content
stringlengths 0
14.9M
| filename
stringlengths 44
136
|
---|---|
#' Graded Response Model
#' @description Routine functions for the GRM
#' @name model_grm
NULL
#' @rdname model_grm
#' @param t ability parameters, 1d vector
#' @param a discrimination parameters, 1d vector
#' @param b item location parameters, 2d matrix
#' @param D the scaling constant, 1.702 by default
#' @param raw TRUE to return P*
#' @examples
#' with(model_grm_gendata(10, 5, 3), model_grm_prob(t, a, b))
#' @export
model_grm_prob <- function(t, a, b, D=1.702, raw=FALSE){
n_p <- length(t)
n_i <- nrow(b)
n_c <- ncol(b)+1
p <- 1 / (1 + exp(D * a * outer(b, t, '-')))
if(raw) {
p <- apply(p, 1, function(x) rbind(1, x, 0))
p <- aperm(array(p, dim=c(n_c+1, n_p, n_i)), c(2, 3, 1))
} else {
p <- apply(p, 1, function(x) rbind(1, x) - rbind(x, 0))
p <- aperm(array(p, dim=c(n_c, n_p, n_i)), c(2, 3, 1))
}
p
}
#' @rdname model_grm
#' @examples
#' with(model_grm_gendata(10, 5, 3), model_grm_info(t, a, b))
#' @export
model_grm_info <- function(t, a, b, D=1.702){
p <- model_grm_prob(t, a, b, D)
p_ <- aperm(apply(p, c(1, 2), function(x) rev(cumsum(c(0, rev(x))))), c(2, 3, 1))
num_cats <- dim(p)[3]
dv1_p_ <- aperm(p_ * (1 - p_), c(2, 3, 1)) * D * a
dv2_p_ <- aperm((1 - 2 * p_) * p_ * (1 - p_), c(2, 3, 1)) * (D * a)^2
dv1_p <- dv1_p_[,1:num_cats,] - dv1_p_[,-1,]
dv1_p <- aperm(dv1_p, c(3, 1, 2))
dv2_p <- dv2_p_[,1:num_cats,] - dv2_p_[,-1,]
dv2_p <- aperm(dv2_p, c(3, 1, 2))
1 / p * dv1_p^2 - dv2_p
}
#' @rdname model_grm
#' @param u the observed scores (starting from 0), 2d matrix
#' @param log TRUE to return log-likelihood
#' @examples
#' with(model_grm_gendata(10, 5, 3), model_grm_lh(u, t, a, b))
#' @export
model_grm_lh <- function(u, t, a, b, D=1.702, log=FALSE){
p <- model_grm_prob(t, a, b, D)
ix <- model_polytomous_3dindex(u)
lh <- array(p[ix], dim=dim(u))
if(log) lh <- log(lh)
lh
}
#' @rdname model_grm
#' @param n_p the number of people to be generated
#' @param n_i the number of items to be generated
#' @param n_c the number of score categories
#' @param t_dist parameters of the normal distribution used to generate t-parameters
#' @param a_dist parameters of the lognormal distribution used to generate a-parameters
#' @param b_dist parameters of the normal distribution used to generate b-parameters
#' @param missing the proportion or number of missing responses
#' @examples
#' model_grm_gendata(10, 5, 3)
#' model_grm_gendata(10, 5, 3, missing=.1)
#' @importFrom stats rnorm rlnorm runif
#' @export
model_grm_gendata <- function(n_p, n_i, n_c, t=NULL, a=NULL, b=NULL, D=1.702, t_dist=c(0, 1), a_dist=c(-.1, .2), b_dist=c(0, .8), missing=NULL){
if(is.null(t)) t <- rnorm(n_p, mean=t_dist[1], sd=t_dist[2])
if(is.null(a)) a <- rlnorm(n_i, meanlog=a_dist[1], sdlog=a_dist[2])
if(is.null(b)) {
b <- matrix(rnorm(n_i * (n_c - 1), mean=b_dist[1], sd=b_dist[2]), nrow=n_i)
b <- t(apply(b, 1, sort))
b <- matrix(b, nrow=n_i, ncol=n_c-1)
}
if(length(t) == 1) t <- rep(t, n_p)
if(length(a) == 1) a <- rep(a, n_i)
if(length(t) != n_p) stop('wrong dimensions for t')
if(length(a) != n_i) stop('wrong dimensions for a')
if(nrow(b) != n_i || ncol(b) != n_c - 1) stop('wrong dimensions for b')
p <- model_grm_prob(t, a, b, D)
u <- apply(p, 2, function(x) rowSums(runif(n_p) >= t(apply(x, 1, cumsum))))
if(!is.null(missing)){
missing <- floor(ifelse(missing < 1, missing * n_p * n_i, missing))
idx <- sample(length(u), missing)
u[cbind(ceiling(idx/n_i), (idx-1)%%n_i+1)] <- NA
}
list(u=u, t=t, a=a, b=b)
}
#' @rdname model_grm
#' @param param the parameter of the new scale: 't' or 'b'
#' @param mean the mean of the new scale
#' @param sd the standard deviation of the new scale
#' @importFrom stats sd
#' @export
model_grm_rescale <- function(t, a, b, param=c("t", "b"), mean=0, sd=1){
scale <- switch(match.arg(param), "t"=t, "b"=b)
slope <- sd / sd(scale)
intercept <- mean - slope * mean(scale)
t <- slope * t + intercept
b <- slope * b + intercept
a <- a / slope
list(t=t, a=a, b=b)
}
#' @rdname model_grm
#' @param type the type of plot, prob for ICC and info for IIFC
#' @param total TRUE to sum values over items
#' @param by_item TRUE to combine categories
#' @param xaxis the values of x-axis
#' @examples
#' with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='prob'))
#' with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='info', by_item=TRUE))
#' @import ggplot2
#' @importFrom stats aggregate
#' @export
model_grm_plot <- function(a, b, D=1.702, type=c('prob', 'info'), by_item=FALSE, total=FALSE, xaxis=seq(-6, 6, .1), raw=FALSE){
rs <- switch(match.arg(type), "prob"=model_grm_prob(xaxis, a, b, D, raw), "info"=model_grm_info(xaxis, a, b, D))
n_p <- dim(rs)[1]
n_i <- dim(rs)[2]
n_c <- dim(rs)[3]
y <- NULL
for(i in 1:n_i)
y <- rbind(y, data.frame(theta=rep(xaxis, n_c), item=paste('Item', i), category=paste('Category', rep(1:n_c, each=n_p)), x=as.vector(rs[,i,])))
if(by_item) y <- rbind(y, cbind(aggregate(y$x, by=list(theta=y$theta, item=y$item), sum), category='Total'))
if(total) y <- cbind(aggregate(y$x, by=list(theta=y$theta, category=y$category), sum), item='Total')
y <- y[!is.na(y$x),]
ggplot(y, aes_string(x="theta", y="x", color="category")) +
geom_line() + facet_wrap(~item, scales='free') +
xlab(expression(theta)) + ylab(type) +
guides(color=FALSE) + theme_bw() + theme(legend.key=element_blank())
}
#' @rdname model_grm
#' @param show_mle TRUE to print maximum likelihood values
#' @examples
#' with(model_grm_gendata(5, 50, 3), model_grm_plot_loglh(u, a, b))
#' @import ggplot2
#' @export
model_grm_plot_loglh <- function(u, a, b, D=1.702, xaxis=seq(-6, 6, .1), show_mle=FALSE){
n_p <- dim(u)[1]
n_i <- dim(u)[2]
n_t <- length(xaxis)
rs <- array(NA, dim=c(n_p, n_t))
for(i in 1:n_t)
rs[, i] <- rowSums(model_grm_lh(u, rep(xaxis[i], n_p), a, b, D, log=TRUE))
if(show_mle) print(apply(rs, 1, function(x){xaxis[which.max(x)]}))
rs <- data.frame(theta=rep(xaxis, each=n_p), people=rep(1:n_p, n_t), value=as.vector(rs))
rs$people <- factor(rs$people)
ggplot(rs, aes_string(x="theta", y="value", color="people")) +
geom_line() + xlab(expression(theta)) + ylab("Log-likelihood") +
guides(color=FALSE) + theme_bw()
}
| /scratch/gouwar.j/cran-all/cranData/xxIRT/R/module1_model_grm.R |
#' Estimate 3-parameter-logistic model
#' @description Estimate the 3PL model using the maximum likelihood estimation
#' @name estimate_3pl
NULL
#' @rdname estimate_3pl
#' @description \code{model_3pl_eap_scoring} scores response vectors using the EAP method
#' @param prior the prior distribution
#' @examples
#' with(model_3pl_gendata(10, 40), cbind(true=t, est=model_3pl_eap_scoring(u, a, b, c)$t))
#' @importFrom stats dnorm
#' @export
model_3pl_eap_scoring <- function(u, a, b, c, D=1.702, prior=c(0, 1), bound=c(-3, 3)){
if(is.null(prior)) prior <- c(0, 1)
quad <- hermite_gauss('11')
quad$w <- quad$w * exp(quad$t^2) * dnorm(quad$t, prior[1], prior[2])
p <- model_3pl_prob(quad$t, a, b, c, D)
lh <- exp(ifelse(is.na(u), 0, u) %*% t(log(p)) + ifelse(is.na(1 - u), 0, 1 - u) %*% t(log(1 - p)))
t <- colSums(t(lh) * quad$w * quad$t) / colSums(t(lh) * quad$w)
t[t < bound[1]] <- bound[1]
t[t > bound[2]] <- bound[2]
t_sd <- colSums(t(lh) * quad$w * outer(quad$t, t, '-')^2) / colSums(t(lh) * quad$w)
t_sd <- sqrt(t_sd)
list(t=t, sd=t_sd)
}
#' @rdname estimate_3pl
#' @description \code{model_3pl_map_scoring} scores response vectors using the MAP method
#' @examples
#' with(model_3pl_gendata(10, 40), cbind(true=t, est=model_3pl_map_scoring(u, a, b, c)$t))
#' @export
model_3pl_map_scoring <- function(u, a, b, c, D=1.702, prior=c(0, 1), bound=c(-3, 3), nr_iter=30, nr_conv=1e-3){
t <- rnorm(dim(u)[1], 0, .01)
t_free <- rep(T, length(t))
for(m in 1:nr_iter){
dv_t <- model_3pl_dv_jmle(model_3pl_dv_Pt(t, a, b, c, D), u)
dv_t$dv1 <- colSums(dv_t$dv1, na.rm=T)
dv_t$dv2 <- colSums(dv_t$dv2, na.rm=T)
if(!is.null(prior)){
dv_t$dv1 <- dv_t$dv1 - (t - prior[1]) / prior[2]^2
dv_t$dv2 <- dv_t$dv2 - 1 / prior[2]^2
}
nr_t <- estimate_nr_iteration(t, t_free, dv_t, 1.0, 1.0, bound)
t <- nr_t$param
if(max(abs(nr_t$h)) < nr_conv) break
}
list(t=t)
}
#' @rdname estimate_3pl
#' @keywords internal
model_3pl_dv_Pt <- function(t, a, b, c, D){
p <- t(model_3pl_prob(t, a, b, c, D))
dv1 <- D * a * (p - c) * (1 - p) / (1 - c)
dv2 <- (D * a / (1 - c))^2 * (p - c) * (1 - p) * (1 + c - 2*p)
list(dv1=dv1, dv2=dv2, p=p)
}
#' @rdname estimate_3pl
#' @keywords internal
model_3pl_dv_Pa <- function(t, a, b, c, D){
p <- t(model_3pl_prob(t, a, b, c, D))
dv1 <- D * t(outer(t, b, '-')) * (p - c) * (1 - p) / (1 - c)
dv2 <- (D * t(outer(t, b, '-')) / (1 - c))^2 * (p - c) * (1 - p) * (1 + c - 2*p)
list(dv1=dv1, dv2=dv2, p=p)
}
#' @rdname estimate_3pl
#' @keywords internal
model_3pl_dv_Pb <- function(t, a, b, c, D){
p <- t(model_3pl_prob(t, a, b, c, D))
dv1 <- - D * a * (p - c) * (1 - p) / (1 - c)
dv2 <- (D * a / (1 - c))^2 * (p - c) * (1 - p) * (1 + c - 2*p)
list(dv1=dv1, dv2=dv2, p=p)
}
#' @rdname estimate_3pl
#' @keywords internal
model_3pl_dv_Pc <- function(t, a, b, c, D){
p <- t(model_3pl_prob(t, a, b, c, D))
dv1 <- (1 - p) / (1 - c)
dv2 <- array(0, dim=dim(dv1))
list(dv1=dv1, dv2=dv2, p=p)
}
#' @rdname estimate_3pl
#' @description \code{model_3pl_dv_jmle} calculates the first and second derivatives for
#' the joint maximum likelihood estimation
#' @keywords internal
model_3pl_dv_jmle <- function(dv, u){
dv1 <- (t(u) - dv$p) / dv$p / (1 - dv$p) * dv$dv1
dv2 <- (t(u) - dv$p) / dv$p / (1 - dv$p) * dv$dv2 - ((t(u) - dv$p) / dv$p / (1 - dv$p) * dv$dv1)^2
list(dv1=dv1, dv2=dv2)
}
#' @rdname estimate_3pl
#' @description \code{model_3pl_estimate_jmle} estimates the parameters using the
#' joint maximum likelihood estimation (JMLE) method
#' @param u observed response matrix, 2d matrix
#' @param t ability parameters, 1d vector (fixed value) or NA (freely estimate)
#' @param a discrimination parameters, 1d vector (fixed value) or NA (freely estimate)
#' @param b difficulty parameters, 1d vector (fixed value) or NA (freely estimate)
#' @param c pseudo-guessing parameters, 1d vector (fixed value) or NA (freely estimate)
#' @param D the scaling constant, 1.702 by default
#' @param iter the maximum iterations
#' @param conv the convergence criterion of the -2 log-likelihood
#' @param nr_iter the maximum iterations of newton-raphson
#' @param nr_conv the convegence criterion for newton-raphson
#' @param scale the meand and SD of the theta scale, N(0, 1) for JMLE by default
#' @param bounds_t bounds of ability parameters
#' @param bounds_a bounds of discrimination parameters
#' @param bounds_b bounds of difficulty parameters
#' @param bounds_c bounds of guessing parameters
#' @param priors a list of prior distributions
#' @param decay decay rate
#' @param debug TRUE to print debuggin information
#' @param true_params a list of true parameters for evaluating the estimation accuracy
#' @examples
#' \dontrun{
#' # generate data
#' x <- model_3pl_gendata(2000, 40)
#' # free estimation
#' y <- model_3pl_estimate_jmle(x$u, true_params=x)
#' # fix c-parameters
#' y <- model_3pl_estimate_jmle(x$u, c=0, true_params=x)
#' # no priors
#' y <- model_3pl_estimate_jmle(x$u, priors=NULL, iter=30, debug=T)
#' }
#' @importFrom stats cor
#' @importFrom reshape2 melt
#' @import ggplot2
#' @export
model_3pl_estimate_jmle <- function(u, t=NA, a=NA, b=NA, c=NA, D=1.702, iter=100, conv=1e-0, nr_iter=10, nr_conv=1e-3, scale=c(0, 1), bounds_t=c(-3, 3), bounds_a=c(.01, 2), bounds_b=c(-3, 3), bounds_c=c(0, .25), priors=list(t=c(0, 1), a=c(-.1, .2), b=c(0, 1), c=c(4, 20)), decay=1, debug=FALSE, true_params=NULL){
# internal config
h_max <- 1
tracking <- list(fit=rep(NA, iter), t=rep(NA, iter), a=rep(NA, iter), b=rep(NA, iter), c=rep(NA, iter))
# initial values
n_p <- nrow(u)
n_i <- ncol(u)
if(length(t) == 1) t <- rep(t, n_p)
t[t_free <- is.na(t)] <- rnorm(sum(is.na(t)), 0, .01)
if(length(a) == 1) a <- rep(a, n_i)
a[a_free <- is.na(a)] <- rlnorm(sum(is.na(a)), -.1, .01)
if(length(b) == 1) b <- rep(b, n_i)
b[b_free <- is.na(b)] <- rnorm(sum(is.na(b)), 0, .01)
if(length(c) == 1) c <- rep(c, n_i)
c[c_free <- is.na(c)] <- rbeta(sum(is.na(c)), 4, 20)
for(k in 1:iter){
# t parameters
if(any(t_free)){
for(m in 1:nr_iter){
dv_t <- model_3pl_dv_jmle(model_3pl_dv_Pt(t, a, b, c, D), u)
dv_t$dv1 <- colSums(dv_t$dv1, na.rm=T)
dv_t$dv2 <- colSums(dv_t$dv2, na.rm=T)
if(!is.null(priors$t)){
dv_t$dv1 <- dv_t$dv1 - (t - priors$t[1]) / priors$t[2]^2
dv_t$dv2 <- dv_t$dv2 - 1 / priors$t[2]^2
}
nr_t <- estimate_nr_iteration(t, t_free, dv_t, h_max, decay, bounds_t)
t <- nr_t$param
if(max(abs(nr_t$h)) < nr_conv) break
}
# rescale thetas
if(!is.null(scale)) t <- (t - mean(t)) / sd(t) * scale[2] + scale[1]
}
# b parameters
if(any(b_free)){
for(m in 1:nr_iter){
dv_b <- model_3pl_dv_jmle(model_3pl_dv_Pb(t, a, b, c, D), u)
dv_b$dv1 <- rowSums(dv_b$dv1, na.rm=T)
dv_b$dv2 <- rowSums(dv_b$dv2, na.rm=T)
if(!is.null(priors$b)){
dv_b$dv1 <- dv_b$dv1 - (b - priors$b[1]) / priors$b[2]^2
dv_b$dv2 <- dv_b$dv2 - 1 / priors$b[2]^2
}
nr_b <- estimate_nr_iteration(b, b_free, dv_b, h_max, decay, bounds_b)
b <- nr_b$param
if(max(abs(nr_b$h)) < nr_conv) break
}
}
# a parameters
if(any(a_free)){
for(m in 1:nr_iter){
dv_a <- model_3pl_dv_jmle(model_3pl_dv_Pa(t, a, b, c, D), u)
dv_a$dv1 <- rowSums(dv_a$dv1, na.rm=T)
dv_a$dv2 <- rowSums(dv_a$dv2, na.rm=T)
if(!is.null(priors$a)){
dv_a$dv1 <- dv_a$dv1 - 1/a * (1 + (log(a)-priors$a[1])/priors$a[2]^2)
dv_a$dv2 <- dv_a$dv2 - 1/a^2 * (1/priors$a[2]^2 - (1 + (log(a)-priors$a[1])/priors$a[2]^2))
}
nr_a <- estimate_nr_iteration(a, a_free, dv_a, h_max, decay, bounds_a)
a <- nr_a$param
if(max(abs(nr_a$h)) < nr_conv) break
}
}
# estimate c parameters
if(any(c_free)){
for(m in 1:nr_iter){
dv_c <- model_3pl_dv_jmle(model_3pl_dv_Pc(t, a, b, c, D), u)
dv_c$dv1 <- rowSums(dv_c$dv1, na.rm=T)
dv_c$dv2 <- rowSums(dv_c$dv2, na.rm=T)
if(!is.null(priors$c)){
dv_c$dv1 <- dv_c$dv1 - ((priors$c[2]-1)/(1-c) - (priors$c[1]-1)/c)
dv_c$dv2 <- dv_c$dv2 - ((priors$c[1]-1)/c^2 + (priors$c[2]-1)/(1-c)^2)
}
nr_c <- estimate_nr_iteration(c, c_free, dv_c, h_max, decay, bounds_c)
c <- nr_c$param
if(max(abs(nr_c$h)) < nr_conv) break
}
}
decay <- decay * decay
# model fit
loglh <- -2 * sum(model_3pl_lh(u, t, a, b, c, D, log=TRUE), na.rm=T)
if(debug) cat('iter #', k, ': -2 log-likelihood = ', round(loglh, 2), '\n', sep='')
if(k > 1 && tracking$fit[k-1] - loglh < conv) break
tracking$fit[k] <- loglh
if(any(t_free)) tracking$t[k] <- mean(abs(nr_t$h[t_free]))
if(any(a_free)) tracking$a[k] <- mean(abs(nr_a$h[a_free]))
if(any(b_free)) tracking$b[k] <- mean(abs(nr_b$h[b_free]))
if(any(c_free)) tracking$c[k] <- mean(abs(nr_c$h[c_free]))
}
# debugging
if(debug){
xx <- with(tracking, data.frame(iteration=1:iter, fit=fit, t=t, a=a, b=b, c=c))[1:k, ]
xx <- melt(xx, id.vars='iteration')
xx <- xx[!is.na(xx$value), ]
g <- ggplot(xx, aes_string(x="iteration", y="value", color="variable")) +
geom_line() + facet_wrap(~variable, scales="free") + guides(color=F) +
xlab('Iterations') + ylab('') + theme_bw()
print(g)
}
# compare with true parameters
if(!is.null(true_params)){
xx <- rbind(data.frame(true=true_params$t, est=t, params='t'),
data.frame(true=true_params$a, est=a, params='a'),
data.frame(true=true_params$b, est=b, params='b'),
data.frame(true=true_params$c, est=c, params='c'))
g <- ggplot(xx, aes_string(x="true", y="est", color="params")) +
geom_point(alpha=.3) + geom_smooth(method='gam', se=F) +
facet_wrap(~params, nrow=1, scales='free') + guides(color=F) +
xlab('True Parameters') + ylab('Est. Parameters') + theme_bw()
print(g)
if(any(t_free)) cat('t: corr = ', round(cor(t, true_params$t), 3), ', rmse = ', round(rmse(t, true_params$t), 3),'\n', sep='')
if(any(a_free)) cat('a: corr = ', round(cor(a, true_params$a), 3), ', rmse = ', round(rmse(a, true_params$a), 3),'\n', sep='')
if(any(b_free)) cat('b: corr = ', round(cor(b, true_params$b), 3), ', rmse = ', round(rmse(b, true_params$b), 3),'\n', sep='')
if(any(c_free)) cat('c: corr = ', round(cor(c, true_params$c), 3), ', rmse = ', round(rmse(c, true_params$c), 3),'\n', sep='')
}
list(t=t, a=a, b=b, c=c)
}
#' @rdname estimate_3pl
#' @description \code{model_3pl_dv_mmle} calculates the first and second derivatives for
#' the marginal maximum likelihood estimation
#' @param pdv_fn the function to compute derivatives of P w.r.t the estimating parameters
#' @keywords internal
model_3pl_dv_mmle <- function(pdv_fn, u, quad, a, b, c, D){
n_p <- dim(u)[1]
n_i <- dim(u)[2]
n_q <- length(quad$t)
p <- model_3pl_prob(quad$t, a, b, c, D)
p_u1 <- t(ifelse(is.na(u), 0, u))
p_u0 <- t(ifelse(is.na(u), 0, 1-u))
ln_p <- log(p)
ln_q <- log(1-p)
p0 <- array(NA, c(n_i, n_p, n_q))
p1 <- array(NA, c(n_p, n_q))
for(q in 1:n_q){
p0[,,q] <- p_u1*ln_p[q,] + p_u0*ln_q[q,]
p1[,q] <- colSums(p0[,,q], na.rm=T)
}
p0 <- aperm(exp(p0), c(2,1,3))
p1 <- exp(p1)
p2 <- (p1 %*% quad$w)[,1]
pdv <- pdv_fn(quad$t, a, b, c, D)
dv_common <- t(quad$w * t(p1 / p2))
dv_u0 <- t((-1)^(u+1))
dv1 <- dv2 <- array(0, c(n_p, n_i))
for(q in 1:n_q)
dv1 <- dv1 + dv_common[,q] / p0[,,q] * t(dv_u0*pdv$dv1[,q])
for(q in 1:n_q)
dv2 <- dv2 + dv_common[,q] / p0[,,q] * t(dv_u0*pdv$dv2[,q])
dv2 <- dv2 - dv1^2
dv1 <- colSums(dv1, na.rm=T)
dv2 <- colSums(dv2, na.rm=T)
list(dv1=dv1, dv2=dv2)
}
#' @rdname estimate_3pl
#' @description \code{model_3pl_estimate_mmle} estimates the parameters using the
#' marginal maximum likelihood estimation (MMLE) method
#' @param quad_degree the number of quadrature points
#' @param scoring the scoring method: 'eap' or 'map'
#' @examples
#' \dontrun{
#' # generate data
#' x <- model_3pl_gendata(2000, 40)
#' # free estimation
#' y <- model_3pl_estimate_mmle(x$u, true_params=x)
#' # fix c-parameters
#' y <- model_3pl_estimate_mmle(x$u, c=0, true_params=x)
#' # no priors
#' y <- model_3pl_estimate_mmle(x$u, priors=NULL, iter=30, debug=T)
#' }
#' @importFrom stats cor
#' @importFrom reshape2 melt
#' @import ggplot2
#' @export
model_3pl_estimate_mmle <- function(u, t=NA, a=NA, b=NA, c=NA, D=1.702, iter=100, conv=1e-0, nr_iter=10, nr_conv=1e-3, bounds_t=c(-3, 3), bounds_a=c(.01, 2), bounds_b=c(-3, 3), bounds_c=c(0, .25), priors=list(t=c(0, 1), a=c(-.1, .2), b=c(0, 1), c=c(4, 20)), decay=1, quad_degree='11', scoring=c('eap', 'map'), debug=FALSE, true_params=NULL){
# internal config
h_max <- 1
if(is.null(priors$t)) priors$t <- c(0, 1)
quad <- hermite_gauss(quad_degree)
quad$w <- quad$w * exp(quad$t^2) * dnorm(quad$t, priors$t[1], priors$t[2])
tracking <- list(fit=rep(NA, iter), t=rep(NA, iter), a=rep(NA, iter), b=rep(NA, iter), c=rep(NA, iter))
# initial values
n_p <- nrow(u)
n_i <- ncol(u)
if(length(t) == 1) t <- rep(t, n_p)
t[t_free <- is.na(t)] <- rnorm(sum(is.na(t)), 0, .01)
if(length(a) == 1) a <- rep(a, n_i)
a[a_free <- is.na(a)] <- rlnorm(sum(is.na(a)), -.1, .01)
if(length(b) == 1) b <- rep(b, n_i)
b[b_free <- is.na(b)] <- rnorm(sum(is.na(b)), 0, .01)
if(length(c) == 1) c <- rep(c, n_i)
c[c_free <- is.na(c)] <- rbeta(sum(is.na(c)), 4, 20)
for(k in 1:iter){
# b parameters
if(any(b_free)){
for(m in 1:nr_iter){
dv_b <- model_3pl_dv_mmle(model_3pl_dv_Pb, u, quad, a, b, c, D)
if(!is.null(priors$b)){
dv_b$dv1 <- dv_b$dv1 - (b - priors$b[1]) / priors$b[2]^2
dv_b$dv2 <- dv_b$dv2 - 1 / priors$b[2]^2
}
nr_b <- estimate_nr_iteration(b, b_free, dv_b, h_max, decay, bounds_b)
b <- nr_b$param
if(max(abs(nr_b$h)) < nr_conv) break
}
}
# a parameters
if(any(a_free)){
for(m in 1:nr_iter){
dv_a <- model_3pl_dv_mmle(model_3pl_dv_Pa, u, quad, a, b, c, D)
if(!is.null(priors$a)){
dv_a$dv1 <- dv_a$dv1 - 1/a * (1 + (log(a)-priors$a[1])/priors$a[2]^2)
dv_a$dv2 <- dv_a$dv2 - 1/a^2 * (1/priors$a[2]^2 - (1 + (log(a)-priors$a[1])/priors$a[2]^2))
}
nr_a <- estimate_nr_iteration(a, a_free, dv_a, h_max, decay * .2, bounds_a)
a <- nr_a$param
if(max(abs(nr_a$h)) < nr_conv) break
}
}
# estimate c parameters
if(any(c_free)){
for(m in 1:nr_iter){
dv_c <- model_3pl_dv_mmle(model_3pl_dv_Pc, u, quad, a, b, c, D)
if(!is.null(priors$c)){
dv_c$dv1 <- dv_c$dv1 - ((priors$c[2]-1)/(1-c) - (priors$c[1]-1)/c)
dv_c$dv2 <- dv_c$dv2 - ((priors$c[1]-1)/c^2 + (priors$c[2]-1)/(1-c)^2)
}
nr_c <- estimate_nr_iteration(c, c_free, dv_c, h_max, decay, bounds_c)
c <- nr_c$param
if(max(abs(nr_c$h)) < nr_conv) break
}
}
decay <- decay * decay
# scoring
if(any(t_free))
t[t_free] <- switch(match.arg(scoring, scoring), 'eap'=model_3pl_eap_scoring, 'map'=model_3pl_map_scoring)(u, a, b, c, D, prior=priors$t, bound=bounds_t)$t[t_free]
# model fit
loglik <- -2 * sum(model_3pl_lh(u, t, a, b, c, D, log=TRUE), na.rm=T)
if(debug) cat('iter #', k, ': -2 log-likelihood = ', round(loglik, 2), '\n', sep='')
if(k > 1 && tracking$fit[k-1] - loglik < conv) break
tracking$fit[k] <- loglik
if(any(a_free)) tracking$a[k] <- mean(abs(nr_a$h[a_free]))
if(any(b_free)) tracking$b[k] <- mean(abs(nr_b$h[b_free]))
if(any(c_free)) tracking$c[k] <- mean(abs(nr_c$h[c_free]))
}
# debugging
if(debug){
xx <- with(tracking, data.frame(iteration=1:iter, fit=fit, a=a, b=b, c=c))[1:k, ]
xx <- melt(xx, id.vars='iteration')
xx <- xx[!is.na(xx$value), ]
g <- ggplot(xx, aes_string(x="iteration", y="value", color="variable")) +
geom_line() + facet_wrap(~variable, scales="free") + guides(color=F) +
xlab('Iterations') + ylab('') + theme_bw()
print(g)
}
# compare with true parameters
if(!is.null(true_params)){
xx <- rbind(data.frame(true=true_params$t, est=t, params='t'),
data.frame(true=true_params$a, est=a, params='a'),
data.frame(true=true_params$b, est=b, params='b'),
data.frame(true=true_params$c, est=c, params='c'))
g <- ggplot(xx, aes_string(x="true", y="est", color="params")) +
geom_point(alpha=.3) + geom_smooth(method='gam', se=F) +
facet_wrap(~params, nrow=1, scales='free') + guides(color=F) +
xlab('True Parameters') + ylab('Est. Parameters') + theme_bw()
print(g)
if(any(t_free)) cat('t: corr = ', round(cor(t, true_params$t), 3), ', rmse = ', round(rmse(t, true_params$t), 3),'\n', sep='')
if(any(a_free)) cat('a: corr = ', round(cor(a, true_params$a), 3), ', rmse = ', round(rmse(a, true_params$a), 3),'\n', sep='')
if(any(b_free)) cat('b: corr = ', round(cor(b, true_params$b), 3), ', rmse = ', round(rmse(b, true_params$b), 3),'\n', sep='')
if(any(c_free)) cat('c: corr = ', round(cor(c, true_params$c), 3), ', rmse = ', round(rmse(c, true_params$c), 3),'\n', sep='')
}
list(t=t, a=a, b=b, c=c)
}
#' @rdname estimate_3pl
#' @param index the indices of items being plotted
#' @param intervals intervals on the x-axis
#' @param show_points TRUE to show points
#' @examples
#' with(model_3pl_gendata(1000, 20), model_3pl_fitplot(u, t, a, b, c, index=c(1, 3, 5)))
#' @importFrom reshape2 melt
#' @import ggplot2
#' @export
model_3pl_fitplot <- function(u, t, a, b, c, D=1.702, index=NULL, intervals=seq(-3, 3, .5), show_points=TRUE){
if(is.null(index)) index <- seq(b)
groups <- cut(t, intervals, labels=(intervals[-length(intervals)] + intervals[-1]) / 2)
obs <- aggregate(u, by=list(intervals=groups), mean, na.rm=TRUE)[, c(1, index+1)]
obs <- melt(obs, id.vars='intervals', variable.name='items')
obs[, 'type'] <- 'Observed'
p <- model_3pl_prob(t, a, b, c, D)
exp <- aggregate(p, by=list(intervals=groups), mean, na.rm=TRUE)[, c(1, index+1)]
exp <- melt(exp, id.vars='intervals', variable.name='items')
exp[, 'type'] <- 'Expected'
data <- rbind(obs, exp)
data$intervals <- as.numeric(levels(data$intervals)[data$intervals])
levels(data$items) <- gsub('V', 'Item ', levels(data$items))
g <- ggplot(data, aes_string('intervals', 'value', color='type', group='type')) +
geom_line() + facet_wrap(~items) + xlab(expression(theta)) + ylab('Probability') +
scale_color_discrete(guide=guide_legend("")) + theme_bw()
if(show_points) g <- g + geom_point(fill='white', pch=1)
g
}
| /scratch/gouwar.j/cran-all/cranData/xxIRT/R/module2_estimate_3pl.R |
#' Estimate Generalizaed Partial Credit Model
#' @description Estimate the GPCM using the maximum likelihood estimation
#' @name estimate_gpcm
NULL
#' @rdname estimate_gpcm
#' @description \code{model_gpcm_eap_scoring} scores response vectors using the EAP method
#' @param prior the prior distribution
#' @examples
#' with(model_gpcm_gendata(10, 40, 3), cbind(true=t, est=model_gpcm_eap_scoring(u, a, b, d)$t))
#' @importFrom stats dnorm
#' @export
model_gpcm_eap_scoring <- function(u, a, b, d, D=1.702, prior=c(0, 1), bound=c(-3, 3)){
quad <- hermite_gauss('11')
quad$w <- quad$w * exp(quad$t^2) * dnorm(quad$t, prior[1], prior[2])
n_p <- dim(u)[1]
n_i <- dim(u)[2]
n_q <- length(quad$t)
p <- model_gpcm_prob(quad$t, a, b, d, D)
ix <- model_polytomous_3dindex(u)
lh <- array(NA, c(n_p, n_i, n_q))
for(q in 1:n_q)
lh[,,q] <- array(p[q,,][ix[,-1]], c(n_p, n_i))
lh <- apply(lh, c(1, 3), prod, na.rm=T)
t <- ((lh / (lh %*% quad$w)[,1]) %*% (quad$w * quad$t))[,1]
t_sd <- ((lh / (lh %*% quad$w)[,1] * outer(t, quad$t, '-')^2) %*% quad$w)[,1]
t_sd <- sqrt(t_sd)
list(t=t, sd=t_sd)
}
#' @rdname estimate_gpcm
#' @description \code{model_gpcm_map_scoring} scores response vectors using maximum a posteriori
#' @examples
#' with(model_gpcm_gendata(10, 40, 3), cbind(true=t, est=model_gpcm_map_scoring(u, a, b, d)$t))
#' @export
model_gpcm_map_scoring <- function(u, a, b, d, D=1.702, prior=NULL, bound=c(-3, 3), nr_iter=30, nr_conv=1e-3){
ix <- model_polytomous_3dindex(u)
t <- rnorm(dim(u)[1], 0, .01)
t_free <- rep(T, length(t))
for(i in 1:nr_iter){
dv <- model_gpcm_dv_jmle(ix, model_gpcm_dv_Pt(t, a, b, d, D))
dv$dv1 <- rowSums(dv$dv1, na.rm=T)
dv$dv2 <- rowSums(dv$dv2, na.rm=T)
if(!is.null(prior)){
dv$dv1 <- dv$dv1 - (t - prior[1]) / prior[2]^2
dv$dv2 <- dv$dv2 - 1 / prior[2]^2
}
nr <- estimate_nr_iteration(t, t_free, dv, 1.0, 1.0, bound)
t <- nr$param
if(max(abs(nr$h)) < nr_conv) break
}
list(t=t)
}
#' @rdname estimate_gpcm
#' @keywords internal
model_gpcm_dv_Pt <- function(t, a, b, d, D){
p <- model_gpcm_prob(t, a, b, d, D)
p <- ifelse(is.na(p), 0, p)
n_p <- dim(p)[1]
n_i <- dim(p)[2]
n_c <- dim(p)[3]
dv1 <- apply(p, 2, function(x) x %*% 1:n_c)
dv1 <- -1 * outer(dv1, 1:n_c, '-') * D * p
dv1 <- aperm(aperm(dv1, c(2,1,3)) * a, c(2,1,3))
dv2 <- apply(dv1, 2, function(x) rep(x %*% 1:n_c, n_c))
dv2 <- aperm(array(dv2, c(n_p, n_c, n_i)), c(1,3,2)) * D * p
dv2 <- aperm(aperm(dv2, c(2,1,3)) * a, c(2,1,3))
dv2 <- dv1^2 / p - dv2
list(p=p, dv1=dv1, dv2=dv2)
}
#' @rdname estimate_gpcm
#' @keywords internal
model_gpcm_dv_Pa <- function(t, a, b, d, D){
p <- model_gpcm_prob(t, a, b, d, D)
n_p <- dim(p)[1]
n_i <- dim(p)[2]
n_c <- dim(p)[3]
term0 <- outer(t, b - d, '-')
term0 <- aperm(apply(term0, 1:2, cumsum), c(2,3,1))
term1 <- apply(p * term0, 1:2, function(x) rep(sum(x, na.rm=T), n_c))
term1 <- aperm(term1, c(2,3,1))
dv1 <- D * p * (term0 - term1)
dv2 <- apply(dv1 * term0, 1:2, function(x) rep(sum(x, na.rm=T), n_c))
dv2 <- aperm(dv2, c(2,3,1)) * D * p
dv2 <- dv1^2 / p - dv2
list(p=p, dv1=dv1, dv2=dv2)
}
#' @rdname estimate_gpcm
#' @keywords internal
model_gpcm_dv_Pb <- function(t, a, b, d, D){
p <- model_gpcm_prob(t, a, b, d, D)
p <- ifelse(is.na(p), 0, p)
n_p <- dim(p)[1]
n_i <- dim(p)[2]
n_c <- dim(p)[3]
dv1 <- apply(p, 2, function(x) x %*% 1:n_c)
dv1 <- outer(dv1, 1:n_c, '-') * D * p
dv1 <- aperm(aperm(dv1, c(2,1,3)) * a, c(2,1,3))
dv2 <- apply(dv1, 2, function(x) rep(x %*% 1:n_c, n_c))
dv2 <- aperm(array(dv2, c(n_p, n_c, n_i)), c(1,3,2)) * D * p
dv2 <- aperm(aperm(dv2, c(2,1,3)) * a, c(2,1,3))
dv2 <- dv1^2 / p + dv2
list(p=p, dv1=dv1, dv2=dv2)
}
#' @rdname estimate_gpcm
#' @keywords internal
model_gpcm_dv_Pd <- function(t, a, b, d, D){
p <- model_gpcm_prob(t, a, b, d, D)
p <- ifelse(is.na(p), 0, p)
n_p <- dim(p)[1]
n_i <- dim(p)[2]
n_c <- dim(p)[3]
pdv1 <- pdv2 <- array(NA, c(n_p, n_i, n_c, n_c))
for(k in 1:n_c){
dv1 <- apply(p, 1:2, function(x) (k <= 1:n_c) * 1L - sum(x[k:n_c]))
dv1 <- aperm(dv1, c(2,3,1))
dv1 <- D * p * dv1
dv1 <- aperm(aperm(dv1, c(2,1,3)) * a, c(2,1,3))
pdv1[,,,k] <- dv1
dv2 <- apply(dv1, 1:2, function(x) rep(sum(x[k:n_c]), n_c))
dv2 <- aperm(dv2, c(2,3,1))
dv2 <- D * p * dv2
dv2 <- aperm(aperm(dv2, c(2,1,3)) * a, c(2,1,3))
dv2 <- dv1^2 / p - dv2
pdv2[,,,k] <- dv2
}
list(p=p, dv1=pdv1, dv2=pdv2)
}
#' @rdname estimate_gpcm
#' @param ix the 3d indices
#' @param dvp the derivatives of P
#' @keywords internal
model_gpcm_dv_jmle <- function(ix, dvp){
n_p <- max(ix[,1])
n_i <- max(ix[,2])
dv1 <- array(with(dvp, dv1[ix]/p[ix]), c(n_p, n_i))
dv2 <- array(with(dvp, dv2[ix]/p[ix]), c(n_p, n_i)) - dv1^2
list(dv1=dv1, dv2=dv2)
}
#' @rdname estimate_gpcm
#' @description \code{model_gpcm_estimate_jmle} estimates the parameters using the
#' joint maximum likelihood estimation (JMLE) method
#' @param u the observed response matrix, 2d matrix
#' @param t ability parameters, 1d vector (fixed value) or NA (freely estimate)
#' @param a discrimination parameters, 1d vector (fixed value) or NA (freely estimate)
#' @param b difficulty parameters, 1d vector (fixed value) or NA (freely estimate)
#' @param d category parameters, 2d matrix (fixed value) or NA (freely estimate)
#' @param D the scaling constant, 1.702 by default
#' @param iter the maximum iterations
#' @param conv the convergence criterion of the -2 log-likelihood
#' @param nr_iter the maximum iterations of newton-raphson
#' @param nr_conv the convegence criterion for newton-raphson
#' @param scale the scale of theta parameters
#' @param bounds_t bounds of ability parameters
#' @param bounds_a bounds of discrimination parameters
#' @param bounds_b bounds of location parameters
#' @param bounds_d bounds of category parameters
#' @param priors a list of prior distributions
#' @param decay decay rate
#' @param debug TRUE to print debuggin information
#' @param true_params a list of true parameters for evaluating the estimation accuracy
#' @examples
#' \dontrun{
#' # generate data
#' x <- model_gpcm_gendata(1000, 40, 3)
#' # free calibration
#' y <- model_gpcm_estimate_jmle(x$u, true_params=x)
#' # no priors
#' y <- model_gpcm_estimate_jmle(x$u, priors=NULL, true_params=x)
#' }
#' @importFrom stats cor
#' @importFrom reshape2 melt
#' @import ggplot2
#' @export
model_gpcm_estimate_jmle <- function(u, t=NA, a=NA, b=NA, d=NA, D=1.702, iter=100, nr_iter=10, conv=1e-0, nr_conv=1e-3, scale=c(0, 1), bounds_t=c(-4, 4), bounds_a=c(.01, 2), bounds_b=c(-4, 4), bounds_d=c(-4, 4), priors=list(t=c(0, 1), a=c(-.1, .2), b=c(0, 1), d=c(0, 1)), decay=1, debug=FALSE, true_params=NULL){
# configuration
h_max <- 1.0
tracking <- list(fit=rep(NA, iter), t=rep(NA, iter), a=rep(NA, iter), b=rep(NA, iter), d=rep(NA, iter))
# initial values
n_p <- dim(u)[1]
n_i <- dim(u)[2]
n_c <- length(unique(as.vector(u)))
u_ix <- model_polytomous_3dindex(u)
if(length(t) == 1) t <- rep(t, n_p)
t[t_free <- is.na(t)] <- rnorm(sum(is.na(t)), 0, .01)
if(length(a) == 1) a <- rep(a, n_i)
a[a_free <- is.na(a)] <- rlnorm(sum(is.na(a)), -.1, .01)
if(length(b) == 1) b <- rep(b, n_i)
b[b_free <- is.na(b)] <- rnorm(sum(is.na(b)), 0, .01)
if(length(d) == 1) d <- array(d, dim=c(n_i, n_c))
d[d_free <- is.na(d)] <- rnorm(sum(is.na(d)), 0, .01)
d_free[, 1] <- FALSE
d[, 1] <- 0
d[,-1] <- d[,-1] - rowMeans(d[,-1])
# estimate parameters
for (k in 1:iter){
# t parameters
if(any(t_free)){
for(j in 1:nr_iter){
dv_t <- model_gpcm_dv_jmle(u_ix, model_gpcm_dv_Pt(t, a, b, d, D))
dv_t$dv1 <- rowSums(dv_t$dv1, na.rm=T)
dv_t$dv2 <- rowSums(dv_t$dv2, na.rm=T)
if(!is.null(priors$t)){
dv_t$dv1 <- dv_t$dv1 - (t - priors$t[1]) / priors$t[2]^2
dv_t$dv2 <- dv_t$dv2 - 1 / priors$t[2]^2
}
nr_t <- estimate_nr_iteration(t, t_free, dv_t, h_max, decay, bounds_t)
t <- nr_t$param
if(max(abs(nr_t$h)) < nr_conv) break
}
# rescale theta
if(!is.null(scale)) t <- (t - mean(t)) / sd(t) * scale[2] + scale[1]
}
# b parameters
if(any(b_free)){
for(j in 1:nr_iter){
dv_b <- model_gpcm_dv_jmle(u_ix, model_gpcm_dv_Pb(t, a, b, d, D))
dv_b$dv1 <- colSums(dv_b$dv1, na.rm=T)
dv_b$dv2 <- colSums(dv_b$dv2, na.rm=T)
if(!is.null(priors$b)){
dv_b$dv1 <- dv_b$dv1 - (b - priors$b[1]) / priors$b[2]^2
dv_b$dv2 <- dv_b$dv2 - 1 / priors$b[2]^2
}
nr_b <- estimate_nr_iteration(b, b_free, dv_b, h_max, decay, bounds_b)
b <- nr_b$param
if(max(abs(nr_b$h)) < nr_conv) break
}
}
# d parameters
if(any(d_free)){
for(j in 1:nr_iter){
dv <- model_gpcm_dv_Pd(t, a, b, d, D)
dv_dh <- array(0, c(n_i, n_c))
for(m in 2:n_c){
dv_d <- model_gpcm_dv_jmle(u_ix, with(dv, list(p=p, dv1=dv1[,,,m], dv2=dv2[,,,m])))
dv_d$dv1 <- colSums(dv_d$dv1, na.rm=T)
dv_d$dv2 <- colSums(dv_d$dv2, na.rm=T)
if(!is.null(priors$d)){
dv_d$dv1 <- dv_d$dv1 - (d[,m] - priors$d[1]) / priors$d[2]^2
dv_d$dv2 <- dv_d$dv2 - 1 / priors$d[2]^2
}
nr_d <- estimate_nr_iteration(d[,m], d_free[,m], dv_d, h_max, decay, bounds_d)
d[,m] <- nr_d$param
dv_dh[,m] <- nr_d$h
}
d[,-1] <- d[,-1] - rowMeans(d[,-1])
if(max(abs(dv_dh[,-1])) < nr_conv) break
}
}
# a parameters
if(any(a_free)){
for(j in 1:nr_iter){
dv_a <- model_gpcm_dv_jmle(u_ix, model_gpcm_dv_Pa(t, a, b, d, D))
dv_a$dv1 <- colSums(dv_a$dv1, na.rm=T)
dv_a$dv2 <- colSums(dv_a$dv2, na.rm=T)
if(!is.null(priors$a)){
dv_a$dv1 <- dv_a$dv1 - 1/a * (1 + (log(a)-priors$a[1])/priors$a[2]^2)
dv_a$dv2 <- dv_a$dv2 - 1/a^2 * (1/priors$a[2]^2 - (1 + (log(a)-priors$a[1])/priors$a[2]^2))
}
nr_a <- estimate_nr_iteration(a, a_free, dv_a, h_max, decay, bounds_a)
a <- nr_a$param
if(max(abs(nr_a$h)) < nr_conv) break
}
}
decay <- decay * decay
# model fit
loglh <- -2 * sum(model_gpcm_lh(u, t, a, b, d, D, log=T), na.rm=T)
if(debug) cat('iter #', k, ': -2 log-likelihood = ', round(loglh, 2), '\n', sep='')
if(k > 1 && tracking$fit[k-1] - loglh < conv) break
tracking$fit[k] <- loglh
if(any(t_free)) tracking$t[k] <- mean(abs(nr_t$h[t_free]))
if(any(a_free)) tracking$a[k] <- mean(abs(nr_a$h[a_free]))
if(any(b_free)) tracking$b[k] <- mean(abs(nr_b$h[b_free]))
if(any(d_free)) tracking$d[k] <- mean(abs(dv_dh[d_free]))
}
# debugging
if(debug){
xx <- with(tracking, data.frame(iteration=1:iter, fit=fit, t=t, a=a, b=b, d=d))[1:k, ]
xx <- melt(xx, id.vars='iteration')
xx <- xx[!is.na(xx$value),]
g <- ggplot(xx, aes_string(x="iteration", y="value", color="variable")) +
geom_line() + facet_wrap(~variable, scales="free") + guides(color=F) +
xlab('Iterations') + ylab('') + theme_bw()
print(g)
}
# compare with true parameters
if(!is.null(true_params)){
xx <- rbind(data.frame(true=true_params$t, est=t, params='t'),
data.frame(true=true_params$a, est=a, params='a'),
data.frame(true=true_params$b, est=b, params='b'))
for(i in 2:n_c)
xx <- rbind(xx, data.frame(true=true_params$d[,i], est=d[,i], params=paste('d',i,sep='')))
g <- ggplot(xx, aes_string(x="true", y="est", color="params")) +
geom_point(alpha=.3) + geom_smooth(method='gam', se=F) +
facet_wrap(~params, nrow=1, scales='free') + guides(color=F) +
xlab('True Parameters') + ylab('Est. Parameters') + theme_bw()
print(g)
if(any(t_free)) cat('t: corr = ', round(cor(t, true_params$t), 3), ', rmse = ', round(rmse(t, true_params$t), 3),'\n', sep='')
if(any(a_free)) cat('a: corr = ', round(cor(a, true_params$a), 3), ', rmse = ', round(rmse(a, true_params$a), 3),'\n', sep='')
if(any(b_free)) cat('b: corr = ', round(cor(b, true_params$b), 3), ', rmse = ', round(rmse(b, true_params$b), 3),'\n', sep='')
for(i in 2:n_c) if(any(d_free[,i])) cat('d_', i, ': corr = ', round(cor(d[,i], true_params$d[,i]), 3), ', rmse = ', round(rmse(d[,i], true_params$d[,i]), 3),'\n', sep='')
}
list(t=t, a=a, b=b, d=d)
}
#' @rdname estimate_gpcm
#' @keywords internal
model_gpcm_dv_mmle <- function(u_ix, quad, pdv){
n_p <- max(u_ix[,1])
n_i <- max(u_ix[,2])
n_q <- length(quad$t)
p0 <- array(NA, c(n_p, n_i, n_q))
for(q in 1:n_q)
p0[,,q] <- array(pdv$p[q,,][u_ix[,-1]], c(n_p, n_i))
p1 <- apply(p0, c(1, 3), prod, na.rm=T)
p2 <- (p1 %*% quad$w)[,1]
dv1 <- dv2 <- array(0, c(n_p, n_i))
dv_common <- t(t(p1 / p2) * quad$w)
for(q in 1:n_q)
dv1 <- dv1 + dv_common[,q] / p0[,,q] * array(pdv$dv1[q,,][u_ix[,-1]], c(n_p, n_i))
for(q in 1:n_q)
dv2 <- dv2 + dv_common[,q] / p0[,,q] * (array(pdv$dv2[q,,][u_ix[,-1]], c(n_p, n_i)) - array(pdv$dv1[q,,][u_ix[,-1]], c(n_p, n_i)) * dv1)
list(dv1=dv1, dv2=dv2)
}
#' @rdname estimate_gpcm
#' @description \code{model_gpcm_estimate_mmle} estimates the parameters using the
#' marginal maximum likelihood estimation (MMLE) method
#' @param quad_degree the number of quadrature points
#' @param scoring the scoring method: 'eap' or 'map'
#' @examples
#' \dontrun{
#' # generate data
#' x <- model_gpcm_gendata(1000, 40, 3)
#' # free estimation
#' y <- model_gpcm_estimate_mmle(x$u, true_params=x)
#' # no priors
#' y <- model_gpcm_estimate_mmle(x$u, priors=NULL, true_params=x)
#' }
#' @importFrom stats cor
#' @importFrom reshape2 melt
#' @import ggplot2
#' @export
model_gpcm_estimate_mmle <- function(u, t=NA, a=NA, b=NA, d=NA, D=1.702, iter=100, nr_iter=10, conv=1e-0, nr_conv=1e-3, bounds_t=c(-4, 4), bounds_a=c(.01, 2), bounds_b=c(-4, 4), bounds_d=c(-4, 4), priors=list(t=c(0, 1), a=c(-.1, .2), b=c(0, 1), d=c(0, 1)), decay=1, quad_degree='11', scoring=c('eap', 'map'), debug=FALSE, true_params=NULL){
# configuration
h_max <- 1.0
if(is.null(priors$t)) priors$t <- c(0, 1)
quad <- hermite_gauss(quad_degree)
quad$w <- quad$w * exp(quad$t^2) * dnorm(quad$t, priors$t[1], priors$t[2])
tracking <- list(fit=rep(NA, iter), t=rep(NA, iter), a=rep(NA, iter), b=rep(NA, iter), d=rep(NA, iter))
# initial values
n_p <- dim(u)[1]
n_i <- dim(u)[2]
n_c <- max(u) + 1
u_ix <- model_polytomous_3dindex(u)
if(length(t) == 1) t <- rep(t, n_p)
t[t_free <- is.na(t)] <- rnorm(sum(is.na(t)), 0, .01)
if(length(a) == 1) a <- rep(a, n_i)
a[a_free <- is.na(a)] <- rlnorm(sum(is.na(a)), -.1, .01)
if(length(b) == 1) b <- rep(b, n_i)
b[b_free <- is.na(b)] <- rnorm(sum(is.na(b)), 0, .01)
if(length(d) == 1) d <- array(d, dim=c(n_i, n_c))
d[d_free <- is.na(d)] <- rnorm(sum(is.na(d)), 0, .01)
d_free[, 1] <- FALSE
d[, 1] <- 0
d[,-1] <- d[,-1] - rowMeans(d[,-1])
# estimate parameters
for (k in 1:iter){
# b parameters
if(any(b_free)){
for(n in 1:nr_iter){
dv_b <- model_gpcm_dv_mmle(u_ix, quad, model_gpcm_dv_Pb(quad$t, a, b, d, D))
dv_b$dv1 <- colSums(dv_b$dv1, na.rm=T)
dv_b$dv2 <- colSums(dv_b$dv2, na.rm=T)
if(!is.null(priors$b)){
dv_b$dv1 <- dv_b$dv1 - (b - priors$b[1]) / priors$b[2]^2
dv_b$dv2 <- dv_b$dv2 - 1 / priors$b[2]^2
}
nr_b <- estimate_nr_iteration(b, b_free, dv_b, h_max, decay, bounds_b)
b <- nr_b$param
if(max(abs(nr_b$h)) < nr_conv) break
}
}
# d parameters
if(any(d_free)){
for(j in 1:nr_iter){
dv <- model_gpcm_dv_Pd(t, a, b, d, D)
dv_h <- array(0, c(n_i, n_c))
for(m in 2:n_c){
dv_d <- model_gpcm_dv_mmle(u_ix, quad, with(dv, list(p=p, dv1=dv1[,,,m], dv2=dv2[,,,m])))
dv_d$dv1 <- colSums(dv_d$dv1, na.rm=T)
dv_d$dv2 <- colSums(dv_d$dv2, na.rm=T)
if(!is.null(priors$d)){
dv_d$dv1 <- dv_d$dv1 - (d[,m] - priors$d[1]) / priors$d[2]^2
dv_d$dv2 <- dv_d$dv2 - 1 / priors$d[2]^2
}
nr_d <- estimate_nr_iteration(d[,m], d_free[,m], dv_d, h_max, decay, bounds_d)
d[,m] <- nr_d$param
dv_h[,m] <- nr_d$h
}
d[,-1] <- d[,-1] - rowMeans(d[,-1])
if(max(abs(dv_h[,-1])) < nr_conv) break
}
}
# a parameters
if(any(a_free)){
for(j in 1:nr_iter){
dv_a <- model_gpcm_dv_mmle(u_ix, quad, model_gpcm_dv_Pa(quad$t, a, b, d, D))
dv_a$dv1 <- colSums(dv_a$dv1, na.rm=T)
dv_a$dv2 <- colSums(dv_a$dv2, na.rm=T)
if(!is.null(priors$a)){
dv_a$dv1 <- dv_a$dv1 - 1/a * (1 + (log(a)-priors$a[1])/priors$a[2]^2)
dv_a$dv2 <- dv_a$dv2 - 1/a^2 * (1/priors$a[2]^2 - (1 + (log(a)-priors$a[1])/priors$a[2]^2))
}
nr_a <- estimate_nr_iteration(a, a_free, dv_a, h_max, decay, bounds_a)
a <- nr_a$param
if(max(abs(nr_a$h)) < nr_conv) break
}
}
# scoring
if(any(t_free))
t[t_free] <- switch(match.arg(scoring, scoring), 'eap'=model_gpcm_eap_scoring, 'map'=model_gpcm_map_scoring)(u, a, b, d, D, prior=priors$t, bound=bounds_t)$t[t_free]
decay <- decay * decay
# model fit
loglh <- -2 * sum(model_gpcm_lh(u, t, a, b, d, D, log=T), na.rm=T)
if(debug) cat('iter #', k, ': -2 log-likelihood = ', round(loglh, 2), '\n', sep='')
if(k > 1 && tracking$fit[k-1] - loglh < conv) break
tracking$fit[k] <- loglh
if(any(a_free)) tracking$a[k] <- mean(abs(nr_a$h[a_free]))
if(any(b_free)) tracking$b[k] <- mean(abs(nr_b$h[b_free]))
if(any(d_free)) tracking$d[k] <- mean(abs(nr_d$h[d_free]))
}
# debugging
if(debug){
xx <- with(tracking, data.frame(iteration=1:iter, fit=fit, t=t, a=a, b=b, d=d))[1:k, ]
xx <- melt(xx, id.vars='iteration')
xx <- xx[!is.na(xx$value),]
g <- ggplot(xx, aes_string(x="iteration", y="value", color="variable")) +
geom_line() + facet_wrap(~variable, scales="free") + guides(color=F) +
xlab('Iterations') + ylab('') + theme_bw()
print(g)
}
# compare with true parameters
if(!is.null(true_params)){
xx <- rbind(data.frame(true=true_params$t, est=t, params='t'),
data.frame(true=true_params$a, est=a, params='a'),
data.frame(true=true_params$b, est=b, params='b'))
for(i in 2:n_c)
xx <- rbind(xx, data.frame(true=true_params$d[,i], est=d[,i], params=paste('d',i,sep='')))
g <- ggplot(xx, aes_string(x="true", y="est", color="params")) +
geom_point(alpha=.3) + geom_smooth(method='gam', se=F) +
facet_wrap(~params, nrow=1, scales='free') + guides(color=F) +
xlab('True Parameters') + ylab('Est. Parameters') + theme_bw()
print(g)
if(any(t_free)) cat('t: corr = ', round(cor(t, true_params$t), 3), ', rmse = ', round(rmse(t, true_params$t), 3),'\n', sep='')
if(any(a_free)) cat('a: corr = ', round(cor(a, true_params$a), 3), ', rmse = ', round(rmse(a, true_params$a), 3),'\n', sep='')
if(any(b_free)) cat('b: corr = ', round(cor(b, true_params$b), 3), ', rmse = ', round(rmse(b, true_params$b), 3),'\n', sep='')
for(i in 2:n_c) if(any(d_free[,i])) cat('d_', i, ': corr = ', round(cor(d[,i], true_params$d[,i]), 3), ', rmse = ', round(rmse(d[,i], true_params$d[,i]), 3),'\n', sep='')
}
list(t=t, a=a, b=b, d=d)
}
#' @rdname estimate_gpcm
#' @param insert_d0 insert an initial category value
#' @param index the indices of items being plotted
#' @param intervals intervals on the x-axis
#' @param show_points TRUE to show points
#' @examples
#' with(model_gpcm_gendata(1000, 20, 3), model_gpcm_fitplot(u, t, a, b, d, index=c(1, 3, 5)))
#' @importFrom reshape2 melt
#' @import ggplot2
#' @export
model_gpcm_fitplot <- function(u, t, a, b, d, D=1.702, insert_d0=NULL, index=NULL, intervals=seq(-3, 3, .5), show_points=TRUE){
if(is.null(index)) index <- seq(b)
groups <- cut(t, intervals, labels=(intervals[-length(intervals)] + intervals[-1]) / 2)
obs <- aggregate(u, by=list(intervals=groups), mean, na.rm=TRUE)[, c(1, index+1)]
obs <- melt(obs, id.vars='intervals', variable.name='items')
obs[, 'type'] <- 'Observed'
p <- model_gpcm_prob(t, a, b, d, D, insert_d0)
p <- apply(p, 1:2, function(x) sum(x * (seq(x)-1), na.rm=T))
exp <- aggregate(p, by=list(intervals=groups), mean, na.rm=TRUE)[, c(1, index+1)]
exp <- melt(exp, id.vars='intervals', variable.name='items')
exp[, 'type'] <- 'Expected'
data <- rbind(obs, exp)
data$intervals <- as.numeric(levels(data$intervals)[data$intervals])
levels(data$items) <- gsub('V', 'Item ', levels(data$items))
g <- ggplot(data, aes_string('intervals', 'value', color='type', group='type')) +
geom_line() + facet_wrap(~items) + xlab(expression(theta)) + ylab('Probability') +
scale_color_discrete(guide=guide_legend("")) + theme_bw()
if(show_points) g <- g + geom_point(fill='white', pch=1)
g
}
| /scratch/gouwar.j/cran-all/cranData/xxIRT/R/module2_estimate_gpcm.R |
#' Estimate Graded Response Model
#' @description Estimate the GRM using the maximum likelihood estimation
#' @name estimate_grm
NULL
#' @rdname estimate_grm
#' @description \code{model_grm_eap_scoring} scores response vectors using the EAP method
#' @param prior the prior distribution
#' @examples
#' with(model_grm_gendata(10, 50, 3), cbind(true=t, est=model_grm_eap_scoring(u, a, b)$t))
#' @importFrom stats dnorm
#' @export
model_grm_eap_scoring <- function(u, a, b, D=1.702, prior=c(0, 1), bound=c(-3, 3)){
quad <- hermite_gauss('11')
quad$w <- quad$w * exp(quad$t^2) * dnorm(quad$t, prior[1], prior[2])
n_p <- dim(u)[1]
n_i <- dim(u)[2]
n_q <- length(quad$t)
p <- model_grm_prob(quad$t, a, b, D)
ix <- model_polytomous_3dindex(u)
lh <- array(NA, c(n_p, n_i, n_q))
for(q in 1:n_q)
lh[,,q] <- array(p[q,,][ix[,-1]], c(n_p, n_i))
lh <- apply(lh, c(1, 3), prod, na.rm=T)
t <- ((lh / (lh %*% quad$w)[,1]) %*% (quad$w * quad$t))[,1]
t_sd <- ((lh / (lh %*% quad$w)[,1] * outer(t, quad$t, '-')^2) %*% quad$w)[,1]
t_sd <- sqrt(t_sd)
list(t=t, sd=t_sd)
}
#' @rdname estimate_grm
#' @description \code{model_grm_map_scoring} scores response vectors using the MAP method
#' @examples
#' with(model_grm_gendata(10, 50, 3), cbind(true=t, est=model_grm_map_scoring(u, a, b)$t))
#' @export
model_grm_map_scoring <- function(u, a, b, D=1.702, prior=NULL, bound=c(-3, 3), nr_iter=30, nr_conv=1e-3){
ix <- model_polytomous_3dindex(u)
t <- rnorm(dim(u)[1], 0, .01)
t_free <- rep(T, length(t))
for(m in 1:nr_iter){
dv <- model_grm_dv_jmle(ix, model_grm_dv_Pt(t, a, b, D))
dv$dv1 <- rowSums(dv$dv1, na.rm=T)
dv$dv2 <- rowSums(dv$dv2, na.rm=T)
if(!is.null(prior)){
dv$dv1 <- dv$dv1 - (t - prior[1]) / prior[2]^2
dv$dv2 <- dv$dv2 - 1 / prior[2]^2
}
nr <- estimate_nr_iteration(t, t_free, dv, 1.0, 1.0, bound)
t <- nr$param
if(max(abs(nr$h)) < nr_conv) break
}
list(t=t)
}
#' @rdname estimate_grm
#' @keywords internal
model_grm_dv_Pt <- function(t, a, b, D){
n_c <- ncol(b) + 1
p <- model_grm_prob(t, a, b, D, raw=T)
dv1 <- aperm(aperm(p*(1-p), c(2,1,3)) * D * a, c(2,1,3))
dv1 <- dv1[,,1:n_c] - dv1[,,-1]
dv2 <- aperm(aperm(p*(1-p)*(1-2*p), c(2,1,3)) * (D * a)^2, c(2,1,3))
dv2 <- dv2[,,1:n_c] - dv2[,,-1]
p <- p[,,1:n_c] - p[,,-1]
list(p=p, dv1=dv1, dv2=dv2)
}
#' @rdname estimate_grm
#' @keywords internal
model_grm_dv_Pa <- function(t, a, b, D){
n_c <- ncol(b) + 1
p <- model_grm_prob(t, a, b, D, raw=T)
term0 <- D * outer(t, cbind(0, b, 0), '-')
dv1 <- p * (1-p) * term0
dv1 <- dv1[,,1:n_c] - dv1[,,-1]
dv2 <- p * (1-p) * (1-2*p) * term0^2
dv2 <- dv2[,,1:n_c] - dv2[,,-1]
p <- p[,,1:n_c] - p[,,-1]
list(p=p, dv1=dv1, dv2=dv2)
}
#' @rdname estimate_grm
#' @keywords internal
model_grm_dv_Pb <- function(t, a, b, D){
n_p <- length(t)
n_i <- nrow(b)
n_c <- ncol(b) + 1
p <- model_grm_prob(t, a, b, D, raw=T)
dv1 <- dv2 <- array(0, c(n_p, n_i, n_c, n_c-1))
for(k in 1:(n_c-1)){
term0<- t(t(p[,,k+1]*(1-p[,,k+1])) * (-D * a))
dv1[,,k,k] <- -1 * term0
dv1[,,k+1,k] <- term0
term1<- t(t(p[,,k+1]*(1-p[,,k+1])*(1-2*p[,,k+1])) * (D*a)^2)
dv2[,,k,k] <- -1 * term1
dv2[,,k+1,k] <- term1
}
p <- p[,,1:n_c] - p[,,-1]
list(p=p, dv1=dv1, dv2=dv2)
}
#' @rdname estimate_grm
#' @param ix the 3d indices
#' @param dvp the derivatives of P
#' @keywords internal
model_grm_dv_jmle <- function(ix, dvp){
n_p <- max(ix[,1])
n_i <- max(ix[,2])
dv1 <- array(with(dvp, dv1[ix]/p[ix]), c(n_p, n_i))
dv2 <- array(with(dvp, dv2[ix]/p[ix]), c(n_p, n_i)) - dv1^2
list(dv1=dv1, dv2=dv2)
}
#' @rdname estimate_grm
#' @description \code{model_grm_estimate_jmle} estimates the parameters using the
#' joint maximum likelihood estimation (JMLE) method
#' @param u the observed response matrix, 2d matrix
#' @param t ability parameters, 1d vector (fixed value) or NA (freely estimate)
#' @param a discrimination parameters, 1d vector (fixed value) or NA (freely estimate)
#' @param b difficulty parameters, 2d matrix (fixed value) or NA (freely estimate)
#' @param D the scaling constant, 1.702 by default
#' @param iter the maximum iterations
#' @param conv the convergence criterion for the -2 log-likelihood
#' @param nr_iter the maximum iterations of newton-raphson
#' @param nr_conv the convegence criterion of newton-raphson
#' @param scale the scale of theta parameters
#' @param bounds_t bounds of ability parameters
#' @param bounds_a bounds of discrimination parameters
#' @param bounds_b bounds of location parameters
#' @param priors a list of prior distributions
#' @param decay decay rate
#' @param debug TRUE to print debuggin information
#' @param true_params a list of true parameters for evaluating the estimation accuracy
#' @examples
#' \dontrun{
#' # generate data
#' x <- model_grm_gendata(1000, 40, 3)
#' # free calibration
#' y <- model_grm_estimate_jmle(x$u, true_params=x)
#' # no priors
#' y <- model_grm_estimate_jmle(x$u, priors=NULL, true_params=x)
#' }
#' @importFrom stats cor
#' @importFrom reshape2 melt
#' @import ggplot2
#' @export
model_grm_estimate_jmle <- function(u, t=NA, a=NA, b=NA, D=1.702, iter=100, nr_iter=10, conv=1e-0, nr_conv=1e-3, scale=c(0, 1), bounds_t=c(-4, 4), bounds_a=c(.01, 2), bounds_b=c(-4, 4), priors=list(t=c(0, 1), a=c(-.1, .2), b=c(0, 1)), decay=1, debug=FALSE, true_params=NULL){
# configuration
h_max <- 1.0
tracking <- list(fit=rep(NA, iter), t=rep(NA, iter), a=rep(NA, iter), b=rep(NA, iter))
# initial values
n_p <- dim(u)[1]
n_i <- dim(u)[2]
n_c <- max(u) + 1
u_ix <- model_polytomous_3dindex(u)
if(length(t) == 1) t <- rep(t, n_p)
t[t_free <- is.na(t)] <- rnorm(sum(is.na(t)), 0, .01)
if(length(a) == 1) a <- rep(a, n_i)
a[a_free <- is.na(a)] <- rlnorm(sum(is.na(a)), -.1, .01)
if(length(b) == 1) b <- array(b, c(n_i, n_c-1))
b[b_free <- is.na(b)] <- rnorm(sum(is.na(b)), 0, .1)
b <- t(apply(b, 1, sort))
# estimate parameters
for (k in 1:iter){
# t parameters
if(any(t_free)){
for(j in 1:nr_iter){
dv_t <- model_grm_dv_jmle(u_ix, model_grm_dv_Pt(t, a, b, D))
dv_t$dv1 <- rowSums(dv_t$dv1, na.rm=T)
dv_t$dv2 <- rowSums(dv_t$dv2, na.rm=T)
if(!is.null(priors$t)){
dv_t$dv1 <- dv_t$dv1 - (t - priors$t[1]) / priors$t[2]^2
dv_t$dv2 <- dv_t$dv2 - 1 / priors$t[2]^2
}
nr_t <- estimate_nr_iteration(t, t_free, dv_t, h_max, decay, bounds_t)
t <- nr_t$param
if(max(abs(nr_t$h)) < nr_conv) break
}
# rescale theta
if(!is.null(scale)) t <- (t - mean(t)) / sd(t) * scale[2] + scale[1]
}
# b parameters
if(any(b_free)){
for(j in 1:nr_iter){
dv_b <- model_grm_dv_Pb(t, a, b, D)
dv_bh <- array(0, c(n_i, n_c-1))
for(m in 1:(n_c-1)){
dv <- model_grm_dv_jmle(u_ix, with(dv_b, list(p=p, dv1=dv1[,,,m], dv2=dv2[,,,m])))
dv$dv1 <- colSums(dv$dv1, na.rm=T)
dv$dv2 <- colSums(dv$dv2, na.rm=T)
if(!is.null(priors$b)){
dv$dv1 <- dv$dv1 - (b[,m] - priors$b[1]) / priors$b[2]^2
dv$dv2 <- dv$dv2 - 1 / priors$b[2]^2
}
nr <- estimate_nr_iteration(b[,m], b_free[,m], dv, h_max, decay, bounds_b)
b[,m] <- nr$param
dv_bh[,m] <- nr$h
}
b <- t(apply(b, 1, sort))
if(max(abs(dv_bh)) < nr_conv) break
}
}
# a parameters
if(any(a_free)){
for(j in 1:nr_iter){
dv_a <- model_grm_dv_jmle(u_ix, model_grm_dv_Pa(t, a, b, D))
dv_a$dv1 <- colSums(dv_a$dv1, na.rm=T)
dv_a$dv2 <- colSums(dv_a$dv2, na.rm=T)
if(!is.null(priors$a)){
dv_a$dv1 <- dv_a$dv1 - 1/a * (1 + (log(a)-priors$a[1])/priors$a[2]^2)
dv_a$dv2 <- dv_a$dv2 - 1/a^2 * (1/priors$a[2]^2 - (1 + (log(a)-priors$a[1])/priors$a[2]^2))
}
nr_a <- estimate_nr_iteration(a, a_free, dv_a, h_max, decay, bounds_a)
a <- nr_a$param
if(max(abs(nr_a$h)) < nr_conv) break
}
}
decay <- decay * decay
# model fit
loglh <- -2 * sum(model_grm_lh(u, t, a, b, D, log=T), na.rm=T)
if(debug) cat('iter #', k, ': -2 log-likelihood = ', round(loglh, 2), '\n', sep='')
if(k > 1 && tracking$fit[k-1] - loglh < conv) break
tracking$fit[k] <- loglh
if(any(t_free)) tracking$t[k] <- mean(abs(nr_t$h[t_free]))
if(any(a_free)) tracking$a[k] <- mean(abs(nr_a$h[a_free]))
if(any(b_free)) tracking$b[k] <- mean(abs(dv_bh[b_free]))
}
# debugging
if(debug){
xx <- with(tracking, data.frame(iteration=1:iter, fit=fit, t=t, a=a, b=b))[1:k,]
xx <- melt(xx, id.vars='iteration')
xx <- xx[!is.na(xx$value), ]
g <- ggplot(xx, aes_string(x="iteration", y="value", color="variable")) +
geom_line() + facet_wrap(~variable, scales="free") + guides(color=F) +
xlab('Iterations') + ylab('') + theme_bw()
print(g)
}
# compare with true parameters
if(!is.null(true_params)){
xx <- rbind(data.frame(true=true_params$t, est=t, params='t'),
data.frame(true=true_params$a, est=a, params='a'))
for(i in 1:(n_c-1))
xx <- rbind(xx, data.frame(true=true_params$b[,i], est=b[,i], params=paste('b',i,sep='')))
g <- ggplot(xx, aes_string(x="true", y="est", color="params")) +
geom_point(alpha=.3) + geom_smooth(method='gam', se=F) +
facet_wrap(~params, nrow=1, scales='free') + guides(color=F) +
xlab('True Parameters') + ylab('Est. Parameters') + theme_bw()
print(g)
if(any(t_free)) cat('t: corr = ', round(cor(t, true_params$t), 3), ', rmse = ', round(rmse(t, true_params$t), 3),'\n', sep='')
if(any(a_free)) cat('a: corr = ', round(cor(a, true_params$a), 3), ', rmse = ', round(rmse(a, true_params$a), 3),'\n', sep='')
for(i in 1:(n_c-1)) if(any(b_free[,i])) cat('b_', i, ': corr = ', round(cor(b[,i], true_params$b[,i]), 3), ', rmse = ', round(rmse(b[,i], true_params$b[,i]), 3),'\n', sep='')
}
list(t=t, a=a, b=b)
}
#' @rdname estimate_grm
#' @keywords internal
model_grm_dv_mmle <- function(u_ix, quad, pdv){
n_p <- max(u_ix[,1])
n_i <- max(u_ix[,2])
n_q <- length(quad$t)
p0 <- array(NA, c(n_p, n_i, n_q))
for(q in 1:n_q)
p0[,,q] <- array(pdv$p[q,,][u_ix[,-1]], c(n_p, n_i))
p1 <- apply(p0, c(1, 3), prod, na.rm=T)
p2 <- (p1 %*% quad$w)[,1]
dv1 <- dv2 <- array(0, c(n_p, n_i))
dv_common <- t(t(p1 / p2) * quad$w)
for(q in 1:n_q)
dv1 <- dv1 + dv_common[,q] / p0[,,q] * array(pdv$dv1[q,,][u_ix[,-1]], c(n_p, n_i))
for(q in 1:n_q)
dv2 <- dv2 + dv_common[,q] / p0[,,q] * (array(pdv$dv2[q,,][u_ix[,-1]], c(n_p, n_i)) - array(pdv$dv1[q,,][u_ix[,-1]], c(n_p, n_i)) * dv1)
list(dv1=dv1, dv2=dv2)
}
#' @rdname estimate_grm
#' @description \code{model_grm_estimate_mmle} estimates the parameters using the
#' marginal maximum likelihood estimation (MMLE) method
#' @param quad_degree the number of quadrature points
#' @param scoring the scoring method: 'eap' or 'map'
#' @examples
#' \dontrun{
#' # generate data
#' x <- model_grm_gendata(1000, 40, 3)
#' # free estimation
#' y <- model_grm_estimate_mmle(x$u, true_params=x)
#' # no priors
#' y <- model_grm_estimate_mmle(x$u, priors=NULL, true_params=x)
#' }
#' @importFrom stats cor
#' @importFrom reshape2 melt
#' @import ggplot2
#' @export
model_grm_estimate_mmle <- function(u, t=NA, a=NA, b=NA, d=NA, D=1.702, iter=100, nr_iter=10, conv=1e-0, nr_conv=1e-3, bounds_t=c(-4, 4), bounds_a=c(.01, 2), bounds_b=c(-4, 4), bounds_d=c(-4, 4), priors=list(t=c(0, 1), a=c(-.1, .2), b=c(0, 1)), decay=1, quad_degree='11', scoring=c('eap', 'map'), debug=FALSE, true_params=NULL){
# configuration
h_max <- 1.0
if(is.null(priors$t)) priors$t <- c(0, 1)
quad <- hermite_gauss(quad_degree)
quad$w <- quad$w * exp(quad$t^2) * dnorm(quad$t, priors$t[1], priors$t[2])
tracking <- list(fit=rep(NA, iter), t=rep(NA, iter), a=rep(NA, iter), b=rep(NA, iter), d=rep(NA, iter))
# initial values
n_p <- dim(u)[1]
n_i <- dim(u)[2]
n_c <- max(u) + 1
u_ix <- model_polytomous_3dindex(u)
if(length(t) == 1) t <- rep(t, n_p)
t[t_free <- is.na(t)] <- rnorm(sum(is.na(t)), 0, .01)
if(length(a) == 1) a <- rep(a, n_i)
a[a_free <- is.na(a)] <- rlnorm(sum(is.na(a)), -.1, .01)
if(length(b) == 1) b <- array(b, c(n_i, n_c-1))
b[b_free <- is.na(b)] <- rnorm(sum(is.na(b)), 0, .1)
b <- t(apply(b, 1, sort))
# estimate parameters
for (k in 1:iter){
# b parameters
if(any(b_free)){
for(j in 1:nr_iter){
dv_b <- model_grm_dv_Pb(t, a, b, D)
dv_bh <- array(0, c(n_i, n_c-1))
for(m in 2:n_c-1){
dv <- model_grm_dv_mmle(u_ix, quad, with(dv_b, list(p=p, dv1=dv1[,,,m], dv2=dv2[,,,m])))
dv$dv1 <- colSums(dv$dv1, na.rm=T)
dv$dv2 <- colSums(dv$dv2, na.rm=T)
if(!is.null(priors$b)){
dv$dv1 <- dv$dv1 - (b[,m] - priors$b[1]) / priors$b[2]^2
dv$dv2 <- dv$dv2 - 1 / priors$b[2]^2
}
nr <- estimate_nr_iteration(b[,m], b_free[,m], dv, h_max, decay, bounds_b)
b[,m] <- nr$param
dv_bh[,m] <- nr$h
}
b <- t(apply(b, 1, sort))
if(max(abs(dv_bh)) < nr_conv) break
}
}
# a parameters
if(any(a_free)){
for(j in 1:nr_iter){
dv_a <- model_grm_dv_mmle(u_ix, quad, model_grm_dv_Pa(quad$t, a, b, D))
dv_a$dv1 <- colSums(dv_a$dv1, na.rm=T)
dv_a$dv2 <- colSums(dv_a$dv2, na.rm=T)
if(!is.null(priors$a)){
dv_a$dv1 <- dv_a$dv1 - 1/a * (1 + (log(a)-priors$a[1])/priors$a[2]^2)
dv_a$dv2 <- dv_a$dv2 - 1/a^2 * (1/priors$a[2]^2 - (1 + (log(a)-priors$a[1])/priors$a[2]^2))
}
nr_a <- estimate_nr_iteration(a, a_free, dv_a, h_max, decay, bounds_a)
a <- nr_a$param
if(max(abs(nr_a$h)) < nr_conv) break
}
}
# scoring
if(any(t_free))
t[t_free] <- switch(match.arg(scoring, scoring), 'eap'=model_grm_eap_scoring, 'map'=model_grm_map_scoring)(u, a, b, D, prior=priors$t, bound=bounds_t)$t[t_free]
decay <- decay * decay
# model fit
loglh <- -2 * sum(model_grm_lh(u, t, a, b, D, log=T), na.rm=T)
if(debug) cat('iter #', k, ': -2 log-likelihood = ', round(loglh, 2), '\n', sep='')
if(k > 1 && tracking$fit[k-1] - loglh < conv) break
tracking$fit[k] <- loglh
if(any(a_free)) tracking$a[k] <- mean(abs(nr_a$h[a_free]))
if(any(b_free)) tracking$d[k] <- mean(abs(dv_bh[b_free]))
}
# debugging
if(debug){
xx <- with(tracking, data.frame(iteration=1:iter, fit=fit, t=t, a=a, b=b))[1:k, ]
xx <- melt(xx, id.vars='iteration')
xx <- xx[!is.na(xx$value), ]
g <- ggplot(xx, aes_string(x="iteration", y="value", color="variable")) +
geom_line() + facet_wrap(~variable, scales="free") + guides(color=F) +
xlab('Iterations') + ylab('') + theme_bw()
print(g)
}
# compare with true parameters
if(!is.null(true_params)){
xx <- rbind(data.frame(true=true_params$t, est=t, params='t'),
data.frame(true=true_params$a, est=a, params='a'))
for(i in 2:n_c-1)
xx <- rbind(xx, data.frame(true=true_params$b[,i], est=b[,i], params=paste('b',i,sep='')))
g <- ggplot(xx, aes_string(x="true", y="est", color="params")) +
geom_point(alpha=.3) + geom_smooth(method='gam', se=F) +
facet_wrap(~params, nrow=1, scales='free') + guides(color=F) +
xlab('True Parameters') + ylab('Est. Parameters') + theme_bw()
print(g)
if(any(t_free)) cat('t: corr = ', round(cor(t, true_params$t), 3), ', rmse = ', round(rmse(t, true_params$t), 3),'\n', sep='')
if(any(a_free)) cat('a: corr = ', round(cor(a, true_params$a), 3), ', rmse = ', round(rmse(a, true_params$a), 3),'\n', sep='')
for(i in 2:n_c-1) if(any(b_free[,i])) cat('b_', i, ': corr = ', round(cor(b[,i], true_params$b[,i]), 3), ', rmse = ', round(rmse(b[,i], true_params$b[,i]), 3),'\n', sep='')
}
list(t=t, a=a, b=b)
}
#' @rdname estimate_grm
#' @param index the indices of items being plotted
#' @param intervals intervals on the x-axis
#' @param show_points TRUE to show points
#' @examples
#' with(model_grm_gendata(1000, 20, 3), model_grm_fitplot(u, t, a, b, index=c(1, 3, 5)))
#' @importFrom reshape2 melt
#' @import ggplot2
#' @export
model_grm_fitplot <- function(u, t, a, b, D=1.702, index=NULL, intervals=seq(-3, 3, .5), show_points=TRUE){
if(is.null(index)) index <- seq(b)
groups <- cut(t, intervals, labels=(intervals[-length(intervals)] + intervals[-1]) / 2)
obs <- aggregate(u, by=list(intervals=groups), mean, na.rm=TRUE)[, c(1, index+1)]
obs <- melt(obs, id.vars='intervals', variable.name='items')
obs[, 'type'] <- 'Observed'
p <- model_grm_prob(t, a, b, D)
p <- apply(p, 1:2, function(x) sum(x * (seq(x)-1), na.rm=T))
exp <- aggregate(p, by=list(intervals=groups), mean, na.rm=TRUE)[, c(1, index+1)]
exp <- melt(exp, id.vars='intervals', variable.name='items')
exp[, 'type'] <- 'Expected'
data <- rbind(obs, exp)
data$intervals <- as.numeric(levels(data$intervals)[data$intervals])
levels(data$items) <- gsub('V', 'Item ', levels(data$items))
g <- ggplot(data, aes_string('intervals', 'value', color='type', group='type')) +
geom_line() + facet_wrap(~items) + xlab(expression(theta)) + ylab('Probability') +
scale_color_discrete(guide=guide_legend("")) + theme_bw()
if(show_points) g <- g + geom_point(fill='white', pch=1)
g
}
| /scratch/gouwar.j/cran-all/cranData/xxIRT/R/module2_estimate_grm.R |
#' Automated Test Assembly (ATA)
#' @name ata
#' @examples
#' \dontrun{
#' ## generate a pool of 100 items
#' n_items <- 100
#' pool <- with(model_3pl_gendata(1, nitems), data.frame(id=1:n_items, a=a, b=b, c=c))
#' pool$content <- sample(1:3, n_items, replace=TRUE)
#' pool$time <- round(rlnorm(n_items, log(60), .2))
#' pool$group <- sort(sample(1:round(n_items/3), n_items, replace=TRUE))
#'
#' ## ex. 1: four 10-item forms, maximize b parameter
#' x <- ata(pool, 4, len=10, max_use=1)
#' x <- ata_obj_relative(x, "b", "max")
#' x <- ata_solve(x, timeout=5)
#' data.frame(form=1:4, b=sapply(x$items, function(x) mean(x$b)))
#'
#' ## ex. 2: four 10-item forms, minimize b parameter
#' x <- ata(pool, 4, len=10, max_use=1)
#' x <- ata_obj_relative(x, "b", "min", negative=TRUE)
#' x <- ata_solve(x, as.list=FALSE, timeout=5)
#' with(x$items, aggregate(b, by=list(form=form), mean))
#'
#' ## ex. 3: two 10-item forms, mean(b)=0, sd(b)=1
#' ## content = (3, 3, 4), avg. time = 58--62 seconds
#' constr <- data.frame(name='content',level=1:3, min=c(3,3,4), max=c(3,3,4), stringsAsFactors=F)
#' constr <- rbind(constr, c('time', NA, 58*10, 62*10))
#' x <- ata(pool, 2, len=10, max_use=1)
#' x <- ata_obj_absolute(x, pool$b, 0*10)
#' x <- ata_obj_absolute(x, (pool$b-0)^2, 1*10)
#' for(i in 1:nrow(constr))
#' x <- with(constr, ata_constraint(x, name[i], min[i], max[i], level=level[i]))
#' x <- ata_solve(x, timeout=5)
#' sapply(x$items, function(x) c(mean=mean(x$b), sd=sd(x$b)))
#'
#' ## ex. 4: two 10-item forms, max TIF over (-1, 1), consider item sets
#' x <- ata(pool, 2, len=10, max_use=1, group="group")
#' x <- ata_obj_relative(x, seq(-1, 1, .5), 'max')
#' x <- ata_solve(x, timeout=5)
#' plot(x)
#' }
NULL
#' @rdname ata
#' @description \code{ata} initiates an ATA model
#' @param pool item pool, a data.frame
#' @param num_form number of forms to be assembled
#' @param len test length of each form
#' @param max_use maximum use of each item
#' @param ... options, e.g. group, common_items, overlap_items
#' @details
#' The ATA model stores the definition of a MIP model. \code{ata_solve}
#' converts the model definition to a real MIP object and attempts to solve it.
#' @export
ata <- function(pool, num_form=1, len=NULL, max_use=NULL, ...){
if(!is.data.frame(pool)) pool <- as.data.frame(pool, stringsAsFactors=FALSE)
if(!'b' %in% colnames(pool)) warning('b parameters are not found in the pool')
if(!'a' %in% colnames(pool)) warning('a parameters are not found in the pool')
if(!'c' %in% colnames(pool)) warning('c parameters are not found in the pool')
opts <- list(...)
if(is.null(opts$D)) opts$D <- 1.702
# break down forms for common items and overlap items
if(!is.null(opts$common_items)){
form_map <- cbind(1:num_form, num_form + 1)
} else if(!is.null(opts$overlap_items)){
form_map <- cbind(1:num_form, 1:num_form+num_form, c(num_form*2, 1:(num_form-1)+num_form))
} else if(!is.null(opts$form_map)) {
form_map <- opts$form_map
} else {
form_map <- matrix(1:num_form, ncol=1)
}
num_form <- max(form_map)
# group item sets
if(is.null(opts$group)) {
group <- 1:nrow(pool)
} else if(is.character(opts$group)) {
if(opts$group %in% colnames(pool)) group <- pool[, opts$group] else stop('the item-set grouping variable is not found in the pool')
} else if(length(group) != nrow(pool)) {
stop('the item-set grouping variable has a different length from the number of items')
} else {
group <- opts$group
}
group <- as.numeric(factor(group))
num_item <- length(unique(group))
# the number of items and
num_lpvar <- num_item * num_form + 2
# LP: x's (binary) + y1 (continuous) + y2 (continuous)
obj <- c(rep(0, num_lpvar - 2), 1, 1)
names(obj) <- c(paste("f", rep(1:num_form, each=num_item), "v", rep(1:num_item, num_form), sep=""), "y1", "y2")
# x's are binary and y is continuous
types <- c(rep("B", num_lpvar - 2), "C", "C")
# placehoders for fixing values
bounds <- list(idx=c(), lb=c(), ub=c())
# TRUE to maximize, FALSE to minimize
max <- TRUE
# TRUE if the y is expected to be negative
negative <- FALSE
# constraints: coefficient matrix, directions, and right-hand-side values
mat <- matrix(nrow=0, ncol=num_lpvar, dimnames=list(NULL, names(obj)))
dir <- rhs <- NULL
x <- list(num_item=num_item, num_form=num_form, num_lpvar=num_lpvar, pool=pool, group=group, form_map=form_map,
obj=obj, mat=mat, dir=dir, rhs=rhs, types=types, bounds=bounds, max=max, negative=negative, opts=opts)
class(x) <- "ata"
# add constraint: test length
if(!is.null(len) && length(len) == 1) x <- ata_constraint(x, 1, min=len, max=len)
if(!is.null(len) && length(len) == 2) x <- ata_constraint(x, 1, min=len[1], max=len[2])
if(!is.null(len) && length(len) > 2) stop("invalid length.")
if(!is.null(opts$common_items))
x <- ata_constraint(x, 1, min=opts$common_items, max=opts$common_items, forms=num_form, internal_index=TRUE)
if(!is.null(opts$overlap_items))
x <- ata_constraint(x, 1, min=opts$overlap_items, max=opts$overlap_items, forms=unique(as.vector(form_map[,-1])), internal_index=TRUE)
# add constraint: max_use
if(!is.null(max_use)) x <- ata_item_use(x, max=max_use)
x
}
#' @rdname ata
#' @param x an ATA object
#' @export
print.ata <- function(x, ...){
cat("Assemble", x$num_form, "forms from", x$num_item, "items/sets.\n")
if(is.null(x$items)) {
cat("The LP hasn't been solved yet.\n")
} else {
cat("The LP has been solve:\n")
items <- x$items
if(!is.data.frame(items))
items <- Reduce(rbind, items, NULL)
if(nrow(items) <= 10) {
print(items)
} else {
print(items[1:5,])
cat("...\n")
print(items[-4:0 + nrow(items),])
}
cat("See more results in 'x$result' or 'x$items' (x is the ata object).")
}
invisible(x)
}
#' @rdname ata
#' @import ggplot2
#' @export
plot.ata <- function(x, ...){
if(class(x) != "ata") stop("not an 'ata' object")
if(is.null(x$items)) stop("lp hasn't been solved yet")
opts <- list(...)
if(is.null(opts$theta)) opts$theta <- round(seq(-3, 3, .1), 1)
num_theta <- length(opts$theta)
items <- x$items
if(is.data.frame(items)) items <- split(items, f=items$form)
data <- lapply(items, function(item) {
info <- rowSums(model_3pl_info(opts$theta, item$a, item$b, item$c, D=x$opts$D))
cbind(t=opts$theta, info=info, form=item$form[1])
})
data <- Reduce(rbind, data, NULL)
data <- as.data.frame(data)
data$form <- factor(paste("Form", data$form))
ggplot(data, aes_string(x="t", y="info", color="form")) +
geom_line() + xlab(expression(theta)) + ylab("Information") +
theme_bw() + theme(legend.key=element_blank()) +
guides(color=guide_legend("Forms"))
}
#' @rdname ata
#' @description \code{ata_obj_relative} adds a relative objective to the model
#' @param coef coefficients of the objective function
#' @param mode optimization mode: 'max' for maximization and 'min' for minimization
#' @param tol the tolerance paraemter
#' @param negative \code{TRUE} when the objective function is expected to be negative
#' @param forms forms where objectives are added. \code{NULL} for all forms
#' @param collapse \code{TRUE} to collapse into one objective function
#' @param internal_index \code{TRUE} to use internal form indices
#' @details
#' \code{ata_obj_relative}:
#' when mode='max', maximize (y-tol), subject to y <= sum(x) <= y+tol;
#' when mode='min', minimize (y+tol), subject to y-tol <= sum(x) <= y.
#' When \code{negative} is \code{TRUE}, y < 0, tol > 0.
#' \code{coef} can be a numeric vector that has the same length with the pool or forms,
#' or a variable name in the pool, or a numeric vector of theta points.
#' When \code{tol} is \code{NULL}, it is optimized; when \code{FALSE}, ignored;
#' when a number, fixed; when a range, constrained with lower and upper bounds.
#' @export
ata_obj_relative <- function(x, coef, mode=c('max', 'min'), tol=NULL, negative=FALSE, forms=NULL, collapse=FALSE, internal_index=FALSE, ...){
if(class(x) != "ata") stop("not an 'ata' object")
opts <- list(...)
forms <- ata_form_index(x, forms, collapse, internal_index)
coef <- ata_obj_coef(x, coef, compensate=FALSE)
x$negative <- negative
# optimization direction
x$max <- switch(match.arg(mode), "max"=TRUE, "min"=FALSE)
if(x$max){
x$obj[(x$num_lpvar-1):x$num_lpvar] <- c(1, -1)
} else {
x$obj[(x$num_lpvar-1):x$num_lpvar] <- c(1, 1)
}
# tolerance parameter
if(!is.null(tol))
if(length(tol) == 2) {
x$bounds$idx <- c(x$bounds$idx, x$num_lpvar)
x$bounds$lb <- c(x$bounds$lb, tol[1])
x$bounds$ub <- c(x$bounds$ub, tol[2])
} else if(is.numeric(tol)){
x$bounds$idx <- c(x$bounds$idx, x$num_lpvar)
x$bounds$lb <- c(x$bounds$lb, tol)
x$bounds$ub <- c(x$bounds$ub, tol)
} else if(!tol) {
x$obj[x$num_lpvar] <- 0
}
# objective for each form
mat <- matrix(0, nrow=nrow(forms) * nrow(coef) * 2, ncol=x$num_lpvar)
dir <- rhs <- rep(NA, nrow(forms) * nrow(coef) * 2)
for(i in 1:nrow(forms)) {
f <- forms[i, ]
ind <- outer(1:x$num_item, (f - 1) * x$num_item, "+")
ind <- as.vector(ind)
for(j in 1:nrow(coef)) {
row <- (j - 1) * 2 + (i - 1) * nrow(coef) * 2
mat[row + 1, ind] <- rep(coef[j, ], length(f))
mat[row + 2, ind] <- rep(coef[j, ], length(f))
if(x$max){
mat[row + 1, (x$num_lpvar-1):x$num_lpvar] <- c(-1, 0)
mat[row + 2, (x$num_lpvar-1):x$num_lpvar] <- c(-1, -1)
} else {
mat[row + 1, (x$num_lpvar-1):x$num_lpvar] <- c(-1, 1)
mat[row + 2, (x$num_lpvar-1):x$num_lpvar] <- c(-1, 0)
}
dir[row + 1:2] <- c(">=", "<=")
rhs[row + 1:2] <- 0
}
}
ata_append_constraints(x, mat, dir, rhs)
}
#' @rdname ata
#' @description \code{ata_obj_absolute} adds an absolute objective to the model
#' @param target the target values of the objective function
#' @param equal_tol \code{TRUE} to force upward and downward tolerance to be equal
#' @param tol_up the range of upward tolerance
#' @param tol_down the range of downward tolerance
#' @details
#' \code{ata_obj_absolute} minimizes y0+y1 subject to t-y0 <= sum(x) <= t+y1.
#' @export
ata_obj_absolute <- function(x, coef, target, equal_tol=FALSE, tol_up=NULL, tol_down=NULL, forms=NULL, collapse=FALSE, internal_index=FALSE, ...){
if(class(x) != "ata") stop("not an 'ata' object")
opts <- list(...)
forms <- ata_form_index(x, forms, collapse, internal_index)
coef <- ata_obj_coef(x, coef, compensate=FALSE)
if(length(target) == 1) target <- rep(target, nrow(coef))
if(length(target) != nrow(coef)) stop("invalid target length.")
# optimization direction
x$max <- FALSE
x$obj[x$num_lpvar+(-1:0)] <- 1
# objective for each form
mat <- matrix(0, nrow=nrow(forms) * nrow(coef) * 2, ncol=x$num_lpvar)
dir <- rhs <- rep(NA, nrow(forms) * nrow(coef) * 2)
for(i in 1:nrow(forms)){
f <- forms[i,]
ind <- outer(1:x$num_item, (f - 1) * x$num_item, "+")
ind <- as.vector(ind)
for(j in 1:nrow(coef)){
row <- (j - 1) * 2 + (i - 1) * nrow(coef) * 2
mat[row + 1, ind] <- rep(coef[j, ], length(f))
mat[row + 1, x$num_lpvar - 1] <- 1
mat[row + 2, ind] <- rep(coef[j, ], length(f))
mat[row + 2, x$num_lpvar - 0] <- -1
dir[row + 1:2] <- c(">=", "<=")
rhs[row + 1:2] <- target[j]
}
}
# constrains on tolerance parameters
if(equal_tol){
mat <- rbind(mat, c(rep(0, x$num_lpvar - 2), 1, -1))
dir <- c(dir, '=')
rhs <- c(rhs, 0)
}
if(!is.null(tol_down)){
if(length(tol_down) != 2) stop('invalid tol_down input. expect a vector of 2 elements.')
x$bounds$idx <- c(x$bounds$idx, x$num_lpvar-1)
x$bounds$lb <- c(x$bounds$lb, tol_down[1])
x$bounds$ub <- c(x$bounds$ub, tol_down[2])
}
if(!is.null(tol_up)){
if(length(tol_up) != 2) stop('invalid tol_up input. expect a vector of 2 elements.')
x$bounds$idx <- c(x$bounds$idx, x$num_lpvar)
x$bounds$lb <- c(x$bounds$lb, tol_up[1])
x$bounds$ub <- c(x$bounds$ub, tol_up[2])
}
ata_append_constraints(x, mat, dir, rhs)
}
#' @rdname ata
#' @description \code{ata_constraint} adds a constraint to the model
#' @param level the level of a categorical variable to be constrained
#' @param min the lower bound of the constraint
#' @param max the upper bound of the constraint
#' @details
#' When \code{level} is \code{NA}, it is assumed that the constraint is on
#' a quantitative item property; otherwise, a categorical item property.
#' \code{coef} can be a variable name, a constant, or a numeric vector that has
#' the same size as the pool.
#' @importFrom stats aggregate
#' @export
ata_constraint <- function(x, coef, min=NA, max=NA, level=NULL, forms=NULL, collapse=FALSE, internal_index=FALSE){
if(class(x) != "ata") stop("not an 'ata' object")
if(is.na(min) && is.na(max)) return(x)
if(!is.na(min) && !is.na(max) && min > max) stop("min is greater than max.")
forms <- ata_form_index(x, forms, collapse, internal_index)
if(length(coef) == 1 && is.character(coef) && coef %in% colnames(x$pool)) {
# if a variable name, then retrieve and aggregate
coef <- x$pool[, coef]
if(!is.null(level) && !is.na(level)) coef <- as.integer(coef == level)
coef <- aggregate(coef, by=list(group=x$group), sum)[,-1]
} else if(length(coef) == 1 && is.numeric(coef)) {
# if a numeric value, then replicate values and aggregate
coef <- aggregate(rep(coef, nrow(x$pool)), by=list(group=x$group), sum)[,-1]
} else if(length(coef) == x$num_item * ncol(forms)) {
# if a numeric vector (item-group-level), then do nothing
coef <- coef
} else if(length(coef) == nrow(x$pool)) {
# if a numeric vector (item-level), then aggregate
coef <- aggregate(coef, by=list(group=x$group), sum)[,-1]
} else {
stop("invalid coef")
}
n <- ifelse(!is.na(min) && !is.na(max) && min != max, nrow(forms) * 2, nrow(forms))
mat <- matrix(0, nrow=n, ncol=x$num_lpvar)
dir <- rhs <- rep(NA, n)
for(i in 1:nrow(forms)) {
f <- forms[i,]
ind <- outer(1:x$num_item, (f - 1) * x$num_item, "+")
ind <- as.vector(ind)
if(!is.na(min) && is.na(max)) {
mat[i, ind] <- coef
dir[i] <- ">="
rhs[i] <- min
} else if(is.na(min) && !is.na(max)) {
mat[i, ind] <- coef
dir[i] <- "<="
rhs[i] <- max
} else if(min == max) {
mat[i, ind] <- coef
dir[i] <- "="
rhs[i] <- min
} else {
mat[(i - 1) * 2 + 1, ind] <- coef
mat[(i - 1) * 2 + 2, ind] <- coef
dir[(i - 1) * 2 + 1:2] <- c(">=", "<=")
rhs[(i - 1) * 2 + 1:2] <- c(min, max)
}
}
ata_append_constraints(x, mat, dir, rhs)
}
#' @rdname ata
#' @description \code{ata_item_use} limits the minimum and maximum usage for items
#' @param items a vector of item indices, \code{NULL} for all items
#' @export
ata_item_use <- function(x, min=NA, max=NA, items=NULL){
if(class(x) != "ata") stop("not an 'ata' object")
if(is.na(min) && is.na(max)) stop('min and max are both NA')
if(is.null(items)) items <- 1:x$num_item
if(any(!items %in% 1:x$num_item)) stop("invalid items input.")
nitems <- length(items)
n <- sum(!is.na(min), !is.na(max))
mat <- matrix(0, nrow=nitems * n, ncol=x$num_lpvar)
for(i in 1:length(items)) {
ind <- items[i] + (1:x$num_form - 1) * x$num_item
mat[(i - 1) * n + 1:n, ind] <- 1
}
if(!is.na(min) && is.na(max)){
dir <- rep(">=", nitems)
rhs <- rep(min, nitems)
} else if(is.na(min) && !is.na(max)){
dir <- rep("<=", nitems)
rhs <- rep(max, nitems)
} else {
dir <- rep(c(">=", "<="), nitems)
rhs <- rep(c(min, max), nitems)
}
ata_append_constraints(x, mat, dir, rhs)
}
#' @rdname ata
#' @description \code{ata_item_enemy} adds an enemy-item constraint to the model
#' @export
ata_item_enemy <- function(x, items){
if(class(x) != "ata") stop("not an 'ata' object")
if(any(!items %in% 1:x$num_item)) stop("invalid item index")
mat <- matrix(0, nrow=nrow(x$form_map), ncol=x$num_lpvar)
for(i in 1:nrow(x$form_map)){
f <- x$form_map[i, ]
ind <- items + (f - 1) * x$num_item
mat[i, ind] <- 1
}
dir <- rep("<=", x$num_form)
rhs <- rep(1, x$num_form)
ata_append_constraints(x, mat, dir, rhs)
}
#' @rdname ata
#' @description \code{ata_item_fixedvalue} forces an item to be selected or not selected
#' @export
ata_item_fixedvalue <- function(x, items, min=NA, max=NA, forms){
if(class(x) != "ata") stop("not an 'ata' object")
if(any(!items %in% 1:x$num_item)) stop("invalid items input.")
if(length(forms) > 1) stop('fix values in one form at each time.')
n <- length(items)
if(length(min) == 1) min <- rep(min, n)
if(length(max) == 1) max <- rep(max, n)
if(length(min) != n || length(max) != n) stop("invalid min or max length.")
x$bounds$idx <- c(x$bounds$idx, items+(forms-1)*x$num_item)
x$bounds$lb <- c(x$bounds$lb, min)
x$bounds$ub <- c(x$bounds$ub, max)
x
}
#' @rdname ata
#' @description \code{ata_solve} solves the MIP model
#' @param solver use 'lpsolve' for lp_solve 5.5 or 'glpk' for GLPK
#' @param as.list \code{TRUE} to return results in a list; otherwise, a data frame
#' @param details \code{TRUE} to print detailed information
#' @param time_limit the time limit in seconds passed along to solvers
#' @param message \code{TRUE} to print messages from solvers
#' @details
#' \code{ata_solve} takes control options in \code{...}.
#' For lpsolve, see \code{lpSolveAPI::lp.control.options}.
#' For glpk, see \code{glpkAPI::glpkConstants}\cr
#' Once the model is solved, additional data are added to the model.
#' \code{status} shows the status of the solution, \code{optimum}
#' the optimal value of the objective fucntion found in the solution,
#' \code{obj_vars} the values of two critical variables in the objective
#' function, \code{result} the assembly results in a binary matrix, and
#' \code{items} the assembled items
#' @export
ata_solve <- function(x, solver=c('lpsolve', 'glpk'), as.list=TRUE, details=TRUE, time_limit=10, message=FALSE, ...) {
if(class(x) != "ata") stop("not an 'ata' object")
rs <- switch(match.arg(solver, solver), 'lpsolve'=ata_solve_lpsolve(x, time_limit, message, ...), 'glpk'=ata_solve_glpk(x, time_limit, message, ...))
x$code <- rs$code
x$status <- rs$status
x$optimum <- rs$optimum
x$obj_vars <- rs$obj_vars
if(all(rs$result == 0)) {
x$result <- x$items <- NULL
if(details) warning("No solution for the LP model.\n")
} else {
if(details) cat(rs$status, ', optimum: ', round(rs$optimum, 3), ' (', paste(round(rs$obj_vars, 3), collapse=', '), ')\n', sep='')
x$result <- rs$result
items <- list()
for(i in 1:nrow(x$form_map)){
f <- x$form_map[i, ]
f <- f[!is.na(f)]
selection <- apply(x$result[, f, drop=FALSE] == 1, 1, any)
selection <- seq(x$num_item)[selection]
items[[i]] <- cbind(x$pool[x$group %in% selection, ], form=i)
}
if(!as.list) items <- Reduce(rbind, items, NULL)
x$items <- items
}
x
}
| /scratch/gouwar.j/cran-all/cranData/xxIRT/R/module3_ata.R |
#' Helper functions of ATA
#' @description miscellaneous helper functions of ATA
#' @name ata_helpers
NULL
#' @rdname ata_helpers
#' @description \code{ata_append_constraints} appends constraint definitions to the model
#' @param mat coefficient matrix
#' @param dir direction
#' @param rhs right-hand-side value
#' @keywords internal
ata_append_constraints <- function(x, mat, dir, rhs) {
x$mat <- rbind(x$mat, mat)
x$dir <- c(x$dir, dir)
x$rhs <- c(x$rhs, rhs)
x
}
#' @rdname ata_helpers
#' @description \code{ata_form_index} converts input forms into actual form indices in the model
#' @param forms indices of forms
#' @param collapse \code{TRUE} to collaspe forms into one form
#' @param internal_index \code{TRUE} to use internal form indices
#' @keywords internal
ata_form_index <- function(x, forms, collapse, internal_index){
if(internal_index){
if(is.null(forms))
forms <- 1:x$num_form
if(any(!forms %in% 1:x$num_form))
stop('invalid form indices')
forms <- as.matrix(forms)
} else {
if(is.null(forms))
forms <- 1:nrow(x$form_map)
if(any(!forms %in% 1:nrow(x$form_map)))
stop('invalid form indices')
forms <- x$form_map[forms, , drop=FALSE]
}
if(collapse) forms <- matrix(unique(as.vector(forms)), nrow=1)
forms
}
#' @rdname ata_helpers
#' @description \code{ata_obj_coef} processes input coefficients of the objective functions
#' @param coef coefficients
#' @param compensate \code{TRUE} to combine coefficients
#' @importFrom stats aggregate
#' @keywords internal
ata_obj_coef <- function(x, coef, compensate){
if(length(coef) == x$num_item){
# if a vector of given values (item-group-level), then convert to matrix
coef <- matrix(coef, nrow=1)
} else if(length(coef) == nrow(x$pool)) {
# if a vector of given values (item-level), then aggregate and conver to matrix
coef <- aggregate(coef, by=list(x$group), sum)[,-1]
coef <- matrix(coef, nrow=1)
} else if(is.numeric(coef)) {
# if a vector of theta's, then compute infomation and aggregate
coef <- with(x$pool, model_3pl_info(coef, a, b, c, D=x$opts$D))
coef <- aggregate(t(coef), by=list(group=x$group), sum)[,-1]
coef <- t(as.matrix(coef))
} else if(is.character(coef) && all(coef %in% colnames(x$pool))) {
# if a variable name, then retrieve value and aggregate
coef <- aggregate(x$pool[,coef], by=list(group=x$group), sum)[,-1]
coef <- t(as.matrix(coef))
} else {
stop("invalid coefficients")
}
if(compensate) coef <- matrix(colSums(coef), nrow=1)
round(coef, 2)
}
#' @rdname ata_helpers
#' @description \code{ata_solve_lpsolve} solves the the MIP model using lp_solve
#' @param time_limit the time limit in seconds passed along to solvers
#' @param message \code{TRUE} to print messages from solvers
#' @param ... additional control parameters for solvers
#' @import lpSolveAPI
#' @keywords internal
ata_solve_lpsolve <- function(x, time_limit, message, ...) {
if(class(x) != "ata") stop("not an 'ata' object")
lp <- make.lp(0, x$num_lpvar)
# (max): direction
lp.control(lp, sense=ifelse(x$max, "max", "min"))
# set bound for y: positive = (lb=0); negative = (ub = 0)
if(x$negative) set.bounds(lp, lower=-Inf, upper=0, x$num_lpvar-1)
# (obj): objective function
set.objfn(lp, x$obj, seq_along(x$obj))
# (type): x's = binary, y = continuous
types <- sapply(x$types, function(x) switch(x, "B"="binary", "I"="integer", "C"="real"))
for(i in seq_along(types))
set.type(lp, i, types[i])
# (bounds): column bounds
if(!is.null(x$bounds$idx))
with(x$bounds, for(i in 1:length(idx)) {
set.bounds(lp, if(!is.na(lb[i])) lower=lb[i], if(!is.na(ub[i])) upper=ub[i], columns=idx[i])
})
# (mat): constraints
for(i in 1:nrow(x$mat))
add.constraint(lp, x$mat[i,], x$dir[i], x$rhs[i])
# solve
lp.control(lp, mip.gap=c(.01, .01), epsint=.10, presolve="lindep", timeout=time_limit)
lp.control(lp, verbose=ifelse(message, 'normal', 'neutral'))
lp.control(lp, ...)
code <- solve(lp)
status <- switch(as.character(code),
'0'="optimal solution found",
'1'="the model is sub-optimal",
'2'="the model is infeasible",
'3'="the model is unbounded",
'4'="the model is degenerate",
'5'="numerical failure encountered",
'6'="process aborted",
'7'="timeout",
'9'="the model was solved by presolve",
'10'="the branch and bound routine failed",
'11'="the branch and bound was stopped because of a break-at-first or break-at-value",
'12'="a feasible branch and bound solution was found",
'13'="no feasible branch and bound solution was found")
optimum <- get.objective(lp)
result <- matrix(get.variables(lp)[1:(x$num_lpvar-2)], ncol=x$num_form, byrow=FALSE)
obj_vars <- get.variables(lp)[(x$num_lpvar-1):x$num_lpvar]
if(!code %in% c(0, 1, 9)) result <- matrix(0, nrow=nrow(result), ncol=ncol(result))
list(code=code, status=status, optimum=optimum, result=result, obj_vars=obj_vars)
}
#' @rdname ata_helpers
#' @description \code{ata_solve_glpk} solves the the MIP model using GLPK
#' @import glpkAPI
#' @keywords internal
ata_solve_glpk <- function(x, time_limit, message, ...) {
if(class(x) != "ata") stop("not an 'ata' object")
opts <- list(...)
# set up the problem
lp <- initProbGLPK()
addRowsGLPK(lp, nrow(x$mat))
addColsGLPK(lp, ncol(x$mat))
# (max): optimization direction
setObjDirGLPK(lp, ifelse(x$max, GLP_MAX, GLP_MIN))
# (obj): obj functions
setObjCoefsGLPK(lp, seq(x$num_lpvar), x$obj)
# (types): x's = binary, y's = continuous
for(j in seq(x$num_lpvar)[x$types == 'B'])
setColKindGLPK(lp, j, GLP_BV)
for(j in seq(x$num_lpvar)[x$types == 'C'])
setColBndGLPK(lp, j, GLP_LO, 0, 0)
if(x$negative) setColBndGLPK(lp, x$num_lpvar-1, GLP_UP, 0, 0)
## fixed values
if(!is.null(x$bounds$idx))
for(j in 1:length(x$bounds$idx))
if(is.na(x$bound$lb[j])){
setColBndGLPK(lp, x$bounds$idx[j], GLP_UP, 0, x$bounds$ub[j])
} else if(is.na(x$bound$ub[j])){
setColBndGLPK(lp, x$bounds$idx[j], GLP_LO, x$bounds$lb[j], 0)
} else {
setColBndGLPK(lp, x$bounds$idx[j], GLP_DB, x$bounds$lb[j], x$bounds$ub[j])
}
# # check column bounds
# cbind(getColsLowBndsGLPK(lp, 1:x$num_lpvar), getColsUppBndsGLPK(lp, 1:x$num_lpvar))
# (mat)
ind <- x$mat != 0
ia <- rep(1:nrow(x$mat), ncol(x$mat))[ind]
ja <- rep(1:ncol(x$mat), each=nrow(x$mat))[ind]
ar <- x$mat[ind]
loadMatrixGLPK(lp, length(ar), ia, ja, ar)
# (dir & rhs): row bounds
dir <- sapply(x$dir, function(x) switch(x, '>='=GLP_LO, '<='=GLP_UP, '='=GLP_FX))
setRowsBndsGLPK(lp, 1:nrow(x$mat), x$rhs, x$rhs, dir)
# # check row bounds
# cbind(getRowsLowBndsGLPK(lp, 1:nrow(x$mat)), getRowsUppBndsGLPK(lp, 1:nrow(x$mat)))
# solve
setMIPParmGLPK(PRESOLVE, GLP_ON)
setMIPParmGLPK(MIP_GAP, 0.01)
setMIPParmGLPK(TM_LIM, 1000 * time_limit)
setMIPParmGLPK(MSG_LEV, ifelse(message, GLP_MSG_ON, GLP_MSG_OFF))
for(i in seq_along(opts)) setMIPParmGLPK(get(names(opts)[i]), opts[[i]])
code <- solveMIPGLPK(lp)
status <- switch(as.character(code),
'0'="optimal solution found",
'1'='invalid basis',
'2'='singular matrix',
'3'='ill-conditioned matrix',
'4'='invalid bounds',
'5'='solver failed',
'6'='objective lower limit reached',
'7'='objective upper limit reached',
'8'='iteration limit exceeded',
'9'='time limit exceeded',
'10'='no primal feasible solution',
'11'='no dual feasible solution',
'12'='root LP optimum not provided',
'13'='search terminated by application',
'14'='relative mip gap tolerance reached',
'15'='no primal/dual feasible solution',
'16'='no convergence',
'17'='numerical instability',
'18'='invalid data',
'19'='result out of range')
optimum <- mipObjValGLPK(lp)
result <- matrix(mipColsValGLPK(lp)[1:(x$num_lpvar-2)], ncol=x$num_form, byrow=FALSE)
obj_vars <- mipColsValGLPK(lp)[(x$num_lpvar-1):x$num_lpvar]
list(code=code, status=status, optimum=optimum, result=result, obj_vars=obj_vars)
}
| /scratch/gouwar.j/cran-all/cranData/xxIRT/R/module3_ata_helpers.R |
#' Simulation of Computerized Adaptive Testing (CAT)
#' @name cat_sim
#' @examples
#' \dontrun{
#' ## generate a 100-item pool
#' num_items <- 100
#' pool <- with(model_3pl_gendata(1, num_items), data.frame(a=a, b=b, c=c))
#' pool$set_id <- sample(1:30, num_items, replace=TRUE)
#' pool$content <- sample(1:3, num_items, replace=TRUE)
#' pool$time <- round(rlnorm(num_items, mean=4.1, sd=.2))
#'
#' ## MLE, EAP, and hybrid estimation rule
#' cat_sim(1.0, pool, min=10, max=20, estimate_rule=cat_estimate_mle)
#' cat_sim(1.0, pool, min=10, max=20, estimate_rule=cat_estimate_eap)
#' cat_sim(1.0, pool, min=10, max=20, estimate_rule=cat_estimate_hybrid)
#'
#' ## SE, MI, and CI stopping rule
#' cat_sim(1.0, pool, min=10, max=20, stop_se=.3)
#' cat_sim(1.0, pool, min=10, max=20, stop_mi=.6)
#' cat_sim(1.0, pool, min=10, max=20, stop_cut=0)
#' cat_sim(1.0, pool, min=10, max=20, stop_cut=0, ci_width=2.58)
#'
#' ## maximum information selection with item sets
#' cat_sim(1.0, pool, min=10, max=20, group="set_id")$admin
#'
#' ## maximum information with item exposure control
#' cat_sim(1.0, pool, min=10, max=20, info_random=5)$admin
#'
#' ## Constrained-CAT selection rule with and without initial randomness
#' cat_sim(1.0, pool, min=10, max=20, select_rule=cat_select_ccat,
#' ccat_var="content", ccat_perc=c("1"=.2, "2"=.3, "3"=.5))
#' cat_sim(1.0, pool, min=10, max=20, select_rule=cat_select_ccat, ccat_random=5,
#' ccat_var="content", ccat_perc=c("1"=.2, "2"=.3, "3"=.5))
#'
#' ## Shadow-test selection rule
#' cons <- data.frame(var='content', level=1:3, min=c(3,3,4), max=c(3,3,4))
#' cons <- rbind(cons, data.frame(var='time', level=NA, min=55*10, max=65*10))
#' cat_sim(1.0, pool, min=10, max=10, select_rule=cat_select_shadow, constraints=cons)
#'
#' ## Projection-based stopping rule
#' cons <- data.frame(var='content', level=1:3, min=5, max=15)
#' cons <- rbind(cons, data.frame(var='time', level=NA, min=60*20, max=60*40))
#' cat_sim(1.0, pool, min=20, max=40, select_rule=cat_select_shadow, stop_rule=cat_stop_projection,
#' projection_method="diff", stop_cut=0, constraints=cons)
#' }
NULL
#' @rdname cat_sim
#' @description \code{cat_sim} runs a simulation of CAT. Use \code{theta} in options to set the starting
#' value of theta estimate.
#' @param true the true theta
#' @param pool the item pool (data.frame)
#' @param ... option/control parameters
#' @return \code{cat_sim} returns a \code{cat} object
#' @details
#' \code{...} takes a variety of option/control parameters for the simulations from users.
#' \code{min} and {max} are mandatory for setting limits on the test length. User-defined
#' selection, estimation, and stopping rules are also passed to the simulator via options.\cr
#' To write a new rule, the function siganiture must be: \code{function(len, theta, stats, admin, pool, opts)}.
#' See built-in rules for examples.
#' @importFrom stats runif
#' @export
cat_sim <- function(true, pool, ...){
if(!is.data.frame(pool)) pool <- as.data.frame(pool, stringsAsFactors=FALSE)
if(!all(c("a", "b", "c") %in% colnames(pool))) stop("cannot find a-, b-, or c-parameters in item pool")
opts <- list(...)
if(is.null(opts$min)) stop("minimum length is missing")
if(is.null(opts$max)) stop("maximum length is missing")
if(opts$min < 0 || opts$min > opts$max) stop("invalid min/max length values: ", opts$min, " -- ", opts$max)
if(nrow(pool) < opts$max) stop("insufficient items in item pool: ", nrow(pool))
theta <- ifelse(is.null(opts$theta), 0, opts$theta)
if(is.null(opts$D)) opts$D <- 1.702
if(is.null(opts$select_rule)) select_rule <- cat_select_maxinfo else select_rule <- opts$select_rule
if(is.null(opts$estimate_rule)) estimate_rule <- cat_estimate_mle else estimate_rule <- opts$estimate_rule
if(is.null(opts$stop_rule)) stop_rule <- cat_stop_default else stop_rule <- opts$stop_rule
len <- 0
stats <- matrix(nrow=opts$max, ncol=4, dimnames=list(NULL, c("u", "t", "se", "info")))
admin <- NULL
while(len < opts$max){
# select items and update pool
selection <- select_rule(len, theta, stats, admin, pool, opts)
item <- selection$item
item <- item[0:min(nrow(item), opts$max - len), ]
pool <- selection$pool
n <- nrow(item)
len <- len + n
admin <- rbind(admin, item)
# generate responses
p <- model_3pl_prob(true, item$a, item$b, item$c, opts$D)[1, ]
u <- as.integer(p > runif(n))
stats[1:n + (len - n), "u"] <- u
# estimate
theta <- estimate_rule(len, theta, stats, admin, pool, opts)
info <- sum(model_3pl_info(theta, admin$a, admin$b, admin$c, opts$D))
se <- 1 / sqrt(info)
stats[1:n + (len - n), "t"] <- theta
stats[1:n + (len - n), "se"] <- se
stats[1:n + (len - n), "info"] <- info
# stop?
if(stop_rule(len, theta, stats, admin, pool, opts)) break
}
admin <- cbind(stats[1:len, ], admin)
rs <- list(pool=pool, admin=admin, true=true, theta=theta)
class(rs) <- "cat"
rs
}
#' @rdname cat_sim
#' @description \code{cat_estimate_mle} is the maximum likelihood estimation rule. Use
#' \code{map_len} to apply MAP to the first K items and use \code{map_prior} to set the
#' prior for MAP.
#' @param len the current test length
#' @param theta the current theta estimate
#' @param stats a matrix of responses, theta estimate, information and std error
#' @param admin a data frame of administered items
#' @param opts a list of option/control parameters
#' @return an estimation rule should return a theta estimate
#' @export
cat_estimate_mle <- function(len, theta, stats, admin, pool, opts){
u <- stats[1:len, "u"]
u <- matrix(rep(u, each=2), nrow=2)
if(is.null(opts$map_len)) opts$map_len <- 10
if(is.null(opts$map_prior)) opts$map_prior <- c(0, 1)
if (len < opts$map_len) priors <- list(t=opts$map_prior) else priors <- NULL
with(admin, model_3pl_estimate_jmle(u=u, a=a[1:len], b=b[1:len], c=c[1:len], D=opts$D, scale=NULL, priors=priors))$t[1]
}
#' @rdname cat_sim
#' @description \code{cat_estimate_eap} is the expected a posteriori estimation rule,
#' using \code{eap_mean} and \code{eap_sd} option parameters as the prior
#' @export
cat_estimate_eap <- function(len, theta, stats, admin, pool, opts){
eap_mean <- ifelse(is.null(opts$eap_mean), 0, opts$eap_mean)
eap_sd <- ifelse(is.null(opts$eap_sd), 1, opts$eap_sd)
u <- stats[1:len, "u"]
u <- matrix(rep(u, each=2), nrow=2)
with(admin, model_3pl_eap_scoring(u=u, a=a[1:len], b=b[1:len], c=c[1:len], D=opts$D))$t[1]
}
#' @rdname cat_sim
#' @description \code{cat_estimate_hybrid} is a hybrid estimation rule, which uses MLE for
#' mixed responses and EAP for all 1's or 0's responses
#' @export
cat_estimate_hybrid <- function(len, theta, stats, admin, pool, opts){
u <- stats[1:len, "u"]
if(all(u==0) || all(u==1)){
theta <- cat_estimate_eap(len, theta, stats, admin, pool, opts)
} else {
theta <- cat_estimate_mle(len, theta, stats, admin, pool, opts)
}
theta
}
#' @rdname cat_sim
#' @description \code{cat_stop_default} is a three-way stopping rule. When \code{stop_se}
#' is set in the options, it uses the standard error stopping rule. When
#' \code{stop_mi} is set in the options, it uses the minimum information stopping rule. When
#' \code{stop_cut} is set in the options, it uses the confidence interval (set by \code{ci_width})
#' stopping rule.
#' @return a stopping rule should return a boolean: \code{TRUE} to stop the CAT, \code{FALSE} to continue
#' @importFrom stats qnorm
#' @export
cat_stop_default <- function(len, theta, stats, admin, pool, opts){
if(len < opts$min) return(FALSE)
if(len > opts$max) return(TRUE)
if(!is.null(opts$stop_se)){
se <- stats[len, "se"]
return(se <= opts$stop_se)
} else if(!is.null(opts$stop_mi)){
info <- model_3pl_info(theta, pool$a, pool$b, pool$c, opts$D)[1, ]
return(max(info) <= opts$stop_mi)
} else if(!is.null(opts$stop_cut)){
se <- stats[len, "se"]
ci_width <- ifelse(is.null(opts$ci_width), qnorm(.975), opts$ci_width)
lb <- theta - ci_width * se
ub <- theta + ci_width * se
return(lb > opts$stop_cut || ub < opts$stop_cut)
}
FALSE
}
#' @rdname cat_sim
#' @description \code{cat_select_maxinfo} is the maximum information selection rule. Use \code{group}
#' (a numeric vector) to group items belonging to the same set. Use \code{info_random} to implement
#' the random-esque item exposure control method.
#' @return a selection rule should return a list of (a) the selected item and (b) the updated pool
#' @export
cat_select_maxinfo <- function(len, theta, stats, admin, pool, opts){
if(is.null(opts$group)) group <- 1:nrow(pool) else group <- pool[, opts$group]
info <- model_3pl_info(theta, pool$a, pool$b, pool$c, opts$D)[1, ]
info <- aggregate(info, by=list(group), mean)
colnames(info) <- c("group", "info")
random <- min(ifelse(is.null(opts$info_random), 1, opts$info_random), nrow(info))
index <-info$group[order(-info$info)[1:random]]
if(length(index) > 1) index <- sample(index, 1)
index <- group %in% index
list(item=pool[index,], pool=pool[!index,])
}
#' @rdname cat_sim
#' @description \code{cat_select_ccat} is the constrained CAT selection rule. Use
#' \code{ccat_var} to set the content variable in the pool. Use \code{ccat_perc} to set
#' the desired content distribution, with the name of each element being the content code
#' and tue value of each element being the percentage. Use \code{ccat_random} to add randomness
#' to initial item selections.
#' @export
cat_select_ccat <- function(len, theta, stats, admin, pool, opts){
if(is.null(opts$ccat_var)) stop("ccat_var is misisng")
if(is.null(opts$ccat_perc)) stop("ccat_perc is missing")
initial_random <- ifelse(is.null(opts$ccat_random), 0, opts$ccat_random)
info <- data.frame(id=1:nrow(pool), domain=pool[,opts$ccat_var])
info$info <- with(pool, model_3pl_info(theta, a, b, c, opts$D))[1, ]
if(len == 0) curr_perc <- rep(0, length(opts$ccat_perc)) else curr_perc <- freq(admin[1:len, opts$ccat_var], names(opts$ccat_perc))$perc
if(len < initial_random) domain <- sample(names(opts$ccat_perc), 1) else domain <- names(opts$ccat_perc)[which.max(opts$ccat_perc - curr_perc)]
info <- info[info$domain == domain, ]
random <- min(nrow(info), ifelse(is.null(opts$info_random), 1, opts$info_random))
index <- info$id[order(-info$info)[1:random]]
if(length(index) > 1) index <- sample(index, 1)
list(item=pool[index, ], pool=pool[-index, ])
}
#' @rdname cat_sim
#' @description \code{cat_select_shadow} is the shadow-test selection rule. Use \code{shadow_id}
#' to group item sets. Use \code{constraints} to set constraints. Constraints should be in a data.frame
#' with four columns: var (variable name), level (variable level, \code{NA} for quantitative variable),
#' min (lower bound), and max (upper bound).
#' @export
cat_select_shadow <- function(len, theta, stats, admin, pool, opts){
if(!"shadow_id" %in% colnames(pool)) pool$shadow_id <- 1:nrow(pool)
if(is.null(opts$constraints)) stop("constraints is missing in the options")
if(!all(colnames(opts$constraints) %in% c("var", "level", "min", "max")))
stop("shadow_constr should be a data.frame with 4 columns: var, level, min, and max")
if(is.factor(opts$constraints$var)) opts$constraints$var <- levels(opts$constraints$var)[opts$constraints$var]
if(is.factor(opts$constraints$level)) opts$constraints$level <- levels(opts$constraints$level)[opts$constraints$level]
x <- ata(pool, 1, len=c(opts$min, opts$max), 1)
x <- ata_obj_relative(x, theta, "max")
for(i in 1:nrow(opts$constraints))
x <- with(opts$constraints[i,], ata_constraint(x, var, min=min, max=max, level=level))
if(!is.null(admin)) x <- ata_item_fixedvalue(x, match(admin$shadow_id, pool$shadow_id), min=1, forms=1)
x <- ata_solve(x, as.list=FALSE, details=F)
if(is.null(x$items)) stop("Failed to assemble a shadow test")
x$items <- x$items[!x$items$shadow_id %in% admin$shadow_id, ]
info <- data.frame(id=x$items$shadow_id, info=with(x$items, model_3pl_info(theta, a, b, c, opts$D))[1,])
random <- min(nrow(info), ifelse(is.null(opts$info_random), 1, opts$info_random))
index <- info$id[order(-info$info)[1:random]]
if(length(index) > 1) index <- sample(index, 1)
list(item=pool[index, ], pool=pool)
}
#' @rdname cat_sim
#' @param x a \code{cat} object
#' @export
print.cat <- function(x, ...){
if(class(x) != "cat") stop("Not a 'cat' object.")
len <- nrow(x$admin)
cat("true=", round(x$true, 2), ", est.=", round(x$theta, 2),
", se=", round(x$admin$se[len], 2), ", p=", round(mean(x$admin$u), 2),
", used ", len, " items (", sum(x$admin$u)," correct).\n", sep="")
cat("Belows is a history of the CAT:\n")
if(len <= 10) {
print(x$admin)
} else {
print(x$admin[1:5, ])
cat("...\n")
print(x$admin[1:5 + len - 5, ])
}
invisible(x)
}
#' @rdname cat_sim
#' @import ggplot2
#' @export
plot.cat <- function(x, ...){
if(class(x) != "cat") stop("Not a 'cat' object.")
opts <- list(...)
if(is.null(opts$ylim)) opts$ylimc <- c(-3, 3)
len <- nrow(x$admin)
x$admin$lb <- x$admin$t - 1.96 * x$admin$se
x$admin$ub <- x$admin$t + 1.96 * x$admin$se
x$admin$pos <- 1:len
x$admin$Responses <- factor(x$admin$u, levels=c(0, 1), labels=c("Wrong", "Right"))
ggplot(data=x$admin, aes_string(x="pos", y="t", color="Responses")) +
geom_point(aes_string(size="se")) +
geom_linerange(aes_string(ymin="lb", ymax="ub"), linetype=3) +
geom_point(aes(x=len, y=x$true), color="coral", pch=4, size=3) +
coord_cartesian(ylim=opts$ylim) + scale_size_continuous(range=c(1, 3)) +
xlab("Position") + ylab(expression(paste("Est. ", theta))) +
guides(size=F, alpha=F) + theme_bw() + theme(legend.key=element_blank())
}
#' @rdname cat_sim
#' @description \code{cat_stop_projection} is the projection-based stopping rule. Use
#' \code{projection_method} to choose the projection method ('info' or 'diff'). Use
#' \code{stop_cut} to set the cut score. Use \code{constraints} to set the constraints.
#' Constraints should be a data.frame with columns: var (variable name),
#' level (variable level, \code{NA} for quantitative varialbe), min (lower bound), max (upper bound)
#' @export
cat_stop_projection <- function(len, theta, stats, admin, pool, opts){
if(len < opts$min) return(FALSE)
if(len >= opts$max) return(TRUE)
method <- match.arg(opts$projection_method, c('info', 'diff'))
if(is.null(opts$stop_cut)) stop('stop_cut is missing in the options')
if(is.null(opts$constraints)) stop("constraints is missing in the options")
if(!all(colnames(opts$constraints) %in% c("var", "level", "min", "max")))
stop("shadow_constr should be a data.frame with 4 columns: var, level, min, and max")
if(is.factor(opts$constraints$var)) opts$constraints$var <- levels(opts$constraints$var)[opts$constraints$var]
if(is.factor(opts$constraints$level)) opts$constraints$level <- levels(opts$constraints$level)[opts$constraints$level]
pool <- unique(rbind(pool, admin))
if(method == 'info'){
x <- ata(pool, 1, len=opts$max, 1)
x <- ata_obj_relative(x, theta, "max")
for(i in 1:nrow(opts$constraints))
x <- with(opts$constraints, ata_constraint(x, var[i], min=min[i], max=max[i], level=level[i]))
x <- ata_item_fixedvalue(x, admin$shadow_id, min=1, forms=1)
x <- ata_solve(x, as.list=FALSE, details=F)
if(is.null(x$items)) stop("Failed to assemble a projection test")
u <- c(stats[1:len, "u"], rep(1, opts$max - len))
u <- matrix(rep(u, each=2), nrow=2)
theta_ub <- with(x$items, model_3pl_estimate_jmle(u, a=a, b=b, c=c, D=opts$D, scale=NULL, priors=NULL))$t[1]
u <- c(stats[1:len, "u"], rep(0, opts$max - len))
u <- matrix(rep(u, each=2), nrow=2)
theta_lb <- with(x$items, model_3pl_estimate_jmle(u, a=a, b=b, c=c, D=opts$D, scale=NULL, priors=NULL))$t[1]
} else if(method == 'diff'){
if(is.null(opts$proj_width)) opts$proj_width <- 1.96
x <- ata(pool, 1, len=opts$max, 1)
x <- ata_obj_absolute(x, "b", (theta + opts$proj_width * stats[len, "se"]) * opts$max)
for(i in 1:nrow(opts$constraints))
x <- with(opts$constraints, ata_constraint(x, var[i], min=min[i], max=max[i], level=level[i]))
x <- ata_item_fixedvalue(x, admin$shadow_id, min=1, forms=1)
x <- ata_solve(x, as.list=FALSE, details=F)
if(is.null(x$items)) stop("Failed to assemble a projection test")
u <- c(stats[1:len, "u"], rep(1, opts$max - len))
u <- matrix(rep(u, each=2), nrow=2)
theta_ub <- with(x$items, model_3pl_estimate_jmle(u, a=a, b=b, c=c, D=opts$D, scale=NULL, priors=NULL))$t[1]
x <- ata(pool, 1, len=opts$max, 1)
x <- ata_obj_absolute(x, "b", (theta - opts$proj_width * stats[len, "se"]) * opts$max)
for(i in 1:nrow(opts$constraints))
x <- with(opts$constraints, ata_constraint(x, var[i], min=min[i], max=max[i], level=level[i]))
x <- ata_item_fixedvalue(x, admin$shadow_id, min=1, forms=1)
x <- ata_solve(x, as.list=FALSE, details=F)
if(is.null(x$items)) stop("Failed to assemble a projection test")
u <- c(stats[1:len, "u"], rep(0, opts$max - len))
u <- matrix(rep(u, each=2), nrow=2)
theta_lb <- with(x$items, model_3pl_estimate_jmle(u, a=a, b=b, c=c, D=opts$D, scale=NULL, priors=NULL))$t[1]
}
(theta_lb > opts$stop_cut || theta_ub < opts$stop_cut)
}
| /scratch/gouwar.j/cran-all/cranData/xxIRT/R/module4_cat.R |
#' Computerized Multistage Testing (MST)
#' @name mst
#' @examples
#' \dontrun{
#' ## generate item pool
#' num_item <- 300
#' pool <- with(model_3pl_gendata(1, num_item), data.frame(a=a, b=b, c=c))
#' pool$id <- 1:num_item
#' pool$content <- sample(1:3, num_item, replace=TRUE)
#' pool$time <- round(rlnorm(num_item, 4, .3))
#' pool$group <- sort(sample(1:round(num_item/3), num_item, replace=TRUE))
#'
#' ## ex. 1: 1-2-2 MST, 2 panels, topdown
#' ## 20 items in total and 10 items in content area 1 in each route
#' ## maximize info. at -1 and 1 for easy and hard routes
#' x <- mst(pool, "1-2-2", 2, 'topdown', len=20, max_use=1)
#' x <- mst_obj(x, theta=-1, indices=1:2)
#' x <- mst_obj(x, theta=1, indices=3:4)
#' x <- mst_constraint(x, "content", 10, 10, level=1)
#' x <- mst_assemble(x, timeout=5)
#' plot(x, byroute=TRUE)
#' for(p in 1:x$num_panel)
#' for(r in 1:x$num_route) {
#' route <- paste(x$route[r, 1:x$num_stage], collapse='-')
#' count <- sum(mst_get_items(x, panel_ix=p, route_ix=r)$content==1)
#' cat('panel=', p, ', route=', route, ': ', count, ' items in content area #1\n', sep='')
#' }
#'
#' ## ex. 2: 1-2-3 MST, 2 panels, bottomup,
#' ## remove two routes with large theta change: 1-2-6, 1-3-4
#' ## 10 items in total and 4 items in content area 2 in each module
#' ## maximize info. at -1, 0 and 1 for easy, medium, and hard modules
#' x <- mst(pool, "1-2-3", 2, 'bottomup', len=10, max_use=1)
#' x <- mst_route(x, c(1, 2, 6), "-")
#' x <- mst_route(x, c(1, 3, 4), "-")
#' x <- mst_obj(x, theta= 0, indices=c(1, 5))
#' x <- mst_obj(x, theta=-1, indices=c(2, 4))
#' x <- mst_obj(x, theta= 1, indices=c(3, 6))
#' x <- mst_constraint(x, "content", 4, 4, level=2)
#' x <- mst_assemble(x, timeout=10)
#' plot(x, byroute=FALSE)
#' for(p in 1:x$num_panel)
#' for(m in 1:x$num_module){
#' count <- sum(mst_get_items(x, panel_ix=p, module_ix=m)$content==2)
#' cat('panel=', p, ', module=', m, ': ', count, ' items in content area #2\n', sep='')
#' }
#'
#' ## ex.3: same with ex.2 (w/o content constraints), but group-based
#' x <- mst(pool, "1-2-3", 2, 'bottomup', len=12, max_use=1, group="group")
#' x <- mst_route(x, c(1, 2, 6), "-")
#' x <- mst_route(x, c(1, 3, 4), "-")
#' x <- mst_obj(x, theta= 0, indices=c(1, 5))
#' x <- mst_obj(x, theta=-1, indices=c(2, 4))
#' x <- mst_obj(x, theta= 1, indices=c(3, 6))
#' x <- mst_assemble(x, timeout=10)
#' plot(x, byroute=FALSE)
#' for(p in 1:x$num_panel)
#' for(m in 1:x$num_module){
#' items <- mst_get_items(x, panel_ix=p, module_ix=m)
#' cat('panel=', p, ', module=', m, ': ', length(unique(items$id)), ' items from ',
#' length(unique(items$group)), ' groups\n', sep='')
#' }
#'
#' ## ex.4: 2 panels of 1-2-3 top-down design
#' ## 20 total items and 10 items in content area 3
#' ## 6+ items in stage 1 & 2
#' x <- mst(pool, "1-2-3", 2, "topdown", len=20, max_use=1)
#' x <- mst_route(x, c(1, 2, 6), "-")
#' x <- mst_route(x, c(1, 3, 4), "-")
#' x <- mst_obj(x, theta=-1, indices=1)
#' x <- mst_obj(x, theta=0, indices=2:3)
#' x <- mst_obj(x, theta=1, indices=4)
#' x <- mst_constraint(x, "content", 10, 10, level=3)
#' x <- mst_stage_length(x, 1:2, min=6)
#' x <- mst_assemble(x, timeout=15)
#' head(x$items)
#' plot(x, byroute=FALSE)
#' for(p in 1:x$num_panel)
#' for(s in 1:x$num_stage){
#' items <- mst_get_items(x, panel_ix=p, stage_ix=s)
#' cat('panel=', p, ', stage=', s, ': ', length(unique(items$id)), ' items\n', sep='')
#' }
#'
#' ## ex.5: same with ex.4, but use RDP instead of stage length to control routing errors
#' x <- mst(pool, "1-2-3", 2, "topdown", len=20, max_use=1)
#' x <- mst_route(x, c(1, 2, 6), "-")
#' x <- mst_route(x, c(1, 3, 4), "-")
#' x <- mst_obj(x, theta=-1, indices=1)
#' x <- mst_obj(x, theta=0, indices=2:3)
#' x <- mst_obj(x, theta=1, indices=4)
#' x <- mst_constraint(x, "content", 10, 10, level=3)
#' x <- mst_rdp(x, 0, 2:3, .1)
#' x <- mst_module_mininfo(x, 0, 5, 2:3)
#' x <- mst_assemble(x, timeout=15)
#' plot(x, byroute=FALSE)
#' }
NULL
#' @rdname mst
#' @description \code{mst} creates a multistage (MST) object for assembly
#' @param pool the item pool (data.frame)
#' @param design the MST design (string): e.g., "1-3", "1-2-2", "1-2-3"
#' @param num_panel the number of panels (integer)
#' @param method the design method (string): 'topdown' or 'bottomup'
#' @param len the module/route length (integer)
#' @param max_use the maximum selection of items (integer)
#' @param group the grouping variable (string or vector)
#' @details
#' There are two methods for designing a MST. The bottom-up approach adds objectives
#' and constraints on individual modules, whereas the topdown approach adds objectives
#' and constraints directly on routes.
#' @export
mst <- function(pool, design, num_panel, method=c('topdown', 'bottomup'), len=NULL, max_use=NULL, group=NULL, ...){
method <- match.arg(method)
design <- as.integer(unlist(strsplit(design, split="-")))
num_stage <- length(design)
num_module <- sum(design)
opts <- list(...)
if(is.null(opts$D)) opts$D <- 1.702
# module-index map
module <- NULL
for(s in 1:num_stage)
for(m in 1:design[s])
module <- rbind(module, c(stage=s, module=m))
module <- data.frame(module, index=1:nrow(module))
# route-index map
route <- list()
for(i in 1:num_stage)
route[[i]] <- module[module$stage == i, "index"]
route <- expand.grid(route)
colnames(route) <- paste("stage", 1:num_stage, sep="")
route$index <- 1:nrow(route)
num_route <- nrow(route)
# ata
x <- list(pool=pool, design=design, method=method, num_item=nrow(pool), num_panel=num_panel,
num_stage=num_stage, num_module=num_module, num_route=num_route, module=module, route=route,
ata=ata(pool, num_form=num_panel*num_module, group=group), opts=opts)
class(x) <- "mst"
# constraint: test length
if(!is.null(len) && length(len) == 1) x <- mst_constraint(x, 1, len, len)
if(!is.null(len) && length(len) == 2) x <- mst_constraint(x, 1, len[1], len[2])
if(!is.null(len) && length(len) > 2) stop("the length argument is too long.")
# constraint: max_use
if(!is.null(max_use)) x$ata <- ata_item_use(x$ata, max=max_use)
# constraint: minimum stage length
x <- mst_stage_length(x, 1:num_stage, min=1)
x
}
#' @rdname mst
#' @description \code{mst_route} adds/removes a route to/from the MST
#' @param x the MST object
#' @param route a MST route represented by a vector of module indices
#' @param op "+" to add a route and "-" to remove a route
#' @export
mst_route <- function(x, route, op=c("+", "-")){
if(class(x) != "mst") stop("not a 'mst' object: ", class(x))
op <- match.arg(op)
index <- apply(x$route[, 1:x$num_stage], 1, function(r) all(r == route))
if(op == "+") {
if(any(index)) stop("the route already exists")
if(!all(route %in% 1:x$num_module)) stop("invalid route: module index is out of bound.")
x$route <- rbind(x$route, c(route, NA))
} else if(op == "-") {
if(!any(index)) stop("the route hasn't been added yet")
x$route <- x$route[!index, ]
}
# reindex routes by stages
index <- apply(x$route[, 1:x$num_stage], 1, function(r) sum(r * 10^(x$num_stage - 1:x$num_stage)))
x$route <- x$route[order(index), ]
x$route$index <- 1:nrow(x$route)
x$num_route <- nrow(x$route)
x
}
#' @rdname mst
#' @description \code{mst_get_indices} maps the input indices to the actual indices
#' @keywords internal
mst_get_indices <- function(x, indices){
if(x$method == 'topdown'){
if(is.null(indices)) indices <- x$route[, 1:x$num_stage] else indices <- subset(x$route, x$route$index %in% indices)[, 1:x$num_stage]
} else if(x$method == 'bottomup') {
if(is.null(indices)) indices <- data.frame(module=1:x$num_module) else indices <- data.frame(module=indices)
}
indices
}
#' @rdname mst
#' @description \code{mst_obj} adds objective functions to the MST
#' @param theta a theta point or interval over which the TIF is optimized
#' @param indices the indices of the route (topdown) or the module (bottomup) where objectives are added
#' @param target the target values of the TIF objectives. \code{NULL} for maximization
#' @export
mst_obj <- function(x, theta, indices=NULL, target=NULL, ...) {
if(class(x) != "mst") stop("not a 'mst' object: ", class(x))
indices <- mst_get_indices(x, indices)
theta <- round(theta, 2)
for(i in 1:x$num_panel) {
for(j in 1:nrow(indices)) {
f <- unlist(indices[j, ]) + (i - 1) * x$num_module
if(is.null(target) || is.na(target)) {
x$ata <- ata_obj_relative(x$ata, theta, mode="max", forms=f, collapse=TRUE, ...)
} else {
x$ata <- ata_obj_absolute(x$ata, theta, target=target, forms=f, collapse=TRUE, ...)
}
}
}
x
}
#' @rdname mst
#' @description \code{mst_constraint} adds constraints to the MST
#' @param coef the coefficients of the constraint
#' @param level the constrained level, \code{NA} for quantitative variable
#' @param min the lower bound of the constraint
#' @param max the upper bound of the constraint
#' @export
mst_constraint <- function(x, coef, min=NA, max=NA, level=NULL, indices=NULL){
if(class(x) != "mst") stop("not a 'mst' object: ", class(x))
indices <- mst_get_indices(x, indices)
for(i in 1:x$num_panel){
for(j in 1:nrow(indices)){
f <- unlist(indices[j,] + (i - 1) * x$num_module)
x$ata <- ata_constraint(x$ata, coef, min, max, level, forms=f, collapse=TRUE)
}
}
x
}
#' @rdname mst
#' @description \code{mst_stage_length} sets length limits on stages
#' @param stages the stage indices
#' @export
mst_stage_length <- function(x, stages, min=NA, max=NA){
if(class(x) != "mst") stop("not a 'mst' object: ", class(x))
if(length(min) == 1) min <- rep(min, length(stages))
if(length(max) == 1) max <- rep(max, length(stages))
if(length(stages) != length(min) || length(stages) != length(max))
stop("different lengths in stage, min and max")
for(i in 1:length(stages)){
if(!stages[i] %in% 1:x$num_stage) stop("invalid stage input")
f <- subset(x$module, x$module$stage == stages[i])$index
f <- as.vector(outer(f, (1:x$num_panel - 1) * x$num_module, "+"))
x$ata <- ata_constraint(x$ata, 1, min[i], max[i], forms=f, collapse=FALSE)
}
x
}
#' @rdname mst
#' @description \code{mst_rdp} anchors the routing decision point (rdp) between adjacent modules
#' @param tol tolerance parameter (numeric)
#' @importFrom stats aggregate
#' @export
mst_rdp <- function(x, theta, indices, tol=0) {
if(class(x) != "mst") stop("not a 'mst' object: ", class(x))
if(length(theta) != 1) stop("rdp is not a single theta point")
if(length(indices) != 2 || abs(indices[1] - indices[2]) != 1) stop("modules are not adjacent")
info <- round(aggregate(model_3pl_info(theta, x$pool$a, x$pool$b, x$pool$c, D=x$opts$D)[1, ], by=list(group=x$ata$group), sum)[, 2], 2)
coef <- c(info, -1 * info)
for(i in 1:x$num_panel)
x$ata <- ata_constraint(x$ata, coef, -tol, tol, forms=indices + (i - 1) * x$num_module, collapse=TRUE)
x
}
#' @rdname mst
#' @description \code{mst_module_mininfo} sets the minimum information for modules
#' @param thetas theta points, a vector
#' @importFrom stats aggregate
#' @export
mst_module_info <- function(x, thetas, min, max, indices) {
if(class(x) != "mst") stop("not a 'mst' object: ", class(x))
if(any(indices < 1 | indices > x$num_module)) stop("invalid module index")
if(length(min) == 1) min <- rep(min, length(thetas))
if(length(max) == 1) max <- rep(max, length(thetas))
if(length(min) != length(thetas) || length(max) != length(thetas)) stop('min/max has a different length from thetas')
for(i in 1:length(thetas)){
info <- with(x$pool, model_3pl_info(thetas[i], a, b, c, D=x$opts$D))[1, ]
coef <- aggregate(info, by=list(group=x$ata$group), sum)[, 2]
coef <- round(coef, 2)
for(j in 1:x$num_panel)
x$ata <- ata_constraint(x$ata, coef, min=min[i], max=max[i], forms=indices+(j-1)*x$num_module)
}
x
}
#' @rdname mst
#' @description \code{mst_assemble} assembles the mst
#' @export
mst_assemble <- function(x, ...){
if(class(x) != "mst") stop("not a 'mst' object: ", class(x))
opts <- list(...)
solver <- ifelse(is.null(opts$solver), 'lpsolve', opts$solver)
x$ata <- ata_solve(x$ata, as.list=FALSE, ...)
if(!is.null(x$ata$items)) {
items <- x$ata$items
items$module <- (items$form - 1) %% x$num_module + 1
items$panel <- ceiling(items$form / x$num_module)
items$stage <- x$module$stage[match(items$module, x$module$index)]
items$form <- NULL
x$items <- items
}
x
}
#' @rdname mst
#' @param ... further arguments
#' @export
print.mst <- function(x, ...){
cat("The MST design has", x$num_stage, "stages,", x$num_module, "modules, and", x$num_route, "routes:\n")
cat("route map:\n")
print(x$route)
if(!is.null(x$items)){
cat("\nAssembled forms:\n")
items <- x$items
if(!is.data.frame(x$items)) items <- Reduce(rbind, items, NULL)
if(nrow(items) > 10){
print(items[1:5, ])
cat("...\n")
print(items[-4:0 + nrow(items),])
} else {
print(items)
}
cat("See more results in 'items'.")
} else {
cat("MST hasn't been assembled yet.")
}
invisible(x)
}
#' @rdname mst
#' @details
#' \code{plot.mst} draws module information functions when \code{byroute=FALSE}
#' and route information functions when \code{byroute=TRUE}
#' @import ggplot2
#' @export
plot.mst <- function(x, ...){
if(class(x) != "mst") stop("not a 'mst' object: ", class(x))
if(is.null(x$items)) stop('the mst has not been assembled yet.')
opts <- list(...)
if(is.null(opts$byroute)) opts$byroute <- FALSE
if(is.null(opts$theta)) opts$theta <- round(seq(-3, 3, .1), 1)
data <- NULL
if(opts$byroute) {
for(i in 1:x$num_route){
for(j in 1:x$num_panel){
items <- mst_get_items(x, panel_ix=j, route_ix=i)
info <- with(items, rowSums(model_3pl_info(opts$theta, a, b, c, D=x$opts$D)))
data <- rbind(data, data.frame(t=opts$theta, info=info, panel=j, route=i))
}
}
data$panel <- factor(paste("Panel", data$panel))
data$route <- factor(data$route, levels=1:x$num_route, labels=apply(x$route[, 1:x$num_stage], 1, paste, collapse="-"))
g <- ggplot(data, aes_string(x="t", y="info", color="route")) +
geom_line() + xlab(expression(theta)) + ylab("Information") +
theme_bw() + theme(legend.key=element_blank()) +
guides(color=guide_legend("Routes")) +
facet_grid(. ~ panel)
} else {
for(i in 1:x$num_panel){
for(j in 1:x$num_module){
items <- mst_get_items(x, panel_ix=i, module_ix=j)
info <- with(items, rowSums(model_3pl_info(opts$theta, a, b, c, D=x$opts$D)))
data <- rbind(data, data.frame(t=opts$theta, info=info, panel=items$panel[1], stage=items$stage[1], module=items$module[1]))
}
}
data$panel <- factor(paste("Panel", data$panel))
data$stage <- factor(paste("Stage", data$stage))
data$module <- factor(paste("Module", data$module))
g <- ggplot(data, aes_string(x="t", y="info", color="module")) +
geom_line() + xlab(expression(theta)) + ylab("Information") +
theme_bw() + theme(legend.key=element_blank()) +
guides(color=guide_legend("Modules")) +
facet_grid(panel ~ stage)
}
g
}
#' @rdname mst
#' @description \code{mst_get_items} extracts items from the assembly results
#' @param panel_ix the panel index, an int vector
#' @param stage_ix the stage index, an int vector
#' @param module_ix the module index, an int vector
#' @param route_ix the route index, an integer
#' @export
mst_get_items <- function(x, panel_ix=NULL, stage_ix=NULL, module_ix=NULL, route_ix=NULL){
if(class(x) != "mst") stop("not a 'mst' object: ", class(x))
if(is.null(x$items)) stop('the mst has not been assembled yet.')
items <- x$items
if(!is.null(panel_ix))
items <- subset(items, items$panel %in% panel_ix)
if(!is.null(stage_ix))
items <- subset(items, items$stage %in% stage_ix)
if(!is.null(module_ix))
items <- subset(items, items$module %in% module_ix)
if(!is.null(route_ix))
items <- subset(items, items$module %in% unlist(x$route[x$route$index == route_ix, 1:x$num_stage]))
items
}
| /scratch/gouwar.j/cran-all/cranData/xxIRT/R/module5_mst.R |
#' Simulation of Multistage Testing
#' @name mst_sim
#' @examples
#' \dontrun{
#' ## assemble a MST
#' nitems <- 200
#' pool <- with(model_3pl_gendata(1, nitems), data.frame(a=a, b=b, c=c))
#' pool$content <- sample(1:3, nrow(pool), replace=TRUE)
#' x <- mst(pool, "1-2-2", 2, 'topdown', len=20, max_use=1)
#' x <- mst_obj(x, theta=-1, indices=1)
#' x <- mst_obj(x, theta=0, indices=2:3)
#' x <- mst_obj(x, theta=1, indices=4)
#' x <- mst_constraint(x, "content", 6, 6, level=1)
#' x <- mst_constraint(x, "content", 6, 6, level=2)
#' x <- mst_constraint(x, "content", 8, 8, level=3)
#' x <- mst_stage_length(x, 1:2, min=5)
#' x <- mst_assemble(x)
#'
#' ## ex. 1: administer the MST using fixed RDP for routing
#' x_sim <- mst_sim(x, .5, list(stage1=0, stage2=0))
#' plot(x_sim)
#'
#' ## ex. 2: administer the MST using the max. info. for routing
#' x_sim <- mst_sim(x, .5)
#' plot(x_sim, ylim=c(-5, 5))
#' }
NULL
#' @description \code{mst_sim} simulates a MST administration
#' @param x the assembled MST
#' @param true the true theta parameter (numeric)
#' @param rdp routing decision points (list)
#' @param ... additional option/control parameters
#' @importFrom stats runif
#' @export
mst_sim <- function(x, true, rdp=NULL, ...){
if(class(x) != "mst") stop("not a 'mst' object: ", class(x))
if(is.null(x$items)) stop("the mst has not been assembled yet")
opts <- list(...)
if(is.null(opts$t_prior)) prior <- NULL else prior <- list(t=opts$t_prior)
# inits
if(is.null(opts$panel)) opts$panel <- sample(1:x$num_panel, 1)
panel_items <- mst_get_items(x, panel_ix=opts$panel)
theta <- ifelse(is.null(opts$theta), 0, opts$theta)
admin <- NULL
stats <- matrix(nrow=x$num_stage, ncol=4, dimnames=list(NULL, c("route", "t", "info", "se")))
# routing decision points
if(!is.null(rdp)) {
if(length(rdp) != x$num_stage - 1) stop("invalid routing decision points.")
rdp <- Reduce(rbind, lapply(rdp, function(x) data.frame(lower=c(-Inf, x), upper=c(x, Inf))))
rdp$index <- 2:x$num_module
}
# MST administration
for(i in 1:x$num_stage){
# select module
if(i == 1) {
next_module <- unique(x$route[, i])
next_module <- sample(next_module, 1)
} else {
next_module <- x$route[x$route[, i-1] == stats[i-1, "route"], i]
next_module <- sort(unique(next_module))
if(is.null(rdp)) {
info <- model_3pl_info(theta, panel_items$a, panel_items$b, panel_items$c)[1, ]
info <- aggregate(info, by=list(module=panel_items$module), sum)
info <- info[info$module %in% next_module, ]
next_module <- info$module[which.max(info$x)]
} else {
module_rdp <- subset(rdp, rdp$index %in% next_module)
module_rdp$lower[1] <- -Inf
module_rdp$upper[nrow(module_rdp)] <- Inf
next_module <- min(subset(module_rdp, theta < module_rdp$upper)$index)
}
}
# generate responses
items <- subset(panel_items, panel_items$stage == i & panel_items$module == next_module)
rsp <- as.integer(model_3pl_prob(true, items$a, items$b, items$c)[1, ] >= runif(nrow(items)))
admin <- rbind(admin, cbind(items, rsp=rsp))
# estimate ability
theta <- model_3pl_estimate_jmle(matrix(rep(admin$rsp, each=2), nrow=2), a=admin$a, b=admin$b, c=admin$c, scale=NULL, priors=prior)$t[1]
info <- sum(model_3pl_info(theta, admin$a, admin$b, admin$c))
se <- 1 / sqrt(info)
stats[i, c('route', 't', 'info', 'se')] <- c(next_module, theta, info, se)
}
stats <- as.data.frame(stats)
stats$nitems <- sapply(stats$route, function(xx) sum(admin$module == xx))
rs <- list(panel=panel_items, admin=admin, stats=stats, true=true, theta=theta)
class(rs) <- "mst_sim"
rs
}
#' @rdname mst_sim
#' @export
print.mst_sim <- function(x, ...){
cat("mst simulation: true=", round(x$true, 2),
", est.=", round(x$theta, 2), ":\n", sep="")
print(round(x$stats, 2))
cat("Call x$admin to see administered items ('x' is the mst_sim object).\n")
}
#' @rdname mst_sim
#' @importFrom stats qnorm
#' @import ggplot2
#' @export
plot.mst_sim <- function(x, ...) {
opts <- list(...)
if(is.null(opts$ci_width)) opts$ci_width <- qnorm(.975)
if(is.null(opts$ylim)) opts$ylim <- c(-3, 3)
x$admin$Position <- seq(nrow(x$admin))
x$admin$Responses <- factor(x$admin$rsp, levels=c(0, 1), labels=c('Wrong', 'Right'))
x$stats$lb <- x$stats$t - opts$ci_width * x$stats$se
x$stats$ub <- x$stats$t + opts$ci_width * x$stats$se
x$stats$position <- cumsum(x$stats$nitems)
ggplot(x$admin, aes_string(x="Position", y="b")) +
geom_point(aes_string(size="a", color="Responses")) +
geom_pointrange(data=x$stats, aes_string(x="position", y="t", ymin="lb", ymax="ub"), lty=2, pch=4, col="coral") +
xlab("Position") + ylab("Item Difficulty") + guides(size=F, fill=F) +
coord_cartesian(ylim=opts$ylim) + scale_size_continuous(range=c(1, 3)) + theme_bw()
}
| /scratch/gouwar.j/cran-all/cranData/xxIRT/R/module5_mst_sim.R |
#' @useDynLib xxhashlite, .registration=TRUE
NULL
| /scratch/gouwar.j/cran-all/cranData/xxhashlite/R/aaa.R |
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' Calculate the hash of an arbitrary R object.
#'
#' This function will calculate the hash of any object understood by
#' \code{base::serialize()}.
#'
#' @param robj Any R object
#' @param algo Select the specific xxhash algorithm. Default: 'xxh128'.
#' (the latest algorithm in the xxhash family)
#' Valid values: 'xxh32', 'xxh64', 'xxh128', 'xxh3'
#' @param as_raw Return the hash as a raw vector of bytes instead of string?
#' Default: FALSE. If TRUE, then the raw bytes are returned in big-endian
#' order - which is what \code{xxHash} considers the \emph{canonical} form.
#'
#' @return String representation of hash. If \code{as_raw = TRUE} then a
#' raw vector is returned instead.
#'
#' @export
#'
#' @examples
#' xxhash(mtcars)
#' xxhash(mtcars, algo = 'xxh3', as_raw = TRUE)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
xxhash <- function(robj, algo = 'xxh128', as_raw = FALSE) {
.Call(xxhash_, robj, algo, as_raw)
}
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' Calculate the hash of a raw vector or string
#'
#' This performs a hash of the raw bytes - not of the serialized representation.
#'
#' @inheritParams xxhash
#' @param vec raw vector or single character string
#'
#' @return String representation of hash. If \code{as_raw = TRUE} then a
#' raw vector is returned instead.
#'
#' @export
#'
#' @examples
#' vec <- "hello"
#' xxhash_raw(vec)
#' vec <- as.raw(c(0x01, 0x02, 0x99))
#' xxhash_raw(vec)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
xxhash_raw <- function(vec, algo = 'xxh128', as_raw = FALSE) {
.Call(xxhash_raw_, vec, algo, as_raw)
}
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' Calculate the hash of a file
#'
#' @inheritParams xxhash_raw
#' @param file filename
#'
#' @return String representation of hash. If \code{as_raw = TRUE} then a
#' raw vector is returned instead.
#'
#' @export
#'
#' @examples
#' filename <- system.file('DESCRIPTION', package = 'base', mustWork = TRUE)
#' xxhash_file(filename)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
xxhash_file <- function(file, algo = 'xxh128', as_raw = FALSE) {
.Call(xxhash_file_, normalizePath(file), algo, as_raw)
}
| /scratch/gouwar.j/cran-all/cranData/xxhashlite/R/xxhash.R |
cal_entropy <-
function(x) {
freqs <- table(x)/length(x)
freqs = freqs[freqs>0]
return(-sum(freqs * log(freqs))/log(length(x)))
}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/cal_entropy.R |
ccolors <-
function (k) {
if (k > 7) {
tmp <- grep("gray", colors())
tmp <- c(tmp, grep("grey", colors()))
tmp <- c(tmp, grep("white", colors()))
tmp <- colors()[-tmp]
tmp <- tmp[(1:k) * floor(length(tmp)/k)]
}
else tmp <- palette()[1:k]
return(tmp)
}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/ccolors.R |
consensus.byFeature <-
function(ddata, runs = 1000, epsilon = 0.1, # ddata is a sample X gene matrix
distMethod = "euclidean", hcMethod = "ward.D2", prefix = NULL) {
# if(class(ddata) != "matrix") stop("The input data is not a data matrix.")
# suppressPackageStartupMessages(require(foreach))
mm <- floor(epsilon * ncol(ddata))
llabels <- rownames(ddata)
ttime <- system.time({
hhclust <- foreach(k = 1:runs) %dopar% {
these_features <- sample.int(ncol(ddata), mm, replace = FALSE)
ddist <- dist(ddata[, these_features], method = distMethod)
return(hclust(ddist, method = hcMethod))}
})[3]
ans <- list()
ans$distMethod <- distMethod
ans$hcMethod <- hcMethod
ans$labels <- llabels
ans$bySample <- FALSE
ans$epsilon <- epsilon
ans$subsetDimension <- mm
ans$runs <- runs
ans$hclust <- hhclust
names(ttime) <- NULL
ans$elapsed_time <- ttime
ans$ncores <- getDoParWorkers()
class(ans) <- "yaConsensus"
if(!is.null(prefix)) {
ans$fname <- paste0(prefix, "_yaConsensus_eps", ans$epsilon * 100,
"pct_runs", ans$runs, "_byFeatures.RData")
aConsensus <- ans
save(aConsensus, file = ans$fname)
message("yaConsensus data structure saved in ", ans$fname)
}
invisible(ans)
}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/consensus.byFeature.R |
consensus.bySample <-
function (ddata, runs = 1000, epsilon = .65,
distMethod = "euclidean", hcMethod = "ward.D2", prefix = NULL) {
# if (class(ddata) != "dist") stop("A 'distance' object is required.")
# require(foreach)
if ("dist" %in% class(ddata)) {
n <- attr(ddata, "Size")
mm <- floor(epsilon * n)
distMethod <- attr(ddata, "method")
llabels <- attr(ddata, "Labels")
ttime <- system.time({
hhclust <- foreach(k = 1:runs) %dopar% {
these_samples <- sample.int(n, mm, replace = FALSE)
tmp <- hclust(as.dist(as.matrix(ddata)[these_samples, these_samples]), method = hcMethod)
return(tmp)}
})[3]
} else {
n <- nrow(ddata)
mm <- floor(epsilon * n)
llabels <- rownames(ddata)
ttime <- system.time({
hhclust <- foreach(k = 1:runs) %dopar% {
these_samples <- sample.int(nrow(ddata), mm, replace = FALSE)
ddist <- dist(ddata[these_samples,], method = distMethod)
return(hclust(ddist, method = hcMethod))}
})[3]
}
ans <- list()
ans$distMethod <- distMethod
ans$hcMethod <- hcMethod
ans$labels <- llabels
ans$bySample <- TRUE
ans$epsilon <- epsilon
ans$subsetDimension <- mm
ans$runs <- runs
ans$samples <- NULL
ans$hclust <- hhclust
names(ttime) <- NULL
ans$elapsed_time <- ttime
ans$ncores <- getDoParWorkers()
class(ans) <- "yaConsensus"
if(!is.null(prefix)) {
ans$fname <- paste0(prefix, "_yaConsensus_eps", ans$epsilon * 100,
"pct_runs", ans$runs, "_bySamples.RData")
aConsensus <- ans
save(aConsensus, file = ans$fname)
message("yaConsensus data structure saved in ", ans$fname)
}
#attr(ans,"package")
invisible(ans)
}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/consensus.bySample.R |
consensus.diss <-
function (cclusters, similarity = FALSE) {
getLoadedDLLs()
n <- ncol(cclusters)
H <- nrow(cclusters)
m <- n * (n - 1)/2
tmp <- rep(0, m)
storage.mode(cclusters) <- "integer"
storage.mode(n) <- "integer"
storage.mode(H) <- "integer"
storage.mode(m) <- "integer"
storage.mode(tmp) <- "integer"
ans <- .Fortran("cconsensus", cclusters, n, H, tmp, m)[[4]]
ans <- as.double(ans)
if(sum(cclusters < 1) > 0) {
cclusters <- 0 + (cclusters > 0)
tmp <- rep(0, m)
storage.mode(cclusters) <- "integer"
storage.mode(n) <- "integer"
storage.mode(H) <- "integer"
storage.mode(m) <- "integer"
storage.mode(tmp) <- "integer"
tmp <- .Fortran("cconsensus", cclusters, n, H, tmp, m)[[4]]
tmp <- as.double(tmp)
} else tmp <- H
ans <- ans/tmp
if(!similarity)
ans <- 1 - ans
attr(ans, "Size") <- n
attr(ans, "Labels") <- colnames(cclusters)
attr(ans, "Diag") <- FALSE
attr(ans, "method") <- "consensus"
class(ans) <- "dist"
return(ans)
}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/consensus.diss.R |
get_cluster_accuracy <-
function(theoretical, estimated)
return(1-mean(unlist(lapply(unique(estimated), function(x){cal_entropy(theoretical[estimated == x])})), na.rm = TRUE))
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/get_cluster_accuracy.R |
get_cluster_purity <-
function(theoretical, estimated)
return(1-mean(unlist(lapply(unique(theoretical), function(x){cal_entropy(estimated[theoretical == x])})), na.rm = TRUE))
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/get_cluster_purity.R |
get_consensus_dissimilarity <-
function (obj, G = 2) {
ans_template <- rep(0, length(obj$labels))
names(ans_template) <- obj$labels
clusters <- sapply(obj$hclust, function(x) {
ans_tmp <- ans_template
tmp <- cutree(x, k = G)
ans_tmp[names(tmp)] <- tmp
return(ans_tmp)
})
obj$consensus.diss <- consensus.diss(t(clusters))
obj$G <- G
obj$hclust <- NULL
invisible(obj)
}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/get_consensus_dissimilarity.R |
get_metrics <-
function(theoretical, estimated, verbose = TRUE) {
eca <- get_cluster_accuracy(theoretical, estimated)
ecp <- get_cluster_purity(theoretical, estimated)
avg <- sqrt(eca * ecp)
thNofC <- length(unique(theoretical))
estNofC <- length(unique(estimated))
ans <- c(round(c(eca, ecp, avg), 4), thNofC, estNofC)
names(ans) <- c("eca", "ecp", "average", "thNofC", "estNofC")
if(verbose) {
message("cluster accuracy (eca): ", ans[1])
message("cluster purity (ecp): ", ans[2])
message("G index (geometric average of eca, and ecp): ", ans[3])
message("no. of clusters in theoretical partition: ", ans[4])
message("no. of clusters in estimated partition: ", ans[5])
}
return(ans)
}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/get_metrics.R |
match_colors <-
function(refClust, consClust) {
(ttable <- table(consClust, refClust))
(ttable <- ttable/rowSums(ttable))
(whichMaxTable <- apply(ttable, 1, which.max))
ans <- colnames(ttable)[whichMaxTable]
names(ans) <- rownames(ttable)
return(ans)
}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/match_colors.R |
plot.yaConsensus <-
function (x, G = 2,
annotation = NULL,
annotation.colorCode = NULL,
matching_clustering = NULL,
consensus_colors = NULL,
...) {
if(!is.null(annotation) & is.null(annotation.colorCode))
stop("annotation.colorCode required.")
x <- get_consensus_dissimilarity(x, G = G)
# suppressPackageStartupMessages(require(pheatmap))
hhc <- hclust(x$consensus.diss, method = "complete")
clust <- factor(cutree(hhc, k = G))
levels(clust) <- paste0("cc", levels(clust))
annotation_col <- annotation_row <- data.frame(consensus = clust, row.names = names(clust))
if(!is.null(consensus_colors)) clust.col <- consensus_colors else
if(is.null(matching_clustering)) clust.col <- ccolors(G) else {
if(matching_clustering %in% colnames(annotation)) {
wwhich <- which(colnames(annotation) == matching_clustering)
clust.col <- match_colors(annotation[, wwhich], clust)
clust.col <- annotation.colorCode[clust.col]
} else stop("The matching_color provided does not match any of the column in the annotation." )
}
names(clust.col) <- levels(clust)
ann_colors <- list(consensus = clust.col)
if(!is.null(annotation))
for(k in 1:ncol(annotation)) {
annotation_row$tmp <- factor(annotation[,k])
ann_colors$tmp <- annotation.colorCode[levels(annotation_row$tmp)]
colnames(annotation_row)[ncol(annotation_row)] <- colnames(annotation)[k]
names(ann_colors)[length(ann_colors)] <- colnames(annotation)[k]
}
this_color <- ifelse(x$bySample, "red2", "royalblue")
tmp <- 1- as.matrix(x$consensus.diss)[hhc$order,]
pheatmap(tmp,
cluster_rows = FALSE, show_rownames = FALSE,
cluster_cols = hhc, cutree_cols = G, show_colnames = FALSE,
annotation_col=annotation_col,
annotation_row=annotation_row,
annotation_colors = ann_colors,
color = colorRampPalette(c("white", this_color))(50),
xlab = "ste")
annotation_row$consensus.col <- clust
levels(annotation_row$consensus.col) <- clust.col[annotation_row$consensus.col]
ans <- list(annotation = annotation_row, ann_colors = ann_colors, hclust = hhc,
statistics = print.yaConsensus(x, verbose = FALSE)
)
class(ans) <- "yaConsensus_plot"
invisible(ans)
}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/plot.yaConsensus.R |
print.yaConsensus <-
function(x, verbose = T, ...) {
results <- list('consensus type:' = ifelse(x$bySample, " sampling of samples", " sampling of features"),
'sampling rate: ' = paste0(round(100*x$epsilon, 2), "%"),
'number of samplings: ' = x$runs,
'inner distance: ' = x$distMethod,
'inner hc method: ' = x$hcMethod,
'outer distance: ' = "consensus",
'outer hc method: ' = "complete",
'running time (seconds): ' = round(x$elapsed_time, 4),
'number of cores: ' = x$ncores)
if(verbose) {
message("yaConsensus statistics")
for(k in 1:length(results)) message("\t", names(results)[k], results[[k]])
}
invisible(results)
}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/print.yaConsensus.R |
print.yaConsensus_plot <-
function(x, verbose = T, ...) {
results <- x$statistics
if(verbose) {
message("yaConsensus statistics")
for(k in 1:length(results)) message("\t", names(results)[k], results[[k]])
}
invisible(results)
}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/print.yaConsensus_plot.R |
summary.yaConsensus <-
function(object, verbose = T, ...) {print.yaConsensus(object, verbose = verbose)}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/summary.yaConsensus.R |
summary.yaConsensus_plot <-
function(object, given = NULL, ...) {
if(is.null(given)) results <- print.yaConsensus_plot(object) else {
results <- print.yaConsensus_plot(object, verbose = FALSE)
j <- 1
if(!(given[j] %in% colnames(object$annotation))) stop(given[j], " not found as a-priori clustering.")
wwhich <- which(colnames(object$annotation) == given[j])
tmp <- get_metrics(object$annotation[, wwhich], object$annotation$consensus, verbose = FALSE)
results$'entropy consensus accuracy' <- paste0(round(100 * tmp[1], 2), "%")
results$'entropy consensus precision' <- paste0(round(100 * tmp[2], 2), "%")
results$'entropy consensus (average)' <- paste0(round(100 * tmp[3], 2), "%")
names(results)[length(results)-2] <- paste0(names(results)[length(results)-2], ", given ", given[j], ": ")
names(results)[length(results)-1] <- paste0(names(results)[length(results)-1], ", given ", given[j], ": ")
names(results)[length(results)] <- paste0(names(results)[length(results)], ", given ", given[j], ": ")
message("yaConsensus statistics")
for(k in 1:length(results)) message("\t", names(results)[k], results[[k]])
}
results <- object$statistics
#results
invisible(results)
}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/summary.yaConsensus_plot.R |
yaConsensus <-
function(ddata, runs = 1000, epsilon = .65, is_by_sample = TRUE,
distMethod = "euclidean", hcMethod = "ward.D2", prefix = NULL) {
if(is_by_sample)
ans <- consensus.bySample(ddata, runs = runs, epsilon = epsilon, hcMethod = hcMethod, distMethod = distMethod, prefix = prefix) else
ans <- consensus.byFeature(ddata, runs = runs, epsilon = epsilon, distMethod = distMethod, hcMethod = hcMethod, prefix = prefix)
invisible(ans)
}
| /scratch/gouwar.j/cran-all/cranData/yaConsensus/R/yaConsensus.R |
"ann" <- function(ref, target, k=1, eps=0.0, tree.type="kd", search.type="standard", bucket.size=1, split.rule="sl_midpt", shrink.rule="simple", verbose=TRUE, ...){
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
if(missing(ref)){stop("error: ref must be specified")}
if(missing(target)){stop("error: target must be specified")}
if(! is.matrix(ref)){stop("error: ref must be matrix")}
if(! is.matrix(target)){stop("error: target must be matrix")}
if(k <= 0){stop("error: k must be int > 0")}
if(eps < 0.0){stop("error: eps must be int >= 0.0")}
if(!tree.type %in% c("kd", "bd", "brute")){stop("error: tree.type must be 'kd', 'bd', or 'brute'")}
if(!search.type %in% c("standard", "priority")){stop("error: tree.type must be 'standard' or 'priority'")}
pri <- FALSE
if(search.type == "priority") pri <- TRUE
if(nrow(ref) == 0 || nrow(target) == 0){stop("error: nrow(ref) and nrow(target) must be > 0")}
if(ncol(ref) != ncol(target)){stop("error: ncol(ref) must equal ncol(target)")}
if(k > nrow(ref)){stop("error: k must be <= nrow(ref)")}
if(bucket.size <=0){stop("error: bucket.size must be > 0")}
split <- list("standard"=0, "midpt"=1, "fair"=2, "sl_midpt"=3, "sl_fair"=4, "suggest"=5)
if(!split.rule %in% names(split)){stop("error: ",split.rule ," is not a valid split rule, choices are 'standard', 'midpt', 'fair', 'sl_midptm', 'sl_fair', and 'suggest'")}
split.rule <- split[[split.rule]]
shrink <- list("none"=0, "simple"=1, "centroid"=2, "suggest"=3)
if(!shrink.rule %in% names(shrink)){stop("error: ",shrink.rule ," is not a valid shrink rule for the bd-tree, choices are 'none', 'simple', 'centroid', and 'suggest'")}
shrink.rule <- shrink[[shrink.rule]]
storage.mode(ref) <- storage.mode(target) <- "double"
if(tree.type == "bd" && any(duplicated(ref))){stop("error: duplicate pattern found in the 'ref' matrix; therefore, bd-tree cannot be used")}
args <- list("ref"=ref, "target"=target, "k"=as.integer(k), "eps"=as.double(eps), "tree.type"=tree.type,
"priority"=as.integer(pri), "bucket.size"=as.integer(bucket.size),
"split.rule"=as.integer(split.rule), "shrink.rule"=as.integer(shrink.rule), "verbose"=as.integer(verbose))
out <- .Call("annf", args)
out$k <- k
out$tree.type <- tree.type
if(tree.type %in% c("kd", "bd")){
out$eps <- eps
out$search.type <- search.type
out$bucket.size <- bucket.size
out$split.rule <- split.rule
if(tree.type == "bd")
out$shrink.rule <- shrink.rule
}
class(out) <- "ann"
out
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/ann.R |
applyMask <- function
(object, refGroups=NULL, trgGroups=NULL, method="removeWhenCommon", k=1)
{
if(!inherits(object, "yai")) stop("object must be of class yai")
valid <- c("removeWhenCommon","keepWhenCommon")
if (is.na(match(method,valid))) stop (paste("method must be one of",paste(valid,collapse<-", ")))
if (is.null(refGroups) | is.null(trgGroups)) stop("refGroups and trgGroups must be defined")
if (k >= object$k) stop("new value of k (",k,") must be less than old value (",object$k,")")
object$call <- match.call()
refGrp <- refGroups[match(object$neiIdsTrgs,rownames(object$xRefs))]
lrefGrp <- if (method == "removeWhenCommon") refGrp != trgGroups else refGrp == trgGroups
dim(lrefGrp) <- dim(object$neiIdsTrgs)
# tvec is an offset in the storage of neiIdsTrgs and neiDstTrgs. At this point
# The kth member is the offset of the first row of the kth column
tvec <- 0:(ncol(lrefGrp)-1) * nrow(lrefGrp)
# ans is the value of tvec corresponding the the columns to keep for each row.
ans <- apply(lrefGrp,1,function(x,tvec,k) tvec[x][1:k],tvec,k)
# if k>1, we need to reorganize ans and delete the dimensions so it is a vector.
if (k>1)
{
ans <- t(ans)
dim(ans) <- NULL
}
# now add the row numbers to ans...to get the final offsets.
ans <- rep(1:nrow(lrefGrp),k) + ans
rnB <- rownames(object$neiIdsTrgs)
cnI <- colnames(object$neiIdsTrgs)[1:k]
cnD <- colnames(object$neiDstTrgs)[1:k]
object$neiIdsTrgs <- object$neiIdsTrg[ans]
object$neiDstTrgs <- object$neiDstTrg[ans]
dim (object$neiIdsTrgs) <- c(nrow(lrefGrp),k)
dim (object$neiDstTrgs) <- c(nrow(lrefGrp),k)
rownames(object$neiIdsTrgs) <- rnB
rownames(object$neiDstTrgs) <- rnB
colnames(object$neiIdsTrgs) <- cnI
colnames(object$neiDstTrgs) <- cnD
object$k <- k
object$noRefs <- TRUE
object$neiIdsRefs <- NULL
object$neiDstRefs <- NULL
object
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/applyMask.R |
AsciiGridPredict <-
function(object,xfiles,outfiles,xtypes=NULL,lon=NULL,
lat=NULL,rows=NULL,cols=NULL,
nodata=NULL,myPredFunc=NULL,...)
{
if (missing(xfiles) || is.null(xfiles)) stop ("xfiles required")
if (missing(outfiles) || is.null(outfiles)) stop ("outfiles required")
if (!inherits(outfiles,"list")) outfiles=as.list(outfiles)
if (is.null(names(outfiles)) && length(outfiles) == 1) names(outfiles) = "predict"
if (is.null(names(xfiles))) stop ("xfiles elements must be named")
if (is.null(names(outfiles))) stop ("outfiles elements must be named")
return (
AsciiGridImpute(object,xfiles,outfiles,xtypes=xtypes,lon=lon,
lat=lat,rows=rows,cols=cols,
nodata=nodata,myPredFunc=myPredFunc,...)
)
}
AsciiGridImpute <-
function(object,xfiles,outfiles,xtypes=NULL,ancillaryData=NULL,
ann=NULL,lon=NULL,lat=NULL,rows=NULL,cols=NULL,nodata=NULL,
myPredFunc=NULL,...)
{
if (missing(xfiles) || is.null(xfiles)) stop ("xfiles required")
if (missing(outfiles) || is.null(outfiles)) stop ("outfiles required")
if (is.null(names(xfiles))) stop ("xfiles elements must be named")
if (is.null(names(outfiles))) stop ("outfiles elements must be named")
# outLegend is a list of factor levels and their index values for output
# inLegend is a the same idea but for input.
outLegend=NULL
inLegend=NULL
# nasum is a matrix of the number of NAs generated for each row
nasum=NULL
# make sure there is a type for every xfile
if (is.null(xtypes))
{
xtypes=xfiles
xtypes[]="numeric"
}
else
{
tmp=xtypes
xtypes=xfiles
xtypes[]=NA
xtypes[names(tmp)]=tmp
xtypes[is.na(xtypes)]="numeric"
}
# there needs to be an input file for every xvar in the imputation.
if (is.null(object) || !inherits(object,"yai"))
{
have=names(xfiles)
}
else
{
have=intersect(xvars(object),names(xfiles))
if (length(have) != length(xvars(object)))
{
lout = if (length(have)==0) xvars(object) else
setdiff(xvars(object),have)
stop(paste("required maps are missing for variables:",
paste(lout ,collapse=", ")))
}
# trim the list of xfiles to those needed.
xfiles = xfiles[match(xvars(object),names(xfiles))]
}
# deal with ancillaryData and build allY
allY = 0
if (!is.null(ancillaryData) && inherits(object,"yai"))
{
if (length(intersect(class(ancillaryData),c("matrix","data.frame"))) > 0 &&
nrow(ancillaryData[rownames(object$yRefs),,FALSE]) == nrow(object$yRefs) &&
length(intersect(rownames(ancillaryData),rownames(object$yRefs))) == nrow(object$yRefs) )
{
toKeep = intersect(union(colnames(ancillaryData),colnames(object$yRefs)),names(outfiles) )
if (length(toKeep) == 0) allY = NULL
else
{
fromAn=intersect(toKeep,colnames(ancillaryData))
fromRe=setdiff(intersect(toKeep,colnames(object$yRefs)),fromAn)
if (length(fromAn)>0 && length(fromRe)>0)
allY = data.frame(cbind(ancillaryData[rownames(object$yRefs),],object$yRefs)[,toKeep],
row.names=rownames(object$yRefs))
else if (length(fromAn)>0) allY = data.frame(ancillaryData[rownames(object$yRefs),toKeep],
row.names=rownames(object$yRefs))
else if (length(fromRe)>0) allY = data.frame(object$yRefs[,toKeep],
row.names=rownames(object$yRefs))
colnames(allY)=toKeep
}
}
if (is.null(names(allY))) stop ("ancillaryData can not be used because no variables match the names in outfiles")
}
if (is.null(colnames(allY)) && inherits(object,"yai"))
{
toKeep = intersect(colnames(object$yRefs),names(outfiles))
if (length(toKeep) == 0) allY = NULL
else
{
allY = data.frame(object$yRefs[,toKeep],row.names=rownames(object$yRefs))
colnames(allY) = toKeep
}
}
# if using yai, deal with ann
if (inherits(object,"yai") && is.null(ann)) ann=object$ann
# set some flags used below
predYes = length(intersect(names(outfiles),c("predict" ))) == 1
distYes = length(intersect(names(outfiles),c("distance"))) == 1 && inherits(object,"yai")
useidYes= length(intersect(names(outfiles),c("useid" ))) == 1 && inherits(object,"yai")
sumIlls=NULL
# make a list of input file handles and open the files.
infh = vector("list",length=length(xfiles))
names(infh)=names(xfiles)
for (i in 1:length(xfiles)) infh[[i]]=file(xfiles[[i]],open="rt")
on.exit(lapply(infh,close))
# get and check headers from each input file
header=NULL
postWarn=TRUE
for (i in 1:length(infh))
{
newhead = readLines(infh[[i]],n=6)
if (is.null(header)) header=newhead
else
{
if (!identical(newhead,header))
{
cat ("Map headers are not equal\nHeader from file: ",xfiles[[i-1]],"\n")
print (header)
cat ("\nHeader from file: ",xfiles[[i]],"\n")
print (newhead)
flush.console()
if (postWarn) warning ("map headers don't match.")
postWarn=FALSE
}
header=newhead
}
}
# write the "common" header to all the output files.
getVal=function(header,tok)
{
for (lin in header)
{
l = scan (text=lin,what="character",quiet=TRUE)
if (toupper(l[1]) == tok) return (as.numeric(l[2]))
}
return (NA)
}
nc = getVal(header,"NCOLS")
nr = getVal(header,"NROWS")
xllc= getVal(header,"XLLCORNER")
yllc= getVal(header,"YLLCORNER")
csz = getVal(header,"CELLSIZE")
nodv= getVal(header,"NODATA_VALUE")
if (any(unlist(lapply(c(nc,nr,xllc,yllc,csz,nodv),is.na)))) stop ("header error in input maps")
if (!is.null(lon))
{
cols=c(0,0)
lon=sort(lon)
cols[1]=round((lon[1]-xllc)/csz)+1
cols[2]=round((lon[2]-xllc)/csz)
}
if (!is.null(lat))
{
rows=c(0,0)
lat=sort(lat)
rows[2]=nr-round((lat[1]-yllc)/csz)
rows[1]=nr-round((lat[2]-yllc)/csz)+1
}
if (is.null(rows) && is.null(cols) && is.null(nodata)) #header does not change
{
for (i in 1:length(outfiles)) cat (header,file=outfiles[[i]],sep="\n")
newnr = nr
newnc = nc
nodata= nodv
rows=c(1,nr)
cols=c(1,nc)
}
else #header changes
{
if (is.null(nodata)) nodata=nodv
if (is.null(rows)) rows=c(1,nr)
if (rows[1]<1) rows[1]=1
if (rows[2]>nr) rows[2]=nr
if (rows[1]>rows[2]) rows[1]=rows[2]
if (is.null(cols)) cols=c(1,nc)
if (cols[1]<1) cols[1]=1
if (cols[2]>nc) cols[2]=nc
if (cols[1]>cols[2]) cols[1]=cols[2]
newnr = rows[2]-rows[1]+1
newnc = cols[2]-cols[1]+1
if (rows[2] != nr) yllc = yllc+(csz*(nr-rows[2]))
if (cols[1] != 1) xllc = xllc+(csz*(cols[1]-1))
for (i in 1:length(outfiles))
{
cat("NCOLS ",as.character(newnc), "\n",file=outfiles[[i]],sep="")
cat("NROWS ",as.character(newnr), "\n",file=outfiles[[i]],sep="",append=TRUE)
cat("XLLCORNER ",as.character(xllc), "\n",file=outfiles[[i]],sep="",append=TRUE)
cat("YLLCORNER ",as.character(yllc), "\n",file=outfiles[[i]],sep="",append=TRUE)
cat("CELLSIZE ",as.character(csz ), "\n",file=outfiles[[i]],sep="",append=TRUE)
cat("NODATA_VALUE ",as.character(nodata),"\n",file=outfiles[[i]],sep="",append=TRUE)
}
}
# set up the xlevels. In randomForest version >= 4.5-20, the xlevels
# are stored in the forest.
xlevels = object$xlevels
if (is.null(xlevels) && inherits(object,"randomForest")) xlevels=object$forest$xlevels
if (!is.null(xlevels))
{
# we need just the variable names...
names(xlevels) = lapply(names(xlevels), function (x) unlist(all.vars(formula(paste("~",x)))[1]))
if (length(xlevels)>0) for (i in names(xlevels)) if (is.numeric(xlevels[[i]]) &&
length(xlevels[[i]]) == 1) xlevels[[i]] = NULL
if (length(xlevels) == 0) xlevels=NULL
else
{
inLegend=lapply(xlevels,data.frame)
inLegend=unionDataJoin(inLegend)
names(inLegend)=names(xlevels)
}
}
nskip=rows[1]-1
dpr = max(newnr %/% 100,1)
if (nskip > 0) cat("Rows to skip: ",nskip," ")
cat("Rows per dot: ",dpr," Rows to do:",newnr,"\nToDo: ")
for (ir in 1:floor(newnr/dpr)) cat (".")
cat ("\nDone: ");flush.console()
nodout=suppressWarnings(as.numeric(nodata))
ircur=0
for (ir in rows[1]:rows[2])
{
indata = vector("list",length=length(xfiles))
names(indata)=names(infh)
for (i in 1:length(infh))
{
indata[[i]]=scan(infh[[i]],nlines=1,what=vector(mode=xtypes[[i]],length=0),
skip=nskip,quiet=TRUE)
nod = indata[[i]] == nodv
if (any(nod)) indata[[i]][nod] = NA
}
nskip=0
rowLens = unlist(lapply(indata,length))
if (any(rowLens[1] != rowLens))
{
cat ("Row lengths for row ",ir,"\n")
print(rowLens)
flush.console()
stop ("Unequal row lengths.")
}
if (newnc == nc) newdata=data.frame(indata)
else newdata=data.frame(indata)[cols[1]:cols[2],,FALSE]
width=floor(log(nrow(newdata),10))+1
rownames(newdata)=paste(ir,formatC(1:nrow(newdata),width=width,flag="0"),sep="x")
origRowNames=rownames(newdata)
newdata=na.omit(newdata)
omitted=origRowNames[as.vector(attr(newdata,"na.action"))]
moreOrigRowNames=NULL
if (!is.null(xlevels) && length(omitted)<length(origRowNames))
{
moreOrigRowNames=rownames(newdata)
factorMatch = get("factorMatch",asNamespace("yaImpute"))
newdata=factorMatch(newdata,xlevels)
ills = attr(newdata,"illegalLevelCounts")
if(inherits(ills, "list"))
#if( class(ills)=="list" )
{
if (is.null(sumIlls))
{
sumIlls = ills
warning ("NA's generated due to illegal level(s).")
}
else
{
addIllegalLevels = get("addIllegalLevels",asNamespace("yaImpute"))
sumIlls = addIllegalLevels(sumIlls,ills)
}
omitted=c(omitted,moreOrigRowNames[as.vector(attr(newdata,"na.action"))])
}
}
# tag the vector so newtargets() will not duplicate
# the creation of this attribute data
else attr(newdata,"illegalLevelCounts")=0
if (length(omitted)==length(origRowNames)) # all missing.
{
outdata=data.frame(matrix(nodout,length(omitted),length(outfiles)),
row.names=omitted)
names(outdata)=names(outfiles)
}
else
{
if (!is.null(myPredFunc))
{
outdata=myPredFunc(object,newdata,...)
if (!inherits(outdata,"data.frame"))
{
cns = colnames(outdata)
outdata=data.frame(predict=outdata,row.names=rownames(newdata))
if (!is.null(cns)) colnames(outdata) = cns
} else rownames(outdata)=rownames(newdata)
}
else if (is.null(object))
{
outdata=newdata
}
else if (inherits(object,"yai"))
{
outdata = NULL
saveNames=rownames(newdata)
rownames(newdata)=paste("m",as.character(1:nrow(newdata)),sep="!")
new = newtargets(object,newdata,k=NULL,ann=ann)
if (!is.null(allY)) outdata = impute(new,ancillaryData=allY,observed=FALSE,...)
rownames(outdata)=saveNames
if (distYes) dists = data.frame(distance=new$neiDstTrgs[,1],
row.names=rownames(newdata))
else dists = NULL
if (useidYes) useIds= data.frame(useid=match(new$neiIdsTrgs[,1],
rownames(object$xRefs)),row.names=rownames(newdata))
else useIds= NULL
if (!is.null(outdata) && !is.null(dists) ) outdata=cbind(outdata,dists)
else if (is.null(outdata)) outdata=dists
if (!is.null(outdata) && !is.null(useIds)) outdata=cbind(outdata,useIds)
else if (is.null(outdata)) outdata=useIds
}
else
{
outdata=predict(object,newdata,...)
if (!inherits(outdata,"data.frame"))
{
cns = colnames(outdata)
outdata=data.frame(predict=outdata,row.names=rownames(newdata))
if (!is.null(cns)) colnames(outdata) = cns
} else rownames(outdata)=rownames(newdata)
}
if (is.null(outLegend))
{
outLegend=vector("list",ncol(outdata))
names(outLegend)=names(outdata)
for (n in names(outLegend)) outLegend[[n]]=if (is.factor(outdata[,n]))
levels(outdata[,n]) else NULL
} else {
for (n in names(outLegend))
{
if (is.factor(outdata[,n]))
{
for (lev in levels(outdata[,n]))
{
if (length(grep(lev,outLegend[[n]],fixed=TRUE)) == 0)
outLegend[[n]] = c(outLegend[[n]],lev)
}
}
}
}
#convert factors to numbers that match the outLegend
for (n in colnames(outdata)) if (is.factor(outdata[,n]))
outdata[,n] <- match(levels(outdata[,n])[outdata[,n]],outLegend[[n]])
if (nrow(outdata) != nrow(newdata))
{
cat ("First six lines non-missing predictions for row ",ir,"\n")
print(head(outdata))
cat ("First six lines of non-missing xfiles data for row ",ir,"\n")
head(head(newdata))
flush.console()
stop ("Unexpected results for row = ",ir)
}
outrs = nrow(outdata) # the predict might send NA's, change them to no data
outtmp = na.omit(outdata)
if (outrs > nrow(outtmp))
{
nasum = if (is.null(nasum)) c(ir,outrs-nrow(outtmp)) else
rbind(nasum,c(ir,outrs-nrow(outtmp)))
for (icol in 1:ncol(outdata)) outdata[is.na(outdata[,icol]),icol]=nodout
}
if (length(omitted)>0)
{
# add omitted observations back into data frame in the proper location
more = data.frame(matrix(nodout,length(omitted),length(names(outdata))),
row.names=omitted)
names(more)=names(outdata)
for (i in 1:ncol(more)) if (is.factor(outdata[,i])) more[,i]=as.factor(more[,i])
outdata = rbind(outdata,more)
outdata = outdata[sort(rownames(outdata),index.return = TRUE)$ix,,FALSE]
}
}
for (i in 1:length(outfiles))
{
vname=names(outfiles)[i]
if (length(intersect(names(outdata),vname))==0)
{
cat ("\nFirst six lines of predicted data for map row: ",ir,"\n")
print(head(outdata))
flush.console()
stop (vname," is not present in the predicted data")
}
cat (outdata[,vname],"\n",file=outfiles[[i]],append=TRUE)
}
ircur=ircur+1
if (ircur>=dpr)
{
ircur=0
cat (".");flush.console()
}
}
cat ("\n");flush.console()
for (n in names(outLegend))
{
outLegend[[n]]=as.data.frame(outLegend[[n]],stringsAsFactors=FALSE)
names(outLegend[[n]])=n
}
if (! is.null(nasum))
{
nasum=data.frame(maprow=nasum[,1],count=nasum[,2])
cat ("Summary of unexpected NA values generated from predict:")
print (nasum)
warning("Unexpected NA values generated")
}
if (length(outLegend)>0)
{
outLegend=unionDataJoin(outLegend)
cat ("Legend of levels in output grids:\n")
print (outLegend)
}
else outLegend=NULL
if (! is.null(inLegend))
{
cat ("Legend of levels in input grids (assumed):\n")
print (inLegend)
}
if (!is.null(sumIlls))
{
cat ("Factors with levels found in input maps but not present in data used to fit the model\n")
cat ("(number of map cells; counts do not include cells coded NODATA on other maps):\n")
if (inherits(sumIlls[[1]], "table")) print (sumIlls)
#if (class(sumIlls[[1]]) == "table") print (sumIlls)
else
{
for (a in names(sumIlls))
{
sumIlls[[a]]=as.data.frame(sumIlls[[a]])
colnames(sumIlls[[a]])=a
}
sumIlls = unionDataJoin(sumIlls)
print (sumIlls)
cat ("\n")
}
}
invisible(list(unexpectedNAs=nasum,illegalLevels=sumIlls,outputLegend=outLegend,inputLegend=inLegend))
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/asciigridimpute.R |
buildConsensus <- function (reps, noTrgs=FALSE, noRefs=FALSE, k=NULL)
{
if (!all(unlist(lapply(reps,function (x) class(x) == "yai"))))
stop("class must be yai for all reps")
cl=match.call()
if (length(reps) == 1)
{
warning ("only one rep, nothing to do.")
return (reps[[1]])
}
mink = min(unlist(lapply(reps,function (x) x$k)))
if (!is.null(k))
{
if (k > mink)
{
warning ("k=",k," ignored, replaced by k=", mink)
k = mink
}
} else { k = mink }
rowNT = NULL
rowNR = NULL
if (!noTrgs)
{
rowNT = lapply(reps,function (x) if (is.null(x$neiIdsTrgs)) NULL else rownames(x$neiIdsTrgs))
if (all(is.null(unlist(rowNT)))) noTrgs = TRUE else
{
if (all(unlist(lapply(rowNT,function(x,y) identical(x,y), rowNT[[1]])))) rowNT = rowNT[[1]] else
{
rids = NULL
for (r in rowNT) rids = union(rids,r)
rowNT = rids
}
}
}
if (!noRefs)
{
rowNR = lapply(reps,function (x) if (is.null(x$neiIdsRefs)) NULL else rownames(x$neiIdsRefs))
if (all(is.null(unlist(rowNR)))) noRefs = TRUE else
{
if (all(unlist(lapply(rowNR,function(x,y) identical(x,y), rowNR[[1]])))) rowNR = rowNR[[1]] else
{
rids = NULL
for (r in rowNR) rids = union(rids,r)
rowNR = rids
}
}
}
if (!noTrgs)
{
rowNT = setdiff(rowNT,rowNR)
if (length(rowNT) == 0)
{
rowNT = NULL
noTrgs = TRUE
}
} else rowNT = NULL
if (noTrgs & noRefs) stop("Can't find neighbors in any objects")
#build bootstrap sample weights
cnts = table(unlist(lapply(reps,function (x) unique(x$bootstrap))))
if (length(cnts) == 1) wts = NULL else
{
wts = length(reps)/cnts
names(wts) = names(cnts)
}
# define an internal function to do the mergers
mkMerge <- function (kIds,kDst,rown,nreps,wts)
{
if (is.null(rown)) # assume all rows line up which is much faster
{
kIds = matrix(unlist(kIds),ncol=nreps)
kDst = matrix(unlist(kDst),ncol=nreps)
} else { # need to merge the rows to create the matrix.
kid = matrix("",ncol=length(reps),nrow=length(rown))
kds = matrix(NA,ncol=length(reps),nrow=length(rown))
rownames(kid) = rown
rownames(kds) = rown
for (i in 1:nreps)
{
idx = match(rown,names(kIds[[i]]))
kid[,i] = kIds[[i]][idx]
kds[,i] = kDst[[i]][idx]
}
kid[kid == "" ] = NA
kIds = kid
kDst = kds
}
newIds = apply(kIds,1,function (x,wts)
{
cnts = table(x)
if (is.null(wts)) names(which.max(cnts)) else names(which.max(cnts*wts[names(cnts)]))
}, wts)
newDst = vector("numeric",length(newIds))
for (i in 1:length(newIds))
{
inc = kIds[i,] == newIds[i]
inc[is.na(inc)] = FALSE
newDst[i] = mean(kDst[i,inc])
}
list(ids=newIds,dst=newDst)
} ############## end of function definition
idsT = if (noTrgs) NULL else list()
dstT = if (noTrgs) NULL else list()
idsR = if (noRefs) NULL else list()
dstR = if (noRefs) NULL else list()
mxk = k
for (k in 1:mxk)
{
if (!noTrgs)
{
kIds = lapply(reps,function (x,k) x$neiIdsTrgs[,k], k)
kDst = lapply(reps,function (x,k) x$neiDstTrgs[,k], k)
tmp = mkMerge(kIds,kDst,rowNT,length(reps),wts)
idsT[[k]] = tmp$ids
dstT[[k]] = tmp$dst
}
if (!noRefs)
{
kIds = lapply(reps,function (x,k) x$neiIdsRefs[,k], k)
kDst = lapply(reps,function (x,k) x$neiDstRefs[,k], k)
tmp = mkMerge(kIds,kDst,rowNR,length(reps),wts)
idsR[[k]] = tmp$ids
dstR[[k]] = tmp$dst
}
}
if (!noTrgs)
{
idsT = do.call(cbind,idsT)
rownames(idsT) = rowNT
colnames(idsT) = paste0("Id.k",1:mxk)
dstT = do.call(cbind,dstT)
rownames(dstT) = rowNT
colnames(dstT) = paste0("Dst.k",1:mxk)
}
if (!noRefs)
{
idsR = do.call(cbind,idsR)
rownames(idsR) = rowNR
colnames(idsR) = paste0("Id.k",1:mxk)
dstR = do.call(cbind,dstR)
rownames(dstR) = rowNR
colnames(dstR) = paste0("Dst.k",1:mxk)
}
# build a merged list of yRefs, and xRefs
# find out if all the column names are the same.
clsI = TRUE
for (i in 1:(length(reps)-1))
{
if (!identical(colnames(reps[[i]]$yRefs),colnames(reps[[i+1]]$yRefs)) ||
!identical(colnames(reps[[i]]$xRefs),colnames(reps[[i+1]]$xRefs)))
{
clsI = FALSE
break
}
}
if (clsI)
{
idx = if (is.null(rowNR)) NULL else na.omit(match(rowNR,rownames(reps[[1]]$xRefs)))
yRefs = if (is.null(idx)) reps[[1]]$yRefs else reps[[1]]$yRefs[idx,]
xRefs = if (is.null(idx)) reps[[1]]$xRefs else reps[[1]]$xRefs[idx,]
for (i in 2:length(reps))
{
rowNR = setdiff(rowNR,rownames(xRefs))
if (length(rowNR) == 0) break
idx = na.omit(match(rowNR,rownames(reps[[i]]$xRefs)))
if (length(idx) > 0)
{
yRefs = rbind(yRefs,reps[[i]]$yRefs[idx,,drop=FALSE])
xRefs = rbind(xRefs,reps[[i]]$xRefs[idx,,drop=FALSE])
}
}
} else {
yRefs = reps[[1]]$yRefs
xRefs = reps[[1]]$xRefs
for (i in 2:length(reps))
{
if (!identical(yRefs,reps[[i]]$yRefs)) yRefs = unionDataJoin(yRefs,reps[[i]]$yRefs,warn=FALSE)
if (!identical(xRefs,reps[[i]]$xRefs)) xRefs = unionDataJoin(xRefs,reps[[i]]$xRefs,warn=FALSE)
}
}
# build a merged list of xall
xall = reps[[1]]$xall
for (i in 2:length(reps))
{
if (!identical(xall,reps[[i]]$xall)) xall = unionDataJoin(xall,reps[[i]]$xall,warn=FALSE)
}
mymean = function(x)
{
if (is.null(ncol(x)))
{
ans = if (is.factor(x)) NA else mean(x)
}
else
{
ans=as.numeric(rep(NA,ncol(x)))
names(ans)=colnames(x)
for (i in 1:ncol(x)) if (!is.factor(x[,i])) ans[i]=mean(x[,i])
}
ans
}
mysd = function(x)
{
if (is.null(ncol(x)))
{
ans = if (is.factor(x)) NA else sd(x)
}
else
{
ans=as.numeric(rep(NA,ncol(x)))
names(ans)=colnames(x)
for (i in 1:ncol(x)) if (!is.factor(x[,i])) ans[i]=sd(x[,i])
}
ans
}
xScale=list(center=mymean(xRefs),scale=mysd(xRefs))
yScale=list(center=mymean(yRefs),scale=mysd(yRefs))
out=list(call=cl,yRefs=yRefs,xRefs=xRefs,obsDropped=NULL,yDrop=NULL,bootstrap=FALSE,
xDrop=NULL,trgRows=rowNT,xall=xall,cancor=NULL,theFormula=NULL,
ftest=NULL,yScale=yScale,xScale=xScale,ccaVegan=NULL,ranForest=NULL,
ICA=NULL,k=mxk,projector=NULL,nVec=NULL,pVal=NULL,method="consensus",ann=FALSE,
neiDstTrgs=dstT,neiIdsTrgs=idsT,
neiDstRefs=dstR,neiIdsRefs=idsR)
class(out)="yai"
out
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/buildConsensus.R |
compare.yai = function (...,ancillaryData=NULL,vars=NULL,method="rmsd",scale=TRUE)
{
if (missing(...)) stop ("... required")
okClasses <- c("yai","impute.yai")
for (object in list(...))
if (length(intersect(class(object),okClasses))==0)
stop("object classes must be one of ",paste(okClasses,collapse=", "))
args <- list(...)
if (length(intersect(method,c("rmsd","cor")))==0) stop("method must be rmsd or cor")
names(args) <- as.list(substitute(list(...)))[-1] #who would of guessed that this is the way!
ans <- list()
scales <- list()
tag <- if (method=="rmsd") "rmsdS" else "cor"
meth <- match(method,c("rmsd","cor"))
i <- 0
for (object in list(...))
{
i <- i+1
if (inherits(object,"yai")) object <- impute.yai(object,ancillaryData=ancillaryData,vars=vars,observed=TRUE)
one <- switch(meth,
rmsd.yai(object,vars=vars,scale=scale),
cor.yai(object,vars=vars), NULL)
names(one) <- paste(names(args)[i],tag,sep=".")
ans[[i]] <- one
if (meth == 1) scales[[i]] <- attributes(one)$scale
}
names(ans) <- names(args)
ans <- unionDataJoin(ans)
class(ans) <- c("compare.yai",class(ans))
if (length(scales) > 0)
{
names(scales) <- names(args)
ident = TRUE
if (length(scales) > 1)
{
s1 <- scales[[1]]
for (i in 2:length(scales))
{
if (!identical (s1,scales[[i]]))
{
warning ("not all scale factors are the same.")
ident = FALSE
break
}
}
}
attr(ans,"scales") <- if (ident) scales[[1]] else scales
}
ans
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/compare.yai.R |
# Computes the correlation between observed and imputed observations
# Arguments:
# object is of class yai or yai.impute If the object is yai, impute is called
# with observed=TRUE.
# vars is a list of variables, if NULL, all those with imputed values are processed.
# ... passed to the impute funciton when it is called
cor.yai = function (object,vars=NULL,...)
{
if (missing(object)) stop ("object required.")
if (class(object)[1] == "yai") object = impute.yai(object,vars=vars,observed=TRUE,...)
if (is.null(object)) stop ("no imputations found using this object")
object=na.omit(object)
if (is.null(vars)) vars=names(object)
vi=paste(unique(strsplit(vars,".o",fixed=TRUE)))
vi=intersect(vi,names(object))
notFound=setdiff(vars,names(object))
if (length(notFound)>0) warning ("variables not found: ",paste(notFound,collapse=", "))
if (length(vi) == 0) stop("nothing to compute")
vo=paste(vi,"o",sep=".")
notFound=setdiff(vo,names(object))
if (length(notFound)>0) warning ("variables not found: ",paste(notFound,collapse=", "))
vo=intersect(vo,names(object))
both=intersect(paste(unique(strsplit(vo,".o",fixed=TRUE))),vi)
if (length(both) == 0) stop("nothing to compute")
vo=paste(both,"o",sep=".")
cors=data.frame(rep(NA,length(vo)),row.names=both)
names(cors)="r"
for (i in 1:length(both)) if (!is.factor(object[,both[i]]))
cors[i,1]=cor(object[,both[i]],object[,vo[i]])
cors
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/cor.yai.R |
correctBias <- function
(object,trgVal,trgValCI=NULL,nStdev=1.5,excludeRefIds=NULL,trace=FALSE)
{
if(!inherits(object, "yai")) stop("object must be of class yai")
if (missing(trgVal)) stop("trgVal must be defined.")
trgValExpression = if (is.expression(trgVal)) trgVal else
#if (class(trgVal) == "character") parse(text=trgVal) else NULL
if(inherits(trgVal, "character")) parse(text=trgVal) else NULL
if (!is.expression(trgValExpression))
stop ("trgVal can not be coerced into an expression.")
trgVals <- NULL
trgVal <- NULL
trgValsd <- NULL
trgValCIc <- NULL
trgValData <- as.data.frame(cbind(object$yRefs,object$xRefs))
if (is.null(excludeRefIds)) trgValDataCopy <- trgValData
else
{
trgValDataCopy = NULL
if (inherits(excludeRefIds, "character"))
{
if (excludeRefIds[1] != "all") excludeRefIds <-
na.omit(match(excludeRefIds,rownames(trgValData)))
}
#if (class(excludeRefIds) == "numeric" || class(excludeRefIds) == "integer" )
if(inherits(excludeRefIds, "numeric") || inherits(excludeRefIds, "integer"))
{
excludeRefIds <- unique(sort(excludeRefIds))
if (length(excludeRefIds) > 0 && nrow(trgValData)-length(excludeRefIds) > 1)
trgValDataCopy <- trgValData[-excludeRefIds,]
}
}
if (!is.null(trgValDataCopy))
{
trgVals <- eval(trgValExpression,trgValDataCopy)
trgVal <- mean(trgVals)
trgValsd <- sd(trgVals)/sqrt(nrow(trgValDataCopy))
trgValCIc <- c(trgVal-(trgValsd*nStdev),trgVal+(trgValsd*nStdev))
}
# if the user specified the CI, use it instead.
if (is.null(trgValCI)) trgValCI <- trgValCIc
if (is.null(trgValCI))
stop ("trgValCI was not supplied and can not be computed.")
if (trace) {cat ("Target CI=", trgValCI,"\n");flush.console()}
newobject <- object
pass = 0
if (object$k-1 > 0)
{
for (pass in 1:(object$k-1))
{
curVals <- eval(trgValExpression,
trgValData[newobject$neiIdsTrgs[,1],,drop=FALSE])
curVal <- if (is.null(trgVals)) mean(curVals) else
mean(c(curVals,trgVals))
if (curVal >= trgValCI[1] & curVal <= trgValCI[2])
{
if (trace) cat ("trgValCI=",trgValCI," curVal=",curVal)
if (pass == 1)
{
pass = 0
if (trace) {cat (" -- no bias to correct.\n"); flush.console()}
}
else
{
pass=pass-1
if (trace)
{
cat (" -- target CI reached, passes made=",pass,"\n")
flush.console()
}
}
break
}
toHigh <- curVal > trgValCI[2]
curBias <- if (toHigh) curVal - trgValCI[2] else curVal - trgValCI[1]
# dV is the contribution to the bias of each observation.
dV <- (eval(trgValExpression,
trgValData[newobject$neiIdsTrgs[,pass+1],,drop=FALSE]) -
curVals) / length(curVals)
dDst <- newobject$neiDstTrgs[,pass+1] - newobject$neiDstTrgs[,1]
if (toHigh) {
ntoTry <- sum(dV < 0)
dDst[dV >= 0] <- .Machine$double.xmax
} else {
ntoTry <- sum(dV > 0)
dDst[dV <= 0] <- .Machine$double.xmax
}
ord <- sort(dDst,index.return=TRUE)$ix
bsum <- cumsum(dV[ord[1:ntoTry]])
toSwitch <- if (toHigh) which(bsum+curBias <= 0)[1] else
which(bsum+curBias >= 0)[1]
if (is.na(toSwitch)) toSwitch <- length(bsum)
if (trace)
{
cat ("trgValCI=",trgValCI," pass=",pass," curVal=",curVal,
" curBias=",curBias," ntoTry=",ntoTry,"toSwitch=",
toSwitch,"\n")
flush.console()
}
newobject$neiDstTrgs[ord[1:toSwitch],1] <-
newobject$neiDstTrgs[ord[1:toSwitch],pass+1]
newobject$neiIdsTrgs[ord[1:toSwitch],1] <-
newobject$neiIdsTrgs[ord[1:toSwitch],pass+1]
}
}
else
{
pass = 0
curVals <- eval(trgValExpression,
trgValData[newobject$neiIdsTrgs[,1],,drop=FALSE])
curVal <- if (is.null(trgVals)) mean(curVals) else mean(c(curVals,trgVals))
if (trace)
{
cat ("trgValCI=",trgValCI," curVal=",curVal," k is 1 -- nothing to do.\n")
flush.console()
}
}
# get rid of the k>1 columns...
newobject$neiDstTrgs <- newobject$neiDstTrgs[,1,drop=FALSE]
newobject$neiIdsTrgs <- newobject$neiIdsTrgs[,1,drop=FALSE]
newobject$neiDstRefs <- newobject$neiDstRefs[,1,drop=FALSE]
newobject$neiIdsRefs <- newobject$neiIdsRefs[,1,drop=FALSE]
newobject$k <- 1
newobject$call <- list(yai=newobject$call,correctBias=match.call())
newobject$biasParameters <- list(trgValCI = trgValCI, curVal = curVal,
npasses = pass, oldk=object$k)
newobject
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/correctbias.R |
ensembleImpute <- function (imputes,method="mean",...)
{
cl = match.call()
posM = c("mean","median")
if (!(method %in% posM)) stop ('method="',method,'" must be one of ',
paste0('"',posM,'"',collapse=", "))
for (i in 1:length(imputes)) if (("yai" %in% class(imputes[[i]])))
imputes[[i]] = impute.yai(imputes[[i]],...)
colns = unique(unlist(lapply(imputes,function(x) colnames(x))))
ctf = if (method!="mean") median else mean
rowns = sort(unique(unlist(lapply(imputes,function (x) rownames(x)))))
ave = list()
sd = list()
N = list()
methods = list()
for (cl in colns)
{
one = matrix(unlist(lapply(imputes,function (x,rowns,cl)
x[rowns,cl],rowns,cl)), nrow=length(rowns))
n = apply(one,1,function (x) sum(!is.na(x)))
if (any(n != length(imputes))) N[[cl]] = n
if (mode(one) == "character")
{
ave[[cl]] = apply(one,1,function(x)
{
x = na.omit(x)
if (length(x) == 0) return(NA)
x = table(x)
x = x+(runif(length(x))*.01)
names(x)[which.max(x)]
})
ave[[cl]] = as.factor(ave[[cl]])
methods[[cl]] = "mode"
} else {
ave[[cl]] = apply(one,1,ctf,na.rm=TRUE)
ave[[cl]][is.nan(ave[[cl]])] = NA
sd [[cl]] = apply(one,1,function (x)
{
x = na.omit(x)
if (length(x) > 1) sd(x) else 0
})
methods[[cl]] = method
}
}
ans = as.data.frame(ave)
rownames(ans) = rowns
class(ans) = c("impute.yai","data.frame")
if (length(sd)>0)
{
sumsgtz = unlist(lapply(sd,sum)) > 0
if (any(sumsgtz))
{
sd = as.data.frame(sd[sumsgtz])
rownames(sd) = rowns
attr(ans,"sd") = sd
}
}
attr(ans,"N") = if (length(N)>0) as.data.frame(N) else length(imputes)
attr(ans,"methods") = unlist(methods)
ans
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/ensembleImpute.R |
errorStats <- function(mahal,...,scale=FALSE,pzero=0.1,plg=0.5,seeMethod="lm")
{
obsMinusImp = function (object,...,vars=NULL)
{
if (missing(object)) stop ("object required.")
if (class(object)[1] == "yai") object = impute(object,vars=vars,observed=TRUE,...)
if (is.null(object)) stop ("no imputations found using this object")
object=na.omit(object)
if (is.null(vars)) vars=names(object)
vi=paste(unique(strsplit(vars,".o",fixed=TRUE)))
vi=intersect(vi,names(object))
notFound=setdiff(vars,names(object))
if (length(notFound)>0) warning ("variables not found: ",paste(notFound,collapse=", "))
if (length(vi) == 0) stop("nothing to compute")
vo=paste(vi,"o",sep=".")
notFound=setdiff(vo,names(object))
if (length(notFound)>0) warning ("variables not found: ",paste(notFound,collapse=", "))
vo=intersect(vo,names(object))
both=intersect(paste(unique(strsplit(vo,".o",fixed=TRUE))),vi)
if (length(both) == 0) stop("nothing to compute")
vo=paste(both,"o",sep=".")
obsMinusImp=matrix(NA,nrow(object),length(both))
colnames(obsMinusImp)=both
rownames(obsMinusImp)=rownames(object)
for (i in 1:length(both))
{
if (!is.factor(object[,both[i]])) obsMinusImp[,i]=object[,both[i]]-object[,vo[i]]
}
obsMinusImp
}
frmmsd0 = function(x,label,pzero)
{
if (missing(x)) stop ("x required.")
if(!inherits(x, "yai")) stop ("class must be yai")
if (x$method != "mahalanobis") stop ("method must be mahalanobis")
if (is.null(x$neiDstRef)) stop ("reference neighbors must be present")
xr=obsMinusImp(x)^2
if (ncol(xr) == 0) stop ("nothing to compute")
xdstt=notablyDistant(x,p=1-pzero)$threshold
obs=x$neiDstRef[,1]<xdstt
if (sum(obs)<20) warning ("number of observations used is ",sum(obs)," -- consider increasing pzero")
rmmsd0=matrix(NA,ncol(xr),1)
rownames(rmmsd0)=colnames(xr)
colnames(rmmsd0)=paste(label,"rmmsd0",sep=".")
for (var in rownames(rmmsd0)) rmmsd0[var,1]=mean(xr[obs,var])
rmmsd0[rmmsd0<=0] = NA
sqrt(rmmsd0)
}
frmsdlg = function(x,label,plg)
{
if (missing(x)) stop ("x required.")
if(!inherits(x, "yai")) stop ("class must be yai")
if (is.null(x$neiDstRef)) stop ("reference neighbors must be present")
xr=obsMinusImp(x)^2
if (ncol(xr) == 0) stop ("nothing to compute")
xdstt=notablyDistant(x,p=plg)$threshold
obs=x$neiDstRef[,1]>xdstt
if (sum(obs)<20) warning ("number of observations used is ",sum(obs)," -- consider increasing plg")
rmsdlg=matrix(NA,ncol(xr),1)
rownames(rmsdlg)=colnames(xr)
colnames(rmsdlg)=paste(label,"rmsdlg",sep=".")
for (var in rownames(rmsdlg)) rmsdlg[var,1]=mean(xr[obs,var])
rmsdlg[rmsdlg<0] = NA
sqrt(rmsdlg)
}
frmsd2 = function(x,label)
{
rmsd=rmsd.yai(x,scale=FALSE)
colnames(rmsd)=paste(label,"rmsd",sep=".")
rmsd
}
fsee = function(x,label,method)
{
if (missing(x)) stop ("x required.")
if(!inherits(x, "yai")) stop ("class must be yai")
mfg = paste(xvars(x),collapse=",5)+s(")
mfl = paste(xvars(x),collapse="+")
data=cbind(x$yRefs,x$xRefs)
see=matrix(NA,ncol(x$yRefs),1)
rownames(see)=yvars(x)
colnames(see)=paste(label,"see",sep=".")
for (var in rownames(see))
{
if (method=="gam")
{
if (!requireNamespace(gam))
{
stop ("install package gam and try again")
# the purpose of this line of code is to suppress CRAN check notes
gam <- function (...) NULL
}
g = try(gam(as.formula(paste(var,"~s(",mfg,")",sep="")),data=data))
}
else g = try( lm(as.formula(paste(var,"~",mfl,sep="")),data=data))
if (is.element("lm",class(g))) see[var,1]=mean(resid(g)^2)
}
see[see<0] = NA
sqrt(see)
}
fsei = function(rmsd,rmmsd0)
{
sei = rmsd^2 - (rmmsd0^2/2)
sei[sei<0] = NA
colnames(sei)=paste(strsplit(colnames(rmsd),".",fixed=TRUE)[[1]][1],"sei",sep=".")
sqrt(sei)
}
fdstc = function(rmsd,rmmsd0)
{
dstc =rmsd^2 - rmmsd0^2
dstc[dstc<0] = NA
colnames(dstc)=paste(strsplit(colnames(rmsd),".",fixed=TRUE)[[1]][1],"dstc",sep=".")
sqrt(dstc)
}
fmlf = function(see,rmmsd0)
{
mlf = see^2 - (rmmsd0^2/2)
mlf[mlf<0] = NA
colnames(mlf)=paste(strsplit(colnames(see),".",fixed=TRUE)[[1]][1],"mlf",sep=".")
sqrt(mlf)
}
##############
# compute basic error statistics for the mahalanobis method
if (mahal$method != "mahalanobis") stop ("method for first argument must be mahalanobis")
label = deparse(substitute(mahal))
rmmsd0= frmmsd0(mahal,label,pzero)
rmsdlg= frmsdlg(mahal,label,plg)
rmsd = frmsd2(mahal,label)
see = fsee(mahal,label,seeMethod)
sei = fsei(rmsd,rmmsd0)
dstc = fdstc(rmsd,rmmsd0)
mlf = fmlf(see,rmmsd0)
out = cbind(see,rmmsd0,mlf,rmsd,rmsdlg,sei,dstc)
if (scale)
{
scl = 1/mahal$yScale$scale[rownames(rmsd)]
out = out*scl
}
# if there are other objects, compute error statistics for them...
args = list(...)
if (length(args)==0)
{
ans = vector("list",2)
names(ans) = c("common",label)
ans[[1]] = out[,1:3]
ans[[2]] = out[,4:7]
}
else
{
names(args) = as.list(substitute(list(...)))[-1]
ans = vector("list",length(args)+2)
names(ans) = c("common",label,names(args))
ans[[1]] = out[,1:3]
ans[[2]] = out[,4:7]
i = 2
for (object in args)
{
i = i+1
label = names(ans)[i]
rmsd = frmsd2(object,label)[rownames(rmmsd0),,drop=FALSE]
rmsdlg= frmsdlg(object,label,plg=plg)[rownames(rmmsd0),,drop=FALSE]
sei = fsei(rmsd,rmmsd0)
dstc = fdstc(rmsd,rmmsd0)
out = cbind(rmsd,rmsdlg,sei,dstc)
if (scale)
{
scl = 1/object$yScale$scale[rownames(rmsd)]
out = out*scl
}
ans[[i]] <- out
}
}
ans
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/errorstats.R |
findFactors = function(x)
{
if (is.null(x)) return(NULL)
if (is.data.frame(x))
{
factors=rep(FALSE,ncol(x))
for (i in 1:ncol(x)) factors[i]=is.factor(x[,i])
}
else if (is.matrix(x)) factors=rep(FALSE,ncol(x))
else factors=is.factor(x)
factors
}
factorMatch = function (x,xlevels)
{
if (is.matrix(x) || !is.data.frame(x)) return(x = x)
if (!is.null(attr(x,"illegalLevelCounts"))) return(x = x)
facts=intersect(names(x),names(xlevels))
if (length(facts)==0)
{
attr(x,"illegalLevelCounts")= 0
return(x = x)
}
nas=NULL
miss=NULL
for (varName in facts)
{
fx=as.integer(x[,varName])
fx[fx>length(xlevels[[varName]])] = NA
fx[fx<1]=NA
attr(fx,"levels")=xlevels[[varName]]
attr(fx,"class")="factor"
if (any(is.na(fx)))
{
lx = table(x[,varName])
mtb = lx[setdiff(names(lx),as.character(1:length(xlevels[[varName]])) ) ]
if(is.null(miss))
{
miss=list(mtb)
names(miss)=varName
}
else
{
miss=c(miss,list(mtb))
names(miss)[length(miss)]=varName
}
}
x[,varName]=fx
}
if (is.null(miss))
{
attr(x,"illegalLevelCounts")= 0
}
else
{
x=na.omit(x)
attr(x,"illegalLevelCounts")= miss
}
x
}
addIllegalLevels=function(a1,a2)
{
if (inherits(a1, "data.frame")) a1=attr(a1,"illegalLevelCounts")
if (inherits(a2, "data.frame")) a2=attr(a2,"illegalLevelCounts")
vars=union(names(a1),names(a2))
if (length(vars)==0) return(NULL)
out =vector(mode = "list", length = length(vars))
names(out)=vars
for (var in vars)
{
m1 = a1[[var]]
if (!is.null(m1))
{
m1 = as.matrix(m1)
colnames(m1)="m1"
}
m2 = a2[[var]]
if (!is.null(m2))
{
m2 = as.matrix(m2)
colnames(m2)="m2"
}
if (is.null(m1) && is.null(m2)) return (NULL)
else if (is.null(m1)) both = m2
else if (is.null(m2)) both = m1
else both = unionDataJoin(m1,m2)
both[is.na(both)]=0
both = as.matrix(apply (both,1,sum))
colnames(both)=var
out[[var]]=both
}
out
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/findFactors.R |
# Takes a "yai" object and returns a "for-use" table.
#
# When method=="kth"
# By default (kth=NULL), only the best pick for an observation is listed in the
# use column. For a reference observations, it is always selected to represent
# itself. However, when kth is not NULL, the kth neighbor is reported.
#
# When method=="random" or "randomWeighted"
# For each target, kth is selected at random from the k neighbors. When
# "randomWeighted" is used, 1/(1+d) is used as a probability weight factor
# in selecting the kth neighbor, where d is the distance.
# In this case kth is normally NULL, and set to k for the object. When kth is
# not null, it is used as the upper limit on the number of neighbors to consider.
#
# When targetsOnly is true, reporting of references is not done.
#
# The rowname is a target id, first column is the reference id that
# is select to represent the target, the second is the corresponding
# distance. Every reference is included as a target as well. In those
# cases, the rowname and the use value are the same and the distance
# is zero.
foruse = function (object,kth=NULL,method="kth",targetsOnly=FALSE)
{
if(!inherits(object, "yai")) stop ("class must be yai")
valid=c("kth","random","randomWeighted")
if (is.na(match(method,valid))) stop (paste("method must be one of",paste(valid,collapse=", ")))
if (method != "kth" && is.null(kth)) kth=object$k
if (!is.null(kth))
{
if (kth>object$k) kth=object$k
if (kth<1) kth=NULL
}
if (!is.null(object$neiIdsRefs) && !targetsOnly)
{
if (is.null(kth))
fu1=data.frame(use=rownames(object$neiIdsRefs),
dist=rep(0,nrow(object$neiIdsRefs)),
stringsAsFactors = FALSE)
else
{
if (method != "kth")
{
ans = lapply(1:nrow(object$neiIdsRefs),
function (x,kth,Ids,Dst,method)
{
k = sample.int(kth,1,prob=if (method=="random") NULL else 1/(Dst[x,]+1))
list(Ids[x,k], Dst[x,k])
}, kth, object$neiIdsRefs, object$neiDstRefs, method)
fu1=data.frame(use=unlist(lapply(ans,function (x) x[[1]])),
dist=unlist(lapply(ans,function (x) x[[2]])),
stringsAsFactors = FALSE)
}
else
{
if (is.null(kth)) kth=1
fu1=data.frame(use=object$neiIdsRefs[,kth],
dist=object$neiDstRefs[,kth],
stringsAsFactors = FALSE)
}
}
rownames(fu1)=rownames(object$neiIdsRefs)
}
else fu1=NULL
if (!is.null(object$neiIdsTrgs))
{
if (method != "kth")
{
ans = lapply(1:nrow(object$neiIdsTrgs),
function (x,kth,Ids,Dst,method)
{
k = sample(kth,1,prob=if (method=="random") NULL else 1/(Dst[x,]+1))
list(Ids[x,k], Dst[x,k])
}, kth, object$neiIdsTrgs, object$neiDstTrgs, method)
fu2=data.frame(use=unlist(lapply(ans,function (x) x[[1]])),
dist=unlist(lapply(ans,function (x) x[[2]])),
stringsAsFactors = FALSE)
}
else
{
if (is.null(kth)) kth=1
fu2=data.frame(use=object$neiIdsTrgs[,kth],
dist=object$neiDstTrgs[,kth],
stringsAsFactors = FALSE)
}
rownames(fu2)=rownames(object$neiIdsTrgs)
}
else fu2=NULL
if (is.null(fu1) & is.null(fu2)) return (NULL)
if (is.null(fu1)) ans = fu2
else if (is.null(fu2)) ans = fu1
else ans = rbind(fu1,fu2)
class(ans)=c("data.frame","foruse.yaImpute")
ans
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/foruse.R |
grmsd <-
function (...,ancillaryData=NULL,vars=NULL,wts=NULL,rtnVectors=FALSE,
imputeMethod="closest")
{
if (missing(...)) stop ("... required")
args <- list(...)
argLabs <- as.list(substitute(list(...)))[-1]
names(args) <- if (is.null(names(argLabs))) unlist(argLabs) else
{
fixNames <- names(argLabs) == ""
names(argLabs)[fixNames] <- argLabs[fixNames]
names(argLabs)
}
okClasses <- c("yai","impute.yai","data.frame","matrix","lm")
if (!is.null(wts))
{
if (any(wts < 0) || sum(wts) <= 0) stop("wts must be positive and sum > 0")
}
mgd <- list()
for (objName in names(args))
{
object <- args[[objName]]
if (!inherits(object,okClasses))
{
warning("object ",objName," class is not one of ",paste(okClasses,collapse=", "))
next
}
if (inherits(object,"yai")) object <-
impute.yai(object,ancillaryData=ancillaryData,vars=vars,observed=TRUE,
method=imputeMethod)
# try to allow "lm" objects. This code may fail as there are many
# methods in R that inherit from "lm".
if (inherits(object,"lm"))
{
pr <- predict(object)
ob <- pr + resid(object)
# only one column?
if (is.null(dim(pr)))
{
object <- cbind(pr,ob)
colnames(object) = c(objName,paste0(objName,".o"))
} else {
colnames(ob) = paste0(colnames(ob),".o")
object <- cbind(pr,ob)
}
}
object <- na.omit(object)
if (nrow(object) == 0)
{
warning("argument ",objName," has no rows.")
next
}
if (inherits(object,"matrix") & mode(object) != "numeric")
{
warning("argument ",objName," must be numeric.")
next
}
facts = if (inherits(object,"matrix")) FALSE else unlist(lapply(object,is.factor))
if (any(facts))
{
if (all(facts))
{
warning("all variables are factors in ",objName)
next
} else {
nams <- names(facts)[facts]
nams <- nams[-grep("[.]o$",nams)]
warning("factor(s) have been removed from ",objName,": ",paste0(nams,collapse=", "))
object <- object[,!facts,drop=FALSE]
}
}
useVars <- if (is.null(vars)) colnames(object) else
{
ov <- grep ("[.]o$",vars)
ov <- if (length(ov) == 0) unique(c(vars,paste0(vars,".o"))) else vars
intersect(ov,colnames(object))
}
if (length(useVars) == 0)
{
warning ("needed variables not found in ",objName)
next
}
ov = useVars[grep ("[.]o$",useVars)]
if (length(ov) == 0)
{
warning ("no observed variables found in ",objName)
next
}
pv <- unique(sub("[.]o$","",ov))
pv <- intersect(pv,useVars)
if (length(pv) == 0)
{
warning("nothing to compute in ",objName)
next
}
ob <- as.matrix(object[,ov,drop=FALSE])
pr <- as.matrix(object[,pv,drop=FALSE])
qr <- qr(ob)
uvars <- qr$pivot[1:qr$rank]
if (length(uvars) < length(ov))
warning("rank deficiency in ",objName," was addressed by removing: ",
paste0(c(colnames(ob)[qr$pivot[(qr$rank+1):length(qr$pivot)]],
colnames(pr)[qr$pivot[(qr$rank+1):length(qr$pivot)]]),collapse=", "))
p <- solve(chol(cov(ob[,uvars,drop=FALSE])))
ob <- as.matrix(ob[,uvars]) %*% p
pr <- as.matrix(pr[,uvars]) %*% p
wt <- wts
wt <- if (is.null(wt)) rep(1,ncol(pr)) else
{
if (length(names(wt)) > 0)
{
names(wt) <- sub("[.]o$","",names(wt))
wt <- na.omit(wt[names(pr)])
}
if (length(wt) != ncol(pr))
{
warning ("weights do not match variables in ",objName," and were ignored.")
wt <- rep(1,ncol(pr))
}
wt
}
wt <- wt/sum(wt)
md <- apply((pr-ob),1,function (x,wt) sum((x^2)*wt), wt)
mgd[[objName]] <- if (rtnVectors) sqrt(md) else sqrt(mean(md))
}
if (rtnVectors)
{
idx <- sort(unlist(lapply(mgd,function (x) sqrt(mean(x)))),index.return=TRUE)$ix
mgd[idx]
} else sort(unlist(mgd))
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/grmsd.R |
# Imputes the observation for a variable from a reference observation to a
# target observation. Also, imputes a value for a reference from other
# references. This practice is useful for validation.
#
# Arguments:
# object is of class yai (built using function yai)
# ancillaryData is a data frame of reference, target, or both observations
# with variables that may or may not be in original problem.
# Imputations are made for these variables using the neighbor
# relationships found in object.
# method defines how continuous variables are imputed, where:
# closest = the value from the nearest neighbor is imputed for
# target observations. For reference observations,
# the value form the observation itself is excluded.
# When k==1, closest is always used.
# mean = the mean of the k neighbors is taken
# median = the median of the k neighbors is taken
# dstWeighted = a weighted average is taken over the k
# neighbors where the weights are (1/(1+d))/sum(1/(1+d))
# method.factor defines how factors are imputed, default is to use the
# "method", where:
# closest = same as continous (always used with k==1).
# mean|median = actually, the mode. The factor level that is the most
# frequent
# dstWeighted = the factor level with the largest weight,
# where weights are (1/(1+d))/sum(1/(1+d))
# k is the number of neighbors to use. When NULL, all those available
# in the yai object are used.
# vars a character vector of variable names desired. If NULL (the default),
# then the list is formed by taking all variables in the input object.
# observed is a flag, when TRUE, the returned data frame includes
# the observed values (see value, below)
# Value:
# A data frame of class impute.yai with all variables
# in the problem or just those listed in "vars" if it is not
# null. When observed is TRUE, the set of variables
# is duplicated with .o added to the names and each is
# the observed value when one exists for the observation.
impute <- function(object,...) UseMethod("impute")
impute.yai <- function (object,ancillaryData=NULL,method="closest",
method.factor=method,k=NULL,
vars=NULL,observed=TRUE,...)
{
# ======== predict functions used internally
findFactors = get("findFactors",asNamespace("yaImpute"))
pred.c <- function (refs,ids,w=NULL,method="closest",k=1,vars,observed)
{
if (is.null(vars)) vars <- colnames(refs)
else vars <- intersect(vars,colnames(refs))
if (is.null(vars) | length(vars)==0) return (NULL)
if (method=="closest" || k==1)
{
ans <- refs[ids[,1],vars,FALSE]
} else if (method=="mean" || method== "median")
{
rws <- match(ids[,1:k],rownames(refs))
ans <- lapply(vars, function (v,rws,refs,nr,func)
{
rfs <- refs[rws,v]
dim(rfs) <- c(nr,length(rfs)/nr)
apply(rfs,1,func)
}, rws, refs, nrow(ids), if (method=="mean") mean else median)
names(ans) <- vars
ans <- as.data.frame(ans)
} else if (method=="dstWeighted")
{
if (is.null(w))
{
warning ("w is required when method is dstWeighted")
return(NULL)
}
wei <- t(apply(w[,1:k,drop=FALSE],1,
function (x) {x <- 1/(1+x); x/sum(x)}))
rws <- match(ids[,1:k],rownames(refs))
ans <- lapply(vars, function (v,rws,refs,wei)
{
rfs <- refs[rws,v]
dim(rfs) <- dim(wei)
apply(rfs*wei,1,sum)
}, rws, refs, wei)
names(ans) <- vars
ans <- as.data.frame(ans)
}
rownames(ans) <- rownames(ids)
if (observed)
{
obs <- matrix(data=NA, nrow = nrow(ans), ncol = ncol(ans))
rownames(obs) <- rownames(ans)
colnames(obs) <- vars
obs <- as.data.frame(obs)
commonRows <- intersect(rownames(ans),rownames(refs))
if (length(commonRows)>0) obs[commonRows,vars] <- refs[commonRows,vars]
colnames(obs) <- paste(vars,"o",sep=".")
ans <- cbind(ans,obs)
}
ans
}
pred.f <- function (refs,ids,w=NULL,method="closest",k=1,vars,observed)
{
if (is.null(vars)) vars <- colnames(refs)
else vars <- intersect(vars,colnames(refs))
if (is.null(vars) | length(vars)==0) return (NULL)
if (method=="closest" || k==1)
{
ans <- data.frame(refs[ids[,1],vars,FALSE])
} else
{
wei <- if (method != "dstWeighted" || is.null(w)) NULL else
t(apply(w[,1:k,drop=FALSE],1,
function (x) {x <- 1/(1+x); x/sum(x)}))
rws <- match(ids[,1:k],rownames(refs))
ans <- lapply(vars, function (v,rws,refs,wei,nr)
{
rfs <- as.character(refs[rws,v])
dim(rfs) <- c(nr,length(rfs)/nr)
if (is.null(wei))
{
apply(rfs,1,function (x)
{
t <- table(x)
t <- t + (runif(length(t)) * 0.01)
names(which.max(t))
})
} else
{
a <- vector("character",nrow(wei))
for (i in 1:nrow(wei))
{
t <- tapply(wei[i,],rfs[i,],sum)
t <- t + (runif(length(t)) * 0.01 * min(t))
a[i] <- names(which.max(t))
}
a
}
}, rws, refs, wei, nrow(ids))
names(ans) <- vars
ans <- as.data.frame(ans,rownames=rownames(ids))
}
rownames(ans) <- rownames(ids)
if (observed)
{
obs <- matrix(data=NA, nrow = nrow(ans), ncol = ncol(ans))
rownames(obs) <- rownames(ans)
colnames(obs) <- vars
obs <- as.data.frame(obs)
commonRows <- intersect(rownames(ans),rownames(refs))
if (length(commonRows)>0)
{
for (var in vars)
{
obs[commonRows,var] <- levels(refs[,var])[refs[commonRows,var]]
obs[,var] <- factor(obs[,var])
}
}
names(obs) <- paste(vars,"o",sep=".")
ans <- cbind(ans,obs)
}
ans
}
pred <- function (refs,ids,w=NULL,method="closest",
method.factor="closest",k=1,vars,observed)
{
factors <- findFactors(refs)
nfactors <- sum(factors)
if (nfactors>0 && method.factor != "closest" && k==1)
{
warning ("method.factor was set to closest because k=1")
method.factor <- "closest"
}
if (nfactors == 0)
out <- pred.c(refs=refs,ids=ids,w=w,method=method,
k=k,vars=vars,observed=observed)
else if (nfactors == ncol(refs))
out <- pred.f(refs=refs,ids=ids,w=w,method=method.factor,
k=k,vars=vars,observed=observed)
else
{
tmp <- data.frame(refs[,!factors],row.names=rownames(refs))
colnames(tmp) <- colnames(refs)[!factors]
p1 <- pred.c(refs=tmp,ids=ids,w=w,method=method,
k=k,vars=vars,observed=observed)
tmp <- data.frame(refs[,factors],row.names=rownames(refs))
colnames(tmp) <- colnames(refs)[factors]
p2 <- pred.f(refs=tmp,ids=ids,w=w,method=method.factor,
k=k,vars=vars,observed=observed)
if (is.null(p1) && is.null(p2)) out <- NULL
else if (is.null(p1)) out <- p2
else if (is.null(p2)) out <- p1
else out <- cbind(p1,p2)
}
out
}
# ===========================
if (missing(object)) stop ("object required.")
if(!inherits(object, "yai")) stop ("class must be yai")
if (is.null(vars))
{
if (is.null(ancillaryData))
{
if (object$method != "randomForest") vars <- yvars(object)
else if (names(object$ranForest)[[1]] == "unsupervised")
vars <- xvars(object)
}
else
{
if (! is.data.frame(ancillaryData))
ancillaryData <- as.data.frame(ancillaryData)
vars <- colnames(ancillaryData)
}
}
posMethods <- c("closest","mean","median","dstWeighted")
if (length(intersect(method,posMethods))==0)
stop (paste("method=",method," must be one of: {",
paste(posMethods,collapse=", "),"}",sep=""))
if (is.null(k)) k <- object$k
if (k>object$k || k==0)
{
warning ("k out of range, set to ",object$k)
k <- object$k
}
if (method != "closest" && k==1)
{
warning ("method was set to closest because k==1")
method <- "closest"
}
if (is.null(ancillaryData))
{
r <- NULL
if (length(object$neiIdsRefs)>0)
{
if (!(ncol(object$yRefs) == 1 && names(object$yRefs)[1]=="ydummy"))
yPredRefs <- pred(refs=object$yRefs,ids=object$neiIdsRefs,
w=object$neiDstRefs,method=method,method.factor=method.factor,
k=k,vars=vars,observed=observed)
else yPredRefs <- NULL
xPredRefs <- pred(refs=object$xall,ids=object$neiIdsRefs,
w=object$neiDstRefs,method=method,method.factor=method.factor,
k=k,vars=vars,observed=observed)
if (is.null(yPredRefs) && is.null(xPredRefs)) r <- NULL
else if (is.null(yPredRefs)) r <- xPredRefs
else if (is.null(xPredRefs)) r <- yPredRefs
else r <- cbind(yPredRefs,xPredRefs)
}
t <- NULL
if (length(object$neiIdsTrgs)>0)
{
if (!(ncol(object$yRefs) == 1 && names(object$yRefs)[1]=="ydummy"))
yPredTrgs <- pred(refs=object$yRefs,ids=object$neiIdsTrgs,
w=object$neiDstTrgs,method=method,method.factor=method.factor,
k=k,vars=vars,observed=observed)
else yPredTrgs <- NULL
xPredTrgs <- pred(refs=object$xall,ids=object$neiIdsTrgs,
w=object$neiDstTrgs,method=method,method.factor=method.factor,
k=k,vars=vars,observed=observed)
if (is.null(yPredTrgs) && is.null(xPredTrgs)) t <- NULL
else if (is.null(yPredTrgs)) t <- xPredTrgs
else if (is.null(xPredTrgs)) t <- yPredTrgs
else t <- cbind(yPredTrgs,xPredTrgs)
}
if (is.null(r) && is.null(t)) out <- NULL
else if (is.null(r)) out <- t
else if (is.null(t)) out <- r
else out <- rbind(r,t)
scale <- data.frame(center=c(object$xScale$center,object$yScale$center),
scale=c(object$xScale$scale, object$yScale$scale))
}
else
{
out <- NULL
if (!is.null(vars))
{
ancillaryData <- ancillaryData[,vars,FALSE]
if (is.null(ncol(ancillaryData)))
stop ("requested variables not present in ancillaryData")
}
rownames(ancillaryData) <- as.character(rownames(ancillaryData))
ids <- as.character(rownames(object$xRefs))
common <- intersect(ids,rownames(ancillaryData))
missing <- setdiff(common,rownames(ancillaryData))
if (length(missing) != 0) warning (paste("no data for",length(missing),
"observations:",paste(missing[1:min(15,length(missing))],collapse=",")))
w <- rbind(object$neiDstRefs,object$neiDstTrgs)
ids <- rbind(object$neiIdsRefs,object$neiIdsTrgs)
out <- pred(refs=ancillaryData,ids=ids,w=w,method=method,
method.factor=method.factor,k=k,vars=vars,observed=observed)
# find the sd/mean of the data and attach these as an attribute
notFactors <- !findFactors(ancillaryData)
if (sum(notFactors) > 0)
{
scale <- matrix(data=NA,nrow=ncol(ancillaryData),ncol=2)
rownames(scale) <- colnames(ancillaryData)
colnames(scale) <- c("center","scale")
scale[notFactors,"center"] <- apply(ancillaryData[,
rownames(scale)[notFactors],FALSE],2,mean,na.rm=TRUE)
scale[notFactors,"scale" ] <- apply(ancillaryData[,
rownames(scale)[notFactors],FALSE],2,sd, na.rm=TRUE)
}
else scale=NULL
}
if (!is.null(out))
{
class(out) <- c("impute.yai","data.frame")
if (!is.null(scale)) attr(out,"scale") <- scale
}
out
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/impute.R |
# Takes a "yai" or "foruse.yaImpute" object and returns an array
# of the n reference observations that are most often used as
# data sources.
mostused = function (object,n=20,kth=NULL)
{
if (is.null(object)) stop ("object required.")
if (inherits(object, "yai")) object = foruse(object,kth=kth)
if (is.null(object)) stop ("no neighbors found using this object")
if (class(object)[2] != "foruse.yaImpute") stop("class must be yai or foruse.yaImpute")
tab=table(object[,1])
class(tab)="vector"
tab=data.frame(tab,row.names=names(tab))
n=min(n,nrow(tab))
sort(tab[,1],decreasing = TRUE)[1:n]
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/mostused.R |
# Arguments:
# object is of class "yai" created by function yai.
# newdata is a matrix or dataframe that contains data for x variables
# k is the number of neighbors desired (see function yai).
#
# Value: A list of class "yai", that is a copy of the input object with
# the following members replaced:
#
# call: the call
#
# obsDropped: a list of the rownames for observations dropped for various
# reasons (missing data).
#
# trgRows: a list of the rownames for target observations as a subset
# of observations in xall (normally, all rows).
#
# xall: the x variables for all observations.
#
# neiDstTrgs: A data frame of distances between a target (identified by it's
# rowname) and the k references. There are k columns.
#
# neiIdsTrgs: A data frame of reference identifications that correspond to
# neiDstTrgs.
#
# k: new value of k, if null, the value is taken from object.
#
# ann: use ann or not...if null, the value is taken from object.
#
newtargets=function(object,newdata,k=NULL,ann=NULL)
{
if(!inherits(object, "yai")) stop ("object must be class yai")
if (object$method == "ensemble")
stop ("newtargets can not be found for objects with method 'ensemble'.")
if (is.null(newdata) | nrow(newdata)==0) stop ("newdata is required")
if (object$method == "gnn")
if (!requireNamespace ("vegan")) stop("install vegan and try again")
if (object$method == "randomForest")
if (!requireNamespace ("randomForest"))
stop("install randomForest and try again")
if (object$method == "gower")
{
stop("install gower and try again")
# the purpose of this line of code is to suppress CRAN check notes
gower_topn <- function (...) NULL
} else {
gower_topn <- gower::gower_topn
}
if (!requireNamespace ("gower")) stop("install gower and try again")
sumSqDiff=function(x,y) { d=x-y; sum(d*d) }
factorMatch = get("factorMatch",asNamespace("yaImpute"))
if (is.null(ann)) ann=object$ann
if (!is.null(k)) object$k=k
object$call=match.call()
obsDropped=NULL
# don't redo the factor matching for objects that come already done.
if (is.null(attr(newdata,"illegalLevelCounts")) &&
length(intersect(xvars(object),names(object$xlevels))) > 0)
{
newdata = factorMatch(newdata,object$xlevels)
if (is.list(attr(newdata,"illegalLevelCounts")))
{
warning ("NA's generated due to illegal level(s).")
cat ("Illegal levels\n")
print(attr(newdata,"illegalLevelCounts"))
}
}
if (is.null(object$theFormula))
{
have=intersect(colnames(object$xRefs),colnames(newdata))
if (length(have) != length(colnames(object$xRefs)))
{
missing = setdiff(colnames(object$xRefs),colnames(newdata))
stop(paste("required column(s) missing:", paste (missing, collapse=", ")))
}
xall=na.omit(as.data.frame(newdata[,have]))
colnames(xall) = have
obsDropped=names(attributes(na.omit(xall))$na.action)
if (length(obsDropped)>0) warning (nrow(newdata)-nrow(xall)," observation(s) removed")
}
else
{
xall=model.frame(object$theFormula$x,newdata)
if (!is.null(object$xDrop)) xall=xall[,!object$xDrop,drop=FALSE]
obsDropped=setdiff(rownames(newdata),rownames(xall))
if (length(obsDropped)) warning (length(obsDropped)," observation(s) removed")
}
if (nrow(xall) == 0) stop ("no observations")
trgs=setdiff(rownames(xall),rownames(object$xRefs))
if (nrow(xall) != length(trgs))
{
obsDropped=union(obsDropped,intersect(rownames(object$xRefs),rownames(xall)))
warning (nrow(xall)-length(trgs)," row(s) in newdata are original references and ignored")
}
theCols = colnames(object$xRefs) # may be changed for reduced rank, depending on method.
if (object$method %in% c("msn","msn2","msnPP","mahalanobis","ica"))
{
theCols = rownames(object$projector)
xcvRefs=scale(object$xRefs,center=object$xScale$center,scale=object$xScale$scale)
if (length(theCols)<ncol(xcvRefs)) xcvRefs=xcvRefs[,theCols,drop=FALSE]
}
xTrgs=as.data.frame(xall[trgs,theCols,drop=FALSE]) # this is needed by randomForest and gnn unscalled.
if (nrow(xTrgs)==0) stop("no observations")
if (object$method == "gnn") # gnn
{
# create a projected space for the reference observations
xcvRefs=predict(object$ccaVegan,type="lc",rank="full")
xcvRefs=xcvRefs %*% diag(sqrt(object$ccaVegan$CCA$eig/sum(object$ccaVegan$CCA$eig)))
# create a projected space for the unknowns (target observations)
xcvTrgs=scale(xTrgs,center=object$xScale$center,scale=object$xScale$scale)
xcvTrgs=predict(object$ccaVegan,newdata=as.data.frame(xcvTrgs),type="lc",rank="full")
xcvTrgs=xcvTrgs %*% diag(sqrt(object$ccaVegan$CCA$eig/sum(object$ccaVegan$CCA$eig)))
nVec = ncol(xcvRefs)
}
else if (object$method == "randomForest") # randomForest
{
nodes=NULL
predObs = if (is.null(attr(object$ranForest,"rfRefNodeSort"))) rbind(object$xRefs,xTrgs) else xTrgs
for (i in 1:length(object$ranForest))
{
nodeset=attr(predict(object$ranForest[[i]],predObs,
proximity=FALSE,nodes=TRUE),"nodes")
if (is.null(nodeset)) stop("randomForest did not return nodes")
colnames(nodeset)=paste(colnames(nodeset),i,sep=".")
nodes=if (is.null(nodes)) nodeset else cbind(nodes,nodeset)
}
if (is.null(attr(object$ranForest,"rfRefNodeSort")))
{
INTrefNodes=as.integer(nodes[rownames(object$xRefs),])
INTnrow=as.integer(nrow(object$xRefs))
INTncol=as.integer(ncol(nodes))
INTsort = INTrefNodes
dim(INTsort) = c(INTnrow,INTncol)
INTsort=apply(INTsort,2,function (x) sort(x,index.return = TRUE, decreasing = FALSE)$ix-1)
attributes(INTsort)=NULL
INTsort = as.integer(INTsort)
nodes = nodes[rownames(xTrgs),]
}
else
{
INTrefNodes = attr(object$ranForest,"rfRefNodeSort")[["INTrefNodes"]]
INTnrow = attr(object$ranForest,"rfRefNodeSort")[["INTnrow"]]
INTncol = attr(object$ranForest,"rfRefNodeSort")[["INTncol"]]
INTsort = attr(object$ranForest,"rfRefNodeSort")[["INTsort"]]
}
}
else if (object$method == "random")
{
xcvRefs=data.frame(random=runif(nrow(object$xRefs)),row.names=rownames(object$xRefs))
xcvTrgs=data.frame(random=runif(length(trgs)),row.names=trgs)
}
else if (object$method %in% c("msn","msn2","msnPP","mahalanobis","ica"))
{
xcvRefs=as.matrix(xcvRefs[,theCols,drop=FALSE]) %*% object$projector
xcvTrgs=scale(xTrgs,center=object$xScale$center,scale=object$xScale$scale)
xcvTrgs=as.matrix(xcvTrgs[,theCols,drop=FALSE]) %*% object$projector
}
else if (object$method == "euclidean")
{
xcvRefs=scale(object$xRefs,center=object$xScale$center,scale=object$xScale$scale)
xcvRefs=as.matrix(xcvRefs[,theCols,drop=FALSE])
xcvTrgs=scale(xTrgs,center=object$xScale$center,scale=object$xScale$scale)
xcvTrgs=as.matrix(xcvTrgs[,theCols,drop=FALSE])
}
else if (object$method == "gower")
{
xcvRefs=object$xRefs[,theCols,drop=FALSE]
xcvTrgs=xTrgs[,theCols,drop=FALSE]
}
else # method is raw
{
xcvRefs=as.matrix(object$xRefs[,theCols,drop=FALSE])
xcvTrgs=as.matrix(xTrgs[,theCols,drop=FALSE])
}
neiDstTrgs=matrix(data=NA,nrow=length(trgs),ncol=object$k)
rownames(neiDstTrgs)=trgs
colnames(neiDstTrgs)=paste("Dst.k",1:object$k,sep="")
neiIdsTrgs=neiDstTrgs
colnames(neiIdsTrgs)=paste("Id.k",1:object$k,sep="")
if (object$method %in% c("msn","msn2","msnPP","mahalanobis","ica",
"euclidean","gnn","raw"))
{
if (ann & nrow(xcvTrgs)>0)
{
k=object$k
ann.out=ann(xcvRefs, xcvTrgs, k, verbose=FALSE)$knnIndexDist
neiDstTrgs[TRUE]=sqrt(ann.out[,(k+1):ncol(ann.out)])
for (i in 1:k)
neiIdsTrgs[,i]=rownames(xcvRefs)[ann.out[,i]]
rownames(neiDstTrgs)=rownames(neiIdsTrgs)
}
else
{
for (row in rownames(xcvTrgs))
{
d=sqrt(sort(apply(xcvRefs,MARGIN=1,sumSqDiff,xcvTrgs[row,])))[1:object$k]
neiDstTrgs[row,]=d
neiIdsTrgs[row,]=names(d)
}
}
}
else if (object$method == "gower")
{
gow = gower_topn(x=xcvRefs,y=xcvTrgs,n=k)
for (i in 1:object$k)
{
neiDstTrgs[,i]=gow$distance[i,]
neiIdsTrgs[,i]=rownames(xcvTrgs)[gow$index[i,]]
}
}
else if (object$method == "randomForest")
{
prox=lapply(apply(nodes,1,as.list),function (x) {
prx=.Call("rfoneprox", INTrefNodes, INTsort, INTnrow, INTncol,
as.integer(x), vector("integer",INTnrow))
if (object$k > 1) px=sort(prx,index.return = TRUE, decreasing = TRUE)$ix[1:object$k]
else px=which.max(prx)
c(prx[px],px) # counts followed by pointers to references
})
for (i in 1:object$k)
{
neiDstTrgs[,i]=unlist(lapply(prox,function (x,i) (INTncol-x[i])/INTncol,i))
neiIdsTrgs[,i]=unlist(lapply(prox,function (x,i,k,Rnames)
Rnames[x[k+i]],i,object$k,rownames(object$xRefs)))
}
}
else if (object$method == "random")
{
l=k+1
d = matrix(unlist(lapply(xcvTrgs[[1]],function (x, xcv, l)
{
sort((xcv-x)^2,index.return=TRUE)$ix[2:l]
},xcvRefs[[1]],l)),nrow=nrow(xcvTrgs),ncol=k,byrow=TRUE)
for (ic in 1:ncol(d))
{
neiDstTrgs[,ic]=abs(xcvTrgs[,1]-xcvRefs[d[,ic],1])
neiIdsTrgs[,ic]=rownames(xcvRefs)[d[,ic]]
}
}
else # default
{
stop("no code for specified method")
}
# if bootstrap, then modify the reference ID's in the result ID tables.
if (length(object$bootstrap) > 1)
neiIdsTrgs[] = sub("\\.[0-9]$","",neiIdsTrgs[])
object$obsDropped=obsDropped
object$trgRows=trgs
addX = setdiff (rownames(object$xRefs),rownames(xall))
if (length(addX) > 0) xall = rbind(xall,object$xRefs[addX,])
object$xall=xall
object$neiDstTrgs=neiDstTrgs
object$neiIdsTrgs=neiIdsTrgs
noRefs=TRUE
object$neiDstRefs=NULL
object$neiIdsRefs=NULL
object$ann=ann
object
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/newtargets.R |
notablyDifferent <- function (object,vars=NULL,threshold=NULL,p=.05,...)
{
if (missing(object)) stop ("object required.")
if(!inherits(object, "yai")) stop ("object must be class yai")
refIds <- rownames(object$neiDstRefs)
if (length(refIds) == 0) stop ("references are required")
cl <- match.call()
trgIds <- rownames(object$neiDstTrgs)
if (is.null(vars)) vars=xvars(object)
impObj <- impute.yai(object,vars=vars,observed=TRUE,...)
if (is.null(impObj)) stop ("no imputations found using this object")
nuke <- unlist(lapply(impObj,function (x) all(is.na(x))))
nuke=nuke[nuke]
if (length(nuke) > 0) impObj <-
impObj[,-match(names(nuke),names(impObj)),drop=FALSE]
nuke <- unlist(lapply(impObj,function (x) is.factor(x)))
nuke <- nuke[nuke]
if (length(nuke) > 0) impObj <-
impObj[,-match(names(nuke),names(impObj)),drop=FALSE]
impObj <- na.omit(impObj)
if (is.null(vars)) vars <- names(impObj)
vi <- paste(unique(strsplit(vars,".o",fixed=TRUE)))
vi <- intersect(vi,names(impObj))
notFound <- setdiff(vars,names(impObj))
if (length(notFound)>0) warning ("variables not found or had missing values: ",
paste(notFound,collapse=", "))
if (length(vi) == 0) stop("nothing to compute")
vo <- paste(vi,"o",sep=".")
notFound <- setdiff(vo,names(impObj))
if (length(notFound)>0) warning ("variables not found or had missing values: ",
paste(notFound,collapse=", "))
vo <- intersect(vo,names(impObj))
both <- intersect(paste(unique(strsplit(vo,".o",fixed=TRUE))),vi)
if (length(both) == 0) stop("no variables with observed and imputed values")
vo <- paste(both,"o",sep=".")
var <- unlist(lapply(impObj[,vo,drop=FALSE],var))
names(var) = sub(".o","",names(var),fixed = TRUE)
diff <- impObj[,both,drop=FALSE]-impObj[,vo,drop=FALSE]
for (nam in both) diff[,nam] = (diff[,nam]*diff[,nam])/var[nam]
rmsd <- sqrt(apply(diff,1,mean))
if (is.null(threshold)) threshold <- quantile(rmsd[refIds],1-p)
ans <- list(call=cl,vars=both,threshold=threshold,
notablyDifferent.refs=sort(rmsd[refIds][rmsd[refIds]>threshold]),
notablyDifferent.trgs=sort(rmsd[trgIds][rmsd[trgIds]>threshold]),
rmsdS.refs=sort(rmsd[refIds]),
rmsdS.trgs=sort(rmsd[trgIds]))
class(ans) <- "notablyDifferent"
ans
}
plot.notablyDifferent <- function (x,add=FALSE,...)
{
if (missing(x)) stop ("x required")
if (inherits(x, "list"))
{
if (!all(unlist(lapply(x,function (xx) class(xx)=="notablyDifferent"))))
stop ("all members in the x list must be class notablyDifferent")
ans <- matrix(unlist(lapply(x,function (xx)
{
all <- c(xx$rmsdS.refs,xx$rmsdS.trgs)
c(max (all), length(all))
})),length(x),2,byrow=TRUE)
xlim <- c(1,max(ans[,2]))
ylim <- c(0,max(ans[,1]))
for (i in 1:length(x))
{
plot.notablyDifferent(x[[i]],xlim=xlim,ylim=ylim,add=i>1,col=i,...)
myusr = par()$usr
par(usr=c(0,1,0,1))
cy <- par()$cxy[2]
cy <- cy*1.1
if (i == 1) text(x=.05,y=.95,pos=4,"Legend")
text(x=.05,y=.95-(i+2)*cy,pos=4,
if (is.null(names(x)[i])) paste("Case",i) else
names(x)[i], col=i)
par(usr=myusr)
}
}
else
{
if(!inherits(x, "notablyDifferent"))
stop ("x must be class notablyDifferent")
all <- c(x$rmsdS.refs,x$rmsdS.trgs)
pch <- c(rep(1,length(x$rmsdS.refs)),rep(2,length(x$rmsdS.trgs)))
names(pch) <- names(all)
all <- sort(all)
pch[names(x$notablyDifferent.refs)] <- 19
pch[names(x$notablyDifferent.trgs)] <- 17
xx <- 1:length(all)
if (add) points(x=xx,y=all,pch=pch[names(all)],...) else
plot(x=xx,y=all,pch=pch[names(all)],
main="Imputation Error Profile",
ylab="Scaled RMSD",xlab="Observation",...)
abline(h=x$threshold,...)
if (!add)
{
myusr = par()$usr
par(usr=c(0,1,0,1))
cxy = par()$cxy*1.1
bxy = c(.05,.95)
points(x=cxy[1] +bxy[1], y=bxy[2]- cxy[2], pch=1)
points(x=cxy[1]*2+bxy[1], y=bxy[2]- cxy[2], pch=19)
text( x=cxy[1]*3+bxy[1], y=bxy[2]- cxy[2], pos=4,"References")
points(x=cxy[1] +bxy[1], y=bxy[2]-2*cxy[2], pch=2)
points(x=cxy[1]*2+bxy[1], y=bxy[2]-2*cxy[2], pch=17)
text( x=cxy[1]*3+bxy[1], y=bxy[2]-2*cxy[2], pos=4,"Targets")
par(usr=myusr)
}
}
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/notablydifferent.R |
# Provides a list of notably distant targets.
#
# Arguments:
# object is of class yai (built using function yai), it
# must contain reference distances if threshold is null.
# threshold is a threshold value used in the calculations, if
# NULL it is computed using the p value.
# p is the percentile point in the log normal distribution used
# to compute the threshold when it is null.
# method="quantile": the threshold is computed using function "quantile"
# to pick the (1-p)th percentile point in the set of distances.
# "distribution": the threshold is based on a percentile points
# of a assumed distribution.
# and otherwise the "distribution" assumptions are followed.
# Value:
# List of two data frames that contain 1) the references that are notably
# distant from other references, and 2) the targets that are notably distant
# from the references, the threshold used and lastly the method used.
notablyDistant <- function (object,kth=1,threshold=NULL,p=0.01,
method="distribution")
{
if (missing(object)) stop ("object required.")
if (!inherits(object, "yai")) stop ("class must be yai")
if (kth>object$k) kth <- object$k
if (kth<1) kth <- 1
if (is.null(threshold))
{
threshold <- NA
if (is.null(object$neiDstRefs)) stop ("distances among references are required when threshold is NULL")
if (method=="distribution")
{
# use the beta disrtibution, distances are 0<=d<=1
if (object$method %in% c("randomForest","random"))
{
m <- mean(object$neiDstRefs[,kth])
ss <- var(object$neiDstRefs[,kth])
if (!is.nan(ss) & !is.nan(m))
{
v <- m*((m*(1-m)/ss)-1)
w <- (1-m)*((m*(1-m)/ss)-1)
threshold <- qbeta(p,v,w,lower.tail=FALSE)
}
}
else # use the lognormal distribution, distances are 0<=d
{
zeros <- object$neiDstRefs[,kth]<=0
if (sum(zeros)==0) obs <- log(object$neiDstRefs[,kth])
else
{
smz <- min(object$neiDstRefs[!zeros,kth])
obs <- object$neiDstRefs[,kth]
obs[zeros] <- smz*.5
obs <- log(obs)
warning ("when computing threshold, ",sum(zeros)," zero distances of ",
length(obs)," references were set to ",format(smz*.5))
}
m <- mean(obs)
s <- sd(obs)
if (!is.nan(s) & !is.nan(m)) threshold <- exp(s*qnorm(p, mean=0, sd=1, lower.tail=FALSE, log.p=FALSE)+m)
}
if (is.nan(threshold))
{
threshold <- Inf
warning ("threshold can not be computed, set to Inf")
}
}
else
{
if (method != "quantile")
{
method="quantile"
warning("method set to quantile")
}
threshold <- quantile(object$neiDstRefs[,kth],probs=1-p)
}
}
findNDist <- function (ids,dst,names,threshold)
{
out <- data.frame(use=ids,dist=dst,row.names=names)
out <- out[out[,2]>threshold,]
if (nrow(out)>1)
{
ix <- sort(out[,2],decreasing=TRUE, index.return=TRUE)$ix
out <- out[ix,]
}
out
}
if (!is.null(object$neiDstRefs))
distRefs <- findNDist(object$neiIdsRefs[,kth],object$neiDstRefs[,kth],rownames(object$neiIdsRefs),threshold)
else distRefs=NULL
if (!is.null(object$neiIdsTrgs))
distTrgs <- findNDist(object$neiIdsTrgs[,kth],object$neiDstTrgs[,kth],rownames(object$neiIdsTrgs),threshold)
else distTrgs=NULL
list(notablyDistantRefs=distRefs, notablyDistantTrgs=distTrgs, threshold=threshold, method=method)
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/notablydistant.R |
# Builds observed over imputed plots in an imputed data frame.
# Arguments:
# x is of class yai or yai.impute If the object is yai, impute is called
# with observed=TRUE.
# vars is a list of variables for the plots, if NULL, all those with imputed and
# observed values are plotted.
# pointColor is the color value (or vector) for the xy plots
# lineColor is the color of the 1:1 plot.
# spineColor is the color vector of the spineplot
# residual, plot residuals when TRUE, imputed over observed when FALSE.
# ... passed to the impute funciton when it is called and passed to the plot function.
plot.yai = function (x,vars=NULL,pointColor=1,lineColor=2,spineColor=NULL,residual=FALSE,...)
{
if (missing(x)) stop ("x required.")
sub=deparse(substitute(x))
if (class(x)[1] == "yai") x = impute.yai(x,vars=vars,observed=TRUE,...)
if (is.null(x)) stop ("no imputations found using this x")
if (is.null(vars)) vars=names(x)
vi=paste(unique(strsplit(vars,".o",fixed=TRUE)))
vi=intersect(vi,names(x))
notFound=setdiff(vars,names(x))
if (length(notFound)>0) warning ("variables not found: ",paste(notFound,collapse=", "))
if (length(vi) == 0) stop("nothing to plot")
vo=paste(vi,"o",sep=".")
notFound=setdiff(vo,names(x))
if (length(notFound)>0) warning ("variables not found: ",paste(notFound,collapse=", "))
vo=intersect(vo,names(x))
both=intersect(paste(unique(strsplit(vo,".o",fixed=TRUE))),vi)
if (length(both) == 0) stop("nothing to plot")
n=length(both)
rows=floor(sqrt(n))
if (rows==0) rows=1
if (rows*rows == n) cols=rows
else cols=rows+1
if (rows*cols < n) rows=rows+1
oldpar=par(mfcol=c(rows,cols))
on.exit(par(oldpar))
if (is.null(pointColor)) pointColor=1
for (imp in both)
{
obs=paste(imp,"o",sep=".")
if ((is.factor(x[,imp])|is.factor(x[,obs])))
{
p=try(spineplot(x=x[,imp],y=x[,obs],xlab="Imputed",ylab="Observed",
col=spineColor))
if (inherits(p, "try-error")) warning ("no plot could be created for ",imp)
}
else
{
if (residual)
{ #TODO: figure out how to avoid using suppressWarnings and still pass ... when it contains non-graphical arguments
suppressWarnings(plot(x=x[,imp],y=x[,obs]-x[,imp],ylab="Residual",xlab="Imputed",col=pointColor,...))
abline(0,0,col=lineColor)
}
else
{
suppressWarnings(plot(x=x[,imp],y=x[,obs],xlab="Imputed",ylab="Observed",col=pointColor,...))
abline(0,1,col=lineColor)
}
}
mtext(imp,font=par("font.main"),line=.7)
}
mtext(sub,outer = TRUE,line=-1.6, cex=1.5)
}
plot.impute.yai <- plot.yai
# function to plot the results of running compare
plot.compare.yai=function(x,pointColor=1,lineColor=2,...)
{
if (!("compare.yai" %in% class(x))) stop("class must include compare.yai")
addpoints=function(x,y,...) {points(x,y,col=pointColor,...);abline(0,1,col=lineColor)}
pairs(x,lower.panel=addpoints,upper.panel=addpoints,
xlim=c(0,max(max(x,na.rm=TRUE),1)),ylim=c(0,max(max(x,na.rm=TRUE),1)),...)
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/plot.yai.R |
predict.yai <-
function(object,newdata,...)
{
if (missing(newdata)) impute.yai(object,...) else
{
al <- list(...)
impute.yai(newtargets(object,newdata,al$k,al$ann),...)
}
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/predict.yai.R |
print.yai = function(x,...)
{
if (missing(x)) stop ("x required.")
if (class(x)[1] != "yai") stop("arg class must be yai")
cat ("\nCall:\n")
print (x$call)
if (length(x$obsDropped)== 0) cat ("0 observations dropped\n")
else cat (length(x$obsDropped),"observations dropped: ",
x$obsDropped[1:min(15,length(x$obsDropped))],"...\n")
cat ("method used: ",x$method,"\n")
if (is.null(x$cancor))
{
cat ("Cancor not run\n")
}
else
{
cat ("Cancor report:\n")
print(format(data.frame(cor=x$cancor$cor, F=x$ftest$F,
Pr.F=x$ftest$pgF, Sig=c(" ","NS")[(x$ftest$pgF>x$pVal)+1]),digits=4))
cat (x$nVec,"vectors used, pVal=",x$pVal,"\n")
cat ("cancor$xcoef:\n")
print(x$cancor$xcoef[,1:x$nVec])
}
if (!is.null(x$projector))
{
cat ("Projector:\n")
print (x$projector)
}
if (is.null(x$ccaVegan))
{
cat ("CCA not run\n")
}
else
{
cat ("CCA analysis:\n")
if (!requireNamespace ("vegan")) stop("install vegan and try again")
print (x$ccaVegan)
}
if (is.null(x$ranForest))
{
cat ("randomForest not run\n")
}
else
{
cat ("randomForest analysis:\n")
if (!requireNamespace ("randomForest"))
stop("install randomForest and try again")
print(yaiRFsummary(x))
}
cat (sum(x$yDrop),"y variables dropped ",
paste(names(x$yDrop[x$yDrop]),collapse=","),"\n")
cat (sum(x$xDrop),"x variables dropped ",
paste(names(x$xDrop[x$xDrop]),collapse=","),"\n")
if (x$ann & x$method!="randomForest") cat ("Note: ann used\n") else cat ("ann not used\n")
if (length(x$neiDstTrgs)==0) cat ("No target neighbors computed.\n")
else
{
nPr=min(10,nrow(x$neiDstTrgs))
part=data.frame(x$neiDstTrgs[1:nPr,,drop=FALSE],x$neiIdsTrgs[1:nPr,,drop=FALSE],
stringsAsFactors = FALSE)
names(part)=c(colnames(x$neiDstTrgs),colnames(x$neiIdsTrgs))
cat ("First",nPr,"targets:\n")
print (part)
}
if (length(x$neiDstRefs)==0) cat ("No reference neighbors computed.\n")
else
{
nPr=min(10,nrow(x$neiDstRefs))
part=data.frame(x$neiDstRefs[1:nPr,,drop=FALSE],x$neiIdsRefs[1:nPr,,drop=FALSE],
stringsAsFactors = FALSE)
names(part)=c(colnames(x$neiDstRefs),colnames(x$neiIdsRefs))
cat ("First",nPr,"references:\n")
print (part)
}
if (!is.null(x$biasParameters))
{
cat ("Bias correction parameters:\n")
cat ("trgVal CI =",x$biasParameters$trgValCI,
" curVal =",x$biasParameters$curVal,
"\nNumber of passes used =",x$biasParameters$npasses,
" of ",x$biasParameters$oldk-1,"possible\n")
}
}
summary.yai = function (object,...) print.yai(object,...)
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/print.yai.R |
# Computes the RMSD (root mean square difference) between observed
# and imputed observations
# RMSD is like RMSE
# Arguments:
# object is of class yai or yai.impute If the object is yai, impute is called
# with observed=TRUE.
# vars is a list of variables, if NULL, all those with imputed values are processed.
# ... passed to the impute funciton when it is called
# scale if true, scale the rmsd by the std dev of the observed.
# Value:
# A data frame with the rownames as vars and the column as RMSD
rmsd.yai <- function (object,vars=NULL,scale=FALSE,...)
{
if (missing(object)) stop ("object required.")
if (class(object)[1] == "yai") object = impute.yai(object,vars=vars,observed=TRUE,...)
if (is.null(object)) stop ("no imputations found using this object")
nuke = unlist(lapply(object,function (x) all(is.na(x))))
nuke=nuke[nuke]
if (length(nuke) > 0) object = object[,-match(names(nuke),names(object)),drop=FALSE]
object = na.omit(object)
if (is.null(vars)) vars=names(object)
vi=paste(unique(strsplit(vars,".o",fixed=TRUE)))
vi=intersect(vi,names(object))
notFound=setdiff(vars,names(object))
if (length(notFound)>0) warning ("variables not found or had missing values: ",paste(notFound,collapse=", "))
if (length(vi) == 0) stop("nothing to compute")
vo=paste(vi,"o",sep=".")
notFound=setdiff(vo,names(object))
if (length(notFound)>0) warning ("variables not found or had missing values: ",paste(notFound,collapse=", "))
vo=intersect(vo,names(object))
both=intersect(paste(unique(strsplit(vo,".o",fixed=TRUE))),vi)
if (length(both) == 0) stop("nothing to compute")
vo=paste(both,"o",sep=".")
rmsd=data.frame(rep(NA,length(vo)),row.names=both)
names(rmsd)=if (scale || length(scale)>1) "rmsdS" else "rmsd"
usedScale = list()
for (i in 1:length(both))
{
if (!is.factor(object[,both[i]]))
{
rmsd[i,1]=sqrt(mean(((object[,both[i]]-object[,vo[i]])^2)))
if (scale || length(scale)>1)
{
div = NULL
if (length(scale) > 1) div = scale[[both[i]]]
if (is.null(div) || is.na(div)) div=attr(object,"scale")[both[i],"scale"] # in data
if (is.null(div) || is.na(div)) div = sd(object[,vo[i]]) #use observed when needed.
usedScale[[both[i]]] = div
rmsd[i,1] = if (!is.na(div) && div > 0.01) rmsd[i,1]/div else NA
}
}
}
if (length(usedScale) > 0) attr(rmsd,"scale") = unlist(usedScale)
rmsd
}
rmsd <- rmsd.yai
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/rmsd.yai.R |
unionDataJoin=function(...,warn=TRUE)
{
# creates a data frame that has the rows defined by a union of all rownames in the
# arguments and columns defined by a union of all colnames in the arguments.
# a single argument can be a list of data frames or matrices
#
# when warn is TRUE, columns that occur in more than one source are listed as a warning.
args=list(...)
if (length(args) == 1 && inherits(args[[1]], "list")) args=args[[1]]
for (d in args)
{
if (!is.data.frame(d) && !is.matrix(d)) stop ("arguments or list members must be matrices or data frames")
if (is.matrix(d))
{
if (is.null(colnames(d))) stop ("column names are requried within all input matrices")
if (is.null(rownames(d))) stop ("row names are requried within all input matrices")
if (length(unique(colnames(d))) != length(colnames(d))) stop("column names must be unique within all input matrices")
}
}
rows=NULL
cols=NULL
haveCol=NULL
for (d in args)
{
rows=union(rows,rownames(d))
haveCol=union(intersect(cols,colnames(d)),haveCol)
cols=union(cols,colnames(d))
}
if (warn & length(haveCol)>0)
warning ("Columns: \"",paste(haveCol,collapse=", "),
"\" were defined more than once")
all=matrix(data=NA,nrow=length(rows),ncol=length(cols))
all=data.frame(all)
rownames(all)=rows
colnames(all)=cols
factors=rep(FALSE,length(cols))
names(factors)=cols
for (d in args)
{
theCols=colnames(d)
if (is.data.frame(d))
{
for (var in theCols)
{
if (is.factor(d[,var]))
{
factors[var] = TRUE
all[rownames(d),var]=levels(d[,var])[d[,var]]
}
else all[rownames(d),var]=d[,var,drop=FALSE]
}
}
else all[rownames(d),theCols]=d
}
for (var in colnames(all)) if (factors[var]) all[,var]=as.factor(all[,var])
all
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/uniondatajoin.R |
varSelection <-
function (x,y,method="addVars",yaiMethod="msn",imputeMethod="closest",
wts=NULL,nboot=20,trace=FALSE,
useParallel=if (.Platform$OS.type == "windows") FALSE else TRUE,...)
{
if (missing(x)) stop ("x must be specified.")
if (missing(y)) stop ("y must be specified.")
okMethods <- c("addVars","delVars")
if (!(method %in% okMethods))
stop("method=\"",method,"\" must be one of: \"",
paste0(okMethods,collapse="\", \""),"\"")
if (is.null(wts)) wts <- rep(1,ncol(y))
if (useParallel && .Platform$OS.type != "Windows" &&
requireNamespace ("parallel"))
{
myapply <- parallel::mclapply
} else {
if (useParallel)
warning("package parallel was not loaded and is not being used")
myapply <- lapply
}
cl <- match.call()
bootstrap <- nboot > 0
# load required packages...this is done here so that forked
# processes will have the required packages...different logic is needed
# to support parallel on windows.
if (yaiMethod == "gnn") # (GNN), make sure we have package vegan loaded
{
if (!requireNamespace ("vegan")) stop("install vegan and try again")
}
if (yaiMethod == "ica") # (ica), make sure we have package fastICA loaded
{
if (!requireNamespace ("fastICA")) stop("install fastICA and try again")
}
if (yaiMethod == "randomForest") # make sure we have package randomForest loaded
{
if (!requireNamespace ("randomForest")) stop("install randomForest and try again")
}
if (yaiMethod == "msnPP") # make sure we have package ccaPP loaded
{
if (!requireNamespace ("ccaPP")) stop("install ccaPP and try again")
}
if (yaiMethod == "gower") # make sure we have package gower loaded
{
if (!requireNamespace ("gower")) stop("install gower and try again")
}
# single variable elimination logic:
if (method=="delVars")
{
allErr <- unlist( myapply(1:max(1,nboot), function (i,x,y,wts,yaiMethod,...)
suppressWarnings(grmsd(one=suppressWarnings(yai(x=x,y=y,
method=yaiMethod,bootstrap=bootstrap,...)),
ancillaryData=y,wts=wts)) ,x,y,wts,yaiMethod,bootstrap,...) )
if (trace) cat ("With all vars, mean grmsd (over boostraps) = ",mean(allErr),
"; stddev=",sd(allErr),"; Num cols = ",ncol(x),"\n",sep="")
xa <- x
selvars <- list(None=allErr)
while (ncol(xa) > 1)
{
err <- list()
for (var in 1:ncol(xa)) err[[var]] <- unlist(myapply(1:max(1,nboot),
function (i,xa,y,wts,var,yaiMethod,bootstrap,...)
suppressWarnings(grmsd(one=suppressWarnings(yai(x=xa[,-var,
drop=FALSE],y=y, method=yaiMethod, bootstrap=bootstrap,...)),
ancillaryData=y,wts=wts)), xa,y,wts,var,yaiMethod,bootstrap,...) )
names(err) <- names(xa)
# drop the variable that creates the least error by not including it.
del <- which.min(unlist(lapply(err,mean)))
selvars[[names(del)]] <- as.vector(unlist(err[del]))
xa <- xa[,-del,drop=FALSE]
remVars <- colnames(xa)
if (trace) cat ("Delete var= ",names(del),
"; mean grmsd (over boostraps) = ",mean(err[[del]]),
"; stddev=",sd(err[[del]]),"; Num cols remaining= ",ncol(xa),"\n",sep="")
}
} else if (method=="addVars") {
remVars <- NULL
selvars <- list()
keep <- NULL
while (length(keep) < ncol(x))
{
err <- list()
for (var in setdiff(names(x),keep))
{
xa <- x[,c(keep,var),drop=FALSE]
err[[var]] <- unlist(myapply(1:max(1,nboot),
function (i,xa,y,wts,yaiMethod,bootstrap,...)
suppressWarnings(grmsd(one=suppressWarnings(yai(x=xa,y=y,
method=yaiMethod,bootstrap=bootstrap,...)),
ancillaryData=y,wts=wts)), xa,y,wts,yaiMethod,bootstrap,...) )
}
# keep the variable that reduces the error the most when it is included
add <- names(which.min(unlist(lapply(err,mean))))
selvars[[add]] <- as.vector(unlist(err[add]))
keep <- c(keep,add)
if (trace) cat ("Added var= ",add,
"; mean grmsd (over boostraps) = ",mean(err[[add]]),
"; stddev=",sd(err[[add]]),"; Num cols being used= ",
ncol(xa),"\n",sep="")
}
}
err <- lapply(selvars,function (x) c (mean(x),sd(x)))
rn <- names(err)
err <- matrix(unlist(err),ncol=2,byrow=TRUE)
rownames(err) <- rn
colnames(err) <- c("mean","sd")
rtn <- list(call=cl,grmsd=err,allgrmsd=selvars,method=method)
if (!is.null(remVars)) rtn$remVars <- remVars
class(rtn) <- c("varSel","list")
rtn
}
plot.varSel <- function (x,main=NULL,nbest=NULL,arrows=TRUE,...)
{
if (missing(x)) stop ("x must be present")
x = x
if (!inherits(x,"varSel")) stop ("class of x must be varSel")
if (is.null(main)) main <-
switch(x$method, addVars="Mean distance as variables are added",
delVars="Mean distance as variables are removed",
stop("method '",x$method,"' not found in x"))
if (is.null(nbest)) nbest <- length(bestVars(x))
bcc <- rep(gray(.35),length(x$allgrmsd))
if (is.null(x$remVars)) bcc[1:nbest] <- "black" else
bcc[(length(bcc)-nbest+2):length(bcc)] <- "black"
orgmar <- par()$mar
par(mar=c(6,3,2,1))
boxplot(x$allgrmsd,border=bcc,horizontal= FALSE, las=2,main=main,...)
lines(x$grmsd[,1] ,x=1:nrow(x$grmsd),col=2)
lines(x$grmsd[,1]+x$grmsd[,2],x=1:nrow(x$grmsd),col=3,lty=2)
lines(x$grmsd[,1]-x$grmsd[,2],x=1:nrow(x$grmsd),col=3,lty=2)
if (is.null(x$remVars))
{
if (arrows & nbest>2)
{
ytop <- par()$usr[4]-par()$cxy[2]
arrows(x0=nbest,y0=ytop,x1=1+par()$cxy[1]*.5,y1=ytop,length=par()$cin[2]*.5)
text (paste0("Best ",nbest),x=nbest,y=ytop-par()$cxy[2],pos=2)
}
} else {
ytop <- par()$usr[4]-par()$cxy[2]
txt <- paste0("Remaining variable",
if (length(x$remVars) > 1) "s" else "",": ",
paste0(x$remVars,collapse=", "))
text (txt,x=par()$usr[2],y=par()$usr[3]+(par()$cxy[2]*.5),pos=2)
x0 <- length(x$allgrmsd)-nbest+2
if (arrows & nbest>2)
{
arrows(x0=x0,y0=ytop,x1=length(x$allgrmsd)-par()$cxy[1]*.5,y1=ytop,
length=par()$cin[2]*.5)
text (paste0("Best ",nbest),x=x0,y=ytop-par()$cxy[2],pos=4)
}
}
par(mar=orgmar)
invisible(NULL)
}
bestVars <- function (obj,nbest=NULL)
{
if (missing(obj)) stop ("obj must be present")
if (!inherits(obj,"varSel")) stop ("class of obj must be varSel")
grmsd <- switch(obj$method,
addVars=obj$grmsd[,1],
delVars=rev(obj$grmsd[2:nrow(obj$grmsd),1]),
stop("method '",obj$method,"' not found in obj"))
if (is.null(nbest))
{
le <- length(grmsd)
nbest <- if (le > 2)
{
s <- (grmsd[le]-grmsd[1])/le
ss <- unlist(lapply(2:(le-1), function (i,ss) (ss[i-1]+ss[i])/2,diff(grmsd)))
sb <- abs(s) > abs(ss)
if (any(sb)) min(le,which.max(sb)+1) else le
} else le
}
vars <- if (!is.null(obj$remVars)) c(obj$remVars,names(grmsd)) else names(grmsd)
vars[1:min(nbest,length(vars))]
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/varSelection.R |
# vars returns a list of variables used in the problem
# xvars and yvars only returns x's and y's
xvars = function (object) colnames(object$xRefs)
yvars = function (object) colnames(object$yRefs)
vars = function (object) list(xvars=colnames(object$xRefs),yvars=colnames(object$yRefs))
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/vars.yai.R |
# For each row, finds the column that has the maximum value. Returns
# a data frame with two columns: The first is the column name corresponding
# to the column of maximum value and the second is the correspond maximum.
# The first column is convereted to a factor.
#
# if the max is zero, the maxCol is identified as "zero".
# if there are too many "factors" (too many meaning over "nbig") in column 1,
# the lowest maxs are all termed "other".
#
# Intended use is to transform community ecology data for use in yai
# where method is randomForest.
whatsMax <- function (x,nbig=30)
{
num <- vector("logical",ncol(x))
for (i in 1:ncol(x)) num[i] <- is.numeric(x[,i])
if (sum(as.numeric(num))==0) stop ("no numeric columns")
ag <- deparse(substitute(x))
orgRows <- nrow(x)
x <- na.omit(x)
if (nrow(x) != orgRows) warning (orgRows-nrow(x)," rows had missing data and were deleted")
n <- colnames(x)
ans <- apply(x,1,function (x1) which.max(x1))
nm <- lapply(ans,function (i,n) n[i], colnames(x))
ans <- apply(x,1,function (x1) x1[which.max(x1)])
ans <- as.data.frame(list(a=unlist(nm),unlist(ans)),stringsAsFactors=FALSE)
rownames(ans) <- rownames(x)
colnames(ans) <- paste(ag,c("maxCol","maxVal"),sep=".")
ans[ans[,2]==0,1] <- "zero"
nf <- length(levels(as.factor(ans[,1])))
if (nf > nbig)
{
tops <- names(sort(tapply(ans[,2],as.factor(ans[,1]),sum),decreasing = TRUE))
ans[ans[,1] %in% tops[nbig:length(tops)],1] <- "other"
}
ans[,1] <- as.factor(ans[,1])
ans[,2] <- as.numeric(ans[,2])
ans
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/whatsMax.R |
yai <- function(x=NULL,y=NULL,data=NULL,k=1,noTrgs=FALSE,noRefs=FALSE,
nVec=NULL,pVal=.05,method="msn",ann=TRUE,mtry=NULL,ntree=500,
rfMode="buildClasses",bootstrap=FALSE,ppControl=NULL,
sampleVars=NULL,rfXsubsets=NULL)
{
# define functions used internally.
sumSqDiff=function(x,y) { d=x-y; sum(d*d) }
findFactors = get("findFactors",asNamespace("yaImpute"))
ftest.cor = function (p,q,N,cor)
{
s=min(p,q)
if (s==0) stop ("p and q must be > 0")
if (length(cor) < s) stop ("cor too short")
lamda=array(dim=s)
k=1:s
for (i in k) lamda[i]=prod(1-cor[i:s]^2)
r=(N-s-1)-((abs(p-q)+1)/2)
Ndf=(p-k+1)*(q-k+1)
u=(Ndf-2)/4
xx=((p-k+1)^2+(q-k+1)^2)-5
t=vector(mode="numeric",length=s)
for (i in k) if (xx[i]>0) t[i]=sqrt(((p-k[i]+1)^2*(q-k[i]+1)^2-4)/xx[i])
lamda.invt=lamda^(1/t)
Ddf=(r*t)-(2*u)
setNA = Ddf < 1 | Ndf < 1
firstNA = which(setNA == TRUE)
if (length(firstNA) == 0) firstNA=0
if (length(firstNA) > 1) firstNA=firstNA[1]
if (firstNA > 0) setNA[firstNA:length(setNA)] = TRUE
F=((1-lamda.invt)/lamda.invt)*(Ddf/Ndf)
F[setNA] = NA
pgF = F
firstNA = if (firstNA > 1) firstNA else length(F)
{
pgF[1:firstNA]=pf(F[1:firstNA],Ndf[1:firstNA],Ddf[1:firstNA],
lower.tail=FALSE)
pgF[setNA] = NA
}
list(F=F,pgF=pgF)
}
mymean = function(x)
{
if (is.null(ncol(x)))
{
ans = if (is.factor(x)) NA else mean(x)
}
else
{
ans=as.numeric(rep(NA,ncol(x)))
names(ans)=colnames(x)
for (i in 1:ncol(x)) if (!is.factor(x[,i])) ans[i]=mean(x[,i])
}
ans
}
mysd = function(x)
{
if (is.null(ncol(x)))
{
ans = if (is.factor(x)) NA else sd(x)
}
else
{
ans=as.numeric(rep(NA,ncol(x)))
names(ans)=colnames(x)
for (i in 1:ncol(x)) if (!is.factor(x[,i])) ans[i]=sd(x[,i])
}
ans
}
#===============================================
# ARGUMENT and DATA screening
methodSet=c("msn","msn2","msnPP","mahalanobis","ica","euclidean","gnn",
"randomForest","raw","random","gower")
if (!(method %in% methodSet))
stop (paste("method not one of:",paste(methodSet,collapse =", ")))
if (method == "gnn") # (GNN), make sure we have package vegan loaded
{
if (!requireNamespace ("vegan"))
{
stop("install vegan and try again")
# the purpose of this line of code is to suppress CRAN check notes
cca <- rda <- function (...) NULL
} else {
cca <- vegan::cca
rda <- vegan::rda
}
}
if (method == "ica") # (ica), make sure we have package fastICA loaded
{
if (!requireNamespace ("fastICA"))
{
stop("install fastica and try again")
# the purpose of this line of code is to suppress CRAN check notes
fastICA <- function (...) NULL
} else {
fastICA <- fastICA::fastICA
}
}
if (method == "randomForest") # make sure we have package randomForest loaded
{
if (!requireNamespace ("randomForest"))
{
stop("install randomForest and try again")
# the purpose of this line of code is to suppress CRAN check notes
randomForest <- function (...) NULL
} else {
randomForest <- randomForest::randomForest
}
}
if (method == "msnPP") # make sure we have package ccaPP loaded
{
if (!requireNamespace ("ccaPP"))
{
stop("install ccaPP and try again")
# the purpose of this line of code is to suppress CRAN check notes
fastMAD <- ccaGrid <- ccaProj <- function (...) NULL
} else {
fastMAD <- ccaPP::fastMAD
ccaGrid <- ccaPP::ccaGrid
ccaProj <- ccaPP::ccaProj
}
}
if (method == "gower") # make sure we have package gower loaded
{
if (!requireNamespace ("gower"))
{
stop("install gower and try again")
# the purpose of this line of code is to suppress CRAN check notes
gower_topn <- function (...) NULL
} else {
gower_topn <- gower::gower_topn
}
}
cl=match.call()
obsDropped=NULL
theFormula=NULL
yall=NULL
if (is.data.frame(x) | is.matrix(x))
{
if (mode(rownames(x)) != "character") rownames(x)=as.character(rownames(x))
xall=na.omit (as.data.frame(x))
if (nrow(xall) != nrow(x))
{
warning (nrow(x)-nrow(xall)," x observation(s) removed")
obsDropped=names(attributes(na.omit(x))$na.action)
}
if (!is.null(y))
{
if (is.null(dim(y)))
{
if (length(y) == nrow (x)) y=data.frame(y,row.names=rownames(x),
stringsAsFactors = TRUE)
else stop(paste0("when formulas are not used,",
" y must be a matrix, dataframe,",
" or a vector the same length of rows in x"))
}
if (is.matrix(y) | is.data.frame(y))
{
if (mode(rownames(y)) != "character") rownames(y)=as.character(rownames(y))
yall=na.omit(as.data.frame(y))
if (nrow(yall) != nrow(as.data.frame(y)))
{
warning (nrow(y)-nrow(yall)," y observation(s) removed")
obsDropped=union(obsDropped,names(attributes(na.omit(y))$na.action))
}
}
theFormula=NULL
}
}
else if (inherits(x,"formula"))
{
if (inherits(y,"formula")) yall=model.frame(y,data=data)
xall=model.frame(x,data=data)
obsDropped=setdiff(rownames(data),rownames(xall))
if (length(obsDropped)) warning (length(obsDropped)," observation(s) removed")
theFormula=list(x=x,y=y)
}
else stop ("x is missing or not a matrix or a dataframe")
if (is.null(yall) & (method %in% c("mahalanobis","ica",
"euclidean","randomForest","raw","gower")))
{
ydum=TRUE
yall=data.frame(ydummy=rep(1,nrow(xall)),row.names=rownames(xall))
}
else ydum=FALSE
if (is.null(yall)) stop("y is missing")
if (nrow(xall) == 0) stop ("no observations in x")
if (! (method %in% c("random","randomForest","gower")))
{
fy=0
if (!(method %in% c("mahalanobis","ica","euclidean","raw")))
fy=sum(findFactors(yall))
if (fy+sum(findFactors(xall)>0)>0)
stop("factors allowed only for methods randomForest, random, or gower")
}
refs=intersect(rownames(yall),rownames(xall))
if (length(refs) == 0) stop ("no reference observations.")
# if X variable subsets are used, make sure we are using method="randomForest"
if (!is.null(rfXsubsets) && method != "randomForest")
{
warning ("specification of rfXsubsets is ignored when method is not randomForest.")
rfXsubsets = NULL
}
if (!is.null(rfXsubsets))
{
vtok = match(unique(unlist(rfXsubsets)),names(xall))
if (any(is.na(vtok))) stop("one or more variables in rfXsubsets are not present in x.")
xall = xall[,vtok]
}
# if sampling variables, set up xRefs and yRefs accordingly
if (!is.null(sampleVars))
{
if (length(sampleVars) == 1 && is.null(names(sampleVars)))
sampleVars=rep(sampleVars,2)
names(sampleVars) = if (is.null(names(sampleVars))) c("X","Y") else
toupper(names(sampleVars))
nx = match("X",names(sampleVars))
ny = match("Y",names(sampleVars))
nx = if (!is.na(nx)) sampleVars[nx] else 0
ny = if (!is.na(ny)) sampleVars[ny] else 0
if (nx > 0)
{
nx = if (nx < 1.) max(1, ncol(xall)*nx) else min(nx, ncol(xall))
nxn = sample(1:ncol(xall),nx)
xall = xall[,nxn,drop=FALSE]
}
if (ny > 0)
{
ny = if (ny < 1.) max(1, ncol(yall)*ny) else min(ny, ncol(yall))
nyn = sample(1:ncol(yall),ny)
yall = yall[,nyn,drop=FALSE]
}
}
# if this is a bootstrap run, draw the sample.
if (bootstrap)
{
if (length (grep ("\\.[0-9]$",rownames(xall))) > 0)
stop ("rownames must not end with .[0-9] when bootstrap is true.")
bootsamp <- sort(sample(x=refs, size=length(refs), replace=TRUE))
yRefs=yall[bootsamp,,drop=FALSE]
xRefs=xall[bootsamp,,drop=FALSE]
refs = bootsamp
} else {
yRefs=yall[refs,,drop=FALSE]
xRefs=xall[refs,,drop=FALSE]
}
trgs=setdiff(rownames(xall),refs)
if (method == "gnn") # remove rows with zero sums or vegan will error off...
{
zero = apply(yRefs,1,sum) <= 0
ndrop=sum(zero)
if (ndrop>0)
{
warning (ndrop,paste0(" rows have y-variable row sums <= 0 were ",
"converted to target observations for method gnn"))
if (ndrop==nrow(yRefs)) stop ("all references were deleted")
obsDropped=union(obsDropped,refs[zero])
refs=refs[!zero]
yRefs=yall[refs,,drop=FALSE]
xRefs=xall[refs,,drop=FALSE]
trgs=setdiff(rownames(xall),refs)
}
# now remove columns with zero sums.
yDrop=apply(yRefs,2,sum) <= 0
if (sum(yDrop) > 0) warning ("y variables with zero sums: ",
paste(colnames(yRefs)[yDrop],collapse=","))
if (sum(yDrop) == ncol(yRefs)) stop("no y variables")
if (sum(yDrop) > 0) yRefs=yRefs[,!yDrop,drop=FALSE]
}
# initial scale values (maybe reduced by some methods).
if (method != "msnPP")
{
xScale=list(center=mymean(xRefs),scale=mysd(xRefs))
yScale=list(center=mymean(yRefs),scale=mysd(yRefs))
} else {
msn3cntr = function (x)
{
if (is.factor(x)) return (list(NULL,NULL))
cM = fastMAD(x) # uses fastMAD for scaling.
if (cM$MAD == 0)
{
cM$MAD = sd(x)
cM$center = mean(x)
}
cM
}
ce=matrix(unlist(apply(xRefs,2,msn3cntr)),ncol=2,byrow=TRUE)
rownames(ce) = colnames(xRefs)
xScale=list(center=ce[,1],scale=ce[,2])
ce=matrix(unlist(apply(yRefs,2,msn3cntr)),ncol=2,byrow=TRUE)
rownames(ce) = colnames(yRefs)
yScale=list(center=ce[,1],scale=ce[,2])
}
# for all methods except randomForest, random, raw, and gower
# variables with zero variance are dropped.
if (!(method %in% c("randomForest","random","raw","gower")))
{
xDrop=xScale$scale < 1e-10
if (sum(xDrop) > 0) warning ("x variables with zero variance: ",
paste(colnames(xRefs)[xDrop],collapse=","))
if (sum(xDrop) == ncol(xRefs)) stop("no x variables")
if (sum(xDrop) > 0)
{
xRefs=xRefs[,!xDrop,drop=FALSE]
xScale$scale=xScale$scale[!xDrop]
xScale$center=xScale$center[!xDrop]
}
}
else xDrop=NULL
# for most methods, xRefs must be a matrix.
if (! (method %in% c("randomForest","gower")) && !is.matrix(xRefs))
xRefs=as.matrix(xRefs)
# define these elements as NULL, some will be redefined below.
cancor=NULL
ftest=NULL
yDrop=NULL
projector=NULL
ccaVegan=NULL
ranForest=NULL
xTrgs=NULL
xcvRefs=NULL
xcvTrgs=NULL
ICA=NULL
#======= Define projector (if used), scale the variables, and project the
# reference space. Also project the target space if it is being used.
if (method %in% c("msn","msn2","msnPP")) # msn (all kinds)
{
yDrop=yScale$scale < 1e-10
if (sum(yDrop) > 0) warning ("y variables with zero variance: ",
paste(colnames(yRefs)[yDrop],collapse=","))
if (sum(yDrop) == ncol(yRefs)) stop("no y variables")
if (sum(yDrop) > 0)
{
yRefs=yRefs[,!yDrop,drop=FALSE]
yScale$scale=yScale$scale[!yDrop]
yScale$center=yScale$center[!yDrop]
}
xcvRefs=scale(xRefs,center=xScale$center,scale=xScale$scale)
ycvRefs=scale(yRefs,center=yScale$center,scale=yScale$scale)
if (method %in% c("msn","msn2")) # msn and msn2
{
cancor=cancor(xcvRefs,ycvRefs,xcenter = FALSE, ycenter = FALSE)
theCols = rownames(cancor$xcoef)
# scale the coefficients so that the cononical vectors will have unit variance.
cscal = 1/apply(xcvRefs[,theCols,drop=FALSE] %*%
cancor$xcoef[,1,drop=FALSE],2,sd)
cancor$ycoef = cancor$ycoef * cscal
cancor$xcoef = cancor$xcoef * cscal
} else { # msnPP
meth="spearman"
ppfunc=ccaGrid
if (!is.null(ppControl))
{
if (is.null(names(ppControl))) stop ("ppControl must have named strings.")
for (ppn in names(ppControl))
{
if (ppn == "method") meth = ppControl[[ppn]]
else if (ppn == "search") ppfunc =
if (ppControl[[ppn]] == "data" ||
ppControl[[ppn]] == "proj") ccaProj else ccaGrid
else stop ("ppControl named element ",ppn," is invalid")
}
}
# solve the canoncial correlation analysis via projection pursuit
cancor=ppfunc(xcvRefs,ycvRefs,method=meth,fallback=TRUE,
k=min(ncol(xcvRefs),ncol(ycvRefs)),nVec)
# save the results using names and attributes that correspond
# to the cancor results
cancor$ycoef = cancor$B
rownames(cancor$ycoef) = colnames(ycvRefs)
cancor$xcoef = cancor$A
rownames(cancor$xcoef) = colnames(xcvRefs)
theCols = rownames(cancor$xcoef)
cancor$A = NULL
cancor$B = NULL
class(cancor) = "list"
}
ftest=ftest.cor(p=nrow(cancor$ycoef),q=nrow(cancor$xcoef),
N=nrow(yRefs),cancor$cor)
if (is.null(nVec))
{
fcheck = ftest$pgF[!is.na(ftest$pgF)]
if (length(fcheck)> 0) nVec=max(1,length(fcheck)-sum(fcheck>pVal))
}
if (is.null(nVec)) nVec=1
nVec=min(nVec,length(cancor$cor))
nVec=max(nVec,1)
if (method %in% c("msn","msnPP")) projector =
cancor$xcoef[,1:nVec,drop=FALSE] %*%
diag(cancor$cor[1:nVec,drop=FALSE],nVec,nVec)
if (method == "msn2")
{
if (any (1/(1-cancor$cor[1:nVec,drop=FALSE]^2) <
.Machine$double.eps*10000)) nVec=1
if (any (1/(1-cancor$cor[1:nVec,drop=FALSE]^2) <
.Machine$double.eps*10000))
stop("msn2 can not be run likely because there are too few obesrvations.")
projector = cancor$xcoef[,1:nVec,drop=FALSE] %*%
diag(cancor$cor[1:nVec,drop=FALSE],nVec,nVec) %*%
diag(sqrt(1/(1-cancor$cor[1:nVec,drop=FALSE]^2)),nVec,nVec)
if (any (projector == -Inf | projector == Inf | is.na(projector) |
is.nan(projector))) stop ("msn2 can not be run.")
}
if (length(theCols)<ncol(xRefs))
{
#just get the names and create a logical
if (is.null(xDrop)) xDrop=xScale$center==0
remove=setdiff(colnames(xRefs),theCols)
xDrop[remove]=TRUE
warning ("x variables with colinearity: ",paste(remove,collapse=","))
xRefs=xRefs[,theCols,drop=FALSE]
xScale$center=xScale$center[theCols]
xScale$scale=xScale$scale[theCols]
xcvRefs=scale(xRefs,center=xScale$center,scale=xScale$scale)
}
xcvRefs=xcvRefs %*% projector
if (!noTrgs && length(trgs) > 0)
{
xTrgs=xall[trgs,theCols,drop=FALSE]
xcvTrgs=scale(xTrgs,center=xScale$center,scale=xScale$scale)
xcvTrgs=xcvTrgs %*% projector
}
}
else if (method == "mahalanobis")
{
xcvRefs=scale(xRefs,center=xScale$center,scale=xScale$scale)
qr = qr(xcvRefs) # maybe we are not at full rank
xcvRefs=xcvRefs[,qr$pivot[1:qr$rank],drop=FALSE]
projector = solve(chol(cov(xcvRefs)))
theCols = colnames(projector)
if (length(theCols)<ncol(xRefs))
{
#just get the names and create a logical
if (is.null(xDrop)) xDrop=xScale$center==0
remove=setdiff(colnames(xRefs),theCols)
xDrop[remove]=TRUE
warning ("x variables with colinearity: ",paste(remove,collapse=","))
xRefs=xRefs[,theCols,drop=FALSE]
xScale$center=xScale$center[theCols]
xScale$scale=xScale$scale[theCols]
}
nVec = ncol(projector) # same as qr$rank
xcvRefs=xcvRefs %*% projector
if (!noTrgs && length(trgs) > 0)
{
xTrgs=xall[trgs,theCols,drop=FALSE]
xcvTrgs=scale(xTrgs,center=xScale$center,scale=xScale$scale)
xcvTrgs=xcvTrgs %*% projector
}
}
else if (method == "ica")
{
xcvRefs=scale(xRefs,center=xScale$center,scale=xScale$scale)
qr = qr(xcvRefs) # maybe we are not at full rank
xcvRefs=xcvRefs[,qr$pivot[1:qr$rank],drop=FALSE]
a=fastICA(xcvRefs,ncol(xcvRefs),method="C",)
ICA=list(S=a$S,K=a$K,A=a$A,W=a$W)
projector = a$K %*% a$W
colnames(projector)=colnames(xcvRefs)
rownames(projector)=colnames(xcvRefs)
theCols = colnames(xcvRefs)
if (length(theCols)<ncol(xRefs))
{
if (is.null(xDrop)) xDrop=xScale$center==0
remove=setdiff(colnames(xRefs),theCols)
xDrop[remove]=TRUE
warning ("x variables with colinearity: ",paste(remove,collapse=","))
xRefs=xRefs[,theCols,drop=FALSE]
xScale$center=xScale$center[theCols]
xScale$scale=xScale$scale[theCols]
}
nVec = ncol(projector) # same as qr$rank
xcvRefs=xcvRefs %*% projector
if (!noTrgs && length(trgs) > 0)
{
xTrgs=xall[trgs,theCols,drop=FALSE]
xcvTrgs=scale(xTrgs,center=xScale$center,scale=xScale$scale)
xcvTrgs=xcvTrgs %*% projector
}
}
else if (method == "euclidean")
{
xcvRefs=scale(xRefs,center=xScale$center,scale=xScale$scale)
nVec = ncol(xRefs)
if (!noTrgs && length(trgs) > 0)
{
xTrgs=xall[trgs,!xDrop,drop=FALSE]
xcvTrgs=scale(xTrgs,center=xScale$center,scale=xScale$scale)
}
}
else if (method %in% c("raw"))
{
xcvRefs=xRefs
nVec = ncol(xRefs)
if (!noTrgs && length(trgs) > 0)
{
xTrgs=xall[trgs,,drop=FALSE]
xcvTrgs=as.matrix(xTrgs)
}
}
else if (method %in% c("gower"))
{
xcvRefs=xRefs
nVec = ncol(xRefs)
if (!noTrgs && length(trgs) > 0)
{
xTrgs=xall[trgs,,drop=FALSE]
xcvTrgs=xTrgs
}
ann=FALSE
}
else if (method == "gnn") # GNN
{
xcvRefs=scale(xRefs,center=xScale$center,scale=xScale$scale)
ccaVegan = cca(X=yRefs, Y=xcvRefs)
if (is.null(ccaVegan$CCA) |
ccaVegan$CCA$rank == 0)
{
warning (paste("cca() in package vegan failed, likely cause is",
"too few X or Y variables.\nAttemping rda(),",
"which is not well tested in the yaImpute package."))
ccaVegan = rda(X=yRefs, Y=xcvRefs)
}
# create a projected space for the reference observations
xcvRefs=predict(ccaVegan,type="lc",rank="full")
xcvRefs=xcvRefs %*% diag(sqrt(ccaVegan$CCA$eig/sum(ccaVegan$CCA$eig)))
# create a projected space for the unknowns (target observations)
if (!noTrgs && length(trgs) > 0)
{
xTrgs=xall[trgs,,drop=FALSE]
xcvTrgs=scale(xTrgs,center=xScale$center,scale=xScale$scale)
xcvTrgs=predict(ccaVegan,
newdata=as.data.frame(xcvTrgs),type="lc",rank="full")
xcvTrgs=xcvTrgs %*% diag(sqrt(ccaVegan$CCA$eig/sum(ccaVegan$CCA$eig)))
}
nVec = ncol(xcvRefs)
}
else if (method == "randomForest")
{
rfBuildClasses=NULL
xTrgs=xall[trgs,1,drop=FALSE]
rfVersion=packageDescription("randomForest")[["Version"]]
if (compareVersion(rfVersion,"4.5-22") < 0)
stop("Update your version of randomForest.")
if (is.null(ntree)) ntree=500
if (ydum)
{
if (!is.null(rfXsubsets)) warning(paste0("Specification of rfXsubsets",
" ignored when unsupervised randomForest is run."))
yone=NULL
mt = if (is.null(mtry)) max(floor(sqrt(ncol(xRefs))),1) else
min(mtry, ncol(xRefs))
ranForest=randomForest(x=xRefs,y=yone,proximity=FALSE,importance=TRUE,
keep.forest=TRUE,mtry=mt,ntree=ntree)
ranForest$type="yaImputeUnsupervised"
ranForest=list(unsupervised=ranForest)
}
else
{
ranForest=vector("list",ncol(yRefs))
if (length(ntree) < ncol(yRefs)) ntree=rep(max(50,
floor(ntree/ncol(yRefs))),ncol(yRefs))
for (i in 1:ncol(yRefs))
{
xN = names(xRefs)
if (!is.null(rfXsubsets))
{
yV = names(yRefs)[i]
if (!is.null(rfXsubsets[[yV]])) xN = intersect(rfXsubsets[[yV]],xN)
if (length(xN)==0) stop ("rfXsubsets is empty for Y-variable ",yV)
}
yone=yRefs[,i]
if (!is.factor(yone))
{
if (is.null(rfBuildClasses) && rfMode=="buildClasses")
rfBuildClasses=TRUE
if (is.null(rfBuildClasses))
{
# if the version is prior to 19
if (compareVersion(rfVersion,"4.5-19") < 0)
{
warning(paste0("yaImpute directly supports regression for ",
"continuous y's for randomForest version 4.5-19 and later."))
rfBuildClasses=TRUE
}
else rfBuildClasses=FALSE
}
if (rfBuildClasses)
{
yone=as.numeric(yone)
breaks <- pretty(yone, n = min(20,nclass.Sturges(yone)),min.n = 1)
div <- diff(breaks)[1]
yone=as.factor(floor(yone/div))
}
}
mt = if (is.null(mtry)) max(floor(sqrt(length(xN))), 1) else
min(mtry, length(xN))
ranForest[[i]]=randomForest(x=xRefs[,xN,FALSE],
y=yone,proximity=FALSE,importance=TRUE,keep.forest=TRUE,
mtry=mt,ntree=ntree[i])
}
names(ranForest)=colnames(yRefs)
}
nodes=NULL
for (i in 1:length(ranForest))
{
nodeset=attr(predict(ranForest[[i]],xall,
proximity=FALSE,nodes=TRUE),"nodes")
if (is.null(nodeset)) stop("randomForest did not return nodes")
colnames(nodeset)=paste(colnames(nodeset),i,sep=".")
nodes=if (is.null(nodes)) nodeset else cbind(nodes,nodeset)
}
if (bootstrap)
{
rn = sub("\\.[0-9]$","",rownames(xRefs))
refNodes = nodes[rn,]
rownames(refNodes) = rownames(xRefs)
} else refNodes = nodes[rownames(xRefs),]
INTrefNodes=as.integer(refNodes)
INTnrow=as.integer(nrow(xRefs))
INTncol=as.integer(ncol(nodes))
INTsort = INTrefNodes
dim(INTsort) = c(INTnrow,INTncol)
INTsort=apply(INTsort,2,function (x) sort(x,index.return = TRUE,
decreasing = FALSE)$ix-1)
attributes(INTsort)=NULL
INTsort = as.integer(INTsort)
attr(ranForest,"rfRefNodeSort") = list(INTrefNodes=INTrefNodes,
INTnrow=INTnrow, INTncol=INTncol, INTsort=INTsort)
}
else if (method == "random")
{
nVec = 1
ann=FALSE
xcvRefs=data.frame(random=runif(nrow(xRefs)),row.names=rownames(xRefs))
if (!noTrgs && length(trgs) > 0) xcvTrgs=
data.frame(random=runif(length(trgs)),row.names=trgs)
}
else # default
{
stop("no code for specified method")
}
# if bootstrap, then modify the reference list essentually removing the
# duplicate samples. For randomForest, correct processing is done above.
if (bootstrap && method != "randomForest")
{
unq = unique(bootsamp)
if (!is.null(xcvRefs)) xcvRefs = xcvRefs[unq,,drop=FALSE]
xRefs = xRefs[unq,,drop=FALSE]
}
k=min(k,nrow(xRefs))
# ======= find neighbors for TARGETS
if (noTrgs || length(trgs) == 0)
{
neiDstTrgs=NULL
neiIdsTrgs=NULL
}
else
{
neiDstTrgs=matrix(data=NA,nrow=length(trgs),ncol=k)
rownames(neiDstTrgs)=trgs
colnames(neiDstTrgs)=paste("Dst.k",1:k,sep="")
neiIdsTrgs=matrix(data="",nrow=length(trgs),ncol=k)
rownames(neiIdsTrgs)=trgs
colnames(neiIdsTrgs)=paste("Id.k",1:k,sep="")
if (method %in% c("msn","msn2","msnPP","mahalanobis",
"ica","euclidean","gnn","raw"))
{
if (ann)
{
ann.out=ann(xcvRefs, xcvTrgs, k, verbose=FALSE)$knnIndexDist
neiDstTrgs[TRUE]=sqrt(ann.out[,(k+1):ncol(ann.out)])
for (i in 1:k)
neiIdsTrgs[,i]=rownames(xcvRefs)[ann.out[,i]]
rownames(neiDstTrgs)=rownames(neiIdsTrgs)
}
else
{
for (row in rownames(xcvTrgs))
{
d=sqrt(sort(apply(xcvRefs,MARGIN=1,sumSqDiff,xcvTrgs[row,]))[1:k])
neiDstTrgs[row,]=d
neiIdsTrgs[row,]=names(d)
}
}
}
else if (method == "random")
{
l=k+1
d = matrix(unlist(lapply(xcvTrgs[[1]],function (x, xcv, l)
{
sort((xcv-x)^2,index.return=TRUE)$ix[2:l]
},xcvRefs[[1]],l)),nrow=nrow(xcvTrgs),ncol=k,byrow=TRUE)
for (ic in 1:ncol(d))
{
neiDstTrgs[,ic]=abs(xcvTrgs[,1]-xcvRefs[d[,ic],1])
neiIdsTrgs[,ic]=rownames(xcvRefs)[d[,ic]]
}
}
else if (method == "gower")
{
gow = gower_topn(x=xcvRefs,y=xcvTrgs,n=k)
for (i in 1:k)
{
neiDstTrgs[,i]=gow$distance[i,]
neiIdsTrgs[,i]=rownames(xcvTrgs)[gow$index[i,]]
}
}
else if (method == "randomForest")
{
prox=lapply(apply(nodes[rownames(xTrgs),,drop=FALSE],1,as.list),function (x)
{
prx=.Call("rfoneprox", INTrefNodes, INTsort, INTnrow, INTncol,
as.integer(x), vector("integer",INTnrow))
if (k > 1) px=sort(prx,index.return = TRUE, decreasing = TRUE)$ix[1:k]
else px=which.max(prx)
c(prx[px],px) # counts followed by pointers to references
})
for (i in 1:k)
{
neiDstTrgs[,i]=unlist(lapply(prox,function (x,i) (INTncol-x[i])/INTncol,i))
neiIdsTrgs[,i]=unlist(lapply(prox,function (x,i,k,Rnames)
Rnames[x[k+i]],i,k,rownames(xRefs)))
}
}
else # default
{
stop("no code for specified method")
}
}
# ======= find neighbors for REFERENCES
if (noRefs)
{
neiDstRefs=NULL
neiIdsRefs=NULL
}
else
{
neiDstRefs=matrix(data=NA,nrow=nrow(xRefs),ncol=k)
rownames(neiDstRefs)=rownames(xRefs)
colnames(neiDstRefs)=paste("Dst.k",1:k,sep="")
neiIdsRefs=matrix(data="",nrow=nrow(xRefs),ncol=k)
rownames(neiIdsRefs)=rownames(xRefs)
colnames(neiIdsRefs)=paste("Id.k",1:k,sep="")
l=k+1
if (method %in% c("msn","msn2","msnPP","mahalanobis","ica","euclidean",
"gnn","raw"))
{
if (ann & nrow(xcvRefs)> 0)
{
ann.out=ann(xcvRefs, xcvRefs, l, verbose=FALSE)$knnIndexDist
neiDstRefs[TRUE]=sqrt(ann.out[,(l+2):ncol(ann.out)])
# check for a second neighbor being the reference itself (can happen
# if the first and second neighbors both have distance of zero).
fix = ann.out[,1] != 1:nrow(ann.out)
if (any(fix)) ann.out[fix,2] = ann.out[fix,1]
for (i in 2:l)
{
neiIdsRefs[,(i-1)]=rownames(xcvRefs)[ann.out[,i]]
}
rownames(neiDstRefs)=rownames(neiIdsRefs)
}
else
{
for (row in 1:nrow(xcvRefs))
{
d=sort(apply(xcvRefs,MARGIN=1,sumSqDiff,xcvRefs[row,])[-row])[1:k]
neiDstRefs[row,]=d
neiIdsRefs[row,]=names(d)
}
}
}
else if (method == "gower")
{
gow = gower_topn(x=xcvRefs,y=xcvRefs,n=l)
for (i in 2:l)
{
neiDstRefs[,(i-1)]=gow$distance[i,]
neiIdsRefs[,(i-1)]=rownames(xcvRefs)[gow$index[i,]]
}
}
else if (method == "randomForest")
{
prox=lapply(apply(refNodes,1,as.list),function (x)
{
prx=.Call("rfoneprox", INTrefNodes, INTsort, INTnrow, INTncol,
as.integer(x), vector("integer",INTnrow))
if (k > 1) px=sort(prx,index.return = TRUE, decreasing = TRUE)$ix[2:l]
else
{
px=which.max(prx)
prx[px]=-1
px=which.max(prx)
}
c(prx[px],px) # counts followed by pointers to references
})
for (i in 1:k)
{
neiDstRefs[,i]=unlist(lapply(prox,function (x,i) (INTncol-x[i])/INTncol,i))
neiIdsRefs[,i]=unlist(lapply(prox,function (x,i,k,Rnames)
Rnames[x[k+i]],i,k,rownames(xRefs)))
}
}
else if (method == "random")
{
l=k+1
d = matrix(unlist(lapply(xcvRefs[[1]],function (x, xcv, l)
{
sort((xcv-x)^2,index.return=TRUE)$ix[2:l]
},xcvRefs[[1]],l)),nrow=nrow(xcvRefs),ncol=k,byrow=TRUE)
for (ic in 1:ncol(d))
{
neiDstRefs[,ic]=abs(xcvRefs[,1]-xcvRefs[d[,ic],1])
neiIdsRefs[,ic]=rownames(xcvRefs)[d[,ic]]
}
}
else # default
{
stop("no code for specified method")
}
}
xlevels=NULL
fa=findFactors(xRefs)
if (sum(fa)>0)
{
xlevels=vector(mode="list",length=sum(fa))
kk=0
for (i in 1:length(fa))
{
if (fa[i])
{
kk=kk+1
xlevels[[kk]]=levels(xRefs[,i])
names(xlevels)[[kk]]=names(xRefs)[i]
}
}
}
out=list(call=cl,yRefs=yRefs,xRefs=xRefs,obsDropped=obsDropped,yDrop=yDrop,
bootstrap= if (bootstrap) bootsamp else bootstrap,
xDrop=xDrop,trgRows=trgs,xall=xall,cancor=cancor,theFormula=theFormula,
ftest=ftest,yScale=yScale,xScale=xScale,ccaVegan=ccaVegan,ranForest=ranForest,
ICA=ICA,k=k,projector=projector,nVec=nVec,pVal=pVal,method=method,ann=ann,
xlevels=xlevels,neiDstTrgs=neiDstTrgs,neiIdsTrgs=neiIdsTrgs,
neiDstRefs=neiDstRefs,neiIdsRefs=neiIdsRefs,rfXsubsets=rfXsubsets)
class(out)="yai"
out
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/yai.R |
# Creates a summary various aspects of several randomForests (one for each variable)
# when method randomForest is used.
yaiRFsummary = function(object, nTop=0)
{
if(!inherits(object, "yai")) stop ("arg must be of class yai")
if (object$method != "randomForest") stop ("method must be randomForest")
if (!requireNamespace("randomForest")) stop("install randomForest and try again")
scaledImportance = yaiVarImp(object, nTop, plot=FALSE)
error = vector(mode="numeric",length=length(names(object$ranForest)))
errtag = vector(mode="character",length=length(names(object$ranForest)))
levels = vector(mode="integer",length=length(names(object$ranForest)))
ntree = vector(mode="integer",length=length(names(object$ranForest)))
type = vector(mode="character",length=length(names(object$ranForest)))
i = 0
for (Rf in object$ranForest)
{
i = i+1
type[i] = Rf$type
if(Rf$type == "regression")
{
error [i] = round(100*Rf$rsq[length(Rf$rsq)], digits=2)
errtag[i] = "%var explained"
levels[i] = NA
}
else if(Rf$type == "classification")
{
error [i] = Rf$err.rate[Rf$ntree,"OOB"]
errtag[i] = "OOB error rate"
levels[i] = nrow(Rf$confusion)
}
else
{
error [i] = NA
errtag[i] = "N/A"
levels[i] = NA
}
ntree [i] = Rf$ntree
}
forestAttributes=data.frame(ntree,error,errtag,levels,type)
rownames(forestAttributes)=names(object$ranForest)
list(forestAttributes=forestAttributes,scaledImportance=scaledImportance)
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/yaiRFsummary.R |
# Creates a summary of the variable importance scores over several randomForests (one
# for each variable) when method randomForest is used. These values are then scaled.
yaiVarImp = function(object, nTop=20, plot=TRUE, ...)
{
if(!inherits(object, "yai")) stop ("arg must be of class yai")
if (object$method != "randomForest") stop ("method must be randomForest")
if (!requireNamespace ("randomForest"))
{
stop("install randomForest and try again")
# the purpose of this line of code is to suppress CRAN check notes
importance <- function (...) NULL
} else importance <- randomForest::importance
scaledImportance = matrix(NA, nrow = length(names(object$ranForest)),
ncol=length(xvars(object)))
colnames(scaledImportance) = xvars(object)
rownames(scaledImportance) = names(object$ranForest)
i = 0
for (Rf in object$ranForest)
{
i = i+1
one = importance(Rf)
scale = FALSE
attr = if (Rf$type == "regression") "%IncMSE" else "MeanDecreaseAccuracy"
if (nrow(one)>1) scale = sd(one[,attr])>0
imports = scale(one[,attr],center=TRUE,scale=scale)
scaledImportance[i,rownames(imports)] = imports
}
if (is.na(nTop) | nTop == 0) nTop=ncol(scaledImportance)
scaledImportance = data.frame(scaledImportance)
nTop = min(ncol(scaledImportance), nTop)
best = sort(apply(scaledImportance, 2, median, na.rm=TRUE),
decreasing = TRUE, index.return = TRUE)$ix[1:nTop]
if (plot)
{
plt = par()$plt
oldplt = plt
plt[1] = .2
boxplot(as.data.frame(scaledImportance[,best,drop=FALSE]),
horizontal=TRUE, par(plt=plt), las=1,
main=deparse(substitute(object)), xlab="Scaled Importance",...)
par(plt=oldplt)
invisible(scaledImportance[,best,FALSE])
}
else return(scaledImportance[,best,FALSE])
}
| /scratch/gouwar.j/cran-all/cranData/yaImpute/R/yaiVarImp.R |
`F.test.cca` <- function(x, ...)
{
#Extract basic object information
if(!("cca"%in%class(x)))
stop("Object of class cca required.\n")
s <- length(x$corr)
p <- length(x$xlab)
q <- length(x$ylab)
N <- NROW(x$canvarx)
k <- 1:s
#Compute statistic and df
lambda <- sapply(k,function(i){prod(1-x$corr[i:s]^2)})
r <- (N-s-1)-((abs(p-q)+1)/2)
Ndf <- (p-k+1)*(q-k+1)
u <- (Ndf-2)/4
xx <- ((p-k+1)^2+(q-k+1)^2)-5
t <- sqrt(((p-k+1)^2*(q-k+1)^2-4)/xx)
ilambda <- lambda^(1/t)
Ddf <- (r*t)-(2*u)
Fstat <- ((1-ilambda)/ilambda)*(Ddf/Ndf)
pgF <- pf(Fstat,Ndf,Ddf,lower.tail=FALSE)
#Assemble and return the results
out <- list()
out$corr <- x$corr
out$statistic <- Fstat
out$parameter <- cbind(Ndf,Ddf)
colnames(out$parameter) <- c("num df", "denom df")
out$p.value <- pgF
out$method <- "F test for significance of canonical correlations"
out$data.name <- names(x$corr)
class(out)<-c("F.test.cca","htest")
out
}
| /scratch/gouwar.j/cran-all/cranData/yacca/R/F.test.cca.R |
`cca` <-
function(x, y, xlab=colnames(x), ylab=colnames(y), xcenter=TRUE, ycenter=TRUE, xscale=FALSE, yscale=FALSE, standardize.scores=TRUE, use="complete.obs", na.rm=TRUE, use.eigs=FALSE, max.dim=Inf, reg.param=NULL){
#Perform the preliminaries
if(is.data.frame(x)) #Some routines require matrices...
x<-as.matrix(x)
if(is.data.frame(y))
y<-as.matrix(y)
#Center the data matrices, if needed
if(xcenter||xscale)
x<-scale(x,scale=xscale,center=xcenter)
if(ycenter||yscale)
y<-scale(y,scale=yscale,center=ycenter)
if(is.null(dim(x))) #Make sure we have matrices
x<-matrix(x,ncol=1)
if(is.null(dim(y)))
y<-matrix(y,ncol=1)
#Find out how large these data matrices are
nx<-dim(x)[2]
ny<-dim(y)[2]
ncv<-min(nx,ny,max.dim)
cvlab<-paste("CV",1:ncv)
o<-list()
#Get covariance matrices
cxx<-cov(x,use=use)
cyy<-cov(y,use=use)
cxy<-cov(x,y,use=use)
cyx<-t(cxy)
#Regularize, if desired
if(!is.null(reg.param)){
reg.param<-rep(reg.param,length=2)
cxx<-cxx+diag(nx)*reg.param[1]
cyy<-cyy+diag(ny)*reg.param[2]
}
#Find the projections
if(!use.eigs){ #More stable, but slower
ey<-eigen(solve(cyy,cyx)%*%solve(cxx,cxy))
}else{ #Less stable, but possibly faster
ey<-RSpectra::eigs(solve(cyy,cyx)%*%solve(cxx,cxy),k=ncv,which="LM")
}
#Note: we use Re to filter out tiny complex values that can arise
#due to numerical noise
ey$values<-Re(ey$values)
ey$vectors<-Re(ey$vectors)
#Debug info - uncomment to trace the solution
#print(solve(cyy,cyx)%*%solve(cxx,cxy))
#print(ey$val)
#print(eigen(solve(cyy,cyx)%*%solve(cxx,cxy))$val)
ex<-list(values=Re(ey$values),vectors=Re(solve(cxx,cxy)%*%(ey$vec)))
o$corr<-(ex$val[1:ncv])^0.5
names(o$corr)<-cvlab
o$corrsq<-o$corr^2 #Get the variance accounted for by each canonical variate
names(o$corrsq)<-cvlab
o$xcoef<-ex$vec[,1:ncv,drop=FALSE]
rownames(o$xcoef)<-xlab
colnames(o$xcoef)<-cvlab
o$ycoef<-ey$vec[,1:ncv,drop=FALSE]
rownames(o$ycoef)<-ylab
colnames(o$ycoef)<-cvlab
#Find the canonical variates (using the coefficients) and compute structural correlation information
o$canvarx<-x%*%o$xcoef #Construct the canonical variates
rownames(o$canvarx)<-rownames(x)
colnames(o$canvarx)<-cvlab
o$canvary<-y%*%o$ycoef
rownames(o$canvary)<-rownames(y)
colnames(o$canvary)<-cvlab
if(standardize.scores){ #If needed, standardize the scores/coefs
sdx<-apply(o$canvarx,2,sd)
sdy<-apply(o$canvary,2,sd)
o$canvarx<-sweep(o$canvarx,2,sdx,"/")
o$canvary<-sweep(o$canvary,2,sdy,"/")
o$xcoef<-sweep(o$xcoef,2,sdx,"/")
o$ycoef<-sweep(o$ycoef,2,sdy,"/")
}
o$xstructcorr<-cor(x,o$canvarx,use=use) #Find structural correlations
rownames(o$xstructcorr)<-xlab
colnames(o$xstructcorr)<-cvlab
o$ystructcorr<-cor(y,o$canvary,use=use)
rownames(o$ystructcorr)<-ylab
colnames(o$ystructcorr)<-cvlab
o$xstructcorrsq<-o$xstructcorr^2 #Find variance explained by structural correlations
rownames(o$xstructcorrsq)<-xlab
colnames(o$xstructcorrsq)<-cvlab
o$ystructcorrsq<-o$ystructcorr^2
rownames(o$ystructcorrsq)<-ylab
colnames(o$ystructcorrsq)<-cvlab
o$xcrosscorr<-cor(x,o$canvary,use=use) #Find cross-correlations
rownames(o$xcrosscorr)<-xlab
colnames(o$xcrosscorr)<-cvlab
o$ycrosscorr<-cor(y,o$canvarx,use=use)
rownames(o$ycrosscorr)<-ylab
colnames(o$ycrosscorr)<-cvlab
o$xcrosscorrsq<-o$xcrosscorr^2 #Find variance exp. by cross-correlations
rownames(o$xcrosscorrsq)<-xlab
colnames(o$xcrosscorrsq)<-cvlab
o$ycrosscorrsq<-o$ycrosscorr^2
rownames(o$ycrosscorrsq)<-ylab
colnames(o$ycrosscorrsq)<-cvlab
o$xcancom<-apply(o$xstructcorrsq,1,sum,na.rm=na.rm) #Find the canonical communalities (total var explained)
names(o$xcancom)<-xlab
o$ycancom<-apply(o$ystructcorrsq,1,sum,na.rm=na.rm)
names(o$ycancom)<-ylab
o$xcanvad<-apply(o$xstructcorrsq,2,mean,na.rm=na.rm) #Find the canonical variate adequacies
names(o$xcanvad)<-cvlab
o$ycanvad<-apply(o$ystructcorrsq,2,mean,na.rm=na.rm)
names(o$ycanvad)<-cvlab
o$xvrd<-o$xcanvad*o$corrsq #Find the redundancy indices (Rd) for X|Y and Y|X
names(o$xvrd)<-cvlab
o$yvrd<-o$ycanvad*o$corrsq
names(o$yvrd)<-cvlab
o$xrd<-sum(o$xvrd,na.rm=na.rm)
o$yrd<-sum(o$yvrd,na.rm=na.rm)
bartvbase<--(NROW(x)-1-(nx+ny+1)/2) #Bartlett's chisq stats
o$chisq<-bartvbase*(sum(log(1-o$corr^2))-c(0,cumsum(log(1-o$corr^2))[-ncv]))
o$df<-(nx+1-(1:ncv))*(ny+1-(1:ncv))
names(o$chisq)<-cvlab
names(o$df)<-cvlab
o$xlab<-xlab #Save labels, just in case
o$ylab<-ylab
o$reg.param<-reg.param
#print(eigen(solve(cxx)%*%cxy%*%solve(cyy)%*%cyx))
#Return the results
class(o)<-"cca"
o
}
| /scratch/gouwar.j/cran-all/cranData/yacca/R/cca.R |
`helio.plot` <-
function(c,cv=1,xvlab=c$xlab,yvlab=c$ylab,x.name="X Variables",y.name="Y Variables",lab.cex=1,wid.fact=0.75,main="Helio Plot",sub=paste("Canonical Variate",cv,sep=""),zero.rad=30,range.rad=20,name.padding=5,name.cex=1.5,axis.circ=c(-1,1),x.group=rep(0,dim(c$xstructcorr)[1]),y.group=rep(0,dim(c$ystructcorr)[1]),type="correlation"){
#First, open up a new window
plot.new()
plot.window(c(-100,100),c(-100,100)) #Assume, for convenience, a +-100 world
#Set the appropriate data, depending on whether this is a correlation or a variance plot
if(type=="correlation"){
xdat<-c$xstructcorr
ydat<-c$ystructcorr
}else if(type=="variance"){
xdat<-c$xstructcorrsq
ydat<-c$ystructcorrsq
}else
stop(paste("Plot type ",type," not supported.\n",sep=""))
#Set radii for inner, middle, outer, and name circles
ir<-zero.rad-range.rad
mr<-zero.rad
or<-zero.rad+range.rad
nr<-zero.rad+range.rad+name.padding
#Next, put the dividing line and any axis circles in place
lines(c(0,0),c(-90,90))
lines(mr*sin(2*pi*((0:100)/100)),mr*cos(2*pi*((0:100)/100)),lty=1)
if(!is.null(axis.circ))
for(i in 1:length(axis.circ))
lines((mr+range.rad*axis.circ[i])*sin(2*pi*((0:100)/100)),(mr+range.rad*axis.circ[i])*cos(2*pi*((0:100)/100)),lty=3)
#Label the two halves of the circle
text(-50,95,label=x.name,cex=name.cex)
text(50,95,label=y.name,cex=name.cex)
#Label the ranges
#text(rep(0,6),c(-45,-25,-5,5,25,45),label=c(1,0,-1,-1,0,1),pos=c(rep(2,3),rep(4,3)),cex=0.85,offset=0.1)
#Get the number of variables in each set
nx<-dim(xdat)[1]
ny<-dim(ydat)[1]
#Place rectangles and names for the x (left) variables
for(i in 1:nx){
#First, place rectangles
if(xdat[i,cv]>0) #Set fill color - black if positive, unfilled if negative
bcol<-1
else
bcol<-NA
bang<-(-pi/(nx+1))*i #Determine the angle
binc<-pi/(max(nx,ny)+1)*wid.fact/2
bwinc<-ir*sin(binc) #Determine the box width increment (based on binc at inner circle)
bx<-vector()
bx[1]<-mr*sin(bang)-bwinc*cos(-bang)
bx[2]<-(mr+range.rad*xdat[i,cv])*sin(bang)-bwinc*cos(-bang)
bx[3]<-(mr+range.rad*xdat[i,cv])*sin(bang)+bwinc*cos(-bang)
bx[4]<-mr*sin(bang)+bwinc*cos(-bang)
by<-vector()
by[1]<-mr*cos(bang)-bwinc*sin(-bang)
by[2]<-(mr+range.rad*xdat[i,cv])*cos(bang)-bwinc*sin(-bang)
by[3]<-(mr+range.rad*xdat[i,cv])*cos(bang)+bwinc*sin(-bang)
by[4]<-mr*cos(bang)+bwinc*sin(-bang)
polygon(bx,by,col=bcol,lty=1) #Draw the box
#Next, place names
text(nr*sin(bang),nr*cos(bang),label=xvlab[i],srt=(3*pi/2-bang)*(360/(2*pi)),pos=2,cex=lab.cex)
}
#Place rectangles and names for the y (right) variables
for(i in 1:ny){
#First, place rectangles
if(ydat[i,cv]>0) #Set fill color - black if positive, unfilled if negative
bcol<-1
else
bcol<-NA
bang<-(pi/(ny+1))*i #Determine the angle
binc<-pi/(max(nx,ny)+1)*wid.fact/2
bwinc<-ir*sin(binc) #Determine the box width increment (based on binc at inner circle)
bx<-vector()
bx[1]<-mr*sin(bang)-bwinc*cos(-bang)
bx[2]<-(mr+range.rad*ydat[i,cv])*sin(bang)-bwinc*cos(-bang)
bx[3]<-(mr+range.rad*ydat[i,cv])*sin(bang)+bwinc*cos(-bang)
bx[4]<-mr*sin(bang)+bwinc*cos(-bang)
by<-vector()
by[1]<-mr*cos(bang)-bwinc*sin(-bang)
by[2]<-(mr+range.rad*ydat[i,cv])*cos(bang)-bwinc*sin(-bang)
by[3]<-(mr+range.rad*ydat[i,cv])*cos(bang)+bwinc*sin(-bang)
by[4]<-mr*cos(bang)+bwinc*sin(-bang)
polygon(bx,by,col=bcol,lty=1) #Draw the box
#Next, place names
text(nr*sin(bang),nr*cos(bang),label=yvlab[i],srt=(pi/2-bang)*(360/(2*pi)),pos=4,cex=lab.cex)
}
#Perform grouping for the X variables, if needed. 0 means ungrouped, numbers above it are grouped.
if((!is.null(x.group))&(max(x.group)>0)){
for(i in unique(x.group))
if(i>0){
#Find first and last occurrence (they'd damn well better be sorted!)
gvect<-(x.group%in%i)*(1:length(x.group))
gvect<-gvect[gvect>0]
minang<-min(gvect)*(-pi/(nx+1))
maxang<-max(gvect)*(-pi/(nx+1))
#Add a nice looking grouping thingee
lines(((or+nr)/2)*sin((((0:100)/100)*(maxang-minang)+minang)),((or+nr)/2)*cos((((0:100)/100)*(maxang-minang)+minang)),lty=1)
lines(c(((or+nr)/2)*sin(minang),nr*sin(minang)),c(((or+nr)/2)*cos(minang),nr*cos(minang)),lty=1)
lines(c(((or+nr)/2)*sin(maxang),nr*sin(maxang)),c(((or+nr)/2)*cos(maxang),nr*cos(maxang)),lty=1)
}
}
#Perform grouping for the Y variables, if needed. 0 means ungrouped, numbers above it are grouped.
if((!is.null(y.group))&(max(y.group)>0)){
for(i in unique(y.group))
if(i>0){
#Find first and last occurrence (they'd damn well better be sorted!)
gvect<-(y.group%in%i)*(1:length(y.group))
gvect<-gvect[gvect>0]
minang<-min(gvect)*(pi/(ny+1))
maxang<-max(gvect)*(pi/(ny+1))
#Add a nice looking grouping thingee
lines(((or+nr)/2)*sin((((0:100)/100)*(maxang-minang)+minang)),((or+nr)/2)*cos((((0:100)/100)*(maxang-minang)+minang)),lty=1)
lines(c(((or+nr)/2)*sin(minang),nr*sin(minang)),c(((or+nr)/2)*cos(minang),nr*cos(minang)),lty=1)
lines(c(((or+nr)/2)*sin(maxang),nr*sin(maxang)),c(((or+nr)/2)*cos(maxang),nr*cos(maxang)),lty=1)
}
}
#Add title, if one is listed
title(main=main,sub=sub)
}
| /scratch/gouwar.j/cran-all/cranData/yacca/R/helio.plot.R |
`plot.cca` <-
function(x,...){
#Set the plotting parameters
ncv<-length(x$corr)
oldpar<-par(no.readonly=TRUE)
on.exit(par(oldpar))
par(mfrow=c(ceiling(sqrt(ncv)),ceiling(sqrt(ncv))))
#Plot the data on each canonical variate
for(i in 1:ncv){
plot(x$canvarx[,i],x$canvary[,i],xlab="X",ylab="Y",main=paste("Canonical Variate Plot - Variate",i,sep=" "),...)
abline(mean(x$canvary[,i],na.rm=TRUE)-x$corr[i]*mean(x$canvarx[,i],na.rm=TRUE),x$corr[i])
text(mean(x$canvarx[,i],na.rm=TRUE),mean(x$canvary[,i],na.rm=TRUE),label=paste("r=",round(x$corr[i],digits=2),sep=""),pos=1,srt=180/pi*atan(x$corr[i]))
}
#Redundancy plots
par(mfrow=c(1,1),ask=TRUE)
h<-cbind(x$xvrd,x$yvrd) #Get the redundancy information
h<-rbind(c(x$xrd,x$yrd),h)
colnames(h)<-c("X Given Y","Y Given X")
rownames(h)<-c("Total",paste("CV",1:ncv))
barplot(h,beside=TRUE,main="Canonical Variate Redundancy Plot",ylim=c(0,1),ylab="Fraction of Variance Explained",legend.text=rownames(h),col=rainbow(ncv+1))
#Plot the loadings on each canonical variate using the helio plot
par(mfrow=c(ceiling(sqrt(ncv)),ceiling(sqrt(ncv))))
for(i in 1:ncv){
helio.plot(x,cv=i,main=paste("Structural Correlations for CV",i))
}
#Now repeat for variances deposited
par(mfrow=c(ceiling(sqrt(ncv)),ceiling(sqrt(ncv))))
for(i in 1:ncv){
helio.plot(x,cv=i,main=paste("Explained Variance for CV",i),type="variance",axis.circ=c(0.5,1),range.rad=25)
}
}
| /scratch/gouwar.j/cran-all/cranData/yacca/R/plot.cca.R |
`print.F.test.cca` <- function(x, ...)
{
cat("\n\tF Test for Canonical Correlations (Rao's F Approximation)\n\n")
ctab <- cbind(x$corr, x$statistic, x$parameter, x$p.value)
colnames(ctab) <- c("Corr","F","Num df","Den df","Pr(>F)")
rownames(ctab) <- names(x$corr)
printCoefmat(ctab)
cat("\n")
}
| /scratch/gouwar.j/cran-all/cranData/yacca/R/print.F.test.cca.R |
`print.cca` <-
function(x, ...){
cat("\nCanonical Correlation Analysis\n\n")
#Show the correlations
cat("Canonical Correlations:\n")
print(x$corr)
#Show the coefficients
cat("\nX Coefficients:\n")
print(x$xcoef)
cat("\nY Coefficients:\n")
print(x$ycoef)
#Structural correlations
cat("\nStructural Correlations (Loadings) - X Vars:\n")
print(x$xstructcorr)
cat("\nStructural Correlations (Loadings) - Y Vars:\n")
print(x$ystructcorr)
cat("\nAggregate Redundancy Coefficients (Total Variance Explained):\n")
cat("\tX | Y:",x$xrd,"\n")
cat("\tY | X:",x$yrd,"\n")
cat("\n")
}
| /scratch/gouwar.j/cran-all/cranData/yacca/R/print.cca.R |
`print.summary.cca` <-
function(x, ...){
cat("\nCanonical Correlation Analysis - Summary\n\n")
#Show the correlations
cat("\nCanonical Correlations:\n\n")
print(x$corr)
cat("\nShared Variance on Each Canonical Variate:\n\n")
print(x$corrsq)
#Bartlett's chisq test
tab<-cbind(x$corrsq,x$chisq,x$df,1-pchisq(x$chisq,df=x$df))
colnames(tab)<-c("rho^2","Chisq","df","Pr(>X)")
rownames(tab)<-paste("CV",1:length(x$corr))
cat("\nBartlett's Chi-Squared Test:\n\n")
printCoefmat(tab)
#Show the coefficients
cat("\n\nCanonical Variate Coefficients:\n")
cat("\n\tX Vars:\n")
print(x$xcoef)
cat("\n\tY Vars:\n")
print(x$ycoef)
#Structural correlations
cat("\n\nStructural Correlations (Loadings):\n")
cat("\n\tX Vars:\n")
print(x$xstructcorr)
cat("\n\tY Vars:\n")
print(x$ystructcorr)
cat("\n\nFractional Variance Deposition on Canonical Variates:\n")
cat("\n\tX Vars:\n")
print(x$xstructcorrsq)
cat("\n\tY Vars:\n")
print(x$ystructcorrsq)
#Redundancy measures
cat("\n\nCanonical Communalities (Fraction of Total Variance\nExplained for Each Variable, Within Sets):\n")
cat("\n\tX Vars:\n")
print(x$xcancom)
cat("\n\tY Vars:\n")
print(x$ycancom)
cat("\n\nCanonical Variate Adequacies (Fraction of Total Variance\nExplained by Each CV, Within Sets):\n",fill=TRUE)
cat("\n\tX Vars:\n")
print(x$xcanvad)
cat("\n\tY Vars:\n")
print(x$ycanvad)
cat("\n\nRedundancy Coefficients (Fraction of Total Variance\nExplained by Each CV, Across Sets):\n",fill=TRUE)
cat("\n\tX | Y:\n")
print(x$xvrd)
cat("\n\tY | X:\n")
print(x$yvrd)
cat("\n\nAggregate Redundancy Coefficients (Total Variance\nExplained by All CVs, Across Sets):\n",fill=TRUE)
cat("\tX | Y:",x$xrd,"\n")
cat("\tY | X:",x$yrd,"\n")
cat("\n")
}
| /scratch/gouwar.j/cran-all/cranData/yacca/R/print.summary.cca.R |
`summary.cca` <-
function(object, ...){
s<-object
class(s)<-"summary.cca"
s
}
| /scratch/gouwar.j/cran-all/cranData/yacca/R/summary.cca.R |
######################################################################
#
# zzz.R
#
# copyright (c) 2018, Carter T. Butts <[email protected]>
# Last Modified 2/25/18
# Licensed under the GNU General Public License version 3
#
# Part of the R/yacca package; based on the zzz.R files from sna
# and other statnet packages (all hail).
#
# .onAttach is run when the package is loaded with library(yacca)
#
######################################################################
.onAttach <- function(libname, pkgname){
temp<-packageDescription("yacca")
msg<-paste(temp$Package,": ",temp$Title,"\n",
"Version ",temp$Version,
" created on ",
temp$Date,".\n", sep="")
msg<-paste(msg,"copyright (c) 2008, Carter T. Butts, University of California-Irvine\n",sep="")
msg<-paste(msg,'For citation information, type citation("yacca").\n')
msg<-paste(msg,'Type help("yacca-package") to get started.\n')
packageStartupMessage(msg)
}
| /scratch/gouwar.j/cran-all/cranData/yacca/R/zzz.R |
#' Generate a list of index for the n-fold cross-validation
#'
#' The function \code{folds} generates a list of index for the n-fold cross-validation
#'
#' @param idx A vector of index list
#' @param n The number of n folds
#' @param seed The seed value to generate random n-fold index
#'
#' @return A list of n-fold index
#'
#' @examples
#' folds(seq(10), n = 3, seed = 2020)
folds <- function(idx, n, seed = 1) {
g <- with(set.seed(seed), sample(idx, length(idx))) %% n + 1
r <- split(idx, g)
names(r) <- paste('Fold', seq(n), sep = '')
return(r)
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/folds.R |
#' Generate random numbers of latin hypercube sampling
#'
#' The function \code{gen_latin} generates a vector of random numbers by latin hypercube sampling
#'
#' @param min The minimum value of random numbers
#' @param max The maxinum value of random numbers
#' @param n The number of random numbers to gernate
#' @param seed The seed value of random number generation
#'
#' @return A vector of random numbers bounded by the min and max
#'
#' @examples
#' gen_latin(0, 1, 10, 2020)
gen_latin <- function(min = 0, max = 1, n, seed = 1) {
set.seed(seed)
return(round(min + (max - min) * c(lhs::randomLHS(n, k = 1)), 8))
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/gen_latin.R |
#' Generate sobol sequence
#'
#' The function \code{gen_sobol} generates a vector of scrambled sobol sequence
#'
#' @param min The minimum value of random numbers
#' @param max The maxinum value of random numbers
#' @param n The number of random numbers to gernate
#' @param seed The seed value of random number generation
#'
#' @return A vector of sobol sequence bounded by the min and max
#'
#' @examples
#' gen_sobol(0, 1, 10, 2020)
gen_sobol <- function(min = 0, max = 1, n, seed = 1) {
return(round(min + (max - min) * randtoolbox::sobol(n, dim = 1, scrambling = 3, seed = seed), 8))
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/gen_sobol.R |
#' Generate Uniform random numbers
#'
#' The function \code{gen_unifm} generates a vector of uniform random numbers
#'
#' @param min The minimum value of random numbers
#' @param max The maxinum value of random numbers
#' @param n The number of random numbers to gernate
#' @param seed The seed value of random number generation
#'
#' @return A vector of uniform random numbers bounded by the min and max
#'
#' @examples
#' gen_unifm(0, 1, 10, 2020)
gen_unifm <- function(min = 0, max = 1, n, seed = 1) {
set.seed(seed)
return(round(min + (max - min) * runif(n), 8))
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/gen_unifm.R |
#' Create a general regression neural network
#'
#' The function \code{grnn.fit} creates a general regression neural network (GRNN)
#'
#' @param x The matrix of predictors
#' @param y The vector of response variable
#' @param w The vector of weights with default = 1 for each record
#' @param sigma The scalar of smoothing parameter
#'
#' @return A general regression neural network object
#'
#' @references
#' Donald Specht. (1991). A General Regression Neural Network.
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:4])
#' gnet <- grnn.fit(x = X, y = Y)
grnn.fit <- function(x, y, sigma = 1, w = rep(1, length(y))) {
### CHECK X MATRIX ###
if (is.matrix(x) == F) stop("x needs to be a matrix.", call. = F)
if (anyNA(x) == T) stop("NA found in x.", call. = F)
### CHECK Y VECTOR ###
if (is.vector(y) == F) stop("y needs to be a vector.", call. = F)
if (anyNA(y) == T) stop("NA found in y.", call. = F)
if (length(y) != nrow(x)) stop("x and y need to share the same length.", call. = F)
### CHECK W VECTOR ###
if (is.vector(w) == F) stop("w needs to be a vector.", call. = F)
if (anyNA(w) == T) stop("NA found in w.", call. = F)
if (length(w) != nrow(x)) stop("x and w need to share the same length.", call. = F)
### CHECK SIGMA ###
if (sigma <= 0) stop("sigma needs to be positive", call. = F)
gn <- structure(list(), class = "General Regression Neural Net")
gn$x <- x
gn$y <- y
gn$w <- w
gn$sigma <- sigma
return(gn)
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.fit.R |
#' Derive the importance rank of all predictors used in the GRNN
#'
#' The function \code{grnn.imp} derives the importance rank of all predictors used in the GRNN
#' It essentially is a wrapper around the function \code{grnn.x_imp}.
#'
#' @param net The GRNN object generated by grnn.fit()
#' @param class TRUE or FALSE, whether it is for the classification or not
#'
#' @return A dataframe with important values of all predictors in the GRNN
#'
#' @seealso \code{\link{grnn.x_imp}}
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:3])
#' gnet <- grnn.fit(x = X, y = Y)
#' \dontrun{
#' grnn.imp(net = gnet, class = TRUE)
#' }
grnn.imp <- function(net, class = FALSE) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN.", call. = F)
if (!(class %in% c(TRUE, FALSE))) stop("the class input is not correct.", call. = F)
cls <- parallel::makeCluster(min(ncol(net$x), parallel::detectCores() - 1), type = "PSOCK")
obj <- c("net", "class", "grnn.fit", "grnn.predone", "grnn.predict", "grnn.x_imp")
parallel::clusterExport(cls, obj, envir = environment())
rst1 <- data.frame(idx = seq(ncol(net$x)),
Reduce(rbind, parallel::parLapply(cls, seq(ncol(net$x)), function(i) grnn.x_imp(net, i, class = class))))
parallel::stopCluster(cls)
rst2 <- rst1[with(rst1, order(-imp1, -imp2)), ]
row.names(rst2) <- NULL
return(rst2)
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.imp.R |
#' Derive the marginal effect of a predictor used in a GRNN
#'
#' The function \code{grnn.margin} derives the marginal effect of a predictor used in a GRNN
#' by assuming mean values for the rest predictors
#'
#' @param net The GRNN object generated by grnn.fit()
#' @param i The ith predictor in the GRNN
#' @param plot TRUE or FALSE to plot the marginal effect
#'
#' @return A plot of the marginal effect or a dataframe of the marginal effect
#'
#' @seealso \code{\link{grnn.partial}}
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:4])
#' gnet <- grnn.fit(x = X, y = Y)
#' grnn.margin(gnet, 1, plot = FALSE)
grnn.margin <- function(net, i, plot = TRUE) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN.", call. = F)
if (i > ncol(net$x)) stop("the selected variable is out of bound.", call. = F)
if (!(plot %in% c(T, F))) stop("the plot input is not correct.", call. = F)
xname <- colnames(net$x)[i]
n <- length(unique(net$x[, i]))
x <- matrix(rep(colMeans(net$x), n), nrow = n, byrow = T)
x[, i] <- sort(unique(net$x[, i]))
rst <- data.frame(x = x[, i], p = grnn.predict(net, x))
if (plot == TRUE) {
plot(rst[, 1], rst[, 2], type = "b", lty = 4, lwd = 3, ylab = '', xlab = xname,
main = "Marginal Effect", pch = 16, cex = 1.5, col = "red", cex.main = 1, cex.lab = 1, yaxt = 'n')
rug(rst[, 1], col = 'green4', ticksize = 0.03, lwd = 3)
} else {
return(rst)
}
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.margin.R |
#' Optimize the optimal value of GRNN smoothing parameter based on AUC
#'
#' The function \code{grnn.optmiz_auc} optimize the optimal value of GRNN smoothing parameter by cross-validation.
#' It is applicable to the classification.
#'
#' @param net A GRNN object generated by grnn.fit()
#' @param lower A scalar for the lower bound of the smoothing parameter
#' @param upper A scalar for the upper bound of the smoothing parameter
#' @param nfolds A scalar for the number of n-fold, 4 by default
#' @param seed The seed value for the n-fold cross-validation, 1 by default
#' @param method A scalar referring to the optimization method, 1 for Golden section searc and 2 for Brent’s method
#'
#' @return The best outcome
#'
#' @seealso \code{\link{grnn.search_auc}}
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:4])
#' gnet <- grnn.fit(x = X, y = Y)
#' \dontrun{
#' grnn.optmiz_auc(net = gnet, lower = 3, upper = 7, nfolds = 2)
#' }
grnn.optmiz_auc <- function(net, lower = 0, upper, nfolds = 4, seed = 1, method = 1) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN.", call. = F)
if (!(method %in% c(1, 2))) stop("the method is not supported.", call. = F)
fd <- folds(seq(nrow(net$x)), n = nfolds, seed = seed)
cv <- function(s) {
cls <- parallel::makeCluster(min(nfolds, parallel::detectCores() - 1), type = "PSOCK")
obj <- c("fd", "net", "grnn.fit", "grnn.predone", "grnn.predict")
parallel::clusterExport(cls, obj, envir = environment())
rs <- Reduce(rbind,
parallel::parLapply(cls, fd,
function(f) data.frame(ya = net$y[f],
yp = grnn.predict(grnn.fit(net$x[-f, ], net$y[-f], sigma = s),
net$x[f, ]))))
parallel::stopCluster(cls)
return(MLmetrics::AUC(y_pred = rs$yp, y_true = rs$ya))
}
if (method == 1) {
rst <- optimize(f = cv, interval = c(lower, upper), maximum = T)
} else if (method == 2) {
rst <- optim(par = mean(lower, upper), fn = cv, lower = lower, upper = upper,
method = "Brent", control = list(fnscale = -1))
}
return(data.frame(sigma = rst[[1]], auc = rst[[2]]))
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.optmiz_auc.R |
#' Calculate predicted values of GRNN by using parallelism
#'
#' The function \code{grnn.parpred} calculates a vector of GRNN predicted values based on an input matrix
#'
#' @param net The GRNN object generated by grnn.fit()
#' @param x The matrix of input predictors
#'
#' @return A vector of predicted values
#'
#' @seealso \code{\link{grnn.predict}}
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:4])
#' gnet <- grnn.fit(x = X, y = Y)
#' grnn.parpred(gnet, X[seq(5), ])
grnn.parpred <- function(net, x) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN.", call. = F)
if (is.matrix(x) == F) stop("x needs to be a matrix.", call. = F)
if (anyNA(x) == T) stop("NA found in x.", call. = F)
if (ncol(x) != ncol(net$x)) stop("x dimension is not consistent with grnn.", call. = F)
cls <- parallel::makeCluster(min(floor(nrow(x) / 3), parallel::detectCores() - 1), type = "PSOCK")
obj <- c("net", "x", "grnn.predone", "grnn.predict")
parallel::clusterExport(cls, obj, envir = environment())
spx <- parallel::parLapplyLB(cls, parallel::clusterSplit(cls, seq(nrow(x))),
function(c_) x[c_, ])
rst <- parallel::parLapplyLB(cls, spx, function(x_) grnn.predict(net, x_))
parallel::stopCluster(cls)
return(Reduce(c, rst))
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.parpred.R |
#' Derive the partial effect of a predictor used in a GRNN
#'
#' The function \code{grnn.partial} derives the partial effect of a predictor used in a GRNN
#' by average-out values of the rest predictors.
#'
#' @param net The GRNN object generated by grnn.fit()
#' @param i The ith predictor in the GRNN
#' @param plot TRUE or FALSE to plot the partial effect
#'
#' @return A plot of the partial effect or a dataframe of the partial effect
#'
#' @seealso \code{\link{grnn.margin}}
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:4])
#' gnet <- grnn.fit(x = X, y = Y)
#' \dontrun{
#' grnn.partial(gnet, 1, plot = FALSE)
#' }
grnn.partial <- function(net, i, plot = TRUE) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN.", call. = F)
if (i > ncol(net$x)) stop("the selected variable is out of bound.", call. = F)
if (!(plot %in% c(T, F))) stop("the plot input is not correct.", call. = F)
xname <- colnames(net$x)[i]
xi <- sort(unique(net$x[, i]))
partial <- function(x_i) {
x <- net$x
x[, i] <- rep(x_i, length(net$y))
return(data.frame(x = x_i, p = mean(grnn.predict(net, x))))
}
cls <- parallel::makeCluster(min(length(xi), parallel::detectCores() - 1), type = "PSOCK")
obj <- c("net", "grnn.fit", "grnn.predone", "grnn.predict")
parallel::clusterExport(cls, obj, envir = environment())
rst <- Reduce(rbind, parallel::parLapply(cls, xi, partial))
parallel::stopCluster(cls)
if (plot == T) {
plot(rst[, 1], rst[, 2], type = "b", lty = 4, lwd = 3, ylab = '', xlab = xname,
main = "Partial Dependence", pch = 16, cex = 1.5, col = "royalblue", cex.main = 1, cex.lab = 1, yaxt = 'n')
rug(rst[, 1], col = 'green4', ticksize = 0.03, lwd = 3)
} else {
return(rst)
}
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.partial.R |
#' Derive the PFI rank of all predictors used in the GRNN
#'
#' The function \code{grnn.pfi} derives the PFI rank of all predictors used in the GRNN
#' It essentially is a wrapper around the function \code{grnn.x_pfi}.
#'
#' @param net The GRNN object generated by grnn.fit()
#' @param class TRUE or FALSE, whether it is for the classification or not
#' @param ntry The number of random permutations to try, 1e3 times by default
#' @param seed The seed value for the random permutation
#'
#' @return A dataframe with PFI values of all predictors in the GRNN
#'
#' @seealso \code{\link{grnn.x_pfi}}
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:3])
#' gnet <- grnn.fit(x = X, y = Y)
#' \dontrun{
#' grnn.pfi(net = gnet, class = TRUE)
#' }
grnn.pfi <- function(net, class = FALSE, ntry = 1e3, seed = 1) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN.", call. = F)
if (!(class %in% c(TRUE, FALSE))) stop("the class input is not correct.", call. = F)
cls <- parallel::makeCluster(min(ncol(net$x), parallel::detectCores() - 1), type = "PSOCK")
obj <- c("net", "class", "grnn.fit", "grnn.predone", "grnn.predict", "grnn.x_pfi", "ntry", "seed")
parallel::clusterExport(cls, obj, envir = environment())
rst1 <- data.frame(idx = seq(ncol(net$x)),
Reduce(rbind, parallel::parLapply(cls, seq(ncol(net$x)),
function(i) grnn.x_pfi(net, i, class = class, ntry = ntry, seed = seed))))
parallel::stopCluster(cls)
rst2 <- rst1[with(rst1, order(-pfi)), ]
row.names(rst2) <- NULL
return(rst2)
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.pfi.R |
#' Calculate predicted values of GRNN
#'
#' The function \code{grnn.predict} calculates a vector of GRNN predicted values based on an input matrix
#'
#' @param net The GRNN object generated by grnn.fit()
#' @param x The matrix of input predictors
#'
#' @return A vector of predicted values
#'
#' @seealso \code{\link{grnn.predone}}
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:4])
#' gnet <- grnn.fit(x = X, y = Y)
#' grnn.predict(gnet, X[seq(5), ])
grnn.predict <- function(net, x) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN object.", call. = F)
if (is.matrix(x) == F) stop("x needs to be a matrix.", call. = F)
if (anyNA(x) == T) stop("NA found in x.", call. = F)
if (ncol(x) != ncol(net$x)) stop("x dimension is not consistent with grnn.", call. = F)
return(Reduce(c, lapply(split(x, seq(nrow(x))), function(x_) grnn.predone(net, x_))))
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.predict.R |
#' Calculate a predicted value of GRNN
#'
#' The function \code{grnn.predone} calculates a predicted value of GRNN based on an input vector
#'
#' @param net The GRNN object generated by grnn.fit()
#' @param x The vector of input predictors
#' @param type A scalar, 1 for euclidean distance and 2 for manhattan distance
#'
#' @return A scalar of the predicted value
#'
#' @references
#' Donald Specht. (1991). A General Regression Neural Network.
#'
#' @seealso \code{\link{grnn.fit}}
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:4])
#' gnet <- grnn.fit(x = X, y = Y)
#' for (i in seq(5)) print(grnn.predone(gnet, X[i, ]))
grnn.predone <- function(net, x, type = 1) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN object.", call. = F)
### CHECK INPUT X VECTOR ###
if (is.vector(x) == F) stop("x needs to be a vector.", call. = F)
if (anyNA(x) == T) stop("NA found in x.", call. = F)
if (length(x) != ncol(net$x)) stop("x dimension is not consistent with grnn.", call. = F)
### CHECK INPUT TYPE (CURRENTLY SUPPORTING 1 / 2) ###
if (!(type %in% c(1, 2))) stop("the type is not supported.", call. = F)
# xl <- split(net$x, seq(nrow(net$x)))
xl <- matrix(rep(x, length(net$y)), nrow = length(net$y), byrow = TRUE)
if (type == 1) {
### EUCLIDEAN DISTANCE BY DEFAULT ###
num <- sum(net$w * net$y * exp(-(rowSums((xl - net$x) ^ 2)) / (2 * (net$sigma ^ 2))))
den <- sum(net$w * exp(-(rowSums((xl - net$x) ^ 2)) / (2 * (net$sigma ^ 2))))
# num <- sum(net$w * net$y * exp(-Reduce(c, lapply(xl, function(xi) sum((x - xi) ^ 2))) / (2 * (net$sigma ^ 2))))
# den <- sum(net$w * exp(-Reduce(c, lapply(xl, function(xi) sum((x - xi) ^ 2))) / (2 * (net$sigma ^ 2))))
} else if (type == 2) {
### MANHATTAN DISTANCE ###
num <- sum(net$w * net$y * exp(-(rowSums(abs(xl - net$x))) / net$sigma))
den <- sum(net$w * exp(-(rowSums(abs(xl - net$x))) / net$sigma))
# num <- sum(net$w * net$y * exp(-Reduce(c, lapply(xl, function(xi) sum(abs(x - xi)))) / net$sigma))
# den <- sum(net$w * exp(-Reduce(c, lapply(xl, function(xi) sum(abs(x - xi)))) / net$sigma))
}
return(num / den)
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.predone.R |
#' Calculate a predicted value of GRNN
#'
#' The function \code{grnn.predone} calculates a predicted value of GRNN based on an input vector
#'
#' @param net The GRNN object generated by grnn.fit()
#' @param x The vector of input predictors
#' @param type A scalar, 1 for euclidean distance and 2 for manhattan distance
#'
#' @return A scalar of the predicted value
#'
#' @references
#' Donald Specht. (1991). A General Regression Neural Network.
#'
#' @seealso \code{\link{grnn.fit}}
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:4])
#' gnet <- grnn.fit(x = X, y = Y)
#' for (i in seq(5)) print(grnn.predone(gnet, X[i, ]))
grnn.predone <- function(net, x, type = 1) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN object.", call. = F)
### CHECK INPUT X VECTOR ###
if (is.vector(x) == F) stop("x needs to be a vector.", call. = F)
if (anyNA(x) == T) stop("NA found in x.", call. = F)
if (length(x) != ncol(net$x)) stop("x dimension is not consistent with grnn.", call. = F)
### CHECK INPUT TYPE (CURRENTLY SUPPORTING 1 / 2) ###
if (!(type %in% c(1, 2))) stop("the type is not supported.", call. = F)
xl <- split(net$x, seq(nrow(net$x)))
if (type == 1) {
### EUCLIDEAN DISTANCE BY DEFAULT ###
num <- sum(net$w * net$y * exp(-Reduce(c, lapply(xl, function(xi) sum((x - xi) ^ 2))) / (2 * (net$sigma ^ 2))))
den <- sum(net$w * exp(-Reduce(c, lapply(xl, function(xi) sum((x - xi) ^ 2))) / (2 * (net$sigma ^ 2))))
} else if (type == 2) {
### MANHATTAN DISTANCE ###
num <- sum(net$w * net$y * exp(-Reduce(c, lapply(xl, function(xi) sum(abs(x - xi)))) / net$sigma))
den <- sum(net$w * exp(-Reduce(c, lapply(xl, function(xi) sum(abs(x - xi)))) / net$sigma))
}
return(num / den)
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.predonev1.R |
#' Search for the optimal value of GRNN smoothing parameter based on AUC
#'
#' The function \code{grnn.search_auc} searches for the optimal value of GRNN smoothing parameter by cross-validation.
#' It is applicable to the classification.
#'
#' @param net A GRNN object generated by grnn.fit()
#' @param sigmas A numeric vector to search for the best smoothing parameter
#' @param nfolds A scalar for the number of n-fold, 4 by default
#' @param seed The seed value for the n-fold cross-validation, 1 by default
#'
#' @return The list of all searching outcomes and the best outcome
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:4])
#' gnet <- grnn.fit(x = X, y = Y)
#' grnn.search_auc(net = gnet, sigmas = c(3, 5, 7), nfolds = 2)
grnn.search_auc <- function(net, sigmas, nfolds = 4, seed = 1) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN.", call. = F)
if (is.vector(sigmas) != T) stop("sigmas needs to be a vector.", call. = F)
fd <- folds(seq(nrow(net$x)), n = nfolds, seed = seed)
cv <- function(s) {
rs <- Reduce(rbind,
lapply(fd,
function(f) data.frame(ya = net$y[f],
yp = grnn.predict(grnn.fit(net$x[-f, ], net$y[-f], sigma = s),
net$x[f, ]))))
return(data.frame(sigma = s, auc = MLmetrics::AUC(y_pred = rs$yp, y_true = rs$ya)))
}
cls <- parallel::makeCluster(min(nfolds, parallel::detectCores() - 1), type = "PSOCK")
obj <- c("fd", "net", "grnn.fit", "grnn.predone", "grnn.predict")
parallel::clusterExport(cls, obj, envir = environment())
rst <- Reduce(rbind, parallel::parLapply(cls, sigmas, cv))
parallel::stopCluster(cls)
return(list(test = rst, best = rst[rst$auc == max(rst$auc), ]))
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.search_auc.R |
#' Search for the optimal value of GRNN smoothing parameter based on r-square
#'
#' The function \code{grnn.search_rsq} searches for the optimal value of GRNN smoothing parameter by cross-validation.
#' It is applicable to the functional approximation
#'
#' @param net A GRNN object generated by grnn.fit()
#' @param sigmas A numeric vector to search for the best smoothing parameter
#' @param nfolds A scalar for the number of n-fold, 4 by default
#' @param seed The seed value for the n-fold cross-validation, 1 by default
#'
#' @return The list of all searching outcomes and the best outcome
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:4])
#' gnet <- grnn.fit(x = X, y = Y)
#' grnn.search_rsq(net = gnet, sigmas = seq(3), nfolds = 2)
grnn.search_rsq <- function(net, sigmas, nfolds = 4, seed = 1) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN.", call. = F)
if (is.vector(sigmas) != T) stop("sigmas needs to be a vector.", call. = F)
fd <- folds(seq(nrow(net$x)), n = nfolds, seed = seed)
cv <- function(s) {
rs <- Reduce(rbind,
lapply(fd,
function(f) data.frame(ya = net$y[f],
yp = grnn.predict(grnn.fit(net$x[-f, ], net$y[-f], sigma = s),
net$x[f, ]))))
return(data.frame(sigma = s, r2 = MLmetrics::R2_Score(y_pred = rs$yp, y_true = rs$ya)))
}
cls <- parallel::makeCluster(min(nfolds, parallel::detectCores() - 1), type = "PSOCK")
obj <- c("fd", "net", "grnn.fit", "grnn.predone", "grnn.predict")
parallel::clusterExport(cls, obj, envir = environment())
rst <- Reduce(rbind, parallel::parLapply(cls, sigmas, cv))
parallel::stopCluster(cls)
return(list(test = rst, best = rst[rst$r2 == max(rst$r2), ]))
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.search_rsq.R |
#' Derive the importance of a predictor used in the GRNN
#'
#' The function \code{grnn.x_imp} derives the importance of a predictor used in the GRNN
#' by using the loss of predictability after eliminating the impact of the predictor in interest.
#'
#' @param net The GRNN object generated by grnn.fit()
#' @param i The ith predictor in the GRNN
#' @param class TRUE or FALSE, whether it is for the classification or not
#'
#' @return A vector with the variable name and two values of importance measurements, namely "imp1" and "imp2".
#' The "imp1" measures the loss of predictability after replacing all values of the predictor with its mean.
#' The "imp2" measures the loss of predictability after dropping the predictor from the GRNN.
#'
#' @seealso \code{\link{grnn.x_pfi}}
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:4])
#' gnet <- grnn.fit(x = X, y = Y)
#' grnn.x_imp(net = gnet, 1)
grnn.x_imp <- function(net, i, class = FALSE) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN.", call. = F)
if (i > ncol(net$x)) stop("the selected variable is out of bound.", call. = F)
if (!(class %in% c(TRUE, FALSE))) stop("the class input is not correct.", call. = F)
xname <- colnames(net$x)[i]
x <- net$x
x[, i] <- rep(mean(net$x[, i]), length(net$y))
if (class == TRUE) {
auc0 <- MLmetrics::AUC(grnn.predict(net, net$x), net$y)
auc1 <- MLmetrics::AUC(grnn.predict(net, x), net$y)
auc2 <- MLmetrics::AUC(grnn.predict(grnn.fit(x = x[, -i], y = net$y, sigma = net$sigma), x[, -i]), net$y)
imp1 <- round(max(0, 1 - auc1 / auc0), 8)
imp2 <- round(max(0, 1 - auc2 / auc0), 8)
} else {
rsq0 <- MLmetrics::R2_Score(grnn.predict(net, net$x), net$y)
rsq1 <- MLmetrics::R2_Score(grnn.predict(net, x), net$y)
rsq2 <- MLmetrics::R2_Score(grnn.predict(grnn.fit(x = x[, -i], y = net$y, sigma = net$sigma), x[, -i]), net$y)
imp1 <- round(max(0, 1 - rsq1 / rsq0), 8)
imp2 <- round(max(0, 1 - rsq2 / rsq0), 8)
}
return(data.frame(var = xname, imp1 = imp1, imp2 = imp2))
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.x_imp.R |
#' Derive the permutation feature importance of a predictor used in the GRNN
#'
#' The function \code{grnn.x_pfi} derives the permutation feature importance (PFI) of a predictor used in the GRNN
#'
#' @param net The GRNN object generated by grnn.fit()
#' @param i The ith predictor in the GRNN
#' @param class TRUE or FALSE, whether it is for the classification or not
#' @param ntry The number of random permutations to try, 1e3 times by default
#' @param seed The seed value for the random permutation
#'
#' @return A vector with the variable name and the PFI value.
#'
#' @seealso \code{\link{grnn.x_imp}}
#'
#' @examples
#' data(iris, package = "datasets")
#' Y <- ifelse(iris[, 5] == "setosa", 1, 0)
#' X <- scale(iris[, 1:4])
#' gnet <- grnn.fit(x = X, y = Y)
#' grnn.x_pfi(net = gnet, 1)
grnn.x_pfi <- function(net, i, class = FALSE, ntry = 1e3, seed = 1) {
if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN.", call. = F)
if (!(class %in% c(TRUE, FALSE))) stop("the class input is not correct.", call. = F)
xname <- colnames(net$x)[i]
set.seed(seed)
seeds <- floor(runif(ntry) * 1e8)
ol <- lapply(seeds, function(s) with(set.seed(s), sample(seq(nrow(net$x)), nrow(net$x), replace = F)))
cl <- Reduce(c, lapply(ol, function(o) abs(cor(seq(nrow(net$x)), o))))
x <- net$x
x[, i] <- net$x[ol[[which(cl == min(cl))]], i]
if (class == TRUE) {
auc0 <- MLmetrics::AUC(grnn.predict(net, net$x), net$y)
auc1 <- MLmetrics::AUC(grnn.predict(net, x), net$y)
pfi <- round(max(0, 1 - auc1 / auc0), 8)
} else {
rsq0 <- MLmetrics::R2_Score(grnn.predict(net, net$x), net$y)
rsq1 <- MLmetrics::R2_Score(grnn.predict(net, x), net$y)
pfi <- round(max(0, 1 - rsq1 / rsq0), 8)
}
return(data.frame(var = xname, pfi = pfi))
}
| /scratch/gouwar.j/cran-all/cranData/yager/R/grnn.x_pfi.R |
#' R6 Class Representing a Ticker
#'
#' @description
#' Base class for getting all data related to indices from Yahoo Finance API.
#'
#' @param index Index for which data has to be retrieved.
#'
#' @docType class
#' @format An R6 class object
#' @name Index-class
#'
#' @export
Index <- R6::R6Class(
"Index",
public = list(
#' @field index Index for which data is retrieved
index = NULL,
#' @description
#' Create a new Index object
#' @param index Index
#' @examples
#' nifty_50 <- Index$new('^NSEI')
#' @return A new `Index` object
initialize = function(index = NA) {
if (validate(index)) {
self$index <- index
} else {
message("Not a valid index.")
return(invisible(NULL))
}
},
#' @description
#' Set a new index.
#' @param index New index
#' @examples
#' indice <- Index$new('^NSEI')
#' indice$set_index('^NDX')
set_index = function(index) {
if (validate(index)) {
self$index <- index
} else {
message("Not a valid index.")
return(invisible(NULL))
}
},
#' @description
#' Retrieves historical data
#' @param period Length of time. Defaults to \code{'ytd'}. Valid values are:
#' \itemize{
#' \item \code{'1d'}
#' \item \code{'5d'}
#' \item \code{'1mo'}
#' \item \code{'3mo'}
#' \item \code{'6mo'}
#' \item \code{'1y'}
#' \item \code{'2y'}
#' \item \code{'5y'}
#' \item \code{'10y'}
#' \item \code{'ytd'}
#' \item \code{'max'}
#' }
#' @param interval Time between data points. Defaults to \code{'1d'}. Valid values are:
#' \itemize{
#' \item \code{'1m'}
#' \item \code{'2m'}
#' \item \code{'5m'}
#' \item \code{'15m'}
#' \item \code{'30m'}
#' \item \code{'60m'}
#' \item \code{'90m'}
#' \item \code{'1h'}
#' \item \code{'1d'}
#' \item \code{'5d'}
#' \item \code{'1wk'}
#' \item \code{'1mo'}
#' \item \code{'3mo'}
#' }
#' @param start Specific starting date. \code{String} or \code{date} object in \code{yyyy-mm-dd} format.
#' @param end Specific ending date. \code{String} or \code{date} object in \code{yyyy-mm-dd} format.
#' @return A \code{data.frame}.
#' @examples
#' \donttest{
#' nifty <- Index$new('^NSEI')
#' nifty$get_history(start = '2022-07-01', interval = '1d')
#' nifty$get_history(start = '2022-07-01', end = '2022-07-14', interval = '1d')
#' nifty$get_history(period = '1mo', interval = '1d')
#' }
get_history = function(period = 'ytd', interval = '1d', start = NULL, end = NULL) {
if (!is.null(start)) {
start_date <- as.numeric(as.POSIXct(ymd(start, tz = "UTC"), tz = "UTC"))
}
if (!is.null(end)) {
end_date <- as.numeric(as.POSIXct(ymd(end, tz = "UTC"), tz = "UTC"))
}
path <- 'v8/finance/chart/'
end_point <- paste0(path, self$index)
url <- modify_url(url = private$base_url, path = end_point)
if (!is.null(start) && !is.null(end)) {
qlist <- list(period1 = start_date, period2 = end_date, interval = interval)
} else if (!is.null(start) && is.null(end)) {
qlist <- list(period1 = start_date, period2 = round(as.numeric(as.POSIXct(now("UTC")))), interval = interval)
} else {
qlist <- list(range = period, interval = interval)
}
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url, query = qlist)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"), simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
data <-
parsed %>%
use_series(chart) %>%
use_series(result) %>%
extract2(1)
indicators <-
data %>%
use_series(indicators) %>%
use_series(quote) %>%
extract2(1)
result <- data.frame(
date = as_datetime(unlist(data$timestamp)),
volume = flatten_list(indicators$volume),
high = flatten_list(indicators$high),
low = flatten_list(indicators$low),
open = flatten_list(indicators$open),
close = flatten_list(indicators$close)
)
intervals <- c('1d', '5d', '1wk', '1mo', '3mo')
if (interval %in% intervals) {
adj_close <-
data %>%
use_series(indicators) %>%
use_series(adjclose) %>%
extract2(1) %>%
use_series(adjclose)
result$adj_close <- adj_close
}
return(result)
}
}
),
private = list(
base_url = 'https://query2.finance.yahoo.com'
)
)
| /scratch/gouwar.j/cran-all/cranData/yahoofinancer/R/index.R |
#' Currencies
#'
#' List of currencies Yahoo Finance supports.
#'
#' @examples
#' \donttest{
#' get_currencies()
#' }
#'
#' @return Symbol, short and long name of the currencies.
#'
#' @export
#'
get_currencies <- function() {
base_url <- 'https://query1.finance.yahoo.com'
path <- 'v1/finance/currencies'
url <- modify_url(url = base_url, path = path)
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"),
simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
data <-
parsed %>%
use_series(currencies) %>%
use_series(result)
data.frame(
short_name = map_chr(data, 'shortName'),
long_name = map_chr(data, 'longName'),
symbol = map_chr(data, 'symbol'),
local_long_name = map_chr(data, 'localLongName')
)
}
}
#' Market Summary
#'
#' Summary info of relevant exchanges for specific country.
#'
#' @param country Name of the country.
#'
#' @return A \code{data.frame}.
#'
#' @examples
#' \donttest{
#' get_market_summary(country = 'US')
#' }
#'
#' @export
#'
get_market_summary <- function(country = 'US') {
base_url <- 'https://query1.finance.yahoo.com'
path <- 'v6/finance/quote/marketSummary'
url <- modify_url(url = base_url, path = path)
qlist <- list(region = country)
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url, query = qlist)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"),
simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
parsed %>%
use_series(marketSummaryResponse) %>%
use_series(result)
}
}
#' Trending securities
#'
#' List of trending securities for specific country.
#'
#' @param country Name of the country.
#' @param count Number of securities.
#'
#' @return Securities trending in the country.
#'
#' @examples
#' \donttest{
#' get_trending()
#' }
#'
#' @export
#'
get_trending <- function(country = 'US', count = 10) {
base_url <- 'https://query1.finance.yahoo.com'
path <- 'v1/finance/trending/'
end_point <- paste0(path, country)
url <- modify_url(url = base_url, path = end_point)
qlist <- list(count = count)
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url, query = qlist)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"),
simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
data <-
parsed %>%
use_series(finance) %>%
use_series(result)
if (length(data) > 0) {
data %>%
extract2(1) %>%
use_series(quote) %>%
map_chr('symbol')
} else {
message('No trending securities.')
}
}
}
#' Currency converter
#'
#' Retrieve current conversion rate between two currencies as well as historical rates.
#'
#' @param from Currency to convert from.
#' @param to Currency to convert to.
#' @param start Specific starting date. \code{String} or \code{date} object in \code{yyyy-mm-dd} format.
#' @param end Specific ending date. \code{String} or \code{date} object in \code{yyyy-mm-dd} format.
#' @param period Length of time. Defaults to \code{'ytd'} Valid values are:
#' \itemize{
#' \item \code{'1d'}
#' \item \code{'5d'}
#' \item \code{'1mo'}
#' \item \code{'3mo'}
#' \item \code{'6mo'}
#' \item \code{'1y'}
#' \item \code{'2y'}
#' \item \code{'5y'}
#' \item \code{'10y'}
#' \item \code{'ytd'}
#' \item \code{'max'}
#' }
#' @param interval Time between data points. Defaults to \code{'1d'} Valid values are:
#' \itemize{
#' \item \code{'1h'}
#' \item \code{'1d'}
#' \item \code{'5d'}
#' \item \code{'1wk'}
#' \item \code{'1mo'}
#' \item \code{'3mo'}
#' }
#'
#' @return A \code{data.frame}.
#'
#' @examples
#' \donttest{
#' currency_converter('GBP', 'USD', '2022-07-01', '2022-07-10')
#' currency_converter('GBP', 'USD', period = '1mo', interval = '1d')
#' }
#'
#' @export
#'
currency_converter <- function(from = 'EUR', to = 'USD', start = NULL, end = NULL, period = 'ytd', interval = '1d') {
if (!is.null(start)) {
start_date <- as.numeric(as.POSIXct(ymd(start, tz = "UTC"), tz = "UTC"))
}
if (!is.null(end)) {
end_date <- as.numeric(as.POSIXct(ymd(end, tz = "UTC"), tz = "UTC"))
}
base_url <- 'https://query1.finance.yahoo.com'
path <- 'v8/finance/chart/'
cors_domain <- 'finance.yahoo.com'
end_point <- paste0(path, from, to, '=X')
url <- modify_url(url = base_url, path = end_point)
if (!is.null(start) && !is.null(end)) {
qlist <- list(period1 = start_date, period2 = end_date, interval = interval, corsDomain = cors_domain)
} else if (!is.null(start) && is.null(end)) {
qlist <- list(period1 = start_date, period2 = round(as.numeric(as.POSIXct(now("UTC")))), interval = interval, corsDomain = cors_domain)
} else {
qlist <- list(range = period, interval = interval, corsDomain = cors_domain)
}
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url, query = qlist)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"),
simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
data <-
parsed %>%
use_series(chart) %>%
use_series(result) %>%
extract2(1)
indicators <-
data %>%
use_series(indicators) %>%
use_series(quote) %>%
extract2(1)
result <- data.frame(
date = as_datetime(unlist(data$timestamp)),
high = flatten_list(indicators$high),
low = flatten_list(indicators$low),
open = flatten_list(indicators$open),
close = flatten_list(indicators$close),
volume = flatten_list(indicators$volume)
)
intervals <- c('1d', '5d', '1wk', '1mo', '3mo')
if (interval %in% intervals) {
adj_close <-
data %>%
use_series(indicators) %>%
use_series(adjclose) %>%
extract2(1) %>%
use_series(adjclose) %>%
unlist()
result$adj_close <- adj_close
}
return(subset(result, !is.na(volume)))
}
}
| /scratch/gouwar.j/cran-all/cranData/yahoofinancer/R/others.R |
#' R6 Class Representing a Ticker
#'
#' @description
#' Base class for getting all data related to ticker from Yahoo Finance API.
#'
#' @param symbol Symbol for which data has to be retrieved.
#'
#' @importFrom magrittr %>% use_series extract2 extract
#' @importFrom jsonlite fromJSON
#' @import R6 httr purrr lubridate stringr
#' @docType class
#' @format An R6 class object
#' @name Ticker-class
#'
#' @export
Ticker <- R6::R6Class(
"Ticker",
public = list(
#' @field symbol Symbol for which data is retrieved.
symbol = NULL,
#' @description
#' Create a new Ticker object.
#' @param symbol Symbol.
#' @examples
#' aapl <- Ticker$new('aapl')
#' @return A new `Ticker` object
initialize = function(symbol = NA) {
if (validate(symbol)) {
self$symbol <- symbol
} else {
message("Not a valid symbol.")
return(invisible(NULL))
}
},
#' @description
#' Set a new symbol.
#' @param symbol New symbol
#' @examples
#' aapl <- Ticker$new('aapl')
#' aapl$set_symbol('msft')
set_symbol = function(symbol) {
if (validate(symbol)) {
self$symbol <- symbol
} else {
message("Not a valid symbol.")
return(invisible(NULL))
}
},
#' @description
#' Retrieves historical pricing data.
#' @param period Length of time. Defaults to \code{'ytd'}. Valid values are:
#' \itemize{
#' \item \code{'1d'}
#' \item \code{'5d'}
#' \item \code{'1mo'}
#' \item \code{'3mo'}
#' \item \code{'6mo'}
#' \item \code{'1y'}
#' \item \code{'2y'}
#' \item \code{'5y'}
#' \item \code{'10y'}
#' \item \code{'ytd'}
#' \item \code{'max'}
#' }
#' @param interval Time between data points. Defaults to \code{'1d'}. Valid values are:
#' \itemize{
#' \item \code{'1m'}
#' \item \code{'2m'}
#' \item \code{'5m'}
#' \item \code{'15m'}
#' \item \code{'30m'}
#' \item \code{'60m'}
#' \item \code{'90m'}
#' \item \code{'1h'}
#' \item \code{'1d'}
#' \item \code{'5d'}
#' \item \code{'1wk'}
#' \item \code{'1mo'}
#' \item \code{'3mo'}
#' }
#' @param start Specific starting date. \code{String} or \code{date} object in \code{yyyy-mm-dd} format.
#' @param end Specific ending date. \code{String} or \code{date} object in \code{yyyy-mm-dd} format.
#' @return A \code{data.frame}.
#' @examples
#' \donttest{
#' aapl <- Ticker$new('aapl')
#' aapl$get_history(start = '2022-07-01', interval = '1d')
#' aapl$get_history(start = '2022-07-01', end = '2022-07-14', interval = '1d')
#' aapl$get_history(period = '1mo', interval = '1d')
#' }
get_history = function(period = 'ytd', interval = '1d', start = NULL, end = NULL) {
if (!is.null(start)) {
start_date <- as.numeric(as.POSIXct(ymd(start, tz = "UTC"), tz = "UTC"))
}
if (!is.null(end)) {
end_date <- as.numeric(as.POSIXct(ymd(end, tz = "UTC"), tz = "UTC"))
}
path <- 'v8/finance/chart/'
end_point <- paste0(path, self$symbol)
url <- modify_url(url = private$base_url, path = end_point)
if (!is.null(start) && !is.null(end)) {
qlist <- list(period1 = start_date, period2 = end_date, interval = interval)
} else if (!is.null(start) && is.null(end)) {
qlist <- list(period1 = start_date, period2 = round(as.numeric(as.POSIXct(now("UTC")))), interval = interval)
} else {
qlist <- list(range = period, interval = interval)
}
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url, query = qlist)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"), simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
data <-
parsed %>%
use_series(chart) %>%
use_series(result) %>%
extract2(1)
indicators <-
data %>%
use_series(indicators) %>%
use_series(quote) %>%
extract2(1)
result <- data.frame(
date = as_datetime(unlist(data$timestamp)),
volume = get_metric(indicators, 'volume'),
high = get_metric(indicators, 'high'),
low = get_metric(indicators, 'low'),
open = get_metric(indicators, 'open'),
close = get_metric(indicators, 'close')
)
intervals <- c('1d', '5d', '1wk', '1mo', '3mo')
if (interval %in% intervals) {
adj_close <-
data %>%
use_series(indicators) %>%
use_series(adjclose) %>%
extract2(1) %>%
use_series(adjclose)
result$adj_close <- adj_close
}
return(result)
}
}
),
active = list(
#' @field valuation_measures Retrieves valuation measures for most recent four quarters
valuation_measures = function() {
path <- 'ws/fundamentals-timeseries/v1/finance/timeseries/'
end_point <- paste0(path, self$symbol)
url <- modify_url(url = private$base_url, path = end_point)
measure <- paste0('quarterly', c('MarketCap', 'EnterpriseValue', 'PeRatio', 'ForwardPeRatio',
'PegRatio', 'PsRatio', 'PbRatio', 'EnterprisesValueRevenueRatio',
'EnterprisesValueEBITDARatio'), collapse = ',')
qlist <- list(type = measure,
period1 = 493590046,
period2 = round(as.numeric(now())),
corsDomain = private$cors_domain)
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url, query = qlist)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"),
simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
data <-
parsed %>%
use_series(timeseries) %>%
use_series(result)
data.frame(
date = date(as_datetime(unlist(data[[1]]$timestamp))),
enterprise_value = private$extract_valuation(data, 'quarterlyEnterpriseValue'),
enterprise_value_ebitda_ratio = private$extract_valuation(data, 'quarterlyEnterprisesValueEBITDARatio'),
enterprise_value_revenue_ratio = private$extract_valuation(data, 'quarterlyEnterprisesValueRevenueRatio'),
forward_pe_ratio = private$extract_valuation(data, 'quarterlyForwardPeRatio'),
market_cap = private$extract_valuation(data, 'quarterlyMarketCap'),
pb_ratio = private$extract_valuation(data, 'quarterlyPbRatio'),
pe_ratio = private$extract_valuation(data, 'quarterlyPeRatio'),
peg_ratio = private$extract_valuation(data, 'quarterlyPegRatio'),
ps_ratio = private$extract_valuation(data, 'quarterlyPsRatio')
)
}
},
#' @field option_chain Option chain data for all expiration dates for a given symbol
option_chain = function() {
path <- 'v7/finance/options/'
end_point <- paste0(path, self$symbol)
url <- modify_url(url = private$base_url, path = end_point)
qlist <- list(getAllData = 'True', corsDomain = private$cors_domain)
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url, query = qlist)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"),
simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
data <-
parsed %>%
use_series(optionChain) %>%
use_series(result) %>%
extract2(1) %>%
use_series(options)
calls <-
data %>%
map_dfr('calls')
calls$option_type <- 'call'
puts <-
data %>%
map_dfr('puts')
puts$option_type <- 'put'
result <- rbind(calls, puts)
names(result) <- str_replace_all(names(result), '[A-Z]', private$snake_case)
result$expiration <- as_datetime(result$expiration)
result$last_trade_date <- as_datetime(result$last_trade_date)
col_order <- c('expiration', 'option_type', 'contract_symbol', 'strike', 'currency', 'last_price', 'change', 'percent_change', 'open_interest', 'bid', 'ask', 'contract_size', 'last_trade_date', 'implied_volatility', 'in_the_money', 'volume')
option_chain <- result[, col_order]
return(option_chain)
}
},
#' @field option_expiration_dates Option expiration dates
option_expiration_dates = function() {
path <- 'v7/finance/options/'
end_point <- paste0(path, self$symbol)
url <- modify_url(url = private$base_url, path = end_point)
qlist <- list(getAllData = 'True', corsDomain = private$cors_domain)
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url, query = qlist)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"),
simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
parsed %>%
use_series(optionChain) %>%
use_series(result) %>%
extract2(1) %>%
use_series(expirationDates) %>%
map_dbl(extract) %>%
as_datetime() %>%
date()
}
},
#' @field option_strikes Option strikes
option_strikes = function() {
path <- 'v7/finance/options/'
end_point <- paste0(path, self$symbol)
url <- modify_url(url = private$base_url, path = end_point)
qlist <- list(getAllData = 'True', corsDomain = private$cors_domain)
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url, query = qlist)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"),
simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
parsed %>%
use_series(optionChain) %>%
use_series(result) %>%
extract2(1) %>%
use_series(strikes) %>%
map_dbl(extract)
}
},
#' @field quote Get real-time quote information for given symbol
quote = function() {
path <- 'v7/finance/options/'
end_point <- paste0(path, self$symbol)
url <- modify_url(url = private$base_url, path = end_point)
qlist <- list(getAllData = 'True', corsDomain = private$cors_domain)
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url, query = qlist)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"),
simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
parsed %>%
use_series(optionChain) %>%
use_series(result) %>%
extract2(1) %>%
use_series(quote)
}
},
#' @field recommendations Recommended symbols
recommendations = function() {
path <- 'v6/finance/recommendationsbysymbol/'
end_point <- paste0(path, self$symbol)
url <- modify_url(url = private$base_url, path = end_point)
qlist <- list(corsDomain = private$cors_domain)
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url, query = qlist)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"),
simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
data <-
parsed %>%
use_series(finance) %>%
use_series(result) %>%
extract2(1) %>%
use_series(recommendedSymbols)
data.frame(
symbol = map_chr(data, 'symbol'),
score = map_dbl(data, 'score')
)
}
},
#' @field technical_insights Technical indicators for given symbol
technical_insights = function() {
path <- 'ws/insights/v2/finance/insights'
url <- modify_url(url = private$base_url, path = path)
qlist <- list(symbol = self$symbol, corsDomain = private$cors_domain)
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url, query = qlist)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"),
simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
parsed %>%
use_series(finance) %>%
use_series(result)
}
}
),
private = list(
base_url = 'https://query2.finance.yahoo.com',
path = 'v10/finance/quoteSummary/',
cors_domain = 'finance.yahoo.com',
# resp_data = function(symbol, module) {
# end_point <- paste0(private$path, symbol)
# url <- modify_url(url = private$base_url, path = end_point)
# qlist <- list(modules = module, corsDomain = private$cors_domain)
# resp <- GET(url, query = qlist)
# parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"), simplifyVector = FALSE)
# list(resp = resp, parsed = parsed)
# },
# parse_data = function(parsed) {
# parsed %>%
# use_series(quoteSummary) %>%
# use_series(result) %>%
# extract2(1)
# },
# display_error = function(resp, parsed) {
# cat(
# "Yahoo Finance API request failed", '\n',
# paste('Status:', status_code(resp)), '\n',
# paste('Type:', http_status(resp)$category), '\n',
# paste('Mesage:', parsed$quoteSummary$error$code), '\n',
# paste('Description:', parsed$quoteSummary$error$description, '\n'),
# sep = ''
# )
# },
# display_data = function(req) {
# private$parse_data(req$parsed)
# },
snake_case = function(x) {
paste0('_', tolower(x))
},
extract_valuation = function(data, measure) {
data %>%
map_if(function(x) 'quarterlyEnterpriseValue' %in% names(x), 'quarterlyEnterpriseValue') %>%
map_depth(2, 'reportedValue') %>%
map_depth(2, 'raw') %>%
unlist()
}
)
)
| /scratch/gouwar.j/cran-all/cranData/yahoofinancer/R/ticker.R |
#' Symbol validation
#'
#' Validate symbols before retrieving data.
#'
#' @param symbol Ticker, index or fund name.
#'
#' @examples
#' validate("aapl")
#' validate("aapls")
#'
#' @export
#'
validate <- function(symbol = NULL) {
base_url <- 'https://query2.finance.yahoo.com'
path <- 'v6/finance/quote/validate'
url <- modify_url(url = base_url, path = path)
qlist <- list(symbols = symbol)
if (!curl::has_internet()) {
message("No internet connection.")
return(invisible(NULL))
}
resp <- GET(url, query = qlist)
parsed <- fromJSON(content(resp, "text", encoding = "UTF-8"),
simplifyVector = FALSE)
if (http_error(resp)) {
message(
cat(
"Yahoo Finance API request failed", '\n',
paste('Status:', status_code(resp)), '\n',
paste('Type:', http_status(resp)$category), '\n',
paste('Mesage:', parsed$quoteSummary$error$code), '\n',
paste('Description:', parsed$quoteSummary$error$description, '\n'),
sep = ''
)
)
return(invisible(NULL))
} else {
parsed %>%
use_series(symbolsValidation) %>%
use_series(result) %>%
extract2(1) %>%
extract2(1)
}
}
flatten_list <- function(x) {
unlist(lapply(x, function(m) ifelse(is.null(m), NA, m)))
}
get_metric <- function(data, metric) {
data[[metric]] %>%
map(., ~ifelse(is.null(.x), NA, .x)) %>%
unlist()
}
| /scratch/gouwar.j/cran-all/cranData/yahoofinancer/R/utils.R |
#' \code{yahoofinancer} package
#'
#' Fetch Data from Yahoo Finance API
#'
#' See the README on
#' \href{https://github.com/rsquaredacademy/yahoofinancer}{GitHub}
#'
#' @docType package
#' @keywords internal
#' @name yahoofinancer
#' @aliases yahoofinancer-package
"_PACKAGE"
if (getRversion() >= "2.15.1") {
utils::globalVariables(c(".", "adjclose", "chart", "currencies", "finance",
"marketSummaryResponse", "quoteResponse", "result", "volume", "symbolsValidation"))
}
| /scratch/gouwar.j/cran-all/cranData/yahoofinancer/R/yahoofinancer.R |
`as.yaml` <-
function(x, line.sep = c('\n', '\r\n', '\r'), indent = 2, omap = FALSE,
column.major = TRUE, unicode = TRUE, precision = getOption('digits'),
indent.mapping.sequence = FALSE, handlers = NULL) {
line.sep <- match.arg(line.sep)
res <- .Call(C_serialize_to_yaml, x, line.sep, indent, omap, column.major,
unicode, precision, indent.mapping.sequence, handlers,
PACKAGE="yaml")
Encoding(res) <- "UTF-8"
res
}
| /scratch/gouwar.j/cran-all/cranData/yaml/R/as.yaml.R |
`read_yaml` <-
function(file, fileEncoding = "UTF-8", text, error.label, readLines.warn=TRUE, ...) {
if (missing(file) && !missing(text)) {
if (missing(error.label)) {
error.label <- NULL
}
file <- textConnection(text, encoding = "UTF-8")
on.exit(close(file))
}
else if (is.character(file)) {
if (missing(error.label)) {
error.label <- file
}
file <- if (nzchar(fileEncoding))
file(file, "rt", encoding = fileEncoding)
else file(file, "rt")
on.exit(close(file))
}
else if (inherits(file, "connection")) {
if (missing(error.label)) {
# try to guess filename
s <- try(summary(file), silent = TRUE)
if (!inherits(s, "try-error") && is.list(s) && "description" %in% names(s)) {
error.label <- s$description
}
}
if (!isOpen(file, "rt")) {
open(file, "rt")
on.exit(close(file))
}
} else {
stop("'file' must be a character string or connection")
}
string <- paste(readLines(file,warn=readLines.warn), collapse="\n")
yaml.load(string, error.label = error.label, ...)
}
| /scratch/gouwar.j/cran-all/cranData/yaml/R/read_yaml.R |
verbatim_logical <- function(x) {
result <- tolower(as.logical(x))
class(result) <- "verbatim"
return(result)
}
| /scratch/gouwar.j/cran-all/cranData/yaml/R/verbatim_logical.R |
`write_yaml` <-
function(x, file, fileEncoding = "UTF-8", ...) {
result <- as.yaml(x, ...)
if (is.character(file)) {
file <-
if (nzchar(fileEncoding)) {
file(file, "w", encoding = fileEncoding)
} else {
file(file, "w")
}
on.exit(close(file))
}
else if (!isOpen(file, "w")) {
open(file, "w")
on.exit(close(file))
}
if (!inherits(file, "connection")) {
stop("'file' must be a character string or connection")
}
cat(result, file=file, sep="")
}
| /scratch/gouwar.j/cran-all/cranData/yaml/R/write_yaml.R |
`yaml.load` <-
function(string, as.named.list = TRUE, handlers = NULL, error.label = NULL,
eval.expr = getOption("yaml.eval.expr", FALSE),
merge.precedence = c("order", "override"), merge.warning = FALSE) {
string <- enc2utf8(paste(string, collapse = "\n"))
eval.warning <- missing(eval.expr) && is.null(getOption("yaml.eval.expr"))
merge.precedence <- match.arg(merge.precedence)
.Call(C_unserialize_from_yaml, string, as.named.list, handlers, error.label,
eval.expr, eval.warning, merge.precedence, merge.warning,
PACKAGE="yaml")
}
| /scratch/gouwar.j/cran-all/cranData/yaml/R/yaml.load.R |
`yaml.load_file` <-
function(input, error.label, readLines.warn=TRUE, ...) {
if (missing(error.label)) {
if (inherits(input, "connection")) {
# try to guess filename
s <- try(summary(input), silent = TRUE)
if (!inherits(s, "try-error") && is.list(s) && "description" %in% names(s)) {
error.label <- s$description
}
}
else if (is.character(input) && nzchar(input[1])) {
error.label <- input[1]
}
else {
error.label <- NULL
}
}
if (is.character(input)) {
con <- file(input, encoding = 'UTF-8')
on.exit(close(con), add = TRUE)
} else {
con <- input
}
yaml.load(readLines(con, warn=readLines.warn),
error.label = error.label, ...)
}
| /scratch/gouwar.j/cran-all/cranData/yaml/R/yaml.load_file.R |
.onUnload <- function(libpath) {
library.dynam.unload("yaml", libpath)
}
| /scratch/gouwar.j/cran-all/cranData/yaml/R/zzz.R |
#' Alias a Data Frame
#'
#' Aliases a data.frame.
#' Replaces column names with labels, where present.
#' Stores column name as 'alias' attribute.
#'
#' @param object data.frame
#' @param ... optional unquoted names of target columns
#' @export
#' @keywords internal
#' @method alias data.frame
#' @importFrom stats alias
#' @family labels
#' @family deprecated
#' @return aliased data.frame
#' @examples
#' library(magrittr)
#' d <- data.frame(x = 1:10, y = 1:10, z = 1:10)
#' d %<>% modify(x, label = 'Independent Value')
#' d %<>% modify(y, label = 'Dependent Value')
#' d
#' alias(d)
#' alias(d, y)
alias.data.frame <- function(object, ...){
x <- object
y <- selected(x, ...)
for(col in y){
lab <- attr(x[[col]], 'label')
attr(x[[col]], 'alias') <- col
if(length(lab) == 1) names(x)[match(col, names(x))] <- lab
}
class(x) <- union('aliased', class(x))
x
}
| /scratch/gouwar.j/cran-all/cranData/yamlet/R/alias.R |
#' Append Units
#'
#' Appends units attribute to label attribute.
#' Generic, with methods
#' \code{\link{append_units.default}} and
#' \code{\link{append_units.data.frame}}.
#' For a more general strategy see \code{\link{modify}}.
#'
#' @param x object
#' @param ... passed arguments
#' @export
#' @keywords internal
#' @family deprecated
#' @family labels
#' @return see methods
#' @examples
#' # see methods
append_units <- function(x, ...)UseMethod('append_units')
#' Append Units By Default
#'
#' Units attribute is wrapped in \code{open} and
#' \code{close}, and appended to label.
#' Result is assigned to \code{target} attribute
#' (default: 'label').
#' If style is 'latex' or 'plotmath',
#' all elements are treated as spork
#' (\code{\link{as_spork}}) and coerced
#' to canonical form before concatenation.
#'
#'
#' @param x object
#' @param ... passed to \code{\link{as_latex}}, \code{\link{as_plotmath}}
#' @param open character to precede units
#' @param close character to follow units
#' @param style one of 'plain', 'latex', or 'plotmath'
#' @param target attribute name for appended result
#' @export
#' @importFrom spork as_spork
#' @importFrom spork as_plotmath
#' @importFrom spork as_latex
#' @importFrom spork plotmathToken
#' @importFrom spork latexToken
#' @keywords internal
#' @family labels
#' @return same class as x, with sub-class 'latex' or 'plotmath' depending on \code{style}
#' @examples
#' library(units)
#' library(magrittr)
#' x <- 1:10
#' attr(x, 'label') <- 'acceleration'
#' units(x) <- 'm/s^2'
#' y <- as_units('kg')
#' x %>% attr('label')
#' x %>% append_units %>% attr('label')
#' y %>% attr('label')
#' y %>% append_units %>% attr('label')
#' x %>% append_units(style = 'plain')
#' x %>% append_units(style = 'plotmath')
#' x %>% append_units(style = 'latex')
#'
#'
append_units.default <- function(
x,
...,
open = getOption( 'yamlet_append_units_open' , ' (' ),
close = getOption('yamlet_append_units_close', ')' ),
style = getOption('yamlet_append_units_style','plain'),
target = getOption('yamlet_append_units_target', 'label')
){
stopifnot(style %in% c('plain', 'latex','plotmath'))
lab <- attr(x, 'label')
unit <- attr(x, 'units')
unit <- as.character(unit)
# coerces symbolic_units nicely, without damaging count of non-singular units
# but drops names
if(!inherits(attr(x, 'units'),'symbolic_units')){
names(unit) <- names(attr(x, 'units'))
}
if(is.null(lab)) lab <- ''
nms <- names(lab)
lab <- as.list(lab)
if(
length(unit)!= length(lab) &
length(unit) > 1 # zero or 1 is fine
)warning('length of units does not match length of labels')
if(!identical(names(lab), names(unit)))warning('names of units do not match names of labels')
unit <- rep(unit, length(lab))
open <- rep(open, length(lab))
close <- rep(close, length(lab))
if(length(unit)){ # can't test for NULL because as.character(NULL) above is not NULL
# unit <- as.character(unit)
for(i in seq_along(lab)){
lab[[i]] <- c(
label = lab[[i]],
open = open[[i]],
units = unit[[i]],
close = close[[i]]
)
}
}
if(style == 'plain'){
for(i in seq_along(lab)){
lab[[i]] <- paste(lab[[i]], collapse = '')
}
}
if(style == 'latex'){
for(i in seq_along(lab)){
lab[[i]] <- as_spork(as_spork(lab[[i]]))
lab[[i]] <- paste(lab[[i]], collapse = '')
lab[[i]] <- as_latex(as_spork(lab[[i]]), ...)
}
}
if(style == 'plotmath'){
for(i in seq_along(lab)){
lab[[i]] <- as_spork(as_spork(lab[[i]]))
lab[[i]] <- paste(lab[[i]], collapse = '')
lab[[i]] <- as.expression(as_plotmath(as_spork(lab[[i]]), ...))
}
}
names(lab) <- nms
if(length(lab) == 1) lab <- lab[[1]]
attr(x, target) <- lab
x
}
#' Append Units for Data Frame
#'
#' Appends units for data.frame.
#' For finer control, consider applying
#' \code{\link{append_units.default}}
#' to individual columns.
#'
#' @param x data.frame
#' @param ... named arguments passed to default method, un-named are columns to alter scope
#' @export
#' @keywords internal
#' @family labels
#' @return data.frame
#' @examples
#' library(magrittr)
#' file <- system.file(package = 'yamlet', 'extdata','quinidine.csv')
#' file %>% decorate %>% explicit_guide %>% append_units %>% decorations(Age, glyco)
#' file %>% decorate %>% explicit_guide %>% append_units(glyco) %>% decorations(Age, glyco)
append_units.data.frame <- function(x, ...){
vars <- selected(x, ...)
mods <- named(...)
for(var in vars){
# pass only named arguments
x[[var]] <- do.call(append_units, c(list(x[[var]]),mods))
}
#x[] <- lapply(x, append_units, ...)
x
}
#' @export
spork::latexToken
| /scratch/gouwar.j/cran-all/cranData/yamlet/R/append_units.R |
#' Enforce Canonical Order
#'
#' Enforce canonical order. Generic, with
#' method: \code{\link{canonical.decorated}}.
#' @param x object
#' @param ... passed arguments
#' @return list
#' @family canonical
#' @export
#' @keywords internal
canonical <- function(x, ...)UseMethod('canonical')
#' Sort Decorations
#'
#' Enforces canonical attribute order for class 'decorated'.
#' Set of default_keys will be augmented with all observed attribute names
#' and will be expanded or reduced as necessary for each
#' data item.
#'
#' @param x decorated
#' @param default_keys attribute names in preferred order
#' @param ... ignored
#' @export
#' @family canonical
#' @family interface
#' @return decorated
#' @examples
#' # make some decorated data
#' library(magrittr)
#' x <- data.frame(x = 1, y = 1, z = factor('a'))
#' x %<>% decorate('
#' x: [ guide: mm, desc: this, label: foo ]
#' "y": [ guide: bar, desc: other ]
#' ')
#'
#' # retrieve decorations: label not first!
#' decorations(x)
#'
#' # sort label first by default
#' decorations(canonical(x))
#'
#' # equivalent invocation
#' canonical(decorations(x))
#'
canonical.decorated <- function(
x,
default_keys = getOption('yamlet_default_keys',list('label','guide')),
...
){
for(i in seq_len(ncol(x))){
default_keys <- union(default_keys, names(attributes(x[[i]])))
}
for(i in seq_len(ncol(x))){
at <- attributes(x[[i]])
nms <- names(at)
use <- unlist(intersect(default_keys, nms))
at <- at[use]
if(length(nms)) attributes(x[[i]]) <- at
}
x
}
#' Sort Yamlet
#'
#' Enforces canonical attribute order for class 'yamlet'.
#' Set of default_keys will be augmented with all observed attribute names
#' and will be expanded or reduced as necessary for each
#' data item.
#'
#' @param x yamlet
#' @param default_keys attribute names in preferred order
#' @param ... ignored
#' @export
#' @keywords internal
#' @family canonical
#' @return decorated
#' @examples
#' library(magrittr)
#' x <- data.frame(x = 1, y = 1, z = factor('a'))
#' x %<>% decorate('
#' x: [ guide: mm, desc: this, label: foo ]
#' "y": [ guide: bar, desc: other ]
#' ')
#'
#' decorations(x)
#' decorations(canonical(x))
#' canonical(decorations(x))
#' write_yamlet(x)
#'
canonical.yamlet <- function(
x,
default_keys = getOption('yamlet_default_keys',list('label','guide')),
...
){
for(i in seq_along(x)){
default_keys <- union(default_keys, names(x[[i]]))
}
for(i in seq_along(x)){
nms <- names(x[[i]])
use <- unlist(intersect(default_keys, nms))
if(length(nms)) x[[i]] <- x[[i]][use]
}
x
}
| /scratch/gouwar.j/cran-all/cranData/yamlet/R/canonical.R |
#' Classify Something
#'
#' Classifies something.
#' Generic, with method \code{\link{classified.default}}
#' @param x object of dispatch
#' @param ... passed arguments
#' @export
#' @return see methods
#' @keywords internal
#' @family classified
#' @examples
#' example(classified.default)
classified <- function(x, ...)UseMethod('classified')
#' Create Classified from Factor
#'
#' Creates classified from factor. Uses \code{\link{classified.default}},
#' but supplies existing levels by default.
#'
#' @export
#' @return 'classified' 'factor'
#' @param x see \code{\link{factor}}
#' @param levels passed to \code{\link{classified.default}}; defaults to \code{levels(x)}
#' @param labels passed to \code{\link{classified.default}}; must be same length as levels(after removing values in \code{exclude}) and must not contain duplicates
#' @param exclude see \code{\link{factor}}
#' @param ordered see \code{\link{factor}}
#' @param nmax see \code{\link{factor}}
#' @param token informative label for messages
#' @param ... ignored
#' @importFrom dplyr distinct
#' @family classified
#' @examples
#' a <- factor(c('c','b','a'))
#' levels(classified(a))
#' attr(classified(a), 'codelist')
classified.factor <- function(
x = character(),
levels,
labels,
exclude = NA,
ordered = is.ordered(x),
nmax = NA,
token = character(0),
...
){
stopifnot(is.character(token), length(token) <= 1)
if(missing(levels)) levels <- match.fun('levels')(x)
levels <- setdiff(levels, exclude)
if(missing(labels)) labels <- levels
stopifnot(identical(length(levels), length(labels)))
if(any(duplicated(labels)))(stop(paste( collapse = ': ', c(token, 'duplicated labels not supported in this context'))))
y <- classified.default(
x,
levels = levels,
labels = labels,
exclude = exclude,
ordered = ordered,
nmax = NA,
...
)
y
}
#' Create Classified by Default
#'
#' Creates a factor of subclass 'classified',
#' for which there are attribute-preserving methods.
#' In particular, classified has a codelist attribute
#' indicating the origin of its levels: it is
#' constructed from the codelist attribute of x
#' if available, or from 'levels' and 'labels'
#' by default. Unlike the case for \code{\link{factor}},
#' length of labels cannot be one (i.e., different from
#' length of levels).
#'
#' @export
#' @return 'classified' 'factor'
#' @param x see \code{\link{factor}}
#' @param levels see \code{\link{factor}}
#' @param labels see \code{\link{factor}}, must have same length as levels
#' @param exclude see \code{\link{factor}}
#' @param ordered see \code{\link{factor}}
#' @param nmax see \code{\link{factor}}
#' @param token informative label for messages
#' @param ... ignored
#' @importFrom dplyr distinct
#' @family classified
#' @examples
#'
#' # classified creates a factor with a corresponding codelist attribute
#' classified(c('a','b','c'))
#'
#' # codelist 'remembers' the origins of levels
#' classified(c('a','b','c'), labels = c('A','B','C'))
#'
#' # classified is 'reversible'
#' library(magrittr)
#' c('a','b','c') %>%
#' classified(labels = c('A','B','C')) %>%
#' unclassified
classified.default <- function(
x = character(),
levels,
labels,
exclude = NA,
ordered = is.ordered(x),
nmax = NA,
token = character(0),
...
){
cl <- attr(x,'codelist') # could be NULL
# if we have a codelist, use it
if(!is.null(cl)){
attr(x,'codelist') <- NULL
# before working with codelist, honor the exclude request
bad <- sapply(cl, function(val)val %in% exclude)
cl <- cl[!bad]
# mimic non-NA exclude behavior:
# @ 0.10.12, commenting next (nonsensical?)
# if(length(exclude) == 0) cl <- c(cl, NA)
# default levels and labels
if(missing(levels)){
levels <- unlist(cl)
}
if(missing(labels)){
labels <- names(cl)
if(is.null(labels))labels <- rep('', length(levels))
labels[labels == ''] <- levels[labels == '']
}
}
# if no codelist, set up default labels and levels
if (missing(levels)) {
y <- unique(x, nmax = nmax)
ind <- order(y)
levels <- unique(as.character(y)[ind])
levels <- setdiff(levels, exclude)
}
if(missing(labels)){
labels <- as.character(levels)
}
# at this point, levels and labels should have matching length
# should be true using defaults
if(length(levels) != length(labels))stop(
paste(
collapse = ': ',
c(
token,
'classified requires labels and levels of the same length'
)
)
)
# under some circumstances, levels has names, which may be NA
# then data.frame inherits NA rownames which is an error.
names(levels) <- NULL
names(labels) <- NULL
codes <- data.frame(levels = levels, labels = labels)
if(any(duplicated(codes))){
duplicated <- anyDuplicated(codes)
msg <- paste0(
'dropping duplicated levels, e.g.: ',
codes$levels[[duplicated]],
' (',
codes$labels[[duplicated]],
')'
)
msg <- paste(collapse = ': ', c(token, msg))
warning(msg)
codes <- unique(codes)
}
if(any(duplicated(codes$levels))){
duplicated <- anyDuplicated(codes$levels)
msg <- paste0(
'level(s) cross-labelled, e.g.: ',
codes$levels[[duplicated]],
': ',
paste(
collapse = ', ',
codes$labels[codes$levels == codes$levels[[duplicated]]]
)
)
msg <- paste(collapse = ': ', token, msg)
warning(msg)
}
if(any(duplicated(codes$labels))){
duplicated <- anyDuplicated(codes$labels)
msg <- paste0(
'levels like-labelled, e.g.: ',
paste(collapse = ', ', codes$levels[codes$labels == codes$labels[[duplicated]]]),
': ',
codes$labels[[duplicated]]
)
msg <- paste(collapse = ': ', token, msg)
warning(msg)
}
# having dropped any duplicates, we unpack codes
labels <- codes$labels
levels <- codes$levels
# in every case, make a good codelist
codelist <- as.list(labels)
names(codelist) <- levels
# simplify codelist if possible
if(identical(paste(names(codelist)), paste(unlist(codelist)))) {
names(codelist) <- NULL
# codelist <- unlist(codelist) # @v0.8.9 for consistency with other methods
}
# call factor()
z <- factor(
x = x,
levels = levels,
labels = labels,
exclude = exclude, # but exclusions will have already occurred
ordered = ordered,
nmax = nmax
)
# enforce attributes
nms <- names(attributes(x))
nms <- setdiff(nms, c('class','levels'))
for(nm in nms){
attr(z, nm) <- attr(x, nm)
}
attr(z, 'codelist') <- codelist
# enforce class
class(z) <- union('classified', class(z))
# return
z
}
# Coerce to Classified
#
# Coerce something to classified.
# Generic, with method for factor.
# Deprecated. Prefer classified().
#
# @param x object
# @param ... passed arguments
# @export
# @keywords internal
# @family classified
# @return see methods
# @examples
# example(as_classified.factor)
# as_classified <- function(x, ...)UseMethod('as_classified')
# Coerce Factor to Classified
#
# Coerce factor to classified.
# Creates a factor that retains attributes during subsetting.
# Deprecated. Prefer classified().
#
# @param x factor
# @param ... ignored arguments
# @export
# @keywords internal
# @family classified
# @return class 'classified' 'factor'
# @examples
# class(as_classified(factor(letters)))
# as_classified.factor <- function(x, ...){
# class(x) <- union('classified', class(x))
# x
# }
# http://adv-r.had.co.nz/S3.html
# When implementing a vector class, you should implement these methods:
#length, [, [<-, [[, [[<-, c.
#' Subset Classified
#'
#' Subsets classified factor, retaining attributes.
#' @param x classified factor
#' @param ... passed to next method
#' @export
#' @keywords internal
#' @family classified
#' @return class 'classified' 'factor'
#' @examples
#' a <- classified(letters[1:3])
#' attr(a, 'label') <- 'foo'
#' a <- a[1:3]
#' attributes(a)
`[.classified` <- function(x, ...){
y <- NextMethod()
# contrasts and levels will have been handled
nms <- names(attributes(x))
nms <- setdiff(nms, c('contrasts','levels'))
for(nm in nms){
attr(y, nm) <- attr(x, nm)
}
y
}
#' Element-select Classified
#'
#' Selects element of classified factor, retaining attributes.
#' @param x classified factor
#' @param ... passed to next method
#' @export
#' @keywords internal
#' @family classified
#' @return class 'classified' 'factor'
#' @examples
#' a <- classified(letters[1:3])
#' attr(a, 'label') <- 'foo'
#' a <- a[[2]]
#' attributes(a)
`[[.classified` <- function(x, ...){
y <- NextMethod()
# contrasts and levels will have been handled
nms <- names(attributes(x))
nms <- setdiff(nms, c('contrasts','levels'))
for(nm in nms){
attr(y, nm) <- attr(x, nm)
}
y
}
#' Assign Subset of Classified
#'
#' Assigns subset of classified factor, retaining attributes.
#' @param x classified factor
#' @param ... passed to next method
#' @export
#' @keywords internal
#' @family classified
#' @return class 'classified' 'factor'
#' @examples
#' a <- classified(letters[1:3])
#' a[2:3] <- 'a'
#' str(a)
#' class(a)
`[<-.classified` <- function(x, ..., value){
y <- NextMethod()
# class and levels will have been handled
nms <- names(attributes(x))
nms <- setdiff(nms, c('levels')) # implicitly restore class
for(nm in nms){
attr(y, nm) <- attr(x, nm)
}
y
}
#' Assign Element of Classified
#'
#' Assigns element of classified factor, retaining attributes.
#' @param x classified factor
#' @param ... passed to next method
#' @export
#' @keywords internal
#' @family classified
#' @return class 'classified' 'factor'
#' @examples
#' a <- classified(letters[1:3])
#' a[[3]] <- 'a'
#' str(a)
#' class(a)
`[[<-.classified` <- function(x, ..., value){
y <- NextMethod()
# class and levels will have been handled
nms <- names(attributes(x))
nms <- setdiff(nms, c('levels')) # implicitly restore class
for(nm in nms){
attr(y, nm) <- attr(x, nm)
}
y
}
#' Combine Classified
#'
#' Combines classified factor, retaining attributes.
#' Attributes other than levels and codelist are taken
#' from the first argument. Attribute 'levels' is
#' supplied by next method. Attribute 'codelist'
#' is the combined codelists in sequence of
#' all (dots) arguments, after silently removing
#' exact duplicates, and then removing
#' duplicated names with warning.
#'
#' @param ... passed to next method
#' @param recursive passed to unlist() internally
#' @export
#' @keywords internal
#' @family classified
#' @return class 'classified' 'factor'
#' @examples
#' a <- classified(letters[1:3])
#' b <- classified(letters[3:5])
#' c <- c(a,b)
#' c
#' class(c)
#'
`c.classified` <- function( ..., recursive = TRUE ){
c_factor <- function (..., recursive = TRUE) { # i.e. c.factor() from R 4.1.0
x <- list(...)
y <- unlist(x, recursive = recursive)
if (
inherits(y, "factor") &&
all(vapply(x, inherits,NA, "ordered")) &&
(length(unique(lapply(x, levels))) == 1L)
) class(y) <- c("ordered", "factor")
y
}
# y <- NextMethod() # not back-compatible before R 4.1.0
y <- c_factor(..., recursive = recursive)
# class and levels will have been handled
all <- list(...)
x <- all[[1]]
nms <- names(attributes(x))
nms <- setdiff(nms, c('levels')) # implicitly restore class
for(nm in nms){
attr(y, nm) <- attr(x, nm)
}
# combine levels
codelist <- list()
for(i in 1:length(all)){
codelist <- c(codelist, attr(all[[i]], 'codelist'))
}
# explicit names
if(is.null(names(codelist)))names(codelist) <- unlist(codelist)
# codelist names can be be NA but not blank
names(codelist)[which(names(codelist) == '')] <- unlist(codelist)[which(names(codelist) == '')]
codelist <- codelist[!duplicated(codelist)] # silently remove exact dups
if(any(duplicated(names(codelist))))warning('conflicting codelist specifications')
codelist <- codelist[!duplicated(names(codelist))]
#if(all(names(codelist) == unlist(codelist))){
if(identical(names(codelist), as.character(unlist(codelist)))){
names(codelist) <- NULL
codelist <- unlist(codelist)
}
attr(y,'codelist') <- codelist
y
}
#' Classify Data Frame
#'
#' Coerces items in data.frame with codelist attribute to 'classified':
#' a factor with a codelist attribute.
#'
#' @param x data.frame
#' @param ... passed to \code{\link[dplyr]{select}} to limit column scope
#; also passed to \code{\link{classified.default}} to modify behavior
#' @param exclude see \code{\link{factor}}
#' @param ordered see \code{\link{factor}}
#' @param nmax see \code{\link{factor}}
#' @export
#' @keywords internal
#' @return data.frame
#' @family classified
#' @family interface
#' @examples
#' library(magrittr)
#' file <- system.file(package = 'yamlet', 'extdata','quinidine.csv')
#' x <- decorate(file)
#' x %>% explicit_guide %>% decorations(Age, Race, Heart:glyco)
#' x %>% explicit_guide %>% classified %>% decorations(Age, Race, Heart:glyco)
#' x %>% explicit_guide %>% classified(Heart:glyco) %>% decorations(Age, Race, Heart:glyco)
classified.data.frame <- function(
x,
...,
exclude = NA,
ordered = is.ordered(x),
nmax = NA
){
my_class <- class(x)
for(nm in selected(x,...)){
if('codelist' %in% names(attributes(x[[nm]]))){
# grouped_df can drop subclass!
x[[nm]] <- classified(
x[[nm]],
exclude = exclude,
ordered = ordered,
nmax = nmax,
token = nm
)
}
}
class(x) <- my_class
x
}
#' Classify Decorated Vector
#'
#' Coerces dvec to 'classified':
#' a factor with a codelist attribute.
#' Results may differ if explicit_guide()
#' is called first.
#'
#' @param x dvec
#' @param ... un-named arguments ignored. Named arguments passed to \code{\link{classified.default}} to modify behavior
#' @param exclude see \code{\link{factor}}
#' @param ordered see \code{\link{factor}}
#' @param nmax see \code{\link{factor}}
#' @param token informative label for messages
#' @export
#' @keywords internal
#' @return classified
#' @family classified
#' @family dvec
#' @examples
#' library(magrittr)
#' x <- as_dvec(1:3)
#' attr(x, 'guide') <- list(a = 1, b = 2, c = 3)
#' x %>% str
#' x %>% classified %>% str
#' x %>% explicit_guide %>% classified %>% str
classified.dvec <- function(
x,
...,
exclude = NA,
ordered = is.ordered(x),
nmax = NA,
token = character(0)
){
y <- unclass(x)
y <- classified(
y,
exclude = exclude,
ordered = ordered,
nmax = nmax,
token = token,
...
)
y
}
#' Coerce Classified to Integer
#'
#' Coerces classified to integer.
#' Result is like \code{as.integer(as.numeric(x)) + offset}
#' but has a guide attribute: a list of integers
#' whose names are the original levels of x.
#' If you need a simple integer, consider coercing first to numeric.
#'
#' @param x classified, see \code{\link{classified}}
#' @param offset an integer value to add to intermediate result
#' @param ... passed to \code{\link{desolve}}
#' @param persistence whether to return 'dvec' (is.integer(): TRUE) or just integer.
# @param exclude_attr discard these when preserving attributes of x in result
#' @export
#' @family classified
#' @return integer (possibly of class dvec)
#' @examples
#' library(magrittr)
#'
#' # create factor with codelist attribute
#' classified(c('knife','fork','spoon'))
#'
#' # give back a simple numeric
#' classified(c('knife','fork','spoon')) %>% as.numeric
#'
#' # intentionally preserve levels as 'guide' attribute
#' classified(c('knife','fork','spoon')) %>% as.integer
#'
#' # implement offset
#' classified(c('knife','fork','spoon')) %>% as.integer(-1)
#'
#' # globally defeat the 'persistence' paradigm
#' options(yamlet_persistence = FALSE)
#' c('knife','fork','spoon') %>%
#' classified %>%
#' as.integer %>%
#' class # integer
#'
#' # remove option to restore default persistence paradigm
#' options(yamlet_persistence = NULL)
#' c('knife','fork','spoon') %>%
#' classified %>%
#' as.integer %>%
#' class # dvec
#'
#' # locally defeat persistence paradigm
#' c('knife','fork','spoon') %>%
#' classified %>%
#' as.integer(persistence = FALSE) %>%
#' class # integer
#'
#'
as.integer.classified <- function(
x,
offset = 0L,
...,
persistence = getOption('yamlet_persistence', TRUE) #,
#exclude_attr = getOption("yamlet_as.integer_exclude_attr", c("class", "levels", "codelist"))
){
stopifnot(
length(offset) == 1,
!is.na(offset),
as.integer(offset) == offset
)
offset <- as.integer(offset)
# note: levels(x) should be same as unlist(attr(x, 'codelist'))
# y <- as.numeric(x, ...)
# y <- as.integer(y, ...) # explicitly casting to int as of 0.9.0
# y <- y + offset
# z <- mimic(x, y, ...) # drops levels!
# x has a codelist and seq gives integer
vals <- seq_along(attr(x, 'codelist'))
vals <- vals + offset
names(attr(x, 'codelist')) <- vals
r <- desolve(x, persistence = TRUE, ...) # gives guide instead of codelist at 0.9.0
# at this point, r should be dvec
# passing persistence to desolve fails because there is no
# vector method for implicit_guide (only a data.frame method)
if(!persistence) {
r <- unclass(r)
}
r
}
#' Create Classified from Classified
#'
#' See \code{\link{classified.default}}.
#' Formerly (version 0.10.10), calling classified() on a
#' classified object was a non-operation.
#' Currently we call factor(x, ...) and then
#' try to reconcile the codelist attribute with resulting
#' levels.
#'
#' By default classified is idempotent, such that classified(classified(x)) is
#' the same as classified(x). In contrast, factor(factor(x)) will drop unused
#' levels (not shown). To drop unused levels, use classified(classified(x), drop = TRUE).
#'
#' @export
#' @return 'classified' 'factor'
#' @param x classified
#' @param levels passed to \code{\link{factor}}; defaults to \code{levels(x)}
#' @param labels passed to \code{\link{factor}}; must be same length as levels(after removing values in \code{exclude} and unused levels if \code{drop} is TRUE) and must not contain duplicates
#' @param exclude passed to \code{\link{factor}}
#' @param ordered passed to \code{\link{factor}}
#' @param nmax passed to \code{\link{factor}}
#' @param drop whether to drop unused levels
#' @param ... ignored
#' @keywords internal
#' @family classified
#' @examples
#'
#' a <- 4:6
#' attr(a, 'codelist') <- list(d = 4, e = 5, f = 6, g = 7)
#' b <- classified(a)
#' a
#' b
#' class(b)
#' classified(b)
#' identical(b, classified(b))
classified.classified <- function(
x,
levels,
labels,
exclude = NULL,
ordered = is.ordered(x),
nmax = NA,
drop = FALSE,
...
){
if(missing(levels)) levels <- match.fun('levels')(x)
levels <- setdiff(levels, exclude)
if(drop) levels <- levels[levels %in% x]
if(missing(labels)) labels <- levels
stopifnot(identical(length(levels), length(labels)))
if(any(duplicated(labels)))(stop('duplicated labels not supported in this context'))
codelist <- attr(x, 'codelist')
nms <- names(codelist) # from (character)
vals <- as.character(unlist(codelist)) # to (coerced to character)
stopifnot(identical(levels(x), vals)) # continuity check: should always be true
y <- factor(
x,
levels = levels,
labels = labels,
exclude = exclude,
ordered = ordered,
nmax = nmax
)
# now we rebuild the codelist
# nms is the original form and order
# levels(y) is the current from and order
# we need a codelist with levels(y) but names from nms
# i.e., we need to (re) map names to the current levels
# the current levels though derive from the provided labels
# current level order should prevail,
# labels should be traced to provided levels,
# and thence to provided (codelist) vals,
# and thence to provided (codelist) nms
codelist <- as.list(type.convert(levels(y), as.is = TRUE))
# what provided values of 'levels' match existing values of 'levels',
# which are taken from provided 'labels'?
was <- levels[match(levels(y), labels)]
# now we have each former level for existing levels(y)
# in an order corresponding to levels(y)
# Those former levels were necessarily among the vals of former codelist.
# we recover the meanings from nms
meant <- nms[match(was, vals)]
# now we know what these levels meant originally. Possibly nothing. Possibly NA.
names(codelist) <- meant
# all this manipulation could introduce multiple NA as codelist names.
# in fact, codelist names should never be duplicated.
if(any(duplicated(meant))){
example <- meant[duplicated(meant)][[1]]
warning('codelist names should not contain duplicates, e.g. ', example)
}
# enforce attributes
nms <- names(attributes(x))
nms <- setdiff(nms, c('class','levels','codelist','guide'))
for(nm in nms){
attr(y, nm) <- attr(x, nm)
}
attr(y, 'codelist') <- codelist
class(y) <- union('classified', class(y))
y
}
# Abbreviate Classified
#
# Abbreviated class name for 'classified'.
#
# @export
# @importFrom vctrs vec_ptype_abbr
# @method vec_ptype_abbr classified
# @return character
# @keywords internal
# @param x classified
# @param ... ignored
# @examples
# cat(vec_ptype_abbr(classified(0)))
# vec_ptype_abbr.classified <- function(x, ...) {
# "clsfd"
# }
#' @importFrom pillar type_sum
#' @export
pillar::type_sum
#' Summarize Type of Classified
#'
#' Summarizes type of classified.
#'
#' @param x classified
#' @importFrom pillar type_sum
#' @export
#' @keywords internal
#' @method type_sum classified
#' @examples
#' type_sum(classified(0))
type_sum.classified <- function(x){
'clfac'
}
| /scratch/gouwar.j/cran-all/cranData/yamlet/R/classified.R |
#' Test Object is Conditional
#'
#' Tests whether object is conditional.
#' @param x character
#' @param ... passed arguments
#' @export
#' @keywords internal
#' @family conditional
#' @return logical
isConditional <- function(x, ...)UseMethod('isConditional')
#' Test Object is Conditional by Default
#'
#' Tests whether object is conditional by default. Coerces to list.
#' @param x default
#' @param ... passed arguments
#' @export
#' @keywords internal
#' @family conditional
#' @return logical
#'
isConditional.default <- function(x,...)isConditional(as.list(x),...)
#' Test List is Conditional
#'
#' Tests whether a list is conditional.
#' Evaluates names of x on data and looks for meaningful result.
#' Returns TRUE if list has names and
#' all evaluate to logicals with length equal
#' to number of rows in data.
#' @param x list
#' @param data environment for variable lookup
#' @param ... passed arguments
#' @export
#' @keywords internal
#' @family conditional
#' @return length-one logical
isConditional.list <- function(x, data,...){
nms <- names(x)
if(!length(nms))return(FALSE)
vals <- lapply(
nms,
function(i)try(
silent = TRUE,
eval(
parse(text = i),
envir = data,
enclos = NULL
)
)
)
logi <- sapply(vals, inherits, 'logical')
len <- sapply(vals, length)
return(all(logi & len == nrow(data)))
}
#' Test Value is Levels
#'
#' Tests whether value is levels.
#' @param x character
#' @param ... passed arguments
#' @export
#' @keywords internal
#' @family levels
#' @return logical
isLevels <- function(x, ...)UseMethod('isLevels')
#' Test Value is Levels by Default
#'
#' Tests whether value is levels by default. Coerces to character.
#' @param x default
#' @param ... passed arguments
#' @export
#' @keywords internal
#' @family levels
#' @return logical
isLevels.default <- function(x, table, ...)isLevels(as.character(x), table, ...)
#' Test Character Value is Levels
#'
#' Tests whether character value is levels.
#' Looks for any matches to vector.
#' Uses \code{\link{intersect}}, which is fairly flexible
#' respecting underlying data types (character 0 can match integer 0, etc.).
#' @param x default
#' @param table lookup vector
#' @param ... passed arguments
#' @export
#' @keywords internal
#' @family levels
#' @return logical
isLevels.character <- function(x, table, ...){
as.logical(length(intersect(x,table)) >= 1)
}
| /scratch/gouwar.j/cran-all/cranData/yamlet/R/conditional.R |
globalVariables('token')
#' Conditionalize Attributes
#'
#' Conditionalizes attributes of something.
#' Generic, with method for data.frame.
#' @param x object
#' @param ... passed arguments
#' @export
#' @keywords internal
#' @family conditionalize
#' @return see methods
#' @examples
#' example(conditionalize.data.frame)
conditionalize <- function(x, ...)UseMethod('conditionalize')
#' Conditionalize Attributes of Data Frame
#'
#' Conditionalizes attributes of data.frame.
#' Creates a conditional \code{attribute} definition
#' for \code{column} by mapping \code{value} to
#' \code{test}. Only considers records where
#' both \code{test} and \code{value} are defined,
#' and gives an error if there is not one-to-one mapping.
#' Can be used with write methods as an alternative
#' to hand-coding conditional metadata.
#'
#' If the test column is character, individual
#' elements should not contain both single and
#' double quotes. For the conditional expressions,
#' these values will be single-quoted by default,
#' or double-quoted if they contain single quotes.
#'
#' @param x data.frame
#' @param column unquoted name of column to conditionalize
#' @param attribute unquoted name of attribute to create for column
#' @param test unquoted name of column to test
#' @param value unquoted name of column supplying attribute value
#' @param ... ignored arguments
#' @importFrom rlang ensym
#' @importFrom rlang :=
#' @importFrom dplyr mutate
#' @importFrom dplyr distinct
#' @export
#' @keywords internal
#' @family conditionalize
#' @return class 'decorated' 'data.frame'
#' @examples
#' library(magrittr)
#' library(dplyr)
#' library(csv)
#' file <- system.file(package = 'yamlet', 'extdata','phenobarb.csv')
#' x <- as.csv(file)
#' head(x,3)
#'
#' # suppose we have an event label stored as a column:
#'
#' x %<>% mutate(evid = ifelse(
#' event == 'dose',
#' 'dose of drug administered',
#' 'serum phenobarbital concentration'
#' )
#' )
#'
#' # We can define a conditional label for 'value'
#' # by mapping evid to event:
#'
#' x %<>% conditionalize(value, label, event, evid)
#'
#' x %>% as_yamlet
#' x %>% write_yamlet
#'
conditionalize.data.frame <- function(x, column, attribute, test, value, ...){
col <- as.character(ensym(column))
atr <- as.character(ensym(attribute))
tst <- ensym(test)
val <- ensym(value)
y <- filter(x, !is.na(!!tst), !is.na(!!val))
map <- distinct(y, !!tst, !!val)
if(
( nrow(map) ) !=
(nrow(distinct(y, !!tst)))
)stop("'", as.character(val), "' not cleanly mapped to defined '", as.character(tst),"'")
#map <- mutate(map, !!tst := as.character(!!tst))
if(is.factor(map[[as.character(tst)]])){
map[[as.character(tst)]] <- as.character(map[[as.character(tst)]])
}
m <- map[[as.character(tst)]]
if(is.character(m)){
if(any(grepl("'", m) & grepl('"', m))){
stop(as.character(tst), ' has mixed single and double quotes')
}
map <- mutate(map, token = ifelse(grepl("'", !!tst), '"', "'"))
map <- mutate(map, !!tst := paste0(token, !!tst, token))
}
map <- mutate(map, !!tst := paste(tst, '==', !!tst))
out <- as.list(map[[as.character(val)]])
names(out) <- map[[as.character(tst)]]
attr(x[[col]], atr) <- out
x
}
| /scratch/gouwar.j/cran-all/cranData/yamlet/R/conditionalize.R |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.