content
stringlengths
0
14.9M
filename
stringlengths
44
136
#' BRVM Get info about a ticker beta, RSI, Closing, Valorisation, etc. #' #' @author Koffi Frederic SESSIE #' #' @description It receives the ticker of a company or index listed on the BRVM stock exchange, #' Turn to upper case the input by using `toupper()` and returns informations about the company's RSI, Beta, Closing price, etc. . #' #' @seealso \url{https://www.sikafinance.com} #' #' @param ticker The ticker of a company #' #' @return A tibble #' @export #' #' @importFrom rvest html_elements read_html #' #' @examples #' BRVM_company_info("BOAS") #' BRVM_company_info("BoaM") #' BRVM_company_info("BRVMAG") #' #' BRVM_company_info<- function(ticker){ ticker<-toupper(ticker) all_tickers <- c( "ABJC", "BICC", "BNBC", "BOAB", "BOABF", "BOAC", "BOAM", "BOAN", "BOAS", "CABC", "CBIBF", "CFAC", "CIEC", "ECOC", "ETIT", "FTSC", "NEIC", "NSBC", "NTLC", "ONTBF", "ORGT", "ORAC", "PALC", "PRSC", "SAFC", "SCRC", "SDCC", "SDSC", "SEMC", "SGBC", "SHEC", "SIBC", "SICC", "SIVC", "SLBC", "SMBC", "SNTS", "SOGC", "SPHC", "STAC", "STBC", "TTLC", "TTLS", "UNLC", "UNXC" #, "TTRC", "SVOC" ) Countries<-list(BENIN =c("BOAB"), "BURKINA FASO" = c("BOABF", "CBIBF", "ONTBF"), "IVORY COAST" = c("ABJC", "BICC", "BNBC","BOAC", "CABC", "CFAC", "CIEC", "ECOC", "FTSC", "NEIC", "NSBC","NTLC", "ORAC", "PALC", "PRSC", "SAFC", "SCRC", "SDCC", "SDSC", "SEMC","SGBC", "SHEC", "SIBC", "SICC", "SIVC", "SLBC", "SMBC", "SOGC","SPHC", "STAC", "STBC", "SVOC", "TTLC", "TTRC", "UNLC","UNXC"), MALI = c("BOAM"), NIGER = c("BOAN"), SENEGAL = c("BOAS", "SNTS", "TTLS"), TOGO = c("ETIT", "ORGT")) # all_indexes <- c("BRVM10", "BRVMAG", "BRVMC", "BRVMAS", "BRVMDI", # "BRVMFI", "BRVMIN", "BRVMSP", "BRVMTR", "BRVMPR", # "BRVMPA", "BRVM30", "CAPIBRVM") .indexes<-list("BRVM 10" = c("BRVM10"), AGRICULTURE = c("BRVMAG"), "BRVM COMPOSITE" =c("BRVMC"), "OTHER SECTOR" = c("BRVMAS"), DISTRIBUTION = c("BRVMDI"), FINANCE = c("BRVMFI"), INDUSTRY = c("BRVMIN"), "PUBLIC SERVICES" = c("BRVMSP"), TRANSPORT = c("BRVMTR"), "BRVM PRESTIGE" = c("BRVMPR"), "BRVM PRINCIPAL" = c("BRVMPA"), "BRVM 30" = c("BRVM30"), CAPITALISATION = c("CAPIBRVM")) if (ticker %in% .indexes) { adn_ticker <- ticker url <-paste0("https://www.sikafinance.com/marches/cotation_", adn_ticker) } else if (ticker %in% all_tickers){ # url<-paste0("https://www.sikafinance.com/marches/cotation_", ticker) if (company_country(ticker) %in% names(Countries)){ if (company_country(ticker) == "BENIN") { adn<- ".bj" } else if (company_country(ticker) == "BURKINA FASO") { adn<- ".bf" } else if (company_country(ticker) == "IVORY COAST") { adn<- ".ci" } else if (company_country(ticker) == "MALI") { adn<- ".ml" } else if (company_country(ticker) == "NIGER") { adn<- ".ne" } else if (company_country(ticker) == "SENEGAL") { adn<- ".sn" } else if (company_country(ticker) == "TOGO") { adn<- ".tg" } # adn_ticker <- paste0(ticker, adn) # url <-paste0("https://www.sikafinance.com/marches/cotation_", adn_ticker) url <-paste0("https://www.sikafinance.com/marches/cotation_", ticker, adn) # message(url) } else { message(paste0("Be sure that ", ticker, " belong's to BRVM stock market")) } } else { message(paste0("Be sure that ", ticker, " belong's to BRVM stock market")) } ##Create empty dataframe ticker_info<-as.data.frame(matrix(NA, ncol = 2, nrow = 0)) tryCatch({ val<- read_html(url) %>% html_elements('table') %>% html_table() # for (i in 2:4){ # # val<- (read_html(url) %>% html_elements('table') %>% html_table())[[i]] # # # ticker_info<-rbind(ticker_info, val[[i]]) # } ticker_info <- rbind(val[[2]], val[[3]], val[[4]]) # colnames(ticker_info) <- NULL colnames(ticker_info) <- c("Informations", "Values") return(ticker_info) }, error = function(e) { message("Make sure you have an active internet connection") }, warning = function(w) { message("Make sure you have an active internet connection") }) }
/scratch/gouwar.j/cran-all/cranData/BRVM/R/brvm_company_info.R
#' Company's sector - To know the sector of a given company #' #' @family Data Retrieval #' @family BRVM #' #' @author Koffi Frederic SESSIE #' #' @description It receives one company listed on the BRVM stock exchange, #' Turn to upper case your input by using `toupper()` and returns informations about the company's sector. #' #' @param company The name of company listed on the BRVM stock exchange #' #' @return "character" #' #' @export #' #' @examples #' company_sector("BICC") #' company_sector("SNTS") #' #' company_sector <- function(company){ company<-toupper(company) .sectors =list(Agriculture = c("PALC","SCRC","SICC","SOGC","SPHC"), Distribution = c("ABJC","BNBC","CFAC","PRSC","SHEC","TTLC","TTLS"), Industry = c("CABC","FTSC","NEIC","NTLC","SEMC","SIVC","SLBC","SMBC","STBC","TTRC","UNLC","UNXC"), Finance = c("BOAB","BOABF","BOAC","BOAM","BOAN","BOAS","BICC","CBIBF","ECOC","ETIT","NSBC","ORGT","SAFC","SGBC","SIBC"), Transport = c("SDSC","SVOC"), "Public service" = c("CIEC","ONTBF","SDCC","SNTS", "ORAC"), Other = c("STAC")) for (elem in 1 :length(.sectors)){ if (company %in% .sectors[[elem]]) { return(names(.sectors)[[elem]]) } } }
/scratch/gouwar.j/cran-all/cranData/BRVM/R/brvm_company_sector.R
#' BRVM Get - Get BRVM stock exchange Ticker Data #' #' @description This function will get data from the Sikafinance exchange. #' #' @family Data Retrieval #' @family Sikafinance #' #' @author Koffi Frederic SESSIE #' #' @seealso \url{https://www.sikafinance.com/} #' @seealso `BRVM_ticker_desc()`, `BRVM_tickers()`, `BRVM_get()`, `BRVM_index_stock()` #' #' @details This function will get data of the companies listed on the BVRM exchange through the sikafinance site. The function #' takes in a single parameter of `ticker` The function will auto-format the #' tickers you input into all upper case by using `toupper()` #' #' @param ticker A vector of ticker, like: c("BICC","XOM","SlbC", "BRvm10") #' @param Period Numeric number indicating time period. Valid entries are 0, 1, 5, 30, 91, and 365 representing respectively 'daily', 'one year', 'weekly', 'monthly', 'quarterly' and 'yearly'. #' @param from A quoted start date, ie. "2020-01-01" or "2020/01/01". The date #' must be in ymd format "YYYY-MM-DD" or "YYYY/MM/DD". #' @param to A quoted end date, ie. "2022-01-31" or "2022/01/31". The date must #' be in ymd format "YYYY-MM-DD" or "YYYY/MM/DD" #' #'@importFrom httr2 req_body_json req_perform request resp_body_json #'@importFrom dplyr group_by summarise as_tibble #'@importFrom lubridate parse_date_time #'@importFrom rlang abort #'@importFrom stringr str_sub #' #' @examples \donttest{ #' library(lubridate) #' library(rlang) #' library(httr2) #' library(dplyr) #' library(stringr) #' #' symbols <- c("BiCc","XOM","SlbC") #' data_tbl <- BRVM_get1(ticker = symbols) #' data_tbl #' #' #From three year ago to the present #' #' BRVM_get1("ALL INDEXES", from = Sys.Date() - 252*3, to = Sys.Date()) #' #' BRVM_get1(ticker = "BRVMAG", from = "2010-01-04", to = "2022-01-04") #' #' BRVM_get1("ALL", Period = 0, from = "2010-01-04", to = "2022-01-04" ) #To get daily data #' #' BRVM_get1("BrvmAS", Period = 1 ) # To get daily data for a whole year #' #' BRVM_get1(c("BRVMPR", "BRVMAG"), Period = 5) # To get weekly data #' #' BRVM_get1("BRVMAG", Period = 30 ) # To get monthly data #' #' BRVM_get1("BRVMPR", Period = 91 ) # To get quaterly data #' #' BRVM_get1(c("brvmtr", "BiCc", "BOAS"), Period = 365 ) # To get yearly data #'} #' #' @return #' A tibble #' #' @export #' BRVM_get1 <- function(ticker ='BICC', Period = 0, from = Sys.Date() - 89, to = Sys.Date() ) { first_date <- lubridate::parse_date_time(from, orders = "ymd") end_date <- lubridate::parse_date_time(to, orders = "ymd") if (first_date >= end_date){ rlang::abort( "The '.from' parameter (start_date) must be less than '.to' (end_date)" ) } else if (first_date >= Sys.Date()-2){ rlang::abort( "The '.from' parameter (start_date) must be less than today's date" ) } ticker <- unique(toupper(ticker)) all_tickers <- c( "ABJC", "BICC", "BNBC", "BOAB", "BOABF", "BOAC", "BOAM", "BOAN", "BOAS", "CABC", "CBIBF", "CFAC", "CIEC", "ECOC", "ETIT", "FTSC", "NEIC", "NSBC", "NTLC", "ONTBF", "ORGT", "ORAC", "PALC", "PRSC", "SAFC", "SCRC", "SDCC", "SDSC", "SEMC", "SGBC", "SHEC", "SIBC", "SICC", "SIVC", "SLBC", "SMBC", "SNTS", "SOGC", "SPHC", "STAC", "STBC", "TTLC", "TTLS", "UNLC", "UNXC" #, "TTRC", "SVOC" ) # idx <- c("BRVM10", "BRVMAG", "BRVMC", "BRVMAS", "BRVMDI", # "BRVMFI", "BRVMIN", "BRVMSP", "BRVMTR", "BRVMPR", # "BRVMPA", "BRVM30", "CAPIBRVM") all_indexes <- c("BRVM10", "BRVMAG", "BRVMC", "BRVMAS", "BRVMDI", "BRVMFI", "BRVMIN", "BRVMSP", "BRVMTR", "BRVMPR", "BRVMPA", "BRVM30", "CAPIBRVM") ifelse(ticker =="ALL", ticker <- all_tickers, ticker) ifelse(ticker =="ALL INDEXES", ticker <- all_indexes, ticker) .indexes<-list("BRVM 10" = c("BRVM10"), AGRICULTURE = c("BRVMAG"), "BRVM COMPOSITE" =c("BRVMC"), "OTHER SECTOR" = c("BRVMAS"), DISTRIBUTION = c("BRVMDI"), FINANCE = c("BRVMFI"), INDUSTRY = c("BRVMIN"), "PUBLIC SERVICES" = c("BRVMSP"), TRANSPORT = c("BRVMTR"), "BRVM PRESTIGE" = c("BRVMPR"), "BRVM PRINCIPAL" = c("BRVMPA"), "BRVM 30" = c("BRVM30"), CAPITALISATION = c("CAPIBRVM")) tick_vec <- NULL ## Filter ticker in .indexes or all_ticker list for (tick in ticker) { if (tick %in% .indexes) { tick_vec <- c(tick_vec, tick) } else if (tick %in% all_tickers){ if (company_country(tick) == "BENIN") { adn <- paste0(tick,".bj") } else if (company_country(tick) == "BURKINA FASO") { adn <- paste0(tick,".bf") } else if (company_country(tick) == "IVORY COAST") { adn <- paste0(tick,".ci") } else if (company_country(tick) == "MALI") { adn <- paste0(tick,".ml") } else if (company_country(tick) == "NIGER") { adn <- paste0(tick,".ne") } else if (company_country(tick) == "SENEGAL") { adn <- paste0(tick,".sn") } else if (company_country(tick) == "TOGO") { adn <- paste0(tick,".tg") } tick_vec <- c(tick_vec, adn) } } # Check input parameters after filtering ---- if (length(tick_vec) < 1){ rlang::abort( "The 'ticker' parameter cannot be blank. Please enter at least one ticker. If entering multiple please use .symbol = c(Tick_1, Tick_2, ...)" ) } else { ticker <- tick_vec } index_stock <- as.data.frame(matrix(NA, ncol = 6, nrow = 0)) names(index_stock) <- c("Date", "Open", "High", "Low", "Close", "Ticker") tryCatch( { if (as.numeric(Period) %in% c(1, 30, 91, 365) ){ for (Tick in ticker) { if (nchar(Tick) == 7) { Tick1 <- str_sub(Tick, 1,4) } else if (nchar(Tick) == 8) { Tick1 <- str_sub(Tick, 1,5) } else { Tick1 <- Tick } # ifelse(nchar(Tick) == 7, # Tick1 <- str_sub(Tick, 1,4), # Tick1 <- Tick) my_data <- request("https://www.sikafinance.com/api/general/GetHistos") %>% req_body_json(list('ticker'= Tick, 'xperiod'= paste0(Period,''))) %>% req_perform() %>% resp_body_json(simplifyVector = T) my_data <- dplyr::as_tibble(my_data$lst) my_data$Date<-as.Date.character(my_data$Date, format = "%d/%m/%Y") my_data <- my_data[,-6] # assign(Tick1, my_data, envir = globalenv()) # if (nchar(Tick) == 7) { # my_data$Ticker <- str_sub(Tick, 1,4) # } else { # my_data$Ticker <- Tick # } my_data$Ticker <- Tick1 index_stock <- rbind(index_stock, my_data) } if (length(unique(index_stock$Ticker)) > 1) { return(index_stock) } else { return(index_stock[, -6]) } } else if (as.numeric(Period) %in% c(0, 5) ){ for (Tick in ticker) { if (nchar(Tick) == 7) { Tick1 <- str_sub(Tick, 1,4) } else if (nchar(Tick) == 8) { Tick1 <- str_sub(Tick, 1,5) } else { Tick1 <- Tick } # ifelse(nchar(Tick) == 7, # Tick1 <- str_sub(Tick, 1,4), # Tick1 <- Tick) stock.data <- as.data.frame(matrix(NA, ncol = 7, nrow = 0)) names(stock.data) <- c("Date", "Open", "High", "Low", "Close", "Ticker") for(.date in seq(end_date, first_date, "-3 months")){ to_date = as.Date.POSIXct(.date) from_date = to_date - 89 my_data <- request("https://www.sikafinance.com/api/general/GetHistos") %>% req_body_json(list('ticker'= Tick, 'datedeb'= from_date, 'datefin'= to_date, 'xperiod'= paste0(Period,''))) %>% req_perform() %>% resp_body_json(simplifyVector = T) if (length(my_data$lst)==6) { my_data <- dplyr::as_tibble(my_data$lst) stock.data <- rbind(stock.data, my_data) } } if (length(stock.data)==6 && nrow(stock.data)!=0) { stock.data$Date<-as.Date.character(stock.data$Date, format = "%d/%m/%Y") ifelse (any(duplicated(stock.data$Date)), stock.data<-stock.data%>% dplyr::group_by(Date)%>% summarise(Open=mean(Open), High= mean(High), Low= mean(Low), Close= mean(Close)), stock.data) message(paste0("We obtained ",Tick1, " data from ", min(stock.data$Date), " to ", max(stock.data$Date))) # stock.data <- stock.data[, -6] # assign(Tick1, stock.data, envir = globalenv()) stock.data$Ticker <- Tick1 index_stock <- rbind(index_stock, stock.data ) # ifelse(length(unique(index_stock$Ticker)) > 1, # return(index_stock), # return(index_stock[, -6])) } else { message(paste0(Tick1," data aren't available between ", first_date, " and ", end_date)) } } if (length(unique(index_stock$Ticker)) > 1) { return(index_stock) } else if (length(unique(index_stock$Ticker)) == 1){ index_stock <- index_stock[, -6] return(index_stock[, -6]) } } else { message("Choose the best period between 0, 1, 5, 30, 91 and 365") } }, error = function(e) { message("Make sure you have an active internet connection") }, warning = function(w) { message("Make sure you have an active internet connection") } ) }
/scratch/gouwar.j/cran-all/cranData/BRVM/R/brvm_get1.R
#' BRVM PLOT #' #' @description This function will get Ticker(s) data and then plot it. #' #' @family Data Retrieval #' @family Plot #' @family BRVM #' @author Koffi Frederic SESSIE #' #' @param .company is the Ticker(s) name(s) #' @param from A quoted start date, ie. "2020-01-01" or "2020/01/01". The date #' must be in ymd format "YYYY-MM-DD" or "YYYY/MM/DD". #' @param to A quoted end date, ie. "2022-01-31" or "2022/01/31". The date must #' be in ymd format "YYYY-MM-DD" or "YYYY/MM/DD" #' @param up.col is the up color #' @param down.col is down color #' #' @seealso `BRVM_ticker_desc()` #' @seealso `BRVM_tickers()` #' #' @return #' An interactive chart #' #' @export #' #' @importFrom xts as.xts #' @importFrom highcharter highchart hc_title hc_add_series hc_add_yAxis hc_add_series hc_yAxis_multiples hc_colors hc_exporting #' #' @examples #'\donttest{ #' library(highcharter) #' library(lubridate) #' library(rlang) #' library(httr2) #' library(dplyr) #' library(stringr) #' library(xts) #' #' BRVM_plot("BICC") #' #' # You can change the up and down colors as follow #' BRVM_plot("BICC", up.col = "blue", down.col = "pink") #' #' # Plot the closing price of a group of 3 tickers #' BRVM_plot(c("BICC","ETIT", "SNTS")) #'} BRVM_plot<- function(.company, from = Sys.Date() - 365, to = Sys.Date() - 1, up.col = "darkgreen", down.col = "red") { # message('It possible to plot each sector chart line. You can use as argument .sectors$Agriculture to plot. Example BRVM_plot(.sector$Agriculture)') date1<- from date2 = to # Evaluate input parameters ---- .company <- unique(toupper(.company)) # companies <- c( "ABJC", "BICC", "BNBC", "BOAB", "BOABF", "BOAC", "BOAM", "BOAN", "BOAS", "CABC", "CBIBF", "CFAC", "CIEC", "ECOC", "ETIT", "FTSC", "NEIC", "NSBC", "NTLC", "ONTBF", "ORGT", "PALC", "PRSC", "SAFC", "SCRC", "SDCC", "SDSC", "SEMC", "SGBC", "SHEC", "SIBC", "SICC", "SIVC", "SLBC", "SMBC", "SNTS", "SOGC", "SPHC", "STAC", "STBC", "SVOC", "TTLC", "TTLS", "UNLC", "UNXC" # #, "TTRC" # ) # ifelse(.company == "ALL", # .company<- companies, # .company) Global.returns<- BRVM_get(.symbol = .company, .from = date1, .to = date2 ) if (length(Global.returns)== 6){ ticker.name <- .company Global.returns1 <- Global.returns Global.returns <-as.xts(Global.returns[,-c(1)], order.by=Global.returns$Date) Global.returns1$direction<-NA for (i in 2:nrow(Global.returns1)) { i1<- i-1 ifelse (Global.returns1[i,6] >= Global.returns1[i1,6], Global.returns1[i, "direction"] <- "up", Global.returns1[i, "direction"] <- "down") } brvm.plot<- highchart (type="stock") %>% hc_title(text = paste0(ticker.name," chart : from ", date1, " to ", date2), style = list(fontWeight = "bold", fontSize = "25px"), align = "center") %>% hc_add_series (name = "Prices", Global.returns, yAxis = 0, showInLegend = FALSE, upColor= up.col, color = down.col) %>% hc_add_yAxis (nid = 1L, relative = 1)%>% hc_add_series (name = "Volume", data = Global.returns1[, c(1,6,7)], yAxis = 1, showInLegend= FALSE, type="column", hcaes(x = Date, y = Volume, group = direction ))%>% hc_add_yAxis (nid = 2L, relative = 1) %>% hc_yAxis_multiples( list(title = list( style=list(color='#333333', fontSize = "20px", fontFamily= "Erica One"), text = "Price"), top = "-10%", height = "90%", opposite = FALSE), list(title = list( style=list(color='gray', fontSize = "20px", fontFamily= "Erica One"), text = "Volume"), top = "80%", height = "20%") )%>% hc_colors(colors = c(down.col, up.col))%>% hc_exporting( enabled = TRUE, # always enabled, filename = paste0(ticker.name," chart : from ", date1, " to ", date2)) } else if (length(Global.returns) > 6) { .company = paste0(.company, collapse = ", ") brvm.plot<- highchart(type = "stock") %>% hc_add_series(data = Global.returns, type = "line", hcaes(x =Date, y= Close, group= Ticker))%>% hc_xAxis(title = list(text = ""))%>% hc_title(text = paste0("Tickers (", .company, ") line chart from ", date1, " to ", date2)) %>% hc_exporting( enabled = TRUE, # always enabled, filename = paste0("Tickers line chart from ", date1, " to ", date2) ) } return(brvm.plot) }
/scratch/gouwar.j/cran-all/cranData/BRVM/R/brvm_plot.R
#' Pipe operator #' #' See \code{magrittr::\link[magrittr:pipe]{\%>\%}} for details. #' #' @name %>% #' @rdname pipe #' @keywords internal #' @export #' @importFrom magrittr %>% #' @usage lhs \%>\% rhs #' @param lhs A value or the magrittr placeholder. #' @param rhs A function call using the magrittr semantics. #' @return The result of calling `rhs(lhs)`. NULL
/scratch/gouwar.j/cran-all/cranData/BRVM/R/utils-pipe.R
#' Tidy eval helpers #' #' @description #' This page lists the tidy eval tools reexported in this package from #' rlang. To learn about using tidy eval in scripts and packages at a #' high level, see the [dplyr programming #' vignette](https://dplyr.tidyverse.org/articles/programming.html) #' and the [ggplot2 in packages #' vignette](https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html). #' The [Metaprogramming #' section](https://adv-r.hadley.nz/metaprogramming.html) of [Advanced #' R](https://adv-r.hadley.nz) may also be useful for a deeper dive. #' #' * The tidy eval operators `{{`, `!!`, and `!!!` are syntactic #' constructs which are specially interpreted by tidy eval functions. #' You will mostly need `{{`, as `!!` and `!!!` are more advanced #' operators which you should not have to use in simple cases. #' #' The curly-curly operator `{{` allows you to tunnel data-variables #' passed from function arguments inside other tidy eval functions. #' `{{` is designed for individual arguments. To pass multiple #' arguments contained in dots, use `...` in the normal way. #' #' ``` #' my_function <- function(data, var, ...) { #' data %>% #' group_by(...) %>% #' summarise(mean = mean({{ var }})) #' } #' ``` #' #' * [enquo()] and [enquos()] delay the execution of one or several #' function arguments. The former returns a single expression, the #' latter returns a list of expressions. Once defused, expressions #' will no longer evaluate on their own. They must be injected back #' into an evaluation context with `!!` (for a single expression) and #' `!!!` (for a list of expressions). #' #' ``` #' my_function <- function(data, var, ...) { #' # Defuse #' var <- enquo(var) #' dots <- enquos(...) #' #' # Inject #' data %>% #' group_by(!!!dots) %>% #' summarise(mean = mean(!!var)) #' } #' ``` #' #' In this simple case, the code is equivalent to the usage of `{{` #' and `...` above. Defusing with `enquo()` or `enquos()` is only #' needed in more complex cases, for instance if you need to inspect #' or modify the expressions in some way. #' #' * The `.data` pronoun is an object that represents the current #' slice of data. If you have a variable name in a string, use the #' `.data` pronoun to subset that variable with `[[`. #' #' ``` #' my_var <- "disp" #' mtcars %>% summarise(mean = mean(.data[[my_var]])) #' ``` #' #' * Another tidy eval operator is `:=`. It makes it possible to use #' glue and curly-curly syntax on the LHS of `=`. For technical #' reasons, the R language doesn't support complex expressions on #' the left of `=`, so we use `:=` as a workaround. #' #' ``` #' my_function <- function(data, var, suffix = "foo") { #' # Use `{{` to tunnel function arguments and the usual glue #' # operator `{` to interpolate plain strings. #' data %>% #' summarise("{{ var }}_mean_{suffix}" := mean({{ var }})) #' } #' ``` #' #' * Many tidy eval functions like `dplyr::mutate()` or #' `dplyr::summarise()` give an automatic name to unnamed inputs. If #' you need to create the same sort of automatic names by yourself, #' use `as_label()`. For instance, the glue-tunnelling syntax above #' can be reproduced manually with: #' #' ``` #' my_function <- function(data, var, suffix = "foo") { #' var <- enquo(var) #' prefix <- as_label(var) #' data %>% #' summarise("{prefix}_mean_{suffix}" := mean(!!var)) #' } #' ``` #' #' Expressions defused with `enquo()` (or tunnelled with `{{`) need #' not be simple column names, they can be arbitrarily complex. #' `as_label()` handles those cases gracefully. If your code assumes #' a simple column name, use `as_name()` instead. This is safer #' because it throws an error if the input is not a name as expected. #' #' @md #' @name tidyeval #' @keywords internal #' @importFrom rlang enquo enquos .data := as_name as_label #' @aliases enquo enquos .data := as_name as_label #' @export enquo enquos .data := as_name as_label #' @return "tibble" NULL
/scratch/gouwar.j/cran-all/cranData/BRVM/R/utils-tidy-eval.R
# On library attachment, print message to user. .onAttach <- function(libname, pkgname) { msg <- paste0( "\n", "== Welcome to BRVM ================================================================", "\nIf you find this package useful, please leave a star: ", "\n https://github.com/Koffi-Fredysessie/BRVM", "\n", "\nIf you encounter a bug or want to request an enhancement please file an issue at:", "\n https://github.com/Koffi-Fredysessie/BRVM/issues", "\n", "\nThank you for using BRVM!", "\n" ) packageStartupMessage(msg) }
/scratch/gouwar.j/cran-all/cranData/BRVM/R/zzz.R
## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 8, fig.height = 4.5, fig.align = 'center', out.width = '95%', dpi = 100, message = FALSE, warning = FALSE ) ## ----setup-------------------------------------------------------------------- library(BRVM) ## ----brvm_rank---------------------------------------------------------------- BRVM_rank("Top", 10)
/scratch/gouwar.j/cran-all/cranData/BRVM/inst/doc/getting-started.R
--- title: "Getting Started with BRVM" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Getting Started with BRVM} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 8, fig.height = 4.5, fig.align = 'center', out.width = '95%', dpi = 100, message = FALSE, warning = FALSE ) ``` ```{r setup} library(BRVM) ``` Lets take a look at a simple function that will get any n number of records based on whether they are 'Top' or 'Bottom' ranked. ```{r brvm_rank} BRVM_rank("Top", 10) ```
/scratch/gouwar.j/cran-all/cranData/BRVM/inst/doc/getting-started.Rmd
--- title: "Getting Started with BRVM" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Getting Started with BRVM} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 8, fig.height = 4.5, fig.align = 'center', out.width = '95%', dpi = 100, message = FALSE, warning = FALSE ) ``` ```{r setup} library(BRVM) ``` Lets take a look at a simple function that will get any n number of records based on whether they are 'Top' or 'Bottom' ranked. ```{r brvm_rank} BRVM_rank("Top", 10) ```
/scratch/gouwar.j/cran-all/cranData/BRVM/vignettes/getting-started.Rmd
is.R <- function() TRUE
/scratch/gouwar.j/cran-all/cranData/BRugs/R/00.R
BRugsFit <- function(modelFile, data, inits, numChains = 3, parametersToSave, nBurnin = 1000, nIter = 1000, nThin = 1, coda = FALSE, DIC = TRUE, working.directory = NULL, digits = 5, seed=NULL, BRugsVerbose = getOption("BRugsVerbose")){ if(is.null(BRugsVerbose)) BRugsVerbose <- TRUE op <- options("BRugsVerbose" = BRugsVerbose) on.exit(options(op)) if(!is.null(working.directory)){ working.directory <- path.expand(working.directory) savedWD <- getwd() setwd(working.directory) on.exit(setwd(savedWD), add = TRUE) } if(is.function(modelFile)){ writeModel(modelFile, con = (modelFile <- tempfile("model")), digits = digits) if(!is.R()) on.exit(file.remove(modelFile), add = TRUE) } if(!file.exists(modelFile)) stop(modelFile, " does not exist") if(file.info(modelFile)$isdir) stop(modelFile, " is a directory, but a file is required") modelCheck(modelFile) if(!(is.vector(data) && is.character(data) && all(file.exists(data)))) data <- bugsData(data, digits = digits) modelData(data) modelCompile(numChains) if(!is.null(seed)) modelSetRN(seed) if(!missing(inits)){ if(is.list(inits) || is.function(inits)) inits <- bugsInits(inits = inits, numChains = numChains, digits = digits) if (is.character(inits) && any(file.exists(inits))){ if(BRugsVerbose) print(inits) modelInits(inits) } } modelGenInits() samplesSetThin(nThin) modelUpdate(nBurnin) if(DIC){ dicSet() on.exit(dicClear(), add = TRUE) } samplesSet(parametersToSave) modelUpdate(nIter) if(coda) return(buildMCMC("*")) else return(list(Stats = samplesStats("*"), DIC = if(DIC) dicStats())) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/BRugsFit.R
"bgrGrid" <- function(node, bins = 50) # Calculate grid of points at which to evaluate bgr statistic { sampleSize <- samplesSize(node) beg <- samplesGetBeg() end <- min(c(samplesGetEnd(), modelIteration())) numChains <- samplesGetLastChain() - samplesGetFirstChain() + 1 sampleSize <- sampleSize %/% numChains beg <- end - (sampleSize * samplesGetThin() - 1) delta <- sampleSize %/% bins grid <- ((1 : (bins - 1)) * delta) + beg grid <- c(grid, end) grid }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/bgr.grid.R
"bgrPoint" <- function(sample) # Calculate the bgr statistic given a sample concatenated over chains { numChains <- getNumChains() sampleSize <- length(sample) lenChain <- sampleSize %/% numChains if (is.R()) dq <- quantile(sample, c(0.1, 0.9), names = FALSE) else dq <- quantile(sample, c(0.1, 0.9)) d.delta <- dq[2] - dq[1] n.delta <- 0 for (i in 1:numChains) { if (is.R()) nq <- quantile(sample[((i - 1) * lenChain + 1) : (i * lenChain)], c(0.1, 0.9), names = FALSE) else nq <- quantile(sample[((i - 1) * lenChain + 1) : (i * lenChain)], c(0.1, 0.9)) n.delta <- n.delta + nq[2] - nq[1] } n.delta <- n.delta / numChains bgr.stat <- d.delta / n.delta return(c(n.delta, d.delta, bgr.stat)) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/bgr.point.R
buffer <- function(){ buffer <- file.path(tempdir(), "buffer.txt") message(readLines(buffer)) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/buffer.R
"bugsData" <- function(data, fileName = file.path(tempdir(), "data.txt"), format="E", digits = 5){ if (is.character(unlist(data))) { if(is.R()) { data.list <- lapply(as.list(data), get, pos = parent.frame(2)) names(data.list) <- as.list(data) write.datafile(lapply(data.list, formatC, digits = digits, format = format), fileName) } else { data.list <- lapply(as.list(data), get, where = parent.frame(2)) names(data.list) <- unlist(data) writeDatafileS4(data.list, towhere = "data.txt") } } else if(is.list(data)) { data <- lapply(data, function(x){x <- if(is.character(x)||is.factor(x)) match(x, unique(x)) else x}) if(is.R()) { write.datafile(lapply(data, formatC, digits = digits, format = format), fileName) } else { writeDatafileS4(data, towhere = "data.txt") } } else stop("Expected a list of data, a list or vector of variable names") invisible(fileName) } if(is.R()){ ## need some fake functions for codetools toSingleS4 <- function(...) stop("This function is not intended to be called in R!") "writeDatafileS4" <- toSingleS4 } else { ### The rest of this file is for S-PLUS only... "writeDatafileS4" <- # # Writes to file "towhere" text defining a list containing "DATA" in a form compatable with WinBUGS. # Required arguments: # DATA - either a data frame or else a list consisting of any combination of scalars, vectors, arrays or data frames (but not lists). # If a list, all list elements that are not data.frames must be named. Names of data.frames in DATA are ignored. # Optional arguments: # towhere - file to receive output. Is clipboard by default, which is convenient for pasting into a WinBUTS ODC file. # fill - If numeric, number of columns for output. If FALSE, output will be on one line. If TRUE (default), number of # columns is given by .Options$width. # Value: # Text defining a list is output to file "towhere". # Details: # The function performs considerable checking of DATA argument. Since WinBUGS requires numeric input, no factors or character vectors # are allowed. All data must be named, either as named elements of DATA (if it is a list) or else using the names given in data frames. # Data frames may contain matrices. # Arrays of any dimension are rearranged to be in row-major order, as required by WinBUGS. Scientific notation is also handled properly. # In particular, the number will consist of a mantissa _containing a decimal point_ followed by "E", then either "+" or "-", and finally # a _two-digit_ number. S-Plus does not always provide a decimal point in the mantissa, uses "e" instead of "E", followed by # either a "+" or "-" and then _three_ digits. # Written by Terry Elrod. Disclaimer: This function is used at the user's own risk. # Please send comments to [email protected]. # Revision history: 2002-11-19. Fixed to handle missing values properly. function(DATA, towhere = "clipboard", fill = TRUE) { formatDataS4 = # # Prepared DATA for input to WinBUGS. function(DATA) { if(!is.list(DATA)) stop("DATA must be a named list or data frame.") dlnames <- names(DATA) if(is.data.frame(DATA)) DATA <- as.list(DATA) # # Checking for lists in DATA.... lind <- sapply(DATA, is.list) # Checking for data frames in DATA.... dfind <- sapply(DATA, is.data.frame) # Any lists that are not data frames?... if(any(lind & !dfind)) stop("DATA may not contain lists.") # Checking for unnamed elements of list that are not data frames.... if(any(dlnames[!dfind] == "")) stop( "When DATA is a list, all its elements that are not data frames must be named." ) # Checking for duplicate names.... dupnames <- unique(dlnames[duplicated(dlnames)]) if(length(dupnames) > 0) stop(paste( "The following names are used more than once in DATA:", paste(dupnames, collapse = ", "))) if(any(dfind)) { dataold <- DATA DATA <- vector("list", 0) for(i in seq(along = dataold)) { if(dfind[i]) DATA <- c(DATA, as.list(dataold[[i]])) else DATA <- c(DATA, dataold[i]) } dataold <- NULL } dlnames <- names(DATA) dupnames <- unique(dlnames[duplicated(dlnames)]) # Checking for duplicated names again (now that columns of data frames are included).... if(length(dupnames) > 0) stop(paste( "The following names are used more than once in DATA (at least once within a data frame):", paste(dupnames, collapse = ", "))) # Checking for factors.... factorind <- sapply(DATA, is.factor) if(any(factorind)) stop(paste( "DATA may not include factors. One or more factor variables were detected:", paste(dlnames[factorind], collapse = ", "))) # Checking for character vectors.... charind <- sapply(DATA, is.character) if(any(charind)) stop(paste( "WinBUGS does not handle character data. One or more character variables were detected:", paste(dlnames[charind], collapse = ", "))) # Checking for complex vectors.... complexind <- sapply(DATA, is.complex) if(any(complexind)) stop(paste( "WinBUGS does not handle complex data. One or more complex variables were detected:", paste(dlnames[complexind], collapse = ", "))) # Checking for values farther from zero than 1E+38 (which is limit of single precision).... toobigind <- sapply(DATA, function(x) { y <- abs(x[!is.na(x)]) any(y[y > 0] > 9.9999999999999998e+37) } ) if(any(toobigind)) stop(paste( "WinBUGS works in single precision. The following variables contain data outside the range +/-1.0E+38: ", paste(dlnames[toobigind], collapse = ", "), ".\n", sep = "")) # Checking for values in range +/-1.0E-38 (which is limit of single precision).... toosmallind <- sapply(DATA, function(x) { y <- abs(x[!is.na(x)]) any(y[y > 0] < 9.9999999999999996e-39) } ) n <- length(dlnames) data.string <- as.list(rep(NA, n)) for(i in 1:n) { if(length(DATA[[i]]) == 1) { ac <- toSingleS4(DATA[[i]]) data.string[[i]] <- paste(names(DATA)[i], "=", ac, sep = "") next } if(is.vector(DATA[[i]]) & length(DATA[[i]]) > 1) { ac <- toSingleS4(DATA[[i]]) data.string[[i]] <- paste(names(DATA)[i], "=c(", paste(ac, collapse = ", "), ")", sep = "") next } if(is.array(DATA[[i]])) { ac <- toSingleS4(aperm(DATA[[i]])) data.string[[i]] <- paste(names(DATA)[i], "= structure(.Data= c(", paste(ac, collapse = ", "), "), \n .Dim=c(", paste(as.character(dim(DATA[[i]])), collapse = ", "), "))", sep = "") } } data.tofile <- paste("list(", paste(unlist(data.string), collapse = ", "), ")", sep = "") if(any(toosmallind)) warning(paste( "WinBUGS works in single precision. The following variables contained nonzero data", "\ninside the range +/-1.0E-38 that were set to zero: ", paste(dlnames[toosmallind], collapse = ", "), ".\n", sep = "")) return(data.tofile) } rslt <- formatDataS4(DATA) cat(rslt, file = towhere, fill = fill) invisible(0) } toSingleS4 <- # # Takes numeric vector and removes digit of exponent in scientific notation (if any) # # Written by Terry Elrod. Disclaimer: This function is used at the user's own risk. # Please send comments to [email protected]. # Revision history: 2002-11-19. Fixed to handle missing values properly. function(x) { xdim <- dim(x) x <- as.character(as.single(x)) # First to look for positives: pplus <- regMatchPos(x, "e\\+0") pplusind <- apply(pplus, 1, function(y) (!any(is.na(y)))) if(any(pplusind)) { # Making sure that periods are in mantissa... init <- substring(x[pplusind], 1, pplus[ pplusind, 1] - 1) #...preceeding exponent pper <- regMatchPos(init, "\\.") pperind <- apply(pper, 1, function(y) (all(is.na(y)))) if(any(pperind)) init[pperind] <- paste(init[pperind], ".0", sep = "") # Changing the format of the exponent... x[pplusind] <- paste(init, "E+", substring( x[pplusind], pplus[pplusind, 2] + 1), sep = "") } # Then to look for negatives: pminus <- regMatchPos(x, "e\\-0") pminusind <- apply(pminus, 1, function(y) (!any(is.na(y)))) if(any(pminusind)) { # Making sure that periods are in mantissa... init <- substring(x[pminusind], 1, pminus[ pminusind, 1] - 1) #...preceeding exponent pper <- regMatchPos(init, "\\.") pperind <- apply(pper, 1, function(y) (all(is.na(y)))) if(any(pperind)) init[pperind] <- paste(init[pperind], ".0", sep = "") # Changing the format of the exponent... x[pminusind] <- paste(init, "E-", substring( x[pminusind], pminus[pminusind, 2] + 1), sep = "") } x } }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/bugs.data.R
"bugsInits" <- function (inits, numChains = 1, fileName, format="E", digits = 5){ if(missing(fileName)) fileName <- file.path(tempdir(), paste("inits", 1:numChains, ".txt", sep = "")) if(length(fileName) != numChains) stop("numChains = ", numChains, " filenames must be specified") if(!is.null(inits)){ for (i in 1:numChains){ if (is.function(inits)) if (is.R()) write.datafile(lapply(inits(), formatC, digits = digits, format = format), fileName[i]) else writeDatafileS4(inits(), towhere = fileName[i]) else if (is.R()) write.datafile(lapply(inits[[i]], formatC, digits = digits, format = format), fileName[i]) else writeDatafileS4(inits[[i]], towhere = fileName[i]) } } invisible(fileName) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/bugs.inits.R
buildMCMC <- function(node, beg = samplesGetBeg(), end = samplesGetEnd(), firstChain = samplesGetFirstChain(), lastChain = samplesGetLastChain(), thin = samplesGetThin()){ oldBeg <- samplesGetBeg() oldEnd <- samplesGetEnd() oldFirstChain <- samplesGetFirstChain() oldLastChain <- samplesGetLastChain() oldThin <- samplesGetThin() on.exit({ samplesSetBeg(oldBeg) samplesSetEnd(oldEnd) samplesSetFirstChain(oldFirstChain) samplesSetLastChain(oldLastChain) samplesSetThin(oldThin) }) samplesSetBeg(beg) samplesSetEnd(end) samplesSetFirstChain(firstChain) samplesSetLastChain(lastChain) thin <- max(c(thin, 1)) samplesSetThin(thin) mons <- samplesMonitors(node) subBuildMCMC <- function(node){ sM <- samplesMonitors(node) if(length(sM) > 1 || sM != node) stop("node must be a scalar variable from the model, for arrays use samplesAutoC") sample <- samplesSample(node) numChains <- samplesGetLastChain() - samplesGetFirstChain() + 1 matrix(sample, ncol = numChains) } sampleSize <- samplesSize(mons[1]) end <- min(c(modelIteration(), samplesGetEnd())) thin <- samplesGetThin() numChains <- samplesGetLastChain() - samplesGetFirstChain() + 1 sampleSize <- sampleSize %/% numChains beg <- end - sampleSize * thin + 1 if (sampleSize==0) { mcmcobj <- NA } else { samples <- lapply(mons, subBuildMCMC) samplesChain <- vector(mode="list", length=numChains) for(i in 1:numChains){ if (is.R()) temp <- sapply(samples, function(x) x[,i]) else temp <- sapply(samples, function(x,j) { x[,j]}, j=i) ##### If we want to special-case 1D-mcmc objects: # if(ncol(temp) == 1){ # dim(temp) <- NULL # samplesChain[[i]] <- temp # } # else{ samplesChain[[i]] <- temp colnames(samplesChain[[i]]) <- mons # } } mcmcobj <- lapply(samplesChain, mcmc, start = beg, end = end, thin = thin) } if(is.R()) class(mcmcobj) <- "mcmc.list" else oldClass(mcmcobj) <- "mcmc.list" mcmcobj }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/buildMCMC.R
"dicClear" <- function() # Clear monitor for dic { command <- "DevianceEmbed.StatsGuard;DevianceEmbed.Clear" invisible(.CmdInterpreter(command)) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/dic.clear.R
"dicSet" <- function() # Set a monitor for dic { command <- "DevianceEmbed.SetVariable('*');DevianceEmbed.SetGuard;DevianceEmbed.Set" .CmdInterpreter(command) if(getOption("BRugsVerbose")) buffer() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/dic.set.R
"dicStats" <- function() # Calculate dic statistics { command <- "DevianceEmbed.SetVariable('*');DevianceEmbed.StatsGuard;DevianceEmbed.Stats" .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") rlb <- readLines(buffer) len <- length(rlb) if (len > 1) { writeLines(rlb, buffer) read.table(buffer) } else { message(rlb) } }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/dic.stats.R
"dimensions" <- function(node) # Get dimension information for quantity in OpenBUGS model { nodeLabel <- as.character(node) if(!(nodeLabel %in% modelNames())) stop("node must be a variable name from the model") dimensions <- .OpenBUGS(c("BugsRobjects.SetVariable", "BugsRobjects.GetNumDimensions"), c("CharArray", "Integer"), list(nodeLabel, NA))[[2]] dimensions }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/dimensions.R
"formatdata" <- function (datalist){ if (!is.list(datalist) || is.data.frame(datalist)) stop("argument to formatdata() ", "must be a list") n <- length(datalist) datalist.string <- vector(n, mode = "list") datanames <- names(datalist) for (i in 1:n) { if (is.factor(datalist[[i]])) datalist[[i]] <- as.integer(datalist[[i]]) datalist.string[[i]] <- if (length(datalist[[i]]) == 1) paste(names(datalist)[i], "=", as.character(datalist[[i]]), sep = "") else if (is.vector(datalist[[i]]) && length(datalist[[i]]) > 1) paste(names(datalist)[i], "=c(", paste(as.character(datalist[[i]]), collapse = ", "), ")", sep = "") else paste(names(datalist)[i], "= structure(.Data= c(", paste(as.character(as.vector(aperm(datalist[[i]]))), collapse = ", "), "), .Dim=c(", paste(as.character(dim(datalist[[i]])), collapse = ", "), "))", sep = "") } datalist.tofile <- paste("list(", paste(unlist(datalist.string), collapse = ", "), ")", sep = "") return(datalist.tofile) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/formatdata.R
"getChain" <- function() # Get chain field { getOption("BRugsNextChain") }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/get.chain.R
"getNumChains" <- function() # Get numChains field { command<- "BugsEmbed.numChains" .Integer(command) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/get.num.chains.R
"infoMemory" <- function(){ command <- "BugsEmbed.AllocatedMemory" res <- .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") res <- readLines(buffer) mem <- as.numeric(gsub("^([0-9]+).+", "\\1", res)) mem }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/info.memory.R
"infoModules" <- function() # List loaded OpenBUGS components { command <- "BugsEmbed.Modules" .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") result <- read.table(buffer, skip = 1, as.is=TRUE, sep="\t")[,-1] for(i in c(1,4,5,6)) result[,i] <- gsub(" ", "", result[,i]) names(result) <- c("Module", "Clients", "Version", "Maintainer", "Compiled", "Loaded") return(result) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/info.modules.R
"infoNodeValues" <- function(nodeLabel) # Get current value of node { nodeLabel <- as.character(nodeLabel) out <- .OpenBUGS(c("BugsRobjects.SetVariable", "BugsRobjects.GetSize"), c("CharArray","Integer"), list(nodeLabel, NA)) nodeSize <- out[[2]] if(nodeSize == -1) stop(nodeLabel, " is not a node in BUGS model") numChains <- getNumChains() out <- .OpenBUGS(c("BugsRobjects.SetVariable", "BugsRobjects.GetValues"), c("CharArray","RealArray"), list(nodeLabel, double(nodeSize*numChains))) values <- matrix(out[[2]], nrow=nodeSize, ncol=numChains) values } infoNodeMethods <- function(nodeLabel) { nodeName <- sQuote(nodeLabel) command <- paste("BugsEmbed.SetNode(",nodeName,"); BugsEmbed.Methods"); .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") result <- read.table(buffer, sep="\t", skip = 1, as.is=TRUE, col.names=c("empty", "Node", "Type", "Size", "Depth"))[,-1] for (i in 1:2) result[,i] <- gsub(" ", "", result[,i]) result } infoNodeTypes <- function(nodeLabel) { nodeName <- sQuote(nodeLabel) command <- paste("BugsEmbed.SetNode(",nodeName,"); BugsEmbed.Types"); .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") result <- read.table(buffer, sep="\t", skip = 1, as.is=TRUE, col.names=c("empty", "Node", "Type"))[,-1] for (i in 1:2) result[,i] <- gsub(" ", "", result[,i]) result }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/info.node.R
## display updaters sorted by node name infoUpdatersbyName <- function() { command <- "BugsEmbed.NotCompiledGuard; BugsEmbed.UpdatersByName" .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") if (readLines(buffer)[1]=="BugsCmds:NotCompiled") stop("Model not compiled") buffer <- file.path(tempdir(), "Updater types.txt") result <- read.table(buffer, sep="\t", skip=1, as.is=TRUE, row.names=2, col.names=c("empty", "Node", "Type", "Size", "Depth"))[,-1] ## strip leading and trailing spaces for (i in 1:2) { result[,i] <- gsub("^ +", "\\1", result[,i]) result[,i] <- gsub(" +$", "\\1", result[,i]) } rownames(result) <- gsub("^ +", "", rownames(result)) rownames(result) <- gsub(" +$", "", rownames(result)) unlink(buffer) result } ## display updaters sorted by node depth in graph infoUpdatersbyDepth <- function() { command <- "BugsEmbed.NotCompiledGuard; BugsEmbed.UpdatersByDepth" .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") if (readLines(buffer)[1]=="BugsCmds:NotCompiled") stop("Model not compiled") buffer <- file.path(tempdir(), "Updater types.txt") result <- read.table(buffer, sep="\t", skip=1, as.is=TRUE, row.names=2, col.names=c("empty", "Node", "Type", "Size", "Depth"))[,-1] ## strip leading and trailing spaces for (i in 1:2) { result[,i] <- gsub("^ +", "\\1", result[,i]) result[,i] <- gsub(" +$", "\\1", result[,i]) } rownames(result) <- gsub("^ +", "", rownames(result)) rownames(result) <- gsub(" +$", "", rownames(result)) unlink(buffer) result }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/info.updaters.R
### Functions to run a single OpenBUGS API command string .BugsCmd <- function(command) { unlist(.OpenBUGS(command, "BugsCmd")) } .CmdInterpreter <- function(command) { unlist(.OpenBUGS(command, "CmdInterpreter")) } .Integer <- function(command) { unlist(.OpenBUGS(command, "Integer")) } .CharArray <- function(command, arg) { unlist(.OpenBUGS(command, "CharArray", arg)) } .RealArray <- function(command, arg) { unlist(.OpenBUGS(command, "RealArray", arg)) } .OpenBUGS.cmdtypes <- c("CmdInterpreter","Integer","CharArray","RealArray","BugsCmd") .OpenBUGS <- function(cmds, cmdtypes=NULL, args=NULL) { ncmds <- length(cmds) if (is.null(cmdtypes)) cmdtypes <- rep("CmdInterpreter", ncmds) if (is.null(args)) args <- as.list(rep(NA, ncmds)) stopifnot(ncmds==length(cmdtypes)) stopifnot(ncmds==length(args)) .OpenBUGS.platform(cmds, cmdtypes, args) } dquote <- function(x){ paste("\"", x, "\"", sep="") } .OpenBUGS.helper <- function(cmds, cmdtypes, args) { ncmds <- length(cmds) if (ncmds > 99999) stop("Maximum number of OpenBUGS API commands exceeded") tempDir <- getOption("BRugsTmpdir") ## Don't want internalize/externalize to overwrite the command ## output buffer, so redirect its output to a separate trash can. trashDir <- file.path(tempDir, "trash", fsep="/") extFile <- getOption("BRugsExtFile") cmdFile <- paste(tempDir, "cmds.txt", sep="/") bugsPath <- system.file("exec", paste("BugsHelper", if(.Platform$OS.type == "windows") ".exe", sep=""), package="BRugs") shcmd <- paste(dquote(bugsPath), dquote(tempDir), dquote(trashDir), dquote(extFile), dquote(cmdFile), dquote(ncmds)) for (i in 1:ncmds) { if (cmdtypes[i] %in% c("CharArray","RealArray")) cat(args[[i]], file=paste(tempDir, "/input",i,".txt", sep="")) } cmd.id <- match(cmdtypes, .OpenBUGS.cmdtypes) - 1 write(rbind(cmds, cmd.id), cmdFile) res <- system(shcmd) handleRes(res) out <- vector(ncmds, mode="list") for (i in seq_along(cmds)){ if (cmdtypes[i] %in% c("Integer","CharArray","RealArray")) out[[i]] <- scan(paste(tempDir,"/output",i,".txt",sep=""), switch(cmdtypes[i], "Integer" = integer(), "CharArray" = character(), "RealArray" = double()), quiet=TRUE) } out } handleRes <- function(res) { maintainer <- maintainer("BRugs") errors <- c("Internal \"trap\" error in OpenBUGS, or non-existent module or procedure called.", "An OpenBUGS procedure was called with the wrong type of argument.", "An OpenBUGS procedure was called with the wrong signature.") ## If a library call ends in a trap, then error code 1 will be returned from BugsHelper on Linux ## On Windows it shouldn't even get this far after a trap. TODO see if the trap message is shown. if (res > 0) { buf <- readLines(file.path(tempdir(), "buffer.txt")) trap <- grep("Sorry something went wrong", buf, value=TRUE) if(length(trap) > 0) message(trap[1]) stop(errors[res])#, "\nPlease report this bug to ", maintainer) } } .SamplesGlobalsCmd <- function(node){ options.old <- options() options(scipen=20) # don't pass numbers in scientific notation to OpenBUGS commands <- c(paste("SamplesEmbed.beg :=", getOption("BRugsSamplesBeg")), paste("SamplesEmbed.end :=", getOption("BRugsSamplesEnd")), paste("SamplesEmbed.firstChain :=", getOption("BRugsSamplesFirstChain")), paste("SamplesEmbed.lastChain :=", getOption("BRugsSamplesLastChain")), paste("SamplesEmbed.thin :=", getOption("BRugsSamplesThin")), paste("SamplesEmbed.SetVariable(", sQuote(node), ")", sep=""), paste("BugsMappers.SetPrec(", getOption("BRugsPrec"), ")", sep="") ) options(options.old) paste(commands, collapse="; ") }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/internal.R
"modelAdaptivePhase" <- function() # Get endOfAdapting field { command <- "BugsInterface.endOfAdapting" .Integer(command) - 1 }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.adaptivePhase.R
"modelCheck" <- function(fileName) # Check that OpenBUGS model is syntactically correct { path <- dirname(fileName) path <- if(path == ".") getwd() else path fileName <- file.path(path, basename(fileName)) if(!file.exists(fileName)) stop("File ", fileName, " does not exist") if(file.info(fileName)$isdir) stop(fileName, " is a directory, but a file is required") command <- paste("BugsEmbed.SetFilePath(", sQuote(fileName), ");BugsEmbed.ParseGuard;BugsEmbed.Parse", sep = "") if (!is.R()) { command <- gsub ("\\\\", "/", command) command <- gsub ("//", "/", command) } .CmdInterpreter(command) .initGlobals() if(getOption("BRugsVerbose")) buffer() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.check.R
"modelCompile" <- function(numChains = 1) # Compile OpenBUGS model { if(!is.numeric(numChains)) stop("numChains ", "must be numeric") numChains <- as.integer(numChains) command <- paste("BugsEmbed.CompileGuard", ";BugsEmbed.numChains :=", as.character(numChains), "; BugsEmbed.Compile", sep = "") .CmdInterpreter(command) samplesSetFirstChain(1) samplesSetLastChain(numChains) options("BRugsNextChain" = 1) if(getOption("BRugsVerbose")) buffer() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.compile.R
"modelData" <- function(fileName = "data.txt") { # Load data for OpenBUGS model for(i in fileName){ path <- dirname(i) path <- if(path == ".") getwd() else path fileNm <- file.path(path, basename(i)) if(!file.exists(fileNm)) stop("File ", fileNm, " does not exist") if(file.info(fileNm)$isdir) stop(fileNm, " is a directory, but a file is required") command <- paste("BugsEmbed.SetFilePath(", sQuote(fileNm), ");BugsEmbed.LoadDataGuard;BugsEmbed.LoadData", sep = "") if (!is.R()){ command <- gsub ("\\\\", "/", command) command <- gsub ("//", "/", command) } .CmdInterpreter(command) if(getOption("BRugsVerbose")) buffer() } }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.data.R
modelDisable <- function(factory){ command <- paste("UpdaterMethods.SetFactory('", factory,"');UpdaterMethods.Disable", sep = "") invisible(.CmdInterpreter(command)) } modelEnable <- function(factory){ command <- paste("UpdaterMethods.SetFactory('", factory,"');UpdaterMethods.Enable", sep = "") invisible(.CmdInterpreter(command)) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.factory.R
"modelGenInits" <- function() # Generate initial values for OpenBUGS model { command <- paste("BugsEmbed.GenerateInitsGuard;", "BugsEmbed.GenerateInits") .CmdInterpreter(command) if(getOption("BRugsVerbose")) buffer() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.gen.inits.R
"modelGetRN" <- function() # Get the seed of random number generator { command <- "BugsEmbed.preSet" .Integer(command) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.getRN.R
"modelInits" <- function(fileName, chainNum = NULL) # Load initial values for OpenBUGS model { if(is.null(chainNum)) chainNum <- getChain() + seq(along = fileName) - 1 if(!is.numeric(chainNum)) stop("chainNum ", "must be numeric") if(length(fileName) != length(chainNum)) stop("length(chainNum) ", "must be equal to the number of filenames given") chainNum <- as.integer(chainNum) path <- dirname(fileName) path <- ifelse(path == ".", getwd(), path) fileName <- file.path(path, basename(fileName)) fileExist <- !file.exists(fileName) if(any(fileExist)) stop("File(s) ", fileName[fileExist], " do(es) not exist.") for(i in seq(along = fileName)){ if(file.info(fileName[i])$isdir) stop(fileName[i], " is a directory, but a file is required.") filename <- sQuote(fileName[i]) command <- paste("BugsEmbed.SetFilePath(", filename, "); BugsEmbed.LoadInitsGuard; BugsEmbed.chain := ", as.character(chainNum[i]), "; BugsEmbed.LoadInits") if (!is.R()){ command <- gsub ("\\\\", "/", command) command <- gsub ("//", "/", command) } .CmdInterpreter(command) if(getOption("BRugsVerbose")){ message("Initializing chain ", chainNum[i], ": ", sep="") buffer() } options("BRugsNextChain" = chainNum[i] + 1) } invisible() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.inits.R
"modelIteration" <- function() # Get iteration field { command <- "BugsEmbed.iteration" .Integer(command) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.iteration.R
"modelNames" <- function() { # gets names in OpenBUGS model command <- "BugsRobjects.GetNumberNames" number <- .Integer(command) name <- character(number) if(length(number)){ cmds <- character(0) cmdtype <- character() for(i in 1:number){ cmds <- c(cmds, paste("BugsRobjects.SetIndex(", i-1, ")", sep=""), "BugsRobjects.GetStringLength") cmdtype <- c(cmdtype, c("CmdInterpreter","Integer")) } res <- .OpenBUGS(cmds, cmdtype) numchar <- unlist(res[seq(2, 2*number, by=2)]) cmds <- character(0) cmdtype <- character() args <- list() for(i in 1:number){ char <- paste(rep(" ", numchar[i]), collapse="") cmds <- c(cmds, paste("BugsRobjects.SetIndex(", i-1, ")", sep=""), "BugsRobjects.GetVariable") cmdtype <- c(cmdtype, c("CmdInterpreter","CharArray")) args <- c(args, list(NA, char)) } res <- .OpenBUGS(cmds, cmdtype, args) name <- unlist(res[seq(2, 2*number, by=2)]) } return(name) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.names.R
"modelPrecision" <- function(prec) # Set the precision to which results are displayed { if(!is.numeric(prec)) stop("prec ", "must be numeric") prec <- as.integer(prec) options(BRugsPrec=prec) # command <- paste("BugsMappers.SetPrec(", prec, ")") # invisible(.CmdInterpreter(command)) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.precision.R
"modelSaveState" <- function(stem) { ## Saves the sate of each chain in OpenBUGS model if(!is.character(stem) || length(stem)!=1) stop("'stem' must be character of length 1") if(dirname(stem) == ".") stem <- file.path(getwd(), basename(stem)) command <- paste("BugsEmbed.UpdateGuard", ";BugsEmbed.WriteChains(", sQuote(stem), ")") .CmdInterpreter(command) if(getOption("BRugsVerbose")) buffer() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.save.state.R
"modelSetAP" <- function(factoryName, adaptivePhase) # Set the length of adaptive phase { name <- sQuote(factoryName) command <- paste("UpdaterMethods.SetFactory(", name, ") ;UpdaterMethods.AdaptivePhaseGuard;", "UpdaterMethods.SetAdaptivePhase(", adaptivePhase, ")", sep = "") .CmdInterpreter(command) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.setAP.R
"modelSetIts" <- function(factoryName, iterations) # Set maximum number of iterations in iterative algorithms { name <- sQuote(factoryName) command <- paste("UpdaterMethods.SetFactory(", name, ") ;UpdaterMethods.IterationsGuard;", "UpdaterMethods.SetIterations(", iterations, ")", sep = "") .CmdInterpreter(command) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.setIts.R
"modelSetOR" <- function(factoryName, overRelaxation) # Set over-relaxed updating { name <- sQuote(factoryName) command <- paste("UpdaterMethods.SetFactory(", name, ") ;UpdaterMethods.OverRelaxationGuard;", "UpdaterMethods.SetOverRelaxation(", overRelaxation, ")", sep = "") .CmdInterpreter(command) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.setOR.R
"modelSetRN" <- function(state) # Set the seed of random number generator { if(!state %in% 1:14) stop("state must be an integer from 1 to 14") state <- as.integer(state) command <- paste("BugsEmbed.SetRNGuard; BugsEmbed.SetRNState(", state, ")" ) invisible(.CmdInterpreter(command)) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.setRN.R
## Simple alias to mimic the OpenBUGS script command "modelSetWD" <- function(dir) setwd(dir)
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.setWD.R
"modelUpdate" <- function(numUpdates, thin = 1, overRelax = FALSE) # Update the each chain in OpenBUGS model numUpdates * thin time { if(!is.numeric(numUpdates)) stop("numUpdates ", "must be numeric") numUpdates <- as.integer(numUpdates) if(!is.numeric(thin)) stop("thin ", "must be numeric") thin <- as.integer(thin) if(!is.logical(overRelax)) stop("overRelax ", "must be logical") command <- paste("BugsEmbed.UpdateGuard", ";BugsEmbed.thin := ", thin, ";BugsEmbed.overRelax := ", as.integer(overRelax), ";BugsEmbed.updates := ", numUpdates, ";BugsEmbed.Update") .CmdInterpreter(command) if(getOption("BRugsVerbose")) buffer() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/model.update.R
"plotAutoC" <- function(node, plot = TRUE, colour = c("red", "blue", "green", "yellow", "black"), lwd = 5, main = NULL, ...) # Plot auto correlation function for single component of OpenBUGS name { sM <- samplesMonitors(node) if(length(sM) > 1 || sM != node) stop("node must be a scalar variable from the model, for arrays use samplesAutoC") nodeName <- sQuote(node) sample <- samplesSample(node) chain <- samplesGetFirstChain() if (sd(sample) > 1.0E-10) acfresult <- acf(sample, col = colour[chain], main = if(is.null(main)) nodeName else main, lwd = lwd, demean = TRUE, plot = plot, ...) else stop("ACF cannot be computed/plotted: standard deviation <= 1.0E-10") acfresult$series <- node if(plot) invisible(acfresult) else return(acfresult) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/plot.autoC.R
### Plot bgr diagnostic for single component of OpenBUGS name "plotBgr" <- function(node, plot = TRUE, main = NULL, xlab = "iteration", ylab = "bgr", col = c("red", "blue", "green"), bins = 50, ...) { sM <- samplesMonitors(node) if(length(sM) > 1 || sM != node) stop("node must be a scalar variable from the model, for arrays use samplesBgr") if (any(grep("^inference can not be made", sM))) { stop(sM) } grid <- bgrGrid(node, bins = bins) ## Use a single API call instead of looping API calls over ## iterations - more efficient with the Linux helper. ## find size of available sample at each grid point res <- .OpenBUGS(cmds = c(.SamplesGlobalsCmd(node), as.vector(rbind(paste("SamplesEmbed.end := ", grid, ";"), "SamplesEmbed.SampleSize;"))), cmdtypes = c("CmdInterpreter", rep(c("CmdInterpreter","Integer"), bins)), args=as.list(c(NA, rep(c(NA, NA), bins))) ) args <- list(NA) for (i in seq(length=bins)){ args[[2*i]] <- NA args[[2*i + 1]] <- double(res[[2*i + 1]]) } ## get available sample at each grid point res <- .OpenBUGS(cmds = c(.SamplesGlobalsCmd(node), as.vector(rbind(paste("SamplesEmbed.end := ", grid, ";"), "SamplesEmbed.SampleValues;"))), cmdtypes = c("CmdInterpreter", rep(c("CmdInterpreter","RealArray"), bins)), args=args) ## remove junk elements of list, leaving a list of samples for each grid point res[c(1, 2*seq(length=bins))] <- NULL ## calculate between, within and ratio statistics for each grid point bgr <- rbind(grid, sapply(res, bgrPoint)) yRange <- range(bgr[4,]) yRange <- c(0, max(c(1.2, yRange[2]))) nRange <- range(bgr[2,]) nRange <- c(min(c(0, nRange[1])), nRange[2]) nDelta <- nRange[2] - nRange[1] dRange <- range(bgr[3,]) dRange <- c(min(c(0, dRange[1])), dRange[2]) dDelta <- dRange[2] - dRange[1] max <- 2 * max(c(nDelta, dDelta)) bgr[2,] <- bgr[2,] / max bgr[3,] <- bgr[3,] / max if(plot){ plot(grid, bgr[4,], ylim = yRange, type = "l", main = if(is.null(main)) node else main, xlab = xlab, ylab = ylab, col = col[1], ...) lines(grid, bgr[2,], col = col[2], ...) lines(grid, bgr[3,], col = col[3], ...) } bgr <- data.frame(t(bgr)) names(bgr) <- c("Iteration", "pooledChain80pct", "withinChain80pct", "bgrRatio") bgr$Iteration <- as.integer(bgr$Iteration) if(plot) invisible(bgr) else return(bgr) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/plot.bgr.R
"plotDensity" <- function(node, plot=TRUE, main = NULL, xlab = "" , ylab = "", col = "red", ...) # Plot posterior density for single component of OpenBUGS name { sM <- samplesMonitors(node) if(length(sM) > 1 || sM != node) stop("node must be a scalar variable from the model, for arrays use samplesDensity") nodeName <- sQuote(node) sampleSize <- samplesSize(node) sample <- samplesSample(node) absSample <- abs(sample) intSample <- as.integer(absSample + 1.0E-10) zero <- absSample - intSample intSample <- as.integer(sample) if (sum(zero) > 0){ if (is.R()) d <- density(sample, adjust = 1.25) else d <- density(sample) if (plot) plot(d$x, d$y, type = "l", main = if(is.null(main)) nodeName else main, xlab = xlab , ylab = ylab, col = col, ...) res <- d } else{ histogram <- table(intSample) / sampleSize xRange <- range(intSample) xLim <- c(xRange[1] - 0.5, xRange[2] + 0.5) if (plot) plot(histogram, type = "h", xlim = xLim, ylim = c(0, 1), main = if(is.null(main)) nodeName else main, xlab = xlab , ylab = ylab, col = col, ...) res <- histogram } if (plot) invisible(res) else return(res) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/plot.density.R
"plotHistory" <- function(node, plot = TRUE, colour = c("red", "blue", "green", "yellow", "black"), main = NULL, xlab = "iteration", ylab = "", ...) # Plot history for single component of OpenBUGS name { sM <- samplesMonitors(node) if(length(sM) > 1 || sM != node) stop("node must be a scalar variable from the model, for arrays use samplesHistory") nodeName <- sQuote(node) sampleSize <- samplesSize(node) sample <- samplesSample(node) end <- min(c(modelIteration(), samplesGetEnd())) thin <- samplesGetThin() numChains <- samplesGetLastChain() - samplesGetFirstChain() + 1 sampleSize <- sampleSize %/% numChains beg <- end - (sampleSize - 1) * thin beg <- beg %/% thin end <- end %/% thin x <- (beg:end) * thin y <- matrix(sample, ncol = numChains) if(plot){ plot(x, y[,1], ylim = range(sample), type = "n", main = if(is.null(main)) nodeName else main, xlab = xlab , ylab = ylab, ...) for(chain in 1:numChains){ lines(x, y[,chain], col = colour[chain], ...) } invisible(y) } else return(y) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/plot.history.R
"ranksClear" <- function(node) # Clears a ranks monitor for vector quantity in OpenBUGS model { nodeName <- sQuote(node) command <- paste("RanksEmbed.SetVariable(", nodeName, "); RanksEmbed.StatsGuard;", "RanksEmbed.Clear") .CmdInterpreter(command) if(getOption("BRugsVerbose")) buffer() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/ranks.clear.R
"ranksSet" <- function(node) # Set a ranks monitor for vector quantity node in OpenBUGS model { nodeName <- sQuote(node) command <- paste("RanksEmbed.SetVariable(", nodeName, "); RanksEmbed.SetGuard;", "RanksEmbed.Set") .CmdInterpreter(command) if(getOption("BRugsVerbose")) buffer() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/ranks.set.R
"ranksStats" <- function(node) # Calculates ranks statistics for vector valued node in OpenBUGS model { if(length(node) > 1 || node == "*") stop("node cannot be a vector, nor '*'") nodeName <- sQuote(node) command <- paste("RanksEmbed.SetVariable(", nodeName, "); RanksEmbed.StatsGuard;", "RanksEmbed.Stats") .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") rlb <- readLines(buffer) len <- length(rlb) if (len > 1) read.table(buffer) else message(rlb) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/ranks.stats.R
"samplesAutoC" <- function(node, chain, beg = samplesGetBeg(), end = samplesGetEnd(), thin = samplesGetThin(), plot = TRUE, mfrow = c(3, 2), ask = NULL, ann = TRUE, ...) # Plot auto correlation function { if(plot && is.null(ask)) { if (is.R()) ask <- !((dev.cur() > 1) && !dev.interactive()) else ask <- !((dev.cur() > 1) && !interactive()) } oldBeg <- samplesGetBeg() oldEnd <- samplesGetEnd() oldFirstChain <- samplesGetFirstChain() oldLastChain <- samplesGetLastChain() oldThin <- samplesGetThin() on.exit({ samplesSetBeg(oldBeg) samplesSetEnd(oldEnd) samplesSetFirstChain(oldFirstChain) samplesSetLastChain(oldLastChain) samplesSetThin(oldThin) }) beg <- max(beg, modelAdaptivePhase()) samplesSetBeg(beg) samplesSetEnd(end) chain <- max(c(1, chain)) chain <- min(c(getNumChains(), chain)) samplesSetFirstChain(chain) samplesSetLastChain(chain) thin <- max(c(thin, 1)) samplesSetThin(thin) mons <- samplesMonitors(node) if(plot){ if (is.R()) par(mfrow = mfrow, ask = ask, ann = ann) else par(mfrow = mfrow, ask = ask) } result <- lapply(mons, plotAutoC, plot = plot, ...) names(result) <- mons if(plot) invisible(result) else return(result) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.autoC.R
"samplesBgr" <- function(node, beg = samplesGetBeg(), end = samplesGetEnd(), firstChain = samplesGetFirstChain(), lastChain = samplesGetLastChain(), thin = samplesGetThin(), bins = 50, plot = TRUE, mfrow = c(3, 2), ask = NULL, ann = TRUE, ...) # Plot bgr statistic { mons <- samplesMonitors(node) if (any(grep("^inference can not be made", mons))) { stop(mons) } if(plot && is.null(ask)) { if (is.R()) ask <- !((dev.cur() > 1) && !dev.interactive()) else ask <- !((dev.cur() > 1) && !interactive()) } oldBeg <- samplesGetBeg() oldEnd <- samplesGetEnd() oldFirstChain <- samplesGetFirstChain() oldLastChain <- samplesGetLastChain() oldThin <- samplesGetThin() on.exit({ samplesSetBeg(oldBeg) samplesSetEnd(oldEnd) samplesSetFirstChain(oldFirstChain) samplesSetLastChain(oldLastChain) samplesSetThin(oldThin) }) beg <- max(beg, modelAdaptivePhase()) samplesSetBeg(beg) samplesSetEnd(end) samplesSetFirstChain(firstChain) samplesSetLastChain(lastChain) thin <- max(c(thin, 1)) samplesSetThin(thin) mons <- samplesMonitors(node) if(plot){ if (is.R()) par(mfrow = mfrow, ask = ask, ann = ann) else par(mfrow = mfrow, ask = ask) } result <- lapply(mons, plotBgr, bins = bins, plot = plot, ...) names(result) <- mons if(plot) invisible(result) else return(result) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.bgr.R
"samplesClear" <- function(node) # Clear a sample monitor { nodeName <- sQuote(node) command <- paste("SamplesEmbed.SetVariable(", nodeName, ");SamplesEmbed.HistoryGuard;SamplesEmbed.Clear") .CmdInterpreter(command) if(getOption("BRugsVerbose")) buffer() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.clear.R
"samplesCoda" <- function(node, stem, beg = samplesGetBeg(), end = samplesGetEnd(), firstChain = samplesGetFirstChain(), lastChain = samplesGetLastChain(), thin = samplesGetThin()) { # Write out CODA files if(!is.character(node) || length(node)!=1) stop("'node' must be character of length 1") if(!is.character(stem) || length(stem)!=1) stop("'stem' must be character of length 1") if(dirname(stem) == ".") stem <- file.path(getwd(), basename(stem)) oldBeg <- samplesGetBeg() oldEnd <- samplesGetEnd() oldFirstChain <- samplesGetFirstChain() oldLastChain <- samplesGetLastChain() oldThin <- samplesGetThin() on.exit({ samplesSetBeg(oldBeg) samplesSetEnd(oldEnd) samplesSetFirstChain(oldFirstChain) samplesSetLastChain(oldLastChain) samplesSetThin(oldThin) }) beg <- max(beg, modelAdaptivePhase()) samplesSetBeg(beg) samplesSetEnd(end) samplesSetFirstChain(firstChain) samplesSetLastChain(lastChain) thin <- max(c(thin, 1)) samplesSetThin(thin) command <- paste(.SamplesGlobalsCmd(node), ";SamplesEmbed.StatsGuard;", "SamplesEmbed.CODA(", sQuote(stem), ")") .CmdInterpreter(command) buffer() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.coda.R
"samplesCorrel" <- function(node0, node1, beg = samplesGetBeg(), end = samplesGetEnd(), firstChain = samplesGetFirstChain(), lastChain = samplesGetLastChain(), thin = samplesGetThin()) # Correlation matrix of two quantities in OpenBUGS model { oldBeg <- samplesGetBeg() oldEnd <- samplesGetEnd() oldFirstChain <- samplesGetFirstChain() oldLastChain <- samplesGetLastChain() oldThin <- samplesGetThin() on.exit({ samplesSetBeg(oldBeg) samplesSetEnd(oldEnd) samplesSetFirstChain(oldFirstChain) samplesSetLastChain(oldLastChain) samplesSetThin(oldThin) }) samplesSetBeg(beg) samplesSetEnd(end) samplesSetFirstChain(firstChain) samplesSetLastChain(lastChain) thin <- max(c(thin, 1)) samplesSetThin(thin) command <- paste("CorrelEmbed.beg :=", getOption("BRugsSamplesBeg"), "; CorrelEmbed.end :=", getOption("BRugsSamplesEnd"), "; CorrelEmbed.firstChain :=", getOption("BRugsSamplesFirstChain"), "; CorrelEmbed.lastChain :=", getOption("BRugsSamplesLastChain"), "; CorrelEmbed.thin :=", getOption("BRugsSamplesThin"), "; CorrelEmbed.SetVariable0(", sQuote(node0), ");CorrelEmbed.SetVariable1(", sQuote(node1), ");CorrelEmbed.Guard", ";CorrelEmbed.PrintMatrix" ) .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") rlb <- readLines(buffer) len <- length(rlb) if (len > 1) as.matrix(read.table(buffer)) else message(rlb) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.correl.R
"samplesDensity" <- function(node, beg = samplesGetBeg(), end = samplesGetEnd(), firstChain = samplesGetFirstChain(), lastChain = samplesGetLastChain(), thin = samplesGetThin(), plot = TRUE, mfrow = c(3, 2), ask = NULL, ann = TRUE, ...) # Plot posterior density { if(is.null(ask)) { if (is.R()) ask <- !((dev.cur() > 1) && !dev.interactive()) else ask <- !((dev.cur() > 1) && !interactive()) } oldBeg <- samplesGetBeg() oldEnd <- samplesGetEnd() oldFirstChain <- samplesGetFirstChain() oldLastChain <- samplesGetLastChain() oldThin <- samplesGetThin() on.exit({ samplesSetBeg(oldBeg) samplesSetEnd(oldEnd) samplesSetFirstChain(oldFirstChain) samplesSetLastChain(oldLastChain) samplesSetThin(oldThin) }) beg <- max(beg, modelAdaptivePhase()) samplesSetBeg(beg) samplesSetEnd(end) samplesSetFirstChain(firstChain) samplesSetLastChain(lastChain) thin <- max(c(thin, 1)) samplesSetThin(thin) mons <- samplesMonitors(node) if (plot) { if (is.R()) par(mfrow = mfrow, ask = ask, ann = ann) else par(mfrow = mfrow, ask = ask) } result <- sapply(mons, plotDensity, plot=plot, ...) if (!is.R()) invisible() else { if(plot) invisible(result) else return(result) } }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.density.R
"samplesGetBeg" <- function() # Beginning iteration from which to compute sample statistics { getOption("BRugsSamplesBeg") }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.get.beg.R
"samplesGetEnd" <- function() # End iteration from which to compute sample statistics { getOption("BRugsSamplesEnd") }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.get.end.R
"samplesGetFirstChain" <- function() # First chain from which to compute sample statistics { getOption("BRugsSamplesFirstChain") }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.get.firstChain.R
"samplesGetLastChain" <- function() # Last chain from which to compute sample statistics { getOption("BRugsSamplesLastChain") }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.get.lastChain.R
"samplesGetThin" <- function() # Thinning interval to apply to sample statistics { getOption("BRugsSamplesThin") }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.get.thin.R
"samplesHistory" <- function(node, beg = samplesGetBeg(), end = samplesGetEnd(), firstChain = samplesGetFirstChain(), lastChain = samplesGetLastChain(), thin = samplesGetThin(), plot = TRUE, mfrow = c(3, 1), ask = NULL, ann = TRUE, ...) # Plot history { sM <- samplesMonitors(node)[1] if(sM == "model must be initialized before monitors used") stop("model must be initialized / updated / monitored before samplesSample is used") if(length(grep("^no monitor set for variable", sM))) stop(sM) if (samplesSize(sM[1])==0) stop("No monitored samples available") if(plot && is.null(ask)) { if (is.R()) ask <- !((dev.cur() > 1) && !dev.interactive()) else ask <- !((dev.cur() > 1) && !interactive()) } oldBeg <- samplesGetBeg() oldEnd <- samplesGetEnd() oldFirstChain <- samplesGetFirstChain() oldLastChain <- samplesGetLastChain() oldThin <- samplesGetThin() on.exit({ samplesSetBeg(oldBeg) samplesSetEnd(oldEnd) samplesSetFirstChain(oldFirstChain) samplesSetLastChain(oldLastChain) samplesSetThin(oldThin) }) samplesSetBeg(beg) samplesSetEnd(end) samplesSetFirstChain(firstChain) samplesSetLastChain(lastChain) thin <- max(c(thin, 1)) samplesSetThin(thin) mons <- samplesMonitors(node) if(plot){ if (is.R()) par(mfrow = mfrow, ask = ask, ann = ann) else par(mfrow = mfrow, ask = ask) } result <- lapply(mons, plotHistory, plot = plot, ...) names(result) <- mons if(plot) invisible(result) else return(result) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.history.R
"samplesMonitors" <- function(node) # List all sample monitors corresponding to node { if (is.R()){ command <- paste("SamplesEmbed.SetVariable(", sQuote(node), ");SamplesEmbed.StatsGuard;SamplesEmbed.Labels",sep="") .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") rlb <- readLines(buffer) len <- length(rlb) if (len == 1 && rlb == "command is not allowed (greyed out)") message(rlb) else{ if(len == 0){ message("model has probably not yet been updated") invisible("model has probably not yet been updated") } else { scan(buffer, what = "character", quiet = TRUE, sep="\n") } } } else { sampsMonsSingle <- function(node){ command <- paste("SamplesEmbed.SetVariable(", sQuote(node), ");SamplesEmbed.StatsGuard;SamplesEmbed.Labels",sep="") .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") rlb <- readLines(buffer) len <- length(rlb) if (len == 1 && rlb == "command is not allowed (greyed out)") message(rlb) else{ if(len == 0){ message("model has probably not yet been updated") invisible("model has probably not yet been updated") } else { scan(buffer, what = "character", sep="\n") } } } for(i in seq(along=node)){ mons <- lapply(node, sampsMonsSingle) } mons <- unlist(mons) return(mons) } }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.monitors.R
"samplesSample" <- function(node) # Get stored sample for single component of OpenBUGS name { if(samplesGetFirstChain() > samplesGetLastChain()) stop("Number of first chain is larger than last chain!") if(length(node) != 1) stop("Exactly one scalar node must be given.") sM <- samplesMonitors(node)[1] if(sM == "model must be initialized before monitors used") stop("model must be initialized / updated / monitored before samplesSample is used") if(length(grep("^no monitor set for variable", sM))) stop(sM) nodeSize <- .OpenBUGS(c("BugsRobjects.SetVariable", "BugsRobjects.GetSize"), c("CharArray","Integer"), list(node,NA))[[2]] if(nodeSize > 1) stop("Only scalar nodes such as ", node, "[1] are allowed.") sampleSize <- samplesSize(node) sample <- .OpenBUGS(c(.SamplesGlobalsCmd(node), "SamplesEmbed.SampleValues"), c("CmdInterpreter","RealArray"), list(node,double(sampleSize)))[[2]] sample }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.sample.R
"samplesSet" <- function(node) # Set a sample monitor { nodeName <- sQuote(node) for(i in seq(along=nodeName)){ sM <- paste(suppressMessages(samplesMonitors(node[i])), collapse = " ") if(sM == "model must be initialized before monitors used") stop("model must be initialized before monitors used") if(sM %in% c("inference can not be made when sampler is in adaptive phase", "model has probably not yet been updated")) alreadySet <- FALSE else alreadySet <- !length(grep("no monitor set", sM)) eval(alreadySet) command <- paste("SamplesEmbed.SetVariable(", nodeName[i], ");SamplesEmbed.SetGuard;SamplesEmbed.Set") .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") rlb <- readLines(buffer) if(rlb == "") message("either model has not been updated or variable ", nodeName[i], " already set") else{ if(getOption("BRugsVerbose")){ if(alreadySet) message("monitor for variable ", nodeName[i], " already set") else message(rlb, " for variable ", nodeName[i]) } } } invisible() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.set.R
"samplesSetBeg" <- function(begIt) # Set the beg field { if(!is.numeric(begIt)) stop("begIt ", "must be numeric") begIt <- as.integer(begIt) options("BRugsSamplesBeg" = begIt) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.set.beg.R
"samplesSetEnd" <- function(endIt) # Set the end field { if(!is.numeric(endIt)) stop("endIt ", "must be numeric") endIt <- as.integer(endIt) options("BRugsSamplesEnd" = endIt) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.set.end.R
"samplesSetFirstChain" <- function(first) # Set the firstChain field { if(!is.numeric(first)) stop("first ", "must be numeric") first <- as.integer(first) if(!(first %in% 1:getNumChains())) stop("it is required to have 1 <= first <= nchains") options("BRugsSamplesFirstChain" = first) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.set.firstChain.R
"samplesSetLastChain" <- function(last) # Set the lastChain field { if(!is.numeric(last)) stop("last ", "must be numeric") last <- as.integer(last) if(!(last %in% 1:getNumChains())) stop("it is required to have 1 <= last <= nchains") options("BRugsSamplesLastChain" = last) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.set.lastChain.R
"samplesSetThin" <- function(thin) # Set the thin field { if(!is.numeric(thin)) stop("thin ", "must be numeric") options("BRugsSamplesThin" = thin) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.set.thin.R
"samplesSize" <- function(node) # Size of stored sample of single component of OpenBUGS name { sM <- samplesMonitors(node) # Doesn't distinguish between nodes not in the model and nodes not monitored # so returns 0 for non-existent nodes if (any(grep("^no monitor set", sM))) return(0) if (any(grep("^model has probably not yet been updated", sM))) return(0) if (any(grep("^inference can not be made", sM))) { warning(sM); return(0) } if(length(sM) > 1 || sM != node) stop("node must be a scalar variable from the model") size <- .OpenBUGS(c(.SamplesGlobalsCmd(node), "SamplesEmbed.SampleSize"), c("CmdInterpreter","Integer"))[[2]] size }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.size.R
"samplesStats" <- function(node, beg = samplesGetBeg(), end = samplesGetEnd(), firstChain = samplesGetFirstChain(), lastChain = samplesGetLastChain(), thin = samplesGetThin()) # Calculate statistics for monitored node { oldBeg <- samplesGetBeg() oldEnd <- samplesGetEnd() oldFirstChain <- samplesGetFirstChain() oldLastChain <- samplesGetLastChain() oldThin <- samplesGetThin() on.exit({ samplesSetBeg(oldBeg) samplesSetEnd(oldEnd) samplesSetFirstChain(oldFirstChain) samplesSetLastChain(oldLastChain) samplesSetThin(oldThin) }) samplesSetBeg(beg) samplesSetEnd(end) samplesSetFirstChain(firstChain) samplesSetLastChain(lastChain) thin <- max(c(thin, 1)) samplesSetThin(thin) if (is.R()){ result <- data.frame(mean=NULL, sd=NULL, MC_error = NULL, val2.5pc=NULL, median=NULL, val97.5pc=NULL, start = NULL, sample=NULL) } else { result <- data.frame(mean=numeric(), sd=numeric(), MC.error = numeric(), val2.5pc=numeric(), median=numeric(), val97.5pc=numeric(), start = numeric(), sample=numeric()) } for(i in seq(along=node)){ command <- paste(.SamplesGlobalsCmd(node[i]), "SamplesEmbed.StatsGuard;SamplesEmbed.Stats") .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") rlb <- readLines(buffer) len <- length(rlb) if (len > 1) result <- rbind(result, read.table(buffer)) else{ if(length(grep("val97.5pc", rlb))) message("Variable ", node[i], " has probably not been updated") else message("Variable ", node[i], ": ", rlb) } } return(result) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/samples.stats.R
"setValues" <- function(nodeLabel, values) # set value of node { nodeLabel <- as.character(nodeLabel) # NA handling, now internal in OpenBUGS? # cv <- currentValues(nodeLabel) # DoNotSetNA <- is.na(values) & !is.na(cv) # if(any(DoNotSetNA)) # warning("Some NA values formerly had a non-NA value -- left unchanged") # values[DoNotSetNA] <- cv[DoNotSetNA] nodeSize <- .OpenBUGS(c("BugsRobjects.SetVariable", "BugsRobjects.GetSize"), c("CharArray","Integer"), c(nodeLabel,NA))[[2]] if(nodeSize == -1) stop(nodeLabel, " is not a node in BUGS model") numChains <- getNumChains() if(length(values) != nodeSize*numChains) stop("length(values) does not correspond to the node size and number of chains") .OpenBUGS(c("BugsRobjects.SetVariable", "BugsRobjects.SetValues"), c("CharArray","RealArray"), list(nodeLabel,as.double(values)))[[2]] invisible() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/set.values.R
"summaryClear" <- function(node) # Clear summary monitor for node in WinBUGS model { nodeName <- sQuote(node) for(i in seq(along=nodeName)){ command <- paste("SummaryEmbed.SetVariable(", nodeName[i], "); SummaryEmbed.StatsGuard;", "SummaryEmbed.Clear") .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") rlb <- readLines(buffer) if(getOption("BRugsVerbose")) message("Variable ", nodeName[i], ": ", rlb) } invisible() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/summary.clear.R
"summarySet" <- function(node) # Set summary monitor for node in OpenBUGS model { nodeName <- sQuote(node) for(i in seq(along=nodeName)){ command <- paste("SummaryEmbed.SetVariable(", nodeName[i], "); SummaryEmbed.SetGuard;", "SummaryEmbed.Set") .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") rlb <- readLines(buffer) if(getOption("BRugsVerbose")) message("Variable ", nodeName[i], ": ", rlb) } invisible() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/summary.set.R
"summaryStats" <- function(node) # Calculates statistics for summary monitor associated with node in OpenBUGS model { nodeName <- sQuote(node) if (is.R()) result <- data.frame(mean=NULL, sd=NULL, val2.5pc=NULL, median=NULL, val97.5pc=NULL, sample=NULL) else result <- data.frame(mean=numeric(), sd=numeric(), val2.5pc=numeric(), median=numeric(), val97.5pc=numeric(), sample=numeric()) for(i in seq(along=nodeName)){ command <- paste("SummaryEmbed.SetVariable(", nodeName[i], "); SummaryEmbed.StatsGuard;", "SummaryEmbed.Stats") .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") rlb <- readLines(buffer) len <- length(rlb) if (len > 1) result <- rbind(result, read.table(buffer)) else{ if(length(grep("val97.5pc", rlb))) message("Variable ", nodeName[i], " has probably not been updated") else if(getOption("BRugsVerbose")) message("Variable ", nodeName[i], ": ", rlb) } } return(result) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/summary.stats.R
help.BRugs <- function(browser = getOption("browser")) { ## stolen from help.start() # if(is.null(browser)) # stop("Invalid browser name, check options(\"browser\").") # writeLines(strwrap(paste("If", browser, "is already running,", # "it is *not* restarted, and you must", # "switch to its window."), # exdent = 4)) # writeLines("Otherwise, be patient ...") # browseURL(system.file("OpenBUGS", "docu", "BRugs Manual.html", package="BRugs")) # invisible("") ## Andrew now omits the BRugs introduction, hence just pointing to help.WinBUGS these days: help.WinBUGS(browser = browser) } help.WinBUGS <- function(browser = getOption("browser")) { # stolen from help.start() if(is.null(browser)) stop("Invalid browser name, check options(\"browser\").") writeLines(strwrap(paste("If", browser, "is already running,", "it is *not* restarted, and you must", "switch to its window."), exdent = 4)) writeLines("Otherwise, be patient ...") browseURL(file.path(options()$OpenBUGSdoc, "Manuals", "Contents.html")) invisible("") }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/unix/help.R
.OpenBUGS.platform <- function(cmds, cmdtypes, args) { .OpenBUGS.helper(cmds, cmdtypes, args) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/unix/internal.R
if (is.R()){ ".onLoad" <- function(lib, pkg){ ## TODO any need for these to be user specifiable? options("BRugsTmpdir" = gsub("\\\\", "/", tempdir())) options("BRugsExtFile" = paste(basename(tempfile()), ".bug", sep="")) options(OpenBUGS = "/usr/local/lib/OpenBUGS/lib") options(OpenBUGSdoc = "/usr/local/lib/OpenBUGS/doc") options(OpenBUGSExamples = paste(options()$OpenBUGSdoc, "Examples", sep="/")) if(is.null(getOption("BRugsVerbose"))) options("BRugsVerbose" = TRUE) .initGlobals() ver <- system("echo \"modelQuit()\" | /usr/local/lib/OpenBUGS/lib/../bin/OpenBUGS", intern=TRUE) ver <- sub("OpenBUGS version (([0-9]\\.)+[0-9]).+","\\1",ver[1]) packageStartupMessage("Welcome to BRugs connected to OpenBUGS version ", ver) } ".onUnload" <- function(libpath){ } ## Windows-only loadOpenBUGS <- function(dir) { } }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/unix/zzz.R
findOpenBUGS <- function() { dir <- Sys.getenv("OpenBUGS_PATH") if(!nchar(dir)){ deps <- packageDescription("BRugs", fields="SystemRequirements") version.req <- gsub(".*OpenBUGS ?\\(>= ?(.+)\\).*", "\\1", deps) ob.reg <- try(readRegistry("Software\\OpenBUGS", "HLM", view = "32-bit"), silent = TRUE) if (inherits(ob.reg, "try-error")) { warning("OpenBUGS ", version.req, " or greater must be installed\n(if so, this indicates missing registry keys of OpenBUGS).\nSetting the environment variable 'OpenBUGS_PATH' in advance of loading 'BRugs' overwrites the path.\nSee ?loadOpenBUGS in order to load OpenBUGS manually.") return() } rnames <- names(ob.reg) version.full <- gsub("OpenBUGS ", "", rnames) ## remove suffixes from development versions, converts e.g. 3.2.1alpha to 3.2.1 version.inst <- gsub("(.+[0-9]+)[a-zA-Z]+$","\\1", version.full) if(length(version.inst > 1)){ id <- which(apply(outer(version.inst, version.inst, Vectorize(compareVersion, c("a", "b"))), 1, function(x) all(x >= 0))) id <- max(id) # if more than one release with same number, arbitrarily choose last one in registry version.inst <- version.inst[id] version.full <- version.full[id] rnames <- rnames[id] } if (compareVersion(version.inst, version.req) < 0) { warning("Found OpenBUGS version ", version.inst, ".\n Requires ", version.req, " or greater.\nSetting the environment variable 'OpenBUGS_PATH' in advance of loading 'BRugs' overwrites the path.\nSee ?loadOpenBUGS in order to load OpenBUGS manually.") return() } ## OpenBUGS installation location dir <- readRegistry(paste("Software","OpenBUGS",rnames,sep="\\"), "HLM", view = "32-bit")[["InstallPath"]] } else { if(!file.exists(file.path(dir, "libOpenBUGS.dll"))){ warning("Environment variable OpenBUGS_PATH found but cannot access ", file.path(dir, "libOpenBUGS.dll")) return() } version.inst <- version.full <- NA } list(dir=dir, version=version.full) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/windows/findOpenBUGS.R
help.BRugs <- function(browser = getOption("browser")) { ## stolen from help.start() # a <- system.file("OpenBUGS", "Manuals", "WinBUGS Manual.html", package="BRugs") # if (!file.exists(a)) # stop("I can't find the html help") # a <- chartr("/", "\\", a) # message("If nothing happens, you should open `", a, "' yourself") # browseURL(a, browser = browser) # invisible("") ## Andrew now omits the BRugs introduction, hence just pointing to help.WinBUGS these days: help.WinBUGS(browser = browser) } help.WinBUGS <- function(browser = getOption("browser")) { # stolen from help.start() a <- file.path(options()$OpenBUGS, "Manuals", "Contents.html") if (!file.exists(a)) stop("HTML help not found in file ", a) if (is.R()) a <- chartr("/", "\\", a) else a <- gsub ("/", "\\\\", a) message("If nothing happens, you should open `", a, "' yourself") browseURL(a, browser = browser) invisible("") }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/windows/help.R
### Run a list of OpenBUGS API command strings .OpenBUGS.platform <- function(cmds, cmdtypes, args) { if (.Platform$r_arch == "x64"){ out <- .OpenBUGS.helper(cmds, cmdtypes, args) } else if (.Platform$r_arch == "i386") { ncmds <- length(cmds) out <- vector(ncmds, mode="list") for (i in 1:ncmds) { out[[i]] <- switch(cmdtypes[i], "CmdInterpreter" = { res <- .C("CmdInterpreter", cmds[i], nchar(cmds[i]), integer(1), PACKAGE="libOpenBUGS") handleRes(res[[3]]) res }, "Integer" = { values <- .C("Integer", cmds[i], nchar(cmds[i]), integer(1), integer(1), PACKAGE="libOpenBUGS") handleRes(values[[4]]) as.integer(values[[3]]) }, "CharArray" = { values <- .C("CharArray", cmds[i], nchar(cmds[i]), args[[i]], nchar(args[[i]]), integer(1), PACKAGE="libOpenBUGS") handleRes(values[[5]]) values[[3]] }, "RealArray" = { values <- .C("RealArray", cmds[i], nchar(cmds[i]), args[[i]], length(args[[i]]), integer(1), PACKAGE="libOpenBUGS") handleRes(values[[5]]) values[[3]] }) } } else { stop("Unknown architecture ", .Platform$r_arch, " , should be i386 or x64") } out }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/windows/internal.R
if (is.R()){ ".onLoad" <- function(lib, pkg){ if (.Platform$r_arch == "i386") { .onLoad.i386(lib, pkg) } else if (.Platform$r_arch == "x64"){ .onLoad.x64(lib, pkg) } else { stop("Unknown architecture ", .Platform$r_arch, " , should be i386 or x64") } } ".onUnload" <- function(libpath){ if (.Platform$r_arch == "i386") { .onUnload.i386(libpath) } else if (.Platform$r_arch == "x64"){ .onUnload.x64(libpath) } else { stop("Unknown architecture ", .Platform$r_arch, " , should be i386 or x64") } } }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/windows/zzz.R
".onLoad.i386" <- function(lib, pkg){ ob <- findOpenBUGS() loadOpenBUGS(ob$dir) msg <- paste("Welcome to BRugs connected to OpenBUGS") if (!is.na(ob$version)) msg <- paste(msg, "version", ob$version) else msg <- paste(msg, "in directory", ob$dir) packageStartupMessage(msg) } ".onUnload.i386" <- function(libpath){ if(is.loaded("CmdInterpreter")) { libname <- paste(options()$OpenBUGS, "libOpenBUGS.dll", sep="/") dyn.unload(libname) } } ## Load OpenBUGS from specified location loadOpenBUGS <- function(dir) { libname <- paste(dir, "libOpenBUGS.dll", sep="/") if (!file.exists(libname)) { warning("Shared library \"libOpenBUGS.dll\" not found in ", dir) return(FALSE) } options(OpenBUGS = dir) dyn.load(libname) len <- nchar(dir) .C("SetWorkingDir", as.character(dir), len, PACKAGE="libOpenBUGS") ## Set temporary dir for "buffer.txt" output tempDir <- gsub("\\\\", "/", tempdir()) .C("SetTempDir", as.character(tempDir), nchar(tempDir), PACKAGE="libOpenBUGS") command <- "BugsMappers.SetDest(2)" .CmdInterpreter(command) if(is.null(getOption("BRugsVerbose"))) options("BRugsVerbose" = TRUE) .initGlobals() options(OpenBUGSExamples = paste(dir, "Examples", sep="/")) invisible() }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/windows/zzz.i386.R
if (is.R()){ ".onLoad.x64" <- function(lib, pkg){ ## TODO any need for these to be user specifiable? options("BRugsTmpdir" = gsub("\\\\", "/", tempdir())) options("BRugsExtFile" = paste(basename(tempfile()), ".bug", sep="")) ob <- findOpenBUGS() options(OpenBUGS = ob$dir) options(OpenBUGSdoc = ob$dir) options(OpenBUGSExamples = paste(ob$dir, "Examples", sep="/")) if(is.null(getOption("BRugsVerbose"))) options("BRugsVerbose" = TRUE) .initGlobals() msg <- paste("Welcome to BRugs connected to OpenBUGS") if (!is.na(ob$version)) msg <- paste(msg, "version", ob$version) else msg <- paste(msg, "in directory", ob$dir) packageStartupMessage(msg) pathtoBUGS <- gsub("/", "\\", ob$dir) oldpath <- Sys.getenv("PATH") if(!length(grep(pathtoBUGS, oldpath, fixed=TRUE))) Sys.setenv(PATH=paste(oldpath, pathtoBUGS, sep=";")) } ".onUnload.x64" <- function(libpath){ } }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/windows/zzz.x64.R
"write.datafile" <- function (datalist, towhere, fill = TRUE){ if (!is.list(datalist) || is.data.frame(datalist)) stop("First argument to write.datafile must be a list.") cat(formatdata(datalist), file = towhere, fill = fill) }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/write.datafile.R
writeModel <- function(model, con = "model.txt", digits = 5) { if (is.R()){ model.text <- c("model", replaceScientificNotationR(body(model), digits = digits)) # "[\+\-]?\d*\.?[Ee]?[\+\-]?\d*" } else { ## In S-PLUS the source code of a function can be obtained with ## as.character(function_name). This omits the "function_name <- function()" piece model.text <- paste("model", as.character(model)) } model.text <- gsub("%_%", "", model.text) if (!is.R()){ ## In S-PLUS, scientific notation is different than it is in WinBUGS. ## Change the format of any numbers in scientific notation. model.text <- replaceScientificNotationS(model.text) ## remove the "invisible()" line. model.text <- gsub("invisible[ ]*\\([ ]*\\)", "", model.text) } writeLines(model.text, con = con) } replaceScientificNotationR <- function(bmodel, digits = 5){ env <- new.env() assign("rSNRidCounter", 0, envir=env) replaceID <- function(bmodel, env, digits = 5){ for(i in seq_along(bmodel)){ if(length(bmodel[[i]]) == 1){ if(as.character(bmodel[[i]]) %in% c(":", "[", "[[")) return(bmodel) if((typeof(bmodel[[i]]) %in% c("double", "integer")) && ((abs(bmodel[[i]]) < 1e-3) || (abs(bmodel[[i]]) > 1e+4))){ counter <- get("rSNRidCounter", envir=env) + 1 assign("rSNRidCounter", counter, envir=env) id <- paste("rSNRid", counter, sep="") assign(id, formatC(bmodel[[i]], digits=digits, format="E"), envir=env) bmodel[[i]] <- id } } else { bmodel[[i]] <- replaceID(bmodel[[i]], env, digits = digits) } } bmodel } bmodel <- deparse(replaceID(bmodel, env, digits = digits), control = NULL) for(i in ls(env)){ bmodel <- gsub(paste('"', i, '"', sep=''), get(i, envir=env), bmodel, fixed=TRUE) } bmodel } replaceScientificNotationS <- function(text){ ## Change the format of any numbers in "text" that are in S-PLUS ## scientific notation to WinBUGS scientific notation ## First, handle the positive exponents ## Find the first instance ## Note that the number may or may not have a decimal point. sciNoteLoc <- regexpr("[0-9]*\\.{0,1}[0-9]*e\\+0[0-9]{2}", text) ## For every instance, replace the number while(sciNoteLoc > -1){ sciNoteEnd <- sciNoteLoc + attr(sciNoteLoc, "match.length")-1 sciNote <- substring(text, sciNoteLoc, sciNoteEnd) text <- gsub(sciNote, toSingleS4(sciNote), text) sciNoteLoc <- regexpr("[0-9]*\\.{0,1}[0-9]*e\\+0[0-9]{2}", text) } ## Then, handle the negative exponents ## Find the first instance sciNoteLoc <- regexpr("[0-9]*\\.{0,1}[0-9]*e\\-0[0-9]{2}", text) ## For every instance, replace the number while(sciNoteLoc > -1){ sciNoteEnd <- sciNoteLoc + attr(sciNoteLoc, "match.length")-1 sciNote <- substring(text, sciNoteLoc, sciNoteEnd) text <- gsub(sciNote, toSingleS4(sciNote), text) sciNoteLoc <- regexpr("[0-9]*\\.{0,1}[0-9]*e\\-0[0-9]{2}", text) } text }
/scratch/gouwar.j/cran-all/cranData/BRugs/R/write.model.R
## See unix/zzz.R, windows/zzz.R for platform specific .onLoad functions if (is.R()){ .initGlobals <- function(){ options("BRugsSamplesBeg" = 1) options("BRugsSamplesEnd" = 10000000) options("BRugsSamplesFirstChain" = 1) options("BRugsSamplesLastChain" = 1) options("BRugsSamplesThin" = 1) options("BRugsSamplesVariable" = "*") options("BRugsNextChain" = 1) # index of chain which needs to be initialized next options("BRugsPrec" = 4) } ## Overwriting new (from R-2.6.0) sQuote (for typing human readable text) in R within the BRugs Namespace! ## we cannot use sQuote that uses fancy quotes! sQuote <- function(x) paste("'", x, "'", sep="") } else { # ends if (is.R()) ".First.lib" <- function(lib.loc, section) { dyn.open(system.file("OpenBUGS", "brugs.dll", package="BRugs")) ## sets path / file variables and initializes subsystems root <- file.path(system.file("OpenBUGS", package="BRugs")) len <- nchar(root) tempDir <- gsub("\\\\", "/", tempdir()) .C("SetRoot", as.character(root), len) .C("SetTempDir", as.character(tempDir), nchar(tempDir)) command <- "BugsMappers.SetDest(2)" .C("CmdInterpreter", as.character(command), nchar(command), integer(1)) if(is.null(getOption("BRugsVerbose"))) options("BRugsVerbose" = TRUE) invisible() } .tempDir <- getwd() tempdir <- function(){ .tempDir } } # ends else
/scratch/gouwar.j/cran-all/cranData/BRugs/R/zzz.R
############################################################################# #' @import lattice #' @importFrom graphics abline axis box boxplot dotchart hist legend lines mtext par plot plot.design points polygon segments text title #' @importFrom stats dbinom density dnorm fitted fivenum median pnorm pt qchisq qnorm qqline qqnorm qt quantile rbinom rnorm rstandard sd shapiro.test var #' @importFrom utils combn #' @importFrom e1071 skewness kurtosis #' NULL ############################################################################### # #' Daily price returns (in pence) of Abbey National shares between 7/31/91 and #' 10/8/91 #' #' Data used in problem 6.39 #' #' #' @name Abbey #' @docType data #' @format A data frame/tibble with 50 observations on one variable #' \describe{ #' \item{price}{daily price returns (in pence) of Abbey National shares} #' } #' #' @source Buckle, D. (1995), Bayesian Inference for Stable Distributions, #' \emph{Journal of the American Statistical Association}, 90, 605-613. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Abbey$price) #' qqline(Abbey$price) #' t.test(Abbey$price, mu = 300) #' hist(Abbey$price, main = "Exercise 6.39", #' xlab = "daily price returns (in pence)", #' col = "blue") #' "Abbey" #' Three samples to illustrate analysis of variance #' #' Data used in Exercise 10.1 #' #' #' @name Abc #' @docType data #' @format A data frame/tibble with 54 observations on two variables #' \describe{ #' \item{response}{a numeric vector} #' \item{group}{a character vector \code{A}, \code{B}, and \code{C}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(response ~ group, col=c("red", "blue", "green"), data = Abc ) #' anova(lm(response ~ group, data = Abc)) #' "Abc" #' Crimes reported in Abilene, Texas #' #' Data used in Exercise 1.23 and 2.79 #' #' #' @name Abilene #' @docType data #' @format A data frame/tibble with 16 observations on three variables #' \describe{ #' \item{crimetype}{a character variable with values \code{Aggravated #' assault}, \code{Arson}, \code{Burglary}, \code{Forcible rape}, \code{Larceny #' theft}, \code{Murder}, \code{Robbery}, and \code{Vehicle theft}.} #' \item{year}{a factor with levels \code{1992} and \code{1999}} #' \item{number}{number of reported crimes} #' } #' #' @source \emph{Uniform Crime Reports}, US Dept. of Justice. #' #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' par(mfrow = c(2, 1)) #' barplot(Abilene$number[Abilene$year=="1992"], #' names.arg = Abilene$crimetype[Abilene$year == "1992"], #' main = "1992 Crime Stats", col = "red") #' barplot(Abilene$number[Abilene$year=="1999"], #' names.arg = Abilene$crimetype[Abilene$year == "1999"], #' main = "1999 Crime Stats", col = "blue") #' par(mfrow = c(1, 1)) #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Abilene, aes(x = crimetype, y = number, fill = year)) + #' geom_bar(stat = "identity", position = "dodge") + #' theme_bw() + #' theme(axis.text.x = element_text(angle = 30, hjust = 1)) #' } #' "Abilene" #' Perceived math ability for 13-year olds by gender #' #' Data used in Exercise 8.57 #' #' #' @name Ability #' @docType data #' @format A data frame/tibble with 400 observations on two variables #' \describe{ #' \item{gender}{a factor with levels \code{girls} and \code{boys}} #' \item{ability}{a factor with levels \code{hopeless}, \code{belowavg}, \code{average}, \code{aboveavg}, and \code{superior}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' CT <- xtabs(~gender + ability, data = Ability) #' CT #' chisq.test(CT) #' "Ability" #' Abortion rate by region of country #' #' Data used in Exercise 8.51 #' #' #' @name Abortion #' @docType data #' @format A data frame/tibble with 51 observations on the following 10 variables: #' \describe{ #' \item{state}{a character variable with values \code{alabama}, #' \code{alaska}, \code{arizona}, \code{arkansas}, \code{california}, #' \code{colorado}, \code{connecticut}, \code{delaware}, \code{dist of columbia}, #' \code{florida,} \code{georgia}, \code{hawaii}, \code{idaho}, \code{illinois}, #' \code{indiana}, \code{iowa}, \code{kansas}, \code{kentucky}, \code{louisiana}, #' \code{maine}, \code{maryland}, \code{massachusetts}, \code{michigan}, #' \code{minnesota}, \code{mississippi}, \code{missouri}, \code{montana}, #' \code{nebraska}, \code{nevada}, \code{new hampshire}, \code{new jersey}, #' \code{new mexico}, \code{new york}, \code{north carolina}, \code{north dakota}, #' \code{ohio}, \code{oklahoma}, \code{oregon}, \code{pennsylvania}, \code{rhode #' island}, \code{south carolina}, \code{south dakota}, \code{tennessee}, #' \code{texas}, \code{utah}, \code{vermont}, \code{virginia}, \code{washington}, #' \code{west virginia}, \code{wisconsin}, and \code{wyoming}} #' \item{region}{a character variable with values \code{midwest} \code{northeast} #' \code{south} \code{west}} #' \item{regcode}{a numeric vector} #' \item{rate1988}{a numeric vector} #' \item{rate1992}{a numeric vector} #' \item{rate1996}{a numeric vector} #' \item{provide1988}{a numeric vector} #' \item{provide1992}{a numeric vector} #' \item{lowhigh}{a numeric vector} #' \item{rate}{a factor with levels \code{Low} and \code{High}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~region + rate, data = Abortion) #' T1 #' chisq.test(T1) #' "Abortion" #' Number of absent days for 20 employees #' #' Data used in Exercise 1.28 #' #' #' @name Absent #' @docType data #' @format A data frame/tibble with 20 observations on one variable #' \describe{ #' \item{days}{days absent} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' CT <- xtabs(~ days, data = Absent) #' CT #' barplot(CT, col = "pink", main = "Exercise 1.28") #' plot(ecdf(Absent$days), main = "ECDF") #' "Absent" #' Math achievement test scores by gender for 25 high school students #' #' Data used in Example 7.14 and Exercise 10.7 #' #' #' @name Achieve #' @docType data #' @format A data frame/tibble with 25 observations on two variables #' \describe{ #' \item{score}{mathematics achiement score} #' \item{gender}{a factor with 2 levels \code{boys} and \code{girls}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' anova(lm(score ~ gender, data = Achieve)) #' t.test(score ~ gender, var.equal = TRUE, data = Achieve) #' "Achieve" #' Number of ads versus number of sales for a retailer of satellite dishes #' #' Data used in Exercise 9.15 #' #' #' @name Adsales #' @docType data #' @format A data frame/tibble with six observations on three variables #' \describe{ #' \item{month}{a character vector listing month} #' \item{ads}{a numeric vector containing number of ads} #' \item{sales}{a numeric vector containing number of sales} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(sales ~ ads, data = Adsales, main = "Exercise 9.15") #' mod <- lm(sales ~ ads, data = Adsales) #' abline(mod, col = "red") #' summary(mod) #' predict(mod, newdata = data.frame(ads = 6), interval = "conf", level = 0.99) #' "Adsales" #' Agressive tendency scores for a group of teenage members of a street gang #' #' Data used in Exercises 1.66 and 1.81 #' #' #' @name Aggress #' @docType data #' @format A data frame/tibble with 28 observations on one variable #' \describe{ #' \item{aggres}{measure of aggresive tendency, ranging from 10-50} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' with(data = Aggress, #' EDA(aggres)) #' # OR #' IQR(Aggress$aggres) #' diff(range(Aggress$aggres)) #' "Aggress" #' Monthly payments per person for families in the AFDC federal program #' #' Data used in Exercises 1.91 and 3.68 #' #' #' @name Aid #' @docType data #' @format A data frame/tibble with 51 observations on two variables #' \describe{ #' \item{state}{a factor with levels \code{Alabama}, #' \code{Alaska}, \code{Arizona}, \code{Arkansas}, \code{California}, #' \code{Colorado}, \code{Connecticut}, \code{Delaware}, \code{District of #' Colunbia}, \code{Florida}, \code{Georgia}, \code{Hawaii}, \code{Idaho}, #' \code{Illinois}, \code{Indiana}, \code{Iowa}, \code{Kansas}, \code{Kentucky}, #' \code{Louisiana}, \code{Maine}, \code{Maryland}, \code{Massachusetts}, #' \code{Michigan}, \code{Minnesota}, \code{Mississippi}, \code{Missour}, #' \code{Montana}, \code{Nebraska}, \code{Nevada}, \code{New Hampshire}, \code{New #' Jersey}, \code{New Mexico}, \code{New York}, \code{North Carolina}, \code{North #' Dakota}, \code{Ohio}, \code{Oklahoma}, \code{Oregon}, \code{Pennsylvania}, #' \code{Rhode Island}, \code{South Carolina}, \code{South Dakota}, #' \code{Tennessee}, \code{Texas}, \code{Utah}, \code{Vermont}, \code{Virginia}, #' \code{Washington}, \code{West Virginia}, \code{Wisconsin}, and \code{Wyoming}} #' \item{payment}{average monthly payment per person in a family} #' } #' #' @source US Department of Health and Human Services, 1993. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Aid$payment, xlab = "payment", main = #' "Average monthly payment per person in a family", #' col = "lightblue") #' boxplot(Aid$payment, col = "lightblue") #' dotplot(state ~ payment, data = Aid) #' "Aid" #' Incubation times for 295 patients thought to be infected with HIV by a blood #' transfusion #' #' Data used in Exercise 6.60 #' #' #' @name Aids #' @docType data #' @format A data frame/tibble with 295 observations on three variables #' \describe{ #' \item{duration}{time (in months) from HIV infection to the clinical manifestation of full-blown AIDS} #' \item{age}{age (in years) of patient} #' \item{group}{a numeric vector} #' } #' #' @source Kalbsleich, J. and Lawless, J., (1989), An analysis of the data on transfusion #' related AIDS, \emph{Journal of the American Statistical Association, 84}, 360-372. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' with(data = Aids, #' EDA(duration) #' ) #' with(data = Aids, #' t.test(duration, mu = 30, alternative = "greater") #' ) #' with(data = Aids, #' SIGN.test(duration, md = 24, alternative = "greater") #' ) #' "Aids" #' Aircraft disasters in five different decades #' #' Data used in Exercise 1.12 #' #' #' @name Airdisasters #' @docType data #' @format A data frame /tibble with 141 observations on the following seven variables #' \describe{ #' \item{year}{a numeric vector indicating the year of an aircraft accident} #' \item{deaths}{a numeric vector indicating the number of deaths of an aircraft accident} #' \item{decade}{a character vector indicating the decade of an aircraft accident} #' } #' #' @source 2000 \emph{World Almanac and Book of Facts}. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' par(las = 1) #' stripchart(deaths ~ decade, data = Airdisasters, #' subset = decade != "1930s" & decade != "1940s", #' method = "stack", pch = 19, cex = 0.5, col = "red", #' main = "Aircraft Disasters 1950 - 1990", #' xlab = "Number of fatalities") #' par(las = 0) #' "Airdisasters" #' Percentage of on-time arrivals and number of complaints for 11 airlines #' #' Data for Example 2.9 #' #' #' @name Airline #' @docType data #' @format A data frame/tibble with 11 observations on three variables #' \describe{ #' \item{airline}{a charater variable with values \code{Alaska}, #' \code{Amer West}, \code{American}, \code{Continental}, \code{Delta}, #' \code{Northwest}, \code{Pan Am}, \code{Southwest}, \code{TWA}, #' \code{United}, and \code{USAir}} #' \item{ontime}{a numeric vector} #' \item{complaints}{complaints per 1000 passengers} #' } #' #' @source Transportation Department. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' with(data = Airline, #' barplot(complaints, names.arg = airline, col = "lightblue", #' las = 2) #' ) #' plot(complaints ~ ontime, data = Airline, pch = 19, col = "red", #' xlab = "On time", ylab = "Complaints") #' "Airline" #' Ages at which 14 female alcoholics began drinking #' #' Data used in Exercise 5.79 #' #' #' @name Alcohol #' @docType data #' @format A data frame/tibble with 14 observations on one variable #' \describe{ #' \item{age}{age when individual started drinking} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Alcohol$age) #' qqline(Alcohol$age) #' SIGN.test(Alcohol$age, md = 20, conf.level = 0.99) #' "Alcohol" #' Allergy medicines by adverse events #' #' Data used in Exercise 8.22 #' #' #' @name Allergy #' @docType data #' @format A data frame/tibble with 406 observations on two variables #' \describe{ #' \item{event}{a factor with levels \code{insomnia}, #' \code{headache}, and \code{drowsiness}} #' \item{medication}{a factor with levels \code{seldane-d}, #' \code{pseudoephedrine}, and \code{placebo}} #' } #' #' @source Marion Merrel Dow, Inc. Kansas City, Mo. 64114. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~event + medication, data = Allergy) #' T1 #' chisq.test(T1) #' "Allergy" #' Recovery times for anesthetized patients #' #' Data used in Exercise 5.58 #' #' #' @name Anesthet #' @docType data #' @format A with 10 observations on one variable #' \describe{ #' \item{recover}{recovery time (in hours)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Anesthet$recover) #' qqline(Anesthet$recover) #' with(data = Anesthet, #' t.test(recover, conf.level = 0.90)$conf #' ) #' "Anesthet" #' Math test scores versus anxiety scores before the test #' #' Data used in Exercise 2.96 #' #' #' @name Anxiety #' @docType data #' @format A data frame/tibble with 20 observations on two variables #' \describe{ #' \item{anxiety}{anxiety score before a major math test} #' \item{math}{math test score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(math ~ anxiety, data = Anxiety, ylab = "score", #' main = "Exercise 2.96") #' with(data = Anxiety, #' cor(math, anxiety) #' ) #' linmod <- lm(math ~ anxiety, data = Anxiety) #' abline(linmod, col = "purple") #' summary(linmod) #' "Anxiety" #' Level of apolipoprotein B and number of cups of coffee consumed per day for #' 15 adult males #' #' Data used in Examples 9.2 and 9.9 #' #' #' @name Apolipop #' @docType data #' @format A data frame/tibble with 15 observations on two variables #' \describe{ #' \item{coffee}{number of cups of coffee per day} #' \item{apolipB}{level of apoliprotein B} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(apolipB ~ coffee, data = Apolipop) #' linmod <- lm(apolipB ~ coffee, data = Apolipop) #' summary(linmod) #' summary(linmod)$sigma #' anova(linmod) #' anova(linmod)[2, 3]^.5 #' par(mfrow = c(2, 2)) #' plot(linmod) #' par(mfrow = c(1, 1)) #' "Apolipop" #' Median costs of an appendectomy at 20 hospitals in North Carolina #' #' Data for Exercise 1.119 #' #' #' @name Append #' @docType data #' @format A data frame/tibble with 20 observations on one variable #' \describe{ #' \item{fee}{fees for an appendectomy for a random sample of 20 hospitals in North Carolina} #' } #' #' @source North Carolina Medical Database Commission, August 1994. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' fee <- Append$fee #' ll <- mean(fee) - 2*sd(fee) #' ul <- mean(fee) + 2*sd(fee) #' limits <-c(ll, ul) #' limits #' fee[fee < ll | fee > ul] #' "Append" #' Median costs of appendectomies at three different types of North Carolina #' hospitals #' #' Data for Exercise 10.60 #' #' #' @name Appendec #' @docType data #' @format A data frame/tibble with 59 observations on two variables #' \describe{ #' \item{cost}{median costs of appendectomies at hospitals across the state of North Carolina in 1992} #' \item{region}{a vector classifying each hospital as rural, regional, or metropolitan} #' } #' #' @source \emph{Consumer's Guide to Hospitalization Charges in North Carolina Hospitals} #' (August 1994), North Carolina Medical Database Commission, Department of Insurance. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(cost ~ region, data = Appendec, col = c("red", "blue", "cyan")) #' anova(lm(cost ~ region, data = Appendec)) #' "Appendec" #' Aptitude test scores versus productivity in a factory #' #' Data for Exercises 2.1, 2.26, 2.35 and 2.51 #' #' #' @name Aptitude #' @docType data #' @format A data frame/tibble with 8 observations on two variables #' \describe{ #' \item{aptitude}{aptitude test scores} #' \item{product}{productivity scores} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(product ~ aptitude, data = Aptitude, main = "Exercise 2.1") #' model1 <- lm(product ~ aptitude, data = Aptitude) #' model1 #' abline(model1, col = "red", lwd=3) #' resid(model1) #' fitted(model1) #' cor(Aptitude$product, Aptitude$aptitude) #' "Aptitude" #' Radiocarbon ages of observations taken from an archaeological site #' #' Data for Exercises 5.120, 10.20 and Example 1.16 #' #' #' @name Archaeo #' @docType data #' @format A data frame/tibble with 60 observations on two variables #' \describe{ #' \item{age}{number of years before 1983 - the year the data were obtained} #' \item{phase}{Ceramic Phase numbers} #' } #' #' @source Cunliffe, B. (1984) and Naylor and Smith (1988). #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(age ~ phase, data = Archaeo, col = "yellow", #' main = "Example 1.16", xlab = "Ceramic Phase", ylab = "Age") #' anova(lm(age ~ as.factor(phase), data= Archaeo)) #' "Archaeo" #' Time of relief for three treatments of arthritis #' #' Data for Exercise 10.58 #' #' #' @name Arthriti #' @docType data #' @format A data frame/tibblewith 51 observations on two variables #' \describe{ #' \item{time}{time (measured in days) until an arthritis sufferer experienced relief} #' \item{treatment}{a factor with levels \code{A}, \code{B}, and \code{C}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(time ~ treatment, data = Arthriti, #' col = c("lightblue", "lightgreen", "yellow"), #' ylab = "days") #' anova(lm(time ~ treatment, data = Arthriti)) #' "Arthriti" #' Durations of operation for 15 artificial heart transplants #' #' Data for Exercise 1.107 #' #' #' @name Artifici #' @docType data #' @format A data frame/tibble with 15 observations on one variable #' \describe{ #' \item{duration}{duration (in hours) for transplant} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Artifici$duration, 2) #' summary(Artifici$duration) #' values <- Artifici$duration[Artifici$duration < 6.5] #' values #' summary(values) #' "Artifici" #' Dissolving time versus level of impurities in aspirin tablets #' #' Data for Exercise 10.51 #' #' #' @name Asprin #' @docType data #' @format A data frame/tibble with 15 observations on two variables #' \describe{ #' \item{time}{time (in seconds) for aspirin to dissolve} #' \item{impurity}{impurity of an ingredient with levels \code{1\%}, #' \code{5\%}, and \code{10\%}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(time ~ impurity, data = Asprin, #' col = c("red", "blue", "green")) #' "Asprin" #' Asthmatic relief index on nine subjects given a drug and a placebo #' #' Data for Exercise 7.52 #' #' #' @name Asthmati #' @docType data #' @format A data frame/tibble with nine observations on three variables #' \describe{ #' \item{drug}{asthmatic relief index for patients given a drug} #' \item{placebo}{asthmatic relief index for patients given a placebo} #' \item{difference}{difference between the \code{placebo} and \code{drug}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Asthmati$difference) #' qqline(Asthmati$difference) #' shapiro.test(Asthmati$difference) #' with(data = Asthmati, #' t.test(placebo, drug, paired = TRUE, mu = 0, alternative = "greater") #' ) #' "Asthmati" #' Number of convictions reported by U.S. attorney's offices #' #' Data for Example 2.2 and Exercises 2.43 and 2.57 #' #' #' @name Attorney #' @docType data #' @format A data frame/tibble with 88 observations on three variables #' \describe{ #' \item{staff}{U.S. attorneys' office staff per 1 million population} #' \item{convict}{U.S. attorneys' office convictions per 1 million population} #' \item{district}{a factor with levels #' \code{Albuquerque}, \code{Alexandria, Va}, \code{Anchorage}, \code{Asheville, #' NC}, \code{Atlanta}, \code{Baltimore}, \code{Baton Rouge}, \code{Billings, Mt}, #' \code{Birmingham, Al}, \code{Boise, Id}, \code{Boston}, \code{Buffalo}, #' \code{Burlington, Vt}, \code{Cedar Rapids}, \code{Charleston, WVA}, #' \code{Cheyenne, Wy}, \code{Chicago}, \code{Cincinnati}, \code{Cleveland}, #' \code{Columbia, SC}, \code{Concord, NH}, \code{Denver}, \code{Des Moines}, #' \code{Detroit}, \code{East St. Louis}, \code{Fargo, ND}, \code{Fort Smith, Ark}, #' \code{Fort Worth}, \code{Grand Rapids, Mi}, \code{Greensboro, NC}, #' \code{Honolulu}, \code{Houston}, \code{Indianapolis}, \code{Jackson, Miss}, #' \code{Kansas City}, \code{Knoxville, Tn}, \code{Las Vegas}, \code{Lexington, #' Ky}, \code{Little Rock}, \code{Los Angeles}, \code{Louisville}, \code{Memphis}, #' \code{Miami}, \code{Milwaukee}, \code{Minneapolis}, \code{Mobile, Ala}, #' \code{Montgomery, Ala}, \code{Muskogee, Ok}, \code{Nashville}, \code{New Haven, #' Conn}, \code{New Orleans}, \code{New York (Brooklyn)}, \code{New York #' (Manhattan)}, \code{Newark, NJ}, \code{Oklahoma City}, \code{Omaha}, #' \code{Oxford, Miss}, \code{Pensacola, Fl}, \code{Philadelphia}, \code{Phoenix}, #' \code{Pittsburgh}, \code{Portland, Maine}, \code{Portland, Ore}, #' \code{Providence, RI}, \code{Raleigh, NC}, \code{Roanoke, Va}, #' \code{Sacramento}, \code{Salt Lake City}, \code{San Antonio}, \code{San Diego}, #' \code{San Francisco}, \code{Savannah, Ga}, \code{Scranton, Pa}, \code{Seattle}, #' \code{Shreveport, La}, \code{Sioux Falls, SD}, \code{South Bend, Ind}, #' \code{Spokane, Wash} ,\code{Springfield, Ill}, \code{St. Louis}, #' \code{Syracuse, NY}, \code{Tampa}, \code{Topeka, Kan}, \code{Tulsa}, #' \code{Tyler, Tex}, \code{Washington}, \code{Wheeling, WVa}, and \code{Wilmington, #' Del}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' par(mfrow=c(1, 2)) #' plot(convict ~ staff, data = Attorney, main = "With Washington, D.C.") #' plot(convict[-86] ~staff[-86], data = Attorney, #' main = "Without Washington, D.C.") #' par(mfrow=c(1, 1)) #' "Attorney" #' Number of defective auto gears produced by two manufacturers #' #' Data for Exercise 7.46 #' #' #' @name Autogear #' @docType data #' @format A data frame/tibble with 20 observations on two variables #' \describe{ #' \item{defectives}{number of defective gears in the production of 100 gears per day} #' \item{manufacturer}{a factor with levels \code{A} and \code{B}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' t.test(defectives ~ manufacturer, data = Autogear) #' wilcox.test(defectives ~ manufacturer, data = Autogear) #' t.test(defectives ~ manufacturer, var.equal = TRUE, data = Autogear) #' "Autogear" #' Illustrates inferences based on pooled t-test versus Wilcoxon rank sum test #' #' Data for Exercise 7.40 #' #' #' @name Backtoback #' @docType data #' @format A data frame/tibble with 24 observations on two variables #' \describe{ #' \item{score}{a numeric vector} #' \item{group}{a numeric vector} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' wilcox.test(score ~ group, data = Backtoback) #' t.test(score ~ group, data = Backtoback) #' "Backtoback" #' Baseball salaries for members of five major league teams #' #' Data for Exercise 1.11 #' #' #' @name Bbsalaries #' @docType data #' @format A data frame/tibble with 142 observations on two variables #' \describe{ #' \item{salary}{1999 salary for baseball player} #' \item{team}{a factor with levels \code{Angels}, \code{Indians}, #' \code{Orioles}, \code{Redsoxs}, and \code{Whitesoxs}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stripchart(salary ~ team, data = Bbsalaries, method = "stack", #' pch = 19, col = "blue", cex = 0.75) #' title(main = "Major League Salaries") #' "Bbsalaries" #' Graduation rates for student athletes and nonathletes in the Big Ten Conf. #' #' Data for Exercises 1.124 and 2.94 #' #' #' @name Bigten #' @docType data #' @format A data frame/tibble with 44 observations on the following four variables #' \describe{ #' \item{school}{a factor with levels \code{Illinois}, #' \code{Indiana}, \code{Iowa}, \code{Michigan}, \code{Michigan State}, #' \code{Minnesota}, \code{Northwestern}, \code{Ohio State}, \code{Penn State}, #' \code{Purdue}, and \code{Wisconsin}} #' \item{rate}{graduation rate} #' \item{year}{factor with two levels \code{1984-1985} and \code{1993-1994}} #' \item{status}{factor with two levels \code{athlete} and \code{student}} #' } #' #' @source NCAA Graduation Rates Report, 2000. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(rate ~ status, data = subset(Bigten, year = "1993-1994"), #' horizontal = TRUE, main = "Graduation Rates 1993-1994") #' with(data = Bigten, #' tapply(rate, list(year, status), mean) #' ) #' "Bigten" #' Test scores on first exam in biology class #' #' Data for Exercise 1.49 #' #' #' @name Biology #' @docType data #' @format A data frame/tibble with 30 observations on one variable #' \describe{ #' \item{score}{test scores on the first test in a beginning biology class} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Biology$score, breaks = "scott", col = "brown", freq = FALSE, #' main = "Problem 1.49", xlab = "Test Score") #' lines(density(Biology$score), lwd=3) #' "Biology" #' Live birth rates in 1990 and 1998 for all states #' #' Data for Example 1.10 #' #' #' @name Birth #' @docType data #' @format A data frame/tibble with 51 observations on three variables #' \describe{ #' \item{state}{a character with levels \code{Alabama}, #' \code{Alaska}, \code{Arizona}, \code{Arkansas}, \code{California}, #' \code{Colorado}, \code{Connecticut}, \code{Delaware}, \code{District of #' Colunbia}, \code{Florida}, \code{Georgia}, \code{Hawaii}, \code{Idaho}, #' \code{Illinois}, \code{Indiana}, \code{Iowa}, \code{Kansas}, \code{Kentucky}, #' \code{Louisiana}, \code{Maine}, \code{Maryland}, \code{Massachusetts}, #' \code{Michigan}, \code{Minnesota}, \code{Mississippi}, \code{Missour}, #' \code{Montana}, \code{Nebraska}, \code{Nevada}, \code{New Hampshire}, \code{New #' Jersey}, \code{New Mexico}, \code{New York}, \code{North Carolina}, \code{North #' Dakota}, \code{Ohio}, \code{Oklahoma}, \code{Oregon}, \code{Pennsylvania}, #' \code{Rhode Island}, \code{South Carolina}, \code{South Dakota}, #' \code{Tennessee}, \code{Texas}, \code{Utah}, \code{Vermont}, \code{Virginia}, #' \code{Washington}, \code{West Virginia}, \code{Wisconsin}, and \code{Wyoming}} #' \item{rate}{live birth rates per 1000 population} #' \item{year}{a factor with levels \code{1990} and \code{1998}} #' } #' #' @source \emph{National Vital Statistics Report, 48}, March 28, 2000, National #' Center for Health Statistics. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' rate1998 <- subset(Birth, year == "1998", select = rate) #' stem(x = rate1998$rate, scale = 2) #' hist(rate1998$rate, breaks = seq(10.9, 21.9, 1.0), xlab = "1998 Birth Rate", #' main = "Figure 1.14 in BSDA", col = "pink") #' hist(rate1998$rate, breaks = seq(10.9, 21.9, 1.0), xlab = "1998 Birth Rate", #' main = "Figure 1.16 in BSDA", col = "pink", freq = FALSE) #' lines(density(rate1998$rate), lwd = 3) #' rm(rate1998) #' "Birth" #' Education level of blacks by gender #' #' Data for Exercise 8.55 #' #' #' @name Blackedu #' @docType data #' @format A data frame/tibble with 3800 observations on two variables #' \describe{ #' \item{gender}{a factor with levels \code{Female} and \code{Male}} #' \item{education}{a factor with levels \code{High school dropout}, #' \code{High school graudate}, \code{Some college}, \code{Bachelor}'\code{s degree}, and #' \code{Graduate degree}} #' } #' #' @source Bureau of Census data. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~gender + education, data = Blackedu) #' T1 #' chisq.test(T1) #' "Blackedu" #' Blood pressure of 15 adult males taken by machine and by an expert #' #' Data for Exercise 7.84 #' #' #' @name Blood #' @docType data #' @format A data frame/tibble with 15 observations on the following two variables #' \describe{ #' \item{machine}{blood pressure recorded from an automated blood pressure machine} #' \item{expert}{blood pressure recorded by an expert using an at-home device} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' DIFF <- Blood$machine - Blood$expert #' shapiro.test(DIFF) #' qqnorm(DIFF) #' qqline(DIFF) #' rm(DIFF) #' t.test(Blood$machine, Blood$expert, paired = TRUE) #' "Blood" #' Incomes of board members from three different universities #' #' Data for Exercise 10.14 #' #' #' @name Board #' @docType data #' @format A data frame/tibble with 7 observations on three variables #' \describe{ #' \item{salary}{1999 salary (in $1000) for board directors} #' \item{university}{a factor with levels \code{A}, \code{B}, and \code{C}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(salary ~ university, data = Board, col = c("red", "blue", "green"), #' ylab = "Income") #' tapply(Board$salary, Board$university, summary) #' anova(lm(salary ~ university, data = Board)) #' \dontrun{ #' library(dplyr) #' dplyr::group_by(Board, university) %>% #' summarize(Average = mean(salary)) #' } "Board" #' Bone density measurements of 35 physically active and 35 non-active women #' #' Data for Example 7.22 #' #' #' @name Bones #' @docType data #' @format A data frame/tibble with 70 observations on two variables #' \describe{ #' \item{density}{bone density measurements} #' \item{group}{a factor with levels \code{active} and \code{nonactive}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' t.test(density ~ group, data = Bones, alternative = "greater") #' t.test(rank(density) ~ group, data = Bones, alternative = "greater") #' wilcox.test(density ~ group, data = Bones, alternative = "greater") #' #' "Bones" #' Number of books read and final spelling scores for 17 third graders #' #' Data for Exercise 9.53 #' #' #' @name Books #' @docType data #' @format A data frame/tibble with 17 observations on two variables #' \describe{ #' \item{book}{number of books read} #' \item{spelling}{spelling score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(spelling ~ book, data = Books) #' mod <- lm(spelling ~ book, data = Books) #' summary(mod) #' abline(mod, col = "blue", lwd = 2) #' "Books" #' Prices paid for used books at three different bookstores #' #' Data for Exercise 10.30 and 10.31 #' #' #' @name Bookstor #' @docType data #' @format A data frame/tibble with 72 observations on two variables #' \describe{ #' \item{dollars}{money obtained for selling textbooks} #' \item{store}{a factor with levels \code{A}, \code{B}, and \code{C}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(dollars ~ store, data = Bookstor, #' col = c("purple", "lightblue", "cyan")) #' kruskal.test(dollars ~ store, data = Bookstor) #' "Bookstor" #' Brain weight versus body weight of 28 animals #' #' Data for Exercises 2.15, 2.44, 2.58 and Examples 2.3 and 2.20 #' #' #' @name Brain #' @docType data #' @format A data frame/tibble with 28 observations on three variables #' \describe{ #' \item{species}{a factor with levels \code{African #' elephant}, \code{Asian Elephant}, \code{Brachiosaurus}, \code{Cat}, #' \code{Chimpanzee}, \code{Cow}, \code{Diplodocus}, \code{Donkey}, \code{Giraffe}, #' \code{Goat}, \code{Gorilla}, \code{Gray wolf}, \code{Guinea Pig}, \code{Hamster}, #' \code{Horse}, \code{Human}, \code{Jaguar}, \code{Kangaroo}, \code{Mole}, #' \code{Mouse}, \code{Mt Beaver}, \code{Pig}, \code{Potar monkey}, \code{Rabbit}, #' \code{Rat}, \code{Rhesus monkey}, \code{Sheep}, and \code{Triceratops}} #' \item{bodyweight}{body weight (in kg)} #' \item{brainweight}{brain weight (in g)} #' } #' #' @source P. Rousseeuw and A. Leroy, \emph{Robust Regression and Outlier Detection} #' (New York: Wiley, 1987). #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(log(brainweight) ~ log(bodyweight), data = Brain, #' pch = 19, col = "blue", main = "Example 2.3") #' mod <- lm(log(brainweight) ~ log(bodyweight), data = Brain) #' abline(mod, lty = "dashed", col = "blue") #' #' "Brain" #' Repair costs of vehicles crashed into a barrier at 5 miles per hour #' #' Data for Exercise 1.73 #' #' #' @name Bumpers #' @docType data #' @format A data frame/tibble with 23 observations on two variables #' \describe{ #' \item{car}{a factor with levels \code{Buick Century}, #' \code{Buick Skylark}, \code{Chevrolet Cavalier}, \code{Chevrolet Corsica}, #' \code{Chevrolet Lumina}, \code{Dodge Dynasty}, \code{Dodge Monaco}, \code{Ford #' Taurus}, \code{Ford Tempo}, \code{Honda Accord}, \code{Hyundai Sonata}, #' \code{Mazda 626}, \code{Mitsubishi Galant}, \code{Nissan Stanza}, #' \code{Oldsmobile Calais}, \code{Oldsmobile Ciere}, \code{Plymouth Acclaim}, #' \code{Pontiac 6000}, \code{Pontiac Grand Am}, \code{Pontiac Sunbird}, #' \code{Saturn SL2}, \code{Subaru Legacy}, and \code{Toyota Camry}} #' \item{repair}{total repair cost (in dollars) after crashing a car into a #' barrier four times while the car was traveling at 5 miles per hour} #' } #' #' @source Insurance Institute of Highway Safety. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Bumpers$repair) #' stripchart(Bumpers$repair, method = "stack", pch = 19, col = "blue") #' library(lattice) #' dotplot(car ~ repair, data = Bumpers) #' "Bumpers" #' Attendance of bus drivers versus shift #' #' Data for Exercise 8.25 #' #' #' @name Bus #' @docType data #' @format A data frame/tibble with 29363 observations on two variables #' \describe{ #' \item{attendance}{a factor with levels \code{absent} and #' \code{present}} #' \item{shift}{a factor with levels \code{am}, \code{noon}, \code{pm}, #' \code{swing}, and \code{split}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~attendance + shift, data = Bus) #' T1 #' chisq.test(T1) #' "Bus" #' Median charges for coronary bypass at 17 hospitals in North Carolina #' #' Data for Exercises 5.104 and 6.43 #' #' #' @name Bypass #' @docType data #' @format A data frame/tibble with 17 observations on two variables #' \describe{ #' \item{hospital}{a factor with levels \code{Carolinas Med #' Ct}, \code{Duke Med Ct}, \code{Durham Regional}, \code{Forsyth Memorial}, #' \code{Frye Regional}, \code{High Point Regional}, \code{Memorial Mission}, #' \code{Mercy}, \code{Moore Regional}, \code{Moses Cone Memorial}, \code{NC #' Baptist}, \code{New Hanover Regional}, \code{Pitt Co. Memorial}, #' \code{Presbyterian}, \code{Rex}, \code{Univ of North Carolina}, and \code{Wake #' County}} #' \item{charge}{median charge for coronary bypass} #' } #' #' @source \emph{Consumer's Guide to Hospitalization Charges in North Carolina Hospitals} #' (August 1994), North Carolina Medical Database Commission, Department of Insurance. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Bypass$charge) #' t.test(Bypass$charge, conf.level=.90)$conf #' t.test(Bypass$charge, mu = 35000) #' "Bypass" #' Estimates of costs of kitchen cabinets by two suppliers on 20 prospective #' homes #' #' Data for Exercise 7.83 #' #' #' @name Cabinets #' @docType data #' @format A data frame/tibble with 20 observations on three variables #' \describe{ #' \item{home}{a numeric vector} #' \item{supplA}{estimate for kitchen cabinets from supplier A (in dollars)} #' \item{supplB}{estimate for kitchen cabinets from supplier A (in dollars)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' DIF <- Cabinets$supplA - Cabinets$supplB #' qqnorm(DIF) #' qqline(DIF) #' shapiro.test(DIF) #' with(data = Cabinets, #' t.test(supplA, supplB, paired = TRUE) #' ) #' with(data = Cabinets, #' wilcox.test(supplA, supplB, paired = TRUE) #' ) #' rm(DIF) #' "Cabinets" #' Survival times of terminal cancer patients treated with vitamin C #' #' Data for Exercises 6.55 and 6.64 #' #' #' @name Cancer #' @docType data #' @format A data frame/tibble with 64 observations on two variables #' \describe{ #' \item{survival}{survival time (in days) of terminal patients #' treated with vitamin C} #' \item{type}{a factor indicating type of cancer with levels #' \code{breast}, \code{bronchus}, \code{colon}, \code{ovary}, and #' \code{stomach}} #' } #' @source Cameron, E and Pauling, L. 1978. \dQuote{Supplemental Ascorbate in the #' Supportive Treatment of Cancer.} \emph{Proceedings of the National Academy of #' Science}, 75, 4538-4542. #' #' #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(survival ~ type, Cancer, col = "blue") #' stomach <- Cancer$survival[Cancer$type == "stomach"] #' bronchus <- Cancer$survival[Cancer$type == "bronchus"] #' boxplot(stomach, ylab = "Days") #' SIGN.test(stomach, md = 100, alternative = "greater") #' SIGN.test(bronchus, md = 100, alternative = "greater") #' rm(bronchus, stomach) #' #' "Cancer" #' Carbon monoxide level measured at three industrial sites #' #' Data for Exercise 10.28 and 10.29 #' #' #' @name Carbon #' @docType data #' @format A data frame/tibble with 24 observations on two variables #' \describe{ #' \item{CO}{carbon monoxide measured (in parts per million)} #' \item{site}{a factor with levels \code{SiteA}, \code{SiteB}, and \code{SiteC}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(CO ~ site, data = Carbon, col = "lightgreen") #' kruskal.test(CO ~ site, data = Carbon) #' "Carbon" #' Reading scores on the California achievement test for a group of 3rd graders #' #' Data for Exercise 1.116 #' #' #' @name Cat #' @docType data #' @format A data frame/tibble with 17 observations on one variable #' \describe{ #' \item{score}{reading score on the California Achievement Test} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Cat$score) #' fivenum(Cat$score) #' boxplot(Cat$score, main = "Problem 1.116", col = "green") #' "Cat" #' Entry age and survival time of patients with small cell lung cancer under #' two different treatments #' #' Data for Exercises 7.34 and 7.48 #' #' #' @name Censored #' @docType data #' @format A data frame/tibble with 121 observations on three variables #' \describe{ #' \item{survival}{survival time (in days) of patients with small cell lung cancer} #' \item{treatment}{a factor with levels \code{armA} and \code{armB} indicating the #' treatment a patient received} #' \item{age}{the age of the patient} #' } #' #' @source Ying, Z., Jung, S., Wei, L. 1995. \dQuote{Survival Analysis with Median Regression Models.} #' \emph{Journal of the American Statistical Association}, 90, 178-184. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(survival ~ treatment, data = Censored, col = "yellow") #' wilcox.test(survival ~ treatment, data = Censored, alternative = "greater") #' "Censored" #' Temperatures and O-ring failures for the launches of the space shuttle #' Challenger #' #' Data for Examples 1.11, 1.12, 1.13, 2.11 and 5.1 #' #' #' @name Challeng #' @docType data #' @format A data frame/tibble with 25 observations on four variables #' \describe{ #' \item{flight}{a character variable indicating the flight} #' \item{date}{date of the flight} #' \item{temp}{temperature (in fahrenheit)} #' \item{failures}{number of failures} #' } #' #' @source Dalal, S. R., Fowlkes, E. B., Hoadley, B. 1989. \dQuote{Risk Analysis of the Space Shuttle: Pre-Challenger #' Prediction of Failure.} #' \emph{Journal of the American Statistical Association}, 84, No. 408, 945-957. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Challeng$temp) #' summary(Challeng$temp) #' IQR(Challeng$temp) #' quantile(Challeng$temp) #' fivenum(Challeng$temp) #' stem(sort(Challeng$temp)[-1]) #' summary(sort(Challeng$temp)[-1]) #' IQR(sort(Challeng$temp)[-1]) #' quantile(sort(Challeng$temp)[-1]) #' fivenum(sort(Challeng$temp)[-1]) #' par(mfrow=c(1, 2)) #' qqnorm(Challeng$temp) #' qqline(Challeng$temp) #' qqnorm(sort(Challeng$temp)[-1]) #' qqline(sort(Challeng$temp)[-1]) #' par(mfrow=c(1, 1)) #' "Challeng" #' Starting salaries of 50 chemistry majors #' #' Data for Example 5.3 #' #' #' @name Chemist #' @docType data #' @format A data frame/tibble with 50 observations on one variable #' \describe{ #' \item{salary}{starting salary (in dollars) for chemistry major} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Chemist$salary) #' "Chemist" #' Surface salinity measurements taken offshore from Annapolis, Maryland in #' 1927 #' #' Data for Exercise 6.41 #' #' #' @name Chesapea #' @docType data #' @format A data frame/tibble with 16 observations on one variable #' \describe{ #' \item{salinity}{surface salinity measurements (in parts per 1000) for station 11, #' offshore from Annanapolis, Maryland, on July 3-4, 1927.} #' } #' #' @source Davis, J. (1986) \emph{Statistics and Data Analysis in Geology, Second Edition}. #' John Wiley and Sons, New York. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Chesapea$salinity) #' qqline(Chesapea$salinity) #' shapiro.test(Chesapea$salinity) #' t.test(Chesapea$salinity, mu = 7) #' "Chesapea" #' Insurance injury ratings of Chevrolet vehicles for 1990 and 1993 models #' #' Data for Exercise 8.35 #' #' #' @name Chevy #' @docType data #' @format A data frame/tibble with 67 observations on two variables #' \describe{ #' \item{year}{a factor with levels \code{1988-90} and #' \code{1991-93}} #' \item{frequency}{a factor with levels \code{much better than average}, \code{above average}, #' \code{average}, \code{below average}, and \code{much worse than average}} #' } #' #' @source Insurance Institute for Highway Safety and the Highway Loss Data Institute, 1995. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~year + frequency, data = Chevy) #' T1 #' chisq.test(T1) #' rm(T1) #' "Chevy" #' Weight gain of chickens fed three different rations #' #' Data for Exercise 10.15 #' #' #' @name Chicken #' @docType data #' @format A data frame/tibble with 13 observations onthree variables #' \describe{ #' \item{gain}{weight gain over a specified period} #' \item{feed}{a factor with levels \code{ration1}, \code{ration2}, #' and \code{ration3}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(gain ~ feed, col = c("red","blue","green"), data = Chicken) #' anova(lm(gain ~ feed, data = Chicken)) #' "Chicken" #' Measurements of the thickness of the oxide layer of manufactured integrated #' circuits #' #' Data for Exercises 6.49 and 7.47 #' #' #' @name Chipavg #' @docType data #' @format A data frame/tibble with 30 observations on three variables #' \describe{ #' \item{wafer1}{thickness of the oxide layer for \code{wafer1}} #' \item{wafer2}{thickness of the oxide layer for \code{wafer2}} #' \item{thickness}{average thickness of the oxide layer of the eight measurements #' obtained from each set of two wafers} #' } #' #' @source Yashchin, E. 1995. \dQuote{Likelihood Ratio Methods #' for Monitoring Parameters of a Nested Random Effect Model.} #' \emph{Journal of the American Statistical Association}, 90, 729-738. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Chipavg$thickness) #' t.test(Chipavg$thickness, mu = 1000) #' boxplot(Chipavg$wafer1, Chipavg$wafer2, name = c("Wafer 1", "Wafer 2")) #' shapiro.test(Chipavg$wafer1) #' shapiro.test(Chipavg$wafer2) #' t.test(Chipavg$wafer1, Chipavg$wafer2, var.equal = TRUE) #' "Chipavg" #' Four measurements on a first wafer and four measurements on a second wafer #' selected from 30 lots #' #' Data for Exercise 10.9 #' #' #' @name Chips #' @docType data #' @format A data frame/tibble with 30 observations on eight variables #' \describe{ #' \item{wafer11}{first measurement of thickness of the oxide layer for \code{wafer1}} #' \item{wafer12}{second measurement of thickness of the oxide layer for \code{wafer1}} #' \item{wafer13}{third measurement of thickness of the oxide layer for \code{wafer1}} #' \item{wafer14}{fourth measurement of thickness of the oxide layer for \code{wafer1}} #' \item{wafer21}{first measurement of thickness of the oxide layer for \code{wafer2}} #' \item{wafer22}{second measurement of thickness of the oxide layer for \code{wafer2}} #' \item{wafer23}{third measurement of thickness of the oxide layer for \code{wafer2}} #' \item{wafer24}{fourth measurement of thickness of the oxide layer for \code{wafer2}} #' } #' #' @source Yashchin, E. 1995. \dQuote{Likelihood Ratio Methods #' for Monitoring Parameters of a Nested Random Effect Model.} #' \emph{Journal of the American Statistical Association}, 90, 729-738. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' with(data = Chips, #' boxplot(wafer11, wafer12, wafer13, wafer14, wafer21, #' wafer22, wafer23, wafer24, col = "pink") #' ) #' "Chips" #' Effect of mother's smoking on birth weight of newborn #' #' Data for Exercise 2.27 #' #' #' @name Cigarett #' @docType data #' @format A data frame/tibble with 16 observations on two variables #' \describe{ #' \item{cigarettes}{mothers' estimated average number of cigarettes smoked per day} #' \item{weight}{children's birth weights (in pounds)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(weight ~ cigarettes, data = Cigarett) #' model <- lm(weight ~ cigarettes, data = Cigarett) #' abline(model, col = "red") #' with(data = Cigarett, #' cor(weight, cigarettes) #' ) #' rm(model) #' "Cigarett" #' Milligrams of tar in 25 cigarettes selected randomly from 4 different brands #' #' Data for Example 10.4 #' #' #' @name Cigar #' @docType data #' @format A data frame/tibble with 100 observations on two variables #' \describe{ #' \item{tar}{amount of tar (measured in milligrams)} #' \item{brand}{a factor indicating cigarette brand with levels \code{brandA}, \code{brandB}, #' \code{brandC}, and \code{brandD}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(tar ~ brand, data = Cigar, col = "cyan", ylab = "mg tar") #' anova(lm(tar ~ brand, data = Cigar)) #' "Cigar" #' Percent of peak bone density of different aged children #' #' Data for Exercise 9.7 #' #' #' @name Citrus #' @docType data #' @format A data frame/tibble with nine observations on two variables #' \describe{ #' \item{age}{age of children} #' \item{percent}{percent peak bone density} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' model <- lm(percent ~ age, data = Citrus) #' summary(model) #' anova(model) #' rm(model) #' "Citrus" #' Residual contaminant following the use of three different cleansing agents #' #' Data for Exercise 10.16 #' #' #' @name Clean #' @docType data #' @format A data frame/tibble with 45 observations on two variables #' \describe{ #' \item{clean}{residual contaminants} #' \item{agent}{a factor with levels \code{A}, \code{B}, and \code{C}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(clean ~ agent, col = c("red", "blue", "green"), data = Clean) #' anova(lm(clean ~ agent, data = Clean)) #' "Clean" #' Signal loss from three types of coxial cable #' #' Data for Exercise 10.24 and 10.25 #' #' #' @name Coaxial #' @docType data #' @format A data frame/tibble with 45 observations on two variables #' \describe{ #' \item{signal}{signal loss per 1000 feet} #' \item{cable}{factor with three levels of coaxial cable \code{typeA}, #' \code{typeB}, and \code{typeC}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(signal ~ cable, data = Coaxial, col = c("red", "green", "yellow")) #' kruskal.test(signal ~ cable, data = Coaxial) #' "Coaxial" #' Productivity of workers with and without a coffee break #' #' Data for Exercise 7.55 #' #' #' @name Coffee #' @docType data #' @format A data frame/tibble with nine observations on three variables #' \describe{ #' \item{without}{workers' productivity scores without a coffee break} #' \item{with}{workers' productivity scores with a coffee break} #' \item{differences}{\code{with} minus \code{without}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Coffee$differences) #' qqline(Coffee$differences) #' shapiro.test(Coffee$differences) #' t.test(Coffee$with, Coffee$without, paired = TRUE, alternative = "greater") #' wilcox.test(Coffee$with, Coffee$without, paired = TRUE, #' alterantive = "greater") #' "Coffee" #' Yearly returns on 12 investments #' #' Data for Exercise 5.68 #' #' #' @name Coins #' @docType data #' @format A data frame/tibble with 12 observations on one variable #' \describe{ #' \item{return}{yearly returns on each of 12 possible investments} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Coins$return) #' qqline(Coins$return) #' "Coins" #' Commuting times for selected cities in 1980 and 1990 #' #' Data for Exercises 1.13, and 7.85 #' #' #' @name Commute #' @docType data #' @format A data frame/tibble with 39 observations on three variables #' \describe{ #' \item{city}{a factor with levels \code{Atlanta}, #' \code{Baltimore}, \code{Boston}, \code{Buffalo}, \code{Charlotte}, #' \code{Chicago}, \code{Cincinnati}, \code{Cleveland}, \code{Columbus}, #' \code{Dallas}, \code{Denver}, \code{Detroit}, \code{Hartford}, \code{Houston}, #' \code{Indianapolis}, \code{Kansas City}, \code{Los Angeles}, \code{Miami}, #' \code{Milwaukee}, \code{Minneapolis}, \code{New Orleans}, \code{New York}, #' \code{Norfolk}, \code{Orlando}, \code{Philadelphia}, \code{Phoenix}, #' \code{Pittsburgh}, \code{Portland}, \code{Providence}, \code{Rochester}, #' \code{Sacramento}, \code{Salt Lake City}, \code{San Antonio}, \code{San Diego}, #' \code{San Francisco}, \code{Seattle}, \code{St. Louis}, \code{Tampa}, and #' \code{Washington}} #' \item{year}{year} #' \item{time}{commute times} #' } #' #' @source Federal Highway Administration. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stripplot(year ~ time, data = Commute, jitter = TRUE) #' dotplot(year ~ time, data = Commute) #' bwplot(year ~ time, data = Commute) #' stripchart(time ~ year, data = Commute, method = "stack", pch = 1, #' cex = 2, col = c("red", "blue"), #' group.names = c("1980", "1990"), #' main = "", xlab = "minutes") #' title(main = "Commute Time") #' boxplot(time ~ year, data = Commute, names=c("1980", "1990"), #' horizontal = TRUE, las = 1) #' #' "Commute" #' Tennessee self concept scale scores for a group of teenage boys #' #' Data for Exercise 1.68 and 1.82 #' #' #' @name Concept #' @docType data #' @format A data frame/tibble with 28 observations on one variable #' \describe{ #' \item{self}{Tennessee self concept scores} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' summary(Concept$self) #' sd(Concept$self) #' diff(range(Concept$self)) #' IQR(Concept$self) #' summary(Concept$self/10) #' IQR(Concept$self/10) #' sd(Concept$self/10) #' diff(range(Concept$self/10)) #' "Concept" #' Compressive strength of concrete blocks made by two different methods #' #' Data for Example 7.17 #' #' #' @name Concrete #' @docType data #' @format A data frame/tibble with 20 observations on two variables #' \describe{ #' \item{strength}{comprehensive strength (in pounds per square inch)} #' \item{method}{factor with levels \code{new} and \code{old} indicating the #' method used to construct a concrete block} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' wilcox.test(strength ~ method, data = Concrete, alternative = "greater") #' "Concrete" #' Comparison of the yields of a new variety and a standard variety of corn #' planted on 12 plots of land #' #' Data for Exercise 7.77 #' #' #' @name Corn #' @docType data #' @format A data frame/tibble with 12 observations on three variables #' \describe{ #' \item{new}{corn yield with new meathod} #' \item{standard}{corn yield with standard method} #' \item{differences}{\code{new} minus \code{standard}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(Corn$differences) #' qqnorm(Corn$differences) #' qqline(Corn$differences) #' shapiro.test(Corn$differences) #' t.test(Corn$differences, alternative = "greater") #' "Corn" #' Exercise to illustrate correlation #' #' Data for Exercise 2.23 #' #' #' @name Correlat #' @docType data #' @format A data frame/tibble with 13 observations on two variables #' \describe{ #' \item{x}{a numeric vector} #' \item{y}{a numeric vector} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(y ~ x, data = Correlat) #' model <- lm(y ~ x, data = Correlat) #' abline(model) #' rm(model) #' "Correlat" #' Scores of 18 volunteers who participated in a counseling process #' #' Data for Exercise 6.96 #' #' #' @name Counsel #' @docType data #' @format A data frame/tibble with 18 observations on one variable #' \describe{ #' \item{score}{standardized psychology scores after a counseling process} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Counsel$score) #' t.test(Counsel$score, mu = 70) #' "Counsel" #' Consumer price index from 1979 to 1998 #' #' Data for Exercise 1.34 #' #' #' @name Cpi #' @docType data #' @format A data frame/tibble with 20 observations on two variables #' \describe{ #' \item{year}{year} #' \item{cpi}{consumer price index} #' } #' #' @source Bureau of Labor Statistics. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(cpi ~ year, data = Cpi, type = "l", lty = 2, lwd = 2, col = "red") #' barplot(Cpi$cpi, col = "pink", las = 2, main = "Problem 1.34") #' "Cpi" #' Violent crime rates for the states in 1983 and 1993 #' #' Data for Exercises 1.90, 2.32, 3.64, and 5.113 #' #' #' @name Crime #' @docType data #' @format A data frame/tibble with 102 observations on three variables #' \describe{ #' \item{state}{a factor with levels \code{Alabama}, #' \code{Alaska}, \code{Arizona}, \code{Arkansas}, \code{California}, #' \code{Colorado}, \code{Connecticut}, \code{DC}, \code{Delaware}, \code{Florida}, #' \code{Georgia}, \code{Hawaii}, \code{Idaho}, \code{Illinois}, \code{Indiana}, #' \code{Iowa}, \code{Kansas}, \code{Kentucky}, \code{Louisiana}, \code{Maine}, #' \code{Maryland}, \code{Massachusetts}, \code{Michigan}, \code{Minnesota}, #' \code{Mississippi}, \code{Missour}, \code{Montana}, \code{Nebraska}, #' \code{Nevada}, \code{New Hampshire}, \code{New Jersey}, \code{New Mexico}, #' \code{New York}, \code{North Carolina}, \code{North Dakota}, \code{Ohio}, #' \code{Oklahoma}, \code{Oregon}, \code{Pennsylvania}, \code{Rhode Island}, #' \code{South Carolina}, \code{South Dakota}, \code{Tennessee}, \code{Texas}, #' \code{Utah}, \code{Vermont}, \code{Virginia}, \code{Washington}, \code{West #' Virginia}, \code{Wisconsin}, and \code{Wyoming}} #' \item{year}{a factor with levels \code{1983} and \code{1993}} #' \item{rate}{crime rate per 100,000 inhabitants} #' } #' #' @source U.S. Department of Justice, Bureau of Justice Statistics, \emph{Sourcebook of #' Criminal Justice Statistics}, 1993. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(rate ~ year, data = Crime, col = "red") #' "Crime" #' Charles Darwin's study of cross-fertilized and self-fertilized plants #' #' Data for Exercise 7.62 #' #' #' @name Darwin #' @docType data #' @format A data frame/tibble with 15 observations on three variables #' \describe{ #' \item{pot}{number of pot} #' \item{cross}{height of plant (in inches) after a fixed period of time when cross-fertilized} #' \item{self}{height of plant (in inches) after a fixed period of time when self-fertilized} #' } #' #' @source Darwin, C. (1876) \emph{The Effect of Cross- and Self-Fertilization in the #' Vegetable Kingdom}, 2nd edition, London. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' differ <- Darwin$cross - Darwin$self #' qqnorm(differ) #' qqline(differ) #' shapiro.test(differ) #' wilcox.test(Darwin$cross, Darwin$self, paired = TRUE) #' rm(differ) #' "Darwin" #' Automobile dealers classified according to type dealership and service #' rendered to customers #' #' Data for Example 2.22 #' #' #' @name Dealers #' @docType data #' @format A data frame/tibble with 122 observations on two variables #' \describe{ #' \item{type}{a factor with levels \code{Honda}, \code{Toyota}, \code{Mazda}, #' \code{Ford}, \code{Dodge}, and \code{Saturn}} #' \item{service}{a factor with levels \code{Replaces unnecessarily} and \code{Follows manufacturer guidelines}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' xtabs(~type + service, data = Dealers) #' T1 <- xtabs(~type + service, data = Dealers) #' T1 #' addmargins(T1) #' pt <- prop.table(T1, margin = 1) #' pt #' barplot(t(pt), col = c("red", "skyblue"), legend = colnames(T1)) #' rm(T1, pt) #' "Dealers" #' Number of defective items produced by 20 employees #' #' Data for Exercise 1.27 #' #' #' @name Defectiv #' @docType data #' @format A data frame/tibble with 20 observations on one variable #' \describe{ #' \item{number}{number of defective items produced by the employees in a small business firm} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~ number, data = Defectiv) #' T1 #' barplot(T1, col = "pink", ylab = "Frequency", #' xlab = "Defective Items Produced by Employees", main = "Problem 1.27") #' rm(T1) #' "Defectiv" #' Percent of bachelor's degrees awarded women in 1970 versus 1990 #' #' Data for Exercise 2.75 #' #' #' @name Degree #' @docType data #' @format A data frame/tibble with 1064 observations on two variables #' \describe{ #' \item{field}{a factor with levels \code{Health}, #' \code{Education}, \code{Foreign Language}, \code{Psychology}, \code{Fine Arts}, #' \code{Life Sciences}, \code{Business}, \code{Social Science}, \code{Physical Sciences}, #' \code{Engineering}, and \code{All Fields}} #' \item{awarded}{a factor with levels \code{1970} and \code{1990}} #' } #' #' @source U.S. Department of Health and Human Services, National #' Center for Education Statistics. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~field + awarded, data = Degree) #' T1 #' barplot(t(T1), beside = TRUE, col = c("red", "skyblue"), legend = colnames(T1)) #' rm(T1) #' "Degree" #' Delay times on 20 flights from four major air carriers #' #' Data for Exercise 10.55 #' #' #' @name Delay #' @docType data #' @format A data frame/tibble with 80 observations on two variables #' \describe{ #' \item{delay}{the delay time (in minutes) for 80 randomly selected flights} #' \item{carrier}{a factor with levels \code{A}, \code{B}, \code{C}, and \code{D}} #' } #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(delay ~ carrier, data = Delay, #' main = "Exercise 10.55", ylab = "minutes", #' col = "pink") #' kruskal.test(delay ~carrier, data = Delay) #' "Delay" #' Number of dependent children for 50 families #' #' Data for Exercise 1.26 #' #' #' @name Depend #' @docType data #' @format A data frame/tibble with 50 observations on one variable #' \describe{ #' \item{number}{number of dependent children in a family} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~ number, data = Depend) #' T1 #' barplot(T1, col = "lightblue", main = "Problem 1.26", #' xlab = "Number of Dependent Children", ylab = "Frequency") #' rm(T1) #' "Depend" #' Educational levels of a sample of 40 auto workers in Detroit #' #' Data for Exercise 5.21 #' #' #' @name Detroit #' @docType data #' @format A data frame/tibble with 40 observations on one variable #' \describe{ #' \item{educ}{the educational level (in years) of a sample of 40 auto workers in a plant in Detroit} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Detroit$educ) #' "Detroit" #' Demographic characteristics of developmental students at 2-year colleges and #' 4-year colleges #' #' Data used for Exercise 8.50 #' #' #' @name Develop #' @docType data #' @format A data frame/tibble with 5656 observations on two variables #' \describe{ #' \item{race}{a factor with levels \code{African American}, \code{American Indian}, #' \code{Asian}, \code{Latino}, and \code{White}} #' \item{college}{a factor with levels \code{Two-year} and \code{Four-year}} #' } #' #' @source \emph{Research in Development Education} (1994), V. 11, 2. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~race + college, data = Develop) #' T1 #' chisq.test(T1) #' rm(T1) #' "Develop" #' Test scores for students who failed developmental mathematics in the fall #' semester 1995 #' #' Data for Exercise 6.47 #' #' #' @name Devmath #' @docType data #' @format A data frame/tibble with 40 observations on one variable #' \describe{ #' \item{score}{first exam score} #' } #' #' @source Data provided by Dr. Anita Kitchens. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Devmath$score) #' t.test(Devmath$score, mu = 80, alternative = "less") #' "Devmath" #' Outcomes and probabilities of the roll of a pair of fair dice #' #' Data for Exercise 3.109 #' #' #' @name Dice #' @docType data #' @format A data frame/tibble with 11 observations on two variables #' \describe{ #' \item{x}{possible outcomes for the sum of two dice} #' \item{px}{probability for outcome \code{x}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' roll1 <- sample(1:6, 20000, replace = TRUE) #' roll2 <- sample(1:6, 20000, replace = TRUE) #' outcome <- roll1 + roll2 #' T1 <- table(outcome)/length(outcome) #' remove(roll1, roll2, outcome) #' T1 #' round(t(Dice), 5) #' rm(roll1, roll2, T1) #' "Dice" #' Diesel fuel prices in 1999-2000 in nine regions of the country #' #' Data for Exercise 2.8 #' #' #' @name Diesel #' @docType data #' @format A data frame/tibble with 650 observations on three variables #' \describe{ #' \item{date}{date when price was recorded} #' \item{pricepergallon}{price per gallon (in dollars)} #' \item{location}{a factor with levels \code{California}, \code{CentralAtlantic}, #' \code{Coast}, \code{EastCoast}, \code{Gulf}, \code{LowerAtlantic}, \code{NatAvg}, #' \code{NorthEast}, \code{Rocky}, and \code{WesternMountain}} #' } #' #' @source Energy Information Administration, National Enerfy Information Center: #' 1000 Independence Ave., SW, Washington, D.C., 20585. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' par(las = 2) #' boxplot(pricepergallon ~ location, data = Diesel) #' boxplot(pricepergallon ~ location, #' data = droplevels(Diesel[Diesel$location == "EastCoast" | #' Diesel$location == "Gulf" | Diesel$location == "NatAvg" | #' Diesel$location == "Rocky" | Diesel$location == "California", ]), #' col = "pink", main = "Exercise 2.8") #' par(las = 1) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Diesel, aes(x = date, y = pricepergallon, #' color = location)) + #' geom_point() + #' geom_smooth(se = FALSE) + #' theme_bw() + #' labs(y = "Price per Gallon (in dollars)") #' } "Diesel" #' Parking tickets issued to diplomats #' #' Data for Exercises 1.14 and 1.37 #' #' #' @name Diplomat #' @docType data #' @format A data frame/tibble with 10 observations on three variables #' \describe{ #' \item{country}{a factor with levels \code{Brazil}, #' \code{Bulgaria}, \code{Egypt}, \code{Indonesia}, \code{Israel}, \code{Nigeria}, #' \code{Russia}, \code{S. Korea}, \code{Ukraine}, and \code{Venezuela}} #' \item{number}{total number of tickets} #' \item{rate}{number of tickets per vehicle per month} #' } #' #' @source \emph{Time}, November 8, 1993. Figures are from January to June 1993. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' par(las = 2, mfrow = c(2, 2)) #' stripchart(number ~ country, data = Diplomat, pch = 19, #' col= "red", vertical = TRUE) #' stripchart(rate ~ country, data = Diplomat, pch = 19, #' col= "blue", vertical = TRUE) #' with(data = Diplomat, #' barplot(number, names.arg = country, col = "red")) #' with(data = Diplomat, #' barplot(rate, names.arg = country, col = "blue")) #' par(las = 1, mfrow = c(1, 1)) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Diplomat, aes(x = reorder(country, number), #' y = number)) + #' geom_bar(stat = "identity", fill = "pink", color = "black") + #' theme_bw() + labs(x = "", y = "Total Number of Tickets") #' ggplot2::ggplot(data = Diplomat, aes(x = reorder(country, rate), #' y = rate)) + #' geom_bar(stat = "identity", fill = "pink", color = "black") + #' theme_bw() + labs(x = "", y = "Tickets per vehicle per month") #' } "Diplomat" #' Toxic intensity for manufacturing plants producing herbicidal preparations #' #' Data for Exercise 1.127 #' #' #' @name Disposal #' @docType data #' @format A data frame/tibble with 29 observations on one variable #' \describe{ #' \item{pounds}{pounds of toxic waste per $1000 of shipments of its products} #' } #' #' @source Bureau of the Census, \emph{Reducing Toxins}, Statistical Brief SB/95-3, #' February 1995. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Disposal$pounds) #' fivenum(Disposal$pounds) #' EDA(Disposal$pounds) #' "Disposal" #' Rankings of the favorite breeds of dogs #' #' Data for Exercise 2.88 #' #' #' @name Dogs #' @docType data #' @format A data frame/tibble with 20 observations on three variables #' \describe{ #' \item{breed}{a factor with levels \code{Beagle}, #' \code{Boxer}, \code{Chihuahua}, \code{Chow}, \code{Dachshund}, #' \code{Dalmatian}, \code{Doberman}, \code{Huskie}, \code{Labrador}, #' \code{Pomeranian}, \code{Poodle}, \code{Retriever}, \code{Rotweiler}, #' \code{Schnauzer}, \code{Shepherd}, \code{Shetland}, \code{ShihTzu}, #' \code{Spaniel}, \code{Springer}, and \code{Yorkshire}} #' \item{ranking}{numeric ranking} #' \item{year}{a factor with levels \code{1992}, \code{1993}, \code{1997}, #' and \code{1998}} #' } #' #' @source \emph{The World Almanac and Book of Facts}, 2000. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' cor(Dogs$ranking[Dogs$year == "1992"], Dogs$ranking[Dogs$year == "1993"]) #' cor(Dogs$ranking[Dogs$year == "1997"], Dogs$ranking[Dogs$year == "1998"]) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Dogs, aes(x = reorder(breed, ranking), y = ranking)) + #' geom_bar(stat = "identity") + #' facet_grid(year ~. ) + #' theme(axis.text.x = element_text(angle = 85, vjust = 0.5)) #' } "Dogs" #' Rates of domestic violence per 1,000 women by age groups #' #' Data for Exercise 1.20 #' #' #' @name Domestic #' @docType data #' @format A data frame/tibble with five observations on two variables #' \describe{ #' \item{age}{a factor with levels \code{12-19}, \code{20-24}, #' \code{25-34}, \code{35-49}, and \code{50-64}} #' \item{rate}{rate of domestic violence per 1000 women} #' } #' #' @source U.S. Department of Justice. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' barplot(Domestic$rate, names.arg = Domestic$age) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Domestic, aes(x = age, y = rate)) + #' geom_bar(stat = "identity", fill = "purple", color = "black") + #' labs(x = "", y = "Domestic violence per 1000 women") + #' theme_bw() #' } "Domestic" #' Dopamine b-hydroxylase activity of schizophrenic patients treated with an #' antipsychotic drug #' #' Data for Exercises 5.14 and 7.49 #' #' #' @name Dopamine #' @docType data #' @format A data frame/tibble with 25 observations on two variables #' \describe{ #' \item{dbh}{dopamine b-hydroxylase activity (units are nmol/(ml)(h)/(mg) of protein)} #' \item{group}{a factor with levels \code{nonpsychotic} and \code{psychotic}} #' } #' #' @source D.E. Sternberg, D.P. Van Kammen, and W.E. Bunney, "Schizophrenia: Dopamine #' b-Hydroxylase Activity and Treatment Respsonse," \emph{Science, 216} (1982), 1423 - 1425. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(dbh ~ group, data = Dopamine, col = "orange") #' t.test(dbh ~ group, data = Dopamine, var.equal = TRUE) #' "Dopamine" #' Closing yearend Dow Jones Industrial averages from 1896 through 2000 #' #' Data for Exercise 1.35 #' #' #' @name Dowjones #' @docType data #' @format A data frame/tibble with 105 observations on three variables #' \describe{ #' \item{year}{date} #' \item{close}{Dow Jones closing price} #' \item{change}{percent change from previous year} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(close ~ year, data = Dowjones, type = "l", main = "Exercise 1.35") #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Dowjones, aes(x = year, y = close)) + #' geom_point(size = 0.5) + #' geom_line(color = "red") + #' theme_bw() + #' labs(y = "Dow Jones Closing Price") #' } "Dowjones" #' Opinion on referendum by view on moral issue of selling alcoholic beverages #' #' Data for Exercise 8.53 #' #' #' @name Drink #' @docType data #' @format A data frame/tibble with 472 observations on two variables #' \describe{ #' \item{drinking}{a factor with levels \code{ok}, #' \code{tolerated}, and \code{immoral}} #' \item{referendum}{a factor with levels \code{for}, \code{against}, and \code{undecided}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~drinking + referendum, data = Drink) #' T1 #' chisq.test(T1) #' rm(T1) #' "Drink" #' Number of trials to master a task for a group of 28 subjects assigned to a #' control and an experimental group #' #' Data for Example 7.15 #' #' #' @name Drug #' @docType data #' @format A data frame/tibble with 28 observations on two variables #' \describe{ #' \item{trials}{number of trials to master a task} #' \item{group}{a factor with levels \code{control} and \code{experimental}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(trials ~ group, data = Drug, #' main = "Example 7.15", col = c("yellow", "red")) #' wilcox.test(trials ~ group, data = Drug) #' t.test(rank(trials) ~ group, data = Drug, var.equal = TRUE) #' "Drug" #' Data on a group of college students diagnosed with dyslexia #' #' Data for Exercise 2.90 #' #' #' @name Dyslexia #' @docType data #' @format A data frame/tibble with eight observations on seven variables #' \describe{ #' \item{words}{number of words read per minute} #' \item{age}{age of participant} #' \item{gender}{a factor with levels \code{female} and #' \code{male}} #' \item{handed}{a factor with levels \code{left} and \code{right}} #' \item{weight}{weight of participant (in pounds)} #' \item{height}{height of participant (in inches)} #' \item{children}{number of children in family} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(height ~ weight, data = Dyslexia) #' plot(words ~ factor(handed), data = Dyslexia, #' xlab = "hand", col = "lightblue") #' "Dyslexia" #' One hundred year record of worldwide seismic activity(1770-1869) #' #' Data for Exercise 6.97 #' #' #' @name Earthqk #' @docType data #' @format A data frame/tibble with 100 observations on two variables #' \describe{ #' \item{year}{year seimic activity recorded} #' \item{severity}{annual incidence of sever earthquakes} #' } #' #' @source Quenoille, M.H. (1952), \emph{Associated Measurements}, Butterworth, London. #' p 279. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Earthqk$severity) #' t.test(Earthqk$severity, mu = 100, alternative = "greater") #' "Earthqk" #' Crime rates versus the percent of the population without a high school #' degree #' #' Data for Exercise 2.41 #' #' #' @name Educat #' @docType data #' @format A data frame/tibble with 51 observations on three variables #' \describe{ #' \item{state}{a factor with levels \code{Alabama}, #' \code{Alaska}, \code{Arizona}, \code{Arkansas}, \code{California}, #' \code{Colorado}, \code{Connecticut}, \code{DC}, \code{Delaware}, \code{Florida}, #' \code{Georgia}, \code{Hawaii}, \code{Idaho}, \code{Illinois}, \code{Indiana}, #' \code{Iowa}, \code{Kansas}, \code{Kentucky}, \code{Louisiana}, \code{Maine}, #' \code{Maryland}, \code{Massachusetts}, \code{Michigan}, \code{Minnesota}, #' \code{Mississippi}, \code{Missour}, \code{Montana}, \code{Nebraska}, #' \code{Nevada}, \code{New Hampshire}, \code{New Jersey}, \code{New Mexico}, #' \code{New York}, \code{North Carolina}, \code{North Dakota}, \code{Ohio}, #' \code{Oklahoma}, \code{Oregon}, \code{Pennsylvania}, \code{Rhode Island}, #' \code{South Carolina}, \code{South Dakota}, \code{Tennessee}, \code{Texas}, #' \code{Utah}, \code{Vermont}, \code{Virginia}, \code{Washington}, \code{West #' Virginia}, \code{Wisconsin}, and \code{Wyoming}} #' \item{nodegree}{percent of the population without a high school degree} #' \item{crime}{violent crimes per 100,000 population} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(crime ~ nodegree, data = Educat, #' xlab = "Percent of population without high school degree", #' ylab = "Violent Crime Rate per 100,000") #' "Educat" #' Number of eggs versus amounts of feed supplement #' #' Data for Exercise 9.22 #' #' #' @name Eggs #' @docType data #' @format A data frame/tibble with 12 observations on two variables #' \describe{ #' \item{feed}{amount of feed supplement} #' \item{eggs}{number of eggs per day for 100 chickens} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(eggs ~ feed, data = Eggs) #' model <- lm(eggs ~ feed, data = Eggs) #' abline(model, col = "red") #' summary(model) #' rm(model) #' "Eggs" #' Percent of the population over the age of 65 #' #' Data for Exercise 1.92 and 2.61 #' #' #' @name Elderly #' @docType data #' @format A data frame/tibble with 51 observations on three variables #' \describe{ #' \item{state}{a factor with levels \code{Alabama}, #' \code{Alaska}, \code{Arizona}, \code{Arkansas}, \code{California}, #' \code{Colorado}, \code{Connecticut}, \code{Delaware}, \code{District of #' Colunbia}, \code{Florida}, \code{Georgia}, \code{Hawaii}, \code{Idaho}, #' \code{Illinois}, \code{Indiana}, \code{Iowa}, \code{Kansas}, \code{Kentucky}, #' \code{Louisiana}, \code{Maine}, \code{Maryland}, \code{Massachusetts}, #' \code{Michigan}, \code{Minnesota}, \code{Mississippi}, \code{Missour}, #' \code{Montana}, \code{Nebraska}, \code{Nevada}, \code{New Hampshire}, \code{New #' Jersey}, \code{New Mexico}, \code{New York}, \code{North Carolina}, \code{North #' Dakota}, \code{Ohio}, \code{Oklahoma}, \code{Oregon}, \code{Pennsylvania}, #' \code{Rhode Island}, \code{South Carolina}, \code{South Dakota}, #' \code{Tennessee}, \code{Texas}, \code{Utah}, \code{Vermont}, \code{Virginia}, #' \code{Washington}, \code{West Virginia}, \code{Wisconsin}, and \code{Wyoming}} #' \item{percent1985}{percent of the population over the age of 65 in 1985} #' \item{percent1998}{percent of the population over the age of 65 in 1998} #' } #' #' @source U.S. Census Bureau Internet site, February 2000. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' with(data = Elderly, #' stripchart(x = list(percent1998, percent1985), method = "stack", pch = 19, #' col = c("red","blue"), group.names = c("1998", "1985")) #' ) #' with(data = Elderly, cor(percent1998, percent1985)) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Elderly, aes(x = percent1985, y = percent1998)) + #' geom_point() + #' theme_bw() #' } "Elderly" #' Amount of energy consumed by homes versus their sizes #' #' Data for Exercises 2.5, 2.24, and 2.55 #' #' #' @name Energy #' @docType data #' @format A data frame/tibble with 12 observations on two variables #' \describe{ #' \item{size}{size of home (in square feet)} #' \item{kilowatt}{killowatt-hours per month} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(kilowatt ~ size, data = Energy) #' with(data = Energy, cor(size, kilowatt)) #' model <- lm(kilowatt ~ size, data = Energy) #' plot(Energy$size, resid(model), xlab = "size") #' "Energy" #' Salaries after 10 years for graduates of three different universities #' #' Data for Example 10.7 #' #' #' @name Engineer #' @docType data #' @format A data frame/tibble with 51 observations on two variables #' \describe{ #' \item{salary}{salary (in $1000) 10 years after graduation} #' \item{university}{a factor with levels \code{A}, \code{B}, and \code{C}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(salary ~ university, data = Engineer, #' main = "Example 10.7", col = "yellow") #' kruskal.test(salary ~ university, data = Engineer) #' anova(lm(salary ~ university, data = Engineer)) #' anova(lm(rank(salary) ~ university, data = Engineer)) #' "Engineer" #' College entrance exam scores for 24 high school seniors #' #' Data for Example 1.8 #' #' #' @name Entrance #' @docType data #' @format A data frame/tibble with 24 observations on one variable #' \describe{ #' \item{score}{college entrance exam score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Entrance$score) #' stem(Entrance$score, scale = 2) #' "Entrance" #' Fuel efficiency ratings for compact vehicles in 2001 #' #' Data for Exercise 1.65 #' #' #' @name Epaminicompact #' @docType data #' @format A data frame/tibble with 22 observations on ten variables #' \describe{ #' \item{class}{a character variable with value \code{MINICOMPACT CARS}} #' \item{manufacturer}{a character variable with values \code{AUDI}, #' \code{BMW}, \code{JAGUAR}, \code{MERCEDES-BENZ}, \code{MITSUBISHI}, and #' \code{PORSCHE}} #' \item{carline}{a character variable with values \code{325CI #' CONVERTIBLE}, \code{330CI CONVERTIBLE}, \code{911 CARRERA 2/4}, \code{911 #' TURBO}, \code{CLK320 (CABRIOLET)}, \code{CLK430 (CABRIOLET)}, \code{ECLIPSE #' SPYDER}, \code{JAGUAR XK8 CONVERTIBLE}, \code{JAGUAR XKR CONVERTIBLE}, \code{M3 #' CONVERTIBLE}, \code{TT COUPE}, and \code{TT COUPE QUATTRO}} #' \item{displ}{engine displacement (in liters)} #' \item{cyl}{number of cylinders} #' \item{trans}{a factor with levels \code{Auto(L5)}, \code{Auto(S4)}, \code{Auto(S5)}, #' \code{Manual(M5)}, and \code{Manual(M6)}} #' \item{drv}{a factor with levels \code{4}(four wheel drive), \code{F}(front wheel drive), #' and \code{R}(rear wheel drive)} #' \item{cty}{city mpg} #' \item{hwy}{highway mpg} #' \item{cmb}{combined city and highway mpg} #' } #' #' @source EPA data. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' summary(Epaminicompact$cty) #' plot(hwy ~ cty, data = Epaminicompact) #' "Epaminicompact" #' Fuel efficiency ratings for two-seater vehicles in 2001 #' #' Data for Exercise 5.8 #' #' #' @name Epatwoseater #' @docType data #' @format A data frame/tibble with 36 observations on ten variables #' \describe{ #' \item{class}{a character variable with value \code{TWO SEATERS}} #' \item{manufacturer}{a character variable with values \code{ACURA}, \code{AUDI}, #' \code{BMW}, \code{CHEVROLET}, \code{DODGE}, \code{FERRARI}, \code{HONDA}, #' \code{LAMBORGHINI}, \code{MAZDA}, \code{MERCEDES-BENZ}, \code{PLYMOUTH}, #' \code{PORSCHE}, and \code{TOYOTA}} #' \item{carline}{a character variable with values #' \code{BOXSTER}, \code{BOXSTER S}, \code{CORVETTE}, \code{DB132/144 #' DIABLO}, \code{FERRARI 360 MODENA/SPIDER}, \code{FERRARI 550 #' MARANELLO/BARCHETTA}, \code{INSIGHT}, \code{MR2} ,\code{MX-5 MIATA}, \code{NSX}, #' \code{PROWLER}, \code{S2000}, \code{SL500}, \code{SL600}, \code{SLK230 #' KOMPRESSOR}, \code{SLK320}, \code{TT ROADSTER}, \code{TT ROADSTER QUATTRO}, #' \code{VIPER CONVERTIBLE}, \code{VIPER COUPE}, \code{Z3 COUPE}, \code{Z3 #' ROADSTER}, and \code{Z8}} #' \item{displ}{engine displacement (in liters)} #' \item{cyl}{number of cylinders} #' \item{trans}{a factor with levels \code{Auto(L4)}, \code{Auto(L5)}, \code{Auto(S4)}, #' \code{Auto(S5)}, \code{Auto(S6)}, \code{Manual(M5)}, and \code{Manual(M6)}} #' \item{drv}{a factor with levels \code{4}(four wheel drive) \code{F}(front wheel drive) \code{R}(rear wheel drive)} #' \item{cty}{city mpg} #' \item{hwy}{highway mpg} #' \item{cmb}{combined city and highway mpg} #' } #' #' @source Environmental Protection Agency. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' summary(Epatwoseater$cty) #' plot(hwy ~ cty, data = Epatwoseater) #' boxplot(cty ~ drv, data = Epatwoseater, col = "lightgreen") #' "Epatwoseater" #' Ages of 25 executives #' #' Data for Exercise 1.104 #' #' #' @name Executiv #' @docType data #' @format A data frame/tibble with 25 observations on one variable #' \describe{ #' \item{age}{a numeric vector} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Executiv$age, xlab = "Age of banking executives", #' breaks = 5, main = "", col = "gray") #' "Executiv" #' Weight loss for 30 members of an exercise program #' #' Data for Exercise 1.44 #' #' #' @name Exercise #' @docType data #' @format A data frame/tibble with 30 observations on one variable #' \describe{ #' \item{loss}{a numeric vector} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Exercise$loss) #' "Exercise" #' Measures of softness of ten different clothing garments washed with and #' without a softener #' #' Data for Example 7.21 #' #' #' @name Fabric #' @docType data #' @format A data frame/tibble with 20 observations on three variables #' \describe{ #' \item{garment}{a numeric vector} #' \item{softner}{a character variable with values \code{with} and \code{without}} #' \item{softness}{a numeric vector} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' \dontrun{ #' library(tidyr) #' tidyr::spread(Fabric, softner, softness) -> FabricWide #' wilcox.test(Pair(with, without)~1, alternative = "greater", data = FabricWide) #' T7 <- tidyr::spread(Fabric, softner, softness) %>% #' mutate(di = with - without, adi = abs(di), rk = rank(adi), #' srk = sign(di)*rk) #' T7 #' t.test(T7$srk, alternative = "greater") #' } "Fabric" #' Waiting times between successive eruptions of the Old Faithful geyser #' #' Data for Exercise 5.12 and 5.111 #' #' #' @name Faithful #' @docType data #' @format A data frame/tibble with 299 observations on two variables #' \describe{ #' \item{time}{a numeric vector} #' \item{eruption}{a factor with levels \code{1} and \code{2}} #' } #' #' @source A. Azzalini and A. Bowman, "A Look at Some Data on the Old Faithful Geyser," #' \emph{Journal of the Royal Statistical Society}, Series C, \emph{39} (1990), 357-366. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' t.test(time ~ eruption, data = Faithful) #' hist(Faithful$time, xlab = "wait time", main = "", freq = FALSE) #' lines(density(Faithful$time)) #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Faithful, aes(x = time, y = ..density..)) + #' geom_histogram(binwidth = 5, fill = "pink", col = "black") + #' geom_density() + #' theme_bw() + #' labs(x = "wait time") #' } "Faithful" #' Size of family versus cost per person per week for groceries #' #' Data for Exercise 2.89 #' #' #' @name Family #' @docType data #' @format A data frame/tibble with 20 observations on two variables #' \describe{ #' \item{number}{number in family} #' \item{cost}{cost per person (in dollars)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(cost ~ number, data = Family) #' abline(lm(cost ~ number, data = Family), col = "red") #' cor(Family$cost, Family$number) #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Family, aes(x = number, y = cost)) + #' geom_point() + #' geom_smooth(method = "lm") + #' theme_bw() #' } #' "Family" #' Choice of presidental ticket in 1984 by gender #' #' Data for Exercise 8.23 #' #' #' @name Ferraro1 #' @docType data #' @format A data frame/tibble with 1000 observations on two variables #' \describe{ #' \item{gender}{a factor with levels \code{Men} and #' \code{Women}} #' \item{candidate}{a character vector of 1984 president and vice-president candidates} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~gender + candidate, data = Ferraro1) #' T1 #' chisq.test(T1) #' rm(T1) #' "Ferraro1" #' Choice of vice presidental candidate in 1984 by gender #' #' Data for Exercise 8.23 #' #' #' @name Ferraro2 #' @docType data #' @format A data frame/tibble with 1000 observations on two variables #' \describe{ #' \item{gender}{a factor with levels \code{Men} and #' \code{Women}} #' \item{candidate}{a character vector of 1984 president and vice-president candidates} #' } #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~gender + candidate, data = Ferraro2) #' T1 #' chisq.test(T1) #' rm(T1) #' "Ferraro2" #' Fertility rates of all 50 states and DC #' #' Data for Exercise 1.125 #' #' #' @name Fertility #' @docType data #' @format A data frame/tibble with 51 observations on two variables #' \describe{ #' \item{state}{a character variable with values \code{Alabama}, #' \code{Alaska}, \code{Arizona}, \code{Arkansas}, \code{California}, #' \code{Colorado}, \code{Connecticut}, \code{Delaware}, \code{District of #' Colunbia}, \code{Florida}, \code{Georgia}, \code{Hawaii}, \code{Idaho}, #' \code{Illinois}, \code{Indiana}, \code{Iowa}, \code{Kansas}, \code{Kentucky}, #' \code{Louisiana}, \code{Maine}, \code{Maryland},\code{Massachusetts}, #' \code{Michigan}, \code{Minnesota}, \code{Mississippi}, \code{Missour}, #' \code{Montana}, \code{Nebraska}, \code{Nevada}, \code{New Hampshire}, \code{New #' Jersey}, \code{New Mexico}, \code{New York}, \code{North Carolina}, \code{North #' Dakota}, \code{Ohio}, \code{Oklahoma}, \code{Oregon}, \code{Pennsylvania}, #' \code{Rhode Island}, \code{South Carolina}, \code{South Dakota}, #' \code{Tennessee}, \code{Texas}, \code{Utah}, \code{Vermont}, \code{Virginia}, #' \code{Washington}, \code{West Virginia}, \code{Wisconsin}, and \code{Wyoming}} #' \item{rate}{fertility rate (expected number of births during childbearing years)} #' } #' #' @source Population Reference Bureau. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Fertility$rate) #' fivenum(Fertility$rate) #' EDA(Fertility$rate) #' "Fertility" #' Ages of women at the birth of their first child #' #' Data for Exercise 5.11 #' #' #' @name Firstchi #' @docType data #' @format A data frame/tibble with 87 observations on one variable #' \describe{ #' \item{age}{age of woman at birth of her first child} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Firstchi$age) #' "Firstchi" #' Length and number of fish caught with small and large mesh codend #' #' Data for Exercises 5.83, 5.119, and 7.29 #' #' #' @name Fish #' @docType data #' @format A data frame/tibble with 1534 observations on two variables #' \describe{ #' \item{codend}{a character variable with values \code{smallmesh} and \code{largemesh} } #' \item{length}{length of the fish measured in centimeters} #' } #' #' @source R. Millar, \dQuote{Estimating the Size - Selectivity of Fishing Gear by Conditioning #' on the Total Catch,} \emph{Journal of the American Statistical Association, 87} (1992), 962 - 968. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' tapply(Fish$length, Fish$codend, median, na.rm = TRUE) #' SIGN.test(Fish$length[Fish$codend == "smallmesh"], conf.level = 0.99) #' \dontrun{ #' dplyr::group_by(Fish, codend) %>% #' summarize(MEDIAN = median(length, na.rm = TRUE)) #' } #' "Fish" #' Number of sit-ups before and after a physical fitness course #' #' Data for Exercise 7.71 #' #' #' @name Fitness #' @docType data #' @format A data frame/tibble with 18 observations on the three variables #' \describe{ #' \item{subject}{a character variable indicating subject number} #' \item{test}{a character variable with values \code{After} and \code{Before}} #' \item{number}{a numeric vector recording the number of sit-ups performed in one minute} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' \dontrun{ #' tidyr::spread(Fitness, test, number) -> FitnessWide #' t.test(Pair(After, Before)~1, alternative = "greater", data = FitnessWide) #' #' Wide <- tidyr::spread(Fitness, test, number) %>% #' mutate(diff = After - Before) #' Wide #' qqnorm(Wide$diff) #' qqline(Wide$diff) #' t.test(Wide$diff, alternative = "greater") #' } #' "Fitness" #' Florida voter results in the 2000 presidential election #' #' Data for Statistical Insight Chapter 2 #' #' #' @name Florida2000 #' @docType data #' @format A data frame/tibble with 67 observations on 12 variables #' \describe{ #' \item{county}{a character variable with values \code{ALACHUA}, #' \code{BAKER}, \code{BAY}, \code{BRADFORD}, \code{BREVARD}, \code{BROWARD}, #' \code{CALHOUN}, \code{CHARLOTTE}, \code{CITRUS}, \code{CLAY}, \code{COLLIER}, #' \code{COLUMBIA}, \code{DADE}, \code{DE SOTO}, \code{DIXIE}, \code{DUVAL}, #' \code{ESCAMBIA}, \code{FLAGLER}, \code{FRANKLIN}, \code{GADSDEN}, #' \code{GILCHRIST}, \code{GLADES}, \code{GULF}, \code{HAMILTON}, \code{HARDEE}, #' \code{HENDRY}, \code{HERNANDO}, \code{HIGHLANDS}, \code{HILLSBOROUGH}, #' \code{HOLMES}, \code{INDIAN RIVER}, \code{JACKSON}, \code{JEFFERSON}, #' \code{LAFAYETTE}, \code{LAKE}, \code{LEE}, \code{LEON}, \code{LEVY}, #' \code{LIBERTY}, \code{MADISON}, \code{MANATEE}, \code{MARION}, \code{MARTIN}, #' \code{MONROE}, \code{NASSAU}, \code{OKALOOSA}, \code{OKEECHOBEE}, \code{ORANGE}, #' \code{OSCEOLA}, \code{PALM BEACH}, \code{PASCO}, \code{PINELLAS}, \code{POLK}, #' \code{PUTNAM}, \code{SANTA ROSA}, \code{SARASOTA}, \code{SEMINOLE}, #' \code{ST. JOHNS}, \code{ST. LUCIE}, \code{SUMTER}, \code{SUWANNEE}, \code{TAYLOR}, #' \code{UNION}, \code{VOLUSIA}, \code{WAKULLA}, \code{WALTON}, and \code{WASHINGTON} #' } #' \item{gore}{number of votes} #' \item{bush}{number of votes} #' \item{buchanan}{number of votes} #' \item{nader}{number of votes} #' \item{browne}{number of votes} #' \item{hagelin}{number of votes} #' \item{harris}{number of votes} #' \item{mcreynolds}{number of votes} #' \item{moorehead}{number of votes} #' \item{phillips}{number of votes} #' \item{total}{number of votes} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(buchanan ~ total, data = Florida2000, #' xlab = "Total votes cast (in thousands)", #' ylab = "Votes for Buchanan") #' "Florida2000" #' Breakdown times of an insulating fluid under various levels of voltage #' stress #' #' Data for Exercise 5.76 #' #' #' @name Fluid #' @docType data #' @format A data frame/tibble with 76 observations on two variables #' \describe{ #' \item{kilovolts}{a character variable showing kilowats} #' \item{time}{breakdown time (in minutes)} #' } #' #' @source E. Soofi, N. Ebrahimi, and M. Habibullah, 1995. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' DF1 <- Fluid[Fluid$kilovolts == "34kV", ] #' DF1 #' # OR #' DF2 <- subset(Fluid, subset = kilovolts == "34kV") #' DF2 #' stem(DF2$time) #' SIGN.test(DF2$time) #' \dontrun{ #' library(dplyr) #' DF3 <- dplyr::filter(Fluid, kilovolts == "34kV") #' DF3 #' } #' "Fluid" #' Annual food expenditures for 40 single households in Ohio #' #' Data for Exercise 5.106 #' #' #' @name Food #' @docType data #' @format A data frame/tibble with 40 observations on one variable #' \describe{ #' \item{expenditure}{a numeric vector recording annual food expenditure (in dollars) in the state of Ohio.} #' } #' #' @source Bureau of Labor Statistics. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Food$expenditure) #' "Food" #' Cholesterol values of 62 subjects in the Framingham Heart Study #' #' Data for Exercises 1.56, 1.75, 3.69, and 5.60 #' #' #' @name Framingh #' @docType data #' @format A data frame/tibble with 62 observations on one variable #' \describe{ #' \item{cholest}{a numeric vector with cholesterol values} #' } #' #' @source R. D'Agostino, et al., (1990) "A Suggestion for Using Powerful and Informative #' Tests for Normality," \emph{The American Statistician, 44} 316-321. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Framingh$cholest) #' boxplot(Framingh$cholest, horizontal = TRUE) #' hist(Framingh$cholest, freq = FALSE) #' lines(density(Framingh$cholest)) #' mean(Framingh$cholest > 200 & Framingh$cholest < 240) #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Framingh, aes(x = factor(1), y = cholest)) + #' geom_boxplot() + # boxplot #' labs(x = "") + # no x label #' theme_bw() + # black and white theme #' geom_jitter(width = 0.2) + # jitter points #' coord_flip() # Create horizontal plot #' ggplot2::ggplot(data = Framingh, aes(x = cholest, y = ..density..)) + #' geom_histogram(fill = "pink", binwidth = 15, color = "black") + #' geom_density() + #' theme_bw() #' } #' "Framingh" #' Ages of a random sample of 30 college freshmen #' #' Data for Exercise 6.53 #' #' #' @name Freshman #' @docType data #' @format A data frame/tibble with 30 observations on one variable #' \describe{ #' \item{age}{a numeric vector of ages} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' SIGN.test(Freshman$age, md = 19) #' "Freshman" #' Cost of funeral by region of country #' #' Data for Exercise 8.54 #' #' #' @name Funeral #' @docType data #' @format A data frame/tibble with 400 observations on two variables #' \describe{ #' \item{region}{a factor with levels \code{Central}, #' \code{East,} \code{South}, and \code{West}} #' \item{cost}{a factor with levels \code{less than expected}, \code{about what expected}, #' and \code{more than expected}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~region + cost, data = Funeral) #' T1 #' chisq.test(T1) #' rm(T1) #' "Funeral" #' Velocities of 82 galaxies in the Corona Borealis region #' #' Data for Example 5.2 #' #' #' @name Galaxie #' @docType data #' @format A data frame/tibble with 82 observations on one variable #' \describe{ #' \item{velocity}{velocity measured in kilometers per second} #' } #' #' @source K. Roeder, "Density Estimation with Confidence Sets Explained by Superclusters #' and Voids in the Galaxies," \emph{Journal of the American Statistical Association}, 85 #' (1990), 617-624. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Galaxie$velocity) #' "Galaxie" #' Results of a Gallup poll on possession of marijuana as a criminal offense #' conducted in 1980 #' #' Data for Exercise 2.76 #' #' #' @name Gallup #' @docType data #' @format A data frame/tibble with 1,200 observations on two variables #' \describe{ #' \item{demographics}{a factor with levels \code{National}, \code{Gender: Male} #' \code{Gender: Female}, \code{Education: College}, \code{Eduction: High School}, #' \code{Education: Grade School}, \code{Age: 18-24}, \code{Age: 25-29}, \code{Age: 30-49}, #' \code{Age: 50-older}, \code{Religion: Protestant}, and \code{Religion: Catholic}} #' \item{opinion}{a factor with levels \code{Criminal}, \code{Not Criminal}, and \code{No Opinion}} #' } #' #' @source George H. Gallup \emph{The Gallup Opinion Index Report No. 179} (Princeton, NJ: #' The Gallup Poll, July 1980), p. 15. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~demographics + opinion, data = Gallup) #' T1 #' t(T1[c(2, 3), ]) #' barplot(t(T1[c(2, 3), ])) #' barplot(t(T1[c(2, 3), ]), beside = TRUE) #' #' \dontrun{ #' library(dplyr) #' library(ggplot2) #' dplyr::filter(Gallup, demographics == "Gender: Male" | demographics == "Gender: Female") %>% #' ggplot2::ggplot(aes(x = demographics, fill = opinion)) + #' geom_bar() + #' theme_bw() + #' labs(y = "Fraction") #' } #' "Gallup" #' Price of regular unleaded gasoline obtained from 25 service stations #' #' Data for Exercise 1.45 #' #' #' @name Gasoline #' @docType data #' @format A data frame/tibble with 25 observations on one variable #' \describe{ #' \item{price}{price for one gallon of gasoline} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Gasoline$price) #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Gasoline, aes(x = factor(1), y = price)) + #' geom_violin() + #' geom_jitter() + #' theme_bw() #' } #' "Gasoline" #' Number of errors in copying a German passage before and after an #' experimental course in German #' #' Data for Exercise 7.60 #' #' #' @name German #' @docType data #' @format A data frame/tibble with ten observations on three variables #' \describe{ #' \item{student}{a character variable indicating student number} #' \item{when}{a character variable with values \code{Before} and \code{After} #' to indicate when the student received experimental instruction in German} #' \item{errors}{the number of errors in copying a German passage} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' \dontrun{ #' tidyr::spread(German, when, errors) -> GermanWide #' t.test(Pair(After, Before) ~ 1, data = GermanWide) #' wilcox.test(Pair(After, Before) ~ 1, data = GermanWide) #' T8 <- tidyr::spread(German, when, errors) %>% #' mutate(di = After - Before, adi = abs(di), rk = rank(adi), srk = sign(di)*rk) #' T8 #' qqnorm(T8$di) #' qqline(T8$di) #' t.test(T8$srk) #' } #' "German" #' Distances a golf ball can be driven by 20 professional golfers #' #' Data for Exercise 5.24 #' #' #' @name Golf #' @docType data #' @format A data frame/tibble with 20 observations on one variable #' \describe{ #' \item{yards}{distance a golf ball is driven in yards} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Golf$yards) #' qqnorm(Golf$yards) #' qqline(Golf$yards) #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Golf, aes(sample = yards)) + #' geom_qq() + #' theme_bw() #' } #' "Golf" #' Annual salaries for state governors in 1994 and 1999 #' #' Data for Exercise 5.112 #' #' #' @name Governor #' @docType data #' @format A data frame/tibble with 50 observations on three variables #' \describe{ #' \item{state}{a character variable with values \code{Alabama}, #' \code{Alaska}, \code{Arizona}, \code{Arkansas}, \code{California}, #' \code{Colorado}, \code{Connecticut}, \code{Delaware}, \code{Florida}, #' \code{Georgia}, \code{Hawaii}, \code{Idaho}, \code{Illinois}, \code{Indiana}, #' \code{Iowa}, \code{Kansas}, \code{Kentucky}, \code{Louisiana}, \code{Maine}, #' \code{Maryland}, \code{Massachusetts}, \code{Michigan}, \code{Minnesota}, #' \code{Mississippi}, \code{Missouri}, \code{Montana}, \code{Nebraska}, #' \code{Nevada}, \code{New Hampshire}, \code{New Jersey}, \code{New Mexico}, #' \code{New York}, \code{North Carolina}, \code{North Dakota}, \code{Ohio}, #' \code{Oklahoma}, \code{Oregon}, \code{Pennsylvania}, \code{Rhode Island}, #' \code{South Carolina}, \code{South Dakota}, \code{Tennessee}, \code{Texas}, #' \code{Utah}, \code{Vermont}, \code{Virginia}, \code{Washington}, \code{West #' Virginia}, \code{Wisconsin}, and \code{Wyoming}} #' \item{year}{a factor indicating year} #' \item{salary}{a numeric vector with the governor's salary (in dollars)} #' } #' #' @source \emph{The 2000 World Almanac and Book of Facts}. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(salary ~ year, data = Governor) #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Governor, aes(x = salary)) + #' geom_density(fill = "pink") + #' facet_grid(year ~ .) + #' theme_bw() #' } #' "Governor" #' High school GPA versus college GPA #' #' Data for Example 2.13 #' #' #' @name Gpa #' @docType data #' @format A data frame/tibble with 10 observations on two variables #' \describe{ #' \item{hsgpa}{high school gpa} #' \item{collgpa}{college gpa} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(collgpa ~ hsgpa, data = Gpa) #' mod <- lm(collgpa ~ hsgpa, data = Gpa) #' abline(mod) # add line #' yhat <- predict(mod) # fitted values #' e <- resid(mod) # residuals #' cbind(Gpa, yhat, e) # Table 2.1 #' cor(Gpa$hsgpa, Gpa$collgpa) #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Gpa, aes(x = hsgpa, y = collgpa)) + #' geom_point() + #' geom_smooth(method = "lm") + #' theme_bw() #' } #' #' "Gpa" #' Test grades in a beginning statistics class #' #' Data for Exercise 1.120 #' #' #' @name Grades #' @docType data #' @format A data frame with 29 observations on one variable #' \describe{ #' \item{grades}{a numeric vector containing test grades} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Grades$grades, main = "", xlab = "Test grades", right = FALSE) #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Grades, aes(x = grades, y = ..density..)) + #' geom_histogram(fill = "pink", binwidth = 5, color = "black") + #' geom_density(lwd = 2, color = "red") + #' theme_bw() #' } #' "Grades" #' Graduation rates for student athletes in the Southeastern Conf. #' #' Data for Exercise 1.118 #' #' #' @name Graduate #' @docType data #' @format A data frame/tibble with 12 observations on three variables #' \describe{ #' \item{school}{a character variable with values \code{Alabama}, #' \code{Arkansas}, \code{Auburn}, \code{Florida}, \code{Georgia}, \code{Kentucky}, #' \code{Louisiana St}, \code{Mississippi}, \code{Mississippi St}, \code{South #' Carolina,} \code{Tennessee}, and \code{Vanderbilt}} #' \item{code}{a character variable with values \code{Al}, \code{Ar}, \code{Au} #' \code{Fl}, \code{Ge}, \code{Ke}, \code{LSt}, \code{Mi}, \code{MSt}, \code{SC}, #' \code{Te}, and \code{Va}} #' \item{percent}{graduation rate} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' barplot(Graduate$percent, names.arg = Graduate$school, #' las = 2, cex.names = 0.7, col = "tomato") #' "Graduate" #' Varve thickness from a sequence through an Eocene lake deposit in the Rocky #' Mountains #' #' Data for Exercise 6.57 #' #' #' @name Greenriv #' @docType data #' @format A data frame/tibble with 37 observations on one variable #' \describe{ #' \item{thick}{varve thickness in millimeters} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Greenriv$thick) #' SIGN.test(Greenriv$thick, md = 7.3, alternative = "greater") #' "Greenriv" #' Thickness of a varved section of the Green river oil shale deposit near a #' major lake in the Rocky Mountains #' #' Data for Exercises 6.45 and 6.98 #' #' #' @name Grnriv2 #' @docType data #' @format A data frame/tibble with 101 observations on one variable #' \describe{ #' \item{thick}{varve thickness (in millimeters)} #' } #' #' @source J. Davis, \emph{Statistics and Data Analysis in Geology}, 2nd Ed., Jon Wiley and Sons, New York. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Grnriv2$thick) #' t.test(Grnriv2$thick, mu = 8, alternative = "less") #' "Grnriv2" #' Group data to illustrate analysis of variance #' #' Data for Exercise 10.42 #' #' #' @name Groupabc #' @docType data #' @format A data frame/tibble with 45 observations on two variables #' \describe{ #' \item{group}{a factor with levels \code{A}, \code{B}, and \code{C}} #' \item{response}{a numeric vector} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(response ~ group, data = Groupabc, #' col = c("red", "blue", "green")) #' anova(lm(response ~ group, data = Groupabc)) #' "Groupabc" #' An illustration of analysis of variance #' #' Data for Exercise 10.4 #' #' #' @name Groups #' @docType data #' @format A data frame/tibble with 78 observations on two variables #' \describe{ #' \item{group}{a factor with levels \code{A}, \code{B}, and \code{C}} #' \item{response}{a numeric vector} #' } #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(response ~ group, data = Groups, col = c("red", "blue", "green")) #' anova(lm(response ~ group, data = Groups)) #' #' "Groups" #' Children's age versus number of completed gymnastic activities #' #' Data for Exercises 2.21 and 9.14 #' #' #' @name Gym #' @docType data #' @format A data frame/tibble with eight observations on three variables #' \describe{ #' \item{age}{age of child} #' \item{number}{number of gymnastic activities successfully completed} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(number ~ age, data = Gym) #' model <- lm(number ~ age, data = Gym) #' abline(model, col = "red") #' summary(model) #' "Gym" #' Study habits of students in two matched school districts #' #' Data for Exercise 7.57 #' #' #' @name Habits #' @docType data #' @format A data frame/tibble with 11 observations on four variables #' \describe{ #' \item{A}{study habit score} #' \item{B}{study habit score} #' \item{differ}{\code{B} minus \code{A}} #' \item{signrks}{the signed-ranked-differences} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' shapiro.test(Habits$differ) #' qqnorm(Habits$differ) #' qqline(Habits$differ) #' wilcox.test(Pair(B, A) ~ 1, data = Habits, alternative = "less") #' t.test(Habits$signrks, alternative = "less") #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Habits, aes(x = differ)) + #' geom_dotplot(fill = "blue") + #' theme_bw() #' } #' "Habits" #' Haptoglobin concentration in blood serum of 8 healthy adults #' #' Data for Example 6.9 #' #' #' @name Haptoglo #' @docType data #' @format A data frame/tibble with eight observations on one variable #' \describe{ #' \item{concent}{haptoglobin concentration (in grams per liter)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' shapiro.test(Haptoglo$concent) #' t.test(Haptoglo$concent, mu = 2, alternative = "less") #' #' "Haptoglo" #' Daily receipts for a small hardware store for 31 working days #' #' #' #' @name Hardware #' @docType data #' @format A data frame with 31 observations on one variable #' \describe{ #' \item{receipt}{a numeric vector of daily receipts (in dollars)} #' } #' #' @source J.C. Miller and J.N. Miller, (1988), \emph{Statistics for Analytical Chemistry}, 2nd Ed. #' (New York: Halsted Press). #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Hardware$receipt) #' "Hardware" #' Tensile strength of Kraft paper for different percentages of hardwood in the #' batches of pulp #' #' Data for Example 2.18 and Exercise 9.34 #' #' #' @name Hardwood #' @docType data #' @format A data frame/tibble with 19 observations on two variables #' \describe{ #' \item{tensile}{tensile strength of kraft paper (in pounds per square inch)} #' \item{hardwood}{percent of hardwood in the batch of pulp that was used to produce the paper} #' } #' #' @source G. Joglekar, et al., "Lack-of-Fit Testing When Replicates Are Not Available," #' \emph{The American Statistician}, 43(3), (1989), 135-143. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(tensile ~ hardwood, data = Hardwood) #' model <- lm(tensile ~ hardwood, data = Hardwood) #' abline(model, col = "red") #' plot(model, which = 1) #' #' "Hardwood" #' Primary heating sources of homes on indian reservations versus all #' households #' #' Data for Exercise 1.29 #' #' #' @name Heat #' @docType data #' @format A data frame/tibble with 301 observations on two variables #' \describe{ #' \item{fuel}{a factor with levels \code{Utility gas}, #' \code{LP bottled gas}, \code{Electricity}, \code{Fuel oil}, \code{Wood}, and #' \code{Other}} #' \item{location}{a factor with levels \code{American Indians on reservation}, #' \code{All U.S. households}, and \code{American Indians not on reservations}} #' } #' #' @source Bureau of the Census, \emph{Housing of the American Indians on Reservations}, #' Statistical Brief 95-11, April 1995. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~ fuel + location, data = Heat) #' T1 #' barplot(t(T1), beside = TRUE, legend = TRUE) #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Heat, aes(x = fuel, fill = location)) + #' geom_bar(position = "dodge") + #' labs(y = "percent") + #' theme_bw() + #' theme(axis.text.x = element_text(angle = 30, hjust = 1)) #' } #' "Heat" #' Fuel efficiency ratings for three types of oil heaters #' #' Data for Exercise 10.32 #' #' #' @name Heating #' @docType data #' @format A data frame/tibble with 90 observations on the two variables #' \describe{ #' \item{type}{a factor with levels \code{A}, \code{B}, and \code{C} denoting #' the type of oil heater} #' \item{efficiency}{heater efficiency rating} #' } #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(efficiency ~ type, data = Heating, #' col = c("red", "blue", "green")) #' kruskal.test(efficiency ~ type, data = Heating) #' "Heating" #' Results of treatments for Hodgkin's disease #' #' Data for Exercise 2.77 #' #' #' @name Hodgkin #' @docType data #' @format A data frame/tibble with 538 observations on two variables #' \describe{ #' \item{type}{a factor with levels \code{LD}, #' \code{LP}, \code{MC}, and \code{NS}} #' \item{response}{a factor with levels \code{Positive}, \code{Partial}, and \code{None}} #' } #' #' @source I. Dunsmore, F. Daly, \emph{Statistical Methods, Unit 9, Categorical Data}, #' Milton Keynes, The Open University, 18. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~type + response, data = Hodgkin) #' T1 #' barplot(t(T1), legend = TRUE, beside = TRUE) #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Hodgkin, aes(x = type, fill = response)) + #' geom_bar(position = "dodge") + #' theme_bw() #' } #' "Hodgkin" #' Median prices of single-family homes in 65 metropolitan statistical areas #' #' Data for Statistical Insight Chapter 5 #' #' #' @name Homes #' @docType data #' @format A data frame/tibble with 65 observations on the four variables #' \describe{ #' \item{city}{a character variable with values \code{Akron OH}, #' \code{Albuquerque NM}, \code{Anaheim CA}, \code{Atlanta GA}, \code{Baltimore #' MD}, \code{Baton Rouge LA}, \code{Birmingham AL}, \code{Boston MA}, #' \code{Bradenton FL}, \code{Buffalo NY}, \code{Charleston SC}, \code{Chicago #' IL}, \code{Cincinnati OH}, \code{Cleveland OH}, \code{Columbia SC}, #' \code{Columbus OH}, \code{Corpus Christi TX}, \code{Dallas TX}, #' \code{Daytona Beach FL}, \code{Denver CO}, \code{Des Moines IA}, #' \code{Detroit MI}, \code{El Paso TX}, \code{Grand Rapids MI}, #' \code{Hartford CT}, \code{Honolulu HI}, \code{Houston TX}, #' \code{Indianapolis IN}, \code{Jacksonville FL}, \code{Kansas City MO}, #' \code{Knoxville TN}, \code{Las Vegas NV}, \code{Los Angeles CA}, #' \code{Louisville KY}, \code{Madison WI}, \code{Memphis TN}, \code{Miami FL}, #' \code{Milwaukee WI}, \code{Minneapolis MN}, \code{Mobile AL}, #' \code{Nashville TN}, \code{New Haven CT}, \code{New Orleans LA}, \code{New #' York NY}, \code{Oklahoma City OK}, \code{Omaha NE}, \code{Orlando FL}, #' \code{Philadelphia PA}, \code{Phoenix AZ}, \code{Pittsburgh PA}, #' \code{Portland OR}, \code{Providence RI}, \code{Sacramento CA}, \code{Salt #' Lake City UT}, \code{San Antonio TX}, \code{San Diego CA}, \code{San #' Francisco CA}, \code{Seattle WA}, \code{Spokane WA}, \code{St Louis MO}, #' \code{Syracuse NY}, \code{Tampa FL}, \code{Toledo OH}, \code{Tulsa OK}, and #' \code{Washington DC}} #' \item{region}{a character variable with values \code{Midwest}, \code{Northeast}, #' \code{South}, and \code{West}} #' \item{year}{a factor with levels \code{1994} and \code{2000}} #' \item{price}{median house price (in dollars)} #' } #' #' @source National Association of Realtors. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' tapply(Homes$price, Homes$year, mean) #' tapply(Homes$price, Homes$region, mean) #' p2000 <- subset(Homes, year == "2000") #' p1994 <- subset(Homes, year == "1994") #' \dontrun{ #' library(dplyr) #' library(ggplot2) #' dplyr::group_by(Homes, year, region) %>% #' summarize(AvgPrice = mean(price)) #' ggplot2::ggplot(data = Homes, aes(x = region, y = price)) + #' geom_boxplot() + #' theme_bw() + #' facet_grid(year ~ .) #' } #' #' "Homes" #' Number of hours per week spent on homework for private and public high #' school students #' #' Data for Exercise 7.78 #' #' #' @name Homework #' @docType data #' @format A data frame with 30 observations on two variables #' \describe{ #' \item{school}{type of school either \code{private} or \code{public}} #' \item{time}{number of hours per week spent on homework} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(time ~ school, data = Homework, #' ylab = "Hours per week spent on homework") #' # #' t.test(time ~ school, data = Homework) #' "Homework" #' Miles per gallon for a Honda Civic on 35 different occasions #' #' Data for Statistical Insight Chapter 6 #' #' #' @name Honda #' @docType data #' @format A data frame/tibble with 35 observations on one variable #' \describe{ #' \item{mileage}{miles per gallon for a Honda Civic} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' #' @examples #' #' t.test(Honda$mileage, mu = 40, alternative = "less") #' "Honda" #' Hostility levels of high school students from rural, suburban, and urban #' areas #' #' Data for Example 10.6 #' #' #' @name Hostile #' @docType data #' @format A data frame/tibble with 135 observations on two variables #' \describe{ #' \item{location}{a factor with the location of the high school student #' (\code{Rural}, \code{Suburban}, or \code{Urban})} #' \item{hostility}{the score from the Hostility Level Test} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(hostility ~ location, data = Hostile, #' col = c("red", "blue", "green")) #' kruskal.test(hostility ~ location, data = Hostile) #' "Hostile" #' Median home prices for 1984 and 1993 in 37 markets across the U.S. #' #' Data for Exercise 5.82 #' #' #' @name Housing #' @docType data #' @format A data frame/tibble with 74 observations on three variables #' \describe{ #' \item{city}{a character variable with values \code{Albany}, #' \code{Anaheim}, \code{Atlanta}, \code{Baltimore}, \code{Birmingham}, #' \code{Boston}, \code{Chicago}, \code{Cincinnati}, \code{Cleveland}, #' \code{Columbus}, \code{Dallas}, \code{Denver}, \code{Detroit}, \code{Ft #' Lauderdale}, \code{Houston}, \code{Indianapolis}, \code{Kansas City}, \code{Los #' Angeles}, \code{Louisville}, \code{Memphis}, \code{Miami}, \code{Milwaukee}, #' \code{Minneapolis}, \code{Nashville}, \code{New York}, \code{Oklahoma City}, #' \code{Philadelphia}, \code{Providence}, \code{Rochester}, \code{Salt Lake City}, #' \code{San Antonio}, \code{San Diego}, \code{San Francisco}, \code{San Jose}, #' \code{St Louis}, \code{Tampa}, and \code{Washington}} #' \item{year}{a factor with levels \code{1984} and \code{1993}} #' \item{price}{median house price (in dollars)} #' } #' #' @source National Association of Realtors. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stripchart(price ~ year, data = Housing, method = "stack", #' pch = 1, col = c("red", "blue")) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Housing, aes(x = price, fill = year)) + #' geom_dotplot() + #' facet_grid(year ~ .) + #' theme_bw() #' } #' "Housing" #' Number of storms, hurricanes and El Nino effects from 1950 through 1995 #' #' Data for Exercises 1.38, 10.19, and Example 1.6 #' #' #' @name Hurrican #' @docType data #' @format A data frame/tibble with 46 observations on four variables #' \describe{ #' \item{year}{a numeric vector indicating year} #' \item{storms}{a numeric vector recording number of storms} #' \item{hurrican}{a numeric vector recording number of hurricanes} #' \item{elnino}{a factor with levels \code{cold}, \code{neutral}, and #' \code{warm}} #' } #' #' @source National Hurricane Center. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~hurrican, data = Hurrican) #' T1 #' barplot(T1, col = "blue", main = "Problem 1.38", #' xlab = "Number of hurricanes", #' ylab = "Number of seasons") #' boxplot(storms ~ elnino, data = Hurrican, #' col = c("blue", "yellow", "red")) #' anova(lm(storms ~ elnino, data = Hurrican)) #' rm(T1) #' "Hurrican" #' Number of icebergs sighted each month south of Newfoundland and south of the #' Grand Banks in 1920 #' #' Data for Exercise 2.46 and 2.60 #' #' #' @name Iceberg #' @docType data #' @format A data frame with 12 observations on three variables #' \describe{ #' \item{month}{a character variable with abbreviated months of the year} #' \item{Newfoundland}{number of icebergs sighted south of Newfoundland} #' \item{Grand Banks}{number of icebergs sighted south of Grand Banks} #' } #' #' @source N. Shaw, \emph{Manual of Meteorology}, Vol. 2 (London: Cambridge University Press 1942), #' 7; and F. Mosteller and J. Tukey, \emph{Data Analysis and Regression} (Reading, MA: Addison - Wesley, 1977). #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(Newfoundland ~ `Grand Banks`, data = Iceberg) #' abline(lm(Newfoundland ~ `Grand Banks`, data = Iceberg), col = "blue") #' "Iceberg" #' Percent change in personal income from 1st to 2nd quarter in 2000 #' #' Data for Exercise 1.33 #' #' #' @name Income #' @docType data #' @format A data frame/tibble with 51 observations on two variables #' \describe{ #' \item{state}{a character variable with values \code{Alabama}, #' \code{Alaska}, \code{Arizona}, \code{Arkansas}, \code{California}, #' \code{Colorado}, \code{Connecticut}, \code{Delaware}, \code{District of #' Colunbia}, \code{Florida}, \code{Georgia}, \code{Hawaii}, \code{Idaho}, #' \code{Illinois}, \code{Indiana}, \code{Iowa}, \code{Kansas}, \code{Kentucky}, #' \code{Louisiana}, \code{Maine}, \code{Maryland}, \code{Massachusetts}, #' \code{Michigan}, \code{Minnesota}, \code{Mississippi}, \code{Missour}, #' \code{Montana}, \code{Nebraska}, \code{Nevada}, \code{New Hampshire}, \code{New #' Jersey}, \code{New Mexico}, \code{New York}, \code{North Carolina}, \code{North #' Dakota}, \code{Ohio}, \code{Oklahoma}, \code{Oregon}, \code{Pennsylvania}, #' \code{Rhode Island}, \code{South Carolina}, \code{South Dakota}, #' \code{Tennessee}, \code{Texas}, \code{Utah}, \code{Vermont}, \code{Virginia}, #' \code{Washington}, \code{West Virginia}, \code{Wisconsin}, and \code{Wyoming}} #' \item{percent_change}{percent change in income from first quarter to the second quarter of 2000} #' } #' #' @source US Department of Commerce. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' Income$class <- cut(Income$percent_change, #' breaks = c(-Inf, 0.5, 1.0, 1.5, 2.0, Inf)) #' T1 <- xtabs(~class, data = Income) #' T1 #' barplot(T1, col = "pink") #' \dontrun{ #' library(ggplot2) #' DF <- as.data.frame(T1) #' DF #' ggplot2::ggplot(data = DF, aes(x = class, y = Freq)) + #' geom_bar(stat = "identity", fill = "purple") + #' theme_bw() #' } #' "Income" #' Illustrates a comparison problem for long-tailed distributions #' #' Data for Exercise 7.41 #' #' #' @name Independent #' @docType data #' @format A data frame/tibble with 46 observations on two variables #' \describe{ #' \item{score}{a numeric vector} #' \item{group}{a factor with levels \code{A} and \code{B}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Independent$score[Independent$group=="A"]) #' qqline(Independent$score[Independent$group=="A"]) #' qqnorm(Independent$score[Independent$group=="B"]) #' qqline(Independent$score[Independent$group=="B"]) #' boxplot(score ~ group, data = Independent, col = "blue") #' wilcox.test(score ~ group, data = Independent) #' "Independent" #' Educational attainment versus per capita income and poverty rate for #' American indians living on reservations #' #' Data for Exercise 2.95 #' #' #' @name Indian #' @docType data #' @format A data frame/tibble with ten observations on four variables #' \describe{ #' \item{reservation}{a character variable with values \code{Blackfeet}, #' \code{Fort Apache}, \code{Gila River}, \code{Hopi}, \code{Navajo}, \code{Papago}, #' \code{Pine Ridge}, \code{Rosebud}, \code{San Carlos}, and \code{Zuni Pueblo}} #' \item{percent high school}{percent who have graduated from high school} #' \item{per capita income}{per capita income (in dollars)} #' \item{poverty rate}{percent poverty} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' par(mfrow = c(1, 2)) #' plot(`per capita income` ~ `percent high school`, data = Indian, #' xlab = "Percent high school graudates", ylab = "Per capita income") #' plot(`poverty rate` ~ `percent high school`, data = Indian, #' xlab = "Percent high school graudates", ylab = "Percent poverty") #' par(mfrow = c(1, 1)) #' "Indian" #' Average miles per hour for the winners of the Indianapolis 500 race #' #' Data for Exercise 1.128 #' #' #' @name Indiapol #' @docType data #' @format A data frame/tibble with 39 observations on two variables #' \describe{ #' \item{year}{the year of the race} #' \item{speed}{the winners average speed (in mph)} #' } #' #' @source The World Almanac and Book of Facts, 2000, p. 1004. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(speed ~ year, data = Indiapol, type = "b") #' "Indiapol" #' Qualifying miles per hour and number of previous starts for drivers in 79th #' Indianapolis 500 race #' #' Data for Exercises 7.11 and 7.36 #' #' #' @name Indy500 #' @docType data #' @format A data frame/tibble with 33 observations on four variables #' \describe{ #' \item{driver}{a character variable with values \code{andretti}, #' \code{bachelart}, \code{boesel}, \code{brayton}, \code{c.guerrero}, #' \code{cheever}, \code{fabi}, \code{fernandez}, \code{ferran}, \code{fittipaldi}, #' \code{fox}, \code{goodyear}, \code{gordon}, \code{gugelmin}, \code{herta}, #' \code{james}, \code{johansson}, \code{jones}, \code{lazier}, \code{luyendyk}, #' \code{matsuda}, \code{matsushita}, \code{pruett}, \code{r.guerrero}, #' \code{rahal}, \code{ribeiro}, \code{salazar}, \code{sharp}, \code{sullivan}, #' \code{tracy}, \code{vasser}, \code{villeneuve}, and \code{zampedri}} #' \item{qualif}{qualifying speed (in mph)} #' \item{starts}{number of Indianapolis 500 starts} #' \item{group}{a numeric vector where 1 indicates the driver has 4 or fewer #' Indianapolis 500 starts and a 2 for drivers with 5 or more Indianapolis 500 starts} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stripchart(qualif ~ group, data = Indy500, method = "stack", #' pch = 19, col = c("red", "blue")) #' boxplot(qualif ~ group, data = Indy500) #' t.test(qualif ~ group, data = Indy500) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Indy500, aes(sample = qualif)) + #' geom_qq() + #' facet_grid(group ~ .) + #' theme_bw() #' } #' "Indy500" #' Private pay increase of salaried employees versus inflation rate #' #' Data for Exercises 2.12 and 2.29 #' #' #' @name Inflatio #' @docType data #' @format A data frame/tibble with 24 observations on four variables #' \describe{ #' \item{year}{a numeric vector of years} #' \item{pay}{average hourly wage for salaried employees (in dollars)} #' \item{increase}{percent increase in hourly wage over previous year} #' \item{inflation}{percent inflation rate} #' } #' #' @source Bureau of Labor Statistics. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(increase ~ inflation, data = Inflatio) #' cor(Inflatio$increase, Inflatio$inflation, use = "complete.obs") #' "Inflatio" #' Inlet oil temperature through a valve #' #' Data for Exercises 5.91 and 6.48 #' #' #' @name Inletoil #' @docType data #' @format A data frame/tibble with 12 observations on one variable #' \describe{ #' \item{temp}{inlet oil temperature (Fahrenheit)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Inletoil$temp, breaks = 3) #' qqnorm(Inletoil$temp) #' qqline(Inletoil$temp) #' t.test(Inletoil$temp) #' t.test(Inletoil$temp, mu = 98, alternative = "less") #' "Inletoil" #' Type of drug offense by race #' #' Data for Statistical Insight Chapter 8 #' #' #' @name Inmate #' @docType data #' @format A data frame/tibble with 28,047 observations on two variables #' \describe{ #' \item{race}{a factor with levels \code{white}, #' \code{black}, and \code{hispanic}} #' \item{drug}{a factor with levels \code{heroin}, \code{crack}, \code{cocaine}, #' and \code{marijuana}} #' } #' #' @source C. Wolf Harlow (1994), \emph{Comparing Federal and State Prison Inmates}, #' NCJ-145864, U.S. Department of Justice, Bureau of Justice Statistics. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~race + drug, data = Inmate) #' T1 #' chisq.test(T1) #' rm(T1) #' "Inmate" #' Percent of vehicles passing inspection by type inspection station #' #' Data for Exercise 8.59 #' #' #' @name Inspect #' @docType data #' @format A data frame/tibble with 174 observations on two variables #' \describe{ #' \item{station}{a factor with levels \code{auto inspection}, #' \code{auto repair}, \code{car care center}, \code{gas station}, \code{new car #' dealer}, and \code{tire store}} #' \item{passed}{a factor with levels \code{less than 70\%}, \code{between 70\% and 84\%}, and \code{more than 85\%}} #' } #' #' @source \emph{The Charlotte Observer}, December 13, 1992. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~ station + passed, data = Inspect) #' T1 #' barplot(T1, beside = TRUE, legend = TRUE) #' chisq.test(T1) #' rm(T1) #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Inspect, aes(x = passed, fill = station)) + #' geom_bar(position = "dodge") + #' theme_bw() #' } #' "Inspect" #' Heat loss through a new insulating medium #' #' Data for Exercise 9.50 #' #' #' @name Insulate #' @docType data #' @format A data frame/tibble with ten observations on two variables #' \describe{ #' \item{temp}{outside temperature (in degrees Celcius)} #' \item{loss}{heat loss (in BTUs)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(loss ~ temp, data = Insulate) #' model <- lm(loss ~ temp, data = Insulate) #' abline(model, col = "blue") #' summary(model) #' #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Insulate, aes(x = temp, y = loss)) + #' geom_point() + #' geom_smooth(method = "lm", se = FALSE) + #' theme_bw() #' } #' "Insulate" #' GPA versus IQ for 12 individuals #' #' Data for Exercises 9.51 and 9.52 #' #' #' @name Iqgpa #' @docType data #' @format A data frame/tibble with 12 observations on two variables #' \describe{ #' \item{iq}{IQ scores} #' \item{gpa}{Grade point average} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(gpa ~ iq, data = Iqgpa, col = "blue", pch = 19) #' model <- lm(gpa ~ iq, data = Iqgpa) #' summary(model) #' rm(model) #' "Iqgpa" #' R.A. Fishers famous data on Irises #' #' Data for Examples 1.15 and 5.19 #' #' #' @name Irises #' @docType data #' @format A data frame/tibble with 150 observations on five variables #' \describe{ #' \item{sepal_length}{sepal length (in cm)} #' \item{sepal_width}{sepal width (in cm)} #' \item{petal_length}{petal length (in cm)} #' \item{petal_width}{petal width (in cm)} #' \item{species}{a factor with levels \code{setosa}, \code{versicolor}, and \code{virginica}} #' } #' @source Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. #' \emph{Annals of Eugenics}, \strong{7}, Part II, 179-188. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' tapply(Irises$sepal_length, Irises$species, mean) #' t.test(Irises$sepal_length[Irises$species == "setosa"], conf.level = 0.99) #' hist(Irises$sepal_length[Irises$species == "setosa"], #' main = "Sepal length for\n Iris Setosa", #' xlab = "Length (in cm)") #' boxplot(sepal_length ~ species, data = Irises) #' "Irises" #' Number of problems reported per 100 cars in 1994 versus 1995s #' #' Data for Exercise 2.14, 2.17, 2.31, 2.33, and 2.40 #' #' #' @name Jdpower #' @docType data #' @format A data frame/tibble with 29 observations on three variables #' \describe{ #' \item{car}{a factor with levels \code{Acura}, \code{BMW}, #' \code{Buick}, \code{Cadillac}, \code{Chevrolet}, \code{Dodge} \code{Eagle}, #' \code{Ford}, \code{Geo}, \code{Honda}, \code{Hyundai}, \code{Infiniti}, #' \code{Jaguar}, \code{Lexus}, \code{Lincoln}, \code{Mazda}, \code{Mercedes-Benz}, #' \code{Mercury}, \code{Mitsubishi}, \code{Nissan}, \code{Oldsmobile}, #' \code{Plymouth}, \code{Pontiac}, \code{Saab}, \code{Saturn}, and \code{Subaru}, #' \code{Toyota} \code{Volkswagen}, \code{Volvo}} #' \item{1994}{number of problems per 100 cars in 1994} #' \item{1995}{number of problems per 100 cars in 1995} #' } #' #' @source \emph{USA Today}, May 25, 1995. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' model <- lm(`1995` ~ `1994`, data = Jdpower) #' summary(model) #' plot(`1995` ~ `1994`, data = Jdpower) #' abline(model, col = "red") #' rm(model) #' "Jdpower" #' Job satisfaction and stress level for 9 school teachers #' #' Data for Exercise 9.60 #' #' #' @name Jobsat #' @docType data #' @format A data frame/tibble with nine observations on two variables #' \describe{ #' \item{wspt}{Wilson Stress Profile score for teachers} #' \item{satisfaction}{job satisfaction score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(satisfaction ~ wspt, data = Jobsat) #' model <- lm(satisfaction ~ wspt, data = Jobsat) #' abline(model, col = "blue") #' summary(model) #' rm(model) #' "Jobsat" #' Smoking habits of boys and girls ages 12 to 18 #' #' Data for Exercise 4.85 #' #' #' @name Kidsmoke #' @docType data #' @format A data frame/tibble with 1000 observations on two variables #' \describe{ #' \item{gender}{character vector with values \code{female} and \code{male}} #' \item{smoke}{a character vector with values \code{no} and \code{yes}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~smoke + gender, data = Kidsmoke) #' T1 #' prop.table(T1) #' prop.table(T1, 1) #' prop.table(T1, 2) #' "Kidsmoke" #' Rates per kilowatt-hour for each of the 50 states and DC #' #' Data for Example 5.9 #' #' #' @name Kilowatt #' @docType data #' @format A data frame/tibble with 51 observations on two variables #' \describe{ #' \item{state}{a factor with levels \code{Alabama} #' \code{Alaska}, \code{Arizona}, \code{Arkansas} \code{California}, #' \code{Colorado}, \code{Connecticut}, \code{Delaware}, \code{District of #' Columbia}, \code{Florida},\code{Georgia}, \code{Hawaii}, \code{Idaho}, #' \code{Illinois}, \code{Indiana}, \code{Iowa} \code{Kansas} \code{Kentucky}, #' \code{Louisiana}, \code{Maine}, \code{Maryland}, \code{Massachusetts}, #' \code{Michigan}, \code{Minnesota}, \code{Mississippi}, \code{Missour}, #' \code{Montana} \code{Nebraska}, \code{Nevada}, \code{New Hampshire}, \code{New #' Jersey}, \code{New Mexico}, \code{New York}, \code{North Carolina}, \code{North #' Dakota}, \code{Ohio}, \code{Oklahoma}, \code{Oregon}, \code{Pennsylvania}, #' \code{Rhode Island}, \code{South Carolina}, \code{South Dakota}, #' \code{Tennessee}, \code{Texas}, \code{Utah}, \code{Vermont}, \code{Virginia} #' \code{Washington}, \code{West Virginia}, \code{Wisconsin}, and \code{Wyoming}} #' \item{rate}{a numeric vector indicating rates for kilowatt per hour} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Kilowatt$rate) #' "Kilowatt" #' Reading scores for first grade children who attended kindergarten versus #' those who did not #' #' Data for Exercise 7.68 #' #' #' @name Kinder #' @docType data #' @format A data frame/tibble with eight observations on three variables #' \describe{ #' \item{pair}{a numeric indicator of pair} #' \item{kinder}{reading score of kids who went to kindergarten} #' \item{nokinder}{reading score of kids who did not go to kindergarten} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(Kinder$kinder, Kinder$nokinder) #' diff <- Kinder$kinder - Kinder$nokinder #' qqnorm(diff) #' qqline(diff) #' shapiro.test(diff) #' t.test(diff) #' rm(diff) #' "Kinder" #' Median costs of laminectomies at hospitals across North Carolina in 1992 #' #' Data for Exercise 10.18 #' #' #' @name Laminect #' @docType data #' @format A data frame/tibble with 138 observations on two variables #' \describe{ #' \item{area}{a character vector indicating the area of the hospital with \code{Rural}, \code{Regional}, #' and \code{Metropol}} #' \item{cost}{a numeric vector indicating cost of a laminectomy} #' } #' #'@source \emph{Consumer's Guide to Hospitalization Charges in North Carolina Hospitals} (August 1994), #'North Carolina Medical Database Commission, Department of Insurance. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #'boxplot(cost ~ area, data = Laminect, col = topo.colors(3)) #'anova(lm(cost ~ area, data = Laminect)) #' "Laminect" #' Lead levels in children's blood whose parents worked in a battery factory #' #' Data for Example 1.17 #' #' #' @name Lead #' @docType data #' @format A data frame/tibble with 66 observations on the two variables #' \describe{ #' \item{group}{a character vector with values \code{exposed} and \code{control}} #' \item{lead}{a numeric vector indicating the level of lead in children's blood (in micrograms/dl)} #' } #' #' @source Morton, D. et al. (1982), "Lead Absorption in Children of Employees in a Lead-Related #' Industry," \emph{American Journal of Epidemiology, 155,} 549-555. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(lead ~ group, data = Lead, col = topo.colors(2)) #' "Lead" #' Leadership exam scores by age for employees on an industrial plant #' #' Data for Exercise 7.31 #' #' #' @name Leader #' @docType data #' @format A data frame/tibble with 34 observations on two variables #' \describe{ #' \item{age}{a character vector indicating age with values \code{under35} and \code{over35}} #' \item{score}{score on a leadership exam} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #'boxplot(score ~ age, data = Leader, col = c("gray", "green")) #'t.test(score ~ age, data = Leader) #' "Leader" #' Survival time of mice injected with an experimental lethal drug #' #' Data for Example 6.12 #' #' #' @name Lethal #' @docType data #' @format A data frame/tibble with 30 observations on one variable #' \describe{ #' \item{survival}{a numeric vector indicating time surivived #' after injection (in seconds)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #'SIGN.test(Lethal$survival, md = 45, alternative = "less") #' #' "Lethal" #' Life expectancy of men and women in U.S. #' #' Data for Exercise 1.31 #' #' #' @name Life #' @docType data #' @format A data frame/tibble with eight observations on three variables #' \describe{ #' \item{year}{a numeric vector indicating year} #' \item{men}{life expectancy for men (in years)} #' \item{women}{life expectancy for women (in years)} #' } #' #' @source National Center for Health Statistics. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #'plot(men ~ year, type = "l", ylim = c(min(men, women), max(men, women)), #' col = "blue", main = "Life Expectancy vs Year", ylab = "Age", #' xlab = "Year", data = Life) #'lines(women ~ year, col = "red", data = Life) #'text(1955, 65, "Men", col = "blue") #'text(1955, 70, "Women", col = "red") #' "Life" #' Life span of electronic components used in a spacecraft versus heat #' #' Data for Exercise 2.4, 2.37, and 2.49 #' #' #' @name Lifespan #' @docType data #' @format A data frame/tibble with six observations two variables #' \describe{ #' \item{heat}{temperature (in Celcius)} #' \item{life}{lifespan of component (in hours)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(life ~ heat, data = Lifespan) #' model <- lm(life ~ heat, data = Lifespan) #' abline(model, col = "red") #' resid(model) #' sum((resid(model))^2) #' anova(model) #' rm(model) #' "Lifespan" #' Relationship between damage reports and deaths caused by lightning #' #' Data for Exercise 2.6 #' #' #' @name Ligntmonth #' @docType data #' @format A data frame/tibble with 12 observations on four variables #' \describe{ #' \item{month}{a factor with levels \code{1/01/2000}, #' \code{10/01/2000}, \code{11/01/2000}, \code{12/01/2000}, \code{2/01/2000}, #' \code{3/01/2000}, \code{4/01/2000}, \code{5/01/2000}, \code{6/01/2000}, #' \code{7/01/2000}, \code{8/01/2000}, and \code{9/01/2000}} #' \item{deaths}{number of deaths due to lightning strikes} #' \item{injuries}{number of injuries due to lightning strikes} #' \item{damage}{damage due to lightning strikes (in dollars)} #' } #' #' @source \emph{Lighting Fatalities, Injuries and Damage Reports in the United States}, #' 1959-1994, NOAA Technical Memorandum NWS SR-193, Dept. of Commerce. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(deaths ~ damage, data = Ligntmonth) #' model = lm(deaths ~ damage, data = Ligntmonth) #' abline(model, col = "red") #' rm(model) #' "Ligntmonth" #' Measured traffic at three prospective locations for a motor lodge #' #' Data for Exercise 10.33 #' #' #' @name Lodge #' @docType data #' @format A data frame/tibble with 45 observations on six variables #' \describe{ #' \item{traffic}{a numeric vector indicating the amount of vehicles that passed a site in 1 hour} #' \item{site}{a numeric vector with values \code{1}, \code{2}, and \code{3}} #' \item{ranks}{ranks for variable \code{traffic}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(traffic ~ site, data = Lodge, col = cm.colors(3)) #' anova(lm(traffic ~ factor(site), data = Lodge)) #' "Lodge" #' Long-tailed distributions to illustrate Kruskal Wallis test #' #' Data for Exercise 10.45 #' #' #' @name Longtail #' @docType data #' @format A data frame/tibble with 60 observations on three variables #' \describe{ #' \item{score}{a numeric vector} #' \item{group}{a numeric vector with values \code{1}, \code{2}, and \code{3}} #' \item{ranks}{ranks for variable \code{score}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(score ~ group, data = Longtail, col = heat.colors(3)) #' kruskal.test(score ~ factor(group), data = Longtail) #' anova(lm(score ~ factor(group), data = Longtail)) #' "Longtail" #' Reading skills of 24 matched low ability students #' #' Data for Example 7.18 #' #' #' @name Lowabil #' @docType data #' @format A data frame/tibble with 12 observations on three variables #' \describe{ #' \item{pair}{a numeric indicator of pair} #' \item{experiment}{score of the child with the experimental method} #' \item{control}{score of the child with the standard method} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' diff = Lowabil$experiment - Lowabil$control #' qqnorm(diff) #' qqline(diff) #' shapiro.test(diff) #' t.test(diff) #' rm(diff) #' "Lowabil" #' Magnesium concentration and distances between samples #' #' Data for Exercise 9.9 #' #' #' @name Magnesiu #' @docType data #' @format A data frame/tibble with 20 observations on two variables #' \describe{ #' \item{distance}{distance between samples} #' \item{magnesium}{concentration of magnesium} #' } #' #' @source Davis, J. (1986), \emph{Statistics and Data Analysis in Geology}, 2d. Ed., #' John Wiley and Sons, New York, p. 146. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(magnesium ~ distance, data = Magnesiu) #' model = lm(magnesium ~ distance, data = Magnesiu) #' abline(model, col = "red") #' summary(model) #' rm(model) #' "Magnesiu" #' Amounts awarded in 17 malpractice cases #' #' Data for Exercise 5.73 #' #' #' @name Malpract #' @docType data #' @format A data frame/tibble with 17 observations on one variable #' \describe{ #' \item{award}{malpractice reward (in $1000)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' SIGN.test(Malpract$award, conf.level = 0.90) #' "Malpract" #' Advertised salaries offered general managers of major corporations in 1995 #' #' Data for Exercise 5.81 #' #' #' @name Manager #' @docType data #' @format A data frame/tibble with 26 observations on one variable #' \describe{ #' \item{salary}{random sample of advertised annual salaries of top executives (in dollars)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Manager$salary) #' SIGN.test(Manager$salary) #' "Manager" #' Percent of marked cars in 65 police departments in Florida #' #' Data for Exercise 6.100 #' #' #' @name Marked #' @docType data #' @format A data frame/tibble with 65 observations on one variable #' \describe{ #' \item{percent}{percentage of marked cars in 65 Florida police departments} #' } #' #' @source \emph{Law Enforcement Management and Administrative Statistics, 1993}, Bureau of #' Justice Statistics, NCJ-148825, September 1995, p. 147-148. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Marked$percent) #' SIGN.test(Marked$percent, md = 60, alternative = "greater") #' t.test(Marked$percent, mu = 60, alternative = "greater") #' "Marked" #' Standardized math test scores for 30 students #' #' Data for Exercise 1.69 #' #' #' @name Math #' @docType data #' @format A data frame/tibble with 30 observations on one variable #' \describe{ #' \item{score}{scores on a standardized test for 30 tenth graders} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Math$score) #' hist(Math$score, main = "Math Scores", xlab = "score", freq = FALSE) #' lines(density(Math$score), col = "red") #' CharlieZ <- (62 - mean(Math$score))/sd(Math$score) #' CharlieZ #' scale(Math$score)[which(Math$score == 62)] #' "Math" #' Standardized math competency for a group of entering freshmen at a small #' community college #' #' Data for Exercise 5.26 #' #' #' @name Mathcomp #' @docType data #' @format A data frame/tibble with 31 observations one variable #' \describe{ #' \item{score}{scores of 31 entering freshmen at a community college #' on a national standardized test} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Mathcomp$score) #' EDA(Mathcomp$score) #' "Mathcomp" #' Math proficiency and SAT scores by states #' #' Data for Exercise 9.24, Example 9.1, and Example 9.6 #' #' #' @name Mathpro #' @docType data #' @format A data frame/tibble with 51 observations on four variables #' \describe{ #' \item{state}{a factor with levels \code{} \code{Conn}, #' \code{D.C.}, \code{Del}, \code{Ga}, \code{Hawaii}, \code{Ind}, \code{Maine}, #' \code{Mass}, \code{Md}, \code{N.C.}, \code{N.H.}, \code{N.J.}, \code{N.Y.}, #' \code{Ore}, \code{Pa}, \code{R.I.}, \code{S.C.}, \code{Va}, and \code{Vt}} #' \item{sat_math}{SAT math scores for high school seniors} #' \item{profic}{math proficiency scores for eigth graders} #' \item{group}{a numeric vector} #' } #' #' @source National Assessment of Educational Progress and The College Board. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' model <- lm(sat_math ~ profic, data = Mathpro) #' plot(sat_math ~ profic, data = Mathpro, ylab = "SAT", xlab = "proficiency") #' abline(model, col = "red") #' summary(model) #' rm(model) #' "Mathpro" #' Error scores for four groups of experimental animals running a maze #' #' Data for Exercise 10.13 #' #' #' @name Maze #' @docType data #' @format A data frame/tibble with 32 observations on two variables #' \describe{ #' \item{score}{error scores for animals running through a maze under different conditions} #' \item{condition}{a factor with levels \code{CondA}, #' \code{CondB,} \code{CondC}, and \code{CondD}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(score ~ condition, data = Maze, col = rainbow(4)) #' anova(lm(score ~ condition, data = Maze)) #' "Maze" #' Illustrates test of equality of medians with the Kruskal Wallis test #' #' Data for Exercise 10.52 #' #' #' @name Median #' @docType data #' @format A data frame/tibble with 45 observations on two variables #' \describe{ #' \item{sample}{a vector with values \code{Sample1}, \code{Sample 2}, and \code{Sample 3}} #' \item{value}{a numeric vector} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(value ~ sample, data = Median, col = rainbow(3)) #' anova(lm(value ~ sample, data = Median)) #' kruskal.test(value ~ factor(sample), data = Median) #' "Median" #' Median mental ages of 16 girls #' #' Data for Exercise 6.52 #' #' #' @name Mental #' @docType data #' @format A data frame/tibble with 16 observations on one variable #' \describe{ #' \item{age}{mental age of 16 girls} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' SIGN.test(Mental$age, md = 100) #' "Mental" #' Concentration of mercury in 25 lake trout #' #' Data for Example 1.9 #' #' #' @name Mercury #' @docType data #' @format A data frame/tibble with 25 observations on one variable #' \describe{ #' \item{mercury}{a numeric vector measuring mercury (in parts per million)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Mercury$mercury) #' "Mercury" #' Monthly rental costs in metro areas with 1 million or more persons #' #' Data for Exercise 5.117 #' #' #' @name Metrent #' @docType data #' @format A data frame/tibble with 46 observations on one variable #' \describe{ #' \item{rent}{monthly rent in dollars} #' } #' #' @source U.S. Bureau of the Census, \emph{Housing in the Metropolitan Areas, #' Statistical Brief} SB/94/19, September 1994. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(Metrent$rent, col = "magenta") #' t.test(Metrent$rent, conf.level = 0.99)$conf #' "Metrent" #' Miller personality test scores for a group of college students applying for #' graduate school #' #' Data for Example 5.7 #' #' #' @name Miller #' @docType data #' @format A data frame/tibble with 25 observations on one variable #' \describe{ #' \item{miller}{scores on the Miller Personality test} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Miller$miller) #' fivenum(Miller$miller) #' boxplot(Miller$miller) #' qqnorm(Miller$miller,col = "blue") #' qqline(Miller$miller, col = "red") #' "Miller" #' Twenty scores on the Miller personality test #' #' Data for Exercise 1.41 #' #' #' @name Miller1 #' @docType data #' @format A data frame/tibble with 20 observations on one variable #' \describe{ #' \item{miller}{scores on the Miller personality test} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Miller1$miller) #' stem(Miller1$miller, scale = 2) #' "Miller1" #' Moisture content and depth of core sample for marine muds in eastern #' Louisiana #' #' Data for Exercise 9.32 #' #' #' @name Moisture #' @docType data #' @format A data frame/tibble with 16 observations on four variables #' \describe{ #' \item{depth}{a numeric vector} #' \item{moisture}{g of water per 100 g of dried sediment} #' \item{lnmoist}{a numeric vector} #' \item{depthsq}{a numeric vector} #' } #' #' @source Davis, J. C. (1986), \emph{Statistics and Data Analysis in Geology}, 2d. ed., #' John Wiley and Sons, New York, pp. 177, 185. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(moisture ~ depth, data = Moisture) #' model <- lm(moisture ~ depth, data = Moisture) #' abline(model, col = "red") #' plot(resid(model) ~ depth, data = Moisture) #' rm(model) #' "Moisture" #' Carbon monoxide emitted by smoke stacks of a manufacturer and a competitor #' #' Data for Exercise 7.45 #' #' #' @name Monoxide #' @docType data #' @format A data frame/tibble with ten observations on two variables #' \describe{ #' \item{company}{a vector with values \code{manufacturer} and \code{competitor}} #' \item{emission}{carbon monoxide emitted} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(emission ~ company, data = Monoxide, col = topo.colors(2)) #' t.test(emission ~ company, data = Monoxide) #' wilcox.test(emission ~ company, data = Monoxide) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Monoxide, aes(x = company, y = emission)) + #' geom_boxplot() + #' theme_bw() #' } #' "Monoxide" #' Moral attitude scale on 15 subjects before and after viewing a movie #' #' Data for Exercise 7.53 #' #' #' @name Movie #' @docType data #' @format A data frame/tibble with 12 observations on three variables #' \describe{ #' \item{before}{moral aptitude before viewing the movie} #' \item{after}{moral aptitude after viewing the movie} #' \item{differ}{a numeric vector} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Movie$differ) #' qqline(Movie$differ) #' shapiro.test(Movie$differ) #' t.test(Movie$differ, conf.level = 0.99) #' wilcox.test(Movie$differ) #' "Movie" #' Improvement scores for identical twins taught music recognition by two #' techniques #' #' Data for Exercise 7.59 #' #' #' @name Music #' @docType data #' @format A data frame/tibble with 12 observations on three variables #' \describe{ #' \item{method1}{a numeric vector measuring the improvement scores on a music recognition test} #' \item{method2}{a numeric vector measuring the improvement scores on a music recognition test} #' \item{differ}{\code{method1} - \code{method2}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Music$differ) #' qqline(Music$differ) #' shapiro.test(Music$differ) #' t.test(Music$differ) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Music, aes(x = differ)) + #' geom_dotplot() + #' theme_bw() #' } #' "Music" #' Estimated value of a brand name product and the conpany's revenue #' #' Data for Exercises 2.28, 9.19, and Example 2.8 #' #' #' @name Name #' @docType data #' @format A data frame/tibble with 42 observations on three variables #' \describe{ #' \item{brand}{a factor with levels \code{Band-Aid}, #' \code{Barbie}, \code{Birds Eye}, \code{Budweiser}, \code{Camel}, \code{Campbell}, #' \code{Carlsberg}, \code{Coca-Cola}, \code{Colgate}, \code{Del Monte}, #' \code{Fisher-Price}, \verb{Gordon's}, \code{Green Giant}, \code{Guinness}, #' \code{Haagen-Dazs}, \code{Heineken}, \code{Heinz}, \code{Hennessy}, #' \code{Hermes}, \code{Hershey}, \code{Ivory}, \code{Jell-o}, \code{Johnnie #' Walker}, \code{Kellogg}, \code{Kleenex}, \code{Kraft}, \code{Louis Vuitton}, #' \code{Marlboro}, \code{Nescafe}, \code{Nestle}, \code{Nivea}, \code{Oil of Olay}, #' \code{Pampers}, \code{Pepsi-Cola}, \code{Planters}, \code{Quaker}, \code{Sara #' Lee}, \code{Schweppes}, \code{Smirnoff}, \code{Tampax}, \code{Winston}, and #' \verb{Wrigley's}} #' \item{value}{value in billions of dollars} #' \item{revenue}{revenue in billions of dollars} #' } #' #' @source Financial World. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(value ~ revenue, data = Name) #' model <- lm(value ~ revenue, data = Name) #' abline(model, col = "red") #' cor(Name$value, Name$revenue) #' summary(model) #' rm(model) #' "Name" #' Efficiency of pit crews for three major NASCAR teams #' #' Data for Exercise 10.53 #' #' #' @name Nascar #' @docType data #' @format A data frame/tibble with 36 observations on six variables #' \describe{ #' \item{time}{duration of pit stop (in seconds)} #' \item{team}{a numeric vector representing team 1, 2, or 3} #' \item{ranks}{a numeric vector ranking each pit stop in order of speed} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(time ~ team, data = Nascar, col = rainbow(3)) #' model <- lm(time ~ factor(team), data = Nascar) #' summary(model) #' anova(model) #' rm(model) #' "Nascar" #' Reaction effects of 4 drugs on 25 subjects with a nervous disorder #' #' Data for Example 10.3 #' #' #' @name Nervous #' @docType data #' @format A data frame/tibble with 25 observations on two variables #' \describe{ #' \item{react}{a numeric vector representing reaction time} #' \item{drug}{a numeric vector indicating each of the 4 drugs} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(react ~ drug, data = Nervous, col = rainbow(4)) #' model <- aov(react ~ factor(drug), data = Nervous) #' summary(model) #' TukeyHSD(model) #' plot(TukeyHSD(model), las = 1) #' "Nervous" #' Daily profits for 20 newsstands #' #' Data for Exercise 1.43 #' #' #' @name Newsstand #' @docType data #' @format A data frame/tibble with 20 observations on one variable #' \describe{ #' \item{profit}{profit of each newsstand (in dollars)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Newsstand$profit) #' stem(Newsstand$profit, scale = 3) #' "Newsstand" #' Rating, time in 40-yard dash, and weight of top defensive linemen in the #' 1994 NFL draft #' #' Data for Exercise 9.63 #' #' #' @name Nfldraf2 #' @docType data #' @format A data frame/tibble with 47 observations on three variables #' \describe{ #' \item{rating}{rating of each player on a scale out of 10} #' \item{forty}{forty yard dash time (in seconds)} #' \item{weight}{weight of each player (in pounds)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(rating ~ forty, data = Nfldraf2) #' summary(lm(rating ~ forty, data = Nfldraf2)) #' "Nfldraf2" #' Rating, time in 40-yard dash, and weight of top offensive linemen in the #' 1994 NFL draft #' #' Data for Exercises 9.10 and 9.16 #' #' #' @name Nfldraft #' @docType data #' @format A data frame/tibble with 29 observations on three variables #' \describe{ #' \item{rating}{rating of each player on a scale out of 10} #' \item{forty}{forty yard dash time (in seconds)} #' \item{weight}{weight of each player (in pounds)} #' } #' #' @source \emph{USA Today}, April 20, 1994. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(rating ~ forty, data = Nfldraft) #' cor(Nfldraft$rating, Nfldraft$forty) #' summary(lm(rating ~ forty, data = Nfldraft)) #' "Nfldraft" #' Nicotine content versus sales for eight major brands of cigarettes #' #' Data for Exercise 9.21 #' #' #' @name Nicotine #' @docType data #' @format A data frame/tibble with eight observations on two variables #' \describe{ #' \item{nicotine}{nicotine content (in milligrams)} #' \item{sales}{sales figures (in $100,000)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' model <- lm(sales ~ nicotine, data = Nicotine) #' plot(sales ~ nicotine, data = Nicotine) #' abline(model, col = "red") #' summary(model) #' predict(model, newdata = data.frame(nicotine = 1), #' interval = "confidence", level = 0.99) #' "Nicotine" #' Price of oranges versus size of the harvest #' #' Data for Exercise 9.61 #' #' #' @name Orange #' @docType data #' @format A data frame/tibble with six observations on two variables #' \describe{ #' \item{harvest}{harvest in millions of boxes} #' \item{price}{average price charged by California growers #' for a 75-pound box of navel oranges} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(price ~ harvest, data = Orange) #' model <- lm(price ~ harvest, data = Orange) #' abline(model, col = "red") #' summary(model) #' rm(model) #' "Orange" #' Salaries of members of the Baltimore Orioles baseball team #' #' Data for Example 1.3 #' #' #' @name Orioles #' @docType data #' @format A data frame/tibble with 27 observations on three variables #' \describe{ #' \item{first name}{a factor with levels \code{Albert}, #' \code{Arthur}, \code{B.J.}, \code{Brady}, \code{Cal}, \code{Charles}, #' \code{dl-Delino}, \code{dl-Scott}, \code{Doug}, \code{Harold}, \code{Heathcliff}, #' \code{Jeff}, \code{Jesse}, \code{Juan}, \code{Lenny}, \code{Mike}, \code{Rich}, #' \code{Ricky}, \code{Scott}, \code{Sidney}, \code{Will}, and \code{Willis}} #' \item{last name}{a factor with levels \code{Amaral}, \code{Anderson}, #' \code{Baines}, \code{Belle}, \code{Bones}, \code{Bordick}, \code{Clark}, #' \code{Conine}, \code{Deshields}, \code{Erickson}, \code{Fetters}, \code{Garcia}, #' \code{Guzman}, \code{Johns}, \code{Johnson}, \code{Kamieniecki}, \code{Mussina}, #' \code{Orosco}, \code{Otanez}, \code{Ponson}, \code{Reboulet}, \code{Rhodes}, #' \code{Ripken Jr.}, \code{Slocumb}, \code{Surhoff},\code{Timlin}, and #' \code{Webster}} #' \item{1999salary}{a numeric vector containing each player's salary (in dollars)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stripchart(Orioles$`1999salary`, method = "stack", pch = 19) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Orioles, aes(x = `1999salary`)) + #' geom_dotplot(dotsize = 0.5) + #' labs(x = "1999 Salary") + #' theme_bw() #' } #' "Orioles" #' Arterial blood pressure of 11 subjects before and after receiving oxytocin #' #' Data for Exercise 7.86 #' #' #' @name Oxytocin #' @docType data #' @format A data frame/tibble with 11 observations on three variables #' \describe{ #' \item{subject}{a numeric vector indicating each subject} #' \item{before}{mean arterial blood pressure of subject before receiving oxytocin} #' \item{after}{mean arterial blood pressure of subject after receiving oxytocin} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' diff = Oxytocin$after - Oxytocin$before #' qqnorm(diff) #' qqline(diff) #' shapiro.test(diff) #' t.test(diff) #' rm(diff) #' "Oxytocin" #' Education backgrounds of parents of entering freshmen at a state university #' #' Data for Exercise 1.32 #' #' #' @name Parented #' @docType data #' @format A data frame/tibble with 200 observations on two variables #' \describe{ #' \item{education}{a factor with levels \code{4yr college #' degree}, \code{Doctoral degree}, \code{Grad degree}, \code{H.S grad or less}, #' \code{Some college}, and \code{Some grad school}} #' \item{parent}{a factor with levels \code{mother} and \code{father}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~education + parent, data = Parented) #' T1 #' barplot(t(T1), beside = TRUE, legend = TRUE, col = c("blue", "red")) #' rm(T1) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Parented, aes(x = education, fill = parent)) + #' geom_bar(position = "dodge") + #' theme_bw() + #' theme(axis.text.x = element_text(angle = 85, vjust = 0.5)) + #' scale_fill_manual(values = c("pink", "blue")) + #' labs(x = "", y = "") #' } #' "Parented" #' Years of experience and number of tickets given by patrolpersons in New York #' City #' #' Data for Example 9.3 #' #' #' @name Patrol #' @docType data #' @format A data frame/tibble with ten observations on three variables #' \describe{ #' \item{tickets}{number of tickets written per week} #' \item{years}{patrolperson's experience (in years)} #' \item{log_tickets}{natural log of \code{tickets}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' model <- lm(tickets ~ years, data = Patrol) #' summary(model) #' confint(model, level = 0.98) #' "Patrol" #' Karl Pearson's data on heights of brothers and sisters #' #' Data for Exercise 2.20 #' #' #' @name Pearson #' @docType data #' @format A data frame/tibble with 11 observations on three variables #' \describe{ #' \item{family}{number indicating family of brother and sister pair} #' \item{brother}{height of brother (in inches)} #' \item{sister}{height of sister (in inches)} #' } #' #' @source Pearson, K. and Lee, A. (1902-3), On the Laws of Inheritance in Man, #' \emph{Biometrika, 2}, 357. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(brother ~ sister, data = Pearson, col = "lightblue") #' cor(Pearson$brother, Pearson$sister) #' "Pearson" #' Length of long-distance phone calls for a small business firm #' #' Data for Exercise 6.95 #' #' #' @name Phone #' @docType data #' @format A data frame/tibble with 20 observations on one variable #' \describe{ #' \item{time}{duration of long distance phone call (in minutes)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Phone$time) #' qqline(Phone$time) #' shapiro.test(Phone$time) #' SIGN.test(Phone$time, md = 5, alternative = "greater") #' "Phone" #' Number of poisonings reported to 16 poison control centers #' #' Data for Exercise 1.113 #' #' #' @name Poison #' @docType data #' @format A data frame/tibble with 226,361 observations on one variable #' \describe{ #' \item{type}{a factor with levels \code{Alcohol}, #' \code{Cleaning agent}, \code{Cosmetics}, \code{Drugs}, \code{Insecticides}, and #' \code{Plants}} #' } #' #' @source Centers for Disease Control, Atlanta, Georgia. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~type, data = Poison) #' T1 #' par(mar = c(5.1 + 2, 4.1, 4.1, 2.1)) #' barplot(sort(T1, decreasing = TRUE), las = 2, col = rainbow(6)) #' par(mar = c(5.1, 4.1, 4.1, 2.1)) #' rm(T1) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Poison, aes(x = type, fill = type)) + #' geom_bar() + #' theme_bw() + #' theme(axis.text.x = element_text(angle = 85, vjust = 0.5)) + #' guides(fill = FALSE) #' } #' "Poison" #' Political party and gender in a voting district #' #' Data for Example 8.3 #' #' #' @name Politic #' @docType data #' @format A data frame/tibble with 250 observations on two variables #' \describe{ #' \item{party}{a factor with levels \code{republican}, \code{democrat}, and \code{other}} #' \item{gender}{a factor with levels \code{female} and \code{male}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~party + gender, data = Politic) #' T1 #' chisq.test(T1) #' rm(T1) #' "Politic" #' Air pollution index for 15 randomly selected days for a major western city #' #' Data for Exercise 5.59 #' #' #' @name Pollutio #' @docType data #' @format A data frame/tibble with 15 observations on one variable #' \describe{ #' \item{inde}{air pollution index} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Pollutio$inde) #' t.test(Pollutio$inde, conf.level = 0.98)$conf #' "Pollutio" #' Porosity measurements on 20 samples of Tensleep Sandstone, Pennsylvanian #' from Bighorn Basin in Wyoming #' #' Data for Exercise 5.86 #' #' #' @name Porosity #' @docType data #' @format A data frame/tibble with 20 observations on one variable #' \describe{ #' \item{porosity}{porosity measurement (percent)} #' } #' #' @source Davis, J. C. (1986), \emph{Statistics and Data Analysis in Geology}, 2nd edition, #' pages 63-65. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Porosity$porosity) #' fivenum(Porosity$porosity) #' boxplot(Porosity$porosity, col = "lightgreen") #' "Porosity" #' Percent poverty and crime rate for selected cities #' #' Data for Exercise 9.11 and 9.17 #' #' #' @name Poverty #' @docType data #' @format A data frame/tibble with 20 observations on four variables #' \describe{ #' \item{city}{a factor with levels \code{Atlanta}, #' \code{Buffalo}, \code{Cincinnati}, \code{Cleveland}, \code{Dayton, O}, #' \code{Detroit}, \code{Flint, Mich}, \code{Fresno, C}, \code{Gary, Ind}, #' \code{Hartford, C}, \code{Laredo}, \code{Macon, Ga}, \code{Miami}, #' \code{Milwaukee}, \code{New Orleans}, \code{Newark, NJ}, \code{Rochester,NY}, #' \code{Shreveport}, \code{St. Louis}, and \code{Waco, Tx}} #' \item{poverty}{percent of children living in poverty} #' \item{crime}{crime rate (per 1000 people)} #' \item{population}{population of city} #' } #' #' @source Children's Defense Fund and the Bureau of Justice Statistics. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(poverty ~ crime, data = Poverty) #' model <- lm(poverty ~ crime, data = Poverty) #' abline(model, col = "red") #' summary(model) #' rm(model) #' "Poverty" #' Robbery rates versus percent low income in eight precincts #' #' Data for Exercise 2.2 and 2.38 #' #' #' @name Precinct #' @docType data #' @format A data frame/tibble with eight observations on two variables #' \describe{ #' \item{rate}{robbery rate (per 1000 people)} #' \item{income}{percent with low income} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(rate ~ income, data = Precinct) #' model <- (lm(rate ~ income, data = Precinct)) #' abline(model, col = "red") #' rm(model) #' "Precinct" #' Racial prejudice measured on a sample of 25 high school students #' #' Data for Exercise 5.10 and 5.22 #' #' #' @name Prejudic #' @docType data #' @format A data frame with 25 observations on one variable #' \describe{ #' \item{prejud}{racial prejudice score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Prejudic$prejud) #' EDA(Prejudic$prejud) #' "Prejudic" #' Ages at inauguration and death of U.S. presidents #' #' Data for Exercise 1.126 #' #' #' @name Presiden #' @docType data #' @format A data frame/tibble with 43 observations on five variables #' \describe{ #' \item{first_initial}{a factor with levels \code{A.}, \code{B.}, #' \code{C.}, \code{D.}, \code{F.}, \code{G.}, \code{G. W.}, \code{H.}, \code{J.}, #' \code{L.}, \code{M.}, \code{R.}, \code{T.}, \code{U.}, \code{W.}, and \code{Z.}} #' \item{last_name}{a factor with levels \code{Adams}, \code{Arthur}, #' \code{Buchanan}, \code{Bush}, \code{Carter}, \code{Cleveland}, \code{Clinton}, #' \code{Coolidge}, \code{Eisenhower}, \code{Fillmore}, \code{Ford}, #' \code{Garfield}, \code{Grant}, \code{Harding}, \code{Harrison}, \code{Hayes}, #' \code{Hoover}, \code{Jackson}, \code{Jefferson}, \code{Johnson}, \code{Kennedy}, #' \code{Lincoln}, \code{Madison}, \code{McKinley}, \code{Monroe}, \code{Nixon}, #' \code{Pierce}, \code{Polk}, \code{Reagan}, \code{Roosevelt}, \code{Taft}, #' \code{Taylor}, \code{Truman}, \code{Tyler}, \code{VanBuren}, \code{Washington}, and #' \code{Wilson}} #' \item{birth_state}{a factor with levels \code{ARK}, #' \code{CAL}, \code{CONN}, \code{GA}, \code{IA}, \code{ILL}, \code{KY}, \code{MASS}, #' \code{MO}, \code{NC}, \code{NEB}, \code{NH}, \code{NJ}, \code{NY}, \code{OH}, #' \code{PA}, \code{SC}, \code{TEX}, \code{VA}, and \code{VT}} #' \item{inaugural_age}{President's age at inauguration} #' \item{death_age}{President's age at death} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' pie(xtabs(~birth_state, data = Presiden)) #' stem(Presiden$inaugural_age) #' stem(Presiden$death_age) #' par(mar = c(5.1, 4.1 + 3, 4.1, 2.1)) #' stripchart(x=list(Presiden$inaugural_age, Presiden$death_age), #' method = "stack", col = c("green","brown"), pch = 19, las = 1) #' par(mar = c(5.1, 4.1, 4.1, 2.1)) #' "Presiden" #' Degree of confidence in the press versus education level for 20 randomly #' selected persons #' #' Data for Exercise 9.55 #' #' #' @name Press #' @docType data #' @format A data frame/tibble with 20 observations on two variables #' \describe{ #' \item{education_yrs}{years of education} #' \item{confidence}{degree of confidence in the press (the higher the score, the more confidence)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(confidence ~ education_yrs, data = Press) #' model <- lm(confidence ~ education_yrs, data = Press) #' abline(model, col = "purple") #' summary(model) #' rm(model) #' "Press" #' Klopfer's prognostic rating scale for subjects receiving behavior #' modification therapy #' #' Data for Exercise 6.61 #' #' #' @name Prognost #' @docType data #' @format A data frame/tibble with 15 observations on one variable #' \describe{ #' \item{kprs_score}{Kloper's Prognostic Rating Scale score} #' } #' #' @source Newmark, C., et al. (1973), Predictive Validity of the Rorschach Prognostic Rating Scale #' with Behavior Modification Techniques, \emph{Journal of Clinical Psychology, 29}, 246-248. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Prognost$kprs_score) #' t.test(Prognost$kprs_score, mu = 9) #' "Prognost" #' Effects of four different methods of programmed learning for statistics #' students #' #' Data for Exercise 10.17 #' #' #' @name Program #' @docType data #' @format A data frame/tibble with 44 observations on two variables #' \describe{ #' \item{method}{a character variable with values \code{method1}, \code{method2}, #' \code{method3}, and \code{method4}} #' \item{score}{standardized test score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(score ~ method, col = c("red", "blue", "green", "yellow"), data = Program) #' anova(lm(score ~ method, data = Program)) #' TukeyHSD(aov(score ~ method, data = Program)) #' par(mar = c(5.1, 4.1 + 4, 4.1, 2.1)) #' plot(TukeyHSD(aov(score ~ method, data = Program)), las = 1) #' par(mar = c(5.1, 4.1, 4.1, 2.1)) #' "Program" #' PSAT scores versus SAT scores #' #' Data for Exercise 2.50 #' #' #' @name Psat #' @docType data #' @format A data frame/tibble with seven observations on the two variables #' \describe{ #' \item{psat}{PSAT score} #' \item{sat}{SAT score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' model <- lm(sat ~ psat, data = Psat) #' par(mfrow = c(1, 2)) #' plot(Psat$psat, resid(model)) #' plot(model, which = 1) #' rm(model) #' par(mfrow = c(1, 1)) #' "Psat" #' Correct responses for 24 students in a psychology experiment #' #' Data for Exercise 1.42 #' #' #' @name Psych #' @docType data #' @format A data frame/tibble with 23 observations on one variable #' \describe{ #' \item{score}{number of correct repsonses in a psychology experiment} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Psych$score) #' EDA(Psych$score) #' "Psych" #' Weekly incomes of a random sample of 50 Puerto Rican families in Miami #' #' Data for Exercise 5.22 and 5.65 #' #' #' @name Puerto #' @docType data #' @format A data frame/tibble with 50 observations on one variable #' \describe{ #' \item{income}{weekly family income (in dollars)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Puerto$income) #' boxplot(Puerto$income, col = "purple") #' t.test(Puerto$income,conf.level = .90)$conf #' "Puerto" #' Plasma LDL levels in two groups of quail #' #' Data for Exercise 1.53, 1.77, 1.88, 5.66, and 7.50 #' #' #' @name Quail #' @docType data #' @format A data frame/tibble with 40 observations on two variables #' \describe{ #' \item{group}{a character variable with values \code{placebo} and \code{treatment}} #' \item{level}{low-density lipoprotein (LDL) cholestrol level} #' } #' #' @source J. McKean, and T. Vidmar (1994), "A Comparison of Two Rank-Based Methods for the #' Analysis of Linear Models," \emph{The American Statistician, 48}, 220-229. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(level ~ group, data = Quail, horizontal = TRUE, xlab = "LDL Level", #' col = c("yellow", "lightblue")) #' "Quail" #' Quality control test scores on two manufacturing processes #' #' Data for Exercise 7.81 #' #' #' @name Quality #' @docType data #' @format A data frame/tibble with 15 observations on two variables #' \describe{ #' \item{process}{a character variable with values \code{Process1} and \code{Process2}} #' \item{score}{results of a quality control test} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(score ~ process, data = Quality, col = "lightgreen") #' t.test(score ~ process, data = Quality) #' "Quality" #' Rainfall in an area of west central Kansas and four surrounding counties #' #' Data for Exercise 9.8 #' #' #' @name Rainks #' @docType data #' @format A data frame/tibble with 35 observations on five variables #' \describe{ #' \item{rain}{rainfall (in inches)} #' \item{x1}{rainfall (in inches)} #' \item{x2}{rainfall (in inches)} #' \item{x3}{rainfall (in inches)} #' \item{x4}{rainfall (in inches)} #' } #' #' @source R. Picard, K. Berk (1990), Data Splitting, \emph{The American Statistician, 44}, (2), #' 140-147. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' cor(Rainks) #' model <- lm(rain ~ x2, data = Rainks) #' summary(model) #' "Rainks" #' Research and development expenditures and sales of a large company #' #' Data for Exercise 9.36 and Example 9.8 #' #' #' @name Randd #' @docType data #' @format A data frame/tibble with 12 observations on two variables #' \describe{ #' \item{rd}{research and development expenditures (in million dollars)} #' \item{sales}{sales (in million dollars)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(sales ~ rd, data = Randd) #' model <- lm(sales ~ rd, data = Randd) #' abline(model, col = "purple") #' summary(model) #' plot(model, which = 1) #' rm(model) #' "Randd" #' Survival times of 20 rats exposed to high levels of radiation #' #' Data for Exercise 1.52, 1.76, 5.62, and 6.44 #' #' #' @name Rat #' @docType data #' @format A data frame/tibble with 20 observations on one variable #' \describe{ #' \item{survival_time}{survival time in weeks for rats exposed to a high level of radiation} #' } #' #' @source J. Lawless, \emph{Statistical Models and Methods for Lifetime Data} (New York: Wiley, 1982). #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Rat$survival_time) #' qqnorm(Rat$survival_time) #' qqline(Rat$survival_time) #' summary(Rat$survival_time) #' t.test(Rat$survival_time) #' t.test(Rat$survival_time, mu = 100, alternative = "greater") #' "Rat" #' Grade point averages versus teacher's ratings #' #' Data for Example 2.6 #' #' #' @name Ratings #' @docType data #' @format A data frame/tibble with 250 observations on two variables #' \describe{ #' \item{rating}{character variable with students' ratings of instructor (A-F)} #' \item{gpa}{students' grade point average} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(gpa ~ rating, data = Ratings, xlab = "Student rating of instructor", #' ylab = "Student GPA") #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Ratings, aes(x = rating, y = gpa, fill = rating)) + #' geom_boxplot() + #' theme_bw() + #' theme(legend.position = "none") + #' labs(x = "Student rating of instructor", y = "Student GPA") #' } #' "Ratings" #' Threshold reaction time for persons subjected to emotional stress #' #' Data for Example 6.11 #' #' #' @name Reaction #' @docType data #' @format A data frame/tibble with 12 observations on one variable #' \describe{ #' \item{time}{threshold reaction time (in seconds) for persons subjected to emotional stress} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Reaction$time) #' SIGN.test(Reaction$time, md = 15, alternative = "less") #' "Reaction" #' Standardized reading scores for 30 fifth graders #' #' Data for Exercise 1.72 and 2.10 #' #' #' @name Reading #' @docType data #' @format A data frame/tibble with 30 observations on four variables #' \describe{ #' \item{score}{standardized reading test score} #' \item{sorted}{sorted values of \code{score}} #' \item{trimmed}{trimmed values of \code{sorted}} #' \item{winsoriz}{winsorized values of \code{score}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Reading$score, main = "Exercise 1.72", #' col = "lightgreen", xlab = "Standardized reading score") #' summary(Reading$score) #' sd(Reading$score) #' "Reading" #' Reading scores versus IQ scores #' #' Data for Exercises 2.10 and 2.53 #' #' #' @name Readiq #' @docType data #' @format A data frame/tibble with 14 observations on two variables #' \describe{ #' \item{reading}{reading achievement score} #' \item{iq}{IQ score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(reading ~ iq, data = Readiq) #' model <- lm(reading ~ iq, data = Readiq) #' abline(model, col = "purple") #' predict(model, newdata = data.frame(iq = c(100, 120))) #' residuals(model)[c(6, 7)] #' rm(model) #' "Readiq" #' Opinion on referendum by view on freedom of the press #' #' Data for Exercise 8.20 #' #' #' @name Referend #' @docType data #' @format A data frame with 237 observations on two variables #' \describe{ #' \item{choice}{a factor with levels \code{A}, \code{B}, and \code{C}} #' \item{response}{a factor with levels \code{for}, \code{against}, and \code{undecided}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~choice + response, data = Referend) #' T1 #' chisq.test(T1) #' chisq.test(T1)$expected #' "Referend" #' Pollution index taken in three regions of the country #' #' Data for Exercise 10.26 #' #' #' @name Region #' @docType data #' @format A data frame/tibble with 48 observations on three variables #' \describe{ #' \item{pollution}{pollution index} #' \item{region}{region of a county (\code{west}, \code{central}, and \code{east})} #' \item{ranks}{ranked values of \code{pollution}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(pollution ~ region, data = Region, col = "gray") #' anova(lm(pollution ~ region, data = Region)) #' "Region" #' Maintenance cost versus age of cash registers in a department store #' #' Data for Exercise 2.3, 2.39, and 2.54 #' #' #' @name Register #' @docType data #' @format A data frame/tibble with nine observations on two variables #' \describe{ #' \item{age}{age of cash register (in years)} #' \item{cost}{maintenance cost of cash register (in dollars)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(cost ~ age, data = Register) #' model <- lm(cost ~ age, data = Register) #' abline(model, col = "red") #' predict(model, newdata = data.frame(age = c(5, 10))) #' plot(model, which = 1) #' rm(model) #' "Register" #' Rehabilitative potential of 20 prison inmates as judged by two psychiatrists #' #' Data for Exercise 7.61 #' #' #' @name Rehab #' @docType data #' @format A data frame/tibble with 20 observations on four variables #' \describe{ #' \item{inmate}{inmate identification number} #' \item{psych1}{rating from first psychiatrist on the inmates rehabilative potential} #' \item{psych2}{rating from second psychiatrist on the inmates rehabilative potential} #' \item{differ}{\code{psych1} - \code{psych2}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(Rehab$differ) #' qqnorm(Rehab$differ) #' qqline(Rehab$differ) #' t.test(Rehab$differ) #' "Rehab" #' Math placement test score for 35 freshmen females and 42 freshmen males #' #' Data for Exercise 7.43 #' #' #' @name Remedial #' @docType data #' @format A data frame/tibble with 84 observations on two variables #' \describe{ #' \item{gender}{a character variable with values \code{female} and \code{male}} #' \item{score}{math placement score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(score ~ gender, data = Remedial, #' col = c("purple", "blue")) #' t.test(score ~ gender, data = Remedial, conf.level = 0.98) #' t.test(score ~ gender, data = Remedial, conf.level = 0.98)$conf #' wilcox.test(score ~ gender, data = Remedial, #' conf.int = TRUE, conf.level = 0.98) #' "Remedial" #' Weekly rentals for 45 apartments #' #' Data for Exercise 1.122 #' #' #' @name Rentals #' @docType data #' @format A data frame/tibble with 45 observations on one variable #' \describe{ #' \item{rent}{weekly apartment rental price (in dollars)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Rentals$rent) #' sum(Rentals$rent < mean(Rentals$rent) - 3*sd(Rentals$rent) | #' Rentals$rent > mean(Rentals$rent) + 3*sd(Rentals$rent)) #' "Rentals" #' Recorded times for repairing 22 automobiles involved in wrecks #' #' Data for Exercise 5.77 #' #' #' @name Repair #' @docType data #' @format A data frame/tibble with 22 observations on one variable #' \describe{ #' \item{time}{time to repair a wrecked in car (in hours)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Repair$time) #' SIGN.test(Repair$time, conf.level = 0.98) #' "Repair" #' Length of employment versus gross sales for 10 employees of a large retail #' store #' #' Data for Exercise 9.59 #' #' #' @name Retail #' @docType data #' @format A data frame/tibble with 10 observations on two variables #' \describe{ #' \item{months}{length of employment (in months)} #' \item{sales}{employee gross sales (in dollars)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(sales ~ months, data = Retail) #' model <- lm(sales ~ months, data = Retail) #' abline(model, col = "blue") #' summary(model) #' "Retail" #' Oceanography data obtained at site 1 by scientist aboard the ship Ron Brown #' #' Data for Exercise 2.9 #' #' #' @name Ronbrown1 #' @docType data #' @format A data frame/tibble with 75 observations on two variables #' \describe{ #' \item{depth}{ocen depth (in meters)} #' \item{temperature}{ocean temperature (in Celsius)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(temperature ~ depth, data = Ronbrown1, ylab = "Temperature") #' "Ronbrown1" #' Oceanography data obtained at site 2 by scientist aboard the ship Ron Brown #' #' Data for Exercise 2.56 and Example 2.4 #' #' #' @name Ronbrown2 #' @docType data #' @format A data frame/tibble with 150 observations on three variables #' \describe{ #' \item{depth}{ocean depth (in meters)} #' \item{temperature}{ocean temperature (in Celcius)} #' \item{salinity}{ocean salinity level} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(salinity ~ depth, data = Ronbrown2) #' model <- lm(salinity ~ depth, data = Ronbrown2) #' summary(model) #' plot(model, which = 1) #' rm(model) #' "Ronbrown2" #' Social adjustment scores for a rural group and a city group of children #' #' Data for Example 7.16 #' #' #' @name Rural #' @docType data #' @format A data frame/tibble with 33 observations on two variables #' \describe{ #' \item{score}{child's social adjustment score} #' \item{area}{character variable with values \code{city} and \code{rural}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(score ~ area, data = Rural) #' wilcox.test(score ~ area, data = Rural) #' \dontrun{ #' library(dplyr) #' Rural <- dplyr::mutate(Rural, r = rank(score)) #' Rural #' t.test(r ~ area, data = Rural) #' } #' "Rural" #' Starting salaries for 25 new PhD psychologist #' #' Data for Exercise 3.66 #' #' #' @name Salary #' @docType data #' @format A data frame/tibble with 25 observations on one variable #' \describe{ #' \item{salary}{starting salary for Ph.D. psycholgists (in dollars)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Salary$salary, pch = 19, col = "purple") #' qqline(Salary$salary, col = "blue") #' "Salary" #' Surface-water salinity measurements from Whitewater Bay, Florida #' #' Data for Exercise 5.27 and 5.64 #' #' #' @name Salinity #' @docType data #' @format A data frame/tibble with 48 observations on one variable #' \describe{ #' \item{salinity}{surface-water salinity value} #' } #' #' @source J. Davis, \emph{Statistics and Data Analysis in Geology}, 2nd ed. (New York: John Wiley, 1986). #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Salinity$salinity) #' qqnorm(Salinity$salinity, pch = 19, col = "purple") #' qqline(Salinity$salinity, col = "blue") #' t.test(Salinity$salinity, conf.level = 0.99) #' t.test(Salinity$salinity, conf.level = 0.99)$conf #' "Salinity" #' SAT scores, percent taking exam and state funding per student by state for #' 1994, 1995 and 1999 #' #' Data for Statistical Insight Chapter 9 #' #' #' @name Sat #' @docType data #' @format A data frame/tibble with 102 observations on seven variables #' \describe{ #' \item{state}{U.S. state} #' \item{verbal}{verbal SAT score} #' \item{math}{math SAT score} #' \item{total}{combined verbal and math SAT score} #' \item{percent}{percent of high school seniors taking the SAT} #' \item{expend}{state expenditure per student (in dollars)} #' \item{year}{year} #' } #' #' @source \emph{The 2000 World Almanac and Book of Facts}, Funk and Wagnalls Corporation, New Jersey. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' Sat94 <- Sat[Sat$year == 1994, ] #' Sat94 #' Sat99 <- subset(Sat, year == 1999) #' Sat99 #' stem(Sat99$total) #' plot(total ~ percent, data = Sat99) #' model <- lm(total ~ percent, data = Sat99) #' abline(model, col = "blue") #' summary(model) #' rm(model) #' "Sat" #' Problem asset ration for savings and loan companies in California, New York, #' and Texas #' #' Data for Exercise 10.34 and 10.49 #' #' #' @name Saving #' @docType data #' @format A data frame/tibble with 65 observations on two variables #' \describe{ #' \item{par}{problem-asset-ratio for Savings & Loans that were listed as being financially troubled in 1992} #' \item{state}{U.S. state} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(par ~ state, data = Saving, col = "red") #' boxplot(par ~ state, data = Saving, log = "y", col = "red") #' model <- aov(par ~ state, data = Saving) #' summary(model) #' plot(TukeyHSD(model)) #' kruskal.test(par ~ factor(state), data = Saving) #' "Saving" #' Readings obtained from a 100 pound weight placed on four brands of bathroom #' scales #' #' Data for Exercise 1.89 #' #' #' @name Scales #' @docType data #' @format A data frame/tibble with 20 observations on two variables #' \describe{ #' \item{brand}{variable indicating brand of bathroom scale (\code{A}, \code{B}, \code{C}, or \code{D})} #' \item{reading}{recorded value (in pounds) of a 100 pound weight} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(reading ~ brand, data = Scales, col = rainbow(4), #' ylab = "Weight (lbs)") #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Scales, aes(x = brand, y = reading, fill = brand)) + #' geom_boxplot() + #' labs(y = "weight (lbs)") + #' theme_bw() + #' theme(legend.position = "none") #' } #' "Scales" #' Exam scores for 17 patients to assess the learning ability of schizophrenics #' after taking a specified does of a tranquilizer #' #' Data for Exercise 6.99 #' #' #' @name Schizop2 #' @docType data #' @format A data frame/tibble with 17 observations on one variable #' \describe{ #' \item{score}{schizophrenics score on a second standardized exam} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Schizop2$score, xlab = "score on standardized test after a tranquilizer", #' main = "Exercise 6.99", breaks = 10, col = "orange") #' EDA(Schizop2$score) #' SIGN.test(Schizop2$score, md = 22, alternative = "greater") #' "Schizop2" #' Standardized exam scores for 13 patients to investigate the learning ability #' of schizophrenics after a specified dose of a tranquilizer #' #' Data for Example 6.10 #' #' #' @name Schizoph #' @docType data #' @format A data frame/tibble with 13 observations on one variable #' \describe{ #' \item{score}{schizophrenics score on a standardized exam one #' hour after recieving a specified dose of a tranqilizer.} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Schizoph$score, xlab = "score on standardized test", #' main = "Example 6.10", breaks = 10, col = "orange") #' EDA(Schizoph$score) #' t.test(Schizoph$score, mu = 20) #' "Schizoph" #' Injury level versus seatbelt usage #' #' Data for Exercise 8.24 #' #' #' @name Seatbelt #' @docType data #' @format A data frame/tibble with 86,759 observations on two variables #' \describe{ #' \item{seatbelt}{a factor with levels \code{No} and \code{Yes}} #' \item{injuries}{a factor with levels \code{None}, \code{Minimal}, #' \code{Minor}, or \code{Major} indicating the extent of the drivers injuries} #' } #' #' @source Jobson, J. (1982), \emph{Applied Multivariate Data Analysis}, Springer-Verlag, #' New York, p. 18. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~seatbelt + injuries, data = Seatbelt) #' T1 #' chisq.test(T1) #' rm(T1) #' "Seatbelt" #' Self-confidence scores for 9 women before and after instructions on #' self-defense #' #' Data for Example 7.19 #' #' #' @name Selfdefe #' @docType data #' @format A data frame/tibble with nine observations on three variables #' \describe{ #' \item{woman}{number identifying the woman} #' \item{before}{before the course self-confidence score} #' \item{after}{after the course self-confidence score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' Selfdefe$differ <- Selfdefe$after - Selfdefe$before #' Selfdefe #' t.test(Selfdefe$differ, alternative = "greater") #' "Selfdefe" #' Reaction times of 30 senior citizens applying for drivers license renewals #' #' Data for Exercise 1.83 and 3.67 #' #' #' @name Senior #' @docType data #' @format A data frame/tibble with 31 observations on one variable #' \describe{ #' \item{reaction}{reaction time for senior citizens applying for a driver's license renewal} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Senior$reaction) #' fivenum(Senior$reaction) #' boxplot(Senior$reaction, main = "Problem 1.83, part d", #' horizontal = TRUE, col = "purple") #' "Senior" #' Sentences of 41 prisoners convicted of a homicide offense #' #' Data for Exercise 1.123 #' #' #' @name Sentence #' @docType data #' @format A data frame/tibble with 41 observations on one variable #' \describe{ #' \item{months}{sentence length (in months) for prisoners convicted of homocide} #' } #' #' @source U.S. Department of Justice, Bureau of Justice Statistics, \emph{Prison Sentences #' and Time Served for Violence}, NCJ-153858, April 1995. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Sentence$months) #' ll <- mean(Sentence$months)-2*sd(Sentence$months) #' ul <- mean(Sentence$months)+2*sd(Sentence$months) #' limits <- c(ll, ul) #' limits #' rm(ul, ll, limits) #' "Sentence" #' Effects of a drug and electroshock therapy on the ability to solve simple #' tasks #' #' Data for Exercises 10.11 and 10.12 #' #' #' @name Shkdrug #' @docType data #' @format A data frame/tibble with 64 observations on two variables #' \describe{ #' \item{treatment}{type of treament \code{Drug/NoS}, \code{Drug/Shk}, #' \code{NoDg/NoS}, or \code{NoDrug/S}} #' \item{response}{number of tasks completed in a 10-minute period} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(response ~ treatment, data = Shkdrug, col = "gray") #' model <- lm(response ~ treatment, data = Shkdrug) #' anova(model) #' rm(model) #' "Shkdrug" #' Effect of experimental shock on time to complete difficult task #' #' Data for Exercise 10.50 #' #' #' @name Shock #' @docType data #' @format A data frame/tibble with 27 observations on two variables #' \describe{ #' \item{group}{grouping variable with values of \code{Group1} (no shock), #' \code{Group2} (medium shock), and \code{Group3} (severe shock)} #' \item{attempts}{number of attempts to complete a task} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(attempts ~ group, data = Shock, col = "violet") #' model <- lm(attempts ~ group, data = Shock) #' anova(model) #' rm(model) #' #' "Shock" #' Sales receipts versus shoplifting losses for a department store #' #' Data for Exercise 9.58 #' #' #' @name Shoplift #' @docType data #' @format A data frame/tibble with eight observations on two variables #' \describe{ #' \item{sales}{sales (in 1000 dollars)} #' \item{loss}{loss (in 100 dollars)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(loss ~ sales, data = Shoplift) #' model <- lm(loss ~ sales, data = Shoplift) #' summary(model) #' rm(model) #' "Shoplift" #' James Short's measurements of the parallax of the sun #' #' Data for Exercise 6.65 #' #' #' @name Short #' @docType data #' @format A data frame/tibble with 158 observations on two variables #' \describe{ #' \item{sample}{sample number} #' \item{parallax}{parallax measurements (seconds of a degree)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Short$parallax, main = "Problem 6.65", #' xlab = "", col = "orange") #' SIGN.test(Short$parallax, md = 8.798) #' t.test(Short$parallax, mu = 8.798) #' "Short" #' Number of people riding shuttle versus number of automobiles in the downtown #' area #' #' Data for Exercise 9.20 #' #' #' @name Shuttle #' @docType data #' @format A data frame/tibble with 15 observations on two variables #' \describe{ #' \item{users}{number of shuttle riders} #' \item{autos}{number of automobiles in the downtown area} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(autos ~ users, data = Shuttle) #' model <- lm(autos ~ users, data = Shuttle) #' summary(model) #' rm(model) #' "Shuttle" #' Grade point averages of men and women participating in various sports-an #' illustration of Simpson's paradox #' #' Data for Example 1.18 #' #' #' @name Simpson #' @docType data #' @format A data frame/tibble with 100 observations on three variables #' \describe{ #' \item{gpa}{grade point average} #' \item{sport}{sport played (basketball, soccer, or track)} #' \item{gender}{athlete sex (male, female)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(gpa ~ gender, data = Simpson, col = "violet") #' boxplot(gpa ~ sport, data = Simpson, col = "lightgreen") #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Simpson, aes(x = gender, y = gpa, fill = gender)) + #' geom_boxplot() + #' facet_grid(.~sport) + #' theme_bw() #' } "Simpson" #' Maximum number of situps by participants in an exercise class #' #' Data for Exercise 1.47 #' #' #' @name Situp #' @docType data #' @format A data frame/tibble with 20 observations on one variable #' \describe{ #' \item{number}{maximum number of situps completed in an exercise class #' after 1 month in the program} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Situp$number) #' hist(Situp$number, breaks = seq(0, 70, 10), right = FALSE) #' hist(Situp$number, breaks = seq(0, 70, 10), right = FALSE, #' freq = FALSE, col = "pink", main = "Problem 1.47", #' xlab = "Maximum number of situps") #' lines(density(Situp$number), col = "red") #' "Situp" #' Illustrates the Wilcoxon Rank Sum test #' #' Data for Exercise 7.65 #' #' #' @name Skewed #' @docType data #' @format A data frame/tibble with 21 observations on two variables #' \describe{ #' \item{C1}{values from a sample of size 16 from a particular population} #' \item{C2}{values from a sample of size 14 from a particular population} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(Skewed$C1, Skewed$C2, col = c("pink", "lightblue")) #' wilcox.test(Skewed$C1, Skewed$C2) #' "Skewed" #' Survival times of closely and poorly matched skin grafts on burn patients #' #' Data for Exercise 5.20 #' #' #' @name Skin #' @docType data #' @format A data frame/tibble with 11 observations on four variables #' \describe{ #' \item{patient}{patient identification number} #' \item{close}{graft survival time in days for a closely matched skin graft on the same burn patient} #' \item{poor}{graft survival time in days for a poorly matched skin graft on the same burn patient} #' \item{differ}{difference between close and poor (in days)} #' } #' #' @source R. F. Woolon and P. A. Lachenbruch, "Rank Tests for Censored Matched Pairs," #' \emph{Biometrika}, 67(1980), 597-606. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Skin$differ) #' boxplot(Skin$differ, col = "pink") #' summary(Skin$differ) #' "Skin" #' Sodium-lithium countertransport activity on 190 individuals from six large #' English kindred #' #' Data for Exercise 5.116 #' #' #' @name Slc #' @docType data #' @format A data frame/tibble with 190 observations on one variable #' \describe{ #' \item{slc}{Red blood cell sodium-lithium countertransport} #' } #' #' @source Roeder, K., (1994), "A Graphical Technique for Determining the Number of Components #' in a Mixture of Normals," \emph{Journal of the American Statistical Association, 89}, 497-495. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Slc$slc) #' hist(Slc$slc, freq = FALSE, xlab = "sodium lithium countertransport", #' main = "", col = "lightblue") #' lines(density(Slc$slc), col = "purple") #' "Slc" #' Water pH levels of 75 water samples taken in the Great Smoky Mountains #' #' Data for Exercises 6.40, 6.59, 7.10, and 7.35 #' #' #' @name Smokyph #' @docType data #' @format A data frame/tibble with 75 observations on three variables #' \describe{ #' \item{waterph}{water sample pH level} #' \item{code}{charater variable with values \code{low} (elevation below 0.6 miles), #' and \code{high} (elevation above 0.6 miles)} #' \item{elev}{elevation in miles} #' } #' #' @source Schmoyer, R. L. (1994), Permutation Tests for Correlation in Regression Errors, #' \emph{Journal of the American Statistical Association, 89}, 1507-1516. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' summary(Smokyph$waterph) #' tapply(Smokyph$waterph, Smokyph$code, mean) #' stripchart(waterph ~ code, data = Smokyph, method = "stack", #' pch = 19, col = c("red", "blue")) #' t.test(Smokyph$waterph, mu = 7) #' SIGN.test(Smokyph$waterph, md = 7) #' t.test(waterph ~ code, data = Smokyph, alternative = "less") #' t.test(waterph ~ code, data = Smokyph, conf.level = 0.90) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Smokyph, aes(x = waterph, fill = code)) + #' geom_dotplot() + #' facet_grid(code ~ .) + #' guides(fill = FALSE) #' } #' "Smokyph" #' Snoring versus heart disease #' #' Data for Exercise 8.21 #' #' #' @name Snore #' @docType data #' @format A data frame/tibble with 2,484 observations on two variables #' \describe{ #' \item{snore}{factor with levels \code{nonsnorer}, \code{ocassional snorer}, #' \code{nearly every night}, and \code{snores every night}} #' \item{heartdisease}{factor indicating whether the indiviudal has heart disease #' (\code{no} or \code{yes})} #' } #' #' @source Norton, P. and Dunn, E. (1985), Snoring as a Risk Factor for Disease, #' \emph{British Medical Journal, 291}, #' 630-632. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~ heartdisease + snore, data = Snore) #' T1 #' chisq.test(T1) #' rm(T1) #' "Snore" #' Concentration of microparticles in snowfields of Greenland and Antarctica #' #' Data for Exercise 7.87 #' #' #' @name Snow #' @docType data #' @format A data frame/tibble with 34 observations on two variables #' \describe{ #' \item{concent}{concentration of microparticles from melted snow (in parts per billion)} #' \item{site}{location of snow sample (\code{Antarctica} or \code{Greenland})} #' } #' #' @source Davis, J., \emph{Statistics and Data Analysis in Geology}, John Wiley, New York. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(concent ~ site, data = Snow, col = c("lightblue", "lightgreen")) #' "Snow" #' Weights of 25 soccer players #' #' Data for Exercise 1.46 #' #' #' @name Soccer #' @docType data #' @format A data frame/tibble with 25 observations on one variable #' \describe{ #' \item{weight}{soccer players weight (in pounds)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Soccer$weight, scale = 2) #' hist(Soccer$weight, breaks = seq(110, 210, 10), col = "orange", #' main = "Problem 1.46 \n Weights of Soccer Players", #' xlab = "weight (lbs)", right = FALSE) #' "Soccer" #' Median income level for 25 social workers from North Carolina #' #' Data for Exercise 6.63 #' #' #' @name Social #' @docType data #' @format A data frame/tibble with 25 observations on one variable #' \describe{ #' \item{income}{annual income (in dollars) of North Carolina social workers #' with less than five years experience.} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' SIGN.test(Social$income, md = 27500, alternative = "less") #' "Social" #' Grade point averages, SAT scores and final grade in college algebra for 20 #' sophomores #' #' Data for Exercise 2.42 #' #' #' @name Sophomor #' @docType data #' @format A data frame/tibble with 20 observations on four variables #' \describe{ #' \item{student}{identification number} #' \item{gpa}{grade point average} #' \item{sat}{SAT math score} #' \item{exam}{final exam grade in college algebra} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' cor(Sophomor) #' plot(exam ~ gpa, data = Sophomor) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Sophomor, aes(x = gpa, y = exam)) + #' geom_point() #' ggplot2::ggplot(data = Sophomor, aes(x = sat, y = exam)) + #' geom_point() #' } #' "Sophomor" #' Murder rates for 30 cities in the South #' #' Data for Exercise 1.84 #' #' #' @name South #' @docType data #' @format A data frame/tibble with 31 observations on one variable #' \describe{ #' \item{rate}{murder rate per 100,000 people} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(South$rate, col = "gray", ylab = "Murder rate per 100,000 people") #' "South" #' Speed reading scores before and after a course on speed reading #' #' Data for Exercise 7.58 #' #' #' @name Speed #' @docType data #' @format A data frame/tibble with 15 observations on four variables #' \describe{ #' \item{before}{reading comprehension score before taking a speed-reading course} #' \item{after}{reading comprehension score after taking a speed-reading course} #' \item{differ}{after - before (comprehension reading scores)} #' \item{signranks}{signed ranked differences} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' t.test(Speed$differ, alternative = "greater") #' t.test(Speed$signranks, alternative = "greater") #' wilcox.test(Pair(Speed$after, Speed$before) ~ 1, data = Speed, alternative = "greater") #' "Speed" #' Standardized spelling test scores for two fourth grade classes #' #' Data for Exercise 7.82 #' #' #' @name Spellers #' @docType data #' @format A data frame/tibble with ten observations on two variables #' \describe{ #' \item{teacher}{character variable with values \code{Fourth} and \code{Colleague}} #' \item{score}{score on a standardized spelling test} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(score ~ teacher, data = Spellers, col = "pink") #' t.test(score ~ teacher, data = Spellers) #' "Spellers" #' Spelling scores for 9 eighth graders before and after a 2-week course of #' instruction #' #' Data for Exercise 7.56 #' #' #' @name Spelling #' @docType data #' @format A data frame/tibble with nine observations on three variables #' \describe{ #' \item{before}{spelling score before a 2-week course of instruction} #' \item{after}{spelling score after a 2-week course of instruction} #' \item{differ}{after - before (spelling score)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Spelling$differ) #' qqline(Spelling$differ) #' shapiro.test(Spelling$differ) #' t.test(Spelling$differ) #' "Spelling" #' Favorite sport by gender #' #' Data for Exercise 8.32 #' #' #' @name Sports #' @docType data #' @format A data frame/tibble with 200 observations on two variables #' \describe{ #' \item{gender}{a factor with levels \code{male} and \code{female}} #' \item{sport}{a factor with levels \code{football}, \code{basketball}, #' \code{baseball}, and \code{tennis}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~gender + sport, data = Sports) #' T1 #' chisq.test(T1) #' rm(T1) #' "Sports" #' Convictions in spouse murder cases by gender #' #' Data for Exercise 8.33 #' #' #' @name Spouse #' @docType data #' @format A data frame/tibble with 540 observations on two variables #' \describe{ #' \item{result}{a factor with levels \code{not prosecuted}, \code{pleaded guilty}, #' \code{convicted}, and \code{acquited}} #' \item{spouse}{a factor with levels \code{husband} and \code{wife}} #' } #' #' @source Bureau of Justice Statistics (September 1995), \emph{Spouse Murder Defendants in Large #' Urban Counties}, Executive Summary, NCJ-156831. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~result + spouse, data = Spouse) #' T1 #' chisq.test(T1) #' rm(T1) #' "Spouse" #' Times of a 2-year old stallion on a one mile run #' #' Data for Exercise 6.93 #' #' #' @name Stable #' @docType data #' @format A data frame/tibble with nine observations on one variable #' \describe{ #' \item{time}{time (in seconds) for horse to run 1 mile} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' SIGN.test(Stable$time, md = 98.5, alternative = "greater") #' "Stable" #' Thicknesses of 1872 Hidalgo stamps issued in Mexico #' #' Data for Statistical Insight Chapter 1 and Exercise 5.110 #' #' #' @name Stamp #' @docType data #' @format A data frame/tibble with 485 observations on one variable #' \describe{ #' \item{thickness}{stamp thickness (in mm)} #' } #' #' @source Izenman, A., Sommer, C. (1988), Philatelic Mixtures and Multimodal Densities, #' \emph{Journal of the American Statistical Association}, 83, 941-953. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Stamp$thickness, freq = FALSE, col = "lightblue", #' main = "", xlab = "stamp thickness (mm)") #' lines(density(Stamp$thickness), col = "blue") #' t.test(Stamp$thickness, conf.level = 0.99) #' "Stamp" #' Grades for two introductory statistics classes #' #' Data for Exercise 7.30 #' #' #' @name Statclas #' @docType data #' @format A data frame/tibble with 72 observations on two variables #' \describe{ #' \item{class}{class meeting time (9am or 2pm)} #' \item{score}{grade for an introductory statistics class} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' str(Statclas) #' boxplot(score ~ class, data = Statclas, col = "red") #' t.test(score ~ class, data = Statclas) #' "Statclas" #' Operating expenditures per resident for each of the state law enforcement #' agencies #' #' Data for Exercise 6.62 #' #' #' @name Statelaw #' @docType data #' @format A data frame/tibble with 50 observations on two variables #' \describe{ #' \item{state}{U.S. state} #' \item{cost}{dollars spent per resident on law enforcement} #' } #' #' @source Bureau of Justice Statistics, \emph{Law Enforcement Management and #' Administrative Statistics, 1993}, NCJ-148825, September 1995, page 84. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Statelaw$cost) #' SIGN.test(Statelaw$cost, md = 8, alternative = "less") #' "Statelaw" #' Test scores for two beginning statistics classes #' #' Data for Exercises 1.70 and 1.87 #' #' #' @name Statisti #' @docType data #' @format A data frame/tibble with 62 observations on two variables #' \describe{ #' \item{class}{character variable with values \code{Class1} and \code{Class2}} #' \item{score}{test score for an introductory statistics test} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(score ~ class, data = Statisti, col = "violet") #' tapply(Statisti$score, Statisti$class, summary, na.rm = TRUE) #' \dontrun{ #' library(dplyr) #' dplyr::group_by(Statisti, class) %>% #' summarize(Mean = mean(score, na.rm = TRUE), #' Median = median(score, na.rm = TRUE), #' SD = sd(score, na.rm = TRUE), #' RS = IQR(score, na.rm = TRUE)) #' } #' "Statisti" #' STEP science test scores for a class of ability-grouped students #' #' Data for Exercise 6.79 #' #' #' @name Step #' @docType data #' @format A data frame/tibble with 12 observations on one variable #' \describe{ #' \item{score}{State test of educational progress (STEP) science test score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Step$score) #' t.test(Step$score, mu = 80, alternative = "less") #' wilcox.test(Step$score, mu = 80, alternative = "less") #' "Step" #' Short-term memory test scores on 12 subjects before and after a stressful #' situation #' #' Data for Example 7.20 #' #' #' @name Stress #' @docType data #' @format A data frame/tibble with 12 observations on two variables #' \describe{ #' \item{prestress}{short term memory score before being exposed to a stressful situation} #' \item{poststress}{short term memory score after being exposed to a stressful situation} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' diff <- Stress$prestress - Stress$poststress #' qqnorm(diff) #' qqline(diff) #' t.test(diff) #' \dontrun{ #' wilcox.test(Pair(Stress$prestress, Stress$poststress)~1, data = Stress) #' } #' "Stress" #' Number of hours studied per week by a sample of 50 freshmen #' #' Data for Exercise 5.25 #' #' #' @name Study #' @docType data #' @format A data frame/tibble with 50 observations on one variable #' \describe{ #' \item{hours}{number of hours a week freshmen reported studying for their courses} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Study$hours) #' hist(Study$hours, col = "violet") #' summary(Study$hours) #' "Study" #' Number of German submarines sunk by U.S. Navy in World War II #' #' Data for Exercises 2.16, 2.45, and 2.59 #' #' #' @name Submarin #' @docType data #' @format A data frame/tibble with 16 observations on three variables #' \describe{ #' \item{month}{month} #' \item{reported}{number of submarines reported sunk by U.S. Navy} #' \item{actual}{number of submarines actually sunk by U.S. Navy} #' } #' #' @source F. Mosteller, S. Fienberg, and R. Rourke, \emph{Beginning Statistics with Data Analysis} #' (Reading, MA: Addison-Wesley, 1983). #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' model <- lm(actual ~ reported, data = Submarin) #' summary(model) #' plot(actual ~ reported, data = Submarin) #' abline(model, col = "red") #' rm(model) #' "Submarin" #' Time it takes a subway to travel from the airport to downtown #' #' Data for Exercise 5.19 #' #' #' @name Subway #' @docType data #' @format A data frame/tibble with 30 observations on one variable #' \describe{ #' \item{time}{time (in minutes) it takes a subway to travel from the airport to downtown} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Subway$time, main = "Exercise 5.19", #' xlab = "Time (in minutes)", col = "purple") #' summary(Subway$time) #' "Subway" #' Wolfer sunspot numbers from 1700 through 2000 #' #' Data for Example 1.7 #' #' #' @name Sunspot #' @docType data #' @format A data frame/tibble with 301 observations on two variables #' \describe{ #' \item{year}{year} #' \item{sunspots}{average number of sunspots for the year} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(sunspots ~ year, data = Sunspot, type = "l") #' \dontrun{ #' library(ggplot2) #' lattice::xyplot(sunspots ~ year, data = Sunspot, #' main = "Yearly sunspots", type = "l") #' lattice::xyplot(sunspots ~ year, data = Sunspot, type = "l", #' main = "Yearly sunspots", aspect = "xy") #' ggplot2::ggplot(data = Sunspot, aes(x = year, y = sunspots)) + #' geom_line() + #' theme_bw() #' } #' "Sunspot" #' Margin of victory in Superbowls I to XXXV #' #' Data for Exercise 1.54 #' #' #' @name Superbowl #' @docType data #' @format A data frame/tibble with 35 observations on five variables #' \describe{ #' \item{winning_team}{name of Suberbowl winning team} #' \item{winner_score}{winning score for the Superbowl} #' \item{losing_team}{name of Suberbowl losing team} #' \item{loser_score}{score of losing teama numeric vector} #' \item{victory_margin}{winner_score - loser_score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Superbowl$victory_margin) #' "Superbowl" #' Top speeds attained by five makes of supercars #' #' Data for Statistical Insight Chapter 10 #' #' #' @name Supercar #' @docType data #' @format A data frame/tibble with 30 observations on two variables #' \describe{ #' \item{speed}{top speed (in miles per hour) of car without redlining} #' \item{car}{name of sports car} #' } #' #' @source \emph{Car and Drvier} (July 1995). #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(speed ~ car, data = Supercar, col = rainbow(6), #' ylab = "Speed (mph)") #' summary(aov(speed ~ car, data = Supercar)) #' anova(lm(speed ~ car, data = Supercar)) #' "Supercar" #' Ozone concentrations at Mt. Mitchell, North Carolina #' #' Data for Exercise 5.63 #' #' #' @name Tablrock #' @docType data #' @format A data frame/tibble with 719 observations on the following 17 variables. #' \describe{ #' \item{day}{date} #' \item{hour}{time of day} #' \item{ozone}{ozone concentration} #' \item{tmp}{temperature (in Celcius)} #' \item{vdc}{a numeric vector} #' \item{wd}{a numeric vector} #' \item{ws}{a numeric vector} #' \item{amb}{a numeric vector} #' \item{dew}{a numeric vector} #' \item{so2}{a numeric vector} #' \item{no}{a numeric vector} #' \item{no2}{a numeric vector} #' \item{nox}{a numeric vector} #' \item{co}{a numeric vector} #' \item{co2}{a numeric vector} #' \item{gas}{a numeric vector} #' \item{air}{a numeric vector} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' summary(Tablrock$ozone) #' boxplot(Tablrock$ozone) #' qqnorm(Tablrock$ozone) #' qqline(Tablrock$ozone) #' par(mar = c(5.1 - 1, 4.1 + 2, 4.1 - 2, 2.1)) #' boxplot(ozone ~ day, data = Tablrock, #' horizontal = TRUE, las = 1, cex.axis = 0.7) #' par(mar = c(5.1, 4.1, 4.1, 2.1)) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Tablrock, aes(sample = ozone)) + #' geom_qq() + #' theme_bw() #' ggplot2::ggplot(data = Tablrock, aes(x = as.factor(day), y = ozone)) + #' geom_boxplot(fill = "pink") + #' coord_flip() + #' labs(x = "") + #' theme_bw() #' } #' "Tablrock" #' Average teacher's salaries across the states in the 70s 80s and 90s #' #' Data for Exercise 5.114 #' #' #' @name Teacher #' @docType data #' @format A data frame/tibble with 51 observations on three variables #' \describe{ #' \item{state}{U.S. state} #' \item{year}{academic year} #' \item{salary}{avaerage salary (in dollars)} #' } #' #' @source National Education Association. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' par(mfrow = c(3, 1)) #' hist(Teacher$salary[Teacher$year == "1973-74"], #' main = "Teacher salary 1973-74", xlab = "salary", #' xlim = range(Teacher$salary, na.rm = TRUE)) #' hist(Teacher$salary[Teacher$year == "1983-84"], #' main = "Teacher salary 1983-84", xlab = "salary", #' xlim = range(Teacher$salary, na.rm = TRUE)) #' hist(Teacher$salary[Teacher$year == "1993-94"], #' main = "Teacher salary 1993-94", xlab = "salary", #' xlim = range(Teacher$salary, na.rm = TRUE)) #' par(mfrow = c(1, 1)) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Teacher, aes(x = salary)) + #' geom_histogram(fill = "purple", color = "black") + #' facet_grid(year ~ .) + #' theme_bw() #' } #' "Teacher" #' Tennessee self concept scores for 20 gifted high school students #' #' Data for Exercise 6.56 #' #' #' @name Tenness #' @docType data #' @format A data frame/tibble with 20 observations on one variable #' \describe{ #' \item{score}{Tennessee Self-Concept Scale score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Tenness$score, freq= FALSE, main = "", col = "green", #' xlab = "Tennessee Self-Concept Scale score") #' lines(density(Tenness$score)) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Tenness, aes(x = score, y = ..density..)) + #' geom_histogram(binwidth = 2, fill = "purple", color = "black") + #' geom_density(color = "red", fill = "pink", alpha = 0.3) + #' theme_bw() #' } #' "Tenness" #' Tensile strength of plastic bags from two production runs #' #' Data for Example 7.11 #' #' #' @name Tensile #' @docType data #' @format A data frame/tibble with 72 observations on two variables #' \describe{ #' \item{tensile}{plastic bag tensile strength (pounds per square inch)} #' \item{run}{factor with run number (1 or 2)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(tensile ~ run, data = Tensile, #' col = c("purple", "cyan")) #' t.test(tensile ~ run, data = Tensile) #' "Tensile" #' Grades on the first test in a statistics class #' #' Data for Exercise 5.80 #' #' #' @name Test1 #' @docType data #' @format A data frame/tibble with 25 observations on one variable #' \describe{ #' \item{score}{score on first statistics exam} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Test1$score) #' boxplot(Test1$score, col = "purple") #' "Test1" #' Heat loss of thermal pane windows versus outside temperature #' #' Data for Example 9.5 #' #' #' @name Thermal #' @docType data #' @format A data frame/tibble with 12 observations on the two variables #' \describe{ #' \item{temp}{temperature (degrees Celcius)} #' \item{loss}{heat loss (BTUs)} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' model <- lm(loss ~ temp, data = Thermal) #' summary(model) #' plot(loss ~ temp, data = Thermal) #' abline(model, col = "red") #' rm(model) #' "Thermal" #' 1999-2000 closing prices for TIAA-CREF stocks #' #' Data for your enjoyment #' #' #' @name Tiaa #' @docType data #' @format A data frame/tibble with 365 observations on four variables #' \describe{ #' \item{crefstk}{closing price (in dollars)} #' \item{crefgwt}{closing price (in dollars)} #' \item{tiaa}{closing price (in dollars)} #' \item{date}{day of the year} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' data(Tiaa) #' "Tiaa" #' Time to complete an airline ticket reservation #' #' Data for Exercise 5.18 #' #' #' @name Ticket #' @docType data #' @format A data frame/tibble with 20 observations on one variable #' \describe{ #' \item{time}{time (in seconds) to check out a reservation} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Ticket$time) #' "Ticket" #' Consumer Reports (Oct 94) rating of toaster ovens versus the cost #' #' Data for Exercise 9.36 #' #' #' @name Toaster #' @docType data #' @format A data frame/tibble with 17 observations on three variables #' \describe{ #' \item{toaster}{name of toaster} #' \item{score}{Consumer Reports score} #' \item{cost}{price of toaster (in dollars)} #' } #' #' @source \emph{Consumer Reports} (October 1994). #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(cost ~ score, data = Toaster) #' model <- lm(cost ~ score, data = Toaster) #' summary(model) #' names(summary(model)) #' summary(model)$r.squared #' plot(model, which = 1) #' "Toaster" #' Size of tonsils collected from 1,398 children #' #' Data for Exercise 2.78 #' #' #' @name Tonsils #' @docType data #' @format A data frame/tibble with 1,398 observations on two variables #' \describe{ #' \item{size}{a factor with levels \code{Normal}, \code{Large}, and \code{Very Large}} #' \item{status}{a factor with levels \code{Carrier} and \code{Non-carrier}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~size + status, data = Tonsils) #' T1 #' prop.table(T1, 1) #' prop.table(T1, 1)[2, 1] #' barplot(t(T1), legend = TRUE, beside = TRUE, col = c("red", "green")) #' \dontrun{ #' library(dplyr) #' library(ggplot2) #' NDF <- dplyr::count(Tonsils, size, status) #' ggplot2::ggplot(data = NDF, aes(x = size, y = n, fill = status)) + #' geom_bar(stat = "identity", position = "dodge") + #' scale_fill_manual(values = c("red", "green")) + #' theme_bw() #' } #' "Tonsils" #' The number of torts, average number of months to process a tort, and county #' population from the court files of the nation's largest counties #' #' Data for Exercise 5.13 #' #' #' @name Tort #' @docType data #' @format A data frame/tibble with 45 observations on five variables #' \describe{ #' \item{county}{U.S. county} #' \item{months}{average number of months to process a tort} #' \item{population}{population of the county} #' \item{torts}{number of torts} #' \item{rate}{rate per 10,000 residents} #' } #' #' @source U.S. Department of Justice, \emph{Tort Cases in Large Counties}, Bureau of Justice #' Statistics Special Report, April 1995. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' EDA(Tort$months) #' "Tort" #' Hazardous waste sites near minority communities #' #' Data for Exercises 1.55, 5.08, 5.109, 8.58, and 10.35 #' #' #' @name Toxic #' @docType data #' @format A data frame/tibble with 51 observations on five variables #' \describe{ #' \item{state}{U.S. state} #' \item{region}{U.S. region} #' \item{sites}{number of commercial hazardous waste sites} #' \item{minority}{percent of minorities living in communities with commercial hazardous waste sites} #' \item{percent}{a numeric vector} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' hist(Toxic$sites, col = "red") #' hist(Toxic$minority, col = "blue") #' qqnorm(Toxic$minority) #' qqline(Toxic$minority) #' boxplot(sites ~ region, data = Toxic, col = "lightgreen") #' tapply(Toxic$sites, Toxic$region, median) #' kruskal.test(sites ~ factor(region), data = Toxic) #' "Toxic" #' National Olympic records for women in several races #' #' Data for Exercises 2.97, 5.115, and 9.62 #' #' #' @name Track #' @docType data #' @format A data frame with 55 observations on eight variables #' \describe{ #' \item{country}{athlete's country} #' \item{100m}{time in seconds for 100 m} #' \item{200m}{time in seconds for 200 m} #' \item{400m}{time in seconds for 400 m} #' \item{800m}{time in minutes for 800 m} #' \item{1500m}{time in minutes for 1500 m} #' \item{3000m}{time in minutes for 3000 m} #' \item{marathon}{time in minutes for marathon} #' } #' #' @source Dawkins, B. (1989), "Multivariate Analysis of National Track Records," \emph{The American Statistician, 43}(2), 110-115. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(`200m` ~ `100m`, data = Track) #' plot(`400m` ~ `100m`, data = Track) #' plot(`400m` ~ `200m`, data = Track) #' cor(Track[, 2:8]) #' "Track" #' Olympic winning times for the men's 1500-meter run #' #' Data for Exercise 1.36 #' #' #' @name Track15 #' @docType data #' @format A data frame/tibble with 26 observations on two variables #' \describe{ #' \item{year}{Olympic year} #' \item{time}{Olympic winning time (in seconds) for the 1500-meter run} #' } #' #' @source \emph{The World Almanac and Book of Facts}, 2000. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(time~ year, data = Track15, type = "b", pch = 19, #' ylab = "1500m time in seconds", col = "green") #' "Track15" #' Illustrates analysis of variance for three treatment groups #' #' Data for Exercise 10.44 #' #' #' @name Treatments #' @docType data #' @format A data frame/tibble with 24 observations on two variables #' \describe{ #' \item{score}{score from an experiment} #' \item{group}{factor with levels 1, 2, and 3} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(score ~ group, data = Treatments, col = "violet") #' summary(aov(score ~ group, data = Treatments)) #' summary(lm(score ~ group, data = Treatments)) #' anova(lm(score ~ group, data = Treatments)) #' "Treatments" #' Number of trees in 20 grids #' #' Data for Exercise 1.50 #' #' #' @name Trees #' @docType data #' @format A data frame/tibble with 20 observations on one variable #' \describe{ #' \item{number}{number of trees in a grid} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Trees$number) #' hist(Trees$number, main = "Exercise 1.50", xlab = "number", #' col = "brown") #' "Trees" #' Miles per gallon for standard 4-wheel drive trucks manufactured by #' Chevrolet, Dodge and Ford #' #' Data for Example 10.2 #' #' #' @name Trucks #' @docType data #' @format A data frame/tibble with 15 observations on two variables #' \describe{ #' \item{mpg}{miles per gallon} #' \item{truck}{a factor with levels \code{chevy}, \code{dodge}, and \code{ford}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(mpg ~ truck, data = Trucks, horizontal = TRUE, las = 1) #' summary(aov(mpg ~ truck, data = Trucks)) #' "Trucks" #' Percent of students that watch more than 6 hours of TV per day versus #' national math test scores #' #' Data for Examples 2.1 and 2.7 #' #' #' @name Tv #' @docType data #' @format A data frame/tibble with 53 observations on three variables #' \describe{ #' \item{state}{U.S. state} #' \item{percent}{percent of students who watch more than six hours of TV a day} #' \item{test}{state average on national math test} #' } #' #' @source Educational Testing Services. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(test ~ percent, data = Tv, col = "blue") #' cor(Tv$test, Tv$percent) #' "Tv" #' Intelligence test scores for identical twins in which one twin is given a #' drug #' #' Data for Exercise 7.54 #' #' #' @name Twin #' @docType data #' @format A data frame/tibble with nine observations on three variables #' \describe{ #' \item{twinA}{score on intelligence test without drug} #' \item{twinB}{score on intelligence test after taking drug} #' \item{differ}{\code{twinA} - \code{twinB}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' qqnorm(Twin$differ) #' qqline(Twin$differ) #' shapiro.test(Twin$differ) #' t.test(Twin$differ) #' "Twin" #' Data set describing a sample of undergraduate students #' #' Data for Exercise 1.15 #' #' #' @name Undergrad #' @docType data #' @format A data frame/tibble with 100 observations on six variables #' \describe{ #' \item{gender}{character variable with values \code{Female} and \code{Male}} #' \item{major}{college major} #' \item{class}{college year group classification} #' \item{gpa}{grade point average} #' \item{sat}{Scholastic Assessment Test score} #' \item{drops}{number of courses dropped} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stripchart(gpa ~ class, data = Undergrad, method = "stack", #' col = c("blue","red","green","lightblue"), #' pch = 19, main = "GPA versus Class") #' stripchart(gpa ~ gender, data = Undergrad, method = "stack", #' col = c("red", "blue"), pch = 19, #' main = "GPA versus Gender") #' stripchart(sat ~ drops, data = Undergrad, method = "stack", #' col = c("blue", "red", "green", "lightblue"), #' pch = 19, main = "SAT versus Drops") #' stripchart(drops ~ gender, data = Undergrad, method = "stack", #' col = c("red", "blue"), pch = 19, main = "Drops versus Gender") #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Undergrad, aes(x = sat, y = drops, fill = factor(drops))) + #' facet_grid(drops ~.) + #' geom_dotplot() + #' guides(fill = FALSE) #' } #' "Undergrad" #' Number of days of paid holidays and vacation leave for sample of 35 textile #' workers #' #' Data for Exercise 6.46 and 6.98 #' #' #' @name Vacation #' @docType data #' @format A data frame/tibble with 35 observations on one variable #' \describe{ #' \item{number}{number of days of paid holidays and vacation leave taken} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(Vacation$number, col = "violet") #' hist(Vacation$number, main = "Exercise 6.46", col = "blue", #' xlab = "number of days of paid holidays and vacation leave taken") #' t.test(Vacation$number, mu = 24) #' "Vacation" #' Reported serious reactions due to vaccines in 11 southern states #' #' Data for Exercise 1.111 #' #' #' @name Vaccine #' @docType data #' @format A data frame/tibble with 11 observations on two variables #' \describe{ #' \item{state}{U.S. state} #' \item{number}{number of reported serious reactions per million doses of a vaccine} #' } #' #' @source Center for Disease Control, Atlanta, Georgia. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Vaccine$number, scale = 2) #' fn <- fivenum(Vaccine$number) #' fn #' iqr <- IQR(Vaccine$number) #' iqr #' "Vaccine" #' Fatality ratings for foreign and domestic vehicles #' #' Data for Exercise 8.34 #' #' #' @name Vehicle #' @docType data #' @format A data frame/tibble with 151 observations on two variables #' \describe{ #' \item{make}{a factor with levels \code{domestic} and \code{foreign}} #' \item{rating}{a factor with levels \code{Much better than average}, #' \code{Above average}, \code{Average}, \code{Below average}, and \code{Much worse than average}} #' } #' #' @source Insurance Institute for Highway Safety and the Highway Loss Data Institute, 1995. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~make + rating, data = Vehicle) #' T1 #' chisq.test(T1) #' "Vehicle" #' Verbal test scores and number of library books checked out for 15 eighth #' graders #' #' Data for Exercise 9.30 #' #' #' @name Verbal #' @docType data #' @format A data frame/tibble with 15 observations on two variables #' \describe{ #' \item{number}{number of library books checked out} #' \item{verbal}{verbal test score} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(verbal ~ number, data = Verbal) #' abline(lm(verbal ~ number, data = Verbal), col = "red") #' summary(lm(verbal ~ number, data = Verbal)) #' "Verbal" #' Number of sunspots versus mean annual level of Lake Victoria Nyanza from #' 1902 to 1921 #' #' Data for Exercise 2.98 #' #' #' @name Victoria #' @docType data #' @format A data frame/tibble with 20 observations on three variables #' \describe{ #' \item{year}{year} #' \item{level}{mean annual level of Lake Victoria Nyanza} #' \item{sunspot}{number of sunspots} #' } #' #' @source N. Shaw, \emph{Manual of Meteorology}, Vol. 1 (London: Cambridge University Press, 1942), #' p. 284; and F. Mosteller and J. W. Tukey, \emph{Data Analysis and Regression} (Reading, MA: Addison-Wesley, 1977). #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(level ~ sunspot, data = Victoria) #' model <- lm(level ~ sunspot, data = Victoria) #' summary(model) #' rm(model) #' "Victoria" #' Viscosity measurements of a substance on two different days #' #' Data for Exercise 7.44 #' #' #' @name Viscosit #' @docType data #' @format A data frame/tibble with 11 observations on two variables #' \describe{ #' \item{first}{viscosity measurement for a certain substance on day one} #' \item{second}{viscosity measurement for a certain substance on day two} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(Viscosit$first, Viscosit$second, col = "blue") #' t.test(Viscosit$first, Viscosit$second, var.equal = TRUE) #' "Viscosit" #' Visual acuity of a group of subjects tested under a specified dose of a drug #' #' Data for Exercise 5.6 #' #' #' @name Visual #' @docType data #' @format A data frame/tibble with 18 observations on one variable #' \describe{ #' \item{visual}{visual acuity measurement} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' stem(Visual$visual) #' boxplot(Visual$visual, col = "purple") #' "Visual" #' Reading scores before and after vocabulary training for 14 employees who did #' not complete high school #' #' Data for Exercise 7.80 #' #' #' @name Vocab #' @docType data #' @format A data frame/tibble with 14 observations on two variables #' \describe{ #' \item{first}{reading test score before formal vocabulary training} #' \item{second}{reading test score after formal vocabulary training} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' t.test(Pair(Vocab$first, Vocab$second) ~ 1) #' "Vocab" #' Volume of injected waste water from Rocky Mountain Arsenal and number of #' earthquakes near Denver #' #' Data for Exercise 9.18 #' #' #' @name Wastewat #' @docType data #' @format A data frame/tibble with 44 observations on two variables #' \describe{ #' \item{gallons}{injected water (in million gallons)} #' \item{number}{number of earthqueakes detected in Denver} #' } #' #' @source Davis, J. C. (1986), \emph{Statistics and Data Analysis in Geology}, 2 ed., John Wiley and Sons, #' New York, p. 228, and Bardwell, G. E. (1970), Some Statistical Features of the Relationship between #' Rocky Mountain Arsenal Waste Disposal and Frequency of Earthquakes, \emph{Geological Society of America, Engineering #' Geology Case Histories, 8}, 33-337. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(number ~ gallons, data = Wastewat) #' model <- lm(number ~ gallons, data = Wastewat) #' summary(model) #' anova(model) #' plot(model, which = 2) #' "Wastewat" #' Weather casualties in 1994 #' #' Data for Exercise 1.30 #' #' #' @name Weather94 #' @docType data #' @format A data frame/tibble with 388 observations on one variable #' \describe{ #' \item{type}{factor with levels \code{Extreme Temp}, \code{Flash Flood}, #' \code{Fog}, \code{High Wind}, \code{Hurricane}, \code{Lighting}, \code{Other}, #' \code{River Flood}, \code{Thunderstorm}, \code{Tornado}, and \code{Winter Weather}} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' T1 <- xtabs(~type, data = Weather94) #' T1 #' par(mar = c(5.1 + 2, 4.1 - 1, 4.1 - 2, 2.1)) #' barplot(sort(T1, decreasing = TRUE), las = 2, col = rainbow(11)) #' par(mar = c(5.1, 4.1, 4.1, 2.1)) #' \dontrun{ #' library(ggplot2) #' T2 <- as.data.frame(T1) #' T2 #' ggplot2::ggplot(data =T2, aes(x = reorder(type, Freq), y = Freq)) + #' geom_bar(stat = "identity", fill = "purple") + #' theme_bw() + #' theme(axis.text.x = element_text(angle = 55, vjust = 0.5)) + #' labs(x = "", y = "count") #' } #' "Weather94" #' Price of a bushel of wheat versus the national weekly earnings of production #' workers #' #' Data for Exercise 2.11 #' #' #' @name Wheat #' @docType data #' @format A data frame/tibble with 19 observations on three variables #' \describe{ #' \item{year}{year} #' \item{earnings}{national weekly earnings (in dollars) for production workers} #' \item{price}{price for a bushel of wheat (in dollars)} #' } #' #' @source \emph{The World Almanac and Book of Facts}, 2000. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' par(mfrow = c(1, 2)) #' plot(earnings ~ year, data = Wheat) #' plot(price ~ year, data = Wheat) #' par(mfrow = c(1, 1)) #' "Wheat" #' Direct current produced by different wind velocities #' #' Data for Exercise 9.34 #' #' #' @name Windmill #' @docType data #' @format A data frame/tibble with 25 observations on two variables #' \describe{ #' \item{velocity}{wind velocity (miles per hour)} #' \item{output}{power generated (DC volts)} #' } #' #' @source Joglekar, et al. (1989), Lack of Fit Testing when Replicates Are Not Available, #' \emph{The American Statistician, 43},(3), 135-143. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' summary(lm(output ~ velocity, data = Windmill)) #' anova(lm(output ~ velocity, data = Windmill)) #' "Windmill" #' Wind leakage for storm windows exposed to a 50 mph wind #' #' Data for Exercise 6.54 #' #' #' @name Window #' @docType data #' @format A data frame/tibble with nine observations on two variables #' \describe{ #' \item{window}{window number} #' \item{leakage}{percent leakage from a 50 mph wind} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' SIGN.test(Window$leakage, md = 0.125, alternative = "greater") #' "Window" #' Baseball team wins versus seven independent variables for National league teams #' in 1990 #' #' Data for Exercise 9.23 #' #' #' @name Wins #' @docType data #' @format A data frame with 12 observations on nine variables #' \describe{ #' \item{team}{name of team} #' \item{wins}{number of wins} #' \item{batavg}{batting average} #' \item{rbi}{runs batted in} #' \item{stole}{bases stole} #' \item{strkout}{number of strikeots} #' \item{caught}{number of times caught stealing} #' \item{errors}{number of errors} #' \item{era}{earned run average} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(wins ~ era, data = Wins) #' \dontrun{ #' library(ggplot2) #' ggplot2::ggplot(data = Wins, aes(x = era, y = wins)) + #' geom_point() + #' geom_smooth(method = "lm", se = FALSE) + #' theme_bw() #' } #' "Wins" #' Strength tests of two types of wool fabric #' #' Data for Exercise 7.42 #' #' #' @name Wool #' @docType data #' @format A data frame/tibble with 20 observations on two variables #' \describe{ #' \item{type}{type of wool (\code{Type I}, \code{Type 2})} #' \item{strength}{strength of wool} #' } #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' boxplot(strength ~ type, data = Wool, col = c("blue", "purple")) #' t.test(strength ~ type, data = Wool, var.equal = TRUE) #' "Wool" #' Monthly sunspot activity from 1974 to 2000 #' #' Data for Exercise 2.7 #' #' #' @name Yearsunspot #' @docType data #' @format A data frame/tibble with 252 observations on two variables #' \describe{ #' \item{number}{average number of sunspots} #' \item{year}{date} #' } #' #' @source NASA/Marshall Space Flight Center, Huntsville, AL 35812. #' #' @references Kitchens, L. J. (2003) \emph{Basic Statistics and Data Analysis}. #' Pacific Grove, CA: Brooks/Cole, a division of Thomson Learning. #' @keywords datasets #' @examples #' #' plot(number ~ year, data = Yearsunspot) #' "Yearsunspot" #'
/scratch/gouwar.j/cran-all/cranData/BSDA/R/BSDA-package.R
#' Confidence Interval Simulation Program #' #' This program simulates random samples from which it constructs confidence #' intervals for one of the parameters mean (Mu), variance (Sigma), or #' proportion of successes (Pi). #' #' Default is to construct confidence intervals for the population mean. #' Simulated confidence intervals for the population variance or population #' proportion of successes are possible by selecting the appropriate value in #' the type argument. #' #' @param samples the number of samples desired. #' @param n the size of each sample. #' @param mu if constructing confidence intervals for the population mean or #' the population variance, mu is the population mean (i.e., type is one of #' either \code{"Mean"}, or \code{"Var"}). If constructing confidence intervals #' for the poulation proportion of successes, the value entered for mu #' represents the population proportion of successes \code{(Pi)}, and as such, #' must be a number between 0 and 1. #' @param sigma the population standard deviation. \code{sigma} is not required #' if confidence intervals are of type \code{"Pi"}. #' @param conf.level confidence level for the graphed confidence intervals, #' restricted to lie between zero and one. #' @param type character string, one of \code{"Mean"}, \code{"Var"} or #' \code{"Pi"}, or just the initial letter of each, indicating the type of #' confidence interval simulation to perform. #' @return Graph depicts simulated confidence intervals. The number of #' confidence intervals that do not contain the parameter of interest are #' counted and reported in the commands window. #' @author Alan T. Arnholt #' @keywords distribution #' @examples #' #' CIsim(100, 30, 100, 10) #' # Simulates 100 samples of size 30 from #' # a normal distribution with mean 100 #' # and standard deviation 10. From the #' # 100 simulated samples, 95% confidence #' # intervals for the Mean are constructed #' # and depicted in the graph. #' #' CIsim(100, 30, 100, 10, type="Var") #' # Simulates 100 samples of size 30 from #' # a normal distribution with mean 100 #' # and standard deviation 10. From the #' # 100 simulated samples, 95% confidence #' # intervals for the variance are constructed #' # and depicted in the graph. #' #' CIsim(100, 50, .5, type="Pi", conf.level=.90) #' # Simulates 100 samples of size 50 from #' # a binomial distribution where the population #' # proportion of successes is 0.5. From the #' # 100 simulated samples, 90% confidence #' # intervals for Pi are constructed #' # and depicted in the graph. #' #' @export CIsim CIsim <- function(samples=100, n=30, mu=0, sigma=1, conf.level = 0.95, type ="Mean") { Adkblue <- "#0080FF" Aorange <- "#FF4C0C" alpha <-1-conf.level CL<-conf.level*100 N <-samples choices <- c("Mean", "Var", "Pi") alt <- pmatch(type, choices) type <- choices[alt] if (length(type) > 1 || is.na(type)) stop("alternative must be one \"Mean\", \"Var\", \"Pi\"") if (type == "Pi" && (mu <=0 |mu >= 1)) stop("Value for Pi (mu) must be between 0 and 1.") if (N <= 0 || n <= 0) stop("Number of random CIs (samples) and sample size (n) must both be at least 1") if (!missing(conf.level) && (length(conf.level) != 1 || !is.finite(conf.level) || conf.level <= 0 || conf.level >= 1)) stop("'conf.level' must be a single number between 0 and 1") if (sigma <= 0 && (type=="Var" || type=="Mean") ) stop("Variance must be a positive value") if (type == "Mean") { junk <- rnorm(N*n, mu, sigma) jmat <- matrix(junk, N, n) xbar <- apply(jmat, 1, mean) ll <- xbar - qnorm(1 - alpha/2)*sigma/sqrt(n) ul <- xbar + qnorm(1 - alpha/2)*sigma/sqrt(n) notin <- sum((ll > mu) + (ul < mu)) percentage <- round((notin/N) * 100,2) plot(ll, type = "n", ylim = c(min(ll), max(ul)), xlab = " ", ylab = " ") title(sub=bquote(paste("Note: ",.(percentage),"% of the random confidence intervals do not contain ", mu ,"=", .(mu)))) title(main=bquote(paste(.(N), " random ", .(CL), "% confidence intervals where ", mu, " = ", .(mu) ))) for(i in 1:N) { low<-ll[i]; high<-ul[i]; if(low < mu & high > mu) { segments(i,low,i,high) } else if(low > mu & high > mu ) { segments(i,low,i,high, col=Aorange, lwd=5) } else { segments(i,low,i,high, col=Adkblue, lwd=5) } } abline(h = mu) cat(percentage,"% of the random confidence intervals do not contain Mu =", mu,".", "\n") } else if (type == "Var") { junk <- rnorm(N*n, mu, sigma) jmat <- matrix(junk, N, n) s2 <- apply(jmat, 1, var) ll <- ((n - 1)*s2)/qchisq(1 - alpha/2, (n - 1)) ul <- ((n - 1)*s2)/qchisq(alpha/2, (n -1)) variance <- sigma^2 notin <- sum((ll > variance) + (ul < variance)) percentage <- round((notin/samples) * 100,2) plot(ll, type = "n", ylim = c(min(ll), max(ul)), xlab = " ", ylab = " " ) title(sub=bquote(paste("Note: ",.(percentage),"% of the random confidence intervals do not contain ", sigma^2 ,"=", .(variance)))) title(main=bquote(paste(.(N), " random ", .(CL), "% confidence intervals where ", sigma^2, " = ", .(variance) ))) for(i in 1:N) { low<-ll[i] high<-ul[i] if(low < variance & high > variance) { segments(i,low,i,high) } else if( low > variance & high > variance ) { segments(i,low,i,high, col=Aorange, lwd=5) } else { segments(i,low,i,high, col=Adkblue, lwd=5) } } abline(h = variance) cat(percentage,"% of the random confidence intervals do not contain Var =", sigma^2,".", "\n") } else if (type == "Pi") { X <- rbinom(samples, n, mu) p <- X/n ll <- p - qnorm(1 - alpha/2)*sqrt((p * (1 - p))/n) ul <- p + qnorm(1 - alpha/2)*sqrt((p * (1 - p))/n) notin <- sum((ll > mu) + (ul < mu) ) percentage <- round((notin/samples)*100,2) plot(ll, type = "n", ylim = c(min(ll), max(ul)), xlab = " ", ylab = " " ) title(sub=bquote(paste("Note: ",.(percentage),"% of the random confidence intervals do not contain ",pi,"=",.(mu)))) title(main=bquote(paste(.(N), " random ", .(CL), "% confidence intervals where ", pi, "=", .(mu) ))) for(i in 1:N) { low<-ll[i] high<-ul[i] if( low < mu & high > mu) { segments(i,low,i,high) } else if( low > mu & high > mu ) { segments(i,low,i,high, col=Aorange, lwd=5) } else { segments(i,low,i,high, col=Adkblue, lwd=5) } } abline(h = mu) cat(percentage,"% of the random confidence intervals do not contain Pi =", mu,".", "\n") } }
/scratch/gouwar.j/cran-all/cranData/BSDA/R/CIsim.R
#' Combinations #' #' Computes all possible combinations of \code{n} objects taken \code{k} at a #' time. #' #' #' @param n a number. #' @param k a number less than or equal to \code{n}. #' @return Returns a matrix containing the possible combinations of \code{n} #' objects taken \code{k} at a time. #' @seealso \code{\link{SRS}} #' @keywords distribution #' @examples #' #' Combinations(5,2) #' # The columns in the matrix list the values of the 10 possible #' # combinations of 5 things taken 2 at a time. #' #' @export Combinations Combinations <- function(n, k){ # Compute all n choose k combinations of size k from 1:n # Return matrix with k rows and choose(n,k) columns. # Avoids recursion. Code provided by Tim Hesterberg if(!is.numeric(n) || length(n) != 1 || n%%1) stop("'n' must be an integer") if(!is.numeric(k) || length(k) != 1 || k%%1) stop("'k' must be an integer") if(k > n || k <= 0) return(numeric(0)) rowMatrix <- function(n) structure(1:n, dim=c(1,n)) colMatrix <- function(n) structure(1:n, dim=c(n,1)) if(k == n) return(colMatrix(n)) if(k == 1) return(rowMatrix(n)) L <- vector("list", k) # L[[j]] will contain combinations(N, j) for N = 2:n L[[1]] <- rowMatrix(2) L[[2]] <- colMatrix(2) Diff <- n-k for(N in seq(3, n, by=1)){ # loop over j in reverse order, to avoid overwriting for(j in seq(min(k, N-1), max(2, N-Diff), by= -1)) L[[j]] <- cbind(L[[j]], rbind(L[[j-1]], N, deparse.level=1)) if(N <= Diff+1) L[[1]] <- rowMatrix(N) else L[[N-(Diff+1)]] <- numeric(0) if(N <= k) L[[N]] <- colMatrix(N) } L[[k]] }
/scratch/gouwar.j/cran-all/cranData/BSDA/R/Combinations.R
#' Exploratory Data Anaalysis #' #' Function that produces a histogram, density plot, boxplot, and Q-Q plot. #' #' Will not return command window information on data sets containing more than #' 5000 observations. It will however still produce graphical output for data #' sets containing more than 5000 observations. #' #' @param x numeric vector. \code{NA}s and \code{Inf}s are allowed but will be #' removed. #' @param trim fraction (between 0 and 0.5, inclusive) of values to be trimmed #' from each end of the ordered data. If \code{trim = 0.5}, the result is the #' median. #' @return Function returns various measures of center and location. The values #' returned for the Quartiles are based on the definitions provided in #' \cite{BSDA}. The boxplot is based on the Quartiles returned in the commands #' window. #' @note Requires package \pkg{e1071}. #' @author Alan T. Arnholt #' @keywords univar #' @examples #' #' EDA(rnorm(100)) #' # Produces four graphs for the 100 randomly #' # generated standard normal variates. #' #' @export EDA EDA <- function(x, trim = 0.05) { # require(e1071) #rgb(0, 128/255, 1, names="Adkblue") #Alan's dark blue #rgb(169/255, 226/255, 1, names="Altblue") #Alan's light blue Altblue <- "#A9E2FF" Adkblue <- "#0080FF" Ared <- "#C51111" varname <- deparse(substitute(x)) N <- length(x) UM <- sum(is.na(x)) n <- N - UM x <- x[!(is.na(x) > 0)] LQ1 <- (n + 1)/4 LQ3 <- (3 * (n + 1))/4 Sort <- sort(x) V1 <- floor(LQ1) V2 <- floor(LQ3) V3 <- V1 + 1 V4 <- V2 + 1 Q1 <- round(Sort[V1] + (LQ1 - V1) * (Sort[V3] - Sort[V1]), 3) Q3 <- round(Sort[V2] + (LQ3 - V2) * (Sort[V4] - Sort[V2]), 3) IQR <- round(Q3 - Q1, 3) Min <- round(min(x), 3) Max <- round(max(x), 3) Stdev <- round(sd(x, na.rm = TRUE), 3) Mean <- round(mean(x, na.rm = TRUE), 3) Median <- round(median(x, na.rm = TRUE), 3) TrMean <- round(mean(x, trim = trim), 3) Var <- round(var(x, na.rm = TRUE), 3) SE <- round(Stdev/sqrt(n), 3) Range <- round(Max - Min, 3) par(omi=c(0,1,.5,1)) par(mfrow = c(2, 2)) par(mar = c(1, 0, 2, 0)) par(pty = "s") print(varname) hist(x, probability = TRUE, col=Adkblue, xlab = "", ylab = "", axes = FALSE, main = paste("Histogram of", varname) ) box() iqd <- summary(x)[5] - summary(x)[2] plot(density(x, width = 2 * iqd, na.rm = TRUE), xlab = "", ylab = "", axes = FALSE, type = "n", main = paste("Density of", varname)) lines(density(x, width = 2 * iqd, na.rm = TRUE), col=Ared) box() l.out <- x[x < (Q1 - 1.5 * IQR)] r.out <- x[x > (Q3 + 1.5 * IQR)] outliers <- c(l.out, r.out) rest <- x[x > (Q1 - 1.5 * IQR) & x < (Q3 + 1.5 * IQR)] Minrest <- min(rest) Maxrest <- max(rest) plot(x, x, main = paste("Boxplot of", varname), xlab = "", ylab = "", axes = FALSE, type = "n", xlim = c(min(x), max( x)), ylim = c(0, 1)) box() polygon(c(Q1, Q1, Q3, Q3), c(0.3, 0.7, 0.7, 0.3), density = -1, col=Altblue) points(outliers, c(rep(0.5, length(outliers))), col = Ared) lines(c(min(rest), Q1), c(0.5, 0.5), lty = 1) lines(c(Q3, max(rest)), c(0.5, 0.5), lty = 1) lines(c(min(rest), min(rest)), c(0.4, 0.6)) lines(c(max(rest), max(rest)), c(0.4, 0.6)) lines(c(Q1, Q1), c(0.3, 0.7)) lines(c(Q3, Q3), c(0.3, 0.7)) lines(c(Median, Median), c(0.3, 0.7)) lines(c(Q1, Q3), c(0.3, 0.3)) lines(c(Q1, Q3), c(0.7, 0.7)) points(Mean, 0.5, pch = 16, col = "black") qqnorm(x, col = "black", main = paste("Q-Q Plot of", varname), xlab = "", ylab = "", axes = FALSE) qqline(x, col = Ared) box() mtext("EXPLORATORY DATA ANALYSIS", side = 3, outer = TRUE, cex = 1.5, col = Adkblue, line = 1) par(oma = c(0, 0, 0, 0)) par(mfrow = c(1, 1)) par(mar = c(5.1, 4.1, 4.1, 2.1)) par(omi=c(0,0,0,0)) par(pty = "m") SW <- shapiro.test(x) K <- round(kurtosis(x), 3) S <- round(skewness(x), 3) SWpval <- round(SW$p.value, 3) TOT <- c(n, UM, Min, Q1, Mean, Median, TrMean, Q3, Max, Stdev, Var, SE, IQR, Range, K, S, SWpval) names(TOT) <- c("Size (n)", "Missing", "Minimum", " 1st Qu", " Mean", " Median", "TrMean", " 3rd Qu", " Max.", " Stdev.", " Var.", "SE Mean", " I.Q.R.", " Range", "Kurtosis", "Skewness", "SW p-val") return(TOT) }
/scratch/gouwar.j/cran-all/cranData/BSDA/R/EDA.R
#' Sign Test #' #' This function will test a hypothesis based on the sign test and reports #' linearly interpolated confidence intervals for one sample problems. #' #' Computes a \dQuote{Dependent-samples Sign-Test} if both \code{x} and #' \code{y} are provided. If only \code{x} is provided, computes the #' \dQuote{Sign-Test}. #' #' @param x numeric vector; \code{NA}s and \code{Inf}s are allowed but will be #' removed. #' @param y optional numeric vector; \code{NA}s and \code{Inf}s are allowed but #' will be removed. #' @param md a single number representing the value of the population median #' specified by the null hypothesis #' @param alternative is a character string, one of \code{"greater"}, #' \code{"less"}, or \code{"two.sided"}, or the initial letter of each, #' indicating the specification of the alternative hypothesis. For one-sample #' tests, \code{alternative} refers to the true median of the parent population #' in relation to the hypothesized value of the median. #' @param conf.level confidence level for the returned confidence interval, #' restricted to lie between zero and one #' @param ... further arguments to be passed to or from methods #' @return A list of class \code{htest_S}, containing the following components: #' \item{statistic}{the S-statistic (the number of positive differences between #' the data and the hypothesized median), with names attribute \dQuote{S}.} #' \item{p.value}{the p-value for the test} #' \item{conf.int}{is a confidence interval (vector of length 2) for the true #' median based on linear interpolation. The confidence level is recorded in the attribute #' \code{conf.level}. When the alternative is not \code{"two.sided"}, the #' confidence interval will be half-infinite, to reflect the interpretation of #' a confidence interval as the set of all values \code{k} for which one would #' not reject the null hypothesis that the true mean or difference in means is #' \code{k}. Here infinity will be represented by \code{Inf}.} #' \item{estimate}{is avector of length 1, giving the sample median; this #' estimates the corresponding population parameter. Component \code{estimate} #' has a names attribute describing its elements.} #' \item{null.value}{is the value of the median specified by the null hypothesis. #' This equals the input argument \code{md}. Component \code{null.value} has a #' names attribute describing its elements.} #' \item{alternative}{records the value of the input argument alternative: #' \code{"greater"}, \code{"less"}, or \code{"two.sided"}} #' \item{data.name}{a character string (vector of length 1) #' containing the actual name of the input vector \code{x}} #' \item{Confidence.Intervals}{a 3 by 3 matrix containing the lower achieved #' confidence interval, the interpolated confidence interval, and the upper #' achived confidence interval} #' #' @note The reported confidence interval is based on linear interpolation. The #' lower and upper confidence levels are exact. #' #' @section Null Hypothesis: For the one-sample sign-test, the null hypothesis #' is that the median of the population from which \code{x} is drawn is #' \code{md}. For the two-sample dependent case, the null hypothesis is that #' the median for the differences of the populations from which \code{x} and #' \code{y} are drawn is \code{md}. The alternative hypothesis indicates the #' direction of divergence of the population median for \code{x} from \code{md} #' (i.e., \code{"greater"}, \code{"less"}, \code{"two.sided"}.) #' @author Alan T. Arnholt #' @seealso \code{\link{z.test}}, \code{\link{zsum.test}}, #' \code{\link{tsum.test}} #' @references Gibbons, J.D. and Chakraborti, S. (1992). \emph{Nonparametric #' Statistical Inference}. Marcel Dekker Inc., New York. #' #' Kitchens, L.J.(2003). \emph{Basic Statistics and Data Analysis}. Duxbury. #' #' Conover, W. J. (1980). \emph{Practical Nonparametric Statistics, 2nd ed}. #' Wiley, New York. #' #' Lehmann, E. L. (1975). \emph{Nonparametrics: Statistical Methods Based on #' Ranks}. Holden and Day, San Francisco. #' #' @export #' #' @examples #' #' x <- c(7.8, 6.6, 6.5, 7.4, 7.3, 7., 6.4, 7.1, 6.7, 7.6, 6.8) #' SIGN.test(x, md = 6.5) #' # Computes two-sided sign-test for the null hypothesis #' # that the population median for 'x' is 6.5. The alternative #' # hypothesis is that the median is not 6.5. An interpolated 95% #' # confidence interval for the population median will be computed. #' #' reaction <- c(14.3, 13.7, 15.4, 14.7, 12.4, 13.1, 9.2, 14.2, #' 14.4, 15.8, 11.3, 15.0) #' SIGN.test(reaction, md = 15, alternative = "less") #' # Data from Example 6.11 page 330 of Kitchens BSDA. #' # Computes one-sided sign-test for the null hypothesis #' # that the population median is 15. The alternative #' # hypothesis is that the median is less than 15. #' # An interpolated upper 95% upper bound for the population #' # median will be computed. #' #' SIGN.test <- function(x, y = NULL, md = 0, alternative = "two.sided", conf.level = 0.95, ...){ if(is.null(class(x))){ class(x) <- data.class(x) } UseMethod("SIGN.test") } #' @export SIGN.test.default <- function(x, y = NULL, md = 0, alternative = "two.sided", conf.level = 0.95, ...) { choices <- c("two.sided", "greater", "less") alt <- pmatch(alternative, choices) alternative <- choices[alt] if(length(alternative) > 1 || is.na(alternative)) stop("alternative must be one \"greater\", \"less\", \"two.sided\"") if(!missing(md)) if(length(md) != 1 || is.na(md)) stop("median must be a single number") if(!missing(conf.level)) if(length(conf.level) != 1 || is.na(conf.level) || conf.level < 0 || conf.level > 1) stop("conf.level must be a number between 0 and 1") if( is.null(y) ) { # One-Sample Sign-Test Exact Test dname <- paste(deparse(substitute(x))) x <- sort(x) diff <- (x - md) n <- length(x) nt <- length(x) - sum(diff == 0) s <- sum(diff > 0) estimate <- median(x) method <- c("One-sample Sign-Test") names(estimate) <- c("median of x") names(md) <- "median" names(s) <- "s" CIS <- "Conf Intervals" if(alternative == "less") { # zobs <- (s-0.5*n)/sqrt(n*0.25) pval <- sum(dbinom(0:s, nt, 0.5)) # Note: Code uses linear interpolation to arrive at the confidence intervals. loc <- c(0:n) prov <- (dbinom(loc, n, 0.5)) k <- loc[cumsum(prov) > (1 - conf.level)][1] if(k < 1) { conf.level <- (1 - (sum(dbinom(k, n, 0.5)))) xl <- -Inf xu <- x[n] ici <- c(xl, xu) } else { ci1 <- c(-Inf, x[n - k + 1]) acl1 <- (1 - (sum(dbinom(0:k - 1, n, 0.5)))) ci2 <- c(-Inf, x[n - k]) acl2 <- (1 - (sum(dbinom(0:k, n, 0.5)))) xl <- -Inf xu <- (((x[n - k + 1] - x[n - k]) * (conf.level - acl2))/(acl1 - acl2)) + x[n - k] ici <- c(xl, xu) } } else if(alternative == "greater") { pval <- (1 - sum(dbinom(0:s - 1, nt, 0.5))) loc <- c(0:n) prov <- (dbinom(loc, n, 0.5)) k <- loc[cumsum(prov) > (1 - conf.level)][1] if(k < 1) { conf.level <- (1 - (sum(dbinom(k, n, 0.5)))) xl <- x[1] xu <- Inf ici <- c(xl, xu) } else { ci1 <- c(x[k], Inf) acl1 <- (1 - (sum(dbinom(0:k - 1, n, 0.5)))) ci2 <- c(x[k + 1], Inf) acl2 <- (1 - (sum(dbinom(0:k, n, 0.5)))) xl <- (((x[k] - x[k + 1]) * (conf.level - acl2))/(acl1 - acl2)) + x[k + 1] xu <- Inf ici <- c(xl, xu) } } else { p1 <- sum(dbinom(0:s, nt, 0.5)) p2 <- (1 - sum(dbinom(0:s - 1, nt, 0.5))) pval <- min(2 * p1, 2 * p2, 1) loc <- c(0:n) prov <- (dbinom(loc, n, 0.5)) k <- loc[cumsum(prov) > (1 - conf.level)/2][1] if(k < 1) { conf.level <- (1 - 2 * (sum(dbinom(k, n, 0.5)))) xl <- x[1] xu <- x[n] ici <- c(xl, xu) } else { ci1 <- c(x[k], x[n - k + 1]) acl1 <- (1 - 2 * (sum(dbinom(0:k - 1, n, 0.5)))) ci2 <- c(x[k + 1], x[n - k]) acl2 <- (1 - 2 * (sum(dbinom(0:k, n, 0.5)))) xl <- (((x[k] - x[k + 1]) * (conf.level - acl2))/(acl1 - acl2)) + x[k + 1] xu <- (((x[n - k + 1] - x[n - k]) * (conf.level - acl2))/(acl1 - acl2)) + x[n - k] ici <- c(xl, xu) } } } else { # Paired-Samples Sign Test if(length(x)!=length(y)) stop("Length of x must equal length of y") xy <- sort(x-y) diff <- (xy - md) n <- length(xy) nt <- length(xy) - sum(diff == 0) s <- sum(diff > 0) dname <- paste(deparse(substitute(x)), " and ", deparse(substitute(y)), sep = "") estimate <- median(xy) method <- c("Dependent-samples Sign-Test") names(estimate) <- c("median of x-y") names(md) <- "median difference" names(s) <- "S" CIS <- "Conf Intervals" if(alternative == "less") { pval <- sum(dbinom(0:s, nt, 0.5)) # Note: Code uses linear interpolation to arrive at the confidence intervals. loc <- c(0:n) prov <- (dbinom(loc, n, 0.5)) k <- loc[cumsum(prov) > (1 - conf.level)][1] if(k < 1) { conf.level <- (1 - (sum(dbinom(k, n, 0.5)))) xl <- -Inf xu <- xy[n] ici <- c(xl, xu) } else { ci1 <- c(-Inf, xy[n - k + 1]) acl1 <- (1 - (sum(dbinom(0:k - 1, n, 0.5)))) ci2 <- c(-Inf, xy[n - k]) acl2 <- (1 - (sum(dbinom(0:k, n, 0.5)))) xl <- -Inf xu <- (((xy[n - k + 1] - xy[n - k]) * (conf.level - acl2))/(acl1 - acl2)) + xy[n - k] ici <- c(xl, xu) } } else if(alternative == "greater") { pval <- (1 - sum(dbinom(0:s - 1, nt, 0.5))) loc <- c(0:n) prov <- (dbinom(loc, n, 0.5)) k <- loc[cumsum(prov) > (1 - conf.level)][1] if(k < 1) { conf.level <- (1 - (sum(dbinom(k, n, 0.5)))) xl <- xy[1] xu <- Inf ici <- c(xl, xu) } else { ci1 <- c(xy[k], Inf) acl1 <- (1 - (sum(dbinom(0:k - 1, n, 0.5)))) ci2 <- c(xy[k + 1], Inf) acl2 <- (1 - (sum(dbinom(0:k, n, 0.5)))) xl <- (((xy[k] - xy[k + 1]) * (conf.level - acl2))/(acl1 - acl2)) + xy[k + 1] xu <- Inf ici <- c(xl, xu) } } else { p1 <- sum(dbinom(0:s, nt, 0.5)) p2 <- (1 - sum(dbinom(0:s - 1, nt, 0.5))) pval <- min(2 * p1, 2 * p2, 1) loc <- c(0:n) prov <- (dbinom(loc, n, 0.5)) k <- loc[cumsum(prov) > (1 - conf.level)/2][1] if(k < 1) { conf.level <- (1 - 2 * (sum(dbinom(k, n, 0.5)))) xl <- xy[1] xu <- xy[n] ici <- c(xl, xu) } else { ci1 <- c(xy[k], xy[n - k + 1]) acl1 <- (1 - 2 * (sum(dbinom(0:k - 1, n, 0.5)))) ci2 <- c(xy[k + 1], xy[n - k]) acl2 <- (1 - 2 * (sum(dbinom(0:k, n, 0.5)))) xl <- (((xy[k] - xy[k + 1]) * (conf.level - acl2))/(acl1 - acl2)) + xy[k + 1] xu <- (((xy[n - k + 1] - xy[n - k]) * (conf.level - acl2))/(acl1 - acl2)) + xy[n - k] ici <- c(xl, xu) } } } if(k < 1) { cint <- ici attr(cint, "conf.level") <- conf.level rval <- structure(list(statistic = s, parameter = NULL, p.value = pval, conf.int = cint, estimate = estimate, null.value = md, alternative = alternative, method = method, data.name = dname, conf.int=cint, Confidence.Intervals = NULL )) class(rval) <- "htest_S" rval } else { result1 <- c(acl2, ci2) result2 <- c(conf.level, ici) result3 <- c(acl1, ci1) Confidence.Intervals <- round(as.matrix(rbind(result1, result2, result3)), 4) cnames <- c("Conf.Level", "L.E.pt", "U.E.pt") rnames <- c("Lower Achieved CI", "Interpolated CI", "Upper Achieved CI") dimnames(Confidence.Intervals) <- list(rnames, cnames) cint <- ici attr(cint, "conf.level") <- conf.level rval <- structure(list(statistic = s, parameter = NULL, p.value = pval, conf.int = cint, estimate = estimate, null.value = md, alternative = alternative, method = method, data.name = dname, Confidence.Intervals = Confidence.Intervals)) class(rval) <- "htest_S" rval } } #' @export print.htest_S <- function (x, digits = getOption("digits"), prefix = "\t", ...) { cat("\n") cat(strwrap(x$method, prefix = prefix), sep = "\n") cat("\n") cat("data: ", x$data.name, "\n", sep = "") out <- character() if (!is.null(x$statistic)) out <- c(out, paste(names(x$statistic), "=", format(signif(x$statistic, max(1L, digits - 2L))))) if (!is.null(x$parameter)) out <- c(out, paste(names(x$parameter), "=", format(signif(x$parameter, max(1L, digits - 2L))))) if (!is.null(x$p.value)) { fp <- format.pval(x$p.value, digits = max(1L, digits - 3L)) out <- c(out, paste("p-value", if (substr(fp, 1L, 1L) == "<") fp else paste("=", fp))) } cat(strwrap(paste(out, collapse = ", ")), sep = "\n") if (!is.null(x$alternative)) { cat("alternative hypothesis: ") if (!is.null(x$null.value)) { if (length(x$null.value) == 1L) { alt.char <- switch(x$alternative, two.sided = "not equal to", less = "less than", greater = "greater than") cat("true ", names(x$null.value), " is ", alt.char, " ", x$null.value, "\n", sep = "") } else { cat(x$alternative, "\nnull values:\n", sep = "") print(x$null.value, digits = digits, ...) } } else cat(x$alternative, "\n", sep = "") } if (!is.null(x$conf.int)) { cat(format(100 * attr(x$conf.int, "conf.level")), " percent confidence interval:\n", " ", paste(format(c(x$conf.int[1L], x$conf.int[2L])), collapse = " "), "\n", sep = "") } if (!is.null(x$estimate)) { cat("sample estimates:\n") print(x$estimate, digits = digits, ...) } if(!is.null(x$Confidence.Intervals)){ cat("\n") cat("Achieved and Interpolated Confidence Intervals: \n\n") print(x$Confidence.Intervals) cat("\n") } invisible(x) }
/scratch/gouwar.j/cran-all/cranData/BSDA/R/SIGN.test.R
#' Simple Random Sampling #' #' Computes all possible samples from a given population using simple random #' sampling. #' #' #' @param POPvalues vector containing the poulation values. #' @param n the sample size. #' @return Returns a matrix containing the possible simple random samples of #' size \code{n} taken from a population \code{POPvalues}. #' @author Alan T. Arnholt #' @seealso \code{\link{Combinations}} #' @keywords distribution #' @examples #' #' SRS(c(5,8,3),2) #' # The rows in the matrix list the values for the 3 possible #' # simple random samples of size 2 from the population of 5,8, and 3. #' #' @export SRS SRS <- function(POPvalues,n) { # SRS generates all possible SRS's of size n # from the population in vector POPvalues # by calling the function Combinations. N <- length(POPvalues) store <- t(Combinations(N,n)) matrix(POPvalues[t(store)],nrow=nrow(store),byrow=TRUE) }
/scratch/gouwar.j/cran-all/cranData/BSDA/R/SRS.R
#' Normal Area #' #' Function that computes and draws the area between two user specified values #' in a user specified normal distribution with a given mean and standard #' deviation #' #' #' @param lower the lower value #' @param upper the upper value #' @param m the mean for the population #' @param sig the standard deviation of the population #' @author Alan T. Arnholt #' @keywords distribution #' @examples #' #' normarea(70, 130, 100, 15) #' # Finds and P(70 < X < 130) given X is N(100,15). #' #' @export normarea normarea <- function (lower = -Inf, upper = Inf, m, sig) { Altblue <- "#CDCDED" Fontcol <-"#3333B3" par(mar=c(4,1,4,1)) area <- pnorm(upper, m, sig) - pnorm(lower, m, sig) ra <- round(area,4) x <- seq(m - 4 * sig, m + 4 * sig, length = 1000) y <- dnorm(x, m, sig) par(pty = "m") plot(x, y, type = "n", xaxt = "n", yaxt = "n", xlab = "", ylab = "",main="") mtext(substitute(paste("The area between ",lower," and ",upper," is ",ra)), side=3,line=1,font=2,cex=1.15) mtext(substitute(paste("X~Normal (" ,mu==m,", ",sigma==sig,")" ), list(m=m,sig=sig)),side=1,line=3,col=Fontcol) if (lower == -Inf || lower < m - 4 * sig) { lower <- m - 4 * sig } if (upper == Inf || upper > m + 4 * sig) { upper <- m + 4 * sig } axis(1, at = c(m, lower, upper), labels = c(m, lower, upper)) xaxis1 <- seq(lower, upper, length = 200) yaxis1 <- dnorm(xaxis1, m, sig) xaxis1 <- c(lower, xaxis1, upper) yaxis1 <- c(0, yaxis1, 0) polygon(xaxis1, yaxis1, density = -1, col = Altblue) lines(x, y, lwd = 2) lines(c(m - 4 * sig, m + 4 * sig), c(0, 0), lwd = 2) lines(c(lower, lower), c(0, dnorm(lower, m, sig)), lwd = 2) lines(c(upper, upper), c(0, dnorm(upper, m, sig)), lwd = 2) par(mar=c(5.1,4.1,4.1,2.1)) }
/scratch/gouwar.j/cran-all/cranData/BSDA/R/normarea.R