content
stringlengths
0
14.9M
filename
stringlengths
44
136
# calculate sentiment score for each word and return compound scores for string polarity_scores <- function(text){ #split text into vector of single words wpe <- wordsPlusEmo(text) sentiments <- NULL for(i in seq_along(wpe)) { if(neu_set == T) {valence <- 0} else {valence <- NA} item <- tolower(wpe[i]) #check if item is in booster diction (single words) if(item %in% names(BOOSTER_DICT)){ sentiments[i] <- valence # sentiments <- c(sentiments, valence) } #check if item is in booster diction (compound words) else if(i < length(wpe) && item == "kind" && tolower(wpe[i+1]) == "of"){ sentiments[i] <- valence } #check if item is in Vader dictionary else if(item %in% vaderLexicon$V1){ sentiments[i] <-senti_valence(wpe, i, item) ### leaves NA for scoreless words } #check if item is in idiom diction (non-vader section) else if(item %in% unlist(strsplit(tm::removeWords(names(IDIOMS), stopwords("en")), " "))){ sentiments[i] <- idioms_check(wpe, i, valence, non_dic = T) } ############ ADDED THIS LINE TO COUNT NEUTRAL WORDS (WHICH DON'T EXIST IN VADER LEXICON) else { sentiments[i] <- valence } } # modify results if "but" appears in text but_results <- but_check(wpe, sentiments) sentiments <- unlist(but_results[1]) names(sentiments) <- NULL but_count <- unlist(but_results[2]) #return list of scores for each word in text word_scores <- paste0("{",paste(sentiments,collapse = ", "), "}") names(word_scores) <- "word_scores" # send sentiment vector and text to function to analyze compound and individual affect (positive, negative, and neutral) scores valence_dict <- score_val(sentiments, text) # return results results <- c(word_scores, valence_dict, but_count) return(results) }
/scratch/gouwar.j/cran-all/cranData/vader/R/vader_sentiment_vector.R
# Return a float for sentiment strength based on the input text for each word. # Positive values are positive valence, negative value are negative valence. ################################## # senti_valence helper functions # ################################## #raw vader score with modification for ALL CAPS in mixed string get_vader_score <- function(item){ # get raw vader score vrow <- which(vaderLexicon$V1==item) valence <- vaderLexicon[vrow,2] return(valence) } ################################## #check for "no" as modifier no_check <- function(wpe, i, item, valence){ if(item == "no" && (i < length(wpe) && tolower(wpe[i+1]) %in% vaderLexicon$V1) || item == "no" && (i < length(wpe)-1 && tolower(wpe[i+2]) %in% vaderLexicon$V1) || item == "no" && (i < length(wpe)-2 && tolower(wpe[i+3]) %in% vaderLexicon$V1 && tolower(wpe[i+2]) %in% c("or", "nor"))) { valence <- 0 } if((i > 1 && tolower(wpe[i-1]) == "no") || (i > 2 && tolower(wpe[i-2]) == "no") || (i > 3 && tolower(wpe[i-3]) == "no" && tolower(wpe[i-1]) == "or")) { # nor is already a negation modifier valence <- get_vader_score(item) * N_SCALAR } return(valence) } ################################## #idiom dictionary check dic_check <- function(idiomLength, checkMe, checkIdiom){ dicCheck <- paste0(idiomLength, collapse = '$|^') dicCheck <- paste0('^', dicCheck, '$') #add word boundary to start and end of vector dicCheck <- grep(dicCheck, vaderLexicon$V1) dicCheck <- vaderLexicon[dicCheck, 1] for(d in 1:length(dicCheck)) {names(dicCheck)[d] <- grep(dicCheck[d], idiomLength)} if(min(names(dicCheck))==names(dicCheck[grep(checkMe, dicCheck)])) {valence <- IDIOMS[grep(checkIdiom, names(IDIOMS))]} else {valence <- NA} return(valence) } dic_check_nd <- function(idiomLength, checkIdiom) { div <- tm::removeWords(idiomLength, stopwords("en")) div <- length(div[div != ""]) valence <- IDIOMS[grep(checkIdiom, names(IDIOMS))] / div return(valence) } #check idiom words idioms_check <- function(wpe, i, valence, non_dic = F){ myStrSplit <- unlist(strsplit(tolower(wpe), " ")) # if text is only 1 word, then we shouldn't check idioms if(length(myStrSplit) > 1){ if(length(grep("[[:punct:]]", myStrSplit)) == 0){ checkMe <- paste0("\\b", myStrSplit[i], "\\b") if(length(grep(checkMe, names(IDIOMS))) > 0) { checkIdiom <- NULL strIndex <- i found <- grep(checkMe, names(IDIOMS)) for(f in 1:length(found)){ idiomLength <- unlist(strsplit(names(IDIOMS)[found[f]], " ")) if(length(idiomLength) < 3) { checkIdiom <- paste0(paste(myStrSplit[strIndex], myStrSplit[strIndex+1]),"|",paste(myStrSplit[strIndex-1], myStrSplit[strIndex])) } else { checkIdiom <- paste0(paste(myStrSplit[strIndex], myStrSplit[strIndex+1], myStrSplit[strIndex+2]), "|", paste(myStrSplit[strIndex-1], myStrSplit[strIndex], myStrSplit[strIndex+1])) if(i > 1) {checkIdiom <- paste0(checkIdiom, "|", paste(myStrSplit[strIndex-2], myStrSplit[strIndex-1], myStrSplit[strIndex]))} } if(length(grep(checkIdiom, names(IDIOMS))) > 0) { if(non_dic == F) {valence <- dic_check(idiomLength, checkMe, checkIdiom)} else if(!any(idiomLength %in% vaderLexicon$V1)) {valence <- dic_check_nd(idiomLength, checkIdiom)} break } } } } } return(valence) } ################################## # Check whether ALL words or just SOME words in the input are ALL CAPS # n.b. ^ = start of str, +$ = until end of str (otherwise checks if ANY letter is cap, and not whole word) allcap_diff <- function(words){ is_upper <- 0 incl_abc <- 0 ### ADDED this b/c "I WANT MY 100" would: for(i in 1:length(words)){ ### be mixed if comparing is_upper to length(words) BUT if(grepl("[[:alpha:]]", words[i])) { ### be all caps if comparing is_upper to length(words with letters only) incl_abc <- incl_abc + 1 if(grepl("^[^a-z]+$", words[i])) {is_upper <- is_upper + 1} } } if(is_upper > 0 && is_upper < incl_abc) {TRUE} else {FALSE} } # check if sentiment laden word is in ALL CAPS (while others aren't) # CAN'T use item because item has been lowered all_caps <- function(wpe, i, is_cap_diff, valence){ if(is_cap_diff && grepl("^[[:upper:]]+$", wpe[i])){ if(valence > 0) {valence <- valence + C_INCR} else{valence <- valence - C_INCR} } return(valence) } ################################## # Check if the preceding words increase, decrease, or negate/nullify the valence # helper function modifies the direction of the scalar if valence < 0 # and modifies intensity of scalar if word is all caps in mixed case str scalar_helper <- function(word, valence, is_cap_diff, scalar){ if (valence < 0){scalar <- (-scalar)} # check if booster/dampener word is in ALLCAPS (while some words aren't) if(is_cap_diff && grepl("^[^a-z]+$", word)) { if(valence > 0) {scalar <- scalar + C_INCR} else {scalar <- scalar - C_INCR} } return(scalar) } # function checks if scalar word is in dictionary and calls helper function scalar_inc_dec <- function(wpe, i, start_i, is_cap_diff, valence){ scalar <- 0.0 w <- wpe[i-start_i] w_lower <- tolower(wpe[i-start_i]) is_bigram <- "n" #check if item is in booster diction (single words) if(w_lower %in% names(BOOSTER_DICT)){ scalar <- BOOSTER_DICT[w_lower] scalar <- scalar_helper(w, valence, is_cap_diff, scalar) } # check if item is in booster diction (compound words) else if(start_i < length(wpe) && w_lower %in% c("kind", "sort", "just")) { bigram <- paste(w, wpe[i-start_i+1]) if(tolower(bigram) %in% names(BOOSTER_DICT)) { scalar <- BOOSTER_DICT[tolower(bigram)] scalar <- scalar_helper(bigram, valence, is_cap_diff, scalar) is_bigram <- "y" } } return(c(scalar, is_bigram)) } #get scalar get_scalar <- function(wpe, i, start_i, is_cap_diff, valence){ booster_results <- scalar_inc_dec(wpe, i, start_i, is_cap_diff, valence) s <- as.numeric(booster_results[1]) is_bigram <- booster_results[2] if(is_bigram == "n"){ if(start_i==2 && s!=0) {s <- s*0.95} if(start_i==3 && s!=0) {s <- s*0.9} if(start_i==4 && s!=0) {s <- s*0} } else { if(start_i==3 && s!=0) {s <- s*0.95} if(start_i==4 && s!=0) {s <- s*0.9} } return(s) } # Determine if input contains negation words negated <- function(input_words) { ### incl_nt set in POLARITY_SCORES fx (set to TRUE unless changed by user) w <- tolower(input_words) if(any(w %in% NEGATE)) {TRUE} ### probably don't need (any) since only 1 word passed at a time else if (isTRUE(incl_nt) && any(grepl("n't", w))) {TRUE} else {FALSE} # else if("least" %in% w) { ### removing this code section because # i <- which(w == "least") ### a.) won't work since only 1 word passed at a time in code below # if(i > 1 && w[i-1] != "at") {TRUE} ### b.) separate least check fx written # } } #check negation words negation_check <- function(wpe, start_i, i, valence){ wpe_lower <- tolower(wpe) if(start_i==1){ if(negated(wpe_lower[i-1])) {valence <- valence * N_SCALAR} } if(start_i==2){ if(wpe_lower[i-2]=="never" && wpe_lower[i-1] %in% c("so", "this")) {valence <- valence*1.25} else if(wpe_lower[i-2]=="without" && wpe_lower[i-1] =="doubt") {valence <- valence} #WITHOUT in NEGATE dict, so cancelling effect else if(negated(wpe_lower[i-2])) {valence <- valence * N_SCALAR} } if(start_i==3){ if(wpe_lower[i-3]=="never" && (wpe_lower[i-2] %in% c("so", "this") || wpe_lower[i-1] %in% c("so", "this"))) {valence <- valence*1.25} else if(wpe_lower[i-3]=="without" && (wpe_lower[i-2]=="doubt" || wpe_lower[i-1]=="doubt")) {valence <- valence} else if(negated(wpe_lower[i-3])) {valence <- valence * N_SCALAR} } return(valence) } # dampen/amplify the scalar modifier of preceding words and emoticons (excluding the ones that immediately preceed the item) # dampening/amplifying is based on their distance from the current item modify <- function(wpe, i, is_cap_diff, valence){ for(start_i in c(1:4)){ # booster if(i > start_i && (tolower(wpe[i-start_i]) == "kind" || !(tolower(wpe[i-start_i]) %in% vaderLexicon$V1))){ s <- get_scalar(wpe, i, start_i, is_cap_diff, valence) valence <- valence + s } } for(start_i in c(1:3)) { if(i > start_i) { # negation valence <- negation_check(wpe, start_i, i, valence) # idiom # if(start_i == 3) {valence <- idioms_check(wpe, i, valence)} #this is from the original script, but not implementing idioms here } } return(valence) } ################################## #check least modifier least_check <- function(wpe, i, valence){ if(i > 2 && tolower(wpe[i-1]) == "least"){ if(!(tolower(wpe[i-2]) %in% c("at", "very"))) {valence <- valence * N_SCALAR} } else if(i > 1 && tolower(wpe[i-1]) == "least") {valence <- valence * N_SCALAR} return(valence) } ############################################################# # main function to calculate sentiment scores for each word # ############################################################# senti_valence <- function(wpe, i, item){ is_cap_diff <- allcap_diff(wpe) valence <- mean(get_vader_score(item)) ### getting mean of score because sometimes word is duped in dictionary valence <- no_check(wpe, i, item, valence) valence <- idioms_check(wpe, i, valence) ### moved idioms above modify (and all_caps) valence <- all_caps(wpe, i, is_cap_diff, valence) valence <- modify(wpe, i, is_cap_diff, valence) valence <- least_check(wpe, i, valence) return(valence) }
/scratch/gouwar.j/cran-all/cranData/vader/R/vader_sentiment_word.R
#import vader lexicon # vaderLexicon <- read.delim("vaderLexicon.txt", header = F, stringsAsFactors = F, quote = "") #create vader constants # empirically derived mean sentiment intensity rating increase/decrease for booster words B_INCR = 0.293 B_DECR = -0.293 # empirically derived mean sentiment intensity rating increase for using ALLCAPs to emphasize a word C_INCR = 0.733 N_SCALAR = -0.74 ###################################################################################################################### NEGATE = c("aint", "arent", "cannot", "cant", "couldnt", "darent", "didnt", "doesnt", "ain't", "aren't", "can't", "couldn't", "daren't", "didn't", "doesn't", "dont", "hadnt", "hasnt", "havent", "isnt", "mightnt", "mustnt", "neither", "don't", "hadn't", "hasn't", "haven't", "isn't", "mightn't", "mustn't", "neednt", "needn't", "never", "none", "nope", "nor", "not", "nothing", "nowhere", "oughtnt", "shant", "shouldnt", "uhuh", "wasnt", "werent", "oughtn't", "shan't", "shouldn't", "uh-uh", "wasn't", "weren't", "without", "wont", "wouldnt", "won't", "wouldn't", "rarely", "seldom", "despite") # booster/dampener 'intensifiers' or 'degree adverbs' # http://en.wiktionary.org/wiki/Category:English_degree_adverbs BOOSTER_POS_NAMES = c("absolutely", "amazingly", "awfully", "completely", "considerable", "considerably", "decidedly", "deeply", "effing", "enormous", "enormously", "entirely", "especially", "exceptional", "exceptionally", "extreme", "extremely", "fabulously", "flipping", "flippin", "frackin", "fracking", "fricking", "frickin", "frigging", "friggin", "fully", "fuckin", "fucking", "fuggin", "fugging", "greatly", "hella", "highly", "hugely", "incredible", "incredibly", "intensely", "major", "majorly", "more", "most", "particularly", "purely", "quite", "really", "remarkably", "so", "substantially", "thoroughly", "total", "totally", "tremendous", "tremendously", "uber", "unbelievably", "unusually", "utter", "utterly", "very") BOOSTER_POS <- rep(B_INCR, length(BOOSTER_POS_NAMES)) names(BOOSTER_POS) <- BOOSTER_POS_NAMES BOOSTER_NEG_NAMES = c("almost", "barely", "hardly", "just enough", "kind of", "kinda", "kindof", "kind-of", "less", "little", "marginal", "marginally", "ocassional", "occasionally", "partly", "scarce", "scarcely", "slight", "slightly", "somewhat", "sort of", "sorta", "sortof", "sort-of") BOOSTER_NEG<- rep(B_DECR, length(BOOSTER_NEG_NAMES)) names(BOOSTER_NEG) <- BOOSTER_NEG_NAMES BOOSTER_DICT = c(BOOSTER_POS, BOOSTER_NEG) # check for special case idioms using a sentiment-laden keyword known to SAGE IDIOMS = c("the shit" = 3, "the bomb" = 3, "bad ass" = 1.5, ### BOTH WORDS IN DICT # "badass" = 1.5, ### removing because in dictionary as single word "yeah right" = -2, ### right not in dic "kiss of death" = -1.5, ### BOTH WORDS IN DICT "to die for" = 3, "cut the mustard" = 2, ### mustard not in dic "hand to mouth" = -2, ### mouth not in dic "upper hand" = 1, ### upper not in dic ################################################# IDIOMNS NOT IN VADER LEXICION "back handed" = -2, "blow smoke" = -2, "blowing smoke" = -2, "break a leg" = 2, "cooking with gas" = 2, "in the black" = 2, "in the red" = -2, "on the ball" = 2, "under the weather" = -2)
/scratch/gouwar.j/cran-all/cranData/vader/R/vader_setup.R
#' Non-Domestic Vaccine Adverse Event Reporting System (VAERS) vaccine data for #' Present #' #' A table containing the "remaining vaccine information (e.g., vaccine name, #' manufacturer, lot number, route, site, and number of previous doses #' administered), for each of the vaccines listed in Box 13 of the VAERS form. #' There is a matching record in this file with the VAERSDATA file identified #' by VAERS_ID." #' #' #' #' @format A data.table data frame with 77,784 rows and 8 variables: #' \describe{ #' \item{VAERS_ID}{VAERS Identification Number} #' \item{VAX_TYPE}{Administered Vaccine Type} #' \item{VAX_MANU}{Vaccine Manufacturer} #' \item{VAX_LOT}{Manufacturer's Vaccine Lot} #' \item{VAX_DOSE}{Number of previous doses administered} #' \item{VAX_ROUTE}{Vaccination Route} #' \item{VAX_SITE}{Vaccination Site} #' \item{VAX_NAME}{Vaccination Name} #' } #' #' #' @references #' US Centers for Disease Control and Prevention (CDC) and the US Food and Drug Administration (FDA) Vaccine Adverse Event Reporting System (VAERS) \url{https://vaers.hhs.gov/index} and \url{https://vaers.hhs.gov/data/READMEJanuary2015.pdf}. #' #' #' #' @docType data #' @name vaersNDvax #' @usage vaersNDvax #' @examples #' library(data.table) #' vaersNDvax NULL
/scratch/gouwar.j/cran-all/cranData/vaersNDvax/R/data-vaersND_vax.R
#' vaersNDvax: Non-Domestic Vaccine Adverse Event Reporting System (VAERS) #' Vaccine Data #' #' vaersNDvax provides the Non-Domestic Vaccine Adverse Event Reporting System #' (VAERS) vaccine data for Present. "VAERS is a national vaccine safety #' surveillance program co-sponsored by the US Centers for Disease Control #' and Prevention (CDC) and the US Food and Drug Administration (FDA). VAERS #' is a post-marketing safety surveillance program, collecting information #' about adverse events (possible side effects) that occur after the #' administration of vaccines licensed for use in the United States." #' #' @source VAERS \url{https://vaers.hhs.gov/index} #' #' #' @docType package #' @name vaersNDvax NULL
/scratch/gouwar.j/cran-all/cranData/vaersNDvax/R/vaersNDvax.R
#' US Vaccine Adverse Event Reporting System (VAERS) vaccine data for Present #' #' A table containing the "remaining vaccine information (e.g., vaccine name, #' manufacturer, lot number, route, site, and number of previous doses #' administered), for each of the vaccines listed in Box 13 of the VAERS form. #' There is a matching record in this file with the VAERSDATA file identified #' by VAERS_ID." #' #' #' #' @format A data.table data frame with 19,016 rows and 8 variables: #' \describe{ #' \item{VAERS_ID}{VAERS Identification Number} #' \item{VAX_TYPE}{Administered Vaccine Type} #' \item{VAX_MANU}{Vaccine Manufacturer} #' \item{VAX_LOT}{Manufacturer's Vaccine Lot} #' \item{VAX_DOSE}{Number of previous doses administered} #' \item{VAX_ROUTE}{Vaccination Route} #' \item{VAX_SITE}{Vaccination Site} #' \item{VAX_NAME}{Vaccination Name} #' } #' #' #' @references #' US Centers for Disease Control and Prevention (CDC) and the US Food and Drug Administration (FDA) Vaccine Adverse Event Reporting System (VAERS) \url{https://vaers.hhs.gov/} and \url{https://vaers.hhs.gov/docs/VAERSDataUseGuide_October2017.pdf}. #' #' #' #' @docType data #' @name vaersvax #' @usage vaersvax #' @examples #' library("data.table") #' vaersvax NULL
/scratch/gouwar.j/cran-all/cranData/vaersvax/R/data-vaers_vax.R
#' vaersvax: US Vaccine Adverse Event Reporting System (VAERS) Vaccine Data #' #' vaersvax provides the US Vaccine Adverse Event Reporting System #' (VAERS) vaccine data for the Present. "The Vaccine Adverse Event Reporting #' System (VAERS) is a national early warning system to detect possible safety #' problems in U.S.-licensed vaccines. VAERS is co-managed by the Centers for #' Disease Control and Prevention (CDC) and the U.S. Food and Drug #' Administration (FDA)." For more information about the data, visit #' <https://vaers.hhs.gov/>. For information about vaccination/immunization #' hazards, visit <http://www.questionuniverse.com/rethink.html#vaccine>. #' #' @source VAERS \url{https://vaers.hhs.gov/} #' #' #' @docType package #' @name vaersvax NULL
/scratch/gouwar.j/cran-all/cranData/vaersvax/R/vaers_vax.R
#' @name albums #' @author Bruna Wundervald, \email{[email protected]}. #' @export #' @title An artist's music albums. #' @description Gives information about the albums of an artist/band. #' @param name The name of the artist/band. #' @param message Should the function print something if the #' required data is not found? #' @return \code{gente} returns a data.frame with information #' about the albums, as the id, name and year of release. #' @details The variables returned by the function are extracted with #' the Vagalume API. #' @examples #' #' \dontrun{ #' albums("the-beatles") #' albums("chico-buarque") #' } albums <- function (name, message = TRUE) { name <- stringr::str_to_lower(name) cont <- paste0("https://www.vagalume.com.br/", name, "/index.js") %>% jsonlite::fromJSON() if (!is.null(cont)) { albums <- data.frame(cont$artist$album$item)[,-3] names(albums)[2] <- "title" } else { albums <- NULL if (message) print("Artist not found.") } return(albums) }
/scratch/gouwar.j/cran-all/cranData/vagalumeR/R/albums.R
#' @name artistInfo #' @author Bruna Wundervald, \email{[email protected]}. #' @export #' @title Artist Information #' @description Gives some information about a given artist/band. #' @param name The name of the artist/band. #' @param message Should the function print something if the #' required data is not found? #' @return \code{artistInfo} returns a data.frame with the information. #' @details The variables returned by the function are extracted with #' the Vagalume API. #' @examples #' #' \dontrun{ #' artistInfo("the-beatles") #' artistInfo("chico-buarque") #' } #' artistInfo <- function(name, message = TRUE) { name <- stringr::str_to_lower(name) cont <- paste0("https://www.vagalume.com.br/",name,"/index.js") %>% jsonlite::fromJSON() if(!is.null(cont)){ artist <- data.frame(id = cont$artist$id, name = cont$artist$desc, views = cont$artist$rank$views, pos = cont$artist$rank$pos, period = cont$artist$rank$period, uniques = cont$artist$rank$uniques, points = cont$artist$rank$points) } else{ artist <- NULL if(message) print("Artist not found.")} return(artist) }
/scratch/gouwar.j/cran-all/cranData/vagalumeR/R/artistInfo.R
#' @name genre #' @author Bruna Wundervald, \email{[email protected]}. #' @export #' @title An artist's musical genre(s) #' @description Gives information about the genre (ou multiple genres) #' of an artist/band. #' @param name The name of the artist/band. #' @param message Should the function print something if the #' required data is not found? #' @return \code{genre} returns a data.frame with information #' about the genre(s). #' @details The variables returned by the function are extracted with #' the Vagalume API. #' @examples #' #' \dontrun{ #' genre("the-beatles") #' genre("chico-buarque") #' } genre <- function (name, message = TRUE) { name <- stringr::str_to_lower(name) cont <- paste0("https://www.vagalume.com.br/", name, "/index.js") %>% jsonlite::fromJSON() if (!is.null(cont)) { genre <- data.frame(genre = cont$artist$genre$name) } else { genre <- NULL if (message) print("Artist not found.") } return(genre) }
/scratch/gouwar.j/cran-all/cranData/vagalumeR/R/genre.R
#' @name lyrics #' @author Bruna Wundervald, \email{[email protected]}. #' @export #' @title Lyrics of a song. #' @description Gives the lyrics text of a song and the translation text, #' when the language of the song its not Portuguese. #' @param identifier The identifier of the song. #' @param type The type of identifier os the song ("name" or "id"). #' @param artist The name of the artist/band. #' @param key The apikey. #' @param message Should the function print something if the #' required data is not found? #' @return \code{lyrics} returns a data.frame with information #' about the artist, the song and the texts. #' @details The variables returned by the function are extracted with #' the Vagalume API. #' @examples #' #' \dontrun{ #' identifier <- "A-Day-In-The-Life" #' key <- "your token" #' artist <- "the-beatles" #' type <- "name" #' lyrics(identifier, type, artist, key) #' #' key <- "your token" #' identifier <- "3ade68b4gdc96eda3" #' type <- "id" #' lyrics(identifier = identifier, type = type, key = key) #' } lyrics <- function(identifier, type, artist, key, message = TRUE){ artist <- stringr::str_to_lower(artist) if(type == "id"){ req <-httr::GET(paste0("https://api.vagalume.com.br/search.php?apikey=", key, "&musid=", identifier)) } if(type == "name"){ req <- httr::GET(paste0("https://api.vagalume.com.br/search.php?art=", artist,"&mus=",identifier,"&extra=relmus&apikey=", key)) } cont <- httr::content(req, encoding = "UTF-8") if(!is.null(cont$mus)){ mus <- cont$mus[[1]][c(1, 2, 4, 5)] %>% purrr::transpose() %>% purrr::map_df(data.frame) %>% dplyr::mutate(id = identifier, name = artist, song.id = id, song = name, text = stringr::str_replace_all( as.character(text), "[\n]" , " ")) %>% `if`(!is.null(cont$mus[[1]]$translate[[1]]$lang), dplyr::mutate(., language = cont$mus[[1]]$translate[[1]]$lang), .) cont$mus[[1]]$translate if(!is.null(cont$mus[[1]]$lang) && cont$mus[[1]]$lang > 1){ if(!is.null(cont$mus[[1]]$translate)){ mus <- mus %>% dplyr::mutate( translation = stringr::str_replace_all( cont$mus[[1]]$translate[[1]]$text, "[\n]" , " ")) } } } else{ mus <- NULL if(message) print("Lyrics not found") } Sys.sleep(2) return(mus) }
/scratch/gouwar.j/cran-all/cranData/vagalumeR/R/lyrics.R
#' @name relatedInfo #' @author Bruna Wundervald, \email{[email protected]}. #' @export #' @title Artist's Related #' @description Gives information about what artists/bands are #' related to a specific artist/band. #' @param name The name of the artist/band. #' @param message Should the function print something if the #' required data is not found? #' @return \code{relatedInfo} returns a data.frame with information #' about the related artists. #' @details The variables returned by the function are extracted with #' the Vagalume API. #' @examples #' #' \dontrun{ #' relatedInfo("the-beatles") #' relatedInfo("chico-buarque") #' } relatedInfo <- function(name, message = TRUE){ name <- stringr::str_to_lower(name) cont <- paste0("https://www.vagalume.com.br/",name,"/index.js") %>% jsonlite::fromJSON() if(!is.null(cont$artist$related)){ rel <- data.frame(id = cont$artist$id, name = cont$artist$desc, rel.id = cont$artist$related$id, related = cont$artist$related$name) } else { rel <- NULL if(message) print("No related artists available.") } return(rel) }
/scratch/gouwar.j/cran-all/cranData/vagalumeR/R/relatedInfo.R
#' @name songNames #' @author Bruna Wundervald, \email{[email protected]}. #' @export #' @title Song names of an artist/band. #' @description Gives information about the song names of an specific #' artist/band. #' @param name The name of the artist/band. #' @param message Should the function print something if the #' required data is not found? #' @return \code{relatedInfo} returns a data.frame with information #' about song names. #' @details The variables returned by the function are extracted with #' the Vagalume API. #' @examples #' #' \dontrun{ #' songNames("the-beatles") #' songNames("chico-buarque") #' } #' songNames <- function(name, message = TRUE){ name <- stringr::str_to_lower(name) cont <- paste0("https://www.vagalume.com.br/",name,"/index.js") %>% jsonlite::fromJSON() if(!is.null(cont)){ mus <- data.frame(id = cont$artist$id, name = cont$artist$desc, song.id = cont$artist$lyrics$item$id, song = cont$artist$lyrics$item$desc) } else{ mus <- NULL if(message) print("No song names found.") } return(mus) }
/scratch/gouwar.j/cran-all/cranData/vagalumeR/R/songNames.R
#' @name topLyrics #' @author Bruna Wundervald, \email{[email protected]}. #' @export #' @title Top lyrics of an artist/band #' @description Gives information about the top lyrics (most viewed) #' about an specific artist/band. #' @param name The name of the artist/band. #' @param message Should the function print something if the #' required data is not found? #' @return \code{topLyrics} returns a data.frame with information #' about the top lyrics. #' @details The variables returned by the function are extracted with #' the Vagalume API. #' @examples #' #' \dontrun{ #' topLyrics("the-beatles") #' topLyrics("chico-buarque") #' } #' topLyrics <- function(name, message = TRUE){ name <- stringr::str_to_lower(name) cont <- paste0("https://www.vagalume.com.br/",name,"/index.js") %>% jsonlite::fromJSON() if(!is.null(cont)){ top <- data.frame(id = cont$artist$id, name = cont$artist$desc, id.top = cont$artist$toplyrics$item$id, song = cont$artist$toplyrics$item$desc) } else{ top <- NULL if(message) print("No top lyrics found.") } return(top) }
/scratch/gouwar.j/cran-all/cranData/vagalumeR/R/topLyrics.R
#' Pipe operator #' #' See \code{\link[magrittr]{\%>\%}} for more details. #' #' @name %>% #' @rdname pipe #' @keywords internal #' @export #' @importFrom magrittr %>% #' @examples{ #' #' iris %>% as.matrix() #'} NULL # Get rid of NOTES globalVariables(c(".", "name", "id", "text"))
/scratch/gouwar.j/cran-all/cranData/vagalumeR/R/utils.R
calc.VAlogL <- function(y, Z, para.X, family, lambda, kappa, a, A, phi, S, d, offset = NULL, index.cov, eta = NULL) { if(is.null(offset)) offset <- numeric(length(y)) if(is.null(eta)) eta <- para.X %*% kappa + Z %*% a + offset if(family$family == "gaussian") { out <- sum(dnorm(y, mean = eta, sd = sqrt(phi), log = TRUE)) - (0.5/phi) * sum((Z %*% A) * Z) + 0.5 * determinant(A)$mod + 0.5 * sum(d * log(lambda[lambda > 0])) } if(family$family == "binomialp") { ZAZ <- (Z %*% A) * Z out <- sum(dbinom(y, 1, prob = binomial(link = "probit")$linkinv(eta + 0.5 * rowSums(ZAZ)), log = TRUE)) - (0.5/phi) * sum(ZAZ) + 0.5 * determinant(A)$mod + 0.5 * sum(d * log(lambda[lambda > 0])) } if(family$family == "binomial") { ZAZ <- rowSums((Z %*% A) * Z) out <- sum(dbinom(y, 1, prob = binomial()$linkinv(eta + 0.5 * ZAZ), log = TRUE)) - 0.5 * sum(y * ZAZ) + 0.5 * determinant(A)$mod + 0.5 * sum(d * log(lambda[lambda > 0])) } if(family$family == "poisson") { ZAZ <- rowSums((Z %*% A) * Z) out <- sum(dpois(y, lambda = exp(eta + 0.5 * ZAZ), log = TRUE)) - 0.5 * sum(y * ZAZ) + 0.5 * determinant(A)$mod + 0.5 * sum(d * log(lambda[lambda > 0])) } for(k2 in 1:length(lambda)) { out <- out - 0.5 * lambda[k2] * sum(diag(crossprod(S[[k2]], A[index.cov == k2, index.cov == k2]))) - 0.5 * lambda[k2] * t(a[index.cov == k2]) %*% S[[k2]] %*% a[index.cov == k2] } return(as.numeric(out)) }
/scratch/gouwar.j/cran-all/cranData/vagam/R/calc.VAlogL.R
gamsim <- function(n = 400, extra.X = NULL, beta = NULL, dist = "normal", scale = 1, offset = NULL) { if(is.null(offset)) offset <- numeric(n) x0 <- runif(n, 0, 1) x1 <- x0 * 0.7 + runif(n, 0, 0.3) x2 <- runif(n, 0, 1) x3 <- x2 * 0.9 + runif(n, 0, 0.1) f0 <- function(x) { 2 * sin(pi * x) } f1 <- function(x) { exp(2 * x) } f2 <- function(x) { 0.2 * x^11 * (10 * (1 - x))^6 + 10 * (10 * x)^3 * (1 - x)^10 } f3 <- function(x) { 0 * x } # nonparametric component (centered or not) f_noncenter <- f0(x0) + f1(x1) + f2(x2) f_smooth <- f_noncenter - mean(f_noncenter) if(!is.null(extra.X)) { if(is.null(colnames(extra.X))) colnames(extra.X) <- paste("Para.X", 1:ncol(extra.X), sep = "") f_all <- f_smooth + as.matrix(extra.X) %*% beta + offset } else { f_all <- f_smooth + offset } if(dist == "normal") { y <- rnorm(n, f_all, scale) } else if(dist == "poisson") { y <- rpois(n, exp(f_all)) } else if(dist == "binomialp") { g <- binomial(link = "probit")$linkinv(f_all) y <- rbinom(n, 1, g) } else if(dist == "binomial") { g <- binomial()$linkinv(f_all) y <- rbinom(n, 1, g) } else { stop("dist not recognised") } if(!is.null(extra.X)) { ## f is linear predictor just for the smoothed part; linear.predictor includes parametric components if required data <- data.frame(y = y, x0 = x0, x1 = x1, x2 = x2, x3 = x3, f = f_smooth, f0 = f0(x0), f1 = f1(x1), f2 = f2(x2), f3 = x3 * 0, linear.predictor = f_all, extra.X) } else { data <- data.frame(y = y, x0 = x0, x1 = x1, x2 = x2, x3 = x3, f = f_smooth, f0 = f0(x0), f1 = f1(x1), f2 = f2(x2), f3 = x3 * 0, linear.predictor = f_all) } return(data) }
/scratch/gouwar.j/cran-all/cranData/vagam/R/gamsim.R
info.valouis <- function(y, para.X, Z, kappa, phi = 1, lambda, a, A, S, d, index.cov, mc.samps = 2000, family = gaussian(), offset = NULL, seed = NULL) { if(!is.null(seed)) { old <- .Random.seed on.exit( { .Random.seed <<- old } ) set.seed(seed) } if(is.null(offset)) offset <- numeric(length(y)) diminfo <- ncol(para.X) + length(lambda) + as.numeric(family$family == "gaussian") n <- length(y) mc_betas <- rmvnorm(mc.samps, mean = a, sigma = A) mc_betasTSmc_betas <- matrix(0, nrow = mc.samps, ncol = length(lambda)) for(k in 1:length(lambda)) ## beta^T_j%*%S_j%*%beta_j, across the MC samples { mc_betasTSmc_betas[,k] <- rowSums((mc_betas[,index.cov==k] %*% S[[k]]) * mc_betas[,index.cov == k]) } score.lambda <- matrix(0.5 * d/lambda, nrow = mc.samps, ncol = length(lambda), byrow = TRUE) - 0.5 * mc_betasTSmc_betas rm(mc_betasTSmc_betas) scorescoreT_out <- matrix(0, nrow = diminfo, ncol = diminfo) ## \sum\limits_{i=1}^n E{\partial \ell_{com}(y_i, beta) \partial \ell_{com}(y_i, beta)^T} neghess_out <- matrix(0, nrow = diminfo, ncol = diminfo) ## \sum\limits_{i=1}^n E{\partial^2 \ell_{com}(y_i, beta)} eta.para <- para.X %*% kappa if(family$family == "gaussian") { for(i in 1:mc.samps) { res <- y - eta.para - as.vector(Z %*% mc_betas[i,]) - offset cw_score <- c(crossprod(para.X,res)/phi, -0.5 * n/phi + 0.5/phi^2 * sum(res^2)) cw_score <- c(cw_score, score.lambda[i,]) scorescoreT_out <- scorescoreT_out + tcrossprod(cw_score) } scorescoreT_out <- scorescoreT_out/mc.samps res <- y - eta.para - Z %*% a - offset neghess_out[1:ncol(para.X),1:ncol(para.X)] <- crossprod(para.X)/phi neghess_out[1:ncol(para.X),ncol(para.X)+1] <- crossprod(para.X, res)/phi^2 neghess_out[ncol(para.X)+1,1:ncol(para.X)] <- t(neghess_out[1:ncol(para.X),ncol(para.X)+1]) neghess_out[ncol(para.X)+1,ncol(para.X)+1] <- -0.5 * n/phi^2 + 1/phi^3 * (sum(res^2) + sum((Z %*% A) * Z)) diag(neghess_out)[(ncol(para.X)+2):diminfo] <- 0.5 * d/lambda^2 } if(family$family == "poisson") { for(i in 1:mc.samps) { res <- y - exp(eta.para + as.vector(Z %*% mc_betas[i,]) + offset) cw_score <- c(crossprod(para.X, res), score.lambda[i,]) scorescoreT_out <- scorescoreT_out + tcrossprod(cw_score) } scorescoreT_out <- scorescoreT_out/mc.samps res <- exp(eta.para + Z %*% a + 0.5 * rowSums((Z %*% A) * Z) + offset) neghess_out[1:ncol(para.X),1:ncol(para.X)] <- t(para.X) %*% (para.X * as.vector(res)) diag(neghess_out)[(ncol(para.X)+1):diminfo] <- 0.5 * d/lambda^2 } if(family$family == "binomialp") { all.eta <- eta.para + Z %*% a + offset seqa <- -Inf * (y == 0) seqa[is.nan(seqa)] <- 0 seqb <- Inf * (y == 1) seqb[is.nan(seqb)] <- 0 for(i in 1:mc.samps) { mc.u <- rtruncnorm(n, a = seqa, b = seqb, mean = all.eta) res <- (mc.u - eta.para - as.vector(Z %*% mc_betas[i,]) - offset) cw_score <- c(crossprod(para.X, res), score.lambda[i,]) scorescoreT_out <- scorescoreT_out + tcrossprod(cw_score) } scorescoreT_out <- scorescoreT_out/mc.samps neghess_out[1:ncol(para.X),1:ncol(para.X)] <- crossprod(para.X) diag(neghess_out)[(ncol(para.X)+1):diminfo] <- 0.5 * d/lambda^2 } if(family$family == "binomial") { meanw <- numeric(n) for(i in 1:mc.samps) { res <- binomial()$linkinv(eta.para + as.vector(Z %*% mc_betas[i,]) + offset) cw_score <- c(crossprod(para.X, y-res), score.lambda[i,]) scorescoreT_out <- scorescoreT_out + tcrossprod(cw_score) meanw <- meanw + binomial()$variance(res) } scorescoreT_out <- scorescoreT_out/mc.samps meanw <- meanw/mc.samps neghess_out[1:ncol(para.X),1:ncol(para.X)] <- crossprod(para.X, para.X * as.vector(meanw)) diag(neghess_out)[(ncol(para.X)+1):diminfo] <- 0.5 * d/lambda^2 } rm(cw_score, score.lambda, res) get.info <- neghess_out - scorescoreT_out return(get.info) }
/scratch/gouwar.j/cran-all/cranData/vagam/R/info.valouis_internal.R
plot.vagam <- function(x, n = 100, alpha = 0.05, rug = TRUE, se = TRUE, xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL, main = NULL, select = NULL, ...) { if(class(x) != "vagam") { stop("x should be an object of class vagam. Thanks!") } if(is.null(x$smooth.X)) { stop("Fitted GAM must contain the data. Thanks!") } if(is.null(select)) sel_plots <- 1:ncol(x$smooth.X) if(!is.null(select)) sel_plots <- select for(k2 in sel_plots) { calc_pred <- predict.vagam(object = x, new.smoothX = seq(min(x$smooth.X[,k2]), max(x$smooth.X[,k2]), length = n), terms = k2, alpha = alpha) plot(calc_pred$new.smoothX, calc_pred$prediction, type = "l", xlim = xlim, ylim = ylim, main = main, xlab = ifelse(is.null(xlab), colnames(x$smooth.X)[k2], xlab), ylab = ifelse(is.null(ylab), paste("Smooth of", colnames(x$smooth.X)[k2]), ylab), ...) if(se) { lines(calc_pred$new.smoothX, calc_pred$lower, lty = 2, ...) lines(calc_pred$new.smoothX, calc_pred$upper, lty = 2, ...) } if(rug) { rug(x$smooth.X[,k2], ...) } } }
/scratch/gouwar.j/cran-all/cranData/vagam/R/plot.vagam.R
predict.vagam <- function(object, new.smoothX, new.paraX = NULL, terms = NULL, alpha = 0.05, type = "link", ...) { if(class(object) != "vagam") { stop("object should be an object of class vagam. Thanks!") } x <- object if(alpha > 1 || alpha < 0) { stop("alpha should be a number between 0 and 1, for (1-alpha)% pointwise confidence intervals. Thanks!") } type <- match.arg(type, c("link", "response")) if(!is.null(terms)) { if(length(terms) != 1) stop("terms should either be NULL, in which case the prediction is made on all terms, or should be a single number indicating which smoothing term is to be used for prediction. Thanks!") if(!is.vector(new.smoothX)) stop("If terms is a single number indicating which smoothing term is to be used for prediction, then new.smoothX should be a vector corresponding to the covariate values for which predictions are to be calculated for that term. Thanks!") } if(is.null(terms)) { if(ncol(new.smoothX) != length(x$no.knots)) stop("If terms is NULL, in which case the prediction is made on all terms, then new.smoothX should be a matrix with the name number of columns as the number of smoothing covariates fitted in x. Thanks!") } if(!is.null(new.paraX)) { if(any(apply(new.paraX, 2, function(x) all(x == 1)))) stop("No intercept terms should be included in new.paraX, as this is included by default. Thanks!") new.paraX <- cbind(1, new.paraX) ## Intercept included by default if(is.null(x$para.stat)) stop("If new.paraX is supplied, in which case the prediction involves parametric terms, then x should include the relevant standard errors i.e., x$para.stat. Thanks!") } if(!is.null(terms)) ## Predictions made for a single smoothing covariates { # calculate total variance for a smoothing covariate newZ <- Predict.matrix(x$basis.info[[terms]], data = data.frame(x0 = (new.smoothX))) newZ <- newZ %*% x$basis.info[[terms]]$transform_mat new_eta <- newZ %*% x$a[x$index.cov == terms] sub.A <- x$A[x$index.cov == terms, x$index.cov == terms] variance <- rowSums((newZ %*% sub.A) * newZ) # construct pointwise prediction interval based on normality assumption lbound <- new_eta - qnorm(alpha/2, lower.tail = FALSE) * sqrt(variance) ubound <- new_eta + qnorm(alpha/2, lower.tail = FALSE) * sqrt(variance) } if(is.null(terms)) ## Predictions made across the smoothing (and parametric if supplied) covariates. Note the predictions will account for the intercept ONLY if new.paraX is supplied { # calculate total variance for smoothing covariates newZ <- NULL for(k2 in 1:length(x$no.knots)) { tmpZ <- Predict.matrix(x$basis.info[[k2]], data = data.frame(x0 = (new.smoothX[,k2]))) newZ <- cbind(newZ, tmpZ %*% x$basis.info[[k2]]$transform.mat) } new_eta <- newZ %*% x$a variance <- rowSums((newZ %*% x$A) * newZ) if(!is.null(new.paraX)) { new_eta <- new_eta + as.matrix(new.paraX) %*% x$kappa variance <- variance + rowSums((new.paraX %*% solve(x$obs.info)[1:length(x$kappa),1:length(x$kappa)]) * new.paraX) } if(!is.null(x$offset)) new_eta <- new_eta + x$offset # construct pointwise prediction interval based on normality assumption lbound <- new_eta - qnorm(alpha/2, lower.tail = FALSE) * sqrt(variance) ubound <- new_eta + qnorm(alpha/2, lower.tail = FALSE) * sqrt(variance) } if(type == "response") { new_eta <- x$family$linkinv(new_eta) lbound <- x$family$linkinv(lbound) ubound <- x$family$linkinv(ubound) } out <- data.frame(prediction = new_eta, se = sqrt(variance), lower.bound = lbound, upper.bound = ubound, new.smoothX = new.smoothX) if(!is.null(new.paraX)) out$new.paraX <- new.paraX return(out) }
/scratch/gouwar.j/cran-all/cranData/vagam/R/predict.vagam.R
print.vagam <- function(x, ...) { cat("Variational approximation for GAMs\n") cat(paste("\nCall:", deparse(x$call, 200), "\n")) cat(paste("\nEstimated regression coefficients for parametric component:"), x$kappa) cat(paste("\nEstimated smoothing coefficients for nonparametric component:"), x$a) cat(paste("\nEstimated smoothing parameters (or fixed if lambda was supplied):"), x$lambda) cat(paste("\nNumber of interior knots used:"), x$no.knots) cat(paste("\nMaximized value of the variational log-likelihood:"), x$logL) cat("\n") }
/scratch/gouwar.j/cran-all/cranData/vagam/R/print.vagam.R
ridge.iwls <- function(x, y, family, penalty = NULL, initial.beta = NULL, max.steps = 1000, conv.eps = 1e-3, offset = NULL, gamma = 1, extra = FALSE) { y <- as.vector(y) x <- as.matrix(x) p <- ncol(x) nobs <- nrow(x) if(is.null(penalty)) penalty <- matrix(0, p, p) if(is.null(offset)) offset <- numeric(length(y)) if(!is.null(penalty)) { if(nrow(penalty) != p || ncol(penalty) != p) stop("penalty could a square matrix with dimension ncol(x) by ncol(x). Thanks!") } converged <- FALSE stop_at <- max.steps beta_mat <- matrix(0, nrow = max.steps, ncol = p) if(is.null(initial.beta)) initial.beta <- rep(0.01, p) eta.new <- x %*% initial.beta + offset for(i in 1:max.steps) { beta_mat[i,] <- initial.beta mu.new <- family$linkinv(eta.new) d.new <- family$mu.eta(eta.new) v.new <- family$variance(mu.new) weights <- c(d.new/sqrt(v.new)) x.star <- weights * x y.tilde.star <- weights * (eta.new - offset + (y - mu.new)/d.new) p.imat.new <- crossprod(x.star) + penalty # print(p.imat.new) inv.pimat.new <- chol2inv(chol(p.imat.new)) beta_new <- gamma * inv.pimat.new %*% crossprod(x.star, y.tilde.star) + (1 - gamma) * beta_mat[i,] if((sum(abs(beta_new - initial.beta))/sum(abs(initial.beta)) <= conv.eps)) { converged <- TRUE stop_at <- i if(i < max.steps) break; } else { initial.beta <- beta_new eta.new <- x %*% beta_new + offset } # print(c(beta_new)) } out <- list(coefficients = as.vector(beta_new), family = family, converged = converged, stop_at = stop_at, linear.predictors = eta.new) if(extra) { Infmat <- inv.pimat.new %*% crossprod(x.star) tr.Infmat <- sum(diag(Infmat)) out$tr.Inf <- tr.Infmat } return(out) }
/scratch/gouwar.j/cran-all/cranData/vagam/R/ridge.iwls_internal.R
simrun_binomial <- function(t, band_const, choose.n = 100, num.holdout.points = 10, true.beta = c(-1, 0.5), CI = 0.95) { set.seed(123 + t) choose.k <- band_const * ceiling(choose.n^0.2) all.results <- matrix(NA, nrow = 9, ncol = 5) rownames(all.results) = c("comptime", "mse", "bias-para", "mse-para", "confint-para", "width-para", "width-smooth", "intervalscore-smooth","mse-meanresp") colnames(all.results) = c("mgcv-default", "mgcv-psplines", "gamm4", "vagams-unstructuredA", "vagams-bdiagA") sel.holdout.points <- sample(1:choose.n, num.holdout.points) binomial_dat <- gamsim(n = choose.n, dist = "binomial", extra.X = data.frame(intercept = rep(1,choose.n), treatment = rep(c(0,1), each = choose.n/2)), beta = true.beta) ############################# ## 1) GAM mgcv with default ############################# tic <- proc.time() fit.mgcv1 <- gam(y~treatment + s(x0) + s(x1) + s(x2) + s(x3), data = binomial_dat, family = binomial(link = "logit")) all.results[1,1] <- (proc.time() - tic)[3] all.results[2,1] <- mean((fit.mgcv1$linear.predictors - binomial_dat$linear.predictor)^2) all.results[3,1] <- fit.mgcv1$coefficients[2] - true.beta[2] all.results[4,1] <- (fit.mgcv1$coefficients[2] - true.beta[2])^2 make.ci <- c(summary(fit.mgcv1)$p.coeff[2] - qnorm(0.5 + CI/2) *summary(fit.mgcv1)$se[2], summary(fit.mgcv1)$p.coeff[2] + qnorm(0.5 + CI/2) * summary(fit.mgcv1)$se[2]) all.results[5,1] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,1] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- gam(y ~ treatment + s(x0) + s(x1) + s(x2) + s(x3), family = binomial(link = "logit"), data = new.dat) get.pred <- predict.gam(fit1, newdata = data[holdout.points,], se.fit = TRUE) get.pred <- list(fit = c(get.pred$fit) - cbind(1,data[holdout.points,"treatment"])%*%fit1$coefficients[1:2], se.fit = c(get.pred$se.fit)) ## Only want smooth fit, so subtract the parametric component out (although se does not remove this!) make.ci <- cbind(get.pred$fit - qnorm(0.5 + CI/2) * get.pred$se.fit, get.pred$fit + qnorm(0.5 + CI/2) * get.pred$se.fit) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = binomial_dat, holdout.points = sel.holdout.points) all.results[7,1] <- colMeans(do.holdfits)[1] all.results[8,1] <- colMeans(do.holdfits)[3] all.results[9,1] <- mean((binomial()$linkinv(fit.mgcv1$linear.predictors) - binomial()$linkinv(binomial_dat$linear.predictor))^2) rm(holdout.fit) ############################################### ## 2) GAM mgcv with P splines and preset knots ############################################### tic <- proc.time() fit.mgcv2 <- gam(y ~ treatment + s(x0, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), data = binomial_dat, family = binomial(link = "logit")) all.results[1,2] <- (proc.time() - tic)[3] all.results[2,2] <- mean((fit.mgcv2$linear.predictors - binomial_dat$linear.predictor)^2) ## Averaged across choose.n points in dataset all.results[3,2] <- fit.mgcv2$coefficients[2] - true.beta[2] all.results[4,2] <- (fit.mgcv2$coefficients[2] - true.beta[2])^2 make.ci <- c(summary(fit.mgcv2)$p.coeff[2] - qnorm(0.5 + CI/2) * summary(fit.mgcv2)$se[2], summary(fit.mgcv2)$p.coeff[2] + qnorm(0.5 + CI/2) * summary(fit.mgcv2)$se[2]) all.results[5,2] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,2] <- diff(make.ci) holdout.fit <- function(data, holdout.points) ## Not sure if you are holding out each point at a time, or you are holding out all chosen points in one go! { new.dat <- data[-holdout.points,] fit1 <- gam(y ~ treatment + s(x0, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), family = binomial(link = "logit"), data = new.dat) get.pred <- predict.gam(fit1, newdata = data[holdout.points,], se.fit = TRUE) get.pred <- list(fit = c(get.pred$fit) - cbind(1,data[holdout.points,"treatment"])%*%fit1$coefficients[1:2], se.fit = c(get.pred$se.fit)) ## Only want smooth fit, so subtract the parametric component out (although se does not remove this!) make.ci <- cbind(get.pred$fit - qnorm(0.5 + CI/2) * get.pred$se.fit, get.pred$fit + qnorm(0.5 + CI/2) * get.pred$se.fit) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = binomial_dat, holdout.points = sel.holdout.points) all.results[7,2] <- colMeans(do.holdfits)[1] all.results[8,2] <- colMeans(do.holdfits)[3] all.results[9,2] <- mean((binomial()$linkinv(fit.mgcv2$linear.predictors) - binomial()$linkinv(binomial_dat$linear.predictor))^2) rm(holdout.fit) ############################################### ## 3) GAMM4 using mixed model parameterization ############################################### tic <- proc.time() fit.gamm4 <- gamm4(y ~ treatment + s(x0, bs = "ps", k = choose.k+2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), data = binomial_dat, family = binomial(link = "logit")) all.results[1,3] <- (proc.time() - tic)[3] all.results[2,3] <- mean((fit.gamm4$gam$linear.predictors - binomial_dat$linear.predictor)^2) ## Averaged across choose.n points in dataset all.results[3,3] <- fit.gamm4$gam$coefficients[2] - true.beta[2] all.results[4,3] <- (fit.gamm4$gam$coefficients[2] - true.beta[2])^2 make.ci <- c(summary(fit.gamm4$gam)$p.coeff[2] - qnorm(0.5 + CI/2) * summary(fit.gamm4$gam)$se[2], summary(fit.gamm4$gam)$p.coeff[2] + qnorm(0.5 + CI/2) * summary(fit.gamm4$gam)$se[2]) all.results[5,3] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,3] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- gamm4(y ~ treatment + s(x0, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), family = binomial(link = "logit"), data = new.dat) get.pred <- predict.gam(fit1$gam, newdata = data[holdout.points,], se.fit = TRUE) get.pred <- list(fit = c(get.pred$fit) - cbind(1,data[holdout.points,"treatment"])%*%fit1$gam$coefficients[1:2], se.fit = c(get.pred$se.fit)) ## Only want smooth fit, so subtract the parametric component out (although se does not remove this!) make.ci <- cbind(get.pred$fit - qnorm(0.5 + CI/2) * get.pred$se.fit, get.pred$fit + qnorm(0.5 + CI/2) * get.pred$se.fit) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- try(holdout.fit(data = binomial_dat, holdout.points = sel.holdout.points), silent = TRUE) if(!inherits(do.holdfits, "try-error")) { all.results[7,3] <- colMeans(do.holdfits)[1] all.results[8,3] <- colMeans(do.holdfits)[3] rm(holdout.fit) } all.results[9,3] <- mean((binomial()$linkinv(fit.gamm4$gam$linear.predictors) - binomial()$linkinv(binomial_dat$linear.predictor))^2) ####################################################### ## 4) VA with unstructed variational covariance matrix ####################################################### tic <- proc.time() Rprof() # fit.va1 <- vagam(y = binomial_dat$y, smooth.X = binomial_dat[,c(2:5)], para.X = data.frame(treatment = binomial_dat$treatment), int.knots = choose.k, A.struct = "unstructured", save.data = TRUE, family = binomial(), para.se = TRUE, control = list(eps = 1e-3, maxit = 1000, trace = TRUE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) fit.va1 <- vagam(y = binomial_dat$y, smooth.X = binomial_dat[,c(2:5)], para.X = data.frame(treatment = binomial_dat$treatment), int.knots = choose.k, A.struct = "unstructured", save.data = TRUE, family = binomial(), para.se = TRUE, control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) Rprof(NULL) all.results[1,4] <- (proc.time() - tic)[3] all.results[2,4] <- mean((fit.va1$linear.predictors - binomial_dat$linear.predictor)^2) ## Averaged across choose.n points in dataset all.results[3,4] <- fit.va1$kappa[2] - true.beta[2] all.results[4,4] <- (fit.va1$kappa[2] - true.beta[2])^2 make.ci <- c(fit.va1$para.stat[1,2] - qnorm(0.5 + CI/2) * fit.va1$para.stat[2,2], fit.va1$para.stat[1,2] + qnorm(0.5 + CI/2) * fit.va1$para.stat[2,2]) all.results[5,4] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,4] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- vagam(y = new.dat$y, smooth.X = new.dat[,2:5], para.X = data.frame(treatment = new.dat$treatment), int.knots = choose.k, A.struct = "unstructured", save.data = TRUE, para.se = FALSE, family = binomial(), control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) get.pred <- predict.vagam(fit1, new.smoothX = data[holdout.points,2:5]) make.ci <- cbind(get.pred$lower.bound, get.pred$upper.bound) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = binomial_dat, holdout.points = sel.holdout.points) all.results[7,4] <- colMeans(do.holdfits)[1] all.results[8,4] <- colMeans(do.holdfits)[3] all.results[9,4] <- mean((binomial()$linkinv(fit.va1$linear.predictors) - binomial()$linkinv(binomial_dat$linear.predictor))^2) rm(holdout.fit) ########################################################### ## 5) VA with block diagonal variational covariance matrix ########################################################### tic <- proc.time() fit.va2 <- vagam(y = binomial_dat$y, smooth.X = binomial_dat[,2:5], para.X = data.frame(treatment = binomial_dat$treatment), int.knots = choose.k, A.struct = "block", save.data = TRUE, family = binomial(), para.se = TRUE, control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) all.results[1,5] <- (proc.time() - tic)[3] all.results[2,5] <- mean((fit.va2$linear.predictors - binomial_dat$linear.predictor)^2) ## Averaged across choose.n points in dataset all.results[3,5] <- fit.va2$kappa[2] - true.beta[2] all.results[4,5] <- (fit.va2$kappa[2] - true.beta[2])^2 make.ci <- c(fit.va2$para.stat[1,2] - qnorm(0.5 + CI/2) * fit.va2$para.stat[2,2], fit.va2$para.stat[1,2] + qnorm(0.5 + CI/2) * fit.va2$para.stat[2,2]) all.results[5,5] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,5] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- vagam(y = new.dat$y, smooth.X = new.dat[,2:5], para.X = data.frame(treatment = new.dat$treatment), int.knots = choose.k, A.struct = "block", save.data = TRUE, para.se = FALSE, family = binomial(), control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) get.pred <- predict.vagam(fit1, new.smoothX = data[holdout.points,2:5]) make.ci <- cbind(get.pred$lower.bound, get.pred$upper.bound) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = binomial_dat, holdout.points = sel.holdout.points) all.results[7,5] <- colMeans(do.holdfits)[1] all.results[8,5] <- colMeans(do.holdfits)[3] all.results[9,5] <- mean((binomial()$linkinv(fit.va2$linear.predictors) - binomial()$linkinv(binomial_dat$linear.predictor))^2) return(all.results) }
/scratch/gouwar.j/cran-all/cranData/vagam/R/simrun_binomial_internal.R
simrun_normal <- function(t, band_const, choose.n = 100, num.holdout.points = 10, true.beta = c(-1, 0.5), CI = 0.95) { set.seed(123 + t) choose.k <- band_const * ceiling(choose.n^0.2) ## Don't know about this? all.results <- matrix(NA, nrow = 9, ncol = 5) rownames(all.results) = c("comptime", "mse", "bias-para", "mse-para", "confint-para", "width-para", "width-smooth", "intervalscore-smooth","mse-meanresp") colnames(all.results) = c("mgcv-default", "mgcv-psplines", "gamm4", "vagams-unstructuredA", "vagams-bdiagA") sel.holdout.points <- sample(1:choose.n, num.holdout.points) normal_dat <- gamsim(n = choose.n, dist = "normal", extra.X = data.frame(intercept = rep(1,choose.n), treatment = rep(c(0,1), each = choose.n/2)), beta = true.beta) ## 1) GAM mgcv with default tic <- proc.time() fit.mgcv1 <- gam(y ~ treatment + s(x0) + s(x1) + s(x2) + s(x3), data = normal_dat) all.results[1,1] <- (proc.time() - tic)[3] all.results[2,1] <- mean((fit.mgcv1$linear.predictors - normal_dat$linear.predictor)^2) ## Averaged across choose.n points in dataset all.results[3,1] <- fit.mgcv1$coefficients[2] - true.beta[2] all.results[4,1] <- (fit.mgcv1$coefficients[2] - true.beta[2])^2 make.ci <- c(summary(fit.mgcv1)$p.coeff[2] - qnorm(0.5 + CI/2) *summary(fit.mgcv1)$se[2], summary(fit.mgcv1)$p.coeff[2] + qnorm(0.5 + CI/2) * summary(fit.mgcv1)$se[2]) all.results[5,1] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,1] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- gam(y ~ treatment + s(x0) + s(x1) + s(x2) + s(x3), data = new.dat) get.pred <- predict.gam(fit1, newdata = data[holdout.points,], se.fit = TRUE, exclude = c("treatment")) get.pred <- predict.gam(fit1, newdata = data[holdout.points,], se.fit = TRUE) get.pred <- list(fit = c(get.pred$fit) - cbind(1,data[holdout.points,"treatment"])%*%fit1$coefficients[1:2], se.fit = c(get.pred$se.fit)) ## Only want smooth fit, so subtract the parametric component out (although se does not remove this!) make.ci <- cbind(get.pred$fit - qnorm(0.5 + CI/2) * get.pred$se.fit, get.pred$fit + qnorm(0.5 + CI/2) * get.pred$se.fit) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = normal_dat, holdout.points = sel.holdout.points) all.results[7,1] <- colMeans(do.holdfits)[1] all.results[8,1] <- colMeans(do.holdfits)[3] all.results[9,1] <- mean((fit.mgcv1$linear.predictors - normal_dat$linear.predictor)^2) ## 2) GAM mgcv with P splines and preset knots tic <- proc.time() fit.mgcv2 <- gam(y ~ treatment + s(x0, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), data = normal_dat) all.results[1,2] <- (proc.time() - tic)[3] all.results[2,2] <- mean((fit.mgcv2$linear.predictors - normal_dat$linear.predictor)^2) ## Averaged across choose.n points in dataset all.results[3,2] <- fit.mgcv2$coefficients[2] - true.beta[2] all.results[4,2] <- (fit.mgcv2$coefficients[2] - true.beta[2])^2 make.ci <- c(summary(fit.mgcv2)$p.coeff[2] - qnorm(0.5 + CI/2) * summary(fit.mgcv2)$se[2], summary(fit.mgcv2)$p.coeff[2] + qnorm(0.5 + CI/2) * summary(fit.mgcv2)$se[2]) all.results[5,2] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,2] <- diff(make.ci) holdout.fit <- function(data, holdout.points) ## Not sure if you are holding out each point at a time, or you are holding out all chosen points in one go! { new.dat <- data[-holdout.points,] fit1 <- gam(y ~ treatment + s(x0, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), data = new.dat) get.pred <- predict.gam(fit1, newdata = data[holdout.points,], se.fit = TRUE) get.pred <- list(fit = c(get.pred$fit) - cbind(1,data[holdout.points,"treatment"])%*%fit1$coefficients[1:2], se.fit = c(get.pred$se.fit)) ## Only want smooth fit, so subtract the parametric component out (although se does not remove this!) make.ci <- cbind(get.pred$fit - qnorm(0.5 + CI/2) * get.pred$se.fit, get.pred$fit + qnorm(0.5 + CI/2) * get.pred$se.fit) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = normal_dat, holdout.points = sel.holdout.points) all.results[7,2] <- colMeans(do.holdfits)[1] all.results[8,2] <- colMeans(do.holdfits)[3] all.results[9,2] <- mean((fit.mgcv2$linear.predictors - normal_dat$linear.predictor)^2) ## 3) GAMM4 using mixed model parameterization tic <- proc.time() fit.gamm4 <- gamm4(y ~ treatment + s(x0, bs = "ps", k = choose.k+2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), data = normal_dat) all.results[1,3] <- (proc.time() - tic)[3] all.results[2,3] <- mean((fit.gamm4$gam$linear.predictors - normal_dat$linear.predictor)^2) ## Averaged across choose.n points in dataset all.results[3,3] <- fit.gamm4$gam$coefficients[2] - true.beta[2] all.results[4,3] <- (fit.gamm4$gam$coefficients[2] - true.beta[2])^2 make.ci <- c(summary(fit.gamm4$gam)$p.coeff[2] - qnorm(0.5 + CI/2) * summary(fit.gamm4$gam)$se[2], summary(fit.gamm4$gam)$p.coeff[2] + qnorm(0.5 + CI/2) * summary(fit.gamm4$gam)$se[2]) all.results[5,3] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,3] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- gamm4(y ~ treatment + s(x0, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), data = new.dat) get.pred <- predict.gam(fit1$gam, newdata = data[holdout.points,], se.fit = TRUE) get.pred <- list(fit = c(get.pred$fit) - cbind(1,data[holdout.points,"treatment"])%*%fit1$gam$coefficients[1:2], se.fit = c(get.pred$se.fit)) ## Only want smooth fit, so subtract the parametric component out (although se does not remove this!) make.ci <- cbind(get.pred$fit - qnorm(0.5 + CI/2) * get.pred$se.fit, get.pred$fit + qnorm(0.5 + CI/2) * get.pred$se.fit) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = normal_dat, holdout.points = sel.holdout.points) all.results[7,3] <- colMeans(do.holdfits)[1] all.results[8,3] <- colMeans(do.holdfits)[3] all.results[9,3] <- mean((fit.gamm4$gam$linear.predictors - normal_dat$linear.predictor)^2) ## 4) VA with unstructured variational covariance matrix tic <- proc.time() fit.va1 <- vagam(y = normal_dat$y, smooth.X = normal_dat[,2:5], para.X = data.frame(treatment = normal_dat$treatment), int.knots = choose.k, A.struct = "unstructured", save.data = TRUE, para.se = TRUE, control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) all.results[1,4] <- (proc.time() - tic)[3] all.results[2,4] <- mean((fit.va1$linear.predictors - normal_dat$linear.predictor)^2) ## Averaged across choose.n points in dataset all.results[3,4] <- fit.va1$kappa[2] - true.beta[2] all.results[4,4] <- (fit.va1$kappa[2] - true.beta[2])^2 make.ci <- c(fit.va1$para.stat[1,2] - qnorm(0.5 + CI/2) * fit.va1$para.stat[2,2], fit.va1$para.stat[1,2] + qnorm(0.5 + CI/2) * fit.va1$para.stat[2,2]) all.results[5,4] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,4] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- vagam(y = new.dat$y, smooth.X = new.dat[,2:5], para.X = data.frame(treatment = new.dat$treatment), int.knots = choose.k, A.struct = "unstructured", save.data = TRUE, para.se = FALSE, control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) get.pred <- predict.vagam(fit1, new.smoothX = data[holdout.points,2:5]) make.ci <- cbind(get.pred$lower.bound, get.pred$upper.bound) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = normal_dat, holdout.points = sel.holdout.points) all.results[7,4] <- colMeans(do.holdfits)[1] all.results[8,4] <- colMeans(do.holdfits)[3] all.results[9,4] <- mean((fit.va1$linear.predictors - normal_dat$linear.predictor)^2) ## 5) VA with block diagonal variational covariance matrix tic <- proc.time() fit.va2 <- vagam(y = normal_dat$y, smooth.X = normal_dat[,2:5], para.X = data.frame(treatment = normal_dat$treatment), int.knots = choose.k, A.struct = "block", save.data = TRUE, para.se = TRUE, control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) all.results[1,5] <- (proc.time() - tic)[3] all.results[2,5] <- mean((fit.va2$linear.predictors - normal_dat$linear.predictor)^2) ## Averaged across choose.n points in dataset all.results[3,5] <- fit.va2$kappa[2] - true.beta[2] all.results[4,5] <- (fit.va2$kappa[2] - true.beta[2])^2 make.ci <- c(fit.va2$para.stat[1,2] - qnorm(0.5 + CI/2) * fit.va2$para.stat[2,2], fit.va2$para.stat[1,2] + qnorm(0.5 + CI/2) * fit.va2$para.stat[2,2]) all.results[5,5] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,5] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- vagam(y = new.dat$y, smooth.X = new.dat[,2:5], para.X = data.frame(treatment = new.dat$treatment), int.knots = choose.k, A.struct = "block", save.data = TRUE, para.se = FALSE, control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) get.pred <- predict.vagam(fit1, new.smoothX = data[holdout.points,2:5]) make.ci <- cbind(get.pred$lower.bound, get.pred$upper.bound) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = normal_dat, holdout.points = sel.holdout.points) all.results[7,5] <- colMeans(do.holdfits)[1] all.results[8,5] <- colMeans(do.holdfits)[3] all.results[9,5] <- mean((fit.va2$linear.predictors - normal_dat$linear.predictor)^2) return(all.results) }
/scratch/gouwar.j/cran-all/cranData/vagam/R/simrun_normal_internal.R
simrun_poisson <- function(t, band_const, choose.n = 100, num.holdout.points = 10, true.beta = c(-1, 0.5), CI = 0.95) { set.seed(123 + t) choose.k <- band_const * ceiling(choose.n^0.2) all.results <- matrix(NA, nrow = 9, ncol = 5) rownames(all.results) = c("comptime", "mse", "bias-para", "mse-para", "confint-para", "width-para", "width-smooth", "intervalscore-smooth","mse-meanresp") colnames(all.results) = c("mgcv-default", "mgcv-psplines", "gamm4", "vagams-unstructuredA", "vagams-bdiagA") sel.holdout.points <- sample(1:choose.n, num.holdout.points) poisson_dat <- gamsim(n = choose.n, dist = "poisson", extra.X = data.frame(intercept = rep(1,choose.n), treatment = rep(c(0,1), each = choose.n/2)), beta = true.beta) ############################ ## 1) GAM mgcv with default ############################ tic <- proc.time() fit.mgcv1 <- gam(y~treatment + s(x0) + s(x1) + s(x2) + s(x3), data = poisson_dat, family = poisson()) all.results[1,1] <- (proc.time() - tic)[3] all.results[2,1] <- mean((fit.mgcv1$linear.predictors - poisson_dat$linear.predictor)^2) all.results[3,1] <- fit.mgcv1$coefficients[2] - true.beta[2] all.results[4,1] <- (fit.mgcv1$coefficients[2] - true.beta[2])^2 make.ci <- c(summary(fit.mgcv1)$p.coeff[2] - qnorm(0.5 + CI/2) *summary(fit.mgcv1)$se[2], summary(fit.mgcv1)$p.coeff[2] + qnorm(0.5 + CI/2) * summary(fit.mgcv1)$se[2]) all.results[5,1] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,1] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- gam(y ~ treatment + s(x0) + s(x1) + s(x2) + s(x3), family = poisson(), data = new.dat) get.pred <- predict.gam(fit1, newdata = data[holdout.points,], se.fit = TRUE, type = "terms", exclude = c("treatment")) get.pred <- predict.gam(fit1, newdata = data[holdout.points,], se.fit = TRUE) get.pred <- list(fit = c(get.pred$fit) - cbind(1,data[holdout.points,"treatment"])%*%fit1$coefficients[1:2], se.fit = c(get.pred$se.fit)) ## Only want smooth fit, so subtract the parametric component out (although se does not remove this!) make.ci <- cbind(get.pred$fit - qnorm(0.5 + CI/2) * get.pred$se.fit, get.pred$fit + qnorm(0.5 + CI/2) * get.pred$se.fit) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = poisson_dat, holdout.points = sel.holdout.points) all.results[7,1] <- colMeans(do.holdfits)[1] all.results[8,1] <- colMeans(do.holdfits)[3] all.results[9,1] <- mean((exp(fit.mgcv1$linear.predictors) - exp(poisson_dat$linear.predictor))^2) rm(holdout.fit) ############################################### ## 2) GAM mgcv with P splines and preset knots ############################################### tic <- proc.time() fit.mgcv2 <- gam(y ~ treatment + s(x0, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), data = poisson_dat, family = poisson()) all.results[1,2] <- (proc.time() - tic)[3] all.results[2,2] <- mean((fit.mgcv2$linear.predictors - poisson_dat$linear.predictor)^2) ## Averaged across choose.n points in dataset all.results[3,2] <- fit.mgcv2$coefficients[2] - true.beta[2] all.results[4,2] <- (fit.mgcv2$coefficients[2] - true.beta[2])^2 make.ci <- c(summary(fit.mgcv2)$p.coeff[2] - qnorm(0.5 + CI/2) * summary(fit.mgcv2)$se[2], summary(fit.mgcv2)$p.coeff[2] + qnorm(0.5 + CI/2) * summary(fit.mgcv2)$se[2]) all.results[5,2] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,2] <- diff(make.ci) holdout.fit <- function(data, holdout.points) ## Not sure if you are holding out each point at a time, or you are holding out all chosen points in one go! { new.dat <- data[-holdout.points,] fit1 <- gam(y ~ treatment + s(x0, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), family = poisson(), data = new.dat) get.pred <- predict.gam(fit1, newdata = data[holdout.points,], se.fit = TRUE) get.pred <- list(fit = c(get.pred$fit) - cbind(1,data[holdout.points,"treatment"])%*%fit1$coefficients[1:2], se.fit = c(get.pred$se.fit)) ## Only want smooth fit, so subtract the parametric component out (although se does not remove this!) make.ci <- cbind(get.pred$fit - qnorm(0.5 + CI/2) * get.pred$se.fit, get.pred$fit + qnorm(0.5 + CI/2) * get.pred$se.fit) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = poisson_dat, holdout.points = sel.holdout.points) all.results[7,2] <- colMeans(do.holdfits)[1] all.results[8,2] <- colMeans(do.holdfits)[3] all.results[9,2] <- mean((exp(fit.mgcv2$linear.predictors) - exp(poisson_dat$linear.predictor))^2) rm(holdout.fit) ############################################### ## 3) GAMM4 using mixed model parameterization ############################################### tic <- proc.time() fit.gamm4 <- gamm4(y ~ treatment + s(x0, bs = "ps", k = choose.k+2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), data = poisson_dat, family = poisson()) all.results[1,3] <- (proc.time() - tic)[3] all.results[2,3] <- mean((fit.gamm4$gam$linear.predictors - poisson_dat$linear.predictor)^2) ## Averaged across choose.n points in dataset all.results[3,3] <- fit.gamm4$gam$coefficients[2] - true.beta[2] all.results[4,3] <- (fit.gamm4$gam$coefficients[2] - true.beta[2])^2 make.ci <- c(summary(fit.gamm4$gam)$p.coeff[2] - qnorm(0.5 + CI/2) * summary(fit.gamm4$gam)$se[2], summary(fit.gamm4$gam)$p.coeff[2] + qnorm(0.5 + CI/2) * summary(fit.gamm4$gam)$se[2]) all.results[5,3] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,3] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- gamm4(y ~ treatment + s(x0, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), family = poisson(), data = new.dat) get.pred <- predict.gam(fit1$gam, newdata = data[holdout.points,], se.fit = TRUE) get.pred <- list(fit = c(get.pred$fit) - cbind(1,data[holdout.points,"treatment"])%*%fit1$gam$coefficients[1:2], se.fit = c(get.pred$se.fit)) ## Only want smooth fit, so subtract the parametric component out (although se does not remove this!) make.ci <- cbind(get.pred$fit - qnorm(0.5 + CI/2) * get.pred$se.fit, get.pred$fit + qnorm(0.5 + CI/2) * get.pred$se.fit) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = poisson_dat, holdout.points = sel.holdout.points) all.results[7,3] <- colMeans(do.holdfits)[1] all.results[8,3] <- colMeans(do.holdfits)[3] all.results[9,3] <- mean((exp(fit.gamm4$gam$linear.predictors) - exp(poisson_dat$linear.predictor))^2) rm(holdout.fit) ####################################################### ## 4) VA with unstructed variational covariance matrix ####################################################### tic <- proc.time() fit.va1 <- vagam(y = poisson_dat$y, smooth.X = poisson_dat[,2:5], para.X = data.frame(treatment = poisson_dat$treatment), int.knots = choose.k, A.struct = "unstructured", save.data = TRUE, family = poisson(), para.se = TRUE, control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) all.results[1,4] <- (proc.time() - tic)[3] all.results[2,4] <- mean((fit.va1$linear.predictors - poisson_dat$linear.predictor)^2) ## Averaged across choose.n points in dataset all.results[3,4] <- fit.va1$kappa[2] - true.beta[2] all.results[4,4] <- (fit.va1$kappa[2] - true.beta[2])^2 make.ci <- c(fit.va1$para.stat[1,2] - qnorm(0.5 + CI/2) * fit.va1$para.stat[2,2], fit.va1$para.stat[1,2] + qnorm(0.5 + CI/2) * fit.va1$para.stat[2,2]) all.results[5,4] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,4] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- vagam(y = new.dat$y, smooth.X = new.dat[,2:5], para.X = data.frame(treatment = new.dat$treatment), int.knots = choose.k, A.struct = "unstructured", save.data = TRUE, family = poisson(), para.se = FALSE, control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) get.pred <- predict.vagam(fit1, new.smoothX = data[holdout.points,2:5]) make.ci <- cbind(get.pred$lower.bound, get.pred$upper.bound) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = poisson_dat, holdout.points = sel.holdout.points) all.results[7,4] <- colMeans(do.holdfits)[1] all.results[8,4] <- colMeans(do.holdfits)[3] all.results[9,4] <- mean((exp(fit.va1$linear.predictors) - exp(poisson_dat$linear.predictor))^2) rm(holdout.fit) ########################################################### ## 5) VA with block diagonal variational covariance matrix ########################################################### tic <- proc.time() fit.va2 <- vagam(y = poisson_dat$y, smooth.X = poisson_dat[,2:5], para.X = data.frame(treatment = poisson_dat$treatment), int.knots = choose.k, A.struct = "block", save.data = TRUE, family = poisson(), para.se = TRUE, control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) all.results[1,5] <- (proc.time() - tic)[3] all.results[2,5] <- mean((fit.va2$linear.predictors - poisson_dat$linear.predictor)^2) ## Averaged across choose.n points in dataset all.results[3,5] <- fit.va2$kappa[2] - true.beta[2] all.results[4,5] <- (fit.va2$kappa[2] - true.beta[2])^2 make.ci <- c(fit.va2$para.stat[1,2] - qnorm(0.5 + CI/2) * fit.va2$para.stat[2,2], fit.va2$para.stat[1,2] + qnorm(0.5 + CI/2) * fit.va2$para.stat[2,2]) all.results[5,5] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,5] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- vagam(y = new.dat$y, smooth.X = new.dat[,2:5], para.X = data.frame(treatment = new.dat$treatment), int.knots = choose.k, A.struct = "block", save.data = TRUE, family = poisson(), para.se = FALSE, control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) get.pred <- predict.vagam(fit1, new.smoothX = data[holdout.points,2:5]) make.ci <- cbind(get.pred$lower.bound, get.pred$upper.bound) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = poisson_dat, holdout.points = sel.holdout.points) all.results[7,5] <- colMeans(do.holdfits)[1] all.results[8,5] <- colMeans(do.holdfits)[3] all.results[9,5] <- mean((exp(fit.va2$linear.predictors) - exp(poisson_dat$linear.predictor))^2) return(all.results) }
/scratch/gouwar.j/cran-all/cranData/vagam/R/simrun_poisson_internal.R
summary.vagam <- function(object, ...) { print(object) cat(paste("\nSummary statistics for nonparametric component:\n")) print(object$smooth.stat) cat(paste("\nSummary statistics for parametric component (if para.se = TRUE):\n")) print(object$para.stat) #cat(paste("\nSummary statistics for linear predictors:\n")) #print(summary(object$linear.predictors)) cat("\n") out <- list(call = object$call, para.coeff = object$kappa, smooth.coeff = object$a, smooth.param = object$lambda, phi = object$phi, logLik = object$logL, family = object$family, smooth.stat = object$smooth.stat, para.stat = object$para.stat) class(out) <- "summary.vagam" return(out) }
/scratch/gouwar.j/cran-all/cranData/vagam/R/summary.vagam.R
###################### ## TODO ## 2) Redo calculation of information matrix to do sandwich formula ## 3) Allow more spline types, specifically more straight additive splines options and then possibly tensor products? ## 4) Port ridge.iwla to use C++ ## 5) Allow subset, and na.action options vagam <- function(y, smooth.X, para.X = NULL, lambda = NULL, int.knots, family = gaussian(), A.struct = c("unstructured", "block"), offset = NULL, save.data = FALSE, para.se = FALSE, doIC = FALSE, control = list(eps = 1e-3, maxit = 1000, trace = TRUE, seed.number = 123, mc.samps = 4000, pois.step.size = 0.01)) { if(!(family$family %in% c("gaussian", "poisson", "binomial"))) #"binomialp" stop("Specified family currently no supported. Sorry!") if(family$family == "gaussian") family <- gaussian(link = "identity") if(family$family == "poisson") family <- poisson(link = "log") if(family$family == "binomial") family <- binomial(link = "logit") if(family$family == "binomialp") family <- binomial(link = "probit") A.struct <- match.arg(A.struct, c("unstructured", "block")) ncov_smooth_X <- ncol(smooth.X) if(is.null(offset)) offset <- numeric(length(y)) if(!(length(int.knots) %in% c(1,ncov_smooth_X))) stop("int.knots should either be a single number of a vector with length equal to ncol(smooth.X). Thanks!") if(length(int.knots) == 1) actual_int_knots <- rep(int.knots, ncov_smooth_X) if(length(int.knots) > 1) actual_int_knots <- int.knots if(is.null(colnames(smooth.X))) colnames(smooth.X) <- paste("smoothX", 1:ncov_smooth_X, sep = "") if(!is.null(para.X)) { para.X <- as.matrix(para.X) if(is.null(colnames(para.X))) colnames(para.X) <- paste("paraX", 1:ncol(para.X), sep = "") if(any(apply(para.X, 2, function(x) all(x == 1)))) stop("No intercept terms should be included in para.X, as this is included by default. Thanks!") para.X <- cbind(1, para.X) ## Intercept included by default colnames(para.X)[1] <- "Intercept" } if(is.null(para.X)) { para.X <- matrix(1, nrow = length(y), ncol = 1) colnames(para.X) <- "Intercept" } if(is.null(lambda)) { cw_lambda <- new_lambda <- rep(2, ncov_smooth_X) message("Lambda updated as part of VA estimation. Yeah baby!") } if(!is.null(lambda)) { if(length(lambda) != ncov_smooth_X) stop("lambda should a vector with length equal to ncol(smooth.X). Thanks!") cw_lambda <- new_lambda <- lambda message("Lambda given. Thanks!") } ## Construct B-splines basis, penalty matrix, and some other quantities for smooth.X, by extracting attributes from a mgcv gam fit ## no. of total knots = no. of interior knots[1] + 2*degree + 1, but then -1 to remove the intercept term ## no. of basis dimension = d_j = no. of interior knots[1]+ degree + 1, where degree of spline is typically set to 3 for cubic B-splines. But then we typically -1 to remove the intercept term. Then to ensure centering constraint is the satisfied, reduce by one to produce to d_j = no. of interior knots[1] + degree - 1 S <- basis_info <- vector("list", ncov_smooth_X) d <- numeric(ncov_smooth_X) ## rank of Sj index_cov <- NULL ## Indexes which covariate each column in Z belongs to Z <- NULL for(k in 1:ncov_smooth_X) { x0 <- smooth.X[,k] get_basis <- smooth.construct(s(x0, bs = "ps", k = actual_int_knots[k]+3, m = c(2,1)), data = data.frame(x0), knots = NULL) Z_k <- get_basis$X transform_mat <- qr.Q(qr(as.matrix(colSums(Z_k))), complete = TRUE)[,-1] ## Centering constraint Z_k <- Z_k %*% transform_mat index_cov <- c(index_cov, rep(k, ncol(Z_k))) colnames(Z_k) <- paste("smooth.X", k, 1:sum(index_cov == k), sep = "") Z <- cbind(Z, Z_k) S[[k]] <- crossprod(transform_mat, get_basis$S[[1]]) %*% transform_mat d[k] <- get_basis$rank get_basis$X <- NULL; get_basis$transform_mat <- transform_mat; basis_info[[k]] <- get_basis rm(transform_mat, get_basis, x0) } cw_kappa <- new_kappa <- numeric(ncol(para.X)) ## coefficients for parametric part names(new_kappa) <- names(para.X) cw_a <- new_a <- numeric(ncol(Z)) ## coefficients for smooth part, also VA means if(family$family == "poisson") { old <- .Random.seed on.exit({ .Random.seed = old}) set.seed(control$seed.number) cw_a <- new_a <- rnorm(ncol(Z)) ## Use random coefficients as it tends to work better for Poisson } names(new_a) <- colnames(Z) cw_A <- new_A <- matrix(0, nrow = ncol(Z), ncol = ncol(Z)) ## VA covariance rownames(new_A) <- colnames(new_A) <- colnames(Z) cw_phi <- new_phi <- 1 ## variance cw_logL <- -Inf new_logL <- 10 diff_logL <- 10 diff_lambda <- 0 counter <- 1 if(family$family %in% c("gaussian","binomialp")) ZZt <- crossprod(Z) tic <- proc.time() ## VA...Let it rip! while(diff_logL > control$eps) { if(counter > control$maxit) break; ## Update kappa and a and lambda if required ## Calculation for Poisson somewhat unstable ZA <- Z %*% cw_A new_offset <- Z %*% cw_a + as.numeric(family$family %in% c("poisson","binomial")) * 0.5 * rowSums(ZA * Z) + offset fit0 <- suppressWarnings(glm.fit(x = para.X, y = y, family = family, offset = new_offset, intercept = FALSE)) new_kappa <- fit0$coefficients Q <- matrix(0, ncol(Z), ncol(Z)) for(k2 in 1:ncov_smooth_X) Q[index_cov == k2,index_cov == k2] <- S[[k2]]*cw_lambda[k2] new_offset <- para.X %*% new_kappa + as.numeric(family$family %in% c("poisson","binomial")) * 0.5 * rowSums(ZA * Z) + offset if(family$family == "poisson") { fit0 <- ridge.iwls(x = Z, y = y, family = family, penalty = Q, initial.beta = cw_a, offset = new_offset, gamma = 0.1 + min(counter * control$pois.step.size, 0.9)) ## Gradually increase step size with counter } if(family$family != "poisson") { fit0 <- ridge.iwls(x = Z, y = y, family = family, penalty = cw_phi*Q, initial.beta = cw_a, offset = new_offset) } new_a <- fit0$coefficients rm(new_offset) ## Update phi for Gaussian new.eta <- para.X %*% new_kappa + Z %*% new_a + offset if(family$family == "gaussian") { new_phi <- (sum((y - new.eta)^2) + sum(ZA * Z))/length(y) } ## Update A if(A.struct == "unstructured") { if(family$family %in% c("gaussian","binomialp")) new_A <- chol2inv(chol(Q + (1/new_phi)*ZZt)) if(family$family == "poisson") { err2 <- 10; cw_A <- new_A while(err2 > 0.01) { denom <- Z * matrix(sqrt(exp(new.eta + 0.5 * rowSums(ZA * Z))), nrow = length(y), ncol = ncol(Z), byrow = FALSE) denom <- Q + crossprod(denom) new_A <- chol2inv(chol(denom)) err2 <- sum((cw_A - new_A)^2)/2 cw_A <- new_A } } if(family$family == "binomial") { err2 <- 10; cw_A <- new_A while(err2 > 0.01) { denom <- Z * matrix(sqrt(binomial()$linkinv(new.eta + 0.5 * rowSums(ZA * Z))), nrow = length(y), ncol = ncol(Z), byrow = FALSE) denom <- Q + crossprod(denom) new_A <- chol2inv(chol(denom)) err2 <- sum((cw_A - new_A)^2)/2 cw_A <- new_A } } } if(A.struct == "block") ## This might actually be slower than doing the full thing! { for(k2 in 1:ncov_smooth_X) { if(family$family %in% c("gaussian", "binomialp")) { new_A[index_cov == k2, index_cov == k2] <- chol2inv(chol(Q[index_cov == k2,index_cov == k2] + (1/new_phi) * crossprod(Z[,index_cov == k2]))) } if(family$family == "poisson") { err2 <- 10; while(err2 > 0.01) { denom <- Z[,index_cov == k2] * matrix(sqrt(exp(new.eta + 0.5 * rowSums(ZA * Z))), nrow = length(y), ncol = sum(index_cov==k2), byrow = FALSE) denom <- Q[index_cov == k2, index_cov == k2] + crossprod(denom) new_A[index_cov == k2, index_cov == k2] <- chol2inv(chol(denom)) err2 <- sum((cw_A - new_A)^2)/2 cw_A <- new_A } } if(family$family == "binomial") { err2 <- 10; while(err2 > 0.01) { denom <- Z[,index_cov == k2] * matrix(sqrt(binomial()$linkinv(new.eta + 0.5 * rowSums(ZA * Z))), nrow = length(y), ncol = sum(index_cov==k2), byrow = FALSE) denom <- Q[index_cov == k2, index_cov == k2] + crossprod(denom) new_A[index_cov == k2, index_cov == k2] <- chol2inv(chol(denom)) err2 <- sum((cw_A - new_A)^2)/2 cw_A <- new_A } } } } if(is.null(lambda)) { for(k2 in 1:ncov_smooth_X) { new_lambda[k2] <- d[k2]/(sum(diag(crossprod(S[[k2]], new_A[index_cov == k2, index_cov == k2]))) + tcrossprod(new_a[index_cov == k2], S[[k2]]) %*% new_a[index_cov == k2]) } } ## Calculate new VA logL new_logL <- calc.VAlogL(y = y, Z = Z, para.X = para.X, family = family, lambda = new_lambda, kappa = new_kappa, a = new_a, A = new_A, phi = new_phi, S = S, d = d, index.cov = index_cov, eta = new.eta) diff_logL <- new_logL - cw_logL diff_lambda <- sum((new_lambda - cw_lambda)^2) if(control$trace) cat("Iteration:", counter, "\t Current VA logL:", cw_logL, " | New VA logL:", new_logL, " | Difference:", new_logL - cw_logL, "\n") counter <- counter + 1 cw_logL <- new_logL cw_lambda <- new_lambda cw_kappa <- new_kappa cw_a <- new_a cw_A <- new_A cw_phi <- new_phi } toc <- proc.time() ## Calculate stuff related to external smoothing parameter selection ic_out <- rep(NA,2) names(ic_out) <- c("AIC", "BIC") if(doIC) { ic_out <- -2 * new_logL - new_phi + c(2 * fit0$tr.Inf * new_phi, log(length(y)) * fit0$tr.Inf * new_phi) } out <- list(kappa = new_kappa, a = new_a, A = new_A, lambda = new_lambda, IC = ic_out, phi = new_phi, linear.predictors = new.eta, offset = offset, logL = new_logL, no.knots = actual_int_knots, index.cov = index_cov, basis.info = basis_info, family = family, time.taken = toc-tic) if(save.data) { out$y out$para.X <- para.X out$smooth.X <- smooth.X out$Z <- Z } ## Wald test for each smooth curve smooth.X.waldstat <- smooth.X.waldpval <- numeric(ncov_smooth_X) new_A.inv <- chol2inv(chol(new_A)) for(k2 in 1:ncov_smooth_X) { smooth.X.waldstat[k2] <- crossprod(new_a[index_cov == k2], new_A.inv[index_cov == k2,index_cov == k2]) %*% new_a[index_cov == k2] smooth.X.waldpval[k2] <- pchisq(smooth.X.waldstat[k2], df = sum(index_cov==k2), lower.tail = FALSE) } smooth.X.wald <- round(rbind(smooth.X.waldstat,smooth.X.waldpval),5) rownames(smooth.X.wald) <- c("Wald Statistic", "p-value") colnames(smooth.X.wald) <- colnames(smooth.X) rm(smooth.X.waldstat,smooth.X.waldpval) out$smooth.stat <- smooth.X.wald ## Variatonal Observed information matrix for model params and lambas if(para.se) { message("Calculating information matrix for model parameters...") obs_info <- info.valouis(y = y, para.X = para.X, Z = Z, kappa = new_kappa, phi = new_phi, lambda = new_lambda, a = new_a, A = new_A, S = S, d = d, index.cov = index_cov, mc.samps = control$mc.samps, family = family) ## If there the information matrix is not +ve definite, then do a one-step to produce an unstructured A and recalculate the info matrix; hopefully this helps! if(any(diag(obs_info) < 0) & family$family == "poisson") { message("Redoing...") err2 <- 10; cw_A <- new_A #new.eta <- para.X %*% new_kappa + Z %*% new_a while(err2 > 0.01) { denom <- Z * matrix(sqrt(exp(new.eta + 0.5 * rowSums((Z %*% cw_A) * Z))), nrow = length(y), ncol = ncol(Z), byrow = FALSE) denom <- Q + crossprod(denom) new_A <- chol2inv(chol(denom)) err2 <- sum((cw_A - new_A)^2)/2 cw_A <- new_A } obs_info <- info.valouis(y = y, para.X = para.X, Z = Z, kappa = new_kappa, phi = new_phi, lambda = new_lambda, a = new_a, A = cw_A, S = S, d = d, index.cov = index_cov, mc.samps = control$mc.samps, family = family) } obs_info <- info.valouis(y = y, para.X = para.X, Z = Z, kappa = new_kappa, phi = new_phi, lambda = new_lambda, a = new_a, A = new_A, S = S, d = d, index.cov = index_cov, mc.samps = control$mc.samps, family = family) para_sderr <- sqrt(diag(solve(obs_info)))[1:ncol(para.X)] para_X_stat <- round(rbind(new_kappa, para_sderr, new_kappa/para_sderr, 2 * pnorm(abs(new_kappa/para_sderr), lower.tail = FALSE)), 5) rownames(para_X_stat) <- c("Estimate", "Std. Error", "Wald Statistic", "p-value") colnames(para_X_stat) <- colnames(para.X) out$para.stat <- para_X_stat out$obs.info <- obs_info } if(!para.se) { out$para.stat <- NULL } class(out) <- "vagam" out$call <- match.call() return(out) }
/scratch/gouwar.j/cran-all/cranData/vagam/R/vagam.R
express_lambda <- function(body) { call("function", as.pairlist(alist(. = )), body) } deparse_call <- function(chk_item, fn_expr) { call <- substitute(f(x), list(f = fn_expr, x = lazyeval::f_rhs(chk_item))) deparse_collapse(call) } # Rewire the argument signature of a function with_sig <- function(.f, .sig, .attrs) { formals(.f) <- .sig attributes(.f) <- .attrs .f }
/scratch/gouwar.j/cran-all/cranData/valaddin/R/call.R
localize_nm <- function(nm, what_is, ns, env) { msg <- paste("Not", what_is(nm)) p <- getExportedValue(ns, nm) localize(lazyeval::f_new(p, msg, env = env)) } replace <- function(x, pattern, with, ...) { gsub(pattern, with, x, ...) } delete <- function(x, pattern, ...) { replace(x, pattern, "", ...) } scrub <- function(pattern_rm, pattern_sep) { function(x) { replace(delete(x, pattern_rm), pattern_sep, with = " ") } } make_vld_chkrs <- function(nms, pattern, sep, ns, env = parent.frame()) { what_is <- scrub(pattern, sep) chkrs <- lapply(nms, localize_nm, ns = ns, what_is = what_is, env = env) names(chkrs) <- nms %>% delete(pattern) %>% replace("\\.", with = "_") %>% paste("vld", ., sep = "_") chkrs[sort(names(chkrs))] } chkrs <- make_vld_chkrs( nms = c( "is.array", "is.call", "is.complex", "is.data.frame", "is.environment", "is.expression", "is.factor", "is.language", "is.matrix", "is.name", "is.null", "is.numeric", "is.ordered", "is.pairlist", "is.primitive", "is.raw", "is.recursive", "is.symbol", "is.table", "is.unsorted", "is.function", "is.atomic", "is.list", "is.vector", "is.double", "is.character", "is.integer", "is.logical" ), pattern = "^is\\.", sep = "\\.", ns = "base" ) chkrs$vld_true <- localize(lazyeval::f_new(is_true, "Not TRUE")) chkrs$vld_false <- localize(lazyeval::f_new(is_false, "Not FALSE")) chkrs$vld_all <- localize(lazyeval::f_new(all, "Not all TRUE")) chkrs$vld_any <- localize(lazyeval::f_new(any, "None TRUE")) chkrs$vld_empty <- localize(lazyeval::f_new( quote({length(.) == 0L}), "Not empty")) chkrs$vld_singleton <- localize(lazyeval::f_new( quote({length(.) == 1L}), "Not singleton")) chkrs$vld_closure <- localize(lazyeval::f_new( quote({typeof(.) == "closure"}), "Not closure")) chkrs$vld_formula <- localize(lazyeval::f_new( quote({typeof(.) == "language" && inherits(., "formula")}), "Not formula")) chkrs$vld_na <- localize(lazyeval::f_new(quote({isTRUE(is.na(.))}), "Not NA")) chkrs$vld_nan <- localize(lazyeval::f_new(quote({isTRUE(is.nan(.))}), "Not NaN")) chkrs$vld_scalar_numeric <- localize(lazyeval::f_new( quote({is.numeric(.) && length(.) == 1L}), "Not scalar numeric")) chkrs$vld_scalar_logical <- localize(lazyeval::f_new( quote({is.logical(.) && length(.) == 1L}), "Not scalar logical")) chkrs$vld_scalar_integer <- localize(lazyeval::f_new( quote({is.integer(.) && length(.) == 1L}), "Not scalar integer")) chkrs$vld_scalar_vector <- localize(lazyeval::f_new( quote({is.vector(.) && length(.) == 1L}), "Not scalar vector")) chkrs$vld_scalar_atomic <- localize(lazyeval::f_new( quote({is.atomic(.) && length(.) == 1L}), "Not scalar atomic")) chkrs$vld_scalar_list <- localize(lazyeval::f_new( quote({is.list(.) && length(.) == 1L}), "Not scalar list")) chkrs$vld_scalar_double <- localize(lazyeval::f_new( quote({is.double(.) && length(.) == 1L}), "Not scalar double")) chkrs$vld_scalar_complex <- localize(lazyeval::f_new( quote({is.complex(.) && length(.) == 1L}), "Not scalar complex")) chkrs$vld_scalar_character <- localize(lazyeval::f_new( quote({is.character(.) && length(.) == 1L}), "Not scalar character")) chkrs$vld_scalar_raw <- localize(lazyeval::f_new( quote({is.raw(.) && length(.) == 1L}), "Not scalar raw")) # Aliases replace_msg <- function(chkr, msg) { f <- globalize(chkr) lazyeval::f_lhs(f) <- msg localize(f) } chkrs_alias <- list( "Not boolean" = chkrs$vld_scalar_logical, "Not number" = chkrs$vld_scalar_numeric, "Not string" = chkrs$vld_scalar_character ) %>% Map(replace_msg, ., names(.)) %>% setNames(replace(names(.), "^Not ", "vld_")) chkrs <- c(chkrs, chkrs_alias) for (nm in names(chkrs)) assign(nm, chkrs[[nm]]) #' @rawNamespace exportPattern("^vld_.*$") NULL # Documentation ----------------------------------------------------------- # Aliases, "Usage" nms <- list() nms$type <- paste0("vld_", c( "logical", "integer", "double", "complex", "character", "raw" )) nms$scalar <- c( "vld_singleton", "vld_boolean", "vld_number", "vld_string", paste0("vld_scalar_", c( "logical", "integer", "double", "complex", "character", "raw", "numeric", "atomic", "vector", "list" )) ) nms$misc <- setdiff(names(chkrs), c(nms$type, nms$scalar)) nms <- lapply(nms, sort) # Ensure that all checkers are accounted for stopifnot(setequal(names(chkrs), unlist(nms, use.names = FALSE))) # "See Also" (required because @family would overwrite our custom "See Also") trim <- local({ gather <- function(x) { gsub("\n([^\n])", " \\1", x) } tidy <- function(x) { gsub(" \n|\n ", "\n", gsub(" +", " ", x)) } function(x) { trimws(tidy(gather(x)), which = "both") } }) prefix_with <- function(x, text) { as.list(setNames(paste(text, x), names(x))) } base_predicate <- function(x, prefix = "^vld") { sub(prefix, "is", gsub("_", ".", x)) } join <- function(x) paste(x, collapse = ", ") link <- list( bare = "\\link{%s}", ext = "\\code{\\link[%s]{%s}}" ) misc_predicates <- nms$misc %>% setdiff(c( "vld_all", "vld_any", "vld_empty", "vld_formula", "vld_closure", "vld_true", "vld_false" )) %>% base_predicate %>% c("all", "any") scalar_predicates <- nms$scalar %>% setdiff(c("vld_boolean", "vld_number", "vld_singleton", "vld_string")) %>% base_predicate("^vld.scalar") predicates <- list( type = sprintf(link$ext, "base", base_predicate(nms$type)), scalar = sprintf(link$ext, "base", sort(scalar_predicates)), misc = sprintf(link$ext, "base", sort(misc_predicates)) ) %>% lapply(join) %>% prefix_with("Corresponding predicates:") other <- trim(" \\code{\\link{globalize}} recovers the underlying check formula of global scope. \n\n The notions of \\dQuote{scope} and \\dQuote{check item} are explained in the \\emph{Check Formulae} section of \\link{firmly}. ") family <- c("type", "scalar", "misc") %>% setNames(paste(., "checkers", sep = "-"), .) %>% lapply(function(nm) { other <- unname(.[. != nm]) join(sprintf(link$bare, other)) }) %>% prefix_with("Other checkers:") ref <- Map(c, predicates, other, family) #' Miscellaneous checkers #' #' @description #' These functions make check formulae of local scope based on the #' correspondingly named \pkg{base} R predicates \code{is.*} (e.g., #' \code{vld_data_frame} corresponds to the predicate #' \code{\link[base]{is.data.frame}}), with the following exceptions: #' #' - `vld_empty` is based on the predicate `length(.) == 0` #' #' - `vld_formula` is based on the predicate #' `typeof(.) == "language" && inherits(., "formula")` #' #' - `vld_closure` is based on the predicate `typeof(.) == "closure"` #' #' - `vld_true` and `vld_false` are based on the predicates #' `identical(., TRUE)` and `identical(., FALSE)`, resp. #' #' The checkers \code{vld_true} and \code{vld_false} are all-purpose checkers to #' specify \emph{arbitrary} input validation checks. #' #' @evalRd rd_alias(nms$misc) #' @evalRd rd_usage(nms$misc) #' @param \dots Check items, i.e., formulae that are one-sided or have a string #' as left-hand side (see \emph{Check Formulae of Local Scope} in the #' documentation page \link{firmly}). These are the expressions to check. #' @return Check formula of local scope. #' @details Each function \code{vld_*} is a function of class #' \code{"check_maker"}, generated by \code{\link{localize}}. #' @evalRd rd_seealso(ref$misc) #' @examples #' \dontrun{ #' #' f <- function(x, y) "Pass" #' #' # Impose the condition that x is a formula #' g <- firmly(f, vld_formula(~x)) #' g(z ~ a + b, 0) # [1] "Pass" #' g(0, 0) # Error: "Not formula: x" #' #' # Impose the condition that x and y are disjoint (assuming they are vectors) #' h <- firmly(f, vld_empty(~intersect(x, y))) #' h(letters[1:3], letters[4:5]) # [1] "Pass" #' h(letters[1:3], letters[3:5]) # Error: "Not empty: intersect(x, y)" #' #' # Use a custom error message #' h <- firmly(f, vld_empty("x, y must be disjoint" ~ intersect(x, y))) #' h(letters[1:3], letters[3:5]) # Error: "x, y must be disjoint" #' #' # vld_true can be used to implement any kind of input validation #' ifelse_f <- firmly(ifelse, vld_true(~typeof(yes) == typeof(no))) #' (w <- {set.seed(1); rnorm(5)}) #' # [1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078 #' ifelse_f(w > 0, 0, "1") # Error: "Not TRUE: typeof(yes) == typeof(no)" #' ifelse_f(w > 0, 0, 1) # [1] 1 0 1 0 0 #' } #' #' @name misc-checkers NULL #' Type checkers #' #' These functions make check formulae of local scope based on the #' correspondingly named (atomic) type predicate from \pkg{base} R. #' #' @evalRd rd_alias(nms$type) #' @evalRd rd_usage(nms$type) #' @param \dots Check items, i.e., formulae that are one-sided or have a string #' as left-hand side (see \emph{Check Formulae of Local Scope} in the #' documentation page \link{firmly}). These are the expressions to check. #' @inherit misc-checkers #' @evalRd rd_seealso(ref$type) #' @examples #' \dontrun{ #' #' f <- function(x, y) "Pass" #' #' # Impose a check on x: ensure it's of type "logical" #' f_firm <- firmly(f, vld_logical(~x)) #' f_firm(TRUE, 0) # [1] "Pass" #' f_firm(1, 0) # Error: "Not logical: x" #' #' # Use a custom error message #' f_firm <- firmly(f, vld_logical("x should be a logical vector" ~ x)) #' f_firm(1, 0) # Error: "x should be a logical vector" #' #' # To impose the same check on all arguments, apply globalize() #' f_firmer <- firmly(f, globalize(vld_logical)) #' f_firmer(TRUE, FALSE) # [1] "Pass" #' f_firmer(TRUE, 0) # Error: "Not logical: `y`" #' f_firmer(1, 0) # Errors: "Not logical: `x`", "Not logical: `y`" #' } #' @name type-checkers NULL #' Scalar checkers #' #' @description These functions make check formulae of local scope based on the #' correspondingly named scalar type predicate from \pkg{base} R. For example, #' `vld_scalar_logical` creates check formulae (of local scope) for the #' predicate `is.logical(.) && length(.) == 1`. The function `vld_singleton` is #' based on the predicate `length(.) == 1`. #' #' The functions `vld_boolean`, `vld_number`, `vld_string` are aliases for #' `vld_scalar_logical`, `vld_scalar_numeric`, `vld_scalar_character`, resp. #' (with appropriately modified error messages). #' #' @evalRd rd_alias(nms$scalar) #' @evalRd rd_usage(nms$scalar) #' @param \dots Check items, i.e., formulae that are one-sided or have a string #' as left-hand side (see \emph{Check Formulae of Local Scope} in the #' documentation page \link{firmly}). These are the expressions to check. #' @inherit misc-checkers #' @evalRd rd_seealso(ref$scalar) #' @examples #' \dontrun{ #' #' f <- function(x, y) "Pass" #' #' # Impose a check on x: ensure it's boolean (i.e., a scalar logical vector) #' f_firm <- firmly(f, vld_boolean(~x)) #' f_firm(TRUE, 0) # [1] "Pass" #' f_firm(c(TRUE, TRUE), 0) # Error: "Not boolean: x" #' #' # Use a custom error message #' f_firm <- firmly(f, vld_boolean("x is not TRUE/FALSE/NA" ~ x)) #' f_firm(c(TRUE, TRUE), 0) # Error: "x is not TRUE/FALSE/NA" #' #' # To impose the same check on all arguments, apply globalize #' f_firmer <- firmly(f, globalize(vld_boolean)) #' f_firmer(TRUE, FALSE) # [1] "Pass" #' f_firmer(TRUE, 0) # Error: "Not boolean: `y`" #' f_firmer(logical(0), 0) # Errors: "Not boolean: `x`", "Not boolean: `y`" #' } #' @name scalar-checkers NULL
/scratch/gouwar.j/cran-all/cranData/valaddin/R/checkers.R
#' Is a formula a check formula? #' #' \code{is_check_formula(x)} checks whether \code{x} is a check formula, while #' \code{is_checklist(x)} checks whether \code{x} is a \emph{checklist}, i.e., a #' list of check formulae. (Neither function verifies logical consistency of the #' implied checks.) #' #' @param x Object to test. #' @return \code{is_check_formula}, resp. \code{is_checklist}, returns #' \code{TRUE} or \code{FALSE}, according to whether \code{x} is or is not a #' check formula, resp. checklist. #' @seealso \link{firmly} (on the specification and use of check formulae) #' @examples #' is_check_formula(list(~x, ~y) ~ is.numeric) # [1] TRUE #' is_check_formula("Not positive" ~ {. > 0}) # [1] TRUE #' #' is_checklist(list(list(~x, ~y) ~ is.numeric, "Not positive" ~ {. > 0})) #' # [1] TRUE #' #' # Invalid checklists #' is_checklist("Not positive" ~ {. > 0}) # [1] FALSE (not a list) #' is_checklist(list(is.numeric ~ list(~ x))) # [1] FALSE (backwards) #' is_checklist(list(list(log ~ x) ~ is.character)) # [1] FALSE (invalid check item) #' #' @name checklist NULL #' @rdname checklist #' @export is_check_formula <- function(x) { inherits(x, "formula") && is_rhs_function(x) && is_lhs_checkitem(x) } #' @rdname checklist #' @export is_checklist <- function(x) { is.list(x) && all(vapply(x, is_check_formula, logical(1))) } is_string <- function(x) { typeof(x) == "character" && length(x) == 1L && !isTRUE(is.na(x)) } is_gbl_check_formula <- function(x) { inherits(x, "formula") && is_rhs_function(x) && is_string(f_eval_lhs(x)) } is_rhs_function <- function(x) { is_lambda(lazyeval::f_rhs(x)) || is.function(f_eval_rhs(x)) } # Like magrittr, capture '{...}' as anonymous function is_lambda <- function(x) { is.call(x) && identical(x[[1L]], as.symbol("{")) } # To check that a formula is onesided, it is not enough to check # is.null(f_eval_lhs(x)), for both NULL ~ x and ~x have NULL lhs. is_onesided <- function(x) { length(x) == 2L } is_f_onesided <- function(x) { inherits(x, "formula") && is_onesided(x) } is_lhs_checkitem <- function(x) { is_onesided(x) || { lhs <- f_eval_lhs(x) is_string(lhs) || is_flist(lhs) } } is_check_expr <- function(x) { inherits(x, "formula") && (is_onesided(x) || is_string(f_eval_lhs(x))) } is_flist <- function(x) { is.list(x) && length(x) && all(vapply(x, is_check_expr, logical(1))) }
/scratch/gouwar.j/cran-all/cranData/valaddin/R/checklist.R
#' Decompose a firmly applied function #' #' Decompose a firmly applied function (i.e., a function created by #' \code{\link{firmly}}): #' \itemize{ #' \item \code{firm_core} extracts the underlying \dQuote{core} #' function—the function that is called when all arguments are valid. #' \item \code{firm_checks} extracts the checks. #' \item \code{firm_error} extracts the subclass of the error condition that #' is signaled when an input validation error occurs. #' \item \code{firm_args} extracts the names of arguments whose presence is to #' be checked, i.e., those specified by the \code{.warn_missing} switch of #' \code{\link{firmly}}. #' } #' #' @param x Object to decompose. #' @return If \code{x} is a firmly applied function: #' \itemize{ #' \item \code{firm_core} returns a function. #' \item \code{firm_checks} returns a data frame with components \code{expr} #' (language), \code{env} (environment), \code{string} (character), #' \code{msg} (character). #' \item \code{firm_error} returns a character vector. #' \item \code{firm_args} returns a character vector. #' } #' In the absence of the component to be extracted, these functions return #' \code{NULL}. #' #' @seealso \code{\link{firmly}} #' @examples #' f <- function(x, y, ...) NULL #' f_fm <- firmly(f, ~is.numeric, list(~x, ~y - x) ~ {. > 0}) #' #' identical(firm_core(f_fm), f) # [1] TRUE #' firm_checks(f_fm) # 4 x 4 data frame #' firm_error(f_fm) # [1] "simpleError" #' firm_args(f_fm) # NULL #' firm_args(firmly(f_fm, .warn_missing = "y")) # [1] "y" #' #' @name components NULL #' @rdname components #' @export firm_core <- function(x) { .subset2(environment(x), ".fn") } #' @rdname components #' @export firm_checks <- function(x) { .subset2(environment(x), ".chks") } #' @rdname components #' @export firm_error <- function(x) { .subset2(environment(x), ".error_class") } #' @rdname components #' @export firm_args <- function(x) { .subset2(environment(.subset2(environment(x), ".warn")), ".args") }
/scratch/gouwar.j/cran-all/cranData/valaddin/R/components.R
# Checking infrastructure ------------------------------------------------- # Make a list of check items unfurl <- function(.symb, .nm, .msg, .env) { chk_items <- lapply(.symb, lazyeval::f_new, env = .env) if (is.null(.msg)) { names(chk_items) <- character(length(chk_items)) } else { names(chk_items) <- paste(.msg, encodeString(.nm, quote = "`"), sep = ": ") } chk_items } checks_df <- function(pred, items, env, string) { n <- length(items) x <- list( expr = lapply(items, function(.) as.call(c(pred, lazyeval::f_rhs(.)))), env = `[<-`(vector("list", n), list(env)), string = string, msg = names(items) ) class(x) <- "data.frame" attr(x, "row.names") <- .set_row_names(n) x } # Assemble a data frame of checks from a check formula assemble <- function(.chk, .nm, .symb, .env = lazyeval::f_env(.chk)) { p <- lazyeval::f_rhs(.chk) p_expr <- if (is_lambda(p)) express_lambda(p) else p predicate <- eval(p_expr, .env) lhs <- f_eval_lhs(.chk) chk_items <- if (is.list(lhs)) { # .chk: local scope do.call(lazyeval::f_list, lhs) } else { # .chk: global scope (lhs: string/NULL) unfurl(.symb, .nm, lhs, .env) } string <- vapply(chk_items, deparse_call, character(1), fn_expr = p_expr) is_blank <- !nzchar(names(chk_items)) names(chk_items)[is_blank] <- sprintf("FALSE: %s", string[is_blank]) checks_df(predicate, chk_items, .env, string) } # Warning apparatus ------------------------------------------------------- warn <- function(.args) { if (!length(.args)) { return(NULL) } function(.call) { missing <- setdiff(.args, names(.call[-1L])) if (length(missing)) { msg <- paste( sprintf("Argument(s) expected but not specified in call %s:", deparse_collapse(.call)), quote_collapse(missing) ) warning_wo_call(msg) } invisible(.call) } } warning_closure <- function(.fn, .warn) { force(.fn) force(.warn) function() { call <- match.call() encl <- parent.env(environment()) encl$.warn(call) eval.parent(`[[<-`(call, 1L, encl$.fn)) } } # Validation apparatus ---------------------------------------------------- problems <- function(chks, verdict) { vapply(seq_along(verdict), function(i) { x <- verdict[[i]] if (is_false(x)) { chks$msg[[i]] } else if (inherits(x, "error")) { sprintf("Error evaluating check %s: %s", chks$string[[i]], x$message) } else { sprintf("Predicate value %s not TRUE/FALSE: %s", chks$string[[i]], deparse_collapse(x)) } }, character(1)) } #' @importFrom stats runif setNames validating_closure <- function(.chks, .sig, .nm, .fn, .warn, .error_class) { force(.fn) force(.warn) force(.error_class) # Input-validation environment PROM.ENV <- sprintf("__PROM.ENV__%.12f", runif(1L)) make_promises <- eval(call("function", .sig, quote(environment()))) ve <- new.env(parent = emptyenv()) promises <- function(call, env_call) { ve[[PROM.ENV]] <- eval(`[[<-`(call, 1L, make_promises), env_call) parent.env(ve[[PROM.ENV]]) <- environment(.fn) ve } # Ensure that promises in validation expressions are from ve[["PROM.ENV"]] subs <- lapply(setNames(nm = .nm), function(.) substitute(get(., e), list(. = ., e = as.name(PROM.ENV))) ) exprs <- lapply(seq_len(nrow(.chks)), function(i) { expr <- .chks$expr[[i]] # 'expr' is a call, so its second component is the call arguments expr[[2L]] <- eval(substitute(substitute(., subs), list(. = expr[[2L]]))) list(expr = expr, env = .chks$env[[i]]) }) deparse_w_defval <- function(call) { .sig[names(call[-1L])] <- call[-1L] .sig <- .sig[!vapply(.sig, identical, logical(1), quote(expr = ))] deparse_collapse(as.call(c(call[[1L]], .sig))) } error <- function(message) { structure( list(message = message, call = NULL), class = c(.error_class, "error", "condition") ) } # Local bindings to avoid (unlikely) clashes with formal arguments enumerate_many <- match.fun("enumerate_many") problems <- match.fun("problems") function() { call <- match.call() encl <- parent.env(environment()) encl$.warn(call) env <- encl$promises(call, parent.frame()) verdict <- suppressWarnings(lapply(encl$exprs, function(.) tryCatch(eval(.$expr, `parent.env<-`(env, .$env)), error = identity) )) pass <- vapply(verdict, isTRUE, logical(1)) if (all(pass)) { eval.parent(`[[<-`(call, 1L, encl$.fn)) } else { fail <- !pass msg_call <- encl$deparse_w_defval(call) msg_error <- encl$enumerate_many( encl$problems(encl$.chks[fail, ], verdict[fail]) ) stop(encl$error(paste(msg_call, msg_error, sep = "\n"))) } } } # Functional operators ---------------------------------------------------- # Represent non-dot arguments by name and symbol # sig: pairlist nomen <- function(sig) { nm <- setdiff(names(sig), "...") %||% character(0) list(nm = nm, symb = lapply(nm, as.symbol)) } skip <- function(...) invisible() firmly_ <- function(.f, ..., .checklist = list(), .warn_missing = character(), .error_class = character()) { chks <- unname(c(list(...), .checklist)) error_class_inapplicable <- is.null(firm_checks(.f)) if (!length(chks) && !length(.warn_missing) && error_class_inapplicable) { return(.f) } if (!is_checklist(chks)) { stop_wo_call("Invalid check formula(e)") } sig <- formals(.f) arg <- nomen(sig) if (!length(arg$nm)) { if (length(.warn_missing)) { stop_wo_call("Invalid `.warn_missing`: `.f` has no named argument") } # No arguments, so assume .error_class inapplicable, hence chks non-empty warning_wo_call("Check formula(e) not applied: `.f` has no named argument") return(.f) } arg_unknown <- !(.warn_missing %in% arg$nm) if (any(arg_unknown)) { stop_wo_call(sprintf("Invalid `.warn_missing`: %s not argument(s) of `.f`", quote_collapse(.warn_missing[arg_unknown]))) } fn <- if (is_firm(.f)) firm_core(.f) else .f pre_chks <- firm_checks(.f) maybe_warn <- warn(.warn_missing) %||% warn(firm_args(.f)) %||% skip error_class <- .error_class %||% firm_error(.f) %||% "simpleError" if (length(chks)) { asm_chks <- unique( do.call("rbind", c(list(pre_chks), lapply(chks, assemble, .nm = arg$nm, .symb = arg$symb))) ) f <- validating_closure(asm_chks, sig, arg$nm, fn, maybe_warn, error_class) } else { # .warn_missing or .error_class is non-empty f <- if (is.null(pre_chks)) { warning_closure(fn, maybe_warn) } else { validating_closure(pre_chks, sig, arg$nm, fn, maybe_warn, error_class) } } firm_closure(with_sig(f, sig, .attrs = attributes(.f))) } is_closure <- function(x) typeof(x) == "closure" #' @export is_firm <- function(x) { is_closure(x) && inherits(x, "firm_closure") } firm_closure <- function(.f) { .f <- match.fun(.f) if (!inherits(.f, "firm_closure")) { class(.f) <- c("firm_closure", class(.f)) } .f } #' @export firmly <- firmly_( firmly_, list("`.f` not an interpreted function" ~ .f) ~ is_closure, list("`.checklist` not a list" ~ .checklist) ~ is.list, list( "`.warn_missing` not a character vector" ~ .warn_missing, "`.error_class` not a character vector" ~ .error_class ) ~ {is.character(.) && !anyNA(.)} ) #' @export `%checkin%` <- function(.checks, .f) { nms <- names(.checks) %||% character(length(.checks)) firmly( .f, .checklist = .checks[!nms %in% c(".warn_missing", ".error_class")], .warn_missing = .checks[[".warn_missing"]] %||% character(), .error_class = .checks[[".error_class"]] %||% character() ) } #' @export loosely <- function(.f, .keep_check = FALSE, .keep_warning = FALSE) { if (!inherits(.f, "firm_closure") || .keep_check && .keep_warning) { return(.f) } f_chks <- if (.keep_check) firm_checks(.f) else NULL f_args <- if (.keep_warning) firm_args(.f) else NULL if (is.null(f_chks) && is.null(f_args)) { return(firm_core(.f)) } sig <- formals(.f) f <- if (is.null(f_chks)) { warning_closure(firm_core(.f), warn(f_args)) } else { validating_closure(f_chks, sig, nomen(sig)$nm, firm_core(.f), skip, firm_error(.f)) } firm_closure(with_sig(f, sig, .attrs = attributes(.f))) } # Printing ---------------------------------------------------------------- #' @export print.firm_closure <- function(x, ...) { cat("<firm_closure>\n") cat("\n* Core function:\n") print.default(firm_core(x)) cat("\n* Checks (<predicate>:<error message>):\n") calls <- firm_checks(x) if (length(calls)) { labels <- paste0(calls$string, ":\n", encodeString(calls$msg, quote = "\"")) cat(enumerate_many(labels)) } else { cat("None\n") } cat("\n* Error subclass for check errors:\n") subclass <- firm_error(x) if (!is.null(subclass)) { cat(paste(subclass, collapse = ", "), "\n") } else { cat("None\n") } cat("\n* Check for missing arguments:\n") args <- firm_args(x) if (!is.null(args) && length(args)) { cat(quote_collapse(args), "\n") } else { cat("Not checked\n") } } # Documentation ----------------------------------------------------------- #' Apply a function firmly #' #' \code{firmly} transforms a function into a function with input validation #' checks. \code{loosely} undoes the application of \code{firmly}, by returning #' the original function (without checks). \code{is_firm} is a predicate #' function that checks whether an object is a firmly applied function, i.e., #' a function created by \code{firmly}. #' \cr\cr #' Use \code{\%checkin\%} to apply \code{firmly} as an operator. Since this #' allows you to keep checks and arguments adjacent, it is the preferred way to #' use \code{firmly} in scripts and packages. #' #' @aliases firmly %checkin% loosely is_firm #' @evalRd rd_usage(c("firmly", "%checkin%", "loosely", "is_firm")) #' #' @param .f Interpreted function, i.e., closure. #' @param \dots Input-validation check formula(e). #' @param .checklist List of check formulae. (These are combined with check #' formulae provided via \code{\dots}.) #' @param .warn_missing Arguments of \code{.f} whose absence should raise a #' warning (character). #' @param .error_class Subclass of the error condition to be raised when an #' input validation error occurs (character). #' @param .checks List of check formulae, optionally containing character #' vectors named \code{.warn_missing}, \code{.error_class}, corresponding to #' the similarly named arguments. #' @param .keep_check,.keep_warning Should existing checks, resp. #' missing-argument warnings, be kept? #' @param x Object to test. #' #' @section Check Formulae: #' An \strong{input validation check} is specified by a \strong{check #' formula}, a special \link[stats]{formula} of the form #' \preformatted{<scope> ~ <predicate>} #' where the right-hand side expresses \emph{what} to check, and the left-hand #' side expresses \emph{where} to check it. #' #' The right-hand side \code{<predicate>} is a \strong{predicate} function, #' i.e, a one-argument function that returns either \code{TRUE} or #' \code{FALSE}. It is the condition to check/enforce. The left-hand side #' \code{<scope>} is an expression specifying what the condition is to be #' applied to: whether the condition is to be applied to all #' (non-\code{\dots}) arguments of \code{.f} (the case of \dQuote{global #' scope}), or whether the condition is to be selectively applied to certain #' expressions of the arguments (the case of \dQuote{local scope}). #' #' According to \strong{scope}, there are two classes of check formulae: #' \itemize{ #' \item \strong{Check formulae of global scope} #' \preformatted{<string> ~ <predicate>} #' \preformatted{~<predicate>} #' #' \item \strong{Check formulae of local scope} #' \preformatted{list(<check_item>, <check_item>, ...) ~ <predicate>} #' } #' #' \subsection{Check Formulae of Global Scope}{ #' A \strong{global check formula} is a succinct way of asserting that the #' function \code{<predicate>} returns \code{TRUE} when called on each #' (non-\code{\dots}) argument of \code{.f}. Each argument for which #' \code{<predicate>} \emph{fails}—returns \code{FALSE} or is itself not #' evaluable—produces an error message, which is auto-generated unless a #' custom error message is supplied by specifying the string #' \code{<string>}. #' #' \subsection{Example}{ #' The condition that all (non-\code{\dots}) arguments of a function must #' be numerical can be enforced by the check formula #' \preformatted{~is.numeric} #' or #' \preformatted{"Not numeric" ~ is.numeric} #' if the custom error message \code{"Not numeric"} is to be used (in lieu #' of an auto-generated error message). #' } #' } #' #' \subsection{Check Formulae of Local Scope}{ #' A \strong{local check formula} imposes argument-specific conditions. Each #' \strong{check item} \code{<check_item>} is a formula of the form \code{~ #' <expression>} (one-sided) or \code{<string> ~ <expression>}; it imposes #' the condition that the function \code{<predicate>} is \code{TRUE} for the #' expression \code{<expression>}. As for global check formulae, each check #' item for which \code{<predicate>} fails produces an error message, which #' is auto-generated unless a custom error message is supplied by a string #' as part of the left-hand side of the check item (formula). #' #' \subsection{Example}{ #' The condition that \code{x} and \code{y} must differ for the function #' \code{function(x, y) \{1 / (x - y)\}} can be enforced by the local #' check formula #' \preformatted{list(~x - y) ~ function(.) abs(.) > 0} #' or #' \preformatted{list("x, y must differ" ~ x - y) ~ function(.) abs(.) > 0} #' if the custom error message \code{"x, y must differ"} is to be used (in #' lieu of an auto-generated error message). #' } #' } #' #' \subsection{Anonymous Predicate Functions}{ #' Following the #' \href{https://cran.r-project.org/package=magrittr}{\pkg{magrittr}} #' package, an anonymous (predicate) function of a single argument \code{.} #' can be concisely expressed by enclosing the body of such a function #' within curly braces \code{\{ \}}. #' #' \subsection{Example}{ #' The (onsided, global) check formula #' \preformatted{~{. > 0}} #' is equivalent to the check formula \code{~function(.) {. > 0}} #' } #' } #' #' @section Value: #' \subsection{\code{firmly}}{ #' \code{firmly} does nothing when there is nothing to do: \code{.f} is #' returned, unaltered, when both \code{.checklist} and \code{.warn_missing} #' are empty, or when \code{.f} has no named argument and #' \code{.warn_missing} is empty. #' #' Otherwise, \code{firmly} again returns a function that behaves #' \emph{identically} to \code{.f}, but also performs input validation: #' before a call to \code{.f} is attempted, its inputs are checked, and if #' any check fails, an error halts further execution with a message #' tabulating every failing check. (If all checks pass, the call to #' \code{.f} respects lazy evaluation, as usual.) #' #' \subsection{Subclass of the input-validation error object}{ #' The subclass of the error object is \code{.error_class}, unless #' \code{.error_class} is \code{character()}. In the latter case, the #' subclass of the error object is that of the existing error object, if #' \code{.f} is itself a firmly applied function, or it is #' \code{"simpleError"}, otherwise. #' } #' #' \subsection{Formal Arguments and Attributes}{ #' \code{firmly} preserves the attributes and formal arguments of #' \code{.f} (except that the \code{"class"} attribute gains the component #' \code{"firm_closure"}, unless it already contains it). #' } #' } #' \subsection{\code{\%checkin\%}}{ #' \code{\%checkin\%} applies the check formula(e) in the list \code{.checks} #' to \code{.f}, using \code{firmly}. The \code{.warn_missing} and #' \code{.error_class} arguments of \code{firmly} may be specified as named #' components of \code{.checks}. #' } #' \subsection{\code{loosely}}{ #' \code{loosely} returns \code{.f}, unaltered, when \code{.f} is not a #' firmly applied function, or both \code{.keep_check} and #' \code{.keep_warning} are \code{TRUE}. #' #' Otherwise, \code{loosely} returns the underlying (original) function, #' stripped of any input validation checks imposed by \code{firmly}, unless #' one of the flags \code{.keep_check}, \code{.keep_warning} is switched on: #' if \code{.keep_check}, resp. \code{.keep_warning}, is \code{TRUE}, #' \code{loosely} retains any existing checks, resp. missing-argument #' warnings, of \code{.f}. #' } #' \subsection{\code{is_firm}}{ #' \code{is_firm} returns \code{TRUE} if \code{x} is a firmly applied #' function (i.e., has class \code{"firm_closure"}), and \code{FALSE}, #' otherwise. #' } #' #' @seealso \code{firmly} is enhanced by a number of helper functions: #' \itemize{ #' \item To verify that a check formula is syntactically correct, use the #' predicates \code{\link{is_check_formula}}, \code{\link{is_checklist}}. #' \item To make custom check-formula generators, use #' \code{\link{localize}}. #' \item Pre-made check-formula generators are provided to facilitate #' argument checks for \link[=type-checkers]{types}, #' \link[=scalar-checkers]{scalar objects}, and #' \link[=misc-checkers]{other} common data structures and input #' assumptions. These functions are prefixed by \code{vld_}, for #' convenient browsing and look-up in editors and IDE's that support name #' completion. #' \item To access the components of a firmly applied function, use #' \code{\link{firm_core}}, \code{\link{firm_checks}}, #' \code{\link{firm_error}}, \code{\link{firm_args}}, (or simply #' \code{\link[base]{print}} the function to display its components). #' } #' #' @examples #' \dontrun{ #' #' dlog <- function(x, h) (log(x + h) - log(x)) / h #' #' # Require all arguments to be numeric (auto-generated error message) #' dlog_fm <- firmly(dlog, ~is.numeric) #' dlog_fm(1, .1) # [1] 0.9531018 #' dlog_fm("1", .1) # Error: "FALSE: is.numeric(x)" #' #' # Require all arguments to be numeric (custom error message) #' dlog_fm <- firmly(dlog, "Not numeric" ~ is.numeric) #' dlog_fm("1", .1) # Error: "Not numeric: `x`" #' #' # Alternatively, "globalize" a localized checker (see ?localize, ?globalize) #' dlog_fm <- firmly(dlog, globalize(vld_numeric)) #' dlog_fm("1", .1) # Error: "Not double/integer: `x`" #' #'# Predicate functions can be specified anonymously or by name #' dlog_fm <- firmly(dlog, list(~x, ~x + h, ~abs(h)) ~ function(x) x > 0) #' dlog_fm <- firmly(dlog, list(~x, ~x + h, ~abs(h)) ~ {. > 0}) #' is_positive <- function(x) x > 0 #' dlog_fm <- firmly(dlog, list(~x, ~x + h, ~abs(h)) ~ is_positive) #' dlog_fm(1, 0) # Error: "FALSE: is_positive(abs(h))" #' #' # Describe checks individually using custom error messages #' dlog_fm <- #' firmly(dlog, #' list("x not positive" ~ x, ~x + h, "Division by 0 (=h)" ~ abs(h)) ~ #' is_positive) #' dlog_fm(-1, 0) #' # Errors: "x not positive", "FALSE: is_positive(x + h)", "Division by 0 (=h)" #' #' # Specify checks more succinctly by using a (localized) custom checker #' req_positive <- localize("Not positive" ~ is_positive) #' dlog_fm <- firmly(dlog, req_positive(~x, ~x + h, ~abs(h))) #' dlog_fm(1, 0) # Error: "Not positive: abs(h)" #' #' # Combine multiple checks #' dlog_fm <- firmly(dlog, #' "Not numeric" ~ is.numeric, #' list(~x, ~x + h, "Division by 0" ~ abs(h)) ~ {. > 0}) #' dlog_fm("1", 0) # Errors: "Not numeric: `x`", check-eval error, "Division by 0" #' #' # Any check can be expressed using isTRUE #' err_msg <- "x, h differ in length" #' dlog_fm <- firmly(dlog, list(err_msg ~ length(x) - length(h)) ~ {. == 0L}) #' dlog_fm(1:2, 0:2) # Error: "x, h differ in length" #' dlog_fm <- firmly(dlog, list(err_msg ~ length(x) == length(h)) ~ isTRUE) #' dlog_fm(1:2, 0:2) # Error: "x, h differ in length" #' #' # More succinctly, use vld_true #' dlog_fm <- firmly(dlog, vld_true(~length(x) == length(h), ~all(abs(h) > 0))) #' dlog_fm(1:2, 0:2) #' # Errors: "Not TRUE: length(x) == length(h)", "Not TRUE: all(abs(h) > 0)" #' #' dlog_fm(1:2, 1:2) # [1] 0.6931472 0.3465736 #' #' # loosely recovers the underlying function #' identical(loosely(dlog_fm), dlog) # [1] TRUE #' #' # Use .warn_missing when you want to ensure an argument is explicitly given #' # (see vignette("valaddin") for an elaboration of this particular example) #' as_POSIXct <- firmly(as.POSIXct, .warn_missing = "tz") #' Sys.setenv(TZ = "EST") #' as_POSIXct("2017-01-01 03:14:16") # [1] "2017-01-01 03:14:16 EST" #' # Warning: "Argument(s) expected ... `tz`" #' as_POSIXct("2017-01-01 03:14:16", tz = "UTC") # [1] "2017-01-01 03:14:16 UTC" #' loosely(as_POSIXct)("2017-01-01 03:14:16") # [1] "2017-01-01 03:14:16 EST" #' #' # Use firmly to constrain undesirable behavior, e.g., long-running computations #' fib <- function(n) { #' if (n <= 1L) return(1L) #' Recall(n - 1) + Recall(n - 2) #' } #' fib <- firmly(fib, list("`n` capped at 30" ~ ceiling(n)) ~ {. <= 30L}) #' fib(21) # [1] 17711 (NB: Validation done only once, not for every recursive call) #' fib(31) # Error: `n` capped at 30 #' #' # Apply fib unrestricted #' loosely(fib)(31) # [1] 2178309 (may take several seconds to finish) #' #' # firmly won't force an argument that's not involved in checks #' g <- firmly(function(x, y) "Pass", list(~x) ~ is.character) #' g(c("a", "b"), stop("Not signaled")) # [1] "Pass" #' #' # In scripts and packages, it is recommended to use the operator %checkin% #' vec_add <- list( #' ~is.numeric, #' list(~length(x) == length(y)) ~ isTRUE, #' .error_class = "inputError" #' ) %checkin% #' function(x, y) { #' x + y #' } #' #' # Or call firmly with .f explicitly assigned to the function #' vec_add2 <- firmly( #' ~is.numeric, #' list(~length(x) == length(y)) ~ isTRUE, #' .f = function(x, y) { #' x + y #' }, #' .error_class = "inputError" #' ) #' #' all.equal(vec_add, vec_add2) # [1] TRUE #' } #' #' @name firmly NULL
/scratch/gouwar.j/cran-all/cranData/valaddin/R/firmly.R
f_evaluator <- function(fexpr) { force(fexpr) function(f) { if (!lazyeval::is_formula(f)) { stop_wo_call("`f` is not a formula") } eval(fexpr(f), lazyeval::f_env(f)) } } # Simplified f_lhs, f_rhs, independent of lazyeval::f_new f_eval_lhs <- f_evaluator(lazyeval::f_lhs) f_eval_rhs <- f_evaluator(lazyeval::f_rhs)
/scratch/gouwar.j/cran-all/cranData/valaddin/R/formulas.R
`%>%` <- local({ as_curried_fn <- function(expr, env) { if (!is.call(expr)) return(match.fun(expr)) if (no_dot_arg(expr)) expr <- curry_args(expr) lambda(body = expr, env) } lambda <- function(body, env) { expr_fn <- bquote(function(.) .(body)) f <- eval(expr_fn) environment(f) <- env f } no_dot_arg <- function(call) { all(args(call) != quote(.)) } curry_args <- function(call) { call_dot <- c(call[[1]], quote(.), args(call)) as.call(call_dot) } args <- function(call) { as.list(call)[-1] } function(lhs, rhs) { expr <- substitute(rhs) f <- as_curried_fn(expr, parent.frame()) f(lhs) } })
/scratch/gouwar.j/cran-all/cranData/valaddin/R/pipe.R
# Call signature of a function (specified by name) call_sig <- function(x, width) { stopifnot(is.character(x)) is_op <- grepl("^%.+%$", x) x[ is_op] <- vapply(x[ is_op], call_sig_op, character(1), USE.NAMES = FALSE) x[!is_op] <- vapply(x[!is_op], call_sig_fn, character(1), USE.NAMES = FALSE, width = width) x } call_sig_fn <- function(nm, width) { # Allowed range of values for width.cutoff parameter of deparse() stopifnot(width >= 20L, width <= 500L) sig <- formals(get(nm, mode = "function")) expr <- deparse(call("function", sig, quote(expr = ))) %>% paste(collapse = "") %>% sub("^function", nm, .) %>% {parse(text = ., keep.source = FALSE)[[1L]]} indent <- paste(rep(" ", nchar(nm)), collapse = "") paste(deparse_lines(expr, indent, width), collapse = "\n") } # The inaptly named "width.cutoff" of deparse() is a _lower_ bound for lengths deparse_lines <- function(expr, indent, width) { w <- width exceed_width <- TRUE while (exceed_width) { x <- deparse_reindent(expr, indent, w) exceed_width <- any(vapply(x, nchar, integer(1)) > width) w <- w - 1L } x } deparse_reindent <- function(expr, indent, width) { expr %>% deparse(width.cutoff = width) %>% trimws(which = "both") %>% {`[<-`(., -1L, value = paste(indent, .[-1L]))} } call_sig_op <- function(nm) { op <- get(nm, mode = "function") args <- names(formals(op)) nm_esc_pct <- gsub("%", "\\\\%", nm) paste(args[1L], nm_esc_pct, args[2L]) } # Convert a string-valued function into a vectorized function that joins strings vec_strjoin <- function(f_str, join = "\n") { force(f_str) force(join) function(x) paste(vapply(x, f_str, character(1)), collapse = join) } # Make a function that makes raw Rd markup rd_markup <- function(cmd, join = "", sep = "") { force(join) force(sep) cmd_opening <- paste0("\\", cmd, "{") function(x) { stopifnot(is.character(x)) paste(cmd_opening, paste(x, collapse = join), "}", sep = sep) } } #' Make raw Rd markup #' #' @param x Character vector of object names. #' @name rd_markup #' @noRd NULL #' @rdname rd_markup #' @examples #' rd_alias(c("firmly", "loosely")) #' @noRd rd_alias <- vec_strjoin(rd_markup("alias")) #' @rdname rd_markup #' @param width Width cutoff attempt, cf. \code{\link{deparse}}. #' @examples #' rd_usage("ls") #' rd_usage(c("firmly", "loosely"), pos = "package:valaddin") #' @noRd rd_usage <- function(x, width = 80L) { rd_markup("usage", join = "\n\n", sep = "\n")(call_sig(x, width)) } #' @rdname rd_markup #' @examples #' rd_seealso("Logarithm: \\code{\\link{log}}, \\code{\\link[utils]{head}}") #' @noRd rd_seealso <- rd_markup("seealso", join = "\n\n", sep = "\n")
/scratch/gouwar.j/cran-all/cranData/valaddin/R/rawrd.R
#' Generate input-validation checks #' #' \code{localize} derives a function that \emph{generates} check formulae of #' local scope from a check formula of global scope. \code{globalize} takes such #' a check-formula generator and returns the underlying global check formula. #' These operations are mutually invertible. #' #' @seealso The notion of \dQuote{scope} is explained in the \emph{Check #' Formulae} section of \link{firmly}. #' #' Ready-made checkers for \link[=type-checkers]{types}, #' \link[=scalar-checkers]{scalar objects}, and #' \link[=misc-checkers]{miscellaneous predicates} are provided as a #' convenience, and as a model for creating families of check makers. #' @examples #' chk_pos_gbl <- "Not positive" ~ {. > 0} #' chk_pos_lcl <- localize(chk_pos_gbl) #' chk_pos_lcl(~x, "y not greater than x" ~ x - y) #' # list("Not positive: x" ~ x, "y not greater than x" ~ x - y) ~ {. > 0} #' #' # localize and globalize are mutual inverses #' identical(globalize(localize(chk_pos_gbl)), chk_pos_gbl) # [1] TRUE #' all.equal(localize(globalize(chk_pos_lcl)), chk_pos_lcl) # [1] TRUE #' #' \dontrun{ #' #' pass <- function(x, y) "Pass" #' #' # Impose local positivity checks #' f <- firmly(pass, chk_pos_lcl(~x, "y not greater than x" ~ x - y)) #' f(2, 1) # [1] "Pass" #' f(2, 2) # Error: "y not greater than x" #' f(0, 1) # Errors: "Not positive: x", "y not greater than x" #' #' # Or just check positivity of x #' g <- firmly(pass, chk_pos_lcl(~x)) #' g(1, 0) # [1] "Pass" #' g(0, 0) # Error: "Not positive: x" #' #' # In contrast, chk_pos_gbl checks positivity for all arguments #' h <- firmly(pass, chk_pos_gbl) #' h(2, 2) # [1] "Pass" #' h(1, 0) # Error: "Not positive: `y`" #' h(0, 0) # Errors: "Not positive: `x`", "Not positive: `y`" #' #' # Alternatively, globalize the localized checker #' h2 <- firmly(pass, globalize(chk_pos_lcl)) #' all.equal(h, h2) # [1] TRUE #' #' # Use localize to make parameterized checkers #' chk_lte <- function(n, ...) { #' err_msg <- paste("Not <=", as.character(n)) #' localize(err_msg ~ {. <= n})(...) #' } #' fib <- function(n) { #' if (n <= 1L) return(1L) #' Recall(n - 1) + Recall(n - 2) #' } #' capped_fib <- firmly(fib, chk_lte(30, ~ ceiling(n))) #' capped_fib(19) # [1] 6765 #' capped_fib(31) # Error: "Not <= 30: ceiling(n)" #' } #' #' @name input-validators NULL is_check_maker <- function(x) { is_closure(x) && inherits(x, "check_maker") } #' @rdname input-validators #' @export #' @param chk Check formula of global scope \emph{with} custom error message, #' i.e., a formula of the form \code{<string> ~ <predicate>}. #' @return \code{localize} returns a function of class \code{"check_maker"} and #' call signature \code{function(...)}: #' \itemize{ #' \item The \code{\dots} are \strong{check items} (see \emph{Check Formulae #' of Local Scope} in the documentation page \link{firmly}). #' \item The return value is the check formula of local scope whose scope is #' comprised of these check items, and whose predicate function is that of #' \code{chk} (i.e., the right-hand side of \code{chk}). Unless a check #' item has its own error message, the error message is derived from that #' of \code{chk} (i.e., the left-hand side of \code{chk}). #' } localize <- list( list("`chk` must be a formula of the form <string> ~ <predicate>" ~ chk) ~ is_gbl_check_formula ) %checkin% function(chk) { .msg <- f_eval_lhs(chk) .rhs <- lazyeval::f_rhs(chk) .env <- lazyeval::f_env(chk) chkr <- function(...) { fs <- list(...) not_check_expr <- vapply(fs, Negate(is_check_expr), logical(1)) if (any(not_check_expr)) { args <- paste( vapply(fs[not_check_expr], deparse_collapse, character(1)), collapse = ", " ) stop_wo_call("LHS of formula(e) not empty or string: ", args) } wo_msg <- vapply(fs, is_onesided, logical(1)) fs[wo_msg] <- lapply(fs[wo_msg], function(f) { lazyeval::f_lhs(f) <- paste(.msg, deparse_collapse(lazyeval::f_rhs(f)), sep = ": ") f }) lazyeval::f_new(.rhs, fs, .env) } structure(chkr, class = c("check_maker", class(chkr))) } #' @rdname input-validators #' @export #' @param chkr Function of class \code{"check_maker"}, i.e., a function created #' by \code{localize}. #' @return \code{globalize} returns the global-scope check formula from which #' the function \code{chkr} is derived. globalize <- list( list("`chkr` must be a local checker function (see ?localize)" ~ chkr) ~ is_check_maker ) %checkin% function(chkr) { environment(chkr)$chk } #' @export print.check_maker <- function(x, ...) { env <- environment(x) p <- env$.rhs cat("<check_maker>\n") cat("\n* Predicate function:\n") if (is_lambda(p)) { cat(deparse_collapse(express_lambda(p)), "\n") } else { print.default(p) } cat("\n* Error message:\n") cat(encodeString(env$.msg, quote = "\""), "\n") }
/scratch/gouwar.j/cran-all/cranData/valaddin/R/scope.R
# Empty-default operator `%||%` <- function(x, y) { if (is.null(x) || length(x) == 0L) y else x } # Hush `R CMD check` note (confused by `.` in pipes) . <- NULL is_true <- isTRUE is_false <- function(x) identical(FALSE, x) stop_wo_call <- function(...) stop(..., call. = FALSE) warning_wo_call <- function(...) warning(..., call. = FALSE) # Deparse a language object as a single string deparse_collapse <- function(x) { d <- deparse(x) if (length(d) > 1L) { paste(trimws(gsub("\\s+", " ", d), which = "left"), collapse = "") } else { d } } # Typically used to list symbols, such as function argument names quote_collapse <- function(xs) { paste(encodeString(xs, quote = "`"), collapse = ", ") } # Collapse a character vector into an enumerated string enumerate_many <- function(x, many = 2L) { if (length(x) >= many) { paste( vapply(seq_along(x), function(i) sprintf("%d) %s\n", i, x[[i]]), character(1)), collapse = "" ) } else { paste0(x, "\n") } }
/scratch/gouwar.j/cran-all/cranData/valaddin/R/utils.R
#' valaddin: Functional Input Validation #' #' \emph{valaddin} provides a functional operator, \code{\link{firmly}}, that #' enhances functions with input validation. You supply a function \code{f} #' along with input validation requirements, and \code{firmly} returns a #' function that applies \code{f} \dQuote{firmly}: before a call to \code{f} is #' attempted, its inputs are checked, and if any check fails, an error halts #' further execution with a message tabulating every failing check. Because #' \code{firmly} implements input validation by operating on whole functions #' rather than values, it is suitable for both programming and interactive use. #' \cr\cr #' Using \code{firmly} to add input validation to your functions improves the #' legibility, reusability, and reliability of your code: #' \itemize{ #' \item Emphasize the core logic of your functions by excising validation #' boilerplate. #' \item Reduce duplication by reusing common checks across functions with #' common input requirements. #' \item Make function outputs more predictable by constraining their inputs. #' \item Vary the strictness of a function according to need and circumstance. #' } #' #' @details For an example-oriented overview of valaddin, see #' \code{vignette("valaddin")}. #' #' @keywords internal "_PACKAGE" ## usethis namespace: start ## usethis namespace: end NULL
/scratch/gouwar.j/cran-all/cranData/valaddin/R/valaddin-package.R
#' Validate objects #' #' @name validate #' @examples #' \dontrun{ #' library(magrittr) #' #' # Valid assertions: data frame returned (invisibly) #' mtcars %>% #' validate( #' vld_all(~sapply(., is.numeric)), #' ~{nrow(.) > 10}, #' vld_all(~c("mpg", "cyl") %in% names(.)) #' ) #' #' # Invalid assertions: error raised #' mtcars %>% #' validate( #' vld_all(~sapply(., is.numeric)), #' ~{nrow(.) > 1000}, #' vld_all(~c("mpg", "cylinders") %in% names(.)) #' ) #' } NULL validator <- function(..., .checklist = list(), .error_class = character()) { firmly_(function(.) invisible(.), ..., .checklist = .checklist, .error_class = .error_class) } #' @rdname validate #' @param . Object to validate. #' @param \dots Input-validation check formula(e). #' @param .checklist List of check formulae. (These are combined with check #' formulae provided via \code{\dots}.) #' @param .error_class Subclass of the error condition to be raised when an #' input validation error occurs (character). #' @export validate <- function(., ..., .checklist = list(), .error_class = "validationError") { # Assign validator to `validate` to get appropriate call in error message validate <- validator(..., .checklist = .checklist, .error_class = .error_class) validate(.) } #' @rdname validate #' @param .f Interpreted function, i.e., closure. #' @param .checks List of check formulae, optionally containing a character #' vector named \code{.error_class}, corresponding to the similarly named #' argument. #' @export `%checkout%` <- function(.f, .checks) { force(.f) validate_out <- local({ nms <- names(.checks) %||% character(length(.checks)) chk <- .checks[nms != ".error_class"] err <- .checks[[".error_class"]] %||% character() validator(.checklist = chk, .error_class = err) }) `formals<-`( function () { encl <- parent.env(environment()) encl$validate_out(eval.parent(`[[<-`(match.call(), 1L, encl$.f))) }, value = formals(.f) ) }
/scratch/gouwar.j/cran-all/cranData/valaddin/R/validate.R
## ---- include = FALSE--------------------------------------------------------- library(valaddin) knitr::opts_chunk$set(collapse = TRUE, comment = "#>") ## ----------------------------------------------------------------------------- f <- function(x, h) (sin(x + h) - sin(x)) / h ## ----------------------------------------------------------------------------- ff <- firmly(f, ~is.numeric) ## ---- include = FALSE--------------------------------------------------------- tz_original <- Sys.getenv("TZ", unset = NA) ## ----------------------------------------------------------------------------- Sys.setenv(TZ = "CET") (d <- as.POSIXct("2017-01-01 09:30:00")) ## ----------------------------------------------------------------------------- as.POSIXlt(d, tz = "EST")$hour ## ----------------------------------------------------------------------------- Sys.setenv(TZ = "EST") d <- as.POSIXct("2017-01-01 09:30:00") as.POSIXlt(d, tz = "EST")$hour ## ---- include = FALSE--------------------------------------------------------- if (isTRUE(is.na(tz_original))) { Sys.unsetenv("TZ") } else { Sys.setenv(TZ = tz_original) } ## ----------------------------------------------------------------------------- as.POSIXct <- firmly(as.POSIXct, .warn_missing = "tz") ## ----------------------------------------------------------------------------- as.POSIXct("2017-01-01 09:30:00") as.POSIXct("2017-01-01 09:30:00", tz = "CET") ## ----------------------------------------------------------------------------- loosely(as.POSIXct)("2017-01-01 09:30:00") identical(loosely(as.POSIXct), base::as.POSIXct) ## ----------------------------------------------------------------------------- w <- {set.seed(1); rnorm(5)} ifelse(w > 0, w, 0) ## ----------------------------------------------------------------------------- z <- rep(1, 6) pos <- 1:5 neg <- -6:-1 ifelse(z > 0, pos, neg) ## ----------------------------------------------------------------------------- chk_length_type <- list( "'yes', 'no' differ in length" ~ length(yes) == length(no), "'yes', 'no' differ in type" ~ typeof(yes) == typeof(no) ) ~ isTRUE ifelse_f <- firmly(ifelse, chk_length_type) ## ----------------------------------------------------------------------------- deposit <- function(account, value) { if (is_student(account)) { account$fees <- 0 } account$balance <- account$balance + value account } is_student <- function(account) { if (isTRUE(account$is_student)) TRUE else FALSE } ## ----------------------------------------------------------------------------- bobs_acct <- list(balance = 10, fees = 3, is_student = FALSE) ## ----------------------------------------------------------------------------- deposit(bobs_acct, bobs_acct$fees)$balance ## ----------------------------------------------------------------------------- bobs_acct$is_student <- TRUE ## ----------------------------------------------------------------------------- bobs_acct <- list2env(bobs_acct) ## ----------------------------------------------------------------------------- deposit(bobs_acct, bobs_acct$fees)$balance ## ----------------------------------------------------------------------------- err_msg <- "`acccount` should not be an environment" deposit <- firmly(deposit, list(err_msg ~ account) ~ Negate(is.environment)) ## ---- eval = FALSE------------------------------------------------------------ # x <- "An expensive object" # save(x, file = "my-precious.rda") # # x <- "Oops! A bug or lapse has tarnished your expensive object" # # # Many computations later, you again save x, oblivious to the accident ... # save(x, file = "my-precious.rda") ## ----------------------------------------------------------------------------- # Argument `gear` is a list with components: # fun: Function name # ns : Namespace of `fun` # chk: Formula that specify input checks hardhat <- function(gear, env = .GlobalEnv) { for (. in gear) { safe_fun <- firmly(getFromNamespace(.$fun, .$ns), .$chk) assign(.$fun, safe_fun, envir = env) } } ## ----------------------------------------------------------------------------- protection <- list( list( fun = "save", ns = "base", chk = list("Won't overwrite `file`" ~ file) ~ Negate(file.exists) ), list( fun = "load", ns = "base", chk = list("Won't load objects into current environment" ~ envir) ~ {!identical(., parent.frame(2))} ) ) ## ----------------------------------------------------------------------------- hardhat(protection) ## ---- eval = FALSE------------------------------------------------------------ # x <- "An expensive object" # save(x, file = "my-precious.rda") # # x <- "Oops! A bug or lapse has tarnished your expensive object" # #> Error: save(x, file = "my-precious.rda") # #> Won't overwrite `file` # # save(x, file = "my-precious.rda") # # # Inspecting x, you notice it's changed, so you try to retrieve the original ... # x # #> [1] "Oops! A bug or lapse has tarnished your expensive object" # load("my-precious.rda") # #> Error: load(file = "my-precious.rda") # #> Won't load objects into current environment # # # Keep calm and carry on # loosely(load)("my-precious.rda") # # x # #> [1] "An expensive object"
/scratch/gouwar.j/cran-all/cranData/valaddin/inst/doc/valaddin.R
--- title: "Using valaddin" author: "Eugene Ha" date: "2017-08-10" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Using valaddin} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} library(valaddin) knitr::opts_chunk$set(collapse = TRUE, comment = "#>") ``` _valaddin_ is a lightweight R package that enables you to transform an existing function into a function with input validation checks. It does so without requiring you to modify the body of the function, in contrast to doing input validation using `stop` or `stopifnot`, and is therefore suitable for both programmatic and interactive use. This document illustrates the use of valaddin, by example. For usage details, see the main documentation page, `?firmly`. ## Use cases The workhorse of valaddin is the function `firmly`, which applies input validation to a function, _in situ_. It can be used to: ### Enforce types for arguments For example, to require that all arguments of the function ```{r} f <- function(x, h) (sin(x + h) - sin(x)) / h ``` are numerical, apply `firmly` with the check formula `~is.numeric`[^1]: ```{r} ff <- firmly(f, ~is.numeric) ``` `ff` behaves just like `f`, but with a constraint on the type of its arguments: ```{r, error = TRUE, purl = FALSE} ff(0.0, 0.1) ff("0.0", 0.1) ``` [^1]: The inspiration to use `~` as a quoting operator came from the vignette [Non-standard evaluation](https://cran.r-project.org/package=lazyeval/vignettes/lazyeval.html), by Hadley Wickham. ### Enforce constraints on argument values For example, use `firmly` to put a cap on potentially long-running computations: ```{r, error = TRUE, purl = FALSE} fib <- function(n) { if (n <= 1L) return(1L) Recall(n - 1L) + Recall(n - 2L) } capped_fib <- firmly(fib, list("n capped at 30" ~ ceiling(n)) ~ {. <= 30L}) capped_fib(10) capped_fib(50) ``` The role of each part of the value-constraining formula is evident: - The right-hand side `{. <= 30L}` is the constraint itself, expressed as a condition on `.`, a placeholder argument. - The left-hand side `list("n capped at 30" ~ ceiling(n))` specifies the expression for the placeholder, namely `ceiling(n)`, along with a message to produce if the constraint is violated. ### Warn about pitfalls If the default behavior of a function is problematic, or unexpected, you can use `firmly` to warn you. Consider the function `as.POSIXct`, which creates a date-time object: ```{r, include = FALSE} tz_original <- Sys.getenv("TZ", unset = NA) ``` ```{r} Sys.setenv(TZ = "CET") (d <- as.POSIXct("2017-01-01 09:30:00")) ``` The problem is that `d` is a potentially _ambiguous_ object (with hidden state), because it's not assigned a time zone, explicitly. If you compute the local hour of `d` using `as.POSIXlt`, you get an answer that interprets `d` according to your current time zone; another user—or you, in another country, in the future—may get a different result. - If you're in CET time zone: ```{r} as.POSIXlt(d, tz = "EST")$hour ``` - If you were to change to EST time zone and rerun the code: ```{r} Sys.setenv(TZ = "EST") d <- as.POSIXct("2017-01-01 09:30:00") as.POSIXlt(d, tz = "EST")$hour ``` ```{r, include = FALSE} if (isTRUE(is.na(tz_original))) { Sys.unsetenv("TZ") } else { Sys.setenv(TZ = tz_original) } ``` To warn yourself about this pitfall, you can modify `as.POSIXct` to complain when you've forgotten to specify a time zone: ```{r} as.POSIXct <- firmly(as.POSIXct, .warn_missing = "tz") ``` Now when you call `as.POSIXct`, you get a cautionary reminder: ```{r} as.POSIXct("2017-01-01 09:30:00") as.POSIXct("2017-01-01 09:30:00", tz = "CET") ``` **NB**: The missing-argument warning is implemented by wrapping functions. The underlying function `base::as.POSIXct` is called _unmodified_. #### Use `loosely` to access the original function Though reassigning `as.POSIXct` may seem risky, it is not, for the behavior is unchanged (aside from the extra precaution), and the original `as.POSIXct` remains accessible: - With a namespace prefix: `base::as.POSIXct` - By applying `loosely` to strip input validation: `loosely(as.POSIXct)` ```{r} loosely(as.POSIXct)("2017-01-01 09:30:00") identical(loosely(as.POSIXct), base::as.POSIXct) ``` ### Decline handouts R tries to help you express your ideas as concisely as possible. Suppose you want to truncate negative values of a vector `w`: ```{r} w <- {set.seed(1); rnorm(5)} ifelse(w > 0, w, 0) ``` `ifelse` assumes (correctly) that you intend the `0` to be repeated `r length(w)` times, and does that for you, automatically. Nonetheless, R's good intentions have a darker side: ```{r} z <- rep(1, 6) pos <- 1:5 neg <- -6:-1 ifelse(z > 0, pos, neg) ``` This smells like a coding error. Instead of complaining that `pos` is too short, `ifelse` recycles it to line it up with `z`. The result is probably not what you wanted. In this case, you don't need a helping hand, but rather a firm one: ```{r} chk_length_type <- list( "'yes', 'no' differ in length" ~ length(yes) == length(no), "'yes', 'no' differ in type" ~ typeof(yes) == typeof(no) ) ~ isTRUE ifelse_f <- firmly(ifelse, chk_length_type) ``` `ifelse_f` is more pedantic than `ifelse`. But it also spares you the consequences of invalid inputs: ```{r, error = TRUE, purl = FALSE} ifelse_f(w > 0, w, 0) ifelse_f(w > 0, w, rep(0, length(w))) ifelse(z > 0, pos, neg) ifelse_f(z > 0, pos, neg) ifelse(z > 0, as.character(pos), neg) ifelse_f(z > 0, as.character(pos), neg) ``` ### Reduce the risks of a lazy evaluation-style When R make a function call, say, `f(a)`, the _value_ of the argument `a` is not materialized in the body of `f` until it is actually needed. Usually, you can safely ignore this as a technicality of R's evaluation model; but in some situations, it can be problematic if you're not mindful of it. Consider a bank that waives fees for students. A function to make deposits might look like this[^2]: ```{r} deposit <- function(account, value) { if (is_student(account)) { account$fees <- 0 } account$balance <- account$balance + value account } is_student <- function(account) { if (isTRUE(account$is_student)) TRUE else FALSE } ``` Suppose Bob is an account holder, currently not in school: ```{r} bobs_acct <- list(balance = 10, fees = 3, is_student = FALSE) ``` If Bob were to deposit an amount to cover an future fee payment, his account balance would be updated to: ```{r} deposit(bobs_acct, bobs_acct$fees)$balance ``` Bob goes back to school and informs the bank, so that his fees will be waived: ```{r} bobs_acct$is_student <- TRUE ``` But now suppose that, somewhere in the bowels of the bank's software, the type of Bob's account object is converted from a list to an environment: ```{r} bobs_acct <- list2env(bobs_acct) ``` If Bob were to deposit an amount to cover an future fee payment, his account balance would now be updated to: ```{r} deposit(bobs_acct, bobs_acct$fees)$balance ``` Becoming a student has cost Bob money. What happened to the amount deposited? The culprit is lazy evaluation and the modify-in-place semantics of environments. In the call `deposit(account = bobs_acct, value = bobs_acct$fee)`, the value of the argument `value` is only set when it's used, which comes after the object `fee` in the environment `bobs_acct` has already been zeroed out. To minimize such risks, forbid `account` from being an environment: ```{r} err_msg <- "`acccount` should not be an environment" deposit <- firmly(deposit, list(err_msg ~ account) ~ Negate(is.environment)) ``` This makes Bob a happy customer, and reduces the bank's liability: ```{r, error = TRUE, purl = FALSE} bobs_acct <- list2env(list(balance = 10, fees = 3, is_student = TRUE)) deposit(bobs_acct, bobs_acct$fees)$balance deposit(as.list(bobs_acct), bobs_acct$fees)$balance ``` [^2]: Adapted from an example in Section 6.3 of Chambers, _Extending R_, CRC Press, 2016. For the sake of the example, ignore the fact that logic to handle fees does not belong in a function for deposits! ### Prevent self-inflicted wounds You don't mean to shoot yourself, but sometimes it happens, nonetheless: ```{r, eval = FALSE} x <- "An expensive object" save(x, file = "my-precious.rda") x <- "Oops! A bug or lapse has tarnished your expensive object" # Many computations later, you again save x, oblivious to the accident ... save(x, file = "my-precious.rda") ``` `firmly` can safeguard you from such mishaps: implement a safety procedure ```{r} # Argument `gear` is a list with components: # fun: Function name # ns : Namespace of `fun` # chk: Formula that specify input checks hardhat <- function(gear, env = .GlobalEnv) { for (. in gear) { safe_fun <- firmly(getFromNamespace(.$fun, .$ns), .$chk) assign(.$fun, safe_fun, envir = env) } } ``` gather your safety gear ```{r} protection <- list( list( fun = "save", ns = "base", chk = list("Won't overwrite `file`" ~ file) ~ Negate(file.exists) ), list( fun = "load", ns = "base", chk = list("Won't load objects into current environment" ~ envir) ~ {!identical(., parent.frame(2))} ) ) ``` then put it on ```{r} hardhat(protection) ``` Now `save` and `load` engage safety features that prevent you from inadvertently destroying your data: ```{r, eval = FALSE} x <- "An expensive object" save(x, file = "my-precious.rda") x <- "Oops! A bug or lapse has tarnished your expensive object" #> Error: save(x, file = "my-precious.rda") #> Won't overwrite `file` save(x, file = "my-precious.rda") # Inspecting x, you notice it's changed, so you try to retrieve the original ... x #> [1] "Oops! A bug or lapse has tarnished your expensive object" load("my-precious.rda") #> Error: load(file = "my-precious.rda") #> Won't load objects into current environment # Keep calm and carry on loosely(load)("my-precious.rda") x #> [1] "An expensive object" ``` **NB**: Input validation is implemented by wrapping functions; thus, if the arguments are valid, the underlying functions `base::save`, `base::load` are called _unmodified_. ## Toolbox of input checkers _valaddin_ provides a collection of over 50 pre-made input checkers to facilitate typical kinds of argument checks. These checkers are prefixed by `vld_`, for convenient browsing and look-up in editors and IDE's that support name completion. For example, to create a type-checked version of the function `upper.tri`, which returns an upper-triangular logical matrix, apply the checkers `vld_matrix`, `vld_boolean` (here "boolean" is shorthand for "logical vector of length 1"): ```{r, error = TRUE, purl = FALSE} upper_tri <- firmly(upper.tri, vld_matrix(~x), vld_boolean(~diag)) # upper.tri assumes you mean a vector to be a column matrix upper.tri(1:2) upper_tri(1:2) # But say you actually meant (1, 2) to be a diagonal matrix upper_tri(diag(1:2)) upper_tri(diag(1:2), diag = "true") upper_tri(diag(1:2), TRUE) ``` ### Check anything with `vld_true` Any input validation can be expressed as an assertion that "such and such must be true"; to apply it as such, use `vld_true` (or its complement, `vld_false`). For example, the above hardening of `ifelse` can be redone as: ```{r, error = TRUE, purl = FALSE} chk_length_type <- vld_true( "'yes', 'no' differ in length" ~ length(yes) == length(no), "'yes', 'no' differ in type" ~ typeof(yes) == typeof(no) ) ifelse_f <- firmly(ifelse, chk_length_type) z <- rep(1, 6) pos <- 1:5 neg <- -6:-1 ifelse_f(z > 0, as.character(pos), neg) ifelse_f(z > 0, c(pos, 6), neg) ifelse_f(z > 0, c(pos, 6L), neg) ``` ### Make your own input checker with `localize` A check formula such as `~ is.numeric` (or `"Not number" ~ is.numeric`, if you want a custom error message) imposes its condition "globally": ```{r, error = TRUE, purl = FALSE} difference <- firmly(function(x, y) x - y, ~ is.numeric) difference(3, 1) difference(as.POSIXct("2017-01-01", "UTC"), as.POSIXct("2016-01-01", "UTC")) ``` With `localize`, you can concentrate a globally applied check formula to specific expressions. The result is a _reusable_ custom checker: ```{r, error = TRUE, purl = FALSE} chk_numeric <- localize("Not numeric" ~ is.numeric) secant <- firmly(function(f, x, h) (f(x + h) - f(x)) / h, chk_numeric(~x, ~h)) secant(sin, 0, .1) secant(sin, "0", .1) ``` (In fact, `chk_numeric` is equivalent to the pre-built checker `vld_numeric`.) Conversely, apply `globalize` to impose your localized checker globally: ```{r, error = TRUE, purl = FALSE} difference <- firmly(function(x, y) x - y, globalize(chk_numeric)) difference(3, 1) difference(as.POSIXct("2017-01-01", "UTC"), as.POSIXct("2016-01-01", "UTC")) ``` ## Related packages ### Packages that enhance valaddin - [assertive](https://bitbucket.org/richierocks/assertive), [assertthat](https://github.com/hadley/assertthat), and [checkmate](https://github.com/mllg/checkmate) provide extensive collections of predicate functions that you can use in conjunction with `firmly` and `localize`. - [ensurer](https://github.com/smbache/ensurer) and [assertr](https://github.com/ropensci/assertr) provide ways to validate function _values_. ### Other approaches to input validation - [argufy](https://github.com/gaborcsardi/argufy) takes a different approach to input validation, using [roxygen](https://github.com/r-lib/roxygen2) comments to specify checks. - [ensurer](https://github.com/smbache/ensurer) provides an experimental replacement for `function` that builds functions with type-validated arguments. - [typeCheck](https://github.com/jimhester/typeCheck), together with [Types for R](https://github.com/jimhester/types), enable the creation of functions with type-validated arguments by means of special type annotations. This approach is orthogonal to that of valaddin: whereas valaddin specifies input checks as _predicate functions with scope_ (predicates are primary), typeCheck specifies input checks as _arguments with type_ (arguments are primary).
/scratch/gouwar.j/cran-all/cranData/valaddin/inst/doc/valaddin.Rmd
--- title: "Using valaddin" author: "Eugene Ha" date: "2017-08-10" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Using valaddin} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} library(valaddin) knitr::opts_chunk$set(collapse = TRUE, comment = "#>") ``` _valaddin_ is a lightweight R package that enables you to transform an existing function into a function with input validation checks. It does so without requiring you to modify the body of the function, in contrast to doing input validation using `stop` or `stopifnot`, and is therefore suitable for both programmatic and interactive use. This document illustrates the use of valaddin, by example. For usage details, see the main documentation page, `?firmly`. ## Use cases The workhorse of valaddin is the function `firmly`, which applies input validation to a function, _in situ_. It can be used to: ### Enforce types for arguments For example, to require that all arguments of the function ```{r} f <- function(x, h) (sin(x + h) - sin(x)) / h ``` are numerical, apply `firmly` with the check formula `~is.numeric`[^1]: ```{r} ff <- firmly(f, ~is.numeric) ``` `ff` behaves just like `f`, but with a constraint on the type of its arguments: ```{r, error = TRUE, purl = FALSE} ff(0.0, 0.1) ff("0.0", 0.1) ``` [^1]: The inspiration to use `~` as a quoting operator came from the vignette [Non-standard evaluation](https://cran.r-project.org/package=lazyeval/vignettes/lazyeval.html), by Hadley Wickham. ### Enforce constraints on argument values For example, use `firmly` to put a cap on potentially long-running computations: ```{r, error = TRUE, purl = FALSE} fib <- function(n) { if (n <= 1L) return(1L) Recall(n - 1L) + Recall(n - 2L) } capped_fib <- firmly(fib, list("n capped at 30" ~ ceiling(n)) ~ {. <= 30L}) capped_fib(10) capped_fib(50) ``` The role of each part of the value-constraining formula is evident: - The right-hand side `{. <= 30L}` is the constraint itself, expressed as a condition on `.`, a placeholder argument. - The left-hand side `list("n capped at 30" ~ ceiling(n))` specifies the expression for the placeholder, namely `ceiling(n)`, along with a message to produce if the constraint is violated. ### Warn about pitfalls If the default behavior of a function is problematic, or unexpected, you can use `firmly` to warn you. Consider the function `as.POSIXct`, which creates a date-time object: ```{r, include = FALSE} tz_original <- Sys.getenv("TZ", unset = NA) ``` ```{r} Sys.setenv(TZ = "CET") (d <- as.POSIXct("2017-01-01 09:30:00")) ``` The problem is that `d` is a potentially _ambiguous_ object (with hidden state), because it's not assigned a time zone, explicitly. If you compute the local hour of `d` using `as.POSIXlt`, you get an answer that interprets `d` according to your current time zone; another user—or you, in another country, in the future—may get a different result. - If you're in CET time zone: ```{r} as.POSIXlt(d, tz = "EST")$hour ``` - If you were to change to EST time zone and rerun the code: ```{r} Sys.setenv(TZ = "EST") d <- as.POSIXct("2017-01-01 09:30:00") as.POSIXlt(d, tz = "EST")$hour ``` ```{r, include = FALSE} if (isTRUE(is.na(tz_original))) { Sys.unsetenv("TZ") } else { Sys.setenv(TZ = tz_original) } ``` To warn yourself about this pitfall, you can modify `as.POSIXct` to complain when you've forgotten to specify a time zone: ```{r} as.POSIXct <- firmly(as.POSIXct, .warn_missing = "tz") ``` Now when you call `as.POSIXct`, you get a cautionary reminder: ```{r} as.POSIXct("2017-01-01 09:30:00") as.POSIXct("2017-01-01 09:30:00", tz = "CET") ``` **NB**: The missing-argument warning is implemented by wrapping functions. The underlying function `base::as.POSIXct` is called _unmodified_. #### Use `loosely` to access the original function Though reassigning `as.POSIXct` may seem risky, it is not, for the behavior is unchanged (aside from the extra precaution), and the original `as.POSIXct` remains accessible: - With a namespace prefix: `base::as.POSIXct` - By applying `loosely` to strip input validation: `loosely(as.POSIXct)` ```{r} loosely(as.POSIXct)("2017-01-01 09:30:00") identical(loosely(as.POSIXct), base::as.POSIXct) ``` ### Decline handouts R tries to help you express your ideas as concisely as possible. Suppose you want to truncate negative values of a vector `w`: ```{r} w <- {set.seed(1); rnorm(5)} ifelse(w > 0, w, 0) ``` `ifelse` assumes (correctly) that you intend the `0` to be repeated `r length(w)` times, and does that for you, automatically. Nonetheless, R's good intentions have a darker side: ```{r} z <- rep(1, 6) pos <- 1:5 neg <- -6:-1 ifelse(z > 0, pos, neg) ``` This smells like a coding error. Instead of complaining that `pos` is too short, `ifelse` recycles it to line it up with `z`. The result is probably not what you wanted. In this case, you don't need a helping hand, but rather a firm one: ```{r} chk_length_type <- list( "'yes', 'no' differ in length" ~ length(yes) == length(no), "'yes', 'no' differ in type" ~ typeof(yes) == typeof(no) ) ~ isTRUE ifelse_f <- firmly(ifelse, chk_length_type) ``` `ifelse_f` is more pedantic than `ifelse`. But it also spares you the consequences of invalid inputs: ```{r, error = TRUE, purl = FALSE} ifelse_f(w > 0, w, 0) ifelse_f(w > 0, w, rep(0, length(w))) ifelse(z > 0, pos, neg) ifelse_f(z > 0, pos, neg) ifelse(z > 0, as.character(pos), neg) ifelse_f(z > 0, as.character(pos), neg) ``` ### Reduce the risks of a lazy evaluation-style When R make a function call, say, `f(a)`, the _value_ of the argument `a` is not materialized in the body of `f` until it is actually needed. Usually, you can safely ignore this as a technicality of R's evaluation model; but in some situations, it can be problematic if you're not mindful of it. Consider a bank that waives fees for students. A function to make deposits might look like this[^2]: ```{r} deposit <- function(account, value) { if (is_student(account)) { account$fees <- 0 } account$balance <- account$balance + value account } is_student <- function(account) { if (isTRUE(account$is_student)) TRUE else FALSE } ``` Suppose Bob is an account holder, currently not in school: ```{r} bobs_acct <- list(balance = 10, fees = 3, is_student = FALSE) ``` If Bob were to deposit an amount to cover an future fee payment, his account balance would be updated to: ```{r} deposit(bobs_acct, bobs_acct$fees)$balance ``` Bob goes back to school and informs the bank, so that his fees will be waived: ```{r} bobs_acct$is_student <- TRUE ``` But now suppose that, somewhere in the bowels of the bank's software, the type of Bob's account object is converted from a list to an environment: ```{r} bobs_acct <- list2env(bobs_acct) ``` If Bob were to deposit an amount to cover an future fee payment, his account balance would now be updated to: ```{r} deposit(bobs_acct, bobs_acct$fees)$balance ``` Becoming a student has cost Bob money. What happened to the amount deposited? The culprit is lazy evaluation and the modify-in-place semantics of environments. In the call `deposit(account = bobs_acct, value = bobs_acct$fee)`, the value of the argument `value` is only set when it's used, which comes after the object `fee` in the environment `bobs_acct` has already been zeroed out. To minimize such risks, forbid `account` from being an environment: ```{r} err_msg <- "`acccount` should not be an environment" deposit <- firmly(deposit, list(err_msg ~ account) ~ Negate(is.environment)) ``` This makes Bob a happy customer, and reduces the bank's liability: ```{r, error = TRUE, purl = FALSE} bobs_acct <- list2env(list(balance = 10, fees = 3, is_student = TRUE)) deposit(bobs_acct, bobs_acct$fees)$balance deposit(as.list(bobs_acct), bobs_acct$fees)$balance ``` [^2]: Adapted from an example in Section 6.3 of Chambers, _Extending R_, CRC Press, 2016. For the sake of the example, ignore the fact that logic to handle fees does not belong in a function for deposits! ### Prevent self-inflicted wounds You don't mean to shoot yourself, but sometimes it happens, nonetheless: ```{r, eval = FALSE} x <- "An expensive object" save(x, file = "my-precious.rda") x <- "Oops! A bug or lapse has tarnished your expensive object" # Many computations later, you again save x, oblivious to the accident ... save(x, file = "my-precious.rda") ``` `firmly` can safeguard you from such mishaps: implement a safety procedure ```{r} # Argument `gear` is a list with components: # fun: Function name # ns : Namespace of `fun` # chk: Formula that specify input checks hardhat <- function(gear, env = .GlobalEnv) { for (. in gear) { safe_fun <- firmly(getFromNamespace(.$fun, .$ns), .$chk) assign(.$fun, safe_fun, envir = env) } } ``` gather your safety gear ```{r} protection <- list( list( fun = "save", ns = "base", chk = list("Won't overwrite `file`" ~ file) ~ Negate(file.exists) ), list( fun = "load", ns = "base", chk = list("Won't load objects into current environment" ~ envir) ~ {!identical(., parent.frame(2))} ) ) ``` then put it on ```{r} hardhat(protection) ``` Now `save` and `load` engage safety features that prevent you from inadvertently destroying your data: ```{r, eval = FALSE} x <- "An expensive object" save(x, file = "my-precious.rda") x <- "Oops! A bug or lapse has tarnished your expensive object" #> Error: save(x, file = "my-precious.rda") #> Won't overwrite `file` save(x, file = "my-precious.rda") # Inspecting x, you notice it's changed, so you try to retrieve the original ... x #> [1] "Oops! A bug or lapse has tarnished your expensive object" load("my-precious.rda") #> Error: load(file = "my-precious.rda") #> Won't load objects into current environment # Keep calm and carry on loosely(load)("my-precious.rda") x #> [1] "An expensive object" ``` **NB**: Input validation is implemented by wrapping functions; thus, if the arguments are valid, the underlying functions `base::save`, `base::load` are called _unmodified_. ## Toolbox of input checkers _valaddin_ provides a collection of over 50 pre-made input checkers to facilitate typical kinds of argument checks. These checkers are prefixed by `vld_`, for convenient browsing and look-up in editors and IDE's that support name completion. For example, to create a type-checked version of the function `upper.tri`, which returns an upper-triangular logical matrix, apply the checkers `vld_matrix`, `vld_boolean` (here "boolean" is shorthand for "logical vector of length 1"): ```{r, error = TRUE, purl = FALSE} upper_tri <- firmly(upper.tri, vld_matrix(~x), vld_boolean(~diag)) # upper.tri assumes you mean a vector to be a column matrix upper.tri(1:2) upper_tri(1:2) # But say you actually meant (1, 2) to be a diagonal matrix upper_tri(diag(1:2)) upper_tri(diag(1:2), diag = "true") upper_tri(diag(1:2), TRUE) ``` ### Check anything with `vld_true` Any input validation can be expressed as an assertion that "such and such must be true"; to apply it as such, use `vld_true` (or its complement, `vld_false`). For example, the above hardening of `ifelse` can be redone as: ```{r, error = TRUE, purl = FALSE} chk_length_type <- vld_true( "'yes', 'no' differ in length" ~ length(yes) == length(no), "'yes', 'no' differ in type" ~ typeof(yes) == typeof(no) ) ifelse_f <- firmly(ifelse, chk_length_type) z <- rep(1, 6) pos <- 1:5 neg <- -6:-1 ifelse_f(z > 0, as.character(pos), neg) ifelse_f(z > 0, c(pos, 6), neg) ifelse_f(z > 0, c(pos, 6L), neg) ``` ### Make your own input checker with `localize` A check formula such as `~ is.numeric` (or `"Not number" ~ is.numeric`, if you want a custom error message) imposes its condition "globally": ```{r, error = TRUE, purl = FALSE} difference <- firmly(function(x, y) x - y, ~ is.numeric) difference(3, 1) difference(as.POSIXct("2017-01-01", "UTC"), as.POSIXct("2016-01-01", "UTC")) ``` With `localize`, you can concentrate a globally applied check formula to specific expressions. The result is a _reusable_ custom checker: ```{r, error = TRUE, purl = FALSE} chk_numeric <- localize("Not numeric" ~ is.numeric) secant <- firmly(function(f, x, h) (f(x + h) - f(x)) / h, chk_numeric(~x, ~h)) secant(sin, 0, .1) secant(sin, "0", .1) ``` (In fact, `chk_numeric` is equivalent to the pre-built checker `vld_numeric`.) Conversely, apply `globalize` to impose your localized checker globally: ```{r, error = TRUE, purl = FALSE} difference <- firmly(function(x, y) x - y, globalize(chk_numeric)) difference(3, 1) difference(as.POSIXct("2017-01-01", "UTC"), as.POSIXct("2016-01-01", "UTC")) ``` ## Related packages ### Packages that enhance valaddin - [assertive](https://bitbucket.org/richierocks/assertive), [assertthat](https://github.com/hadley/assertthat), and [checkmate](https://github.com/mllg/checkmate) provide extensive collections of predicate functions that you can use in conjunction with `firmly` and `localize`. - [ensurer](https://github.com/smbache/ensurer) and [assertr](https://github.com/ropensci/assertr) provide ways to validate function _values_. ### Other approaches to input validation - [argufy](https://github.com/gaborcsardi/argufy) takes a different approach to input validation, using [roxygen](https://github.com/r-lib/roxygen2) comments to specify checks. - [ensurer](https://github.com/smbache/ensurer) provides an experimental replacement for `function` that builds functions with type-validated arguments. - [typeCheck](https://github.com/jimhester/typeCheck), together with [Types for R](https://github.com/jimhester/types), enable the creation of functions with type-validated arguments by means of special type annotations. This approach is orthogonal to that of valaddin: whereas valaddin specifies input checks as _predicate functions with scope_ (predicates are primary), typeCheck specifies input checks as _arguments with type_ (arguments are primary).
/scratch/gouwar.j/cran-all/cranData/valaddin/vignettes/valaddin.Rmd
check.for.library <- function(lib.name = 'valection') { return.flag <- TRUE; if ('' == Sys.which(lib.name)) { return.flag <- FALSE; } return(return.flag); }
/scratch/gouwar.j/cran-all/cranData/valection/R/check.for.library.R
handle.missing.library <- function(lib.name = 'valection') { lib.url <- ''; if (lib.name == 'valection') { lib.url <- paste( ' It can be downloaded from', 'http://labs.oicr.on.ca/boutros-lab/software/valection' ); } stop( paste0( "You must install the ", lib.name, " library before using this package.", lib.url ), call. = FALSE ); }
/scratch/gouwar.j/cran-all/cranData/valection/R/handle.missing.library.R
.onAttach <- function(libname, pkgname) { packageStartupMessage( paste0("\n\n##########################\n"), paste0("#### valection v", utils::packageVersion("valection"), " ####\n"), paste0("##########################\n\n"), paste0("checking C library availability..."), paste0(ifelse(valection::check.for.library(), 'PASS', 'FAIL')) ); }
/scratch/gouwar.j/cran-all/cranData/valection/R/onAttach.R
quoted <- function(string) { return(paste("'", string, "'", sep = "")); }
/scratch/gouwar.j/cran-all/cranData/valection/R/quoted.R
run.decreasing.with.overlap <- function(budget, infile, outfile, seed = NULL) { if (valection::check.for.library()) { command <- paste( "valection", budget, "d", valection::quoted(infile), valection::quoted(outfile), seed, sep = " " ); system(command); } else { valection::handle.missing.library(); } }
/scratch/gouwar.j/cran-all/cranData/valection/R/run.decreasing.with.overlap.R
run.directed.sampling <- function(budget, infile, outfile, seed = NULL) { if (valection::check.for.library()) { command <- paste( "valection", budget, "v", valection::quoted(infile), valection::quoted(outfile), seed, sep = " " ); system(command); } else { valection::handle.missing.library(); } }
/scratch/gouwar.j/cran-all/cranData/valection/R/run.directed.sampling.R
run.equal.per.caller <- function(budget, infile, outfile, seed = NULL) { if (valection::check.for.library()) { command <- paste( "valection", budget, "e", valection::quoted(infile), valection::quoted(outfile), seed, sep = " " ); system(command); } else { valection::handle.missing.library(); } }
/scratch/gouwar.j/cran-all/cranData/valection/R/run.equal.per.caller.R
run.equal.per.overlap <- function(budget, infile, outfile, seed = NULL) { if (valection::check.for.library()) { command <- paste( "valection", budget, "o", valection::quoted(infile), valection::quoted(outfile), seed, sep = " " ); system(command); } else { valection::handle.missing.library(); } }
/scratch/gouwar.j/cran-all/cranData/valection/R/run.equal.per.overlap.R
run.increasing.with.overlap <- function(budget, infile, outfile, seed = NULL) { if (valection::check.for.library()) { command <- paste( "valection", budget, "i", valection::quoted(infile), valection::quoted(outfile), seed, sep = " " ); system(command); } else { valection::handle.missing.library(); } }
/scratch/gouwar.j/cran-all/cranData/valection/R/run.increasing.with.overlap.R
run.random.sampling <- function(budget, infile, outfile, seed = NULL) { if (valection::check.for.library()) { command <- paste( "valection", budget, "t", valection::quoted(infile), valection::quoted(outfile), seed, sep = " " ); system(command); } else { valection::handle.missing.library(); } }
/scratch/gouwar.j/cran-all/cranData/valection/R/run.random.sampling.R
### R code from vignette source 'Valection_Introduction.Rnw' ################################################### ### code chunk number 1: setup ################################################### options(width=100, signif=3, digits=3) set.seed(0xdada) ################################################### ### code chunk number 2: eg.run.valection (eval = FALSE) ################################################### ## require('valection'); ## ## # run the sampling to select 10 candidates ## run.equal.per.caller( ## budget = 10, ## infile = "/home/me/calls.valec", ## outfile = "/home/me/selections.txt", ## seed = 50 ## );
/scratch/gouwar.j/cran-all/cranData/valection/inst/doc/Valection_Introduction.R
#' Make a roses are red poem #' #' Make a "roses are red ..." poem #' about an R package. #' #' @param pkg A package #' @param hint extra information to add to the prompt #' @param emoji Should the poem include emojis ? #' @param ... Passed to [openai::create_chat_completion()] #' #' @return A poem generated by ChatGPT via [openai::create_chat_completion()] #' #' @importFrom glue glue #' @importFrom openai create_chat_completion #' @examples #' prompt("dplyr") #' #' \dontrun{ #' # this needs the OPENAI_API_KEY environment variable #' # to be set. See https://irudnyts.github.io/openai/ #' roses("dplyr") #' } #' @export roses <- function(pkg, hint = "", emoji = TRUE, ...) { result <- create_chat_completion( model = "gpt-3.5-turbo", messages = list( list( "role" = "system", "content" = "You are helpful assistant" ), list( "role" = "user", "content" = prompt(pkg, hint, emoji) ) ), ... )$choices$message.content writeLines(result) invisible(result) } #' @rdname roses #' @export prompt <- function(pkg, hint = "", emoji = TRUE) { emoji_prompt <- if (isTRUE(emoji)) { "Include a bunch of emojis" } else { "Don't include emojis" } glue('Make a 4 lines "roses are red ..." poem about the R package "{pkg}". {emoji_prompt}. {hint}') }
/scratch/gouwar.j/cran-all/cranData/valentine/R/roses.R
#' Get series or series-group details #' #' \code{get_details} returns metadata from a Bank of Canada series or series #' group. #' #' @param name A character of length 1 indicating the series or series group for #' which information should be retrieved. #' @param group A Boolean indicating whether the \code{name} is a series or a #' series group. #' #' @return A list of series or group details. #' #' @examples #' get_details("CES_C4E_LOSE_JOB_SK") #' \dontrun{ #' get_details("BAPF_TRANSACTION_DATA") #' } #' get_details("BAPF_TRANSACTION_DATA", group = TRUE) #' #' @import httr #' @importFrom jsonlite fromJSON #' #' @export get_details <- function(name = NULL, group = FALSE) { url <- modify_url("https://www.bankofcanada.ca/", path = paste0("valet/", ifelse(group, "groups/", "series/"), name, "/json")) resp <- GET(url, user_agent("https://github.com/runkelcorey/valet")) fromJSON(content(resp, "text"))[[2]] }
/scratch/gouwar.j/cran-all/cranData/valet/R/get_details.R
#' Get series-group observations #' #' \code{get_group} returns observations from a Bank of Canada series group. #' #' @param name A \code{character} of length 1 indicating the series group to #' retrieve. #' @param ... Additional query parameters. Possible values are \code{start_date} #' and/or \code{end_date} (both character), or one of \code{recent}, #' \code{recent_weeks}, \code{recent_months}, or \code{recent_years} (all #' numeric). #' #' @return A \code{tibble}. #' #' @details Valet, the server-side API, does not always return observations #' filtered by \strong{...} arguments for series groups, even if it will accept #' the request. #' #' @examples #' get_group("BAPF_TRANSACTION_DATA") #' get_group("gbpp") #' #' \dontrun{ #' #this is a series #' get_group("FXCADAUD") #' } #' #' @importFrom purrr map_dfc map_chr #' @importFrom dplyr mutate select rename_with #' @importFrom readr type_convert #' #' @export get_group <- function(name = NULL, ...) { df <- valet(name = name, T, ...)[["content"]] results <- df[["observations"]][-1] %>% map_dfc(~ .x[["v"]]) %>% select(names(df[["seriesDetail"]])) %>% type_convert() %>% suppressMessages() for (x in names(results)) { attr(results[[x]], "label") <- df[["seriesDetail"]][[x]][["label"]] } while (all(grepl(sub("_.*", "", names(results[1])), names(results)))) { results <- rename_with(results, .fn = ~ tolower(sub(paste0(sub("_.*", "", names(results[1])), "_"), "", .x, fixed = T))) } if (names(df[["observations"]][1]) == "d") {results <- mutate(results, date = as.Date.character(df[["observations"]][[1]], .before = 1))} else {results <- mutate(results, id = df[["observations"]][[1]], .before = 1)} results }
/scratch/gouwar.j/cran-all/cranData/valet/R/get_group.R
#' List possible series or groups. #' #' \code{get_list} returns metadata about all Bank of Canada series or series #' groups. #' #' @param type Either \code{series} or \code{groups}. #' #' @return A \code{tibble} of series or group information. #' #' @importFrom httr modify_url #' @importFrom readr read_csv cols #' #' @export get_list <- function(type = c("series", "groups")) { url <- modify_url("https://www.bankofcanada.ca/", path = paste0("valet/lists/", match.arg(type, c("series", "groups")), "/csv")) readr::read_csv(url, skip = 4, col_types = cols()) }
/scratch/gouwar.j/cran-all/cranData/valet/R/get_list.R
#' Get series observations #' #' \code{get_series} returns observations from one or more Bank of Canada #' series, subject to some date filtering. #' #' @param name A \code{character} of at least length 1 indicating the series to #' retrieve. #' @param ... Additional query parameters. Possible values are \code{start_date} #' and/or \code{end_date} (both character), or one of \code{recent}, #' \code{recent_weeks}, \code{recent_months}, or \code{recent_years} (all #' numeric). #' #' @return A \code{tibble} of size \eqn{length(name) + 1}. #' #' @examples #' get_series("FXCADAUD") #' #' \dontrun{ #' #this is a group #' get_series("BAPF") #' } #' #' @importFrom purrr map_dfc map_chr #' @importFrom dplyr mutate select #' @importFrom readr type_convert #' #' @export get_series <- function(name = NULL, ...) { results <- valet(name = paste(name, sep = "", collapse = ","), F, ...)[["content"]] df <- results[["observations"]][-1] %>% map_dfc(~ .x[["v"]]) %>% mutate(date = results[["observations"]][["d"]]) %>% type_convert() %>% suppressMessages() %>% select(date, names(results[["seriesDetail"]])) for (x in names(df)) { attr(df[[x]], "label") <- results[["seriesDetail"]][[x]][["label"]] } df }
/scratch/gouwar.j/cran-all/cranData/valet/R/get_series.R
#' @importFrom utils str print.valet <- function(x, ...) { cat("Valet", x$series, "\n", sep = "") str(x$content) invisible(x) }
/scratch/gouwar.j/cran-all/cranData/valet/R/print.valet.R
#' Pipe operator #' #' See \code{magrittr::\link[magrittr:pipe]{\%>\%}} for details. #' #' @name %>% #' @rdname pipe #' @keywords internal #' @export #' @importFrom magrittr %>% #' @usage lhs \%>\% rhs #' @param lhs A value or the magrittr placeholder. #' @param rhs A function call using the magrittr semantics. #' @return The result of calling `rhs(lhs)`. NULL
/scratch/gouwar.j/cran-all/cranData/valet/R/utils-pipe.R
#' Retrieve Valet response #' #' \code{valet} is the core back-end to get responses from the Bank of Canada #' API. #' #' @param name A character of at least length 1 indicating the series or series #' group to retrieve. #' @param group Boolean indicating whether the \code{name} is a series or a #' series group. #' @param ... Query parameters from other methods. #' #' @return A \code{valet} object. #' #' @examples #' valet(name = "GBPP", group = TRUE, recent_weeks = 2) #' #' @import httr #' @importFrom jsonlite fromJSON #' #' @export valet <- function(name = NULL, group = FALSE, ...) { url <- modify_url("https://www.bankofcanada.ca/", path = paste0("valet/observations/", ifelse(group, "group/", ""), name, "/json"), query = list(...)) resp <- GET(url, user_agent("https://github.com/runkelcorey/valet")) parsed <- fromJSON(content(resp, "text")) if (http_error(resp)) { stop( sprintf( "Valet request failed [%s]\n%s\nSee %s", status_code(resp), parsed$message, parsed$docs ), call. = FALSE ) } structure( list( content = parsed, path = name, response = resp[-which(names(resp) == "content")] ), class = "valet" ) }
/scratch/gouwar.j/cran-all/cranData/valet/R/valet.R
#' Get Lat/Lon Coordinates for Testing #' #' This function gives quick access to lat/lon coordinates for a few points #' around Ontario for testing and benchmarking purposes. #' #' @param dataset The name of a test dataset. By default, and if an unknown input #' is given, it returns all values. #' #' @importFrom magrittr %>% #' @return A tibble with one or more location names, latitudes, and longitudes. #' @export test_data <- function(dataset = NA){ name <- NULL datasets <- tibble::tribble(~name, ~lat, ~lon, "uottawa", 45.423382, -75.683170, "parliament", 45.424774, -75.699473, "cntower", 43.642748, -79.386602, "portagestore", 45.534769, -78.707470, "cdntirecentre", 45.297533, -75.927875, "zwicksisland", 44.153853, -77.387684, "bignickel", 46.473435, -81.033971, "kenora", 49.765876, -94.487444, "killarney", 46.012289, -81.401437) result <- tibble::tibble() result <- dplyr::filter(datasets, name == dataset) if (nrow(result) == 0) result <- datasets return(result) } #' Point-to-Point Routing with Valhalla #' #' This function calls Valhalla's `route` API to return turn-by-turn directions from one #' origin to one destination. Several costing methods are supported, and there are #' parameters that let you give custom options to Valhalla. **Please note that this #' function requires access to a running instance of Valhalla.** #' #' For more details, please check the Valhalla API documentation here: #' #' * [https://valhalla.readthedocs.io/en/latest/api/turn-by-turn/api-reference/](https://valhalla.readthedocs.io/en/latest/api/turn-by-turn/api-reference/) #' #' @param from A tibble containing one origin location in columns named `lat` and #' `lon`. #' @param to A tibble containing one destination location in columns named `lat` and #' `lon`. #' @param costing The travel costing method. Values "auto", "bicycle", and "pedestrian" #' all work. #' @param unit Distance measurement units. Defaults to "kilometres". #' @param minimum_reachability The minimum number of nodes a candidate network #' needs to have before it is included. Try increasing this value (e.g. to #' 500) if Valhalla is getting stuck in small disconnected road networks. #' @param from_search_filter A named list of options provided to Valhalla API. Defaults set a #' maximum road class ("motorway", the highest) and minimum road class ("residential", #' which is one above the lowest, "service_other"). See API documentation for details. #' @param to_search_filter A named list of options provided to Valhalla API. Defaults set a #' maximum road class ("motorway", the highest) and minimum road class ("residential", #' which is one above the lowest, "service_other"). See API documentation for details. #' @param costing_options A named list of options provided to the Valhalla API that affect route costing, #' e.g. willingness to travel on highways or through alleys. See API documentation for details. #' @param hostname Hostname or IP address of your Valhalla instance. Defaults to "localhost". #' @param port The port your Valhalla instance is monitoring. Defaults to 8002. #' @return A trip object. #' #' @examples #' \dontrun{ #' library(valhallr) #' # set up origin and destination data #' from <- test_data("uottawa") #' to <- test_data("cdntirecentre") #' #' # calculate the trip #' trip <- route(from = from, to = to) #' #' # show overall trip information #' print_trip(trip, all_details = FALSE) #' #' # make an interactive map of the trip using the leaflet package #' map_trip(trip, method = "leaflet") #'} #' @export route <- function(from = NA, to = NA, costing = "auto", unit = "kilometers", from_search_filter = list(max_road_class = "motorway", min_road_class = "residential"), to_search_filter = list(max_road_class = "motorway", min_road_class = "residential"),minimum_reachability = 50, costing_options = list(), hostname = "localhost", port = 8002){ # see API reference here #https://valhalla.readthedocs.io/en/latest/api/turn-by-turn/api-reference/ if ((nrow(from) > 1 ) | (nrow(to) > 1)) stop("Either `from` or `to` has more than one row. Please supply one-row tibbles with `lat` and `lon` columns.") post_data <- list() post_data$locations <- from %>% dplyr::select("lat", "lon") %>% dplyr::bind_rows({ to %>% dplyr::select("lat", "lon")} ) %>% dplyr::bind_cols(tibble::tibble(search_filter = list(from_search_filter, to_search_filter))) %>% dplyr::bind_cols(tibble::tibble(minimum_reachability = rep(minimum_reachability, 2) )) post_data$costing = costing if (costing == "auto") post_data$costing_options$auto = costing_options if (costing == "pedestrian") post_data$costing_options$pedestrian = costing_options if (costing == "bicycle") post_data$costing_options$bicycle = costing_options if (costing == "truck") post_data$costing_options$truck = costing_options post_data$directions_options$units = unit post_json <- jsonlite::toJSON(post_data, auto_unbox = TRUE) url <- paste0("http://",hostname,":",port,"/route") resp <- httr::POST(url = url, body = post_json, httr::user_agent("https://github.com/chris31415926535/valhallr")) if (httr::http_type(resp) != "application/json") stop ("API did not return json.", call. = FALSE) if (httr::http_error(resp)){ message("Error: API call returned error. Returning API response for debugging.") return(resp) } resp_data <- jsonlite::fromJSON(httr::content(resp, type = "text", encoding = "UTF-8")) return(resp_data[[1]]) } #' Decode Valhalla Route Shape #' #' For point-to-point routing, Valhalla's API provides a route shapefile in a #' special ASCII-encoded format. This function takes an encoded string, decodes #' it, and returns the lat/lon coordinates as a tibble. #' #' To map the results, see also `valhallr::map_trip()`. #' #' @param encoded An encoded shapefile in ASCII format from Valhalla's API. #' #' @return A tibble containing point locations in `lat` and `lon` columns. #' @export decode <- function(encoded) { # got algorithm from here (but I wrote the R version) https://valhalla.readthedocs.io/en/latest/decoding/ chars <- stringr::str_split(encoded, "")[[1]] lats <- vector(mode = "integer", length = 1) lons <- vector(mode = "integer", length = 1) i <- 0 while (i < length(chars)){ shift <- 0 result <- 0 byte <- 0x20L while (byte >= 0x20) { i <- i + 1 byte <- chars[[i]] %>% utf8ToInt() - 63 result <- bitwOr(result, bitwAnd(byte, 0x1f) %>% bitwShiftL(shift)) shift <- shift + 5 if (byte < 0x20) break } if (bitwAnd(result, 1)) { result <- result %>% bitwShiftR(1) %>% bitwNot() } else { result <- result %>% bitwShiftR(1) } lats <- c(lats, (lats[[length(lats)]] + result)) shift <- 0 result <- 0 byte <- 10000L while (byte >= 0x20) { i <- i + 1 byte <- chars[[i]] %>% utf8ToInt() - 63 result <- bitwOr(result, bitwAnd(byte, 0x1f) %>% bitwShiftL(shift)) shift <- shift + 5 if (byte < 0x20) break } if (bitwAnd(result, 1)) { result <- result %>% bitwShiftR(1) %>% bitwNot() } else { result <- result %>% bitwShiftR(1) } lons <- c(lons, (lons[[length(lons)]] + result)) } decoded <- tibble::tibble(lat = lats[2:length(lats)]/1000000, lng = lons[2:length(lons)]/1000000) return (decoded) } #' Source-to-Targets Origin/Destination Matrices with Valhalla #' #' @description This function creates a tidy (i.e. long) table of #' origin-destination trip data using the Valhalla routing engine. For a set #' of o origins and d destinations, it returns a tibble with (o x d) rows with #' the travel distance and time between each pair. It can handle several #' different travel modes and routing options. **Please note that this #' function requires access to a running instance of Valhalla.** #' #' This function provides fine-grained control over Valhalla's API options. #' #' * For a user-friendly function, see the function `valhallr::od_table()`. #' * For details about the API, see Valhalla's documentation here: [https://valhalla.readthedocs.io/en/latest/api/matrix/api-reference/](https://valhalla.readthedocs.io/en/latest/api/matrix/api-reference/) #' #' #' @param froms A tibble containing origin locations in columns named `lat` and #' `lon`. #' @param tos A tibble containing destination locations in columns named `lat` and #' `lon`. #' @param costing The travel costing method: at present "auto", "bicycle", and "pedestrian" #' are supported. #' @param minimum_reachability The minimum number of nodes a candidate network #' needs to have before it is included. Try increasing this value (e.g. to #' 500) if Valhalla is getting stuck in small disconnected road networks. #' @param from_search_filter A named list of options provided to Valhalla API. Defaults set a #' maximum road class ("motorway", the highest) and minimum road class ("residential", #' which is one above the lowest, "service_other"). See API documentation for details. #' @param to_search_filter A named list of options provided to Valhalla API. Defaults set a #' maximum road class ("motorway", the highest) and minimum road class ("residential", #' which is one above the lowest, "service_other"). See API documentation for details. #' @param costing_options A named list of options provided to the Valhalla API that affect route costing, #' e.g. willingness to travel on highways or through alleys. See API documentation for details. #' @param hostname Hostname or IP address of your Valhalla instance. Defaults to "localhost". #' @param port The port your Valhalla instance is monitoring. Defaults to 8002. #' @return A tibble showing the trip distances and times from each origin to each destination. #' #' @examples #' \dontrun{ #' # NOTE: Assumes an instance of Valhalla is running on localhost:8002. #' library(dplyr) #' library(valhallr) #' froms <- bind_rows(test_data("parliament"), test_data("uottawa")) #' tos <- bind_rows(test_data("cdntirecentre"), test_data("parliament")) #' st <- sources_to_targets(froms, tos) #' } #' @export sources_to_targets <- function(froms, tos, costing = "auto",from_search_filter = list(max_road_class = "motorway", min_road_class = "residential"), to_search_filter = list(max_road_class = "motorway", min_road_class = "residential"), minimum_reachability = 50, costing_options = list(), hostname = "localhost", port = 8002){ post_data <- list() post_data$sources = froms %>% dplyr::bind_cols(tibble::tibble(search_filter = rep(list(from_search_filter)), nrow(froms)) ) %>% #dplyr::bind_cols(tibble::tibble(search_filter = rep(list(list("min_road_class" = min_road_class)), nrow(froms)))) %>% dplyr::bind_cols(tibble::tibble(minimum_reachability = rep(minimum_reachability, nrow(froms)) )) post_data$targets = tos %>% dplyr::bind_cols(tibble::tibble(search_filter = rep(list(to_search_filter)), nrow(tos)) ) %>% #dplyr::bind_cols(tibble::tibble(search_filter = rep(list(list("min_road_class" = min_road_class)), nrow(tos)))) %>% dplyr::bind_cols(tibble::tibble(minimum_reachability = rep(minimum_reachability, nrow(tos)) )) post_data$costing = costing if (costing == "auto") post_data$costing_options$auto = costing_options if (costing == "pedestrian") post_data$costing_options$pedestrian = costing_options if (costing == "bicycle") post_data$costing_options$bicycle = costing_options if (costing == "truck") post_data$costing_options$truck = costing_options post_json <- jsonlite::toJSON(post_data, auto_unbox = TRUE) url <- paste0("http://",hostname,":",port,"/sources_to_targets") resp <- httr::POST(url = url, body = post_json, httr::user_agent("https://github.com/chris31415926535/valhallr")) if (httr::http_type(resp) != "application/json") stop ("API did not return json.", call. = FALSE) if (httr::http_error(resp)){ message("Error: API call returned error. Returning API response for debugging.") return(resp) } matrix <- jsonlite::fromJSON(httr::content(resp, type = "text", encoding = "UTF-8")) mat_tibble <- matrix$sources_to_targets %>% tibble::enframe() %>% dplyr::select(-"name") %>% tidyr::unnest(cols = "value") } #' Generate Tidy Origin-Destination Data using Valhalla #' #' @description This function creates a tidy (i.e. long) table of #' origin-destination trip data using the Valhalla routing engine. For a set #' of o origins and d destinations, it returns a tibble with (o x d) rows with #' the travel distance and time between each pair. It can handle several #' different travel modes and routing options. #' #' This function is a user-friendly wrapper around`valhalla::sources_to_targets()`, #' which calls the Valhalla API directly. `sources_to_targets()` offers finer- #' grained control over API options, and so this latter function may be more #' useful for advanced users. #' #' Notable features of `od_matrix()`: #' #' * You can specify human-readable indices with `from_id_col` and #' `to_id_col`. (Valhalla's API only returns zero-indexed integer #' identifiers.) #' * You can specify a `batch_size` to break computation into #' several smaller API calls, to prevent your Valhalla instance from running #' out of memory. This seems especially important for pedestrian routing, #' where I've sometimes needed to use a batch size as small as 5. #' #' #' @param froms A tibble containing origin locations in columns named `lat` and #' `lon`, and an optional column with human-readable names. #' @param from_id_col The name of the column in `froms` that contains #' human-readable names. #' @param tos A tibble containing destination locations in columns named `lat` #' and `lon`, and an optional column with human-readable names. #' @param to_id_col The name of the column in `tos` that contains human-readable #' names. #' @param costing The travel costing method: at present "auto", "bicycle", and #' "pedestrian" are supported. #' @param batch_size The number of origin points to process per API call. #' @param minimum_reachability The minimum number of nodes a candidate network #' needs to have before it is included. Try increasing this value (e.g. to #' 500) if Valhalla is getting stuck in small disconnected road networks. #' @param verbose Boolean. Defaults to FALSE. If TRUE, it will provide updates on #' on the batching process (if applicable). #' @param hostname Hostname or IP address of your Valhalla instance. Defaults to "localhost". #' @param port The port your Valhalla instance is monitoring. Defaults to 8002. #' #' @return A tibble showing the trip distances and times from each origin to each named destination. #' @importFrom rlang := #' @examples #' \dontrun{ #' library(dplyr) #' library(valhallr) #' # set up our inputs #' origins <- bind_rows(test_data("parliament"), test_data("uottawa"), test_data("cntower")) #' destinations <- bind_rows(test_data("cdntirecentre"), test_data("parliament")) #' #' # generate a tidy origin-destination table #' od <- od_table (froms = origins, #' from_id_col = "name", #' tos = destinations, #' to_id_col = "name", #' costing = "auto", #' batch_size = 100, #' minimum_reachability = 500) #' } #' @export od_table <- function(froms, from_id_col, tos, to_id_col, costing = "auto", batch_size = 100, minimum_reachability = 500, verbose = FALSE, hostname = "localhost", port = 8002){ # note: got importFrom rlang trick here: https://stackoverflow.com/questions/58026637/no-visible-global-function-definition-for from_index <- to_index <- NULL # FIXME TODO: do input validation!! # get the human-readable names of the from- and to-data from_names <- froms %>% dplyr::select(from_id_col) %>% tibble::rowid_to_column(var = "from_index") to_names <- tos %>% dplyr::select(to_id_col) %>% tibble::rowid_to_column(var = "to_index") # if human-readable column names are identical, append "_from" and "_to" so they differ if (from_id_col == to_id_col) { new_from <- paste0(from_id_col,"_from") from_names <- dplyr::rename(from_names, !!(new_from) := from_id_col) from_id_col <- new_from new_to <- paste0(to_id_col, "_to") to_names <- dplyr::rename(to_names, !!(new_to) := to_id_col) to_id_col <- new_to } # set up our batching n_iters <- nrow(froms) %/% batch_size + 1 results <- list(rep(NA, n_iters)) # do each batch for (i in 1:n_iters){ if (verbose) message(paste0(i,"/",n_iters)) start_index <- (i-1)*batch_size + 1 end_index <- min( (i*batch_size), nrow(froms)) froms_iter = froms[start_index:end_index, ] %>% tidyr::drop_na() od <- valhallr::sources_to_targets(froms = froms_iter, tos = tos, costing = costing, minimum_reachability = minimum_reachability, hostname = hostname, port = port) # FIXME TODO: confirm that sources_to_targets gave us meaningful data! # make start_index match the original DB row number and doc row number od <- od %>% dplyr::mutate(from_index = from_index + start_index, to_index = to_index + 1) %>% dplyr::left_join(from_names, by = "from_index") %>% dplyr::left_join(to_names, by = "to_index") %>% dplyr::select(-to_index, -from_index) # add results to our pre-built list results[[i]] <- od } # get results back into a tibble output <- results %>% tibble::enframe() %>% tidyr::unnest("value") %>% dplyr::select(from_id_col, to_id_col, "distance", "time") return(output) } #' Print Trip Summary and Turn-By-Turn Directions #' #' @param trip A trip response from `valhallr::route()`. #' @param all_details Boolean. Should we print each turn-by-turn instruction #' along with an overall summary? #' #' @return The input `trip` object, invisibly. #' @inherit route examples #' @export print_trip <- function(trip, all_details = FALSE) { cat (paste0("From lat/lng: ", trip$locations$lat[[1]], ", ", trip$locations$lon[[1]])) cat (paste0("\nTo lat/lng: ", trip$locations$lat[[2]], ", ", trip$locations$lon[[2]])) cat (paste0("\nTime: ", round(trip$summary$time/60, digits = 1), " minutes")) cat (paste0("\nDist: ", trip$summary$length, " km\n")) if (all_details){ maneuvers <- trip$legs$maneuvers[[1]] for (i in 1:nrow(maneuvers)) { sprintf("Step %d: %s\n", i, maneuvers[i,]$instruction) %>% cat() sprintf(" Dist: %3.2f km\n", maneuvers[i,]$length ) %>% cat() sprintf(" Time: %3.2f minutes\n", maneuvers[i,]$time/60) %>% cat() } } invisible(trip) } #' Make a Map from a Trip #' #' @param trip A trip response from `valhallr::route()`. #' @param method Which mapping service to use. Defaults to leaflet; also can use ggplot. #' #' @return A map object, either leaflet or ggplot. #' @inherit route examples #' @export map_trip <- function(trip, method = "leaflet"){ ## decode and turn into a sf line trip_shp <- valhallr::decode(trip$legs$shape) %>% sf::st_as_sf(coords = c("lng", "lat"), crs = "WGS84") %>% dplyr::summarise(do_union = FALSE) %>% sf::st_cast("LINESTRING") # then plot with leaflet if (method == "leaflet"){ trip_plot <- trip_shp %>% leaflet::leaflet() %>% leaflet::addTiles() %>% leaflet::addPolylines() } if (method == "ggplot"){ trip_plot <- trip_shp %>% ggplot2::ggplot() + ggspatial::annotation_map_tile(progress = "none", zoomin = -1, cachedir = tempdir()) + ggplot2::geom_sf(colour = "blue", size = 2) } trip_plot } #' Generate Isochrones #' #' An isochrone, also known as a service area, is a polygon that shows the #' area reachable from a starting point by traveling along a road network #' for a certain distance or time. This function provides an interface to #' the Valhalla routing engine's isochrone API. It lets you provide a starting #' point's latitude and longitude, a distance or time metric, and a vector #' of distances/times, and if it's successful it returns an sf-class tibble of #' polygons. #' #' More more information, please see Valhalla's API documentation: #' #' * [https://valhalla.readthedocs.io/en/latest/api/isochrone/api-reference/](https://valhalla.readthedocs.io/en/latest/api/isochrone/api-reference/) #' #' @param from A tibble containing one origin location in columns named `lat` and #' `lon`. #' @param costing The travel costing method: at present "auto", "bicycle", and "pedestrian" #' are supported. #' @param contours A numeric vector of values at which to produce the isochrones. #' @param metric Distance or time. Accepts parameters "min" and "km". #' @param min_road_class The minimum road classification Valhalla will consider. Defaults to `residential`. #' @param minimum_reachability The minimum number of nodes a candidate network #' needs to have before it is included. #' @param hostname Hostname or IP address of your Valhalla instance. Defaults to "localhost". #' @param port The port your Valhalla instance is monitoring. Defaults to 8002. #' #' @return An sf/tibble object containing isochrone polygons. #' @examples #' \dontrun{ #' library(valhallr) #' # set up our departure point: the University of Ottawa #' from <- test_data("uottawa") #' #' # generate a set of isochrones for travel by bicycle #' i <- valhallr::isochrone(from, costing = "bicycle") #' #' # map the isochrones #' map_isochrone(i) #' } #' @export isochrone <- function(from, costing = "pedestrian", contours = c(5, 10, 15), metric = "min", min_road_class = "residential", minimum_reachability = 500, hostname = "localhost", port = 8002){ # see API reference here # https://valhalla.readthedocs.io/en/latest/api/isochrone/api-reference/ # validating input if (nrow(from) > 1) stop ("More than one location supplied. Please supply a one-row input tibble with `lat` and `lon` columns.") if (! (("lat" %in% names(from)) & ("lon" %in% names(from))) ) stop ("From tibble must inclide one column named `lat` and one named `lon`.") if (!metric %in% c("min", "km")) stop ("Invalid metric. Please use `min` for time in minutes or `km` for distance in kilometres.") post_data <- list() post_data$locations <- dplyr::select(from, "lat", "lon") post_data$costing <- costing if (metric == "min") post_data$contours <- tibble::tibble(time = contours) if (metric == "km") post_data$contours <- tibble::tibble(distance = contours) post_data$polygons <- TRUE post_json <- jsonlite::toJSON(post_data, auto_unbox = TRUE) url <- paste0("http://",hostname,":",port,"/isochrone") resp <- httr::POST(url = url, body = post_json, httr::user_agent("https://github.com/chris31415926535/valhallr")) if (httr::http_type(resp) != "application/json") stop ("API did not return json.", call. = FALSE) if (httr::http_error(resp)){ message("Error: API call returned error. Returning API response for debugging.") return(resp) } resp_data <- httr::content(resp, type = "text", encoding = "UTF-8") %>% geojsonio::geojson_sf() %>% tibble::as_tibble() %>% sf::st_as_sf() resp_data$costing <- costing return (resp_data) } #' Generate maps of isochrones #' #' This is a convenience function that takes the output of `valhallr::isochrone()` #' and generates either a static or interactive map. #' #' @param isochrone An isochrone sf object generated by `valhallr::isochrone()`. #' @param method The method used to map it. Two methods are supported: #' * "leaflet" produces an interactive HTML map using the Leaflet package. #' * "ggplot" produces a static map. #' #' @return A plot of the isochrones, either a a leaflet object or a ggplot object. #' @inherit isochrone examples #' @export map_isochrone <- function(isochrone, method = "leaflet") { contour <- NULL if (!method %in% c("leaflet", "ggplot")) stop ("Invalid map method. Please specify `leaflet` or `ggplot`.") metric_name <- "ERROR: METRIC NOT DETECTED" costing_name <- "ERROR: COSTING NOT DETECTED" if (isochrone$metric[[1]] == "time") metric_name <- "Minutes" if (isochrone$metric[[1]] == "distance") metric_name <- "Kilometres" if (isochrone$costing[[1]] == "auto") costing_name <- "Driving" if (isochrone$costing[[1]] == "pedestrian") costing_name <- "Walking" if (isochrone$costing[[1]] == "bicycle") costing_name <- "Cycling" if (method == "leaflet"){ iso_labels <- paste0(isochrone$contour, " ", metric_name, " ", costing_name) %>% purrr::map(htmltools::HTML) output <- isochrone %>% leaflet::leaflet() %>% leaflet::addTiles() %>% leaflet::addPolygons(fillColor = ~ color, label = iso_labels) } if (method == "ggplot"){ output <- isochrone %>% tibble::as_tibble() %>% sf::st_as_sf() %>% ggplot2::ggplot() + ggspatial::annotation_map_tile(progress = "none", zoomin = -1, cachedir = tempdir()) + ggplot2::geom_sf(ggplot2::aes(fill = contour), alpha = 0.3) + ggplot2::labs(fill = metric_name) } return(output) }
/scratch/gouwar.j/cran-all/cranData/valhallr/R/valhalla.R
--- title: "valhallr: A Tidy R Interface to the Valhalla Routing Engine" author: Christopher Belanger output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{valhallr: A Tidy R Interface to the Valhalla Routing Engine} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Step 0: Install and run Valhalla This package provides an R-native interface to the Valhalla routing engine, and assumes that you have access to a running Valhalla instance. If you don't, you won't be able to use any of the functions described in this vignette! Installing and configuring Valhalla is far out of scope for this vignette, but Valhalla is open-source and there are several free resources that you might find helpful. Here are some example resources to help you get Valhalla up and running: * Valhalla's GitHub page has all of the source code and discussions and issue trackers: [https://github.com/valhalla/](https://github.com/valhalla/) * Valhalla's API documentation has a lot of detailed information: [https://valhalla.readthedocs.io/en/latest/](https://valhalla.readthedocs.io/en/latest/) * GIS-OPS has a helpful guide for installing and running Valhalla: [https://gis-ops.com/valhalla-part-1-how-to-install-on-ubuntu/](https://gis-ops.com/valhalla-part-1-how-to-install-on-ubuntu/) The rest of this vignette assumes a running Valhalla instance on localhost at the default port 8002. # Load the package and point it to Valhalla Once you have access to Valhalla, you're ready to start. The package lets you specify any hostname/IP address and port, but as a default it looks at port 8002 on "localhost". Here we'll set the hostname and port manually to make it clear. ```r library(valhallr) host <- "localhost" port <- 8002 ``` # Turn-by-turn routing The function `valhallr::route()` uses Valhalla to generate detailed turn-by-turn routing from an origin to a destination. It's straightforward to use: you provide origin and destination coordinates in tibbles with `lat` and `lon` columns, along with any number of optional options, and the API returns an object containing the resulting trip. This example shows how to generate driving directions between the University of Ottawa and the Canadian Tire Centre, a stadium in Ottawa. It gets these coordinates from the function `valhallr::test_data()`, which can return coordinates for several points of interest around Ontario. It then calls `valhallr::route()` between these two locations with all default options, and then passes the result to `valhallr::print_trip()`. ```r origin <- test_data("uottawa") destination <- test_data("cdntirecentre") t <- route(from = origin, to = destination, hostname = host, port = port) print_trip(t) #> From lat/lng: 45.4234, -75.6832 #> To lat/lng: 45.2975, -75.9279 #> Time: 19.9 minutes #> Dist: 28.693 km ``` We can see that Valhalla has generated a trip from uOttawa to the Canadian Tire Centre that's 28.693km long and would take 19.9 minutes to drive. But what does the trip look like? We can answer this question with the function `valhallr::map_trip()` that takes the Valhalla trip object, decodes an embedded shapefile, and plots the result on a map. (You can use `valhallr::decode()` to extract the shapefile yourself for other purposes.) The `map_trip()` function supports an interactive map using **leaflet** or an static map using **ggplot2**. Here we'll generate a static map. ```r map_trip(t, method = "ggplot") ``` <img src="valhallr-map_ottawa_auto-1.jpeg" title="plot of chunk map_ottawa_auto" alt="plot of chunk map_ottawa_auto" width="100%" /> What if we wanted to travel by bicycle instead? We can change our travel method from the default, "auto", using the `costing` parameter. Here we set it to "bicycle" and re-run the command: ```r t <- route(from = origin, to = destination, costing = "bicycle", hostname = host, port = port) print_trip(t) #> From lat/lng: 45.4234, -75.6832 #> To lat/lng: 45.2975, -75.9279 #> Time: 108 minutes #> Dist: 30.028 km ``` This new trip is a bit longer at 30.028km, and would take quite a bit longer at 108 minutes. When we map it, we can see that Valhalla has given us a plausible cycling trip that takes a scenic route along the riverside path and avoids major highways: ```r map_trip(t, method = "ggplot") ``` <img src="valhallr-map_ottawa_bicycle-1.jpeg" title="plot of chunk map_ottawa_bicycle" alt="plot of chunk map_ottawa_bicycle" width="100%" /> # Origin-destination analyses Many analyses require the shortest distance or time between a large number of locations without needing to know the specific routes taken. Sometimes this information is presented in origin-destination (OD) matrices or OD tables, which simply show the shortest travel distances/times between source locations and target locations. Valhalla has an API called "sources_to_targets" to generate this information. The **valhallr** package has two functions that call this API: `valhallr::sources_to_targets()` calls it directly and provides fine-grained access to configuration options, and `valhallr::od_table()` provides a higher-level interface with several user-friendly features. We'll look at each function in turn. In this example, we need to find the shortest distances and times between three source locations (the Canadian parliament buildings, the University of Ottawa, and the CN Tower) and two destination locations (the Canadian Tire Centre in Ottawa, and Zwicks Island Park in Belleville). To create an OD table, we set up our sources in a tibble called `froms`, our targets in a tibble called `tos`, and then pass them to `sources_to_targets()` using all default options. ```r library(dplyr) origins <- bind_rows(test_data("parliament"), test_data("uottawa"), test_data("cntower")) destinations <- bind_rows(test_data("cdntirecentre"), test_data("zwicksisland")) st <- sources_to_targets(froms = origins, tos = destinations, hostname = host, port = port) st %>% knitr::kable() ``` | distance| time| to_index| from_index| |--------:|-----:|--------:|----------:| | 29.498| 1232| 0| 0| | 273.969| 10170| 1| 0| | 28.693| 1194| 0| 1| | 273.164| 10131| 1| 1| | 389.276| 15963| 0| 2| | 190.912| 7189| 1| 2| `sources_to_targets()` returns results as they come from Valhalla, which has two disadvantages. First, it strips all human-readable names from the inputs and only returns zero-indexed identifiers. And second, the API call can fail for large requests with hundreds or thousands of locations if Valhalla runs out of memory. The `valhallr::od_table()` function addresses these two problems by letting you specify human-readable names for each location, and by letting you send origin rows to Valhalla in batches. The trade-off is that `od_table()` doesn't give as fine-grained access to the underlying API, but it's easier and faster for many purposes. Here we can see the results of calling `od_table()` with the same inputs as before, this time specifying the names of the human-readable id columns in each input tibble: ```r od <- od_table (froms = origins, from_id_col = "name", tos = destinations, to_id_col = "name", hostname = host, port = port) od %>% knitr::kable() ``` |name_from |name_to | distance| time| |:----------|:-------------|--------:|-----:| |parliament |cdntirecentre | 29.498| 1232| |parliament |zwicksisland | 273.969| 10170| |uottawa |cdntirecentre | 28.693| 1194| |uottawa |zwicksisland | 273.164| 10131| |cntower |cdntirecentre | 389.276| 15963| |cntower |zwicksisland | 190.912| 7189| The results are much easier to read, and would be simpler to feed forward into a further analysis (e.g. by left-joining with the original inputs to get the lat/lon information for mapping). Although this example didn't use batching, note that this can be essential for larger analyses and seems especially important when using "pedestrian" costing. For some analyses I've been able to use a batch size of 100 for "auto" costing but have had to scale down to a batch size of 5 for "pedestrian" costing. # Isochrones Finally, **valhallr** provides access to Valhalla's isochrone API through the function `valhallr::isochrone()`. An isochrone, also known as a service area, is a polygon that shows the area reachable from a starting point by traveling along a road network for a certain distance or time. This function lets you provide a starting point's latitude and longitude, a distance or time metric, and a vector of distances/times, and if it's successful it returns an sf-class tibble of polygons. For example, how far can you get from downtown Kenora on a bicycle using the default values of 5, 10, and 15 minutes? ```r # set up our departure point: the University of Ottawa origin <- test_data("kenora") # generate an isochrone for travel by bicycle i <- valhallr::isochrone(from = origin, costing = "bicycle", hostname = host, port = port) # map the isochrone map_isochrone(i, method = "ggplot") ``` <img src="valhallr-map_isochrone_kenora-1.jpeg" title="plot of chunk map_isochrone_kenora" alt="plot of chunk map_isochrone_kenora" width="100%" /> Pretty far, by the looks of it! You can see how the isochrones follow the road network, and so give a reasonably realistic estimate of how far you could travel. For another example, how far can you drive from Sudbury's Big Nickel in 30, 60, and 90 minutes? ```r origin <- test_data("bignickel") i <- valhallr::isochrone(from = origin, costing = "auto", contours = c(30,60,90), metric = "min", hostname = host, port = port) map_isochrone(i, method = "ggplot") ``` <img src="valhallr-map_isochrone_sudbury-1.jpeg" title="plot of chunk map_isochrone_sudbury" alt="plot of chunk map_isochrone_sudbury" width="100%" /> Again, quite far! You can see how the algorithm takes the road network and speed limits into account: once you get onto a major highway, the distances increase rapidly.
/scratch/gouwar.j/cran-all/cranData/valhallr/inst/doc/valhallr.Rmd
--- title: "valhallr: A Tidy R Interface to the Valhalla Routing Engine" author: Christopher Belanger output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{valhallr: A Tidy R Interface to the Valhalla Routing Engine} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Step 0: Install and run Valhalla This package provides an R-native interface to the Valhalla routing engine, and assumes that you have access to a running Valhalla instance. If you don't, you won't be able to use any of the functions described in this vignette! Installing and configuring Valhalla is far out of scope for this vignette, but Valhalla is open-source and there are several free resources that you might find helpful. Here are some example resources to help you get Valhalla up and running: * Valhalla's GitHub page has all of the source code and discussions and issue trackers: [https://github.com/valhalla/](https://github.com/valhalla/) * Valhalla's API documentation has a lot of detailed information: [https://valhalla.readthedocs.io/en/latest/](https://valhalla.readthedocs.io/en/latest/) * GIS-OPS has a helpful guide for installing and running Valhalla: [https://gis-ops.com/valhalla-part-1-how-to-install-on-ubuntu/](https://gis-ops.com/valhalla-part-1-how-to-install-on-ubuntu/) The rest of this vignette assumes a running Valhalla instance on localhost at the default port 8002. # Load the package and point it to Valhalla Once you have access to Valhalla, you're ready to start. The package lets you specify any hostname/IP address and port, but as a default it looks at port 8002 on "localhost". Here we'll set the hostname and port manually to make it clear. ```r library(valhallr) host <- "localhost" port <- 8002 ``` # Turn-by-turn routing The function `valhallr::route()` uses Valhalla to generate detailed turn-by-turn routing from an origin to a destination. It's straightforward to use: you provide origin and destination coordinates in tibbles with `lat` and `lon` columns, along with any number of optional options, and the API returns an object containing the resulting trip. This example shows how to generate driving directions between the University of Ottawa and the Canadian Tire Centre, a stadium in Ottawa. It gets these coordinates from the function `valhallr::test_data()`, which can return coordinates for several points of interest around Ontario. It then calls `valhallr::route()` between these two locations with all default options, and then passes the result to `valhallr::print_trip()`. ```r origin <- test_data("uottawa") destination <- test_data("cdntirecentre") t <- route(from = origin, to = destination, hostname = host, port = port) print_trip(t) #> From lat/lng: 45.4234, -75.6832 #> To lat/lng: 45.2975, -75.9279 #> Time: 19.9 minutes #> Dist: 28.693 km ``` We can see that Valhalla has generated a trip from uOttawa to the Canadian Tire Centre that's 28.693km long and would take 19.9 minutes to drive. But what does the trip look like? We can answer this question with the function `valhallr::map_trip()` that takes the Valhalla trip object, decodes an embedded shapefile, and plots the result on a map. (You can use `valhallr::decode()` to extract the shapefile yourself for other purposes.) The `map_trip()` function supports an interactive map using **leaflet** or an static map using **ggplot2**. Here we'll generate a static map. ```r map_trip(t, method = "ggplot") ``` <img src="valhallr-map_ottawa_auto-1.jpeg" title="plot of chunk map_ottawa_auto" alt="plot of chunk map_ottawa_auto" width="100%" /> What if we wanted to travel by bicycle instead? We can change our travel method from the default, "auto", using the `costing` parameter. Here we set it to "bicycle" and re-run the command: ```r t <- route(from = origin, to = destination, costing = "bicycle", hostname = host, port = port) print_trip(t) #> From lat/lng: 45.4234, -75.6832 #> To lat/lng: 45.2975, -75.9279 #> Time: 108 minutes #> Dist: 30.028 km ``` This new trip is a bit longer at 30.028km, and would take quite a bit longer at 108 minutes. When we map it, we can see that Valhalla has given us a plausible cycling trip that takes a scenic route along the riverside path and avoids major highways: ```r map_trip(t, method = "ggplot") ``` <img src="valhallr-map_ottawa_bicycle-1.jpeg" title="plot of chunk map_ottawa_bicycle" alt="plot of chunk map_ottawa_bicycle" width="100%" /> # Origin-destination analyses Many analyses require the shortest distance or time between a large number of locations without needing to know the specific routes taken. Sometimes this information is presented in origin-destination (OD) matrices or OD tables, which simply show the shortest travel distances/times between source locations and target locations. Valhalla has an API called "sources_to_targets" to generate this information. The **valhallr** package has two functions that call this API: `valhallr::sources_to_targets()` calls it directly and provides fine-grained access to configuration options, and `valhallr::od_table()` provides a higher-level interface with several user-friendly features. We'll look at each function in turn. In this example, we need to find the shortest distances and times between three source locations (the Canadian parliament buildings, the University of Ottawa, and the CN Tower) and two destination locations (the Canadian Tire Centre in Ottawa, and Zwicks Island Park in Belleville). To create an OD table, we set up our sources in a tibble called `froms`, our targets in a tibble called `tos`, and then pass them to `sources_to_targets()` using all default options. ```r library(dplyr) origins <- bind_rows(test_data("parliament"), test_data("uottawa"), test_data("cntower")) destinations <- bind_rows(test_data("cdntirecentre"), test_data("zwicksisland")) st <- sources_to_targets(froms = origins, tos = destinations, hostname = host, port = port) st %>% knitr::kable() ``` | distance| time| to_index| from_index| |--------:|-----:|--------:|----------:| | 29.498| 1232| 0| 0| | 273.969| 10170| 1| 0| | 28.693| 1194| 0| 1| | 273.164| 10131| 1| 1| | 389.276| 15963| 0| 2| | 190.912| 7189| 1| 2| `sources_to_targets()` returns results as they come from Valhalla, which has two disadvantages. First, it strips all human-readable names from the inputs and only returns zero-indexed identifiers. And second, the API call can fail for large requests with hundreds or thousands of locations if Valhalla runs out of memory. The `valhallr::od_table()` function addresses these two problems by letting you specify human-readable names for each location, and by letting you send origin rows to Valhalla in batches. The trade-off is that `od_table()` doesn't give as fine-grained access to the underlying API, but it's easier and faster for many purposes. Here we can see the results of calling `od_table()` with the same inputs as before, this time specifying the names of the human-readable id columns in each input tibble: ```r od <- od_table (froms = origins, from_id_col = "name", tos = destinations, to_id_col = "name", hostname = host, port = port) od %>% knitr::kable() ``` |name_from |name_to | distance| time| |:----------|:-------------|--------:|-----:| |parliament |cdntirecentre | 29.498| 1232| |parliament |zwicksisland | 273.969| 10170| |uottawa |cdntirecentre | 28.693| 1194| |uottawa |zwicksisland | 273.164| 10131| |cntower |cdntirecentre | 389.276| 15963| |cntower |zwicksisland | 190.912| 7189| The results are much easier to read, and would be simpler to feed forward into a further analysis (e.g. by left-joining with the original inputs to get the lat/lon information for mapping). Although this example didn't use batching, note that this can be essential for larger analyses and seems especially important when using "pedestrian" costing. For some analyses I've been able to use a batch size of 100 for "auto" costing but have had to scale down to a batch size of 5 for "pedestrian" costing. # Isochrones Finally, **valhallr** provides access to Valhalla's isochrone API through the function `valhallr::isochrone()`. An isochrone, also known as a service area, is a polygon that shows the area reachable from a starting point by traveling along a road network for a certain distance or time. This function lets you provide a starting point's latitude and longitude, a distance or time metric, and a vector of distances/times, and if it's successful it returns an sf-class tibble of polygons. For example, how far can you get from downtown Kenora on a bicycle using the default values of 5, 10, and 15 minutes? ```r # set up our departure point: the University of Ottawa origin <- test_data("kenora") # generate an isochrone for travel by bicycle i <- valhallr::isochrone(from = origin, costing = "bicycle", hostname = host, port = port) # map the isochrone map_isochrone(i, method = "ggplot") ``` <img src="valhallr-map_isochrone_kenora-1.jpeg" title="plot of chunk map_isochrone_kenora" alt="plot of chunk map_isochrone_kenora" width="100%" /> Pretty far, by the looks of it! You can see how the isochrones follow the road network, and so give a reasonably realistic estimate of how far you could travel. For another example, how far can you drive from Sudbury's Big Nickel in 30, 60, and 90 minutes? ```r origin <- test_data("bignickel") i <- valhallr::isochrone(from = origin, costing = "auto", contours = c(30,60,90), metric = "min", hostname = host, port = port) map_isochrone(i, method = "ggplot") ``` <img src="valhallr-map_isochrone_sudbury-1.jpeg" title="plot of chunk map_isochrone_sudbury" alt="plot of chunk map_isochrone_sudbury" width="100%" /> Again, quite far! You can see how the algorithm takes the road network and speed limits into account: once you get onto a major highway, the distances increase rapidly.
/scratch/gouwar.j/cran-all/cranData/valhallr/vignettes/valhallr.Rmd
#-------------------------------------------------- #' @title Fit Artificial Neural Networks. #' #' @description #' Fits a single hidden layer ANN model to input data \code{x} and output data #' \code{y}. #' #' @param x matrix, data frame or vector of numeric input values, with #' \code{ncol(x)} equal to the number of inputs/predictors and \code{nrow(x)} #' equal to the number of examples. A vector is considered to comprise examples #' of a single input or predictor variable. #' @param y matrix, data frame or vector of target values for examples. #' @param size number of hidden layer nodes. Can be zero. #' @param act_hid activation function to be used at the hidden layer. #' See `Details'. #' @param act_out activation function to be used at the output layer. #' See `Details'. #' @param Wts initial weight vector. If \code{NULL} chosen at random. #' @param rang initial random weights on [-rang,rang]. #' Default value is 0.5. #' @param objfn objective function to be minimised when fitting #' weights. This function may be user-defined with the first two arguments #' corresponding to \code{y} (the observed target data) and \code{y_hat} #' (the ANN output). If this function has additional parameters which require #' optimizing, these must be defined in argument \code{par_of} #' (see AR(1) case in `Examples'). Default is \code{sse} (internal #' function to compute sum squared error, with error given by #' \code{y - y_hat}) when \code{objfn = NULL}. #' @param method the method to be used by \code{\link[stats]{optim}} #' for minimising the objective function. May be ``Nelder-Mead'', ``BFGS'', #' ``CG'', ``L-BFGS-B'', ``SANN'' or ``Brent''. Can be abbreviated. #' Default is ``BFGS''. #' @param maxit maximum number of iterations used by \code{\link[stats]{optim}}. #' Default value is 1000. #' @param abstol absolute convergence tolerance (stopping criterion) #' used by \code{\link[stats]{optim}}. Default is \code{1e-4}. #' @param reltol relative convergence tolerance (stopping criterion) #' used by \code{\link[stats]{optim}}. Optimization stops if the value #' returned by \code{objfn} cannot be reduced by a factor of #' \code{reltol * (abs(val) + reltol)} at a step. Default is \code{1e-8}. #' @param trace logical. Should optimization be traced? #' Default = TRUE. #' @param \dots arguments to be passed to user-defined \code{objfn}. Initial #' values of any parameters (in addition to the ANN weights) requiring #' optimization must be supplied in argument \code{par_of} (see AR(1) case #' in `Examples'). #' @return object of class `ann' with components describing the ANN structure #' and the following output components: #' \item{wts}{best set of weights found.} #' \item{par_of}{best values of additional \code{objfn} parameters. This #' component will only be returned if a user-defined \code{objfn} is supplied #' and argument \code{par_of} is included in the function call (see AR(1) #' case in `Examples').} #' \item{value}{value of objective function.} #' \item{fitted.values}{fitted values for the training data.} #' \item{residuals}{residuals for the training data.} #' \item{convergence}{integer code returned by \code{\link[stats]{optim}}. #' 0 indicates successful completion, see \code{\link[stats]{optim}} for #' possible error codes.} #' \item{derivs}{matrix of derivatives of hidden (columns \code{1:size}) #' and output (final column) nodes.} #' @details #' The ``linear'' activation, or transfer, function is the #' identity function where the output of a node is equal to its input #' \eqn{f(x) = x}. #' #' The ``sigmoid'' function is the standard logistic sigmoid function given #' by \eqn{f(x) = \frac{1}{1+e^{-x}}}{f(x) = 1 / (1 + exp(-x))}. #' #' The ``tanh'' function is the hyperbolic tangent function given by #' \eqn{f(x) = \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}}{ #' f(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))} #' #' The ``exp'' function is the exponential function given by #' \eqn{f(x) = e^{x}}{f(x) = exp(x)} #' #' The default configuration of activation functions is #' \code{act_hid = "tanh"} and \code{act_out = "linear"}. #' #' Optimization (minimization) of the objective function (\code{objfn}) is #' performed by \code{\link[stats]{optim}} using the method specified. #' #' Derivatives returned are first-order partial derivatives of the hidden and #' output nodes with respect to their inputs. These may be useful for #' sensitivity analyses. #' #' @seealso \code{\link{predict.ann}}, \code{\link{validann}} #' #' @examples #' ## fit 1-hidden node ann model with tanh activation at the hidden layer and #' ## linear activation at the output layer. #' ## Use 200 random samples from ar9 dataset. #' ## --- #' data("ar9") #' samp <- sample(1:1000, 200) #' y <- ar9[samp, ncol(ar9)] #' x <- ar9[samp, -ncol(ar9)] #' x <- x[, c(1,4,9)] #' fit <- ann(x, y, size = 1, act_hid = "tanh", act_out = "linear", rang = 0.1) #' #' ## fit 3-hidden node ann model to ar9 data with user-defined AR(1) objective #' ## function #' ## --- #' ar1_sse <- function(y, y_hat, par_of) { #' err <- y - y_hat #' err[-1] <- err[-1] - par_of * err[-length(y)] #' sum(err ^ 2) #' } #' fit <- ann(x, y, size = 3, act_hid = "tanh", act_out = "linear", rang = 0.1, #' objfn = ar1_sse, par_of = 0.7) #' #' @export #' @importFrom stats optim #' @importFrom stats predict #' @importFrom stats residuals #' @importFrom stats runif #-------------------------------------------------- ann <- function(x, y, size, act_hid = c("tanh", "sigmoid", "linear", "exp"), act_out = c("linear", "sigmoid", "tanh", "exp"), Wts = NULL, rang = 0.5, objfn = NULL, method = "BFGS", maxit = 1000, abstol = 1.0e-4, reltol = 1.0e-8, trace = TRUE, ...) { # -------- sse <- function(y, y_hat) { err <- y - y_hat sum(err ^ 2) } if(is.null(objfn)) objfn <- sse # -------- m <- match.call(expand.dots = TRUE) parof_present <- FALSE if("par_of" %in% names(m)) { parof_present <- TRUE par_of <- eval(m$par_of) } obj_fn <- function(y, y_hat) { objfn(y, y_hat, ...) } act_hid <- match.arg(NULL, act_hid) act_out <- match.arg(NULL, act_out) if (is.vector(x)) { x <- matrix(x, ncol = 1) } if (is.vector(y)) { y <- matrix(y, ncol = 1) } if (any(is.na(x))) stop("missing values in 'x'") if (any(is.na(y))) stop("missing values in 'y'") if (dim(x)[1] != dim(y)[1]) stop("nrows of 'x' and 'y' must match") n_patterns <- dim(x)[1] n_inputs <- dim(x)[2] n_outputs <- dim(y)[2] # Set up network net <- list() class(net) <- "ann" if (size == 0) { net$layers <- 2 net$nodes <- c(n_inputs, n_outputs) net$act_fn <- c("linear", act_out) net$nwts <- as.integer( (net$nodes[1] + 1) * net$nodes[2]) } else { net$layers <- 3 net$nodes <- c(n_inputs, size, n_outputs) net$act_fn <- c("linear", act_hid, act_out) net$nwts <- as.integer( (net$nodes[1] + 1) * net$nodes[2] + (net$nodes[2] + 1) * net$nodes[3]) } net$bias <- rep(1, net$layers) if (is.null(Wts)) { if (rang > 0) { wts <- runif(net$nwts, -rang, rang) } else { wts <- rep(0, net$nwts) } } else { wts <- Wts } if (length(wts) != net$nwts) stop("weights vector of incorrect length") # ---------- objfn_1 <- function(par, y, obj_fn, ...) { y_hat <- array(0, dim = c(n_patterns, n_outputs)) Zin <- Z <- list(net$layers) # Forward propagation of info through network --- # For each layer determine input and output to/from nodes Zin[[1]] <- as.matrix(x) Z[[1]] <- as.matrix(x) par_ind <- 0 for (i in 2:net$layers) { i_ind <- rep(1:net$nodes[i], each = net$nodes[i - 1]) j_ind <- rep(1:net$nodes[i - 1], net$nodes[i]) par_ind <- max(par_ind) + net$nodes[i] * (j_ind - 1) + i_ind Zin[[i]] <- Z[[i - 1]] %*% t(matrix(par[par_ind], ncol = net$nodes[i - 1], byrow = TRUE)) # add bias terms par_ind <- max(par_ind) + 1:net$nodes[i] Zin[[i]] <- Zin[[i]] + matrix(rep(net$bias[i] * par[par_ind], nrow(Zin[[i]])), ncol = net$nodes[i], byrow = TRUE) Z[[i]] <- actfn(Zin[[i]], net$act_fn[i]) } # Calculate model output y_hat <- Z[[net$layers]] # Evaluation of objective function if(parof_present) { par_of <- par[(net$nwts + 1):length(par)] } obj_fn(y, y_hat) } # ---------- if(parof_present) { par <- c(wts, par_of) } else { par <- wts } tmp <- optim(par = par, fn = objfn_1, y = y, obj_fn = obj_fn, method = method, control = list(maxit = maxit, abstol = abstol, reltol = reltol, trace = trace, REPORT = 20)) net$value <- tmp$value net$wts <- tmp$par[1:(net$nwts)] if(parof_present) net$par_of <- tmp$par[(net$nwts + 1):length(tmp$par)] net$convergence <- tmp$convergence tmp <- predict(net, x, derivs = TRUE) net$fitted.values <- tmp$values net$derivs <- tmp$derivs tmp <- as.matrix(y - tmp$values) dimnames(tmp) <- list(rownames(x), colnames(y)) net$residuals <- tmp net$call <- match.call() net } #------------------------------------------------------------------------------- #' @title Predict new examples using a trained neural network. #' #' @description Predict new examples using a trained neural network. #' @param object an object of class `ann' as returned by function \code{ann}. #' @param newdata matrix, data frame or vector of input data. #' A vector is considered to comprise examples of a single input or #' predictor variable. If \code{x} is \code{NULL}, fitted outputs derived #' from \code{object} will be returned. #' @param derivs logical; should derivatives of hidden and output nodes be #' returned? Default is \code{FALSE}. #' @param \dots additional arguments affecting the predictions produced (not #' currently used). #' @return if \code{derivs = FALSE}, a vector of predictions is returned. #' #' Otherwise, a list with the following components is returned: #' \item{values}{matrix of values returned by the trained ANN.} #' \item{derivs}{matrix of derivatives of hidden (columns \code{1:object$size}) #' and output (final column) nodes.} #' @details This function is a method for the generic function \code{predict()} #' for class `ann'. It can be invoked by calling \code{predict(x)} for an #' object \code{x} of class `ann'. #' #' \code{predict.ann} produces predicted values, obtained by evaluating the #' `ann' model given \code{newdata}, which contains the inputs to be used #' for prediction. If \code{newdata} is omitted, the #' predictions are based on the data used for the fit. #' #' Derivatives may be returned for sensitivity analyses, for example. #' #' @seealso \code{\link{ann}} #' #' @examples #' ## fit 1-hidden node `ann' model to ar9 data #' data("ar9") #' samp <- sample(1:1000, 200) #' y <- ar9[samp, ncol(ar9)] #' x <- ar9[samp, -ncol(ar9)] #' x <- x[, c(1,4,9)] #' #' fit <- ann(x, y, size = 1, act_hid = "tanh", act_out = "linear", rang = 0.1) #' #' ## get model predictions based on a new sample of ar9 data. #' samp <- sample(1:1000, 200) #' y <- ar9[samp, ncol(ar9)] #' x <- ar9[samp, -ncol(ar9)] #' x <- x[, c(1,4,9)] #' #' sim <- predict(fit, newdata = x) #' #' ## if derivatives are required... #' tmp <- predict(fit, newdata = x, derivs = TRUE) #' sim <- tmp$values #' derivs <- tmp$derivs #' @export # ---- predict.ann <- function(object, newdata = NULL, derivs = FALSE, ...) { # Description: This function runs the model and calculates the # objective function value for a particular set # of parameter values #----- if (!inherits(object, "ann")) stop("object not of class \"ann\"") if (is.null(newdata)) { y_hat <- fitted(object) return(y_hat) } else { x <- newdata if (is.vector(x)) { x <- matrix(x, ncol = 1) } n_patterns <- dim(x)[1] n_inputs <- dim(x)[2] x <- matrix(unlist(x), ncol = n_inputs, nrow = n_patterns) if (any(is.na(x))) stop("missing values in 'x'") n_patterns <- dim(x)[1] n_inputs <- dim(x)[2] n_outputs <- object$nodes[object$layers] y_hat <- array(0, dim = c(n_patterns, n_outputs)) Zin <- Z <- list(object$layers) # Forward propagation of info through network --- # For each layer determine input and output to/from nodes Zin[[1]] <- x Z[[1]] <- x par_ind <- 0 for (i in 2:object$layers) { i_ind <- rep(1:object$nodes[i], each = object$nodes[i - 1]) j_ind <- rep(1:object$nodes[i - 1], object$nodes[i]) par_ind <- max(par_ind) + object$nodes[i] * (j_ind - 1) + i_ind Zin[[i]] <- Z[[i - 1]] %*% t(matrix(object$wts[par_ind], ncol = object$nodes[i - 1], byrow = TRUE)) # add bias terms par_ind <- max(par_ind) + 1:object$nodes[i] Zin[[i]] <- Zin[[i]] + matrix(rep(object$bias[i] * object$wts[par_ind], nrow(Zin[[i]])), ncol = object$nodes[i], byrow = TRUE) Z[[i]] <- actfn(Zin[[i]], object$act_fn[i]) } # Calculate model output and error y_hat <- Z[[object$layers]] if(derivs) { z_hat <- NULL o_hat <- NULL if (object$layers == 3) z_hat <- der_actfn(Zin[[2]], object$act_fn[2]) if (object$layers == 3) { o_hat <- der_actfn(Zin[[3]], object$act_fn[3]) } else { o_hat <- der_actfn(Zin[[2]], object$act_fn[2]) } return(list(values = y_hat, derivs = cbind(z_hat, o_hat))) } else { return(y_hat) } } } # ------------------------------------------------------------------------------- #' @title Return observed target values. #' @description #' Return observed target values used for fitting `ann' or `nnet' ANN models. #' @param object an object of class `ann' as returned by \code{\link{ann}} or #' of class `nnet' as returned by \code{\link[nnet]{nnet}}. #' @return a 1-column matrix of observed target values. #' @details This function can be invoked by calling \code{observed(x)} for an #' object \code{x} of class `ann' or `nnet'. #' #' @examples #' # Get observed values of y used to train ann object `fit'. #' # --- #' data("ar9") #' samp <- sample(1:1000, 200) #' y <- ar9[samp, ncol(ar9)] #' x <- ar9[samp, -ncol(ar9)] #' x <- x[, c(1,4,9)] #' fit <- ann(x, y, size = 1, act_hid = "tanh", act_out = "linear", rang = 0.1) #' y_obs <- observed(fit) #' @export # -------- observed <- function(object) { UseMethod("observed") } # ----------- #' @export observed.ann <- function(object) { fitted(object) + residuals(object) } # ----------- #' @export observed.nnet <- function(object) { fitted(object) + residuals(object) } #------------------------------------------------------------------------------- print.ann <- function(x, ...) { if (!inherits(x, "ann")) stop("not a legitimate neural net fit") if (x$layers == 3) { cat("a ", x$nodes[1L], "-", x$nodes[2L], "-", x$nodes[3L], " network", sep = "") cat(" with", length(x$wts), "weights\n") cat(x$act_fn[2L], "hidden units\n") cat(x$act_fn[3L], "output units\n") } else { cat("a ", x$nodes[1L], "-", x$nodes[2L], " network (no hidden layer)", sep = "") cat(" with", length(x$wts), "weights\n") cat(x$act_fn[2L], "output units\n") } cat("\n") invisible(x) } #------------------------------------------------------------------------------- actfn <- function(x, method = c("tanh", "sigmoid", "linear", "exp")) { if (method == "tanh") { val <- tanh(x) } else if (method == "sigmoid") { val <- 1 / (1 + exp(-x)) } else if (method == "linear") { val <- x } else if (method == "exp") { val <- exp(x) } else { stop("Invalid activation fn : Must be \"tanh\", \"sigmoid\", \"linear\" or \"exp\".") } return(val) } #------------------------------------------------------------------------------- der_actfn <- function(x, method = c("tanh", "sigmoid", "linear", "exp")) { if (method == "tanh") { val <- (1 / cosh(x)) ^ 2 } else if (method == "sigmoid") { val <- actfn(x, "sigmoid") * (1 - actfn(x, "sigmoid")) } else if (method == "linear") { val <- matrix(rep(1, dim(x)[1] * dim(x)[2]), ncol = ncol(x)) } else if (method == "exp") { val <- exp(x) } else { stop("Invalid activation fn : Must be \"tanh\", \"sigmoid\", \"linear\" or \"exp\".") } return(val) } #-------------------------------------------------------------------------------
/scratch/gouwar.j/cran-all/cranData/validann/R/ann.R
#' @title Data generated by autoregressive AR9 model. #' #' @description #' Synthetically generated dataset containing values of dependent variable #' \code{x_t} given values of \cr #' \code{x_t-1, x_t-2, ..., x_t-15}. #' #' @details #' This dataset was generated using the AR9 model first described in #' Sharma (2000) and given by: #' #' \eqn{x_{t} = 0.3x_{t-1} - 0.6x_{t-4} - 0.5x_{t-9} + \epsilon_{t}}{% #' x_t = 0.3x_t-1 - 0.6x_t-4 - 0.5x_t-9 + \epsilon_t} #' #' where \eqn{\epsilon_{t}}{\epsilon_t} #' #' @format A data frame with 1000 rows and 16 variables: #' \describe{ #' \item{x_t-1,x_t-2,x_t-3,x_t-4,x_t-5,x_t-6,x_t-7,x_t-8,x_t-9,x_t-10,x_t-11,x_t-12,}{} #' \item{x_t-13,x_t-14,x_t-15}{lagged values of #' x_t in columns 1:15} #' \item{x_t}{dependent variable in column 16} #' } #' #' @references Sharma, A. (2000), Seasonal to interannual rainfall #' probabilistic forecasts for improved water supply management: Part 1 - #' a strategy for system predictor identification, Journal of Hydrology, #' 239(1-4), 232-239, \url{http://dx.doi.org/10.1016/S0022-1694(00)00346-2}. "ar9"
/scratch/gouwar.j/cran-all/cranData/validann/R/ar9.R
#-------------------------------------------------- #' @title Plot ANN validation results. #' #' @description Plot method for objects of class `validann'. Produces a series #' of plots used for validating and assessing ANN models based on results #' returned by \code{\link{validann}}. #' #' @param x object of class `validann' as returned #' by \code{\link{validann}}. This is a list comprising metrics and #' statistics that can be used for validating ANN models. #' @param obs,sim vectors comprising observed (\code{obs}) and simulated #' (\code{sim}) examples of a single response variable used for computing #' \code{x} object. #' @param gof logical; should goodness-of-fit plots be produced? #' Default = TRUE. #' @param resid logical; should residual analysis plots be produced? #' Default = TRUE. #' @param sa logical; should input sensitivity analysis plots be #' produced? Default = TRUE. #' @param display character string defining how plots should be #' displayed. The default is ``multi'' where multiple plots are displayed #' together according to whether they are goodness-of-fit, residual analysis #' or sensitivity analysis plots. For ``single'', each plot is displayed on #' its own. If the session is interactive, the user will be asked to confirm #' a new page whether \code{display} is ``single'' or ``multi''. #' @param profile character string defining which structural #' validity Profile method outputs should be plotted. The default is ``all'' #' where outputs corresponding to 5 summary statistics are plotted together #' with the median predicted response for each input value. #' For ``median'', only the median response is plotted. #' @param \dots Arguments to be passed to plot (not currently used). #' @details This function can be invoked by calling #' \code{plot(x, obs, sim)} for an object \code{x} of class #' `validann'. #' #' To produce plots for all types of validation metrics and statistics, #' \code{gof}, \code{resid} and \code{sa} must be #' \code{TRUE} and corresponding results must have been successfully #' computed by \code{\link{validann}} and returned in object \code{x}. #' #' If \code{gof} is \code{TRUE}, a scatter plot, Q-Q plot and #' time/sample plot of observed (\code{obs}) versus predicted (\code{sim}) #' data are produced. #' #' If \code{resid} is \code{TRUE} and \code{x$residuals} #' is not \code{NULL}, plots of the model residuals are produced including #' histogram, Q-Q plot (standardized residuals compared to standard normal), #' autocorrelation (acf), partial autocorrelation (pacf), standardized #' residual versus predicted output (i.e. \code{sim}) and standardized #' residual versus time/order of the data. #' #' If \code{sa} is \code{TRUE} and \code{x$y_hat} is not #' \code{NULL}, model response values resulting from the Profile #' sensitivity analysis are plotted against percentiles of each #' input. If \code{x$rs} is not \code{NULL}, the relative sensitivities of #' each input, as computed by the partial derivative (PaD) sensitivity #' analysis, are plotted against predicted output. #' #' Setting \code{gof}, \code{resid} and/or \code{sa} to \code{FALSE} #' will `turn off' the respective validation plots. #' #' @seealso \code{\link{validann}} #' @examples #' ## Build ANN model and compute replicative and structural validation results #' data("ar9") #' samp <- sample(1:1000, 200) #' y <- ar9[samp, ncol(ar9)] #' x <- ar9[samp, -ncol(ar9)] #' x <- x[, c(1,4,9)] #' fit <- ann(x, y, size = 1, act_hid = "tanh", act_out = "linear", rang = 0.1) #' results <- validann(fit, x = x) #' obs <- observed(fit) #' sim <- fitted(fit) #' #' ## Plot replicative and structural validation results to the current device #' ## - a single page for each type of validation #' plot(results, obs, sim) #' #' ## Plot results to the current device - a single page for each plot #' plot(results, obs, sim, display = "single") #' #' ## Plot replicative and structural validation results to single file #' pdf("RepStructValidationPlots.pdf") #' plot(results, obs, sim) #' dev.off() #' #' ## Get predictive validation results for above model based on a new sample #' ## of ar9 data. #' samp <- sample(1:1000, 200) #' y <- ar9[samp, ncol(ar9)] #' x <- ar9[samp, -ncol(ar9)] #' x <- x[, c(1,4,9)] #' obs <- y #' sim <- predict(fit, newdata = x) #' results <- validann(fit, obs = obs, sim = sim, x = x) #' #' ## Plot predictive results only to file #' pdf("PredValidationPlots.pdf") #' plot(results, obs, sim, resid = FALSE, sa = FALSE) #' dev.off() #' #' @export #' @importFrom grDevices colors #' @importFrom grDevices dev.interactive #' @importFrom grDevices devAskNewPage #' @importFrom graphics abline #' @importFrom graphics hist #' @importFrom graphics layout #' @importFrom graphics legend #' @importFrom graphics lines #' @importFrom graphics par #' @importFrom graphics plot #' @importFrom graphics points #' @importFrom graphics title #' @importFrom stats acf #' @importFrom stats pacf #' @importFrom stats dnorm #' @importFrom stats qnorm #' @importFrom stats qqnorm #' @importFrom stats qqplot #-------------------------------------------------- plot.validann <- function(x, obs, sim, gof = TRUE, resid = TRUE, sa = TRUE, display = c("multi", "single"), profile = c("all", "median"), ...) { # ask <- devAskNewPage(TRUE) # on.exit(devAskNewPage(ask)) if (is.null(obs) & is.null(sim)) { stop("'obs' and 'sim' objects required.") } display <- match.arg(NULL, display) profile <- match.arg(NULL, profile) if (display == "single" && dev.interactive()) devAskNewPage(ask = TRUE) # Goodness-of-fit plots # ---- if (gof == TRUE) { if (is.null(obs)) { message1 <- "'obs' data missing :" message2 <- "Goodness-of-fit plots will not be produced." warning(message1, message2, call. = FALSE, immediate. = FALSE) } else if (is.null(sim)) { message1 <- "'sim' data missing :" message2 <- "Goodness-of-fit plots will not be produced." warning(message1, message2, call. = FALSE, immediate. = FALSE) } else { if (display == "multi") { m <- rbind(c(1, 2), c(3, 3)) layout(m) } else { m <- c(1, 1) layout(m) } par(oma = c(0, 0, 1, 0), mar = c(4, 4, 3, 0.3)) # scatterplot - obs vs sim min_plot <- min(obs, sim) max_plot <- max(obs, sim) plot(x = obs, y = sim, type = "p", pch = 21, col = "black", bg = colors()[240], xlim = c(min_plot, max_plot), ylim = c(min_plot, max_plot), xlab = "Observed", ylab = "Predicted", main = "Scatter Plot") abline(a = 0, b = 1, col = "red", lty = "dashed") # qq plot of obs v sim qqplot(obs, sim, pch = 21, col = "black", bg = colors()[240], xlim = c(min_plot, max_plot), ylim = c(min_plot, max_plot), xlab = "Observed", ylab = "Predicted", main = "Q-Q Plot") abline(a = 0, b = 1, col = "red", lty = "dashed") nsamps <- length(obs) plot(x = 1:nsamps, y = obs, type = "p", pch = 23, col = "black", bg = "black", ylim = c(min_plot, max_plot), xlab = "Sample", ylab = "Value") points(x = 1:nsamps, y = sim, pch = 23, col = "black", bg = colors()[240], cex = 0.8) title(main = "Observed Vs Predicted", line = 2) # add legend par(oma = c(0, 0, 1, 0), mar = c(0, 0, 1, 0), new = TRUE) plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n") legend(x = "top", legend = c("Observed", "Predicted"), pch = c(23, 23), col = c("black", "black"), pt.bg = c("black", colors()[240]), pt.cex = c(1, 0.8), horiz = TRUE, bty = "n", inset = c(0, 0), xpd = TRUE) if (display == "multi") { if (dev.interactive()) devAskNewPage(ask = TRUE) title(main = "Goodness-of-fit", outer = TRUE) } } } # Residual analysis plots # ---- if(resid == TRUE) { if (is.null(sim)) { message1 <- "'sim' data missing :" message2 <- "Residual analysis plots will not be produced." warning(message1, message2, call. = FALSE, immediate. = FALSE) } else { if(display == "multi") { m <- rbind(c(1, 2), c(3, 4), c(5, 6)) layout(m) } else { m <- c(1, 1) layout(m) } par(oma = c(0, 0, 1, 0), mar = c(4, 4, 3, 0.3)) # residuals histogram tmp_hist <- hist(x$residuals, plot = FALSE) tmp_norm <- dnorm(x$residuals, mean = 0, sd = x$resid_stats$sd) ymax <- max(tmp_hist$density, tmp_norm) * 1.2 plot(x = tmp_hist$mids, y = tmp_hist$density, type = "h", lwd = 30, lend = 2, col = colors()[240], ylim = c(0, ymax), yaxs = "i", xlab = "Residual", ylab = "Density", main = "Residuals Histogram") lines(x = sort(x$residuals), y = tmp_norm[order(x$residuals)], col = "red", lty = "dashed") if (display == "multi") devAskNewPage(ask = FALSE) # qq plot of residual vs normal distribution sd_err <- (x$residuals - x$resid_stats$mean) / x$resid_stats$sd qqnorm(sd_err, pch = 21, col = "black", bg = colors()[240], xlab = "Standard Normal Quantiles", ylab = "Standardized Residual", main = "Residual Q-Q Plot") abline(a = 0, b = 1, col = "red", lty = "dashed") # residual autocorrelation plots acf_tmp <- acf(x$residuals, plot = FALSE) pacf_tmp <- pacf(x$residuals, plot = FALSE) clim <- qnorm((1 + 0.95) / 2) / sqrt(acf_tmp$n.used) ylim <- range(c(-clim, clim, acf_tmp$acf[, 1, 1])) plot(acf_tmp$lag[, 1, 1], acf_tmp$acf[, 1, 1], type = "h", ylim = ylim, xlab = "Lag", ylab = "ACF", main = "Residual Autocorrelation") abline(h = 0) abline(h = c(clim, -clim), col = "blue", lty = 2) ylim <- range(c(-clim, clim, pacf_tmp$acf[, 1, 1])) plot(pacf_tmp$lag[, 1, 1], pacf_tmp$acf[, 1, 1], type = "h", ylim = ylim, xlab = "Lag", ylab = "Partial ACF", main = "Residual Partial-Autocorrelation") abline(h = 0) abline(h = c(clim, -clim), col = "blue", lty = 2) # Standardised residuals vs simulated plot(x = sim, y = sd_err, type = "p", pch = 21, col = "black", cex = 0.8, bg = colors()[240], xlab = "Predicted Value", ylab = "Standardized Residual", main = "Residuals Vs Simulated") abline(h = 0, lty = "dashed", col = "red") abline(h = -1.96, lty = "dashed", col = "blue") abline(h = 1.96, lty = "dashed", col = "blue") # Standardised residuals vs 'time' plot(x = 1:length(sd_err), y = sd_err, type = "p", pch = 21, col = "black", cex = 0.8, bg = colors()[240], xlab = "Order", ylab = "Standardized Residual", main = "Residuals Vs Order/Time") abline(h = 0, lty = "dashed", col = "red") abline(h = -1.96, lty = "dashed", col = "blue") abline(h = 1.96, lty = "dashed", col = "blue") if (display == "multi") { if (dev.interactive()) devAskNewPage(ask = TRUE) title(main = "Residual analysis", outer = TRUE) } } } # Sensitivity analysis plots # ---- if(sa == TRUE) { if (is.null(x$y_hat) && is.null(x$rs)) { message1 <- "Sensitivity analysis results missing : " message2 <- "Sensitivity analysis plots will not be produced." warning(message1, message2, call. = FALSE, immediate. = FALSE) } else { ninputs <- ncol(x$y_hat) / 6 } if (!is.null(x$y_hat)) { if (display == "multi") { rem <- ninputs %% 2 rep <- ninputs %/% 2 if (rem > 0) rep <- rep + 1 rep <- min(rep, 3) m <- matrix(1:(rep * 2), ncol = 2, byrow = TRUE) layout(m) } else { m <- c(1, 1) layout(m) rep <- 1 } par(oma = c(0, 0, 1, 3), mar = c(4, 4, 3, 0.3)) cols <- c("blue", "red", "gold", "magenta", "turquoise", "black") for (i in 1:ninputs) { y_hat <- x$y_hat[, (i - 1) * 6 + 1:6] miny <- min(y_hat) maxy <- max(y_hat) + 0.3 * (max(y_hat) - miny) p_name <- colnames(y_hat)[1] p_name <- substr(p_name, 1, nchar(p_name) - 2) plot(x = seq(0, 100, by = 1), y = y_hat[, 6], type = "l", col = "black", ylim = c(miny, maxy), ylab = "Predicted Response", xlab = paste("Percentile of Input:", p_name), main = "") title(main = p_name, line = 1) if(profile == "all") { for(j in 1:6) { lines(x = seq(0, 100, by = 1), y = y_hat[, j], col = cols[j]) } legend("top", legend = c("Min.", "25%", "50%", "75%", "Max.", "Median"), cex = 0.6 + rep * 0.1, pch = 20, col = cols, horiz = TRUE, bty = "n", xpd = NA) } if (dev.interactive() && (i %% (rep * 2) == 0)) { devAskNewPage(ask = TRUE) } else if (dev.interactive() && i == ninputs) { devAskNewPage(ask = TRUE) } else if (dev.interactive() && display == "single") { devAskNewPage(ask = TRUE) } else { devAskNewPage(ask = FALSE) } title(main = "Sensitivity analysis - Profile", outer = TRUE) } } if (!is.null(x$rs)) { if (display == "multi") { rem <- ninputs %% 2 rep <- ninputs %/% 2 if (rem > 0) rep <- rep + 1 rep <- min(rep, 3) m <- matrix(1:(rep * 2), ncol = 2, byrow = TRUE) layout(m) } else { m <- c(1, 1) layout(m) } par(oma = c(0, 0, 1, 0), mar = c(4, 4, 3, 0.3)) yrange <- c(min(x$rs), max(x$rs)) for (i in 1:ninputs) { plot(x = obs, y = x$rs[, i], type = "p", ylim = yrange, xlab = "Observed Response Value", ylab = "Relative Sensitivity", main = colnames(x$rs)[i]) if (dev.interactive() && (i %% (rep * 2) == 0)) { devAskNewPage(ask = TRUE) } else if (dev.interactive() && i == ninputs) { devAskNewPage(ask = TRUE) } else if (dev.interactive() && display == "single") { devAskNewPage(ask = TRUE) } else { devAskNewPage(ask = FALSE) } title(main = "Sensitivity analysis - PaD - Relative", outer = TRUE) } par(oma = c(0, 0, 1, 0), mar = c(4, 4, 3, 0.3)) yrange <- c(min(x$as), max(x$as)) for (i in 1:ninputs) { plot(x = obs, y = x$as[, i], type = "p", ylim = yrange, xlab = "Observed Response Value", ylab = "Absolute Sensitivity", main = colnames(x$as)[i]) if (dev.interactive() && (i %% (rep * 2) == 0)) { devAskNewPage(ask = TRUE) } else if (dev.interactive() && i == ninputs) { devAskNewPage(ask = TRUE) } else if (dev.interactive() && display == "single") { devAskNewPage(ask = TRUE) } else { devAskNewPage(ask = FALSE) } title(main = "Sensitivity analysis - PaD - Absolute", outer = TRUE) } } } devAskNewPage(ask = FALSE) } #-------------------------------------------------------------------------------
/scratch/gouwar.j/cran-all/cranData/validann/R/plot.validann.R
#-------------------------------------------------- #' @title Validate Artificial Neural Networks. #' #' @description Compute metrics and statistics for predictive, replicative #' and/or structural validation of artificial neural networks (ANNs). #' #' @param net an object of class `ann' (as returned by function #' \code{\link{ann}}) or `nnet' (as returned using \code{\link[nnet]{nnet}}). #' This is a list object comprising information about the fitted ANN model, #' including values of weights, fitted target values, number of layers and #' numbers of nodes in each layer, for example. #' @param obs,sim vectors comprising observed (\code{obs}) and simulated #' (\code{sim}) examples of a single response variable. These vectors are #' used to compute model fit statistics. Optional if \code{net} is supplied #' (see `Details'). #' @param x matrix, data frame or vector of input data used for #' fitting \code{net} object. A vector is considered to comprise examples of #' a single input or predictor variable. While \code{x} is optional, #' sensitivity analyses useful for structural validation cannot be performed #' if it is not supplied. #' @param wts vector of ANN weights used to compute input #' `relative importance' measures if \code{net} object is not supplied. Must #' be supplied together with \code{nodes} in order to compute such metrics. #' See `Details' for ordering of \code{wts} vector. #' @param nodes vector indicating the number of nodes in each layer #' of the ANN model. This vector should have 3 elements: nodes in input #' layer, nodes in hidden layer (can be 0), and nodes in output layer. #' If \code{net} object is not supplied, \code{nodes} must be supplied #' together with \code{wts} if any structural validation metrics are to be #' computed. #' @param na.rm logical; should missing values (including NaN) #' be removed from calculations? Default = TRUE. #' @param \dots arguments to be passed to different validann methods, #' see specific formulations for details. #' @return list object of class `validann' with components dependent on #' arguments passed to \code{validann} function: #' #' \item{metrics}{a data frame consisting of metrics: #' #' AME, PDIFF, MAE, ME, RMSE, R4MS4E, AIC, BIC, NSC, RAE, PEP, MARE, #' MdAPE, MRE, MSRE, RVE, RSqr, IoAd, CE, PI, MSLE, MSDE, IRMSE, VE, #' KGE, SSE and R. #' #' See Dawson et al. (2007) for definitions.} #' \item{obs_stats}{a data frame consisting of summary statistics about the #' \code{obs} dataset including mean, minimum, maximum, variance, #' standard deviation, skewness and kurtosis.} #' \item{sim_stats}{a data frame consisting of summary statistics about the #' \code{sim} dataset including mean, minimum, maximum, variance, #' standard deviation, skewness and kurtosis.} #' \item{residuals}{a 1-column matrix of model residuals (\code{sim - obs}).} #' \item{resid_stats}{a data frame consisting of summary statistics about the #' model \code{residuals} including mean, minimum, maximum, variance, #' standard deviation, skewness and kurtosis.} #' \item{ri}{a data frame consisting of `relative importance' values for each #' input. Only returned if \code{net} or \code{wts} and \code{nodes} are #' supplied. #' #' If \code{net} is supplied, relative importance values computed using the #' following 4 methods are returned: #' #' Garson's (Garson); connection weight (CW); Profile sensitivity #' analysis (Profile); and partial derivative sensitivity analysis (PaD). #' #' In addition, if \code{net} is of class `ann' (as returned by function #' \code{\link{ann}}) and the activation function used at the hidden #' layer (\code{act_hid}) is "tanh", relative importance #' values computed using the modified CW (MCW) are also returned. #' This method requires that the hidden layer activation function be #' symmetric about the origin. #' #' If \code{wts} and \code{nodes} are supplied, only relative importance #' values computed using the Garson and CW methods are returned. #' #' See Gevrey et al. (2003), Olden et al. (2004) and Kingston et al. (2006) #' for details of the relative importance methods.} #' \item{y_hat}{a matrix of dimension \code{c(101, ncol(x) * 6)} of model #' response values indicating the local sensitivity of the model to each #' input in \code{x}. Only returned if \code{net} and \code{x} are supplied. #' #' The response values returned in \code{y_hat} are calculated using the #' `Profile' sensitivity analysis method described in Gevrey et al. (2003). #' Using this method, the local sensitivity of each input in \code{x} is #' considered successively. For each input \code{x[,i]}, 5 synthetic data #' sets are generated where inputs \code{x[,-i]} are successively fixed at #' their minimum, 1st quartile, median, 3rd quartile and maximum values #' (as calculated from \code{x}), while input \code{x[,i]} is varied between #' its minimum and maximum value, increasing in increments of 1\% (giving #' 101 synthetic values of \code{x[,i]} for each of the 5 sets of fixed #' \code{x[,-i]}). These data are input into \code{net} and model response #' values corresponding to the 5 summary statistics are computed. #' These 5 sets of response values, together with a set of computed median #' responses, are returned as y_hat[,(i - 1) * 6 + 1:6]. This process is #' repeated for each input variable in \code{x}. See Gevrey et al. (2003) #' for further details.} #' \item{as}{a matrix of dimension \code{dim(x)} of `absolute sensitivity' #' values for each input in \code{x} given the model output values #' (i.e. \code{sim}). Only returned if \code{net} and \code{x} are #' supplied and \code{net} is of class `ann'. #' #' The values in \code{as} are calculated according to the partial #' derivative (PaD) sensitivity analysis method described in Gevrey et al. #' (2003), which involves computing the first-order partial derivatives of #' the ANN output with respect to each input. \code{net} must be of class #' `ann' in order to access partial derivatives of the hidden layer nodes as #' returned by \code{\link{ann}}.} #' \item{rs}{a matrix of dimension \code{dim(x)} of `relative sensitivity' #' values for each input in \code{x} given the model output values #' (i.e. \code{sim}). Only returned if \code{net} and \code{x} are #' supplied and \code{net} is of class `ann'. #' #' To compute the values in \code{rs}, the \code{as} values are normalised #' by multiplying by \code{x[,i]}/\code{sim} as described in Mount et al. #' (2013). As for \code{as}, \code{net} must be of class #' `ann' in order to access partial derivatives of the hidden layer nodes as #' returned by \code{\link{ann}}.} #' @details To compute all possible validation metrics and statistics, #' \code{net} must be supplied and must be of class `ann' (as returned by #' \code{\link{ann}}) or `nnet' (as returned by \code{\link[nnet]{nnet}}). #' However, a partial derivative (PaD) sensitivity analysis (useful for #' structural validation) will only be carried out if \code{net} is of class #' `ann'. #' #' If \code{obs} and \code{sim} data are supplied in addition to \code{net}, #' validation metrics are computed based on these. Otherwise, metrics and #' statistics are computed based on \code{obs} and \code{sim} datasets #' derived from the \code{net} object (i.e. the data used to fit \code{net} #' and the fitted values). As such, both \code{obs} and \code{sim} must be #' supplied if validation is to be based either on data not used for #' training or on unprocessed training data (if training data were #' preprocessed). If either \code{obs} or \code{sim} is specified but the #' other isn't, both \code{obs} and \code{sim} will be derived from #' \code{net} if supplied (and a warning will be given). Similarly, this #' will occur if \code{obs} and \code{sim} are of different lengths. #' #' If \code{net} is not supplied, both \code{obs} and \code{sim} are #' required. This may be necessary if validating an ANN model not built #' using either the \code{\link[nnet]{nnet}} or \code{\link{ann}} functions. #' In this case, both \code{wts} and \code{nodes} are also required if any #' structural validation metrics are to be returned. If an ANN model has #' \emph{K} input nodes, \emph{J} hidden nodes and a single output \emph{O}, #' with a bias node for both the hidden and output layers, the \code{wts} vector must be ordered #' as follows: #' #' \code{c(Wi1h1,Wi1h2,...Wi1hJ,Wi2h1,...Wi2hJ,...,WiKh1,...,WiKhJ,Wi0h1,...,Wi0hJ,}\cr #' \code{ Wh1O,...,WhJO,Wh0O)} #' #' where \code{Wikhj} is the weight between the \emph{k}th input and the #' \emph{j}th hidden node and \code{WhjO} is the weight between the #' \emph{j}th hidden node and the output. The bias weight on the \emph{j}th #' hidden layer node is labelled \code{Wi0hj} while the bias weight on the #' output is labelled \code{Wh0O}. The \code{wts} vector assumes the network #' is fully connected; however, missing connections may be substituted by #' zero weights. Skip-layer connections are not allowed. #' #' @references #' Dawson, C.W., Abrahart, R.J., See, L.M., 2007. HydroTest: A web-based #' toolbox of evaluation metrics for the standardised assessment of #' hydrological forecasts. Environmental Modelling & Software, 22(7), #' 1034-1052. \url{http://dx.doi.org/10.1016/j.envsoft.2006.06.008}. #' #' Olden, J.D., Joy, M.K., Death, R.G., 2004. An accurate comparison of #' methods for quantifying variable importance in artificial neural networks #' using simulated data. Ecological Modelling 178, 389-397. #' \url{http://dx.doi.org/10.1016/j.ecolmodel.2004.03.013}. #' #' Gevrey, M., Dimopoulos, I., Lek, S., 2003. Review and comparison of methods #' to study the contribution of variables in artificial neural network #' models. Ecological Modelling 160, 249-264. #' \url{http://dx.doi.org/10.1016/S0304-3800(02)00257-0}. #' #' Kingston, G.B., Maier, H.R., Lambert, M.F., 2006. Forecasting cyanobacteria #' with Bayesian and deterministic artificial neural networks, in: IJCNN '06. #' International Joint Conference on Neural Networks, 2006., IEEE. #' pp. 4870-4877. \url{http://dx.doi.org/10.1109/ijcnn.2006.247166}. #' #' Mount, N.J., Dawson, C.W., Abrahart, R.J., 2013. Legitimising #' data-driven models: exemplification of a new data-driven mechanistic #' modelling framework. Hydrology and Earth System Sciences 17, 2827-2843. #' \url{http://dx.doi.org/10.5194/hess-17-2827-2013}. #' #' @seealso \code{\link{ann}}, \code{\link{plot.validann}}, #' \code{\link{predict.ann}} #' @examples #' # get validation results for 1-hidden node `ann' model fitted to ar9 data #' # based on training data. #' # --- #' data("ar9") #' samp <- sample(1:1000, 200) #' y <- ar9[samp, ncol(ar9)] #' x <- ar9[samp, -ncol(ar9)] #' x <- x[, c(1,4,9)] #' #' fit <- ann(x, y, size = 1, act_hid = "tanh", act_out = "linear", rang = 0.1) #' results <- validann(fit, x = x) #' #' # get validation results for above model based on a new sample of ar9 data. #' # --- #' samp <- sample(1:1000, 200) #' y <- ar9[samp, ncol(ar9)] #' x <- ar9[samp, -ncol(ar9)] #' x <- x[, c(1,4,9)] #' #' obs <- y #' sim <- predict(fit, newdata = x) #' results <- validann(fit, obs = obs, sim = sim, x = x) #' #' # get validation results for `obs' and `sim' data without ANN model. #' # In this example `sim' is generated using a linear model. No structural #' # validation of the model is possible, but `wts' are provided to compute the #' # number of model parameters needed for the calculation of certain #' # goodness-of-fit metrics. #' # --- #' samp <- sample(1:1000, 200) #' y <- ar9[samp, ncol(ar9)] #' x <- ar9[samp, -ncol(ar9)] #' x <- as.matrix(x[, c(1,4,9)]) #' lmfit <- lm.fit(x, y) #' sim <- lmfit$fitted.values #' obs <- y #' results <- validann(obs = obs, sim = sim, wts = lmfit$coefficients) #' #' # validann would be called in the same way if the ANN model used to generate #' # `sim' was not available or was not of class `ann' or `nnet'. Ideally in #' # this case, however, both `wts' and `nodes' should be supplied such that #' # some structural validation metrics may be computed. #' # --- #' obs <- c(0.257, -0.891, -1.710, -0.575, -1.668, 0.851, -0.350, -1.313, #' -2.469, 0.486) #' sim <- c(-1.463, 0.027, -2.053, -1.091, -1.602, 2.018, 0.723, -0.776, #' -2.351, 1.054) #' wts <- c(-0.05217, 0.08363, 0.07840, -0.00753, -7.35675, -0.00066) #' nodes <- c(3, 1, 1) #' results <- validann(obs = obs, sim = sim, wts = wts, nodes = nodes) #' #' @export #' @importFrom stats cor #' @importFrom stats fitted #' @importFrom stats median #' @importFrom stats predict #' @importFrom stats quantile #' @importFrom stats sd #' @importFrom stats var #-------------------------------------------------- validann <- function(...) { UseMethod("validann") } # ------------------------------------------------------------------------------- #' @describeIn validann Compute validation metrics when \code{net} #' is of class `ann'. #' @export validann.ann <- function(net, obs = NULL, sim = NULL, x = NULL, na.rm = TRUE, ...) { results <- list() if (is.null(obs) & is.null(sim)) { obs <- observed(net) sim <- fitted(net) } else if (is.null(obs)) { obs <- observed(net) sim <- fitted(net) message1 <- "'obs' data missing : 'obs' and 'sim' both derived from 'net'" warning(message1, call. = FALSE, immediate. = FALSE) } else if (is.null(sim)) { obs <- observed(net) sim <- fitted(net) message1 <- "'sim' data missing : 'obs' and 'sim' both derived from 'net'" warning(message1, call. = FALSE, immediate. = FALSE) } else if (length(obs) != length(sim)) { message1 <- "'obs' and 'sim' must be the same length : " message2 <- "'obs' and 'sim' both derived from 'net'" warning(message1, message2, call. = FALSE, immediate. = FALSE) } # Goodness-of-fit. #---- npar <- length(net$wts) packageStartupMessage("Computing goodness-of-fit...") results_pred <- predictive_valid(obs, sim, npar, na.rm) results <- append(results, results_pred) packageStartupMessage("Done.") # Residuals analysis. #---- packageStartupMessage("Residuals analysis...") results_rep <- replicative_valid(obs, sim, na.rm) results <- append(results, results_rep) packageStartupMessage("Done.") # Structural validation. #---- if (is.vector(x)) { x <- matrix(x, ncol = 1) } packageStartupMessage("Computing structural validation metrics...") results_struct <- structural_valid(net, x = x) results <- append(results, results_struct) packageStartupMessage("Done.") class(results) <- "validann" return(results) } # ------------------------------------------------------------------------------- #' @describeIn validann Compute validation metrics when \code{net} #' is of class `nnet'. #' @export validann.nnet <- function(net, obs = NULL, sim = NULL, x = NULL, na.rm = TRUE, ...) { results <- list() if (is.null(obs) & is.null(sim)) { obs <- observed(net) sim <- fitted(net) } else if (is.null(obs)) { obs <- observed(net) sim <- fitted(net) message1 <- "'obs' data missing : 'obs' and 'sim' both derived from 'net'" warning(message1, call. = FALSE, immediate. = FALSE) } else if (is.null(sim)) { obs <- observed(net) sim <- fitted(net) message1 <- "'sim' data missing : 'obs' and 'sim' both derived from 'net'" warning(message1, call. = FALSE, immediate. = FALSE) } else if (length(obs) != length(sim)) { message1 <- "'obs' and 'sim' must be the same length : " message2 <- "'obs' and 'sim' both derived from 'net'" warning(message1, message2, call. = FALSE, immediate. = FALSE) } # Goodness-of-fit. #---- npar <- length(net$wts) packageStartupMessage("Computing goodness-of-fit...") results_pred <- predictive_valid(obs, sim, npar, na.rm) results <- append(results, results_pred) packageStartupMessage("Done.") # Residuals analysis. #---- packageStartupMessage("Residuals analysis...") results_rep <- replicative_valid(obs, sim, na.rm) results <- append(results, results_rep) packageStartupMessage("Done.") # Structural validation. #---- if (is.vector(x)) { x <- matrix(x, ncol = 1) } packageStartupMessage("Computing structural validation metrics...") results_struct <- structural_valid(net, x = x) results <- append(results, results_struct) packageStartupMessage("Done.") class(results) <- "validann" return(results) } # ------------------------------------------------------------------------------- #' @describeIn validann Useful for predictive validation only or when ANN model #' has not been developed using either \code{\link{ann}} or #' \code{\link[nnet]{nnet}}. Limited structural validation metrics may be #' computed and only if \code{wts} and \code{nodes} are supplied. #' @export validann.default <- function(obs, sim, wts = NULL, nodes = NULL, na.rm = TRUE, ...) { results <- list() if (missing(obs) | missing(sim)) { stop("Required 'obs' or 'sim' data missing") } else if (length(obs) != length(sim)) { stop("'obs' and 'sim' must be the same length") } if (is.null(wts)) { if (!is.null(nodes)) { npar <- (nodes[1] + 1) * nodes[2] + (nodes[2] + 1) * nodes[3] } else { npar <- NULL } } else { npar <- length(wts) } # Goodness-of-fit. #---- packageStartupMessage("Computing goodness-of-fit...") results_pred <- predictive_valid(obs, sim, npar, na.rm) results <- append(results, results_pred) packageStartupMessage("Done.") # Residuals analysis. #---- packageStartupMessage("Residuals analysis...") results_rep <- replicative_valid(obs, sim, na.rm) results <- append(results, results_rep) packageStartupMessage("Done.") # Structural validation. #---- if(!is.null(wts) && !is.null(nodes)) { packageStartupMessage("Computing structural validation metrics...") results_struct <- structural_valid(wts = wts, nodes = nodes) results <- append(results, results_struct) packageStartupMessage("Done.") } else { message1 <- "'wts' and/or 'nodes' not supplied : " message2 <- "structural validity metrics not computed." warning(message1, message2, call. = FALSE, immediate. = FALSE) } class(results) <- "validann" return(results) } #------------------------------------------------------------------------------- predictive_valid <- function(obs, sim, npar = NULL, na.rm = TRUE) { if (is.null(npar)) { message1 <- "No information on model dimension provided : " } rem <- vector() if (length(obs) != length(sim)) { stop("'obs' and 'sim' must be the same length") } else if (any(is.na(obs))) { message2 <- "missing values in 'obs'" warning(message2, call. = FALSE, immediate. = FALSE) rem <- which(is.na(obs)) } else if (any(is.na(sim))) { message2 <- "missing values in 'sim'" warning(message2, call. = FALSE, immediate. = FALSE) rem <- c(rem, which(is.na(sim))) } # Remove NA values if na.rm = TRUE if(na.rm & length(rem) > 0) { obs <- obs[-rem] sim <- sim[-rem] } resid <- obs - sim #sim - obs # Compute metrics from HydroTest nsamps <- length(obs) ame <- max(abs(resid)) pdiff <- max(obs) - max(sim) mae <- sum(abs(resid)) / nsamps me <- sum(resid) / nsamps rmse <- sqrt( sum( (resid) ^ 2) / nsamps) r4ms4e <- ( sum( (resid) ^ 4) / nsamps) ^ (1 / 4) if (!is.null(npar)) { aic <- nsamps * log(rmse) + 2 * npar bic <- nsamps * log(rmse) + npar * log(nsamps) } else { aic <- NA bic <- NA message3 <- "AIC and BIC not computed." warning(message1, message3, call. = FALSE, immediate. = FALSE) } #----- nsc_calc <- function(resid) { sc <- diff(sign(resid)) sc[sc != 0] <- 1 sum(sc) } #----- nsc <- nsc_calc(resid) rae <- sum( abs(resid) ) / sum( abs(obs - mean(obs)) ) * 100 pep <- (max(obs) - max(sim)) / max(obs) * 100 mare <- mean(abs(resid) / obs) * 100 mdape <- median(abs( (resid) / obs)) * 100 mre <- mean( (resid) / obs) * 100 msre <- mean( ( (resid) / obs) ^ 2) * 100 rve <- sum(resid) / sum(obs) * 100 rsqr <- (sum( (obs - mean(obs)) * (sim - mean(sim)) ) / sqrt( sum( (obs - mean(obs)) ^ 2) * sum( (sim - mean(sim)) ^ 2))) ^ 2 ioad <- 1 - sum( (resid) ^ 2) / sum((abs(obs - mean(obs)) + abs(sim - mean(obs))) ^ 2) ce <- 1 - sum( (resid) ^ 2) / sum( (obs - mean(obs)) ^ 2) pi <- 1 - sum( (resid[-1]) ^ 2) / sum( (obs[-1] - obs[-nsamps]) ^ 2) msle <- (log(obs + 1e-08) - log(sim + 1e-08)) ^ 2 msle <- sum(msle, na.rm = TRUE) / (nsamps - sum(is.na(msle))) msde <- sum( ( (obs[-1] - obs[-nsamps]) - (sim[-1] - sim[-nsamps])) ^ 2) / (nsamps - 1) delta <- obs[-1] - obs[-nsamps] irmse <- sqrt(sum( (delta - mean(delta)) ^ 2) / (nsamps - 1)) irmse <- rmse / irmse ve <- 1 - sum(abs(resid)) / sum(obs) alpha <- sd(sim) / sd(obs) beta <- mean(sim) / mean(obs) r <- cor(sim, obs) kge <- 1 - sqrt( (r - 1) ^ 2 + (alpha - 1) ^ 2 + (beta - 1) ^ 2) sse <- sum( (resid) ^ 2) metrics <- data.frame(AME = ame, PDIFF = pdiff, MAE = mae, ME = me, RMSE = rmse, R4MS4E = r4ms4e, AIC = aic, BIC = bic, NSC = nsc, RAE = rae, PEP = pep, MARE = mare, MdAPE = mdape, MRE = mre, MSRE = msre, RVE = rve, RSqr = rsqr, IoAd = ioad, CE = ce, PI = pi, MSLE = msle, MSDE = msde, IRMSE = irmse, VE = ve, KGE = kge, SSE = sse, R = r) obs_stats <- stats(obs) sim_stats <- stats(sim) return(list(metrics = metrics, obs_stats = obs_stats, sim_stats = sim_stats)) } # ------------------------------------------------------------------------------ replicative_valid <- function(obs, sim, na.rm = TRUE) { rem <- vector() if (length(obs) != length(sim)) { stop("'obs' and 'sim' must be the same length") } else if (any(is.na(obs))) { message2 <- "missing values in 'obs'" warning(message2, call. = FALSE, immediate. = FALSE) rem <- which(is.na(obs)) } else if (any(is.na(sim))) { message2 <- "missing values in 'sim'" warning(message2, call. = FALSE, immediate. = FALSE) rem <- c(rem, which(is.na(sim))) } # Remove NA values if na.rm = TRUE if(na.rm & length(rem) > 0) { obs <- obs[-rem] sim <- sim[-rem] } resid <- (obs - sim) resid_stats <- stats(resid) return(list(residuals = resid, resid_stats = resid_stats)) } # ------------------------------------------------------------------------------- structural_valid <- function(net, wts = NULL, nodes = NULL, x = NULL) { results <- list() # Compute relative importance of inputs via ocw, modified ocw and Garson's # methods if(missing(net)) { net <- NULL } if(!is.null(net)) { ninputs <- ifelse(is.null(net$n), net$nodes[1], net$n[1]) ri_gars <- garson_fn(net) ri_cw <- cw_fn(net) ri <- as.data.frame(matrix(c(unlist(ri_gars), unlist(ri_cw)), ncol = ninputs, byrow = TRUE)) if(!is.null(x)) { colnames(ri) <- colnames(x) } else { colnames(ri) <- paste("inp_", 1:ninputs, sep = "") } row.names(ri) <- c(names(ri_gars), names(ri_cw)) if(!is.null(x)) { tmp <- profile_sa(net, x) y_hat <- tmp$y_hat ri_sa <- tmp$ri results$y_hat <- y_hat ri_old <- ri ri <- rbind(ri, ri_sa) row.names(ri) <- c(row.names(ri_old), "ri_Profile") # If data$net is of class "ann", perform PD sensitivity analysis if (inherits(net, "ann")) { tmp <- PaD_sa(net, x) results$as <- tmp$as results$rs <- tmp$rs ri_pdsa <- tmp$ri_pdsa ri_old <- ri if(ncol(x) == 1) { ri <- rbind(ri, ri_pdsa[1,]) } else { ri <- rbind(ri, ri_pdsa) } row.names(ri) <- c(row.names(ri_old), "ri_PaD") } else { message3 <- "'net' not of class \"ann\" : " message4 <- "PD sensitivity analysis not performed." warning(message3, message4, call. = FALSE, immediate. = FALSE) } } else { message1 <- "Input data (x) missing : " message2 <- "No sensitivity analyses performed." warning(message1, message2, call. = FALSE, immediate. = FALSE) } results$ri <- ri } else if (!is.null(wts) && !is.null(nodes)) { ninputs <- nodes[1] ri_gars <- garson_fn(wts = wts, nodes = nodes) ri_cw <- cw_fn(wts = wts, nodes = nodes) ri <- as.data.frame(matrix(c(unlist(ri_gars), unlist(ri_cw)), ncol = ninputs, byrow = TRUE)) if(!is.null(x)) { colnames(ri) <- colnames(x) } else { colnames(ri) <- paste("inp_", 1:ninputs, sep = "") } row.names(ri) <- c(names(ri_gars), names(ri_cw)) results$ri <- ri } return(results) } # ------------------------------------------------------------------------------ stats <- function(x) { stats_mean <- mean(x) stats_min <- min(x) stats_max <- max(x) stats_var <- var(x) stats_sd <- sd(x) stats_skew <- moments::skewness(x) stats_kurt <- moments::kurtosis(x) return(data.frame(mean = stats_mean, min = stats_min, max = stats_max, var = stats_var, sd = stats_sd, skewness = stats_skew, kurtosis = stats_kurt)) } #------------------------------------------------------------------------------- profile_sa <- function(net, x) { if (!(inherits(net, "nnet") | inherits(net, "ann"))) { stop("'net' must be of class \"nnet\" or \"ann\" to perform local sensitivity analysis.") } quarts_x <- apply(x, 2, quantile, probs = seq(0, 1, 0.25)) y_hat <- vector() for (k in 1:ncol(x)) { y_hat_0 <- vector() for(q in 1:5) { x_fix <- matrix(rep(quarts_x[q,], 101), ncol = ncol(x), byrow = TRUE) x_tmp <- x_fix x_tmp[, k] <- as.vector(quantile(x[, k], prob = seq(0, 1, by = 0.01))) if (inherits(net, "nnet")) { y_hat_0 <- cbind(y_hat_0, predict(net, newdata = x_tmp, type = "raw")) } else if (inherits(net, "ann")) { y_hat_0 <- cbind(y_hat_0, predict(net, newdata = x_tmp)) } } y_hat_1 <- apply(y_hat_0, 1, median) y_hat <- cbind(y_hat, y_hat_0, y_hat_1) } colnames(y_hat) <- paste(rep(colnames(x), each = 6), c(seq(0, 1, 0.25)*100, "med"), sep = "_") y_hat_meds <- y_hat[,seq(6, 6*ncol(x), 6)] y_hat_rng <- apply(y_hat_meds, 2, range) ri <- y_hat_rng[2,] - y_hat_rng[1,] ri <- ri / sum(abs(ri)) * 100 return(list(y_hat = y_hat, ri_sa = ri)) } #------------------------------------------------------------------------------- PaD_sa <- function(net, x) { if (inherits(net, "nnet")) { stop("'net' must be of class \"ann\" to perform PD sensitivity analysis.") } if (!inherits(net, "ann")) stop("'net' not of class \"ann\"") if (is.vector(x)) { x <- matrix(x, ncol = 1) } npatterns <- dim(x)[1] ninputs <- dim(x)[2] O <- net$fitted.values if(ncol(net$derivs) == 1) { nhn <- 0 out_derivs <- matrix(net$derivs[, 1], ncol = 1) hid_derivs <- NULL } else { out_derivs <- matrix(net$derivs[, ncol(net$derivs)], ncol = 1) hid_derivs <- matrix(net$derivs[, -ncol(net$derivs)], ncol = ncol(net$derivs) - 1) nhn <- ncol(hid_derivs) } relsens <- abssens <- vector() if(nhn > 0) { for (i in 1:ninputs) { sum1 <- rep(0, npatterns) for (j in 1:net$nodes[2]) { sum1 <- sum1 + net$wts[(i - 1) * net$nodes[2] + j] * hid_derivs[, j] * net$wts[net$nodes[1] * net$nodes[2] + net$nodes[2] + j] * out_derivs[, 1] } relsens <- cbind(relsens, x[, i] / O * sum1) abssens <- cbind(abssens, sum1) } } else { for (i in 1:ninputs) { sum1 <- net$wts[i] * out_derivs[, 1] relsens <- cbind(relsens, x[, i] / O * sum1) abssens <- cbind(abssens, sum1) } } ssd <- matrix(colSums(abssens^2), nrow = 1) rmsd <- sqrt(ssd/dim(abssens)[1]) rmsd <- rmsd / sum(rmsd) * 100 colnames(relsens) <- colnames(abssens) <- colnames(rmsd) <- names(x) return(list(rs = relsens, as = abssens, ri_pdsa = rmsd)) } #------------------------------------------------------------------------------- cw_fn <- function(net, wts = NULL, nodes = NULL) { # ------- # function for calculating overall connection weight (OCW) and # relative importance (RI) of inputs # ------- if (missing(net)) { net <- NULL } if (!is.null(net)) { if (inherits(net, "nnet")) { nodes <- net$n nhn <- nodes[2] ninp <- nodes[1] wts <- net$wts act_fn <- "sigmoid" indices <- matrix(seq(1, nodes[1] * nodes[2] + nodes[2]), ncol = nodes[2]) out_ls <- list() for (i in 1:ncol(indices)) { out_ls[[paste("hidden", i)]] <- wts[indices[, i]] } out_ls[["out 1"]] <- wts[(max(indices) + 1):length(wts)] ocw <- ocw_mod <- vector() for (i in 1:nhn) { ocw <- rbind(ocw, out_ls[[i]][2:(ninp + 1)] * out_ls[[nhn + 1]][i + 1]) } ri <- colSums(ocw) ri_denom <- sum(abs(ri)) ri <- ri / ri_denom ri <- ri * 100 return(list(ri_CW = ri)) } else if (inherits(net, "ann")) { nodes <- net$nodes nhn <- ifelse(length(nodes) == 3, nodes[2], 0) ninp <- nodes[1] wts <- net$wts act_fn <- net$act_fn[2] out_ls <- list() if(nhn > 0) { indices <- matrix(seq(1, nodes[1] * nodes[2]), ncol = nodes[2], byrow = TRUE) for (i in 1:ncol(indices)) { out_ls[[paste("hidden", i)]] <- wts[indices[, i]] } out_ls[["out 1"]] <- wts[(max(indices) + nodes[2] + 1):length(wts)] ocw <- ocw_mod <- vector() for (i in 1:nhn) { ocw_mod <- rbind(ocw_mod, actfn(out_ls[[i]][1:ninp], method = act_fn) * out_ls[[nhn + 1]][i]) ocw <- rbind(ocw, out_ls[[i]][1:ninp] * out_ls[[nhn + 1]][i]) } ri <- colSums(ocw) ri_mod <- colSums(ocw_mod) } else { out_ls[["out 1"]] <- wts ocw_mod <- actfn(out_ls[[1]][1:ninp], method = act_fn) ocw <- out_ls[[1]][1:ninp] ri <- ocw ri_mod <- ocw_mod } ri_denom <- sum(abs(ri)) ri <- ri / ri_denom ri <- ri * 100 ri_denom <- sum(abs(ri_mod)) ri_mod <- ri_mod / ri_denom ri_mod <- ri_mod * 100 if(act_fn == "tanh") { return(list(ri_CW = ri, ri_MCW = ri_mod)) } else { return(list(ri_CW = ri)) } } else { stop("'net' must be of class \"nnet\" or \"ann\"") } } else if (!is.null(wts) && !is.null(nodes)) { nhn <- nodes[2] ninp <- nodes[1] out_ls <- list() if(nhn > 0) { indices <- matrix(seq(1, nodes[1] * nodes[2]), ncol = nodes[2], byrow = TRUE) for (i in 1:ncol(indices)) { out_ls[[paste("hidden", i)]] <- wts[indices[, i]] } out_ls[["out 1"]] <- wts[(max(indices) + nodes[2] + 1):length(wts)] ocw <- ocw_mod <- vector() for (i in 1:nhn) { ocw <- rbind(ocw, out_ls[[i]][1:ninp] * out_ls[[nhn + 1]][i]) } ri <- colSums(ocw) } else { out_ls[["out 1"]] <- wts ocw <- out_ls[[1]][1:ninp] ri <- ocw } ri_denom <- sum(abs(ri)) ri <- ri / ri_denom ri <- ri * 100 return(list(ri_CW = ri)) } else { stop("either 'net' or 'wts' and 'nodes' must be supplied") } } # ------------------------------------------------------------------------------ garson_fn <- function(net, wts = NULL, nodes = NULL) { # ------- # Function to calculate Garson's measure of relative importance # ------- if (missing(net)) { net <- NULL } if (!is.null(net)) { if (inherits(net, "nnet")) { nodes <- net$n nhn <- ifelse(length(nodes) == 3, nodes[2], 0) ninp <- nodes[1] wts <- net$wts out_ls <- list() if(nhn > 0) { indices <- matrix(seq(1, nodes[1] * nodes[2] + nodes[2]), ncol = nodes[2]) for (i in 1:ncol(indices)) { out_ls[[paste("hidden", i)]] <- wts[indices[, i]] } out_ls[["out 1"]] <- wts[(max(indices) + 1):length(wts)] ri <- vector() for (i in 1:nhn) { sum_wi <- sum(abs(out_ls[[i]][2:(ninp + 1)])) sum_wo <- sum(abs(out_ls[[nhn + 1]][2:(nhn + 1)])) ri <- rbind(ri, abs(out_ls[[i]][2:(ninp + 1)]) / sum_wi * abs(out_ls[[nhn + 1]][i + 1]) / sum_wo) } ri <- colSums(ri) * 100 } else { out_ls[["out 1"]] <- wts sum_wi <- sum(abs(out_ls[[1]][1:ninp])) ri <- abs(out_ls[[1]][1:ninp]) / sum_wi * 100 } } else if (inherits(net, "ann")) { nodes <- net$nodes nhn <- ifelse(length(nodes) == 3, nodes[2], 0) ninp <- nodes[1] wts <- net$wts out_ls <- list() if(nhn > 0) { indices <- matrix(seq(1, nodes[1] * nodes[2]), ncol = nodes[2], byrow = TRUE) for (i in 1:ncol(indices)) { out_ls[[paste("hidden", i)]] <- wts[indices[, i]] } out_ls[["out 1"]] <- wts[(max(indices) + nodes[2] + 1):length(wts)] ri <- vector() for (i in 1:nhn) { sum_wi <- sum(abs(out_ls[[i]][1:ninp])) sum_wo <- sum(abs(out_ls[[nhn + 1]][1:nhn])) ri <- rbind(ri, abs(out_ls[[i]][1:ninp]) / sum_wi * abs(out_ls[[nhn + 1]][i]) / sum_wo) } ri <- colSums(ri) * 100 } else { out_ls[["out 1"]] <- wts sum_wi <- sum(abs(out_ls[[1]][1:ninp])) ri <- abs(out_ls[[1]][1:ninp]) / sum_wi * 100 } } else { stop("'net' must be of class \"nnet\" or \"ann\"") } } else if (!is.null(wts) && !is.null(nodes)) { nhn <- nodes[2] ninp <- nodes[1] out_ls <- list() if(nhn > 0) { indices <- matrix(seq(1, nodes[1] * nodes[2]), ncol = nodes[2], byrow = TRUE) for (i in 1:ncol(indices)) { out_ls[[paste("hidden", i)]] <- wts[indices[, i]] } out_ls[["out 1"]] <- wts[(max(indices) + nodes[2] + 1):length(wts)] ri <- vector() for (i in 1:nhn) { sum_wi <- sum(abs(out_ls[[i]][1:ninp])) sum_wo <- sum(abs(out_ls[[nhn + 1]][1:nhn])) ri <- rbind(ri, abs(out_ls[[i]][1:ninp]) / sum_wi * abs(out_ls[[nhn + 1]][i]) / sum_wo) } ri <- colSums(ri) * 100 } else { out_ls[["out 1"]] <- wts sum_wi <- sum(abs(out_ls[[1]][1:ninp])) ri <- abs(out_ls[[1]][1:ninp]) / sum_wi * 100 } } else { stop("either 'net' or 'wts' and 'nodes' must be supplied") } return(list(ri_Garson = ri)) } # ------------------------------------------------------------------------------
/scratch/gouwar.j/cran-all/cranData/validann/R/validann.R
#' n_dupes #' #' @param x a df #' #' @return an integer; number of dupe rows #' @keywords internal #' n_dupes <- function(x){(x %>% nrow) - (dplyr::distinct(x) %>% nrow) -> dupes ;dupes} #' Confirm Distinct #' #' Confirm whether the rows of a data frame can be uniquely identified by the keys in the selected columns. #' Also reports whether the dataframe has duplicates. If so, it is best to remove duplicates and re-run the function. #' #' @param .data A dataframe #' @param ... (ID) columns #' #' @return a Logical value invisibly with description printed to console #' @export #' #' @examples iris %>% confirm_distinct(Species, Sepal.Width) confirm_distinct <- function(.data, ...) { .data %>% dplyr::ungroup() %>% select_otherwise(..., return_type = "df") -> .data1 .data1 %>% names() %>% rlang::syms(.) -> cols n_dupes(.data) -> d_rows if(d_rows > 0) { print(stringr::str_glue("database has {d_rows} duplicate rows")) .data <- dplyr::distinct(.data)} .data1 %>% dplyr::distinct(.) -> new_df nrow(new_df) -> new_rows names(new_df) %>% stringr::str_c( collapse = ", ") -> col_names diff <- nrow(.data) - new_rows if(diff == 0){ print(stringr::str_glue("database is distinct at {col_names}")) invisible(TRUE) } else { print(stringr::str_glue("database has {diff} duplicates at {col_names}")) invisible(FALSE) } }
/scratch/gouwar.j/cran-all/cranData/validata/R/confirm_distinct.R
#' Confirm structural mapping between 2 columns #' #' The mapping between elements of 2 columns can have 4 different relationships: one - one, one - many, many - one, many - many. #' This function returns a view of the mappings by row, and prints a summary to the console. #' #' @param .data a data frame #' @param col1 column 1 #' @param col2 column 2 #' @param view View results? #' #' @return A view of mappings. Also returns the view as a data frame invisibly. #' @export #' #' @examples iris %>% confirm_mapping(Species, Sepal.Width, view = FALSE) confirm_mapping <- function(.data, col1, col2, view = T){ dupe_count <- one_to_many <- many_to_one <- NULL .data <- dplyr::ungroup(.data) .data %>% dplyr::distinct({{ col1 }}, {{ col2 }}) %>% janitor::get_dupes({{col1}}) %>% dplyr::mutate(one_to_many = 1) %>% dplyr::arrange({{col1}}, {{col2}}) -> .data1 .data %>% dplyr::distinct({{ col1 }}, {{ col2 }}) %>% janitor::get_dupes({{col2}}) %>% dplyr::mutate(many_to_one = 1) %>% dplyr::arrange({{col2}}, {{col1}})-> .data2 .data1 %>% nrow %>% `>`(0)-> one2m .data2 %>% nrow %>% `>`(0) ->m2one mapping_bools <- c(! (one2m | m2one), one2m & !m2one, m2one & !one2m, one2m & m2one) switch(which(mapping_bools), "1 - 1 mapping", "1 - many mapping", "many - 1 mapping", "many - many mapping") -> mapping_desc print(stringr::str_glue("{mapping_desc} between {rlang::as_name(rlang::ensym(col1))} and {rlang::as_name(rlang::ensym(col2))}")) .data3 <- dplyr::bind_rows(.data1, .data2) %>% dplyr::select({{col1}}, {{col2}}, dupe_count, tidyselect::everything()) %>% dplyr::mutate(dplyr::across(c(one_to_many, many_to_one), as.logical)) if(nrow(.data3) > 0 & view == T) {utils::View(.data3)} invisible(.data3) }
/scratch/gouwar.j/cran-all/cranData/validata/R/confirm_mapping.R
#' Confirm Overlap #' #' Prints a venn-diagram style summary of the unique value #' overlap between two columns and also invisibly returns a dataframe that can be assigned to a variable #' and queried with the overlap helpers. The helpers can return values that appeared only the first col, second col, #' or both cols. #' #' @param vec1 vector 1 #' @param vec2 vector 2 #' @param return_tibble logical. If TRUE, returns a tibble. otherwise by default returns the database invisibly to be queried by helper functions. #' #' @return tibble. overlap summary or overlap table #' @export #' #' @examples #' #' confirm_overlap(iris$Sepal.Width, iris$Sepal.Length) -> iris_overlap #' #' iris_overlap #' #' iris_overlap %>% #' co_find_only_in_1() #' #' iris_overlap %>% #' co_find_only_in_2() #' #' iris_overlap %>% #' co_find_in_both() confirm_overlap <- function(vec1, vec2, return_tibble = F){ x <- flag2 <- flag1 <- both_flags <- shared_names <- total_names <- NULL rlang::enexpr(vec1) %>% deparse %>% stringr::str_replace(stringr::fixed("$"), "_") -> str_col1 rlang::enexpr(vec2) %>% deparse %>% stringr::str_replace(stringr::fixed("$"), "_") -> str_col2 stringr::str_glue("only_in_{str_col1}") -> nm_col1 stringr::str_glue("only_in_{str_col2}") -> nm_col2 stopifnot(typeof(vec1) == typeof(vec2) ) list(str_col1, nm_col1) db1 <- tibble::tibble(x = vec1) db2 <- tibble::tibble(x = vec2) db1 %>% dplyr::distinct(x) %>% dplyr::filter(!is.na(x)) %>% dplyr::mutate(flag1 = 1) -> db1 db2 %>% dplyr::distinct(x) %>% dplyr::filter(!is.na(x)) %>% dplyr::mutate(flag2 = 1) -> db2 suppressMessages({dplyr::full_join(db1, db2) -> jdb}) jdb %>% tidyr::replace_na(list( flag1 = 0, flag2 = 0)) %>% dplyr::mutate(both_flags = flag1 + flag2) -> jdb jdb %>% dplyr::summarize( !!nm_col1 := sum(flag1 == 1 & flag2 == 0), !!nm_col2 := sum(flag1 == 0 & flag2 == 1), shared_names = sum(both_flags == 2), total_names = jdb %>% nrow, pct_shared = scales::percent(shared_names/ total_names)) -> jdb_sum jdb %>% dplyr::rename("{str_col1}" := flag1, "{str_col2}" := flag2) -> jdb if(return_tibble){ jdb_sum } else{ print(jdb_sum) invisible(jdb) } } #' Confirm Overlap internal #' #' A venn style summary of the overlap in unique values of 2 vectors #' #' @param vec1 vector 1 #' @param vec2 vector 2 #' #' @return 1 row tibble #' @keywords internal #' #' @examples confirm_overlap(iris$Sepal.Width, iris$Sepal.Length) confirm_overlap_internal <- function(vec1, vec2){ x <- flag2 <- flag1 <- both_flags <- NULL rlang::enexpr(vec1) %>% deparse %>% stringr::str_replace(stringr::fixed("$"), "_") -> str_col1 rlang::enexpr(vec2) %>% deparse %>% stringr::str_replace(stringr::fixed("$"), "_") -> str_col2 stringr::str_glue("only_in_{str_col1}") -> nm_col1 stringr::str_glue("only_in_{str_col2}") -> nm_col2 # stopifnot(typeof(vec1) == typeof(vec2) ) list(str_col1, nm_col1) db1 <- tibble::tibble(x = vec1) db2 <- tibble::tibble(x = vec2) db1 %>% dplyr::distinct(x) %>% dplyr::filter(!is.na(x)) %>% dplyr::mutate(flag1 = 1) -> db1 db2 %>% dplyr::distinct(x) %>% dplyr::filter(!is.na(x)) %>% dplyr::mutate(flag2 = 1) -> db2 suppressMessages({dplyr::full_join(db1, db2) -> jdb}) jdb %>% tidyr::replace_na(list( flag1 = 0, flag2 = 0)) %>% dplyr::mutate(both_flags = flag1 + flag2) -> jdb jdb %>% dplyr::summarize( !!nm_col1 := sum(flag1 == 1 & flag2 == 0), !!nm_col2 := sum(flag1 == 0 & flag2 == 1), shared_names = sum(both_flags == 2), total_names = jdb %>% nrow) -> jdb_sum shared_pct <- (jdb_sum$shared_names / jdb_sum$total_names * 100) %>% round jdb_sum %>% dplyr::mutate(shared_pct_names = stringr::str_c(shared_pct, "%")) -> jdb_sum1 jdb_sum1 }
/scratch/gouwar.j/cran-all/cranData/validata/R/confirm_overlap.R
#' confirm overlap - find entries only in df 1 #' #' #' @rdname confirm_overlap #' @param co_output dataframe output from confirm_overlap #' #' @export co_find_only_in_1 <- function(co_output){ names(co_output) -> nms co_output %>% dplyr::filter(.[[nms[3]]] == 0 & .[[nms[2]]] == 1) %>% dplyr::select("{nms[2]}" := 1) } #' confirm overlap - find entries only in df 2 #' #' #' @rdname confirm_overlap #' @param co_output dataframe output from confirm_overlap #' #' @export co_find_only_in_2 <- function(co_output){ names(co_output) -> nms co_output %>% dplyr::filter(.[[nms[3]]] == 1 & .[[nms[2]]] == 0) %>% dplyr::select("{nms[3]}" := 1) } #' confirm overlap - find entries in both dfs #' #' #' @rdname confirm_overlap #' @param co_output dataframe output from confirm_overlap #' #' @export co_find_in_both <- function(co_output){ both_flags <- NULL co_output %>% dplyr::filter(both_flags == 2) %>% dplyr::select(1) }
/scratch/gouwar.j/cran-all/cranData/validata/R/confirm_overlap_helpers.R
#' confirm string length #' #' returns a count table of string lengths for a character column. The helper function `choose_strlen` #' filters dataframe for rows containing specific string length for the specified column. #' #' @param mdb dataframe #' @param col unquoted column #' #' @return prints a summary and returns a dataframe invisibly #' @export #' #' @examples #' #' iris %>% #' tibble::as_tibble() %>% #' confirm_strlen(Species) -> iris_cs_output #' #' iris_cs_output #' #' iris_cs_output %>% #' choose_strlen(6) confirm_strlen <- function(mdb, col){ mdb %>% dplyr::ungroup() -> mdb nm <- rlang::as_string(rlang::ensym(col)) col_nm <- rlang::as_string(stringr::str_glue("{nm}_chr_len")) mdb %>% dplyr::mutate(!!col_nm := stringr::str_length({{col}})) -> tmp_db tmp_db %>% janitor::tabyl(!!col_nm) %>% janitor::adorn_pct_formatting() -> rt print(rt) invisible(tmp_db) } #' choose string length #' #' #' @rdname confirm_strlen #' @param cs_output dataframe. output from `confirm_strlen` #' @param len integer vector. #' #' @return dataframe with original columns, filtered to the specific string length #' @export #' choose_strlen <- function(cs_output, len) { cs_output %>% names() %>% stringr::str_subset("_chr_len") -> my_col cs_output %>% dplyr::filter(.[[my_col]] %in% len) }
/scratch/gouwar.j/cran-all/cranData/validata/R/confirm_strlength.R
#' Sample Data #' #' @keywords internal #' #' sample data with 125 rows #' #' @format 6 columns. 3 id and 3 values #' \describe{ #' \item{ID_COL1}{4-5 distinct codes} #' } "sample_data1"
/scratch/gouwar.j/cran-all/cranData/validata/R/data.R
#' @keywords internal "_PACKAGE" # The following block is used by usethis to automatically manage # roxygen namespace tags. Modify with care! ## usethis namespace: start ## usethis namespace: end NULL utils::globalVariables(names = c("!!", " %>% ", ":=", "."))
/scratch/gouwar.j/cran-all/cranData/validata/R/dataValidation-package.R
#' Names List #' #' @param df a df #' @param len how many elements in combination #' #' @return a list of name combinations #' @keywords internal #' names_list <- function(df, len){ df %>% names %>% gtools::combinations(n = length(.), r = len, v = . ) %>% as.data.frame() %>% as.list() } #' Make Distinct #' #' @param df a df #' @param ... cols #' #' @return a list of name lists #' @keywords internal #' make_distincts <- function(df, ...){ df %>% dplyr::select(...) -> id_cols nms_list <- list() for(i in seq_along(id_cols)) { nms_list %>% append(list(names_list(id_cols, i))) -> nms_list } nms_list } #' Automatically determine primary key #' #' Uses \code{confirm_distinct} in an iterative fashion to determine the primary keys. #' #' The goal of this function is to automatically determine which columns uniquely identify the rows of a dataframe. #' The output is a printed description of the combination of columns that form unique identifiers at each level. #' At level 1, the function tests if individual columns are primary keys #' At level 2, the function tests n C 2 combinations of columns to see if they form primary keys. #' The final level is testing all columns at once. #' #' * For completely unique columns, they are recorded in level 1, but then dropped from the data frame to facilitate #' the determination of multi-column primary keys. #' * If the dataset contains duplicated rows, they are eliminated before proceeding. #' #' @param df a data frame #' @param ... columns or a tidyselect specification. defaults to everything #' @param listviewer logical. defaults to TRUE to view output using the listviewer package #' #' @return list #' @export #' #' @examples #' #' sample_data1 %>% #' head #' #' #'## on level 1, each column is tested as a unique identifier. the VAL columns have no #'## duplicates and hence qualify, even though they normally would be considered as IDs #'## on level 3, combinations of 3 columns are tested. implying that ID_COL 1,2,3 form a unique key #'## level 2 does not appear, implying that combinations of any 2 ID_COLs do not form a unique key #' #' sample_data1 %>% #' determine_distinct(listviewer = FALSE) determine_distinct <- function(df, ..., listviewer = TRUE){ n_dupes(df) -> d_rows if(d_rows > 0) { print(stringr::str_glue("database has {d_rows} duplicate rows, and will eliminate them")) df <- dplyr::distinct(df)} get_unique_col_names(df) -> unique_names df %>% framecleaner::select_otherwise(..., otherwise = tidyselect::everything(), return_type = "names") %>% setdiff(unique_names) -> db_names df %>% dplyr::select(-tidyselect::any_of(unique_names)) -> df make_distincts(df, tidyselect::any_of(db_names)) -> dst_list distinct_combos <- list() new_list <- list() for(j in seq_along(dst_list)){ stringr::str_c("LEVEL ", j) -> col_nm dst_list %>% purrr::pluck(j) -> the_lev filter_list(smaller_list = distinct_combos, bigger_list = data.table::transpose(the_lev)) %>% data.table::transpose() -> the_lev utils::capture.output( the_lev %>% purrr::pmap_lgl(., ~confirm_distinct(df, ...)) -> dst_nms) the_lev %>% as.data.frame() %>% dplyr::filter(dst_nms) -> d1 d1 %>% rows_to_list() -> l1 l1 %>% append(distinct_combos) -> distinct_combos if(nrow(d1) != 0){ d1 %>% tidyr::unite(col = !!col_nm, sep = ", ") %>% append(new_list) -> new_list} } new_list[["LEVEL 1"]] <- as.list(unique_names) new_list %>% purrr::map(~if(rlang::is_empty(.)) {. <- 'no primary keys'} else{.}) -> output if(listviewer){ output %>% listviewer::jsonedit(.) } else{ output } } pivot_summary <- function(sumr, ...){ column <- rowname <- NULL if (!missing(..1)) { sumr %>% tidyr::unite(col = "column", ..., remove = T) %>% dplyr::relocate(column) -> sumr1 sumr1 %>% dplyr::select(-1) %>% as.matrix() %>% mode -> output_mode } else{ sumr -> sumr1 } sumr1 %>% t %>% as.data.frame() %>% tibble::rownames_to_column() %>% tibble::as_tibble() %>% dplyr::rename(column = rowname) %>% dplyr::arrange(column) -> sumr2 if (!missing(..1)) { sumr2 %>% janitor::row_to_names(row_number = 1) %>% dplyr::mutate(dplyr::across(-1, ~as(., output_mode)))-> sumr3 } else{ sumr2 -> sumr3 } sumr3 } get_unique_col_names <- function(df){ nrow(df) -> rws V1 <- column <- NULL df %>% dplyr::summarize(dplyr::across(.fns = ~dplyr::n_distinct(.) == rws)) %>% pivot_summary() %>% dplyr::filter(V1) %>% dplyr::pull(column) } rows_to_list <- function(df){ df %>% t() %>% as.data.frame() %>% lapply(unlist)} is_subset_list <- function(chr, chr_list){ any(purrr::map_lgl(chr_list, ~all(is.element(el = ., set = chr)))) } filter_list <- function(smaller_list, bigger_list){ bigger_list %>% purrr::map_lgl(~is_subset_list(chr = ., chr_list = smaller_list)) -> logical_vec purrr::discard(bigger_list, logical_vec) }
/scratch/gouwar.j/cran-all/cranData/validata/R/determine_distinct.R
#' Determine pairwise structural mappings #' #' @param df a data frame #' @param ... columns or a tidyselect specification #' @param listviewer logical. defaults to TRUE to view output using the listviewer package #' #' @return description of mappings #' @export #' #' @examples #' #' iris %>% #' determine_mapping(listviewer = FALSE) determine_mapping <- function(df, ..., listviewer = TRUE){ df %>% framecleaner::select_otherwise(..., otherwise = tidyselect::everything(), return_type = "df") %>% dplyr::ungroup(.) -> df1 if(ncol(df1) < 2){ rlang::abort("insufficient non-unique columns") } cnf_output <- list() for(i in 2:ncol(df1)){ for(j in 1:(i-1)){ nm1 <- rlang::sym(names(df1)[i]) nm2 <- rlang::sym(names(df1)[j]) cnf_output <- append(cnf_output, utils::capture.output(suppressMessages(confirm_mapping(df1, !!nm1, !!nm2, view = F))) ) } } cnf_output %>% unlist -> cnf_output1 list_output <- list() list_output[["1 - 1 mapping"]] <- stringr::str_subset(cnf_output1, "1 - 1 mapping") %>% stringr::str_remove(., "1 - 1 mapping between ") list_output[["1 - many mapping"]] <- stringr::str_subset(cnf_output1, "1 - many mapping") %>% stringr::str_remove(., "1 - many mapping between ") list_output[["many - 1 mapping"]] <- stringr::str_subset(cnf_output1, "many - 1 mapping") %>% stringr::str_remove(., "many - 1 mapping between ") list_output[["many - many mapping"]] <- stringr::str_subset(cnf_output1, "many - many mapping") %>% stringr::str_remove(., "many - many mapping between ") if(listviewer){ listviewer::jsonedit(list_output)} else { list_output } }
/scratch/gouwar.j/cran-all/cranData/validata/R/determine_mapping.R
#' Determine Overlap #' #' Uses \code{confirm_overlap} in a pairise fashion to see venn style comparison of unique values between #' the columns chosen by a tidyselect specification. #' #' @param db a data frame #' @param ... tidyselect specification. Default being everything. #' #' @return tibble #' @export #' #' @examples #' #' iris %>% #' determine_overlap() #' determine_overlap <- function(db, ...) { db %>% framecleaner::select_otherwise(..., otherwise = tidyselect::everything(), return_type = "df") -> db1 names_list(db1, 2) -> db_names_list for (i in 1:length(db_names_list$V1)) { testit::has_error(confirm_overlap_internal(db[[db_names_list$V1[i]]], db[[db_names_list$V2[i]]]), silent = T) -> fails_type_check if(fails_type_check) {next} else{ tibble::tibble(col1 = db_names_list$V1[i], col2 = db_names_list$V2[i]) %>% dplyr::bind_cols(confirm_overlap_internal(db[[db_names_list$V1[i]]], db[[db_names_list$V2[i]]]) %>% rlang::set_names( c( "names_only_col_1", "names_only_col_2", "shared_names", "total_names", "pct_shared_names" ) )) -> tib_row if (!exists("tib1")) { tib_row -> tib1 } else{ tib1 %>% dplyr::bind_rows(tib_row) -> tib1 } } } tib1 }
/scratch/gouwar.j/cran-all/cranData/validata/R/determine_overlap.R
#' diagnose #' #' this function is inspired by the excellent `dlookr` package. It takes a dataframe and returns #' a summary of unique and missing values of the columns. #' #' @param df dataframe #' @param ... tidyselect #' @importFrom framecleaner select_otherwise #' #' @return dataframe summary #' @export #' #' @examples iris %>% diagnose() diagnose <- function(df, ...) { df <- select_otherwise(df, ..., otherwise = tidyselect::everything(), return_type = "df") vars <- names(df) variable_type <- purrr::map_chr(df, ~class(.)[1]) missing_count <- purrr::map_int(df, count_missing) unique_count <- purrr::map_int(df, dplyr::n_distinct) data_count <- nrow(df) if(data_count == 0){ return(print("data frame is empty") ) } tibble::tibble(variables = vars, types = variable_type, missing_count = missing_count, missing_percent = missing_count / data_count * 100, unique_count = unique_count, unique_rate = unique_count / data_count) } count_missing <- function(x){ sum(is.na(x)) } #' diagnose_missing #' #' faster than diagnose if emphasis is on diagnosing missing values. Also, only shows the columns with #' any missing values. #' #' @param df dataframe #' @param ... optional tidyselect #' #' @return tibble summary #' @export #' #' @examples #' #' iris %>% #' framecleaner::make_na(Species, vec = "setosa") %>% #' diagnose_missing() diagnose_missing <- function(df, ...){ missings <- NULL nrow(df) -> total_rows df <- select_otherwise(df, ..., otherwise = tidyselect::everything(), return_type = "df") missing_count <- purrr::map_df(df, count_missing) missing_count %>% t() %>% as.data.frame() %>% tibble::rownames_to_column() %>% tibble::as_tibble() %>% rlang::set_names(c("column", "missings")) %>% dplyr::arrange(dplyr::desc(missings )) %>% dplyr::filter(missings > 0) %>% dplyr::mutate(missing_ratio = missings / total_rows) -> missing_count missing_count %>% unlist() %>% rlang::is_empty() -> misscond if(misscond){ print("no missings")} else{ missing_count } } #' view_missing #' #' View rows of the dataframe where columns in the tidyselect specification contain missings #' by default, detects missings in any column. The result is by default displayed in the viewer pane. #' Can be returned as a tibble optionally. #' #' @param df dataframe #' @param ... tidyselect #' @param view logical. if false, returns tibble #' #' @return tibble #' @export #' #' @examples #' #' iris %>% #' framecleaner::make_na(Species, vec = "setosa") %>% #' view_missing(view = FALSE) view_missing <- function(df, ..., view = TRUE){ df %>% select_otherwise(..., otherwise = tidyselect::everything()) -> col_indx df %>% dplyr::filter(dplyr::if_any(tidyselect::any_of(col_indx), .fns = is.na)) -> missings if(view){ utils::View(missings) } else{ missings } } #' diagnose category #' #' counts the distinct entries of categorical variables. The `max_distinct` argument limits the scope to #' categorical variables with a maximum number of unique entries, to prevent overflow. #' #' @param .data dataframe #' @param ... tidyselect #' @param max_distinct integer #' #' @return dataframe #' @export #' #' @examples #' #' iris %>% #' diagnose_category() diagnose_category <- function(.data, ..., max_distinct = 5){ n <- NULL nrow(.data) -> total_rows .data %>% purrr::map_int(dplyr::n_distinct) %>% subset(. < max_distinct) %>% names() -> nms .data %>% select_otherwise(..., otherwise = where(is.character) | where(is.factor), return_type = "names") -> nms1 intersect(nms, nms1) -> nms2 purrr::map(nms2, function(x) {.data %>% dplyr::count(!!rlang::sym(x)) %>% dplyr::mutate(column = names(.)[1], .before = 1) %>% dplyr::rename(level = 2) %>% dplyr::arrange(dplyr::desc(n))}) %>% rlist::list.rbind() %>% tibble::as_tibble() %>% dplyr::mutate(ratio = n / total_rows) } #' data_mode #' #' @param x vector #' @param prop show frequency as ratio? default T #' #' @return named double of length 1 #' @keywords internal #' data_mode <- function(x, prop = TRUE){ x %>% table() -> xt xt[which.max(xt)] -> xt_mode if(prop){ xt_mode / length(x) -> xt_mode } xt_mode } #' diagnose_numeric #' #' Inputs a dataframe and returns various summary statistics of the numeric columns. For example `zeros` returns the number #' of 0 values in that column. `minus` counts negative values and `infs` counts Inf values. Other rarer metrics #' are also returned that may be helpful for quick diagnosis or understanding of numeric data. `mode` returns the most common #' value in the column (chooses at random in case of tie) , and `mode_ratio` returns its frequency as a ratio of the total rows #' #' @param .data dataframe #' @param ... tidyselect #' #' @return dataframe #' @export #' #' #' @examples #' #' library(framecleaner) #' #' iris %>% #' diagnose_numeric diagnose_numeric <- function(.data, ...){ .data %>% select_otherwise(..., where(is.numeric), return_type = "df") -> df fns <- list(zeros = ~sum(. == 0, na.rm = T), minus = ~sum(. < 0, na.rm = T), infs = ~sum(is.infinite(.), na.rm = T), min = ~min(., na.rm = T), mean = ~mean(., na.rm = T), max = ~max(., na.rm = T), `|x|<1 (ratio)` = ~mean( -1 < . & . < 1, na.rm =T) , integer_ratio = ~mean(as.integer(.) == ., na.rm =T), mode = ~as.double(names(data_mode(.))), mode_ratio = data_mode) col_list <- list() for(fun in seq_along(fns)){ purrr::map_dbl(df, fns[[fun]]) %>% tibble::enframe(name = NULL, value = names(fns[fun])) -> alist rlist::list.append(col_list, alist) -> col_list } message(stringr::str_c(nrow(.data), " rows")) tibble::tibble(variables = names(df)) %>% dplyr::bind_cols( rlist::list.cbind(col_list) ) %>% framecleaner::set_int() }
/scratch/gouwar.j/cran-all/cranData/validata/R/diagnose.R
utils::globalVariables(".", package = "validata") utils::globalVariables("where", package = "validata") utils::globalVariables(":=", package = "validata")
/scratch/gouwar.j/cran-all/cranData/validata/R/globals.R
# guess_id_col <- function(x, min_distinct = 3L){ # # # if(!initial_test(x, min_distinct)) return(FALSE) # if(!test_integer(x)) return(FALSE) # if(!test_character(x)) return(FALSE) # # TRUE # # } # # # # guess_distribution <- function(x){ # # d1 <- fitdistrplus::fitdist(x, "pois") %>% fitdistrplus::gofstat() %>% `$`(chisqpvalue) # d2 <- fitdistrplus::fitdist(x, "norm") %>% fitdistrplus::gofstat() %>% `$`(chisqpvalue) # d3 <- fitdistrplus::fitdist(x, "unif") %>% fitdistrplus::gofstat() %>% `$`(chisqpvalue) # # pvals <- c(pois = d1, norm = d1, unif = d3) # names(pvals)[which.max(pvals)] # } # # # # # test_integer <- function(x){if(rlang::is_bare_integer(x)){ # # clist <- list() # # rlist::list.append(clist, function(x) !any(x < 0, na.rm = T) ) -> clist # rlist::list.append(clist, function(x) all(is.finite(x), na.rm = T)) -> clist # rlist::list.append(clist, function(x) !all(dplyr::between(x, 0, 10), na.rm = T)) -> clist # rlist::list.append(clist, function(x) BBmisc::computeMode(x) != 0) -> clist # rlist::list.append(clist, function(x) guess_distribution(x) == "unif") -> clist # # for(fn in clist){ # # if(!rlang::exec(fn, x)){ # return(F) # } # } # # } # TRUE # } # # # test_character <- function(x){if(is.character(x)){ # # clist <- list() # # rlist::list.append(clist, function(x) !any(stringr::str_detect(x, "http|www|:|yes|no"), na.rm = T) ) -> clist # rlist::list.append(clist, function(x) !all(stringr::str_length(x) <= 1, na.rm = T)) -> clist # # for(fn in clist){ # # if(!rlang::exec(fn, x)){ # return(F) # } # } # # } # # TRUE # } # # initial_test <- function(x, min_distinct = 3){ # # clist <- list() # # rlist::list.append(clist, function(x) !rlang::is_bare_double(x) ) -> clist # rlist::list.append(clist, function(x) !is.logical(x)) -> clist # rlist::list.append(clist, function(x) dplyr::n_distinct(x) >= min_distinct) -> clist # # # for(fn in clist){ # # if(!rlang::exec(fn, x)){ # return(F) # } # } # # TRUE # } # #
/scratch/gouwar.j/cran-all/cranData/validata/R/guess_id_col.R
#' Pipe operator #' #' See \code{magrittr::\link[magrittr:pipe]{\%>\%}} for details. #' #' @name %>% #' @rdname pipe #' @keywords internal #' @export #' @importFrom magrittr %>% #' @usage lhs \%>\% rhs NULL
/scratch/gouwar.j/cran-all/cranData/validata/R/utils-pipe.R
## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) iris <- tibble::tibble(iris) ## ----setup-------------------------------------------------------------------- library(validata) library(tidyselect) ## ----------------------------------------------------------------------------- head(sample_data1) ## ----------------------------------------------------------------------------- sample_data1 %>% confirm_distinct(ID_COL1) ## ----------------------------------------------------------------------------- sample_data1 %>% confirm_distinct(ID_COL1, ID_COL2) ## ----------------------------------------------------------------------------- sample_data1 %>% confirm_distinct(ID_COL1, ID_COL2, ID_COL3) ## ----------------------------------------------------------------------------- sample_data1 %>% determine_distinct(matches("ID")) ## ----------------------------------------------------------------------------- sample_data1 %>% confirm_mapping(ID_COL1, ID_COL2, view = F) ## ----------------------------------------------------------------------------- sample_data1 %>% determine_mapping(everything()) ## ----------------------------------------------------------------------------- confirm_overlap(iris$Sepal.Width, iris$Petal.Length) -> iris_overlap ## ----------------------------------------------------------------------------- print(iris_overlap) ## ----------------------------------------------------------------------------- iris_overlap %>% co_find_only_in_1() %>% head() ## ----------------------------------------------------------------------------- iris_overlap %>% co_find_only_in_2() %>% head() ## ----------------------------------------------------------------------------- iris_overlap %>% co_find_in_both() %>% head() ## ----eval=FALSE, include=FALSE------------------------------------------------ # iris %>% # determine_overlap(everything()) ## ----------------------------------------------------------------------------- iris %>% confirm_strlen(Species) -> species_len ## ----------------------------------------------------------------------------- head(species_len) ## ----------------------------------------------------------------------------- species_len %>% choose_strlen(len = 6) %>% head() ## ----------------------------------------------------------------------------- iris %>% diagnose()
/scratch/gouwar.j/cran-all/cranData/validata/inst/doc/PackageIntroduction.R
--- title: "PackageIntroduction" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{PackageIntroduction} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) iris <- tibble::tibble(iris) ``` ```{r setup} library(validata) library(tidyselect) ``` # Distinct ## Confirm Distinct In data analysis tasks we often have data sets with multiple possible ID columns, but it's not always clear which combination uniquely identifies each row. sample_data1 has 125 row with 3 ID type columns and 3 value columns. ```{r} head(sample_data1) ``` Let's use `confirm_distinct` iteratively to find the uniquely identifying columns of sample_data1. ```{r} sample_data1 %>% confirm_distinct(ID_COL1) ``` ```{r} sample_data1 %>% confirm_distinct(ID_COL1, ID_COL2) ``` ```{r} sample_data1 %>% confirm_distinct(ID_COL1, ID_COL2, ID_COL3) ``` Here we can conclude that the combination of 3 ID columns is the primary key for the data. ## Determine Distinct These steps can be automated with the wrapper function `determine distinct`. ```{r} sample_data1 %>% determine_distinct(matches("ID")) ``` # Mapping `confirm_mapping` tells you the mapping between two columns in a data frame: - 1 - 1 mapping - 1 - many mapping - many - 1 mapping - many - many mapping ## Confirm mapping `confirm_mapping` gives the option to view which type of mapping is associated with each individual row. ```{r} sample_data1 %>% confirm_mapping(ID_COL1, ID_COL2, view = F) ``` ## Determine mapping ```{r} sample_data1 %>% determine_mapping(everything()) ``` # Overlap The `overlap` functions give a venn style description of the values in 2 columns. This is especially useful before performing a `join` function, and you want to confirm that the dataframes have matching keys. ## Confirm Overlap `confirm_overlap` is different from the other `confirm` functions in that it takes 2 vectors as arguments, instead of a data frame. This is to allow the user to test overlap between different dataframes, or arbitrary vectors if necessary ```{r} confirm_overlap(iris$Sepal.Width, iris$Petal.Length) -> iris_overlap ``` `confirm_overlap` returns a summary data frame invisibly allowing you to access individual elements using the helper functions. ```{r} print(iris_overlap) ``` Find the elements unique to the first column ```{r} iris_overlap %>% co_find_only_in_1() %>% head() ``` Find the elements unique to the second column ```{r} iris_overlap %>% co_find_only_in_2() %>% head() ``` Find the elements shared by both columns ```{r} iris_overlap %>% co_find_in_both() %>% head() ``` ## Determine Overlap `determine_overlap` takes a dataframe and a tidyselect specification, and returns a tibble summarizing all of the pairwise overlaps. Only pairs with matching types are tested. ```{r eval=FALSE, include=FALSE,} iris %>% determine_overlap(everything()) ``` Note that the `overlap` functions only test pairwise overlaps. For multi-column and large-scale overlap testing, see [Complex Upset Plots](https://krassowski.github.io/complex-upset/) # string length ## confirm string length Get a frequency table of string lengths in a character column. Table is printed while the original df is returned invisibly with a column indicating the string lengths. ```{r} iris %>% confirm_strlen(Species) -> species_len ``` output is a dataframe ```{r} head(species_len) ``` ## choose string length A helped function for the output of `confirm_strlen` that filters the database for chosen string lengths. ```{r} species_len %>% choose_strlen(len = 6) %>% head() ``` # diagnose Reproduction of diagnose from the dlookr package. Usually a good choice for first analyzing a data set. ```{r} iris %>% diagnose() ```
/scratch/gouwar.j/cran-all/cranData/validata/inst/doc/PackageIntroduction.Rmd
--- title: "PackageIntroduction" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{PackageIntroduction} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) iris <- tibble::tibble(iris) ``` ```{r setup} library(validata) library(tidyselect) ``` # Distinct ## Confirm Distinct In data analysis tasks we often have data sets with multiple possible ID columns, but it's not always clear which combination uniquely identifies each row. sample_data1 has 125 row with 3 ID type columns and 3 value columns. ```{r} head(sample_data1) ``` Let's use `confirm_distinct` iteratively to find the uniquely identifying columns of sample_data1. ```{r} sample_data1 %>% confirm_distinct(ID_COL1) ``` ```{r} sample_data1 %>% confirm_distinct(ID_COL1, ID_COL2) ``` ```{r} sample_data1 %>% confirm_distinct(ID_COL1, ID_COL2, ID_COL3) ``` Here we can conclude that the combination of 3 ID columns is the primary key for the data. ## Determine Distinct These steps can be automated with the wrapper function `determine distinct`. ```{r} sample_data1 %>% determine_distinct(matches("ID")) ``` # Mapping `confirm_mapping` tells you the mapping between two columns in a data frame: - 1 - 1 mapping - 1 - many mapping - many - 1 mapping - many - many mapping ## Confirm mapping `confirm_mapping` gives the option to view which type of mapping is associated with each individual row. ```{r} sample_data1 %>% confirm_mapping(ID_COL1, ID_COL2, view = F) ``` ## Determine mapping ```{r} sample_data1 %>% determine_mapping(everything()) ``` # Overlap The `overlap` functions give a venn style description of the values in 2 columns. This is especially useful before performing a `join` function, and you want to confirm that the dataframes have matching keys. ## Confirm Overlap `confirm_overlap` is different from the other `confirm` functions in that it takes 2 vectors as arguments, instead of a data frame. This is to allow the user to test overlap between different dataframes, or arbitrary vectors if necessary ```{r} confirm_overlap(iris$Sepal.Width, iris$Petal.Length) -> iris_overlap ``` `confirm_overlap` returns a summary data frame invisibly allowing you to access individual elements using the helper functions. ```{r} print(iris_overlap) ``` Find the elements unique to the first column ```{r} iris_overlap %>% co_find_only_in_1() %>% head() ``` Find the elements unique to the second column ```{r} iris_overlap %>% co_find_only_in_2() %>% head() ``` Find the elements shared by both columns ```{r} iris_overlap %>% co_find_in_both() %>% head() ``` ## Determine Overlap `determine_overlap` takes a dataframe and a tidyselect specification, and returns a tibble summarizing all of the pairwise overlaps. Only pairs with matching types are tested. ```{r eval=FALSE, include=FALSE,} iris %>% determine_overlap(everything()) ``` Note that the `overlap` functions only test pairwise overlaps. For multi-column and large-scale overlap testing, see [Complex Upset Plots](https://krassowski.github.io/complex-upset/) # string length ## confirm string length Get a frequency table of string lengths in a character column. Table is printed while the original df is returned invisibly with a column indicating the string lengths. ```{r} iris %>% confirm_strlen(Species) -> species_len ``` output is a dataframe ```{r} head(species_len) ``` ## choose string length A helped function for the output of `confirm_strlen` that filters the database for chosen string lengths. ```{r} species_len %>% choose_strlen(len = 6) %>% head() ``` # diagnose Reproduction of diagnose from the dlookr package. Usually a good choice for first analyzing a data set. ```{r} iris %>% diagnose() ```
/scratch/gouwar.j/cran-all/cranData/validata/vignettes/PackageIntroduction.Rmd
#' @include validator.R #' @include indicator.R #' @include confrontation.R NULL setClassUnion('callOrNull',list('call','NULL')) ### COMPARE ---- # Mark an array as comparison so we can overload the 'show' and plot' function. setClass('comparison', contains='array' , slots=list(call = 'callOrNull') , prototype = prototype(array(0,dim=c(0,0)), call=NULL) ) setClass('validatorComparison',contains='comparison') setMethod('show',signature('comparison'),function(object){ cat(sprintf('Object of class %s:\n',class(object))) cat(sprintf('\n %s\n\n',call2text(object@call))) print(object[,]) }) #' Compare similar data sets #' #' Compare versions of a data set by comparing their performance against a #' set of rules or other quality indicators. This function takes two or #' more data sets and compares the perfomance of data set \eqn{2,3,\ldots} #' against that of the first data set (default) or to the previous one #' (by setting \code{how='sequential'}). #' #' @param x An R object #' @param ... data frames, comma separated. Names become column names in #' the output. #' #' @example ../examples/compare.R #' @export setGeneric('compare', def = function(x,...) standardGeneric('compare')) #' @section Comparing datasets by performance against validator objects: #' #' Suppose we have a current and a previous version of a data set. Both #' can be inspected by \code{\link{confront}}ing them with a rule set. #' The status changes in rule violations can be partitioned as shown in the #' following figure. #' \if{html}{\figure{rulesplit.png}{options: width=80\% alt="cellwise splitting"}} #' \if{latex}{\figure{rulesplit.pdf}{options: width=13cm}} #' This function computes the partition for two or more #' datasets, comparing the current set to the first (default) or to the #' previous (by setting \code{compare='sequential'}). #' #' @references #' The figure is reproduced from MPJ van der Loo and E. De Jonge (2018) #' \emph{Statistical Data Cleaning with applications in R} (John Wiley & Sons). #' #' @param how how to compare #' @param .list Optional list of data sets, will be concatenated with \code{...}. #' @rdname compare #' #' #' @return #' For \code{validator}: An array where each column represents #' one dataset. #' The rows count the following attributes: #' \itemize{ #' \item{Number of validations performed} #' \item{Number of validations that evaluate to \code{NA} (unverifiable)} #' \item{Number of validations that evaluate to a logical (verifiable)} #' \item{Number of validations that evaluate to \code{TRUE}} #' \item{Number of validations that evaluate to \code{FALSE}} #' \item{Number of extra validations that evaluate to \code{NA} (new unverifiable)} #' \item{Number of validations that still evaluate to \code{NA} (still unverifialble)} #' \item{Number of validations that still evaluate to \code{TRUE}} #' \item{Number of extra validations that evaluate to \code{TRUE} } #' \item{Number of validations that still evaluate to \code{FALSE}} #' \item{Number of extra validations that evaluate to \code{FALSE}} #' } #' #' @family validation-methods #' @family comparing #' @export setMethod("compare", "validator", function(x,... , .list=list(), how=c("to_first","sequential")){ L <- c(list(...),.list) # An explicit check so the code also works for tibble objects # who disguise as data frames but are really something else. if (any(sapply(L, inherits, "tbl"))){ L <- lapply(L, function(d) if (inherits(d,"tbl")) as.data.frame(d) else d ) } names(L) <- make_listnames(L) how <- match.arg(how) out <- if (how == "to_first"){ cbind( rules_diff(x, L[[1]]) , vapply( seq_len( length(L) - 1 ) , function(i) rules_diff(x, L[[i+1]], L[[1]]) , FUN.VALUE = numeric(11) ) ) } else { cbind( rules_diff(x, L[[1]]) , vapply( seq_len( length(L) - 1 ) , function(i) rules_diff(x, L[[i+1]], L[[i]]) , FUN.VALUE = numeric(11) ) ) } colnames(out) <- names(L) names(dimnames(out)) <- c("Status","Version") new('validatorComparison' , out , call = match.call(definition=compare, sys.call(sys.parent(1L))) ) }) rules_diff <- function(rules, new, old=NULL){ cf_new <- values(confront(new,rules),simplify=FALSE) validations = sum( sapply(cf_new, length) ) verifiable = sum( sapply(cf_new, function(x) sum(!is.na(x))) ) unverifiable = sum( sapply(cf_new, function(x) sum( is.na(x))) ) violated = sum(sapply(cf_new, function(x) sum(!x, na.rm=TRUE))) satisfied = sum( sapply(cf_new, sum, na.rm=TRUE) ) if ( is.null(old) ){ still_unverifiable = unverifiable new_unverifiable = 0 still_satisfied = satisfied new_satisfied = 0 still_violated = violated new_violated = 0 } else { cf_old <- values(confront(old,rules),simplify=FALSE) still_unverifiable = local({ s <- 0 for ( i in seq_len(length(cf_new)) ) { s <- s + sum( is.na(cf_new[[i]]) & is.na(cf_old[[i]]) ) } s }) new_unverifiable = local({ s <- 0 for ( i in seq_len(length(cf_new)) ){ s <- s + sum(!is.na(cf_old[[i]]) & is.na(cf_new[[i]])) } s }) still_satisfied = local({ s <- 0 for ( i in seq_len(length(cf_new)) ){ s <- s + sum(cf_old[[i]] & cf_new[[i]], na.rm=TRUE) } s }) new_satisfied = local({ s <- 0 for ( i in seq_len(length(cf_new)) ){ s <- s + sum((!cf_old[[i]]|is.na(cf_old[[i]])) & cf_new[[i]], na.rm=TRUE) } s }) still_violated = local({ s <- 0 for ( i in seq_len(length(cf_new)) ){ s <- s + sum(!cf_old[[i]] & !cf_new[[i]], na.rm=TRUE) } s }) new_violated = local({ s <- 0 for ( i in seq_len(length(cf_new)) ){ s <- s + sum((cf_old[[i]]|is.na(cf_old[[i]])) & !cf_new[[i]], na.rm=TRUE) } s }) } # end else # output c(validations = validations , verifiable = verifiable , unverifiable = unverifiable , still_unverifiable = still_unverifiable , new_unverifiable = new_unverifiable , satisfied = satisfied , still_satisfied = still_satisfied , new_satisfied = new_satisfied , violated = violated , still_violated = still_violated , new_violated = new_violated) } make_listnames <- function( L, base=sprintf("D%04d",seq_along(L)) ){ nm <- names(L) if (is.null(nm)) return(base) nm[nm==""] <- base[nm==""] nm } #' Translate a validatorComparison object to data frame #' #' The performance of versions of a data set with regard to rule-based quality #' requirements can be compared using using \code{\link{compare}}. The result is a #' \code{validatorComparison} object, which can usefully be translated into a data #' frame. #' #' @inheritParams as.data.frame #' #' @return A data frame with the following columns. #' \itemize{ #' \item{\code{status}: Row names of the \code{validatorComparison} object.} #' \item{\code{version}: Column names of the \code{validatorComparison} object.} #' \item{\code{count}: Contents of the \code{validatorComparison} object.} #' } #' #' #' @example ../examples/compare.R #' @family comparing #' @export setMethod("as.data.frame","validatorComparison", function(x,...){ x <- x[,] class(x) <- "table" setNames(as.data.frame(x,...),c("status","version","count")) }) #' Line graph of validatorComparison object #' #' The performance of versions of a data set with regard to rule-based quality #' requirements can be compared using using \code{\link{compare}}. The result is a #' \code{validatorComparison} object. This method creates a line-graph, thus #' suggesting an that an ordered sequence of data sets have been compared. See #' also \code{\link{barplot,validatorComparison-method}} for an unordered version. #' #' #' @param x Object of class \code{validatorComparison}. #' @param xlab [\code{character}] label for x axis (default none) #' @param ylab [\code{character}] label for y axis (default none) #' @param las [\code{numeric}] in \code{{0,1,2,3}} determining axis label rotation #' @param cex.axis [\code{numeric}] Magnification with respect to the current #' setting of \code{cex} for axis annotation. #' @param cex.legend [\code{numeric}] Magnification with respect to the current #' setting of \code{cex} for legend annotation and title. #' @param ... Graphical parameters, passed to \code{plot}. See \code{\link[graphics]{par}}. #' #' @family comparing #' @export setMethod("plot", "validatorComparison" , function(x , xlab="" , ylab="" , las=2 , cex.axis=0.8 , cex.legend=0.8,...){ oldpar <- par(mar=c(3,3,3,8),cex=1) on.exit(par(oldpar)) status <- rownames(x) version <- colnames(x) dat <- as.data.frame(x) # set color palettes, line style and line width mappings cl_map <- lw_map <- lt_map <- setNames(vector(11,mode = "integer"), status) lt_map[1:11] <- 1 lt_map[grepl("new",names(lt_map))] <- 2 lw_map[1:11] <- 1 lw_map[!grepl("(new)|(still)",names(lw_map))] <- 2 # Colors taken from brewer.pal(6,"Paired") cl_map[1:11] <- "black" cl_map[grepl("unverifiable", names(cl_map))] <- "#A6CEE3" cl_map[grepl("satisfied", names(cl_map))] <- "#33A02C" cl_map[grepl("violated", names(cl_map))] <- "#E31A1C" cl_map["verifiable"] <- "#1F78B4" # setup plot n <- length(version) plot(0,0 , col = 'white' , xlim = c(1,length(version)) , ylim = c(0,max(x)) , las = las , xaxt = 'n' , xlab = xlab , ylab = ylab , cex.axis= cex.axis , ...) # vertical grid abline(v = seq_along(version), col = "grey", lty = 3) # graph the main lines for (stat in status){ d <- dat[dat$status == stat, ] lines( as.integer(d$version), d$count , type='b', col=cl_map[stat] , lw=lw_map[stat], lt=lt_map[stat], pch=16) } axis(side=1, labels=version, at=seq_along(version) , las=1, padj=c(0,1) , cex.axis=cex.axis) # add legend oldpar <- c(oldpar,par(xpd=TRUE)) legend(x=1.04*n,y=max(x) , legend = gsub("_"," ",status) , lwd = lw_map[status] , lty = lt_map[status] , col = cl_map[status] , cex = cex.legend , bty = "n" , title = "Count" ) invisible(NULL) }) #' Barplot of validatorComparison object #' #' The performance of versions of a data set with regard to rule-based quality #' requirements can be compared using using \code{\link{compare}}. The result is a #' \code{validatorComparison} object. This method creates a stacked bar plot of #' the results. See also \code{\link{plot,validatorComparison-method}} for a line #' chart. #' #' @param height object of class \code{validatorComparison} #' @param las [\code{numeric}] in \code{{0,1,2,3}} determining axis label rotation #' @param cex.axis [\code{numeric}] Magnification with respect to the current #' setting of \code{cex} for axis annotation. #' @param cex.legend [\code{numeric}] Magnification with respect to the current #' setting of \code{cex} for legend annotation and title. #' @param wrap [\code{logical}] Toggle wrapping of x-axis labels when their width #' exceeds the width of the column. #' @param ... Graphical parameters passed to \code{\link[graphics]{barplot.default}}. #' #' @note Before plotting, underscores (\code{_}) and dots (\code{.}) in x-axis labels #' are replaced with spaces. #' #' @example ../examples/compare.R #' @family comparing #' @export setMethod("barplot", "validatorComparison", function(height , las = 1 , cex.axis = 0.8 , cex.legend = cex.axis , wrap = TRUE , ...){ oldpar <- par(mar=c(3,3,3,8), xpd=TRUE) on.exit(par(oldpar)) # turn into array a <- height[,,drop=FALSE] # Colors taken from RColorBrewer::brewer.pal(8,"Paired") cl_map <- c( "still_satisfied" = "#33A02C" # dark green , "new_satisfied" = "#B2DF8A" # light green , "still_unverifiable" = "#FF7F00" # dark yellow/orange , "new_unverifiable" = "#FDBF6F" # light yellow , "still_violated" = "#E31A1C" # dark red , "new_violated" = "#FB9A99" # light red ) a <- a[names(cl_map),,drop=FALSE] x <- barplot(a , col=cl_map , las=las , xaxt="n" , cex.axis=cex.axis , ... ) xlabs <- colnames(a) # simple wrapping heuristic if (wrap){ # replace punctuation with spaces xlabs <- trimws(gsub("[_.]"," ", colnames(a))) # determine column width colw <- if ( length(x) == 1) 1.0 else x[length(x)] - x[length(x)-1] - 0.2 i <- strwidth(xlabs) > colw ncol <- ceiling(colw/strwidth("m")) # wrap and fold xlabs[i] <- sapply(xlabs[i] , function(s) paste(strwrap(s, width=ncol),collapse="\n") ) } axis(side=1, labels=xlabs, at=x, cex.axis=cex.axis,lwd=0) # compute legend position leg_pos <- bp_leg_pos(x) legend(x = leg_pos, y = sum(a[,1]) , legend= rev(sub("_"," ", names(cl_map))) , fill=rev(cl_map),bty="n" , title="Count", cex=cex.legend) invisible(x) }) bp_leg_pos <- function(x){ n <- length(x) # the factor 1.04 is the default location of the # box after the end of the scale. leg_pos <- if (n ==1){ # 1.2 is default width for n==1 1.04 * 1.2 } else { # bar width + 0.2 (default) separation 1.04 * (x[n] + (x[n] - x[n-1]-0.2)/2) } } setClass('indicatorComparison',contains='comparison') #' @return For \code{indicator}: A list with the following components: #' \itemize{ #' \item{\code{numeric}: An array collecting results of scalar indicator (e.g. \code{mean(x)}).} #' \item{\code{nonnumeric}: An array collecting results of nonnumeric scalar indicators (e.g. names(which.max(table(x))))} #' \item{\code{array}: A list of arrays, collecting results of vector-indicators (e.g. x/mean(x))} #' } #' #' @rdname compare setMethod('compare','indicator', function(x, ...,.list=NULL){ L <- c( list(...), .list) if ( length(L) < 2 ) stop('you need at least two datasets') names(L) <- make_listnames(L) for ( i in seq_along(L) ){ if ( !matches(L[[1]],L[[i]]) ) stop('dataset ',names(L)[i],'does not match with dataset',names(L)[1]) } n <- names(x) v <- setNames( lapply(n, function(i) sapply(L, function(y) values(confront(x[i],y))[[1]] )), n) # simplify where possible is_array <- sapply(v,is.array) is_numeric <- sapply(v,is.numeric) w <- if (any(is_array) ){ lapply(v[is_array],function(x)new('indicatorComparison',x,call=sys.call(2))) } else { NULL } u <- if(any(is_numeric & !is_array)){ new('indicatorComparison',sapply(v[ is_numeric & !is_array],Id),call=sys.call(2)) } else { NULL } v <- if (any(!is_numeric &!is_array)){ new('indicatorComparison',sapply(v[!is_numeric & !is_array],Id),call=sys.call(2)) } else { NULL } out <- list(numeric=u,nonnumeric=v,array=w) out[!sapply(out,is.null)] }) matches <- function(x,y,id=NULL){ all(dim(x)==dim(y)) && all(names(x) == names(y)) && ifelse(is.null(id),TRUE, all(x[,id]==y[,id])) } ### CELLS ---- setClass('cellComparison',contains='comparison') #' Cell counts and differences for a series of datasets #' #' @section Comparing datasets cell by cell: #' #' When comparing the contents of two data sets, the total number of cells #' in the current data set can be partitioned as in the following figure. #' #' \if{html}{\figure{cellsplit.png}{options: width=80\% alt="rulewise splitting"}} #' \if{latex}{\figure{cellsplit.pdf}{options: width=13cm}} #' #' This function computes the partition for two or more #' datasets, comparing the current set to the first (default) or to the #' previous (by setting \code{compare='sequential'}). #' #' @section Details: #' This function assumes that the datasets have the same dimensions and that both #' rows and columns are ordered similarly. #' #' @references #' The figure is reproduced from MPJ van der Loo and E. De Jonge (2018) #' \emph{Statistical Data Cleaning with applications in R} (John Wiley & Sons). #' #' @param ... For \code{cells}: data frames, comma separated. Names will become #' column names in the output. For \code{plot} or \code{barplot}: graphical parameters #' (see \code{\link[graphics]{par}}). #' @param .list A \code{list} of data frames; will be concatenated with #' objects in \code{...} #' @param compare How to compare the datasets. #' #' #' @return An object of class \code{cellComparison}, which is really an array #' with a few extra attributes. It counts the total number of cells, the number of #' missings, the number of altered values and changes therein as compared to #' the reference defined in \code{how}. #' #' @family comparing #' @example ../examples/cells.R #' @export cells <- function(..., .list = NULL, compare=c("to_first","sequential")){ how <- match.arg(compare) L <- c( list(...), .list ) names(L) <- make_listnames(L) out <- if ( how == "to_first" ){ cbind( cell_diff(L[[1]]) , vapply( seq_len(length(L)-1) , function(i) cell_diff(L[[i+1]], L[[1]]) , FUN.VALUE = numeric(9)) ) } else { cbind( cell_diff( L[[1]] ) , vapply( seq_len(length(L)-1) , function(i) cell_diff(L[[i+1]], L[[i]]) , FUN.VALUE = numeric(9) ) ) } colnames(out) <- names(L) new("cellComparison" , out , call = match.call( definition=cells, sys.call(sys.parent(1L)) ) ) } cell_diff <- function(new, old=NULL){ n_cells <- prod(dim(new)) n_avail <- sum(!is.na(new)) n_miss <- sum( is.na(new)) if (is.null(old)){ c( cells = n_cells , available = n_avail , still_available = sum(!is.na(new)) , unadapted = sum(!is.na(new)) , adapted = 0 , imputed = 0 , missing = n_miss , still_missing = sum(is.na(new)) , removed = 0 ) } else { c( cells = n_cells , available = n_avail , still_available = sum(!is.na(new) & !is.na(old) ) , unadapted = sum( old == new, na.rm=TRUE ) , adapted = sum( old != new, na.rm=TRUE ) , imputed = sum( is.na(old) & !is.na(new) ) , missing = n_miss , still_missing = sum( is.na(old) & is.na(new) ) , removed = sum(!is.na(old) & is.na(new) ) ) } } #' Translate cellComparison objects to data frame #' #' Versions of a data set can be cellwise compared using #' \code{\link{cells}}. The result is a \code{cellComparison} object, #' which can usefully be translated into a data frame. #' #' @inheritParams as.data.frame #' #' @return A data frame with the following columns. #' \itemize{ #' \item{\code{status}: Row names of the \code{cellComparison} object.} #' \item{\code{version}: Column names of the \code{cellComparison} object.} #' \item{\code{count}: Contents of the \code{cellComparison} object.} #' } #' #' @example ../examples/cells.R #' @family comparing #' @export setMethod("as.data.frame","cellComparison", function(x,...){ x <- x[,] class(x) <- "table" setNames(as.data.frame(x,...),c("status","version","count")) }) #' Line graph of a cellComparison object. #' #' Versions of a data set can be compared cell by cell #' using \code{\link{cells}}. The result is a \code{cellComparison} #' object. This method creates a line-graph, thus suggesting an #' that an ordered sequence of data sets have been compared. #' See also \code{\link{barplot,cellComparison-method}} for an #' unordered version. #' #' @param x a \code{cellComparison} object. #' @inheritParams plot,validatorComparison-method #' @family comparing #' @export setMethod("plot","cellComparison" , function(x , xlab="" , ylab="" , las=2 , cex.axis=0.8 , cex.legend=0.8,...){ oldpar <- par(mar=c(3,3,3,8)) on.exit(par(oldpar)) status <- rownames(x) version <- colnames(x) dat <- as.data.frame(x) cl_map <- lw_map <- lt_map <- setNames(rep(1,9), rownames(x)) lt_map[c("adapted","imputed","removed")] <- 2 lw_map[1:9] <- 1 lw_map[c("cells","available","missing","imputed")] <- 2 # Colors taken from RColorBrewer::brewer.pal(8,"Paired") cl_map["cells"] <- "black" cl_map[c("available","still_available")] <- "#1F78B4" # dark blue cl_map[c("unadapted","adapted","imputed")] <- "#A6CEE3" # light blue cl_map["missing"] <- "#FF7F00" # dark yellow cl_map[c("removed","still_missing")] <- "#FDBF6F" # light yellow n <- length(version) plot(0,0,col='white' , xlim=c(1,length(version)) , ylim=c(0,max(x)) , las=las , xaxt='n' , xlab=xlab , ylab=ylab , cex.axis=cex.axis,...) abline(v=seq_along(version),col="grey",lt=3) for (stat in status){ d <- dat[dat$status == stat, ] lines( as.integer(d$version), d$count, type='b', col=cl_map[stat] ,lw = lw_map[stat], lty = lt_map[stat], pch = 16) } axis(side=1,labels=version,at=seq_along(version), las=1,padj=rep(c(0,1),times=n),cex.axis=cex.axis) oldpar <- c(oldpar,par(xpd=TRUE)) legend(x=1.04*n,y=max(x) , legend = gsub("_"," ",status) , lwd = lw_map[status] , lty = lt_map[status] , col = cl_map[status] , cex = cex.legend , bty = "n" , title="Count" ) invisible(NULL) }) #' Barplot of cellComparison object #' #' Versions of a data set can be compared cell by cell using \code{\link{cells}}. #' The result is a \code{cellComparison} object. This method creates a stacked bar #' plot of the results. See also \code{\link{plot,cellComparison-method}} for a #' line chart. #' #' @param height object of class \code{cellComparison} #' @param las [\code{numeric}] in \code{{0,1,2,3}} determining axis label rotation #' @param cex.axis [\code{numeric}] Magnification with respect to the current #' setting of \code{cex} for axis annotation. #' @param cex.legend [\code{numeric}] Magnification with respect to the current #' setting of \code{cex} for legend annotation and title. #' @param wrap [\code{logical}] Toggle wrapping of x-axis labels when their width #' exceeds the width of the column. #' @param ... Graphical parameters passed to \code{\link[graphics]{barplot.default}}. #' #' @note Before plotting, underscores (\code{_}) and dots (\code{.}) in x-axis #' labels are replaced with spaces. #' #' @family comparing #' @export setMethod("barplot", "cellComparison", function(height , las = 1 , cex.axis = 0.8 , cex.legend = cex.axis , wrap = TRUE , ...){ oldpar <- par(mar=c(3,3,3,8), xpd=TRUE) on.exit(par(oldpar)) # turn into array a <- height[,,drop=FALSE] a <- a[c("unadapted","adapted","imputed","still_missing","removed"),,drop=FALSE] # Colors taken from RColorBrewer::brewer.pal(8,"Paired") cl_map <- c( unadapted = "#4575B4" # dark blue , adapted = "#91BFDB" # blue , imputed = "#E0F3F8" # light blue , still_missing = "#FC8D59" # orange , removed = "#FEE090" # yellow ) x <- barplot(a , col=cl_map[rownames(a)] , las=las , xaxt="n" , cex.axis=cex.axis , ... ) # replace punctuation with spaces xlabs <- trimws(gsub("[_.]+"," ", colnames(a))) # simple wrapping heuristic if ( isTRUE(wrap) ){ barwidth <- if ( length(x) == 1) 1.0 else x[length(x)] - x[length(x)-1] - 0.2 i <- strwidth(xlabs) > barwidth ncol <- ceiling(barwidth/strwidth("m")) # wrap and fold xlabs[i] <- sapply(xlabs[i] , function(s) paste(strwrap(s, width=ncol),collapse="\n") ) } axis(side=1, labels=xlabs, at=x, cex.axis=cex.axis,lwd=0) # compute legend position leg_pos <- bp_leg_pos(x) legend(x = leg_pos, y = sum(a[,1]) , legend= rev(sub("_"," ", rownames(a))) , fill=rev(cl_map[rownames(a)]),bty="n" , title="Count", cex=0.8) invisible(x) }) # helper function: compute reasonable location of # legend in barplot. bp_leg_pos <- function(x){ n <- length(x) # the factor 1.04 is the default location of the # box after the end of the scale. leg_pos <- if (n ==1){ # 1.2 is default width for n==1 1.04 * 1.2 } else { # bar width + 0.2 (default) separation 1.04 * (x[n] + (x[n] - x[n-1]-0.2)/2) } } #' Create matching subsets of a sequence of data #' #' @param ... A sequence of \code{data.frame}s, possibly in the form of \code{<name>=<value>} pairs. #' @param .list A list of \code{data.frame}s; will be concatenated with \code{...}. #' @param id Names or indices of columns to use as index. #' #' @return A list of \code{data.frames}, subsetted and sorted so that all cells correspond. #' @export #' @family comparing match_cells <- function(...,.list=NULL,id=NULL){ L <- c(list(...), .list) # match columns nm <- Reduce(intersect,lapply(L,names)) L <- lapply(L,`[`,nm) if (!is.null(id)){ # match rows ID <- lapply(L, function(d) do.call(paste0,as.list(d[id]))) ids <- Reduce(intersect, ID) L <- lapply(seq_along(L), function(i) L[[i]][match(ids, ID[[i]],nomatch=0),]) } L }
/scratch/gouwar.j/cran-all/cranData/validate/R/compare.R
#' @include validator.R #' @include indicator.R NULL # CONFRONTATION OBJECT -------------------------------------------------------- #' Superclass storing results of confronting data with rules #' #' @section Details: #' This class is aimed at developers of this package or packages depending on #' it. It is the parent of classes \code{\link{indication}} and #' \code{\link{validation}} which are user-facing. #' #' Using \code{\link{confront}}, a set of rules can be executed in the context #' of one or more (nested) environments holding data. The results of such evaluations #' are stored in a \code{confrontation} object along with metadata. #' #' We strongly advise against accessing the data fields or methods internal to #' this object directly, as we may change or remove them without notice. Use #' the exported methods listed below in stead. #' #' @family confrontation-methods #' #' @aliases confrontation #' @keywords internal setRefClass("confrontation" ,fields = list( ._call = "call" # (user's) call that generated the object , ._value = "list" # results of confrontation , ._calls = "list" # calls executed during confrontation , ._warn = "list" # list of 'warning' objects , ._error = "list" # list of 'error' objects , ._keys = "list" # list with at least 'keyset': an object containing the identifying variables in dat. , ._event = "character" # Metadata identifying the confrontation event. ) , methods=list( show = function() .show_confrontation(.self) ) ) confrontation_nwarn <- function(x) sum(vapply(x$._warn, function(w)!is.null(w), FUN.VALUE = logical(1))) confrontation_nerrs <- function(x) sum(vapply(x$._error, function(w)!is.null(w), FUN.VALUE = logical(1))) confrontation_nmiss <- function(x) sum(vapply(x$._value, anyNA, FUN.VALUE=logical(1))) .show_confrontation <- function(.self){ cat(sprintf("Object of class '%s'\n",class(.self))) cat(sprintf("Call:\n ")); print(.self$._call); cat('\n') cat(sprintf('Rules confronted: %d\n', length(.self$._calls))) cat(sprintf(' With missings: %d\n', confrontation_nmiss(.self) )) cat(sprintf(' Threw warning: %d\n', confrontation_nwarn(.self) )) cat(sprintf(' Threw errors : %d\n', confrontation_nerrs(.self) )) } # S4 GENERICS ----------------------------------------------------------------- #' Confront data with a (set of) expressionset(s) #' #' An expressionset is a general class storing rich expressions (basically #' expressions and some meta data) which we call 'rules'. Examples of #' expressionset implementations are \code{\link{validator}} objects, storing #' validation rules and \code{\link{indicator}} objects, storing data quality #' indicators. The \code{confront} function evaluates the expressions one by one #' on a dataset while recording some process meta data. All results are stored in #' a (subclass of a) \code{confrontation} object. #' #' #' @param dat An R object carrying data #' @param x An R object carrying \code{\link{rule}}s. #' @param ref Optionally, an R object carrying reference data. See examples for usage. #' @param ... Options used at execution time (especially \code{'raise'}). #' See \code{\link{voptions}}. #' #' @section Reference data: #' #' Reference data is typically a \code{list} with a items such as #' a code list, or a data frame of which rows match the rows of the #' data under scrutiny. #' #' #' @seealso \code{\link{voptions}} #' #' @family confrontation-methods #' @family validation-methods #' @family indication-methods #' #' @example ../examples/confront.R #' @export setGeneric("confront", def = function(dat, x, ref, ...) standardGeneric("confront") ) #' Get or set event information metadata from a 'confrontation' object. #' #' The purpose of event information is to store information that allows for #' identification of the confronting event. #' #' #' @param x an object of class \code{confrontation} #' #' @return A a character vector with elements #' \code{"agent"}, which defaults to the R version and platform returned by #' \code{R.version}, a timestamp (\code{"time"}) in ISO 8601 format and a #' \code{"actor"} which is the user name returned by \code{Sys.info()}. The #' last element is called \code{"trigger"} (default \code{NA_character_}), which #' can be used to administrate the event that triggered the confrontation. #' #' @references #' Mark van der Loo and Olav ten Bosch (2017) #' \href{https://markvanderloo.eu/files/share/loo2017design.pdf}{Design of a generic machine-readable validation report structure}, #' version 1.0.0. #' #' @examples #' data(retailers) #' rules <- validator(turnover >= 0, staff >=0) #' cf <- confront(retailers, rules) #' event(cf) #' #' # adapt event information #' u <- event(cf) #' u["trigger"] <- "spontaneous validation" #' event(cf) <- u #' event(cf) #' #' @family confrontation-methods #' @family validation-methods #' @family indication-methods #' #' @export setGeneric("event", def = function(x) standardGeneric("event")) #' @rdname event setGeneric("event<-", def=function(x, value) standardGeneric("event<-")) ## syntactic sugar function #' Simple data validation interface #' #' @section Details: #' Creates an object of class \code{\link{validator}} and \code{\link{confront}}s it with the data. #' This function is easy to use in combination with the \pkg{magrittr} pipe operator. #' #' @param dat an R object carrying data #' @param ... a comma-separated set of validating expressions. #' #' @return An object of class \code{\link{validation}} #' @example ../examples/check_that.R #' @family validation-methods #' @export check_that <- function(dat,...){ cf <- confront(dat,validator(...)) cf$._call <- sys.call() cf } #' Get key set stored with a confrontation #' #' @inheritParams event #' #' @return If a confrontation is created with the \code{key=} option #' set, this function returns the key set, otherwise \code{NULL} #' #' @export setGeneric("keyset", def=function(x) standardGeneric("keyset")) #' @rdname keyset #' @family confrontation-methods #' @export setMethod("keyset", "confrontation", function(x){ x$._keys$keyset }) #' Get values from object #' #' #' @param x an R object #' @param ... Arguments to pass to or from other methods #' #' @export setGeneric('values',def=function(x,...) standardGeneric('values')) #' Get messages from a confrontation object #' @param x An object of class \code{\link{confrontation}} #' @param ... Arguments to be passed to other methods. #' #' #' @example ../examples/exceptions.R #' @family confrontation-methods #' @export setGeneric("errors",def = function(x,...) standardGeneric("errors")) # retrieve warnings from a confrontation object setGeneric("warnings") # useful ways to aggregate confrontations setGeneric('aggregate') # useful ways to sort confrontations setGeneric('sort') # S4 METHODS ------------------------------------------------------------------ ## The below function is a worker that assumes all relevant data is present in ## an environment, possibly with a parent containing reference data. Most, if not ## all R-based 'confront' methods will convert to this form and call the worker. ## ## x a validator object ## dat an environment ## key a character indicating a key. ## confront_work <- function(x, dat, key=NULL, class='confrontation', ...){ opts <- x$clone_options(...) lin_eq_eps <- opts('lin.eq.eps') lin_ineq_eps <- opts('lin.ineq.eps') calls <- x$exprs(expand_assignments=TRUE , lin_eq_eps=lin_eq_eps , lin_ineq_eps=lin_ineq_eps , dat=dat) L <- execute(calls,dat,opts) new(class, ._call = match.call(definition=confront,call=sys.call(sys.parent(2))) , ._calls = calls , ._value = lapply(L,"[[",1) , ._warn = lapply(L,"[[",2) , ._error = lapply(L,"[[",3) , ._keys = list(keyset = key) , ._event = c( agent = sprintf("%s > %s %s.%s > validate %s" , R.version[["platform"]] , R.version[["language"]], R.version[["major"]], R.version[["minor"]] , utils::packageVersion("validate") ) , time = format(Sys.time(),"%Y%m%dT%H%M%S%z") , actor = Sys.info()[["user"]] , trigger = NA_character_ ) ) } #' @rdname select #' @aliases [,confrontation-method #' @family confrontation-methods #' @export setMethod("[","confrontation",function(x,i,j,...,drop=TRUE){ # this trycatch mechanism protects against an error # occurring when confrontation objects are indexed # within lapply. See GH issue #116. call <- tryCatch(match.call(call=sys.call(sys.parent())) , error = function(e) NULL) if (is.null(call)){ call <- match.call() } new(class(x) , ._call = call , ._calls = x$._calls[i] , ._value = x$._value[i] , ._warn = x$._warn[i] , ._error = x$._error[i] , ._keys = x$._keys ) }) #' @rdname event #' @export setMethod("event", signature = "confrontation", definition = function(x){ x$._event }) #' @rdname event #' @param value \code{[character]} vector of length 4 with event identifiers. #' @export setMethod("event<-","confrontation", function(x, value){ stopifnot(is.character(value)) stopifnot(all( names(value) == c("agent","time","actor","trigger") ) ) x$._event <- value invisible(x) }) #' @rdname length #' @aliases length,confrontation-method #' @family confrontation-methods #' @export setMethod("length","confrontation",function(x) length(x$._value)) # indicators serve a different purpose than validations. #' Store results of evaluating indicators #' #' \bold{This feature is currently experimental and may change in the future} #' #' @section Details: #' An \code{indication} stores a set of results generated by evaluating #' an \code{\link{indicator}} in the context of data along with some metadata. #' #' #' @section Exported S4 methods for \code{indication}: #' \itemize{ #' \item{Methods exported for objects of class \code{\link{confrontation}}} #' \item{\code{\link{summary,indication-method}}} #' \item{\code{\link{values,indication-method}}} #' } #' #' @keywords internal #' #' @section See also: #' \itemize{ #' \item{\code{\link{confront}}} #' \item{\code{\link{validation-class}}} #' } #' @aliases indication #' @family indication-methods setRefClass("indication", contains = "confrontation") #' @rdname confront setMethod("confront", signature("data.frame","indicator"), function(dat, x, key=NULL,...){ data_env <- list2env(dat) data_env$. <- dat confront_work(x, data_env, dat[key], class = "indication",...) }) #' @rdname confront setMethod("confront",signature("data.frame","indicator","environment"), function(dat, x, ref, key=NULL, ...){ data_env <- namecheck(list2env(dat,parent=ref)) data_env$. <- dat confront_work(x,data_env, dat[key], class="indication",...) }) #' @rdname confront setMethod("confront",signature("data.frame","indicator","data.frame"),function(dat, x,ref, key=NULL,...){ env <- new.env() env$ref <- ref data_env <- namecheck(list2env(dat, parent=env)) data_env$. <- dat confront_work(x, data_env, dat[key], class="indication", ...) }) #' @rdname confront setMethod("confront",signature("data.frame","indicator","list"),function(dat, x,ref,key=NULL,...){ env <- list2env(ref) data_env <- namecheck(list2env(dat,parent=env)) data_env$. <- dat confront_work(x, data_env, dat[key], class="indication",...) }) #' @rdname validate-summary #' @param object An R object #' @param ... Currently unused #' #' @aliases validate-summary summary,indication-method #' @section Indication: #' Some basic information per evaluated indicator is reported: the number #' of items to which the indicator was applied, the output \code{class}, #' some statistics (min, max, mean , number of NA) #' and wether an exception occurred (warnings or errors). The evaluated #' expression is reported as well. #' #' @family indication-methods #' @export setMethod('summary',signature('indication'), function(object,...){ data.frame( name = names(object$._value) , items = sapply(object$._value,length) , min = get_stat(object,min,na.rm=TRUE) , mean = get_stat(object,mean,na.rm=TRUE) , max = get_stat(object,max,na.rm=TRUE) , nNA = nas(object) , error = has_error(object) , warning = has_warning(object) , expression = sapply(object$._calls,call2text) , row.names=NULL , stringsAsFactors=FALSE ) }) # helper function: x is a confrontation object get_stat <- function(x,what,...){ out <- rep(NA,length(x$._value)) i <- !is_null(x) out[i] <- tryCatch( sapply(x$._value[i],what,...) , error = function(e) NA , warning = function(e) NA ) out } #' Store results of evaluating validating expressions #' #' @section Details: #' A object of class \code{validation} stores a set of results generated by #' evaluating an \code{\link{validator}} in the context of data along with some #' metadata. #' #' #' @aliases validation #' @family validation-methods setRefClass("validation", contains = "confrontation") setMethod("show","validation",function(object){ cat(sprintf("Object of class '%s'\n",class(object))) cat(sprintf("Call:\n ")); print(object$._call); cat('\n') cat(sprintf('Rules confronted: %d\n', length(object$._calls))) cat(sprintf(' With fails : %d\n', failed_confrontations(object))) cat(sprintf(' With missings: %d\n', confrontation_nmiss(object))) cat(sprintf(' Threw warning: %d\n', confrontation_nwarn(object))) cat(sprintf(' Threw error : %d\n', confrontation_nerrs(object))) }) #' @rdname confront #' @param key (optional) name of identifying variable in x. setMethod("confront", signature("data.frame","validator"), function(dat, x, key=NULL, ...){ data_env <- list2env(dat) data_env$. <- dat confront_work(x, data_env, dat[key],'validation',...) }) namecheck <- function(x){ n1 <- ls(x) n2 <- ls(parent.env(x)) i <- n1 %in% n2 if (any(i)){ n <- paste(paste0("'",n1[i],"'"),collapse=", ") w <- sprintf("Possible reference ambiguity: both current data set and reference data have variables named %s.",n) warning(w) } x } #' @rdname confront setMethod("confront",signature("data.frame","validator","environment"), function(dat, x, ref, key=NULL, ...){ data_env <- namecheck(list2env(dat,parent=ref)) data_env$. <- dat confront_work(x, data_env, dat[key], class="validation",...) }) #' @rdname confront setMethod("confront",signature("data.frame","validator","data.frame"),function(dat, x,ref, key=NULL,...){ env <- new.env() env$ref <- ref data_env <- namecheck(list2env(dat, parent=env)) data_env$. <- dat confront_work(x, data_env, dat[key], class="validation", ...) }) #' @rdname confront setMethod("confront",signature("data.frame","validator","list"),function(dat, x,ref,key=NULL,...){ env <- list2env(ref) data_env <- namecheck(list2env(dat,parent=env)) data_env$. <- dat confront_work(x, data_env, dat[key], class="validation",...) }) # match rows; prepare for 'left join'. # of : an environment containing data.frames # against: a reference data.frame to match againsty. # using : a key (character) #match_rows <- function(of, against, using){ # key1 <- against[,using] # for ( nm in ls(of) ){ # i <- match(key1, of[[nm]][,using], nomatch = nrow(of) + 1) # of[[nm]] <- of[[nm]][i,,drop=FALSE] # } #} #add_names <- function(L,x,y,key){ # keys <- y[[key]] # nkey <- length(keys) # L <- lapply(L,function(v){ # if ( length(v[[1]]) == nkey ) # v[[1]] <- setNames(v[[1]], keys) # v # }) #} # execute calls. # - Assignments are stored in a separate environment and forgotten afterwards. # - Failed assignments yield a warning. execute <- function(calls,env,opts){ lapply(calls, function(g){ if ( g[[1]] == ":=" ){ var <- as.character(left(g)) if ( var %in% variables(env) ) warning(sprintf("Locally overwriting variable '%s'",var)) assign(var, tryCatch( eval(right(g), env), error=warning), envir=env) } else { val <- factory(eval,opts)(g, env) if ( !is.na(opts('na.value')) ){ val[[1]] <- ifelse(is.na(val[[1]]), opts('na.value'), val[[1]]) } val } } )[!is.assignment(calls)] } # x inherits from 'confrontation' has_error <- function(x) !sapply(x$._error,is.null) has_warning <- function(x) !sapply(x$._warn, is.null) has_value <- function(x) sapply(x$._value, function(a) !is.null(a)) is_null <- function(x) sapply(x$._value, is.null) passes <- function(x){ sapply(x$._value, function(a) if ( is.null(a) ) 0 else sum(a,na.rm=TRUE) ) } # return confrontation that failed failed_confrontations <- function(x){ sum(fails(x) > 0) } fails <- function(x){ sapply(x$._value, function(a) if ( is.null(a) ) 0 else sum(!a,na.rm=TRUE) ) } nas <- function(x){ sapply(x$._value, function(a) if ( is.null(a) ) 0 else sum(is.na(a)) ) } #' @rdname validate-summary #' @section Validation: #' Some basic information per evaluated validation rule is reported: the number of #' items to which the rule was applied, the output \code{class}, some statistics #' (passes, fails, number of NA) and wether an exception occurred (warnings or #' errors). The evaluated expression is reported as well. #' @family validation-methods setMethod('summary',signature('validation'),function(object,...){ data.frame( name = names(object$._value) , items = sapply(object$._value,length) , passes = passes(object) , fails = fails(object) , nNA = nas(object) , error = has_error(object) , warning = has_warning(object) , expression = sapply(object$._calls, call2text) , row.names=NULL , stringsAsFactors=FALSE ) }) #' @rdname values setMethod('values',signature('confrontation'),function(x,...){ x$._value }) #' @rdname values #' @aliases values,validation-method #' @param simplify Combine results with similar dimension structure into arrays? #' @param drop if a single vector or array results, drop 'list' attribute? #' @family confrontation-methods setMethod('values',signature('validation'),function(x,simplify=TRUE,drop=TRUE,...){ int_values(x,simplify,drop,...) }) #' @rdname values #' @aliases values,indication-method #' @family validation-methods setMethod('values',signature('indication'),function(x,simplify=TRUE,drop=TRUE,...){ int_values(x,simplify,drop,...) }) int_values <- function(x,simplify,drop,...){ out <- if ( simplify ){ simplify_list(x$._value[!is_null(x)]) } else { getMethod(values,signature='confrontation')(x,...) } if (drop && length(out) == 1) out[[1]] else out } simplify_list <- function(L){ len <- sapply(L,num_result) lapply(unique(len), function(l){ m <- sapply(L[len==l], get_result) if ( l == 1 ) m <- matrix(m,nrow=1,dimnames=list(NULL,names(m))) m }) } #' @rdname errors setMethod("errors","confrontation",function(x,...){ i <- has_error(x) x$._error[i] }) #' @rdname errors #' @export setMethod("warnings","confrontation",function(x,...){ i <- has_warning(x) x$._warn[i] }) #' Get names from \code{confrontation} object #' #' @rdname names #' @family validation-methods #' @export setMethod("names", "confrontation", function(x){ names(x$._value) }) #' Plot validation results #' #' Creates a barplot of validation result. For each validation rule, a stacked bar #' is plotted with percentages of failing, passing, and missing results. #' #' @param x a confrontation object. #' @param fill \code{[character]} vector of length 3. Colors representing fails, passes, and missings #' @param col Edge colors for the bars. #' @param rulenames \code{[character]} vector of size \code{length(x)}. If not specified, names #' are taken from \code{x}. #' @param labels \code{[character]} vector of length 4. Replace legend annotation. #' @param title \code{[character]} Change the default title. #' @param xlab \code{[character]} Change the title #' @param y not used #' @param ... not used #' #' @details #' The plot function tries to be smart about placing labels on the y axis. When #' the number of bars becomes too large, no y axis annotation will be shown and the #' bars will become space-filling. #' #' #' @export #' @family validation-methods #' @example ../examples/plot.R setMethod("plot","validation", function(x, y , fill=c("#FE2712","#66B032","#dddddd") , col=fill , rulenames = names(x) , labels=c("Fails","Passing","Missing","Total") , title = NULL , xlab = NULL , ...) { stopifnot(length(rulenames) == length(x)) if(length(errors(x))>=1){ errs <- paste(names(errors(x)), sep=", ") msgf("Rules %s not included in plot since they could not be executed. See ?errors" , errs) } m <- aggregate(x, by="rule") rulenames <- rulenames[!( names(x) %in% names(errors(x)) )] if (is.null(m)){ msgf("Noting to plot") return(NULL) } plot_validation(as.matrix(m[, c("nfail","npass","nNA"), drop=FALSE]) , fill = fill , col = col , rulenames = rulenames , labels = labels , title = title , xlab = xlab ) }) #' Aggregate validation results #' #' Aggregate results of a validation. #' #' @param x An object of class \code{\link{validation}} #' @param by Report on violations per rule (default) or per record? #' @param drop drop list attribute if the result is list of length 1 #' @param ... Arguments to be passed to or from other methods. #' #' @return By default, a \code{data.frame} with the following columns. #' \tabular{ll}{ #' keys \tab If confront was called with \code{key=}\cr #' \code{npass} \tab Number of items passed\cr #' \code{nfail} \tab Number of items failing\cr #' \code{nNA} \tab Number of items resulting in \code{NA}\cr #' \code{rel.pass} \tab Relative number of items passed\cr #' \code{rel.fail} \tab Relative number of items failing\cr #' \code{rel.NA} \tab Relative number of items resulting in \code{NA} #' } #' If \code{by='rule'} the relative numbers are computed with respect to the number #' of records for which the rule was evaluated. If \code{by='record'} the relative numbers #' are computed with respect to the number of rules the record was tested agains. #' #' When \code{by='record'} and not all validation results have the same dimension structure, #' a list of \code{data.frames} is returned. #' #' @family validation-methods #' @aliases aggregate,validation-method #' @example ../examples/aggregate.R #' @export setMethod('aggregate',signature('validation'), function(x,by=c('rule','record'), drop=TRUE,...){ v <- values(x, drop=FALSE) by <- match.arg(by) aggr <- if ( by == 'rule') colSums else rowSums ntot <- if ( by == 'rule') nrow else ncol L <- lapply(v, function(y){ s <- if(is.null(dim(y))) 0 else aggr(y,na.rm=TRUE) na <- if(is.null(dim(y))) 0 else aggr(is.na(y)) N <- if (is.null(dim(y))) 0 else ntot(y) nfail = N - s - na out <- data.frame( npass = s , nfail = nfail , nNA = na , rel.pass = s/N , rel.fail = nfail/N , rel.NA = na/N ) keys <- x$._keys$keyset if (by=="record" && nrow(out)==nrow(keys)) cbind(keys,out) else out }) if ( length(L) == 1 && drop ) L <- L[[1]] if ( by == 'rule' && !is.data.frame(L) ){ L <- do.call(rbind,L) # values are not errors, and such rules are not included by 'values' # we also put rules in the same order as in the 'validator' object. ii <- match(names(x)[!names(x) %in% names(errors(x))], rownames(L)) L <- L[ii,, drop=FALSE] } L }) #' Aggregate and sort the results of a validation. #' #' @param x An object of class \code{\link{validation}} #' @param by Report on violations per rule (default) or per record? #' @param drop drop list attribute if the result has a single argument. #' @param decreasing Sort by decreasing number of passes? #' @param ... Arguments to be passed to or from other methods. #' @return A \code{data.frame} with the following columns. #' \tabular{ll}{ #' keys \tab If confront was called with \code{key=}\cr #' \code{npass} \tab Number of items passed\cr #' \code{nfail} \tab Number of items failing\cr #' \code{nNA} \tab Number of items resulting in \code{NA}\cr #' \code{rel.pass} \tab Relative number of items passed\cr #' \code{rel.fail} \tab Relative number of items failing\cr #' \code{rel.NA} \tab Relative number of items resulting in \code{NA} #' } #' If \code{by='rule'} the relative numbers are computed with respect to the number #' of records for which the rule was evaluated. If \code{by='record'} the relative numbers #' are computed with respect to the number of rules the record was tested agains. By default #' the most failed validations and records with the most fails are on the top. #' #' When \code{by='record'} and not all validation results have the same dimension structure, #' a list of \code{data.frames} is returned. #' #' @family validation-methods #' @aliases sort,validation-method #' @example ../examples/aggregate.R #' @export setMethod('sort',signature('validation'),function(x, decreasing=FALSE, by=c('rule','record'), drop=TRUE,...){ v <- values(x, drop=FALSE) by <- match.arg(by) aggr <- if ( by == 'rule') colSums else rowSums ntot <- if ( by == 'rule') nrow else ncol L <- lapply(v, function(y){ s <- aggr(y,na.rm=TRUE) i <- order(s,decreasing=decreasing) s <- s[i] na <- aggr(is.na(y))[i] N <- ntot(y) nfail = N - s - na out <- data.frame( npass = s , nfail = nfail , nNA = na , rel.pass = s/N , rel.fail = nfail/N , rel.NA = na/N ) if (by=="record"){ keys <- x$._keys$keyset if (nrow(out)==nrow(keys)) cbind(keys[i,,drop=FALSE],out) else out } else { out } }) if ( length(L) == 1 && drop ) L <- L[[1]] if ( by== 'rule' && !is.data.frame(L) ) L <- do.call(rbind,L) L }) #' Coerce a confrontation object to data frame #' #' Results of confronting data with validation rules or indicators #' are created by a \code{\link{confront}}ation. The result is an #' object (inheriting from) \code{confrontation}. #' #' @inheritParams as.data.frame #' #' @return A \code{data.frame} with columns #' \itemize{ #' \item{\code{key} Where relevant, and only if \code{key} was specified #' in the call to \code{\link{confront}}} #' \item{\code{name} Name of the rule} #' \item{\code{value} Value after evaluation} #' \item{\code{expression} evaluated expression} #' } #' #' @example ../examples/as.data.frame.R #' #' @export #' @family confrontation-methods setMethod("as.data.frame","confrontation", function(x,...){ ierr <- has_error(x) if (any(ierr)){ warnf("Found %d rules that threw an error. These are omitted from data frame.", sum(ierr)) x <- x[!ierr] } v <- values(x, simplify=FALSE, drop=FALSE) expr <- sapply(x$._calls, call2text) nam <- names(x$._calls) key_proto <- lapply(x$._keys$keyset, function(x) x[0]) nrec <- nrow(x$._keys$keyset) L <- lapply(seq_along(v), function(i){ df <- data.frame(name=nam[i] , value=v[[i]] , expression=expr[i] , row.names=NULL , stringsAsFactors=FALSE) if ( nrow(df) == nrow(x$._keys$keyset) ){ cbind(x$._keys$keyset, df) } else if ( length(key_proto) > 0){ nana <- lapply(key_proto, function(d){ as(rep(NA, length(v[[i]])) , if (inherits(d, "factor")) "character" else class(d)) }) cbind(nana, df) } else { df } }) out <- do.call(rbind, L) if ( is.null(out) ){ out <- data.frame( name=character(0) , value=logical(0) , expression=character(0)) } out }) #getkey <- function(x){ # k <- names(x) # if (is.null(k)) NA_character_ else k #} #' Test if all validations resulted in TRUE #' #' @param x \code{validation} object (see \code{confront}). #' @param ... ignored #' @param na.rm [\code{logical}] If \code{TRUE}, \code{NA} values #' are removed before the result is computed. #' @family validation-methods #' @export #' #' @examples #' val <- check_that(women, height>60, weight>0) #' all(val) setMethod("all","validation",function(x,...,na.rm=FALSE){ res <- values(x, simplify=FALSE, drop=FALSE) if (length(res) == 0) return(TRUE) all(sapply(res, all, na.rm=na.rm), na.rm=na.rm) }) #' Test if any validation resulted in TRUE #' #' @param x \code{validation} object (see \code{confront}). #' @param ... ignored #' @param na.rm [\code{logical}] If \code{TRUE}, \code{NA} values #' are removed before the result is computed. #' #' @family validation-methods #' @export #' #' @examples #' val <- check_that(women, height>60, weight>0) #' any(val) setMethod("any","validation",function(x,...,na.rm=FALSE){ res <- values(x, simplify=FALSE, drop=FALSE) if (length(res) == 0) return(FALSE) any(sapply(res, any, na.rm=na.rm), na.rm=na.rm) })
/scratch/gouwar.j/cran-all/cranData/validate/R/confrontation.R
#' @include parse.R #' @include sugar.R #' @include rule.R NULL #### EXPRESSIONSET OBJECT ----------------------------------------------------- #' Superclass for storing a set of rich expressions. #' #' @section Details: #' This class is aimed at developers of this package or packages depending on #' it, not at users. It is the parent object of both the \code{\link{validator}} #' and the \code{\link{indicator}} class. #' #' #' An \code{expressionset} is a reference class storing a list of #' \code{\link{rule}}s. It contains a number of methods that are not exported #' and may change or dissapear without notice. We strongly encourage developers #' to use the exported S4 generics to set or extract variables #' #' @section Exported S4 methods for \code{expressionset}: #' \itemize{ #' \item{\code{\link{variables}}} #' \item{\code{\link{names}}} #' \item{\code{\link{length,expressionset-method}}} #' \item{\code{\link{created}}} #' \item{\code{\link{origin}}} #' \item{\code{\link{labels}}} #' \item{\code{\link{description}}} #' \item{\code{\link{[,expressionset-method}}} #' \item{\code{\link{[[,expressionset-method}}} #' \item{\code{\link{summary,expressionset-method}}} #' } #' #' #' @section Private S4 methods for \code{expressionset}: #' \itemize{ #' \item{validating} #' \item{linear} #' \item{is_tran_assign} #' } #' #' #' @section See also: #' \itemize{ #' \item{\code{\link{rule}}} #' \item{\code{\link{validator}}} #' \item{\code{\link{indicator}}} #' } #' #' #' @keywords internal expressionset <- setRefClass("expressionset" , fields = list( rules = "list" , ._options = "function" ) , methods= list( show = function() .show_expressionset(.self) , exprs = function(...) .get_exprs(.self,...) , blocks = function() .blocks_expressionset(.self) , options = function(...) .self$._options(...) , clone_options = function(...) settings::clone_and_merge(.self$._options,...) ) ) #' Service for filling an expressionset from commandline #' #' @section Details: #' This function is aimed at developers importing the package and #' not at direct users of \pkg{validate}. #' #' @param obj An expressionset object (or an object inheriting from expressionset). #' @param ... Comma-separated list of expressions #' @param .prefix Prefix to use in default names. #' #' @export #' @rdname validate_extend #' @keywords internal .ini_expressionset_cli <- function(obj, ..., .prefix="R"){ L <- as.list(substitute(list(...))[-1]) nm <- extract_names(L, prefix = .prefix) cr <- Sys.time() R <- vector(length(L), mode="list") # note: we cannot set the description or the label when constructing # from the commandline. for ( i in seq_along(L) ){ R[[i]] <- rule( expr = L[[i]] , name = nm[i] , origin="command-line" , created = cr ) } obj$rules <- R } #' @param obj An expressionset object (or an object inheriting from expressionset). #' @param dat a data.frame #' #' @export #' @rdname validate_extend #' @keywords internal .ini_expressionset_df <- function(obj, dat, .prefix="R"){ n <- nrow(dat) R <- vector(n, mode="list") cr = Sys.time() if ( is.null(dat[["name"]]) ){ npos <- npos(nrow(dat)) fmt <- paste0("%s%",npos,"d") dat$name <- sprintf(fmt, .prefix, seq_len(nrow(dat))) } if (is.null(dat[["description"]])){ dat$description <- "" } if (is.null(dat[["label"]])){ dat$label <- "" } if (is.null(dat[["origin"]])){ dat$origin <- "" } if (is.null(dat[["rule"]])){ stop("No column called 'rule' found") } L <- setNames(vector(mode="list", length=nrow(dat)), dat$name) dat$name <- extract_names(L) dat$label <- as.character(dat$label) dat$rule <- as.character(dat$rule) dat$description <- as.character(dat$description) for ( i in seq_len(n)){ R[[i]] <- rule( expr = parse(text=dat$rule[i])[[1]] , name = dat$name[i] , origin = dat$origin[i] , label = dat$label[i] , description = dat$description[i] , created = cr ) } names(R) <- names(R) obj$rules <- R # make names unique (in the identical way as the other creation methods) names(obj) <- names(obj) } #' @param obj An expressionset object (or an object inheriting from expressionset). #' @param file a filename #' @param .prefix Prefix to use in default names. #' #' @export #' @rdname validate_extend #' @keywords internal .ini_expressionset_yml <- function(obj, file, .prefix="R"){ S <- get_filestack_yml(file) R <- list() for ( fl in S ) R <- c(R, rules_from_yrf_file(fl,prefix=.prefix)) obj$rules <- R # make names unique (in the identical way as the other creation methods) names(obj) <- names(obj) obj$._options <- .PKGOPT # options only from the 'including' file (not from included) local_opt <- options_from_yml(file) if ( length(local_opt) > 0 ) do.call(obj$options, local_opt) } rules_from_block <- function(block, origin){ # helper functions. rules_from_freeform <- function(string, origin){ S <- tryCatch(parse(text=string), error = function(e){ stop(sprintf("parsing freeform block. Parser returned:\n %s", e$msg)) }) lapply(S,function(s) rule(expr=s, origin=origin, created=now)) } rules_from_yrf <- function(block, origin){ rules <- Filter(function(x) !is.null(x$expr), block$rules) if (length(rules)<length(block$rules)){ warnf("skipped %d rules with empty expressions" , length(block$rules)-length(rules)) } lapply(rules, function(x){ rule( expr = parse(text=x$expr)[[1]] , name = as.character(x$name) , label = as.character(x$label) , description = as.character(x$description) , origin = origin , created = now , meta = as.list(x$meta) ) }) } now <- Sys.time() type <- yrf_block_type(block) if ( identical(type,"free") ){ rules_from_freeform(block, origin=origin) } else if (identical(type, "yrf")){ rules_from_yrf(block, origin=origin) } } rules_from_yrf_file <- function(file,prefix="V"){ lines <- .readlines_utf8(file) blocks <- yaml_blocks(lines) rules <- unlist(lapply(blocks, rules_from_block, origin=file)) # set generic name if needed. npos <- max(1,ceiling(log10(length(rules)+1))) fmt <- paste0("%s%0",npos,"d") generic <- sprintf(fmt,prefix,seq_along(rules)) for ( i in seq_along(rules) ){ if ( identical(rules[[i]]@name,character(0)) ) { rules[[i]]@name <- generic[i] } } rules } options_from_yml <- function(file){ lines <- .readlines_utf8(file) .parse_yrf_options(lines) } # Get sequence of files to be processed from include statements. # the filestack is returned reversely depth-first, e.g. # # ROOT # - CHILD1 # - CHILD2 # - CHILD3 # is returnd in the order CHILD1 CHILD3 CHILD2 CHILD1 ROOT # get_filestack_yml <- function(file){ f <- function(fl, det=character(0)){ det <- c(fl,det) if ( fl %in% det[-1]) stop(sprintf("Cyclic dependency detected in %s\n%s\n",fl,paste(rev(det),collapse="\n -> "))) L <- parse_yrf_include(fl) for ( x in L ) f(x,det) filestack <<- c(filestack,fl) } filestack <- character(0) f(file) filestack } #' @param obj an expressionset object #' @rdname validate_extend #' @export #' @keywords internal .show_expressionset <- function(obj){ nr <- length(obj) cat(sprintf( "Object of class '%s' with %s elements:\n",class(obj)[1], nr )) if (nr == 0) return(invisible(NULL)) nam <- names(obj) lab <- label(obj) lab <- paste0(nam,ifelse(nchar(lab)>0,paste0(" [",lab,"]"),lab)) n <- max(nchar(lab)) lab <- paste0(" ",format(lab,width=n),": " , sapply(obj$exprs( expand_groups=FALSE , replace_in = FALSE , lin_eq_eps=0 , lin_ineq_eps=0), call2text) ) cat(noquote(paste(lab,collapse="\n"))) cat("\n") optstr <- "Rules are evaluated using locally defined options\n" cat(optstr[!identical(obj$._options,.PKGOPT)]) } # from call to oneliner text call2text <- function(x){ gsub("[[:blank:]]+"," ",paste(deparse(x),collapse=" ")) } npos <- function(n) max(1,ceiling(log10(n+1))) # get names from a list, replacing empty names values with numbers extract_names <- function(L,prefix="V"){ npos <- npos(length(L)) fmt <- paste0("%s%0",npos,"d") generic <- sprintf(fmt,prefix,seq_along(L)) given <- names(L) if (is.null(given)) return(generic) igen <- given %in% c("", NA) given[igen] <- generic[igen] make.names(given, unique=T) } #' @rdname validate_extend #' @param expand_assignments Substitute assignments? #' @param expand_groups Expand groups? #' @param vectorize Vectorize if-statements? #' @param replace_dollar Replace dollar with bracket index? #' @param dat Optionally, a \code{data.frame} containing the data to which the #' expressions will be applied. When provided, the only equalities \code{A==B} #' that will be translated to \code{abs(A-B)<lin.eq.eps} are those where all #' occurring variables are numeric in \code{dat}. #' @export #' @keywords internal .get_exprs <- function(x, ... , expand_assignments=FALSE , expand_groups=TRUE , vectorize=TRUE , replace_dollar=TRUE , replace_in = TRUE , lin_eq_eps = x$options('lin.eq.eps') , lin_ineq_eps = x$options('lin.ineq.eps') , dat=NULL ){ exprs <- setNames(lapply(x$rules, expr ),names(x)) exprs <- set_ref(exprs) if ( expand_assignments ) exprs <- expand_assignments(exprs) if ( expand_groups ) exprs <- expand_groups(exprs) ref <- get_ref(exprs) if ( vectorize ) exprs <- lapply(exprs, vectorize) if ( replace_dollar ) exprs <- lapply(exprs, replace_dollar) if ( replace_in ) exprs <- lapply(exprs, replace_in) exprs <- lapply(exprs, dat=dat, replace_lin, eps_eq = lin_eq_eps, eps_ineq = lin_ineq_eps) # if (lin_eq_eps > 0) exprs <- lapply(exprs, replace_linear_restriction, eps=lin_eq_eps, dat=dat, op="==") # if (lin_ineq_eps > 0) exprs <- lapply(exprs, replace_linear_restriction, eps=lin_ineq_eps, dat=dat, op="<=") # if (lin_ineq_eps > 0) exprs <- lapply(exprs, replace_linear_restriction, eps=lin_ineq_eps, dat=dat, op=">=") # set_ref(exprs, ref) } # get or set reference attribute to list of expressions. set_ref <- function(exprs, ref=seq_along(exprs)){ for (i in seq_along(exprs)) attr(exprs[[i]],"reference") <- ref[i] exprs } get_ref <- function(exprs){ if (length(exprs)==0) return(numeric()) else sapply(exprs, function(d) attr(d,"reference")) } #' @rdname validate_extend #' @param x An expressionset object #' @export #' @keywords internal .blocks_expressionset <- function(x){ # variable x rule matrix V <- variables(x,as="matrix") # all connections M <- V %*% t(V) > 0 # Algorithm: merge overlapping sets. # B := {} # A := {a1, a2,...,an} # while ( A != {} ) # a := some a in A # for b in B # if ( a intersects b ) # b := a + b # A := A - a # break # if ( a still in A) # B := B + a # A := A - a B <- list() A <- lapply(seq_len(nrow(M)),function(i) which(M[i,])) while( length(A) > 0 ){ nL <- length(A) a <- A[[1]] for ( i in seq_along(B) ){ b <- B[[i]] if ( any(a %in% b) ){ B[[i]] = unique(c(a,b)) A <- A[-1] break } } if (nL == length(A)){ # a still in L B[[length(B)+1]] <- a A <- A[-1] } } B } # S4 GENERICS ----------------------------------------------------------------- #' Create a summary #' @rdname validate-summary #' @example ../examples/summary.R setGeneric('summary') #' Export to yaml file #' #' Translate an object to yaml format and write to file. #' #' Both \code{\link{validator}} and \code{\link{indicator}} objects can be #' exported. #' #' @param x An R object #' @param file A file location or connection (passed to \code{base::\link[base]{write}}). #' @param ... Options passed to \code{yaml::\link[yaml]{as.yaml}} #' #' #' @example ../examples/export_yaml.R #' #' @export setGeneric("export_yaml",function(x,file,...) standardGeneric("export_yaml")) #' @rdname export_yaml #' @export setGeneric("as_yaml", function(x,...) standardGeneric("as_yaml")) # S4 IMPLEMENTATIONS ---------------------------------------------------------- #' @describeIn variables Variables occuring in \code{x} either as a single list, or per rule. #' @param as how to return variables: #' \itemize{ #' \item{\code{'vector'}} Return the uniqe vector of variables occurring in \code{x}. #' \item{\code{'matrix'}} Return a boolean matrix, each row representing a rule, each column representing a variable. #' \item{\code{'list'}} Return a named \code{list}, each entry containing a character vector with variable names. #' } #' @param dummy Also retrieve transient variables set with the \code{:=} operator. #' #' @family expressionset-methods #' @example ../examples/variables.R setMethod("variables", "expressionset", function(x, as=c('vector','matrix','list'), dummy=FALSE, ...){ as <- match.arg(as) vars <- lapply(x$exprs(replace_dollar=FALSE, expand_assignments=!dummy),var_from_call) u <- unique(unlist(vars)) switch(as , 'vector' = u , 'list' = vars , 'matrix' = { a <- array(FALSE,dim=c(length(vars),length(u)),dimnames=list(rule=names(vars),variable=u) ) for (i in seq_along(vars)) a[i,vars[[i]]] <- TRUE a }) }) #' @rdname voptions #' @family expressionset-methods setMethod('voptions','expressionset',function(x=NULL,...){ if (settings::is_setting(...)){ x$._options <- clone_and_merge(x$._options,...) } else { x$._options(...) } }) #' @rdname voptions #' @family expressionset-methods setMethod('reset','expressionset',function(x=NULL){ settings::reset(x$._options) }) #' @rdname origin #' @family expressionset-methods setMethod("origin", "expressionset", function(x,...) sapply(x$rules,origin)) #' @rdname label #' @family expressionset-methods setMethod("label","expressionset",function(x,...) unlist(sapply(x$rules, label))) #' @rdname description #' @family expressionset-methods setMethod("description", "expressionset", function(x,...) unlist(sapply(x$rules, description))) #' @rdname meta #' @param simplify Gather all metadata into a dataframe? #' @family expressionset-methods setMethod("meta","expressionset", function(x, simplify=TRUE,...){ L <- lapply(x$rules, function(r){ list(name=r@name , label = label(r) , description=description(r) , origin = origin(r) , created = created(r) , meta = meta(r) ) }) if (!simplify){ L } else { K <- lapply(L, function(m){ c(m[1:5], m[[6]]) }) cols <- Reduce(union, lapply(K,names)) U <- matrix(NA,nrow=length(K),ncol=length(cols),dimnames=list(NULL,cols)) U <- as.data.frame(U) for (i in seq_along(K)){ k <- K[[i]] U[i,names(k)] <- k } U$created <- .POSIXct(U$created) U } }) #' @rdname created #' @family expressionset-methods setMethod("created", "expressionset", function(x,...){ # obj. of class POSIXct; sapply strips the POSIXct class attribute cr <- rep(Sys.time(),length(x)) for ( i in seq_along(x)){ cr[i] <- created(x$rules[[i]]) } cr }) #' Extract or set names #' #' @param x An R object #' #' @return A \code{character} vector #' @rdname names #' @family expressionset-methods #' @export #' @example ../examples/properties.R setMethod("names","expressionset",function(x){ sapply(x$rules, function(rule) rule@name) }) # recycle x over y recycle <- function(x,y){ m <- length(x) n <- length(y) remainder <- n %% m times <- n %/% m if (remainder > 0){ warning(gettext("longer object length is not a multiple of shorter object length")) times <- times + 1 } rep(x,times=times)[seq_len(n)] } #' @rdname meta setReplaceMethod("meta",c("expressionset","character"),function(x,name,value){ values <- rep(value, times = (length(x) %/% length(value)+1))[seq_along(x)] for ( i in seq_along(x$rules)){ rule <- x[[i]] meta(rule, name) <- values[i] x$rules[[i]] <- rule } x }) #' #' #' When setting names, \code{value}s are recycled and made unique with #' \code{\link{make.names}} #' #' @rdname names #' @param value Value to set #' @example ../examples/properties.R #' @export setReplaceMethod("names",c("expressionset","character"),function(x,value){ value <- make.names(recycle(value,x),unique=TRUE) for ( i in seq_len(length(x))){ names(x$rules[[i]]) <- value[i] } x }) #' @rdname origin setReplaceMethod("origin",c("expressionset","character"), function(x,value){ value <- recycle(value, x) for ( i in seq_len(length(x))){ origin(x$rules[[i]]) <- value[i] } x }) #' @rdname label #' @export setReplaceMethod("label",c("expressionset","character"),function(x,value){ value <- recycle(value,x) for ( i in seq_len(length(x))){ label(x$rules[[i]]) <- value[i] } x }) #' @rdname description #' @export setReplaceMethod("description",c("expressionset","character"),function(x,value){ value <- recycle(value,x) for ( i in seq_len(length(x))){ description(x$rules[[i]]) <- value[i] } x }) #' @rdname created #' @export setReplaceMethod("created",c("expressionset","POSIXct"),function(x,value){ value <- recycle(value, x) for ( i in seq_len(length(x))){ created(x$rules[[i]]) <- value[i] } x }) setMethod("validating", "expressionset", function(x,...){ if (length(x) == 0) return(logical(0)) sapply(x$rules, validating) }) setMethod("linear","expressionset", function(x,...){ if(length(x)==0) return(logical(0)) sapply(x$rules, linear) }) #' @section Validator and indicator objects: #' For these objects, the ruleset is split into subsets (blocks) that are disjunct in the #' sense that they do not share any variables. For each block the number of variables, #' the number of rules and the number of rules that are linear are reported. #' #' @return A \code{data.frame} with the information mentioned below is returned. #' #' @rdname validate-summary #' @seealso \code{\link{plot,validator-method}} #' @family expressionset-methods setMethod('summary',signature('expressionset'),function(object,...){ b <- object$blocks() data.frame( block = seq_along(b) , nvar = sapply(b,function(i) length(variables(object[i]))) , rules = sapply(b,length) , linear = sapply(b,function(i) sum(object[i]$is_linear())) , row.names=NULL ) }) #' Determine the number of elements in an object. #' #' @param x An R object #' @rdname length #' @aliases length,expressionset-method #' @export setMethod("length","expressionset",function(x) length(x$rules)) #' Select a subset #' #' @section Details: #' The \code{options} attribute will be cloned #' #' @param x An R object #' @param i an index (numeric, boolean, character) #' @param j not implemented #' @param drop not implemented #' @param ... Arguments to be passed to other methods #' #' @return An new object, of the same class as \code{x} subsetted according to \code{i}. #' @rdname select #' @aliases [,expressionset-method #' #' @export #' @keywords internal setMethod("[",signature("expressionset"), function(x,i,j,...,drop=TRUE){ if (missing(i)){ i <- seq_len(length(x)) } else if (is.character(i)){ i <- match(i,names(x)) } out <- new(class(x)) out$rules <- x$rules[i] out$._options = clone_and_merge(x$._options) out }) #' Replace a rule in a ruleseta #' #' @param x an R object #' @param i index of length 1 #' @param value object of class \code{\link{rule}} #' @export #' @keywords internal setMethod("[[<-",signature("expressionset"),function(x,i,value){ stopifnot(inherits(value,"rule")) stopifnot(length(i)==1) x$rules[[i]] <- value x }) #' Replace a subset of an expressionset with another expressionset #' #' @param x an R object inheriting from \code{expressionset} #' @param i a \code{logical}, \code{character}, or \code{numeric} index #' @param value an R object of the same class as \code{x} #' @export #' @keywords internal setMethod("[<-",signature("expressionset"),function(x,i,value){ stopifnot(inherits(value,class(x))) if (is.character(i)){ i <- match(i,names(x),nomatch=0) } x$rules[i] <- value$rules x }) #' @param exact Not implemented #' @rdname select #' @aliases [[,expressionset-method #' @keywords internal setMethod("[[",signature("expressionset"), function(x,i,j,...,exact=TRUE){ if ( is.character(i) ){ i <- which(i %in% names(x)) # workaround so default 'str' doesnt crash (see comments in issue #82) if (length(i)==0) return(NULL) } x$rules[[i]] }) setMethod("is_tran_assign","expressionset",function(x,...){ if (length(x)==0) return(logical(0)) sapply(x$rules,is_tran_assign) }) #' @rdname export_yaml setMethod("export_yaml","expressionset", function(x, file,...){ write(x = as_yaml(x,...), file=file) }) #' @rdname export_yaml setMethod("as_yaml","expressionset",function(x,...){ option_string <- "" if (!identical(x$._options,.PKGOPT)){ # export options when set. option_string <- paste0("---\n",yaml::as.yaml(list(options=x$options()),...),"---\n") } rule_string <- yaml::as.yaml(rapply(expressionset_to_list(x), f=function(y) paste0("",y),how="replace"),...) paste0(option_string,rule_string) }) expressionset_to_list <- function(x, expr_as_text=TRUE, ...){ list( rules = lapply(x$rules, rule_to_list, expr_as_text = expr_as_text, ...) ) } #' Coerce to \code{data.frame} #' #' @param x Object to coerce #' @param ... arguments passed to other methods #' @param optional ignored #' @param row.names ignored #' #' @export #' @family expressionset-methods #' @keywords internal setGeneric("as.data.frame") #' Translate an expressionset to data.frame #' #' Expressions are deparsed and combined in a \code{data.frame} with (some #' of) their metadata. Observe that some information may be lost (e.g. options #' local to the object). #' #' #' @inheritParams as.data.frame #' @param expand_assignments Toggle substitution of `:=` assignments. #' #' #' @return A \code{data.frame} with elements \code{rule}, \code{name}, #' \code{label}, \code{origin}, \code{description}, and \code{created}. #' @export #' @family expressionset-methods setMethod("as.data.frame","expressionset", function(x, expand_assignments=TRUE, ...){ rules <- x$exprs(expand_assignments=expand_assignments,...) i_ref <- if (expand_assignments) sapply(rules, function(d) attr(d,"reference")) else seq_along(rules) rules <- sapply(rules, call2text) dat <- cbind(meta(x,simplify=TRUE)[i_ref,,drop=FALSE],rule=rules) # expanding assignments may add numbering to expressions dat$name <- names(rules) dat })
/scratch/gouwar.j/cran-all/cranData/validate/R/expressionset.R
# factory function. Evaluate expressions, catch errors and warnings silently (per option). factory <- function(fun,opts){ switch(opts('raise') , 'none' = function(...) { # both errors and warnings are caught warn <- err <- NULL res <- withCallingHandlers( tryCatch(outcheck(fun)(...), error=function(e) { err <<- conditionMessage(e) NULL }), warning=function(w) { warn <<- append(warn, conditionMessage(w)) invokeRestart("muffleWarning") }) list(res, warn=warn, err=err) } , 'errors' = function(...) { # warnings are caught; errors are raised. warn <- err <- NULL res <- withCallingHandlers( outcheck(fun)(...) , warning=function(w) { warn <<- append(warn, conditionMessage(w)) #invokeRestart("muffleWarning") }) list(res, warn=warn, err=err) } , 'all' = function(...){ warn <- err <- NULL res <- outcheck(fun)(...) # errors and warnings are raised. list(res,warn=warn,err=err) } ) } outcheck <- function(fun){ function(...){ out <- fun(...) if (!(is.numeric(out) | is.logical(out))){ warning("Expression did not evaluate to numeric or logical, returning NULL" , call.=FALSE) return(NULL) } else { return(out) } } } Id <- function(x) x num_result <- function(x) if (is.list(x)) length(x$result) else length(x) get_result <- function(x) if (is.list(x)) x$result else x
/scratch/gouwar.j/cran-all/cranData/validate/R/factory.R
#' Check whether a variable represents a linear sequence #' #' A variable \eqn{X = (x_1, x_2,\ldots, x_n)} (\eqn{n\geq 0}) represents a #' \emph{linear sequence} when \eqn{x_{j+1} - x_j} is constant for all #' \eqn{j\geq 1}. That is, elements in the series are equidistant and without #' gaps. #' #' @details #' #' Presence of a missing value (\code{NA}) in \code{x} will result in \code{NA}, #' except when \code{length(x) <= 2} and \code{start} and \code{end} are #' \code{NULL}. Any sequence of length \eqn{\leq 2} is a linear sequence. #' #' #' #' @param x An R vector. #' @param sort \code{[logical]}. When set to \code{TRUE}, \code{x} #' is sorted within each group before testing. #' @param begin Optionally, a value that should equal \code{min(x)} #' @param end Optionally, a value that should equal \code{max(x)} #' @param by bare (unquoted) variable name or a list of unquoted variable names, #' used to split \code{x} into groups. The check is executed for each group. #' @param ... Arguments passed to other methods. #' #' @return For \code{is_linear_sequence}: a single \code{TRUE} or \code{FALSE}, #' equal to \code{all(in_linear_sequence)}. #' #' @examples #' #' is_linear_sequence(1:5) # TRUE #' is_linear_sequence(c(1,3,5,4,2)) # FALSE #' is_linear_sequence(c(1,3,5,4,2), sort=TRUE) # TRUE #' is_linear_sequence(NA_integer_) # TRUE #' is_linear_sequence(NA_integer_, begin=4) # FALSE #' is_linear_sequence(c(1, NA, 3)) # FALSE #' #' #' d <- data.frame( #' number = c(pi, exp(1), 7) #' , date = as.Date(c("2015-12-17","2015-12-19","2015-12-21")) #' , time = as.POSIXct(c("2015-12-17","2015-12-19","2015-12-20")) #' ) #' #' rules <- validator( #' is_linear_sequence(number) # fails #' , is_linear_sequence(date) # passes #' , is_linear_sequence(time) # fails #' ) #' summary(confront(d,rules)) #' #' ## check groupwise data #' dat <- data.frame( #' time = c(2012, 2013, 2012, 2013, 2015) #' , type = c("hi", "hi", "ha", "ha", "ha") #' ) #' rule <- validator(in_linear_sequence(time, by=type)) #' values(confront(dat, rule)) ## 2xT, 3xF #' #' #' rule <- validator(in_linear_sequence(time, type)) #' values( confront(dat, rule) ) #' #' @family cross-record-helpers #' #' @export is_linear_sequence <- function(x, by=NULL,...) UseMethod("is_linear_sequence") # workhorse function is_lin_num_seq <- function(x, begin=NULL, end=NULL, sort=TRUE, tol=1e-8,...){ # Edge cases: empty sequence, or length 1 sequence with missing value. In # those cases, return FALSE when any of begin or end is checked, otherwise # return TRUE if ( length(x) <= 2 && all(is.na(x)) ) return(is.null(begin) && is.null(end)) if (anyNA(x)) return(NA) # the regular case !anyNA(x) && (is.null(begin) || abs(begin - min(x)) <= tol) && (is.null(end) || abs(end - max(x)) <= tol) && ( length(x) <= 1 || { if(sort) x <- sort(x) d <- diff(x) all(abs(d - d[1]) <= tol) }) } as_int <- function(x){ if( is.null(x)) NULL else as.integer(x) } as_num <- function(x){ if (is.null(x)) NULL else as.numeric(x) } all_lin_num_seq <- function(x, by=NULL, begin=NULL, end=NULL, sort=TRUE, tol=1e-8){ if (length(by) == 0){ is_lin_num_seq(x, begin=begin, end=end, sort=sort, tol=tol) } else { all(tapply(x, INDEX=by, FUN=is_lin_num_seq, begin=begin, end=end, sort=sort, tol=tol)) } } #' @rdname is_linear_sequence #' @param tol numerical tolerance for gaps. #' @export is_linear_sequence.numeric <- function(x, by=NULL, begin=NULL, end=NULL, sort=TRUE, tol = 1e-8,...){ all_lin_num_seq(x, by=by, begin=begin, end=end, sort=sort, tol=1e-8) } #' @rdname is_linear_sequence #' @export is_linear_sequence.Date <- function(x, by=NULL, begin=NULL, end=NULL, sort=TRUE,...){ all_lin_num_seq(as.integer(x), by=by, begin=as_int(begin), end=as_int(end), sort=sort, tol=0) } #' @rdname is_linear_sequence #' @export is_linear_sequence.POSIXct <- function(x, by=NULL , begin=NULL, end=NULL, sort = TRUE, tol=1e-6,...){ # Note. POSIXct can express fractions of a second. Conversion from and to POSIXlt # is better than microseconds, so that is what we use as default tolerance/ all_lin_num_seq(as.numeric(x), by=by, begin=as_num(begin), end=as_num(end), sort=sort, tol=tol) } #' @rdname is_linear_sequence #' #' @param format \code{[character]}. How to interpret \code{x} as a time period. #' Either \code{"auto"} for automatic detection or a specification passed to #' \code{\link{strptime}}. Automatically detected periods are of the form year: #' \code{"2020"}, yearMmonth: \code{"2020M01"}, yearQquarter: \code{"2020Q3"}, #' or year-Qquarter: \code{"2020-Q3"}. #' #' @export is_linear_sequence.character <- function(x, by=NULL, begin=NULL, end=NULL, sort=TRUE, format="auto",...){ if ( format == "auto" ){ y <- period_to_int(x, by=by) begin <- period_to_int(begin) end <- period_to_int(end) is_linear_sequence.numeric(y, by=by, begin=begin, end=end, sort=sort, tol=0,...) } else { y <- strptime(x, format=format) begin <- strptime(begin, format=format) end <- strptime(end, format=format) is_linear_sequence.POSIXct(y, by=by, begin=begin, end=end, sort=sort, tol=1e-6,...) } } #' @rdname is_linear_sequence #' #' @return For \code{in_linear_sequence}: a \code{logical} vector with the same length as \code{x}. #' @export in_linear_sequence <- function(x, ...) UseMethod("in_linear_sequence") in_lin_num_seq <- function(x, by=NULL, begin=NULL, end=NULL, sort=TRUE, tol=1e8,...){ rep(is_lin_num_seq(x, begin=begin, end=end, sort=sort, tol=tol), length(x)) } ## TODO: postpone conversion to integer to inside the split-apply-combine loop. #' @rdname is_linear_sequence #' @export in_linear_sequence.character <- function(x, by=NULL, begin=NULL, end=NULL, sort=TRUE, format="auto",...){ if ( format == "auto" ){ y <- period_to_int(x,by=by) begin <- period_to_int(begin) end <- period_to_int(end) in_linear_sequence.numeric(y, by=by, begin=begin, end=end, sort=sort, tol=0,...) } else { y <- strptime(x, format=format) begin <- strptime(begin, format=format) end <- strptime(end, format=format) in_linear_sequence.POSIXct(y, by=by, begin=begin, end=end, sort=sort, tol=1e-6,...) } } #' @rdname is_linear_sequence #' @export in_linear_sequence.numeric <- function(x, by=NULL, begin=NULL, end=NULL, sort=TRUE, tol=1e-8,...){ if (is.null(by)){ in_lin_num_seq(as.integer(x), begin=as_int(begin), end=as_int(end), sort=sort, tol=tol) } else { result <- tapply(as.integer(x), by, in_lin_num_seq, begin=as_int(begin), end=as_int(end), sort=sort, tol=tol) unsplit(result, by) } } #' @rdname is_linear_sequence #' @export in_linear_sequence.Date <- function(x, by=NULL, begin=NULL, end=NULL, sort=TRUE,...){ in_linear_sequence.numeric(as.integer(x), by=by, begin=as_int(begin), end=as_int(end), sort=TRUE, tol=0) } #' @rdname is_linear_sequence #' @export in_linear_sequence.POSIXct <- function(x, by=NULL, begin=NULL, end=NULL, sort=TRUE, tol=1e-6,...){ in_linear_sequence.numeric(as.numeric(x), by=by, begin=as_num(begin), end=as_num(end), sort=sort, tol=0) } period_type <- function(x, undefined=NA_character_){ if ( all( grepl("^[12][0-9]{3}$",x) ) ) return("annual") if ( all( grepl("^[12][0-9]{3}-?Q[1-4]$",x) ) ) return("quarterly") if ( all( grepl("^[12][0-9]{3}M[01][0-9]$",x) ) ) return("monthly") warning("Cannot detect period notation: undefined period type or different period types in single column.", call.=FALSE) undefined } # Turn a period into an integer # # Annual periods are turned in to the integer year. Quarterly # and Monthly periods are turned in to the month number, counted # from the year zero, so quarters and months have consecutive numbers # accross years. # # @param x a \code{character} vector. # @param by \code{character} split x into groups before coercion # # # # period_to_int <- function(x, by=NULL){ if (is.null(x)) return(NULL) f <- function(xx){ from <- period_type(xx) if (is.na(from)) return(rep(NA, length(xx))) if (from == "annual"){ res <- as.numeric(xx) } if (from == "quarterly" ){ L <- strsplit(xx,"-?Q") year <- as.numeric(sapply(L, `[[`,1)) quarter <- as.numeric(sapply(L, `[[`, 2)) res <- 4*year + quarter-1 } if ( from == "monthly" ){ L <- strsplit(xx, "M") year <- as.numeric( sapply(L,`[[`,1) ) month <- as.numeric( sapply(L, `[[`, 2) ) res <- 12*year + month-1 == 1 } res } if (is.null(by)) by <- character(length(x)) unsplit(lapply(split(x, f=by), f), f=by) } #' Check variable range #' #' Test wether a variable falls within a range. #' #' @param x A bare (unquoted) variable name. #' @param min lower bound #' @param max upper bound #' @param ... arguments passed to other methods #' #' #' @examples #' #' d <- data.frame( #' number = c(3,-2,6) #' , time = as.Date(c("2018-02-01", "2018-03-01", "2018-04-01")) #' , period = c("2020Q1", "2021Q2", "2020Q3") #' ) #' #' rules <- validator( #' in_range(number, min=-2, max=7, strict=TRUE) #' , in_range(time, min=as.Date("2017-01-01"), max=as.Date("2018-12-31")) #' , in_range(period, min="2020Q1", max="2020Q4") #' ) #' #' result <- confront(d, rules) #' values(result) #' #' #' @export in_range <- function(x, min, max,...) UseMethod("in_range") #' @rdname in_range #' @param strict \code{[logical]} Toggle between including the range boundaries #' (default) or not including them (when strict=TRUE). #' #' @export in_range.default <- function(x, min, max, strict=FALSE, ...){ if (strict) x > min & x < max else x >= min & x <= max } #' @rdname in_range #' #' @param format \code{[character]} of \code{NULL}. If \code{format=NULL} the #' character vector is interpreted as is. And the whether a character lies #' within a character range is determined by the collation order set by the #' current locale. See the details of "\code{\link{<}}". If \code{format} is #' not \code{NULL}, it specifies how to interpret the character vector as a #' time period. It can take the value \code{"auto"} for automatic detection or #' a specification passed to \code{\link{strptime}}. Automatically detected #' periods are of the form year: \code{"2020"}, yearMmonth: \code{"2020M01"}, #' yearQquarter: \code{"2020Q3"}, or year-Qquarter: \code{"2020-Q3"}. #' #' #' @export in_range.character <- function(x, min, max, strict=FALSE, format = "auto",...){ if (is.null(format)) in_range.default(x=x, min=min, max=max, strict=strict, ...) else if ( format == "auto" ){ y <- period_to_int(x, by=NULL) ymin <- period_to_int(min) ymax <- period_to_int(max) in_range.default(y, min=ymin, max=ymax, strict=strict, ...) } else { y <- strptime(x, format=format) ymin <- strptime(min, format=format) ymax <- strptime(max, format=format) in_range(y, min=ymin, max=ymax, strict=strict, ...) } } #' Test whether details combine to a chosen aggregate #' #' Data in 'long' format often contain records representing totals #' (or other aggregates) as well as records that contain details #' that add up to the total. This function facilitates checking the #' part-whole relation in such cases. #' #' #' @param values A bare (unquoted) variable name holding the values to aggregate #' @param labels A bare (unquoted) variable name holding the labels indicating #' whether a value is an aggregate or a detail. #' @param whole \code{[character]} literal label or pattern recognizing a whole #' in \code{labels}. Use \code{\link{glob}} or \code{\link{rx}} to label #' as a globbing or regular expression pattern (see examples). #' @param part \code{[character]} vector of label values or pattern recognizing #' a part in \code{labels}. Use \code{\link{glob}} or \code{\link{rx}} #' to label as a globbing or regular expression pattern. When labeled #' with \code{glob} or \code{rx}, it must be a single string. If `part` is #' left unspecified, all values not recognized as an aggregate are #' interpreted as details that must be aggregated to the whole. #' @param aggregator \code{[function]} used to aggregate subsets of \code{x}. It should #' accept a \code{numeric} vector and return a single number. #' @param tol \code{[numeric]} tolerance for equality checking #' @param by Name of variable, or \code{list} of bare variable names, used to #' split the values and labels before computing the aggregates. #' @param ... Extra arguments passed to aggregator (for example \code{na.rm=TRUE}). #' #' #' @return A \code{logical} vector of size \code{length(value)}. #' #' @examples #' df <- data.frame( #' id = 10011:10020 #' , period = rep(c("2018Q1", "2018Q2", "2018Q3", "2018Q4","2018"),2) #' , direction = c(rep("import",5), rep("export", 5)) #' , value = c(1,2,3,4,10, 3,3,3,3,13) #' ) #' ## use 'rx' to interpret 'whole' as a regular expression. #' rules <- validator( #' part_whole_relation(value, period, whole=rx("^\\d{4}$") #' , by=direction) #' ) #' #' out <- confront(df, rules, key="id") #' as.data.frame(out) #' @export part_whole_relation <- function(values, labels, whole, part = NULL , aggregator = sum, tol=1e-8, by = NULL, ...){ df <- data.frame(values=values, labels=labels) f <- function(d, ...){ i_aggregate <- igrepl(whole, d$labels) aggregate <- d$values[i_aggregate] if (length(aggregate)>1){ stop( sprintf("Multiple labels matching aggregate: %s. Expecting one" , paste(aggregate,collapse=", ")) , call.=FALSE ) } i_details <- if (is.null(part)) !i_aggregate else igrepl(part, d$labels) details <- d$values[i_details] out <- if (length(aggregate)==0){ FALSE } else { abs(aggregator(details, ...) - aggregate) < tol } values <- !logical(length(d$labels)) values[i_details | i_aggregate] <- out values } if (is.null(by)){ return( f(df, ...) ) } else { unsplit(lapply(split(df, by), f, ...),by) } } #' Label objects for interpretation as pattern #' #' Label objects (typically strings or data frames containing keys combinations) #' to be interpreted as regular expression or globbing pattern. #' #' #' @param x Object to label as regular expression (\code{rx(x)}) or globbing #' (\code{glob(x)}) pattern. #' #' #' #' @export rx <- function(x){ structure(x, class=c("regex",class(x))) } #' @rdname rx #' @export glob <- function(x){ structure(x, class=c("glob",class(x))) } igrepl <- function(pattern, x,...){ if (inherits(pattern, "glob")){ Reduce(`|`, lapply(utils::glob2rx(pattern), grepl,x,...)) } else if (inherits(pattern, "regex",...)){ Reduce(`|`, lapply(pattern, grepl, x, ...)) } else { x %in% pattern } } #' split-apply-combine for vectors, with equal-length outptu #' #' Group \code{x} by one or more categorical variables, compute #' an aggregate, repeat that aggregate to match the size of the #' group, and combine results. The functions \code{sum_by} and #' so on are convenience wrappers that call \code{do_by} internally. #' #' @param x A bare variable name #' @param by a bare variable name, or a list of bare variable names, used to #' split \code{x} into groups. #' @param fun \code{[function]} A function that aggregates \code{x} to a single value. #' @param ... passed as extra arguments to \code{fun} (e.g. \code{na.rm=TRUE} #' @param na.rm Toggle ignoring \code{NA} #' #' @examples #' x <- 1:10 #' y <- rep(letters[1:2], 5) #' do_by(x, by=y, fun=max) #' do_by(x, by=y, fun=sum) #' #' @family cross-record-helpers #' @export do_by <- function(x, by, fun, ...){ unsplit( lapply(split(x,by), function(d) rep(fun(d,...), length(d))),by) } #' @rdname do_by #' @export sum_by <- function(x, by, na.rm=FALSE) do_by(x,by,sum, na.rm=na.rm) #' @rdname do_by #' @export mean_by <- function(x, by, na.rm=FALSE) do_by(x,by,mean, na.rm=na.rm) #' @rdname do_by #' @export min_by <- function(x, by, na.rm=FALSE) do_by(x,by,min, na.rm=na.rm) #' @rdname do_by #' @export max_by <- function(x, by, na.rm=FALSE) do_by(x,by,max, na.rm=na.rm) #' Hiridoglu-Berthelot function #' #' A function to measure `outlierness' for skew distributed data with long #' right tails. The method works by measuring deviation from a reference #' value, by default the median. Deviation from above is measured as the #' ratio between observed and refence values. Deviation from below is #' measured as the inverse: the ratio between reference value and #' observed values. #' #' @param x \code{[numeric]} #' @param ref \code{[function]} or \code{[numeric]} #' @param ... arguments passed to \code{ref} after \code{x} #' #' @return \eqn{\max\{x/ref(x), ref(x)/x\}-1} if \code{ref} is a function, #' otherwise \eqn{\max\{x/ref, ref/x\}-1} #' #' @references #' Hidiroglou, M. A., & Berthelot, J. M. (1986). Statistical editing and #' imputation for periodic business surveys. Survey methodology, 12(1), 73-83. #' #' @export #' #' @family cross-record-helpers #' @examples #' x <- seq(1,20,by=0.1) #' plot(x,hb(x), 'l') #' hb <- function(x, ref=stats::median,...){ refval <- if(is.numeric(ref)) ref else ref(x,...) pmax(x/refval, refval/x) -1 } #' Check number of code points #' #' A convenience function testing for field length. #' #' #' @param x Bare (unquoted) name of a variable. #' Otherwise a vector of class \code{character}. Coerced to character as #' necessary. #' @param n Number of code points required. #' @param min Mimimum number of code points #' @param max Maximum number of code points #' @param ... passed to \code{nchar} (for example \code{type="width"}) #' @section Details: #' #' The number of code points (string length) may depend on current locale #' settings or encoding issues, including those caused by inconsistent choices #' of \code{UTF} normalization. #' #' @return A \code{[logical]} of size \code{length(x)}. #' #' @examples #' #' df <- data.frame(id = 11001:11003, year = c("2018","2019","2020"), value = 1:3) #' rule <- validator(field_length(year, 4), field_length(id, 5)) #' out <- confront(df, rule) #' as.data.frame(out) #' #' @family format-checkers #' #' @export field_length <- function(x, n=NULL, min=NULL, max=NULL,...){ len <- nchar(as.character(x),...) if (!is.null(n) & is.null(min) & is.null(max)){ len == n } else if (!is.null(min) & !is.null(max) & is.null(n) ){ len >= min & len <= max } else { stop("Ill-specified check: either n, or min and max must be not-NULL") } } #' Check whether a field conforms to a regular expression #' #' A convenience wrapper around \code{grepl} to make rule sets more readable. #' #' @param x Bare (unquoted) name of a variable. #' Otherwise a vector of class \code{character}. Coerced to character as #' necessary. #' @param pattern \code{[character]} a regular expression #' @param type \code{[character]} How to interpret \code{pattern}. In globbing, #' the asterisk (`*`) is used as a wildcard that stands for 'zero or more #' characters'. #' @param ... passed to grepl #' #' @family format-checkers #' @export field_format <- function(x, pattern, type=c("glob","regex"), ...){ type <- match.arg(type) if (type == "glob") pattern <- utils::glob2rx(pattern) grepl(pattern, x=as.character(x),...) } #' Check the layouts of numbers. #' #' Convenience function to check layout of numbers stored as #' a character vector. #' #' #' @param x \code{[character]} vector. If \code{x} is not of type #' \code{character} it will be converted. #' @param format \code{[character]} denoting the number format (see below). #' @param min_dig \code{[numeric]} minimal number of digits after decimal separator. #' @param max_dig \code{[numeric]} maximum number of digits after decimal separator. #' @param dec \code{[character]} decimal seperator. #' #' #' @details #' If \code{format} is specified, then \code{min_dig}, \code{max_dig} and \code{dec} #' are ignored. #' #' Numerical formats can be specified as a sequence of characters. There are a few #' special characters: #' \itemize{ #' \item{\code{d}} Stands for digit. #' \item{\code{*}} (digit globbing) zero or more digits #' } #' #' Here are some examples. #' \tabular{ll}{ #' \code{"d.dd"} \tab One digit, a decimal point followed by two digits.\cr #' \code{"d.ddddddddEdd"}\tab Scientific notation with eight digits behind the decimal point.\cr #' \code{"0.ddddddddEdd"}\tab Same, but starting with a zero.\cr #' \code{"d,dd*"} \tab one digit before the comma and at least two behind it.\cr #' } #' #' #' @examples #' df <- data.frame(number = c("12.34","0.23E55","0.98765E12")) #' rules <- validator( #' number_format(number, format="dd.dd") #' , number_format(number, "0.ddEdd") #' , number_format(number, "0.*Edd") #' ) #' #' out <- confront(df, rules) #' values(out) #' #' # a few examples, without 'validator' #' number_format("12.345", min_dig=2) # TRUE #' number_format("12.345", min_dig=4) # FALSE #' number_format("12.345", max_dig=2) # FALSE #' number_format("12.345", max_dig=5) # TRUE #' number_format("12,345", min_dig=2, max_dig=3, dec=",") # TRUE #' #' @family format-checkers #' @export number_format <- function(x, format=NULL, min_dig=NULL, max_dig=NULL, dec="."){ if ( !is.null(format) ){ rx <- utils::glob2rx(format, trim.tail=FALSE) rx <- gsub("d", "\\d", rx, fixed=TRUE) rx <- gsub(".*", "\\d*", rx, fixed=TRUE) return( grepl(rx, as.character(x)) ) } rx <- if (dec == ".") "^.*\\." else sprintf("^.*\\%s",dec) decimal_digits <- sub(rx, "", x) min_dig <- if (is.null(min_dig)) "0" else as.character(min_dig) max_dig <- if (is.null(max_dig)) "" else as.character(max_dig) rx <- sprintf("^\\d{%s,%s}$",min_dig,max_dig) grepl(rx,decimal_digits) } #' Check records using a predifined table of (im)possible values #' #' Given a set of keys or key combinations, check whether all thos combinations #' occur, or check that they do not occur. Supports globbing and regular #' expressions. #' #' #' @param keys A data frame or bare (unquoted) name of a data #' frame passed as a reference to \code{confront} (see examples). #' The column names of \code{keys} must also occurr in the columns #' of the data under scrutiny. #' @param by A bare (unquoted) variable or list of variable names that occur in #' the data under scrutiny. The data will be split into groups according to #' these variables and the check is performed on each group. #' @param allow_duplicates \code{[logical]} toggle whether key combinations can occur #' more than once. #' #' @details #' #' \tabular{ll}{ #' \code{contains_exactly} \tab dataset contains exactly the key set, no more, no less. \cr #' \code{contains_at_least}\tab dataset contains at least the given keys. \cr #' \code{contains_at_most} \tab all keys in the data set are contained the given keys. \cr #' \code{does_not_contain} \tab The keys are interpreted as forbidden key combinations. \cr #' } #' #' #' @section Globbing: #' Globbing is a simple method of defining string patterns where the asterisks #' (\code{*}) is used a wildcard. For example, the globbing pattern #' \code{"abc*"} stands for any string starting with \code{"abc"}. #' #' #' @return #' For \code{contains_exactly}, \code{contains_at_least}, and #' \code{contains_at_most} a \code{logical} vector with one entry for each #' record in the dataset. Any group not conforming to the test keys will have #' \code{FALSE} assigned to each record in the group (see examples). #' #' @family cross-record-helpers #' @family key-checkers #' #' @examples #' #' ## Check that data is present for all quarters in 2018-2019 #' dat <- data.frame( #' year = rep(c("2018","2019"),each=4) #' , quarter = rep(sprintf("Q%d",1:4), 2) #' , value = sample(20:50,8) #' ) #' #' # Method 1: creating a data frame in-place (only for simple cases) #' rule <- validator(contains_exactly( #' expand.grid(year=c("2018","2019"), quarter=c("Q1","Q2","Q3","Q4")) #' ) #' ) #' out <- confront(dat, rule) #' values(out) #' #' # Method 2: pass the keyset to 'confront', and reference it in the rule. #' # this scales to larger key sets but it needs a 'contract' between the #' # rule definition and how 'confront' is called. #' #' keyset <- expand.grid(year=c("2018","2019"), quarter=c("Q1","Q2","Q3","Q4")) #' rule <- validator(contains_exactly(all_keys)) #' out <- confront(dat, rule, ref=list(all_keys = keyset)) #' values(out) #' #' ## Globbing (use * as a wildcard) #' #' # transaction data #' transactions <- data.frame( #' sender = c("S21", "X34", "S45","Z22") #' , receiver = c("FG0", "FG2", "DF1","KK2") #' , value = sample(70:100,4) #' ) #' #' # forbidden combinations: if the sender starts with "S", #' # the receiver can not start "FG" #' forbidden <- data.frame(sender="S*",receiver = "FG*") #' #' rule <- validator(does_not_contain(glob(forbidden_keys))) #' out <- confront(transactions, rule, ref=list(forbidden_keys=forbidden)) #' values(out) #' #' #' ## Quick interactive testing #' # use 'with': #' with(transactions, does_not_contain(forbidden)) #' #' #' #' ## Grouping #' #' # data in 'long' format #' dat <- expand.grid( #' year = c("2018","2019") #' , quarter = c("Q1","Q2","Q3","Q4") #' , variable = c("import","export") #' ) #' dat$value <- sample(50:100,nrow(dat)) #' #' #' periods <- expand.grid( #' year = c("2018","2019") #' , quarter = c("Q1","Q2","Q3","Q4") #' ) #' #' rule <- validator(contains_exactly(all_periods, by=variable)) #' #' out <- confront(dat, rule, ref=list(all_periods=periods)) #' values(out) #' #' # remove one export record #' #' dat1 <- dat[-15,] #' out1 <- confront(dat1, rule, ref=list(all_periods=periods)) #' values(out1) #' values(out1) #' #' @export contains_exactly <- function(keys, by=NULL, allow_duplicates=FALSE){ given_keys <- do.call(paste, keys) L <- list() for ( keyname in names(keys) ) L[[keyname]] <- dynGet(keyname) found_keys <- do.call(paste, L) if (is.null(by)) by <- character(length(found_keys)) unsplit(lapply(split(found_keys, f=by), function(fk){ out <- all(fk %in% given_keys) && all(given_keys %in% fk) if (!allow_duplicates) out <- out && !any(duplicated(fk)) rep(out, length(fk)) }), by) } #' @rdname contains_exactly #' @export contains_at_least <- function(keys, by=NULL){ L <- list() for ( keyname in names(keys) ) L[[keyname]] <- dynGet(keyname) given_keys <- do.call(paste, keys) found_keys <- do.call(paste, L) if (is.null(by)) by <- character(length(found_keys)) unsplit(lapply(split(found_keys, f=by), function(fk){ rep(all(given_keys %in% fk), length(fk)) }), by) } #' @rdname contains_exactly #' @return #' For \code{contains_at_least}: a \code{logical} vector equal to the number of #' records under scrutiny. It is \code{FALSE} where key combinations do not match #' any value in \code{keys}. #' @export contains_at_most <- function(keys, by=NULL){ L <- list() for ( keyname in names(keys) ) L[[keyname]] <- dynGet(keyname) contains(L, keys, by=by) } #' @rdname contains_exactly #' #' #' @return #' For \code{does_not_contain}: a \code{logical} vector with size equal to the #' number of records under scrutiny. It is \code{FALSE} where key combinations #' do not match any value in \code{keys}. #' @export does_not_contain <- function(keys){ L <- list() for ( keyname in names(keys) ) L[[keyname]] <- dynGet(keyname) !contains(L, keys, by=NULL) } # for each 'x' see if it matches any regular expression in 'pattern' rxin <- function(x, pattern){ A <- sapply(pattern, grepl, x=x) if (!is.array(A)) A <- matrix(A,ncol=length(pattern)) apply(A, 1, any) } # for each 'x' see if it matches any globbing pattern in 'pattern' glin <- function(x, pattern){ pattern <- utils::glob2rx(pattern) rxin(x, pattern) } get_keytype <- function(keys){ out <- grep("^(regex)|(glob)$", class(keys), value=TRUE) if (length(out) < 1) out <- "fixed" out } contains <- function(dat, keys, by){ keytype <- get_keytype(keys) if (isTRUE(keytype=="regex") && length(keys) > 1){ # some preparations before pasting for (keyname in names(keys)[-1]){ key <- keys[[keyname]] keys[[keyname]] <- ifelse( substr(key,1,1) == "^" , sub("^\\^", "", keys[[keyname]]) , paste0(".*", key) ) } for (keyname in names(keys)[-length(keys)]){ key <- keys[[keyname]] keys[[keyname]] <- ifelse( substr(key, nchar(key), nchar(key)) == "$" , sub("\\$$", "", key) , paste0(key, ".*")) } } # note: globbing patterns may be pasted before transformation # to regex. given_keys <- do.call(paste, keys) found_keys <- do.call(paste, dat) if (is.null(by)) by <- character(length(found_keys)) unsplit(lapply(split(found_keys, f=by), function(fk){ switch(keytype , "fixed" = fk %in% given_keys , "glob" = glin(fk, given_keys) , "regex" = rxin(fk, given_keys) ) }), by) } #' Check aggregates defined by a hierarchical code list #' #' Check all aggregates defined by a code hierarchy. #' #' #' @param values bare (unquoted) name of a variable that holds values that #' must aggregate according to the \code{hierarchy}. #' @param labels bare (unquoted) name of variable holding a grouping variable (a code #' from a hierarchical code list) #' @param hierarchy \code{[data.frame]} defining a hierarchical code list. The #' first column must contain (child) codes, and the second column contains their #' corresponding parents. #' @param by A bare (unquoted) variable or list of variable names that occur in #' the data under scrutiny. The data will be split into groups according #' to these variables and the check is performed on each group. #' @param na_value \code{[logical]} or \code{NA}. Value assigned to values that #' do not occurr in checks. #' @param aggregator \code{[function]} that aggregates children to their parents. #' @param tol \code{[numeric]} tolerance for equality checking #' @param ... arguments passed to \code{aggregator} (e.g. \code{na.rm=TRUE}). #' #' #' @return A \code{logical} vector with the size of \code{length(values)}. Every #' element involved in an aggregation error is labeled \code{FALSE} (aggregate #' plus aggregated elements). Elements that are involved in correct #' aggregations are set to \code{TRUE}, elements that are not involved in #' any check get the value \code{na_value} (by default: \code{TRUE}). #' #' #' #' @family cross-record-helpers #' @export #' @examples #' # We check some data against the built-in NACE revision 2 classification. #' data(nace_rev2) #' head(nace_rev2[1:4]) # columns 3 and 4 contain the child-parent relations. #' #' d <- data.frame( #' nace = c("01","01.1","01.11","01.12", "01.2") #' , volume = c(100 ,70 , 30 ,40 , 25 ) #' ) #' # It is possible to perform checks interactively #' d$nacecheck <- hierarchy(d$volume, labels = d$nace, hierarchy=nace_rev2[3:4]) #' # we have that "01.1" == "01.11" + "01.12", but not "01" == "01.1" + "01.2" #' print(d) #' #' # Usage as a valiation rule is as follows #' rules <- validator(hierarchy(volume, labels = nace, hierarchy=validate::nace_rev_2[3:4])) #' confront(d, rules) #' #' # you can also pass a hierarchy as a reference, for example. #' #' rules <- validator(hierarchy(volume, labels = nace, hierarchy=ref$nacecodes)) #' out <- confront(d, rules, ref=list(nacecodes=nace_rev2[3:4])) #' summary(out) #' #' # set a output to NA when a code does not occur in the code list. #' d <- data.frame( #' nace = c("01","01.1","01.11","01.12", "01.2", "foo") #' , volume = c(100 ,70 , 30 ,40 , 25 , 60) #' ) #' #' d$nacecheck <- hierarchy(d$volume, labels = d$nace, hierarchy=nace_rev2[3:4] #' , na_value = NA) #' # we have that "01.1" == "01.11" + "01.12", but not "01" == "01.1" + "01.2" #' print(d) #' hierarchy <- function(values, labels, hierarchy, by=NULL, tol=1e-8, na_value=TRUE, aggregator = sum, ...){ if (is.null(by)) by <- character(length(values)) dat <- cbind(data.frame(values=values, labels=labels), by) unsplit(lapply(split(dat, f=by) , check_hagg, h=hierarchy, na_value = na_value, tol=tol, fun=aggregator,...) , f=by) } check_hagg <- function(dat, h, na_value, tol, fun,...){ parents <- unique(h[,2]) keytype <- get_keytype(h) out <- rep(na_value, nrow(dat)) for (parent in parents){ J <- dat$labels %in% parent children <- h[,1][h[,2] == parent] I <- switch(keytype , "glob" = glin(dat$labels, children) , "regex" = rxin(dat$labels, children) , dat$labels %in% children) # found 'parent' too often, so we can't check aggregate if (sum(J) > 1){ grp <- paste0("(",paste(t(dat[1,-(1:2)]), collapse=", "),")") msg <- "Parent '%s' occurs more than once (%d times) in group %s" warning(sprintf(msg, parent, sum(J), grp), call.=FALSE) out[I|J] <- FALSE next } if (!any(J) && !any(I)) next if (!any(J) && any(I)) out[I] <- FALSE # no parent but children present if ( any(J) && !any(I)) out[J] <- FALSE # no children but parent present ii <- I|J test <- abs(dat$values[J] - fun(dat$value[I],...)) <= tol if (any(J) && any(I)){ # equivalent, but slower statement: # if ( any(J) && any(I)) out[ii] <- ifelse(is.na(out[ii]), test, out[ii] & test) out[ii] <- (is.na(out[ii]) & test) | (!is.na(out[ii]) & out[ii] & test) } } out }
/scratch/gouwar.j/cran-all/cranData/validate/R/genericrules.R
#' @include expressionset.R NULL # The 'indicator' class holds indicator definitions #' Define indicators for data #' #' An indicator maps a data frame, or each record in a data frame to a number. #' The purpose of this class is to store and apply expressions that define #' indicators. #' #' #' @param ... A comma-separated list of indicator definitions #' @param .file (optional) A character vector of file locations #' #' @seealso \code{\link{syntax}}, \code{\link{add_indicators}} #' #' @export #' @keywords internal #' @example ../examples/indicator.R indicator <- function(..., .file, .data) new('indicator',..., .file=.file, .data=.data) #### INDICATOR CLASS ---------------------------------------------------------- #' Store a set of rich indicator expressions #' #' \bold{This feature is currently experimental and may change in future versions} #' #' @section Details: #' An indicator stores a set of indicators. It is a child class of \code{\link{expressionset}} and #' can be constructed with \code{\link{indicator}}. #' #' @section Exported S4 methods for \code{validator}: #' \itemize{ #' \item{Methods inherited from \code{\link{expressionset}}} #' \item{\code{\link{confront}}} #' \item{\code{\link{compare}}} #' } #' #' #' @section See also: #' \itemize{ #' \item{\code{\link{expressionset}}} #' } #' #' @keywords internal #' setRefClass("indicator", contains='expressionset', methods = list( initialize = function(..., .file, .data) ini_indicator(.self , ..., .file = .file, .data=.data) ) ) ini_indicator <- function(obj, ..., .file, .data){ if (missing(.file) && missing(.data)){ .ini_expressionset_cli(obj, ..., .prefix="I") obj$._options <- .PKGOPT } else if (!missing(.file)) { .ini_expressionset_yml(obj, .file, .prefix="I") } else if (!missing(.data)){ .ini_expressionset_df(obj, dat=.data, .prefix="I") obj$._options <- .PKGOPT } } #' Combine two indicator objects #' #' Combine two \code{\link{indicator}} objects by addition. A new \code{indicator} #' object is created with default (global) option values. Previously set options #' are ignored. #' #' @param e1 a \code{\link{validator}} #' @param e2 a \code{\link{validator}} #' #' #' @family indicator-methods #' @examples #' indicator(mean(x)) + indicator(x/median(x)) #' @export setMethod("+", c("indicator","indicator"), function(e1, e2){ ii <- indicator() ii$rules <- c(e1$rules, e2$rules) names(ii) <- make.names(names(ii),unique=TRUE) ii }) #' Add indicator values as columns to a data frame #' #' Compute and add externally defined indicators to data frame. #' If necessary, values are recycled over records. #' #' @param dat \code{[data.frame]} #' @param x \code{[indicator]} or \code{[indication]} object. See examples. #' #' @return \code{dat} with extra columns defined by \code{x} attached. #' #' @examples #' ii <- indicator( #' hihi = 2*sqrt(height) #' , haha = log10(weight) #' , lulz = mean(height) #' , wo0t = median(weight) #' ) #' #' # note: mean and median are repeated #' add_indicators(women, ii) #' #' # compute indicators first, then add #' out <- confront(women, ii) #' add_indicators(women, out) #' #' @family indicators #' #' @export add_indicators <- function(dat, x){ if (inherits(x,"indicator")) x <- confront(dat, x) vals <- values(x, simplify=FALSE) n <- nrow(dat) L <- lapply(vals, function(d){ if (length(d) == n){ d } else if (length(d)==1) { rep(d,n) } else { warnf("Skipping output that does not fit in data frame") NULL } }) cbind(dat, do.call("cbind", L)) }
/scratch/gouwar.j/cran-all/cranData/validate/R/indicator.R
#' Logging object to use with the lumberjack package #' #' @section Details: #' #' This obeject can used with the function composition ('pipe') operator of the #' \code{\link[lumberjack]{lumberjack}} package. The logging is based on #' validate's \code{\link{cells}} function. The output is written to a #' \code{csv} file wich contains the following columns. #' \tabular{lll}{ #' \code{step} \tab\code{integer} \tab Step number \cr #' \code{time} \tab\code{POSIXct} \tab Timestamp \cr #' \code{expr} \tab\code{character}\tab Expression used on data \cr #' \code{cells} \tab\code{integer} \tab Total nr of cells in dataset\cr #' \code{available} \tab\code{integer} \tab Nr of non-NA cells\cr #' \code{missing} \tab\code{integer} \tab Nr of empty (NA) cells\cr #' \code{still_available}\tab\code{integer} \tab Nr of cells still available after expr\cr #' \code{unadapted} \tab\code{integer} \tab Nr of cells still available and unaltered\cr #' \code{unadapted} \tab\code{integer} \tab Nr of cells still available and altered\cr #' \code{imputed} \tab\code{integer} \tab Nr of cells not missing anymore\cr #' } #' #' #' @section Note: #' This logger is suited only for operations that do not change the dimensions #' of the dataset. #' #' @docType class #' @format A reference class object #' @family loggers #' #' @export lbj_cells #' @exportClass lbj_cells lbj_cells <- setRefClass("lbj_cells" , fields = list( cells = "array" , n = "numeric" , t = "POSIXct" , expr = "character" , verbose = "logical" , label = "character" ) , methods = list( initialize = function(..., verbose=TRUE, label=""){ "Create object. Optionally toggle verbosity." .self$n <- 0 .self$t <- .POSIXct(numeric(0)) .self$verbose = verbose .self$label = label } , add = function(meta, input, output){ "Add logging info based on in- and output" if (!identical(dim(input),dim(output))){ warnf("dimensions changed, not logging %s",meta$src) return() } cl <- cells(from = input, to = output) tm <- as.POSIXct(Sys.time()) if ( .self$n == 0 ){ .self$cells <- cl[,1,drop=FALSE] .self$t <- c(.self$t,tm) .self$expr <- "" } .self$n <- .self$n+1 .self$t <- c(.self$t, tm) .self$expr <- c(.self$expr, meta$src) .self$cells <- cbind(.self$cells, cl[,2,drop=FALSE]) } , dump = function(file=NULL,verbose=TRUE,...){ "Dump logging info to csv file. All arguments in '...' except row.names are passed to 'write.csv'" out <- .self$log_data() outf <- if( !is.null(file) ) file else if (.self$label == "" ) "lbj_cells.csv" else paste0(.self$label, "_lbj_cells.csv") write.csv(out, file=outf, row.names=FALSE,...) .self$fmsg("Dumped a log at %s", normalizePath(outf)) } , log_data = function(){ "Return logged data as a data.frame" out <- data.frame( step = if(.self$n > 0 ) 0:.self$n else integer(0) , time = .self$t , expression = .self$expr ) cl <- t(.self$cells) row.names(cl) <- NULL cbind(out, cl) } , show = function(){ "Print method" cat("Logging object of class lbj_cells with the following logging info\n") print(.self$log_data()) } , fmsg = function(fmt,...){ if (.self$verbose){ message(sprintf(fmt,...)) } } ) ) #' Logging object to use with the lumberjack package #' #' @family loggers #' @export lbj_rules #' @exportClass lbj_rules lbj_rules <- setRefClass("lbj_rules", fields = list( compare = "array" , rules = "validator" , n = "numeric" , t = "POSIXct" , expr = "character" , verbose = "logical" , label = "character" ) , methods = list( initialize = function(rules, verbose=TRUE, label=""){ "Create object. Optionally toggle verbosity." .self$n <- 0 .self$t <- .POSIXct(numeric(0)) .self$verbose <- verbose .self$rules <- rules$copy() .self$label <- label v <- validator(x>0) } , add = function(meta, input, output){ if (!identical(dim(input),dim(output))){ warnf("dimensions changed, not logging %s",meta$src) return() } tm <- as.POSIXct(Sys.time()) comp <- cbind(compare(.self$rules, input, output)) if ( .self$n == 0 ){ .self$compare <- comp[,1,drop=FALSE] .self$t <- c(.self$t,tm) .self$expr <- "" } .self$n <- .self$n+1 .self$t <- c(.self$t, tm) .self$expr <- c(.self$expr, meta$src) .self$compare <- cbind(.self$compare, comp[,2,drop=FALSE]) } , dump = function(file=NULL,...){ "Dump logging info to csv file. All arguments in '...' except row.names are passed to 'write.csv'" out <- .self$log_data() outf <- if( !is.null(file) ) file else if (.self$label == "" ) "lbj_rules.csv" else paste0(.self$label, "_lbj_rules.csv") write.csv(out, file=outf, row.names=FALSE,...) .self$fmsg("Dumped a log at %s", normalizePath(outf)) } , log_data = function(){ "Return logged data as a data.frame" out <- data.frame( step = if(.self$n > 0 ) 0:.self$n else integer(0) , time = .self$t , expression = .self$expr ) cm <- t(.self$compare) row.names(cm) <- NULL cbind(out, cm) } , show = function(){ "Print method" cat("Logging object of class lbj_rules with the following logging info\n") print(.self$log_data()) } , plot = function(){ "plot rule comparisons" pl <- getMethod("plot","validatorComparison") log <- .self$log_data() cmp <- t(log[-(1:3)]) class(cmp) <- c("validatorComparison", "array") x <- gsub("\\(.*","",log$expression) colnames(cmp) <- x pl(cmp) } , fmsg = function(fmt,...){ if (.self$verbose){ message(sprintf(fmt,...)) } } ) )
/scratch/gouwar.j/cran-all/cranData/validate/R/lumberjack.R
#' @include validate_pkg.R NULL # File parsing and functions computing on the language #' Services for extending 'validate' #' #' Functions exported silently to allow for cross-package inheritance #' of the \code{\link{expressionset}} object. These functions are never #' needed in scripts or statistical production code. #' #' @rdname validate_extend #' @param .__defaults toggle default options #' @param .__reset togle reset options #' @export #' @keywords internal .PKGOPT <- settings::options_manager( # all: warnings and errors are raised. 'errors': raise errors. 'none': warnings and errors are caught. raise = 'none' , lin.eq.eps = 1e-8 , lin.ineq.eps= 1e-8 , na.value = NA , sequential = TRUE # option for the 'dcmodify' package , na.condition = FALSE # option for the 'dcmodify' package ) #' Set or get options globally or per object. #' #' #' There are three ways to specify options for this package. #' \itemize{ #' \item{Globally. Setting \code{voptions(option1=value1,option2=value2,...)} #' sets global options.} #' \item{Per object. Setting \code{voptions(x=<object>, option1=value1,...)}, #' causes all relevant functions that use that object (e.g. #' \code{\link{confront}}) to use those local settings.} #' \item{At execution time. Relevant functions (e.g. \code{\link{confront}}) take #' optional arguments allowing one #' to define options to be used during the current function call} #' } #' #' #' @section Options for the validate package: #' Currently the following options are supported. #' #' \itemize{ #' \item{\code{na.value} (\code{NA},\code{TRUE},\code{FALSE}; \code{NA}) Value #' to return when a validating statement results in \code{NA}.} #' \item{\code{raise} (\code{"none"},\code{"error"},\code{"all"}; #' \code{"none"}) Control if the \code{\link{confront}} methods catch or raise #' exceptions. #' The 'all' setting is useful when debugging validation scripts.} #' \item{\code{lin.eq.eps} ('numeric'; 1e-8) The precision used when evaluating #' linear equalities. To be used to control for machine rounding.} #' \item{\code{"reset"} Reset to factory settings.} #' } #' #' #' @return When requesting option settings: a \code{list}. When setting options, #' the whole options list is returned silently. #' #' @param x (optional) an object inheriting from \code{expressionset} such as \code{\link{validator}} or \code{\link{indicator}}. #' @param ... Name of an option (character) to retrieve options or \code{option = value} pairs to set options. #' #' #' @export #' @examples #' #' # set an option, local to a validator object: #' v <- validator(x + y > z) #' voptions(v,raise='all') #' # check that local option was set: #' voptions(v,'raise') #' # check that global options have not changed: #' voptions('raise') setGeneric('voptions',def = function(x=NULL,...) standardGeneric('voptions')) #' @rdname voptions setMethod('voptions','ANY',function(x=NULL,...){ do.call(.PKGOPT,c(x,list(...))) }) #' @rdname voptions #' @export validate_options <- function(...){ .Deprecated(new="voptions") voptions(...) } #' @rdname voptions #' @export setGeneric('reset',def=function(x=NULL) standardGeneric('reset')) #' @rdname voptions setMethod('reset','ANY',function(x=NULL){ settings::reset(.PKGOPT) }) # get variables from call. # x : a call object # output: # - character vector with variable names # - NULL : call contains no variables (e.g. 1 == 1) var_from_call <- function(x){ vars <- all.vars(x) # Statement containing only literals if ( identical(vars, character(0)) ){ return(NULL) } else { vars } } # find a symbol in a call. Returns a list of multi-indices. # occurrences of variable names in a function signature are skipped. which.call <- function(x, what, I=1, e=as.environment(list(n=0))){ # is.symbol filters constants such as NA if ( is.symbol(x) && x == what ){ e[[paste0('x',e$n)]] <- I e$n <- e$n + 1 } if ( is.call(x) ){ for (i in seq_along(x)) which.call(x[[i]],what,c(I,i),e) } L <- lapply(as.list(e),function(x) if ( length(x) == 1 ) x else x[-1]) L$n <- NULL L } negate <- function(x){ if (is.call(x)){ ne <- switch(as.character(x[[1]]) , "!" = x[[2]] , "(" = negate(x[[2]]) , "==" = bquote(.(x[[2]]) != .(x[[3]])) , "!=" = bquote(.(x[[2]]) == .(x[[3]])) , ">=" = bquote(.(x[[2]]) < .(x[[3]])) , ">" = bquote(.(x[[2]]) <= .(x[[3]])) , "<=" = bquote(.(x[[2]]) > .(x[[3]])) , "<" = bquote(.(x[[2]]) >= .(x[[3]])) , "&" = substitute(P | Q, list(P=negate(x[[2]]), Q=negate(x[[3]]))) , "|" = substitute(P & Q, list(P=negate(x[[2]]), Q=negate(x[[3]]))) , bquote(!.(x)) ) return(ne) } bquote(!.(x)) } replace_lin <- function(x, dat, eps_eq=0.1, eps_ineq = 0.01){ if (!is.call(x)){ x } else if (linear_call(x) && all_numeric(x, dat)){ op <- as.character(x[[1]]) if (op == "==" && eps_eq > 0){ bquote(abs(.(x[[2]]) - .(x[[3]])) <= .(eps_eq)) } else if (eps_ineq > 0){ switch( op , ">=" = bquote(.(x[[2]]) - .(x[[3]]) >= -.(eps_ineq)) #, ">" = bquote(.(x[[2]]) - .(x[[3]]) > -.(eps_ineq)) , "<=" = bquote(.(x[[2]]) - .(x[[3]]) <= .(eps_ineq)) #, "<" = bquote(.(x[[2]]) - .(x[[3]]) < .(eps_ineq)) , x ) } else { x } } else if (x[[1]] == "!"){ negate(replace_lin(x[[2]], dat = dat, eps_eq = eps_eq, eps_ineq = eps_ineq)) } else if (x[[1]] == "!="){ negate(replace_lin( bquote(.(x[[2]]) == .(x[[3]])) , dat = dat , eps_eq = eps_eq , eps_ineq = eps_ineq ) ) } else { x[-1] <- lapply(x[-1], replace_lin, dat= dat, eps_eq = eps_eq, eps_ineq=eps_ineq) x } } # # replace_linear_restriction <- function(x,eps,dat, op="=="){ # repl <- function(x,eps,op){ # # by replacing nodes in the call tree # # we need not concern about brackets # if (x[[1]] != op ) return(x) # m <- quote(e1-e2) # a <- switch(op # , "==" = quote(abs(x)) # , "<=" = quote(x) # , ">=" = quote(x) # ) # lt <- switch(op # , "==" = quote(e1 < e2) # , "<=" = quote(e1 <= e2) # , ">=" = quote(e1 >= e2) # ) # if (op == ">=") eps <- -eps # m[[2]] <- left(x) # m[[3]] <- right(x) # a[[2]] <- m # lt[[2]] <- a # lt[[3]] <- eps # lt # } # # if (length(x) == 3 && linear_call(x) && all_numeric(x,dat)){ # return(repl(x,eps,op)) # } else if (length(x) > 1) { # for ( i in 2:length(x) ){ # x[[i]] <- replace_linear_restriction(x[[i]],eps,dat) # } # } # x # } all_numeric <- function(x,dat){ if (is.null(dat)) return(TRUE) vr <- var_from_call(x) vr <- vr[vr %in% variables(dat)] all(sapply(vr,function(u) is.numeric(dat[[u]]))) } # e <- expression(if (x + y == 3) z>0)[[1]] # e <- expression(aap / noot > z)[[1]] # replace_linear_equality(e,1e-8) # replace occurences x$y --> x[,'y'] replace_dollar <- function(x){ L <- which.call(x,'$') for ( I in L ){ if (length(I)==1){ x <- parse(text=paste0(left(x),'[[ "',deparse(right(x)),'" ]]'))[[1]] } else { I <- I[-length(I)] p <- paste0(left(x[[I]]),'[[ "',deparse(right(x[[I]])),'" ]]') x[[I]] <- parse(text=p)[[1]] } } x } # replace occurrences of 'x %in% y' with match(x,y,nomatch=NA,incomparables=NA) replace_in <- function(x){ L <- which.call(x,"%in%") for ( k in L ){ m <- expression(e1 %vin% e2)[[1]] if (length(k) == 1){ m[[2]] <- left(x) m[[3]] <- right(x) x <- m } else { i <- k[-length(k)] e <- x[[i]] m[[2]] <- left(e) m[[3]] <- right(e) x[[i]] <- m } } x } # test if a call defines a variable group defines_var_group <- function(x){ length(x) == 3 && x[[1]] == ':=' && is.name(x[[2]]) && x[[3]][[1]] == 'var_group' } # functions to vectorize validation calls ---- not <- function(x){ f <- expression(!(dummy))[[1]] f[[2]][[2]] <- x f } `%or%` <- function(x,y){ f <- expression((A)|(B))[[1]] f[[2]][[2]] <- x f[[3]][[2]] <- y f } # replace_if <- function(x){ # f <- expression(!(P) | (Q) )[[1]] # f[[c(2,2,2)]] <- x[[2]] # f[[c(3,2)]] <- x[[3]] # f # } # logical implication if (P) Q # P -> Q ==> !(P) | (Q) # # if-then-else (length 4) # if (P) Q else R # (P -> Q) & (!P -> R) # replace_if <- function(x){ if ( length(x) == 3 ){ f <- expression(!(P) | (Q) )[[1]] f[[c(2,2,2)]] <- x[[2]] f[[c(3,2)]] <- x[[3]] f } else { # length (x) == 4 (there is an 'else') f <- expression( (!(P) | (Q)) & ((P) | (R)) )[[1]] P <- which.call(f,"P") f[[P[[1]]]] <- x[[2]] f[[P[[2]]]] <- x[[2]] Q <- which.call(f,"Q") f[[Q[[1]]]] <- x[[3]] R <- which.call(f,"R") f[[R[[1]]]] <- x[[4]] f } } vectorize <- function(x){ # we are at an end, or we enter a function, which we will not # modify. if ( length(x) == 1 || x[[1]] == "function") return(x) for ( i in seq_along(x) ){ if ( is.symbol(x[[i]]) && x[[i]] == "if" ){ return(vectorize(replace_if(x))) } else { x[[i]] <- vectorize(x[[i]]) } } x } # x: a validation call #vectorize <- function(x) if ( x[[1]] == 'if' ) not(x[[2]]) %or% x[[3]] else x # Determine wether a call object represents a linear operation. ---- # the 'length' conditions ensure that for unary operators, the postfix argument is treated as 'right' node <- function(x) if ( is.call(x) ) x[[1]] else NULL left <- function(x) if ( is.call(x) && length(x)>2) x[[2]] else NULL right <- function(x) if ( is.call(x) ) x[[min(length(x),3)]] else NULL linear_call <- function(x){ if (is.character(x)) return(FALSE) if (is.logical(x)) return(FALSE) if ( is.null(node(x)) ) return(TRUE) n <- deparse(node(x)) if ( !n %in% c("+","-","*","<","<=","==",">=",">" ) ) return(FALSE) if ( n == "*" && !( is.numeric(left(x)) || is.numeric(right(x)) ) ) return(FALSE) linear_call(left(x)) & linear_call(right(x)) } validating_call <- function(cl){ pure <- c("<", "<=", "==", "!=", ">=", ">", "%in%", "%vin%", "identical", "~" ,"%->%" , "grepl" , "is_unique", "all_unique", "is_complete", "all_complete" , "exists_any", "exists_one", "is_linear_sequence","in_linear_sequence" , "part_whole_relation","hierarchy" , "field_length", "number_format", "field_format" , "contains_exactly", "contains_at_least", "contains_at_most", "does_not_contain" , "in_range", "var_group") unary <- c("!", "(", "all", "any" ) binary <- c("|","||","&","&&","if","xor") variables_ok <- !is.null(var_from_call(cl)) || # validating call must have variables grepl("contain", deparse(cl[[1]])) # or be one of the 'contains' functions # push-button semantic changer. See issue #41 assume_logical <- FALSE vc <- function(x){ if (is.symbol(x)) return(assume_logical) node <- deparse(x[[1]]) if ( node %in% pure || grepl("^is\\.",node) ) return(TRUE) if ( node %in% unary && vc(x[[2]])) return(TRUE) if ( node %in% binary && vc(x[[2]]) && vc(x[[3]]) ) return(TRUE) FALSE } variables_ok && vc(cl) } # coefficients for normalized linear expressions (constant after the comparison operator) nodesign <- c('+' = 1, '-' = -1) operatorsign <- c('<'= 1, '<=' = 1, '==' = 1, '>=' = -1, '>' = -1) normed_operators <- c('<' = '<', '<=' = '<=', '==' = '==', '>=' = '<=', '>' = '<') addcoef <- function(x,value,env) assign(x,mget(x,envir=env,ifnotfound=0)[[1]]+value,env) # coefficients of an expression of the form sum_i a_i*x_i (so no comparison operators) coefficients <- function(x, sign=1, coef=new.env()){ # added constant if ( is.numeric(x) ) addcoef('CONSTANT',sign*x,coef) # end node without explicit coefficient. if ( is.name(x) ) addcoef(deparse(x),sign,coef) # wer're at a leaf if ( is.null(node(x)) ){ addcoef('CONSTANT',0,coef) return(unlist(as.list(coef))) } n <- deparse(node(x)) if (n %in% c("+","-") ){ sign <- nodesign[n][[1]] # the extra [[1]] gets rid of the 'name' attribute. } if ( n == '*' ){ val <- if ( is.numeric(left(x)) ) left(x) else right(x) var <- if ( is.name(left(x)) ) left(x) else right(x) addcoef(deparse(var), sign*val, coef) } else { coefficients(left(x),1,coef) coefficients(right(x),sign,coef) } addcoef('CONSTANT',0,coef) return(unlist(as.list(coef))) }
/scratch/gouwar.j/cran-all/cranData/validate/R/parse.R
#' @include confrontation.R NULL # helper to make possiby large numbers more readable. # x: nonnegative integer. humanize <- function(x){ out <- character(length(x)) i <- x < 1000 out[i] <- sprintf("%3.0f",x[i]) i <- x>= 1000 & x < 1e5 out[i] <- sprintf("%2.1fk", x[i]/1000) i <- x >= 1e5 & x < 1e6 out[i] <- sprintf("%3.0fk", x[i]/1000) i <- x >= 1e6 & x < 1e8 out[i] <- sprintf("%2.1fM", x[i]/1e6) i <- x > 1e8 & x < 1e9 out[i] <- sprintf("%3.0fM", x[i]/1e6) i <- x >= 1e9 & x < 1e11 out[i] <- sprintf("%2.1fMM", x[i]/1e9) i <- x > 1e11 & x < 1e12 out[i] <- sprintf("%3.0fMM", x[i]/1e9) i <- x >= 1e12 out[i] <- sprintf("%g",x[i]) trimws(out) } # Add bar plot to current viewport. # depending on the number of bars, white lines are drawn between them # and the axes are annotated. # m: a matrix with columns representing [fails, passes, NA] fill_bars <- function(m, fill, col=fill, rulenames){ m <- prop.table(m,1) n <- nrow(m) h <- 1/n y <- seq(0,n-1)*h ii <- order(m[,1]) m <- m[ii,,drop=FALSE] rulenames <- rulenames[ii] grid::grid.rect(x=0, y= y, height=h, width=m[,1] , just=c("left","bottom") , gp=gpar(fill=fill[1],col=col[1])) grid::grid.rect(x=m[,1],y=y, height=h, width=m[,2] , just=c("left","bottom") , gp=gpar(fill=fill[2], col=col[2])) grid::grid.rect(x=1-m[,3],y=y, height=h, width=m[,3] , just=c("left","bottom") , gp=gpar(fill=fill[3],col=col[3])) grid::grid.xaxis(at=c(0:5)/5, label=paste0(seq(0,100,by=20),"%")) if (nrow(m)<50){ grid::grid.text(rulenames,x=unit(-0.3,"lines"), y=unit(y+h/2,"npc") , just=c("right","center")) for ( i in seq(2,length(y))){ grid::grid.abline(intercept=y[i], slope=0, gp=grid::gpar(col="white",lwd=0.5)) } } } # Add legend to current viewport. # m: a matrix with columns representing [fails, passes, NA] add_vlegend <- function(m, width, labels, fill, color=fill){ ns <- humanize(colSums(m)) ns <- c(ns, humanize(sum(m))) perc <- colSums(m)/sum(m)*100 perc <- c(perc,100) for ( j in 1:4){ grid::pushViewport(grid::viewport(layout.pos.row=1, layout.pos.col=j)) # first row: boxes + labels grid::grid.rect(x=grid::unit(0,"char") , y=grid::unit(1.5,"lines") - grid::unit(1,"char") , width=grid::unit(1,"char"), height=grid::unit(1,"char") , just = c("left","bottom") , gp = grid::gpar(fill=fill[j], col = color[j])) grid::grid.text(labels[j] , x = grid::unit(1.2,"char") , y = grid::unit(0.9,"char") , just=c("left","bottom")) grid::upViewport() # second row: numbers of items grid::pushViewport(grid::viewport(layout.pos.row=2, layout.pos.col=j)) grid::grid.text(sprintf("%s",ns[j]),x=unit(1.2,"char"), just=c("left","bottom")) grid::upViewport() # third row: percentages grid::pushViewport(grid::viewport(layout.pos.row=3, layout.pos.col=j)) grid.text(trimws(sprintf("%3.0f%%",perc[j])) , x = grid::unit(1.2,"char"), just=c("left","bottom")) upViewport() } } # plot a validation object # m: a matrix with columns representing [fails, passes, NA] plot_validation <- function(m , fill , col=fill , rulenames , labels , title , xlab) { grid.newpage() # emperically, we can put about 2 characters in one line height. left_margin = max(nchar(rulenames))/2 if (length(rulenames)>50) left_margin <- 1 main <- grid::plotViewport(c(5,left_margin,1,1), gp=gpar(fontsize=8)) grid::pushViewport(main) fill_bars(m, fill=fill, col=col,rulenames=rulenames) ii <- which.max(nchar(labels)) box_width <- grid::stringWidth(labels[ii]) grid::upViewport() # add title if (is.null(title)) title <- "Validation results by rule" vptitle <- grid::viewport(x = main$x , y = main$y + main$height , width = grid::stringWidth(title) , height = grid::unit(1,"lines") , just = c("left","bottom")) pushViewport(vptitle) grid::grid.text(title , x = grid::unit(0,"npc") , y = grid::unit(0.2,"char") , just = c("left","bottom")) grid::upViewport() # add xlabel if (is.null(xlab)) xlab <- "Items" vpxlab <- grid::viewport(x = main$x , y = main$y -grid::unit(2,"lines") , width = grid::stringWidth(xlab) , height = grid::unit(1,"lines") , just = c("left","top")) grid::pushViewport(vpxlab) grid::grid.text(xlab , x = grid::unit(0,"npc") , y = grid::unit(0,"npc") , just = c("left","bottom")) grid::upViewport() # add legend ncols <- length(labels) lgd <- grid::viewport(x = main$x+main$width , y = grid::unit(0,"char") , width = ncols*box_width , height = grid::unit(3,"lines") , just = c("right","bottom") , gp = grid::gpar(fontsize=8) , layout = grid::grid.layout(3, ncols , widths = rep(grid::unit(1/ncols,"null"), ncols) , heights=rep(unit(1/3,"null"),ncols)) ) pushViewport(lgd) add_vlegend(m, width=box_width, labels=labels, fill=fill, color=col) } setGeneric("barplot") #' Plot number of violations #' #' @param height an R object defining height of bars (here, a \code{validation} object) #' @param ... parameters to be passed to \code{\link[graphics]{barplot}} but not #' \code{height}, \code{horiz}, \code{border},\code{las}, and \code{las}. #' @param add_legend Display legend? #' @param add_exprs Display rules? #' @param colors Bar colors for validations yielding NA or a violation #' @param topn If specified, plot only the top n most violated calls #' @param order_by (single \code{character}) order bars decreasingly from top to bottom by the #' number of fails, passes or \code{NA}'s. #' @param stack_by (3-vector of \code{characters}) Stacking order for bar chart (left to right) #' #' @section Credits: #' The default colors were generated with the \code{RColorBrewer} package of Erich Neuwirth. #' #' @return A list, containing the bar locations as in \code{\link[graphics]{barplot}} #' #' @aliases barplot,validation-method #' @example ../examples/barplot.R #' @export #' @family validation-methods setMethod('barplot',signature('validation'), function(height, ..., order_by = c("fails","passes","nNA") , stack_by = c("fails","passes","nNA") , topn=Inf, add_legend=TRUE, add_exprs=TRUE , colors=c(fails = "#FB9A99",passes = "#B2DF8A", nNA = "#FDBF6F") ){ warning("The 'barplot' method for confrontation objects is deprecated. Use 'plot' instead" ,call.=FALSE) add_legend <- isTRUE(add_legend) add_exprs <- isTRUE(add_exprs) order_by <- match.arg(order_by) stopifnot(topn>0,is.character(order_by),is.logical(add_legend),is.logical(add_exprs)) # get calls & values from confrontation object calls <- sapply(height$._calls, deparse) names(calls) <- names(height$._value) val <- values(height,drop=FALSE) # reorder colors to match stacking order colors <- colors[stack_by] # defaults for some optional parameters args <- list(...) argn <- names(args) xlab <- args$xlab if (is.null(xlab)) xlab <- "Items" args <- args[argn != "xlab"] if ( !'main' %in% argn ) args$main <- deparse(height$._call) # values with different dimensionality are plotted in different row. # we turn xpd off so the legend can be placed outside # narrow the margins for more efficient use of plotting region. oldpar <- par(mar=c(4,4.1,3,1),xpd=TRUE, mfrow=c(length(val),1)) on.exit(par(oldpar)) # create plots, one row for each dimension structure out <- lapply(seq_along(val), function(i){ y <- val[[i]] count <- cbind( nNA = colSums(is.na(y)) , fails = colSums(!y,na.rm=TRUE) , passes = colSums(y,na.rm=TRUE) ) labels <- calls[colnames(y)] # how to order I <- order(count[,order_by]) count <- count[I,,drop=FALSE] labels <- labels[I] if ( topn < Inf ){ I <- order(count[,order_by],decreasing=TRUE) I <- 1:nrow(count) %in% I[1:min(topn,length(I))] count <- count[I,,drop=FALSE] labels <- calls[[i]][I] } if ( !'names.arg' %in% argn ) args$names.arg <- abbreviate(rownames(count)) arglist <- list( height = t(count[,stack_by,drop=FALSE]) , horiz=TRUE , border=NA , las=1 , col=c(colors) , xlab="" ) # actual plot p = do.call(barplot,c(arglist,args))[seq_along(labels)] # Add labels & legend if (add_exprs) text(0.1,p,labels,pos=4) n <- length(labels) bw <- if ( n > 1) (p[n]-p[n-1] - 0.2) else 0.2 ht <- if ( n > 1) p[n]+0.5*bw else 1.197 m <- sum(arglist$height[,1]) text(m-strwidth(xlab)/2, 0.2-0.16*ht,xlab) if(add_legend){ legend(x=-0.04*m, y=0.2-0.12*ht , legend = stack_by , fill=colors , border='black' , bty='n' , horiz=TRUE ) } p }) par(xpd=FALSE) invisible(out) })
/scratch/gouwar.j/cran-all/cranData/validate/R/plot.R
#' @name retailers #' @aliases SBS2000 #' @title data on Dutch supermarkets #' @description #' Anonymized and distorted data on revenue and cost structure for #' 60 retailers. Currency is in thousands of Euros. There are two #' data sets. The \code{SBS2000} dataset is equal to the \code{retailers} #' data set except that it has a record identifier (called \code{id}) column. #' #' \itemize{ #' \item id: A unique identifier (only in SBS2000) #' \item size: Size class (0=undetermined) #' \item incl.prob: Probability of inclusion in the sample #' \item staff: Number of staff #' \item turnover: Amount of turnover #' \item other.rev: Amount of other revenue #' \item total.rev: Total revenue #' \item staff.costs: Costs assiciated to staff #' \item total.costs: Total costs made #' \item profit: Amount of profit #' \item vat: Turnover reported for Value Added Tax #'} #' #' @family datasets #' #' @docType data #' @format A csv file, one retailer per row. NULL #' @name SBS2000 #' @rdname retailers NULL #' @name samplonomy #' @title Economic data on Samplonia #' @description #' Simulated economic time series representing GDP, Import, Export and #' Balance of Trade (BOT) of Samplonia. Samplonia is a fictional Island #' invented by Jelke Bethelehem (2009). The country has 10 000 inhabitants. #' It consists of two provinces: Agria and Induston. Agria is a rural #' province consisting of the mostly fruit and vegetable producing district #' of Wheaton and the mostly cattle producing Greenham. Induston has four #' districts. Two districts with heavy industry named Smokeley and Mudwater. #' Newbay is a young, developing district while Crowdon is where the rich #' Samplonians retire. The current data set contains several time series #' from Samplonia's national accounts system in long format. #' #' There are annual and quarterly time series on GDP, Import, Export and #' Balance of Trade, for Samplonia as a whole, for each province and each #' district. BOT is defined as Export-Import for each region and period; #' quarterly figures are expected to add up to annual figures for each #' region and measure, and subregions are expected to add up to their #' super-regions. #' #' \itemize{ #' \item region: Region (Samplonia, one if its 2 provinces, or one of its 6 districts) #' \item freq: Frequency of the time series #' \item period: Period (year or quarter) #' \item measure: The economic variable (gdp, import, export, balance) #' \item value: The value #' } #' #' The data set has been endowed with the following errors. #' \itemize{ #' \item For Agria, the 2015 GDP record is not present. #' \item For Induston, the 2018Q3 export value is missing (\code{NA}) #' \item For Induston, there are two different values for the 2018Q2 Export #' \item For Crowdon, the 2015Q1 balance value is missing (\code{NA}). #' \item For Wheaton, the 2019Q2 import is missing (\code{NA}). #' } #' #' @family datasets #' #' @references #' J. Bethlehem (2009), Applied Survey Methods: A Statistical Perspective. John #' Wiley & Sons, Hoboken, NJ. #' #' @docType data #' @format An RData file. NULL #' @name nace_rev2 #' @title NACE classification code table #' @description #' Statistical Classification of Economic Activities. #' #' #' #'\itemize{ #' \item Order \code{[integer]} #' \item Level \code{[integer]} NACE level #' \item Code \code{[character]} NACE code #' \item Parent \code{[character]} parent code of \code{"Code"} #' \item Description \code{[character]} #' \item This_item_includes \code{[character]} #' \item This_item_also_includes \code{[character]} #' \item Rulings \code{[character]} #' \item This_item_excludes \code{[character]} #' \item Reference_to_ISIC_Rev._4 \code{[character]} #'} #' #' #' @family datasets #' @seealso \code{\link{hierarchy}} #' @docType data #' @references #' This codelist was downloaded on 2020-10-21 from #' \href{https://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=LST_CLS_DLD&StrNom=NACE_REV2&StrLanguageCode=EN&StrLayoutCode=HIERARCHIC#}{Eurostat} #' #' #' @format A csv file, one NACE code per row. NULL
/scratch/gouwar.j/cran-all/cranData/validate/R/retailers.R
# RULE OBJECT ----------------------------------------------------------------- #' A rich expression #' #' @section Details: #' Technically, \code{rule} is a \code{call} object endowed with extra #' attributes such as a name, a label and a description description, creation #' time and a reference to its origin. Rule objects are not for direct use by #' users of the package, but may be of interest for developers of this package, #' or packages depending on it. #' #' @section Exported S4 methods for \code{rule}: #' \itemize{ #' \item{\code{show}} #' \item{\code{\link{origin}}} #' \item{\code{\link{label}}} #' \item{\code{\link{description}}} #' \item{\code{\link{created}}} #' } #' #' @section Private S4 methods for \code{rule}: #' \itemize{ #' \item{validating} #' \item{linear} #' \item{expr} #' \item{is_tran_assign} #' } #' #' @section See also: #' \itemize{ #' \item{\code{\link{expressionset-class}}} #' } #' #' @keywords internal rule <- setClass("rule", slots = c( expr = "language" # MUST be a 'call'[*] , name = "character" , label = "character" # label description , description = "character" # description description , origin = "character" , created = "POSIXct" , meta = "list" ) , prototype = list( expr = NULL , name = character(0) , label = character(0) , description = character(0) , origin = character(0) , created = as.POSIXct(NA) , meta = vector(mode = "list", length = 0) ) ) #[*] Peeling off an expression always yields an object of 'mode' call, but not # of 'type' call. For example: # # p <- parse(text="x + y")[[1]] # class(p) # [1] "call" # # p <- parse(text="if (A) B))[[1]] # parse(p) # [1] "if" # is.call(p) # [1] TRUE # # # S4 GENERICS ----------------------------------------------------------------- #' Get or set rule metadata #' #' Rule metadata are key-value pairs where the value is a simple (atomic) #' string or number. #' #' @param x an R object #' @param ... Arguments to be passed to other methods #' #' @name meta #' @export #' @examples #' #' v <- validator(x > 0, y > 0) #' #' # metadata is recycled over rules #' meta(v,"foo") <- "bar" #' #' # assign metadata to a selection of rules #' meta(v[1],"fu") <- 2 #' #' # retrieve metadata as data.frame #' meta(v) #' #' # retrieve metadata as list #' meta(v,simplify=TRUE) #' setGeneric("meta",function(x,...) standardGeneric("meta")) #' Get variable names #' #' Generic function that extracts names of variables ocurring #' in R objects. #' #' #' @param x An R object #' @param ... Arguments to be passed to other methods. #' #' @family expressionset-methods #' @name variables #' @export setGeneric("variables", function(x,...) standardGeneric("variables")) setGeneric("validating",function(x,...) standardGeneric('validating')) setGeneric("linear",function(x,...) standardGeneric("linear")) #' Get expressions #' #' @param x Object #' @param ... options to be passed to other functions #' @keywords internal #' @export #' @rdname expr setGeneric("expr",def=function(x,...) standardGeneric("expr")) # check for transient assignments (:=) setGeneric("is_tran_assign", function(x,...) standardGeneric("is_tran_assign")) #' Origin of rules #' #' A slot to store where the rule originated, e.g. a filename #' or \code{"command-line"} for interactively defined rules. #' #' #' #' @param x and R object #' @param ... Arguments to be passed to other methods #' @return A \code{character} vector. #' @example ../examples/properties.R #' @export setGeneric("origin",def=function(x,...) standardGeneric("origin")) #' Rule label #' #' A short (typically two or three word) description of a rule. #' #' @param x and R object #' @param ... Arguments to be passed to other methods #' @return A \code{character} vector. #' @example ../examples/properties.R #' @export setGeneric("label", function(x,...) standardGeneric("label")) #' Rule description #' #' A longer (typically one-paragraph) description of a rule. #' #' @param x and R object #' @param ... Arguments to be passed to other methods #' @return A \code{character} vector. #' @example ../examples/properties.R #' @export setGeneric("description", function(x,...) standardGeneric("description")) #' Creation timestamp #' #' #' @param x and R object #' @param ... Arguments to be passed to other methods #' @return A \code{POSIXct} vector. #' #' @example ../examples/properties.R #' @export setGeneric("created", function(x,...) standardGeneric("created")) #' @rdname meta #' @param name \code{[character]} metadata key #' @param value Value to set #' @export setGeneric("meta<-", function(x, name, value) standardGeneric("meta<-")) #' @rdname origin #' @param value Value to set #' @example ../examples/properties.R #' @export setGeneric("origin<-",function(x,value) standardGeneric("origin<-")) #' @rdname label #' @param value Value to set #' @example ../examples/properties.R #' @export setGeneric("label<-",function(x,value) standardGeneric("label<-")) #' @rdname description #' @param value Value to set #' @example ../examples/properties.R #' @export setGeneric("description<-",function(x,value) standardGeneric("description<-")) #' @rdname created #' @param value Value to set #' @example ../examples/properties.R #' @export setGeneric("created<-",function(x,value) standardGeneric("created<-")) # S4 METHODS ------------------------------------------------------------------ #' @rdname meta setMethod("meta","rule", function(x,...){ x@meta }) #' @rdname expr setMethod("expr","rule",function(x,...) x@expr) #' @describeIn variables Retrieve unique variable names setMethod("variables","rule", function(x,...){ var_from_call(x@expr) }) #' @describeIn variables Alias to \code{names.list} setMethod('variables',signature('list'), function(x,...) names(x)) #' @describeIn variables Alias to \code{names.data.frame} setMethod('variables',signature('data.frame'), function(x,...) names(x)) #' @describeIn variables Alias to \code{ls} setMethod('variables',signature('environment'), function(x,...) ls(x)) # full print method for rules setMethod("show", "rule", function(object){ cat(sprintf("\nObject of class %s.",class(object))) nm <- slotNames(object) n <- max(nchar(nm)) nm <- nm[nm != "meta"] vl <- sapply(nm,function(x) paste0("",format(slot(object,x)))) fmt <- paste0("\n %-",n,"s: %s") cat(sprintf(fmt,nm,vl)) # meta names and abbreviated type. tp <- abbreviate(sapply(meta(object),class),3) nm <- names(meta(object)) meta_str <- paste(sprintf("%s<%s>",nm,tp), collapse=", ") cat(sprintf(fmt,"meta",meta_str)) }) setMethod("validating","rule", function(x,...){ validating_call(x@expr) }) setMethod("linear","rule",function(x,...){ linear_call(x@expr) }) #' @rdname origin setMethod("origin","rule",function(x,...){ setNames(x@origin, x@name) }) #' @rdname label setMethod("label","rule",function(x,...) setNames(paste0("",x@label),x@name) ) #' @rdname description setMethod("description", "rule", function(x,...) setNames( paste0("",x@description), x@name) ) #' @rdname created setMethod("created", "rule", function(x,...) setNames( x@created,x@name) ) setMethod("is_tran_assign","rule", function(x){ x@expr[[1]] == ":=" }) #' @rdname meta #' @export setReplaceMethod("meta", c("rule","character"), function(x, name, value){ x@meta[[name]] <- value x }) #' @rdname names #' @export setReplaceMethod("names",c("rule","character"),function(x,value){ if (length(value) > 1){ stop("name must be 'character' of length 1") } x@name <- value x }) #' @rdname origin #' @export setReplaceMethod("origin",c("rule","character"),function(x,value){ if (length(value) > 1){ stop("origin must be 'character' of length 1") } x@origin <- value x }) #' @rdname label #' @export setReplaceMethod("label",c("rule","character"),function(x,value){ if (length(value) > 1){ stop("label must be 'character' of length 1") } x@label <- value x }) #' @rdname description #' @export setReplaceMethod("description",c("rule","character"),function(x,value){ if (length(value) > 1){ stop("description must be 'character' of length 1") } x@description <- value x }) #' @rdname created #' @export setReplaceMethod("created",c("rule","POSIXct"),function(x,value){ if (length(value) > 1){ stop("timestamp must be 'POSIXct' of length 1") } x@created <- value x }) # handy for rule to yaml/json rule_to_list <- function(x, expr_as_text = TRUE, ...){ expr <- x@expr if (expr_as_text){ expr <- deparse(expr, width.cutoff = 500L) } list( expr=expr, name = x@name, label = x@label, description = x@description, created = x@created, origin = x@origin, meta = x@meta ) }
/scratch/gouwar.j/cran-all/cranData/validate/R/rule.R
#' @importFrom utils capture.output {} # create reference object to store or ignore output # of validation functions output <- function(){ e <- new.env(parent=globalenv()) e$n <- 0 # validating calls e$nrule <- 0 # rules executed e$nwarn <- 0 # warnings thrown e$nerrs <- 0 # errors thrown e$nfail <- 0 # items with fails e$nNA <- 0 # items with NA re <- "^V[0-9]+" # regex to retrieve validations e$add <- function(x){ e$n <<- e$n + 1 e[[sprintf("V%04d",e$n)]] <- x # Administration of some of the content e$nrule <- e$nrule + length(x) e$nwarn <- e$nwarn + confrontation_nwarn(x) e$nerrs <- e$nerrs + confrontation_nerrs(x) s <- summary(x) e$nfail <- e$nfail + sum(s[,"fails"]) e$nNA <- e$nNA + sum(s[,"nNA"]) } e$gimme <- function(){ vr <- ls(e, pattern = re) lapply(vr, function(i) e[[i]]) } e } capture <- function(fun, env){ function(...){ out <- fun(...) # Reconstruct the call that was captured out$._call <- match.call(fun) attr(out, "file") <- env$file attr(out, "lines") <- c(fst = env$fst, lst=env$lst) env$add(out) out } } #' Run a file with confrontations. Capture results #' #' A validation script is a regular R script, intersperced with \code{confront} #' or \code{check_that} statements. This function will run the script file #' and capture all output from calls to these functions. #' #' #' @param file \code{[character]} location of an R file. #' @param verbose \code{[logical]} toggle verbose output. #' #' @return \code{run_validation_file}: An object of class \code{validations}. This is #' a \code{list} of objects of class \code{\link{validation}}. #' #' @family validations validation-files #' @export run_validation_file <- function(file, verbose=TRUE){ catf <- function(fmt, ...) if (verbose) cat(sprintf(fmt,...)) dir <- dirname(file) oldwd <- getwd() on.exit(setwd(oldwd)) setwd(dir) # environment to capture confrontations o <- output() e <- new.env() e$confront <- capture(confront, o) e$check_that <- capture(check_that, o) fname <- basename(file) parsed <- parse(fname, keep.source=TRUE) src <- attr(parsed, "srcref") prfile <- substr(fname, 1,24) prfile <- gsub(" ",".", x=sprintf("%-26s", prfile), fixed=TRUE) o$file <- file for ( i in seq_along(parsed) ){ expr <- parsed[[i]] o$fst <- src[[i]][1] o$lst <- src[[i]][3] o$expr <- expr out <- eval(expr, envir=e) # print status for quick overview. prefix <- sprintf("\rRunning %s %3d calls %3d rules", prfile,o$n, o$nrule) postfix <- "" if (o$nfail == 0 & o$nNA == 0){ postfix <- "OK" } else { if (o$nfail > 0) postfix <- sprintf("%d FAILS", o$nfail) if (o$nNA > 0) postfix <- sprintf("%s %d NA", postfix, o$nNA) if (o$nerrs > 0) postfix <- sprintf("%s %d ERRORS",postfix, o$nerrs) if (o$nwarn > 0) postfix <- sprintf("%s %d WARNINGS",postfix, o$nwarn) } catf("%s %s",prefix,postfix) } catf("\n") structure(o$gimme() , class=c("validations", "list") , call=match.call() ) } #' @param dir \code{[character]} path to directory. #' @param pattern \code{[characer]} regular expression that selects validation files to run. #' #' #' #' @rdname run_validation_file #' @return \code{run_validation_dir}: An object of class \code{validations}. This is #' a \code{list} of objects of class \code{\link{validation}}. #' @export #' @family validation validation-files run_validation_dir <- function(dir="./", pattern="^validate.+[rR]", verbose=TRUE){ if (!dir.exists(dir)) stop(sprintf("%s\nnot found or is not a directory")) files <- dir(path=dir, pattern=pattern, full.names=TRUE) L <- list() for ( f in files ){ out <- c(L, run_validation_file(f)) } structure(out , class=c("validations", "list") , call=match.call() ) } #' @param x An R object #' @param ... Unused #' @export #' @return \code{print}: \code{NULL}, invisibly. #' @rdname run_validation_file print.validations <- function(x,...){ cat(sprintf("Object of class 'validations'\nCall:\n ")) print(attr(x,"call")) cat("\n") cat(sprintf("Confrontations: %d\n",sum(sapply(x,length)))) cat(sprintf("With fails : %d\n",sum(sapply(x, failed_confrontations)) )) cat(sprintf("Warnings : %d\n", sum(sapply(x, function(y) length(warnings(y)) )) )) cat(sprintf("Errors : %d\n", sum(sapply(x, function(y) length(errors(y)) )) )) invisible(NULL) } #' @rdname run_validation_file #' @param object An R object #' @return \code{summary}: A data frame similar to the data frame returned #' when summarizing a \code{\link{validation}} object. There are extra columns listing #' each call, file and first and last line where the code occurred. #' #' @method summary validations #' @export summary.validations <- function(object, ...){ L <- lapply(object, function(x){ s <- summary(x) s$call <- capture.output(print(x$._call)) s$file <- attr(x,"file") s$fst <- attr(x,"lines")[1] s$lst <- attr(x, "lines")[2] s }) do.call(rbind,L) }
/scratch/gouwar.j/cran-all/cranData/validate/R/run_validation.R
# do we have rsdmx installed? check_rsdmx <- function(){ if (!requireNamespace('rsdmx', quietly=TRUE)){ stop("You need to install 'rsdmx' to use SDMX functionality", call.=FALSE) } } # download something from an SDMX registry and cash it. download_sdmx <- local({ store <- new.env() function(endpoint, resource, agency_id, resource_id, version="latest", ...){ check_rsdmx() url <- file.path(endpoint, resource, agency_id, resource_id, version) if (!url %in% ls(store)){ store[[url]] <- tryCatch(rsdmx::readSDMX(url, ...), error=function(e){ msg <- sprintf( "retrieving data from \n'%s'\n failed with '%s'\n", url, e$message) stop(msg, call.=FALSE) }) } out <- store[[url]] attr(out, "url") <- url out } }) #' Get code list from an SDMX REST API endpoint. #' #' \code{sdmx_codelist} constructs an URL for \code{rsdmx::readSDMX} and #' extracts the code IDs. Code lists are downloaded once and cached for the #' duration of the R session. #' #' @inheritParams validator_from_dsd #' @param what \code{[character]} Return a \code{character} with code id's, or #' a data frame with all information. #' #' @family sdmx #' @export #' #' @examples #' #' #' # here we download the CL_ACTIVITY codelist from the ESTAT registry. #' \dontrun{ #' codelist <- sdmx_codelist( #' endpoint = "https://registry.sdmx.org/ws/public/sdmxapi/rest/" #' , agency_id = "ESTAT" #' , resource_id = "CL_ACTIVITY" #' } #' sdmx_codelist <- function(endpoint, agency_id, resource_id, version="latest", what=c("id","all")){ check_rsdmx() what <- match.arg(what) dl <- download_sdmx(endpoint, "codelist", agency_id, resource_id, version) df <- as.data.frame(dl) if (what=="all") df else df[,1] } #' Get code list from Eurostat SDMX repository #' #' \code{estat_codelist} gets a code list from the REST API provided at #' \code{ec.europa.eu/tools/cspa_services_global/sdmxregistry}. It is a #' convenience wrapper that calls \code{sdmx_codelist}. #' #' @rdname sdmx_codelist #' #' @export #' #' @examples #' \dontrun{ #' estat_codelist("CL_ACTIVITY") #' } estat_codelist <- function(resource_id, agency_id = "ESTAT", version="latest"){ sdmx_codelist( endpoint = sdmx_endpoint("ESTAT") , agency_id = agency_id , resource_id = resource_id , version = version ) } #' Get code list from global SDMX repository #' #' \code{global_codelist} gets a code list from the REST API provided at #' \code{https://registry.sdmx.org/webservice/data.html}. It is a convenience #' wrapper that calls \code{sdmx_codelist}. #' #' @rdname sdmx_codelist #' @export #' @family sdmx #' @examples #' \dontrun{ #' global_codelist("CL_AGE") ) #' global_codelist("CL_CONF_STATUS") #' global_codelist("CL_SEX") #' } #' # An example of using SDMX information, downloaded from the SDMX global #' # registry #' \dontrun{ #' # economic data from the country of Samplonia #' data(samplonomy) #' head(samplonomy) #' #' rules <- validator( #' , freq %in% global_codelist("CL_FREQ") #' , value >= 0 #' ) #' cf <- confront(samplonomy, rules) #' summary(cf) #' #' } global_codelist <- function(resource_id, agency_id = "SDMX", version="latest"){ sdmx_codelist( endpoint = sdmx_endpoint("GLOBAL") , agency_id = agency_id , resource_id = resource_id , version = version ) } #' Get URL for known SDMX registry endpoints #' #' Convenience function storing URLs for SDMX endpoints. #' #' @param registry \code{[character]} name of the endpoint (case insensitve). If \code{registry} #' is \code{NULL} (the default), the list of supported endpoints is returned. #' #' @family sdmx #' #' @examples #' sdmx_endpoint() #' sdmx_endpoint("ESTAT") #' sdmx_endpoint("global") #' #' @export sdmx_endpoint <- function(registry=NULL){ ENDPOINTS <- c( "ESTAT" = "https://ec.europa.eu/tools/cspa_services_global/sdmxregistry/rest" , "GLOBAL" = "https://registry.sdmx.org/ws/public/sdmxapi/rest" ) if (is.null(registry)) return(ENDPOINTS) registry <- toupper(registry) out <- ENDPOINTS[registry] if (is.na(out)) stop(sprintf("Unrecognized registry, use one of %s" , paste(names(ENDPOINTS), collapse=", "))) else out } #' Extract a rule set from an SDMX DSD file #' #' Data Structure Definitions contain references to code lists. #' This function extracts those references and generates rules #' that check data against code lists in an SDMX registry. #' #' @param endpoint \code{[character]} REST API endpoint of the SDMX registry #' @param agency_id \code{[character]} Agency ID (e.g. \code{"ESTAT"}) #' @param resource_id \code{[character]} Resource ID (e.g. \code{"CL_ACTIVITY"}) #' @param version \code{[character]} Version of the code list. #' #' @return An object of class \code{\link{validator}}. #' @family sdmx #' @export validator_from_dsd <- function(endpoint, agency_id, resource_id, version="latest"){ dsd <- download_sdmx(endpoint, "datastructure", agency_id, resource_id, version) dimensions <- slot(slot(dsd, "datastructures")[[1]], "Components") df <- as.data.frame(dimensions) cl_vars <- !is.na(df$codelist) template <- '%s %%in%% sdmx_codelist(endpoint = "%s", agency_id = "%s", resource_id = "%s", version = "%s")' df1 <- df[cl_vars,] rules <- data.frame( rule = sprintf(template , df1$conceptRef , endpoint , df1$codelistAgency , df1$codelist , version=df1$codelistVersion) , name = paste0("CL_", df1$conceptRef) , origin = attr(dsd,"url") , description = sprintf("Code list from %s::%s %s", resource_id, df1$conceptRef, version) ) validator(.data=rules) }
/scratch/gouwar.j/cran-all/cranData/validate/R/sdmx.R
#### GROUP DEFINITION SYNTAX -------------------------------------------------- ## USER-FACING # user-defined variable group: # Returns a function that expands a call in which a group name is used # to a list of calls. # # name (possibly unqouted) name of the group. # ... var_group <- function(...){ L <- as.list(substitute(list(...))[-1]) function(){ if (length(L)==0) return(NULL) out <- L[[1]] L <<- L[-1] out } } ## UNDER THE HOOD # Replace occurrences of 'vargroup(v1,v2,...,vn)' # calls: 'list' of calls # output: the same list of calls, but ocurrences of 'vargroup' have been multiplied # expand_groups <- function(calls){ L <- list() for (k in seq_along(calls)){ # this copies the name. U <- calls[k] # get reference ref <- get_ref(U) # find var groups, if any. cl <- calls[[k]] I <- which.call(cl,'var_group') if (length(I) > 0){ i <- I[[1]] i <- i[-length(i)] f <- eval(cl[[i]]) U <- list() while(!is.null(x <- f())){ u <- cl u[[i]] <- x U <- c(U,u) } names(U) <- paste0(names(calls)[k],".",seq_along(U)) U <- set_ref(U, rep(ref, length(U))) } L <- c(L,U) } L <- unlist(L) # recurse to check if groups are still present. if (length(L) > length(calls)) expand_groups(L) else L } #### ASSIGNMENT SUBSTITUTION -------------------------------------------------- ## All under the hood ## Substitute assignments in subsequent calls expand_assignments <- function(calls){ e <- new.env() i <- 1 lapply(calls, function(x){ x <- substitute_assignments(x,e) # add index into original list of calls. attr(x,"reference") <- i i <<- i+1 if(x[[1]] == ':=') add_assignment(x,e) x } )[!is.assignment(calls)] } substitute_assignments <- function(call,assignments){ for ( lhs in ls(assignments) ){ i <- which.call(call, lhs) for ( j in i ){ call[[j]] <- assignments[[lhs]] } } call } # add named assignment to environment # - rhs is 'embraced' for substitution add_assignment <- function(assignment, e){ e[[as.character(left(assignment))]] <- right(assignment) assignment } # check wether a call is an assignment is.assignment <- function(x) sapply(x,function(y) y[[1]] == ":=")
/scratch/gouwar.j/cran-all/cranData/validate/R/sugar.R
#' @importFrom stats complete.cases {} #' Syntax to define validation or indicator rules #' #' A concise overview of the \code{validate} syntax. #' #' @name syntax #' #' @section Basic syntax: #' #' The basic rule is that an R-statement that evaluates to a \code{logical} is a #' validating statement. This is established by static code inspection when #' \code{validator} reads a (set of) user-defined validation rule(s). #' #' @section Comparisons: #' #' All basic comparisons, including \code{>, >=, ==, !=, <=, <}, \code{\%in\%} #' are validating statements. When executing a validating statement, the #' \code{\%in\%} operator is replaced with \code{\link[validate:vin]{\%vin\%}}. #' #' @section Logical operations: #' #' Unary logical operators `\code{!}', \code{all()} and \code{any} define #' validating statements. Binary logical operations including \code{&, &&, |, #' ||}, are validating when \code{P} and \code{Q} in e.g. \code{P & Q} are #' validating. (note that the short-circuits \code{&&} and \code{&} onnly return #' the first logical value, in cases where for \code{P && Q}, \code{P} and/or #' \code{Q} are vectors. Binary logical implication \eqn{P\Rightarrow Q} (P #' implies Q) is implemented as \code{if ( P ) Q}. The latter is interpreted as #' \code{!(P) | Q}. #' #' @section Type checking: #' #' Any function starting with \code{is.} (e.g. \code{is.numeric}) is a #' validating expression. #' #' @section Text search: #' #' \code{grepl} is a validating expression. #' #' @section Functional dependencies: #' #' Armstrong's functional dependencies, of the form \eqn{A + B \to C + D} are #' represented using the \code{~}, e.g. \code{A + B ~ C + D}. For example #' \code{postcode ~ city} means, that when two records have the same value for #' \code{postcode}, they must have the same value for \code{city}. #' #' #' @section Reference the dataset as a whole: #' #' Metadata such as numer of rows, columns, column names and so on can be #' tested by referencing the whole data set with the '\code{.}'. For example, #' the rule \code{nrow(.) == 15} checks whether there are 15 rows in the #' dataset at hand. #' #' @section Uniqueness, completeness: #' #' These can be tested in principle with the 'dot' syntax. However, there are #' some convenience functions: \code{\link{is_complete}}, \code{\link{all_complete}} #' \code{\link{is_unique}}, \code{\link{all_unique}}. #' #' #' @section Local, transient assignment: #' The operator `\code{:=}' can be used to set up local variables (during, for #' example, validation) to save time (the rhs of an assignment is computed only #' once) or to make your validation code more maintainable. Assignments work more #' or less like common R assignments: they are only valid for statements coming #' after the assignment and they may be overwritten. The result of computing the #' rhs is not part of a \code{\link{confront}}ation with data. #' #' #' @section Groups: #' Often the same constraints/rules are valid for groups of variables. #' \code{validate} allows for compact notation. Variable groups can be used #' in-statement or by defining them with the \code{:=} operator. #' #' \code{validator( var_group(a,b) > 0 )} #' #' is equivalent to #' #' \code{validator(G := var_group(a,b), G > 0)} #' #' is equivalent to #' #' \code{validator(a>0,b>0)}. #' #' Using two groups results in the cartesian product of checks. So the statement #' #' \code{validator( f=var_group(c,d), g=var_group(a,b), g > f)} #' #' is equivalent to #' #' \code{validator(a > c, b > c, a > d, b > d)} #' #' @section File parsing: #' Please see the cookbook on how to read rules from and write rules to file: #' #' \code{vignette("cookbook",package="validate")} #' #' NULL ### CONSISTENT SET MEMBERSHIP -------------------------------------------------- #' A consistent set membership operator #' #' A set membership operator like \code{\link[base:match]{\%in\%}} that handles #' \code{NA} more consistently with R's other logical comparison operators. #' #' #' @details #' R's basic comparison operators (almost) always return \code{NA} when one #' of the operands is \code{NA}. The \code{\%in\%} operator is an exception. #' Compare for example \code{NA \%in\% NA} with \code{NA == NA}: the first #' results in \code{TRUE}, while the latter results in \code{NA} as expected. #' The \code{\%vin\%} operator acts consistent with operators such as \code{==}. #' Specifically, \code{NA} results in the following cases. #' \itemize{ #' \item{For each position where \code{x} is \code{NA}, the result is \code{NA}.} #' \item{When \code{table} contains an \code{NA}, each non-matched value in #' \code{x} results in \code{NA}.} #' } #' #' #' #' @param x vector or \code{NULL}: the values to be matched #' @param table vector or \code{NULL}: the values to be matched against. #' #' #' @examples #' # we cannot be sure about the first element: #' c(NA, "a") %vin% c("a","b") #' #' # we cannot be sure about the 2nd and 3rd element (but note that they #' # cannot both be TRUE): #' c("a","b","c") %vin% c("a",NA) #' #' # we can be sure about all elements: #' c("a","b") %in% character(0) #' #' @rdname vin #' @export "%vin%" <- function(x, table){ out <- match(x, table, nomatch=0) > 0 if (anyNA(table)){ out[!out] <- NA } out[is.na(x)] <- NA out } #### FUNCTIONAL DEPENDENCIES -------------------------------------------------- # Internal function that tests for functional dependencies `~` <- function(lhs, rhs){ Lvars <- all.vars(substitute(lhs)) Rvars <- all.vars(substitute(rhs)) condition <- do.call(paste, c(mget(Lvars, parent.frame()), sep="|")) consequent <- do.call(paste0, c(mget(Rvars, parent.frame()), sep="|")) cf <- .Call("R_fdcheck", condition, consequent) cf == seq_along(cf) } # synonym of `~`, may be more understandable `%->%` <- `~` # returns a character vector of variables specified in L, matched in env. # regexps are switched off untill we can analyze relation with literal variables better. matchvars <- function(L,env){ if( length(L) == 0 ){ TRUE } else { # if (is.character(L[[1]])) { # grep(pattern = L[[1]], x = ls(env), value = TRUE) # } else { sapply(L,as.character) # } } } #### UNIQUENESS --------------------------------------------------------------- #' Test for uniquenes of records #' #' Test for uniqueness of columns or combinations of columns. #' #' #' @param ... When used in a validation rule: a bare (unquoted) list of variable names. #' When used directly, a comma-separated list of vectors of equal length. #' #' @return #' For \code{is_unique} A logical vector that is \code{FALSE} for each record #' that has a duplicate. #' #' @family cross-record-helpers #' #' @examples #' #' d <- data.frame(X = c('a','b','c','b'), Y = c('banana','apple','banana','apple'), Z=1:4) #' v <- validator(is_unique(X, Y)) #' values(confront(d, v)) #' #' # example with groupwise test #' df <- data.frame(x=c(rep("a",3), rep("b",3)),y=c(1,1,2,1:3)) #' v <- validator(is_unique(y, by=x)) #' values(confront(d,v)) #' #' @export is_unique <- function(...){ d <- data.frame(...) !duplicated(d) & !duplicated(d, fromLast=TRUE) } #' @rdname is_unique #' @return For \code{all_unique} a single \code{TRUE} or \code{FALSE}. #' @export all_unique <- function(...){ !anyDuplicated(data.frame(...)) } ## TODO: work out subtleties regarding NA. # Count how often a value of value combination occurs # # For each row in a data frame, count how many similar rows there are. The # \code{...} argument is used to specify which variables are taken into # account. Missing values are counted as a unique value. # # @param ... When used in a validation rule: a bare (unquoted) list of variable names. # When used directly, a comma-separated list of vectors of equal length. # # # @return For each record it indicates how often the value or value # combination in the arguments occur. # @export # # @examples # # # for each element i the sequence (a,b,c,a,c,a) # # compute how often it occurrs in the sequence. # occurs(c("a","b","c","a","c","a")) # # # for each record in 'iris' how often do the same # # (Sepal.Length, Species) combinations occur? # with(iris, occurs(Sepal.Length, Species)) # # # in the context of a validation. Check whether # # each individual Species occurs at least 10 times. # # rules <- validator(occurs(Species) > 10) # cf <- confront(iris, rules) # summary(cf) # #occurs <- function(...){ # keys <- data.frame(...) # tab <- as.data.frame(table(keys,useNA="ifany")) # names(tab)[1:(ncol(tab)-1)] <- names(keys) # keys$index <- seq_len(nrow(keys)) # out <- merge(x=keys, y=tab, all.x=TRUE, all.y=FALSE) # out$Freq[order(out$index)] #} #' @rdname is_unique #' @return For \code{number_unique} a single number representing the number #' of unique values or value combinations in the arguments. n_unique <- function(...){ nrow(unique(data.frame(...))) } #### MISSING DATA ------------------------------------------------------------- #' Test for completeness of records #' #' Utility function to make common tests easier. #' #' @inheritParams is_unique #' @return #' For \code{is_complete} A logical vector that is \code{FALSE} for each record #' that has at least one missing value. #' #' @family cross-record-helpers #' @examples #' d <- data.frame(X = c('a','b',NA,'b'), Y = c(NA,'apple','banana','apple'), Z=1:4) #' v <- validator(is_complete(X, Y)) #' values(confront(d, v)) #' #' @export is_complete <- function(...){ stats::complete.cases(data.frame(...)) } #' @rdname is_complete #' @return For \code{all_unique} a single \code{TRUE} or \code{FALSE}. #' @export all_complete <- function(...){ all(stats::complete.cases(data.frame(...))) } #### EXISTENCE ---------------------------------------------------------------- #' Test for (unique) existence #' #' Group records according to (zero or more) classifying variables. Test for #' each group whether at least one (\code{exists}) or precisely one #' (\code{exists_one}) record satisfies a condition. #' #' @param rule \code{[expression]} A validation rule #' @param by A bare (unquoted) variable name or a list of bare variable #' names, that will be used to group the data. #' @param na.rm \code{[logical]} Toggle to ignore results that yield \code{NA}. #' #' @return A \code{logical} vector, with the same number of entries as there #' are rows in the entire data under scrutiny. If a test fails, all records in #' the group are labeled with \code{FALSE}. #' #' @family cross-record-helpers #' #' @examples #' # Test whether each household has exactly one 'head of household' #' #' dd <- data.frame( #' hhid = c(1, 1, 2, 1, 2, 2, 3 ) #' , person = c(1, 2, 3, 4, 5, 6, 7 ) #' , hhrole = c("h","h","m","m","h","m","m") #' ) #' v <- validator(exists_one(hhrole=="h", hhid)) #' values(confront(dd, v)) #' #' # same, but now with missing value in the data #' dd <- data.frame( #' hhid = c(1, 1, 2, 1, 2, 2, 3 ) #' , person = c(1, 2, 3, 4, 5, 6, 7 ) #' , hhrole = c("h",NA,"m","m","h","m","h") #' ) #' values(confront(dd, v)) #' #' # same, but now we ignore the missing values #' v <- validator(exists_one(hhrole=="h", hhid, na.rm=TRUE)) #' values(confront(dd, v)) #' #' @export exists_any <- function(rule, by = NULL, na.rm=FALSE){ parent <- parent.frame() # get the whole data set from the environment provided # by 'confront . <- get(".", parent) if (is.null(by)) by <- character(nrow(.)) rule <- as.expression(substitute(rule)) unsplit(lapply(split(., f=by), function(d){ res <- eval(rule, envir=d, enclos=parent) ntrue <- sum(res, na.rm=na.rm) rep(ntrue >= 1, nrow(d)) }), by) } #' @rdname exists_any #' @export exists_one <- function(rule, by=NULL, na.rm=FALSE){ parent <- parent.frame() # get the whole data set from the environment provided # by 'confront . <- get(".", parent) if (is.null(by)) by <- character(nrow(.)) rule <- as.expression(substitute(rule)) unsplit(lapply(split(., f=by), function(d){ res <- eval(rule, envir=d, enclos=parent) ntrue <- sum(res, na.rm=na.rm) rep(ntrue == 1, nrow(d)) }), by) }
/scratch/gouwar.j/cran-all/cranData/validate/R/syntax.R