content
stringlengths
0
14.9M
filename
stringlengths
44
136
#' @title Auxiliary function for the log-likelihood estimation of GeCUB models. #' @aliases Qunogecub #' @description Define the opposite one of the two scalar functions that are maximized when running the E-M algorithm #' for GeCUB models with covariates for feeling, uncertainty and overdispersion. #' @keywords internal #' @usage Qunogecub(param,datiuno,s) #' @param param Vector of initial estimates of parameters for the uncertainty component #' @param datiuno Auxiliary matrix #' @param s Number of covariates to explain the shelter effect Qunogecub<-function(param,datiuno,s){ p<-NROW(param)-s-2; omega<-param[1:(s+1)]; bet<-param[(s+2):(p+s+2)]; tauno<-datiuno[,1]; taudue<-datiuno[,2]; covar<-datiuno[,3:(s+p+2)]; X<-covar[,1:s]; Y=covar[,(s+1):(s+p)]; alpha1<-logis(X,omega); alpha2<-(1-alpha1)*logis(Y,bet); esse1<-sum(tauno*log(alpha1)); esse2<- sum(taudue*log(alpha2)); esse3<- sum((1-tauno-taudue)*log(1-alpha1-alpha2)) return(-esse1-esse2-esse3); }
/scratch/gouwar.j/cran-all/cranData/CUB/R/Qunogecub.R
#' @title Auxiliary matrix #' @description Returns an auxiliary matrix needed for computing the variance-covariance matrix of a CUBE model with covariates. #' @aliases auxmat #' @usage auxmat(m, vettcsi, vettphi, a, b, c, d, e) #' @param m Number of ordinal categories #' @param vettcsi Vector of the feeling parameters of the Beta-Binomial distribution, with length equal to the number of observations #' @param vettphi Vector of the overdispersion parameters of the Beta-Binomial distribution, with length equal to the number of observations #' @param a Real number #' @param b Real number #' @param c Real number #' @param d Real number #' @param e Real number #' @keywords internal #' @references #' Iannario, M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data, #' \emph{ Communications in Statistics- Theory and Methods}, \bold{43}, 771--786 \cr #' Piccolo, D. (2014). Inferential issues on CUBE models with covariates, #' \emph{Communications in Statistics. Theory and Methods}, \bold{44}, DOI: 10.1080/03610926.2013.821487 auxmat <- function(m,vettcsi,vettphi,a,b,c,d,e){ elemat<-matrix(NA,nrow=m,ncol=length(vettcsi)) for(k in 1:m){ elemat[k,]<-e*((k-1)^d)/((a+b*vettcsi+vettphi*(k-1))^c) } return(elemat) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/auxmat.R
#' @title Beta-Binomial probabilities of ordinal responses, with feeling and overdispersion parameters #' for each observation #' @description Compute the Beta-Binomial probabilities of ordinal responses, given feeling and overdispersion #' parameters for each observation. #' @aliases betabinomial #' @usage betabinomial(m,ordinal,csivett,phivett) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses. Missing values are not allowed: they should be preliminarily deleted #' or imputed #' @param csivett Vector of feeling parameters of the Beta-Binomial distribution for given ordinal responses #' @param phivett Vector of overdispersion parameters of the Beta-Binomial distribution for given ordinal #' responses #' @export betabinomial #' @return A vector of the same length as ordinal, containing the Beta-Binomial probabilities of each observation, #' for the corresponding feeling and overdispersion parameters. #' @details The Beta-Binomial distribution is the Binomial distribution in which the probability of success at #' each trial is random and follows the Beta distribution. It is frequently used in Bayesian #' statistics, empirical Bayes methods and classical statistics as an overdispersed binomial distribution. #' @seealso \code{\link{betar}}, \code{\link{betabinomialcsi}} #' @references Iannario, M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data, #' \emph{Communications in Statistics - Theory and Methods}, \bold{43}, 771--786 \cr #' Piccolo D. (2015). Inferential issues for CUBE models with covariates. #' \emph{Communications in Statistics - Theory and Methods}, \bold{44}(23), 771--786. #' @keywords distribution #' @examples #' data(relgoods) #' m<-10 #' ordinal<-relgoods$Tv #' age<-2014-relgoods$BirthYear #' no_na<-na.omit(cbind(ordinal,age)) #' ordinal<-no_na[,1]; age<-no_na[,2] #' lage<-log(age)-mean(log(age)) #' gama<-c(-0.6, -0.3) #' csivett<-logis(lage,gama) #' alpha<-c(-2.3,0.92); #' ZZ<-cbind(1,lage) #' phivett<-exp(ZZ%*%alpha) #' pr<-betabinomial(m,ordinal,csivett,phivett) #' plot(density(pr)) betabinomial <- function(m,ordinal,csivett,phivett){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } n<-length(ordinal) betabin<-rep(NA,n) for(i in 1:n){ bebeta<-betar(m,csivett[i],phivett[i]) betabin[i]<-bebeta[ordinal[i]] } return(betabin) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/betabinomial.R
#' @title Beta-Binomial probabilities of ordinal responses, given feeling parameter for each observation #' @description Compute the Beta-Binomial probabilities of given ordinal responses, with feeling #' parameter specified for each observation, #' and with the same overdispersion parameter for all the responses. #' @aliases betabinomialcsi #' @usage betabinomialcsi(m,ordinal,csivett,phi) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses. Missing values are not allowed: they should be preliminarily deleted #' or imputed #' @param csivett Vector of feeling parameters of the Beta-Binomial distribution for given ordinal #' responses #' @param phi Overdispersion parameter of the Beta-Binomial distribution #' @export betabinomialcsi #' @return A vector of the same length as ordinal: each entry is the Beta-Binomial probability for the given observation #' for the corresponding feeling and overdispersion parameters. #' @seealso \code{\link{betar}}, \code{\link{betabinomial}} #' @references Iannario, M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data, #' \emph{Communications in Statistics - Theory and Methods}, \bold{43}, 771--786 \cr #' Piccolo D. (2015). Inferential issues for CUBE models with covariates. #' \emph{Communications in Statistics - Theory and Methods}, \bold{44}(23), 771--786. #' @keywords distribution #' @examples #' data(relgoods) #' m<-10 #' ordinal<-relgoods$Tv #' age<-2014-relgoods$BirthYear #' no_na<-na.omit(cbind(ordinal,age)) #' ordinal<-no_na[,1]; age<-no_na[,2] #' lage<-log(age)-mean(log(age)) #' gama<-c(-0.61,-0.31) #' phi<-0.16 #' csivett<-logis(lage,gama) #' pr<-betabinomialcsi(m,ordinal,csivett,phi) #' plot(density(pr)) betabinomialcsi <-function(m,ordinal,csivett,phi){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } n<-length(ordinal) betabin<-rep(NA,m) for(i in 1:n){ bebeta<-betar(m,csivett[i],phi) betabin[i]<-bebeta[ordinal[i]] } return(betabin) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/betabinomialcsi.R
#' @title Beta-Binomial distribution #' @description Return the Beta-Binomial distribution with parameters \eqn{m}, \eqn{csi} and \eqn{phi}. #' @aliases betar #' @usage betar(m,csi,phi) #' @param m Number of ordinal categories #' @param csi Feeling parameter of the Beta-Binomial distribution #' @param phi Overdispersion parameter of the Beta-Binomial distribution #' @export betar #' @return The vector of length \eqn{m} of the Beta-Binomial distribution. #' @seealso \code{\link{betabinomial}} #' @references Iannario, M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data, #' \emph{Communications in Statistics - Theory and Methods}, \bold{43}, 771--786 #' @keywords distribution #' @examples #' m<-9 #' csi<-0.8 #' phi<-0.2 #' pr<-betar(m,csi,phi) #' plot(1:m,pr,type="h", main="Beta-Binomial distribution",xlab="Ordinal categories") #' points(1:m,pr,pch=19) betar <-function(m,csi,phi){ betar<-rep(NA,m) km<-0:(m-2) betar[1]<-prod(1-(1-csi)/(1+phi*km)) for(r in 1:(m-1)){ betar[r+1]<-betar[r]*((m-r)/r)*((1-csi+phi*(r-1))/(csi+phi*(m-r-1))) } return(betar) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/betar.R
#' @title Shifted Binomial probabilities of ordinal responses #' @description Compute the shifted Binomial probabilities of ordinal responses. #' @aliases bitcsi #' @usage bitcsi(m,ordinal,csi) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param csi Feeling parameter of the shifted Binomial distribution #' @export bitcsi #' @return A vector of the same length as \code{ordinal}, where each entry is the shifted Binomial probability #' of the corresponding observation. #' @seealso \code{\link{probcub00}}, \code{\link{probcubp0}}, \code{\link{probcub0q}} #' @references Piccolo D. (2003). On the moments of a mixture of uniform and shifted binomial random variables, #' \emph{Quaderni di Statistica}, \bold{5}, 85--104 #' @keywords distribution #' @examples #' data(univer) #' m<-7 #' csi<-0.7 #' ordinal<-univer$informat #' pr<-bitcsi(m,ordinal,csi) bitcsi <-function(m,ordinal,csi){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } base<-log(1-csi)-log(csi) const<-exp(m*log(csi)-log(1-csi)) const*kkk(m,ordinal)*exp(base*ordinal) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/bitcsi.R
#' @title Shifted Binomial distribution with covariates #' @description Return the shifted Binomial probabilities of ordinal responses where the feeling component #' is explained by covariates via a logistic link. #' @aliases bitgama #' @usage bitgama(m,ordinal,W,gama) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param W Matrix of covariates for the feeling component #' @param gama Vector of parameters for the feeling component, with length equal to #' NCOL(W)+1 to account for an intercept term (first entry of \code{gama}) #' @export bitgama #' @return A vector of the same length as \code{ordinal}, where each entry is the shifted Binomial probability for #' the corresponding observation and feeling value. #' @seealso \code{\link{logis}}, \code{\link{probcub0q}}, \code{\link{probcubpq}} #' @keywords distribution #' @import stats #' @examples #' n<-100 #' m<-7 #' W<-sample(c(0,1),n,replace=TRUE) #' gama<-c(0.2,-0.2) #' csivett<-logis(W,gama) #' ordinal<-rbinom(n,m-1,csivett)+1 #' pr<-bitgama(m,ordinal,W,gama) bitgama <-function(m,ordinal,W,gama){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } W <- as.matrix(W) if (ncol(W)==1){ W<-as.numeric(W) } ci<- 1/(logis(W,gama))-1 kkk(m,ordinal)*exp((ordinal-1)*log(ci)-(m-1)*log(1+ci)) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/bitgama.R
#' @title Pearson \eqn{X^2} statistic #' @description Compute the \eqn{X^2} statistic of Pearson for CUB models with one or two discrete #' covariates for the feeling component. #' @aliases chi2cub #' @usage chi2cub(m,ordinal,W,pai,gama) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param W Matrix of covariates for the feeling component #' @param pai Uncertainty parameter #' @param gama Vector of parameters for the feeling component, with length equal to NCOL(W)+1 #' to account for an intercept term (first entry of \code{gama}) #' @export chi2cub #' @return A list with the following components: #' \item{df}{Degrees of freedom} #' \item{chi2}{Value of the Pearson fitting measure} #' \item{dev}{Deviance indicator} #' @details No missing value should be present neither #' for \code{ordinal} nor for covariate matrices: thus, deletion or imputation procedures should be #' preliminarily run. #' @keywords htest #' @references #' Tutz, G. (2012). \emph{Regression for Categorical Data}, Cambridge University Press, Cambridge #' @examples #' data(univer) #' m<-7 #' pai<-0.3 #' gama<-c(0.1,0.7) #' ordinal<-univer$informat; W<-univer$gender; #' pearson<-chi2cub(m,ordinal,W,pai,gama) #' degfree<-pearson$df #' statvalue<-pearson$chi2 #' deviance<-pearson$dev chi2cub <- function(m,ordinal,W,pai,gama){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } W <- as.matrix(W) nw<-NCOL(W) if(nw==1){ chi2cub1cov(m,ordinal,W,pai,gama) } else if(nw==2) { chi2cub2cov(m,ordinal,W[,1],W[,2],pai,gama) } else{ cat("Works only for at most two covariates") } }
/scratch/gouwar.j/cran-all/cranData/CUB/R/chi2cub.R
#' @title Pearson \eqn{X^2} statistic for CUB models with one discrete covariate for feeling #' @description Compute the \eqn{X^2} statistic of Pearson for the goodness of fit of a CUB model for ordinal responses, where the feeling parameter #' is explained via a logistic transform of the only discrete covariate. It groups ratings in #' classes according to the values of the covariate. #' @aliases chi2cub1cov #' @usage chi2cub1cov(m, ordinal, covar, pai, gama) #' @param m Integer: number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param covar Vector of the selected covariate for explaining the feeling component #' @param pai Uncertainty parameter #' @param gama Vector of parameters for the feeling component, with length equal to 2 #' to account for an intercept term (first entry) #' @return It returns the following results in a list: #' \item{df}{Number of degrees of freedom} #' \item{chi2}{Value of the Pearson fitting measure} #' \item{dev}{Deviance indicator} #' @keywords internal #' @import stats #' @references Tutz, G. (2011). \emph{Regression for categorical data}, Cambridge Series in Statistical #' and Probabilistic Mathematics chi2cub1cov <-function(m,ordinal,covar,pai,gama){ covar<-as.matrix(covar) n<-length(ordinal) elle<-as.numeric(sort(unique(covar))) kappa<-length(elle) matfrel<-matrix(NA,nrow=kappa,ncol=m) matprob<-matrix(NA,nrow=kappa,ncol=m) chi2<-0 dev<-0 j<-1 while(j<=kappa){ quali<-which(covar==elle[j]) Wquali<-covar[quali] qualiord<-ordinal[quali] nk<- length(qualiord) matfrel[j,]=tabulate(qualiord,nbins=m)/nk nonzero<-which(matfrel[j,]!=0) paij<-pai csij<-1/(1+ exp(-gama[1]-gama[2]*elle[j])) matprob[j,]<-t(probcub00(m,paij,csij)) chi2<-chi2+nk*sum(((matfrel[j,]-matprob[j,])^2)/matprob[j,]) dev<- dev + 2*nk*sum(matfrel[j,nonzero]*log(matfrel[j,nonzero]/matprob[j,nonzero])) j<-j+1 } df<- kappa*(m-1)-(length(gama)+1) cat("Degrees of freedom ==> df =",df, "\n") cat("Pearson Fitting measure ==> X^2 =",chi2,"(p-val.=",1-pchisq(chi2,df),")","\n") cat("Deviance ==> Dev =",dev,"(p-val.=",1-pchisq(dev,df),")","\n") results<-list('chi2'=chi2,'df'=df,'dev'=dev) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/chi2cub1cov.R
#' @title Pearson \eqn{X^2} statistic for CUB models with one discrete covariate for feeling #' @description Compute the \eqn{X^2} statistic of Pearson for the goodness of fit of a CUB model for ordinal responses, where the feeling parameter #' is explained via a logistic transform of the only discrete covariate. It groups ratings in #' classes according to the values of the covariate. #' @aliases chi2cub2cov #' @usage chi2cub2cov(m, ordinal, covar1, covar2, pai, gama) #' @param m Integer: number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param covar1 Vector of the first covariate values for explaining the feeling component #' @param covar2 Vector of the second covariate values for explaining the feeling component #' @param pai Uncertainty parameter #' @param gama Vector of parameters for the feeling component, with length equal to 2 #' to account for an intercept term (first entry) #' @return It returns the following results in a list: #' \item{df}{Number of degrees of freedom} #' \item{chi2}{Value of the Pearson fitting measure} #' \item{dev}{Deviance indicator} #' @keywords internal #' @import stats #' @references #' Tutz, G. (2011). \emph{Regression for categorical data}, Cambridge Series in Statistical #' and Probabilistic Mathematics chi2cub2cov <-function(m,ordinal,covar1,covar2,pai,gama){ n<-length(ordinal) W<-cbind(covar1,covar2) elle1<-as.numeric(sort(unique(covar1))) elle2<-as.numeric(sort(unique(covar2))) profiles<-expand.grid(elle1,elle2) kappa<-nrow(profiles) matfrel<-matrix(NA,nrow=kappa,ncol=m) matprob<-matrix(NA,nrow=kappa,ncol=m) chi2<-0 dev<-0 j<-1 while(j<=kappa){ quali<-which(covar1==profiles[j,1] & covar2==profiles[j,2]) if (length(quali) == 0){ j<-j+1; print(paste("Profile ",j-1,"is void")); cat("\n") ; }else { Wquali<-W[quali,] qualiord<-ordinal[quali] nk<- length(qualiord) matfrel[j,]<-tabulate(qualiord,nbins=m)/nk nonzero<-which(matfrel[j,]!=0) paij<-pai csij<-1/(1+ exp(-gama[1]-gama[2]*profiles[j,1]-gama[3]*profiles[j,2])) matprob[j,]<-t(probcub00(m,paij,csij)) chi2<-chi2+nk*sum(((matfrel[j,]-matprob[j,])^2)/matprob[j,]) dev<- dev + 2*nk*sum(matfrel[j,nonzero]*log(matfrel[j,nonzero]/matprob[j,nonzero])) j<-j+1 } } df<-kappa*(m-1)-(length(gama)+1) cat("Degrees of freedom ==> df =",df, "\n") cat("Pearson Fitting measure ==> X^2 =",chi2,"(p-val.=",1-pchisq(chi2,df),")","\n") cat("Deviance ==> Dev =",dev,"(p-val.=",1-pchisq(dev,df),")","\n") results<-list('chi2'=chi2,'df'=df,'dev'=dev) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/chi2cub2cov.R
#' @title S3 Method: coef for class "GEM" #' @description S3 method: coef for objects of class \code{\link{GEM}}. #' @aliases coef.GEM #' @method coef GEM #' @param object An object of class \code{\link{GEM}} #' @param ... Other arguments #' @import methods #' @return ML estimates of parameters of the fitted GEM model. #' @details Returns estimated values of coefficients of the fitted model #' @export #' @rdname coef.GEM #' @keywords package #' @seealso \code{\link{GEM}}, \code{\link{summary}} #coef<- function(object,...) UseMethod("coef", object) coef.GEM<-function(object,...){ arguments<-list(...) digits<-arguments$digits output<-list() if (is.null(digits)){ digits<-options()$digits } ellipsis<-object$ellipsis listanomi<-parnames(object) mat<-round(as.matrix(object$estimates),digits=digits) dimnames(mat)<-list(listanomi,"") mat } # # ################### prova # # # print.coef.GEM <- function(x,...){ # # object<-x$object # family<-object$family # mat<-x$values # stime<-object$estimates # # listanomi<-parnames(object) # # modello<-object$formula # data<-object$data # # mf<-model.frame(modello,data=data,na.action=na.omit) # # # data<-object$data # # if ( family == "CUB"){ # covpai<-model.matrix(modello,data=mf,rhs=1) # covcsi<-model.matrix(modello,data=mf,rhs=2) # covshe<-model.matrix(modello,data=mf,rhs=3) # # if (ncol(covpai)==0){ # Y<-NULL # } else { # # if (NCOL(covpai)==2){ # Y<-as.matrix(covpai[,-1]) # colnames(Y)<-colnames(covpai)[2] # } else { # Y<-covcsi[,-1] # } # } # if (ncol(covcsi)==0){ # W<-NULL # } else { # if (NCOL(covcsi)==2){ # W<-as.matrix(covcsi[,-1]) # colnames(W)<-colnames(covcsi)[2] # } else { # W<-covcsi[,-1] # } # } # # if (ncol(covshe)==0){ # X<-NULL # } else { # X<-covshe[,-1] # } # # if (!is.null(X) & !is.null(Y) & !is.null(W) & !is.null(object$ellipsis$shelter)){ # Y<-as.matrix(Y); W<-as.matrix(W); X<-as.matrix(X); # p<-NCOL(Y); # q<-NCOL(W); # s<-NCOL(X); # # mat1<-cbind(mat[1:(p+1),1]) # colnames(mat1)<-c("Estimates") # rownames(mat1)<-listanomi[1:(p+1)] # # mat2<-cbind(mat[(p+2):(p+q+2),1]) # rownames(mat2)<-listanomi[(p+2):(p+q+2)] # # mat3<-cbind(mat[(p+q+3):(p+q+s+3),1]) # rownames(mat3)<-listanomi[(p+q+3):(p+q+s+3)] # # cat("Uncertainty ", "\n") # # print(mat1,digits=digits) # cat("==================================","\n") # cat("Feeling ", "\n") # colnames(mat2)<-c("Estimates") # # print(mat2,digits=digits) # cat("==================================","\n") # # cat("Shelter effect ", "\n") # colnames(mat3)<-"Estimates" # print(mat3,digits=digits) # # } else if (is.null(object$ellipsis$shelter) & is.null(X) & !is.null(Y) & !is.null(W)){ # Y<-as.matrix(Y); W<-as.matrix(W); # p<-NCOL(Y); # q<-NCOL(W); # # mat1<-as.matrix(mat[1:(p+1),1]) # colnames(mat1)<-c("Estimates") # rownames(mat1)<-listanomi[1:(p+1)] # # mat2<-as.matrix(mat[(p+2):(p+q+2),1]) # rownames(mat2)<-listanomi[(p+2):(p+q+2)] # # cat("Uncertainty ", "\n") # # print(mat1,digits=digits) # colnames(mat2)<-c("Estimates") # cat("==================================","\n") # # cat("Feeling ", "\n") # print(mat2,digits=digits) # # } else if (is.null(object$ellipsis$shelter) & is.null(X) & is.null(Y) & !is.null(W)){ # W<-as.matrix(W); # # q<-NCOL(W); # # mat1<-as.matrix(mat[1,1]) # colnames(mat1)<-c("Estimates") # rownames(mat1)<-listanomi[1] # # mat2<-cbind(mat[2:(q+2),1]) # colnames(mat2)<-c("Estimates") # rownames(mat2)<-listanomi[2:(q+2)] # # cat("Uncertainty ", "\n") # # print(mat1,digits=digits) # cat("==================================","\n") # # cat("Feeling ", "\n") # print(mat2,digits=digits) # # } else if (is.null(object$ellipsis$shelter) & is.null(X) & !is.null(Y) & is.null(W)){ # Y<-as.matrix(Y); # # p<-NCOL(Y); # # mat1<-cbind(mat[1:(p+1),1]) # colnames(mat1)<-c("Estimates") # rownames(mat1)<-listanomi[1:(p+1)] # # mat2<-cbind(mat[(p+2),1]) # rownames(mat2)<-listanomi[p+2] # # colnames(mat2)<-c("Estimates") # # cat("Uncertainty ", "\n") # # print(mat1,digits=digits) # cat("==================================","\n") # # cat("Feeling ", "\n") # print(mat2,digits=digits) # # } else if (is.null(object$ellipsis$shelter) & is.null(X) & is.null(Y) & is.null(W)) { # # mat1<-cbind(mat[1]) # colnames(mat1)<-c("Estimates") # rownames(mat1)<-listanomi[1] # # # mat2<-cbind(mat[2]) # colnames(mat2)<-c("Estimates") # rownames(mat2)<-listanomi[2] # # cat("Uncertainty ", "\n") # # print(mat1,digits=digits) # cat("==================================","\n") # # cat("Feeling ", "\n") # print(mat2,digits=digits) # # # } # } # # # if (family == "CUBE"){ # # covpai<-model.matrix(modello,data=mf,rhs=1) # covcsi<-model.matrix(modello,data=mf,rhs=2) # covphi<-model.matrix(modello,data=mf,rhs=3) # # if (ncol(covpai)==0){ # Y<-NULL # } else { # Y<-covpai[,-1] # } # if (ncol(covcsi)==0){ # W<-NULL # } else { # W<-covcsi[,-1] # } # if (ncol(covphi)==0){ # Z<-NULL # } else { # Z<-covphi[,-1] # } # # if (is.null(Y)& is.null(W) & is.null(Z)){ # mat1<-cbind(mat[1]) # colnames(mat1)<-c("Estimates") # rownames(mat1)<-listanomi[1] # # mat2<-cbind(mat[2]) # colnames(mat2)<-c("Estimates") # rownames(mat2)<-listanomi[2] # # cat("Uncertainty ", "\n") # # print(mat1,digits=digits) # cat("==================================","\n") # # cat("Feeling ", "\n") # print(mat2,digits=digits) # cat("==================================","\n") # # cat("Overdispersion ", "\n") # # mat3<-cbind(mat[3]) # colnames(mat3)<-c("Estimates") # rownames(mat3)<-listanomi[3] # # print(mat3,digits=digits) # } else if (is.null(Y)& !is.null(W) & is.null(Z)){ # # q<-NCOL(W) # # mat1<-cbind(mat[1]) # colnames(mat1)<-c("Estimates") # rownames(mat1)<-listanomi[1] # # mat2<-cbind(mat[2:(q+2)]) # colnames(mat2)<-c("Estimates") # rownames(mat2)<-listanomi[2:(q+2)] # # cat("Uncertainty ", "\n") # print(mat1,digits=digits) # # cat("==================================","\n") # # cat("Feeling ", "\n") # print(mat2,digits=digits) # cat("==================================","\n") # # cat("Overdispersion ", "\n") # # mat3<-cbind(mat[q+3]) # colnames(mat3)<-c("Estimates") # rownames(mat3)<-listanomi[q+3] # # print(mat3,digits=digits) # # # } # else if (!is.null(Y)& !is.null(W) & !is.null(Z)){ # p<-NCOL(Y) # q<-NCOL(W) # s<-NCOL(Z) # # mat1<-cbind(mat[1:(p+1)]) # mat2<-cbind(mat[(2+p):(q+p+2)]) # colnames(mat1)<-colnames(mat2)<-c("Estimates") # rownames(mat1)<-listanomi[1:(p+1)] # rownames(mat2)<-listanomi[(2+p):(q+p+2)] # # # cat("Uncertainty ", "\n") # print(mat1,digits=digits) # # cat("==================================","\n") # # cat("Feeling ", "\n") # print(mat2,digits=digits) # cat("==================================","\n") # # cat("Overdispersion ", "\n") # # mat3<-cbind(mat[(p+q+3):(p+q+s+3)]) # rownames(mat2)<-listanomi[(p+q+3):(p+q+s+3)] # # colnames(mat3)<-c("Estimates") # print(mat3,digits=digits) # # # } # # # } # # # if (family == "IHG" | family =="CUSH"){ # matout<-mat # # colnames(matout)<-c("Estimates") # print(matout,digits=digits) # } # # # # # cat("==================================","\n") # if (family=="CUB" & !is.null(object$ellipsis$shelter)){ # covshe<-model.matrix(modello,data=mf,rhs=3) # # if (ncol(covshe)==0){ # X<-NULL # } else { # X<-covshe[,-1] # } # # # if (is.null(X)){ # matout<-mat # # colnames(matout)<-c("Estimates") # print(matout,digits=digits) # pai1<-stime[1];pai2<-stime[2];csi<-stime[3] # delta<-1-pai1-pai2 # paistar<-pai1/(pai1+pai2) # stime2<-c(paistar,csi,delta) # nomi2<-c("paistar","csi","delta") # # mat2<-as.matrix(stime2) # matout2<-mat2 # dimnames(matout2)<-list(nomi2,c("Estimates")) # # # cat("==================================","\n") # cat("Alternative parameterization","\n") # print(matout2,digits=digits) # cat("==================================","\n") # } # } # # # } # print(output)
/scratch/gouwar.j/cran-all/cranData/CUB/R/coef.R
#' @title Correlation matrix for estimated model #' @description Compute parameter correlation matrix for estimated model as returned by an object #' of class "GEM". #' @aliases cormat #' @usage cormat(object,digits=options()$digits) #' @param object An object of class "GEM" #' @param digits Number of significant digits to be printed. Default is \code{options()$digits} #' @export #' @return Parameters correlation matrix for fitted GEM models. #' @keywords models #' @seealso \code{GEM}, \code{vcov} cormat<-function(object,digits=options()$digits){ varmat<-vcov(object) np<-NROW(varmat) cormat<-diag(rep(1,np)) if (np>1){ if (isTRUE(varmat==matrix(NA,nrow=np,ncol=np))==TRUE){ cormat<-matrix(NA,nrow=np,ncol=np) dimnames(cormat)<-list(parnames(object),parnames(object)) } else { ddd<-diag(sqrt(1/diag(varmat))) cormat<-round(ddd%*%varmat%*%ddd,digits) dimnames(cormat)<-list(parnames(object),parnames(object)) } } else { dimnames(cormat)<-list(parnames(object),"Correlation") } return(cormat) } # # cormat <- function(object) UseMethod("cormat", object) # # # cormat.GEM<-function(object){ # # if(!inherits(object, "GEM")) stop("not a \"GEM\" fit") # # # varmat<-vcov(object) # np<-NROW(varmat) # cormat<-diag(rep(1,np)) # # if (np>1){ # if (isTRUE(varmat==matrix(NA,nrow=np,ncol=np))==TRUE){ # cormat<-matrix(NA,nrow=np,ncol=np) # dimnames(cormat)<-list(parnames(object),parnames(object)) # # } else { # ddd<-diag(sqrt(1/diag(varmat))) # cormat<-round(ddd%*%varmat%*%ddd,5) # dimnames(cormat)<-list(parnames(object),parnames(object)) # # } # # } else { # dimnames(cormat)<-list(parnames(object),"Correlation") # } # # return(cormat) # } #
/scratch/gouwar.j/cran-all/cranData/CUB/R/cormat.R
#' @title Main function for CUB models without covariates #' @description Function to estimate and validate a CUB model without covariates for given ordinal responses. #' @aliases cub00 #' @usage cub00(m, ordinal, maxiter, toler) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param maxiter Maximum number of iterations allowed for running the optimization algorithm #' @param toler Fixed error tolerance for final estimates #' @return An object of the class "CUB" #' @seealso \code{\link{CUB}}, \code{\link{probbit}}, \code{\link{probcub00}}, \code{\link{loglikCUB}} #' @keywords internal #' @import stats graphics cub00<-function(m,ordinal,maxiter,toler){ tt0<-proc.time() serie<-1:m freq<-tabulate(ordinal,nbins=m) n<-sum(freq) aver<-mean(ordinal); varcamp<-mean(ordinal^2)-aver^2; ####################################################### inipaicsi<-inibest(m,freq); pai<-inipaicsi[1]; csi<-inipaicsi[2]; ################################################################## loglik<-loglikcub00(m,freq,pai,csi) # ******************************************************************** # ************* E-M algorithm for CUB(0,0) *************************** # ******************************************************************** nniter<-1 while(nniter<=maxiter){ likold<-loglik bb<-probbit(m,csi) aa<-(1-pai)/(m*pai*bb) tau<-1/(1+aa) ft<-freq*tau averpo<-(t(serie)%*%ft)/sum(ft) pai<-(t(freq)%*%tau)/n # updated pai estimate csi<-(m-averpo)/(m-1) # updated csi estimate if(csi<0.001){ csi<-0.001;nniter<-maxiter-1; } # print(c(pai,csi)); loglik<-loglikcub00(m,freq,pai,csi) liknew<-loglik testll<-abs(liknew-likold) ###### print(testll); # OPTIONAL printing: print(cbind(nniter,testll,pai,csi)); if(testll<=toler) break else {loglik<-liknew} # OPTIONAL printing: print(loglik); nniter<-nniter+1 } ###### if(csi>0.999) csi<-0.99 if(csi<0.001) csi<-0.01 ### to avoid division by 0 !!! if(pai<0.001) pai<-0.01 ### to avoid division by 0 !!! ### to ensure identifiability !!! ###### AICCUB00<- -2*loglik+2*(2) BICCUB00<- -2*loglik+log(n)*(2) nomi<-rbind("pai","csi");stime<-round(c(pai,csi),5); ############################### theorpr<-probcub00(m,pai,csi) dissimi<-dissim(theorpr,freq/n) pearson<-((freq-n*theorpr))/sqrt(n*theorpr) X2<-sum(pearson^2) relares<-(freq/n-theorpr)/theorpr llunif<- -n*log(m); csisb<-(m-aver)/(m-1); llsb<-loglikcub00(m,freq,1,csisb) nonzero<-which(freq!=0) logsat <- -n*log(n)+sum((freq[nonzero])*log(freq[nonzero])) devian<-2*(logsat-loglik) LL2<-1/(1+mean((freq/(n*theorpr)-1)^2)) II2<-(loglik-llunif)/(logsat-llunif) FF2<-1-dissimi mat1<-cbind(pai,csi,loglik,n,X2,dissimi) expcub<-expcub00(m,pai,csi); varcub<-varcub00(m,pai,csi); varmat<-varcovcub00(m,ordinal,pai,csi) ### Computation of var-covar of estimates, if (isTRUE(varmat==matrix(NA,nrow=2,ncol=2))==TRUE){ ddd<-matrix(NA,nrow=2,ncol=2) trvarmat<-ICOMP<-NA errstd<-wald<-pval<-rep(NA,2) } else { ddd<-diag(sqrt(1/diag(varmat))) nparam<-length(stime) trvarmat<-sum(diag(varmat)) ICOMP<- -2*loglik + nparam*log(trvarmat/nparam) - log(det(varmat)) errstd<-sqrt(diag(varmat));wald<-stime/errstd; pval<-2*(1-pnorm(abs(wald))) cormat<-ddd%*%varmat%*%ddd esq<-sqrt(varmat[1,1])/m } #################################################################### # Print CUB(0,0) results of ML estimation # rdiss00<-round(dissimi,3) stampa<-cbind(1:m,freq/n,theorpr,pearson,relares) durata<-proc.time()-tt0;durata<-durata[1]; results<-list('estimates'=stime,'ordinal'=ordinal,'time'=durata, 'loglik'=loglik,'niter'=nniter, 'varmat'=varmat,'BIC'=BICCUB00) #class(results)<-"cub" return(results) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/cub00.R
#' @title Main function for CUB models with covariates for the feeling component #' @description Function to estimate and validate a CUB model for given ordinal responses, with covariates for #' explaining the feeling component. #' @aliases cub0q #' @usage cub0q(m, ordinal, W, maxiter, toler) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param W Matrix of selected covariates for explaining the feeling component, not including intercept #' @param maxiter Maximum number of iterations allowed for running the optimization algorithm #' @param toler Fixed error tolerance for final estimates #' @import stats graphics #' @return An object of the class "CUB" #' @references #' Piccolo D. and D'Elia A. (2008), A new approach for modelling consumers' preferences, #' \emph{Food Quality and Preference}, \bold{18}, 247--259 \cr #' @references #' Iannario M. and Piccolo D. (2010), A new statistical model for the analysis of customer #' satisfaction, #' \emph{Quality Technology and Quantity management}, \bold{7}(2) 149--168 \cr #' Iannario M. and Piccolo D. (2012), CUB models: Statistical methods and empirical evidence, in: #' Kenett R. S. and Salini S. (eds.), \emph{Modern Analysis of Customer Surveys: with applications using R}, #' J. Wiley and Sons, Chichester, 231--258. #' @keywords internal cub0q<-function(m,ordinal,W,maxiter,toler){ tt0<-proc.time() n<-length(ordinal) W<-as.matrix(W) if (ncol(W)==1){ W<-as.numeric(W) } q<-NCOL(W) aver<-mean(ordinal) WW<-cbind(1,W) ############################################################## freq<-tabulate(ordinal,nbins=m); inipaicsi<-inibest(m,freq); paijj<-inipaicsi[1]; gamajj<-inibestgama(m,ordinal,W) ############################################################## loglikjj<-loglikcub0q(m,ordinal,W,paijj,gamajj) # ******************************************************************** # ************* E-M algorithm for CUB(0,q) *************************** # ******************************************************************** nniter<-1 while(nniter<=maxiter){ loglikold<-loglikjj vettn<-bitgama(m,ordinal,W,gamajj) ttau<-1/(1+(1-paijj)/(m*paijj*vettn)) ################################# maximize w.r.t. gama ######## ordd<-ordinal;covar<-WW; gama<-gamajj optimgama<-optim(gama,effe01,esterno01=cbind(ttau,ordinal,WW),m=m) ################################################################ gamajj<-optimgama$par paijj<-sum(ttau)/n #updated pai estimate loglikjj<-loglikcub0q(m,ordinal,W,paijj,gamajj)## needed for nlm version # print(c(nniter,paijj,gamajj,loglikjj)); #OPTIONAL PRINTING OF ITERATIONS testll<-abs(loglikjj-loglikold) if(testll<=toler) break else {loglikold<-loglikjj} nniter<-nniter+1 } pai<-paijj; gama<-gamajj; loglik<-loglikjj; #################################################################### AICCUB0q<- -2*loglik+2*(q+2) BICCUB0q<- -2*loglik+log(n)*(q+2) #################################################################### # Compute asymptotic standard errors of ML estimates #################################################################### varmat<-varcovcub0q(m,ordinal,W,pai,gama) nomi<-c("pai ",paste("gamma",0:(length(gama)-1),sep="_")) stime<-c(pai,gama) nparam<-length(stime) if (isTRUE(varmat==matrix(NA,nrow=nparam,ncol=nparam))==TRUE){ ddd<-cormat<-matrix(NA,nrow=nparam,ncol=nparam) ICOMP<-trvarmat<-NA errstd<-wald<-pval<-rep(NA,nparam) } else { ddd<-diag(sqrt(1/diag(varmat))) cormat<-(ddd%*%varmat)%*%ddd trvarmat<-sum(diag(varmat)) ICOMP<- -2*loglik + nparam*log(trvarmat/nparam) - log(det(varmat)) ## added errstd<-sqrt(diag(varmat)); wald<-stime/errstd; pval<-2*(1-pnorm(abs(wald))) } rownames(cormat)<-nomi;colnames(cormat)<-nomi; durata<-proc.time()-tt0;durata<-durata[1]; results<-list('estimates'=stime,'ordinal'=ordinal,'time'=durata, 'loglik'=loglik,'niter'=nniter,'varmat'=varmat, 'BIC'=BICCUB0q) # class(results)<-"cub" return(results) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/cub0q.R
#' @title Main function for CUBE models without covariates #' @description Estimate and validate a CUBE model without covariates. #' @aliases cube000 #' @usage cube000(m, ordinal, starting, maxiter, toler, expinform) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param starting Vector of initial estimates to start the optimization algorithm, #' whose length equals the number of parameters of the model #' @param maxiter Maximum number of iterations allowed for running the optimization algorithm #' @param toler Fixed error tolerance for final estimates #' @param expinform Logical: if TRUE, the function returns the expected variance-covariance matrix #' @return An object of the class "CUBE" #' @import stats #' @references #' Iannario, M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data, #' \emph{Communications in Statistics - Theory and Methods}, \bold{43}, 771--786 \cr #' Iannario, M. (2015). Detecting latent components in ordinal data with overdispersion by means #' of a mixture distribution, \emph{Quality & Quantity}, \bold{49}, 977--987 #' @keywords internal #models cube000<-function(m,ordinal,starting,maxiter, toler,expinform){ #default for expinform = FALSE tt0<-proc.time() freq<-tabulate(ordinal,nbins=m); n<-sum(freq); aver<-mean(ordinal); varcamp<-mean(ordinal^2)-aver^2; ######################################################## #(00)# initial estimates, not efficient: #starting<-inibestcube(m,ordinal) pai<-starting[1]; csi<-starting[2]; phi<-starting[3]; #(0)# log-lik loglik<-loglikcube(m,freq,pai,csi,phi) # ******************************************************************** # ************* E-M algorithm for CUBE ************************* # ******************************************************************** nniter<-1 while(nniter<=maxiter){ likold<-loglik #(1)# betar bb<-betar(m,csi,phi) aa<-(1-pai)/(m*pai*bb) #(2)# taunor tauno<-1/(1+aa) #(3)# pai(k+1) pai<-sum(freq*tauno)/n # updated pai estimate paravecjj<-c(csi,phi) #(4)# Q(k+1) dati<-cbind(tauno,freq) ################ EFFECUBE is Q(csi,phi) ########################### #(5)# (csi(k+1),phi(k+1)) ################################## maximize w.r.t. paravec ######## paravec<-paravecjj optimestim<-optim(paravec,effecube,dati=dati,m=m,method = "L-BFGS-B",lower=c(0.01,0.01),upper=c(0.99,0.3)) # print(nlmaxg) ################################################################ #(6)# theta(k+1) paravecjj<-optimestim$par # updated paravec estimates csi<-paravecjj[1]; phi<-paravecjj[2]; ########################################## if(pai<0.001){pai<-0.001; nniter<-maxiter-1} #if(csi<0.001){csi<-0.001; nniter<-maxiter-1} #if(phi<0.001){phi<-0.001; nniter<-maxiter-1} if(pai>0.999){pai<-0.99} ### to avoid division by 0 !!! #if(csi>0.999){csi<-0.99} ### to avoid division by 0 !!! ###################################### print(c(nniter,pai,csi,phi)); #(7)# elle(theta(k+1)) liknew<-loglikcube(m,freq,pai,csi,phi) #(8)# test testll<-abs(liknew-likold) # OPTIONAL printing: print(testll); # OPTIONAL printing: print(cbind(nniter,testll,pai,csi,phi)); if(testll<=toler) break else {loglik<-liknew} # OPTIONAL printing: print(loglik); nniter<-nniter+1 } loglik<-liknew ###### End of E-M algorithm for CUBE *********************************************** AICCUBE<- -2*loglik+2*(3) BICCUBE<- -2*loglik+log(n)*(3) # ******************************************************** # Compute ML var-cov matrix and print result for CUBE # ******************************************************** if(expinform==TRUE){ varmat<-varcovcubeexp(m,pai,csi,phi,n) } else{ varmat<-varcovcubeobs(m,pai,csi,phi,freq) } # nomi<-rbind("pai ","csi ","phi ") stime<-c(pai,csi,phi) nparam<-length(stime) if (isTRUE(varmat==matrix(NA,nrow=nparam,ncol=nparam))==TRUE){ ddd<-matrix(NA,nrow=nparam,ncol=nparam) trvarmat<-ICOMP<-NA errstd<-wald<-pval<-rep(NA,nparam) } else { trvarmat<-sum(diag(varmat)) ICOMP<- -2*loglik + nparam*log(trvarmat/nparam) - log(det(varmat)) errstd<-sqrt(diag(varmat)) wald<-stime/errstd pval<-2*(1-pnorm(abs(wald))) ddd<-diag(sqrt(1/diag(varmat))) } #################################################################### # Print CUBE results of ML estimation #################################################################### ### Log-likelihood comparisons ############################################## llunif<- -n*log(m) csisb<-(m-aver)/(m-1) llsb<-loglikcub00(m,freq,1,csisb) nonzero<-which(freq!=0) logsat<- -n*log(n)+sum((freq[nonzero])*log(freq[nonzero])) devian<-2*(logsat-loglik) theorpr<-probcube(m,pai,csi,phi) dissimcube<-dissim(theorpr,freq/n) pearson<-((freq-n*theorpr))/sqrt(n*theorpr) X2<-sum(pearson^2) relares<-(freq/n-theorpr)/theorpr FF2<-1-dissimcube LL2<-1/(1+mean((freq/(n*theorpr)-1)^2)) II2<-(loglik-llunif)/(logsat-llunif) stampa<-cbind(1:m,freq/n,theorpr,pearson,relares) durata<-proc.time()-tt0;durata<-durata[1]; results<-list('estimates'= stime, 'loglik'= loglik, 'niter'= nniter, 'varmat'= varmat,'BIC'=BICCUBE,'time'=durata) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/cube000.R
#' @title Main function for CUBE models with covariates #' @description Function to estimate and validate a CUBE model with #' explicative covariates for all the three parameters. #' @aliases cubecov #' @keywords internal #' @usage cubecov(m, ordinal, Y, W, Z, starting, maxiter, toler) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param Y Matrix of selected covariates for explaining the uncertainty component #' @param W Matrix of selected covariates for explaining the feeling component #' @param Z Matrix of selected covariates for explaining the overdispersion component #' @param starting Vector of initial parameters estimates to start the optimization algorithm #' (it has length NCOL(Y) + NCOL(W) + NCOL(Z) + 3 to account for intercept terms #' for all the three components #' @param maxiter Maximum number of iterations allowed for running the optimization algorithm #' @param toler Fixed error tolerance for final estimates #' @return An object of the class "CUBE" #' @import stats #' @references #' Piccolo, D. (2014). Inferential issues on CUBE models with covariates, #' \emph{Communications in Statistics - Theory and Methods}, \bold{44}, #' DOI: 10.1080/03610926.2013.821487 cubecov<-function(m,ordinal,Y,W,Z,starting,maxiter,toler){ tt0<-proc.time() n<-length(ordinal) Y<-as.matrix(Y); W<-as.matrix(W); Z<-as.matrix(Z); p<-NCOL(Y) q<-NCOL(W) v<-NCOL(Z) aver<-mean(ordinal) if (ncol(W)==1){ W<-as.numeric(W) } if (ncol(Y)==1){ Y<-as.numeric(Y) } if (ncol(Z)==1){ Z<-as.numeric(Z) } YY<-cbind(1,Y) WW<-cbind(1,W) ZZ<-cbind(1,Z) # ********************************** # *** E-M algorithm for CUBECOV *** # ********************************** ################################################################# # 00.# Initial values of parameters ............. Attention !!! # ################################################################# betjj<-starting[1:(p+1)] gamajj<-starting[(p+2):(p+q+2)] alphajj<-starting[(p+q+3):(p+q+v+3)] ################################ # * * * Iterative Loop * * *# ################################ nniter<-1 while(nniter<=maxiter){ ################################################################# # 01.# Initial values of vectors i=1,2,..,n ################################################################# paijj<-logis(Y,betjj); csijj<-logis(W,gamajj) phijj<-1/(1/logis(Z,alphajj)-1) #**** ################################################################# # 02.# Computation of beta-binomial distribution i=1,2,..,n ################################################################# betabin<-betabinomial(m,factor(ordinal,ordered=TRUE),csijj,phijj) ################################################################# # 03.# Computation of CUBE probability distribution i=1,2,..,n ################################################################# probi<-paijj*(betabin-1/m)+1/m likold<-sum(log(probi)) ################################################################# # 4.# Computation of conditional probability i=1,2,..,n ################################################################# taui<-1-(1-paijj)/(m*probi) ################################################################# # 5. Unify parameter vectors param<-c(gamajj,alphajj) ################################################################# # 6.# Maximization of Q_1(beta) and Q_2(param) ################################################################# ### maximize w.r.t. bet and gama ######### esterno1<-cbind(taui,YY) covar<-esterno1[,2:NCOL(esterno1)] esterno2<-cbind(taui,ordinal,W,Z) bet<-betjj optimbet<-optim(bet,Quno,esterno1=esterno1,gr=NULL) #added gr optimparam<-optim(param,Qdue,esterno2=esterno2,q=q,m=m,gr=NULL) ################################################################# # 7.# Computation of updated estimates and log-likelihood ################################################################# betjj<-optimbet$par #updated bet estimates paramjj<-optimparam$par gamajj<-paramjj[1:(q+1)] #updated gama estimates alphajj<-paramjj[(q+2):(q+v+2)] #updated alpha estimates ### updated log-likelihood liknew<-loglikcubecov(m,ordinal,Y,W,Z,betjj,gamajj,alphajj) ################################################################# # 8.# Checking improvement of updated log-likelihood ################################################################# # print(c(nniter,betjj,gamajj,loglikjj)); #OPTIONAL PRINTING OF ITERATIONS testloglik<-abs(liknew-likold) #print(nniter);##added #print(round(c(liknew,likold,testloglik),digits=7))#added if(testloglik<=toler) break else {likold<-liknew} nniter<-nniter+1 } ################################################################# # 8.# Final ML estimates and maximized log-likelihood ################################################################# bet<-betjj; gama<-gamajj; alpha<-alphajj; loglik<-liknew ###### End of E-M algorithm for CUBE *********************************************** paramest<-c(bet,gama,alpha) nparam<- length(paramest) ###p+q+v+3; AICCUBE<- -2*loglik+2*nparam BICCUBE<- -2*loglik+log(n)*nparam ############################################################ # Compute asymptotic standard errors of ML CUBE estimates ## ############################################################ varmat<-varcovcubecov(m,ordinal,Y,W,Z,bet,gama,alpha) #if(det(varmat)<=0) stop("Variance-Covariance matrix NOT positive definite") # nomi<-c(paste("beta",0:(length(bet)-1),sep="_"), # paste("gamma",0:(length(gama)-1),sep="_"), # paste("alpha",0:(length(alpha)-1),sep="_")) stime<-paramest if (isTRUE(varmat==matrix(NA,nrow=nparam,ncol=nparam))==TRUE){ ddd<-cormat<-matrix(NA,nrow=nparam,ncol=nparam) trvarmat<-ICOMP<-NA errstd<-wald<-pval<-rep(NA,nparam) } else { ddd<-diag(sqrt(1/diag(varmat))) cormat<-(ddd%*%varmat)%*%ddd trvarmat<-sum(diag(varmat)) ICOMP<- -2*loglik + nparam*log(trvarmat/nparam) - log(det(varmat)) errstd<-sqrt(diag(varmat)); wald<-stime/errstd; pval<-2*(1-pnorm(abs(wald))) } # rownames(cormat)<-nomi;colnames(cormat)<-nomi; ################################################## # Print CUBE-covariates results of ML estimation # durata<-proc.time()-tt0;durata<-durata[1]; ################################################## # if (summary==TRUE){ #cat("=======================================================================","\n") #cat("Convergence code =",optimparam$convergence,"\n") results<-list('estimates'=stime, 'loglik'=loglik, 'niter'= nniter, 'varmat'=varmat,'BIC'=BICCUBE,'time'=durata) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/cubecov.R
#' @title Main function for CUBE models with covariates only for feeling #' @description Estimate and validate a CUBE model for ordinal data, with covariates only for explaining the #' feeling component. #' @aliases cubecsi #' @usage cubecsi(m, ordinal, W, starting, maxiter, toler) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param W Matrix of selected covariates for explaining the feeling component #' @param starting Vector of initial parameters estimates to start the optimization algorithm, with length equal to #' NCOL(W) + 3 to account for an intercept term for the feeling component (first entry) #' @param maxiter Maximum number of iterations allowed for running the optimization algorithm #' @param toler Fixed error tolerance for final estimates #' @return An object of the class "CUBE". For cubecsi, $niter will return a NULL value since the optimization procedure #' is not iterative but based on "optim" (method = "L-BFGS-B", option hessian=TRUE). \cr $varmat will return the inverse #' of the numerically computed Hessian when it is positive definite, otherwise the procedure will return a matrix of NA #' entries. #' @import stats #' @seealso \code{\link{loglikcubecsi}}, \code{\link{inibestcubecsi}}, \code{\link{CUBE}} #' @keywords internal #models cubecsi<-function(m,ordinal,W,starting,maxiter,toler){ tt0<-proc.time() n<-length(ordinal) W<-as.matrix(W) if (ncol(W)==1){ W<-as.numeric(W) } q<-length(starting)-3 pai<-starting[1]; gama<-starting[2:(q+2)]; phi<-starting[q+3]; #(0)# log-lik loglikzero<-loglikcubecsi(m,ordinal,W,pai,gama,phi) ################################################################# param<-c(pai,gama,phi) ################################## ### maximize w.r.t. gama and phi ######### optimparam<-optim(param,effecubecsi,ordinal=ordinal,W=W,m=m,method="L-BFGS-B",lower=c(0.01,rep(-Inf,q+1),0.01), upper=c(0.99,rep(Inf,q+1),0.3),gr=NULL,hessian=TRUE) ################################################################# # 7.# Computation of updated estimates and log-likelihood ################################################################# paramest<-optimparam$par pai<-paramest[1] gama<-paramest[2:(q+2)] #updated gama estimates phi<-paramest[q+3] #updated phi estimates hessian<-optimparam$hessian ### updated log-likelihood loglik<-loglikcubecsi(m,ordinal,W,pai,gama,phi) vettestim<-c(pai,gama,phi) nparam<-length(vettestim) #################################################################### AICCUBEcsi<- -2*loglik+2*nparam BICCUBEcsi<- -2*loglik+log(n)*nparam ########################################################################### # Compute asymptotic standard errors of ML estimates via (numerical)Hessian ########################################################################### if (det(hessian)<=0){ warning("Variance-Covariance matrix is not positive definite") varmat<-ddd<-cormat<-matrix(NA,nrow=nparam,ncol=nparam) errstd<-wald<-pval<-rep(NA,nparam) ICOMP<-trvarmat<-NA } else { varmat<-solve(hessian) errstd<-sqrt(diag(varmat)) ddd<-diag(sqrt(1/diag(varmat))) wald<-vettestim/errstd pval<-2*(1-pnorm(abs(wald))) cormat<-(ddd%*%varmat)%*%ddd trvarmat<-sum(diag(varmat)) ICOMP<- -2*loglik + nparam*log(trvarmat/nparam) - log(det(varmat)) errstd<-errstd wald<-wald pval<-pval } # nomi<-c("pai ",paste("gamma",0:(length(gama)-1),sep="_"),"phi ") stime<-vettestim #################################################################### ### Print CUBEcsi results of ML estimation #################################################################### # rownames(cormat)<-nomi; colnames(cormat)<-nomi; durata<-proc.time()-tt0;durata<-durata[1]; results<-list('estimates'=stime, 'loglik'=loglik, 'varmat'=varmat, 'BIC'= BICCUBEcsi,'time'=durata,'niter'=1) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/cubecsi.R
#' @title Plot an estimated CUBE model #' @description Plotting facility for the CUBE estimation of ordinal responses. #' @aliases cubevisual #' @usage cubevisual(ordinal,csiplot=FALSE,paiplot=FALSE,...) #' @param ordinal Vector of ordinal responses #' @param csiplot Logical: should \eqn{\xi} or \eqn{1-\xi} be the \eqn{y} coordinate #' @param paiplot Logical: should \eqn{\pi} or \eqn{1-\pi} be the \eqn{x} coordinate #' @param ... Additional arguments to be passed to \code{plot()} and \code{text()}. Optionally, the number \code{m} #' of ordinal categories may be passed: this is recommended if some category has zero frequency. #' @details It represents an estimated CUBE model as a point #' in the parameter space with the overdispersion being labeled. #' @return For a CUBE model fitted to \code{ordinal}, by default it returns a plot of the estimated #' \eqn{(1-\pi, 1-\xi)} as a point in the parameter space, labeled with the estimated overdispersion \eqn{\phi}. #' Depending on \code{csiplot} and \code{paiplot} and on desired output, \eqn{x} and \eqn{y} coordinates may be set #' to \eqn{\pi} and \eqn{\xi}, respectively. #' @keywords device #' @export cubevisual #' @import graphics #' @examples #' data(univer) #' ordinal<-univer$global #' cubevisual(ordinal,xlim=c(0,0.5),main="Global Satisfaction", #' ylim=c(0.5,1),cex=0.8,digits=3,col="red") cubevisual<-function(ordinal,csiplot=FALSE,paiplot=FALSE,...){ ellipsis.arg<-list(...) digits<-ellipsis.arg$digits if (is.null(digits)){ digits<-options()$digits } xlim<-ellipsis.arg$xlim if (is.null(xlim)){ xlim<-c(0,1) } ylim<-ellipsis.arg$ylim if (is.null(ylim)){ ylim<-c(0,1) } pos<-ellipsis.arg$pos if (is.null(pos)){ pos<-3 } offset<-ellipsis.arg$offset if (is.null(offset)){ offset<-0.5 } font<-ellipsis.arg$font if(is.null(font)){ font<-4 } pch<-ellipsis.arg$pch if (is.null(pch)){ pch<-19 } cex<-ellipsis.arg$cex if (is.null(cex)){ cex<-0.5 } col<-ellipsis.arg$col if (is.null(col)){ col<-"black" } main<-ellipsis.arg$main if(is.null(main)){ main<-"CUBE parameter space" } xlab<-ellipsis.arg$xlab if (is.null(xlab)){ xlab<-expression(paste("Uncertainty ", (1-pi))) } ylab<-ellipsis.arg$ylab if (is.null(ylab)){ ylab<-expression(paste("Feeling ", (1-xi))) } m<-ellipsis.arg[['m']] if (is.null(m)){ ord<-factor(ordinal,ordered=TRUE) lev<-levels(ord) m<-length(lev) } starting<-inibestcube(m,ordinal) F0<-Formula(ordinal~0|0|0) stimacube<-GEM(F0,family="cube",m=m,starting=starting,maxiter = 500, toler = 1e-06) param<-stimacube$estimates; pai<-param[1];csi<-param[2];phi<-param[3] valcsi<-1-csi; valpai<-1-pai; if (csiplot==TRUE){ valcsi<-csi ylab<-expression(xi) } if (paiplot==TRUE){ valpai<-pai xlab<-expression(pi) } plot(valpai,valcsi,main=main,las=1,pch=pch,cex=cex,xlim=xlim,ylim=ylim, col=col,xlab=xlab,ylab=ylab); text(valpai,valcsi,labels=bquote(phi == .(round(phi,digits=3))),font=font,pos=pos,offset=offset,cex=cex,col=col) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/cubevisual.R
#' @title Main function for CUB models with covariates for the uncertainty component #' @description Estimate and validate a CUB model for given ordinal responses, with covariates for explaining #' the feeling component via a logistic transform. #' @aliases cubp0 #' @usage cubp0(m, ordinal, Y, maxiter, toler) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param Y Matrix of selected covariates for explaining the uncertainty component #' @param maxiter Maximum number of iterations allowed for running the optimization algorithm #' @param toler Fixed error tolerance for final estimates #' @return An object of the class "CUB" #' @import stats graphics #' @references #' Iannario M. and Piccolo D. (2010), A new statistical model for the analysis of customer satisfaction, #' \emph{Quality Technology and Quantity management}, \bold{7}(2) 149--168 \cr #' Iannario M. and Piccolo D. (2012). CUB models: Statistical methods and empirical evidence, in: #' Kenett R. S. and Salini S. (eds.), \emph{Modern Analysis of Customer Surveys: with applications using R}, #' J. Wiley and Sons, Chichester, 231--258 #' @keywords internal cubp0<-function(m,ordinal,Y,maxiter,toler){ tt0<-proc.time() n<-length(ordinal) Y<-as.matrix(Y) if (ncol(Y)==1){ Y<-as.numeric(Y) } p<-NCOL(Y) aver<-mean(ordinal); varcamp<-mean(ordinal^2)-aver^2; YY<-cbind(1,Y) ################################################################## serie<-1:m; freq<-tabulate(ordinal,nbins=m); inipaicsi<-inibest(m,freq) pai<-inipaicsi[1]; bet0<-log(pai/(1-pai)); betjj<- c(bet0,rep(0.1,p)) #betjj<-rep(0.1,p+1); csijj<-inipaicsi[2] ############################################################## loglikjj<-loglikcubp0(m,ordinal,Y,betjj,csijj) # ******************************************************************** # ************* E-M algorithm for CUB(p,0) *************************** # ******************************************************************** nniter<-1 while(nniter<=maxiter){ loglikold<-loglikjj bb<-probbit(m,csijj) vettn<-bb[ordinal] # probbit for all ordinal (r_i,i=1,2,...,n) aai<- -1+ 1/(logis(Y,betjj)) #exp(-(YY%*%betjj)); ttau<-1/(1+aai/(m*vettn)) # tau is a reserved word in R averpo<-sum(ordinal*ttau)/sum(ttau) ################################## maximize w.r.t. bet ######## bet<-betjj covar<-YY tauno<-ttau #nlmaxbet<-nlm(effe10,betjj,esterno10); opmaxbet<-optim(bet,effe10,esterno10=cbind(tauno,covar)) ################################################################ betjj<-opmaxbet$par # betjj<-nlmaxbet$estimate; #updated bet estimates csijj<-(m-averpo)/(m-1) #updated csi estimate #loglikjj<- -opmaxbet$value loglikjj<-loglikcubp0(m,ordinal,Y,betjj,csijj) #print(c(nniter,betjj,csijj,loglikjj)); #OPTIONAL PRINTING OF ITERATIONS testll<-abs(loglikjj-loglikold) if(testll<=toler) break else {loglikold<-loglikjj} nniter<-nniter+1 } bet<-betjj; csi<-csijj; loglik<-loglikjj; #################################################################### AICCUBp0<- -2*loglik+2*(p+2) BICCUBp0<- -2*loglik+log(n)*(p+2) #################################################################### # Compute asymptotic standard errors of ML estimates #################################################################### varmat<-varcovcubp0(m,ordinal,Y,bet,csi) nomi<-c(paste("beta",0:(length(bet)-1),sep="_"),"csi ") stime<-c(bet,csi) nparam<-length(stime) #if(det(varmat)<=0) stop("Variance-covariance matrix NOT positive definite") if (isTRUE(varmat==matrix(NA,nrow=nparam,ncol=nparam))==TRUE){ ddd<-cormat<-matrix(NA,nrow=nparam,ncol=nparam) ICOMP<-trvarmat<-NA errstd<-wald<-pval<-rep(NA,nparam) } else { ddd<-diag(sqrt(1/diag(varmat))) cormat<-(ddd%*%varmat)%*%ddd trvarmat<-sum(diag(varmat)) ICOMP<- -2*loglik + nparam*log(trvarmat/nparam) - log(det(varmat)) ## added errstd<-sqrt(diag(varmat)); wald<-stime/errstd; pval<-2*(1-pnorm(abs(wald))) } rownames(cormat)<-nomi;colnames(cormat)<-nomi; durata<-proc.time()-tt0;durata<-durata[1]; results<-list('estimates'=stime,'ordinal'=ordinal,'time'=durata, 'loglik'=loglik,'niter'=nniter,'varmat'=varmat, 'BIC'=BICCUBp0) #class(results)<-"cub" return(results) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/cubp0.R
#' @title Main function for CUB models with covariates for both the uncertainty and the feeling components #' @description Estimate and validate a CUB model for given ordinal responses, with covariates for explaining both the #' feeling and the uncertainty components by means of logistic transform. #' @aliases cubpq #' @usage cubpq(m, ordinal, Y, W, maxiter, toler) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param Y Matrix of selected covariates for explaining the uncertainty component #' @param W Matrix of selected covariates for explaining the feeling component #' @param maxiter Maximum number of iterations allowed for running the optimization algorithm #' @param toler Fixed error tolerance for final estimates #' @return An object of the class "CUB" #' @import stats #' @seealso \code{\link{varcovcubpq}}, \code{\link{loglikcubpq}}, \code{\link{inibestgama}}, \code{\link{CUB}} #' @references #' Piccolo D. and D'Elia A. (2008), A new approach for modelling consumers' preferences, \emph{Food Quality and Preference}, #' \bold{18}, 247--259 \cr #' Iannario M. and Piccolo D. (2010), A new statistical model for the analysis of customer satisfaction, #' \emph{Quality Technology and Quantitative Management}, \bold{17}(2) 149--168 #' @keywords internal ######################################## cubpq<-function(m,ordinal,Y,W,maxiter,toler){ tt0<-proc.time() n<-length(ordinal) Y<-as.matrix(Y) W<-as.matrix(W) p<-NCOL(Y) q<-NCOL(W) aver<-mean(ordinal) if (ncol(Y)==1){ Y<-as.numeric(Y) } if (ncol(W)==1){ W<-as.numeric(W) } YY<-cbind(1,Y); WW<-cbind(1,W); ################################################################################# freq<-tabulate(ordinal,nbins=m) inipaicsi<-inibest(m,freq); pai<-inipaicsi[1]; bet0<-log(pai/(1-pai)); betjj<-c(bet0,rep(0.1,p)); gamajj<-inibestgama(m,factor(ordinal,ordered=TRUE),W) ################################################################################# loglikjj<-loglikcubpq(m,ordinal,Y,W,betjj,gamajj) # ******************************************************************** # ************* E-M algorithm for CUB(p,q) *************************** # ******************************************************************** nniter<-1 while(nniter<=maxiter){ loglikold<-loglikjj vettn<-as.numeric(bitgama(m,factor(ordinal,ordered=TRUE),W,gamajj) ) aai<- -1+1/(logis(Y,betjj)) ttau<-1/(1+aai/(m*vettn)) #################### maximize w.r.t. bet and gama ############ esterno10<-cbind(ttau,YY) esterno01<-cbind(ttau,ordinal,WW) bet<-betjj; gama<-gamajj; betoptim<-optim(bet,effe10,esterno10=esterno10) gamaoptim<-optim(gama,effe01,esterno01=esterno01,m=m) ################################################################ betjj<-betoptim$par gamajj<-gamaoptim$par loglikjj<-loglikcubpq(m,ordinal,Y,W,betjj,gamajj) # print(c(nniter,betjj,gamajj,loglikjj)); #OPTIONAL PRINTING OF ITERATIONS testll<-abs(loglikjj-loglikold) if(testll<=toler) break else {loglikold<-loglikjj} nniter<-nniter+1 } bet<-betjj; gama<-gamajj; loglik<-loglikjj; #################################################################### AICCUBpq<- -2*loglik+2*(p+q+2) BICCUBpq<- -2*loglik+log(n)*(p+q+2) #################################################################### # Compute asymptotic standard errors of ML estimates #################################################################### varmat<-varcovcubpq(m,ordinal,Y,W,bet,gama) #if(det(varmat)<=0) stop("Variance-covariance matrix NOT positive definite") nomi<-c(paste("beta",0:(length(bet)-1),sep="_"),paste("gamma",0:(length(gama)-1),sep="_")) stime<-c(bet,gama) nparam<-length(stime) if (isTRUE(varmat==matrix(NA,nrow=nparam,ncol=nparam))==TRUE){ ddd<-cormat<-matrix(NA,nrow=nparam,ncol=nparam) ICOMP<-trvarmat<-NA errstd<-wald<-pval<-rep(NA,nparam) } else { ddd<-diag(sqrt(1/diag(varmat))) cormat<-(ddd%*%varmat)%*%ddd trvarmat<-sum(diag(varmat)) ICOMP<- -2*loglik + nparam*log(trvarmat/nparam) - log(det(varmat)) errstd<-sqrt(diag(varmat)); wald<-stime/errstd; pval<-2*(1-pnorm(abs(wald))) } rownames(cormat)<-nomi;colnames(cormat)<-nomi; durata<-proc.time()-tt0;durata<-durata[1]; #################################################################### results<-list('estimates'=stime,'ordinal'=ordinal,'time'=durata, 'loglik'=loglik,'niter'=nniter,'varmat'=varmat, 'BIC'=BICCUBpq) #class(results)<-"cub" return(results) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/cubpq.R
#' @title Main function for CUB models with a shelter effect #' @description Estimate and validate a CUB model with a shelter effect. #' @aliases cubshe #' @usage cubshe(m, ordinal, shelter, maxiter, toler) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param shelter Category corresponding to the shelter choice #' @param maxiter Maximum number of iterations allowed for running the optimization algorithm #' @param toler Fixed error tolerance for final estimates #' @return An object of the class "CUB" #' @import stats #' @references #' Iannario M. (2012). Modelling \emph{shelter} choices in a class of mixture models for ordinal responses, #' \emph{Statistical Methods and Applications}, \bold{21}, 1--22 #' @keywords internal #models cubshe<-function(m,ordinal,shelter,maxiter,toler){ tt0<-proc.time() ####### ########### serie<-1:m; freq<-tabulate(ordinal,nbins=m); n<-sum(freq); ########## ########### aver<-mean(ordinal); varcamp<-mean(ordinal^2)-aver^2; dd<-ifelse(serie==shelter,1,0) ##################################################################### vett<-inibest(m,freq) pai1<-vett[1]; csi<-vett[2] fc<-freq[shelter]/n deltaini<-max(0.01,(m*fc-1)/(m-1)) #deltaini=runif(1,0,0.3) pai2<-max(0.01,1-deltaini-pai1) ################################################################ loglik<-loglikcubshe(m,freq,pai1,pai2,csi,shelter) # ******************************************************************** # ************* E-M algorithm for CUBSHE ***************************** # ******************************************************************** nniter<-1 while(nniter<=maxiter){ ############# likold<-loglik bb<-probbit(m,csi) tau1<-pai1*bb tau2<-pai2*(1/m) denom<-tau1+tau2+(1-pai1-pai2)*dd tau1<-tau1/denom tau2<-tau2/denom tau3<-1-tau1-tau2 numaver<-sum(serie*freq*tau1) denaver<-sum(freq*tau1) averpo<-numaver/denaver pai1<-sum(freq*tau1)/n #updated pai1 estimate pai2<-sum(freq*tau2)/n #updated pai2 estimate csi<-(m-averpo)/(m-1) #updated csi estimate if(csi<0.001){ csi<-0.001;nniter<-maxiter-1; } loglik<-loglikcubshe(m,freq,pai1,pai2,csi,shelter) liknew<-loglik testll<-abs(liknew-likold) #print(cbind(nniter,testll,pai1,pai2,csi,loglik)); if(testll<=toler) break else {loglik<-liknew} nniter<-nniter+1 } ###### if(csi>0.999) csi<-0.99 ###????????### to avoid division by 0 !!! if(csi<0.001) csi<-0.01 ###????### to avoid division by 0 !!! if(pai1<0.001) pai1<-0.01 ###????? ### to ensure identifiability !!! #################################################################### # Compute asymptotic standard errors of ML estimates #################################################################### varmat<-varcovcubshe(m,pai1,pai2,csi,shelter,n) nomi<-rbind("pai1","pai2","csi") stime<-c(pai1,pai2,csi) nparam<-length(stime) delta<-1-pai1-pai2 paistar<-pai1/(pai1+pai2) if (isTRUE(varmat==matrix(NA,nrow=nparam,ncol=nparam))==TRUE){ ddd<-cormat<-matrix(NA,nrow=nparam,ncol=nparam) ICOMP<-trvarmat<-NA esdelta<-pvaldelta<-espaistar<-pvalpaistar<-NA errstd<-wald<-pval<-rep(NA,nparam) } else { ddd<-diag(sqrt(1/diag(varmat))) esdelta<-sqrt(varmat[1,1]+varmat[2,2]+2*varmat[1,2]) pvaldelta<-round(2*(1-pnorm(abs(delta/esdelta))),20) espaistar<-sqrt((pai1^2*varmat[2,2]+pai2^2*varmat[1,1]-2*pai1*pai2*varmat[1,2]))/(pai1+pai2)^2 pvalpaistar<-round(2*(1-pnorm(abs(paistar/espaistar))),20) trvarmat<-sum(diag(varmat)) ICOMP<- -2*loglik + nparam*log(trvarmat/nparam) - log(det(varmat)) errstd<-sqrt(diag(varmat)) wald<-stime/errstd pval<-round(2*(1-pnorm(abs(wald))),20) } theorpr<-probcubshe1(m,pai1,pai2,csi,shelter) dissshe<-dissim(theorpr,freq/n) llunif<- -n*log(m); csisb<-(m-aver)/(m-1); llsb<-loglikcub00(m,freq,1,csisb) llunif<- -n*log(m) nonzero<-which(freq!=0) logsat<- -n*log(n)+sum((freq[nonzero])*log(freq[nonzero])) pearson<-((freq-n*theorpr))/sqrt(n*theorpr) X2<-sum(pearson^2) relares<-(freq/n-theorpr)/theorpr stampa<-cbind(1:m,freq/n,theorpr,pearson,relares) LL2<-1/(1+mean((freq/(n*theorpr)-1)^2)) II2<-(loglik-llunif)/(logsat-llunif) FF2<-1-dissshe AICCUBshe<- -2*loglik+2*(3) BICCUBshe<- -2*loglik+log(n)*(3) durata<-proc.time()-tt0;durata<-durata[1]; # results<-list('estimates'=stime,'ordinal'=ordinal,'time'=durata, 'loglik'=loglik,'niter'=nniter,'varmat'=varmat, 'BIC'=BICCUBshe) #class(results)<-"cub" return(results) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/cubshe.R
#' @title Plot an estimated CUB model with shelter #' @description Plotting facility for the CUB estimation of ordinal responses when a shelter effect is included #' @aliases cubshevisual #' @usage cubshevisual(ordinal,shelter,csiplot=FALSE,paiplot=FALSE,...) #' @param ordinal Vector of ordinal responses #' @param shelter Category corresponding to the shelter choice #' @param csiplot Logical: should \eqn{\xi} or \eqn{1-\xi} be the \eqn{y} coordinate #' @param paiplot Logical: should \eqn{\pi} or \eqn{1-\pi} be the \eqn{x} coordinate #' @param ... Additional arguments to be passed to \code{plot()} and \code{text()}. Optionally, the number \code{m} #' of ordinal categories may be passed: this is recommended if some category has zero frequency. #' @details It represents an estimated CUB model with shelter effect as a point #' in the parameter space with shelter estimate indicated as label. #' @return For a CUB model with shelter fitted to \code{ordinal}, by default it returns a plot of the estimated #' \eqn{(1-\pi, 1-\xi)} as a point in the parameter space, labeled with the estimated shelter parameter \eqn{\delta}. #' Depending on \code{csiplot} and \code{paiplot} and on desired output, \eqn{x} and \eqn{y} coordinates may be set #' to \eqn{\pi} and \eqn{\xi}, respectively. #' @keywords device #' @export cubshevisual #' @seealso \code{\link{cubvisual}}, \code{\link{multicub}} #' @import graphics #' @examples #' data(univer) #' ordinal<-univer$global #' cubshevisual(ordinal,shelter=7,digits=3,col="blue",main="Global Satisfaction") cubshevisual<-function(ordinal,shelter,csiplot=FALSE,paiplot=FALSE,...){ ellipsis.arg<-list(...) digits<-ellipsis.arg$digits if (is.null(digits)){ digits<-options()$digits } pos<-ellipsis.arg$pos if (is.null(pos)){ pos<-3 } offset<-ellipsis.arg$offset if (is.null(offset)){ offset<-0.5 } font<-ellipsis.arg$font if(is.null(font)){ font<-4 } main<-ellipsis.arg$main if (is.null(main)){ main<-"CUB-she parameter space" } xlim<-ellipsis.arg$xlim if (is.null(xlim)){ xlim=c(0,1) } ylim<-ellipsis.arg$ylim if (is.null(ylim)){ ylim<-c(0,1) } pch<-ellipsis.arg$pch if (is.null(pch)){ pch<-19 } cex<-ellipsis.arg$cex if (is.null(cex)){ cex<-0.5 } col<-ellipsis.arg$col if (is.null(col)){ col<-"black" } xlab<-ellipsis.arg$xlab if (is.null(xlab)){ xlab<-expression(paste("Uncertainty ", (1-pi))) } ylab<-ellipsis.arg$ylab if (is.null(ylab)){ ylab<-expression(paste("Feeling ", (1-xi))) } m<-ellipsis.arg[['m']] if (is.null(m)){ ord<-factor(ordinal,ordered=TRUE) lev<-levels(ord) m<-length(lev) } F0<-Formula(ordinal~0|0|0) #data<-as.data.frame(ordinal) mod<-GEM(F0,shelter=shelter,family="cub",m=m) stime<-mod$estimates pai1<-stime[1];pai2<-stime[2];csi<-stime[3] deltaval<-round(1-pai1-pai2,digits=digits) paistar<-pai1/(pai1+pai2) valcsi<-1-csi; valpai<-1-paistar; if (csiplot==TRUE){ valcsi<-csi ylab<-expression(xi) } if (paiplot==TRUE){ valpai<-paistar xlab<-expression(pi) } plot(valpai,valcsi,pch=pch,col=col,main=main,xlim=xlim,ylim=ylim,xlab=xlab, ylab=ylab) text(valpai,valcsi,labels=bquote(delta == .(deltaval)),pos=pos,offset=offset,font=font,cex=cex,col=col) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/cubshevisual.R
#' @title Plot an estimated CUB model #' @description Plotting facility for the CUB estimation of ordinal responses. #' @aliases cubvisual #' @usage cubvisual(ordinal,csiplot=FALSE,paiplot=FALSE,...) #' @param ordinal Vector of ordinal responses #' @param csiplot Logical: should \eqn{\xi} or \eqn{1-\xi} be the \eqn{y} coordinate #' @param paiplot Logical: should \eqn{\pi} or \eqn{1-\pi} be the \eqn{x} coordinate #' @param ... Additional arguments to be passed to \code{plot()} and \code{text()}. Optionally, the number #' \code{m} of ordinal categories may be passed: this is recommended if some category has zero frequency. #' @details It represents an estimated CUB model as a point #' in the parameter space with some useful options. #' @return For a CUB model fit to \code{ordinal}, by default it returns a plot of the estimated #' \eqn{(1-\pi, 1-\xi)} as a point in the parameter space. Depending on \code{csiplot} and \code{paiplot} #' and on desired output, \eqn{x} and \eqn{y} coordinates may be set to \eqn{\pi} and \eqn{\xi}, respectively. #' @keywords device #' @export cubvisual #' @import graphics #' @examples #' data(univer) #' ordinal<-univer$global #' cubvisual(ordinal,xlim=c(0,0.5),ylim=c(0.5,1),cex=0.8,main="Global Satisfaction") cubvisual<-function(ordinal,csiplot=FALSE,paiplot=FALSE,...){ ellipsis.arg<-list(...) xlim<-ellipsis.arg$xlim if (is.null(xlim)){ xlim<-c(0,1) } ylim<-ellipsis.arg$ylim if (is.null(ylim)){ ylim<-c(0,1) } pos<-ellipsis.arg$pos if (is.null(pos)){ pos<-3 } offset<-ellipsis.arg$offset if (is.null(offset)){ offset<-0.5 } font<-ellipsis.arg$font if(is.null(font)){ font<-4 } pch<-ellipsis.arg$pch if (is.null(pch)){ pch<-19 } cex<-ellipsis.arg$cex if (is.null(cex)){ cex<-0.5 } col<-ellipsis.arg$col if (is.null(col)){ col<-"black" } xlab<-ellipsis.arg$xlab if (is.null(xlab)){ xlab<-expression(paste("Uncertainty ", (1-pi))) } ylab<-ellipsis.arg$ylab if (is.null(ylab)){ ylab<-expression(paste("Feeling ", (1-xi))) } main<-ellipsis.arg$main if (is.null(main)){ main<-"CUB parameter space" } m<-ellipsis.arg[['m']] if (is.null(m)){ ord<-factor(ordinal,ordered=TRUE) lev<-levels(ord) m<-length(lev) } F0<-Formula(ordinal~0|0|0) #data<-as.data.frame(ordinal) stimacub<-GEM(F0,family="cub",m=m,maxiter = 500, toler = 1e-06) param<-stimacub$estimates; pai<-param[1];csi<-param[2]; valcsi<-1-csi; valpai<-1-pai; if (csiplot==TRUE){ valcsi<-csi ylab<-expression(xi) } if (paiplot==TRUE){ valpai<-pai xlab<-expression(pi) } plot(valpai,valcsi,main=main,las=1,pch=pch,cex=cex,xlim=xlim,ylim=ylim, col=col,xlab=xlab, ylab=ylab) text(valpai,valcsi,labels="estim",font=font,pos=pos,offset=offset,cex=cex,col=col) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/cubvisual.R
#' @title CUSH model without covariates #' @description Estimate and validate a CUSH model for given ordinal responses, without covariates. #' @usage cush00(m, ordinal, shelter) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param shelter Category corresponding to the shelter choice #' @keywords internal #' @aliases cush00 #' @return An object of the class "GEM", "CUSH" #' @import stats graphics cush00<-function(m,ordinal,shelter){ tt0<-proc.time() freq<-tabulate(ordinal,nbins=m); n<-length(ordinal); aver<-mean(ordinal); fc<-freq[shelter]/n deltaest<-max(0.01,(m*fc-1)/(m-1)) ### sufficient unbiased estimator esdelta<-sqrt((1-deltaest)*(1+(m-1)*deltaest)/(n*(m-1))) varmat<-esdelta^2 wald<-deltaest/esdelta loglik<-loglikcush00(m,ordinal,deltaest,shelter) AICCUSH<- -2*loglik+2 BICCUSH<- -2*loglik+log(n) llunif<- -n*log(m); csisb<-(m-aver)/(m-1); llsb<-loglikcub00(m,freq,1,csisb) nonzero<-which(freq!=0) logsat<- -n*log(n)+sum((freq[nonzero])*log(freq[nonzero])) devian<-2*(logsat-loglik) LRT<-2*(loglik-llunif) theorpr<-deltaest*ifelse(seq(1,m)==shelter,1,0)+(1-deltaest)/m pearson<-((freq-n*theorpr))/sqrt(n*theorpr) X2<-sum(pearson^2) relares<-(freq/n-theorpr)/theorpr diss00<-dissim(theorpr,freq/n) FF2<-1-diss00 LL2<-1/(1+mean((freq/(n*theorpr)-1)^2)) II2<-(loglik-llunif)/(logsat-llunif) stampa<-cbind(1:m,freq/n,theorpr,pearson,relares) durata<-proc.time()-tt0; durata<-durata[1]; ########### #################################### results<-list('estimates'=deltaest, 'loglik'=loglik, 'varmat'=varmat,'BIC'= BICCUSH,'time'=durata) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/cush00.R
#' @title CUSH model with covariates #' @description Estimate and validate a CUSH model for ordinal responses, with covariates #' to explain the shelter effect. #' @aliases cushcov #' @usage cushcov(m, ordinal, X, shelter) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param X Matrix of selected covariates for explaining the shelter effect #' @param shelter Category corresponding to the shelter choice #' @keywords internal #' @return An object of the class "GEM", "CUSH" #' @import stats graphics ########################################################################################### ### CUSHCOV (shelter) with covariates ########################################################################################### cushcov<-function(m,ordinal,X,shelter){ tt0<-proc.time() freq<-tabulate(ordinal,nbins=m); n<-length(ordinal); fc<-freq[shelter]/n delta<-max(0.01,(m*fc-1)/(m-1)) ### sufficient unbiased estimator for a CUSH model X<-as.matrix(X) if (ncol(X)==1){ X<-as.numeric(X) } ncovar<-NCOL(X) omzero<-log(delta/(1-delta)) ### initial estimate of omega_0 omegainit<-c(omzero,rep(0.1,ncovar)) ### initial estimate of omega vector ### maximize w.r.t. omega XX<-cbind(1,X) esternocush<-cbind(ordinal,XX) paravec<-omegainit shelter<-shelter optimomega<-optim(paravec,effecush,esternocush,shelter=shelter,m=m,gr=NULL,hessian=TRUE) ################################################################# # Computation of estimates and log-likelihood ################################################################# omegaest<-optimomega$par #omega estimates loglik<-loglikcushcov(m,ordinal,X,omegaest,shelter) #loglik at the maximum HHH<-optimomega$hessian nparam<-length(omegaest) if (det(HHH)<=0){ warning("Variance-Covariance matrix is not positive definite") varmat<-ddd<-cormat<-matrix(NA,nrow=nparam,ncol=nparam) trvarmat<-ICOMP<-NA errst<-wald<-pval<-rep(NA,nparam) } else { varmat<-solve(HHH) errst<-sqrt(diag(varmat)) ### vector ddd<-diag(sqrt(1/diag(varmat))) ### matrix wald<-omegaest/errst trvarmat<-sum(diag(varmat)) ICOMP<- -2*loglik + nparam*log(trvarmat/nparam) - log(det(varmat)) ## added } AICCUSH<- -2*loglik+2*nparam BICCUSH<- -2*loglik+nparam*log(n) nomi<-c(paste("omega",0:(nparam-1),sep="_")) stime<-omegaest; errstd<-errst; wald<-wald; pval<-2*(1-pnorm(abs(wald))) durata<-proc.time()-tt0;durata<-durata[1]; results<-list('estimates'=stime, 'loglik'=loglik, 'varmat'=varmat,'BIC'=BICCUSH, 'time'=durata) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/cushcov.R
#' @title Mean difference of a discrete random variable #' @description Compute the Gini mean difference of a discrete distribution #' @usage deltaprob(prob) #' @aliases deltaprob #' @param prob Vector of the probability distribution #' @keywords univar #' @return Numeric value of the Gini mean difference of the input probability distribution, #' computed according to the de Finetti-Paciello formulation. #' @export deltaprob #' @examples #' prob<-c(0.04,0.04,0.05,0.10,0.21,0.32,0.24) #' deltaprob(prob) deltaprob <- function(prob){ frip<-cumsum(prob) m<-length(prob) frip1<-frip[1:(m-1)] 2*sum(frip1*(1-frip1)) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/deltaprob.R
#' @title Normalized dissimilarity measure #' @description Compute the normalized dissimilarity measure between observed #' relative frequencies and estimated (theoretical) probabilities of a discrete distribution. #' @usage dissim(proba,probb) #' @aliases dissim #' @param proba Vector of observed relative frequencies #' @param probb Vector of estimated (theoretical) probabilities #' @return Numeric value of the dissimilarity index, assessing the distance to a perfect fit. #' @keywords univar #' @export dissim #' @examples #' proba<-c(0.01,0.03,0.08,0.07,0.27,0.37,0.17) #' probb<-c(0.04,0.04,0.05,0.10,0.21,0.32,0.24) #' dissim(proba,probb) dissim <- function(proba,probb){ if (length(proba)==length(probb)){ return(0.5*sum(abs(proba-probb))) } else { cat("Error: input vectors should have the same length","\n") } }
/scratch/gouwar.j/cran-all/cranData/CUB/R/dissim.R
#' @title Auxiliary function for the log-likelihood estimation of CUB models #' @description Compute the opposite of the scalar function that is maximized when running #' the E-M algorithm for CUB models with covariates for the feeling parameter. #' @aliases effe01 #' @usage effe01(gama, esterno01, m) #' @param gama Vector of the starting values of the parameters to be estimated #' @param esterno01 A matrix binding together the vector of the posterior probabilities #' that each observation has been generated by the first component distribution of the mixture, #' the ordinal data and the matrix of the selected covariates accounting for an intercept term #' @keywords internal #' @details It is called as an argument for optim within CUB function for models with covariates for #' feeling or for both feeling and uncertainty effe01 <- function(gama,esterno01,m){ ttau<-esterno01[,1] ordd<-esterno01[,2] covar<-esterno01[,3:ncol(esterno01)] return(sum(ttau*((ordd-1)*(covar%*%gama)+(m-1)*log(1+exp(-covar%*%gama))))) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/effe01.R
#' @title Auxiliary function for the log-likelihood estimation of CUB models #' @description Compute the opposite of the scalar function that is maximized when running #' the E-M algorithm for CUB models with covariates for the uncertainty parameter. #' @aliases effe10 #' @usage effe10(bet, esterno10) #' @param bet Vector of the starting values for the parameters to be estimated #' @param esterno10 A matrix binding together the matrix of the selected covariates #' (accounting for an intercept term) and a vector (whose length equals the number of observations) #' of the posterior probabilities that each observation has been generated by the first component #' distribution of the mixture #' @keywords internal #' @details It is called as an argument for optim within CUB function for models with covariates for #' uncertainty or for both feeling and uncertainty effe10 <- function(bet,esterno10){ tauno<-esterno10[,1] covar<-esterno10[,2:ncol(esterno10)] return(sum(log(1+exp(-covar%*%bet))+(1-tauno)*(covar%*%bet))) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/effe10.R
#' @title Auxiliary function for the log-likelihood estimation of CUBE models without covariates #' @description Define the opposite of the scalar function that is maximized when running the E-M #' algorithm for CUBE models without covariates. #' @aliases effecube #' @usage effecube(paravec, dati, m) #' @param paravec Vector of initial estimates for the feeling and the overdispersion parameters #' @param dati Matrix binding together a column vector of length \eqn{m} containing the posterior #' probabilities that each observed category has been generated by the first component distribution #' of the mixture, and the column vector of the absolute frequencies of the observations #' @keywords internal #' @details It is called as an argument for optim within CUBE function (where no covariate is specified) #' and "cubeforsim" as the function to minimize. #' @references Iannario, M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data, #' \emph{Communications in Statistics - Theory and Methods}, \bold{43}, 771--786 \cr effecube <- function(paravec,dati,m){ tauno<-dati[,1] freq<-dati[,2] return(-sum(freq*tauno*log(betar(m,paravec[1],paravec[2])))) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/effecube.R
#' @title Auxiliary function for the log-likelihood estimation of CUBE models with covariates #' only for the feeling component #' @description Compute the opposite of the scalar function that is maximized when running the #' E-M algorithm for CUBE models with covariates only for the feeling component. #' @aliases effecubecsi #' @usage effecubecsi(param, ordinal, W, m) #' @param param Vector of length equal to NCOL(W) + 3 whose entries are the initial parameters estimates #' @param ordinal Vector of ordinal responses #' @param W Matrix of the selected covariates for explaining the feeling component #' @param m Number of ordinal categories #' @keywords internal effecubecsi <- function(param,ordinal,W,m){ q<-length(param)-3 pai<-param[1] gama<-param[2:(q+2)] phi<-param[q+3] -loglikcubecsi(m,ordinal,W,pai,gama,phi) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/effecubecsi.R
#' @title Auxiliary function for the log-likelihood estimation of CUSH models with covariates #' @description Compute the opposite of the loglikelihood function for CUSH models #' with covariates to explain the shelter effect. #' @aliases effecush #' @usage effecush(paravec, esternocush, shelter, m) #' @param paravec Vector of the initial parameters estimates #' @param esternocush Matrix binding together the vector of ordinal data and the matrix XX of explanatory #' variables whose first column is a column of ones needed to consider an intercept term #' @param shelter Category corresponding to the shelter choice #' @param m Number of ordinal categories #' @keywords internal #' @details It is called as an argument for "optim" within CUSH function (when no covariate is included) #' as the function to minimize. effecush <-function(paravec,esternocush,shelter,m){ ordinal<-esternocush[,1] ncovar<-ncol(esternocush) X<-esternocush[,3:ncovar] return(-loglikcushcov(m,ordinal,X,paravec,shelter)) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/effecush.R
#' @title Auxiliary function for the log-likelihood estimation of IHG models without covariates #' @description Compute the opposite of the log-likelihood function for an IHG model without covariates. #' @aliases effeihg #' @usage effeihg(theta, m, freq) #' @param theta Initial estimate for the parameter of the IHG distribution #' @param m Number of ordinal categories #' @param freq Vector of the absolute frequency distribution of the ordinal responses #' @keywords internal #' @details It is called as an argument for "optim" within IHG function (when no covariate is specified) #' as the function to minimize. effeihg <- function(theta,m,freq){-loglikihg(m,freq,theta)}
/scratch/gouwar.j/cran-all/cranData/CUB/R/effeihg.R
#' @title Auxiliary function for the log-likelihood estimation of IHG models with covariates #' @description Compute the opposite of the log-likelihood function for an IHG model with covariates #' for the preference parameter. #' @aliases effeihgcov #' @usage effeihgcov(nu, ordinal, U, m) #' @param nu Vector of the starting values for the parameters to be estimated, with length equal to #' NCOL(U)+1 to account for an intercept term (first entry of \eqn{nu}) #' @param ordinal Vector of ordinal responses #' @param U Matrix of the explanatory variables for the preference parameter \eqn{\theta} #' @param m Number of ordinal categories #' @keywords internal #' @details It is called as an argument for "optim" within IHG function (with covariates) #' as the function to minimize. effeihgcov <- function(nu,ordinal,U,m){ -loglikihgcov(m,ordinal,U,nu) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/effeihgcov.R
#' @title Log-likelihood function of a CUB model without covariates #' @description Compute the log-likelihood function of a CUB model without covariates fitting #' ordinal responses, possibly with subjects' specific parameters. #' @aliases ellecub #' @usage ellecub(m,ordinal,assepai,assecsi) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param assepai Vector of uncertainty parameters for given observations #' (with the same length as \code{ordinal}) #' @param assecsi Vector of feeling parameters for given observations #' (with the same length as \code{ordinal}) #' @seealso \code{\link{loglikCUB}} #' @keywords htest #' @export ellecub #' @examples #' m<-7 #' n0<-230 #' n1<-270 #' bet<-c(-1.5,1.2) #' gama<-c(0.5,-1.2) #' pai0<-logis(0,bet); csi0<-logis(0,gama) #' pai1<-logis(1,bet); csi1<-logis(1,gama) #' ordinal0<-simcub(n0,m,pai0,csi0) #' ordinal1<-simcub(n1,m,pai1,csi1) #' ordinal<-c(ordinal0,ordinal1) #' assepai<-c(rep(pai0,n0),rep(pai1,n1)) #' assecsi<-c(rep(csi0,n0),rep(csi1,n1)) #' lli<-ellecub(m,ordinal,assepai,assecsi) ellecub <- function(m,ordinal,assepai,assecsi){ prob<-assepai*(dbinom(0:(m-1),m-1,1-assecsi)-1/m)+1/m pconi<-prob[ordinal] return(sum(log(pconi))) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/ellecub.R
#' @title Log-likelihood function for gecub distribution #' @description Log-likelihood function for gecub distribution #' @aliases ellegecub #' @usage ellegecub(ordinal,Y,W,X,bet,gama,omega,shelter) #' @param ordinal Vector of ordinal responses #' @param Y Matrix of selected covariates for explaining the uncertainty component, not including intercept #' @param W Matrix of selected covariates for explaining the feeling component, not including intercept #' @param X Matrix of selected covariates for explaining the shelter effect, not including intercept #' @param bet Matrix of selected covariates for explaining the uncertainty component, not including intercept #' @param gama Matrix of selected covariates for explaining the feeling component, not including intercept #' @param omega Matrix of selected covariates for explaining the shelter effect, not including intercept #' @param shelter Category corresponding to the shelter choice #' @keywords internal ellegecub<-function(ordinal,Y,W,X,bet,gama,omega,shelter){ probn<-probgecub(ordinal,Y,W,X,bet,gama,omega,shelter); return(sum(log(probn))); }
/scratch/gouwar.j/cran-all/cranData/CUB/R/ellegecub.R
#' @title Expectation of CUB distributions #' @description Compute the expectation of a CUB model without covariates. #' @aliases expcub00 #' @usage expcub00(m,pai,csi) #' @param m Number of ordinal categories #' @param pai Uncertainty parameter #' @param csi Feeling parameter #' @export expcub00 #' @seealso \code{\link{varcub00}}, \code{\link{expcube}}, \code{\link{varcube}} #' @keywords distribution #' @references Piccolo D. (2003). On the moments of a mixture of uniform and shifted binomial random variables. #' \emph{Quaderni di Statistica}, \bold{5}, 85--104 #' @examples #' m<-10 #' pai<-0.3 #' csi<-0.7 #' meancub<-expcub00(m,pai,csi) expcub00 <- function(m,pai,csi){(m-1)*pai*(0.5-csi)+(m+1)/2}
/scratch/gouwar.j/cran-all/cranData/CUB/R/expcub00.R
#' @title Expectation of CUBE models #' @description Compute the expectation of a CUBE model without covariates. #' @aliases expcube #' @usage expcube(m,pai,csi,phi) #' @param m Number of ordinal categories #' @param pai Uncertainty parameter #' @param csi Feeling parameter #' @param phi Overdispersion parameter #' @export expcube #' @seealso \code{\link{varcube}}, \code{\link{varcub00}}, \code{\link{expcub00}} #' @keywords distribution #' @references Iannario M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data, #' \emph{Communications in Statistics - Theory and Methods}, \bold{43}, 771--786 \cr #' Iannario, M. (2015). Detecting latent components in ordinal data with overdispersion by means #' of a mixture distribution, \emph{Quality & Quantity}, \bold{49}, 977--987 #' @examples #' m<-10 #' pai<-0.1 #' csi<-0.7 #' phi<-0.2 #' meancube<-expcube(m,pai,csi,phi) expcube <- function(m,pai,csi,phi){expcub00(m,pai,csi)}
/scratch/gouwar.j/cran-all/cranData/CUB/R/expcube.R
#' @title S3 method "fitted" for class "GEM" #' @description S3 method fitted for objects of class \code{\link{GEM}}. #' @aliases fitted.GEM #' @param object An object of class \code{\link{GEM}} #' @param ... Other arguments #' @method fitted GEM #' @export #' @details Returns the fitted probability distribution for GEM models with no covariates. If only one dichotomous #' covariate is included in the model to explain some components, it returns the fitted probability distribution for each profile. #' @import methods #' @seealso \code{GEM} #' @rdname fitted.GEM #' @keywords package #' @examples #' fitcub<-GEM(Formula(global~0|freqserv|0),family="cub",data=univer) #' fitted(fitcub,digits=4) #fitted <- function(object,...) UseMethod("fitted", object) fitted.GEM<-function(object, ...){ arguments<-list(...) digits<-arguments$digits if (is.null(digits)){ digits<-options()$digits } theorpr<-profiles(object) return(round(theorpr,digits=digits)) } profiles <- function(object) UseMethod("profiles", object) profiles.CUB<-function(object){ ellipsis<-object$ellipsis m<-ellipsis[['m']] values<-c() for (j in 1:m){ values[j]<-paste("R =",j) } stime<-object$estimates modello<-object$formula data<-ellipsis$data mf<-model.frame(modello,data=data,na.action=na.omit) covpai<-model.matrix(modello,data=mf,rhs=1) covcsi<-model.matrix(modello,data=mf,rhs=2) covshe<-model.matrix(modello,data=mf,rhs=3) if (ncol(covpai)==0){ Y<-NULL } else { Y<-covpai[,-1] } if (ncol(covcsi)==0){ W<-NULL } else { W<-covcsi[,-1] } if (ncol(covshe)==0){ X<-NULL } else { X<-covshe[,-1] } if (!is.null(ellipsis$shelter)){ shelter<-ellipsis$shelter #nomi<-rbind("pai1","pai2","csi") pai1<-stime[1];pai2<-stime[2];csi<-stime[3] delta<-1-pai1-pai2 paistar<-pai1/(pai1+pai2) nprof<-1 theorpr<-matrix(NA,nrow=m,ncol=nprof) theorpr[,1]<-probcubshe1(m,pai1,pai2,csi,shelter) profili<-"" dimnames(theorpr)<-list(values,profili) return(theorpr) } else { if ( is.null(W) & is.null(Y)){ # nomi<-rbind("pai","csi"); pai<-stime[1];csi<-stime[2]; nprof<-1 theorpr<-matrix(NA,nrow=m,ncol=nprof) theorpr[,1]<-probcub00(m,pai,csi) profili<-"" dimnames(theorpr)<-list(values,profili) return(theorpr) } if (is.null(W) & !is.null(Y)) { bet<-stime[1:(length(stime)-1)]; csi<-stime[length(stime)] #nomi<-c(paste("beta",0:(length(bet)-1),sep="_"),"csi ") #Y<-as.matrix(ellipsis$Y) if (NCOL(Y)==1 && length(unique(Y))==2) { Y<-as.matrix(Y) ny<-NCOL(Y) yval<-list() for (j in 1:ny){ yval[[j]]<-sort(unique(Y[,j])) } profiles<-expand.grid(yval) nprof<-NROW(profiles) theorpr<-matrix(NA,nrow=m,ncol=nprof) #paivett<-unique(logis(Y,bet)) paivett<-c() profili<-c() for (j in 1:nprof){ profili[j]<-"(" paivett[j]<-1/(1+ exp(-bet[1]-sum(as.numeric(profiles[j,])*bet[2:length(bet)]))) theorpr[,j]<-probcub00(m,paivett[j],csi) for (k in 1:NCOL(profiles)){ profili[j]<-paste(profili[j],"Y",k,"=",profiles[j,k],"") } profili[j]<-paste(profili[j],")") } dimnames(theorpr)<-list(values,profili) return(theorpr) } else { cat("No fitted method available","\n") } } if (!is.null(W) & is.null(Y)){ # W<-as.matrix(ellipsis$W) if (NCOL(W)==1 && length(unique(W))==2){ pai<-stime[1]; gama<-stime[2:length(stime)]; # nomi<-c("pai ",paste("gamma",0:(length(gama)-1),sep="_")) wval<-list() nw<-NCOL(W) W<-as.matrix(W) for (j in 1:nw){ wval[[j]]<-sort(unique(W[,j])) } profiles<-expand.grid(wval) nprof<-NROW(profiles) theorpr<-matrix(NA,nrow=m,ncol=nprof) csivett<-c() #csivett<-unique(logis(W,gama)) profili<-c() for (j in 1:nprof){ profili[j]<-"(" csivett[j]<-1/(1+ exp(-gama[1]-sum(as.numeric(profiles[j,])*gama[2:length(gama)]))) theorpr[,j]<-probcub00(m,pai,csivett[j]) for (k in 1:NCOL(profiles)){ profili[j]<-paste(profili[j],"W",k,"=",profiles[j,k]) } profili[j]<-paste(profili[j],")") } dimnames(theorpr)<-list(values,profili) return(theorpr) } else { cat("No fitted method available","\n") } } if (!is.null(Y) & !is.null(W)){ # Y<-as.matrix(ellipsis$Y) # W<-as.matrix(ellipsis$W) ny<-NCOL(Y) nw<-NCOL(W) if (ny==1 & nw==1 & length(unique(Y))==2 & length(unique(W))==2 ){ if (all(Y==W)){ bet<-stime[1:(ny+1)];gama<-stime[(ny+2):length(stime)]; #nomi<-c(paste("beta",0:(length(bet)-1),sep="_"),paste("gamma",0:(length(gama)-1),sep="_")) listW<-list() listY<-list() Y<-as.matrix(Y) W<-as.matrix(W) for (j in 1:ny){ listY[[j]]<-Y[,j] } for (j in 1:nw){ listW[[j]]<-W[,j] } eqy<-eqw<-c() for (j in 1:length(listY)){ for (k in 1:length(listW)){ if (all(listY[[j]]==listW[[k]])){ eqy<-c(eqy,j) eqw<-c(eqw,k) } } } comcov<-cbind(eqy,eqw) YW<-as.matrix(unique(t(cbind(Y,W)))) #unique restituisce le righe di un array tolte le ripetizioni paivett<-csivett<-c() ywval<-list() for (j in 1:NCOL(t(YW))){ ywval[[j]]<-sort(unique(t(YW)[,j])) } profiles<-unique(expand.grid(ywval)) nprof<-NROW(profiles) theorpr<-matrix(NA,nrow=m,ncol=nprof) profili<-c() # csivett<-unique(logis(W,gama)) # paivett<-unique(logis(Y,bet)) for (j in 1:nprof){ vett<-rep(NA,nw) if (NROW(comcov)!=0){ vett[eqw]<-as.numeric(profiles[j,eqy]) if (nw - NROW(comcov) > 0){ vett[-eqw]<-as.numeric(profiles[j,(ny+1):NCOL(profiles)]) } } else { vett<-as.numeric(profiles[j,(ny+1):NCOL(profiles)]) } profili[j]="(" for (k in 1:ny){ profili[j]<-paste(profili[j],"Y",k,"=",profiles[j,k],", ") } for (k in 1:nw){ profili[j]<-paste(profili[j],"W",k,"=",vett[k],", ") } profili[j]<-paste(profili[j],")") csivett[j]<- 1/(1+ exp(-gama[1]-sum(vett*gama[2:length(gama)]))) paivett[j]<-1/(1+ exp(-bet[1]-sum(profiles[j,1:ny]*bet[2:length(bet)]))) theorpr[,j]<-probcub00(m,paivett[j],csivett[j]) } dimnames(theorpr)<-list(values,profili) return(theorpr) } else { cat("No fitted method available","\n") } } else { cat("No fitted method available","\n") } } } } #################################### profiles.CUBE<-function(object){ ellipsis<-object$ellipsis stime<-object$estimates m<-ellipsis[['m']] modello<-object$formula # EFFE<-mod$Formula data<-ellipsis$data mf<-model.frame(modello,data=data,na.action=na.omit) covpai<-model.matrix(modello,data=mf,rhs=1) covcsi<-model.matrix(modello,data=mf,rhs=2) covphi<-model.matrix(modello,data=mf,rhs=3) if (ncol(covpai)==0){ Y<-NULL } else { Y<-covpai[,-1] } if (ncol(covcsi)==0){ W<-NULL } else { W<-covcsi[,-1] } if (ncol(covphi)==0){ Z<-NULL } else { Z<-covphi[,-1] } # Y<-ellipsis$Y # W<-ellipsis$W #Z<-ellipsis$Z values<-c() for (j in 1:m){ values[j]<-paste("R =",j) } if (is.null(Y) & is.null(W) & is.null(Z)){ pai<-stime[1]; csi<-stime[2]; phi<-stime[3] nprof<-1 theorpr<-matrix(NA,nrow=m,ncol=nprof) theorpr[,1]<- probcube(m,pai,csi,phi) profili<-"" dimnames(theorpr)<-list(values,profili) return(theorpr) } else if (!is.null(W) & is.null(Y) & is.null(Z)){ if (NCOL(W)==1 && length(unique(W))==2){ pai<-stime[1]; gama<-stime[2:(length(stime)-1)]; phi<-stime[length(stime)]; # nomi<-c("pai ",paste("gamma",0:(length(gama)-1),sep="_")) wval<-list() W<-as.matrix(W) nw<-NCOL(W) for (j in 1:nw){ wval[[j]]<-sort(unique(W[,j])) } profiles<-expand.grid(wval) nprof<-NROW(profiles) theorpr<-matrix(NA,nrow=m,ncol=nprof) csivett<-c() #csivett<-unique(logis(W,gama)) profili<-c() for (j in 1:nprof){ profili[j]<-"(" csivett[j]<-1/(1+ exp(-gama[1]-sum(as.numeric(profiles[j,])*gama[2:length(gama)]))) theorpr[,j]<-probcube(m,pai,csivett[j],phi) for (k in 1:NCOL(profiles)){ profili[j]<-paste(profili[j],"W",k,"=",profiles[j,k]) } profili[j]<-paste(profili[j],")") } dimnames(theorpr)<-list(values,profili) return(theorpr) } else { cat("No fitted method available","\n") } } else if (!is.null(Y) & !is.null(W) & !is.null(Z)){ cat("No fitted method available","\n") } } #################################### profiles.IHG<-function(object){ ellipsis<-object$ellipsis m<-ellipsis[['m']] values<-c() for (j in 1:m){ values[j]<-paste("R =",j) } modello<-object$formula #EFFE<-mod$Formula data<-ellipsis$data mf<-model.frame(modello,data=data,na.action=na.omit) covtheta<-model.matrix(modello,data=mf,rhs=1) if (ncol(covtheta)==0){ U<-NULL } else { U<-covtheta[,-1] } stime<-object$estimates #U<-ellipsis$U if (is.null(U)){ nprof<-1 theta<-stime[1] theorpr<-matrix(NA,nrow=m,ncol=nprof) theorpr[,1]<- probihg(m,theta) profili<-"" dimnames(theorpr)<-list(values,profili) return(theorpr) } else { if (NCOL(U)==1 && length(unique(U))==2){ nuest<-stime uval<-list() U<-as.matrix(U) nu<-NCOL(U) for (j in 1:nu){ uval[[j]]<-sort(unique(U[,j])) } profiles<-expand.grid(uval) nprof<-NROW(profiles) theorpr<-matrix(NA,nrow=m,ncol=nprof) thetavett<-c() #csivett<-unique(logis(W,gama)) profili<-c() for (j in 1:nprof){ profili[j]<-"(" thetavett[j]<-1/(1+ exp(-nuest[1]-sum(as.numeric(profiles[j,])*nuest[2:length(nuest)]))) theorpr[,j]<-probihg(m,thetavett[j]) for (k in 1:NCOL(profiles)){ profili[j]<-paste(profili[j],"U",k,"=",profiles[j,k]) } profili[j]<-paste(profili[j],")") } dimnames(theorpr)<-list(values,profili) return(theorpr) } else { cat("No fitted method available","\n") } } } #################################### profiles.CUSH<-function(object,...){ ellipsis<-object$ellipsis stime<-object$estimates m<-ellipsis[['m']] # X<-ellipsis$X shelter<-ellipsis$shelter values<-c() for (j in 1:m){ values[j]<-paste("R =",j) } modello<-object$formula # EFFE<-mod$Formula data<-ellipsis$data mf<-model.frame(modello,data=data,na.action=na.omit) covshe<-model.matrix(modello,data=mf,rhs=1) if (ncol(covshe)==0){ X<-NULL } else { X<-covshe[,-1] } if (is.null(X)){ nprof<-1 delta<-stime[1] theorpr<-matrix(NA,nrow=m,ncol=nprof) theorpr[,1]<- probcush(m,delta,shelter) profili<-"" dimnames(theorpr)<-list(values,profili) return(theorpr) } else { if (NCOL(X)==1 && length(unique(X)==2)){ omega<-stime xval<-list() X<-as.matrix(X) nx<-NCOL(X) for (j in 1:nx){ xval[[j]]<-sort(unique(X[,j])) } profiles<-expand.grid(xval) nprof<-NROW(profiles) theorpr<-matrix(NA,nrow=m,ncol=nprof) deltavett<-c() profili<-c() for (j in 1:nprof){ profili[j]<-"(" deltavett[j]<-1/(1+ exp(-omega[1]-sum(as.numeric(profiles[j,])*omega[2:length(omega)]))) theorpr[,j]<-probcush(m,deltavett[j],shelter) for (k in 1:NCOL(profiles)){ profili[j]<-paste(profili[j],"X",k,"=",profiles[j,k],",") } profili[j]<-paste(profili[j],")") } dimnames(theorpr)<-list(values,profili) return(theorpr) } else { cat("No fitted method available","\n") } } }
/scratch/gouwar.j/cran-all/cranData/CUB/R/fitted.R
#' @title Main function for CUB models with covariates for all the components #' @description Function to estimate and validate a CUB model for given ordinal responses, with covariates for #' explaining all the components and the shelter effect. #' @aliases gecubpqs #' @usage gecubpqs(ordinal,Y,W,X,shelter,theta0,maxiter,toler) #' @param ordinal Vector of ordinal responses #' @param Y Matrix of selected covariates for explaining the uncertainty component, not including intercept #' @param W Matrix of selected covariates for explaining the feeling component, not including intercept #' @param X Matrix of selected covariates for explaining the shelter effect, not including intercept #' @param shelter Category corresponding to the shelter choice #' @param theta0 Starting values for parameters explaining the shelter effect #' @param maxiter Maximum number of iterations allowed for running the optimization algorithm #' @param toler Fixed error tolerance for final estimates #' @import stats graphics #' @return An object of the class "CUB" #' @references #' Piccolo D. and D'Elia A. (2008), A new approach for modelling consumers' preferences, #' \emph{Food Quality and Preference}, \bold{18}, 247--259 \cr #' @references #' Iannario M. and Piccolo D. (2010), A new statistical model for the analysis of customer #' satisfaction, #' \emph{Quality Technology and Quantity management}, \bold{7}(2) 149--168 \cr #' Iannario M. and Piccolo D. (2012), CUB models: Statistical methods and empirical evidence, in: #' Kenett R. S. and Salini S. (eds.), \emph{Modern Analysis of Customer Surveys: with applications using R}, #' J. Wiley and Sons, Chichester, 231--258. #' @keywords internal ## EM algo for GECUB, #theta contains initial values for parameters gecubpqs<-function(ordinal,Y,W,X,shelter,theta0,maxiter,toler){ Y<-as.matrix(Y); W<-as.matrix(W);X<-as.matrix(X) s<-NCOL(X); q<-NCOL(W); p<-NCOL(Y); if (ncol(Y)==1){ Y<-as.numeric(Y) } if (ncol(X)==1){ X<-as.numeric(X) } if (ncol(W)==1){ W<-as.numeric(W) } tt0<-proc.time(); ndati<-NROW(ordinal); m<-length(levels(factor(ordinal,ordered=TRUE))) # **************************************************************************** # ************* E-M algorithm for GECUB ************************************* # **************************************************************************** #first step # if (missing(theta0)){ # omega<-rep(0.1,s+1); bet<-rep(0.1,p+1); gama<-inibestgama(m,ordinal,W); # #gama=rep(0.1,q+1); #In alternativa # } else { bet<-theta0[1:(p+1)]; gama<-theta0[(p+2):(p+q+2)]; omega<-theta0[(p+q+3):(p+q+s+3)]; # } loglik<-ellegecub(ordinal,Y,W,X,bet,gama,omega,shelter); psi<-c(omega,bet) #psi=omega|bet; # starting iterations nniter<-1; while(nniter <= maxiter){ likold<-loglik; ### STEP 1: */ alpha1<-logis(X,omega); alpha2<-(1-alpha1)*(logis(Y,bet)); alpha3<-1-alpha1-alpha2; #/* ### STEP 2:*/ prob1<-ifelse(as.numeric(ordinal)==shelter,1,0) prob2<-bitgama(m,factor(ordinal,ordered=TRUE),W,gama) prob3<-1/m; #/* ### STEP 3:*/ num1<-alpha1*prob1; num2<-alpha2*prob2; num3<-alpha3*prob3; den<-num1+num2+num3; #/* ### STEP 4:*/ ttau1<-num1/den; ttau2<-num2/den; ttau3<-1-ttau1-ttau2; ### STEP 5-6-7:*/ datiuno<-cbind(ttau1,ttau2,X,Y) #fissiuno=ttau1~ttau2~X~Y; datidue<-cbind(ttau2,ordinal,W) #fissidue=ttau2~ordinal~W; param<-psi psioptim<-optim(param, Qunogecub, datiuno=datiuno,s=s,control=list(maxit=2000)) param<-gama; gamaoptim<-optim(param,Q2gecub,datidue=datidue) psinew<-psioptim$par; gama<-gamaoptim$par; omega<-psinew[1:(s+1)]; bet<-psinew[(s+2):(p+s+2)]; loglik<-ellegecub(ordinal,Y,W,X,bet,gama,omega,shelter); liknew<-loglik; testll<-abs(liknew-likold); if (testll <= toler) break else {likold=liknew}; nniter<-nniter+1; } stime<-c(bet,gama,omega) #output loglik<-liknew; n<-ndati #################################################################### np<-s+p+q+3 AICGECUB<- -2*loglik+2*np; BICGECUB<- -2*loglik+log(n)*np; varmat<-varcovgecub(ordinal,Y,W,X,bet,gama,omega,shelter); if (isTRUE(varmat==matrix(NA,nrow=np,ncol=np))==TRUE){ ddd<-matrix(NA,nrow=np,ncol=np) trvarmat<-ICOMP<-NA errstd<-wald<-pval<-rep(NA,np) } else { ddd<-diag(sqrt(1/diag(varmat))) nparam<-length(stime) trvarmat<-sum(diag(varmat)) ICOMP<- -2*loglik + nparam*log(trvarmat/nparam) - log(det(varmat)) errstd<-sqrt(diag(varmat));wald<-stime/errstd pval<-2*(1-pnorm(abs(wald))) cormat<-ddd%*%varmat%*%ddd } durata<-proc.time()-tt0;durata<-durata[1]; results<-list('estimates'=stime,'ordinal'=ordinal,'time'=durata, 'loglik'=loglik,'niter'=nniter, 'varmat'=varmat,'BIC'=BICGECUB) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/gecubpqs.R
#' @title Normalized Gini heterogeneity index #' @description Compute the normalized Gini heterogeneity #' index for a given discrete probability distribution. #' @usage gini(prob) #' @aliases gini #' @param prob Vector of probability distribution or relative frequencies #' @keywords univar #' @export gini #' @seealso \code{\link{laakso}} #' @examples #' prob<-c(0.04,0.04,0.05,0.10,0.21,0.32,0.24) #' gini(prob) gini <- function(prob){ m<-length(prob) (1-sum(prob^2))*m/(m-1) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/gini.R
#' @title Main function for IHG models without covariates #' @description Estimate and validate an IHG model without covariates for given ordinal responses. #' @aliases ihg00 #' @usage ihg00(m, ordinal) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @return An object of the class "IHG" #' @keywords internal #' @details The optimization procedure is run via "optim", option method="Brent" for constrained optimization #' (lower bound = 0, upper bound=1). #' @import stats #' @return An object of the class "IHG" ihg00<-function(m,ordinal){ tt0<-proc.time() freq<-tabulate(ordinal,nbins=m) n<-sum(freq) aver<-mean(ordinal) theta<-iniihg(m,freq) ### initial value (moment estimator of theta) estoptim<-optim(theta,effeihg,m=m,freq=freq,method="Brent",lower=0, upper=1,hessian=TRUE) theta<-estoptim$par errstdtheta<-1/sqrt(estoptim$hessian) varmat<-errstdtheta^2 loglik<-loglikihg(m,freq,theta) wald2<-(theta-1/m)/errstdtheta pvaltheta2<-2*(1-pnorm(abs(wald2))) ##wald=theta/errstdtheta # prima: pvaltheta1=round(2*(1-pnorm(abs(wald))),20) # prima: pvaltheta1=round(2*(1-pnorm(abs(wald))),20) AICIHG<- -2*loglik+2 BICIHG<- -2*loglik+log(n) csisb<-(m-aver)/(m-1); llsb<-loglikcub00(m,freq,1,csisb); llunif<- -n*log(m) nonzero<-which(freq!=0) logsat<- -n*log(n)+sum((freq[nonzero])*log(freq[nonzero])) theorpr<-probihg(m,theta) dissihg<-dissim(theorpr,freq/n) pearson<-((freq-n*theorpr))/sqrt(n*theorpr) X2<-sum(pearson^2) relares<-(freq/n-theorpr)/theorpr stampa<-cbind(1:m,freq/n,theorpr,pearson,relares) LL2<-1/(1+mean((freq/(n*theorpr)-1)^2)) II2<-(loglik-llunif)/(logsat-llunif) FF2<-1-dissihg ##################################################### durata<-proc.time()-tt0;durata<-durata[1]; stime<-theta results<-list('estimates'=stime, 'loglik'=loglik,'varmat'=varmat,'BIC'=BICIHG,'time'=durata) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/ihg00.R
#' @title Main function for IHG models with covariates #' @description Estimate and validate an IHG model for given ordinal responses, with covariates to #' explain the preference parameter. #' @aliases ihgcov #' @usage ihgcov(m, ordinal, U) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param U Matrix of selected covariates for the preference parameter #' @return An object of the class "IHG" #' @keywords internal #' @details The optimization procedure is run via "optim", option method="Brent" for constrained optimization #' (lower bound = 0, upper bound=1). #' @import stats graphics #' @return An object of the class "IHG" #' ihgcov<-function(m,ordinal,U){ tt0<-proc.time() freq<-tabulate(ordinal,nbins=m); n<-length(ordinal); U<-as.matrix(U) if (ncol(U)==1){ U<-as.numeric(U) } theta<-iniihg(m,freq) ncovar<-NCOL(U) nuzero<-log(theta/(1-theta)) ### initial estimate of nu_0 nuinit<-c(nuzero,rep(0.1,ncovar)) ### initial estimate of nu vector ### maximize w.r.t. nu nu<-nuinit optimnu<-optim(nu,effeihgcov,ordinal=ordinal,U=U,m=m,hessian=TRUE) ################################################################# # Computation of estimates and log-likelihood ################################################################# nuest<-optimnu$par #nu estimates loglik<-loglikihgcov(m,ordinal,U,nuest) HHH<-optimnu$hessian nparam<-length(nuest) if (det(HHH)<=0){ warning("Variance-covariance matrix not-positive definite") varmat<-ddd<-matrix(NA,nrow=nparam,ncol=nparam) errst<-wald<-rep(NA,nparam) trvarmat<-ICOMP<-NA } else { varmat<-solve(HHH) errst<-sqrt(diag(varmat)) ### vector ddd<-diag(sqrt(1/diag(varmat))) ### matrix wald<-nuest/errst trvarmat<-sum(diag(varmat)) ICOMP<- -2*loglik + nparam*log(trvarmat/nparam) - log(det(varmat)) } AICIHGCOV<- -2*loglik+2*nparam BICIHGCOV<- -2*loglik+nparam*log(n) nomi<-c(paste("nu",0:(nparam-1),sep="_")) stime<-nuest; errstd<-errst; wald<-wald; pval<-2*(1-pnorm(abs(wald))) durata<-proc.time()-tt0;durata<-durata[1]; results<-list('estimates'=stime, 'loglik'=loglik, 'varmat'=varmat, 'BIC'=BICIHGCOV,'time'=durata) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/ihgcov.R
#' @title Preliminary estimators for CUB models without covariates #' @description Compute preliminary parameter estimates of a CUB model without covariates for given ordinal #' responses. These preliminary estimators are used within the package code to start the E-M algorithm. #' @aliases inibest #' @usage inibest(m,freq) #' @param m Number of ordinal categories #' @param freq Vector of the absolute frequencies of given ordinal responses #' @export inibest #' @return A vector \eqn{(\pi,\xi)} of the initial parameter estimates for a CUB model without covariates, #' given the absolute frequency distribution of ordinal responses #' @seealso \code{\link{inibestgama}} #' @references #'Iannario M. (2009). A comparison of preliminary estimators in a class of ordinal data models, #' \emph{Statistica & Applicazioni}, \bold{VII}, 25--44 \cr #' Iannario M. (2012). Preliminary estimators for a mixture model of ordinal data, #' \emph{Advances in Data Analysis and Classification}, \bold{6}, 163--184 #' @keywords htest utilities #' @examples #' m<-9 #' freq<-c(10,24,28,36,50,43,23,12,5) #' estim<-inibest(m,freq) #' pai<-estim[1] #' csi<-estim[2] inibest <- function(m,freq){ freq<-freq/sum(freq) csi<-1+(0.5-which.max(freq))/m ppp<-probbit(m,csi) pai<-sqrt((sum(freq^2)-1/m)/(sum(ppp^2)-1/m)) pai<-min(pai,0.99) ini<-as.matrix(c(pai,csi)) rownames(ini)<-list("pai","csi"); colnames(ini)<-"" return(ini) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/inibest.R
#' @title Naive estimates for CUBE models without covariates #' @description Compute \emph{naive} parameter estimates of a CUBE model without covariates for given ordinal responses. #' These preliminary estimators are used within the package code to start the E-M algorithm. #' @aliases inibestcube #' @usage inibestcube(m,ordinal) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @export inibestcube #' @return A vector \eqn{(\pi, \xi ,\phi)} of parameter estimates of a CUBE model without covariates. #' @keywords htest utilities #' @seealso \code{\link{inibestcubecov}}, \code{\link{inibestcubecsi}} #' @examples #' data(relgoods) #' m<-10 #' ordinal<-relgoods$SocialNetwork #' estim<-inibestcube(m,ordinal) # Preliminary estimates (pai,csi,phi) inibestcube <- function(m,ordinal){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } freq<-tabulate(ordinal,nbins=m) inipaicsi<-inibest(m,freq) pai<-inipaicsi[1];csi<-inipaicsi[2]; aver<-mean(ordinal) varcamp<-mean(ordinal^2)-aver^2 varcub<-varcub00(m,pai,csi) phist<-min(max((varcub-varcamp)/(-pai*csi*(1-csi)*(m-1)*(m-2)-varcub+varcamp),0.01),0.5) initial<-as.matrix(c(pai,csi,phist)) rownames(initial)<-list("pai","csi","phi"); colnames(initial)<-"" return(initial) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/inibestcube.R
#' @title Preliminary parameter estimates for CUBE models with covariates #' @description Compute preliminary parameter estimates for a CUBE model with covariates for all the three parameters. #' These estimates are set as initial values to start the E-M algorithm within maximum likelihood estimation. #' @aliases inibestcubecov #' @usage inibestcubecov(m,ordinal,Y,W,Z) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param Y Matrix of selected covariates to explain the uncertainty parameter #' @param W Matrix of selected covariates to explain the feeling parameter #' @param Z Matrix of selected covariates to explain the overdispersion parameter #' @export inibestcubecov #' @return A vector \code{(inibet, inigama, inialpha)} of preliminary estimates of parameter vectors for #' \eqn{\pi = \pi(\bold{\beta})}, \eqn{\xi=\xi(\bold{\gamma})}, \eqn{\phi=\phi(\bold{\alpha})}, respectively, of a CUBE model with covariates for all the three #' parameters. In details, \code{inibet}, \code{inigama} and \code{inialpha} have length equal to NCOL(Y)+1, NCOL(W)+1 and #' NCOL(Z)+1, respectively, to account for an intercept term for each component. #' @keywords htest utilities #' @seealso \code{\link{inibestcube}}, \code{\link{inibestcubecsi}}, \code{\link{inibestgama}} #' @examples #' data(relgoods) #' m<-10 #' naord<-which(is.na(relgoods$Tv)) #' nacovpai<-which(is.na(relgoods$Gender)) #' nacovcsi<-which(is.na(relgoods$year.12)) #' nacovphi<-which(is.na(relgoods$EducationDegree)) #' na<-union(union(naord,nacovpai),union(nacovcsi,nacovphi)) #' ordinal<-relgoods$Tv[-na] #' Y<-relgoods$Gender[-na] #' W<-relgoods$year.12[-na] #' Z<-relgoods$EducationDegree[-na] #' ini<-inibestcubecov(m,ordinal,Y,W,Z) #' p<-NCOL(Y) #' q<-NCOL(W) #' inibet<-ini[1:(p+1)] # Preliminary estimates for uncertainty #' inigama<-ini[(p+2):(p+q+2)] # Preliminary estimates for feeling #' inialpha<-ini[(p+q+3):length(ini)] # Preliminary estimates for overdispersion inibestcubecov <- function(m,ordinal,Y,W,Z){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } Y<-as.matrix(Y); W<-as.matrix(W);Z<-as.matrix(Z) if (ncol(W)==1){ W<-as.numeric(W) } if (ncol(Y)==1){ Y<-as.numeric(Y) } if (ncol(Z)==1){ Z<-as.numeric(Z) } q<-NCOL(Y) p<-NCOL(W) v<-NCOL(Z) inigama<-inibestgama(m,ordinal,W) inicube<-inibestcube(m,ordinal) pai<-inicube[1] bet0<-log(pai/(1-pai)) inibet<-c(bet0,rep(0.1,q)) alpha0<-log(0.1) inialpha<-c(alpha0,rep(0.1,v)) ini<-as.matrix(c(inibet,inigama,inialpha)) rownames(ini)<- c(paste("beta",0:NCOL(Y),sep="_"), paste("gamma",0:NCOL(W),sep="_"), paste("alpha",0:NCOL(Z),sep="_")) colnames(ini)<-"" return(ini) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/inibestcubecov.R
#' @title Preliminary estimates of parameters for CUBE models with covariates only for feeling #' @description Compute preliminary parameter estimates of a CUBE model with covariates only for feeling, given #' ordinal responses. These estimates are set as initial values to start the corresponding E-M algorithm within the package. #' @aliases inibestcubecsi #' @usage inibestcubecsi(m,ordinal,W,starting,maxiter,toler) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param W Matrix of selected covariates to explain the feeling component #' @param starting Starting values for preliminary estimation of a CUBE without covariate #' @param maxiter Maximum number of iterations allowed for preliminary iterations #' @param toler Fixed error tolerance for final estimates for preliminary iterations #' @export inibestcubecsi #' @details Preliminary estimates for the uncertainty and the overdispersion parameters are computed by short runs of EM. #' As to the feeling component, it considers the nested CUB model with covariates and calls \code{\link{inibestgama}} to derive initial estimates for the coefficients #' of the selected covariates for feeling. #' @return A vector \code{(pai, gamaest, phi)}, where \code{pai} is the initial estimate for the uncertainty parameter, #' \code{gamaest} is the vector of initial estimates for the feeling component (including an intercept term in the first entry), #' and \code{phi} is the initial estimate for the overdispersion parameter. #' @keywords htest utilities #' @seealso \code{\link{inibestcube}}, \code{\link{inibestcubecov}}, \code{\link{inibestgama}} #' @examples #' data(relgoods) #' isnacov<-which(is.na(relgoods$Gender)) #' isnaord<-which(is.na(relgoods$Tv)) #' na<-union(isnacov,isnaord) #' ordinal<-relgoods$Tv[-na]; W<-relgoods$Gender[-na] #' m<-10 #' starting<-rep(0.1,3) #' ini<-inibestcubecsi(m,ordinal,W,starting,maxiter=100,toler=1e-3) #' nparam<-length(ini) #' pai<-ini[1] # Preliminary estimates for uncertainty component #' gamaest<-ini[2:(nparam-1)] # Preliminary estimates for coefficients of feeling covariates #' phi<-ini[nparam] # Preliminary estimates for overdispersion component inibestcubecsi <- function(m,ordinal,W,starting,maxiter,toler){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } W<-as.matrix(W) if (ncol(W)==1){ W<-as.numeric(W) } gamaest<-inibestgama(m,ordinal,W) stimacube<-GEM(Formula(ordinal~0|0|0),family="cube",starting=starting,maxiter=maxiter,toler=toler,expinform=FALSE) param<-stimacube$estimates elle<-length(param) pai<-param[1]; phi<-param[elle]; iniest<-as.matrix(c(pai,gamaest,phi)) dimnames(iniest)<-list(c("pai",paste("gamma",0:NCOL(W),sep="_"),"phi"),"") return(iniest) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/inibestcubecsi.R
#' @title Preliminary parameter estimates of a CUB model with covariates for feeling #' @description Compute preliminary parameter estimates for the feeling component of a CUB model #' fitted to ordinal responses #' These estimates are set as initial values for parameters to start the E-M algorithm. #' @aliases inibestgama #' @usage inibestgama(m,ordinal,W) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param W Matrix of selected covariates for explaining the feeling component #' @export inibestgama #' @return A vector of length equal to NCOL(W)+1, whose entries are the preliminary estimates #' of the parameters for the feeling component, including an intercept term as first entry. #' @references Iannario M. (2008). Selecting feeling covariates in rating surveys, #' \emph{Rivista di Statistica Applicata}, \bold{20}, 103--116 \cr #' Iannario M. (2009). A comparison of preliminary estimators in a class of ordinal data models, #' \emph{Statistica & Applicazioni}, \bold{VII}, 25--44 \cr #' Iannario M. (2012). Preliminary estimators for a mixture model of ordinal data, #' \emph{Advances in Data Analysis and Classification}, \bold{6}, 163--184 #' @seealso \code{\link{inibest}}, \code{\link{inibestcubecsi}} #' @keywords htest utilities #' @examples #' data(univer) #' m<-7; ordinal<-univer$global; cov<-univer$diploma #' ini<-inibestgama(m,ordinal,W=cov) inibestgama<-function(m,ordinal,W){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } W<-as.matrix(W) if (ncol(W)==1){ W<-as.numeric(W) } WW<-cbind(1,W) ni<-log((m-ordinal+0.5)/(ordinal-0.5)) gama<-(solve(t(WW)%*%WW))%*%(t(WW)%*%ni) q<-NCOL(W) listanomi<-paste("gamma",0:q,sep="_") dimnames(gama)<-list(listanomi,"") return(gama) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/inibestgama.R
#' @title Grid-based preliminary parameter estimates for CUB models #' @description Compute the log-likelihood function of a CUB model with parameter vector \eqn{(\pi, \xi)} ranging in #' the Cartesian product between \eqn{x} and \eqn{y}, for a given absolute frequency distribution. #' @aliases inigrid #' @usage inigrid(m,freq,x,y) #' @param m Number of ordinal categories #' @param freq Vector of length \eqn{m} of the absolute frequency distribution #' @param x A set of values to assign to the uncertainty parameter \eqn{\pi} #' @param y A set of values to assign to the feeling parameter \eqn{\xi} #' @export inigrid #' @return It returns the parameter vector corresponding to the maximum value of the log-likelihood #' for a CUB model without covariates for given frequencies. #' @seealso \code{\link{inibest}} #' @keywords htest utilities #' @examples #' m<-9 #' x<-c(0.1,0.4,0.6,0.8) #' y<-c(0.2, 0.5,0.7) #' freq<-c(10,24,28,36,50,43,23,12,5) #' ini<-inigrid(m,freq,x,y) #' pai<-ini[1] #' csi<-ini[2] inigrid <- function(m,freq,x,y){ listap<-expand.grid(x,y) quanti<-NROW(listap) loglik<-rep(NA,quanti) for(j in 1:quanti){ pai<-listap[j,1]; csi<-listap[j,2]; loglik[j]<-loglikcub00(m,freq,pai,csi) } indice<-which.max(loglik) ini<-as.matrix(t(listap[indice,])) rownames(ini)<-c("pai","csi") colnames(ini)<-"" return(ini) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/inigrid.R
#' @title Moment estimate for the preference parameter of the IHG distribution #' @description Compute the moment estimate of the preference parameter of the IHG distribution. #' This preliminary estimate is set as initial value within the optimization procedure for an IHG model #' fitting the observed frequencies. #' @aliases iniihg #' @usage iniihg(m,freq) #' @param m Number of ordinal categories #' @param freq Vector of the absolute frequency distribution of the categories #' @export iniihg #' @return Moment estimator of the preference parameter \eqn{\theta}. #' @seealso \code{\link{inibest}}, \code{\link{inibestcube}} #' @references D'Elia A. (2003). Modelling ranks using the inverse hypergeometric distribution, #' \emph{Statistical Modelling: an International Journal}, \bold{3}, 65--78. #' @keywords htest utilities #' @examples #' m<-9 #' freq<-c(70,51,48,38,29,23,12,10,5) #' initheta<-iniihg(m,freq) iniihg <- function(m,freq){ aver<-sum((1:m)*freq)/sum(freq) est<-as.matrix((m-aver)/(1+(m-2)*aver)) ### Moment estimator of theta rownames(est)<-"theta"; colnames(est)<-"" return(est) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/iniihg.R
#' @title Sequence of combinatorial coefficients #' @description Compute the sequence of binomial coefficients \eqn{{m-1}\choose{r-1}}, for \eqn{r= 1, \dots, m}, #' and then returns a vector of the same length as ordinal, whose i-th component is the corresponding binomial #' coefficient \eqn{{m-1}\choose{r_i-1}} #' @aliases kkk #' @keywords internal #' @usage kkk(m, ordinal) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses kkk <- function(m,ordinal){ serie<-1:m vett<-choose(m-1,serie-1) return(vett[ordinal]) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/kkk.R
#' @title Normalized Laakso and Taagepera heterogeneity index #' @description Compute the normalized Laakso and Taagepera heterogeneity index for a given #' discrete probability distribution. #' @aliases laakso #' @export laakso #' @usage laakso(prob) #' @param prob Vector of a probability or relative frequency distribution #' @seealso \code{\link{gini}} #' @keywords univar #' @references #' Laakso, M. and Taagepera, R. (1989). Effective number of parties: a measure with application to West Europe, #' \emph{Comparative Political Studies}, \bold{12}, 3--27. #' @examples #' prob<-c(0.04,0.04,0.05,0.10,0.21,0.32,0.24) #' laakso(prob) laakso <- function(prob){ m<-length(prob) 1/(m/gini(prob)-m+1)}
/scratch/gouwar.j/cran-all/cranData/CUB/R/laakso.R
#' @title logLik S3 Method for class "GEM" #' @description S3 method: logLik() for objects of class "GEM". #' @aliases logLik.GEM #' @method logLik GEM #' @param object An object of class "GEM" #' @param ... Other arguments #' @export #' @return Log-likelihood at the final ML estimates for parameters of the fitted GEM model. #' @import methods #' @seealso \code{\link{loglikCUB}}, \code{\link{loglikCUBE}}, \code{\link{GEM}}, \code{\link{loglikIHG}}, #' \code{\link{loglikCUSH}}, \code{\link{BIC}} #' @keywords package #' @rdname logLik.GEM #logLik <- function(object,...) UseMethod("logLik", object) logLik.GEM<-function(object,...){ arguments<-list(...) digits<-arguments$digits if (is.null(digits)){ digits<-options()$digits } return(round(object$loglik,digits=digits)) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/logLik.R
#' @title The logistic transform #' @description Create a matrix YY binding array \code{Y} with a vector of ones, placed as the first column of YY. #' It applies the logistic transform componentwise to the standard matrix multiplication between YY and \code{param}. #' @aliases logis #' @usage logis(Y,param) #' @export logis #' @param Y A generic matrix or one dimensional array #' @param param Vector of coefficients, whose length is NCOL(Y) + 1 (to consider also an intercept term) #' @return Return a vector whose length is NROW(Y) and whose i-th component is the logistic function #' at the scalar product between the i-th row of YY and the vector \code{param}. #' @keywords utilities #' @examples #' n<-50 #' Y<-sample(c(1,2,3),n,replace=TRUE) #' param<-c(0.2,0.7) #' logis(Y,param) logis <- function(Y,param){ Y<-as.matrix(Y) if (ncol(Y)==1){ Y<-as.numeric(Y) } YY<-cbind(1,Y) # add 1's first column to matrix Y val<-1/(1+exp(-YY%*%param)) if (all(dim(val)==c(1,1))){ return(as.numeric(val)) } else{ return(val) } }
/scratch/gouwar.j/cran-all/cranData/CUB/R/logis.R
#' @title Log-likelihood function for CUB models #' @aliases loglikCUB #' @description Compute the log-likelihood value of a CUB model fitting given data, with or without covariates to #' explain the feeling and uncertainty components, or for extended CUB models with shelter effect. #' @usage loglikCUB(ordinal,m,param,Y=0,W=0,X=0,shelter=0) #' @export loglikCUB #' @param ordinal Vector of ordinal responses #' @param m Number of ordinal categories #' @param param Vector of parameters for the specified CUB model #' @param Y Matrix of selected covariates to explain the uncertainty component (default: no covariate is included #' in the model) #' @param W Matrix of selected covariates to explain the feeling component (default: no covariate is included #' in the model) #' @param X Matrix of selected covariates to explain the shelter effect (default: no covariate is included #' in the model) #' @param shelter Category corresponding to the shelter choice (default: no shelter effect is included in the #' model) #' @details If no covariate is included in the model, then \code{param} should be given in the form \eqn{(\pi,\xi)}. #' More generally, it should have the form \eqn{(\bold{\beta,\gamma)}} where, #' respectively, \eqn{\bold{\beta}} and \eqn{\bold{\gamma}} are the vectors of #' coefficients explaining the uncertainty and the feeling components, with length NCOL(Y)+1 and #' NCOL(W)+1 to account for an intercept term in the first entry. When shelter effect is considered, \code{param} corresponds #' to the first possibile parameterization and hence should be given as \code{(pai1,pai2,csi)}. #' No missing value should be present neither #' for \code{ordinal} nor for covariate matrices: thus, deletion or imputation procedures should be preliminarily run. #' @seealso \code{\link{logLik}} #' @keywords htest #' @examples #' ## Log-likelihood of a CUB model with no covariate #' m<-9; n<-300 #' pai<-0.6; csi<-0.4 #' ordinal<-simcub(n,m,pai,csi) #' param<-c(pai,csi) #' loglikcub<-loglikCUB(ordinal,m,param) #' ################################## #' ## Log-likelihood of a CUB model with covariate for uncertainty #' data(relgoods) #' m<-10 #' naord<-which(is.na(relgoods$Physician)) #' nacov<-which(is.na(relgoods$Gender)) #' na<-union(naord,nacov) #' ordinal<-relgoods$Physician[-na]; Y<-relgoods$Gender[-na] #' bbet<-c(-0.81,0.93); ccsi<-0.2 #' param<-c(bbet,ccsi) #' loglikcubp0<-loglikCUB(ordinal,m,param,Y=Y) #' ####################### #' ## Log-likelihood of a CUB model with covariate for feeling #' data(relgoods) #' m<-10 #' naord<-which(is.na(relgoods$Physician)) #' nacov<-which(is.na(relgoods$Gender)) #' na<-union(naord,nacov) #' ordinal<-relgoods$Physician[-na]; W<-relgoods$Gender[-na] #' pai<-0.44; gama<-c(-0.91,-0.7) #' param<-c(pai,gama) #' loglikcub0q<-loglikCUB(ordinal,m,param,W=W) #' ####################### #' ## Log-likelihood of a CUB model with covariates for both parameters #' data(relgoods) #' m<-10 #' naord<-which(is.na(relgoods$Walking)) #' nacovpai<-which(is.na(relgoods$Gender)) #' nacovcsi<-which(is.na(relgoods$Smoking)) #' na<-union(naord,union(nacovpai,nacovcsi)) #' ordinal<-relgoods$Walking[-na] #' Y<-relgoods$Gender[-na]; W<-relgoods$Smoking[-na] #' bet<-c(-0.45,-0.48); gama<-c(-0.55,-0.43) #' param<-c(bet,gama) #' loglikcubpq<-loglikCUB(ordinal,m,param,Y=Y,W=W) #' ####################### #' ### Log-likelihood of a CUB model with shelter effect #' m<-7; n<-400 #' pai<-0.7; csi<-0.16; delta<-0.15 #' shelter<-5 #' ordinal<-simcubshe(n,m,pai,csi,delta,shelter) #' pai1<- pai*(1-delta); pai2<-1-pai1-delta #' param<-c(pai1,pai2,csi) #' loglik<-loglikCUB(ordinal,m,param,shelter=shelter) loglikCUB<-function(ordinal,m,param,Y=0,W=0,X=0,shelter=0){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } freq<-tabulate(ordinal,nbins=m) ry<-NROW(Y); rw<-NROW(W); rx<-NROW(X); shelter<-as.numeric(shelter) if(shelter!=0){ if (ry==1 & rw==1 & rx==1){ pai1<-param[1] pai2<-param[2] csi<-param[3] loglik<-loglikcubshe(m,freq,pai1,pai2,csi,shelter) } else if (ry!=1 & rw !=1 & rx !=1){ Y<-as.matrix(Y); W<-as.matrix(W);X<-as.matrix(X) if (ncol(W)==1){ W<-as.numeric(W) } if (ncol(Y)==1){ Y<-as.numeric(Y) } if (ncol(X)==1){ X<-as.numeric(X) } ncy<-NCOL(Y); ncw<-NCOL(W); ncx<-NCOL(X) bet<-param[1:(ncy+1)]; gama<-param[(ncy+2):(ncy+ncw+2)]; omega<-param[(ncy+ncw+3):(ncy+ncw+ncx+3)]; loglik<-ellegecub(ordinal,Y,W,X,bet,gama,omega,shelter) } else{ cat("Wrong variables specification") loglik<-NULL } }else{ if(ry==1 & rw==1 & rx==1) { pai<-param[1] csi<-param[2] loglik<-loglikcub00(m,freq,pai,csi) } if(ry!=1 & rw==1 & rx==1) { Y<-as.matrix(Y) if (ncol(Y)==1){ Y<-as.numeric(Y) } ncy<-NCOL(Y) bbet<-param[1:(ncy+1)] ccsi<-param[length(param)] loglik<-loglikcubp0(m,ordinal,Y,bbet,ccsi) } if(ry==1 & rw!=1 & rx==1) { pai<-param[1] gama<-param[2:length(param)] W<-as.matrix(W) if (ncol(W)==1){ W<-as.numeric(W) } loglik<-loglikcub0q(m,ordinal,W,pai,gama) } if(ry!=1 & rw!=1& rx==1) { ncy<-NCOL(Y) Y<-as.matrix(Y) W<-as.matrix(W) if (ncol(W)==1){ W<-as.numeric(W) } if (ncol(Y)==1){ Y<-as.numeric(Y) } bet<-param[1:(ncy+1)] gama<-param[(ncy+2):length(param)] loglik<-loglikcubpq(m,ordinal,Y,W,bet,gama) } } return(loglik) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikCUB.R
#' @title Log-likelihood function for CUSH models #' @aliases loglikCUSH #' @description Compute the log-likelihood function for CUSH models with or without covariates #' to explain the shelter effect. #' @usage loglikCUSH(ordinal,m,param,shelter,X=0) #' @export loglikCUSH #' @param ordinal Vector of ordinal responses #' @param m Number of ordinal categories #' @param param Vector of parameters for the specified CUSH model #' @param shelter Category corresponding to the shelter choice #' @param X Matrix of selected covariates to explain the shelter effect (default: no covariate #' is included in the model) #' @details If no covariate is included in the model, then \code{param} is the estimate of the shelter #' parameter (delta), otherwise \code{param} has length equal to NCOL(X) + 1 to account for an intercept #' term (first entry). No missing value should be present neither for \code{ordinal} nor for \code{X}. #' @seealso \code{\link{GEM}}, \code{\link{logLik}} #' @keywords htest #' @examples #' ## Log-likelihood of CUSH model without covariates #' n<-300 #' m<-7 #' shelter<-2; delta<-0.4 #' ordinal<-simcush(n,m,delta,shelter) #' loglik<-loglikCUSH(ordinal,m,param=delta,shelter) #' ##################### #' ## Log-likelihood of CUSH model with covariates #' data(relgoods) #' m<-10 #' naord<-which(is.na(relgoods$SocialNetwork)) #' nacov<-which(is.na(relgoods$Gender)) #' na<-union(nacov,naord) #' ordinal<-relgoods$SocialNetwork[-na]; cov<-relgoods$Gender[-na] #' omega<-c(-2.29, 0.62) #' loglikcov<-loglikCUSH(ordinal,m,param=omega,shelter=1,X=cov) loglikCUSH<-function(ordinal,m,param,shelter,X=0){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } nx<-NROW(X) if (nx==1){ delta<-param loglik<-loglikcush00(m,ordinal,delta,shelter) } else { omega<-param X<-as.matrix(X) if (ncol(X)==1){ X<-as.numeric(X) } loglik<-loglikcushcov(m,ordinal,X,omega,shelter) } return(loglik) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikCUSH.R
#' @title Log-likelihood function of a CUB model without covariates #' @description Compute the log-likelihood function of a CUB model without covariates for a given #' absolute frequency distribution. #' @aliases loglikcub00 #' @usage loglikcub00(m, freq, pai, csi) #' @param m Number of ordinal categories #' @param freq Vector of the absolute frequency distribution #' @param pai Uncertainty parameter #' @param csi Feeling parameter #' @keywords internal #' loglikcub00 <- function(m,freq,pai,csi){t(freq)%*%log(probcub00(m,pai,csi))}
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikcub00.R
#' @title Log-likelihood function of a CUB model with covariates for the feeling component #' @description Compute the log-likelihood function of a CUB model fitting ordinal data, with \eqn{q} #' covariates for explaining the feeling component. #' @aliases loglikcub0q #' @usage loglikcub0q(m, ordinal, W, pai, gama) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param W Matrix of selected covariates for explaining the feeling component #' @param pai Uncertainty parameter #' @param gama Vector of parameters for the feeling component, with length NCOL(W) + 1 to account for #' an intercept term (first entry of gama) #' @keywords internal #' loglikcub0q <- function(m,ordinal,W,pai,gama){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } W<-as.matrix(W) probn<-probcub0q(m,ordinal,W,pai,gama) sum(log(probn)) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikcub0q.R
#' @title Log-likelihood function of a CUBE model without covariates #' @aliases loglikcube #' @description Compute the log-likelihood function of a CUBE model without covariates fitting #' the given absolute frequency distribution. #' @usage loglikcube(m,freq,pai,csi,phi) #' @keywords internal #' @param m Number of ordinal categories #' @param freq Vector of the absolute frequency distribution #' @param pai Uncertainty parameter #' @param csi Feeling parameter #' @param phi Overdispersion parameter loglikcube <- function(m,freq,pai,csi,phi){t(freq)%*%log(probcube(m,pai,csi,phi))}
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikcube.R
#' @title Log-likelihood function for CUBE models #' @aliases loglikCUBE #' @description Compute the log-likelihood function for CUBE models. It is possible to include #' covariates in the model for explaining the feeling component or all the three parameters. #' @usage loglikCUBE(ordinal,m,param,Y=0,W=0,Z=0) #' @export loglikCUBE #' @param ordinal Vector of ordinal responses #' @param m Number of ordinal categories #' @param param Vector of parameters for the specified CUBE model #' @param Y Matrix of selected covariates to explain the uncertainty component (default: no covariate is included #' in the model) #' @param W Matrix of selected covariates to explain the feeling component (default: no covariate is included #' in the model) #' @param Z Matrix of selected covariates to explain the overdispersion component (default: no covariate is included #' in the model) #' @details If no covariate is included in the model, then \code{param} has the form \eqn{(\pi,\xi,\phi)}. More generally, #' it has the form \eqn{(\bold{\beta,\gamma,\alpha)}} where, respectively, \eqn{\bold{\beta}},\eqn{\bold{\gamma}}, \eqn{\bold{\alpha}} #' are the vectors of coefficients explaining the uncertainty, the feeling and the overdispersion components, with length NCOL(Y)+1, #' NCOL(W)+1, NCOL(Z)+1 to account for an intercept term in the first entry. No missing value should be present neither #' for \code{ordinal} nor for covariate matrices: thus, deletion or imputation procedures should be preliminarily run. #' @seealso \code{\link{logLik}} #' @keywords htest #' @examples #' #### Log-likelihood of a CUBE model with no covariate #' m<-7; n<-400 #' pai<-0.83; csi<-0.19; phi<-0.045 #' ordinal<-simcube(n,m,pai,csi,phi) #' loglik<-loglikCUBE(ordinal,m,param=c(pai,csi,phi)) #' ################################## #' #### Log-likelihood of a CUBE model with covariate for feeling #' data(relgoods) #' m<-10 #' nacov<-which(is.na(relgoods$BirthYear)) #' naord<-which(is.na(relgoods$Tv)) #' na<-union(nacov,naord) #' age<-2014-relgoods$BirthYear[-na] #' lage<-log(age)-mean(log(age)) #' ordinal<-relgoods$Tv[-na]; W<-lage #' pai<-0.63; gama<-c(-0.61,-0.31); phi<-0.16 #' param<-c(pai,gama,phi) #' loglik<-loglikCUBE(ordinal,m,param,W=W) #' ########## Log-likelihood of a CUBE model with covariates for all parameters #' Y<-W<-Z<-lage #' bet<-c(0.18, 1.03); gama<-c(-0.6, -0.3); alpha<-c(-2.3,0.92) #' param<-c(bet,gama,alpha) #' loglik<-loglikCUBE(ordinal,m,param,Y=Y,W=W,Z=Z) loglikCUBE <- function(ordinal,m,param,Y=0,W=0,Z=0){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } ry<-NROW(Y); rw<-NROW(W); rz<-NROW(Z); freq<-tabulate(ordinal,nbins=m) if(ry==1 & rw==1 & rz==1) { pai<-param[1]; csi<-param[2]; phi<-param[3]; loglik<-loglikcube(m,freq,pai,csi,phi) } else if (ry==1 & rz==1 & rw >1){ ncw<-NCOL(W) W<-as.matrix(W) if (ncol(W)==1){ W<-as.numeric(W) } pai<-param[1]; gama<-param[2:(ncw+2)]; phi<-param[length(param)]; loglik<-loglikcubecsi(m,ordinal,W,pai,gama,phi) } else if(ry>1 & rz>1 & rw >1){ Y<-as.matrix(Y); W<-as.matrix(W); Z<-as.matrix(Z) if (ncol(W)==1){ W<-as.numeric(W) } if (ncol(Y)==1){ Y<-as.numeric(Y) } if (ncol(Z)==1){ Z<-as.numeric(Z) } ncy<-NCOL(Y) ncw<-NCOL(W) bet<-param[1:(ncy+1)]; gama<-param[(ncy+2):(ncy+ncw+2)]; alpha<-param[(ncy+ncw+3):length(param)]; loglik<-loglikcubecov(m,ordinal,Y,W,Z,bet,gama,alpha) } else { cat("CUBE models not available for this variables specification") } return(loglik) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikcube_1.R
#' @title Log-likelihood function of a CUBE model with covariates #' @aliases loglikcubecov #' @description Compute the log-likelihood function of a CUBE model for ordinal responses, #' with covariates for explaining all the three parameters. #' @usage loglikcubecov(m, ordinal, Y, W, Z, bet, gama, alpha) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param Y Matrix of covariates for explaining the uncertainty component #' @param W Matrix of covariates for explaining the feeling component #' @param Z Matrix of covariates for explaining the overdispersion component #' @param bet Vector of parameters for the uncertainty component, with length equal to #' NCOL(Y) + 1 to account for an intercept term (first entry of bet) #' @param gama Vector of parameters for the feeling component, with length equal to #' NCOL(W) + 1 to account for an intercept term (first entry of gama) #' @param alpha Vector of parameters for the overdispersion component, with length equal to #' NCOL(Z) + 1 to account for an intercept term (first entry of alpha) #' @keywords internal loglikcubecov <- function(m,ordinal,Y,W,Z,bet,gama,alpha){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } Y<-as.matrix(Y); W<-as.matrix(W); Z<-as.matrix(Z) paivett<-logis(Y,bet); csivett<-logis(W,gama); phivett<-1/(-1+ 1/(logis(Z,alpha))) probi<-paivett*(betabinomial(m,ordinal,csivett,phivett)-1/m)+1/m return(sum(log(probi))) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikcubecov.R
#' @title Log-likelihood function of CUBE model with covariates only for feeling #' @aliases loglikcubecsi #' @description #' Compute the log-likelihood function of a CUBE model for ordinal data with subjects' #' covariates only for feeling. #' @usage loglikcubecsi(m, ordinal, W, pai, gama, phi) #' @keywords internal #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param W Matrix of covariates for explaining the feeling component #' @param pai Uncertainty parameter #' @param gama Vector of parameters for the feeling component, with length #' equal to NCOL(W) + 1 to account for an intercept term (first entry of gama) #' @param phi Overdispersion parameter #' @seealso internal loglikcubecsi <- function(m,ordinal,W,pai,gama,phi){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } W<-as.matrix(W) csivett<-logis(W,gama) probi<-pai*(betabinomialcsi(m,ordinal,csivett,phi)-1/m)+1/m return(sum(log(probi))) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikcubecsi.R
#' @title Log-likelihood function of CUBE models for ordinal data #' @aliases loglikcuben #' @description Compute the log-likelihood function of a CUBE model #' without covariates for ordinal responses, possibly with different #' vectors of parameters for each observation. #' @usage loglikcuben(m, ordinal, assepai, assecsi, assephi) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param assepai Vector of uncertainty parameters for the given #' observations (with the same length as ordinal) #' @param assecsi Vector of feeling parameters for the given observations #' (with the same length as ordinal) #' @param assephi Vector of overdispersion parameters for the given #' observations (with the same length as ordinal) #' @export loglikcuben #' @seealso \code{\link{loglikCUBE}} #' @keywords internal #' @examples #' m<-8 #' n0<-230; n1<-270 #' bet<-c(-1.5,1.2) #' gama<-c(0.5,-1.2) #' alpha<-c(-1.2,-0.5) #' pai0<-1/(1+exp(-bet[1])); csi0<-1/(1+exp(-gama[1])); phi0<-exp(alpha[1]) #' ordinal0<-simcube(n0,m,pai0,csi0,phi0) #' pai1<-1/(1+exp(-sum(bet))); csi1<-1/(1+exp(-sum(gama))); phi1<-exp(sum(alpha)) #' ordinal1<-simcube(n1,m,pai1,csi1,phi1) #' ordinal<-c(ordinal0,ordinal1) #' assepai<-c(rep(pai0,n0),rep(pai1,n1)) #' assecsi<-c(rep(csi0,n0),rep(csi1,n1)) #' assephi<-c(rep(phi0,n0),rep(phi1,n1)) #' lli<-loglikcuben(m,ordinal,assepai,assecsi,assephi) loglikcuben <- function(m,ordinal,assepai,assecsi,assephi){ n<-length(ordinal) if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } prob<-matrix(NA,nrow=n,ncol=m) pconi<-rep(NA,n) for (i in 1:n){ prob[i,]<-t(probcube(m,assepai[i],assecsi[i],assephi[i])) pconi[i]<-prob[i,ordinal[i]] } return(sum(log(pconi))) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikcuben.R
#' @title Log-likelihood function of a CUB model with covariates for the uncertainty component #' @description Compute the log-likelihood function of a CUB model fitting ordinal responses with covariates #' for explaining the uncertainty component. #' @aliases loglikcubp0 #' @usage loglikcubp0(m, ordinal, Y, bbet, ccsi) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param Y Matrix of selected covariates for explaining the uncertainty component #' @param bbet Vector of parameters for the uncertainty component, with length equal to #' NCOL(Y)+1 to account for an intercept term (first entry of bbet) #' @param ccsi Feeling parameter #' @keywords internal loglikcubp0 <- function(m,ordinal,Y,bbet,ccsi){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } Y<-as.matrix(Y) prob<-probbit(m,ccsi) probn<-prob[ordinal] eta<-logis(Y,bbet) return(sum(log(eta*(probn-1/m)+1/m))) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikcubp0.R
#' @title Log-likelihood function of a CUB model with covariates for both feeling and uncertainty #' @description Compute the log-likelihood function of a CUB model fitting ordinal data #' with covariates for explaining both the feeling and the uncertainty components. #' @aliases loglikcubpq #' @usage loglikcubpq(m, ordinal, Y, W, bet, gama) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param Y Matrix of selected covariates for explaining the uncertainty component #' @param W Matrix of selected covariates for explaining the feeling component #' @param bet Vector of parameters for the uncertainty component, with length equal to #' NCOL(Y)+1 to account for an intercept term (first entry of bbet) #' @param gama Vector of parameters for the feeling component, whose length equals #' NCOL(W) + 1 to account for an intercept term (first entry of gama) #' @keywords internal loglikcubpq <- function(m,ordinal,Y,W,bet,gama){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } Y<-as.matrix(Y); W<-as.matrix(W) if (ncol(Y)==1){ Y<-as.numeric(Y) } if (ncol(W)==1){ W<-as.numeric(W) } probn<-probcubpq(m,ordinal,Y,W,bet,gama) return(sum(log(probn))) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikcubpq.R
#' @title Log-likelihood of a CUB model with shelter effect #' @aliases loglikcubshe #' @description Compute the log-likelihood of a CUB model with a shelter effect #' for the given absolute frequency distribution. #' @usage loglikcubshe(m, freq, pai1, pai2, csi, shelter) #' @keywords internal #' @param m Number of ordinal categories #' @param freq Vector of the absolute frequency distribution #' @param pai1 Mixing coefficient for the shifted Binomial component of the mixture distribution #' @param pai2 Mixing coefficient for the discrete Uniform component of the mixture distribution #' @param csi Feeling parameter #' @param shelter Category corresponding to the shelter choice loglikcubshe <- function(m,freq,pai1,pai2,csi,shelter) {t(freq)%*%log(probcubshe1(m,pai1,pai2,csi,shelter))}
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikcubshe.R
#' @title Log-likelihood function for a CUSH model without covariates #' @aliases loglikcush00 #' @description Compute the log-likelihood function for a CUSH model #' without covariate for the given ordinal responses. #' @usage loglikcush00(m,ordinal,delta,shelter) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param delta Shelter parameter #' @param shelter Category corresponding to the shelter choice #' @seealso \code{\link{GEM}} #' @keywords internal loglikcush00<-function(m,ordinal,delta,shelter){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } n<-length(ordinal); freq<-tabulate(ordinal,nbins=m) fc<-freq[shelter]/n loglik<-n*((1-fc)*log(1-delta)+fc*log(1+(m-1)*delta)-log(m)) return(loglik) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikcush00.R
#' @title Log-likelihood function for a CUSH model with covariates #' @aliases loglikcushcov #' @description Compute the log-likelihood function for a CUSH model #' with covariates for the given ordinal responses. #' @usage loglikcushcov(m, ordinal, X, omega, shelter) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param X Matrix of selected covariates for explaining the shelter parameter #' @param omega Vector of parameters for explaining the shelter effect, #' with length equal to NCOL(X)+1 to account for an intercept term (first entry of omega) #' @param shelter Category corresponding to the shelter choice #' @keywords internal #' loglikcushcov <-function(m,ordinal,X,omega,shelter){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } X<-as.matrix(X) deltavett<-logis(X,omega) dummy<-ifelse(ordinal==shelter,1,0) probi<-deltavett*(dummy-1/m)+1/m return(sum(log(probi))) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikcushcov.R
#' @title Log-likelihood function for an IHG model without covariates #' @aliases loglikihg #' @description Compute the log-likelihood function for an IHG model without covariates for #' the given absolute frequency distribution. #' @usage loglikihg(m, freq, theta) #' @param m Number of ordinal categories #' @param freq Vector of the absolute frequency distribution #' @param theta Preference parameter #' @keywords internal loglikihg <- function(m,freq,theta){ t(freq)%*%log(probihg(m,theta)) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikihg.R
#' @title Log-likelihood function for IHG models #' @aliases loglikIHG #' @description Compute the log-likelihood function for IHG models with or without covariates #' to explain the preference parameter. #' @usage loglikIHG(ordinal,m,param,U=0) #' @export loglikIHG #' @param ordinal Vector of ordinal responses #' @param m Number of ordinal categories #' @param param Vector of parameters for the specified IHG model #' @param U Matrix of selected covariates to explain the preference parameter (default: no covariate is included #' in the model) #' @details If no covariate is included in the model, then \code{param} is the estimate of the preference #' parameter (\eqn{theta}), otherwise \code{param} has length equal to NCOL(U) + 1 to account for an intercept #' term (first entry). No missing value should be present neither for \code{ordinal} nor for \code{U}. #' @seealso \code{\link{GEM}}, \code{\link{logLik}} #' @keywords htest #' @examples #' #### Log-likelihood of an IHG model with no covariate #' m<-10; theta<-0.14; n<-300 #' ordinal<-simihg(n,m,theta) #' loglik<-loglikIHG(ordinal,m,param=theta) #' ################################## #' #### Log-likelihood of a IHG model with covariate #' data(relgoods) #' m<-10 #' naord<-which(is.na(relgoods$HandWork)) #' nacov<-which(is.na(relgoods$Gender)) #' na<-union(naord,nacov) #' ordinal<-relgoods$HandWork[-na]; U<-relgoods$Gender[-na] #' nu<-c(-1.55,-0.11) # first entry: intercept term #' loglik<-loglikIHG(ordinal,m,param=nu,U=U); loglik loglikIHG <- function(ordinal,m,param,U=0){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } nu<-NROW(U) if (nu==1){ theta<-param freq<-tabulate(ordinal,nbins=m) loglik<-loglikihg(m,freq,theta) } else { nu<-param U<-as.matrix(U) if (ncol(U)==1){ U<-as.numeric(U) } loglik<-loglikihgcov(m,ordinal,U,nu) } return(loglik) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikihg_1.R
#' @title Log-likelihood function for the IHG model with covariates #' @aliases loglikihgcov #' @description Compute the log-likelihood function for the IHG model #' with covariates to explain the preference parameter. #' @usage loglikihgcov(m, ordinal, U, nu) #' @keywords internal #' @seealso loglikIHG #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param U Matrix of selected covariates for explaining the preference parameter #' @param nu Vector of coefficients for covariates, whose length equals NCOL(U)+1 to include #' an intercept term in the model (first entry of nu) loglikihgcov <- function(m,ordinal,U,nu){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } U<-as.matrix(U) sum(log(probihgcovn(m,ordinal,U,nu))) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/loglikihgcov.R
#' @title Logarithmic score #' @description Compute the logarithmic score of a CUB model with covariates both for the uncertainty #' and the feeling parameters. #' @aliases logscore #' @export logscore #' @usage logscore(m,ordinal,Y,W,bet,gama) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param Y Matrix of covariates for explaining the uncertainty component #' @param W Matrix of covariates for explaining the feeling component #' @param bet Vector of parameters for the uncertainty component, with length NCOL(Y)+1 #' to account for an intercept term (first entry of \code{bet}) #' @param gama Vector of parameters for the feeling component, with length NCOL(W)+1 #' to account for an intercept term (first entry of \code{gama}) #' @details No missing value should be present neither #' for \code{ordinal} nor for covariate matrices: thus, deletion or imputation procedures should be #' preliminarily run. #' @references #' Tutz, G. (2012). \emph{Regression for Categorical Data}, Cambridge University Press, Cambridge #' @keywords htest #' @examples #' data(relgoods) #' m<-10 #' naord<-which(is.na(relgoods$Walking)) #' nacovpai<-which(is.na(relgoods$Gender)) #' nacovcsi<-which(is.na(relgoods$Smoking)) #' na<-union(naord,union(nacovpai,nacovcsi)) #' ordinal<-relgoods$Walking[-na] #' Y<-relgoods$Gender[-na] #' W<-relgoods$Smoking[-na] #' bet<-c(-0.45,-0.48) #' gama<-c(-0.55,-0.43) #' logscore(m,ordinal,Y=Y,W=W,bet,gama) logscore <- function(m,ordinal,Y,W,bet,gama){ pr<-as.numeric(probcubpq(m,ordinal,Y,W,bet,gama)) return(-2*sum(log(pr))) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/logscore.R
#' @title Plot facilities for GEM objects #' @description Plot facilities for objects of class "GEM". #' @aliases makeplot #' @param object An object of class "GEM" #' @export #' @details Returns a plot comparing fitted #' probabilities and observed relative frequencies for GEM models without covariates. If only one #' explanatory dichotomous variable is included in the model for one or all components, #' then the function returns a plot comparing the distributions of the responses conditioned to #' the value of the covariate. #' @keywords models device package #' @seealso \code{\link{cubvisual}}, \code{\link{cubevisual}}, \code{\link{cubshevisual}}, #' \code{\link{multicub}}, \code{\link{multicube}} makeplot<-function(object){ if (object$family=="CUB"){ makeplotCUB(object) } if (object$family=="CUBE"){ makeplotCUBE(object) } if (object$family=="IHG"){ makeplotIHG(object) } if (object$family=="CUSH"){ makeplotCUSH(object) } } makeplotCUB<-function(object){ ellipsis<-object$ellipsis ordinal<-object$ordinal family<-object$family m <- ellipsis[['m']] n<-length(ordinal) modello<-object$formula #EFFE<-mod$Formula data<-ellipsis$data mf<-model.frame(modello,data=data,na.action=na.omit) #covpai<-model.matrix(Formula,data=data,rhs=1) #covcsi<-model.matrix(Formula,data=data,rhs=2) covpai<-model.matrix(modello,data=mf,rhs=1) covcsi<-model.matrix(modello,data=mf,rhs=2) covshe<-model.matrix(modello,data=mf,rhs=3) if (ncol(covpai)==0){ Y<-NULL } else { Y<-covpai[,-1] } if (ncol(covcsi)==0){ W<-NULL } else { W<-covcsi[,-1] } if (ncol(covshe)==0){ X<-NULL } else { X<-covshe[,-1] } stime<-round(object$estimates,5); if (!is.null(ellipsis$shelter)){ if (is.null(W) & is.null(Y) & is.null(X)){ theorpr<-fitted(object) pai1<-stime[1];pai2<-stime[2];csi<-stime[3] delta<-1-pai1-pai2 paistar<-pai1/(pai1+pai2) freq<-tabulate(ordinal,nbins=m) dissshe<-dissim(freq/n,theorpr[,1]) plot(cbind(1:m,1:m),cbind(theorpr[,1],(freq/n)), main=paste("CUB with shelter effect"," (Diss =",round(dissshe,digits=4),")"), xlim=c(1,m),ylim=c(0.0,1.1*max(theorpr[,1],(freq/n))), xlab="Ordinal values of R=1,2,...,m", ylab=expression(paste("Observed freq. (dots) and fitted prob. (circles)"))); points(1:m,theorpr[,1],pch=21,cex=1.2,lwd=2.0,type="b",lty=3); points(1:m,freq/n,pch=16,cex=1.2); abline(h=0); } else { cat("No built-in plot method for this variables specifications: see multicub() and cubshevisual()","\n") } } else { if ( is.null(W) & is.null(Y) & is.null(X)){ theorpr<-fitted(object) #freq<-matrix(NA,nrow=m,ncol=nprof) freq<-tabulate(ordinal,nbins=m) stringtitle<-"CUB model"; thpr<-theorpr[,1] dissimi<-dissim(thpr,freq/n) #par(mfrow=c(2,1)) plot(cbind(1:m,1:m),cbind(thpr,(freq/n)),las=1, main=paste(stringtitle, " (Diss =",round(dissimi,digits=4),")"), xlim=c(1,m),ylim=c(0.0,1.1*max(thpr,(freq/n))), xlab="Ordinal values of R=1,2,...,m", ylab=expression(paste("Observed relative frequencies (dots) and fitted probabilities (circles)"))); ### points(1:m,thpr,pch=21,cex=1.5,lwd=2.0,type="b",lty=3); ### ex pch=8,col="red" points(1:m,freq/n,pch=16,cex=1.25,lwd=1.5); abline(h=0); # cubvisual(m,ordinal,labelpoint="estim") # par(mfrow=c(1,1)) } if (is.null(W) & !is.null(Y) & is.null(X)) { #Y<-ellipsis$Y if (length(unique(Y))==2){ theorpr<-fitted(object) prob0<-theorpr[,1] prob1<-theorpr[,2] maxpr<-max(prob0,prob1) plot(1:m,prob0,ylim=c(0.0,1.1*maxpr),cex.main=0.9,las=1, main="CUB distributions, given pai-covariate=0, 1", cex=1.2,xlab="Ordinal values of R=1,2,...,m", ylab="Prob(R|D=0) (circles) and Prob(R|D=1) (dots)",pch=1,lty=1,type="b"); lines(1:m,prob1,cex=1.2,pch=19,lty=2,type="b"); abline(h=0); } else { cat("No built-in plot method for this variables specifications: see multicub() and cubvisual()","\n") # multicub(listaord,as.list(rep(m,nprof)),labelpoints = profili) } } if (!is.null(W) & is.null(Y) & is.null(X)){ #W<-as.matrix(ellipsis$W) if (NCOL(W)==1 && length(unique(W))==2){ theorpr<-fitted(object) prob0<-theorpr[,1] prob1<-theorpr[,2] maxpr<-max(prob0,prob1) plot(1:m,prob0,ylim=c(0.0,1.1*maxpr),cex.main=0.9,las=1, main="CUB distributions, given csi-covariate=0, 1", cex=1.2,xlab="Ordinal values of R=1,2,...,m", ylab="Prob(R|D=0) (circles) and Prob(R|D=1) (dots)",pch=1,lty=1,type="b"); lines(1:m,prob1,cex=1.2,pch=19,lty=2,type="b"); abline(h=0); # multicub(listaord,as.list(rep(m,nprof)),labelpoints = profili) } else { cat("No built-in plot method for this variables specifications: see multicub() and cubvisual()","\n") } } if(!is.null(W) & !is.null(Y) & is.null(X)){ # Y<-as.matrix(ellipsis$Y) # W<-as.matrix(ellipsis$W) ny<-NCOL(Y) nw<-NCOL(W) if (ny==1 & nw==1 & length(unique(Y))==2 & length(unique(W))==2 ){ if (all(Y==W)){ theorpr<-fitted(object) #par(mfrow=c(2,1)) prob0<-theorpr[,1] prob1<-theorpr[,2] maxpr<-max(prob0,prob1) plot(1:m,prob0,ylim=c(0.0,1.1*maxpr),cex.lab=0.9,cex.main=0.9,las=1, main="CUB distributions, given pai-csi covariate=0, 1", cex=1.2,xlab="Ordinal values of R=1,2,...,m", ylab="Prob(R|D=0) (circles) and Prob(R|D=1) (dots)",pch=1,lty=1,type="b"); lines(1:m,prob1,cex=1.2,pch=19,lty=2,type="b"); abline(h=0); # multicub(listaord,as.list(rep(m,nprof)),labelpoints = profili) # par(mfrow=c(1,1)) } } else { cat("No built-in plot method for this variables specifications: see multicub() and cubvisual()","\n") } # multicub(listaord,as.list(rep(m,nprof)),labelpoints = profili) #par(mfrow=c(1,1)) } } #chiude check su shelter } makeplotCUBE<-function(object){ ellipsis<-object$ellipsis ordinal<-object$ordinal family<-object$family m <- ellipsis[['m']] modello<-object$formula # EFFE<-mod$Formula data<-ellipsis$data mf<-model.frame(modello,data=data,na.action=na.omit) covpai<-model.matrix(modello,data=mf,rhs=1) covcsi<-model.matrix(modello,data=mf,rhs=2) covphi<-model.matrix(modello,data=mf,rhs=3) if (ncol(covpai)==0){ Y<-NULL } else { Y<-covpai[,-1] } if (ncol(covcsi)==0){ W<-NULL } else { W<-covcsi[,-1] } if (ncol(covphi)==0){ Z<-NULL } else { Z<-covphi[,-1] } n<-length(ordinal) theorpr<-fitted(object) freq<-tabulate(ordinal,nbins=m) stime<-round(object$estimates,5) # Y<-ellipsis$Y # W<-ellipsis$W # Z<-ellipsis$Z theorpr<-fitted(object) dissimcube<-dissim(theorpr,freq/n) if (is.null(Y) & is.null(W) & is.null(Z)){ #par(mfrow=c(2,1)) stringtitle="CUBE model estimation "; plot(cbind(1:m,1:m),cbind(theorpr,(freq/n)),las=1,cex=1.2, main=paste(stringtitle, " (Diss =",round(dissimcube,digits=4),")"), xlim=c(1,m),ylim=c(0.0,1.1*max(theorpr,(freq/n))), xlab="Ordinal values of R=1,2,...,m", ylab="Obs. relative frequencies (dots) and fitted prob. (circles)",cex.lab=0.9,cex.main=0.9); ### points(1:m,theorpr,pch=21,cex=1.5,lwd=2.0,type="b",lty=3); ### ex pch=8,col="red" points(1:m,freq/n,pch=16,cex=1.25,lwd=1.5); abline(h=0); # } else if (is.null(Y) & !is.null(W) & is.null(Z)){ if (NCOL(W)==1 & length(unique(W))==2){ #par(mfrow=c(1,1)) pai<-stime[1]; gama<-stime[2:(length(stime)-1)]; phi<-stime[length(stime)]; vett<-as.matrix(c(0,1)) csi0<-logis(vett[1],gama); prob0<-probcube(m,pai,csi0,phi); #theorpr[,1]? (ordine) csi1<-logis(vett[2],gama); prob1<-probcube(m,pai,csi1,phi); maxpr<-max(prob0,prob1) plot(1:m,prob0,ylim=c(0.0,1.1*maxpr),las=1, main="CUBE distributions, given csi-covariate=0, 1", cex.lab=0.9,cex.main=0.9,xlab="Ordinal values of R=1,2,...,m", ylab="Prob(R|D=0) (circles) and Prob(R|D=1) (dots)",pch=1,lty=1,type="b"); lines(1:m,prob1,cex=1.2,pch=19,lty=2,type="b"); abline(h=0); } else { cat("No built-in Plot method available for this variables specification: see multicube() or cubevisual()","\n") } } } makeplotIHG<-function(object){ ellipsis<-object$ellipsis ordinal<-object$ordinal m <- ellipsis[['m']] freq<-tabulate(ordinal,nbins=m) n <-length(ordinal) modello<-object$formula #EFFE<-mod$Formula data<-ellipsis$data mf<-model.frame(modello,data=data,na.action=na.omit) covtheta<-model.matrix(modello,data=mf,rhs=1) if (ncol(covtheta)==0){ U<-NULL } else { U<-covtheta[,-1] } #U<-ellipsis$U if (is.null(U)){ theorpr<-fitted(object) dissihg<-dissim(theorpr[,1],freq/n) plot(cbind(1:m,1:m),cbind(theorpr[,1],(freq/n)), main=paste("IHG model (without covariates)"," (Diss =",round(dissihg,digits=4),")"), xlim=c(1,m),ylim=c(0,1.1*max(theorpr[,1],(freq/n))),las=1, xlab="Ordinal values of R=1,2,...,m", ylab=expression(paste("Obs. relative frequencies (dots) and fitted prob. (circles)")), cex.lab=0.9,cex.main=0.9,cex=1.2) points(1:m,theorpr,pch=21,cex=1.5, lwd=2.0,type="b",lty=3) points(1:m,freq/n,pch=16,cex=1.2) ### points(shelter,theorpr[shelter]-delta,pch=8); abline(h=0); ################# } else { nuest<-object$estimates if (NCOL(U)==1 & length(unique(U))==2){ theorpr<-fitted(object) vett<-as.matrix(c(0,1)) theta0<-logis(vett[1],nuest) theta1<-logis(vett[2],nuest) prob0<-probihg(m,theta0) prob1<-probihg(m,theta1) maxpr<-max(prob0,prob1) plot(1:m,prob0,ylim=c(0.0,1.1*maxpr),cex.main=0.9,las=1, main="IHG distributions, given theta-covariate=0, 1",cex.lab=0.9,cex.main=0.9, xlab="Ordinal values of R=1,2,...,m", ylab="Prob(R|D=0) (circles) and Prob(R|D=1) (dots)",pch=1,lty=1,type="b"); lines(1:m,prob1,cex=1.2,pch=19,lty=2,type="b"); abline(h=0); } else { cat("No built-in plot method available for this variables specification","\n") } } } makeplotCUSH<-function(object){ ellipsis<-object$ellipsis ordinal<-object$ordinal shelter<-ellipsis$shelter m <- ellipsis[['m']] freq<-tabulate(ordinal,nbins=m) n <-length(ordinal) modello<-object$formula # EFFE<-mod$Formula data<-ellipsis$data mf<-model.frame(modello,data=data,na.action=na.omit) covshe<-model.matrix(modello,data=mf,rhs=1) if (ncol(covshe)==0){ X<-NULL } else { X<-covshe[,-1] } #X<-ellipsis$X if (is.null(X)){ theorpr<-fitted(object) fc<-freq[shelter]/n deltaest<-object$estimates diss00<-dissim(theorpr[,1],freq/n) ################### GRAFICI sovrapposti ######### # par(mar=c(4,4,2.5,1)+0.1) ; ### reset standard margins # par(mfrow=c(2,1)); ### ripristina l'area del grafico ###### Distributions stringtitle="CUSH model (without covariates)"; plot(cbind(1:m,1:m),cbind(theorpr[,1],(freq/n)),las=1, main=paste(stringtitle," (Diss =",round(diss00,digits=4),")"), xlim=c(1,m),ylim=c(0.0,1.1*max(theorpr[,1],(freq/n))), xlab="Ordinal values of R=1,2,...,m", ylab="Obs. freq (dots) and fitted prob. (circles)", cex.lab=0.9,cex.main=0.9,cex=1.2); points(1:m,theorpr,pch=21,cex=1.5,lwd=2.0,type="b",lty=3); points(1:m,freq/n,pch=16,cex=1.5,lwd=1.5); abline(h=0); } else { X<-as.matrix(X) omegaest<-object$estimates if (NCOL(X)==1 & length(unique(X))==2){ theorpr<-fitted(object) vett<-as.matrix(c(0,1)) delta0<-logis(vett[1],omegaest) delta1<-logis(vett[2],omegaest) prob0<-probcush(m,delta0,shelter) prob1<-probcush(m,delta1,shelter) maxpr<-max(prob0,prob1) plot(1:m,prob0,ylim=c(0.0,1.1*maxpr),cex.main=0.9,las=1, main="CUSH distributions, given delta-covariate=0, 1",cex=1.2,cex.lab=0.9, xlab="",ylab="Prob(R|D=0) (circles) and Prob(R|D=1) (dots)",pch=1,lty=1,type="b"); lines(1:m,prob1,cex=1.2,pch=19,lty=2,type="b"); abline(h=0); } else { cat("No built-in plot method available for this variables specification","\n") } } }
/scratch/gouwar.j/cran-all/cranData/CUB/R/makeplot.R
#' @title Joint plot of estimated CUB models in the parameter space #' @description Return a plot of estimated CUB models represented as points in the parameter space. #' @aliases multicub #' @usage multicub(listord,mvett,csiplot=FALSE,paiplot=FALSE,...) #' @export multicub #' @param listord A data matrix, data frame, or list of vectors of ordinal observations (for variables #' with different number of observations) #' @param mvett Vector of number of categories for ordinal variables in \code{listord} (optional: if missing, #' the number of categories is retrieved from data: it is advisable to specify it in case some category has zero #' frequency) #' @param csiplot Logical: should \eqn{\xi} or \eqn{1-\xi} be the \eqn{y} coordinate #' @param paiplot Logical: should \eqn{\pi} or \eqn{1-\pi} be the \eqn{x} coordinate #' @param ... Additional arguments to be passed to \code{\link{plot}}, \code{\link{text}}, and \code{\link{GEM}} #' @return Fit a CUB model to list elements, and then by default it returns a plot of the estimated #' \eqn{(1-\pi, 1-\xi)} as points in the parameter space. Depending on \code{csiplot} and \code{paiplot} #' and on desired output, \eqn{x} and \eqn{y} coordinates may be set to \eqn{\pi} and \eqn{\xi}, respectively. #' @keywords device #' @examples #' data(univer) #' listord<-univer[,8:12] #' multicub(listord,colours=rep("red",5),cex=c(0.4,0.6,0.8,1,1.2), #' pch=c(1,2,3,4,5),xlim=c(0,0.4),ylim=c(0.75,1),pos=c(1,3,3,3,3)) #' ############################### #' m1<-5; m2<-7; m3<-9 #' pai<-0.7;csi<-0.6 #' n1<-1000; n2<-500; n3<-1500 #' ord1<-simcub(n1,m1,pai,csi) #' ord2<-simcub(n2,m2,pai,csi) #' ord3<-simcub(n3,m3,pai,csi) #' listord<-list(ord1,ord2,ord3) #' multicub(listord,labels=c("m=5","m=7","m=9"),pos=c(3,1,4)) multicub<-function(listord,mvett,csiplot=FALSE,paiplot=FALSE,...){ ellipsis.arg<-list(...) if (is.data.frame(listord)==TRUE){ listord<- as.list(listord) } else if (is.matrix(listord)==TRUE) { mat<-as.data.frame(listord) listord<- as.list(mat) } k<-length(listord) if (missing(mvett)){ mvett<-c() for (j in 1:k){ lev <- levels(factor(listord[[j]],ordered=TRUE)); mvett[j] <- length(lev) } } xlim<-ellipsis.arg$xlim if (is.null(xlim)){ xlim<-c(0,1) } ylim<-ellipsis.arg$ylim if (is.null(ylim)){ ylim<-c(0,1) } pos<-ellipsis.arg$pos if (is.null(pos)){ pos<-rep(3,length(listord)) } else if (length(pos)==1){ pos<-rep(pos,length(listord)) } offset<-ellipsis.arg$offset if (is.null(offset)){ offset<-0.5 } font<-ellipsis.arg$font if(is.null(font)){ font<-4 } pch<-ellipsis.arg$pch if (is.null(pch)){ pch<-rep(19,length(listord)) } else if (length(pch)==1){ pch<-rep(pch,length(listord)) } cex<-ellipsis.arg$cex if (is.null(cex)){ cex<-rep(0.5,length(listord)) } else if (length(cex)==1){ cex<-rep(cex,length(listord)) } main<-ellipsis.arg$main if(is.null(main)){ main<-"CUB models" } labels<-ellipsis.arg$labels if(is.null(labels)){ labels<-as.character(1:length(listord)) } colours<-ellipsis.arg$colours if(is.null(colours)){ colours<-rep("black",length(listord)) } else if (length(colours)==1){ colours<-rep(colours,length(listord)) } xlab<-ellipsis.arg$xlab if(is.null(xlab)){ xlab<-expression(paste("Uncertainty ", (1-pi))) if (paiplot==TRUE){ xlab<-expression(pi) } } ylab<-ellipsis.arg$ylab if(is.null(ylab)){ ylab<-expression(paste("Feeling ", (1-xi))) if (csiplot==TRUE){ ylab<-expression(xi) } } #listm<- mget('listm',ifnotfound=list(mlist)) #listm<-listm$listm vettpai<-vettcsi<-rep(NA,k); labelpoints<-c() for(j in 1:k){ ord<-listord[[j]] F0<-Formula(ord~0|0|0) data<-as.data.frame(ord) #stimacub<-CUB(F0,data=data,maxiter=300,toler=1e-4,m=listm[j]) stimacub <- GEM(F0,data=data,family="cub",maxiter=300,toler=1e-4,m=mvett[j]) param<-stimacub$estimates vettpai[j]<-param[1]; vettcsi[j]<-param[2]; labelpoints[j]<-j } labels<-ellipsis.arg$labels if(is.null(labels)){ labels<-labelpoints } plot(c(0,1),c(0,1),main=main,cex.main=1, font.lab=4,cex.lab=1, pch=pch,las=1,type="n", xlim=xlim,ylim=ylim,xlab=xlab,ylab=ylab); paival<-1-vettpai; csival<-1-vettcsi if (csiplot==TRUE){ csival<-vettcsi } if (paiplot==TRUE){ paival<-vettpai } points(paival,csival,col=colours,pch=pch,cex=cex) text(paival,csival,labels=labels,pos=pos,offset=offset,font=font,cex=cex,col=colours) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/multicub.R
#' @title Joint plot of estimated CUBE models in the parameter space #' @description Return a plot of estimated CUBE models represented as points in the #' parameter space, where the overdispersion is labeled. #' @aliases multicube #' @usage multicube(listord,mvett,csiplot=FALSE,paiplot=FALSE,...) #' @export multicube #' @param listord A data matrix, data frame, or list of vectors of ordinal observations (for variables #' with different number of observations) #' @param mvett Vector of number of categories for ordinal variables in \code{listord} (optional: if missing, #' the number of categories is retrieved from data: it is advisable to specify it in case some category has zero #' frequency) #' @param csiplot Logical: should \eqn{\xi} or \eqn{1-\xi} be the \eqn{y} coordinate #' @param paiplot Logical: should \eqn{\pi} or \eqn{1-\pi} be the \eqn{x} coordinate #' @param ... Additional arguments to be passed to \code{\link{plot}}, \code{\link{text}}, and \code{\link{GEM}} #' @keywords device #' @return Fit a CUBE model to list elements, and then by default it returns a plot of the estimated #' \eqn{(1-\pi, 1-\xi)} as points in the parameter space, labeled with the estimated overdispersion. #' Depending on \code{csiplot} and \code{paiplot} and on desired output, \eqn{x} and \eqn{y} #' coordinates may be set to \eqn{\pi} and \eqn{\xi}, respectively. #' @examples #' m1<-5; m2<-7; m3<-9 #' pai<-0.7;csi<-0.6;phi=0.1 #' n1<-1000; n2<-500; n3<-1500 #' ord1<-simcube(n1,m1,pai,csi,phi) #' ord2<-simcube(n2,m2,pai,csi,phi) #' ord3<-simcube(n3,m3,pai,csi,phi) #' listord<-list(ord1,ord2,ord3) #' multicube(listord,labels=c("m=5","m=7","m=9"),pos=c(3,1,4),expinform=TRUE) multicube<-function(listord,mvett,csiplot=FALSE,paiplot=FALSE,...){ ellipsis.arg<-list(...) if (is.data.frame(listord)==TRUE){ listord<- as.list(listord) } else if (is.matrix(listord)==TRUE) { mat<-as.data.frame(listord) listord<- as.list(mat) } k<-length(listord) if (missing(mvett)){ mvett<-c() for (j in 1:k){ lev <- levels(factor(listord[[j]],ordered=TRUE)); mvett[j] <- length(lev) } } xlim<-ellipsis.arg$xlim if (is.null(xlim)){ xlim<-c(0,1) } ylim<-ellipsis.arg$ylim if (is.null(ylim)){ ylim<-c(0,1) } pos<-ellipsis.arg$pos if (is.null(pos)){ pos<-rep(3,length(listord)) } else if (length(pos)==1){ pos<-rep(pos,length(listord)) } offset<-ellipsis.arg$offset if (is.null(offset)){ offset<-0.5 } font<-ellipsis.arg$font if(is.null(font)){ font<-4 } pch<-ellipsis.arg$pch if (is.null(pch)){ pch<-rep(19,length(listord)) } else if (length(pch)==1){ pch<-rep(pch,length(listord)) } cex<-ellipsis.arg$cex if (is.null(cex)){ cex<-rep(0.5,length(listord)) } else if (length(cex)==1){ cex<-rep(cex,length(listord)) } main<-ellipsis.arg$main if(is.null(main)){ main<-"CUBE models" } labels<-ellipsis.arg$labels if(is.null(labels)){ labels<-as.character(1:length(listord)) } colours<-ellipsis.arg$colours if(is.null(colours)){ colours<-rep("black",length(listord)) } else if (length(colours)==1){ colours<-rep(colours,length(listord)) } xlab<-ellipsis.arg$xlab if(is.null(xlab)){ xlab<-expression(paste("Uncertainty ", (1-pi))) if (paiplot==TRUE){ xlab<-expression(pi) } } ylab<-ellipsis.arg$ylab if(is.null(ylab)){ ylab<-expression(paste("Feeling ", (1-xi))) if (csiplot==TRUE){ ylab<-expression(xi) } } vettpai<-vettcsi<-vettphi<-rep(NA,k); labelpoints<-c() for(j in 1:k){ ord<-listord[[j]] m<-length(levels(factor(ord,ordered=TRUE))) starting<-inibestcube(m,ord) F0<-Formula(ord~0|0|0) data<-as.data.frame(ord) stimacube <- GEM(F0,data=data, family="cube",starting=starting,m=mvett[j]) #stimacube <- CUBE(F0,data=data, family="cube",starting=starting,m=listm[j]) param<-stimacube$estimates vettpai[j]<-param[1]; vettcsi[j]<-param[2]; vettphi[j]<-round(param[3],digits=3) labelpoints[j]=as.character(paste("phi=",vettphi[j])) } labels<-ellipsis.arg$labels if(is.null(labels)){ labels<-labelpoints } plot(c(0,1),c(0,1),main=main,cex=cex,cex.main=1, font.lab=4,cex.lab=1, pch=pch,las=1,type="n", xlim=xlim,ylim=ylim, xlab=xlab,ylab=ylab); paival<-1-vettpai; csival<-1-vettcsi if (csiplot==TRUE){ csival<-vettcsi } if (paiplot==TRUE){ paival<-vettpai } points(paival,csival,col=colours,pch=pch,cex=cex) text(paival,csival,labels=labels,pos=pos,offset=offset,font=font,cex=cex, col=colours) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/multicube.R
#' @title Generic function for coefficient names #' @description Generic function for names of parameter estimates of object of class "GEM". #' @aliases parnames.GEM #' @param object An object of class "GEM" #' @import methods #' @keywords internal #' @seealso \code{\link{summary}} #' @examples #' data(univer);attach(univer) #' model<-GEM(Formula(officeho~0|0|0),family="cub",shelter=7) #' model parnames <- function(object) UseMethod("parnames", object) parnames.GEM<-function(object){ listanomi<-c() if (object$family=="CUB"){ listanomi<- parnames.CUB(object) } if (object$family=="CUBE"){ listanomi<- parnames.CUBE(object) } if (object$family=="IHG"){ listanomi<- parnames.IHG(object) } if (object$family=="CUSH"){ listanomi<- parnames.CUSH(object) } return(listanomi) } parnames.CUB<-function(object){ effe<-object$formula # EFFE<-modello$Formula data<-object$ellipsis$data mf<-model.frame(effe,data=data,na.action=na.omit) covpai<-model.matrix(effe,data=mf,rhs=1) covcsi<-model.matrix(effe,data=mf,rhs=2) covshe<-model.matrix(effe,data=mf,rhs=3) if (ncol(covpai)==0){ Y<-NULL } else { if (NCOL(covpai)==2){ Y<-as.matrix(covpai[,-1]) colnames(Y)<-colnames(covpai)[2] } else { Y<-covpai[,-1] } } if (ncol(covcsi)==0){ W<-NULL } else { if (NCOL(covcsi)==2){ W<-as.matrix(covcsi[,-1]) colnames(W)<-colnames(covcsi)[2] } else { W<-covcsi[,-1] } } if (ncol(covshe)==0){ X<-NULL } else { if (NCOL(covshe)==2){ X<-as.matrix(covshe[,-1]) colnames(X)<-colnames(covshe)[2] } else { X<-covshe[,-1] } } ellipsis<-object$ellipsis listanomi<-c() if (!is.null(ellipsis$shelter)){ if (is.null(X) & is.null(Y) & is.null(W)){ listanomi<-c("pai1","pai2","csi") } else if (!is.null(X) & !is.null(Y) & !is.null(W)){ Y<-as.matrix(Y); W<-as.matrix(W); X<-as.matrix(X); p<-NCOL(Y); q<-NCOL(W); s<-NCOL(X); if (is.null(colnames(Y))){ nomiY<- paste("beta",0:p,sep="_") } else { nomiY<-c("constant",colnames(Y)) } if (is.null(colnames(W))){ nomiW<- paste("gamma",0:q,sep="_") } else { nomiW<-c("constant",colnames(W)) } if (is.null(colnames(X))){ nomiX<- paste("omega",0:s,sep="_") } else { nomiX<-c("constant",colnames(X)) } listanomi<-c(nomiY,nomiW,nomiX); } } else { if (is.null(Y) & is.null(W)){ listanomi<-c("pai","csi") } if (!is.null(Y) & is.null(W)){ betacoef<-c() npar<-length(object$estimates) if (!is.null(colnames(Y))){ betacoef<-c("constant",colnames(Y)) } else { for (j in 1:(npar-1)){ betacoef[j]<-paste("beta",j-1,sep="_") } } listanomi<-c(betacoef,"csi") } if (is.null(Y) & !is.null(W)){ gamacoef<-c() npar<-length(object$estimates) if (!is.null(colnames(W))){ gamacoef<-c("constant",colnames(W)) } else { for (j in 1:(npar-1)){ gamacoef[j]<-paste("gamma",j-1,sep="_") } } listanomi<-c("pai",gamacoef) } if (!is.null(Y) & !is.null(W)) { betacoef<-gamacoef<-c() Y<-as.matrix(Y); W<-as.matrix(W) ny<-NCOL(Y); nw<-NCOL(W); if (is.null(colnames(Y))){ for (j in 1:(ny+1)){ betacoef[j]<-paste("beta",j-1,sep="_") } } else { betacoef<-c("constant",colnames(Y)) } if (is.null(colnames(W))){ for (j in 1:(nw+1)){ gamacoef[j]<-paste("gamma",j-1,sep="_") } } else { gamacoef<-c("constant",colnames(W)) } listanomi<-c(betacoef,gamacoef) } } return(listanomi) } ##################################################### parnames.CUBE<-function(object){ ellipsis<-object$ellipsis effe<-object$formula # EFFE<-modello$Formula data<-object$ellipsis$data mf<-model.frame(effe,data=data,na.action=na.omit) covpai<-model.matrix(effe,data=mf,rhs=1) covcsi<-model.matrix(effe,data=mf,rhs=2) covphi<-model.matrix(effe,data=mf,rhs=3) if (ncol(covpai)==0){ Y<-NULL } else { if (NCOL(covpai)==2){ Y<-as.matrix(covpai[,-1]) colnames(Y)<-colnames(covpai)[2] } else { Y<-covpai[,-1] } } if (ncol(covcsi)==0){ W<-NULL } else { if (NCOL(covcsi)==2){ W<-as.matrix(covcsi[,-1]) colnames(W)<-colnames(covcsi)[2] } else { W<-covcsi[,-1] } } if (ncol(covphi)==0){ Z<-NULL } else { if (NCOL(covphi)==2){ Z<-as.matrix(covphi[,-1]) colnames(Z)<-colnames(covphi)[2] } else { Z<-covphi[,-1] } } listanomi<-c() if (is.null(Y) & is.null(W) & is.null(Z)){ listanomi<-rbind("pai","csi","phi") } else if (is.null(Y) & is.null(Z) & !is.null(W)){ W<-as.matrix(W) if (is.null(colnames(W))){ gamacoef<- paste("gamma",0:NCOL(W),sep="_") } else { gamacoef<-c("constant",colnames(W)) } listanomi<-c("pai",gamacoef,"phi") } else if (!is.null(Y) & !is.null(Z) & !is.null(W)){ W<-as.matrix(W); Y<-as.matrix(Y); Z<-as.matrix(Z); if (is.null(colnames(W))){ gamacoef<- paste("gamma",0:NCOL(W),sep="_") } else { gamacoef<-c("constant",colnames(W)) } if (is.null(colnames(Y))){ betacoef<- paste("beta",0:NCOL(Y),sep="_") } else { betacoef<-c("constant",colnames(Y)) } if (is.null(colnames(Z))){ alfacoef<- paste("alpha",0:NCOL(Z),sep="_") } else { alfacoef<-c("constant",colnames(Z)) } listanomi<-c(betacoef, gamacoef, alfacoef) } else { cat("CUBE models not available for this variables specification") listanomi<-c() } return(listanomi) } ##################################################### parnames.IHG<-function(object){ ellipsis<-object$ellipsis # U<-ellipsis$U effe<-object$formula data<-object$ellipsis$data mf<-model.frame(effe,data=data,na.action=na.omit) covtheta<-model.matrix(effe,data=mf,rhs=1) if (ncol(covtheta)==0){ U<-NULL } else { if (NCOL(covtheta)==2){ U<-as.matrix(covtheta[,-1]) colnames(U)<-colnames(covtheta)[2] } else { U<-covtheta[,-1] } } listanomi<-c() if (is.null(U)){ listanomi<-"theta" } else { U<-as.matrix(U) if (is.null(colnames(U))){ listanomi<-paste("nu",0:NCOL(U),sep="_") } else { listanomi<-c("constant",colnames(U)) } } return(listanomi) } ##################################################### parnames.CUSH<-function(object){ ellipsis<-object$ellipsis # X<-ellipsis$X effe<-object$formula # EFFE<-mod$Formula data<-object$ellipsis$data mf<-model.frame(effe,data=data,na.action=na.omit) covshe<-model.matrix(effe,data=mf,rhs=1) if (ncol(covshe)==0){ X<-NULL } else { if (NCOL(covshe)==2){ X<-as.matrix(covshe[,-1]) colnames(X)<-colnames(covshe)[2] } else { X<-covshe[,-1] } } listanomi<-c() if (is.null(X)){ listanomi<-"delta" } else { X<-as.matrix(X) if (is.null(colnames(X))){ listanomi<-paste("omega",0:NCOL(X),sep="_") } else { listanomi<-c("constant",colnames(X)) } } return(listanomi) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/parnames.R
#' @title Plot of the log-likelihood function of the IHG distribution #' @aliases plotloglikihg #' @description Plot the log-likelihood function of an IHG model fitted to a given absolute frequency distribution, #' over the whole support of the preference parameter. It returns also the ML estimate. #' @usage plotloglikihg(m,freq) #' @export plotloglikihg #' @param m Number of ordinal categories #' @param freq Vector of the absolute frequency distribution #' @seealso \code{\link{loglikIHG}} #' @examples #' m<-7 #' freq<-c(828,275,202,178,143,110,101) #' max<-plotloglikihg(m,freq) plotloglikihg <- function(m,freq){ np<-1000 ordinate<-rep(NA,np) ini<-1; fin<-np; thetavec<-(1:np)/np for(j in 1:np){ ordinate[j]<-loglikihg(m,freq,thetavec[j]) } plot(thetavec[ini:fin],ordinate[ini:fin],type="l",lwd=3,xlab=expression(theta),ylab="Log-likelihood function", cex.main=0.9,main="Log-likelihood function for the Inverse HyperGeometric distribution") which.max(ordinate)/np ### MLE of theta }
/scratch/gouwar.j/cran-all/cranData/CUB/R/plotloglikihg.R
#' @title S3 method: print for class "GEM" #' @description S3 method print for objects of class \code{\link{GEM}}. #' @aliases print.GEM #' @method print GEM #' @param x An object of class \code{\link{GEM}} #' @param ... Other arguments #' @export #' @return Brief summary results of the fitting procedure, including parameter estimates, their standard errors and #' the executed call. #' @import methods #' @rdname print.GEM #' @keywords package print.GEM<-function(x,...){ arguments<-list(...) digits<-arguments$digits if (is.null(digits)){ digits<-options()$digits } if(!is.null(cl <- x$call)){ cat("Call:\n") dput(cl, control = NULL) } sterr<-as.numeric(round(sqrt(diag(vcov(x))),digits=digits)) mat<-cbind(round(x$estimates,digits=digits),sterr) rownames(mat)<-parnames(x) colnames(mat)<-c("Estimates","Standard Errors") object<-x$object family<-object$family stime<-object$estimates cat("","\n") print(mat) # cat("Coefficients:","\n") # print(coef(x,digits=digits)) cat("","\n") cat("Maximized Log-Likelihood:",logLik(x,digits=digits),"\n") invisible(x) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/print.R
#' @title Probability distribution of a shifted Binomial random variable #' @description Return the shifted Binomial probability distribution. #' @aliases probbit #' @usage probbit(m,csi) #' @param m Number of ordinal categories #' @param csi Feeling parameter #' @import stats #' @export probbit #' @return The vector of the probability distribution of a shifted Binomial model. #' @keywords distribution #' @seealso \code{\link{bitcsi}}, \code{\link{probcub00}} #' @examples #' m<-7 #' csi<-0.7 #' pr<-probbit(m,csi) #' plot(1:m,pr,type="h",main="Shifted Binomial probability distribution",xlab="Categories") #' points(1:m,pr,pch=19) probbit <- function(m,csi){dbinom(0:(m-1),m-1,1-csi)}
/scratch/gouwar.j/cran-all/cranData/CUB/R/probbit.R
#' @title Probability distribution of a CUB model without covariates #' @description Compute the probability distribution of a CUB model without covariates. #' @aliases probcub00 #' @usage probcub00(m,pai,csi) #' @param m Number of ordinal categories #' @param pai Uncertainty parameter #' @param csi Feeling parameter #' @export probcub00 #' @return The vector of the probability distribution of a CUB model. #' @keywords distribution #' @seealso \code{\link{bitcsi}}, \code{\link{probcub0q}}, \code{\link{probcubp0}}, \code{\link{probcubpq}} #' @references #' Piccolo D. (2003). On the moments of a mixture of uniform and shifted binomial random variables. #' \emph{Quaderni di Statistica}, \bold{5}, 85--104\cr #' @examples #' m<-9 #' pai<-0.3 #' csi<-0.8 #' pr<-probcub00(m,pai,csi) #' plot(1:m,pr,type="h",main="CUB probability distribution",xlab="Ordinal categories") #' points(1:m,pr,pch=19) probcub00 <-function(m,pai,csi){ pai*(probbit(m,csi)-1/m)+1/m }
/scratch/gouwar.j/cran-all/cranData/CUB/R/probcub00.R
#' @title Probability distribution of a CUB model with covariates for the feeling component #' @aliases probcub0q #' @description Compute the probability distribution of a CUB model with covariates #' for the feeling component. #' @export probcub0q #' @usage probcub0q(m,ordinal,W,pai,gama) #' @keywords distribution #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param W Matrix of covariates for explaining the feeling component #' NCOL(Y)+1 to include an intercept term in the model (first entry) #' @param pai Uncertainty parameter #' @param gama Vector of parameters for the feeling component, whose length equals #' NCOL(W)+1 to include an intercept term in the model (first entry) #' @return A vector of the same length as \code{ordinal}, whose i-th component is the #' probability of the i-th observation according to a CUB distribution with the corresponding values #' of the covariates for the feeling component and coefficients specified in \code{gama}. #' @seealso \code{\link{bitgama}}, \code{\link{probcub00}}, \code{\link{probcubp0}}, #' \code{\link{probcubpq}} #' @references #' Piccolo D. (2006). Observed Information Matrix for MUB Models, #' \emph{Quaderni di Statistica}, \bold{8}, 33--78 \cr #' Piccolo D. and D'Elia A. (2008). A new approach for modelling consumers' preferences, \emph{Food Quality and Preference}, #' \bold{18}, 247--259 \cr #' Iannario M. and Piccolo D. (2012). CUB models: Statistical methods and empirical evidence, in: #' Kenett R. S. and Salini S. (eds.), \emph{Modern Analysis of Customer Surveys: with applications using R}, #' J. Wiley and Sons, Chichester, 231--258 #' @examples #' data(relgoods) #' m<-10 #' naord<-which(is.na(relgoods$Physician)) #' nacov<-which(is.na(relgoods$Gender)) #' na<-union(naord,nacov) #' ordinal<-relgoods$Physician[-na] #' W<-relgoods$Gender[-na] #' pai<-0.44; gama<-c(-0.91,-0.7) #' pr<-probcub0q(m,ordinal,W,pai,gama) probcub0q <- function(m,ordinal,W,pai,gama){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } W<-as.matrix(W) if (ncol(W)==1){ W<-as.numeric(W) } as.numeric(pai*(bitgama(m,ordinal,W,gama)-1/m)+1/m) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/probcub0q.R
#' @title Probability distribution of a CUBE model without covariates #' @aliases probcube #' @description Compute the probability distribution of a CUBE model without covariates. #' @usage probcube(m,pai,csi,phi) #' @export probcube #' @param m Number of ordinal categories #' @param pai Uncertainty parameter #' @param csi Feeling parameter #' @param phi Overdispersion parameter #' @return The vector of the probability distribution of a CUBE model without covariates. #' @seealso \code{\link{betar}}, \code{\link{betabinomial}} #' @references #' Iannario, M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data, #' \emph{Communications in Statistics - Theory and Methods}, \bold{43}, 771--786 #' @keywords distribution #' @examples #' m<-9 #' pai<-0.3 #' csi<-0.8 #' phi<-0.1 #' pr<-probcube(m,pai,csi,phi) #' plot(1:m,pr,type="h", main="CUBE probability distribution",xlab="Ordinal categories") #' points(1:m,pr,pch=19) probcube <- function(m,pai,csi,phi){ pai*(betar(m,csi,phi)-1/m)+1/m }
/scratch/gouwar.j/cran-all/cranData/CUB/R/probcube.R
#' @title Probability distribution of a CUB model with covariates for the uncertainty component #' @aliases probcubp0 #' @description Compute the probability distribution of a CUB model with covariates for the #' uncertainty component. #' @export probcubp0 #' @usage probcubp0(m,ordinal,Y,bet,csi) #' @keywords distribution #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param Y Matrix of covariates for explaining the uncertainty component #' @param bet Vector of parameters for the uncertainty component, whose length equals #' NCOL(Y) + 1 to include an intercept term in the model (first entry) #' @param csi Feeling parameter #' @return A vector of the same length as \code{ordinal}, whose i-th component is the probability of the i-th #' observation according to a CUB model with the corresponding values of the covariates for the #' uncertainty component and coefficients for the covariates specified in \code{bet}. #' @references #' Piccolo D. (2006). Observed Information Matrix for MUB Models, #' \emph{Quaderni di Statistica}, \bold{8}, 33--78 \cr #' Piccolo D. and D'Elia A. (2008). A new approach for modelling consumers' preferences, \emph{Food Quality and Preference}, #' \bold{18}, 247--259 \cr #' Iannario M. and Piccolo D. (2012). CUB models: Statistical methods and empirical evidence, in: #' Kenett R. S. and Salini S. (eds.), \emph{Modern Analysis of Customer Surveys: with applications using R}, #' J. Wiley and Sons, Chichester, 231--258 #' @seealso \code{\link{bitgama}}, \code{\link{probcub00}}, \code{\link{probcubpq}}, \code{\link{probcub0q}} #' @examples #' data(relgoods) #' m<-10 #' naord<-which(is.na(relgoods$Physician)) #' nacov<-which(is.na(relgoods$Gender)) #' na<-union(naord,nacov) #' ordinal<-relgoods$Physician[-na] #' Y<-relgoods$Gender[-na] #' bet<-c(-0.81,0.93); csi<-0.20 #' probi<-probcubp0(m,ordinal,Y,bet,csi) probcubp0 <- function(m,ordinal,Y,bet,csi){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } Y<-as.matrix(Y) if (ncol(Y)==1){ Y<-as.numeric(Y) } as.numeric(logis(Y,bet)*(bitcsi(m,ordinal,csi)-1/m)+1/m) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/probcubp0.R
#' @title Probability distribution of a CUB model with covariates for both feeling and uncertainty #' @aliases probcubpq #' @description Compute the probability distribution of a CUB model with covariates for both the feeling #' and the uncertainty components. #' @export probcubpq #' @usage probcubpq(m,ordinal,Y,W,bet,gama) #' @keywords distribution #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param Y Matrix of covariates for explaining the uncertainty component #' @param W Matrix of covariates for explaining the feeling component #' @param bet Vector of parameters for the uncertainty component, whose length equals #' NCOL(Y) + 1 to include an intercept term in the model (first entry) #' @param gama Vector of parameters for the feeling component, whose length equals #' NCOL(W)+1 to include an intercept term in the model (first entry) #' @return A vector of the same length as \code{ordinal}, whose i-th component is the probability of the #' i-th rating according to a CUB distribution with given covariates for both uncertainty and feeling, #' and specified coefficients vectors \code{bet} and \code{gama}, respectively. #' @seealso \code{\link{bitgama}}, \code{\link{probcub00}}, \code{\link{probcubp0}}, \code{\link{probcub0q}} #' @references #' Piccolo D. (2006). Observed Information Matrix for MUB Models, #' \emph{Quaderni di Statistica}, \bold{8}, 33--78 \cr #' Piccolo D. and D'Elia A. (2008). A new approach for modelling consumers' preferences, \emph{Food Quality and Preference}, #' \bold{18}, 247--259 \cr #' Iannario M. and Piccolo D. (2012). CUB models: Statistical methods and empirical evidence, in: #' Kenett R. S. and Salini S. (eds.), \emph{Modern Analysis of Customer Surveys: with applications using R}, #' J. Wiley and Sons, Chichester, 231--258 #' @examples #' data(relgoods) #' m<-10 #' naord<-which(is.na(relgoods$Physician)) #' nacov<-which(is.na(relgoods$Gender)) #' na<-union(naord,nacov) #' ordinal<-relgoods$Physician[-na] #' W<-Y<-relgoods$Gender[-na] #' gama<-c(-0.91,-0.7); bet<-c(-0.81,0.93) #' probi<-probcubpq(m,ordinal,Y,W,bet,gama) probcubpq <- function(m,ordinal,Y,W,bet,gama){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } Y<-as.matrix(Y); W<-as.matrix(W) if (ncol(W)==1){ W<-as.numeric(W) } if (ncol(Y)==1){ Y<-as.numeric(Y) } logis(Y,bet)*(bitgama(m,ordinal,W,gama)-1/m)+1/m }
/scratch/gouwar.j/cran-all/cranData/CUB/R/probcubpq.R
#' @title probcubshe1 #' @aliases probcubshe1 #' @description Probability distribution of an extended CUB model with a shelter effect. #' @usage probcubshe1(m,pai1,pai2,csi,shelter) #' @export probcubshe1 #' @keywords distribution #' @param m Number of ordinal categories #' @param pai1 Mixing coefficient for the shifted Binomial component of the mixture distribution #' @param pai2 Mixing coefficient for the discrete Uniform component of the mixture distribution #' @param csi Feeling parameter #' @param shelter Category corresponding to the shelter choice #' @return The vector of the probability distribution of an extended CUB model with a shelter effect #' at the shelter category #' @details An extended CUB model is a mixture of three components: a shifted Binomial distribution #' with probability of success \eqn{\xi}, a discrete uniform distribution with support \eqn{\{1,...,m\}}, #' and a degenerate distribution with unit mass at the shelter category (\code{shelter}). #' @references #' Iannario M. (2012). Modelling \emph{shelter} choices in a class of mixture models for ordinal responses, #' \emph{Statistical Methods and Applications}, \bold{21}, 1--22 \cr #' @seealso \code{\link{probcubshe2}}, \code{\link{probcubshe3}} #' @examples #' m<-8 #' pai1<-0.5 #' pai2<-0.3 #' csi<-0.4 #' shelter<-6 #' pr<-probcubshe1(m,pai1,pai2,csi,shelter) #' plot(1:m,pr,type="h",main="Extended CUB probability distribution with shelter effect", #' xlab="Ordinal categories") #' points(1:m,pr,pch=19) probcubshe1 <- function(m,pai1,pai2,csi,shelter) {pai1*probbit(m,csi)+pai2*(1/m)+(1-pai1-pai2)*ifelse(seq(1,m)==shelter,1,0)}
/scratch/gouwar.j/cran-all/cranData/CUB/R/probcubshe1.R
#' @title probcubshe2 #' @aliases probcubshe2 #' @description Probability distribution of a CUB model with explicit shelter effect #' @usage probcubshe2(m,pai,csi,delta,shelter) #' @export probcubshe2 #' @param m Number of ordinal categories #' @param pai Uncertainty parameter #' @param csi Feeling parameter #' @param delta Shelter parameter #' @param shelter Category corresponding to the shelter choice #' @return The vector of the probability distribution of a CUB model with explicit shelter effect. #' @details A CUB model with explicit shelter effect is a mixture of two components: #' a CUB distribution with uncertainty parameter \eqn{\pi} and feeling parameter \eqn{\xi}, #' and a degenerate distribution with unit mass at the shelter category (\code{shelter}) #' with mixing coefficient specified by \eqn{\delta}. #' @references #' Iannario M. (2012). Modelling \emph{shelter} choices in a class of mixture models for ordinal responses, #' \emph{Statistical Methods and Applications}, \bold{21}, 1--22 \cr #' @seealso \code{\link{probcubshe1}}, \code{\link{probcubshe3}} #' @keywords distribution #' @examples #' m<-8 #' pai1<-0.5 #' pai2<-0.3 #' csi<-0.4 #' shelter<-6 #' delta<-1-pai1-pai2 #' pai<-pai1/(1-delta) #' pr2<-probcubshe2(m,pai,csi,delta,shelter) #' plot(1:m,pr2,type="h", main="CUB probability distribution with #' explicit shelter effect",xlab="Ordinal categories") #' points(1:m,pr2,pch=19) probcubshe2 <- function(m,pai,csi,delta,shelter) {delta*ifelse(seq(1,m)==shelter,1,0)+(1-delta)*(pai*probbit(m,csi)+(1-pai)*(1/m))}
/scratch/gouwar.j/cran-all/cranData/CUB/R/probcubshe2.R
#' @title probcubshe3 #' @aliases probcubshe3 #' @description Probability distribution of a CUB model with explicit shelter effect: #' satisficing interpretation #' @usage probcubshe3(m,lambda,eta,csi,shelter) #' @export probcubshe3 #' @keywords distribution #' @param m Number of ordinal categories #' @param lambda Mixing coefficient for the shifted Binomial component #' @param eta Mixing coefficient for the mixture of the uncertainty component and the #' shelter effect #' @param csi Feeling parameter #' @param shelter Category corresponding to the shelter choice #' @return The vector of the probability distribution of a CUB model with shelter effect. #' @details The "satisficing interpretation" provides a parametrization for CUB models with explicit #' shelter effect as a mixture of two components: a shifted Binomial distribution with feeling parameter #' \eqn{\xi} (meditated choice), and a mixture of a degenerate distribution with unit mass at the shelter #' category (\code{shelter}) and a discrete uniform distribution over \eqn{m} categories, with mixing #' coefficient specified by \eqn{\eta} (lazy selection of a category). #' @references #' Iannario M. (2012). Modelling \emph{shelter} choices in a class of mixture models for ordinal responses, #' \emph{Statistical Methods and Applications}, \bold{21}, 1--22 \cr #' @seealso \code{\link{probcubshe1}}, \code{\link{probcubshe2}} #' @examples #' m<-8 #' pai1<-0.5 #' pai2<-0.3 #' csi<-0.4 #' shelter<-6 #' lambda<-pai1 #' eta<-1-pai2/(1-pai1) #' pr3<-probcubshe3(m,lambda,eta,csi,shelter) #' plot(1:m,pr3,type="h",main="CUB probability distribution with explicit #' shelter effect",xlab="Ordinal categories") #' points(1:m,pr3,pch=19) probcubshe3 <- function(m,lambda,eta,csi,shelter){ lambda*probbit(m,csi)+(1-lambda)*((1-eta)/m + eta*ifelse(seq(1,m)==shelter,1,0)) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/probcubshe3.R
#' @title Probability distribution of a CUSH model #' @aliases probcush #' @description Compute the probability distribution of a CUSH model without covariates, that is a mixture of a #' degenerate random variable with mass at the shelter category and the Uniform distribution. #' @keywords distribution #' @export probcush #' @usage probcush(m,delta,shelter) #' @param m Number of ordinal categories #' @param delta Shelter parameter #' @param shelter Category corresponding to the shelter choice #' @return The vector of the probability distribution of a CUSH model without covariates. #' @references #' Capecchi S. and Piccolo D. (2017). Dealing with heterogeneity in ordinal responses, #' \emph{Quality and Quantity}, \bold{51}(5), 2375--2393 \cr #' Capecchi S. and Iannario M. (2016). Gini heterogeneity index for detecting uncertainty in ordinal data surveys, #' \emph{Metron}, \bold{74}(2), 223--232 #' @examples #' m<-10 #' shelter<-1 #' delta<-0.4 #' pr<-probcush(m,delta,shelter) #' plot(1:m,pr,type="h",xlab="Number of categories") #' points(1:m,pr,pch=19) probcush <- function(m,delta,shelter){ delta*(ifelse(seq(1,m)==shelter,1,0) - 1/m) + 1/m }
/scratch/gouwar.j/cran-all/cranData/CUB/R/probcush.R
#' @title Probability distribution of a GeCUB model #' @aliases probgecub #' @description Compute the probability distribution of a GeCUB model, that is a CUB model with #' shelter effect with covariates specified for all component. #' @export probgecub #' @usage probgecub(ordinal,Y,W,X,bet,gama,omega,shelter) #' @keywords distribution #' @param ordinal Vector of ordinal responses #' @param Y Matrix of covariates for explaining the uncertainty component #' @param W Matrix of covariates for explaining the feeling component #' @param X Matrix of covariates for explaining the shelter effect #' @param bet Vector of parameters for the uncertainty component, whose length equals #' NCOL(Y)+1 to include an intercept term in the model (first entry) #' @param gama Vector of parameters for the feeling component, whose length equals #' NCOL(W)+1 to include an intercept term in the model (first entry) #' @param omega Vector of parameters for the shelter effect, whose length equals #' NCOL(X)+1 to include an intercept term in the model (first entry) #' @param shelter Category corresponding to the shelter choice #' @return A vector of the same length as \code{ordinal}, whose i-th component is the #' probability of the i-th observation according to a GeCUB model with the corresponding values #' of the covariates for all the components and coefficients specified in \code{bet}, \code{gama}, \code{omega}. #' @references #' Iannario M. and Piccolo D. (2016b). A generalized framework for modelling ordinal data. #' \emph{Statistical Methods and Applications}, \bold{25}, 163--189.\cr probgecub<-function(ordinal,Y,W,X,bet,gama,omega,shelter){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } X<-as.matrix(X); Y<-as.matrix(Y); W<-as.matrix(W) if (ncol(W)==1){ W<-as.numeric(W) } if (ncol(Y)==1){ Y<-as.numeric(Y) } if (ncol(X)==1){ X<-as.numeric(X) } alpha1<-logis(X,omega); alpha2<-(1-alpha1)*(logis(Y,bet)); pshe<-ifelse(as.numeric(ordinal)==shelter,1,0) ord<-factor(ordinal,ordered=TRUE) m<-length(levels(ord)) vettore<-alpha1*pshe + alpha2*(bitgama(m,ordinal,W,gama)) + (1-alpha1-alpha2)*(1/m); return(vettore) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/probgecub.R
#' @title Probability distribution of an IHG model #' @aliases probihg #' @description Compute the probability distribution of an IHG model (Inverse Hypergeometric) without covariates. #' @keywords distribution #' @export probihg #' @usage probihg(m,theta) #' @param m Number of ordinal categories #' @param theta Preference parameter #' @return The vector of the probability distribution of an IHG model. #' @references #' D'Elia A. (2003). Modelling ranks using the inverse hypergeometric distribution, #' \emph{Statistical Modelling: an International Journal}, \bold{3}, 65--78 #' @examples #' m<-10 #' theta<-0.30 #' pr<-probihg(m,theta) #' plot(1:m,pr,type="h",xlab="Ordinal categories") #' points(1:m,pr,pch=19) probihg <- function(m,theta){ pr<-rep(NA,m) pr[1]<-theta for(j in 1:(m-1)){ pr[j+1]<-pr[j]*(1-theta)*(m-j)/(m-j-1+j*theta) } return(pr) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/probihg.R
#' @title Probability distribution of an IHG model with covariates #' @aliases probihgcovn #' @description Given a vector of \eqn{n} ratings over \eqn{m} categories, it returns a vector #' of length \eqn{n} whose i-th element is the probability of observing the i-th rating for the #' corresponding IHG model with parameter \eqn{\theta_i}, obtained via logistic link with covariates #' and coefficients. #' @keywords distribution #' @export probihgcovn #' @usage probihgcovn(m,ordinal,U,nu) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param U Matrix of selected covariates for explaining the preference parameter #' @param nu Vector of coefficients for covariates, whose length equals NCOL(U)+1 to include #' an intercept term in the model (first entry) #' @details The matrix \eqn{U} is expanded with a vector with entries equal to 1 in the first column to include #' an intercept term in the model. #' @seealso \code{\link{probihg}} #' @examples #' n<-100 #' m<-7 #' theta<-0.30 #' ordinal<-simihg(n,m,theta) #' U<-sample(c(0,1),n,replace=TRUE) #' nu<-c(0.12,-0.5) #' pr<-probihgcovn(m,ordinal,U,nu) probihgcovn <- function(m,ordinal,U,nu){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } n<-length(ordinal) vett<-rep(NA,n) U<-as.matrix(U) if (ncol(U)==1){ U<-as.numeric(U) } thetavett<-logis(U,nu) for (i in 1:n){ prob<-probihg(m,thetavett[i]) vett[i]<-prob[ordinal[i]] } return(vett) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/probihgcovn.R
#' @title Relational goods and Leisure time dataset #' @description Dataset consists of the results of a survey aimed at measuring the evaluation #' of people living in the metropolitan area of Naples, Italy, with respect to of relational goods and #' leisure time collected in December 2014. Every participant was asked #' to assess on a 10 point ordinal scale his/her personal score for several relational goods #' (for instance, time dedicated to friends and family) and to leisure time. #' In addition, the survey asked respondents to self-evaluate their level of happiness by marking #' a sign along a horizontal line of 110 millimeters according to their feeling, with the left-most #' extremity standing for "extremely unhappy", and the right-most extremity corresponding to #' the status "extremely happy". #' @aliases relgoods #' @usage data(relgoods) #' @format The description of subjects' covariates is the following: #' \describe{ #' \item{\code{ID}}{An identification number} #' \item{\code{Gender}}{A factor with levels: 0 = man, 1 = woman} #' \item{\code{BirthMonth}}{A variable indicating the month of birth of the respondent} #' \item{\code{BirthYear}}{A variable indicating the year of birth of the respondent} #' \item{\code{Family}}{A factor variable indicating the number of members of the family} #' \item{\code{Year.12}}{A factor with levels: 1 = if there is any child aged less than 12 in the family, #' 0 = otherwise} #' \item{\code{EducationDegree}}{A factor with levels: 1 = compulsory school, 2 = high school diploma, #' 3 = Graduated-Bachelor degree, 4 = Graduated-Master degree, 5 = Post graduated} #' \item{\code{MaritalStatus}}{A factor with levels: 1 = Unmarried, 2 = Married/Cohabitee, #' 3 = Separated/Divorced, 4 = Widower} #' \item{\code{Residence}}{A factor with levels: 1 = City of Naples, 2 = District of Naples, #' 3 = Others Campania, 4 = Others Italia, 5 = Foreign countries} #' \item{\code{Glasses}}{A factor with levels: 1 = wearing glasses or contact lenses, 0 = otherwise} #' \item{\code{RightHand}}{A factor with levels: 1 = right-handed, 0 = left-handed} #' \item{\code{Smoking}}{A factor with levels: 1 = smoker, 0 = not smoker} #' \item{\code{WalkAlone}}{A factor with levels: 1 = usually walking alone, 0 = usually walking in company} #' \item{\code{job}}{A factor with levels: 1 = Not working, 2 = Retired, 3 = occasionally, #' 4 = fixed-term job, 5 = permanent job} #' \item{\code{PlaySport}}{A factor with levels: 1 = Not playing any sport, 2 = Yes, individual sport, #' 3 = Yes, team sport} #' \item{\code{Pets}}{A factor with levels: 1 = owning a pet, 0 = not owning any pet} #'} #' 1) Respondents were asked to evaluate the following items on a 10 point Likert scale, #' ranging from 1 = "never, at all" to 10 = "always, a lot": #' \describe{ #' \item{\code{WalkOut}}{How often the respondent goes out for a walk} #' \item{\code{Parents}}{How often respondent talks at least to one of his/her parents} #' \item{\code{MeetRelatives}}{How often respondent meets his/her relatives} #' \item{\code{Association}}{Frequency of involvement in volunteering or different kinds of #' associations/parties, etc} #' \item{\code{RelFriends}}{Quality of respondent's relationships with friends} #' \item{\code{RelNeighbours}}{Quality of the relationships with neighbors} #' \item{\code{NeedHelp}}{Easiness in asking help whenever in need} #' \item{\code{Environment}}{Level of comfort with the surrounding environment} #' \item{\code{Safety}}{Level of safety in the streets} #' \item{\code{EndofMonth}}{Family making ends meet} #' \item{\code{MeetFriend}}{Number of times the respondent met his/her friends during the month #' preceding the interview} #' \item{\code{Physician}}{Importance of the kindness/simpathy in the selection of respondent's physician} #' } #' \describe{ #' \item{\code{Happiness}}{Each respondent was asked to mark a sign on a 110mm horizontal line #' according to his/her feeling of happiness (left endpoint corresponding to completely unhappy, #' right-most endpoint corresponding to extremely happy} #' } #' 2) The same respondents were asked to score the activities for leisure time listed below, according #' to their involvement/degree of amusement, on a 10 point Likert scale #' ranging from 1 = "At all, nothing, never" to 10 = "Totally, extremely important, always": #' \describe{ #' \item{\code{Videogames}}{} #' \item{\code{Reading}}{} #' \item{\code{Cinema}}{} #' \item{\code{Drawing}}{} #' \item{\code{Shopping}}{} #' \item{\code{Writing}}{} #' \item{\code{Bicycle}}{} #' \item{\code{Tv}}{} #' \item{\code{StayWFriend}}{Spending time with friends}{} #' \item{\code{Groups}}{Taking part to associations, meetings, etc.}{} #' \item{\code{Walking}}{} #' \item{\code{HandWork}}{Hobby, gardening, sewing, etc. } #' \item{\code{Internet}}{} #' \item{\code{Sport}}{} #' \item{\code{SocialNetwork}}{} #' \item{\code{Gym}}{} #' \item{\code{Quiz}}{Crosswords, sudoku, etc.} #' \item{\code{MusicInstr}}{Playing a musical instrument} #' \item{\code{GoAroundCar}}{ Hanging out by car} #' \item{\code{Dog}}{Walking out the dog} #' \item{\code{GoOutEat}}{Go to restaurants/pubs}} #' @keywords datasets #' @details #' Period of data collection: December 2014 \cr #' Mode of collection: questionnaire \cr #' Number of observations: 2459 \cr #' Number of subjects' covariates: 16 \cr #' Number of analyzed items: 34 \cr #' Warning: with a limited number of missing values "relgoods"
/scratch/gouwar.j/cran-all/cranData/CUB/R/relgoods.R
#' @title Simulation routine for CUB models #' @aliases simcub #' @description Generate \eqn{n} pseudo-random observations following the given CUB distribution. #' @keywords distribution #' @usage simcub(n,m,pai,csi) #' @export simcub #' @import stats #' @param n Number of simulated observations #' @param m Number of ordinal categories #' @param pai Uncertainty parameter #' @param csi Feeling parameter #' @seealso \code{\link{probcub00}} #' @examples #' n<-300 #' m<-9 #' pai<-0.4 #' csi<-0.7 #' simulation<-simcub(n,m,pai,csi) #' plot(table(simulation),xlab="Ordinal categories",ylab="Frequencies") simcub <- function(n,m,pai,csi){ dico<-runif(n)<pai; vett<-dico*(1+rbinom(n,m-1,1-csi))+(1-dico)*sample(m,n,replace=TRUE) return(vett) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/simcub.R
#' @title Simulation routine for CUBE models #' @aliases simcube #' @description Generate \eqn{n} pseudo-random observations following the given CUBE #' distribution. #' @keywords distribution #' @usage simcube(n,m,pai,csi,phi) #' @export simcube #' @param n Number of simulated observations #' @param m Number of ordinal categories #' @param pai Uncertainty parameter #' @param csi Feeling parameter #' @param phi Overdispersion parameter #' @seealso \code{\link{probcube}} #' @examples #' n<-300 #' m<-9 #' pai<-0.7 #' csi<-0.4 #' phi<-0.1 #' simulation<-simcube(n,m,pai,csi,phi) #' plot(table(simulation),xlab="Ordinal categories",ylab="Frequencies") simcube <- function(n,m,pai,csi,phi){ prob<-probcube(m,pai,csi,phi) ord<-sample(1:m,n,prob,replace=T) return(ord) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/simcube.R
#' @title Simulation routine for CUB models with shelter effect #' @aliases simcubshe #' @description Generate \eqn{n} pseudo-random observations following the given CUB distribution #' with shelter effect. #' @keywords distribution #' @usage simcubshe(n,m,pai,csi,delta,shelter) #' @export simcubshe #' @import stats #' @param n Number of simulated observations #' @param m Number of ordinal categories #' @param pai Uncertainty parameter #' @param csi Feeling parameter #' @param delta Shelter parameter #' @param shelter Category corresponding to the shelter choice #' @seealso \code{\link{probcubshe1}}, \code{\link{probcubshe2}}, \code{\link{probcubshe3}} #' @examples #' n<-300 #' m<-9 #' pai<-0.7 #' csi<-0.3 #' delta<-0.2 #' shelter<-3 #' simulation<-simcubshe(n,m,pai,csi,delta,shelter) #' plot(table(simulation),xlab="Ordinal categories",ylab="Frequencies") simcubshe <- function(n,m,pai,csi,delta,shelter){ dicopai<-runif(n)<pai dicodelta<-runif(n)<delta cub00<-dicopai*(1+rbinom(n,m-1,1-csi))+(1-dicopai)*sample(m,n,replace=TRUE) ord<-(1-dicodelta)*cub00+dicodelta*shelter return(ord) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/simcubshe.R
#' @title Simulation routine for CUSH models #' @aliases simcush #' @description Generate \eqn{n} pseudo-random observations following the distribution of a CUSH #' model without covariates. #' @keywords distribution #' @usage simcush(n,m,delta,shelter) #' @export simcush #' @import stats #' @param n Number of simulated observations #' @param m Number of ordinal categories #' @param delta Shelter parameter #' @param shelter Category corresponding to the shelter choice #' @seealso \code{\link{probcush}} #' @examples #' n<-200 #' m<-7 #' delta<-0.3 #' shelter<-3 #' simulation<-simcush(n,m,delta,shelter) #' plot(table(simulation),xlab="Ordinal categories",ylab="Frequencies") simcush <- function(n,m,delta,shelter){ dicodelta<-runif(n)<delta uncert<-sample(m,n,replace=TRUE) vett<-dicodelta*shelter+(1-dicodelta)*uncert return(vett) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/simcush.R
#' @title Simulation routine for IHG models #' @aliases simihg #' @description Generate \eqn{n} pseudo-random observations following the given IHG distribution. #' @keywords distribution #' @usage simihg(n,m,theta) #' @export simihg #' @param n Number of simulated observations #' @param m Number of ordinal categories #' @param theta Preference parameter #' @seealso \code{\link{probihg}} #' @examples #' n<-300 #' m<-9 #' theta<-0.4 #' simulation<-simihg(n,m,theta) #' plot(table(simulation),xlab="Number of categories",ylab="Frequencies") simihg <- function(n,m,theta){ B<-(m-1)*theta/(1-theta) psi<-1-runif(n)^(1/B) vett<-1+rbinom(n,m-1,psi) return(vett) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/simihg.R
#' @title S3 method: summary for class "GEM" #' @description S3 method summary for objects of class \code{\link{GEM}}. #' @aliases summary.GEM #' @method summary GEM #' @param object An object of class \code{\link{GEM}} #' @param correlation Logical: should the estimated correlation matrix be returned? Default is FALSE #' @param ... Other arguments #' @export #' @return Extended summary results of the fitting procedure, including parameter estimates, their standard errors and #' Wald statistics, maximized log-likelihood compared with that of the saturated model and of a Uniform sample. #' AIC, BIC and ICOMP indeces are also displayed for model selection. Execution time and number of exectued iterations #' for the fitting procedure are aslo returned. #' @import methods #' @rdname summary.GEM #' @keywords package #' @examples #' model<-GEM(Formula(MeetRelatives~0|0|0),family="cube",data=relgoods) #' summary(model,correlation=TRUE,digits=4) #' ################################################################ ############################################################### #summary <- function(object,...) UseMethod("summary", object) # digits=options()$digits summary.GEM <- function(object, correlation=FALSE, ...){ flagcov<-0 arguments<-list(...) digits<-arguments$digits if (is.null(digits)){ digits<-options()$digits } ellipsis<-object$ellipsis m<-ellipsis[['m']] n<-length(object$ordinal) output<-list() stime<-object$estimates ordinal<-object$ordinal freq<-tabulate(ordinal,nbins=m) varm<- vcov(object) #as.matrix(object$varmat); np<-length(stime) if (isTRUE(varm==matrix(NA,nrow=np,ncol=np))==TRUE){ trvarmat<-output$ICOMP<-NA output$errstd<-output$wald<-output$pval<-rep(NA,np) } else { trvarmat<-sum(diag(varm)) output$loglik<- as.numeric(logLik(object)) output$ICOMP<- -2*output$loglik + np*log(trvarmat/np) - log(det(varm)) output$errstd<-sqrt(diag(varm)); output$wald<-stime/output$errstd; output$pval<-round(2*(1-pnorm(abs(output$wald))),digits) } output$loglik<-logLik(object) output$AIC<- -2*logLik(object)+2*(np) output$BIC<- -2*logLik(object)+log(n)*(np) output$ellipsis<-ellipsis output$llunif<- -n*log(m); nonzero<-which(freq!=0) output$logsat <- -n*log(n)+sum((freq[nonzero])*log(freq[nonzero])) output$devian<-2*(output$logsat-object$loglik) output$object<-object output$n<-n output$cormat<-NULL if (correlation==TRUE){ output$cormat<- cormat(object) } StdErr<-output$errstd Wald<-output$wald matout<-cbind(stime,StdErr,Wald) colnames(matout)<-c("Estimates","StdErr","Wald") rownames(matout)<-parnames(object) output$results<-matout class(output)<-"summary.GEM" print.summary.GEM <- function(x,...){ if(!is.null(cl <- x$call)) { cat("Call:\n") dput(cl, control = NULL) } ellipsis<-x$ellipsis object<-x$object maxiter<-object$ellipsis[['maxiter']] family<-object$family niter<-object$niter m<-object$ellipsis[['m']] stime<-object$estimates modello<-object$formula data<-ellipsis$data mf<-model.frame(modello,data=data,na.action=na.omit) n<-x$n cat("=======================================================================","\n") cat("=====>>>", family," model <<<===== ML-estimates via E-M algorithm ","\n") cat("=======================================================================","\n") cat(" m=", m," Sample size: n=",n," Iterations=", niter," Maxiter=",maxiter,"\n") cat("=======================================================================","\n") StdErr<-x$errstd Wald<-x$wald data<-object$data listanomi<-parnames(object) if ( family == "CUB"){ covpai<-model.matrix(modello,data=mf,rhs=1) covcsi<-model.matrix(modello,data=mf,rhs=2) covshe<-model.matrix(modello,data=mf,rhs=3) if (ncol(covpai)!=0 | ncol(covcsi)!=0 | ncol(covshe)!=0){ flagcov<-1 } if (ncol(covpai)==0){ Y<-NULL } else { if (NCOL(covpai)==2){ Y<-as.matrix(covpai[,-1]) colnames(Y)<-colnames(covpai)[2] } else { Y<-covpai[,-1] } } if (ncol(covcsi)==0){ W<-NULL } else { if (NCOL(covcsi)==2){ W<-as.matrix(covcsi[,-1]) colnames(W)<-colnames(covcsi)[2] } else { W<-covcsi[,-1] } } if (ncol(covshe)==0){ X<-NULL } else { X<-covshe[,-1] } if (!is.null(X) & !is.null(Y) & !is.null(W) & !is.null(object$ellipsis$shelter)){ Y<-as.matrix(Y); W<-as.matrix(W); X<-as.matrix(X); p<-NCOL(Y); q<-NCOL(W); s<-NCOL(X); mat1<-cbind(stime[1:(p+1)],StdErr[1:(p+1)],Wald[1:(p+1)]) colnames(mat1)<-c("Estimates","StdErr","Wald") rownames(mat1)<-listanomi[1:(p+1)] x$uncertainty<-mat1 mat2<-cbind(stime[(p+2):(p+q+2)],StdErr[(p+2):(p+q+2)],Wald[(p+2):(p+q+2)]) x$feeling<-mat2 mat3<-cbind(stime[(p+q+3):(p+q+s+3)],StdErr[(p+q+3):(p+q+s+3)],Wald[(p+q+3):(p+q+s+3)]) x$shelter<-mat3 cat("Uncertainty ", "\n") print(mat1,digits=digits) cat("=======================================================================","\n") cat("Feeling ", "\n") colnames(mat2)<-c("Estimates","StdErr","Wald") rownames(mat2)<-listanomi[(p+2):(p+q+2)] print(mat2,digits=digits) cat("=======================================================================","\n") cat("Shelter effect ", "\n") colnames(mat3)<-c("Estimates","StdErr","Wald") rownames(mat3)<-listanomi[(p+q+3):(p+q+s+3)] print(mat3,digits=digits) } else if (is.null(object$ellipsis$shelter) & is.null(X) & !is.null(Y) & !is.null(W)){ Y<-as.matrix(Y); W<-as.matrix(W); p<-NCOL(Y); q<-NCOL(W); mat1<-cbind(stime[1:(p+1)],StdErr[1:(p+1)],Wald[1:(p+1)]) colnames(mat1)<-c("Estimates","StdErr","Wald") rownames(mat1)<-listanomi[1:(p+1)] x$uncertainty<-mat1 mat2<-cbind(stime[(p+2):(p+q+2)],StdErr[(p+2):(p+q+2)],Wald[(p+2):(p+q+2)]) cat("Uncertainty ", "\n") print(mat1,digits=digits) colnames(mat2)<-c("Estimates","StdErr","Wald") rownames(mat2)<-listanomi[(p+2):(p+q+2)] x$uncertainty<-mat1 x$feeling<-mat2 cat("=======================================================================","\n") cat("Feeling ", "\n") print(mat2,digits=digits) } else if (is.null(object$ellipsis$shelter) & is.null(X) & is.null(Y) & !is.null(W)){ W<-as.matrix(W); q<-NCOL(W); mat1<-cbind(stime[1],StdErr[1],Wald[1]) colnames(mat1)<-c("Estimates","StdErr","Wald") rownames(mat1)<-listanomi[1] mat2<-cbind(stime[2:(q+2)],StdErr[2:(q+2)],Wald[2:(q+2)]) colnames(mat2)<-c("Estimates","StdErr","Wald") rownames(mat2)<-listanomi[2:(q+2)] cat("Uncertainty ", "\n") print(mat1,digits=digits) cat("=======================================================================","\n") cat("Feeling ", "\n") print(mat2,digits=digits) x$uncertainty<-mat1 x$feeling<-mat2 } else if (is.null(object$ellipsis$shelter) & is.null(X) & !is.null(Y) & is.null(W)){ Y<-as.matrix(Y); p<-NCOL(Y); mat1<-cbind(stime[1:(p+1)],StdErr[1:(p+1)],Wald[1:(p+1)]) colnames(mat1)<-c("Estimates","StdErr","Wald") rownames(mat1)<-listanomi[1:(p+1)] mat2<-cbind(stime[(p+2)],StdErr[p+2],Wald[p+2]) colnames(mat2)<-c("Estimates","StdErr","Wald") rownames(mat2)<-listanomi[p+2] cat("Uncertainty ", "\n") print(mat1,digits=digits) cat("=======================================================================","\n") cat("Feeling ", "\n") print(mat2,digits=digits) x$uncertainty<-mat1 x$feeling<-mat2 } else if (is.null(object$ellipsis$shelter) & is.null(X) & is.null(Y) & is.null(W)) { mat1<-cbind(stime[1],StdErr[1],Wald[1]) colnames(mat1)<-c("Estimates","StdErr","Wald") mat2<-cbind(stime[2],StdErr[2],Wald[2]) colnames(mat2)<-c("Estimates","StdErr","Wald") rownames(mat2)<-listanomi[2] x$uncertainty<-mat1 x$feeling<-mat2 cat("Uncertainty ", "\n") print(mat1,digits=digits) cat("=======================================================================","\n") cat("Feeling ", "\n") print(mat2,digits=digits) } } if (family == "CUBE"){ covpai<-model.matrix(modello,data=mf,rhs=1) covcsi<-model.matrix(modello,data=mf,rhs=2) covphi<-model.matrix(modello,data=mf,rhs=3) if (ncol(covpai)!=0 | ncol(covcsi)!=0 | ncol(covphi)!=0){ flagcov<-1 } if (ncol(covpai)==0){ Y<-NULL } else { Y<-covpai[,-1] } if (ncol(covcsi)==0){ W<-NULL } else { W<-covcsi[,-1] } if (ncol(covphi)==0){ Z<-NULL } else { Z<-covphi[,-1] } if (is.null(Y)& is.null(W) & is.null(Z)){ mat1<-cbind(stime[1],StdErr[1],Wald[1]) colnames(mat1)<-c("Estimates","StdErr","Wald") rownames(mat1)<-listanomi[1] mat2<-cbind(stime[2],StdErr[2],Wald[2]) colnames(mat2)<-c("Estimates","StdErr","Wald") rownames(mat2)<-listanomi[2] cat("Uncertainty ", "\n") print(mat1,digits=digits) cat("=======================================================================","\n") cat("Feeling ", "\n") print(mat2,digits=digits) cat("=======================================================================","\n") cat("Overdispersion ", "\n") mat3<-cbind(stime[3],StdErr[3],Wald[3]) colnames(mat3)<-c("Estimates","StdErr","Wald") rownames(mat3)<-listanomi[3] print(mat3,digits=digits) x$uncertainty<-mat1 x$feeling<-mat2 x$overdispersion<-mat3 } else if (is.null(Y)& !is.null(W) & is.null(Z)){ q<-NCOL(W) mat1<-cbind(stime[1],StdErr[1],Wald[1]) colnames(mat1)<-c("Estimates","StdErr","Wald") rownames(mat1)<-listanomi[1] mat2<-cbind(stime[2:(q+2)],StdErr[2:(q+2)],Wald[2:(q+2)]) colnames(mat2)<-c("Estimates","StdErr","Wald") rownames(mat2)<-listanomi[2:(q+2)] cat("Uncertainty ", "\n") print(mat1,digits=digits) cat("=======================================================================","\n") cat("Feeling ", "\n") print(mat2,digits=digits) cat("=======================================================================","\n") cat("Overdispersion ", "\n") mat3<-cbind(stime[q+3],StdErr[q+3],Wald[q+3]) colnames(mat3)<-c("Estimates","StdErr","Wald") rownames(mat3)<-listanomi[q+3] print(mat3,digits=digits) x$uncertainty<-mat1 x$feeling<-mat2 x$overdispersion<-mat3 } else if (!is.null(Y)& !is.null(W) & !is.null(Z)){ p<-NCOL(Y) q<-NCOL(W) s<-NCOL(Z) mat1<-cbind(stime[1:(p+1)],StdErr[1:(p+1)],Wald[1:(p+1)]) mat2<-cbind(stime[(2+p):(q+p+2)],StdErr[(2+p):(q+p+2)],Wald[(2+p):(q+p+2)]) colnames(mat1)<-colnames(mat2)<-c("Estimates","StdErr","Wald") rownames(mat1)<-listanomi[1:(p+1)]; rownames(mat2)<-listanomi[(2+p):(q+p+2)] cat("Uncertainty ", "\n") print(mat1,digits=digits) cat("=======================================================================","\n") cat("Feeling ", "\n") print(mat2,digits=digits) cat("=======================================================================","\n") cat("Overdispersion ", "\n") mat3<-cbind(stime[(p+q+3):(p+q+s+3)],StdErr[(p+q+3):(p+q+s+3)],Wald[(p+q+3):(p+q+s+3)]) colnames(mat3)<-c("Estimates","StdErr","Wald") rownames(mat3)<-listanomi[(p+q+3):(p+q+s+3)] print(mat3,digits=digits) x$uncertainty<-mat1 x$feeling<-mat2 x$overdispersion<-mat3 } } if (family == "IHG" | family =="CUSH"){ if (length(stime)>1){ flagcov<-1 } matout<-cbind(stime,StdErr,Wald) colnames(matout)<-c("Estimates","StdErr","Wald") rownames(matout)<-listanomi print(matout,digits=digits) if (family=="IHG"){ x$preference<-matout } else { x$shelter<-matout } } # for(i in 1:np){ # cat(nomi[i]," ",stime[i]," ",errstd[i]," ",wald[i]," ","\n") # } cat("=======================================================================","\n") if (family=="CUB" & !is.null(object$ellipsis$shelter)){ covshe<-model.matrix(modello,data=mf,rhs=3) if (ncol(covshe)==0){ X<-NULL } else { X<-covshe[,-1] } if (is.null(X)){ matout<-cbind(stime,StdErr,Wald) colnames(matout)<-c("Estimates","StdErr","Wald") rownames(matout)<-listanomi print(matout,digits=digits) #stime<-as.numeric(coef(object)) pai1<-stime[1];pai2<-stime[2];csi<-stime[3] delta<-1-pai1-pai2 paistar<-pai1/(pai1+pai2) stime2<-c(paistar,csi,delta) nomi2<-c("paistar","csi","delta") vv<-vcov(object) esdelta<-sqrt(vv[1,1]+vv[2,2]+2*vv[1,2]) espaistar<-paistar*(1-paistar)*sqrt(vv[1,1]/(pai1^2) -2*vv[1,2]/(pai2*pai1) + vv[2,2]/pai2^2) errstd2<-c(espaistar,StdErr[3],esdelta) wald2<-stime2/errstd2 ErrStd<-as.numeric(errstd2) mat2<-as.matrix(stime2) Wald<-wald2 matout2<-cbind(mat2,ErrStd,wald2) dimnames(matout2)<-list(nomi2,c("Estimates","StdErr","Wald")) #matout2<-cbind(nomi2,stime2,errstd2,wald2) # dimnames(matout2)<-list(rep("",length(nomi2)),c("Parameters", "ML-estimates" , "Std. err.", "Est./Std.err (Wald test)")) cat("=======================================================================","\n") cat("Alternative parameterization","\n") print(matout2,digits=digits) # for(i in 1:np){ # cat(nomi2[i]," ",stime2[i]," ",errstd2[i]," ",wald2[i]," ","\n") # } cat("=======================================================================","\n") } } if (!is.null(x$cormat)){ cat("Parameters Correlation matrix","\n") print(x$cormat) cat("=======================================================================","\n") } loglik<-logLik(object) cat("Log-lik =",round(loglik,digits=digits),"\n") cat("Mean Log-likelihood=",round(loglik/n,digits=digits),"\n") if (flagcov==0){ cat("Log-lik(UNIFORM) =",round(x$llunif,digits=digits),"\n") cat("Log-lik(saturated) =",round(x$logsat,digits=digits),"\n") cat("Deviance =",round(x$devian,digits=digits),"\n") } cat("-----------------------------------------------------------------------","\n") #cat("Log-lik(Shifted-BINOMIAL) =",round(llsb,digits=8),"\n") #cat("-----------------------------------------------------------------------","\n") cat("AIC =",round(x$AIC,digits=digits),"\n") cat("BIC =",round(x$BIC,digits=digits),"\n") cat("ICOMP =",round(x$ICOMP,digits=digits),"\n") cat("=======================================================================","\n") cat("Elapsed time=",object$time,"seconds","=====>>>",date(),"\n") cat("=======================================================================","\n") class(x)<-"summary.GEM" #return(list(x$uncertainty,x$feeling,x$overdispersion,x$shelter,x$preference)) } ## chiude definizione print.summary print(output) invisible(output$results) #invisible(output) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/summary.R
#' @title Evaluation of the Orientation Services 2002 #' @description A sample survey on students evaluation of the Orientation services was conducted across the #' 13 Faculties of University of Naples Federico II in five waves: participants were asked to express their ratings #' on a 7 point scale (1 = "very unsatisfied", 7 = "extremely satisfied"). #' Here dataset collected during 2002 is loaded. #' @aliases univer #' @usage data(univer) #' @format The description of subjects' covariates is: #' \describe{ #' \item{\code{Faculty}}{A factor variable, with levels ranging from 1 to 13 indicating the coding #' for the different university faculties} #' \item{\code{Freqserv}}{A factor with levels: 0 = for not regular users, 1 = for regular users} #' \item{\code{Age}}{Variable indicating the age of the respondent in years} #' \item{\code{Gender}}{A factor with levels: 0 = man, 1 = woman} #' \item{\code{Diploma}}{A factor with levels: 1 = classic studies, 2 = scientific studies, 3 = linguistic, #' 4 = Professional, 5 = Technical/Accountancy, 6 = others} #' \item{\code{Residence}}{A factor with levels: 1 = city NA, 2 = district NA, 3 = others} #' \item{\code{ChangeFa}}{A factor with levels: 1 = changed faculty, 2 = not changed faculty} #' } #' Analyzed ordinal variables (Likert ordinal scale): #' 1 = "extremely unsatisfied", 2 = "very unsatisfied", 3 = "unsatisfied", 4 = "indifferent", 5 = "satisfied", 6 = "very satisfied", #' 7 = "extremely satisfied" #' \describe{ #' \item{\code{Informat}}{Level of satisfaction about the collected information} #' \item{\code{Willingn}}{Level of satisfaction about the willingness of the staff} #' \item{\code{Officeho}}{Judgment about the Office hours} #' \item{\code{Competen}}{Judgement about the competence of the staff} #' \item{\code{Global}}{Global satisfaction} #' } #' @keywords datasets #' @details #' \describe{ #' Period of data collection: 2002 \cr #' Mode of collection: questionnaire \cr #' Number of observations: 2179 \cr #' Number of subjects' covariates: 7 \cr #' Number of analyzed items: 5 #' } "univer"
/scratch/gouwar.j/cran-all/cranData/CUB/R/univer.R
#' @title Variance-covariance matrix of a CUB model without covariates #' @description Compute the variance-covariance matrix of parameter estimates of a CUB model without covariates. #' @aliases varcovcub00 #' @usage varcovcub00(m, ordinal, pai, csi) #' @param m Number of ordinal categories #' @param ordinal Vector of ordinal responses #' @param pai Uncertainty parameter #' @param csi Feeling parameter #' @export varcovcub00 #' @details The function checks if the variance-covariance matrix is positive-definite: if not, #' it returns a warning message and produces a matrix with NA entries. #' @seealso \code{\link{probcub00}} #' @keywords internal #' @references #' Piccolo D. (2006), Observed Information Matrix for MUB Models. \emph{Quaderni di Statistica}, #' \bold{8}, 33--78, #' @examples #' data(univer) #' m<-7 #' ordinal<-univer[,12] #' pai<-0.87 #' csi<-0.17 #' varmat<-varcovcub00(m, ordinal, pai, csi) varcovcub00 <- function(m,ordinal,pai,csi){ if (is.factor(ordinal)){ ordinal<-unclass(ordinal) } vvi<-(m-ordinal)/csi-(ordinal-1)/(1-csi) ui<-(m-ordinal)/(csi^2)+(ordinal-1)/((1-csi)^2) pri<-probcub00(m,pai,csi) qi<-1/(m*pri[ordinal]) qistar<-1-(1-pai)*qi qitilde<-qistar*(1-qistar) i11<-sum((1-qi)^2)/(pai^2) i12<- -sum(vvi*qi*qistar)/pai i22<-sum(qistar*ui-(vvi^2)*qitilde) ####################################### Information matrix matinf<-matrix(c(i11,i12,i12,i22),nrow=2,byrow=T) ####################################### Variance-covariance matrix if(any(is.na(matinf))==TRUE){ warning("ATTENTION: NAs produced") varmat<-matrix(NA,nrow=2,ncol=2) } else { if(det(matinf)<=0){ warning("ATTENTION: Variance-covariance matrix NOT positive definite") varmat<-matrix(NA,nrow=2,ncol=2) } else { varmat<-solve(matinf) } } return(varmat) }
/scratch/gouwar.j/cran-all/cranData/CUB/R/varcovcub00.R