "NTUP_PHOTON.01255150._000001.root.1" localSize = None localChecksum = None print f.put_data(source, dest, fsize=localSize, fchecksum=localChecksum, prodSourceLabel='ptest', experiment='ATLAS', report =report, lfn=lfn, guid='aa8ee1ae-54a5-468b-a0a0-41cf17477ffc', jobId=2730987843, jobsetID=2728044425,pandaProxySecretKey='') gpfn = "s3://ceph003.usatlas.bnl.gov:8443//wguan_bucket/dir1/dir2/NTUP_PHOTON.01255150._000001.root.1" gpfn = "s3://s3-us-west-2.amazonaws.com:80//s3-atlasdatadisk-west2-racf/dir1/NTUP_PHOTON.01255150._000001.root.1" lfn = "NTUP_PHOTON.01255150._000001.root.1" tmpDir = "/tmp/" localSize = None localChecksum = None print f.get_data(gpfn, lfn, tmpDir, fsize=localSize, fchecksum=localChecksum, experiment='ATLAS', report =report, guid='aa8ee1ae-54a5-468b-a0a0-41cf17477ffc', jobId=2730987843, jobsetID=2728044425,pandaProxySecretKey='<KEY>')
1.984375
2
codigos_videos/Exemplo_2.py
Miguel-mmf/Biblioteca_Dash_em-Python
1
1090
<filename>codigos_videos/Exemplo_2.py # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Esse arquivo possui algumas modificações em relação ao arquivo apresentado no vídeo do YouTube # Não deixe de assistir o vídeo e estudar pela documentação ofical Dash # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # importando as bibliotecas necessárias import dash import dash_core_components as dcc import dash_html_components as html # importando as funções que auxiliam no funcionamento das callbacks do subpacote dependencies do pacote dash from dash.dependencies import Input, Output # importando o módulo graph_objects da biblioteca plotly import plotly.graph_objects as go # adicionando um estilo externo através do link abaixo # esse link é o recomendado pela documentação da biblioteca Dash e ao acessar esse link no seu navegador, # você perceberá que ele possui a estrutura de um arquivo CSS external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] # criando a aplicação por meio da função Dash do pacote dash e atribuindo a variável app app = dash.Dash( __name__, external_stylesheets=external_stylesheets ) # criando uma função para gerar um gráfico com a biblioteca plotly.graph_objects def gera_grafico(tipo): # criando uma figura # caso você faça print(fig), um dicionário será apresentado uma vez que as figuras podem ser representadas dessa forma, necessitando de módulos da biblioteca plotly para trabalhar com as informações fig = go.Figure() # https://plotly.com/python/creating-and-updating-figures/ # adicionando um traço a figura fig.add_trace( go.Scatter( x=[0,1,2,3,4,5,6], y=[0,1,2,3,4,5,6], mode=tipo, name='Reta', ) ) fig.add_trace( go.Scatter( x=[0,1,2,3,4,5,6], y=[0,1,4,9,16,25,36], mode=tipo, name='Parábola', ) ) # adicionando um título ao gráfico fig.update_layout(title='Gráfico Exemplo') # variável retornada pela função gera_grafico(tipo) return fig # criando um layout para a variável app # adicionando ao layout um componente html.Div que irá conter os demais componentes que dão forma app.layout = html.Div([ # inserindo um componente da biblioteca dash HTML components como título/cabeçalho do layout html.H2( ['Painel de Visualização de Gráficos'], # o parâmetro style define estilos css para o componente style={ 'textAlign':'center', # texto alinhado 'font-weight':'bold' # texto em negrito } ), # adicionando uma linha horizontal no layout html.Hr(), # criando abas pai dentro do layout dcc.Tabs( # identidade/nome do componente id='tabs', # criando as abas filhas dentro do parâmetro children da função Tabs() children=[ dcc.Tab(label='Gráfico de linha',value='tab-1'), dcc.Tab(label='Gráfico de Barra',value='tab-2'), dcc.Tab(label='Gráfico de Linha e Pontos',value='tab-3') ] ), # onde será apresentado o conteúdo das abas logo após a callback ser ativada html.Div(id='tabs-content'), html.Hr(), ]) # Callback # estruturando a callback com as entradas (input) e saídas (output) @app.callback( # Output(component_id,component_property) Output('tabs-content','children'), [ # Input(component_id,component_property) Input('tabs','value') ] ) # função que será chamada pela callback def update_tab(tab): # quando a aba com valor igual a 'tab-1' for selecionada, a propriedade children do componente 'tabs-content' # receberá o gráfico de linha retornado abaixo pela função gera_gráfico(tipo='lines') if tab == 'tab-1': return html.Div([ dcc.Graph(figure = gera_grafico('lines')) ]) # quando a aba com valor igual a 'tab-2' for selecionada, a propriedade children do componente 'tabs-content' # receberá o gráfico de barras construído e retornado abaixo elif tab == 'tab-2': fig_bar = go.Figure() fig_bar.add_trace( go.Bar( x=[0,1,2,3,4,5,6], y=[0,1,2,3,4,5,6], ) ) fig_bar.add_trace( go.Bar( x=[0,1,2,3,4,5,6], y=[0,1,4,9,16,25,36], ) ) fig_bar.update_layout(title='Gráfico em Barras Exemplo') return html.Div([ dcc.Graph(figure = fig_bar) ]) # quando a aba com valor igual a 'tab-3' for selecionada, a propriedade children do componente 'tabs-content' # receberá o gráfico de linha retornado abaixo pela função gera_gráfico(tipo='lines+markers') elif tab == 'tab-3': return html.Div([ dcc.Graph(figure = gera_grafico('lines+markers')) ]) # caso nenhuma das condições acima sejam aceitas, significa que existe um erro, e assim, retornamos a mensagem de erro else: return html.Div(['Erro!']) # servindo a aplicação em dash como versão para teste if __name__ == "__main__": app.run_server(debug=True)
2.359375
2
Lab 2/javaccflab/formatter.py
tochanenko/MetaProgramming
0
1091
import re import datetime from javaccflab.lexer import parse from javaccflab.java_token import TokenType, Token, update_token_value class Formatter: def __init__(self, files): self.__files = files self.__file = None self.__tokens = [] self.__to_fix = dict() def process(self): tokens = [] for file in self.__files: tokens.append(parse(open(file, 'r').read())) i = 0 while i < len(tokens): self.__tokens = tokens[i] self.__file = self.__files[i] self.__find_to_fix() tokens[i] = self.__tokens i += 1 i = 0 while i < len(tokens): self.__tokens = tokens[i] self.__file = self.__files[i] self.__fix() self.__fix_comments() tokens[i] = self.__tokens i += 1 return tokens def __find_to_fix(self): i = 0 while i < len(self.__tokens): token = self.__tokens[i] if token.get_value() == 'package': i = self.__fix_package(i) elif token.get_value() in ('class', 'interface') and self.__tokens[i - 1].get_value() != '.': i = self.__skip_ws_tokens(i + 1) if not Formatter.is_camel_upper_case(self.__tokens[i].get_value()): self.__to_fix[self.__tokens[i].get_value()] = Formatter.to_camel_upper_case( self.__tokens[i].get_value()) i = self.__fix_class_body(i, self.__tokens[i].get_value()) i += 1 def __fix_package(self, pos): pos = self.__skip_ws_tokens(pos) while self.__tokens[pos].get_value() != ';': if self.__tokens[pos].get_type() == TokenType.IDENTIFIER and not Formatter.is_lower_case( self.__tokens[pos].get_value()): self.__to_fix[self.__tokens[pos].get_value()] = Formatter.to_lower_case( (self.__tokens[pos].get_value())) pos += 1 return pos def __fix_class_body(self, pos, class_name): while self.__tokens[pos].get_value() != '{': pos += 1 count = 1 pos += 1 while count != 0: if self.__tokens[pos].get_value() == '{': count += 1 elif self.__tokens[pos].get_value() == '}': count -= 1 elif self.__tokens[pos].get_value() == 'static': i = self.__skip_ws_tokens(pos + 1) if self.__tokens[i].get_value() == '{': pos = i + 1 count += 1 continue elif self.__tokens[pos].get_type() in (TokenType.IDENTIFIER, TokenType.KEYWORD): if self.__is_parameter(pos): parameters, i = self.__get_field_names(pos) if self.__is_final(pos): for parameter in parameters: if not Formatter.is_snake_upper_case(parameter): self.__to_fix[parameter] = Formatter.to_snake_upper_case(parameter) else: for parameter in parameters: if not Formatter.is_camel_lower_case(parameter): self.__to_fix[parameter] = Formatter.to_camel_lower_case(parameter) pos = i else: self.__fix_method_name(pos, class_name) parameters = self.__get_method_parameters(pos) pos = self.__fix_method_body(pos, parameters) pos += 1 return pos def __fix_method_name(self, i, class_name): while self.__tokens[i].get_value() not in ('(', ';'): i += 1 i -= 1 while self.__tokens[i].get_type() == TokenType.WHITESPACE: i -= 1 if self.__tokens[i].get_value() != class_name and not Formatter.is_snake_lower_case( self.__tokens[i].get_value()): self.__to_fix[self.__tokens[i].get_value()] = Formatter.to_snake_lower_case(self.__tokens[i].get_value()) def __get_method_parameters(self, i): parameters = dict() while self.__tokens[i].get_value() != '(': i += 1 while self.__tokens[i].get_value() != ')': if self.__tokens[i + 1].get_value() in (')', ','): pos = i while self.__tokens[pos].get_type() == TokenType.WHITESPACE: pos -= 1 if not Formatter.is_camel_lower_case(self.__tokens[pos].get_value()): fixed_value = Formatter.to_camel_lower_case(self.__tokens[pos].get_value()) parameters[self.__tokens[pos].get_value()] = fixed_value update_token_value(self.__file, self.__tokens[pos], fixed_value) i += 1 return parameters def __fix_method_body(self, i, method_parameters): params = dict() while self.__tokens[i].get_value() not in ('{', ';'): if self.__tokens[i].get_value() in method_parameters.keys(): update_token_value(self.__file, self.__tokens[i], method_parameters[self.__tokens[i].get_value()]) i += 1 if self.__tokens[i].get_value() == ';': return i + 1 brace_count = 1 i += 1 while brace_count != 0: if self.__tokens[i].get_value() == '{': brace_count += 1 elif self.__tokens[i].get_value() == '}': brace_count -= 1 elif self.__tokens[i].get_value() in ('=', ';'): naming_pos = i - 1 while self.__tokens[naming_pos].get_type() == TokenType.WHITESPACE: naming_pos -= 1 if self.__tokens[naming_pos].get_type() == TokenType.IDENTIFIER: type_pos = naming_pos - 1 while self.__tokens[type_pos].get_type() == TokenType.WHITESPACE: type_pos -= 1 if (self.__tokens[type_pos].get_type() in (TokenType.IDENTIFIER, TokenType.KEYWORD) and \ self.__tokens[type_pos].get_value() not in ('class', 'identifier')) or self.__tokens[ type_pos].get_value() == ',': if not Formatter.is_camel_lower_case(self.__tokens[naming_pos].get_value()): fixed_value = Formatter.to_camel_lower_case(self.__tokens[naming_pos].get_value()) params[self.__tokens[naming_pos].get_value()] = fixed_value update_token_value(self.__file, self.__tokens[naming_pos], fixed_value) elif self.__tokens[i].get_type() == TokenType.IDENTIFIER and self.__tokens[ i].get_value() in params.keys(): update_token_value(self.__file, self.__tokens[i], params[self.__tokens[i].get_value()]) elif self.__tokens[i].get_type() == TokenType.IDENTIFIER and self.__tokens[ i].get_value() in method_parameters.keys(): update_token_value(self.__file, self.__tokens[i], method_parameters[self.__tokens[i].get_value()]) i += 1 return i def __get_field_names(self, i): params = [] while self.__tokens[i].get_value() != ';': if self.__tokens[i + 1].get_value() in (';', '=', ','): pos = i while self.__tokens[pos].get_type() == TokenType.WHITESPACE: pos -= 1 field_name = self.__tokens[pos].get_value() is_value = False if self.__tokens[i + 1].get_value() in (';', ','): while pos > 0 and self.__tokens[pos].get_value() not in (';', '}'): if self.__tokens[pos].get_value() == '=': is_value = True pos -= 1 if not is_value: params.append(field_name) i += 1 end = i return params, end def __is_final(self, i): while self.__tokens[i].get_value() not in (';', '=', '('): if self.__tokens[i].get_value() == 'final': return True i += 1 return False def __is_parameter(self, pos): while self.__tokens[pos].get_value() != ';' and pos < len(self.__tokens): if self.__tokens[pos].get_value() == '=': return True elif self.__tokens[pos].get_value() in ('class', 'interface', '(', ')'): return False pos += 1 return True def __fix(self): for token in self.__tokens: if token.get_value() in self.__to_fix and not token.is_fixed(): update_token_value(self.__file, token, self.__to_fix[token.get_value()]) def __fix_comments(self): self.__add_start_comment() i = 0 while i < len(self.__tokens): if self.__tokens[i].get_value() in ('class', 'interface'): i = self.__fix_class_comments(i) i += 1 i += 1 # Fix start comment def __add_start_comment(self): if not self.__is_start_comment_exists(): comment_token = Token(None, TokenType.COMMENT) comment_string = f'/*\n' \ f' * {self.__find_class_name()}\n' \ f' *\n' \ f' * {datetime.date.today().strftime("%B %d, %Y")}\n' \ f' */' update_token_value(self.__file, comment_token, comment_string) self.__tokens.insert(0, comment_token) self.__tokens.insert(1, Token('\n', TokenType.WHITESPACE)) self.__tokens.insert(1, Token('\n', TokenType.WHITESPACE)) def __is_start_comment_exists(self): i = self.__skip_ws_tokens(0) return self.__tokens[i].get_type() == TokenType.COMMENT def __find_class_name(self, i=0): while self.__tokens[i].get_value() not in ('class', 'interface') and self.__tokens[i - 1].get_value() != '.': i += 1 i = self.__skip_ws_tokens(i + 1) return self.__tokens[i].get_value() # Fix class comment def __fix_class_comments(self, pos): comment_token = self.__find_doc_comment_before(pos) if comment_token is None: comment_token = Token(None, TokenType.COMMENT) comment_string = f'/**\n' \ f' * Implementation of {self.__find_class_name(pos)}\n' \ f' */' update_token_value(self.__file, comment_token, comment_string) insert_pos = self.__find_token_before(pos, '\n') self.__tokens.insert(insert_pos, Token('\n', TokenType.WHITESPACE)) self.__tokens.insert(insert_pos + 1, comment_token) else: self.__fix_comment_links(comment_token) return self.__fix_class_body_comments(pos) # Fix comments for methods and fields def __fix_class_body_comments(self, pos): while self.__tokens[pos].get_value() != '{': pos += 1 count = 1 pos += 1 while count != 0: if self.__tokens[pos].get_value() == '{': count += 1 elif self.__tokens[pos].get_value() == '}': count -= 1 elif self.__tokens[pos].get_value() == 'static': i = self.__skip_ws_tokens(pos + 1) if self.__tokens[i].get_value() == '{': pos = i + 1 count += 1 continue elif self.__tokens[pos].get_type() in (TokenType.IDENTIFIER, TokenType.KEYWORD) and self.__tokens[ pos + 1].get_value() != '.' and self.__tokens[pos].get_value() not in ('class', 'interface'): if self.__is_parameter(pos): pos = self.__fix_field_comment(pos) else: pos = self.__fix_method_comment(pos) pos += 1 return pos def __fix_field_comment(self, pos): comment_token = self.__find_doc_comment_before(pos) indent = self.__get_indent(pos) if comment_token is None: field_names = ', '.join(self.__get_field_names(pos)[0]) visibility = self.__find_visibility(pos) comment_token = Token(None, TokenType.COMMENT) comment_string = comment_string = f'{indent}/**\n' \ f'{indent} * The {visibility} {field_names} {"constant" if self.__is_final(pos) else "variable"}{"s" if len(field_names) > 0 else ""}\n' \ f'{indent} */' update_token_value(self.__file, comment_token, comment_string) insert_pos = self.__find_token_before(pos, '\n') self.__tokens.insert(insert_pos, Token('\n', TokenType.WHITESPACE)) self.__tokens.insert(insert_pos + 1, comment_token) else: self.__fix_comment_links(comment_token) return self.__find_token_after(pos, ';') def __find_visibility(self, pos): pos = self.__find_token_before(pos, '\n') while self.__tokens[pos].get_value() not in ('=', ';', '('): if self.__tokens[pos].get_value() in ('private', 'public', 'protected'): return self.__tokens[pos].get_value() pos += 1 return 'package-private' def __fix_method_comment(self, pos): comment_token = self.__find_doc_comment_before(pos) indent = self.__get_indent(pos) all_params = [] if comment_token is None: params = self.__get_parameter_list(pos) params.extend(self.__get_type_parameter_list(pos)) if len(params) > 0: all_params.append("\n".join([f"{indent} * @param {param}" for param in params])) throws = self.__get_throws(pos) if len(throws) > 0: all_params.append("\n".join([f"{indent} * @throws {param}" for param in throws])) return_type = self.__get_return_type(pos) if len(return_type) > 0: all_params.append(f"{indent} * @return {self.__get_return_type(pos)}") comment_token = Token(None, TokenType.COMMENT) comment_string = f'{indent}/**\n' + \ '\n'.join(all_params) + \ ('' if len(params) <= 0 else ' ') + \ f'\n{indent} */' update_token_value(self.__file, comment_token, comment_string) insert_pos = self.__find_token_before(pos, '\n') self.__tokens.insert(insert_pos, Token('\n', TokenType.WHITESPACE)) self.__tokens.insert(insert_pos + 1, comment_token) else: self.__fix_comment_links(comment_token) params_list = self.__get_parameter_list(pos) params_list.extend(self.__get_type_parameter_list(pos)) throws_list = self.__get_throws(pos) return_type_value = self.__get_return_type(pos) params, throws, return_type = self.__fix_comment_params(comment_token) comment_string = comment_token.get_value() append_string = '' i = 0 if len(params) < len(params_list): append_string += "\n" + "\n".join( [f"{indent} * @param {param}" for param in Formatter.get_missing(params, params_list)]) i = comment_string.rfind('@param') if i != -1: i = comment_string.find('\n', i) if comment_string.find('\n', i) != -1 else comment_string.find('*', i) - 1 comment_string = comment_string[:i] + append_string + comment_string[i:] append_string = '' if len(throws) < len(throws_list): append_string += "\n" + "\n".join( [f"{indent} * @throws {param}" for param in Formatter.get_missing(throws, throws_list)]) i = comment_string.rfind('@throws') if i != -1: i = comment_string.find('\n', i) if comment_string.find('\n', i) != -1 else comment_string.find('*', i) - 1 comment_string = comment_string[:i] + append_string + comment_string[i:] append_string = '' i = comment_string.find('\n', i) if len(return_type) == '': append_string += "\n" + f"\n{indent} * @return {return_type_value}" else: i = comment_string.rfind('@return') while comment_string[i] != '\n': i -= 1 comment_string = comment_string[:i] + append_string + comment_string[i:] if comment_string != comment_token.get_value(): update_token_value(self.__file, comment_token, comment_string) return self.__skip_method(pos) @staticmethod def get_missing(before, after): missing_params = [] for value in after: if value not in before: missing_params.append(value) return missing_params def __get_parameter_list(self, pos): parameters = [] while self.__tokens[pos].get_value() != '(': pos += 1 while self.__tokens[pos].get_value() != ')': if self.__tokens[pos + 1].get_value() in (')', ','): i = pos while self.__tokens[i].get_type() == TokenType.WHITESPACE: i -= 1 parameters.append(self.__tokens[i].get_value()) pos += 1 return parameters def __get_type_parameter_list(self, pos): parameters = [] while self.__tokens[pos].get_value() != '<': if self.__tokens[pos].get_value() == '(': return parameters pos += 1 i = pos - 1 while self.__tokens[i].get_type() == TokenType.WHITESPACE: i -= 1 if self.__tokens[i].get_type() != TokenType.KEYWORD or self.__tokens[i].get_value() not in ('}', ';'): return parameters while self.__tokens[pos].get_value() != '>': if self.__tokens[pos - 1].get_value() in ('<', ','): i = pos while self.__tokens[i].get_type() == TokenType.WHITESPACE: i += 1 parameters.append(self.__tokens[i].get_value()) pos += 1 return parameters def __get_throws(self, pos): throws = [] is_throws = False while self.__tokens[pos].get_value() not in ('{', ';'): if self.__tokens[pos].get_value() == 'throws': is_throws = True elif is_throws and self.__tokens[pos].get_type() == TokenType.IDENTIFIER: throws.append(self.__tokens[pos].get_value()) pos += 1 return throws def __get_return_type(self, pos): return_type = [] while self.__tokens[pos].get_value() != '(': pos += 1 pos -= 1 while self.__tokens[pos].get_type() == TokenType.WHITESPACE: pos -= 1 while self.__tokens[pos].get_type() != TokenType.WHITESPACE: pos -= 1 while self.__tokens[pos].get_type() == TokenType.WHITESPACE: pos -= 1 if self.__tokens[pos].get_value() == '>': while self.__tokens[pos].get_value() != '<': return_type.append(self.__tokens[pos].get_value()) pos -= 1 return_type.append(self.__tokens[pos].get_value()) pos -= 1 while self.__tokens[pos].get_type() == TokenType.WHITESPACE: return_type.append(self.__tokens[pos].get_value()) pos -= 1 return_type.append(self.__tokens[pos].get_value()) return_type.reverse() return ''.join(return_type) def __fix_comment_params(self, comment_token): i = 0 params = [] throws = [] return_type = '' comment_string = comment_token.get_value() while i < len(comment_string): if comment_string[i] == '@': start = comment_string.find(' ', i) macro = comment_string[i:start] end = min(comment_string.find(' ', start + 1), comment_string.find('\n', start + 1)) end = end if end >= 0 else max(comment_string.find(' ', start + 1), comment_string.find('\n', start + 1)) if end > 0: value = comment_string[start + 1:end] new_value = self.__fix_link(value) if value != new_value: comment_string = comment_string.replace(value, new_value) update_token_value(self.__file, comment_token, comment_string) value = new_value if macro == '@param': params.append(value) elif macro == '@throws': throws.append(value) elif macro == '@return': return_type = value i += 1 return params, throws, return_type def __skip_method(self, pos): while self.__tokens[pos].get_value() != '{': if self.__tokens[pos].get_value() == ';': return pos + 1 pos += 1 count = 1 pos += 1 while count != 0: if self.__tokens[pos].get_value() == '{': count += 1 elif self.__tokens[pos].get_value() == '}': count -= 1 pos += 1 return pos def __find_doc_comment_before(self, pos): while self.__tokens[pos].get_value() != '\n': pos -= 1 while pos > 0 and self.__tokens[pos].get_type() == TokenType.WHITESPACE: pos -= 1 if self.__tokens[pos].get_type() == TokenType.COMMENT and self.__tokens[pos].get_value().startswith('/**'): return self.__tokens[pos] return None def __find_token_before(self, pos, value): while pos > 0 and self.__tokens[pos].get_value() != value: pos -= 1 return pos def __find_token_after(self, pos, value): while pos < len(self.__tokens) and self.__tokens[pos].get_value() != value: pos += 1 return pos def __fix_comment_links(self, comment_token): i = 0 link = None comment_string = comment_token.get_value() while i < len(comment_string): if comment_string[i] == '@': start = comment_string.find(' ', i) if comment_string[i:start] != '@see': i += 1 continue end = comment_string.find('\n', i) link = comment_string[start:end] elif comment_string[i] == '{': start = comment_string.find(' ', i) end = comment_string.find('}', i) link = comment_string[start:end] if link is not None: new_link = self.__fix_link(link) comment_string = comment_string.replace(link, new_link) link = None i += 1 if comment_string != comment_token.get_value(): update_token_value(self.__file, comment_token, comment_string) def __fix_link(self, link): for name in self.__to_fix.keys(): pos = link.find(name) if pos != -1 and not (link[pos - 1].isalpha() or link[ pos - 1].isdigit() or link[pos - 1] == '_'): link = link.replace(name, self.__to_fix[name]) return link def __get_indent(self, pos): pos = self.__find_token_before(pos, '\n') count = 0 while self.__tokens[pos].get_type() == TokenType.WHITESPACE: if self.__tokens[pos].get_value() == ' ': count += 1 pos += 1 return ' ' * count def __skip_ws_tokens(self, pos): while self.__tokens[pos].get_type() == TokenType.WHITESPACE: pos += 1 return pos @staticmethod def is_lower_case(naming): return naming.find('_') == -1 and naming.islower() @staticmethod def to_lower_case(naming): return ''.join([component.lower() for component in naming.split('_')]) @staticmethod def is_camel_lower_case(naming): return naming.find('_') == -1 and not naming.isupper() and not naming[0].isupper() @staticmethod def to_camel_lower_case(naming): naming = Formatter.remove_underscores_around(naming) components = [ component[0] + component[1:].lower() if component.isupper() else component[0].upper() + component[1:] for component in naming.split('_')] return components[0][0].lower() + components[0][1:] + ''.join(components[1:]) @staticmethod def is_camel_upper_case(naming): return naming.find('_') == -1 and not naming.isupper() and naming[0].isupper() @staticmethod def to_camel_upper_case(naming): lower = Formatter.to_camel_lower_case(naming) return lower[0].upper() + lower[1:] @staticmethod def is_snake_lower_case(naming): return naming.islower() @staticmethod def to_snake_lower_case(naming): naming = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', naming) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', naming).lower() @staticmethod def is_snake_upper_case(naming): return naming.isupper() @staticmethod def to_snake_upper_case(naming): return Formatter.to_snake_lower_case(naming).upper() @staticmethod def remove_underscores_around(naming): i = 0 while naming[i] == '_': i += 1 naming = naming[i:] j = len(naming) - 1 while naming[j] == '_': i -= 1 naming = naming[:j + 1] return naming
2.734375
3
src/secml/adv/attacks/evasion/c_attack_evasion_pgd_exp.py
zangobot/secml
63
1092
<filename>src/secml/adv/attacks/evasion/c_attack_evasion_pgd_exp.py """ .. module:: CAttackEvasionPGDExp :synopsis: Evasion attack using Projected Gradient Descent. .. moduleauthor:: <NAME> <<EMAIL>> """ from secml.adv.attacks.evasion import CAttackEvasionPGDLS class CAttackEvasionPGDExp(CAttackEvasionPGDLS): """Evasion attacks using Projected Gradient Descent with Exponential line search. This class implements the maximum-confidence evasion attacks proposed in: - https://arxiv.org/abs/1910.00470, EURASIP JIS, 2020. - https://arxiv.org/abs/1708.06939, ICCV W. ViPAR, 2017. It is the multi-class extension of our original work in: - https://arxiv.org/abs/1708.06131, ECML 2013, implemented using a standard projected gradient solver. This attack uses a faster line search than PGD-LS. In all our attacks, we use a smart double initialization to avoid using the mimicry term from our ECML 2013 paper, as described in: - https://pralab.diee.unica.it/sites/default/files/zhang15-tcyb.pdf, IEEE TCYB, 2015 If the attack is not successful when starting from x0, we initialize the optimization by projecting a point from another class onto the feasible domain and try again. Parameters ---------- classifier : CClassifier Target classifier. double_init_ds : CDataset or None, optional Dataset used to initialize an alternative init point (double init). double_init : bool, optional If True (default), use double initialization point. Needs double_init_ds not to be None. distance : {'l1' or 'l2'}, optional Norm to use for computing the distance of the adversarial example from the original sample. Default 'l2'. dmax : scalar, optional Maximum value of the perturbation. Default 1. lb, ub : int or CArray, optional Lower/Upper bounds. If int, the same bound will be applied to all the features. If CArray, a different bound can be specified for each feature. Default `lb = 0`, `ub = 1`. y_target : int or None, optional If None an error-generic attack will be performed, else a error-specific attack to have the samples misclassified as belonging to the `y_target` class. attack_classes : 'all' or CArray, optional Array with the classes that can be manipulated by the attacker or 'all' (default) if all classes can be manipulated. solver_params : dict or None, optional Parameters for the solver. Default None, meaning that default parameters will be used. See :class:`COptimizerPGDExp` for more information. Attributes ---------- class_type : 'e-pgd-exp' """ __class_type = 'e-pgd-exp' def __init__(self, classifier, double_init_ds=None, double_init=True, distance='l1', dmax=0, lb=0, ub=1, y_target=None, attack_classes='all', solver_params=None): # INTERNALS self._x0 = None self._y0 = None # this is an alternative init point. This could be a single point # (targeted evasion) or an array of multiple points, one for each # class (indiscriminate evasion). See _get_point_with_min_f_obj() self._xk = None super(CAttackEvasionPGDExp, self).__init__( classifier=classifier, double_init_ds=double_init_ds, double_init=double_init, distance=distance, dmax=dmax, lb=lb, ub=ub, y_target=y_target, attack_classes=attack_classes, solver_params=solver_params) self.solver_type = 'pgd-exp'
2.59375
3
mail_log_parser/data_manager.py
kinteriq/mail-log-parser
0
1093
import sqlite3 class ManageData: def __init__(self, queue_tracker_db, email_tracker_db, delivery_tracker_db): self.queue_tracker_db = queue_tracker_db self.email_tracker_db = email_tracker_db self.delivery_tracker_db = delivery_tracker_db def manage_queue_tracker(self, fields): """ Receive one of the following located groups as <fields>: [('ID', <id>), ('client_email', <email>)]; [('ID', <id>), ('receivers', <email>), ('status', <status>)]; [('ID', <id>)]; and manage the <queue_tracker_db> accordingly. """ if len(fields) == 1: ID = fields[0][1] self.manage_email_tracker(ID) self.manage_delivery_tracker(ID) del self.queue_tracker_db[ID] elif len(fields) == 2: ID, client_email = (f[1] for f in fields) self.queue_tracker_db[ID]['client_email'] = client_email elif len(fields) == 3: ID, receiver, status = (f[1] for f in fields) if status == 'sent': code = 1 else: code = 0 self.queue_tracker_db[ID]['receivers'][receiver] = code def manage_email_tracker(self, ID): """ Retrieve client's email from the <queue_tracker_db> by <ID> with the amount of 'receivers' whose 'status' == 1 and store it in the <email_tracker_db>. """ client_email = self.queue_tracker_db[ID]['client_email'] receivers = self.queue_tracker_db[ID]['receivers'] delivered_mail = [r for r in receivers if receivers[r] == 1] if client_email in self.email_tracker_db: self.email_tracker_db[client_email] += len(delivered_mail) else: self.email_tracker_db[client_email] = len(delivered_mail) def manage_delivery_tracker(self, ID): """ Go through all receivers of <ID> queue of <queue_tracker_db>, and add their delivery statuses to the <delivery_tracker_db> counter """ receivers = self.queue_tracker_db[ID]['receivers'] for receiver in receivers: if receivers[receiver] == 1: self.delivery_tracker_db['delivered'] += 1 else: self.delivery_tracker_db['undelivered'] += 1 class ManageDatabase(ManageData): def __init__(self, path, *args, **kwargs): self.path = path super().__init__(*args, **kwargs) def _execute_command(self, *command): con = sqlite3.connect(self.path) cursor = con.cursor() result = cursor.execute(*command) if result: result = result.fetchall() con.commit() con.close() return result def create_db(self): self._execute_command('''CREATE TABLE IF NOT EXISTS email_tracker (client_email TEXT PRIMARY KEY, num_of_letters_sent INTEGER)''') def transfer_data(self): for email, num_of_letters in self.email_tracker_db.items(): self._execute_command('''INSERT INTO email_tracker VALUES (?, ?)''', (email, num_of_letters))
3.25
3
Util/training_util.py
lychenyoko/content-aware-gan-compression
47
1094
import math def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01): noise = torch.randn_like(fake_img) / math.sqrt( fake_img.shape[2] * fake_img.shape[3] ) grad, = autograd.grad( outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True ) path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1)) path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length) path_penalty = (path_lengths - path_mean).pow(2).mean() return path_penalty, path_mean.detach(), path_lengths
2.234375
2
app/configs/development_settings.py
DIS-SIN/FlaskShell
0
1095
<gh_stars>0 ######################################################## FLASK SETTINGS ############################################################## #Variable used to securly sign cookies ##THIS IS SET IN DEV ENVIRONMENT FOR CONVENIENCE BUT SHOULD BE SET AS AN ENVIRONMENT VARIABLE IN PROD SECRET_KEY = "dev" ######################################################## DATABSE SETTINGS #################################################### #Neo4j Database URI used by the Neomodel OGM ## THIS SHOULD BE SET AS AN ENVIRONMENT VARIABLE IN PRODUCTION ## DATABASE_URI = "bolt://test:test@localhost:7687"
1.460938
1
autoarray/structures/grids/two_d/grid_2d_util.py
caoxiaoyue/PyAutoArray
0
1096
import numpy as np from typing import Tuple, Union, Optional from autoarray.structures.arrays.two_d import array_2d_util from autoarray.geometry import geometry_util from autoarray import numba_util from autoarray.mask import mask_2d_util @numba_util.jit() def grid_2d_centre_from(grid_2d_slim: np.ndarray) -> Tuple[float, float]: """ Returns the centre of a grid from a 1D grid. Parameters ---------- grid_2d_slim The 1D grid of values which are mapped to a 2D array. Returns ------- (float, float) The (y,x) central coordinates of the grid. """ centre_y = (np.max(grid_2d_slim[:, 0]) + np.min(grid_2d_slim[:, 0])) / 2.0 centre_x = (np.max(grid_2d_slim[:, 1]) + np.min(grid_2d_slim[:, 1])) / 2.0 return centre_y, centre_x @numba_util.jit() def grid_2d_slim_via_mask_from( mask_2d: np.ndarray, pixel_scales: Union[float, Tuple[float, float]], sub_size: int, origin: Tuple[float, float] = (0.0, 0.0), ) -> np.ndarray: """ For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided into a finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes the (y,x) scaled coordinates a the centre of every sub-pixel defined by this 2D mask array. The sub-grid is returned on an array of shape (total_unmasked_pixels*sub_size**2, 2). y coordinates are stored in the 0 index of the second dimension, x coordinates in the 1 index. Masked coordinates are therefore removed and not included in the slimmed grid. Grid2D are defined from the top-left corner, where the first unmasked sub-pixel corresponds to index 0. Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth. Parameters ---------- mask_2d A 2D array of bools, where `False` values are unmasked and therefore included as part of the calculated sub-grid. pixel_scales The (y,x) scaled units to pixel units conversion factor of the 2D mask array. sub_size The size of the sub-grid that each pixel of the 2D mask array is divided into. origin : (float, flloat) The (y,x) origin of the 2D array, which the sub-grid is shifted around. Returns ------- ndarray A slimmed sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask array. The sub grid array has dimensions (total_unmasked_pixels*sub_size**2, 2). Examples -------- mask = np.array([[True, False, True], [False, False, False] [True, False, True]]) grid_slim = grid_2d_slim_via_mask_from(mask=mask, pixel_scales=(0.5, 0.5), sub_size=1, origin=(0.0, 0.0)) """ total_sub_pixels = mask_2d_util.total_sub_pixels_2d_from(mask_2d, sub_size) grid_slim = np.zeros(shape=(total_sub_pixels, 2)) centres_scaled = geometry_util.central_scaled_coordinate_2d_from( shape_native=mask_2d.shape, pixel_scales=pixel_scales, origin=origin ) sub_index = 0 y_sub_half = pixel_scales[0] / 2 y_sub_step = pixel_scales[0] / (sub_size) x_sub_half = pixel_scales[1] / 2 x_sub_step = pixel_scales[1] / (sub_size) for y in range(mask_2d.shape[0]): for x in range(mask_2d.shape[1]): if not mask_2d[y, x]: y_scaled = (y - centres_scaled[0]) * pixel_scales[0] x_scaled = (x - centres_scaled[1]) * pixel_scales[1] for y1 in range(sub_size): for x1 in range(sub_size): grid_slim[sub_index, 0] = -( y_scaled - y_sub_half + y1 * y_sub_step + (y_sub_step / 2.0) ) grid_slim[sub_index, 1] = ( x_scaled - x_sub_half + x1 * x_sub_step + (x_sub_step / 2.0) ) sub_index += 1 return grid_slim def grid_2d_via_mask_from( mask_2d: np.ndarray, pixel_scales: Union[float, Tuple[float, float]], sub_size: int, origin: Tuple[float, float] = (0.0, 0.0), ) -> np.ndarray: """ For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided into a finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes the (y,x) scaled coordinates at the centre of every sub-pixel defined by this 2D mask array. The sub-grid is returned in its native dimensions with shape (total_y_pixels*sub_size, total_x_pixels*sub_size). y coordinates are stored in the 0 index of the second dimension, x coordinates in the 1 index. Masked pixels are given values (0.0, 0.0). Grids are defined from the top-left corner, where the first unmasked sub-pixel corresponds to index 0. Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth. Parameters ---------- mask_2d A 2D array of bools, where `False` values are unmasked and therefore included as part of the calculated sub-grid. pixel_scales The (y,x) scaled units to pixel units conversion factor of the 2D mask array. sub_size The size of the sub-grid that each pixel of the 2D mask array is divided into. origin : (float, flloat) The (y,x) origin of the 2D array, which the sub-grid is shifted around. Returns ------- ndarray A sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask array. The sub grid array has dimensions (total_y_pixels*sub_size, total_x_pixels*sub_size). Examples -------- mask = np.array([[True, False, True], [False, False, False] [True, False, True]]) grid_2d = grid_2d_via_mask_from(mask=mask, pixel_scales=(0.5, 0.5), sub_size=1, origin=(0.0, 0.0)) """ grid_2d_slim = grid_2d_slim_via_mask_from( mask_2d=mask_2d, pixel_scales=pixel_scales, sub_size=sub_size, origin=origin ) return grid_2d_native_from( grid_2d_slim=grid_2d_slim, mask_2d=mask_2d, sub_size=sub_size ) def grid_2d_slim_via_shape_native_from( shape_native: Tuple[int, int], pixel_scales: Union[float, Tuple[float, float]], sub_size: int, origin: Tuple[float, float] = (0.0, 0.0), ) -> np.ndarray: """ For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided into a finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes the (y,x) scaled coordinates at the centre of every sub-pixel defined by this 2D mask array. The sub-grid is returned in its slimmed dimensions with shape (total_pixels**2*sub_size**2, 2). y coordinates are stored in the 0 index of the second dimension, x coordinates in the 1 index. Grid2D are defined from the top-left corner, where the first sub-pixel corresponds to index [0,0]. Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth. Parameters ---------- shape_native The (y,x) shape of the 2D array the sub-grid of coordinates is computed for. pixel_scales The (y,x) scaled units to pixel units conversion factor of the 2D mask array. sub_size The size of the sub-grid that each pixel of the 2D mask array is divided into. origin The (y,x) origin of the 2D array, which the sub-grid is shifted around. Returns ------- ndarray A sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask array. The sub grid is slimmed and has dimensions (total_unmasked_pixels*sub_size**2, 2). Examples -------- mask = np.array([[True, False, True], [False, False, False] [True, False, True]]) grid_2d_slim = grid_2d_slim_via_shape_native_from(shape_native=(3,3), pixel_scales=(0.5, 0.5), sub_size=2, origin=(0.0, 0.0)) """ return grid_2d_slim_via_mask_from( mask_2d=np.full(fill_value=False, shape=shape_native), pixel_scales=pixel_scales, sub_size=sub_size, origin=origin, ) def grid_2d_via_shape_native_from( shape_native: Tuple[int, int], pixel_scales: Union[float, Tuple[float, float]], sub_size: int, origin: Tuple[float, float] = (0.0, 0.0), ) -> np.ndarray: """ For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided into a finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes the (y,x) scaled coordinates at the centre of every sub-pixel defined by this 2D mask array. The sub-grid is returned in its native dimensions with shape (total_y_pixels*sub_size, total_x_pixels*sub_size). y coordinates are stored in the 0 index of the second dimension, x coordinates in the 1 index. Grids are defined from the top-left corner, where the first sub-pixel corresponds to index [0,0]. Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth. Parameters ---------- shape_native The (y,x) shape of the 2D array the sub-grid of coordinates is computed for. pixel_scales The (y,x) scaled units to pixel units conversion factor of the 2D mask array. sub_size The size of the sub-grid that each pixel of the 2D mask array is divided into. origin : (float, flloat) The (y,x) origin of the 2D array, which the sub-grid is shifted around. Returns ------- ndarray A sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask array. The sub grid array has dimensions (total_y_pixels*sub_size, total_x_pixels*sub_size). Examples -------- grid_2d = grid_2d_via_shape_native_from(shape_native=(3, 3), pixel_scales=(1.0, 1.0), sub_size=2, origin=(0.0, 0.0)) """ return grid_2d_via_mask_from( mask_2d=np.full(fill_value=False, shape=shape_native), pixel_scales=pixel_scales, sub_size=sub_size, origin=origin, ) @numba_util.jit() def grid_scaled_2d_slim_radial_projected_from( extent: np.ndarray, centre: Tuple[float, float], pixel_scales: Union[float, Tuple[float, float]], sub_size: int, shape_slim: Optional[int] = 0, ) -> np.ndarray: """ Determine a projected radial grid of points from a 2D region of coordinates defined by an extent [xmin, xmax, ymin, ymax] and with a (y,x) centre. This functions operates as follows: 1) Given the region defined by the extent [xmin, xmax, ymin, ymax], the algorithm finds the longest 1D distance of the 4 paths from the (y,x) centre to the edge of the region (e.g. following the positive / negative y and x axes). 2) Use the pixel-scale corresponding to the direction chosen (e.g. if the positive x-axis was the longest, the pixel_scale in the x dimension is used). 3) Determine the number of pixels between the centre and the edge of the region using the longest path between the two chosen above. 4) Create a (y,x) grid of radial points where all points are at the centre's y value = 0.0 and the x values iterate from the centre in increasing steps of the pixel-scale. 5) Rotate these radial coordinates by the input `angle` clockwise. A schematric is shown below: ------------------- | | |<- - - - ->x | x = centre | | <-> = longest radial path from centre to extent edge | | ------------------- Using the centre x above, this function finds the longest radial path to the edge of the extent window. The returned `grid_radii` represents a radial set of points that in 1D sample the 2D grid outwards from its centre. This grid stores the radial coordinates as (y,x) values (where all y values are the same) as opposed to a 1D data structure so that it can be used in functions which require that a 2D grid structure is input. Parameters ---------- extent The extent of the grid the radii grid is computed using, with format [xmin, xmax, ymin, ymax] centre : (float, flloat) The (y,x) central coordinate which the radial grid is traced outwards from. pixel_scales The (y,x) scaled units to pixel units conversion factor of the 2D mask array. sub_size The size of the sub-grid that each pixel of the 2D mask array is divided into. shape_slim Manually choose the shape of the 1D projected grid that is returned. If 0, the border based on the 2D grid is used (due to numba None cannot be used as a default value). Returns ------- ndarray A radial set of points sampling the longest distance from the centre to the edge of the extent in along the positive x-axis. """ distance_to_positive_x = extent[1] - centre[1] distance_to_positive_y = extent[3] - centre[0] distance_to_negative_x = centre[1] - extent[0] distance_to_negative_y = centre[0] - extent[2] scaled_distance = max( [ distance_to_positive_x, distance_to_positive_y, distance_to_negative_x, distance_to_negative_y, ] ) if (scaled_distance == distance_to_positive_y) or ( scaled_distance == distance_to_negative_y ): pixel_scale = pixel_scales[0] else: pixel_scale = pixel_scales[1] if shape_slim == 0: shape_slim = sub_size * int((scaled_distance / pixel_scale)) + 1 grid_scaled_2d_slim_radii = np.zeros((shape_slim, 2)) grid_scaled_2d_slim_radii[:, 0] += centre[0] radii = centre[1] for slim_index in range(shape_slim): grid_scaled_2d_slim_radii[slim_index, 1] = radii radii += pixel_scale / sub_size return grid_scaled_2d_slim_radii @numba_util.jit() def grid_pixels_2d_slim_from( grid_scaled_2d_slim: np.ndarray, shape_native: Tuple[int, int], pixel_scales: Union[float, Tuple[float, float]], origin: Tuple[float, float] = (0.0, 0.0), ) -> np.ndarray: """ Convert a slimmed grid of 2d (y,x) scaled coordinates to a slimmed grid of 2d (y,x) pixel coordinate values. Pixel coordinates are returned as floats such that they include the decimal offset from each pixel's top-left corner relative to the input scaled coordinate. The input and output grids are both slimmed and therefore shape (total_pixels, 2). The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird. The scaled grid is defined by an origin and coordinates are shifted to this origin before computing their 1D grid pixel coordinate values. Parameters ---------- grid_scaled_2d_slim: np.ndarray The slimmed grid of 2D (y,x) coordinates in scaled units which are converted to pixel value coordinates. shape_native The (y,x) shape of the original 2D array the scaled coordinates were computed on. pixel_scales The (y,x) scaled units to pixel units conversion factor of the original 2D array. origin : (float, flloat) The (y,x) origin of the grid, which the scaled grid is shifted to. Returns ------- ndarray A slimmed grid of 2D (y,x) pixel-value coordinates with dimensions (total_pixels, 2). Examples -------- grid_scaled_2d_slim = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]]) grid_pixels_2d_slim = grid_scaled_2d_slim_from(grid_scaled_2d_slim=grid_scaled_2d_slim, shape=(2,2), pixel_scales=(0.5, 0.5), origin=(0.0, 0.0)) """ grid_pixels_2d_slim = np.zeros((grid_scaled_2d_slim.shape[0], 2)) centres_scaled = geometry_util.central_scaled_coordinate_2d_from( shape_native=shape_native, pixel_scales=pixel_scales, origin=origin ) for slim_index in range(grid_scaled_2d_slim.shape[0]): grid_pixels_2d_slim[slim_index, 0] = ( (-grid_scaled_2d_slim[slim_index, 0] / pixel_scales[0]) + centres_scaled[0] + 0.5 ) grid_pixels_2d_slim[slim_index, 1] = ( (grid_scaled_2d_slim[slim_index, 1] / pixel_scales[1]) + centres_scaled[1] + 0.5 ) return grid_pixels_2d_slim @numba_util.jit() def grid_pixel_centres_2d_slim_from( grid_scaled_2d_slim: np.ndarray, shape_native: Tuple[int, int], pixel_scales: Union[float, Tuple[float, float]], origin: Tuple[float, float] = (0.0, 0.0), ) -> np.ndarray: """ Convert a slimmed grid of 2D (y,x) scaled coordinates to a slimmed grid of 2D (y,x) pixel values. Pixel coordinates are returned as integers such that they map directly to the pixel they are contained within. The input and output grids are both slimmed and therefore shape (total_pixels, 2). The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird. The scaled coordinate grid is defined by the class attribute origin, and coordinates are shifted to this origin before computing their 1D grid pixel indexes. Parameters ---------- grid_scaled_2d_slim: np.ndarray The slimmed grid of 2D (y,x) coordinates in scaled units which is converted to pixel indexes. shape_native The (y,x) shape of the original 2D array the scaled coordinates were computed on. pixel_scales The (y,x) scaled units to pixel units conversion factor of the original 2D array. origin : (float, flloat) The (y,x) origin of the grid, which the scaled grid is shifted Returns ------- ndarray A slimmed grid of 2D (y,x) pixel indexes with dimensions (total_pixels, 2). Examples -------- grid_scaled_2d_slim = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]]) grid_pixels_2d_slim = grid_scaled_2d_slim_from(grid_scaled_2d_slim=grid_scaled_2d_slim, shape=(2,2), pixel_scales=(0.5, 0.5), origin=(0.0, 0.0)) """ grid_pixels_2d_slim = np.zeros((grid_scaled_2d_slim.shape[0], 2)) centres_scaled = geometry_util.central_scaled_coordinate_2d_from( shape_native=shape_native, pixel_scales=pixel_scales, origin=origin ) for slim_index in range(grid_scaled_2d_slim.shape[0]): grid_pixels_2d_slim[slim_index, 0] = int( (-grid_scaled_2d_slim[slim_index, 0] / pixel_scales[0]) + centres_scaled[0] + 0.5 ) grid_pixels_2d_slim[slim_index, 1] = int( (grid_scaled_2d_slim[slim_index, 1] / pixel_scales[1]) + centres_scaled[1] + 0.5 ) return grid_pixels_2d_slim @numba_util.jit() def grid_pixel_indexes_2d_slim_from( grid_scaled_2d_slim: np.ndarray, shape_native: Tuple[int, int], pixel_scales: Union[float, Tuple[float, float]], origin: Tuple[float, float] = (0.0, 0.0), ) -> np.ndarray: """ Convert a slimmed grid of 2D (y,x) scaled coordinates to a slimmed grid of pixel indexes. Pixel coordinates are returned as integers such that they are the pixel from the top-left of the 2D grid going rights and then downwards. The input and output grids are both slimmed and have shapes (total_pixels, 2) and (total_pixels,). For example: The pixel at the top-left, whose native index is [0,0], corresponds to slimmed pixel index 0. The fifth pixel on the top row, whose native index is [0,5], corresponds to slimmed pixel index 4. The first pixel on the second row, whose native index is [0,1], has slimmed pixel index 10 if a row has 10 pixels. The scaled coordinate grid is defined by the class attribute origin, and coordinates are shifted to this origin before computing their 1D grid pixel indexes. The input and output grids are both of shape (total_pixels, 2). Parameters ---------- grid_scaled_2d_slim: np.ndarray The slimmed grid of 2D (y,x) coordinates in scaled units which is converted to slimmed pixel indexes. shape_native The (y,x) shape of the original 2D array the scaled coordinates were computed on. pixel_scales The (y,x) scaled units to pixel units conversion factor of the original 2D array. origin : (float, flloat) The (y,x) origin of the grid, which the scaled grid is shifted. Returns ------- ndarray A grid of slimmed pixel indexes with dimensions (total_pixels,). Examples -------- grid_scaled_2d_slim = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]]) grid_pixel_indexes_2d_slim = grid_pixel_indexes_2d_slim_from(grid_scaled_2d_slim=grid_scaled_2d_slim, shape=(2,2), pixel_scales=(0.5, 0.5), origin=(0.0, 0.0)) """ grid_pixels_2d_slim = grid_pixel_centres_2d_slim_from( grid_scaled_2d_slim=grid_scaled_2d_slim, shape_native=shape_native, pixel_scales=pixel_scales, origin=origin, ) grid_pixel_indexes_2d_slim = np.zeros(grid_pixels_2d_slim.shape[0]) for slim_index in range(grid_pixels_2d_slim.shape[0]): grid_pixel_indexes_2d_slim[slim_index] = int( grid_pixels_2d_slim[slim_index, 0] * shape_native[1] + grid_pixels_2d_slim[slim_index, 1] ) return grid_pixel_indexes_2d_slim @numba_util.jit() def grid_scaled_2d_slim_from( grid_pixels_2d_slim: np.ndarray, shape_native: Tuple[int, int], pixel_scales: Union[float, Tuple[float, float]], origin: Tuple[float, float] = (0.0, 0.0), ) -> np.ndarray: """ Convert a slimmed grid of 2D (y,x) pixel coordinates to a slimmed grid of 2D (y,x) scaled values. The input and output grids are both slimmed and therefore shape (total_pixels, 2). The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird. The scaled coordinate origin is defined by the class attribute origin, and coordinates are shifted to this origin after computing their values from the 1D grid pixel indexes. Parameters ---------- grid_pixels_2d_slim: np.ndarray The slimmed grid of (y,x) coordinates in pixel values which is converted to scaled coordinates. shape_native The (y,x) shape of the original 2D array the scaled coordinates were computed on. pixel_scales The (y,x) scaled units to pixel units conversion factor of the original 2D array. origin : (float, flloat) The (y,x) origin of the grid, which the scaled grid is shifted. Returns ------- ndarray A slimmed grid of 2d scaled coordinates with dimensions (total_pixels, 2). Examples -------- grid_pixels_2d_slim = np.array([[0,0], [0,1], [1,0], [1,1]) grid_pixels_2d_slim = grid_scaled_2d_slim_from(grid_pixels_2d_slim=grid_pixels_2d_slim, shape=(2,2), pixel_scales=(0.5, 0.5), origin=(0.0, 0.0)) """ grid_scaled_2d_slim = np.zeros((grid_pixels_2d_slim.shape[0], 2)) centres_scaled = geometry_util.central_scaled_coordinate_2d_from( shape_native=shape_native, pixel_scales=pixel_scales, origin=origin ) for slim_index in range(grid_scaled_2d_slim.shape[0]): grid_scaled_2d_slim[slim_index, 0] = ( -(grid_pixels_2d_slim[slim_index, 0] - centres_scaled[0] - 0.5) * pixel_scales[0] ) grid_scaled_2d_slim[slim_index, 1] = ( grid_pixels_2d_slim[slim_index, 1] - centres_scaled[1] - 0.5 ) * pixel_scales[1] return grid_scaled_2d_slim @numba_util.jit() def grid_pixel_centres_2d_from( grid_scaled_2d: np.ndarray, shape_native: Tuple[int, int], pixel_scales: Union[float, Tuple[float, float]], origin: Tuple[float, float] = (0.0, 0.0), ) -> np.ndarray: """ Convert a native grid of 2D (y,x) scaled coordinates to a native grid of 2D (y,x) pixel values. Pixel coordinates are returned as integers such that they map directly to the pixel they are contained within. The input and output grids are both native resolution and therefore have shape (y_pixels, x_pixels, 2). The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird. The scaled coordinate grid is defined by the class attribute origin, and coordinates are shifted to this origin before computing their 1D grid pixel indexes. Parameters ---------- grid_scaled_2d: np.ndarray The native grid of 2D (y,x) coordinates in scaled units which is converted to pixel indexes. shape_native The (y,x) shape of the original 2D array the scaled coordinates were computed on. pixel_scales The (y,x) scaled units to pixel units conversion factor of the original 2D array. origin : (float, flloat) The (y,x) origin of the grid, which the scaled grid is shifted Returns ------- ndarray A native grid of 2D (y,x) pixel indexes with dimensions (y_pixels, x_pixels, 2). Examples -------- grid_scaled_2d = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]]) grid_pixel_centres_2d = grid_pixel_centres_2d_from(grid_scaled_2d=grid_scaled_2d, shape=(2,2), pixel_scales=(0.5, 0.5), origin=(0.0, 0.0)) """ grid_pixels_2d = np.zeros((grid_scaled_2d.shape[0], grid_scaled_2d.shape[1], 2)) centres_scaled = geometry_util.central_scaled_coordinate_2d_from( shape_native=shape_native, pixel_scales=pixel_scales, origin=origin ) for y in range(grid_scaled_2d.shape[0]): for x in range(grid_scaled_2d.shape[1]): grid_pixels_2d[y, x, 0] = int( (-grid_scaled_2d[y, x, 0] / pixel_scales[0]) + centres_scaled[0] + 0.5 ) grid_pixels_2d[y, x, 1] = int( (grid_scaled_2d[y, x, 1] / pixel_scales[1]) + centres_scaled[1] + 0.5 ) return grid_pixels_2d @numba_util.jit() def relocated_grid_via_jit_from(grid, border_grid): """ Relocate the coordinates of a grid to its border if they are outside the border, where the border is defined as all pixels at the edge of the grid's mask (see *mask._border_1d_indexes*). This is performed as follows: 1: Use the mean value of the grid's y and x coordinates to determine the origin of the grid. 2: Compute the radial distance of every grid coordinate from the origin. 3: For every coordinate, find its nearest pixel in the border. 4: Determine if it is outside the border, by comparing its radial distance from the origin to its paired border pixel's radial distance. 5: If its radial distance is larger, use the ratio of radial distances to move the coordinate to the border (if its inside the border, do nothing). The method can be used on uniform or irregular grids, however for irregular grids the border of the 'image-plane' mask is used to define border pixels. Parameters ---------- grid : Grid2D The grid (uniform or irregular) whose pixels are to be relocated to the border edge if outside it. border_grid : Grid2D The grid of border (y,x) coordinates. """ grid_relocated = np.zeros(grid.shape) grid_relocated[:, :] = grid[:, :] border_origin = np.zeros(2) border_origin[0] = np.mean(border_grid[:, 0]) border_origin[1] = np.mean(border_grid[:, 1]) border_grid_radii = np.sqrt( np.add( np.square(np.subtract(border_grid[:, 0], border_origin[0])), np.square(np.subtract(border_grid[:, 1], border_origin[1])), ) ) border_min_radii = np.min(border_grid_radii) grid_radii = np.sqrt( np.add( np.square(np.subtract(grid[:, 0], border_origin[0])), np.square(np.subtract(grid[:, 1], border_origin[1])), ) ) for pixel_index in range(grid.shape[0]): if grid_radii[pixel_index] > border_min_radii: closest_pixel_index = np.argmin( np.square(grid[pixel_index, 0] - border_grid[:, 0]) + np.square(grid[pixel_index, 1] - border_grid[:, 1]) ) move_factor = ( border_grid_radii[closest_pixel_index] / grid_radii[pixel_index] ) if move_factor < 1.0: grid_relocated[pixel_index, :] = ( move_factor * (grid[pixel_index, :] - border_origin[:]) + border_origin[:] ) return grid_relocated @numba_util.jit() def furthest_grid_2d_slim_index_from( grid_2d_slim: np.ndarray, slim_indexes: np.ndarray, coordinate: Tuple[float, float] ) -> int: distance_to_centre = 0.0 for slim_index in slim_indexes: y = grid_2d_slim[slim_index, 0] x = grid_2d_slim[slim_index, 1] distance_to_centre_new = (x - coordinate[1]) ** 2 + (y - coordinate[0]) ** 2 if distance_to_centre_new >= distance_to_centre: distance_to_centre = distance_to_centre_new furthest_grid_2d_slim_index = slim_index return furthest_grid_2d_slim_index def grid_2d_slim_from( grid_2d_native: np.ndarray, mask: np.ndarray, sub_size: int ) -> np.ndarray: """ For a native 2D grid and mask of shape [total_y_pixels, total_x_pixels, 2], map the values of all unmasked pixels to a slimmed grid of shape [total_unmasked_pixels, 2]. The pixel coordinate origin is at the top left corner of the native grid and goes right-wards and downwards, such that for an grid of shape (3,3) where all pixels are unmasked: - pixel [0,0] of the 2D grid will correspond to index 0 of the 1D grid. - pixel [0,1] of the 2D grid will correspond to index 1 of the 1D grid. - pixel [1,0] of the 2D grid will correspond to index 4 of the 1D grid. Parameters ---------- grid_2d_native : ndarray The native grid of (y,x) values which are mapped to the slimmed grid. mask_2d A 2D array of bools, where `False` values mean unmasked and are included in the mapping. sub_size The size (sub_size x sub_size) of each unmasked pixels sub-array. Returns ------- ndarray A 1D grid of values mapped from the 2D grid with dimensions (total_unmasked_pixels). """ grid_1d_slim_y = array_2d_util.array_2d_slim_from( array_2d_native=grid_2d_native[:, :, 0], mask_2d=mask, sub_size=sub_size ) grid_1d_slim_x = array_2d_util.array_2d_slim_from( array_2d_native=grid_2d_native[:, :, 1], mask_2d=mask, sub_size=sub_size ) return np.stack((grid_1d_slim_y, grid_1d_slim_x), axis=-1) def grid_2d_native_from( grid_2d_slim: np.ndarray, mask_2d: np.ndarray, sub_size: int ) -> np.ndarray: """ For a slimmed 2D grid of shape [total_unmasked_pixels, 2], that was computed by extracting the unmasked values from a native 2D grid of shape [total_y_pixels, total_x_pixels, 2], map the slimmed grid's coordinates back to the native 2D grid where masked values are set to zero. This uses a 1D array 'slim_to_native' where each index gives the 2D pixel indexes of the grid's native unmasked pixels, for example: - If slim_to_native[0] = [0,0], the first value of the 1D array maps to the pixels [0,0,:] of the native 2D grid. - If slim_to_native[1] = [0,1], the second value of the 1D array maps to the pixels [0,1,:] of the native 2D grid. - If slim_to_native[4] = [1,1], the fifth value of the 1D array maps to the pixels [1,1,:] of the native 2D grid. Parameters ---------- grid_2d_slim The (y,x) values of the slimmed 2D grid which are mapped to the native 2D grid. mask_2d A 2D array of bools, where `False` values mean unmasked and are included in the mapping. sub_size The size (sub_size x sub_size) of each unmasked pixels sub-array. Returns ------- ndarray A NumPy array of shape [total_y_pixels, total_x_pixels, 2] corresponding to the (y,x) values of the native 2D mapped from the slimmed grid. """ grid_2d_native_y = array_2d_util.array_2d_native_from( array_2d_slim=grid_2d_slim[:, 0], mask_2d=mask_2d, sub_size=sub_size ) grid_2d_native_x = array_2d_util.array_2d_native_from( array_2d_slim=grid_2d_slim[:, 1], mask_2d=mask_2d, sub_size=sub_size ) return np.stack((grid_2d_native_y, grid_2d_native_x), axis=-1) @numba_util.jit() def grid_2d_slim_upscaled_from( grid_slim: np.ndarray, upscale_factor: int, pixel_scales: Union[float, Tuple[float, float]], ) -> np.ndarray: """ From an input slimmed 2D grid, return an upscaled slimmed 2D grid where (y,x) coordinates are added at an upscaled resolution to each grid coordinate, analogous to a sub-grid. Parameters ---------- grid_slim The slimmed grid of (y,x) coordinates over which a square uniform grid is overlaid. upscale_factor The upscaled resolution at which the new grid coordinates are computed. pixel_scales The pixel scale of the uniform grid that laid over the irregular grid of (y,x) coordinates. """ grid_2d_slim_upscaled = np.zeros( shape=(grid_slim.shape[0] * upscale_factor ** 2, 2) ) upscale_index = 0 y_upscale_half = pixel_scales[0] / 2 y_upscale_step = pixel_scales[0] / upscale_factor x_upscale_half = pixel_scales[1] / 2 x_upscale_step = pixel_scales[1] / upscale_factor for slim_index in range(grid_slim.shape[0]): y_grid = grid_slim[slim_index, 0] x_grid = grid_slim[slim_index, 1] for y in range(upscale_factor): for x in range(upscale_factor): grid_2d_slim_upscaled[upscale_index, 0] = ( y_grid + y_upscale_half - y * y_upscale_step - (y_upscale_step / 2.0) ) grid_2d_slim_upscaled[upscale_index, 1] = ( x_grid - x_upscale_half + x * x_upscale_step + (x_upscale_step / 2.0) ) upscale_index += 1 return grid_2d_slim_upscaled def grid_2d_of_points_within_radius( radius: float, centre: Tuple[float, float], grid_2d: np.ndarray ): y_inside = [] x_inside = [] for i in range(len(grid_2d[:, 0])): if (grid_2d[i, 0] - centre[0]) ** 2 + ( grid_2d[i, 1] - centre[1] ) ** 2 > radius ** 2: y_inside.append(grid_2d[i, 0]) x_inside.append(grid_2d[i, 1]) return np.asarray(y_inside, x_inside) def compute_polygon_area(points): x = points[:, 1] y = points[:, 0] return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))
3.046875
3
Proxies/Proxies.py
crown-prince/proxies
2
1097
# coding: utf-8 import requests, math import gevent from gevent.queue import Queue from gevent import monkey; monkey.patch_all() from pyquery import PyQuery class Proxies(): def __init__(self): self.domestic_gn_url = 'http://www.kuaidaili.com/free/inha/{0}/' self.domestic_pt_url = 'http://www.kuaidaili.com/free/intr/{0}/' self.abroad_gn_url = 'http://www.kuaidaili.com/free/outha/{0}/' self.abroad_pt_url = 'http://www.kuaidaili.com/free/outtr/{0}/' self.result_arr = [] self.s = requests.Session() self.headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36', 'Referer': 'http://www.kuaidaili.com/' } def fetch_urls(self, queue, quantity): while not queue.empty(): url = queue.get() html = self.s.get(url, headers=self.headers).text pq = PyQuery(html) size = pq.find('tbody tr').size() for index in range(size): item = pq.find('tbody tr').eq(index) ip = item.find('td').eq(0).text() port = item.find('td').eq(1).text() _type = item.find('td').eq(3).text() self.result_arr.append({ str(_type).lower(): '{0}://{1}:{2}'.format(str(_type).lower(), ip, port) }) if len(self.result_arr) >= quantity: break def get_proxies(self, quantity, type): ''' quantity: 数量 type: 类型 1.国内高匿代理 2.国内普通代理 3.国外高匿代理 4.国外普通代理 ''' url_queue = Queue() need_pages = int(math.ceil(quantity/15)) # 判断类型 if type == 1: # 国内高匿代理 base_url = self.domestic_gn_url elif type == 2: # 国内普通代理 base_url = self.domestic_pt_url elif type == 3: # 国外高匿代理 base_url = self.abroad_gn_url elif type == 4: # 国外普通代理 base_url = self.abroad_pt_url # 获取所需要的页面URL for index in range(need_pages): url = base_url.format(index+1) url_queue.put(url) # 处理所有URL,开启2个协程 gevent_list = [] for index in range(2): gevent_list.append( gevent.spawn(self.fetch_urls, url_queue, quantity) ) gevent.joinall(gevent_list) def get_result(self): return self.result_arr if __name__ == '__main__': p = Proxies() p.get_proxies(20, 1) result = p.get_result() print(result)
2.609375
3
parallelformers/policies/base/auto.py
Oaklight/parallelformers
454
1098
<filename>parallelformers/policies/base/auto.py # Copyright 2021 TUNiB inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import suppress from typing import List, Union from torch import nn from parallelformers.policies.base import Policy class AutoPolicy: """Class for finds automatically appropriate policies for the current model""" def __init__(self): self.builtin_policies = {} with suppress(Exception): from transformers.models.gpt_neo.modeling_gpt_neo import ( GPTNeoPreTrainedModel, ) from parallelformers.policies.gpt_neo import GPTNeoPolicy self.builtin_policies[GPTNeoPreTrainedModel] = [ GPTNeoPolicy, ] with suppress(Exception): from transformers.models.bert.modeling_bert import ( BertPreTrainedModel, ) from parallelformers.policies.bert import BertPolicy self.builtin_policies[BertPreTrainedModel] = [ BertPolicy, ] with suppress(Exception): from transformers.models.bart.modeling_bart import ( BartPretrainedModel, ) from parallelformers.policies.bart import ( BartDecoderPolicy, BartEncoderPolicy, ) self.builtin_policies[BartPretrainedModel] = [ BartEncoderPolicy, BartDecoderPolicy, ] with suppress(Exception): from transformers.models.blenderbot.modeling_blenderbot import ( BlenderbotPreTrainedModel, ) from parallelformers.policies.blenderbot import ( BlenderbotDecoderPolicy, BlenderbotEncoderPolicy, ) self.builtin_policies[BlenderbotPreTrainedModel] = [ BlenderbotEncoderPolicy, BlenderbotDecoderPolicy, ] with suppress(Exception): from transformers.models.deberta.modeling_deberta import ( DebertaPreTrainedModel, ) from parallelformers.policies.deberta import DebertaPolicy self.builtin_policies[DebertaPreTrainedModel] = [ DebertaPolicy, ] with suppress(Exception): from transformers.models.transfo_xl.modeling_transfo_xl import ( TransfoXLPreTrainedModel, ) from parallelformers.policies.transfo_xl import TransfoXLPolicy self.builtin_policies[TransfoXLPreTrainedModel] = [ TransfoXLPolicy, ] with suppress(Exception): from transformers.models.roberta.modeling_roberta import ( RobertaPreTrainedModel, ) from parallelformers.policies.roberta import RobertaPolicy self.builtin_policies[RobertaPreTrainedModel] = [ RobertaPolicy, ] with suppress(Exception): from transformers.models.albert.modeling_albert import ( AlbertPreTrainedModel, ) from parallelformers.policies.albert import AlbertPolicy self.builtin_policies[AlbertPreTrainedModel] = [ AlbertPolicy, ] with suppress(Exception): from transformers.models.gpt2.modeling_gpt2 import ( GPT2PreTrainedModel, ) from parallelformers.policies.gpt2 import GPT2Policy self.builtin_policies[GPT2PreTrainedModel] = [ GPT2Policy, ] with suppress(Exception): from transformers.models.ctrl.modeling_ctrl import ( CTRLPreTrainedModel, ) from parallelformers.policies.ctrl import CTRLPolicy self.builtin_policies[CTRLPreTrainedModel] = [ CTRLPolicy, ] with suppress(Exception): from transformers.models.deberta_v2.modeling_deberta_v2 import ( DebertaV2PreTrainedModel, ) from parallelformers.policies.deberta_v2 import DebertaV2Policy self.builtin_policies[DebertaV2PreTrainedModel] = [ DebertaV2Policy, ] with suppress(Exception): from transformers.models.openai.modeling_openai import ( OpenAIGPTPreTrainedModel, ) from parallelformers.policies.openai import OpenAIGPTPolicy self.builtin_policies[OpenAIGPTPreTrainedModel] = [ OpenAIGPTPolicy, ] with suppress(Exception): from transformers.models.electra.modeling_electra import ( ElectraPreTrainedModel, ) from parallelformers.policies.electra import ElectraPolicy self.builtin_policies[ElectraPreTrainedModel] = [ ElectraPolicy, ] with suppress(Exception): from transformers.models.blenderbot_small.modeling_blenderbot_small import ( BlenderbotSmallPreTrainedModel, ) from parallelformers.policies.blenderbot_small import ( BlenderbotSmallDecoderPolicy, BlenderbotSmallEncoderPolicy, ) self.builtin_policies[BlenderbotSmallPreTrainedModel] = [ BlenderbotSmallEncoderPolicy, BlenderbotSmallDecoderPolicy, ] with suppress(Exception): from transformers.models.distilbert.modeling_distilbert import ( DistilBertPreTrainedModel, ) from parallelformers.policies.distil_bert import DistilBertPolicy self.builtin_policies[DistilBertPreTrainedModel] = [ DistilBertPolicy, ] with suppress(Exception): from transformers.models.convbert.modeling_convbert import ( ConvBertPreTrainedModel, ) from parallelformers.policies.convbert import ConvBertPolicy self.builtin_policies[ConvBertPreTrainedModel] = [ ConvBertPolicy, ] with suppress(Exception): from transformers.models.bert_generation.modeling_bert_generation import ( BertGenerationPreTrainedModel, ) from parallelformers.policies.bert import BertPolicy self.builtin_policies[BertGenerationPreTrainedModel] = [ BertPolicy, ] with suppress(Exception): from transformers.models.big_bird.modeling_big_bird import ( BigBirdPreTrainedModel, ) from parallelformers.policies.bigbird import BigBirdPolicy self.builtin_policies[BigBirdPreTrainedModel] = [ BigBirdPolicy, ] with suppress(Exception): from transformers.models.bigbird_pegasus.modeling_bigbird_pegasus import ( BigBirdPegasusPreTrainedModel, ) from parallelformers.policies.bigbird_pegasus import ( BigBirdPegasusDecoderPolicy, BigBirdPegasusEncoderPolicy, ) self.builtin_policies[BigBirdPegasusPreTrainedModel] = [ BigBirdPegasusEncoderPolicy, BigBirdPegasusDecoderPolicy, ] with suppress(Exception): from transformers.models.vit.modeling_vit import ViTPreTrainedModel from parallelformers.policies.vit import ViTPolicy self.builtin_policies[ViTPreTrainedModel] = [ ViTPolicy, ] with suppress(Exception): from transformers.models.deit.modeling_deit import ( DeiTPreTrainedModel, ) from parallelformers.policies.deit import DeiTPolicy self.builtin_policies[DeiTPreTrainedModel] = [DeiTPolicy] with suppress(Exception): from transformers.models.mbart.modeling_mbart import ( MBartPreTrainedModel, ) from parallelformers.policies.mbart import ( MBartDecoderPolicy, MBartEncoderPolicy, ) self.builtin_policies[MBartPreTrainedModel] = [ MBartEncoderPolicy, MBartDecoderPolicy, ] with suppress(Exception): from transformers.models.t5.modeling_t5 import T5PreTrainedModel from parallelformers.policies.t5 import T5Policy self.builtin_policies[T5PreTrainedModel] = [ T5Policy, ] with suppress(Exception): from transformers.models.pegasus.modeling_pegasus import ( PegasusPreTrainedModel, ) from parallelformers.policies.pegasus import ( PegasusDecoderPolicy, PegasusEncoderPolicy, ) self.builtin_policies[PegasusPreTrainedModel] = [ PegasusEncoderPolicy, PegasusDecoderPolicy, ] with suppress(Exception): from transformers.models.fsmt.modeling_fsmt import ( PretrainedFSMTModel, ) from parallelformers.policies.fsmt import ( FSMTDecoderPolicy, FSMTEncoderPolicy, ) self.builtin_policies[PretrainedFSMTModel] = [ FSMTEncoderPolicy, FSMTDecoderPolicy, ] with suppress(Exception): from transformers.models.xlm.modeling_xlm import XLMPreTrainedModel from parallelformers.policies.xlm import ( XLMAttentionPolicy, XLMMLPPolicy, ) self.builtin_policies[XLMPreTrainedModel] = [ XLMAttentionPolicy, XLMMLPPolicy, ] with suppress(Exception): from transformers.models.m2m_100.modeling_m2m_100 import ( M2M100PreTrainedModel, ) from parallelformers.policies.m2m_100 import ( M2M100DecoderPolicy, M2M100EncoderPolicy, ) self.builtin_policies[M2M100PreTrainedModel] = [ M2M100EncoderPolicy, M2M100DecoderPolicy, ] with suppress(Exception): from transformers.models.marian.modeling_marian import ( MarianPreTrainedModel, ) from parallelformers.policies.marian import ( MarianDecoderPolicy, MarianEncoderPolicy, ) self.builtin_policies[MarianPreTrainedModel] = [ MarianEncoderPolicy, MarianDecoderPolicy, ] with suppress(Exception): from transformers.models.mobilebert.modeling_mobilebert import ( MobileBertPreTrainedModel, ) from parallelformers.policies.mobilebert import MobileBertPolicy self.builtin_policies[MobileBertPreTrainedModel] = [ MobileBertPolicy, ] with suppress(Exception): from transformers.models.mpnet.modeling_mpnet import ( MPNetPreTrainedModel, ) from parallelformers.policies.mpnet import ( MPNetEncoderPolicy, MPNetLayerPolicy, ) self.builtin_policies[MPNetPreTrainedModel] = [ MPNetEncoderPolicy, MPNetLayerPolicy, ] with suppress(Exception): from transformers.models.luke.modeling_luke import ( LukePreTrainedModel, ) from parallelformers.policies.luke import LukePolicy self.builtin_policies[LukePreTrainedModel] = [ LukePolicy, ] with suppress(Exception): from transformers.models.dpr.modeling_dpr import ( DPRPretrainedContextEncoder, DPRPretrainedQuestionEncoder, DPRPretrainedReader, ) self.builtin_policies[DPRPretrainedReader] = [ BertPolicy, ] self.builtin_policies[DPRPretrainedQuestionEncoder] = [ BertPolicy, ] self.builtin_policies[DPRPretrainedContextEncoder] = [ BertPolicy, ] with suppress(Exception): from transformers.models.lxmert.modeling_lxmert import ( LxmertPreTrainedModel, ) from parallelformers.policies.lxmert import LxmertPolicy self.builtin_policies[LxmertPreTrainedModel] = [ LxmertPolicy, ] with suppress(Exception): from transformers.models.hubert.modeling_hubert import ( HubertPreTrainedModel, ) from parallelformers.policies.hubert import HubertPolicy self.builtin_policies[HubertPreTrainedModel] = [ HubertPolicy, ] with suppress(Exception): from transformers.models.wav2vec2.modeling_wav2vec2 import ( Wav2Vec2PreTrainedModel, ) from parallelformers.policies.wav2vec import Wav2VecPolicy self.builtin_policies[Wav2Vec2PreTrainedModel] = [ Wav2VecPolicy, ] with suppress(Exception): from transformers.models.xlnet.modeling_xlnet import ( XLNetPreTrainedModel, ) from parallelformers.policies.xlnet import XLNetPolicy self.builtin_policies[XLNetPreTrainedModel] = [ XLNetPolicy, ] with suppress(Exception): from transformers.models.retribert.modeling_retribert import ( RetriBertPreTrainedModel, ) self.builtin_policies[RetriBertPreTrainedModel] = [ BertPolicy, ] with suppress(Exception): from transformers.models.clip.modeling_clip import ( CLIPPreTrainedModel, ) from parallelformers.policies.clip import ( CLIPLayerPolicy, CLIPTextPolicy, CLIPVisionPolicy, ) self.builtin_policies[CLIPPreTrainedModel] = [ CLIPLayerPolicy, CLIPTextPolicy, CLIPVisionPolicy, ] with suppress(Exception): from transformers.models.detr.modeling_detr import ( DetrPreTrainedModel, ) from parallelformers.policies.detr import ( DetrDecoderPolicy, DetrEncoderPolicy, ) self.builtin_policies[DetrPreTrainedModel] = [ DetrEncoderPolicy, DetrDecoderPolicy, ] with suppress(Exception): from transformers.models.reformer.modeling_reformer import ( ReformerPreTrainedModel, ) from parallelformers.policies.reformer import ReformerPolicy self.builtin_policies[ReformerPreTrainedModel] = [ ReformerPolicy, ] with suppress(Exception): from transformers.models.longformer.modeling_longformer import ( LongformerPreTrainedModel, ) from parallelformers.policies.longformer import LongformerPolicy self.builtin_policies[LongformerPreTrainedModel] = [ LongformerPolicy, ] with suppress(Exception): from transformers.models.roformer.modeling_roformer import ( RoFormerPreTrainedModel, ) from parallelformers.policies.roformer import RoformerPolicy self.builtin_policies[RoFormerPreTrainedModel] = [ RoformerPolicy, ] with suppress(Exception): from transformers.models.ibert.modeling_ibert import ( IBertPreTrainedModel, ) from parallelformers.policies.ibert import IBertPolicy self.builtin_policies[IBertPreTrainedModel] = [ IBertPolicy, ] with suppress(Exception): from transformers.models.tapas.modeling_tapas import ( TapasPreTrainedModel, ) from parallelformers.policies.tapas import TapasPolicy self.builtin_policies[TapasPreTrainedModel] = [ TapasPolicy, ] with suppress(Exception): from transformers.models.funnel.modeling_funnel import ( FunnelPreTrainedModel, ) from parallelformers.policies.funnel import FunnelPolicy self.builtin_policies[FunnelPreTrainedModel] = [ FunnelPolicy, ] with suppress(Exception): from transformers.models.layoutlm.modeling_layoutlm import ( LayoutLMPreTrainedModel, ) from parallelformers.policies.layoutlm import LayoutLMPolicy self.builtin_policies[LayoutLMPreTrainedModel] = [ LayoutLMPolicy, ] with suppress(Exception): from transformers.models.led.modeling_led import LEDPreTrainedModel from parallelformers.policies.led import ( LEDDecoderPolicy, LEDEncoderPolicy, ) self.builtin_policies[LEDPreTrainedModel] = [ LEDEncoderPolicy, LEDDecoderPolicy, ] with suppress(Exception): from transformers.models.prophetnet.modeling_prophetnet import ( ProphetNetPreTrainedModel, ) from parallelformers.policies.prophetnet import ( ProphetNetDecoderPolicy, ProphetNetEncoderPolicy, ) self.builtin_policies[ProphetNetPreTrainedModel] = [ ProphetNetEncoderPolicy, ProphetNetDecoderPolicy, ] with suppress(Exception): from transformers.models.visual_bert.modeling_visual_bert import ( VisualBertPreTrainedModel, ) from parallelformers.policies.visual_bert import VisualBertPolicy self.builtin_policies[VisualBertPreTrainedModel] = [ VisualBertPolicy, ] with suppress(Exception): from transformers.models.speech_to_text.modeling_speech_to_text import ( Speech2TextPreTrainedModel, ) from parallelformers.policies.speech_to_text import ( Speech2TextDecoderPolicy, Speech2TextEncoderPolicy, ) self.builtin_policies[Speech2TextPreTrainedModel] = [ Speech2TextEncoderPolicy, Speech2TextDecoderPolicy, ] with suppress(Exception): from transformers.models.gptj.modeling_gptj import ( GPTJPreTrainedModel, ) from parallelformers.policies.gptj import GPTJPolicy self.builtin_policies[GPTJPreTrainedModel] = [ GPTJPolicy, ] with suppress(Exception): from transformers.models.megatron_bert import ( MegatronBertPreTrainedModel, ) from parallelformers.policies.megtron_bert import ( MegatronBertPolicy, ) self.builtin_policies[MegatronBertPreTrainedModel] = [ MegatronBertPolicy, ] def get_policy(self, model: nn.Module) -> Union[List[Policy], None]: """ Find appropriate policies for the current model Args: model (nn.Module): model to parallelize Returns: Union[List[Policy], None]: appropriate policies or none """ for k, v in self.available().items(): if isinstance(model, k): return v return None def available(self): """Dictionary of available models and policies""" return self.builtin_policies
1.617188
2
main/upper_air_humidity.py
RyosukeDTomita/gcmPlot
0
1099
# coding: utf-8 """ Name: upper_air_humidity.py Make upper level weather chart. Usage: python3 upper_air_humidity.py --file <ncfile> Author: <NAME> Date: 2022/01/07 """ import argparse from ncmagics import fetchtime, japanmap, meteotool def parse_args() -> dict: """parse_args. set file path. Args: Returns: dict: """ parser = argparse.ArgumentParser() parser.add_argument("-f", "--file", help="set ncfile.", type=str) p = parser.parse_args() args = {"file": p.file} return args def output_name(ncfile: str, isobaric_surface: int) -> str: """output_name. Args: ncfile (str): ncfile isobaric_surface (int): isobaric_surface Returns: str: """ date_time = fetchtime.fetch_time(ncfile) outname = (date_time + "_" + str(isobaric_surface)) return outname def main(): """main. """ args = parse_args() meteo_tool = meteotool.MeteoTools(args["file"]) lat, lon = meteo_tool.get_lat_lon() isobaric_surface = (850, 500, 300) #label_upper = (30, 0) #lebel_min = (-30, -60) for i, pressure in enumerate(isobaric_surface): # get parameter temp_c = meteo_tool.get_parameter('t', isobaric_surface=pressure) - 273.15 rh = meteo_tool.get_parameter('r', isobaric_surface=pressure) height_gpm = meteo_tool.get_parameter('gh', isobaric_surface=pressure) u_wind = meteo_tool.get_parameter('u', isobaric_surface=pressure) v_wind = meteo_tool.get_parameter('v', isobaric_surface=pressure) jp_map = japanmap.JpMap() jp_map.contour_plot(lon, lat, height_gpm) #jp_map.shade_plot(lon, lat, temp_c, # label="2m temperature ($^\circ$C)", # color_bar_label_max=label_upper[i], # color_bar_label_min=lebel_min[i], # color_map_type="temperature", # double_color_bar=True,) jp_map.shade_plot(lon, lat, rh, label="relative humidity (%)", color_bar_label_max=100, color_bar_label_min=0, color_map_type="gray", double_color_bar=False,) jp_map.vector_plot(lon, lat, u_wind, v_wind, vector_interval=5, vector_scale=10, mode="wind") #jp_map.gray_shade(lon, lat, rh, # label="relative humidity (%)", # color_bar_label_max=100, # color_bar_label_min=0, # ) if pressure == 850: jp_map.color_line(lon, lat, temp_c, line_value=-6, color='#0000ff') if pressure == 500: jp_map.color_line(lon, lat, temp_c, line_value=-36, color='#b22222') outname = output_name(args["file"], pressure) print(outname) jp_map.save_fig(outname, str(pressure) + "hPa") if __name__ == "__main__": main()
3.203125
3