medicalsegmentationanything / data /models /implicitefficientnet.py
introvoyz041's picture
Migrated from GitHub
faa56b4 verified
import torch
from torch import nn
from torch.nn import functional as F
__version__ = "0.5.1"
from .utils import (BlockArgs, BlockDecoder, GlobalParams,
MemoryEfficientSwish, Swish, drop_connect, efficientnet,
efficientnet_params, get_model_params,
get_same_padding_conv2d, gram_matrix,
load_pretrained_weights, round_filters, round_repeats)
class MBConvBlock(nn.Module):
"""
Mobile Inverted Residual Bottleneck Block
Args:
block_args (namedtuple): BlockArgs, see above
global_params (namedtuple): GlobalParam, see above
Attributes:
has_se (bool): Whether the block contains a Squeeze and Excitation layer.
"""
def __init__(self, block_args, global_params):
super().__init__()
self._block_args = block_args
self._bn_mom = 1 - global_params.batch_norm_momentum
self._bn_eps = global_params.batch_norm_epsilon
self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
self.id_skip = block_args.id_skip # skip connection and drop connect
# Get static or dynamic convolution depending on image size
Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)
# Expansion phase
inp = self._block_args.input_filters # number of input channels
oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels
if self._block_args.expand_ratio != 1:
self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
# Depthwise convolution phase
k = self._block_args.kernel_size
s = self._block_args.stride
self._depthwise_conv = Conv2d(
in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise
kernel_size=k, stride=s, bias=False)
self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
# Squeeze and Excitation layer, if desired
if self.has_se:
num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)
# Output phase
final_oup = self._block_args.output_filters
self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
self._swish = MemoryEfficientSwish()
def forward(self, inputs, drop_connect_rate=None):
"""
:param inputs: input tensor
:param drop_connect_rate: drop connect rate (float, between 0 and 1)
:return: output of block
"""
# Expansion and Depthwise Convolution
x = inputs
if self._block_args.expand_ratio != 1:
x = self._swish(self._bn0(self._expand_conv(inputs)))
x = self._swish(self._bn1(self._depthwise_conv(x)))
# Squeeze and Excitation
if self.has_se:
x_squeezed = F.adaptive_avg_pool2d(x, 1)
x_squeezed = self._se_expand(self._swish(self._se_reduce(x_squeezed)))
x = torch.sigmoid(x_squeezed) * x
x = self._bn2(self._project_conv(x))
# Skip connection and drop connect
input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters
if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:
if drop_connect_rate:
x = drop_connect(x, p=drop_connect_rate, training=self.training)
x = x + inputs # skip connection
return x
def set_swish(self, memory_efficient=True):
"""Sets swish function as memory efficient (for training) or standard (for export)"""
self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
class EfficientNet(nn.Module):
"""
An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods
Args:
blocks_args (list): A list of BlockArgs to construct blocks
global_params (namedtuple): A set of GlobalParams shared between blocks
Example:
model = EfficientNet.from_pretrained('efficientnet-b0')
"""
def __init__(self, type, blocks_args=None, global_params=None):
super().__init__()
assert isinstance(blocks_args, list), 'blocks_args should be a list'
assert len(blocks_args) > 0, 'block args must be greater than 0'
self._global_params = global_params
self._blocks_args = blocks_args
self.type = type
# Get static or dynamic convolution depending on image size
Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)
# Batch norm parameters
bn_mom = 1 - self._global_params.batch_norm_momentum
bn_eps = self._global_params.batch_norm_epsilon
# Stem
in_channels = 5 # rgb
out_channels = round_filters(32, self._global_params) # number of output channels
self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
# Build blocks
self._blocks = nn.ModuleList([])
for block_args in self._blocks_args:
# Update block input and output filters based on depth multiplier.
block_args = block_args._replace(
input_filters=round_filters(block_args.input_filters, self._global_params),
output_filters=round_filters(block_args.output_filters, self._global_params),
num_repeat=round_repeats(block_args.num_repeat, self._global_params)
)
# The first block needs to take care of stride and filter size increase.
self._blocks.append(MBConvBlock(block_args, self._global_params))
if block_args.num_repeat > 1:
block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
for _ in range(block_args.num_repeat - 1):
self._blocks.append(MBConvBlock(block_args, self._global_params))
# Head
in_channels = block_args.output_filters # output of final block
out_channels = round_filters(1280, self._global_params)
self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
# Final linear layer
self._avg_pooling = nn.AdaptiveAvgPool2d(1)
self._dropout = nn.Dropout(self._global_params.dropout_rate)
self._fc = nn.Linear(out_channels, 1)
self._swish = MemoryEfficientSwish()
self.conv_reg = nn.Conv2d(1792, 1, 1)
if self.type == 'big_map' or self.type == 'img':
self.conv_transe1 = nn.Conv2d(1792, 448, 1)
self.bn_transe1 = nn.BatchNorm2d(num_features=448, momentum=bn_mom, eps=bn_eps)
self.conv_transe2 = nn.Conv2d(448, 112, 1)
self.bn_transe2 = nn.BatchNorm2d(num_features=112, momentum=bn_mom, eps=bn_eps)
if self.type == 'big_map':
self.conv_transe_mask = nn.Conv2d(112, 1, 1)
self.deconv_big = nn.ConvTranspose2d(1792, 1, 5, stride=4) ##transpose
if self.type == 'img':
self.conv_transe3 = nn.Conv2d(112, 3, 1)
self.deconv_img = nn.ConvTranspose2d(1792, 3, 5, stride=4) ##transpose
elif self.type == 'deconv_map' or self.type == 'deconv_img':
self.conv_big_reg = nn.ConvTranspose2d(1792, 1, 5, stride=4) ##transpose
self.conv_img = nn.ConvTranspose2d(1792, 3, 5, stride=4) ##transpose
else:
self.conv_reg = nn.Conv2d(1792, 1, 1)
self.relu = nn.ReLU()
self.up_double = nn.Upsample(scale_factor=2, mode='bilinear')
self.sig = nn.Sigmoid()
def set_swish(self, memory_efficient=True):
"""Sets swish function as memory efficient (for training) or standard (for export)"""
self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
for block in self._blocks:
block.set_swish(memory_efficient)
def extract_features(self, inputs):
""" Returns output of the final convolution layer """
# Stem
x = self._swish(self._bn0(self._conv_stem(inputs)))
# Blocks
for idx, block in enumerate(self._blocks):
drop_connect_rate = self._global_params.drop_connect_rate
if drop_connect_rate:
drop_connect_rate *= float(idx) / len(self._blocks)
x = block(x, drop_connect_rate=drop_connect_rate)
# Head
x = self._swish(self._bn1(self._conv_head(x)))
return x
def forward(self, seg, label, natural):
label = label.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(seg.size())
x = torch.cat((label, natural, seg), 1) # concated input
bs = seg.size(0)
# Convolution layers
x = self.extract_features(x)
if self.type == 'map':
reg = self.conv_reg(x)
reg = self.sig(reg)
elif self.type == 'big_map':
reg = self.up_double(x) # 12*14
reg = self.relu(reg)
reg = self.conv_transe1(reg) # 448
reg = self.bn_transe1(reg)
reg = self.up_double(reg) # 24*28
reg = self.relu(reg)
reg = self.conv_transe2(reg) # 112
reg = self.bn_transe2(reg)
reg = self.conv_transe_mask(reg) # 1
reg = self.sig(reg)
elif self.type == 'img':
reg = self.up_double(x) # 12*14
reg = self.relu(reg)
reg = self.conv_transe1(reg) # 448
reg = self.bn_transe1(reg)
reg = self.up_double(reg) # 24*28
reg = self.relu(reg)
reg = self.conv_transe2(reg) # 112
reg = self.bn_transe2(reg)
reg = self.conv_transe3(reg) # 3
reg = self.sig(reg)
elif self.type == 'deconv_map':
reg = self.conv_big_reg(x)
reg = self.sig(reg)
elif self.type == 'deconv_img':
reg = self.conv_img(x)
reg = self.sig(reg)
elif self.type == 'feature':
reg = gram_matrix(x - x.mean(0, True))
return reg
@classmethod
def from_name(cls, model_name, type, override_params=None):
cls._check_model_name_is_valid(model_name)
blocks_args, global_params = get_model_params(model_name, override_params)
return cls(type, blocks_args, global_params)
@classmethod
def from_pretrained(cls, model_name, num_classes=1000, in_channels=3):
model = cls.from_name(model_name, override_params={'num_classes': num_classes})
load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000))
if in_channels != 3:
Conv2d = get_same_padding_conv2d(image_size=model._global_params.image_size)
out_channels = round_filters(32, model._global_params)
model._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
return model
@classmethod
def from_pretrained(cls, model_name, num_classes=1000):
model = cls.from_name(model_name, override_params={'num_classes': num_classes})
load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000))
return model
@classmethod
def get_image_size(cls, model_name):
cls._check_model_name_is_valid(model_name)
_, _, res, _ = efficientnet_params(model_name)
return res
@classmethod
def _check_model_name_is_valid(cls, model_name, also_need_pretrained_weights=False):
""" Validates model name. None that pretrained weights are only available for
the first four models (efficientnet-b{i} for i in 0,1,2,3) at the moment. """
num_models = 4 if also_need_pretrained_weights else 8
valid_models = ['efficientnet-b' + str(i) for i in range(num_models)]
if model_name not in valid_models:
raise ValueError('model_name should be one of: ' + ', '.join(valid_models))