|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
__version__ = "0.5.1"
|
|
from .utils import (BlockArgs, BlockDecoder, GlobalParams,
|
|
MemoryEfficientSwish, Swish, drop_connect, efficientnet,
|
|
efficientnet_params, get_model_params,
|
|
get_same_padding_conv2d, gram_matrix,
|
|
load_pretrained_weights, round_filters, round_repeats)
|
|
|
|
|
|
class MBConvBlock(nn.Module):
|
|
"""
|
|
Mobile Inverted Residual Bottleneck Block
|
|
|
|
Args:
|
|
block_args (namedtuple): BlockArgs, see above
|
|
global_params (namedtuple): GlobalParam, see above
|
|
|
|
Attributes:
|
|
has_se (bool): Whether the block contains a Squeeze and Excitation layer.
|
|
"""
|
|
|
|
def __init__(self, block_args, global_params):
|
|
super().__init__()
|
|
self._block_args = block_args
|
|
self._bn_mom = 1 - global_params.batch_norm_momentum
|
|
self._bn_eps = global_params.batch_norm_epsilon
|
|
self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
|
|
self.id_skip = block_args.id_skip
|
|
|
|
|
|
Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)
|
|
|
|
|
|
inp = self._block_args.input_filters
|
|
oup = self._block_args.input_filters * self._block_args.expand_ratio
|
|
if self._block_args.expand_ratio != 1:
|
|
self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
|
|
self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
|
|
|
|
|
|
k = self._block_args.kernel_size
|
|
s = self._block_args.stride
|
|
self._depthwise_conv = Conv2d(
|
|
in_channels=oup, out_channels=oup, groups=oup,
|
|
kernel_size=k, stride=s, bias=False)
|
|
self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
|
|
|
|
|
|
if self.has_se:
|
|
num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
|
|
self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
|
|
self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)
|
|
|
|
|
|
final_oup = self._block_args.output_filters
|
|
self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
|
|
self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
|
|
self._swish = MemoryEfficientSwish()
|
|
|
|
def forward(self, inputs, drop_connect_rate=None):
|
|
"""
|
|
:param inputs: input tensor
|
|
:param drop_connect_rate: drop connect rate (float, between 0 and 1)
|
|
:return: output of block
|
|
"""
|
|
|
|
|
|
x = inputs
|
|
if self._block_args.expand_ratio != 1:
|
|
x = self._swish(self._bn0(self._expand_conv(inputs)))
|
|
x = self._swish(self._bn1(self._depthwise_conv(x)))
|
|
|
|
|
|
if self.has_se:
|
|
x_squeezed = F.adaptive_avg_pool2d(x, 1)
|
|
x_squeezed = self._se_expand(self._swish(self._se_reduce(x_squeezed)))
|
|
x = torch.sigmoid(x_squeezed) * x
|
|
|
|
x = self._bn2(self._project_conv(x))
|
|
|
|
|
|
input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters
|
|
if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:
|
|
if drop_connect_rate:
|
|
x = drop_connect(x, p=drop_connect_rate, training=self.training)
|
|
x = x + inputs
|
|
return x
|
|
|
|
def set_swish(self, memory_efficient=True):
|
|
"""Sets swish function as memory efficient (for training) or standard (for export)"""
|
|
self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
|
|
|
|
|
|
class EfficientNet(nn.Module):
|
|
"""
|
|
An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods
|
|
|
|
Args:
|
|
blocks_args (list): A list of BlockArgs to construct blocks
|
|
global_params (namedtuple): A set of GlobalParams shared between blocks
|
|
|
|
Example:
|
|
model = EfficientNet.from_pretrained('efficientnet-b0')
|
|
|
|
"""
|
|
|
|
def __init__(self, type, blocks_args=None, global_params=None):
|
|
super().__init__()
|
|
assert isinstance(blocks_args, list), 'blocks_args should be a list'
|
|
assert len(blocks_args) > 0, 'block args must be greater than 0'
|
|
self._global_params = global_params
|
|
self._blocks_args = blocks_args
|
|
self.type = type
|
|
|
|
Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)
|
|
|
|
|
|
bn_mom = 1 - self._global_params.batch_norm_momentum
|
|
bn_eps = self._global_params.batch_norm_epsilon
|
|
|
|
|
|
in_channels = 5
|
|
out_channels = round_filters(32, self._global_params)
|
|
self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
|
|
self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
|
|
|
|
|
|
self._blocks = nn.ModuleList([])
|
|
for block_args in self._blocks_args:
|
|
|
|
|
|
block_args = block_args._replace(
|
|
input_filters=round_filters(block_args.input_filters, self._global_params),
|
|
output_filters=round_filters(block_args.output_filters, self._global_params),
|
|
num_repeat=round_repeats(block_args.num_repeat, self._global_params)
|
|
)
|
|
|
|
|
|
self._blocks.append(MBConvBlock(block_args, self._global_params))
|
|
if block_args.num_repeat > 1:
|
|
block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
|
|
for _ in range(block_args.num_repeat - 1):
|
|
self._blocks.append(MBConvBlock(block_args, self._global_params))
|
|
|
|
|
|
in_channels = block_args.output_filters
|
|
out_channels = round_filters(1280, self._global_params)
|
|
self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
|
self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
|
|
|
|
|
|
self._avg_pooling = nn.AdaptiveAvgPool2d(1)
|
|
self._dropout = nn.Dropout(self._global_params.dropout_rate)
|
|
self._fc = nn.Linear(out_channels, 1)
|
|
self._swish = MemoryEfficientSwish()
|
|
self.conv_reg = nn.Conv2d(1792, 1, 1)
|
|
if self.type == 'big_map' or self.type == 'img':
|
|
self.conv_transe1 = nn.Conv2d(1792, 448, 1)
|
|
self.bn_transe1 = nn.BatchNorm2d(num_features=448, momentum=bn_mom, eps=bn_eps)
|
|
self.conv_transe2 = nn.Conv2d(448, 112, 1)
|
|
self.bn_transe2 = nn.BatchNorm2d(num_features=112, momentum=bn_mom, eps=bn_eps)
|
|
if self.type == 'big_map':
|
|
self.conv_transe_mask = nn.Conv2d(112, 1, 1)
|
|
self.deconv_big = nn.ConvTranspose2d(1792, 1, 5, stride=4)
|
|
if self.type == 'img':
|
|
self.conv_transe3 = nn.Conv2d(112, 3, 1)
|
|
self.deconv_img = nn.ConvTranspose2d(1792, 3, 5, stride=4)
|
|
elif self.type == 'deconv_map' or self.type == 'deconv_img':
|
|
self.conv_big_reg = nn.ConvTranspose2d(1792, 1, 5, stride=4)
|
|
self.conv_img = nn.ConvTranspose2d(1792, 3, 5, stride=4)
|
|
else:
|
|
self.conv_reg = nn.Conv2d(1792, 1, 1)
|
|
|
|
self.relu = nn.ReLU()
|
|
self.up_double = nn.Upsample(scale_factor=2, mode='bilinear')
|
|
self.sig = nn.Sigmoid()
|
|
|
|
def set_swish(self, memory_efficient=True):
|
|
"""Sets swish function as memory efficient (for training) or standard (for export)"""
|
|
self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
|
|
for block in self._blocks:
|
|
block.set_swish(memory_efficient)
|
|
|
|
def extract_features(self, inputs):
|
|
""" Returns output of the final convolution layer """
|
|
|
|
|
|
x = self._swish(self._bn0(self._conv_stem(inputs)))
|
|
|
|
|
|
for idx, block in enumerate(self._blocks):
|
|
drop_connect_rate = self._global_params.drop_connect_rate
|
|
if drop_connect_rate:
|
|
drop_connect_rate *= float(idx) / len(self._blocks)
|
|
x = block(x, drop_connect_rate=drop_connect_rate)
|
|
|
|
|
|
x = self._swish(self._bn1(self._conv_head(x)))
|
|
|
|
return x
|
|
|
|
def forward(self, seg, label, natural):
|
|
label = label.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(seg.size())
|
|
|
|
x = torch.cat((label, natural, seg), 1)
|
|
bs = seg.size(0)
|
|
|
|
x = self.extract_features(x)
|
|
if self.type == 'map':
|
|
reg = self.conv_reg(x)
|
|
reg = self.sig(reg)
|
|
elif self.type == 'big_map':
|
|
reg = self.up_double(x)
|
|
reg = self.relu(reg)
|
|
reg = self.conv_transe1(reg)
|
|
reg = self.bn_transe1(reg)
|
|
|
|
reg = self.up_double(reg)
|
|
reg = self.relu(reg)
|
|
reg = self.conv_transe2(reg)
|
|
reg = self.bn_transe2(reg)
|
|
|
|
reg = self.conv_transe_mask(reg)
|
|
reg = self.sig(reg)
|
|
elif self.type == 'img':
|
|
reg = self.up_double(x)
|
|
reg = self.relu(reg)
|
|
reg = self.conv_transe1(reg)
|
|
reg = self.bn_transe1(reg)
|
|
|
|
reg = self.up_double(reg)
|
|
reg = self.relu(reg)
|
|
reg = self.conv_transe2(reg)
|
|
reg = self.bn_transe2(reg)
|
|
|
|
reg = self.conv_transe3(reg)
|
|
reg = self.sig(reg)
|
|
elif self.type == 'deconv_map':
|
|
reg = self.conv_big_reg(x)
|
|
reg = self.sig(reg)
|
|
elif self.type == 'deconv_img':
|
|
reg = self.conv_img(x)
|
|
reg = self.sig(reg)
|
|
elif self.type == 'feature':
|
|
reg = gram_matrix(x - x.mean(0, True))
|
|
|
|
return reg
|
|
|
|
@classmethod
|
|
def from_name(cls, model_name, type, override_params=None):
|
|
cls._check_model_name_is_valid(model_name)
|
|
blocks_args, global_params = get_model_params(model_name, override_params)
|
|
return cls(type, blocks_args, global_params)
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, model_name, num_classes=1000, in_channels=3):
|
|
model = cls.from_name(model_name, override_params={'num_classes': num_classes})
|
|
load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000))
|
|
if in_channels != 3:
|
|
Conv2d = get_same_padding_conv2d(image_size=model._global_params.image_size)
|
|
out_channels = round_filters(32, model._global_params)
|
|
model._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
|
|
return model
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, model_name, num_classes=1000):
|
|
model = cls.from_name(model_name, override_params={'num_classes': num_classes})
|
|
load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000))
|
|
|
|
return model
|
|
|
|
@classmethod
|
|
def get_image_size(cls, model_name):
|
|
cls._check_model_name_is_valid(model_name)
|
|
_, _, res, _ = efficientnet_params(model_name)
|
|
return res
|
|
|
|
@classmethod
|
|
def _check_model_name_is_valid(cls, model_name, also_need_pretrained_weights=False):
|
|
""" Validates model name. None that pretrained weights are only available for
|
|
the first four models (efficientnet-b{i} for i in 0,1,2,3) at the moment. """
|
|
num_models = 4 if also_need_pretrained_weights else 8
|
|
valid_models = ['efficientnet-b' + str(i) for i in range(num_models)]
|
|
if model_name not in valid_models:
|
|
raise ValueError('model_name should be one of: ' + ', '.join(valid_models))
|
|
|
|
|
|
|
|
|