content
stringlengths
0
14.9M
filename
stringlengths
44
136
## File Name: BIFIE.BIFIEcdata2BIFIEdata.R ## File Version: 0.15 #--- conversion of BIFIEcdata to BIFIEdata object BIFIE.BIFIEcdata2BIFIEdata <- function( bifieobj, varnames=NULL, impdata.index=NULL ) { if ( ! bifieobj$cdata ){ stop( "You may want to use 'BIFIE.BIFIEdata2BIFIEcdata'\n") } #*** select some imputed datasets or some variables bifieobj <- BIFIE.cdata.select( bifieobj=bifieobj, varnames=varnames, impdata.index=impdata.index ) #*** conversion to BIFIEdata object bifieobj$datalistM <- bifiesurvey_rcpp_bifiecdata2bifiedata( datalistM_ind=as.matrix(bifieobj$datalistM_ind), datalistM_imputed=as.matrix(bifieobj$datalistM_imputed), Nimp=bifieobj$Nimp, dat1=as.matrix(bifieobj$dat1), datalistM_impindex=as.matrix(bifieobj$datalistM_impindex) )$datalistM bifieobj$cdata <- FALSE bifieobj$datalistM_imputed <- NULL bifieobj$datalistM_impindex <- NULL bifieobj$datalistM_ind <- NULL bifieobj$wgtrep <- as.matrix(bifieobj$wgtrep) return(bifieobj) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.BIFIEcdata2BIFIEdata.R
## File Name: BIFIE.BIFIEdata2datalist.R ## File Version: 0.19 #--- converts a BIFIEdata object into a list of multiply imputed datasets BIFIE.BIFIEdata2datalist <- function( bifieobj, varnames=NULL, impdata.index=NULL, as_data_frame=FALSE ) { Nimp <- bifieobj$Nimp NMI <- bifieobj$NMI bifieobj <- BIFIEdata.select(bifieobj=bifieobj, varnames=varnames, impdata.index=impdata.index ) if (bifieobj$cdata){ bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj=bifieobj) } datalistM <- bifieobj$datalistM variables <- bifieobj$variables cndat1 <- colnames(bifieobj$dat1) N <- bifieobj$N Nimp <- bifieobj$Nimp datalist <- as.list(1:Nimp) for (ii in 1:Nimp){ dat0 <- datalistM[ (ii-1)*N + 1:N, ] colnames(dat0) <- cndat1 datalist[[ii]] <- as.data.frame(dat0) } if ((Nimp==1) & as_data_frame){ datalist <- datalist[[1]] } return(datalist) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.BIFIEdata2datalist.R
## File Name: BIFIE.bifiedata2bifiecdata.R ## File Version: 2.22 #--- conversion of BIFIEdata to BIFIEcdata BIFIE.BIFIEdata2BIFIEcdata <- function( bifieobj, varnames=NULL, impdata.index=NULL ) { if ( bifieobj$cdata ){ stop( "You may want to use 'BIFIE.BIFIEcdata2BIFIEdata'\n") } #*** select some imputed datasets or some variables bifieobj <- BIFIE.data.select( bifieobj=bifieobj, varnames=varnames, impdata.index=impdata.index ) #*** data conversion res1 <- bifiesurvey_rcpp_bifiedata2bifiecdata( datalistM=bifieobj$datalistM, Nimp=bifieobj$Nimp ) bifieobj$cdata <- TRUE bifieobj$datalistM <- NULL bifieobj$datalistM_ind <- res1$datalistM_ind colnames(bifieobj$datalistM_ind) <- bifieobj$varnames bifieobj$datalistM_imputed <- res1$datalistM_imputed bifieobj$datalistM_impindex <- res1$datalistM_impindex bifieobj$time <- Sys.time() return(bifieobj) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.bifiedata2bifiecdata.R
## File Name: BIFIE.by.R ## File Version: 1.571 ####################################################################### # BIFIE.by function BIFIE.by <- function( BIFIEobj, vars, userfct, userparnames=NULL, group=NULL, group_values=NULL, se=TRUE, use_Rcpp=TRUE ) { s1 <- Sys.time() cl <- match.call() bifieobj <- BIFIEobj if (bifieobj$cdata){ varnames <- unique( c( vars, group, "one") ) bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames ) } FF <- Nimp <- bifieobj$Nimp N <- bifieobj$N dat1 <- bifieobj$dat1 wgt <- bifieobj$wgt wgtrep <- bifieobj$wgtrep varnames <- bifieobj$varnames RR <- bifieobj$RR datalistM <- bifieobj$datalistM fayfac <- bifieobj$fayfac if (RR==1){ RR <- 0 } if ( ! se ){ wgtrep <- matrix( wgt, ncol=1 ) RR <- 0 } vars_index <- unlist( sapply( vars, FUN=function(vv){ which( varnames==vv ) }, simplify=TRUE ) ) # vars values VV <- length(vars) wgt_ <- matrix( wgt, ncol=1 ) if ( is.null( group) ){ nogroup <- TRUE } else { nogroup <- FALSE } cat( paste0( "|", paste0( rep("*", FF), collapse=""), "|\n" )) if (nogroup){ group <- "one" group_values <- c(1) } #@@@@*** group_index <- match( group, varnames ) #@@@@*** if ( is.null(group_values ) ){ t1 <- bifie_table( datalistM[, group_index ] ) group_values <- sort( as.numeric( paste( names(t1) ) )) } #@@@@*** res00 <- BIFIE_create_pseudogroup( datalistM, group, group_index, group_values ) res00$datalistM -> datalistM res00$group_index -> group_index res00$GR -> GR res00$group_values -> group_values res00$group -> group #@@@@*** #**** # pure R implementation if ( ! use_Rcpp ){ res <- BIFIE_by_helper_pureR( group_values, userfct, datalistM, N, vars_index, wgt_, wgtrep, Nimp, RR, fayfac, group_index, userparnames ) } #**** # Rcpp implementation if ( use_Rcpp ){ res <- bifie_by( datalistM, wgt_, wgtrep, vars_index - 1, fayfac, Nimp, group_index - 1, group_values, userfct) } NP <- res$NP GG <- length(group_values) ZZ <- NP if (is.null( userparnames ) ){ userparnames <- paste0("parm",1:NP) } dfr <- data.frame( "parm"=rep( userparnames, GG ) ) if (! nogroup){ dfr$groupvar <- group dfr$groupval <- rep( group_values, each=ZZ ) } dfr$Ncases <- rep( rowMeans( res$ncasesM ), each=ZZ ) dfr$Nweight <- rep( rowMeans( res$sumwgtM ), each=ZZ ) dfr <- create_summary_table( res_pars=res$parsL, parsM=res$parsM, parsrepM=res$parsrepM, dfr=dfr, BIFIEobj=BIFIEobj ) dfr <- clean_summary_table( dfr=dfr, RR=RR, se=se, Nimp=Nimp ) # create vector of parameter names parnames <- paste0( dfr$parm, "_", dfr$groupvar, dfr$groupval ) #@@@@*** # multiple groupings dfr <- BIFIE_table_multiple_groupings( dfr, res00 ) #@@@@*** #*************************** OUTPUT *************************************** s2 <- Sys.time() timediff <- c( s1, s2 ) #, paste(s2-s1 ) ) res1 <- list( "stat"=dfr, "output"=res, "timediff"=timediff, "N"=N, "Nimp"=Nimp, "RR"=RR, "fayfac"=fayfac, "GG"=GG, "NMI"=BIFIEobj$NMI, "Nimp_NMI"=BIFIEobj$Nimp_NMI, "parnames"=parnames, "CALL"=cl) class(res1) <- "BIFIE.by" return(res1) } ################################################################################### #################################################################################### # summary for BIFIE.by function summary.BIFIE.by <- function( object, digits=4, ... ) { BIFIE.summary(object) cat("Statistical Inference for User Defined Function \n") obji <- object$stat print_object_summary( obji, digits=digits ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.by.R
## File Name: BIFIE.cdata.select.R ## File Version: 1.13 #--- selection variables or datasets in BIFIEcdata objects BIFIE.cdata.select <- function( bifieobj, varnames=NULL, impdata.index=NULL ){ if ( ! bifieobj$cdata ){ stop("Use 'BIFIE.data.select' or the general function 'BIFIEdata.select'") } # retain variable "one" varnames0 <- bifieobj$varnames if ( ! is.null(varnames) ){ varnames <- union( varnames, intersect( "one", varnames0) ) } #******* do some variable checking if ( ! is.null(varnames) ){ h1 <- setdiff( varnames, bifieobj$varnames ) if ( length(h1) > 0 ){ stop( paste0( "Following variables not in BIFIEdata object:\n ", paste0( h1, collapse=" " ) ) ) } } #******** select some imputed datasets if ( ! is.null(impdata.index ) ){ i1 <- impdata.index bifieobj$datalistM_imputed <- bifieobj$datalistM_imputed[, i1, drop=FALSE] bifieobj$Nimp <- length(i1) } #********* select some variables if ( ! is.null( varnames) ){ dfr1 <- data.frame( "varnames"=bifieobj$varnames, "index"=seq(1,length(bifieobj$varnames) ) ) dfr1$selectvars <- 1 * ( dfr1$varnames %in% varnames ) dfr1 <- dfr1[ dfr1$selectvars==1, ] bifieobj$datalistM_ind <- bifieobj$datalistM_ind[, dfr1$index ] i1 <- bifieobj$datalistM_impindex[,2] %in% ( dfr1$index - 1 ) bifieobj$datalistM_imputed <- bifieobj$datalistM_imputed[ i1,, drop=FALSE] bifieobj$datalistM_impindex <- bifieobj$datalistM_impindex[ i1,, drop=FALSE] impindex2 <- match( bifieobj$datalistM_impindex[,2], dfr1$index - 1 ) - 1 bifieobj$datalistM_impindex[,2] <- impindex2 bifieobj$dat1 <- bifieobj$dat1[, dfr1$index, drop=FALSE] bifieobj$varnames <- bifieobj$varnames[ dfr1$index ] # process variable list bifieobj$variables <- bifieobj$variables[ dfr1$index,, drop=FALSE] } bifieobj$Nvars <- ncol(bifieobj$dat1) return(bifieobj) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.cdata.select.R
## File Name: BIFIE.correl.R ## File Version: 0.471 ####################################################################### # Correlations and covariances BIFIE.correl <- function( BIFIEobj, vars, group=NULL, group_values=NULL, se=TRUE ){ #**** s1 <- Sys.time() cl19 <- match.call() bifieobj <- BIFIEobj if (bifieobj$cdata){ varnames <- unique( c( vars, group, "one") ) bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames ) } FF <- Nimp <- bifieobj$Nimp N <- bifieobj$N dat1 <- bifieobj$dat1 wgt <- bifieobj$wgt wgtrep <- bifieobj$wgtrep varnames <- bifieobj$varnames RR <- bifieobj$RR datalistM <- bifieobj$datalistM fayfac <- bifieobj$fayfac if (RR==1){ RR <- 0 } if ( ! se ){ wgtrep <- matrix( wgt, ncol=1 ) RR <- 0 } vars_index <- unlist( sapply( vars, FUN=function(vv){ which( varnames==vv ) }, simplify=TRUE) ) # vars values VV <- length(vars) wgt_ <- matrix( wgt, ncol=1 ) if ( is.null( group) ){ nogroup <- TRUE } else { nogroup <- FALSE } cat(paste0( "|", paste0( rep("*", FF), collapse=""), "|\n" )) if (nogroup){ group <- "one" group_values <- c(1) } #@@@@*** group_index <- match( group, varnames ) #@@@@*** if ( is.null(group_values ) ){ t1 <- bifie_table( datalistM[, group_index ] ) group_values <- sort( as.numeric( paste( names(t1) ) )) } #@@@@*** res00 <- BIFIE_create_pseudogroup( datalistM, group, group_index, group_values ) res00$datalistM -> datalistM res00$group_index -> group_index res00$GR -> GR res00$group_values -> group_values res00$group -> group #@@@@*** #**************************************************************************# # Rcpp call res <- bifie_correl( datalistM, wgt_, as.matrix(wgtrep), vars_index -1, fayfac, Nimp, group_index - 1, group_values) GG <- length(group_values) itempair_index <- res$itempair_index + 1 ZZ <- nrow(itempair_index ) dfr <- data.frame( "var1"=rep( vars[ itempair_index[,1] ], each=GG ), "var2"=rep( vars[ itempair_index[,2] ], each=GG ) ) if (! nogroup){ dfr$groupvar <- group dfr$groupval <- rep( group_values, ZZ ) } dfr$Ncases <- rep( rowMeans( res$ncases1M ), ZZ ) dfr$Nweight <- rep( rowMeans( res$sumwgt1M ), ZZ ) dfr$cor <- res$cor1$pars dfr$cor_SE <- res$cor1$pars_se dfr$t <- round( dfr$cor / dfr$cor_SE, 2 ) dfr$df <- rubin_calc_df( res$cor1, Nimp ) # dfr$p <- pnorm( - abs( dfr$t ) ) * 2 dfr$p <- stats::pt( - abs( dfr$t ), df=dfr$df) * 2 dfr$cor_fmi <- res$cor1$pars_fmi dfr$cor_VarMI <- res$cor1$pars_varBetween dfr$cor_VarRep <- res$cor1$pars_varWithin #****************** # NMI if ( BIFIEobj$NMI ){ res1a <- res1 <- BIFIE_NMI_inference_parameters( parsM=res$cor1M, parsrepM=res$cor1repM, fayfac=fayfac, RR=RR, Nimp=Nimp, Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE ) dfr$cor_fmi <- dfr$cor_VarMI <- NULL dfr$cor <- res1$pars dfr$cor_SE <- res1$pars_se dfr$t <- round( dfr$cor / dfr$cor_SE, 2 ) dfr$df <- res1$df dfr$p <- stats::pt( - abs( dfr$t ), df=dfr$df) * 2 dfr$cor_fmi <- res1$pars_fmi dfr$cor_fmi_St1 <- res1$pars_fmiB dfr$cor_fmi_St2 <- res1$pars_fmiW dfr$cor_VarMI_St1 <- res1$pars_varBetween1 dfr$cor_VarMI_St2 <- res1$pars_varBetween2 dfr$cor_VarRep <- res1$pars_varWithin } dfr <- clean_summary_table( dfr, RR, se, Nimp ) # i1 <- match( dfr$var1, vars ) # i2 <- match( dfr$var2, vars ) dfr <- dfr[ dfr$var1 !=dfr$var2, ] #@@@@*** # multiple groupings dfr <- BIFIE_table_multiple_groupings( dfr, res00 ) #@@@@*** dfr.cor <- dfr dfr <- data.frame( "var1"=rep( vars[ itempair_index[,1] ], each=GG ), "var2"=rep( vars[ itempair_index[,2] ], each=GG ) ) if (! nogroup){ dfr$groupvar <- group dfr$groupval <- rep( group_values, ZZ ) } dfr$Ncases <- rep( rowMeans( res$ncases1M ), ZZ ) dfr$Nweight <- rep( rowMeans( res$sumwgt1M ), ZZ ) dfr$cov <- res$cov1$pars dfr$cov_SE <- res$cov1$pars_se dfr$cov_df <- rubin_calc_df( res$cov1, Nimp ) dfr$cov_fmi <- res$cov1$pars_fmi dfr$cov_VarMI <- res$cov1$pars_varBetween dfr$cov_VarRep <- res$cov1$pars_varWithin if ( BIFIEobj$NMI ){ res1b <- res1 <- BIFIE_NMI_inference_parameters( parsM=res$cov1M, parsrepM=res$cov1repM, fayfac=fayfac, RR=RR, Nimp=Nimp, Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE ) dfr$cov_fmi <- dfr$cov_VarMI <- NULL dfr$cov <- res1$pars dfr$cov_SE <- res1$pars_se dfr$t <- round( dfr$cov / dfr$cov_SE, 2 ) dfr$df <- res1$df dfr$p <- stats::pt( - abs( dfr$t ), df=dfr$df) * 2 dfr$cov_fmi <- res1$pars_fmi dfr$cov_fmi_St1 <- res1$pars_fmiB dfr$cov_fmi_St2 <- res1$pars_fmiW dfr$cov_VarMI_St1 <- res1$pars_varBetween1 dfr$cov_VarMI_St2 <- res1$pars_varBetween2 dfr$cov_VarRep <- res1$pars_varWithin } dfr <- clean_summary_table( dfr, RR, se, Nimp ) #@@@@*** # multiple groupings dfr <- BIFIE_table_multiple_groupings( dfr, res00 ) #@@@@*** dfr.cov <- dfr #***** # construct list of correlation matrices ml <- as.list(1:GG) names(ml) <- paste0(group,group_values) #*** correlation matrix ml0 <- ml cl <- res$cor1_matrix for (gg in 1:GG){ ml0[[gg]] <- cl[, 1:VV + (gg-1 )*VV ] colnames(ml0[[gg]]) <- rownames(ml0[[gg]]) <- vars } cor_matrix <- ml0 #*** covariance matrix ml0 <- ml cl <- res$cov1_matrix for (gg in 1:GG){ ml0[[gg]] <- cl[, 1:VV + (gg-1 )*VV ] colnames(ml0[[gg]]) <- rownames(ml0[[gg]]) <- vars } cov_matrix <- ml0 # create vector of parameter names nogroupL <- rep( nogroup, nrow(dfr) ) parnames <- paste0( dfr$var1, "_", dfr$var2, ifelse( ! nogroupL, paste0("_", dfr$groupvar ), "" ), ifelse( ! nogroupL, paste0( "_", dfr$groupval ), "" ) ) #*************************** OUTPUT *************************************** s2 <- Sys.time() timediff <- c( s1, s2 ) #, paste(s2-s1 ) ) res1 <- list( "stat.cor"=dfr.cor, "stat.cov"=dfr.cov, "output"=res, "cor_matrix"=cor_matrix, "cov_matrix"=cov_matrix, "timediff"=timediff, "N"=N, "Nimp"=Nimp, "RR"=RR, "fayfac"=fayfac, "NMI"=BIFIEobj$NMI, "Nimp_NMI"=BIFIEobj$Nimp_NMI, "itempair_index"=itempair_index, "GG"=GG, "parnames"=parnames, "CALL"=cl19) if ( BIFIEobj$NMI ){ res$output_cor <- res1a res$output_cov <- res1b } class(res1) <- "BIFIE.correl" return(res1) } ################################################################################### #################################################################################### # summary for BIFIE.correl function summary.BIFIE.correl <- function( object, digits=4, ... ) { BIFIE.summary(object) cat("Statistical Inference for Correlations \n") obji <- object$stat.cor print_object_summary( obji, digits=digits ) cat("\nCorrelation Matrices \n\n") obji <- object$cor_matrix GG <- object$GG for (gg in 1:GG){ obji[[gg]] <- round( obji[[gg]], digits=digits) } print(obji) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.correl.R
## File Name: BIFIE.crosstab.R ## File Version: 0.441 ####################################################################### # cross tabulation BIFIE.crosstab <- function( BIFIEobj, vars1, vars2, vars_values1=NULL, vars_values2=NULL, group=NULL, group_values=NULL, se=TRUE ){ #**** s1 <- Sys.time() cl <- match.call() bifieobj <- BIFIEobj vars1 <- vars1[1] vars2 <- vars2[1] if (bifieobj$cdata){ varnames <- unique( c( vars1, vars2, group, "one") ) bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames ) } FF <- Nimp <- bifieobj$Nimp N <- bifieobj$N dat1 <- bifieobj$dat1 wgt <- bifieobj$wgt wgtrep <- bifieobj$wgtrep varnames <- bifieobj$varnames RR <- bifieobj$RR datalistM <- bifieobj$datalistM fayfac <- bifieobj$fayfac if (RR==1){ RR <- 0 } if ( ! se ){ wgtrep <- matrix( wgt, ncol=1 ) RR <- 0 } vars_index1 <- which( varnames==vars1 ) vars_index2 <- which( varnames==vars2 ) # vars values if ( is.null(vars_values1 ) ){ t1 <- bifie_table( datalistM[, vars_index1 ] ) vars_values1 <- sort( as.numeric( paste( names(t1) ) )) } if ( is.null(vars_values2 ) ){ t1 <- bifie_table( datalistM[, vars_index2 ] ) vars_values2 <- sort( as.numeric( paste( names(t1) ) )) } wgt_ <- matrix( wgt, ncol=1 ) if ( is.null( group) ){ nogroup <- TRUE } else { nogroup <- FALSE } cat(paste0( "|", paste0( rep("*", FF), collapse=""), "|\n" )) if (nogroup){ group <- "one" group_values <- c(1) } #@@@@*** group_index <- match( group, varnames ) #@@@@*** if ( is.null(group_values ) ){ t1 <- bifie_table( datalistM[, group_index ] ) group_values <- sort( as.numeric( paste( names(t1) ) )) } #@@@@*** res00 <- BIFIE_create_pseudogroup( datalistM, group, group_index, group_values ) res00$datalistM -> datalistM res00$group_index -> group_index res00$GR -> GR res00$group_values -> group_values res00$group -> group #@@@@*** GG <- length(group_values) #**************************************************************************# # Rcpp call res <- bifie_crosstab( datalistM, wgt_, wgtrep, vars_values1, vars_index1 - 1, vars_values2, vars_index2 - 1, fayfac, Nimp, group_index - 1, group_values ) ZZ <- nrow(res$ctparsM) design_pars <- res$design_pars VV1 <- length(vars_values1) VV2 <- length(vars_values2) #********* # joint distributions dfr1 <- data.frame("var1"=vars1[1], "varval1"=design_pars[,1] ) dfr1$var2 <- vars2[1] dfr1$varval2 <- design_pars[,2] dfr1$group <- group dfr1$groupval <- design_pars[,3] XX1 <- nrow(dfr1) dfr1$Ncases <- rowMeans( res$ncasesM ) dfr1$Nweight <- rowMeans( res$sumwgtM ) XX2 <- 3*XX1 ## // probs_joint ZZ ## // probs_rowcond ZZ ## // probs_colcond ZZ ## // probs_rowmarg VV1*GG ## // probs_colmarg VV2*GG dfr1 <- data.frame("prob"=rep( c("joint", "rowcond", "colcond"), each=XX1 ), dfr1[ rep(1:XX1, 3 ), ] ) dfr1$est <- res$ctparsL$pars[ 1:XX2 ] dfr1$SE <- res$ctparsL$pars_se[ 1:XX2 ] dfr1$fmi <- res$ctparsL$pars_fmi[ 1:XX2 ] dfr1$df <- rubin_calc_df( res$ctparsL, Nimp, indices=1:XX2 ) dfr1$VarMI <- res$ctparsL$pars_varBetween[ 1:XX2 ] dfr1$VarRep <- res$ctparsL$pars_varWithin[ 1:XX2 ] rownames(dfr1) <- NULL parnames <- paste0( dfr1$prob, "_", dfr1$var1, dfr1$val1, "_", dfr1$var2, dfr1$val2, "_", dfr1$group, dfr1$groupval ) if (BIFIEobj$NMI ){ res1 <- BIFIE_NMI_inference_parameters( parsM=res$ctparsM[1:XX2,], parsrepM=res$ctparsrepM[1:XX2,], fayfac=fayfac, RR=RR, Nimp=Nimp, Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE ) dfr1$est <- res1$pars dfr1$SE <- res1$pars_se # dfr$t <- round( dfr$perc / dfr$perc_SE, 2 ) dfr1$df <- res1$df # dfr$p <- pt( - abs( dfr$t ), df=dfr$df) * 2 dfr1$fmi <- res1$pars_fmi dfr1$fmi_St1 <- res1$pars_fmiB dfr1$fmi_St2 <- res1$pars_fmiW dfr1$VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2 dfr1$VarMI_St1 <- res1$pars_varBetween1 dfr1$VarMI_St2 <- res1$pars_varBetween2 dfr1$VarRep <- res1$pars_varWithin } #***** # marginal distributions XX3 <- GG*(VV1+VV2) dfr2 <- data.frame( "prob"=c( rep( "rowmarg", VV1*GG), rep( "colmarg", VV2*GG) ) ) dfr2$var <- c( rep(vars1,VV1*GG), rep(vars2,VV2*GG) ) dfr2$varval <- c( rep( vars_values1, GG ), rep( vars_values2, GG ) ) dfr2$group <- group dfr2$groupval <- c( rep( group_values, each=VV1 ), rep( group_values, each=VV2 ) ) l1 <- seq( XX2+1, XX2 + XX3 ) dfr2$est <- res$ctparsL$pars[ l1 ] dfr2$SE <- res$ctparsL$pars_se[ l1 ] dfr2$fmi <- res$ctparsL$pars_fmi[ l1 ] dfr2$df <- rubin_calc_df( res$ctparsL, Nimp, indices=l1) dfr2$VarMI <- res$ctparsL$pars_varBetween[ l1 ] dfr2$VarRep <- res$ctparsL$pars_varWithin[ l1 ] parnames2 <- paste0( dfr2$prob, "_", dfr2$var, dfr2$val, "_", dfr2$group, dfr2$groupval ) parnames <- c( parnames, parnames2 ) if (BIFIEobj$NMI ){ res1 <- BIFIE_NMI_inference_parameters( parsM=res$ctparsM[ l1,], parsrepM=res$ctparsrepM[ l1,], fayfac=fayfac, RR=RR, Nimp=Nimp, Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE ) dfr2$est <- res1$pars dfr2$SE <- res1$pars_se # dfr$t <- round( dfr$perc / dfr$perc_SE, 2 ) dfr2$df <- res1$df # dfr$p <- stats::pt( - abs( dfr$t ), df=dfr$df) * 2 dfr2$fmi <- res1$pars_fmi dfr2$fmi_St1 <- res1$pars_fmiB dfr2$fmi_St2 <- res1$pars_fmiW dfr2$VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2 dfr2$VarMI_St1 <- res1$pars_varBetween1 dfr2$VarMI_St2 <- res1$pars_varBetween2 dfr2$VarRep <- res1$pars_varWithin } #***** # effect sizes ## // w_es 2*GG ## // gamma_es GG ## // lambda 3*GG ## // kruskal_tau 3*GG XX4 <- nrow(dfr1) + nrow(dfr2) XX5 <- (2+1+3+3)*GG dfr3 <- data.frame( "parm"=c( rep("w",GG), rep("V",GG), rep("gamma",GG), rep(c("lambda", "lambda_X","lambda_Y"),GG), rep( c("tau","tau_X","tau_Y"), GG ) ) ) dfr3$group <- group dfr3$groupval <- c(rep(group_values,1), rep(group_values, 1), rep(group_values,1), rep(group_values,each=3), rep(group_values,each=3) ) l1 <- seq( XX4+1, XX4 + XX5 ) dfr3$est <- res$ctparsL$pars[ l1 ] dfr3$SE <- res$ctparsL$pars_se[ l1 ] dfr3$fmi <- res$ctparsL$pars_fmi[ l1 ] dfr3$df <- rubin_calc_df( res$ctparsL, Nimp, indices=l1) dfr3$VarMI <- res$ctparsL$pars_varBetween[ l1 ] dfr3$VarRep <- res$ctparsL$pars_varWithin[ l1 ] if (BIFIEobj$NMI ){ res1 <- BIFIE_NMI_inference_parameters( parsM=res$ctparsM[ l1,], parsrepM=res$ctparsrepM[ l1,], fayfac=fayfac, RR=RR, Nimp=Nimp, Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE ) dfr3$est <- res1$pars dfr3$SE <- res1$pars_se # dfr$t <- round( dfr$perc / dfr$perc_SE, 2 ) dfr3$df <- res1$df # dfr$p <- stats::pt( - abs( dfr$t ), df=dfr$df) * 2 dfr3$fmi <- res1$pars_fmi dfr3$fmi_St1 <- res1$pars_fmiB dfr3$fmi_St2 <- res1$pars_fmiW dfr3$VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2 dfr3$VarMI_St1 <- res1$pars_varBetween1 dfr3$VarMI_St2 <- res1$pars_varBetween2 dfr3$VarRep <- res1$pars_varWithin } parnames3 <- paste0( dfr3$parm, "_", dfr3$group, dfr3$groupval ) parnames <- c( parnames, parnames3 ) if ( ( ! se ) & ( RR==0 ) ){ dfr1$df <- dfr1$SE <- dfr1$fmi <- dfr1$VarMI <- dfr1$VarRep <- NULL dfr2$df <- dfr2$SE <- dfr2$fmi <- dfr2$VarMI <- dfr2$VarRep <- NULL dfr3$df <- dfr3$SE <- dfr3$fmi <- dfr3$VarMI <- dfr3$VarRep <- NULL } if ( Nimp==1 ){ dfr1$fmi <- dfr1$VarMI <-NULL dfr2$fmi <- dfr2$VarMI <- NULL dfr3$fmi <- dfr3$VarMI <- NULL } # create vector of parameter names # nogroupL <- rep( nogroup, nrow(dfr) ) # parnames <- paste0( dfr$var, "_", dfr$varval, # ifelse( ! nogroupL, paste0( "_", dfr$groupvar, "_" ), "" ), # ifelse( ! nogroupL, dfr$groupval, "" ) ) # parnames <- NULL # compute ad hoc chi square statistics (without resampling) ncases_gg <- res$ncases_ggM l1 <- seq( XX4+1, XX4 + GG) wes <- res$ctparsM[l1,] chisquare <- wes^2 * ncases_gg p_chi2 <- (VV1-1)*(VV2-1) p_chi2 <- 1-stats::pchisq( chisquare, df=p_chi2 ) dfr4 <- data.frame("group"=group, "groupval"=group_values ) for (ii in 1:GG){ m1 <- miceadds::micombine.chisquare( dk=chisquare[ii,], df=(VV1-1)*(VV2-1), display=FALSE ) dfr4[ii,"chi2"] <- m1["D"] dfr4[ii, "df" ] <- m1["df"] dfr4[ ii, "p"] <- m1["p"] } #@@@@*** # multiple groupings dfr1 <- BIFIE_table_multiple_groupings( dfr1, res00 ) #@@@@*** #@@@@*** # multiple groupings dfr2 <- BIFIE_table_multiple_groupings( dfr2, res00 ) #@@@@*** #*************************** OUTPUT *************************************** s2 <- Sys.time() timediff <- c( s1, s2 ) #, paste(s2-s1 ) ) res1 <- list( "stat.probs"=dfr1, "stat.marg"=dfr2, "stat.es"=dfr3, "output"=res, "timediff"=timediff, "N"=N, "Nimp"=Nimp, "RR"=RR, "fayfac"=fayfac, "NMI"=BIFIEobj$NMI, "Nimp_NMI"=BIFIEobj$Nimp_NMI, "parnames"=parnames, "CALL"=cl ) class(res1) <- "BIFIE.crosstab" return(res1) } ################################################################################### #################################################################################### # summary for BIFIE.crosstab function summary.BIFIE.crosstab <- function( object, digits=3, ... ) { BIFIE.summary(object) cat("Joint and Conditional Probabilities\n") obji <- object$stat.probs print_object_summary( obji, digits=digits ) cat("\nMarginal Probabilities\n") obji <- object$stat.marg print_object_summary( obji, digits=digits ) cat("\nEffect Sizes\n") obji <- object$stat.es print_object_summary( obji, digits=digits ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.crosstab.R
## File Name: BIFIE.data.R ## File Version: 1.473 # Convert a list of multiply imputed datasets into an object of class BIFIEdata BIFIE.data <- function( data.list, wgt=NULL, wgtrep=NULL, fayfac=1, pv_vars=NULL, pvpre=NULL, cdata=FALSE, NMI=FALSE ) { cl <- match.call() #**** handling pv_vars if ( ! is.null(pv_vars) ){ if ( is.null(pvpre) ){ jktype <- "JK_TIMSS" } else { jktype <- "RW_PISA" } if (!is.null(pvpre)){ cn_data <- colnames(data.list) pv_vars <- BIFIE_data_select_pv_vars(pvpre=pvpre, cn_data=cn_data) } data.list <- BIFIE_data_pv_vars_create_datlist(pvpre=pvpre, pv_vars=pv_vars, jktype=jktype, data=data.list) } # subroutine for preparation of nested multiple imputations res0 <- BIFIE_data_nested_MI( data.list=data.list, NMI=NMI ) data.list <- res0$data.list Nimp_NMI <- res0$Nimp_NMI if ( ( is.list( data.list ) ) & ( is.data.frame( data.list) ) ){ h1 <- data.list data.list <- list( 1 ) data.list[[1]] <- h1 } FF <- length( data.list) Nimp <- FF if ( sum( colnames(data.list[[1]]) %in% "one" ) > 0 ){ cat("Variable 'one' in datasets is replaced by a constant variable") cat(" containing only ones!\n" ) for (ii in 1:Nimp){ data.list[[ii]][, "one"] <- NULL } } N <- nrow( data.list[[1]] ) V <- ncol( data.list[[1]] ) dat1 <- data.list[[1]] cn <- c( colnames(dat1), "one" ) N <- nrow(dat1) p1 <- sapply( 1:V, FUN=function(vv){ is.numeric( dat1[,vv] ) } ) notnum <- which( ! p1 ) datalistM <- matrix( NA, nrow=N*Nimp, V + 1) cat("+++ Generate BIFIE.data object\n") cat(paste0( "|", paste0( rep("*", FF), collapse=""), "|\n|" )) #**** # weights if ( is.character(wgt) & ( length(wgt)==1 ) ){ wgt <- data.list[[1]][, wgt ] } if ( is.null(wgt) ){ wgt <- rep(1,N) } wgt <- as.numeric( wgt ) if ( is.null(wgtrep) ){ wgtrep <- matrix( wgt, nrow=N, ncol=1 ) } wgtrep <- as.matrix( wgtrep ) for (ff in 1:FF){ # imputed dataset ff dat1 <- data.list[[ff]] for (vv in notnum){ dat1[,vv] <- as.numeric( dat1[,vv] ) } dat1$one <- 1 dat1 <- as.matrix( dat1) datalistM[ 1:N + N*(ff-1), ] <- dat1 cat("-") ; flush.console() } cat("|\n") wgtrep <- as.matrix(wgtrep) res <- list( "datalistM"=datalistM, "wgt"=wgt, "wgtrep"=wgtrep, "Nimp"=Nimp, "N"=N, "dat1"=dat1, "varnames"=cn, "fayfac"=fayfac, "RR"=ncol(wgtrep), "time"=Sys.time(), "CALL"=cl ) res$NMI <- NMI res$Nimp_NMI <- Nimp_NMI res$cdata <- FALSE class(res) <- "BIFIEdata" #***** variable names and transformations VV <- length(res$varnames) res$Nvars <- VV dfr2 <- data.frame( "index"=1:VV, "variable"=res$varnames, "variable_orig"=res$varnames, "source"="indata") res$variables <- dfr2 if ( cdata ){ res <- BIFIE.BIFIEdata2BIFIEcdata( bifieobj=res, varnames=NULL ) } return(res) } #**************** print method *********************** print.BIFIEdata <- function(x,...){ cat("Object of class 'BIFIEdata'\nCall: ") print( x$CALL ) #*** multiply imputed data if ( ! x$NMI ){ cat("MI data with", x$Nimp,"datasets\n") } #*** nested multiply imputed data if ( x$NMI ){ v1 <- paste0( "NMI data with ", x$Nimp_NMI[1]," between datasets and ", x$Nimp_NMI[2], " within datasets\n") cat(v1) } v1 <- paste0( x$RR, " replication weights with fayfac=", round(x$fayfac,3), " \n" ) cat(v1) v1 <- paste0( x$N, " cases and ", x$Nvars, " variables \n" ) cat(v1) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.data.R
## File Name: BIFIE.data.boot.R ## File Version: 0.20 ########################################################### # BIFIE.data objects for bootstrap designs BIFIE.data.boot <- function( data, wgt=NULL, pv_vars=NULL, Nboot=500, seed=.Random.seed, cdata=FALSE) { cl <- match.call() #*** list of multiply imputed datasets if ( ( is.list(data) ) & ( ! is.data.frame(data) ) ){ dataL <- data data <- dataL[[1]] } else { dataL <- data } data <- as.data.frame( data ) if ( ! is.null(seed) ){ set.seed( seed ) } # normalize weights if ( is.null(wgt) ){ wgt <- "_wgt2" data[, wgt ] <- rep( 1, nrow(data) ) } wgtname <- wgt wgt <- data[, wgt ] N <- length(wgt) wgt <- N * wgt / sum(wgt) # cumulated weights cumwgt <- cumsum(wgt) # random numbers rand_wgt <- N*matrix( stats::runif(N*Nboot), nrow=N, ncol=Nboot ) #**** # apply bootstrap subfunction cat("+++ Generate bootstrap samples\n"); utils::flush.console() datarep <- bifiesurvey_rcpp_bootstrap( cumwgt=cumwgt, rand_wgt=rand_wgt)$wgtM RR <- Nboot addname <- 10^( floor( log( RR+.5, 10 ) ) + 1 ) colnames(datarep) <- paste0("w_fstr", substring( paste0(addname +1:RR),2) ) datarep <- sum( wgt )/N * datarep #******** generate replicated datasets for datasets if ( is.null( pv_vars) ){ datalist <- dataL } if ( ! is.null( pv_vars )){ dfr <- NULL VV <- length(pv_vars) for (vv in 1:VV){ vv1 <- pv_vars[vv] ind.vv1 <- which( substring( colnames(data), 1, nchar( vv1 ) )==pv_vars[vv] ) Nimp <- length(ind.vv1) dfr2 <- data.frame( "variable"=vv1, "var_index"=vv, "data_index"=ind.vv1, "impdata_index"=1:Nimp ) dfr <- rbind( dfr, dfr2 ) } sel_ind <- setdiff( 1:( ncol(data) ), dfr$data_index ) data0 <- data[, sel_ind ] V0 <- ncol(data0) newvars <- seq( V0+1, V0+VV ) datalist <- as.list( 1:Nimp ) for (ii in 1:Nimp ){ dat1 <- data.frame( data0, data[, dfr[ dfr$impdata_index==ii, "data_index" ] ] ) colnames(dat1)[ newvars ] <- pv_vars datalist[[ii]] <- dat1 } } fayfac <- 1/Nboot #*** create BIFIE.data object bifiedat <- BIFIE.data( datalist, wgt=data[, wgtname ], wgtrep=datarep, fayfac=fayfac, cdata=cdata) bifiedat$CALL <- cl return(bifiedat) } ###############################################################################
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.data.boot.R
## File Name: BIFIE.data.jack.R ## File Version: 1.703 #--- BIFIE.data objects for designs with jackknife zones BIFIE.data.jack <- function( data, wgt=NULL, jktype="JK_TIMSS", pv_vars=NULL, jkzone=NULL, jkrep=NULL, jkfac=NULL, fayfac=NULL, wgtrep="W_FSTR", pvpre=paste0("PV",1:5), ngr=100, seed=.Random.seed, cdata=FALSE ) { cl <- match.call() # subroutine for preparation of nested multiple imputations # res0 <- BIFIE_data_nested_MI( data.list=data.list, NMI=NMI ) # data.list <- res0$data.list # Nimp_NMI <- res0$Nimp_NMI fayfac0 <- fayfac if ( ( ! is.null(wgtrep) ) & ( is.null(fayfac) ) ){ fayfac <- 1 } #*** list of multiply imputed datasets if ( ( is.list(data) ) & ( ! is.data.frame(data) ) ){ dataL <- data data <- dataL[[1]] } else { dataL <- data } data <- as.data.frame( data ) #*** using fixed jackknife zones if (jktype=="JK_GROUP"){ N <- nrow(data) if ( is.null(wgt) ){ data$wgt <- rep(1,N) wgt <- "wgt" } data$jkrep <- rep(0,N) jkrep <- "jkrep" fayfac <- ngr / ( ngr - 1 ) jkfac <- 0 } #*** defaults for jackknife creation: random groups if (jktype=="JK_RANDOM"){ N <- nrow(data) if ( is.null(wgt) ){ data$wgt <- rep(1,N) wgt <- "wgt" } if ( ! is.null(seed) ){ set.seed( seed ) indzone <- sample(1:N) } else { indzone <- 1:N } jkzone <- 1:N N1 <- N / ngr jkzone <- floor( jkzone / ( N1 + 1E-5 ) ) + 1 jkzone <- jkzone[indzone] jkrep <- rep(0,N) data$jkzone <- jkzone jkzone <- "jkzone" data$jkrep <- jkrep jkrep <- "jkrep" fayfac <- ngr / ( ngr - 1 ) jkfac <- 0 } #**** defaults for TIMSS if (jktype %in% c("JK_TIMSS","JK_TIMSS2") ){ if ( is.null(jkrep) ){ jkrep <- "JKREP" } if ( is.null(jkzone) ){ jkzone <- "JKZONE" } if ( is.null(wgt) ){ wgt <- "TOTWGT" } jkfac <- 2 } #**** defaults for PISA if (jktype=="RW_PISA"){ jkrep <- NULL jkzone <- NULL if ( is.null(wgt)){ wgt <- "W_FSTUWT" } jkfac <- NULL cn_data <- colnames(data) repvars <- grep( wgtrep, cn_data ) RR <- length(repvars) pv_vars <- BIFIE_data_select_pv_vars(pvpre, cn_data ) datarep <- data[, repvars ] RR <- ncol(datarep) fayfac <- 1 / RR / ( 1 - .5)^2 data <- data[, - repvars ] } #**** generate replicate weights if ( jktype %in% c("JK_TIMSS", "JK_GROUP", "JK_RANDOM", "JK_TIMSS2") ) { # redefine jackknife zones jkzones1 <- unique( data[,jkzone] ) data[,jkzone] <- match( data[,jkzone], jkzones1) #*********** RR <- max( data[,jkzone] ) prblen <- 10 prbar <- BIFIE.progressbar( ops=RR, prblen=prblen ) cat("+++ Generate replicate weights\n") cat(paste0("|", paste0(rep("*",prblen), collapse=""), "|\n|")) utils::flush.console() addname <- 10^( floor( log( RR+.5, 10 ) ) + 1 ) data[, jkzone ] <- match( data[, jkzone ], unique( data[, jkzone] ) ) datarep <- bifiesurvey_rcpp_jackknife_timss( wgt=data[,wgt], jkzone=data[,jkzone]-1, jkrep=data[,jkrep], RR=RR, jkfac=jkfac, prbar=prbar ) colnames(datarep) <- paste0("w_fstr", substring( paste0(addname +1:RR),2) ) # adjustments for JK_TIMSS2 type if (jktype=="JK_TIMSS2"){ datarep0 <- bifiesurvey_rcpp_jackknife_timss( wgt=data[,wgt], jkzone=data[,jkzone]-1, jkrep=1 - data[,jkrep], RR=RR, jkfac=jkfac, prbar=prbar ) colnames(datarep0) <- paste0("w_fstr", substring( paste0(addname +1:RR),2) ) datarep <- cbind( datarep, datarep0 ) ind_rep <- unlist( sapply( 1:RR, FUN=function(rr){ rr + c(0,RR) }, simplify=FALSE) ) datarep <- datarep[, ind_rep ] addname <- 10^( floor( log( 2*RR+.5, 10 ) ) + 1 ) colnames(datarep) <- paste0("w_fstr", substring( paste0(addname +1:(2*RR)),2) ) RR <- 2*RR fayfac <- .5 } cat("|\n") } #******** generate replicated datasets for datasets if ( is.null( pv_vars) ){ datalist <- dataL } #-------------------------------------------------- if ( ! is.null( pv_vars )){ datalist <- BIFIE_data_pv_vars_create_datlist( pvpre=pvpre, pv_vars=pv_vars, jktype=jktype, data=data ) } # end pv_vars #-------------------------------------------------- if ( ! is.null(fayfac0) ){ fayfac <- fayfac0 } #*** create BIFIE.data object bifiedat <- BIFIE.data( datalist, wgt=data[, wgt ], wgtrep=datarep, fayfac=fayfac, cdata=cdata, NMI=FALSE ) bifiedat$CALL <- cl return(bifiedat) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.data.jack.R
## File Name: BIFIE.data.select.R ## File Version: 1.23 ####################################################################### # selection variables or datasets in BIFIEcdata objects BIFIE.data.select <- function( bifieobj, varnames=NULL, impdata.index=NULL ) { if ( bifieobj$cdata ){ stop("Use 'BIFIE.cdata.select' or the general function 'BIFIEdata.select'") } # retain variable "one" varnames0 <- bifieobj$varnames if ( ! is.null(varnames) ){ varnames <- union( varnames, intersect( "one", varnames0) ) } #******** select some imputed datasets if ( ! is.null(impdata.index ) ){ i1 <- impdata.index - 1 N <- bifieobj$N ind <- NULL for (ii in i1){ vec <- ii*N + ( 1:N ) ind <- c(ind, vec) } bifieobj$datalistM <- bifieobj$datalistM[ ind,, drop=FALSE] bifieobj$Nimp <- length(i1) } #********* select some variables if ( ! is.null(varnames) ){ dfr1 <- data.frame( "varnames"=bifieobj$varnames, "index"=seq(1,length(bifieobj$varnames) ) ) dfr1$selectvars <- 1 * ( dfr1$varnames %in% varnames ) dfr1 <- dfr1[ dfr1$selectvars==1, ] bifieobj$datalistM <- bifieobj$datalistM[, dfr1$index, drop=FALSE] bifieobj$dat1 <- bifieobj$dat1[, dfr1$index, drop=FALSE] bifieobj$varnames <- bifieobj$varnames[ dfr1$index ] # process variable list bifieobj$variables <- bifieobj$variables[ dfr1$index, ] } bifieobj$Nvars <- ncol(bifieobj$dat1) return(bifieobj) } ############################################################################
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.data.select.R
## File Name: BIFIE.data.transform.R ## File Version: 1.304 #--- transforming data in BIFIE.data object BIFIE.data.transform <- function( bifieobj, transform.formula, varnames.new=NULL ) { varnames <- bifieobj$varnames transform.formula <- stats::as.formula( transform.formula ) # add "+0" input in formula transform.formula <- BIFIE_data_transform_process_formula(transform.formula=transform.formula) # select variables which should be transformed vars <- all.vars(transform.formula) ind_vars <- unlist( sapply( vars, FUN=function(vv){ which( varnames==vv ) } ) ) # check whether all variables are included in the BIFIEdata object h1 <- setdiff( vars, varnames ) if ( length(h1)>0 ){ stop( "Following variables are not in the BIFIEdata object: \n\n ", paste( h1, collapse=" " ) ) } #***--- distinction BIFIEdata and BIFIEcdata cdata <- bifieobj$cdata if ( ! cdata ){ dfr <- as.data.frame( bifieobj$datalistM[, ind_vars] ) colnames(dfr) <- vars } if ( cdata ){ dfr1 <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=vars ) dfr <- as.data.frame( dfr1$datalistM ) colnames(dfr) <- dfr1$varnames } N <- bifieobj$N N1 <- bifieobj$Nimp * N N2 <- ncol( bifieobj$dat1) dfr_long <- dfr Nimp <- bifieobj$Nimp #*** check whether some variables should be removed in original BIFIE.data object if ( ! is.null( varnames.new) ){ varnames.old <- bifieobj$varnames select_vars <- setdiff( varnames.old, varnames.new ) bifieobj <- BIFIEdata.select( bifieobj, varnames=select_vars ) # removed variables rm_vars <- intersect( varnames.old, varnames.new ) if ( length(rm_vars) > 0 ){ cat( paste0("Removed ", length(rm_vars), " original variables: ", paste0( rm_vars, collapse=" " ), "\n") ) } varnames <- bifieobj$varnames } #*** construction of new variables M1_long <- NULL for (ii in 1:Nimp){ dfr <- as.data.frame( dfr_long[ ( ii-1)*N + 1:N, ] ) colnames(dfr) <- colnames(dfr_long) rownames(dfr) <- 1:N M1 <- stats::model.matrix( transform.formula, dfr ) varnames.added <- colnames(M1) varsindex.added <- seq( N2 + 1, N2 + ncol(M1) ) M1.new <- matrix( NA, nrow=N, ncol=ncol(M1) ) colnames(M1.new) <- varnames.added VV <- ncol(M1) M1.new[ match( rownames(M1),rownames(dfr) ), ] <- M1 M1_long <- rbind( M1_long, M1.new ) } # resulting object is M1.new M1.new <- M1_long #***--- varnames.added1 <- varnames.added if ( ! is.null(varnames.new) ){ V21 <- length(varnames.added) V22 <- length(varnames.new) varnames.added[ seq(1, min(V21,V22)) ] <- varnames.new[ seq(1,min(V21,V22) ) ] } varnames1 <- c( varnames, varnames.added ) #***--- distinction between BIFIEdata and BIFIEcdata if ( ! cdata ){ bifieobj$datalistM <- as.matrix( cbind( bifieobj$datalistM, M1.new ) ) colnames(bifieobj$datalistM) <- NULL bifieobj$dat1 <- as.matrix( bifieobj$datalistM[ seq( N*(Nimp-1) + 1, Nimp*N ),,drop=FALSE]) colnames(bifieobj$dat1) <- varnames1 } if ( cdata ){ M1.new <- as.matrix(M1.new) VV2 <- ncol(bifieobj$dat1) # create indicators res2 <- bifiesurvey_rcpp_bifiedata2bifiecdata( datalistM=M1.new, Nimp=bifieobj$Nimp ) datalistM_ind <- res2$datalistM_ind datalistM_imputed <- res2$datalistM_imputed datalistM_impindex <- res2$datalistM_impindex datalistM_impindex[,2] <- datalistM_impindex[,2] + VV2 bifieobj$datalistM_imputed <- rbind( bifieobj$datalistM_imputed, datalistM_imputed ) dat1 <- as.matrix( M1.new[ seq( N*(Nimp-1) + 1, Nimp*N ), ]) bifieobj$dat1 <- cbind( bifieobj$dat1, dat1 ) colnames(bifieobj$dat1) <- varnames1 bifieobj$datalistM_impindex <- rbind( bifieobj$datalistM_impindex, datalistM_impindex ) bifieobj$datalistM_ind <- cbind( bifieobj$datalistM_ind, datalistM_ind ) } #*** include variable names bifieobj$varnames <- varnames1 bifieobj$varnames.added <- varnames.added bifieobj$varsindex.added <- varsindex.added cat( paste0( "Included ", VV, " variables: ", paste0( varnames.added, collapse=" " ), "\n") ) #*** add variable names in list dfr3 <- bifieobj$variables VV2 <- length(bifieobj$varnames.added) n0 <- max( dfr3$index ) dfr3[, "variable"] <- bifieobj$varnames[ seq( 1, nrow(dfr3) ) ] dfr2 <- data.frame( "index"=n0 + 1:VV2, "variable"=varnames.added, "variable_orig"=varnames.added1, "source"=paste0(as.character(transform.formula), collapse=" ")) dfr3 <- rbind( dfr3, dfr2) dfr3 -> bifieobj$variables bifieobj$Nvars <- ncol(bifieobj$dat1) return( bifieobj ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.data.transform.R
## File Name: BIFIE.derivedParameters.R ## File Version: 0.386 #--- statistical inference for derived parameters BIFIE.derivedParameters <- function( BIFIE.method, derived.parameters, type=NULL ) { cl <- match.call() s1 <- Sys.time() object <- res1 <- BIFIE.method parnames <- res1$parnames Nimp <- res1$Nimp RR <- res1$RR # extract replicated parameters parsres <- extract.replicated.pars( BIFIE.method=res1, type=type ) pars0 <- parsres$parsM pars0.rep <- parsres$parsrepM rownames(pars0) <- parnames rownames(pars0.rep) <- parnames #- handle formulas allformulas <- derived.parameters[[1]] FF <- length(derived.parameters) if (FF>1){ for (ff in 2:FF){ t1 <- stats::terms(allformulas) t2 <- paste( c( attr( t1, "term.labels" ), attr( stats::terms( derived.parameters[[ff]] ), "term.labels" ) ), collapse=" + " ) allformulas <- stats::as.formula( paste( " ~ 0 + ", t2 ) ) } } else { t1 <- stats::terms(allformulas) t2 <- attr( t1, "term.labels" ) allformulas <- stats::as.formula( paste( " ~ 0 + ", t2 ) ) } # create matrices of derived parameters der.pars <- stats::model.matrix( allformulas, as.data.frame( t(pars0) ) ) colnames(der.pars) <- names(derived.parameters) der.pars.rep <- stats::model.matrix( allformulas, as.data.frame( t(pars0.rep) ) ) colnames(der.pars.rep) <- names(derived.parameters) fayfac <- res1$fayfac NP <- ncol(der.pars) Cdes <- diag(NP) Ccols <- which( colSums( abs( Cdes) ) > 0 ) parsM <- as.matrix( t( der.pars ) ) parsrepM <- as.matrix( t( der.pars.rep ) ) rdes <- rep(0,NP) #- global Wald test res0 <- res <- bifiesurvey_rcpp_wald_test( parsM=parsM, parsrepM=parsrepM, Cdes=Cdes, rdes=rdes, Ccols=Ccols-1, fayfac=fayfac ) res_wald <- data.frame( "D1"=res$D1, "D2"=res$D2, "df1"=res$df, "D1_df2"=round(res$nu2,1), "D2_df2"=round(res$nu3,1), "D1_p"=res$p_D1, "D2_p"=res$p_D2 ) var_w <- res0$var_w var_b <- res0$var_b # total variance var_tot <- var_w + ( 1 + 1/Nimp ) * var_b parmlabel <- names(derived.parameters) # parameters and standard errors stat <- data.frame( "parmlabel"=parmlabel, "coef"=rowMeans( parsM ), "se"=sqrt( diag( var_tot ) ) ) # pars_fmi[pp]=( 1.0 + 1/Nimp2) * pars_varBetween[pp] / pow(pars_se[pp] + eps,2.0) ; eps <- 1E-10 stat$t <- stat$coef / stat$se stat$df <- rubin_calc_df2( B=diag(var_b), W=diag(var_w), Nimp, digits=2) stat$p <- 2*stats::pt( - abs(stat$t), df=stat$df ) stat$fmi <- ( 1+1/Nimp) * diag(var_b) / ( stat$se^2 + eps ) stat$VarMI <- diag( var_b ) stat$VarRep <- diag( var_w ) rownames(stat) <- NULL if (BIFIE.method$NMI){ Nimp_NMI <- BIFIE.method$Nimp_NMI res0 <- BIFIE_NMI_inference_parameters( parsM, parsrepM, fayfac, RR, Nimp, Nimp_NMI, comp_cov=FALSE ) stat$coef <- res0$pars stat$se <- res0$pars_se stat$df <- res0$df stat$t <- res0$pars / res0$pars_se stat$p <- 2*stats::pt( - abs(stat$t), df=stat$df ) stat$fmi <- res0$pars_fmi stat$VarMI <- res0$pars_varBetween1 + res0$pars_varBetween2 stat$fmi_St1 <- res0$pars_fmiB stat$fmi_St2 <- res0$pars_fmiW } s2 <- Sys.time() timediff <- c( s1, s2 ) #, paste(s2-s1 ) ) res <- list( stat=stat, coef=rowMeans( parsM ), se=sqrt(diag(var_tot)), vcov=var_tot, Nimp=Nimp, fayfac=fayfac, N=res1$N, RR=res1$RR, NMI=BIFIE.method$NMI, Nimp_NMI=BIFIE.method$Nimp_NMI, allformulas=allformulas, CALL=cl, timediff=timediff, derived.parameters=derived.parameters, parsM=parsM, parsrepM=parsrepM, parnames=names(derived.parameters), res_wald=res_wald ) class(res) <- "BIFIE.derivedParameters" return(res) } #--- summary for BIFIE.derivedParameters function summary.BIFIE.derivedParameters <- function( object, digits=4, ... ) { BIFIE.summary(object) cat("Formulas for Derived Parameters \n\n") FF <- length( object$derived.parameters) for (ff in 1:FF){ cat( paste0( object$parnames[ff], " :=", " ", BIFIEsurvey_print_term_formula( formula=object$derived.parameters[[ff]] )), "\n") } cat("\nStatistical Inference for Derived Parameters \n\n") obji <- object$stat print_object_summary( obji, digits=digits ) #- Wald test cat("\n") BIFIE_waldtest_summary_print_test_statistics(object=object, digits=digits, value_name="res_wald") }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.derivedParameters.R
## File Name: BIFIE.ecdf.R ## File Version: 0.36 ####################################################################### # empirical distribution function BIFIE.ecdf <- function( BIFIEobj, vars, breaks=NULL, quanttype=1, group=NULL, group_values=NULL ) { #**** s1 <- Sys.time() cl <- match.call() bifieobj <- BIFIEobj if (bifieobj$cdata){ varnames <- unique( c( vars, group, "one") ) bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames ) } FF <- Nimp <- bifieobj$Nimp N <- bifieobj$N dat1 <- bifieobj$dat1 wgt <- bifieobj$wgt wgtrep <- bifieobj$wgtrep varnames <- bifieobj$varnames RR <- bifieobj$RR datalistM <- bifieobj$datalistM fayfac <- bifieobj$fayfac se <- FALSE if (RR==1){ RR <- 0 } if ( ! se ){ wgtrep <- matrix( wgt, ncol=1 ) RR <- 0 } vars_index <- unlist( sapply( vars, FUN=function(vv){ which( varnames==vv ) }, simplify=FALSE) ) # vars values VV <- length(vars) wgt_ <- matrix( wgt, ncol=1 ) if ( is.null( group) ){ nogroup <- TRUE } else { nogroup <- FALSE } cat(paste0( "|", paste0( rep("*", FF), collapse=""), "|\n" )) if (nogroup){ group <- "one" group_values <- c(1) } #@@@@*** group_index <- match( group, varnames ) #@@@@*** if ( is.null(group_values ) ){ t1 <- bifie_table( vec=datalistM[, group_index ] ) group_values <- sort( as.numeric( paste( names(t1) ) )) } #@@@@*** res00 <- BIFIE_create_pseudogroup( datalistM, group, group_index, group_values ) res00$datalistM -> datalistM res00$group_index -> group_index res00$GR -> GR res00$group_values -> group_values res00$group -> group #@@@@*** if ( is.null(breaks) ){ breaks <- as.numeric(seq( 0, 1, .01 )) } maxval <- round( max( dat1[, vars_index ], na.rm=TRUE ) * 100 ) #**************************************************************************# # Rcpp call res <- bifie_ecdf( datalist=datalistM, wgt1=wgt_, wgtrep=wgtrep, vars_index=vars_index-1, fayfac=fayfac, NI=Nimp, group_index1=group_index-1, group_values=group_values, breaks=breaks, quanttype=quanttype, maxval=maxval ) #--- process output res <- bifie_ecdf_postproc_output( res=res, group_values=group_values, breaks=breaks, VV=VV, res00=res00, vars=vars, group=group ) ecdf_ <- res$ecdf_ stat <- res$stat #@@@@*** # multiple groupings stat <- BIFIE_table_multiple_groupings( dfr=stat, res00=res00 ) #@@@@*** #*************************** OUTPUT *************************************** s2 <- Sys.time() timediff <- c( s1, s2 ) res1 <- list( ecdf=ecdf_, stat=stat, output=res, timediff=timediff, N=N, Nimp=Nimp, RR=RR, fayfac=fayfac, NMI=BIFIEobj$NMI, Nimp_NMI=BIFIEobj$Nimp_NMI, CALL=cl ) class(res1) <- "BIFIE.ecdf" return(res1) } ################################################################################### #################################################################################### # summary for BIFIE.ecdf function summary.BIFIE.ecdf <- function( object, digits=4, ... ) { BIFIE.summary(object) cat("Empirical Distribution Function \n") obji <- object$ecdf print_object_summary( obji, digits=digits ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.ecdf.R
## File Name: BIFIE.freq.R ## File Version: 0.531 ####################################################################### # frequency tables BIFIE.freq <- function( BIFIEobj, vars, group=NULL, group_values=NULL, se=TRUE ){ #**** s1 <- Sys.time() cl <- match.call() bifieobj <- BIFIEobj if (bifieobj$cdata){ varnames <- unique( c( vars, group, "one") ) bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames ) } FF <- Nimp <- bifieobj$Nimp N <- bifieobj$N dat1 <- bifieobj$dat1 wgt <- bifieobj$wgt wgtrep <- bifieobj$wgtrep varnames <- bifieobj$varnames RR <- bifieobj$RR datalistM <- bifieobj$datalistM fayfac <- bifieobj$fayfac if (RR==1){ RR <- 0 } if ( ! se ){ wgtrep <- matrix( wgt, ncol=1 ) RR <- 0 } vars_index <- unlist( sapply( vars, FUN=function(vv){ which( varnames==vv ) } ) ) # vars values VV <- length(vars) vars_info <- list(1:VV) for (vv in 1:VV){ t1 <- bifie_table( datalistM[, vars_index[vv] ] ) vars_info[[vv]] <- sort( as.numeric( paste0(names(t1) ))) } vars_values_numb <- unlist( lapply( vars_info, FUN=function(uu){ length(uu) } ) ) vars_values <- matrix(NA, nrow=max(vars_values_numb), ncol=VV) for (vv in 1:VV){ vars_values[ seq(1,vars_values_numb[vv] ), vv ] <- vars_info[[vv]] } wgt_ <- matrix( wgt, ncol=1 ) if ( is.null( group) ){ nogroup <- TRUE } else { nogroup <- FALSE } cat(paste0( "|", paste0( rep("*", FF), collapse=""), "|\n" )) if (nogroup){ group <- "one" group_values <- c(1) } # group_index <- which( varnames %in% group ) #@@@@*** group_index <- match( group, varnames ) #@@@@*** if ( is.null(group_values ) ){ t1 <- bifie_table( datalistM[, group_index ] ) group_values <- sort( as.numeric( paste( names(t1) ) )) } #@@@@*** res00 <- BIFIE_create_pseudogroup( datalistM, group, group_index, group_values ) res00$datalistM -> datalistM res00$group_index -> group_index res00$GR -> GR res00$group_values -> group_values res00$group -> group #@@@@*** #**************************************************************************# # Rcpp call res <- bifie_freq( datalistM, wgt_, as.matrix(wgtrep), vars_index -1, fayfac, Nimp, group_index - 1, group_values, as.matrix(vars_values), vars_values_numb ) GG <- res$outlist$GG dfr <- data.frame( "var"=rep( rep( vars, vars_values_numb ), each=GG ) ) VV <- length(vars) varval <- unlist( sapply( 1:VV, FUN=function(vv){ # vv <- 1 rep( vars_values[ 1:vars_values_numb[vv], vv ], GG ) }, simplify=FALSE ) ) dfr$varval <- varval if (! nogroup){ dfr$groupvar <- group dfr$groupval <- rep( rep( group_values, VV), rep(vars_values_numb,each=GG) ) } dfr$Ncases <- rowMeans( res$ncases1M ) dfr$Nweight <- res$perc1$pars # percentages dfr$perc <- res$perc2$pars dfr$perc_SE <- res$perc2$pars_se # dfr$perc_t <- round( dfr$perc / dfr$perc_SE, 2 ) dfr$perc_fmi <- res$perc2$pars_fmi dfr$perc_df <- rubin_calc_df( res$perc2, Nimp, indices=NULL) dfr$perc_VarMI <- res$perc2$pars_varBetween dfr$perc_VarRep <- res$perc2$pars_varWithin if (BIFIEobj$NMI ){ res1 <- BIFIE_NMI_inference_parameters( parsM=res$perc2M, parsrepM=res$perc2repM, fayfac=fayfac, RR=RR, Nimp=Nimp, Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE ) dfr$perc <- res1$pars dfr$perc_SE <- res1$pars_se # dfr$t <- round( dfr$perc / dfr$perc_SE, 2 ) dfr$perc_df <- res1$df # dfr$p <- stats::pt( - abs( dfr$t ), df=dfr$df) * 2 dfr$perc_fmi <- res1$pars_fmi dfr$perc_fmi_St1 <- res1$pars_fmiB dfr$perc_fmi_St2 <- res1$pars_fmiW dfr$perc_VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2 dfr$perc_VarMI_St1 <- res1$pars_varBetween1 dfr$perc_VarMI_St2 <- res1$pars_varBetween2 dfr$perc_VarRep <- res1$pars_varWithin } if ( ( ! se ) & ( RR==0 ) ){ dfr$perc_df <- dfr$perc_SE <- dfr$perc_fmi <- dfr$perc_VarMI <- dfr$perc_VarRep <- NULL } if ( Nimp==1 ){ dfr$perc_fmi <- dfr$perc_VarMI <- NULL } # create vector of parameter names nogroupL <- rep( nogroup, nrow(dfr) ) parnames <- paste0( dfr$var, "_", dfr$varval, ifelse( ! nogroupL, paste0( "_", dfr$groupvar, "_" ), "" ), ifelse( ! nogroupL, dfr$groupval, "" ) ) #@@@@*** # multiple groupings dfr <- BIFIE_table_multiple_groupings( dfr, res00 ) #@@@@*** #*************************** OUTPUT *************************************** s2 <- Sys.time() timediff <- c( s1, s2 ) #, paste(s2-s1 ) ) res1 <- list( "stat"=dfr, "output"=res, "timediff"=timediff, "N"=N, "Nimp"=Nimp, "RR"=RR, "fayfac"=fayfac, "NMI"=BIFIEobj$NMI, "Nimp_NMI"=BIFIEobj$Nimp_NMI, "parnames"=parnames, "CALL"=cl ) class(res1) <- "BIFIE.freq" return(res1) } ################################################################################### #################################################################################### # summary for BIFIE.freq function summary.BIFIE.freq <- function( object, digits=3, ... ) { BIFIE.summary(object) cat("Relative Frequencies \n") obji <- object$stat print_object_summary( obji, digits=digits ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.freq.R
## File Name: BIFIE.hist.R ## File Version: 0.287 #--- Histogram BIFIE.hist <- function( BIFIEobj, vars, breaks=NULL, group=NULL, group_values=NULL ) { s1 <- Sys.time() cl <- match.call() bifieobj <- BIFIEobj if (bifieobj$cdata){ varnames <- unique( c( vars, group, "one") ) bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames ) } FF <- Nimp <- bifieobj$Nimp N <- bifieobj$N dat1 <- bifieobj$dat1 wgt <- bifieobj$wgt wgtrep <- bifieobj$wgtrep varnames <- bifieobj$varnames RR <- bifieobj$RR datalistM <- bifieobj$datalistM fayfac <- bifieobj$fayfac vars <- vars[1] vars_index <- unlist( sapply( vars, FUN=function(vv){ which( varnames==vv ) } ) ) if ( is.null(breaks) ){ requireNamespace("grDevices") x <- dat1[, vars_index ] breaks <- pretty(x, n=grDevices::nclass.Sturges(x)) } RR <- 0 # vars values VV <- length(vars) wgt_ <- matrix( wgt, ncol=1 ) if ( is.null( group) ){ nogroup <- TRUE } else { nogroup <- FALSE } cat(paste0( "|", paste0( rep("*", FF), collapse=""), "|\n" )) if (nogroup){ group <- "one" group_values <- c(1) } #@@@@*** group_index <- match( group, varnames ) #@@@@*** if ( is.null(group_values ) ){ t1 <- bifie_table( datalistM[, group_index ] ) group_values <- sort( as.numeric( paste( names(t1) ) )) } #@@@@*** res00 <- BIFIE_create_pseudogroup( datalistM, group, group_index, group_values ) res00$datalistM -> datalistM res00$group_index -> group_index res00$GR -> GR res00$group_values -> group_values res00$group -> group #@@@@*** #--- Rcpp call res <- bifie_hist( datalist=datalistM, wgt1=wgt_, wgtrep=wgtrep, vars_index=vars_index-1, fayfac=fayfac, NI=Nimp, group_index1=group_index-1, group_values=group_values, breaks=breaks ) # create histogram objects GG <- length(group_values) histobj <- list(1:GG) BB <- res$BB for (gg in 1:GG){ h1 <- list( breaks=res$breaks, counts=res$sumwgt[ ( gg-1)*BB + 1:BB ], density=res$density_vec[ ( gg-1)*BB + 1:BB ], mids=res$mids ) h1$xname <- paste0( vars, "_", group, group_values[gg] ) if ( stats::sd( diff(res$mids) ) < .000001 ){ h1$equidist <- TRUE } else { h1$equidist <- FALSE } class(h1) <- "histogram" histobj[[gg]] <- h1 } names(histobj) <- paste0( vars, "_", group, group_values ) #*************************** OUTPUT *************************************** s2 <- Sys.time() timediff <- c( s1, s2 ) res1 <- list( histobj=histobj, output=res, timediff=timediff, N=N, Nimp=Nimp, RR=RR, fayfac=fayfac, NMI=BIFIEobj$NMI, Nimp_NMI=BIFIEobj$Nimp_NMI, GG=GG, CALL=cl) class(res1) <- "BIFIE.hist" return(res1) } #** summary for BIFIE.hist function summary.BIFIE.hist <- function( object, ... ) { BIFIE.summary(object) } #** plot function plot.BIFIE.hist <- function( x, ask=TRUE, ... ) { requireNamespace("graphics") res <- x GG <- res$GG for (gg in 1:GG){ graphics::plot(res$histobj[[gg]], ... ) graphics::par(ask=ask) } }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.hist.R
## File Name: BIFIE.lavaan.survey.R ## File Version: 0.642 BIFIE.lavaan.survey <- function(lavmodel, svyrepdes, lavaan_fun="sem", lavaan_survey_default=FALSE, fit.measures=NULL, ...) { CALL <- match.call() s1 <- Sys.time() NMI <- FALSE #* define fit statistics fit.measures <- BIFIE_lavaan_survey_define_fit_measures(fit.measures=fit.measures) #* handle design is_survey_design <- FALSE NMI <- FALSE Nimp_NMI <- NULL variables <- NULL if ( inherits(svyrepdes,"svyrep.design") ){ svyrepdes0 <- svyrepdes data0 <- as.data.frame(svyrepdes$variables) Nimp <- 1 fayfac <- svyrepdes0$scale lavaan_survey_default <- TRUE RR <- ncol(svyrepdes0$repweights) is_survey_design <- TRUE } if ( inherits(svyrepdes,"svyimputationList") ){ svyrepdes0 <- svyrepdes$designs[[1]] data0 <- as.data.frame(svyrepdes0$variables) Nimp <- length(svyrepdes$designs) fayfac <- svyrepdes0$scale RR <- ncol(svyrepdes0$repweights) is_survey_design <- TRUE } if ( inherits(svyrepdes,"BIFIEdata") ){ data0 <- svyrepdes$dat1 Nimp <- svyrepdes$Nimp fayfac <- svyrepdes$fayfac NMI <- svyrepdes$NMI if (NMI){ lavaan_survey_default <- FALSE } Nimp_NMI <- svyrepdes$Nimp_NMI svyrepdes$NMI <- FALSE RR <- svyrepdes$RR if (lavaan_survey_default){ svyrepdes <- BIFIEdata2svrepdesign(bifieobj=svyrepdes) } else { variables <- BIFIE_lavaan_survey_define_variables(lavmodel=lavmodel, svyrepdes=svyrepdes) datalist <- BIFIE.BIFIEdata2datalist(bifieobj=svyrepdes, varnames=variables) } } N <- nrow(data0) #- fit initial lavaan model lav_fun <- BIFIE_lavaan_survey_define_lavaan_function(lavaan_fun=lavaan_fun) lavmodel__ <- lavmodel args <- list(x="lavmodel__", value=lavmodel, pos=1) res <- do.call(what="assign", args=args) lavfit <- lav_fun(lavmodel__, data=data0, ...) class_lav <- class(lavfit) lavfit_coef <- BIFIE_lavaan_coef(object=lavfit) npar <- length(lavfit_coef) #* wrapper to lavaan.survey if (lavaan_survey_default){ res <- BIFIE_lavaan_survey_lavaan_survey(lavaan.fit=lavfit, survey.design=svyrepdes) fitstat <- BIFIE_lavaan_fitMeasures(object=res, fit.measures=fit.measures) results <- BIFIE_lavaan_coef(object=res) variances <- BIFIE_lavaan_vcov(object=res) } else { results <- list() variances <- list() fitstat <- list() partable <- list() svyrepdes0 <- NULL for (ii in 1:Nimp){ #-- loop over imputations svyrepdes0 <- BIFIE_lavaan_survey_extract_dataset(svyrepdes=svyrepdes, ii=ii, variables=variables, svyrepdes0=svyrepdes0, datalist=datalist) res <- BIFIE_lavaan_survey_lavaan_survey(lavaan.fit=lavfit, survey.design=svyrepdes0) results[[ii]] <- BIFIE_lavaan_coef(object=res) variances[[ii]] <- BIFIE_lavaan_vcov(object=res) fitstat[[ii]] <- BIFIE_lavaan_fitMeasures(object=res, fit.measures=fit.measures) partable[[ii]] <- res@ParTable } results <- bifie_extend_list_length2(x=results) variances <- bifie_extend_list_length2(x=variances) # combine fit statistics fitstat <- BIFIE_lavaan_survey_combine_fit_measures(fitstat=fitstat, Nimp=Nimp) if (! NMI){ # inference parameters for multiply imputed datasets inf_res <- BIFIE_mitools_MIcombine(results=results, variances=variances) } else { # nested multiply imputed datasets inf_res <- BIFIE_lavaan_survey_NMIcombine(results=results, variances=variances, Nimp_NMI=Nimp_NMI) } #--- include merged parameters res@Fit@x <- as.vector(inf_res$coefficients) vcov1 <- res@vcov vcov1$vcov <- as.matrix(inf_res$variance) res@vcov <- vcov1 # combine results for lavaan parameter table partable <- BIFIE_lavaan_survey_combine_partable(partable=partable, Nimp=Nimp, inf_res=inf_res) res@ParTable <- partable } #-- output s2 <- Sys.time() time <- c(s1, s2) res1 <- list(lavfit=res, fitstat=fitstat, CALL=CALL, time=time, NMI=NMI, fayfac=fayfac, N=N, Nimp=Nimp, Nimp_NMI=Nimp_NMI, RR=RR, results=results, variances=variances, partable=partable ) class(res1) <- "BIFIE.lavaan.survey" return(res1) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.lavaan.survey.R
## File Name: BIFIE.linreg.R ## File Version: 0.586 #--- Linear regression BIFIE.linreg <- function( BIFIEobj, dep=NULL, pre=NULL, formula=NULL, group=NULL, group_values=NULL, se=TRUE ) { s1 <- Sys.time() cl <- match.call() bifieobj <- BIFIEobj if (bifieobj$cdata){ formula_vars <- NULL if (! is.null(formula) ){ formula_vars <- all.vars( formula ) } varnames <- unique( c( dep, pre, group, "one", formula_vars ) ) bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames ) } FF <- Nimp <- bifieobj$Nimp N <- bifieobj$N dat1 <- bifieobj$dat1 wgt <- bifieobj$wgt wgtrep <- bifieobj$wgtrep varnames <- bifieobj$varnames RR <- bifieobj$RR datalistM <- bifieobj$datalistM fayfac <- bifieobj$fayfac #*** look for formula objects if ( ! is.null( formula) ){ cat("|*** Data Preparation ") utils::flush.console() bifieobj2 <- datalistM colnames(bifieobj2) <- varnames if ( is.null(group) ){ group <- "one" ; group_values <- 1 } bifieobj2 <- as.data.frame( bifieobj2 ) m1 <- stats::model.matrix(formula, data=bifieobj2) m0 <- m1 m1 <- matrix( NA, nrow=nrow(bifieobj2), ncol=ncol(m0) ) m1[ match( rownames(m0),rownames(bifieobj2) ), ] <- m0 colnames(m1) <- colnames(m0) #**** dep <- rownames( attr( stats::terms(formula),"factors") )[1] pre <- colnames( m1 ) datalistM <- as.matrix( cbind( bifieobj2[, dep ], m1, bifieobj2[,group] ) ) varnames <- c( dep, pre, group ) cat("\n") } if (RR==1){ RR <- 0 } if ( ! se ){ wgtrep <- matrix( wgt, ncol=1 ) RR <- 0 } dep_index <- unlist( sapply( dep, FUN=function(vv){ which( varnames==vv ) } ) ) pre_index <- unlist( sapply( pre, FUN=function(vv){ which( varnames==vv ) } ) ) # vars values VV <- length(pre) wgt_ <- matrix( wgt, ncol=1 ) if ( is.null( group) ){ nogroup <- TRUE } else { nogroup <- FALSE } cat(paste0( "|", paste0( rep("*", FF), collapse=""), "|\n" )) if (nogroup){ group <- "one" group_values <- c(1) } #@@@@*** group_index <- match( group, varnames ) #@@@@*** if ( is.null(group_values ) ){ t1 <- bifie_table( datalistM[, group_index ] ) group_values <- sort( as.numeric( paste( names(t1) ) )) } #@@@@*** res00 <- BIFIE_create_pseudogroup( datalistM, group, group_index, group_values ) res00$datalistM -> datalistM res00$group_index -> group_index res00$GR -> GR res00$group_values -> group_values res00$group -> group #@@@@*** #---- Rcpp call of linear regression function res <- bifiesurvey_rcpp_linreg( datalist=datalistM, wgt1=wgt_, wgtrep=as.matrix(wgtrep), dep_index=dep_index-1, pre_index=pre_index-1, fayfac=fayfac, NI=Nimp, group_index1=group_index-1, group_values=group_values ) GG <- length(group_values) # ZZ <- nrow(itempair_index ) ZZ <- 2*VV+2 p1 <- c( rep("b",VV), c("sigma", "R^2"), rep("beta",VV) ) p2 <- c( pre, c(NA,NA), pre ) dfr <- data.frame( "parameter"=rep(p1,GG) ) dfr$var <- rep(p2,GG) if (! nogroup){ dfr$groupvar <- group dfr$groupval <- rep( group_values, each=ZZ ) } dfr$Ncases <- rep( rowMeans( res$ncasesM ), each=ZZ ) dfr$Nweight <- rep( rowMeans( res$sumwgtM ), each=ZZ ) dfr <- create_summary_table( res_pars=res$regrcoefL, parsM=res$regrcoefM, parsrepM=res$regrcoefrepM, dfr=dfr, BIFIEobj=BIFIEobj ) dfr <- clean_summary_table( dfr=dfr, RR=RR, se=se, Nimp=Nimp ) # create vector of parameter names nogroupL <- rep( nogroup, nrow(dfr) ) parnames <- paste0( dfr$parameter, "_", dfr$var, ifelse( ! nogroupL, paste0( "_", dfr$groupvar, "_" ), "" ), ifelse( ! nogroupL, dfr$groupval, "" ) ) #@@@@*** # multiple groupings dfr <- BIFIE_table_multiple_groupings( dfr, res00 ) #@@@@*** #****** OUTPUT s2 <- Sys.time() timediff <- c( s1, s2 ) #, paste(s2-s1 ) ) res1 <- list( "stat"=dfr, "output"=res, "timediff"=timediff, "N"=N, "Nimp"=Nimp, "RR"=RR, "fayfac"=fayfac, "NMI"=BIFIEobj$NMI, "Nimp_NMI"=BIFIEobj$Nimp_NMI, "GG"=GG, "parnames"=parnames, "CALL"=cl) class(res1) <- "BIFIE.linreg" return(res1) } #--- summary for BIFIE.linreg function summary.BIFIE.linreg <- function( object, digits=4, ... ) { BIFIE.summary(object) cat("Statistical Inference for Linear Regression \n\n") obji <- object$stat print_object_summary( obji, digits=digits ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.linreg.R
## File Name: BIFIE.logistreg.R ## File Version: 0.435 #-- logistic regression BIFIE.logistreg <- function( BIFIEobj, dep=NULL, pre=NULL, formula=NULL, group=NULL, group_values=NULL, se=TRUE, eps=1E-8, maxiter=100) { s1 <- Sys.time() cl <- match.call() bifieobj <- BIFIEobj if (bifieobj$cdata){ formula_vars <- NULL if (! is.null(formula) ){ formula_vars <- all.vars( formula ) } varnames <- unique( c( dep, pre, group, "one", formula_vars ) ) bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames ) } FF <- Nimp <- bifieobj$Nimp N <- bifieobj$N dat1 <- bifieobj$dat1 wgt <- bifieobj$wgt wgtrep <- bifieobj$wgtrep varnames <- bifieobj$varnames RR <- bifieobj$RR datalistM <- bifieobj$datalistM fayfac <- bifieobj$fayfac #*** look for formula objects if ( ! is.null( formula) ){ cat("|*** Data Preparation ") utils::flush.console() bifieobj2 <- datalistM colnames(bifieobj2) <- varnames if ( is.null(group) ){ group <- "one" ; group_values <- 1 } bifieobj2 <- as.data.frame( bifieobj2 ) m1 <- stats::model.matrix(formula, data=bifieobj2) m0 <- m1 m1 <- matrix( NA, nrow=nrow(bifieobj2), ncol=ncol(m0) ) m1[ match( rownames(m0),rownames(bifieobj2) ), ] <- m0 colnames(m1) <- colnames(m0) dep <- rownames( attr( stats::terms(formula),"factors") )[1] pre <- colnames( m1 ) datalistM <- as.matrix( cbind( bifieobj2[, dep ], m1, bifieobj2[,group] ) ) varnames <- c( dep, pre, group ) cat("\n") } if (RR==1){ RR <- 0 } if ( ! se ){ wgtrep <- matrix( wgt, ncol=1 ) RR <- 0 } dep_index <- unlist( sapply( dep, FUN=function(vv){ which( varnames==vv ) } ) ) pre_index <- unlist( sapply( pre, FUN=function(vv){ which( varnames==vv ) } ) ) # vars values VV <- length(pre) wgt_ <- matrix( wgt, ncol=1 ) if ( is.null( group) ){ nogroup <- TRUE } else { nogroup <- FALSE } cat(paste0( "|", paste0( rep("*", FF), collapse=""), "|\n" )) if (nogroup){ group <- "one" group_values <- c(1) } #@@@@*** group_index <- match( group, varnames ) #@@@@*** if ( is.null(group_values) ){ t1 <- bifie_table( datalistM[, group_index ] ) group_values <- sort( as.numeric( paste( names(t1) ) )) } #@@@@*** res00 <- BIFIE_create_pseudogroup( datalistM, group, group_index, group_values ) res00$datalistM -> datalistM res00$group_index -> group_index res00$GR -> GR res00$group_values -> group_values res00$group -> group #@@@@*** #--- Rcpp call to logistic regression res <- bifiesurvey_rcpp_logistreg( datalist=datalistM, wgt1=wgt_, wgtrep=as.matrix(wgtrep), dep_index=dep_index-1, pre_index=pre_index-1, fayfac=fayfac, NI=Nimp, group_index1=group_index-1, group_values=group_values, eps=eps, maxiter=maxiter ) GG <- length(group_values) ZZ <- VV+1 p1 <- c( rep("b",VV), "R2" ) p2 <- c( pre, "NA" ) dfr <- data.frame( "parameter"=rep(p1,GG) ) dfr$var <- rep(p2,GG) if (! nogroup){ dfr$groupvar <- group dfr$groupval <- rep( group_values, each=ZZ ) } dfr$Ncases <- rep( rowMeans( res$ncasesM ), each=ZZ ) dfr$Nweight <- rep( rowMeans( res$sumwgtM ), each=ZZ ) dfr <- create_summary_table( res_pars=res$regrcoefL, parsM=res$regrcoefM, parsrepM=res$regrcoefrepM, dfr=dfr, BIFIEobj=BIFIEobj ) dfr <- clean_summary_table( dfr=dfr, RR=RR, se=se, Nimp=Nimp ) # create vector of parameter names nogroupL <- rep( nogroup, nrow(dfr) ) parnames <- paste0( dfr$parameter, "_", dfr$var, ifelse( ! nogroupL, paste0( "_", dfr$groupvar, "_" ), "" ), ifelse( ! nogroupL, dfr$groupval, "" ) ) #@@@@*** # multiple groupings dfr <- BIFIE_table_multiple_groupings( dfr, res00 ) #@@@@*** #*************************** OUTPUT *************************************** s2 <- Sys.time() timediff <- c(s1, s2) res1 <- list( stat=dfr, output=res, timediff=timediff, N=N, Nimp=Nimp, RR=RR, fayfac=fayfac, NMI=BIFIEobj$NMI, Nimp_NMI=BIFIEobj$Nimp_NMI, GG=GG, parnames=parnames, CALL=cl) class(res1) <- "BIFIE.logistreg" return(res1) } # summary for BIFIE.linreg function summary.BIFIE.logistreg <- function( object, digits=4, ... ) { BIFIE.summary(object) cat("Statistical Inference for Logistic Regression \n") obji <- object$stat print_object_summary( obji, digits=digits ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.logistreg.R
## File Name: BIFIE.mva.R ## File Version: 0.331 ####################################################################### # Missing value analysis BIFIE.mva <- function( BIFIEobj, missvars, covariates=NULL, se=TRUE ) { s1 <- Sys.time() bifieobj <- BIFIEobj cl <- match.call() if ( ! bifieobj$cdata ){ varnames <- unique( c(missvars, covariates ) ) bifieobj <- BIFIE.BIFIEdata2BIFIEcdata( bifieobj, varnames ) } if ( is.null(covariates) ){ covariates <- "one" } if ( is.null(covariates) ){ N <- bifieobj$N transform.formula <- paste0( "~ 0 + I ( stats::runif( ", N, ", 0, 1E-10) ) " ) bifieobj <- BIFIE.data.transform( bifieobj, transform.formula, "_null" ) covariates <- bifieobj$varnames.added se <- FALSE } FF <- Nimp <- bifieobj$Nimp N <- bifieobj$N dat1 <- bifieobj$dat1 wgt <- bifieobj$wgt wgtrep <- bifieobj$wgtrep varnames <- bifieobj$varnames RR <- bifieobj$RR datalistM <- bifieobj$datalistM fayfac <- bifieobj$fayfac # start with a compact BIFIEdata object varnames <- unique( c(missvars, covariates ) ) # assume that bifieobj is already in cdata format # define selected response indicators missvars_index <- match( missvars, colnames(bifieobj$dat1) ) datalistM_ind_sel <- bifieobj$datalistM_ind[, missvars_index, drop=FALSE ] respvars <- paste0("resp_", missvars ) colnames(datalistM_ind_sel) <- respvars VVadd <- length(respvars ) varnames1 <- c( varnames, respvars ) bifieobj$datalistM_ind <- cbind( bifieobj$datalistM_ind, datalistM_ind_sel ) bifieobj$dat1 <- cbind( bifieobj$dat1, datalistM_ind_sel ) bifieobj$Nvars <- bifieobj$Nvars + VVadd bifieobj$varnames <- c( bifieobj$varnames, respvars ) # select dataset bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames1 ) RR <- bifieobj$RR do_test <- TRUE if (RR < 2 ){ wgtrep <- bifieobj$wgtrep do_test <- FALSE wgtrep <- cbind( wgtrep, wgtrep + stats::runif( nrow(wgtrep), 0, 1E-4) ) bifieobj$wgtrep <- wgtrep bifieobj$RR <- 2 } if ( is.null( covariates) ){ do_test <- FALSE se <- FALSE covariates <- "one" } if (RR==1){ RR <- 0 } if ( ! se ){ N11 <- length(wgt) wgtrep <- matrix( NA, nrow=N11, ncol=2 ) wgtrep[,1] <-wgt eps <- 1E-8 wgtrep[,2] <- wgt + stats::runif(N11, -eps,eps) RR <- 0 bifieobj$wgtrep <- wgtrep bifieobj$RR <- ncol(wgtrep) } #***** # collect results VV <- length(respvars) CVV <- length(covariates) res_list <- list(1:VV) dfr <- NULL RR <- bifieobj$RR for (vv in 1:VV){ rvv <- respvars[vv] res.vv <- as.list(1:2) names(res.vv) <- c("stat", "dstat") res <- BIFIE.univar( bifieobj, vars=covariates, group=rvv, group_values=0:1 ) res.vv$stat <- res$stat res1 <- BIFIE.univar.test( res, wald_test=FALSE ) res.vv$dstat <- res1$stat.dstat res_list[[vv]] <- res.vv # collect results dfr.vv <- data.frame( "respvar"=rep(rvv,CVV) ) dfr.vv$missprop <- res$stat$Nweight[1] / ( res$stat$Nweight[1] + res$stat$Nweight[2] ) dfr.vv$covariate <- covariates if ( do_test ){ dfr.vv$d <- res1$stat.dstat$d dfr.vv$d_SE <- res1$stat.dstat$d_SE dfr.vv$t <- res1$stat.dstat$t dfr.vv$p <- res1$stat.dstat$p } dfr.vv$M_resp <- res$stat$M[ seq(2,2*CVV, 2 ) ] dfr.vv$M_miss <- res$stat$M[ seq(1,2*CVV, 2 ) ] dfr.vv$SD_resp <- res$stat$SD[ seq(2,2*CVV, 2 ) ] dfr.vv$SD_miss <- res$stat$SD[ seq(1,2*CVV, 2 ) ] dfr <- rbind( dfr, dfr.vv ) } if ( covariates[1]=="_null" ){ se <- FALSE } if ( ! do_test ){ RR <- 0 } if ( ( ! se ) | ( RR==0 ) ){ dfr$t <- dfr$p <- dfr$d_SE <- NULL } if ( covariates[1] %in% c("_null","one") ){ dfr$covariate <- dfr$d <- dfr$M_resp <- NULL dfr$M_miss <- dfr$SD_resp <- dfr$SD_miss <- NULL } #***** OUTPUT s2 <- Sys.time() timediff <- c( s1, s2 ) #, paste(s2-s1 ) ) res1 <- list( "stat.mva"=dfr, "res_list"=res_list, "timediff"=timediff, "N"=N, "Nimp"=Nimp, "RR"=RR, "fayfac"=fayfac, "NMI"=BIFIEobj$NMI, "Nimp_NMI"=BIFIEobj$Nimp_NMI, "CALL"=cl ) class(res1) <- "BIFIE.mva" return(res1) } ################################################################################### #################################################################################### # summary for BIFIE.mva function summary.BIFIE.mva <- function( object, digits=4, ... ) { BIFIE.summary(object) cat("Missing Value Analysis \n") obji <- object$stat.mva print_object_summary( obji, digits=digits ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.mva.R
## File Name: BIFIE.pathmodel.R ## File Version: 1.321 #--- path model BIFIE.pathmodel <- function( BIFIEobj, lavaan.model, reliability=NULL, group=NULL, group_values=NULL, se=TRUE ) { requireNamespace("TAM") s1 <- Sys.time() cl <- match.call() bifieobj <- BIFIEobj dat <- bifieobj$dat1 # lavaanify syntax lavpartable <- TAM::lavaanify.IRT( lavmodel=lavaan.model, data=dat )$lavpartable vars <- colnames(dat) lav1 <- lavpartable[ lavpartable$op %in% c("=~", "~"), ] lav.vars <- unique( c( lav1$lhs, lav1$rhs ) ) NV <- length(lav.vars) # observed variables obs.vars <- intersect( vars, lav.vars ) # latent variables lat.vars <- setdiff( lav.vars, obs.vars ) # create model matrix for latent variables NLV <- length(lat.vars) L <- matrix( 0, nrow=NLV, ncol=NV ) rownames(L) <- lat.vars colnames(L) <- lav.vars if (NLV>0){ for (vv in 1:NLV){ lav.vv <- lav1[ ( lav1$op=="=~" ) & ( lav1$lhs==lat.vars[vv] ), ] L[ vv, lav.vv$rhs ] <- ifelse( is.na(lav.vv$ustart), 1, lav.vv$ustart ) } } L_row_index <- match( rownames(L), lav.vars ) # model matrix for regressions lav2 <- lav1[ lav1$op=="~", ] dep <- unique( lav2$lhs ) NR <- length(dep) R <- matrix( 0, nrow=NR, ncol=NV ) rownames(R) <- dep colnames(R) <- lav.vars for (vv in 1:NR){ lav.vv <- lav1[ ( lav1$op=="~" ) & ( lav1$lhs==dep[vv] ), "rhs"] R[ vv, lav.vv ] <- 1 } R_row_index <- match( rownames(R), lav.vars ) # matrix B with regression coefficients B <- matrix(0,nrow=NV, ncol=NV) rownames(B) <- colnames(B) <- lav.vars for (vv in 1:NR){ B[ rownames(R)[vv], ] <- R[vv, ] } # error variances and covariances E <- matrix( 0, nrow=NV, ncol=NV ) rownames(E) <- colnames(E) <- lav.vars lav2 <- lavpartable[ lavpartable$op=="~~", ] lav2 <- stats::na.omit( lav2 ) NG <- nrow(lav2) if (NG > 0){ for ( gg in 1:NG){ E[ lav2$lhs[gg], lav2$rhs[gg] ] <- lav2$ustart[gg] } } # compute matrix power for pathe coefficients ind <- 0 Bpow <- B Bpowsum <- Bpow for (kk in 1:100){ Bpow <- Bpow %*% B Bpowsum <- Bpowsum + Bpow ind <- ind + 1 if ( sum( Bpow ) < 1E-10 ){ break } } maxpow <- ind ind.vars <- colnames(B)[ which( colSums( B ) > 0 ) ] M1 <- matrix( ind.vars, ncol=1 ) for (oo in 1:maxpow){ NM1 <- nrow(M1) M2 <- NULL for (mm in 1:NM1){ v1 <- rownames(B)[ B[, colnames(B)==paste(M1[ mm, oo ]) ] > 0 ] if (oo>1 ){ v1 <- c( "", v1 ) } M1mm <- t(M1[ mm, 1:oo ]) HV <- length(v1) H1 <- matrix( "", nrow=HV, ncol=oo+1 ) H1[, oo+1 ] <- v1 H1[, 1:oo ] <- matrix( M1mm, nrow=HV, ncol=oo, byrow=TRUE ) M2 <- rbind(M2, H1 ) } M1 <- M2 } M1_index <- matrix( 0, nrow(M1), ncol(M1) ) for (mm in 1:ncol(M1) ){ M1_index[, mm ] <- match( M1[,mm], lav.vars ) } # compute total effects tot_paths <- t( apply( M1, 1, FUN=function(ll){ vv <- ll[ ll !="" ] N1 <- length(vv) c( paste0( vv[1], "->", vv[N1] ), N1 ) } ) ) tot_paths <- as.data.frame( tot_paths ) tot_paths2 <- tot_paths[ as.numeric(paste(tot_paths[,2])) > 2, ] paths <- unique( paste(tot_paths2[,1 ] ) ) tot_paths$pathindex <- match( paste(tot_paths[,1]), paths ) + nrow(M1) if ( mean( is.na(tot_paths$pathindex ) ) < 1 ){ NP0 <- max( tot_paths$pathindex, na.rm=TRUE) } else { NP0 <- nrow(M1) } coeff_index <- cbind( tot_paths$pathindex, M1_index ) NV <- ncol(Bpowsum) indices <- which( Bpowsum > 0 ) if (bifieobj$cdata){ varnames <- unique( c( obs.vars, group, "one" ) ) bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames ) } FF <- Nimp <- bifieobj$Nimp N <- bifieobj$N dat1 <- bifieobj$dat1 wgt <- bifieobj$wgt wgtrep <- bifieobj$wgtrep varnames <- bifieobj$varnames RR <- bifieobj$RR datalistM <- bifieobj$datalistM fayfac <- bifieobj$fayfac vars_index <- match( lav.vars, colnames(dat1) ) # unreliability unreliability <- rep(0, NV) names(unreliability) <- lav.vars unreliability[ match( names(reliability), lav.vars) ] <- 1 - reliability NL <- nrow(L) if (NL==0 ){ L <- matrix( 0, nrow=1, ncol=NV) colnames(L) <- lav.vars } tot_paths <- data.frame( tot_paths, "pathindex2"=tot_paths$pathindex ) tot_paths$pathindex2 <- match( tot_paths$pathindex2, stats::na.omit(unique( tot_paths$pathindex2 )) ) + NP0 tot_paths$pathindex2[ as.numeric(paste(tot_paths[,2])) <=2 ] <- NA if ( mean( is.na(tot_paths$pathindex2 ) ) < 1 ){ NP0 <- max( tot_paths$pathindex2, na.rm=TRUE) } else { NP0 <- nrow(M1) } coeff_index1 <- cbind( coeff_index[,1], tot_paths$pathindex2, coeff_index[,-1] ) wgt_ <- matrix( wgt, ncol=1 ) if ( is.null( group) ){ nogroup <- TRUE } else { nogroup <- FALSE } cat(paste0( "|", paste0( rep("*", FF), collapse=""), "|\n" )) if (nogroup){ group <- "one" group_values <- c(1) } #@@@@*** group_index <- match( group, varnames ) #@@@@*** if ( is.null(group_values ) ){ t1 <- bifie_table( datalistM[, group_index ] ) group_values <- sort( as.numeric( paste( names(t1) ) )) } #@@@@*** res00 <- BIFIE_create_pseudogroup( datalistM, group, group_index, group_values ) res00$datalistM -> datalistM res00$group_index -> group_index res00$GR -> GR res00$group_values -> group_values res00$group -> group #@@@@*** if (RR==1){ RR <- 0 } if ( ! se ){ wgtrep <- matrix( wgt, ncol=1 ) RR <- 0 } #**** estimate path model res <- bifiesurvey_rcpp_pathmodel( datalist=datalistM, wgt1=wgt_, wgtrep=wgtrep, vars_index=vars_index-1, fayfac=fayfac, NI=Nimp, group_index1=group_index-1, group_values=group_values, L=L, L_row_index=L_row_index-1, NL=NL, E=E, R=R, R_row_index=R_row_index-1, coeff_index=coeff_index1, NP0=NP0, unreliability=unreliability ) GG <- length(group_values) #*** create parameter labels p0 <- paste(M1[,1]) for (vv in seq(2,ncol(M1) ) ){ p0 <- ifelse( M1[,vv] !="", paste0( p0, "->", M1[,vv] ), p0 ) } p1 <- ifelse( tot_paths[,2]=="2", paste0(M1[,2], "~", M1[,1] ), p0 ) p2 <- unique( paste(tot_paths[ ! is.na( tot_paths$pathindex ), 1 ]) ) p2 <- gsub( "->", "-+>", p2 ) p1 <- c( p1, p2 ) p2 <- unique( paste(tot_paths[ ! is.na( tot_paths$pathindex2 ), 1 ]) ) p2 <- gsub( "->", "-~>", p2 ) p1 <- c( p1, p2 ) p1 <- c( p1, paste0(p1, "_stand") ) p1 <- c( p1, paste0( rownames(R), "_R2" ) ) p1 <- c( p1, paste0( rownames(R), "_ResidVar" ) ) dfr <- data.frame( "parameter"=rep(p1,GG) ) dfr$type <- "" ZZ <- length(p1) if (! nogroup){ dfr$groupvar <- group dfr$groupval <- rep( group_values, each=ZZ ) } dfr$Ncases <- rep( res$ncases[,1], each=ZZ ) dfr$Nweight <- rep( res$sumwgt[,1], each=ZZ ) dfr <- create_summary_table( res_pars=res$parsL, parsM=res$parsM, parsrepM=res$parsrepM, dfr=dfr, BIFIEobj=BIFIEobj ) dfr <- clean_summary_table( dfr=dfr, RR=RR, se=se, Nimp=Nimp ) dfr[ grep( "_R2", paste(dfr$parameter) ), "type"] <- "RSquared" dfr[ grep( "_ResidVar", paste(dfr$parameter) ), "type"] <- "ResidVar" dfr[ grep( "~", paste(dfr$parameter) ), "type"] <- "RegrCoeff" ind <- grep( "->", paste(dfr$parameter) ) if ( length(ind) > 0 ){ dfr[ ind, "type"] <- "PathCoeff" } ind <- grep( "-+>", paste(dfr$parameter), fixed=TRUE ) if ( length(ind) > 0 ){ dfr[ ind, "type"] <- "TotalEff" } ind <- grep( "-~>", paste(dfr$parameter), fixed=TRUE ) if ( length(ind) > 0 ){ dfr[ ind, "type"] <- "IndEff" } # create vector of parameter names nogroupL <- rep( nogroup, nrow(dfr) ) parnames <- paste0( dfr$parameter, "_", ifelse( ! nogroupL, paste0( "_", dfr$groupvar, "_" ), "" ), ifelse( ! nogroupL, dfr$groupval, "" ) ) #@@@@*** # multiple groupings dfr <- BIFIE_table_multiple_groupings( dfr, res00 ) #@@@@*** #*************************** OUTPUT *************************************** s2 <- Sys.time() timediff <- c( s1, s2 ) res1 <- list( stat=dfr, output=res, timediff=timediff, N=N, Nimp=Nimp, RR=RR, fayfac=fayfac, NMI=BIFIEobj$NMI, Nimp_NMI=BIFIEobj$Nimp_NMI, GG=GG, parnames=parnames, lavaan.model=lavaan.model, reliability=reliability, CALL=cl) class(res1) <- "BIFIE.pathmodel" return(res1) } #-- summary for BIFIE.pathmodel function summary.BIFIE.pathmodel <- function( object, digits=4, ... ) { BIFIE.summary(object) #- model specification BIFIE_pathmodel_summary_print_model_specification(object=object, digits=digits) # estimated parameters cat("Statistical Inference for Path Model \n\n") obji <- object$stat print_object_summary( obji, digits=digits ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.pathmodel.R
## File Name: BIFIE.progressbar.R ## File Version: 0.09 #--- Computation of a progress bar BIFIE.progressbar <- function( ops, prblen ) { prb <- prblen vec <- seq(1, ops) vec[ ops ] <- ops - 0.1 NR <- ops / prb m1 <- vec %% NR pr1 <- 1 * ( diff(m1) < 0 ) pr1 <- c( 1, pr1 ) # returns a vector of zeroes and one indicating # iteration of a move in th progress bar return(pr1) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.progressbar.R
## File Name: BIFIE.summary.R ## File Version: 0.231 BIFIE.summary <- function(object, print.time=TRUE) { cat("------------------------------------------------------------\n") BIFIE_print_package_description(pack="BIFIEsurvey") if ( inherits(object,"BIFIE.lavaan.survey") ){ BIFIE_print_package_description(pack="lavaan") BIFIE_print_package_description(pack="lavaan.survey") } #* function cat( paste0("\nFunction '", class(object) ) ) if ( inherits(object,"BIFIE.waldtest") ){ cat( paste0( "' for BIFIE method '", object$class.BIFIE.method ) ) } cat("'" ) cat("\n\nCall:\n", paste(deparse(object$CALL), sep="\n", collapse="\n"), "\n\n", sep="") cat( "Date of Analysis:", paste( object$time[1] ), "\n" ) if (print.time){ cat("Computation time:", print(object$time[2] - object$time[1] ), "\n\n") } else { cat("\n") } if ( ! object$NMI ){ cat("Multiply imputed dataset\n\n") } if ( object$NMI ){ cat("Nested multiply imputed dataset\n\n") } cat( "Number of persons", "=", object$N, "\n" ) # cat( "Number of imputed datasets=", object$Nimp, "\n" ) if ( ! object$NMI){ cat( "Number of imputed datasets", "=", object$Nimp, "\n" ) } if ( object$NMI){ cat( "Number of imputed between-nest datasets", "=", object$Nimp_NMI[1], "\n" ) cat( "Number of imputed within-nest datasets", "=", object$Nimp_NMI[2], "\n" ) } cat( "Number of Jackknife zones per dataset", "=", object$RR, "\n" ) cat( "Fay factor", "=", round( object$fayfac, 5 ), "\n\n" ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.summary.R
## File Name: BIFIE.survey.R ## File Version: 0.228 BIFIE.survey <- function(svyrepdes, survey.function, ...) { CALL <- match.call() s1 <- Sys.time() NMI <- FALSE Nimp_NMI <- NULL svrepdes <- svyrepdes if ( inherits(svyrepdes,"BIFIEdata") ){ data0 <- svyrepdes$dat1 N <- nrow(data0) Nimp <- svyrepdes$Nimp fayfac <- svyrepdes$fayfac NMI <- svyrepdes$NMI Nimp_NMI <- svyrepdes$Nimp_NMI svyrepdes$NMI <- FALSE RR <- svyrepdes$RR wgt <- svyrepdes$wgt wgtrep <- svyrepdes$wgtrep variables <- NULL args <- list(...) for (vv in c("formula", "x")){ if ( vv %in% names(args)){ args_vv <- args[[vv]] if (inherits(args_vv,"formula") ){ variables <- all.vars(args_vv) } } } datalist <- BIFIE.BIFIEdata2datalist( bifieobj=svyrepdes, varnames=variables) } if ( inherits(svyrepdes,"svyimputationList") ){ res <- svrepdesign_extract_data(svrepdesign=svrepdes$designs[[1]]) N <- res$N RR <- res$RR fayfac <- res$fayfac Nimp <- length(svrepdes$designs) } #* loop over imputations if ( inherits(svyrepdes, c("BIFIEdata", "svyimputationList") ) ){ res <- list() svyrep_ii <- NULL for (ii in 1:Nimp){ if ( inherits(svyrepdes,"BIFIEdata") ){ svyrep_ii <- BIFIE_lavaan_survey_extract_dataset( svyrepdes=svyrepdes, ii=ii, variables=NULL, svyrepdes0=svyrep_ii, datalist=datalist) } if ( inherits(svyrepdes,"svyimputationList") ){ svyrep_ii <- svrepdes$designs[[ii]] } args <- list(...) args$design <- svyrep_ii res[[ii]] <- do.call( what=survey.function, args=args) } results <- res results <- bifie_extend_list_length2(x=results) } if (! NMI){ #*** statistical inference using mitools package stat <- BIFIE_mitools_MIcombine(results=results) } else { #*** nested multiply imputed dataset stat <- BIFIE_NMIcombine_results(results=results, Nimp_NMI=Nimp_NMI, package="stats") } #-- output s2 <- Sys.time() time <- c(s1, s2) res1 <- list(stat=stat, CALL=CALL, time=time, NMI=NMI, fayfac=fayfac, N=N, Nimp=Nimp, RR=RR, results=results, Nimp_NMI=Nimp_NMI) class(res1) <- "BIFIE.survey" return(res1) } #-- summary function summary.BIFIE.survey <- function( object, digits=3, ... ) { BIFIE.summary(object) cat("Estimated Parameters\n") summary(object$stat, digits=digits) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.survey.R
## File Name: BIFIE.twolevelreg.R ## File Version: 0.583 #--- BIFIE.twolevelreg BIFIE.twolevelreg <- function( BIFIEobj, dep, formula.fixed, formula.random, idcluster, wgtlevel2=NULL, wgtlevel1=NULL, group=NULL, group_values=NULL, recov_constraint=NULL, se=TRUE, globconv=1E-6, maxiter=1000) { #**** s1 <- Sys.time() cl <- match.call() bifieobj <- BIFIEobj #******** # extract variables if (bifieobj$cdata){ formula_vars <- c( all.vars( formula.fixed ), all.vars( formula.random ) ) varnames <- unique( c( dep, group, "one", idcluster, formula_vars, wgtlevel1, wgtlevel2 ) ) bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames ) } # extract values FF <- Nimp <- bifieobj$Nimp N <- bifieobj$N dat1 <- bifieobj$dat1 wgt <- bifieobj$wgt wgtrep <- bifieobj$wgtrep varnames <- bifieobj$varnames RR <- bifieobj$RR datalistM <- bifieobj$datalistM fayfac <- bifieobj$fayfac # create datalist datalistM <- as.data.frame( datalistM ) colnames(datalistM) <- bifieobj$varnames bifieobj2 <- datalistM #*********** X predictor matrix m1 <- stats::model.matrix( formula.fixed, datalistM ) m0 <- m1 xnames <- colnames(m1) m1 <- matrix( NA, nrow=nrow(bifieobj2), ncol=ncol(m0) ) m1[ match( rownames(m0),rownames(bifieobj2) ), ] <- m0 colnames(m1) <- colnames(m0) X_list <- as.matrix( m1 ) #************* Z predictor matrix m1 <- stats::model.matrix( formula.random, datalistM ) m0 <- m1 znames <- colnames(m1) m1 <- matrix( NA, nrow=nrow(bifieobj2), ncol=ncol(m0) ) m1[ match( rownames(m0),rownames(bifieobj2) ), ] <- m0 colnames(m1) <- colnames(m0) Z_list <- as.matrix( m1 ) #*************** y outcome values y_list <- as.vector( bifieobj2[, dep ] ) globconv <- stats::var(y_list, na.rm=TRUE) * globconv #*************** collect cluster identifiers dat1 <- bifieobj$dat1 idcluster0 <- idcluster clusters <- unique( dat1[, idcluster0 ] ) idcluster <- match( dat1[, idcluster0 ], clusters ) #************ weights eps <- max(wgt)*1E-10 wgttot <- wgt + eps wgtlev2_full <- dat1[, wgtlevel2 ] wgtlev2 <- stats::aggregate( wgtlev2_full, list(idcluster), mean )[,2] eps <- 1E-10 * max( wgtlev2) wgtlev2 <- wgtlev2 + eps if ( is.null(wgtlevel1) ){ wgtlev1 <- wgttot / ( wgtlev2_full + eps ) } else { wgtlev1 <- dat1[, wgtlevel1 ] } wgtrep1 <- wgtrep #****** groups if ( is.null( group) ){ nogroup <- TRUE } else { nogroup <- FALSE } if (nogroup){ group <- "one" group_values <- c(1) } # group vector group_vec <- dat1[, group ] if ( is.null(group_values ) ){ t1 <- bifie_table( datalistM[, group ] ) group_values <- sort( as.numeric( paste( names(t1) ) )) } # use groups group_vec <- match( group_vec, group_values ) group_values0 <- group_values group_values <- seq( 1, length( unique( group_values) ) ) group_vec <- as.numeric( group_vec) group_values <- as.numeric( group_values) # constraints for random effects covariance # recov_constraint is_rcov_constraint <- 1 NRC <- nrow(recov_constraint) if ( is.null(recov_constraint)){ recov_constraint <- matrix( 0, nrow=1,ncol=3) is_rcov_constraint <- 0 NRC <- 0 } recov_constraint[,1:2] <- recov_constraint[,1:2] - 1 if ( ! se ){ wgtrep1 <- matrix( wgt, ncol=1 ) RR <- 0 } #**** display stopping message if clustering variable is not ordered ordered_clusters <- sum( diff(idcluster) < 0 )==0 if ( ! ordered_clusters){ cat("Cluster identifiers must be ordered ") cat("for applying 'BIFIE.twolevelreg'!\n") stop() } #*********** estimate multilevel model res <- bifie_mla2( X_list, Z_list, y_list, wgttot, wgtlev2, wgtlev1, globconv, maxiter, group_vec - 1, group_values - 1, idcluster - 1, wgtrep1, Nimp, fayfac, recov_constraint, is_rcov_constraint ) # dimensions NX <- ncol(X_list) NZ <- ncol(Z_list) NC <- length(clusters) GG <- length(group_values) NP <- res$NP parnames <- paste0( "beta_", xnames ) for (ii in 1:NZ){ for (jj in 1:NZ){ if (ii==jj){ v1 <- paste0( "Var_", znames[ii] ) } if (ii<jj){ v1 <- paste0( "Cov_", znames[ii], znames[jj] ) } if (ii>jj){ v1 <- paste0( "Cor_", znames[ii], znames[jj] ) } parnames <- c( parnames, v1 ) } } parnames <- c( parnames, "ResidVar") parnames <- c( parnames, "ExplVar_Lev2_Fixed" ) parnames <- c( parnames, "ExplVar_Lev2_Random" ) parnames <- c( parnames, "ResidVar_Lev2" ) parnames <- c( parnames, "ExplVar_Lev1_Fixed" ) parnames <- c( parnames, "ExplVar_Lev1_Random" ) parnames <- c( parnames, "ResidVar_Lev1" ) parnames <- c( parnames, "Var_Total" ) parnames <- c( parnames, "R2_Lev2" ) parnames <- c( parnames, "R2_Lev1" ) parnames <- c( parnames, "R2_Total" ) parnames <- c( parnames, "ICC_Uncond" ) parnames <- c( parnames, "ICC_UncondWB" ) parnames <- c( parnames, "ICC_Cond" ) #******************* # parameter table p1 <- parnames dfr <- data.frame( "parameter"=rep(p1,GG)) ZZ <- NP if (! nogroup){ dfr$groupvar <- group dfr$groupval <- rep( group_values0, each=ZZ ) } dfr <- create_summary_table( res_pars=res$parsL, parsM=res$parsM, parsrepM=res$parsrepM, dfr=dfr, BIFIEobj=BIFIEobj ) dfr <- clean_summary_table( dfr=dfr, RR=RR, se=se, Nimp=Nimp ) # create vector of parameter names nogroupL <- rep( nogroup, nrow(dfr) ) parnames <- paste0( dfr$parameter, ifelse( ! nogroupL, paste0( "_", dfr$groupvar, "_" ), "" ), ifelse( ! nogroupL, dfr$groupval, "" ) ) rownames(dfr) <- parnames #*************************** # inference with mitools fvcovM <- res$fvcov vcov0 <- matrix(0, nrow=GG*NX, ncol=GG*NX) vcov.list <- as.list(1:Nimp) for (ii in 1:Nimp){ vcov1 <- vcov0 for (gg in 1:GG){ ind1 <- 1:NX + (gg-1)*NX vcov1[ ind1, ind1 ] <- fvcovM[ ind1, 1:NX + (ii-1)*NX ] } vcov.list[[ii]] <- vcov1 } parsM <- res$parsM NP <- nrow(parsM) / GG parsM0 <- matrix( 0, nrow=NX*GG, ncol=Nimp) parnames_sel <- NULL for (gg in 1:GG){ parsM0[ 1:NX + (gg-1)*NX, ] <- parsM[ 1:NX + (gg-1)*NP, ] parnames_sel <- c( parnames_sel, parnames[ 1:NX + (gg-1)*NP ] ) } parsM <- parsM0 pars.list <- as.list(1:Nimp) for (ii in 1:Nimp){ pars.list[[ii]] <- parsM[,ii] names(pars.list[[ii]] ) <- parnames_sel } if (Nimp==1){ pars.list <- list( pars.list[[1]], pars.list[[1]] ) vcov.list <- list( vcov.list[[1]], vcov.list[[1]] ) } micombs <- BIFIE_mitools_MIcombine( results=pars.list, variances=vcov.list ) if ( ! se ){ dfr$SE <- dfr$fmi <- dfr$VarRep <- NA v1 <- diag( micombs$variance ) dfr[ parnames_sel, "SE" ] <- sqrt( v1 ) dfr$t <- round( dfr$est / dfr$SE, 2 ) dfr$p <- stats::pnorm( - abs( dfr$t ) ) * 2 dfr[ parnames_sel, "fmi" ] <- micombs$missinfo dfr$VarMI <- dfr$fmi * dfr$SE^2 dfr$VarRep <- (1-dfr$fmi) * dfr$SE^2 } #**** variance decompositions vardecomp <- list( Sigma_W_yXM=res$Sigma_W_yXM, Sigma_B_yXM=res$Sigma_B_yXM, Sigma_W_yZM=res$Sigma_W_yZM, Sigma_B_yZM=res$Sigma_B_yZM, totmean_yXM=res$totmean_yXM, totmean_yZM=res$totmean_yZM ) #*************************** OUTPUT *************************************** s2 <- Sys.time() timediff <- c( s1, s2 ) res1 <- list( stat=dfr, output=res, timediff=timediff, Npers=res$Npers, Nclusters=res$Nclusters, N=N, Nimp=Nimp, RR=RR, fayfac=fayfac, NMI=BIFIEobj$NMI, Nimp_NMI=BIFIEobj$Nimp_NMI, GG=GG, micombs=micombs, se=se, parnames=parnames, parnames_sel=parnames_sel, vardecomp=vardecomp, idcluster_table=res$idcluster_table, CALL=cl) class(res1) <- "BIFIE.twolevelreg" return(res1) } # summary for BIFIE.linreg function summary.BIFIE.twolevelreg <- function( object, digits=4, ... ) { BIFIE.summary(object) cat( paste0( "Number of persons:"), object$Npers, "\n") cat( paste0( "Number of clusters:"), object$Nclusters, "\n\n") cat("Statistical Inference for Two-Level Linear Regression \n\n") obji <- object$stat rownames(obji) <- NULL print_object_summary( obji, digits=digits ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.twolevelreg.R
## File Name: BIFIE.univar.R ## File Version: 1.844 #--- univariate statistics BIFIE.univar <- function( BIFIEobj, vars, group=NULL, group_values=NULL, se=TRUE ){ #**** s1 <- Sys.time() cl <- match.call() bifieobj <- BIFIEobj if (bifieobj$cdata){ varnames <- unique( c( vars, group, "one") ) bifieobj <- BIFIE.BIFIEcdata2BIFIEdata( bifieobj, varnames=varnames ) } FF <- Nimp <- bifieobj$Nimp N <- bifieobj$N dat1 <- bifieobj$dat1 wgt <- bifieobj$wgt wgtrep <- bifieobj$wgtrep varnames <- bifieobj$varnames RR <- bifieobj$RR datalistM <- bifieobj$datalistM fayfac <- bifieobj$fayfac if (RR==1){ RR <- 0 } if ( ! se ){ wgtrep <- matrix( wgt, ncol=1 ) RR <- 0 } vars_index <- unlist( sapply( vars, FUN=function(vv){ which( varnames==vv ) } ) ) wgt_ <- matrix( wgt, ncol=1 ) if ( is.null( group) ){ nogroup <- TRUE } else { nogroup <- FALSE } cat(paste0( "|", paste0( rep("*", FF), collapse=""), "|\n" )) if (nogroup){ group <- "one" group_values <- c(1) } #@@@@*** group_index <- match( group, varnames ) #@@@@*** if ( is.null(group_values ) ){ t1 <- bifie_table( datalistM[, group_index ] ) group_values <- sort( as.numeric( paste( names(t1) ) )) } #@@@@*** res00 <- BIFIE_create_pseudogroup( datalistM, group, group_index, group_values ) res00$datalistM -> datalistM res00$group_index -> group_index res00$GR -> GR res00$group_values -> group_values res00$group -> group #@@@@*** #****************** no grouping variable **********************************# if ( nogroup ){ res <- univar_multiple_V2group( datalistM, wgt_, wgtrep, vars_index-1, fayfac, Nimp, group_index-1, group_values ) GG <- length(group_values) VV <- length(vars) dfr <- data.frame( "var"=rep(vars,each=GG), "Nweight"=rowMeans(res$sumweightM), "Ncases"=rowMeans( res$ncasesM), "M"=res$mean1, "M_SE"=res$mean1_se ) dfr$M_df <- round( (Nimp-1)*( 1 + (Nimp*res$mean1_varWithin )/ ( Nimp+1) / res$mean1_varBetween )^2, 2 ) vv <- "M_df" dfr[,vv] <- ifelse( dfr[,vv] > 1000, Inf, dfr[,vv] ) dfr$M_t <- dfr$M / dfr$M_SE dfr$M_p <- 2* stats::pt( - abs( dfr$M_t), df=dfr$M_df ) dfr0 <- data.frame( "M_fmi"=res$mean1_fmi, "M_VarMI"=res$mean1_varBetween, "M_VarRep"=res$mean1_varWithin, "SD"=res$sd1, "SD_SE"=res$sd1_se ) dfr <- cbind( dfr, dfr0 ) dfr$SD_df <- round( (Nimp-1)*( 1 + (Nimp*res$sd1_varWithin )/ ( Nimp+1) / res$sd1_varBetween )^2, 2 ) vv <- "SD_df" dfr[,vv] <- ifelse( dfr[,vv] > 1000, Inf, dfr[,vv] ) dfr$SD_t <- dfr$M / dfr$SD_SE dfr$SD_p <- 2*stats::pt( - abs( dfr$SD_t), df=dfr$SD_df ) dfr0 <- data.frame( "SD_fmi"=res$sd1_fmi, "SD_VarMI"=res$sd1_varBetween, "SD_VarRep"=res$sd1_varWithin ) if (BIFIEobj$NMI ){ # M res1 <- BIFIE_NMI_inference_parameters( parsM=res$mean1M, parsrepM=res$mean1repM, fayfac=fayfac, RR=RR, Nimp=Nimp, Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE ) dfr$M <- res1$pars dfr$M_SE <- res1$pars_se dfr$M_df <- res1$df dfr$M_t <- res1$pars / res1$pars_se dfr$M_p <- 2*stats::pt( - abs( dfr$M_t), df=res1$df ) dfr$M_fmi <- res1$pars_fmi dfr$M_VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2 dfr$M_VarRep <- res1$pars_varWithin # SD res1 <- BIFIE_NMI_inference_parameters( parsM=res$sd1M, parsrepM=res$sd1repM, fayfac=fayfac, RR=RR, Nimp=Nimp, Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE ) dfr$SD <- res1$pars dfr$SD_SE <- res1$pars_se dfr$SD_df <- res1$df dfr$SD_t <- res1$pars / res1$pars_se dfr$SD_p <- 2*stats::pt( - abs( dfr$SD_t), df=res1$df ) dfr$SD_fmi <- res1$pars_fmi dfr$SD_VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2 dfr$SD_VarRep <- res1$pars_varWithin } } #****************** with grouping variable ********************************# if ( ! nogroup ){ res <- univar_multiple_V2group( datalistM, wgt_, wgtrep, vars_index - 1, fayfac, Nimp, group_index - 1, group_values ) GG <- length(group_values) VV <- length(vars) dfr <- data.frame( "var"=rep(vars,each=GG), "groupvar"=group, "groupval"=rep(group_values, VV ), "Nweight"=rep( rowMeans(res$sumweightM), VV ), "Ncases"=res$ncases, "M"=res$mean1, "M_SE"=res$mean1_se ) dfr$M_df <- round( (Nimp-1)*( 1 + (Nimp*res$mean1_varWithin )/ ( Nimp+1) / res$mean1_varBetween )^2, 2 ) vv <- "M_df" dfr[,vv] <- ifelse( dfr[,vv] > 1000, Inf, dfr[,vv] ) dfr$M_t <- dfr$M / dfr$M_SE dfr$M_p <- 2*stats::pt( - abs( dfr$M_t), df=dfr$M_df ) dfr <- data.frame( dfr, "M_fmi"=res$mean1_fmi, "M_VarMI"=res$mean1_varBetween, "M_VarRep"=res$mean1_varWithin, "SD"=res$sd1, "SD_SE"=res$sd1_se ) dfr$SD_df <- round( (Nimp-1)*( 1 + (Nimp*res$sd1_varWithin )/ ( Nimp+1) / res$sd1_varBetween )^2, 2 ) vv <- "SD_df" dfr[,vv] <- ifelse( dfr[,vv] > 1000, Inf, dfr[,vv] ) dfr$SD_t <- dfr$M / dfr$SD_SE dfr$SD_p <- 2*stats::pt( - abs( dfr$SD_t), df=dfr$SD_df ) dfr <- data.frame( dfr,"SD_fmi"=res$sd1_fmi, "SD_VarMI"=res$sd1_varBetween, "SD_VarRep"=res$sd1_varWithin ) if (BIFIEobj$NMI ){ # M res1 <- BIFIE_NMI_inference_parameters( parsM=res$mean1M, parsrepM=res$mean1repM, fayfac=fayfac, RR=RR, Nimp=Nimp, Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE ) dfr$M <- res1$pars dfr$M_SE <- res1$pars_se dfr$M_df <- res1$df dfr$M_t <- res1$pars / res1$pars_se dfr$M_p <- 2*stats::pt( - abs( dfr$M_t), df=res1$df ) dfr$M_fmi <- res1$pars_fmi dfr$M_VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2 dfr$M_VarRep <- res1$pars_varWithin # SD res1 <- BIFIE_NMI_inference_parameters( parsM=res$sd1M, parsrepM=res$sd1repM, fayfac=fayfac, RR=RR, Nimp=Nimp, Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE ) dfr$SD <- res1$pars dfr$SD_SE <- res1$pars_se dfr$SD_df <- res1$df dfr$SD_t <- res1$pars / res1$pars_se dfr$SD_p <- 2*pt( - abs( dfr$SD_t), df=res1$df ) dfr$SD_fmi <- res1$pars_fmi dfr$SD_VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2 dfr$SD_VarRep <- res1$pars_varWithin } } if ( ( ! se ) & ( RR==0 ) ){ dfr$M_SE <- dfr$M_fmi <- dfr$M_VarMI <- dfr$M_VarRep <- dfr$M_t <- dfr$M_df <- dfr$M_p <- NULL dfr$SD_SE <- dfr$SD_fmi <- dfr$SD_VarMI <- dfr$SD_VarRep <- dfr$SD_t <- dfr$SD_df <- dfr$SD_p <-NULL } if ( Nimp==1 ){ dfr$M_fmi <- dfr$M_VarMI <- NULL dfr$SD_fmi <- dfr$SD_VarMI <- NULL } #**** # statistics for mean and SD v1 <- c("var", "groupvar", "groupval", "Nweight", "Ncases" ) v1 <- intersect( v1, colnames(dfr) ) cdfr <- colnames(dfr) stat_M <- dfr[, c( v1, cdfr[ substring( cdfr, 1,1)=="M" ] ) ] stat_SD <- dfr[, c( v1, cdfr[ substring( cdfr, 1,2)=="SD" ] ) ] # create vector of parameter names nogroupL <- rep( nogroup, nrow(dfr) ) parnames <- paste0( dfr$var, ifelse( ! nogroupL, paste0( "_", dfr$groupvar, "_" ), "" ), ifelse( ! nogroupL, dfr$groupval, "" ) ) #@@@@*** # multiple groupings dfr <- BIFIE_table_multiple_groupings( dfr, res00 ) #@@@@*** stat_M <- BIFIE_table_multiple_groupings( stat_M, res00 ) stat_SD <- BIFIE_table_multiple_groupings( stat_SD, res00 ) #*************************** OUTPUT *************************************** s2 <- Sys.time() timediff <- c( s1, s2 ) #, paste(s2-s1 ) ) res1 <- list( stat=dfr, stat_M=stat_M, stat_SD=stat_SD, output=res, timediff=timediff, N=N, Nimp=Nimp, RR=RR, fayfac=fayfac, parnames=parnames, NMI=BIFIEobj$NMI, Nimp_NMI=BIFIEobj$Nimp_NMI, se=se, GG=GG, VV=VV, vars=vars, group=group, CALL=cl) class(res1) <- "BIFIE.univar" return(res1) } # summary for BIFIE.univar function summary.BIFIE.univar <- function( object, digits=3, ... ) { BIFIE.summary(object) cat("Univariate Statistics | Means\n") obji <- object$stat_M print_object_summary( obji, digits=digits ) cat("\nUnivariate Statistics | Standard Deviations\n") obji <- object$stat_SD print_object_summary( obji, digits=digits ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.univar.R
## File Name: BIFIE.univar.test.R ## File Version: 0.471 ####################################################################### # BIFIE univar.test BIFIE.univar.test <- function( BIFIE.method, wald_test=TRUE ) { s1 <- Sys.time() cl <- match.call() res5 <- BIFIE.method if (res5$group=="one"){ stop("This function can only be applied with a grouping variable.\n")} if (BIFIE.method$RR < 2){ wald_test <- FALSE } mean1M <- res5$output$mean1M sd1M <- res5$output$sd1M sumweightM <- res5$output$sumweightM GG <- res5$GG group_values <- ( res5$stat$groupval )[1:GG] if( res5$group=="pseudogroup" ){ is_pseudogroup <- TRUE } else { is_pseudogroup <- FALSE } if ( is.null( group_values) ){ group_values <- 1:GG } mean1repM <- res5$output$mean1repM sd1repM <- res5$output$sd1repM sumweightrepM <- res5$output$sumweightrepM fayfac <- res5$fayfac VV <- res5$VV vars <- res5$vars RR <- res5$RR if (RR==1){ RR <- 0 } group <- res5$group N <- res5$N Nimp <- res5$Nimp #**** Rcpp call res <- bifie_test_univar( mean1M, sd1M, sumweightM, GG, group_values, mean1repM, sd1repM, sumweightrepM, fayfac ) #**** # output eta^2 dfr <- data.frame( "var"=vars, "group"=group ) dfr$eta2 <- res$eta2L$pars^2 dfr$eta <- res$eta2L$pars dfr$eta_SE <- res$eta2L$pars_se dfr$fmi <- res$eta2L$pars_fmi dfr$df <- rubin_calc_df( res$eta2L, Nimp ) dfr$VarMI <- res$eta2L$pars_varBetween dfr$VarRep <- res$eta2L$pars_varWithin if (BIFIE.method$NMI ){ # eta2 res1 <- BIFIE_NMI_inference_parameters( parsM=res$eta2M, parsrepM=res$eta2repM, fayfac=fayfac, RR=RR, Nimp=Nimp, Nimp_NMI=BIFIE.method$Nimp_NMI, comp_cov=FALSE ) dfr$eta <- res1$pars dfr$eta_SE <- res1$pars_se dfr$df <- res1$df dfr$eta_fmi <- res1$pars_fmi dfr$eta_VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2 dfr$eta_VarRep <- res1$pars_varWithin } if (RR==0){ dfr$df <- dfr$SE <- dfr$fmi <- dfr$VarMI <- dfr$VarRep <- NULL } # extract replicated statistics for d and eta squared stat.eta2 <- dfr #**** # output d values group_values_matrix <- res$group_values_matrix ZZ <- nrow(group_values_matrix) dfr <- data.frame( "var"=rep(vars,each=ZZ) ) g2 <- group_values_matrix[ rep(1:ZZ, VV),, drop=FALSE] g2 <- data.frame(g2) colnames(g2) <- c("groupval1", "groupval2") dfr$group <- group dfr <- cbind( dfr, g2 ) r5 <- res5$stat h1 <- NULL h4 <- h3 <- h2 <- NULL for (kk in 1:2){ group_values_matrix[,kk] <- match( group_values_matrix[,kk], group_values ) } for (vv in 1:VV){ h1 <- c(h1, r5[ (vv-1)*GG + group_values_matrix[,1], "M" ] ) h2 <- c(h2, r5[ (vv-1)*GG + group_values_matrix[,2], "M" ] ) h3 <- c(h3, r5[ (vv-1)*GG + group_values_matrix[,1], "SD" ] ) h4 <- c(h4, r5[ (vv-1)*GG + group_values_matrix[,2], "SD" ] ) } dfr$M1 <- h1 dfr$M2 <- h2 dfr$SD <- sqrt( ( h3^2 + h4^2 ) / 2 ) dfr$d <- res$dstatL$pars dfr$d_SE <- res$dstatL$pars_se dfr$d_t <- dfr$d / dfr$d_SE dfr$d_df <- rubin_calc_df( res$dstatL, Nimp ) dfr$d_p <- stats::pt( - abs(dfr$d_t ), df=dfr$d_df)*2 dfr$d_fmi <- res$dstatL$pars_fmi dfr$d_VarMI <- res$dstatL$pars_varBetween dfr$d_VarRep <- res$dstatL$pars_varWithin if ( BIFIE.method$NMI ){ res1 <- BIFIE_NMI_inference_parameters( parsM=res$dstatM, parsrepM=res$dstatrepM, fayfac=fayfac, RR=RR, Nimp=BIFIE.method$Nimp, Nimp_NMI=BIFIE.method$Nimp_NMI, comp_cov=FALSE ) dfr$d <- res1$pars dfr$d_SE <- res1$pars_se dfr$d_t <- round( dfr$d / dfr$d_SE, 2 ) dfr$d_df <- res1$df dfr$d_p <- stats::pt( - abs( dfr$d_t ), df=dfr$d_df) * 2 dfr$d_fmi <- res1$pars_fmi dfr$d_VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2 dfr$d_VarRep <- res1$pars_varWithin } if ( ( ! res5$se ) & ( RR==0 ) ){ dfr$d_SE <- dfr$d_fmi <- dfr$d_VarMI <- dfr$d_VarRep <- NULL } if ( is_pseudogroup ){ stat <- res5$stat[ 1:GG, ] stat$pseudogroup <- 1:GG ind1 <- grep( "groupvar", colnames(stat) ) ind2 <- grep( "groupval", colnames(stat) ) groupvar_pseudo <- apply( stat[, ind1 ], 1, FUN=function(hh){ paste0( hh, collapse="#") } ) groupval_pseudo <- apply( stat[, ind2 ], 1, FUN=function(hh){ paste0( hh, collapse="#") } ) dfr$group <- groupvar_pseudo[1] dfr$groupval1 <- groupval_pseudo[ dfr$groupval1 ] dfr$groupval2 <- groupval_pseudo[ dfr$groupval2 ] } stat.dstat <- dfr #***** # F statistics dfr <- NULL for (vv in 1:VV){ Cdes <- matrix( 0, nrow=GG-1, ncol=GG*VV ) indvec <- 1:(GG-1) for (zz in indvec ){ Cdes[ zz, c(zz + (vv-1)*GG,zz+1 + (vv-1)*GG ) ] <- c(1,-1) } rdes <- rep(0,GG-1) if ( wald_test ){ wres5 <- BIFIE.waldtest( res5, Cdes=Cdes, rdes=rdes ) dfr <- rbind( dfr, wres5$stat.D ) } } if ( wald_test ){ dfr <- data.frame( "variable"=vars, "group"=group, dfr ) stat.F <- dfr } else { stat.F <- NA } parnames <- NULL #*************************** OUTPUT *************************************** s2 <- Sys.time() timediff <- c( s1, s2 ) #, paste(s2-s1 ) ) res1 <- list( "stat.F"=stat.F, "stat.eta"=stat.eta2, "stat.dstat"=stat.dstat, "timediff"=timediff, "N"=N, "Nimp"=Nimp, "RR"=RR, "fayfac"=fayfac, "NMI"=BIFIE.method$NMI, "Nimp_NMI"=BIFIE.method$Nimp_NMI, "GG"=GG, "parnames"=parnames, "CALL"=cl, wald_test=wald_test ) class(res1) <- "BIFIE.univar.test" return(res1) } ################################################################################### #################################################################################### # summary summary.BIFIE.univar.test <- function( object, digits=4, ... ) { BIFIE.summary(object) if ( object$wald_test ){ cat("F Test (ANOVA) \n") obji <- object$stat.F print_object_summary( obji, digits=digits ) } cat("\nEta Squared \n") obji <- object$stat.eta print_object_summary( obji, digits=digits ) cat("\nCohen's d Statistic \n") obji <- object$stat.dstat print_object_summary( obji, digits=digits ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.univar.test.R
## File Name: BIFIE.waldtest.R ## File Version: 1.311 #***** BIFIE Wald test BIFIE.waldtest <- function( BIFIE.method, Cdes=NULL, rdes=NULL, type=NULL ) { s1 <- Sys.time() cl <- match.call() res1 <- BIFIE.method # extract replicated parameters parsres <- extract.replicated.pars( BIFIE.method=res1, type=type) parsM <- parsres$parsM parsrepM <- parsres$parsrepM parnames <- parsres$parnames fayfac <- res1$fayfac N <- BIFIE.method$N Nimp <- BIFIE.method$Nimp RR <- BIFIE.method$RR #--- class derivedParameters if (is.null(Cdes) & (inherits(BIFIE.method,"BIFIE.derivedParameters")) ){ res <- extract.replicated.pars(BIFIE.method=BIFIE.method) parsM <- res$parsM np <- nrow(parsM) Cdes <- diag(np) rdes <- rep(0,np) } #****** which columns in C do have non-zero entries Ccols <- which( colSums( abs( Cdes) ) > 0 ) if ( ! BIFIE.method$NMI ){ # apply Rcpp Wald test function res <- bifiesurvey_rcpp_wald_test( parsM=parsM, parsrepM=parsrepM, Cdes=Cdes, rdes=rdes, Ccols=Ccols-1, fayfac=fayfac ) RR <- res$RR Nimp <- res$Nimp fayfac <- res$fayfac # data frame with results dfr <- data.frame( "D1"=res$D1, "D2"=res$D2, "df1"=res$df, "D1_df2"=round(res$nu2,1), "D2_df2"=round(res$nu3,1), "D1_p"=res$p_D1, "D2_p"=res$p_D2 ) } if ( BIFIE.method$NMI ){ Cdes_cols <- Cdes[, Ccols, drop=FALSE] df1 <- nrow(Cdes_cols) parsM2 <- Cdes_cols %*% parsM[ Ccols, ] parsrepM2 <- Cdes_cols %*% parsrepM[ Ccols, ] # within covariance matrices res0 <- bifie_comp_vcov_within( parsM2, parsrepM2, fayfac, BIFIE.method$RR, Nimp ) u <- res0$u Nimp_NMI <- BIFIE.method$Nimp_NMI qhat <- array( parsM2, dim=c( df1, Nimp_NMI[2], Nimp_NMI[1] ) ) qhat <- aperm( qhat, c(3,2,1) ) v1 <- paste0("parm",1:df1) dimnames(qhat) <- list( paste0("imp_nmi_dim1_", seq(1,dim(qhat)[[1]] ) ), paste0("imp_nmi_dim2_", seq(1,dim(qhat)[[2]] ) ), v1 ) if ( ! is.null( dimnames(qhat) ) ){ dimnames(qhat)[[3]] <- v1 } u <- array( u, dim=c( df1, df1, Nimp_NMI[2], Nimp_NMI[1] ) ) u <- aperm( u, c(4,3,1,2) ) res <- miceadds::NMIwaldtest( qhat=qhat, u=u, testnull=v1) dfr <- data.frame( "D1"=res$stat$F, "df1"=res$stat$df1, "D1_df2"=round(res$stat$df2,1), "D1_p"=res$stat$pval ) } #*************************** OUTPUT *************************************** s2 <- Sys.time() timediff <- c( s1, s2 ) #, paste(s2-s1 ) ) res1 <- list( "stat.D"=dfr, "timediff"=timediff, "N"=N, "Nimp"=Nimp, "RR"=RR, "fayfac"=fayfac, "NMI"=BIFIE.method$NMI, "Nimp_NMI"=BIFIE.method$Nimp_NMI, "class.BIFIE.method"=class(BIFIE.method), "CALL"=cl ) class(res1) <- "BIFIE.waldtest" return(res1) } #--- summary for BIFIE.waldtest function summary.BIFIE.waldtest <- function( object, digits=4, ... ) { BIFIE.summary(object, FALSE) BIFIE_waldtest_summary_print_test_statistics(object=object, digits=digits, value_name="stat.D") }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE.waldtest.R
## File Name: BIFIE_NMI_inference_parameters.R ## File Version: 0.18 ########################################################### # NMI inference, helper function BIFIE_NMI_inference_parameters <- function( parsM, parsrepM, fayfac, RR, Nimp, Nimp_NMI, comp_cov=FALSE ) { res0 <- bifie_comp_vcov_within( parsM, parsrepM, fayfac, RR, Nimp ) u_diag <- res0$u_diag NV <- length(u_diag) / Nimp u_diag <- array( u_diag, dim=c( NV, Nimp_NMI[2], Nimp_NMI[1] ) ) u_diag <- aperm( u_diag, c(3,2,1) ) u <- array( 0, dim=c( Nimp_NMI[1], Nimp_NMI[2], NV, NV ) ) for (ii in seq( 1, Nimp_NMI[1] ) ){ for (jj in seq( 1, Nimp_NMI[2] ) ){ if (NV>1){ diag(u[ii,jj,,]) <- u_diag[ii,jj,] } if (NV==1){ u[ii,jj,1,1] <- u_diag[ii,jj,1] } } } qhat <- array( parsM, dim=c(NV, Nimp_NMI[2], Nimp_NMI[1] ) ) qhat <- aperm( qhat, c(3,2,1) ) # inference using miceadds package res1 <- miceadds::NMIcombine( qhat=qhat, u=u, comp_cov=comp_cov, is_list=FALSE ) res1$df <- ifelse( res1$df > 1000, Inf, res1$df ) # output management res1$pars <- res1$qbar res1$pars_se <- sqrt( diag( res1$Tm ) ) res1$pars_fmi <- res1$lambda res1$pars_fmiB <- res1$lambda_Between res1$pars_fmiW <- res1$lambda_Within res1$pars_varBetween1 <- diag(res1$Bm) res1$pars_varBetween2 <- diag(res1$Wm) res1$pars_varWithin <- diag(res1$ubar) return(res1) } #################################################################
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_NMI_inference_parameters.R
## File Name: BIFIE_NMIcombine_results.R ## File Version: 0.09 BIFIE_NMIcombine_results <- function(results, Nimp_NMI, package="stats") { if (package=="stats"){ fun_coef <- coef fun_vcov <- vcov } if (package=="lavaan"){ fun_coef <- BIFIE_lavaan_coef fun_vcov <- BIFIE_lavaan_vcov } #- estimates qhat <- BIFIE_NMIcombine_results_extract_parameters(results=results, fun=fun_coef, Nimp_NMI=Nimp_NMI) #- variance matrices u <- BIFIE_NMIcombine_results_extract_parameters(results=results, fun=fun_vcov, Nimp_NMI=Nimp_NMI) #- inference stat <- miceadds::NMIcombine(qhat=qhat, u=u) return(stat) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_NMIcombine_results.R
## File Name: BIFIE_NMIcombine_results_extract_parameters.R ## File Version: 0.03 BIFIE_NMIcombine_results_extract_parameters <- function(results, fun, Nimp_NMI, loop_within=TRUE) { u <- lapply(results, FUN=function(res){ fun(res) } ) res <- miceadds::List2nestedList(List=u, N_between=Nimp_NMI[1], N_within=Nimp_NMI[2], loop_within=loop_within) return(res) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_NMIcombine_results_extract_parameters.R
## File Name: BIFIE_by_helper_pureR.R ## File Version: 0.17 ############################################################ BIFIE_by_helper_pureR <- function( group_values, userfct, datalistM, N, vars_index, wgt_, wgtrep, Nimp, RR, fayfac, group_index, userparnames) { G <- length(group_values) h1 <- do.call( userfct, list( "X"=datalistM[1:N, vars_index], "w"=wgt_ ) ) NP <- length(h1) parsM <- matrix( NA, nrow=NP*G, ncol=Nimp ) parsrepM <- matrix( NA, nrow=NP*G, ncol=Nimp*RR) sumwgtM <- matrix( NA, nrow=G, ncol=Nimp ) ncasesM <- matrix( NA, nrow=G, ncol=Nimp ) cat("|") s1 <- Sys.time() for (ii in 1:Nimp){ # ii <- 1 # imputed dataset cat("-"); utils::flush.console(); dat.ii <- datalistM[ 1:N + (ii-1)*N, ] for (gg in 1:G){ ind.gg <- which( dat.ii[, group_index ]==group_values[gg] ) ind.gg <- stats::na.omit(ind.gg) dat1 <- dat.ii[ ind.gg, vars_index ] w1 <- wgt_[ ind.gg ] sumwgtM[gg,ii] <- sum(w1) ncasesM[gg,ii] <- length(w1) wgtrep1 <- wgtrep[ ind.gg, ] h1 <- do.call( userfct, list( "X"=dat1, "w"=w1 ) ) parsM[ 1:NP + (gg-1)*NP, ii ] <- h1 h1 <- sapply( 1:RR, FUN=function(rr){ do.call( userfct, list( "X"=dat1, "w"=wgtrep1[, rr] ) ) } ) parsrepM[ 1:NP + (gg-1)*NP, 1:RR + (ii-1)*RR ] <- h1 } } cat("|\n"); utils::flush.console() # statistical inference res0 <- bifie_comp_vcov_within( parsM, parsrepM, fayfac, RR, Nimp ) u_diag <- res0$u_diag eps <- 1E-15 qhat <- parsM u_diag <- array( u_diag, dim=c(NP*G, Nimp) ) qbar <- rowMeans(qhat) var_w <- rowMeans(u_diag) var_b <- rowSums( ( parsM - qbar )^2 / ( Nimp - 1 + eps ) ) df <- rubin_calc_df2( B=var_b, W=var_w, Nimp, digits=2) var_t <- ( 1 + 1 / Nimp) * var_b + var_w fmi <- ( 1+1/Nimp) * var_b / ( var_t + eps ) parsL <- list( pars=qbar, pars_se=sqrt( var_t ), pars_varWithin=var_w, pars_varBetween=var_b, pars_fmi=fmi, df=df) # arrange output res <- list( parsM=parsM, parsrepM=parsrepM, userfct=userfct, ncasesM=ncasesM, sumwgtM=sumwgtM, N=N, NP=NP, WW=RR , parsL=parsL ) return(res) } ############################################################
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_by_helper_pureR.R
## File Name: BIFIE_create_pseudogroup.R ## File Version: 1.17 #**** multiple grouping helper functions BIFIE_create_pseudogroup <- function( datalistM, group, group_index, group_values ) { GR <- length(group) res0 <- list( "datalistM"=datalistM, "group_orig"=group, "group"=group, "group_index"=group_index, "GR"=GR, "group_values"=group_values) #*** multiple groupings if (GR>1){ group_values <- as.list( 1:GR ) for (gg in 1:GR){ t1 <- bifie_table( datalistM[, group_index[gg] ] ) group_values[[gg]] <- sort( as.numeric( paste( names(t1) ) )) } res0$group_values_orig <- group_values datalistM2 <- datalistM[, group_index] for (gg in 1:GR){ datalistM2[,gg] <- match( datalistM2[,gg], group_values[[gg]] ) } # maxval_exp <- 3 maxval_exp <- max(ceiling(log10(unlist(lapply(group_values, length)))+1)) + 1 maxval <- 10^maxval_exp res0$maxval <- maxval pseudogroup <- datalistM2[,1] for (gg in 2:GR){ pseudogroup <- pseudogroup + maxval^(gg-1) * datalistM2[,gg] } t1 <- bifie_table( pseudogroup ) group_values <- sort( as.numeric( paste( names(t1) ) )) res0$group_values <- group_values #**** group values recalculated in original values group_values_recode <- matrix( NA, nrow=length(group_values), ncol=GR ) for (gg in 1:GR){ group_values_recode[,gg] <- group_values / maxval^(GR-gg) } for (gg in 1:GR){ group_values_recode[,gg] <- round( group_values_recode[,gg], 0 ) } for (gg in 2:GR){ group_values_recode[,gg] <- group_values_recode[,gg] %% ( maxval ) } group_values_recode <- group_values_recode[, seq(GR,1,-1) ] for (gg in 1:GR){ h1 <- res0$group_values_orig[[gg]] group_values_recode[,gg] <- h1[ group_values_recode[,gg] ] } res0$group_values_recode <- group_values_recode res0$datalistM <- as.matrix( cbind( datalistM, pseudogroup ) ) res0$group_index <- ncol(datalistM)+1 res0$group <- "pseudogroup" } #--- output return(res0) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_create_pseudogroup.R
## File Name: BIFIE_data_nested_MI.R ## File Version: 0.07 ########################################################### # subfunction for handling nested multiple imputation BIFIE_data_nested_MI <- function( data.list, NMI ){ Nimp_B <- length(data.list) Nimp_W <- length(data.list[[1]]) Ntot <- Nimp_B * Nimp_W data.list0 <- data.list Nimp_NMI <- NULL if (NMI){ data.list <- as.list( 1:Ntot) hh <- 1 for (ii in 1:Nimp_B){ for (jj in 1:Nimp_W){ data.list[[hh]] <- data.list0[[ii]][[jj]] hh <- hh + 1 } } Nimp_NMI <- c( Nimp_B, Nimp_W ) } res <- list( data.list=data.list, Nimp_NMI=Nimp_NMI ) return(res) } ###############################################################
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_data_nested_MI.R
## File Name: BIFIE_data_pv_vars_create_datlist.R ## File Version: 0.131 BIFIE_data_pv_vars_create_datlist <- function(pvpre, pv_vars, jktype, data) { dfr <- NULL VV <- length(pv_vars) for (vv in 1:VV){ vv1 <- pv_vars[vv] if (jktype !="RW_PISA"){ # ind.vv1 <- which( substring( colnames(data), 1, nchar(vv1) )==vv1 ) ind.vv1 <- grep(vv1, colnames(data)) } else { varsel <- paste0( pvpre, vv1) ind.vv1 <- which( colnames(data) %in% varsel ) } Nimp <- length(ind.vv1) dfr2 <- data.frame( "variable"=vv1, "var_index"=vv, "data_index"=ind.vv1, "impdata_index"=1:Nimp ) dfr <- rbind( dfr, dfr2 ) } sel_ind <- setdiff( 1:( ncol(data) ), dfr$data_index ) data0 <- data[, sel_ind ] V0 <- ncol(data0) newvars <- seq( V0+1, V0+VV ) datalist <- as.list( 1:Nimp ) for (ii in 1:Nimp ){ dat1 <- data.frame( data0, data[, dfr[ dfr$impdata_index==ii, "data_index" ] ] ) colnames(dat1)[ newvars ] <- pv_vars datalist[[ii]] <- dat1 } # end imputations #----- output return(datalist) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_data_pv_vars_create_datlist.R
## File Name: BIFIE_data_transform_process_formula.R ## File Version: 0.01 BIFIE_data_transform_process_formula <- function(transform.formula) { t1 <- stats::terms(transform.formula) t2 <- attr(t1, "term.labels") transform.formula <- stats::as.formula( paste0( "~ 0 + ", paste0( t2, collapse=" + ") ) ) return(transform.formula) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_data_transform_process_formula.R
## File Name: BIFIE_lavaan_coef.R ## File Version: 0.12 BIFIE_lavaan_coef <- function(object, ...) { requireNamespace("lavaan") lavaan_coef <- methods::getMethod("coef", "lavaan") est <- lavaan_coef(object, ...) return(est) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_lavaan_coef.R
## File Name: BIFIE_lavaan_fitMeasures.R ## File Version: 0.03 BIFIE_lavaan_fitMeasures <- function(object, fit.measures) { requireNamespace("lavaan") res <- lavaan::fitMeasures(object=object, fit.measures=fit.measures) return(res) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_lavaan_fitMeasures.R
## File Name: BIFIE_lavaan_lavInspect.R ## File Version: 0.02 BIFIE_lavaan_lavInspect <- function(object, what, ...) { requireNamespace("lavaan") res <- lavaan::lavInspect(object=object, what=what, ...) return(res) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_lavaan_lavInspect.R
## File Name: BIFIE_lavaan_summary.R ## File Version: 0.02 BIFIE_lavaan_summary <- function(object) { requireNamespace("lavaan") lavaan_summary <- methods::getMethod("summary","lavaan") lavaan_summary(object) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_lavaan_summary.R
## File Name: BIFIE_lavaan_survey_NMIcombine.R ## File Version: 0.03 BIFIE_lavaan_survey_NMIcombine <- function(results, variances, Nimp_NMI) { qhat <- miceadds::List2nestedList(List=results, N_between=Nimp_NMI[1], N_within=Nimp_NMI[2], loop_within=TRUE) u <- miceadds::List2nestedList(List=variances, N_between=Nimp_NMI[1], N_within=Nimp_NMI[2], loop_within=TRUE) #- inference inf_res <- miceadds::NMIcombine(qhat=qhat, u=u) inf_res$coefficients <- inf_res$qbar inf_res$variance <- inf_res$Tm return(inf_res) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_lavaan_survey_NMIcombine.R
## File Name: BIFIE_lavaan_survey_combine_fit_measures.R ## File Version: 0.12 BIFIE_lavaan_survey_combine_fit_measures <- function(fitstat, Nimp) { fitstat1 <- 0 for (ii in 1:Nimp){ fitstat1 <- fitstat1 + fitstat[[ii]] } fitstat <- fitstat1 / Nimp return(fitstat) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_lavaan_survey_combine_fit_measures.R
## File Name: BIFIE_lavaan_survey_combine_partable.R ## File Version: 0.07 BIFIE_lavaan_survey_combine_partable <- function(partable, Nimp, inf_res) { partable0 <- partable[[1]] if (Nimp>1){ for (ii in 2L:Nimp){ partable_ii <- partable[[ii]] partable0$est <- partable0$est + partable_ii$est } } partable0$est <- partable0$est / Nimp partable <- partable0 # include results of statistical inference ind_free <- which(partable$free>0) partable$est[ ind_free ] <- as.vector(inf_res$coefficients) partable$se[ ind_free ] <- sqrt(diag(as.matrix(inf_res$variance))) return(partable) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_lavaan_survey_combine_partable.R
## File Name: BIFIE_lavaan_survey_define_fit_measures.R ## File Version: 0.05 BIFIE_lavaan_survey_define_fit_measures <- function(fit.measures) { if ( is.null(fit.measures) ){ fit.measures <- c("npar","chisq", "df", "pvalue", "baseline.chisq", "baseline.df", "baseline.pvalue", "cfi","tli", "nnfi","rfi","nfi","pnfi","ifi","rni", "rmsea","rmr","rmr_nomean","srmr","srmr_bentler", "srmr_bentler_nomean","crmr","crmr_nomean","srmr_mplus", "srmr_mplus_nomean","gfi","agfi","pgfi","mfi","ecvi") } return(fit.measures) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_lavaan_survey_define_fit_measures.R
## File Name: BIFIE_lavaan_survey_define_lavaan_function.R ## File Version: 0.04 BIFIE_lavaan_survey_define_lavaan_function <- function(lavaan_fun) { requireNamespace("lavaan") if (lavaan_fun=="sem"){ lav_fun <- lavaan::sem } if (lavaan_fun=="cfa"){ lav_fun <- lavaan::cfa } if (lavaan_fun=="lavaan"){ lav_fun <- lavaan::lavaan } if (lavaan_fun=="growth"){ lav_fun <- lavaan::growth } return(lav_fun) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_lavaan_survey_define_lavaan_function.R
## File Name: BIFIE_lavaan_survey_define_variables.R ## File Version: 0.04 BIFIE_lavaan_survey_define_variables <- function(lavmodel, svyrepdes) { requireNamespace("lavaan") res <- lavaan::lavaanify(model=lavmodel) variables0 <- paste(svyrepdes$variables$variable) variables <- intersect( variables0, unique( c( res$lhs, res$rhs) ) ) return(variables) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_lavaan_survey_define_variables.R
## File Name: BIFIE_lavaan_survey_extract_dataset.R ## File Version: 0.091 BIFIE_lavaan_survey_extract_dataset <- function(svyrepdes, ii, variables, svyrepdes0=NULL, datalist=NULL) { if ( inherits(svyrepdes,"svyimputationList") ){ svyrepdes0 <- svyrepdes$designs[[ii]] } if ( inherits(svyrepdes,"BIFIEdata") ){ use_datalist <- (ii>1) & ( ! is.null(datalist) ) if (! use_datalist){ svyrepdes0 <- BIFIEdata2svrepdesign(bifieobj=svyrepdes, varnames=variables, impdata.index=ii) } else { svyrepdes0$variables <- datalist[[ii]] } } return(svyrepdes0) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_lavaan_survey_extract_dataset.R
## File Name: BIFIE_lavaan_survey_lavaan_survey.R ## File Version: 0.078 BIFIE_lavaan_survey_lavaan_survey <- function(lavaan.fit, survey.design, ...) { args <- c(as.list(environment()), list(...)) do.call(what=requireNamespace, args=list(package="lavaan.survey")) res <- do.call(what="lavaan.survey", args=args) return(res) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_lavaan_survey_lavaan_survey.R
## File Name: BIFIE_lavaan_vcov.R ## File Version: 0.05 BIFIE_lavaan_vcov <- function(object, ...) { requireNamespace("lavaan") # res <- BIFIE_lavaan_lavInspect(object=object, what="vcov") # res <- as.matrix(res) lavaan_vcov <- methods::getMethod("vcov", "lavaan") vcov1 <- lavaan_vcov(object, ...) return(vcov1) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_lavaan_vcov.R
## File Name: BIFIE_mitools_MIcombine.R ## File Version: 0.02 BIFIE_mitools_MIcombine <- function(...) { requireNamespace("mitools") res <- mitools::MIcombine(...) return(res) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_mitools_MIcombine.R
## File Name: BIFIE_multiple_groupings_helper.R ## File Version: 0.14 # multiple grouping helper functions BIFIE_create_pseudogroup <- function( datalistM, group, group_index, group_values ) { GR <- length(group) res0 <- list( "datalistM"=datalistM, "group_orig"=group, "group"=group, "group_index"=group_index, "GR"=GR, "group_values"=group_values) #**************** #*** multiple groupings if (GR>1){ group_values <- as.list( 1:GR ) for (gg in 1:GR){ t1 <- bifie_table( datalistM[, group_index[gg] ] ) group_values[[gg]] <- sort( as.numeric( paste( names(t1) ) )) } res0$group_values_orig <- group_values datalistM2 <- datalistM[, group_index] for (gg in 1:GR){ datalistM2[,gg] <- match( datalistM2[,gg], group_values[[gg]] ) } maxval_exp <- 3 maxval <- 10^maxval_exp res0$maxval <- maxval pseudogroup <- datalistM2[,1] for (gg in 2:GR){ pseudogroup <- pseudogroup + maxval^(gg-1) * datalistM2[,gg] } t1 <- bifie_table( pseudogroup ) group_values <- sort( as.numeric( paste( names(t1) ) )) res0$group_values <- group_values #**** group values recalculated in original values group_values_recode <- matrix( NA, nrow=length(group_values), ncol=GR ) for (gg in 1:GR){ group_values_recode[,gg] <- group_values / maxval^(GR-gg) } for (gg in 1:GR){ group_values_recode[,gg] <- round( group_values_recode[,gg], 0 ) } for (gg in 2:GR){ group_values_recode[,gg] <- group_values_recode[,gg] %% ( maxval ) } group_values_recode <- group_values_recode[, seq(GR,1,-1) ] for (gg in 1:GR){ h1 <- res0$group_values_orig[[gg]] group_values_recode[,gg] <- h1[ group_values_recode[,gg] ] } res0$group_values_recode <- group_values_recode res0$datalistM <- as.matrix( cbind( datalistM, pseudogroup ) ) res0$group_index <- ncol(datalistM)+1 res0$group <- "pseudogroup" } return(res0) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_multiple_groupings_helper.R
## File Name: BIFIE_nmi_error_message.R ## File Version: 0.05 BIFIE_nmi_error_message <- function(fun, NMI) { if (NMI){ n1 <- paste0("'", fun, "' cannot currently handle nested multiply imputed datasets.\n") stop(n1) } }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_nmi_error_message.R
## File Name: BIFIE_object_size.R ## File Version: 0.08 ################################################## # output object sizes in MB and GB BIFIE_object_size <- function( x1 ) { x1 <- utils::object.size(x1) vals <- c( x1, as.numeric(x1 / 1024^2), as.numeric(x1 / 1024^3) ) names(vals) <- c("B", "MB", "GB" ) res <- list( "value"=vals ) res$value_string <- paste0( round( vals[2], 3 ), " MB | ", round( vals[3], 5 ), " GB" ) return(res) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_object_size.R
## File Name: BIFIE_pathmodel_summary_print_model_specification.R ## File Version: 0.09 BIFIE_pathmodel_summary_print_model_specification <- function(object, digits) { # print specified model cat("Syntax for path model \n") cat(object$lavaan.model, "\n") # print fixed reliabilities obji <- object$reliability if (!is.null(obji)){ cat("Fixed reliabilities\n\n") print( round(obji, digits)) cat("\n") } }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_pathmodel_summary_print_model_specification.R
## File Name: BIFIE_print_package_description.R ## File Version: 0.01 BIFIE_print_package_description <- function(pack="BIFIEsurvey") { d1 <- packageDescription(pack) cat( paste( d1$Package, " ", d1$Version, " (", d1$Date, ")", sep=""), "\n" ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_print_package_description.R
## File Name: BIFIE_table_multiple_groupings.R ## File Version: 0.14 #- reidentify multiple grouping BIFIE_table_multiple_groupings <- function( dfr, res00 ) { GR <- res00$GR if (GR>1){ ind1 <- which( colnames(dfr)=="groupvar" ) ind2 <- which( colnames(dfr)=="groupval" ) N2 <- ncol(dfr) dfr1 <- dfr[, seq( 1, ind1 - 1 ), drop=FALSE ] for (gg in 1:GR){ dfr1[, paste0("groupvar", gg ) ] <- paste(res00$group_orig[gg]) ind <- match( dfr$groupval, res00$group_values) dfr1[, paste0("groupval", gg ) ] <- res00$group_values_recode[ ind,gg] } dfr <- cbind( dfr1, dfr[, seq( ind2 + 1, N2 ), drop=FALSE] ) } return(dfr) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_table_multiple_groupings.R
## File Name: BIFIE_waldtest_summary_print_test_statistics.R ## File Version: 0.051 BIFIE_waldtest_summary_print_test_statistics <- function(object, digits, value_name="stat.D") { if ( ! object$NMI ){ cat("D1 and D2 Statistic for Wald Test \n\n") } if ( object$NMI ){ cat("D1 Statistic for Wald Test \n\n") } obji <- object[[ value_name ]] print_object_summary( obji, digits=digits ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIE_waldtest_summary_print_test_statistics.R
## File Name: BIFIEdata.select.R ## File Version: 1.09 # wrapper function for subfunctions BIFIE.data.select and # BIFIE.cdata.select BIFIEdata.select <- function( bifieobj, varnames=NULL, impdata.index=NULL ) { cdata <- bifieobj$cdata if ( cdata ){ bifieobj <- BIFIE.cdata.select( bifieobj=bifieobj, varnames=varnames, impdata.index=impdata.index ) } if ( ! cdata ){ bifieobj <- BIFIE.data.select( bifieobj=bifieobj, varnames=varnames, impdata.index=impdata.index ) } return(bifieobj) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIEdata.select.R
## File Name: BIFIEdata2svrepdesign.R ## File Version: 0.30 BIFIEdata2svrepdesign <- function(bifieobj, varnames=NULL, impdata.index=NULL ) { requireNamespace("mitools") requireNamespace("survey") CALL <- match.call() Nimp <- bifieobj$Nimp weights <- bifieobj$wgt repweights <- bifieobj$wgtrep RR <- bifieobj$RR scale <- bifieobj$fayfac rscales <- rep(1,RR) if (bifieobj$NMI){ mess <- paste0( "Nested multiply imputed datasets cannot be converted \n", " into objects for the survey package.\n") stop(mess) } #**** create datasets if (Nimp==1){ data <- as.data.frame(bifieobj$dat1) if (! is.null(varnames)){ data <- data[,varnames, drop=FALSE] } } if (Nimp>1){ data <- BIFIE.BIFIEdata2datalist(bifieobj=bifieobj, varnames=varnames, impdata.index=impdata.index, as_data_frame=FALSE) Nimp <- length(data) if (Nimp==1){ data <- data[[1]] } else { data <- mitools::imputationList(datasets=data) } } #*** adjust scale factor in case of finite sampling correction if ( length(scale) > 1){ rscales <- scale scale <- 1 } #*** create svrepdesign object svydes <- survey::svrepdesign(data=data, weights=weights, repweights=repweights, type="other", scale=scale, rscales=rscales, mse=TRUE ) svydes$call <- CALL return(svydes) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIEdata2svrepdesign.R
## File Name: BIFIEsurvey_print_term_formula.R ## File Version: 0.02 BIFIEsurvey_print_term_formula <- function(formula) { res <- paste0( attr( stats::terms(formula), "term.labels" ), collapse=" " ) return(res) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/BIFIEsurvey_print_term_formula.R
## File Name: RcppExports.R ## File Version: 3.005019 # Generated by using Rcpp::compileAttributes() -> do not edit by hand # Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 bifiesurvey_rcpp_jackknife_timss <- function(wgt, jkzone, jkrep, RR, jkfac, prbar) { .Call('_BIFIEsurvey_bifiesurvey_rcpp_jackknife_timss', PACKAGE='BIFIEsurvey', wgt, jkzone, jkrep, RR, jkfac, prbar) } bifiesurvey_rcpp_bootstrap <- function(cumwgt, rand_wgt) { .Call('_BIFIEsurvey_bifiesurvey_rcpp_bootstrap', PACKAGE='BIFIEsurvey', cumwgt, rand_wgt) } bifiesurvey_rcpp_bifiedata2bifiecdata <- function(datalistM, Nimp) { .Call('_BIFIEsurvey_bifiesurvey_rcpp_bifiedata2bifiecdata', PACKAGE='BIFIEsurvey', datalistM, Nimp) } bifiesurvey_rcpp_bifiecdata2bifiedata <- function(datalistM_ind, datalistM_imputed, Nimp, dat1, datalistM_impindex) { .Call('_BIFIEsurvey_bifiesurvey_rcpp_bifiecdata2bifiedata', PACKAGE='BIFIEsurvey', datalistM_ind, datalistM_imputed, Nimp, dat1, datalistM_impindex) } bifiesurvey_rcpp_bifiedata_stepwise <- function(dat1, dat_ind, Nmiss) { .Call('_BIFIEsurvey_bifiesurvey_rcpp_bifiedata_stepwise', PACKAGE='BIFIEsurvey', dat1, dat_ind, Nmiss) } bifiesurvey_rcpp_linreg <- function(datalist, wgt1, wgtrep, dep_index, pre_index, fayfac, NI, group_index1, group_values) { .Call('_BIFIEsurvey_bifiesurvey_rcpp_linreg', PACKAGE='BIFIEsurvey', datalist, wgt1, wgtrep, dep_index, pre_index, fayfac, NI, group_index1, group_values) } bifiesurvey_rcpp_logistreg <- function(datalist, wgt1, wgtrep, dep_index, pre_index, fayfac, NI, group_index1, group_values, eps, maxiter) { .Call('_BIFIEsurvey_bifiesurvey_rcpp_logistreg', PACKAGE='BIFIEsurvey', datalist, wgt1, wgtrep, dep_index, pre_index, fayfac, NI, group_index1, group_values, eps, maxiter) } univar_multiple_V2group <- function(datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values) { .Call('_BIFIEsurvey_univar_multiple_V2group', PACKAGE='BIFIEsurvey', datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values) } bifie_freq <- function(datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values, vars_values, vars_values_numb) { .Call('_BIFIEsurvey_bifie_freq', PACKAGE='BIFIEsurvey', datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values, vars_values, vars_values_numb) } bifie_correl <- function(datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values) { .Call('_BIFIEsurvey_bifie_correl', PACKAGE='BIFIEsurvey', datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values) } bifie_comp_vcov_within <- function(parsM, parsrepM, fayfac, RR, Nimp) { .Call('_BIFIEsurvey_bifie_comp_vcov_within', PACKAGE='BIFIEsurvey', parsM, parsrepM, fayfac, RR, Nimp) } bifie_comp_vcov <- function(parsM, parsrepM, Cdes, rdes, Ccols, fayfac) { .Call('_BIFIEsurvey_bifie_comp_vcov', PACKAGE='BIFIEsurvey', parsM, parsrepM, Cdes, rdes, Ccols, fayfac) } bifie_test_univar <- function(mean1M, sd1M, sumweightM, GG, group_values, mean1repM, sd1repM, sumweightrepM, fayfac) { .Call('_BIFIEsurvey_bifie_test_univar', PACKAGE='BIFIEsurvey', mean1M, sd1M, sumweightM, GG, group_values, mean1repM, sd1repM, sumweightrepM, fayfac) } bifie_crosstab <- function(datalist, wgt1, wgtrep, vars_values1, vars_index1, vars_values2, vars_index2, fayfac, NI, group_index1, group_values) { .Call('_BIFIEsurvey_bifie_crosstab', PACKAGE='BIFIEsurvey', datalist, wgt1, wgtrep, vars_values1, vars_index1, vars_values2, vars_index2, fayfac, NI, group_index1, group_values) } bifie_by <- function(datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values, userfct) { .Call('_BIFIEsurvey_bifie_by', PACKAGE='BIFIEsurvey', datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values, userfct) } bifie_hist <- function(datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values, breaks) { .Call('_BIFIEsurvey_bifie_hist', PACKAGE='BIFIEsurvey', datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values, breaks) } bifie_ecdf <- function(datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values, breaks, quanttype, maxval) { .Call('_BIFIEsurvey_bifie_ecdf', PACKAGE='BIFIEsurvey', datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values, breaks, quanttype, maxval) } bifie_fasttable <- function(datavec) { .Call('_BIFIEsurvey_bifie_fasttable', PACKAGE='BIFIEsurvey', datavec) } bifie_table1_character <- function(datavec) { .Call('_BIFIEsurvey_bifie_table1_character', PACKAGE='BIFIEsurvey', datavec) } bifie_mla2 <- function(X_list, Z_list, y_list, wgttot, wgtlev2, wgtlev1, globconv, maxiter, group, group_values, cluster, wgtrep, Nimp, fayfac, recov_constraint, is_rcov_constraint) { .Call('_BIFIEsurvey_bifie_mla2', PACKAGE='BIFIEsurvey', X_list, Z_list, y_list, wgttot, wgtlev2, wgtlev1, globconv, maxiter, group, group_values, cluster, wgtrep, Nimp, fayfac, recov_constraint, is_rcov_constraint) } bifiesurvey_rcpp_replication_variance <- function(pars, pars_repl, fay_factor) { .Call('_BIFIEsurvey_bifiesurvey_rcpp_replication_variance', PACKAGE='BIFIEsurvey', pars, pars_repl, fay_factor) } bifiesurvey_rcpp_rubin_rules <- function(estimates, variances) { .Call('_BIFIEsurvey_bifiesurvey_rcpp_rubin_rules', PACKAGE='BIFIEsurvey', estimates, variances) } bifiesurvey_rcpp_pathmodel <- function(datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values, L, L_row_index, NL, E, R, R_row_index, coeff_index, NP0, unreliability) { .Call('_BIFIEsurvey_bifiesurvey_rcpp_pathmodel', PACKAGE='BIFIEsurvey', datalist, wgt1, wgtrep, vars_index, fayfac, NI, group_index1, group_values, L, L_row_index, NL, E, R, R_row_index, coeff_index, NP0, unreliability) } bifiesurvey_rcpp_wald_test <- function(parsM, parsrepM, Cdes, rdes, Ccols, fayfac) { .Call('_BIFIEsurvey_bifiesurvey_rcpp_wald_test', PACKAGE='BIFIEsurvey', parsM, parsrepM, Cdes, rdes, Ccols, fayfac) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/RcppExports.R
## File Name: BIFIE_data_select_pv_vars.R ## File Version: 0.07 BIFIE_data_select_pv_vars <- function(pvpre, cn_data) { # select variables with plausible values nc1 <- nchar( pvpre[1] ) pv_vars <- which( substring( cn_data, 1, nc1 )==pvpre[1] ) #-- deselect all duplicated variables pv_elim <- NULL LP <- length(pvpre) for (pp in 2:LP){ pvpre_pp <- pvpre[pp] pv1 <- which( substring( cn_data, 1, nchar(pvpre_pp) )==pvpre_pp ) pv_elim <- c( pv_elim, pv1 ) } pv_vars <- setdiff(pv_vars, pv_elim) pv_vars <- gsub( pvpre[1], "", cn_data[ pv_vars ] ) #--- output return(pv_vars) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/bifie_data_select_pv_vars.R
## File Name: bifie_ecdf_postproc_output.R ## File Version: 0.11 bifie_ecdf_postproc_output <- function(res, group_values, breaks, VV, res00, vars, group) { GG <- length(group_values) BB <- length(breaks) #--- output data frame containing distribution functions as columns dfr <- as.data.frame( matrix( NA, nrow=BB, ncol=VV*GG+1 ) ) colnames(dfr)[1] <- "yval" dfr[,1] <- breaks dfr[,-1] <- matrix( res$ecdf, nrow=BB, ncol=VV*GG ) colnames(dfr)[-1] <- paste0( rep( vars, each=GG ), "_", group, rep( group_values, VV ) ) GR <- res00$GR if (GR>1){ group_orig <- res00$group_orig group_values_recode <- res00$group_values_recode rr <- 1 p1 <- paste0( group_orig[rr], group_values_recode[,rr] ) for (rr in 2:GR){ p1 <- paste0( p1, "_", group_orig[rr], group_values_recode[,rr] ) } cn <- paste0( rep( vars, each=GG ), "_", rep( p1, VV ) ) colnames(dfr)[-1] <- cn } ecdf_ <- dfr #--- data frame with statistics stat <- NULL ii <- 1 for (vv in 1:VV){ for (gg in 1:GG){ dfr1 <- data.frame( "var"=vars[vv], "groupvar"=group, "groupval"=group_values[gg], "yval"=breaks, "quant"=dfr[,ii+1] ) ii <- ii + 1 stat <- rbind( stat, dfr1 ) } } #--- output res <- list( ecdf_=ecdf_, stat=stat) return(res) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/bifie_ecdf_postproc_output.R
## File Name: bifie_extend_list_length2.R ## File Version: 0.03 bifie_extend_list_length2 <- function(x) { N <- length(x) if (N==1){ x <- list( x[[1]], x[[1]] ) } return(x) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/bifie_extend_list_length2.R
## File Name: bifie_table.R ## File Version: 1.13 ########################################### # Rcpp version of R's table function bifie_table <- function( vec, sort.names=FALSE ) { datavec <- matrix( vec, ncol=1 ) if ( storage.mode(vec)=="character" ){ characters <- TRUE } else { characters <- FALSE } if ( ! characters ){ res <- bifie_fasttable( datavec ) res1 <- res$tableM[ 1:res$N_unique,, drop=FALSE] tvec <- res1[,2] names(tvec) <- res1[,1] } if ( characters ){ t1 <- bifie_table1_character( vec ) res <- t1$tableM names(res) <- t1$table_names if ( sort.names ){ tvec <- res[ sort( names(res) ) ] } else { tvec <- res } } return(tvec) } ########################################### bifietable <- bifie_table fasttable <- bifie_table
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/bifie_table.R
## File Name: cdata.wgtrep.R ## File Version: 0.05 ############################################ # BIFIEcdata format for replicate weights cdata.wgtrep <- function( wgtrep ){ N <- nrow(wgtrep) RR <- ncol(wgtrep) longwgtrep <- matrix( wgtrep, nrow=N*RR, ncol=1 ) unique_wgt <- sort( unique( longwgtrep ) ) indexwgtrep <- match( longwgtrep, unique_wgt ) indexwgtrep <- matrix( indexwgtrep, nrow=N, ncol=RR ) # list with compactly saved replicate weights wgtrep_list <- list( "unique_wgt"=unique_wgt, "indexwgtrep"=indexwgtrep ) return(wgtrep_list) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/cdata.wgtrep.R
## File Name: clean_summary_table.R ## File Version: 0.10 clean_summary_table <- function( dfr, RR, se, Nimp ) { #*** RR==0 if ( ( ! se ) & ( RR==0 ) ){ vars <- c("df", "cor_SE", "cor_fmi", "cor_VarMI", "cor_VarRep", "cor_VarMI_St2", "cor_VarMI_St1", "cor_fmi_St1", "cor_fmi_St2", "t", "p", "cov_SE", "cov_fmi", "cov_VarMI", "cov_VarRep", "cov_VarMI_St2", "cov_VarMI_St1", "cov_fmi_St1", "cov_fmi_St2", "SE", "Var_MI", "VarRep" ) for (vv in vars){ dfr[,vv] <- NULL } } #**** Nimp==1 if ( Nimp==1 ){ vars <- c("cov_fmi", "cov_VarMI", "fmi", "VarMI") for (vv in vars){ dfr[,vv] <- NULL } } return(dfr) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/clean_summary_table.R
## File Name: coef.BIFIE.lavaan.survey.R ## File Version: 0.05 coef.BIFIE.lavaan.survey <- function(object, ...) { coef(object$lavfit, ...) } vcov.BIFIE.lavaan.survey <- function(object, ...) { BIFIE_lavaan_vcov(object$lavfit, ...) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/coef.BIFIE.lavaan.survey.R
## File Name: coef.BIFIE.survey.R ## File Version: 0.01 coef.BIFIE.survey <- function(object, ...) { coef(object$stat, ...) } vcov.BIFIE.survey <- function(object, ...) { vcov(object$stat, ...) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/coef.BIFIE.survey.R
## File Name: coef.BIFIEsurvey.R ## File Version: 0.11 ########################################### # general BIFIE method coef coef.BIFIEsurvey <- function( object, type=NULL, ... ){ parsres <- extract.replicated.pars( BIFIE.method=object, type=type ) pars <- parsres$parsM pars <- rowMeans(pars) names(pars) <- parsres$parnames return(pars) } ############################################### # BIFIE.correl coef.BIFIE.correl <- function( object, type=NULL, ... ){ pars <- coef.BIFIEsurvey( object=object, type=type ) return(pars) } # further BIFIE functions coef.BIFIE.by <- function( object, ... ){ pars <- coef.BIFIEsurvey( object=object, type=NULL ) return(pars) } coef.BIFIE.crosstab <- function( object, ... ){ pars <- coef.BIFIEsurvey( object=object, type=NULL ) return(pars) } coef.BIFIE.derivedParameters <- function( object, ... ){ pars <- coef.BIFIEsurvey( object=object, type=NULL ) return(pars) } coef.BIFIE.freq <- function( object, ... ){ pars <- coef.BIFIEsurvey( object=object, type=NULL ) return(pars) } coef.BIFIE.linreg <- function( object, ... ){ pars <- coef.BIFIEsurvey( object=object, type=NULL ) return(pars) } coef.BIFIE.logistreg <- function( object, ... ){ pars <- coef.BIFIEsurvey( object=object, type=NULL ) return(pars) } coef.BIFIE.univar <- function( object, ... ){ pars <- coef.BIFIEsurvey( object=object, type=NULL ) return(pars) } coef.BIFIE.twolevelreg <- function( object, ... ) { if (object$se){ pars <- coef.BIFIEsurvey( object=object, type=NULL ) } else { pars <- coef(object$micombs) } return(pars) } coef.BIFIE.pathmodel <- function( object, ... ) { pars <- coef.BIFIEsurvey( object=object, type=NULL ) return(pars) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/coef.BIFIEsurvey.R
## File Name: create_function_name.R ## File Version: 0.06 create_function_name <- function(pack, fun) { requireNamespace(pack) lav_fun_00 <- NULL fn <- paste0(pack, paste0(rep(":",2), collapse=""), fun) r_op <- paste0("lav_fun_00 <- ", fn) eval(parse(text=r_op), envir=parent.frame()) return(lav_fun_00) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/create_function_name.R
## File Name: create_summary_table.R ## File Version: 0.12 ################################################################## create_summary_table <- function( res_pars, parsM, parsrepM, dfr, BIFIEobj) { dfr$est <- res_pars$pars dfr$SE <- res_pars$pars_se dfr$t <- round( dfr$est / dfr$SE, 2 ) dfr$df <- rubin_calc_df( res_pars, BIFIEobj$Nimp ) dfr$p <- stats::pt( - abs( dfr$t ), df=dfr$df) * 2 # dfr$p <- pnorm( - abs( dfr$t ) ) * 2 dfr$fmi <- res_pars$pars_fmi dfr$VarMI <- res_pars$pars_varBetween dfr$VarRep <- res_pars$pars_varWithin #***** # inference nested multiple imputation if ( BIFIEobj$NMI ){ res1 <- BIFIE_NMI_inference_parameters( parsM=parsM, parsrepM=parsrepM, fayfac=BIFIEobj$fayfac, RR=BIFIEobj$RR, Nimp=BIFIEobj$Nimp, Nimp_NMI=BIFIEobj$Nimp_NMI, comp_cov=FALSE ) dfr$fmi <- dfr$cov_VarMI <- NULL dfr$est <- res1$pars dfr$SE <- res1$pars_se dfr$t <- round( dfr$est / dfr$SE, 2 ) dfr$df <- res1$df dfr$p <- stats::pt( - abs( dfr$t ), df=dfr$df) * 2 dfr$fmi <- res1$pars_fmi dfr$fmi_St1 <- res1$pars_fmiB dfr$fmi_St2 <- res1$pars_fmiW dfr$VarMI_St1 <- res1$pars_varBetween1 dfr$VarMI_St2 <- res1$pars_varBetween2 dfr$VarRep <- res1$pars_varWithin dfr$VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2 } return(dfr) } ##################################################################
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/create_summary_table.R
## File Name: extract.replicated.pars.R ## File Version: 0.163 #--- extract replicated parameters for BIFIE method extract.replicated.pars <- function( BIFIE.method, type=NULL ) { parsM <- parsrepM <- NULL res1 <- BIFIE.method #**** linear regression if ( inherits( BIFIE.method,"BIFIE.linreg") ){ # parameters in every imputed dataset parsM <- res1$output$regrcoefM # replicated parameters parsrepM <- res1$output$regrcoefrepM } #**** path model if ( inherits( BIFIE.method,"BIFIE.pathmodel")){ # parameters in every imputed dataset parsM <- res1$output$parsM # replicated parameters parsrepM <- res1$output$parsrepM } #**** correlation if ( inherits( BIFIE.method,"BIFIE.correl") ){ parsM <- res1$output$cor1M parsrepM <- res1$output$cor1repM if ( ! is.null(type) ){ if ( type=="cov"){ parsM <- res1$output$cov1M parsrepM <- res1$output$cov1repM } } } #**** frequencies if ( inherits( BIFIE.method,"BIFIE.freq")){ parsM <- res1$output$perc2M parsrepM <- res1$output$perc2repM } #**** univar if ( inherits( BIFIE.method,"BIFIE.univar")){ parsM <- res1$output$mean1M parsrepM <- res1$output$mean1repM } #**** crosstab if ( inherits( BIFIE.method,"BIFIE.crosstab")){ parsM <- res1$output$ctparsM parsrepM <- res1$output$ctparsrepM } #**** logistreg if ( inherits( BIFIE.method,"BIFIE.logistreg")){ parsM <- res1$output$regrcoefM parsrepM <- res1$output$regrcoefrepM } #**** BIFIE.by if ( inherits( BIFIE.method,"BIFIE.by")){ parsM <- res1$output$parsM parsrepM <- res1$output$parsrepM } #**** BIFIE.derivedParameters if ( inherits( BIFIE.method,"BIFIE.derivedParameters")){ parsM <- res1$parsM parsrepM <- res1$parsrepM } #**** BIFIE.twolevelreg if ( inherits( BIFIE.method,"BIFIE.twolevelreg") ){ parsM <- res1$output$parsM parsrepM <- res1$output$parsrepM } #-- output res <- list( parsM=parsM, parsrepM=parsrepM, parnames=res1$parnames) return(res) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/extract.replicated.pars.R
## File Name: load.BIFIE.data.R ## File Version: 1.24 #*** load BIFIEdata objects when objects are saved as full BIFIEdata #*** objects in one file load.BIFIEdata <- function(filename, dir=getwd() ) { d1 <- load( file=file.path(dir,filename) ) objname <- "bdat_temp" cdata <- NULL miceadds::Reval( paste0("cdata <- ", d1,"$cdata" ) , print.string=FALSE ) if (cdata){ # if cdata=TRUE l1 <- paste0( d1, "$wgtrep <- matrix(", d1,"$wgtreplist$unique_wgt[ ", d1, "$wgtreplist$indexwgtrep ], nrow=", d1, "$N, ncol=", d1, "$RR ) ") miceadds::Reval( l1, print.string=FALSE ) miceadds::Reval( paste0( d1, "$wgtreplist <- NULL" ), print.string=FALSE) } # save object in global environment eval(parse(text=paste(objname, "<- ", d1))) eval( parse(text=paste0( "return( ", objname, ")" ) ) ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/load.BIFIE.data.R
## File Name: load.BIFIEdata.files.R ## File Version: 3.17 #****** loading files for conversion into BIFIE data objects load.BIFIEdata.files <- function( files.imp, wgt, file.wgtrep, file.ind=NULL, type="Rdata", varnames=NULL, cdata=TRUE, dir=getwd(), ... ) { Nimp <- length(files.imp) # handle cases in which no weights are defined? #**** no indicator dataset if ( is.null(file.ind) ){ #********** # read imputed datasets datalist <- list(1:Nimp) for (ii in 1:Nimp){ # cat(paste0( "- Read ", files.imp[[ii]], "\n") ) # utils::flush.console() load_BIFIEdata_files_cat_print_file_name( file=files.imp[[ii]] ) dat1 <- miceadds::load.data( file=files.imp[[ii]], path=dir, type=type, ... ) if (ii==1){ wgt <- dat1[, wgt ] } dat1 <- as.data.frame(dat1) dat1 <- load_BIFIEdata_files_select_variables( dat=dat1, varnames=varnames ) dat1$one <- NULL datalist[[ii]] <- dat1 } #************** # read replicate weights load_BIFIEdata_files_cat_print_file_name( file=file.wgtrep ) wgtrep <- miceadds::load.data( file=file.wgtrep, type=type, path=dir, ...) #**************************** # create BIFIEdata object bifieobj <- BIFIE.data( data.list=datalist, wgt=wgt, wgtrep=wgtrep, cdata=cdata ) } #**** with indicator dataset if ( ! is.null( file.ind ) ){ #--- read indicator dataset load_BIFIEdata_files_cat_print_file_name( file=file.ind ) dat_ind <- miceadds::load.data( file=file.ind, type=type, path=dir, ...) if ( is.null(varnames) ){ varnames <- setdiff( colnames(dat_ind ), "one" ) } dat_ind <- load_BIFIEdata_files_select_variables( dat=dat_ind, varnames=varnames ) dat_ind <- as.matrix( dat_ind ) # add column 1 for "one" dat_ind <- cbind( dat_ind, 1 ) colnames(dat_ind) <- c( varnames, "one") #************************ # Read first imputed dataset ii <- 1 load_BIFIEdata_files_cat_print_file_name( file=files.imp[[ii]] ) dat1 <- miceadds::load.data( file=files.imp[[ii]], path=dir, type=type, ... ) dat1 <- load_BIFIEdata_files_select_variables( dat=dat1, varnames=varnames ) datalist <- list( dat1 ) #************** # read replicate weights load_BIFIEdata_files_cat_print_file_name( file=file.wgtrep ) wgtrep <- miceadds::load.data( file=file.wgtrep, type=type, path=dir, ...) #*************** # create initial BIFIEdata object bifieobj <- BIFIE.data( data.list=datalist, wgt=wgt, wgtrep=wgtrep, cdata=cdata ) bifieobj$datalistM_ind <- dat_ind bifieobj$Nimp <- Nimp Nmiss <- sum( 1 - dat_ind ) datalistM_imputed <- matrix( NA, nrow=Nmiss, Nimp) res1 <- bifiesurvey_rcpp_bifiedata_stepwise( as.matrix(dat1), dat_ind, Nmiss )$datalistM_imputed datalistM_imputed[,1] <- res1[,4] datalistM_impindex <- res1[,2:3] #----- read other imputed datasets if (Nimp>1){ for (ii in 2:Nimp){ load_BIFIEdata_files_cat_print_file_name( file=files.imp[[ii]] ) dat1 <- miceadds::load.data( file=files.imp[[ii]], path=dir, type=type, ... ) dat1 <- load_BIFIEdata_files_select_variables( dat=dat1, varnames=varnames ) res1 <- bifiesurvey_rcpp_bifiedata_stepwise( as.matrix(dat1), dat_ind, Nmiss )$datalistM_imputed datalistM_imputed[,ii] <- res1[,4] datalistM_impindex <- rbind( datalistM_impindex, res1[,2:3] ) } } bifieobj$dat1 <- cbind( as.data.frame(dat1), "one"=1 ) bifieobj$datalistM_imputed <- datalistM_imputed datalistM_imputed <- NULL bifieobj$datalistM_impindex <- datalistM_impindex } # end indicator data #--- return BIFIE object return(bifieobj) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/load.BIFIEdata.files.R
## File Name: load_BIFIEdata_files_cat_print_file_name.R ## File Version: 0.02 load_BIFIEdata_files_cat_print_file_name <- function( file ) { cat(paste0( "- Read ", file, "\n") ) utils::flush.console() }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/load_BIFIEdata_files_cat_print_file_name.R
## File Name: load_BIFIEdata_files_select_variables.R ## File Version: 0.03 load_BIFIEdata_files_select_variables <- function( dat, varnames ) { if ( ! is.null(varnames) ){ dat <- dat[, varnames ] } return(dat) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/load_BIFIEdata_files_select_variables.R
## File Name: print_object_summary.R ## File Version: 0.161 print_object_summary <- function( obji, digits) { V <- ncol(obji) for (vv in 1L:V){ if ( is.numeric( obji[,vv] ) ){ obji[,vv] <- round( obji[,vv], digits=digits ) } } print( format(obji, scientific=FALSE), digits=digits ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/print_object_summary.R
## File Name: rubin_calc_df.R ## File Version: 0.10 ###################################################### # calculate degrees of freedom according to Rubin rubin_calc_df <- function( res_pars, Nimp, indices=NULL, digits=2) { W <- res_pars$pars_varWithin B <- res_pars$pars_varBetween df <- rubin_calc_df2( B=B, W=W, Nimp=Nimp, indices=indices, digits=digits) return(df) } ######################################################
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/rubin_calc_df.R
## File Name: rubin_calc_df2.R ## File Version: 0.05 ###################################################### rubin_calc_df2 <- function( B, W, Nimp, indices=NULL, digits=2) { if ( ! is.null(indices) ){ W <- W[indices] B <- B[indices] } B <- B + W * 1E-15 df <- ( 1 + Nimp / ( Nimp + 1 ) * W / B )^2 * (Nimp - 1 ) df <- round( df, digits ) df <- ifelse( ( df > 1000 ) | ( Nimp==1 ), Inf, df ) return(df) } ######################################################
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/rubin_calc_df2.R
## File Name: save.BIFIE.data.R ## File Version: 1.09 ###################################################################### # save BIFIEdata objects save.BIFIEdata <- function( BIFIEdata, name.BIFIEdata, cdata=TRUE, varnames=NULL ) { make.cdata <- cdata if ( BIFIEdata$cdata ){ make.cdata <- FALSE } #********** convert BIFIE data object into compact BIFIEcdata object if ( make.cdata ){ BIFIEdata <- BIFIE.BIFIEdata2BIFIEcdata( BIFIEdata, varnames=varnames ) varnames <- NULL } #********** compact saving of replicate weights if (cdata){ BIFIEdata$wgtreplist <- cdata.wgtrep( BIFIEdata$wgtrep ) BIFIEdata$wgtrep <- NULL BIFIEdata$cdata <- TRUE } #******** variable selection in case of non-compact data if ( ! cdata ){ BIFIEdata <- BIFIE.data.select( BIFIEdata, varnames=varnames, impdata.index=NULL ) } #******** variable selection in case of compact BIFIEdata if ( cdata ){ BIFIEdata <- BIFIE.cdata.select( BIFIEdata, varnames=varnames, impdata.index=NULL ) } #*********************************************************** #****** save objects save( BIFIEdata, file=paste0( name.BIFIEdata, ".Rdata") ) sink( paste0( name.BIFIEdata, "__SUMMARY.Rout") ) cat( getwd(), "\n", paste0( name.BIFIEdata, ".Rdata\n"), "Saved at ", paste(Sys.time()), "\n\n") summary( BIFIEdata ) cat("\n\nSaved variables:\n") VV <- length(BIFIEdata$varnames) for (vv in 1:VV){ cat( vv, " ", BIFIEdata$varnames[vv], "\n") } sink() cat( " - Saved", paste0( name.BIFIEdata, ".Rdata"), "in directory \n ") cat( getwd(), "\n") } ######################################################################
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/save.BIFIE.data.R
## File Name: se.R ## File Version: 0.02 se <- function(object) { res <- sqrt(diag(vcov(object))) return(res) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/se.R
## File Name: summary.BIFIE.data.R ## File Version: 0.18 ############################################################## summary.BIFIEdata <- function(object, ... ) { cat("------------------------------------------------------------\n") d1 <- utils::packageDescription("BIFIEsurvey") cat( paste( d1$Package, " ", d1$Version, " (", d1$Date, ")", sep=""), "\n" ) cat("\nCall:\n ", paste(deparse(object$CALL), sep="\n", collapse="\n"), "", sep="") if( object$cdata ){ cat("\nCompact BIFIEdata") } cat("\n\n" ) cat( "Date of Analysis:", paste( object$time[1] ), "\n\n" ) if ( ! object$NMI ){ cat("Multiply imputed dataset\n\n") } if ( object$NMI ){ cat("Nested multiply imputed dataset\n\n") } cat( "Number of persons","=", object$N, "\n" ) cat( "Number of variables","=", object$Nvars, "\n" ) if ( ! object$NMI){ cat( "Number of imputed datasets","=", object$Nimp, "\n" ) } if ( object$NMI){ cat( "Number of imputed between-nest datasets","=", object$Nimp_NMI[1], "\n" ) cat( "Number of imputed within-nest datasets","=", object$Nimp_NMI[2], "\n" ) } cat( "Number of Jackknife zones per dataset","=", object$RR, "\n" ) fayfac <- object$fayfac if ( length(fayfac)==1){ cat( "Fay factor","=", round( object$fayfac, 5 ), "\n\n" ) } else { mf <- mean(fayfac) sdf <- stats::sd(fayfac) cat( "Fay factor: M","=", round( mf, 5 ), "| SD","=", round( sdf, 5 ), "\n\n" ) } x2 <- BIFIE_object_size(object) cat( "Object size: \n " ) cat( "Total: ", x2$value_string, "\n") obj1 <- "datalistM" x2 <- BIFIE_object_size(object[[ obj1 ]] ) cat( paste0( " $", obj1, " :" ), x2$value_string, "\n") obj1 <- "datalistM_ind" x2 <- BIFIE_object_size(object[[ obj1 ]] ) cat( paste0( " $", obj1, " :" ), x2$value_string, "\n") obj1 <- "datalistM_imputed" x2 <- BIFIE_object_size(object[[ obj1 ]] ) cat( paste0( " $", obj1, " :" ), x2$value_string, "\n") obj1 <- "datalistM_impindex" x2 <- BIFIE_object_size(object[[ obj1 ]] ) cat( paste0( " $", obj1, " :" ), x2$value_string, "\n") obj1 <- "dat1" x2 <- BIFIE_object_size(object[[ obj1 ]] ) cat( paste0( " $", obj1, " :" ), x2$value_string, "\n") obj1 <- "wgtrep" x2 <- BIFIE_object_size(object[[ obj1 ]] ) cat( paste0( " $", obj1, " :" ), x2$value_string, "\n") } ######################################################################
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/summary.BIFIE.data.R
## File Name: summary.BIFIE.lavaan.survey.R ## File Version: 0.13 summary.BIFIE.lavaan.survey <- function(object, ... ) { BIFIE.summary(object) #- lavaan summary output print(BIFIE_lavaan_summary(object$lavfit, ...)) #- fit statistics cat("\n\nModel Fit Statistics\n") print(object$fit) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/summary.BIFIE.lavaan.survey.R
## File Name: svrepdesign2BIFIEdata.R ## File Version: 0.261 svrepdesign2BIFIEdata <- function(svrepdesign, varnames=NULL, cdata=FALSE) { ## class svyrep.design if (inherits(svrepdesign,"svyrep.design")){ res <- svrepdesign_extract_data(svrepdesign=svrepdesign, varnames=varnames) wgt <- res$wgt wgtrep <- res$wgtrep fayfac <- res$fayfac varnames <- res$varnames data <- svrepdesign$variables data$one <- NULL datalist <- data[, varnames, drop=FALSE] } ## class svyimputationList if (inherits(svrepdesign,"svyimputationList")){ designs <- svrepdesign$designs Nimp <- length(designs) svrepdesign0 <- designs[[1]] res <- svrepdesign_extract_data(svrepdesign=svrepdesign0, varnames=varnames) wgt <- res$wgt wgtrep <- res$wgtrep fayfac <- res$fayfac varnames <- res$varnames datalist <- svrepdesign2datalist(svrepdesign=svrepdesign, varnames=varnames) } #- convert to BIFIEdata object res <- BIFIE.data(data.list=datalist, wgt=wgt, wgtrep=wgtrep, fayfac=fayfac, cdata=cdata, NMI=FALSE) return(res) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/svrepdesign2BIFIEdata.R
## File Name: svrepdesign2datalist.R ## File Version: 0.081 svrepdesign2datalist <- function(svrepdesign, varnames=NULL) { if (inherits(svrepdesign,"svyimputationList")){ datalist <- list() designs <- svrepdesign$designs Nimp <- length(designs) if (is.null(varnames)){ varnames <- setdiff( colnames(designs[[1]]$variables), "one") } for (ii in 1:Nimp){ data_ii <- designs[[ii]]$variables datalist[[ii]] <- data_ii[,varnames, drop=FALSE] } } if (inherits(svrepdesign,"svyrep.design")){ if (is.null(varnames)){ varnames <- setdiff( colnames(svrepdesign$variables), "one") } datalist <- list() data1 <- svrepdesign$variables datalist[[1]] <- data1[,varnames, drop=FALSE] } return(datalist) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/svrepdesign2datalist.R
## File Name: svrepdesign_extract_data.R ## File Version: 0.10 svrepdesign_extract_data <- function(svrepdesign, varnames=NULL) { wgtrep <- svrepdesign$repweights fayfac <- svrepdesign$scale wgt <- svrepdesign$pweights data <- svrepdesign$variables N <- nrow(data) sv_varnames <- setdiff( colnames(data), "one") if (is.null(varnames)){ varnames <- sv_varnames } RR <- ncol(wgtrep) #--- output res <- list(wgt=wgt, wgtrep=wgtrep, fayfac=fayfac, varnames=varnames, data=data, N=N, RR=RR) return(res) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/svrepdesign_extract_data.R
## File Name: vcov_BIFIE.survey.R ## File Version: 0.297 #--- vcov_BIFIEsurvey vcov_BIFIEsurvey <- function( object, type=NULL, eps=1E-10, avoid.singul=FALSE ) { # extract replicated parameters parsres <- extract.replicated.pars( BIFIE.method=object, type=type ) res1 <- object #***** parsM <- parsres$parsM parsrepM <- parsres$parsrepM parnames <- parsres$parnames RR <- object$RR if ( inherits(object,"BIFIE.correl") & is.null(type) ){ avoid.singul <- TRUE } if ( inherits(object, c("BIFIE.freq", "BIFIE.crosstab") ) ){ avoid.singul <- TRUE } if ( avoid.singul ){ parsrepM <- parsrepM * ( 1 + stats::runif(prod(dim(parsrepM)), 0, eps ) ) } fayfac <- res1$fayfac NP <- nrow(parsM) Cdes <- matrix( 1, ncol=NP, nrow=1 ) Ccols <- which( colSums( abs( Cdes) ) > 0 ) rdes <- c(0) # compute covariance matrices res0 <- bifie_comp_vcov( parsM=parsM, parsrepM=parsrepM, Cdes, rdes, Ccols - 1, fayfac=fayfac ) var_w <- res0$var_w var_b <- res0$var_b Nimp <- res1$Nimp # total variance var_tot <- var_w + ( 1 + 1/Nimp ) * var_b rownames(var_tot) <- colnames(var_tot) <- parnames if (object$NMI){ var_tot <- BIFIE_NMI_inference_parameters( parsM, parsrepM, fayfac, RR, Nimp, object$Nimp_NMI, comp_cov=TRUE )$Tm } return(var_tot) } vcov.BIFIE.correl <- function( object, type=NULL, ... ) { pars <- vcov_BIFIEsurvey( object=object, type=type, ... ) return(pars) } # further BIFIE functions vcov.BIFIE.by <- function( object, ... ) { pars <- vcov_BIFIEsurvey( object=object, type=NULL, ...) return(pars) } vcov.BIFIE.derivedParameters <- function( object, ... ) { pars <- vcov_BIFIEsurvey( object=object, type=NULL, ... ) return(pars) } vcov.BIFIE.crosstab <- function( object, ... ) { pars <- vcov_BIFIEsurvey( object=object, type=NULL, ... ) return(pars) } vcov.BIFIE.freq <- function( object, ... ) { pars <- vcov_BIFIEsurvey( object=object, type=NULL, ...) return(pars) } vcov.BIFIE.linreg <- function( object, ... ) { pars <- vcov_BIFIEsurvey( object=object, type=NULL, ... ) return(pars) } vcov.BIFIE.logistreg <- function( object, ... ) { pars <- vcov_BIFIEsurvey( object=object, type=NULL, ...) return(pars) } vcov.BIFIE.univar <- function( object, ... ) { pars <- vcov_BIFIEsurvey( object=object, type=NULL, ...) return(pars) } vcov.BIFIE.twolevelreg <- function( object, ... ) { if (object$se){ pars <- vcov_BIFIEsurvey( object=object, type=NULL, ... ) } else { pars <- vcov( object$micombs ) } return(pars) } vcov.BIFIE.pathmodel <- function( object, ... ) { pars <- vcov_BIFIEsurvey( object=object, type=NULL, ...) return(pars) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/vcov_BIFIE.survey.R
## File Name: write.BIFIE.data.R ## File Version: 1.19 ############################################################# # write BIFIEdata object write.BIFIEdata <- function( BIFIEdata, name.BIFIEdata, dir=getwd(), varnames=NULL, impdata.index=NULL, type="Rdata", ... ) { dir1 <- getwd() setwd(dir) cdata <- BIFIEdata$cdata # make BIFIE object smaller BIFIEdata <- BIFIEdata.select( BIFIEdata, varnames, impdata.index) cat("** Working directory:", dir, "\n") #************************* # define file suffixes filesuf <- paste0(".", type ) if ( type=="csv2" ){ filesuf <- ".csv" } if ( type=="table" ){ filesuf <- ".dat" } if ( type=="sav" ){ filesuf <- "" } #*************************************** # save dataset with replicate weights cat(" - Saved replicate weights\n") ; utils::flush.console() filename.temp <- paste0( name.BIFIEdata, "__WGTREP", filesuf ) w1 <- as.data.frame( BIFIEdata$wgtrep ) miceadds::save.data( w1, filename=filename.temp, type=type, path=dir, ... ) w1 <- NULL #******************************************* # save imputed datasets Nimp <- BIFIEdata$Nimp for (ii in 1:Nimp){ cat(" - Saved imputed dataset", ii, "\n") ; utils::flush.console() if (! cdata ){ bii <- BIFIEdata.select( BIFIEdata, varnames=varnames, impdata.index=ii ) } if ( cdata ){ bii <- BIFIE.BIFIEcdata2BIFIEdata( BIFIEdata, varnames=varnames, impdata.index=ii ) } dat1 <- bii$datalistM colnames(dat1) <- bii$varnames filename.temp <- paste0( name.BIFIEdata, "__IMP", ii, filesuf ) dat1 <- as.data.frame(dat1) miceadds::save.data( dat1, filename=filename.temp, type=type, path=dir, ... ) } #*** save BIFIEdata object save.BIFIEdata( BIFIEdata, paste0( name.BIFIEdata, "__BIFIEdataObject" ), cdata=TRUE ) #**** finished setwd(dir1) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/write.BIFIE.data.R
## File Name: zzz.R ## File Version: 0.14 # zzz.R # # This function is simply copied from mice package. # on attach .onAttach <- function(libname,pkgname) { d <- utils::packageDescription("BIFIEsurvey") packageStartupMessage("|---------------------------------------------------------", "--------\n", paste("| ",d$Package," ", d$Version," (",d$Date,")",sep=""), "\n| http://www.bifie.at ", "\n|---------------------------------------------------", "--------------\n" ) } version <- function(pkg="BIFIEsurvey") { lib <- dirname( system.file(package=pkg) ) d <- utils::packageDescription(pkg) return( paste(d$Package,d$Version,d$Date,lib) ) }
/scratch/gouwar.j/cran-all/cranData/BIFIEsurvey/R/zzz.R
#' Amino Acid Analysis Function #' #' This is the workhorse function for the amino acid analysis. #' @param Locus Locus being analyzed. #' @param loci.ColNames The column names of the loci being analyzed. #' @param genos Genotype table. #' @param grp Case/Control or Phenotype groupings. #' @param Strict.Bin Logical specify if strict rare cell binning should be used in ChiSq test. #' @param ExonAlign Exon protein alignment filtered for locus. #' @param Cores Number of cores to use for analysis. #' @note This function is for internal BIGDAWG use only. A <- function(Locus,loci.ColNames,genos,grp,Strict.Bin,ExonAlign,Cores) { # pull out locus specific columns getCol <- seq(1,length(loci.ColNames),1)[loci.ColNames %in% Locus] HLA_grp <- cbind(grp,genos[,getCol]) rownames(HLA_grp) <- NULL nAllele <- length(na.omit(HLA_grp[,2])) + length(na.omit(HLA_grp[,3])) ## extract alleles Alleles <- unique(c(HLA_grp[,2],HLA_grp[,3])) Alleles2F <- sort(unique(as.character(sapply(Alleles, GetField, Res=2)))) if( length(Alleles2F)>1 ) { # Filter exon alignment matrix for specific alleles TabAA <- AlignmentFilter(ExonAlign,Alleles2F,Locus) TabAA.list <- lapply(seq_len(ncol(TabAA)), function(x) TabAA[,c(2,x)]) TabAA.list <- TabAA.list[5:ncol(TabAA)] TabAA.names <- colnames(TabAA)[5:ncol(TabAA)] # Generate Contingency Tables ConTabAA.list <- parallel::mclapply(TabAA.list,AAtable.builder,y=HLA_grp,mc.cores=Cores) names(ConTabAA.list) <- TabAA.names # Check Contingency Tables # FlagAA.list <- parallel::mclapply(ConTabAA.list,AA.df.check,Strict.Bin=Strict.Bin,mc.cores=Cores) # Run ChiSq ChiSqTabAA.list <- parallel::mclapply(ConTabAA.list,AA.df.cs,Strict.Bin=Strict.Bin,mc.cores=Cores) FlagAA.list <- lapply(ChiSqTabAA.list,"[[",4) # build data frame for 2x2 tables Final_binned.list <- lapply(ChiSqTabAA.list,"[[",1) ccdat.list <- lapply(Final_binned.list,TableMaker) OR.list <- lapply(ccdat.list, cci.pval.list) #OR } else { # Filter exon alignment matrix for single allele TabAA <- AlignmentFilter(ExonAlign,Alleles2F,Locus) FlagAA.list <- as.list(rep(TRUE,length(TabAA[6:length(TabAA)]))) names(FlagAA.list) <- names(TabAA[6:length(TabAA)]) ChiSqTabAA.list <- NA OR.list <- NA Final_binned.list <- NA } ####################################################### Build Output List A.tmp <- list() ## AAlog_out - Positions with insufficient variation or invalid ChiSq csRange <- which(FlagAA.list==FALSE) # all failed ChiSeq FlagAA.fail <- rownames(do.call(rbind,FlagAA.list[csRange])) if( length(csRange)>0 ) { # identify insufficient vs invalid flags invRange <- intersect(names(csRange), names(which(lapply(Final_binned.list,nrow)>=2)) )# invalid cont table isfRange <- setdiff(names(csRange),invRange) # insufficient variation if( length(isfRange)>=1 ){ AAlog.out.isf <- cbind(rep(Locus,length(isfRange)), isfRange, rep("Insufficient variation at position.",length(isfRange))) } else { AAlog.out.isf <- NULL } if( length(invRange)>=1 ){ AAlog.out.inv <- cbind(rep(Locus,length(invRange)), invRange, rep("Position invalid for Chisq test.",length(invRange))) } else { AAlog.out.inv <- NULL } # Final AAlog.out AAlog.out <- rbind(AAlog.out.inv, AAlog.out.isf) colnames(AAlog.out) <- c("Locus","Position","Comment") rownames(AAlog.out) <- NULL AAlog.out <- AAlog.out[match(FlagAA.fail,AAlog.out[,'Position']),] } else { AAlog.out <- NULL } A.tmp[['log']] <- AAlog.out ## AminoAcid.binned_out if(length(ChiSqTabAA.list)>1) { binned.list <- lapply(ChiSqTabAA.list,"[[",2) binned.list <- binned.list[which(lapply(binned.list,is.logical)==F)] binned.out <- do.call(rbind,binned.list) if(!is.null(nrow(binned.out))) { binned.out <- cbind(rep(Locus,nrow(binned.out)), rep(names(binned.list),as.numeric(lapply(binned.list,nrow))), rownames(binned.out), binned.out) colnames(binned.out) <- c("Locus","Position","Residue","Group.0","Group.1") rownames(binned.out) <- NULL A.tmp[['binned']] <- binned.out } else { binned.out <- cbind(Locus,'Nothing.binned',NA,NA,NA) colnames(binned.out) <- c("Locus","Position","Residue","Group.0","Group.1") rownames(binned.out) <- NULL A.tmp[['binned']] <- binned.out } } else{ binned.out <- cbind(Locus,'Nothing.binned',NA,NA,NA) colnames(binned.out) <- c("Locus","Position","Residue","Group.0","Group.1") rownames(binned.out) <- NULL A.tmp[['binned']] <- binned.out } ## overall.chisq_out rmPos <- match(FlagAA.fail,names(ChiSqTabAA.list)) ChiSqTabAA.list <- ChiSqTabAA.list[-rmPos] if(length(ChiSqTabAA.list)>1) { ChiSq.list <- lapply(ChiSqTabAA.list,"[[",3) ChiSq.out <- do.call(rbind,ChiSq.list) if(!is.null(ChiSq.out)){ ChiSq.out <- cbind(rep(Locus,nrow(ChiSq.out)), rownames(ChiSq.out), ChiSq.out) colnames(ChiSq.out) <- c("Locus","Position","X.square","df","p.value","sig") rownames(ChiSq.out) <- NULL A.tmp[['chisq']] <- ChiSq.out } else { Names <- c("Locus","Position","X.square","df","p.value","sig") A.tmp[['chisq']] <- Create.Null.Table(Locus,Names,nr=1) } } else { Names <- c("Locus","Position","X.square","df","p.value","sig") A.tmp[['chisq']] <- Create.Null.Table(Locus,Names,nr=1) } ## ORtable_out rmPos <- match(FlagAA.fail,names(OR.list)) OR.list <- OR.list[-rmPos] if(length(OR.list)>1) { OR.out <- do.call(rbind,OR.list) if(!is.null(OR.out)) { OR.out <- cbind(rep(Locus,nrow(OR.out)), rep(names(OR.list),as.numeric(lapply(OR.list,nrow))), rownames(OR.out), OR.out) colnames(OR.out) <- c("Locus","Position","Residue","OR","CI.lower","CI.upper","p.value","sig") rownames(OR.out) <- NULL rmRows <- unique(which(OR.out[,'sig']=="NA")) if( length(rmRows) > 0 ) { OR.out <- OR.out[-rmRows,,drop=F] } A.tmp[['OR']] <- OR.out } else { Names <- c("Locus","Position","Residue","OR","CI.lower","CI.upper","p.value","sig") A.tmp[['OR']] <- Create.Null.Table(Locus,Names,nr=1) } } else { Names <- c("Locus","Position","Residue","OR","CI.lower","CI.upper","p.value","sig") A.tmp[['OR']] <- Create.Null.Table(Locus,Names,nr=1) } ## Final_binned_out (Final Table) rmPos <- match(FlagAA.fail,names(Final_binned.list)) Final_binned.list <- Final_binned.list[-rmPos] if( length(Final_binned.list)>1 ) { Final_binned.out <- do.call(rbind,Final_binned.list) if(!is.null(Final_binned.out)) { Final_binned.out <- cbind(rep(Locus,nrow(Final_binned.out)), rep(names(Final_binned.list),as.numeric(lapply(Final_binned.list,nrow))), rownames(Final_binned.out), Final_binned.out) colnames(Final_binned.out) <- c("Locus","Position","Residue","Group.0","Group.1") rownames(Final_binned.out) <- NULL A.tmp[['table']] <- Final_binned.out } else { Final_binned.out <- NULL Names <- c("Locus","Position","Residue","Group.0","Group.1") A.tmp[['table']] <- Create.Null.Table(Locus,Names,nr=1) } } else { Final_binned.out <- NULL Names <- c("Locus","Position","Residue","Group.0","Group.1") A.tmp[['table']] <- Create.Null.Table(Locus,Names,nr=1) } ## AminoAcid.freq_out if( !is.null(Final_binned.out) ) { Positions <- unique(Final_binned.out[,'Position']) for(p in Positions) { getRows <- which(Final_binned.out[,'Position']==p) FBO_tmp <- Final_binned.out[getRows,,drop=F] Final_binned.out[getRows,'Group.0'] <- round(as.numeric(FBO_tmp[,'Group.0']) / sum(as.numeric(FBO_tmp[,'Group.0'])), digits=5) Final_binned.out[getRows,'Group.1'] <- round(as.numeric(FBO_tmp[,'Group.1']) / sum(as.numeric(FBO_tmp[,'Group.1'])), digits=5) } A.tmp[['freq']] <- Final_binned.out } else { Names <- c("Locus","Position","Residue","Group.0","Group.1") A.tmp[['freq']] <- Create.Null.Table(Locus,Names, nr=1) } return(A.tmp) }
/scratch/gouwar.j/cran-all/cranData/BIGDAWG/R/A.R
#' File Fetcher #' #' Download Protein Alignment and Accessory Files #' @param Loci HLA Loci to be fetched. Limited Loci available. #' @note This function is for internal BIGDAWG use only. GetFiles <- function(Loci) { #downloads *_prot.txt alignment files #downloads hla_nom_p.txt file # Get P-Groups Files download.file("ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/hla/wmda/hla_nom_p.txt",destfile="hla_nom_p.txt",method="libcurl") # Get Release Version #download.file("ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/hla/release_version.txt",destfile="release_version.txt",method="libcurl") #Release <- read.table("release_version.txt",comment.char="",sep="\t") #Release <- apply(Release,MARGIN=1,FUN= function(x) gsub(": ",":",x)) #RD <- unlist(strsplit(Release[2],split=":"))[2] #RV <- unlist(strsplit(Release[3],split=":"))[2] #write.table(c(RD,RV),file="Release.txt",quote=F,col.names=F,row.names=F) #file.remove("release_version.txt") df <- readLines(con="hla_nom_p.txt", n=3) RD <- unlist(strsplit(df[2],split=" "))[3] RV <- paste(unlist(strsplit(df[3],split=" "))[3:4],collapse=" ") write.table(c(RD,RV),file="Release.txt",quote=F,col.names=F,row.names=F) # Get Locus Based Alignments for(i in 1:length(Loci)) { Locus <- Loci[i] FileName <- paste(Locus,"_prot.txt",sep="") URL <- paste("ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/hla/alignments/",FileName,sep="") download.file(URL,destfile = FileName,method="libcurl") } } #' HLA P group File Formatter #' #' Format the hla_nom_p.txt read table object for a specific locus. #' @param x P group object from read.table command. #' @param Locus Locus to be filtered on. #' @note This function is for internal BIGDAWG use only. PgrpFormat <- function(x,Locus) { # Identify for Locus ... change necessary if DRB x.sub <- x[which(x[,1]==Locus),] rownames(x.sub) <- NULL x.sub[,2] <- sapply(x.sub[,2],function(i) paste(paste(Locus,"*",unlist(strsplit(i,"/")),sep=""),collapse="/")) colnames(x.sub) <- c("Locus","Allele","P.Group") #Expand x.list <- list() for(i in 1:nrow(x.sub)) { if(grepl("/",x.sub[i,'Allele'],fixed=T)) { tmp <- unlist(strsplit(x.sub[i,'Allele'],"/")) tmp <- cbind(rep(Locus,length(tmp)),tmp,rep(x.sub[i,'P.Group'],length(tmp))) colnames(tmp) <- colnames(x.sub) x.list[[i]] <- tmp } else { x.list[[i]] <- x.sub[i,] } } x.list <- do.call(rbind,x.list) x.list <- x.list[order(x.list[,'Allele']),] rownames(x.list) <- NULL colnames(x.list) <- c("Locus","Allele","P.Group") return(x.list) } #' HLA P group Finder #' #' Identify P group for a given allele if exists. #' @param x Allele of interest. #' @param y Formatted P groups. #' @note This function is for internal BIGDAWG use only. PgrpExtract <- function(x,y) { getRow <- grep(x,y[,'Allele'],fixed=T) if(length(getRow)>=1) { if(length(getRow)>1) { getRow <- getRow[which(sapply(as.character(y[getRow,'Allele']),nchar)==nchar(x))] } return(as.character(y[getRow,'P.Group'])) } else { return("") } } #' Protein Exon Alignment Formatter #' #' Dynamically creates an alignmnet of Allele exons for Analysis. #' @param Locus Locus alignment to be formatted. #' @param RefTab Reference exon protein information for alignment formatting. #' @note This function is for internal BIGDAWG use only. ExonPtnAlign.Create <- function(Locus,RefTab) { ######################################################################### # Need to remove if DRB split into single locus files if(grepl("DRB",Locus)) { Locus.get <- "DRB" } else { Locus.get <- Locus } ######################################################################### AlignMatrix <- NULL; rm(AlignMatrix) #Read in P-Groups Pgrps <- read.table("hla_nom_p.txt",fill=T,header=F,sep=";",stringsAsFactors=F,strip.white=T,colClasses="character") Pgrps[,1] <- gsub("\\*","",Pgrps[,1]) Pgrps <- PgrpFormat(Pgrps,Locus) #Read in Alignment Name <- paste0(Locus.get,"_prot.txt") Align <- read.table(Name,fill=T,header=F,sep="\t",stringsAsFactors=F,strip.white=T,colClasses="character") #Trim Align <- as.matrix(Align[-nrow(Align),]) #Remove Footer #Begin Formatting Align <- as.matrix(Align[-grep("\\|",Align[,1]),1]) #Remove Pipes Align[,1] <- sapply(Align[,1],FUN=sub,pattern=" ",replacement="~") Align[,1] <- sapply(Align[,1],FUN=gsub,pattern=" ",replacement="") Align <- strsplit(Align[,1],"~") Align <- as.matrix(do.call(rbind,Align)) #Adjust rows to blank where Sequence column == Allele Name Align[which(Align[,1]==Align[,2]),2] <- "" # Remove Prot Numbering Headers Align <- Align[-which(Align[,1]=="Prot"),] # Get Unique Alleles Alleles <- unique(Align[,1]) # Loop Through and Build Alignment Block Block <- list() for(i in Alleles) { getRows <- which(Align[,1]==i) Block[[i]] <- paste(Align[getRows,2],collapse="") } Block <- cbind(Alleles,do.call(rbind,Block)) #Fill end gaps with * to make char lengths even Block.len <- max(as.numeric(sapply(Block[,2],FUN=nchar))) for( i in 1:nrow(Block) ) { Block.miss <- Block.len - nchar(Block[i,2]) if( Block.miss > 0 ) { Block[i,2] <- paste0(as.character(Block[i,2]), paste(rep(".",Block.miss),collapse="")) } }; rm(i) #Split Allele name into separate Locus and Allele, Send Back to Align object AlignAlleles <- do.call(rbind,strsplit(Block[,1],"[*]")) AlignAlleles <- cbind(AlignAlleles,apply(AlignAlleles,MARGIN=c(1,2),FUN=GetField,Res=2)[,2]) rownames(AlignAlleles) <- NULL Align <- cbind(AlignAlleles,Block) colnames(Align) <- c("Locus","Allele","Trimmed","FullName","Sequence") #Split Sub Alignment into composite elements and Extract relevant positions Align.split <- strsplit(Align[,'Sequence'],"") Align.split <- do.call(rbind,Align.split) AlignMatrix <- cbind(Align[,1:4],Align.split) rownames(AlignMatrix) <- NULL #Ensure Reference in Row 1 RefAllele <- paste(RefTab[which(RefTab[,'Locus']==Locus),'Reference.Locus'], RefTab[which(RefTab[,'Locus']==Locus),'Reference.Allele'], sep="*") if( !AlignMatrix[1,'FullName']==RefAllele ) { Align.tmp <- rbind(AlignMatrix[which(AlignMatrix[1,'Allele']==RefAllele),], AlignMatrix[-which(AlignMatrix[1,'Allele']==RefAllele),]) AlignMatrix <- Align.tmp rm(Align.tmp) } #Save Reference Row RefSeq <- AlignMatrix[1,] #Ensure Locus Specific Rows AlignMatrix <- AlignMatrix[which(AlignMatrix[,'Locus']==Locus),] #Rebind Reference if removed (only for DRB3, DRB4, and DRB5) if( !AlignMatrix[1,'FullName']==RefAllele ) { AlignMatrix <- rbind(RefSeq,AlignMatrix) } #Remove columns with no amino acids positions (only for DRB3, DRB4, and DRB5) #Count occurence of "." and compare to nrow of AlignMatrix rmCol <- which( apply(AlignMatrix,MARGIN=2, FUN=function(x) length(which(x=="."))) == nrow(AlignMatrix) ) if( length(rmCol)>0 ) { AlignMatrix <- AlignMatrix[,-rmCol] } #Propagate Consensus Positions for( i in 5:ncol(AlignMatrix) ) { x <- AlignMatrix[,i] x[which(x=="-")] <- x[1] AlignMatrix[,i] <- x } #Rename amino acid positions based on reference numbering #Deletions are named according to the preceding position with a .1,.2,etc. RefStart <- as.numeric(RefTab[which(RefTab[,'Locus']==Locus),'Reference.Start']) RefArray <- AlignMatrix[1,5:ncol(AlignMatrix)] Names <- NULL ; RefPos <- RefStart for(i in 1:length(RefArray) ) { if(RefArray[i]==".") { Names <- c(Names, paste0("Pos.",RefPos-1,".",Iteration) ) Iteration = Iteration + 1 } else { Iteration=1 Names <- c(Names, paste0("Pos.",RefPos)) RefPos <- RefPos + 1 if (RefPos==0) { RefPos <- 1 } } } colnames(AlignMatrix)[5:ncol(AlignMatrix)] <- Names rownames(AlignMatrix) <- NULL #Add Absent Allele (Absence due to lack of allele and not lack of typing information) AlignMatrix <- rbind(c(Locus,"00:00:00:00","00:00",paste(Locus,"*00:00:00:00",sep=""),rep("^",ncol(AlignMatrix)-4)), AlignMatrix) #Assign P groups AlignMatrix <- cbind(AlignMatrix, sapply(AlignMatrix[,'FullName'],PgrpExtract,y=Pgrps) ) colnames(AlignMatrix)[ncol(AlignMatrix)] <- "P.group" #Tally Unknowns as separate column AlignMatrix <- cbind(AlignMatrix, apply(AlignMatrix[,5:(ncol(AlignMatrix)-1)],MARGIN=1,FUN=function(x) length(which(unlist(grep("*",x,fixed=T))>0))) ) colnames(AlignMatrix)[ncol(AlignMatrix)] <- "Unknowns" #Tally Null Positions as separate column AlignMatrix <- cbind(AlignMatrix, apply(AlignMatrix[,5:(ncol(AlignMatrix)-2)],MARGIN=1,FUN=function(x) length(which(unlist(grep("-",x,fixed=T))>0))) ) colnames(AlignMatrix)[ncol(AlignMatrix)] <- "NullPositions" #Tally InDels AlignMatrix <- cbind(AlignMatrix, apply(AlignMatrix[,5:(ncol(AlignMatrix)-3)],MARGIN=1,FUN=function(x) length(which(unlist(grep(".",x,fixed=T))>0))) ) colnames(AlignMatrix)[ncol(AlignMatrix)] <- "InDels" rownames(AlignMatrix) <- NULL FileName <- paste("ExonPtnAlign_",Locus,".obj",sep="") save(AlignMatrix,file=FileName) } #' Alignment Object Creator #' #' Create Object for Exon Protein Alignments. #' @param Loci Loci to be bundled. #' @param Release IMGT/HLA database release version. #' @param RefTab Data of reference exons used for protein alignment creation. #' @note This function is for internal BIGDAWG use only. AlignObj.Create <- function(Loci,Release,RefTab) { AlignMatrix <- NULL; rm(AlignMatrix) ExonPtnList <- list() for(i in 1:length(Loci)) { Locus <- Loci[i] FileName <- paste("ExonPtnAlign_",Locus,".obj",sep="") load(FileName) #Loads AlignMatrix ExonPtnList[[Locus]] <- AlignMatrix } ExonPtnList[['Release.Version']] <- as.character(Release[2,]) ExonPtnList[['Release.Date']] <- as.character(Release[1,]) ExonPtnList[['RefExons']] <- RefTab save(ExonPtnList,file="ExonPtnAlign.obj") } #' Updated Alignment Object Creator #' #' Synthesize Object for Exon Protein Alignments. #' @param Loci Loci to be bundled. #' @param Release IMGT/HLA database release version. #' @param RefTab Data of reference exons used for protein alignment creation. #' @note This function is for internal BIGDAWG use only. AlignObj.Update <- function(Loci,Release,RefTab) { AlignMatrix <- NULL; rm(AlignMatrix) UpdatePtnList <- list() for(i in 1:length(Loci)) { Locus <- Loci[i] FileName <- paste("ExonPtnAlign_",Locus,".obj",sep="") load(FileName) #Loads AlignMatrix UpdatePtnList[[Locus]] <- AlignMatrix } UpdatePtnList[['Release.Version']] <- as.character(Release[2,]) UpdatePtnList[['Release.Date']] <- as.character(Release[1,]) UpdatePtnList[['RefExons']] <- RefTab save(UpdatePtnList,file="UpdatePtnAlign.RData") }
/scratch/gouwar.j/cran-all/cranData/BIGDAWG/R/A_ExonPtnAlign_functions.R
#' Alignment Filter #' #' Filter Protein Exon Alignment File for Specific Alleles. #' @param Align Protein Alignment Object. #' @param Alleles to be pulled. #' @param Locus Locus to be filtered against. #' @note This function is for internal BIGDAWG use only. AlignmentFilter <- function(Align, Alleles, Locus) { getCols <- c(match(c("Trimmed","Unknowns","NullPositions"), colnames(Align)), grep("Pos\\.",colnames(Align))) getRows <- Align[,"Trimmed"] %in% Alleles Align.sub <- Align[getRows,getCols] Align.sub <- unique(Align.sub) if(!is.null(nrow(Align.sub))) { Alleles.S <- names(which(table(Align.sub[,'Trimmed'])==1)) Alleles.M <- names(which(table(Align.sub[,'Trimmed'])>1)) # Removing Duplicates at 2-Field Level if( length(Alleles.M > 0 ) ) { Align.tmp <- list() for( m in 1:length(Alleles.M) ) { Allele <- Alleles.M[m] Alignsub.Grp <- Align.sub[which(Align.sub[,"Trimmed"]==Allele),] Unknowns.Grp <- which(Alignsub.Grp[,'Unknowns']==min(Alignsub.Grp[,'Unknowns'])) if(length(Unknowns.Grp)>1) { Unknowns.Grp <- Unknowns.Grp[1] } Align.tmp[[Allele]] <- Alignsub.Grp[Unknowns.Grp,] } Align.tmp <- do.call(rbind,Align.tmp) if( length(Alleles.S) > 0 ) { AlignMatrix <- rbind(Align.tmp, Align.sub[which(Align.sub[,'Trimmed'] %in% Alleles.S==T),,drop=F]) } else { AlignMatrix <- Align.tmp } } else { AlignMatrix <- Align.sub } AlignMatrix <- cbind(rep(Locus,nrow(AlignMatrix)),AlignMatrix) rownames(AlignMatrix) <- NULL colnames(AlignMatrix)[1] <- "Locus" colnames(AlignMatrix)[which(colnames(AlignMatrix)=="Trimmed")] <- "Allele.2D" AlignMatrix <- AlignMatrix[ order(AlignMatrix[,'Allele.2D']), ] } else { AlignMatrix <- cbind(rep(Locus,nrow(Align.sub)),Align.sub) rownames(AlignMatrix) <- NULL colnames(AlignMatrix)[1] <- "Locus" colnames(AlignMatrix)[which(colnames(AlignMatrix)=="Trimmed")] <- "Allele.2D" AlignMatrix <- AlignMatrix[ order(AlignMatrix[,'Allele.2D']), ] } return(AlignMatrix) } #' Amino Acid Contingency Table Build #' #' Build Contingency Tables for Amino Acid Analysis. #' @param x Filtered alignmnet list element. #' @param y Phenotype groupings. #' @note This function is for internal BIGDAWG use only. AAtable.builder <- function(x,y) { #x = list element for filtered alignment (TabAA.list) #y = HLA_grp (case vs control) # Create count Grp 0 v Grp 1 (Control v Case) x[,2] <- gsub(" ","Null",x[,2]) x[,2] <- gsub("\\*","Unknown",x[,2]) x[,2] <- gsub("\\.","InDel",x[,2]) Residues <- unique(x[,2]) AminoAcid.df <- mat.or.vec(nr=length(Residues),2) colnames(AminoAcid.df) <- c("Group.0", "Group.1") rownames(AminoAcid.df) <- Residues y[,2:3] <- apply(y[,2:3],MARGIN=c(1,2),GetField,Res=2) # Grp 0 (Control) Grp0 <- y[which(y[,'grp']==0),] Grp0cnt <- table(c(x[match(Grp0[,2],x[,1]),2], x[match(Grp0[,3],x[,1]),2])) PutRange <- match(rownames(AminoAcid.df),names(Grp0cnt)) AminoAcid.df[,'Group.0'] <- Grp0cnt[PutRange] # Grp 1 (Case) Grp1 <- y[which(y[,'grp']==1),] Grp1cnt <- table(c(x[match(Grp1[,2],x[,1]),2], x[match(Grp1[,3],x[,1]),2])) PutRange <- match(rownames(AminoAcid.df),names(Grp1cnt)) AminoAcid.df[,'Group.1'] <- Grp1cnt[PutRange] AminoAcid.df[is.na(AminoAcid.df)] <- 0 # drop unknowns rmRow <- which(row.names(AminoAcid.df)=="Unknown") if( length(rmRow) > 0 ) { AminoAcid.df <- AminoAcid.df[-rmRow,,drop=F] } return(AminoAcid.df) } #' Contingency Table Check #' #' Checks amino acid contingency table data frame to ensure required variation exists. #' @param x contingency table. #' @param Strict.Bin Logical specify if strict rare cell binning should be used in ChiSq test. #' @note This function is for internal BIGDAWG use only. AA.df.check <- function(x,Strict.Bin) { # Returns true if insufficient variations exists # RunChiSq Flag is true is sufficient variant exists if( nrow(x)<2 ) { return(FALSE) } else if (Strict.Bin) { return(!(RunChiSq(x)$Flag)) } else { return(!(RunChiSq_c(x)$Flag)) } } #' Contingency Table Amino Acid ChiSq Testing #' #' Runs ChiSq test on amino acid contingency table data frames. #' @param x contingency table. #' @param Strict.Bin Logical specify if strict rare cell binning should be used in ChiSq test. #' @note This function is for internal BIGDAWG use only. AA.df.cs <- function(x,Strict.Bin) { # RunChiSq on data frame if( nrow(x) < 2 ) { tmp.chisq <- data.frame(rbind(rep("NCalc",4))) colnames(tmp.chisq) <- c("X.square", "df", "p.value", "sig") row.names(tmp.chisq) <- "X-squared" chisq.out <- list(Matrix = x, Binned = NA, Test = tmp.chisq, Flag = FALSE) return( chisq.out ) } else if (Strict.Bin) { return( RunChiSq(x) ) } else { return( RunChiSq_c(x) ) } } #' Create Empty Table #' #' Creates matrix of NA for no result tables. #' @param Locus Locus being analyzed. #' @param Names Column names for final matrix. #' @param nr Number of rows. #' @note This function is for internal BIGDAWG use only. Create.Null.Table <- function(Locus,Names,nr) { nc <- length(Names) Data <- c( Locus,rep(NA,nc-1) ) tmp <- matrix(Data,nrow=nr,ncol=nc) colnames(tmp) <- Names rownames(tmp) <- NULL return(tmp) } #' Filter Exon Specific Alignment Sections #' #' Filters the ExonPtnAlign object by locus and exon. #' @param Locus Locus being analyzed. #' @param Exon Exon being analyzed. #' @param EPL.Locus ExonPtnAlign object filtered by Locus #' @param RefExons Reference Exon Table #' @param E.Ptn.Starts Exon Protein Overlay Map #' @note This function is for internal BIGDAWG use only. Exon.Filter <- function(Locus,Exon,EPL.Locus,RefExons,E.Ptn.Starts) { # Get Reference Protoen Start Ref.Start <- as.numeric(RefExons[RefExons[,'Locus']==Locus,'Reference.Start']) # Define 5'/3' Boundary Positions E.Start <- as.numeric(E.Ptn.Starts[which(E.Ptn.Starts[,'Exon']==Exon),'Start']) E.Stop <- as.numeric(E.Ptn.Starts[which(E.Ptn.Starts[,'Exon']==Exon),'Stop']) E.Length <- E.Stop - E.Start + 1 # Ensure Number Shift Due to lack of Position 0 if( E.Start >= abs(Ref.Start) ) { E.Start.Pos <- E.Start + Ref.Start } else { E.Start.Pos <- E.Start + Ref.Start - 1 } E.Stop.Pos <- E.Start.Pos + E.Length - 1 if( E.Start.Pos < 0 && E.Stop.Pos > 0 ) { E.Stop.Pos <- E.Start.Pos + E.Length } # Find Exon 5' Boundary Position in ExonPtnAlign Object E.Start.Pos <- paste0("Pos.",E.Start.Pos) getStart <- match(E.Start.Pos,colnames(EPL.Locus)) # Find Exon 3' Boundary Position E.Stop.Pos <- paste0("Pos.",E.Stop.Pos) getStop <- match(E.Stop.Pos,colnames(EPL.Locus)) testStop <- grep(paste0(E.Stop.Pos,"."),colnames(EPL.Locus),fixed=TRUE) if( length(testStop)>0 ) { getStop <- max(testStop) } # Define Amino Acid Range to Carve Out getOverlap <- seq(getStart,getStop) # Restructure Final ExnPtnAlign Object getEndCol <- seq(ncol(EPL.Locus)-3,ncol(EPL.Locus)) EPL.Locus.Exon <- EPL.Locus[,c(1:4,getOverlap,getEndCol),drop=F] return(EPL.Locus.Exon) } #' Condensing Exon Specific Alignments to Single Dataframe #' #' Combines multiple Exon Specific Alignments into a single Alignment object #' @param EPL.Exon Exon-Locus Specific Amino Acid Alignment. #' @note This function is for internal BIGDAWG use only. Condense.EPL <- function(EPL.Exon) { df.1 <- EPL.Exon[[1]][,1:4] getCol <- ncol(EPL.Exon[[1]]) df.2 <- EPL.Exon[[1]][,seq(getCol-3,getCol)] df <- list() for( i in 1:length(EPL.Exon) ) { totalCol <- ncol(EPL.Exon[[i]]) - 4 df[[i]] <- EPL.Exon[[i]][,5:totalCol,drop=F] } df <- do.call(cbind,df) df.out <- cbind(df.1,df,df.2) return(df.out) }
/scratch/gouwar.j/cran-all/cranData/BIGDAWG/R/A_support_functions.R
#' Amino Acid Wrapper #' #' Wrapper function for amino acid analysis. #' @param loci Loci being analyzed. #' @param loci.ColNames The column names of the loci being analyzed. #' @param genos Genotype table. #' @param grp Case/Control or Phenotype groupings. #' @param Exon Exon(s)for targeted analysis. #' @param EPL Protein Alignment List. #' @param Cores Number of cores to use for analysis. #' @param Strict.Bin Logical specify if strict rare cell binning should be used in ChiSq test #' @param Output Data return carryover from main BIGDAWG function #' @param Verbose Summary display carryover from main BIGDAWG function #' @note This function is for internal BIGDAWG use only. A.wrapper <- function(loci,loci.ColNames,genos,grp,Exon,EPL,Cores,Strict.Bin,Output,Verbose) { cat("\n>>>> STARTING AMINO ACID LEVEL ANALYSIS...\n") # Define Lists for Per Loci Running Tallies AAlog <- list() AminoAcid.binned <- list() AminoAcid.freq <- list() overall.chisq <- list() ORtable <- list() Final_binned <- list() cat("Processing Locus: ") cat(colnames(EPL)) # Loop Through Loci for(x in 1:length(loci)) { # Get Locus Locus <- as.character(loci[x]) cat(Locus,".. ") # Read in Locus Alignment file for Locus specific alignments if( !missing(Exon) ) { Exon <- as.numeric(unique(unlist(Exon))) # Get ExonPtnAlign for Locus EPL.Locus <- EPL[[Locus]] RefExons <- EPL[["RefExons"]] E.Ptn.Starts <- EPL[["ExonPtnMap"]][[Locus]] EPL.Exon <- list() ; p <- NULL for (e in 1:length(Exon)) { getExon <- Exon[e] if( getExon %in% E.Ptn.Starts[,'Exon'] ) { if ( is.null(p) ) { p=1 } else { p = p + 1 } EPL.Exon[[p]] <- Exon.Filter(Locus,getExon,EPL.Locus,RefExons,E.Ptn.Starts) } else { Err.Log(Output,"Exon",Locus) stop("Analysis Stopped.",call. = F) } } ExonAlign <- Condense.EPL(EPL.Exon) #cbind(colnames(ExonAlign)) } else { ExonAlign <- EPL[[Locus]] } # Run Amino Acid Analysis A.list <- A(Locus,loci.ColNames,genos,grp,Strict.Bin,ExonAlign,Cores) # Build Output Lists AAlog[[Locus]] <- A.list[['log']] AminoAcid.binned[[Locus]] <- A.list[['binned']] overall.chisq[[Locus]] <- A.list[['chisq']] ORtable[[Locus]] <- A.list[['OR']] Final_binned[[Locus]] <- A.list[['table']] AminoAcid.freq[[Locus]] <- A.list[['freq']] }; rm(x) #locus loop cat("\n\n") Out <- list() Out[['AL']] <- do.call(rbind,AAlog) Out[['AB']] <- do.call(rbind,AminoAcid.binned) Out[['AF']] <- do.call(rbind,AminoAcid.freq) Out[['CS']] <- do.call(rbind,overall.chisq) Out[['OR']] <- do.call(rbind,ORtable) Out[['FB']] <- do.call(rbind,Final_binned) if(Output) { ## write to file write.table(Out[['AL']], file = "AA_log.txt", sep="\t", row.names = F, col.names=T, quote = F) write.table(Out[['AF']], file = "AA_freqs.txt", sep="\t", row.names = F, col.names=T, quote = F) write.table(Out[['AB']], file = "AA_binned.txt", sep="\t", row.names = F, col.names=T, quote = F) write.table(Out[['OR']], file = "AA_OR.txt", sep="\t", row.names = F, col.names=T, quote = F) write.table(Out[['CS']], file = "AA_chisq.txt", sep="\t", row.names = F, col.names=T, quote = F) write.table(Out[['FB']], file = "AA_table.txt", sep="\t", row.names = F, col.names=T, quote = F) } cat("> AMINO ACID ANALYSIS COMPLETED\n") if(Verbose){ cat("Significant Amino Acid Position(s):","\n") tmp <- do.call(rbind,overall.chisq); rownames(tmp) <- NULL tmp.sig <- tmp[which(tmp[,'sig']=="*"),]; rownames(tmp.sig) <- NULL if(nrow(tmp.sig)>0) { print(as.data.frame(tmp.sig),row.names=F) } } return(Out) }
/scratch/gouwar.j/cran-all/cranData/BIGDAWG/R/A_wrapper.R
#' BIGDAWG Main Wrapper Function #' #' This is the main wrapper function for each analysis. #' @param Data Name of the genotype data file. #' @param HLA Logical Indicating whether data is HLA class I/II genotyping data only. #' @param Run.Tests Specifics which tests to run. #' @param Loci.Set Input list defining which loci to use for analyses (combinations permitted). #' @param Exon Numeric Exon(s) for targeted amino acid analysis. #' @param All.Pairwise Logical indicating whether all pairwise loci should be analyzed in haplotype analysis. #' @param Trim Logical indicating if HLA alleles should be trimmed to a set resolution. #' @param Res Numeric setting what desired resolution to trim HLA alleles. #' @param EVS.rm Logical indicating if expression variant suffixes should be removed. #' @param Missing Numeric setting allowable missing data for running analysis (may use "ignore"). #' @param Strict.Bin Logical specify if strict rare cell binning should be used in ChiSq test. #' @param Cores.Lim Integer setting the number of cores accessible to BIGDAWG (Windows limit is 1 core). #' @param Results.Dir Optional, string of full path directory name for BIGDAWG output. #' @param Return Logical Should analysis results be returned as list. #' @param Output Logical Should analysis results be written to output directory. #' @param Merge.Output Logical Should analysis results be merged into a single file for easy access. #' @param Verbose Logical Should a summary of each analysis be displayed in console. #' @examples #' \dontrun{ #' ### The following examples use the synthetic data set bundled with BIGDAWG #' #' # Haplotype analysis with no missing genotypes for two loci sets #' # Significant haplotype association with phenotype #' # BIGDAWG(Data="HLA_data", Run.Tests="H", Missing=0, Loci.Set=list(c("DRB1","DQB1"))) #' #' # Hardy-Weinberg and Locus analysis ignoring missing data #' # Significant locus associations with phenotype at all but DQB1 #' # BIGDAWG(Data="HLA_data", Run.Tests="L", Missing="ignore") #' #' # Hardy-Weinberg analysis trimming data to 2-Field resolution with no output to files (console only) #' # Significant locus deviation at DQB1 #' BIGDAWG(Data="HLA_data", Run.Tests="HWE", Trim=TRUE, Res=2, Output=FALSE) #' } BIGDAWG <- function(Data, HLA=TRUE, Run.Tests, Loci.Set, Exon, All.Pairwise=FALSE, Trim=FALSE, Res=2, EVS.rm=FALSE, Missing=2, Strict.Bin=FALSE, Cores.Lim=1L, Results.Dir, Return=FALSE, Output=TRUE, Merge.Output=FALSE, Verbose=TRUE) { options(warn=-1) MainDir <- getwd() on.exit(setwd(MainDir), add = TRUE) # CHECK PARAMETERS if( missing(Data) ) { Err.Log("P.Missing","Data") ; stop("Analysis Stopped.",call.=FALSE) } HLA <- as.logical(HLA) Check.Params(HLA, Loci.Set, Exon, All.Pairwise, Trim, Res, EVS.rm, Missing, Cores.Lim, Return, Output, Merge.Output, Verbose) # MULTICORE LIMITATIONS Cores <- Check.Cores(Cores.Lim,Output) cat(rep("=",40)) cat("\n BIGDAWG: Bridging ImmunoGenomic Data Analysis Workflow Gaps\n") cat(rep("=",40),"\n") cat("\n>>>>>>>>>>>>>>>>>>>>>>>>> BEGIN Analysis <<<<<<<<<<<<<<<<<<<<<<<<<\n\n") # Define Output object BD.out <- list() # ===================================================================================================================================== #### # Read in Data ________________________________________________________________________________________________________________________ #### NAstrings=c("NA","","****","-","na","Na") if(is.character(Data)) { if (Data=="HLA_data") { # Using internal synthetic set Tab <- BIGDAWG::HLA_data Data.Flag <- "Internal Synthetic Data Set" } else { # Read in data file entered as string if(!file.exists(Data)) { Err.Log(Output,"Bad.Filename", Data) ; stop("Analysis stopped.",call.=F) } Tab <- read.table(Data, header = T, sep="\t", stringsAsFactors = F, na.strings=NAstrings, fill=T, comment.char = "#", strip.white=T, blank.lines.skip=T, colClasses="character") Data.Flag <- Data } } else { # Using R object Tab <- Data Data.Flag <- deparse(substitute(Data)) # Convert Empty Cells to NA for ( i in 3:ncol(Tab) ) { putCell <- which( sapply( Tab[,i], nchar )==0 ) if( length(putCell) > 0 ) { Tab[putCell,i] <- NA } } } # Declare Data Input Parameter cat("Data Input:",Data.Flag,"\n\n\n") # Convert GLS data if( ncol(Tab)==3 && !HLA ) { Err.Log(Output,"notHLA.GLS") } if( ncol(Tab)==3 && HLA ) { cat("Converting Gene List Strings to Tabular Format...\n\n") Tab <- GLSconvert(Tab,Convert="GL2Tab",System="HLA",File.Output="R",Strip.Prefix=T,Abs.Fill=T,Cores.Lim=Cores) } # Prep Data for processing and checks Tab <- prepData(Tab) # Define and Change to the required output directory if (Output) { if(missing(Results.Dir)) { OutDir <- paste(MainDir,"/output ",format(Sys.time(), "%d%m%y %H%M%S"),sep="") dir.create(OutDir) } else { OutDir <- Results.Dir } } if(Output) { setwd(OutDir) } # ===================================================================================================================================== #### # Data Processing and Sanity Checks ___________________________________________________________________________________________________ #### cat(">>>> DATA PROCESSING AND CHECKS.\n") #### General processing and checks for all data # Define Data Columns Data.Col <- seq(3,ncol(Tab)) # RUN TESTS DEFINITIONS if ( missing(Run.Tests) ) { Run <- c("HWE","H","L","A") } else { Run <- Run.Tests } if(!HLA) { if("A" %in% Run) { cat("Not HLA data. Skipping Amino Acid Analysis.\n") Run <- Run[-which(Run=="A")] } } # BAD DATA DEFINITIONS - No 1's or 0's if( length(which(Tab[,Data.Col]==0))>0 || length(which(Tab[,Data.Col]==0))>1 ) { Err.Log(Output,"Bad.Data") stop("Analysis Stopped.",call. = F) } # MISSING DATA if(Missing == "ignore") { cat("Ignoring any missing data.\n") Err.Log(Output,"Ignore.Missing") rows.rm <- NULL } else { if (Missing > 2) { if ("H" %in% Run) { Err.Log(Output,"Big.Missing") } } cat("Removing any missing data. This will affect Hardy-Weinberg Equilibrium test.\n") geno.desc <- summaryGeno.2(Tab[,Data.Col], miss.val=NAstrings) test <- geno.desc[,2] + 2*geno.desc[,3] rows.rm <- which(test > Missing) if( length(rows.rm) > 0 ) { rows.rm <- which(test > Missing) ID.rm <- Tab[rows.rm,1] Tab <- Tab[-rows.rm,] if(Output) { write.table(ID.rm, file="Removed_SampleIDs.txt", sep="\t", row.names=F, col.names=F, quote=F) } rm(ID.rm) } rm(geno.desc,test) if(nrow(Tab)==0) { Err.Log(Output,"TooMany.Missing") ; stop("Analysis Stopped.",call. = F) } } # MULTIPLE SETS AND ANALYSIS DUPLICATION if(!missing(Loci.Set)) { if( length(Loci.Set)>1 && (All.Pairwise | "L" %in% Run | "A" %in% Run ) ) { Err.Log(Output,"MultipleSets") } } # DATA MERGE AND NUMBER OF LOCI if(Output && Merge.Output && All.Pairwise) { if(ncol(Tab)>52) { Err.Log(Output,"AllPairwise.Merge") } } ##### HLA specific checks #Check for the updated ExonPtnList 'UpdatePtnList' and use if found. UpdatePtnList <- NULL UPL <- paste(path.package('BIGDAWG'),"/data/UpdatePtnAlign.RData",sep="") if( file.exists(UPL) ) { load(UPL) EPL <- UpdatePtnList rm(UpdatePtnList) UPL.flag=T } else { rm(UpdatePtnList,UPL) EPL <- BIGDAWG::ExonPtnList UPL.flag=F } if(Trim & !HLA) { Err.Log(Output,"NotHLA.Trim") } if(EVS.rm & !HLA) { Err.Log(Output,"NotHLA.EVS.rm") } if(!HLA) { DRBFLAG <- NULL } else { DRB345.test <- length(grep("DRB345",colnames(Tab)))>0 } if(HLA) { if(Trim | EVS.rm | "A" %in% Run | DRB345.test ) { cat("Running HLA specific check functions...\n") } # Check Locus*Allele Formatting across all loci CheckCol <- sum( unlist( apply(Tab[,Data.Col], MARGIN=c(1,2), FUN = function(x) grepl("\\*",na.omit(x))) ) ) TotalCol <- ( dim(Tab[,Data.Col])[1] * dim(Tab[,Data.Col])[2] ) - ( length(which(Tab[,Data.Col]=="^")) + sum(is.na(Tab[,Data.Col])) ) if( CheckCol>0 && CheckCol!=TotalCol ) { Err.Log(Output,"Bad.Format.HLA") stop("Analysis Stopped.",call. = F) } # Separate DRB345 if exists as single column pair and check zygosity if(DRB345.test) { cat("Processing DRB345 column data.\n") DRBFLAG <- T # Expand DRB3/4/5 to separate column pairs Tab <- DRB345.parser(Tab) colnames(Tab) <- sapply(colnames(Tab),FUN=gsub,pattern="\\.1",replacement="") # Redefine Data Columns Data.Col <- seq(3,ncol(Tab)) # Define DR Loci to Process getCol <- grep("DRB",colnames(Tab)) Loci.DR <- unique(colnames(Tab)[getCol]) # Process Loci Tab.list <- lapply(seq_len(nrow(Tab)), FUN=function(z) Tab[z,getCol]) Tab.tmp <- mclapply(Tab.list,FUN=DRB345.Check.Wrapper,Loci.DR=Loci.DR,mc.cores=Cores) Tab.tmp <- do.call(rbind,Tab.tmp) Tab[,getCol] <- Tab.tmp[,grep("DRB",colnames(Tab.tmp))] Tab <- cbind(Tab,Tab.tmp[,'DR.HapFlag']) ; colnames(Tab)[ncol(Tab)] <- "DR.HapFlag" #Identify DR345 flagged haplotypes and Write to File DR.Flags <- Tab[which(Tab[,'DR.HapFlag']!=""),c(1,2,getCol,ncol(Tab))] ; row.names(DR.Flags) <- NULL if(Output) { if(!is.null(DR.Flags)) { Err.Log(Output,"Bad.DRB345.hap") ; cat("\n") write.table(DR.Flags,file="Flagged_DRB345_Haplotypes.txt",sep="\t",quote=F,row.names=F,col.names=T) } } cat("\n") } else { DRBFLAG <- F } # Separate locus and allele names if data is formatted as Loci*Allele Tab[,Data.Col] <- apply(Tab[,Data.Col],MARGIN=c(1,2),FUN=Stripper) # Sanity Check for Resolution if Trim="T" and Trim Data if(Trim & CheckHLA(Tab[,Data.Col])) { cat("--Trimming Data.\n") #Tab.untrim <- Tab Tab[,Data.Col] <- apply(Tab[,Data.Col],MARGIN=c(1,2),GetField,Res=Res) rownames(Tab) <- NULL } else if (Trim) { Err.Log(Output,"Bad.Format.Trim") stop("Analysis Stopped.",call. = F) } # Sanity Check for Expression Variant Suffix Stripping if(EVS.rm & CheckHLA(Tab[,Data.Col])) { cat("--Stripping Expression Variants Suffixes.\n") Tab[,Data.Col] <- apply(Tab[,Data.Col],MARGIN=c(1,2),gsub,pattern="[[:alpha:]]",replacement="") EVS.loci <- as.list(names(EPL)) EPL <- lapply(EVS.loci,EVSremoval,EPList=EPL) names(EPL) <- EVS.loci ; rm(EVS.loci) } else if (EVS.rm) { Err.Log(Output,"Bad.Format.EVS") stop("Analysis Stopped.",call. = F) } # Sanity Check for Amino Acid Test Feasibility if ("A" %in% Run) { cat("Running Amino Acid Analysis specific checks functions...\n") Release <- EPL$Release.Version # Sanity Check for Known HLA loci in Bundled Database Release cat(paste("--Checking loci against database version",Release,".\n",sep="")) test <- CheckLoci(names(EPL),unique(colnames(Tab)[Data.Col])) if( test$Flag ) { Err.Log(Output,"Bad.Locus.HLA",test$Loci) ; stop("Analysis stopped.",call. = F) } # Sanity Check for Known HLA alleles in Bundled Database Release cat(paste("--Checking alleles against database version",Release,".\n",sep="")) test <- CheckAlleles(EPL, Tab[,Data.Col]) if( test$Flag ) { Err.Log(Output,"Bad.Allele.HLA",test$Alleles) ; stop("Analysis stopped.",call. = F) } # Sanity Check for Analysis and HLA Allele Resolution (MUST perform THIS STEP AFTER TRIM!!!!) if(Res<2 | !CheckHLA(Tab[,Data.Col])) { Err.Log(Output,"Low.Res") cat("You have opted to run the amino acid analysis.\n") stop("Analysis stopped.",call. = F) } } # End A if statement } # End HLA if statement and HLA specific functionalities # LOCI SET COLUMN DEFINITIONS # This section MUST follow DRB345 processing (above) on the chance that DRB345 is formatted as single column # and DRB3, DRB4, or DRB5 is defined in Loci.Set. if(missing(Loci.Set)) { Set <- list(Data.Col) } else { Loci.Set <- lapply(Loci.Set,FUN=function(x) sapply(x,toupper)) Set <- lapply(Loci.Set,FUN=function(x) seq(1,ncol(Tab))[colnames(Tab) %in% x]) } # LOCUS SET DEFINED DOES NOT EXIST IN DATA if(!missing(Loci.Set)) { Loci.Set <- unique(unlist(Loci.Set)) Loci.Data <- colnames(Tab)[Data.Col] if ( sum(Loci.Set %in% Loci.Data) != length(Loci.Set) ) { Err.Log(Output,"PhantomSets") ; stop("Analysis Stopped.",call. = F) } } # ===================================================================================================================================== #### # Case-Control Summary ________________________________________________________________________________________________________________ #### cat("\n>>>> CASE - CONTROL SUMMARY STATISTICS\n") #cat(paste(rep("_",50),collapse=""),"\n") if (Trim) { rescall <- paste(Res,"-Field",sep="") } else { rescall <- "Not Defined" } Check <- PreCheck(Tab,colnames(Tab),rescall,HLA,Verbose,Output) if(Output) { write.table(Check,file="Data_Summary.txt",sep=": ",col.names=F,row.names=T,quote=F); rm(Check,rescall) } # ===================================================================================================================================== #### # Write to Parameter File _____________________________________________________________________________________________________________ #### if(Output) { if(HLA && !is.null(DRBFLAG)) { DRB345.tmp <- DRBFLAG } else { DRB345.tmp <- NULL } if(HLA) { Trim.tmp <- Trim } else { Trim.tmp <- NULL } if(HLA && Trim) { Res.tmp <- Res } else { Res.tmp <- NULL } if(HLA) { EVS.rm.tmp <- EVS.rm } else { EVS.rm.tmp <- NULL } if( !missing(Exon) ) { Exon.tmp <- paste(unique(unlist(Exon)),collapse=",") } else { Exon.tmp <- NULL } Params.Run <- list(Time = format(Sys.time(), "%a %b %d %X %Y"), BD.Version = as.character(packageVersion("BIGDAWG")), Cores.Used = Cores, File = Data.Flag, Output.Results = Output, Merge = Merge.Output, Return.Object = Return, Display.Results = Verbose, HLA.Data = HLA, Exon = Exon.tmp, DRB345.Parsed = DRB345.tmp, Tests = paste(Run,collapse=","), All.Pairwise = All.Pairwise, Trim = Trim.tmp, Resolution = Res.tmp, Suffix.Stripping = EVS.rm.tmp, Missing.Allowed = Missing, Strict.Binning = Strict.Bin, Samples.Removed = length(rows.rm)) Params.Run <- do.call(rbind,Params.Run) write.table(Params.Run,file="Run_Parameters.txt",sep=": ", row.names=T, col.names=F, quote=F) } # ===================================================================================================================================== #### # Hardy Weignberg Equilibrium 'HWE' ___________________________________________________________________________________________________ #### if ("HWE" %in% Run) { cat("\n>>>> STARTING HARDY-WEINBERG ANALYSIS...\n") #cat(paste(rep("_",50),collapse=""),"\n") if(HLA && Trim) { cat("HWE performed at user defined resolution.\n") } else if (HLA) { cat("HWE performed at maximum available resolution.\n") } HWE <- HWE.wrapper(Tab,Output,Verbose) BD.out[['HWE']] <- HWE rm(HWE) } #END HARDY-WEINBERG # ===================================================================================================================================== #### # Set Loop Begin (loop through each defined locus/loci set) ___________________________________________________________________________ #### if ( sum( c("H","L","A") %in% Run ) > 0 ) { cat("\n>>>>>>>>>>>>>>>>>>>>>>>>> Begin Locus Sets <<<<<<<<<<<<<<<<<<<<<<<<<\n\n") if(length(Set)==1) { cat("Your analysis has 1 set to analyze.\n") } else { cat(paste("Your analysis has ", length(Set), " sets to analyze.", sep=""),"\n") } for(k in 1:length(Set)) { cat("\n") cat(paste(rep(">",35),collapse=""),"Running Set",k,"\n") cols <- Set[[k]] Tabsub <- Tab[,c(1,2,cols)] #Set Specific Global Variables SID <- Tabsub[,1] # sample IDs genos <- Tabsub[,3:ncol(Tabsub)] # genotypes genos[genos==""] <- NA grp <- Tabsub[, 2] # phenotype #nGrp0 <- length(which(grp==0))*2 #nalleles #nGrp1 <- length(which(grp==1))*2 #nalleles loci <- unique(gsub(".1","",colnames(genos),fixed=T)) # name of loci loci.ColNames <- gsub(".1","",colnames(genos),fixed=T) # column names nloci <- as.numeric(length(loci)) # number of loci SetName <- paste('Set',k,sep="") if(HLA==T) { genos[genos=='^'] <- "00:00" } if(Output) { OutSetDir <- paste(OutDir,"/Set",k,sep="") dir.create(OutSetDir) setwd(OutSetDir) Params.set <- list(Set = paste("Set",k), Loci.Run = paste(loci,collapse=",") ) Params.set <- do.call(rbind,Params.set) write.table(Params.set,file="Set_Parameters.txt",sep=": ", row.names=T, col.names=F, quote=F) } SAFE <- c(ls(),"SAFE") # ===================================================================================================================================== #### # Haplotype Analysis 'H' ______________________________________________________________________________________________________________ #### if ("H" %in% Run) { #cat(paste(rep("_",50),collapse="","\n")) # Sanity check for set length and All.Pairwise=T if (nloci<2) { Err.Log(Output,"Loci.No") stop("Analysis Stopped.", call. = F) } else if (All.Pairwise & nloci<=2) { Err.Log(Output,"Loci.No.AP") stop("Analysis Stopped.", call. = F) } Haps.list <- H.MC.wrapper(SID,Tabsub,loci,loci.ColNames,genos,grp,All.Pairwise,Strict.Bin,Output,Verbose,Cores) if(All.Pairwise) { if(length(BD.out[['H']])>0) { BD.out[['H']] <- c(BD.out[['H']],Haps.list) } else { BD.out[['H']] <- Haps.list } } else { BD.out[['H']][[SetName]] <- Haps.list } rm(list=ls()[!(ls() %in% SAFE)]) } #END HAPLOTYPE # ===================================================================================================================================== #### # Locus Level 'L' _____________________________________________________________________________________________________________________ #### if ("L" %in% Run) { #cat(paste(rep("_",50),collapse="")) L.list <- L.wrapper(nloci,loci,loci.ColNames,genos,grp,Strict.Bin,Output,Verbose) BD.out[['L']][[SetName]] <- list(binned=L.list[['AB']], freq=L.list[['AF']], OR=L.list[['OR']], chisq=L.list[['CS']], table=L.list[['FB']]) rm(list=ls()[!(ls() %in% SAFE)]) } #END LOCUS # ===================================================================================================================================== #### # Amino Acid Level 'A' ________________________________________________________________________________________________________________ #### if(HLA) { if ("A" %in% Run) { #cat(paste(rep("_",50),collapse="")) if(UPL.flag) { cat("Using updated protein exon alignments for amino acid analysis.\n") } A.list <- A.wrapper(loci,loci.ColNames,genos,grp,Exon,EPL,Cores,Strict.Bin,Output,Verbose) if(Output) { ## write to file write.table(Release, file = "Set_Parameters.txt", sep="\t", row.names = F, col.names=F, quote = F, append=T) } BD.out[['A']][[SetName]] <- list(log=A.list[['AL']], binned=A.list[['AB']], freq=A.list[['AF']], OR=A.list[['OR']], chisq=A.list[['CS']], table=A.list[['FB']]) rm(list=ls()[!(ls() %in% SAFE)]) } #END AMINO ACID }#END if(HLA) # ===================================================================================================================================== #### # End Analyses ________________________________________________________________________________________________________________________ #### }; rm(k) }# END SET LOOP if(Output) { if(Merge.Output) { cat("\nMerging data files ...\n") if("HWE" %in% Run) { Run <- Run[-which(Run=="HWE")] } if( length(Run)>=1 ) { MergeData_Output(BD.out,Run,OutDir) } } } # ===================================================================================================================================== #### cat("\n>>>>>>>>>>>>>>>>>>>>>>>>>> End Analysis <<<<<<<<<<<<<<<<<<<<<<<<<<\n") if(Output) { setwd(OutDir); save(BD.out, file="Analysis.RData") } options(warn=0) if(Return) { return(BD.out) } }# END FUNCTION
/scratch/gouwar.j/cran-all/cranData/BIGDAWG/R/BIGDAWG.R
#' DRB345 Column Processing #' #' Separates DRB345 column pair into separate columns for each locus #' @param Tab Data frame of sampleIDs, phenotypes, and genotypes #' @note This function is for internal BIGDAWG use only. DRB345.parser <- function(Tab) { #Tab Dataset Data-frame getCol <- grep("DRB345",colnames(Tab)) df <- matrix(data="^",nrow=nrow(Tab),ncol=6) colnames(df) <- c("DRB3","DRB3.1","DRB4","DRB4.1","DRB5","DRB5.1") tmp.1 <- sapply(Tab[,getCol[1]],FUN=GetField,Res=1) ; tmp.2 <- sapply(Tab[,getCol[2]],FUN=GetField,Res=1) tmp <- list() # DRB3 tmp[[1]] <- unlist(grep("DRB3",Tab[,getCol[1]])) ; tmp[[2]] <- unlist(grep("DRB3",Tab[,getCol[2]])) df[tmp[[1]],1] <- Tab[tmp[[1]],getCol[1]] ; df[tmp[[2]],2] <- Tab[tmp[[2]],getCol[2]] df[setdiff(1:nrow(df),tmp[[1]]),1] <- "DRB3*^" ; df[setdiff(1:nrow(df),tmp[[2]]),2] <- "DRB3*^" df[which(tmp.1=="00"),1] <- paste("DRB3*",Tab[which(tmp.1=="00"),getCol[1]],sep="") df[which(tmp.2=="00"),2] <- paste("DRB3*",Tab[which(tmp.2=="00"),getCol[2]],sep="") tmp <- list() # DRB4 tmp[[1]] <- unlist(grep("DRB4",Tab[,getCol[1]])) ; tmp[[2]] <- unlist(grep("DRB4",Tab[,getCol[2]])) df[tmp[[1]],3] <- Tab[tmp[[1]],getCol[1]] ; df[tmp[[2]],4] <- Tab[tmp[[2]],getCol[2]] df[setdiff(1:nrow(df),tmp[[1]]),3] <- "DRB4*^" ; df[setdiff(1:nrow(df),tmp[[2]]),4] <- "DRB4*^" df[which(tmp.1=="00"),3] <- paste("DRB4*",Tab[which(tmp.1=="00"),getCol[1]],sep="") df[which(tmp.2=="00"),4] <- paste("DRB4*",Tab[which(tmp.2=="00"),getCol[2]],sep="") tmp <- list() # DRB5 tmp[[1]] <- unlist(grep("DRB5",Tab[,getCol[1]])) ; tmp[[2]] <- unlist(grep("DRB5",Tab[,getCol[2]])) df[tmp[[1]],5] <- Tab[tmp[[1]],getCol[1]] ; df[tmp[[2]],6] <- Tab[tmp[[2]],getCol[2]] df[setdiff(1:nrow(df),tmp[[1]]),5] <- "DRB5*^" ; df[setdiff(1:nrow(df),tmp[[2]]),6] <- "DRB5*^" df[which(tmp.1=="00"),5] <- paste("DRB5*",Tab[which(tmp.1=="00"),getCol[1]],sep="") df[which(tmp.2=="00"),6] <- paste("DRB5*",Tab[which(tmp.2=="00"),getCol[2]],sep="") # NA's df[is.na(Tab[,getCol[1]]),] <- NA ; df[is.na(Tab[,getCol[2]]),] <- NA Tab.sub <- Tab[,-getCol] Tab <- cbind(Tab.sub,df) return(Tab) } #' DRB345 haplotype zygosity wrapper #' #' Checks DR haplotypes for correct zygosity and flags unanticipated haplotypes #' @param Genotype Row of data set data frame following DRB345 parsing #' @param Loci.DR DRBx Loci of interest to test for consistency #' @note This function is for internal use only. DRB345.Check.Wrapper <- function(Genotype,Loci.DR) { # Set non-DRB1 Loci Loci.DR <- Loci.DR[-grep("DRB1",Loci.DR)] # Substitute ^ for 00:00 Genotype[] <- sapply(Genotype,as.character) if( sum(grepl("\\^",Genotype)) > 0 ) { Genotype[] <- gsub("\\^","00:00",Genotype) ; Fill.Flag <- T } else { Fill.Flag <- F } # Apply Function to each DRBx Locus tmp <- lapply(Loci.DR,FUN=DRB345.Check.Zygosity,Genotype=Genotype) tmp.calls <- lapply( seq(length(tmp)), FUN = function(i) cbind(tmp[[i]]['Locus_1'], tmp[[i]]['Locus_2']) ) Genotype[,!grepl("DRB1",colnames(Genotype))] <- do.call(cbind, tmp.calls) if( Fill.Flag ) { Genotype[] <- gsub("00:00","^",Genotype) } DR.HapFlag <- unlist(lapply(tmp,'[','Flag')) DR.HapFlag <-paste(DR.HapFlag[which(DR.HapFlag!="")],collapse=",") Genotype <- cbind(Genotype,DR.HapFlag) return(Genotype) } #' DRB345 haplotype zygosity checker single locus #' #' Checks DR haplotypes for correct zygosity and flags unanticipated haplotypes for a single DRBx #' @param Locus Locus of interest to test for consistency #' @param Genotype Row of data set data frame following DRB345 parsing #' @note This function is for internal use only. DRB345.Check.Zygosity <- function(Locus,Genotype) { # Remove Abs Strings Genotype <- Filler(Genotype,Type="Remove") ; Genotype <- Genotype[which(Genotype!="")] ; Genotype <- Genotype[which(Genotype!="")] DR.out <- data.frame(Locus_1=character(), Locus_2=character(), DR.HapFlag=character(), stringsAsFactors=F) Abs <- paste(Locus,"*00:00",sep="") DR.Locus <- gsub("HLA-","",Locus) ; DR.Calls <- gsub("HLA-","",Genotype) DR.Calls <- sapply(DR.Calls,FUN=GetField,Res=1) # get 1 Field Resolution for Genotype Calls names(DR.Calls) <- NULL ; Flag <- NULL #DRB1 - get expected DRB3/4/5 genotypes DR345.Exp.Calls <- DRB345.Exp(DR.Calls[grep("DRB1",DR.Calls)]) #DRB345 Check getDRB345 <- grep(DR.Locus,DR.Calls) ; DR.obs <- length(getDRB345) ; DR.exp <- sum(grepl(DR.Locus,DR345.Exp.Calls)) # Assign Genotypes if( DR.obs != DR.exp ) { # Inconsistent Genotype Possibilities if ( DR.obs==0 && DR.exp>=1 ) { # Missing Allele DR.out[1, 'Locus_1'] <- Abs ; DR.out[1, 'Locus_2'] <- Abs ; DR.out[1, 'Flag'] <- paste(Locus,"_M",sep="") } else if ( DR.obs >=1 && DR.exp==0 ) { # Extra Allele DR.out[1, 'Locus_1'] <- Genotype[getDRB345[1]] ; DR.out[1, 'Locus_2'] <- Abs ; DR.out[1, 'Flag'] <- paste(Locus,"_P",sep="") } else if( DR.obs==1 && DR.exp==2 ) { # Presumed Homozygote Missing Allele DR.out[1, 'Locus_1'] <- Genotype[getDRB345[1]] ; DR.out[1, 'Locus_2'] <- Genotype[getDRB345[1]] ; DR.out[1, 'Flag'] <- "" } else if( DR.obs==2 && DR.exp==1 ) { if( Genotype[getDRB345[1]] == Genotype[getDRB345[2]] ) { # Extra Allele ... False Homozygote Assumption DR.out[1, 'Locus_1'] <- Genotype[getDRB345[1]] ; DR.out[1, 'Locus_2'] <- Abs ; DR.out[1, 'Flag'] <- "" } else { # Extra Allele Present DR.out[1, 'Locus_1'] <- Genotype[getDRB345[1]] ; DR.out[1, 'Locus_2'] <-Genotype[getDRB345[2]] ; DR.out[1, 'Flag'] <- paste(Locus,"_P",sep="") } } } else { DR.out[1, 'Flag'] <- "" # Consistent Genotype if( DR.obs==0 ) { DR.out[1, 'Locus_1'] <-Abs ; DR.out[1, 'Locus_2'] <- Abs } else if( DR.obs==1 ) { DR.out[1, 'Locus_1'] <- Genotype[getDRB345[1]] ; DR.out[1, 'Locus_2'] <- Abs } else if ( DR.obs==2 ) { DR.out[1, 'Locus_1'] <- Genotype[getDRB345[1]] ; DR.out[1, 'Locus_2'] <- Genotype[getDRB345[2]] } } # Return Result return(DR.out) } #' DRB345 Expected #' #' Checks DRB1 Genotype and Returns Expected DR345 Loci #' @param DRB1.Genotype DRB1 Subject Genotypes #' @note This function is for internal use only. DRB345.Exp <- function(DRB1.Genotype) { #Checks for and fixes certain DRB345 errors that are consistent with known DR haplotypes Rules <- list("DRB1*01"="","DRB1*10"="","DRB1*08"="", "DRB1*03"="DRB3","DRB1*11"="DRB3","DRB1*12"="DRB3","DRB1*13"="DRB3","DRB1*14"="DRB3", "DRB1*04"="DRB4","DRB1*07"="DRB4","DRB1*09"="DRB4", "DRB1*15"="DRB5","DRB1*16"="DRB5") DRB1.Genotype <- gsub("HLA-","",DRB1.Genotype) DRB1.Genotype <- sapply(DRB1.Genotype,FUN=GetField,Res=1) # Allele 1 DRB1.1 <- DRB1.Genotype[1] DR.Gtype <- as.character(Rules[DRB1.1]) # Allele 2 if(length(DRB1.Genotype)==1) { #Consider Homozygote DRB1.2 <- DRB1.Genotype[1] } else { DRB1.2 <- DRB1.Genotype[2] } DR.Gtype <- c(DR.Gtype,as.character(Rules[DRB1.2])) DR.Gtype <- DR.Gtype[which(DR.Gtype!="")] if(length(DR.Gtype)>0) { DR.Gtype <- paste("HLA-",DR.Gtype,sep="") } return(DR.Gtype) }
/scratch/gouwar.j/cran-all/cranData/BIGDAWG/R/DRB_Parser.R
#' Error Code Display and Logging #' #' Displays error codes attributable to data formatting and Locus/Allele naming. Writes to log file. #' @param Output Logical indicating if Error logging should be written to a file. #' @param x Log Code. #' @param y Misc information relevant to error. #' @param z Misc information relevant to error. #' @note This function is for internal BIGDAWG use only. Err.Log <- function (Output, x, y=NULL, z=NULL) { cat("*****ERROR!******\n") switch(x, #Parameters P.Missing = { Error <- paste("\nNo ",y," specified. This parameter is not optional. Please see vignette.",sep="") }, P.Error = { Error <- paste("\nInvalid ",y," parameter. Please see vignette.",sep="") }, Windows.Cores = { Error <- "\nYou have exceed the maximum allowable cores for Windows. Please see vignette." }, #Formatting Bad.Data = { Error <- "\nYou seem to have subject data that are 0's or 1's, replace these with another value. Please see vignette." }, Bad.DRB345.hap = { Error <- "\nWe have encountered unanticipated DR haplotypes. Please see the 'Flagged_DRB345_Haplotypes.txt' output file." }, Uneven.Prefix = { Error <- "\nIt seems some (not all) of your loci are formatted as Locus*Allele. Please ensure all loci share a similar format." }, Bad.Format.HLA = { Error <- "\nYour HLA data includes Locus*Allele genotype formatting. Please ensure all genotypes follow this format." }, Bad.Format.Trim = { Error <- "\nYour HLA data does not appear to be formatted properly for trimming. Please see vignette." }, Bad.Format.EVS = { Error <- "\nYour HLA data does not appear to be formatted properly for EVS stripping. Please see vignette." }, Case.Con = { Error <- "\nYour data does not appear to contain both cases and controls. Please see vignette." }, Loci.No = { Error <- "\nYou have opted to run the haplotype analysis with too few loci. Please check Set definitions." }, Loci.No.AP = { Error <- "\nYou have set All.Pairwise to 'True' but one or more your defined locus sets contain too few loci. Please check Set definitions." }, Low.Res = { Error <- "\nThe resolution of your HLA data is less than 2 or does not appear to be formatted properly. Please see vignette." }, High.Res = { Error <- "\nYour HLA does not appear to be formatted properly, >4 fields detected. Please see vignette" }, #Names Bad.Filename = { Error <- paste("\nBIGDAWG could not locate a file labeled: ",y," in the specificied working directory.",sep="") }, Bad.Locus.NA = { Error <- "\nYou seem to have specified a locus in the Loci.Set that is not present in your data file." }, Bad.Locus.HLA = { Error <- paste("\nThere may be a discrepancy with HLA loci names. Unrecognized locus name(s) encountered: ",y,".",sep="") }, Bad.Allele.HLA = { Error <- paste("\nThere may be a discrepancy with allele names. Unrecognized allele name(s) encountered: ",y,".",sep="") }, #Other PhantomSets = { Error <- "\nYou have defined a locus set (Loci.Set) that does not exist in the sample data. Please check the defined locus set." }, MultipleSets = { Error <- "\nWARNING!!! You have opted to run multiple sets with overlapping loci. To avoid duplication of effort and results from the all pairwise haplotype tests, the locus test, and/or the amino acid test(!!!), it is suggested you run these tests separately on either the largest loci set possible or all loci in a given data set." }, No.Internet = { Error <- "\nYou do not seem to be connected to the internet. CheckRelease() or UpdateRelease() cannot proceed." }, TooMany.Missing = { Error <- "\nYour data is missing too many values at each locus. Try using Missing='ignore' when running BIGDAWG and avoid haplotype test." }, #Notifications Ignore.Missing = { Error <- "\nConsider setting a missing threshold or running without the haplotype ('H') analysis. A large number of missing data in the haplotype analysis will affect performance, require large amounts of RAM, cause long wait times, and in the worst case crash your computer." }, Big.Missing = { Error <- "\nThe number of allowable missing will affect performance.\nConsider running with a smaller 'Missing' value or without the haplotype ('H') analysis.\ncontinuing......" }, AllPairwise.Merge = { Error <- "\nYou have opted to run all pairwise combinations and merge the final data tables. For a large number of loci, this could take a long time. You have been warned!" }, NotHLA.Trim = { Error <- "\nTrimming only relevant to HLA data, no trimming performed." }, NotHLA.EVS.rm = { Error <- "\nExpression variant suffix stripping only relevant to HLA data, no stripping performed." }, Exon = { Error <- paste("\n You have defined an exon that does not exist in locus ",y,". Please adjust exons or loci.set.",sep="") }, #GLS Notifications Tab.Format = { Error <- "\nThe conversion tool encountered GL string delimiters. This isn't valid data for Tab2GL converion. Please see vignette." }, GL.Format = { Error <- "\nYour GL strings may not be properly formatted. Please see vignette." }, File.Error = { Error <- paste("\nThe conversion tool could not locate a file labeled ",y," in the specified working directory.",sep="") }, GTYPE.Amb = { Error <- paste("\nThis appears to contain genotype list piping ('|') for genotype ambiguity strings (data rows: ",y,"). This is not supported in GLSconversion.",sep="") }, Table.Col = { Error <- "\nThe table for Tab2GL conversion is not properly formatted, too few columns. Please see vignette." }, Table.Pairs = { Error <- "\nThe table for Tab2GL conversion is not properly formatted, no locus column pairs encountered. Please see vignette." }, Table.Amb = { Error <- "\nYour data has duplicate identifying information rows, perhaps due to data genotype ambiguity." }, Locus.MultiField = { Error <- paste("\nYour GL string may be invalid. A locus cannot appear in multiple gene fields! ",z,ifelse(grepl(",",z)," appear"," appears")," in multiple fields of the GL string: ", y, ". Please see vignette.",sep="") }, Allele.Amb.Format = { Error <- paste("\nYour GL string may be invalid. The ambiguous allele ",y," is not properly formatted. Please see vignette.", sep="") }, notHLA.GLS = { Error <- paste("\nYou may want GLS conversion for non-HLA data. Currently, BIGDAWG only supports HLA for automatic GLS conversion. Please see vignette.", sep="") } ) cat(Error,"\n",file=stderr()) if(Output) { write.table(Error,file="Error_Log.txt",sep="\t",quote=F,col.names=F,row.names=F,append=T) } }
/scratch/gouwar.j/cran-all/cranData/BIGDAWG/R/ErrLog.R
#' Genotype List String to Tabular Data Conversion #' #' Expands GL strings to columns of adjacent locus pairs. #' @param df Data frame containing GL strings #' @param System Character Genetic system HLA or KIR #' @param Strip.Prefix Logical Should System/Locus prefixes be stripped from table data. #' @param Abs.Fill Logical Should absent loci special designations be used. #' @param Cores Integer How many cores can be used #' @note This function is for internal use only GL2Tab.wrapper <- function(df,System,Strip.Prefix,Abs.Fill,Cores) { # Data column LastCol <- ncol(df) MiscCol <- seq(1,ncol(df)-1) # Remove empty data rows df <- na.omit(df) rmRows <- which(nchar(df[,LastCol])==0) if( length(rmRows)!=0 ) { df <- df[-rmRows,] } # Run Conversion df.list <- strsplit(df[,LastCol],"\\^") Tab <- parallel::mclapply(df.list,FUN=GL2Tab.Sub,System=System,mc.cores=Cores) Loci <- sort(unique(gsub("_1|_2","",unlist(lapply(Tab,colnames))))) if( sum(grepl('DR.HapFlag',Loci)) > 0 ) { Loci <- Loci[-grep('DR.HapFlag',Loci)] } Order <- Build.Matrix(System,Loci) Tab <- parallel::mclapply(Tab,FUN=Format.Tab,Order=Order,mc.cores=Cores) Tab <- do.call(rbind,Tab) Tab[Tab==0] <- "" Tab[grepl("\\^",Tab)] <- "" # Pad Absent Calls for DRBx? if( System=="HLA-") { getCol <- grep("DRB3|DRB4|DRB5",colnames(Tab)) if(length(getCol)>0) { if(Abs.Fill) { Tab[,getCol] <- sapply(getCol,FUN=function(i) Filler(Tab[,i], colnames(Tab)[i], Type="Fill")) } else { Tab[,getCol] <- sapply(getCol,FUN=function(i) Filler(Tab[,i], Type="Remove")) } } } # Strip Prefixes? if(Strip.Prefix) { Tab[,seq(1,ncol(Tab)-1)] <- apply(Tab[,seq(1,ncol(Tab)-1)],MARGIN=c(1,2),FUN=Stripper) } # Final Table with Misc Information Appended Tab <- cbind(df[,MiscCol],Tab) return(Tab) } #' Genotype List String Expander #' #' Expands GL string into a table of adjacent loci #' @param x Character GL string to expand #' @param System Character Genetic system HLA or KIR #' @note This function is for internal use only. GL2Tab.Sub <- function(x,System) { # Break GL String and Remove Any Absent Call Type Strings (00:00) Calls <- unlist(sapply(x,FUN=function(x) strsplit(x,"\\+"))) ; names(Calls) <- NULL # Check GL String For Locus*Allele/Locus*Allele Ambiguity Formatting invisible(sapply(Calls,CheckString.Allele)) # Collapse Ambiguous allele names to remove locus prefix if( sum(grepl("/",Calls)>0 ) ) { Calls <- unlist(lapply(Calls,Format.Allele,Type="off")) } # Get loci and initialize table Loci <- unique(unlist(lapply(strsplit(Calls,"\\*"),"[",1))) if(System=="HLA-") { if( sum(grepl("DRB1",Loci))>0 ) { Loci <- c(Loci,DRB345.Exp(Calls[grep("DRB1",Calls)])) } Loci <- unique(Loci) } Tab <- Build.Matrix(System,Loci) # Check GL String For Locus^Gene Field Consistency invisible(CheckString.Locus(x,Loci)) # Populate table tmp <- lapply(Loci,GL2Tab.Loci,Genotype=Calls,System=System) tmp.calls <- lapply( seq(length(tmp)), FUN = function(i) cbind(tmp[[i]]['Locus_1'], tmp[[i]]['Locus_2']) ) tmp.calls <- do.call(cbind, tmp.calls) DR.HapFlag <- unlist(lapply(tmp,'[','DR.HapFlag')) DR.HapFlag <-paste(DR.HapFlag[which(DR.HapFlag!="")],collapse=",") Tab[1,] <- cbind(tmp.calls,DR.HapFlag) return(Tab) } #' Locus Ordering for GL2Tab #' #' Orders Locus Calls #' @param Locus Locus to condense #' @param Genotype Row of loci to condense #' @param System Character Genetic system HLA or KIR #' @note This function is for internal use only. GL2Tab.Loci <- function(Locus,Genotype,System) { Alleles <- Genotype[grep(Locus,Genotype)] if( length(Alleles) == 1 && System=="HLA-" ) { if( Locus!="HLA-DRB3" || Locus!="HLA-DRB4" || Locus!="HLA-DRB5" ) { # Homozygous Assumption for HLA non-DRB345 Alleles <- c(Alleles,Alleles) } } else if ( length(Alleles) == 1 ) { Alleles <- c(Alleles,"") } else if ( length(Alleles) == 0 ) { Alleles <- c("","") } names(Alleles) <- c('Locus_1','Locus_2') if(System=="HLA-") { if(Locus=="HLA-DRB3" || Locus=="HLA-DRB4" || Locus=="HLA-DRB5") { if( sum(grepl("DRB1",Genotype))>0 ) { # Assumptions for DRB345 DRB.GTYPE <- DRB345.Check.Zygosity(Locus,Genotype[grep("DRB",Genotype)]) DRB.GTYPE[1,grepl("\\^",DRB.GTYPE)] <- "" Alleles[] <- c(DRB.GTYPE[,'Locus_1'],DRB.GTYPE[,'Locus_2']) # for inconsistent DR haplotypes DRB345.Flag <- DRB.GTYPE[,'Flag'] } else { # No DRB1 but DBR345 (ZYgosity Check Not Determined) DRB345.Flag <- "DRB345_ND" } # fi DRB1 } else { DRB345.Flag <- NULL } # fi DRB345 } # fi HLA if(System=="HLA-") { DR.HapFlag <- ifelse(!is.null(DRB345.Flag), paste(unlist(DRB345.Flag),collapse=",") , "") Out <- c(Alleles,DR.HapFlag) names(Out)[length(Out)] <- "DR.HapFlag" } else { Out <- Alleles } return(Out) }
/scratch/gouwar.j/cran-all/cranData/BIGDAWG/R/GL2TAB.R
#' Genotype List String Conversion #' #' Main Workhorse wrapper for cross converting columnar table to GL string representaion. #' @param Data String File name or R Data Frame. #' @param Convert String Direction for conversion. #' @param File.Output String Type of File.Output. #' @param System String Genetic system (HLA or KIR) of the data being converted #' @param HZY.Red Logical Reduction of homozygote genotypes to single allele. #' @param DRB345.Check Logical Check DR haplotypes for consistency and flag unusual haplotypes. #' @param Strip.Prefix Logical Should System/Locus prefixes be stripped from table data. #' @param Abs.Fill Logical Should absent loci special designations be used. #' @param Cores.Lim Integer How many cores can be used. GLSconvert <- function(Data,Convert,File.Output="txt",System="HLA",HZY.Red=FALSE,DRB345.Check=FALSE,Strip.Prefix=TRUE,Abs.Fill=FALSE,Cores.Lim=1L) { # Check Parameters if( missing(Data) ) { Err.Log(FALSE,"P.Missing","Data") ; stop("Conversion Stopped.",call.=FALSE) } if( missing(Convert) ) { Err.Log(FALSE,"P.Missing","Convert") ; stop("Conversion Stopped.",call.=FALSE) } Check.Params.GLS(Convert,File.Output,System,HZY.Red,DRB345.Check,Cores.Lim) # MultiCore Limitations Cores <- Check.Cores(Cores.Lim,FALSE) # Set nomenclature system and Prefix stripping for pypop output if( System == "HLA" ) { System <- "HLA-" } if( File.Output == "pypop" ) { Strip.Prefix <- TRUE } # Read in Data and Set File.Output File Name if( is.character(Data) ) { if( file.exists(Data) ) { df <- read.table(file=Data,header=T,sep="\t", stringsAsFactors=FALSE, fill=T, comment.char = "#", strip.white=T, blank.lines.skip=T, colClasses="character") colnames(df) <- gsub("HLA.","HLA-",colnames(df)) fileName <- getFileName(Data) } else { Err.Log(FALSE,"File.Error",Data) ; stop("Conversion Stopped.",call.=FALSE) } } else { df <- Data ; fileName <- "Converted" } df[] <- lapply(df, as.character) df[is.na(df)] <- "" # Check Data Structure/Formatting Check.Data(df,System,Convert) # Run Data Conversion switch(Convert, GL2Tab = { data.out <- GL2Tab.wrapper(df,System,Strip.Prefix,Abs.Fill,Cores) } , Tab2GL = { data.out <- Tab2GL.wrapper(df,System,HZY.Red,Abs.Fill,Cores) } ) # Output DR.HapFlag for HLA data if( System=="HLA-" && !DRB345.Check ) { data.out <- data.out[,-grep('DR.HapFlag',colnames(data.out))] } # File Name Ouput Options switch(File.Output, txt = { fileName <- paste(fileName,".txt",sep="") }, csv = { fileName <- paste(fileName,".csv",sep="") }, pypop = { fileName <- paste(fileName,".pop",sep="") } ) # File.Output Final Converted File switch(File.Output, R = return(data.out), txt = write.table(data.out,file=fileName,sep="\t",quote=F,col.names=T,row.names=F), csv = write.csv(data.out,file=fileName,quote=F,col.names=T,row.names=F), pypop = write.table(data.out,file=fileName,sep="\t",quote=F,col.names=T,row.names=F) ) }
/scratch/gouwar.j/cran-all/cranData/BIGDAWG/R/GLSconvert.R
#' Hardy Weinbergy Equilibrium Function #' #' This is the main function for the HWE analysis. #' @param Tab data frame of genotype files post processing. #' @note This function is for internal BIGDAWG use only. HWE <- function(Tab) { HWE.out <- list() All.ColNames <- colnames(Tab) loci <- as.list(unique(All.ColNames[3:length(All.ColNames)])) nloci <- length(loci) #HWE Controls / Group 0 genos.sub <- Tab[which(Tab[,2]==0),3:ncol(Tab)] HWE.out[["controls"]] <- HWE.ChiSq(genos.sub,loci,nloci) #HWE Cases / Group 1 genos.sub <- Tab[which(Tab[,2]==1),3:ncol(Tab)] HWE.out[["cases"]] <- HWE.ChiSq(genos.sub,loci,nloci) return(HWE.out) }
/scratch/gouwar.j/cran-all/cranData/BIGDAWG/R/HWE.R