content
stringlengths
0
14.9M
filename
stringlengths
44
136
dBellB<-function (x, a, b, k, lambda, log = FALSE) { G=(1-((1+(x/a)^b))^(-k)) g=k*((1+(x/a)^b))^(-k-1) *b*x^(b-1)*a^(-b) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dBellB.R
dBellBX<-function (x, a,lambda, log = FALSE) { G=(1-exp(-x^2))^a g=2*a*x*exp(-x^2)*(1-exp(-x^2))^(a-1) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dBellBX.R
dBellE<-function (x, alpha,lambda, log = FALSE) { G=(1-exp(-alpha*x)) g=alpha*exp(-alpha*x) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dBellE.R
dBellEE<-function (x, alpha,beta,lambda, log = FALSE) { G=(1-exp(-alpha*x))^beta g=alpha*exp(-alpha*x)*beta*(1-exp(-alpha*x))^(beta-1) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dBellEE.R
dBellEW<-function (x, alpha, beta, theta, lambda, log = FALSE) { G=(1-exp(-alpha*x^(beta)))^theta g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta)*theta*(1-exp(-alpha*x^(beta)))^(theta-1) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dBellEW.R
dBellF<-function (x, a, b, lambda, log = FALSE) { G=(1-((1+(x/a)^b))^(-1)) g=((1+(x/a)^b))^(-2) *b*x^(b-1)*a^(-b) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dBellF.R
dBellL<-function (x, b, q, lambda, log = FALSE) { G=(1-((1+(x/b)))^(-q)) g=(q/b)*(1+(x/b))^(-q-1) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dBellL.R
dBellW<-function (x, alpha,beta,lambda, log = FALSE) { G=(1-exp(-alpha*x^beta)) g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dBellW.R
dCBellB<-function (x, a, b, k, lambda, log = FALSE) { G=(1-((1+(x/a)^b))^(-k)) g=k*((1+(x/a)^b))^(-k-1) *b*x^(b-1)*a^(-b) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dCBellB.R
dCBellE<-function (x, alpha,lambda, log = FALSE) { G=(1-exp(-alpha*x)) g=alpha*exp(-alpha*x) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dCBellE.R
dCBellEE<-function (x, alpha,beta,lambda, log = FALSE) { G=(1-exp(-alpha*x))^beta g=alpha*exp(-alpha*x)*beta*(1-exp(-alpha*x))^(beta-1) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dCBellEE.R
dCBellEW<-function (x, alpha,beta,theta,lambda, log = FALSE) { G=(1-exp(-alpha*x^(beta)))^theta g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta)*theta*(1-exp(-alpha*x^(beta)))^(theta-1) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dCBellEW.R
dCBellF<-function (x, a, b, lambda, log = FALSE) { G=(1-((1+(x/a)^b))^(-1)) g=((1+(x/a)^b))^(-2) *b*x^(b-1)*a^(-b) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dCBellF.R
dCBellL<-function (x, b, q, lambda, log = FALSE) { G=(1-((1+(x/b)))^(-q)) g=(q/b)*(1+(x/b))^(-q-1) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dCBellL.R
dCBellW<-function (x, alpha,beta,lambda, log = FALSE) { G=(1-exp(-alpha*x^beta)) g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dCBellW.R
dCBellBX<-function (x, a,lambda, log = FALSE) { G=(1-exp(-x^2))^a g=2*a*x*exp(-x^2)*(1-exp(-x^2))^(a-1) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) return(pdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/dcBellBX.R
hBellB<-function (x, a, b, k, lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-((1+(x/a)^b))^(-k)) g=k*((1+(x/a)^b))^(-k-1) *b*x^(b-1)*a^(-b) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hBellB.R
hBellBX<-function (x, a,lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-x^2))^a g=2*a*x*exp(-x^2)*(1-exp(-x^2))^(a-1) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hBellBX.R
hBellE<-function (x, alpha,lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x)) g=alpha*exp(-alpha*x) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hBellE.R
hBellEE<-function (x, alpha, beta, lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x))^beta g=alpha*exp(-alpha*x)*beta*(1-exp(-alpha*x))^(beta-1) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hBellEE.R
hBellEW<-function (x, alpha, beta, theta, lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x^(beta)))^theta g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta)*theta*(1-exp(-alpha*x^(beta)))^(theta-1) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hBellEW.R
hBellF<-function (x, a, b, lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-((1+(x/a)^b))^(-1)) g=((1+(x/a)^b))^(-2) *b*x^(b-1)*a^(-b) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hBellF.R
hBellL<-function (x, b, q, lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-((1+(x/b)))^(-q)) g=(q/b)*(1+(x/b))^(-q-1) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hBellL.R
hBellW<-function (x, alpha, beta, lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x^beta)) g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta) pdf <- x pdf[log == FALSE] <-lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) pdf[log == TRUE] <-log(lambda)+log(g)+(lambda*(1-G))-exp(lambda)*(1-exp(-lambda*G))-log((1-(exp(-exp(lambda)+1)))) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hBellW.R
hCBellB<-function (x, a, b, k, lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-((1+(x/a)^b))^(-k)) g=k*((1+(x/a)^b))^(-k-1) *b*x^(b-1)*a^(-b) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hCBellB.R
hCBellBX<-function (x, a,lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-x^2))^a g=2*a*x*exp(-x^2)*(1-exp(-x^2))^(a-1) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hCBellBX.R
hCBellE<-function (x, alpha,lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x)) g=alpha*exp(-alpha*x) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hCBellE.R
hCBellEE<-function (x, alpha, beta, lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x))^beta g=alpha*exp(-alpha*x)*beta*(1-exp(-alpha*x))^(beta-1) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hCBellEE.R
hCBellEW<-function (x, alpha, beta, theta, lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x^(beta)))^theta g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta)*theta*(1-exp(-alpha*x^(beta)))^(theta-1) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hCBellEW.R
hCBellF<-function (x, a, b, lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-((1+(x/a)^b))^(-1)) g=((1+(x/a)^b))^(-2) *b*x^(b-1)*a^(-b) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hCBellF.R
hCBellL<-function (x, b, q, lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-((1+(x/b)))^(-q)) g=(q/b)*(1+(x/b))^(-q-1) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hCBellL.R
hCBellW<-function (x, alpha, beta, lambda, log = FALSE,log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x^beta)) g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta) pdf <- x pdf[log == FALSE] <- lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) pdf[log == TRUE] <- log(lambda)+log(g)+(lambda*G)+(exp(lambda*G)-1)-log((exp(exp(lambda)-1)-1)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) hrf<-pdf/(1-cdf) return(hrf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/hCBellW.R
#' @export #' @import AdequacyModel #' @import graphics mBellB<-function (x, a, b, k, lambda, method="B") { pdf_BellB<-function(par,x){ a=par[1] b=par[2] k=par[3] lambda=par[4] G=(1-((1+(x/a)^b))^(-k)) g=k*((1+(x/a)^b))^(-k-1) *b*x^(b-1)*a^(-b) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(f) } cdf_BellB<-function(par,x){ a=par[1] b=par[2] k=par[3] lambda=par[4] G=(1-((1+(x/a)^b))^(-k)) g=k*((1+(x/a)^b))^(-k-1) *b*x^(b-1)*a^(-b) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_BellB, cdf = cdf_BellB, starts = c(a, b, k, lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mBellB.R
#' @export #' @import AdequacyModel #' @import graphics mBellBX<-function (x, a,lambda, method="B") { pdf_BellBX<-function(par,x){ a=par[1] lambda=par[2] G=(1-exp(-x^2))^a g=2*a*x*exp(-x^2)*(1-exp(-x^2))^(a-1) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(f) } cdf_BellBX<-function(par,x){ a=par[1] lambda=par[2] G=(1-exp(-x^2))^a g=2*a*x*exp(-x^2)*(1-exp(-x^2))^(a-1) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_BellBX, cdf = cdf_BellBX, starts = c(a,lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mBellBX.R
#' @export #' @import AdequacyModel #' @import graphics mBellE<-function (x, alpha,lambda, method="B") { pdf_BellE<-function(par,x){ alpha=par[1] lambda=par[2] G=(1-exp(-alpha*x)) g=alpha*exp(-alpha*x) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(f) } cdf_BellE<-function(par,x){ alpha=par[1] lambda=par[2] G=(1-exp(-alpha*x)) g=alpha*exp(-alpha*x) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_BellE, cdf = cdf_BellE, starts = c(alpha,lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mBellE.R
#' @export #' @import AdequacyModel #' @import graphics mBellEE<-function (x, alpha, beta, lambda, method="B") { pdf_BellEE<-function(par,x){ alpha=par[1] beta=par[2] lambda=par[3] G=(1-exp(-alpha*x))^beta g=alpha*exp(-alpha*x)*beta*(1-exp(-alpha*x))^(beta-1) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(f) } cdf_BellEE<-function(par,x){ alpha=par[1] beta=par[2] lambda=par[3] G=(1-exp(-alpha*x))^beta g=alpha*exp(-alpha*x)*beta*(1-exp(-alpha*x))^(beta-1) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_BellEE, cdf = cdf_BellEE, starts = c(alpha,beta,lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mBellEE.R
#' @export #' @import AdequacyModel #' @import graphics mBellEW<-function (x, alpha, beta, theta, lambda, method="B") { pdf_BellEW<-function(par,x){ alpha=par[1] beta=par[2] theta=par[3] lambda=par[4] G=(1-exp(-alpha*x^(beta)))^theta g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta)*theta*(1-exp(-alpha*x^(beta)))^(theta-1) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(f) } cdf_BellEW<-function(par,x){ alpha=par[1] beta=par[2] theta=par[3] lambda=par[4] G=(1-exp(-alpha*x^(beta)))^theta g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta)*theta*(1-exp(-alpha*x^(beta)))^(theta-1) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_BellEW, cdf = cdf_BellEW, starts = c(alpha,beta,theta,lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mBellEW.R
#' @export #' @import AdequacyModel #' @import graphics mBellF<-function (x, a, b, lambda, method="B") { pdf_BellF<-function(par,x){ a=par[1] b=par[2] lambda=par[3] G=(1-((1+(x/a)^b))^(-1)) g=((1+(x/a)^b))^(-2) *b*x^(b-1)*a^(-b) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(f) } cdf_BellF<-function(par,x){ a=par[1] b=par[2] lambda=par[3] G=(1-((1+(x/a)^b))^(-1)) g=((1+(x/a)^b))^(-2) *b*x^(b-1)*a^(-b) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_BellF, cdf = cdf_BellF, starts = c(a, b, lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mBellF.R
#' @export #' @import AdequacyModel #' @import graphics mBellL<-function (x, b, q, lambda, method="B") { pdf_BellL<-function(par,x){ b=par[1] q=par[2] lambda=par[3] G=(1-((1+(x/b)))^(-q)) g=(q/b)*(1+(x/b))^(-q-1) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(f) } cdf_BellL<-function(par,x){ b=par[1] q=par[2] lambda=par[3] G=(1-((1+(x/b)))^(-q)) g=(q/b)*(1+(x/b))^(-q-1) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_BellL, cdf = cdf_BellL, starts = c(b, q, lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mBellL.R
#' @export #' @import AdequacyModel #' @import graphics mBellW<-function (x, alpha, beta, lambda, method="B") { pdf_BellW<-function(par,x){ alpha=par[1] beta=par[2] lambda=par[3] G=(1-exp(-alpha*x^beta)) g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(f) } cdf_BellW<-function(par,x){ alpha=par[1] beta=par[2] lambda=par[3] G=(1-exp(-alpha*x^beta)) g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_BellW, cdf = cdf_BellW, starts = c(alpha,beta,lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mBellW.R
#' @export #' @import AdequacyModel #' @import graphics mCBellB<-function (x, a, b, k, lambda, method="B") { pdf_CBellB<-function(par,x){ a=par[1] b=par[2] k=par[3] lambda=par[4] G=(1-((1+(x/a)^b))^(-k)) g=k*((1+(x/a)^b))^(-k-1) *b*x^(b-1)*a^(-b) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(f) } cdf_CBellB<-function(par,x){ a=par[1] b=par[2] k=par[3] lambda=par[4] G=(1-((1+(x/a)^b))^(-k)) g=k*((1+(x/a)^b))^(-k-1) *b*x^(b-1)*a^(-b) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_CBellB, cdf = cdf_CBellB, starts = c(a, b, k, lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mCBellB.R
#' @export #' @import AdequacyModel #' @import graphics mCBellBX<-function (x, a,lambda, method="B") { pdf_CBellBX<-function(par,x){ a=par[1] lambda=par[2] G=(1-exp(-x^2))^a g=2*a*x*exp(-x^2)*(1-exp(-x^2))^(a-1) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(f) } cdf_CBellBX<-function(par,x){ a=par[1] lambda=par[2] G=(1-exp(-x^2))^a g=2*a*x*exp(-x^2)*(1-exp(-x^2))^(a-1) F=(1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) f=lambda*g*exp(lambda*(1-G))*exp(-exp(lambda)*(1-exp(-lambda*G)))/(1-(exp(-exp(lambda)+1))) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_CBellBX, cdf = cdf_CBellBX, starts = c(a,lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mCBellBX.R
#' @export #' @import AdequacyModel #' @import graphics mCBellE<-function (x, alpha,lambda, method="B") { pdf_CBellE<-function(par,x){ alpha=par[1] lambda=par[2] G=(1-exp(-alpha*x)) g=alpha*exp(-alpha*x) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(f) } cdf_CBellE<-function(par,x){ alpha=par[1] lambda=par[2] G=(1-exp(-alpha*x)) g=alpha*exp(-alpha*x) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_CBellE, cdf = cdf_CBellE, starts = c(alpha,lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mCBellE.R
#' @export #' @import AdequacyModel #' @import graphics mCBellEE<-function (x, alpha, beta, lambda, method="B") { pdf_CBellEE<-function(par,x){ alpha=par[1] beta=par[2] lambda=par[3] G=(1-exp(-alpha*x))^beta g=alpha*exp(-alpha*x)*beta*(1-exp(-alpha*x))^(beta-1) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(f) } cdf_CBellEE<-function(par,x){ alpha=par[1] beta=par[2] lambda=par[3] G=(1-exp(-alpha*x))^beta g=alpha*exp(-alpha*x)*beta*(1-exp(-alpha*x))^(beta-1) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_CBellEE, cdf = cdf_CBellEE, starts = c(alpha,beta,lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mCBellEE.R
#' @export #' @import AdequacyModel #' @import graphics mCBellEW<-function (x, alpha, beta, theta, lambda, method="B") { pdf_CBellEW<-function(par,x){ alpha=par[1] beta=par[2] theta=par[3] lambda=par[4] G=(1-exp(-alpha*x^(beta)))^theta g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta)*theta*(1-exp(-alpha*x^(beta)))^(theta-1) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(f) } cdf_CBellEW<-function(par,x){ alpha=par[1] beta=par[2] theta=par[3] lambda=par[4] G=(1-exp(-alpha*x^(beta)))^theta g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta)*theta*(1-exp(-alpha*x^(beta)))^(theta-1) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_CBellEW, cdf = cdf_CBellEW, starts = c(alpha,beta,theta,lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mCBellEW.R
#' @export #' @import AdequacyModel #' @import graphics mCBellF<-function (x, a, b, lambda, method="B") { pdf_CBellF<-function(par,x){ a=par[1] b=par[2] lambda=par[3] G=(1-((1+(x/a)^b))^(-1)) g=((1+(x/a)^b))^(-2) *b*x^(b-1)*a^(-b) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(f) } cdf_CBellF<-function(par,x){ a=par[1] b=par[2] lambda=par[3] G=(1-((1+(x/a)^b))^(-1)) g=((1+(x/a)^b))^(-2) *b*x^(b-1)*a^(-b) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_CBellF, cdf = cdf_CBellF, starts = c(a, b, lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mCBellF.R
#' @export #' @import AdequacyModel #' @import graphics mCBellL<-function (x, b, q, lambda, method="B") { pdf_CBellL<-function(par,x){ b=par[1] q=par[2] lambda=par[3] G=(1-((1+(x/b)))^(-q)) g=(q/b)*(1+(x/b))^(-q-1) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(f) } cdf_CBellL<-function(par,x){ b=par[1] q=par[2] lambda=par[3] G=(1-((1+(x/b)))^(-q)) g=(q/b)*(1+(x/b))^(-q-1) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_CBellL, cdf = cdf_CBellL, starts = c(b, q, lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mCBellL.R
#' @export #' @import AdequacyModel #' @import graphics mCBellW<-function (x, alpha, beta, lambda, method="B") { pdf_CBellW<-function(par,x){ alpha=par[1] beta=par[2] lambda=par[3] G=(1-exp(-alpha*x^beta)) g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(f) } cdf_CBellW<-function(par,x){ alpha=par[1] beta=par[2] lambda=par[3] G=(1-exp(-alpha*x^beta)) g=alpha*beta*x^(beta-1)*exp(-alpha*x^beta) F=(exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) f=lambda*g*exp(lambda*G)*exp(exp(lambda*G)-1)/(exp(exp(lambda)-1)-1) return(F) } res = suppressWarnings(AdequacyModel::goodness.fit(pdf = pdf_CBellW, cdf = cdf_CBellW, starts = c(alpha,beta,lambda), data = x, method = method, mle = NULL)) aux = cbind(res$mle, res$Erro) colnames(aux) = c("MLE", "SE") aux1 = cbind(res$AIC, res$BIC, res$W,res$A, res$Value) colnames(aux1) = c("AIC", "BIC", "W", "A","-2L") rownames(aux1) = c("") aux2 = cbind(res$KS$statistic, res$KS$p.value) colnames(aux2) = c("KS Statistic", "KS p-value") rownames(aux2) = c("") aux3 = cbind(if (res$Convergence == 0) { "Converged" } else { "Not Converged" }) colnames(aux3) = c("") rownames(aux3) = c("") list(Estimates = aux, `Goodness-of-Fit Tests` = aux1, `Kolmogorov-Smirnov Test` = aux2, `Convergence Status` = aux3) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/mCBellW.R
pBellB<-function (x, a, b, k, lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-((1+(x/a)^b))^(-k)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pBellB.R
pBellBX<-function (x, a,lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-x^2))^a cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pBellBX.R
pBellE<-function (x, alpha,lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pBellE.R
pBellEE<-function (x, alpha,beta,lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x))^beta cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pBellEE.R
pBellEW<-function (x, alpha, beta, theta, lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x^(beta)))^theta cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pBellEW.R
pBellF<-function (x, a, b, lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-((1+(x/a)^b))^(-1)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pBellF.R
pBellL<-function (x, b, q, lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-((1+(x/b)))^(-q)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pBellL.R
pBellW<-function (x, alpha,beta,lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x^beta)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pBellW.R
pCBellB<-function (x, a, b, k, lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-((1+(x/a)^b))^(-k)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pCBellB.R
pCBellBX<-function (x, a,lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-x^2))^a cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pCBellBX.R
pCBellE<-function (x, alpha,lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pCBellE.R
pCBellEE<-function (x, alpha,beta,lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x))^beta cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pCBellEE.R
pCBellEW<-function (x, alpha,beta,theta,lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x^(beta)))^theta cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pCBellEW.R
pCBellF<-function (x, a, b, lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-((1+(x/a)^b))^(-1)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pCBellF.R
pCBellL<-function (x, b, q, lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-((1+(x/b)))^(-q)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pCBellL.R
pCBellW<-function (x, alpha,beta,lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x^beta)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (exp(exp(lambda*G)-1)-1)/(exp(exp(lambda)-1)-1) cdf[log.p == TRUE & lower.tail == TRUE] <- log(exp(exp(lambda*G)-1)-1)-log(exp(exp(lambda)-1)-1) cdf[log.p == FALSE & lower.tail == FALSE] <- (exp(exp(lambda)-1)-exp(exp(lambda*G)-1))/((exp(exp(lambda)-1)-1)) cdf[log.p == TRUE & lower.tail == FALSE] <- log(exp(exp(lambda)-1)-exp(exp(lambda*G)-1))-log((exp(exp(lambda)-1)-1)) return(cdf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/pCBellW.R
qBellB<-function(p, a, b, k, lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(-1/lambda*log(1-((log(1-(p[p >= 0 & p <= 1])*(1-(exp(-exp(lambda)+1)))))/(-exp(lambda))))) qf[p >= 0 & p <= 1] <- a*(((1-t)^(-1/k) -1)^(1/b)) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qBellB.R
qBellBX<-function(p,a,lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(-1/lambda*log(1-((log(1-(p[p >= 0 & p <= 1])*(1-(exp(-exp(lambda)+1)))))/(-exp(lambda))))) qf[p >= 0 & p <= 1] <- (-1*log(1-(t)^(1/a)))^(0.5) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qBellBX.R
qBellE<-function(p,alpha,lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(-1/lambda*log(1-((log(1-(p[p >= 0 & p <= 1])*(1-(exp(-exp(lambda)+1)))))/(-exp(lambda))))) qf[p >= 0 & p <= 1] <- -1/alpha*log(1-t) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qBellE.R
qBellEE<-function(p,alpha, beta, lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(-1/lambda*log(1-((log(1-(p[p >= 0 & p <= 1])*(1-(exp(-exp(lambda)+1)))))/(-exp(lambda))))) qf[p >= 0 & p <= 1] <- -1/alpha*log(1-(t)^(1/beta)) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qBellEE.R
qBellEW<-function(p, alpha, beta, theta, lambda, log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(-1/lambda*log(1-((log(1-(p[p >= 0 & p <= 1])*(1-(exp(-exp(lambda)+1)))))/(-exp(lambda))))) qf[p >= 0 & p <= 1] <- (-1/alpha*log(1-(t)^(1/theta)))^(beta) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qBellEW.R
qBellF<-function(p, a, b, lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(-1/lambda*log(1-((log(1-(p[p >= 0 & p <= 1])*(1-(exp(-exp(lambda)+1)))))/(-exp(lambda))))) qf[p >= 0 & p <= 1] <- a*(((1-t)^(-1) -1)^(1/b)) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qBellF.R
qBellL<-function(p, b, q, lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(-1/lambda*log(1-((log(1-(p[p >= 0 & p <= 1])*(1-(exp(-exp(lambda)+1)))))/(-exp(lambda))))) qf[p >= 0 & p <= 1] <- b*(((1-t)^(-1/q))-1) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qBellL.R
qBellW<-function(p,alpha, beta, lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(-1/lambda*log(1-((log(1-(p[p >= 0 & p <= 1])*(1-(exp(-exp(lambda)+1)))))/(-exp(lambda))))) qf[p >= 0 & p <= 1] <- (-1/alpha*log(1-t))^(beta) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qBellW.R
qCBellB<-function(p, a, b, k, lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(1/lambda*log(log(((p[p >= 0 & p <= 1])*(exp(exp(lambda)-1)-1))+1)+1)) qf[p >= 0 & p <= 1] <- a*(((1-t)^(-1/k) -1)^(1/b)) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qCBellB.R
qCBellBX<-function(p,a,lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(1/lambda*log(log(((p[p >= 0 & p <= 1])*(exp(exp(lambda)-1)-1))+1)+1)) qf[p >= 0 & p <= 1] <- (-1*log(1-(t)^(1/a)))^(0.5) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qCBellBX.R
qCBellE<-function(p,alpha,lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(1/lambda*log(log(((p[p >= 0 & p <= 1])*(exp(exp(lambda)-1)-1))+1)+1)) qf[p >= 0 & p <= 1] <- -1/alpha*log(1-t) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qCBellE.R
qCBellEE<-function(p,alpha, beta, lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(1/lambda*log(log(((p[p >= 0 & p <= 1])*(exp(exp(lambda)-1)-1))+1)+1)) qf[p >= 0 & p <= 1] <- -1/alpha*log(1-(t)^(1/beta)) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qCBellEE.R
qCBellEW<-function(p,alpha, beta, theta, lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(1/lambda*log(log(((p[p >= 0 & p <= 1])*(exp(exp(lambda)-1)-1))+1)+1)) qf[p >= 0 & p <= 1] <- (-1/alpha*log(1-(t)^(1/theta)))^(beta) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qCBellEW.R
qCBellF<-function(p, a, b, lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(1/lambda*log(log(((p[p >= 0 & p <= 1])*(exp(exp(lambda)-1)-1))+1)+1)) qf[p >= 0 & p <= 1] <- a*(((1-t)^(-1) -1)^(1/b)) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qCBellF.R
qCBellL<-function(p, b, q, lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(1/lambda*log(log(((p[p >= 0 & p <= 1])*(exp(exp(lambda)-1)-1))+1)+1)) qf[p >= 0 & p <= 1] <- b*(((1-t)^(-1/q))-1) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qCBellL.R
qCBellW<-function(p,alpha, beta, lambda,log.p = FALSE, lower.tail = TRUE){ if (log.p == TRUE) p <- exp(p) if (lower.tail == FALSE) p <- 1 - p qf <- rep(NaN, length(p)) t=(1/lambda*log(log(((p[p >= 0 & p <= 1])*(exp(exp(lambda)-1)-1))+1)+1)) qf[p >= 0 & p <= 1] <- (-1/alpha*log(1-t))^(beta) return(qf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/qCBellW.R
#' @import stats rBellB<-function(n, a, b, k, lambda) { p <- runif(n, min = 0, max = 1) rn <- qBellB(p, a, b, k, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rBellB.R
#' @import stats rBellBX<-function(n, a,lambda) { p <- runif(n, min = 0, max = 1) rn <- qBellBX(p, a, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rBellBX.R
#' @import stats rBellE<-function(n, alpha,lambda) { p <- runif(n, min = 0, max = 1) rn <- qBellE(p, alpha, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rBellE.R
#' @import stats rBellEE<-function(n, alpha,beta,lambda) { p <- runif(n, min = 0, max = 1) rn <- qBellEE(p, alpha, beta, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rBellEE.R
#' @import stats rBellEW<-function(n, alpha,beta,theta,lambda) { p <- runif(n, min = 0, max = 1) rn <- qBellEW(p, alpha, beta, theta, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rBellEW.R
#' @import stats rBellF<-function(n, a, b, lambda) { p <- runif(n, min = 0, max = 1) rn <- qBellF(p, a, b, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rBellF.R
#' @import stats rBellL<-function(n, b, q, lambda) { p <- runif(n, min = 0, max = 1) rn <- qBellL(p, b, q, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rBellL.R
#' @import stats rBellW<-function(n, alpha,beta,lambda) { p <- runif(n, min = 0, max = 1) rn <- qBellW(p, alpha, beta, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rBellW.R
#' @import stats rCBellB<-function(n, a, b, k, lambda) { p <- runif(n, min = 0, max = 1) rn <- qCBellB(p, a, b, k, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rCBellB.R
#' @import stats rCBellBX<-function(n, a,lambda) { p <- runif(n, min = 0, max = 1) rn <- qCBellBX(p, a, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rCBellBX.R
#' @import stats rCBellE<-function(n, alpha,lambda) { p <- runif(n, min = 0, max = 1) rn <- qCBellE(p, alpha, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rCBellE.R
#' @import stats rCBellEE<-function(n, alpha,beta,lambda) { p <- runif(n, min = 0, max = 1) rn <- qCBellEE(p, alpha, beta, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rCBellEE.R
#' @import stats rCBellEW<-function(n, alpha,beta,theta,lambda) { p <- runif(n, min = 0, max = 1) rn <- qCBellEW(p, alpha, beta, theta, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rCBellEW.R
#' @import stats rCBellF<-function(n, a, b, lambda) { p <- runif(n, min = 0, max = 1) rn <- qCBellF(p, a, b, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rCBellF.R
#' @import stats rCBellL<-function(n, b, q, lambda) { p <- runif(n, min = 0, max = 1) rn <- qCBellL(p, b, q, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rCBellL.R
#' @import stats rCBellW<-function(n, alpha,beta,lambda) { p <- runif(n, min = 0, max = 1) rn <- qCBellW(p, alpha, beta, lambda) return(rn) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/rCBellW.R
sBellB<-function (x, a, b, k, lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-((1+(x/a)^b))^(-k)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) sf<-1-cdf return(sf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/sBellB.R
sBellBX<-function (x, a, lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-x^2))^a cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) sf<-1-cdf return(sf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/sBellBX.R
sBellE<-function (x, alpha, lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x)) cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) sf<-1-cdf return(sf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/sBellE.R
sBellEE<-function (x, alpha, beta, lambda , log.p = FALSE, lower.tail = TRUE) { G=(1-exp(-alpha*x))^beta cdf <- x cdf[log.p == FALSE & lower.tail == TRUE] <- (1-exp(-exp(lambda)*(1-exp(-lambda*G))))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == TRUE] <- log(1-exp(-exp(lambda)*(1-exp(-lambda*G))))-log(1-(exp(-exp(lambda)+1))) cdf[log.p == FALSE & lower.tail == FALSE] <- ((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))/(1-(exp(-exp(lambda)+1))) cdf[log.p == TRUE & lower.tail == FALSE] <- log((exp(-exp(lambda)*(1-exp(-lambda*G))))-(exp(-exp(lambda)+1)))-log(1-(exp(-exp(lambda)+1))) sf<-1-cdf return(sf) }
/scratch/gouwar.j/cran-all/cranData/BGFD/R/sBellEE.R