content
stringlengths 0
14.9M
| filename
stringlengths 44
136
|
---|---|
# Copyright 2010-2014 Google Inc. All Rights Reserved.
# Author: [email protected] (Steve Scott)
logit.spike <- function(formula,
niter,
data,
subset,
prior = NULL,
na.action = options("na.action"),
contrasts = NULL,
drop.unused.levels = TRUE,
initial.value = NULL,
ping = niter / 10,
nthreads = 0,
clt.threshold = 2,
mh.chunk.size = 10,
proposal.df = 3,
sampler.weights = c("DA" = .333, "RWM" = .333,
"TIM" = .333),
seed = NULL,
...) {
## Uses Bayesian MCMC to fit a logistic regression model with a
## spike-and-slab prior.
##
## Args:
## formula: model formula, as would be passed to 'glm', specifying the
## maximal model (i.e. the model with all predictors included).
## niter: desired number of MCMC iterations
## data: optional data.frame containing the data described in 'formula'
## subset: an optional vector specifying a subset of observations to be used
## in the fitting process.
## prior: an optional object inheriting from SpikeSlabGlmPrior. If missing,
## a prior will be constructed by calling LogitZellnerPrior with the
## remaining arguments.
## na.action: a function which indicates what should happen when the data
## contain ‘NA’s. The default is set by the ‘na.action’ setting of
## ‘options’, and is ‘na.fail’ if that is unset. The ‘factory-fresh’
## default is ‘na.omit’. Another possible value is ‘NULL’, no action.
## Value ‘na.exclude’ can be useful.
## contrasts: an optional list. See the ‘contrasts.arg’ of
## ‘model.matrix.default’. An optional list.
## drop.unused.levels: should factor levels that are unobserved be dropped
## from the model?
## initial.value: Initial value of logistic regression coefficients for the
## MCMC algorithm. Can be given as a numeric vector, a 'logit.spike'
## object, or a 'glm' object. If a 'logit.spike' object is used for
## initialization, it is assumed to be a previous MCMC run to which
## 'niter' futher iterations should be added. If a 'glm' object is
## supplied, its coefficients will be used as the initial values in the
## MCMC simulation.
## ping: if positive, then print a status update every 'ping' MCMC
## iterations.
## nthreads: The number of threads to use when imputing latent data.
## clt.threshold: The smallest number of successes or failures needed to do
## use asymptotic data augmentation.
## mh.chunk.size: The largest number of parameters to draw together in a
## single Metropolis-Hastings proposal. A non-positive number means to
## use a single chunk.
## proposal.df: The degrees of freedom parameter for the multivariate T
## proposal distribution used for Metropolis-Hastings updates. A
## nonpositive number means to use a Gaussian proposal.
## sampler.weights: A 3-vector representing a discrete probability
## distribution. What fraction of the time should the sampler spend. The
## vector must have names "DA", "TIM", and "RWM" corresponding to data
## augmentation, tailored independence Metropolis, and random walk
## Metropolis.
## seed: Seed to use for the C++ random number generator. NULL or an int.
## If NULL, then the seed will be taken from the global .Random.seed
## object.
## ... : parameters to be passed to LogitZellnerPrior.
##
## Returns:
## An object of class 'logit.spike', which is a list containing the
## following values
##
## - beta: A 'niter' by 'ncol(X)' matrix of regression coefficients
## many of which may be zero. Each row corresponds to an MCMC
## iteration.
## - prior: The prior that was used to fit the model.
##
## In addition, the returned object contains sufficient details for
## the call to model.matrix in the predict.lm.spike method.
stopifnot(is.numeric(sampler.weights),
length(sampler.weights) == 3,
"DA" %in% names(sampler.weights),
"TIM" %in% names(sampler.weights),
"RWM" %in% names(sampler.weights),
all(sampler.weights >= 0),
all(sampler.weights <= 1),
abs(sum(sampler.weights) - 1.0) < .01)
has.data <- !missing(data)
cl <- match.call()
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- drop.unused.levels
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
mt <- attr(mf, "terms")
response <- model.response(mf, "any")
## Unpack the vector of trials. If y is a 2-column matrix then the first
## column is the vector of success counts and the second is the vector of
## failure counts. Otherwise y is just a vector, and the vector of trials
## should just be a column of 1's.
if (!is.null(dim(response)) && length(dim(response)) > 1) {
stopifnot(length(dim(response)) == 2, ncol(response) == 2)
## If the user passed a formula like "cbind(successes, failures) ~
## x", then y will be a two column matrix
ny <- response[, 1] + response[, 2]
response <- response[, 1]
} else {
## The following line admits y's which are TRUE/FALSE, 0/1 or 1/-1.
response <- response > 0
ny <- rep(1, length(response))
}
design <- model.matrix(mt, mf, contrasts)
if (is.null(prior)) {
prior <- LogitZellnerPrior(design, response, ...)
}
stopifnot(inherits(prior, "SpikeSlabGlmPrior"))
if (!is.null(initial.value)) {
if (inherits(initial.value, "logit.spike")) {
stopifnot(colnames(initial.value$beta) == colnames(design))
beta0 <- as.numeric(tail(initial.value$beta, 1))
} else if (inherits(initial.value, "glm")) {
stopifnot(colnames(initial.value$beta) == colnames(design))
beta0 <- coef(initial.value)
} else if (is.numeric(initial.value)) {
stopifnot(length(initial.value) == ncol(design))
beta0 <- initial.value
} else {
stop("initial.value must be a 'logit.spike' object, a 'glm' object,",
"or a numeric vector")
}
} else {
## No initial value was supplied
beta0 <- prior$mu
}
stopifnot(is.matrix(design),
nrow(design) == length(response),
length(prior$mu) == ncol(design),
length(prior$prior.inclusion.probabilities) == ncol(design),
all(ny >= response),
all(response >= 0))
if (is.null(prior$max.flips)) {
prior$max.flips <- -1
}
if (!is.null(seed)) {
seed <- as.integer(seed)
}
## Make sure the sampler weights are in the expected order.
sampler.weights <- sampler.weights[c("DA", "RWM", "TIM")]
ans <- .Call("logit_spike_slab_wrapper",
as.matrix(design),
as.integer(response),
as.integer(ny),
prior,
as.integer(niter),
as.integer(ping),
as.integer(nthreads),
beta0,
as.integer(clt.threshold),
as.integer(mh.chunk.size),
sampler.weights,
seed)
ans$prior <- prior
class(ans) <- c("logit.spike", "glm.spike")
## The stuff below will be needed by predict.logit.spike.
ans$contrasts <- attr(design, "contrasts")
ans$xlevels <- .getXlevels(mt, mf)
ans$call <- cl
ans$terms <- mt
## The next few entries are needed by some of the diagnostics plots and by
## summary.logit.spike.
fitted.logits <- design %*% t(ans$beta)
log.likelihood.contributions <-
response * fitted.logits +
ny * plogis(fitted.logits, log.p = TRUE, lower.tail = FALSE)
ans$log.likelihood <- colSums(log.likelihood.contributions)
sign <- rep(1, length(response))
sign[response / ny < 0.5] <- -1
ans$deviance.residuals <- sign * sqrt(rowMeans(
-2 * log.likelihood.contributions))
p.hat <- sum(response) / sum(ny)
ans$null.log.likelihood <- sum(
response * log(p.hat) + (ny - response) * log(1 - p.hat))
fitted.probabilities <- plogis(fitted.logits)
ans$fitted.probabilities <- rowMeans(fitted.probabilities)
ans$fitted.logits <- rowMeans(fitted.logits)
# Chop observed data into 10 buckets. Equal numbers of data points in each
# bucket. Compare the average predicted success probability of the
# observations in that bucket with the empirical success probability for that
# bucket.
#
# dimension of fitted values is nobs x niter
if (!is.null(initial.value) && inherits(initial.value, "logit.spike")) {
ans$beta <- rbind(initial.value$beta, ans$beta)
}
ans$response <- response
if (any(ny != 1)) {
ans$trials <- ny
}
colnames(ans$beta) <- colnames(design)
if (has.data) {
## Note, if a data.frame was passed as an argument to this function then
## saving the data frame will be cheaper than saving the model.frame.
ans$training.data <- data
} else {
## If the model was called with a formula referring to objects in another
## environment, then saving the model frame will capture these variables so
## they can be used to recreate the design matrix.
ans$training.data <- mf
}
## Make the answer a class, so that the right methods will be used.
class(ans) <- c("logit.spike", "lm.spike", "glm.spike")
return(ans)
}
predict.logit.spike <- function(object, newdata, burn = 0,
type = c("prob", "logit", "link", "response"),
na.action = na.pass, ...) {
## Prediction method for logit.spike
## Args:
## object: object of class "logit.spike" returned from the logit.spike
## function
## newdata: A data frame including variables with the same names as the data
## frame used to fit 'object'.
## burn: The number of MCMC iterations in 'object' that should be discarded.
## If burn < 0 then all iterations are kept.
## type: The type of prediction desired. If 'prob' then the prediction is
## returned on the probability scale. If 'logit' then it is returned on
## the logit scale (i.e. the scale of the linear predictor). Also accepts
## 'link' and 'response' for compatibility with predict.glm.
## ...: unused, but present for compatibility with generic predict().
##
## Returns:
## A matrix of predictions, with each row corresponding to a row in newdata,
## and each column to an MCMC iteration.
type <- match.arg(type)
predictors <- GetPredictorMatrix(object, newdata, na.action = na.action, ...)
beta <- object$beta
if (burn > 0) {
beta <- beta[-(1:burn), , drop = FALSE]
}
eta <- predictors %*% t(beta)
if (type == "logit" || type == "link") return(eta)
if (type == "prob" || type == "response") return(plogis(eta))
}
plot.logit.spike <- function(
x,
y = c("inclusion", "coefficients", "scaled.coefficients", "fit",
"residuals", "size", "help"),
burn = SuggestBurnLogLikelihood(x$log.likelihood),
...) {
## S3 method for plotting logit.spike objects.
## Args:
## x: The object to be plotted.
## y: The type of plot desired.
## ...: Additional named arguments passed to the functions that
## actually do the plotting.
y <- match.arg(y)
if (y == "inclusion") {
PlotMarginalInclusionProbabilities(x$beta,
burn = burn,
...)
} else if (y == "coefficients") {
PlotLmSpikeCoefficients(x$beta,
burn = burn,
...)
} else if (y == "scaled.coefficients") {
scale.factors <- apply(model.matrix(x), 2, sd)
PlotLmSpikeCoefficients(x$beta,
burn = burn,
scale.factors = scale.factors,
...)
} else if (y == "fit") {
PlotLogitSpikeFitSummary(x, burn = burn, ...)
} else if (y == "residuals") {
PlotLogitSpikeResiduals(x, ...)
} else if (y == "size") {
PlotModelSize(x$beta, burn = burn, ...)
} else if (y == "help") {
help("plot.logit.spike", package = "BoomSpikeSlab", help_type = "html")
} else {
stop("Unrecognized option", y, "in plot.logit.spike")
}
}
PlotLogitSpikeResiduals <- function(model, ...) {
## Args:
## model: An object of class logit.spike.
## ...: Optional named arguments passed to plot().
##
## Details:
##
## The "deviance residuals" are defined as the signed square root each
## observation's contribution to log likelihood. The sign of the residual is
## positive if half or more of the trials associated with an observation are
## successes. The sign is negative otherwise.
##
## The "contribution to log likelihood" is taken to be the posterior mean of
## an observations log likelihood contribution, averaged over the life of the
## MCMC chain.
##
## The deviance residual is plotted against the fitted value, again averaged
## over the life of the MCMC chain.
##
## The plot also shows the .95 and .99 bounds from the square root of a
## chi-square(1) random variable. As a rough approximation, about 5% and 1%
## of the data should lie outside these bounds.
residuals <- model$deviance.residuals
fitted <- model$fitted.logits
plot(fitted,
residuals,
pch = ifelse(residuals > 0, "+", "-"),
col = ifelse(residuals > 0, "red", "blue"),
xlab = "fitted logit",
ylab = "deviance residual",
...)
abline(h = 0)
abline(h = c(-1, 1) * sqrt(qchisq(.95, df = 1)), lty = 2, col = "lightgray")
abline(h = c(-1, 1) * sqrt(qchisq(.99, df = 1)), lty = 3, col = "lightgray")
legend("topright", pch = c("+", "-"), col = c("red", "blue"),
legend = c("success", "failure"))
}
PlotLogitSpikeFitSummary <- function(
model,
burn = 0,
which.summary = c("both", "r2", "bucket"),
scale = c("logit", "probability"),
cutpoint.basis = c("sample.size", "equal.range"),
number.of.buckets = 10,
...) {
## Args:
## model: An object of class logit.spike to be plotted.
## burn: A number of initial MCMC iterations to be discarded.
## which.summary: Which fit summaries should be plotted.
## scale: The scale on which to plot the 'bucket' summary.
## ...: Extra arguments passed to plot().
stopifnot(inherits(model, "logit.spike"))
which.summary <- match.arg(which.summary)
scale <- match.arg(scale)
cutpoint.basis <- match.arg(cutpoint.basis)
fit <- summary(model,
burn = burn,
cutpoint.scale = scale,
cutpoint.basis = cutpoint.basis,
number.of.buckets = number.of.buckets)
if (which.summary == "both") {
opar <- par(mfrow = c(1, 2))
on.exit(par(opar))
}
if (which.summary %in% c("both", "r2")) {
r2 <- fit$deviance.r2.distribution
plot.ts(r2,
xlab = "MCMC Iteration",
ylab = "deviance R-square",
main = "Deviance R-square",
...)
}
if (which.summary %in% c("both", "bucket")) {
bucket.fit <- fit$predicted.vs.actual
if (scale == "logit") {
bucket.fit <- qlogis(bucket.fit)
bucket.fit[!is.finite(bucket.fit)] <- NA
x.label = "predicted logit"
y.label = "observed logit"
} else {
x.label = "predicted probability"
y.label = "observed probability"
}
if (any(is.na(bucket.fit))) {
warning(
"Some buckets were empty, or had empirical probabilities of 0 or 1.")
}
plot(bucket.fit,
main = "Probabilities by decile",
xlab = x.label,
ylab = y.label,
...)
if (length(attributes(bucket.fit)$cutpoints) > 1) {
abline(v = attributes(bucket.fit)$cutpoints, lty = 3, col = "lightgray")
}
abline(a = 0, b = 1)
}
}
summary.logit.spike <- function(
object,
burn = 0,
order = TRUE,
cutpoint.scale = c("probability", "logit"),
cutpoint.basis = c("sample.size", "equal.range"),
number.of.buckets = 10,
coefficients = TRUE,
...) {
## Summary method for logit.spike coefficients
##
## Args:
## object: an object of class 'logit.spike'
## burn: an integer giving the number of MCMC iterations to discard as
## burn-in
## order: Logical indicating whether the output should be ordered according
## to posterior inclusion probabilities
##
## Returns:
## An object of class 'summary.logit.spike' that summarizes the model
## coefficients as in SummarizeSpikeSlabCoefficients.
if (coefficients) {
coefficient.table <-
SummarizeSpikeSlabCoefficients(object$beta, burn, order)
} else {
coefficient.table <- NULL
}
deviance.r2 <- (object$null.log.likelihood - object$log.likelihood) /
object$null.log.likelihood
index <- seq_along(object$log.likelihood)
if (burn > 0) {
index <- index[-(1:burn)]
}
log.likelihood <- object$log.likelihood[index]
response <- object$response
trials <- object$trials
if (is.null(object$trials)) {
trials <- rep(1, length(response))
}
cutpoint.scale <- match.arg(cutpoint.scale)
if (cutpoint.scale == "probability") {
fitted <- object$fitted.probabilities
} else {
fitted <- object$fitted.logits
}
cutpoint.basis = match.arg(cutpoint.basis)
if (cutpoint.basis == "sample.size") {
cutpoints <- quantile(fitted, (0:number.of.buckets) / number.of.buckets)
} else if (cutpoint.basis == "equal.range") {
fitted.range <- range(fitted, na.rm = TRUE)
cutpoints <- seq(min(fitted.range),
max(fitted.range),
len = number.of.buckets + 1)
}
cutpoints <- unique(cutpoints)
if (length(cutpoints) == 1) {
## Changing the type of "cutpoints" to keep R from choking on a
## "breaks" argument of length 1.
cutpoints <- 2
}
bucket.indicators <- cut(fitted, cutpoints)
fitted.value.buckets <- split(fitted, bucket.indicators)
bucket.predicted.means <-
tapply(object$fitted.probabilities, bucket.indicators, mean)
bucket.actual.means <-
tapply(response / trials, bucket.indicators, mean)
bucket.fit <- cbind(predicted = bucket.predicted.means,
observed = bucket.actual.means)
attributes(bucket.fit)$cutpoints <- cutpoints
ans <- list(coefficients = coefficient.table,
null.log.likelihood = object$null.log.likelihood,
mean.log.likelihood = mean(log.likelihood),
max.log.likelihood = max(log.likelihood),
deviance.r2 = mean(deviance.r2[index]),
deviance.r2.distribution = deviance.r2[index],
predicted.vs.actual = bucket.fit)
class(ans) <- "summary.logit.spike"
return(ans)
}
print.summary.logit.spike <- function(x, ...) {
## print method for summary.logit.spike objects.
cat("null log likelihood: ", x$null.log.likelihood, "\n")
cat("posterior mean log likelihood: ", x$mean.log.likelihood, "\n")
cat("posterior max log likelihood: ", x$max.log.likelihood, "\n")
cat("mean deviance R-sq: ", x$deviance.r2, "\n")
cat("\npredicted vs observed success rates, by decile:\n")
fit <- x$predicted.vs.actual
attributes(fit)$cutpoints <- NULL
print(fit)
if (!is.null(x$coefficients)) {
cat("\nsummary of coefficients:\n")
print.default(signif(x$coefficients, 3))
}
}
|
/scratch/gouwar.j/cran-all/cranData/BoomSpikeSlab/R/logit.spike.R
|
mlm.spike <- function(subject.formula,
choice.formula = NULL,
niter,
data,
choice.name.separator = ".",
contrasts = NULL,
subset,
prior = NULL,
ping = niter / 10,
proposal.df = 3,
rwm.scale.factor = 1,
nthreads = 1,
mh.chunk.size = 10,
proposal.weights = c("DA" = .5, "RWM" = .25, "TIM" = .25),
seed = NULL,
...) {
## Spike and slab regression for multinomial logit models.
## Extensive details about the model and MCMC algorithm are
## supplied below.
##
## Args:
## subject.formula: A model formula for the portion of the model
## relating the response to the subject level predictors. The
## response variable in this formula must be coercible to a
## factor. If only subject level intercepts are desired the
## formula should look like 'y ~ 1`. If subject level
## intercepts are not desired then `y ~ 0`.
## choice.formula: An optional formula relating the response
## variable to choice level characteristics. The response
## variable should be the same as in subject.formula (though
## technically it can be omitted). The variable names used in
## the formula should omit the choice levels (which are a
## required part of the variable names in the 'data'
## argument). Thus the formula should be 'y ~ MPG + HP', not
## 'y ~ MPG.Honda + HP.Honda'.
## niter: The desired number of MCMC iterations.
## data: A data frame containing the data referenced in the
## 'subject.formula' and 'choice.formula' arguments. If
## 'choice.formula' is NULL then this argument is optional,
## and variables will be pulled from the parent environment if
## it is omitted. If 'choice.formula' is non-NULL, then
## 'data' must be supplied. A variable measuring a choice
## characteristic must be present for each choice level in the
## response variable. The stem for the variable names
## measuring the same concept must be identical, and choice
## level must be appended as a suffix, separated by a "."
## character. Thus, if 'HP' is a variable to be considered,
## and the response levels are 'Toyota', 'Honda', 'Chevy',
## then the data must contain variables named 'HP.Toyota',
## 'HP.Honda', and 'HP.Chevy', measuring HP for the different
## choices, whether they were chosen or not.
## choice.name.separator: The character used to separate the
## predictor names from the choice values for the choice-level
## predictor variables in 'data'.
## contrasts: An optional list indicating how contrasts and
## dummy variables are to be coded in the design matrix. See
## the contrasts.arg argument of 'model.matrix.default'.
## subset: an optional vector specifying a subset of
## observations to be used in the fitting process.
## prior: An object of class IndependentSpikeSlabPrior
## specifying the prior distribution of coefficient vector.
## See 'details' for more explanation about how the model
## is parameterized.
## ping: The frequency with which status updates are printed to
## the console. Measured in MCMC iterations.
## proposal.df: The tail thickness ("degress of freedom")
## parameter for the T distribution used to make
## Metropolis-Hastings proposals.
## rwm.scale.factor: A positive scalar. The scale factor
## applied to the asymptotic variance estimate for random walk
## Metropolis proposals. Larger values produce proposals with
## larger variances, which will be accepted less often, but
## which will produce larger jumps. Values between 0 and 1
## produce smaller jumps that will be accepted more often.
## nthreads: The number of threads to use during data
## augmentation. If the data size is very large then multiple
## threads can make data augmentation much faster, though they
## can actually slow things down in small problems.
## mh.chunk.size: The Metropolis-Hastings portions of the
## algorithm will operate on the model parameters a chunk at a
## time.
## proposal.weights: A vector of 3 probabilities (summing to 1)
## indicating the probability of each type of MH proposal
## during each iteration.
## seed: An integer to use as a seed for the C++ random number
## generator. If left NULL, the RNG will be seeded using the
## system clock.
## ...: Extra arguments passed to MultinomialLogitSpikeSlabPrior.
## These are ignored if 'prior' is non-NULL.
##
## Model details:
## A multinomial logit model has two sets of predictors: one measuring
## characterisitcs of the subject making the choice, and the other
## measuring characteristics of the items being chosen. The model
## can be written
##
## Pr(y[i] = m) \propto exp(beta.subject[, m] * x.subject[i, ]
## + beta.choice * x.choice[i, , m])
##
## The coefficients in this model are beta.subject and beta.choice.
## beta.choice is a subject.xdim by ('nchoices' - 1) matrix. Each row
## multiplies the design matrix produced by subject.formula for a
## particular choice level, where the first choice level is omitted
## (logically set to zero) for identifiability. beta.choice is a
## vector multiplying the design matrix produced by choice.formula,
## and thre are 'nchoices' of such matrices.
##
## The coefficient vector 'beta' is the concatenation
## c(beta.subject, beta.choice), where beta.subject is vectorized
## by stacking its columns (in the usual R fashion). This means
## that the first contiguous region of beta contains the
## subject-level coefficients for choice level 2.
##
## MCMC details:
## The MCMC algorithm randomly moves between three tyes of updates:
## data augmentation (DA), random walk Metropolis (RWM), and
## tailored independence Metropolis (TIM).
##
## * DA: Each observation in the model is associated with a set of
## latent variables that renders the complete data posterior
## distribution conditionally Gaussian. The augmentation scheme
## is described in Tuchler (2008). The data augmentation
## algorithm conditions on the latent data, and integrates out
## the coefficients, to sample the inclusion vector (i.e. the
## vector of indicators showing which coefficients are nonzero)
## using Gibbs sampling. Then the coefficients are sampled given
## complete data conditional on inclusion. This is the only move
## that attemps a dimension change.
##
## * RWM: A chunk of the coefficient vector (up to mh.chunk.size)
## is selected. The proposal distribution is either
## multivariate normal or multivariate T (depending on
## 'proposal.df') centered on current values of this chunk.
## The precision parameter of the normal (or T) is the negative
## Hessian of the un-normalized log posterior, evaluated at the
## current value. The precision is divided by
## rwm.scale.factor. Only coefficients currently included in
## the model at the time of the proposal will be modified.
##
## * TIM: A chunk of the coefficient vector (up to mh.chunk.size)
## is selected. The proposal distribution is constructed by
## locating the posterior mode (using the current value as a
## starting point). The proposal is a Gaussian (or
## multivariate T) centered on the posterior mode, with
## precision equal to the negative Hessian evaluated at the
## mode. This is an expensive, but effective step. If the
## posterior mode finding fails (for numerical reasons) then a
## RWM proposal will be attempted instead.
##
## Value:
## Returns an object of class mlm.spike, which is a list containing
## beta: A matrix containing the MCMC draws of the model
## coefficients. Rows in the matrix correspond to MCMC draws.
## Columns correspond to different coefficients.
## prior: The prior distribution used to fit the model.
## MH.accounting: A summary of the amount of time spent, successes
## and failures for each move type.
## Create the model matrix for the subject predictors.
function.call <- match.call(expand.dots = FALSE)
important.arguments <- match(c("subject.formula", "data", "subset"),
names(function.call),
0L)
subject.frame.call <- function.call[c(1L, important.arguments)]
subject.frame.call[[1L]] <- quote(stats::model.frame)
names(subject.frame.call)[2] <- "formula"
subject.frame.call[["drop.unused.levels"]] <- TRUE
subject.frame <- eval(subject.frame.call, parent.frame())
subject.terms <- attr(subject.frame, "terms")
subject.predictor.matrix <- model.matrix(subject.terms,
subject.frame,
contrasts)
response <- as.factor(model.response(subject.frame))
if (!is.factor(response)) {
stop("'", deparse(subject.formula[[2]]), "' is not a factor")
}
## Create the model matrix for the choice predictors.
choice.predictor.matrix <- NULL
choice.predictor.subject.id <- NULL
choice.predictor.choice.id <- NULL
response.levels <- levels(response)
if (!is.null(choice.formula)) {
if (missing(data)) {
stop("Choice predictors must be contained in a data frame ",
"passed by the 'data' argument.")
## TODO(figure out a way to support data in the parent.frame)
}
pattern <- paste0(choice.name.separator, response.levels, collapse = "|")
choice.predictor.names <- names(data)[grep(choice.name.separator, names(data), fixed = TRUE)]
long.data <- reshape(data,
varying = choice.predictor.names,
times = response.levels,
direction = "long",
sep = choice.name.separator)
names(long.data)[names(long.data) == "time"] <- "potential.choice"
important.arguments <- match(c("choice.formula", "data", "subset"),
names(function.call),
0L)
choice.frame.call <- function.call[c(1L, important.arguments)]
choice.frame.call[[1L]] <- quote(stats::model.frame)
names(choice.frame.call)[2] <- "formula"
choice.frame.call[["formula"]] <-
update(as.formula(choice.frame.call[["formula"]]), ~ . -1)
choice.frame.call[["data"]] <- quote(long.data)
subject.frame.call[["drop.unused.levels"]] <- TRUE
choice.frame <- eval(choice.frame.call)
choice.terms <- attr(choice.frame, "terms")
choice.predictor.matrix <- model.matrix(choice.terms, choice.frame, contrasts)
}
## Setup the prior.
if (is.null(prior)) {
prior <- MultinomialLogitSpikeSlabPrior(
response = response,
subject.x = subject.predictor.matrix,
choice.x = choice.predictor.matrix,
...)
}
stopifnot(inherits(prior, "IndependentSpikeSlabPrior"))
## Check the proposal weights.
stopifnot(is.numeric(proposal.weights))
stopifnot(length(proposal.weights) == 3)
if (any(proposal.weights < 0)) {
stop("You can't have a negative proposal weight.")
}
proposal.weights.sum <- sum(proposal.weights)
if (proposal.weights.sum <= 0) {
stop("At least one entry in proposal.weights must be positive.")
}
proposal.weights <- proposal.weights / proposal.weights.sum
proposal.weight.names <- names(proposal.weights)
if (!is.null(proposal.weight.names)) {
## If the proposal weights were given, be sure they are in the
## right order.
if (!all(c("DA", "RWM", "TIM") %in% proposal.weight.names)) {
stop("Proposal weight names should include 'DA', 'RWM', and 'TIM'.")
}
proposal.weights <- c("DA" = proposal.weights["DA"],
"RMW" = proposal.weights["RWM"],
"TIM" = proposal.weights["TIM"])
}
## Run the sampler.
ans<- .Call(analysis_common_r_multinomial_logit_spike_slab,
response,
subject.predictor.matrix,
choice.predictor.matrix,
choice.predictor.subject.id,
choice.predictor.choice.id,
prior,
niter,
ping,
proposal.df,
rwm.scale.factor,
nthreads,
mh.chunk.size,
proposal.weights,
seed)
ans$prior <- prior
subject.beta.names <- NULL
if (length(subject.predictor.matrix) > 0) {
subject.predictor.names <- colnames(subject.predictor.matrix)
subject.beta.names <- outer(subject.predictor.names,
response.levels[-1],
FUN = paste,
sep = ":")
}
choice.beta.names <- NULL
if (length(choice.predictor.matrix) > 0) {
choice.beta.names <- colnames(choice.predictor.matrix)
}
colnames(ans$beta) <- c(subject.beta.names, choice.beta.names)
class(ans) <- c("mlm.spike", "logit.spike", "lm.spike")
return(ans)
}
##======================================================================
MultinomialLogitSpikeSlabPrior <- function(
response,
subject.x,
expected.subject.model.size = 1,
choice.x = NULL,
expected.choice.model.size = 1,
max.flips = -1,
nchoices = length(levels(response)),
subject.dim = ifelse(is.null(subject.x), 0, ncol(subject.x)),
choice.dim = ifelse(is.null(choice.x), 0, ncol(choice.x))) {
## Build a prior distribution to be used with mlm.spike.
##
## Args:
## response: The response variable in the multinomial logistic
## regression. The response variable is optional if nchoices
## is supplied. If 'response' is provided then the prior
## means for the subject level intercpets will be chosen to
## match the empirical values of the response.
## subject.x: The design matrix for subject-level predictors.
## This can be NULL or of length 0 if no subject-level
## predictors are present.
## expected.subject.model.size: The expected number of non-zero
## coefficients -- per choice level -- in the subject specific
## portion of the model. All coefficients can be forced into
## the model by setting this to a negative number, or by setting
## it to be larger than the dimension of the subject-level
## predictors.
## choice.x: The design matrix for choice-level predictors. Each
## row of this matrix represents the characteristics of a choice
## in a choice occasion, so it takes 'nchoices' rows to encode
## one observation. This can be NULL or of length 0 if no
## choice-level predictors are present.
## expected.choice.model.size: The expected number of non-zero
## coefficients in the choice-specific portion of the model.
## All choice coefficients can be forced into the model by
## setting this to a negative number, or by setting it to be
## larger than the dimension of the choice-level predictors (for
## a single response level).
## max.flips: The maximum number of variable inclusion indicators
## the sampler will attempt to sample each iteration. If negative
## then all indicators will be sampled.
## nchoices: Tne number of potential response levels.
## subject.dim: The number of potential predictors in the
## subject-specific portion of the model.
## choice.dim: The number of potential predictors in the
## choice-specific portion of the model.
##
## Returns:
## An object of class IndependentSpikeSlabPrior, with elements
## arranged as expected by mlm.spike.
subject.beta.dim <- (nchoices - 1) * subject.dim
##-------- Build prior.inclusion.probabilities ---------
if (expected.subject.model.size > subject.dim
|| expected.subject.model.size < 0) {
subject.prior.inclusion.probabilities <- rep(1, subject.beta.dim)
expected.subject.model.size <- (nchoices - 1) * subject.dim
} else {
subject.prior.inclusion.probabilities <-
rep(expected.subject.model.size / subject.dim, subject.beta.dim)
}
choice.prior.inclusion.probabilities <- numeric(0)
if (choice.dim > 0) {
if (expected.choice.model.size >= choice.dim
|| expected.choice.model.size < 0) {
choice.prior.inclusion.probabilities <- rep(1, choice.dim)
expected.choice.model.size <- choice.dim
} else {
choice.prior.inclusion.probabilities <-
rep(expected.choice.model.size / choice.dim, choice.dim)
}
}
prior.inclusion.probabilities <- c(subject.prior.inclusion.probabilities,
choice.prior.inclusion.probabilities)
##------ Build prior.mean --------
subject.prior.mean <- matrix(0, nrow = subject.dim, ncol = nchoices - 1)
choice.prior.mean <- rep(0, choice.dim)
subject.intercept <- FALSE
if (!missing(response) &&
!is.null(subject.x) &&
all.equal(subject.x[, 1],
rep(1, nrow(subject.x)),
check.attributes = FALSE) == TRUE) {
## If the response was supplied and the model has subject level
## intercepts, set the intercept prior means to correspond to
## the MAP estimate under a Jeffreys prior. That is, add 1
## prior observation, evenly split among all levels.
subject.intercept <- TRUE
response.table <- table(response)
response.table <- response.table + 1.0 / length(response.table)
intercept.map.estimate <- response.table / length(response)
logits <- log(intercept.map.estimate / intercept.map.estimate[1])
subject.prior.mean[1, ] <- logits[-1]
}
prior.mean <- c(subject.prior.mean, choice.prior.mean)
##------- Build prior.variance
subject.prior.beta.sd <- numeric(0)
choice.prior.beta.sd <- numeric(0)
if (!is.null(subject.x)) {
subject.x.sd <- sqrt(apply(subject.x, 2, var))
if (subject.intercept) {
subject.x.sd[1] <- 1
}
## The prior is that the total variation in X * beta is something
## like -6..6, so the variance of X * beta is 4, and the variance of
## each x[i] * beta[i] will be 4 / (expected.model.size)
subject.prior.beta.sd <- 2 / (subject.x.sd * expected.subject.model.size)
subject.prior.beta.sd <- rep(subject.prior.beta.sd, nchoices - 1)
}
if (!is.null(choice.x)) {
choice.x.sd <- sqrt(apply(choice.x, 2, var))
choice.prior.beta.sd <- 2 / (choice.x.sd * expected.choice.model.size)
}
prior.beta.sd <- c(subject.prior.beta.sd, choice.prior.beta.sd)
ans <- IndependentSpikeSlabPrior(
prior.inclusion.probabilities = prior.inclusion.probabilities,
optional.coefficient.estimate = prior.mean,
prior.beta.sd = prior.beta.sd,
sdy = 1,
mean.y = 1,
expected.r2 = .5,
prior.df = 1,
number.of.observations = 0,
number.of.variables = length(prior.mean),
sdx = 1)
ans$max.flips <- max.flips
## TODO(stevescott): should we give this object its own class, and
## keep the choice/subject information separate?
return(ans)
}
|
/scratch/gouwar.j/cran-all/cranData/BoomSpikeSlab/R/mlm.spike.R
|
GetPredictorMatrix <- function(object, newdata, na.action = na.omit, ...) {
## Obtain the design matrix for making predictions based on a glm.spike
## object. This function performs much the same role as model.matrix, but it
## allows for the 'newdata' argument to be a vector, matrix, or data frame.
##
## Args:
## object: An object of class glm.spike. The object must be a list with the
## following elements
## * beta: a matrix of MCMC draws, with rows representing draws, and
## columns representing coefficients.
## * xlevels: the levels of any contrasts present in the original training
## data.
## * contrasts: the "contrasts" attribute of the original design matrix
## used to train the model.
## * terms: the terms of the formula used to fit the original model.
## newdata: A data frame, matrix, or vector containing the predictors needed
## to make a prediction. If newdata is a matrix it must have the same
## number of columns as length(object$beta), unless it is off by one and
## the model contains an intercept, in which case an intercept term will
## be added. If length(object$beta) == 1 (or 2, with one element
## containing an intercept) then newdata can be a numeric vector.
## na.action: what to do about NA's.
## ...: extra arguments passed to model.matrix (if newdata is a data frame).
##
## Returns:
## A matrix of predictor variables suitable for multiplication by
## object$beta.
stopifnot(inherits(object, "glm.spike"))
beta.dimension <- ncol(object$beta)
if (is.data.frame(newdata)) {
tt <- terms(object)
Terms <- delete.response(tt)
m <- model.frame(Terms, newdata, na.action = na.action,
xlev = object$xlevels)
if (!is.null(cl <- attr(Terms, "dataClasses"))) .checkMFClasses(cl, m)
X <- model.matrix(Terms, m, contrasts.arg = object$contrasts, ...)
if (nrow(X) != nrow(newdata)) {
warning("Some entries in newdata have missing values, and will",
"be omitted from the prediction.")
}
} else if (is.matrix(newdata)) {
X <- newdata
if (ncol(X) == beta.dimension - 1) {
if (attributes(object$terms)$intercept) {
X <- cbind(1, X)
warning("Implicit intercept added to newdata.")
}
}
} else if (is.vector(newdata) && beta.dimension == 2) {
if (attributes(object$terms)$intercept) {
X <- cbind(1, newdata)
}
} else if (is.vector(newdata) && beta.dimension == 1) {
X <- matrix(newdata, ncol=1)
} else {
stop("Argument 'newdata' must be a matrix or data.frame,",
"unless dim(beta) <= 2, in which case it can be a vector")
}
if (ncol(X) != beta.dimension) {
stop("The number of coefficients does not match the number",
"of predictors in lm.spike")
}
return(X)
}
model.matrix.glm.spike <- function(object, data = NULL, ...) {
## S3 generic implementing model.matrix for glm.spike objects.
##
## Args:
## object: An object of class glm.spike.
## data: Either a data frame to use when building the model matrix, or NULL.
## If NULL then the training data from the original object will be used.
## ...: Extra arguments passed to model.matrix.default.
##
## Returns:
## The matrix of predictors used at training time, so long as the
## original data used to fit the model is available in the frame
## where this function is called.
##
## Details:
## glm.spike objects do not store the predictors used to fit the
## model. If the training data is modified between when 'object'
## is fit and when this function is called, the modifications will
## be reflected in the returned value.
if (is.null(data)) {
data = object$training.data
}
return(model.matrix.default(object, data = data))
}
|
/scratch/gouwar.j/cran-all/cranData/BoomSpikeSlab/R/model.matrix.R
|
NestedRegression <- function(response,
predictors,
group.id,
residual.precision.prior = NULL,
coefficient.prior = NULL,
coefficient.mean.hyperprior = NULL,
coefficient.variance.hyperprior = NULL,
suf = NULL,
niter,
ping = niter / 10,
sampling.method = c("ASIS", "DA"),
seed = NULL) {
## Fits a Bayesian hierarchical regression model (with a Gaussian prior) to
## the data provided.
##
## Args:
## response: A numeric vector. The response variable to be modeled.
## predictors: A numeric matrix of predictor variables, including an
## intercept term if one is desired. The number of rows must match
## length(response).
## group.id: A factor (or object that can be converted using as.factor)
## naming the group to which each entry in 'response' belongs.
## residual.precision.prior: An object of type SdPrior describing the prior
## distribution of the residual standard deviation.
## coefficient.prior: An object of class MvnPrior, or NULL. If non-NULL
## this gives the initial values of the prior distribution of the
## regression coefficients in the nested regression model. This argument
## must be non-NULL if either 'coefficient.mean.hyperprior' or
## 'coefficient.variance.hyperprior' is NULL.
## coefficient.mean.hyperprior: An object of class MvnPrior, specifying the
## hyperprior distribution for the mean of 'coefficient.prior'. This
## argument can also be NULL, or FALSE. If NULL then a default prior will
## be used when learning the mean of the prior distribution. If FALSE
## then the mean of the prior distribution will not be learned; the mean
## of the 'coefficient.prior' distribution will be assumed instead.
## coefficient.variance.hyperprior: An object of class InverseWishartPrior,
## specifying the hyperprior distribution for the variance of
## 'coefficient.prior'. This argument can also be NULL, or FALSE. If
## NULL then a default prior will be used when learning the variance of
## the prior distribution. If FALSE then the variance of the prior
## distribution will not be learned; the variance of the
## 'coefficient.prior' distribution will be assumed instead.
## suf: A list, where each entry is of type RegressionSuf, giving the
## sufficient statistics for each group, or NULL. If NULL, then 'suf'
## will be computed from 'response', 'predictors', and 'group.id'. If
## non-NULL then these arguments will not be accessed, in which case they
## can be left unspecified. In 'big data' problems this can be a
## significant computational savings.
## niter: The desired number of MCMC iterations.
## ping: The frequency with which to print status updates.
## sampling.method: Use ASIS or standard data augmentation sampling. Both
## hyperpriors must be supplied to use ASIS. If either hyperprior is set
## to FALSE then the "DA" method will be used.
## seed: The integer-valued seed (or NULL) to use for the C++ random number
## generator.
##
## Returns:
## A list containing MCMC draws from the posterior distribution of model
## parameters. Each of the following is a vector, matrix, or array, with
## first index corresponding to MCMC draws, and later indices to distinct
## parameters.
## * coefficients: regression coefficients.
## * residual.sd: the residual standard deviation from the regression
## model.
## * prior.mean: The posterior distribution of the coefficient means across
## groups.
## * prior.variance: The posterior distribution of the variance matrix
## describing the distribution of regression coefficients across groups.
if (is.null(suf)) {
if (missing(response) || missing(predictors) || missing(group.id)) {
stop("NestedRegression either needs a list of sufficient statistics,",
" or a predictor matrix, response vector, and group indicators.")
}
suf <- .RegressionSufList(predictors, response, group.id)
}
stopifnot(is.list(suf))
stopifnot(length(suf) > 0)
stopifnot(all(sapply(suf, inherits, "RegressionSuf")))
if (length(unique(sapply(suf, function(x) ncol(x$xtx)))) != 1) {
stop("All RegressionSuf objects must have the same dimensions.")
}
xdim <- ncol(suf[[1]]$xtx)
sampling.method <- match.arg(sampling.method)
##----------------------------------------------------------------------
## Check that the priors are from the right families.
if (is.null(residual.precision.prior)) {
residual.precision.prior <- .DefaultNestedRegressionResidualSdPrior(suf)
}
stopifnot(inherits(residual.precision.prior, "SdPrior"))
##----------------------------------------------------------------------
if (is.logical(coefficient.mean.hyperprior) &&
coefficient.mean.hyperprior == FALSE) {
sampling.method <- "DA"
coefficient.mean.hyperprior <- NULL
} else {
if (is.null(coefficient.mean.hyperprior)) {
coefficient.mean.hyperprior <- .DefaultNestedRegressionMeanHyperprior(suf)
}
stopifnot(inherits(coefficient.mean.hyperprior, "MvnPrior"))
stopifnot(length(coefficient.mean.hyperprior$mean) == xdim)
}
##----------------------------------------------------------------------
if (is.logical(coefficient.variance.hyperprior) &&
coefficient.variance.hyperprior == FALSE) {
coefficient.variance.hyperprior <- NULL
sampling.method <- "DA"
} else if (is.null(coefficient.variance.hyperprior)) {
coefficient.variance.hyperprior <-
.DefaultNestedRegressionVarianceHyperprior(suf)
stopifnot(inherits(coefficient.variance.hyperprior, "InverseWishartPrior"),
ncol(coefficient.variance.hyperprior$variance.guess) == xdim)
}
##--------------------------------------------------------------------------
## If either hyperprior is non-NULL then coefficient.prior must be supplied.
## Otherwise, create a default value.
if (!is.null(coefficient.mean.hyperprior) &&
!is.null(coefficient.variance.hyperprior)) {
if (is.null(coefficient.prior)) {
coefficient.prior <- MvnPrior(rep(0, xdim), diag(rep(1, xdim)))
}
}
stopifnot(inherits(coefficient.prior, "MvnPrior"))
##----------------------------------------------------------------------
## Check remaining arguments.
stopifnot(is.numeric(niter),
length(niter) == 1,
niter > 0)
stopifnot(is.numeric(ping),
length(ping) == 1)
if (!is.null(seed)) {
seed <- as.integer(seed)
}
##----------------------------------------------------------------------
## Have C++ do the heavy lifting.
ans <- .Call("boom_nested_regression_wrapper",
suf,
coefficient.prior,
coefficient.mean.hyperprior,
coefficient.variance.hyperprior,
residual.precision.prior,
as.integer(niter),
as.integer(ping),
sampling.method,
seed)
ans$priors <- list(
coefficient.prior = coefficient.prior,
coefficient.mean.hyperprior = coefficient.mean.hyperprior,
coefficient.variance.hyperprior = coefficient.variance.hyperprior,
residual.precision.prior = residual.precision.prior)
##----------------------------------------------------------------------
## Slap on a class, and return the answer.
class(ans) <- "NestedRegression"
return(ans)
}
###======================================================================
.RegressionSufList <- function(predictors, response, group.id) {
## Args:
## predictors: A matrix of predictor variables
## response: A numeric response variable with length matching
## nrow(predictors).
## group.id: A factor with length matching 'response'.
##
## Returns:
## A list of RegressionSuf objects, one for each unique value in group.id.
## Each list element contains the sufficient statistics for a regression
## model for the subset of data corresponding to that value of group.id.
stopifnot(is.numeric(response))
stopifnot(is.matrix(predictors),
nrow(predictors) == length(response))
group.id <- as.factor(group.id)
stopifnot(length(group.id) == length(response))
MakeRegSuf <- function(data) {
return(RegressionSuf(X = as.matrix(data[,-1]),
y = as.numeric(data[,1])))
}
return(by(as.data.frame(cbind(response, predictors)),
group.id,
MakeRegSuf))
}
###======================================================================
.CollapseRegressionSuf <- function(reg.suf.list) {
## Args:
## reg.suf.list: A list of objects of class RegressionSuf. Elements must be
## of the same dimension (i.e. all regressions must have the same number
## of predictors).
## Returns:
## A single RegressionSuf object formed by accumulating the sufficient
## statistics from each list element.
stopifnot(is.list(reg.suf.list),
length(reg.suf.list) > 0,
all(sapply(reg.suf.list, inherits, "RegressionSuf")))
if (length(reg.suf.list) == 1){
return(reg.suf.list[[1]])
}
xtx <- reg.suf.list[[1]]$xtx
xty <- reg.suf.list[[1]]$xty
yty <- reg.suf.list[[1]]$yty
n <- reg.suf.list[[1]]$n
xsum <- reg.suf.list[[1]]$xbar * n
for (i in 2:length(reg.suf.list)) {
xtx <- xtx + reg.suf.list[[i]]$xtx
xty <- xty + reg.suf.list[[i]]$xty
yty <- yty + reg.suf.list[[i]]$yty
n <- n + reg.suf.list[[i]]$n
xsum <- xsum + reg.suf.list[[i]]$xbar * reg.suf.list[[i]]$n
}
xbar <- xsum / n
return(RegressionSuf(xtx = xtx, xty = xty, yty = yty, n = n, xbar = xbar))
}
###======================================================================
.ResidualVariance <- function(suf) {
## Args:
## suf: Sufficient statistics for a regression problem.
## Returns:
## The maximum likelihood (biased, but consistent) estimate of the residual
## variance in the regression problem.
stopifnot(inherits(suf, "RegressionSuf"))
sse <- as.numeric(suf$yty - t(suf$xty) %*% solve(suf$xtx, suf$xty))
df.model <- ncol(suf$xtx)
return(sse / (suf$n - df.model))
}
###======================================================================
.DefaultNestedRegressionMeanHyperprior <- function(suf) {
## Args:
## suf: A list of RegressionSuf sufficient statistics.
## Returns:
## An object of class MvnPrior that can serve as the default prior for the
## prior mean parameters in a NestedRegression model.
suf <- .CollapseRegressionSuf(suf)
## If xtx is full rank then center the prior on the OLS estimate beta-hat.
beta.hat <- tryCatch(solve(suf$xtx, suf$xty))
if (is.numeric(beta.hat)) {
## If the OLS estimate is computable, use it to center and scale the prior
## mean for the prior mean parameters.
return(MvnPrior(beta.hat, .ResidualVariance(suf) * solve(suf$xtx / suf$n)))
} else {
## If the OLS estimate is not computable (because the xtx matrix is not full
## rank) then center the prior mean at zero with what is hopefully a big
## variance.
xdim <- length(suf$xty)
zero <- rep(0, xdim);
V <- diag(rep(1000), xdim)
return(MvnPrior(zero, V))
}
}
###======================================================================
.DefaultNestedRegressionVarianceHyperprior <- function(suf) {
## Args:
## suf: A list of RegressionSuf sufficient statistics.
## Returns:
## An object of class InverseWishartPrior that can serve as the default
## prior for the prior variance parameters in a NestedRegression model.
number.of.groups <- length(suf)
suf <- .CollapseRegressionSuf(suf)
## Shrink the variance towards a small but realistic number. The variance of
## the grand mean is sigsq / X'X. It is also roughly Var(beta_g) /
## number.of.groups, so let's say the prior variance of beta_g is
## number.of.groups * sigsq / X'X.
variance.guess <- .ResidualVariance(suf) * number.of.groups * solve(suf$xtx)
variance.guess.weight <- ncol(variance.guess) + 1
return(InverseWishartPrior(variance.guess, variance.guess.weight))
}
.DefaultNestedRegressionResidualSdPrior <- function(suf) {
## Args:
## suf: A list of RegressionSuf sufficient statistics.
## Returns:
## An object of class SdPrior that can serve as the default prior for the
## residual standard deviation in a NestedRegression model.
## Details:
## Shrinks (with one degree of freedom) the residual variance towards the
## residual variance from an OLS model based on pooled data.
suf <- .CollapseRegressionSuf(suf)
variance.guess <- .ResidualVariance(suf)
return(SdPrior(sqrt(variance.guess), 1))
}
|
/scratch/gouwar.j/cran-all/cranData/BoomSpikeSlab/R/nested.regression.R
|
HiddenLayer <- function(number.of.nodes, prior = NULL,
expected.model.size = Inf) {
## Specify the structure of a hidden layer to be used in a feedforward neural
## network.
##
## TODO(steve): Include an option for a 'bias' term.
##
## Args:
## number.of.nodes: The number of output nodes in this hidden layer. The
## number of inputs is determined by the preceding layer.
## prior: An MvnPrior or SpikeSlabGlmPrior to use for the coefficients of
## each of the logistic regression models comprising this hidden layer.
## All models will use the same prior. The dimension of the prior must
## match the inputs from the previous layer.
##
## Returns:
## An object (list) encoding the necessary information for the underlying
## C++ code to build the desired neural network model.
check.scalar.integer(number.of.nodes)
stopifnot(number.of.nodes > 0)
stopifnot(is.null(prior) ||
inherits(prior, "MvnPrior") ||
inherits(prior, "SpikeSlabGlmPrior") ||
inherits(prior, "SpikeSlabGlmPriorDirect"))
ans <- list(number.of.nodes = number.of.nodes,
prior = prior,
expected.model.size = expected.model.size)
class(ans) <- c("HiddenLayerSpecification")
return(ans)
}
##===========================================================================
BayesNnet <- function(formula,
hidden.layers,
niter,
data,
subset,
prior = NULL,
expected.model.size = Inf,
drop.unused.levels = TRUE,
contrasts = NULL,
ping = niter / 10,
seed = NULL) {
## A Bayesian feed-forward neural network with logistic activation function
## and a Gaussian terminal layer.
##
## Args:
## formula: A model formula as one would pass to 'lm'.
## hidden.layers: A list of HiddenLayer objects defining the network
## structure.
## niter: The desired number of MCMC iterations.
## data: An optional data frame containing the variables used in 'formula'.
## subset: See 'lm'.
## prior: An object of class SpikeSlabPrior defining the prior distribution
## for the terminal layer. This includes the prior for the residual
## variance.
## drop.unused.levels: See 'lm'.
## contrasts: An optional list. See the 'contrasts.arg' of
## ‘model.matrix.default’.
## ping: The frequency with which to print status updates for the MCMC
## algorithm. Setting 'ping = 10' will print a status update message
## every 10 MCMC iterations.
## seed: The seed to use for the C++ random number generator.
##
## Returns:
## The MCMC draws for all the network coefficients. The return value also
## includes information needed by supporting methods (e.g. 'plot' and
## 'predict').
function.call <- match.call()
frame <- match.call(expand.dots = FALSE)
has.data <- !missing(data)
name.positions <- match(c("formula", "data", "subset", "na.action"),
names(frame), 0L)
frame <- frame[c(1L, name.positions)]
frame$drop.unused.levels <- drop.unused.levels
frame[[1L]] <- as.name("model.frame")
frame <- eval(frame, parent.frame())
model.terms <- attr(frame, "terms")
response <- model.response(frame, "numeric")
predictors <- model.matrix(model.terms, frame, contrasts)
## Check that each layer coheres with the preceding layer.
hidden.layers <- .CheckHiddenLayers(predictors, hidden.layers)
prior <- .EnsureTerminalLayerPrior(
response = response,
prior = prior,
hidden.layers = hidden.layers,
expected.model.size = expected.model.size)
check.positive.scalar(niter)
check.positive.scalar(ping)
if (!is.null(seed)) {
seed <- as.integer(seed)
}
ans <- .Call(analysis_common_r_do_feedforward,
predictors,
response,
hidden.layers,
prior,
as.integer(niter),
as.integer(ping),
seed)
ans$hidden.layer.specification <- hidden.layers
ans$niter <- niter
ans$contrasts <- attr(predictors, "contrasts")
ans$xlevels <- .getXlevels(model.terms, frame)
ans$call <- function.call
ans$terms <- model.terms
ans$response <- response
if (has.data) {
ans$training.data <- data
} else {
ans$training.data <- frame
}
dimnames(ans$hidden.layer.coefficients[[1]]) <-
list(NULL, colnames(predictors), NULL)
class(ans) <- c("BayesNnet")
return(ans)
}
##===========================================================================
plot.BayesNnet <- function(x, y = c("predicted", "residual", "structure",
"partial", "help"), ...) {
## Match the 'y' argument against the supplied default values, or the data frame
stopifnot(is.character(y))
which.function <- try(match.arg(y), silent = TRUE)
which.variable <- "all"
if (inherits(which.function, "try-error")) {
which.function <- "partial"
which.variable <- pmatch(y, names(x$training.data))
if (is.na(which.variable)) {
err <- paste0("The 'y' argument ", y, " must either match one of the plot types",
" or one of the predictor variable names.")
stop(err)
}
}
if (which.function == "predicted") {
PlotBayesNnetPredictions(x, ...)
} else if (which.function == "residual") {
PlotBayesNnetResiduals(x, ...)
} else if (which.function == "structure") {
PlotNetworkStructure(x, ...)
} else if (which.function == "help") {
help("plot.BayesNnet", package = "BoomSpikeSlab", help_type = "html")
} else if (which.function == "partial") {
if (which.variable == "all") {
varnames <- colnames(attributes(x$terms)$factors)
nvars <- length(varnames)
stopifnot(nvars >= 1)
nr <- max(1, floor(sqrt(nvars)))
nc <- ceiling(nvars / nr)
original.pars <- par(mfrow = c(nr, nc))
on.exit(par(original.pars))
for (i in 1:nvars) {
PartialDependencePlot(x, varnames[i], xlab = varnames[i], ...)
}
} else {
PartialDependencePlot(x, y, ...)
}
}
return(invisible(NULL))
}
##===========================================================================
SuggestBurn <- function(model) {
return(SuggestBurnLogLikelihood(-1 * model$residual.sd))
}
##===========================================================================
PlotBayesNnetPredictions <- function(model, burn = SuggestBurn(model), ...) {
pred <- predict(model, burn = burn)
predicted <- colMeans(pred)
actual <- model$response
plot(predicted, actual, ...)
abline(a = 0, b = 1)
}
##===========================================================================
PlotBayesNnetResiduals <- function(model, burn = SuggestBurn(model), ...) {
pred <- predict(model, burn = burn)
predicted <- colMeans(pred)
actual <- model$response
residual <- actual - predicted
plot(predicted, residual, ...)
abline(h = 0)
}
##===========================================================================
.HiddenLayerPriorMean <- function(prior) {
## Extract the mean of the prior distribution for hidden layer coefficients.
if (inherits(prior, "SpikeSlabPriorBase")) {
return(prior$mu)
} else if (inherits(prior, "MvnPrior")) {
return(prior$mean)
} else {
stop("Prior must be an MvnPrior or else inherit from SpikeSlabPriorBase")
}
}
##===========================================================================
.CheckHiddenLayers <- function(predictors, hidden.layers) {
## Check that the priors for each hidden layer are set and are of the
## appropriate dimension. Replace any NULL priors with default values.
## Return the updated list of hidden layers.
##
## Args:
## predictors: The matrix of predictors.
## hidden.layers: A list of HiddenLayerSpecification objects defining the
## hidden layers for the feed forward neural network model.
##
## Returns:
## hidden.layers, after checking that dimensions and priors are okay, and
## after replacing NULL priors with hopefully sensible defaults.
stopifnot(is.list(hidden.layers),
all(sapply(hidden.layers, inherits, "HiddenLayerSpecification")))
for (i in 1:length(hidden.layers)) {
if (is.null(hidden.layers[[i]]$prior)) {
expected.model.size <- hidden.layers[[i]]$expected.model.size
if (is.null(expected.model.size)) {
expected.model.size <- 10^10
}
check.positive.scalar(expected.model.size)
if (i == 1) {
## Logistic regression inputs are arbitrary.
prior <- LogitZellnerPrior(predictors,
prior.success.probability = .5,
expected.model.size = expected.model.size)
hidden.layers[[i]]$prior <- prior
} else {
## Logistic regression inputs are all between 0 and 1.
input.dimension <- hidden.layers[[i - 1]]$number.of.nodes
prior <- SpikeSlabGlmPriorDirect(
coefficient.mean = rep(0, input.dimension),
coefficient.precision = diag(rep(1, input.dimension)),
expected.model.size = expected.model.size)
hidden.layers[[i]]$prior <- prior
}
}
if (i == 1) {
stopifnot(length(.HiddenLayerPriorMean(hidden.layers[[i]]$prior))
== ncol(predictors))
} else {
stopifnot(length(.HiddenLayerPriorMean(hidden.layers[[i]]$prior))
== hidden.layers[[i - 1]]$number.of.nodes)
}
}
return(hidden.layers)
}
##===========================================================================
.EnsureTerminalLayerPrior <- function(response, hidden.layers, prior,
expected.model.size, ...) {
## Args:
## response: The vector of 'y' values from the regression.
## hidden.layers: A list of objects inheriting from
## HiddenLayerSpecification.
## prior: The prior distribution for the model in the terminal layer. This
## must be of type SpikeSlabPrior, SpikeSlabPriorDirect, or NULL. If NULL
## a default prior will be created.
##
## Returns:
## The checked prior distribution.
##
## Effects:
## Checks that the dimension of the prior matches the number of outputs in the
## final hidden layer.
dimension <- tail(hidden.layers, 1)[[1]]$number.of.nodes
if (is.null(prior)) {
precision <- diag(rep(1, dimension))
inclusion.probabilities <- rep(expected.model.size / dimension, dimension)
inclusion.probabilities[inclusion.probabilities > 1] <- 1
inclusion.probabilities[inclusion.probabilities < 0] <- 0
prior <- SpikeSlabPriorDirect(
coefficient.mean = rep(0, dimension),
coefficient.precision = precision,
prior.inclusion.probabilities = inclusion.probabilities,
sigma.guess = sd(response, na.rm = TRUE) / 2,
prior.df = 1)
}
stopifnot(inherits(prior, "SpikeSlabPrior")
|| inherits(prior, "SpikeSlabPriorDirect"))
return(prior)
}
##===========================================================================
predict.BayesNnet <- function(object, newdata = NULL, burn = 0, na.action = na.pass,
mean.only = FALSE, seed = NULL, ...) {
## Prediction method for BayesNnet.
## Args:
## object: object of class "BayesNnet" returned from the BayesNnet function.
## newdata: Either NULL, or else a data frame, matrix, or vector containing
## the predictors needed to make the prediction. If 'newdata' is 'NULL'
## then the predictors are taken from the training data used to create the
## model object. Note that 'object' does not store its training data, so
## the data objects used to fit the model must be present for the training
## data to be recreated. If 'newdata' is a data.frame it must contain
## variables with the same names as the data frame used to fit 'object'.
## If it is a matrix, it must have the same number of columns as
## object$beta. (An intercept term will be implicitly added if the number
## of columns is one too small.) If the dimension of object$beta is 1 or
## 2, then newdata can be a vector.
## burn: The number of MCMC iterations in 'object' that should be discarded.
## If burn <= 0 then all iterations are kept.
## na.action: what to do about NA's.
## mean.only: Logical. If TRUE then return the posterior mean of the
## predictive distribution. If FALSE then return the entire distribution.
## seed: Seed for the C++ random number generator.
## ...: extra aguments ultimately passed to model.matrix (in the event that
## newdata is a data frame)
## Returns:
## A matrix of predictions, with each row corresponding to a row in newdata,
## and each column to an MCMC iteration.
if (is.null(newdata)) {
predictor.matrix <- model.matrix(object, data = object$training.data)
} else {
predictor.matrix <- model.matrix(object, data = newdata)
}
stopifnot(is.matrix(predictor.matrix),
nrow(predictor.matrix) > 0)
check.nonnegative.scalar(burn)
check.scalar.boolean(mean.only)
if (!is.null(seed)) {
check.scalar.integer(seed)
}
ans <- .Call(analysis_common_r_feedforward_prediction,
object,
predictor.matrix,
as.integer(burn),
as.logical(mean.only),
seed)
class(ans) <- "BayesNnetPrediction"
return(ans)
}
##===========================================================================
PlotNetworkStructure <- function(model, ...) {
## Plot the nodes and edges of the neural network. Larger coefficients are
## thicker lines.
##
## Args:
## model: A model fit by BayesNnet.
## ...: Extra arguments passed to plot.igraph.
##
## NOTE: This function depends on having igraph installed. Igraph is a big
## package with lots of dependencies, so it is optional. If igraph is not
## installed then calling this function prints an error message.
ok <- requireNamespace("igraph", quietly = TRUE)
if (!ok) {
warning("Plotting network structure requires the 'igraph' package. ",
"Please install using 'install.packages'.")
return(NULL)
}
input.names <- dimnames(model$hidden.layer.coefficients[[1]])[[2]]
input.dimension <- length(input.names)
input.nodes <- data.frame(id = input.names,
layer = rep(0, length(input.names)),
position.in.layer = 1:length(input.names))
number.of.hidden.layers <- length(model$hidden.layer.specification)
hidden.node.counts <- sapply(model$hidden.layer.specification,
function(x) x$number.of.nodes)
## Edge weights are the absolute values of the coefficients in each layer,
## normalized by that layer so that input and output nodes don't dominate
## because of scaling issues.
layer <- rep(1:number.of.hidden.layers, times = hidden.node.counts)
position.in.layer <- c(sapply(hidden.node.counts, function(x) 1:x))
hidden.nodes <- data.frame(
id = paste("H", layer, position.in.layer, sep = "."),
layer = rep(1:number.of.hidden.layers, times = hidden.node.counts),
position.in.layer = position.in.layer)
terminal.node <- data.frame(
id = "terminal",
layer = length(hidden.node.counts) + 1,
position.in.layer = 1)
nodes <- rbind(input.nodes, hidden.nodes, terminal.node)
##---------------------------------------------------------------------------
## Compute the edges.
first.hidden.layer <- hidden.nodes[hidden.nodes$layer == 1, , drop = FALSE]
weights <- as.numeric(t(colMeans(model$hidden.layer.coefficients[[1]])))
nc <- max(abs(weights))
if (nc > 0) weights <- weights / nc
input.layer.edges <- data.frame(
from = as.character(rep(input.names, each = hidden.node.counts[1])),
to = as.character(rep(first.hidden.layer$id, times = length(input.names))),
weight = weights
)
edges <- input.layer.edges
if (number.of.hidden.layers >= 2) {
for (layer in 2:number.of.hidden.layers) {
current.layer <- nodes[nodes$layer == layer, , drop = FALSE]
previous.layer <- nodes[nodes$layer == layer - 1, , drop = FALSE]
weights <- as.numeric(t(colMeans(model$hidden.layer.coefficients[[layer]])))
nc <- max(abs(weights))
if (nc > 0) weights <- weights / nc
edges <- rbind(edges, data.frame(
from = as.character(rep(previous.layer$id, each = hidden.node.counts[layer])),
to = as.character(rep(current.layer$id, times = nrow(previous.layer))),
weight = weights
))
}
}
final.hidden.layer <-
nodes[nodes$layer == number.of.hidden.layers, , drop = FALSE]
weights <- colMeans(model$terminal.layer.coefficients)
nc <- max(abs(weights))
if (nc > 0) weights <- weights / nc
edges <- rbind(edges, data.frame(
from = as.character(final.hidden.layer$id),
to = as.character(terminal.node$id),
weight = weights
))
##---------------------------------------------------------------------------
## Compute the layout for the plot.
max.nodes <- max(nrow(input.nodes), hidden.node.counts)
initial.layer.node.offset <- (max.nodes - nrow(input.nodes)) / 2
hidden.layer.node.offsets <- (max.nodes - hidden.node.counts) / 2
terminal.layer.offset <- (max.nodes - 1) / 2
input.layer.layout <- cbind("layer" = 0,
"position.in.layer" = (1:nrow(input.nodes)) + initial.layer.node.offset)
hidden.layer.layout <- cbind(hidden.nodes[, c("layer", "position.in.layer")])
hidden.layer.layout[,2] <- hidden.layer.layout[, 2] +
hidden.layer.node.offsets[hidden.layer.layout[, 1]]
terminal.layer.layout <- cbind("layer" = 1 + number.of.hidden.layers,
"position.in.layer" = 1 + terminal.layer.offset)
graph.layout <- rbind(input.layer.layout, hidden.layer.layout,
terminal.layer.layout)
##---------------------------------------------------------------------------
## Do the plotting.
graph <- igraph::graph_from_data_frame(edges, vertices = NULL)
plot(graph, layout = as.matrix(graph.layout),
edge.color = edges$weight > 0,
edge.width = 5 * abs(edges$weight),
edge.arrow.size = 0,
...)
return(invisible(list(nodes = nodes, input.layer.edges = input.layer.edges)))
}
|
/scratch/gouwar.j/cran-all/cranData/BoomSpikeSlab/R/nnet.R
|
PartialDependencePlot <- function(model,
which.variable,
burn = SuggestBurn(model),
data.fraction = .2,
gridsize = 50,
mean.only = FALSE,
show.points = TRUE,
xlab = NULL,
ylab = NULL,
ylim = NULL,
report.time = FALSE,
...) {
## Args:
## model: A model with a suitably defined 'predict' method. See below for
## requirements.
## which.variable: Either the name of the variable for which a
## partial dependence plot is desired, or its index (column
## number) in the predictor matrix.
## burn: The number of initial MCMC iterations to discard as
## burn-in.
## data.fraction: The fraction of observations in the predictor
## matrix to use when constructing the partial dependence plot.
## A random sub-sample of this fraction will be taken (without
## replacement).
## mean.only: Logical. If TRUE then only the mean is plotted at
## each point. If FALSE then the posterior of the function
## value is plotted.
## show.points: If TRUE then the scatterplot of x vs y is added to
## the graph. Otherwise the points are left off.
## xlab: Label for the X axis. NULL produces a default label.
## Use "" for no label.
## ylab: Label for the Y axis. NULL produces a default label.
## Use "" for no label.
## ylim: Limits on the vertical axis. If NULL then the plot will
## default to its natural vertical limits.
## ...: Extra arguments are passed either to 'plot' (if mean.only
## is TRUE)' or 'PlotDynamicDistribution' (otherwise).
##
## Returns:
## Invisibly returns a list containing the posterior of the
## distribution function values at each 'x' value, and the x's
## where the distribution is calculated.
stopifnot(inherits(model, "BayesNnet"))
training.data <- model$training.data
check.scalar.probability(data.fraction)
if (data.fraction < 1) {
rows <- sample(1:nrow(training.data),
size = round(data.fraction * nrow(training.data)))
training.data <- training.data[rows, , drop = FALSE]
}
if (report.time) {
start.time <- Sys.time()
cat("Starting at\t", format(start.time), "\n")
}
## which.variable can either be a number or a name. If it is a name, convert
## it to a number.
stopifnot(length(which.variable) == 1)
if (is.character(which.variable)) {
original.variable.name <- which.variable
which.variable <- pmatch(which.variable, colnames(training.data))
if (is.na(which.variable)) {
stop(original.variable.name, "was not uniquely matched in",
colnames(model$training.data))
}
} else {
which.variable <- as.numeric(which.variable)
original.variable.name <- colnames(training.data)[which.variable]
}
## The training data defines a marginal distributions of the predictor
## variables other than which.variable.
xvar <- model$training.data[, which.variable]
if (is.factor(xvar) || is.character(xvar)) {
xvar <- as.factor(xvar)
grid <- as.factor(levels(xvar))
} else {
xvar <- as.numeric(xvar)
grid <- sort(unique(model$training.data[, which.variable]))
if (length(grid) > gridsize) {
endpoints <- range(grid)
grid <- seq(endpoints[1], endpoints[2], length = 50)
}
}
check.nonnegative.scalar(burn)
if (burn > model$niter) {
stop(paste0("'burn' cannot exceed the number of MCMC iterations ",
"used to fit the model."))
}
draws <- matrix(nrow = model$niter - burn, ncol = length(grid))
for (i in 1:length(grid)) {
training.data[, which.variable] <- grid[i]
prediction <- predict(model, newdata = training.data, burn = burn)
draws[, i] <- rowMeans(prediction)
}
if (is.null(xlab)) {
xlab = colnames(training.data)[which.variable]
}
if (mean.only) {
if (is.null(ylab)) {
ylab <- "Prediction"
}
pred <- colMeans(draws)
if (is.null(ylim)) {
if (show.points) {
ylim <- range(pred, model$response)
} else {
ylim <- range(pred)
}
}
plot(grid, pred, xlab = xlab, ylab = ylab, ylim = ylim, ...)
} else {
## This branch plots the full predictive distribution.
if (is.null(ylab)) {
ylab <- as.character(model$call$formula[[2]])
}
if (is.null(ylim)) {
if (show.points) {
ylim <- range(draws, model$response)
} else {
ylim <- range(draws)
}
}
if (is.factor(grid)) {
boxplot(draws, xlab = xlab, ylab = ylab, ylim = ylim, pch = 20, ...)
if (show.points) {
points(model$training.data[, which.variable],
model$response,
...)
}
} else {
if (show.points) {
plot(model$training.data[, which.variable], model$response,
xlab = xlab, ylab = ylab, ylim = ylim, ...)
}
PlotDynamicDistribution(draws, grid, xlab = xlab, ylab = ylab, ylim = ylim,
add = show.points, ...)
}
}
if (report.time) {
stop.time <- Sys.time();
cat("Done at \t",
format(stop.time),
"\n")
cat("Function took",
difftime(stop.time, start.time, units = "secs"),
"seconds.\n")
}
return(invisible(list(predictive.distribution = draws, x = grid)))
}
|
/scratch/gouwar.j/cran-all/cranData/BoomSpikeSlab/R/partial-dependence.R
|
poisson.spike <- function(
formula, exposure = 1, niter, data, subset, prior = NULL,
na.action = options("na.action"), contrasts = NULL,
drop.unused.levels = TRUE,
initial.value = NULL, ping = niter / 10, nthreads = 4,
seed = NULL,
...) {
## Uses Bayesian MCMC to fit a Poisson regression model with a
## spike-and-slab prior.
##
## Args:
## formula: model formula, as would be passed to 'glm', specifying
## the maximal model (i.e. the model with all predictors
## included).
## exposure: A vector of exposure durations of length matching
## nrow(data). A single-element vector will be recycled.
## niter: desired number of MCMC iterations
## ping: if positive, then print a status update every 'ping' MCMC
## iterations.
## nthreads: The number of threads to use when imputing latent data.
## data: optional data.frame containing the data described in 'formula'
## subset: an optional vector specifying a subset of observations
## to be used in the fitting process.
## prior: an optional list such as that returned from
## SpikeSlabPrior. If missing, SpikeSlabPrior
## will be called with the remaining arguments.
## na.action: a function which indicates what should happen when
## the data contain ‘NA’s. The default is set by the
## ‘na.action’ setting of ‘options’, and is ‘na.fail’ if that is
## unset. The ‘factory-fresh’ default is ‘na.omit’. Another
## possible value is ‘NULL’, no action. Value ‘na.exclude’ can
## be useful.
## contrasts: an optional list. See the ‘contrasts.arg’ of
## ‘model.matrix.default’. An optional list.
## drop.unused.levels: should factor levels that are unobserved be
## dropped from the model?
## initial.value: Initial value of Poisson regression
## coefficients for the MCMC algorithm. Can be given as a
## numeric vector, a 'poisson.spike' object, or a 'glm' object.
## If a 'poisson.spike' object is used for initialization, it is
## assumed to be a previous MCMC run to which 'niter' futher
## iterations should be added. If a 'glm' object is supplied,
## its coefficients will be used as the initial values in the
## MCMC simulation.
## seed: Seed to use for the C++ random number generator. NULL or
## an int. If NULL, then the seed will be taken from the global
## .Random.seed object.
## ... : parameters to be passed to SpikeSlabPrior
##
## Returns:
## An object of class 'poisson.spike', which is a list containing the
## following values
## beta: A 'niter' by 'ncol(X)' matrix of regression coefficients
## many of which may be zero. Each row corresponds to an MCMC
## iteration.
## prior: The prior that was used to fit the model.
## In addition, the returned object contains sufficient details for
## the call to model.matrix in the predict.lm.spike method.
has.data <- !missing(data)
cl <- match.call()
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- drop.unused.levels
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
mt <- attr(mf, "terms")
y <- as.integer(model.response(mf, "any"))
stopifnot(all(y[!is.na(y)] >= 0))
x <- model.matrix(mt, mf, contrasts)
if (is.null(prior)) {
prior <- SpikeSlabPrior(x, y, ...)
}
stopifnot(is.numeric(exposure))
stopifnot(all(exposure >= 0))
if (length(exposure) == 1) {
exposure <- rep(exposure, length(y))
}
stopifnot(length(exposure) == length(y))
if (!is.null(initial.value)) {
if (inherits(initial.value, "poisson.spike")) {
stopifnot(colnames(initial.value$beta) == colnames(x))
beta0 <- as.numeric(tail(initial.value$beta, 1))
} else if (inherits(initial.value, "glm")) {
stopifnot(colnames(initial.value$beta) == colnames(x))
beta0 <- coef(initial.value)
} else if (is.numeric(initial.value)) {
stopifnot(length(initial.value) == ncol(x))
beta0 <- initial.value
} else {
stop("initial.value must be a 'poisson.spike' object, a 'glm' object,",
"or a numeric vector")
}
} else {
## No initial value was supplied. The initial condition is set so
## that all slopes are zero. The intercept is set to the log of
## ybar, unless ybar is zero. If all y's are zero then the
## intercept is set to the value that would give probability .5 to
## the event of having all 0's in the data.
beta0 <- rep(0, ncol(x))
if (all(x[, 1] == 1)) {
ybar <- sum(y * exposure) / sum(exposure)
if (ybar > 0) {
beta0[1] <- log(ybar)
} else {
beta0[1] <- -log(.5) / sum(exposure)
}
}
}
ans <- .poisson.spike.fit(x = x,
y = y,
exposure = exposure,
prior = prior,
niter = niter,
ping = ping,
nthreads = nthreads,
beta0 = beta0,
seed = seed)
## The stuff below will be needed by predict.poisson.spike.
ans$contrasts <- attr(x, "contrasts")
ans$xlevels <- .getXlevels(mt, mf)
ans$call <- cl
ans$terms <- mt
if (!is.null(initial.value) && inherits(initial.value, "poisson.spike")) {
ans$beta <- rbind(initial.value$beta, ans$beta)
}
if (has.data) {
## Note, if a data frame was passed as an argument to this function then
## saving the data frame will be cheaper than saving the model.frame.
ans$training.data <- data
} else {
## If the model was called with a formula referring to objects in another
## environment, then saving the model frame will capture these variables so
## they can be used to recreate the design matrix.
ans$training.data <- mf
}
ans$exposure <- exposure
## Make the answer a class, so that the right methods will be used.
class(ans) <- c("poisson.spike", "glm.spike")
return(ans)
}
predict.poisson.spike <- function(object, newdata = NULL, exposure = NULL, burn = 0,
type = c("mean", "log", "link", "response"),
na.action = na.pass, ...) {
## Prediction method for logit.spike
## Args:
## object: object of class "logit.spike" returned from the logit.spike
## function
## newdata: A data frame including variables with the same names as the data
## frame used to fit 'object'. If NULL then the predictors are taken from
## the training data.
## exposure: A vector of positive real numbers the same size as newdata, or
## NULL. If both newdata and exposure are NULL then exposure is taken to
## be the exposure from the training data. If newdata is supplied and
## exposure is null then exposure is taken to be 1 for all observations.
## burn: The number of MCMC iterations in 'object' that should be
## discarded. If burn < 0 then all iterations are kept.
## type: The type of prediction desired. If 'mean' then the
## prediction is returned on the scale of the original data. If
## 'log' then it is returned on the log scale (i.e. the scale of
## the linear predictor). Also accepts 'link' and 'response'
## for compatibility with predict.glm.
## na.action: what to do about NA's. See 'predict.lm'.
## ...: unused, but present for compatibility with generic predict().
## Returns:
## A matrix of predictions, with each row corresponding to a row
## in newdata, and each column to an MCMC iteration.
type <- match.arg(type)
if (is.null(newdata)) {
predictors <- model.matrix(object)
if (is.null(exposure)) {
exposure <- object$exposure
}
} else {
predictors <- GetPredictorMatrix(object, newdata,
na.action = na.action, ...)
if (is.null(exposure)) {
exposure <- rep(1, nrow(predictors))
}
}
beta <- object$beta
if (burn > 0) {
beta <- beta[-(1:burn), , drop = FALSE]
}
eta <- log(exposure) + predictors %*% t(beta)
if (type == "log" || type == "link") {
return(eta)
} else {
return(exp(eta))
}
}
.poisson.spike.fit <- function(
x, y, exposure, prior, niter, ping, nthreads, beta0, seed) {
## Args:
## x: design matrix with 'n' rows corresponding to observations and
## 'p' columns corresponding to predictor variables.
## y: vector of integer responses (success counts) of length n
## exposure: A vector of exposure durations of length matching
## nrow(data). A single-element vector will be recycled.
## prior: a list structured like the return value from
## SpikeSlabPrior
## niter: the number of desired MCMC iterations
## ping: frequency with which to print MCMC status updates
## nthreads: number of threads to use when imputing latent data
## beta0: The initial value in the MCMC simulation.
## seed: Seed to use for the C++ random number generator. NULL or
## an int.
##
## Returns:
## An object of class poisson.spike, which is a list with the elements
## described in the 'poisson.spike' function.
stopifnot(nrow(x) == length(y),
length(exposure) == length(y),
length(prior$mu) == ncol(x),
length(prior$prior.inclusion.probabilities) == ncol(x),
all(y >= 0))
if (is.null(prior$max.flips)) {
prior$max.flips <- -1
}
if (is.null(seed)) {
## Ensure that .Random.seed exists.
tmp <- rnorm(1)
seed <- .Random.seed[1]
}
ans <- .Call(analysis_common_r_poisson_regression_spike_slab,
x,
as.integer(y),
exposure,
prior,
as.integer(niter),
as.integer(ping),
as.integer(nthreads),
beta0,
seed)
if (!is.null(colnames(x))) {
colnames(ans$beta) <- colnames(x)
}
ans$prior <- prior
log.lambda <- x %*% t(ans$beta)
log.exposure <- log(exposure)
log.likelihood.contributions <- y * (log.lambda + log.exposure) -
exp(log.lambda + log.exposure)
ans$log.likelihood <- colSums(log.likelihood.contributions)
class(ans) <- c("poisson.spike", "glm.spike", "lm.spike")
return(ans)
}
plot.poisson.spike <- function(
x,
y = c("inclusion", "coefficients", "scaled.coefficients", "size", "help"),
burn = SuggestBurnLogLikelihood(x$log.likelihood),
...) {
y <- match.arg(y)
if (y == "inclusion") {
return(PlotMarginalInclusionProbabilities(x$beta, burn = burn, ...))
} else if (y == "coefficients") {
return(PlotLmSpikeCoefficients(x$beta, burn = burn, ...))
} else if (y == "scaled.coefficients") {
scale.factors <- apply(model.matrix(x), 2, sd)
return(PlotLmSpikeCoefficients(x$beta, burn = burn,
scale.factors = scale.factors, ...))
} else if (y == "size") {
return(PlotModelSize(x$beta, ...))
} else if (y == "help") {
help("plot.poisson.spike", package = "BoomSpikeSlab", help_type = "html")
}
}
|
/scratch/gouwar.j/cran-all/cranData/BoomSpikeSlab/R/poisson.spike.R
|
# Copyright 2010-2014 Google Inc. All Rights Reserved.
# Author: [email protected] (Steve Scott)
probit.spike <- function(formula,
niter,
data,
subset,
prior = NULL,
na.action = options("na.action"),
contrasts = NULL,
drop.unused.levels = TRUE,
initial.value = NULL,
ping = niter / 10,
clt.threshold = 5,
proposal.df = 3,
sampler.weights = c(.5, .5),
seed = NULL,
...) {
## Uses Bayesian MCMC to fit a probit regression model with a
## spike-and-slab prior.
##
## Args:
## formula: model formula, as would be passed to 'glm', specifying
## the maximal model (i.e. the model with all predictors
## included).
## niter: desired number of MCMC iterations
## data: optional data.frame containing the data described in 'formula'
## subset: an optional vector specifying a subset of observations
## to be used in the fitting process.
## prior: an optional object inheriting from ProbitPrior and
## SpikeSlabPriorBase. If missing, a prior will be constructed
## by calling LogitZellnerPrior with the remaining arguments.
## na.action: a function which indicates what should happen when
## the data contain ‘NA’s. The default is set by the
## ‘na.action’ setting of ‘options’, and is ‘na.fail’ if that is
## unset. The ‘factory-fresh’ default is ‘na.omit’. Another
## possible value is ‘NULL’, no action. Value ‘na.exclude’ can
## be useful.
## contrasts: an optional list. See the ‘contrasts.arg’ of
## ‘model.matrix.default’. An optional list.
## drop.unused.levels: should factor levels that are unobserved be
## dropped from the model?
## initial.value: Initial value of probit regression
## coefficients for the MCMC algorithm. Can be given as a
## numeric vector, a 'probit.spike' object, or a 'glm' object.
## If a 'probit.spike' object is used for initialization, it is
## assumed to be a previous MCMC run to which 'niter' futher
## iterations should be added. If a 'glm' object is supplied,
## its coefficients will be used as the initial values in the
## MCMC simulation.
## ping: if positive, then print a status update every 'ping' MCMC
## iterations.
## clt.threshold: The smallest number of successes or failures
## needed to do use asymptotic data augmentation.
## proposal.df: The degrees of freedom parameter for the
## multivariate T proposal distribution used for
## Metropolis-Hastings updates. A nonpositive number means to
## use a Gaussian proposal.
## sampler.weights: A two-element vector giving the probabilities
## of drawing from the two base sampling algorithm. The first
## element refers to the spike and slab algorithm. The second
## refers to the tailored independence Metropolis sampler. TIM
## is usually faster mixing, but cannot change model dimension.
## seed: Seed to use for the C++ random number generator. NULL or
## an int. If NULL, then the seed will be taken from the global
## .Random.seed object.
## ... : parameters to be passed to LogitZellnerPrior.
##
## Returns:
## An object of class 'probit.spike', which is a list containing the
## following values
## beta: A 'niter' by 'ncol(X)' matrix of regression coefficients
## many of which may be zero. Each row corresponds to an MCMC
## iteration.
## prior: The prior that was used to fit the model.
## In addition, the returned object contains sufficient details for
## the call to model.matrix in the predict.lm.spike method.
has.data <- !missing(data)
cl <- match.call()
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- drop.unused.levels
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
mt <- attr(mf, "terms")
response <- model.response(mf, "any")
## Unpack the vector of trials. If y is a 2-column matrix then the
## first column is the vector of success counts and the second is
## the vector of failure counts. Otherwise y is just a vector, and
## the vector of trials should just be a column of 1's.
if (!is.null(dim(response)) && length(dim(response)) > 1) {
stopifnot(length(dim(response)) == 2, ncol(response) == 2)
## If the user passed a formula like "cbind(successes, failures) ~
## x", then y will be a two column matrix
ny <- response[, 1] + response[, 2]
response <- response[, 1]
} else {
## The following line admits y's which are TRUE/FALSE, 0/1 or 1/-1.
response <- response > 0
ny <- rep(1, length(response))
}
design <- model.matrix(mt, mf, contrasts)
if (is.null(prior)) {
prior <- LogitZellnerPrior(design, response, ...)
}
stopifnot(inherits(prior, "SpikeSlabPriorBase"))
stopifnot(inherits(prior, "LogitPrior"))
if (!is.null(initial.value)) {
if (inherits(initial.value, "probit.spike")) {
stopifnot(colnames(initial.value$beta) == colnames(design))
beta0 <- as.numeric(tail(initial.value$beta, 1))
} else if (inherits(initial.value, "glm")) {
stopifnot(colnames(initial.value$beta) == colnames(design))
beta0 <- coef(initial.value)
} else if (is.numeric(initial.value)) {
stopifnot(length(initial.value) == ncol(design))
beta0 <- initial.value
} else {
stop("initial.value must be a 'probit.spike' object, a 'glm' object,",
"or a numeric vector")
}
} else {
## No initial value was supplied
beta0 <- prior$mu
}
stopifnot(is.matrix(design),
nrow(design) == length(response),
length(prior$mu) == ncol(design),
length(prior$prior.inclusion.probabilities) == ncol(design),
all(response >= 0))
if (is.null(prior$max.flips)) {
prior$max.flips <- -1
}
if (!is.null(seed)) {
seed <- as.integer(seed)
}
stopifnot(is.numeric(proposal.df),
length(proposal.df) == 1)
stopifnot(is.numeric(sampler.weights),
length(sampler.weights) == 2,
sum(sampler.weights) == 1.0)
ans <- .Call("probit_spike_slab_wrapper",
as.matrix(design),
as.integer(response),
as.integer(ny),
prior,
as.integer(niter),
as.integer(ping),
beta0,
as.integer(clt.threshold),
proposal.df,
sampler.weights,
seed)
ans$prior <- prior
class(ans) <- c("probit.spike", "glm.spike")
## The stuff below will be needed by predict.probit.spike.
ans$contrasts <- attr(design, "contrasts")
ans$xlevels <- .getXlevels(mt, mf)
ans$call <- cl
ans$terms <- mt
## The next few entries are needed by some of the diagnostics plots
## and by summary.probit.spike.
fitted.probits <- design %*% t(ans$beta)
log.probs <- pnorm(fitted.probits, log.p = TRUE)
log.failure.probs <- pnorm(fitted.probits, log.p = TRUE, lower.tail = FALSE)
log.likelihood.contributions <-
response * log.probs + (ny - response) * log.failure.probs
ans$log.likelihood <- colSums(log.likelihood.contributions)
sign <- rep(1, length(response))
sign[response / ny < 0.5] <- -1
ans$deviance.residuals <- sign * sqrt(rowMeans(
-2 * log.likelihood.contributions))
p.hat <- sum(response) / sum(ny)
ans$null.log.likelihood <- sum(
response * log(p.hat) + (ny - response) * log(1 - p.hat))
fitted.probabilities <- exp(log.probs)
ans$fitted.probabilities <- rowMeans(fitted.probabilities)
ans$fitted.probits <- rowMeans(fitted.probits)
# Chop observed data into 10 buckets. Equal numbers of data points
# in each bucket. Compare the average predicted success probability
# of the observations in that bucket with the empirical success
# probability for that bucket.
#
# dimension of fitted values is nobs x niter
if (!is.null(initial.value) && inherits(initial.value, "probit.spike")) {
ans$beta <- rbind(initial.value$beta, ans$beta)
}
ans$response <- response
if (any(ny != 1)) {
ans$trials <- ny
}
colnames(ans$beta) <- colnames(design)
if (has.data) {
## Note, if a data.frame was passed as an argument to this function
## then saving the data frame will be cheaper than saving the
## model.frame.
ans$training.data <- data
} else {
## If the model was called with a formula referring to objects in
## another environment, then saving the model frame will capture
## these variables so they can be used to recreate the design
## matrix.
ans$training.data <- mf
}
## Make the answer a class, so that the right methods will be used.
class(ans) <- c("probit.spike", "lm.spike", "glm.spike")
return(ans)
}
predict.probit.spike <- function(object, newdata, burn = 0,
type = c("prob", "probit", "link", "response"),
na.action = na.pass, ...) {
## Prediction method for probit.spike
## Args:
## object: object of class "probit.spike" returned from the probit.spike
## function
## newdata: A data frame including variables with the same names
## as the data frame used to fit 'object'.
## burn: The number of MCMC iterations in 'object' that should be
## discarded. If burn < 0 then all iterations are kept.
## type: The type of prediction desired. If 'prob' then the
## prediction is returned on the probability scale. If 'probit'
## then it is returned on the probit scale (i.e. the scale of the
## linear predictor). Also accepts 'link' and 'response' for
## compatibility with predict.glm.
## ...: unused, but present for compatibility with generic predict().
## Returns:
## A matrix of predictions, with each row corresponding to a row
## in newdata, and each column to an MCMC iteration.
type <- match.arg(type)
predictors <- GetPredictorMatrix(object, newdata, na.action = na.action, ...)
beta <- object$beta
if (burn > 0) {
beta <- beta[-(1:burn), , drop = FALSE]
}
eta <- predictors %*% t(beta)
if (type == "probit" || type == "link") return(eta)
if (type == "prob" || type == "response") return(pnorm(eta))
}
plot.probit.spike <- function(
x,
y = c("inclusion", "coefficients", "scaled.coefficients", "fit",
"residuals", "size", "help"),
burn = SuggestBurnLogLikelihood(x$log.likelihood),
...) {
## S3 method for plotting probit.spike objects.
## Args:
## x: The object to be plotted.
## y: The type of plot desired.
## ...: Additional named arguments passed to the functions that
## actually do the plotting.
y <- match.arg(y)
if (y == "inclusion") {
PlotMarginalInclusionProbabilities(x$beta,
burn = burn,
...)
} else if (y == "coefficients") {
PlotLmSpikeCoefficients(x$beta,
burn = burn,
...)
} else if (y == "scaled.coefficients") {
scale.factors <- apply(model.matrix(x), 2, sd)
PlotLmSpikeCoefficients(x$beta,
burn = burn,
scale.factors = scale.factors,
...)
} else if (y == "fit") {
PlotProbitSpikeFitSummary(x, burn = burn, ...)
} else if (y == "residuals") {
PlotProbitSpikeResiduals(x, ...)
} else if (y == "size") {
PlotModelSize(x$beta, burn = burn, ...)
} else if (y == "help") {
help("plot.probit.spike", package = "BoomSpikeSlab", help_type = "html")
} else {
stop("Unrecognized option", y, "in plot.probit.spike")
}
}
PlotProbitSpikeResiduals <- function(model, ...) {
## Args:
## model: An object of class probit.spike.
## ...: Optional named arguments passed to plot().
##
## Details:
##
## The "deviance residuals" are defined as the signed square root
## each observation's contribution to log likelihood. The sign of
## the residual is positive if half or more of the trials associated
## with an observation are successes. The sign is negative
## otherwise.
##
## The "contribution to log likelihood" is taken to be the posterior
## mean of an observations log likelihood contribution, averaged
## over the life of the MCMC chain.
##
## The deviance residual is plotted against the fitted value, again
## averaged over the life of the MCMC chain.
##
## The plot also shows the .95 and .99 bounds from the square root
## of a chi-square(1) random variable. As a rough approximation,
## about 5% and 1% of the data should lie outside these bounds.
residuals <- model$deviance.residuals
fitted <- model$fitted.probits
plot(fitted,
residuals,
pch = ifelse(residuals > 0, "+", "-"),
col = ifelse(residuals > 0, "red", "blue"),
xlab = "fitted probit",
ylab = "deviance residual",
...)
abline(h = 0)
abline(h = c(-1, 1) * sqrt(qchisq(.95, df = 1)), lty = 2, col = "lightgray")
abline(h = c(-1, 1) * sqrt(qchisq(.99, df = 1)), lty = 3, col = "lightgray")
legend("topright", pch = c("+", "-"), col = c("red", "blue"),
legend = c("success", "failure"))
}
PlotProbitSpikeFitSummary <- function(
model,
burn = 0,
which.summary = c("both", "r2", "bucket"),
scale = c("probit", "probability"),
cutpoint.basis = c("sample.size", "equal.range"),
number.of.buckets = 10,
...) {
## Args:
## model: An object of class probit.spike to be plotted.
## burn: A number of initial MCMC iterations to be discarded.
## which.summary: Which fit summaries should be plotted.
## scale: The scale on which to plot the 'bucket' summary.
## ...: Extra arguments passed to plot().
stopifnot(inherits(model, "probit.spike"))
which.summary <- match.arg(which.summary)
scale <- match.arg(scale)
cutpoint.basis <- match.arg(cutpoint.basis)
fit <- summary(model,
burn = burn,
cutpoint.scale = scale,
cutpoint.basis = cutpoint.basis,
number.of.buckets = number.of.buckets)
if (which.summary == "both") {
opar <- par(mfrow = c(1, 2))
on.exit(par(opar))
}
if (which.summary %in% c("both", "r2")) {
r2 <- fit$deviance.r2.distribution
plot.ts(r2,
xlab = "MCMC Iteration",
ylab = "deviance R-square",
main = "Deviance R-square",
...)
}
if (which.summary %in% c("both", "bucket")) {
bucket.fit <- fit$predicted.vs.actual
if (scale == "probit") {
bucket.fit <- qnorm(bucket.fit)
bucket.fit[!is.finite(bucket.fit)] <- NA
x.label = "predicted probit"
y.label = "observed probit"
} else {
x.label = "predicted probability"
y.label = "observed probability"
}
if (any(is.na(bucket.fit))) {
warning(
"Some buckets were empty, or had empirical probabilities of 0 or 1.")
}
plot(bucket.fit,
main = "Probabilities by decile",
xlab = x.label,
ylab = y.label,
...)
if (length(attributes(bucket.fit)$cutpoints) > 1) {
abline(v = attributes(bucket.fit)$cutpoints, lty = 3, col = "lightgray")
}
abline(a = 0, b = 1)
}
}
summary.probit.spike <- function(
object,
burn = 0,
order = TRUE,
cutpoint.scale = c("probability", "probit"),
cutpoint.basis = c("sample.size", "equal.range"),
number.of.buckets = 10,
coefficients = TRUE,
...) {
## Summary method for probit.spike coefficients
## Args:
## object: an object of class 'probit.spike'
## burn: an integer giving the number of MCMC iterations to
## discard as burn-in
## order: Logical indicating whether the output should be ordered
## according to posterior inclusion probabilities
## Returns:
## An object of class 'summary.probit.spike' that summarizes the
## model coefficients as in SummarizeSpikeSlabCoefficients.
if (coefficients) {
coefficient.table <-
SummarizeSpikeSlabCoefficients(object$beta, burn, order)
} else {
coefficient.table <- NULL
}
deviance.r2 <- (object$null.log.likelihood - object$log.likelihood) /
object$null.log.likelihood
index <- seq_along(object$log.likelihood)
if (burn > 0) {
index <- index[-(1:burn)]
}
log.likelihood <- object$log.likelihood[index]
response <- object$response
trials <- object$trials
if (is.null(object$trials)) {
trials <- rep(1, length(response))
}
cutpoint.scale <- match.arg(cutpoint.scale)
if (cutpoint.scale == "probability") {
fitted <- object$fitted.probabilities
} else {
fitted <- object$fitted.probits
}
cutpoint.basis = match.arg(cutpoint.basis)
if (cutpoint.basis == "sample.size") {
cutpoints <- quantile(fitted, (0:number.of.buckets) / number.of.buckets)
} else if (cutpoint.basis == "equal.range") {
fitted.range <- range(fitted, na.rm = TRUE)
cutpoints <- seq(min(fitted.range),
max(fitted.range),
len = number.of.buckets + 1)
}
cutpoints <- unique(cutpoints)
if (length(cutpoints) == 1) {
## Changing the type of "cutpoints" to keep R from choking on a
## "breaks" argument of length 1.
cutpoints <- 2
}
bucket.indicators <- cut(fitted, cutpoints)
fitted.value.buckets <- split(fitted, bucket.indicators)
bucket.predicted.means <-
tapply(object$fitted.probabilities, bucket.indicators, mean)
bucket.actual.means <-
tapply(response / trials, bucket.indicators, mean)
bucket.fit <- cbind(predicted = bucket.predicted.means,
observed = bucket.actual.means)
attributes(bucket.fit)$cutpoints <- cutpoints
ans <- list(coefficients = coefficient.table,
null.log.likelihood = object$null.log.likelihood,
mean.log.likelihood = mean(log.likelihood),
max.log.likelihood = max(log.likelihood),
deviance.r2 = mean(deviance.r2[index]),
deviance.r2.distribution = deviance.r2[index],
predicted.vs.actual = bucket.fit)
class(ans) <- "summary.probit.spike"
return(ans)
}
print.summary.probit.spike <- function(x, ...) {
## print method for summary.probit.spike objects.
cat("null log likelihood: ", x$null.log.likelihood, "\n")
cat("posterior mean log likelihood: ", x$mean.log.likelihood, "\n")
cat("posterior max log likelihood: ", x$max.log.likelihood, "\n")
cat("mean deviance R-sq: ", x$deviance.r2, "\n")
cat("\npredicted vs observed success rates, by decile:\n")
fit <- x$predicted.vs.actual
attributes(fit)$cutpoints <- NULL
print(fit)
if (!is.null(x$coefficients)) {
cat("\nsummary of coefficients:\n")
print.default(signif(x$coefficients, 3))
}
}
|
/scratch/gouwar.j/cran-all/cranData/BoomSpikeSlab/R/probit.spike.R
|
CheckFunction <- function(u, quantile) {
stopifnot(is.numeric(u))
stopifnot(is.numeric(quantile),
length(quantile) == 1,
quantile > 0,
quantile < 1)
negative <- u < 0
ans <- quantile * u
ans[negative] <- -(1 - quantile) * u[negative]
return(ans)
}
qreg.spike <- function(
formula,
quantile,
niter,
ping = niter / 10,
nthreads = 0,
data,
subset,
prior = NULL,
na.action = options("na.action"),
contrasts = NULL,
drop.unused.levels = TRUE,
initial.value = NULL,
seed = NULL,
...) {
## Uses Bayesian MCMC to fit a quantile regression model with a
## spike-and-slab prior.
##
## Args:
## formula: Model formula, as would be passed to 'glm', specifying
## the maximal model (i.e. the model with all predictors
## included).
## quantile: The quantile of the response variable to be targeted
## by the regression. A scalar between 0 and 1.
## niter: desired number of MCMC iterations
## ping: If positive, then print a status update every 'ping' MCMC
## iterations.
## nthreads: The number of threads to use when imputing latent data.
## data: optional data.frame containing the data described in 'formula'
## subset: an optional vector specifying a subset of observations
## to be used in the fitting process.
## prior: An optional list such as that returned from
## SpikeSlabPrior. If missing, SpikeSlabPrior
## will be called with the remaining arguments.
## na.action: A function which indicates what should happen when
## the data contain ‘NA’s. The default is set by the
## ‘na.action’ setting of ‘options’, and is ‘na.fail’ if that is
## unset. The ‘factory-fresh’ default is ‘na.omit’. Another
## possible value is ‘NULL’, no action. Value ‘na.exclude’ can
## be useful.
## contrasts: An optional list. See the ‘contrasts.arg’ of
## ‘model.matrix.default’. An optional list.
## drop.unused.levels: should factor levels that are unobserved be
## dropped from the model?
## initial.value: Initial value of quantile regression
## coefficients for the MCMC algorithm. Can be given as a
## numeric vector, a 'qreg.spike' object, or a 'glm' object.
## If a 'qreg.spike' object is used for initialization, it is
## assumed to be a previous MCMC run to which 'niter' futher
## iterations should be added. If a 'glm' object is supplied,
## its coefficients will be used as the initial values in the
## MCMC simulation.
## seed: Seed to use for the C++ random number generator. NULL or
## an int. If NULL, then the seed will be taken from the global
## .Random.seed object.
## ... : parameters to be passed to SpikeSlabPrior
##
## Returns:
## An object of class 'qreg.spike', which is a list containing the
## following values:
## beta: A 'niter' by 'ncol(X)' matrix of regression coefficients
## many of which may be zero. Each row corresponds to an MCMC
## iteration.
## prior: The prior that was used to fit the model.
## In addition, the returned object contains sufficient details for
## the call to model.matrix in the predict.qreg.spike method.
quantile.arg <- quantile
stopifnot(is.numeric(quantile.arg),
length(quantile.arg) == 1,
quantile.arg > 0,
quantile.arg < 1)
has.data <- !missing(data)
cl <- match.call()
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- drop.unused.levels
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
mt <- attr(mf, "terms")
response <- model.response(mf, "numeric")
predictor.matrix <- model.matrix(mt, mf, contrasts)
if (is.null(prior)) {
prior <- SpikeSlabPrior(predictor.matrix, response, ...)
}
if (!is.null(initial.value)) {
if (inherits(initial.value, "qreg.spike")) {
stopifnot(colnames(initial.value$beta) == colnames(predictor.matrix))
beta0 <- as.numeric(tail(initial.value$beta, 1))
} else if (inherits(initial.value, "glm")) {
stopifnot(colnames(initial.value$beta) == colnames(predictor.matrix))
beta0 <- coef(initial.value)
} else if (is.numeric(initial.value)) {
stopifnot(length(initial.value) == ncol(predictor.matrix))
beta0 <- initial.value
} else {
stop("initial.value must be a 'qreg.spike' object, a 'glm' object,",
"or a numeric vector")
}
} else {
## No initial value was supplied. The initial condition is set so
## that all slopes are zero. The intercept is set to the targeted
## quantile of the response variable.
beta0 <- rep(0, ncol(predictor.matrix))
beta0[1] <- quantile(response, quantile, na.rm = TRUE)
}
if (!is.null(seed)) {
seed <- as.integer(seed)
stopifnot(length(seed) == 1)
}
ans <- .Call("analysis_common_r_quantile_regression_spike_slab",
predictor.matrix,
response,
quantile.arg,
prior,
as.integer(niter),
as.integer(ping),
as.integer(nthreads),
beta0,
seed)
variable.names <- colnames(predictor.matrix)
if (!is.null(variable.names)) {
colnames(ans$beta) <- variable.names
}
ans$prior <- prior
## The stuff below will be needed by predict.qreg.spike.
ans$contrasts <- attr(predictor.matrix, "contrasts")
ans$xlevels <- .getXlevels(mt, mf)
ans$call <- cl
ans$terms <- mt
if (!is.null(initial.value) && inherits(initial.value, "qreg.spike")) {
ans$beta <- rbind(initial.value$beta, ans$beta)
}
## (niter x p) %*% (p x n)
prediction.distribution <- ans$beta %*% t(predictor.matrix)
residual.distribution <-
matrix(rep(response, each = nrow(ans$beta)),
nrow = nrow(ans$beta)) - prediction.distribution
ans$log.likelihood <-
-.5 * rowSums(CheckFunction(residual.distribution, quantile))
if (has.data) {
## Note, if a data.frame was passed as an argument to this function
## then saving the data frame will be cheaper than saving the
## model.frame.
ans$training.data <- data
} else {
## If the model was called with a formula referring to objects in
## another environment, then saving the model frame will capture
## these variables so they can be used to recreate the design
## matrix.
ans$training.data <- mf
}
## Make the answer a class, so that the right methods will be used.
class(ans) <- c("qreg.spike", "glm.spike", "lm.spike")
return(ans)
}
predict.qreg.spike <- function(object, newdata, burn = 0,
na.action = na.pass, ...) {
## Prediction method for qreg.spike.
## Args:
## object: object of class "qreg.spike" returned from the
## qreg.spike function
## newdata: A data frame including variables with the same names
## as the data frame used to fit 'object'.
## burn: The number of MCMC iterations in 'object' that should be
## discarded. If burn < 0 then all iterations are kept.
## ...: unused, but present for compatibility with generic predict().
## Returns:
## A matrix of predictions, with each row corresponding to a row
## in newdata, and each column to an MCMC iteration.
predictors <- GetPredictorMatrix(object, newdata, na.action = na.action, ...)
beta <- object$beta
if (burn > 0) {
beta <- beta[-(1:burn), , drop = FALSE]
}
return(predictors %*% t(beta))
}
plot.qreg.spike <- function(
x,
y = c("inclusion", "coefficients", "scaled.coefficients", "size", "help"),
burn = SuggestBurnLogLikelihood(x$log.likelihood),
...) {
y <- match.arg(y)
if (y == "inclusion") {
return(PlotMarginalInclusionProbabilities(x$beta, burn = burn, ...))
} else if (y == "coefficients") {
return(PlotLmSpikeCoefficients(x$beta, burn = burn, ...))
} else if (y == "scaled.coefficients") {
scale.factors <- apply(model.matrix(x), 2, sd)
if (abs(scale.factors[1]) < 1e-8 && names(scale.factors)[1] == "(Intercept)") {
scale.factors[1] <- 1.0
}
return(PlotLmSpikeCoefficients(x$beta, burn = burn,
scale.factors = scale.factors, ...))
} else if (y == "size") {
return(PlotModelSize(x$beta, ...))
} else if (y == "help") {
help("plot.qreg.spike", package = "BoomSpikeSlab", help_type = "html")
}
}
|
/scratch/gouwar.j/cran-all/cranData/BoomSpikeSlab/R/qreg.spike.R
|
ShrinkageRegression <- function(response,
predictors,
coefficient.groups,
residual.precision.prior = NULL,
suf = NULL,
niter,
ping = niter / 10,
seed = NULL) {
## Fit a Bayesian regression model with a shrinkage prior on the coefficient.
## The model is
##
## y[i] ~ N(x[i,] %*% beta, sigma^2)
## 1 / sigma^2 ~ Gamma(df/2, ss/2)
## group(beta, 1) ~ N(b1, v1)
## group(beta, 2) ~ N(b2, v2)
## ....
##
## In this notation, group(beta, k) ~ N(bk, vk) indicates that the subset of
## coefficients in group k are a priori independent draws from the specified
## normal distribution. In addition, each subset-level prior may include a
## hyperprior, in which case the subset-level prior parameters will be
## updated as part of the MCMC. The hyperprior has the form of independent
## priors on the mean and precision parameters.
##
## bi ~ N(prior.mean, prior.variance)
## 1.0 / vi ~ Chisq(df, guess.at.sd)
##
## Args:
## response: The numeric vector of responses.
## predictors: The matrix of predictors, including an intercept term, if
## desired.
## coefficient.groups: A list of objects of type CoefficientGroup, defining
## the pattern in which the coefficients should be shrunk together. Each
## coefficient must belong to exactly one CoefficientGroup.
## residual.precision.prior: An object of type SdPrior describing the prior
## distribution of the residual standard deviation.
## suf: An object of class RegressionSuf containing the sufficient
## statistics for the regression model. If this is NULL then it will be
## computed from 'response' and 'predictors'. If it is supplied then
## 'response' and 'predictors' are not used and can be left missing.
## niter: The desired number of MCMC iterations.
## ping: The frequency with which to print status updates.
## seed: The integer-valued seed (or NULL) to use for the C++ random number
## generator.
##
## Returns:
## A list containing MCMC draws from the posterior distribution of model
## parameters. Each of the following is a matrix, with rows corresponding
## to MCMC draws, and columns to distinct parameters.
## * coefficients: regression coefficients.
## * residual.sd: the residual standard deviation from the regression
## model.
## * group.means: The posterior distribution of the mean of each
## coefficient group. If no mean hyperprior was assigned to a
## particular group, then the value here will be a constant (the values
## supplied by the 'prior' argument to 'CoefficientGroup' for that
## group).
## * group.sds: The posterior distribution of the standard deviation of
## each coefficient group. If no sd.hyperprior was assigned to a
## particular group, then the value here will be a constant (the values
## supplied by the 'prior' argument to 'CoefficientGroup' for that
## group).
if (is.null(suf)) {
## No need to touch response or predictors if sufficient statistics are
## supplied directly.
stopifnot(is.numeric(response))
stopifnot(is.matrix(predictors),
nrow(predictors) == length(response))
stopifnot(is.list(coefficient.groups),
all(sapply(coefficient.groups, inherits, "CoefficientGroup")))
suf <- RegressionSuf(X = predictors, y = response)
}
stopifnot(inherits(suf, "RegressionSuf"))
stopifnot(is.list(coefficient.groups))
all.indices <- sort(unlist(lapply(coefficient.groups, function(x) x$indices)))
xdim <- ncol(suf$xtx)
if (any(all.indices != 1:xdim)) {
if (any(all.indices > xdim)) {
stop("One or more indices were larger than the available ",
"number of predictors.")
} else if (any(all.indices <= 0)) {
stop("All indices must be 1 or larger.")
} else if (all.indices != unique(all.indices)) {
stop("Each index can only appear in one group.")
} else {
omitted <- !(all.indices %in% 1:xdim)
omitted.indices <- all.indices[omitted]
if (length(omitted.indices) > 10) {
msg <- paste("There were ", length(omitted.indices),
" indices omitted from index groups.")
stop(msg)
} else if (length(omitted.indices > 1)) {
msg <- paste("The following indices were omitted from a ",
"coefficient groups: \n")
msg <- paste(msg, paste(omitted.indices, collapse = " "), "\n")
stop(msg)
} else {
msg <- paste("Index ", omitted.indices,
" was not present in any coefficient groups.\n")
stop(msg)
}
}
} ## done checking index groups
if (is.null(residual.precision.prior)) {
residual.precision.prior <- SdPrior(1, 1)
}
stopifnot(inherits(residual.precision.prior, "SdPrior"))
stopifnot(is.numeric(niter),
length(niter) == 1,
niter > 0)
stopifnot(is.numeric(ping),
length(ping) == 1)
if (!is.null(seed)) {
seed <- as.integer(seed)
}
ans <- .Call("boom_shrinkage_regression_wrapper",
suf,
coefficient.groups,
residual.precision.prior,
as.integer(niter),
as.integer(ping),
seed)
class(ans) <- "ShrinkageRegression"
return(ans)
}
CoefficientGroup <- function(indices,
mean.hyperprior = NULL,
sd.hyperprior = NULL,
prior = NULL) {
## Args:
## indices: A vector of integers giving the positions of the regression
## coefficients that should be viewed as exchangeable.
## mean.hyperprior: A NormalPrior object describing the hyperprior
## distribution for the average coefficient.
## sd.hyperprior: An SdPrior object describing the hyperprior distribution
## for the standard deviation of the coefficients.
## prior: An object of type NormalPrior giving the initial value of the
## distribution describing the collection of coefficients in this group.
## If either hyperprior is NULL then the corresponding prior parameter
## will not be updated. If both hyperpriors are non-NULL then this
## parameter can be left unspecified.
##
## Returns:
## An object (list) containing the arguments, with values checked for
## legality, and with names as expected by the underlying C++ code.
##
## Details:
## The model for the coefficients in this group is that they are independent
## draws from N(b0, sigma^2 / kappa), where sigma^2 is the residual variance
## from the regression model. The hyperprior distribution for this model is
## b0 ~ mean.hyperprior and kappa ~ shrinkage.hyperprior, independently.
stopifnot(is.numeric(indices),
length(unique(indices)) == length(indices),
all(indices >= 1))
if (!is.null(mean.hyperprior)) {
stopifnot(inherits(mean.hyperprior, "NormalPrior"))
}
if (!is.null(sd.hyperprior)) {
stopifnot(inherits(sd.hyperprior, "SdPrior"))
}
if (is.null(prior) && (is.null(mean.hyperprior) || is.null(sd.hyperprior))) {
stop("If either hyperprior is NULL, then an initial prior distribution ",
"must be supplied.")
}
if (!is.null(prior)) {
stopifnot(inherits(prior, "NormalPrior"))
}
ans <- list(indices = as.integer(indices),
mean.hyperprior = mean.hyperprior,
sd.hyperprior = sd.hyperprior,
prior = prior)
class(ans) <- "CoefficientGroup"
return(ans)
}
|
/scratch/gouwar.j/cran-all/cranData/BoomSpikeSlab/R/shrinkage.regression.R
|
SpikeSlabPriorBase <- function(number.of.variables,
expected.r2 = .5,
prior.df = .01,
expected.model.size = 1,
optional.coefficient.estimate = NULL,
mean.y,
sdy,
prior.inclusion.probabilities = NULL,
sigma.upper.limit = Inf) {
## Computes information that is shared by the different implementation of
## spike and slab priors. Currently, the only difference between the
## different priors is the prior variance on the regression coefficients.
## When that changes, change this function accordingly, and change all the
## classes that inherit from it.
##
## Args:
## number.of.variables: The number of columns in the design matrix for the
## regression begin modeled. The maximum size of the coefficient vector.
## expected.r2: The R^2 statistic that the model is expected to achieve.
## Used along with 'sdy' to derive a prior distribution for the residual
## variance.
## prior.df: The number of observations worth of weight to give to the guess
## at the residual variance.
## expected.model.size: The expected number of nonzero coefficients in the
## model. This number is used to set prior.inclusion.probabilities to
## expected.model.size / number.of.variables. If expected.model.size is
## either negative or larger than number.of.variables then all elements of
## prior.inclusion.probabilities will be set to 1.0 and the model will be
## fit with all available coefficients.
## optional.coefficient.estimate: A vector of length number.of.variables to
## use as the prior mean of the regression coefficients. This can also be
## NULL, in which case the prior mean for the intercept will be set to
## mean.y, and the prior mean for all slopes will be 0.
## mean.y: The mean of the response variable. Used to create a sensible
## default prior mean for the regression coefficients when
## optional.coefficient.estimate is NULL.
## sdy: Used along with expected.r2 to create a prior guess at the residual
## variance.
## prior.inclusion.probabilities: A vector of length number.of.variables
## giving the prior inclusion probability of each coefficient. Each
## element must be between 0 and 1, inclusive. If left as NULL then a
## default value will be created with all elements set to
## expected.model.size / number.of.variables.
## sigma.upper.limit: The largest acceptable value for the residual standard
## deviation. A non-positive number is interpreted as Inf.
##
## Returns:
## An object of class SpikeSlabPriorBase, which is a list with the
## following elements:
## *) prior.inclusion.probabilities: A vector giving the prior inclusion
## probability of each coefficient.
## *) mu: A vector giving the prior mean of each coefficient given
## inclusion.
## *) sigma.guess: A prior estimate of the residual standard deviation.
## *) prior.df: A number of observations worth of weight to assign to
## sigma.guess.
## Compute prior.inclusion.probabilities, the prior inclusion probability
if (is.null(prior.inclusion.probabilities)) {
stopifnot(is.numeric(expected.model.size))
stopifnot(length(expected.model.size) == 1)
stopifnot(expected.model.size > 0)
if (expected.model.size < number.of.variables) {
prior.inclusion.probabilities <-
rep(expected.model.size / number.of.variables,
number.of.variables)
} else {
prior.inclusion.probabilities <- rep(1, number.of.variables)
}
}
stopifnot(length(prior.inclusion.probabilities) == number.of.variables)
stopifnot(all(prior.inclusion.probabilities >= 0))
stopifnot(all(prior.inclusion.probabilities <= 1))
## Compute sigma.guess (guess at the residual standard deviation)
stopifnot(is.numeric(expected.r2))
stopifnot(length(expected.r2) == 1)
stopifnot(expected.r2 < 1,
expected.r2 > 0)
stopifnot(is.numeric(sdy),
length(sdy) == 1,
sdy > 0)
sigma.guess <- sqrt((1 - expected.r2)) * sdy
## Compute mu, the conditional prior mean of beta (given nonzero)
if (!is.null(optional.coefficient.estimate)) {
mu <- optional.coefficient.estimate
if (length(mu) != number.of.variables) {
stop("The vector of estimated coefficients has length",
length(mu),
"but the design matrix has",
number.of.variables,
"columns.")
}
} else {
## The default behavior is to set the prior mean of all slopes to
## zero, and the prior mean of the intercept to ybar.
mu <- rep(0, number.of.variables)
mu[1] <- mean.y
}
stopifnot(is.numeric(prior.df),
length(prior.df) == 1,
prior.df >= 0)
stopifnot(is.numeric(sigma.upper.limit),
length(sigma.upper.limit) == 1)
if (sigma.upper.limit <= 0) {
sigma.upper.limit <- Inf
}
ans <- list(prior.inclusion.probabilities = prior.inclusion.probabilities,
mu = mu,
sigma.guess = sigma.guess,
prior.df = prior.df,
sigma.upper.limit = sigma.upper.limit)
class(ans) <- c("SpikeSlabPriorBase", "Prior")
return(ans)
}
###======================================================================
SpikeSlabPriorDirect <- function(coefficient.mean,
coefficient.precision,
prior.inclusion.probabilities,
prior.df,
sigma.guess,
max.flips = -1,
sigma.upper.limit = Inf) {
check.positive.scalar(sigma.guess)
check.positive.scalar(prior.df)
stopifnot(is.numeric(sigma.upper.limit), length(sigma.upper.limit) == 1)
ans <- SpikeSlabGlmPriorDirect(
coefficient.mean = coefficient.mean,
coefficient.precision = coefficient.precision,
prior.inclusion.probabilities = prior.inclusion.probabilities,
max.flips = max.flips)
ans$prior.df <- prior.df
ans$sigma.guess <- sigma.guess
ans$sigma.upper.limit <- sigma.upper.limit
class(ans) <- c("SpikeSlabPriorDirect", "SpikeSlabPrior", class(ans))
return(ans)
}
###======================================================================
SpikeSlabPrior <- function(x,
y = NULL,
expected.r2 = .5,
prior.df = .01,
expected.model.size = 1,
prior.information.weight = .01,
diagonal.shrinkage = .5,
optional.coefficient.estimate = NULL,
max.flips = -1,
mean.y = mean(y, na.rm = TRUE),
sdy = sd(as.numeric(y), na.rm = TRUE),
prior.inclusion.probabilities = NULL,
sigma.upper.limit = Inf) {
## Produces a list containing the prior distribution needed for
## lm.spike. This is Zellner's g-prior, where
##
## 1 / sigsq ~ Ga(prior.weight, prior.sumsq)
## beta | gamma ~ N(b, sigsq * V)
## gamma ~ Independent Bernoulli(prior.inclusion.probabilities)
##
## with V^{-1} = prior.information.weight *
## ((1 - diagonal.shrinkage) * xtx / n
## + (diagonal.shrinkage) * diag(diag(xtx / n)))
## and prior.sumsq = prior.df * (1 - expected.r2) * sdy^2
##
## Args:
## x: The design matrix in the regression problem
## y: The vector of responses in the regression problem
## expected.r2: A positive scalar less than 1. The expected
## R-squared statistic in the regression. Used to obtain the
## prior distribution for the residual variance.
## prior.df: A positive scalar representing the prior 'degrees of
## freedom' for estimating the residual variance. This can be
## thought of as the amount of weight (expressed as an
## observation count) given to the expected.r2 argument.
## expected.model.size: A positive number less than ncol(x),
## representing a guess at the number of significant predictor
## variables. Used to obtain the 'spike' portion of the spike
## and slab prior.
## prior.information.weight: A positive scalar. Number of
## observations worth of weight that should be given to the
## prior estimate of beta.
## diagonal.shrinkage: The conditionally Gaussian prior for beta
## (the "slab") starts with a precision matrix equal to the
## information in a single observation. However, this matrix
## might not be full rank. The matrix can be made full rank by
## averaging with its diagonal. diagonal.shrinkage is the
## weight given to the diaonal in this average. Setting this to
## zero gives Zellner's g-prior.
## optional.coefficient.estimate: If desired, an estimate of the
## regression coefficients can be supplied. In most cases this
## will be a difficult parameter to specify. If omitted then a
## prior mean of zero will be used for all coordinates except
## the intercept, which will be set to mean(y).
## max.flips: The maximum number of variable inclusion indicators
## the sampler will attempt to sample each iteration. If negative
## then all indicators will be sampled.
## mean.y: The mean of the response variable.
## sdy: The standard deviation of the response variable.
## prior.inclusion.probabilities: A vector giving the prior
## probability of inclusion for each variable.
## sigma.upper.limit: The largest acceptable value for the residual
## standard deviation. A non-positive number is interpreted as
## Inf.
## Returns:
## A list with the values needed to run lm.spike
## Details:
## Let gamma be a logical vector with length ncol(x), where
## gamma[i] == TRUE means beta[i] != 0. The prior is:
##
## Pr(beta[i] != 0) = pi
## p(beta[gamma] | x, sigma)
## = N(b[gamma], sigma^2 * Omega[gamma, gamma])
## p(1/sigma^2) = Gamma(prior.df / 2, prior.sum.of.squares / 2)
##
## The parameters are set as follows:
## prior.inclusion.probabilities = expected.model.size / ncol(x)
## b is a vector of zeros, except for the intercept (first term),
## which is set to mean(y)
## Omega^{-1} = [(1 - diagonal.srhinkage) * x^Tx +
## diagonal.shrinkage * diag(x^Tx)]
## * prior.information.weight / n
## prior.sum.of.squares = var(y) * (1 - expected.r2) * prior.df
ans <- SpikeSlabPriorBase(
number.of.variables = ncol(x),
expected.r2 = expected.r2,
prior.df = prior.df,
expected.model.size = expected.model.size,
optional.coefficient.estimate = optional.coefficient.estimate,
mean.y = mean.y,
sdy = sdy,
prior.inclusion.probabilities = prior.inclusion.probabilities,
sigma.upper.limit = sigma.upper.limit)
ans$max.flips <- max.flips
p <- length(ans$mu)
n <- nrow(x)
## Compute siginv, solve(siginv) times the residual variance is the
## prior variance of beta, conditional on nonzero elements.
w <- diagonal.shrinkage
if (w < 0 || w > 1) {
stop("Illegal value of diagonal shrinkage: ",
w,
"(must be between 0 and 1)")
}
xtx <- crossprod(x) / n
if (p == 1) {
d <- xtx
} else {
d <- diag(diag(xtx))
}
xtx <- w * d + (1 - w) * xtx
xtx <- xtx * prior.information.weight
ans$siginv <- xtx
class(ans) <- c("SpikeSlabPrior", class(ans))
return(ans)
}
###======================================================================
StudentSpikeSlabPrior <- function(
predictor.matrix,
response.vector = NULL,
expected.r2 = .5,
prior.df = .01,
expected.model.size = 1,
prior.information.weight = .01,
diagonal.shrinkage = .5,
optional.coefficient.estimate = NULL,
max.flips = -1,
mean.y = mean(response.vector, na.rm = TRUE),
sdy = sd(as.numeric(response.vector), na.rm = TRUE),
prior.inclusion.probabilities = NULL,
sigma.upper.limit = Inf,
degrees.of.freedom.prior = UniformPrior(.1, 100)) {
ans <- SpikeSlabPrior(
x = predictor.matrix,
y = response.vector,
expected.r2 = expected.r2,
prior.df = prior.df,
expected.model.size = expected.model.size,
prior.information.weight = prior.information.weight,
diagonal.shrinkage = diagonal.shrinkage,
optional.coefficient.estimate = optional.coefficient.estimate,
max.flips = max.flips,
mean.y = mean.y,
sdy = sdy,
prior.inclusion.probabilities = prior.inclusion.probabilities,
sigma.upper.limit = sigma.upper.limit)
stopifnot(inherits(degrees.of.freedom.prior, "DoubleModel"))
ans$degrees.of.freedom.prior <- degrees.of.freedom.prior
class(ans) <- c("StudentSpikeSlabPrior", class(ans))
return(ans)
}
###======================================================================
IndependentSpikeSlabPrior <- function(
x = NULL,
y = NULL,
expected.r2 = .5,
prior.df = .01,
expected.model.size = 1,
prior.beta.sd = NULL,
optional.coefficient.estimate = NULL,
mean.y = mean(y, na.rm = TRUE),
sdy = sd(as.numeric(y), na.rm = TRUE),
sdx = apply(as.matrix(x), 2, sd, na.rm = TRUE),
prior.inclusion.probabilities = NULL,
number.of.observations = nrow(x),
number.of.variables = ncol(x),
scale.by.residual.variance = FALSE,
sigma.upper.limit = Inf) {
## This version of the spike and slab prior assumes
##
## 1.0 / sigsq ~ Ga(prior.weight, prior.sumsq),
## beta | gamma ~ N(b, V),
## gamma ~ Independent Bernoulli(prior.inclusion.probabilities)
##
## where V is a diagonal matrix.
##
## Args:
## See SpikeSlabPriorBase.
## Additional args:
## prior.beta.sd: A vector of positive numbers giving the prior
## standard deviation of each model coefficient, conditionl on
## inclusion. If NULL it will be set to 10 * the ratio of sdy /
## sdx.
## scale.by.residual.variance: If TRUE the prior variance is
## sigma_sq * V, where sigma_sq is the residual variance of the
## linear regression modeled by this prior. Otherwise the prior
## variance is V, unscaled.
stopifnot(is.logical(scale.by.residual.variance),
length(scale.by.residual.variance) == 1)
ans <- SpikeSlabPriorBase(
number.of.variables = number.of.variables,
expected.r2 = expected.r2,
prior.df = prior.df,
expected.model.size = expected.model.size,
optional.coefficient.estimate = optional.coefficient.estimate,
mean.y = mean.y,
sdy = sdy,
prior.inclusion.probabilities = prior.inclusion.probabilities,
sigma.upper.limit = sigma.upper.limit)
## If any columns of x have zero variance (e.g. the intercept) then
## don't normalize by their standard deviation.
sdx[sdx == 0] <- 1
stopifnot(length(sdy) == 1)
stopifnot(is.numeric(sdy))
stopifnot(sdy > 0)
stopifnot(is.numeric(sdx))
stopifnot(all(sdx > 0))
## Each 1 sd change in x could have up to a 10 sd change in y. That's BIG
if (is.null(prior.beta.sd)) {
prior.beta.sd <- 10 * sdy / sdx
}
ans$prior.variance.diagonal <- prior.beta.sd^2
ans$scale.by.residual.variance <- scale.by.residual.variance
class(ans) <- c("IndependentSpikeSlabPrior", class(ans))
return(ans)
}
##===========================================================================
StudentIndependentSpikeSlabPrior <- function(
predictor.matrix = NULL,
response.vector = NULL,
expected.r2 = .5,
prior.df = .01,
expected.model.size = 1,
prior.beta.sd = NULL,
optional.coefficient.estimate = NULL,
mean.y = mean(response.vector, na.rm = TRUE),
sdy = sd(as.numeric(response.vector), na.rm = TRUE),
sdx = apply(as.matrix(predictor.matrix), 2, sd, na.rm = TRUE),
prior.inclusion.probabilities = NULL,
number.of.observations = nrow(predictor.matrix),
number.of.variables = ncol(predictor.matrix),
scale.by.residual.variance = FALSE,
sigma.upper.limit = Inf,
degrees.of.freedom.prior = UniformPrior(.1, 100)) {
ans <- IndependentSpikeSlabPrior(
x = predictor.matrix,
y = response.vector,
expected.r2 = expected.r2,
prior.df = prior.df,
expected.model.size = expected.model.size,
prior.beta.sd = prior.beta.sd,
optional.coefficient.estimate = optional.coefficient.estimate,
mean.y = mean.y,
sdy = sdy,
sdx = sdx,
prior.inclusion.probabilities = prior.inclusion.probabilities,
number.of.observations = number.of.observations,
number.of.variables = number.of.variables,
scale.by.residual.variance = scale.by.residual.variance,
sigma.upper.limit = sigma.upper.limit)
stopifnot(inherits(degrees.of.freedom.prior, "DoubleModel"))
ans$degrees.of.freedom.prior <- degrees.of.freedom.prior
class(ans) <- c("StudentIndependentSpikeSlabPrior", class(ans))
return(ans)
}
###======================================================================
SpikeSlabGlmPrior <- function(
predictors,
weight,
mean.on.natural.scale,
expected.model.size,
prior.information.weight,
diagonal.shrinkage,
optional.coefficient.estimate,
max.flips,
prior.inclusion.probabilities) {
## A spike and slab prior for generalized linear models, like
## poisson and logit. The model is
##
## beta | gamma ~ N(b, V),
## gamma ~ Independent Bernoulli(prior.inclusion.probabilities)
##
## where V^{-1} = alpha * diag(V0) + (1 - alpha) * V0 with V0 =
## kappa * X' W X / n. In this formula X is the matrix of
## predictors, W is a diagonal matrix of weights, and n is the
## sample size, and both kappa and alpha are scalar tuning
## parameters.
##
## Args:
## predictors: A matrix of predictor variables, also known as the
## design matrix, or just X.
## weight: A vector of length nrow(predictors) giving the prior
## weight assigned to each observation in X. This should
## ideally match the weights from the Fisher information (e.g. p
## * (1-p) for logistic regression, or lambda for poisson
## regression, but that depends on the model, so a typical thing
## to do is to set all the weights the same.
## mean.on.natural.scale: Used to set the prior mean for the
## intercept. The mean of the response, expressed on the
## natural scale. This is logit(p-hat) for logits and log(ybar)
## for poissons.
## expected.model.size: A positive number less than ncol(x),
## representing a guess at the number of significant predictor
## variables. Used to obtain the 'spike' portion of the spike
## and slab prior.
## diagonal.shrinkage: The conditionally Gaussian prior for beta
## (the "slab") starts with a precision matrix equal to the
## information in a single observation. However, this matrix
## might not be full rank. The matrix can be made full rank by
## averaging with its diagonal. diagonal.shrinkage is the
## weight given to the diaonal in this average. Setting this to
## zero gives Zellner's g-prior.
## optional.coefficient.estimate: If desired, an estimate of the
## regression coefficients can be supplied. In most cases this
## will be a difficult parameter to specify. If omitted then a
## prior mean of zero will be used for all coordinates except
## the intercept, which will be set to mean(y).
## max.flips: The maximum number of variable inclusion indicators
## the sampler will attempt to sample each iteration. If negative
## then all indicators will be sampled.
## prior.inclusion.probabilities: A vector giving the prior
## probability of inclusion for each variable.
dimension <- ncol(predictors)
ans <- SpikeSlabPriorBase(
number.of.variables = dimension,
expected.model.size = expected.model.size,
mean.y = mean.on.natural.scale,
sdy = 1,
optional.coefficient.estimate = optional.coefficient.estimate,
prior.inclusion.probabilities = prior.inclusion.probabilities)
ans$max.flips <- max.flips
sample.size <- nrow(predictors)
if (length(weight) == 1) {
weight <- rep(weight, sample.size)
}
xtwx <- crossprod(sqrt(weight) * predictors) / sample.size
stopifnot(is.numeric(diagonal.shrinkage),
length(diagonal.shrinkage) == 1,
diagonal.shrinkage >= 0,
diagonal.shrinkage <= 1)
if (dimension == 1) {
d <- xtwx
} else {
d <- diag(diag(xtwx))
}
xtwx <- diagonal.shrinkage * d + (1 - diagonal.shrinkage) * xtwx
xtwx <- xtwx * prior.information.weight
ans$siginv <- xtwx
class(ans) <- c("SpikeSlabGlmPrior", "Prior", class(ans))
return(ans)
}
##===========================================================================
SpikeSlabGlmPriorDirect <- function(coefficient.mean,
coefficient.precision,
prior.inclusion.probabilities = NULL,
expected.model.size = NULL,
max.flips = -1) {
## A spike and slab prior for problems where you want to specify the
## parameters directly, rather than in terms of the predictors and response.
## The model is beta | gamma ~ N(mean[gamma], precision[gamma, gamma]), where
## the elements of gamma are independent Bernoulli.
##
## Args:
## coefficient.mean: The mean of the 'slab' portion of the distribution if
## all variables were included.
## coefficient.precision: The precision (inverse variance) of the 'slab'
## portion of the distribution if all variables were included.
## prior.inclusion.probabilities: The probability that each variable is
## included.
## max.flips: The maximum number of include / exclude decsisions to explore
## in each MCMC iteration. If max.flips <= 0 or if max.flips exceeds the
## dimension of beta then each element of gamma is sampled each iteration.
##
## Returns:
## A spike and slab prior that can be used for probit, logit, and Poisson
## models.
stopifnot(length(coefficient.mean) == nrow(coefficient.precision),
nrow(coefficient.precision) == ncol(coefficient.precision))
if (is.null(prior.inclusion.probabilities)) {
if (is.null(expected.model.size)) {
stop(paste0(
"Either 'expected.model.size' or 'prior.inclusion.probabilities' ",
"must be specified."))
}
check.positive.scalar(expected.model.size)
xdim <- length(coefficient.mean)
prior.inclusion.probabilities <- rep(expected.model.size / xdim, xdim)
prior.inclusion.probabilities[prior.inclusion.probabilities > 1] <- 1
prior.inclusion.probabilities[prior.inclusion.probabilities < 0] <- 0
}
check.scalar.integer(max.flips)
ans <- list(mu = coefficient.mean,
siginv = coefficient.precision,
prior.inclusion.probabilities = prior.inclusion.probabilities,
max.flips = max.flips)
class(ans) <- c("SpikeSlabGlmPriorDirect", "SpikeSlabPriorBase", "Prior")
return(ans)
}
###======================================================================
ConditionalZellnerPrior <- function(xdim,
optional.coefficient.estimate = NULL,
expected.model.size = 1,
prior.information.weight = .01,
diagonal.shrinkage = .5,
max.flips = -1,
prior.inclusion.probabilities = NULL) {
## A Zellner-style prior where the predictor matrix, and potentially the
## residual variance parameter, will be obtained elsewhere. C++ code that
## takes this prior object must know where the X information comes from.
##
## Args:
## optional.coefficient.estimate: If desired, an estimate of the
## regression coefficients can be supplied. In most cases this
## will be a difficult parameter to specify. If omitted then a
## prior mean of zero will be used for all coordinates except
## the intercept, which will be set to mean(y).
## expected.model.size: A positive number less than ncol(x),
## representing a guess at the number of significant predictor
## variables. Used to obtain the 'spike' portion of the spike
## and slab prior.
## prior.information.weight: A positive scalar. Number of observations
## worth of weight that should be given to the prior estimate of beta.
## diagonal.shrinkage: The conditionally Gaussian prior for beta (the
## "slab") starts with a precision matrix equal to the information in a
## single observation. However, this matrix might not be full rank. The
## matrix can be made full rank by averaging with its diagonal.
## diagonal.shrinkage is the weight given to the diaonal in this average.
## Setting this to zero gives Zellner's g-prior.
## max.flips: The maximum number of variable inclusion indicators the
## sampler will attempt to sample each iteration. If negative then all
## indicators will be sampled.
## prior.inclusion.probabilities: A vector of length number.of.variables
## giving the prior inclusion probability of each coefficient. Each
## element must be between 0 and 1, inclusive. If left as NULL then a
## default value will be created with all elements set to
## expected.model.size / number.of.variables.
stopifnot(check.positive.scalar(diagonal.shrinkage))
stopifnot(check.positive.scalar(prior.information.weight))
if (!is.null(optional.coefficient.estimate)) {
xdim <- length(optional.coefficient.estimate)
}
stopifnot(xdim > 0)
if (is.null(optional.coefficient.estimate)) {
optional.coefficient.estimate <- rep(0, xdim)
}
if (is.null(prior.inclusion.probabilities)) {
stopifnot(check.positive.scalar(expected.model.size))
prior.inclusion.probabilities <- rep(expected.model.size / xdim, xdim)
prior.inclusion.probabilities[prior.inclusion.probabilities > 1] <- 1
prior.inclusion.probabilities[prior.inclusion.probabilities < 0] <- 0
}
stopifnot(check.scalar.integer(max.flips))
ans <- list(
prior.mean = optional.coefficient.estimate,
prior.information.weight = prior.information.weight,
diagonal.shrinkage = diagonal.shrinkage,
max.flips = as.integer(max.flips),
prior.inclusion.probabilities = prior.inclusion.probabilities)
class(ans) <- c("ConditionalZellnerPrior", "Prior")
return(ans)
}
###======================================================================
LogitZellnerPrior <- function(
predictors,
successes = NULL,
trials = NULL,
prior.success.probability = NULL,
expected.model.size = 1,
prior.information.weight = .01,
diagonal.shrinkage = .5,
optional.coefficient.estimate = NULL,
max.flips = -1,
prior.inclusion.probabilities = NULL) {
## A Zellner-style spike and slab prior for logistic regression.
##
## beta | gamma ~ N(b, V),
## gamma ~ Independent Bernoulli(prior.inclusion.probabilities)
##
## with V^{-1} = prior.information.weight *
## ((1 - diagonal.shrinkage) * x^Twx / n
## + (diagonal.shrinkage) * diag(x^Twx / n))
##
## The 'weight' in the information matrix x^Twx is p * (1 - p),
## where p is prior.success.probability.
##
## Args:
## predictors: The design matrix for the regression problem. No
## missing data is allowed.
## successes: The vector of responses, which can be binary or counts. If
## binary they can be 0/1, TRUE/FALSE, or 1/-1. If counts, then the
## 'trials' argument must be specified as well. This is only used to
## obtain the empirical overall success rate, so it can be left NULL if
## prior.success.probability is specified.
## trials: A vector of the same length as successes, giving the number of
## trials for each success count (trials cannot be less than successes).
## If successes is binary (or NULL) then this can be NULL as well,
## signifying that there was only one trial per experiment.
## prior.success.probability: An a priori (scalar) guess at the overall
## frequency of successes. Used in two places: to set the prior mean of
## the intercept (if optional.coefficient.estimate is NULL) and to weight
## the information matrix in the "slab" portion of the prior.
## expected.model.size: A positive number less than ncol(x), representing a
## guess at the number of significant predictor variables. Used to obtain
## the 'spike' portion of the spike and slab prior.
## prior.information.weight: A positive scalar. Number of observations
## worth of weight that should be given to the prior estimate of beta.
## diagonal.shrinkage: The conditionally Gaussian prior for beta (the
## "slab") starts with a precision matrix equal to the information in a
## single observation. However, this matrix might not be full rank. The
## matrix can be made full rank by averaging with its diagonal.
## diagonal.shrinkage is the weight given to the diaonal in this average.
## Setting this to zero gives Zellner's g-prior.
## optional.coefficient.estimate: If desired, an estimate of the regression
## coefficients can be supplied. In most cases this will be a difficult
## parameter to specify. If omitted then a prior mean of zero will be
## used for all coordinates except the intercept, which will be set to
## logit(prior.success.probability).
## max.flips: The maximum number of variable inclusion indicators the
## sampler will attempt to sample each iteration. If negative then all
## indicators will be sampled.
## prior.inclusion.probabilities: A vector of length number.of.variables
## giving the prior inclusion probability of each coefficient. Each
## element must be between 0 and 1, inclusive. If left as NULL then a
## default value will be created with all elements set to
## expected.model.size / number.of.variables.
if (is.null(prior.success.probability)) {
if (is.null(trials)) {
prior.success.probability <- mean(successes > 0, na.rm = TRUE)
} else {
stopifnot(length(trials) == length(successes))
prior.success.probability <-
sum(successes, na.rm = TRUE) / sum(trials, na.rm = TRUE)
}
}
stopifnot(is.numeric(prior.success.probability),
length(prior.success.probability) == 1,
prior.success.probability >= 0.0,
prior.success.probability <= 1.0)
if (prior.success.probability == 0) {
prior.success.probability = 1.0 / (2.0 + nrow(predictors))
warning("Fudging around the fact that prior.success.probability is zero. ",
"Setting it to ", round(prior.success.probability, 5), "\n")
} else if (prior.success.probability == 1.0) {
nx <- nrow(predictors)
prior.success.probability = (1.0 + nx) / (2.0 + nx)
warning("Fudging around the fact that prior.success.probability is 1.",
" Setting it to ", round(prior.success.probability, 5), "\n")
}
prior.logit <- qlogis(prior.success.probability)
dimension <- ncol(predictors)
ans <- SpikeSlabGlmPrior(
predictors = predictors,
weight = prior.success.probability * (1 - prior.success.probability),
mean.on.natural.scale = prior.logit,
expected.model.size = expected.model.size,
prior.information.weight = prior.information.weight,
diagonal.shrinkage = diagonal.shrinkage,
optional.coefficient.estimate = optional.coefficient.estimate,
max.flips = max.flips,
prior.inclusion.probabilities = prior.inclusion.probabilities)
## All LogitPrior objects will have a 'prior.success.probability'
## field.
ans$prior.success.probability = prior.success.probability
class(ans) <- c("LogitZellnerPrior", "LogitPrior", class(ans))
return(ans)
}
##===========================================================================
PoissonZellnerPrior <- function(
predictors,
counts = NULL,
exposure = NULL,
prior.event.rate = NULL,
expected.model.size = 1,
prior.information.weight = .01,
diagonal.shrinkage = .5,
optional.coefficient.estimate = NULL,
max.flips = -1,
prior.inclusion.probabilities = NULL) {
## A Zellner-style spike and slab prior for Poisson regression.
##
## beta | gamma ~ N(b, V),
## gamma ~ Independent Bernoulli(prior.inclusion.probabilities)
##
## with V^{-1} = prior.information.weight *
## ((1 - diagonal.shrinkage) * x^Twx / n
## + (diagonal.shrinkage) * diag(x^Twx / n))
##
## The 'weight' in the information matrix x^Twx is exposure[i] *
## exp(beta^Tx[i]), which the mean of y[i].
##
## Args:
## predictors: The design matrix for the regression problem. No
## missing data is allowed.
## counts: The vector of responses, This is only used to obtain
## the empirical overall event rate, so it can be left NULL if
## prior.event.rate is specified.
## exposure: A vector of the same length as counts, giving the
## "exposure time" for each experiment. This can also be NULL,
## signifying that exposure = 1.0 for each observation.
## prior.event.rate: An a priori guess at the overall frequency of
## successes. Used in two places: to set the prior mean of the
## intercept (if optional.coefficient.estimate is NULL) and to
## weight the information matrix in the "slab" portion of the
## prior.
## expected.model.size: A positive number less than ncol(x),
## representing a guess at the number of significant predictor
## variables. Used to obtain the 'spike' portion of the spike
## and slab prior.
## prior.information.weight: A positive scalar. Number of
## observations worth of weight that should be given to the
## prior estimate of beta.
## diagonal.shrinkage: The conditionally Gaussian prior for beta
## (the "slab") starts with a precision matrix equal to the
## information in a single observation. However, this matrix
## might not be full rank. The matrix can be made full rank by
## averaging with its diagonal. diagonal.shrinkage is the
## weight given to the diaonal in this average. Setting this to
## zero gives Zellner's g-prior.
## optional.coefficient.estimate: If desired, an estimate of the
## regression coefficients can be supplied. In most cases this
## will be a difficult parameter to specify. If omitted then a
## prior mean of zero will be used for all coordinates except
## the intercept, which will be set to log(prior.event.rate).
## max.flips: The maximum number of variable inclusion indicators
## the sampler will attempt to sample each iteration. If negative
## then all indicators will be sampled.
## prior.inclusion.probabilities: A vector of length
## number.of.variables giving the prior inclusion probability of
## each coefficient. Each element must be between 0 and 1,
## inclusive. If left as NULL then a default value will be
## created with all elements set to expected.model.size /
## number.of.variables.
if (is.null(prior.event.rate)) {
if (is.null(exposure)) {
prior.event.rate <- mean(counts, na.rm = TRUE)
} else {
stopifnot(length(exposure) == length(counts),
all(exposure > 0, na.rm = TRUE))
prior.event.rate =
sum(counts, na.rm = TRUE) / sum(exposure, na.rm = TRUE)
}
}
## TODO(stevescott): Another really good choice here is to set
## prior.event.rate = 1 + y / exposure. That solves the weight
## problem for the precision matrix, but does not help for the
## intercept term.
stopifnot(is.numeric(prior.event.rate),
length(prior.event.rate) == 1,
prior.event.rate >= 0.0)
if (prior.event.rate == 0) {
prior.event.rate = 1.0 / (2.0 + nrow(predictors))
warning("Fudging around the fact that prior.event.rate is zero. ",
"Setting it to ", round(prior.event.rate, 5), "\n")
}
prior.log.event.rate <- log(prior.event.rate)
dimension <- ncol(predictors)
ans <- SpikeSlabGlmPrior(
predictors = predictors,
weight = prior.event.rate,
mean.on.natural.scale = prior.log.event.rate,
expected.model.size = expected.model.size,
prior.information.weight = prior.information.weight,
diagonal.shrinkage = diagonal.shrinkage,
optional.coefficient.estimate = optional.coefficient.estimate,
max.flips = max.flips,
prior.inclusion.probabilities = prior.inclusion.probabilities)
## All PoissonPrior objects have a 'prior.event.rate' field.
ans$prior.event.rate <- prior.event.rate
class(ans) <- c("PoissonZellnerPrior", "PoissonPrior", class(ans))
return(ans)
}
|
/scratch/gouwar.j/cran-all/cranData/BoomSpikeSlab/R/spike.slab.prior.R
|
.MakeKnots <- function(x, numknots) {
## Return a vector of quantiles of x of length numknots, equally space in
## quantile space.
stopifnot(is.numeric(numknots), length(numknots) == 1, numknots > 0)
stopifnot(is.numeric(x), !any(is.na(x)))
knot.quantiles <- seq(1/numknots, 1 - 1/numknots, length = numknots)
knots <- quantile(x, knot.quantiles)
return(knots)
}
BsplineBasis <- function(x, knots = NULL, numknots = 3) {
## Args:
## x: A nummeric vector to be expanded.
## knots: A vector of knots.
## numknots: If 'knots' is supplied this is ignored.
stopifnot(is.numeric(x), !any(is.na(x)))
if (is.null(knots)) {
knots <- .MakeKnots(x, numknots)
}
stopifnot(is.numeric(knots))
knots <- sort(knots)
ans <- .Call("boom_spike_slab_Bspline_basis",
x,
knots)
attr(ans, "knots") <- knots
class(ans) <- c("BsplineBasis", "SplineBasis")
return(ans)
}
MsplineBasis <- function(x, knots = NULL, numknots = 3) {
## Args:
## x: A nummeric vector to be expanded.
## knots: A vector of knots.
stopifnot(is.numeric(x), !any(is.na(x)))
if (is.null(knots)) {
knots <- .MakeKnots(x, numknots)
}
stopifnot(is.numeric(knots))
knots <- sort(knots)
ans <- .Call(boom_spike_slab_Mspline_basis,
x,
knots)
attr(ans, "knots") <- knots
class(ans) <- c("MsplineBasis", "SplineBasis")
return(ans)
}
IsplineBasis <- function(x, knots = NULL, numknots = 3) {
## Args:
## x: A nummeric vector to be expanded.
## knots: A vector of knots.
stopifnot(is.numeric(x), !any(is.na(x)))
if (is.null(knots)) {
knots <- .MakeKnots(x, numknots)
}
stopifnot(is.numeric(knots))
knots <- sort(knots)
ans <- .Call("boom_spike_slab_Ispline_basis",
x,
knots)
attr(ans, "knots") <- knots
class(ans) <- c("IsplineBasis", "SplineBasis")
return(ans)
}
knots <- function(Fn, ...) {
UseMethod("knots")
}
knots.SplineBasis <- function(Fn, ...) {
## Args:
## Fn: A BOOM spline basis matrix.
## ...: Unused. Required to match the signature of the 'knots' generic function.
##
## Returns:
## The 'knots' attribute of Fn.
return(attr(Fn, "knots"))
}
|
/scratch/gouwar.j/cran-all/cranData/BoomSpikeSlab/R/splines.R
|
BoostMLR <- function(x,
tm,
id,
y,
Time_Varying = TRUE,
BS_Time = TRUE,
nknots_t = 10,
d_t = 3,
All_RawX = TRUE,
RawX_Names,
nknots_x = 7,
d_x = 3,
M = 200,
nu = 0.05,
Mod_Grad = TRUE,
Shrink = FALSE,
VarFlag = TRUE,
lower_perc = 0.25,
upper_perc = 0.75,
NLambda = 100,
Verbose = TRUE,
Trace = FALSE,
lambda = 0,
setting_seed = FALSE,
seed_value = 100L,
...)
{
if(missing(y)){
stop("y is missing")
}
if(is.data.frame(y)){
y <- data.matrix(y)
}
if(!is.vector(y) && !is.matrix(y) ){
stop("y must be a vector or matrix")
} else
{
if(is.vector(y) && is.atomic(y)) {
y <- matrix(y,ncol = 1)
}
}
if(missing(tm) && missing(x)){
stop("tm and x both missing")
}
if(!missing(tm) && missing(id)){
stop("id is missing")
}
CrossSectional <- FALSE
if(missing(tm) && !missing(x) ){
if(!missing(id)){
if(!(length(sort(unique(id))) == nrow(y)) ){
stop("tm is missing")
}
} else
{
id <- 1:nrow(y)
}
tm <- rep(0, nrow(y))
nknots_t <- 1
d_t <- 0
CrossSectional <- TRUE
VarFlag <- FALSE
}
if(missing(x) && !missing(tm)){
x_miss <- TRUE
All_RawX <- TRUE
x <- cbind(rep(1,nrow(y)))
if(length(sort(unique(id))) == nrow(y) ){
CrossSectional <- TRUE
VarFlag <- FALSE
}
}else
{
x_miss <- FALSE
}
if(nknots_t <= 0 && BS_Time == TRUE){
stop("nknots_t must be > 0")
}
if(All_RawX == FALSE && any(nknots_x <= 0) ){
stop("nknots_x must be > 0")
}
if(missing(tm) && Time_Varying == TRUE){
Time_Varying <- FALSE
}
if(!BS_Time){
nknots_t <- 1
d_t <- 0
}
#if(!missing(tm) && Time_Varying == FALSE && CrossSectional == FALSE){
# if(x_miss){
# x <- tm
# }
# nknots_t <- 1
# d_t <- 0
#}
if ( any(is.na(id)) ) {
stop("missing values encountered in id: remove observations with missing values")
}
Time_Unmatch <- rep(FALSE,ncol(x))
N <- nrow(y)
user.option <- list(...)
Lambda_Scale <- 1
rho <- is.hidden.rho(user.option)
phi <- is.hidden.phi(user.option)
Lambda_Ridge <- lambda
Ridge_Penalty <- FALSE
dt_Add <- is.hidden.dt_Add(user.option)
if(!is.null(dt_Add)){
if(!is.list(dt_Add)){
stop("dt_Add must be a list")
}
K_Add <- length(dt_Add)
nullObj <- lapply(1:K_Add,function(kk){
nc_K_Add <- ncol(dt_Add[[kk]])
if(nc_K_Add != 3){
stop("Each element of dt_Add must be a dataset with 3 columns arrange in order of id, time, x")
}
NULL
})
Ord_id_tm <- Order_Time(ID = id,Time = tm)
id <- id[Ord_id_tm]
tm <- tm[Ord_id_tm]
x <- x[Ord_id_tm,,drop = FALSE]
y <- y[Ord_id_tm,,drop = FALSE]
x_Add_New <- matrix(NA,nrow = N,ncol = K_Add)
x_Names_Add <- rep(NA,K_Add)
Time_Add_New <- matrix(NA,nrow = N,ncol = K_Add)
Time_Names_Add <- rep(NA,K_Add)
for(kk in 1:K_Add){
Ord_id_tm_Add <- Order_Time(ID = dt_Add[[kk]][,1],Time = dt_Add[[kk]][,2])
dt_Add[[kk]] <- dt_Add[[kk]][Ord_id_tm_Add,,drop = FALSE]
id_Add <- dt_Add[[kk]][,1]
x_Names_Add[kk] <- names(dt_Add[[kk]][,3,drop = FALSE])
Time_Names_Add[kk] <- names(dt_Add[[kk]][,2,drop = FALSE])
if(any(is.na(id_Add))){
stop("Missing values observed for id in dt_Add")
}
unq_id_Add <- unique(id_Add)
n_Add <- length(unq_id_Add)
nullObj <- unlist(lapply(1:n_Add,function(i){
Which_id <- which(unq_id_Add[i] == id)
ni <- length(Which_id)
if(ni > 0){
Which_id_Add <- which(id_Add == unq_id_Add[i])
ni_Add <- length(Which_id_Add)
tm_Add <- dt_Add[[kk]][Which_id_Add,2]
x_Add <- dt_Add[[kk]][Which_id_Add,3]
for(j in 1:ni){
for(jj in 1:ni_Add){
if((!is.na(tm_Add[jj]) && !is.na(tm[Which_id[j]]))){
if(tm_Add[jj] <= tm[Which_id[j]]){
x_Add_New[Which_id[j], kk] <<- x_Add[jj]
Time_Add_New[Which_id[j], kk] <<- tm_Add[jj]
}
}
}
}
}
NULL
}))
}
colnames(x_Add_New) <- x_Names_Add
x <- cbind(x,x_Add_New)
Time_Unmatch <- c(Time_Unmatch,rep(TRUE, ncol(x_Add_New)))
colnames(Time_Add_New) <- Time_Names_Add
} else
{
Time_Add_New <- matrix(0,nrow = N,ncol = 1)
colnames(Time_Add_New) <- "Time_Add"
}
#----------------------------------------------------------------------------------
# Date: 12/11/2020
# In the following codes, if the id is character or factor, we convert into numeric
# without changing the values.
#----------------------------------------------------------------------------------
if(is.character(id)){
id <- as.numeric(id)
}
if(is.factor(id)){
id <- as.numeric(levels(id))[id]
}
#----------------------------------------------------------------------------------
# Date: 12/11/2020
# while working on BoostMLR manuscript, I realized that the function Order_Time
# works only when Dt_Add is non-null. We need this in every situation so that
# I can plot beta coefficient as a function of time. This is done in the following
# codes. Note that I have modified the Order_Time function in the utilities file.
#----------------------------------------------------------------------------------
sort_id <- is.hidden.sort_id(user.option)
if(sort_id){
unq_id <- sort_unique_C_NA(id)
} else
{
unq_id <- unique_C_NA(id)
}
Ord_id_tm <- Order_Time(ID = id,Time = tm,unq_id = unq_id)
id <- id[Ord_id_tm]
tm <- tm[Ord_id_tm]
x <- x[Ord_id_tm,,drop = FALSE]
y <- y[Ord_id_tm,,drop = FALSE]
if(!is.matrix(x)){
x <- data.matrix(x)
}
K <- ncol(x)
L <- ncol(y)
x_Names <- colnames(x)
y_Names <- colnames(y)
if(is.null(x_Names)){
x_Names <- paste("x",1:K,sep="")
}
if(is.null(y_Names)){
y_Names <- paste("y",1:L,sep="")
}
if( ( is.null(rho) && !is.null(phi) ) || ( !is.null(rho) && is.null(phi) ) ){
stop("rho or phi is null")
}
if( !is.null(rho) && !is.null(phi) ){
VarFlag <- FALSE
if(! ( (length(rho) == 1 || length(rho) == L) && (length(phi) == 1 || length(phi) == L) ) ){
stop("Length of rho and phi must be 1 or L")
}
if( any(rho < -1) || any(rho > 1) || any(phi <= 0) ){
stop("rho should be between -1 and 1 and phi should be > 0")
}
if(length(rho) == 1 && length(phi) == 1){
rho <- rep(rho,L)
phi <- rep(phi,L)
}
Rho <- matrix(rep(rho,M),nrow = M,byrow = TRUE)
Phi <- matrix(rep(phi,M),nrow = M,byrow = TRUE)
}
else {
rho <- rep(0,L)
phi <- rep(1,L)
Rho <- matrix(rep(rho,M),nrow = M,byrow = TRUE)
Phi <- matrix(rep(phi,M),nrow = M,byrow = TRUE)
}
unq_x <- lapply(1:K,function(k){
sort_unique_C_NA(x[,k,drop = TRUE])
})
n_unq_x <- unlist(lapply(1:K,function(k){
length(unq_x[[k]])
}))
if( !(length(nknots_x) == 1 || length(nknots_x) == K) ){
stop( paste("Length of nknots_x should be either 1 or",K,sep = " ") )
}
if( !(length(d_x) == 1 || length(d_x) == K) ){
stop( paste("Length of d_x should be either 1 or",K,sep = " ") )
}
if(length(nknots_x) == 1){
nknots_x <- rep(nknots_x,K)
}
if(length(d_x) == 1){
d_x <- rep(d_x,K)
}
Unique_Limit <- unlist(lapply(1:K,function(k){
nknots_x[k] + d_x[k]
}))
Categorical_x <- x_Names[which(unlist(lapply(1:K,function(k){
(n_unq_x[k] < Unique_Limit[k])
})))]
if(length(Categorical_x) > 0){
if(missing(RawX_Names)){
RawX_Names <- Categorical_x
}else
{
RawX_Names <- union(RawX_Names,Categorical_x)
}
}
if(All_RawX){
UseRaw <- rep(TRUE,K)
}else
{
if(missing(RawX_Names) ){
UseRaw <- rep(FALSE,K)
}else
{
UseRaw <- (!is.na(match(x_Names,RawX_Names)))
if(all(UseRaw == FALSE)){
stop("RawX.names do not match with the variables names from x")
}
}
}
ProcessedData <- DataProcessing_C(x,
y,
id,
tm,
unq_id,
x_miss,
Trace)
Org_x <- ProcessedData$Data$Org_x
Org_y <- ProcessedData$Data$Org_y
id <- ProcessedData$Data$id
tm <- ProcessedData$Data$tm
x <- ProcessedData$Data$x
y <- ProcessedData$Data$y
if(!is.matrix(Org_x)){
Org_x <- data.matrix(Org_x)
}
if(!is.matrix(Org_y)){
Org_y <- data.matrix(Org_y)
}
if(!is.matrix(x)){
x <- data.matrix(x)
}
if(!is.matrix(y)){
y <- data.matrix(y)
}
x_Mean <- ProcessedData$Data$x_Mean
x_Std_Error <- ProcessedData$Data$x_Std_Error
y_Mean <- ProcessedData$Data$y_Mean
y_Std_Error <- ProcessedData$Data$y_Std_Error
unq_id <- ProcessedData$Index$unq_id
id_index <- ProcessedData$Index$id_index
n <- ProcessedData$Dimensions$n
K <- ProcessedData$Dimensions$K
L <- ProcessedData$Dimensions$L
ni <- ProcessedData$Dimensions$ni
N <- ProcessedData$Dimensions$N
if(all(ni == 1)){
VarFlag <- FALSE
}
H <- nknots_t + d_t
unq_tm <- sort_unique_C_NA(tm)
n_unq_tm <- length(unq_tm)
if( (n_unq_tm < H) && (BS_Time == TRUE) ){
H <- n_unq_tm
}
if(CrossSectional == TRUE || Time_Varying == FALSE){
Bt <- cbind(rep(1,n_unq_tm));
}else
{
if(BS_Time){
Bt <- bs(x = unq_tm,df = H,degree = d_t,intercept = TRUE)
}else
{
Bt <- cbind(unq_tm)
}
}
unq_x <- lapply(1:K,function(k){
if(UseRaw[k]){
NA
}else
{
sort_unique_C_NA(x[,k,drop = TRUE])
}
})
n_unq_x <- unlist(lapply(1:K,function(k){
if(UseRaw[k]){
NA
}else
{
length(unq_x[[k]])
}
}))
Dk <- unlist(lapply(1:K,function(k){
if(UseRaw[k]){
out <- 1
}else
{
Dk_Temp <- nknots_x[k] + d_x[k]
if(n_unq_x[k] < Dk_Temp){
out <- n_unq_x[k]
}else
{
out <- Dk_Temp
}
}
out
}))
count <- 0
Bx <- lapply(1:K,function(k){
if(UseRaw[k]){
if(Time_Unmatch[k]){
count <<- count + 1
x[,k,drop = FALSE]*Time_Add_New[ , count, drop = FALSE]
}
else {
x[,k,drop = FALSE]
}
}else
{
bs(x = unq_x[[k]],df = Dk[k],degree = d_x[k],intercept = TRUE)
}
})
Bx_Scale <- lapply(1:K,function(k){
if(UseRaw[k]){
1
}else
{
rep(1,Dk[k])
}
})
Lambda_Ridge_Vec <- unlist(lapply(1:K,function(k){
Lambda_Ridge
}))
if(M < 10){
Verbose <- FALSE
}
obj_C <- BoostMLR_C(Org_x,
Org_y,
id,
tm,
x,
y,
x_Mean,
x_Std_Error,
y_Mean,
y_Std_Error,
n,
K,
L,
H,
Dk,
ni,
N,
unq_id,
unq_tm,
unq_x,
id_index,
Bt,
Bx,
Bx_Scale,
Time_Add_New,
Time_Unmatch,
nu,
M,
Mod_Grad,
UseRaw,
Lambda_Ridge_Vec,
Ridge_Penalty,
Shrink,
lower_perc,
upper_perc,
Lambda_Scale,
NLambda,
VarFlag,
rho,
phi,
setting_seed,
seed_value,
Verbose,
Trace)
Tm_Beta <- lapply(1:obj_C$Dimensions$L,function(l){
Out <- matrix(unlist(lapply(1:obj_C$Dimensions$K,function(k){
if(!UseRaw[k]){
rep(NA, obj_C$Dimensions$N)
}else
{
Reduce("+",lapply(1:obj_C$Dimensions$H,function(h){
unlist(lapply(1:obj_C$Dimensions$n,function(i){
obj_C$Beta_Estimate$Tm_Beta_C[[k]][[1]][[h]][[l]][[i]]
}))
}))
}
})),ncol = obj_C$Dimensions$K,byrow = FALSE)
colnames(Out) <- x_Names
Out
})
#----------------------------------------------------------------------------------
# Date: 12/11/2020
# It was realized that it makes more sense to show plots of beta on the standardized
# scale rather than on the original scale. Therefore, along with Tm_Beta, I
# have calculated Tm_Beta_Std in the following codes.
#----------------------------------------------------------------------------------
Tm_Beta_Std <- lapply(1:obj_C$Dimensions$L,function(l){
Out <- matrix(unlist(lapply(1:obj_C$Dimensions$K,function(k){
if(!UseRaw[k]){
rep(NA, obj_C$Dimensions$N)
}else
{
Reduce("+",lapply(1:obj_C$Dimensions$H,function(h){
unlist(lapply(1:obj_C$Dimensions$n,function(i){
obj_C$Beta_Estimate$Tm_Beta_Std_C[[k]][[1]][[h]][[l]][[i]]
}))
}))
}
})),ncol = obj_C$Dimensions$K,byrow = FALSE)
colnames(Out) <- x_Names
Out
})
if(Time_Varying == FALSE){
Tm_Beta <- lapply(1:obj_C$Dimensions$L,function(l){
Tm_Beta[[l]][1,,drop = TRUE]
})
}
names(Tm_Beta) <- y_Names
#----------------------------------------------------------------------------------
# Date: 12/11/2020
# Added Tm_Beta_Std as a part of Beta_Estimate
#----------------------------------------------------------------------------------
if(Time_Varying == FALSE){
Tm_Beta_Std <- lapply(1:obj_C$Dimensions$L,function(l){
Tm_Beta_Std[[l]][1,,drop = TRUE]
})
}
names(Tm_Beta_Std) <- y_Names
Beta_Estimate <- obj_C$Beta_Estimate
Beta_Estimate$Tm_Beta <- Tm_Beta
#----------------------------------------------------------------------------------
# Date: 12/11/2020
# Added Tm_Beta_Std as a part of Beta_Estimate
#----------------------------------------------------------------------------------
Beta_Estimate$Tm_Beta_Std <- Tm_Beta_Std
Rho <- Phi <- matrix(NA,nrow = M,ncol = L)
colnames(Phi) <- y_Names
colnames(Rho) <- y_Names
Error_Rate <- obj_C$Error_Rate
colnames(Error_Rate) <- y_Names
if(FALSE){
if(VarFlag){
NullObj <- lapply(1:L,function(l){
lapply(1:M,function(m){
Residual_Data <- data.frame(y = (obj_C$Data$Org_y[,l] - obj_C$mu_List[[m]][,l]) ,tm = obj_C$Data$tm, id = obj_C$Data$id, obj_C$Data$Org_x)
gls.obj <- tryCatch({gls(y ~ ., data = Residual_Data,
correlation = corCompSymm(form = ~ 1 | id))},
error = function(ex){NULL})
if (is.null(gls.obj)) {
gls.obj <- tryCatch({gls(y ~ 1, data = Residual_Data,
correlation = corCompSymm(form = ~ 1 | id))},
error = function(ex){NULL})
}
if (!is.null(gls.obj)) {
phi_Temp <- gls.obj$sigma^2
Phi[m,l] <<- ifelse(phi_Temp == 0,1,phi_Temp)
rho_Temp <- as.numeric(coef(gls.obj$modelStruct$corStruc, unconstrained = FALSE))
Rho[m,l] <<- max(min(0.999, rho_Temp, na.rm = TRUE), -0.999)
Result <- c(phi_Temp,rho_Temp)
}
NULL
})
NULL
})
}
}
x <- obj_C$Data$Org_x
y <- obj_C$Data$Org_y
id <- obj_C$Data$id
tm <- obj_C$Data$tm
M <- obj_C$Regulate$M
nu <- obj_C$Regulate$nu
mu <- obj_C$mu_List[[M]]
if(VarFlag){
phi <- obj_C$Phi[M,]
rho <- obj_C$Rho[M,]
}
Grow_Object <- list(Data = obj_C$Data,
Dimensions = obj_C$Dimensions,
Index = obj_C$Index,
BS = obj_C$BS,
Regulate = obj_C$Regulate,
Beta_Estimate = Beta_Estimate,
mu = obj_C$mu,
mu_List = obj_C$mu_List,
mu_zero = obj_C$mu_zero,
Vec_zero = obj_C$Vec_zero,
Mod_Grad = Mod_Grad,
sort_id = sort_id,
phi = phi,
rho = rho,
Time_Unmatch = Time_Unmatch,
setting_seed = setting_seed,
seed_value = seed_value,
Time_Add_New = if(is.null(dt_Add)) NULL else Time_Add_New)
Variable_Select = (obj_C$Variable_Select + 1)
Response_Select = (obj_C$Response_Select + 1)
Variable_Select[Variable_Select == 0] <- NA
Response_Select[Response_Select == 0] <- NA
Phi <- obj_C$Phi
Rho <- obj_C$Rho
colnames(Phi) <- colnames(Rho) <- y_Names
obj <- list(x = x,
id = id,
tm = tm,
y = y,
UseRaw = UseRaw,
x_Names = x_Names,
y_Names = y_Names,
M = M,
nu = nu,
Tm_Beta = Tm_Beta,
mu = mu,
Error_Rate = Error_Rate,
Variable_Select = Variable_Select,
Response_Select = Response_Select,
VarFlag = VarFlag,
Time_Varying = Time_Varying,
Phi = Phi,
Rho = Rho,
Lambda_List = obj_C$Lambda_List,
Grow_Object = Grow_Object)
class(obj) <- c("BoostMLR", "grow")
invisible(obj)
}
|
/scratch/gouwar.j/cran-all/cranData/BoostMLR/R/BoostMLR.R
|
#--------------------------------------------------
# BoostMLR news
BoostMLR.news <- function(...) {
newsfile <- file.path(system.file(package="BoostMLR"), "NEWS")
file.show(newsfile)
}
|
/scratch/gouwar.j/cran-all/cranData/BoostMLR/R/BoostMLR.news.R
|
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
Sum_C <- function(x) {
.Call(`_BoostMLR_Sum_C`, x)
}
Sum_C_NA <- function(x) {
.Call(`_BoostMLR_Sum_C_NA`, x)
}
length_C_NA <- function(x) {
.Call(`_BoostMLR_length_C_NA`, x)
}
Mean_C <- function(x) {
.Call(`_BoostMLR_Mean_C`, x)
}
Mean_C_NA <- function(x) {
.Call(`_BoostMLR_Mean_C_NA`, x)
}
Which_C <- function(x, x_set) {
.Call(`_BoostMLR_Which_C`, x, x_set)
}
Which_C_NA <- function(x, x_set) {
.Call(`_BoostMLR_Which_C_NA`, x, x_set)
}
Which_Min_C <- function(x) {
.Call(`_BoostMLR_Which_Min_C`, x)
}
Which_Min_C_NA <- function(x) {
.Call(`_BoostMLR_Which_Min_C_NA`, x)
}
Which_Max_C <- function(x) {
.Call(`_BoostMLR_Which_Max_C`, x)
}
Which_Max_C_NA <- function(x) {
.Call(`_BoostMLR_Which_Max_C_NA`, x)
}
StdVar_C <- function(MyMat) {
.Call(`_BoostMLR_StdVar_C`, MyMat)
}
StdVar_C_NA <- function(MyMat) {
.Call(`_BoostMLR_StdVar_C_NA`, MyMat)
}
Match_C <- function(x_subset, x_set) {
.Call(`_BoostMLR_Match_C`, x_subset, x_set)
}
Match_C_NA <- function(x_subset, x_set) {
.Call(`_BoostMLR_Match_C_NA`, x_subset, x_set)
}
Approx_Match_C <- function(x, y) {
.Call(`_BoostMLR_Approx_Match_C`, x, y)
}
Approx_Match_C_NA <- function(x, y) {
.Call(`_BoostMLR_Approx_Match_C_NA`, x, y)
}
Diag_Matrix_C <- function(x) {
.Call(`_BoostMLR_Diag_Matrix_C`, x)
}
Matrix_Sum_C <- function(x, y) {
.Call(`_BoostMLR_Matrix_Sum_C`, x, y)
}
Matrix_Sum_C_NA <- function(x, y) {
.Call(`_BoostMLR_Matrix_Sum_C_NA`, x, y)
}
l2Dist_Vector_C <- function(x1, x2, ID) {
.Call(`_BoostMLR_l2Dist_Vector_C`, x1, x2, ID)
}
l2Dist_Vector_C_NA <- function(x1, x2, ID) {
.Call(`_BoostMLR_l2Dist_Vector_C_NA`, x1, x2, ID)
}
set_seed <- function(seed) {
invisible(.Call(`_BoostMLR_set_seed`, seed))
}
randomShuffle <- function(x, size, setting_seed, seed_value, replace = FALSE, p = NULL) {
.Call(`_BoostMLR_randomShuffle`, x, size, setting_seed, seed_value, replace, p)
}
int_randomShuffle <- function(x, size, setting_seed, seed_value, replace = FALSE, p = NULL) {
.Call(`_BoostMLR_int_randomShuffle`, x, size, setting_seed, seed_value, replace, p)
}
Reverse_Ordering <- function(a) {
.Call(`_BoostMLR_Reverse_Ordering`, a)
}
RemoveNA <- function(x) {
.Call(`_BoostMLR_RemoveNA`, x)
}
stl_sort <- function(x) {
.Call(`_BoostMLR_stl_sort`, x)
}
stl_sort_NA <- function(x) {
.Call(`_BoostMLR_stl_sort_NA`, x)
}
stl_sort_reverse <- function(x) {
.Call(`_BoostMLR_stl_sort_reverse`, x)
}
stl_sort_reverse_NA <- function(x) {
.Call(`_BoostMLR_stl_sort_reverse_NA`, x)
}
unique_C <- function(x) {
.Call(`_BoostMLR_unique_C`, x)
}
unique_C_NA <- function(x) {
.Call(`_BoostMLR_unique_C_NA`, x)
}
sort_unique_C <- function(x) {
.Call(`_BoostMLR_sort_unique_C`, x)
}
sort_unique_C_NA <- function(x) {
.Call(`_BoostMLR_sort_unique_C_NA`, x)
}
Which_Max_Matrix <- function(x) {
.Call(`_BoostMLR_Which_Max_Matrix`, x)
}
Which_Max_Matrix_NA <- function(x) {
.Call(`_BoostMLR_Which_Max_Matrix_NA`, x)
}
rowSums_C <- function(x) {
.Call(`_BoostMLR_rowSums_C`, x)
}
rowSums_C_NA <- function(x) {
.Call(`_BoostMLR_rowSums_C_NA`, x)
}
isNA <- function(x) {
.Call(`_BoostMLR_isNA`, x)
}
Rho_Inv_C <- function(Rho_Value, N_Value) {
.Call(`_BoostMLR_Rho_Inv_C`, Rho_Value, N_Value)
}
MatrixInversion_Equicorrelation_C <- function(N_Value, phi, rho) {
.Call(`_BoostMLR_MatrixInversion_Equicorrelation_C`, N_Value, phi, rho)
}
Matrix_Vector_Multiplication_C <- function(x, y) {
.Call(`_BoostMLR_Matrix_Vector_Multiplication_C`, x, y)
}
DataProcessing_C <- function(Org_x, Org_y, id, tm, unq_id, x_miss, Trace) {
.Call(`_BoostMLR_DataProcessing_C`, Org_x, Org_y, id, tm, unq_id, x_miss, Trace)
}
BoostMLR_C <- function(Org_x, Org_y, id, tm, x, y, x_Mean, x_Std_Error, y_Mean, y_Std_Error, n, K, L, H, Dk, ni, N, unq_id, unq_tm, unq_x, id_index, Bt, Bx, Bx_Scale, Time_Add_New, Time_Unmatch, nu, M, Mod_Grad, UseRaw, Lambda_Ridge_Vec, Ridge_Penalty, Shrink, lower_perc, upper_perc, Lambda_Scale, NLambda, VarFlag, rho, phi, setting_seed, seed_value, Verbose, Trace) {
.Call(`_BoostMLR_BoostMLR_C`, Org_x, Org_y, id, tm, x, y, x_Mean, x_Std_Error, y_Mean, y_Std_Error, n, K, L, H, Dk, ni, N, unq_id, unq_tm, unq_x, id_index, Bt, Bx, Bx_Scale, Time_Add_New, Time_Unmatch, nu, M, Mod_Grad, UseRaw, Lambda_Ridge_Vec, Ridge_Penalty, Shrink, lower_perc, upper_perc, Lambda_Scale, NLambda, VarFlag, rho, phi, setting_seed, seed_value, Verbose, Trace)
}
update_BoostMLR_C <- function(Org_x, Org_y, id, tm, x, y, x_Mean, x_Std_Error, y_Mean, y_Std_Error, n, K, L, H, Dk, ni, N, unq_id, unq_tm, unq_x, id_index, tm_index, x_index, Bt, Bx, Bt_H, Bx_K, Bxt, Bx_Scale, nu, M, M_New, UseRaw, Shrink, Ridge_Penalty, Lambda_Ridge_Vec, Lambda_Scale, NLambda, lower_perc, upper_perc, Lambda_List, mu, mu_List, mu_zero, Vec_zero, Error_Rate, Variable_Select, Response_Select, Beta_Hat_List, Sum_Beta_Hat_List, Beta, Beta_Hat_List_Iter, lower_Beta_Hat_Noise, upper_Beta_Hat_Noise, List_Trace_Bxt_gm, Mod_Grad, VarFlag, phi, rho, Phi, Rho, setting_seed, seed_value, Verbose) {
.Call(`_BoostMLR_update_BoostMLR_C`, Org_x, Org_y, id, tm, x, y, x_Mean, x_Std_Error, y_Mean, y_Std_Error, n, K, L, H, Dk, ni, N, unq_id, unq_tm, unq_x, id_index, tm_index, x_index, Bt, Bx, Bt_H, Bx_K, Bxt, Bx_Scale, nu, M, M_New, UseRaw, Shrink, Ridge_Penalty, Lambda_Ridge_Vec, Lambda_Scale, NLambda, lower_perc, upper_perc, Lambda_List, mu, mu_List, mu_zero, Vec_zero, Error_Rate, Variable_Select, Response_Select, Beta_Hat_List, Sum_Beta_Hat_List, Beta, Beta_Hat_List_Iter, lower_Beta_Hat_Noise, upper_Beta_Hat_Noise, List_Trace_Bxt_gm, Mod_Grad, VarFlag, phi, rho, Phi, Rho, setting_seed, seed_value, Verbose)
}
predict_BoostMLR_C <- function(Org_x, tm, id, Org_y, x_Mean, x_Std_Error, y_Mean, y_Std_Error, K, L, H, Dk, unq_id, unq_tm, unq_x, Bt, Bx, UseRaw, Time_Add_New, Time_Unmatch, Beta, Beta_Hat_List, testFlag, M, nu, Time_Varying, vimpFlag, vimpFlag_Coef, eps, setting_seed, seed_value) {
.Call(`_BoostMLR_predict_BoostMLR_C`, Org_x, tm, id, Org_y, x_Mean, x_Std_Error, y_Mean, y_Std_Error, K, L, H, Dk, unq_id, unq_tm, unq_x, Bt, Bx, UseRaw, Time_Add_New, Time_Unmatch, Beta, Beta_Hat_List, testFlag, M, nu, Time_Varying, vimpFlag, vimpFlag_Coef, eps, setting_seed, seed_value)
}
vimp_BoostMLR_C <- function(Org_x, Org_y, tm, id, x_Mean, x_Std_Error, y_Mean, y_Std_Error, n, ni, N, L, K, p, H, Dk, n_unq_tm, UseRaw, id_index, tm_index, unq_x_New, Index_Bt, vimp_set, joint, Bt, Bt_H, Bx, Bxt, Bx_K, Beta_Hat_List, Mopt, nu, rmse, Time_Varying, Vec_zero, mu_zero_vec, setting_seed, seed_value) {
.Call(`_BoostMLR_vimp_BoostMLR_C`, Org_x, Org_y, tm, id, x_Mean, x_Std_Error, y_Mean, y_Std_Error, n, ni, N, L, K, p, H, Dk, n_unq_tm, UseRaw, id_index, tm_index, unq_x_New, Index_Bt, vimp_set, joint, Bt, Bt_H, Bx, Bxt, Bx_K, Beta_Hat_List, Mopt, nu, rmse, Time_Varying, Vec_zero, mu_zero_vec, setting_seed, seed_value)
}
|
/scratch/gouwar.j/cran-all/cranData/BoostMLR/R/RcppExports.R
|
#-------------------------------------------------------------------------------------------
# Partial plot function
partial.BoostMLR <- function(Object,
xvar.name,
n.x = 10,
n.tm = 10,
x.unq = NULL,
tm.unq = NULL,
Mopt,
plot.it = TRUE,
path_saveplot = NULL,
Verbose = TRUE,
...)
{
if (missing(Object)) {
stop("Object is missing")
}
x <- Object$x
tm <- Object$tm
id <- Object$id
if (missing(xvar.name)) {
stop("xvar.name is missing" )
}
if(length(xvar.name) > 1){
stop("Use single covariate in xvar.name")
}
x_Names <- Object$x_Names
xvar.name <- intersect(xvar.name, x_Names)
if (length(xvar.name) == 0) {
stop("xvar.name do not match original variable names")
}
user.option <- list(...)
prob_min <- is.hidden.prob_min(user.option)
prob_max <- is.hidden.prob_max(user.option)
if( is.null(x.unq) ){
xvar <- x[,xvar.name,drop = TRUE]
n.x.unq <- length(unique(xvar))
if(n.x.unq <= n.x){
x.unq <- sort(unique(xvar))
} else
{
x.unq <- sort(unique(xvar))[unique(as.integer(quantile(1: n.x.unq ,probs = seq(prob_min,prob_max,length.out = min(n.x,n.x.unq) ))))]
}
}
n.x <- length(x.unq)
if( is.null(tm.unq) ){
n.tm.unq <- length(unique(tm))
if(n.tm.unq <= n.tm){
tm.unq <- sort(unique(tm))
} else
{
tm.unq <- sort(unique(tm))[unique(as.integer(quantile(1: length(unique(tm)) ,probs = seq(0,0.9,length.out = min(n.tm,n.tm.unq) ))))]
}
}
n.tm <- length(tm.unq)
if(missing(Mopt)){
Mopt <- Object$M
}
L <- Object$Grow_Object$Dimensions$L
p.obj <- lapply(1:n.x,function(i){
new_x <- x
new_x[,xvar.name] <- x.unq[i]
lapply(1:n.tm,function(j){
tm <- rep(tm.unq[j],nrow(x))
colMeans(predictBoostMLR(Object = Object,x = new_x,tm = tm,id = id,M = Mopt,importance = FALSE)$mu,na.rm = TRUE)
})
})
pList <- lapply(1:L,function(l){
pMat <- matrix(NA,nrow = n.x,ncol = n.tm)
for(i in 1:n.x){
for(j in 1:n.tm){
pMat[i,j] <- p.obj[[i]][[j]][l]
}
}
pMat
})
sList <- lapply(1:L,function(l){
sMat <- matrix(NA,nrow = n.x,ncol = n.tm)
for(i in 1:n.x){
y.lo <- lowess(x = tm.unq,y = pList[[l]][i,,drop = TRUE] )$y
sMat[i,] <- y.lo
}
sMat
})
if(plot.it){
if(is.null(path_saveplot)){
path_saveplot <- tempdir()
}
pdf(file = paste(path_saveplot,"/","PartialPlot.pdf",sep=""),width = 14,height = 14)
for(l in 1:L){
filled.contour(x = tm.unq,
y = x.unq,
z = t(sList[[l]]),
xlim = range(tm.unq, finite = TRUE) + c(-0, 0),
ylim = range(x.unq, finite = TRUE) + c(-0, 0),
color.palette =
colorRampPalette(c("yellow", "red")),
xlab = "Time",
ylab = "x",
main = "PartialPlot",
cex.main = 2,
cex.lab = 1.5,
plot.axes = {
axis(1,cex.axis = 1.5)
axis(2,cex.axis = 1.5)})
}
dev.off()
if(Verbose){
cat("Plot will be saved at:",path_saveplot,sep = "")
}
}
obj <- list(x.unq = x.unq,
tm.unq = tm.unq,
pList = pList,
sList = sList)
invisible(obj)
}
|
/scratch/gouwar.j/cran-all/cranData/BoostMLR/R/partial.BoostMLR.R
|
plot.Variable_Select <- function(Variable_Select,K,plot.it = FALSE,N_R = 2,N_C = 2){
H <- ncol(Variable_Select)
M <- nrow(Variable_Select)
List_Proportion_Variable_Select <- lapply(1:H,function(h){
prop.var.full <- matrix(unlist(lapply(1:K,function(i){
unlist(lapply(1:M,function(j){
sum(Variable_Select[1:j,h] == i,na.rm = TRUE)/j
}))
})),nrow = M,byrow = FALSE)
prop.var.full <- cbind(prop.var.full[,1:4],rowMeans(prop.var.full[,5:K]) )
})
if(plot.it){
oldpar <- par("mfrow", "mar")
on.exit(par(oldpar))
par(mfrow=c(N_R,N_C))
for(h in 1:H){
plot(range(1:M),range(List_Proportion_Variable_Select[[h]]),type = "n",xlab = "m",ylab = "Proportion of Selected Variables")
K <- ncol(List_Proportion_Variable_Select[[h]])
for(i in 1:K){
if(i <= 4){
lines(1:M,List_Proportion_Variable_Select[[h]][,i],type = "l",lwd = 3,col = i)
}else
{
lines(1:M,List_Proportion_Variable_Select[[h]][,i],type = "l",lwd = 3,col = "gray")
}
}
}
}
List_Proportion_Variable_Select
}
|
/scratch/gouwar.j/cran-all/cranData/BoostMLR/R/plot.Variable_Select.R
|
#--------------------------------------------------
# Colors for plotting
ColorPlot <- c("black","red3","green4","blue","pink4","magenta2","orange")
#--------------------------------------------------
# Plot rho, phi, or error rate
plotBoostMLR <- function(Result,xlab = "",ylab = "",legend_fraction_x = 0.10,legend_fraction_y = 0,...){
if(is.vector(Result)){
Result <- matrix(Result,ncol = 1)
}
nr <- nrow(Result)
nc <- ncol(Result)
Range_x <- c(0,nr)
x_lim <- c(0, (nr + round(legend_fraction_x*nr,0)) )
Range_y <- range(c(Result),na.rm = TRUE)
y_lim <- c(Range_y[1], ifelse(Range_y[2] > 0, Range_y[2] + legend_fraction_y*Range_y[2], Range_y[2] + legend_fraction_y*abs(Range_y[2])))
plot(1:nr,Result[,1],type = "n",xlab = xlab,ylab = ylab,xlim = x_lim,ylim = y_lim,cex.lab = 1.5,frame.plot=FALSE,tck = 0,cex.axis = 1,xaxt = "n",yaxt = "n")
axis(1,lwd = 2,at = seq(Range_x[1],Range_x[2],length.out = 5),tick = TRUE,cex = 0.5,font.axis = 2)
axis(2,lwd = 2,at = seq(Range_y[1],Range_y[2],length.out = 5),labels = round(seq(Range_y[1],Range_y[2],length.out = 5),2),tick = TRUE,cex = 0.5,font.axis = 2)
for(i in 1:nc){
lines(1:nr,Result[,i],type = "l",lwd = 2,col = ColorPlot[i])
}
# q3 <- quantile(Result,probs = 0.75)
# legend(nr,q3,col = ColorPlot[1:nc],lwd = 3,lty = 1,box.col = "white",colnames(Result))
legend(Range_x[2],Range_y[2],col = ColorPlot[1:nc],lwd = 3,lty = 1,box.col = "white",colnames(Result))
}
|
/scratch/gouwar.j/cran-all/cranData/BoostMLR/R/plotBoostMLR.R
|
plotVIMP <- function(vimp_Object,
xvar.names = NULL,
cex.xlab = NULL,
ymaxlim = 0,
yminlim = 0,
main = "Variable Importance (%)",
col = grey(.80),
cex.lab = 1.5,
ylbl = NULL,
legend_placement = NULL,
plot.it = TRUE,
path_saveplot = NULL,
Verbose = TRUE)
{
ymaxtimelim <- 0
subhead.cexval <- 1
yaxishead <- NULL
xaxishead <- NULL
subhead.labels <- c("Time-Interactions Effects","Main Effects")
Adj <- -0.5
cex.main <- 1
seplim <- NULL
if(missing(vimp_Object) ){
stop("vimp is not provided")
}
if(is.list(vimp_Object)){
L <- length(vimp_Object)
} else
{
stop("vimp_Object must be a list of length equal to number of response variables")
}
vimp <- matrix(unlist(lapply(1:L,function(l){
vimp_Object[[l]][,1]
})),ncol = L,byrow = FALSE)
colnames(vimp) <- names(vimp_Object)
if(is.null(xvar.names)){
xvar.names <- rownames(vimp_Object[[1]])
}
MainEffect <- TRUE
vimp <- vimp*100
if(plot.it){
if(is.null(path_saveplot)){
path_saveplot <- tempdir()
}
pdf(file = paste(path_saveplot,"/","VIMP.pdf",sep=""),width = 14,height = 14)
if(MainEffect){
for(l in 1:L){
if(is.null(ylbl)){
ylbl <- ""
}
ylim <- range(vimp[,l]) + c(yminlim,ymaxlim)
yaxs <- pretty(ylim)
yat <- abs(yaxs)
bp <- barplot(as.matrix(vimp[,l]),beside=T,col=col,ylim=ylim,yaxt="n",ylab = ylbl,main = main,cex.main = cex.main,cex.lab=cex.lab)
text(c(bp), if(is.null(legend_placement)) pmax(as.matrix(vimp[,l]),0) else legend_placement, rep(xvar.names, 3),srt=90,adj=Adj,cex= if(!is.null(cex.xlab)) cex.xlab else 1 )
axis(2,yaxs,yat)
}
} else
{
p <- 1
n.vimp <- 1
for(l in 1:L){
vimp.x <- vimp[1:p,l]
vimp.time <- vimp[-c(1:p),l]
ylim <- max(c(vimp.x,vimp.time)) * c(-1, 1) + c(-ymaxtimelim,ymaxlim)
yaxs <- pretty(ylim)
yat <- abs(yaxs)
if(is.null(yaxishead)){
yaxishead <- c(-ylim[1],ylim[2])
}
if(is.null(xaxishead)){
xaxishead <- c(floor(n.vimp/4),floor(n.vimp/4))
}
bp1 <- barplot(pmax(as.matrix(vimp.x),0),beside=T,col=col,ylim=ylim,yaxt="n",ylab = "",cex.lab=cex.lab,
main = main,cex.main = cex.main)
text(c(bp1), pmax(as.matrix(vimp.x),0), rep(xvar.names, 3),srt=90,adj=Adj,cex=if(!is.null(cex.xlab)) cex.xlab else 1)
text(xaxishead[2],yaxishead[2],labels = subhead.labels[2],cex = subhead.cexval)
bp2 <- barplot(-pmax(as.matrix(vimp.time),0),beside=T,col=col,add=TRUE,yaxt="n")
text(c(bp2), -pmax(as.matrix(vimp.time),0), rep(xvar.names, 3),srt=90,adj=Adj,yaxt="n",cex=if(!is.null(cex.xlab)) cex.xlab else 1)
text(xaxishead[1],-yaxishead[1],labels = subhead.labels[1],cex = subhead.cexval)
axis(2,yaxs,yat)
}
}
dev.off()
if(Verbose){
cat("Plot will be saved at:",path_saveplot,sep = "")
}
}
}
|
/scratch/gouwar.j/cran-all/cranData/BoostMLR/R/plotVIMP.R
|
predictBoostMLR <- function(Object,
x,
tm,
id,
y,
M,
importance = FALSE,
eps = 1e-5,
setting_seed = FALSE,
seed_value = 100L,
...)
{
user.option <- list(...)
dt_Add <- is.hidden.predict.dt_Add(user.option)
importance_Coef <- is.hidden.importance_Coef(user.option)
if(missing(tm) && missing(x)){
stop("tm and x both missing")
}
if(!missing(tm) && missing(id)){
stop("id is missing")
}
CrossSectional <- FALSE
if(missing(tm) && !missing(x) ){
if(!missing(id)){
if(!(length(sort(unique(id))) == nrow(x)) ){
stop("tm is missing")
}
}else
{
id <- 1:nrow(x)
}
tm <- rep(0, length(x))
CrossSectional <- TRUE
}
if(missing(x) && !missing(tm)){
x_miss <- TRUE
All_RawX <- TRUE
x <- cbind(rep(1,length(tm)))
if(length(sort(unique(id))) == nrow(x) ){
CrossSectional <- TRUE
}
}else
{
x_miss <- FALSE
}
Time_Varying <- Object$Time_Varying
if(!missing(tm) && Time_Varying == FALSE && CrossSectional == FALSE){
if(x_miss){
x <- tm
}else
{
x <- x #cbind(x,tm)
}
}
if (any(is.na(id))) {
stop("missing values encountered in id: remove observations with missing values")
}
if (!missing(y)) {
if ( any(is.na(y)) ) {
#stop("missing values encountered in y: remove observations with missing values")
}
testFlag <- TRUE
y_Names <- colnames(y)
}
else{
testFlag <- FALSE
L <- Object$Grow_Object$Dimensions$L
y <- matrix(0, nrow = nrow(x),ncol = L)
y_Names <- paste("y",1:L,sep="")
}
if(!is.matrix(y)){
y <- data.matrix(y)
}
Time_Unmatch <- Object$Grow_Object$Time_Unmatch
N <- nrow(x)
if(!is.null(dt_Add)){
if(!is.list(dt_Add)){
stop("dt_Add must be a list")
}
K_Add <- length(dt_Add)
nullObj <- lapply(1:K_Add,function(kk){
nc_K_Add <- ncol(dt_Add[[kk]])
if(nc_K_Add != 3){
stop("Each element of dt_Add must be a dataset with 3 columns arrange in order of id, time, x")
}
NULL
})
Ord_id_tm <- Order_Time(ID = id,Time = tm)
id <- id[Ord_id_tm]
tm <- tm[Ord_id_tm]
x <- x[Ord_id_tm,,drop = FALSE]
y <- y[Ord_id_tm,,drop = FALSE]
x_Add_New <- matrix(NA,nrow = N,ncol = K_Add)
x_Names_Add <- rep(NA,K_Add)
Time_Add_New <- matrix(NA,nrow = N,ncol = K_Add)
Time_Names_Add <- rep(NA,K_Add)
for(kk in 1:K_Add){
Ord_id_tm_Add <- Order_Time(ID = dt_Add[[kk]][,1],Time = dt_Add[[kk]][,2])
dt_Add[[kk]] <- dt_Add[[kk]][Ord_id_tm_Add,,drop = FALSE]
id_Add <- dt_Add[[kk]][,1]
x_Names_Add[kk] <- names(dt_Add[[kk]][,3,drop = FALSE])
Time_Names_Add[kk] <- names(dt_Add[[kk]][,2,drop = FALSE])
if(any(is.na(id_Add))){
stop("Missing values observed for id in dt_Add")
}
unq_id_Add <- unique(id_Add)
n_Add <- length(unq_id_Add)
nullObj <- unlist(lapply(1:n_Add,function(i){
Which_id <- which(unq_id_Add[i] == id)
ni <- length(Which_id)
if(ni > 0){
Which_id_Add <- which(id_Add == unq_id_Add[i])
ni_Add <- length(Which_id_Add)
tm_Add <- dt_Add[[kk]][Which_id_Add,2]
x_Add <- dt_Add[[kk]][Which_id_Add,3]
for(j in 1:ni){
for(jj in 1:ni_Add){
if((!is.na(tm_Add[jj]) && !is.na(tm[Which_id[j]]))){
if(tm_Add[jj] <= tm[Which_id[j]]){
x_Add_New[Which_id[j], kk] <<- x_Add[jj]
Time_Add_New[Which_id[j], kk] <<- tm_Add[jj]
}
}
}
}
}
NULL
}))
}
colnames(x_Add_New) <- x_Names_Add
x <- cbind(x,x_Add_New)
colnames(Time_Add_New) <- Time_Names_Add
} else
{
Time_Add_New <- matrix(0,nrow = N,ncol = 1)
colnames(Time_Add_New) <- "Time_Add"
}
#----------------------------------------------------------------------------------
# Date: 12/17/2020
# In the following codes, if the id is character or factor, we convert into numeric
# without changing the values.
#----------------------------------------------------------------------------------
if(is.character(id)){
id <- as.numeric(id)
}
if(is.factor(id)){
id <- as.numeric(levels(id))[id]
}
#----------------------------------------------------------------------------------
# Date: 12/17/2020
# while working on BoostMLR manuscript, I realized that the function Order_Time
# works only when Dt_Add is non-null. We need this in every situation so that
# I can plot beta coefficient as a function of time. This is done in the following
# codes. Note that I have modified the Order_Time function in the utilities file.
#----------------------------------------------------------------------------------
sort_id <- is.hidden.sort_id(user.option)
if(sort_id){
unq_id <- sort_unique_C_NA(id)
} else
{
unq_id <- unique_C_NA(id)
}
Ord_id_tm <- Order_Time(ID = id,Time = tm,unq_id = unq_id)
id <- id[Ord_id_tm]
tm <- tm[Ord_id_tm]
x <- x[Ord_id_tm,,drop = FALSE]
y <- y[Ord_id_tm,,drop = FALSE]
if(!is.matrix(x)){
x <- data.matrix(x)
}
x_Names <- colnames(x)
K <- ncol(x)
if(is.null(x_Names)){
x_Names <- paste("x",1:K,sep="")
}
if(!identical(x_Names , Object$x_Names) ){
stop("Covariate from grow and predict function are not matching")
}
if(missing(M)){
M <- Object$Grow_Object$Regulate$M
}
L <- ncol(y)
if(is.null(y_Names)){
y_Names <- paste("y",1:L,sep="")
}
H <- Object$Grow_Object$Dimensions$H
Dk <- Object$Grow_Object$Dimensions$Dk
x_Mean <- Object$Grow_Object$Data$x_Mean
x_Std_Error <- Object$Grow_Object$Data$x_Std_Error
y_Mean <- Object$Grow_Object$Data$y_Mean
y_Std_Error <- Object$Grow_Object$Data$y_Std_Error
unq_tm <- Object$Grow_Object$Index$unq_tm
unq_x <- Object$Grow_Object$Index$unq_x
Bt <- Object$Grow_Object$BS$Bt
Bx <- Object$Grow_Object$BS$Bx
nu <- Object$Grow_Object$Regulate$nu
Beta <- Object$Grow_Object$Beta_Estimate$Beta
Beta_Hat_List <- Object$Grow_Object$Beta_Estimate$Beta_Hat_List
UseRaw <- Object$UseRaw
vimpFlag <- (importance == TRUE && testFlag == TRUE)
vimpFlag_Coef <- (importance_Coef == TRUE && testFlag == TRUE)
obj_C <- predict_BoostMLR_C(x,
tm,
id,
y,
x_Mean,
x_Std_Error,
y_Mean,
y_Std_Error,
K,
L,
H,
Dk,
unq_id,
unq_tm,
unq_x,
Bt,
Bx,
UseRaw,
Time_Add_New,
Time_Unmatch,
Beta,
Beta_Hat_List,
testFlag,
M,
nu,
Time_Varying,
vimpFlag,
vimpFlag_Coef,
eps,
setting_seed,
seed_value)
Error_Rate <- obj_C$Error_Rate
colnames(Error_Rate) <- y_Names
vimp <- obj_C$vimp
vimp_Coef <- obj_C$vimp_Coef
if(vimpFlag){
names(vimp) <- y_Names
for(l in 1:L){
rownames(vimp[[l]]) <- x_Names
if(H == 1){
vimp[[l]] <- vimp[[l]][,1,drop = FALSE]
}
if(H == 1){
colnames(vimp[[l]]) <- "Main_Eff"
} else {
colnames(vimp[[l]]) <- c("Main_Eff",paste("Int_Eff.",1:H,sep=""))
}
}
}
if(vimpFlag_Coef){
names(vimp_Coef) <- y_Names
for(l in 1:L){
rownames(vimp_Coef[[l]]) <- x_Names
if(H == 1){
vimp_Coef[[l]] <- vimp_Coef[[l]][,1,drop = FALSE]
}
if(H == 1){
colnames(vimp_Coef[[l]]) <- "Main_Eff"
} else {
colnames(vimp_Coef[[l]]) <- c("Main_Eff",paste("Int_Eff.",1:H,sep=""))
}
}
}
mu <- obj_C$Org_mu
colnames(mu) <- y_Names
if(testFlag)
{
mu_Mopt <- obj_C$Org_mu_Mopt
colnames(mu_Mopt) <- y_Names
} else
{
mu_Mopt <- NA
}
Pred_Object <- obj_C$Pred_Object
Pred_Object$Dimensions = obj_C$Dimensions
Pred_Object$Index = obj_C$Index
Pred_Object$BS = obj_C$BS
Pred_Object$UseRaw = UseRaw
Pred_Object$Time_Varying = Time_Varying
Pred_Object$Beta_Hat_List = Beta_Hat_List
obj <- list(Data = obj_C$Data,
x_Names = x_Names,
y_Names = y_Names,
mu = mu,
mu_Mopt = mu_Mopt,
Error_Rate = Error_Rate,
Mopt = obj_C$Mopt,
nu = nu,
rmse = obj_C$rmse,
vimp = vimp,
vimp_Coef = vimp_Coef,
Pred_Object = Pred_Object)
class(obj) <- c("BoostMLR", "predict")
invisible(obj)
}
|
/scratch/gouwar.j/cran-all/cranData/BoostMLR/R/predictBoostMLR.R
|
simLong <- function(n = 100,
ntest = 0,
N = 5,
rho = 0.8,
model = c(1, 2),
phi = 1,
q_x = 0,
q_y = 0,
type = c("corCompSym", "corAR1", "corSymm", "iid"))
{
dta <- data.frame(do.call("rbind", lapply(1:(n+ntest), function(i) {
Ni <- round(runif(1, 1, 3 * N))
type <- match.arg(type, c("corCompSym", "corAR1", "corSymm", "iid"))
if (type == "corCompSym") {
corr.mat <- matrix(rho, nrow=Ni, ncol=Ni)
diag(corr.mat) <- 1
}
if (type == "corAR1") {
corr.mat <- diag(rep(1, Ni))
if (Ni > 1) {
for (ii in 1:(Ni - 1)) {
corr.mat[ii, (ii + 1):Ni] <- rho^(1:(Ni - ii))
}
ind <- lower.tri(corr.mat)
corr.mat[ind] <- t(corr.mat)[ind]
}
}
if (type == "iid") {
corr.mat <- diag(rep(1, Ni))
}
tm <- sort(sample((1:(3 * N))/N, size = Ni, replace = TRUE))
if (model == 1) {
x1 <- rnorm(Ni)
x2 <- rnorm(Ni)
x3 <- rnorm(Ni)
x4 <- rnorm(Ni)
x <- cbind(x1, x2, x3, x4)
p <- ncol(x)
if (q_x > 0) {
xnoise <- matrix(rnorm(Ni*q_x),ncol = q_x)
x <- cbind(x, xnoise)
}
eps1 <- sqrt(phi) * t(chol(corr.mat)) %*% rnorm(Ni)
eps2 <- sqrt(phi) * t(chol(corr.mat)) %*% rnorm(Ni)
eps3 <- sqrt(phi) * t(chol(corr.mat)) %*% rnorm(Ni)
y1 <- 1.5 + 1.5 * x1 + 1 * x4 + eps1
y2 <- 1.5 + 1.5 * x2 + 1 * x4 + eps2
y3 <- 1.5 + 1.5 * x3 + 1 * x4 + eps3
y <- cbind(y1,y2,y3)
if (q_y > 0) {
ynoise <- matrix(rnorm(Ni*q_y),ncol = q_y)
y <- cbind(y,ynoise)
}
}
if (model == 2) {
x1 <- rnorm(Ni)
x2 <- rnorm(Ni)
x3 <- rnorm(Ni)
x4 <- rnorm(Ni)
x <- cbind(x1, x2, x3, x4)
p <- ncol(x)
if (q_x > 0) {
xnoise <- matrix(rnorm(Ni*q_x),ncol = q_x)
x <- cbind(x, xnoise)
}
eps <- sqrt(phi) * t(chol(corr.mat)) %*% rnorm(Ni)
b.x1 <- ifelse(tm < 1.5, 0, 1.5 * x1 )
y1 <- 1.5 + b.x1 - 0.65 * (x2^2) * (tm^2) - 2.5 * x3 - 1.5 * exp(x4) + eps
y <- cbind(y1)
if (q_y > 0) {
ynoise <- matrix(rnorm(Ni*q_y),ncol = q_y)
y <- cbind(y,ynoise)
}
}
if (model == 3) {
x1 <- sort(rnorm(Ni))
x2_Temp <- sort(runif(n = Ni,min = 0,max = 1))
x2 <- unlist(lapply(1:Ni,function(ii){ if(tm[ii] > 1 && tm[ii] < 2) -1*x2_Temp[ii] else x2_Temp[ii] }))
x3 <- rnorm(1)
x4 <- rnorm(1)
x <- cbind(x1, x2, x3, x4)
B1 <- 2
B2 <- tm^2
B3 <- exp(tm)
B4 <- 1
p <- ncol(x)
if (q_x > 0) {
xnoise <- matrix(rnorm(Ni*q_x),ncol = q_x)
x <- cbind(x, xnoise)
}
eps <- sqrt(phi) * t(chol(corr.mat)) %*% rnorm(Ni)
y1 <- 1.5 + B1 * x1 + B2 * x2 + B3 * x3 + B4 * x4 + eps
y <- cbind(y1)
if (q_y > 0) {
ynoise <- matrix(rnorm(Ni*q_y),ncol = q_y)
y <- cbind(y,ynoise)
}
}
cbind(x,tm, rep(i, Ni), y)
})))
d_x <- q_x + 4
if(model == 1){
d_y <- q_y + 3
}
if(model == 2){
d_y <- q_y + 1
}
if(model == 3){
d_y <- q_y + 1
}
colnames(dta) <- c(paste("x", 1:d_x, sep = ""), "time", "id", paste("y", 1:d_y, sep = ""))
dtaL <- list(features = dta[, 1:d_x], time = dta$time, id = dta$id, y = dta[, -c(1:(d_x+2)) ])
trn <- c(1:sum(dta$id <= n))
return(invisible(list(dtaL = dtaL, dta = dta, trn = trn)))
}
|
/scratch/gouwar.j/cran-all/cranData/BoostMLR/R/simLong.R
|
updateBoostMLR <- function(Object,M_Add,Verbose = TRUE,...){
n <- Object$Grow_Object$Dimensions$n
K <- Object$Grow_Object$Dimensions$K
L <- Object$Grow_Object$Dimensions$L
H <- Object$Grow_Object$Dimensions$H
Dk <- Object$Grow_Object$Dimensions$Dk
ni <- Object$Grow_Object$Dimensions$ni
N <- Object$Grow_Object$Dimensions$N
Org_x <- Object$Grow_Object$Data$Org_x
Org_y <- Object$Grow_Object$Data$Org_y
id <- Object$Grow_Object$Data$id
tm <- Object$Grow_Object$Data$tm
x <- Object$Grow_Object$Data$x
y <- Object$Grow_Object$Data$y
x_Mean <- Object$Grow_Object$Data$x_Mean
x_Std_Error <- Object$Grow_Object$Data$x_Std_Error
y_Mean <- Object$Grow_Object$Data$y_Mean
y_Std_Error <- Object$Grow_Object$Data$y_Std_Error
unq_id <- Object$Grow_Object$Index$unq_id
unq_tm <- Object$Grow_Object$Index$unq_tm
unq_x <- Object$Grow_Object$Index$unq_x
id_index <- Object$Grow_Object$Index$id_index
tm_index <- Object$Grow_Object$Index$tm_index
x_index <- Object$Grow_Object$Index$x_index
Bt <- Object$Grow_Object$BS$Bt
Bx <- Object$Grow_Object$BS$Bx
Bt_H <- Object$Grow_Object$BS$Bt_H
Bx_K <- Object$Grow_Object$BS$Bx_K
Bxt <- Object$Grow_Object$BS$Bxt
Bx_Scale <- Object$Grow_Object$BS$Bx_Scale
nu <- Object$Grow_Object$Regulate$nu
M <- Object$Grow_Object$Regulate$M
Lambda_Ridge_Vec <- Object$Grow_Object$Regulate$Lambda_Ridge_Vec
Shrink <- Object$Grow_Object$Regulate$Shrink
Ridge_Penalty <- Object$Grow_Object$Regulate$Ridge_Penalty
Lambda_Scale <- Object$Grow_Object$Regulate$Lambda_Scale
NLambda <- Object$Grow_Object$Regulate$NLambda
lower_perc <- Object$Grow_Object$Regulate$lower_perc
upper_perc <- Object$Grow_Object$Regulate$upper_perc
Mod_Grad <- Object$Grow_Object$Mod_Grad
Error_Rate <- Object$Error_Rate
Variable_Select <- (Object$Variable_Select - 1)
Response_Select <- (Object$Response_Select - 1)
mu_List <- Object$Grow_Object$mu_List
mu <- Object$Grow_Object$mu
mu_zero <- Object$Grow_Object$mu_zero
Vec_zero <- Object$Grow_Object$Vec_zero
UseRaw <- Object$UseRaw
VarFlag <- Object$VarFlag
Time_Varying <- Object$Time_Varying
x_Names <- Object$x_Names
y_Names <- Object$y_Names
Lambda_List <- Object$Lambda_List
Phi <- Object$Phi
Rho <- Object$Rho
phi <- Object$Grow_Object$phi
rho <- Object$Grow_Object$rho
Beta <- Object$Grow_Object$Beta_Estimate$Beta
Beta_Hat_List <- Object$Grow_Object$Beta_Estimate$Beta_Hat_List
Beta_Hat_List_Iter <- Object$Grow_Object$Beta_Estimate$Beta_Hat_List_Iter
Sum_Beta_Hat_List <- Object$Grow_Object$Beta_Estimate$Sum_Beta_Hat_List
lower_Beta_Hat_Noise <- Object$Grow_Object$Beta_Estimate$lower_Beta_Hat_Noise
upper_Beta_Hat_Noise <- Object$Grow_Object$Beta_Estimate$upper_Beta_Hat_Noise
List_Trace_Bxt_gm <- Object$Grow_Object$Beta_Estimate$List_Trace_Bxt_gm
setting_seed <- Object$Grow_Object$setting_seed
seed_value <- Object$Grow_Object$seed_value
M_New <- M + M_Add
if(M_Add < 10){
Verbose <- FALSE
}
obj_C <- update_BoostMLR_C(Org_x,
Org_y,
id,
tm,
x,
y,
x_Mean,
x_Std_Error,
y_Mean,
y_Std_Error,
n,
K,
L,
H,
Dk,
ni,
N,
unq_id,
unq_tm,
unq_x,
id_index,
tm_index,
x_index,
Bt,
Bx,
Bt_H,
Bx_K,
Bxt,
Bx_Scale,
nu,
M,
M_New,
UseRaw,
Shrink,
Ridge_Penalty,
Lambda_Ridge_Vec,
Lambda_Scale,
NLambda,
lower_perc,
upper_perc,
Lambda_List,
mu,
mu_List,
mu_zero,
Vec_zero,
Error_Rate,
Variable_Select,
Response_Select,
Beta_Hat_List,
Sum_Beta_Hat_List,
Beta,
Beta_Hat_List_Iter,
lower_Beta_Hat_Noise,
upper_Beta_Hat_Noise,
List_Trace_Bxt_gm,
Mod_Grad,
VarFlag,
phi,
rho,
Phi,
Rho,
setting_seed,
seed_value,
Verbose)
Tm_Beta <- lapply(1:obj_C$Dimensions$L,function(l){
Out <- matrix(unlist(lapply(1:obj_C$Dimensions$K,function(k){
if(!UseRaw[k]){
rep(NA, obj_C$Dimensions$N)
}else
{
Reduce("+",lapply(1:obj_C$Dimensions$H,function(h){
unlist(lapply(1:obj_C$Dimensions$n,function(i){
obj_C$Beta_Estimate$Tm_Beta_C[[k]][[1]][[h]][[l]][[i]]
}))
}))
}
})),ncol = obj_C$Dimensions$K,byrow = FALSE)
colnames(Out) <- x_Names
Out
})
#----------------------------------------------------------------------------------
# Date: 12/11/2020
# It was realized that it makes more sense to show plots of beta on the standardized
# scale rather than on the original scale. Therefore, along with Tm_Beta, I
# have calculated Tm_Beta_Std in the following codes.
#----------------------------------------------------------------------------------
Tm_Beta_Std <- lapply(1:obj_C$Dimensions$L,function(l){
Out <- matrix(unlist(lapply(1:obj_C$Dimensions$K,function(k){
if(!UseRaw[k]){
rep(NA, obj_C$Dimensions$N)
}else
{
Reduce("+",lapply(1:obj_C$Dimensions$H,function(h){
unlist(lapply(1:obj_C$Dimensions$n,function(i){
obj_C$Beta_Estimate$Tm_Beta_Std_C[[k]][[1]][[h]][[l]][[i]]
}))
}))
}
})),ncol = obj_C$Dimensions$K,byrow = FALSE)
colnames(Out) <- x_Names
Out
})
if(Time_Varying == FALSE){
Tm_Beta <- lapply(1:obj_C$Dimensions$L,function(l){
Tm_Beta[[l]][1,,drop = TRUE]
})
}
names(Tm_Beta) <- y_Names
#----------------------------------------------------------------------------------
# Date: 12/11/2020
# Added Tm_Beta_Std as a part of Beta_Estimate
#----------------------------------------------------------------------------------
if(Time_Varying == FALSE){
Tm_Beta_Std <- lapply(1:obj_C$Dimensions$L,function(l){
Tm_Beta_Std[[l]][1,,drop = TRUE]
})
}
names(Tm_Beta_Std) <- y_Names
Beta_Estimate <- obj_C$Beta_Estimate
Beta_Estimate$Tm_Beta <- Tm_Beta
#----------------------------------------------------------------------------------
# Date: 12/11/2020
# Added Tm_Beta_Std as a part of Beta_Estimate
#----------------------------------------------------------------------------------
Beta_Estimate$Tm_Beta_Std <- Tm_Beta_Std
Rho <- Phi <- matrix(NA,nrow = M_New,ncol = L)
colnames(Phi) <- y_Names
colnames(Rho) <- y_Names
Error_Rate <- obj_C$Error_Rate
colnames(Error_Rate) <- y_Names
if(FALSE){
if(VarFlag){
Rho[1:M, ] <- Object$Rho
Phi[1:M, ] <- Object$Phi
NullObj <- lapply(1:L,function(l){
lapply( (M+1) : M_New,function(m){
Residual_Data <- data.frame(y = (obj_C$Data$Org_y[,l] - obj_C$mu_List[[m]][,l]) ,tm = obj_C$Data$tm, id = obj_C$Data$id, obj_C$Data$Org_x)
gls.obj <- tryCatch({gls(y ~ ., data = Residual_Data,
correlation = corCompSymm(form = ~ 1 | id))},
error = function(ex){NULL})
if (is.null(gls.obj)) {
gls.obj <- tryCatch({gls(y ~ 1, data = Residual_Data,
correlation = corCompSymm(form = ~ 1 | id))},
error = function(ex){NULL})
}
if (!is.null(gls.obj)) {
phi_Temp <- gls.obj$sigma^2
Phi[m,l] <<- ifelse(phi_Temp == 0,1,phi_Temp)
rho_Temp <- as.numeric(coef(gls.obj$modelStruct$corStruc, unconstrained = FALSE))
Rho[m,l] <<- max(min(0.999, rho_Temp, na.rm = TRUE), -0.999)
Result <- c(phi_Temp,rho_Temp)
}
NULL
})
NULL
})
}
}
x <- obj_C$Data$Org_x
y <- obj_C$Data$Org_y
id <- obj_C$Data$id
tm <- obj_C$Data$tm
M <- obj_C$Regulate$M
nu <- obj_C$Regulate$nu
mu <- obj_C$mu_List[[M]]
if(VarFlag){
phi <- obj_C$Phi[M,]
rho <- obj_C$Rho[M,]
}
Grow_Object <- list(Data = obj_C$Data,
Dimensions = obj_C$Dimensions,
Index = obj_C$Index,
BS = obj_C$BS,
Regulate = obj_C$Regulate,
Beta_Estimate = Beta_Estimate,
mu = obj_C$mu,
mu_List = obj_C$mu_List,
mu_zero = obj_C$mu_zero,
Vec_zero = obj_C$Vec_zero,
Mod_Grad = Mod_Grad,
phi = phi,
rho = rho,
Time_Unmatch = Object$Grow_Object$Time_Unmatch,
setting_seed = setting_seed,
seed_value = seed_value,
Time_Add_New = Object$Grow_Object$Time_Add_New)
Variable_Select = (obj_C$Variable_Select + 1)
Response_Select = (obj_C$Response_Select + 1)
Variable_Select[Variable_Select == 0] <- NA
Response_Select[Response_Select == 0] <- NA
Phi <- obj_C$Phi
Rho <- obj_C$Rho
colnames(Phi) <- colnames(Rho) <- y_Names
obj <- list(x = x,
id = id,
tm = tm,
y = y,
UseRaw = UseRaw,
x_Names = x_Names,
y_Names = y_Names,
M = M,
nu = nu,
Tm_Beta = Tm_Beta,
mu = mu,
Error_Rate = Error_Rate,
Variable_Select = Variable_Select,
Response_Select = Response_Select,
VarFlag = VarFlag,
Time_Varying = Time_Varying,
Phi = Phi,
Rho = Rho,
Lambda_List = obj_C$Lambda_List,
Grow_Object = Grow_Object)
class(obj) <- c("BoostMLR", "update")
invisible(obj)
}
|
/scratch/gouwar.j/cran-all/cranData/BoostMLR/R/updateBoostMLR.R
|
##------------------------------------------------------------------------
# Date: 12/11/2020
# This is replaced by earlier function which has only the first two arguments.
# Arrange the longitudinal data in the order to time for each subject.
# Also user can request to sort the ID in ascending order.
##------------------------------------------------------------------------
is.hidden.sort_id <- function (user.option) {
if ( is.null(user.option$sort_id) ) {
TRUE
}
else {
user.option$sort_id
}
}
##------------------------------------------------------------------------
# Date: 12/11/2020
# Below we replace unique(x) and sort(unique(x)) function from R to
# the following C functions. That way when we calculate unq_id in
# DataProcessing_C function, the result matches.
##------------------------------------------------------------------------
Order_Time <- function(ID,Time,unq_id){
n <- length(unq_id)
ID_index <- unlist(lapply(1:n,function(i){
Temp_index <- which(ID == unq_id[i])
Temp_time <- Time[Temp_index]
Ord_time <- order(Temp_time)
Temp_index <- Temp_index[Ord_time]
Temp_index
}))
return(ID_index)
}
#--------------------------------------------------
# Plot beta coefficient on the original scale
plotBeta <- function(Object,
N_Row = 1,
N_Column = 1,
plot.it = TRUE,
path_saveplot = NULL,
Verbose = TRUE){
Raw_Variables <- which(Object$UseRaw == TRUE)
K <- length(Raw_Variables)
if(K == 0){
stop("Variables not provided for plotting")
}
x_Names_plot <- Object$x_Names[Raw_Variables]
L <- Object$Grow_Object$Dimensions$L
tm <- Object$tm
Ord_tm <- order(tm)
if(plot.it){
if(is.null(path_saveplot)){
path_saveplot <- tempdir()
}
pdf(file = paste(path_saveplot,"/","Beta_Estimate.pdf",sep=""),width = 14,height = 14)
for(l in 1:L){
count <- 0
oldpar <- par("mfrow", "mar")
on.exit(par(oldpar))
par(mfrow = c(N_Row,N_Column))
for(k in Raw_Variables){
count <- count + 1
plot(tm[Ord_tm], Object$Tm_Beta[[ l ]][,k,drop = TRUE][Ord_tm],type = "l",xlab = "Time",ylab = "Beta Estimate",main = x_Names_plot[count],lwd = 3)
}
}
dev.off()
if(Verbose){
cat("Plot will be saved at:",path_saveplot,sep = "")
}
}
}
#--------------------------------------------------
# Plot mu and y on the original scale
plotMu <- function(Object,smooth_plot = TRUE,overall_mean = FALSE,y_range = NULL,plot.it = TRUE,path_saveplot = NULL,Verbose = TRUE){
mu <- Object$mu
n <- Object$Grow_Object$Dimensions$n
id_index <- Object$Grow_Object$Index$id_index
y <- Object$y
tm <- Object$tm
L <- Object$Grow_Object$Dimensions$L
y_Names <- Object$y_Names
if(plot.it){
if(is.null(path_saveplot)){
path_saveplot <- tempdir()
}
pdf(file = paste(path_saveplot,"/","PredictedMu.pdf",sep=""),width = 14,height = 14)
for(l in 1:L){
if( is.null(y_range) ){
y_range <- range( c(mu[,l,drop = TRUE], y[,l,drop = TRUE]) )
}
plot(tm, y[,l,drop = TRUE],type = "n",ylim = y_range,xlab = "Time",ylab = "Predicted Y",main = y_Names[l])
if(!overall_mean){
for(i in 1:n){
tm_subject <- tm[ id_index[[i]] ]
Ord_tm <- order(tm_subject)
mu_subject <- mu[ id_index[[i]], l, drop = TRUE ]
y_subject <- y[ id_index[[i]], l, drop = TRUE ]
lines(tm_subject[Ord_tm], y_subject[Ord_tm],type = "p",lwd = 1,col = "gray")
if(smooth_plot){
fit.lo <- tryCatch({loess(mu_subject ~ tm_subject,span = 0.75)},
error = function(ex){NULL})
if(!is.null(fit.lo)){
predict.lo <- tryCatch({predict(fit.lo,newdata = tm_subject)},
error = function(ex){NULL})
}
if( !is.null(predict.lo) ){
lines(tm_subject[Ord_tm],predict.lo[Ord_tm],lwd = 1,col = 2,type = "l")
}else
{
lines(tm_subject[Ord_tm], mu_subject[Ord_tm],type = "l",lwd = 1,col = 2)
}
}else
{
lines(tm_subject[Ord_tm], mu_subject[Ord_tm],type = "l",lwd = 1,col = 2)
}
}
}else
{
tm_unique <- sort(unique(tm))[unique(as.integer(quantile(1: length(unique(tm)) ,probs = seq(0,0.9,length.out = 15))))]
tm.q <- cut(tm,breaks = tm_unique,labels = tm_unique[-1],include.lowest = TRUE)
y_Mean <- tapply(y[,l,drop = TRUE],tm.q,mean,na.rm = TRUE)
mu_Mean <- tapply(mu[,l,drop = TRUE],tm.q,mean,na.rm = TRUE)
tm_Mean <- as.numeric(levels(sort(unique(tm.q))))
lo.mu <- lowess(tm_Mean,mu_Mean)$y
lines(tm_Mean,y_Mean,type = "p",pch = 19)
lines(tm_Mean,lo.mu,type = "l",lwd = 3,col = 1)
}
}
dev.off()
if(Verbose){
cat("Plot will be saved at:",path_saveplot,sep = "")
}
}
}
is.hidden.dt_Add <- function (user.option) {
if (is.null(user.option$dt_Add)) {
NULL
}
else {
user.option$dt_Add
}
}
is.hidden.predict.dt_Add <- function (user.option) {
if (is.null(user.option$dt_Add)) {
NULL
}
else {
user.option$dt_Add
}
}
is.hidden.rho <- function (user.option) {
if (is.null(user.option$rho)) {
NULL
}
else {
user.option$rho
}
}
is.hidden.phi <- function (user.option) {
if (is.null(user.option$phi)) {
NULL
}
else {
user.option$phi
}
}
is.hidden.prob_min <- function (user.option) {
if (is.null(user.option$prob_min)) {
0.1
}
else {
user.option$prob_min
}
}
is.hidden.prob_max <- function (user.option) {
if (is.null(user.option$prob_max)) {
0.9
}
else {
user.option$prob_max
}
}
is.hidden.importance_Coef <- function (user.option) {
if (is.null(user.option$importance_Coef)) {
FALSE
}
else {
TRUE
}
}
|
/scratch/gouwar.j/cran-all/cranData/BoostMLR/R/utilities.R
|
vimp.BoostMLR <- function(Object,xvar.names = NULL,joint = FALSE,setting_seed = FALSE,
seed_value = 100L){
if(sum(inherits(Object, c("BoostMLR", "predict"), TRUE) == c(1, 2)) != 2) {
stop("This function only works for objects of class `(BoostMLR, predict)'")
}
x <- Object$Data$Org_x
P <- ncol(x)
x_Names <- Object$x_Names
y_Names <- Object$y_Names
if(is.null(xvar.names)){
vimp_set <- (1:P) - 1
x_Names <- x_Names
if(joint){
x_Names <- "joint_vimp"
}
}else
{
n.x.names <- length(xvar.names)
vimp_set <- (match(xvar.names,x_Names)) - 1
if(any(is.na( vimp_set ))){
stop("xvar.names do not match with variable names from original data")
}
if(joint){
x_Names <- "joint_vimp"
}else
{
x_Names <- xvar.names
}
}
if(joint) {
p <- 1
}
else {
p <- length(vimp_set)
}
Org_x <- Object$Data$Org_x
Org_y <- Object$Data$Org_y
id <- Object$Data$id
tm <- Object$Data$tm
x_Mean <- Object$Data$x_Mean
x_Std_Error <- Object$Data$x_Std_Error
y_Mean <- Object$Data$y_Mean
y_Std_Error <- Object$Data$y_Std_Error
n <- Object$Pred_Object$Dimensions$n
ni <- Object$Pred_Object$Dimensions$ni
N <- Object$Pred_Object$Dimensions$N
L <- Object$Pred_Object$Dimensions$L
K <- Object$Pred_Object$Dimensions$K
Dk <- Object$Pred_Object$Dimensions$Dk
H <- Object$Pred_Object$Dimensions$H
n_unq_tm <- Object$Pred_Object$Dimensions$n_unq_tm
unq_id <- Object$Pred_Object$Index$unq_id
unq_tm <- Object$Pred_Object$Index$unq_tm
unq_x <- Object$Pred_Object$Index$unq_x
id_index <- Object$Pred_Object$Index$id_index
tm_index <- Object$Pred_Object$Index$tm_index
x_index <- Object$Pred_Object$Index$x_index
unq_x_New <- Object$Pred_Object$Index$unq_x_New
Index_Bt <- Object$Pred_Object$Index$Index_Bt
Bt <- Object$Pred_Object$BS$Bt
Bxt <- Object$Pred_Object$BS$Bxt
Bx_K <- Object$Pred_Object$BS$Bx_K
Bt_H <- Object$Pred_Object$BS$Bt_H
Bx <- Object$Pred_Object$BS$Bx
UseRaw <- Object$Pred_Object$UseRaw
Beta_Hat_List <- Object$Pred_Object$Beta_Hat_List
Mopt <- Object$Mopt
rmse <- Object$rmse
nu <- Object$nu
Vec_zero <- Object$Pred_Object$Vec_zero
mu_zero_vec <- Object$Pred_Object$mu_zero_vec
Time_Varying <- Object$Pred_Object$Time_Varying
obj_C <- vimp_BoostMLR_C(Org_x,
Org_y,
tm,
id,
x_Mean,
x_Std_Error,
y_Mean,
y_Std_Error,
n,
ni,
N,
L,
K,
p,
H,
Dk,
n_unq_tm,
UseRaw,
id_index,
tm_index,
unq_x_New,
Index_Bt,
vimp_set,
joint,
Bt,
Bt_H,
Bx,
Bxt,
Bx_K,
Beta_Hat_List,
Mopt,
nu,
rmse,
Time_Varying,
Vec_zero,
mu_zero_vec,
setting_seed,
seed_value)
vimp <- obj_C$vimp
names(vimp) <- y_Names
for(l in 1:L){
rownames(vimp[[l]]) <- x_Names
if(H == 1){
vimp[[l]] <- vimp[[l]][,1,drop = FALSE]
}
if(H == 1){
colnames(vimp[[l]]) <- "Main_Eff"
} else {
colnames(vimp[[l]]) <- c("Main_Eff",paste("Int_Eff.",1:H,sep=""))
}
}
obj <- vimp
invisible(obj)
}
|
/scratch/gouwar.j/cran-all/cranData/BoostMLR/R/vimp.BoostMLR.R
|
.onAttach <- function(libname, pkgname) {
BoostMLR.version <- read.dcf(file=system.file("DESCRIPTION", package=pkgname),
fields="Version")
packageStartupMessage(paste("\n",
pkgname,
BoostMLR.version,
"\n",
"\n",
"Type BoostMLR.news() to see new features, changes, and bug fixes.",
"\n",
"\n"))
}
|
/scratch/gouwar.j/cran-all/cranData/BoostMLR/R/zzz.R
|
#########################################BootMRMR package##############################
##############################Dependent Packages#####################################
library(stats)
#######################Gene selection using F-score algorithm ########################
geneslect.f <- function(x, y, s)
{
this.call = match.call()
if ((!class(x)=="data.frame")) {
warning("x must be a data frame and rows as gene names")
}
if ((!class(y)=="numeric")) {
warning("y must be a vector of 1/-1's for two class problems")
}
if (!length(y)==ncol(x))
{
warning("Number of samples in x must have same number of sample labels in y")
}
cls <- as.vector(y) ###class information###
genenames <- rownames(x)
g <- as.matrix(x)
n <- nrow(g) ###number of genes####
M <- ncol(x) ###number of samples###
idx <- which(cls==1) # indexing of positive samples
idy <- which(cls==-1) # indexing of negative samples
B=vector(mode="numeric", n)
for(i in 1:n){
f.mes <-(((mean(g[i, idx])-mean(g[i, ]))^2)+ ((mean(g[i, idy])-mean(g[i, ]))^2))/(var(g[i, idx])+var(g[i, idy])) #####F-Score
B[i] <- f.mes
}
ranking <- sort(-B, index.return = TRUE)$ix
temp <- ranking[1:s]
selectgenes <- genenames[temp]
class(selectgenes) <- "Informative geneset"
return(selectgenes)
}
#######################################################################################
# Gene selection using MRMR algorithm #
#######################################################################################
Weights.mrmr <- function(x, y)
{ ###x is gene expression data matrix, y is vector of class labels###
this.call = match.call()
if ((!class(x)=="data.frame")) {
warning("x must be a data frame and rows as gene names")
}
if ((!class(y)=="numeric")) {
warning("y must be a vector of 1/-1's for two class problems")
}
if (!length(y)==ncol(x))
{
warning("Number of samples in x must have same number of sample labels in y")
}
cls <- as.numeric(y) ###class information###
g <- as.matrix(x)
genes <- rownames(x)
n <- nrow(g) ###number of genes####
m <- ncol(x) ###number of samples###
GeneRankedList <- vector(length=n)
qsi <- as.vector((apply(abs(cor(t(g), method="pearson",use="p")-diag(n)), 1, sum))/(n-1))
idx <- which(cls==1) ###indexing of positive samples
idy <- which(cls==-1) ###indexing of negative samples
B <- vector(mode="numeric", n)
for(i in 1:n){
f.mes <-(((mean(g[i, idx])-mean(g[i, ]))^2)+ ((mean(g[i, idy])-mean(g[i, ]))^2))/(var(g[i, idx])+var(g[i, idy])) #####F-Score
B[i] <- f.mes
}
rsi <- abs(B)
rankingCriteria <- rsi/qsi
names(rankingCriteria) <- genes
class(rankingCriteria) <- "MRMR weights"
return(rankingCriteria)
}
################################Gene subset selection##################################
mrmr.cutoff <- function (x, y, n)
{
this.call = match.call()
if ((!class(x)=="data.frame")) {
warning("x must be a data frame and rows as gene names")
}
if ((!class(y)=="numeric")) {
warning("y must be a vector of 1/-1's for two class problems")
}
if (!length(y)==ncol(x))
{
warning("Number of samples in x must have same number of sample labels in y")
}
if(n < 0 & n > nrow(x))
{
warning(" n must be numeric and less than total number of genes in gene space")
}
weights <- as.vector(Weights.mrmr (x, y))
gene.id <- sort(-weights, index.return=TRUE)$ix
temp <- gene.id [1:n]
genes <- rownames(x)
select.gene <- genes[temp]
class(select.gene) <- "Informative geneset"
return (select.gene)
}
####################################Ends here#########################################
######################################################################################
# Boot-MRMR technique of gene selection #
######################################################################################
######################Gene Selection using Modified Bootstrap procedure###############
weight.mbmr <- function(x, y, m, s, plot=TRUE) ### x is the gene expression data matrix, y is class vector, m is bootstrap sample size, n is number of bootstraps tob e drawn#
{
this.call = match.call()
if ((!class(x)=="data.frame")) {
warning("x must be a data frame and rows as gene names")
}
if ((!class(y)=="numeric")) {
warning("y must be a vector of 1/-1's for two class problems")
}
if (!length(y)==ncol(x))
{
warning("Number of samples in x must have same number of sample labels in y")
}
if(m < 0 & m > ncol(x))
{
warning("m must be numeric and less than total number of samples in the input GE data")
}
if(s < 0 & s <= 50)
{
warning("s must be numeric and sufficiently large")
}
cls <- as.numeric(y) ### class information###
genes <- rownames(x)
g <- as.matrix(x)
nn <- nrow(g) ### number of genes####
M <- ncol(x) ### number of samples###
#if(missing(m))
#m <- trunc(0.9*M) ### Fix the size of bootstrap sample###
GeneRankedList <- vector(length=nn)
M1 <- matrix(0, nn, s)
for (j in 1:s) {
samp <- sample(M, m, replace=TRUE) ###select bootstrap sample #####
x1 <- g[, samp]
y1 <- cls[samp]
qsi <- as.vector((apply(abs(cor(t(x1), method="pearson",use="p")-diag(nrow(x1))), 1, sum))/(nrow(x1)-1))
idx <- which(y1==1) # indexing of positive samples
idy <- which(y1==-1) # indexing of negative samples
B=vector(mode="numeric", nn)
for(i in 1:nrow(x1)){
f.mes <-(((mean(x1[i, idx])-mean(x1[i, ]))^2)+ ((mean(x1[i, idy])-mean(x1[i, ]))^2))/(var(x1[i, idx])+var(x1[i, idy])) #####F-Score
B[i] <- f.mes
}
rsi <- abs(B)
rankingCriteria <- rsi/qsi
GeneRankedList <- sort(-rankingCriteria, index.return = TRUE)$ix
rankvalue <- sort(GeneRankedList, index.return=TRUE)$ix
rankscore <- (nn+1-rankvalue)/(nn)
M1[,j] <- as.vector(rankscore)
#print(rankscore)
}
rownames(M1) <- genes
rankingcriteria <- as.vector(rowSums((M1), na.rm = FALSE, dims = 1))
names(rankingcriteria) <- genes
if (plot==TRUE)
{
wgs <- as.vector(rankingcriteria)
ranks <- sort(wgs, decreasing=TRUE, index.return=TRUE)$ix
wgs_sort <- wgs[ranks]
plot(1:length(ranks), wgs_sort, main="Gene selection plot", type="p", xlab="Genes", ylab="Weights")
}
class( rankingcriteria) <- "MBootMRMR weights"
return(rankingcriteria)
}
#####################################Gene set selection using Boot-MRMR weights########
mbmr.weight.cutoff <- function (x, y, m, s, n)
{
this.call = match.call()
if ((!class(x)=="data.frame")) {
warning("x must be a data frame and rows as gene names")
}
if ((!class(y)=="numeric")) {
warning("y must be a vector of 1/-1's for two class problems")
}
if (!length(y)==ncol(x))
{
warning("Number of samples in x must have same number of sample labels in y")
}
if(m < 0 & m > ncol(x))
{
warning("m must be numeric and less than total number of samples in the input GE data")
}
if(s < 0 & s <= 50)
{
warning("s must be numeric and sufficiently large")
}
if(n > nrow(x))
{
stop("Number of informative genes to be selected must be less than total number of genes")
}
weights <- weight.mbmr(x, y, m, s, plot=FALSE)
genes <- rownames(x)
w1 <- as.vector(weights)
gene.id <- sort(-w1, index.return=TRUE)$ix
temp <- gene.id [1:n]
select.gene <- genes[temp]
class(select.gene) <- "Informative geneset"
return (select.gene)
}
####################Computation of Boot-MRMR statistical significance values###########
pval.mbmr <- function(x, y, m, s, Q, plot=TRUE)
{
if ((!class(x)=="data.frame")) {
warning("x must be a data frame and rows as gene names")
}
if ((!class(y)=="numeric")) {
warning("y must be a vector of 1/-1's for two class problems")
}
if (!length(y)==ncol(x))
{
warning("Number of samples in x must have same number of sample labels in y")
}
if(m < 0 & m > ncol(x))
{
warning("m must be numeric and less than total number of samples in the input GE data")
}
if(s < 0 & s <= 50)
{
warning("s must be numeric and sufficiently large")
}
if(Q < 0 & Q > 1)
{
warning("Q is the quartile value of rank scores and must be within 0 and 1")
}
if (missing (Q))
{
Q <- 0.5
}
cls <- as.numeric(y) ### class information###
genes <- rownames(x)
g <- as.matrix(x)
n1 <- nrow(g) ### number of genes####
M <- ncol(x) ### number of samples###
if(missing(m))
{
m <- trunc(0.9*M)
}### Fix the size of bootstrap sample###
GeneRankedList <- vector(length=n1)
M1 <- matrix(0, n1, s)
##if(missing(s))
for (j in 1:s) {
samp <- sample(M, m, replace=TRUE) ###select bootstrap sample #####
x1 <- g[, samp]
y1 <- cls[samp]
qsi <- as.vector((apply(abs(cor(t(x1), method="pearson",use="p")-diag(nrow(x1))), 1, sum))/(nrow(x1)-1))
idx <- which(y1==1) # indexing of positive samples
idy <- which(y1==-1) # indexing of negative samples
B=vector(mode="numeric", n1)
for(i in 1:nrow(x1)){
f.mes <-(((mean(x1[i, idx])-mean(x1[i, ]))^2)+ ((mean(x1[i, idy])-mean(x1[i, ]))^2))/(var(x1[i, idx])+var(x1[i, idy])) #####F-Score
B[i] <- f.mes
}
rsi <- abs(B)
rankingCriteria <- rsi/qsi
GeneRankedList <- sort(-rankingCriteria, index.return = TRUE)$ix
rankvalue <- sort(GeneRankedList, index.return=TRUE)$ix
rankscore <- (n1+1-rankvalue)/(n1)
M1[,j] <- as.vector(rankscore)
}
rankscore <- as.matrix(M1) # Raw scores obtained from SVM-RFE
mu <- Q # value under null hypothesis
#if (missing (Q))
R <- rankscore - mu # Transformed score of MRMR under H0
sam <- nrow (R) # number of genes
pval.vec <- vector(mode="numeric", length=nrow(rankscore))
for (i in 1:sam) {
z <- R[i,]
z <- z[z != 0]
n11 <- length(z)
r <- rank(abs(z))
tplus <- sum(r[z > 0])
etplus <- n11 * (n11 + 1) / 4
vtplus <- n11 * (n11 + 1) * (2 * n11 + 1) / 24
p.value=pnorm(tplus, etplus, sqrt(vtplus), lower.tail=FALSE)
pval.vec[i]=p.value
}
names( pval.vec) <- genes
if (plot==TRUE)
{
pval <- as.vector(pval.vec)
ranks <- sort(pval, decreasing=FALSE, index.return=TRUE)$ix
pval_sort <- pval[ranks]
plot(1:length(ranks), pval_sort, main="Gene selection plot", type="p", xlab="Genes", ylab="p-values")
}
class(pval.vec) <- "p value"
return(pval.vec)
}
######################Gene set selection using statistical significance values ########
mbmr.pval.cutoff <- function (x, y, m, s, Q, n)
{
if ((!class(x)=="data.frame")) {
warning("x must be a data frame and rows as gene names")
}
if ((!class(y)=="numeric")) {
warning("y must be a vector of 1/-1's for two class problems")
}
if (!length(y)==ncol(x))
{
warning("Number of samples in x must have same number of sample labels in y")
}
if(m < 0 & m > ncol(x))
{
warning("m must be numeric and less than total number of samples in the input GE data")
}
if(s < 0 & s <= 50)
{
warning("s must be numeric and sufficiently large")
}
if(Q < 0 & Q > 1)
{
warning("Q is the quartile value of rank scores and must be within 0 and 1")
}
if (missing (Q))
{
Q <- 0.5
}
if(n > nrow(x))
{
stop("Number of informative genes to be selected must be less than total number of genes")
}
pvalue <- pval.mbmr (x, y, m, s, Q, plot=FALSE)
genes <- rownames(x)
w11 <- as.vector(pvalue)
gene.id <- sort(w11, index.return=TRUE)$ix
temp <- gene.id [1:n]
select.gene <- genes[temp]
class(select.gene) <- "Informative geneset"
return (select.gene)
}
######################Gene Selection using Standard Bootstrap procedure###############
bootmr.weight <- function(x, y, s, plot=TRUE) ### x is the gene expression data matrix, y is class vector, m is bootstrap sample size, n is number of bootstraps tob e drawn#
{
this.call = match.call()
if ((!class(x)=="data.frame")) {
warning("x must be a data frame and rows as gene names")
}
if ((!class(y)=="numeric")) {
warning("y must be a vector of 1/-1's for two class problems")
}
if (!length(y)==ncol(x))
{
warning("Number of samples in x must have same number of sample labels in y")
}
if(s < 0 & s <= 50)
{
warning("s must be numeric and sufficiently large")
}
cls <- as.numeric(y) ### class information###
genes <- rownames(x)
g <- as.matrix(x)
n1 <- nrow(g) ### number of genes####
M <- ncol(x) ### number of samples###
GeneRankedList <- vector(length=n1)
M1 <- matrix(0, n1, s)
##if(missing(s))
for (j in 1:s) {
samp <- sample(M, M, replace=TRUE) ###select bootstrap sample #####
x1 <- g[, samp]
y1 <- cls[samp]
qsi <- as.vector((apply(abs(cor(t(x1), method="pearson",use="p")-diag(n1)), 1, sum))/(n1-1))
idx <- which(y1==1) # indexing of positive samples
idy <- which(y1==-1) # indexing of negative samples
B=vector(mode="numeric", n1)
for(i in 1:nrow(x1)){
f.mes <-(((mean(x1[i, idx])-mean(x1[i, ]))^2)+ ((mean(x1[i, idy])-mean(x1[i, ]))^2))/(var(x1[i, idx])+var(x1[i, idy])) #####F-Score
B[i] <- f.mes
}
rsi <- abs(B)
rankingCriteria <- rsi/qsi
GeneRankedList <- sort(-rankingCriteria, index.return = TRUE)$ix
rankvalue <- sort(GeneRankedList, index.return=TRUE)$ix
rankscore <- (n1+1-rankvalue)/(n1)
M1[,j] <- as.vector(rankscore)
}
rankingcriteria <- as.vector(rowSums((M1), na.rm = FALSE, dims = 1))
names(rankingcriteria) <- genes
if (plot==TRUE)
{
wgs <- as.vector(rankingcriteria)
ranks <- sort(wgs, decreasing=TRUE, index.return=TRUE)$ix
wgs_sort <- wgs[ranks]
plot(1:length(ranks), wgs_sort, main="Gene selection plot", type="p", xlab="Genes", ylab="Weights")
}
class(rankingcriteria) <- "Boot-MRMR weights"
return(rankingcriteria)
}
#####################################Gene set selection using Boot-MRMR weights########
bmrmr.weight.cutoff <- function (x, y, s, n)
{
this.call = match.call()
if ((!class(x)=="data.frame")) {
warning("x must be a data frame and rows as gene names")
}
if ((!class(y)=="numeric")) {
warning("y must be a vector of 1/-1's for two class problems")
}
if (!length(y)==ncol(x))
{
warning("Number of samples in x must have same number of sample labels in y")
}
if(s < 0 & s <= 50)
{
warning("s must be numeric and sufficiently large")
}
if(n > nrow(x))
{
stop("Number of informative genes to be selected must be less than total number of genes")
}
weights <- bootmr.weight(x, y, s, plot=FALSE)
genes <- names(weights)
w1 <- as.vector(weights)
gene.id <- sort(-w1, index.return=TRUE)$ix
temp <- gene.id [1:n]
select.gene <- genes[temp]
class(select.gene) <- "Informative geneset"
return (select.gene)
}
####################Computation of Boot-MRMR statistical significance values###########
pval.bmrmr <- function(x, y, s, Q, plot=TRUE)
{
this.call = match.call()
if ((!class(x)=="data.frame")) {
warning("x must be a data frame and rows as gene names")
}
if ((!class(y)=="numeric")) {
warning("y must be a vector of 1/-1's for two class problems")
}
if (!length(y)==ncol(x))
{
warning("Number of samples in x must have same number of sample labels in y")
}
if(s < 0 & s <= 50)
{
warning("s must be numeric and sufficiently large")
}
if(Q < 0 & Q > 1)
{
warning("Q is the quartile value of rank scores and must be within 0 and 1")
}
if (missing (Q))
{
Q <- 0.5
}
cls <- as.numeric(y) ### class information###
genes <- rownames(x)
g <- as.matrix(x)
n1 <- nrow(g) ### number of genes####
M <- ncol(x) ### number of samples###
GeneRankedList <- vector(length=n1)
M1 <- matrix(0, n1, s)
##if(missing(s))
for (j in 1:s) {
samp <- sample(M, M, replace=TRUE) ###select bootstrap sample #####
x1 <- g[, samp]
y1 <- cls[samp]
qsi <- as.vector((apply(abs(cor(t(x1), method="pearson",use="p")-diag(n1)), 1, sum))/(n1-1))
idx <- which(y1==1) # indexing of positive samples
idy <- which(y1==-1) # indexing of negative samples
B=vector(mode="numeric", n1)
for(i in 1:nrow(x1)){
f.mes <-(((mean(x1[i, idx])-mean(x1[i, ]))^2)+ ((mean(x1[i, idy])-mean(x1[i, ]))^2))/(var(x1[i, idx])+var(x1[i, idy])) #####F-Score
B[i] <- f.mes
}
rsi <- abs(B)
rankingCriteria <- rsi/qsi
GeneRankedList <- sort(-rankingCriteria, index.return = TRUE)$ix
rankvalue <- sort(GeneRankedList, index.return=TRUE)$ix
rankscore <- (n1+1-rankvalue)/(n1)
M1[,j] <- as.vector(rankscore)
}
rankscore <- as.matrix(M1) # Raw scores obtained from SVM-RFE
mu <- Q # value under null hypothesis
R <- rankscore - mu # Transformed score of MRMR under H0
sam <- nrow (R) # number of genes
pval.vec <- vector(mode="numeric", length=nrow(rankscore))
for (i in 1:sam) {
z <- R[i,]
z <- z[z != 0]
n11 <- length(z)
r <- rank(abs(z))
tplus <- sum(r[z > 0])
etplus <- n11 * (n11 + 1) / 4
vtplus <- n11 * (n11 + 1) * (2 * n11 + 1) / 24
p.value=pnorm(tplus, etplus, sqrt(vtplus), lower.tail=FALSE)
pval.vec[i]=p.value
}
names( pval.vec) <- genes
if (plot==TRUE)
{
pval <- as.vector(pval.vec)
ranks <- sort(pval, decreasing=FALSE, index.return=TRUE)$ix
pval_sort <- pval[ranks]
plot(1:length(ranks), pval_sort, main="Gene selection plot", type="p", xlab="Genes", ylab="p-values")
}
class(pval.vec) <- "p values"
return(pval.vec)
}
######################Gene set selection using statistical significance values ########
bmrmr.pval.cutoff <- function (x, y, s, Q, n)
{
this.call = match.call()
if ((!class(x)=="data.frame")) {
warning("x must be a data frame and rows as gene names")
}
if ((!class(y)=="numeric")) {
warning("y must be a vector of 1/-1's for two class problems")
}
if (!length(y)==ncol(x))
{
warning("Number of samples in x must have same number of sample labels in y")
}
if(s < 0 & s <= 50)
{
warning("s must be numeric and sufficiently large")
}
if(Q < 0 & Q > 1)
{
warning("Q is the quartile value of rank scores and must be within 0 and 1")
}
if (missing (Q))
{
Q <- 0.5
}
if(n > nrow(x))
{
stop("Number of informative genes to be selected must be less than total number of genes")
}
pvalue <- pval.bmrmr(x, y, s, Q, plot=FALSE)
genes <- names(pvalue)
w11 <- as.vector(pvalue)
gene.id <- sort(w11, index.return=TRUE)$ix
temp <- gene.id [1:n]
select.gene <- genes[temp]
class(select.gene) <- "Informative geneset"
return (select.gene)
}
########################Booot-MRMR Ends Here##########################################
#####################################################################################
# Technique for Order of Preference by Similarity to Ideal Solution #
#####################################################################################
topsis.meth <- function (x)
{
if(!class(x)=="data.frame")
{
warning("x must be a data frame and rows as methods and columns as criteria")
}
dat <- as.matrix(x)
methods <- rownames(x)
criteria <- colnames(x)
#####Calculation of weights##############
dat.sum <- apply(dat, 2, sum)
dat.norm <- t(t(dat)/(dat.sum)) #####Decission matrix to Normalized mode#####
dat.norm1 <- dat.norm*log(dat.norm)
m <- nrow(dat) ###number of methods###
n <- ncol(dat) ### number of criterias###
a <- 1/log(m)
dat.entr <- (-a)*apply(dat.norm1, 2, sum)
dat.diver <- 1-dat.entr
weights <- dat.diver/sum(dat.diver)
##########Topsis MCDM############
dat.seq <- dat^2
dat.sum <- (apply(dat.seq, 2, sum))^0.5
R.norm <- t(t(dat)/(dat.sum))
V.norm <- t(t(R.norm)*weights)
V.pos <- vector(mode="numeric", length=n)
V.neg <- vector(mode="numeric", length=n)
for (j in 1:n){
V.pos[j] <- max(V.norm[,j])
}
for (j in 1:n){
V.neg[j] <- min(V.norm[,j])
}
D.p <- t(t(V.norm)-V.pos)
d.pos <- (apply((D.p)^2, 1, sum))^0.5
D.n <- t(t(V.norm)-V.neg)
d.neg <- (apply((D.n)^2, 1, sum))^0.5
d.tot <- d.pos+d.neg
C.Score <-d.neg/(d.pos+d.neg)
C.rank <- rank(-C.Score)
D.topsis <- cbind(d.pos, d.neg, C.Score, C.rank)
colnames(D.topsis) <- c("di+", "di-", "Topsis Score", "Rank")
rownames(D.topsis) <- methods
class(D.topsis) <- "TOPSIS"
return(D.topsis)
}
###############Ends here###############################################
|
/scratch/gouwar.j/cran-all/cranData/BootMRMR/R/BoootMRMR.R
|
AR.Fore <-
function(x,b,h)
{
n <- nrow(x)
p <- length(b)-1
b1 <- b[p+1]
b2 <- b[1:p]
rx <- x[(n-p+1):n,1]
for( i in 1:h)
{
f <- b1 + sum( b2 * rx[length(rx):(length(rx)-p+1)])
rx <- c(rx,f)
}
f <- rx[(p+1):(p+h)]
return(as.matrix(f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/AR.Fore.R
|
AR.ForeB <-
function(x,b,h,e,p1)
{
n <- nrow(x)
p <- length(b)-1
b1 <- b[p+1]
b2 <- b[1:p]
rx <- x[(n-p+1):n,1]
for( i in 1:h)
{
f <- b1 + sum( b2 * rx[length(rx):(length(rx)-p+1)]) + e[as.integer(runif(1, min=1, max=nrow(e)))]
rx <- c(rx,f)
}
f <- rx[(p+1):(p+h)]
return(f)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/AR.ForeB.R
|
AR.order <-
function(x,pmax)
{
n <- nrow(x)
tem <- numeric(0)
for( i in 1:pmax)
{
e <- LSM(x,i)$resid
aic <- log( sum(e^2)/n ) + (2/n) * (i+1)
bic <- log( sum(e^2)/n )+ (log(n)/n) * (i+1)
hq <- log(sum(e^2)/n ) + (2*log(log(n))/n) * (i+1)
tem <- rbind(tem,cbind(i,aic,bic,hq))
}
paic <- tem[tem[,2] == min(tem[,2]),1]
pbic <- tem[tem[,3] == min(tem[,3]),1]
phq <- tem[tem[,4] == min(tem[,4]),1]
return(list(ARorder=cbind(paic,pbic,phq),Criteria=tem[,2:4]))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/AR.order.R
|
ART.Fore <-
function(x,b,h)
{
n <- nrow(x)
p <- length(b)-2
tm <- (n+1):(n+h)
b1 <- b[p+1]
b2 <- b[p+2]
b3 <- b[1:p]
rx <- x[(n-p+1):n,1]
for( i in 1:h)
{
f <- b1 + b2*tm[i] + sum( b3 * rx[length(rx):(length(rx)-p+1)])
rx <- c(rx,f)
}
f <- rx[(p+1):(p+h)]
return(as.matrix(f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ART.Fore.R
|
ART.ForeB <-
function(x,b,h,e,p1)
{
n <- nrow(x)
p <- length(b)-2
tm <- (n+1):(n+h)
b1 <- b[p+1]
b2 <- b[p+2]
b3 <- b[1:p]
rx <- x[(n-p+1):n,1]
for( i in 1:h)
{
f <- b1 + b2*tm[i] + sum( b3 * rx[length(rx):(length(rx)-p+1)]) +e[as.integer(runif(1, min=1, max=nrow(e)))]
rx <- c(rx,f)
}
f <- rx[(p+1):(p+h)]
return(f)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ART.ForeB.R
|
ART.order <-
function(x,pmax)
{
n <- nrow(x)
tem <- numeric(0)
for( i in 1:pmax)
{
e <- LSMT(x,i)$resid
aic <- log( sum(e^2)/n ) + (2/n) * (i+2)
bic <- log( sum(e^2)/n )+ (log(n)/n) * (i+2)
hq <- log(sum(e^2)/n ) + (2*log(log(n))/n) * (i+2)
tem <- rbind(tem,cbind(i,aic,bic,hq))
}
paic <- tem[tem[,2] == min(tem[,2]),1]
pbic <- tem[tem[,3] == min(tem[,3]),1]
phq <- tem[tem[,4] == min(tem[,4]),1]
return(list(ARorder=cbind(paic,pbic,phq),Criteria=tem[,2:4]))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ART.order.R
|
ARnames <-
function(p,type)
{tem1 <- paste("AR",1:p,sep="")
if(type=="const") tem2 <- c(tem1,"const")
if(type=="const+trend") tem2 <- c(tem1,"const","trend")
return(tem2)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ARnames.R
|
ARnames2 <-
function(p,type)
{
if(p==1) tem1 <- "AR"
if(p>1) tem1 <- c("AR",paste("phi",1:(p-1),sep=""))
if(type=="const") tem2 <- c(tem1,"const")
if(type=="const+trend") tem2 <- c(tem1,"const","trend")
return(tem2)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ARnames2.R
|
ARorder <-
function(x,pmax,type)
{
x<-as.matrix(x)
if (type=="const")
M <- AR.order(x,pmax)
if (type=="const+trend")
M <- ART.order(x,pmax)
rownames(M$Criteria) <- paste("",1:pmax,sep="")
rownames(M$ARorder) <- "p*"; colnames(M$ARorder) <- c("aic","bic","hq")
return(list(ARorder=M$ARorder,Criteria=M$Criteria))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ARorder.R
|
Andrews.Chen <-
function(x,p,h,type)
{
x<-as.matrix(x)
if (type=="const")
M <- Andrews.Chen1(x,p,h)
if (type=="const+trend")
M <- Andrews.Chen2(x,p,h)
rownames(M$coef) <- ARnames(p,type); colnames(M$coef) <- "coefficients"
rownames(M$ecmcoef) <- ARnames2(p,type); colnames(M$coef) <- "coefficients"
colnames(M$forecast) <- "forecasts"; rownames(M$forecast) <- paste("h",1:h,sep="")
return(list(coef=M$coef,ecm.coef=M$ecmcoef,resid=M$resid,forecast=M$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Andrews.Chen.R
|
Andrews.Chen1 <-
function(x,p,h)
{
x <- as.matrix(x)
n <- nrow(x)
b <- LSE(x,p)$coef
alphau <- alpha.u0(b,p,n)
if(p == 1 & alphau == 1) newb <- rbind(1,0)
else newb <- rbind(alphau,estmf0(x,p,alphau))
tem1 <- newb[1]
tem <- newb; tem[1,1] <- b[1,1]
{
if(p == 1 | alphau == 1) newb2 <- newb
else
{
for( i in 1:10)
{
alphau <- alpha.u0(tem,p,n)
newb2 <- rbind(alphau,estmf0(x,p,alphau))
tem2 <- newb2[1]
{
if (abs(tem1-tem2) < 0.01) break
else
tem1 <- tem2; tem <- newb2; tem[1,1] <- b[1]}
}
}
}
b<-arlevel(newb2,p)
e <- RESID(x,b)
f <- {}
if(h > 0)
f <- AR.Fore(x,b,h)
return(list(coef=b,ecmcoef=newb2,resid=e,forecast=f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Andrews.Chen1.R
|
Andrews.Chen2 <-
function(x,p,h)
{
x <- as.matrix(x)
n <- nrow(x)
b <- LSET(x,p)$coef
alphau <- alpha.u(b,p,n)
newb <- rbind(alphau,estmf(x,p,alphau))
tem1 <- newb[1]
tem <- newb; tem[1,1] <- b[1,1]
{
if(p == 1 | alphau == 1) newb2 <- newb
else
{
for( i in 1:10)
{
alphau <- alpha.u(tem,p,n)
newb2 <- rbind(alphau,estmf(x,p,alphau))
tem2 <- newb2[1]
{
if (abs(tem1-tem2) < 0.01) break
else
tem1 <- tem2; tem <- newb2; tem[1,1] <- b[1]}
}
}
}
b<-arlevel(newb2,p)
e <- RESIDT(x,b)
f <- {}
if(h > 0)
f <- ART.Fore(x,b,h)
return(list(coef=b,ecmcoef=newb2,resid=e,forecast=f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Andrews.Chen2.R
|
Boot.PI <-
function(x,p,h,nboot,prob)
{
set.seed(12345)
n <- nrow(x)
B <- OLS.AR(x,p,h,prob)
bb <- LSMB(x,p)$coef
eb <- sqrt( (n-p) / ( (n-p)-length(bb)))*LSMB(x,p)$resid
ef <- sqrt( (n-p) / ( (n-p)-length(bb)))*LSM(x,p)$resid
fore <- matrix(NA,nrow=nboot,ncol=h)
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(eb)))
es <- eb[index,1]
xs <- ysb(x, bb, es)
bs <- LSM(xs,p)$coef
fore[i,] <- AR.ForeB(xs,bs,h,ef,length(bs)-1)
}
Interval <- matrix(NA,nrow=h,ncol=length(prob),dimnames=list(1:h,prob))
for( i in 1:h)
Interval[i,] <- quantile(fore[,i],probs=prob)
return(list(PI=Interval,forecast=B$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Boot.PI.R
|
BootAfterBoot.PI <-
function(x,p,h,nboot,prob)
{
set.seed(12345)
n <- nrow(x)
B <- OLS.AR(x,p,h,prob)
BBC <- Bootstrap(x,p,h,200)
BBCB <- BootstrapB(x,p,h,200)
bb <- BBCB$coef
eb <- sqrt( (n-p) / ( (n-p)-length(bb)))*BBCB$resid
bias <- B$coef - BBC$coef
ef <- sqrt( (n-p) / ( (n-p)-length(bb)))*BBC$resid
fore <- matrix(NA,nrow=nboot,ncol=h)
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(eb)))
es <- eb[index,1]
xs <- ysb(x, bb, es)
bs <- LSM(xs,p)$coef
bsc <- bs-bias
bsc <- adjust(bs,bsc,p)
if(sum(bsc) != sum(bs))
bsc[p+1] <- mean(xs)*(1-sum(bsc[1:p]))
fore[i,] <- AR.ForeB(xs,bsc,h,ef,length(bs)-1)
}
Interval <- matrix(NA,nrow=h,ncol=length(prob),dimnames=list(1:h,prob))
for( i in 1:h)
Interval[i,] <- quantile(fore[,i],probs=prob)
return(list(PI=Interval,forecast=BBC$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/BootAfterBoot.PI.R
|
BootAfterBootPI <-
function(x,p,h,nboot,prob,type)
{x<-as.matrix(x)
if (type=="const")
M <- BootAfterBoot.PI(x,p,h,nboot,prob)
if (type=="const+trend")
M <- BootAfterBootT.PI(x,p,h,nboot,prob)
colnames(M$PI) <- paste(prob*100,"%",sep="");rownames(M$PI) <- paste("h",1:h,sep="")
colnames(M$forecast) <- "forecasts"; rownames(M$forecast) <- paste("h",1:h,sep="")
return(list(PI=M$PI,forecast=M$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/BootAfterBootPI.R
|
BootAfterBootT.PI <-
function(x,p,h,nboot,prob)
{
set.seed(12345)
n <- nrow(x)
B <- OLS.ART(x,p,h,prob)
BBC <- BootstrapT(x,p,h,200)
BBCB <- BootstrapTB(x,p,h,200)
bb <- BBCB$coef
eb <- sqrt( (n-p) / ( (n-p)-length(bb)))*BBCB$resid
bias <- B$coef - BBC$coef
ef <- sqrt( (n-p) / ( (n-p)-length(bb)))*BBC$resid
fore <- matrix(NA,nrow=nboot,ncol=h)
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(eb)))
es <- eb[index,1]
xs <- ysbT(x, bb, es)
bs <- LSMT(xs,p)$coef
bsc <- bs-bias
bsc <- adjust(bs,bsc,p)
if(sum(bsc) != sum(bs))
bsc[(p+1):(p+2),] <- RE.LSMT(xs,p,bsc)
fore[i,] <- ART.ForeB(xs,bsc,h,ef,length(bs)-2)
}
Interval <- matrix(NA,nrow=h,ncol=length(prob),dimnames=list(1:h,prob))
for( i in 1:h)
Interval[i,] <- quantile(fore[,i],probs=prob)
return(list(PI=Interval,forecast=BBC$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/BootAfterBootT.PI.R
|
BootBC <-
function(x,p,h,nboot,type)
{x<-as.matrix(x)
if (type=="const")
M <- Bootstrap(x,p,h,nboot)
if (type=="const+trend")
M <- BootstrapT(x,p,h,nboot)
rownames(M$coef) <- ARnames(p,type); colnames(M$coef) <- "coefficients"
colnames(M$forecast) <- "forecasts"; rownames(M$forecast) <- paste("h",1:h,sep="")
return(list(coef=M$coef,resid=M$resid,forecast=M$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/BootBC.R
|
BootPI <-
function(x,p,h,nboot,prob,type)
{x<-as.matrix(x)
if (type=="const")
M <- Boot.PI(x,p,h,nboot,prob)
if (type=="const+trend")
M <- BootT.PI(x,p,h,nboot,prob)
colnames(M$PI) <- paste(prob*100,"%",sep="");rownames(M$PI) <- paste("h",1:h,sep="")
colnames(M$forecast) <- "forecasts"; rownames(M$forecast) <- paste("h",1:h,sep="")
return(list(PI=M$PI,forecast=M$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/BootPI.R
|
BootT.PI <-
function(x,p,h,nboot,prob)
{
set.seed(12345)
n <- nrow(x)
B <- OLS.ART(x,p,h,prob)
bb <- LSMBT(x,p)$coef
eb <- sqrt( (n-p) / ( (n-p)-length(bb)))*LSMBT(x,p)$resid
ef <- sqrt( (n-p) / ( (n-p)-length(bb)))*LSMT(x,p)$resid
fore <- matrix(NA,nrow=nboot,ncol=h)
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(eb)))
es <- eb[index,1]
xs <- ysbT(x, bb, es)
bs <- LSMT(xs,p)$coef
fore[i,] <- ART.ForeB(xs,bs,h,ef,length(bs)-1)
}
Interval <- matrix(NA,nrow=h,ncol=length(prob),dimnames=list(1:h,prob))
for( i in 1:h)
Interval[i,] <- quantile(fore[,i],probs=prob)
return(list(PI=Interval,forecast=B$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/BootT.PI.R
|
Bootstrap <-
function(x,p,h,nboot)
{
set.seed(12345)
B <- LSM(x,p)
n <- nrow(x)
b <- B$coef
e <- sqrt( (n-p) / ( (n-p)-length(b)))*B$resid
btem1 <- numeric(length(b))
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(e)))
es <- e[index,1]
xs <- ys(x, b, es)
btem1 <- btem1 + OLS.AR(xs,p,0,0)$coef/nboot
}
bc <- 2*b-btem1
bc <- adjust(b,bc,p)
if(sum(b) != sum(bc))
bc[p+1] <- mean(x)*(1-sum(bc[1:p]))
e <- RESID(x,bc)
f <- {}
if(h > 0)
f <- AR.Fore(x,bc,h)
return(list(coef=bc,resid=e,forecast=f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Bootstrap.R
|
BootstrapB <-
function(x,p,h,nboot)
{
set.seed(12345)
B <- LSMB(x,p)
n <- nrow(x)
b <- B$coef
e <- sqrt( (n-p) / ( (n-p)-length(b)))*B$resid
btem1 <- numeric(length(b))
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(e)))
es <- e[index,1]
xs <- ysb(x, b, es)
btem1 <- btem1 + LSMB(xs,p)$coef/nboot
}
bc <- 2*b-btem1
bc <- adjust(b,bc,p)
if(sum(b) != sum(bc))
bc[p+1] <- mean(x)*(1-sum(bc[1:p]))
e <- RESID(x,bc)
f <- {}
if(h > 0)
f <- AR.Fore(x,bc,h)
return(list(coef=bc,resid=e,forecast=f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/BootstrapB.R
|
BootstrapT <-
function(x,p,h,nboot)
{
set.seed(12345)
B <- LSMT(x,p)
n <- nrow(x)
b <- B$coef
e <- sqrt( (n-p) / ( (n-p)-length(b)))*B$resid
btem1 <- numeric(p+2)
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(e)))
es <- e[index,1]
xs <- ysT(x, b, es)
btem1 <- btem1 + OLS.ART(xs,p,0,0)$coef/nboot
}
bc <- 2*b-btem1
bc <- adjust(b,bc,p)
if(sum(b) != sum(bc))
bc[(p+1):(p+2),] <- RE.LSMT(x,p,bc)
e <- RESIDT(x,bc)
if(h > 0)
f <- ART.Fore(x,bc,h)
return(list(coef=bc,resid=e,forecast=f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/BootstrapT.R
|
BootstrapTB <-
function(x,p,h,nboot)
{
set.seed(12345)
B <- LSMBT(x,p)
n <- nrow(x)
b <- B$coef
e <- sqrt( (n-p) / ( (n-p)-length(b)))*B$resid
btem1 <- numeric(length(b))
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(e)))
es <- e[index,1]
xs <- ysbT(x, b, es)
btem1 <- btem1 + LSMBT(xs,p)$coef/nboot
}
bc <- 2*b-btem1
bc <- adjust(b,bc,p)
if(sum(b) != sum(bc))
bc[(p+1):(p+2),] <- RE.LSMTB(x,p,bc)
e <- RESIDT(x,bc)
if(h > 0)
f <- ART.Fore(x,bc,h)
return(list(coef=bc,resid=e,forecast=f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/BootstrapTB.R
|
FFuller <-
function(x,p,h)
{
x <- as.matrix(x)
n <- nrow(x)
b <- fuller(x,p)
e <- RESID(x,b)
f <- {}
if(h > 0)
f <- AR.Fore(x,b,h)
return(list(coef=b,resid=e,forecast=f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/FFuller.R
|
FFullerT <-
function(x,p,h)
{
x <- as.matrix(x)
n <- nrow(x)
b <- fullerT(x,p)
e <- RESIDT(x,b)
f <- {}
if(h > 0)
f <- ART.Fore(x,b,h)
return(list(coef=b,resid=e,forecast=f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/FFullerT.R
|
LS.AR <-
function(x,p,h,type,prob)
{
x<-as.matrix(x)
if (type=="const")
M <- OLS.AR(x,p,h,prob)
if (type=="const+trend")
M <- OLS.ART(x,p,h,prob)
rownames(M$coef) <- ARnames(p,type); colnames(M$coef) <- "coefficients"
colnames(M$PI) <- paste(prob*100,"%",sep="");rownames(M$PI) <- paste("h",1:h,sep="")
colnames(M$forecast) <- "forecasts"; rownames(M$forecast) <- paste("h",1:h,sep="")
return(list(coef=M$coef,resid=M$resid,forecast=M$forecast,PI=M$PI))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/LS.AR.R
|
LSE <-
function(x,p)
{
x <- as.matrix(x)
n <- nrow(x)
xmat <- matrix(NA,nrow=n-p,ncol=p+1)
xmat[,1] <- x[p:(n-1),1]
if(p > 1)
{
z <- x[2:n,1] - x[1:(n-1),1]
for(i in 1:(p-1))
xmat[,i+1] <- z[(p-i):(n-1-i)]
}
xmat[,p+1] <- cbind(rep(1,n-p))
y <- x[(p+1):n,1]
b <- solve( t(xmat) %*% xmat) %*% t(xmat) %*% y
e <- y - xmat %*% b
#return(list(coef=arlevel(b,p),resid=e))
return(list(coef=b,resid=e))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/LSE.R
|
LSET <-
function(x,p)
{
x <- as.matrix(x)
n <- nrow(x)
xmat <- matrix(NA,nrow=n-p,ncol=p+2)
xmat[,1] <- x[p:(n-1),1]
if(p > 1)
{
z <- x[2:n,1] - x[1:(n-1),1]
for(i in 1:(p-1))
xmat[,i+1] <- z[(p-i):(n-1-i)]
}
xmat[,(p+1):(p+2)] <- cbind(rep(1,n-p),(p+1):n)
y <- x[(p+1):n,1]
b <- solve( t(xmat) %*% xmat) %*% t(xmat) %*% y
e <- y - xmat %*% b
#return(list(coef=arlevel(b,p),resid=e))
return(list(coef=b,resid=e))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/LSET.R
|
LSM <-
function(x,p)
{
x <- as.matrix(x)
n <- nrow(x)
xmat <- matrix(1,nrow=n-p,ncol=p+1)
index <- p:(n-1)
for(i in 1:p)
{xmat[,i] <- x[index,1]
index <- index-1
}
y <- x[(p+1):n,1]
b <- solve( t(xmat) %*% xmat) %*% t(xmat) %*% y
e <- y - xmat %*% b
return(list(coef=b,resid=e))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/LSM.R
|
LSMB <-
function(x,p)
{
x <- as.matrix(x)
n <- nrow(x)
xmat <- matrix(1,nrow=n-p,ncol=p+1)
index <- 2:(n-p+1)
for(i in 1:p)
{xmat[,i] <- x[index,1]
index <- index+1
}
y <- x[1:(n-p),1]
b <- solve( t(xmat) %*% xmat) %*% t(xmat) %*% y
e <- y - xmat %*% b
return(list(coef=b,resid=e))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/LSMB.R
|
LSMBT <-
function(x,p)
{
x <- as.matrix(x)
n <- nrow(x)
xmat <- matrix(1,nrow=n-p,ncol=p+2)
xmat[,p+2] <- 1:(n-p)
index <- 2:(n-p+1)
for(i in 1:p)
{xmat[,i] <- x[index,1]
index <- index+1
}
y <- x[1:(n-p),1]
b <- solve( t(xmat) %*% xmat) %*% t(xmat) %*% y
e <- y - xmat %*% b
return(list(coef=b,resid=e))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/LSMBT.R
|
LSMT <-
function(x,p)
{
x <- as.matrix(x)
n <- nrow(x)
xmat <- matrix(1,nrow=n-p,ncol=p+2)
xmat[,p+2] <- (p+1):n
index <- p:(n-1)
for(i in 1:p)
{xmat[,i] <- x[index,1]
index <- index-1
}
y <- x[(p+1):n,1]
b <- solve( t(xmat) %*% xmat) %*% t(xmat) %*% y
e <- y - xmat %*% b
return(list(coef=b,resid=e))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/LSMT.R
|
OLS.AR <-
function(x,p,h,prob)
{
x <- as.matrix(x)
n <- nrow(x)
B <- LSM(x,p)
b <- B$coef
e <- B$resid
f <- {}; PImat <- {}
if(h > 0)
{
f <- AR.Fore(x,b,h)
s2 <- sum(e^2)/(nrow(x)-length(b))
mf <- mainf(b,h-1,p)
se <- as.matrix(sqrt(s2*cumsum(mf^2)))
PImat <- matrix(NA,ncol=length(prob),nrow=h)
for( i in 1:length(prob))
{PImat[,i] <- f + qnorm(prob[i])*se }
}
return(list(coef=b,resid=e,forecast=f,PI=PImat))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/OLS.AR.R
|
OLS.ART <-
function(x,p,h,prob)
{
x <- as.matrix(x)
n <- nrow(x)
B <- LSMT(x,p)
b <- B$coef
e <- B$resid
f <- {}; PImat <- {}
if(h > 0)
{
f <- ART.Fore(x,b,h)
s2 <- sum(e^2)/(nrow(x)-length(b))
mf <- mainf(b,h-1,p)
se <- as.matrix(sqrt(s2*cumsum(mf^2)))
PImat <- matrix(NA,ncol=length(prob),nrow=h)
for( i in 1:length(prob))
{PImat[,i] <- f + qnorm(prob[i])*se }
}
return(list(coef=b,resid=e,forecast=f,PI=PImat))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/OLS.ART.R
|
Plot.Fore <-
function(x,fore,start,end,frequency)
{
x=ts(x,start,end,frequency)
if(frequency==1) d2=end+1
if (frequency>1){
d2=end;d2[2]=d2[2]+1;
if(d2[2] > frequency) { d2[1]=d2[1]+1; d2[2]=d2[2]-frequency}
}
f=ts(fore,start=d2,frequency=frequency)
ts.plot(x,f,lwd=c(1,2),col=c(1,4))
title(main="Time Plot and Point Forecasts",sub="blue = point forecasts", col.sub=4)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Plot.Fore.R
|
Plot.PI <-
function(x,fore,Interval,start,end,frequency){
x=ts(x,start,end,frequency)
if(frequency==1) d2=end+1
if (frequency>1){
d2=end;d2[2]=d2[2]+1;
if(d2[2] > frequency) { d2[1]=d2[1]+1; d2[2]=d2[2]-frequency}
}
y1=ts(fore,start=d2,frequency=frequency)
y2=ts(Interval,start=d2,frequency=frequency)
ts.plot(x,y1,y2,lwd=c(1,rep(2,1+ncol(Interval))),col=c(1,4,rep(2,ncol(Interval))))
title(main="Time Plot and Prediction Intervals",sub="red = prediction quantiles; blue = point forecasts", col.sub=2)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Plot.PI.R
|
RE.LSMT <-
function(x,p,b)
{
x <- as.matrix(x)
n <- nrow(x)
xmat <- matrix(1,nrow=n-p,ncol=p+2)
xmat[,p+2] <- (p+1):n
index <- p:(n-1)
for(i in 1:p)
{xmat[,i] <- x[index,1]
index <- index-1
}
y <- x[(p+1):n,1]
x1 <- as.matrix(xmat[,1:p])
x2 <- xmat[,(p+1):(p+2)]
tem1 <- y-x1 %*% b[1:p,1]
tem2 <- solve( t(x2) %*% x2) %*% t(x2) %*% tem1
return(tem2)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/RE.LSMT.R
|
RE.LSMTB <-
function(x,p,b)
{
x <- as.matrix(x)
n <- nrow(x)
xmat <- matrix(1,nrow=n-p,ncol=p+2)
xmat[,p+2] <- 1:(n-p)
index <- 2:(n-p+1)
for(i in 1:p)
{xmat[,i] <- x[index,1]
index <- index+1
}
y <- x[1:(n-p),1]
x1 <- as.matrix(xmat[,1:p])
x2 <- xmat[,(p+1):(p+2)]
tem1 <- y-x1 %*% b[1:p,1]
tem2 <- solve( t(x2) %*% x2) %*% t(x2) %*% tem1
return(tem2)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/RE.LSMTB.R
|
RESID <-
function(x,b)
{
x <- as.matrix(x)
n <- nrow(x)
p <- length(b)-1
xmat <- matrix(1,nrow=n-p,ncol=p+1)
index <- p:(n-1)
for(i in 1:p)
{xmat[,i] <- x[index,1]
index <- index-1
}
y <- x[(p+1):n,1]
e <- y - xmat %*% b
return(e-mean(e))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/RESID.R
|
RESIDT <-
function(x,b)
{
x <- as.matrix(x)
n <- nrow(x)
p <- length(b)-2
xmat <- matrix(1,nrow=n-p,ncol=p+2)
xmat[,p+2] <- (p+1):n
index <- p:(n-1)
for(i in 1:p)
{xmat[,i] <- x[index,1]
index <- index-1
}
y <- x[(p+1):n,1]
e <- y - xmat %*% b
return(e-mean(e))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/RESIDT.R
|
Roy.Fuller <-
function(x,p,h,type)
{
x<-as.matrix(x)
if (type=="const")
M <- FFuller(x,p,h)
if (type=="const+trend")
M <- FFullerT(x,p,h)
rownames(M$coef) <- ARnames(p,type); colnames(M$coef) <- "coefficients"
colnames(M$forecast) <- "forecasts"; rownames(M$forecast) <- paste("h",1:h,sep="")
return(list(coef=M$coef,resid=M$resid,forecast=M$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Roy.Fuller.R
|
RoyFuller.PI <-
function(x,p,h,nboot,prob,type,pmax)
{
x<-as.matrix(x)
if (type=="const" & pmax==0)
M <- RoyFuller1.PI(x,p,h,nboot,prob,"const")
if (type=="const+trend" & pmax==0)
M <- RoyFuller1T.PI(x,p,h,nboot,prob,"const+trend")
if (type=="const" & pmax > 0)
M <- RoyFuller2.PI(x,p,h,nboot,prob,"const",pmax)
if (type=="const+trend" & pmax > 0)
M <- RoyFuller2T.PI(x,p,h,nboot,prob,"const+trend",pmax)
colnames(M$PI) <- paste(prob*100,"%",sep="");rownames(M$PI) <- paste("h",1:h,sep="")
colnames(M$forecast) <- "forecasts"; rownames(M$forecast) <- paste("h",1:h,sep="")
return(list(PI=M$PI,forecast=M$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/RoyFuller.PI.R
|
RoyFuller1.PI <-
function(x,p,h,nboot,prob,type)
{
set.seed(12345)
n <- nrow(x)
BC <- Roy.Fuller(x,p,h,type)
b <- BC$coef
e <- sqrt( (n-p) / ( (n-p)-length(b)))*BC$resid
fore <- matrix(NA,nrow=nboot,ncol=h)
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(e)))
es <- e[index,1]
xs <- ys(x, b, es)
{
if( p ==1 & b[1] == 1) bs <- rbind(1,0)
if( p > 1 & sum(b[1:p]) == 1)
{as <- rbind(1,estmf0(xs,p,1))
bs <- arlevel(as,p)}
else
bs <- Roy.Fuller(xs,p,h,type)$coef
}
fore[i,] <- AR.ForeB(xs,bs,h,e,length(bs)-1)
}
Interval <- matrix(NA,nrow=h,ncol=length(prob),dimnames=list(1:h,prob))
for( i in 1:h)
Interval[i,] <- quantile(fore[,i],probs=prob)
return(list(PI=Interval,forecast=BC$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/RoyFuller1.PI.R
|
RoyFuller1T.PI <-
function(x,p,h,nboot,prob,type)
{
set.seed(12345)
n <- nrow(x)
BC <- Roy.Fuller(x,p,h,type)
b <- BC$coef
e <- sqrt( (n-p) / ( (n-p)-length(b)))*BC$resid
fore <- matrix(NA,nrow=nboot,ncol=h)
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(e)))
es <- e[index,1]
xs <- ysT(x, b, es)
{
if( sum(b[1:p]) == 1)
{as <- rbind(1,estmf(xs,p,1))
bs <- arlevel(as,p)}
else
bs <- Roy.Fuller(xs,p,h,type)$coef
}
fore[i,] <- ART.ForeB(xs,bs,h,e,length(bs)-1)
}
Interval <- matrix(NA,nrow=h,ncol=length(prob),dimnames=list(1:h,prob))
for( i in 1:h)
Interval[i,] <- quantile(fore[,i],probs=prob)
return(list(PI=Interval,forecast=BC$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/RoyFuller1T.PI.R
|
RoyFuller2.PI <-
function(x,p,h,nboot,prob,type,pmax)
{
set.seed(12345)
n <- nrow(x)
BC <- Roy.Fuller(x,p,h,type)
b <- BC$coef
e <- sqrt( (n-p) / ( (n-p)-length(b)))*BC$resid
fore <- matrix(NA,nrow=nboot,ncol=h)
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(e)))
es <- e[index,1]
xs <- ys(x, b, es)
ps <- AR.order(xs,pmax)$ARorder[1]
{
if( ps ==1 & b[1] == 1) bs <- rbind(1,0)
if( ps > 1 & sum(b[1:p]) == 1)
{as <- rbind(1,estmf0(xs,ps,1))
bs <- arlevel(as,ps)}
else
bs <- Roy.Fuller(xs,ps,h,type)$coef
}
fore[i,] <- AR.ForeB(xs,bs,h,e,length(bs)-1)
}
Interval <- matrix(NA,nrow=h,ncol=length(prob),dimnames=list(1:h,prob))
for( i in 1:h)
Interval[i,] <- quantile(fore[,i],probs=prob)
return(list(PI=Interval,forecast=BC$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/RoyFuller2.PI.R
|
RoyFuller2T.PI <-
function(x,p,h,nboot,prob,type,pmax)
{
set.seed(12345)
n <- nrow(x)
BC <- Roy.Fuller(x,p,h,type)
b <- BC$coef
e <- sqrt( (n-p) / ( (n-p)-length(b)))*BC$resid
fore <- matrix(NA,nrow=nboot,ncol=h)
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(e)))
es <- e[index,1]
xs <- ysT(x, b, es)
ps <- ART.order(xs,pmax)$ARorder[1]
{
if( sum(b[1:p]) == 1)
{as <- rbind(1,estmf(xs,ps,1))
bs <- arlevel(as,ps)}
else
bs <- Roy.Fuller(xs,ps,h,type)$coef
}
fore[i,] <- ART.ForeB(xs,bs,h,e,length(bs)-1)
}
Interval <- matrix(NA,nrow=h,ncol=length(prob),dimnames=list(1:h,prob))
for( i in 1:h)
Interval[i,] <- quantile(fore[,i],probs=prob)
return(list(PI=Interval,forecast=BC$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/RoyFuller2T.PI.R
|
Shaman.Stine <-
function(x,p,h)
{
x <- as.matrix(x)
n <- nrow(x)
b <- LSM(x,p)$coef
bc <- c(Stine(b,n,p),b[p+1])
bc <- adjust(b,bc,p)
bc[p+1] <- mean(x)*(1-sum(bc[1:p]))
e <- RESID(x,bc)
f <- {}
if(h > 0)
f <- AR.Fore(x,bc,h)
return(list(coef=bc,resid=e,forecast=f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Shaman.Stine.R
|
Shaman.StineB <-
function(x,p,h)
{
x <- as.matrix(x)
n <- nrow(x)
b <- LSMB(x,p)$coef
bc <- c(Stine(b,n,p),b[p+1])
bc <- adjust(b,bc,p)
bc[p+1] <- mean(x)*(1-sum(bc[1:p]))
e <- RESID(x,bc)
f <- {}
if(h > 0)
f <- AR.Fore(x,bc,h)
return(list(coef=bc,resid=e,forecast=f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Shaman.StineB.R
|
Shaman.StineBT <-
function(x,p,h)
{
x <- as.matrix(x)
n <- nrow(x)
b <- LSMBT(x,p)$coef
bc <- c(StineT(b,n,p),b[p+1],b[p+2])
bc <- adjust(b,bc,p)
bc[(p+1):(p+2),] <- RE.LSMTB(x,p,bc)
e <- RESIDT(x,bc)
f <- {}
if(h > 0)
f <- ART.Fore(x,bc,h)
return(list(coef=bc,resid=e,forecast=f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Shaman.StineBT.R
|
Shaman.StineT <-
function(x,p,h)
{
x <- as.matrix(x)
n <- nrow(x)
b <- LSMT(x,p)$coef
bc <- c(StineT(b,n,p),b[p+1],b[p+2])
bc <- adjust(b,bc,p)
bc[(p+1):(p+2),] <- RE.LSMT(x,p,bc)
e <- RESIDT(x,bc)
f <- {}
if(h > 0)
f <- ART.Fore(x,bc,h)
return(list(coef=bc,resid=e,forecast=f))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Shaman.StineT.R
|
ShamanStine.PI <-
function(x,p,h,nboot,prob,type,pmax)
{
x<-as.matrix(x)
if (type=="const" & pmax==0)
M <- ShamanStine1.PI(x,p,h,nboot,prob)
if (type=="const+trend" & pmax==0)
M <- ShamanStine1T.PI(x,p,h,nboot,prob)
if (type=="const" & pmax > 0)
M <- ShamanStine2.PI(x,p,h,nboot,prob,pmax)
if (type=="const+trend" & pmax > 0)
M <- ShamanStine2T.PI(x,p,h,nboot,prob,pmax)
colnames(M$PI) <- paste(prob*100,"%",sep="");rownames(M$PI) <- paste("h",1:h,sep="")
colnames(M$forecast) <- "forecasts"; rownames(M$forecast) <- paste("h",1:h,sep="")
return(list(PI=M$PI,forecast=M$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ShamanStine.PI.R
|
ShamanStine1.PI <-
function(x,p,h,nboot,prob)
{
set.seed(12345)
n <- nrow(x)
BC <- Shaman.Stine(x,p,h)
BCB <- Shaman.StineB(x,p,h)
bb <- BCB$coef
eb <- sqrt( (n-p) / ( (n-p)-length(bb)))*BCB$resid
ef <- sqrt( (n-p) / ( (n-p)-length(bb)))*BC$resid
fore <- matrix(NA,nrow=nboot,ncol=h)
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(eb)))
es <- eb[index,1]
xs <- ysb(x, bb, es)
bs <- Shaman.Stine(xs,p,h)$coef
fore[i,] <- AR.ForeB(xs,bs,h,ef,length(bs)-1)
}
Interval <- matrix(NA,nrow=h,ncol=length(prob),dimnames=list(1:h,prob))
for( i in 1:h)
Interval[i,] <- quantile(fore[,i],probs=prob)
return(list(PI=Interval,forecast=BC$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ShamanStine1.PI.R
|
ShamanStine1T.PI <-
function(x,p,h,nboot,prob)
{
set.seed(12345)
n <- nrow(x)
BC <- Shaman.StineT(x,p,h)
BCB <- Shaman.StineBT(x,p,h)
bb <- BCB$coef
eb <- sqrt( (n-p) / ( (n-p)-length(bb)))*BCB$resid
ef <- sqrt( (n-p) / ( (n-p)-length(bb)))*BC$resid
fore <- matrix(NA,nrow=nboot,ncol=h)
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(eb)))
es <- eb[index,1]
xs <- ysbT(x, bb, es)
bs <- Shaman.StineT(xs,p,h)$coef
fore[i,] <- ART.ForeB(xs,bs,h,ef,length(bs)-1)
}
Interval <- matrix(NA,nrow=h,ncol=length(prob),dimnames=list(1:h,prob))
for( i in 1:h)
Interval[i,] <- quantile(fore[,i],probs=prob)
return(list(PI=Interval,forecast=BC$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ShamanStine1T.PI.R
|
ShamanStine2.PI <-
function(x,p,h,nboot,prob,pmax)
{
set.seed(12345)
n <- nrow(x)
BC <- Shaman.Stine(x,p,h)
BCB <- Shaman.StineB(x,p,h)
bb <- BCB$coef
eb <- sqrt( (n-p) / ( (n-p)-p-1))*BCB$resid
ef <- sqrt( (n-p) / ( (n-p)-p-1))*BC$resid
fore <- matrix(NA,nrow=nboot,ncol=h)
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(eb)))
es <- eb[index,1]
xs <- ysb(x, bb, es)
ps <- AR.order(xs,pmax)$ARorder[1]
bs <- Shaman.Stine(xs,ps,h)$coef
fore[i,] <- AR.ForeB(xs,bs,h,ef,length(bb)-1)
}
Interval <- matrix(NA,nrow=h,ncol=length(prob),dimnames=list(1:h,prob))
for( i in 1:h)
Interval[i,] <- quantile(fore[,i],probs=prob)
return(list(PI=Interval,forecast=BC$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ShamanStine2.PI.R
|
ShamanStine2T.PI <-
function(x,p,h,nboot,prob,pmax)
{
set.seed(12345)
n <- nrow(x)
BC <- Shaman.StineT(x,p,h)
BCB <- Shaman.StineBT(x,p,h)
bb <- BCB$coef
eb <- sqrt( (n-p) / ( (n-p)-p-1))*BCB$resid
ef <- sqrt( (n-p) / ( (n-p)-p-1))*BC$resid
fore <- matrix(NA,nrow=nboot,ncol=h)
for(i in 1:nboot)
{
index <- as.integer(runif(n-p, min=1, max=nrow(eb)))
es <- eb[index,1]
xs <- ysbT(x, bb, es)
ps <- ART.order(xs,pmax)$ARorder[1]
bs <- Shaman.StineT(xs,ps,h)$coef
fore[i,] <- ART.ForeB(xs,bs,h,ef,length(bb)-1)
}
Interval <- matrix(NA,nrow=h,ncol=length(prob),dimnames=list(1:h,prob))
for( i in 1:h)
Interval[i,] <- quantile(fore[,i],probs=prob)
return(list(PI=Interval,forecast=BC$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ShamanStine2T.PI.R
|
Stine <-
function(bb,n,p)
{
a <- c(1,bb[1:p])
{
if (p == 1)
{
b <- rbind(c(0,0),c(1,3))
}
else
{
value <- 0.5*p - as.integer(0.5*p)
b1 <- matrix(0,nrow=p+1,ncol=p+1)
diag(b1) <- 0:p
b21 <- matrix(0,nrow=p+1,ncol=1)
b22 <- matrix(0,nrow=p+1,ncol=1)
b2 <- matrix(0,nrow=p+1,ncol=1)
if (value == 0)
{
for (i in 0:(0.5*p-1))
{
e <- matrix(0,nrow=p+1,ncol=1)
index <- seq(i+3,length.out=(0.5*p-i),by = 2)
e[index] <- matrix(1,nrow=(0.5*p-i),ncol=1)
b21 <- cbind(b21,-e)
b22 <- cbind(e,b22)
}
b2 <- cbind(b21[,2:(0.5*p+1)],b2,b22[,1:(0.5*p)])
}
else
{
for (i in 0:(0.5*(p-1)) )
{
d <- matrix(0,nrow=p+1,ncol=1)
index <- seq(i+2,length.out=( 0.5*(p-1)+1-i ),by = 2)
d[index] <- matrix(1,nrow=( 0.5*(p-1)+1-i ),ncol=1)
b21 <- cbind(b21,-d)
b22 <- cbind(d,b22)
}
b2 <- cbind(b21[,3:(0.5*(p-1)+2)],b2,b22[,1:(0.5*(p-1)+1)])
}
b3 <- matrix(0,nrow=p+1,ncol=p+1)
for (i in 1:(p+1))
{
for (j in 1:(p+1))
{
if (j < i & i <= p-j+2)
b3[i,j] <- -1
if (p-j+2< i & i <= j)
b3[i,j] <- 1
}
}
b <- b1+b2+b3
b[,1] <- -b[,1]
}
}
bmat <- -b/n;
bmat1 <- bmat[2:(p+1),1]
bmat2 <- bmat[2:(p+1),2:(p+1)]
eye <- matrix(0,nrow=p,ncol=p)
diag(eye) <- rep(1,p)
ahat <- solve(eye+bmat2) %*% (a[2:(p+1)]-bmat1)
return(ahat)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Stine.R
|
Stine.Shaman <-
function(x,p,h,type)
{
x<-as.matrix(x)
if (type=="const")
M <- Shaman.Stine(x,p,h)
if (type=="const+trend")
M <- Shaman.StineT(x,p,h)
rownames(M$coef) <- ARnames(p,type); colnames(M$coef) <- "coefficients"
colnames(M$forecast) <- "forecasts"; rownames(M$forecast) <- paste("h",1:h,sep="")
return(list(coef=M$coef,resid=M$resid,forecast=M$forecast))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/Stine.Shaman.R
|
StineT <-
function(bb,n,p)
{
a <- c(1,bb[1:p])
{
if (p == 1)
{
b <- rbind(c(0,0),c(2,4))
}
else
{
value <- 0.5*p - as.integer(0.5*p)
b1 <- matrix(0,nrow=p+1,ncol=p+1)
diag(b1) <- 0:p
b21 <- matrix(0,nrow=p+1,ncol=1)
b22 <- matrix(0,nrow=p+1,ncol=1)
b2 <- matrix(0,nrow=p+1,ncol=1)
if (value == 0)
{
for (i in 0:(0.5*p-1))
{
e <- matrix(0,nrow=p+1,ncol=1)
index <- seq(i+3,length.out=(0.5*p-i),by = 2)
e[index] <- matrix(1,nrow=(0.5*p-i),ncol=1)
b21 <- cbind(b21,-e)
b22 <- cbind(e,b22)
}
b2 <- cbind(b21[,2:(0.5*p+1)],b2,b22[,1:(0.5*p)])
}
else
{
for (i in 0:(0.5*(p-1)) )
{
d <- matrix(0,nrow=p+1,ncol=1)
index <- seq(i+2,length.out=( 0.5*(p-1)+1-i ),by = 2)
d[index] <- matrix(1,nrow=( 0.5*(p-1)+1-i ),ncol=1)
b21 <- cbind(b21,-d)
b22 <- cbind(d,b22)
}
b2 <- cbind(b21[,3:(0.5*(p-1)+2)],b2,b22[,1:(0.5*(p-1)+1)])
}
b3 <- matrix(0,nrow=p+1,ncol=p+1)
for (i in 1:(p+1))
{
for (j in 1:(p+1))
{
if (j < i & i <= p-j+2)
b3[i,j] <- -1
if (p-j+2< i & i <= j)
b3[i,j] <- 1
}
}
b <- b1+b2+2*b3
b[,1] <- -b[,1]
}
}
bmat <- -b/n;
bmat1 <- bmat[2:(p+1),1]
bmat2 <- bmat[2:(p+1),2:(p+1)]
eye <- matrix(0,nrow=p,ncol=p)
diag(eye) <- rep(1,p)
ahat <- solve(eye+bmat2) %*% (a[2:(p+1)]-bmat1)
return(ahat)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/StineT.R
|
adjust <-
function(b,btem1,p)
{
bias <- b - btem1
bs1 <- b - bias
delta3 <- min(Mod(polyroot(c(1,-bs1[1:p]))))
if(delta3 > 1)
return(bs1)
delta1 <- 1
while(delta3 <= 1)
{
delta1 <- delta1-0.01
bias <- delta1*bias
bs2 <- b - bias
if (sum(as.numeric(is.infinite(bs2))) > 0)
{bs2 <- bs1; break}
delta3 <- min(Mod(polyroot(c(1,-bs2[1:p]))))
}
return(bs2)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/adjust.R
|
alpha.u <-
function(b,p,n)
{
alphavec <- c(-0.99,seq(-0.9,1,0.1))
stat <- matrix(NA,nrow=length(alphavec),ncol=2)
for( i in 1:length(alphavec) )
{alpha <- alphavec[i]
stat[i,] <- cbind(alpha,alphas(alpha,b,p,n))}
if( stat[nrow(stat),2] < b[1] ) alphau <- 1
if( stat[1,2] >= b[1]) alphau <- -1
if( stat[1,2] < b[1] & stat[nrow(stat),2] >= b[1])
{
for (i in 2:length(alphavec))
{low <- stat[i-1,2]; high <- stat[i,2]
if(low < b[1] & high > b[1]) stat1 <- stat[(i-1):i,]
}
base1 <- stat1[1,2]; base2 <- stat1[1,1]
slope <- (stat1[2,1]-stat1[1,1])/(stat1[2,2]-stat1[1,2])
alphau <- (b[1] - base1)*slope+base2
}
return(alphau)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/alpha.u.R
|
alpha.u0 <-
function(b,p,n)
{
alphavec <- c(-0.99,seq(-0.9,1,0.1))
stat <- matrix(NA,nrow=length(alphavec),ncol=2)
for( i in 1:length(alphavec) )
{alpha <- alphavec[i]
stat[i,] <- cbind(alpha,alphas0(alpha,b,p,n))}
if( stat[nrow(stat),2] < b[1] ) alphau <- 1
if( stat[1,2] >= b[1]) alphau <- -1
if( stat[1,2] < b[1] & stat[nrow(stat),2] >= b[1])
{
for (i in 2:length(alphavec))
{low <- stat[i-1,2]; high <- stat[i,2]
if(low < b[1] & high > b[1]) stat1 <- stat[(i-1):i,]
}
base1 <- stat1[1,2]; base2 <- stat1[1,1]
slope <- (stat1[2,1]-stat1[1,1])/(stat1[2,2]-stat1[1,2])
alphau <- (b[1] - base1)*slope+base2
}
return(alphau)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/alpha.u0.R
|
alphas <-
function(alpha,b,p,n)
{set.seed(12345)
b[1,1] <- alpha
a <- arlevel(b,p)
stat <- matrix(NA,nrow=500)
for(ii in 1:500)
{
nob <- n+50
u <- rnorm(nob)
y <- matrix(0,nrow=p)
for( i in (p+1):nob)
{tem <- sum( a[1:p,1] * y[(i-1):(i-p),1] ) + u[i]
y <- rbind(y,tem)}
xs <- y[(nob-n+1):nob,1]
bs <- LSET(xs,p)$coef
stat[ii,1] <- bs[1]
}
return(median(stat))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/alphas.R
|
alphas0 <-
function(alpha,b,p,n)
{set.seed(12345)
b[1,1] <- alpha
a <- arlevel(b,p)
stat <- matrix(NA,nrow=500)
for(ii in 1:500)
{
nob <- n+50
u <- rnorm(nob)
y <- matrix(0,nrow=p)
for( i in (p+1):nob)
{tem <- sum( a[1:p,1] * y[(i-1):(i-p),1] ) + u[i]
y <- rbind(y,tem)}
xs <- y[(nob-n+1):nob,1]
bs <- LSE(xs,p)$coef
stat[ii,1] <- bs[1]
}
return(median(stat))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/alphas0.R
|
arlevel <-
function(b,p)
{
a <- numeric(0)
if(p == 1)
a <- b[1]
else
{
for(i in 1:p)
{
if(i == 1)
a <- c(a, b[1]+b[2])
else
a <- c(a, -b[i]+b[i+1])
if(i == p)
a[p] <- -b[i]
}
}
a <- c(a,b[(p+1):length(b)])
return(as.matrix(a))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/arlevel.R
|
estmf <-
function(x,p,alphau)
{
x <- as.matrix(x)
n <- nrow(x)
y <- x[(p+1):n,1]- alphau*x[p:(n-1),1]
{
if( alphau == 1){
xmat <- matrix(1,nrow=n-p)
if(p > 1){
z<- x[2:n,1]-x[(1:n-1),1]
index <- (p-1):(n-2)
for(i in 1:(p-1)){
xmat <- cbind(xmat,z[index])
index <- index -1}
xmat <- cbind(xmat[,2:ncol(xmat)],xmat[,1])
}
btem <- rbind( solve( t(xmat) %*% xmat) %*% t(xmat) %*% y , 0)
}
else{
xmat <- cbind(rep(1,(n-p)),(p+1):n)
if(p > 1){
z<- x[2:n,1]-x[(1:n-1),1]
index <- (p-1):(n-2)
for(i in 1:(p-1)){
xmat <- cbind(xmat,z[index])
index <- index -1}
xmat <- cbind(xmat[,3:ncol(xmat)],xmat[,1:2])
}
btem <- solve( t(xmat) %*% xmat) %*% t(xmat) %*% y
}
}
return(btem)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/estmf.R
|
estmf0 <-
function(x,p,alphau)
{
x <- as.matrix(x)
n <- nrow(x)
y <- x[(p+1):n,1]- alphau*x[p:(n-1),1]
{
if( alphau == 1){
xmat <- numeric()
if(p > 1){
z<- x[2:n,1]-x[(1:n-1),1]
index <- (p-1):(n-2)
for(i in 1:(p-1)){
xmat <- cbind(xmat,z[index])
index <- index -1}
}
btem <- rbind( solve( t(xmat) %*% xmat) %*% t(xmat) %*% y , 0)
}
else{
xmat <- matrix(1,nrow=n-p)
if(p > 1){
z<- x[2:n,1]-x[(1:n-1),1]
index <- (p-1):(n-2)
for(i in 1:(p-1)){
xmat <- cbind(xmat,z[index])
index <- index -1}
xmat <- cbind(xmat[,2:ncol(xmat)],xmat[,1])
}
btem <- solve( t(xmat) %*% xmat) %*% t(xmat) %*% y
}
}
return(btem)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/estmf0.R
|
fuller <-
function(x,p)
{
y <- as.matrix(x)
n <- nrow(y)
x <- matrix(1,nrow=n)
e <- y - x %*% solve(t(x) %*% x) %*% t(x) %*% y
M1 <- fuller1(e,p)
tau <- M1$tau
r <- 1; K <- 5; dn <- 0.1111; an <- 0.0467; bn <- 0.0477; taumed <- -1.57
k1 <- (r+1)*n/(0.5*(p+1))
k2 <- ( (1+(0.5*(p+1)/n)) * taumed*(taumed-K))^(-1)*( (r+1)-(0.5*(p+1)/n)*taumed^2)
if(tau <= -sqrt(k1)) c <- 0
if(tau > -sqrt(k1) & tau <= -K) c <- 0.5*(p+1)/n*tau - (r+1)/tau
if(tau > -K & tau <= taumed) c <- 0.5*(p+1)/n*tau - (r+1)*(tau+k2*(tau+K))^(-1)
if(tau >= taumed) c <- -taumed + dn*(tau-taumed)
b1 <- M1$coef[1,1] + c*M1$se
b2 <- min(c(b1,1))
{
if( p ==1 & b2 == 1) newb <- rbind(b2,0)
else
{
newb <- rbind(b2,estmf0(y,p,b2))
newb <- arlevel(newb,p)}
}
return(newb)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/fuller.R
|
fuller1 <-
function(x,p)
{
x <- as.matrix(x)
n <- nrow(x)
y <- x[(p+1):n,1]
xmat <- as.matrix(x[p:(n-1),1])
if(p > 1) {
z <- x[2:n,1]-x[(1:n-1),1]
index1 <- (p-1):(n-2)
for( i in 1:(p-1))
{xmat <- cbind(xmat,z[index1])
index1 <- index1-1}
}
b <- solve( t(xmat) %*% xmat) %*% t(xmat) %*% y
e <- y - xmat %*% b
s2 <- sum(e^2)/(n-p)
cov <- solve(t(xmat) %*% xmat)*s2
se <- sqrt(cov[1,1])
tau <- (b[1,1]-1)/se
return(list(coef=b,se=se,tau=tau))
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/fuller1.R
|
fullerT <-
function(x,p)
{
y <- as.matrix(x)
n <- nrow(y)
k <-5; dn<-0.290; an<-0; bn<-0.080; taumed <- -2.18;
x <- cbind(rep(1,n),1:n)
e <- y - x %*% solve(t(x) %*% x) %*% t(x) %*% y
ip <- as.integer( 0.5*(p+1))
sk <- (3*n-taumed^2*(ip+n))*(taumed*(k+taumed)*(ip+n))^(-1)
M1 <- fuller1(e,p)
tau <- M1$tau
if( tau > taumed) c <- -taumed + dn*(tau-taumed)
if( tau > -k & tau <= taumed) c <- ip*(tau/n) - 3/(tau+sk*(tau+k))
if( tau > -sqrt(3*n) & tau <= -k) c <- ip*(tau/n) - 3/tau
if( tau <= -sqrt(3*n)) c <- 0
b1 <- M1$coef[1,1] + c*M1$se
b2 <- min(c(b1,1))
newb <- rbind(b2,estmf(y,p,b2))
newb <- arlevel(newb,p)
return(newb)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/fullerT.R
|
mainf <-
function(b,h,p)
{
mf <- c(1, b[1], rep(0,h-1))
for(i in 2:h)
{
idx <- 1:min(i,p)
mf[i+1] <- sum(b[idx] * rev(mf[1:i])[idx])
}
return(mf)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/mainf.R
|
ys <-
function(x,b,e)
{
p <- length(b)-1
n <- nrow(x)
y <- x
for(i in (p+1):n)
y[i,1] <- b[p+1,1] + sum(b[1:p,1]*y[(i-1):(i-p),1]) + e[i-p]
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ys.R
|
ysT <-
function(x,b,e)
{
p <- length(b)-2
n <- nrow(x)
tm <- 1:n
y <- x
for(i in (p+1):n)
y[i,1] <- b[p+1,1] + b[p+2,1]*tm[i] + sum(b[1:p,1]*y[(i-1):(i-p),1]) + e[i-p]
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ysT.R
|
ysb <-
function(x,b,e)
{
p <- length(b)-1
n <- nrow(x)
y <- x
for(i in (n-p):1)
y[i,1] <- b[p+1,1] + sum(b[1:p,1]*y[(i+1):(i+p),1]) + e[i]
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ysb.R
|
ysbT <-
function(x,b,e)
{
p <- length(b)-2
n <- nrow(x)
tm <- 1:n
y <- x
for(i in (n-p):1)
y[i,1] <- b[p+1,1] + b[p+2,1]*tm[i] + sum(b[1:p,1]*y[(i+1):(i+p),1]) + e[i]
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/BootPR/R/ysbT.R
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.