content
stringlengths
0
14.9M
filename
stringlengths
44
136
#' @export #' @name Generate_data #' @title Generate_data #' #' @description This function generates data (X,y) with specified correlation and noise standard deviation. #' #' @param truth.beta A vector of active beta's (s * 1, with s the number of active coordinates). #' @param p Number of covariates. #' @param n Number of observations. #' @param truth.sigma Noise standard deviation. #' @param rho Correlation Coefficient. #' @param correlation Correlation structure. Correlation = "block" means predictors are grouped into equi-size blocks where each block contains one active predictor, and the within-block correlation coefficient is rho; predictors in different blocks are mutually independent. Correlation = "all" means all predictors are equi-correlated with coefficient rho. #' @param NumOfBlock Number of blocks, used only when correlation = 'block'. #' #' @return A list, including vector 'y' (n1), matrix 'X' (np), vector 'beta' (p1). Generate_data = function(truth.beta, p, n, truth.sigma, rho, correlation=c("block","all"), NumOfBlock){ s = length(truth.beta) if (correlation == "block"){ block = rho + diag(1-rho, p/NumOfBlock, p/NumOfBlock) Sigma = kronecker(diag(NumOfBlock), block) # block diagonal matrix trueId = 1 + p/NumOfBlock * (1:s-1) beta = rep(0, p) beta[trueId] = truth.beta }else if (correlation == 'all'){ Sigma = rho + diag(1-rho, p, p) trueId = 1:s beta = c(truth.beta, rep(0, p-s)) }else { print("unknown correlation structure!") } X = mvnfast::rmvn(n = n, mu = rnorm(p, 0, 1), sigma = Sigma) s = length(truth.beta) # standardize X so that each column has l2-norm sqrt(n) X <- scale(X, center = TRUE, scale = FALSE) Xnorm = apply(X^2, 2, sum) X = X * matrix(sqrt(n)/sqrt(Xnorm), byrow = T, nrow = n, ncol = p) y = X[,trueId] %*% truth.beta + rnorm(n, 0, truth.sigma) return(list(y=y, X=X, beta = beta)) }
/scratch/gouwar.j/cran-all/cranData/BBSSL/R/Generate_data.R
#' @export #' @name Gibbs #' @title Gibbs #' @description This function runs SSVS for linear regression with Spike-and-Slab LASSO prior. #' By default, this function uses the speed-up trick in Bhattacharya et al., 2016 when p > n. #' #' @param y A vector of continuous responses (n x 1). #' @param X The design matrix (n x p), without an intercept. #' @param a,b Parameters of the prior. #' @param lambda A two-dim vector = c(lambda0, lambda1). #' @param maxiter An integer which specifies the maximum number of iterations for MCMC. #' @param burn.in An integer which specifies the maximum number of burn-in iterations for MCMC. #' @param initial.beta A vector of initial values of beta to used. If set to NULL, the LASSO solution with 10-fold cross validation is used. Default is NULL. #' @param sigma Noise standard deviation. Default is 1. #' #' @return A list, including matrix 'beta' ((maxiter-burn.in) x p), matrix 'tau2' ((maxiter-burn.in) x p), #' matrix 'gamma' ((maxiter-burn.in) x p), vector 'theta' ((maxiter-burn.in) x 1). #' @examples #' n = 100; p = 1000; #' truth.beta = c(2, 3, -3, 4); # high-dimensional case #' truth.sigma = 1 #' data = Generate_data(truth.beta, p, n, truth.sigma = 1, rho = 0.6,"block",100) #' y = data$y; X = data$X; beta = data$beta #' #' # --------------- set parameters ----------------- #' lambda0 = 50; lambda1 = 0.05; lambda = c(lambda0, lambda1) #' a = 1; b = p #beta prior for theta #' MCchain1 = Gibbs(y, X, a, b, lambda, maxiter = 15001, burn.in = 5001) Gibbs = function(y, X, a, b, lambda, maxiter, burn.in, initial.beta = NULL, sigma = 1){ n = nrow(X) p = ncol(X) lambda1 = lambda[2] lambda0 = lambda[1] X = apply(X, 2, function(t) (t-mean(t))) y = y - mean(y) # -------------- Initialization ----------------- if (is.null(initial.beta)){ cvlambda = glmnet::cv.glmnet(X,y)$lambda.min cvfit = glmnet::glmnet(X, y, lambda = cvlambda) initial.beta = cvfit$beta initial.beta = matrix(initial.beta, nrow = 1) } prob1 = greybox::dlaplace(initial.beta, mu = 0, scale = 1/lambda1) prob0 = greybox::dlaplace(initial.beta, mu = 0, scale = 1/lambda0) prob = prob1 / (prob1 + prob0) initial.gamma = rep(NA, p) initial.tau2 = rep(NA, p) for (i in 1:p){ initial.gamma[i] = rbinom(1, size = 1, prob = prob[i]) mu = lambda[initial.gamma[i]+1] / abs(initial.beta[i] + 0.5) lamb = lambda[initial.gamma[i]+1]^2 inv.tau = statmod::rinvgauss(n=1, mean = mu, shape = lamb) initial.tau2[i] = 1 / inv.tau } initial.theta = rbeta(1, sum(initial.gamma) + a, p - sum(initial.gamma) + b) # ------------- Create data -------------------- n = length(y) p = length(initial.beta) beta = matrix(NA, nrow = maxiter, ncol = p) tau2 = matrix(NA, nrow = maxiter, ncol = p) gamma = matrix(NA, nrow = maxiter, ncol = p) theta = rep(NA, maxiter) beta[1,] = initial.beta tau2[1,] = initial.tau2 gamma[1,] = initial.gamma theta[1] = initial.theta # -------------- SSVS -------------------------- for (i in 2:maxiter){ start_time <- Sys.time() #update beta if (p>n){ # p^2n d = tau2[i-1,] # d is 1-by-p u = as.matrix(rnorm(p) * sqrt(d), nrow = 1) # u is 1-by-p delta = rnorm(n) XD = X * matrix(d, byrow = T, ncol = p, nrow = n) # complexity O(np) v = X %*% u / sigma + delta # complexity O(np) H = XD %*% t(X) / sigma^2 + diag(rep(1,n)) # complexity O(n^2p), this is the main bottleneck w = Matrix::solve(H, y/sigma-v) # complexity O(n^3) beta[i,] = u + (t(XD) / sigma) %*% w # complexity O(np) } else { # p^2n D = diag(1/tau2[i-1,]) H = Matrix::solve(t(X) %*% X/sigma^2 + D) # complexity O(p^2n+p^3) beta[i,] = mvnfast::rmvn(1, mu = H %*% t(X) %*% y / sigma^2, sigma = H) } for (j in 1:p){ #update tau mu = lambda[gamma[i-1,j]+1] / abs(beta[i, j]) lamb = lambda[gamma[i-1,j]+1]^2 inv.tau = statmod::rinvgauss(n=1, mean = mu, shape = lamb) tau2[i,j] = 1 / inv.tau #update gamma tmp = lambda[2]^2 / lambda[1]^2 * exp( - (lambda[2]^2 - lambda[1]^2) * tau2[i,j] / 2) * theta[i-1] / (1 - theta[i-1]) prob = 1 - 1 / (tmp + 1) gamma[i,j] = rbinom(1, 1, prob) } #update theta active = sum(gamma[i,]) theta[i] = rbeta(1, active + a, p - sum(gamma[i,]) + b) end_time <- Sys.time() svMisc::progress(i, maxiter, progress.bar = T) if (i == maxiter) cat("Done!\n") } # ------------ output ------------------------ return(list(beta = beta[-(1:burn.in),], tau2 = tau2[-(1:burn.in),], gamma = gamma[-(1:burn.in),], theta = theta[-(1:burn.in)])) }
/scratch/gouwar.j/cran-all/cranData/BBSSL/R/Gibbs.R
#' @export #' @name Gibbs2 #' @title Gibbs2 #' @description This function runs one-site Gibbs sampler for linear regression with Spike-and-Slab LASSO prior. #' #' @param y A vector of continuous responses (n x 1). #' @param X The design matrix (n x p), without an intercept. #' @param a,b Parameters of the prior. #' @param lambda A two-dim vector = c(lambda0, lambda1). #' @param maxiter An integer which specifies the maximum number of iterations for MCMC. #' @param burn.in An integer which specifies the number of burn-in iterations for MCMC. #' @param initial.beta A vector of initial values of beta to used. If set to NULL, the LASSO solution with 10-fold cross validation is used. Default is NULL. #' @param sigma Noise standard deviation. Default is 1. #' #' @return A list, including matrix beta and gamma of dimension (maxiter-burn.in) x p, vector theta ((maxiter-burn.in) x 1) #' #' @examples #' n = 100; p = 1000; #' truth.beta = c(2, 3, -3, 4); # high-dimensional case #' truth.sigma = 1 #' data = Generate_data(truth.beta, p, n, truth.sigma = 1, rho = 0.6,"block",100) #' y = data$y; X = data$X; beta = data$beta #' #' # --------------- set parameters ----------------- #' lambda0 = 50; lambda1 = 0.05; lambda = c(lambda0, lambda1) #' a = 1; b = p #beta prior for theta #' MCchain2 = Gibbs2(y, X, a, b, lambda, maxiter = 15001, burn.in = 5001) Gibbs2 = function(y, X, a, b, lambda, maxiter, burn.in, initial.beta = NULL, sigma = 1){ n = nrow(X) p = ncol(X) lambda1 = lambda[2] lambda0 = lambda[1] X = apply(X, 2, function(t) (t-mean(t))) y = y - mean(y) # -------------- Initialization ----------------- if (is.null(initial.beta)){ cvlambda = glmnet::cv.glmnet(X,y)$lambda.min cvfit = glmnet::glmnet(X, y, lambda = cvlambda) initial.beta = cvfit$beta initial.beta = matrix(initial.beta, nrow = 1) } prob1 = greybox::dlaplace(initial.beta, mu = 0, scale = 1/lambda1) prob0 = greybox::dlaplace(initial.beta, mu = 0, scale = 1/lambda0) prob = prob1 / (prob1 + prob0) initial.gamma = rep(NA, p) for (i in 1:p){ initial.gamma[i] = rbinom(1, size = 1, prob = prob[i]) } initial.theta = rbeta(1, sum(initial.gamma) + a, p - sum(initial.gamma) + b) # ------------- Create data -------------------- n = length(y) p = length(initial.beta) beta = matrix(NA, nrow = maxiter, ncol = p) gamma = matrix(NA, nrow = maxiter, ncol = p) theta = rep(NA, maxiter) beta[1,] = initial.beta gamma[1,] = initial.gamma theta[1] = initial.theta XTX = rep(NA, p) for (j in 1:p){ XTX[j] = sum(X[,j]^2) } res = y - X %*% as.matrix(c(initial.beta), ncol=1) # -------------- SSVS -------------------------- for (i in 2:maxiter){ start_time <- Sys.time() #res = y - X %*% as.matrix(beta[i-1,], ncol=1) for (j in 1:p){ res = res + X[,j] * beta[i-1,j] resprod = sum( res * X[,j] ) s = sigma / sqrt(XTX[j]) mu10 = (resprod + sigma^2 * lambda1) / XTX[j] mu11 = (resprod - sigma^2 * lambda1) / XTX[j] mu00 = (resprod + sigma^2 * lambda0) / XTX[j] mu01 = (resprod - sigma^2 * lambda0) / XTX[j] p01 = 1-pnorm(q=0, mean=mu01, sd=s) p00 = pnorm(q=0, mean=mu00, sd=s) p11 = 1-pnorm(q=0, mean=mu11, sd=s) p10 = pnorm(q=0, mean=mu10, sd=s) if(resprod >=0 ){ c1_div_c0 = lambda1 / lambda0 * exp( ( sigma^2*(lambda1^2-lambda0^2)+2*resprod*(lambda1-lambda0) ) / 2/XTX[j] ) c1_div_c0 = c1_div_c0 * ( p10 + p11 * exp( -lambda1*2*resprod/XTX[j] ) ) / ( p00 + p01 * exp( -lambda0*2*resprod/XTX[j] ) ) if(is.na(c1_div_c0)){ c1_div_c0 = lambda1 / lambda0 * exp( ( sigma^2*(lambda1^2-lambda0^2)+2*resprod*(lambda1-lambda0) ) / 2/XTX[j] - lambda0*2*resprod/XTX[j] ) * ( p10 + p11 * exp( -lambda1*2*resprod/XTX[j] ) ) } } else { c1_div_c0 = lambda1 / lambda0 * exp( ( sigma^2*(lambda1^2-lambda0^2)-2*resprod*(lambda1-lambda0) ) / 2/XTX[j] ) c1_div_c0 = c1_div_c0 * ( p11 + p10 * exp( lambda1*2*resprod/XTX[j] ) ) / ( p01 + p00 * exp( lambda0*2*resprod/XTX[j] ) ) if(is.na(c1_div_c0)){ c1_div_c0 = lambda1 / lambda0 * exp( ( sigma^2*(lambda1^2-lambda0^2)-2*resprod*(lambda1-lambda0) ) / 2/XTX[j] - lambda0*2*resprod/XTX[j]) * ( p11 + p10 * exp( lambda1*2*resprod/XTX[j] ) ) } } # update gamma tmp = theta[i-1] * c1_div_c0 / (1-theta[i-1]) prob = 1 - 1 / (tmp + 1) gamma[i,j] = rbinom(1, 1, prob) # update beta thislambda = lambda[gamma[i,j]+1] uu = runif(1); if (gamma[i,j]==0){ uu0 = p00 / ( p00 + p01 * exp(- 2*resprod*thislambda / XTX[j] ) ) if(is.na(uu0)){ uu0 = 1 / ( 1 + p01 / s * exp(- 2*resprod*thislambda / XTX[j] + mu00^2/2/s^2 )*sqrt(2*pi)*mu00 ) } } else { uu0 = p10 / ( p10 + p11 * exp(- 2*resprod*thislambda / XTX[j] ) ) if(is.na(uu0)){ uu0 = 1 / ( 1 + p11 / s * exp(- 2*resprod*thislambda / XTX[j] + mu10^2/2/s^2 )*sqrt(2*pi)*mu10 ) } } mu0 = (resprod + sigma^2 * thislambda) / XTX[j] mu1 = (resprod - sigma^2 * thislambda) / XTX[j] if (uu <= uu0){ beta[i,j] = truncnorm::rtruncnorm( n=1, a=-Inf, b=0, mean=mu0, sd = s ) }else{ beta[i,j] = truncnorm::rtruncnorm( n=1, a=0, b=Inf, mean=mu1, sd = s ) } # update residual res = res - X[,j] * beta[i,j] } # update theta theta[i] = rbeta( n=1, shape1=a+sum(gamma[i,]), shape2=b+n-sum(gamma[i,]) ) end_time <- Sys.time() svMisc::progress(i, maxiter, progress.bar = T) if (i == maxiter) cat("Done!\n") } # ------------ output ------------------------ return(list(beta = beta[-(1:burn.in),], gamma = gamma[-(1:burn.in),], theta = theta[-(1:burn.in)])) }
/scratch/gouwar.j/cran-all/cranData/BBSSL/R/Gibbs2.R
SSLASSO_2 <- function(X, y, initial.beta, penalty = c("adaptive", "separable"), variance = c("fixed", "unknown"), lambda1, lambda0, nlambda = 100, theta = 0.5, sigma = 1, a = 1, b, eps = 0.001, max.iter = 500, counter = 10, warn = FALSE) { # Coersion penalty <- match.arg(penalty) variance <- match.arg(variance) if (!is(X, "matrix")) { tmp <- try(X <- model.matrix(~0+., data=X), silent=TRUE) if (is(tmp, "try-error")) { stop("X must be a matrix or able to be coerced to a matrix") } } if (storage.mode(X) == "integer") { storage.mode(X) <- "double" } if (!is(y, "numeric")) { tmp <- try(y <- as.numeric(y), silent=TRUE) if (is(tmp,"try-error")) { stop("y must numeric or able to be coerced to numeric") } } if (any(is.na(y)) | any(is.na(X))) { stop("Missing data (NA's) detected. Take actions (e.g., removing cases, removing features, imputation) to eliminate missing data before passing X and y to SSLASSO") } ## Standardize XX <- standard(X) # this function has been modified and now it does NOT standardize it! ns <- attr(XX, "nonsingular") p <- ncol(XX) yy <- y - mean(y) n <- length(yy) if (missing(lambda0)) { lambda0 <- seq(1, n, length = nlambda) lambda1 <- lambda0[1] } else { nlambda <- length(lambda0) if (missing(lambda1)) { lambda1 <- lambda0[1] } } # Lambda0 should be an increasing sequence monotone <- sum((lambda0[-1] - lambda0[-nlambda]) > 0) if (monotone != nlambda - 1){ stop("lambda0 must be a monotone increasing sequence") } if (lambda1 > min(lambda0) ) { stop("lambda1 must be smaller than lambda0") } if(missing(b)) { b <- p } # get initial value for sigma df = 3 sigquant = 0.9 sigest <- sd(yy) qchi <- qchisq(1 - sigquant, df) ncp <- sigest^2 * qchi / df min_sigma2 <- sigest^2 / n if (variance == "unknown") { if (missing(sigma)) { sigma <- sqrt(df * ncp / (df + 2)) } } else { if (missing(sigma)) { sigma <- sqrt(df * ncp / (df - 2)) } } ## Fit res <- .Call("SSL_gaussian", XX, yy, initial.beta, penalty, variance, as.double(lambda1), as.numeric(lambda0), as.double(theta), as.double(sigma), as.double(min_sigma2), as.double(a), as.double(b), eps, as.integer(max.iter), as.integer(counter), PACKAGE = "BBSSL") bb <- matrix(res[[1]], p, nlambda) iter <- res[[3]] thetas<-res[[4]] sigmas <- res[[5]] ## Warning if (warn & any(iter == max.iter)) { warning("Algorithm did not converge for the ABOVE MENTIONED values of lambda0") print(lambda0[iter == max.iter]) } if (iter[nlambda] == max.iter) { warning("Algorithm did not converge") } ## Unstandardize beta <- matrix(0, nrow = ncol(X), ncol = nlambda) bbb <- bb/attr(XX, "scale")[ns] beta[ns, ] <- bbb intercept <- rep(mean(y), nlambda) - crossprod(attr(XX, "center")[ns], bbb) ## Names varnames <- if (is.null(colnames(X))) paste("V", 1:ncol(X), sep = "") else colnames(X) varnames <- c(varnames) dimnames(beta) <- list(varnames, round(lambda0,digits=4)) ## Select select <- apply(beta, 2, function(x){as.numeric(x!=0)}) ## Model model<-(1:p)[select[,nlambda]==1] ## Output val <- structure(list(beta = beta, intercept = intercept, iter = iter, lambda0 = lambda0, penalty = penalty, lambda1 = lambda1, thetas = thetas, sigmas = sigmas, select = select, model = model, n = n), class = "SSLASSO") val }
/scratch/gouwar.j/cran-all/cranData/BBSSL/R/SSLASSO_2.R
plot.SSLASSO<-function(x, ...){ betas <-t(x$beta) v0s <-x$lambda0 select <-apply(betas,2,function(x){as.numeric(x!=0)}) matplot(v0s,betas,xlab=expression(lambda[0]),ylab=expression(hat(beta)),lwd=1,col="grey",lty=2,type="l") betas[select==F]=NA matpoints(v0s,betas*select,xlab=expression(lambda[0]),ylab=expression(hat(beta)),lwd=1,col=4,lty=2,pch=19) matpoints(v0s,betas*(1-select),xlab=expression(lambda[0]),ylab=expression(hat(beta)),lwd=1,col=2,lty=2,pch=19) title("Spike-and-Slab LASSO") oldpar <- par(no.readonly = TRUE) # ensure settings are reset when the function is exited on.exit(par(oldpar)) par(xpd=T) labels=paste("X",1:ncol(betas),sep="") labels[select[length(v0s),]==0]<-"" text(max(v0s)*(1.1),betas[length(v0s),],labels=labels,col=4) }
/scratch/gouwar.j/cran-all/cranData/BBSSL/R/plot.SSLASSO.R
standard <- function(X) { if (!is(X, "matrix")) { tmp <- try(X <- model.matrix(~0+., data=X), silent=TRUE) if (is(tmp, "try-error")) stop("X must be a matrix or able to be coerced to a matrix") } STD <- .Call("standardize", X, PACKAGE = "BBSSL") dimnames(STD[[1]]) <- dimnames(X) ns <- which(STD[[3]] > 1e-6) if (length(ns) == ncol(X)) { val <- STD[[1]] } else { val <- STD[[1]][, ns, drop=FALSE] } attr(val, "center") <- STD[[2]] attr(val, "scale") <- STD[[3]] attr(val, "nonsingular") <- ns val }
/scratch/gouwar.j/cran-all/cranData/BBSSL/R/standard.R
#' A caching wrapper around load2. #' #' This closure returns a wrapper around \code{\link{load2}} which per #' default caches loaded objects and returns the cached version #' in subsequent calls. #' #' @param use.cache [\code{logical(1)}]\cr #' Enable the cache? #' Default is \code{TRUE}. #' @return [\code{function()}] with argument \code{slot} #' (name of the slot to cache the object in, default is \dQuote{default}). #' All other arguments are passed down to \code{\link{load2}}. #' @export makeFileCache = function(use.cache = TRUE) { assertFlag(use.cache) .cache = list() function(file, slot = "default", ...) { if (use.cache) { if (is.null(.cache[[slot]]) || .cache[[slot]]$file != file) .cache[[slot]] = list(file = file, obj = load2(file = file, ...)) return(.cache[[slot]]$obj) } return(load2(file = file, ...)) } }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/FileCache.R
#' A wrapper to add to the class attribute. #' #' @param x [any]\cr #' Your object. #' @param classes [\code{character}]\cr #' Classes to add. Will be added in front (specialization). #' @return Changed object \code{x}. #' @export #' @examples #' x = list() #' print(class(x)) #' x = addClasses(x, c("foo1", "foo2")) #' print(class(x)) addClasses = function(x, classes) { class(x) = c(classes, class(x)) x }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/addClasses.R
#' Parses \code{...} arguments to a named list. #' #' The deparsed name will be used for arguments with missing names. #' Missing names will be set to \code{NA}. #' #' @param ... #' Arbitrary number of objects. #' @return [\code{list}]: Named list with objects. #' @export #' @examples #' z = 3 #' argsAsNamedList(x = 1, y = 2, z) argsAsNamedList = function(...) { args = list(...) ns = names2(args) ns.missing = is.na(ns) if (any(ns.missing)) { ns.sub = as.character(substitute(deparse(...)))[-1L] ns[ns.missing] = ns.sub[ns.missing] } setNames(args, replace(ns, ns %in% c("NA", "NULL", ""), NA_character_)) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/argsAsNamedList.R
#' Extracts a named element from a list of lists. #' #' @param xs [\code{list}]\cr #' A list of vectors of the same length. #' @param row.names [\code{character} | \code{integer} | \code{NULL}]\cr #' Row names of result. #' Default is to take the names of the elements of \code{xs}. #' @param col.names [\code{character} | \code{integer} | \code{NULL}]\cr #' Column names of result. #' Default is to take the names of the elements of \code{xs}. #' @return [\code{matrix}]. #' @export asMatrixCols = function(xs, row.names, col.names) { assertList(xs) n = length(xs) if (n == 0L) return(matrix(0, nrow = 0L, ncol = 0L)) assertList(xs, types = "vector") m = unique(viapply(xs, length)) if (length(m) != 1L) stopf("Vectors must all be of the same length!") if (missing(row.names)) { row.names = names(xs[[1L]]) } if (missing(col.names)) { col.names = names(xs) } xs = unlist(xs) dim(xs) = c(m, n) rownames(xs) = row.names colnames(xs) = col.names return(xs) } #' @rdname asMatrixCols #' @export asMatrixRows = function(xs, row.names, col.names) { t(asMatrixCols(xs, row.names = col.names, col.names = row.names)) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/asMatrix.R
#' Converts a string into a quoted expression. #' #' Works the same as if you would have entered the expression and called #' \code{\link{quote}} on it. #' #' @param s [\code{character(1)}]\cr #' Expression as string. #' @param env [\code{numeric(1)}]\cr #' Environment for expression. #' Default is \code{parent.frame()} #' @return Quoted expression. #' @export #' @examples #' asQuoted("x == 3") asQuoted = function(s, env = parent.frame()) { assertString(s) structure(parse(text = s)[1L], env = env, class = "quoted")[[1L]] }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/asQuoted.R
#' Simple bin packing. #' #' Maps numeric items in \code{x} into groups with sum #' less or equal than \code{capacity}. #' A very simple greedy algorithm is used, which is not really optimized #' for speed. This is a convenience function for smaller vectors, not #' a competetive solver for the real binbacking problem. #' If an element of \code{x} exceeds \code{capacity}, an error #' is thrown. #' #' @param x [\code{numeric}]\cr #' Numeric vector of elements to group. #' @param capacity [\code{numeric(1)}]\cr #' Maximum capacity of each bin, i.e., elements will be grouped #' so their sum does not exceed this limit. #' @return [\code{integer}]. Integer with values \dQuote{1} to \dQuote{n.bins} #' indicating bin membership. #' @export #' @examples #' x = 1:10 #' bp = binPack(x, 11) #' xs = split(x, bp) #' print(xs) #' print(sapply(xs, sum)) binPack = function(x, capacity) { assertNumeric(x, min.len = 1L, lower = 0, any.missing = FALSE) assertNumber(capacity) too.big = which.first(x > capacity, use.names = FALSE) if (length(too.big)) stopf("Capacity not sufficient. Item %i (x=%f) does not fit", too.big, x[too.big]) if (any(is.infinite(x))) stop("Infinite elements found in 'x'") ord = order(x, decreasing = TRUE) grp = integer(length(x)) sums = vector(typeof(x), 1L) bin.count = 1L for(j in ord) { new.sums = sums + x[j] pos = which.first(new.sums <= capacity, use.names = FALSE) if (length(pos)) { grp[j] = pos sums[pos] = new.sums[pos] } else { bin.count = bin.count + 1L grp[j] = bin.count sums[bin.count] = x[j] } } grp }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/binPack.R
#' Check if some values are covered by the range of the values in a second vector. #' #' @param x [\code{numeric(n)}]\cr #' Value(s) that should be within the range of \code{y}. #' @param y [\code{numeric}]\cr #' Numeric vector which defines the range. #' @return [\code{logical(n)}]. For each value in \code{x}: Is it in the range of \code{y}? #' @usage x \%btwn\% y #' @rdname btwn #' @examples #' x = 3 #' y = c(-1,2,5) #' x %btwn% y #' @export `%btwn%` = function(x, y) { r = range(y) x <= r[2] & x >= r[1] }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/btwn.R
#' @title Capitalize strings in a vector #' #' @description #' Capitalise first word or all words of a character vector. #' Lower back of vector element or word, respectively. #' #' @param x [\code{character(n)}]\cr #' Vector of character elements to capitalize. #' @param all.words [\code{logical(1)}]\cr #' If \code{TRUE} all words of each vector element are capitalized. #' \code{FALSE} capitalizes the first word of each vector element. #' @param lower.back [\code{logical(1)}]\cr #' \code{TRUE} lowers the back of each word or vector element (depends on \code{all.words}). #' @return Capitalized vector: [\code{character(n)}]. #' @export #' @examples #' capitalizeStrings(c("the taIl", "wags The dOg", "That looks fuNny!")) #' capitalizeStrings(c("the taIl", "wags The dOg", "That looks fuNny!") #' , all.words = TRUE, lower.back = TRUE) capitalizeStrings = function(x, all.words = FALSE, lower.back = FALSE) { assertCharacter(x) assertLogical(all.words, any.missing = FALSE, len = 1L) assertLogical(lower.back, any.missing = FALSE, len = 1L) if (all.words) { pattern = "([[:alnum:]])([[:alnum:]]*)" replacement = "\\U\\1" if (lower.back) { replacement = paste0(replacement, "\\L\\2") } else { replacement = paste0(replacement, "\\E\\2") } } else { pattern = "^([[:alnum:]])" replacement = "\\U\\1" if (lower.back) { pattern = paste0(pattern, "(.*)") replacement = paste0(replacement, "\\L\\2") } } return(gsub(pattern, replacement, x, perl = TRUE)) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/capitalizeStrings.R
#' Wrapper for cat and sprintf. #' #' A simple wrapper for \code{cat(sprintf(...))}. #' #' @param ... [any]\cr #' See \code{\link{sprintf}}. #' @param file [\code{character(1)}]\cr #' See \code{\link{cat}}. #' Default is \dQuote{}. #' @param append [\code{logical(1)}]\cr #' See \code{\link{cat}}. #' Default is \code{FALSE}. #' @param newline [\code{logical(1)}]\cr #' Append newline at the end? #' Default is \code{TRUE}. #' @return Nothing. #' @export #' @examples #' msg = "a message." #' catf("This is %s", msg) catf = function(..., file = "", append = FALSE, newline = TRUE) { cat(sprintf(...), ifelse(newline, "\n", ""), sep = "", file = file, append = append) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/catf.R
#' @title Check for a function argument. #' #' @description #' Throws exception if checks are not passed. Note that argument is evaluated when checked. #' #' This function is superseded by the package \pkg{checkmate} and might get deprecated #' in the future. Please #' #' @param x [any]\cr #' Argument. #' @param cl [\code{character}]\cr #' Class that argument must \dQuote{inherit} from. #' If multiple classes are given, \code{x} must \dQuote{inherit} from at least one of these. #' See also argument \code{s4}. #' @param s4 [\code{logical(1)}]\cr #' If \code{TRUE}, use \code{is} for checking class \code{cl}, otherwise use \code{\link{inherits}}, which #' implies that only S3 classes are correctly checked. This is done for speed reasons #' as calling \code{\link{is}} is pretty slow. #' Default is \code{FALSE}. #' @param len [\code{integer(1)}]\cr #' Length that argument must have. #' Not checked if not passed, which is the default. #' @param min.len [\code{integer(1)}]\cr #' Minimal length that argument must have. #' Not checked if not passed, which is the default. #' @param max.len [\code{integer(1)}]\cr #' Maximal length that argument must have. #' Not checked if not passed, which is the default. #' @param choices [any]\cr #' Discrete number of choices, expressed by a vector of R objects. #' If passed, argument must be identical to one of these and nothing else is checked. #' @param subset [any]\cr #' Discrete number of choices, expressed by a vector of R objects. #' If passed, argument must be identical to a subset of these and nothing else is checked. #' @param lower [\code{numeric(1)}]\cr #' Lower bound for numeric vector arguments. #' Default is \code{NA}, which means not required. #' @param upper [\code{numeric(1)}]\cr #' Upper bound for numeric vector arguments. #' Default is \code{NA}, which means not required. #' @param na.ok [\code{logical(1)}]\cr #' Is it ok if a vector argument contains NAs? #' Default is \code{TRUE}. #' @param formals [\code{character}]\cr #' If this is passed, \code{x} must be a function. #' It is then checked that \code{formals} are the names of the #' (first) formal arguments in the signature of \code{x}. #' Meaning \code{checkArg(function(a, b), formals = "a")} is ok. #' Default is missing. #' @return Nothing. #' @export checkArg = function(x, cl, s4 = FALSE, len, min.len, max.len, choices, subset, lower = NA, upper = NA, na.ok = TRUE, formals) { s = deparse(substitute(x)) if (missing(x)) stop("Argument ", s, " must not be missing!") cl2 = class(x)[1] len2 = length(x) matchEl = function(x, xs) any(sapply(xs, function(y) identical(y, x))) # choices must be done first if (!missing(choices)) { if (!matchEl(x, choices)) stop("Argument ", s, " must be any of: ", collapse(choices), "!") } else if (!missing(subset)) { if (!all(sapply(x, matchEl, xs = subset))) stop("Argument ", s, " must be subset of: ", collapse(subset), "!") } else if (!missing(formals)) { if (!is.function(x)) stop("Argument ", s, " must be of class ", "function", " not: ", cl2, "!") fs = names(formals(x)) if (length(fs) < length(formals) || !all(formals == fs[seq_along(formals)])) stop("Argument function must have first formal args: ", paste(formals, collapse = ","), "!") } else { mycheck = function(x, cc) if(identical(cc, "numeric")) is.numeric(x) else if(identical(cc, "integer")) is.integer(x) else if(identical(cc, "vector")) is.vector(x) else if (!s4) inherits(x, cc) else if (s4) is(x, cc) if (!any(sapply(cl, mycheck, x = x))) stop("Argument ", s, " must be of class ", collapse(cl, " OR "), ", not: ", cl2, "!") if (!missing(len) && len2 != len) stop("Argument ", s, " must be of length ", len, " not: ", len2, "!") if (!missing(min.len) && len2 < min.len) stop("Argument ", s, " must be at least of length ", min.len, " not: ", len2, "!") if (!missing(max.len) && len2 > max.len) stop("Argument ", s, " must be at most of length ", max.len, " not: ", len2, "!") if (!na.ok && any(is.na(x))) stop("Argument ", s, " must not contain any NAs!") if (is.numeric(x) && !is.na(lower) && ((any(is.na(x)) && !na.ok) || (!any(is.na(x)) && any(x < lower)))) stop("Argument ", s, " must be greater than or equal ", lower, "!") if (is.numeric(x) && !is.na(upper) && ((any(is.na(x)) && !na.ok) || (!any(is.na(x)) && any(x > upper)))) stop("Argument ", s, " must be less than or equal ", upper, "!") } }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/checkArg.R
#' Check that a list contains only elements of a required type. #' #' Check that argument is a list and contains only elements of a required type. #' Throws exception if check is not passed. #' Note that argument is evaluated when checked. #' #' @param xs [\code{list}]\cr #' Argument. #' @param cl [\code{character(1)}]\cr #' Class that elements must have. Checked with \code{is}. #' @return Nothing. #' @export #' @examples #' xs = as.list(1:3) #' checkListElementClass(xs, "numeric") checkListElementClass = function(xs, cl) { assertList(xs) s = deparse(substitute(xs)) lapply(seq_along(xs), function(i) { x = xs[[i]] if(!(is(x, cl))) stop("List ", s, " has element of wrong type ", class(x)[1L], " at position ", i, ". Should be: ", cl) }) invisible(NULL) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/checkListElementClass.R
#' Chunk elements of vectors into blocks of nearly equal size. #' #' In case of shuffling and vectors that cannot be chunked evenly, #' it is chosen randomly which levels / chunks will receive 1 element less. #' If you do not shuffle, always the last chunks will receive 1 element less. #' #' @param x [ANY]\cr #' Vector, list or other type supported by \code{\link[base]{split}}. #' @param chunk.size [\code{integer(1)}]\cr #' Requested number of elements in each chunk. #' Cannot be used in combination with \code{n.chunks} or \code{props}. #' If \code{x} cannot be evenly chunked, some chunks will have less elements. #' @param n.chunks [\code{integer(1)}]\cr #' Requested number of chunks. #' If more chunks than elements in \code{x} are requested, empty chunks are #' dropped. #' Can not be used in combination with \code{chunks.size} or \code{props}. #' @param props [\code{numeric}]\cr #' Vector of proportions for chunk sizes. #' Empty chunks may occur, depending on the length of \code{x} and the given #' proportions. #' Cannot be used in combination with \code{chunks.size} or \code{n.chunks}. #' @param shuffle [\code{logical(1)}]\cr #' Shuffle \code{x}? #' Default is \code{FALSE}. #' @return [unnamed \code{list}] of chunks. #' @export #' @examples #' xs = 1:10 #' chunk(xs, chunk.size = 3) #' chunk(xs, n.chunks = 2) #' chunk(xs, n.chunks = 2, shuffle = TRUE) #' chunk(xs, props = c(7, 3)) chunk = function(x, chunk.size, n.chunks, props, shuffle = FALSE) { assertFlag(shuffle) method = c("chunk.size", "n.chunks", "props") method = method[!c(missing(chunk.size), missing(n.chunks), missing(props))] if (length(method) != 1L) stop("You must provide exactly one of 'chunk.size', 'n.chunks' or 'props'") nx = length(x) ch = switch(method, chunk.size = { chunk.size = convertInteger(chunk.size) assertCount(chunk.size, positive = TRUE) getNChunks(nx, nx %/% chunk.size + (nx %% chunk.size > 0L), shuffle) }, n.chunks = { n.chunks = convertInteger(n.chunks) assertCount(n.chunks, positive = TRUE) getNChunks(nx, n.chunks, shuffle) }, props = { assertNumeric(props, min.len = 1L, any.missing = FALSE, lower = 0) props = props / sum(props) ch = factor(rep.int(seq_along(props), round(props * nx, digits = 0L)), levels = seq_along(props)) if (shuffle) sample(ch) else ch }) unname(split(x, ch)) } getNChunks = function(nx, n.chunks, shuffle) { n.chunks = min(n.chunks, nx) if (shuffle) { c(sample(seq(0L, (nx %/% n.chunks) * n.chunks - 1L) %% n.chunks), sample(n.chunks, nx %% n.chunks) - 1L) } else { sort(seq.int(0L, nx - 1L) %% n.chunks) } }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/chunk.R
#' Shortens strings to a given length. #' #' @param x [\code{character}]\cr #' Vector of strings. #' @param len [\code{integer(1)}]\cr #' Absolute length the string should be clipped to, including \code{tail}. #' Note that you cannot clip to a shorter length than \code{tail}. #' @param tail [\code{character(1)}]\cr #' If the string has to be shortened at least 1 character, the final characters will be \code{tail}. #' Default is \dQuote{...}. #' @return [\code{character(1)}]. #' @export #' @examples #' print(clipString("abcdef", 10)) #' print(clipString("abcdef", 5)) clipString = function(x, len, tail = "...") { assertCharacter(x, any.missing = TRUE) len = asInteger(len, len = 1L, lower = nchar(tail)) assertString(tail) ind = (!is.na(x) & nchar(x) > len) replace(x, ind, paste(substr(x[ind], 1L, len - nchar(tail)), tail, sep = "")) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/clipString.R
#' @title Returns first non-missing, non-null argument. #' #' @description #' Returns first non-missing, non-null argument, otherwise \code{NULL}. #' #' We have to perform some pretty weird \code{\link{tryCatch}} stuff internally, #' so you should better not pass complex function calls into the arguments that can throw exceptions, #' as these will be completely muffled, and return \code{NULL} in the end. #' #' @param ... [any]\cr #' Arguments. #' @return [any]. #' @export #' @examples #' f = function(x,y) { #' print(coalesce(NULL, x, y)) #' } #' f(y = 3) coalesce = function(...) { dots = match.call(expand.dots = FALSE)$... for (arg in dots) { ismissing = if (is.symbol(arg)) { eval(substitute(missing(symbol), list(symbol = arg)), envir = parent.frame()) } else { FALSE } if (!ismissing) { value = tryCatch(eval(arg, envir = parent.frame()), error = function(...) NULL) if (!is.null(value)) { return(value) } } } NULL }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/coalesce.R
#' Collapse vector to string. #' #' A simple wrapper for \code{paste(x, collapse)}. #' #' @param x [\code{vector}]\cr #' Vector to collapse. #' @param sep [\code{character(1)}]\cr #' Passed to \code{collapse} in \code{\link{paste}}. #' Default is \dQuote{,}. #' @return [\code{character(1)}]. #' @export #' @examples #' collapse(c("foo", "bar")) #' collapse(c("foo", "bar"), sep = ";") collapse = function(x, sep = ",") { paste0(x, collapse = sep) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/collapse.R
#' Collapse vector to string. #' #' A simple wrapper for \code{collapse(sprintf, ...)}. #' #' Useful for vectorized call to \code{\link{sprintf}}. #' #' @param ... [any]\cr #' See \code{\link{sprintf}}. #' @param sep [\code{character(1)}]\cr #' See \code{\link{collapse}}. #' @return [\code{character(1)}]. #' @export collapsef = function(..., sep = ",") { paste0(sprintf(...), collapse = sep) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/collapsef.R
#' Compute statistical mode of a vector (value that occurs most frequently). #' #' Works for integer, numeric, factor and character vectors. #' The implementation is currently not extremely efficient. #' #' @param x [\code{vector}]\cr #' Factor, character, integer, numeric or logical vector. #' @param na.rm [\code{logical(1)}]\cr #' If \code{TRUE}, missing values in the data removed. #' if \code{FALSE}, they are used as a separate level and this level could therefore #' be returned as the most frequent one. #' Default is \code{TRUE}. #' @param ties.method [\code{character(1)}]\cr #' \dQuote{first}, \dQuote{random}, \dQuote{last}: Decide which value to take in case of ties. #' Default is \dQuote{random}. #' @return Modal value of length 1, data type depends on data type of \code{x}. #' @export #' @examples #' computeMode(c(1,2,3,3)) computeMode = function(x, ties.method = "random", na.rm = TRUE) { assertAtomicVector(x) assertChoice(ties.method, c("first", "random", "last")) assertFlag(na.rm) tab = as.data.table(x)[, .N, by = x] if (na.rm) tab = na.omit(tab) ind = (tab$N == max(tab$N)) mod = tab$x[ind] if (is.factor(mod)) mod = as.character(mod) if (length(mod) > 1L) ind = switch(ties.method, first = mod[1L], random = sample(mod, 1L), last = mod[length(mod)]) else mod }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/computeMode.R
#' Converts columns in a data frame to characters, factors or numerics. #' #' @param df [\code{data.frame}]\cr #' Data frame. #' @param chars.as.factor [\code{logical(1)}]\cr #' Should characters be converted to factors? #' Default is \code{FALSE}. #' @param factors.as.char [\code{logical(1)}]\cr #' Should characters be converted to factors? #' Default is \code{FALSE}. #' @param ints.as.num [\code{logical(1)}]\cr #' Should integers be converted to numerics? #' Default is \code{FALSE}. #' @param logicals.as.factor [\code{logical(1)}]\cr #' Should logicals be converted to factors? #' Default is \code{FALSE}. #' @export #' @return [\code{data.frame}]. convertDataFrameCols = function(df, chars.as.factor = FALSE, factors.as.char = FALSE, ints.as.num = FALSE, logicals.as.factor = FALSE) { assertDataFrame(df) assertFlag(chars.as.factor) assertFlag(factors.as.char) assertFlag(ints.as.num) assertFlag(logicals.as.factor) df = x = as.list(df) if (chars.as.factor) { i = vlapply(df, is.character) if (any(i)) x[i] = lapply(x[i], factor) } if (factors.as.char) { i = vlapply(df, is.factor) if (any(i)) x[i] = lapply(x[i], as.character) } if (ints.as.num) { i = vlapply(df, is.integer) if (any(i)) x[i] = lapply(x[i], as.double) } if (logicals.as.factor) { i = vlapply(df, is.logical) if (any(i)) x[i] = lapply(x[i], factor, levels = c("TRUE", "FALSE")) } as.data.frame(x, stringsAsFactors = FALSE) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/convertDataFrameCols.R
#' Conversion for single integer. #' #' Convert single numeric to integer only if the numeric represents a single integer, #' e.g. 1 to 1L. #' Otherwise the argument is returned unchanged. #' #' @param x [any]\cr #' Argument. #' @return Either a single integer if conversion was done or \code{x} unchanged. #' @export #' @examples #' str(convertInteger(1.0)) #' str(convertInteger(1.3)) #' str(convertInteger(c(1.0, 2.0))) #' str(convertInteger("foo")) convertInteger = function(x) { if (is.integer(x) || length(x) != 1L) return(x) if (is.na(x)) return(as.integer(x)) if (is.numeric(x)) { xi = as.integer(x) if (isTRUE(all.equal(x, xi))) return(xi) } return(x) } #' Conversion for integer vector. #' #' Convert numeric vector to integer vector if the numeric vector fully represents #' an integer vector, #' e.g. \code{c(1, 5)} to \code{c(1L, 5L)}. #' Otherwise the argument is returned unchanged. #' #' @param x [any]\cr #' Argument. #' @return Either an integer vector if conversion was done or \code{x} unchanged. #' @export #' @examples #' str(convertIntegers(1.0)) #' str(convertIntegers(1.3)) #' str(convertIntegers(c(1.0, 2.0))) #' str(convertIntegers("foo")) convertIntegers = function(x) { if (is.integer(x)) return(x) if (length(x) == 0L || (is.atomic(x) && all(is.na(x)))) return(as.integer(x)) if (is.numeric(x)) { xi = as.integer(x) if (isTRUE(all.equal(x, xi, check.names = FALSE))) return(setNames(xi, names(x))) } return(x) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/convertInteger.R
#' @title Convert a list of row-vector of equal structure to a data.frame. #' #' @description #' Elements are arranged in columns according to their name in each #' element of \code{rows}. #' Variables that are not present in some row-lists, or encoded as \code{NULL}, are filled using NAs. #' #' @param rows [\code{list}]\cr #' List of rows. Each row is a list or vector of the same structure, #' where all corresponding elements must have the same class. #' It is allowed that in some rows some elements are not present, see above. #' @param strings.as.factors [\code{logical(1)}]\cr #' Convert character columns to factors? #' Default is \code{default.stringsAsFactors()} for R < "4.1.0" and \code{FALSE} otherwise. #' @param row.names [\code{character} | \code{integer} | \code{NULL}]\cr #' Row names for result. #' By default the names of the list \code{rows} are taken. #' @param col.names [\code{character} | \code{integer}]\cr #' Column names for result. #' By default the names of an element of \code{rows} are taken. #' @return [\code{data.frame}]. #' @export #' @examples #' convertListOfRowsToDataFrame(list(list(x = 1, y = "a"), list(x = 2, y = "b"))) convertListOfRowsToDataFrame = function(rows, strings.as.factors = NULL, row.names, col.names) { assertList(rows) assertList(rows, types = "vector") if (!length(rows)) return(makeDataFrame(0L, 0L)) if (is.null(strings.as.factors)) { if(getRversion() < "4.1.0") strings.as.factors = default.stringsAsFactors() else strings.as.factors = FALSE } assertFlag(strings.as.factors) if (missing(row.names)) row.names = names(rows) # make names rows = lapply(rows, function(x) setNames(x, make.names(names2(x, ""), unique = TRUE))) cols = unique(unlist(lapply(rows, names2))) if (anyMissing(cols)) stop("All row elements must be named") if (!length(cols)) return(makeDataFrame(length(rows), 0L)) extract = function(cn) { tmp = lapply(rows, function(x) if (is.list(x)) x[[cn]] else unname(x[cn])) if (any(viapply(tmp, length) > 1L)) stop("Rows may only contain a single value per name") simplify2array(replace(tmp, vlapply(tmp, is.null), NA)) } d = data.frame(setNames(lapply(cols, extract), cols), row.names = row.names, stringsAsFactors = strings.as.factors) if (!missing(col.names)) colnames(d) = col.names return(d) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/convertListOfRowsToDataFrame.R
#' Converts storage type of a matrix. #' #' Works by setting \code{\link{mode}}. #' #' @param x [\code{matrix}]\cr. #' Matrix to convert. #' @param type [\code{character(1)}]\cr #' New storage type. #' @return [\code{matrix}]. #' @note \code{as.mytype} drops dimension when used on a matrix. #' @export convertMatrixType = function(x, type) { assertMatrix(x) assertChoice(type, c("integer", "numeric", "complex", "character", "logical")) storage.mode(x) = type return(x) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/convertMatrixType.R
#' Convert rows (columns) of data.frame or matrix to lists. #' #' For each row, one list/vector is constructed, each entry of #' the row becomes a list/vector element. #' #' @param x [\code{matrix} | \code{data.frame}]\cr #' Object to convert. #' @param name.list [\code{logical(1)}]\cr #' Name resulting list with names of rows (cols) of \code{x}? #' Default is \code{FALSE}. #' @param name.vector [\code{logical(1)}]\cr #' Name vector elements in resulting list with names of cols (rows) of \code{x}? #' Default is \code{FALSE}. #' @param factors.as.char [\code{logical(1)}]\cr #' If \code{x} is a data.frame, convert factor columns to #' string elements in the resulting lists? #' Default is \code{TRUE}. #' @param as.vector [\code{logical(1)}]\cr #' If \code{x} is a matrix, store rows as vectors in the resulting list - or otherwise as lists? #' Default is \code{TRUE}. #' @return [\code{list} of lists or vectors]. #' @export convertRowsToList = function(x, name.list = TRUE, name.vector = FALSE, factors.as.char = TRUE, as.vector = TRUE) { assert(checkMatrix(x), checkDataFrame(x)) assertFlag(name.list) assertFlag(name.vector) assertFlag(factors.as.char) assertFlag(as.vector) ns.list = if (name.list) rownames(x) else NULL ns.vector = if (name.vector) colnames(x) else NULL if (is.matrix(x)) { if (as.vector) res = lapply(seq_row(x), function(i) setNames(x[i, ], ns.vector)) else res = lapply(seq_row(x), function(i) setNames(as.list(x[i, ]), ns.vector)) } else if (is.data.frame(x)) { if (factors.as.char) x = convertDataFrameCols(x, factors.as.char = TRUE) res = rowLapply(x, function(row) setNames(as.list(row), ns.vector)) } setNames(res, ns.list) } #' @rdname convertRowsToList #' @export convertColsToList = function(x, name.list = FALSE, name.vector= FALSE, factors.as.char = TRUE, as.vector = TRUE) { # we need a special case for df and can ignore as.vector in it if (is.data.frame(x)) { if (factors.as.char) x = convertDataFrameCols(x, factors.as.char = TRUE) y = as.list(x) if (name.vector) { ns.vector = if (name.vector) colnames(x) else NULL y = lapply(y, function(z) setNames(z, ns.vector)) } colnames(y) = if (name.list) colnames(x) else NULL return(y) } convertRowsToList(t(x), name.list = name.list, name.vector = name.vector, factors.as.char = factors.as.char, as.vector = as.vector) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/convertRowsToList.R
#' @title Converts any R object to a descriptive string so it can be used in messages. #' #' @description #' Atomics: If of length 0 or 1, they are basically printed as they are. #' Numerics are formated with \code{num.format}. #' If of length greater than 1, they are collapsed witd \dQuote{,} and clipped. #' so they do not become excessively long. #' Expressions will be converted to plain text. #' #' All others: Currently, only their class is simply printed #' like \dQuote{<data.frame>}. #' #' Lists: The mechanism above is applied (non-recursively) to their elements. #' The result looks like this: #' \dQuote{a=1, <unamed>=2, b=<data.frame>, c=<list>}. #' #' @param x [any]\cr #' The object. #' @param num.format [\code{character(1)}]\cr #' Used to format numerical scalars via \code{\link{sprintf}}. #' Default is \dQuote{\%.4g}. #' @param clip.len [\code{integer(1)}]\cr #' Used clip atomic vectors via \code{\link{clipString}}. #' Default is 15. #' @return [\code{character(1)}]. #' @export #' @examples #' convertToShortString(list(a = 1, b = NULL, "foo", c = 1:10)) convertToShortString = function(x, num.format = "%.4g", clip.len = 15L) { # convert non-list object to string convObj = function(x) { cl = getClass1(x) string = if (is.atomic(x) && !is.null(x) && length(x) == 0L) sprintf("%s(0)", getClass1(x)) else if (cl == "numeric") paste(sprintf(num.format, x), collapse=",") else if (cl == "integer") paste(as.character(x), collapse=",") else if (cl == "logical") paste(as.character(x), collapse=",") else if (cl == "character") collapse(x) else if (cl == "expression") as.character(x) else sprintf("<%s>", cl) clipString(string, clip.len) } # handle only lists and not any derived data types if (getClass1(x) == "list") { if (length(x) == 0L) return("list()") ns = names2(x, missing.val = "<unnamed>") ss = lapply(x, convObj) collapse(paste(ns, "=", ss, sep = ""), ", ") } else { convObj(x) } }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/convertToShortString.R
#' Call \code{lapply} on an object and return a data.frame. #' #' Applies a function \code{fun} on each element of input \code{x} #' and combines the results as \code{data.frame} columns. #' The results will get replicated to have equal length #' if necessary and possible. #' #' @param x [\code{data.frame}]\cr #' Data frame. #' @param fun [\code{function}]\cr #' The function to apply. #' @param ... [any]\cr #' Further arguments passed down to \code{fun}. #' @param col.names [\code{character(1)}]\cr #' Column names for result. #' Default are the names of \code{x}. #' @export #' @return [\code{data.frame}]. dapply = function(x, fun, ..., col.names) { assertFunction(fun) x = lapply(x, fun, ...) if (missing(col.names)) { ns = names2(x) missing = which(is.na(ns)) if (length(missing)) names(x) = replace(ns, missing, paste0("Var.", missing)) } else { assertCharacter(col.names, len = length(x), any.missing = FALSE) names(x) = col.names } n = unique(viapply(x, length)) if (length(n) > 1L) { max.n = max(n) if (any(max.n %% n)) stop("Arguments imply differing number of rows: ", collapse(n, ", ")) x = lapply(x, rep_len, length.out = max.n) n = max.n } attr(x, "row.names") = seq_len(n) attr(x, "class") = "data.frame" return(x) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/dapply.R
#' Is one / are several files a directory? #' #' If a file does not exist, \code{FALSE} is returned. #' #' @param ... [\code{character(1)}]\cr #' File names, all strings. #' @return [\code{logical}]. #' @export #' @examples #' print(isDirectory(tempdir())) #' print(isDirectory(tempfile())) isDirectory = function(...) { paths = c(...) if (.Platform$OS.type == "windows" && getRversion() < "3.0.2") paths = sub("^([[:alpha:]]:)[/\\]*$", "\\1//", paths) x = file.info(paths)$isdir !is.na(x) & x } #' Is one / are several directories empty? #' #' If file does not exist or is not a directory, \code{FALSE} is returned. #' #' @param ... [\code{character(1)}]\cr #' Directory names, all strings. #' @return [\code{logical}]. #' @export #' @examples #' print(isEmptyDirectory(tempdir())) #' print(isEmptyDirectory(tempfile())) isEmptyDirectory = function(...) { vapply(list(...), FUN.VALUE = TRUE, FUN = function(x) { isDirectory(x) && length(list.files(x, all.files = TRUE, include.dirs = TRUE)) == 2L }) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/directory.R
#' Execute a function call similar to \code{do.call}. #' #' This function is supposed to be a replacement for \code{\link[base]{do.call}} in situations #' where you need to pass big R objects. #' Unlike \code{\link[base]{do.call}}, this function allows to pass objects via \code{...} #' to avoid a copy. #' #' @param fun [\code{character(1)}]\cr #' Name of the function to call. #' @param ... [any]\cr #' Arguments to \code{fun}. Best practice is to specify them in a \code{key = value} syntax. #' @param .args [\code{list}]\cr #' Arguments to \code{fun} as a (named) list. Will be passed after arguments in \code{...}. #' Default is \code{list()}. #' @return Return value of \code{fun}. #' @export #' @examples \dontrun{ #' library(microbenchmark) #' x = 1:1e7 #' microbenchmark(do.call(head, list(x, n = 1)), do.call2("head", x, n = 1)) #' } do.call2 = function(fun, ..., .args = list()) { assertString(fun) ddd = match.call(expand.dots = FALSE)$... expr = as.call(c(list(as.name(fun)), ddd, lapply(substitute(.args)[-1L], identity))) eval.parent(expr, n = 1L) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/do.call2.R
#' Drop named elements of an object. #' #' @param x [any]\cr #' Object to drop named elements from. #' For a matrix or a data frames this function drops named columns via #' the second argument of the binary index operator \code{[,]}. #' Otherwise, the unary index operator \code{[]} is used for dropping. #' @param drop [\code{character}]\cr #' Names of elements to drop. #' @return Subset of object of same type as \code{x}. The object is not simplified, #' i.e, no dimensions are dropped as \code{[,,drop = FALSE]} is used. #' @export dropNamed = function(x, drop = character(0L)) { assertCharacter(drop, any.missing = FALSE) if (length(drop) == 0L) return(x) if (is.matrix(x) || is.data.frame(x)) x[, setdiff(colnames(x), drop), drop = FALSE] else x[setdiff(names(x), drop)] }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/dropNamed.R
#' Blow up single scalars / objects to vectors / list by replication. #' #' Useful for standard argument conversion where a user can input a single #' element, but this has to be replicated now n times for a resulting vector or list. #' #' @param x [any]\cr #' Input element. #' @param n [\code{integer(1)}]\cr #' Desired length. #' Default is 1 (the most common case). #' @param cl [\code{character}*]\cr #' Only do the operation if \code{x} inherits from this one of these classes, #' otherwise simply let \code{x} pass. #' Default is \code{NULL} which means to always do the operation. #' @param names [\code{character}*] \cr #' Names for result. #' Default is \code{NULL}, which means no names. #' @param ensure.list [\code{logical(1)}]\cr #' Should \code{x} be wrapped in a list in any case? #' Default is \code{FALSE}, i.e., if \code{x} is a scalar value, a vector is #' returned. #' @return Ether a vector or list of length \code{n} with replicated \code{x} or \code{x} unchanged.. #' @export ensureVector = function(x, n = 1L, cl = NULL, names = NULL, ensure.list = FALSE) { n = convertInteger(n) assertCount(n) assertFlag(ensure.list) doit = isScalarValue(x) || !is.atomic(x) if (!is.null(cl)) { assertCharacter(cl, min.len = 1L, any.missing = FALSE, all.missing = FALSE) doit = doit && inherits(x, cl) } if (doit) { if (isScalarValue(x) && !ensure.list) { xs = rep(x, n) } else { xs = replicate(n, x, simplify = FALSE) } if (!is.null(names)) { assertCharacter(names, len = n, any.missing = FALSE) names(xs) = names } return(xs) } else { return(x) } }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/ensureVector.R
#' Split up a string into substrings. #' #' Split up a string into substrings according to a seperator. #' #' @param x [\code{character}]\cr #' Source string. #' @param sep [\code{character}]\cr #' Seperator whcih is used to split \code{x} into substrings. #' Default is \dQuote{ }. #' @return [\code{vector}] #' Vector of substrings. #' @export #' @examples #' explode("foo bar") #' explode("comma,seperated,values", sep = ",") explode = function(x, sep = " ") { assertString(x) assertString(sep) #FIXME: why perl? x.exploded = strsplit(x, sep, perl = TRUE) return(x.exploded[[1L]]) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/explode.R
#' Extracts a named element from a list of lists. #' #' @param xs [\code{list}]\cr #' A list of named lists. #' @param element [\code{character}]\cr #' Name of element(s) to extract from the list elements of \code{xs}. #' What happens is this: \code{x$el1$el2....}. #' @param element.value [any]\cr #' If given, \code{\link{vapply}} is used and this argument is passed to \code{FUN.VALUE}. #' Note that even for repeated indexing (if length(element) > 1) you only #' pass one value here which refers to the data type of the final result. #' @param simplify [\code{logical(1)} | character(1)]\cr #' If \code{FALSE} \code{\link{lapply}} is used, otherwise \code{\link{sapply}}. #' If \dQuote{cols}, we expect the elements to be vectors of the same length and they are #' arranged as the columns of the resulting matrix. #' If \dQuote{rows}, likewise, but rows of the resulting matrix. #' Default is \code{TRUE}. #' @param use.names [\code{logical(1)}]\cr #' If \code{TRUE} and \code{xs} is named, the result is named as \code{xs}, #' otherwise the result is unnamed. #' Default is \code{TRUE}. #' @return [\code{list} | simplified \code{vector} | \code{matrix}]. See above. #' @export #' @examples #' xs = list(list(a = 1, b = 2), list(a = 5, b = 7)) #' extractSubList(xs, "a") #' extractSubList(xs, "a", simplify = FALSE) extractSubList = function(xs, element, element.value, simplify = TRUE, use.names = TRUE) { assertList(xs) assert(checkFlag(simplify), checkChoice(simplify, c("cols", "rows"))) assertFlag(use.names) # we save some time here if we only do the for loop in the complicated case # the whole function is still not very nice due to the loop # extractSubList should be C code anyway i guess.... doindex = if (length(element) == 1L) { function(x) x[[element]] } else { function(x) { for (el in element) x = x[[el]] return(x) } } if (!missing(element.value)) { ys = vapply(xs, doindex, FUN.VALUE = element.value) } else if (isTRUE(simplify)) { ys = sapply(xs, doindex, USE.NAMES = use.names) } else { ys = lapply(xs, doindex) if (simplify == "rows") ys = asMatrixRows(ys) else if (simplify == "cols") ys = asMatrixCols(ys) } ns = names(xs) if (use.names && !is.null(ns)) { if (isTRUE(simplify)) names(ys) = ns else if (simplify == "rows") rownames(ys) = ns else if (simplify == "cols") colnames(ys) = ns } else { if (simplify %in% c("rows", "rows")) dimnames(ys) = NULL else names(ys) = NULL } return(ys) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/extractSubList.R
#' Combine multiple factors and return a factor. #' #' Note that function does not inherit from \code{\link{c}} to not change R semantics behind your back when this #' package is loaded. #' #' @param ... [\code{factor}]\cr #' The factors. #' @return [\code{factor}]. #' @export #' @examples #' f1 = factor(c("a", "b")) #' f2 = factor(c("b", "c")) #' print(c(f1, f2)) #' print(cFactor(f1, f2)) cFactor = function(...) { args = lapply(list(...), as.factor) newlevels = sort(unique(unlist(lapply(args, levels)))) ans = unlist(lapply(args, function(x) { m = match(levels(x), newlevels) m[as.integer(x)] })) levels(ans) = newlevels setClasses(ans, "factor") }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/factor.R
#' Filter a list for NULL values #' #' @param li [\code{list}]\cr #' List. #' @return [\code{list}]. #' @export filterNull = function(li) { assertList(li) li[!vlapply(li, is.null)] }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/filterNull.R
#' Helper function for determining the vector of attribute names #' of a given object. #' #' @param obj [any]\cr #' Source object. #' @return [\code{character}] #' Vector of attribute names for the source object. #' @export getAttributeNames = function(obj) { names(attributes(obj)) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/getAttributeNames.R
#' Wrapper for \code{class(x)[1]}. #' #' @param x [any]\cr #' Input object. #' @return [\code{character(1)}]. #' @note \code{getClass} is a function in \code{methods}. Do not confuse. #' @export getClass1 = function(x) { class(x)[1L] }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/getClass1.R
#' Get the first/last element of a list/vector. #' #' @param x [\code{list} | \code{vector}]\cr #' The list or vector. #' @return Selected element. The element name is dropped. #' @export getFirst = function(x) { assertVector(x, min.len = 1L) x[[1L]] } #' @rdname getFirst #' @export getLast = function(x) { assertVector(x, min.len = 1L) x[[length(x)]] }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/getFirstLast.R
#' Find row- or columnwise the index of the maximal / minimal element in a matrix. #' #' \code{getMaxIndexOfRows} returns the index of the maximal element of each row. #' \code{getMinIndexOfRows} returns the index of the minimal element of each row. #' \code{getMaxIndexOfCols} returns the index of the maximal element of each col. #' \code{getMinIndexOfCols} returns the index of the minimal element of each col. #' If a corresponding vector (row or col) is empty, possibly after NA removal, -1 is returned #' as index. #' #' @param x [\code{matrix(n,m)}] \cr #' Numerical input matrix. #' @param weights [\code{numeric}]\cr #' Weights (same length as number of rows/cols). #' If these are specified, the index is selected from the weighted elements #' (see \code{\link{getMaxIndex}}). #' Default is \code{NULL} which means no weights. #' @param ties.method [\code{character(1)}]\cr #' How should ties be handled? #' Possible are: \dQuote{random}, \dQuote{first}, \dQuote{last}. #' Default is \dQuote{random}. #' @param na.rm [\code{logical(1)}]\cr #' If \code{FALSE}, NA is returned if an NA is encountered in \code{x}. #' If \code{TRUE}, NAs are disregarded. #' Default is \code{FALSE} #' @return [\code{integer(n)}]. #' @export #' @useDynLib BBmisc c_getMaxIndexOfRows c_getMaxIndexOfCols #' @examples #' x = matrix(runif(5 * 3), ncol = 3) #' print(x) #' print(getMaxIndexOfRows(x)) #' print(getMinIndexOfRows(x)) getMaxIndexOfRows = function(x, weights = NULL, ties.method = "random", na.rm = FALSE) { mode(x) = "numeric" ties.method = switch(ties.method, random = 1L, first = 2L, last = 3L, stop("Unknown ties method")) assertFlag(na.rm) assertNumeric(weights, null.ok = TRUE, len = ncol(x)) .Call(c_getMaxIndexOfRows, x, as.numeric(weights), ties.method, na.rm, PACKAGE = "BBmisc") } #' @export #' @rdname getMaxIndexOfRows getMinIndexOfRows = function(x, weights = NULL, ties.method = "random", na.rm = FALSE) { getMaxIndexOfRows(-x, weights, ties.method, na.rm) } #' @export #' @rdname getMaxIndexOfRows getMaxIndexOfCols = function(x, weights = NULL, ties.method = "random", na.rm = FALSE) { mode(x) = "numeric" ties.method = switch(ties.method, random = 1L, first = 2L, last = 3L, stop("Unknown ties method")) assertFlag(na.rm) assertNumeric(weights, null.ok = TRUE, len = nrow(x)) .Call(c_getMaxIndexOfCols, x, as.numeric(weights), ties.method, na.rm, PACKAGE = "BBmisc") } #' @export #' @rdname getMaxIndexOfRows getMinIndexOfCols = function(x, weights = NULL, ties.method = "random", na.rm = FALSE) { getMaxIndexOfCols(-x, weights, ties.method, na.rm) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/getMaxColIndex.R
#' Return index of maximal/minimal/best element in numerical vector. #' #' If \code{x} is empty or only contains NAs which are to be removed, #' -1 is returned. #' #' @note #' Function \code{getBestIndex} is a simple wrapper for \code{getMinIndex} or #' \code{getMaxIndex} respectively depending on the argument \code{minimize}. #' #' @param x [\code{numeric}]\cr #' Input vector. #' @param weights [\code{numeric}]\cr #' Weights (same length as \code{x}). #' If these are specified, the index is selected from \code{x * w}. #' Default is \code{NULL} which means no weights. #' @param ties.method [\code{character(1)}]\cr #' How should ties be handled? #' Possible are: \dQuote{random}, \dQuote{first}, \dQuote{last}. #' Default is \dQuote{random}. #' @param na.rm [\code{logical(1)}]\cr #' If \code{FALSE}, NA is returned if an NA is encountered in \code{x}. #' If \code{TRUE}, NAs are disregarded. #' Default is \code{FALSE} #' @param minimize [\code{logical(1)}]\cr #' Minimal element is considered best? #' Default is \code{TRUE}. #' @param ... [any]\cr #' Further arguments passed down to the delegate. #' @return [\code{integer(1)}]. #' @export #' @useDynLib BBmisc c_getMaxIndex getMaxIndex = function(x, weights = NULL, ties.method = "random", na.rm = FALSE) { ties.method = switch(ties.method, random = 1L, first = 2L, last = 3L, stop("Unknown ties method")) assertFlag(na.rm) assertNumeric(weights, null.ok = TRUE, len = length(x)) .Call(c_getMaxIndex, as.numeric(x), as.numeric(weights), ties.method, na.rm, PACKAGE = "BBmisc") } #' @export #' @rdname getMaxIndex getMinIndex = function(x, weights = NULL, ties.method = "random", na.rm = FALSE) { getMaxIndex(-as.numeric(x), weights, ties.method, na.rm) } #' @export #' @rdname getMaxIndex getBestIndex = function(x, weights = NULL, minimize = TRUE, ...) { assertFlag(minimize) getIndex = if (minimize) getMinIndex else getMaxIndex getIndex(x, weights, ...) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/getMaxIndex.R
#' Functions to determine the operating system. #' #' \itemize{ #' \item{getOperatingSystem}{Simple wrapper for \code{.Platform$OS.type}, returns \code{character(1)}.} #' \item{isUnix}{Predicate for OS string, returns \code{logical(1)}. Currently this would include Unix, Linux and Mac flavours.} #' \item{isLinux}{Predicate for sysname string, returns \code{logical(1)}.} #' \item{isDarwin}{Predicate for sysname string, returns \code{logical(1)}.} #' \item{isWindows}{Predicate for OS string, returns \code{logical(1)}.} #' } #' #' @return See above. #' @export getOperatingSystem = function() { .Platform$OS.type } #' @rdname getOperatingSystem #' @export isWindows = function() { .Platform$OS.type == "windows" } #' @rdname getOperatingSystem #' @export isUnix = function() { .Platform$OS.type == "unix" } #' @rdname getOperatingSystem #' @export isLinux = function() { isUnix() && grepl("linux", Sys.info()["sysname"], ignore.case = TRUE) } #' @rdname getOperatingSystem #' @export isDarwin = function() { isUnix() && grepl("darwin", Sys.info()["sysname"], ignore.case = TRUE) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/getOperatingSystem.R
#' Construct a path relative to another #' #' Constructs a relative path from path \code{from} to path \code{to}. #' If this is not possible (i.e. different drive letters on windows systems), #' \code{NA} is returned. #' #' @param to [\code{character(1)}]\cr #' Where the relative path should point to. #' @param from [\code{character(1)}]\cr #' From which part to start. #' Default is \code{\link[base]{getwd}}. #' @param ignore.case [\code{logical(1)}]\cr #' Should path comparisons be made case insensitve? #' Default is \code{TRUE} on Windows systems and \code{FALSE} on other systems. #' @return [character(1)]: A relative path. #' @export getRelativePath = function(to, from = getwd(), ignore.case = isWindows()) { numberCommonParts = function(p1, p2) { for (i in seq_len(min(length(p1), length(p2)))) { if (p1[i] != p2[i]) return(i - 1L) } return(if (is.null(i)) 0L else i) } from = splitPath(from) to = splitPath(to) assertFlag(ignore.case) if (length(from$drive) != length(to$drive)) return(NA_character_) if (length(from$drive) > 0L && length(to$drive) > 0L && from$drive != to$drive) return(NA_character_) if (ignore.case) i = numberCommonParts(tolower(from$path), tolower(to$path)) else i = numberCommonParts(from$path, to$path) res = c(rep.int("..", length(from$path) - i), tail(to$path, ifelse(i == 0L, Inf, -i))) if (length(res) == 0L) res = "." collapse(res, .Platform$file.sep) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/getRelativePath.R
#' Current time in seconds. #' #' Simple wrapper for \code{as.integer(Sys.time())}. #' #' @return [\code{integer(1)}]. #' @export getUnixTime = function() { as.integer(Sys.time()) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/getUnixTime.R
#' Determines used factor levels. #' #' Determines the factor levels of a factor type vector #' that are actually occuring in it. #' #' @param x [\code{factor}]\cr #' The factor. #' @return [\code{character}] #' @export getUsedFactorLevels = function(x) { intersect(levels(x), unique(x)) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/getUsedFactorLevels.R
#' Check if given object has certain attributes. #' #' @param obj [mixed]\cr #' Arbitrary R object. #' @param attribute.names [\code{character}]\cr #' Vector of strings, i.e., attribute names. #' @return [\code{logical(1)}] #' \code{TRUE} if object \code{x} contains all attributes from \code{attributeNames} #' and \code{FALSE} otherwise. #' @export hasAttributes = function(obj, attribute.names) { isSubset(attribute.names, getAttributeNames(obj)) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/hasAttributes.R
#' Insert elements from one list/vector into another list/vector. #' #' Inserts elements from \code{xs2} into \code{xs1} by name, #' overwriting elements of equal names. #' #' @param xs1 [\code{list}]\cr #' First list/vector. #' @param xs2 [\code{list}]\cr #' Second vector/list. Must be fully and uniquely named. #' @param elements [\code{character}]\cr #' Elements from \code{xs2} to insert into \code{xs1}. #' Default is all. #' @return \code{x1} with replaced elements from \code{x2}. #' @export #' @examples #' xs1 = list(a = 1, b = 2) #' xs2 = list(b = 1, c = 4) #' insert(xs1, xs2) #' insert(xs1, xs2, elements = "c") insert = function(xs1, xs2, elements) { if (length(xs2) > 0L) { if (missing(elements)) { xs1[names(xs2)] = xs2 } else { elements = intersect(elements, names(xs2)) xs1[elements] = xs2[elements] } } return(xs1) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/insert.R
#' Conditional checking for expensive examples. #' #' Queries environment variable \dQuote{R_EXPENSIVE_EXAMPLE_OK}. #' Returns \code{TRUE} iff set exactly to \dQuote{TRUE}. #' This allows conditional checking of expensive examples in packages #' via R CMD CHECK, so they are not run on CRAN, but at least #' on your local computer. #' A better option than \dQuote{dont_run} in many cases, where such examples #' are not checked at all. #' #' @return [\code{logical(1)}]. #' @export #' @examples #' # extremely costly random number generation, that we dont want checked on CRAN #' if (isExpensiveExampleOk()) { #' runif(1) #' } isExpensiveExampleOk = function() { Sys.getenv("R_EXPENSIVE_EXAMPLE_OK") == "TRUE" }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/isExpensiveExampleOk.R
#' A wrapper for \code{identical(x, FALSE)}. #' #' @param x [any]\cr #' Your object. #' @return [\code{logical(1)}]. #' @export #' @examples #' isFALSE(0) #' isFALSE(FALSE) isFALSE = function(x) { identical(x, FALSE) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/isFALSE.R
#' Are all elements of a list / vector uniquely named? #' #' \code{NA} or \dQuote{} are not allowed as names. #' #' @param x [\code{vector}]\cr #' The vector or list. #' @return [\code{logical(1)}]. #' @export #' @examples #' isProperlyNamed(list(1)) #' isProperlyNamed(list(a = 1)) #' isProperlyNamed(list(a = 1, 2)) isProperlyNamed = function(x) { ns = names2(x) length(x) == 0L || !(any(is.na(ns)) || anyDuplicated(ns)) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/isProperlyNamed.R
#' Checks whether an object is a scalar NA value. #' #' Checks whether object is from \code{(NA, NA_integer, NA_real_, NA_character_, NA_complex_)}. #' @param x [any]\cr #' Object to check. #' @return [\code{logical(1)}]. #' @export isScalarNA = function(x) { is.atomic(x) && length(x) == 1L && is.na(x) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/isScalarNA.R
#' Is given argument an atomic vector or factor of length 1? #' #' More specific functions for scalars of a given type exist, too. #' #' @param x [any]\cr #' Argument. #' @param na.ok [\code{logical(1)}]\cr #' Is \code{NA} considered a scalar? #' Default is \code{TRUE}. #' @param null.ok [\code{logical(1)}]\cr #' Is \code{NULL} considered a scalar? #' Default is \code{FALSE}. #' @param type [\code{character(1)}]\cr #' Allows to restrict to specific type, e.g., \dQuote{numeric}? #' But instead of this argument you might want to consider using \code{isScalar<Type>}. #' Default is \dQuote{atomic}, so no special restriction. #' @return [\code{logical(1)}]. #' @export isScalarValue = function(x, na.ok = TRUE, null.ok = FALSE, type = "atomic") { if (is.null(x)) return(null.ok) # not really cool switch, but maybe fastest option istype = switch(type, "atomic" = is.atomic, "logical" = is.logical, "numeric" = is.numeric, "integer" = is.integer, "complex" = is.complex, "chararacter" = is.character, "factor" = is.factor ) istype(x) && length(x) == 1L && (na.ok || !is.na(x)) } #' @rdname isScalarValue #' @export isScalarLogical = function(x, na.ok = TRUE, null.ok = FALSE) { isScalarValue(x, na.ok, null.ok, "logical") } #' @rdname isScalarValue #' @export isScalarNumeric = function(x, na.ok = TRUE, null.ok = FALSE) { isScalarValue(x, na.ok, null.ok, "numeric") } #' @rdname isScalarValue #' @export isScalarInteger = function(x, na.ok = TRUE, null.ok = FALSE) { isScalarValue(x, na.ok, null.ok, "integer") } #' @rdname isScalarValue #' @export isScalarComplex = function(x, na.ok = TRUE, null.ok = FALSE) { isScalarValue(x, na.ok, null.ok, "complex") } #' @rdname isScalarValue #' @export isScalarCharacter = function(x, na.ok = TRUE, null.ok = FALSE) { isScalarValue(x, na.ok, null.ok, "chararacter") } #' @rdname isScalarValue #' @export isScalarFactor = function(x, na.ok = TRUE, null.ok = FALSE) { isScalarValue(x, na.ok, null.ok, "factor") }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/isScalarValue.R
#' Check subset relation on two vectors. #' #' @param x [\code{vector}]\cr #' Source vector. #' @param y [\code{vector}]\cr #' Vector of the same mode as \code{x}. #' @param strict [\code{logical(1)}]\cr #' Checks for strict/proper subset relation. #' @return [\code{logical(1)}] #' \code{TRUE} if each element of \code{x} is also contained in \code{y}, i. e., #' if \code{x} is a subset of \code{y} and \code{FALSE} otherwise. #' @export isSubset = function(x, y, strict = FALSE) { assertFlag(strict) if (length(x) == 0L) return(TRUE) res = all(x %in% y) if (strict) res = res & !isSubset(y, x) return(res) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/isSubset.R
#' Check superset relation on two vectors. #' #' @param x [\code{vector}]\cr #' Source vector. #' @param y [\code{vector}]\cr #' Vector of the same mode as \code{x}. #' @param strict [\code{logical(1)}]\cr #' Checks for strict/proper superset relation. #' @return [\code{logical(1)}] #' \code{TRUE} if each element of \code{y} is also contained in \code{x}, i. e., #' if \code{y} is a subset of \code{x} and \code{FALSE} otherwise. #' @export isSuperset = function(x, y, strict = FALSE) { isSubset(y, x, strict) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/isSuperset.R
#' Can some strings be used for column or list element names without problems? #' #' @param x [\code{character}]\cr #' Character vector to check. #' @param unique [\code{logical(1)}]\cr #' Should the names be unique? #' Default is \code{TRUE}. #' @return [\code{logical}]. One Boolean entry for each string in \code{x}. #' If the entries are not unique and \code{unique} is enabled, the first duplicate will #' be \code{FALSE}. #' @export isValidName = function(x, unique = TRUE) { if (!is.character(x)) x = as.character(x) # check that make.names does not change the string (otherwise it would be invalid), # names are unique (for e.g. colnames) and stuff like ..1 is disallowed x == make.names(x, isTRUE(unique)) & !grepl("^\\.\\.[0-9]$", x) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/isValidName.R
#' Is return value of try an exception? #' #' Checks if an object is of class \dQuote{try-error} or #' \dQuote{error}. #' #' @param x [any]\cr #' Any object, usually the return value of \code{\link[base]{try}}, #' \code{\link[base]{tryCatch}}, or a function which may return a #' \code{\link[base]{simpleError}}. #' @return [\code{logical(1)}]. #' @export #' @examples #' x = try(stop("foo")) #' print(is.error(x)) #' x = 1 #' print(is.error(x)) is.error = function(x) { inherits(x, c("try-error", "error")) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/is_error.R
#' Convert Integers to Strings #' #' This is the counterpart of \code{\link[base]{strtoi}}. #' For a base greater than \sQuote{10}, letters \sQuote{a} to \sQuote{z} #' are used to represent \sQuote{10} to \sQuote{35}. #' #' @param x [\code{integer}]\cr #' Vector of integers to convert. #' @param base [\code{integer(1)}]\cr #' Base for conversion. Values between 2 and 36 (inclusive) are allowed. #' @return \code{character(length(x))}. #' @export #' @examples #' # binary representation of the first 10 natural numbers #' itostr(1:10, 2) #' #' # base36 encoding of a large number #' itostr(1e7, 36) itostr = function(x, base = 10L) { x = asInteger(x, any.missing = FALSE, lower = 0L) base = asInt(base, na.ok = FALSE, lower = 2L, upper = 36L) .Call("itostr", x, base, PACKAGE = "BBmisc") }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/itostr.R
#' A wrapper for \code{library}. #' #' Tries to load packages. If the packages are not found, they will be installed from #' the default repository. This function is intended for use in interactive sessions #' and should not be used by other packages. #' #' @param ... [any]\cr #' Package names. #' @return [\code{logical}]: Named logical vector determining the success #' of package load. #' @export #' @examples \dontrun{ #' lib("BBmisc", "MASS", "rpart") #' } lib = function(...) { getLib = function(pkg) { ok = suppressWarnings(require(pkg, character.only = TRUE)) if (!ok && !is.error(try(install.packages(pkg)))) { ok = require(pkg, character.only = TRUE) } ok } pkgs = unique(c(...)) assertCharacter(pkgs, any.missing = FALSE) vlapply(pkgs, getLib) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/lib.R
#' Load RData file and return objects in it. #' #' @param file [\code{character(1)}]\cr #' File to load. #' @param parts [\code{character}]\cr #' Elements in file to load. #' Default is all. #' @param simplify [\code{logical(1)}]\cr #' If \code{TRUE}, a list is only returned if \code{parts} and the file contain both more #' than 1 element, otherwise the element is directly returned. #' Default is \code{TRUE}. #' @param envir [\code{environment(1)}]\cr #' Assign objects to this environment. #' Default is not to assign. #' @param impute [\code{ANY}]\cr #' If \code{file} does not exists, return \code{impute} instead. #' Default is missing which will result in an exception if \code{file} is not found. #' @return Either a single object or a list. #' @export #' @examples #' fn = tempfile() #' save2(file = fn, a = 1, b = 2, c = 3) #' load2(fn, parts = "a") #' load2(fn, parts = c("a", "c")) load2 = function(file, parts, simplify = TRUE, envir, impute) { assertFlag(simplify) ee = new.env() if (!missing(impute) && !file.exists(file)) return(impute) load(file, envir = ee) ns = ls(ee, all.names = TRUE) if (!missing(parts)) { assertCharacter(parts, any.missing = FALSE) d = setdiff(parts, ns) if (length(d) > 0L) stopf("File %s does not contain: %s", file, collapse(d)) } else { parts = ns } if (!missing(envir)) { lapply(ns, function(x) assign(x, ee[[x]], envir = envir)) } if (simplify) { if (length(ns) == 1L) return(ee[[ns]]) if (length(parts) == 1L) return(ee[[parts]]) } mget(parts, envir = ee) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/load2.R
#' A wrapper for \code{\link{sort}} to sort using the \dQuote{C} collating rules. #' #' @param ... #' Options passed to sort. #' @return See \code{\link{sort}}. #' @export lsort = function(...) { cur = Sys.getlocale("LC_COLLATE") if (cur != "C") { Sys.setlocale("LC_COLLATE", "C") on.exit(Sys.setlocale("LC_COLLATE", cur)) } sort(...) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/lsort.R
#' Initialize data.frame in a convenient way. #' #' @param nrow [\code{integer(1)}]\cr #' Nubmer of rows. #' @param ncol [\code{integer(1)}]\cr #' Number of columns. #' @param col.types [\code{character(ncol)} | \code{character(1)}]\cr #' Data types of columns. #' If you only pass one type, it will be replicated. #' Supported are all atomic modes also supported by #' \code{\link[base]{vector}}, i.e. all common data frame types except factors. #' @param init [any]\cr #' Scalar object to initialize all elements of the data.frame. #' You do not need to specify \code{col.types} if you pass this. #' @param row.names [\code{character} | \code{integer} | \code{NULL}]\cr #' Row names. #' Default is \code{NULL}. #' @param col.names [\code{character} | \code{integer}]\cr #' Column names. #' Default is \dQuote{V1}, \dQuote{V2}, and so on. #' @export #' @examples #' print(makeDataFrame(3, 2, init = 7)) #' print(makeDataFrame(3, 2, "logical")) #' print(makeDataFrame(3, 2, c("logical", "numeric"))) makeDataFrame = function(nrow, ncol, col.types, init, row.names = NULL, col.names = sprintf("V%i", seq_len(ncol))) { nrow = asCount(nrow) ncol = asCount(ncol) if (!missing(col.types)) assertCharacter(col.types, min.len = 1L, any.missing = FALSE) if (!missing(init)) { if(!isScalarValue(init)) stop("'init' must be a scalar value!") if (!missing(col.types)) { if (length(col.types) > 1L) stop("If 'init' is given, length of col.types must be 1!") if (identical(class(init)[1L], "col.types")) stop("Class of 'init' must match given column type!") } } if (!missing(col.types) && length(col.types) == 1L) col.types = rep.int(col.types, ncol) if (!is.null(row.names)) assert(checkIntegerish(row.names, len = nrow), checkCharacter(row.names, len = nrow)) assert(checkIntegerish(col.names, len = ncol), checkCharacter(col.names, len = ncol)) if (nrow == 0L && ncol == 0L) df = data.frame() else if (ncol == 0L) df = data.frame(matrix(nrow = nrow, ncol = 0)) else if (missing(init)) df = lapply(col.types, vector, length = nrow) else df = replicate(ncol, rep.int(init, nrow), simplify = FALSE) df = as.data.frame(df, stringsAsFactors = FALSE) rownames(df) = row.names colnames(df) = col.names return(df) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/makeDataFrame.R
#' @title Create a progress bar with estimated time. #' #' @description #' Create a progress bar function that displays the estimated time till #' completion and optional messages. Call the returned functions \code{set} or #' \code{inc} during a loop to change the display. #' Note that you are not allowed to decrease the value of the bar. #' If you call these function without setting any of the arguments #' the bar is simply redrawn with the current value. #' For errorhandling use \code{error} and have a look at the example below. #' #' You can globally change the behavior of all bars by setting the option #' \code{options(BBmisc.ProgressBar.style)} either to \dQuote{text} (the default) #' or \dQuote{off}, which display no bars at all. #' #' You can globally change the width of all bars by setting the option #' \code{options(BBmisc.ProgressBar.width)}. By default this is \code{getOption("width")}. #' #' You can globally set the stream where the output of the bar is directed by setting the option #' \code{options(BBmisc.ProgressBar.stream)} either to \dQuote{stderr} (the default) #' or \dQuote{stdout}. Note that using the latter will result in the bar being shown in #' reports generated by Sweave or knitr, what you probably do not want. #' #' @param min [\code{numeric(1)}]\cr #' Minimum value, default is 0. #' @param max [\code{numeric(1)}]\cr #' Maximum value, default is 100. #' @param label [\code{character(1)}]\cr #' Label shown in front of the progress bar. #' Note that if you later set \code{msg} in the progress bar function, #' the message will be left-padded to the length of this label, therefore #' it should be at least as long as the longest message you want to display. #' Default is \dQuote{}. #' @param char [\code{character(1)}]\cr #' A single character used to display progress in the bar. #' Default is \sQuote{+}. #' @param style [\code{character(1)}]\cr #' Style of the progress bar. Default is set via options (see details). #' @param width [\code{integer(1)}]\cr #' Width of the progress bar. Default is set via options (see details). #' @param stream [\code{character(1)}]\cr #' Stream to use. Default is set via options (see details). #' @return [\code{\link{ProgressBar}}]. A list with following functions: #' \item{set [function(value, msg = label)]}{Set the bar to a value and possibly display a message instead of the label.} #' \item{inc [function(value, msg = label)]}{Increase the bar and possibly display a message instead of the label.} #' \item{kill [function(clear = FALSE)]}{Kill the bar so it cannot be used anymore. Cursor is moved to new line. You can also erase its display.} #' \item{error [function(e)]}{Useful in \code{tryCatch} to properly display error messages below the bar. See the example.} #' @export #' @aliases ProgressBar #' @examples #' bar = makeProgressBar(max = 5, label = "test-bar") #' for (i in 0:5) { #' bar$set(i) #' Sys.sleep(0.2) #' } #' bar = makeProgressBar(max = 5, label = "test-bar") #' for (i in 1:5) { #' bar$inc(1) #' Sys.sleep(0.2) #' } #' # display errors properly (in next line) #' \dontrun{ #' f = function(i) if (i>2) stop("foo") #' bar = makeProgressBar(max = 5, label = "test-bar") #' for (i in 1:5) { #' tryCatch ({ #' f(i) #' bar$set(i) #' }, error = bar$error) #' } #' } makeProgressBar = function(min = 0, max = 100, label = "", char = "+", style = getOption("BBmisc.ProgressBar.style", "text"), width = getOption("BBmisc.ProgressBar.width", getOption("width")), stream = getOption("BBmisc.ProgressBar.stream", "stderr")) { assertNumber(min) assertNumber(max) assertString(label) assertChoice(style, c("text", "off")) assertInt(width, lower = 30L) assertChoice(stream, c("stderr", "stdout")) if (style == "off") return(structure(list( set = function(value, msg = label) invisible(NULL), inc = function(inc, msg = label) invisible(NULL), kill = function(clear = FALSE) invisible(NULL), error = function(e) stop(e) ), class = "ProgressBar")) mycat = if (stream == "stdout") function(...) cat(...) else function(...) cat(..., file = stderr()) ## label |................................| xxx% (hh:mm:ss) label.width = nchar(label) bar.width = width - label.width - 21L bar = rep(" ", bar.width) start.time = as.integer(Sys.time()) delta = max - min kill.line = "\r" killed = FALSE cur.value = min draw = function(value, inc, msg) { if (!missing(value) && !missing(inc)) stop("You must not set value and inc!") else if (!missing(value)) assertNumber(value, lower = max(min, cur.value), upper = max) else if (!missing(inc)) { assertNumber(inc, lower = 0, upper = max - cur.value) value = cur.value + inc } else { value = cur.value } if (!killed) { # special case for min == max, weird "empty" bar, but might happen... if (value == max) rate = 1 else rate = (value - min) / delta bin = round(rate * bar.width) bar[seq(bin)] <<- char delta.time = as.integer(Sys.time()) - start.time if (value == min) rest.time = 0 else rest.time = (max - value) * (delta.time / (value - min)) rest.time = splitTime(rest.time, "hours") # as a precaution, so we can _always_ print in the progress bar cat if (rest.time["hours"] > 99) rest.time[] = 99 mycat(kill.line) msg = sprintf(sprintf("%%%is", label.width), msg) mycat(sprintf("%s |%s| %3i%% (%02i:%02i:%02i)", msg, collapse(bar, sep = ""), round(rate*100), rest.time["hours"], rest.time["minutes"], rest.time["seconds"])) if (value == max) kill() flush.console() } cur.value <<- value } clear = function(newline = TRUE) { mycat(kill.line) mycat(rep(" ", width)) if (newline) mycat("\n") } kill = function(clear = FALSE) { if (clear) clear(newline = TRUE) else mycat("\n") killed <<- TRUE } makeS3Obj("ProgressBar", set = function(value, msg = label) draw(value = value, msg = msg), inc = function(inc, msg = label) draw(inc = inc, msg = msg), kill = kill, error = function(e) { kill(clear = FALSE) stop(e) } ) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/makeProgressBar.R
#' Simple constructor for S3 objects based on lists. #' #' Simple wrapper for \code{as.list} and \code{\link{setClasses}}. #' #' @param classes [\code{character}]\cr #' Class(es) for constructed object. #' @param ... [any]\cr #' Key-value pairs for class members. #' @return Object. #' @export #' @examples #' makeS3Obj("car", speed = 100, color = "red") makeS3Obj = function(classes, ...) { assertCharacter(classes, min.len = 1L, any.missing = FALSE) setClasses(list(...), classes = classes) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/makeS3Obj.R
#' Simple logger which outputs to a file. #' #' Creates a simple file logger closure to log to a file, including time stamps. #' An optional buffer holds the last few log messages. #' #' @param logfile [\code{character(1)}]\cr #' File to log to. #' @param touch [\code{logical(1)}]\cr #' Should the file be created before the first log message? #' Default is \code{FALSE}. #' @param keep [\code{integer(1)}]\cr #' Number of log messages to keep in memory for quick access. #' Default is \code{10}. #' @return [\code{\link{SimpleFileLogger}}]. A list with following functions: #' \item{log [function(msg)]}{Send log message.} #' \item{getMessages [function(n)]}{Get last \code{n} log messages.} #' \item{clear [function()]}{Resets logger and deletes log file.} #' \item{getSize [function()]}{Returns the number of logs written.} #' \item{getLogfile [function()]}{Returns the full file name logs are written to.} #' @export #' @aliases SimpleFileLogger makeSimpleFileLogger = function(logfile, touch = FALSE, keep = 10L) { assertString(logfile) assertFlag(touch) keep = asCount(keep) assertDirectoryExists(dirname(logfile), "w") if (touch && !file.create(logfile)) stopf("Could not create file '%s'", logfile) if (keep) buffer = circularBuffer("character", keep) n.lines = 0L makeS3Obj("SimpleFileLogger", log = function(msg) { if (keep) buffer$push(msg) if (!touch && n.lines == 0L && !file.create(logfile)) stopf("Could not create file '%s'", logfile) catf("<%s> %s", as.character(Sys.time()), msg, file = logfile, append = TRUE, newline = TRUE) n.lines <<- n.lines + 1L }, getMessages = function(n) { if (!keep || n > keep) return(sub("^<.+> (.*)", "\\1", tail(readLines(logfile), n))) buffer$get(n) }, clear = function() { if (keep) buffer$clear() n.lines <<- 0L file.remove(logfile) }, getSize = function() { n.lines }, getLogfile = function() { logfile } ) } circularBuffer = function(type, capacity) { st = vector(type, capacity) stored = 0L pos = 0L list( push = function(x) { pos <<- pos %% capacity + 1L stored <<- min(capacity, stored + 1L) st[[pos]] <<- x }, get = function(n = 1L) { head(st[rev((seq_len(stored) + pos - 1L) %% stored + 1L)], n) }, stored = function() { stored }, clear = function() { st <<- vector(type, capacity) stored <<- 0 pos <<- 0 } ) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/makeSimpleFileLogger.R
#' Replace values in atomic vectors #' #' @details #' Replaces values specified in \code{from} with values in \code{to}. #' Regular expression matching can be enabled which calls \code{\link[base]{gsub}} iteratively #' on \code{x} to replace all patterns in \code{from} with replacements in \code{to}. #' #' @param x [\code{atomic}]\cr #' Atomic vector. If \code{x} is a factor, all replacements work on the levels. #' @param from [\code{atomic}]\cr #' Atomic vector with values to replace, same length as \code{to}. #' @param to [\code{atomic}]\cr #' Atomic vector with replacements, same length as \code{from}. #' @param regex [\code{logical}]\cr #' Use regular expression matching? Default is \code{FALSE}. #' @param ignore.case [\code{logical}]\cr #' Argument passed to \code{\link[base]{gsub}}. #' @param perl [\code{logical}]\cr #' Argument passed to \code{\link[base]{gsub}}. #' @param fixed [\code{logical}]\cr #' Argument passed to \code{\link[base]{gsub}}. #' @return [\code{atomic}]. #' @export #' @examples #' # replace integers #' x = 1:5 #' mapValues(x, c(2, 3), c(99, 100)) #' #' # replace factor levels using regex matching #' x = factor(c("aab", "aba", "baa")) #' mapValues(x, "a.a", "zzz", regex = TRUE) mapValues = function(x, from, to, regex = FALSE, ignore.case = FALSE, perl = FALSE, fixed = FALSE) { assertAtomic(x) assertAtomic(from) assertAtomic(to, len = length(from)) assertFlag(regex) map = function(x, from, to) { if (regex) { for (i in seq_along(from)) x = gsub(from[i], to[i], x, ignore.case = ignore.case, perl = perl, fixed = fixed) } else { m = match(x, from, nomatch = NA_integer_) found = !is.na(m) x[found] = to[m[found]] } return(x) } if (is.factor(x)) { levels(x) = map(levels(x), from, to) return(x) } return(map(x, from, to)) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/mapValues.R
# FIXME: not used anywhere? matchDataFrameSubset = function(df, ss, factors.as.chars = TRUE) { # checkArg(df, c("list", "data.frame")) # checkArg(ss, c("list", "data.frame")) if (!isProperlyNamed(df)) stop("'df' is not proberbly named") if (!isProperlyNamed(ss)) stop("'ss' is not proberbly named") if (any(names(ss) %nin% names(df))) stop("Names of 'ss' not found in 'df'") if (is.list(df)) df = as.data.frame(df, stringsAsFactors = FALSE) if (is.list(ss)) ss = as.data.frame(ss, stringsAsFactors = FALSE) df = subset(df, select = names(ss)) if (factors.as.chars) { df = convertDataFrameCols(df, factors.as.char = TRUE) ss = convertDataFrameCols(ss, factors.as.char = TRUE) } conv = function(x) rawToChar(serialize(x, connection = NULL, ascii = TRUE)) match(rowSapply(ss, conv, use.names = FALSE), rowSapply(df, conv, use.names = FALSE)) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/matchDataFrameSubset.R
#' Wrapper for message and sprintf. #' #' A simple wrapper for \code{message(sprintf(...))}. #' #' @param ... [any]\cr #' See \code{\link{sprintf}}. #' @param .newline [logical(1)]\cr #' Add a newline to the message. Default is \code{TRUE}. #' @return Nothing. #' @export #' @examples #' msg = "a message" #' warningf("this is %s", msg) messagef = function(..., .newline = TRUE) { message(sprintf(...), appendLF = .newline) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/messagef.R
#' @title Create named list, possibly initialized with a certain element. #' #' @description #' Even an empty list will always be named. #' #' @param names [\code{character}]\cr #' Names of elements. #' @param init [valid R expression]\cr #' If given all list elements are initialized to this, otherwise #' \code{NULL} is used. #' @return [\code{list}]. #' @export #' @examples #' namedList(c("a", "b")) #' namedList(c("a", "b"), init = 1) namedList = function(names, init) { if (missing(names)) return(setNames(list(), character(0L))) n = length(names) if (missing(init)) xs = vector("list", n) else xs = replicate(n, init, simplify = FALSE) setNames(xs, names) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/namedList.R
#' Replacement for names which always returns a vector. #' #' A simple wrapper for \code{\link[base]{names}}. #' Returns a vector even if no names attribute is set. #' Values \code{NA} and \code{""} are treated as missing and #' replaced with the value provided in \code{missing.val}. #' #' @param x [\code{ANY}]\cr #' Object, probably named. #' @param missing.val [\code{ANY}]\cr #' Value to set for missing names. Default is \code{NA_character_}. #' @return [\code{character}]: vector of the same length as \code{x}. #' @export #' @examples #' x = 1:3 #' names(x) #' names2(x) #' names(x[1:2]) = letters[1:2] #' names(x) #' names2(x) names2 = function(x, missing.val = NA_character_) { n = names(x) if (is.null(n)) return(rep.int(missing.val, length(x))) replace(n, is.na(n) | n == "", missing.val) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/names2.R
#' Simply a negated \code{in} operator. #' #' @param x [\code{vector}]\cr #' Values that should not be in \code{y}. #' @param y [\code{vector}]\cr #' Values to match against. #' @usage x \%nin\% y #' @rdname nin #' @export `%nin%` = function(x, y) { !match(x, y, nomatch = 0L) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/nin.R
#' @title Normalizes numeric data to a given scale. #' #' @description #' Currently implemented for numeric vectors, numeric matrices and data.frame. #' For matrixes one can operate on rows or columns #' For data.frames, only the numeric columns are touched, all others are left unchanged. #' For constant vectors / rows / columns most methods fail, special behaviour for this #' case is implemented. #' #' The method also handles NAs in in \code{x} and leaves them untouched. #' #' @param x [\code{numeric} | \code{matrix} | \code{data.frame}]\cr #' Input vector. #' @param method [\code{character(1)}]\cr #' Normalizing method. Available are:\cr #' \dQuote{center}: Subtract mean.\cr #' \dQuote{scale}: Divide by standard deviation.\cr #' \dQuote{standardize}: Center and scale.\cr #' \dQuote{range}: Scale to a given range.\cr #' @param range [\code{numeric(2)}]\cr #' Range for method \dQuote{range}. #' The first value represents the replacement for the min value, the second is the substitute for the max value. #' So it is possible to reverse the order by giving \code{range = c(1,0)}. #' Default is \code{c(0,1)}. #' @param margin [\code{integer(1)}]\cr #' 1 = rows, 2 = cols. #' Same is in \code{\link{apply}} #' Default is 1. #' @param on.constant [\code{character(1)}]\cr #' How should constant vectors be treated? Only used, of \dQuote{method != center}, #' since this methods does not fail for constant vectors. Possible actions are:\cr #' \dQuote{quiet}: Depending on the method, treat them quietly:\cr #' \dQuote{scale}: No division by standard deviation is done, input values. #' will be returned untouched.\cr #' \dQuote{standardize}: Only the mean is subtracted, no division is done.\cr #' \dQuote{range}: All values are mapped to the mean of the given range.\cr #' \dQuote{warn}: Same behaviour as \dQuote{quiet}, but print a warning message.\cr #' \dQuote{stop}: Stop with an error.\cr #' @return [\code{numeric} | \code{matrix} | \code{data.frame}]. #' @seealso \code{\link{scale}} #' @export normalize = function(x, method = "standardize", range = c(0, 1), margin = 1L, on.constant = "quiet") { assertChoice(method, c("range", "standardize", "center", "scale")) assertNumeric(range, len = 2L, any.missing = FALSE) assertChoice(on.constant, c("quiet", "warn", "stop")) UseMethod("normalize") } #' @export normalize.numeric = function(x, method = "standardize", range = c(0, 1), margin = 1L, on.constant = "quiet") { y = normalize2(x, method, range, on.constant = on.constant) # scale call below returns matrices if (is.matrix(y)) y = y[,1L] return(y) } #' @export normalize.matrix = function(x, method = "standardize", range = c(0, 1), margin = 1L, on.constant = "quiet") { x = apply(x, margin, normalize2, method = method, range = range, on.constant = on.constant) if (margin == 1L) x = t(x) return(x) } #' @export normalize.data.frame = function(x, method = "standardize", range = c(0, 1), margin = 1L, on.constant = "quiet") { isnum = sapply(x, is.numeric) if (any(isnum)) x[, isnum] = as.data.frame(lapply(x[, isnum, drop = FALSE], normalize2, method = method, range = range, on.constant = on.constant)) return(x) } normalize2 = function(x, method, range, on.constant) { # is x a constant vector? if (length(unique(x[!is.na(x)])) == 1L) { switch(on.constant, warn = warning("Constant vector in normalization."), stop = stop("Constant vector in normalization.")) switch(method, center = scale(x, center = TRUE, scale = FALSE), range = ifelse(is.na(x), NA, mean(range)), standardize = scale(x, center = TRUE, scale = FALSE), scale = x ) } else { switch(method, range = (x - min(x, na.rm = TRUE)) / diff(range(x, na.rm = TRUE)) * diff(range) + range[1L], standardize = scale(x, center = TRUE, scale = TRUE), center = scale(x, center = TRUE, scale = FALSE), scale = scale(x, center = FALSE, scale = sd(x, na.rm = TRUE)) ) } }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/normalize.R
#' @title Naive multi-start version of \code{\link{optimize}} for global optimization. #' #' @description #' The univariate \code{\link{optimize}} can stop at arbitrarily bad points when #' \code{f} is not unimodal. This functions mitigates this effect in a very naive way: #' \code{interval} is subdivided into \code{nsub} equally sized subintervals, #' \code{\link{optimize}} is run on all of them (and on the original big interval) and #' the best obtained point is returned. #' #' @param f See \code{\link{optimize}}. #' @param interval See \code{\link{optimize}}. #' @param ... See \code{\link{optimize}}. #' @param lower See \code{\link{optimize}}. #' @param upper See \code{\link{optimize}}. #' @param maximum See \code{\link{optimize}}. #' @param tol See \code{\link{optimize}}. #' @param nsub [\code{integer(1)}]\cr #' Number of subintervals. A value of 1 implies normal \code{\link{optimize}} behavior. #' Default is 50L. #' @return See \code{\link{optimize}}. #' @export optimizeSubInts = function(f, interval, ..., lower = min(interval), upper = max(interval), maximum = FALSE, tol = .Machine$double.eps^0.25, nsub = 50L) { nsub = asCount(nsub, positive = TRUE) interval = c(lower, upper) # run on normal interval best = optimize(f = f, interval = interval, maximum = maximum, tol = tol) # run on smaller partitions if (nsub > 1L) { mult = ifelse(maximum, -1, 1) grid = seq(lower, upper, length.out = nsub + 1L) for (j in seq_len(length(grid)-1L)) { res = optimize(f = f, interval = c(grid[j], grid[j+1L]), maximum = maximum, tol = tol) if (mult * res$objective < mult * best$objective) best = res } } return(best) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/optimizeSubInts.R
#' Pause in interactive mode and continue on <Enter>. #' @export pause = function() { if (interactive()) readline("Pause. Press <Enter> to continue.") }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/pause.R
#' More meaningful \code{head(df)} output. #' #' The behaviour is similar to \code{print(head(x, n))}. The difference is, that if #' the number of rows in a data.frame/matrix or the number of elements in a list #' or vector is larger than \code{n}, additional information is printed about #' the total number of rows or elements respectively. #' #' @param x [\code{data.frame} | \code{matrix} | \code{list} | \code{vector}]\cr #' Object. #' @param n [\code{integer(1)}]\cr #' Single positive integer: number of rows for a matrix/data.frame or number of #' elements for vectors/lists respectively. #' @return Nothing. #' @export printHead = function(x, n = 6L) { assertCount(n, positive = TRUE) print(head(x, n = n)) if ((is.data.frame(x) || is.matrix(x)) && nrow(x) > n) catf("... (#rows: %i, #cols: %i)", nrow(x), ncol(x)) else if (length(x) > n) catf("... (#elements: %i)", length(x)) invisible(NULL) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/printHead.R
#' Print \code{str(x)} of an object to a string / character vector. #' #' @param x [any]\cr #' Object to print #' @param collapse [\code{character(1)}]\cr #' Used to collapse multiple lines. #' \code{NULL} means no collapsing, vector is returned. #' Default is \dQuote{\\n}. #' @return [\code{character}]. #' @export #' @examples #' printStrToChar(iris) printStrToChar = function(x, collapse = "\n") { d = printToChar(str(x), collapse = NULL) # remove NULL from str collapse(d[-length(d)], collapse) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/printStrToChar.R
#' Prints object to a string / character vector. #' #' @param x [any]\cr #' Object to print #' @param collapse [\code{character(1)}]\cr #' Used to collapse multiple lines. #' \code{NULL} means no collapsing, vector is returned. #' Default is \dQuote{\\n}. #' @return [\code{character}]. #' @export #' @examples #' x = data.frame(a = 1:2, b = 3:4) #' str(printToChar(x)) printToChar = function(x, collapse = "\n") { rval = NULL con = textConnection("rval", "w", local = TRUE) sink(con) on.exit({ sink() close(con) }) print(x) if (!is.null(collapse)) paste(rval, collapse = collapse) else rval }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/printToChar.R
#' Calculate range statistic. #' #' A simple wrapper for \code{diff(range(x))}, so \code{max(x) - min(x)}. #' #' @param x [\code{numeric}]\cr #' The vector. #' @param na.rm [\code{logical(1)}]\cr #' If \code{FALSE}, NA is returned if an NA is encountered in \code{x}. #' If \code{TRUE}, NAs are disregarded. #' Default is \code{FALSE} #' @return [\code{numeric(1)}]. #' @export rangeVal = function(x, na.rm = FALSE) { assertNumeric(x, min.len = 1L, any.missing = TRUE) assertFlag(na.rm) if (allMissing(x)) return(NA_real_) diff(range(x, na.rm = na.rm)) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/rangeVal.R
#' @title Require some packages. #' #' @description #' Packages are loaded either via \code{\link{requireNamespace}} or \code{\link{require}}. #' #' If some packages could not be loaded and \code{stop} is \code{TRUE} #' the following exception is thrown: #' \dQuote{For <why> please install the following packages: <missing packages>}. #' If \code{why} is \code{NULL} the message is: #' \dQuote{Please install the following packages: <missing packages>}. #' #' @param packs [\code{character}]\cr #' Names of packages. #' If a package name is prefixed with \dQuote{!}, it will be attached using \code{\link[base]{require}}. #' If a package name is prefixed with \dQuote{_}, its namespace will be loaded using \code{\link[base]{requireNamespace}}. #' If there is no prefix, argument \code{default.method} determines how to deal with package loading. #' @param min.versions [\code{character}]\cr #' A char vector specifying required minimal version numbers for a subset of packages in \code{packs}. #' Must be named and all names must be in \code{packs}. #' The only exception is when \code{packs} is only a single string, then you are allowed to pass #' an unnamed version string here. #' Default is \code{NULL}, meaning no special version requirements #' @param why [\code{character(1)}]\cr #' Short string explaining why packages are required. #' Default is an empty string. #' @param stop [\code{logical(1)}]\cr #' Should an exception be thrown for missing packages? #' Default is \code{TRUE}. #' @param suppress.warnings [\code{logical(1)}]\cr #' Should warnings be supressed while requiring? #' Default is \code{FALSE}. #' @param default.method [\code{character(1)}]\cr #' If the packages are not explicitly prefixed with \dQuote{!} or \dQuote{_}, #' this arguments determines the default. Possible values are \dQuote{attach} and #' \dQuote{load}. #' Note that the default is \dQuote{attach}, but this might/will change in a future version, so #' please make sure to always explicitly set this. #' @return [\code{logical}]. Named logical vector describing which packages could be loaded (with required version). #' Same length as \code{packs}. #' @export #' @examples #' requirePackages(c("BBmisc", "base"), why = "BBmisc example") requirePackages = function(packs, min.versions = NULL, why = "", stop = TRUE, suppress.warnings = FALSE, default.method = "attach") { assertCharacter(packs, any.missing = FALSE) if (!is.null(min.versions)) { assertCharacter(min.versions) if (length(packs) == 1L && length(min.versions) == 1L && is.null(names(min.versions))) names(min.versions) = packs else assertSubset(names(min.versions), packs) } assertFlag(stop) assertFlag(suppress.warnings) assertChoice(default.method, choices = c("load", "attach")) char = substr(packs, 1L, 1L) force.attach = (char == "!") force.load = (char == "_") ns.only = if (default.method == "load") !force.attach else force.load packs = substr(packs, 1L + (force.load | force.attach), nchar(packs)) suppressor = if (suppress.warnings) suppressWarnings else identity packs.ok = unlist(Map(function(pack, ns.only) { if (ns.only) { suppressor(requireNamespace(pack, quietly = TRUE)) } else { suppressor(require(pack, character.only = TRUE)) } }, pack = packs, ns.only = ns.only)) if (stop && !all(packs.ok)) { ps = collapse(packs[!packs.ok]) if (nzchar(why)) stopf("For %s please install the following packages: %s", why, ps) else stopf("Please install the following packages: %s", ps) } if (!is.null(min.versions)) { packs.wrong.version = character(0L) for (j in seq_along(min.versions)) { pn = names(min.versions)[j] mv = min.versions[j] if (packageVersion(pn) < mv) { packs.ok[pn] = FALSE packs.wrong.version = c(packs.wrong.version, sprintf("%s >= %s", pn, mv)) } } if (stop && length(packs.wrong.version) > 0L) { ps = collapse(packs.wrong.version) if (nzchar(why)) stopf("For %s the package version requirements are not fulfilled: %s", why, ps) else stopf("The package version requirements are not fulfilled: %s", ps) } } return(packs.ok) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/requirePackages.R
#' Apply function to rows of a data frame. #' #' Just like an \code{\link[base]{lapply}} on data frames, #' but on the rows. #' #' @param df [\code{data.frame}]\cr #' Data frame. #' @param fun [\code{function}]\cr #' Function to apply. Rows are passed as list or vector, #' depending on argument \code{unlist}, as first argument. #' @param ... [\code{ANY}]\cr #' Additional arguments for \code{fun}. #' @param unlist [\code{logical(1)}]\cr #' Unlist the row? Note that automatic conversion may be triggered for #' lists of mixed data types #' Default is \code{FALSE}. #' @param simplify [\code{logical(1)} | character(1)]\cr #' Should the result be simplified? #' See \code{\link{sapply}}. #' If \dQuote{cols}, we expect the call results to be vectors of the same length and they are #' arranged as the columns of the resulting matrix. #' If \dQuote{rows}, likewise, but rows of the resulting matrix. #' Default is \code{TRUE}. #' @param use.names [\code{logical(1)}]\cr #' Should result be named by the row names of \code{df}? #' Default is \code{TRUE}. #' @return [\code{list} or simplified object]. Length is \code{nrow(df)}. #' @export #' @examples #' rowLapply(iris, function(x) x$Sepal.Length + x$Sepal.Width) rowLapply = function(df, fun, ..., unlist = FALSE) { assertDataFrame(df) fun = match.fun(fun) assertFlag(unlist) if (unlist) { .wrap = function(.i, .df, .fun, ...) .fun(unlist(.df[.i, , drop = FALSE], recursive = FALSE, use.names = TRUE), ...) } else { .wrap = function(.i, .df, .fun, ...) .fun(as.list(.df[.i, , drop = FALSE]), ...) } lapply(seq_row(df), .wrap, .fun = fun, .df = df, ...) } #' @export #' @rdname rowLapply rowSapply = function(df, fun, ..., unlist = FALSE, simplify = TRUE, use.names = TRUE) { assert(checkFlag(simplify), checkChoice(simplify, c("cols", "rows"))) assertFlag(use.names) ys = rowLapply(df, fun, ..., unlist = unlist) # simplify result if (length(ys) > 0L) { if (isTRUE(simplify)) { ys = simplify2array(ys) } else if (simplify == "rows") { ys = asMatrixRows(ys) } else if (simplify == "cols") { ys = asMatrixCols(ys) } } # set names if (use.names) { if (is.matrix(ys)) { colnames(ys) = rownames(df) rownames(ys) = NULL } else { names(ys) = rownames(df) } } else { names(ys) = NULL } return(ys) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/rowLapply.R
#' Save multiple objects to a file. #' #' A simple wrapper for \code{\link[base]{save}}. Understands key = value syntax to save #' objects using arbitrary variable names. All options of \code{\link[base]{save}}, #' except \code{list} and \code{envir}, are available and passed to #' \code{\link[base]{save}}. #' #' @param file #' File to save. #' @param ... [\code{any}]\cr #' Will be converted to an environment and then passed to \code{\link[base]{save}}. #' @param ascii #' See help of \code{\link[base]{save}}. #' @param version #' See help of \code{\link[base]{save}}. #' @param compress #' See help of \code{\link[base]{save}}. #' @param compression_level #' See help of \code{\link[base]{save}}. #' @param eval.promises #' See help of \code{\link[base]{save}}. #' @param precheck #' See help of \code{\link[base]{save}}. #' @return See help of \code{\link[base]{save}}. #' @export #' @examples #' x = 1 #' save2(y = x, file = tempfile()) save2 = function(file, ..., ascii = FALSE, version = NULL, compress = !ascii, compression_level, eval.promises = TRUE, precheck = TRUE) { args = tryCatch(as.environment(argsAsNamedList(...)), error = function(e) stopf("Unable to convert to environment (%s)", as.character(e))) save(list = ls(args, all.names = TRUE), envir = args, file = file, ascii = ascii, version = version, compress = compress, compression_level = compression_level, eval.promises = eval.promises, precheck = precheck) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/save2.R
#' Generate sequences along rows or cols. #' #' A simple convenience wrapper around \code{\link[base]{seq_len}}. #' #' @param x [\code{data.frame} | \code{matrix}]\cr #' Data frame, matrix or any object which supports \code{\link[base]{nrow}} #' or \code{\link[base]{ncol}}, respectively. #' @return Vector of type [\code{integer}]. #' @export #' @examples #' data(iris) #' seq_row(iris) #' seq_col(iris) seq_row = function(x) { seq_len(nrow(x)) } #' @export seq_col #' @rdname seq_row seq_col = function(x) { seq_len(ncol(x)) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/seq.R
#' A wrapper for \code{attr(x, which) = y}. #' #' @param x [any]\cr #' Your object. #' @param which [\code{character(1)}]\cr #' Name of the attribute to set #' @param value [\code{ANY}]\cr #' Value for the attribute. #' @return Changed object \code{x}. #' @export #' @examples #' setAttribute(list(), "foo", 1) setAttribute = function(x, which, value) { attr(x, which) = value x }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/setAttribute.R
#' A wrapper for \code{class(x) = classes}. #' #' @param x [any]\cr #' Your object. #' @param classes [\code{character}]\cr #' New classes. #' @return Changed object \code{x}. #' @export #' @examples #' setClasses(list(), c("foo1", "foo2")) setClasses = function(x, classes) { class(x) = classes x }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/setClasses.R
#' Wrapper for \code{rownames(x) = y}, \code{colnames(x) = y}. #' #' @param x [\code{matrix} | \code{data.frame}]\cr #' Matrix or data.frame. #' @param names [\code{character}]\cr #' New names for rows / columns. #' @return Changed object \code{x}. #' @export #' @examples #' setColNames(matrix(1:4, 2, 2), c("a", "b")) setRowNames = function(x, names) { rownames(x) = names x } #' @rdname setRowNames #' @export setColNames = function(x, names) { colnames(x) = names x }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/setRowColNames.R
#' Set a list element to a new value. #' #' This wrapper supports setting elements to \code{NULL}. #' #' @param obj [\code{list}]\cr #' @param index [\code{character} | \code{integer}]\cr #' Index or indices where to insert the new values. #' @param newval [any]\cr #' Inserted elements(s). #' Has to be a list if \code{index} is a vector. #' @return [\code{list}] #' @export setValue = function(obj, index, newval) { assertList(obj) assert(checkCharacter(index, any.missing = FALSE), checkIntegerish(index, any.missing = FALSE)) if (length(index) == 1L) { if (is.null(newval)) obj[index] = list(NULL) else obj[index] = newval } else { assertList(newval, len = length(index)) obj[index] = newval } return(obj) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/setValue.R
#' Sort the rows of a data.frame according to one or more columns. #' #' @param x [\code{data.frame}]\cr #' Data.frame to sort. #' @param col [\code{character}]\cr #' One or more column names to sort \code{x} by. #' In order of preference. #' @param asc [\code{logical}]\cr #' Sort ascending (or descending)? #' One value per entry of \code{col}. #' If a scalar logical is passed, it is replicated. #' Default is \code{TRUE}. #' @return [\code{data.frame}]. #' @export sortByCol = function(x, col, asc = TRUE) { assertDataFrame(x) assertSubset(col, colnames(x)) m = length(col) assertLogical(asc, min.len = 1L, any.missing = FALSE) if (length(asc) == 1L) asc = rep(asc, m) asc = ifelse(asc, 1, -1) args = as.list(x[, col, drop = FALSE]) # convert col to orderable numeric and multiply with factor args = Map(function(a, b) xtfrm(a) * b, args, asc) # now order the numerics and permute df o = do.call(order, args) return(x[o, , drop = FALSE]) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/sortByCol.R
#' Split a path into components #' #' The first normalized path is split on forward and backward slashes and its components returned as #' character vector. The drive or network home are extracted separately on windows systems and #' empty on all other systems. #' #' @param path [\code{character(1)}]\cr #' Path to split as string #' @return \code{named list}: List with components \dQuote{drive} (\code{character(1)} #' and \dQuote{path} (\code{character(n)}. #' @export splitPath = function(path) { assertString(path) path = normalizePath(path, mustWork = FALSE) if (isWindows()) { pattern = "^([[:alpha:]]:)|(\\\\[[:alnum:]]+)" m = regexpr(pattern, path) if (length(m) == 1L && m == -1L) stop("Error extracting the drive letter") drive = regmatches(path, m) regmatches(path, m) = "" } else { drive = character(0L) } list(drive = drive, path = Filter(nzchar, strsplit(path, "[/\\]+")[[1L]])) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/splitPath.R
#' Split seconds into handy chunks of time. #' #' Note that a year is simply defined as exactly 365 days. #' #' @param seconds [\code{numeric(1)}]\cr #' Number of seconds. If not an integer, it is rounded down. #' @param unit [\code{character(1)}]\cr #' Largest unit to split seconds into. #' Must be one of: \code{c("years", "days", "hours", "minutes", "seconds")}. #' Default is \dQuote{years}. #' @return [\code{numeric(5)}]. A named vector containing the #' \dQuote{years}, \dQuote{days}, \dQuote{hours}, \dQuote{minutes} #' and \dQuote{seconds}. Units larger than the given \code{unit} are #' \code{NA}. #' @export #' @examples #' splitTime(1000) splitTime = function(seconds, unit = "years") { assertNumber(seconds) assertChoice(unit, c("years", "days", "hours", "minutes", "seconds")) divider = c(31536000L, 86400L, 3600L, 60L, 1L) res = setNames(rep.int(NA_integer_, 5L), c("years", "days", "hours", "minutes", "seconds")) start = which(names(res) == unit) for (i in start:length(divider)) { res[i] = seconds %/% divider[i] seconds = seconds - res[i] * divider[i] } ## Make sure all values are integral and do _not_ strip names: viapply(res, as.integer) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/splitTime.R
#' Wrapper for stop and sprintf. #' #' A wrapper for \code{\link{stop}} with \code{\link{sprintf}} applied to the arguments. #' Notable difference is that error messages are not truncated to 1000 characters #' by default. #' #' @param ... [any]\cr #' See \code{\link{sprintf}}. #' @param warning.length [\code{integer(1)}]\cr #' Number of chars after which the error message #' gets truncated, see ?options. #' Default is 8170. #' @return Nothing. #' @export #' @examples #' err = "an error." #' try(stopf("This is %s", err)) stopf = function(..., warning.length = 8170L) { msg = sprintf(...) obj = simpleError(msg, call = sys.call(sys.parent())) old.opt = getOption("warning.length") on.exit(options(warning.length = old.opt)) options(warning.length = warning.length) stop(obj) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/stopf.R
#' Repeat and join a string #' #' @param x [character]\cr #' Vector of characters. #' @param n [\code{integer(1)}]\cr #' Times the vector \code{x} is repeated. #' @param sep [\code{character(1)}]\cr #' Separator to use to collapse the vector of characters. #' @return \code{character(1)}. #' @export #' @examples #' strrepeat("x", 3) strrepeat = function(x, n, sep = "") { paste0(rep.int(x, n), collapse = sep) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/strrepeat.R
#' Suppresses all output except for errors. #' #' Evaluates an expression and suppresses all output except for errors, #' meaning: prints, messages, warnings and package startup messages. #' #' @param expr [valid R expression]\cr #' Expression. #' @return Return value of expression invisibly. #' @export #' @examples #' suppressAll({ #' print("foo") #' message("foo") #' warning("foo") #' }) suppressAll = function(expr) { capture.output({ z = suppressWarnings( suppressMessages( suppressPackageStartupMessages(force(expr)) ) ) }) invisible(z) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/suppressAll.R
#' Calculates symmetric set difference between two sets. #' #' @param x [\code{vector}]\cr #' Set 1. #' @param y [\code{vector}]\cr #' Set 2. #' @return [\code{vector}]. #' @export symdiff = function(x, y) { setdiff(union(x, y), intersect(x, y)) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/symdiff.R
#' Wrapper for system2 with better return type and errorhandling. #' #' Wrapper for \code{\link{system2}} with better return type and errorhandling. #' #' @param command See \code{\link{system2}}. #' @param args See \code{\link{system2}}. #' @param stdout See \code{\link{system2}}. #' @param stderr See \code{\link{system2}}. #' @param wait See \code{\link{system2}}. #' @param ... Further arguments passed to \code{\link{system2}}. #' @param stop.on.exit.code [\code{logical(1)}]\cr #' Should an exception be thrown if an exit code greater 0 is generated? #' Can only be used if \code{wait} is \code{TRUE}. #' Default is \code{wait}. #' @return [\code{list}]. #' \item{exit.code [integer(1)]}{Exit code of command. Given if wait is \code{TRUE}, otherwise \code{NA}. 0L means success. 127L means command was not found} #' \item{output [character]}{Output of command on streams. Only given is \code{stdout} or \code{stderr} was set to \code{TRUE}, otherwise \code{NA}.} #' @export system3 = function(command, args = character(0L), stdout = "", stderr = "", wait = TRUE, ..., stop.on.exit.code = wait) { if (stop.on.exit.code && !wait) stopf("stop.on.exit.code is TRUE but wait is FALSE!") output = NA_character_ if (isTRUE(stdout) || isTRUE(stderr)) { wait = TRUE # here we wait anyway and output of cmd is returned ec = 0L suppressWarnings({ withCallingHandlers({ op = system2(command = command, args = args, stdout = stdout, stderr = stderr, wait = wait, ...) }, warning = function(w) { g = gregexpr("\\d+", w$message)[[1L]] start = tail(g, 1L) len = tail(attr(g, "match.length"), 1L) ec <<- as.integer(substr(w$message, start, start + len - 1L)) }) }) } else { ec = system2(command = command, args = args, stdout = stdout, stderr = stderr, wait = wait, ...) } if (wait) { if (isTRUE(stdout) || isTRUE(stderr)) output = op } if (stop.on.exit.code && ec > 0L) { args = collapse(args, " ") if (length(output) == 0L) output = "" else output = collapse(output, "\n") stopf("Command: %s %s; exit code: %i; output: %s", command, args, ec, output) } list(exit.code = ec, output = output) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/system3.R
#' Convert a numerical vector into a range string. #' #' @param x [\code{integer}]\cr #' Vector to convert into a range string. #' @param range.sep [\code{character(1)}]\cr #' Separator between the first and last element of a range of consecutive #' elements in \code{x}. #' Default is \dQuote{ - }. #' @param block.sep [\code{character(1)}]\cr #' Separator between non consecutive elements of \code{x} or ranges. #' Default is \dQuote{, }. #' @return [\code{character(1)}] #' @examples #' x = sample(1:10, 7) #' toRangeStr(x) #' @export toRangeStr = function(x, range.sep = " - ", block.sep = ", ") { if (testIntegerish(x)) x = as.integer(x) else assertNumeric(x, any.missing = FALSE) assertString(range.sep) assertString(block.sep) findRange = function(x) seq_len(max(which(x == x[1L] + 0:(length(x)-1L)))) x = sort(unique(x)) x = unname(split(x, c(0L, cumsum(diff(x) > 1L)))) combine = function(x) if (length(x) == 1L) as.character(x) else sprintf("%i%s%i", x[1L], range.sep, x[length(x)]) collapse(vapply(x, combine, character(1L), USE.NAMES = FALSE), block.sep) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/toRangeStr.R
#' Apply a function with a predefined return value #' #' @description #' These are just wrappers around \code{\link[base]{vapply}} with #' argument \code{FUN.VALUE} set. #' The function is expected to return a single \code{logical}, \code{integer}, #' \code{numeric} or \code{character} value, depending on the second letter #' of the function name. #' #' @param x [\code{vector} or \code{list}]\cr #' Object to apply function on. #' @param fun [\code{function}]\cr #' Function to apply on each element of \code{x}. #' @param ... [\code{ANY}]\cr #' Additional arguments for \code{fun}. #' @param use.names [\code{logical(1)}]\cr #' Should result be named? #' Default is \code{TRUE}. #' @export vlapply = function(x, fun, ..., use.names = TRUE) { vapply(X = x, FUN = fun, ..., FUN.VALUE = NA, USE.NAMES = use.names) } #' @rdname vlapply #' @export viapply = function(x, fun, ..., use.names = TRUE) { vapply(X = x, FUN = fun, ..., FUN.VALUE = NA_integer_, USE.NAMES = use.names) } #' @rdname vlapply #' @export vnapply = function(x, fun, ..., use.names = TRUE) { vapply(X = x, FUN = fun, ..., FUN.VALUE = NA_real_, USE.NAMES = use.names) } #' @rdname vlapply #' @export vcapply = function(x, fun, ..., use.names = TRUE) { vapply(X = x, FUN = fun, ..., FUN.VALUE = NA_character_, USE.NAMES = use.names) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/vapply.R
#' Wrapper for warning and sprintf. #' #' A wrapper for \code{\link{warning}} with \code{\link{sprintf}} applied to the arguments. #' #' @param ... [any]\cr #' See \code{\link{sprintf}}. #' @param immediate [\code{logical(1)}]\cr #' See \code{\link{warning}}. #' Default is \code{TRUE}. #' @param warning.length [\code{integer(1)}]\cr #' Number of chars after which the warning message #' gets truncated, see ?options. #' Default is 8170. #' @return Nothing. #' @export #' @examples #' msg = "a warning" #' warningf("this is %s", msg) warningf = function(..., immediate = TRUE, warning.length = 8170L) { msg = sprintf(...) if (immediate) { old = getOption("warn") # dont change warn setting if it is 2 (= error) if (old <= 0L) { on.exit(options(warn = old)) options(warn = 1L) } } obj = simpleWarning(msg, call = sys.call(sys.parent())) warning(obj) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/warningf.R
#' Find the index of first/last \code{TRUE} value in a logical vector. #' #' @param x [\code{logical}]\cr #' Logical vector. #' @param use.names [\code{logical(1)}]\cr #' If \code{TRUE} and \code{x} is named, the result is also #' named. #' @return [\code{integer(1)} | \code{integer(0)}]. #' Returns the index of the first/last \code{TRUE} value in \code{x} or #' an empty integer vector if none is found. #' @export #' @examples #' which.first(c(FALSE, TRUE)) #' which.last(c(FALSE, FALSE)) which.first = function(x, use.names = TRUE) { wf(x, use.names) } #' @rdname which.first #' @export which.last = function(x, use.names = TRUE) { wl(x, use.names) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/which.first.R
#' @import stats #' @import checkmate #' @import utils #' @import data.table #' @importFrom methods is .onLoad = function(libname, pkgname) { options(BBmisc.ProgressBar.stream = getOption("BBmisc.ProgressBar.stream", "stderr")) options(BBmisc.ProgressBar.style = getOption("BBmisc.ProgressBar.style", "text")) options(BBmisc.ProgressBar.width = getOption("BBmisc.ProgressBar.width", getOption("width"))) }
/scratch/gouwar.j/cran-all/cranData/BBmisc/R/zzz.R