content
stringlengths 0
14.9M
| filename
stringlengths 44
136
|
---|---|
if(getRversion() >= "2.15.1") utils::globalVariables(c("lc.1"))
#' Tabulates vegetation tables from Turboveg database
#' @name tv.veg
#' @aliases tv.veg
#'
#' @description Tabulates vegetation tables from Turboveg resp. VegetWeb database, including taxonomic emendation and layer combination. Using various default parameters for the included functions.
#' It is a wrapper for *tv.obs*, *taxval*, *tv.coverperc* and creating a vegetation matrix
#'
#' @export
#' @param db Name of your Turboveg database. Directory name containing tvabund.dbf, tvhabita.dbf and tvwin.set. Please specify pathnames below (if you sorted your databases in subfolders) but not above Turbowin/Data.
#' @param tv_home Turbowin installation path.
#' @param taxval Should taxonomic valuation (see \code{\link{taxval}}) be performed?
#' @param convcode Should cover code be converted to percentage values?
#' @param lc Layer combination type. Possible values: layer (default), sum, mean or max, see details
#' @param pseudo List used for layer combinations, see details
#' @param values Name of the variable which should be used for the vegetations matrix.
#' @param spcnames Should species numbers be replaced by shortletters or ScientificNames? Layer information is appended with dot.
#' @param dec Number of decimals for cover values in the resulting vegetation matrix.
#' @param cover.transform If you want to transform the abundancce values within your samples
#' you can choose 'pa' for presence-absence or 'sqrt' for the \code{dec} rounded square root.
#' @param obs Observations, optional
#' @param site plot header data, see \code{\link{tv.site}}
#' @param refl Taxonomic reference list, optional
#' @param RelScale Vector with Cover Scale code per Releve.
#' @param ... additional arguments for included functions
#'
#' @usage tv.veg(db, taxval=TRUE,tv_home,convcode=TRUE,
#' lc = c("layer","mean","max","sum","first"),
#' pseudo, values='COVER_PERC', spcnames=c('shortletters','ScientificNames','Numbers'),
#' dec = 0, cover.transform = c('no', 'pa', 'sqrt'), obs, site, refl, RelScale, ...)
#'
#' @details \code{layer} means, the different layers are combined assuming there independence (a species occurring in two layers with a cover of 50\% will result in a overall cover of 75\%. \code{sum} will sum up cover values of all layers With option \code{pseudo} you can decide, which layers should be combined. Give a list with a combination data.frame and second the name of the column for combination. The default is \code{pseudo = list(lc.1, c('LAYER'))}, where lc.1 is a data.frame \code{data(lc.1)}, which will combine all tree layers, all shrub layers and all layers below shrubs. An alternative would be data(lc.all), combining all layers. With option pseudo=NULL there will be no layer aggregation.
#'
#' @return an object of class matrix with (combined) cover values.
#'
#' @seealso{
#' \code{\link{taxval}}, \code{\link{tv.coverperc}}, \code{\link{tv.obs}}, \code{\link{tv.site}}
#' }
#'
#' @examples
#' \dontrun{
#' vignette("vegdata")
#' #' If you have Turboveg installed on your computer try for a beginning
#' #' tv.veg('databasename', tax=FALSE).
#' args(tv.veg)
#' help('taxval')
#'
#' veg <- tv.veg('taxatest')
#' names(veg)
#' tv.veg('taxatest', uncertain=list('DET_CERT', data.frame(0:2,c('pres','agg','agg'))),
#' pseudo=list(lc.0,'LAYER'), genus = 'delete')
#' }
#'
#' @author Florian Jansen \email{[email protected]}
#'
#' @keywords misc manip
#'
tv.veg <- function (db, taxval = TRUE, tv_home, convcode = TRUE,
lc = c("layer","mean","max","sum","first"), pseudo, values = "COVER_PERC",
spcnames = c('shortletters','ScientificNames','Numbers'), dec = 0, cover.transform = c('no', 'pa', 'sqrt'),
obs, site, refl, RelScale, ...)
{
options(warn=1)
## Checks
lc <- toupper(match.arg(lc))
cover.transform <- match.arg(cover.transform)
spcnames = match.arg(spcnames)
if(missing(tv_home)) tv_home <- tv.home()
if(missing(obs)) {
cat('Reading tvabund.dbf\n')
obs <- tv.obs(db, tv_home)
} else names(obs) <- TCS.replace(names(obs))
# if(suppressWarnings(any(obs < -1e+05, na.rm = TRUE)))
# cat("\n WARNING! Values less than -100,000. \n WARNING! tvabund.dbf may be corrupt. \n WARNING! Please correct by reexporting e.g. with OpenOffice.")
lc.1 <- data.frame(LAYER=0:9, COMB=c(0,rep('Tree',3),rep('Shrub',2),rep(0,4)))
# data("lc.1", package = 'vegdata', envir = 'vegdata')
if(missing(pseudo)) pseudo <- list(lc.1, 'LAYER')
## Taxa
if(missing(refl)) refl <- tv.refl(db = db[1], tv_home = tv_home)
cat('Taxonomic reference list: ', refl, '\n')
if(taxval) {
obs <- taxval(obs=obs, refl = refl, ...)
}
## CoverCode
if(missing(site)) {
cat('Reading tvhabita.dbf\n')
site <- tv.site(db, tv_home, verbose = FALSE)
}
if(convcode){
cat('converting cover code ... \n')
if(missing(RelScale)) {
if(missing(db)) stop('\nEither database name or a vector with CoverScale per releve has to be permitted, to cope with Cover Scale information\n')
RelScale <- site[, c("PlotObservationID", "COVERSCALE")]
}
obs <- tv.coverperc(db=db, obs=obs, RelScale = RelScale, tv_home = tv_home, ...)
} else {
if (!any(names(obs) == values)) stop(paste(values, " could not be found."))
obs[,values] <- type.convert(as.character(obs[,values], as.is = TRUE))
if(is.factor(obs[,values])) {
lc='first'
warning("Multiple occurrences of a species in one layer of a releve can not be supported without cover code conversion.
Only the first occurrence will be used!")}
}
## empty plots
noobs <- site$PlotObservationID[!site$PlotObservationID %in% obs$PlotObservationID]
if(length(noobs) > 0)
for(i in 1:length(noobs)) {
obs[(nrow(obs)+1), ] <- NA
obs$PlotObservationID[nrow(obs)] <- noobs[i]; obs$TaxonUsageID[nrow(obs)] <- 0; obs$LAYER[nrow(obs)] <- 0
}
## Pseudo-Species / Layer
# print('Pseudo species')
if(!is.null(pseudo)) {
cat('creating pseudo-species ... \n')
if(length(pseudo[[2]]) > 1) stop('Possibility to differentiate more than one plot-species attribute not yet implemented. \n
Please contact <[email protected]>.')
obs$COMB <- pseudo[[1]][, 2][match(obs[, pseudo[[2]]], pseudo[[1]][,1])]
collab <- paste(obs$TaxonUsageID, obs$COMB, sep = ".")
} else collab <- as.vector(obs$TaxonUsageID)
rowlab <- as.vector(obs$PlotObservationID)
cat('combining occurrences using type', toupper(lc), 'and creating vegetation matrix ... \n')
gc(TRUE, verbose = FALSE)
layerfun <- function(x) round((1 - prod(1 - x/100)) * 100, dec)
# print('Inflate')
results <- switch(lc, # Inflate matrix
LAYER = tapply(obs[, values], list(rowlab, collab), layerfun),
MEAN = tapply(obs[, values], list(rowlab, collab), mean),
MAX = tapply(obs[, values], list(rowlab, collab), max),
SUM = tapply(obs[, values], list(rowlab, collab), sum),
FIRST = tapply(obs[, values], list(rowlab, collab), stringr::word) )
results[is.na(results)] <- 0
results <- as.data.frame(results)
colnames(results)
## Names
# print('names')
if(spcnames %in% c('shortletters','ScientificNames')) {
cat('replacing species numbers with ', spcnames, ' names ... \n')
if(is.null(pseudo)) {
species <- tax(as.numeric(colnames(results)), detailed=TRUE, syn=FALSE, refl = refl, tv_home=tv_home)
if(spcnames=='shortletters') colnames(results) <- species$LETTERCODE[match(colnames(results), species$TaxonUsageID)]
if(spcnames=='ScientificNames') colnames(results) <- gsub(' ','_', species$TaxonName[match(colnames(results), species$TaxonUsageID)] )
} else {
st <- unlist(strsplit(colnames(results), ".", fixed = TRUE))
colspc <- st[seq(1, length(st), 2)]
species <- tax(as.numeric(colspc), detailed=FALSE, refl = refl, tv_home=tv_home)
if(spcnames=='shortletters') coln <- as.character(species$LETTERCODE[match(as.numeric(colspc), species$TaxonUsageID)])
if(spcnames=='ScientificNames') coln <- gsub(' ','_', species$TaxonName[match(as.numeric(colspc), species$TaxonUsageID)])
ll <- st[seq(2, length(st), 2)]
cn <- replace(coln, which(ll != '0'), paste(coln, ll, sep = ".")[ll != '0'])
colnames(results) <- cn
}
}
if (any(is.na(colnames(results)))) warning("Some taxa without names, check reference list!")
# rownames(results) <- unique(rowlab)
## Result
# results <- results[, order(names(results))]
if(cover.transform!='no') {
if(cover.transform == 'pa') results <- as.data.frame(ifelse(results > 0, 1,0))
if(cover.transform == 'sqrt') results <- as.data.frame(round(sqrt(results),dec))
}
results <- results[, colSums(results)> 0]
class(results) <- c("veg", "data.frame")
attr(results, 'taxreflist') <- refl
return(results)
}
|
/scratch/gouwar.j/cran-all/cranData/vegdata/R/tv.veg.r
|
#' Write species-plot observations and site information to Turboveg database.
#'
#' @name tv.write
#' @description Write species-plot observations and site information to Turboveg database.
#'
#' @usage tv.write(x, site, name, tvadmin, remarks, dict = "", cover = c("code", "perc"),
#' drop = FALSE, obl = TRUE, overwrite = FALSE, ...)
#'
#' @export
#' @param x (data.frame) Either observations data.frame with RELEVE_NR, TaxonUsageID and COVER_CODE (see \link{tv.obs}) columns or vegetation matrix of class "veg".
#' @param site (character) Header data for plots.
#' @param name (character) Name of the new database.
#' @param tvadmin (data.frame) Dataframe with plot UUID's and Turboveg columns from TvAdmin.dbf. A new file with new unique identifiers will be created if omitted.
#' @param remarks (data.frame) Remarks in Turboveg format if the comments for individual plots exceed 254 characters. See remarks.dbf in Turboveg databases. An empty file will be created if omitted.
#' @param dict (character) Turboveg dictionary name
#' @param cover (logical) Use of covercodes or (mean) cover percentages, see Details.
#' @param drop (logical) Drop columns which are empty or contain only NA values.
#' @param obl (logical) Add obligatory fields defined in the TV dictionary but not present in the site data table.
#' @param overwrite (logical) Should an existing database be overwritten.
#' @param \dots additional arguments
#'
#' @details By default Covercode is written to Turboveg. This is only meaningful, if correct CoverScales are given in the site dataframe. Unique plot ID's are stored in *TvAdmin.dbf*. If you want to preserve already given UUID's you have to prepare an appropriate data.frame. Look for existing *TvAdmin.dbf* files for necessary columns.
#'
#' @return Five files will be created in "tv_home/Data/databasename" directory. *tvabund.dbf* with occurrence information n long format, *tvhabita.dbf* with plot information, remarks.dbf with comments longer then 255 characters, *TvAdmin.dbf* with plot UUID's and tvwin.dbf with information about taxonomic reference list, and dictionary used.
#'
#' @seealso tv.veg
#'
#' @author Florian Jansen @email [email protected]
#'
#' @keywords Turboveg
if(getRversion() >= "2.15.1") utils::globalVariables(c("DoWritedbf"))
tv.write <- function(x, site, name, tvadmin, remarks, dict = '', cover=c('code','perc'), drop = FALSE, obl = TRUE, overwrite = FALSE, ...) {
cover <- match.arg(cover)
if('veg' %in% class(x)) {
X <- reShape.veg(x, ...)
if(cover == 'perc') {
X$COVER_CODE <- as.character(X$COVER_PERC)
site$COVERSCALE <- '00'
X <- X[,c('PlotObservationID','TaxonUsageID', 'COVER_CODE', 'LAYER')]
}
} else {
if(!any(c('tv.obs','vw.obs') %in% class(x)))
warning('Species observations should be either of class \"tv.obs\" or \"vw.obs\".')
if(!all(c('PlotObservationID') %in% names(x)))
stop('table of species observations must contain a column called PlotObservationID')
X <- x
binrel <- unique(X$PlotObservationID[na.omit(as.numeric(X$"COVER_CODE") > 100)])
if(length(binrel) > 0) X$"COVER_CODE"[X$PlotObservationID == binrel] <- word2bin(as.numeric(X$"COVER_CODE"[X$PlotObservationID == binrel]))
X$"COVER_CODE"[X$"COVER_CODE" == '100'] <- '9X'
names(X) <- TV.replace(names(X))
}
refl <- if(!is.null(attr(X, "taxreflist"))) attr(X, "taxreflist") else tv.refl()
if(drop) {
# Delete empty columns ####
na <- apply(site, 2, function(x) all(is.na(x) | x == ''))
if (any(na)) site <- as.data.frame(site[, !na])
leer <- apply(site, 2, function(x) all(x == 0 | is.na(x)))
if (any(leer)) site <- as.data.frame(site[, !leer])
}
for(i in names(site)) if(is.character(site[,i])) {
site[is.na(site[,i]),i] <- ''
site[,i] <- iconv(site[,i], '', getOption('tv.iconv'))
}
if(obl) {
### Add obligatory fields from dictionary ####
dbasedic <- read.dbf(file.path(tv.home(), 'Popup', dict, 'dbasedic.dbf'), as.is=TRUE)
oblig <- dbasedic[dbasedic$FILE_NR == 2, 'FIELD_NAME']
oblig <- TCS.replace(oblig)
for(m in oblig[!oblig %in% names(site)]) site[,m] <- ''
site <- site[, match(unique(c(oblig, names(site))), names(site))] # order columns
}
if(!overwrite)
if(file.exists(file.path(options('tv_home'), 'Data', name, 'tvhabita.dbf')))
stop('Database ', name, ' already exists. Nothing will be exported.')
site$DATE <- gsub('-','', site$DATE)
### Write Turboveg tvhabita and tvabund ####
dir.create(file.path(options('tv_home'), 'Data', name), showWarnings = if(overwrite) FALSE else TRUE)
write.dbf(X, max_nchar = 250, file.path(options('tv_home'), 'Data', name, 'tvabund.dbf'))
# write TvAdmin ####
if(missing(tvadmin)) {
tvadmin <- data.frame(PlotObservationID=site$PlotObservationID, SOURCE_DB='R', GUID=replicate(nrow(site), paste('{', uuid::UUIDgenerate(), '}', sep='')), CREAT_USER=Sys.getenv('USER'), CREAT_DATE=Sys.Date(), MOD_USER=Sys.getenv('USER'), MOD_DATE=Sys.Date(), NDFF_QUAL=as.integer(0))
} else if(is.character(tvadmin))
tvadmin <- read.dbf(file.path(options('tv_home'), 'Data', tvadmin, 'TvAdmin.dbf'), as.is=TRUE)
TvAdmin <- tvadmin
TvAdmin <- TvAdmin[TvAdmin$PlotObservationID %in% site$PlotObservationID,]
TvAdmin$MOD_USER[is.na(TvAdmin$MOD_USER)] <- Sys.getenv('USER')
TvAdmin$MOD_DATE[is.na(TvAdmin$MOD_DATE)] <- format(Sys.Date())
names(TvAdmin) <- TV.replace(names(TvAdmin))
write.dbf(TvAdmin, max_nchar = 250, file.path(options('tv_home'), 'Data', name, 'TvAdmin.dbf'))
# write Remarks ####
if(missing(remarks)) remarks <- data.frame(PlotObservationID=numeric(), REMARKS=character()) else
if(nrow(remarks) > 0) remarks <- remarks[remarks$PlotObservationID %in% site$PlotObservationID,]
names(remarks) <- TV.replace(names(remarks))
suppressWarnings(
write.dbf(remarks, max_nchar = 250, file.path(options('tv_home'), 'Data', name, 'remarks.dbf'))
)
options(warn=-1)
# write tvwin.dbf ####
write.dbf(data.frame(FLORA=refl, MINALLOW=0, MAXALLOW=0, MINACTUAL= min(site$PlotObservationID), MAXACTUAL=max(site$PlotObservationID), MAP='', DICTIONARY=dict, META=''), max_nchar = 250, file = file.path(options('tv_home'),'Data', name, 'tvwin.dbf'))
# write tvhabita.dbf
names(site) <- TV.replace(names(site))
write.dbf(site, max_nchar = 250, file.path(options('tv_home'), 'Data', name, 'tvhabita.dbf'))
cat('Turboveg database', name, 'written to', file.path(options('tv_home'), 'Data', name),'\n')
}
|
/scratch/gouwar.j/cran-all/cranData/vegdata/R/tv.write.R
|
#' Internal vegdata functions
#' @name vegdata-internal
#' @aliases reShape.veg bin2word word2bin
#' @noRd
#' @description Internal vegdata functions.
#' @details These are not intended to be called directly by the user.
#' tv.home tries to guess the default tv_home directory (\code{'C:\Turbowin'} or \code{'C:\Programme\Turbowin'} or \code{'O:\Turbowin'} on Windows systems and \code{'~/.wine/drive_c/Turbowin'} on Unix systems.
#' As dBase is an old DOS format, Umlaute have been stored in Turboveg using the CP437 code table. Change options('tv.iconv') if you run into problems
#' @keywords internal
# gracefully_fail <- function(remote_file) {
# try_GET <- function(x, ...) {
# tryCatch(
# GET(url = x, timeout(1), ...),
# error = function(e) conditionMessage(e),
# warning = function(w) conditionMessage(w)
# )
# }
# is_response <- function(x) {
# class(x) == "response"
# }
# # First check internet connection
# if (!curl::has_internet()) {
# message("No internet connection.")
# return(invisible(NULL))
# }
# # Then try for timeout problems
# resp <- try_GET(remote_file)
# if (!is_response(resp)) {
# message(resp)
# return(invisible(NULL))
# }
# # Then stop if status > 400
# if (httr::http_error(resp)) {
# message_for_status(resp)
# return(invisible(NULL))
# }
#
# # # If you are using rvest as I do you can easily read_html in the response
# # xml2::read_html(resp)
# }
# gracefully_fail("http://httpbin.org/status/404") # http >400
# #> Not Found (HTTP 404).
# gracefully_fail("http://httpbin.org/delay/2") # Timeout
# #> Timeout was reached: [httpbin.org] Operation timed out after 1000 milliseconds with 0 bytes received
# gracefully_fail("http://httpbin.org") #OK
# #> {html_document}
# #> <html lang="en">
# #> [1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8 ...
# #> [2] <body>\n <a href="https://github.com/requests/httpbin" class="github-c ...
# gracefully_fail("http://httpbin.org") #OK
#
# remote <- "https://germansl.infinitenature.org/GermanSL/1.5/GermanSL.zip"
# remote2 <- "https://german.infinitenature.org/GermanSL/1.5/GermanSL.zip"
# remote3 <- "https://germansl.infinitenature.org/GermanSL/1.6/GermanSL.zip"
#
# # gracefully_fail(remote) #OK
#
# status <- tryCatch(
# RCurl::getURL(url, ssl.verifypeer=FALSE, useragent="R"),
# error = function(e) e
# )
# # inherits(status, "error")
#
#
# f <- function(url) {
# if (!curl::has_internet()) {
# message("No internet connection")
# return(NULL)
# }
# if (httr::http_error(url)) {
# message("Data source broken.")
# return(NULL)
# }
# url(remote2)
# if(as.integer(tmp) == 5)
# tryCatch(http_error(GET(url)),
# http_404 = function(c) "That url doesn't exist",
# http_403 = function(c) "You need to authenticate!",
# http_400 = function(c) "You made a mistake!",
# http_500 = function(c) "The server screwed up"
# )
# }
# f(remote2)
asc <- function(char) sapply(char, function(x) strtoi(charToRaw(x), 16L), simplify = TRUE, USE.NAMES = FALSE)
chr <- function(ascii) sapply(ascii, function(x) rawToChar(as.raw(x)), USE.NAMES = FALSE)
bin2word <- function(x) {
c1 <- substr(x, 1,1)
c2 <- substr(x, 2,2)
return(255 * (asc(c1) -1) + asc(c2) - 1)
}
word2bin <- function(x) {
c1 <- floor(x/255+1)
c2 <- x - (c1-1)*255
paste (chr(c1), chr(c2 + 1), sep='')
}
#' @noRd
"[.veg" <- function(x, s,...) {
taxref <- attr(veg, 'taxreflist')
out <- NextMethod("[,", drop=TRUE)
class(out) <- c('veg', 'data.frame')
attr(veg, 'taxreflist') <- taxref
return(out)
}
#
# first.word <- function (x, i = 1, expr = substitute(x), add.legal=NULL) {
# words <- if(!missing(x)) as.character(x)[1] else as.character(unlist(expr))[1]
# if (i > 2) stop("only first and second word implemented")
# chars <- substring(words, 1:nchar(words, keepNA = FALSE), 1:nchar(words, keepNA = FALSE))
# legal.chars <- c(letters, LETTERS, '\u00fc','\u00e4','\u00f6','\u00df','\u00d7', "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", add.legal)
# non.legal.chars <- (1:length(chars))[!chars %in% legal.chars]
# # length(non.legal.chars) > 0
# if (i==1 & is.na(non.legal.chars[1])) return(words)
# if (i==1 & !is.na(non.legal.chars[1])) return(substring(words, 1, non.legal.chars[1] - 1))
# if (i==2 & is.na(non.legal.chars[2])) return(substring(words, non.legal.chars[1], nchar(words, keepNA = FALSE)))
# if (i==2 & !is.na(non.legal.chars[2])) return(substring(words, non.legal.chars[1]+1, non.legal.chars[2]-1)) else return(character(0))
# }
#
# word <- function (string, start = 1L, end = start, sep = fixed(" ")) {
# n <- max(length(string), length(start), length(end))
# string <- rep(string, length.out = n)
# start <- rep(start, length.out = n)
# end <- rep(end, length.out = n)
# breaks <- str_locate_all(string, sep)
# words <- lapply(breaks, invert_match)
# len <- vapply(words, nrow, integer(1))
# neg_start <- !is.na(start) & start < 0L
# start[neg_start] <- start[neg_start] + len[neg_start] + 1L
# neg_end <- !is.na(end) & end < 0L
# end[neg_end] <- end[neg_end] + len[neg_end] + 1L
# start[start > len] <- NA
# end[end > len] <- NA
# starts <- mapply(function(word, loc) word[loc, "start"], words, start)
# ends <- mapply(function(word, loc) word[loc, "end"], words, end)
# str_sub(string, starts, ends)
# }
# x <- c('Tortula acaulon (With.) R. H.Zander var. acaulon', 'Phascum cuspidatum Hedw. v. cuspidatum', 'Tortula acaulon var. papillosa (Lindb.) R. H. Zander', 'Phascum cuspidatum subsp. papillosum (Lindb.) J. Guerra & Ros', 'Tortula SP.')
# @noRd
# rbind.df <- function(df1, df2) {
# cols1 <- names(df1); cols2 <- names(df2)
# All <- union(cols1, cols2)
# miss1 <- setdiff(All, cols1)
# miss2 <- setdiff(All, cols2)
# df1[, c(as.character(miss1))] <- NA
# df2[,c(as.character(miss2))] <- NA
# out <- rbind(df1, df2)
# return(out)
# }
# @noRd
# cbind.df <- function(df1, df2, by) {
# cols1 <- names(df1); cols2 <- names(df2)
# inters <- intersect(cols1, cols2)
# df.m <- df2[match(df1[,by], df2[,by]), ]
# for(i in inters) {
# df1[,i][is.na(df1[,i])] <- df.m[,i][is.na(df1[,i])]
# }
# return(df1)
# }
# as.data.frame.list
# Convert a list of vectors to a data frame.
# @noRd
# as.data.frame.list <- function(x, row.names=NULL, optional=FALSE, ...) {
# if(!all(unlist(lapply(x, class)) %in%
# c('raw','character','complex','numeric','integer','logical'))) {
# warning('All elements of the list must be a vector.')
# NextMethod(x, row.names=row.names, optional=optional, ...)
# }
# allequal <- all(unlist(lapply(x, length)) == length(x[[1]]))
# havenames <- all(unlist(lapply(x, FUN=function(x) !is.null(names(x)))))
# if(havenames) { #All the vectors in the list have names we can use
# colnames <- unique(unlist(lapply(x, names)))
# df <- data.frame(matrix(
# unlist(lapply(x, FUN=function(x) { x[colnames] })),
# nrow=length(x), byrow=TRUE), stringsAsFactors = FALSE)
# names(df) <- colnames
# } else if(allequal) { #No names, but are of the same length
# df <- data.frame(matrix(unlist(x), nrow=length(x), byrow=TRUE), stringsAsFactors = FALSE, ...)
# hasnames <- which(unlist(lapply(x, FUN=function(x) !is.null(names(x)))))
# if(length(hasnames) > 0) { #We'll use the first element that has names
# names(df) <- names(x[[ hasnames[1] ]])
# }
# } else { #No names and different lengths, we'll make our best guess here!
# warning(paste("The length of vectors are not the same and do not ",
# "are not named, the results may not be correct.", sep=''))
# #Find the largest
# lsizes <- unlist(lapply(x, length))
# start <- which(lsizes == max(lsizes))[1]
# df <- x[[start]]
# for(i in (1:length(x))[-start]) {
# y <- x[[i]]
# if(length(y) < length(x[[start]])) {
# y <- c(y, rep(NA, length(x[[start]]) - length(y)))
# }
# if(i < start) {
# df <- rbind(y, df)
# } else {
# df <- rbind(df, y)
# }
# }
# df <- as.data.frame(df, row.names=1:length(x))
# names(df) <- paste('Col', 1:ncol(df), sep='')
# }
# if(missing(row.names)) {
# row.names(df) <- names(x)
# } else {
# row.names(df) <- row.names
# }
# return(df)
# }
#
|
/scratch/gouwar.j/cran-all/cranData/vegdata/R/vegdata-internal.r
|
#' Functions to access data from vegetation databases and evaluate taxon names
#' @keywords package
"_PACKAGE"
#' @aliases vegdata
#' @encoding UTF-8
#'
#' @references
#' Jansen, F., Dengler, J (2011) Plant names in vegetation databases - a neglected source of bias, Journal of vegetation science, 21(6), 1179-1186. http://dx.doi.org/10.1111/j.1654-1103.2010.01209.x
#' Jansen, Florian and Dengler, Juergen (2008) GermanSL - eine universelle taxonomische Referenzliste fuer Vegetationsdatenbanken, Tuexenia, 28, 239-253.
#'
#' @description This package provides a set of functions to load data from vegetation databases (at present Turboveg and vegetweb.de). Taxa can be (semi-)automatically be checked and adapted depending the scientific question. For this a hierachical taxonomic reference list is needed. Use [tv.veg()] to prepare data directly for further analyses. Set option \code{taxval} to \code{TRUE}, if your database is referenced with GermanSL or equivalent taxonomic reference list and you want to realize taxonomic checks and adaptations. For more details see \code{vignette('vegdata')}.
#'
#' @importFrom DBI dbConnect dbDisconnect
#' @importFrom RSQLite SQLite
#' @importFrom curl curl_download
#' @importFrom magrittr %>%
#' @importFrom foreign read.dbf
#' @importFrom xml2 read_xml xml_find_all xml_attr xml_attrs xml_length xml_children
#' @importFrom utils find read.csv download.file head tail type.convert unzip read.csv2 write.csv2
#' @importFrom plyr ldply
#' @importFrom stats na.omit
NULL
|
/scratch/gouwar.j/cran-all/cranData/vegdata/R/vegdata-package.R
|
#'
#'
.onAttach <- function(lib, pkg) {
packageStartupMessage("This is vegdata ",
utils::packageDescription("vegdata", field="Version"), paste(' - build: '),
utils::packageDate('vegdata'),
appendLF = TRUE)
if(is.null(getOption('tv.iconv'))) options(tv.iconv = 'ISO-8859-15')
}
mssg <- function(v, ...) if (v) message(...)
assert <- function(x, y) {
if (!is.null(x)) {
if (!inherits(x, y)) {
stop(deparse(substitute(x)), " must be of class ",
paste0(y, collapse = ", "), call. = FALSE)
}
}
}
|
/scratch/gouwar.j/cran-all/cranData/vegdata/R/zzz.R
|
## ----prep, echo=FALSE, results='hide'-----------------------------------------
library(knitr)
options(stringsAsFactors=FALSE)
opts_chunk$set(concordance = TRUE, comment = "", warning = FALSE, message = TRUE, echo = TRUE, results = 'tex', size="footnotesize")
tmp <- tempdir(check = T)
suppressPackageStartupMessages(library(vegdata))
options(tv_home = tmp)
dir.create(file.path(tmp, 'Species'))
dir.create(file.path(tmp, 'Popup'))
dir.create(file.path(tmp, 'Data'))
file.copy(from = file.path(path.package("vegdata"), 'tvdata', 'Popup'), to = tmp, recursive = TRUE)
file.copy(from = file.path(path.package("vegdata"), 'tvdata', 'Species'), to = tmp, recursive = TRUE)
file.copy(from = file.path(path.package("vegdata"), 'tvdata', 'Data'), to = tmp, recursive = TRUE)
# dim(tax('all'))
## ----load, results='hide'-----------------------------------------------------
library(vegdata)
## ----eval=FALSE---------------------------------------------------------------
# tv_home <- tv.home()
## ----eval=FALSE---------------------------------------------------------------
# options(tv_home="path_to_your_Turboveg_root_directory")
# options(tv_home="/home/jansen/aGitRepos/vegdata/vegdata/inst/tvdata/")
## ----dblisting----------------------------------------------------------------
tv.db()
## -----------------------------------------------------------------------------
tv.refl()
## ----eval=FALSE---------------------------------------------------------------
# tv.refl('your_preferred_list')
## ----tax, eval =TRUE----------------------------------------------------------
tax('Quercus robur')
## ----syn----------------------------------------------------------------------
tax('Elytrigia repens')$TaxonName
syn('Elytrigia repens')
## ----childs, eval=FALSE-------------------------------------------------------
# child(27, quiet=TRUE)$TaxonName
# parent(32)
# parent(32, rank = 'FAM')
## ----db-----------------------------------------------------------------------
db <- 'taxatest'
## ----meta, eval=FALSE---------------------------------------------------------
# tv.metadata(db)
## ----obs----------------------------------------------------------------------
getOption('tv_home')
obs <- tv.obs(db)
# Adding species names
species <- tax('all', refl=tv.refl(db=db))
obs$TaxonName <- species$TaxonName[match(obs$TaxonUsageID, species$TaxonUsageID)]
head(obs[,c('PlotObservationID','TaxonUsageID','COVER_CODE','LAYER','TaxonName')])
## ----data---------------------------------------------------------------------
library(vegdata)
obs <- tv.obs('taxatest')
sort(tax(unique(obs$TaxonUsageID))$TaxonName)
## ----adapt--------------------------------------------------------------------
obs.tax <- taxval(obs, db='taxatest', ag='adapt', rank='SPE', check.critical = FALSE, taxlevels = taxlevels, mono = 'pre')
sort(tax(unique(obs.tax$TaxonUsageID), db=db)$TaxonName)
## ----conflict-----------------------------------------------------------------
obs.tax <- taxval(obs, db='taxatest', ag='conflict', check.critical = FALSE)
sort(tax(unique(obs.tax$TaxonUsageID), db=db)$TaxonName)
## ----maxtax, eval=FALSE-------------------------------------------------------
# obs.tax <- taxval(obs, db='taxatest', ag='conflict', maxtaxlevel = 'AGG', check.critical = FALSE, interactive = TRUE)
# obs.tax <- taxval(obs.tax, db='taxatest', ag='adapt', rank='SPE', check.critical = FALSE)
# sort(tax(unique(obs.tax$TaxonUsageID), db=db)$TaxonName)
## ----coverperc, echo=2:4, eval=TRUE-------------------------------------------------------------------------
options(width=120)
obs <- tv.obs(db)
# obs <- tv.coverperc(db, obs)
tail(obs)
options(width=110)
## ----pseudo1, eval=FALSE------------------------------------------------------------------------------------
# data(lc.0)
# obs <- tv.obs(db)
# tv.veg(db, pseudo = list(lc.0, c("LAYER")), lc = "layer")
## ----lc0, warning=FALSE-------------------------------------------------------------------------------------
tmp <- tv.veg(db, tax=FALSE, pseudo = list(lc.0, "LAYER"), lc = "layer", quiet=TRUE)
names(tmp)
## ----Season-------------------------------------------------------------------------------------------------
comb <- list(data.frame(SEASON=0:4, COMB=c(0,'Spring','Summer','Autumn','Winter')),'SEASON')
names(tv.veg(db, tax=FALSE, pseudo=comb, quiet=TRUE))
## ----layer, results='hide', warning=FALSE-------------------------------------------------------------------
data(lc.1)
veg <- tv.veg(db, lc = "sum", pseudo = list(lc.1, 'LAYER'), dec = 1, check.critical = FALSE)
veg[,1:10]
## -----------------------------------------------------------------------------------------------------------
obs.tax$TaxonUsageID[obs.tax$TaxonUsageID == 27] <- 31
## ----replace------------------------------------------------------------------------------------------------
taxon.repl <- data.frame(old=c(27), new=c(31))
obs.tax$TaxonUsageID <- replace(obs.tax$TaxonUsageID,
match(taxon.repl$old, obs.tax$TaxonUsageID), taxon.repl$new)
## ----comb.spec, eval=FALSE----------------------------------------------------------------------------------
# comb.species(veg, sel=c('QUERROB','QUERROB.Tree'))
## ----site.echo, eval=TRUE-----------------------------------------------------------------------------------
site <- tv.site(db)
## ----elbaue, results='hide'---------------------------------------------------------------------------------
elbaue <- tv.veg('elbaue', check.critical = FALSE)
elbaue.env <- tv.site('elbaue')
## ----cluster------------------------------------------------------------------------------------------------
clust <- vector('integer', nrow(elbaue.env))
clust[elbaue.env$MGL < -50 & elbaue.env$SDGL < 50] <- 1 # dry sites, low deviation
clust[elbaue.env$MGL < -50 & elbaue.env$SDGL >= 50] <- 2 # dry sites, high deviation
clust[elbaue.env$MGL >= -50 & elbaue.env$SDGL >= 50] <- 3 # wet sites, high deviation
clust[elbaue.env$MGL >= -50 & elbaue.env$SDGL < 50] <- 4 # wet sites, low deviation
#levels(clust) <- c('dry.ld','dry.hd', 'wet.hd','wet.ld')
## ----syntab.mupa--------------------------------------------------------------------------------------------
synt <- syntab(elbaue, clust, mupa = TRUE)
## ----nmds, quiet=TRUE, results='hide'-----------------------------------------------------------------------
## Data analyses
if (requireNamespace('vegan', quietly = TRUE) ) {
library(vegan)
veg.nmds <- metaMDS(elbaue, distance = "bray", trymax = 5, autotransform =FALSE,
noshare = 1, expand = TRUE, trace = 2)
# eco <- tv.traits()
F <- cwm(veg = elbaue, trait.db = 'ecodbase.dbf', ivname = 'OEK_F', method = 'mean')
N <- cwm(veg = elbaue, trait.db = 'ecodbase.dbf', ivname = 'OEK_N', method = 'mean')
env <- envfit(veg.nmds, env = data.frame(F, N))
} else
message("package vegan not available")
## ----nmdsplot, quiet=TRUE, results='hide', warning=FALSE, eval=TRUE-----------------------------------------
if (requireNamespace('interp', quietly = TRUE) & requireNamespace('labdsv', quietly = TRUE) & requireNamespace('vegan', quietly = TRUE) ) {
suppressPackageStartupMessages(library(labdsv))
library(interp)
color = function(x)rev(topo.colors(x))
nmds.plot <- function(ordi, site, var1, var2, disp, plottitle = 'NMDS', env = NULL, ...) {
lplot <- nrow(ordi$points); lspc <- nrow(ordi$species)
filled.contour(interp(ordi$points[, 1], ordi$points[, 2], site[, var1], duplicate = 'strip'),
ylim = c(-1, 1.1), xlim = c(-1.4, 1.4),
color.palette = color, xlab = var1, ylab = var2, main = plottitle,
key.title = title(main = var1, cex.main = 0.8, line = 1, xpd = NA),
plot.axes = { axis(1); axis(2)
points(ordi$points[, 1], ordi$points[, 2], xlab = "", ylab = "", cex= .5, col = 2, pch = '+')
points(ordi$species[, 1], ordi$species[, 2], xlab = "", ylab = "", cex=.2, pch = 19)
ordisurf(ordi, site[, var2], col = 'black', choices = c(1, 2), add = TRUE)
orditorp(ordi, display = disp, pch = " ")
legend("topright", paste("GAM of ", var2), col = 'black', lty = 1)
if(!is.null(env)) plot(env, col='red')
}
,...)
}
nmds.plot(veg.nmds, elbaue.env, disp='species', var1="MGL", var2="SDGL", env=env, plottitle = 'Elbaue floodplain dataset')
} else {
message("packages interp and/or labdsv not available")
}
|
/scratch/gouwar.j/cran-all/cranData/vegdata/inst/doc/vegdata.R
|
#' Ten years of daily average air temperature
#'
#' A dataset containing ten years (2001-01-01 - 2010-12-31) of average air
#' temperature measured at the weather station Goettingen. The data is the result
#' of a reanalysis of observed data using the STARS model (cf. Orlowsky et al.
#' 2008). They were provided by Prof. Dr. Peter Werner (PIK).
#'
#' @format A data frame with 3652 rows and 6 variables:
#' \tabular{ll}{
#' \strong{Variable} \tab \strong{Description}\cr
#' date \tab calendar date as object of class Date\cr
#' year \tab years as integer\cr
#' month \tab month as integer \cr
#' day \tab day of month as integer\cr
#' doy \tab day of year as integer \cr
#' t \tab average air temperature
#' }
#' @source Prof. Dr. Peter Werner (PIK)
#' @references
#' Orlowsky, B., Gerstengarbe, F. W., Werner, P. C. (2008)
#' A resampling scheme for regional climate simulations and its performance
#' compared to a dynamical RCM.
#' \emph{Theoretical and Applied Climatology}, \bold{92}(3–4), 209--223.
#' \doi{10.1007/s00704-007-0352-y}
#' @name goe
#' @usage data(goe)
#' @examples
#' data(goe)
#' str(goe)
NULL
|
/scratch/gouwar.j/cran-all/cranData/vegperiod/R/doc_data.R
|
#==============================================================================
#
# Fetch climate data from DWD's open data program
#
# Robert Nuske 2015-03-30
#==============================================================================
#' Fetch list of DWD weather stations
#'
#' Get a listing of advertised stations of Germany's National Meteorological
#' Service (Deutscher Wetterdienst, DWD). The list differs for station type,
#' time period and resolution. The list of advertised stations is usually not
#' identical with currently available stations.
#'
#' The freely accessible part of the Climate Data Center of Germany's National
#' Meteorological Service (Deutscher Wetterdienst, DWD) is part of DWD's
#' mandate for basic supply of information (termed "Grundversorgung").
#' This service may be used without any restrictions (no fees will be
#' charged and in general there are no restrictions for the use the data),
#' provided that the source is indicated as laid down in the
#' \href{http://www.gesetze-im-internet.de/geonutzv/BJNR054700013.html}{"GeoNutzV"}
#' ordinance. The source reference shall roughly meet the following rules:
#' \itemize{
#' \item Where data are used without modification, the source reference shall
#' read "Source: Deutscher Wetterdienst" or just consist of the DWD logo.
#' \item If the data are modified, the source reference shall specify as
#' precisely as possible the extent of such, e.g. "Based on data from
#' Deutscher Wetterdienst, figures rounded".
#' }
#' A more detailed description of the rules can be found in the official and
#' legally binding German
#' \href{https://opendata.dwd.de/climate_environment/CDC/Nutzungsbedingungen_German.pdf}{Nutzungsbedingungen}
#' or the translated \href{https://opendata.dwd.de/climate_environment/CDC/Terms_of_use.pdf}{Terms
#' of use}.
#'
#' @param type string. Stations can be of type \samp{"climate"} offering a range
#' of meteorological parameters or of type \samp{"precipitation"} solely
#' recording rainfall.
#'
#' @param period string specifying a time span. The last 1.5 years are
#' called \samp{"recent"}. Data from the individual beginning of measurements
#' up to a year ago are labelled \samp{"historical"}.
#'
#' @param resolution string. Temporal resolution of the data can be
#' \samp{"daily"} or \samp{"monthly"}. \samp{"daily"} being the common
#' resolution.
#'
#' @return A data.frame with all weather stations. It's not guaranteed that all
#' advertised staions are available for download. Watch out for the end data
#' of observation. Stations with recent data have a current end date.
#' The data.frame contains the variables id, from, to, elev, lat, long, name,
#' state.
#'
#' @references
#' Freely accessible DWD data available via the
#' \href{https://www.dwd.de/EN/climate_environment/cdc/cdc_node_en.html}{Climate Data Center}.
#'
#' @examples
#' \dontrun{
#' # stations with daily climate data
#' stations <- read.DWDstations()
#'
#' # precipitation stations with monthly historical data
#' precip <- read.DWDstations(type='precip', period='historical',
#' resolution='monthly')
#'
#' # list stations with daily data updated within last week
#' stat.daily <- read.DWDstations(period='recent')
#' stat.daily.recent <- stat.daily[stat.daily$to > (Sys.Date() - 7), ]
#' }
#'
#' @export
read.DWDstations <- function(type='climate', period='recent',
resolution='daily'){
# check arguments
type <- match.arg(type, choices=c('climate','precipitation'))
period <- match.arg(period, choices=c('historical', 'recent'))
resolution <- match.arg(resolution, choices=c('daily', 'monthly'))
# construct url
baseURL <- "ftp://opendata.dwd.de/climate_environment/CDC/observations_germany/climate"
url.type <- switch(type,'climate'='kl','precipitation'='more_precip')
pre.type <- switch(type, 'climate'='KL','precipitation'='RR')
pre.res <- switch(resolution, 'daily'='Tageswerte', 'monthly'='Monatswerte')
fname <- paste0(pre.type, "_", pre.res, "_Beschreibung_Stationen.txt")
myURL <- paste(baseURL, resolution, url.type, period, fname, sep='/')
myCols <- c('id', 'from', 'to', 'elev', 'lat', 'long', 'name', 'state')
myWidths <- switch(resolution,
'daily' = c(6, 9, 9, 15, 12, 10, 41, 24),
'monthly' = c(6, 9, 9, 14, 12, 10, 41, 24))
options(warn=-1) # the warning about last line is wrong -> don't show it
# treat EOF as comment
df <- utils::read.fwf(myURL, widths=myWidths, skip=2, comment.char="\032",
strip.white=TRUE, na.strings='-999',
fileEncoding='ISO-8859-1', col.names=myCols,
stringsAsFactors=FALSE)
df$from <- as.Date(as.character(df$from), "%Y%m%d")
df$to <- as.Date(as.character(df$to), "%Y%m%d")
options(warn=0)
return(df)
}
#' Fetch meteo data of DWD weather stations
#'
#' Fetch observed meteorological data of German weather stations from freely
#' accessible part of the Climate Data Center of Germany's National
#' Meteorological Service (Deutscher Wetterdienst, DWD).
#'
#' An introduction to the data available at the Climate Data Center can be
#' found in the German
#' \href{https://opendata.dwd.de/climate_environment/CDC/Liesmich_intro_CDC-FTP.pdf}{Liesmich_intro_CDC_ftp}
#' or the translated
#' \href{https://opendata.dwd.de/climate_environment/CDC/Readme_intro_CDC_ftp.pdf}{Readme_intro_CDC_ftp}.
#'
#' The freely accessible part of the Climate Data Center of Germany's National
#' Meteorological Service (Deutscher Wetterdienst, DWD) is part of the DWD's
#' mandate for basic supply of information (termed "Grundversorgung").
#' These services may be used without any restrictions (no fees will be charged
#' and in general there are no restrictions for the use the data), provided
#' that the source is indicated as laid down in the
#' \href{http://www.gesetze-im-internet.de/geonutzv/BJNR054700013.html}{"GeoNutzV"}
#' ordinance. The source reference shall roughly meet the following rules:
#' \itemize{
#' \item Where data are used without modification, the source reference shall
#' read "Source: Deutscher Wetterdienst" or just consist of the DWD logo.
#' \item If the data are modified, the source reference shall specify as
#' precisely as possible the extent of such, e.g. "Based on data from
#' Deutscher Wetterdienst, figures rounded".
#' }
#' A more detailed description of the rules can be found in the official and
#' legally binding German
#' \href{https://opendata.dwd.de/climate_environment/CDC/Nutzungsbedingungen_German.pdf}{Nutzungsbedingungen}
#' or the translated \href{https://opendata.dwd.de/climate_environment/CDC/Terms_of_use.pdf}{Terms
#' of use}.
#'
#' @param id integer. A valid station id (cf. \link{read.DWDstations}).
#'
#' @param type string. Stations can be of type \samp{"climate"} offering a range
#' of meteorological parameters or of type \samp{"precipitation"} solely
#' recording rainfall. There are about 400 \samp{climate} and 2000
#' \samp{precipitation} stations.
#'
#' @param period string specifying a time span. The last 1.5 years are
#' called \samp{"recent"}. Data from the individual beginning of measurements
#' up to a year ago are labelled \samp{"historical"}.
#' \samp{"recent"} data have not yet gone through the full quality control
#' procedure. \samp{"historical"} data have completed the operational quality
#' control. But be aware there still might be gaps and inhomogeneities.
#'
#' @param resolution string. Temporal resolution of the data can be
#' \samp{"daily"} or \samp{"monthly"}. \samp{"daily"} being the common
#' resolution.
#'
#' @param file a string specifying the location of a dataset. \samp{"file"}
#' may point to a file on a FTP server or on the local file system.
#' If the file lives on a FTP server the string must start with
#' \code{'ftp://'}. If it is NULL (the default), data will be downloaded
#' from DWD's FTP server.
#'
#' @param destdir directory (string) where intermediate data (downloaded *.zip
#' file) are stored. If it is NULL (the default) a subdirectory
#' \samp{downloaded_packages} of the session temporary directory will be used
#' (and the files will be deleted at the end of the session).
#' It might be advisable to keep the .zip file since it contains the
#' stations documentation and metadata (e.g. station shift, used devices,
#' downtimes etc.).
#'
#' @param quiet If TRUE, suppress status messages (if any), and the progress bar.
#'
#' @return A data.frame with the observed weather data. Beware of gaps and
#' inhomogeneities! \samp{colnames} contains the original header and
#' hence German terms.
#'
#' Content of 'climate'-data.frame:
#' \tabular{ll}{
#' \strong{Name} \tab \strong{Description}\cr
#' STATIONS_ID \tab station id\cr
#' MESS_DATUM \tab date\cr
#' QN_3 \tab quality level of next columns (-)\cr
#' FX \tab daily maximum of wind gust (m/s)\cr
#' FM \tab daily mean of wind velocity (m/s)\cr
#' QN_4 \tab quality level of next columns (-)\cr
#' RSK \tab daily precipitation height (mm)\cr
#' RSKF \tab precipitation form (-)\cr
#' SDK \tab daily sunshine duration (h)\cr
#' SHK_TAG \tab daily snow depth (cm)\cr
#' NM \tab daily mean of cloud cover (1/8)\cr
#' VPM \tab daily mean of vapor pressure (hPa)\cr
#' PM \tab daily mean of pressure (hPa)\cr
#' TMK \tab daily mean of temperature (°C)\cr
#' UPM \tab daily mean of relative humidity (\%)\cr
#' TXK \tab daily maximum of temperature at 2m height (°C)\cr
#' TNK \tab daily minimum of temperature at 2m height (°C)\cr
#' TGK \tab daily minimum of air temperature at 5cm above ground (°C)
#' }
#'
#' Content of 'precipitation'-data.frame:
#' \tabular{ll}{
#' \strong{Name} \tab \strong{Description}\cr
#' STATIONS_ID \tab station id\cr
#' MESS_DATUM \tab date\cr
#' QN_6 \tab quality level of next columns (-)\cr
#' RS \tab daily precipitation height (mm)\cr
#' RSF \tab precipitation form (-)\cr
#' SH_TAG \tab daily height of snow pack (cm)\cr
#' }
#'
#' @references
#' Freely accessible DWD data available via the
#' \href{https://www.dwd.de/EN/climate_environment/cdc/cdc_node_en.html}{Climate Data Center}.
#'
#' @examples
#' \dontrun{
#' # fetch last 500 days worth of data from station Göttingen
#' clim <- read.DWDdata(id=1691)
#'
#' # save data & metadata (documentation about devices, downtimes etc.)
#' clim <- read.DWDdata(id=1691, destdir='.')
#'
#' # find and download historical data from the Brocken
#' stat.hist <- read.DWDstations(period='historical')
#' brocken.id <- stat.hist[grep("^Brock", stat.hist$name), ]$id
#' clim.brocken <- read.DWDdata(id=brocken.id, period='historical')
#' }
#'
#' @export
read.DWDdata <- function(id, type='climate', period='recent',
resolution='daily', file=NULL, destdir=NULL,
quiet=FALSE){
if(is.null(file)){
# construct url from provided pieces of information
#------------------------------------------------------------------------
# check arguments
if(missing(id)) stop('id is required')
type <- match.arg(type, choices=c('climate','precipitation'))
period <- match.arg(period, choices=c('historical', 'recent'))
resolution <- match.arg(resolution, choices=c('daily', 'monthly'))
# build up URL & filename
baseURL <- "ftp://opendata.dwd.de/climate_environment/CDC/observations_germany/climate"
url.type <- switch(type,'climate'='kl','precipitation'='more_precip')
myURL <- file.path(baseURL, resolution, url.type, period)
if(period == "historical"){
# historical filenames can't be guessed -> list all files & filter
if(!quiet)
message('Searching for file name in list of available files...')
files <- .list_available_via_FTP(paste0(myURL, '/'))
fname <- grep(formatC(id, width=5, flag='0'), files, value=TRUE)
if(length(fname) == 0)
stop(paste0('File with id ', sQuote(id),' not available at URL ',
sQuote(myURL), '.'))
} else {
# recent
fname <- paste(
switch(resolution, 'daily'='tageswerte', 'monthly'='monatswerte'),
switch(type,'climate'='KL','precipitation'='RR'),
formatC(id, width=5, flag='0'), "akt.zip",
sep='_'
)
}
url <- file.path(myURL, fname)
pathToZip <- .download_from_ftp(url, destdir, fname, quiet)
file <- .connection_to_target_within_zip(pathToZip)
} else {
# url for download or path in local filesystem
#------------------------------------------------------------------------
if(substr(file, 1, 6) == "ftp://"){
# a url to an ftp service
fname <- basename(file)
pathToZip <- .download_from_ftp(file, destdir, fname, quiet)
file <- .connection_to_target_within_zip(pathToZip)
} else {
# path in local file system
if (!file.exists(file)) stop(paste("Can not find file", sQuote(file)))
if(file.access(file, 4) != 0) stop("'file' is not readable")
if(grepl(".zip$", file)) file <- .connection_to_target_within_zip(file)
}
}
df <- .read.obscureDWDfiles(file)
md_col <- grep("^MESS_DATUM", names(df))
for(i in md_col){
df[, i] <- as.Date(as.character(df[, i]), format="%Y%m%d")
}
return(df)
}
#==============================================================================
#
# Internal Helper Functions
#
#==============================================================================
# Download data from FTP Server
#--------------------------------------------------------------------------
.download_from_ftp <- function(url, destdir, fname, quiet){
# where to put the zip file ?
if(is.null(destdir)){
pathToZip <- file.path(tempdir(), fname)
} else {
if (!dir.exists(destdir)) stop("'destdir' is not a directory")
if(file.access(destdir, 2) != 0) stop("'destdir' is not writeable")
if(!quiet)
message(paste("Writing downloaded zip to", sQuote(destdir)))
pathToZip <- file.path(destdir, fname)
}
# download
tryCatch(
utils::download.file(url, destfile=pathToZip, quiet=quiet),
error=function(e)
stop(paste("Could not download file. Try the URL", sQuote(url),
"in a Web-Browser. \nPlease inform the package maintainer",
"if you did not use the 'url' argument but the URL is",
"malformed anyway."))
)
return(pathToZip)
}
# create connection to target file in zip file
#------------------------------------------------------------------------------
.connection_to_target_within_zip <- function(pathToZip){
file.list <- utils::unzip(pathToZip, list=TRUE)
hidden.file <- grep('^produkt', file.list$Name, value=TRUE)
tryCatch(connection <- unz(pathToZip, hidden.file),
error=function(e)
stop(paste("Could not open", sQuote(hidden.file),
"from zip-file", sQuote(pathToZip), "for reading."))
)
return(connection)
}
# argh, DWD-Data end with EOF (=Ctrl-Z, 0x1A, \032)
# http://en.wikipedia.org/wiki/End-of-file
# http://de.wikipedia.org/wiki/End_of_File
#
# Usual Treatment:
# treat EOF as comment, read file in binary mode, use gsub to replace EOF
#------------------------------------------------------------------------------
.read.obscureDWDfiles <- function(file){
# treat EOF as comment
df <- utils::read.table(file, sep=";", dec=".", header=TRUE,
comment.char="\032", strip.white=TRUE,
na.strings='-999')
df$eor <- NULL
return(df)
}
.read.obscureDWDfiles2 <- function(file){
# read in binary mode, kick EOF out, write clean data, read again
temp <- tempfile()
binaer <- readBin(file, what="raw", n=10000000)
binaer <- binaer[binaer != 0x1a]
writeBin(binaer, temp)
df <- utils::read.table(temp, sep=";", dec=".", header=TRUE,
strip.white=TRUE, na.strings="-999")
df$eor <- NULL
return(df)
}
.read.obscureDWDfiles3 <- function(file){
# read in binary mode, ignore warnings, replace EOF with nothing while reading
f <- file(file, "rb")
zeilen <- readLines(f)
close(f)
df <- utils::read.table(textConnection(gsub("\\\032", '', zeilen)),
sep=";", dec=".", header=TRUE, strip.white=TRUE,
na.strings="-999")
df$eor <- NULL
return(df)
}
# List files available at ftp server
#------------------------------------------------------------------------------
.list_available_via_FTP <- function(url){
if(!requireNamespace('curl', quietly=TRUE))
stop("Please install curl, e.g. install.packages('curl')")
# get a list of all files within a directory
h <- curl::new_handle(dirlistonly=1, ftp_use_epsv=0)
con <- curl::curl(url, handle=h)
filenames <- readLines(con)
close(con)
return(filenames)
}
|
/scratch/gouwar.j/cran-all/cranData/vegperiod/R/read_dwd.R
|
#==============================================================================
#
# internal functions [The Ends]
#
#==============================================================================
#==============================================================================
#
# End of vegetation period according to von Wilpert (1990)
#
#==============================================================================
#' Vegetation End Method "vonWilpert"
#'
#' The method `vonWilpert` is based on von Wilpert (1990). It was originally
#' developed for "Picea abies" in the Black Forest but is commonly used for all
#' tree species throughout Germany. As usual, the rules regarding the soilmatrix
#' are neglected in this implementation.
#'
#' @section Calculations:
#'
#' Orthodox are 3 criteria: **short day**, **temperature** and **drought criterion**
#' we consider -as usual- only short day and temperature citerion
#'
#' ## Temperature criterion:
#' - 7 day moving average of daily mean temperatures
#' at least 5 consecutive days under 10°C
#' - if afterwards more than 5 consecutive days 7 day moving average over 10°C
#' vegetation period gets restarted
#'
#' ## Short day criterion
#' - last day of the vegetation period is DOY 279 (5th of October in leap years)
#
#' @references
#' von Wilpert, K. (1990)
#' Die Jahrringstruktur von Fichten in Abhängigkeit vom Bodenwasserhaushalt
#' auf Pseudogley und Parabraunerde: Ein Methodenkonzept zur Erfassung
#' standortsspezifischer Wasserstreßdispostion.
#' \emph{Freiburger Bodenkundliche Abhandlungen}. Pages 106--108.
#'
#' @md
#' @name method_vonWilpert
#' @keywords internal
NULL
.end_vonWilpert <- function(df, Treshold=10, LastDOY=279){
# Assumptions:
# - data.frame 'df' contains month, DOY, Tavg
# - DOYs at least till LastDOY
LastDOY <- as.integer(LastDOY)
# Preparation
#----------------------------------------------------------------------------
# moving average with windows size 7 (symetric)
df$TmovAvg <- as.numeric(stats::filter(df$Tavg, rep(1/7,7), sides=2))
# mark periods ('cold', 'warm') before LastDOY and 'ignore' the rest
df$period <- ifelse(df$DOY > LastDOY, 'ignore',
ifelse(df$TmovAvg < Treshold, 'cold', 'warm'))
# determine continous strides of warm/cold by using run length encoding
# cold period if stride at least 5
# warm period if stride more than 5
temp <- rle(df$period)
temp$values[temp$lengths < 5] <- 'ignore'
temp$values[temp$values == 'warm' & temp$lengths < 6] <- 'ignore'
temp$values[is.na(temp$values)] <- 'ignore'
df$period <- inverse.rle(temp)
# Searching for the end
#----------------------------------------------------------------------------
# last warm period per year
last.warm <- tapply(df$DOY[df$period == 'warm'],
df$year[df$period == 'warm'],
FUN=max)
last.warm <- data.frame(year=as.integer(row.names(last.warm)), DOY=last.warm)
# loop over all years
years <- unique(df$year)
end <- sapply(years,
# cold period after last.warm? (yes: min(cold)+4; no: LastDOY)
FUN=function(x) {
# cold period after warm period?
temp <- df[df$year == x & df$period == 'cold', 'DOY']
temp <- temp[temp > last.warm[last.warm$year == x, 'DOY']]
if(length(temp) > 0){
# 5th day of cold period is the end
min(temp) + 4L
} else {
# no colds after last.warm -> default end
LastDOY
}
}
)
return(end)
}
#==============================================================================
#
# End of vegetation period according to LWF-BROOK90
#
#==============================================================================
#' Vegetation End Method "LWF-BROOK90"
#'
#' The method `LWF-BROOK90` is -for the sake of convenience- a reimplementation
#' of the LWF-BROOK90 VBA (version 3.4) variant of "vonWilpert" (Hammel and
#' Kennel 2001). Their interpretation of von Wilpert (1990) and the somewhat
#' lower precision of VBA was mimicked.
#'
#' @section Calculations:
#'
#' ```
#' - starting search at June 1st
#' - propose end if 7-day moving average temperature is below 10°C
#' on 5 consecutive days
#' - restart search for end if there is a warm periode (7-day moving average
#' temperature above 10°C for 5 consecutive days
#' - nevertheless the vegetation periode stops latest at DOY 279
#' ```
#'
#' @references
#' Hammel, K. and Kennel, M. (2001)
#' Charakterisierung und Analyse der Wasserverfügbarkeit und des
#' Wasserhaushalts von Waldstandorten in Bayern mit dem Simulationsmodell
#' BROOK90.
#' \emph{Forstliche Forschungsberichte München}.
#'
#' von Wilpert, K. (1990)
#' Die Jahrringstruktur von Fichten in Abhängigkeit vom Bodenwasserhaushalt
#' auf Pseudogley und Parabraunerde: Ein Methodenkonzept zur Erfassung
#' standortsspezifischer Wasserstreßdispostion.
#' \emph{Freiburger Bodenkundliche Abhandlungen}.
#'
#' @md
#' @name method_LWF-BROOK90
#' @keywords internal
NULL
.end_LWF_BROOK90 <- function(df, Tmin=10, LastDOY=279){
# Assumptions:
# - data.frame 'df' contains month, DOY, Tavg
# - DOYs at least till 279
LastDOY <- as.integer(LastDOY)
# moving average with windows size 7 (only backward looking)
# round to mimic lower precision of VBA version
# (14 digits might be okay, 10 is on the save side)
df$movAvgT <- round(as.numeric(stats::filter(df$Tavg, rep(1/7, 7), sides=1)), 10)
# introduce 2 counters 'cold' and 'warm' ('ignore' the rest)
df$period <- ifelse(df$month > 5 & df$DOY <= LastDOY,
ifelse(df$movAvgT < Tmin, 'cold', 'warm'),
'ignore')
# reset one counter if the other enters the stage by using run length encoding
# cold/warm periode only valid if >4 => ignore all counts below 5
temp <- rle(df$period)
temp$values[temp$lengths < 5] <- 'ignore'
temp$values[is.na(temp$values)] <- 'ignore'
df$period <- inverse.rle(temp)
# Searching the end
#----------------------------------------------------------------------------
# last warm period per year
last.warm <- tapply(df$DOY[df$period == 'warm'],
df$year[df$period == 'warm'],
FUN=max)
last.warm <- data.frame(year=as.integer(row.names(last.warm)), DOY=last.warm)
# loop over all years
years <- unique(df$year)
end <- sapply(years,
# cold period after last.warm? (yes: min(cold)+4; no: LastDOY)
FUN=function(x) {
# cold period after warm period?
temp <- df[df$year == x & df$period == 'cold', 'DOY']
temp <- temp[temp > last.warm[last.warm$year == x, 'DOY']]
if(length(temp) > 0){
# 5th day of cold period is the end
min(temp) + 4L
} else {
# no colds after last.warm -> default end
LastDOY
}
}
)
return(end)
}
#==============================================================================
#
# End of vegetation period according to Nuske & Albert
#
#==============================================================================
#' Vegetation End Method "NuskeAlbert"
#'
#' The method `NuskeAlbert` provides a very simple method which is inspired by
#' standard climatological procedures but employs a 7 day moving average and
#' a 5 °C threshold (cf. Walther and Linderholm 2006).
#'
#' @section Calculations:
#' 2 criteria: temperature & short day criterion
#'
#' ## Temperature criterion
#' 7 day moving average of daily mean temperatures
#' end if 5 consecutive days under under 5° C
#' start the search at 1st of July / vegetation start
#'
#' ## Short day criterion
#' last day of the vegetation period is 5th of October
#'
#' @md
#' @references
#' Walther, A. and Linderholm, H. W. (2006)
#' A comparison of growing season indices for the Greater Baltic Area.
#' \emph{International Journal of Biometeorology}, \bold{51}(2), 107--118.
#' \doi{10.1007/s00484-006-0048-5}.
#'
#' @name method_NuskeAlbert
#' @keywords internal
NULL
.end_NuskeAlbert <- function(df, start, Tmin=5){
# Assumptions:
# - data.frame 'df' contains month, DOY, Tavg
# - time range covers at least veg.start/jul1 till oct5 (save side DOY 1-279)
# Calculate correct DOYs
# 1. July is DOY 182 and DOY 183 in leap years
# 5. October is DOY 278 and 279 in leap years
years <- unique(df$year)
jul1 <- ifelse((years%%4==0 & years%%100!=0) | years%%400==0, 183L, 182L)
searchstart <- ifelse(!is.na(start) & start > jul1, start, jul1)
oct5 <- ifelse((years%%4==0 & years%%100!=0) | years%%400==0, 279L, 278L)
# 7 day moving average under 5° and after 1 July / vegperiod start
# moving average with windows size 7 (symetric window)
df$TmovAvg <- as.numeric(stats::filter(df$Tavg, rep(1/7,7), sides=2))
df$period <- ifelse(df$TmovAvg < Tmin, 1, 0)
# ends on the 5th day if no 5 day streak end on 5oct
end <- oct5
for(i in seq_along(years)){
temp <- df[df$year == years[i] &
df$DOY >= searchstart[i] &
df$DOY <= oct5[i],
]
temp$five <- as.numeric(stats::filter(temp$period, rep(1, 5), sides=1))
possible.end <- temp[!is.na(temp$five) & temp$five == 5, "DOY"]
if(length(possible.end) > 0)
end[i] <- min(possible.end)
}
return(end)
}
#==============================================================================
#
# End of vegetation period according to standard meteo procedure aka 'ETCCDI'
#
# first span after July 1st of 6 consecutive days with TG < 5°C.
#
#==============================================================================
.end_std_meteo <- function(df, Tmin=5){
# Assumptions:
# - data.frame 'df' contains month, DOY, Tavg
# - full years
# 1. July is DOY 182 and DOY 183 in leap years
years <- unique(df$year)
leap_year <- ifelse((years%%4==0 & years%%100!=0) | years%%400==0, TRUE, FALSE)
jul1 <- ifelse(leap_year, 183L, 182L)
# mark days colder than 5°C
df$period <- ifelse(df$Tavg < Tmin, 1, 0)
# find first six day span per year
end <- ifelse(leap_year, 366L, 365L)
for(i in seq_along(years)){
temp <- df[df$year == years[i] & df$DOY > jul1[i], ]
temp$six <- as.numeric(stats::filter(temp$period, rep(1, 6), sides=1))
possible.end <- temp[!is.na(temp$six) & temp$six == 6, "DOY"]
if(length(possible.end) > 0)
end[i] <- min(possible.end)
}
return(end)
}
|
/scratch/gouwar.j/cran-all/cranData/vegperiod/R/veg_ends.R
|
#==============================================================================
#
# internal functions [The Starts]
#
#==============================================================================
#==============================================================================
#
# Start of vegetation period according to Menzel (1997)
#
#==============================================================================
#' Vegetation Start Method "Menzel"
#'
#' The method "Menzel" implements the algorithm described in Menzel (1997).
#' The method is parameterized for 10 common tree species ( *Larix decidua*,
#' *Picea abies (frueh)*, *Picea abies (spaet)*, *Picea abies (noerdl.)*,
#' *Picea omorika*, *Pinus sylvestris*, *Betula pubescens*, *Quercus robur*,
#' *Quercus petraea*, *Fagus sylvatica*). It needs previous year's chill days.
#'
#' @section Calculations:
#'
#' ```
#' - counting chill days in Nov & Dec of previous year if previous year available else estimate previous year's chill days
#' - count chill days in current year
#' - determine critical temperature per days using regression equation fitted by Menzel 1997
#' - calculate HeatSum starting from Feb
#' - vegetation start if HeatSum >= criticalTemp
#' ```
#'
#' @references
#' Menzel, A. (1997) Phänologie von Waldbäumen unter sich ändernden Klimabedingungen - Auswertung der Beobachtungen in den Internationalen Phänologischen Gärten und Möglichkeiten der Modellierung von Phänodaten. Forstliche Forschungsberichte München.
#'
#' @md
#' @name method_Menzel
#' @docType data
#' @keywords internal
NULL
.start_menzel <- function(df, est.prev, species){
# Assumptions:
# - data.frame 'df' contains month, DOY, Tavg
# - full years
# - last year at least till DOY 279
# - and previous Nov & Dec if est.prev==0
# - est.prev >= 0 and <= number of years
# - species contains a known name
years <- unique(df$year)
# Menzel's Parameter
Mp <- switch(species,
"Larix decidua" = list(TbCD=7, TbH=3, a=1372, b=-246),
"Picea abies (frueh)" = list(TbCD=9, TbH=4, a=1848, b=-317),
"Picea abies (spaet)" = list(TbCD=9, TbH=5, a=1616, b=-274),
"Picea abies (noerdl.)" = list(TbCD=9, TbH=4, a=2084, b=-350),
"Picea omorika" = list(TbCD=7, TbH=3, a=2833, b=-484),
"Pinus sylvestris" = list(TbCD=9, TbH=5, a=1395, b=-223),
"Betula pubescens" = list(TbCD=9, TbH=5, a=1438, b=-261),
"Quercus robur" = list(TbCD=9, TbH=4, a=1748, b=-298),
"Quercus petraea" = list(TbCD=9, TbH=3, a=1741, b=-282),
"Fagus sylvatica" = list(TbCD=9, TbH=6, a=1922, b=-348))
# Chill Days
#----------------------------------------------------------------------------
# number of chill days in Nov and Dec trigger next years bud burst
CDNovDec <- utils::stack(tapply(df[(df$month >= 11 & df$Tavg <= Mp$TbCD), "Tavg"],
df[(df$month >= 11 & df$Tavg <= Mp$TbCD), "year"],
FUN=length))
# shove the chill days in to next year, where they trigger veg start
CDNovDec$ind <- as.integer(levels(CDNovDec$ind)) + 1
names(CDNovDec) <- c("CDprev", "year")
# handle first year
if(est.prev == 0){
# drop first year
df <- df[df$year != years[1], ]
} else {
# mean "est.prev number of years" as proxy for first year's previous chill days
CDNovDec <- rbind(c(mean(CDNovDec$CDprev[1:est.prev]), years[1]),
CDNovDec)
}
# cumulative sums of chill days per year
df$CD <- ifelse(df$Tavg <= Mp$TbCD, 1, 0)
ChillDays <- utils::stack(tapply(df$CD, df$year, FUN=cumsum))
names(ChillDays) <- c("CDcumsum", "year")
# merge and add to workhorse df
ChillDays <- merge(ChillDays, CDNovDec, by="year", all.x=TRUE)
df$CD <- ChillDays$CDprev + ChillDays$CDcumsum
rm(ChillDays, CDNovDec)
# determine vegetation start with Menzel's regression
#----------------------------------------------------------------------------
# critical Temperature
df$TCrit <- ifelse(df$CD > 0, Mp$a + Mp$b * log(df$CD), Mp$a)
# cumsum of degrees above threshold
# (start in Feb and consider only degrees above thresh)
df$HeatSum <- ifelse(df$month >= 2 & df$Tavg > Mp$TbH, df$Tavg - Mp$TbH, 0)
df$HeatSum <- utils::stack(tapply(df$HeatSum, df$year, FUN=cumsum))$values
# vegetation period start if HeatSum >= TCrit
df$start <- df$HeatSum >= df$TCrit
# determine first of start candidates
start <- utils::stack(tapply(df$DOY[df$start],
df$year[df$start], FUN=min))$values
return(start)
}
#==============================================================================
#
# Start of vegetation period according to standard meteo procedure aka 'ETCCDI'
#
#==============================================================================
#' Vegetation Start and End Method "ETCCDI"
#'
#' The `ETCCDI` or `StdMeteo` method was defined by Expert Team on Climate Change Detection and Indices and is often known as Growing season Length (GSL) and widely used in climate change studies.
#'
#' @section Calculation:
#'
#' ## Implementation of start
#' first span of at least 6 consecutive days with daily mean temperature TG > 5°C
#'
#' ```
#' # mark days warmer than 5°C
#' df$period <- ifelse(df$Tavg > Tmin, 1, 0)
#'
#' # find first six day span per year
#' start <- tapply(df$period, df$year, FUN=function(x){
#' sixer <- as.numeric(stats::filter(x, rep(1, 6), sides=1))
#' doy <- which(!is.na(sixer) & sixer == 6)
#' ifelse(length(doy) == 0, NA, min(doy))
#' })
#' ```
#'
#' ## Implementation of end
#' first span after July 1st of 6 consecutive days with TG < 5°C.
#'
#' ```
#' # 1. July is DOY 182 and DOY 183 in leap years
#' years <- unique(df$year)
#' leap_year <- ifelse((years%%4==0 & years%%100!=0) | years%%400==0, TRUE, FALSE)
#' jul1 <- ifelse(leap_year, 183L, 182L)
#'
#' # mark days colder than 5°C
#' df$period <- ifelse(df$Tavg < Tmin, 1, 0)
#'
#' # find first six day span per year
#' end <- ifelse(leap_year, 366L, 365L)
#' for(i in seq_along(years)){
#' temp <- df[df$year == years[i] & df$DOY > jul1[i], ]
#' temp$six <- as.numeric(stats::filter(temp$period, rep(1, 6), sides=1))
#' possible.end <- temp[!is.na(temp$six) & temp$six == 6, "DOY"]
#' if(length(possible.end) > 0)
#' end[i] <- min(possible.end)
#' }
#' ```
#'
#' @references
#' Definition recommended by the CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI) http://etccdi.pacificclimate.org/list_27_indices.shtml http://www.climdex.org/indices.html
#'
#' European Climate Assessment (ECA) http://eca.knmi.nl/indicesextremes/indicesdictionary.php
#'
#' ETCCDI (2009) Climate Change Indices: Definitions of the 27 core indices. http://etccdi.pacificclimate.org/list_27_indices.shtml
#' Frich, P., Alexander, L., Della-Marta, P., Gleason, B., Haylock, M., Klein Tank, A. and Peterson, T. (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 193–212. https://doi.org/10.3354/cr019193.
#' http://www.climateknowledge.org/heat_waves/Doc2004_Frich_Extremes_Index_ClimResearch_2002.pdf
#'
#' Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., Trewin, B. and Zwiers, F. W. (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2(6), 851–870. https://doi.org/10.1002/wcc.147.
#'
#' @md
#' @keywords internal
#' @name method_ETCCDI
NULL
.start_std_meteo <- function(df, Tmin=5){
# Assumptions:
# - data.frame 'df' contains month, DOY, Tavg
# - full years
# mark days warmer than 5°C
df$period <- ifelse(df$Tavg > Tmin, 1, 0)
# find first six day span per year
start <- tapply(df$period, df$year, FUN=function(x){
sixer <- as.numeric(stats::filter(x, rep(1, 6), sides=1))
doy <- which(!is.na(sixer) & sixer == 6)
ifelse(length(doy) == 0, NA, min(doy))
})
return(as.vector(start))
}
#==============================================================================
#
# Start of vegetation period according to DWD (Gooseberry, Ribes uva-crispa)
# published in the klimaatlas under forest parameters
#
#==============================================================================
#' Vegetation Start Method "Ribes uva-crispa"
#'
#' The method `Ribes uva-crispa` is based on leaf-out of gooseberry (Janssen 2009).
#' It was developed by the Germany's National Meteorological Service
#' (Deutscher Wetterdienst, DWD) and is more robust against early starts than
#' common simple meteorological procedures.
#'
#' @section Calculation:
#'
#' starting from 18th February sum all day degrees above 0 °C (daily average air
#' temperature). Vegetetaion period starts at the day when 164 is crossed.
#'
#' ```
#' # start day: February 18th == 49 doy
#' # only Tavg over 0°C are summed
#' df[df$DOY < 49 | df$Tavg < 0, 'Tavg'] <- 0
#'
#' # find day where cum day degrees cross 164
#' start <- tapply(df$Tavg, df$year, FUN=function(x){
#' x <- cumsum(x)
#' min(which(x > 164))
#' })
#' ```
#'
#' @references
#' Janssen, W. (2009)
#' Definition des Vegetationsanfanges.
#' \emph{Internal Report, Deutscher Wetterdienst, Abteilung Agrarmeteorologie}.
#'
#' @md
#' @name method_Ribes
#' @keywords internal
NULL
.start_ribes <- function(df){
# Assumptions:
# - data.frame 'df' contains year, DOY, Tavg
# - full years
# start day: February 18th == 49 doy
# only Tavg over 0°C are summed
df[df$DOY < 49 | df$Tavg < 0, 'Tavg'] <- 0
# find day where cum day degrees cross 164
start <- tapply(df$Tavg, df$year, FUN=function(x){
x <- cumsum(x)
min(which(x > 164))
})
return(as.vector(start))
}
|
/scratch/gouwar.j/cran-all/cranData/vegperiod/R/veg_starts.R
|
#==============================================================================
# Vegetation Period
# calculate start and end of vegetation periode
#
# rewrite 2015-02-15 - 2015-02-26 by Robert Nuske
# Written on my way to work.
# Thanks to good working conditions (no internet) in the ICE.
#==============================================================================
#' Determine vegetation period
#'
#' Calculate start and end date of vegetation periods based on daily average
#' air temperature and the day of the year (DOY).
#' The sum of day degrees within the vegetation period is included for convenience.
#'
#'
#' @details
#' Common methods for determining the onset and end of thermal vegetation
#' periods are provided, for details see next sections. Popular choices with
#' regard to forest trees in Germany are `Menzel` and `vonWilpert`. Climate
#' change impact studies at NW-FVA are frequently conducted using `Menzel` with
#' "Picea abies (frueh)" and `NuskeAlbert` for all tree species; with tree
#' species specifics accounted for in subsequent statistical models.
#'
#' ## Start methods:
#' The method **[`Menzel`][method_Menzel]** implements the algorithm described in
#' Menzel (1997). The method is parameterized for 10 common tree species. It
#' needs previous year's chill days. **[`ETCCDI`][method_ETCCDI]** resp.
#' `StdMeteo` is a simple threshold based procedure as defined by the
#' Expert Team on Climate Change Detection and Indices (cf. ETCCDI 2009, Frich
#' et al. 2002, Zhang et al. 2011) leading to quite early vegetation starts.
#' This method is widely used in climate change studies. The method
#' **[`Ribes uva-crispa`][method_Ribes]** is based on leaf-out of gooseberry (Janssen
#' 2009). It was developed by the Germany's National Meteorological Service
#' (Deutscher Wetterdienst, DWD) and is more robust against early starts than
#' common simple meteorological procedures.
#'
#' ## End methods:
#' The end method **[`vonWilpert`][method_vonWilpert]** is based on von Wilpert (1990). It
#' was originally developed for *Picea abies* in the Black Forest but is
#' commonly used for all tree species throughout Germany. As usual, the rules
#' regarding the soilmatrix are neglected in this implementation.
#' **[`LWF-BROOK90`][method_LWF-BROOK90]** is -for the sake of convenience- a
#' reimplementation of the LWF-BROOK90 VBA (version 3.4) variant of "vonWilpert"
#' (Hammel and Kennel 2001). Their interpretation of von Wilpert (1990) and the
#' somewhat lower precision of VBA was mimicked. **[`NuskeAlbert`][method_NuskeAlbert]**
#' provide a very simple method which is inspired by standard climatological
#' procedures but employs a 7 day moving average and a 5 °C threshold (cf.
#' Walther and Linderholm 2006). **[`ETCCDI`][method_ETCCDI]** resp. `StdMeteo`
#' is a simple threshold based procedure as defined by the Expert Team on
#' Climate Change Detection and Indices (cf. ETCCDI 2009, Frich et al. 2002,
#' Zhang et al. 2011) leading to quite late vegetation ends.
#'
#' @param dates vector of calendar dates (objects of class `Date` or something
#' understood by [as.Date()]). Must contain entire years if `est.prev > 0`
#' else the first year may comprise only November and December.
#' @param Tavg vector of daily average air temperatures in degree Celsius.
#' Same length as `dates`.
#' @param start.method name of method to use for vegetation start. One of
#' `"Menzel"` (needs additional argument `species`, see below), `"StdMeteo"`
#' resp. `"ETCCDI"`, `"Ribes uva-crispa"`. Can be abbreviated (partial
#' matching). For further discussion see Details.
#' @param end.method name of method to use for vegetation end. One of
#' `"vonWilpert"`, `"LWF-BROOK90"`, `"NuskeAlbert"` and `"StdMeteo"` resp.
#' `"ETCCDI"`. Can be abbreviated (partial matching). For further discussion
#' see Details.
#' @param Tsum.out boolean. Return the sum of daily mean temperatures above
#' `Tsum.crit` within vegetation period, also known as growing day degrees.
#' @param Tsum.crit threshold for sum of day degrees. Only daily mean temperatures
#' `> Tsum.crit` will be tallied. The default of `0` prevents negative
#' daily temperatures from reducing the sum. Climate change studies often use
#' a threshold of `5`.
#' @param species name of tree species (required if `start.method="Menzel"`
#' ignored otherwise).
#'
#' Must be one of `"Larix decidua"`, `"Picea abies (frueh)"`,
#' `"Picea abies (spaet)"`, `"Picea abies (noerdl.)"`, `"Picea omorika"`,
#' `"Pinus sylvestris"`, `"Betula pubescens"`, `"Quercus robur"`,
#' `"Quercus petraea"`, `"Fagus sylvatica"`.
#' @param est.prev number of years to **est**imate **prev**ious year's chill
#' days for the first year (required if `start.method="Menzel"` ignored
#' otherwise).
#'
#' `Menzel` requires the number of chill days of previous November and
#' December. If `est.prev = 0` the first year is used to get the previous
#' year's chill days and dropped afterwards. Thus, a year from the time
#' series is lost. To avoid losing a year, `est.prev = n` estimates the
#' previous year's chill days for the first year from the average of `n`
#' first years of the time series.
#' @param check.data Performs plausibility checks on the temperature data to
#' ensure that the temperatures have not been multiplied by ten.
#' Plausible range is -35 to +40°C.
#'
#' @return A data.frame with year and DOY of start and end day of
#' vegetation period. If `Tsum.out=TRUE`, the data.frame contains an
#' additional column with the sum of day degrees within vegetation periods.
#'
#' @references
#' ETCCDI (2009)
#' Climate Change Indices: Definitions of the 27 core indices.
#' \url{http://etccdi.pacificclimate.org/list_27_indices.shtml}
#'
#' Frich, P., Alexander, L., Della-Marta, P., Gleason, B., Haylock, M.,
#' Klein Tank, A. and Peterson, T. (2002)
#' Observed coherent changes in climatic extremes during the second half of
#' the twentieth century.
#' \emph{Climate Research}, \bold{19}, 193--212.
#' \doi{10.3354/cr019193}.
#'
#' Hammel, K. and Kennel, M. (2001)
#' Charakterisierung und Analyse der Wasserverfügbarkeit und des
#' Wasserhaushalts von Waldstandorten in Bayern mit dem Simulationsmodell
#' BROOK90.
#' \emph{Forstliche Forschungsberichte München}.
#'
#' Janssen, W. (2009)
#' Definition des Vegetationsanfanges.
#' \emph{Internal Report, Deutscher Wetterdienst, Abteilung Agrarmeteorologie}.
#'
#' Menzel, A. (1997)
#' Phänologie von Waldbäumen unter sich ändernden Klimabedingungen -
#' Auswertung der Beobachtungen in den Internationalen Phänologischen Gärten
#' und Möglichkeiten der Modellierung von Phänodaten.
#' \emph{Forstliche Forschungsberichte München}.
#'
#' von Wilpert, K. (1990)
#' Die Jahrringstruktur von Fichten in Abhängigkeit vom Bodenwasserhaushalt
#' auf Pseudogley und Parabraunerde: Ein Methodenkonzept zur Erfassung
#' standortsspezifischer Wasserstreßdispostion.
#' \emph{Freiburger Bodenkundliche Abhandlungen}.
#'
#' Walther, A. and Linderholm, H. W. (2006)
#' A comparison of growing season indices for the Greater Baltic Area.
#' \emph{International Journal of Biometeorology}, \bold{51}(2), 107--118.
#' \doi{10.1007/s00484-006-0048-5}.
#'
#' Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K.,
#' Peterson, T. C., Trewin, B. and Zwiers, F. W. (2011)
#' Indices for monitoring changes in extremes based on daily temperature and
#' precipitation data.
#' \emph{Wiley Interdisciplinary Reviews: Climate Change}, \bold{2}(6), 851--870.
#' \doi{10.1002/wcc.147}.
#'
#' @examples
#' data(goe)
#' vegperiod(dates=goe$date, Tavg=goe$t,
#' start.method="Menzel", end.method="vonWilpert",
#' species="Picea abies (frueh)", est.prev=5)
#'
#' # take chill days from first year, which is then dropped
#' vegperiod(dates=goe$date, Tavg=goe$t, start="Menzel", end="vonWilpert",
#' species="Picea abies (frueh)", est.prev=0)
#'
#' # add column with sum of day degrees in vegetation periods
#' vegperiod(dates=goe$date, Tavg=goe$t, Tsum.out=TRUE,
#' start="StdMeteo", end="StdMeteo")
#' @md
#' @export
vegperiod <- function(dates, Tavg, start.method, end.method, Tsum.out=FALSE,
Tsum.crit=0, species=NULL, est.prev=0, check.data=TRUE){
# Checks
#----------------------------------------------------------------------------
start.method <- match.arg(start.method,
choices=c('Menzel', 'StdMeteo', 'ETCCDI',
'Ribes uva-crispa'))
end.method <- match.arg(end.method,
choices=c('vonWilpert', 'LWF-BROOK90', 'NuskeAlbert',
'StdMeteo', 'ETCCDI'))
if(start.method == 'Menzel'){
possible.species <- c("Larix decidua", "Picea abies (frueh)",
"Picea abies (spaet)", "Picea abies (noerdl.)",
"Picea omorika", "Pinus sylvestris",
"Betula pubescens", "Quercus robur",
"Quercus petraea", "Fagus sylvatica")
if(is.null(species))
stop(paste0("If start.method='Menzel', species must be one of '",
paste(possible.species, collapse="', '"), "'."))
species <- match.arg(species, choices=possible.species)
}
if(length(dates) != length(Tavg))
stop("The arguments dates and Tavg must be of same length!")
# are the temperatures sound
if(isTRUE(check.data)){
minimax <- range(Tavg)
if(minimax[1] < -35 | minimax[2] > 40)
stop("Your input temperature data exceeds the plausible range of -35 to +40\u00b0C.\n",
"You may want to double check your data. ",
"If you still want to use the given data, set 'check.data' to FALSE")
}
if(!inherits(dates, "Date")){
tryCatch(dates <- as.Date(dates),
error=function(c) stop(paste("'dates' could not be coerced to",
"class Date by as.Date(dates)."),
call.=FALSE)
)
}
# set up the workhorse data.frame
df <- data.frame(year = as.integer(format(dates, "%Y")),
month = as.integer(format(dates, "%m")),
DOY = as.integer(format(dates, "%j")),
Tavg)
rm(dates, Tavg)
# determine leap years
years <- unique(df$year)
leap <- (years %% 4 == 0 & years %% 100 != 0) | years %% 400 == 0
# est.prev in valid range?
# set to a high value if not Menzel
if(start.method == 'Menzel'){
est.prev <- as.integer(est.prev)
if(est.prev < 0 || est.prev > length(years))
stop("est.prev must be >= 0 and <= number of years.")
if(est.prev == 0 && length(years) == 1)
stop(paste("It's not possible to use previous year's chill days",
"(est.prev=0) if only one year is provided.",
"Either set est.prev=1 or provide more years."))
} else {
est.prev <- 999
}
# Do the provided years have the correct length (considering leap years)?
# last year only till October 5th (DOY=279) needed
if(est.prev == 0){
# Menzel: first year discarded -> only Nov+Dec of first year needed
year.length <- c(61, 365 + leap[c(-1, -length(leap))], 279)
} else {
# full first year required
# either not Menzel or guesstimate first year's NovDecCD from previous yrs
year.length <- c(365 + leap[-length(leap)], 279)
}
if(!all(tapply(df$DOY, df$year, FUN=length) >= year.length))
stop("Not all years in 'dates' have expected length.")
if(est.prev == 0 &&
length(df[df$year == years[1] & df$month >= 11, "DOY"]) != 61)
stop("First year must at least contain full November & December")
# calculating start and end
#----------------------------------------------------------------------------
start <- switch(start.method,
'Menzel' = .start_menzel(df=df, est.prev=est.prev, species=species),
'StdMeteo' = ,
'ETCCDI' = .start_std_meteo(df),
'Ribes uva-crispa' = .start_ribes(df))
# if first year only used for getting previous cold days -> drop it now
if(est.prev == 0){
df <- df[df$year != years[1], ]
years <- years[-1]
}
end <- switch(end.method,
'vonWilpert' = .end_vonWilpert(df),
'LWF-BROOK90' = .end_LWF_BROOK90(df),
'NuskeAlbert' = .end_NuskeAlbert(df, start),
'StdMeteo' = ,
'ETCCDI' = .end_std_meteo(df))
# collect results
#----------------------------------------------------------------------------
# if indicated calculate day degrees in vegperiod also
res <- data.frame(year=years, start=start, end=end)
seq_len
if(Tsum.out){
res$Tsum <- numeric(nrow(res))
for(i in seq_along(res$Tsum)){
res$Tsum[i] <- sum(df$Tavg[df$year == years[i] &
df$DOY >= start[i] &
df$DOY <= end[i] &
df$Tavg > Tsum.crit])
}
}
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/vegperiod/R/vegperiod.R
|
# download of list of stations works ------------------------------------------
# don't run download tests on cran, travis, appveyor
if(at_home()){
# Structure
# .
# ├── daily
# │ ├── climate
# │ │ ├── historic
# │ │ └── recent
# │ └── precip
# │ ├── historic
# │ └── recent
# └── monthly
# ├── climate
# │ ├── historic
# │ └── recent
# └── precip
# ├── historic
# └── recent
# Test some of the possible lists not all.
# Column widths, and thus parsing, is different for daily and monthly lists.
# All monthly station lists have floating point elev.
# A data.frame with 8 columns ist constructed during reading/parsing.
# If parsing went well, the columns should have proper types.
# DAILY =====================================================================
# daily climate recent ------------------------------------------------------
expect_silent(stations <- read.DWDstations())
expect_true(is.data.frame(stations))
expect_true(length(stations) == 8)
expect_true(nrow(stations) > 1000)
expect_true(is.integer(stations$id))
expect_true(inherits(stations$from, "Date"))
expect_true(inherits(stations$to, "Date"))
expect_true(is.integer(stations$elev))
expect_true(is.numeric(stations$lat))
expect_true(is.numeric(stations$long))
# daily climate historic ----------------------------------------------------
expect_silent(stations <- read.DWDstations(period='historic'))
expect_true(is.data.frame(stations))
expect_true(length(stations) == 8)
expect_true(nrow(stations) > 1000)
expect_true(is.integer(stations$id))
expect_true(inherits(stations$from, "Date"))
expect_true(inherits(stations$to, "Date"))
expect_true(is.integer(stations$elev))
expect_true(is.numeric(stations$lat))
expect_true(is.numeric(stations$long))
# daily precip recent -------------------------------------------------------
expect_silent(precip <- read.DWDstations(type='precip'))
expect_true(is.data.frame(precip))
expect_true(length(precip) == 8)
expect_true(nrow(precip) > 3000)
expect_true(is.integer(precip$id))
expect_true(inherits(precip$from, "Date"))
expect_true(inherits(precip$to, "Date"))
expect_true(is.integer(precip$elev))
expect_true(is.numeric(precip$lat))
expect_true(is.numeric(precip$long))
# MONTHLY ===================================================================
# monthly climate recent ----------------------------------------------------
expect_silent(stations <- read.DWDstations(resolution='monthly'))
expect_true(is.data.frame(stations))
expect_true(length(stations) == 8)
expect_true(nrow(stations) > 1000)
expect_true(is.integer(stations$id))
expect_true(inherits(stations$from, "Date"))
expect_true(inherits(stations$to, "Date"))
expect_true(is.integer(stations$elev))
expect_true(is.numeric(stations$lat))
expect_true(is.numeric(stations$long))
# monthly precip historic ---------------------------------------------------
expect_silent(precip <- read.DWDstations(type='precip', period='historic',
resolution='monthly'))
expect_true(is.data.frame(precip))
expect_true(length(precip) == 8)
expect_true(nrow(precip) > 3000)
expect_true(is.integer(precip$id))
expect_true(inherits(precip$from, "Date"))
expect_true(inherits(precip$to, "Date"))
expect_true(is.integer(precip$elev))
expect_true(is.numeric(precip$lat))
expect_true(is.numeric(precip$long))
}
# download of data works ------------------------------------------------------
# don't run download tests on cran, travis, appveyor
if(at_home()){
# fetch last 500 days worth of data from station Göttingen ------------------
expect_silent(clim <- read.DWDdata(id=1691, quiet=TRUE))
expect_true(file.exists(file.path(tempdir(), "tageswerte_KL_01691_akt.zip")))
expect_true(is.data.frame(clim))
expect_true(length(clim) == 18)
expect_true(nrow(clim) >= 550)
expect_true(is.integer(clim$STATIONS_ID))
expect_equal(unique(clim$STATIONS_ID), 1691L)
expect_true(inherits(clim$MESS_DATUM, "Date"))
expect_true(is.integer(clim$QN_3))
expect_true(is.numeric(clim$RSK))
expect_true(is.integer(clim$RSKF))
expect_true(is.numeric(clim$TMK))
# download monthly climate data from 1270
expect_silent(clim <- read.DWDdata(id = 1270, type="climate", period="recent",
resolution="monthly", quiet=TRUE))
expect_true(file.exists(file.path(tempdir(), "monatswerte_KL_01270_akt.zip")))
expect_true(is.data.frame(clim))
expect_true(length(clim) == 16)
expect_true(nrow(clim) >= 17)
expect_true(is.integer(clim$STATIONS_ID))
expect_equal(unique(clim$STATIONS_ID), 1270L)
expect_true(inherits(clim$MESS_DATUM_BEGINN, "Date"))
expect_true(inherits(clim$MESS_DATUM_ENDE, "Date"))
expect_true(is.integer(clim$QN_4))
expect_true(is.numeric(clim$MO_TN))
expect_true(is.numeric(clim$MO_RR))
# download historical data from the Brocken if curl available ---------------
if(requireNamespace("curl", quietly=TRUE)){
expect_silent(climb <- read.DWDdata(722, period='historical', quiet=TRUE))
expect_true(is.data.frame(climb))
expect_true(length(climb) == 18)
expect_true(nrow(climb) >= 550)
expect_true(is.integer(climb$STATIONS_ID))
expect_equal(unique(climb$STATIONS_ID), 722L)
expect_true(inherits(climb$MESS_DATUM, "Date"))
expect_true(is.integer(climb$QN_3))
expect_true(is.numeric(climb$RSK))
expect_true(is.integer(climb$RSKF))
expect_true(is.numeric(climb$TMK))
}
}
|
/scratch/gouwar.j/cran-all/cranData/vegperiod/inst/tinytest/test_DWD_stuff.R
|
#-- set up data.frame for tests ---------------------------------------------
data(goe)
df <- data.frame(year = as.integer(format(goe$date, "%Y")),
month = as.integer(format(goe$date, "%m")),
DOY = as.integer(format(goe$date, "%j")),
Tavg=goe$t)
#-- von Wilpert --------------------------------------------------------------
# canonical
expect_equal(vegperiod:::.end_vonWilpert(df, Treshold=10, LastDOY=279),
c(274L, 279L, 279L, 279L, 279L, 271L, 279L, 279L, 279L, 279L))
# change threshold
expect_equal(vegperiod:::.end_vonWilpert(df, Treshold=7, LastDOY=279),
c(279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L))
expect_equal(vegperiod:::.end_vonWilpert(df, Treshold=15, LastDOY=279),
c(262L, 255L, 278L, 252L, 273L, 255L, 252L, 277L, 259L, 266L))
# change LastDOY
expect_equal(vegperiod:::.end_vonWilpert(df, Treshold=10, LastDOY=200),
c(200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L))
expect_equal(vegperiod:::.end_vonWilpert(df, Treshold=10, LastDOY=300),
c(274L, 300L, 292L, 300L, 300L, 271L, 300L, 291L, 295L, 300L))
#-- LWF-BROOK90 --------------------------------------------------------------
# canonical
expect_equal(vegperiod:::.end_LWF_BROOK90(df, Tmin=10, LastDOY=279),
c(277L, 279L, 279L, 279L, 279L, 274L, 279L, 279L, 279L, 279L))
# change threshold
expect_equal(vegperiod:::.end_LWF_BROOK90(df, Tmin=7, LastDOY=279),
c(279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L))
expect_equal(vegperiod:::.end_LWF_BROOK90(df, Tmin=15, LastDOY=279),
c(265L, 258L, 279L, 255L, 276L, 269L, 255L, 279L, 262L, 269L))
# change LastDOY
expect_equal(vegperiod:::.end_LWF_BROOK90(df, Tmin=10, LastDOY=200),
c(200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L))
expect_equal(vegperiod:::.end_LWF_BROOK90(df, Tmin=10, LastDOY=300),
c(288L, 300L, 295L, 300L, 300L, 274L, 300L, 294L, 298L, 300L))
#-- Nuske-Albert -------------------------------------------------------------
vegstart <- list( # results of .start_menzel() with est.prev=3
c( 96L, 102L, 102L, 88L, 100L, 101L, 105L, 102L, 93L, 95L),
c(119L, 127L, 125L, 116L, 124L, 126L, 124L, 125L, 115L, 116L),
c(127L, 134L, 131L, 125L, 131L, 135L, 132L, 130L, 121L, 121L),
c(130L, 134L, 133L, 125L, 133L, 137L, 136L, 133L, 123L, 123L),
c(140L, 140L, 141L, 132L, 139L, 147L, 142L, 142L, 133L, 128L),
c(133L, 137L, 135L, 128L, 137L, 140L, 138L, 135L, 126L, 125L),
c(105L, 110L, 112L, 96L, 106L, 108L, 113L, 112L, 98L, 108L),
c(118L, 126L, 125L, 115L, 124L, 125L, 124L, 124L, 115L, 116L),
c(119L, 126L, 126L, 116L, 125L, 126L, 125L, 125L, 116L, 117L),
c(127L, 133L, 128L, 124L, 128L, 133L, 126L, 128L, 119L, 120L)
)
truth <- list(
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L),
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L),
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L),
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L),
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L),
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L),
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L),
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L),
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L),
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L)
)
for(i in seq_along(vegstart)){
expect_equal(vegperiod:::.end_NuskeAlbert(df, start=vegstart[[i]], Tmin=5),
truth[[i]])
}
# change start
expect_equal(vegperiod:::.end_NuskeAlbert(df, start = 200, Tmin = 5),
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L))
expect_equal(vegperiod:::.end_NuskeAlbert(df, start = 100, Tmin = 5),
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L))
expect_equal(vegperiod:::.end_NuskeAlbert(df, start = NA, Tmin = 5),
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L))
# change Tmin
expect_equal(vegperiod:::.end_NuskeAlbert(df, start = NA, Tmin = 2),
c(278L, 278L, 278L, 279L, 278L, 278L, 278L, 279L, 278L, 278L))
expect_equal(vegperiod:::.end_NuskeAlbert(df, start = NA, Tmin = 10),
c(274L, 278L, 278L, 279L, 278L, 271L, 278L, 279L, 278L, 278L))
expect_equal(vegperiod:::.end_NuskeAlbert(df, start = NA, Tmin = 15),
c(186L, 255L, 237L, 252L, 218L, 186L, 217L, 236L, 187L, 193L))
#-- StdMeteo -----------------------------------------------------------------
# canonical
expect_equal(vegperiod:::.end_std_meteo(df, Tmin = 5),
c(347L, 329L, 323L, 333L, 327L, 308L, 354L, 322L, 321L, 356L))
# low Tmin
expect_equal(vegperiod:::.end_std_meteo(df, Tmin = 3),
c(348L, 348L, 324L, 347L, 327L, 365L, 357L, 323L, 326L, 357L))
# high Tmin
expect_equal(vegperiod:::.end_std_meteo(df, Tmin = 10),
c(288L,310L, 293L, 302L, 283L, 279L, 288L, 292L, 280L, 314L))
#-- clean up ----------------------------------------------------------------
rm(df)
|
/scratch/gouwar.j/cran-all/cranData/vegperiod/inst/tinytest/test_veg_ends.R
|
#-- set up data.frame for tests ---------------------------------------------
data(goe)
df <- data.frame(year = as.integer(format(goe$date, "%Y")),
month = as.integer(format(goe$date, "%m")),
DOY = as.integer(format(goe$date, "%j")),
Tavg=goe$t)
#-- Menzel -------------------------------------------------------------------
spec <- c("Larix decidua", "Picea abies (frueh)", "Picea abies (spaet)",
"Picea abies (noerdl.)", "Picea omorika", "Pinus sylvestris",
"Betula pubescens", "Quercus robur", "Quercus petraea",
"Fagus sylvatica")
true0 <- list(c(102L, 102L, 88L, 100L, 101L, 105L, 102L, 93L, 95L),
c(127L, 125L, 116L, 124L, 126L, 124L, 125L, 115L, 116L),
c(134L, 131L, 125L, 131L, 135L, 132L, 130L, 121L, 121L),
c(134L, 133L, 125L, 133L, 137L, 136L, 133L, 123L, 123L),
c(140L, 141L, 132L, 139L, 147L, 142L, 142L, 133L, 128L),
c(137L, 135L, 128L, 137L, 140L, 138L, 135L, 126L, 125L),
c(110L, 112L, 96L, 106L, 108L, 113L, 112L, 98L, 108L),
c(126L, 125L, 115L, 124L, 125L, 124L, 124L, 115L, 116L),
c(126L, 126L, 116L, 125L, 126L, 125L, 125L, 116L, 117L),
c(133L, 128L, 124L, 128L, 133L, 126L, 128L, 119L, 120L)
)
for(i in seq_along(spec)){
expect_equal(vegperiod:::.start_menzel(df, est.prev=0, species=spec[i]),
true0[[i]])
}
true1 <- list(
c( 96L, 102L, 102L, 88L, 100L, 101L, 105L, 102L, 93L, 95L),
c(119L, 127L, 125L, 116L, 124L, 126L, 124L, 125L, 115L, 116L),
c(127L, 134L, 131L, 125L, 131L, 135L, 132L, 130L, 121L, 121L),
c(130L, 134L, 133L, 125L, 133L, 137L, 136L, 133L, 123L, 123L),
c(140L, 140L, 141L, 132L, 139L, 147L, 142L, 142L, 133L, 128L),
c(132L, 137L, 135L, 128L, 137L, 140L, 138L, 135L, 126L, 125L),
c(104L, 110L, 112L, 96L, 106L, 108L, 113L, 112L, 98L, 108L),
c(118L, 126L, 125L, 115L, 124L, 125L, 124L, 124L, 115L, 116L),
c(119L, 126L, 126L, 116L, 125L, 126L, 125L, 125L, 116L, 117L),
c(126L, 133L, 128L, 124L, 128L, 133L, 126L, 128L, 119L, 120L)
)
for(i in seq_along(spec)){
expect_equal(vegperiod:::.start_menzel(df, est.prev=1, species=spec[i]),
true1[[i]])
}
true3 <- list(
c( 96L, 102L, 102L, 88L, 100L, 101L, 105L, 102L, 93L, 95L),
c(119L, 127L, 125L, 116L, 124L, 126L, 124L, 125L, 115L, 116L),
c(127L, 134L, 131L, 125L, 131L, 135L, 132L, 130L, 121L, 121L),
c(130L, 134L, 133L, 125L, 133L, 137L, 136L, 133L, 123L, 123L),
c(140L, 140L, 141L, 132L, 139L, 147L, 142L, 142L, 133L, 128L),
c(133L, 137L, 135L, 128L, 137L, 140L, 138L, 135L, 126L, 125L),
c(105L, 110L, 112L, 96L, 106L, 108L, 113L, 112L, 98L, 108L),
c(118L, 126L, 125L, 115L, 124L, 125L, 124L, 124L, 115L, 116L),
c(119L, 126L, 126L, 116L, 125L, 126L, 125L, 125L, 116L, 117L),
c(127L, 133L, 128L, 124L, 128L, 133L, 126L, 128L, 119L, 120L)
)
for(i in seq_along(spec)){
expect_equal(vegperiod:::.start_menzel(df, est.prev=3, species=spec[i]),
true3[[i]])
}
true10 <- list(
c( 96L, 102L, 102L, 88L, 100L, 101L, 105L, 102L, 93L, 95L),
c(119L, 127L, 125L, 116L, 124L, 126L, 124L, 125L, 115L, 116L),
c(128L, 134L, 131L, 125L, 131L, 135L, 132L, 130L, 121L, 121L),
c(131L, 134L, 133L, 125L, 133L, 137L, 136L, 133L, 123L, 123L),
c(140L, 140L, 141L, 132L, 139L, 147L, 142L, 142L, 133L, 128L),
c(133L, 137L, 135L, 128L, 137L, 140L, 138L, 135L, 126L, 125L),
c(106L, 110L, 112L, 96L, 106L, 108L, 113L, 112L, 98L, 108L),
c(119L, 126L, 125L, 115L, 124L, 125L, 124L, 124L, 115L, 116L),
c(120L, 126L, 126L, 116L, 125L, 126L, 125L, 125L, 116L, 117L),
c(128L, 133L, 128L, 124L, 128L, 133L, 126L, 128L, 119L, 120L)
)
for(i in seq_along(spec)){
expect_equal(vegperiod:::.start_menzel(df, est.prev=10, species=spec[i]),
true10[[i]])
}
#-- StdMeteo ----------------------------------------------------------------
expect_equal(vegperiod:::.start_std_meteo(df),
c(34L, 36L, 65L, 38L, 69L, 18L, 84L, 64L, 48L, 88L))
expect_equal(vegperiod:::.start_std_meteo(df, Tmin = 3),
c(6L, 36L, 10L, 23L, 19L, 17L, 6L, 22L, 12L, 35L))
expect_equal(vegperiod:::.start_std_meteo(df, Tmin = 7),
c(34L, 132L, 97L, 83L, 106L, 83L, 98L, 96L, 48L, 112L))
expect_equal(vegperiod:::.start_std_meteo(df, Tmin = 10),
c(135L, 133L, 120L, 127L, 135L, 142L, 141L, 119L, 93L, 122L))
expect_equal(vegperiod:::.start_std_meteo(df, Tmin = 0),
c(6L, 19L, 10L, 6L, 6L, 16L, 6L, 20L, 6L, 8L))
expect_equal(vegperiod:::.start_std_meteo(df, Tmin = 3.1415),
c(6L, 36L, 10L, 23L, 19L, 17L, 6L, 22L, 12L, 35L))
#-- Ribes -------------------------------------------------------------------
expect_equal(vegperiod:::.start_ribes(df),
c(82L, 79L, 87L, 74L, 77L, 88L, 89L, 86L, 76L, 83L))
#-- clean up ----------------------------------------------------------------
rm(df)
|
/scratch/gouwar.j/cran-all/cranData/vegperiod/inst/tinytest/test_veg_starts.R
|
data(goe)
# vegperiod throws errors
expect_equal(vegperiod(dates=goe$date, Tavg=goe$t, start.method="Menzel",
end.method="vonWilpert", species="Picea abies (spaet)",
est.prev=0, Tsum.out=FALSE),
data.frame(
year = 2002:2010,
start = c(134L, 131L, 125L, 131L, 135L, 132L, 130L, 121L, 121L),
end = c(279L, 279L, 279L, 279L, 271L, 279L, 279L, 279L, 279L)
)
)
# vegperiod standard works
expect_equal(vegperiod(dates=goe$date, Tavg=goe$t, start.method="Menzel",
end.method="vonWilpert", species="Picea abies (spaet)",
est.prev=0, Tsum.out=FALSE),
data.frame(
year = 2002:2010,
start = c(134L, 131L, 125L, 131L, 135L, 132L, 130L, 121L, 121L),
end = c(279L, 279L, 279L, 279L, 271L, 279L, 279L, 279L, 279L)
)
)
# temperature is sound (not multiplied by 10)
# problem showed in this case by time series > 26 years
# example data set with 30 yrs from Ronald Bialozyt
load('./rb30.RData')
expect_error(
vegperiod(dates=rb30$date, Tavg=rb30$tm, start.method="Menzel",
end.method="vonWilpert", species="Picea abies (spaet)",
est.prev=3, Tsum.out=FALSE),
"Your input temperature data exceeds the plausible range")
expect_equal(
vegperiod(dates=rb30$date, Tavg=rb30$tm/10, start.method="Menzel",
end.method="vonWilpert", species="Picea abies (spaet)",
est.prev=3, Tsum.out=FALSE),
data.frame(
year = 2021:2050,
start = c(134L, 122L, 125L, 137L, 133L, 127L, 121L, 123L, 132L, 120L,
132L, 134L, 116L, 132L, 107L, 119L, 119L, 120L, 120L, 123L,
123L, 131L, 128L, 120L, 130L, 117L, 129L, 119L, 125L, 120L),
end = c(279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L,
279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L,
279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L)
)
)
# there should be an error with shorter times series as well
rb10 <- rb30[rb30$date <= as.Date('2030-12-31'), ]
expect_error(
vegperiod(dates=rb10$date, Tavg=rb10$tm, start.method="Menzel",
end.method="vonWilpert", species="Picea abies (spaet)",
est.prev=3, Tsum.out=FALSE),
"Your input temperature data exceeds the plausible range")
expect_equal(
vegperiod(dates=rb10$date, Tavg=rb10$tm/10, start.method="Menzel",
end.method="vonWilpert", species="Picea abies (spaet)",
est.prev=3, Tsum.out=FALSE),
data.frame(
year = 2021:2030,
start = c(134L, 122L, 125L, 137L, 133L, 127L, 121L, 123L, 132L, 120L),
end = c(279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L, 279L)
)
)
# Bug report by S. Timmke
# StdMeteo did report 0 if it did not find an end (eg. Magdeburg in 2006)
# now it returns last DOY in that case
load("./md_2006.RData")
expect_equal(
vegperiod(dates=md_2006$date, Tavg=md_2006$t, start="StdMeteo", end="StdMeteo",
Tsum.out=TRUE),
data.frame(
year = 2005:2007,
start = c(9L, 89L, 8L),
end = c(324L, 365L, 319L),
Tsum = c(3505.5, 3915.6, 3844.2)
)
)
|
/scratch/gouwar.j/cran-all/cranData/vegperiod/inst/tinytest/test_veg_vegperiod.R
|
#' @name Extract
#' @aliases $ $,vegtable-method
#'
#' @title Select or replace elements in objects
#'
#' @description
#' Methods for quick access to slot `header` of [vegtable-class] objects or for
#' access to single cover scales in [coverconvert-class] objects.
#' Also replacement methods are implemented.
#'
#' @param x Object of class [vegtable-class].
#' @param ... Further arguments passed to or from other methods.
#' @param name A name to access.
#' @param i,j Indices for access.
#' @param drop A logical value passed to [Extract].
#' @param value Either a vectors or a list, used as replacement.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' ## Range of latitude values in database
#' range(Kenya_veg$LATITUDE)
#'
#' ## Summary of countries
#' summary(Kenya_veg$COUNTRY)
#' summary(droplevels(Kenya_veg$COUNTRY))
#'
#' ## First 5 samples
#' summary(Kenya_veg[1:5, ])
#' @rdname Extract
#'
#' @exportMethod $
setMethod("$", signature(x = "vegtable"), function(x, name) {
return(x@header[[name]])
})
#' @rdname Extract
#'
#' @aliases $<- $<-,vegtable-method
#'
#' @exportMethod $<-
#'
setReplaceMethod("$", signature(x = "vegtable"), function(x, name, value) {
x@header[[name]] <- value
return(x)
})
#' @rdname Extract
#' @aliases $,coverconvert-method
setMethod(
"$", signature(x = "coverconvert"),
function(x, name) {
x@value <- x@value[name]
x@conversion <- x@conversion[name]
return(x)
}
)
#' @rdname Extract
#' @aliases [ [,coverconvert,ANY,ANY,ANY-method [,coverconvert-method
#' @exportMethod [
setMethod("[", signature(x = "coverconvert"), function(x, i) {
x@value <- x@value[i]
x@conversion <- x@conversion[i]
return(x)
})
#' @rdname Extract
#' @aliases $<-,coverconvert,coverconvert-method
setReplaceMethod(
"$", signature(x = "coverconvert", value = "coverconvert"),
function(x, name, value) {
if (length(names(value)) > 1) {
warning(paste0(
"Multiple cover scales detected in 'value'. ",
"Only the first ('", names(value)[1], "') will be inserted."
))
}
x@value[[name]] <- value@value[[1]]
x@conversion[[name]] <- value@conversion[[1]]
return(x)
}
)
#' @rdname Extract
#' @aliases [ [,vegtable,ANY,ANY,ANY-method [,vegtable-method
#' @exportMethod [
setMethod("[", signature(x = "vegtable"), function(x, i, j, ..., drop = FALSE) {
if (missing(i)) i <- TRUE
if (missing(j)) j <- TRUE
# Resolving problems with NAs
if (is.logical(i)) i[is.na(i)] <- FALSE else i <- na.omit(i)
if (is.logical(j)) i[is.na(j)] <- FALSE else j <- na.omit(j)
x@header <- x@header[i, j, drop]
# Subset on samples
x@samples <- x@samples[x@samples$ReleveID %in% x@header$ReleveID, ]
# Subset on species (same procedure as in import_vegtable)
x <- clean(x)
# Output
return(x)
})
#' @rdname Extract
#' @aliases [<- [<-,vegtable-method
#' @exportMethod [<-
setReplaceMethod("[", signature(x = "vegtable"), function(x, i, j, value) {
if (missing(i)) i <- TRUE
if (missing(j)) j <- TRUE
# Resolving problems with NAs
if (is.logical(i)) i[is.na(i)] <- FALSE else i <- na.omit(i)
if (is.logical(j)) i[is.na(j)] <- FALSE else j <- na.omit(j)
x@header[i, j] <- value
return(x)
})
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/Extract.R
|
#' @name Kenya_veg-data
#' @aliases Kenya_veg
#' @docType data
#'
#' @title Vegetation-plots from Kenya
#'
#' @description
#' A subset of \url{http://www.givd.info/ID/AF-00-006SWEA-Dataveg} including
#' five references providing plots collected in Kenya.
#'
#' @format An object of class [vegtable-class].
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com} and Michael Curran
#' \email{currmi01@@gmail.com}
#'
#' @references \bold{Bronner G (1990).} \emph{Vegetation and land use in the
#' Mathews Range area, Samburu-District, Kenya}. J. Cramer, Berlin.
#'
#' \bold{Bussmann RW (1994).} \emph{The forests of Mount Kenya -- vegetation,
#' ecology, destruction and management of a tropical mountain forest
#' ecosystem}. Universität Bayreuth.
#'
#' \bold{Bussmann RW (2002).} Islands in the desert -- forest vegetation of
#' Kenya's smaller mountains and highland areas. \emph{Journal of East African
#' Natural History} 91: 27--79.
#'
#' \bold{Fujiwara K, Furukawa T, Kiboi SK, Mathenge S, Mutiso P, Hayashi H,
#' Meguro S (2014).} Forest types and biodiversity around the Great Rift Valley
#' in Kenya. \emph{Contributii Botanice} 49: 143--178.
#'
#' \bold{Schmitt K (1991).} \emph{The vegetation of the Aberdare National Park
#' Kenya}. Universitätsverlag Wagner, Innsbruck.
#'
#' @source \url{http://www.givd.info/ID/AF-00-006}
#'
#' @examples
#' summary(Kenya_veg)
"Kenya_veg"
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/Kenya_veg-data.R
|
# NULLing objects
TaxonUsageID <- NULL
UsageIDs <- NULL
shaker <- NULL
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/NULLing.R
|
#' @name Wetlands-data
#' @aliases Wetlands Wetlands_veg
#' @docType data
#'
#' @title Vegetation-plots from Tanzania
#'
#' @description
#' A subset of \url{http://www.givd.info/ID/AF-00-006SWEA-Dataveg} with plots
#' sampled in Tanzania.
#'
#' @format
#' An object of class [shaker-class] (`Wetlands`) and the respective companion
#' as [vegtable-class] object (`Wetlands_veg`).
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @references
#' \bold{Alvarez M (2017).} Classification of aquatic and
#' semi-aquatic vegetation in two East African sites: Cocktail definitions and
#' syntaxonomy. \emph{Phytocoenologia}.
#'
#' @source \url{http://www.givd.info/ID/AF-00-006}.
#'
#' @examples
#' summary(Wetlands)
#' summary(Wetlands_veg)
"Wetlands"
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/Wetlands-data.R
|
#' @name add_releves
#'
#' @title Merge relevés from data frames into vegtable objects
#'
#' @description
#' Addition of plot observations into existing data sets may implicate merging
#' data frames with [vegtable-class] objects.
#'
#' Since this function will only update slots **samples** and **header**,
#' consistency with slots **layers**, **relations** and **species** have to be
#' checked and accordingly updated in advance.
#'
#' @param vegtable An object of class [vegtable-class].
#' @param releves A data frame including plot observations to be added into
#' `vegtable`.
#' @param value A data frame containing new plot observations. I is passed to
#' parameter 'releves' by the replace method.
#' @param header A data frame (optional) including header information for plots.
#' @param abundance A character value (or vector of length 2) indicating the
#' names of abundance variable in `vegtable`.
#' @param split_string Character value used to split mixed abundance codes.
#' @param usage_ids Logical value indicating whether species are as taxon usage
#' ids (integers) or names in `releves`.
#' @param layers Logical value indicating whether layers are included in
#' `releves` or not.
#' @param layers_var Name of the layer variable in `vegtable`.
#' @param format Character value indicating input format of `releves` (either
#' `"crosstable"` or `"databaselist"`).
#' @param preserve_ids A logical value, whether IDs in input data set should
#' used as `ReleveID` or not. Those IDs have to be integers and if one
#' of those already exists in `vegtable`, an error will be retrieved.
#' @param ... Further arguments passed to function [cross2db()] (i.e.
#' `na_strings`).
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @seealso [cross2db()]
#'
#' @rdname add_releves
#'
#' @exportMethod add_releves
#'
setGeneric(
"add_releves",
function(vegtable, releves, ...) {
standardGeneric("add_releves")
}
)
#' @rdname add_releves
#'
#' @aliases add_releves,vegtable,data.frame-method
#'
setMethod(
"add_releves", signature(
vegtable = "vegtable",
releves = "data.frame"
),
function(vegtable, releves, header, abundance, split_string,
usage_ids = FALSE, layers = FALSE, layers_var,
format = "crosstable", preserve_ids = FALSE, ...) {
# Step 1: Make database list, if necessary
format <- pmatch(tolower(format), c("crosstable", "databaselist"))
if (!format %in% c(1:2)) {
stop("Non valid value for 'format'.")
}
if (format == 1) {
releves <- cross2db(releves, layers, ...)
colnames(releves) <- replace_x(
x = colnames(releves),
old = c("plot", "species"),
new = c("ReleveID", "TaxonUsageID")
)
}
message(paste("Imported records:", nrow(releves)))
# Step 1: Recognize species
if (!usage_ids & format == 1) {
releves$TaxonUsageID <- match_names(
releves$TaxonUsageID,
vegtable@species
)$TaxonUsageID
}
if (!usage_ids & format == 2) {
if (!"TaxonName" %in% colnames(releves)) {
stop(paste(
"Colum 'TaxonName' is mandatory in 'releves'",
"provided as database list",
"with the option 'usage_ids = FALSE'."
))
}
releves$TaxonUsageID <- match_names(
releves$TaxonName,
vegtable@species
)$TaxonUsageID
# delete column TaxonName
releves <- releves[, colnames(releves) != "TaxonName"]
}
message(paste(
"Matched taxon usage names:",
length(unique(releves$TaxonUsageID))
))
# TODO: Action needed if unmatched taxon names
# Step 3: Check layers, if necessary
# TODO: next code have to be tested for 'format = "databaselist"'
if (layers) {
if (format == 1) {
colnames(releves) <- replace_x(
x = colnames(releves),
old = "layers", new = layers_var
)
}
# Add layers variables
if (layers & (!layers_var %in% colnames(vegtable@samples))) {
vegtable@samples[, layers_var] <- NA
class(vegtable@samples[, layers_var]) <- class(releves[
,
layers_var
])
}
if (is.factor(vegtable@samples[, layers_var])) {
releves[, layers_var] <- factor(
paste(releves[, layers_var]),
levels(vegtable@samples[, layers_var])
)
} else {
class(releves[, layers_var]) <- class(vegtable@samples[
,
layers_var
])
}
# Check for the existence of layers in slot layers
# Otherwise warn about missing table
if ((layers_var %in% names(vegtable@layers)) &
(any(!releves[, layers_var] %in%
vegtable@layers[[layers_var]][
,
layers_var
]))) {
stop("Values of 'layers_var' missing in 'vegtable'")
}
if (!layers_var %in% names(vegtable@layers)) {
warning(paste(
"There is no table in slot 'layers' for",
"'layers_var'."
))
}
}
# Step 4: Reformat abundance (only for cross tables)
if (format == 1) {
if (length(abundance) == 2) {
cover <- stri_split_fixed(
releves[, ncol(releves)],
split_string
)
cover <- lapply(cover, function(x) {
if (length(x) < 2) x <- c(x, NA)
return(x)
})
cover <- do.call(rbind, cover)
releves[, ncol(releves)] <- cover[, 1]
releves[, ncol(releves) + 1] <- cover[, 2]
colnames(releves)[ncol(releves) - c(1, 0)] <- abundance
} else {
colnames(releves)[ncol(releves)] <- abundance
}
# Add missing abundance columns
missing_ab <- abundance[!abundance %in%
colnames(vegtable@samples)]
if (length(missing_ab) > 0) {
for (i in missing_ab) {
vegtable@samples[, i] <- NA
class(vegtable@samples[, i]) <- class(releves[, i])
}
}
# insert abundance
for (i in abundance) {
if (is.factor(vegtable@samples[, i])) {
releves[, i] <- factor(
paste(releves[, i]),
levels(vegtable@samples[, i])
)
} else {
class(releves[, i]) <- class(vegtable@samples[, i])
}
}
}
# Step 5: Format header
if (!missing(header)) {
colnames(header)[1] <- "ReleveID"
if (any(duplicated(header$ReleveID))) {
stop("Duplicated plot names are not allowed.")
}
if (!all(releves$ReleveID %in% header$ReleveID)) {
stop(paste(
"Some plots in 'releves' are not included in",
"'header'."
))
}
if (!all(header$ReleveID %in% releves$ReleveID)) {
stop(paste(
"Some plots in 'header' are not included in",
"'releves'."
))
}
if (!all(colnames(header) %in% colnames(vegtable@header))) {
stop(paste(
"Some variables in 'header' are not yet",
"included in 'vegtable'."
))
}
for (i in colnames(header)[-1]) {
if (is.factor(vegtable@header[, i])) {
header[, i] <- factor(
paste(header[, i]),
levels(vegtable@header[, i])
)
} else {
class(header[, i]) <- class(vegtable@header[, i])
}
}
} else {
header <- data.frame(
ReleveID = unique(releves$ReleveID),
stringsAsFactors = FALSE
)
}
# Step 6: Assembly vegtable
# TODO: Added cover is not testing for presence of coverconvert
if (!preserve_ids) {
old_ReleveID <- header$ReleveID
if (nrow(vegtable@header) > 0) {
header$ReleveID <- max(vegtable$ReleveID) +
1:nrow(header)
} else {
header$ReleveID <- 1:nrow(header)
}
releves$ReleveID <- header$ReleveID[match(
releves$ReleveID,
old_ReleveID
)]
} else {
if (any(header$ReleveID %in% vegtable$ReleveID)) {
stop(paste(
"Some IDs in 'releves' already exist in",
"'vegtable' and cannot be preserved"
))
}
}
message(paste0(
"Imported relev\u00e9s: ", nrow(header),
" (", min(header$ReleveID), " to ",
max(header$ReleveID), ")"
))
message(paste("Imported header variables:", ncol(header) - 1))
for (i in colnames(vegtable@header)) {
if (!i %in% colnames(header)) header[, i] <- NA
}
if (nrow(vegtable@header) > 0) {
vegtable@header <- do.call(rbind, list(
vegtable@header,
header[, colnames(vegtable@header)]
))
} else {
vegtable@header <- header
}
# in empty object add releves directly
if (nrow(vegtable@samples) > 0) {
for (i in colnames(vegtable@samples)) {
if (!i %in% colnames(releves)) releves[, i] <- NA
}
vegtable@samples <- do.call(rbind, list(
vegtable@samples,
releves[, colnames(vegtable@samples)]
))
} else {
vegtable@samples <- releves
}
message("DONE!\n")
return(vegtable)
}
)
#' @rdname add_releves
#'
#' @aliases add_releves<-
#'
#' @exportMethod add_releves<-
#'
setGeneric("add_releves<-", function(vegtable, ..., value) {
standardGeneric("add_releves<-")
})
#' @rdname add_releves
#'
#' @aliases add_releves<-,vegtable,data.frame-method
#'
setReplaceMethod(
"add_releves", signature(
vegtable = "vegtable",
value = "data.frame"
),
function(vegtable, ..., value) {
return(add_releves(vegtable = vegtable, releves = value, ...))
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/add_releves.R
|
#' @name aspect_conv-data
#' @aliases aspect_conv
#' @docType data
#'
#' @title Conversion of aspect classes to azimuth
#'
#' @description
#' Conversion table required to transform values of aspect to azimuth in
#' degrees.
#'
#' @format A numeric vector of values in degrees for the symbols used as names.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' aspect_conv[c("N", "S", "ENE", "SSW")]
"aspect_conv"
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/aspect_conv-data.R
|
#' @name braun_blanquet-data
#' @aliases braun_blanquet
#' @docType data
#'
#' @title Conversion of Braun-Blanquet codes to cover percentage
#'
#' @description
#' Cover values conversion as [coverconvert-class] object.
#'
#' Object of class [coverconvert-class] contains conversion tables
#' usually from a categorical variable (a cover scale) to a numerical one
#' (equivalent percentage cover value).
#' Cover values are stored as range for each level in the scale (minimum and
#' maximum cover value).
#'
#' @format An object of class \code{\linkS4class{coverconvert}}.
#'
#' @seealso [coverconvert-class] [cover_trans()]
#'
#' @examples
#' names(braun_blanquet)
#' summary(braun_blanquet)
#' summary(braun_blanquet$b_bbds)
"braun_blanquet"
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/braun_blanquet-data.R
|
#' @name clean
#'
#' @title Clean orphaned records in vegtable object
#'
#' @description
#' Delete entries in slots `header` and `species` orphaned by manipulation of
#' slots.
#'
#' Orphaned records generated by modifications in some slots may cause a loss
#' on the validity of [vegtable-class] objects.
#' This function should be applied to optimise the allocated size of a
#' [vegtable-class] object, as well. Since running cleaning only
#' once does not assure the deletion of all orphaned entries, it is recommended
#' to run it at least twice. This repetition of cleaning is controlled by the
#' argument `times`.
#'
#' @param object A [vegtable-class] object.
#' @param times Numeric value indicating how many times should be the cleaning
#' be repeated.
#' @param ... Further arguments passed from or to other methods.
#' @return A clean [vegtable-class] object.
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' ## Create an invalid object
#' veg <- Kenya_veg
#' veg@header <- veg@header[1:10, ]
#'
#' ## Resolve invalidity
#' veg <- clean(veg)
#'
#' @rdname clean
clean_once <- function(object) {
# delete orphan species records
object@samples <- object@samples[object@samples$ReleveID %in%
object$ReleveID, , drop = FALSE]
# delete layer entries missing in samples
for (i in names(object@layers)) {
object@layers[[i]] <- object@layers[[i]][object@layers[[i]][, i] %in%
object@samples[, i], ]
}
# compare species and samples (delete observations
# not included in species list)
object@samples <- object@samples[object@samples$TaxonUsageID %in%
object@species@taxonNames$TaxonUsageID, ]
# delete header variables without data
object@header <- object@header[, (colnames(object@header) == "ReleveID") |
(!apply(object@header, 2, function(x) all(is.na(x)))), drop = FALSE]
# delete samples variables without data
object@samples <- object@samples[, (colnames(object@samples) %in%
c("ReleveID", "TaxonUsageID")) |
(!apply(object@samples, 2, function(x) all(is.na(x)))),
drop = FALSE
]
# delete orphaned relations
object@relations <- object@relations[names(object@relations) %in%
colnames(object@header)]
# delete orphaned layers
object@layers <- object@layers[names(object@layers) %in%
colnames(object@samples)]
# delete orphaned cover conversions
object@coverconvert@value <- object@coverconvert@value[
names(object@coverconvert@value) %in% colnames(object@samples)
]
object@coverconvert@conversion <- object@coverconvert@conversion[
names(object@coverconvert@conversion) %in%
names(object@coverconvert@value)
]
# output
return(object)
}
#' @rdname clean
#'
#' @aliases clean,vegtable-method
#'
#' @exportMethod clean
#'
setMethod(
"clean", signature(object = "vegtable"),
function(object, times = 2, ...) {
count <- 0
repeat {
count <- count + 1
object <- clean_once(object)
if (count == times) break
}
return(object)
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/clean.R
|
#' @name as
#' @rdname coerce-methods
#'
#' @title Coerce objects to lists
#'
#' @description
#' Coerce vegtable objects to a list with every slot as a component of the list.
#' This way allows to explore content and solve problems when validity checks
#' fail.
#'
#' Coercion is applied for different classes by vegtable.
#'
#' @param x An object to be coerced.
#' @param ... further arguments passed from or to other methods.
#'
#' @return An object of class `list`.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' ## vegtable as list
#' veg <- as(Kenya_veg, "list")
#' names(veg)
#'
#' ## coverconvert as list
#' as(Kenya_veg@coverconvert, "list")
#'
#' @aliases as.list,vegtable-method coerce,vegtable,list-method
#' coerce,coverconvert,list-method
#'
#' @exportMethod as.list
setMethod(
"as.list", signature(x = "vegtable"),
function(x, ...) {
S4_to_list(x)
}
)
setAs("vegtable", "list", function(from) as.list(from))
#' @rdname coerce-methods
#' @aliases as.list,coverconvert-method
setMethod(
"as.list", signature(x = "coverconvert"),
function(x, ...) {
# z <- S4_to_list(x)
z <- list()
for (i in names(x)) {
z[[i]] <- data.frame(
value = x@value[[i]],
bottom = x@conversion[[i]][-(length(x@conversion[[i]]))],
top = x@conversion[[i]][-1]
)
for (j in seq_along(z[[i]]$value)) {
if (z[[i]]$bottom[j] == z[[i]]$top[j]) {
z[[i]]$bottom[j] <- z[[i]]$bottom[j - 1]
}
}
}
return(z)
}
)
setAs("coverconvert", "list", function(from) as.list(from))
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/coerce-methods.R
|
#' @name count_taxa
#' @aliases count_taxa,vegtable,missing-method
#'
#' @title Count taxa included in vegtable objects
#'
#' @description
#' Counting number of taxa within [taxlist-class] objects or character vectors
#' containing taxon names.
#'
#' This function provides a quick calculation of taxa in [vegtable-class]
#' objects, considering only records in slot samples.
#' Such records can be also merged from lower ranks.
#'
#' For the formula method, units without any requested taxa will not appear in
#' the output data frame. If no taxa at all is occurring at the requested level
#' in any unit, an error message will be retrieved.
#'
#' @param object An object of class [vegtable-class] or a formula.
#' @param value A formula passed to parameter 'object' by the replace method.
#' @param data An object of class [vegtable-class].
#' @param level Character value indicating the taxonomic rank of counted taxa.
#' @param include_lower Logical value, whether lower taxonomic ranks should be
#' included at the requested level.
#' @param suffix Character value used as suffix on the calculated variable.
#' @param in_header Logical value, whether the result should be included in the
#' slot header of the input [vegtable-class] object or not.
#' A warning message is provided if the calculation is not done for every
#' plot observation.
#' @param ... further arguments passed among methods.
#'
#' @return
#' An data frame with the number of taxa from requested level at requested
#' units for the formula method, or just an integer value.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' ## Different alternatives
#' count_taxa(Kenya_veg)
#' head(count_taxa(~ReleveID, Kenya_veg, in_header = FALSE))
#' head(count_taxa(species ~ ReleveID, Kenya_veg, in_header = FALSE))
#' head(count_taxa(species ~ ReleveID, Kenya_veg, TRUE, in_header = FALSE))
#' head(count_taxa(family ~ ReleveID, Kenya_veg, TRUE))
#'
#' @rdname count_taxa
#'
#' @exportMethod count_taxa
#'
setMethod(
"count_taxa", signature(object = "vegtable", data = "missing"),
function(object, level, include_lower = FALSE, ...) {
concepts <- with(
object@species@taxonNames,
TaxonConceptID[match(
object@samples$TaxonUsageID,
TaxonUsageID
)]
)
if (!missing(level)) {
if (!level %in% levels(object@species)) {
stop(paste(
"Value of argument 'level' is not a level",
"in 'object'."
))
}
}
if (!missing(level) & include_lower) {
concept_levels <- with(
object@species@taxonRelations,
as.integer(Level)[match(concepts, TaxonConceptID)]
)
# Skip NA's from taxon levels
concepts <- concepts[!is.na(concept_levels)]
concept_levels <- concept_levels[!is.na(concept_levels)]
x <- which(levels(object@species) == level) - 1
for (i in 1:x) {
concepts[concept_levels == i] <-
with(
object@species@taxonRelations,
Parent[match(
concepts[concept_levels == i],
TaxonConceptID
)]
)
concept_levels <- with(
object@species@taxonRelations,
as.integer(Level)[match(concepts, TaxonConceptID)]
)
}
}
if (!missing(level)) {
concept_levels <- with(
object@species@taxonRelations,
paste(Level)[match(concepts, TaxonConceptID)]
)
concepts <- concepts[concept_levels == level]
}
return(length(unique(concepts)))
}
)
#' @rdname count_taxa
#'
#' @aliases count_taxa,formula,vegtable-method
setMethod(
"count_taxa", signature(object = "formula", data = "vegtable"),
function(object, data, include_lower = FALSE, suffix = "_count",
in_header = TRUE, ...) {
data_in <- data
nr_response <- attr(terms(object), "response")
name_response <- as.character(object)[2]
if (nr_response > 1) {
stop("More than one response in formula are not allowed.")
}
if (nr_response == 1) {
if (!name_response %in% levels(data@species)) {
stop("The response in the formula is not a rank in 'data'.")
}
object <- as.formula(paste(
"TaxonConceptID ~",
paste(attr(terms(object), "term.labels"),
collapse = " + "
)
))
if (include_lower) {
data <- taxa2samples(data,
merge_to = name_response,
include_levels = name_response, add_relations = TRUE
)
} else {
data <- taxa2samples(data,
include_levels = name_response,
add_relations = TRUE
)
}
if (all(is.na(data@samples$TaxonConceptID))) {
stop("No records for requested taxon rank.")
}
} else {
data <- taxa2samples(data, add_relations = TRUE)
object <- as.formula(paste(
"TaxonUsageID ~",
paste(attr(terms(object), "term.labels"),
collapse = " + "
)
))
}
data <- aggregate(object, data@samples, function(x) length(unique(x)), ...)
if (name_response == "ReleveID") name_response <- "taxa"
colnames(data)[colnames(data) %in% c("TaxonUsageID", "TaxonConceptID")] <-
paste0(name_response, suffix)
if (colnames(data)[1] != "ReleveID" & in_header) {
warning("'ReleveID' is not included as factor in formula")
}
if (colnames(data)[1] == "ReleveID" & in_header) {
data_in@header[, colnames(data)[2]] <- with(
data_in@header,
data[match(ReleveID, data$ReleveID), 2]
)
return(data_in)
} else {
return(data)
}
}
)
#' @rdname count_taxa
#'
#' @aliases count_taxa<-
#'
#' @exportMethod count_taxa<-
#'
setGeneric("count_taxa<-", function(data, ..., value) {
standardGeneric("count_taxa<-")
})
#' @rdname count_taxa
#'
#' @aliases count_taxa<-,vegtable,formula-method
#'
setReplaceMethod(
"count_taxa", signature(data = "vegtable", value = "formula"),
function(data, ..., value) {
return(count_taxa(
object = value, data = data, in_header = TRUE,
...
))
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/count_taxa.R
|
#' @exportMethod cover_trans
#'
setGeneric("cover_trans", function(x, conversion, ...) {
standardGeneric("cover_trans")
})
#' @name cover_trans
#'
#' @title Convert cover scales to percent cover
#'
#' @description
#' Convert values of a categorical cover scale to percentage values.
#'
#' This function requires as input a [coverconvert-class] object which contains
#' the conversion tables.
#'
#' @param x Either a factor or character vector, or a [vegtable-class] object.
#' @param conversion An object of class [vegtable-class].
#' @param from Scale name of values in `x` as character value.
#' @param to Name of the column in slot `samples` for writing converted values.
#' @param replace Logical value indicating whether existing cover values should
#' be replaced by the new computed values or not.
#' @param rule A character value indicating the rule applied for cover
#' transformation. Three rules are implemented for transformation,
#' either `top` (values transformed to the top of the range),
#' `middle` (transformation at the midpoint), and
#' `bottom` (conversion at the lowest value of the range).
#' In the later case, if the bottom is zero cover, a fictive bottom value
#' can be set by `'zeroto'`
#' @param zeroto Value set for transformation of classes with bottom at 0%
#' cover.
#' @param ... Further arguments passed from or to other methods.
#'
#' @return Either a vector or a [vegtable-class] object.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' ## Check the available scales
#' summary(Kenya_veg@coverconvert)
#'
#' ## Conversion by default 'top' rule
#' Kenya_veg <- cover_trans(Kenya_veg, to = "percent")
#' summary(as.factor(Kenya_veg@samples$percent))
#'
#' ## Conversion by 'middle' rule
#' Kenya_veg <- cover_trans(Kenya_veg, to = "percent", rule = "middle", replace = TRUE)
#' summary(as.factor(Kenya_veg@samples$percent))
#'
#' ## Conversion by 'bottom' rule
#' Kenya_veg <- cover_trans(Kenya_veg, to = "percent", rule = "bottom", replace = TRUE)
#' summary(as.factor(Kenya_veg@samples$percent))
#' @rdname cover_trans
#'
#' @aliases cover_trans,character,coverconvert-method
#'
setMethod(
"cover_trans", signature(
x = "character",
conversion = "coverconvert"
),
function(x, conversion, from = NULL, rule = "top", zeroto = 0.1, ...) {
rule <- grep(rule[1], c("top", "bottom", "middle"), ignore.case = TRUE)
if (!rule %in% c(1:3)) {
stop("Invalid value for argument 'rule'")
}
if (any(!x %in% base::levels(conversion@value[[from]]))) {
warning(paste(
"Some values in 'x' are not valid and will be",
"converted in NAs"
))
}
top <- conversion@conversion[[from]][-1][match(
x,
base::levels(conversion@value[[from]])
)]
if (rule == 1) {
return(top)
} else {
ties <- rev(duplicated(rev(conversion@conversion[[from]])))
bottom <- conversion@conversion[[from]][-length(
conversion@conversion[[from]]
)]
for (i in 1:length(bottom)) {
if (ties[i]) {
bottom[i] <- bottom[i - 1]
}
}
bottom <- bottom[match(
x,
base::levels(conversion@value[[from]])
)]
if (rule == 3) {
return((bottom + top) / 2)
}
if (rule == 2) {
bottom[bottom == 0] <- zeroto
return(bottom)
}
}
}
)
#' @rdname cover_trans
#'
#' @aliases cover_trans,factor,coverconvert-method
setMethod(
"cover_trans", signature(
x = "factor",
conversion = "coverconvert"
),
function(x, conversion, ...) {
x <- paste(x)
cover_trans(x, conversion, ...)
}
)
#' @rdname cover_trans
#'
#' @aliases cover_trans,numeric,coverconvert-method
setMethod(
"cover_trans", signature(
x = "numeric",
conversion = "coverconvert"
),
function(x, conversion, ...) {
x <- paste(x)
cover_trans(x, conversion, ...)
}
)
#' @rdname cover_trans
#'
#' @aliases cover_trans,vegtable,missing-method
setMethod(
"cover_trans", signature(x = "vegtable", conversion = "missing"),
function(x, to, replace = FALSE, rule = "top", zeroto = 0.1,
...) {
if (!to %in% colnames(x@samples)) x@samples[, to] <- NA
if (replace) {
Selection <- 1:length(x@samples[, to])
} else {
Selection <- which(is.na(x@samples[, to]))
}
for (i in names(x@coverconvert)) {
if (i %in% colnames(x@samples)) {
Selection2 <- which(!is.na(x@samples[, i]))
Selection2 <- intersect(Selection, Selection2)
x@samples[Selection2, to] <-
cover_trans(x@samples[Selection2, i],
x@coverconvert,
from = i, rule = rule,
zeroto = zeroto
)
}
}
return(x)
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/cover_trans.R
|
#' @name coverconvert
#' @aliases coverconvert-class
#'
#' @title Cover conversion tables
#'
#' @description
#' Cover conversion tables for [vegtable-class] objects.
#'
#' This class implements conversions from different cover scales in percentage
#' cover. For transformations to percentage cover, the function [cover_trans()]
#' should be than used.
#'
#' @slot value List containing the levels of each scale.
#' @slot conversion List with the respective start and end cut levels for the
#' scale levels.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @seealso [tv2coverconvert()] [braun_blanquet].
#'
#' @exportClass coverconvert
#'
setClass("coverconvert",
slots = c(
value = "list",
conversion = "list"
),
prototype = list(
value = list(),
conversion = list()
),
validity = function(object) {
if (length(object@value) > 0) {
# For whole object
if (!all(names(object@value) == names(object@conversion))) {
return("Names in slots 'value' and 'conversion' do not match")
}
}
# For single scales
for (i in names(object@value)) {
if (length(object@value[[i]]) !=
length(object@conversion[[i]]) - 1) {
return(paste0(
"Invalid length of vectors in scale '", i,
"'"
))
}
if (!is.numeric(object@conversion[[i]])) {
return(paste0(
"Values of 'conversion' in scale '", i,
"' have to be of class numeric"
))
}
if (!is.factor(object@value[[i]])) {
return(paste0(
"Values of 'value' in scale '", i,
"' have to be of class factor"
))
}
if (!all(object@conversion[[i]] ==
object@conversion[[i]][
order(object@conversion[[i]])
])) {
return(paste0(
"Sort values of 'conversion' in scale '",
i, "' in increasing order"
))
}
}
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/coverconvert-class.R
|
#' @name crosstable
#'
#' @title Generating cross tables from database lists
#'
#' @description
#' cross table is the most common format required by statistical packages
#' used to analyse vegetation data (e.g.
#' [vegan](https://CRAN.R-project.org/package=vegan)).
#'
#' You may use for convenience a formula as
#' `'abundance ~ plot + species + ...'`.
#' Additional variables used for rows (`...`) can be for instance the
#' layers.
#' For objects of class [vegtable-class], the formula can also include
#' variables from the species list (for example `AcceptedName`, `AuthorName`)
#' or even taxon traits.
#'
#' If required, tables already formatted as cross tables can be converted into
#' column-oriented tables by using the function `cross2db()`.
#'
#' @param formula A formula indicating the variables used in the cross table.
#' This formula can be represented as `'abundance ~ cols + rows'`, where
#' `'abundance'` is the numeric variable quantified for a row in a column,
#' for instance the abundance of a species in a plot.
#' Further variables can be set as additional rows indices in a cross table.
#' @param data Either a data frame or an object of class [vegtable-class].
#' @param FUN Function used to aggregate values in the case of a multiple
#' occurrence of a species in a plot, for instance.
#' @param na_to_zero A logical value indicating whether zeros should be
#' inserted into empty cells or not.
#' @param use_nas Logical value indicating whether NAs should be considered as
#' levels for categorical variables or not.
#' @param as_matrix A logical value, whether output should be done as matrix or
#' data frame.
#' @param ... Further arguments passed to the function [stats::aggregate()].
#' @param object A data frame including a cross table.
#' @param layers Logical value, whether the cross table includes a layer column
#' or not.
#' @param na_strings Character vector indicating no records in the cross table.
#'
#' @return An object of class [data.frame].
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' veg <- subset(Kenya_veg, REFERENCE == 2331, slot = "header")
#'
#' ## transform cover to percentage
#' veg <- cover_trans(veg, to = "cover_perc", rule = "middle")
#'
#' ## cross table of the first 5 plots
#' Cross <- crosstable(cover_perc ~ ReleveID + AcceptedName + AuthorName,
#' veg[1:5, ], mean,
#' na_to_zero = TRUE
#' )
#' head(Cross)
#' @rdname crosstable
#'
#' @exportMethod crosstable
#'
setGeneric("crosstable", function(formula, data, ...) {
standardGeneric("crosstable")
})
#' @rdname crosstable
#'
#' @aliases crosstable,formula,data.frame-method
setMethod(
"crosstable", signature(formula = "formula", data = "data.frame"),
function(formula, data, FUN, na_to_zero = FALSE, use_nas = TRUE,
as_matrix = FALSE, ...) {
if (!all(c(as.character(formula)[2], attr(
terms(formula),
"term.labels"
)) %in%
colnames(data))) {
stop("all terms in 'formula' must be a column in 'data'")
}
if (use_nas) {
Terms <- c(as.character(formula)[2], attr(
terms(formula),
"term.labels"
))
for (i in Terms[-1]) {
if (is.factor(data[, i])) {
data[, i] <- paste(data[, i])
}
if (is.character(data[, i])) {
data[is.na(data[, i]), i] <- ""
}
}
}
data <- aggregate(formula, data, FUN, ...)
coverage <- as.character(formula)[2]
plots <- attr(terms(formula), "term.labels")[1]
# for multiple plot entries
if (length(attr(terms(formula), "term.labels")) > 2) {
data$.spp <- apply(
data[attr(
terms(formula),
"term.labels"
)[-1]], 1, paste,
collapse = "."
)
spp <- ".spp"
} else {
spp <- attr(terms(formula), "term.labels")[2]
}
cross <- expand.grid(unique(data[, spp]), unique(data[, plots]),
stringsAsFactors = FALSE
)
colnames(cross) <- c(spp, plots)
cross[, coverage] <- data[match(
paste(cross[, spp], cross[, plots]),
paste(data[, spp], data[, plots])
), coverage]
if (na_to_zero) cross[is.na(cross[, coverage]), coverage] <- 0
cross <- matrix(cross[, coverage],
ncol = length(unique(cross[, plots])),
dimnames = list(unique(cross[, spp]), unique(cross[, plots]))
)
# final output data frame
if (spp == ".spp") {
cross_margin <- unique(data[c(".spp", attr(
terms(formula),
"term.labels"
)[-1])])
cross_margin <- cross_margin[match(
rownames(cross),
cross_margin$.spp
), colnames(cross_margin)[-1]]
} else {
cross_margin <- data.frame(unique(data[, spp]),
stringsAsFactors = FALSE
)
colnames(cross_margin) <- spp
}
if (!as_matrix) {
cross <- do.call(cbind, list(cross_margin, cross))
rownames(cross) <- NULL # reseting row names
}
return(cross)
}
)
#' @rdname crosstable
#'
#' @aliases crosstable,formula,vegtable-method
setMethod(
"crosstable", signature(formula = "formula", data = "vegtable"),
function(formula, data, FUN, na_to_zero = FALSE, use_nas = TRUE, ...) {
Terms <- c(as.character(formula)[2], attr(
terms(formula),
"term.labels"
))
data@samples <- data@samples[, colnames(data@samples) %in%
c("ReleveID", "TaxonUsageID", Terms)]
# Data from species
data@samples$TaxonConceptID <- data@species@taxonNames[
match(
data@samples$TaxonUsageID,
data@species@taxonNames$TaxonUsageID
),
"TaxonConceptID"
]
if ("TaxonName" %in% Terms & "AcceptedName" %in% Terms) {
stop("Terms 'TaxonName' and 'AcceptedName' are mutually exclusive in 'formula'")
}
# 1: when usage name requested
if ("TaxonName" %in% Terms) {
data@samples$TaxonName <- data@species@taxonNames[
match(
data@samples$TaxonUsageID,
data@species@taxonNames$TaxonUsageID
),
"TaxonName"
]
data@samples$AuthorName <- data@species@taxonNames[
match(
data@samples$TaxonUsageID,
data@species@taxonNames$TaxonUsageID
),
"AuthorName"
]
}
# 2: when accepted name requested
if ("AcceptedName" %in% Terms) {
data@samples$AcceptedName <- data@species@taxonRelations[
match(
data@samples$TaxonConceptID,
data@species@taxonRelations$TaxonConceptID
),
"AcceptedName"
]
data@samples$AuthorName <- data@species@taxonNames[
match(
data@samples$AcceptedName,
data@species@taxonNames$TaxonUsageID
),
"AuthorName"
]
data@samples$AcceptedName <- data@species@taxonNames[
match(
data@samples$AcceptedName,
data@species@taxonNames$TaxonUsageID
),
"TaxonName"
]
}
# Data from traits (only for Accepted Name or TaxonConceptID)
traits_names <- colnames(data@species@taxonTraits)[
colnames(data@species@taxonTraits) != "TaxonConceptID"
]
if (any(Terms %in% traits_names)) {
traits_names <- traits_names[traits_names %in% Terms]
for (i in traits_names) {
data@samples[, i] <- data@species@taxonTraits[
match(
data@samples$TaxonConceptID,
data@species@taxonTraits$TaxonConceptID
), i
]
}
}
# Data from header
header_names <- colnames(data@header)[colnames(data@header) !=
"ReleveID"]
if (any(header_names %in% Terms)) {
header_names <- header_names[header_names %in% Terms]
for (i in header_names) {
data@samples[, i] <- data@header[match(
data@samples$ReleveID,
data@header$ReleveID
), i]
}
}
# Continue with method data.frame
return(crosstable(
formula, data@samples, FUN, na_to_zero, use_nas,
...
))
}
)
#' @rdname crosstable
#'
#' @aliases cross2db
#'
#' @export
cross2db <- function(object, layers = FALSE, na_strings) {
species <- object[, 1]
if (layers) {
LAY <- object[, 2]
Cover <- object[, -1:-2]
object <- lapply(split(1:ncol(Cover), 1:ncol(Cover)),
function(x, cov, spec, lay) {
releve <- data.frame(
plot = colnames(cov)[x], species = spec,
layers = lay, cover = cov[, x], stringsAsFactors = FALSE
)
return(releve)
},
cov = Cover, spec = species, lay = LAY
)
} else {
Cover <- object[, -1, drop = FALSE]
object <- lapply(split(1:ncol(Cover), 1:ncol(Cover)),
function(x, cov, spec) {
releve <- data.frame(
plot = colnames(cov)[x], species = spec,
cover = cov[, x], stringsAsFactors = FALSE
)
return(releve)
},
cov = Cover, spec = species
)
}
object <- do.call(rbind, object)
if (!missing(na_strings)) {
object$cover[paste(object$cover) %in% na_strings] <- NA
}
return(object[!is.na(object$cover), ])
}
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/crosstable.R
|
#' @name df2coverconvert
#'
#' @title Create coverconvert objects
#'
#' @description
#' The class [coverconvert-class] contains tables for transforming cover values
#' to percentage using the function [cover_trans()].
#' These objects can be created from conversion tables imported as data frames.
#'
#' @param x Either a data frame or a list of data frames containing the
#' conversion table. Three columns are mandatory in such data frames, namely
#' **value** (factor with the symbols for each class in the cover scale,
#' sorted from the lowest to the highest value), **bottom** (numeric value
#' with the bottom values of each class), and **top** (numeric value with
#' the top values of each class). The values **bottom** and **top** are
#' usually as cover percentage but they may refer to any other numeric
#' abundance.
#' @param name A character value used as name of the cover scale in the data
#' frame method. In the list method, this name will be extracted from the
#' names of the elements in the list.
#' @param ... Further arguments passed among methods.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' ## Convert object into list
#' cov <- as(Kenya_veg@coverconvert, "list")
#'
#' ## Convert back to coverconvert
#' cov <- df2coverconvert(cov)
#'
#' @rdname df2coverconvert
#'
#' @export
df2coverconvert <- function(x, ...) {
UseMethod("df2coverconvert", x)
}
#' @rdname df2coverconvert
#' @aliases df2coverconvert,list-method
#' @method df2coverconvert list
#' @export
df2coverconvert.list <- function(x, ...) {
x_names <- c("value", "bottom", "top")
OUT <- new("coverconvert")
for (i in names(x)) {
if (!all(x_names %in% names(x[[i]]))) {
x_names <- x_names[!x_names %in% names(x[[i]])]
stop(paste0(
"Following mandatory columns are missing in cover scale '",
i, "': '", paste0(x_names, collapse = "', '"), "'."
))
}
OUT@value[[i]] <- factor(x[[i]]$value, levels = x[[i]]$value)
OUT@conversion[[i]] <- c(x[[i]]$bottom[1], x[[i]]$top)
}
return(OUT)
}
#' @rdname df2coverconvert
#' @aliases df2coverconvert,data.frame-method
#' @method df2coverconvert data.frame
#' @export
df2coverconvert.data.frame <- function(x, name, ...) {
if (missing(name)) {
stop("You have to provide a 'name' for this cover scale.")
}
x2 <- list()
x2[[name]] <- x
return(df2coverconvert(x2))
}
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/df2coverconvert.R
|
#' @name df2vegtable
#'
#' @title Convert a data frame into a vegtable object.
#'
#' @description
#' Conversion of a data frame containing a cross table of abundance or cover of
#' species in single plots.
#'
#' This function coerces a data frame containing a vegetation cross table into
#' a [vegtable-class] object. The input data frame `x` may include information
#' on the layers or not.
#'
#' @param x A data frame formatted for a taxlist object.
#' @param species Numeric or integer indicating the position of the column with
#' species names.
#' @param layer Numeric or integer indicating the position of the column with
#' layers.
#' @param ... Further arguments passed from or to other methods.
#'
#' @return A [vegtable-class] object.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' ## Creating data set 'dune_veg'
#' library(vegan)
#'
#' ## Load data from vegan
#' data(dune)
#' data(dune.env)
#'
#' ## Conversion to vegtable
#' dune_veg <- data.frame(
#' species = colnames(dune), t(dune),
#' stringsAsFactors = FALSE, check.names = FALSE
#' )
#' dune_veg <- df2vegtable(dune_veg, species = 1)
#'
#' summary(dune_veg)
#'
#' ## Adding environmental variables
#' dune.env$ReleveID <- as.integer(rownames(dune.env))
#' header(dune_veg) <- dune.env
#'
#' summary(dune_veg)
#' @rdname df2vegtable
#'
#' @exportMethod df2vegtable
#'
setGeneric(
"df2vegtable",
function(x, species, layer, ...) {
standardGeneric("df2vegtable")
}
)
#' @rdname df2vegtable
#'
#' @aliases df2vegtable,data.frame,numeric,numeric-method
setMethod(
"df2vegtable", signature(
x = "data.frame", species = "numeric",
layer = "numeric"
),
function(x, species, layer, ...) {
# First creates species list
taxlist <- new("taxlist")
taxlist <- add_concept(taxlist, TaxonName = unique(paste(x[
,
species
])))
# Some tests previous to run the function
Cover <- x[, -c(species, layer)]
for (i in 1:ncol(Cover)) Cover[, i] <- paste(Cover[, i])
Layer <- as.factor(x[, layer])
ReleveID <- list()
for (i in colnames(Cover)) ReleveID[[i]] <- rep(i, nrow(Cover))
ReleveID <- do.call(c, ReleveID)
TaxonUsageID <- taxlist@taxonNames$TaxonUsageID[match(
paste(x[
,
species
]),
taxlist@taxonNames$TaxonName
)]
TaxonUsageID <- rep(TaxonUsageID, ncol(Cover))
Layer <- rep(Layer, ncol(Cover))
Cover <- do.call(c, Cover)
x <- new("vegtable",
samples = data.frame(
ReleveID = as.integer(ReleveID),
Layer = Layer,
TaxonUsageID = TaxonUsageID,
Cover = Cover,
stringsAsFactors = FALSE
),
header = data.frame(
ReleveID = unique(as.integer(ReleveID))
),
species = taxlist
)
x@samples <- x@samples[!is.na(Cover), ]
x@samples <- x@samples[Cover != "NA", ]
return(x)
}
)
#' @rdname df2vegtable
#'
#' @aliases df2vegtable,data.frame,numeric,missing-method
setMethod(
"df2vegtable", signature(
x = "data.frame", species = "numeric",
layer = "missing"
),
function(x, species, ...) {
x[, ncol(x) + 1] <- NA
df2vegtable(x, species, layer = ncol(x), ...)
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/df2vegtable.R
|
#' @name dune_veg-data
#' @aliases dune_veg
#' @docType data
#'
#' @title Dutch dune meadows as vegtable
#'
#' @description
#' Data set from the package [vegan::vegan], converted to a [vegtable-class]
#' object.
#'
#' @format An object of class \code{\linkS4class{vegtable}}.
#'
#' @references \bold{Jongman RHG, ter Braak CJF, van Tongeren OFR (1987).}
#' \emph{Data analysis in community and landscape ecology.} Pudoc, Wageningen,
#' NL.
#'
#' @source Original data were imported from [vegan::dune].
#'
#' @examples
#' summary(dune_veg)
"dune_veg"
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/dune_veg-data.R
|
#' @name header
#'
#' @title Retrieve or replace slot header in vegtable objects
#'
#' @description
#' Retrieve or replace the content of slot `header` in [vegtable-class] objects.
#'
#' @param x Object of class [vegtable-class].
#' @param value Data frame to be set as slot `header`.
#' @param ... Further arguments passed to or from other methods.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' head(header(Kenya_veg))
#' @rdname header
#'
#' @exportMethod header
#'
setGeneric(
"header",
function(x, ...) {
standardGeneric("header")
}
)
#' @rdname header
#'
#' @aliases header,vegtable-method
setMethod(
"header", signature(x = "vegtable"),
function(x, ...) {
return(x@header)
}
)
#' @rdname header
#'
#' @aliases header<-
#'
#' @exportMethod header<-
#'
setGeneric("header<-", function(x, value) {
standardGeneric("header<-")
})
#' @rdname header
#'
#' @aliases header<-,vegtable,data.frame-method
setReplaceMethod(
"header", signature(x = "vegtable", value = "data.frame"),
function(x, value) {
if (!"ReleveID" %in% colnames(value)) {
stop("Column 'ReleveID' is mandatory in 'value'")
}
for (i in colnames(value)) {
x@header[, i] <- value[
match(x@header$ReleveID, value$ReleveID),
i
]
}
return(x)
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/header.R
|
#' @importFrom stats aggregate as.formula na.omit terms update
#' @importFrom methods as is new slot slot<- slotNames validObject
#' @importFrom foreign read.dbf
#' @importFrom utils object.size
#' @importFrom vegdata tv.home
#' @importFrom qdapRegex rm_between
#' @importFrom stringi stri_split_fixed
#' @importFrom sp CRS coordinates coordinates<- proj4string<-
#' @import taxlist
NULL
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/imports.R
|
#' @name layers2samples
#'
#' @title Add information from slot 'layers' into slot 'samples'
#'
#' @description
#' Slot layers may include additional information that should be moved to
#' samples in order to use it by [vegtable::subset()], [vegtable::aggregate()]
#' or [vegtable::crosstable()] methods.
#'
#' If names of variables are not provided, all variables from the respective
#' layer table will be inserted in slot `samples`.
#'
#' @param object An object of class [vegtable-class].
#' @param layer Character value indicating a target layer.
#' @param variable Character vector with the names of variables to be inserted
#' in slot `samples`.
#' @param ... Further arguments to be passed among methods.
#' @return An object of class [vegtable-class] with variables added to samples.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}.
#'
#' @rdname layers2samples
#'
#' @exportMethod layers2samples
#'
setGeneric(
"layers2samples",
function(object, layer, variable, ...) {
standardGeneric("layers2samples")
}
)
#' @rdname layers2samples
#'
#' @aliases layers2samples,vegtable,character,character-method
setMethod(
"layers2samples", signature(
object = "vegtable", layer = "character",
variable = "character"
),
function(object, layer, variable, ...) {
if (!layer %in% names(object@layers)) {
stop("Value of 'layer' is not occurring in slot 'layers'")
}
if (any(!variable %in% colnames(object@layers[[layer]]))) {
stop(paste(
"Some values of 'variable' are not occurring in",
"the targeted layer table"
))
}
object@samples <- merge(object@samples, object@layers[[layer]][
,
unique(c(layer, variable))
],
by = layer, sort = FALSE,
all.x = TRUE, all.y = FALSE
)
return(object)
}
)
#' @rdname layers2samples
#'
#' @aliases layers2samples,vegtable,character,missing-method
setMethod(
"layers2samples", signature(
object = "vegtable", layer = "character",
variable = "missing"
),
function(object, layer, ...) {
variable <- colnames(object@layers[[layer]])
layers2samples(object, layer, variable)
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/layers2samples.R
|
#' @name make_cocktail
#'
#' @title Produce a Cocktail classification
#'
#' @description
#' Classification of [vegtable-class] objects according to **Cocktail**
#' algorithms.
#'
#' Cocktail algorithms are logical functions selecting plots according to
#' either occurrence of species groups and cover values of single species. A
#' group will be declared as occurring in a plot when at least a half of its
#' members is present in the plot.
#'
#' This function inserts single columns with logical values indicating whether
#' a plot is classified in the vegetation unit or not. An additional column
#' (name provided in argument `syntax`) compile all vegetation units,
#' indicating with a `+` symbol those plots classified in more than one
#' vegetation unit.
#' When only a part of the formulas will be used, it should be
#' specified by the argument `which`.
#'
#' These functions are implemented for constructing or complementing
#' [shaker-class] objects.
#' Note that construction of those objects will always require a `companion`
#' object, which is either an object of class [taxlist-class] or
#' [vegtable-class].
#'
#' @param shaker An object of class [shaker-class] containing the respective
#' cocktail definitions.
#' @param vegtable An object of class [vegtable-class] containing the
#' vegetation observations to be classified.
#' @param which Integer or character indicating the definition to be applied
#' for classification.
#' @param cover Name of the cover variable in `vegtable`.
#' @param syntax Character value indicating the name of the retrieved variable
#' including the final classification of plots.
#' @param FUN Function used for merging multiple occurrence of species in a
#' single plot.
#' @param companion Either a [taxlist-class] or a [vegtable-class] object.
#' @param pseudo,group Character vector with names of taxa included in a
#' pseudo-species or a species group.
#' @param formula Character vector including a formula as definition of a
#' vegetation unit.
#' @param pseudo_id,group_id,formula_id Character value as name of the
#' pseudo-species, species group or defined vegetation unit.
#' @param authority Logical value indicating whether author names should be
#' included in the taxon name or not.
#' @param enc_cont,enc_gr Encodings used for special characters.
#' @param in_header Logical value indicating whether results of Cocktail
#' classification should be inserted to the header of the input vegtable or
#' not. In the second case, a data frame is provided as output.
#' @param ... Further arguments passes from or to other methods.
#'
#' @return
#' A data frame corresponding to the slot `header` of input object `vegtable`,
#' including the results of Cocktail classification for the respective plots.
#'
#' A [shaker-class] object.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @seealso [shaker-class] [vegtable-class] [Wetlands]
#'
#' @references
#' \bold{Alvarez M (2017).} Classification of aquatic and
#' semi-aquatic vegetation in two East African sites: Cocktail definitions and
#' syntaxonomy. \emph{Phytocoenologia}.
#'
#' \bold{Bruelheide H (2000).} A new measure of fidelity and its application to
#' defining species groups. \emph{Journal of Vegetation Science} 11: 167--178.
#'
#' \bold{Kočí M, Chytrý M, Tichý L (2003).} Formalized reproduction of an
#' expert-based phytosociological classification: a case study of subalpine
#' tall-forb vegetation. \emph{Journal of Vegetation Science} 14: 601--610.
#'
#' @examples
#' ## Example from Alvarez (2017)
#' Wetlands_veg <- make_cocktail(Wetlands, Wetlands_veg, cover = "percen")
#' summary(as.factor(Wetlands_veg@header$Syntax))
#'
#' ## Same but only for two vegetation units
#' Wetlands_veg <- make_cocktail(Wetlands, Wetlands_veg,
#' which = c("HY1", "HY2"), cover = "percen"
#' )
#' summary(as.factor(Wetlands_veg$Syntax))
#'
#' ## Construct the 'shaker' object anew
#' Wetlands <- new("shaker")
#'
#' ## Set a pseudo-species
#' Wetlands <- set_pseudo(Wetlands, Wetlands_veg, c(
#' "Cyperus latifolius",
#' "Cyperus exaltatus"
#' ))
#'
#' ## Set a species group
#' Wetlands <- set_group(Wetlands, Wetlands_veg,
#' group_id = "Cyperus papyrus",
#' group = c(
#' "Cyperus papyrus",
#' "Cyclosorus interruptus",
#' "Lepistemon owariense"
#' )
#' )
#'
#' ## Set a fromula
#' Wetlands <- set_formula(Wetlands, Wetlands_veg,
#' formula_id = "HE1",
#' formula = "groups:'Cyperus papyrus' | species:'Cyperus papyrus > 50'"
#' )
#'
#' ## Summaries
#' summary(Wetlands)
#' summary(Wetlands, Wetlands_veg)
#' @rdname make_cocktail
#'
#' @aliases set_group
#'
#' @exportMethod set_group
#'
setGeneric(
"set_group",
function(shaker, companion, group, ...) {
standardGeneric("set_group")
}
)
#' @rdname make_cocktail
#'
#' @aliases set_group,shaker,taxlist,character-method
#'
setMethod(
"set_group", signature(
shaker = "shaker", companion = "taxlist",
group = "character"
),
function(shaker, companion, group, group_id, authority = FALSE,
enc_cont = "latin1", enc_gr = "utf8", ...) {
companion <- accepted_name(companion)
if (authority) {
companion$AuthorName[is.na(companion$AuthorName)] <- ""
companion$TaxonName <- with(companion, paste(
TaxonName,
AuthorName
))
}
companion$TaxonName <- iconv(
companion$TaxonName, enc_cont,
"ASCII//TRANSLIT"
)
group <- iconv(group, enc_gr, "ASCII//TRANSLIT")
if (any(!group %in% companion$TaxonName)) {
stop("Some names in 'group' are not in 'companion'")
}
if (any(duplicated(group))) {
group <- unique(group)
}
if (any(duplicated(companion$TaxonName))) {
warning(paste(
"Some duplicated names in 'companion', only",
"one will be retrieved"
))
}
if (missing(group_id)) {
group_id <- length(shaker@groups) + 1
}
shaker@groups[[group_id]] <- companion[charmatch(
group,
companion$TaxonName
), "TaxonConceptID"]
return(shaker)
}
)
#' @rdname make_cocktail
#'
#' @aliases set_group,shaker,vegtable,character-method
#'
setMethod(
"set_group", signature(
shaker = "shaker", companion = "vegtable",
group = "character"
),
function(shaker, companion, group, ...) {
set_group(shaker, companion@species, group, ...)
}
)
#' @rdname make_cocktail
#'
#' @aliases set_pseudo
#'
#' @exportMethod set_pseudo
#'
setGeneric(
"set_pseudo",
function(shaker, companion, pseudo, ...) {
standardGeneric("set_pseudo")
}
)
#' @rdname make_cocktail
#'
#' @aliases set_pseudo,shaker,taxlist,character-method
#'
setMethod(
"set_pseudo", signature(
shaker = "shaker", companion = "taxlist",
pseudo = "character"
),
function(shaker, companion, pseudo, pseudo_id, authority = FALSE,
enc_cont = "latin1", enc_gr = "utf8", ...) {
companion <- accepted_name(companion)
if (authority) {
companion$AuthorName[is.na(companion$AuthorName)] <- ""
companion$TaxonName <- with(companion, paste(
TaxonName,
AuthorName
))
}
companion$TaxonName <- iconv(
companion$TaxonName, enc_cont,
"ASCII//TRANSLIT"
)
pseudo <- iconv(pseudo, enc_gr, "ASCII//TRANSLIT")
if (any(!pseudo %in% companion$TaxonName)) {
stop("Some names in 'pseudo' are not in 'companion'")
}
if (any(duplicated(companion$TaxonName))) {
warning(paste(
"Some duplicated names in 'companion', only",
"one will be retrieved"
))
}
if (missing(pseudo_id)) {
pseudo_id <- length(shaker@pseudos) + 1
}
shaker@pseudos[[pseudo_id]] <- companion[charmatch(
pseudo,
companion$TaxonName
), "TaxonConceptID"]
return(shaker)
}
)
#' @rdname make_cocktail
#'
#' @aliases set_pseudo,shaker,vegtable,character-method
#'
setMethod(
"set_pseudo", signature(
shaker = "shaker", companion = "vegtable",
pseudo = "character"
),
function(shaker, companion, pseudo, ...) {
set_pseudo(shaker, companion@species, pseudo, ...)
}
)
#' @rdname make_cocktail
#'
#' @aliases set_formula
#'
#' @exportMethod set_formula
#'
setGeneric(
"set_formula",
function(shaker, companion, formula, ...) {
standardGeneric("set_formula")
}
)
#' Have to be described
#'
#' @keywords internal
#'
format_F2 <- function(x) {
x <- paste(x, collapse = " ")
x <- gsub(" ", "", x, fixed = TRUE)
x
}
#' @rdname make_cocktail
#'
#' @aliases set_formula,shaker,taxlist,character-method
#'
setMethod(
"set_formula", signature(
shaker = "shaker", companion = "taxlist",
formula = "character"
),
function(shaker, companion, formula, formula_id, authority = FALSE,
enc_cont = "latin1", enc_gr = "utf8", ...) {
if (grepl("\'", formula)) SYM <- "\'"
if (grepl('\"', formula)) SYM <- '\"'
Names <- Names_old <- rm_between(formula,
left = SYM, right = SYM,
extract = TRUE
)[[1]]
Slots <- strsplit(formula, " ")[[1]]
Slots[grepl("species:", Slots)] <- "species"
Slots[grepl("groups:", Slots)] <- "groups"
Slots <- Slots[Slots %in% c("species", "groups")]
# Check existence of groups in shaker object
if (any(!Names[Slots == "groups"] %in% names(shaker@groups))) {
stop(paste(
"Some groups mentioned in the 'formula' are not",
"included in 'shaker'"
))
}
# Retrieve
companion <- accepted_name(companion)
if (authority) {
companion$AuthorName[is.na(companion$AuthorName)] <- ""
companion$TaxonName <- with(companion, paste(
TaxonName,
AuthorName
))
}
if (any(Slots == "species")) {
dominants <- strsplit(Names[Slots == "species"], " ")
# function to merge species names elements
dominants <- as.data.frame(do.call(rbind, lapply(
dominants,
function(x) {
NR <- length(x)
return(c(
paste(x[1:(NR - 2)],
collapse = " "
),
x[(NR - 1):NR]
))
}
)), stringsAsFactors = FALSE)
colnames(dominants) <- c("TaxonConceptID", "operator", "value")
# In case of use of authority
companion$TaxonName <- iconv(
companion$TaxonName, enc_cont,
"ASCII//TRANSLIT"
)
dominants$TaxonConceptID <- iconv(
dominants$TaxonConceptID,
enc_gr, "ASCII//TRANSLIT"
)
if (any(!dominants$TaxonConceptID %in% companion$TaxonName)) {
stop(paste(
"Some species in 'formula' are not included",
"in 'companion'"
))
}
dominants$TaxonConceptID <- companion[
match(dominants$TaxonConceptID, companion$TaxonName),
"TaxonConceptID"
]
dominants$value <- as.numeric(dominants$value)
# paste rows in Names before continuing
Names[Slots == "species"] <- formula_new <- apply(
dominants, 1,
format_F2
)
# merge slot dominants and extract duplicated
if (nrow(shaker@dominants) > 0) {
formula_old <- apply(shaker@dominants, 1, format_F2)
dominants <- do.call(rbind, list(
shaker@dominants,
dominants[!formula_new %in% formula_old, ]
))
rownames(dominants) <- NULL
formula_new <- apply(dominants, 1, format_F2)
}
shaker@dominants <- dominants
# reformat formula
Names[Slots == "species"] <- paste(match(Names[Slots ==
"species"], formula_new))
}
# reformat formula (continuation)
Names[Slots == "groups"] <- paste0(
SYM, Names[Slots == "groups"],
SYM
)
# Assemble new formulas
Names_old <- paste0(Slots, ":", SYM, Names_old, SYM)
Slots[Slots == "species"] <- "dominants"
Names <- paste0(Slots, "[[", Names, "]]")
for (i in 1:length(Names)) {
formula <- sub(Names_old[i], Names[i], formula)
}
# Insert results in output object
if (missing(formula_id)) {
formula_id <- length(shaker@formulas) + 1
}
shaker@formulas[[formula_id]] <- formula
return(shaker)
}
)
#' @rdname make_cocktail
#'
#' @aliases set_formula,shaker,vegtable,character-method
#'
setMethod(
"set_formula", signature(
shaker = "shaker", companion = "vegtable",
formula = "character"
),
function(shaker, companion, formula, ...) {
set_formula(shaker, companion@species, formula, ...)
}
)
#' @rdname make_cocktail
#'
#' @exportMethod make_cocktail
#'
setGeneric(
"make_cocktail",
function(shaker, vegtable, ...) {
standardGeneric("make_cocktail")
}
)
#' @rdname make_cocktail
#'
#' @aliases make_cocktail,shaker,vegtable-method
#'
setMethod(
"make_cocktail", signature(shaker = "shaker", vegtable = "vegtable"),
function(shaker, vegtable, which, cover, syntax = "Syntax", FUN = sum,
in_header = TRUE, ...) {
# Preserve original species list and samples
species_in <- vegtable@species
samples_in <- vegtable@samples
# Build pseudo-species
if (length(shaker@pseudos) > 0) {
for (i in 1:length(shaker@pseudos)) {
vegtable@species <- merge_taxa(vegtable@species, shaker@pseudos[[i]])
}
}
# Insert concept IDs in samples
vegtable <- taxa2samples(vegtable)
# Check presence of groups
OUT <- list()
if (length(shaker@groups) > 0) {
OUT$groups <- list()
PA <- aggregate(
as.formula(paste(
cover,
"~ ReleveID + TaxonConceptID"
)),
vegtable@samples, function(x) {
x <- sum(x)
if (x > 0) x <- 1
return(x)
}
)
for (i in 1:length(shaker@groups)) {
PA_aux <- PA[PA$TaxonConceptID %in% shaker@groups[[i]], ]
PA_aux <- aggregate(
as.formula(paste(cover, "~ ReleveID")),
PA_aux, sum
)
PA_aux <- PA_aux[PA_aux[, cover] >=
length(shaker@groups[[i]]) / 2, ]
OUT$groups[[i]] <- vegtable@header$ReleveID %in%
PA_aux$ReleveID
}
}
if (!is.null(names(shaker@groups))) {
names(OUT$groups) <-
names(shaker@groups)
}
# Check for dominants
if (nrow(shaker@dominants) > 0) {
OUT$dominants <- list()
DOM <- aggregate(
as.formula(paste(
cover,
"~ ReleveID + TaxonConceptID"
)),
vegtable@samples, FUN
)
for (i in 1:nrow(shaker@dominants)) {
DOM_aux <- DOM[DOM$TaxonConceptID == shaker@dominants[
i,
"TaxonConceptID"
], ]
DOM_aux <- DOM_aux[
eval(parse(text = paste(
c(cover, shaker@dominants[
i,
c(
"operator",
"value"
)
]),
collapse = " "
)), DOM_aux),
]
OUT$dominants[[i]] <- vegtable@header$ReleveID %in%
DOM_aux$ReleveID
}
}
# Excecute formulas
OUT$units <- list()
if (!missing(which)) {
which <- which[which %in% names(shaker@formulas)]
} else {
which <- names(shaker@formulas)
}
for (i in which) {
OUT$units[[i]] <-
as.numeric(eval(parse(text = shaker@formulas[[i]]), OUT))
}
OUT <- as.data.frame(OUT$units,
stringsAsFactors = FALSE,
check.names = FALSE
)
SYNTAX <- rep(NA, nrow(OUT))
for (i in colnames(OUT)) {
vegtable@header[, i] <- OUT[, i]
SYNTAX[OUT[, i] == 1] <- i
}
SYNTAX[rowSums(OUT) > 1] <- "+"
vegtable@header[, syntax] <- SYNTAX
if (in_header) {
vegtable@samples <- samples_in
vegtable@species <- species_in
return(vegtable)
} else {
return(vegtable@header[, c("ReleveID", which, syntax)])
}
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/make_cocktail.R
|
#' @name names
#'
#' @title Retrieve names of vegtable and coverconvert objects
#'
#' @description
#' Quick access to column names in slot header and names of conversion codes.
#'
#' These methods provide a quick display of the contents in
#' [coverconvert-class] and [vegtable-class] objects.
#'
#' @param x An object of class [coverconvert-class] or [vegtable-class].
#' @param value A character vector used for replacement methods.
#'
#' @return
#' A list containing the names from each slot.
#'
#' Either a vector or a list (in the case of `dimnames()`) with
#' the names of variables.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}.
#'
#' @examples
#' names(Kenya_veg@coverconvert)
#' names(Kenya_veg)
#' dimnames(Kenya_veg)
#' @rdname names
#' @aliases names,vegtable-method
#'
#' @exportMethod names
setMethod(
"names", signature(x = "vegtable"),
function(x) {
names_list <- list()
for (i in slotNames(x)) {
names_list[[i]] <- names(slot(x, i))
}
return(names_list)
}
)
#' @rdname names
#' @aliases dimnames dimnames,vegtable-method
#'
#' @exportMethod dimnames
setMethod(
"dimnames", signature(x = "vegtable"),
function(x) {
return(list(x@header$ReleveID, colnames(x@header)))
}
)
#' @rdname names
#' @aliases names,coverconvert-method
setMethod(
"names", signature(x = "coverconvert"),
function(x) names(x@value)
)
#' @rdname names
#' @aliases names<-,coverconvert-method
setReplaceMethod(
"names", signature(x = "coverconvert"),
function(x, value) {
names(x@value) <- value
names(x@conversion) <- value
return(x)
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/names.R
|
#' @name new_relation
#' @rdname new_relation
#'
#' @title Insert a new variable as relation in vegtable object
#'
#' @description
#' Insert a new variable in slot **header** with a respective table at slot
#' **relations**. The respective variable in header will be set as factor.
#'
#' Existing categorical variables can also be set as relations. If such
#' variables are factors, its levels can be preserved (missing argument in
#' `'levels'`) or reset.
#'
#' @param object A [vegtable-class] object.
#' @param relation,value A character value indicating the name of the new
#' relation. The parameter 'value' is used for the replacement method
#' @param levels A character vector with the levels for the inserted factor.
#' This may be missing for variables that already exist in slot **header**.
#' @param ... Further arguments passed among methods.
#'
#' @return
#' A [vegtable-class] object with the inserted new relation.
#'
#' @examples
#' ## A brand new variable
#' new_relation(Kenya_veg, levels = c("forest", "grassland", "cropland")) <- "land_use"
#'
#' ## Set an existing variable as relation
#' new_relation(Kenya_veg) <- "REMARKS"
#'
#' @export
new_relation <- function(object, ...) {
UseMethod("new_relation", object)
}
#' @rdname new_relation
#' @aliases new_relation,vegtable-method
#' @method new_relation vegtable
#' @export
new_relation.vegtable <- function(object, relation, levels, ...) {
# Conditions
if (length(relation) > 1) {
warning(paste(
"Argument in 'relation' is longer than 1.",
"Only the first value will be used."
))
relation <- relation[1]
}
if (relation %in% names(object@relations)) {
stop(paste0("Relation '", relation, "' is already in 'object'."))
}
# New relation already in header
if (relation %in% names(object@header)) {
if (is(object@header[, relation], "factor") & missing(levels)) {
levels <- base::levels(object@header[, relation])
relation_vector <- factor(
unique(as.character(object@header[
!is.na(object@header[, relation]), relation
])),
levels = levels
)
} else {
if (missing(levels)) {
relation_vector <- as.factor(unique(as.character(object@header[
!is.na(object@header[, relation]), relation
])))
object@header[, relation] <-
factor(as.character(object@header[, relation]),
levels = base::levels(relation_vector)
)
} else {
relation_vector <- factor(
unique(as.character(object@header[
!is.na(object@header[, relation]), relation
])),
levels = levels
)
object@header[, relation] <-
factor(as.character(object@header[, relation]),
levels = levels
)
}
}
} else {
if (missing(levels)) {
stop(paste(
"For new relations you have to provide",
"an argument for 'levels'."
))
} else {
relation_vector <- factor(levels, levels = levels)
object@header[, relation] <- factor(NA, levels = levels)
}
}
# Insert relation_vector into slot
object@relations[[relation]] <- list()
object@relations[[relation]][[relation]] <- relation_vector
object@relations[[relation]] <- as.data.frame(object@relations[[relation]])
return(object)
}
#' @rdname new_relation
#' @aliases new_relation<-
#' @exportMethod new_relation<-
setGeneric("new_relation<-", function(object, levels, value) {
standardGeneric("new_relation<-")
})
#' @rdname new_relation
#' @aliases new_relation<-,vegtable,character,character-method
setReplaceMethod(
"new_relation", signature(
object = "vegtable",
levels = "character",
value = "character"
),
function(object, levels, value) {
return(new_relation(object, value, levels))
}
)
#' @rdname new_relation
#' @aliases new_relation<-,vegtable,missing,character-method
setReplaceMethod(
"new_relation", signature(
object = "vegtable",
levels = "missing",
value = "character"
),
function(object, value) {
return(new_relation(object, value))
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/new_relation.R
|
#' @name relation2header
#'
#' @title Insert variables from relations into header
#'
#' @description
#' Information associated to categories listed in slot **relations** can be
#' inserted to slot **header** for further statistical comparisons.
#'
#' @param vegtable An [vegtable-class] object.
#' @param relation A character value indicating the relation to be used for
#' inserting new variables in slot header.
#' @param vars A selection of variables from the relation to be inserted in
#' header. This function will check the existence of the variables in the
#' respective relation and retrieve an error if none is matching the names.
#' If missing in the arguments, all variables of the respective relation
#' will be inserted.
#' @param ... Further arguments passed among methods
#'
#' @return
#' A [vegtable-class] object.
#'
#' @author
#' Miguel Alvarez, <kamapu78@@gmail.com>
#'
#' @examples
#' ## Insert publication year of the source into header
#' veg <- relation2header(Kenya_veg, "REFERENCE", "YEAR")
#'
#' ## Show the frequency of plots per publication year
#' summary(as.factor(veg$YEAR))
#'
#' @rdname relation2heder
#' @export
relation2header <- function(vegtable, ...) {
UseMethod("relation2header", vegtable)
}
#' @rdname relation2heder
#' @aliases relation2header,vegtable-method
#' @method relation2header vegtable
#' @export
relation2header.vegtable <- function(vegtable, relation, vars, ...) {
if (!relation %in% names(vegtable@relations)) {
stop(paste0(
"The relation '", relation,
"' is missing in 'vegtable@relations'."
))
}
if (missing(vars)) {
vars <- names(vegtable@relations[[relation]])[
names(vegtable@relations[[relation]]) != relation
]
} else {
vars <- vars[vars != relation & vars %in%
names(vegtable@relations[[relation]])]
}
if (length(vars) == 0) {
stop("Values of 'vars' are not included in 'relation'.")
}
vegtable@header <- merge(vegtable@header, vegtable@relations[[relation]][
,
c(relation, vars)
],
by = relation, all.x = TRUE, sort = FALSE,
suffixes = c("", "_y")
)
return(vegtable)
}
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/relation2header.R
|
#' @name shaker-class
#' @aliases shaker
#'
#' @title Class containing Cocktail algorithms.
#'
#' @description
#' Objects used for collecting Cocktail definitions.
#'
#' These objects work as \bold{expert systems} for recognition of defined
#' vegetation units among plots of a [vegtable-class] object.
#' A `shaker` object will be always dependent on a [vegtable-class] object,
#' which is called `companion`.
#' Since modifications in the `companion` may affect the functionality of
#' the `shaker` object, it will be recommended to create the last during
#' a session by a source script instead of recycling them from old R images.
#'
#' @slot pseudos List containing IDs of taxa that will be merged into
#' pseudo-species.
#' @slot groups List containing IDs of taxa belonging to the same Cocktail
#' group.
#' @slot dominants A data frame including lists of species used as dominant
#' species in Cocktail algorithms, as well as operators and cover values
#' used in the formulas.
#' @slot formulas List with formulas that will be used as definitions for
#' vegetation units.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @seealso [make_cocktail()] [set_pseudo()] [set_group()] [set_formula()]
#'
#' @examples
#' showClass("shaker")
#' @exportClass shaker
#'
setClass("shaker",
slots = c(
pseudos = "list",
groups = "list",
dominants = "data.frame",
formulas = "list"
),
prototype = list(
pseudos = list(),
groups = list(),
dominants = data.frame(
TaxonConceptID = integer(),
operator = character(), value = numeric(),
stringsAsFactors = FALSE
),
formulas = list()
),
validity = function(object) {
if (any(duplicated(do.call(c, object@pseudos)))) {
return("Some pseudo-species are sharing taxon concepts")
}
if (is.null(names(object@groups))) {
return("Members of slot 'groups' have to be named")
}
if (any(duplicated(do.call(c, object@groups)))) {
return("Some species groups are sharing taxon concepts")
}
if (any(!c("TaxonConceptID", "operator", "value") %in%
colnames(object@dominants))) {
return("Columns 'TaxonConceptID', 'operator', and 'value' are mandatory in slot 'dominants'")
}
if (any(duplicated(apply(object@dominants, 1, function(x) {
gsub(" ", "", paste(x, collapse = " "),
fixed = TRUE
)
})))) {
return("Some rules in slot 'dominants' are duplicated")
}
if (is.null(names(object@formulas))) {
return("Members of slot 'formulas' have to be named")
}
if (any(duplicated(do.call(c, object@formulas)))) {
return("Some formulas are duplicated")
}
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/shaker-class.R
|
#' @name subset
#' @aliases subset,vegtable-method
#'
#' @title Subset functions for vegtable objects
#'
#' @description
#' Produce subsets of [vegtable-class] objects.
#'
#' Logical operations can be applied either to the plots, or the
#' relations, which are the main slots in that class.
#'
#' This method can be referred to the slot `species` the same way as
#' [taxlist::subset()], then the rest of the data will include only
#' references to the subset of species list.
#'
#' @param x A [vegtable-class] object for subset.
#' @param subset Logical expression for the subset.
#' @param slot Character value indicating the slot used as reference for subset.
#' At the moment only the values "taxonNames", "taxonRelations",
#' "taxonTraits", "header", "samples", and "relations" are accepted.
#' The three first values will be applied to the respective slots in the
#' contained [taxlist-class] object (slot **species**).
#' @param keep_children Argument passed to [taxlist::get_children()].
#' @param keep_parents Argument passed to [taxlist::get_parents()].
#' @param relation Character value indicating the relation (slot **relations**)
#' to be used as reference for subset.
#' @param ... Further arguments passed from or to other methods.
#'
#' @return A S4 object of class [vegtable-class].
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' ## Subset by taxon name
#' Kenya_sub <- subset(
#' x = Kenya_veg, subset = TaxonName == "Tagetes",
#' slot = "taxonNames", keep_children = TRUE, keep_parents = TRUE
#' )
#' summary(Kenya_sub)
#' summary(Kenya_sub@species)
#'
#' ## Subset by taxon relations
#' Kenya_sub <- subset(
#' x = Kenya_veg, subset = Level == "species",
#' slot = "taxonRelations"
#' )
#' summary(Kenya_sub)
#' summary(Kenya_sub@species)
#'
#' ## Subset by taxon traits
#' Kenya_sub <- subset(
#' x = Kenya_veg, subset = lf_behn_2018 == "obligate_annual",
#' slot = "taxonTraits"
#' )
#' summary(Kenya_sub)
#' summary(Kenya_sub@species)
#'
#' ## Subset by header
#' Kenya_sub <- subset(x = Kenya_veg, subset = ALTITUDE <= 1000, slot = "header")
#' summary(Kenya_sub)
#'
#' ## Subset by samples (after converting coverage)
#' Kenya_veg <- cover_trans(x = Kenya_veg, to = "cover_percentage", rule = "middle")
#' Kenya_sub <- subset(x = Kenya_veg, subset = cover_percentage >= 50, slot = "samples")
#' summary(Kenya_sub)
#'
#' ## Subset by relations
#' Kenya_sub <- subset(
#' x = Kenya_veg, subset = as.integer(YEAR) >= 2000,
#' slot = "relations", relation = "REFERENCE"
#' )
#' summary(Kenya_sub)
#' @exportMethod subset
#'
setMethod(
"subset", signature(x = "vegtable"),
function(x, subset, slot = "header", keep_children = FALSE,
keep_parents = FALSE, relation, ...) {
p_slots <- c(
"taxonNames", "taxonRelations", "taxonTraits",
"header", "samples", "relations"
)
if (!slot %in% p_slots) {
stop(paste0(
"Only following values are allowed for argument ",
"'slot':\n\"", paste0(p_slots,
collapse = "\" \""
), "\"."
))
}
subset <- substitute(subset)
# For subsets by taxonomic list
if (slot %in% p_slots[1:3]) {
# Duplicate taxlist object
z <- x@species
# in taxonNames
if (slot == p_slots[1]) {
subset <- eval(subset, z@taxonNames, parent.frame())
subset[is.na(subset)] <- FALSE
z@taxonNames <- z@taxonNames[subset, ]
}
# in taxonRelations
if (slot == p_slots[2]) {
subset <- eval(subset, z@taxonRelations, parent.frame())
subset <- subset[!is.na(subset)]
z@taxonRelations <- z@taxonRelations[subset, ]
}
# in taxonTraits
if (slot == p_slots[3]) {
subset <- eval(subset, z@taxonTraits, parent.frame())
subset[is.na(subset)] <- FALSE
z@taxonTraits <- z@taxonTraits[subset, ]
z@taxonRelations <- z@taxonRelations[
z@taxonRelations$TaxonConceptID %in%
z@taxonTraits$TaxonConceptID,
]
}
# clean invalid taxlist object
z <- clean(z)
# recover relatives
if (keep_children) {
z <- get_children(x@species, z)
}
if (keep_parents) {
z <- get_parents(x@species, z)
}
# back to x
x@species <- z
}
# in header
if (slot == p_slots[4]) {
subset <- eval(subset, x@header, parent.frame())
subset[is.na(subset)] <- FALSE
x@header <- x@header[subset, ]
}
# in samples
if (slot == p_slots[5]) {
subset <- eval(subset, x@samples, parent.frame())
subset[is.na(subset)] <- FALSE
x@samples <- x@samples[subset, ]
}
# in relations
if (slot == p_slots[6] & !missing(relation)) {
if (!relation %in% names(x@relations)) {
stop(paste0("\"", relation, "\" is not a relation in x."))
}
subset <- eval(subset, x@relations[[relation]], parent.frame())
subset[is.na(subset)] <- FALSE
x@relations[[relation]] <- x@relations[[relation]][subset, ]
x@header <- x@header[paste(x@header[, relation]) %in%
paste(x@relations[[relation]][, relation]), ]
}
# return clean object
return(clean(x))
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/subset.R
|
#' @name summary
#'
#' @title Summary method for vegtable objects
#'
#' @description
#' Display summaries for [vegtable-class] objects.
#'
#' Those methods are implemented for objects of the classes [vegtable-class],
#' [coverconvert-class] and [shaker-class].
#'
#' The method for class `vegtable` retrieves the metadata, the size of
#' the object, its validity and additional statistics on the content of input
#' object.
#'
#' For objects of class [shaker-class], the function `summary()` will either
#' retrieve general statistics when `companion` is missing, or a more detailed
#' display when accompained by a [taxlist-class] or [vegtable-class] object.
#'
#' @param object,x Object to be summarized.
#' @param units Units used for object size (passed to [format()]).
#' @param companion Companion object (either a [taxlist-class] or a
#' [vegtable-class] object.
#' @param authority Logical value indicating whether authors should be
#' displayed or not.
#' @param ... further arguments to be passed to or from other methods.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' ## Summary for 'vegtable' objects
#' summary(Wetlands_veg)
#' @rdname summary
#' @aliases summary,vegtable-method
#'
#' @exportMethod summary
#'
setMethod(
"summary", signature(object = "vegtable"),
function(object, units = "Kb", ...) {
# Show original attributes (metadata)
cat("## Metadata", "\n")
if (length(object@description) > 0) {
for (i in names(object@description)) {
cat(" ", i, ": ", object@description[i], sep = "", "\n")
}
}
cat(" object size:", format(object.size(object), units = units),
sep = " ", "\n"
)
cat(" validity:", validObject(object), "\n")
cat("\n")
# Content of some slots
cat("## Content", "\n")
cat(" number of plots:", nrow(object@header), sep = " ", "\n")
cat(" plots with records:",
length(unique(object@samples$ReleveID)),
sep = " ", "\n"
)
cat(" variables in header:", ncol(object@header), sep = " ", "\n")
cat(" number of relations:", length(object@relations),
sep = " ",
"\n"
)
cat("\n")
# Content of species list
cat("## Taxonomic List", "\n")
cat(" taxon names:", nrow(object@species@taxonNames),
sep = " ",
"\n"
)
cat(" taxon concepts:", nrow(object@species@taxonRelations),
sep = " ",
"\n"
)
cat(" validity:", validObject(object@species), sep = " ", "\n")
cat("\n")
}
)
#' @rdname summary
#' @aliases summary,coverconvert-method
#'
#' @examples
#' ## Summary for 'coverconvert' objects
#' summary(braun_blanquet)
setMethod(
"summary", signature(object = "coverconvert"),
function(object, ...) {
cat("## Number of cover scales:", length(object@value), "\n")
cat("\n")
for (i in names(object@value)) {
Levels <- paste(object@value[[i]])
Range_1 <- paste(object@conversion[[i]])[
-length(object@conversion[[i]])
]
Range_2 <- paste(object@conversion[[i]])[-1]
for (j in 1:length(Range_2)) {
if (duplicated(Range_2)[j]) Range_1[j] <- Range_1[j - 1]
}
cat(paste0("* scale '", i, "':"), "\n")
print(data.frame(Levels = Levels, Range = paste(
Range_1, "-",
Range_2
), stringsAsFactors = FALSE))
cat("\n")
}
}
)
#' Re-writing formulas for print output
#'
#' Mediating between syntax and print format.
#'
#' @param shaker A [shaker-class] object.
#' @param companion A companion data set which is either missing or a
#' [vegtable-class] object.
#'
#' @return A formated output text.
#'
#' @keywords internal
rewrite_formulas <- function(shaker, companion) {
EQ <- list()
for (i in names(shaker@formulas)) {
EQ[[i]] <- {
x <- shaker@formulas[[i]]
if (grepl("\'", x)) SYM <- "\'"
if (grepl('\"', x)) SYM <- '\"'
x <- gsub("groups[[", "groups:", x, fixed = TRUE)
x <- gsub("dominants[[", "species:", x, fixed = TRUE)
x <- gsub("]]", "", x, fixed = TRUE)
Spp <- as.numeric(unlist(regmatches(
x,
gregexpr(
"[[:digit:]]+\\.*[[:digit:]]*",
x
)
)))
if (length(Spp) > 0) {
for (j in Spp) {
subformula <- shaker@dominants[j, ]
subformula$TaxonConceptID <- companion[
match(
subformula$TaxonConceptID,
companion$TaxonConceptID
), "TaxonName"
]
subformula <- paste(subformula[1, ], collapse = " ")
x <- sub(paste0("species:", j), paste0(
"species:", SYM,
subformula, SYM
), x)
}
}
x
}
}
return(EQ)
}
#' @rdname summary
#' @aliases summary,shaker-method
#'
#' @examples
#' ## Summary for 'shaker' objects (alone and with companion)
#' summary(Wetlands, Wetlands_veg)
setMethod(
"summary", signature(object = "shaker"),
function(object, companion, authority = FALSE, ...) {
if (missing(companion)) {
cat("Number of pseudo-species:", length(object@pseudos), "\n")
cat("Number of species groups:", length(object@groups), "\n")
cat("Number of formulas:", length(object@formulas), "\n")
} else {
if (is(companion, "vegtable")) {
companion <- companion@species
}
companion <- accepted_name(companion)
if (authority) {
companion$AuthorName[is.na(companion$AuthorName)] <- ""
companion$TaxonName <- with(companion, paste(
TaxonName,
AuthorName
))
}
if (length(object@pseudos) > 0) {
cat("## Pseudo-species:", "\n")
for (i in 1:length(object@pseudos)) {
cat(
"*", paste0(
"'",
companion[
match(
object@pseudos[[i]][1],
companion$TaxonConceptID
),
"TaxonName"
], "'"
),
"contains:", "\n"
)
for (j in 2:length(object@pseudos[[i]])) {
cat(" ", companion[
match(
object@pseudos[[i]][j],
companion$TaxonConceptID
),
"TaxonName"
], "\n")
}
}
cat("\n")
}
if (length(object@groups) > 0) {
cat("## Species groups:", "\n")
for (i in 1:length(object@groups)) {
cat("*", paste0(
"'", names(object@groups)[i],
"' group:"
), "\n")
for (j in 1:length(object@groups[[i]])) {
cat(" ", companion[
match(
object@groups[[i]][j],
companion$TaxonConceptID
),
"TaxonName"
], "\n")
}
}
cat("\n")
}
if (length(object@formulas) > 0) {
cat("## Formulas:", "\n")
EQ <- rewrite_formulas(object, companion)
for (i in 1:length(object@formulas)) {
cat(
"*", paste0(names(object@formulas)[i], ":"),
EQ[[i]], "\n"
)
}
cat("\n")
}
}
}
)
################################################################################
#' @rdname summary
#'
#' @aliases show,vegtable-method
#'
#' @exportMethod show
setMethod(
"show", signature(object = "vegtable"),
function(object) {
summary(object)
}
)
#' @rdname summary
#'
#' @aliases print,vegtable-method
setMethod(
"print", signature(x = "vegtable"),
function(x, ...) {
summary(x, ...)
}
)
################################################################################
#' @rdname summary
#'
#' @aliases show,coverconvert-method
#'
#' @exportMethod show
setMethod(
"show", signature(object = "coverconvert"),
function(object) {
summary(object)
}
)
#' @rdname summary
#'
#' @aliases print,coverconvert-method
setMethod(
"print", signature(x = "coverconvert"),
function(x, ...) {
summary(x, ...)
}
)
################################################################################
#' @rdname summary
#'
#' @aliases show,shaker-method
#'
#' @exportMethod show
setMethod(
"show", signature(object = "shaker"),
function(object) {
summary(object)
}
)
#' @rdname summary
#'
#' @aliases print,shaker-method
setMethod(
"print", signature(x = "shaker"),
function(x, ...) {
summary(x, ...)
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/summary.R
|
#' @name taxa2samples
#'
#' @title Insert taxon information into samples
#'
#' @description
#' For statistical purposes it may be necessary to insert information on
#' recorded taxa into the slot samples, which contain the records of taxa in
#' sampling plots.
#' This can be also done selectivelly for specific taxonomic ranks and lower
#' ranks can be aggregated to their parental ones.
#'
#' If column **TaxonConceptID** is already existing in `'objec@@samples'`,
#' this column will get overwritten, retrieving a warning message.
#'
#' @param object A [vegtable-class] object.
#' @param merge_to Character value indicating the level (taxonomic rank) to
#' which taxa of lower rank have to be merged.
#' @param include_levels Character vector indicating the levels to be considered
#' in the output object. This will set the values of **TaxonConceptID** and
#' any respective values inserted from slots **taxonRelations** and
#' **taxonTraits** as NA.
#' @param add_relations A logical value indicating whether the content of slot
#' **taxonRelations** have to be inserted in slot **samples** or not.
#' @param add_traits A logical value indicating whether the content of slot
#' **taxonTraits** have to be inserted in slot **samples** or not.
#' @param ... Further arguments passed among methods.
#'
#' @return An object of class [vegtable-class].
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' ## Add only variable TaxonConceptID
#' veg <- taxa2samples(Kenya_veg)
#' head(veg@samples)
#'
#' ## Add also information from slots taxonRelations and taxonTraits
#' veg <- taxa2samples(Kenya_veg, add_relations = TRUE, add_traits = TRUE)
#' head(veg@samples)
#'
#' ## Different ranks recorded at samples
#' veg <- taxa2samples(Kenya_veg, add_relations = TRUE)
#' summary(veg@samples$Level)
#'
#' ## Aggregate taxa to family level
#' veg <- taxa2samples(Kenya_veg, add_relations = TRUE, merge_to = "family")
#' summary(veg@samples$Level)
#'
#' @rdname taxa2samples
#'
#' @aliases taxa2samples
#'
#' @export taxa2samples
taxa2samples <- function(object, ...) {
UseMethod("taxa2samples", object)
}
#' @rdname taxa2samples
#' @aliases taxa2samples,vegtable-method
#' @method taxa2samples vegtable
#' @export
taxa2samples.vegtable <- function(object, merge_to, include_levels,
add_relations = FALSE, add_traits = FALSE,
...) {
# Delete existing entries for TaxonConceptIDs
if ("TaxonConceptID" %in% names(object@samples)) {
warning(paste(
"Entries of 'TaxonConceptID' detected in 'objec@samples'.",
"They will get overwritten."
))
object@samples <- object@samples[
,
names(object@samples) != "TaxonConceptID"
]
}
# Internal objects
spp <- used_concepts(object, keep_children = TRUE, keep_parents = TRUE)
samples <- data.frame(TaxonUsageID = unique(object@samples$TaxonUsageID))
samples$TaxonConceptID <- spp@taxonNames$TaxonConceptID[
match(samples$TaxonUsageID, spp@taxonNames$TaxonUsageID)
]
# Merge to level
if (!missing(merge_to)) {
if (!merge_to[1] %in% levels(spp)) {
stop(paste(
"Value of argument 'merge_to' is not a level in",
"'object'."
))
}
x <- which(levels(spp) == merge_to[1]) - 1
for (i in 1:x) {
Level <- spp@taxonRelations$Level[match(
samples$TaxonConceptID,
spp@taxonRelations$TaxonConceptID
)]
concept <- unique(samples$TaxonConceptID[as.integer(Level) == i &
!is.na(Level)])
if (length(concept) > 0) {
concept_parent <- spp@taxonRelations$Parent[match(
concept,
spp@taxonRelations$TaxonConceptID
)]
samples$TaxonConceptID <- replace_x(samples$TaxonConceptID,
old = concept, new = concept_parent
)
}
}
}
# Select some ranks
if (!missing(include_levels)) {
no_level <- include_levels[!include_levels %in% levels(spp)]
if (length(no_level) > 0) {
stop(paste0(
"These values of 'include_levels' are not levels ",
"at slot 'species':\n'", paste0(no_level, collapse = "', '"),
"'"
))
}
Level <- spp@taxonRelations$Level[match(
samples$TaxonConceptID,
spp@taxonRelations$TaxonConceptID
)]
samples <- samples[paste(Level) %in% include_levels & !is.na(Level), ]
}
if (add_relations) {
samples <- merge(samples, spp@taxonRelations, sort = FALSE)
}
if (add_traits) {
samples <- merge(samples, spp@taxonTraits, sort = FALSE, all.x = TRUE)
}
object@samples <- merge(object@samples, samples,
by = "TaxonUsageID",
sort = FALSE, all.x = TRUE,
suffixes = c("", "_y") # Preserve original column name
)
return(object)
}
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/taxa2samples.R
|
#' @name trait_stats
#'
#' @title Statistics and proportion for taxon traits
#'
#' @description
#' Calculation of statistics and proportions of taxon traits for plot
#' observations or groups of observations, considering data relationships,
#' taxonomic ranks and the handling of not available values.
#'
#' In `trait_stats()` you can use customized functions, which have to be
#' defined as `foo(x, w, ...)`, where `'x'` is the (numeric) taxon trait and
#' `'w'` is the weight (e.g. the abundance).
#'
#' With the arguments `taxon_levels` and `merge_to` the used taxonomic ranks
#' can be defined, where the first one indicates which ranks
#' have to be considered in the calculations and the second one determine the
#' aggregation of taxa from a lower level to a parental one.
#'
#' @param trait Either a character value indicating the name of trait variable
#' or a formula as `'trait ~ head_var'`. Note that you can add multiple
#' variables in the form `trait_1 + ... + trait_n ~ head_var`.
#' @param object A [vegtable-class] object.
#' @param FUN A function usually defined as `foo(x, ...)` or as
#' `foo(x, w, ...)` for weighted statistics.
#' @param head_var Character value, the name of the variable at slot header to
#' be used as aggregation level for the calculation of statistics or
#' proportions.
#' If not provided, the function will use **ReleveID** by default.
#' @param trait_levels Character vector indicating a selection of levels from a
#' trait, in the case that some levels should be ignored in the output.
#' Trait levels that are skipped at output will be still used for the
#' calculation of proportions.
#' This argument gets only applied for the character method.
#' @param taxon_levels Character vector indicating the selected taxonomic ranks
#' to be considered in the output.
#' @param merge_to Character value indicating the taxonomic rank for
#' aggregation of taxa.
#' All ranks lower than the one indicated here will be assigned to the
#' respective parents at the required taxonomic rank.
#' @param include_nas Logical value indicating whether NAs should be considered
#' for the calculation of proportions or not.
#' @param weight Character value indicating the name of the variable at slot
#' **samples** used as weight for the proportions. Usually the numeric
#' abundance.
#' @param suffix A suffix added to the name of the trait variable or to the
#' levels of categorical trait variables. I is meant to avoid homonymous
#' variables within the same object.
#' @param in_header Logical value indicating whether the output should be
#' inserted in the slot **header** or provided as data frame. In the case
#' that `'head_var'` (or the right term in the formula method) is different
#' from **ReleveID**, the statistics and proportions will be inserted in the
#' respective data frame at slot **relations**.
#' @param na.rm A logical value indicating whether NAs should be removed for the
#' calculation of statistics or not. It is passed to `'FUN'` in
#' `trait_stats()`.
#' @param ... Further arguments passed among methods. In the case of the
#' character method, they are passed to 'FUN'.
#'
#' @return
#' A data frame with the proportions of traits levels or statistics for
#' the trait variable, or an object of class [vegtable-class] including those
#' results at the slot `header`.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' veg <- cover_trans(Kenya_veg, to = "cover")
#' veg <- trait_proportion("lf_behn_2018", veg,
#' trait_levels = "obligate_annual", weight = "cover", include_nas = FALSE
#' )
#' summary(veg$obligate_annual_prop)
#' @rdname trait_stats
NULL
#' @name check_args
#' @title Check validity of arguments for statistics
#' @description
#' Check validity of arguments in functions [trait_stats()] and
#' [trait_proportion()].
#' @keywords internal
check_args <- function(object, trait, head_var, weight, taxon_levels, merge_to,
trait_levels) {
if (!all(trait %in% names(object@species@taxonTraits))) {
trait <- trait[!trait %in% names(object@species@taxonTraits)]
stop(paste0(
"Following values in 'trait' are missing at ",
"'object@species@taxonTraits': ",
paste0(trait, collapse = ", "), "."
))
}
if (!head_var %in% colnames(object@header)) {
stop("Value of argument 'head_var' is not a variable at header.")
}
if (!missing(taxon_levels)) {
if (!all(taxon_levels %in% taxlist::levels(object@species))) {
taxon_levels <- taxon_levels[!taxon_levels %in%
taxlist::levels(object@species)]
stop(paste0(
"Following values in 'taxon_levels'",
"are not taxonomic ranks at 'object@species': ",
paste0(taxon_levels, collapse = ", "), "."
))
}
}
if (!missing(merge_to)) {
if (!merge_to %in% taxlist::levels(object@species)) {
stop(paste(
"Value of in argument 'merge_to'",
"is not included in the taxonomic list."
))
}
}
if (!missing(weight)) {
if (!weight %in% colnames(object@samples)) {
stop("Value of argument 'weight' is not included at slot samples.")
}
}
if (!missing(trait_levels)) {
if (!all(trait_levels %in% object@species@taxonTraits[, trait])) {
trait_levels <- trait_levels[!trait_levels %in%
object@species@taxonTraits[, trait]]
stop(paste0(
"Following values of 'trait_levels' ",
"are not included in trait '", trait, "': '",
paste0(trait_levels, collapse = "', '"), "'."
))
}
}
}
#' @rdname trait_stats
#' @exportMethod trait_stats
setGeneric(
"trait_stats",
function(trait, object, ...) {
standardGeneric("trait_stats")
}
)
#' @rdname trait_stats
#' @aliases trait_stats,character,vegtable-method
setMethod(
"trait_stats", signature(trait = "character", object = "vegtable"),
function(trait, object, FUN, head_var = "ReleveID", taxon_levels, merge_to,
weight, suffix = "_stats", in_header = TRUE, na.rm = TRUE, ...) {
# Check conditions
check_args(object, trait, head_var, weight, taxon_levels, merge_to)
# Retain original object
object_in <- object
# Transfer head variable to samples
if (head_var != "ReleveID") {
object@samples[, head_var] <- with(
object@header,
replace_x(
object@samples$ReleveID, ReleveID,
get(head_var)
)
)
}
# Get traits in slot samples
if (missing(taxon_levels)) {
taxon_levels <- taxlist::levels(object_in@species)
}
if (missing(merge_to)) {
object <- taxa2samples(object,
include_levels = taxon_levels,
add_traits = TRUE
)
} else {
object <- taxa2samples(object,
include_levels = taxon_levels,
add_traits = TRUE, merge_to = merge_to
)
}
# In case of weighted statistics
if (!missing(weight)) {
OUT <- list()
OUT[[head_var]] <- unique(object@samples[, head_var])
for (i in trait) {
x <- with(object@samples, split(get(i), get(head_var)))
w <- with(object@samples, split(get(weight), get(head_var)))
OUT[[i]] <- mapply(FUN, x = x, w = w, na.rm = na.rm, ...)
}
OUT <- as.data.frame(OUT)
} else {
OUT <- aggregate(
as.formula(paste0(
"cbind(", paste0(trait, collapse = ","), ") ~ ",
head_var
)), object@samples, FUN,
na.rm = na.rm, ...
)
}
names(OUT) <- replace_x(names(OUT),
old = trait,
new = paste0(trait, suffix)
)
# Finally the output
if (in_header) {
if (head_var == "ReleveID") {
for (i in names(OUT)[names(OUT) != head_var]) {
object_in@header[, i] <- OUT[match(
object_in@header[, head_var],
OUT[, head_var]
), i]
}
return(object_in)
} else {
if (!head_var %in% names(object_in@relations)) {
new_relation(object_in) <- head_var
}
for (i in names(OUT)[names(OUT) != head_var]) {
object_in@relations[[head_var]][, i] <- OUT[
match(
object_in@relations[[head_var]][, head_var],
OUT[, head_var]
), i
]
}
return(object_in)
}
} else {
return(OUT)
}
}
)
#' @rdname trait_stats
#' @aliases trait_stats,formula,vegtable-method
setMethod(
"trait_stats", signature(trait = "formula", object = "vegtable"),
function(trait, object, ...) {
head_var <- all.vars(update(trait, 0 ~ .))
trait <- all.vars(update(trait, . ~ 0))
return(trait_stats(trait, object, head_var = head_var, ...))
}
)
#' @rdname trait_stats
#' @aliases trait_proportion
#' @exportMethod trait_proportion
setGeneric(
"trait_proportion",
function(trait, object, ...) {
standardGeneric("trait_proportion")
}
)
#' @rdname trait_stats
#' @aliases trait_proportion,character,vegtable-method
setMethod(
"trait_proportion", signature(trait = "character", object = "vegtable"),
function(trait, object, head_var = "ReleveID", trait_levels, taxon_levels, merge_to,
include_nas = TRUE, weight, suffix = "_prop", in_header = TRUE,
...) {
# Only one trait is allowed for this function
if (length(trait) > 1) {
stop("Only one trait can be assessed by 'trait_proportion'.")
}
# Check conditions
check_args(
object, trait, head_var, weight, taxon_levels, merge_to,
trait_levels
)
# Retain original object
object_in <- object
# Transfer head variable to samples
if (head_var != "ReleveID") {
object@samples[, head_var] <- with(
object@header,
replace_x(
object@samples$ReleveID, ReleveID,
get(head_var)
)
)
}
# Get traits in slot samples
if (missing(taxon_levels)) {
taxon_levels <- taxlist::levels(object_in@species)
}
if (missing(merge_to)) {
object <- taxa2samples(object,
include_levels = taxon_levels,
add_traits = TRUE
)
} else {
object <- taxa2samples(object,
include_levels = taxon_levels,
add_traits = TRUE, merge_to = merge_to
)
}
# Include NAs
if (include_nas) {
object@samples[is.na(object@samples[, trait]), trait] <- "NA"
} else {
object@samples <- object@samples[!is.na(object@samples[, trait]), ]
}
# Calculate output
if (missing(weight)) {
weight <- "count_presence"
count_presence <- rep(1, nrow(object@samples))
}
OUT <- aggregate(as.formula(paste(weight, "~", trait, "+", head_var)),
data = object@samples, FUN = sum
)
SUM <- aggregate(as.formula(paste(weight, "~", head_var)),
data = object@samples, FUN = sum
)
SUM <- SUM[match(OUT[, head_var], SUM[, head_var]), weight]
OUT[, weight] <- OUT[, weight] / SUM
# Filter to selected trait levels
if (!missing(trait_levels)) {
OUT <- OUT[OUT[, trait] %in% trait_levels, ]
}
OUT[, trait] <- paste0(OUT[, trait], suffix)
OUT <- crosstable(
as.formula(paste(
weight, "~", trait, "+",
head_var
)), OUT, sum,
na_to_zero = TRUE
)
# Last output
if (in_header) {
if (head_var == "ReleveID") {
for (i in names(OUT)[names(OUT) != head_var]) {
object_in@header[, i] <- OUT[match(
object_in@header[, head_var],
OUT[, head_var]
), i]
}
return(object_in)
} else {
if (!head_var %in% names(object_in@relations)) {
new_relation(object_in) <- head_var
}
for (i in names(OUT)[names(OUT) != head_var]) {
object_in@relations[[head_var]][, i] <- OUT[
match(
object_in@relations[[head_var]][, head_var],
OUT[, head_var]
), i
]
}
return(object_in)
}
} else {
return(OUT)
}
}
)
#' @rdname trait_stats
#' @aliases trait_proportion,formula,vegtable-method
setMethod(
"trait_proportion", signature(trait = "formula", object = "vegtable"),
function(trait, object, ...) {
head_var <- all.vars(update(trait, 0 ~ .))
trait <- all.vars(update(trait, . ~ 0))
return(trait_proportion(trait, object, head_var = head_var, ...))
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/trait_stats.R
|
#' @name tv2vegtable
#'
#' @title Import of vegetation data from Turboveg databases
#'
#' @description
#' Import function for **Turboveg** databases into an object of class
#' [vegtable-class].
#' Most of the contents of **Turboveg** databases are included in DBF files and
#' therefore imported by the function [foreign::read.dbf()].
#' The automatic setting of database path will be done by the function
#' [vegdata::tv.home()] but it can be customised by the argument `tv_home`.
#'
#' The species list will be imported by using the function
#' [taxlist::tv2taxlist()] and therefore formatted as a [taxlist-class] object.
#' Similarly, conversion tables will be handled as [coverconvert-class] objects.
#'
#' Empty columns in the header will be deleted in the imported object.
#'
#' The function `tv2coverconvert()` reads the content of cover conversion
#' tables stored in **Turboveg** and attempts to reformat them in a more
#' comprehensive structure.
#'
#' This function is used by `tv2vegtable()` to import the respective
#' conversion table from **Turboveg** databases.
#' Note that conversion tables in **Turboveg** have only stored the middle
#' point for each cover class in a scale, thus it will be recommended to
#' rebuild the `coverconvert` slot or use [braun_blanquet].
#'
#' @param db Name of **Turboveg** data base as character value.
#' @param tv_home **Turboveg** installation path as character value.
#' @param skip_empty_relations Logical value indicating whether empty relations
#' may be excluded from imported database or not.
#' @param skip_scale Character value indicating scales to be excluded in slot
#' `coverconvert`.
#' @param clean Logical value indicating whether output object should be
#' cleaned or not.
#'
#' @return
#' A [vegtable-class] object in the case of `tv2vegtable()`.
#' A [coverconvert-class] object in the case of `tv2coverconvert()`.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @seealso [taxlist::tv2taxlist()] [foreign::read.dbf()] [vegdata::tv.home()]
#'
#' @examples
#' ## Installed 'Turboveg' version of 'Fujiwara et al. (2014)'
#' # TV_Home <- file.path(path.package("vegtable"), "tv_data")
#' # Veg <- tv2vegtable("Fujiwara_2014", TV_Home)
#' # summary(Veg)
#' @rdname tv2vegtable
#'
#' @export
#'
tv2vegtable <- function(db, tv_home = tv.home(), skip_empty_relations = TRUE,
skip_scale, clean = TRUE) {
# Import meta data ---------------------------------------------------------
description <- unlist(c(db, read.dbf(file.path(
tv_home, "Data", db,
"tvwin.dbf"
), as.is = TRUE)[, c(
"FLORA",
"DICTIONARY"
), drop = FALSE]))
names(description) <- c("db_name", "sp_list", "dictionary")
# Importing samples --------------------------------------------------------
samples <- read.dbf(file.path(tv_home, "Data", db, "tvabund.dbf"),
as.is = TRUE
)
colnames(samples)[colnames(samples) == "RELEVE_NR"] <- "ReleveID"
colnames(samples)[colnames(samples) == "SPECIES_NR"] <- "TaxonUsageID"
colnames(samples)[grepl("ORIG_NAME", colnames(samples))] <- "ORIG_NAME"
samples$COVER_CODE[samples$COVER_CODE == "9X"] <- "100"
samples$COVER_CODE[samples$COVER_CODE == "99"] <- "100"
# Importing header data ----------------------------------------------------
header <- read.dbf(file.path(tv_home, "Data", db, "tvhabita.dbf"),
as.is = TRUE
)
colnames(header)[colnames(header) == "RELEVE_NR"] <- "ReleveID"
# Formating dates and some numeric variables
header$DATE <- as.Date(header$DATE, format = "%Y%m%d")
header$ALTITUDE <- as.numeric(header$ALTITUDE)
header$INCLINATIO <- as.numeric(header$INCLINATIO)
# replacing zero values with NAs
cat("zero values will be replaced by NAs", "\n")
for (i in colnames(header)) {
if (is.numeric(header[, i])) header[, i][header[, i] == 0] <- NA
}
remarks <- read.dbf(file.path(tv_home, "Data", db, "remarks.dbf"),
as.is = TRUE
)
remarks <- split(remarks$REMARKS, remarks$RELEVE_NR)
for (i in as.integer(names(remarks))) {
header[header$ReleveID == i, "REMARKS"] <- paste(
header[
header$ReleveID == i, "REMARKS"
],
paste(remarks[[paste(i)]], collapse = " "),
collapse = " "
)
}
# Importing coverconvert ---------------------------------------------------
if (!is.na(description["dictionary"])) {
cover_home <- file.path(
tv_home, "popup", description["dictionary"],
"tvscale.dbf"
)
} else {
cover_home <- file.path(tv_home, "popup", "tvscale.dbf")
}
coverconvert <- tv2coverconvert(cover_home)
if (!missing(skip_scale)) {
coverconvert@value <- coverconvert@value[
!names(coverconvert@value) %in% skip_scale
]
coverconvert@conversion <- coverconvert@conversion[
!names(coverconvert@conversion) %in% skip_scale
]
}
cover_match <- read.dbf(cover_home, as.is = TRUE)[, c(
"SCALE_NR", "SCALE_NAME",
"SCALE_CODE"
)]
cover_match$SCALE_CODE <- tolower(sub("/", "_", cover_match$SCALE_CODE,
fixed = TRUE
))
cover_code <- samples[, c("ReleveID", "COVER_CODE")]
cover_code$entry <- as.numeric(row.names(samples))
cover_code <- split(cover_code, header$COVERSCALE[match(
samples$ReleveID,
header$ReleveID
)])
for (i in names(cover_code)) {
samples[, cover_match[cover_match$SCALE_NR == i, "SCALE_CODE"]] <-
cover_code[[i]][match(
as.numeric(rownames(samples)),
cover_code[[i]]$entry
), "COVER_CODE"]
}
# Get percentage to numeric
cover_code <- cover_match[cover_match$SCALE_NR == "00", "SCALE_CODE"]
if (cover_code %in% colnames(samples)) {
samples[, cover_code] <- as.numeric(samples[, cover_code])
}
for (i in slotNames(coverconvert)) {
slot(coverconvert, i) <-
slot(coverconvert, i)[names(slot(coverconvert, i)) !=
cover_code]
}
# Factorize
cover_code <- names(coverconvert)[names(coverconvert) != cover_code]
for (i in cover_code) {
if (i %in% colnames(samples)) {
samples[, i] <- factor(samples[, i],
levels = base::levels(coverconvert@value[[i]])
)
}
}
# Importing relations ------------------------------------------------------
if (is.na(description["dictionary"])) {
relations_path <- file.path(tv_home, "popup")
} else {
relations_path <- file.path(
tv_home, "popup",
description["dictionary"]
)
}
Files <- list.files(relations_path, pattern = ".dbf", ignore.case = TRUE)
Files <- Files[!toupper(Files) %in% c(
"dbasedic.dbf", "files.dbf",
"tvscale.dbf"
)]
relations <- list()
for (i in Files) {
relations[[tolower(i)]] <- read.dbf(file.path(relations_path, i),
as.is = TRUE
)
}
# some changes are needed in the standard relations
colnames(relations$country.dbf)[1:2] <- c("COUNTRY", "COUNTRY_NAME")
colnames(relations$syntaxa.dbf)[1:2] <- c("SYNTAXON", "SYNTAXON_NAME")
colnames(relations$tvauthor.dbf)[1] <- c("AUTHOR")
# Next cases have to be reformatted
relations$tvauthor.dbf[, 1] <- as.integer(relations$tvauthor.dbf[, 1])
relations$tvprojct.dbf[, 1] <- as.integer(relations$tvprojct.dbf[, 1])
relations$tvrefenc.dbf[, 1] <- as.integer(relations$tvrefenc.dbf[, 1])
relations$syntaxa.dbf[, 1] <- as.integer(relations$syntaxa.dbf[, 1])
# Deleting empty relations
if (skip_empty_relations) relations <- relations[sapply(relations, nrow) > 0]
# Rename relations as first column
names(relations) <- sapply(sapply(relations, colnames), "[", 1)
# Insert details of cover scales in relations
relations[["COVERSCALE"]] <- cover_match
colnames(relations[["COVERSCALE"]])[1] <- "COVERSCALE"
# Final object
VEG <- new("vegtable")
VEG@description <- description
VEG@samples <- samples
VEG@header <- header
VEG@species <- tv2taxlist(description["sp_list"], tv_home)
VEG@coverconvert <- coverconvert
for (i in names(relations)) {
if (colnames(relations[[i]])[1] %in% colnames(VEG@header)) {
veg_relation(VEG) <- relations[[i]]
}
}
if (clean) VEG <- clean(VEG)
return(VEG)
}
#' @rdname tv2vegtable
#' @aliases tv2coverconvert
#'
#' @param file A connection to a DBF file containing conversion table in
#' **Turboveg**.
#' @param as.is A logical value passed to [read.dbf()].
#'
#' @examples
#' ## Installed 'Turboveg' version of "Fujiwara et al. (2014)"
#' TV_Home <- file.path(path.package("vegtable"), "tv_data", "popup", "Swea")
#' Table <- tv2coverconvert(file.path(TV_Home, "tvscale.dbf"))
#'
#' ## First scale have to be deleted from conversion table
#' Table@value <- Table@value[-1]
#' Table@conversion <- Table@conversion[-1]
#' summary(Table)
#'
#' ## Compare the 'Turboveg' version with a vegtable version
#' data(braun_blanquet)
#' summary(Table$br_bl)
#' summary(braun_blanquet$br_bl)
#' @export
#'
tv2coverconvert <- function(file, as.is = TRUE) {
file <- read.dbf(file, as.is)
file <- split(file, file$SCALE_NR)
conversion <- new("coverconvert")
for (i in names(file)) {
short_name <- tolower(sub("/", "_", file[[i]]$SCALE_CODE, fixed = TRUE))
cover1 <- t(file[[i]][, seq(4, dim(file[[i]])[2], 2)])[, 1]
cover2 <- t(file[[i]][, seq(5, dim(file[[i]])[2], 2)])[, 1]
cover2 <- cover2[!is.na(cover1)]
cover1 <- cover1[!is.na(cover1)]
cover1 <- cover1[order(cover2)]
cover2 <- cover2[order(cover2)]
names(cover1) <- names(cover2) <- NULL
conversion@value[[short_name]] <- factor(cover1, levels = cover1)
conversion@conversion[[short_name]] <- c(0, cover2)
}
return(conversion)
}
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/tv2vegtable.R
|
#' @name update_det
#'
#' @title Update by determined specimens
#'
#' @description
#' Reference specimens can be integrated in slot **layers** within a
#' [vegtable-class] object.
#' Updated entries in the specimens can be updated in slot **samples** by using
#' this function.
#' Alternatively expert opinions can be inserted and applied in case of
#' disagreement with the original records.
#'
#' @param x A [vegtable-class] object to be updated.
#' @param specimens A character vector indicating the names of tables included
#' in slot **layers** with updates to be applied.
#' Note that they will be applied in the same order of the vector in the
#' case of multiple updates.
#' @param ... Further arguments (not yet in use).
#'
#' @rdname update_det
#'
#' @exportMethod update_det
#'
setGeneric(
"update_det",
function(x, specimens, ...) {
standardGeneric("update_det")
}
)
#' @rdname update_det
#'
#' @aliases update_det,vegtable-method
#'
setMethod(
"update_det", signature(x = "vegtable", specimens = "character"),
function(x, specimens, ...) {
if (any(!specimens %in% names(x@layers))) {
stop(paste(
"Some values in 'specimens' are not included",
"as layer in 'x'."
))
}
for (i in specimens) {
if (!"TaxonUsageID" %in% colnames(x@layers[[i]])) {
stop(paste0(
"At \"", i, "\", column 'TaxonUsageID' is ",
"mandatory in list of specimens."
))
}
specimens_tab <- x@layers[[i]][x@layers[[i]][, i] %in%
x@samples[, i], ]
if (any(!specimens_tab$TaxonUsageID %in%
x@species@taxonNames$TaxonUsageID)) {
stop(paste0(
"At \"", i, "\", some taxon usage names ",
"are not included in slot 'species'."
))
}
x@samples$TaxonUsageID <- replace_idx(
x@samples$TaxonUsageID,
x@samples[, i], specimens_tab[, i],
specimens_tab$TaxonUsageID
)
}
# In the case that taxa2samples was applied before
if ("TaxonConceptID" %in% colnames(x@samples)) {
warning("You may like to repeat 'taxa2samples()' on 'x'.")
}
return(x)
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/update_det.R
|
#' @name used_synonyms
#'
#' @title Retrieve synonyms or taxon concepts used in a data set
#'
#' @description
#' Plots records are rather linked to plant names than plant taxon concepts and
#' `used_synonyms()` lists all synonyms linked to records in a [vegtable-class]
#' object, including their respective accepted names.
#'
#' On the other side, the function `used_concepts()` produces a subset of the
#' taxonomic list embeded in the slot **species** including only taxonomic
#' concepts linked to records in the slot **samples**.
#'
#' @param x A [vegtable-class] object.
#' @param keep_children A logical argument indicating whether children of
#' selected taxa should be included in the output or not.
#' This argument passed to [get_children()].
#' @param keep_parents A logical argument indicating whether parents of
#' selected taxa should be included in the output or not.
#' This argument passed to [get_parents()].
#' @param ... Further arguments to be passed from or to another methods.
#'
#' @return
#' The function `used_synonyms()` returns a data frame including following
#' variables:
#' \describe{
#' \item{SynonymID}{ID of the taxon usage name applied as synonym.}
#' \item{Synonym}{The synonym itself.}
#' \item{SynonymAuthor}{Author of synonym.}
#' \item{TaxonConceptID}{ID of the respective taxon concept.}
#' \item{AcceptedNameID}{ID of the taxon usage name set as accepted name of
#' the taxon concept.}
#' \item{AcceptedName}{The respective accepted name.}
#' \item{AcceptedNameAuthor}{The author of the accepted name.}
#' }
#'
#' The function `used_concepts()` returns a [taxlist-class] object including
#' only taxa occurring in the plot observations of the input [vegtable-class]
#' object.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @seealso [accepted_name()]
#'
#' @examples
#' ## Synonyms used in the Kenya_veg
#' Synonyms <- used_synonyms(Kenya_veg)
#' head(Synonyms)
#'
#' ## Subset species list to used concepts
#' species <- used_concepts(Kenya_veg)
#' Kenya_veg@species
#' species
#'
#' @rdname used_synonyms
#' @export
used_synonyms <- function(x, ...) {
UseMethod("used_synonyms", x)
}
#' @rdname used_synonyms
#' @aliases used_synonyms,vegtable-method
#' @method used_synonyms vegtable
#' @export
used_synonyms.vegtable <- function(x, ...) {
SYN <- x@samples$TaxonUsageID[!x@samples$TaxonUsageID %in%
x@species@taxonRelations$AcceptedName]
SYN <- data.frame(SynonymID = unique(SYN), stringsAsFactors = FALSE)
SYN$Synonym <- x@species@taxonNames$TaxonName[match(
SYN$SynonymID,
x@species@taxonNames$TaxonUsageID
)]
SYN$SynonymAuthor <- x@species@taxonNames$AuthorName[
match(SYN$SynonymID, x@species@taxonNames$TaxonUsageID)
]
SYN$TaxonConceptID <- x@species@taxonNames$TaxonConceptID[
match(SYN$SynonymID, x@species@taxonNames$TaxonUsageID)
]
SYN$AcceptedNameID <- x@species@taxonRelations$AcceptedName[
match(
SYN$TaxonConceptID,
x@species@taxonRelations$TaxonConceptID
)
]
SYN$AcceptedName <- x@species@taxonNames$TaxonName[
match(
SYN$AcceptedNameID,
x@species@taxonNames$TaxonUsageID
)
]
SYN$AcceptedNameAuthor <- x@species@taxonNames$AuthorName[
match(
SYN$AcceptedNameID,
x@species@taxonNames$TaxonUsageID
)
]
return(SYN)
}
#' @rdname used_synonyms
#' @export
used_concepts <- function(x, ...) {
UseMethod("used_concepts", x)
}
#' @rdname used_synonyms
#' @aliases used_concepts,vegtable-method
#' @method used_concepts vegtable
#' @export
used_concepts.vegtable <- function(x, keep_children = FALSE,
keep_parents = FALSE, ...) {
concepts <- unique(x@species@taxonNames$TaxonConceptID[
x@species@taxonNames$TaxonUsageID %in%
x@samples$TaxonUsageID
])
z <- x@species
z@taxonRelations <- z@taxonRelations[
z@taxonRelations$TaxonConceptID %in% concepts,
]
z <- clean(z)
if (keep_children) {
z <- get_children(x@species, z)
}
if (keep_parents) {
z <- get_parents(x@species, z)
}
return(z)
}
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/used_synonyms.R
|
#' @name veg_aggregate
#' @rdname veg_aggregate
#'
#' @title Aggregating information into a data frame
#'
#' @description
#' Compute summarizing tables from [vegtable-class] objects.
#' This function works in a similar way as [crosstable()].
#'
#' @param object A formula indicating the variables used for the summary.
#' As in [crosstable()], the keywords `"TaxonName"` and `"AcceptedName"`
#' can be used to retrieve taxonomic names, where the second will set the
#' accepted name for names considered as synonyms.
#' @param data Either a data frame or an object of class [vegtable-class].
#' @param FUN Function used to aggregate values.
#' @param use_nas Logical value indicating whether NA's should be included in
#' categorical variables or not.
#' @param ... Further arguments passed to the function [stats::aggregate()].
#'
#' @return An object of class [data.frame].
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @seealso [aggregate()]
#'
#' @examples
#' ## Transform cover to percentage cover
#' veg <- cover_trans(x = Kenya_veg, to = "cover")
#'
#' ## Frequency of taxa per publication
#' atab <- veg_aggregate(object = cover ~ AcceptedName + REFERENCE, data = veg, FUN = length)
#' head(atab)
#'
#' ## Life form proportions per plot
#' atab <- veg_aggregate(object = cover ~ lf_behn_2018 + ReleveID, data = veg, FUN = sum)
#' head(atab)
#'
#' @exportMethod veg_aggregate
setGeneric(
"veg_aggregate",
function(object, data, FUN, ...) {
standardGeneric("veg_aggregate")
}
)
#' @rdname veg_aggregate
#' @aliases veg_aggregate,formula,vegtable,function-method
setMethod(
"veg_aggregate", signature(
object = "formula", data = "vegtable",
FUN = "function"
),
function(object, data, FUN, use_nas = TRUE, ...) {
Terms <- c(as.character(object)[2], attr(
terms(object),
"term.labels"
))
if (any(Terms %in% names(data@species@taxonTraits))) {
data <- taxa2samples(data, add_traits = TRUE)
}
if (any(c("TaxonName", "AcceptedName") %in% Terms)) {
if (all(c("TaxonName", "AcceptedName") %in% Terms)) {
stop(paste(
"Terms 'TaxonName' and 'AcceptedName'",
"are mutually exclusive in 'formula'"
))
}
data <- taxa2samples(data)
}
# Variables from samples
if (any(Terms %in% names(data@samples))) {
new_data <- data@samples[, colnames(data@samples) %in%
c("ReleveID", "TaxonUsageID", "TaxonConceptID", Terms), drop = FALSE]
} else {
if (any(Terms %in% c("TaxonName", "AcceptedName"))) {
new_data <- data@samples[
,
c("ReleveID", "TaxonUsageID", "TaxonConceptID")
]
} else {
new_data <- data.frame(ReleveID = integer())
}
}
# 1: when usage name requested
if ("TaxonName" %in% Terms) {
new_data$TaxonName <- data@species@taxonNames$TaxonName[
match(new_data$TaxonUsageID, data@species@taxonNames$TaxonUsageID)
]
new_data$AuthorName <- data@species@taxonNames$AuthorName[
match(new_data$TaxonUsageID, data@species@taxonNames$TaxonUsageID)
]
}
# 2: when accepted name requested
if ("AcceptedName" %in% Terms) {
new_data$AcceptedNameID <- data@species@taxonRelations$AcceptedName[
match(
new_data$TaxonConceptID,
data@species@taxonRelations$TaxonConceptID
)
]
new_data$AcceptedName <- data@species@taxonNames$TaxonName[
match(new_data$AcceptedNameID, data@species@taxonNames$TaxonUsageID)
]
new_data$AuthorName <- data@species@taxonNames$AuthorName[
match(new_data$AcceptedNameID, data@species@taxonNames$TaxonUsageID)
]
}
# Data from header
if (any(Terms %in% names(data@header))) {
new_data <- merge(new_data, data@header[, names(data@header) %in%
c("ReleveID", Terms), drop = FALSE], sort = FALSE, all.y = TRUE)
}
# Call aggregate on new_data
if (use_nas) {
for (i in Terms[-1]) {
if (is.factor(new_data[, i])) {
new_data[, i] <- paste(new_data[, i])
}
if (is.character(new_data[, i])) {
new_data[is.na(new_data[, i]), i] <- ""
}
}
}
return(aggregate(object, new_data, FUN, ...))
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/veg_aggregate.R
|
#' @name veg_diverstiy
#' @rdname veg_diversity
#'
#' @title Calculation of statistics at plot level
#'
#' @description
#' Calculation of diversity statistics at the plot level allowing for customized
#' functions defined as `foo(x, ...)`, where `x` is the vector of abundance
#' values.
#'
#' This function calls [taxa2samples()] to derive taxa from taxon usage names in
#' slot **samples** and multiple records of species in a single plot will be
#' merged by [stats::aggregate][aggregate()].
#'
#' The functions `shannon()`, `evenness()`, and `dominance()` calculate the
#' diversity index of Shannon, the evenness, and the dominance
#' (*1 - evenness*), respectively.
#' Dominance is the complementary value to evenness (i.e. `1 - evenness`).
#'
#' The function `simpson()` calculates the Simpson's index using the alternative
#' for vegetation plot observations.
#'
#' The function `richness()` counts the number of taxa per plot and can be used
#' as alternative to [vegtable::count_taxa][count_taxa()].
#'
#' @param x A numeric vector containing the abundance of single species.
#' @param na.rm A logical value indicating whether NA values should be removed
#' from the abundance vector or not.
#' @param object A [vegtable-class] object.
#' @param weight A character value indicating the name of the column at slot
#' **samples** which will be used as species abundance.
#' @param FUN A function used to calculate the diversity index.
#' @param aggr_fun A function used to aggregate abundance values for multiple
#' records of a taxon in a plot observation. Average value is used by
#' default.
#' @param arg_fun A named list with parameters and arguments passed to
#' [taxa2samples()], which will
#' retrieve the respective taxon concept for each taxon usage name and can
#' be used to merge taxa at a determined taxonomic rank, for instance to
#' merge all sub-specific taxa into their respective species
#' (i.e. `'merge_to = "species"'`).
#' @param var_name A character value used as name for the calculated index.
#' If missing, the name of the function will be used.
#' @param in_header A logical value indicating whether the results should be
#' included as variables in the slot **header** of the input object.
#' If `'in_header = TRUE'`, you may assign the result of the function to the
#' input object.
#' @param ... Further arguments passed among methods. In `'evenness()'` and
#' `'dominance()'`, these arguments are passed to `'shannon()'`.
#' In `'veg_diversity()'`, these arguments are passed to [aggregate()]
#' (actually to `'FUN'`).
#'
#' @return
#' Functions `shannon()`, `evenness()`, `dominance()`, `simpson()`, and
#' `richness()` return a numeric value (the calculated index).
#'
#' Funtion `veg_diversity()` produce either a data frame with calculated values
#' per plot observation (option `'in_header = FALSE'`) or a [vegtable-class]
#' object with the calculated values inserted in the slot **header**
#' (option `'in_header = TRUE'`).
#'
#' @examples
#' ## Compare Evenness with Shannon index
#' Kenya_veg <- cover_trans(x = Kenya_veg, to = "cover")
#' Kenya_veg <- veg_diversity(object = Kenya_veg, weight = "cover")
#' Kenya_veg <- veg_diversity(object = Kenya_veg, weight = "cover", FUN = evenness)
#'
#' with(Kenya_veg@header, plot(shannon, evenness))
#'
#' @aliases shannon
#' @export
shannon <- function(x, na.rm = TRUE, ...) {
if (na.rm) x <- x[!is.na(x)]
p <- x / sum(x)
return(-sum(p * log(p)))
}
#' @aliases evenness
#' @rdname veg_diversity
#' @export
evenness <- function(x, ...) {
return(shannon(x, ...) / log(length(x)))
}
#' @aliases dominance
#' @rdname veg_diversity
#' @export
dominance <- function(x, ...) {
return(1 - evenness(x, ...))
}
#' @aliases simpson
#' @rdname veg_diversity
#' @export
simpson <- function(x, na.rm = TRUE, ...) {
if (na.rm) x <- x[!is.na(x)]
p <- x / sum(x)
return(1 - sum(p^2))
}
#' @aliases richness
#' @rdname veg_diversity
#' @export
richness <- function(x, na.rm = TRUE, ...) {
if (na.rm) x <- x[!is.na(x)]
return(length(x))
}
#' @rdname veg_diversity
#' @export
veg_diversity <- function(object, ...) {
UseMethod("veg_diversity", object)
}
#' @rdname veg_diversity
#' @aliases veg_diversity,vegtable-method
#' @method veg_diversity vegtable
#' @export
veg_diversity.vegtable <- function(object, weight, FUN = shannon,
aggr_fun = mean, arg_fun = list(), var_name,
in_header = TRUE,
...) {
if (!weight %in% names(object@samples)) {
stop(paste0(
"The argument in 'weight' ('", weight,
"') is not a column in slot 'samples'."
))
}
OUT <- do.call(taxa2samples, c(list(object = object), arg_fun))@samples
OUT <- aggregate(as.formula(paste(weight, "TaxonConceptID + ReleveID",
sep = " ~ "
)), FUN = aggr_fun, data = OUT, na.action = na.omit)
OUT <- aggregate(as.formula(paste(weight, "ReleveID", sep = " ~ ")),
FUN = FUN, data = OUT, ...
)
if (missing(var_name)) {
var_name <- as.character(substitute(FUN))
}
names(OUT)[names(OUT) == weight] <- var_name
if (in_header) {
object@header[[var_name]] <- with(
OUT,
get(var_name)[match(object$ReleveID, ReleveID)]
)
return(object)
} else {
return(OUT)
}
}
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/veg_diversity.R
|
#' @name veg_relation
#'
#' @title Retrieve or replace relations in vegtable objects
#'
#' @description
#' Tables providing information about levels of categorical variables in the
#' header are called `popups` in **Turboveg** databases
#' but `relations` in [vegtable-class] objects.
#' Such variables will be converted into factors in the slot `header` according
#' to the levels and their sorting in the respective relation.
#'
#' @param vegtable An object of class [vegtable-class].
#' @param relation A character value indicating the relation table to be
#' retrieved or replaced.
#' @param match_header A logical vector, whether only levels occurring in slot
#' `header` should be considered or all.
#' @param value A data frame containing the new veg_relation.
#' @param ... Further arguments to be passed among methods.
#'
#' @return
#' This function retrieves and object of class `data.frame`.
#' In the replacement method, an object of class [vegtable-class], including
#' `value` in the slot `relations`.
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' ## overview of references
#' veg_relation(Kenya_veg, "REFERENCE")
#'
#' @rdname veg_relation
#'
#' @exportMethod veg_relation
#'
setGeneric(
"veg_relation",
function(vegtable, relation, ...) {
standardGeneric("veg_relation")
}
)
#' @rdname veg_relation
#'
#' @aliases veg_relation,vegtable,character-method
#'
setMethod(
"veg_relation", signature(vegtable = "vegtable", relation = "character"),
function(vegtable, relation, match_header = FALSE, ...) {
if (match_header) {
return(vegtable@relations[[relation]][
vegtable@relations[[relation]][, relation] %in%
vegtable@header[, relation],
])
} else {
return(vegtable@relations[[relation]])
}
}
)
#' @rdname veg_relation
#' @aliases veg_relation<-
#' @exportMethod veg_relation<-
setGeneric("veg_relation<-", function(vegtable, value) {
standardGeneric("veg_relation<-")
})
#' @rdname veg_relation
#' @aliases veg_relation<-,vegtable,data.frame-method
setReplaceMethod(
"veg_relation", signature(
vegtable = "vegtable",
value = "data.frame"
),
function(vegtable, value) {
relation <- names(value)[1]
if (is(value[, relation], "factor")) {
levels <- base::levels(value[, relation])
} else {
levels <- as.character(unique(value[, relation]))
value[, relation] <- factor(as.character(value[, relation]),
levels = levels
)
}
if (relation %in% names(vegtable@header)) {
if (is(vegtable@header[, relation], "factor")) {
levels_in <- base::levels(vegtable@header[, relation])
} else {
levels_in <- as.character(unique(vegtable@header[
!is.na(vegtable@header[, relation]), relation
]))
}
if (!all(levels_in %in% levels)) {
missing_levels <- levels_in[!levels_in %in% levels]
stop(paste0(
"Following values are missing in the input relation: ",
paste0(missing_levels, collapse = ", ")
))
}
}
vegtable <- new_relation(vegtable, relation, levels)
vegtable@relations[[relation]] <- value
return(vegtable)
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/veg_relation.R
|
#' @name vegtable-class
#' @aliases vegtable
#'
#' @title Class vegtable.
#'
#' @description
#' Class holding vegetation-plot data sets.
#' Designed to content all information stored in **Turboveg** databases in
#' just one object.
#'
#' This class was designed to include information of relevés, header data and
#' species in just one object. Objects can be created by calls of the form
#' `new("vegtable", ...)`.
#'
#' @slot description A named character vector containing metadata.
#' @slot samples A data frame with samples list.
#' @slot header A data frame with plots data.
#' @slot species Species list as a [taxlist-class] object.
#' @slot layers A list including strata within samples as data frames.
#' @slot relations A list including popup lists as data frames.
#' @slot coverconvert A scale conversion object of class [coverconvert-class].
#' @slot syntax A list including syntaxonomic lists either as data frames or as
#' [taxlist-class] objects.
#'
#' @seealso [tv2vegtable()]
#'
#' @examples
#' showClass("vegtable")
#' @exportClass vegtable
setClass("vegtable",
slots = c(
description = "character",
samples = "data.frame",
layers = "list",
header = "data.frame",
species = "taxlist",
relations = "list",
coverconvert = "coverconvert",
syntax = "list"
),
prototype = list(
description = character(),
samples = data.frame(ReleveID = integer(), TaxonUsageID = integer()),
layers = list(),
header = data.frame(ReleveID = integer()),
species = new("taxlist"),
relations = list(),
coverconvert = new("coverconvert"),
syntax = list()
),
validity = function(object) {
# Mandatory names in samples (only for objects with records) -------------
if (nrow(object@samples) > 0 & any(!c("ReleveID", "TaxonUsageID") %in%
colnames(object@samples))) {
return(paste(
"Columns 'ReleveID' and 'TaxonUsageID' are",
"mandatory in slot 'samples'"
))
}
# TODO: Use a better message (showing missmatching names)
for (i in names(object@layers)) {
if (!i %in% colnames(object@samples)) {
return(paste0(
"Layers of '", i,
"' not included in slot 'samples'"
))
}
if (!i %in% colnames(object@layers[[i]])) {
return(paste0(
"Column '", i,
"' is mandatory in layer table '", i, "'"
))
}
}
if (!"ReleveID" %in% colnames(object@header)) {
return("Column 'ReleveID' is mandatory in slot 'header'")
}
for (i in names(object@relations)) {
if (!i %in% colnames(object@header)) {
return(paste0(
"Relation '", i,
"' not included in slot 'header'"
))
}
if (!i %in% colnames(as.data.frame(object@relations[[i]]))) {
return(paste0("Column '", i, "' is mandatory in relation '", i, "'"))
}
if (any(!object@header[[i]] %in% object@relations[[i]][[i]] &
!is.na(object@header[[i]]))) {
return(paste0(
"Some values of '", i,
"' in header do not macht the values in slot relations."
))
}
}
# Mandatory links --------------------------------------------------------
if (!all(object@samples$ReleveID %in% object@header$ReleveID)) {
return(paste(
"Some releve IDs from slot 'samples' are missing",
"in slot 'header'"
))
}
if (any(is.na(object@samples$TaxonUsageID))) {
return("NAs are not allowed in 'TaxonUsageID' at slot 'samples'.")
}
if (any(!object@samples$TaxonUsageID %in%
object@species@taxonNames$TaxonUsageID)) {
return("Some taxon names are missing in slot 'species'")
}
# Other consistency tests ------------------------------------------------
if (any(duplicated(object@header$ReleveID))) {
return("Duplicated releve IDs are not allowed in slot 'header'")
}
# Validation for layers --------------------------------------------------
for (i in names(object@layers)) {
if (any(!object@samples[!is.na(object@samples[, i]), i] %in%
object@layers[[i]][, i])) {
return(paste0(
"Some values of'", i,
"' in slot 'samples' are missing in slot 'layers'"
))
}
}
# Validation for syntaxonomy ---------------------------------------------
if (length(object@syntax) > 0) {
if (!all(sapply(object@syntax, class) == "taxlist")) {
return("Only 'taxlist' objects are allowed in slot 'syntax'.")
}
for (i in names(object@syntax)) {
noNA <- object@header[[paste("syntax", i, sep = "_")]]
noNA <- noNA[!is.na(noNA)]
if (!all(noNA %in% object@syntax[[i]]@taxonNames$TaxonUsageID)) {
return(paste0(
"Not all values of 'syntax_", i,
"' contained in the respective syntaxonomy."
))
}
}
}
}
)
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/vegtable-class.R
|
#' @name vegtable_stat
#' @rdname vegtable_stat
#'
#' @title General statistics from vegtable objects
#'
#' @description
#' This function calculates general statistics of local **Turboveg**
#' databases as required by GIVD (Global Index of Vegetation-Plot Databases,
#' \url{https://www.givd.info}).
#'
#' This function is based on a script delivered by GIVD for summarising
#' statistics required in the descriptions of databases (see meta data in the
#' page of the Global Index for Vegetation-Plot Databases).
#'
#' @param vegtable An object of class [vegtable-class].
#' @param ... Further arguments passed among methods.
#'
#' @author GIVD. Adapted by Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @examples
#' ## Statistics for GIVD
#' vegtable_stat(Kenya_veg)
#'
#' @export
vegtable_stat <- function(vegtable, ...) {
UseMethod("vegtable_stat", vegtable)
}
#' @rdname vegtable_stat
#' @aliases vegtable_stat,vegtable-method
#' @method vegtable_stat vegtable
#' @export
vegtable_stat.vegtable <- function(vegtable, ...) {
summary(vegtable)
vegtable <- vegtable@header
# Number of references
if (!is.null(vegtable$REFERENCE)) {
cat("REFERENCES", "\n")
cat("Primary references: ",
length(base::levels(factor(vegtable$REFERENCE))),
sep = "", "\n"
)
cat("\n")
}
# Area statistics
if (!is.null(vegtable$SURF_AREA)) {
cat("## AREA", "\n")
area <- vegtable$SURF_AREA
cat("Area range (m^2): ", min(area, na.rm = TRUE), " - ", max(area,
na.rm = TRUE
), sep = "", "\n")
cat("<1 m^2: ", round(sum(area < 1, na.rm = TRUE) / nrow(vegtable) * 100),
"%",
sep = "", "\n"
)
cat("1-<10 m^2: ", round(sum(area >= 1 & area < 10,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("10-<100 m^2: ", round(sum(area >= 10 & area < 100,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("100-<1000 m^2: ", round(sum(area >= 100 & area < 1000,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("1000-<10000 m^2: ", round(sum(area >= 1000 & area < 10000,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat(">=10000 m^2: ", round(sum(area >= 10000,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("unknow: ", round(sum(is.na(area)) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("\n")
}
# Time statistics
if (!is.null(vegtable$DATE)) {
cat("## TIME", "\n")
years <- as.numeric(format(vegtable$DATE, "%Y"))
cat("oldest: ", min(years, na.rm = TRUE), " - youngest: ", max(years,
na.rm = TRUE
), sep = "", "\n")
cat("<=1919: ", round(sum(years <= 1919,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("1920-1929: ", round(sum(years > 1919 & years < 1930,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("1930-1939: ", round(sum(years > 1929 & years < 1940,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("1940-1949: ", round(sum(years > 1939 & years < 1950,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("1950-1959: ", round(sum(years > 1949 & years < 1960,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("1960-1969: ", round(sum(years > 1959 & years < 1970,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("1970-1979: ", round(sum(years > 1969 & years < 1980,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("1980-1989: ", round(sum(years > 1979 & years < 1990,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("1990-1999: ", round(sum(years > 1989 & years < 2000,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("2000-2009: ", round(sum(years > 1999 & years < 2010,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("2010-2019: ", round(sum(years > 2009 & years < 2020,
na.rm = TRUE
) / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
cat("unknow: ", round(sum(is.na(years)) / nrow(vegtable) * 100), "%",
sep = "", "\n"
)
cat("\n")
}
# Country
if (!is.null(vegtable$COUNTRY)) {
cat("## DISTRIBUTION", "\n")
countries <- summary(factor(vegtable$COUNTRY), maxsum = 1000)
for (i in names(countries)) {
cat(i, ": ", round(countries[i] / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
}
cat("\n")
}
# Performance
if (!is.null(vegtable$COVERSCALE)) {
cat("## PERFORMANCE", "\n")
covscale <- summary(as.factor(vegtable$COVERSCALE))
for (i in names(covscale)) {
cat(i, ": ", round(covscale[i] / nrow(vegtable) * 100), "%",
sep = "",
"\n"
)
}
cat("\n")
}
}
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/vegtable_stat.R
|
#' @name write_juice
#'
#' @title Exporting tables for Juice
#'
#' @description
#' This function produce txt files as inport formats for **Juice**
#' (\url{https://www.sci.muni.cz/botany/juice/}).
#'
#' This function produces two output files to be imported into a **Juice**
#' file: A vegetation table produced by [crosstable()] and a header table.
#' Both tables share the file name plus a suffix (`table` for the
#' vegetation table and `header` for the header).
#'
#' For the import in **Juice**, you go to the menu
#' `File -> Import -> Table -> from Spreadsheet File (e.g. EXCEL Table)` and
#' then follow the wizard.
#' Do not forget to select the proper settings in the wizard: 1) 'Character
#' delimiting columns: Comma' (for default argument values). 2) 'Use the second
#' column as layer information: Unchecked'. 3) 'Cover values: Percentage
#' Values'.
#'
#' To further import the header table you need to go to the menu
#' `File -> Import -> Header Data -> From Comma Delimited File`.
#'
#' In the `header` (see **Value**), the first column (`Table number`)
#' corresponds to the plot number assigned by **Juice** at import, while
#' the column (`Releve number`) is the number originally assigned to the plot
#' (e.g. **Turboveg** ID).
#'
#' @param data An object of class [vegtable-class].
#' @param file Character value indicating the name of output files (without
#' file extension).
#' @param db_name Name for data set displayed in inport wizard.
#' @param formula A formula passed to [crosstable()].
#' @param FUN Funtion passed to [crosstable()].
#' @param header Variables of header to be exported.
#' @param coords Names of coordinate variables in header of `data`.
#' @param sep A symbol used to separate columns in the output object.
#' @param ... Further arguments. While `write_juice()` passes them to the
#' function [crosstable()], `read_juice()` passes those arguments to
#' [readLines()].
#'
#' @return
#' For `read_juice()`, a list with two elements: A data frame of species by
#' plot (`cross_table`), and a data frame with header data (`header`).
#'
#' @author Miguel Alvarez \email{kamapu78@@gmail.com}
#'
#' @example examples/write_juice.R
#'
#' @rdname write_juice
#'
#' @exportMethod write_juice
setGeneric("write_juice", function(data, file, formula, ...) {
standardGeneric("write_juice")
})
#' @rdname write_juice
#'
#' @aliases write_juice,vegtable,character,formula-method
#'
setMethod(
"write_juice", signature(
data = "vegtable", file = "character",
formula = "formula"
),
function(data, file, formula, FUN, db_name = "Plot Observations",
header, coords, sep = ",", ...) {
# some attributes
nr.plots <- nrow(data@header)
# header
header.in <- header
if (attr(terms(formula), "term.labels")[1] != "ReleveID") {
stop("'ReleveID' is mandatory as first term of formula")
}
if (!missing(coords)) {
if (length(coords) != 2) {
stop("Argument 'coords' have to be of length 2.")
}
header <- c(header, coords)
header.in <- c(header.in, c("deg_lon", "deg_lat"))
}
header <- c("ReleveID", header)
if (!all(header %in% colnames(data@header))) {
stop("some requested headers are not included in 'data'")
}
header <- data@header[, header]
rownames(header) <- NULL
# Convert header to character
header <- cbind(1:nrow(header), header)
for (i in colnames(header)) {
header[, i] <- paste(header[, i])
header[header[, i] == "NA", i] <- ""
}
colnames(header)[1:2] <- c("Table number", "Releve number")
# Write header lines
Lines_h <- character(nrow(header))
message("Processing header data...")
for (i in 1:nrow(header)) {
Lines_h[i] <- paste(header[i, ], collapse = sep)
}
Lines_h <- c(paste(colnames(header), collapse = sep), Lines_h)
# Convert data table
data <- crosstable(formula, data, FUN, ...)
for (i in colnames(data)) {
data[, i] <- paste(data[, i])
data[data[, i] == "NA", i] <- ""
}
colnames(data)[1:(length(attr(
terms(formula),
"term.labels"
)) - 1)] <- ""
# Write table lines
nr_spp <- nrow(data)
Lines_t <- character(nr_spp)
message("Processing vegetation table...")
for (i in 1:nr_spp) {
Lines_t[i] <- paste(data[i, ], collapse = sep)
}
Lines_t <- c(paste(colnames(data), collapse = sep), Lines_t)
Lines_t <- c(db_name, paste("Number of releves:", nr.plots,
collapse = " "
), "", Lines_t)
# Write table file
con <- file(paste(file, "table.txt", sep = "_"), "wb")
writeBin(charToRaw(paste0(Lines_t, collapse = "\r\n")), con,
endian = "little"
)
close(con)
# Write header file
con <- file(paste(file, "header.txt", sep = "_"), "wb")
writeBin(charToRaw(paste0(Lines_h, collapse = "\r\n")), con,
endian = "little"
)
close(con)
message(paste0(
"DONE!\n\nData set name: ", db_name,
"\nNumber of observations: ", nr.plots,
"\nRecorded species: ", nr_spp
))
}
)
#' @rdname write_juice
#' @aliases read_juice
#'
#' @param encoding Argument passed to \code{\link{readLines}}.
#' @param sep Separator used to split rows into columns.
#' @param na Character used as not available values.
#'
#' @examples
#' ## Installed 'Juice' version of 'Wetlands_veg'
#' Veg <- file.path(path.package("vegtable"), "juice", "Wetlands_juice.txt")
#' Veg <- read_juice(Veg)
#'
#' summary(Veg)
#' @export
#'
read_juice <- function(file, encoding = "LATIN-1", sep = ";", na = "", ...) {
file <- readLines(file, encoding = encoding, ...)
# First prepare the header
if ("Table head:" %in% file) {
header <- file[(which(file == "Table head:") + 2):length(file)]
header <- strsplit(header, sep)
# Trick for ending NAs
N <- sapply(header, length)
if (any(N < max(N))) {
for (i in 1:length(N)) {
if (N[i] < max(N)) {
header[[i]] <- c(
header[[i]],
rep(NA, max(N) - N[i])
)
}
}
}
header <- do.call(rbind, header)
colnames(header) <- header[1, ]
header <- as.data.frame(header[-1, ], stringsAsFactors = FALSE)
colnames(header)[1:2] <- c("juice_nr", "db_nr")
file <- file[2:(which(file == "Table head:") - 1)]
} else {
header <- NULL
file <- file[-1]
}
# Now the cross table
file <- file[nchar(file) != 0]
file <- do.call(rbind, strsplit(file, sep))
colnames(file) <- file[1, ]
N <- integer()
if (colnames(file)[1] == "") {
colnames(file)[1] <- "species"
N <- 2
}
if (colnames(file)[2] == "") {
colnames(file)[2] <- "layer"
N <- 3
}
file <- as.data.frame(file[-1, ], stringsAsFactors = FALSE)
for (i in N:ncol(file)) {
file[file[, i] == na, i] <- NA
file[, i] <- as.numeric(file[, i])
}
return(list(cross_table = file, header = header))
}
|
/scratch/gouwar.j/cran-all/cranData/vegtable/R/write_juice.R
|
#' Construction function for class "EmissionFactors"
#'
#' @description \code{EmissionFactors} returns a transformed object with class
#' "EmissionFactors" and units g/km.
#'
#' @return Objects of class "EmissionFactors" or "units"
#'
#' @param x Object with class "data.frame", "matrix" or "numeric"
#' @param mass Character to be the time units as numerator, default "g" for grams
#' @param dist String indicating the units of the resulting distance in speed.
#' @param pal Palette of colors available or the number of the position
#' @param object object with class "EmissionFactors'
#' @param rev Logical; to internally revert order of rgb color vectors.
#' @param fig1 par parameters for fig, \code{\link{par}}.
#' @param mai1 par parameters for mai, \code{\link{par}}.
#' @param fig2 par parameters for fig, \code{\link{par}}.
#' @param mai2 par parameters for mai, \code{\link{par}}.
#' @param fig3 par parameters for fig, \code{\link{par}}.
#' @param mai3 par parameters for mai, \code{\link{par}}.
#' @param bias positive number. Higher values give more widely spaced colors at the high end.
#' @param ... ignored
#' @importFrom units as_units
#' @importFrom graphics par plot abline
#' @importFrom cptcity cpt
#' @importFrom grDevices rgb colorRamp
#' @rdname EmissionFactors
#' @aliases EmissionFactors print.EmissionFactors summary.EmissionFactors
#' plot.EmissionFactors
#' @examples \dontrun{
#' data(fe2015)
#' names(fe2015)
#' class(fe2015)
#' df <- fe2015[fe2015$Pollutant=="CO", c(ncol(fe2015)-1,ncol(fe2015))]
#' ef1 <- EmissionFactors(df)
#' class(ef1)
#' summary(ef1)
#' plot(ef1)
#' print(ef1)
#' }
#' @export
EmissionFactors <- function(x, mass = "g", dist = "km", ...) {
if ( is.matrix(x) ) {
ef <- as.data.frame(x)
for(i in 1:ncol(ef)){
ef[,i] <- ef[,i]*units::as_units(paste0(mass, " ", dist, "-1"))
}
class(ef) <- c("EmissionFactors",class(ef))
efx <- ef
} else if ( is.data.frame(x) ) {
ef <- x
for(i in 1:ncol(ef)){
ef[,i] <- ef[,i]*units::as_units(paste0(mass, " ", dist, "-1"))
}
class(ef) <- c("EmissionFactors",class(ef))
} else if ( inherits(x, "units")) {
ef <- x
ef <- x
if(as.character(units(ef)) != paste0(mass, "/", dist) ){
message("Converting ", as.character(units(ef)), " to ", mass, "/", dist)
spd <- units::as_units(ef, paste0(mass, " ", dist, "-1"))
} else {
message("Units are the same and no cerversions will be made")
}
} else if( inherits(x, "numeric") | inherits(x, "integer" )) {
ef <- x*units::as_units(paste0(mass, " ", dist, "-1"))
}
return(ef)
}
#' @rdname EmissionFactors
#' @method print EmissionFactors
#' @export
print.EmissionFactors <- function(x, ...) {
nr <- ifelse(nrow(x) <= 5, nrow(x), 5)
if(ncol(x) == 1) {
ndf <- names(x)
df <- data.frame(ndf = x[1:nr, ])
names(df) <- ndf
print.data.frame(df)
} else {
print.data.frame(x[1:nr, ])
}
if(nrow(x) > 5) cat(paste0("... and ", nrow(x) - 5, " more rows\n"))
}
#' @rdname EmissionFactors
#' @method summary EmissionFactors
#' @export
summary.EmissionFactors <- function(object, ...) {
cat("Mean EmissionFactors in study area = \n")
print(summary.data.frame(object))
}
#' @rdname EmissionFactors
#' @method plot EmissionFactors
#' @export
plot.EmissionFactors <- function(x,
pal = "mpl_viridis",
rev = TRUE,
fig1 = c(0,0.8,0,0.8),
fig2 = c(0,0.8,0.55,1),
fig3 = c(0.7,1,0,0.8),
mai1 = c(0.2, 0.82, 0.82, 0.42),
mai2 = c(1.3, 0.82, 0.82, 0.42),
mai3 = c(0.7, 0.62, 0.82, 0.42),
bias = 1.5,
...) {
# ef <- x
# if (ncol(ef) >= 1 & ncol(ef) <= 3) {
# graphics::par(mfrow=c(1, ncol(ef)), tcl = -0.5)
# } else if (ncol(ef) == 4) {
# graphics::par(mfrow=c(2, 2), tcl = -0.5)
# } else if (ncol(ef) >= 5 & ncol(ef) <= 6 ) {
# graphics::par(mfrow=c(2, 3), tcl = -0.5)
# } else if (ncol(ef) >= 7 & ncol(ef) <= 9 ) {
# graphics::par(mfrow=c(3, 3), tcl = -0.5)
# } else {
# message("Plotting first 9 plots")
# graphics::par(mfrow=c(3, 3), tcl = -0.5)
# }
# nc <- ifelse(ncol(ef) <= 9, ncol(ef), 9)
# for (i in 1:nc) {
# graphics::plot(ef[,i], type = "l", ...)
# }
# graphics::par(mfrow=c(1,1))
#
oldpar <- par(no.readonly = TRUE) # code line i
on.exit(par(oldpar)) # code line i + 1
if(ncol(x) > 1) {
graphics::par(fig=fig1, #new=TRUE,
mai = mai1,
...)
col <- grDevices::rgb(grDevices::colorRamp(colors = cptcity::cpt(pal, rev = rev),
bias = bias)(seq(0, 1,0.01)),
maxColorValue = 255)
# fields::image.plot(
# x = 1:ncol(x),
# xaxt = "n",
# z =t(as.matrix(x))[, nrow(x):1],
# xlab = "",
# ylab = paste0("EF by streets [",as.character(units(x[[1]])), "]"),
# col = col, horizontal = TRUE)
graphics::image(x = 1:ncol(x),
xaxt = "n",
z =t(as.matrix(x))[, nrow(x):1],
xlab = "",
ylab = paste0("EF by streets [",as.character(units(x[[1]])), "]"),
col = col,
axe = FALSE)
axis(2)
addscale(t(as.matrix(x))[, nrow(x):1], col = col)
graphics::par(fig=fig2,
mai = mai2,
new=TRUE,
...)
avage <- mean(unlist(x), na.rm = T)
graphics::plot(colMeans(x, na.rm = T),
type="l",
ylab = paste0("Mean EF [",as.character(units(x[[1]])), "]"),
xlab = "",
frame = FALSE,
xaxt = 'n')
graphics::axis(3)
graphics::abline(h = avage, col="red")
cat("Weighted mean = ",round(avage,2), "\n")
graphics::par(fig=fig3, new=TRUE,
mai = mai3,
...)
graphics::plot(x = rowMeans(x, na.rm = T), y = nrow(x):1,
type = "l", frame = FALSE, yaxt = "n",
ylab = "", xlab = NULL
)
graphics::abline(v = avage, col="red")
} else {
graphics::plot(unlist(x), type = "l", main = "1 column data")
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/EmissionFactors.R
|
#' Construction function for class "EmissionFactorsList"
#'
#' @description \code{EmissionFactorsList} returns a transformed object with
#' class"EmissionsFactorsList".
#'
#' @return Objects of class "EmissionFactorsList"
#'
#' @param x Object with class "list"
#' @param object Object with class "EmissionFactorsList"
#' @param default Logical value. When TRUE prints default list, when FALSE
#' prints messages with description of list
#' @param ... ignored
#' @rdname EmissionFactorsList
#' @aliases EmissionFactorsList print.EmissionFactorsList
#' summary.EmissionFactorsList plot.EmissionFactorsList
#' @examples \dontrun{
#' data(fe2015)
#' names(fe2015)
#' class(fe2015)
#' df <- fe2015[fe2015$Pollutant=="CO", c(ncol(fe2015)-1,ncol(fe2015))]
#' ef1 <- EmissionFactorsList(df)
#' class(ef1)
#' length(ef1)
#' length(ef1[[1]])
#' summary(ef1)
#' ef1
#' }
#' @export
EmissionFactorsList <- function(x, ...) {
if ( is.matrix(x) || is.data.frame(x) ) {
efx <- lapply(1:ncol(x), function(i) {
lapply(1:nrow(x), function(j) {
function(V) x[j,i]
})
})
class(efx) <- c("EmissionFactorsList",class(x))
} else if ( is.numeric(x) ) {
efx <- lapply(1:length(x), function(i) {function(V) x[i] })
class(efx) <- c("EmissionFactorsList",class(efx))
} else if ( is.list(x) && is.function(x[[1]]) ) {
efx <- x
class(efx) <- c("EmissionFactorsList",class(x))
}
return(efx)
}
#' @rdname EmissionFactorsList
#' @method print EmissionFactorsList
#' @export
print.EmissionFactorsList <- function(x, ..., default = FALSE) {
if ( default ) {
print.default(x)
} else if ( is.function( x[[1]] ) ){
cat("This EmissionFactorsList has ", length(x),
" functions")
} else if ( is.list(x) && is.list(x[[1]]) ) {
cat("This EmissionFactorsList has ", length(x), " lists\n")
cat("First has ",length(x[[1]]), " functions\n")
cat("Last has ", length(x[[length(x)]]), " functions")
}
}
#' @rdname EmissionFactorsList
#' @method summary EmissionFactorsList
#' @export
summary.EmissionFactorsList <- function(object, ...) {
ef <- object
if ( is.function( ef[[1]] ) ){
cat("This EmissionFactorsList has", length(ef),
"functions")
} else if ( is.list(ef) && is.list(ef[[1]]) ) {
cat("This EmissionFactorsList has ", length(ef), "lists\n")
cat("First has",length(ef[[1]]), "functions\n")
cat("Last has", length(ef[[length(ef)]]), "functions")
}
}
#' @rdname EmissionFactorsList
#' @method plot EmissionFactorsList
#' @export
plot.EmissionFactorsList <- function(x, ...) {
ef <- x
if ( is.function( ef[[1]] ) ){
cat("This EmissionFactorsList has", length(ef),
"functions")
graphics::plot(unlist(lapply(1:length(ef), function(i) ef[[i]](34) )),
ylab = "Emission factors at 34 [km/h]")
} else {
cat("Try other methods")
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/EmissionFactorsList.R
|
#' Construction function for class "Emissions"
#'
#' @description \code{Emissions} returns a transformed object with class "Emissions".
#' The type of objects supported are of classes "matrix", "data.frame" and
#' "numeric". If the class of the object is "matrix" this function returns a
#' dataframe.
#'
#' @return Objects of class "Emissions" or "units"
#'
#' @param x Object with class "data.frame", "matrix" or "numeric"
#' @param mass Character to be the time units as numerator, default "g" for grams
#' @param time Character to be the time units as denominator, eg "h"
#' @param object object with class "Emissions"
#' @param pal Palette of colors available or the number of the position
#' @param rev Logical; to internally revert order of rgb color vectors.
#' @param fig1 par parameters for fig, \code{\link{par}}.
#' @param mai1 par parameters for mai, \code{\link{par}}.
#' @param fig2 par parameters for fig, \code{\link{par}}.
#' @param mai2 par parameters for mai, \code{\link{par}}.
#' @param fig3 par parameters for fig, \code{\link{par}}.
#' @param mai3 par parameters for mai, \code{\link{par}}.
#' @param bias positive number. Higher values give more widely spaced colors at the high end.
#' @param main title of plot
#' @param ... ignored
#' @importFrom units as_units as_units
#' @importFrom graphics par plot abline
#' @importFrom grDevices rgb colorRamp
#'
#' @rdname Emissions
#' @aliases Emissions print.Emissions summary.Emissions plot.Emissions
#' @examples \dontrun{
#' data(net)
#' data(pc_profile)
#' data(fe2015)
#' data(fkm)
#' PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
#' 133833,138441,142682,171029,151048,115228,98664,126444,101027,
#' 84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
#' 1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
#' veh <- data.frame(PC_G = PC_G)
#' pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
#' pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
#' speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)
#' pckm <- units::as_units(fkm[[1]](1:24), "km"); pckma <- cumsum(pckm)
#' cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
#' cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#' #vehicles newer than pre-euro
#' co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!
#' cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
#' lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",
#' f = "G", p = "CO", eu=co1$Euro_LDV)
#' E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
#' profile = pc_profile)
#' dim(E_CO) # streets x vehicle categories x hours x days
#' class(E_CO)
#' plot(E_CO)
#' ####
#' Emissions(1)
#' Emissions(1, time = "h")
#' }
#' @export
Emissions <- function(x, mass = "g", time, ...) {
if(inherits(x, "sf")) {
geo <- sf::st_geometry(x)
e <- sf::st_set_geometry(x, NULL)
for(i in 1:ncol(e)){
e[,i] <- e[,i]*units::as_units(mass)
}
if(!missing(time)){
for(i in 1:ncol(e)) e[,i] <- e[,i]*units::as_units(1, paste0(time, "-1"))
}
e <- sf::st_sf(e, geometry = geo)
} else if ( is.matrix(x) ) {
e <- as.data.frame(x)
for(i in 1:ncol(e)){
e[,i] <- e[,i]*units::as_units(mass)
}
if(!missing(time)){
for(i in 1:ncol(e)) e[,i] <- e[,i]*units::as_units(1, paste0(time, "-1"))
}
class(e) <- c("Emissions", class(e))
} else if ( is.data.frame(x) ) {
e <- as.data.frame(x)
for(i in 1:ncol(x)){
e[,i] <- e[,i]*units::as_units(mass)
}
if(!missing(time)){
for(i in 1:ncol(e)) e[,i] <- e[,i]*units::as_units(1, paste0(time, "-1"))
}
class(e) <- c("Emissions",class(x))
} else if ( inherits(x, "units" )) {
e <- x
if(as.character(units(e)) != paste0(mass, "/", time) ){
message("Converting ", as.character(units(e)), " to ", mass, "/", time)
e <- units::as_units(e, paste0(mass, " ", time, "-1"))
} else {
message("Units are the same and no cerversions will be made")
}
} else if( inherits(x, "numeric") | inherits(x, "integer")) {
e <- x*units::as_units("g")
if(!missing(time)){
e <- e*units::as_units(1, paste0(time, "-1"))
}
}
return(e)
}
#' @rdname Emissions
#' @method print Emissions
#' @export
print.Emissions <- function(x, ...) {
nr <- ifelse(nrow(x) <= 5, nrow(x), 5)
if(ncol(x) == 1) {
ndf <- names(x)
df <- data.frame(ndf = x[1:nr, ])
names(df) <- ndf
print.data.frame(df)
} else {
print.data.frame(x[1:nr, ])
}
if(nrow(x) > 5) cat(paste0("... and ", nrow(x) - 5, " more rows\n"))
}
#' @rdname Emissions
#' @method summary Emissions
#' @export
summary.Emissions <- function(object, ...) {
e <- object
avemi <- sum(seq(1,ncol(e))*colSums(e)/sum(e))
cat("Total emissions by column in study area = \n")
print(summary(colSums(e)))
cat("\nAverage = ", round(avemi,2))
cat(" \n\n")
cat("Emissions by street in study area = \n")
print(summary(rowSums(e)))
cat(" \n\n")
cat("Emissions by column and street in study area = \n")
print(summary(unlist(e)))
}
#' @rdname Emissions
#' @method plot Emissions
#' @export
plot.Emissions <- function(x,
pal = "colo_angelafaye_Coloured_sky_in",
rev = FALSE,
fig1 = c(0,0.8,0,0.8),
fig2 = c(0,0.8,0.55,1),
fig3 = c(0.7,1,0,0.8),
mai1 = c(0.2, 0.82, 0.82, 0.42),
mai2 = c(1.3, 0.82, 0.82, 0.42),
mai3 = c(0.7, 0.72, 0.82, 0.42),
main = NULL,
bias = 1.5,
...) {
oldpar <- par(no.readonly = TRUE) # code line i
on.exit(par(oldpar)) # code line i + 1
# e <- x
#
if(ncol(x) > 1) {
graphics::par(fig=fig1, #new=TRUE,
mai = mai1,
...)
col <- grDevices::rgb(grDevices::colorRamp(colors = cptcity::cpt(pal, rev = rev),
bias = bias)(seq(0, 1,0.01)),
maxColorValue = 255)
# fields::image.plot(
# x = 1:ncol(x),
# xaxt = "n",
# z =t(as.matrix(x))[, nrow(x):1],
# xlab = "",
# ylab = paste0("Emissions by streets [",as.character(units(x[[1]])), "]"),
# col = col, horizontal = TRUE)
graphics::image(x = 1:ncol(x),
xaxt = "n",
z =t(as.matrix(x))[, nrow(x):1],
xlab = "",
ylab = paste0("Emissions by streets [",as.character(units(x[[1]])), "]"),
col = col,
axe = FALSE)
axis(2)
addscale(t(as.matrix(x))[, nrow(x):1], col = col)
graphics::par(fig=fig2,
mai = mai2,
new=TRUE,
...)
avage <- sum(seq(1,ncol(x)) * colSums(x)/sum(x, na.rm = T))
graphics::plot(colSums(x, na.rm = T),
type="l",
ylab = paste0("Emissions [",as.character(units(x[[1]])), "]"),
xlab = "",
frame = FALSE,
xaxt = 'n')
graphics::axis(3)
graphics::abline(v = avage, col="red")
cat("Weighted mean = ",round(avage,2), "\n")
graphics::par(fig=fig3, new=TRUE,
mai = mai3,
...)
graphics::plot(x = rowSums(x, na.rm = T), y = nrow(x):1,
type = "l", frame = FALSE, yaxt = "n",
ylab = "", xlab = NULL
)
graphics::abline(v = avage, col="red")
} else {
graphics::plot(unlist(x), type = "l", main = "1 column data")
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/Emissions.R
|
#' Construction function for class "EmissionsArray"
#'
#' @description \code{EmissionsArray} returns a transformed object with class
#' "EmissionsArray" with 4 dimensions.
#'
#' @return Objects of class "EmissionsArray"
#'
#' @param x Object with class "data.frame", "matrix" or "numeric"
#' @param object object with class "EmissionsArray'
#' @param main Title for plot
#' @param ... ignored
#' @importFrom stats median quantile sd
#' @rdname EmissionsArray
#' @aliases EmissionsArray print.EmissionsArray summary.EmissionsArray
#' plot.EmissionsArray
#' @note Future version of this function will return an Array of 3 dimensions.
#' @examples \dontrun{
#' data(net)
#' data(pc_profile)
#' data(fe2015)
#' data(fkm)
#' PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
#' 133833,138441,142682,171029,151048,115228,98664,126444,101027,
#' 84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
#' 1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
#' veh <- data.frame(PC_G = PC_G)
#' pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
#' pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
#' speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)
#' pckm <- units::set_units(fkm[[1]](1:24), "km"); pckma <- cumsum(pckm)
#' cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
#' cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#' #vehicles newer than pre-euro
#' co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!
#' cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
#' lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",
#' f = "G",p = "CO", eu=co1$Euro_LDV)
#' E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
#' profile = pc_profile, simplify = TRUE)
#' class(E_CO)
#' summary(E_CO)
#' E_CO
#' plot(E_CO)
#' lpc <- list(pc1, pc1)
#' E_COv2 <- emis(veh = lpc,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
#' profile = pc_profile, hour = 2, day = 1)
#' }
#' @export
EmissionsArray <- function(x, ...) {
e <- x
if ( !is.array(e) ) {
stop("Class of e must be 'array'")
} else if ( is.array(e) ) {
class(e) <- c("EmissionsArray",class(e))
}
return(e)
}
#' @rdname EmissionsArray
#' @method print EmissionsArray
#' @export
print.EmissionsArray <- function(x, ...) {
e <- x
if (length(dim(e)) == 3) {
cat("This EmissionsArray has\n", dim(e)[1], "streets\n",
dim(e)[2], "vehicle categories\n", dim(e)[3], "hours\n")
print(utils::head(e))
} else {
cat("This EmissionsArray has\n", dim(e)[1], "streets\n",
dim(e)[2], "vehicle categories\n", dim(e)[3], "hours\n",
dim(e)[4], "days\n")
print(utils::head(e))
}
}
#' @rdname EmissionsArray
#' @method summary EmissionsArray
#' @export
summary.EmissionsArray <- function(object, ...) {
e <- object
mine <- round(min(e, na.rm = T), 3)
q1 <- round(stats::quantile(e, .25, na.rm = T), 3)
mede <- round(stats::median(e, na.rm = T), 3)
avge <- round(mean(e, na.rm = T), 3)
q3 <- round(stats::quantile(e, .75, na.rm = T), 3)
maxe <- round(max(e, na.rm = T), 3)
sde <- round(stats::sd(e, na.rm = T), 3)
a <- data.frame(Min = mine,
`Qu.1` = q1,
Median = mede,
Mean = avge,
`Qu.3` = q3,
Max = maxe,
sd = sde)
row.names(a) <- NULL
print(a)
}
#' @rdname EmissionsArray
#' @method plot EmissionsArray
#' @export
plot.EmissionsArray <- function(x, main = "average emissions", ...) {
e <- x
if (length(dim(e)) == 4 ) {
df <- Emissions(t(apply(e, c(3, 4), sum, na.rm=T)))
Mean <- colMeans(df)
SD <- unlist(lapply(df, stats::sd))
Min <- unlist(lapply(df, min))
Max <- unlist(lapply(df, max))
dfx <- data.frame(Mean, SD, Min, Max)
graphics::plot(y = dfx$Mean, x = 1:nrow(dfx),
ylim = c(min(dfx$Min), max(dfx$Max)),
col = "red", type = "l",
main = main,
...)
graphics::lines(dfx$Mean+dfx$SD, ylim = c(min(dfx$Min), max(dfx$Max)))
graphics::lines(dfx$Mean-dfx$SD, ylim = c(min(dfx$Min), max(dfx$Max)))
graphics::points(dfx$Max, ylim = c(min(dfx$Min), max(dfx$Max)))
graphics::points(dfx$Min, ylim = c(min(dfx$Min), max(dfx$Max)))
} else {
df <- Emissions(apply(e, c(1, 3), mean, na.rm=T))
graphics::plot(df,
main = main,
...)
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/EmissionsArray.R
|
#' DEPRECATED Construction function for class "EmissionsList"
#'
#' @description \code{EmissionsList} returns a transformed object with class "EmissionsList".
#'
#' @return Objects of class "EmissionsList" and numeric elements as "units"
#'
#' @param x object with class "EmissionList"
#' @param object object with class "EmissionList"
#' @param ... ignored
#' @aliases EmissionsList print.EmissionsList summary.EmissionsList
#' plot.EmissionsList
#' @name vein-deprecated
#' @seealso \code{\link{vein-deprecated}}
#' @keywords internal
NULL
#' @rdname vein-deprecated
#'
#' @export
#' @examples \dontrun{
#' # do not run
#' # DEPRECATED
#' }
EmissionsList <- function(x, ...) {
.Deprecated("EmissionsList")
"EmissionsList"
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/EmissionsList.R
|
#' Construction function for class "Evaporative"
#'
#' @description \code{Evaporative} returns a transformed object with class "Evaporative" and
#' units g. This class represents the daily emissions presented by
#' Mellios G and Ntziachristos (2016) Gasoline evaporation, Tier 2. Eventually
#' it will be incorporated the techniques of Tier 3.
#'
#'
#' @return Objects of class "Evaporative" or "units"
#'
#' @param x Object with class "numeric"
#' @param object Object with class "Evaporative"
#' @param ... ignored
#' @aliases Evaporative print.Evaporative summary.Evaporative
#' plot.Evaporative
#' @name vein-deprecated
#' @seealso \code{\link{vein-deprecated}}
#' @keywords internal
NULL
#' @rdname vein-deprecated
#' @section \code{Evaporative}:
#' For \code{Evaporative}, use \code{\link{emis_evap}}.
#' @export
#' @examples \dontrun{
#' # do not run
#' # DEPRECATED
#' }
Evaporative <- function(x, ...) {
.Deprecated("Evaporative")
"Evaporative"
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/Evaporative.R
|
#' Construction function for class "GriddedEmissionsArray"
#'
#' @description \code{GriddedEmissionsArray} returns a transformed object with class
#' "EmissionsArray" with 4 dimensions.
#'
#' @return Objects of class "GriddedEmissionsArray"
#'
#' @param x Object with class "SpatialPolygonDataFrame", "sf" "data.frame" or
#' "matrix"
#' @param object object with class "EmissionsArray'
#' @param ... ignored
#' @param rows Number of rows
#' @param cols Number of columns
#' @param times Number of times
#' @param rotate Character, rotate array:"default", "left", "right",
#' "cols","rows", "both", "br", "colsbr", "rowsbr", "bothbr".
#' br means starting a matrix byrow
#' @rdname GriddedEmissionsArray
#' @aliases GriddedEmissionsArray print.GriddedEmissionsArray
#' summary.GriddedEmissionsArray plot.GriddedEmissionsArray
#' @importFrom sf st_set_geometry
#' @importFrom utils head
#' @examples \dontrun{
#' data(net)
#' data(pc_profile)
#' data(fe2015)
#' data(fkm)
#' PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
#' 133833,138441,142682,171029,151048,115228,98664,126444,101027,
#' 84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
#' 1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
#' veh <- data.frame(PC_G = PC_G)
#' pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
#' pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
#' speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)
#' pckm <- units::set_units(fkm[[1]](1:24), "km")
#' pckma <- cumsum(pckm)
#' cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
#' cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#' #vehicles newer than pre-euro
#' co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!
#' cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
#' lef <- ef_ldv_scaled(co1, cod, v = "PC", t = "4S", cc = "<=1400",
#' f = "G",p = "CO", eu=co1$Euro_LDV)
#' E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
#' profile = pc_profile, simplify = TRUE)
#' class(E_CO)
#' E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO", by = "streets",
#' net = net, k = units::set_units(1, "1/h"))
#' g <- make_grid(net, 1/102.47/2, 1/102.47/2) #500m in degrees
#' E_CO_g <- emis_grid(spobj = E_CO_STREETS, g = g, sr= 31983)
#' plot(E_CO_g["V9"])
#' # check all
#' rots <- c("default", "left", "right",
#' "cols","rows", "both",
#' "br", "colsbr", "rowsbr", "bothbr")
#' oldpar <- par()
#' par(mfrow = c(2,5))
#' lg <- lapply(seq_along(rots), function(i){
#' x <- GriddedEmissionsArray(E_CO_g,
#' rows = 19,
#' cols = 23,
#' times = 168,
#' rotate = rots[i])
#' plot(x, main = rots[i])
#' })
#'
#' par(mfrow = c(1,1))
#' }
#' @export
GriddedEmissionsArray <- function(x, ...,
cols,
rows,
times = ncol(x),
rotate = "default") {
x$id <- NULL
if(inherits(x, "Spatial")){
df <- sf::st_as_sf(x)
df <- sf::st_set_geometry(df, NULL)
} else if(inherits(x, "sf")){
df <- sf::st_set_geometry(x, NULL)
} else {
df <- x
}
if(times > ncol(df)) stop("`times` cannot be higher than number of columns of `x` without x$id")
for (i in 1:ncol(df)) {
df[, i] <- as.numeric(df[, i])
}
# array
# https://stackoverflow.com/a/42882677/2418532
#first reverse, then transpose, it's the same as rotate 90 degrees
rotate_clockwise <- function(x) { t( apply(x, 2, rev))}
#first transpose, then reverse, it's the same as rotate -90 degrees:
rotate_counter_clockwise <- function(x) { apply( t(x),2, rev)}
#1 default####
if(rotate == "default") {
l <- lapply(1:times, function(i) {
m <- t(matrix(df[, i],
ncol = cols,
nrow = rows,
byrow = TRUE))
})
#2 left ####
} else if(rotate == "left"){
l <- lapply(1:times, function(i) {
m <- t(matrix(df[, i],
ncol = cols,
nrow = rows,
byrow = TRUE))
rotate_counter_clockwise(m)
})
#3 right####
} else if(rotate == "right"){
l <- lapply(1:times, function(i) {
m <- t(matrix(df[, i],
ncol = cols,
nrow = rows,
byrow = TRUE))
rotate_clockwise(m)
})
#4 cols####
} else if(rotate == "cols"){
l <- lapply(1:ncol(df), function(j){
mx <- matrix(df[, j],
nrow = rows,
ncol = cols)
mx <- mx[, ncol(mx):1]
})
#5 rows####
} else if(rotate == "rows"){
l <- lapply(1:ncol(df), function(j){
mx <- matrix(df[, j],
nrow = rows,
ncol = cols)
mx <- mx[nrow(mx):1, ]
})
#6 both####
} else if(rotate == "both"){
l <- lapply(1:ncol(df), function(j){
mx <- matrix(df[, j],
nrow = rows,
ncol = cols)
mx <- mx[nrow(mx):1, ncol(mx):1]
})
#7 br####
} else if(rotate == "br"){
l <- lapply(1:ncol(df), function(j){
mx <- matrix(df[, j],
nrow = rows,
ncol = cols,
byrow = TRUE)
})
#8 colsbr####
} else if(rotate == "colsbr"){
l <- lapply(1:ncol(df), function(j){
mx <- matrix(df[, j],
nrow = rows,
ncol = cols,
byrow = TRUE)
mx <- mx[, ncol(mx):1]
})
#9 rowsbr####
} else if(rotate == "rowsbr"){
l <- lapply(1:ncol(df), function(j){
mx <- matrix(df[, j],
nrow = rows,
ncol = cols,
byrow = TRUE)
mx <- mx[nrow(mx):1, ]
})
#10 bothbr####
} else if(rotate == "bothbr"){
l <- lapply(1:ncol(df), function(j){
mx <- matrix(df[, j],
nrow = rows,
ncol = cols,
byrow = TRUE)
mx <- mx[nrow(mx):1, ncol(mx):1]
})
}
e <- simplify2array(l)
class(e) <- c("GriddedEmissionsArray",class(e))
return(e)
}
#' @rdname GriddedEmissionsArray
#' @method print GriddedEmissionsArray
#' @export
print.GriddedEmissionsArray <- function(x, ...) {
e <- x
cat(paste0("This GriddedEmissionsArray has:\n", #nocov start
dim(e)[1], " lat points\n",
dim(e)[2], " lon points\n",
dim(e)[3], " hours\n")) #nocov end
print(utils::head(e))
}
#' @rdname GriddedEmissionsArray
#' @method summary GriddedEmissionsArray
#' @export
summary.GriddedEmissionsArray <- function(object, ...) {
e <- object
summary(e[, , ])
}
#' @rdname GriddedEmissionsArray
#' @method plot GriddedEmissionsArray
#' @export
plot.GriddedEmissionsArray <- function(x, ..., times = 1) {
oldpar <- par(no.readonly = TRUE) # code line i
on.exit(par(oldpar)) # code line i + 1
e <- x
graphics::image(e[ , , times], ...)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/GriddedEmissionsArray.R
|
#' Construction function for class "Speed"
#'
#' @description \code{Speed} returns a transformed object with class "Speed" and units
#' km/h. This function includes two arguments, distance and time. Therefore,
#' it is possible to change the units of the speed to "m" to "s" for example.
#' This function returns a data.frame with units for speed. When this function
#' is applied to numeric vectors it adds class "units".
#'
#' @return Constructor for class "Speed" or "units"
#'
#' @param x Object with class "data.frame", "matrix" or "numeric"
#' @param dist String indicating the units of the resulting distance in speed.
#' @param time Character to be the time units as denominator, default is "h"
#' @param object Object with class "Speed"
#' @param pal Palette of colors available or the number of the position
#' @param rev Logical; to internally revert order of rgb color vectors.
#' @param fig1 par parameters for fig, \code{\link{par}}.
#' @param mai1 par parameters for mai, \code{\link{par}}.
#' @param fig2 par parameters for fig, \code{\link{par}}.
#' @param mai2 par parameters for mai, \code{\link{par}}.
#' @param fig3 par parameters for fig, \code{\link{par}}.
#' @param mai3 par parameters for mai, \code{\link{par}}.
#' @param bias positive number. Higher values give more widely spaced colors at the high end.
#' @param ... ignored
#' Default is units is "km"
#' @importFrom units as_units
#' @importFrom grDevices rgb colorRamp
#' @seealso \code{\link{units}}
#'
#' @rdname Speed
#' @aliases Speed print.Speed summary.Speed plot.Speed
#' @note default time unit for speed is hour
#' @examples {
#' data(net)
#' data(pc_profile)
#' speed <- Speed(net$ps)
#' class(speed)
#' plot(speed, type = "l")
#' pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
#' df <- netspeed(pc_week, net$ps, net$ffs, net$capacity, net$lkm)
#' summary(df)
#' plot(df)
#' # changing to miles
#' net$ps <- units::set_units(net$ps, "miles/h")
#' net$ffs <- units::set_units(net$ffs, "miles/h")
#' net$lkm <- units::set_units(net$lkm, "miles")
#' df <- netspeed(pc_week, net$ps, net$ffs, net$capacity, net$lkm, dist = "miles")
#' plot(df)
#' }
#' @export
Speed <- function(x, ..., dist = "km", time = "h") {
if ( is.matrix(x) ) {
spd <- as.data.frame(x)
for(i in 1:ncol(spd)){
spd[,i] <- spd[,i]*units::as_units(paste0(dist, " ", time, "-1"))
}
class(spd) <- c("Speed", "data.frame")
} else if ( is.data.frame(x) ) {
spd <- x
for(i in 1:ncol(spd)){
spd[,i] <- spd[,i]*units::as_units(paste0(dist, " ", time, "-1"))
}
class(spd) <- c("Speed",class(x))
} else if ( is.list(x) ) {
stop("List not supported")
#SpeedList?
} else if ( inherits(x, "units" )) {
spd <- x
if(as.character(units(spd)) != paste0(dist, "/", time) ){
message("Converting ", as.character(units(spd)), " to ", dist, "/", time)
spd <- units::as_units(spd, paste0(dist, " ", time, "-1"))
} else {
message("Units are the same and no cerversions will be made")
}
} else if( inherits(x, "numeric") | inherits(x, "integer" )) {
spd <- x*units::as_units(paste0(dist, " ", time, "-1"))
}
return(spd)
}
#' @rdname Speed
#' @method print Speed
#' @export
print.Speed <- function(x, ...) {
if(nrow(x) < 10 & ncol(x) < 10){
NextMethod("print", x, right = TRUE)
} else if (nrow(x) > 10 & ncol(x) < 10){
print.data.frame(x[1:5, ], right = TRUE)
cat(paste0("... and more ", nrow(x) - 5, " rows\n"))
} else if(nrow(x) < 10 & ncol(x) > 10){
print.data.frame(x[, 1:5], right = TRUE)
cat(paste0("... and more ", ncol(x) - 5, " columns\n"))
} else {
print.data.frame(x[1:5, 1:5], right = TRUE)
cat(paste0("... and more ", nrow(x) - 5, " rows\n"))
cat(paste0("... and more ", ncol(x) - 5, " columns\n"))
}
}
#' @rdname Speed
#' @method summary Speed
#' @export
summary.Speed <- function(object, ...) {
spd <- object
cat("Speeds by columns and street in study area = \n")
print(summary(unlist(spd)))
}
#' @rdname Speed
#' @method plot Speed
#' @export
plot.Speed <- function(x,
pal = "mpl_inferno",
rev = FALSE,
fig1 = c(0,0.8,0,0.8),
fig2 = c(0,0.8,0.55,1),
fig3 = c(0.7,1,0,0.8),
mai1 = c(1.0, 0.82, 0.82, 0.42),
mai2 = c(1.8, 0.82, 0.50, 0.42),
mai3 = c(1.0, 1.00, 0.82, 0.20),
bias = 1.5,
...) {
oldpar <- par(no.readonly = TRUE) # code line i
on.exit(par(oldpar)) # code line i + 1
if(ncol(x) > 1) {
graphics::par(fig=fig1, #new=TRUE,
mai = mai1,
...)
col <- grDevices::rgb(grDevices::colorRamp(colors = cptcity::cpt(pal, rev = rev),
bias = bias)(seq(0, 1,0.01)),
maxColorValue = 255)
# fields::image.plot(
# x = 1:ncol(x),
# xaxt = "n",
# z =t(as.matrix(x))[, nrow(x):1],
# xlab = "",
# ylab = paste0("Speed by streets [",as.character(units(x[[1]])), "]"),
# col = col, horizontal = TRUE)
graphics::image(x = 1:ncol(x), xaxt = "n",
z = t(as.matrix(x))[, nrow(x):1],
xlab = "",
ylab = paste0("Speed by streets [",as.character(units(x[[1]])), "]"),
col = col,
axe = FALSE)
axis(2)
addscale(t(as.matrix(x))[, nrow(x):1], col = col)
graphics::par(fig=fig2,
mai = mai2,
new=TRUE,
...)
avage <- mean(unlist(x), na.rm = T)
graphics::plot(colMeans(x, na.rm = T),
type="l",
ylab = paste0("Mean speed [",as.character(units(x[[1]])), "]"),
xlab = "",
frame = FALSE,
xaxt = 'n')
graphics::axis(3)
graphics::abline(h = avage, col="red")
cat("Weighted mean = ",round(avage,2), "\n")
graphics::par(fig=fig3, new=TRUE,
mai = mai3,
...)
graphics::plot(x = rowMeans(x, na.rm = T), y = nrow(x):1,
type = "l", frame = FALSE, yaxt = "n",
ylab = "", xlab = NULL
)
graphics::abline(v = avage, col="red")
} else {
graphics::plot(unlist(x), type = "l", main = "1 column data")
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/Speed.R
|
#' Construction function for class "Vehicles"
#'
#' @description \code{Vehicles} returns a tranformed object with class "Vehicles" and units
#' 'veh'. The type of objects supported are of classes "matrix", "data.frame",
#' "numeric" and "array". If the object is a matrix it is converted to data.frame.
#' If the object is "numeric" it is converted to class "units".
#'
#' @return Objects of class "Vehicles" or "units"
#'
#' @param x Object with class "Vehicles"
#' @param object Object with class "Vehicles"
#' @param time Character to be the time units as denominator, default is NULL
#' @param pal Palette of colors available or the number of the position
#' @param rev Logical; to internally revert order of rgb color vectors.
#' @param bk Break points in sorted order to indicate the intervals for assigning the colors.
#' @param fig1 par parameters for fig, \code{\link{par}}.
#' @param mai1 par parameters for mai, \code{\link{par}}.
#' @param fig2 par parameters for fig, \code{\link{par}}.
#' @param mai2 par parameters for mai, \code{\link{par}}.
#' @param fig3 par parameters for fig, \code{\link{par}}.
#' @param mai3 par parameters for mai, \code{\link{par}}.
#' @param bias positive number. Higher values give more widely spaced colors at the high end.
#' @param ... ignored
#' @param time Character to be the time units as denominator, eg "1/h"
#' @importFrom units as_units install_unit
#' @importFrom graphics par plot abline
#' @importFrom grDevices rgb colorRamp
#'
#' @rdname Vehicles
#' @aliases Vehicles print.Vehicles summary.Vehicles plot.Vehicles
#' @examples \dontrun{
#' lt <- rnorm(100, 300, 10)
#' class(lt)
#' vlt <- Vehicles(lt)
#' class(vlt)
#' plot(vlt)
#' LT_B5 <- age_hdv(x = lt,name = "LT_B5")
#' summary(LT_B5)
#' plot(LT_B5)
#' }
#' @export
Vehicles <- function(x, ..., time=NULL) {
# units::install_unit("veh")
if(inherits(x, "sf")) {
geo <- sf::st_geometry(x)
e <- sf::st_set_geometry(x, NULL)
for(i in 1:ncol(e)){
e[,i] <- e[,i]*units::as_units("veh")
}
if(!missing(time)){
for(i in 1:ncol(e)) e[,i] <- e[,i]*units::as_units(1, time)
}
veh <- sf::st_sf(e, geometry = geo)
} else if (is.matrix(x) ) {
veh <- as.data.frame(x)
for(i in 1:ncol(veh)){
veh[,i] <- veh[,i]*units::as_units("veh")
}
if(!missing(time)){
for(i in 1:ncol(e)) e[,i] <- e[,i]*units::as_units(1, time)
}
class(veh) <- c("Vehicles",class(veh))
} else if ( is.data.frame(x) ) {
veh <- x
for(i in 1:ncol(veh)){
veh[,i] <- veh[,i]*units::as_units("veh")
}
if(!missing(time)){
for(i in 1:ncol(e)) e[,i] <- e[,i]*units::as_units(1, time)
}
class(veh) <- c("Vehicles",class(x))
} else if ( inherits(x, "units" )) {
veh <- x
if(units(x)$numerator != "veh") stop("units are not 'veh'")
} else if( inherits(x, "numeric") | inherits(x, "integer" )) {
veh <- x*units::as_units("veh")
if(!missing(time)){
veh <- veh*units::as_units(1, time)
}
}
return(veh)
}
#' @rdname Vehicles
#' @method print Vehicles
#' @export
print.Vehicles <- function(x, ...) {
nr <- ifelse(nrow(x) <= 5, nrow(x), 5)
if(ncol(x) == 1) {
ndf <- names(x)
df <- data.frame(ndf = x[1:nr, ])
names(df) <- ndf
print.data.frame(df)
} else {
print.data.frame(x[1:nr, ])
}
if(nrow(x) > 5) cat(paste0("... and ", nrow(x) - 5, " more rows\n"))
}
#' @rdname Vehicles
#' @method summary Vehicles
#' @export
summary.Vehicles <- function(object, ...) {
# units::install_unit("veh")
veh <- object
avage <- sum(seq(1,ncol(veh))*colSums(veh)/sum(veh))
cat("\nVehicles by columns in study area = \n")
print(summary(colSums(veh)) )
cat("Average = ", round(avage,2),"\n")
summary(rowSums(veh))
avveh <- mean(rowSums(veh), na.rm=T)
cat("Vehicles by street in study area = \n")
print(summary(rowSums(veh)))
cat("\nAverage = ", round(avveh,2))
}
#' @rdname Vehicles
#' @method plot Vehicles
#' @export
plot.Vehicles <- function(x,
pal = "colo_lightningmccarl_into_the_night",
rev = TRUE,
bk = NULL,
fig1 = c(0,0.8,0,0.8),
fig2 = c(0,0.8,0.55,1),
fig3 = c(0.7,1,0,0.8),
mai1 = c(1.0, 0.82, 0.82, 0.42),
mai2 = c(1.8, 0.82, 0.50, 0.42),
mai3 = c(1.0, 1.00, 0.82, 0.20),
bias = 1.5,
...) {
# # units::install_unit("veh", warn = F)
# veh <- x
# if ( inherits(veh, "data.frame") ) {
# avage <- sum(seq(1,ncol(veh)) * colSums(veh)/sum(veh))
# Veh <- colSums(veh)
# Veh <- Veh*units::as_units("veh")
# graphics::plot(Veh, type = "l", ...)
# graphics::abline(v = avage, col = "red")
# if(message){
# cat("\nAverage = ",round(avage,2))
# }}
#
oldpar <- par(no.readonly = TRUE) # code line i
on.exit(par(oldpar)) # code line i + 1
if(ncol(x) > 1) {
graphics::par(fig=fig1, #new=TRUE,
mai = mai1,
...)
col <- grDevices::rgb(grDevices::colorRamp(colors = cptcity::cpt(pal, rev = rev),
bias = bias)(seq(0, 1,0.01)),
maxColorValue = 255)
# old code using fields
# fields::image.plot(
# x = 1:ncol(x),
# xaxt = "n",
# z =t(as.matrix(x))[, nrow(x):1],
# xlab = "",
# ylab = paste0("Vehicles by streets [",as.character(units(x[[1]])), "]"),
# breaks = bk,
# col = col, horizontal = TRUE)
# new using graphics and other imported code
graphics::image(t(as.matrix(x))[, nrow(x):1],
col = col,
axe = FALSE,
ylab = paste0("Vehicles by streets [",as.character(units(x[[1]])), "]"))
axis(2, breaks = bk)
addscale(t(as.matrix(x))[, nrow(x):1], col = col)
graphics::par(fig=fig2,
mai = mai2,
new=TRUE,
...)
avage <- sum(seq(1,ncol(x)) * colSums(x)/sum(x, na.rm = T))
graphics::plot(colSums(x, na.rm = T),
type="l",
ylab = paste0("Sum vehicles [",as.character(units(x[[1]])), "]"),
xlab = "",
frame = FALSE,
xaxt = 'n')
graphics::axis(3)
graphics::abline(v = avage, col="red")
cat("Weighted mean = ",round(avage,2), "\n")
graphics::par(fig=fig3, new=TRUE,
mai = mai3,
...)
graphics::plot(x = rowSums(x, na.rm = T), y = nrow(x):1,
type = "l", frame = FALSE, yaxt = "n",
ylab = "", xlab = NULL
)
graphics::abline(v = mean(rowSums(x, na.rm = T), na.rm = T), col="red")
} else {
graphics::plot(unlist(x), type = "l", main = "1 column data")
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/Vehicles.R
|
#' Construction function to add unit km
#'
#' @family Add distance unitts
#'
#' @description \code{add_lkm} just add unit 'km' to different R objects
#'
#' @return Objects of class "data.frame" or "units"
#'
#' @param x Object with class "data.frame", "matrix", "numeric" or "integer"
#' @importFrom units as_units
#'
#' @examples \dontrun{
#' a <- add_lkm(rnorm(100)*10)
#' plot(a)
#' b <- add_lkm(matrix(rnorm(100)*10, ncol = 10))
#' print(head(b))
#' }
#' @export
add_lkm <- function(x) {
if ( is.matrix(x) ) {
e <- as.data.frame(x)
for(i in 1:ncol(e)){
e[,i] <- e[,i]*units::as_units("km")
}
} else if ( is.data.frame(x) ) {
e <- x
for(i in 1:ncol(x)){
e[,i] <- e[,i]*units::as_units("km")
}
} else if( inherits(x, "numeric") | inherits(x, "integer" )) {
e <- x*units::as_units("km")
}
return(e)
}
#' Construction function to add unit miles
#'
#' @family Add distance unitts
#'
#' @description \code{add_miles} just add unit 'miles' to different R objects
#'
#' @return Objects of class "data.frame" or "units"
#'
#' @param x Object with class "data.frame", "matrix", "numeric" or "integer"
#' @importFrom units as_units
#'
#' @examples \dontrun{
#' a <- add_miles(rnorm(100)*10)
#' plot(a)
#' b <- add_miles(matrix(rnorm(100)*10, ncol = 10))
#' print(head(b))
#' }
#' @export
add_miles <- function(x) {
if ( is.matrix(x) ) {
e <- as.data.frame(x)
for(i in 1:ncol(e)){
e[,i] <- e[,i]*units::as_units("miles")
}
} else if ( is.data.frame(x) ) {
e <- x
for(i in 1:ncol(x)){
e[,i] <- e[,i]*units::as_units("miles")
}
} else if( inherits(x, "numeric") | inherits(x, "integer" )) {
e <- x*units::as_units("miles")
}
return(e)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/add_lkm.R
|
#' Add polygon id to lines road network
#'
#'@description Sometimes you need to add polygon id into your streets road network.
#'\code{\link{add_polid}} add add_polid id into your road network cropping your
#' network by.
#'
#' For instance, you have open street maps road network the you have the
#' polygon of your regions. This function adds the id of your polygon
#' as a new column in the streets network.
#'
#' @param polyg sf object POLYGON or sp
#' @param street streets road network class sf or sp
#' @param by Character indicating the column with the id in polyg
#' @importFrom sf st_crop st_cast st_as_sf
#' @export
#' @seealso \code{\link{emis_to_streets}}
#' @examples \dontrun{
#' data(net)
#' nets <- sf::st_as_sf(net)
#' bb <- sf::st_as_sf(sf::st_as_sfc(sf::st_bbox(nets)))
#' bb$id <- "a"
#' a <- add_polid(polyg = bb, street = nets, by = "id")
#' }
add_polid <- function(polyg, street, by){
polyd <- sf::st_as_sf(polyg)
street <- sf::st_as_sf(street)
do.call("rbind",
lapply(1:nrow(polyg), function(i){
b <- suppressWarnings(sf::st_crop(x = street, polyg[i, ]))
b <- sf::st_cast(b, "MULTILINESTRING")
b[[by]] <- polyg[[by]][i]
b
}))
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/add_polid.R
|
#' function to add a scale to a image plot
#'
#' @description method to plot a scale in image plot.
#'
#' @param z matrix or vector
#' @param zlim z limit
#' @param col color
#' @param breaks interval for the tickmarks
#' @param horiz TRUE (default) to a horizontal scale
#' @param xlim x limit
#' @param ylim y limitS
#' @param ... other arguments to plot
#' @importFrom graphics par axis polygon
#' @importFrom grDevices heat.colors
#'
#' @examples \dontrun{
#' mat <- matrix(100:1,ncol = 10, byrow = F)
#' cor <- grDevices::heat.colors(100)
#' image(mat,axe = FALSE, main = "numbers from 1 to 100", col = cor)
#' axis(2)
#' addscale(mat, col = cor)
#' }
#' @export
## Function to plot color bar
## from https://menugget.blogspot.com/2011/08/adding-scale-to-image-plot.html#more
addscale <- function(z,
zlim = range(z,na.rm = TRUE),
col = grDevices::heat.colors(12),
breaks = pretty(zlim),
horiz = TRUE,
ylim = NULL,
xlim = NULL,
...){
## adapted from https://github.com/dnychka/fieldsRPackage/blob/main/fields/R/image.family.R
imageplot.setup <- function(x, add = FALSE, legend.shrink = 0.9,
legend.width = 1, horizontal = FALSE,
legend.mar = NULL, smallplot = NULL, ...) {
old.par <- par(no.readonly = TRUE)
if (is.null(legend.mar)) {
legend.mar <- ifelse(horizontal, 3.1, 5.1)
}
# compute how big a text character is
char.size <- ifelse(horizontal, par()$cin[2]/par()$din[2],
par()$cin[1]/par()$din[1])
# This is how much space to work with based on setting the margins in the
# high level par command to leave between strip and big plot
offset <- char.size * ifelse(horizontal, par()$mar[1], par()$mar[4])
# this is the width of the legned strip itself.
legend.width <- char.size * legend.width
# this is room for legend axis labels
legend.mar <- legend.mar * char.size
# smallplot is the plotting region for the legend.
if (is.null(smallplot)) {
smallplot <- old.par$plt
if (horizontal) {
smallplot[3] <- legend.mar
smallplot[4] <- legend.width + smallplot[3]
pr <- (smallplot[2] - smallplot[1]) * ((1 - legend.shrink)/2)
smallplot[1] <- smallplot[1] + pr
smallplot[2] <- smallplot[2] - pr
}
else {
smallplot[2] <- 1 - legend.mar
smallplot[1] <- smallplot[2] - legend.width
pr <- (smallplot[4] - smallplot[3]) * ((1 - legend.shrink)/2)
smallplot[4] <- smallplot[4] - pr
smallplot[3] <- smallplot[3] + pr
}
}
return(smallplot)
}
if(!missing(breaks)){
if(length(breaks) != (length(col)+1)){stop("must have one more break than colour")}
}
if(missing(breaks) & !missing(zlim)){
breaks <- seq(zlim[1], zlim[2], length.out=(length(col)+1))
}
if(missing(breaks) & missing(zlim)){
zlim <- range(z, na.rm=TRUE)
zlim[2] <- zlim[2]+c(zlim[2]-zlim[1])*(1E-3)
zlim[1] <- zlim[1]-c(zlim[2]-zlim[1])*(1E-3)
breaks <- seq(zlim[1], zlim[2], length.out=(length(col)+1))
}
poly <- vector(mode="list", length(col))
for(i in seq(poly)){
poly[[i]] <- c(breaks[i], breaks[i+1], breaks[i+1], breaks[i])
}
xaxt <- ifelse(horiz, "s", "n")
yaxt <- ifelse(horiz, "n", "s")
if(horiz){YLIM<-c(0,1); XLIM<-range(breaks)}
if(!horiz){YLIM<-range(breaks); XLIM<-c(0,1)}
if(missing(xlim)) xlim=XLIM
if(missing(ylim)) ylim=YLIM
old.par <- par(no.readonly = TRUE)
on.exit(par(old.par))
smallplot <- imageplot.setup(legend.width = 1.2,horizontal = TRUE)
par(new = TRUE, pty = "m", plt = smallplot, err = -1)
plot(NA,t="n",ylim=ylim, xlim=xlim, xaxt=xaxt, yaxt=yaxt,
xaxs="i", yaxs="i",
xlab = "",ylab = "",
...)
for(i in seq(poly)){
if(horiz){
polygon(poly[[i]], c(0,0,1,1), col=col[i], border=NA)
}
if(!horiz){
polygon(c(0,0,1,1), poly[[i]], col=col[i], border=NA)
}
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/add_scale.R
|
#' Average daily traffic (ADT) from hourly traffic data.
#'
#' @description \code{\link{adt}} calculates ADT based on hourly traffic data.
#'
#' @param pc numeric vector for passenger cars
#' @param lcv numeric vector for light commercial vehicles
#' @param hgv numeric vector for heavy good vehicles or trucks
#' @param bus numeric vector for bus
#' @param mc numeric vector for motorcycles
#' @param p_pc data-frame profile for passenger cars, 24 hours only.
#' @param p_lcv data-frame profile for light commercial vehicles, 24 hours only.
#' @param p_hgv data-frame profile for heavy good vehicles or trucks, 24 hours only.
#' @param p_bus data-frame profile for bus, 24 hours only.
#' @param p_mc data-frame profile for motorcycles, 24 hours only.
#' @param feq_pc Numeric, factor equivalence
#' @param feq_lcv Numeric, factor equivalence
#' @param feq_hgv Numeric, factor equivalence
#' @param feq_bus Numeric, factor equivalence
#' @param feq_mc Numeric, factor equivalence
#' @return numeric vector of total volume of traffic per link as ADT
#' @export
#' @examples \dontrun{
#' data(net)
#' data(pc_profile)
#' p1 <- pc_profile[, 1]
#' adt1 <- adt(pc = net$ldv*0.75,
#' lcv = net$ldv*0.1,
#' hgv = net$hdv,
#' bus = net$hdv*0.1,
#' mc = net$ldv*0.15,
#' p_pc = p1,
#' p_lcv = p1,
#' p_hgv = p1,
#' p_bus = p1,
#' p_mc = p1)
#' head(adt1)
#' }
adt <- function(pc, lcv, hgv, bus, mc,
p_pc, p_lcv, p_hgv, p_bus, p_mc,
feq_pc = 1,
feq_lcv = 1.5,
feq_hgv = 2,
feq_bus = 2,
feq_mc = 0.5) {
pc <- remove_units(pc)
lcv <- remove_units(lcv)
hgv <- remove_units(hgv)
bus <- remove_units(bus)
mc <- remove_units(mc)
df_pc <- vein::temp_fact(q = pc*feq_pc, pro = p_pc)
df_lcv <- vein::temp_fact(q = lcv*feq_lcv, pro = p_lcv)
df_hgv <- vein::temp_fact(q = hgv*feq_hgv, pro = p_hgv)
df_bus <- vein::temp_fact(q = bus*feq_bus, pro = p_bus)
df_mc <- vein::temp_fact(q = mc*feq_mc, pro = p_mc)
veq = df_pc + df_lcv + df_hgv + df_bus + df_mc
n <- ncol(veq)/24
dx <- do.call("cbind", lapply(1:n, function(i){
rowSums(veq[, (24*(i-1) + 1) : (24*(i-1) + 24)])
}))
ADT <- rowMeans(dx)
return(Vehicles(ADT))
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/adt.R
|
#' Applies a survival rate to numeric new vehicles
#'
#' @family age
#'
#' @description \code{\link{age}} returns survived vehicles
#'
#' @param x Numeric; numerical vector of sales or registrations for each year
#' @param type Character; any of "gompertz", "double_logistic", "weibull" and "weibull2"
#' @param a Numeric; parameter of survival equation
#' @param b Numeric; parameter of survival equation
#' @param agemax Integer; age of oldest vehicles for that category
#' @param verbose Logical; message with average age and total numer of vehicles
#' regions or streets.
#' @return dataframe of age distrubution of vehicles
#' @importFrom sf st_sf st_as_sf
#' @export
#' @note
#'
#' The functions age* produce distribution of the circulating fleet by age of use.
#' The order of using these functions is:
#'
#' 1. If you know the distribution of the vehicles by age of use , use: \code{\link{my_age}}
#' 2. If you know the sales of vehicles, or the registry of new vehicles,
#' use \code{\link{age}} to apply a survival function.
#' 3. If you know the theoretical shape of the circulating fleet and you can use
#' \code{\link{age_ldv}}, \code{\link{age_hdv}} or \code{\link{age_moto}}. For instance,
#' you dont know the sales or registry of vehicles, but somehow you know
#' the shape of this curve.
#' 4. You can use/merge/transform/dapt any of these functions.
#'
#'
#' \strong{gompertz: 1 - exp(-exp(a + b*time))},
#' defaults PC: b = -0.137, a = 1.798, LCV: b = -0.141, a = 1.618
#' MCT (2006). de Gases de Efeito Estufa-Emissoes de Gases de
#' Efeito Estufa por Fontes Moveis, no Setor Energético. Ministerio da Ciencia e Tecnologia.
#' This curve is also used by Guo and Wang (2012, 2015) in the form:
#' V*exp(alpha*exp(beta*E)) where
#' V is the saturation car ownership level and E GDP per capita
#' Huo, H., & Wang, M. (2012). Modeling future vehicle sales and stock in China.
#' Energy Policy, 43, 17–29. doi:10.1016/j.enpol.2011.09.063
#' Huo, Hong, et al. "Vehicular air pollutant emissions in China: evaluation of past control
#' policies and future perspectives." Mitigation and Adaptation Strategies for Global Change 20.5 (2015): 719-733.
#'
#' \strong{double_logistic: 1/(1 + exp(a*(time + b))) + 1/(1 + exp(a*(time - b)))},
#' defaults PC: b = 21, a = 0.19, LCV: b = 15.3, a = 0.17, HGV: b = 17, a = 0.1, BUS: b = 19.1, a = 0.16
#' MCT (2006). de Gases de Efeito Estufa-Emissoes de Gases de
#' Efeito Estufa por Fontes Moveis, no Setor Energético. Ministerio da Ciencia e Tecnologia.
#'
#' \strong{weibull: exp(-(time/a)^b)},
#' defaults PC: b = 4.79, a = 14.46, Taxi: b = +inf, a = 5,
#' Government and business: b = 5.33, a = 13.11
#' Non-operating vehicles: b = 5.08, a = 11.53
#' Bus: b = +inf, a = 9, non-transit bus: b = +inf, a = 5.5
#' Heavy HGV: b = 5.58, a = 12.8, Medium HGV: b = 5.58, a = 10.09, Light HGV: b = 5.58, a = 8.02
#' Hao, H., Wang, H., Ouyang, M., & Cheng, F. (2011). Vehicle survival patterns in China.
#' Science China Technological Sciences, 54(3), 625-629.
#'
#' \strong{weibull2: exp(-((time + b)/a)^b )},
#' defaults b = 11, a = 26
#' Zachariadis, T., Samaras, Z., Zierock, K. H. (1995). Dynamic modeling of vehicle
#' populations: an engineering approach for emissions calculations. Technological
#' Forecasting and Social Change, 50(2), 135-149. Cited by Huo and Wang (2012)
#'
#' @examples \dontrun{
#' vehLIA <- rep(1, 25)
#' PV_Minia <- age(x = vehLIA)
#' PV_Minib <- age(x = vehLIA, type = "weibull2", b = 11, a = 26)
#' PV_Minic <- age(x = vehLIA, type = "double_logistic", b = 21, a = 0.19)
#' PV_Minid <- age(x = vehLIA, type = "gompertz", b = -0.137, a = 1.798)
#' dff <- data.frame(PV_Minia, PV_Minib, PV_Minic, PV_Minid)
#' colplot(dff)
#' }
age <- function (x,
type = "weibull",
a = 14.46,
b = 4.79,
agemax,
verbose = FALSE){
# check agemax
if(!missing(agemax)) x <- x[1:agemax]
# gompertz ####
if(type == "gompertz") {
surv <- function (time, a, b) {1 - exp(-exp(a + b*time))}
anos <- 1:length(x)
d <- surv(time = anos, a = a, b = b)
df <- x*d
# double logistic ####
} else if(type == "double_logistic"){
surv <- function (time, a, b) {
1/(1 + exp(a*(time + b))) + 1/(1 + exp(a*(time - b)))
}
anos <- 1:length(x)
d <- surv(time = anos, a = a, b = b)
df <- x*d
# weibull ####
} else if(type == "weibull"){
surv <- function (time, a, b) {
exp(-(time/a)^b)
}
anos <- 1:length(x)
d <- surv(time = anos, a = a, b = b)
df <- x*d
} else if(type == "weibull2"){
surv <- function (time, a, b) {
exp(-((time + b)/a)^b )
}
anos <- 1:length(x)
d <- surv(time = anos, a = a, b = b)
df <- x*d
}
# data.frame ####
if(verbose){
# message(paste("Average age of is",
# round(sum(anos*sum(df, na.rm = T)/sum(df, na.rm = T)), 2),
# sep=" "))
message(paste("Number of vehicles is", round(sum(df, na.rm = T)/1000, 2),
"* 10^3 veh", sep=" ")
)
cat("\n")
}
# replace NA and NaN
df[is.na(df)] <- 0
return(Vehicles(df))
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/age.R
|
#' Returns amount of vehicles at each age
#'
#' @family age
#'
#' @description \code{\link{age_hdv}} returns amount of vehicles at each age
#'
#' @param x Numeric; numerical vector of vehicles with length equal to lines features of road network
#' @param name Character; of vehicle assigned to columns of dataframe
#' @param a Numeric; parameter of survival equation
#' @param b Numeric; parameter of survival equation
#' @param agemin Integer; age of newest vehicles for that category
#' @param agemax Integer; age of oldest vehicles for that category
#' @param k Numeric; multiplication factor. If its length is > 1, it must match the length of x
#' @param bystreet Logical; when TRUE it is expecting that 'a' and 'b' are numeric vectors with length equal to x
#' @param net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
#' @param verbose Logical; message with average age and total numer of vehicles
#' @param namerows Any vector to be change row.names. For instance, name of
#' regions or streets.
#' @param time Character to be the time units as denominator, eg "1/h"
#' @return dataframe of age distrubution of vehicles at each street
#' @importFrom sf st_sf st_as_sf
#' @note
#' The functions age* produce distribution of the circulating fleet by age of use.
#' The order of using these functions is:
#'
#' 1. If you know the distribution of the vehicles by age of use , use: \code{\link{my_age}}
#' 2. If you know the sales of vehicles, or the registry of new vehicles,
#' use \code{\link{age}} to apply a survival function.
#' 3. If you know the theoretical shape of the circulating fleet and you can use
#' \code{\link{age_ldv}}, \code{\link{age_hdv}} or \code{\link{age_moto}}. For instance,
#' you dont know the sales or registry of vehicles, but somehow you know
#' the shape of this curve.
#' 4. You can use/merge/transform/adapt any of these functions.
#' @export
#' @examples \dontrun{
#' data(net)
#' LT_B5 <- age_hdv(x = net$hdv,name = "LT_B5")
#' plot(LT_B5)
#' LT_B5 <- age_hdv(x = net$hdv, name = "LT_B5", net = net)
#' plot(LT_B5)
#' }
age_hdv <- function (x,
name = "age",
a = 0.2,
b = 17,
agemin = 1,
agemax = 50,
k = 1,
bystreet = F,
net,
verbose = FALSE,
namerows,
time){
# check na
x[is.na(x)] <- 0
x <- as.numeric(x)
# length k
if(length(k) > 1 & length(k) < length(x)){
stop("length of 'k' must be 1 ore equal to length of 'x'")
}
# check agemax
if(agemax < 1) stop("Agemax should be bigger than 1")
# bystreet = TRUE
if (bystreet == TRUE){
if(length(x) != length(a)){
stop("Lengths of veh and age must be the same")
}
d <- suca <- list()
for (i in seq_along(x)) {
suca[[i]] <- function (t) {1/(1 + exp(a[i]*(t+b[i])))+1/(1 + exp(a[i]*(t-b[i])))}
anos <- seq(agemin,agemax)
d[[i]] <- (-1)*diff(suca[[i]](anos))
d[[i]][length(d[[i]])+1] <- d[[i]][length(d[[i]])]
d[[i]] <- d[[i]] + (1 - sum(d[[i]]))/length(d[[i]])
d[[i]] <- d[[i]]*x[i]
}
df <- as.data.frame(matrix(0,ncol=length(anos), nrow=1))
for (i in seq_along(x)) {
df[i,] <- d[[i]]
}
df <- as.data.frame(cbind(as.data.frame(matrix(0,ncol=agemin-1,
nrow=length(x))), df))
names(df) <- paste(name,seq(1,agemax),sep="_")
df <- df*k
if(verbose){
message(paste("Average age of",name, "is",
round(sum(seq(1,agemax)*base::colSums(df)/sum(df)), 2),
sep=" "))
message(paste("Number of",name, "is",
round(sum(df, na.rm = T), 3),
" [veh]",
sep=" "))
cat("\n")
}
if(!missing(namerows)) {
if(length(namerows) != nrow(df)) stop("length of namerows must be the length of number of rows of veh")
row.names(df) <- namerows
}
# replace NA and NaN
df[is.na(df)] <- 0
if(!missing(net)){
netsf <- sf::st_as_sf(net)
if(!missing(time)){
dfsf <- sf::st_sf(Vehicles(df*k, time = time), geometry = sf::st_geometry(netsf))
} else {
dfsf <- sf::st_sf(Vehicles(df*k), geometry = sf::st_geometry(netsf))
}
return(dfsf)
} else {
if(!missing(time)){
return(Vehicles(df*k, time = time))
} else {
return(Vehicles(df*k))
}
}
#bystreet = FALSE
} else {
suca <- function (t) {1/(1 + exp(a*(t+b)))+1/(1 + exp(a*(t-b)))}
anos <- seq(agemin,agemax)
d <- (-1)*diff(suca(anos))
d[length(d)+1] <- d[length(d)]
d <- d + (1 - sum(d))/length(d)
df <- as.data.frame(as.matrix(x) %*%matrix(d,ncol=length(anos), nrow=1))
df <- as.data.frame(cbind(as.data.frame(matrix(0,ncol=agemin-1,
nrow=length(x))), df))
names(df) <- paste(name,seq(1,agemax),sep="_")
df <- df*k
if(verbose){
message(paste("Average age of",name, "is",
round(sum(seq(1,agemax)*base::colSums(df)/sum(df)), 2),
sep=" "))
message(paste("Number of",name, "is",
round(sum(df, na.rm = T)/1000, 2),
"* 10^3 veh", sep=" "))
cat("\n")
}
if(!missing(namerows)) {
if(length(namerows) != nrow(df)) stop("length of namerows must be the length of number of rows of veh")
row.names(df) <- namerows
}
# replace NA and NaN
df[is.na(df)] <- 0
if(!missing(net)){
netsf <- sf::st_as_sf(net)
if(!missing(time)){
dfsf <- sf::st_sf(Vehicles(df, time = time), geometry = sf::st_geometry(netsf))
} else {
dfsf <- sf::st_sf(Vehicles(df), geometry = sf::st_geometry(netsf))
}
return(dfsf)
} else {
if(!missing(time)){
return(Vehicles(df, time = time))
} else {
return(Vehicles(df))
}
}
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/age_hdv.R
|
#' Returns amount of vehicles at each age
#'
#' @family age
#'
#' @description \code{\link{age_ldv}} returns amount of vehicles at each age
#'
#' @param x Numeric; numerical vector of vehicles with length equal to lines features of road network
#' @param name Character; of vehicle assigned to columns of dataframe
#' @param a Numeric; parameter of survival equation
#' @param b Numeric; parameter of survival equation
#' @param agemin Integer; age of newest vehicles for that category
#' @param agemax Integer; age of oldest vehicles for that category
#' @param k Numeric; multiplication factor. If its length is > 1, it must match the length of x
#' @param bystreet Logical; when TRUE it is expecting that 'a' and 'b' are numeric vectors with length equal to x
#' @param net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
#' @param verbose Logical; message with average age and total numer of vehicles
#' @param namerows Any vector to be change row.names. For instance, name of
#' regions or streets.
#' @param time Character to be the time units as denominator, eg "1/h"
#' @return dataframe of age distrubution of vehicles
#' @importFrom sf st_sf st_as_sf
#' @note
#' The functions age* produce distribution of the circulating fleet by age of use.
#' The order of using these functions is:
#'
#' 1. If you know the distribution of the vehicles by age of use , use: \code{\link{my_age}}
#' 2. If you know the sales of vehicles, or the registry of new vehicles,
#' use \code{\link{age}} to apply a survival function.
#' 3. If you know the theoretical shape of the circulating fleet and you can use
#' \code{\link{age_ldv}}, \code{\link{age_hdv}} or \code{\link{age_moto}}. For instance,
#' you dont know the sales or registry of vehicles, but somehow you know
#' the shape of this curve.
#' 4. You can use/merge/transform/adapt any of these functions.
#' @export
#' @note It consists in a Gompertz equation with default parameters from
#' 1 national emissions inventory for green housegases in Brazil, MCT 2006
#' @examples \dontrun{
#' data(net)
#' PC_E25_1400 <- age_ldv(x = net$ldv, name = "PC_E25_1400")
#' plot(PC_E25_1400)
#' PC_E25_1400 <- age_ldv(x = net$ldv, name = "PC_E25_1400", net = net)
#' plot(PC_E25_1400)
#' }
age_ldv <- function (x,
name = "age",
a = 1.698,
b = -0.2,
agemin = 1,
agemax = 50,
k = 1,
bystreet = F,
net,
verbose = FALSE,
namerows,
time){
# check na
x[is.na(x)] <- 0
x <- as.numeric(x)
# length k
if(length(k) > 1 & length(k) < length(x)){
stop("length of 'k' must be 1 ore equal to length of 'x'")
}
#check agemax
if(agemax < 1) stop("Agemax should be bigger than 1")
#bystreet = TRUE
if (bystreet == T){
if(length(x) != length(a)){
stop("Lengths of veh and age must be the same")
}
d <- suca <- list()
for (i in seq_along(x)) {
suca[[i]] <- function (t) {1 - exp(-exp(a[i] + b[i]*t))}
anos <- seq(agemin,agemax)
d[[i]] <- (-1)*diff(suca[[i]](anos))
d[[i]][length(d[[i]])+1] <- d[[i]][length(d[[i]])]
d[[i]] <- d[[i]] + (1 - sum(d[[i]]))/length(d[[i]])
d[[i]] <- d[[i]]*x[i]
}
df <- as.data.frame(matrix(0,ncol=length(anos), nrow=1))
for (i in seq_along(x)) {
df[i,] <- d[[i]]
}
df <- as.data.frame(cbind(as.data.frame(matrix(0,ncol=agemin-1,
nrow=length(x))),
df))
names(df) <- paste(name,seq(1,agemax),sep="_")
df <- df*k
if(verbose){
message(paste("Average age of",name, "is",
round(sum(seq(1,agemax)*base::colSums(df, na.rm = T)/sum(df, na.rm = T)), 2),
sep=" "))
message(paste("Number of",name, "is",
round(sum(df, na.rm = T)/1000, 2),
"* 10^3 veh",
sep=" ")
)
cat("\n")
}
if(!missing(namerows)) {
if(length(namerows) != nrow(df)) stop("length of namerows must be the length of number of rows of veh")
row.names(df) <- namerows
}
if(!missing(net)){
netsf <- sf::st_as_sf(net)
if(!missing(time)){
dfsf <- sf::st_sf(Vehicles(df*k, time = time), geometry = sf::st_geometry(netsf))
} else {
dfsf <- sf::st_sf(Vehicles(df*k), geometry = sf::st_geometry(netsf))
}
return(dfsf)
} else {
if(!missing(time)){
return(Vehicles(df*k, time = time))
} else {
return(Vehicles(df*k))
}
}
#bystreet = FALSE
} else {
suca <- function (t) {1 - exp(-exp(a + b*t))}
anos <- seq(agemin,agemax)
d <- (-1)*diff(suca(anos))
d[length(d)+1] <- d[length(d)]
d <- d + (1 - sum(d))/length(d)
df <- as.data.frame(as.matrix(x) %*%matrix(d,ncol=length(anos), nrow=1))
df <- as.data.frame(cbind(as.data.frame(matrix(0,ncol=agemin-1,
nrow=length(x))),
df))
names(df) <- paste(name,seq(1,agemax),sep="_")
df <- df*k
if(verbose){
message(paste("Average age of",name, "is",
round(sum(seq(1,agemax)*base::colSums(df, na.rm = T)/sum(df, na.rm = T)), 2),
sep=" "))
message(paste("Number of",name, "is",
round(sum(df, na.rm = T), 3),
" [veh]",
sep=" "))
cat("\n")
}
if(!missing(namerows)) {
if(length(namerows) != nrow(df)) stop("length of namerows must be the length of number of rows of veh")
row.names(df) <- namerows
}
# replace NA and NaN
df[is.na(df)] <- 0
if(!missing(net)){
netsf <- sf::st_as_sf(net)
if(!missing(time)){
dfsf <- sf::st_sf(Vehicles(df, time = time), geometry = sf::st_geometry(netsf))
} else {
dfsf <- sf::st_sf(Vehicles(df), geometry = sf::st_geometry(netsf))
}
return(dfsf)
} else {
if(!missing(time)){
return(Vehicles(df, time = time))
} else {
return(Vehicles(df))
}
}
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/age_ldv.R
|
#' Returns amount of vehicles at each age
#'
#' @family age
#'
#' @description \code{\link{age_moto}} returns amount of vehicles at each age
#'
#' @param x Numeric; numerical vector of vehicles with length equal to lines features of road network
#' @param name Character; of vehicle assigned to columns of dataframe
#' @param a Numeric; parameter of survival equation
#' @param b Numeric; parameter of survival equation
#' @param agemin Integer; age of newest vehicles for that category
#' @param agemax Integer; age of oldest vehicles for that category
#' @param k Numeric; multiplication factor. If its length is > 1, it must match the length of x
#' @param bystreet Logical; when TRUE it is expecting that 'a' and 'b' are numeric vectors with length equal to x
#' @param net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
#' @param verbose Logical; message with average age and total numer of vehicles
#' @param namerows Any vector to be change row.names. For instance, name of
#' regions or streets.
#' @param time Character to be the time units as denominator, eg "1/h"
#' @return dataframe of age distrubution of vehicles
#' @importFrom sf st_sf st_as_sf
#' @note
#' The functions age* produce distribution of the circulating fleet by age of use.
#' The order of using these functions is:
#'
#' 1. If you know the distribution of the vehicles by age of use , use: \code{\link{my_age}}
#' 2. If you know the sales of vehicles, or the registry of new vehicles,
#' use \code{\link{age}} to apply a survival function.
#' 3. If you know the theoretical shape of the circulating fleet and you can use
#' \code{\link{age_ldv}}, \code{\link{age_hdv}} or \code{\link{age_moto}}. For instance,
#' you dont know the sales or registry of vehicles, but somehow you know
#' the shape of this curve.
#' 4. You can use/merge/transform/adapt any of these functions.
#' @export
#' @examples \dontrun{
#' data(net)
#' MOTO_E25_500 <- age_moto(x = net$ldv, name = "M_E25_500", k = 0.4)
#' plot(MOTO_E25_500)
#' MOTO_E25_500 <- age_moto(x = net$ldv, name = "M_E25_500", k = 0.4, net = net)
#' plot(MOTO_E25_500)
#' }
age_moto <- function (x,
name = "age",
a = 0.2,
b = 17,
agemin = 1,
agemax = 50,
k = 1,
bystreet = FALSE,
net,
verbose = FALSE,
namerows,
time){
# check na
x[is.na(x)] <- 0
x <- as.numeric(x)
# length k
if(length(k) > 1 & length(k) < length(x)){
stop("length of 'k' must be 1 ore equal to length of 'x'")
}
# check agemax
if(agemax < 1) stop("Agemax should be bigger than 1")
# bystreet = TRUE
if (bystreet == TRUE){
if(length(x) != length(a)){
stop("Lengths of veh and age must be the same")
}
d <- suca <- list()
for (i in seq_along(x)) {
suca[[i]] <- function (t) {1/(1 + exp(a[i]*(t+b[i])))+1/(1 + exp(a[i]*(t-b[i])))}
anos <- seq(agemin,agemax)
d[[i]] <- (-1)*diff(suca[[i]](anos))
d[[i]][length(d[[i]])+1] <- d[[i]][length(d[[i]])]
d[[i]] <- d[[i]] + (1 - sum(d[[i]]))/length(d[[i]])
d[[i]] <- d[[i]]*x[i]
}
df <- as.data.frame(matrix(0,ncol=length(anos), nrow=1))
for (i in seq_along(x)) {
df[i,] <- d[[i]]
}
df <- as.data.frame(cbind(as.data.frame(matrix(0,ncol=agemin-1,
nrow=length(x))), df))
names(df) <- paste(name,seq(1,agemax),sep="_")
df <- df*k
if(verbose){
message(paste("Average age of",name, "is",
round(sum(seq(1,agemax)*base::colSums(df)/sum(df)), 2),
sep=" "))
message(paste("Number of",name, "is",
round(sum(df, na.rm = T), 3),
" [veh]",
sep=" "))
cat("\n")
}
if(!missing(namerows)) {
if(length(namerows) != nrow(df)) stop("length of namerows must be the length of number of rows of veh")
row.names(df) <- namerows
}
# replace NA and NaN
df[is.na(df)] <- 0
if(!missing(net)){
netsf <- sf::st_as_sf(net)
if(!missing(time)){
dfsf <- sf::st_sf(Vehicles(df*k, time = time), geometry = sf::st_geometry(netsf))
} else {
dfsf <- sf::st_sf(Vehicles(df*k), geometry = sf::st_geometry(netsf))
}
return(dfsf)
} else {
if(!missing(time)){
return(Vehicles(df*k, time = time))
} else {
return(Vehicles(df*k))
}
}
#bystreet = FALSE
} else {
suca <- function (t) {1/(1 + exp(a*(t+b)))+1/(1 + exp(a*(t-b)))}
anos <- seq(agemin,agemax)
d <- (-1)*diff(suca(anos))
d[length(d)+1] <- d[length(d)]
d <- d + (1 - sum(d))/length(d)
df <- as.data.frame(as.matrix(x) %*%matrix(d,ncol=length(anos), nrow=1))
df <- as.data.frame(cbind(as.data.frame(matrix(0,ncol=agemin-1,
nrow=length(x))), df))
names(df) <- paste(name,seq(1,agemax),sep="_")
df <- df*k
if(verbose){
message(paste("Average age of",name, "is",
round(sum(seq(1,agemax)*base::colSums(df)/sum(df)), 2),
sep=" "))
message(paste("Number of",name, "is",
round(sum(df, na.rm = T)/1000, 2),
"* 10^3 veh", sep=" "))
cat("\n")
}
if(!missing(namerows)) {
if(length(namerows) != nrow(df)) stop("length of namerows must be the length of number of rows of veh")
row.names(df) <- namerows
}
# replace NA and NaN
df[is.na(df)] <- 0
if(!missing(net)){
netsf <- sf::st_as_sf(net)
if(!missing(time)){
dfsf <- sf::st_sf(Vehicles(df, time = time), geometry = sf::st_geometry(netsf))
} else {
dfsf <- sf::st_sf(Vehicles(df), geometry = sf::st_geometry(netsf))
}
return(dfsf)
} else {
if(!missing(time)){
return(Vehicles(df, time = time))
} else {
return(Vehicles(df))
}
}
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/age_moto.R
|
#' Average Weight for hourly traffic data.
#'
#' @description \code{\link{aw}} average weight form traffic.
#'
#' @param pc numeric vector for passenger cars
#' @param lcv numeric vector for light commercial vehicles
#' @param hgv numeric vector for heavy good vehicles or trucks
#' @param bus numeric vector for bus
#' @param mc numeric vector for motorcycles
#' @param p_pc data-frame profile for passenger cars, 24 hours only.
#' @param p_lcv data-frame profile for light commercial vehicles, 24 hours only.
#' @param p_hgv data-frame profile for heavy good vehicles or trucks, 24 hours only.
#' @param p_bus data-frame profile for bus, 24 hours only.
#' @param p_mc data-frame profile for motorcycles, 24 hours only.
#' @param w_pc Numeric, factor equivalence
#' @param w_lcv Numeric, factor equivalence
#' @param w_hgv Numeric, factor equivalence
#' @param w_bus Numeric, factor equivalence
#' @param w_mc Numeric, factor equivalence
#' @param net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
#' @importFrom sf st_sf
#' @return data.frame with with average weight
#' @export
#' @examples \dontrun{
#' data(net)
#' data(pc_profile)
#' p1 <- pc_profile[, 1]
#' aw1 <- aw(pc = net$ldv*0.75,
#' lcv = net$ldv*0.1,
#' hgv = net$hdv,
#' bus = net$hdv*0.1,
#' mc = net$ldv*0.15,
#' p_pc = p1,
#' p_lcv = p1,
#' p_hgv = p1,
#' p_bus = p1,
#' p_mc = p1)
#' head(aw1)
#' }
aw <- function(pc, lcv, hgv, bus, mc,
p_pc, p_lcv, p_hgv, p_bus, p_mc,
w_pc = 1,
w_lcv = 3.5,
w_hgv = 20,
w_bus = 20,
w_mc = 0.5,
net) {
pc <- remove_units(pc)
lcv <- remove_units(lcv)
hgv <- remove_units(hgv)
bus <- remove_units(bus)
mc <- remove_units(mc)
df_pc <- vein::temp_fact(q = pc, pro = p_pc)
df_lcv <- vein::temp_fact(q = lcv, pro = p_lcv)
df_hgv <- vein::temp_fact(q = hgv, pro = p_hgv)
df_bus <- vein::temp_fact(q = bus, pro = p_bus)
df_mc <- vein::temp_fact(q = mc, pro = p_mc)
fleet <- df_pc + df_lcv + df_hgv + df_bus + df_mc
df_pc_w <- vein::temp_fact(q = pc*w_pc, pro = p_pc)
df_lcv_w <- vein::temp_fact(q = lcv*w_lcv, pro = p_lcv)
df_hgv_w <- vein::temp_fact(q = hgv*w_hgv, pro = p_hgv)
df_bus_w <- vein::temp_fact(q = bus*w_bus, pro = p_bus)
df_mc_w <- vein::temp_fact(q = mc*w_mc, pro = p_mc)
W <- (df_pc_w + df_lcv_w + df_hgv_w + df_bus_w + df_mc_w)/fleet
W <- remove_units(W)
W[is.na(W)] <- 0
if(!missing(net)) {
net <- sf::st_as_sf(net)
W <- sf::st_sf(W, geometry = sf::st_geometry(net))
} else {
return(W)
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/aw.R
|
#' Construction function for Celsius temperature
#'
#' @description \code{celsius} just add unit celsius to different R objects
#'
#' @return Objects of class "data.frame" or "units"
#'
#' @param x Object with class "data.frame", "matrix", "numeric" or "integer"
#' @importFrom units as_units
#'
#' @examples {
#' a <- celsius(rnorm(100)*10)
#' plot(a)
#' b <- celsius(matrix(rnorm(100)*10, ncol = 10))
#' print(head(b))
#' }
#' @export
celsius <- function(x) {
if ( is.matrix(x) ) {
e <- as.data.frame(x)
for(i in 1:ncol(e)){
e[,i] <- e[,i]*units::as_units("degC")
}
} else if ( is.data.frame(x) ) {
e <- x
for(i in 1:ncol(x)){
e[,i] <- e[,i]*units::as_units("degC")
}
} else if( inherits(x, "numeric") | inherits(x, "integer")) {
e <- x*units::as_units("degC")
}
return(e)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/celsius.R
|
#' Fraction of mileage driven with a cold engine or catalizer below normal temperature
#'
#' This function depends length of trip and on ambient temperature.
#' From the guidelines EMEP/EEA air pollutant emission inventory guidebook
#' http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook
#'
#' @param ltrip Numeric; Length of trip. It must be in 'units' km.
#' @param ta Numeric or data.frame; average monthly temperature Celsius. It if is a
#' data.frame, it is convenient that each column is each month.
#' @keywords cold mileage
#' @note This function is set so that values varies between 0 and 1.
#' @export
#' @examples \dontrun{
#' lkm <- units::set_units(1:10, km)
#' ta <- celsius(matrix(0:9, ncol = 12, nrow = 10))
#' a <- cold_mileage(lkm, ta)
#' colplot(a)
#' }
cold_mileage <- function(ltrip, ta){
# Check units
if(!inherits(ltrip, "units")){
stop("ltrip neeeds to has class 'units' in 'km'. Please, check package '?units::set_units'")
}
if(units(ltrip) == units(units::as_units("m"))){
stop("Units of lkm is 'm'. Please, check package '?units::set_units'")
}
if(units(ltrip) == units(units::as_units("km"))){
ltrip <- as.numeric(ltrip)
}
if(is.data.frame(ta) | is.matrix(ta)){
if(!inherits(ta[, 1], "units")) stop("ta must be units in celsius, use units::set_units(ta, degC)")
ta <- as.data.frame(ta)
for(i in 1:ncol(ta)) {
ta[, i] <- as.numeric(ta[, i])
}
clkm <- as.data.frame(
sapply(
1:ncol(ta),
function(i){
ifelse(
0.6474 - 0.02545 * ltrip - (0.00974 - 0.000385 * ltrip) * ta[, i] < 0, 0,
ifelse(
0.6474 - 0.02545 * ltrip - (0.00974 - 0.000385 * ltrip) * ta[, i] > 1, 1,
0.6474 - 0.02545 * ltrip - (0.00974 - 0.000385 * ltrip) * ta[, i]))
}
)
)
} else {
if(!inherits(ta, "units")) stop("ta must be units in celsius, use units::set_units(ta, degC)")
ta <- as.numeric(ta)
clkm <- ifelse(
0.6474 - 0.02545 * ltrip - (0.00974 - 0.000385 * ltrip) * ta < 0, 0,
ifelse(
0.6474 - 0.02545 * ltrip - (0.00974 - 0.000385 * ltrip) * ta > 1, 1,
0.6474 - 0.02545 * ltrip - (0.00974 - 0.000385 * ltrip) * ta))
}
return(clkm)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/cold_mileage.R
|
#' Function to plot columns of data.frames
#'
#' \code{\link{colplot}} plots columns of data.frame
#' @param df data.frame.
#' @param cols Character, columns of data.frame.
#' @param xlab a label for the x axis, defaults to a description of x.
#' @param ylab a label for the x axis, defaults to a description of x.
#' @param xlim x limits
#' @param ylim y limits
#' @param main Character, a main title for the plot, see also \code{\link{title}}.
#' @param theme Character; "black", "dark", "clean", "ink"
#' @param col The colors for lines and points. Multiple colors can
#' be specified so that each point can be given its own color. If
#' there are fewer colors than points they are recycled in the
#' standard fashion. Default are cptcity colour palette "kst_18_pastels"
#' @param type 1-character string giving the type of plot desired.
#' The following values are possible, for details, see plot: "p" for
#' points, "l" for lines, "b" for both points and lines, "c"
#' for empty points joined by lines, "o" for overplotted points and
#' lines, "s" and "S" for stair steps and "h" for histogram-like vertical
#' lines. Finally, "n" does not produce any points or lines.
#' @param lwd a vector of line widths, see \code{\link{par}}.
#' @param pch plotting ‘character’, i.e., symbol to use. This can either be a
#' single character or an integer code for one of a set of graphics symbols.
#' The full set of S symbols is available with pch = 0:18, see the
#' examples below. (NB: R uses circles instead of the octagons used in S.).
#' Value pch = "." (equivalently pch = 46) is handled specially.
#' It is a rectangle of side 0.01 inch (scaled by cex). In addition,
#' if cex = 1 (the default), each side is at least one pixel
#' (1/72 inch on the pdf, postscript and xfig devices).
#' For other text symbols, cex = 1 corresponds to the default fontsize
#' of the device, often specified by an argument pointsize.
#' For pch in 0:25 the default size is about 75% of
#' the character height (see par("cin")).
#' @param familyfont "Character" to specify font, default is"", options "serif",
#' "sans", "mono" or more according device
#' @param ... plot arguments
#' @family helpers
#' @return a nice plot
#' @note This plot shows values > 0 by default. To plot all values, use all_values = TRUE
#' @importFrom graphics legend par plot points
#' @seealso \code{\link{par}}
#' @export
#' @examples \dontrun{
#' a <- ef_cetesb("CO", c("PC_G", "PC_FE", "PC_FG", "PC_E"), agemax = 20)
#' colplot(df = a, ylab = "CO [g/km]", theme = "dark", type = "b")
#' colplot(df = a, ylab = "CO [g/km]", theme = "dark", pch = NULL, type = "b")
#' colplot(df = a, ylab = "CO [g/km]", theme = "clean", type = "b")
#' colplot(df = a, ylab = "CO [g/km]", theme = "clean", pch = NULL, type = "b")
#' #colplot(df = a, cols = "PC_FG", main = "EF", ylab = "CO [g/km]")
#' #colplot(df = a, ylab = "CO [g/km]", theme = "clean")
#' }
colplot <- function (df,
cols = names(df),
xlab = "",
ylab = "",
xlim = c(1, nrow(df)),
ylim = range(unlist(df[[cols]]), na.rm = TRUE),
main = NULL,
theme = "black",
col = cptcity::cpt(pal = cptcity::find_cpt("pastel")[4],
n = length(names(df))),
type = "b",
lwd = 2,
pch = 1:ncol(df),
familyfont = "",
...){
oldpar <- par(no.readonly = TRUE) # code line i
on.exit(par(oldpar)) # code line i + 1
df <- as.data.frame(df)
if (theme == "clean") {
graphics::par(fg = "black", adj = 0.5, ann = TRUE,
bg = "white", bty = "o", cex = 1, cex.axis = 0.7,
cex.lab = 0.8, cex.main = 1, cex.sub = 0.8, col = "black",
col.axis = "black", col.lab = "black",
col.main = "black", col.sub = "black",
family = familyfont, font = 1, font.axis = 1, font.lab = 1,
font.main = 2, font.sub = 3, lab = c(5, 5, 7), las = 1,
lend = "round", ljoin = "round", lmitre = 10,
lty = "solid", lwd = 1, mgp = c(2, 0.5, 0),
# pch = 20,
tck = -0.01, xaxs = "r", xaxt = "s",
xpd = FALSE, yaxs = "r", yaxt = "s")
} else if (theme == "ink") {
graphics::par(fg = "blue", adj = 0.5, ann = TRUE,
bg = "navajowhite", bty = "o", cex = 0.8,
cex.axis = 1, cex.lab = 1, cex.main = 1.5, cex.sub = 1,
col = "blue", col.axis = "blue", col.lab = "blue",
col.main = "blue", col.sub = "blue",
family = familyfont, font = 3, font.axis = 3, font.lab = 4,
font.main = 2, font.sub = 3, lab = c(5, 5, 7), las = 1,
lend = "round", ljoin = "round", lmitre = 10,
lty = "dotted", lwd = 2, mgp = c(2, 0.5, 0),
# pch = 4,
tck = -0.01, xaxs = "r", xaxt = "s",
xpd = FALSE, yaxs = "r", yaxt = "s")
} else if (theme == "dark") {
graphics::par(fg = "#7E848C", adj = 0.5, ann = TRUE,
bg = "#2E3947", bty = "n", cex = 0.8,
cex.axis = 1, cex.lab = 1, cex.main = 1.5, cex.sub = 1,
col = "#BEBEBE", col.axis = "#7E848C",
col.lab = "#BEBEBE", col.main = "#EFF0F2",
col.sub = "#737D89", family = familyfont, font = 1,
font.axis = 1, font.lab = 2, font.main = 2, font.sub = 3,
lab = c(5, 5, 7), las = 1, lend = "round",
ljoin = "round", lmitre = 10, lty = 1, lwd = 1,
mgp = c(3, 0.7, 0),
# pch = 19,
tck = -0.01, xaxs = "r",
xaxt = "s", xpd = FALSE, yaxs = "r",
yaxt = "s")
} else if (theme == "black") {
graphics::par(fg = "#7E848C", adj = 0.5, ann = TRUE,
bg = "black", bty = "n", cex = 0.8, cex.axis = 1,
cex.lab = 1, cex.main = 1.5, cex.sub = 1, col = "white",
col.axis = "white", col.lab = "white",
col.main = "white", col.sub = "white",
family = familyfont, font = 1, font.axis = 1, font.lab = 2,
font.main = 2, font.sub = 3, lab = c(5, 5, 7), las = 1,
lend = "round", ljoin = "round", lmitre = 10,
lty = 1, lwd = 1, mgp = c(3, 0.7, 0),
# pch = 19,
tck = -0.01,
xaxt = "s", xpd = FALSE, yaxs = "r",
yaxt = "s")
}
# function add legend
add_legend <- function(...) {
opar <- graphics::par(fig=c(0, 1, 0, 1),
oma=c(0, 0, 0, 0),
mar=c(0, 0, 0, 0),
new=TRUE)
on.exit(graphics::par(opar))
plot(0, 0, type='n', bty='n', xaxt='n', yaxt='n')
graphics::legend(...)
}
# graphics::par(xpd = T, mar = par()$mar + c(0, 0, 0, spl))
par(mar = c(5, 4, 1.4, 0.2))
if (!missing(cols)) df <- df[cols]
df <- remove_units(df)
df[df == 0] <- NA
# ldf <- as.list(df)
# c(5, 4, 1.4, 0.2)
plot(df[[1]],
ylim = c(0, max(df, na.rm = TRUE)),
type = type,
pch = pch[1],
col = col[1],
ylab = ylab,
xlab = xlab,
main = main,
lwd = lwd,
...)
if(ncol(df) > 1) {
for(i in 2:ncol(df)) {
graphics::points(df[[i]],
type = type,
pch = pch[i],
col = col[i],
lwd = lwd)
}
}
add_legend("topright",
legend = names(df),
col = col[1:ncol(df)],
horiz=TRUE,
bty='n',
cex=1,
text.font=4,
pch = pch)
# graphics::plot(ldf[[1]], ylim = c(0, max(df, na.rm = TRUE)),
# type = type, pch = pch, col = col[1], ylab = ylab, xlab = xlab,
# main = main, lwd = lwd)
# graphics::legend(x = nrow(df),
# y = max(unlist(ldf),
# na.rm = T) * 1.04,
# col = col[1:ncol(df)], legend = cols,
# pch = pch, lwd = lwd)
# graphics::par(xlog = FALSE, ylog = FALSE, adj = 0.5, ann = TRUE,
# ask = FALSE, bg = "white", bty = "o", cex = 1,
# cex.axis = 1, cex.lab = 1, cex.main = 1.2, cex.sub = 1,
# col = "black", col.axis = "black", col.lab = "black",
# col.main = "black", col.sub = "black", crt = 0,
# err = 0, family = "", fg = "black", fig = c(0,
# 1, 0, 1), fin = c(6.239583, 5.6875), font = 1, font.axis = 1,
# font.lab = 1, font.main = 2, font.sub = 1, lab = c(5,
# 5, 7), las = 0, lend = "round", lheight = 1,
# ljoin = "round", lmitre = 10, lty = "solid",
# lwd = 1, mai = c(1.02, 0.82, 0.82, 0.42), mar = c(5.1,
# 4.1, 4.1, 2.1), mex = 1, mfcol = c(1, 1), mfg = rep(1,
# 4), mfrow = c(1, 1), mgp = c(3, 1, 0), mkh = 0.001,
# new = FALSE, oma = c(0, 0, 0, 0), omd = c(0, 1, 0, 1),
# omi = rep(0, 4), pch = 1, pin = c(4.999583, 3.8475),
# plt = c(0.131419, 0.9326878, 0.1793407, 0.8558242), ps = 12,
# pty = "m", smo = 1, srt = 0, tck = NA, tcl = -0.5,
# usr = c(0, 1, 0, 1), xaxp = c(0, 1, 5), xaxs = "r",
# xaxt = "s", xpd = FALSE, yaxp = c(0, 1, 5), yaxs = "r",
# yaxt = "s", ylbias = 0.2)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/colplot.R
|
#' Description data.frame for MOVES
#'
#' A data.frame descriptors to use MOVES functions
#'
#' @format A data frame with 69 rows and 4 columns:
#' \describe{
#' \item{CategoryField}{dayID, sourceTypID, roadTypeID, pollutantID and procesID}
#' \item{pollutantID}{Associated number}
#' \item{Description}{Associatd description}
#' \item{V4}{pollutants}
#' }
#' @source US/EPA MOVES
#' @usage data(decoder)
#' @docType data
"decoder"
|
/scratch/gouwar.j/cran-all/cranData/vein/R/decoder.R
|
#' Number of days of the month
#'
#' \code{\link{ef_ldv_speed}} return the number of day sof the month
#'
#'
#' @param year Numeric
#' @param month Numeric
#' @return days of the month
#' @family helpers
#' @export
#' @examples \dontrun{
#' dmonth(2022, 1)
#' }
dmonth <- function(year, month) {
date <- ISOdate(year, month, 1, 0, 0, 0)
m <- format(date, format="%m")
while (format(date, format="%m") == m) {
date <- date + 1*3600
}
return(as.integer(format(date - 1, format="%d")))
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/dmonth.R
|
#' Emissions factors for Environment Company of Sao Paulo, Brazil (CETESB)
#'
#' \code{\link{ef_cetesb}} returns a vector or data.frame of Brazilian emission factors.
#' @param p Character;
#'
#' Pollutants: "CO", "HC", "NMHC", "CH4", "NOx", "CO2",
#' "RCHO" (aldehydes + formaldehyde), "ETOH",
#' "PM", "N2O", "KML", "FC", "NO2", "NO", "NH3",
#' "gD/KWH", "gCO2/KWH", "RCHO_0km" (aldehydes + formaldehyde), "PM25RES", "PM10RES",
#' "CO_0km", "HC_0km", "NMHC_0km", "NOx_0km", "NO2_0km" ,"NO_0km",
#' "RCHO_0km" and "ETOH_0km", "FS" (fuel sales) (g/km). If scale = "tunnel" is
#' used, there is also "ALD" for aldehydes and "HCHO" for formaldehydes
#' Evaporative emissions at average temperature ranges:
#' "D_20_35", "S_20_35", "R_20_35", "D_10_25", "S_10_25", "R_10_25", "D_0_15",
#' "S_0_15" and "R_0_15" where D means diurnal (g/day), S hot/warm soak (g/trip)
#' and R hot/warm running losses (g/trip). THe deteriorated emission factors are calculated inside this function.
#' @param veh Character; Vehicle categories:
#' "PC_G", "PC_FG", "PC_FE", "PC_E",
#' "LCV_G", "LCV_FG", "LCV_FE", "LCV_E", "LCV_D",
#' "TRUCKS_SL", "TRUCKS_L", "TRUCKS_M", "TRUCKS_SH", "TRUCKS_H",
#' "BUS_URBAN", "BUS_MICRO", "BUS_COACH", "BUS_ARTIC",
#' "MC_150_G", "MC_150_500_G", "MC_500_G",
#' "MC_150_FG", "MC_150_500_FG", "MC_500_FG",
#' "MC_150_FE", "MC_150_500_FE", "MC_500_FE",
#' "CICLOMOTOR", "GNV"
#' @param year Numeric; Filter the emission factor to start from a specific base year.
#' If project is 'constant' values above 2017 and below 1980 will be repeated
#' @param agemax Integer; age of oldest vehicles for that category
#' @param scale Character; values "default","tunnel" o "tunnel2018". If "tunnel", emission
#' factors are scaled to represent EF measurements in tunnels in Sao Paulo
#' @param sppm Numeric, sulfur (sulphur) in ppm in fuel.
#' @param full Logical; To return a data.frame instead or a vector adding
#' Age, Year, Brazilian emissions standards and its euro equivalents.
#' @param efinput data.frame with efinput structure of sysdata cetesb. Allow
#' apply deterioration for future emission factors
#' @param verbose Logical; To show more information
#' @param csv String with the path to download the ef in a .csv file. For instance,
#' ef.csv
#' @return A vector of Emission Factor or a data.frame
#' @importFrom data.table melt rbindlist
#' @keywords emission factors
#' @note The new convention for vehicles names are translated from CETESB report:
#' \tabular{ll}{
#' veh \tab description \cr
#' PC_G \tab Passenger Car Gasohol (Gasoline + 27perc of anhydrous ethanol) \cr
#' PC_E \tab Passenger Car Ethanol (hydrous ethanol) \cr
#' PC_FG \tab Passenger Car Flex Gasohol (Gasoline + 27perc of anhydrous ethanol) \cr
#' PC_FE \tab Passenger Car Flex Ethanol (hydrous ethanol) \cr
#' LCV_G \tab Light Commercial Vehicle Gasohol (Gasoline + 27perc of anhydrous ethanol) \cr
#' LCV_E \tab Light Commercial Vehicle Ethanol (hydrous ethanol) \cr
#' LCV_FG \tab Light Commercial Vehicle Flex Gasohol (Gasoline + 27perc of anhydrous ethanol) \cr
#' LCV_FE \tab Light Commercial Vehicle Flex Ethanol (hydrous ethanol) \cr
#' LCV_D \tab Light Commercial Vehicle Diesel (5perc bio-diesel) \cr
#' TRUCKS_SL_D \tab Trucks Semi Light Diesel (5perc bio-diesel) \cr
#' TRUCKS_L_D \tab Trucks Light Diesel (5perc bio-diesel) \cr
#' TRUCKS_M_D \tab Trucks Medium Diesel (5perc bio-diesel) \cr
#' TRUCKS_SH_D \tab Trucks Semi Heavy Diesel (5perc bio-diesel) \cr
#' TRUCKS_H_D \tab Trucks Heavy Diesel (5perc bio-diesel) \cr
#' BUS_URBAN_D \tab Urban Bus Diesel (5perc bio-diesel) \cr
#' BUS_MICRO_D \tab Micro Urban Bus Diesel (5perc bio-diesel) \cr
#' BUS_COACH_D \tab Coach (inter-state) Bus Diesel (5perc bio-diesel) \cr
#' BUS_ARTIC_D \tab Articulated Urban Bus Diesel (5perc bio-diesel) \cr
#' MC_150_G \tab Motorcycle engine less than 150cc Gasohol (Gasoline + 27perc of anhydrous ethanol) \cr
#' MC_150_500_G \tab Motorcycle engine 150-500cc Gasohol (Gasoline + 27perc of anhydrous ethanol) \cr
#' MC_500_G \tab Motorcycle greater than 500cc Gasohol (Gasoline + 27perc of anhydrous ethanol) \cr
#' MC_150_FG \tab Flex Motorcycle engine less than 150cc Gasohol (Gasoline + 27perc of anhydrous ethanol) \cr
#' MC_150_500_FG \tab Flex Motorcycle engine 150-500cc Gasohol (Gasoline + 27perc of anhydrous ethanol) \cr
#' MC_500_FG \tab Flex Motorcycle greater than 500cc Gasohol (Gasoline + 27perc of anhydrous ethanol) \cr
#' MC_150_FE \tab Flex Motorcycle engine less than 150cc Ethanol (hydrous ethanol) \cr
#' MC_150_500_FE \tab Flex Motorcycle engine 150-500cc Ethanol (hydrous ethanol) \cr
#' MC_500_FE \tab Flex Motorcycle greater than 500cc Ethanol (hydrous ethanol) \cr
#' PC_ELEC \tab Passenger Car Electric \cr
#' LCV_ELEC \tab Light Commercial Vehicle Electric \cr
#' }
#'
#' The percentage varies of biofuels varies by law.
#'
#' This emission factors are not exactly the same as the report of CETESB.
#'
#' 1) In this emission factors, there is also NO and NO2 based on split by
#' published in the EMEP/EEA air pollutant emission inventory guidebook.
#'
#' 2) Also, the emission factors were extended till 50 years of use, repeating
#' the oldest value.
#'
#' 3) CNG emission factors were expanded to other pollutants by comparison
#' of US.EPA-AP42 emission factor: Section 1.4 Natural Gas Combustion.
#'
#' In the previous versions I used the letter 'd' for deteriorated. I removed the
#' letter 'd' internally to not break older code.
#'
#' If by mistake, the user inputs one of veh names from the old convention,
#' they are internally changed to the new convention:
#' "SLT", "LT", "MT", "SHT","HT", "UB", "SUB", "COACH", "ARTIC", "M_G_150",
#' "M_G_150_500", "M_G_500", "M_FG_150", "M_FG_150_500", "M_FG_500",
#' "M_FE_150", "M_FE_150_500","M_FE_500",
#' PC_ELEC, LCV_ELEC, TRUCKS_ELEC, BUS_ELEC,
#' MC_150_ELEC, MC_150_500_ELEC, MC_500_ELEC
#'
#' If pollutant is "SO2", it needs sppm. It is designed when veh has length 1, if it has length 2 or more,
#' it will show a warning
#'
#' \strong{Emission factor for vehicles older than the reported by CETESB were filled with las highest EF}
#'
#' \itemize{
#' \item Range EF from PC and LCV otto: 2018 - 1982. EF for 1981 and older as moving average.
#' \item Range LCV diesel : 2018 - 2006. EF for 2005 and older as moving average.
#' \item Range Trucks and Buse: 2018 - 1998. EF for 1997 and older as moving average.
#' \item Range MC Gasoline: 2018 - 2003. EF for 2002 and older as moving average.
#' \item Range MC Flex 150-500cc and >500cc: 2018 - 2012. EF for 2011 and older as moving average.
#'}
#' @references Emissoes Veiculares no Estado de Sao Paulo 2016. Technical Report.
#' url: https://cetesb.sp.gov.br/veicular/relatorios-e-publicacoes/.
#'
#' @note Currently, 2020, there are not any system for recovery of fuel vapors in Brazil. Hence,
#' the FS takes into account the vapour that comes from the fuel tank inside the car and
#' released into the atmosphere when injecting new fuel. There are discussions about
#' increasing implementing stage I and II and/or ORVR these days. The ef FS is calculated
#' by transforming g FC/km into (L/KM)*g/L with g/L 1.14 fgor gasoline and 0.37
#' for ethanol (CETESB, 2016). The density considered is 0.75425 for gasoline and
#' 0.809 for ethanol (t/m^3)
#'
#' CETESB emission factors did not cover evaporative emissions from motorcycles,
#' which occur. Therefore, in the absence of better data, it was assumed the
#' same ratio from passenger cars.
#'
#' Li, Lan, et al. "Exhaust and evaporative emissions from motorcycles fueled
#' with ethanol gasoline blends." Science of the Total Environment 502 (2015): 627-631.
#'
#' If scale is used with tunnel, the references are:
#' \itemize{
#' \item Pérez-Martinez, P. J., Miranda, R. M., Nogueira, T., Guardani, M. L.,
#' Fornaro, A., Ynoue, R., and Andrade, M. F. (2014). Emission
#' factors of air pollutants from vehicles measured inside road tunnels in
#' Sao Paulo: case study comparison. International Journal of
#' Environmental Science and Technology, 11(8), 2155-2168.
#' \item Nogueira, T., de Souza, K. F., Fornaro, A., de Fatima Andrade, M., and
#' de Carvalho, L. R. F. (2015). On-road emissions of carbonyls
#' from vehicles powered by biofuel blends in traffic tunnels in the
#' Metropolitan Area of Sao Paulo, Brazil. Atmospheric Environment, 108, 88-97.
#' \item Nogueira, T., et al (2021). In preparation (for tunnel 2018)
#'}
#'
#' Emission factors for resuspension applies \strong{only} with top-down approach
#' as a experimental feature. Units are g/(streets*veh)/day. These values were
#' derived form a bottom-up resuspension emissions from metropolitan area
#' of Sao Paulo 2018, assuming 50000 streets
#'
#' NH3 from EEA Tier 2
#'
#' @export
#' @examples {
#' a <- ef_cetesb(p = "CO", veh = "PC_G")
#' a <- ef_cetesb(p = "NOx", veh = "TRUCKS_M_D")
#' a <- ef_cetesb("R_10_25", "PC_G")
#' a <- ef_cetesb("CO", c("PC_G", "PC_FE"))
#' ef_cetesb(p = "CO", veh = "PC_G", year = 1970, agemax = 40)
#' ef_cetesb(p = "CO", veh = "TRUCKS_L_D", year = 2018)
#' ef_cetesb(p = "CO", veh = "SLT", year = 2018) # olds names
#' a <- ef_cetesb(p = "NMHC", veh = c("PC_G", "PC_FG", "PC_FE", "PC_E"), year = 2018, agemax = 20)
#' colplot(a, main = "NMHC EF", ylab = "[g/km]", xlab = "Years of use")
#' ef_cetesb(p = "PM25RES", veh = "PC_ELEC", year = 1970, agemax = 40)
#' ef_cetesb(p = "PM25RES", veh = "BUS_ELEC", year = 1970, agemax = 40)
#' }
ef_cetesb <- function(p,
veh,
year = 2017,
agemax = 40,
scale = "default",
sppm,
full = FALSE,
efinput,
verbose = FALSE,
csv){
# load("R/sysdata.rda")
if(!missing(efinput)) {
# Deterioration must be applied to any base year
# therefore, project the emission factors constant into the future was wrong
# instead, efinput allow input any ef with the same structure of sysdata$cetesb
# and apply deterioration for future emission factors
ef <- efinput
} else {
ef <- sysdata$cetesb
}
if(year > max(ef$Year)) stop("For projections use argument efinput")
if(year < 1949) stop("Choose a newer year at least in 1949")
if(length(p) > 1) stop("One pollutant each time please")
#extend ef until 120 years in past ####
# rep nrow ef
lef <- split(ef, ef$Pollutant)
nx <- 120 - nrow(lef[[1]])
ef <- data.table::rbindlist(
lapply(
1:length(lef),
function(i){
rbind(
lef[[i]],
lef[[i]][rep(nrow(lef[[i]]), nx), ]
)}))
Age <- Year <- .N <- Pollutant <- NULL
ef[, Age := 1:.N, by= Pollutant]
ef[, Year := max(ef$Year):(max(ef$Year)-max(ef$Age) + 1), by= Pollutant]
# deterioration ####
ef <- ef[ef$Year <= year, ]
det <- sysdata$cetesbdet
# 1 year - det ####
endyear <- (year - max(det$Age)+1)
det$Year <- year:endyear
det$mil <- ifelse(
det$veh %in% c("PC_FG", "PC_FE", "LCV_FG", "LCV_FE") &
det$Year <2003, 0,
ifelse(
det$veh %in% c("PC_E", "LCV_E") &
(det$Year > 2006 | det$Year < 1979), 0,
det$mil))
# 2 year - fe 0km ####
ef <- ef[ef$Year %in% year:endyear, ]
ef[is.na(ef)] <- 0
vehs <- c("PC_G","PC_E", "PC_FG","PC_FE",
"LCV_G","LCV_E", "LCV_FG","LCV_FE")
d0 <- data.table::melt(data = ef[ef$Pollutant %in% c("CO", "NMHC", "NOx", "RCHO",
"NO", "NO2", "HC"),
c("Year", "Pollutant",
"PC_G","PC_E", "PC_FG","PC_FE",
"LCV_G","LCV_E", "LCV_FG","LCV_FE")],
id.vars = c("Year", "Pollutant"),
measure.vars = vehs,
variable.name = "veh",
value.name = "ef")
# 3 adding parameter for mileage ####
d0$xmil <- 0
det$xmil <-
ifelse(
det$pol == "CO" & det$veh %in% c("PC_G", "PC_FG", "LCV_G", "LCV_FG") & det$Year > 1994, 0.0000032,
ifelse(
det$pol == "CO" & det$veh %in% c("PC_G", "PC_FG", "LCV_G", "LCV_FG") & det$Year <= 1994 & det$Year > 1985, 0.0000275,
ifelse(
det$pol == "CO" & det$veh %in% c("PC_G", "PC_FG", "LCV_G", "LCV_FG") & det$Year <= 1985, 0.0000413,
ifelse(
det$pol == "CO" & det$veh %in% c("PC_E", "PC_FE", "LCV_E", "LCV_FE") & det$Year > 1994, 0.0000028,
ifelse(
det$pol == "CO" & det$veh %in% c("PC_E", "PC_FE", "LCV_E", "LCV_FE") & det$Year <= 1994 & det$Year > 1985, 0.000016,
ifelse(
det$pol == "CO" & det$veh %in% c("PC_E", "PC_FE", "LCV_E", "LCV_FE") & det$Year <= 1985, 0.0000225,0))))))
det$xmil <-
ifelse(
det$pol %in% c("NMHC", "HC") & det$veh %in% c("PC_G", "PC_FG", "LCV_G", "LCV_FG") & det$Year > 1994, 0.000000288,
ifelse(
det$pol %in% c("NMHC", "HC") & det$veh %in% c("PC_G", "PC_FG", "LCV_G", "LCV_FG") & det$Year <= 1994 & det$Year > 1985, 0.0000017,
ifelse(
det$pol %in% c("NMHC", "HC") & det$veh %in% c("PC_G", "PC_FG", "LCV_G", "LCV_FG") & det$Year <= 1985, 0.00000319,
ifelse(
det$pol %in% c("NMHC", "HC") & det$veh %in% c("PC_E", "PC_FE", "LCV_E", "LCV_FE") & det$Year > 1994, 0.0000003,
ifelse(
det$pol %in% c("NMHC", "HC") & det$veh %in% c("PC_E", "PC_FE", "LCV_E", "LCV_FE") & det$Year <= 1994 & det$Year > 1985, 0.0000017,
ifelse(
det$pol %in% c("NMHC", "HC") & det$veh %in% c("PC_E", "PC_FE", "LCV_E", "LCV_FE") & det$Year <= 1985, 0.0000017, det$xmil))))))
det$xmil <-
ifelse(
det$pol %in% c("RCHO") & det$veh %in% c("PC_G", "PC_FG", "LCV_G", "LCV_FG") & det$Year > 1994, 0.000000008,
ifelse(
det$pol %in% c("RCHO") & det$veh %in% c("PC_G", "PC_FG", "LCV_G", "LCV_FG") & det$Year <= 1994 & det$Year > 1985, 0.00000005,
ifelse(
det$pol %in% c("RCHO") & det$veh %in% c("PC_G", "PC_FG", "LCV_G", "LCV_FG") & det$Year <= 1985, 0.00000003,
ifelse(
det$pol %in% c("RCHO") & det$veh %in% c("PC_E", "PC_FE", "LCV_E", "LCV_FE") & det$Year > 1994, 0.00000003,
ifelse(
det$pol %in% c("RCHO") & det$veh %in% c("PC_E", "PC_FE", "LCV_E", "LCV_FE") & det$Year <= 1994 & det$Year > 1985, 0.0000001,
ifelse(
det$pol %in% c("RCHO") & det$veh %in% c("PC_E", "PC_FE", "LCV_E", "LCV_FE") & det$Year <= 1985, 0.0000001, det$xmil))))))
det$xmil <-
ifelse(
det$pol %in% c("NOx", "NO", "NO2") & det$veh %in% c("PC_G", "PC_FG", "LCV_G", "LCV_FG") & det$Year > 1994, 0.000000375,
ifelse(
det$pol %in% c("NOx", "NO", "NO2") & det$veh %in% c("PC_G", "PC_FG", "LCV_G", "LCV_FG") & det$Year <= 1994, 1,
ifelse(
det$pol %in% c("NOx", "NO", "NO2") & det$veh %in% c("PC_E", "PC_FE", "LCV_E", "LCV_FE") & det$Year > 1994, 0.00000025,
ifelse(
det$pol %in% c("NOx", "NO", "NO2") & det$veh %in% c("PC_E", "PC_FE", "LCV_E", "LCV_FE") & det$Year <= 1994, 1, det$xmil))))
# 5 merging ####
d0$ID <- paste(d0$Year, d0$Pollutant, d0$veh)
det$ID <- paste(det$Year, det$pol, det$veh)
det2 <- merge(det, d0[, c("ID", "ef")], by ="ID", all.x = T)
# 6 fe mileages ####
det2$ef80 <- ifelse(det2$Year < 1994,0, det2$x + det2$ef)
det2$ef160 <- ifelse(det2$Year < 1994, det2$ef + det2$ef*0.2, det2$x + det2$ef80)
# 7 constrain fe160 ####
xx <- det2[det2$Year == 1984 &
det2$pol == "CO" &
det2$veh == "PC_G", ]$ef160
det2$ef160 <- ifelse(
det2$veh == "PC_G" &
det2$pol == "CO" &
det2$Year < 1984,
xx,
det2$ef160)
det2[is.na(det2)]<- 0
# 8 ef det ####
det2$efd <- ifelse(
det2$pol %in% c("CO", "NMHC", "RCHO", "HC") & det2$Year > 1994,
det2$xmil*det2$mil + det2$ef,
ifelse(
det2$pol %in% c("CO", "NMHC", "RCHO", "HC") & det2$Year <= 1994 & det2$mil > 160000,
det2$ef160,
ifelse(
det2$pol %in% c("CO", "NMHC", "RCHO", "HC") & det2$Year <= 1994 & det2$mil <= 160000,
det2$xmil*det2$mil + det2$ef,
ifelse(
det2$pol %in% c("NO", "NO2", "NOx") & det2$Year > 1994,
det2$xmil*det2$mil + det2$ef,
det2$ef))))
data.table::setorderv(x = det2, cols = "Year", order = -1)
# 9 efd ####
efd <- ef[!ef$Pollutant %in% c("NO", "NOx", "NO2", "HC", "NMHC", "RCHO", "CO"), ]
ve4s <- c("PC_G","PC_E", "PC_FG","PC_FE",
"LCV_G","LCV_E", "LCV_FG","LCV_FE")
efnoxd <- efnox <- ef[ef$Pollutant == "NOx", ]
efnox$Pollutant <- "NOx_0km"
for(i in seq_along(ve4s)) efnoxd[[ve4s[i]]] <- det2[det2$veh == ve4s[i] & det2$pol == "NOx", ]$efd
efnod <- efno <- ef[ef$Pollutant == "NO", ]
efno$Pollutant <- "NO_0km"
for(i in seq_along(ve4s)) efnox[[ve4s[i]]] <- det2[det2$veh == ve4s[i] & det2$pol == "NO", ]$efd
efno2d <- efno2 <- ef[ef$Pollutant == "NO2", ]
efno2$Pollutant <- "NO2_0km"
for(i in seq_along(ve4s)) efno2d[[ve4s[i]]] <- det2[det2$veh == ve4s[i] & det2$pol == "NO2", ]$efd
efcod <- efco <- ef[ef$Pollutant == "CO", ]
efcod$Pollutant <- "CO_0km"
for(i in seq_along(ve4s)) efcod[[ve4s[i]]] <- det2[det2$veh == ve4s[i] & det2$pol == "CO", ]$efd
efnmhcd <- efnmhc <- ef[ef$Pollutant == "NMHC", ]
efnmhcd$Pollutant <- "NMHC_0km"
for(i in seq_along(ve4s)) efnmhcd[[ve4s[i]]] <- det2[det2$veh == ve4s[i] & det2$pol == "NMHC", ]$efd
efhcd <- efhc <- ef[ef$Pollutant == "HC", ]
efhcd$Pollutant <- "HC_0km"
for(i in seq_along(ve4s)) efhcd[[ve4s[i]]] <- det2[det2$veh == ve4s[i] & det2$pol == "HC", ]$efd
efrchod <- efrcho <- ef[ef$Pollutant == "RCHO", ]
efrcho$Pollutant <- "RCHO_0km"
for(i in seq_along(ve4s)) efrchod[[ve4s[i]]] <- det2[det2$veh == ve4s[i] & det2$pol == "RCHO", ]$efd
ef <- rbind(efd,
efcod, efco,
efnoxd, efnox,
efnod, efno,
efno2d, efno2,
efhcd, efhc,
efnmhcd, efnmhc,
efrchod, efrcho)
ef <- as.data.frame(ef)
# adding PMRES ####
# silt de CENMA 2013
# solo debe ser usado con TOP-DOWN!
nLDV <- c(grep(pattern = "PC_", x = names(ef), value = TRUE),
grep(pattern = "LCV_", x = names(ef), value = TRUE),
"G_BEFORE_GNV", "G_AFTER_GNV", "GNV_AFTER_GNV")
nHDV <- c(grep(pattern = "TRUCKS_", x = names(ef), value = TRUE))
nBUS <- c(grep(pattern = "BUS_", x = names(ef), value = TRUE))
nMC <- c(grep(pattern = "MC_", x = names(ef), value = TRUE),
"CICLOMOTOR")
pmveh <- c("BUS", "LDV", "MC", "TRUCKS", "BUS", "LDV", "MC", "TRUCKS")
pmpol <- c("PM", "PM", "PM", "PM", "PM10", "PM10", "PM10", "PM10")
pmg <- c(0.6148492, 0.2065113, 0.1840867, 2.2728183,
0.5413765, 0.535802, 0.7608918, 9.3943155)/2
pmdf <- data.frame(veh = pmveh, pol = pmpol, gst = pmg)
pmef10 <- pmef2 <- ef[ef$Pollutant == "CO", ]
pmef2$Pollutant <- "PM25RES"
pmef2[, nLDV] <- ifelse(pmef2[, nLDV]>0,
1*pmdf[pmdf$pol == "PM" & pmdf$veh == "LDV", ]$gst,
NA)
pmef2[, nHDV] <- ifelse(pmef2[, nHDV]>0,
1*pmdf[pmdf$pol == "PM" & pmdf$veh == "HDV", ]$gst,
NA)
pmef2[, nBUS] <- ifelse(pmef2[, nBUS]>0,
1*pmdf[pmdf$pol == "PM" & pmdf$veh == "BUS", ]$gst,
NA)
pmef2[, nMC] <- ifelse(pmef2[, nMC]>0,
1*pmdf[pmdf$pol == "PM" & pmdf$veh == "MC", ]$gst,
NA)
pmef10$Pollutant <- "PM10RES"
pmef10[, nLDV] <- ifelse(pmef10[, nLDV]>0,
1*pmdf[pmdf$pol == "PM10" & pmdf$veh == "LDV", ]$gst,
NA)
pmef10[, nHDV] <- ifelse(pmef10[, nHDV]>0,
1*pmdf[pmdf$pol == "PM10" & pmdf$veh == "HDV", ]$gst,
NA)
pmef10[, nBUS] <- ifelse(pmef10[, nBUS]>0,
1*pmdf[pmdf$pol == "PM10" & pmdf$veh == "BUS", ]$gst,
NA)
pmef10[, nMC] <- ifelse(pmef10[, nMC]>0,
1*pmdf[pmdf$pol == "PM10" & pmdf$veh == "MC", ]$gst,
NA)
pmef2$PC_ELEC <- pmef2$PC_G
pmef2$LCV_ELEC <- pmef2$LCV_G
pmef2$TRUCKS_ELEC <- pmef2$TRUCKS_SL_D
pmef2$BUS_ELEC <- pmef2$BUS_URBAN_D
pmef2$MC_150_ELEC <- pmef2$MC_150_500_ELEC <- pmef2$MC_500_ELEC <- pmef2$MC_150_G
pmef10$PC_ELEC <- pmef10$PC_G
pmef10$LCV_ELEC <- pmef10$LCV_G
pmef10$TRUCKS_ELEC <- pmef10$TRUCKS_SL_D
pmef10$BUS_ELEC <- pmef10$BUS_URBAN_D
pmef10$MC_150_ELEC <- pmef10$MC_150_500_ELEC <- pmef10$MC_500_ELEC <- pmef10$MC_150_G
ef <- rbind(ef, pmef2, pmef10)
if(p %in% c("PM25RES", "PM10RES")) {
if(verbose) message("Experimental: Use only with top-down approach. Units: g/km")
}
# tunnel ####
if(scale %in% c("tunnel","tunnel2014")) {
if(verbose) cat("scale = tunnel2014\n")
# conferir valor do tunnel
# I recalculated the values for tunnel 2014
# fleet 2014 from CETESB
# This fleet was used by Daniel as well.- SIE
# ef <- sysdata$cetesb
LDV <- c(grep(pattern = "PC_", x = names(ef), value = TRUE),
grep(pattern = "LCV_", x = names(ef), value = TRUE)[1:4],
grep(pattern = "MC_", x = names(ef), value = TRUE))
# Tunnel measurements of heavy trucks covered only big trucks
HDV <- c(grep(pattern = "TRUCKS_", x = names(ef), value = TRUE))
# CO HC NMHC (including running losses)
COHC <- c("CO", "CO_0km","NMHC", "NMHC_0km","HC", "HC_0km",
"R_0_15", "R_10_25", "R_0_25")
ef[ef$Pollutant %in% COHC, LDV] <- ef[ef$Pollutant %in% COHC, LDV]*3.770729
ef[ef$Pollutant %in% COHC, HDV] <- ef[ef$Pollutant %in% COHC, HDV]*2.600306
# NONO2NOx
NONO<- c("NOx", "NO2", "NO", "NOx_0km", "NO2_0km", "NO_0km")
ef[ef$Pollutant %in% NONO, LDV] <- ef[ef$Pollutant %in% NONO, LDV]*1.003158
ef[ef$Pollutant %in% NONO, HDV] <- ef[ef$Pollutant %in% NONO, HDV]*1.25692
# PM
ef[ef$Pollutant %in% "PM", LDV] <- ef[ef$Pollutant %in% "PM", LDV]*1.702909
ef[ef$Pollutant %in% "PM", HDV] <- ef[ef$Pollutant %in% "PM", HDV]*1.093566
# ALD # ja tem NMHC incrementado
# these values i did not change
efALD <- ef[ef$Pollutant %in% "NMHC", ]
efALD$Pollutant <- "ALD"
efALD[, LDV] <- efALD[, LDV]*0.05013932
efALD[, HDV] <- efALD[, HDV]*0.07298411
ef <- rbind(ef, efALD)
# HCHO # ja tem NMHC incrementado
efHCHO <- ef[ef$Pollutant %in% "NMHC", ]
efHCHO$Pollutant <- "HCHO"
efHCHO[, LDV] <- efHCHO[, LDV]*0.03862083
efHCHO[, HDV] <- efHCHO[, HDV]*0.07298411
ef <- rbind(ef, efHCHO)
} else if(scale == "tunnel2018") {
# Values updated by Mario
if(verbose) cat("scale = tunnel2018\n")
# ef <- sysdata$cetesb
LDV <- c(grep(pattern = "PC_", x = names(ef), value = TRUE),
grep(pattern = "LCV_", x = names(ef), value = TRUE)[1:4],
grep(pattern = "MC_", x = names(ef), value = TRUE))
# Tunnel measurements of heavy trucks covered only big trucks
HDV <- c(grep(pattern = "TRUCKS_", x = names(ef), value = TRUE))
# CO HC NMHC (including running losses)
COHC <- c("CO", "CO_0km","NMHC", "NMHC_0km","HC", "HC_0km",
"R_0_15", "R_10_25", "R_0_25")
# CO2
ef[ef$Pollutant %in% "CO2", LDV] <- ef[ef$Pollutant %in% "CO2", LDV]*0.9623089
ef[ef$Pollutant %in% "CO2", HDV] <- ef[ef$Pollutant %in% "CO2", HDV]*0.8961876
ef[ef$Pollutant %in% COHC, LDV] <- ef[ef$Pollutant %in% COHC, LDV]*2.618311
ef[ef$Pollutant %in% COHC, HDV] <- ef[ef$Pollutant %in% COHC, HDV]*4.777128
# NOx
NOx <- c("NOx", "NOx_0km")
ef[ef$Pollutant %in% NOx, LDV] <- ef[ef$Pollutant %in% NOx, LDV]*0.7839094
ef[ef$Pollutant %in% NOx, HDV] <- ef[ef$Pollutant %in% NOx, HDV]*1.047166
# NO
NO <- c("NO", "NO_0km")
ef[ef$Pollutant %in% NO, LDV] <- ef[ef$Pollutant %in% NO, LDV]*0.5361807
ef[ef$Pollutant %in% NO, HDV] <- ef[ef$Pollutant %in% NO, HDV]*1.048273
# NO2
NO2 <- c("NO2", "NO2_0km")
ef[ef$Pollutant %in% NO2, LDV] <- ef[ef$Pollutant %in% NO2, LDV]*1.338307
ef[ef$Pollutant %in% NO2, HDV] <- ef[ef$Pollutant %in% NO2, HDV]*1.039307
# # The following adjustments made for tunnel study for 2018 - MEGC
# PM (EF_LDV = 0.0326574 g/m3, EF_HDV = 0.2749503 mg/m3, agemax = 40)
ef[ef$Pollutant %in% "PM", LDV] <- ef[ef$Pollutant %in% "PM", LDV]*4.128006
ef[ef$Pollutant %in% "PM", HDV] <- ef[ef$Pollutant %in% "PM", HDV]*1.626788
# ALD # ja tem NMHC incrementado
efALD <- ef[ef$Pollutant %in% "NMHC", ]
efALD$Pollutant <- "ALD"
efALD[, LDV] <- efALD[, LDV]*0.05013932
efALD[, HDV] <- efALD[, HDV]*0.07298411
ef <- rbind(ef, efALD)
# HCHO # ja tem NMHC incrementado
efHCHO <- ef[ef$Pollutant %in% "NMHC", ]
efHCHO$Pollutant <- "HCHO"
efHCHO[, LDV] <- efHCHO[, LDV]*0.03862083
efHCHO[, HDV] <- efHCHO[, HDV]*0.07298411
ef <- rbind(ef, efHCHO)
} else {
if(verbose) cat("scale = default\n")
}
ef[is.na(ef)] <- 0
# vehicle category ####
oldt <- c("SLT", "LT", "MT", "SHT", "HT",
"UB", "SUB", "COACH", "ARTIC",
"M_G_150", "M_G_150_500", "M_G_500",
"M_FG_150", "M_FG_150_500", "M_FG_500",
"M_FE_150", "M_FE_150_500", "M_FE_500")
if(any(veh %in% oldt)) {
message("I guess you wanted this:")
veh <- switch(veh,
"SLT" = "TRUCKS_SL_D",
"LT" = "TRUCKS_L_D",
"MT" = "TRUCKS_M_D",
"SHT" = "TRUCKS_SH_D",
"HT" = "TRUCKS_H_D",
"UB" = "BUS_URBAN_D",
"SUB" = "BUS_MICRO_D",
"COACH" = "BUS_COACH_D",
"ARTIC" = "BUS_ARTIC_D",
"M_G_150" = "MC_150_G",
"M_G_150_500" = "MC_150_500_G",
"M_G_500" = "MC_500_G",
"M_FG_150" = "MC_150_FG",
"M_FG_150_500" = "MC_150_500_FG",
"M_FG_500" = "MC_500_FG",
"M_FE_150" = "MC_150_FE",
"M_FE_150_500" = "MC_150_500_FE",
"M_FE_500" = "MC_500_FE")
message(veh)
}
year1 <- ef$Year[1]
p <- gsub(pattern = "d", replacement = "", x = p) #not break old code
s0 <- c("PC_E", "PC_FE", "LCV_E", "LCV_FE",
"MC_150_FE", "MC_150_500_FE", "MC_500_FE")
if(p == "SO2"){
if(missing(sppm)) stop("if p is 'SO2', sppm must be present")
if(length(veh) != length(sppm)) {
stop("sppm must has the same length as veh")
}
}
# Selecting
evapd <- c("D_20_35","D_10_25","D_0_15")
evap <- c("S_20_35", "R_20_35", "S_10_25", "R_10_25", "S_0_15", "R_0_15")
pols <- as.character(unique(ef$Pollutant))
if(!p %in% c(pols, "SO2")){
stop(cat("Please, choose one of the following pollutants:\n", pols, "\n"))
}
if(p %in% evapd){
if(verbose) message("Units: [g/day]\n")
}
if(p %in% evap){
if(verbose) message("Units: [g/trip]\n")
}
nveh <- names(ef)[12:ncol(ef)]
if(any(!veh %in% nveh)){
stop(cat("Please, choose on of the following categories:\n", nveh, "\n"))
}
pol <- p
k <- ifelse(p == "SO2", sppm*2*1e-06, 1)
p <- ifelse(p == "SO2", "FC", p)
if(full) {
if(p %in% c(evapd, evap)){
df1 <- ef[ef$Pollutant == p, 1:11]
df2 <- ef[ef$Pollutant == p, veh]
if(length(veh) == 1) {
df2 <- units::as_units(df2, "g")
} else {
for(i in 1:ncol(df2)) df2[, i] <- units::as_units(df2[, i], "g")
}
df <- cbind(df1, df2)
names(df)[ncol(df)] <- p
} else {
if(pol == "SO2" & length(veh) == 1){
if(veh %in% s0) k = 0
}
df <- cbind(ef[ef$Pollutant == p, 1:11],
EmissionFactors(ef[ef$Pollutant == p, veh]*k) )
names(df)[ncol(df)] <- p
}
} else {
if(p %in% c(evapd, evap)){
df <- ef[ef$Pollutant == p, veh]
if(length(veh) == 1) {
df <- units::as_units(df, "g")
} else {
for(i in 1:ncol(df)) df[, i] <- units::as_units(df[, i], "g")
}
} else {
if(pol == "SO2" & length(veh) == 1){
if(veh %in% s0) k = 0
}
df <- vein::EmissionFactors(ef[ef$Pollutant == p, veh]*k)
}
}
# agemax
if(is.data.frame(df)) {
if(!is.null(agemax)) df <- df[1:agemax, ]
} else {
if(!is.null(agemax)) df <- df[1:agemax]
}
if(!missing(csv)) {
data.table::fwrite(x = df, file = csv)
}
return(df)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_cetesb.R
|
#' Emissions factors from Chinese emissions guidelines
#'
#' \code{\link{ef_china}} returns emission factors as vector or data.frames.
#' The emission factors comes from the chinese emission guidelines (v3) from the
#' Chinese Ministry of Ecology and Environment
#' http://www.mee.gov.cn/gkml/hbb/bgth/201407/W020140708387895271474.pdf
#'
#' @family China
#' @param v Character; category vehicle: "PV" for Passenger Vehicles or 'Trucks"
#' @param t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
#' "Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Largebus",
#' "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"
#' @param standard Character or data.frame; "PRE", "I", "II", "III", "IV", "V". When
#' it is a data.frame, it each row is a different region and ta, humidity,
#' altitud, speed, sulphur and load_factor lengths have the same as the number of
#' rows.
#' @param f Character;fuel: "G", "D", "CNG", "ALL"
#' @param p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving"
#' or "Evaporative_parking"
#' @param k Numeric; multiplication factor
#' @param ta Numeric; temperature of ambient in celcius degrees. When standard is a
#' data.frame, the length must be equal to the number of rows of standard.
#' @param humidity Numeric; relative humidity. When standard is a
#' data.frame, the length must be equal to the number of rows of standard.
#' @param altitude Numeric; altitude in meters. When standard is a
#' data.frame, the length must be equal to the number of rows of standard.
#' @param speed Numeric; altitude in km/h When standard is a
#' data.frame, the length must be equal to the number of rows of standard.
#' @param baseyear_det Integer; any of 2014, 2015, 2016, 2017, 2018
#' @param sulphur Numeric; sulphur in ppm. When standard is a
#' data.frame, the length must be equal to the number of rows of standard.
#' @param load_factor Numeric; When standard is a
#' data.frame, the length must be equal to the number of rows of standard.
#' @param details Logical; When TRUE, it shows a description of the vehicle in chinese
#' and english. Only when length standard is 1.
#' @param correction_only Logical; When TRUE, return only correction factors.
#' @return An emission factor
#' @keywords ef_china emission factors China
#' @note Combination of vehicles:
#' \tabular{ccc}{
#' v \tab t \tab f \cr
#' PV \tab Mini \tab G HY \cr
#' PV \tab Bus \tab D HY D \cr
#' PV \tab Mini \tab CNG \cr
#' PV \tab Bus \tab CNG \cr
#' PV \tab Mini \tab G \cr
#' PV \tab Small \tab G \cr
#' PV \tab Medium \tab G \cr
#' PV \tab Large \tab G \cr
#' PV \tab Taxi \tab G \cr
#' PV \tab Bus \tab G \cr
#' PV \tab Motorcycles \tab G \cr
#' PV \tab Moped \tab G \cr
#' PV \tab Mini \tab D \cr
#' PV \tab Small \tab D \cr
#' PV \tab Mediumbus \tab D \cr
#' PV \tab Medium \tab D \cr
#' PV \tab Largebus \tab D \cr
#' PV \tab Bus \tab D \cr
#' PV \tab 3-Wheel \tab D \cr
#' PV \tab Small \tab ALL \cr
#' PV \tab Mediumbus \tab ALL \cr
#' PV \tab Largebus \tab ALL \cr
#' PV \tab Taxi \tab ALL \cr
#' PV \tab Bus \tab ALL \cr
#' Trucks \tab Bus \tab G \cr
#' Trucks \tab Light \tab G \cr
#' Trucks \tab Medium \tab G \cr
#' Trucks \tab Heavy \tab G \cr
#' Trucks \tab Light \tab D \cr
#' Trucks \tab Medium \tab D \cr
#' Trucks \tab Heavy \tab D \cr
#' Trucks \tab Low Speed \tab D \cr
#' Trucks \tab Mini \tab D \cr
#' }
#'
#' standard VI is assumed as V
#'
#' @seealso \code{\link{ef_ldv_speed}} \code{\link{emis_hot_td}}
#' @importFrom units as_units
#' @export
#' @examples \dontrun{
#' # when standard is 'character'
#' # Checking
#' df_st <- rev(c(as.character(as.roman(5:1)), "PRE"))
#' ef_china(t = "Mini", f = "G", standard = df_st, p = "CO")
#' ef_china(t = "Mini", f = "G", standard = df_st, p = "HC")
#' ef_china(t = "Mini", f = "G", standard = df_st, p = "NOx")
#' ef_china(t = "Mini", f = "G", standard = df_st, p = "PM2.5")
#' ef_china(t = "Mini", f = "G", standard = df_st, p = "PM10")
#'
#' ef_china(t = "Small", f = "G", standard = df_st, p = "CO")
#' ef_china(t = "Small", f = "G", standard = df_st, p = "HC")
#' ef_china(t = "Small", f = "G", standard = df_st, p = "NOx")
#' ef_china(t = "Small", f = "G", standard = df_st, p = "PM2.5")
#' ef_china(t = "Small", f = "G", standard = df_st, p = "PM10")
#'
#'
#' ef_china(t = "Mini",
#' standard = c("PRE"),
#' p = "CO",
#' k = 1,
#' ta = celsius(15),
#' humidity = 0.5,
#' altitude = 1000,
#' speed = Speed(30),
#' baseyear_det = 2014,
#' sulphur = 50,
#' load_factor = 0.5,
#' details = FALSE)
#' ef_china(standard = c("PRE", "I"), p = "CO", correction_only = TRUE)
#'
#' # when standard is 'data.frame'
#' df_st <- matrix(c("V", "IV", "III", "III", "II", "I", "PRE"), nrow = 2, ncol = 7, byrow = TRUE)
#' df_st <- as.data.frame(df_st)
#' a <- ef_china(standard = df_st,
#' p = "PM10",
#' ta = rep(celsius(15), 2),
#' altitude = rep(1000, 2),
#' speed = rep(Speed(30), 2),
#' sulphur = rep(50, 2))
#' dim(a)
#' dim(df_st)
#' ef_china(standard = df_st, p = "PM2.5", ta = rep(celsius(20), 2),
#' altitude = rep(1501, 2), speed = rep(Speed(29), 2), sulphur = rep(50, 2))
#' a
#'
#' # when standard, temperature and humidity are data.frames
#' # assuming 10 regions
#' df_st <- matrix(c("V", "IV", "III", "III", "II", "I", "PRE"), nrow = 10, ncol = 7, byrow = TRUE)
#' df_st <- as.data.frame(df_st)
#' df_t <- matrix(21:30, nrow = 10, ncol = 12, byrow = TRUE)
#' df_t <- as.data.frame(df_t)
#' for(i in 1:12) df_t[, i] <- celsius(df_t[, i])
#'
#' # assuming 10 regions
#' df_h <- matrix(seq(0.4, 0.5, 0.05), nrow = 10, ncol = 12, byrow = TRUE)
#' df_h <- as.data.frame(df_h)
#' a <- ef_china(standard = df_st, p = "CO", ta = df_t, humidity = df_h,
#' altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
#' a
#' a <- ef_china(standard = df_st, p = "PM2.5", ta = df_t, humidity = df_h,
#' altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
#' a
#' a <- ef_china(standard = df_st, p = "PM10", ta = df_t, humidity = df_h,
#' altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
#' a
#' dim(a)
#' }
ef_china <- function(v = "PV",
t = "Small",
f = "G",
standard,
p,
k = 1,
ta = celsius(15),
humidity = 0.5,
altitude = 1000,
speed = Speed(30),
baseyear_det = 2016,
sulphur = 50,
load_factor = 0.5,
details = FALSE,
correction_only = FALSE){
ef_china <- sysdata$ef_china
det_china <- sysdata$det_china
sulphur_china <- sysdata$sulphur_china
speed_china <- sysdata$speed_china
ev <- ef_china[ef_china$POLLUTANT %in% c("Evaporative_driving",
"Evaporative_parking"), ]
ef_china <- ef_china[!ef_china$POLLUTANT %in% c("Evaporative_driving",
"Evaporative_parking"), ]
fl <- data.frame(stringsAsFactors=FALSE,
POLLUTANT = c("CO", "HC", "NOx", "PM2.5", "PM10"),
L0 = c(0.87, 1, 0.83, 0.9, 0.9),
L50 = c(1, 1, 1, 1, 1),
L60 = c(1.07, 1, 1.09, 1.05, 1.05),
L75 = c(1.16, 1, 1.21, 1.13, 1.13),
L100 = c(1.33, 1, 1.43, 1.26, 1.26)
)
#Check standard
if(is.matrix(standard) | is.data.frame(standard)){
eu <- as.data.frame(standard)
for(i in 1:ncol(standard)) standard[, i] <- as.character(standard[, i])
} else {
standard = as.character(standard)
}
# Check speed
if(!inherits(speed, "units")){
stop("speed neeeds to has class 'units' in 'km/h'. Please, check package '?units::set_units'")
}
if(units(speed) != units(units::as_units("km/h"))){
stop("Units of speed must be 'km/h' ")
}
if(units(speed) == units(units::as_units("km/h"))){
speed <- as.numeric(speed)
}
#Check k
if(length(k) > 1) stop("Length of k must be 1")
#Check arguments
if(!v %in% unique(ef_china$VEH)) {
cat("'v' must be one of:", unique(ef_china$VEH), "\n")
stop("")
}
if(!t %in% unique(ef_china$TYPE)) {
cat("'t' must be one of:", unique(ef_china$TYPE), "\n")
stop("")
}
if(!f %in% unique(ef_china$FUEL)) {
cat("'f' must be one of:", unique(ef_china$FUEL), "\n")
stop("")
}
if(!p %in% unique(ef_china$POLLUTANT)) {
cat("'p' must be one of:", unique(ef_china$POLLUTANT), "\n")
stop("")
}
# fun starts ####
if(!is.data.frame(standard) & !is.data.frame(ta)){
dff <- lapply(1:length(standard), function(i){
df <- ef_china[ef_china$VEH == v &
ef_china$TYPE == t &
ef_china$FUEL == f &
ef_china$STANDARD == standard[i] &
ef_china$POLLUTANT == p, ]
# details
if(details){
cat("English: ", df$Description)
cat("\n\n")
cat("Chinese: ", df$CHN)
cat("\n")
}
# Check to return only correction
if(correction_only) df$EF <- 1
if(!inherits(ta, "units")) stop("ta must be units in celsius, use celsius(ta)")
ta <- as.numeric(ta)
# Check correction gasoline - ta
if(f == "G"){
if(t != "Motorcycles"){
if(p == "CO"){
df$EF <- ifelse(ta < 10, df$EF*1.36,
ifelse(ta > 25, df$EF*1.23, df$EF))
} else if(p == "HC"){
df$EF <- ifelse(ta < 10, df$EF*1.47,
ifelse(ta > 25, df$EF*1.08, df$EF))
} else if(p == "NOx"){
df$EF <- ifelse(ta < 10, df$EF*1.15,
ifelse(ta > 25, df$EF*1.31, df$EF))
}}
}
# Check correction diesel - ta
if(f == "D"){
if(p == "CO"){
if(t %in% c("Small", "Light")){
df$EF <- ifelse(ta > 25, df$EF*1.33, df$EF)
} else if(!t %in% c("Small", "Light")){
df$EF <- ifelse(ta > 25, df$EF*1.3, df$EF)
}
} else if(p == "HC"){
if(t == c("Small")){
df$EF <- ifelse(ta > 25, df$EF*1.07, df$EF)
} else if(!t == c("Light")){
df$EF <- ifelse(ta > 25, df$EF*1.06, df$EF)
}
} else if(p == "NOx"){
if(t == c("Small")){
df$EF <- ifelse(ta > 25, df$EF*1.17,
ifelse(ta < 10, df$EF*1.06, df$EF))
} else if(t == c("Light")){
df$EF <- ifelse(ta > 25, df$EF*1.17,
ifelse(ta < 10, df$EF*1.05, df$EF))
} else {
df$EF <- ifelse(ta > 25, df$EF*1.15,
ifelse(ta < 10, df$EF*1.06, df$EF))
}
} else if(p %in% c("PM2.5", "PM10")){
if(t %in% c("Small", "Bus")){
df$EF <- ifelse(ta > 25, df$EF*0.68,
ifelse(ta < 10, df$EF*1.87, df$EF))
} else if(t == c("Light")){
df$EF <- ifelse(ta > 25, df$EF*0.9,
ifelse(ta < 10, df$EF*1.27, df$EF))
} else {
df$EF <- ifelse(ta > 25, df$EF*0.74,
ifelse(ta < 10, df$EF*1.7, df$EF))
}
}
}
# Check correction NOx - humidity
if(p == "NOx" & f == "G"){
df$EF <- ifelse(humidity <0.5, df$EF*1.06,
ifelse(
humidity > 0.5, df$EF*0.92,
df$EF))
} else if(p == "NOx" & f == "D"){
df$EF <- ifelse(humidity < 0.5, df$EF*1.04,
ifelse(
humidity > 0.5, df$EF*0.94,
df$EF))
}
# Check correction ta and humidity - gasoline
if(ta > 24){
if(f == "G"){
if(p == "CO"){
df$EF <- ifelse(
humidity > 0.5, df$EF*1.04,
ifelse(humidity < 0.5, df$EF*0.97, df$EF))
} else if (p == "HC"){
df$EF <- ifelse(
humidity > 0.5, df$EF*1.01,
ifelse(humidity < 0.5, df$EF*0.99, df$EF))
} else if(p == "NOx"){
df$EF <- ifelse(humidity > 0.5, df$EF*0.87,
ifelse(humidity < 0.5, df$EF*1.13, df$EF))
}
} else if(f == "D"){
if(p == "NOx"){
df$EF <- ifelse(humidity > 0.5, df$EF*0.88,
ifelse(humidity < 0.5, df$EF*1.12, df$EF))
}
}
}
# Check altitude
if(altitude > 1500){
if(f == "G"){
if(t %in% c("Mini", "Small", "Light", "Taxi", "Motorcycles",
"Moped")){
df$EF <- ifelse(p == "CO", df$EF*1.58,
ifelse(p == "HC", df$EF*2.46,
ifelse(p == "NOx", df$EF*3.15, df$EF)))
} else if(!t %in% c("Mini", "Small", "Light", "Taxi", "Motorcycles",
"Moped")){
df$EF <- ifelse(p == "CO", df$EF*3.95,
ifelse(p == "HC", df$EF*2.26,
ifelse(p == "NOx", df$EF*0.88, df$EF)))
}
} else if(f == "D"){
if(t %in% c("Small", "Light")){
df$EF <- ifelse(p == "CO", df$EF*1.2,
ifelse(p == "HC", df$EF*1.32,
ifelse(p == "NOx", df$EF*1.35, df$EF*1.35)))
} else if(!t %in% c("Small", "Light")){
df$EF <- ifelse(p == "CO", df$EF*2.46,
ifelse(p == "HC", df$EF*2.05,
ifelse(p == "NOx", df$EF*1.02, df$EF)))
}}
}
# Check speed
efspeed <- speed_china[speed_china$FUEL == f &
speed_china$STANDARD == standard[i] &
speed_china$POLLUTANT == p, ]
df$EF <- ifelse(
speed < 20, df$EF*efspeed$S20,
ifelse(
speed >= 20 & speed < 30, df$EF*efspeed$S20_30,
ifelse(
speed == 30 , df$EF,
ifelse(
speed > 30 & speed < 40, df$EF*efspeed$S30_40,
ifelse(
speed >= 40 & speed < 80, df$EF*efspeed$S40_80,
ifelse(speed > 80, df$EF*efspeed$S80, 0))))))
# Check deterioration
if(f == "G" & p %in% c("CO", "HC", "NOx")){
ts <- ifelse(t %in% c("Mini", "Small"),"group1",
ifelse(t == "Taxi", "Taxi","group2"))
detfac <- det_china[det_china$TYPE == ts &
det_china$FUEL == f &
det_china$STANDARD == standard[i] &
det_china$POLLUTANT == p &
det_china$YEAR == baseyear_det, ]
}
# Check sulphur
sulphur_china <- sulphur_china[sulphur_china$FUEL == f &
sulphur_china$STANDARD == standard[i] &
sulphur_china$POLLUTANT == p, ]
df$EF <- ifelse(
sulphur <= 10, df$EF*sulphur_china$S10,
ifelse(
sulphur > 10 & sulphur <= 50, df$EF*sulphur_china$S50,
ifelse(
sulphur > 50 & sulphur <= 150, df$EF*sulphur_china$S150,
ifelse(sulphur > 150 & sulphur <= 350, df$EF*sulphur_china$S350,
ifelse(
sulphur > 350 & sulphur <= 500, df$EF*sulphur_china$S500,
df$EF*sulphur_china$S800)))))
# Check load
dfl <- fl[fl$POLLUTANT == p, ]
df$EF <- ifelse(
load_factor == 0, df$EF*dfl$L0,
ifelse(
load_factor > 0 & load_factor < 0.5, df$EF*dfl$L50,
ifelse(load_factor == 0.5, df$EF,
ifelse(
load_factor > 0.5 & sulphur <= 0.6, df$EF*dfl$L60,
ifelse(
load_factor > 0.6 & sulphur <= 0.75, df$EF*dfl$L75,
df$EF*dfl$L100)))))
})
if(correction_only){
return(unlist(dff)*k)
} else {
return(EmissionFactors(unlist(dff)*k))
}
# standard is data.frames ####
} else if(is.matrix(standard) | is.data.frame(standard) & !is.data.frame(ta)) {
standard <- as.data.frame(standard)
dff <- do.call("rbind", lapply(1:nrow(standard), function(j){
do.call("cbind", lapply(1:ncol(standard), function(i){
df <- ef_china[ef_china$VEH == v &
ef_china$TYPE == t &
ef_china$FUEL == f &
ef_china$STANDARD == standard[j,i][[1]] &
ef_china$POLLUTANT == p, ]
# Check to return only correction
if(correction_only) df$EF <- 1
if(!inherits(ta, "units")) stop("ta must be units in celsius, use celsius(ta)")
ta <- as.numeric(ta)
if(length(ta) != nrow(standard)) stop("length of 'ta' must be the same as the number of rows of 'standard'")
# Check correction gasoline - ta
if(f == "G"){
if(t != "Motorcycles"){
if(p == "CO"){
df$EF <- ifelse(ta[j] < 10, df$EF*1.36,
ifelse(ta[j] > 25, df$EF*1.23, df$EF))
} else if(p == "HC"){
df$EF <- ifelse(ta[j] < 10, df$EF*1.47,
ifelse(ta[j] > 25, df$EF*1.08, df$EF))
} else if(p == "NOx"){
df$EF <- ifelse(ta[j] < 10, df$EF*1.15,
ifelse(ta[j] > 25, df$EF*1.31, df$EF))
}
}}
# Check correction diesel - ta
if(f == "D"){
if(p == "CO"){
if(t %in% c("Small", "Light")){
df$EF <- ifelse(ta[j] > 25, df$EF*1.33, df$EF)
} else if(!t %in% c("Small", "Light")){
df$EF <- ifelse(ta[j] > 25, df$EF*1.3, df$EF)
}
} else if(p == "HC"){
if(t == c("Small")){
df$EF <- ifelse(ta[j] > 25, df$EF*1.07, df$EF)
} else if(!t == c("Light")){
df$EF <- ifelse(ta[j] > 25, df$EF*1.06, df$EF)
}
} else if(p == "NOx"){
if(t == c("Small")){
df$EF <- ifelse(ta[j] > 25, df$EF*1.17,
ifelse(ta[j] < 10, df$EF*1.06, df$EF))
} else if(t == c("Light")){
df$EF <- ifelse(ta[j] > 25, df$EF*1.17,
ifelse(ta[j] < 10, df$EF*1.05, df$EF))
} else {
df$EF <- ifelse(ta[j] > 25, df$EF*1.15,
ifelse(ta[j] < 10, df$EF*1.06, df$EF))
}
} else if(p %in% c("PM2.5", "PM10")){
if(t %in% c("Small", "Bus")){
df$EF <- ifelse(ta[j] > 25, df$EF*0.68,
ifelse(ta[j] < 10, df$EF*1.87, df$EF))
} else if(t == c("Light")){
df$EF <- ifelse(ta[j] > 25, df$EF*0.9,
ifelse(ta[j] < 10, df$EF*1.27, df$EF))
} else {
df$EF <- ifelse(ta[j] > 25, df$EF*0.74,
ifelse(ta[j] < 10, df$EF*1.7, df$EF))
}
}
}
# Check correction NOx - humidity
if(p == "NOx" & f == "G"){
df$EF <- ifelse(humidity[j] > 0.5, df$EF*0.92, df$EF*1.06)
} else if(p == "NOx" & f == "D"){
df$EF <- ifelse(humidity[j] > 0.5, df$EF*0.94, df$EF*1.04)
} else {
df$EF <- df$EF
}
# Check correction ta[j] and humidity - gasoline
if(ta[j] > 24){
if(f == "G"){
if(p == "CO"){
df$EF <- ifelse(humidity[j] > 0.5, df$EF*1.04, df$EF*0.97)
} else if (p == "HC"){
df$EF <- ifelse(humidity[j] > 0.5, df$EF*1.01, df$EF*0.99)
} else if(p == "NOx"){
df$EF <- ifelse(humidity[j] > 0.5, df$EF*0.87, df$EF*1.13)
}
} else if(f == "D"){
if(p == "NOx"){
df$EF <- ifelse(humidity[j] > 0.5, df$EF*0.88, df$EF*1.12)
}
}
}
# Check altitude
if(length(altitude) != nrow(standard)) stop("length of 'altitude' must be the same as the number of rows of 'standard'")
if(altitude[j] > 1500){
if(f == "G"){
if(t %in% c("Mini", "Small", "Light", "Taxi", "Motorcycles",
"Moped")){
df$EF <- ifelse(p == "CO", df$EF*1.58,
ifelse(p == "HC", df$EF*2.46,
ifelse(p == "NOx", df$EF*3.15, df$EF)))
} else if(!t %in% c("Mini", "Small", "Light", "Taxi", "Motorcycles",
"Moped")){
df$EF <- ifelse(p == "CO", df$EF*3.95,
ifelse(p == "HC", df$EF*2.26,
ifelse(p == "NOx", df$EF*0.88, df$EF)))
}
} else if(f == "D"){
if(t %in% c("Small", "Light")){
df$EF <- ifelse(p == "CO", df$EF*1.2,
ifelse(p == "HC", df$EF*1.32,
ifelse(p == "NOx", df$EF*3.15, df$EF)))
} else if(!t %in% c("Small", "Light")){
df$EF <- ifelse(p == "CO", df$EF*2.46,
ifelse(p == "HC", df$EF*2.05,
ifelse(p == "NOx", df$EF*1.02, df$EF)))
}}
} else {
df$EF <- df$EF
}
# Check speed
if(length(speed) != nrow(standard)) stop("length of 'speed' must be the same as the number of rows of 'standard'")
efspeed <- speed_china[speed_china$FUEL == f &
speed_china$STANDARD == standard[j,i][[1]] &
speed_china$POLLUTANT == p, ]
df$EF <- ifelse(
speed[j] < 20, df$EF*efspeed$S20,
ifelse(
speed[j] >= 20 & speed[j] < 30, df$EF*efspeed$S20_30,
ifelse(
speed[j] == 30 , df$EF,
ifelse(
speed[j] > 30 & speed[j] < 40, df$EF*efspeed$S30_40,
ifelse(
speed[j] >= 40 & speed[j] < 80, df$EF*efspeed$S40_80, df$EF*efspeed$S80)))))
# Check deterioration
if(f == "G" & p %in% c("CO", "HC", "NOx")){
ts <- ifelse(t %in% c("Mini", "Small"),"group1",
ifelse(t == "Taxi", "Taxi","group2"))
detfac <- det_china[det_china$TYPE == ts &
det_china$FUEL == f &
det_china$STANDARD == standard[j,i][[1]] &
det_china$POLLUTANT == p &
det_china$YEAR == baseyear_det, ]
df$EF <- df$EF*detfac$DET
}
# Check sulphur
if(length(sulphur) != nrow(standard)) stop("length of 'sulphur' must be the same as the number of rows of 'standard'")
sulphur_china <- sulphur_china[sulphur_china$FUEL == f &
sulphur_china$STANDARD == standard[j,i][[1]] &
sulphur_china$POLLUTANT == p, ]
df$EF <- ifelse(
sulphur[j] <= 10, df$EF*sulphur_china$S10,
ifelse(
sulphur[j] > 10 & sulphur[j] <= 50, df$EF*sulphur_china$S50,
ifelse(
sulphur[j] > 50 & sulphur[j] <= 150, df$EF*sulphur_china$S150,
ifelse(sulphur[j] > 150 & sulphur[j] <= 350, df$EF*sulphur_china$S350,
ifelse(
sulphur[j] > 350 & sulphur[j] <= 500, df$EF*sulphur_china$S500,
df$EF*sulphur_china$S800)))))
# Check load
dfl <- fl[fl$POLLUTANT == p, ]
df$EF <- ifelse(
load_factor == 0, df$EF*dfl$L0,
ifelse(
load_factor > 0 & load_factor < 0.5, df$EF*dfl$L50,
ifelse(load_factor == 0.5, df$EF,
ifelse(
load_factor > 0.5 & sulphur <= 0.6, df$EF*dfl$L60,
ifelse(
load_factor > 0.6 & sulphur <= 0.75, df$EF*dfl$L75,
df$EF*dfl$L100)))))
df$EF
}))
}))
if(correction_only){
return(dff)
} else {
dff <- EmissionFactors(dff*k)
dff$speed <- Speed(speed)
dff$ta <- ta
dff$humidity <- humidity
dff$alt <- altitude
dff$sulphur <- sulphur
return(dff)
}
# standard and ta are data.frames ####
} else if (is.matrix(standard) | is.data.frame(standard) & is.data.frame(ta)){
standard <- as.data.frame(standard)
if(ncol(ta) != 12) warning("This function was designed so that number of columns of ta is 12, one year")
if(nrow(ta) != nrow(standard)) {
stop("number of rows of 'ta' must be the same as the number of rows of 'standard'")
}
dff <- do.call("rbind", lapply(1:ncol(ta), function(k){
do.call("rbind", lapply(1:nrow(standard), function(j){
do.call("cbind", lapply(1:ncol(standard), function(i){
df <- ef_china[ef_china$VEH == v &
ef_china$TYPE == t &
ef_china$FUEL == f &
ef_china$STANDARD == standard[j,i][[1]] &
ef_china$POLLUTANT == p, ]
# Check to return only correction
if(correction_only) df$EF <- 1
# Check correction gasoline - ta
ta <- ta[j, k]
if(!inherits(ta, "units")) stop("ta must be units in celsius, use celsius(ta)")
ta <- as.numeric(ta)
humidity <- humidity[j, k]
if(f == "G"){
if(t != "Motorcycles"){
if(p == "CO"){
df$EF <- ifelse(ta < 10, df$EF*1.36,
ifelse(ta > 25, df$EF*1.23, df$EF))
} else if(p == "HC"){
df$EF <- ifelse(ta < 10, df$EF*1.47,
ifelse(ta > 25, df$EF*1.08, df$EF))
} else if(p == "NOx"){
df$EF <- ifelse(ta < 10, df$EF*1.15,
ifelse(ta > 25, df$EF*1.31, df$EF))
} else {
df$EF <- df$EF
}
}}
# Check correction diesel - ta
if(f == "D"){
if(p == "CO"){
if(t %in% c("Small", "Light")){
df$EF <- ifelse(ta > 25, df$EF*1.33, df$EF)
} else if(!t %in% c("Small", "Light")){
df$EF <- ifelse(ta > 25, df$EF*1.3, df$EF)
}
} else if(p == "HC"){
if(t == c("Small")){
df$EF <- ifelse(ta > 25, df$EF*1.07, df$EF)
} else if(!t == c("Light")){
df$EF <- ifelse(ta > 25, df$EF*1.06, df$EF)
}
} else if(p == "NOx"){
if(t == c("Small")){
df$EF <- ifelse(ta > 25, df$EF*1.17,
ifelse(ta < 10, df$EF*1.06, df$EF))
} else if(t == c("Light")){
df$EF <- ifelse(ta > 25, df$EF*1.17,
ifelse(ta < 10, df$EF*1.05, df$EF))
} else {
df$EF <- ifelse(ta > 25, df$EF*1.15,
ifelse(ta < 10, df$EF*1.06, df$EF))
}
} else if(p %in% c("PM2.5", "PM10")){
if(t %in% c("Small", "Bus")){
df$EF <- ifelse(ta > 25, df$EF*0.68,
ifelse(ta < 10, df$EF*1.87, df$EF))
} else if(t == c("Light")){
df$EF <- ifelse(ta > 25, df$EF*0.9,
ifelse(ta < 10, df$EF*1.27, df$EF))
} else {
df$EF <- ifelse(ta > 25, df$EF*0.74,
ifelse(ta < 10, df$EF*1.7, df$EF))
}
}
}
# Check correction NOx - humidity
if(p == "NOx" & f == "G"){
df$EF <- ifelse(humidity > 0.5, df$EF*0.92, df$EF*1.06)
} else if(p == "NOx" & f == "D"){
df$EF <- ifelse(humidity > 0.5, df$EF*0.94, df$EF*1.04)
} else {
df$EF <- df$EF
}
# Check correction ta and humidity - gasoline
if(ta > 24){
if(f == "G"){
if(p == "CO"){
df$EF <- ifelse(humidity > 0.5, df$EF*1.04, df$EF*0.97)
} else if (p == "HC"){
df$EF <- ifelse(humidity > 0.5, df$EF*1.01, df$EF*0.99)
} else if(p == "NOx"){
df$EF <- ifelse(humidity > 0.5, df$EF*0.87, df$EF*1.13)
}
} else if(f == "D"){
if(p == "NOx"){
df$EF <- ifelse(humidity > 0.5, df$EF*0.88, df$EF*1.12)
}
}
}
# Check altitude
if(length(altitude) != nrow(standard)) stop("length of 'altitude' must be the same as the number of rows of 'standard'")
if(altitude[j] > 1500){
if(f == "G"){
if(t %in% c("Mini", "Small", "Light", "Taxi", "Motorcycles",
"Moped")){
df$EF <- ifelse(p == "CO", df$EF*1.58,
ifelse(p == "HC", df$EF*2.46,
ifelse(p == "NOx", df$EF*3.15, df$EF)))
} else if(!t %in% c("Mini", "Small", "Light", "Taxi", "Motorcycles",
"Moped")){
df$EF <- ifelse(p == "CO", df$EF*3.95,
ifelse(p == "HC", df$EF*2.26,
ifelse(p == "NOx", df$EF*0.88, df$EF)))
}
} else if(f == "D"){
if(t %in% c("Small", "Light")){
df$EF <- ifelse(p == "CO", df$EF*1.2,
ifelse(p == "HC", df$EF*1.32,
ifelse(p == "NOx", df$EF*3.15, df$EF)))
} else if(!t %in% c("Small", "Light")){
df$EF <- ifelse(p == "CO", df$EF*2.46,
ifelse(p == "HC", df$EF*2.05,
ifelse(p == "NOx", df$EF*1.02, df$EF)))
}}
} else {
df$EF <- df$EF
}
# Check speed
if(length(speed) != nrow(standard)) stop("length of 'speed' must be the same as the number of rows of 'standard'")
efspeed <- speed_china[speed_china$FUEL == f &
speed_china$STANDARD == standard[j,i][[1]] &
speed_china$POLLUTANT == p, ]
df$EF <- ifelse(
speed[j] < 20, df$EF*efspeed$S20,
ifelse(
speed[j] >= 20 & speed[j] < 30, df$EF*efspeed$S20_30,
ifelse(
speed[j] == 30 , df$EF,
ifelse(
speed[j] > 30 & speed[j] < 40, df$EF*efspeed$S30_40,
ifelse(
speed[j] >= 40 & speed[j] < 80, df$EF*efspeed$S40_80, df$EF*efspeed$S80)))))
# Check deterioration
if(f == "G" & p %in% c("CO", "HC", "NOx")){
ts <- ifelse(t %in% c("Mini", "Small"),"group1",
ifelse(t == "Taxi", "Taxi","group2"))
detfac <- det_china[det_china$TYPE == ts &
det_china$FUEL == f &
det_china$STANDARD == standard[j,i][[1]] &
det_china$POLLUTANT == p &
det_china$YEAR == baseyear_det, ]
df$EF <- df$EF*detfac$DET
}
# Check sulphur
if(length(sulphur) != nrow(standard)) stop("length of 'sulphur' must be the same as the number of rows of 'standard'")
sulphur_china <- sulphur_china[sulphur_china$FUEL == f &
sulphur_china$STANDARD == standard[j,i][[1]] &
sulphur_china$POLLUTANT == p, ]
df$EF <- ifelse(
sulphur[j] <= 10, df$EF*sulphur_china$S10,
ifelse(
sulphur[j] > 10 & sulphur[j] <= 50, df$EF*sulphur_china$S50,
ifelse(
sulphur[j] > 50 & sulphur[j] <= 150, df$EF*sulphur_china$S150,
ifelse(sulphur[j] > 150 & sulphur[j] <= 350, df$EF*sulphur_china$S350,
ifelse(
sulphur[j] > 350 & sulphur[j] <= 500, df$EF*sulphur_china$S500,
df$EF*sulphur_china$S800)))))
# Check load
dfl <- fl[fl$POLLUTANT == p, ]
df$EF <- ifelse(
load_factor == 0, df$EF*dfl$L0,
ifelse(
load_factor > 0 & load_factor < 0.5, df$EF*dfl$L50,
ifelse(load_factor == 0.5, df$EF,
ifelse(
load_factor > 0.5 & sulphur <= 0.6, df$EF*dfl$L60,
ifelse(
load_factor > 0.6 & sulphur <= 0.75, df$EF*dfl$L75,
df$EF*dfl$L100)))))
df$EF
}))
}))
}))
if(correction_only){
return(dff)
} else {
dff <- EmissionFactors(dff*k)
dff$speed <- Speed(speed)
dff$ta <- celsius(unlist(ta))
dff$humidity <- unlist(humidity)
dff$alt <- altitude
dff$sulphur <- sulphur
return(dff)
}
}
}
#' @title Chinese emission factors by emissions standard
#' @family China
#' @name ef_china_long
#' @description Chinese emission factors in long format
#' @param v Character; category vehicle: "PV" for Passenger Vehicles or 'Trucks"
#' @param t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
#' "Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Largebus",
#' "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"
#' @param standard Character vector; "PRE", "I", "II", "III", "IV", "V".
#' @param f Character;fuel: "G", "D", "CNG", "ALL"
#' @param p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving"
#' or "Evaporative_parking"
#' @return long data.frame
#' @importFrom data.table setDT
#' @export
#' @examples {
#' \dontrun{
#' # Do not run
#' }
#' }
ef_china_long <- function(v = "PV",
t = "Small",
f = "G",
standard,
p){
chi <- sysdata$ef_china
data.table::setDT(chi)
VEH <- TYPE <- FUEL <- POLLUTANT <- YEAR <- STANDARD <- NULL
chi[VEH == v &
TYPE == t &
FUEL == f &
POLLUTANT == p,
c("STANDARD", "EF")] -> base
efb <- EmissionFactors(unlist(lapply(seq_along(standard), function(i) {
base[STANDARD == standard[i]]$EF
})))
return(efb)
}
#' @title Correction of Chinese emission factors by speed
#' @family China
#' @name ef_china_long
#' @description Correction of Chinese emission
#' @param v Character; category vehicle: "PV" for Passenger Vehicles or 'Trucks"
#' @param t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
#' "Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Largebus",
#' "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"
#' @param standard Character vector; "PRE", "I", "II", "III", "IV", "V".
#' @param f Character;fuel: "G", "D", "CNG", "ALL"
#' @param p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving"
#' or "Evaporative_parking"
#' @return long data.frame
#' @importFrom data.table setDT
#' @export
#' @examples {
#' ef_china_long(standard = "I", p = "CO")
#' }
ef_china_long <- function(v = "PV",
t = "Small",
f = "G",
standard,
p){
chi <- sysdata$ef_china
data.table::setDT(chi)
VEH <- TYPE <- FUEL <- POLLUTANT <- YEAR <- STANDARD <- NULL
chi[VEH == v &
TYPE == t &
FUEL == f &
POLLUTANT == p,
c("STANDARD", "EF")] -> base
efb <- EmissionFactors(unlist(lapply(seq_along(standard), function(i) {
base[STANDARD == standard[i]]$EF
})))
return(efb)
}
#' @title Correction of Chinese emission factors by sulfur
#' @family China
#' @name ef_china_s
#' @description Correction of Chinese emission
#' @param s Numeric sulfur content in ppm
#' @param f Character;fuel: "G", "D", "CNG", "ALL"
#' @param standard Character vector; "PRE", "I", "II", "III", "IV", "V".
#' @param p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving"
#' or "Evaporative_parking"
#' @return long data.frame
#' @importFrom data.table setDT melt.data.table
#' @export
#' @examples {
#' ef_china_s(s = 1000, standard = "I", p = "CO")
#' }
ef_china_s <- function(s,
f = "G",
standard,
p){
f <- ifelse(f %in% c("CNG", "G HY", "G"), "G", "D")
chi <- sysdata$sulphur_china
data.table::setDT(chi)
VEH <- TYPE <- FUEL <- POLLUTANT <- YEAR <- STANDARD <- NULL
chi <- data.table::melt.data.table(data = chi,
id.vars = c("FUEL",
"STANDARD",
"POLLUTANT"),
variable.name = "sulfur")
xs <- ifelse(
s >=800, "S800",
ifelse(
s < 800 & s >= 500, "S500",
ifelse(
s < 500 & s >= 350, "S350",
ifelse(
s < 350 & s >= 150, "S150",
ifelse(
s < 150 & s >= 50, "S50",
"S10")))))
sulfur <- NULL
chi[FUEL == f &
POLLUTANT == p &
sulfur == xs] -> base
efb <- unlist(lapply(seq_along(standard), function(i) {
base[STANDARD == standard[i]]$value
}))
if(nrow(base) == 0) efb <- rep(1, length(standard))
return(efb)
}
#' @title Correction of Chinese emission factors by deterioration
#' @family China
#' @name ef_china_det
#' @description Correction of Chinese emission
#' @param v Character; category vehicle: "PV" for Passenger Vehicles or 'Trucks"
#' @param t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
#' "Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Largebus",
#' "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"
#' @param standard Character vector; "PRE", "I", "II", "III", "IV", "V".
#' @param f Character;fuel: "G", "D", "CNG", "ALL"
#' @param p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving"
#' or "Evaporative_parking"
#' @param yeardet Integer; any of 2014, 2015, 2016, 2017, 2018
#' @return long data.frame
#' @importFrom data.table setDT
#' @export
#' @examples {
#' ef_china_det(standard = "I", p = "CO")
#' ef_china_det(standard = c("I", "III"),
#' p = "CO",
#' f = "D")
#' }
ef_china_det <- function(v = "PV",
t = "Small",
f = "G",
standard,
yeardet = 2015,
p){
det <- sysdata$det_china_long
data.table::setDT(det)
VEH <- TYPE <- FUEL <- POLLUTANT <- YEAR <- STANDARD <- NULL
det[VEH == v &
TYPE == t &
FUEL == f &
YEAR == yeardet &
POLLUTANT == p,
c("STANDARD",
"DET")] -> basedet
if(nrow(basedet) > 0) {
efs <- unlist(lapply(seq_along(standard), function(i) {
basedet[STANDARD == standard[i]]$DET
}))
} else {
efs <- rep(1, length(standard))
}
return(efs)
}
#' @title Correction of Chinese emission factors by speed
#' @family China
#' @name ef_china_speed
#' @description Correction of Chinese emission
#' @param speed numeric speed km/h
#' @param f Character;fuel: "G", "D", "CNG"
#' @param standard Character vector; "PRE", "I", "II", "III", "IV", "V".
#' @param p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving"
#' or "Evaporative_parking"
#' @return long data.frame
#' @importFrom data.table setDT
#' @export
#' @examples {
#' data(net)
#' head(ef_china_speed(speed = net$ps, standard = "I", p = "CO"))
#' head(ef_china_speed(speed = net$ps,
#' standard = c("II", "I"),
#' p = "NOx"))
#' }
ef_china_speed <- function(speed,
f = "G",
standard,
p){
efsp <- sysdata$speed_china
f <- ifelse(f %in% c("CNG", "G HY", "G"), "G", f)
data.table::setDT(efsp)
sp <- as.numeric(speed)
VEH <- TYPE <- FUEL <- POLLUTANT <- YEAR <- STANDARD <- NULL
efsp[FUEL == f &
POLLUTANT == p] -> basesp
efs <- lapply(seq_along(standard), function(i) {
sp_std <- basesp[STANDARD == standard[i]]
ifelse(
sp < 20, sp_std$S20,
ifelse(
sp >= 20 & sp < 30, sp_std$S20_30,
ifelse(
sp >= 30 & sp < 40, sp_std$S30_40,
ifelse(
sp >= 40 & sp < 80, sp_std$S40_80,
sp_std$S80
)
)
))
})
efs <- as.data.frame(do.call("cbind", efs))
return(efs)
}
#' @title Correction of Chinese emission factors by temperature
#' @family China
#' @name ef_china_te
#' @description Correction of Chinese emission
#' @param te numeric temperature in celsius
#' @param v Character; category vehicle: "PV" for Passenger Vehicles or 'Trucks"
#' @param t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
#' "Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Largebus",
#' "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"
#' @param f Character;fuel: "G", "D", "CNG"
#' @param p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving"
#' or "Evaporative_parking"
#' @return long data.frame
#' @importFrom data.table setDT
#' @export
#' @examples {
#' data(net)
#' head(ef_china_te(te = net$ps, p = "CO"))
#' head(ef_china_te(te = net$ps,
#' p = "NOx"))
#' }
ef_china_te <- function(te,
v = "PV",
t = "Small",
f = "G",
p){
efte <- sysdata$te_china
f <- ifelse(f %in% c("CNG", "G HY", "G"), "G", "D")
data.table::setDT(efte)
VEH <- TYPE <- FUEL <- POLLUTANT <- NULL
efte[VEH == v &
TYPE == t &
FUEL == f &
POLLUTANT == p, ] -> eftes
te <- as.numeric(te)
x <- ifelse(
te < 10, eftes$T10,
ifelse(
te > 25, eftes$T25,
1))
return(x)
}
#' @title Correction of Chinese emission factors by humidity
#' @family China
#' @name ef_china_hu
#' @description Correction of Chinese emission
#' @param hu numeric humidity
#' @param v Character; category vehicle: "PV" for Passenger Vehicles or 'Trucks"
#' @param t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
#' "Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Largebus",
#' "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"
#' @param f Character;fuel: "G", "D", "CNG"
#' @param standard Character vector; "PRE", "I", "II", "III", "IV", "V".
#' @param p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving"
#' or "Evaporative_parking"
#' @return long data.frame
#' @importFrom data.table setDT
#' @export
#' @examples {
#' ef_china_hu(hu = 60, standard = "I", p = "CO")
#' }
ef_china_hu <- function(hu,
v = "PV",
t = "Small",
f = "G",
standard,
p){
efh <- sysdata$humidity_china
f <- ifelse(f %in% c("CNG", "G HY", "G"), "G", "D")
data.table::setDT(efh)
VEH <- TYPE <- FUEL <- POLLUTANT <- NULL
efh[VEH == v &
TYPE == t &
FUEL == f &
POLLUTANT == p, ] -> efhs
hu <- as.numeric(hu)
x <- ifelse(
hu < 50, efhs$L50,
ifelse(
hu > 50, efhs$H50,
1))
return(x)
}
#' @title Correction of Chinese factors by humidity when temperature > 24
#' @family China
#' @name ef_china_th
#' @description Correction of Chinese emission
#' @param hu numeric humidity
#' @param te numeric temperature in celsius
#' @param v Character; category vehicle: "PV" for Passenger Vehicles or 'Trucks"
#' @param t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
#' "Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Largebus",
#' "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"
#' @param f Character;fuel: "G", "D", "CNG"
#' @param p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving"
#' or "Evaporative_parking"
#' @return long data.frame
#' @importFrom data.table setDT
#' @export
#' @examples {
#' ef_china_th(hu = 60, te = 25, p = "CO")
#' }
ef_china_th <- function(hu,
te,
v = "PV",
t = "Small",
f = "G",
p){
efth <- sysdata$tehu_china
f <- ifelse(f %in% c("CNG", "G HY", "G"), "G", "D")
data.table::setDT(efth)
VEH <- TYPE <- FUEL <- POLLUTANT <- NULL
efth[VEH == v &
TYPE == t &
FUEL == f &
POLLUTANT == p, ] -> efhs
hu <- as.numeric(hu)
te <- as.numeric(te)
x <- ifelse(
te > 24 & hu < 50, efhs$TH24L50,
ifelse(
te > 24 & hu > 50, efhs$TH24H50,
1))
return(x)
}
#' @title Correction of Chinese factors by altitude
#' @family China
#' @name ef_china_h
#' @description Correction of Chinese emission
#' @param h numeric altitude
#' @param v Character; category vehicle: "PV" for Passenger Vehicles or 'Trucks"
#' @param t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
#' "Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Largebus",
#' "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"
#' @param f Character;fuel: "G", "D", "CNG"
#' @param p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving"
#' or "Evaporative_parking"
#' @return long data.frame
#' @importFrom data.table setDT
#' @export
#' @examples {
#' ef_china_h(h = 1600, p = "CO")
#' }
ef_china_h <- function(h,
v = "PV",
t = "Small",
f = "G",
p){
efhi <- sysdata$h_china
f <- ifelse(f %in% c("CNG", "G HY", "G"), "G", "D")
data.table::setDT(efhi)
VEH <- TYPE <- FUEL <- POLLUTANT <- NULL
efhi[VEH == v &
TYPE == t &
FUEL == f &
POLLUTANT == p, ] -> efhis
h <- as.numeric(h)
x <- ifelse( h > 1500, efhis$H, 1)
return(x)
}
#' @title Estimation with Chinese factors
#' @family China
#' @name emis_china
#' @description Emissions estimates
#' @param x Vehicles data.frame
#' @param lkm Length of each link in km
#' @param tfs temporal factor
#' @param v Character; category vehicle: "PV" for Passenger Vehicles or 'Trucks"
#' @param t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
#' "Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Largebus",
#' "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"
#' @param f Character;fuel: "G", "D", "CNG", "ALL"
#' @param standard Character vector; "PRE", "I", "II", "III", "IV", "V".
#' @param p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving"
#' or "Evaporative_parking"
#' @param s Sulhur in ppm
#' @param speed Speed (length nrow x)
#' @param te Temperature (length tfs)
#' @param hu Humidity (length tfs)
#' @param h Altitude (length nrow x)
#' @param yeardet Year, default 2016
#' @param p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving"
#' or "Evaporative_parking"
#' @param array Logical to return EmissionsArray or not
#' @param verbose Logical to show more info
#' @return long data.frame
#' @importFrom data.table setDT
#' @export
#' @examples {
#' ef_china_h(h = 1600, p = "CO")
#' }
emis_china <- function(x,
lkm,
tfs,
v = "PV",
t = "Small",
f = "G",
standard,
s,
speed,
te,
hu,
h,
yeardet = 2016,
p,
verbose = TRUE,
array = FALSE){
# checks
if(length(tfs) != length(te)) stop("tfs, te and hu must have equal length")
if(length(tfs) != length(hu)) stop("tfs, te and hu must have equal length")
speed <- as.data.frame(speed)
# if(ncol(speed) != ncol(x)) stop("speed and x must have equal length of cols")
if(length(h) != nrow(x)) stop("length h and nrow x must have equal")
# Vehicle
if(verbose) cat("\nProcessing Vehicles\n")
nr <- nrow(x)
nc <- ncol(x)
x <- temp_veh(x = x, tfs = tfs)
if(verbose) cat("Estimating Base EF\n")
# base
std1 <- standard
ef_base <- ef_china_long(v = v,
t = t,
f = f,
standard = std1,
p = p)
if(verbose) cat("Correcting Base EF by sulfur\n")
# sulfur
ef_base_s <- ef_china_s(s = s,
f = f,
standard = std1,
p = p)
if(verbose) cat("Correcting Base EF by deterioration\n")
# det
ef_base_det <- ef_china_det(v = v,
t = t,
f = f,
standard = std1,
yeardet = yeardet,
p = p)
if(verbose) cat("Correcting Base EF by speed\n")
# speed
ef_base_speed <- rbindlist(lapply(seq_along(speed), function(k){
ef_china_speed(speed = speed[[k]],
f = f,
standard = std1,
p = p)
}))
if(verbose) cat("Correcting Base EF by temperature\n")
# temperature
ef_base_temp <- ef_china_te(te = te,
v = v,
t = t,
f = f,
p = p)
if(verbose) cat("Correcting Base EF by humidity\n")
# humidity
ef_base_hu <- ef_china_hu(hu = hu,
v = v,
t = t,
f = f,
p = p)
if(verbose) cat("Correcting Base EF by humidity if T > 24\n")
# temperaturehumidity
ef_base_th <- ef_china_th(hu = hu,
te = te,
v = v,
t = t,
f = f,
p = p)
efmet <- ef_base_temp * ef_base_hu * ef_base_th
# rep met each hour
efmet <- rep(efmet, each = nc)
if(verbose) cat("Correcting Base EF by Altitude\n")
# altitude
ef_base_h <- ef_china_h(h = h,
v = v,
t = t,
f = f,
p = p)
ef_base_speedv2 <- ef_base_h*
ef_base_speed *
remove_units(ef_base) *
ef_base_det*
ef_base_s *
efmet
ef_base_speedv2 <- EmissionFactors(as.data.frame(ef_base_speedv2))
if(verbose) cat("Estimating emissions\n")
E <- Emissions(do.call("cbind", lapply(1:nc, function(i) {
as.data.frame(ef_base_speedv2)[, i] * as.data.frame(x)[, i] * rep(lkm, length(tfs))
})))
# return(E)
E$Hour <- rep(seq_along(tfs), each = nr)
if(array) {
lx <- split(E, E$Hour)
lxx <- unlist(lapply(seq_along(lx), function(i) {
unlist(lx[[i]][, 1:nc])
}))
a <- EmissionsArray(array(data = lxx,
dim = c(nr,
nc,
length(tfs))))
return(a)
} else {
return(E)
}
return(x)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_china.R
|
#' Emissions factors from European European Environment Agency
#'
#' \code{\link{ef_cetesb}} returns a vector or data.frame of Brazilian emission factors.
#' @param category String: "PC" (Passenger Cars), "LCV" (Light Commercial Vehicles),
#' "TRUCKS" (Heavy Duty Trucks),
#' "BUS" (Buses) or "MC" (Motorcycles or L-Category as in EEA 2019).
#' @param fuel String; "G", "G HY", "G PHEV G",
#' "G PHEV ELEC", "D", "D PHEV D",
#' "D PHEV ELEC", "LPG BIFUEL LPG", "LPG BIFUEL G",
#' "CNG BIFUEL CNG", "CNG BIFUEL G", "D HY D",
#' "D HY ELEC", "CNG", "BIO D"
#' @param segment String for type of vehicle (try different, the function will show values).
#' @param euro String; euro standard:
#' "PRE", "IMPROVED CONVENTIONAL", "OPEN LOOP",
#' "ECE 15/00-01", "ECE 15/02", "ECE 15/03", "ECE 15/04".
#' "I", "II", "III", "IV", "V",
#' "VI A/B/C", "VI D", "VI D-TEMP", "VI D/E",
#' "EEV".
#' @param tech String; technology:
#' "DPF", "DPF With S/W Update", "DPF+SCR"
#' "EGR", "GDI", "GDI+GPF", "LNT+DPF", "PFI", "SCR".
#' @param pol String; "CO", "NOx", "NMHC" (VOC), "PM" (PM Exhaust), "EC", "CH4", "NH3", "N2O"
#' @param mode String; "Urban Peak", "Urban Off Peak", "Rural", "Highway", NA.
#' @param slope Numeric; 0.00, -0.06, -0.04, -0.02, 0.02, 0.04, 0.06, or NA
#' @param load Numeric; 0.0,0.5, 1.0 or NA
#' @param speed Numeric; optional numeric in km/h.
#' @param fcorr Numeric; Correction by fuel properties by euro technology.
#' See \code{\link{fuel_corr}}. The order from first to last is
#' "PRE", "I", "II", "III", "IV", "V", "VI", "or other VI. Default is 1
#' @return Return a function depending of speed or numeric (g/km)
#' @importFrom data.table setDT
#' @keywords emission factors
#' @export
#' @examples {
#' # ef_eea(category = "I DONT KNOW")
#' ef_eea(category = "PC",
#' fuel = "G",
#' segment = "Small",
#' euro = "I",
#' tech = NA,
#' pol = "CO",
#' mode = NA,
#' slope = 0,
#' load = 0)(10)
#' }
ef_eea <- function(
category,
fuel,
segment,
euro,
tech,
pol,
mode,
slope,
load,
speed,
fcorr = rep(1, 8)
) {
eea <- data.table::setDT(sysdata$eea)
eea$RoadSlope[is.na(eea$RoadSlope)] <- 0
eea$Load[is.na(eea$Load)] <- 0
Category <- Fuel <- Segment <- EuroStandard <- Technology <- NULL
Pollutant <- Mode <- RoadSlope <- Load <- NULL
#Function to case when
lala <- function(x) {
ifelse(x == "PRE", fcorr[1],
ifelse(
x == "I", fcorr[2],
ifelse(
x == "II", fcorr[3],
ifelse(
x == "III", fcorr[4],
ifelse(
x == "IV", fcorr[5],
ifelse(
x == "V", fcorr[6],
ifelse(
x == "VI", fcorr[7],
fcorr[8])))))))}
# category
u_cat <- unique(eea$Category)
if(any(!category %in% u_cat)) {
stop("Select categories from:\n", paste(u_cat, collapse = "\n"))
}
ef <- eea[Category %in% category]
# fuel
u_fuel <- unique(ef$Fuel)
if(any(!fuel %in% u_fuel)) {
stop("Select categories from:\n", paste(u_fuel, collapse = "\n"))
}
ef <- ef[Fuel %in% fuel]
# segment
u_segment <- unique(ef$Segment)
if(any(!segment %in% u_segment)) {
stop("Select categories from:\n", paste(u_segment, collapse = "\n"))
}
ef <- ef[Segment %in% segment]
# euro
u_euro <- unique(ef$EuroStandard)
if(any(!euro %in% u_euro)) {
stop("Select categories from:\n", paste(u_euro, collapse = "\n"))
}
ef <- ef[EuroStandard %in% euro]
k2 <- lala(euro) #requires length euro = 1
# tech
u_tech <- unique(ef$Technology)
if(any(!tech %in% u_tech)) {
stop("Select categories from:\n", paste(u_tech, collapse = "\n"))
}
ef <- ef[Technology %in% tech]
# pollutant
u_pol <- unique(ef$Pollutant)
if(any(!pol %in% u_pol)) {
stop("Select categories from:\n", paste(u_pol, collapse = "\n"))
}
ef <- ef[Pollutant %in% pol]
# mode
u_mode <- unique(ef$Mode)
if(any(!mode %in% u_mode)) {
stop("Select categories from:\n", paste(u_mode, collapse = "\n"))
}
ef <- ef[Mode %in% mode]
# slope
u_slope <- unique(ef$RoadSlope)
if(any(!slope %in% u_slope)) {
stop("Select categories from:\n", paste(u_slope, collapse = "\n"))
}
ef <- ef[RoadSlope %in% slope]
# load
u_load <- unique(ef$Load)
if(any(!slope %in% u_slope)) {
stop("Select categories from:\n", paste(u_load, collapse = "\n"))
}
ef <- ef[Load %in% load]
names(ef)
# EF = (Alpha x V2 + Beta x V + Gamma + Delta / V) / (Epsilon x V2 + Zeta x V + Eta) x (1 - RF)
alpha <- ef$Alpha
beta <- ef$Beta
gamma <- ef$Gamma
delta <- ef$Delta
epsilon <- ef$Epsilon
zeta <- ef$Zita
eta <- ef$Hta
RF <- ef$ReductionFactor_perc
minv <- ef$MinSpeed_kmh
maxv <- ef$MaxSpeed_kmh
fv <- function(V){
V <- ifelse(V < minv, minv, ifelse(V > maxv, maxv, V))
return((alpha*V*V + beta*V + gamma + delta / V) / (epsilon*V*V + zeta*V + eta)*(1-RF))
}
if(missing(speed)) {
return(fv)
} else {
return(EmissionFactors(fv(speed)))
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_eea.R
|
#' Emission Factors from EMFAC emission factors
#'
#' @description \code{\link{ef_emfac}} reads path to ef EMFAC.
#' You must download the
#' emission factors from EMFAC website.
#'
#' @param efpath Character path to EMFAC ef (g/miles)
#' @return data.table with emission estimation in long format
#' @export
#' @examples \dontrun{
#' # do not run
#' }
ef_emfac <- function(efpath){
# ef
ModelYear <- NULL
# ef ####
# if(verbose) cat("Reading ef\n")
ef <- data.table::fread(efpath)
names(ef) <- gsub(" ", "", names(ef))
if(grep(pattern = "FuelConsumption", names(ef)) > 0) {
names(ef)[grep("FuelConsumption",
names(ef))] <- "FC"
}
ef$fuel <- ifelse(
ef$Fuel == "Gasoline", "G",
ifelse(
ef$Fuel == "Diesel", "D",
ifelse(
ef$Fuel == "Natural Gas", "CNG",
ifelse(
ef$Fuel == "Electricity", "ELEC",
ifelse(
ef$Fuel == "Plug-in Hybrid", "HY",
"caca"
)))))
unique(ef$fuel)
ef$vehicles <- paste0(ef$VehicleCategory, "_", ef$fuel)
runex <- grep(pattern = "RUNEX",
x = names(ef),
value = T)
pmbw <- grep(pattern = "PMBW",
x = names(ef),
value = T)
eff <- ef[ModelYear < 2022,
c("ModelYear",
"VehicleCategory",
"Speed",
"vehicles",
"fuel",
runex,
pmbw,
"FC"),
with = F]
def <- data.table::melt.data.table(data = ef,
id.vars = c("ModelYear",
"VehicleCategory",
"Speed",
"vehicles",
"fuel"),
measure.vars = c(runex,
pmbw,
"FC"),
variable.name = "pollutant",
value.name = "gmiles")
data.table::setorderv(def, "ModelYear", -1)
vehicles <- pollutant <- i <- j <- k <- l <- NULL
return(def)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_emfac.R
|
#' Evaporative emission factor
#'
#' @description \code{\link{ef_evap}} is a lookup table with tier 2 evaporative emission factors
#' from EMEP/EEA emisison guidelines
#'
#' @param ef Name of evaporative emission factor as *eshotc*: mean hot-soak with
#' carburator, *eswarmc*: mean cold and warm-soak with carburator, eshotfi: mean
#' hot-soak with fuel injection, *erhotc*: mean hot running losses with
#' carburator, *erwarmc* mean cold and warm running losses, *erhotfi* mean hot
#' running losses with fuel injection. Length of ef 1.
#' @param v Type of vehicles, "PC", "Motorcycle", "Motorcycle_2S" and "Moped"
#' @param cc Size of engine in cc. PC "<=1400", "1400_2000" and ">2000"
#' Motorcycle_2S: "<=50". Motorcyces: ">50", "<=250", "250_750" and ">750".
#' Only engines of >750 has canister.
#' @param dt Character or Numeric: Average monthly temperature variation: "-5_10", "0_15", "10_25"
#' and "20_35". This argument can vector with several elements. dt can also be data.frame,
#' but it is recommended that the number of columns are each month. So that dt
#' varies in each row and each column.
#' @param ca Size of canister: "no" meaning no canister, "small", "medium" and
#' "large".
#' @param pollutant Character indicating any of the covered pollutants: "NMHC",
#' "ethane", "propane", "i-butane", "n-butane", "i-pentane", "n-pentane",
#' "2-methylpentane", "3-methylpentane", "n-hexane", "n-heptane", "propene",
#' "trans-2-butene", "isobutene", "cis-2-butene", "1,3-butadiene",
#' "trans-2-pentene", "cis-2-pentene", "isoprene", "propyne", "acetylene",
#' "benzene", "toluene", "ethylbenzene", "m-xylene", "o-xylene",
#' "1,2,4-trimethylbenzene" and "1,3,5-trimethylbenzene". Default is "NMHC"
#' @param ltrip Numeric; Length of trip. Experimental feature to conter g/trip
#' and g/proced (assuming proced similar to trip) in g/km.
#' @param kmday Numeric; average daily mileage. Experimental option
#' to convert g/day in g/km.
#' it is an information more solid than to know the average number of trips per day.
#' @param k multiplication factor
#' @param show when TRUE shows row of table with respective emission factor.
#' @note Diurnal loses occur with daily temperature variations. Running loses
#' occur during vehicles use. Hot soak emission occur following vehicles use.
#' @param verbose Logical; To show more information
#' @return emission factors in g/trip or g/proced. The object has class (g)
#' but it order to know it is g/trip or g/proceed the argument show must by T
#' @references Mellios G and Ntziachristos 2016. Gasoline evaporation. In:
#' EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European
#' Environment Agency, Copenhagen, 2009
#' @importFrom data.table rbindlist
#' @importFrom units as_units
#' @export
#' @examples \dontrun{
#' # Do not run
#' a <- ef_evap(ef = "eshotc", v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
#' pollutant = "cis-2-pentene")
#' a <- ef_evap(ef = "ed", v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
#' show = TRUE)
#' a <- ef_evap(ef = c("erhotc", "erhotc"), v = "PC", cc = "<=1400",
#' dt = "0_15", ca = "no",
#' show = TRUE)
#' a <- ef_evap(ef = c("erhotc", "erhotc"), v = "PC", cc = "<=1400",
#' dt = "0_15", ca = "no",
#' show = FALSE)
#' a <- ef_evap(ef = "eshotc", v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
#' show = TRUE)
#' ef_evap(ef = "erhotc", v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
#' show = TRUE)
#' temps <- 10:20
#' a <- ef_evap(ef = "erhotc", v = "PC", cc = "<=1400", dt = temps, ca = "no",
#' show = TRUE)
#' dt <- matrix(rep(1:24,5), ncol = 12) # 12 months
#' dt <- celsius(dt)
#' a <- ef_evap(ef ="erhotc", v = "PC", cc = "<=1400",
#' dt = dt, ca = "no")
#' lkm <- units::set_units(10, km)
#' a <- ef_evap(ef ="erhotc", v = "PC", cc = "<=1400", ltrip = lkm,
#' dt = dt, ca = "no")
#' }
ef_evap <- function (ef, v, cc, dt, ca, pollutant = "NMHC",
k = 1, ltrip, kmday, show = FALSE,
verbose = FALSE){
a <- (-5+10)/2
b <- (0+15)/2
c <- (10+25)/2
d <- (20+35)/2
ta <- "-5_10"
tb <- "0_15"
tc <- "10_25"
td <- "20_35"
ef_ev <- sysdata$ev
efs <- as.character(unique(ef_ev$ef))
if(any(!ef %in% efs)) {
cat("Please, select any of: \n")
print(efs)
cat("\n")
stop()
}
# Check ltrip
if(!missing(ltrip) & !missing(kmday)){
stop("You can convert to g/km runing losses and soak with ltrip OR diurnal with kmday. Not both at the same time")
}
if(is.matrix(dt)) dt <- as.data.frame(dt)
# Checking length of ef and ltrip and kmday
if(!missing(ltrip)){
if(length(ltrip) > 1) stop("Please, enter one value of 'ltrip'")
# Check units
if(!inherits(ltrip, "units")){
stop("ltrip neeeds to has class 'units' in 'km'. Please, check package '?units::set_units'")
}
if(units(ltrip) == units(units::as_units("m"))){
stop("Units of ltrip is 'm'. Please, check package '?units::set_units'")
}
if(units(ltrip) == units(units::as_units("km"))){
ltrip <- as.numeric(ltrip)
}
}
# Check kmday
if(!missing(kmday)){
if(length(kmday) > 1) stop("Please, enter one value of 'kmday'")
# Check units
if(!inherits(kmday, "units")){
stop("kmday neeeds to has class 'units' in 'km'. Please, check package '?units::set_units'")
}
if(units(kmday) == units(units::as_units("m"))){
stop("Units of kmday is 'm'. Please, check package '?units::set_units'")
}
if(units(kmday) == units(units::as_units("km"))){
kmday <- as.numeric(kmday)
}
}
# check(dt)
dt <- remove_units(dt)
if(!is.data.frame(dt)){
# if(class(dt) == "factor"){
# stop("Please, enter numeric or character")
# }
if(is.numeric(dt)){
dt = ifelse(dt < a, ta,
ifelse(dt >=a & dt < b, tb,
ifelse(dt >= b & dt < c, tc, td
)))
}
if(length(dt) == 1 & length(ef) == 1){
df <- ef_ev[ef_ev$ef == ef &
ef_ev$veh %in% v &
ef_ev$cc %in% cc &
ef_ev$dt == dt &
ef_ev$canister %in% ca &
ef_ev$pollutant == pollutant, ]
} else if (length(dt) > 1 & length(ef) == 1){
df <- do.call("rbind",
lapply(1:length(dt), function(i){
ef_ev[ef_ev$ef == ef &
ef_ev$veh %in% v &
ef_ev$cc %in% cc &
ef_ev$dt == dt[i] &
ef_ev$canister %in% ca &
ef_ev$pollutant == pollutant, ]
}))
} else if(length(dt) == 1 & length(ef) > 1){
df <- do.call("rbind",
lapply(1:length(ef), function(i){
ef_ev[ef_ev$ef == ef[i] &
ef_ev$veh %in% v &
ef_ev$cc %in% cc &
ef_ev$dt == dt &
ef_ev$canister %in% ca &
ef_ev$pollutant == pollutant, ]
}))
} else if(length(dt) > 1 & length(ef) > 1){
df <- do.call("rbind", lapply(1:length(dt), function(j){
do.call("rbind",
lapply(1:length(ef), function(i){
ef_ev[ef_ev$ef == ef[i] &
ef_ev$veh %in% v &
ef_ev$cc %in% cc &
ef_ev$dt == dt[j] &
ef_ev$canister %in% ca &
ef_ev$pollutant == pollutant, ]
}))
}))
}
if(!missing(ltrip) ){
if (any(ef %in% "ed")) stop ("ef must cannot be Diurnal Evaporative ed")
df$g <- EmissionFactors(df$g*k/ltrip)
df$units <- NULL
if (show) {
return(df)
} else {
return(df$g)
}
} else if (!missing(kmday)){
if (any(!ef %in% c("eshotfi", "eswarmc", "eshotc",
"erhotfi", "erwarmc", "erhotc"))){
stop ("ef must cannot be Diurnal Evaporative ed")
}
df$g <- EmissionFactors(df$g*k/kmday)
df$units <- NULL
if(show){
return(df)
} else {
return(df)
}
}
df$g <- Emissions(df$g)
if (show == TRUE) {
return(df)
} else {
return(df$g)
}
} else if (is.data.frame(dt)){
if(is.numeric(dt[, 1])){
for(i in 1:ncol(dt)){
dt[, i] = ifelse(dt[, i] < a, ta,
ifelse(dt[, i] >=a & dt[, i] < b, tb,
ifelse(dt[, i] >= b & dt[, i] < c, tc, td
)))
}
}
if(length(v) > 1 | length(cc) > 1 | length(ca) > 1){
stop("When dt is data.frame, lengths of 'v', 'cc' and 'ca' must be 1, and perhaps only works with direct injection")
}
if(ncol(dt) == 1 & length(ef) == 1){
df <- do.call("rbind",
lapply(1:nrow(dt), function(i){
ef_ev[ef_ev$ef == ef &
ef_ev$veh == v &
ef_ev$cc == cc &
ef_ev$dt == unlist(dt)[i] &
ef_ev$canister == ca, ]$g
}))
if(!missing(ltrip)){
return(EmissionFactors(df*k/ltrip))
} else if(!missing(kmday)){
return(EmissionFactors(df*k/kmday))
} else if(missing(ltrip) & missing(kmday)){
return(Emissions(df*k))
}
} else if (ncol(dt) > 1 & length(ef) == 1){
df <- do.call("rbind", lapply(1:ncol(dt), function(j){
df <- do.call("rbind",
lapply(1:nrow(dt), function(i){
ef_ev[ef_ev$ef == ef &
ef_ev$veh == v &
ef_ev$cc == cc &
ef_ev$dt == dt[i, j] &
ef_ev$canister == ca &
ef_ev$pollutant == pollutant, ]$g
}))
df <- as.data.frame(df)
names(df) <- "ef"
df$cols_temp <- j
df
}))
if(!missing(ltrip)){
df$ef <- EmissionFactors(df$ef*k/ltrip)
return(df)
} else if(!missing(kmday)){
df$ef <- EmissionFactors(df$ef*k/kmday)
return(df)
} else if(missing(ltrip) & missing(kmday)){
df$ef <- Emissions(df$ef*k)
return(df)
}
} else if(ncol(dt) == 1 & length(ef) > 1){
df <- do.call("cbind", lapply(1:length(ef), function(j){
do.call("rbind",
lapply(1:nrow(dt), function(i){
ef_ev[ef_ev$ef == ef[j] &
ef_ev$veh == v &
ef_ev$cc == cc &
ef_ev$dt == unlist(dt)[i] &
ef_ev$canister == ca &
ef_ev$pollutant == pollutant, ]$g
}))
}))
if(!missing(ltrip)){
return(EmissionFactors(df*k/ltrip))
} else if(!missing(kmday)){
return(EmissionFactors(df*k/kmday))
} else if(missing(ltrip) & missing(kmday)){
return(Emissions(df*k))
}
} else if(length(dt) > 1 & length(ef) > 1){
df <- do.call("rbind", lapply(1:ncol(dt), function(k){
df <- do.call("cbind", lapply(1:length(ef), function(j){
do.call("rbind",
lapply(1:nrow(dt), function(i){
ef_ev[ef_ev$ef == ef[j] &
ef_ev$veh == v &
ef_ev$cc == cc &
ef_ev$dt == dt[i, k] &
ef_ev$canister == ca &
ef_ev$pollutant == pollutant, ]$g
}))
}))
}))
if(!missing(ltrip)){
df <- EmissionFactors(df*k/ltrip)
df$col_temp <- rep(1:ncol(dt), each = nrow(dt))
} else if(!missing(kmday)){
df <- EmissionFactors(df*k/kmday)
df$col_temp <- rep(1:ncol(dt), each = nrow(dt))
} else if(missing(ltrip) & missing(kmday)){
df <- Emissions(df*k)
df$col_temp <- rep(1:ncol(dt), each = nrow(dt))
}
return(df)
}
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_evap.R
|
#' Experimental: Returns a function of Emission Factor by age of use
#'
#' @description \code{\link{ef_fun}} returns amount of vehicles at each age
#'
#' @param ef Numeric; numeric vector of emission factors.
#' @param type Character; "logistic" by default so far.
#' @param x Numeric; vector for ages of use.
#' @param x0 Numeric; the x-value of the sigmoid's midpoint,
#' @param k Numeric; the steepness of the curve.
#' @param L Integer; the curve's maximum value.
#' @return dataframe of age distrubution of vehicles at each street.
#' @export
#' @references https://en.wikipedia.org/wiki/Logistic_function
#' @examples \dontrun{
#' data(fe2015)
#' CO <- ef_cetesb(p = "CO", veh = "PC_G")
#' ef_logit <- ef_fun(ef = CO, x0 = 27, k = 0.4, L = 33)
#' df <- data.frame(CO, ef_logit)
#' colplot(df)
#' }
ef_fun <- function(ef,
type = "logistic",
x = 1:length(ef),
x0 = mean(ef),
k = 1/4,
L = max(ef)) {
if(type == "logistic"){
FD <- function(x, x0, L, k) {
L/(1 + exp(1)^(-k*(x - x0)) )
}
a <- vein::EmissionFactors(FD(x, x0 = x0, k = k, L = L))
return(a)
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_fun.R
|
#' Scaling constant with speed emission factors of Heavy Duty Vehicles
#'
#' @description \code{\link{ef_hdv_scaled}} creates a list of scaled functions of emission factors. A scaled
#' emission factor which at a speed of the dricing cycle (SDC) gives a desired value.
#' This function needs a dataframe with local emission factors with a columns with
#' the name "Euro_HDV" indicating the Euro equivalence standard, assuming that there are
#' available local emission factors for several consecutive years.
#'
#' @param dfcol Column of the dataframe with the local emission factors eg df$dfcol
#' @param SDC Speed of the driving cycle
#' @param v Category vehicle: "Coach", "Trucks" or "Ubus"
#' @param t Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"
#' @param g Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5",
#' ">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28", ">28 & <=32",
#' ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 & <=50" or ">50 & <=60"
#' @param eu Euro emission standard: "PRE", "I", "II", "III", "IV" and "V"
#' @param gr Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06
#' @param l Load of the vehicle: 0.0, 0.5 or 1.0
#' @param p Pollutant: "CO", "FC", "NOx" or "HC"
#' @param df deprecated
#' @return A list of scaled emission factors g/km
#' @keywords speed emission factors
#' @note The length of the list should be equal to the name of the age categories of
#' a specific type of vehicle
#' @export
#' @examples {
#' # Do not run
#' CO <- ef_cetesb(p = "CO", veh = "TRUCKS_SL_D", full = TRUE)
#' lef <- ef_hdv_scaled(dfcol = CO$CO,
#' v = "Trucks",
#' t = "RT",
#' g = "<=7.5",
#' eu = CO$Euro_EqHDV,
#' gr = 0,
#' l = 0.5,
#' p = "CO")
#' length(lef)
#' ages <- c(1, 10, 20, 30, 40)
#' EmissionFactors(do.call("cbind",
#' lapply(ages, function(i) {
#' data.frame(i = lef[[i]](1:100))
#' }))) -> df
#' names(df) <- ages
#' colplot(df)
#' }
ef_hdv_scaled <- function(df,
dfcol,
SDC = 34.12,
v,
t,
g,
eu,
gr = 0,
l = 0.5,
p) {
if(length(dfcol) != length(eu)) stop("Length of dfcol must be the same as length of eu")
dfcol <- as.numeric(dfcol)
la <- lapply(1:length(dfcol), function(i) {
funIN <- ef_hdv_speed(v = v,
t = t,
g = g,
eu = as.character(eu[i]),
gr = gr,
l = l,
p = p,
k=1,
show.equation = FALSE)
k <- dfcol[i]/ funIN(SDC)
ef_hdv_speed(v = v,
t = t,
g = g,
eu = as.character(eu[i]),
gr = gr,
l = l,
p = p,
k = k,
show.equation = FALSE)
})
class(la) <- c("EmissionFactorsList",class(la))
return(la)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_hdv_scaled.R
|
#' Emissions factors for Heavy Duty Vehicles based on average speed
#'
#' This function returns speed dependent emission factors. The emission factors
#' comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook
#' http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook
#'
#' @param v Category vehicle: "Coach", "Trucks" or "Ubus"
#' @param t Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"
#' @param g Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5",
#' ">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28", ">28 & <=32",
#' ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 & <=50" or ">50 & <=60"
#' @param eu Euro emission standard: "PRE", "I", "II", "III", "IV", "V". Also "II+CRDPF",
#' "III+CRDPF", "IV+CRDPF", "II+SCR", "III+SCR" and "V+SCR" for pollutants
#' Number of particles and Active Surface.
#' @param gr Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06
#' @param l Load of the vehicle: 0.0, 0.5 or 1.0
#' @param p Character; pollutant: "CO", "FC", "NOx", "NO", "NO2", "HC", "PM", "NMHC", "CH4",
#' "CO2", "SO2" or "Pb". Only when p is "SO2" pr "Pb" x is needed. See notes.
#' @param x Numeric; if pollutant is "SO2", it is sulfur in fuel in ppm, if is
#' "Pb", Lead in fuel in ppm.
#' @param k Multiplication factor
#' @param show.equation Option to see or not the equation parameters
#' @param speed Numeric; Speed to return Number of emission factor and not a function.
#' It needs units in km/h
#' @param fcorr Numeric; Correction by fuel properties by euro technology.
#' See \code{\link{fuel_corr}}. The order from first to last is
#' "PRE", "I", "II", "III", "IV", "V", VI, "VIc". Default is 1
#' @return an emission factor function which depends of the average speed V g/km
#' @keywords speed emission factors
#' @note
#' \strong{Pollutants (g/km)}: "CO", "NOx", "HC", "PM", "CH4", "NMHC", "CO2", "SO2",
#' "Pb".
#'
#' \strong{Black Carbon and Organic Matter (g/km)}: "BC", "OM"
#'
#' \strong{PAH and POP (g/km)}: See \code{\link{speciate}}
#' \strong{Dioxins and furans (g equivalent toxicity / km)}: See \code{\link{speciate}}
#'
#' \strong{Metals (g/km)}: See \code{\link{speciate}}
#'
#' \emph{Active Surface (cm2/km)} See \code{\link{speciate}}
#'
#' \emph{Total Number of particles (N/km)}: See \code{\link{speciate}}
#'
#' The available standards for Active Surface or number of particles are:
#' Euro II and III
#' Euro II and III + CRDPF
#' Euro II and III + SCR
#' Euro IV + CRDPF
#' Euro V + SCR
#'
#' The categories Pre Euro and Euro I were assigned with the factors of Euro II and Euro III
#' The categories euro IV and euro V were assigned with euro III + SCR
#'
#' Fuel consumption for heavy VI comes from V
#'
#' @seealso \code{\link{fuel_corr}} \code{\link{emis}} \code{\link{ef_ldv_cold}} \code{\link{speciate}}
#' @importFrom units as_units
#' @export
#' @examples \dontrun{
#' # Quick view
#' pol <- c("CO", "NOx", "HC", "NMHC", "CH4", "FC", "PM", "CO2", "SO2")
#' f <- sapply(1:length(pol), function(i){
#' print(pol[i])
#' ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
#' l = 0.5, p = pol[i], x = 10)(30)
#' })
#' f
#'
#' V <- 0:130
#' ef1 <- ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
#' l = 0.5, p = "HC")
#' plot(1:130, ef1(1:130), pch = 16, type = "b")
#' euro <- c(rep("V", 5), rep("IV", 5), rep("III", 5), rep("II", 5),
#' rep("I", 5), rep("PRE", 15))
#' lef <- lapply(1:30, function(i) {
#' ef_hdv_speed(v = "Trucks", t = "RT", g = ">32", gr = 0,
#' eu = euro[i], l = 0.5, p = "NOx",
#' show.equation = FALSE)(25) })
#' efs <- EmissionFactors(unlist(lef)) #returns 'units'
#' plot(efs, xlab = "age")
#' lines(efs, type = "l")
#' a <- ef_hdv_speed(v = "Trucks", t = "RT", g = ">32", gr = 0,
#' eu = euro, l = 0.5, p = "NOx", speed = Speed(0:125))
#' a$speed <- NULL
#' filled.contour(as.matrix(a), col = cptcity::lucky(n = 24),
#' xlab = "Speed", ylab = "Age")
#' persp(x = as.matrix(a), theta = 35, xlab = "Speed", ylab = "Age",
#' zlab = "NOx [g/km]", col = cptcity::lucky(), phi = 25)
#' aa <- ef_hdv_speed(v = "Trucks", t = "RT", g = ">32", gr = 0,
#' eu = rbind(euro, euro), l = 0.5, p = "NOx", speed = Speed(0:125))
#' }
ef_hdv_speed <- function(v, t, g, eu, x, gr = 0, l = 0.5 ,p, k=1,
show.equation = FALSE, speed, fcorr = rep(1, 8)){
p_cri <- as.character(unique(sysdata$hdv_criteria$POLLUTANT))
p_ghg <- as.character(unique(sysdata$hdv_ghg$POLLUTANT))
#Check eu
if(is.matrix(eu) | is.data.frame(eu)){
eu <- as.data.frame(eu)
for(i in 1:ncol(eu)) eu[, i] <- as.character(eu[, i])
} else {
eu = as.character(eu)
}
if(p %in% p_cri){
ef_hdv <- sysdata$hdv_criteria
} else if(p %in% p_ghg){
ef_hdv <- sysdata$hdv_ghg
}
# Check speed
if(!missing(speed)){
if(!inherits(speed, "units")){
stop("speed neeeds to has class 'units' in 'km/h'. Please, check package '?units::set_units'")
}
if(units(speed) != units(units::as_units("km/h"))){
stop("Units of speed must be 'km/h' ")
}
if(units(speed) == units(units::as_units("km/h"))){
speed <- as.numeric(speed)
}
}
#Function to case when
lala <- function(x) {
ifelse(x == "PRE", fcorr[1],
ifelse(
x == "I", fcorr[2],
ifelse(
x == "II", fcorr[3],
ifelse(
x == "III", fcorr[4],
ifelse(
x == "IV", fcorr[5],
ifelse(
x == "V", fcorr[6],
ifelse(
x == "VI", fcorr[7],
fcorr[8])))))))
}
# fun starts
if(!is.data.frame(eu)){
if(length(eu) == 1){
df <- ef_hdv[ef_hdv$VEH == v &
ef_hdv$TYPE == t &
ef_hdv$GW == g &
ef_hdv$EURO == eu &
ef_hdv$GRA == gr &
ef_hdv$LOAD == l &
ef_hdv$POLLUTANT == p, ]
k2 <- lala(eu)
if (show.equation == TRUE) {
cat(paste0("a = ", df$a, ", b = ", df$b, ", c = ", df$c, ", d = ", df$d,
", e = ", df$e, ", f = ", df$f, "\n"))
cat(paste0("Equation = ", "(",as.character(df$Y), ")", "*", k, "*", k2, "\n"))
}
if(p %in% c("SO2","Pb")){
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f; x <- x
V <- ifelse(V < df$MINV, df$MINV,
ifelse(V > df$MAXV, df$MAXV, V))
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2)))
}
} else {
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f
V <- ifelse(V<df$MINV,df$MINV,ifelse(V>df$MAXV,df$MAXV,V))
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2)))
}
}
if(!missing(speed)){
f1 <- EmissionFactors(f1(speed))
return(f1)
} else {
return(f1)
}
} else if(length(eu) > 1) {
if(missing(speed)) stop("if length(eu) > 1, 'speed' is needed")
dff <- do.call("cbind", lapply(1:length(eu), function(i){
df <- ef_hdv[ef_hdv$VEH == v &
ef_hdv$TYPE == t &
ef_hdv$GW == g &
ef_hdv$EURO == eu[i] &
ef_hdv$GRA == gr &
ef_hdv$LOAD == l &
ef_hdv$POLLUTANT == p, ]
k2 <- lala(eu[i])
if(p %in% c("SO2","Pb")){
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f; x <- x
V <- ifelse(V < df$MINV, df$MINV,
ifelse(V > df$MAXV, df$MAXV, V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) )
}
} else {
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f
V <- ifelse(V<df$MINV,df$MINV,ifelse(V>df$MAXV,df$MAXV,V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))))
}
}
f1(speed)
}))
dff <- EmissionFactors(dff)
names(dff) <- paste0(eu, "_", 1:length(eu))
dff$speed <- speed
return(dff)
}
} else if (is.data.frame(eu)){
if(missing(speed)) stop("Add 'speed' please for each row")
dff <- do.call("rbind", lapply(1:nrow(eu), function(j){
do.call("cbind", lapply(1:ncol(eu), function(i){
df <- ef_hdv[ef_hdv$VEH == v &
ef_hdv$TYPE == t &
ef_hdv$GW == g &
ef_hdv$EURO == eu[j,i][[1]] &
ef_hdv$GRA == gr &
ef_hdv$LOAD == l &
ef_hdv$POLLUTANT == p, ]
k2 <- lala(eu[j,i][[1]])
if(p %in% c("SO2","Pb")){
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f; x <- x
V <- ifelse(V < df$MINV, df$MINV,
ifelse(V > df$MAXV, df$MAXV, V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) )
}
} else {
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f
V <- ifelse(V<df$MINV,df$MINV,ifelse(V>df$MAXV,df$MAXV,V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))))
}
}
f1(speed)
}))
}))
dff <- EmissionFactors(dff)
dff$speed <- speed
dff$row_eu <- rep(1:nrow(eu), each = length(speed))
return(dff)
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_hdv_speed.R
|
#' Emission factors deoending on accumulated mileage
#'
#' \code{\link{ef_im}} calculate the theoretical emission factors of vehicles.
#' The approache is different from including deterioration factors
#' (\code{\link{emis_det}}) but similar, because they represent how much emits
#' a vehicle with a normal deterioration, but that it will pass the
#' Inspection and Manteinance program.
#' @param ef Numeric; emission factors of vehicles with \strong{0 mileage}
#' (new vehicles).
#' @param tc Numeric; rate of growth of emissions by year of use.
#' @param amileage Numeric; Accumulated mileage by age of use.
#' @param max_amileage Numeric; Max accumulated mileage. This means that after
#' this value, mileage is constant.
#' @param max_ef Numeric; Max ef. This means that after this value, ef is constant.
#' @param verbose Logical; if you want detailed description.
#' @return An emission factor of a deteriorated vehicle under normal conditions
#' which would be approved in a inspection and mantainence program.
#' @keywords mileage emission factors
#' @export
#' @examples \dontrun{
#' # Do not run
#' # Passenger Cars PC
#' data(fkm)
#' # cumulative mileage from 1 to 50 years of use, 40:50
#' mil <- cumsum(fkm$KM_PC_E25(1:10))
#' ef_im(ef = seq(0.1, 2, 0.2), seq(0.1, 1, 0.1), mil)
#' }
ef_im <- function(ef,
tc,
amileage,
max_amileage,
max_ef,
verbose = TRUE){
if(missing(ef)) stop("No ef")
if(missing(tc)) stop("No tc")
if(!missing(max_amileage)) {
if(verbose) cat("adjusting amileage\n")
amileage <- ifelse(amileage > max_amileage, max_amileage, amileage)
}
if(!missing(max_ef)) {
if(verbose) cat("adjusting ef\n")
ef <- ifelse(ef > max_ef, max_ef, ef)
}
nef <- ef * (1 + amileage * tc)
return(EmissionFactors(nef))
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_im.R
|
#' DEPRECATED Base emissions factors from International Vehicle Emissions (IVE) model
#'
#'
#' This function was deprecated. If the user want some UF-based EF, run MOVES
#' and extract EF
#'
#' \code{\link{ef_ive}} returns the base emission factors from the the IVE
#' model. This function depend on vectorized mileage, which means your can
#' enter with the mileage by age of use and the name of the pollutant.
#'
#' @name vein-deprecated
#' @param description Character; "Auto/Sml Truck" "Truck/Bus" or"Sml Engine".
#' @param fuel Character; "Petrol", "NG Retrofit", "Natural Gas", "Prop Retro.",
#' "Propane", "EthOH Retrofit", "OEM Ethanol", "Diesel", "Ethanol" or "CNG/LPG".
#' @param weight Character; "Light", "Medium", "Heavy", "Lt", "Med" or "Hvy"
#' @param air_fuel_control Character; One of the following characters: "Carburetor",
#' "Single-Pt FI", "Multi-Pt FI", "Carb/Mixer", "FI", "Pre-Chamber Inject.",
#' "Direct Injection", "2-Cycle", "2-Cycle, FI", "4-Cycle, Carb", "4-Cycle, FI"
#' "4-Cycle"
#' @param exhaust Character: "None", "2-Way", "2-Way/EGR", "3-Way", "3-Way/EGR",
#' "None/EGR", "LEV", "ULEV", "SULEV", "EuroI", "EuroII", "EuroIII", "EuroIV",
#' "Hybrid", "Improved", "EGR+Improv", "Particulate", "Particulate/NOx",
#' "EuroV", "High Tech" or "Catalyst"
#' @param evaporative Character: "PCV", "PCV/Tank" or"None".
#' @param mileage Numeric; mileage of vehicle by age of use km.
#' @param pol Character; One of the following characters: "Carburetor",
#' "Single-Pt FI", "Multi-Pt FI", "Carb/Mixer", "FI", "Pre-Chamber Inject.",
#' "Direct Injection", "2-Cycle", "2-Cycle, FI", "4-Cycle, Carb", "4-Cycle, FI"
#' "4-Cycle"
#' #' \tabular{cccc}{
#' "VOC_gkm" \tab "CO_gkm" \tab "NOx_gkm" \tab "PM_gkm" \cr
#' "Pb_gkm" \tab "SO2_gkm" \tab "NH3_gkm" \tab "1,3-butadiene_gkm" \cr
#' "formaldehyde_gkm" \tab "acetaldehyde_gkm" \tab "benzene_gkm" \tab "EVAP_gkm" \cr
#' "CO2_gkm" \tab "N20_gkm" \tab "CH4_gkm" \tab "VOC_gstart" \cr
#' "CO_gstart" \tab "NOx_gstart" \tab "PM_gstart" \tab "Pb_gstart" \cr
#' "SO2_gstart" \tab "NH3_gstart" \tab "1,3-butadiene_gstart" \tab "formaldehyde_gstart" \cr
#' "acetaldehyde_gstart" \tab "benzene_gstart" \tab "EVAP_gstart" \tab "CO2_gstart" \cr
#' "N20_gstart" \tab "CH4_gstart" \tab \tab \cr
#' }
#' @param details Logical; option to see or not more information about vehicle.
#' @return An emission factor by annual mileage.
#' @keywords speed emission factors ive
#' @references Nicole Davis, James Lents, Mauricio Osses, Nick Nikkila,
#' Matthew Barth. 2005. Development and Application of an International
#' Vehicle Emissions Model. Transportation Research Board, 81st Annual Meeting,
#' January 2005, Washington, D.C.
#' @export
#' @examples \dontrun{
#' # Do not run
#' # Passenger Cars PC
#' data(fkm)
#' # cumulative mileage from 1 to 50 years of use, 40:50
#' mil <- cumsum(fkm$KM_PC_E25(1:50))
#' ef_ive("Truck/Bus", mileage = mil, pol = "CO_gkm")
#' ef_ive(mileage = mil, pol = "CO_gkm", details = TRUE)
#' }
ef_ive <- function(description = "Auto/Sml Truck",
fuel = "Petrol",
weight = "Light",
air_fuel_control = "Carburetor",
exhaust = "None",
evaporative = "PCV",
mileage,
pol,
details = FALSE){
# ive <- sysdata$ive
# a <- ive[ive$description == description &
# ive$fuel == fuel &
# ive$weight == weight &
# ive$air_fuel_control == air_fuel_control &
# ive$exhaust == exhaust &
# ive$evaporative == evaporative, ]
# if(nrow(a) == 0) stop("No data. Improve your selection")
# if(details) print(a$veh[1])
# FF <- a$f[[1]]
# if(pol %in% names(ive)[10:24]){
# ef <- vein::EmissionFactors(FF(mileage = mileage/1000, pol = pol, a = a))
# return(ef)
# } else if(pol %in% names(ive)[25:39]){
# cat("units in g/start\n")
# ef <- FF(mileage = mileage/1000, pol = pol, a = a)
# return(ef)
# }
# }
.Deprecated("ef_emfac")
"ef_ive"
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_ive.R
|
#' Cold-Start Emissions factors for Light Duty Vehicles
#'
#' \code{\link{ef_ldv_cold}} returns speed functions or data.frames which depends on ambient temperature
#' average speed. The emission factors comes from the guidelines EMEP/EEA air pollutant
#' emission inventory guidebook
#' http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook
#'
#' @param v Character; Category vehicle: "LDV"
#' @param ta Numeric vector or data.frame; Ambient temperature. Monthly mean can be used. When
#' ta is a data.frame, one option is that the number of rows should be the number of
#' rows of your Vehicles data.frame. This is convenient for top-down approach
#' when each simple feature can be a polygon, with a monthly average temperature for
#' each simple feature. In this case, the number of columns can be the 12 months.
#' @param cc Character; Size of engine in cc: "<=1400", "1400_2000" or ">2000"
#' @param f Character; Type of fuel: "G", "D" or "LPG"
#' @param eu Character or data.frame of Characters; Euro standard: "PRE", "I",
#' "II", "III", "IV", "V", "VI" or "VIc". When 'eu' is a data.frame and
#' 'ta' is also a data.frame both has to have the same number of rows. For instance,
#' When you want that each simple feature or region has a different emission standard.
#' @param p Character; Pollutant: "CO", "FC", "NOx", "HC" or "PM"
#' @param k Numeric; Multiplication factor
#' @param show.equation Option to see or not the equation parameters
#' @param speed Numeric; Speed to return Number of emission factor and not a function.
#' @param fcorr Numeric; Correction by fuel properties by euro technology.
#' See \code{\link{fuel_corr}}. The order from first to last is
#' "PRE", "I", "II", "III", "IV", "V", VI, "VIc". Default is 1
#' @return an emission factor function which depends of the average speed V
#' and ambient temperature. g/km
#' @keywords cold emission factors
#' @seealso \code{\link{fuel_corr}}
#' @importFrom units as_units
#' @export
#' @examples \dontrun{
#' ef1 <- ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO",
#' show.equation = TRUE)
#' ef1(10)
#' speed <- Speed(10)
#' ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO", speed = speed)
#' # lets create a matrix of ef cold at different speeds and temperatures
#' te <- -50:50
#' lf <- sapply(1:length(te), function(i){
#' ef_ldv_cold(ta = te[i], cc = "<=1400", f ="G", eu = "I", p = "CO", speed = Speed(0:120))
#' })
#' filled.contour(lf, col= cptcity::lucky())
#' euros <- c("V", "V", "IV", "III", "II", "I", "PRE", "PRE")
#' ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = euros, p = "CO", speed = Speed(0))
#' lf <- ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = euros, p = "CO", speed = Speed(0:120))
#' dt <- matrix(rep(2:25,5), ncol = 12) # 12 months
#' ef_ldv_cold(ta = dt, cc = "<=1400", f ="G", eu = "I", p = "CO", speed = Speed(0))
#' ef_ldv_cold(ta = dt, cc = "<=1400", f ="G", eu = euros, p = "CO", speed = Speed(34))
#' euros2 <- c("V", "V", "V", "IV", "IV", "IV", "III", "III")
#' dfe <- rbind(euros, euros2)
#' ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = dfe, p = "CO", speed = Speed(0))
#'
#' ef_ldv_cold(ta = dt[1:2,], cc = "<=1400", f ="G", eu = dfe, p = "CO", speed = Speed(0))
#' # Fuel corrections
#' fcorr <- c(0.5,1,1,1,0.9,0.9,0.9,0.9)
#' ef1 <- ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO",
#' show.equation = TRUE, fcorr = fcorr)
#' ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = dfe, p = "CO", speed = Speed(0),
#' fcorr = fcorr)
#' }
ef_ldv_cold <- function(v = "LDV",
ta, # can vary vertically, for each simple feature, and horizontally, for each month
cc, f,
eu, # can vary horizontally
p, k = 1,
show.equation = FALSE, speed, fcorr = rep(1, 8)){
ef_ldv <- sysdata$cold
#Check eu
if(is.matrix(eu) | is.data.frame(eu)){
eu <- as.data.frame(eu)
for(i in 1:ncol(eu)) eu[, i] <- as.character(eu[, i])
} else {
eu = as.character(eu)
}
# Check speed
if(!missing(speed)){
if(!inherits(speed, "units")){
stop("speed neeeds to has class 'units' in 'km/h'. Please, check package '?units::set_units'")
}
if(units(speed) != units(units::as_units("km/h"))){
stop("Units of speed must be 'km/h' ")
}
if(units(speed) == units(units::as_units("km/h"))){
speed <- as.numeric(speed)
}
}
if(is.matrix(ta)){
ta <- as.data.frame(ta)
}
#Function to case when
lala <- function(x) {
ifelse(x == "PRE", fcorr[1],
ifelse(
x == "I", fcorr[2],
ifelse(
x == "II", fcorr[3],
ifelse(
x == "III", fcorr[4],
ifelse(
x == "IV", fcorr[5],
ifelse(
x == "V", fcorr[6],
ifelse(
x == "VI", fcorr[7],
fcorr[8])))))))
}
# When eu is not a data.frame!
if(!is.data.frame(eu)){
# Check ta, eu and speed
if(is.data.frame(ta) | length(eu) > 1){
if(missing(speed)) stop("when 'ta' is data.frame or eu > 1, 'speed' is needed")
}
if (is.numeric(ta) & length(ta) == 1 & length(eu) == 1){
df <- ef_ldv[ef_ldv$VEH == v &
ef_ldv$CC == cc &
ef_ldv$FUEL == f &
ef_ldv$EURO == eu &
ef_ldv$POLLUTANT == p, ]
k <- lala(eu)
if (show.equation == TRUE) {
cat(paste0("a = ", df$a, ", b = ", df$b, ", c = ", df$c, ", d = ", df$d,
", e = ", df$e, ", f = ", df$f, "\n"))
cat(paste0("Equation = ", "(",as.character(df$Y), ")", "*", k))
}
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f
g <- df$g; h <- df$h; i <- df$i
V <- ifelse(V<df$MINV,df$MINV,ifelse(V>df$MAXV,df$MAXV,V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k))))
}
if(!missing(speed)) {
return(EmissionFactors(f1(speed)))
} else {
return(f1)
}
} else if(is.numeric(ta) & length(ta) == 1 & length(eu) > 1){
dff <- do.call("cbind", lapply(1:length(eu), function(i){
df <- ef_ldv[ef_ldv$VEH == v &
ef_ldv$CC == cc &
ef_ldv$FUEL == f &
ef_ldv$EURO == eu[i] &
ef_ldv$POLLUTANT == p, ]
f1 <- function(V){
k <- lala(eu[i])
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f
g <- df$g; h <- df$h; i <- df$i
V <- ifelse(V<df$MINV,df$MINV,ifelse(V>df$MAXV,df$MAXV,V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k))))
}
f1(speed)
}))
dff <- EmissionFactors(dff)
names(dff) <- paste0(eu)
dff$speed <- speed
dff$ta <- ta
return(dff)
} else if(is.data.frame(ta)){
dff <- do.call("rbind", lapply(1:ncol(ta), function(k){
do.call("rbind", lapply(1:nrow(ta), function(j){
dff <- do.call("cbind", lapply(1:length(eu), function(i){
df <- ef_ldv[ef_ldv$VEH == v &
ef_ldv$CC == cc &
ef_ldv$FUEL == f &
ef_ldv$EURO == eu[i] &
ef_ldv$POLLUTANT == p, ]
f1 <- function(V){
ta <- ta[j, k]
k <- lala(eu[i])
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f
g <- df$g; h <- df$h; i <- df$i
V <- ifelse(V<df$MINV,df$MINV,ifelse(V>df$MAXV,df$MAXV,V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k))))
}
f1(speed)
}))
dff <- EmissionFactors(dff)
names(dff) <- paste0(eu, "_", 1:length(eu))
dff$speed <- speed
dff$ta <- ta[j,k]
dff
}))
}))
return(dff)
}
# This is new!!!!!!!!
} else if(is.data.frame(eu) | is.matrix(eu)){
# Check ta, eu and speed
if(is.data.frame(ta) | length(eu) > 1){
if(missing(speed)) stop("when 'ta' is data.frame or eu > 1, 'speed' is needed")
}
if(is.numeric(ta) & length(ta) == 1){
dff <- do.call("rbind", lapply(1:nrow(eu), function(j){
dff <- do.call("cbind", lapply(1:ncol(eu), function(i){
df <- ef_ldv[ef_ldv$VEH == v &
ef_ldv$CC == cc &
ef_ldv$FUEL == f &
ef_ldv$EURO == eu[j,i][[1]] &
ef_ldv$POLLUTANT == p, ]
f1 <- function(V){
k <- lala(eu[j,i][[1]])
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f
g <- df$g; h <- df$h; i <- df$i
V <- ifelse(V<df$MINV,df$MINV,ifelse(V>df$MAXV,df$MAXV,V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k))))
}
f1(speed)
}))
dff <- EmissionFactors(dff)
dff$speed <- speed
# dff$euros <- rep(paste0("Row eu ", 1:nrow(eu)), each = length(speed))
dff$ta <- ta
dff
}))
return(dff)
} else if(is.data.frame(ta)){
# if(nrow(ta) != nrow(eu)) {
# cat("Number of rows of 'eu': ", nrow(eu), "\n")
# cat("Number of rows of 'ta': ", nrow(ta), "\n")
# stop("Number of rows of 'eu' and 'ta' must be the same")
# }
dff <- do.call("rbind", lapply(1:ncol(ta), function(k){
do.call("rbind", lapply(1:nrow(ta), function(j){
dff <- do.call("cbind", lapply(1:ncol(eu), function(i){
df <- ef_ldv[ef_ldv$VEH == v &
ef_ldv$CC == cc &
ef_ldv$FUEL == f &
ef_ldv$EURO == eu[j,i][[1]] &
ef_ldv$POLLUTANT == p, ]
f1 <- function(V){
ta <- ta[j, k]
k <- lala(eu[j,i][[1]])
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f
g <- df$g; h <- df$h; i <- df$i
V <- ifelse(V<df$MINV,df$MINV,ifelse(V>df$MAXV,df$MAXV,V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k))))
}
f1(speed)
}))
dff <- EmissionFactors(dff)
dff$speed <- speed
dff$ta <- ta[j,k]
dff$row_eu <- j
dff
}))
}))
return(dff)
}
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_ldv_cold.R
|
#' List of cold start emission factors of Light Duty Vehicles
#'
#' This function creates a list of functions of cold start emission factors
#' considering different euro emission standard to the elements of the list.
#'
#' @param df Dataframe with local emission factor
#' @param v Category vehicle: "LDV"
#' @param ta ambient temperature. Montly average van be used
#' @param cc Size of engine in cc: <=1400", "1400_2000" and ">2000"
#' @param f Type of fuel: "G" or "D"
#' @param eu character vector of euro standards: "PRE", "I", "II", "III", "IV",
#' "V", "VI" or "VIc".
#' @param p Pollutant: "CO", "FC", "NOx", "HC" or "PM"
#' @return A list of cold start emission factors g/km
#' @keywords cold start emission factors
#' @note The length of the list should be equal to the name of the age categories of
#' a specific type of vehicle
#' @export
#' @examples \dontrun{
#' # Do not run
#' df <- data.frame(age1 = c(1,1),
#' age2 = c(2,2))
#' eu = c("I", "PRE")
#' l <- ef_ldv_cold(t = 17, cc = "<=1400", f = "G",
#' eu = "I", p = "CO")
#' l_cold <- ef_ldv_cold_list(df, t = 17, cc = "<=1400", f = "G",
#' eu = eu, p = "CO")
#' length(l_cold)
#' }
ef_ldv_cold_list <- function(df,v = "LDV", ta, cc, f, eu, p) {
lista <- lapply(1:length(df[,1]), function(i) {
funIN <- ef_ldv_cold(v = "LDV", ta, cc, f,
eu = as.character(eu[i]), p = p, k = 1,
show.equation = FALSE)
})
return(lista)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_ldv_cold_list.R
|
#' Scaling constant with speed emission factors of Light Duty Vehicles
#'
#' This function creates a list of scaled functions of emission factors. A scaled
#' emission factor which at a speed of the driving cycle (SDC) gives a desired value.
#'
#' This function calls "ef_ldv_speed" and calculate the specific k value, dividing the
#' local emission factor by the respective speed emissions factor at the speed representative
#' of the local emission factor, e.g. If the local emission factors were tested with the
#' FTP-75 test procedure, SDC = 34.12 km/h.
#'
#' @param dfcol Column of the dataframe with the local emission factors eg df$dfcol
#' @param SDC Speed of the driving cycle
#' @param v Category vehicle: "PC", "LCV", "Motorcycle" or "Moped
#' @param t Sub-category of of vehicle: PC: "ECE_1501", "ECE_1502",
#' "ECE_1503", "ECE_1504" , "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL",
#' "2S" or "4S". LCV: "4S", Motorcycle: "2S" or "4S". Moped: "2S" or "4S"
#' @param cc Size of engine in cc: PC: "<=1400", ">1400", "1400_2000", ">2000",
#' "<=800", "<=2000". Motorcycle: ">=50" (for "2S"), "<=250", "250_750", ">=750".
#' Moped: "<=50". LCV : "<3.5" for gross weight.
#' @param f Type of fuel: "G", "D", "LPG" or "FH" (Full Hybrid: starts by electric motor)
#' @param eu Euro standard: "PRE", "I", "II", "III", "III+DPF", "IV", "V", "VI", "VIc"
#' @param p Pollutant: "CO", "FC", "NOx", "HC" or "PM". If your pollutant dfcol
#' is based on fuel, use "FC", if it is based on "HC", use "HC".
#' @param df deprecated
#' @return A list of scaled emission factors g/km
#' @keywords speed emission factors
#' @note The length of the list should be equal to the name of the age categories of
#' a specific type of vehicle. Thanks to Glauber Camponogara for the help.
#' @seealso ef_ldv_seed
#' @export
#' @examples {
#' CO <- ef_cetesb(p = "CO", veh = "PC_FG", full = TRUE)
#' lef <- ef_ldv_scaled(dfcol = CO$CO,
#' v = "PC",
#' t = "4S",
#' cc = "<=1400",
#' f = "G",
#' eu = CO$EqEuro_PC,
#' p = "CO")
#' length(lef)
#' ages <- c(1, 10, 20, 30, 40)
#' EmissionFactors(do.call("cbind",
#' lapply(ages, function(i) {
#' data.frame(i = lef[[i]](1:100))
#' }))) -> df
#' names(df) <- ages
#' colplot(df)
#' }
ef_ldv_scaled <- function(df,
dfcol ,
SDC = 34.12,
v,
t = "4S",
cc,
f,
eu,
p) {
if(length(dfcol) != length(eu)) stop("Length of dfcol must be the same as length of eu")
dfcol <- as.numeric(dfcol)
la <- lapply(1:length(dfcol), function(i) {
funIN <- ef_ldv_speed(v = v,
t = t,
cc = cc,
f = f,
eu = as.character(eu[i]),
p = p,
k = 1,
show.equation = FALSE)
k <- dfcol[i]/ funIN(SDC)
ef_ldv_speed(v = v,
t = t,
cc = cc,
f = f,
eu = as.character(eu[i]),
p = p,
k = k,
show.equation = FALSE)
})
class(la) <- c("EmissionFactorsList", class(la))
return(la)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_ldv_scaled.R
|
#' Emissions factors for Light Duty Vehicles and Motorcycles
#'
#' \code{\link{ef_ldv_speed}} returns speed dependent emission factors, data.frames or
#' list of emission factors. The emission factors
#' comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook
#' http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook
#'
#' The argument of this functions have several options which results in
#' different combinations that returns emission factors. If a combination of
#' any option is wrong it will return an empty value. Therefore, it is
#' important ti know the combinations.
#'
#'
#' @param v Character; category vehicle: "PC", "LCV", "Motorcycle" or "Moped
#' @param t Character; sub-category of of vehicle: PC: "ECE_1501", "ECE_1502",
#' "ECE_1503", "ECE_1504" , "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL",
#' "2S" or "4S". LCV: "4S", Motorcycle: "2S" or "4S". Moped: "2S" or "4S"
#' @param cc Character; size of engine in cc: PC: "<=1400", ">1400", "1400_2000", ">2000",
#' "<=800", "<=2000". Motorcycle: ">=50" (for "2S"), "<=250", "250_750", ">=750".
#' Moped: "<=50". LCV : "<3.5" for gross weight.
#' @param f Character; type of fuel: "G", "D", "LPG" or "FH" (Gasoline Full Hybrid).
#' Full hybrid vehicles cannot be charged from the grid and recharge; only its own engine
#' may recharge tis batteries.
#' @param eu Character or data.frame of characters; euro standard:
#' "PRE", "I", "II", "III", "III+DPF", "IV", "V", "VI" or "VIc".
#' When the pollutan is active surface or number of particles, eu can also be "III+DISI"
#' @param p Character; pollutant: "CO", "FC", "NOx", "NO", "NO2", "HC", "PM", "NMHC", "CH4",
#' "CO2", "SO2" or "Pb". Only when p is "SO2" pr "Pb" x is needed. Also
#' polycyclic aromatic hydrocarbons (PAHs), persistent organi pollutants (POPs),
#' and Number of particles and Active Surface.
#' @param x Numeric; if pollutant is "SO2", it is sulphur in fuel in ppm, if is
#' "Pb", Lead in fuel in ppm.
#' @param k Numeric; multiplication factor
#' @param show.equation Logical; option to see or not the equation parameters.
#' @param speed Numeric; Speed to return Number of emission factor and not a function.
#' @param fcorr Numeric; Correction by fuel properties by euro technology.
#' See \code{\link{fuel_corr}}. The order from first to last is
#' "PRE", "I", "II", "III", "IV", "V", VI, "VIc". Default is 1
#' @return An emission factor function which depends of the average speed V g/km
#' @keywords speed emission factors
#' @note t = "ALL" and cc == "ALL" works for several pollutants because emission
#' fators are the same. Some exceptions are with NOx and FC because size of engine.
#'
#' \strong{Hybrid cars}: the only cover "PC" and according to EMEP/EEA air pollutant emission inventory
#' guidebook 2016 (Ntziachristos and Samaras, 2016) only for euro IV. When new literature
#' is available, I will update these factors.
#'
#' \strong{Pollutants (g/km)}: "CO", "NOx", "HC", "PM", "CH4", "NMHC", "CO2", "SO2",
#' "Pb", "FC".
#'
#' \strong{Black Carbon and Organic Matter (g/km)}: "BC", "OM"
#'
#' \strong{PAH and POP (g/km)}: \code{\link{speciate}}
#' \strong{Dioxins and furans(g equivalent toxicity / km)}: \code{\link{speciate}}
#' \strong{Metals (g/km)}: \code{\link{speciate}}
#'
#' \strong{NMHC (g/km)}: \code{\link{speciate}}
#'
#' \emph{Active Surface (cm2/km)}: \code{\link{speciate}}"AS_urban", "AS_rural", "AS_highway"
#'
#' \emph{Total Number of particles (N/km)}: \code{\link{speciate}} "N_urban", "N_rural", "N_highway",
#' "N_50nm_urban", "N_50_100nm_rural", "N_100_1000nm_highway".
#'
#' The available standards for Active Surface or number of particles are Euro I,
#' II, III, III+DPF dor diesle and III+DISI for gasoline. Pre euro vehicles
#' has the value of Euro I and euro IV, V, VI and VIc the value of euro III.
#' @seealso \code{\link{fuel_corr}} \code{\link{emis}} \code{\link{ef_ldv_cold}}
#' @export
#' @examples \dontrun{
#' # Passenger Cars PC
#' # Emission factor function
#' V <- 0:150
#' ef1 <- ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
#' p = "CO")
#' efs <- EmissionFactors(ef1(1:150))
#' plot(Speed(1:150), efs, xlab = "speed[km/h]", type = "b", pch = 16, col = "blue")
#'
#' # Quick view
#' pol <- c("CO", "NOx", "HC", "NMHC", "CH4", "FC", "PM", "CO2", "SO2",
#' "1-butyne", "propyne")
#' f <- sapply(1:length(pol), function(i){
#' ef_ldv_speed("PC", "4S", "<=1400", "G", "PRE", pol[i], x = 10)(30)
#' })
#' f
#' # PM Characteristics
#' pol <- c("AS_urban", "AS_rural", "AS_highway",
#' "N_urban", "N_rural", "N_highway",
#' "N_50nm_urban", "N_50_100nm_rural", "N_100_1000nm_highway")
#' f <- sapply(1:length(pol), function(i){
#' ef_ldv_speed("PC", "4S", "<=1400", "D", "PRE", pol[i], x = 10)(30)
#' })
#' f
#' # PAH POP
#' ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
#' p = "indeno(1,2,3-cd)pyrene")(10)
#' ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
#' p = "napthalene")(10)
#'
#' # Dioxins and Furans
#' ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
#' p = "PCB")(10)
#'
#' # NMHC
#' ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
#' p = "hexane")(10)
#'
#' # List of Copert emission factors for 40 years fleet of Passenger Cars.
#' # Assuming a euro distribution of euro V, IV, III, II, and I of
#' # 5 years each and the rest 15 as PRE euro:
#' euro <- c(rep("V", 5), rep("IV", 5), rep("III", 5), rep("II", 5),
#' rep("I", 5), rep("PRE", 15))
#' speed <- 25
#' lef <- lapply(1:40, function(i) {
#' ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
#' eu = euro[i], p = "CO")
#' ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
#' eu = euro[i], p = "CO", show.equation = FALSE)(25) })
#' # to check the emission factor with a plot
#' efs <- EmissionFactors(unlist(lef)) #returns 'units'
#' plot(efs, xlab = "age")
#' lines(efs, type = "l")
#' euros <- c("VI", "V", "IV", "III", "II")
#' ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
#' eu = euros, p = "CO")
#' a <- ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
#' eu = euros, p = "CO", speed = Speed(0:120))
#' head(a)
#' filled.contour(as.matrix(a)[1:10, 1:length(euros)], col = cptcity::cpt(n = 18))
#' filled.contour(as.matrix(a)[110:120, 1:length(euros)], col = cptcity::cpt(n = 16))
#' filled.contour(as.matrix(a)[, 1:length(euros)], col = cptcity::cpt(n = 21))
#' filled.contour(as.matrix(a)[, 1:length(euros)],
#' col = cptcity::cpt("mpl_viridis", n = 21))
#' filled.contour(as.matrix(a)[, 1:length(euros)],
#' col = cptcity::cpt("mpl_magma", n = 21))
#' persp(as.matrix(a)[, 1:length(euros)], phi = 0, theta = 0)
#' persp(as.matrix(a)[, 1:length(euros)], phi = 25, theta = 45)
#' persp(as.matrix(a)[, 1:length(euros)], phi = 0, theta = 90)
#' persp(as.matrix(a)[, 1:length(euros)], phi = 25, theta = 90+45)
#' persp(as.matrix(a)[, 1:length(euros)], phi = 0, theta = 180)
#' new_euro <- c("VI", "VI", "V", "V", "V")
#' euro <- c("V", "V", "IV", "III", "II")
#' old_euro <- c("III", "II", "I", "PRE", "PRE")
#' meuros <- rbind(new_euro, euro, old_euro)
#' aa <- ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
#' eu = meuros, p = "CO", speed = Speed(10:11))
#' # Light Commercial Vehicles
#' V <- 0:150
#' ef1 <- ef_ldv_speed(v = "LCV",t = "4S", cc = "<3.5", f = "G", eu = "PRE",
#' p = "CO")
#' efs <- EmissionFactors(ef1(1:150))
#' plot(Speed(1:150), efs, xlab = "speed[km/h]")
#' lef <- lapply(1:5, function(i) {
#' ef_ldv_speed(v = "LCV", t = "4S", cc = "<3.5", f = "G",
#' eu = euro[i], p = "CO", show.equation = FALSE)(25) })
#' # to check the emission factor with a plot
#' efs <- EmissionFactors(unlist(lef)) #returns 'units'
#' plot(efs, xlab = "age")
#' lines(efs, type = "l")
#'
#' # Motorcycles
#' V <- 0:150
#' ef1 <- ef_ldv_speed(v = "Motorcycle",t = "4S", cc = "<=250", f = "G",
#' eu = "PRE", p = "CO",show.equation = TRUE)
#' efs <- EmissionFactors(ef1(1:150))
#' plot(Speed(1:150), efs, xlab = "speed[km/h]")
#' # euro for motorcycles
#' eurom <- c(rep("III", 5), rep("II", 5), rep("I", 5), rep("PRE", 25))
#' lef <- lapply(1:30, function(i) {
#' ef_ldv_speed(v = "Motorcycle", t = "4S", cc = "<=250", f = "G",
#' eu = eurom[i], p = "CO",
#' show.equation = FALSE)(25) })
#' efs <- EmissionFactors(unlist(lef)) #returns 'units'
#' plot(efs, xlab = "age")
#' lines(efs, type = "l")
#' a <- ef_ldv_speed(v = "Motorcycle", t = "4S", cc = "<=250", f = "G",
#' eu = eurom, p = "CO", speed = Speed(0:125))
#' a$speed <- NULL
#' filled.contour(as.matrix(a), col = cptcity::lucky(),
#' xlab = "Speed", ylab = "Age")
#' persp(x = as.matrix(a), theta = 35, xlab = "Speed", ylab = "Euros",
#' zlab = "CO [g/km]", col = cptcity::lucky(), phi = 25)
#' }
ef_ldv_speed <- function(
v,
t = "4S",
cc,
f,
eu,
p,
x,
k = 1,
speed,
show.equation = FALSE,
fcorr = rep(1, 8)){
ef_ldv <- sysdata$ldv
xas <- c("AS_urban", "AS_rural", "AS_highway")
npm <- c("N_urban", "N_rural", "N_highway",
"N_50nm_urban", "N_50_100nm_rural", "N_100_1000nm_highway")
# try to solve error of negative values present in EEA guidelines
if(v == "LCV" && eu == "V") {
warning("When `v` is 'LCV' and `eu` is 'V', I replaces `v` by 'PC' and `cc` by >'2000' see issue #204")
v <- "PC"
cc <- ">2000"
}
#Check eu
if(is.matrix(eu) | is.data.frame(eu)){
eu <- as.data.frame(eu)
for(i in 1:ncol(eu)) eu[, i] <- as.character(eu[, i])
} else {
eu = as.character(eu)
}
# Check speed
if(!missing(speed)){
if(!class(speed)[1] %in% c("units", "Speed")){
stop("speed neeeds to has class 'Speed' or 'units' in 'km/h'. Please, check package '?units::set_units'")
}
speed <- remove_units(speed)
}
#Function to case when
lala <- function(x) {
ifelse(x == "PRE", fcorr[1],
ifelse(
x == "I", fcorr[2],
ifelse(
x == "II", fcorr[3],
ifelse(
x == "III", fcorr[4],
ifelse(
x == "IV", fcorr[5],
ifelse(
x == "V", fcorr[6],
ifelse(
x == "VI", fcorr[7],
fcorr[8])))))))}
# Message for units
if(!missing(speed)){
if( p %in% xas) {
cat("Units of Active Surface: cm^2/km\n")
} else if (p %in% npm){
cat("Units of Number of Particles: n/km\n")
}
}
# fun starts
if(!is.data.frame(eu)){
if(length(eu) == 1){
df <- ef_ldv[ef_ldv$VEH == v &
ef_ldv$TYPE == t &
ef_ldv$CC == cc &
ef_ldv$FUEL == f &
ef_ldv$EURO == eu &
ef_ldv$POLLUTANT == p, ]
k2 <- lala(eu)
if (show.equation == TRUE) {
cat(paste0("a = ", df$a, ", b = ", df$b, ", c = ", df$c, ", d = ", df$d,
", e = ", df$e, ", f = ", df$f, "\n"))
cat(paste0("Equation = ", "(",as.character(df$Y), ")", "*", k, "*", k2, "\n"))
}
if(p %in% c("SO2","Pb")){
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f; x <- x
V <- ifelse(V < df$MINV, df$MINV,
ifelse(V > df$MAXV, df$MAXV, V))
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k)))
}
} else {
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f
V <- ifelse(V<df$MINV,df$MINV,ifelse(V>df$MAXV,df$MAXV,V))
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k)))
}
}
# check for speed as numeric or data.frame
if(!missing(speed)){
if(is.numeric(speed)){
f1 <- EmissionFactors(f1(speed))
return(f1)
} else if(is.data.frame(speed)){
f1 <- EmissionFactors(sapply(speed, f1))
return(f1)
}
} else {
return(f1)
}
} else if(length(eu) > 1){
if(!missing(speed)){
if(is.numeric(speed)) {
dff <- do.call("cbind", lapply(1:length(eu), function(i){
df <- ef_ldv[ef_ldv$VEH == v &
ef_ldv$TYPE == t &
ef_ldv$CC == cc &
ef_ldv$FUEL == f &
ef_ldv$EURO == eu[i] &
ef_ldv$POLLUTANT == p, ]
k2 <- lala(eu[i])
if(p %in% c("SO2","Pb")){
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f; x <- x
V <- ifelse(V < df$MINV, df$MINV,
ifelse(V > df$MAXV, df$MAXV, V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) )
}
} else {
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f
V <- ifelse(V<df$MINV,df$MINV,ifelse(V>df$MAXV,df$MAXV,V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))))
}
}
f1(speed)
}))
dff <- EmissionFactors(dff)
names(dff) <- paste0(eu, 1:length(eu))
dff$speed <- speed
return(dff)
} else if (is.data.frame(speed)){}
} else {
dff <- lapply(1:length(eu), function(i){
df <- ef_ldv[ef_ldv$VEH == v &
ef_ldv$TYPE == t &
ef_ldv$CC == cc &
ef_ldv$FUEL == f &
ef_ldv$EURO == eu[i] &
ef_ldv$POLLUTANT == p, ]
k2 <- lala(eu[i])
if(p %in% c("SO2","Pb")){
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f; x <- x
V <- ifelse(V < df$MINV, df$MINV,
ifelse(V > df$MAXV, df$MAXV, V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) )
}
} else {
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f
V <- ifelse(V<df$MINV,df$MINV,ifelse(V>df$MAXV,df$MAXV,V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))))
}
}
f1
})
names(dff) <- paste0(eu, 1:length(eu))
return(EmissionFactorsList(dff))
}
}
# New stuffs!
} else if (is.data.frame(eu)){
if(missing(speed)) stop("Add 'speed' please")
dff <- do.call("rbind", lapply(1:nrow(eu), function(j){
do.call("cbind", lapply(1:ncol(eu), function(i){
df <- ef_ldv[ef_ldv$VEH == v &
ef_ldv$TYPE == t &
ef_ldv$CC == cc &
ef_ldv$FUEL == f &
ef_ldv$EURO == eu[j,i][[1]] &
ef_ldv$POLLUTANT == p, ]
k2 <- lala(eu[j,i][[1]])
if(p %in% c("SO2","Pb")){
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f; x <- x
V <- ifelse(V < df$MINV, df$MINV,
ifelse(V > df$MAXV, df$MAXV, V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) )
}
} else {
f1 <- function(V){
a <- df$a; b <- df$b; c <- df$c; d <- df$d; e <- df$e; f <- df$f
V <- ifelse(V<df$MINV,df$MINV,ifelse(V>df$MAXV,df$MAXV,V))
ifelse(eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))) < 0,
0,
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k, "*", k2))))
}
}
f1(speed)
}))
}))
dff <- EmissionFactors(dff)
dff$speed <- speed
dff$row_eu <- rep(1:nrow(eu), each = length(speed))
return(dff)
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_ldv_speed.R
|
#' Local Emissions factors
#'
#' \code{\link{ef_local}} process an data.frame delivered by the user, but adding
#' similar funcionality and arguments as \code{\link{ef_cetesb}}, which are classification, filtering
#' and projections
#'
#' returns a vector or data.frame of Brazilian emission factors.
#'
#' @param p Character; pollutant delivered by the user. the name of the column of the data.frame must be
#' \strong{Pollutant}.
#'
#' @param veh Character; Vehicle categories available in the data.frame provided by the user
#' @param year Numeric; Filter the emission factor to start from a specific base year.
#' If project is 'constant' values above 2017 and below 1980 will be repeated
#' @param agemax Integer; age of oldest vehicles for that category
#' @param ef data.frame, for local the emission factors. The names of the ef must
#' be `Age` `Year` `Pollutant` and all the vehicle categories...
#' @param full Logical; To return a data.frame instead or a vector adding
#' Age, Year, Brazilian emissions standards and its euro equivalents.
#' @param project Character showing the method for projecting emission factors in
#' future. Currently the only value is "constant"
#' @param verbose Logical; To show more information
#' @return A vector of Emission Factor or a data.frame
#' @keywords emission factors
#' @note The names of the ef must be `Age` `Year` `Pollutant` and all the vehicle categories...
#' @seealso \code{\link{ef_cetesb}}
#' @export
#' @examples \dontrun{
#' #do not run
#' }
ef_local <- function(p,
veh,
year = 2017,
agemax = 40,
ef,
full = FALSE,
project = "constant",
verbose = TRUE){
ef[is.na(ef)] <- 0
# Check names
if(verbose) {
cat("\nNames of the ef data.frame: \n")
print(names(ef))
}
# Check column Pollutant
iss <- unique(grepl(pattern = "Year", x = names(ef)))
if(length(iss) == 1) stop("Please, add a column named `Year` in your ef data.frame")
year1 <- ef$Year[1]
# Check names
if(verbose) {
cat("\nRange Year:", range(ef$Year), "\n")
}
if(year < min(ef$Year)) stop("Min Year:", min(ef$Year), "\n")
# Check column Pollutant
iss <- unique(grepl(pattern = "Pollutant", x = names(ef)))
if(length(iss) == 1) stop("Please, add a column named `Pollutant` in your ef data.frame")
pols <- as.character(unique(ef$Pollutant))
if(verbose) cat("\nNames of the Pollutants: ", unique(ef$Pollutant), "\n")
# Selecting
ef <- ef[ef$Year <= year, ]
if(!p %in% pols){
stop(cat("\nPlease, choose one of the following pollutants:\n", pols, "\n"))
}
if(full) {
df <- cbind(ef[ef$Pollutant %in% p, 1:3],
EmissionFactors(ef[ef$Pollutant == p, veh]))
names(df)[ncol(df)] <- p
} else{
df <- vein::EmissionFactors(ef[ef$Pollutant == p, veh])
row.names(df)
}
if(is.data.frame(df)){
# project future EF
if(project == "constant"){
if(year > year1){
dif <- year - year1
eff <- do.call("rbind",(lapply(1:dif, function(i){
df[1, ]
})))
edff <- rbind(eff, df[1:(agemax - dif), ])
}
}
#Filling older ef
if(!missing(agemax)){
if(nrow(df) < agemax){
dif <- agemax - nrow(df)
df[nrow(df):(nrow(df)+dif), ] <- df[nrow(df), ]
}
df <- df[1:agemax, ]
}
} else {
# project future EF
if(project == "constant"){
if(year > year1){
dif <- year - year1
eff <- rep(df[1], dif)
df <- c(eff, df[1:(agemax - dif)])
}
}
#Filling older ef
if(!missing(agemax)){
if(length(df) < agemax){
dif <- agemax - length(df)
df[length(df):(length(df)+dif)] <- df[length(df)]
}
df <- df[1:agemax]
}
}
return(df)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_local.R
|
#' Emissions factors of N2O and NH3
#'
#' \code{\link{ef_nitro}} returns emission factors as a functions of acondumulated mileage.
#' The emission factors comes from the guidelines EMEP/EEA air pollutant
#' emission inventory guidebook
#' http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook
#'
#' @param v Category vehicle: "PC", "LCV", "Motorcycles_2S", "Motorcycles",
#' "Trucks", "Trucks-A", "Coach" and "BUS"
#' @param t Type: "Cold" or "Hot"
#' @param cond "Urban", "Rural", "Highway"
#' @param cc PC: "<=1400", "1400_2000", ">2000". LCV: "<3.5". Motorcycles: ">=50",
#' Motorcycles_2S, "<50", ">=50". Trucks: ">3.5", "7.5_12", "12_28", "28_34".
#' Trucks_A: ">34". BUS: "<=15", ">15 & <= 18". Coach: "<=18", ">18"
#' @param f Type of fuel: "G", "D" or "LPG"
#' @param eu Euro standard: "PRE", "I", "II", "III", "IV", "V", "VI",
#' "VIc"
#' @param p Pollutant: "N2O", "NH3"
#' @param S Sulphur (ppm). Number.
#' @param k Multiplication factor
#' @param show.equation Option to see or not the equation parameters
#' @param cumileage Numeric; Acondumulated mileage to return number of emission factor and not a function.
#' @param fcorr Numeric; Correction by by euro technology.
#' @return an emission factor function which depends on the acondumulated mileage,
#' or an EmissionFactor
#' @keywords cumileage emission factors
#' @note if length of eu is bigger than 1, cumileage can have values of length 1
#' or length equal to length of eu
#' @importFrom units as_units
#' @export
#' @examples \dontrun{
#' efe10 <- ef_nitro(v = "PC", t = "Hot", cond = "Urban", f = "G", cc = "<=1400",
#' eu = "III", p = "NH3", S = 10,
#' show.equation = FALSE)
#' efe50 <- ef_nitro(v = "PC", t = "Hot", cond = "Urban", f = "G", cc = "<=1400",
#' eu = "III", p = "NH3", S = 50,
#' show.equation = TRUE)
#' efe10(10)
#' efe50(10)
#' efe10 <- ef_nitro(v = "PC", t = "Hot", cond = "Urban", f = "G", cc = "<=1400",
#' eu = "III", p = "NH3", S = 10, cumileage = units::set_units(25000, "km"))
#' }
ef_nitro <- function(v,
t = "Hot",
cond = "Urban",
cc,
f,
eu,
p = "NH3",
S = 10,
cumileage,
k = 1,
show.equation = FALSE,
fcorr = rep(1, 8)) {
ef <- sysdata$nitro
#Check eu
if(is.matrix(eu) | is.data.frame(eu)){
eu <- as.data.frame(eu)
for(i in 1:ncol(eu)) eu[, i] <- as.character(eu[, i])
} else {
eu = as.character(eu)
}
# Check cumileage
if(!missing(cumileage)){
if(!inherits(cumileage, "units")){
stop("cumileage neeeds to has class 'units' in 'km'. Please, check package '?units::set_units'")
}
if(units(cumileage) != units(units::as_units("km"))){
stop("Units of cumileage must be 'km' ")
}
if(units(cumileage) == units(units::as_units("km"))){
cumileage <- as.numeric(cumileage)
}
}
#Function to case when
lala <- function(x) {
ifelse(x == "PRE", fcorr[1],
ifelse(
x == "I", fcorr[2],
ifelse(
x == "II", fcorr[3],
ifelse(
x == "III", fcorr[4],
ifelse(
x == "IV", fcorr[5],
ifelse(
x == "V", fcorr[6],
ifelse(
x == "VI", fcorr[7],
fcorr[8])))))))}
# fun starts
if(!is.data.frame(eu)){
if(length(eu) == 1){
df <- ef[ef$VEH == v &
ef$TYPE == t &
ef$CONDITION == cond &
ef$CC == cc &
ef$FUEL == f &
ef$EURO == eu &
ef$POLLUTANT == p, ]
k2 <- lala(eu)
Equation = paste0("(",as.character(df$Y), ")", "*", k)
if (show.equation == TRUE) {
cat(paste0("a = ", df$a, ", b = ", df$b, ", c = ", df$c, ", d = ", df$d,
", e = ", df$e, ", f = ", df$f, ", ef = ", df$eff, "\n"))
cat(paste0("Equation = ", Equation, "\n"))
}
f1 <- function(km){
a = df$a; b = df$b; ab = df$ab; c = df$c; d = df$d
cd = df$cd; e = df$e; f = df$f; ef = df$ef
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k)))
}
if(!missing(cumileage)){
f1 <- EmissionFactors(f1(cumileage))
return(f1)
} else {
return(f1)
}
} else if(length(eu) > 1){
if(!missing(cumileage)){
dff <- do.call("cbind", lapply(1:length(eu), function(i){
df <- ef[ef$VEH == v &
ef$TYPE == t &
ef$CONDITION == cond &
ef$CC == cc &
ef$FUEL == f &
ef$EURO == eu[i] &
ef$POLLUTANT == p, ]
k2 <- lala(eu[i])
f1 <- function(km){
a = df$a; b = df$b; ab = df$ab; c = df$c; d = df$d
cd = df$cd; e = df$e; f = df$f; ef = df$ef
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k)))
}
ifelse(length(cumileage) == 1,
f1(cumileage),
f1(cumileage[i]))
}))
dff <- EmissionFactors(dff)
names(dff) <- paste0(eu, 1:length(eu))
dff$cumileage <- cumileage
return(dff)
} else {
dff <- lapply(1:length(eu), function(i){
df <- ef[ef$VEH == v &
ef$TYPE == t &
ef$CONDITION == cond &
ef$CC == cc &
ef$FUEL == f &
ef$EURO == eu[i] &
ef$POLLUTANT == p, ]
k2 <- lala(eu[i])
f1 <- function(km){
a = df$a; b = df$b; ab = df$ab; c = df$c; d = df$d
cd = df$cd; e = df$e; f = df$f; ef = df$ef
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k)))
}
f1
})
names(dff) <- paste0(eu, 1:length(eu))
return(EmissionFactorsList(dff))
}
}
# New stuffs!
} else if (is.data.frame(eu)){
if(missing(cumileage)) stop("Add 'cumileage' please")
dff <- do.call("rbind", lapply(1:nrow(eu), function(j){
do.call("cbind", lapply(1:ncol(eu), function(i){
df <- ef[ef$VEH == v &
ef$TYPE == t &
ef$CONDITION == cond &
ef$CC == cc &
ef$FUEL == f &
ef$EURO == eu[j,i][[1]] &
ef$POLLUTANT == p, ]
k2 <- lala(eu[j,i][[1]])
f1 <- function(km){
a = df$a; b = df$b; ab = df$ab; c = df$c; d = df$d
cd = df$cd; e = df$e; f = df$f; ef = df$ef
eval(parse(text = paste0("(",as.character(df$Y), ")", "*", k)))
}
ifelse(length(cumileage) == 1,
f1(cumileage),
f1(cumileage[i]))
}))
}))
dff <- EmissionFactors(dff)
return(dff)
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_nitro.R
|
#' Emissions factors from tyre, break and road surface wear
#'
#' @description \code{\link{ef_wear}} estimates wear emissions.
#' The sources are tyres, breaks and road surface.
#'
#' @param wear Character; type of wear: "tyre" (or "tire"),
#' "break" (or "brake") and "road"
#' @param type Character; type of vehicle: "2W", "MC", "Motorcycle", "PC",
#' "LCV", 'HDV", "BUS", "TRUCKS"
#' @param pol Character; pollutant: "TSP", "PM10", "PM2.5", "PM1" and "PM0.1"
#' @param speed Data.frame of speeds
#' @param load Load of the HDV
#' @param axle Number of axle of the HDV
#' @param road Type of road "urban", "rural", "motorway".
#' Only applies when type is "E6DV" or "BEV"
#' @param verbose Logical to show more information.
#' Only applies when type is "E6DV" or "BEV"
#' @return emission factors grams/km
#' @references Ntziachristos and Boulter 2016. Automobile tyre and break wear
#' and road abrasion. In: EEA, EMEP. EEA air pollutant emission inventory
#' guidebook-2009. European Environment Agency, Copenhagen, 2016
#'
#' When type is "E6DV" or "BEV":
#' Tivey J., Davies H., Levine J., Zietsman J., Bartington S.,
#' Ibarra-Espinosa S., Ropkins K. 2022. Meta Analysis as Early
#' Evidence on the Particulate Emissions Impact of EURO VI to
#' Battery Electric Bus Fleet Transitions. Paper under development.
#' @export
#' @examples {
#' data(net)
#' data(pc_profile)
#' pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
#' df <- netspeed(pc_week, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)
#' ef <- ef_wear(wear = "tyre", type = "PC", pol = "PM10", speed = df)
#'
#' ef_wear(wear = "tyre",
#' type = c("E6DV"),
#' pol = "PM10",
#' verbose = TRUE)
#'
#' ef_wear(wear = "tyre",
#' type = c("E6DV"),
#' pol = "PM10",
#' verbose = FALSE)
#'
#' }
ef_wear <- function (wear,
type,
pol = "TSP",
speed,
load = 0.5,
axle=2,
road = "urban",
verbose = FALSE) {
if(length(type) > 1) stop("only 1 type")
if(!type %in% c("E6DV", "BEV")) {
if(is.vector(speed)){
speed <- matrix(as.numeric(speed), ncol = 1)
}
for (i in 1:ncol(speed) ) {
speed[, i] <- as.numeric(speed[, i])
}
if (wear %in% c("tyre", "tire")) {
ef <- ifelse(
type %in% c("2W", "MC", "Motorcycle"), 0.0046,
ifelse(
type=="PC",0.0107,
ifelse(
type=="LCV", 0.0109,
ifelse(
type %in% c("HDV", "BUS", "TRUCKS"),
(axle/2)*(1.41 + 1.38*load)*0.0107))))
f <- ifelse(
pol=="TSP", 1,
ifelse(
pol=="PM10", 0.6,
ifelse(
pol=="PM2.5", 0.42,
ifelse(
pol=="PM1",0.06,
ifelse(
pol=="PM0.1",0.048,"pol")))))
sv <- do.call("cbind",lapply(1:ncol(speed), function(i){
ifelse(
speed[, i] > 40, 1.39,
ifelse(
speed[, i] >= 40 & speed <= 90,
-0.00974*speed[, i] + 1.78, 0.902))
}))
} else if (wear %in% c("break", "brake")){
ef <- ifelse(
type%in% c("2W", "MC", "Motorcycle"), 0.0037,
ifelse(
type=="PC",0.0075,
ifelse(
type=="LCV", 0.0117,
ifelse(
type %in% c("HDV", "BUS", "TRUCKS"),
3.13*(1 + 0.79*load)*0.0037))))
f <- ifelse(
pol=="TSP", 1,
ifelse(
pol=="PM10",0.98,
ifelse(
pol=="PM2.5", 0.39,
ifelse(
pol=="PM1",0.1,
ifelse(
pol=="PM0.1",0.08,"pol")))))
sv <- do.call("cbind",lapply(1:ncol(speed), function(i){
ifelse(
speed[, i] > 40, 1.67,
ifelse(
speed[, i] >= 40 & speed <= 90,
-0.0270*speed[, i] + 2.75, 0.185))
}))
} else if (wear == "road"){
sv <- 1
ef <- ifelse(
type%in% c("2W", "MC", "Motorcycle"), 0.0060,
ifelse(
type=="PC",0.0150,
ifelse(
type=="LCV", 0.0150,
ifelse(
type %in% c("HDV", "BUS", "TRUCKS"),
0.0760))))
f <- ifelse(
pol=="TSP", 1,
ifelse(
pol=="PM10",0.5,
ifelse(
pol=="PM2.5", 0.27,
ifelse(
pol=="PM1", 0.27,
ifelse(
pol=="PM0.1", 0.27,"pol")))))
}
efw <- EmissionFactors(ef*f*sv)
return(efw)
} else {
data.frame(
stringsAsFactors = FALSE,
wear = c("brake","brake",
"brake","brake","brake","brake","brake","brake",
"brake","brake","brake","brake","tyre","tyre",
"tyre","tyre","tyre","tyre","tyre","tyre","tyre",
"tyre","tyre","tyre","road","road","road","road",
"road","road","road","road","road","road",
"road","road","res","res","res","res","res","res",
"res","res","res","res","res","res"),
veh = c("E6DV","E6DV","E6DV",
"E6DV","E6DV","E6DV","BEV","BEV","BEV","BEV",
"BEV","BEV","E6DV","E6DV","E6DV","E6DV","E6DV",
"E6DV","BEV","BEV","BEV","BEV","BEV","BEV",
"E6DV","E6DV","E6DV","E6DV","E6DV","E6DV","BEV",
"BEV","BEV","BEV","BEV","BEV","E6DV","E6DV",
"E6DV","E6DV","E6DV","E6DV","BEV","BEV","BEV",
"BEV","BEV","BEV"),
road = c("urban","rural",
"motorway","urban","rural","motorway","urban","rural",
"motorway","urban","rural","motorway","urban",
"rural","motorway","urban","rural","motorway",
"urban","rural","motorway","urban","rural",
"motorway","urban","rural","motorway","urban","rural",
"motorway","urban","rural","motorway","urban",
"rural","motorway","urban","rural","motorway",
"urban","rural","motorway","urban","rural",
"motorway","urban","rural","motorway"),
pol = c("PM2.5","PM2.5",
"PM2.5","PM10","PM10","PM10","PM2.5","PM2.5","PM2.5",
"PM10","PM10","PM10","PM2.5","PM2.5","PM2.5",
"PM10","PM10","PM10","PM2.5","PM2.5","PM2.5",
"PM10","PM10","PM10","PM2.5","PM2.5","PM2.5",
"PM10","PM10","PM10","PM2.5","PM2.5","PM2.5","PM10",
"PM10","PM10","PM2.5","PM2.5","PM2.5","PM10",
"PM10","PM10","PM2.5","PM2.5","PM2.5","PM10",
"PM10","PM10"),
ef = c(18,11,3.4,47,28,
8.4,19,12,3.7,50,31,9.1,19,15,13,27,21,18,
20,16,13,29,22,19,18,18,18,32,32,32,19,
19,19,35,35,35,25,25,25,100,100,100,27,27,
27,110,110,110),
efi = c(12,4.2,0,31,9.8,0,
12,4.4,0,33,10,0,15,12,9.8,21,16,14,15,
12,10,22,17,15,13,13,13,24,24,24,14,14,
14,25,25,25,7.6,7.6,7.6,32,32,32,8.2,8.2,
8.2,34,34,34),
efs = c(27L,27L,17L,70L,69L,
43L,29L,30L,20L,74L,76L,49L,27L,21L,18L,
38L,30L,25L,29L,22L,19L,40L,31L,27L,24L,24L,
24L,43L,43L,43L,26L,26L,26L,47L,47L,47L,
150L,150L,150L,590L,590L,590L,170L,170L,170L,
690L,690L,690L)
) -> dx
#wear
uwear <- unique(dx$wear)
if(any(!wear %in% uwear)) {
stop("Select wear from:\n", paste(uwear, collapse = "\n"))
}
dx <- dx[dx$wear == wear, ]
#veh
uveh <- unique(dx$veh)
if(any(!type %in% uveh)) {
stop("Select type from:\n", paste(uveh, collapse = "\n"))
}
dx <- dx[dx$veh == type, ]
#road
uroad <- unique(dx$road)
if(any(!road %in% uroad)) {
stop("Select road from:\n", paste(uroad, collapse = "\n"))
}
dx <- dx[dx$road == road, ]
#pol
upol <- unique(dx$pol)
if(any(!pol %in% upol)) {
stop("Select pol from:\n", paste(upol, collapse = "\n"))
}
dx <- dx[dx$pol %in% pol, ]
if(verbose) print(dx)
return(EmissionFactors(dx$ef))
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_wear.R
|
#' Emission factor that incorporates the effect of high emitters
#'
#' \code{\link{ef_whe}} return weighted emission factors of vehicles considering
#' that one part of the fleet has a normal deterioration and another has a
#' deteriorated fleet that would be rejected in a inspection and mantainence
#' program but it is still in circulation. This emission factor might be
#' applicable in cities without a inspection and mantainence program and with
#' Weighted emission factors considering that part of the fleet are high emitters.
#'
#' @param efhe Numeric; Emission factors of high emitters vehicles. This vehicles
#' would be rejected in a inspection and mantainnence program.
#' @param phe Numeric; Percentage of high emitters.
#' @param ef Numeric; Emission factors deteriorated vehicles under normal
#' conditions. These vehicles would be approved in a inspection and mantainence
#' program.
#' @return An emission factor by annual mileage.
#' @keywords emission factors high emitters
#' @export
#' @examples {
#' # Do not run
#' # Let's say high emitter is 5 times the normal ef.
#' co_efhe <- ef_cetesb(p = "COd", "PC_G") * 5
#' # Let's say that the perfil of high emitters increases linearly
#' # till 30 years and after that percentage is constant
#' perc <- c(seq(0.01, 0.3, 0.01), rep(0.3, 10))
#' # Now, lets use our ef with normal deterioration
#' co_ef_normal <- ef_cetesb(p = "COd", "PC_G")
#' efd <- ef_whe(efhe = co_efhe,
#' phe = perc,
#' ef = co_ef_normal)
#' # now, we can plot the three ef
#' colplot(data.frame(co_efhe, co_ef_normal, efd))
#' }
ef_whe <- function(efhe,
phe,
ef){
if(missing(efhe)) stop("No high emitter emission factor 'he'")
if(missing(phe)) stop("No percentage of high emitter vehicles 'phe'")
if(missing(ef)) stop("No emission factors with normal deterioration 'ef'")
eff <- as.numeric(efhe) * as.numeric(phe) + as.numeric(ef) * (1 - phe)
return(EmissionFactors(eff))
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/ef_whe.R
|
#' Estimation of emissions
#'
#' @description \code{\link{emis}} estimates vehicular emissions as the product of the
#' vehicles on a road, length of the road, emission factor avaliated at the
#' respective speed. \eqn{E = VEH*LENGTH*EF(speed)}
#'
#' @param veh "Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame
#' as number of columns matching the age distribution of that ype of vehicle.
#' The number of rows is equal to the number of streets link. If this is a list,
#' the length of the list is the vehicles for each hour.
#' @param lkm Length of each link in km
#' @param ef List of functions of emission factors
#' @param speed Speed data-frame with number of columns as hours. The default value is 34km/h
#' @param agemax Age of oldest vehicles for that category
#' @param profile Dataframe or Matrix with nrows equal to 24 and ncol 7 day of
#' the week
#' @param simplify Logical; to determine if EmissionsArray should les dimensions,
#' being streets, vehicle categories and hours or default (streets, vehicle
#' categories, hours and days). Default is FALSE to avoid break old code, but
#' the recommendation is that new estimations use this parameter as TRUE
#' @param fortran Logical; to try the fortran calculation when speed is not used.
#' I will add fortran for EmissionFactorsList soon.
#' @param hour Number of considered hours in estimation. Default value is number
#' of rows of argument profile
#' @param day Number of considered days in estimation
#' @param verbose Logical; To show more information
#' @param nt Integer; Number of threads wich must be lower than max available.
#' See \code{\link{check_nt}}. Only when fortran = TRUE
#' @useDynLib vein, .registration = TRUE
#' @return If the user applies a top-down approach, the resulting units will be
#' according its own data. For instance, if the vehicles are veh/day, the units
#' of the emissions implicitly will be g/day.
#' @note Hour and day will be deprecated because they can be infered from the profile
#' matrix.
#' @export
#' @importFrom sf st_set_geometry
#' @importFrom dotCall64 .C64 vector_dc
#' @examples
#' \dontrun{
#' # Do not run
#' data(net)
#' data(pc_profile)
#' data(profiles)
#' data(fe2015)
#' data(fkm)
#' PC_G <- c(
#' 33491, 22340, 24818, 31808, 46458, 28574, 24856, 28972, 37818, 49050, 87923,
#' 133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
#' 84771, 55864, 36306, 21079, 20138, 17439, 7854, 2215, 656, 1262, 476, 512,
#' 1181, 4991, 3711, 5653, 7039, 5839, 4257, 3824, 3068
#' )
#' pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
#'
#' # Estimation for morning rush hour and local emission factors and speed
#' speed <- data.frame(S8 = net$ps)
#' lef <- EmissionFactorsList(ef_cetesb("CO", "PC_G", agemax = ncol(pc1)))
#' system.time(E_CO <- emis(veh = pc1, lkm = net$lkm, ef = lef, speed = speed))
#' system.time(E_CO_2 <- emis(veh = pc1, lkm = net$lkm, ef = lef, speed = speed, simplify = TRUE))
#' identical(E_CO, E_CO_2)
#'
#' # Estimation for morning rush hour and local emission factors without speed
#' lef <- ef_cetesb("CO", "PC_G", agemax = ncol(pc1))
#' system.time(E_CO <- emis(veh = pc1, lkm = net$lkm, ef = lef))
#' system.time(E_CO_2 <- emis(veh = pc1, lkm = net$lkm, ef = lef, fortran = TRUE))
#' identical(E_CO, E_CO_2)
#'
#' # Estimation for 168 hour and local factors and speed
#' pcw <- temp_fact(net$ldv + net$hdv, pc_profile)
#' speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)
#' lef <- EmissionFactorsList(ef_cetesb("CO", "PC_G", agemax = ncol(pc1)))
#' system.time(
#' E_CO <- emis(
#' veh = pc1,
#' lkm = net$lkm,
#' ef = lef,
#' speed = speed,
#' profile = profiles$PC_JUNE_2014
#' )
#' )
#' system.time(
#' E_CO_2 <- emis(
#' veh = pc1,
#' lkm = net$lkm,
#' ef = lef,
#' speed = speed,
#' profile = profiles$PC_JUNE_2014,
#' simplify = TRUE
#' )
#' )
#'
#' # Estimation for 168 hour and local factors and without speed
#' lef <- ef_cetesb("CO", "PC_G", agemax = ncol(pc1))
#' system.time(
#' E_CO <- emis(
#' veh = pc1,
#' lkm = net$lkm,
#' ef = lef,
#' profile = profiles$PC_JUNE_2014
#' )
#' )
#' sum(E_CO)
#' system.time(
#' E_CO_2 <- emis(
#' veh = pc1,
#' lkm = net$lkm,
#' ef = lef,
#' profile = profiles$PC_JUNE_2014,
#' fortran = TRUE
#' )
#' )
#' sum(E_CO)
#' system.time(
#' E_CO_3 <- emis(
#' veh = pc1,
#' lkm = net$lkm,
#' ef = lef,
#' profile = profiles$PC_JUNE_2014,
#' simplify = TRUE
#' )
#' )
#' sum(E_CO)
#' system.time(
#' E_CO_4 <- emis(
#' veh = pc1,
#' lkm = net$lkm,
#' ef = lef,
#' profile = profiles$PC_JUNE_2014,
#' simplify = TRUE,
#' fortran = TRUE
#' )
#' )
#' sum(E_CO)
#' identical(round(E_CO, 2), round(E_CO_2, 2))
#' identical(round(E_CO_3, 2), round(E_CO_4, 2))
#' identical(round(E_CO_3[, , 1], 2), round(E_CO_4[, , 1], 2))
#' dim(E_CO_3)
#' dim(E_CO_4)
#' # but
#' a <- unlist(lapply(1:41, function(i) {
#' unlist(lapply(1:168, function(j) {
#' identical(E_CO_3[, i, j], E_CO_4[, i, j])
#' }))
#' }))
#' unique(a)
#'
#' # Estimation with list of vehicles
#' lpc <- list(pc1, pc1)
#' lef <- EmissionFactorsList(ef_cetesb("CO", "PC_G", agemax = ncol(pc1)))
#' E_COv2 <- emis(veh = lpc, lkm = net$lkm, ef = lef, speed = speed)
#'
#' # top down
#' veh <- age_ldv(x = net$ldv[1:4], name = "PC_E25_1400", agemax = 4)
#' mil <- fkm$KM_PC_E25(1:4)
#' ef <- ef_cetesb("COd", "PC_G")[1:4]
#' emis(veh, units::set_units(mil, "km"), ef)
#'
#' # group online
#' bus1 <- age_hdv(30, agemax = 4)
#' veh <- bus1
#' lkm <- units::set_units(400, "km")
#' speed <- 40
#' efco <- ef_cetesb("COd", "UB", agemax = 4)
#' lef <- ef_hdv_scaled(
#' dfcol = as.numeric(efco),
#' v = "Ubus",
#' t = "Std",
#' g = ">15 & <=18",
#' eu = rep("IV", 4),
#' gr = 0,
#' l = 0.5,
#' p = "CO"
#' )
#' for (i in 1:length(lef)) print(lef[[i]](10))
#' (a <- emis(veh = bus1, lkm = lkm, ef = efco, verbose = TRUE))
#' (b <- emis(veh = bus1, lkm = lkm, ef = efco, verbose = TRUE, fortran = TRUE))
#' }
emis <- function(veh,
lkm,
ef,
speed,
agemax = ifelse(is.data.frame(veh), ncol(veh),
ncol(veh[[1]])
),
profile,
simplify = FALSE,
fortran = FALSE,
hour = nrow(profile),
day = ncol(profile),
verbose = FALSE,
nt = ifelse(check_nt() == 1, 1, check_nt() / 2)) {
# Check units
if (!inherits(lkm, "units")) {
stop("lkm neeeds to has class 'units' in 'km'. Please, check package 'units'")
}
if (units(lkm) == units(units::as_units("m"))) {
stop("Units of lkm is 'm'. Please, check package '?units::set_units'")
}
# At least, on e of these
# ommented because I need to evaluate withinherits and I will do it someday
# if (any(!class(ef) %in% c(
# "list", "units", "EmissionFactorsList",
# "EmissionFactors", "data.frame"
# ))) {
# stop("ef must be either of 'list', 'units', 'EmissionFactorsList', 'EmissionFactors' or 'data.frame'")
# }
# Checking sf
if (inherits(veh, "sf")) {
if (verbose) message("Converting sf to data.frame")
veh <- sf::st_set_geometry(veh, NULL)
}
if (!missing(hour) | !missing(day)) {
warning("Arguments hour and day will be deprecated, they will derived from profile")
}
lkm <- as.numeric(lkm)
# veh is "Vehicles" data-frame ####
if (!inherits(x = veh, what = "list")) {
veh <- remove_units(veh)
# top down sin perfil, FE numerico
if (missing(profile) & is.numeric(ef)) {
if (verbose) {
message(
paste0(
"If this is a top down approach, you may try emis_hot_td\n",
"With this approach speed is not necessary\n"
)
)
}
if (nrow(veh) != length(lkm)) stop("Number of rows of `veh` must be the same as the length of `lkm`` ")
if (fortran) {
veh <- as.matrix(veh)
lkm <- as.numeric(lkm)
ef <- as.numeric(ef)
nrowv <- as.integer(nrow(veh))
ncolv <- as.integer(ncol(veh))
if (length(lkm) != nrow(veh)) stop("length of `lkm` must be equal to number of rows of `veh`")
if (length(ef) != ncol(veh)) stop("length of `ef` and number of cols of `veh` must be equal")
# emis(i, j) = veh(i,j) * lkm(i) * ef(j)
if (!missing(nt)) {
if (nt >= check_nt()) {
stop(
"Your machine has ", check_nt(),
" threads and nt must be lower"
)
}
if (verbose) message("Calling emis2dfpar.f95")
a <- dotCall64::.C64(
.NAME = "emis2dfpar",
SIGNATURE = c(
rep("integer", 2),
rep("double", 3),
"integer", "double"
),
nrowv = nrowv,
ncolv = ncolv,
veh = veh,
lkm = lkm,
ef = ef,
nt = as.integer(nt),
emis = dotCall64::vector_dc("double",nrowv * ncolv),
INTENT = c(
"r", "r",
"r", "r", "r",
"r", "w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
} else {
if (verbose) message("Calling emis2df.f95")
a <- dotCall64::.C64(
.NAME = "emis2df",
SIGNATURE = c(
rep("integer", 2),
rep("double", 4)
),
nrowv = nrowv,
ncolv = ncolv,
veh = veh,
lkm = lkm,
ef = ef,
emis = dotCall64::vector_dc("double",nrowv * ncolv),
INTENT = c(
"r", "r",
"r", "r", "r",
"w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
}
e <- matrix(a, nrow = nrowv, ncol = ncolv)
return(Emissions(e))
} else {
a <- lapply(1:ncol(veh), function(i) {
veh[, i] * as.numeric(lkm) * as.numeric(ef)[i]
})
a <- Emissions(do.call("cbind", a))
return(a)
}
# top down sin perfil, FE lista y con velocidad
} else if (missing(profile) & inherits(ef, "EmissionFactorsList")) {
# Check speed
if (missing(speed)) stop("Add speed to be read by the EmissionFactorsList")
speed <- remove_units(speed)
if (nrow(veh) != length(lkm)) stop("Number of rows of `veh` must be the same as the length of `lkm`")
if (nrow(veh) != length(unlist(speed))) stop("Number of rows of `veh` must be the same rows of `speed`")
if (fortran) message("Not implemented yet when ef is 'EmissionsFactorsList`, changing to default")
a <- lapply(1:ncol(veh), function(i) {
veh[, i] * as.numeric(lkm) * ef[[i]](speed)
})
a <- Emissions(do.call("cbind", a))
return(a)
}
# bottom up
if (!missing(profile) & is.vector(profile)) {
profile <- matrix(profile, ncol = 1)
}
if (inherits(x = ef, what = "list")) {
if (verbose) message("Emission factors inherits from list")
# Check length
if (ncol(veh) != length(ef)) {
if (verbose) {
message(
paste0(
"Number of columns of 'veh' is different than length of 'ef'\n",
"adjusting length of ef to the number of colums of 'veh'\n"
)
)
}
if (ncol(veh) > length(ef)) {
for (i in (length(ef) + 1):ncol(veh)) {
ef[[i]] <- ef[[length(ef)]]
}
} else if (ncol(veh) < length(ef)) {
ff <- list()
for (i in 1:ncol(veh)) {
ff[[i]] <- ef[[i]]
}
ef <- ff
}
}
# Check speed
if (missing(speed)) stop("Add speed to be read by the EmissionFactorsList")
speed <- remove_units(speed)
# simplify?
if (simplify) {
if (fortran) message("Not implemented yet when ef is 'EmissionsFactorsList`, changing to default")
d <- simplify2array(
lapply(1:length(unlist(profile)), function(j) { # 7 dias
simplify2array(
lapply(1:agemax, function(k) { # categorias
veh[, k] * unlist(profile)[j] * lkm * ef[[k]](speed[, j])
})
)
})
)
} else {
if (fortran) message("Not implemented yet when ef is 'EmissionsFactorsList`, changing to default")
d <- simplify2array(
lapply(1:ncol(profile), function(j) { # 7 dias
simplify2array(
lapply(1:nrow(profile), function(i) { # 24 horas
simplify2array(
lapply(1:agemax, function(k) { # categorias
veh[, k] * profile[i, j] * lkm * ef[[k]](speed[, (1:nrow(profile))[i] + nrow(profile) * (j - 1)])
})
)
})
)
})
)
}
} else {
if (verbose) message("Emission factors does not inherits from list")
# Check length
if (ncol(veh) != length(ef)) {
if (verbose) {
message(
paste0(
"Number of columns of 'veh' is different than length of 'ef'\n",
"adjusting length of ef to the number of colums of 'veh'\n"
)
)
}
if (ncol(veh) > length(ef)) {
for (i in (length(ef) + 1):ncol(veh)) {
ef[[i]] <- ef[[length(ef)]]
}
} else if (ncol(veh) < length(ef)) {
ff <- list()
for (i in 1:ncol(veh)) {
ff[[i]] <- ef[i]
}
ef <- unlist(ff)
}
}
# Check speed
if (!missing(speed)) warning("When ef is not EmissionFactorsList, speed is not needed")
# simplify?
if (simplify) {
if (fortran) {
veh <- as.matrix(veh)
lkm <- as.numeric(lkm)
ef <- as.numeric(ef)
profile <- as.numeric(unlist(profile))
nrowv <- as.integer(nrow(veh))
ncolv <- as.integer(ncol(veh))
prok <- as.integer(length(unlist(profile)))
if (length(lkm) != nrow(veh)) stop("length of `lkm` must be equal to number of rows of `veh`")
if (length(ef) != ncol(veh)) stop("length of `ef` and number of cols of `veh` must be equal")
# emis(i, j, k) = veh(i, j) * lkm(i) * ef(j)*pro(k)
if (!missing(nt)) {
if (nt >= check_nt()) {
stop(
"Your machine has ", check_nt(),
" threads and nt must be lower"
)
}
if (verbose) message("Calling emis3dfpar.f95")
a <- dotCall64::.C64(
.NAME = "emis3dfpar",
SIGNATURE = c(
rep("integer", 3),
rep("double", 4),
"integer", "double"
),
nrowv = nrowv,
ncolv = ncolv,
prok = prok,
veh = veh,
lkm = lkm,
ef = ef,
pro = profile,
nt = as.integer(nt),
emis = dotCall64::vector_dc("double",nrowv * ncolv * prok),
INTENT = c(
"r", "r", "r",
"r", "r", "r", "r",
"r", "w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
} else {
if (verbose) message("Calling emis3df.f95")
a <- dotCall64::.C64(
.NAME = "emis3df",
SIGNATURE = c(
rep("integer", 3),
rep("double", 5)
),
nrowv = nrowv,
ncolv = ncolv,
prok = prok,
veh = veh,
lkm = lkm,
ef = ef,
pro = profile,
emis = dotCall64::vector_dc("double",nrowv * ncolv * prok),
INTENT = c(
"r", "r", "r",
"r", "r", "r", "r",
"w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
}
# fortran
# do concurrent(i= 1:nrowv, j = 1:ncolv, k = 1:prok)
# emis(i, j,k) = veh(i,j) * lkm(i) * ef(j)*pro(k)
# end do
e <- array(a, dim = c(nrowv, ncolv, prok))
return(EmissionsArray(e))
} else {
vkm <- veh * lkm
vkmef <- t(t(vkm) * ef)
d <- simplify2array(lapply(unlist(profile), "*", vkmef))
}
} else {
if (fortran) {
veh <- as.matrix(veh)
profile <- as.matrix(profile)
lkm <- as.numeric(lkm)
ef <- as.numeric(ef)
nrowv <- as.integer(nrow(veh))
ncolv <- as.integer(ncol(veh))
proh <- as.integer(nrow(profile))
prod <- as.integer(ncol(profile))
if (length(lkm) != nrow(veh)) stop("length of `lkm` must be equal to number of rows of `veh`")
if (length(ef) != ncol(veh)) stop("length of `ef` and number of cols of `veh` must be equal")
# emis(i, j, k, l) = veh(i,j) * lkm(i) * ef(j)*pro(k,l)
if (!missing(nt)) {
if (nt >= check_nt()) {
stop(
"Your machine has ", check_nt(),
" threads and nt must be lower"
)
}
if (verbose) message("Calling emis4dfpar.f95")
a <- dotCall64::.C64(
.NAME = "emis4dfpar",
SIGNATURE = c(
rep("integer", 4),
rep("double", 4),
"integer",
"double"
),
nrowv = nrowv,
ncolv = ncolv,
proh = proh,
prod = prod,
veh = veh,
lkm = lkm,
ef = ef,
pro = profile,
nt = as.integer(nt),
emis = dotCall64::vector_dc("double",nrowv * ncolv * proh * prod),
INTENT = c(
"r", "r", "r", "r",
"r", "r", "r", "r",
"r", "w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
} else {
if (verbose) message("Calling emis4df.f95")
a <- dotCall64::.C64(
.NAME = "emis4df",
SIGNATURE = c(
rep("integer", 4),
rep("double", 5)
),
nrowv = nrowv,
ncolv = ncolv,
proh = proh,
prod = prod,
veh = veh,
lkm = lkm,
ef = ef,
pro = profile,
emis = dotCall64::vector_dc("double",nrowv * ncolv * proh * prod),
INTENT = c(
"r", "r", "r", "r",
"r", "r", "r", "r",
"w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
}
e <- array(a, dim = c(nrowv, ncolv, proh, prod))
return(EmissionsArray(e))
} else {
d <- simplify2array(
lapply(1:ncol(profile), function(j) { # 7 dias
simplify2array(
lapply(1:nrow(profile), function(i) { # 24 horas
simplify2array(
lapply(1:agemax, function(k) { # categorias
veh[, k] * profile[i, j] * lkm * ef[k]
})
)
})
)
})
)
# checked with for(j in 1:7) for(i in 1:24) print((1:24)[i] + 24*(j - 1))
}
}
}
if (verbose) message(round(sum(d, na.rm = T) / 1000, 2), " kg emissions")
return(EmissionsArray(d))
# veh is a list of "Vehicles" data-frames
# each member of the list is an hour
} else {
if (ncol(veh[[1]]) != length(ef)) {
# check speed
speed <- as.data.frame(speed)
for (i in 1:ncol(speed)) {
speed[, i] <- as.numeric(speed[, i])
}
if (verbose) {
message(
paste0(
"Number of columns of 'veh' is different than length of 'ef'\n",
"adjusting length of ef to the number of colums of 'veh'\n"
)
)
}
if (ncol(veh[[1]]) > length(ef)) {
for (i in (length(ef) + 1):ncol(veh[[1]])) {
ef[[i]] <- ef[[length(ef)]]
}
} else if (ncol(veh[[1]]) < length(ef)) {
ff <- list()
for (i in 1:ncol(veh[[1]])) {
ff[[i]] <- ef[[i]]
}
ef <- ff
}
}
for (j in 1:length(veh)) {
for (i in 1:ncol(veh[[j]])) {
veh[[j]][, i] <- as.numeric(veh[[j]][, i])
}
}
# if(array == F){
# lista <- lapply(1:length(veh),function(i){
# lapply(1:agemax, function(k){
# veh[[i]][, k]*lkm*ef[[k]](speed[, i])
# } ) } )
# return(EmissionsList(lista))
# } else {
d <- simplify2array(
lapply(1:length(veh), function(i) {
simplify2array(
lapply(1:agemax, function(k) {
veh[[i]][, k] * lkm * ef[[k]](speed[, i])
})
)
})
)
if (verbose) message(round(sum(d, na.rm = T) / 1000, 2), " kg emissions ")
return(EmissionsArray(d))
# }
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/emis.R
|
#' (in development, needs checks) Aggregate emissions by lumped groups in chemical mechanism
#'
#' @description \code{\link{emis_chem}} aggregates emissions by chemical mechanism
#' and convert grams to mol. This function reads all hydrocarbos and respective
#' criteria polluants specified in \code{\link{ef_ldv_speed}} and \code{\link{ef_hdv_speed}}.
#'
#' @param dfe data.frame with column `emissions` in grams and `pollutant` in long format. It is supposed
#' that each line is the pollution of some region. Then the `coldby` argument is for include the
#' name of the region.
#' @param mechanism Character,
#' "SAPRC", "RACM", "RADM2", "CBMZ", "MOZART", "SAPRC99", "CB05",
#' "CB06CMAQ", "CB05CMAQ", "RACM2CMAQ", "SAPRC99CMAQ", "SAPRC07CMAQ",
#' "SAPRC07A", "RADM2_SORG", "CBMZ_MOSAIC", "CPTEC",
#' "GOCART_CPTEC", "MOZEM", "MOZCEM", "CAMMAM", "MOZMEM",
#' "MOZC_T1_EM", "CB05_OPT1", "CB05_OPT2", "CRIMECH"
#' @param colby Character indicating column name for aggregating extra column.
#' For instance, region or province.
#' @param long Logical. Do you want data in long format?
#' @return data.frame with lumped groups by chemical mechanism. It transform
#' emissions in grams to mol.
#' @importFrom data.table setDF as.data.table
#' @importFrom utils data
#' @importFrom units as_units
#' @seealso \code{\link{ef_ldv_speed}} \code{\link{ef_hdv_speed}} \code{\link{speciate}} \code{\link{ef_evap}}
#' @export
#' @note This feature is experimental and the mapping of pollutants and lumped
#' species may change in future.
#' This function is converting the intial data.frame input into data.table.
#' To have a comprehensive speciation is necessary enter with a data.frame
#' with colum 'emission' in long format including another column named 'pollutant' with
#' species of NMHC, CO, NO, NO2, NH3, SO2, PM2.5 and coarse PM10.
#'
#' Groups derived from gases has units 'mol' and from aersols 'g'. The aersol
#' units for WRF-Chem are ug/m^2/s while for CMAQ and CAMx are g/s. So,
#' leaving the units just in g, allow to make further change while
#' providing flexibility for several models.
#' TODO: Enter with wide data.frame, with each line as a each street, each column for pollutant
#' @examples \dontrun{
#' # CO
#' df <- data.frame(emission = Emissions(1:10))
#' df$pollutant = "CO"
#' emis_chem(dfe = df, "CBMZ_MOSAIC")
#' # hexanal
#' df$pollutant = "hexanal"
#' emis_chem(df, "CBMZ_MOSAIC")
#' # propadiene and NO2
#' df2 <- df1 <- df
#' df1$pollutant = "propadiene"
#' df2$pollutant = "NO2"
#' (dfe <- rbind(df1, df2))
#' emis_chem(dfe, "CBMZ_MOSAIC")
#' dfe$region <- rep(letters[1:2], 10)
#' emis_chem(dfe, "CBMZ_MOSAIC", "region")
#' emis_chem(dfe, "CBMZ_MOSAIC", "region", TRUE)
#' }
emis_chem <- function(dfe, mechanism, colby, long = FALSE) {
dfe <- as.data.frame(dfe)
#Check column pollutant
if(!any(grepl(pattern = "pollutant", x = names(dfe)))){
stop("The column 'pollutant' is present in 'dfe'")
}
#Check column emissions
if(!any(grepl(pattern = "emission", x = names(dfe)))){
stop("The column 'emission' is not present in 'dfe'")
}
# Check units
if(!inherits(dfe$emission, "units")){
stop("dfe$emission neeeds to has class 'units' in 'g'. Check '?units::set_units'")
}
# loading mechanisms data-base
df <- sysdata$mechx
df <- df[df$MECH == mechanism, ]
# loading pollutants with g_mol
utils::data("pollutants")
pollutants <- pollutants[, c("pollutant", "g_mol")]
# merging and filtering g_mol
dfe <- merge(dfe, pollutants, by = "pollutant", all = TRUE)
# converting to mol
dfe$mol <- ifelse(!is.na(dfe$g_mol),
dfe$emission/dfe$g_mol,
dfe$emission)
# merging with mechanism
df_mech <- merge(dfe, df, by = "pollutant", all = TRUE)
df_mech <- data.table::as.data.table(df_mech)
df_mech$mol <- ifelse(df_mech$type == "gas",
df_mech$mol*df_mech$k,
df_mech$emission*df_mech$k)
if(!missing(colby)){
ss <- df_mech[, lapply(.SD, sum, na.rm=TRUE),
keyby = list(df_mech$LUMPED,
df_mech[[colby]]),
.SDcols = "mol" ]
names(ss) <- c("group", colby,"emission")
} else {
ss <- df_mech[, lapply(.SD, sum, na.rm=TRUE),
keyby = list(df_mech$LUMPED),
.SDcols = "mol" ]
names(ss) <- c("group", "emission")
}
data.table::setDF(ss)
gases <- unique(df[df$type == "gas", "LUMPED"])
ss$units <- ifelse(ss$group %in% gases, "mol", "g")
ss <- ss[!is.na(ss$group), ]
pollutants <- as.data.frame(pollutants)
if(long){
return(ss)
} else {
if(missing(colby)){
ss <- suppressWarnings(long_to_wide(df = ss,
column_with_new_names = "group",
column_with_data = "emission"))
} else {
ss <- suppressWarnings(long_to_wide(df = ss,
column_with_new_names = "group",
column_with_data = "emission",
column_fixed = colby))
sscolby <- ss[, colby]
ss[, colby] <- NULL
}
}
# putting units
for(i in 1:(ncol(ss))){
if(names(ss)[i] %in% gases) {
ss[, names(ss)[i]] <- units::as_units(ss[, names(ss)[i]], "mol")
} else {
ss[, names(ss)[i]] <- units::as_units(ss[, names(ss)[i]], "g")
}
}
if(!missing(colby)) {
ss[, colby] <- sscolby
ss <- ss[!is.na(ss[colby]), ]
}
return(ss)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/emis_chem.R
|
#' Aggregate emissions by lumped groups in chemical mechanism
#'
#' @description \code{\link{emis_chem2}} aggregates VOC emissions by chemical mechanism
#' and convert grams to mol.
#'
#' @param df data.frame with emissions including columns "id" and "pol".
#' @param mech Character, "CB4", "CB05", "S99", "S7","CS7", "S7T", "S11",
#' "S11D","S16C","S18B","RADM2", "RACM2","MOZT1", "CBMZ", "CB05opt2"
#' @param nx Character, colnames for emissions data, for instance "V1", "V2"...
#' @param na.rm Logical, to remove lines with NA from group
#' @return data.frame with lumped groups by chemical mechanism.
#' @importFrom data.table setDF as.data.table setDT setorderv melt
#' @seealso \code{\link{speciate}}
#' @export
#' @references Carter, W. P. (2015). Development of a database for
#' chemical mechanism assignments for volatile organic emissions.
#' Journal of the Air & Waste Management Association, 65(10), 1171-1184.
#' @note
#' \itemize{
#' \item \strong{CB05}: "ALD" "ALDX" "ETH" "HC3" "HC5" "HC8" "HCHO" "KET"
#' "OL2" "OLI" "OLT" "TOL" "XYL"
#' \item \strong{CB05opt2}: "ALD2" "ALDX" "BENZENE" "ETH" "ETHA" "FORM"
#' "IOLE" "OLE" "PAR" "TOL" "XYL"
#' \item \strong{RADM2}: "ALD" "ETH" "HC3" "HC5" "HC8" "HCHO" "KET"
#' "MACR" "OL2" "OLI" "OLT" "TOL" "XYL"
#' \item \strong{RACM2}: ACD" "ACE" "ACT" "ALD" "BALD" "BEN" "DIEN"
#' "ETE" "ETH" "HC3" "HC5" "HC8" "HCHO" "MACR" "MEK" "OLI" "OLT"
#' "TOL" "UALD" "XYM" "XYO" "XYP"
#' \item \strong{CB4}: "ALD2" "ETH" "FORM" "OLE" "PAR" "TOL" "XYL"
#' \item \strong{S99}: "ACET" "ALK1" "ALK2" "ALK3" "ALK4" "ALK5" "ARO1NBZ"
#' "ARO2" "BALD" "BENZENE" "CCHO" "ETHENE" "HCHO" "IPROD" "MACR" "MEK"
#' "OLE1" "OLE2" "RCHO"
#' \item \strong{CB4}: "ACET" "ACYE" "ALK1" "ALK2" "ALK3" "ALK4" "ALK5"
#' "ARO1" "ARO2" "BALD" "BENZ" "CCHO" "ETHE" "HCHO" "IPRD" "MACR" "MEK"
#' "OLE1" "OLE2" "RCHO"
#' \item \strong{CS7}: "ALK3" "ALK4" "ARO1" "ARO2" "CCHO" "ETHE" "HCHO"
#' "IPRD" "NROG" "OLE1" "OLE2" "PRD2" "RCHO"
#' \item \strong{S7}: "ACET" "ACYE" "ALK1" "ALK2" "ALK3" "ALK4" "ALK5"
#' "ARO1" "ARO2" "BALD" "BENZ" "CCHO" "ETHE" "HCHO" "IPRD" "MACR"
#' "MEK" "OLE1" "OLE2" "RCHO"
#' \item \strong{S7T}: "13BDE" "ACET" "ACRO" "ACYE" "ALK1" "ALK2"
#' "ALK3" "ALK4" "ALK5" "ARO1" "ARO2" "B124" "BALD" "BENZ" "CCHO"
#' "ETHE" "HCHO" "IPRD" "MACR" "MEK" "MXYL" "OLE1" "OLE2" "OXYL"
#' "PRPE" "PXYL" "RCHO" "TOLU"
#' \item \strong{S11}: "ACET" "ACYL" "ALK1" "ALK2" "ALK3" "ALK4" "ALK5"
#' "ARO1" "ARO2" "BALD" "BENZ" "CCHO" "ETHE" "HCHO" "IPRD" "MACR"
#' "MEK" "OLE1" "OLE2" "RCHO"
#' \item \strong{S11D}: "ACET" "ACRO" "ACYL" "ALLENE" "BALD" "BENZ"
#' "BUTDE13" "BUTENE1" "C2BENZ" "C2BUTE" "C2PENT" "C4RCHO1" "CCHO"
#' "CROTALD" "ETACTYL" "ETHANE" "ETHE" "HCHO" "HEXENE1" "ISOBUTEN" "M2C3"
#' "M2C4" "M2C6" "M2C7" "M3C6" "M3C7" "MACR" "MEACTYL" "MEK" "MXYLENE"
#' "NC1" "NC4" NC5" "NC6" "NC7" "NC8" "NC9" "OLE2" "OTH2" "OTH4"
#' "OTH5" "OXYLENE" "PENTEN1" "PROPALD" "PROPANE" "PROPENE" "PXYLENE" "RCHO"
#' "STYRENE" "TMB123" "TMB124" "TMB135" "TOLUENE"
#' \item \strong{S16C}:"ACET" "ACETL" "ACRO" "ACYLS" "ALK3"
#' "ALK4" "ALK5" "BALD" "BENZ" "BUT13" "BZ123" "BZ124"
#' "BZ135" "C2BEN" "ETCHO" "ETHAN" "ETHEN" "HCHO" "MACR"
#' "MECHO" "MEK" "MXYL" "NC4" "OLE1"
#' "OLE2" "OLE3" "OLE4" "OLEA1" "OTH1" "OTH3" "OTH4"
#' "OXYL" "PROP" "PROPE" "PXYL" "RCHO" "STYRS" "TOLU"
#' \item \strong{S18B}:"ACET" "ACETL" "ACRO" "ACYLS" "ALK3"
#' "ALK4" "ALK5" "BALD" "BENZ" "BUT13" "BZ123" "BZ124"
#' "BZ135" "C2BEN" "ETCHO" "ETHAN" "ETHEN" "HCHO"
#' "MACR" "MECHO" "MEK" "MXYL" "NC4" "OLE1"
#' "OLE2" "OLE3" "OLE4" "OLEA1" "OTH1" "OTH3" "OTH4" "OXYL"
#' "PROP" "PROPE" "PXYL" "RCHO" "STYRS" "TOLU"
#'}
#' @examples {
#' id <-1:2
#' df <- data.frame(V1 = 1:2, V2 = 1:2)
#' dx <- speciate(x = df,
#' spec = "nmhc",
#' fuel = "E25",
#' veh = "LDV",
#' eu = "Exhaust")
#' dx$id <- rep(id, length(unique(dx$pol)))
#' names(dx)
#' vocE25EX <- emis_chem2(df = dx,
#' mech = "CB05",
#' nx = c("V1", "V2"))
#' }
emis_chem2 <- function(df, mech, nx, na.rm = FALSE) {
chem <- sysdata$chem
if(!any(grepl("id", names(df))))stop("Add 'id' column")
id <- df$id
if(missing(nx)) stop("Add colnames of emissions data")
data.table::setDT(chem)
pol <- mol<- NULL
if(mech %in% c("CB05", "CB4", "CBMZ","CB05opt2")) {
cheml <- suppressWarnings(
data.table::melt(
data = chem,#[pol %in% unique(df[["pol"]])],
id.vars = c("ID", "pol", "Mwt"),
measure.vars = grep(pattern = paste0(mech, "_"),
x = names(chem),
value = TRUE),
# variable.name = "CB05",
value.name = "mol",
na.rm = TRUE,
verbose = FALSE
))
# cheml <- cheml[mol > 0]
names(cheml)[4] <- "mech"
names(cheml)[5] <- "factor"
# if(verbose) print(head(cheml))
} else {
# ..nd <- NULL
# nd <- c("ID", "pol", "Mwt", mech, paste0("F", mech))
# cheml <- suppressWarnings(chem[pol %in% unique(df[["pol"]]), ..nd])
# names(cheml)[length(cheml)] <- "mol"
# cheml <- cheml[!is.na(cheml[[mech]])] #TODO Check
nd <- c("ID", "pol", "Mwt", mech, paste0("F", mech))
cheml <- chem[,
nd,
with = FALSE]
names(cheml)[length(cheml) -1] <- "mech"
names(cheml)[length(cheml) ] <- "factor"
}
# important
# df$id <- rep(id, length(unique(df$pol)))
data.table::setDF(df)
data.table::setDF(cheml)
y <- merge(x = df,
y = cheml,
by = "pol",
all = T)
# key!
for(i in seq_along(nx)) {
y[[nx[i]]] <- y[[nx[i]]]/y$Mwt*y$factor
}
data.table::setDT(y)
y[["mech"]] <- gsub(pattern = mech, replacement = "", x = y[["mech"]])
y[["mech"]] <- gsub(pattern = "_", replacement = "", x = y[["mech"]])
id <- NULL
dy <- y[,
lapply(.SD, sum, na.rm = T),
.SDcols = nx,
by = list(id, group = mech)]
data.table::setorderv(dy, c("group", "id"))
group <- NULL
if(na.rm) dy <- dy[!is.na(group)]
# remove NA in id
dy <- dy[!is.na(dy$id), ]
return(dy)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/emis_chem2.R
|
#' Estimation of cold start emissions hourly for the of the week
#'
#' @description \code{emis_cold} emissions are estimated as the product of the
#' vehicles on a road, length of the road, emission factor evaluated at the
#' respective speed. The estimation considers the beta parameter, the fraction of
#' mileage driven
#'
#' @param veh "Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame
#' as number of columns matching the age distribution of that type of vehicle.
#' The number of rows is equal to the number of streets link
#' @param lkm Length of each link
#' @param ef List of functions of emission factors of vehicular categories
#' @param efcold List of functions of cold start emission factors of vehicular categories
#' @param beta Dataframe with the hourly cold-start distribution to each day
#' of the period. Number of rows are hours and columns are days
#' @param speed Speed data-frame with number of columns as hours
#' @param agemax Age of oldest vehicles for that category
#' @param profile Numerical or dataframe with nrows equal to 24 and ncol 7 day
#' of the week
#' @param simplify Logical; to determine if EmissionsArray should les dimensions,
#' being streets, vehicle categories and hours or default (streets, vehicle
#' categories, hours and days). Default is FALSE to avoid break old code, but
#' the recommendation is that new estimations use this parameter as TRUE
#' @param hour Number of considered hours in estimation
#' @param day Number of considered days in estimation
#' @param array Deprecated! \code{\link{emis_cold}} returns only arrays.
#' When TRUE and veh is not a list, expects a profile as a dataframe producing
#' an array with dimensions (streets x columns x hours x days)
#' @param verbose Logical; To show more information
#' @return EmissionsArray g/h
#' @export
#' @examples \dontrun{
#' # Do not run
#' data(net)
#' data(pc_profile)
#' data(fe2015)
#' data(fkm)
#' data(pc_cold)
#' pcf <- as.data.frame(cbind(pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,
#' pc_cold))
#' PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
#' 133833,138441,142682,171029,151048,115228,98664,126444,101027,
#' 84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
#' 1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
#' veh <- data.frame(PC_G = PC_G)
#' pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC")
#' pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
#' speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)
#' pckm <- units::set_units(fkm[[1]](1:24), "km"); pckma <- cumsum(pckm)
#' cod1 <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckma[1:11])
#' cod2 <- emis_det(po = "CO", cc = 1000, eu = "I", km = pckma[12:24])
#' #vehicles newer than pre-euro
#' co1 <- fe2015[fe2015$Pollutant=="CO", ] #24 obs!!!
#' cod <- c(co1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])
#' lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",
#' f = "G",p = "CO", eu=co1$Euro_LDV)
#' # Mohtly average temperature 18 Celcius degrees
#' lefec <- ef_ldv_cold_list(df = co1, ta = 18, cc = "<=1400", f = "G",
#' eu = co1$Euro_LDV, p = "CO" )
#' lefec <- c(lefec,lefec[length(lefec)], lefec[length(lefec)],
#' lefec[length(lefec)], lefec[length(lefec)],
#' lefec[length(lefec)])
#' length(lefec) == ncol(pc1)
#' #emis change length of 'ef' to match ncol of 'veh'
#' class(lefec)
#' PC_CO_COLD <- emis_cold(veh = pc1,
#' lkm = net$lkm,
#' ef = lef,
#' efcold = lefec,
#' beta = pcf,
#' speed = speed,
#' profile = pc_profile)
#' class(PC_CO_COLD)
#' plot(PC_CO_COLD)
#' lpc <- list(pc1, pc1)
#' PC_CO_COLDv2 <- emis_cold(veh = pc1,
#' lkm = net$lkm,
#' ef = lef,
#' efcold = lefec,
#' beta = pcf,
#' speed = speed,
#' profile = pc_profile,
#' hour = 2,
#' day = 1)
#' }
emis_cold <- function (veh,
lkm,
ef,
efcold,
beta,
speed = 34,
agemax = if (!inherits(x = veh, what = "list")) {
ncol(veh)
} else {
ncol(veh[[1]])
},
profile,
simplify = FALSE,
hour = nrow(profile),
day = ncol(profile),
array = TRUE,
verbose = FALSE) {
# Check units
if(!inherits(lkm, "units")){
stop("lkm neeeds to has class 'units' in 'km'. Please, check package 'units'")
}
if(units(lkm) == units(units::as_units("m"))){
stop("Units of lkm is 'm', change to 'km'")
}
if(units(lkm) == units(units::as_units("km"))) {
lkm <- as.numeric(lkm)
}
# At least, on e of these
if(any(!class(ef) %in% c("list", "units", "EmissionFactorsList",
"EmissionFactors", "data.frame"))){
stop("ef must be either of 'list', 'units', 'EmissionFactorsList', 'EmissionFactors' or 'data.frame'")
}
# Checking sf
if(inherits(veh, "sf")){
if(verbose) message("Transforming sf to data.frame")
veh <- sf::st_set_geometry(veh, NULL)
}
lkm <- as.numeric(lkm)
speed <- as.data.frame(speed)
for (i in 1:ncol(speed) ) {
speed[, i] <- as.numeric(speed[, i])
}
# veh is "Vehicles" data-frame
if (!inherits(x = veh, what = "list")) {
veh <- as.data.frame(veh)
lkm <- as.numeric(lkm)
for(i in 1:ncol(veh)){
veh[,i] <- as.numeric(veh[,i])
}
# top down
if(missing(profile)){
stop("For top down approach, use 'emis_cold_td'")
}
if(!missing(profile) & is.vector(profile)){
profile <- matrix(profile, ncol = 1)
}
if(ncol(veh) != length(ef)){
if(verbose) message(
paste0("Number of columns of 'veh' is different than length of 'ef'\n",
"adjusting length of ef to the number of colums of 'veh'\n"))
if(ncol(veh) > length(ef)){
for(i in (length(ef) + 1):ncol(veh) ){
# for(i in (ncol(veh) - length(ef)):ncol(veh) ){
ef[[i]] <- ef[[length(ef)]]
}
} else if (ncol(veh) < length(ef)){
ff <- list()
for(i in 1:ncol(veh)){
ff[[i]] <- ef[[i]]
}
ef <- ff
}
}
# if(array == F){
# lista <- lapply(1:day,function(j){
# lapply(1:hour,function(i){
# lapply(1:agemax, function(k){
# beta[i,j]*veh[, k]*profile[i,j]*lkm*ef[[k]](speed[, i])*
# ifelse((efcold[[k]](speed[, i]) - 1) < 0, 0,
# (efcold[[k]](speed[, i]) - 1))
# })
# })
# })
# return(EmissionsList(lista))
# } else {
veh <- as.data.frame(veh)
for(i in 1:ncol(veh)){
veh[,i] <- as.numeric(veh[,i])
}
if(simplify) {
d <- simplify2array(
lapply(1:length(unlist(profile)) ,function(j){ # 7 dias
simplify2array(
lapply(1:agemax, function(k){ # categorias
unlist(beta)[j]*veh[, k]*unlist(profile)[j]*lkm*ef[[k]](speed[, j])*
ifelse((efcold[[k]](speed[, j])- 1) < 0, 0,
(efcold[[k]](speed[, j]) - 1))
}) ) }) )
} else {
d <- simplify2array(
lapply(1:day,function(j){
simplify2array(
lapply(1:hour,function(i){
simplify2array(
lapply(1:agemax, function(k){
beta[i,j]*veh[, k]*profile[i,j]*lkm*ef[[k]](speed[, (1:nrow(profile))[i] + nrow(profile)*(j - 1)])*
ifelse((efcold[[k]](speed[, (1:nrow(profile))[i] + nrow(profile)*(j - 1)]) - 1) < 0, 0,
(efcold[[k]](speed[, (1:nrow(profile))[i] + nrow(profile)*(j - 1)]) - 1))
}) ) }) ) }) )
}
if(verbose) message(round(sum(d, na.rm = TRUE)/1000,2),
" kg emissions in ", hour, " hours and ", day, " days")
return(EmissionsArray(d))
# }
} else {
if(ncol(veh[[1]]) != length(ef)){
if(verbose) message(
paste0("Number of columns of 'veh' is different than length of 'ef'\n",
"adjusting length of ef to the number of colums of 'veh'\n"))
if(ncol(veh[[1]]) > length(ef)){
for(i in (length(ef) + 1):ncol(veh[[1]]) ){
ef[[i]] <- ef[[length(ef)]]
}
} else if (ncol(veh[[1]]) < length(ef)){
ff <- list()
for(i in 1:ncol(veh[[1]])){
ff[[i]] <- ef[[i]]
}
ef <- ff
}
}
for (j in 1:length(veh)) {
for (i in 1:ncol(veh[[j]]) ) {
veh[[j]][,i] <- as.numeric(veh[[j]][,i])
} }
# if(array == F){
# lista <- lapply(1:length(veh),function(i){
# lapply(1:agemax, function(k){
# unlist(beta)[i]*veh[[i]][, k]*lkm*ef[[k]](speed[, i])*
# ifelse((efcold[[k]](speed[, i]) - 1) < 0, 0,
# (efcold[[k]](speed[, i]) - 1))
# }) })
# return(EmissionsList(lista))
# } else {
d <- simplify2array(
lapply(1:length(veh),function(i){
simplify2array(
lapply(1:agemax, function(k){
unlist(beta)[i]*veh[[i]][, k]*lkm*ef[[k]](speed[, i])*
ifelse((efcold[[k]](speed[, i]) - 1) < 0, 0,
(efcold[[k]](speed[, i]) - 1))
}) ) }) )
if(verbose) message(round(sum(d, na.rm = TRUE)/1000,2),
" kg emissions in ", hour, " hours and ", day, " days")
return(EmissionsArray(d))
# }
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/emis_cold.R
|
#' Estimation of cold start emissions with top-down approach
#'
#' @description \code{\link{emis_cold_td}} estimates cld start emissions with
#' a top-down appraoch. This is, annual or monthly emissions or region.
#' Especifically, the emissions are esitmated for row of the simple feature (row
#' of the spatial feature).
#'
#' In general was designed so that each simple feature is a region with
#' different average monthly temperature.
#' This funcion, as other in this package, adapts to the class of the input data.
#' providing flexibility to the user.
#'
#' @param veh "Vehicles" data-frame or spatial feature, wwhere columns are the
#' age distribution of that vehicle. and rows each simple feature or region.
#' The number of rows is equal to the number of streets link
#' @param lkm Numeric; mileage by the age of use of each vehicle.
#' @param ef Numeric; emission factor with
#' @param efcold Data.frame. When it is a data.frame, each column is for each
#' type of vehicle by age of use, rows are are each simple feature. When you have
#' emission factors for each month, the order should a data.frame ina long format,
#' as rurned by \code{\link{ef_ldv_cold}}.
#' @param beta Data.frame with the fraction of cold starts. The rows are the fraction
#' for each spatial feature or subregion, the columns are the age of use of vehicle.
#' @param pro_month Numeric; montly profile to distribuite annual mileage in each month.
#' @param params List of parameters; Add columns with information to returning data.frame
#' @param verbose Logical; To show more information
#' @param fortran Logical; to try the fortran calculation.
#' @param nt Integer; Number of threads wich must be lower than max available.
#' See \code{\link{check_nt}}. Only when fortran = TRUE
#' @return Emissions data.frame
#' @importFrom dotCall64 .C64 vector_dc
#' @seealso \code{\link{ef_ldv_cold}}
#' @export
#' @examples
#' \dontrun{
#' # Do not run
#' veh <- age_ldv(1:10, agemax = 8)
#' euros <- c("V", "V", "IV", "III", "II", "I", "PRE", "PRE")
#' dt <- matrix(rep(2:25, 5), ncol = 12, nrow = 10) # 12 months, 10 rows
#' row.names(dt) <- paste0("Simple_Feature_", 1:10)
#' efc <- ef_ldv_cold(ta = dt, cc = "<=1400", f = "G", eu = euros, p = "CO", speed = Speed(34))
#' efh <- ef_ldv_speed(
#' v = "PC", t = "4S", cc = "<=1400", f = "G",
#' eu = euros, p = "CO", speed = Speed(runif(nrow(veh), 15, 40))
#' )
#' lkm <- units::as_units(18:11, "km") * 1000
#' cold_lkm <- cold_mileage(ltrip = units::as_units(20, "km"), ta = celsius(dt))
#' names(cold_lkm) <- paste0("Month_", 1:12)
#' veh_month <- c(rep(8, 1), rep(10, 5), 9, rep(10, 5))
#' system.time(
#' a <- emis_cold_td(
#' veh = veh,
#' lkm = lkm,
#' ef = efh[1, ],
#' efcold = efc[1:10, ],
#' beta = cold_lkm[, 1],
#' verbose = TRUE
#' )
#' )
#' system.time(
#' a2 <- emis_cold_td(
#' veh = veh,
#' lkm = lkm,
#' ef = efh[1, ],
#' efcold = efc[1:10, ],
#' beta = cold_lkm[, 1],
#' verbose = TRUE,
#' fortran = TRUE
#' )
#' ) # emistd2coldf.f95
#' a$emissions <- round(a$emissions, 8)
#' a2$emissions <- round(a2$emissions, 8)
#' identical(a, a2)
#'
#' # Adding parameters
#' emis_cold_td(
#' veh = veh,
#' lkm = lkm,
#' ef = efh[1, ],
#' efcold = efc[1:10, ],
#' beta = cold_lkm[, 1],
#' verbose = TRUE,
#' params = list(
#' paste0("data_", 1:10),
#' "moredata"
#' )
#' )
#' system.time(
#' aa <- emis_cold_td(
#' veh = veh,
#' lkm = lkm,
#' ef = efh,
#' efcold = efc,
#' beta = cold_lkm,
#' pro_month = veh_month,
#' verbose = TRUE
#' )
#' )
#' system.time(
#' aa2 <- emis_cold_td(
#' veh = veh,
#' lkm = lkm,
#' ef = efh,
#' efcold = efc,
#' beta = cold_lkm,
#' pro_month = veh_month,
#' verbose = TRUE,
#' fortran = TRUE
#' )
#' ) # emistd5coldf.f95
#' aa$emissions <- round(aa$emissions, 8)
#' aa2$emissions <- round(aa2$emissions, 8)
#' identical(aa, aa2)
#' }
emis_cold_td <- function(veh,
lkm,
ef,
efcold,
beta,
pro_month,
params,
verbose = FALSE,
fortran = FALSE,
nt = ifelse(check_nt() == 1, 1, check_nt() / 2)) {
# Check units
if (!inherits(lkm,"units")) {
stop("lkm neeeds to has class 'units' in 'km'. Please, check package '?units::set_units'")
}
if (units(lkm) == units(units::as_units("m"))) {
stop("Units of lkm is 'm', change to 'km'")
}
if (units(lkm) == units(units::as_units("km"))) {
lkm <- as.numeric(lkm)
}
if (length(lkm) != ncol(veh)) stop("Length of 'lkm' must be the as the number of columns of 'veh'")
# Checking ef
if (is.matrix(ef) | is.data.frame(ef)) {
ef <- as.data.frame(ef)
if (!inherits(ef[, 1], "units")) {
stop("columns of ef must has class 'units' in 'g/km'. Please, check package '?units::set_units'")
}
if (units(ef[, 1]) != units(units::as_units("g/km"))) {
stop("Units of ef must be 'g/km' ")
}
if (units(ef[, 1]) == units(units::as_units("g/km"))) {
for (i in 1:ncol(veh)) {
ef[, i] <- as.numeric(ef[, i])
}
}
} else {
if (!inherits(ef, "units")) {
stop("ef must has class 'units' in 'g/km'. Please, check package '?units::set_units'")
}
if (units(ef) != units(units::as_units("g/km"))) {
stop("Units of ef must be 'g/km' ")
}
# if(units(ef)$numerator == "g" || units(ef)$denominator == "km"){ # not tested
# ef <- as.numeric(ef)
# }
}
# Checking ef cold
if (!inherits(efcold[, 1], "units")) {
stop("columns of efcold must has class 'units' in 'g/km'. Please, check package '?units::set_units'")
}
if (units(efcold[, 1]) != units(units::as_units("g/km"))) {
stop("Units of efcold must be 'g/km' ")
}
if (units(efcold[, 1]) == units(units::as_units("g/km"))) {
for (i in 1:ncol(veh)) {
efcold[, i] <- as.numeric(efcold[, i])
}
}
# Checking veh
for (i in 1:ncol(veh)) {
veh[, i] <- as.numeric(veh[, i])
}
# Checking sf
if (inherits(veh, "sf")) {
if (verbose) message("converting sf to data.frame")
veh <- sf::st_set_geometry(veh, NULL)
}
# checking beta
beta <- as.data.frame(beta)
# pro_month
if (!missing(pro_month)) {
if (is.data.frame(pro_month) | is.matrix(pro_month)) {
pro_month <- as.data.frame(pro_month)
for (i in 1:nrow(pro_month)) {
pro_month[i, ] <- pro_month[i, ] / sum(pro_month[i, ])
}
} else if (is.numeric(pro_month)) {
pro_month <- pro_month / sum(pro_month)
}
}
# Checking pro_month
if (!missing(pro_month)) {
if (verbose) message("Estimation with monthly profile")
if (length(pro_month) != 12) stop("Length of pro_month must be 12")
mes <- ifelse(nchar(1:12) < 2, paste0(0, 1:12), 1:12)
if (is.data.frame(ef)) {
if (verbose) message("Assuming you have emission factors for each simple feature and then for each month")
# when pro_month varies in each simple feature
if (is.data.frame(pro_month)) {
if (nrow(pro_month) == 1) {
message("Replicating one-row matrix to match number of rows of `veh`")
pro_month <- matrix(as.numeric(pro_month), nrow = nrow(veh), ncol = ncol(pro_month))
}
if (fortran) {
efcold$month <- rep(1:12, each = nrow(veh))
efcold <- split(efcold[, 1:ncol(veh)], efcold$month)
efcold <- as.numeric(unlist(lapply(efcold, unlist)))
nrowv <- as.integer(nrow(veh))
ncolv <- as.integer(ncol(veh))
pmonth <- as.integer(ncol(pro_month))
lkm <- as.numeric(lkm)
ef <- as.matrix(ef)
month <- as.matrix(pro_month)
beta <- as.matrix(beta)
if (nrow(beta) != nrow(veh)) stop("number of rows of 'beta' and 'veh' must be equal")
if (ncol(beta) != ncol(month)) stop("number of cols of 'beta' and 'month' must be equal")
if (length(efcold) != length(unlist(veh)) * pmonth) stop("`efcold` and `veh` must be dimensionally compatible")
if (length(lkm) != ncol(veh)) stop("length of `lkm` must be equal to number of columns of `veh`")
if (nrow(ef) != nrow(veh)) stop("number of rows of `ef` and `veh` must be equal")
if (ncol(ef) != ncol(veh)) stop("number of cols of `ef` and `veh` must be equal")
if (nrow(month) != nrow(veh)) stop("number of rows of `month` and `veh` must be equal")
# emis(i, j, k) = beta(i, k) * veh(i, j) * lkm(j) * ef(i, j) * efcold(i, j, k) * month(i, k)
if (!missing(nt)) {
if (nt >= check_nt()) {
stop(
"Your machine has ", check_nt(),
" threads and nt must be lower"
)
}
if (verbose) message("Calling emistd4coldfpar.f95")
a <- dotCall64::.C64(
.NAME = "emistd4coldfpar",
SIGNATURE = c(
rep("integer", 3),
rep("double", 6),
"integer", "double"
),
nrowv = nrowv,
ncolv = ncolv,
pmonth = pmonth,
veh = as.matrix(veh),
lkm = lkm,
ef = ef,
efcold = efcold,
beta = beta,
month = month,
nt = as.integer(nt),
emis = dotCall64::vector_dc("double", nrowv * ncolv * pmonth),
INTENT = c(
rep("r", 10), "w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
} else {
if (verbose) message("Calling emistd4coldf.f95")
a <- dotCall64::.C64(
.NAME = "emistd4coldf",
SIGNATURE = c(
rep("integer", 3),
rep("double", 7)
),
nrowv = nrowv,
ncolv = ncolv,
pmonth = pmonth,
veh = as.matrix(veh),
lkm = lkm,
ef = ef,
efcold = efcold,
beta = beta,
month = month,
emis = dotCall64::vector_dc("double", nrowv * ncolv * pmonth),
INTENT = c(
rep("r", 9), "w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
}
e <- data.frame(emissions = a)
e <- Emissions(e)
e$rows <- rep(row.names(veh), ncolv * pmonth)
e$age <- rep(rep(seq(1, ncolv), each = nrowv), pmonth)
e$month <- rep(seq(1, pmonth), each = ncolv * nrowv)
} else {
efcold$month <- rep(1:12, each = nrow(veh))
efcold <- split(efcold, efcold$month)
e <- do.call("rbind", lapply(1:12, function(k) {
dfi <- unlist(lapply(1:ncol(veh), function(j) {
beta[, k] * lkm[j] * veh[, j] * pro_month[, k] * ef[, j] * efcold[[k]][, j]
}))
dfi <- as.data.frame(dfi)
names(dfi) <- "emissions"
dfi <- Emissions(dfi)
dfi$rows <- row.names(veh)
dfi$age <- rep(1:ncol(veh), each = nrow(veh))
dfi$month <- (1:length(pro_month))[k]
dfi
}))
}
} else if (is.numeric(pro_month)) {
if (fortran) {
nrowv <- as.integer(nrow(veh))
ncolv <- as.integer(ncol(veh))
pmonth <- as.integer(length(pro_month))
lkm <- as.numeric(lkm)
ef <- as.matrix(ef[, 1:ncol(veh)])
efcold$month <- rep(1:12, each = nrow(veh))
efcold <- split(efcold[, 1:ncol(veh)], efcold$month)
efcold <- as.numeric(unlist(lapply(efcold, unlist)))
month <- as.numeric(pro_month)
beta <- as.matrix(beta)
if (nrow(beta) != nrow(veh)) stop("number of rows of 'beta' and 'veh' must be equal")
if (ncol(beta) != length(month)) stop("number of cols of 'beta' length of 'month' must be equal")
if (length(efcold) != length(unlist(veh)) * pmonth) stop("`efcold` and `veh` must be dimensionally compatible")
if (length(lkm) != ncol(veh)) stop("length of `lkm` must be equal to number of columns of `veh`")
if (nrow(ef) != nrow(veh)) stop("number of rows of `ef` and `veh` must be equal")
if (ncol(ef) != ncol(veh)) stop("number of cols of `ef` and `veh` must be equal")
# emis(i, j, k) = beta(i, k) * veh(i, j) * lkm(j) * ef(i, j) * efcold(i, j, k) * month(k)
if (!missing(nt)) {
if (nt >= check_nt()) {
stop(
"Your machine has ", check_nt(),
" threads and nt must be lower"
)
}
if (verbose) message("Calling emistd5coldfpar.f95")
a <- dotCall64::.C64(
.NAME = "emistd5coldfpar",
SIGNATURE = c(
rep("integer", 3),
rep("double", 6),
"integer", "double"
),
nrowv = nrowv,
ncolv = ncolv,
pmonth = pmonth,
veh = as.matrix(veh),
lkm = lkm,
ef = ef,
ef = efcold,
beta = beta,
month = month,
nt = as.integer(nt),
emis = dotCall64::vector_dc("double", nrowv * ncolv * pmonth),
INTENT = c(
rep("r", 10), "w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
} else {
if (verbose) message("Calling emistd5coldf.f95")
a <- dotCall64::.C64(
.NAME = "emistd5coldf",
SIGNATURE = c(
rep("integer", 3),
rep("double", 7)
),
nrowv = nrowv,
ncolv = ncolv,
pmonth = pmonth,
veh = as.matrix(veh),
lkm = lkm,
ef = ef,
ef = efcold,
beta = beta,
month = month,
emis = dotCall64::vector_dc("double", nrowv * ncolv * pmonth),
INTENT = c(
rep("r", 9), "w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
}
e <- data.frame(emissions = a)
e <- Emissions(e)
e$rows <- rep(row.names(veh), ncolv * pmonth)
e$age <- rep(rep(seq(1, ncolv), each = nrowv), pmonth)
e$month <- rep(seq(1, pmonth), each = ncolv * nrowv)
} else {
efcold$month <- rep(1:12, each = nrow(veh))
efcold <- split(efcold, efcold$month)
e <- do.call("rbind", lapply(1:12, function(k) {
dfi <- unlist(lapply(1:ncol(veh), function(j) {
beta[, k] * lkm[j] * veh[, j] * pro_month[k] * ef[, j] * efcold[[k]][, j]
}))
dfi <- as.data.frame(dfi)
names(dfi) <- "emissions"
dfi <- Emissions(dfi)
dfi$rows <- row.names(veh)
dfi$age <- rep(1:ncol(veh), each = nrow(veh))
dfi$month <- (1:length(pro_month))[k]
dfi
}))
}
}
if (!missing(params)) {
if (!is.list(params)) stop("'params' must be a list")
if (is.null(names(params))) {
if (verbose) message("Adding names to params")
names(params) <- paste0("P_", 1:length(params))
}
for (i in 1:length(params)) {
e[, names(params)[i]] <- params[[i]]
}
}
if (verbose) cat("Sum of emissions:", sum(e$emissions), "\n")
} else {
# ef inherits numeric
if (verbose) message("Assuming you have emission factors for each simple feature and then for each month")
# when pro_month vary each month
if (is.data.frame(pro_month)) {
if (nrow(pro_month) == 1) {
message("Replicating one-row matrix to match number of rows of `veh`")
pro_month <- matrix(as.numeric(pro_month), nrow = nrow(veh), ncol = ncol(pro_month))
}
if (fortran) {
nrowv <- as.integer(nrow(veh))
ncolv <- as.integer(ncol(veh))
pmonth <- as.integer(ncol(pro_month))
lkm <- as.numeric(lkm)
ef <- as.numeric(ef)
efcold$month <- rep(1:12, each = nrow(veh))
efcold <- split(efcold[, 1:ncol(veh)], efcold$month)
efcold <- as.numeric(unlist(lapply(efcold, unlist)))
month <- as.matrix(pro_month)
beta <- as.matrix(beta)
if (nrow(beta) != nrow(veh)) stop("number of rows of 'beta' and 'veh' must be equal")
if (ncol(beta) != ncol(month)) stop("number of cols of 'beta' and 'month' must be equal")
if (length(efcold) != length(unlist(veh)) * pmonth) stop("`efcold` and `veh` must be dimensionally compatible")
if (length(lkm) != ncol(veh)) stop("length of `lkm` must be equal to number of columns of `veh`")
if (length(ef) != ncol(veh)) stop("length of `ef` and number of cols of `veh` must be equal")
if (nrow(month) != nrow(veh)) stop("number of rows of `month` and `veh` must be equal")
# emis(i, j, k) = beta(i, k) * veh(i, j) * lkm(j) * ef(j) * efcold(i, j, k) * month(i, k)
if (!missing(nt)) {
if (nt >= check_nt()) {
stop(
"Your machine has ", check_nt(),
" threads and nt must be lower"
)
}
if (verbose) message("Calling emistd6coldfpar.f95")
a <- dotCall64::.C64(
.NAME = "emistd6coldfpar",
SIGNATURE = c(
rep("integer", 3),
rep("double", 6),
"integer", "double"
),
nrowv = nrowv,
ncolv = ncolv,
pmonth = pmonth,
veh = as.matrix(veh),
lkm = lkm,
ef = ef,
ef = efcold,
beta = beta,
month = month,
nt = as.integer(nt),
emis = dotCall64::vector_dc("double", nrowv * ncolv * pmonth),
INTENT = c(
rep("r", 10), "w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
} else {
if (verbose) message("Calling emistd6coldf.f95")
a <- dotCall64::.C64(
.NAME = "emistd6coldf",
SIGNATURE = c(
rep("integer", 3),
rep("double", 7)
),
nrowv = nrowv,
ncolv = ncolv,
pmonth = pmonth,
veh = as.matrix(veh),
lkm = lkm,
ef = ef,
ef = efcold,
beta = beta,
month = month,
emis = dotCall64::vector_dc("double", nrowv * ncolv * pmonth),
INTENT = c(
rep("r", 9), "w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
}
e <- data.frame(emissions = a)
e <- Emissions(e)
e$rows <- rep(row.names(veh), ncolv * pmonth)
e$age <- rep(rep(seq(1, ncolv), each = nrowv), pmonth)
e$month <- rep(seq(1, pmonth), each = ncolv * nrowv)
} else {
efcold$month <- rep(1:12, each = nrow(veh))
efcold <- split(efcold, efcold$month)
e <- do.call("rbind", lapply(1:12, function(k) {
dfi <- unlist(lapply(1:ncol(veh), function(j) {
beta[, k] * lkm[j] * veh[, j] * pro_month[, k] * ef[j] * efcold[[k]][, j]
}))
dfi <- as.data.frame(dfi)
names(dfi) <- "emissions"
dfi <- Emissions(dfi)
dfi$rows <- row.names(veh)
dfi$age <- rep(1:ncol(veh), each = nrow(veh))
dfi$month <- (1:length(pro_month))[k]
dfi
}))
}
} else if (is.numeric(pro_month)) {
if (fortran) {
nrowv <- as.integer(nrow(veh))
ncolv <- as.integer(ncol(veh))
pmonth <- as.integer(length(pro_month))
lkm <- as.numeric(lkm)
ef <- as.numeric(ef)
efcold <- split(efcold[, 1:ncol(veh)], efcold[ncol(efcold)])
efcold <- as.numeric(unlist(lapply(efcold, unlist)))
month <- as.numeric(pro_month)
beta <- as.matrix(beta)
if (nrow(beta) != nrow(veh)) stop("number of rows of 'beta' and 'veh' must be equal")
if (ncol(beta) != length(month)) stop("number of cols of 'beta' length of 'month' must be equal")
if (length(efcold) != length(unlist(veh)) * pmonth) stop("`efcold` and `veh` must be dimensionally compatible")
if (length(lkm) != ncol(veh)) stop("length of `lkm` must be equal to number of columns of `veh`")
if (length(ef) != ncol(veh)) stop("number of rows of `ef` and `veh` must be equal")
# emis(i, j, k) = beta(i, k) * veh(i, j) * lkm(j) * ef(j) * efcold(i, j, k) * month(k)
if (!missing(nt)) {
if (nt >= check_nt()) {
stop(
"Your machine has ", check_nt(),
" threads and nt must be lower"
)
}
if (verbose) message("Calling emistd3coldfpar.f95")
a <- dotCall64::.C64(
.NAME = "emistd3coldfpar",
SIGNATURE = c(
rep("integer", 3),
rep("double", 6),
"integer", "double"
),
nrowv = nrowv,
ncolv = ncolv,
pmonth = pmonth,
veh = as.matrix(veh),
lkm = lkm,
ef = ef,
ef = efcold,
beta = beta,
month = month,
nt = as.integer(nt),
emis = dotCall64::vector_dc("double", nrowv * ncolv * pmonth),
INTENT = c(
rep("r", 10), "w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
} else {
if (verbose) message("Calling emistd3coldf.f95")
a <- dotCall64::.C64(
.NAME = "emistd3coldf",
SIGNATURE = c(
rep("integer", 3),
rep("double", 7)
),
nrowv = nrowv,
ncolv = ncolv,
pmonth = pmonth,
veh = as.matrix(veh),
lkm = lkm,
ef = ef,
ef = efcold,
beta = beta,
month = month,
emis = dotCall64::vector_dc("double", nrowv * ncolv * pmonth),
INTENT = c(
rep("r", 9), "w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
}
e <- data.frame(emissions = a)
e <- Emissions(e)
e$rows <- rep(row.names(veh), ncolv * pmonth)
e$age <- rep(rep(seq(1, ncolv), each = nrowv), pmonth)
e$month <- rep(seq(1, pmonth), each = ncolv * nrowv)
} else {
efcold$month <- rep(1:12, each = nrow(veh))
efcold <- split(efcold, efcold$month)
e <- do.call("rbind", lapply(1:12, function(k) {
dfi <- unlist(lapply(1:ncol(veh), function(j) {
beta[, k] * lkm[j] * veh[, j] * pro_month[k] * ef[j] * efcold[[k]][, j]
t
}))
dfi <- as.data.frame(dfi)
names(dfi) <- "emissions"
dfi <- Emissions(dfi)
dfi$rows <- row.names(veh)
dfi$age <- rep(1:ncol(veh), each = nrow(veh))
dfi$month <- (1:length(pro_month))[k]
dfi
}))
}
}
if (!missing(params)) {
if (!is.list(params)) stop("'params' must be a list")
if (is.null(names(params))) {
if (verbose) message("Adding names to params")
names(params) <- paste0("P_", 1:length(params))
}
for (i in 1:length(params)) {
e[, names(params)[i]] <- params[[i]]
}
}
if (verbose) cat("Sum of emissions:", sum(e$emissions), "\n")
}
} else {
if (verbose) message("Estimation without monthly profile")
if (fortran) {
nrowv <- as.integer(nrow(veh))
ncolv <- as.integer(ncol(veh))
lkm <- as.numeric(lkm)
ef <- as.numeric(ef)
efcold <- as.matrix(efcold[, 1:ncol(veh)])
beta <- as.numeric(unlist(beta))
if (length(beta) != nrow(veh)) stop("length of 'beta' and number of rows of 'veh' must be equal")
if (nrow(efcold) != nrow(veh)) stop("number of rows of 'efcold' and 'veh' must be equal")
if (ncol(efcold) != ncol(veh)) stop("number of cols of 'efcold' and 'veh' must be equal")
if (length(lkm) != ncol(veh)) stop("length of `lkm` must be equal to number of columns of `veh`")
if (length(ef) != ncol(veh)) stop("number of rows of `ef` and `veh` must be equal")
# emis(i, j) = beta(i) * veh(i, j) * lkm(j) * ef(j) * efcold(i, j)
if (!missing(nt)) {
if (nt >= check_nt()) {
stop(
"Your machine has ", check_nt(),
" threads and nt must be lower"
)
}
if (verbose) message("Calling emistd2coldfpar.f95")
a <- dotCall64::.C64(
.NAME = "emistd2coldfpar",
SIGNATURE = c(
rep("integer", 2),
rep("double", 5),
"integer", "double"
),
nrowv = nrowv,
ncolv = ncolv,
veh = as.matrix(veh),
lkm = lkm,
ef = ef,
ef = efcold,
beta = beta,
nt = as.integer(nt),
emis = dotCall64::vector_dc("double", nrowv * ncolv),
INTENT = c(
rep("r", 8), "w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
} else {
if (verbose) message("Calling emistd2coldf.f95")
a <- dotCall64::.C64(
.NAME = "emistd2coldf",
SIGNATURE = c(
rep("integer", 2),
rep("double", 6)
),
nrowv = nrowv,
ncolv = ncolv,
veh = as.matrix(veh),
lkm = lkm,
ef = ef,
ef = efcold,
beta = beta,
emis = dotCall64::vector_dc("double", nrowv * ncolv),
INTENT = c(
rep("r", 7), "w"
),
PACKAGE = "vein",
VERBOSE = 1
)$emis
}
e <- data.frame(emissions = a)
e <- Emissions(e)
e$rows <- rep(row.names(veh), ncolv)
e$age <- rep(seq(1, ncolv), each = nrowv)
} else {
e <- unlist(lapply(1:ncol(veh), function(j) {
unlist(beta) * as.numeric(lkm[j]) * veh[, j] * as.numeric(ef[j]) * as.numeric(efcold[, j])
}))
e <- as.data.frame(e)
names(e) <- "emissions"
e <- Emissions(e)
e$rows <- row.names(veh)
e$age <- rep(1:ncol(veh), each = nrow(veh))
}
if (!missing(params)) {
if (!is.list(params)) stop("'params' must be a list")
if (is.null(names(params))) {
if (verbose) message("Adding names to params")
names(params) <- paste0("P_", 1:length(params))
}
for (i in 1:length(params)) {
e[, names(params)[i]] <- params[[i]]
}
}
if (verbose) cat("Sum of emissions:", sum(e$emissions), "\n")
}
return(e)
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/emis_cold_td.R
|
#' Determine deterioration factors for urban conditions
#'
#' @description \code{\link{emis_det}} returns deterioration factors. The emission
#' factors comes from the guidelines for developing emission factors of the
#' EMEP/EEA air pollutant emission inventory guidebook
#' http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook
#' This function subset an internal database of emission factors with each argument
#'
#' @param po Character; Pollutant "CO", "NOx" or "HC"
#' @param cc Character; Size of engine in cc covering "<=1400", "1400_2000" or ">2000"
#' @param eu Character; Euro standard: "I", "II", "III", "III", "IV", "V", "VI", "VIc"
#' @param speed Numeric; Speed to return Number of emission factor and not a function.
#' It needs units in km/h
#' @param km Numeric; accumulated mileage in km.
#' @param verbose Logical; To show more information
#' @param show.equation Option to see or not the equation parameters
#' @return It returns a numeric vector representing the increase in emissions due to normal deterioring
#' @keywords deterioration emission factors
#' @note The deterioration factors functions are available for technologies
#' euro "II", "III" and "IV". In order to cover all euro technologies, this
#' function assumes that the deterioration function of "III" and "IV" applies
#' for "V", "VI" and "VIc". However, as these technologies are relative
#' new, accumulated milage is low and hence, deteerioration factors small.
#' @export
#' @examples \dontrun{
#' data(fkm)
#' pckm <- fkm[[1]](1:24); pckma <- cumsum(pckm)
#' km <- units::set_units(pckma[1:11], km)
#' # length eu = length km = 1
#' emis_det(po = "CO", cc = "<=1400", eu = "III", km = km[5], show.equation = TRUE)
#' # length eu = length km = 1, length speed > 1
#' emis_det(po = "CO", cc = "<=1400", eu = "III", km = km[5], speed = Speed(1:10))
#' # length km != length eu error
#' # (cod1 <- emis_det(po = "CO", cc = "<=1400", eu = c("III", "IV"), speed = Speed(30),
#' # km = km[4]))
#' # length eu = 1 length km > 1
#' emis_det(po = "CO", cc = "<=1400", eu = "III", km = km)
#' # length eu = 2, length km = 2 (if different length, error!)
#' (cod1 <- emis_det(po = "CO", cc = "<=1400", eu = c("III", "IV"), km = km[4:5]))
#' # length eu = 2, length km = 2, length speed > 1
#' (cod1 <- emis_det(po = "CO", cc = "<=1400", eu = c("III", "IV"), speed = Speed(0:130),
#' km = km[4:5]))
#' euros <- c("V","V","V", "IV", "IV", "IV", "III", "III", "III", "III")
#' # length eu = 2, length km = 2, length speed > 1
#' (cod1 <- emis_det(po = "CO", cc = "<=1400", eu = euros, speed = Speed(1:100),
#' km = km[1:10]))
#' cod1 <- as.matrix(cod1[, 1:11])
#' filled.contour(cod1, col = cptcity::cpt(6277, n = 20))
#' filled.contour(cod1, col = cptcity::lucky(n = 19))
#' euro <- c(rep("V", 5), rep("IV", 5), "III")
#' euros <- rbind(euro, euro)
#' (cod1 <- emis_det(po = "CO", cc = "<=1400", eu = euros, km = km))
#' }
emis_det <- function(po,
cc,
eu,
speed = Speed(18.9),
km,
verbose = FALSE,
show.equation = FALSE) {
ldv_det <- sysdata$ldv_det
# Check km
if(!inherits(km, "units")){
stop("km neeeds to has class 'units' in 'km'. Please, check package '?units::set_units'")
}
if(units(km) == units(units::as_units("m"))){
stop("Units of km is 'm', change to 'km'")
}
if(units(km) == units(units::as_units("km"))) {
km <- as.numeric(km)
}
#Check cc
if(is.numeric(cc)){
cc <- ifelse(cc <= 1400, "<=1400",
ifelse(cc >= 1400 & cc < 2000,
"1400_2000", ">2000"
))
}
#Check eu
if(is.matrix(eu) | is.data.frame(eu)){
eu <- as.data.frame(eu)
for(i in 1:ncol(eu)) eu[, i] <- as.character(eu[, i])
} else {
eu = as.character(eu)
}
if(!inherits(speed, "units")){
stop("speed neeeds to has class 'units' in 'km/h'. Please, check package '?units::set_units'")
}
if(units(speed) != units(units::as_units("km/h"))){
stop("Units of speed must be 'km/h' ")
}
if(units(speed) == units(units::as_units("km/h"))){
speed <- as.numeric(speed)
}
if(!is.data.frame(eu)){
if (any(eu %in% c("V", "VI", "VIc"))) {
if (verbose) message("Assuming the same deterioration as euro III and IV")
}
if (length(eu) == 1 & length(km) == 1){
df <- ldv_det[ldv_det$POLLUTANT == po &
ldv_det$CC == cc &
ldv_det$EURO == eu, ]
if (show.equation) {
cat(paste0("b = ", df$b, ", c = ", df$c, ", MAX MC URBAN = ", df$d,
", \nf = ", df$f,", g = ", df$g , ", MAX MC ROAD = ", df$h, "\n"))
cat("V < 19: MC_URBAN = b*km + c\n")
cat("V >= 63: MC_ROAD = f*km + g\n")
cat("19 <= V < 63: MC_URBAN + (V - 19)*(MC_ROAD - MC_URBAN)/44\n")
}
f1 <- function(V, km){
a <- df$a; b <- df$b; c <- df$c; d <- df$d;
e <- df$e; f <- df$f; g <- df$g; h <- df$h
MC_URBAN <- ifelse(km<a, b*km+c, d)
MC_ROAD <- ifelse(km<e, f*km+g, h)
ifelse(
V<19, MC_URBAN,
ifelse(V>63, MC_ROAD,
MC_URBAN + (V - 19)*(MC_ROAD - MC_URBAN)/44))
}
mc <- f1(V = speed, km = km)
if(length(speed) > 1) {
if(verbose) message("As speed has many values, this a data.frame")
mc <- as.data.frame(mc)
mc$speed <- Speed(speed)
}
return(mc)
} else if(length(km) > 1 & length(eu) == 1){
if(length(eu) > length(km)) stop("length 'eu' cant be bigger than length 'km'")
mc <- lapply(1:length(km), function(i){
df <- ldv_det[ldv_det$POLLUTANT == po &
ldv_det$CC == cc &
ldv_det$EURO == eu, ]
f1 <- function(V, km){
a <- df$a; b <- df$b; c <- df$c; d <- df$d;
e <- df$e; f <- df$f; g <- df$g; h <- df$h
MC_URBAN <- ifelse(km<a, b*km+c, d)
MC_ROAD <- ifelse(km<e, f*km+g, h)
ifelse(
V<19, MC_URBAN,
ifelse(V>63, MC_ROAD,
MC_URBAN + (V - 19)*(MC_ROAD - MC_URBAN)/44))
}
ifelse(f1(V = speed, km = km[i]) < 1 , 1 ,
f1(V = speed, km = km[i]))
})
if(length(speed) > 1) {
if(verbose) message("As speed has many values, this a data.frame")
mc <- do.call("cbind", mc)
mc <- as.data.frame(mc)
names(mc) <- paste0("km", 1:length(km))
mc$speed <- Speed(speed)
} else {
if(verbose) message("As speed has 1 value, this a vector")
mc <- unlist(mc)
}
return(mc)
} else if(length(km) > 1 & length(eu) > 1){
if(length(eu) != length(km)) stop("length 'eu' cant be bigger than length 'km'")
mc <- lapply(1:length(km), function(i){
df <- ldv_det[ldv_det$POLLUTANT == po &
ldv_det$CC == cc &
ldv_det$EURO == eu[i], ]
f1 <- function(V, km){
a <- df$a; b <- df$b; c <- df$c; d <- df$d;
e <- df$e; f <- df$f; g <- df$g; h <- df$h
MC_URBAN <- ifelse(km<a, b*km+c, d)
MC_ROAD <- ifelse(km<e, f*km+g, h)
ifelse(
V<19, MC_URBAN,
ifelse(V>63, MC_ROAD,
MC_URBAN + (V - 19)*(MC_ROAD - MC_URBAN)/44))
}
ifelse(f1(V = speed, km = km[i]) < 1 , 1 ,
f1(V = speed, km = km[i]))
})
if(length(speed) > 1) {
if(verbose) message("As speed has many values, this a data.frame")
mc <- do.call("cbind", mc)
mc <- as.data.frame(mc)
names(mc) <- paste0("km", 1:length(km))
mc$speed <- Speed(speed)
} else {
if(verbose) message("As speed has 1 value, this a vector")
mc <- unlist(mc)
}
return(mc)
} else {
# print("aqui")
f1 <- function(V, km){
a <- df$a; b <- df$b; c <- df$c; d <- df$d;
e <- df$e; f <- df$f; g <- df$g; h <- df$h
MC_URBAN <- ifelse(km<a, b*km+c, d)
MC_ROAD <- ifelse(km<e, f*km+g, h)
ifelse(
V<19, MC_URBAN,
ifelse(V>63, MC_ROAD,
MC_URBAN + (V - 19)*(MC_ROAD - MC_URBAN)/44))
}
mc <- ifelse(f1(V = speed, km = km) <1, 1, f1(V = speed, km = km))
return(mc)
if(length(speed) > 1) {
if(verbose) message("As speed has many values, this a data.frame")
mc <- do.call("cbind", mc)
mc <- as.data.frame(mc)
mc$speed <- Speed(speed)
} else {
if(verbose) message("As speed has 1 value, this a vector")
mc <- unlist(mc)
}
}
return(mc)
} else if(is.data.frame(eu) & !is.data.frame(km)){
if(ncol(eu) != length(km)) stop("Length of km must be the same as number of columns of 'eu'")
mc <- do.call("rbind", lapply(1:nrow(eu), function(j){
dff <- do.call("cbind", lapply(1:ncol(eu), function(i){
df <- ldv_det[ldv_det$POLLUTANT == po &
ldv_det$CC == cc &
ldv_det$EURO == eu[j,i], ]
f1 <- function(V, km){
a <- df$a; b <- df$b; c <- df$c; d <- df$d;
e <- df$e; f <- df$f; g <- df$g; h <- df$h
MC_URBAN <- ifelse(km<a, b*km+c, d)
MC_ROAD <- ifelse(km<e, f*km+g, h)
ifelse(
V<19, MC_URBAN,
ifelse(V>63, MC_ROAD,
MC_URBAN + (V - 19)*(MC_ROAD - MC_URBAN)/44))
}
ifelse(f1(V = speed, km = km[i]) < 1 , 1 ,
f1(V = speed, km = km[i]))
}))
if(verbose) message("as 'eu' is a data.frame, this is a data.frame")
dff <- as.data.frame(dff)
dff$speed <- Speed(speed)
dff
}))
return(mc)
} else if(is.data.frame(eu) & is.data.frame(km)){
mc <- do.call("rbind", lapply(1:nrow(eu), function(j){
mc <- do.call("cbind", lapply(1:ncol(eu), function(i){
df <- ldv_det[ldv_det$POLLUTANT == po &
ldv_det$CC == cc &
ldv_det$EURO == eu[j,i], ]
f1 <- function(V, km){
a <- df$a; b <- df$b; c <- df$c; d <- df$d;
e <- df$e; f <- df$f; g <- df$g; h <- df$h
MC_URBAN <- ifelse(km<a, b*km+c, d)
MC_ROAD <- ifelse(km<e, f*km+g, h)
ifelse(
V<19, MC_URBAN,
ifelse(V>63, MC_ROAD,
MC_URBAN + (V - 19)*(MC_ROAD - MC_URBAN)/44))
}
ifelse(f1(V = speed, km = km[i,j]) < 1 , 1 ,
f1(V = speed, km = km[i,j]))
}))
if(verbose) message("as 'eu' is a data.frame, this is a data.frame")
mc <- as.data.frame(mc)
mc$speed <- Speed(speed)
}))
return(mc)
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/emis_det.R
|
#' Allocate emissions into spatial objects (street emis to grid)
#'
#' @description \code{\link{emis_dist}} allocates emissions proportionally to
#' each feature. "Spatial" objects are converter to "sf" objects. Currently,
#' 'LINESTRING' or 'MULTILINESTRING' supported. The emissions are distributed
#' in each street.
#'
#' @param gy Numeric; a unique total (top-down)
#' @param spobj A spatial dataframe of class "sp" or "sf". When class is "sp"
#' it is transformed to "sf".
#' @param pro Matrix or data-frame profiles, for instance, pc_profile.
#' @param osm Numeric; vector of length 5, for instance, c(5, 3, 2, 1, 1).
#' The first element covers 'motorway' and 'motorway_link.
#' The second element covers 'trunk' and 'trunk_link'.
#' The third element covers 'primary' and 'primary_link'.
#' The fourth element covers 'secondary' and 'secondary_link'.
#' The fifth element covers 'tertiary' and 'tertiary_link'.
#' @param verbose Logical; to show more info.
#' @importFrom sf st_sf st_as_sf st_length st_geometry_type st_set_geometry
#' @importFrom units as_units
#' @export
#' @note When spobj is a 'Spatial' object (class of sp), they are converted
#' into 'sf'.
#' @examples \dontrun{
#' data(net)
#' data(pc_profile)
#' po <- 1000
#' t1 <- emis_dist(gy = po, spobj = net)
#' head(t1)
#' sum(t1$gy)
#' #t1 <- emis_dist(gy = po, spobj = net, osm = c(5, 3, 2, 1, 1) )
#' t1 <- emis_dist(gy = po, spobj = net, pro = pc_profile)
#' }
emis_dist <- function(gy,
spobj,
pro,
osm,
verbose = FALSE){
net <- sf::st_as_sf(spobj)
if(any(
!unique(as.character(
sf::st_geometry_type(net))) %in% c("LINESTRING", "MULTILINESTRING"))){
stop("Currently, geometries supported are 'LINESTRING' or 'MULTILINESTRING'")
}
net$lkm1 <- as.numeric(sf::st_length(net))
geo <- suppressMessages(suppressWarnings(sf::st_geometry(net)))
lkm <- net$lkm1/sum(net$lkm1)
e_street <- lkm*as.numeric(gy)
# PROFILE SECTION
if(missing(pro) & missing(osm)){
if(verbose) message("Selecting column geometry")
net <- net[, "geometry"]
net$emission <- e_street
if(verbose) cat("Columns:", names(net), "\n")
return(net)
}
if(!missing(pro) & missing(osm)){
pro <- pro/sum(pro)
df <- as.data.frame(as.matrix(e_street) %*% matrix(unlist(pro), nrow = 1))
net <- sf::st_sf(df, geometry = geo)
if(verbose) {
cat(paste0("Columns: ",names(net),"\n"))
}
return(net)
}
if(missing(pro) & !missing(osm)){
if(!"highway" %in% names(net)) stop("Need OpenStreetMap network with colum highway")
if(verbose) message("Selecting column highway")
net <- net[,c("highway", "lkm1")]
st <- c("motorway", "motorway_link",
"trunk", "trunk_link",
"primary", "primary_link",
"secondary", "secondary_link",
"tertiary", "tertiary_link")
if(verbose) cat("Selecting:", st, "\n")
net <- net[net$highway %in% st, ]
# if(length(osm) != 5) stop("length of osm must be 5")
osm <- osm/sum(osm)
#motorway
net_m <- net[net$highway %in% st[1:2], ]
net_m$gy <- net_m$lkm1 / sum(net_m$lkm1) * gy * osm[1]
#trunk
net_t <- net[net$highway %in% st[3:4], ]
net_t$gy <- net_t$lkm1 / sum(net_t$lkm1) * gy * osm[2]
#primary
net_p <- net[net$highway %in% st[5:6], ]
net_p$gy <- net_p$lkm1 / sum(net_p$lkm1) * gy * osm[3]
#secondary
net_s <- net[net$highway %in% st[7:8], ]
net_s$gy <- net_s$lkm1 / sum(net_s$lkm1) * gy * osm[4]
#tertiary
net_te <- net[net$highway %in% st[9:10], ]
net_te$gy <- net_te$lkm1 / sum(net_te$lkm1) * gy * osm[5]
net_all <- rbind(net_m, net_t, net_p, net_s, net_te)
net_all <- net_all[, c("gy", "highway")]
names(net_all) <- c("emission", "highway", "geometry")
if(verbose) cat("Columns:", names(net_all), "\n")
return(net_all)
}
if(!missing(pro) & !missing(osm)){
if(!"highway" %in% names(net)) stop("Need OpenStreetMap network with colum highway")
if(verbose) message("Selecting column highway")
net <- net[,c("highway", "lkm1")]
st <- c("motorway", "motorway_link",
"trunk", "trunk_link",
"primary", "primary_link",
"secondary", "secondary_link",
"tertiary", "tertiary_link")
if(verbose) cat("Selecting:", st, "\n")
net <- net[net$highway %in% st, ]
pro <- pro/sum(pro)
# if(length(osm) != 5) stop("length of osm must be 5")
osm <- osm/sum(osm)
#motorway
net_m <- net[net$highway %in% st[1:2], ]
net_m$gy <- net_m$lkm1 / sum(net_m$lkm1) * gy * osm[1]
#trunk
net_t <- net[net$highway %in% st[3:4], ]
net_t$gy <- net_t$lkm1 / sum(net_t$lkm1) * gy * osm[2]
#primary
net_p <- net[net$highway %in% st[5:6], ]
net_p$gy <- net_p$lkm1 / sum(net_p$lkm1) * gy * osm[3]
#secondary
net_s <- net[net$highway %in% st[7:8], ]
net_s$gy <- net_s$lkm1 / sum(net_s$lkm1) * gy * osm[4]
#tertiary
net_te <- net[net$highway %in% st[9:10], ]
net_te$gy <- net_te$lkm1 / sum(net_te$lkm1) * gy * osm[5]
net_all <- rbind(net_m, net_t, net_p, net_s, net_te)
df <- as.data.frame(as.matrix(net_all$gy) %*% matrix(unlist(pro), nrow = 1))
df$highway <- net_all$highway
net_all <- sf::st_sf(df, geometry = sf::st_geometry(net_all))
if(verbose) {
cat("Columns: ", names(net_all), "\n")
}
return(net_all)
}
}
|
/scratch/gouwar.j/cran-all/cranData/vein/R/emis_dist.R
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.